-
Notifications
You must be signed in to change notification settings - Fork 0
/
boxplotMP.py
57 lines (34 loc) · 1.08 KB
/
boxplotMP.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#from scipy import signal
from scipy.fftpack import fft, fftshift
import matplotlib.pyplot as plt
#import numpy as np
#import pandas as pd
from pandas import read_csv
import os
os.chdir("E:/MojePrg/_Python/boxplotMP")
dane1 = read_csv("90_do_85.csv", sep=';')
dane2 = read_csv("od_85.csv", sep=';')
data_to_plot = [ dane1['hr'], dane2['hr'] ]
fig = plt.figure(1, figsize=(9, 6))
ax = fig.add_subplot(111)
bp = ax.boxplot(data_to_plot, widths = 0.6, patch_artist = True)
# plt.xlabel("no. of features")
plt.ylabel(r"$\Delta$HR [%]", fontsize=18)
print("hello")
for whisker in bp['whiskers']:
whisker.set(color='#000000')
for cap in bp['caps']:
cap.set(color='#000000')
for median in bp['medians']:
median.set(color='#000000', linewidth=1.5)
for box in bp['boxes']:
box.set( facecolor = '#ffffff' )
fig.tight_layout()
#plt.savefig('e:/boxplot.pdf', format='pdf', dpi=1000)
print("done")
"""
jak z pythona do Word'a
- zapisac w Py jako .pdf
- otworzyc w Inkscape
- zapisac jako .emf
"""