Skip to content

ildoonet/unsupervised-data-augmentation

Repository files navigation

UDA : Unsupervised Data Augmentation

Unofficial PyTorch Implementation of Unsupervised Data Augmentation.

  • Experiments on Text Dataset need to be done. Any Pull-Requests would be appreciated.
  • Augmentation policies for SVHN, Imagenet using AutoAugment are not available publicly. We use policies from Fast AutoAugment.

Most of codes are from Fast AutoAugment.

Introduction

todo.

Run

$ python train.py -c confs/wresnet28x2.yaml --unsupervised

Experiments

Cifar10 (Reduced, 4k dataset)

Reproduce Paper's Result

WResNet 28x2 Paper Our Converged(Top1 Err) Our Best(Top1 Err)
Supervised 20.26 21.30
AutoAugment 14.1* 15.4 13.4
UDA 5.27 6.58 6.27

SVHN

todo.

ImageNet

todo.

References

About

Unofficial PyTorch Implementation of Unsupervised Data Augmentation.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages