forked from autonomousvision/projected-gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
gen_video.py
192 lines (158 loc) · 7.71 KB
/
gen_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
"""Generate lerp videos using pretrained network pickle."""
import copy
import os
import re
from typing import List, Optional, Tuple, Union
import click
import dnnlib
import imageio
import numpy as np
import scipy.interpolate
import torch
from tqdm import tqdm
import legacy
#----------------------------------------------------------------------------
def layout_grid(img, grid_w=None, grid_h=1, float_to_uint8=True, chw_to_hwc=True, to_numpy=True):
batch_size, channels, img_h, img_w = img.shape
if grid_w is None:
grid_w = batch_size // grid_h
assert batch_size == grid_w * grid_h
if float_to_uint8:
img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8)
img = img.reshape(grid_h, grid_w, channels, img_h, img_w)
img = img.permute(2, 0, 3, 1, 4)
img = img.reshape(channels, grid_h * img_h, grid_w * img_w)
if chw_to_hwc:
img = img.permute(1, 2, 0)
if to_numpy:
img = img.cpu().numpy()
return img
#----------------------------------------------------------------------------
def gen_interp_video(G, mp4: str, seeds, shuffle_seed=None, w_frames=60*4, kind='cubic', grid_dims=(1,1), num_keyframes=None, wraps=2, psi=1, device=torch.device('cuda'), class_idx=None, **video_kwargs):
grid_w = grid_dims[0]
grid_h = grid_dims[1]
if num_keyframes is None:
if len(seeds) % (grid_w*grid_h) != 0:
raise ValueError('Number of input seeds must be divisible by grid W*H')
num_keyframes = len(seeds) // (grid_w*grid_h)
all_seeds = np.zeros(num_keyframes*grid_h*grid_w, dtype=np.int64)
for idx in range(num_keyframes*grid_h*grid_w):
all_seeds[idx] = seeds[idx % len(seeds)]
if shuffle_seed is not None:
rng = np.random.RandomState(seed=shuffle_seed)
rng.shuffle(all_seeds)
zs = torch.from_numpy(np.stack([np.random.RandomState(seed).randn(G.z_dim) for seed in all_seeds])).to(device).float()
# Labels.
label = torch.zeros([zs.size(0), G.c_dim], device=device)
if G.c_dim != 0:
if class_idx is None:
raise click.ClickException('Must specify class label with --class when using a conditional network')
label[:, class_idx] = 1
else:
if class_idx is not None:
print ('warn: --class=lbl ignored when running on an unconditional network')
ws = G.mapping(z=zs, c=label, truncation_psi=psi)
_ = G.synthesis(ws[:1], c=label) # warm up
ws = ws.reshape(grid_h, grid_w, num_keyframes, *ws.shape[1:])
# Interpolation.
grid = []
for yi in range(grid_h):
row = []
for xi in range(grid_w):
x = np.arange(-num_keyframes * wraps, num_keyframes * (wraps + 1))
y = np.tile(ws[yi][xi].cpu().numpy(), [wraps * 2 + 1, 1, 1])
interp = scipy.interpolate.interp1d(x, y, kind=kind, axis=0)
row.append(interp)
grid.append(row)
# Render video.
video_out = imageio.get_writer(mp4, mode='I', fps=60, codec='libx264', **video_kwargs)
for frame_idx in tqdm(range(num_keyframes * w_frames)):
imgs = []
for yi in range(grid_h):
for xi in range(grid_w):
interp = grid[yi][xi]
w = torch.from_numpy(interp(frame_idx / w_frames)).to(device).float()
img = G.synthesis(w.unsqueeze(0), c=label, noise_mode='const')[0]
imgs.append(img)
video_out.append_data(layout_grid(torch.stack(imgs), grid_w=grid_w, grid_h=grid_h))
video_out.close()
#----------------------------------------------------------------------------
def parse_range(s: Union[str, List[int]]) -> List[int]:
'''Parse a comma separated list of numbers or ranges and return a list of ints.
Example: '1,2,5-10' returns [1, 2, 5, 6, 7]
'''
if isinstance(s, list): return s
ranges = []
range_re = re.compile(r'^(\d+)-(\d+)$')
for p in s.split(','):
m = range_re.match(p)
if m:
ranges.extend(range(int(m.group(1)), int(m.group(2))+1))
else:
ranges.append(int(p))
return ranges
#----------------------------------------------------------------------------
def parse_tuple(s: Union[str, Tuple[int,int]]) -> Tuple[int, int]:
'''Parse a 'M,N' or 'MxN' integer tuple.
Example:
'4x2' returns (4,2)
'0,1' returns (0,1)
'''
if isinstance(s, tuple): return s
m = re.match(r'^(\d+)[x,](\d+)$', s)
if m:
return (int(m.group(1)), int(m.group(2)))
raise ValueError(f'cannot parse tuple {s}')
#----------------------------------------------------------------------------
@click.command()
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
@click.option('--seeds', type=parse_range, help='List of random seeds', required=True)
@click.option('--shuffle-seed', type=int, help='Random seed to use for shuffling seed order', default=None)
@click.option('--grid', type=parse_tuple, help='Grid width/height, e.g. \'4x3\' (default: 1x1)', default=(1,1))
@click.option('--num-keyframes', type=int, help='Number of seeds to interpolate through. If not specified, determine based on the length of the seeds array given by --seeds.', default=None)
@click.option('--w-frames', type=int, help='Number of frames to interpolate between latents', default=120)
@click.option('--trunc', 'truncation_psi', type=float, help='Truncation psi', default=1, show_default=True)
@click.option('--output', help='Output .mp4 filename', type=str, required=True, metavar='FILE')
@click.option('--class', 'class_idx', type=int, help='Class label (unconditional if not specified)')
def generate_images(
network_pkl: str,
seeds: List[int],
shuffle_seed: Optional[int],
truncation_psi: float,
grid: Tuple[int,int],
num_keyframes: Optional[int],
w_frames: int,
output: str,
class_idx: Optional[int],
):
"""Render a latent vector interpolation video.
Examples:
\b
# Render a 4x2 grid of interpolations for seeds 0 through 31.
python gen_video.py --output=lerp.mp4 --trunc=1 --seeds=0-31 --grid=4x2 \\
--network=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-afhqv2-512x512.pkl
Animation length and seed keyframes:
The animation length is either determined based on the --seeds value or explicitly
specified using the --num-keyframes option.
When num keyframes is specified with --num-keyframes, the output video length
will be 'num_keyframes*w_frames' frames.
If --num-keyframes is not specified, the number of seeds given with
--seeds must be divisible by grid size W*H (--grid). In this case the
output video length will be '# seeds/(w*h)*w_frames' frames.
"""
print('Loading networks from "%s"...' % network_pkl)
device = torch.device('cuda')
with dnnlib.util.open_url(network_pkl) as f:
G = legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
gen_interp_video(G=G, mp4=output, bitrate='12M', grid_dims=grid, num_keyframes=num_keyframes, w_frames=w_frames, seeds=seeds, shuffle_seed=shuffle_seed, psi=truncation_psi, class_idx=class_idx)
#----------------------------------------------------------------------------
if __name__ == "__main__":
generate_images() # pylint: disable=no-value-for-parameter
#----------------------------------------------------------------------------