Skip to content

Commit

Permalink
Improve sparse polynomial evaluation algorithm (#317)
Browse files Browse the repository at this point in the history
* time-optimal algorithm for sparse polynomial evaluation

* update version
  • Loading branch information
srinathsetty authored and huitseeker committed Apr 25, 2024
1 parent a7cbbda commit 7a77dfb
Show file tree
Hide file tree
Showing 6 changed files with 53 additions and 88 deletions.
12 changes: 1 addition & 11 deletions src/spartan/batched.rs
Original file line number Diff line number Diff line change
Expand Up @@ -490,17 +490,7 @@ impl<E: Engine, EE: EvaluationEngineTrait<E>> BatchedRelaxedR1CSSNARKTrait<E>
let evals_Z = zip_with!(iter, (self.evals_W, U, r_y), |eval_W, U, r_y| {
let eval_X = {
// constant term
let poly_X = iter::once((0, U.u))
.chain(
//remaining inputs
U.X
.iter()
.enumerate()
// filter_map uses the sparsity of the polynomial, if irrelevant
// we should replace by UniPoly
.filter_map(|(i, x_i)| (!x_i.is_zero_vartime()).then_some((i + 1, *x_i))),
)
.collect();
let poly_X = iter::once(U.u).chain(U.X.iter().cloned()).collect();
SparsePolynomial::new(r_y.len() - 1, poly_X).evaluate(&r_y[1..])
};
(E::Scalar::ONE - r_y[0]) * eval_W + r_y[0] * eval_X
Expand Down
10 changes: 1 addition & 9 deletions src/spartan/batched_ppsnark.rs
Original file line number Diff line number Diff line change
Expand Up @@ -927,15 +927,7 @@ impl<E: Engine, EE: EvaluationEngineTrait<E>> BatchedRelaxedR1CSSNARKTrait<E>

let X = {
// constant term
let poly_X = std::iter::once((0, U.u))
.chain(
//remaining inputs
(0..U.X.len())
// filter_map uses the sparsity of the polynomial, if irrelevant
// we should replace by UniPoly
.filter_map(|i| (!U.X[i].is_zero_vartime()).then_some((i + 1, U.X[i]))),
)
.collect();
let poly_X = std::iter::once(U.u).chain(U.X.iter().cloned()).collect();
SparsePolynomial::new(num_vars_log, poly_X).evaluate(&rand_sc_unpad[1..])
};

Expand Down
1 change: 0 additions & 1 deletion src/spartan/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,6 @@ use crate::{
};
use ff::Field;
use itertools::Itertools as _;
use polys::multilinear::SparsePolynomial;
use rayon::{iter::IntoParallelRefIterator, prelude::*};
use rayon_scan::ScanParallelIterator as _;
use ref_cast::RefCast;
Expand Down
75 changes: 33 additions & 42 deletions src/spartan/polys/multilinear.rs
Original file line number Diff line number Diff line change
Expand Up @@ -8,8 +8,7 @@ use ff::PrimeField;
use itertools::Itertools as _;
use rand_core::{CryptoRng, RngCore};
use rayon::prelude::{
IndexedParallelIterator, IntoParallelIterator, IntoParallelRefIterator,
IntoParallelRefMutIterator, ParallelIterator,
IndexedParallelIterator, IntoParallelRefIterator, IntoParallelRefMutIterator, ParallelIterator,
};
use serde::{Deserialize, Serialize};

Expand Down Expand Up @@ -130,47 +129,36 @@ impl<Scalar: PrimeField> Index<usize> for MultilinearPolynomial<Scalar> {
}

/// Sparse multilinear polynomial, which means the $Z(\cdot)$ is zero at most points.
/// So we do not have to store every evaluations of $Z(\cdot)$, only store the non-zero points.
///
/// For example, the evaluations are [0, 0, 0, 1, 0, 1, 0, 2].
/// The sparse polynomial only store the non-zero values, [(3, 1), (5, 1), (7, 2)].
/// In the tuple, the first is index, the second is value.
/// In our context, sparse polynomials are non-zeros over the hypercube at locations that map to "small" integers
/// We exploit this property to implement a time-optimal algorithm
pub(crate) struct SparsePolynomial<Scalar> {
num_vars: usize,
Z: Vec<(usize, Scalar)>,
Z: Vec<Scalar>,
}

impl<Scalar: PrimeField> SparsePolynomial<Scalar> {
pub fn new(num_vars: usize, Z: Vec<(usize, Scalar)>) -> Self {
Self { num_vars, Z }
pub fn new(num_vars: usize, Z: Vec<Scalar>) -> Self {
SparsePolynomial { num_vars, Z }
}

/// Computes the $\tilde{eq}$ extension polynomial.
/// return 1 when a == r, otherwise return 0.
fn compute_chi(a: &[bool], r: &[Scalar]) -> Scalar {
assert_eq!(a.len(), r.len());
let mut chi_i = Scalar::ONE;
for j in 0..r.len() {
if a[j] {
chi_i *= r[j];
} else {
chi_i *= Scalar::ONE - r[j];
}
}
chi_i
}

// Takes O(m log n) where m is the number of non-zero evaluations and n is the number of variables.
// a time-optimal algorithm to evaluate sparse polynomials
pub fn evaluate(&self, r: &[Scalar]) -> Scalar {
assert_eq!(self.num_vars, r.len());

(0..self.Z.len())
.into_par_iter()
.map(|i| {
let bits = (self.Z[i].0).get_bits(r.len());
Self::compute_chi(&bits, r) * self.Z[i].1
})
.sum()
let num_vars_z = self.Z.len().next_power_of_two().log_2();
let chis = EqPolynomial::evals_from_points(&r[self.num_vars - 1 - num_vars_z..]);
let eval_partial: Scalar = self
.Z
.iter()
.zip(chis.iter())
.map(|(z, chi)| *z * *chi)
.sum();

let common = (0..self.num_vars - 1 - num_vars_z)
.map(|i| (Scalar::ONE - r[i]))
.product::<Scalar>();

common * eval_partial
}
}

Expand Down Expand Up @@ -232,18 +220,21 @@ mod tests {
}

fn test_sparse_polynomial_with<F: PrimeField>() {
// Let the polynomial have 3 variables, p(x_1, x_2, x_3) = (x_1 + x_2) * x_3
// Evaluations of the polynomial at boolean cube are [0, 0, 0, 1, 0, 1, 0, 2].
// Let the polynomial have 4 variables, but is non-zero at only 3 locations (out of 2^4 = 16) over the hypercube
let mut Z = vec![F::ONE, F::ONE, F::from(2)];
let m_poly = SparsePolynomial::<F>::new(4, Z.clone());

let TWO = F::from(2);
let Z = vec![(3, F::ONE), (5, F::ONE), (7, TWO)];
let m_poly = SparsePolynomial::<F>::new(3, Z);
Z.resize(16, F::ZERO); // append with zeros to make it a dense polynomial
let m_poly_dense = MultilinearPolynomial::new(Z);

let x = vec![F::ONE, F::ONE, F::ONE];
assert_eq!(m_poly.evaluate(x.as_slice()), TWO);
// evaluation point
let x = vec![F::from(5), F::from(8), F::from(5), F::from(3)];

let x = vec![F::ONE, F::ZERO, F::ONE];
assert_eq!(m_poly.evaluate(x.as_slice()), F::ONE);
// check evaluations
assert_eq!(
m_poly.evaluate(x.as_slice()),
m_poly_dense.evaluate(x.as_slice())
);
}

#[test]
Expand Down
24 changes: 11 additions & 13 deletions src/spartan/ppsnark.rs
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ use crate::{
},
SumcheckProof,
},
PolyEvalInstance, PolyEvalWitness, SparsePolynomial,
PolyEvalInstance, PolyEvalWitness,
},
traits::{
commitment::{CommitmentEngineTrait, CommitmentTrait, Len},
Expand All @@ -42,7 +42,7 @@ use rayon::prelude::*;
use serde::{Deserialize, Serialize};
use std::sync::Arc;

use super::polys::masked_eq::MaskedEqPolynomial;
use super::polys::{masked_eq::MaskedEqPolynomial, multilinear::SparsePolynomial};

fn padded<E: Engine>(v: &[E::Scalar], n: usize, e: &E::Scalar) -> Vec<E::Scalar> {
let mut v_padded = vec![*e; n];
Expand Down Expand Up @@ -930,17 +930,15 @@ impl<E: Engine, EE: EvaluationEngineTrait<E>> RelaxedR1CSSNARKTrait<E> for Relax
};

let eval_X = {
// constant term
let poly_X = std::iter::once((0, U.u))
.chain(
//remaining inputs
(0..U.X.len())
// filter_map uses the sparsity of the polynomial, if irrelevant
// we should replace by UniPoly
.filter_map(|i| (!U.X[i].is_zero_vartime()).then_some((i + 1, U.X[i]))),
)
.collect();
SparsePolynomial::new(vk.num_vars.log_2(), poly_X).evaluate(&rand_sc_unpad[1..])
// public IO is (u, X)
let X = vec![U.u]
.into_iter()
.chain(U.X.iter().cloned())
.collect::<Vec<E::Scalar>>();

// evaluate the sparse polynomial at rand_sc_unpad[1..]
let poly_X = SparsePolynomial::new(rand_sc_unpad.len() - 1, X);
poly_X.evaluate(&rand_sc_unpad[1..])
};

self.eval_W + factor * rand_sc_unpad[0] * eval_X
Expand Down
19 changes: 7 additions & 12 deletions src/spartan/snark.rs
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ use itertools::Itertools as _;
use once_cell::sync::OnceCell;
use rayon::prelude::*;
use serde::{Deserialize, Serialize};
use std::{iter, sync::Arc};
use std::sync::Arc;

/// A type that represents the prover's key
#[derive(Debug, Clone)]
Expand Down Expand Up @@ -328,17 +328,12 @@ impl<E: Engine, EE: EvaluationEngineTrait<E>> RelaxedR1CSSNARKTrait<E> for Relax
// verify claim_inner_final
let eval_Z = {
let eval_X = {
// constant term
let poly_X = iter::once((0, U.u))
.chain(
//remaining inputs
(0..U.X.len())
// filter_map uses the sparsity of the polynomial, if irrelevant
// we should replace by UniPoly
.filter_map(|i| (!U.X[i].is_zero_vartime()).then_some((i + 1, U.X[i]))),
)
.collect();
SparsePolynomial::new(usize::try_from(vk.S.num_vars.ilog2()).unwrap(), poly_X)
// public IO is (u, X)
let X = vec![U.u]
.into_iter()
.chain(U.X.iter().cloned())
.collect::<Vec<E::Scalar>>();
SparsePolynomial::new(usize::try_from(vk.S.num_vars.ilog2()).unwrap(), X)
.evaluate(&r_y[1..])
};
(E::Scalar::ONE - r_y[0]) * self.eval_W + r_y[0] * eval_X
Expand Down

0 comments on commit 7a77dfb

Please sign in to comment.