Package for introductory analysis of Spatial Point Processes, including basic utility functions, summary statistics and metrics for 2D point processes. To be primarily used to test the hypothesis of CSR.
git clone https://github.com/chancehaycock/csrstat.git
# Create conda environment if you don't already have one
conda create -n my_env python==3.7
conda activate my_env
conda install pytest
cd csrstat
pip install .
Check installation with
pytest test/
These functions calculate the associated metric of an observed Point Process PP
. When restrict_domain
is a valid argument, the metric is calculated on a subset of the original domain, in a first attempt to account for edge effects.
F_hat(PP, r, num_sampled_points=1000, plot=False)
G_hat(PP, r, plot=False)
J_hat(PP, r, num_F_sampled_points=1000, plot=False)
K_hat(PP, r, restrict_domain=False, plot=False)
L_hat(PP, r, restrict_domain=False, plot=False)
O_hat(PP, r, bandwidth=0.1, restrict_domain=False, kernel="BK", plot=False)
PC_hat(PP, r, bandwidth=0.1, restrict_domain=False, kernel="BK", plot=False)
Good for simulation inference.
K_hat_fast(PP, r, plot=False)
L_hat_fast(PP, r, plot=False)
Any of the above summary statistic functions can be simulated by calling the following. Resulting max/min envelopes will then be plotted and can be compared against a given realisation. Currently, only the default arguments of a summary statistic function can be used during simulation.
simulate_summary_statistic(PP, r, summary_func, n_sims=100, plot=False)
CSR_hypothesis_test_dmin(observed_PP, significance_level, n_sim=500, plot_dist=False)
pytest test/utils_test.py