Skip to content

AlbertoJaenal/MapAbstractionVPR

Repository files navigation

MapAbstractionVPR

This repository corresponds to the work entitled "Unsupervised appearance map abstraction for indoor Visual Place Recognition with mobile robots", published at IEEE Robotics and Automation Letters.

Authors: Alberto Jaenal, Francisco-Angel Moreno and Javier Gonzalez-Jimenez

Video: Click Here

Example output with test data

Cite

If you use this work in your research, please cite:

@ARTICLE{jaenal2022unsupervised,
  author={Jaenal, Alberto and Moreno, Francisco-Angel and Gonzalez-Jimenez, Javier},
  journal={IEEE Robotics and Automation Letters}, 
  title={Unsupervised Appearance Map Abstraction for Indoor Visual Place Recognition With Mobile Robots}, 
  year={2022},
  volume={},
  number={},
  pages={1-7},
  doi={10.1109/LRA.2022.3186768}}

Instructions

  1. Donwload the demo data into the data folder:
mkdir data && cd data && wget http://ftp.uma.es/Mapir/MapAbstractionVPR/data/feats-ImRet.npy && wget http://ftp.uma.es/Mapir/MapAbstractionVPR/data/feats-NetVLAD.npy && wget http://ftp.uma.es/Mapir/MapAbstractionVPR/data/poses.txt
  1. Run the map abstraction script
python run.py -p data/poses.txt -f data/feats-NetVLAD.npy -c 10

Dependencies

This software employs built-in libs (see requeriments.txt), and has been tested with Python>=3.5 on Ubuntu 16.04, 18.04 and 20.04.

The geometry.py script is inspired in ProbFiltersVPR.

About

Implementation for Image database abstracion

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages