-
Notifications
You must be signed in to change notification settings - Fork 11
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
IPA over Grumpkin #51
Merged
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,324 @@ | ||
// SPDX-License-Identifier: Apache-2.0 | ||
pragma solidity ^0.8.16; | ||
|
||
import "src/blocks/grumpkin/Grumpkin.sol"; | ||
import "src/blocks/KeccakTranscript.sol"; | ||
|
||
library InnerProductArgument { | ||
struct IpaInputGrumpkin { | ||
Grumpkin.GrumpkinAffinePoint[] ck_v; | ||
Grumpkin.GrumpkinAffinePoint[] ck_s; | ||
uint256[] point; | ||
Grumpkin.GrumpkinAffinePoint[] L_vec; | ||
Grumpkin.GrumpkinAffinePoint[] R_vec; | ||
Grumpkin.GrumpkinAffinePoint commitment; | ||
uint256 eval; | ||
uint256 a_hat; | ||
} | ||
|
||
struct InstanceGrumpkin { | ||
Grumpkin.GrumpkinAffinePoint comm_a_vec; | ||
uint256[] b_vec; | ||
uint256 c; | ||
} | ||
|
||
struct R { | ||
uint256[] r_vec; | ||
uint256[] r_vec_squared; | ||
uint256[] r_vec_inversed; | ||
uint256[] r_vec_inversed_squared; | ||
} | ||
|
||
struct P_hat_right_input { | ||
uint256 n; | ||
R r_vectors; | ||
Grumpkin.GrumpkinAffinePoint[] ck1; | ||
uint256[] b_vec; | ||
uint256 a_hat; | ||
Grumpkin.GrumpkinAffinePoint ck_c; | ||
} | ||
|
||
function batchInvert(uint256[] memory r_vec, uint256 modulus) private view returns (uint256[] memory) { | ||
uint256[] memory products = new uint256[](r_vec.length); | ||
uint256 acc = 1; | ||
uint256 index; | ||
for (index = 0; index < r_vec.length; index++) { | ||
products[index] = acc; | ||
acc = mulmod(acc, r_vec[index], modulus); | ||
} | ||
|
||
acc = Field.invert(acc, modulus); | ||
|
||
uint256[] memory inversed = new uint256[](r_vec.length); | ||
|
||
uint256 tmp; | ||
for (index = 0; index < r_vec.length; index++) { | ||
tmp = mulmod(acc, r_vec[r_vec.length - index - 1], modulus); | ||
inversed[r_vec.length - index - 1] = mulmod(products[r_vec.length - index - 1], acc, modulus); | ||
acc = tmp; | ||
} | ||
|
||
return inversed; | ||
} | ||
|
||
function compute_r_based_values(uint256[] memory r_vec, uint256 modulus) private view returns (R memory) { | ||
uint256[] memory r_vec_squared = new uint256[](r_vec.length); | ||
uint256 index; | ||
for (index = 0; index < r_vec.length; index++) { | ||
r_vec_squared[index] = mulmod(r_vec[index], r_vec[index], modulus); | ||
} | ||
|
||
uint256[] memory r_vec_inversed = batchInvert(r_vec, modulus); | ||
|
||
uint256[] memory r_vec_inversed_squared = new uint256[](r_vec.length); | ||
for (index = 0; index < r_vec.length; index++) { | ||
r_vec_inversed_squared[index] = mulmod(r_vec_inversed[index], r_vec_inversed[index], modulus); | ||
} | ||
return R(r_vec, r_vec_squared, r_vec_inversed, r_vec_inversed_squared); | ||
} | ||
|
||
function split_at(Grumpkin.GrumpkinAffinePoint[] memory ck, uint256 n) | ||
private | ||
pure | ||
returns (Grumpkin.GrumpkinAffinePoint[] memory, Grumpkin.GrumpkinAffinePoint[] memory) | ||
{ | ||
require(n <= ck.length, "[split_at] unexpected n"); | ||
|
||
Grumpkin.GrumpkinAffinePoint[] memory ck1 = new Grumpkin.GrumpkinAffinePoint[](n); | ||
Grumpkin.GrumpkinAffinePoint[] memory ck2 = new Grumpkin.GrumpkinAffinePoint[](n); | ||
uint256 ck_index = 0; | ||
for (uint256 i = 0; i < n; i++) { | ||
ck1[i] = ck[ck_index]; | ||
ck_index++; | ||
} | ||
for (uint256 i = n; i < ck.length; i++) { | ||
ck2[i] = ck[ck_index]; | ||
ck_index++; | ||
} | ||
|
||
return (ck1, ck2); | ||
} | ||
|
||
function scale(Grumpkin.GrumpkinAffinePoint[] memory ck_c, uint256 r) | ||
private | ||
view | ||
returns (Grumpkin.GrumpkinAffinePoint memory) | ||
{ | ||
require(ck_c.length == 1, "[scale] unexpected ck_c"); | ||
return Grumpkin.scalarMul(ck_c[0], r); | ||
} | ||
|
||
function inner_product_inner(uint256[] memory c) private pure returns (uint256[] memory) { | ||
if (c.length == 1) { | ||
return c; | ||
} | ||
uint256[] memory c_inner = new uint256[](c.length / 2); | ||
for (uint256 index = 0; index < c_inner.length; index++) { | ||
c_inner[index] = addmod(c[2 * index], c[2 * index + 1], Grumpkin.P_MOD); | ||
} | ||
return inner_product_inner(c_inner); | ||
} | ||
|
||
function inner_product(uint256[] memory a, uint256[] memory b) private pure returns (uint256) { | ||
require(a.length == b.length); | ||
uint256[] memory c = new uint256[](a.length); | ||
uint256 index; | ||
for (index = 0; index < a.length; index++) { | ||
c[index] = mulmod(a[index], b[index], Grumpkin.P_MOD); | ||
} | ||
|
||
c = inner_product_inner(c); | ||
return c[0]; | ||
} | ||
|
||
function get_pos_value(uint256 i) private pure returns (uint256) { | ||
require(i >= 1, "[get_pos_value], i < 1"); | ||
require(i <= 16, "[get_pos_value], i > 16"); | ||
uint256[] memory result = new uint256[](16); | ||
result[0] = 0; | ||
result[1] = 1; | ||
result[2] = 1; | ||
result[3] = 2; | ||
result[4] = 2; | ||
result[5] = 2; | ||
result[6] = 2; | ||
result[7] = 3; | ||
result[8] = 3; | ||
result[9] = 3; | ||
result[10] = 3; | ||
result[11] = 3; | ||
result[12] = 3; | ||
result[13] = 3; | ||
result[14] = 3; | ||
result[15] = 4; | ||
return result[i - 1]; | ||
} | ||
|
||
function compute_P_hat_right(P_hat_right_input memory input) | ||
private | ||
returns (Grumpkin.GrumpkinAffinePoint memory) | ||
{ | ||
uint256[] memory s = new uint256[](input.n); | ||
|
||
uint256 v = 1; | ||
uint256 index; | ||
for (index = 0; index < input.r_vectors.r_vec_inversed.length; index++) { | ||
v = mulmod(v, input.r_vectors.r_vec_inversed[index], Grumpkin.P_MOD); | ||
} | ||
s[0] = v; | ||
|
||
uint256 pos_in_r; | ||
uint256 r_square_length = input.r_vectors.r_vec_squared.length; | ||
for (index = 1; index < input.n; index++) { | ||
pos_in_r = get_pos_value(index); | ||
s[index] = mulmod( | ||
s[index - (1 << pos_in_r)], | ||
input.r_vectors.r_vec_squared[r_square_length - 1 - pos_in_r], | ||
Grumpkin.P_MOD | ||
); | ||
} | ||
|
||
uint256 b_hat = inner_product(input.b_vec, s); | ||
Grumpkin.GrumpkinAffinePoint memory ck_hat = Grumpkin.multiScalarMul(input.ck1, s); | ||
|
||
Grumpkin.GrumpkinAffinePoint[] memory bases = new Grumpkin.GrumpkinAffinePoint[](2); | ||
bases[0] = ck_hat; | ||
bases[1] = input.ck_c; | ||
|
||
uint256[] memory scalars = new uint256[](2); | ||
scalars[0] = input.a_hat; | ||
scalars[1] = mulmod(input.a_hat, b_hat, Grumpkin.P_MOD); | ||
|
||
return Grumpkin.multiScalarMul(bases, scalars); | ||
} | ||
|
||
function compute_P_hat_left(IpaInputGrumpkin memory input, R memory r_vec, Grumpkin.GrumpkinAffinePoint memory ck_c) | ||
private | ||
returns (Grumpkin.GrumpkinAffinePoint memory) | ||
{ | ||
Grumpkin.GrumpkinAffinePoint memory P = Grumpkin.add(input.commitment, Grumpkin.scalarMul(ck_c, input.eval)); | ||
|
||
uint256 msm_len = input.L_vec.length + input.R_vec.length + 1; | ||
|
||
uint256 msm_index = 0; | ||
uint256[] memory scalars = new uint256[](msm_len); | ||
for (uint256 index = 0; index < r_vec.r_vec_squared.length; index++) { | ||
scalars[msm_index] = r_vec.r_vec_squared[index]; | ||
msm_index++; | ||
} | ||
for (uint256 index = 0; index < r_vec.r_vec_inversed_squared.length; index++) { | ||
scalars[msm_index] = r_vec.r_vec_inversed_squared[index]; | ||
msm_index++; | ||
} | ||
scalars[msm_index] = 0x01; | ||
|
||
msm_index = 0; | ||
Grumpkin.GrumpkinAffinePoint[] memory bases = new Grumpkin.GrumpkinAffinePoint[](msm_len); | ||
for (uint256 index = 0; index < input.L_vec.length; index++) { | ||
bases[msm_index] = input.L_vec[index]; | ||
msm_index++; | ||
} | ||
for (uint256 index = 0; index < input.R_vec.length; index++) { | ||
bases[msm_index] = input.R_vec[index]; | ||
msm_index++; | ||
} | ||
bases[msm_index] = P; | ||
|
||
return Grumpkin.multiScalarMul(bases, scalars); | ||
} | ||
|
||
function compute_P_hat_right( | ||
uint256 b_hat, | ||
uint256 a_hat, | ||
Grumpkin.GrumpkinAffinePoint memory ck_hat, | ||
Grumpkin.GrumpkinAffinePoint memory ck_c | ||
) private returns (Grumpkin.GrumpkinAffinePoint memory) { | ||
Grumpkin.GrumpkinAffinePoint[] memory bases = new Grumpkin.GrumpkinAffinePoint[](2); | ||
bases[0] = ck_hat; | ||
bases[1] = ck_c; | ||
|
||
uint256[] memory scalars = new uint256[](2); | ||
scalars[0] = a_hat; | ||
scalars[1] = mulmod(a_hat, b_hat, Grumpkin.P_MOD); | ||
|
||
return Grumpkin.multiScalarMul(bases, scalars); | ||
} | ||
|
||
function verifyGrumpkin(IpaInputGrumpkin memory input, KeccakTranscriptLib.KeccakTranscript memory transcript) | ||
public | ||
returns (bool) | ||
{ | ||
uint256 n = 2 ** input.point.length; | ||
|
||
uint256[] memory b_vec = EqPolynomialLib.evals(input.point, Grumpkin.P_MOD, Grumpkin.negateBase); | ||
(Grumpkin.GrumpkinAffinePoint[] memory ck1,) = split_at(input.ck_v, b_vec.length); | ||
|
||
// b"IPA" in Rust | ||
uint8[] memory label = new uint8[](3); | ||
label[0] = 0x49; | ||
label[1] = 0x50; | ||
label[2] = 0x41; | ||
|
||
transcript = KeccakTranscriptLib.dom_sep(transcript, label); | ||
|
||
if (b_vec.length != n) { | ||
revert("NovaError::InvalidInputLength"); | ||
} | ||
if (n != 1 << input.L_vec.length) { | ||
revert("NovaError::InvalidInputLength"); | ||
} | ||
if (input.L_vec.length != input.R_vec.length) { | ||
revert("NovaError::InvalidInputLength"); | ||
} | ||
if (input.L_vec.length >= 32) { | ||
revert("NovaError::InvalidInputLength"); | ||
} | ||
|
||
// b"U" in Rust | ||
label = new uint8[](1); | ||
label[0] = 0x55; | ||
|
||
transcript = | ||
KeccakTranscriptLib.absorb(transcript, label, InstanceGrumpkin(input.commitment, b_vec, input.eval)); | ||
|
||
// b"r" in Rust | ||
label = new uint8[](1); | ||
label[0] = 0x72; | ||
uint256 r; | ||
(transcript, r) = KeccakTranscriptLib.squeeze(transcript, ScalarFromUniformLib.curveGrumpkin(), label); | ||
|
||
uint256[] memory r_vec = new uint256[](input.L_vec.length); | ||
for (uint256 index = 0; index < r_vec.length; index++) { | ||
// b"L" in Rust | ||
label[0] = 0x4c; | ||
transcript = KeccakTranscriptLib.absorb(transcript, label, input.L_vec[index].x); | ||
|
||
// b"R" in Rust | ||
label[0] = 0x52; | ||
transcript = KeccakTranscriptLib.absorb(transcript, label, input.R_vec[index].x); | ||
|
||
// b"r" in Rust | ||
label[0] = 0x72; | ||
(transcript, r_vec[index]) = | ||
KeccakTranscriptLib.squeeze(transcript, ScalarFromUniformLib.curveGrumpkin(), label); | ||
} | ||
|
||
R memory r_vectors = compute_r_based_values(r_vec, Grumpkin.P_MOD); | ||
|
||
Grumpkin.GrumpkinAffinePoint memory ck_c = scale(input.ck_s, r); | ||
|
||
Grumpkin.GrumpkinAffinePoint memory P_hat_right = | ||
compute_P_hat_right(P_hat_right_input(n, r_vectors, ck1, b_vec, input.a_hat, ck_c)); | ||
|
||
Grumpkin.GrumpkinAffinePoint memory P_hat_left = compute_P_hat_left(input, r_vectors, ck_c); | ||
|
||
if (P_hat_right.x != P_hat_left.x) { | ||
return false; | ||
} | ||
if (P_hat_right.y != P_hat_left.y) { | ||
return false; | ||
} | ||
|
||
return true; | ||
} | ||
} |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
So in
arecibo
, I could find the implementation ofKeccak256Transcript::absorb
and the use ofto_transcript_bytes
but I could not find the implementation for the latter forCompressedCommitment
.Why is it that we only need to absorb the
x
of the curve point and notx
+y
+infinity_byte
as we are in a lot of our implementations in arecibo?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The implementation of
to_transcript_bytes
forCompressedCommitment
is indeed hidden in following macro. As far as I know, all the necessary information abouty
coordinate is already stored inx
.Compression / uncompression of EC points is one of the boring thing in our codebase (@huitseeker is aware of it). from one side we want to keep proof size as smaller as possible (hence compression is our friend). On the other hand some cryptographic operations can be performed only with points in uncompressed form
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks! I understand now that it trace all the way to the defined
Compressed
type which in our case is theG1Compressed
structure defined through the usage of thenew_curve_impl
macro in thehalo2
crate.So from what I get of your sentence and a few research, the compressed point is the data of
x
along with a sign bit that is derived from they
value of an affine point. And it seems that this is what we absorb in the Rust implementation. Aren't we missing the sign bit then? Or do we not need it?There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think sign is also encoded in the information behind
x
(consider from_bytes function in halo2curves). The field element for Bn256 (and Grumpkin) have 254 bits in size (link), whilex
isuint256
, which is 256 bits - so we have two bits for the metadata and by absorbing wholeuint256
we absorb sign as well.For the uncompressed commitment (which is essentially a Grumpkin affine point with two coordinates) we have different absorb where we put
x
,y
and an extra-byte representing whether point is infinity (usually this is not the case, so this is 0x00) to the transcript's memory.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I believe the authoritative format for this conversion is in SECG1, section 2.3.3. read with compression active.