Skip to content
forked from fuhaitao95/MVGCN

MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

Notifications You must be signed in to change notification settings

mengdawn025/MVGCN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 

Repository files navigation

MVGCN

MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

Developer: Fu Haitao from BBDM lab, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.

Tutorial

  1. Split data for cross validation and indenpendent test experiment via the script split_data.py: python split_data.py fold_number DATANAME seed_indent seed_cross

  2. To perform cross validation for finetuning the hyperparameters by running the script command_optimal (if you don't want to finetune the hyperparameters, just skip this step):

    python command_optimal.py --dataName DATANAME --exp_name mid_dim/num_layer/alp_beta --seed_cross seed_cross --seed_indent seed_indent

  3. To get the experiment results by running the script command_optimal.py:

    python command_optimal.py --dataName DATANAME --exp_name optimal_cross --seed_cross seed_cross --seed_indent seed_indent

    python command_optimal.py --dataName DATANAME --exp_name optimal_indent --seed_cross seed_cross --seed_indent seed_indent

Requirements

numpy 1.18.0

pandas 1.1.0

scipy 1.4.1

scikit-learn 0.22

tensorflow 1.15.0

pytorch 1.6.0

python 3.7.1

Contact

Please feel free to contact us if you need any help: fuhaitao@webmail.hzau.edu.cn OR 1298332329@qq.com

About

MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%