Skip to content

Commit

Permalink
fix python version below 3.12
Browse files Browse the repository at this point in the history
  • Loading branch information
lisazeyen committed Feb 16, 2024
1 parent ab6b487 commit 39d84ae
Show file tree
Hide file tree
Showing 9 changed files with 16 additions and 14 deletions.
4 changes: 2 additions & 2 deletions environment.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -3,15 +3,15 @@ channels:
- conda-forge
- bioconda
dependencies:
- python>=3.9
- python>=3.9,<3.11
- pip
- snakemake-minimal
- pandas>=1.1.0
- numpy
- beautifulsoup4
- xlrd
- scipy
- openpyxl<=3.0.9
- openpyxl<=3.1.0
- packaging

- pip:
Expand Down
2 changes: 1 addition & 1 deletion outputs/costs_2020.csv
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
,,value,unit,source,further description,currency_year
technology,parameter,value,unit,source,further description,currency_year
Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0
Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report).,
Ammonia cracker,investment,1172652.7667,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and
Expand Down
2 changes: 1 addition & 1 deletion outputs/costs_2025.csv
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
,,value,unit,source,further description,currency_year
technology,parameter,value,unit,source,further description,currency_year
Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0
Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report).,
Ammonia cracker,investment,1172652.7667,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and
Expand Down
2 changes: 1 addition & 1 deletion outputs/costs_2030.csv
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
,,value,unit,source,further description,currency_year
technology,parameter,value,unit,source,further description,currency_year
Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0
Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report).,
Ammonia cracker,investment,1172652.7667,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and
Expand Down
2 changes: 1 addition & 1 deletion outputs/costs_2035.csv
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
,,value,unit,source,further description,currency_year
technology,parameter,value,unit,source,further description,currency_year
Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0
Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report).,
Ammonia cracker,investment,1025115.6855,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and
Expand Down
2 changes: 1 addition & 1 deletion outputs/costs_2040.csv
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
,,value,unit,source,further description,currency_year
technology,parameter,value,unit,source,further description,currency_year
Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0
Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report).,
Ammonia cracker,investment,877578.6043,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and
Expand Down
2 changes: 1 addition & 1 deletion outputs/costs_2045.csv
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
,,value,unit,source,further description,currency_year
technology,parameter,value,unit,source,further description,currency_year
Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0
Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report).,
Ammonia cracker,investment,730041.5232,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and
Expand Down
2 changes: 1 addition & 1 deletion outputs/costs_2050.csv
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
,,value,unit,source,further description,currency_year
technology,parameter,value,unit,source,further description,currency_year
Ammonia cracker,FOM,4.3,%/year,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 7.","Estimated based on Labour cost rate, Maintenance cost rate, Insurance rate, Admin. cost rate and Chemical & other consumables cost rate.",2015.0
Ammonia cracker,ammonia-input,1.46,MWh_NH3/MWh_H2,"ENGIE et al (2020): Ammonia to Green Hydrogen Feasibility Study (https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/880826/HS420_-_Ecuity_-_Ammonia_to_Green_Hydrogen.pdf), Fig. 10.",Assuming a integrated 200t/d cracking and purification facility. Electricity demand (316 MWh per 2186 MWh_LHV H2 output) is assumed to also be ammonia LHV input which seems a fair assumption as the facility has options for a higher degree of integration according to the report).,
Ammonia cracker,investment,582504.442,EUR/MW_H2,"Ishimoto et al. (2020): 10.1016/j.ijhydene.2020.09.017 , table 6.","Calculated. For a small (200 t_NH3/d input) facility. Base cost for facility: 51 MEUR at capacity 20 000m^3_NH3/h = 339 t_NH3/d input. Cost scaling exponent 0.67. Ammonia density 0.7069 kg/m^3. Conversion efficiency of cracker: 0.685. Ammonia LHV: 5.167 MWh/t_NH3.; and
Expand Down
12 changes: 7 additions & 5 deletions scripts/compile_cost_assumptions.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,10 @@

import pandas as pd
import numpy as np
pd.set_option('future.no_silent_downcasting', True)

try:
pd.set_option('future.no_silent_downcasting', True)
except Exception:
pass
# ---------- sources -------------------------------------------------------
source_dict = {
'DEA': 'Danish Energy Agency',
Expand All @@ -48,7 +50,7 @@
# home battery storage and inverter investment costs
"EWG": "Global Energy System based on 100% Renewable Energy, Energywatchgroup/LTU University, 2019",
"HyNOW" : "Zech et.al. DBFZ Report Nr. 19. Hy-NOW - Evaluierung der Verfahren und Technologien für die Bereitstellung von Wasserstoff auf Basis von Biomasse, DBFZ, 2014",
# efficiencies + lifetime SMR / SMR + CC
# efficiencies + lifetime SMR / SMR + CC
"IEA": "IEA Global average levelised cost of hydrogen production by energy source and technology, 2019 and 2050 (2020), https://www.iea.org/data-and-statistics/charts/global-average-levelised-cost-of-hydrogen-production-by-energy-source-and-technology-2019-and-2050",
# SMR capture rate
"Timmerberg": "Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas – GHG emissions and costs Timmerberg et al. (2020), https://doi.org/10.1016/j.ecmx.2020.100043",
Expand All @@ -58,8 +60,8 @@
"Breede2015": "Breede et al. 2015: Overcoming challenges in the classification of deep geothermal potential, https://eprints.gla.ac.uk/169585/",
# Study of deep geothermal systems in the Northern Upper Rhine Graben
"Frey2022": "Frey et al. 2022: Techno-Economic Assessment of Geothermal Resources in the Variscan Basement of the Northern Upper Rhine Graben",
# vehicles
"vehicles" : "PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html"
# vehicles
"vehicles" : "PATHS TO A CLIMATE-NEUTRAL ENERGY SYSTEM The German energy transformation in its social context. https://www.ise.fraunhofer.de/en/publications/studies/paths-to-a-climate-neutral-energy-system.html"
}

# [DEA-sheet-names]
Expand Down

0 comments on commit 39d84ae

Please sign in to comment.