nf-core/circdna is a bioinformatics best-practice analysis pipeline for the identification of circular DNAs in eukaryotic cells. The pipeline is able to process WGS, ATAC-seq data or Circle-Seq data generated from short-read sequencing technologies.
The pipeline is built using Nextflow, a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker/Singularity containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!
On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources. The results obtained from the full-sized test can be viewed on the nf-core website.
- Merge re-sequenced FastQ files (
cat
) - Read QC (
FastQC
) - Adapter and quality trimming (
Trim Galore!
) - Map reads using BWA-MEM (
BWA
) - Sort and index alignments (
SAMtools
) - Choice of multiple circular DNA identification routes
Circle-Map ReadExtractor
->Circle-Map Realign
Circle-Map ReadExtractor
->Circle-Map Repeats
CIRCexplorer2
Samblaster
->Circle_finder
- Identification of circular amplicons
AmpliconArchitect
- DeNovo Assembly of circular DNAs
Unicycler
->Minimap2
- Present QC for raw reads (
MultiQC
)
A graphical view of the pipeline and its diverse branches can be seen below.
-
Install
Nextflow
(>=21.10.3
) -
Install any of
Docker
,Singularity
(you can follow this tutorial),Podman
,Shifter
orCharliecloud
for full pipeline reproducibility (you can useConda
both to install Nextflow itself and also to manage software within pipelines. Please only use it within pipelines as a last resort; see docs). -
Download the pipeline and test it on a minimal dataset with a single command:
nextflow run nf-core/circdna -profile test,YOURPROFILE --outdir <OUTDIR>
To test the
ampliconarchitect
branch functionality, please use the following command:nextflow run nf-core/circdna -profile test_AA,YOURPROFILE --outdir <OUTDIR>
Note that some form of configuration will be needed so that Nextflow knows how to fetch the required software. This is usually done in the form of a config profile (
YOURPROFILE
in the example command above). You can chain multiple config profiles in a comma-separated string.- The pipeline comes with config profiles called
docker
,singularity
,podman
,shifter
,charliecloud
andconda
which instruct the pipeline to use the named tool for software management. For example,-profile test,docker
. - Please check nf-core/configs to see if a custom config file to run nf-core pipelines already exists for your Institute. If so, you can simply use
-profile <institute>
in your command. This will enable eitherdocker
orsingularity
and set the appropriate execution settings for your local compute environment. - If you are using
singularity
, please use thenf-core download
command to download images first, before running the pipeline. Setting theNXF_SINGULARITY_CACHEDIR
orsingularity.cacheDir
Nextflow options enables you to store and re-use the images from a central location for future pipeline runs. - If you are using
conda
, it is highly recommended to use theNXF_CONDA_CACHEDIR
orconda.cacheDir
settings to store the environments in a central location for future pipeline runs.
- The pipeline comes with config profiles called
-
Start running your own analysis!
nextflow run nf-core/circdna --input samplesheet.csv --outdir <OUTDIR> --genome GRCh38 -profile <docker/singularity/podman/shifter/charliecloud/conda/institute>
Please specify the parameter circle_identifier
depending on the pipeline branch used for ecDNA identifaction. Please note that some branches/software are only tested with specific NGS data sets.
circle_finder
uses Circle_finder
circexplorer2
uses CIRCexplorer2
circle_map_realign
uses Circle-Map Realign
circle_map_repeats
uses Circle-Map Repeats for the identification of repetetive circular DNA
ampliconarchitect
uses AmpliconArchitect
unicycler
uses Unicycler for de novo assembly of circular DNAs and Minimap2 for accurate mapping of the identified circular sequences.
The user can specify either one or multiple circle_identifier
in a comma-separated string (see below).
nextflow run nf-core/circdna --input samplesheet.csv --outdir <OUTDIR> --genome GRCh38 -profile docker --circle_identifier circle_map_realign,unicycler
The nf-core/circdna pipeline comes with documentation about the pipeline usage, parameters and output.
Main authors:
- Daniel Schreyer, University of Glasgow, Institute of Cancer Sciences, Peter Bailey Lab
Daniel Schreyer received funding from the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement No 861196 designated for PRECODE.
nf-core/circdna was originally written by Daniel Schreyer.
If you would like to contribute to this pipeline, please see the contributing guidelines.
For further information or help, don't hesitate to get in touch on the Slack #circdna
channel (you can join with this invite).
An extensive list of references for the tools used by the pipeline can be found in the CITATIONS.md
file.
You can cite the nf-core
publication as follows:
The nf-core framework for community-curated bioinformatics pipelines.
Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.
Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x.