-
Notifications
You must be signed in to change notification settings - Fork 0
learning how to write a bayesian classifier
License
drahnr/bayes-glib
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
------------------------------------------------------------------------------ Bayes-GLib - Bayesian Classification for GLib ------------------------------------------------------------------------------ This is a simple attempt at making a classifier that can be used to train and learn about data used within a given domain. It exists mostly so that I can learn how to write a Bayesian classifier. Alternatively, it might prove useful to be able to use the same classification API from multiple languages through the GObject Introspection. Bits and pieces of this are based on the reverend.thomas python module. It, too, is licensed under the LGPL (2.1) by Amir Bakhtiar. I make no guarantees about maintaining this code. -- Christian ------------------------------------------------------------------------------ Examples ------------------------------------------------------------------------------ Python example >>> from gi.repository import Bayes >>> c = Bayes.Classifier() >>> c.train('french', 'le la les du un une je il elle de en') >>> c.train('german', 'der die das ein eine') >>> c.train('spanish', 'el uno una las de la en') >>> c.train('english', 'the it she he they them are were to') >>> for g in c.guess('they were flying planes'): ... print '%12s: %0.4f' % (g.get_name(), g.get_probability()) ... english: 0.4975 spanish: 0.0000 french: 0.0000 german: 0.0000
About
learning how to write a bayesian classifier
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published