Skip to content

Commit

Permalink
sync
Browse files Browse the repository at this point in the history
  • Loading branch information
keithalewis committed Oct 10, 2024
1 parent fa25773 commit 4bf35fc
Showing 1 changed file with 41 additions and 31 deletions.
72 changes: 41 additions & 31 deletions py.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,13 +7,11 @@ classoption: fleqn
abstract:
...

\newcommand\o[1]{\overline{#1}}
\newcommand\u[1]{\underline{#1}}
\renewcommand\o[1]{\overline{#1}}
\renewcommand\u[1]{\underline{#1}}
\newcommand{\Cov}{\operatorname{Cov}}

If $B_t$ is Brownian motion let $\o{B}_t = \max_{0\le s\le t}B_s$ be the running max.
Let $\tau_a = \inf\{t > 0\mid \o{B}_t > a\}$ be the first time $B_t$ hits level $a$.
Note $\tau_a < t$ if and only if $\o{B}_t > a$.

$$
E[f(B_t) 1(\o{B}_t > a)] = E[f(B_t) 1(B_t > a)] + E[f(2a - B_t) 1(B_t > a)]
Expand All @@ -26,21 +24,35 @@ $$
E[f(B_t) 1(\o{B}_t > a)] &= E[f(B_t) 1(\o{B}_t > a,B_t > a)] + E[f(B_t) 1(\o{B}_t > a,B_t < a)]\\
&= E[f(B_t) 1(B_t > a)] + E[f(B_t) 1(\o{B}_t > a,B_t < a)] \\
&= E[f(B_t) 1(B_t > a)] + E[f(B^a_t) 1(\o{B^a}_t > a,B^a_t < a)] \\
&= E[f(B_t) 1(B_t > a)] + E[f(2a - B) 1(\o{B^a}_t > a,2a - B_t < a)] \\
&= E[f(B_t) 1(B_t > a)] + E[f(2a - B) 1(\o{B^a}_t > a, B_t > a)] \\
&= E[f(B_t) 1(B_t > a)] + E[f(2a - B) 1(B_t > a)] \\
&= E[f(B_t) 1(B_t > a)] + E[f(2a - B_t) 1(\o{B^a}_t > a,2a - B_t < a)] \\
&= E[f(B_t) 1(B_t > a)] + E[f(2a - B_t) 1(\o{B^a}_t > a, B_t > a)] \\
&= E[f(B_t) 1(B_t > a)] + E[f(2a - B_t) 1(B_t > a)] \\
&= E[\bigl(f(B_t) + f(2a - B_t)\bigr) 1(B_t > a)] \\
\end{aligned}
$$

Taking $f(x) = 1$ gives $P(\o{B}_t > a) = 2P(B_t > a)$.

$1 - G(x) = 2(1 - F(x))$, $G(x) = 2F(x) - 1$, $x > 0$.
Let $\u{B}_t = \min_{0 \le s \le t} B_s$. $(\u{-B})_t = -\o{B}_t$.

$g(x) = 2f(x)$, $x > 0$.
$$
\begin{aligned}
E[f(B_t) 1(\u{B}_t < a)] &= E[f(-B_t) 1(\u{-B}_t < a)] \\
&= E[f(-B_t) 1(-\o{B}_t < a)] \\
&= E[f(-B_t) 1(\o{B}_t > -a)] \\
&= E[\bigl(f(-B_t) + f(-(-2a - B_t)\bigr) 1(B_t > -a)] \\
&= E[\bigl(f(-B_t) + f(2a + B_t)\bigr) 1(B_t > -a)] \\
&= E[\bigl(f(B_t) + f(2a - B_t)\bigr) 1(B_t < a)] \\
\end{aligned}
$$

Taking $f(x) = 1$ gives $P(\u{B}_t < a) = 2P(B_t < a)$.

Let $\tau_a = \inf\{t > 0\mid \u{B}_t < a\}$ be the first time $B_t$ hits level $a < 0$.

Note $\tau_a > t$ if and only if $\u{B}_t < a$.

Recall $E[T] = \int_0^\infty P(T > t)\,dx$ if $T\ge0$.
Recall $E[\tau] = \int_0^\infty P(\tau > t)\,dt$ if $\tau\ge0$.

$P(\min\{\tau_a, T\} > t) = P(\tau_a > t, T > t) = P(\tau_a > t)1(T > t)$

Expand All @@ -54,47 +66,46 @@ Let $g(x) = f(\mu t + \sigma x)$ and $\alpha = \mu/\sigma$.

$$
\begin{aligned}
E[f(X_t) 1(\o{X}_t > a)] &= E[g(B_t) 1(\max_{0\le s\le t}\mu s + \sigma B_s > a)] \\
E[f(X_t) 1(\u{X}_t < a)] &= E[g(B_t) 1(\min_{0\le s\le t}\mu s + \sigma B_s < a)] \\
&= E[\exp(\alpha B_t - \alpha^2t/2) g(B_t - \alpha t)
1(\max_{0\le s\le t}\mu s + \sigma (B_s - \alpha s) > a)] \\
1(\min_{0\le s\le t}\mu s + \sigma (B_s - \alpha s) < a)] \\
&= E[\exp((\mu/\sigma) B_t - (\mu/\sigma)^2t/2) g(B_t - (\mu/\sigma) t)
1(\max_{0\le s\le t}\sigma B_s > a)] \\
1(\min_{0\le s\le t}\sigma B_s < a)] \\
&= E[\exp((\mu/\sigma) B_t - (\mu/\sigma)^2t/2) g(B_t - (\mu/\sigma) t)
1(\max_{0\le s\le t}B_s > a/\sigma)] \\
&= E[h(B_t) 1(\o{B}_t > a/\sigma)] \\
&= E[(h(B_t) + h(2a - B_t)) 1(B_t > a/\sigma)], \\
1(\min_{0\le s\le t}B_s < a/\sigma)] \\
&= E[h(B_t) 1(\u{B}_t < a/\sigma)] \\
&= E[(h(B_t) + h(2a - B_t)) 1(B_t < a/\sigma)], \\
\end{aligned}
$$
where $h(x) = \exp((\mu/\sigma) x - (\mu/\sigma)^2t/2) g(x - (\mu/\sigma) t)$.

If $f(x) = 1$ then $g(x) = 1$ and $h(x) = \exp((\mu/\sigma) x - (\mu/\sigma)^2t/2)$.

$$
P(\o{X}_t > a) = E[(\exp((\mu/\sigma) B_t - (\mu/\sigma)^2t/2)
+ \exp((\mu/\sigma) (2a - B_t) - (\mu/\sigma)^2t/2))1(B_t > a/\sigma)].
P(\u{X}_t < a) = E[\bigl(\exp((\mu/\sigma) B_t - (\mu/\sigma)^2t/2)
+ \exp((\mu/\sigma) (2a - B_t) - (\mu/\sigma)^2t/2)\bigr)1(B_t < a/\sigma)].
$$

$E[e^{\alpha B_t - \alpha^2t/2} 1(B_t > a)]
= E[1(B_t + \Cov(\alpha B_t,B_t) > a)]
= P(B_t > a - \alpha t)$.
$E[\exp(\alpha B_t - \alpha^2t/2) 1(B_t < a)]
= E[1(B_t + \Cov(\alpha B_t,B_t) < a)]
= P(B_t < a - \alpha t)$.

$E[\exp((\mu/\sigma) B_t - (\mu/\sigma)^2t/2) 1(B_t > a/\sigma)]
= P(B_t > a/\sigma - (\mu/\sigma)t)$.
$E[\exp((\mu/\sigma) B_t - (\mu/\sigma)^2t/2) 1(B_t < a/\sigma)]
= P(B_t < a/\sigma - (\mu/\sigma)t)$.

$E[\exp((\mu/\sigma) (2a - B_t) - (\mu/\sigma)^2t/2) 1(B_t > a/\sigma)]
=\exp(2a\mu/\sigma) P(B_t > a/\sigma + (\mu/\sigma)t)$.
$E[\exp((\mu/\sigma) (2a - B_t) - (\mu/\sigma)^2t/2) 1(B_t < a/\sigma)]
=\exp(2a\mu/\sigma) P(B_t < a/\sigma + (\mu/\sigma)t)$.

$$
E[\min\{\tau_a,T\}] = \int_0^T P(B_t > a/\sigma - (\mu/\sigma)t)
+ \exp(2a\mu/\sigma) P(B_t > a/\sigma + (\mu/\sigma)t)\,dt \\
E[\min\{\tau_a,T\}] = \int_0^T P(B_t < a/\sigma - (\mu/\sigma)t)
+ \exp(2a\mu/\sigma) P(B_t < a/\sigma + (\mu/\sigma)t)\,dt \\
$$

Let $Z$ be standard normal.

$\int_0^T P(Z > a + bt)\,dt =
P(Z > a + bt)t|_0^T + \int_0^T t \phi(a + bt)b\,dt$
$\int_0^T P(Z < a/\sqrt{t} + b\sqrt{t})\,dt$

$u = P(Z > a + bt) = 1 - \Phi(a + bt)$, $dv = dt$; $du = -\phi(a + bt)b\,dt$, $v = t$.
$u = P(Z < a\sqrt{t} + b\sqrt{t}) = \Phi(a + bt)$, $dv = dt$; $du = \phi(a + bt)b\,dt$, $v = t$.

$s = a + bt$, $t = (s - a)/b$

Expand All @@ -105,4 +116,3 @@ $$
&= ((-\exp(s^2/2) - a \Phi(s))/b|_a^{a + bT} \\
\end{aligned}
$$

0 comments on commit 4bf35fc

Please sign in to comment.