-
Notifications
You must be signed in to change notification settings - Fork 1
/
train_dca.py
211 lines (183 loc) · 8.77 KB
/
train_dca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import argparse
from os.path import join as pjoin
import torch
import torch.nn.functional as nnf
from torch.optim import SGD
from dca.optim import schedule_midway_linear_decay, get_weightdecay
from dca.utils import coro_timer, mkdirp, rm
from dca.calibration import bins2diagram
from dca.trainutils import coro_log, do_epoch, check_cuda, bn_update, \
do_evalbatch, SummaryWriter, deteministic_run, kldiv_logits
from dca.dataloaders import SVHNInfo, get_svhn_train_loaders
from utils import DCAMODELS, coro_trackbestloss, savecheckpoint, loadcheckpoint
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('arch', default='preresnet20_dca', choices=DCAMODELS,
help='model architecture: ' + ' | '.join(DCAMODELS))
parser.add_argument('-dc', '--dcacopies', default=5, type=int,
metavar='N', help='number of DCA copies')
parser.add_argument('-j', '--workers', default=0, type=int, metavar='N',
help='number of data loading workers')
parser.add_argument('-tb', '--tbatch', default=128, type=int,
metavar='N', help='train mini-batch size')
parser.add_argument('-tr', '--trainrepeat', default=5, type=int,
help='repeat with DCA samples for each mini-batch')
parser.add_argument('-vb', '--vbatch', default=128, type=int,
metavar='N', help='eval mini-batch size')
parser.add_argument('-sp', '--tvsplit', default=0.9, type=float,
metavar='RATIO',
help='ratio of data used for training')
parser.add_argument('-e', '--epochs', default=1000, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('-lr', '--learning_rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('-lrr', '--lr_ratio', default=0.01, type=float,
metavar='LR', help='ratio of final / initial lr')
parser.add_argument('-nwd', '--normalized_weightdecay', default=10.0,
type=float)
parser.add_argument('-m', '--momentum', default=0.9, type=float,
metavar='M', help='momentum')
parser.add_argument('-pf', '--printfreq', default=50, type=int,
metavar='N', help='print frequency')
parser.add_argument('-r', '--resume', default='', type=str, metavar='PATH',
help='resume training from checkpoint')
parser.add_argument('-d', '--device', default='cpu', type=str,
metavar='DEV', help='run on cpu/cuda')
parser.add_argument('-s', '--seed', type=int,
help='if specified, fixes seed for reproducibility')
parser.add_argument('-sd', '--save_dir',
help='The directory used to save the trained models',
default='save_temp', type=str)
parser.add_argument('-dd', '--data_dir',
help='The directory to store dataset',
default='../data', type=str)
parser.add_argument('-nb', '--bins', default=20, type=int,
help='number of bins for ece & reliability diagram')
parser.add_argument('-pd', '--plotdiagram', action='store_true',
help='plot reliability diagram for best val')
parser.add_argument('-tbd', '--tensorboard_dir', default='', type=str,
help='if specified, record data for tensorboard.')
parser.add_argument('-dvf', '--dca_valfreq', type=int, default=5,
help='DCA wa model validation frequency')
parser.add_argument('-dbu', '--dca_bnupdate', action='store_true',
help='update BatchNorm for averaged model')
return parser.parse_args()
def do_trainbatch(batchinput, model, optimizer, repeat: int = 1):
optimizer.zero_grad(set_to_none=True)
inputs, gt = batchinput[:-1], batchinput[-1]
cumloss = 0.0
cumprob = torch.zeros([])
with torch.no_grad():
reflogits = model(*inputs)
for _ in range(repeat): # accumulate gradient during repeated runs
logits = model(*inputs)
loss = (
nnf.cross_entropy(logits, gt) + kldiv_logits(reflogits, logits)
) / repeat
loss.backward()
cumloss += loss.item()
prob = nnf.softmax(logits.detach(), 1) # get likelihood
cumprob = cumprob + prob / repeat
reflogits = logits.detach()
optimizer.step()
return cumprob, gt, cumloss
if __name__ == '__main__':
timer = coro_timer()
t_init = next(timer)
print(f'>>> Training initiated at {t_init.isoformat()} <<<\n')
args = get_args()
print(args, end='\n\n')
# if seed is specified, run deterministically
if args.seed is not None:
deteministic_run(seed=args.seed)
# get device for this experiment
device = torch.device(args.device)
if device != torch.device('cpu'):
check_cuda()
# build train_dir for this experiment
mkdirp(args.save_dir)
# compute weight decay
weight_decay = get_weightdecay(
args.normalized_weightdecay,
int(SVHNInfo.counts['train'] * args.tvsplit))
# resume or initialize
if args.resume:
startepoch, dcamodel, optimizer, scheduler, dic = loadcheckpoint(
args.resume, device)
modelargs, modelkwargs = dic['modelargs'], dic['modelkwargs']
print(f'resumed from {args.resume}\n')
else:
startepoch = 0
dcamodel = DCAMODELS[args.arch](
SVHNInfo.outclass, args.dcacopies).to(args.device)
modelargs, modelkwargs = (SVHNInfo.outclass, args.dcacopies), {}
optimizer = SGD(dcamodel.parameters(), args.learning_rate,
momentum=args.momentum, weight_decay=weight_decay)
scheduler = schedule_midway_linear_decay(optimizer, args.epochs,
end_scale=args.lr_ratio)
# prep tensorboard if specified
if args.tensorboard_dir:
mkdirp(args.tensorboard_dir)
sw = SummaryWriter(args.tensorboard_dir)
else:
sw = None
# load data
train_loader, val_loader = get_svhn_train_loaders(
args.data_dir, args.tvsplit, args.workers,
(device != torch.device('cpu')), args.tbatch, args.vbatch)
# perform training
log_ece = coro_log(sw, args.printfreq, args.bins, args.save_dir)
trackbest = coro_trackbestloss(
args.save_dir, args.arch, modelargs, modelkwargs, int(args.epochs*0.9))
print(f'>>> Training starts at {next(timer)[0].isoformat()} <<<\n')
for e in range(startepoch, args.epochs):
# run training part
log_ece.send((e, 'train', len(train_loader), None))
dcamodel.train()
do_epoch(train_loader, do_trainbatch, log_ece, device, model=dcamodel,
optimizer=optimizer, repeat=args.trainrepeat)
log_ece.throw(StopIteration)
# update lr scheduler and decay
scheduler.step()
# save checkpoint
savecheckpoint(
pjoin(args.save_dir, 'checkpoint.pt'), args.arch, modelargs,
modelkwargs, dcamodel, optimizer, scheduler)
print(f'>>> Time elapsed: {next(timer)[1]} <<<\n')
# run evaluation part
log_ece.send((e, 'val', len(val_loader), None))
with torch.no_grad():
dcamodel.eval()
do_epoch(val_loader, do_evalbatch, log_ece, device, model=dcamodel)
bins, _, avgvloss = log_ece.throw(StopIteration)[:3]
# track best
trackbest.send((e, dcamodel, bins, avgvloss))
print(f'>>> Time elapsed: {next(timer)[1]} <<<\n')
# run wa evaluation part
if e % args.dca_valfreq == args.dca_valfreq - 1:
log_ece.send((e, 'dcwaval', len(val_loader), None))
with torch.no_grad():
wamodel = dcamodel.wamodule()
if args.dca_bnupdate:
print('updating BatchNorm ...', end='')
bn_update(train_loader, wamodel, device=device)
print(' Done.')
wamodel.eval()
do_epoch(val_loader, do_evalbatch, log_ece, device,
model=wamodel)
log_ece.throw(StopIteration)
print(f'>>> Time elapsed: {next(timer)[1]} <<<\n')
log_ece.close()
# visualize best eval results
try:
trackbest.throw(StopIteration)
except StopIteration as e:
_, _, bins, _ = e.value
# plot diagrams if asked for
if args.plotdiagram:
bins2diagram(
bins, False, pjoin(args.save_dir, 'calibration.pdf'))
trackbest.close()
# remove temporary files
rm(pjoin(args.save_dir, 'checkpoint.pt'))
print(f'>>> Training completed at {next(timer)[0].isoformat()} <<<\n')