Skip to content

Commit

Permalink
Update model README.md files (#2076)
Browse files Browse the repository at this point in the history
Update the README for each algo
  • Loading branch information
samet-akcay authored May 24, 2024
1 parent ecdde40 commit e5b91d6
Show file tree
Hide file tree
Showing 16 changed files with 16 additions and 16 deletions.
2 changes: 1 addition & 1 deletion src/anomalib/models/image/cfa/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ Coupled-hypersphere-based Feature Adaptation (CFA) localizes anomalies using fea

## Usage

`python tools/train.py --model cfa`
`anomalib train --model Cfa --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/cflow/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ CFLOW model is based on a conditional normalizing flow framework adopted for ano

## Usage

`python tools/train.py --model cflow`
`anomalib train --model Cflow --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/csflow/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ The anomaly score for each local position $(i,j)$ of the feature map $y^s$ at sc

## Usage

`python tools/train.py --model cs_flow`
`anomalib train --model Csflow --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/dfkde/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ In the anomaly classification stage, the features are first reduced to the first

## Usage

`python tools/train.py --model dfkde`
`anomalib train --model Dfkde --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/dfm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ In the anomaly classification stage, class-conditional PCA transformations and G

## Usage

`python tools/train.py --model dfm`
`anomalib train --model Dfm --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/draem/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ For optimal results, DRAEM requires specifying the path to a folder of image dat

## Usage

`python tools/train.py --model draem`
`anomalib train --model Draem --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/dsr/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ DSR is a quantized-feature based algorithm that consists of an autoencoder with

## Usage

`python tools/train.py --model dsr`
`anomalib train --model Dsr --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/efficient_ad/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ Anomalies are detected as the difference in output feature maps between the teac

## Usage

`anomalib train --model EfficientAd --data anomalib.data.MVTec --data.train_batch_size 1`
`anomalib train --model EfficientAd --data anomalib.data.MVTec --data.category <category> --data.train_batch_size 1`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/fastflow/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ FastFlow is a two-dimensional normalizing flow-based probability distribution es

## Usage

`python tools/train.py --model fastflow`
`anomalib train --model Fastflow --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/ganomaly/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ The key idea here is that, during inference, when an anomalous image is passed t

## Usage

`python tools/train.py --model ganomaly`
`anomalib train --model Ganomaly --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/padim/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ During inference, Mahalanobis distance is used to score each patch position of t

## Usage

`python tools/train.py --model padim`
`anomalib train --model Padim --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/patchcore/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ During inference this memory bank is coreset subsampled. Coreset subsampling gen

## Usage

`python tools/train.py --model patchcore`
`anomalib train --model Patchcore --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/reverse_distillation/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ During testing, a similar step is followed but this time the cosine distance bet

## Usage

`python tools/train.py --model reverse_distillation`
`anomalib train --model ReverseDistillation --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/rkde/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@ Before fitting the KDE model, the dimensionality of the feature vectors is reduc

## Usage and parameters

`python tools/train.py --model rkde`
`anomalib train --model Rkde --data MVTec --data.category <category>`

| Parameter | Affects Stage | Description | Type | Options |
| :----------------------- | :----------------- | :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :----- | :------------ |
Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/stfpm/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ During inference, the feature pyramids of teacher and student networks are compa

## Usage

`python tools/train.py --model stfpm`
`anomalib train --model Stfpm --data MVTec --data.category <category>`

## Benchmark

Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/image/uflow/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,7 +52,7 @@ In order to obtain the same exact results, although the architecture parameters

## Usage

`python tools/train.py --model uflow`
`anomalib train --model Uflow --data MVTec --data.category <category>`

## Download data

Expand Down

0 comments on commit e5b91d6

Please sign in to comment.