forked from mindee/doctr
-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #31 from h2oai/detached
Update dbresnet_50 detection model
- Loading branch information
Showing
2 changed files
with
83 additions
and
47 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,62 +1,95 @@ | ||
# Import required libraries | ||
import time | ||
|
||
import torch | ||
import numpy as np | ||
import torch.onnx | ||
|
||
import onnxruntime | ||
from doctr.models import ocr_predictor | ||
from openvino.runtime import Core | ||
|
||
model = ocr_predictor(det_arch ='db_resnet50_rotation', pretrained=True) | ||
model.det_predictor.model = model.det_predictor.model.eval() | ||
|
||
input = torch.randn(1, 3, 1024, 1024) | ||
input2 = torch.randn(1, 3, 1536, 1536) | ||
start = time.time() | ||
pred = model.det_predictor.model(input) | ||
print("pytorch time", time.time() - start) | ||
torch.onnx.export(model.det_predictor.model, | ||
input, | ||
'db_resnet50_rotation.onnx', | ||
export_params = True, | ||
start_load_time = time.time() | ||
device = torch.device('cpu') | ||
model = ocr_predictor(det_arch='db_resnet50', pretrained=True).det_predictor.model | ||
model.to(device).eval() | ||
model_load_time = time.time() - start_load_time | ||
print(f"PyTorch Model Load Time: {model_load_time} seconds") | ||
|
||
|
||
# Define a function for PyTorch inference and benchmarking | ||
def pytorch_inference(model, input_tensor): | ||
with torch.no_grad(): | ||
return model(input_tensor).detach().cpu().numpy() | ||
|
||
|
||
# Define a function to benchmark ONNX inference and verify accuracy | ||
def benchmark_onnx_inference_and_verify(model_path, input_tensor, pytorch_output): | ||
session = onnxruntime.InferenceSession(model_path, providers=["CPUExecutionProvider"]) | ||
start_time = time.time() | ||
onnx_output = session.run(None, {"input": input_tensor.numpy()}) | ||
inference_time = time.time() - start_time | ||
|
||
# Verify accuracy | ||
np.testing.assert_allclose(pytorch_output, onnx_output[0], rtol=1e-3, atol=1e-5) | ||
print("ONNX Runtime verification passed") | ||
return inference_time | ||
|
||
|
||
# Define a function to benchmark OpenVINO inference and verify accuracy | ||
def benchmark_openvino_inference_and_verify(model_path, input_tensor, pytorch_output): | ||
ie = Core() | ||
model_onnx = ie.read_model(model=model_path) | ||
compiled_model = ie.compile_model(model=model_onnx, device_name="CPU") | ||
output_layer = compiled_model.output(0) | ||
|
||
start_time = time.time() | ||
openvino_output = compiled_model([input_tensor.numpy()])[output_layer] | ||
inference_time = time.time() - start_time | ||
|
||
# Verify accuracy | ||
np.testing.assert_allclose(pytorch_output, openvino_output, rtol=1e-3, atol=1e-5) | ||
print("OpenVINO Runtime verification passed") | ||
return inference_time | ||
|
||
|
||
torch.onnx.export(model, | ||
torch.randn(1, 3, 1024, 1024), | ||
'db_resnet50.onnx', | ||
export_params=True, | ||
opset_version=11, | ||
do_constant_folding=True, | ||
input_names = ["input"], | ||
output_names = ["output"], | ||
dynamic_axes = {"input":{0:"batch_size", 2:"x_axis", 3:"y_axis"}, | ||
"output":{0:"batch_size", 2:"x_axis", 3:"y_axis"}}) | ||
|
||
import onnxruntime | ||
input_names=["input"], | ||
output_names=["output"], | ||
dynamic_axes={"input": {0: "batch_size", 2: "height", 3: "width"}, | ||
"output": {0: "batch_size", 2: "height", 3: "width"}}) | ||
|
||
ort_session = onnxruntime.InferenceSession('db_resnet50_rotation.onnx', providers = ["CPUExecutionProvider"]) | ||
# Example input tensor | ||
input_tensor_1024 = torch.randn(1, 3, 1024, 1024) | ||
input_tensor_1536 = torch.randn(1, 3, 1536, 1536) | ||
|
||
ort_inputs = {"input":input.numpy()} | ||
# Perform PyTorch inference and capture output | ||
start = time.time() | ||
ort_outs = ort_session.run(None, ort_inputs) | ||
print("onnx time", time.time() - start) | ||
print(np.testing.assert_allclose(pred.detach().cpu().numpy(), ort_outs[0], rtol=1e-3, atol=1e-5)) | ||
pytorch_output_1024 = pytorch_inference(model, input_tensor_1024) | ||
print(f"PyTorch Inference Time (1024x1024): {time.time() - start}") | ||
|
||
ort_inputs = {"input":input2.numpy()} | ||
start = time.time() | ||
ort_outs = ort_session.run(None, ort_inputs) | ||
print("onnx time", time.time() - start) | ||
start = time.time() | ||
pred = model.det_predictor.model(input2) | ||
print("pytorch time", time.time() - start) | ||
print(np.testing.assert_allclose(pred.detach().cpu().numpy(), ort_outs[0], rtol=1e-3, atol=1e-5)) | ||
pytorch_output_1536 = pytorch_inference(model, input_tensor_1536) | ||
print(f"PyTorch Inference Time (1536x1536): {time.time() - start}") | ||
|
||
|
||
from openvino.runtime import Core | ||
# Benchmark and verify ONNX Runtime | ||
time_onnx_1024 = benchmark_onnx_inference_and_verify('db_resnet50.onnx', input_tensor_1024, | ||
pytorch_output_1024) | ||
print(f"ONNX Runtime Inference Time (1024x1024): {time_onnx_1024}") | ||
|
||
ie = Core() | ||
model_onnx = ie.read_model(model='db_resnet50_rotation.onnx') | ||
start = time.time() | ||
compiled_model_onnx = ie.compile_model(model=model_onnx, device_name="CPU") | ||
time_onnx_1536 = benchmark_onnx_inference_and_verify('db_resnet50.onnx', input_tensor_1536, | ||
pytorch_output_1536) | ||
print(f"ONNX Runtime Inference Time (1536x1536): {time_onnx_1536}") | ||
|
||
output_layer_onnx = compiled_model_onnx.output(0) | ||
print("model compilation time", time.time() - start) | ||
start = time.time() | ||
# Run inference on the input image. | ||
print(input2.numpy().shape, input2.dtype) | ||
res_onnx = compiled_model_onnx([input2.numpy()])[output_layer_onnx] | ||
print(res_onnx.shape) | ||
print("openvino time", time.time() - start) | ||
print(np.testing.assert_allclose(pred.detach().cpu().numpy(), res_onnx, rtol=1e-3, atol=1e-5)) | ||
# Benchmark and verify OpenVINO | ||
time_openvino_1024 = benchmark_openvino_inference_and_verify('db_resnet50.onnx', input_tensor_1024, | ||
pytorch_output_1024) | ||
print(f"OpenVINO Inference Time (1024x1024): {time_openvino_1024}") | ||
|
||
time_openvino_1536 = benchmark_openvino_inference_and_verify('db_resnet50.onnx', input_tensor_1536, | ||
pytorch_output_1536) | ||
print(f"OpenVINO Inference Time (1536x1536): {time_openvino_1536}") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters