-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
added code for efficiency calculation
- Loading branch information
Showing
1 changed file
with
147 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,147 @@ | ||
from scipy import stats | ||
from uncertainties import unumpy | ||
from dataclasses import dataclass | ||
from matplotlib import pyplot as plt | ||
import numpy as np | ||
|
||
from kalman_detector.main import KalmanDetector | ||
from kalman_detector import utils | ||
|
||
|
||
@dataclass | ||
class Result: | ||
snr_emp: np.ndarray | ||
kal_score: np.ndarray | ||
kal_sig: np.ndarray | ||
|
||
@property | ||
def snr_sig(self) -> np.ndarray: | ||
return stats.norm.logsf(self.snr_emp) | ||
|
||
|
||
class Results(object): | ||
def __init__(self, results): | ||
self.results = results | ||
|
||
@property | ||
def kal_score(self): | ||
return self.get_unumpy("kal_score") | ||
|
||
@property | ||
def kal_sig(self): | ||
return self.get_unumpy("kal_sig") | ||
|
||
@property | ||
def snr_emp(self): | ||
return self.get_unumpy("snr_emp") | ||
|
||
@property | ||
def snr_sig(self): | ||
return self.get_unumpy("snr_sig") | ||
|
||
@property | ||
def efficiency(self): | ||
return 2 * self.kal_score / self.snr_emp**2 | ||
|
||
def get_unumpy(self, key): | ||
return unumpy.uarray(self.get_item(key, np.mean), self.get_item(key, np.std)) | ||
|
||
def get_item(self, key, func=np.mean): | ||
return np.array([func(getattr(result, key)) for result in self.results]) | ||
|
||
|
||
def monte_carlo(template, target_snr, q_arr, niters=10000): | ||
snr_emp_arr = np.empty(niters) | ||
kal_sig_arr = np.empty(shape=(niters, len(q_arr))) | ||
kal_score_arr = np.empty(shape=(niters, len(q_arr))) | ||
|
||
spec_mean = np.zeros_like(template) | ||
spec_std = np.ones_like(template) | ||
kalman = KalmanDetector(spec_std, q_par=q_arr) | ||
kalman.prepare_fits(ntrials=10000) | ||
for ii in range(niters): | ||
spec = target_snr * template + np.random.normal( | ||
spec_mean, spec_std, len(template) | ||
) | ||
snr_emp_arr[ii] = np.dot(template, utils.normalize(spec, spec_std)) / np.sqrt( | ||
np.dot(template, template) | ||
) | ||
sigs, scores = kalman.get_significance(spec) | ||
kal_sig_arr[ii] = sigs | ||
kal_score_arr[ii] = scores | ||
results = [] | ||
for iq, _ in enumerate(q_arr): | ||
results.append(Result(snr_emp_arr, kal_score_arr[:, iq], kal_sig_arr[:, iq])) | ||
return results | ||
|
||
|
||
def sim_efficiency(template, snr_arr, q_arr, niters=10000): | ||
results_arr = np.empty((len(q_arr), len(snr_arr)), dtype=object) | ||
for ii, target_snr in enumerate(snr_arr): | ||
results = monte_carlo(template, target_snr, q_arr, niters=niters) | ||
results_arr[:, ii] = results | ||
results_ts = [] | ||
for iresult, _ in enumerate(q_arr): | ||
results_ts.append(Results(results_arr[iresult])) | ||
return results_ts | ||
|
||
|
||
def eff_plot( | ||
template, | ||
freqs, | ||
ax_eff, | ||
ax_prof, | ||
niters=10000, | ||
snr_arr=None, | ||
q_arr=None, | ||
): | ||
if snr_arr is None: | ||
snr_arr = np.arange(6, 40, 2) | ||
if q_arr is None: | ||
q_arr = np.array([0.5, 0.1, 0.05]) | ||
results_ts = sim_efficiency(template, snr_arr, q_arr**2, niters=niters) | ||
|
||
colors = ["#8da0cb", "#fc8d62", "#66c2a5"] | ||
ax_prof.plot(freqs, template, label="filter") | ||
ax_prof.set_xlabel("Frequency (MHz)") | ||
ax_prof.set_ylabel("Amplitude") | ||
ax_prof.set_ylim(-0.15, 0.15) | ||
for iresult, results in enumerate(results_ts): | ||
ax_eff.errorbar( | ||
unumpy.nominal_values(results.snr_emp), | ||
unumpy.nominal_values(results.efficiency), | ||
xerr=unumpy.std_devs(results.snr_emp), | ||
yerr=unumpy.std_devs(results.efficiency), | ||
fmt="o", | ||
mec="k", | ||
mfc=colors[iresult], | ||
ms=7, | ||
capsize=1.7, | ||
ecolor="darkgrey", | ||
elinewidth=1.2, | ||
label=f"$q^{2}$ = {q_arr[iresult]:.2f}", | ||
) | ||
ax_eff.axhline(1, ls="--", color="k", lw=1) | ||
ax_eff.set_xlabel("S/N") | ||
ax_eff.set_ylabel("Efficiency") | ||
ax_eff.set_ylim(0.4, 1.1) | ||
ax_eff.set_xlim(7, 40) | ||
ax_eff.legend(loc="lower right", frameon=True) | ||
return results_ts | ||
|
||
|
||
if __name__ == "__main__": | ||
niters = 10000 | ||
|
||
template = utils.simulate_gaussian_process(noise_std, corr_len, snr_int, complex_process) | ||
freqs = np.arange(0, 335) + 1104 | ||
|
||
figure = plt.figure(figsize=(5, 5.5), dpi=200) | ||
grid = figure.add_gridspec(left=0.05, right=0.95, bottom=0.1, top=0.95) | ||
inner_grid = grid[0, 0].subgridspec( | ||
nrows=2, ncols=1, hspace=0.24, height_ratios=(2, 1) | ||
) | ||
ax_prof = plt.subplot(inner_grid[1, 0]) | ||
ax_eff = plt.subplot(inner_grid[0, 0]) | ||
results = eff_plot(template, freqs, ax_eff, ax_prof, niters=niters) | ||
plt.show() |