-
Notifications
You must be signed in to change notification settings - Fork 0
/
PositionalAstronomy.cs
636 lines (556 loc) · 25.2 KB
/
PositionalAstronomy.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
using System;
namespace KCalendar.Core
{
public abstract class PositionalAstronomy
{
public virtual double Mod(double a, double b)
{
return a - (b * Math.Floor(a / b));
}
public virtual double J2000 => 2451545.0;
// Days in Julian century
public virtual double JulianCentury => 36525.0;
// Days in Julian millennium
public virtual double JulianMillennium => (JulianCentury * 10);
// Astronomical unit in kilometres
public virtual double AstronomicalUnit => 149597870.0;
// Mean solar tropical year
public virtual double TropicalYear => 365.24219878;
protected double[] EquinoxpTerms => _equinoxpTerms;
protected double[,] Jde0Tab1000 => _jde0Tab1000;
protected double[,] Jde0Tab2000 => _jde0Tab2000;
protected double[] Oterms => _oterms;
protected double[] NutArgMult
{
get { return _nutArgMult; }
set { _nutArgMult = value; }
}
protected double[] NutArgCoeff => _nutArgCoeff;
protected double[] DeltaTtab => _deltaTtab;
/* ASTOR -- Arc-seconds to radians. */
protected virtual double Astor(double a)
{
return a * (Math.PI / (180.0 * 3600.0));
}
/* DTR -- Degrees to radians. */
protected virtual double Dtr(double d)
{
return (d * Math.PI) / 180.0;
}
/* RTD -- Radians to degrees. */
protected virtual double Rtd(double r)
{
return (r * 180.0) / Math.PI;
}
/* FIXANGLE -- Range reduce angle in degrees. */
protected virtual double Fixangle(double a)
{
return a - 360.0 * (Math.Floor(a / 360.0));
}
/* FIXANGR -- Range reduce angle in radians. */
protected virtual double Fixangr(double a)
{
return a - (2 * Math.PI) * (Math.Floor(a / (2 * Math.PI)));
}
// DSIN -- Sine of an angle in degrees
protected virtual double Dsin(double d)
{
return Math.Sin(Dtr(d));
}
// DCOS -- Cosine of an angle in degrees
protected virtual double Dcos(double d)
{
return Math.Cos(Dtr(d));
}
/* EQUINOX -- Determine the Julian Ephemeris Day of an
equinox or solstice. The "which" argument
selects the item to be computed:
0 March equinox
1 June solstice
2 September equinox
3 December solstice
*/
// Periodic terms to obtain true time
private readonly double[] _equinoxpTerms = {
485, 324.96, 1934.136,
203, 337.23, 32964.467,
199, 342.08, 20.186,
182, 27.85, 445267.112,
156, 73.14, 45036.886,
136, 171.52, 22518.443,
77, 222.54, 65928.934,
74, 296.72, 3034.906,
70, 243.58, 9037.513,
58, 119.81, 33718.147,
52, 297.17, 150.678,
50, 21.02, 2281.226,
45, 247.54, 29929.562,
44, 325.15, 31555.956,
29, 60.93, 4443.417,
18, 155.12, 67555.328,
17, 288.79, 4562.452,
16, 198.04, 62894.029,
14, 199.76, 31436.921,
12, 95.39, 14577.848,
12, 287.11, 31931.756,
12, 320.81, 34777.259,
9, 227.73, 1222.114,
8, 15.45, 16859.074
};
private readonly double[,] _jde0Tab1000 = {
{1721139.29189, 365242.13740, 0.06134, 0.00111, -0.00071},
{1721233.25401, 365241.72562, -0.05323, 0.00907, 0.00025},
{1721325.70455, 365242.49558, -0.11677, -0.00297, 0.00074},
{1721414.39987, 365242.88257, -0.00769, -0.00933, -0.00006}
};
private readonly double[,] _jde0Tab2000 = {
{2451623.80984, 365242.37404, 0.05169, -0.00411, -0.00057},
{2451716.56767, 365241.62603, 0.00325, 0.00888, -0.00030},
{2451810.21715, 365242.01767, -0.11575, 0.00337, 0.00078},
{2451900.05952, 365242.74049, -0.06223, -0.00823, 0.00032}
};
/* OBLIQEQ -- Calculate the obliquity of the ecliptic for a given
Julian date. This uses Laskar's tenth-degree
polynomial fit (J. Laskar, Astronomy and
Astrophysics, Vol. 157, page 68 [1986]) which is
accurate to within 0.01 arc second between AD 1000
and AD 3000, and within a few seconds of arc for
+/-10000 years around AD 2000. If we're outside the
range in which this fit is valid (deep time) we
simply return the J2000 value of the obliquity, which
happens to be almost precisely the mean. */
private readonly double[] _oterms = {
-4680.93,
-1.55,
1999.25,
-51.38,
-249.67,
-39.05,
7.12,
27.87,
5.79,
2.45
};
/* Periodic terms for nutation in longiude (delta \Psi) and
obliquity (delta \Epsilon) as given in table 21.A of
Meeus, "Astronomical Algorithms", first edition. */
private double[] _nutArgMult = {
0, 0, 0, 0, 1,
-2, 0, 0, 2, 2,
0, 0, 0, 2, 2,
0, 0, 0, 0, 2,
0, 1, 0, 0, 0,
0, 0, 1, 0, 0,
-2, 1, 0, 2, 2,
0, 0, 0, 2, 1,
0, 0, 1, 2, 2,
-2, -1, 0, 2, 2,
-2, 0, 1, 0, 0,
-2, 0, 0, 2, 1,
0, 0, -1, 2, 2,
2, 0, 0, 0, 0,
0, 0, 1, 0, 1,
2, 0, -1, 2, 2,
0, 0, -1, 0, 1,
0, 0, 1, 2, 1,
-2, 0, 2, 0, 0,
0, 0, -2, 2, 1,
2, 0, 0, 2, 2,
0, 0, 2, 2, 2,
0, 0, 2, 0, 0,
-2, 0, 1, 2, 2,
0, 0, 0, 2, 0,
-2, 0, 0, 2, 0,
0, 0, -1, 2, 1,
0, 2, 0, 0, 0,
2, 0, -1, 0, 1,
-2, 2, 0, 2, 2,
0, 1, 0, 0, 1,
-2, 0, 1, 0, 1,
0, -1, 0, 0, 1,
0, 0, 2, -2, 0,
2, 0, -1, 2, 1,
2, 0, 1, 2, 2,
0, 1, 0, 2, 2,
-2, 1, 1, 0, 0,
0, -1, 0, 2, 2,
2, 0, 0, 2, 1,
2, 0, 1, 0, 0,
-2, 0, 2, 2, 2,
-2, 0, 1, 2, 1,
2, 0, -2, 0, 1,
2, 0, 0, 0, 1,
0, -1, 1, 0, 0,
-2, -1, 0, 2, 1,
-2, 0, 0, 0, 1,
0, 0, 2, 2, 1,
-2, 0, 2, 0, 1,
-2, 1, 0, 2, 1,
0, 0, 1, -2, 0,
-1, 0, 1, 0, 0,
-2, 1, 0, 0, 0,
1, 0, 0, 0, 0,
0, 0, 1, 2, 0,
-1, -1, 1, 0, 0,
0, 1, 1, 0, 0,
0, -1, 1, 2, 2,
2, -1, -1, 2, 2,
0, 0, -2, 2, 2,
0, 0, 3, 2, 2,
2, -1, 0, 2, 2
};
private readonly double[] _nutArgCoeff = {
-171996, -1742, 92095, 89, /* 0, 0, 0, 0, 1 */
-13187, -16, 5736, -31, /* -2, 0, 0, 2, 2 */
-2274, -2, 977, -5, /* 0, 0, 0, 2, 2 */
2062, 2, -895, 5, /* 0, 0, 0, 0, 2 */
1426, -34, 54, -1, /* 0, 1, 0, 0, 0 */
712, 1, -7, 0, /* 0, 0, 1, 0, 0 */
-517, 12, 224, -6, /* -2, 1, 0, 2, 2 */
-386, -4, 200, 0, /* 0, 0, 0, 2, 1 */
-301, 0, 129, -1, /* 0, 0, 1, 2, 2 */
217, -5, -95, 3, /* -2, -1, 0, 2, 2 */
-158, 0, 0, 0, /* -2, 0, 1, 0, 0 */
129, 1, -70, 0, /* -2, 0, 0, 2, 1 */
123, 0, -53, 0, /* 0, 0, -1, 2, 2 */
63, 0, 0, 0, /* 2, 0, 0, 0, 0 */
63, 1, -33, 0, /* 0, 0, 1, 0, 1 */
-59, 0, 26, 0, /* 2, 0, -1, 2, 2 */
-58, -1, 32, 0, /* 0, 0, -1, 0, 1 */
-51, 0, 27, 0, /* 0, 0, 1, 2, 1 */
48, 0, 0, 0, /* -2, 0, 2, 0, 0 */
46, 0, -24, 0, /* 0, 0, -2, 2, 1 */
-38, 0, 16, 0, /* 2, 0, 0, 2, 2 */
-31, 0, 13, 0, /* 0, 0, 2, 2, 2 */
29, 0, 0, 0, /* 0, 0, 2, 0, 0 */
29, 0, -12, 0, /* -2, 0, 1, 2, 2 */
26, 0, 0, 0, /* 0, 0, 0, 2, 0 */
-22, 0, 0, 0, /* -2, 0, 0, 2, 0 */
21, 0, -10, 0, /* 0, 0, -1, 2, 1 */
17, -1, 0, 0, /* 0, 2, 0, 0, 0 */
16, 0, -8, 0, /* 2, 0, -1, 0, 1 */
-16, 1, 7, 0, /* -2, 2, 0, 2, 2 */
-15, 0, 9, 0, /* 0, 1, 0, 0, 1 */
-13, 0, 7, 0, /* -2, 0, 1, 0, 1 */
-12, 0, 6, 0, /* 0, -1, 0, 0, 1 */
11, 0, 0, 0, /* 0, 0, 2, -2, 0 */
-10, 0, 5, 0, /* 2, 0, -1, 2, 1 */
-8, 0, 3, 0, /* 2, 0, 1, 2, 2 */
7, 0, -3, 0, /* 0, 1, 0, 2, 2 */
-7, 0, 0, 0, /* -2, 1, 1, 0, 0 */
-7, 0, 3, 0, /* 0, -1, 0, 2, 2 */
-7, 0, 3, 0, /* 2, 0, 0, 2, 1 */
6, 0, 0, 0, /* 2, 0, 1, 0, 0 */
6, 0, -3, 0, /* -2, 0, 2, 2, 2 */
6, 0, -3, 0, /* -2, 0, 1, 2, 1 */
-6, 0, 3, 0, /* 2, 0, -2, 0, 1 */
-6, 0, 3, 0, /* 2, 0, 0, 0, 1 */
5, 0, 0, 0, /* 0, -1, 1, 0, 0 */
-5, 0, 3, 0, /* -2, -1, 0, 2, 1 */
-5, 0, 3, 0, /* -2, 0, 0, 0, 1 */
-5, 0, 3, 0, /* 0, 0, 2, 2, 1 */
4, 0, 0, 0, /* -2, 0, 2, 0, 1 */
4, 0, 0, 0, /* -2, 1, 0, 2, 1 */
4, 0, 0, 0, /* 0, 0, 1, -2, 0 */
-4, 0, 0, 0, /* -1, 0, 1, 0, 0 */
-4, 0, 0, 0, /* -2, 1, 0, 0, 0 */
-4, 0, 0, 0, /* 1, 0, 0, 0, 0 */
3, 0, 0, 0, /* 0, 0, 1, 2, 0 */
-3, 0, 0, 0, /* -1, -1, 1, 0, 0 */
-3, 0, 0, 0, /* 0, 1, 1, 0, 0 */
-3, 0, 0, 0, /* 0, -1, 1, 2, 2 */
-3, 0, 0, 0, /* 2, -1, -1, 2, 2 */
-3, 0, 0, 0, /* 0, 0, -2, 2, 2 */
-3, 0, 0, 0, /* 0, 0, 3, 2, 2 */
-3, 0, 0, 0 /* 2, -1, 0, 2, 2 */
};
public virtual double Obliqeq(double jd)
{
double eps;
double u;
double v;
v = u = (jd - J2000) / (JulianCentury * 100);
eps = 23 + (26 / 60.0) + (21.448 / 3600.0);
if (Math.Abs(u) < 1.0)
{
for (var i = 0; i < 10; i++)
{
eps += (_oterms[i] / 3600.0) * v;
v *= u;
}
}
return eps;
}
/* NUTATION -- Calculate the nutation in longitude, deltaPsi, and
obliquity, deltaEpsilon for a given Julian date
jd. Results are returned as a two element Array
giving (deltaPsi, deltaEpsilon) in degrees. */
public double[] Nutation(double jd)
{
double deltaPsi;
double deltaEpsilon;
var t = (jd - 2451545.0) / 36525.0;
double t2;
double t3;
double to10;
double dp = 0;
double de = 0;
double ang;
var ta = new double[5];
t3 = t * (t2 = t * t);
/* Calculate angles. The correspondence between the elements
of our array and the terms cited in Meeus are:
ta[0] = D ta[0] = M ta[2] = M' ta[3] = F ta[4] = \Omega
*/
ta[0] = Dtr(297.850363 + 445267.11148 * t - 0.0019142 * t2 +
t3 / 189474.0);
ta[1] = Dtr(357.52772 + 35999.05034 * t - 0.0001603 * t2 -
t3 / 300000.0);
ta[2] = Dtr(134.96298 + 477198.867398 * t + 0.0086972 * t2 +
t3 / 56250.0);
ta[3] = Dtr(93.27191 + 483202.017538 * t - 0.0036825 * t2 +
t3 / 327270);
ta[4] = Dtr(125.04452 - 1934.136261 * t + 0.0020708 * t2 +
t3 / 450000.0);
/* Range reduce the angles in case the sine and Cosine functions
don't do it as accurately or quickly. */
for (var i = 0; i < 5; i++)
{
ta[i] = Fixangr(ta[i]);
}
to10 = t / 10.0;
for (var i = 0; i < 63; i++)
{
ang = 0;
for (var j = 0; j < 5; j++)
{
if (_nutArgMult[(i * 5) + j] != 0)
{
ang += _nutArgMult[(i * 5) + j] * ta[j];
}
}
dp += (_nutArgCoeff[(i * 4) + 0] + _nutArgCoeff[(i * 4) + 1] * to10) * Math.Sin(ang);
de += (_nutArgCoeff[(i * 4) + 2] + _nutArgCoeff[(i * 4) + 3] * to10) * Math.Cos(ang);
}
/* Return the result, converting from ten thousandths of arc
seconds to radians in the process. */
deltaPsi = dp / (3600.0 * 10000.0);
deltaEpsilon = de / (3600.0 * 10000.0);
return new[] { deltaPsi, deltaEpsilon };
}
/* ECLIPTOEQ -- Convert celestial (ecliptical) longitude and
latitude into right ascension (in degrees) and
declination. We must supply the time of the
conversion in order to compensate correctly for the
varying obliquity of the ecliptic over time.
The right ascension and declination are returned
as a two-element Array in that order. */
protected virtual double[] Ecliptoeq(double jd, double Lambda, double Beta)
{
double eps;
double Ra;
double Dec;
/* Obliquity of the ecliptic. */
eps = Dtr(Obliqeq(jd));
Ra = Rtd(Math.Atan2((Math.Cos(eps) * Math.Sin(Dtr(Lambda)) -
(Math.Tan(Dtr(Beta)) * Math.Sin(eps))),
Math.Cos(Dtr(Lambda))));
Ra = Fixangle(Rtd(Math.Atan2((Math.Cos(eps) * Math.Sin(Dtr(Lambda)) -
(Math.Tan(Dtr(Beta)) * Math.Sin(eps))),
Math.Cos(Dtr(Lambda)))));
Dec = Rtd(Math.Asin((Math.Sin(eps) * Math.Sin(Dtr(Lambda)) * Math.Cos(Dtr(Beta))) +
(Math.Sin(Dtr(Beta)) * Math.Cos(eps))));
return new[] { Ra, Dec };
}
/* DELTAT -- Determine the difference, in seconds, between
Dynamical time and Universal time. */
/* Table of observed Delta T values at the beginning of
even numbered years from 1620 through 2002. */
private readonly double[] _deltaTtab = {
121, 112, 103, 95, 88, 82, 77, 72, 68, 63, 60, 56, 53, 51, 48, 46,
44, 42, 40, 38, 35, 33, 31, 29, 26, 24, 22, 20, 18, 16, 14, 12,
11, 10, 9, 8, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10,
10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13,
13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16,
16, 16, 15, 15, 14, 13, 13.1, 12.5, 12.2, 12, 12, 12, 12, 12, 12,
11.9, 11.6, 11, 10.2, 9.2, 8.2, 7.1, 6.2, 5.6, 5.4, 5.3, 5.4, 5.6,
5.9, 6.2, 6.5, 6.8, 7.1, 7.3, 7.5, 7.6, 7.7, 7.3, 6.2, 5.2, 2.7,
1.4, -1.2, -2.8, -3.8, -4.8, -5.5, -5.3, -5.6, -5.7, -5.9, -6,
-6.3, -6.5, -6.2, -4.7, -2.8, -0.1, 2.6, 5.3, 7.7, 10.4, 13.3, 16,
18.2, 20.2, 21.1, 22.4, 23.5, 23.8, 24.3, 24, 23.9, 23.9, 23.7,
24, 24.3, 25.3, 26.2, 27.3, 28.2, 29.1, 30, 30.7, 31.4, 32.2,
33.1, 34, 35, 36.5, 38.3, 40.2, 42.2, 44.5, 46.5, 48.5, 50.5,
52.2, 53.8, 54.9, 55.8, 56.9, 58.3, 60, 61.6, 63, 65, 66.6
};
protected virtual double Deltat(double year)
{
double dt;
double f;
double t;
int i;
if ((year >= 1620) && (year <= 2000))
{
i = (int)Math.Floor((year - 1620) / 2);
f = ((year - 1620) / 2) - i; /* Fractional part of year */
dt = _deltaTtab[i] + ((_deltaTtab[i + 1] - _deltaTtab[i]) * f);
}
else
{
t = (year - 2000) / 100;
if (year < 948)
{
dt = 2177 + (497 * t) + (44.1 * t * t);
}
else
{
dt = 102 + (102 * t) + (25.3 * t * t);
if ((year > 2000) && (year < 2100))
{
dt += 0.37 * (year - 2100);
}
}
}
return dt;
}
protected virtual double Equinox(double year, int which)
{
double deltaL, JDE0, JDE, S, T, W, Y;
double[,] JDE0tab;
/* Initialise terms for mean equinox and solstices. We
have two sets: one for years prior to 1000 and a second
for subsequent years. */
int j;
if (year < 1000)
{
JDE0tab = Jde0Tab1000;
Y = year / 1000;
}
else
{
JDE0tab = Jde0Tab2000;
Y = (year - 2000) / 1000;
}
JDE0 = JDE0tab[which, 0] +
(JDE0tab[which, 1] * Y) +
(JDE0tab[which, 2] * Y * Y) +
(JDE0tab[which, 3] * Y * Y * Y) +
(JDE0tab[which, 4] * Y * Y * Y * Y);
//document.debug.log.value += "JDE0 = " + JDE0 + "\n";
T = (JDE0 - 2451545.0) / 36525;
//document.debug.log.value += "T = " + T + "\n";
W = (35999.373 * T) - 2.47;
//document.debug.log.value += "W = " + W + "\n";
deltaL = 1 + (0.0334 * Dcos(W)) + (0.0007 * Dcos(2 * W));
//document.debug.log.value += "deltaL = " + deltaL + "\n";
// Sum the periodic terms for time T
S = 0;
for (var i = j = 0; i < 24; i++)
{
S += EquinoxpTerms[j] * Dcos(EquinoxpTerms[j + 1] + (EquinoxpTerms[j + 2] * T));
j += 3;
}
//document.debug.log.value += "S = " + S + "\n";
//document.debug.log.value += "Corr = " + ((S * 0.00001) / deltaL) + "\n";
JDE = JDE0 + ((S * 0.00001) / deltaL);
return JDE;
}
/* SUNPOS -- Position of the Sun. Please see the comments
on the return statement at the end of this function
which describe the array it returns. We return
intermediate values because they are useful in a
variety of other contexts. */
protected virtual double[] Sunpos(double jd)
{
double T, T2, L0, M, e, C, sunLong, sunAnomaly, sunR,
Omega, Lambda, epsilon, epsilon0, Alpha, Delta,
AlphaApp, DeltaApp;
T = (jd - J2000) / JulianCentury;
//document.debug.log.value += "Sunpos. T = " + T + "\n";
T2 = T * T;
L0 = 280.46646 + (36000.76983 * T) + (0.0003032 * T2);
//document.debug.log.value += "L0 = " + L0 + "\n";
L0 = Fixangle(L0);
//document.debug.log.value += "L0 = " + L0 + "\n";
M = 357.52911 + (35999.05029 * T) + (-0.0001537 * T2);
//document.debug.log.value += "M = " + M + "\n";
M = Fixangle(M);
//document.debug.log.value += "M = " + M + "\n";
e = 0.016708634 + (-0.000042037 * T) + (-0.0000001267 * T2);
//document.debug.log.value += "e = " + e + "\n";
C = ((1.914602 + (-0.004817 * T) + (-0.000014 * T2)) * Dsin(M)) +
((0.019993 - (0.000101 * T)) * Dsin(2 * M)) +
(0.000289 * Dsin(3 * M));
//document.debug.log.value += "C = " + C + "\n";
sunLong = L0 + C;
//document.debug.log.value += "sunLong = " + sunLong + "\n";
sunAnomaly = M + C;
//document.debug.log.value += "sunAnomaly = " + sunAnomaly + "\n";
sunR = (1.000001018 * (1 - (e * e))) / (1 + (e * Dcos(sunAnomaly)));
//document.debug.log.value += "sunR = " + sunR + "\n";
Omega = 125.04 - (1934.136 * T);
//document.debug.log.value += "Omega = " + Omega + "\n";
Lambda = sunLong + (-0.00569) + (-0.00478 * Dsin(Omega));
//document.debug.log.value += "Lambda = " + Lambda + "\n";
epsilon0 = Obliqeq(jd);
//document.debug.log.value += "epsilon0 = " + epsilon0 + "\n";
epsilon = epsilon0 + (0.00256 * Dcos(Omega));
//document.debug.log.value += "epsilon = " + epsilon + "\n";
Alpha = Rtd(Math.Atan2(Dcos(epsilon0) * Dsin(sunLong), Dcos(sunLong)));
//document.debug.log.value += "Alpha = " + Alpha + "\n";
Alpha = Fixangle(Alpha);
////document.debug.log.value += "Alpha = " + Alpha + "\n";
Delta = Rtd(Math.Asin(Dsin(epsilon0) * Dsin(sunLong)));
////document.debug.log.value += "Delta = " + Delta + "\n";
AlphaApp = Rtd(Math.Atan2(Dcos(epsilon) * Dsin(Lambda), Dcos(Lambda)));
//document.debug.log.value += "AlphaApp = " + AlphaApp + "\n";
AlphaApp = Fixangle(AlphaApp);
//document.debug.log.value += "AlphaApp = " + AlphaApp + "\n";
DeltaApp = Rtd(Math.Asin(Dsin(epsilon) * Dsin(Lambda)));
//document.debug.log.value += "DeltaApp = " + DeltaApp + "\n";
return new[]{ // Angular quantities are expressed in decimal degrees
L0, // [0] Geometric mean longitude of the Sun
M, // [1] Mean anomaly of the Sun
e, // [2] Eccentricity of the Earth's orbit
C, // [3] Sun's equation of the Centre
sunLong, // [4] Sun's true longitude
sunAnomaly, // [5] Sun's true anomaly
sunR, // [6] Sun's radius vector in AU
Lambda, // [7] Sun's apparent longitude at true equinox of the date
Alpha, // [8] Sun's true right ascension
Delta, // [9] Sun's true declination
AlphaApp, // [10] Sun's apparent right ascension
DeltaApp // [11] Sun's apparent declination
};
}
/* EQUATIONOFTIME -- Compute equation of time for a given moment.
Returns the equation of time as a fraction of
a day. */
protected virtual double EquationOfTime(double jd)
{
double alpha, deltaPsi, E, epsilon, L0, tau;
tau = (jd - J2000) / JulianMillennium;
//document.debug.log.value += "equationOfTime. tau = " + tau + "\n";
L0 = 280.4664567 + (360007.6982779 * tau) +
(0.03032028 * tau * tau) +
((tau * tau * tau) / 49931) +
(-((tau * tau * tau * tau) / 15300)) +
(-((tau * tau * tau * tau * tau) / 2000000));
//document.debug.log.value += "L0 = " + L0 + "\n";
L0 = Fixangle(L0);
//document.debug.log.value += "L0 = " + L0 + "\n";
alpha = Sunpos(jd)[10];
//document.debug.log.value += "alpha = " + alpha + "\n";
deltaPsi = Nutation(jd)[0];
//document.debug.log.value += "deltaPsi = " + deltaPsi + "\n";
epsilon = Obliqeq(jd) + Nutation(jd)[1];
//document.debug.log.value += "epsilon = " + epsilon + "\n";
E = L0 + (-0.0057183) + (-alpha) + (deltaPsi * Dcos(epsilon));
//document.debug.log.value += "E = " + E + "\n";
E = E - 20.0 * (Math.Floor(E / 20.0));
//document.debug.log.value += "Efixed = " + E + "\n";
E = E / (24 * 60);
//document.debug.log.value += "Eday = " + E + "\n";
return E;
}
}
}