To run the code, first install the convex optimization framework prost following the instructions presented there.
It is required to add some additional proximal and linear operators to prost. To do so, create the file CustomSources.cmake
in the directory prost/cmake/
with the following contents:
set(PROST_CUSTOM_SOURCES
"relative_path_to_sublabel_relax"/cvpr2016/prost/block_dataterm_sublabel.cu
"relative_path_to_sublabel_relax"/cvpr2016/prost/prox_ind_epi_polyhedral_1d.cu
"relative_path_to_sublabel_relax"/cvpr2016/prost/prox_ind_epi_conjquad_1d.cu
"relative_path_to_sublabel_relax"/eccv2016/prost/prox_ind_epi_polyhedral.cu
"relative_path_to_sublabel_relax"/cvpr2016/prost/block_dataterm_sublabel.hpp
"relative_path_to_sublabel_relax"/cvpr2016/prost/prox_ind_epi_polyhedral_1d.hpp
"relative_path_to_sublabel_relax"/cvpr2016/prost/prox_ind_epi_conjquad_1d.hpp
"relative_path_to_sublabel_relax"/eccv2016/prost/prox_ind_epi_polyhedral.hpp
)
set(MATLAB_CUSTOM_SOURCES
"relative_path_to_sublabel_relax"/cvpr2016/prost/custom.cpp
"relative_path_to_sublabel_relax"/eccv2016/prost/custom.cpp
)
Replace "relative_path_to_sublabel_relax"
with the relative path to go from the directory prost/cmake
to the directory where you cloned this repository into (e.g., ../../sublabel_relax
).
After adding this file, recompile prost again, e.g., run in the directory prost/build
cmake ..
make -j16
Further instructions for reproducing the individual numerical experiments from the paper Sublabel-Accurate Relaxation of Nonconvex Energies can be found here.
Further instructions for reproducing the individual numerical experiments from the paper Sublabel-Accurate Convex Relaxation of Vectorial Multilabel Energies can be found here.
-
Sublabel-Accurate Relaxation of Nonconvex Energies (T. Möllenhoff, E. Laude, M. Moeller, J. Lellmann, D. Cremers), In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
-
Sublabel-Accurate Convex Relaxation of Vectorial Multilabel Energies (E. Laude, T. Möllenhoff, M. Moeller, J. Lellmann, D. Cremers), In European Conference on Computer Vision and Pattern Recognition (ECCV), 2016.