-
Notifications
You must be signed in to change notification settings - Fork 22
/
qserve_benchmark_image.py
130 lines (107 loc) · 3.97 KB
/
qserve_benchmark_image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# File authors: Haotian Tang, Shang Yang, Yujun Lin, Song Han
# @article{lin2024qserve,
# title={QServe: W4A8KV4 Quantization and System Co-design for Efficient LLM Serving},
# author={Lin*, Yujun and Tang*, Haotian and Yang*, Shang and Zhang, Zhekai and Xiao, Guangxuan and Gan, Chuang and Han, Song},
# year={2024}
# }
import argparse
import time
import gc
import torch
from llava.model import *
import qserve.utils.constants
from qserve import EngineArgs, LLMEngine, SamplingParams
from qserve.config import ProfilingConfig
max_seq_len = qserve.utils.constants.max_seq_len
import os
def process_requests(
engine: LLMEngine, batch_size: int, prompt_len: int, generation_len: int
):
"""Continuously process a list of prompts and handle the outputs."""
request_key = 0
profiling_config = ProfilingConfig(
prompt_len=prompt_len, generation_len=generation_len
)
for b in range(batch_size):
engine.add_request(
str(b),
prompt=None,
profiling_config=profiling_config,
sampling_params=SamplingParams(top_p=0.95, top_k=40, temperature=0.7),
)
if engine.ifb_mode == False:
# We need to pre-caulcate the block table size for initialization
block_size = engine.cache_config.block_size
tot_length = prompt_len + generation_len
init_num_blocks = (tot_length + block_size - 1) // block_size
engine.update_init_num_blocks(init_num_blocks)
# seq_group_metadata_list, scheduler_outputs = engine.step()
iter = 1
time_lis = []
num_tokens = 0
torch.cuda.synchronize()
st = time.time()
while engine.has_unfinished_requests():
### Schedule iteration 1 (context stage)
requests_outputs = engine.step()
num_tokens += len(requests_outputs)
# torch.cuda.synchronize()
if len(requests_outputs) == 0:
break
iter += 1
if engine.profiling_mode and iter == generation_len + 1:
break
torch.cuda.synchronize()
ed = time.time()
time_lis.append(ed - st)
return time_lis, num_tokens
def initialize_engine(args: argparse.Namespace) -> LLMEngine:
"""Initialize the LLMEngine from the command line arguments."""
engine_args = EngineArgs.from_cli_args(args)
return LLMEngine.from_engine_args(engine_args)
def main(args: argparse.Namespace):
"""Main function that sets up and runs the prompt processing."""
batch_size = int(os.environ.get("GLOBAL_BATCH_SIZE"))
prompt_len = 224 - 196 + args.img_per_seq
generation_len = 256
rounds = 3
with open("results.csv", "a") as file:
print("=" * 50, file=file)
print(
f"{args.model}: Batch={batch_size}, Input={prompt_len}, Output={generation_len}",
file=file,
)
with torch.no_grad():
for rnd in range(rounds):
if rnd < rounds - 1:
print("[Warmup Round %d]" % rnd)
engine = initialize_engine(args)
engine.profiling_mode = True
# warm up
time_lis, num_tokens = process_requests(
engine,
batch_size=batch_size,
prompt_len=prompt_len,
generation_len=generation_len,
)
del engine
torch.cuda.empty_cache()
gc.collect()
throughput = num_tokens / sum(time_lis)
print(f"Round {rnd} Throughput:", throughput, "tokens / second.")
with open("results.csv", "a") as file:
print(
f"Round {rnd} Throughput:",
throughput,
"tokens / second.",
file=file,
)
with open("results.csv", "a") as file:
print("=" * 50, file=file)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Demo on using the LLMEngine class directly"
)
parser = EngineArgs.add_cli_args(parser)
args = parser.parse_args()
main(args)