forked from runtimeverification/casper-proofs
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Protocol.v
423 lines (381 loc) · 14.8 KB
/
Protocol.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
From mathcomp.ssreflect
Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq fintype path.
Require Import Eqdep Relations.
From fcsl
Require Import pred prelude ordtype pcm finmap unionmap heap.
From Casper
Require Import Node.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(*
This module defines the execution of the
Beacon Chain protocol, using the data structures from
Node.v
*)
Definition StateMap := union_map NodeId_ordType (@State [ordType of Hash]).
Definition initState' s ps : StateMap := foldr (fun (a : [finType of NodeId_ordType]) m => (a \\-> Init a (ps a)) \+ m) Unit s.
(* Master-lemma, proving a conjunction of two mutually-necessary facts *)
Lemma initStateValidDom s ps :
uniq s -> dom (initState' s ps) =i s /\ valid (initState' s ps).
Proof.
elim: s => /=[|a s']; first by rewrite valid_unit dom0.
move => IH.
move/andP => [H_ni H_u].
move/IH: H_u => [H1 H2] {IH}.
split; last first.
- case: validUn; rewrite ?validPt ?H2//.
move=>k; rewrite domPt inE=>/eqP Z; subst k.
by rewrite H1; move/negP: H_ni.
- move=>z.
rewrite (@domUn NodeId_ordType) !inE !domPt !inE.
rewrite H1.
case validUn.
* by move/negP => H_v; case: H_v; rewrite validPt.
* by move/negP.
* move => k.
rewrite H1.
rewrite domPt inE=>/eqP H_eq.
rewrite -H_eq => H_in.
by move/negP: H_ni.
* move => Hv1 Hv2 H_d.
by rewrite eq_sym.
Qed.
Lemma valid_initState' s ps : uniq s -> valid (initState' s ps).
Proof. by move => H_u; case: (initStateValidDom ps H_u). Qed.
Lemma dom_initState' s ps : uniq s -> dom (initState' s ps) =i s.
Proof. by move => H_u; case: (initStateValidDom ps H_u). Qed.
(* ------------------*)
(* TRANSITION SYSTEM *)
(* ------------------*)
Definition initState ps := initState' (enum NodeId) ps.
Definition PacketSoup := seq Packet.
Record World :=
mkW {
localState : StateMap;
inFlightMsgs : PacketSoup;
consumedMsgs : PacketSoup;
}.
Definition holds (n : NodeId_ordType) (w : World) (cond : State -> Prop) :=
forall (st : State),
find n (localState w) = Some st -> cond st.
Definition Coh (w : World) :=
[/\ valid (localState w),
forall (n : NodeId),
holds n w (fun st => id st == n),
forall (n : NodeId),
holds n w (fun st => valid (blocks st)),
forall (n : NodeId),
holds n w (fun st => validH (blocks st)),
forall (n : NodeId),
holds n w (fun st => has_init_block (blocks st)) &
forall (n : NodeId),
holds n w (fun st => uniq (peers st))
].
Record Qualifier := Q { ts: Timestamp; allowed: NodeId; }.
Inductive system_step (w w' : World) (q : Qualifier) : Prop :=
| Idle of Coh w /\ w = w'
| Deliver (p : Packet) (st : State) of
Coh w & (dst p) = allowed q &
p \in inFlightMsgs w &
@find NodeId_ordType _ _ (dst p) (localState w) = Some st &
let: (st', ms) := procMsg st (src p) (msg p) (ts q) in
w' = mkW (@upd NodeId_ordType _ _ (dst p) st' (localState w))
(seq.rem p (inFlightMsgs w) ++ ms)
(rcons (consumedMsgs w) p)
| Intern (proc : NodeId) (t : InternalTransition) (st : State) of
Coh w & proc = allowed q &
@find NodeId_ordType _ _ proc (localState w) = Some st &
let: (st', ms) := (procInt st t (ts q)) in
w' = mkW (@upd NodeId_ordType _ _ proc st' (localState w))
(ms ++ (inFlightMsgs w))
(consumedMsgs w).
Definition Schedule := seq Qualifier.
Fixpoint reachable' (s : Schedule) (w w' : World) : Prop :=
if s is (ins :: insts)
then exists via, reachable' insts w via /\ system_step via w' ins
else w = w'.
(* reachable' currently undefined *)
Definition reachable (w w' : World) :=
exists s, reachable' s w w'.
Definition initWorld := mkW (initState (fun _ => enum NodeId)) [::] [::].
Ltac Coh_step_case n d H F :=
case B: (n == d);
do? [by move=>F; move: (H n _ F) |
case: ifP; last done
]; move=>_ [] <-.
Lemma holds_Init_state : forall (P : State -> Prop) n ps, P (Init n (ps n)) ->
holds n {| localState := initState ps; inFlightMsgs := [::]; consumedMsgs := [::] |} (fun st : State => P st).
Proof.
move => P n ps H_P; rewrite /initState.
have H_in: n \in enum NodeId by rewrite mem_enum.
have H_un: uniq (enum NodeId) by apply enum_uniq.
move: H_P H_in H_un; elim: (enum NodeId) => //=.
move => a s IH H_P; rewrite inE; move/orP; case.
* move/eqP => H_eq /=.
rewrite H_eq; move/andP => [H_in H_u].
rewrite /holds /= => st; rewrite findPtUn; first by case => H_i; rewrite -H_i -H_eq.
by case: validUn; rewrite ?validPt ?valid_initState'//;
move=>k; rewrite domPt !inE=>/eqP <-;
rewrite dom_initState' //; move/negP: H_in.
* move => H_in; move/andP => [H_ni H_u].
have H_neq: n <> a by move => H_eq; rewrite -H_eq in H_ni; move/negP: H_ni.
move: H_in; move/IH {IH} => IH.
have H_u' := H_u.
move: H_u'; move/IH {IH}.
rewrite /holds /= => IH st; rewrite findUnL.
+ case: ifP; last by move => H_in H_f; exact: IH.
by rewrite domPt inE eq_sym; move/eqP.
+ by case: validUn; rewrite ?validPt ?valid_initState'//;
move=>k; rewrite domPt !inE=>/eqP <-;
rewrite dom_initState' //; move/negP: H_ni.
Qed.
Lemma Coh_init : Coh initWorld.
Proof.
rewrite /initWorld/localState/=; split.
- apply: valid_initState'.
exact: enum_uniq.
- by move => n; exact: holds_Init_state.
- move => n; apply: holds_Init_state.
by rewrite /blocks /= validPt.
- move => n; apply: holds_Init_state.
rewrite/validH/blocks /= => h b H.
by move: (findPt_inv H); elim=>->->.
- move => n; apply: holds_Init_state.
by rewrite/has_init_block/blocks findPt.
- move => n; apply: holds_Init_state.
exact: enum_uniq.
Qed.
Lemma procMsg_id_constant (s1 : State) from (m : Message) (ts : Timestamp) :
id s1 = id (procMsg s1 from m ts).1.
Proof.
case: s1 from m ts.
move => n1 p1 b1 t1 a1 c1 d1 n2 []=>//=??.
unfold computeStateTransition. destruct computeCycleTransitions; auto.
Qed.
(* procInt currently undefined *)
Lemma procInt_id_constant : forall (s1 : State) (t : InternalTransition) (ts : Timestamp),
id s1 = id (procInt s1 t ts).1.
Proof.
case => n1 p1 b1 a1 c1 d1 n2 []=>//=??.
unfold computeStateTransition. destruct computeCycleTransitions; auto.
Qed.
Lemma procMsg_valid :
forall (s1 : State) from (m : Message) (ts : Timestamp),
valid (blocks s1) -> valid (blocks (procMsg s1 from m ts).1).
Proof.
move=> s1 from m ts.
case Msg: m=>[b];
destruct s1; rewrite/procMsg/=.
unfold computeStateTransition. destruct computeCycleTransitions.
by move: (bfExtendV blocks b)=><-.
Qed.
Lemma procInt_valid :
forall (s1 : State) (t : InternalTransition) (ts : Timestamp),
valid (blocks s1) = valid (blocks (procInt s1 t ts).1).
Proof.
move=>s1 t ts.
case Int: t;destruct s1; rewrite/procInt//=.
unfold computeStateTransition. destruct computeCycleTransitions.
by rewrite/Node.blocks/=; apply bfExtendV.
Qed.
Lemma procMsg_validH :
forall (s1 : State) from (m : Message) (ts : Timestamp),
valid (blocks s1) -> validH (blocks s1) ->
validH (blocks (procMsg s1 from m ts).1).
Proof.
move=> s1 from m ts.
case Msg: m=>[b];
destruct s1; rewrite/procMsg/=; do? by []; do? by case: ifP => //=.
unfold computeStateTransition. destruct computeCycleTransitions.
by move=>v vh; apply bfExtendH.
Qed.
Lemma procInt_validH :
forall (s1 : State) (t : InternalTransition) (ts : Timestamp),
valid (blocks s1) -> validH (blocks s1) ->
validH (blocks (procInt s1 t ts).1).
Proof.
move=>s1 t ts v vh.
case Int: t; destruct s1; rewrite/procInt//=.
unfold computeStateTransition. destruct computeCycleTransitions.
by rewrite/Node.blocks/=; apply bfExtendH.
Qed.
Lemma procMsg_has_init_block:
forall (s1 : State) from (m : Message) (ts : Timestamp),
valid (blocks s1) -> validH (blocks s1) ->
has_init_block (blocks s1) ->
has_init_block (blocks (procMsg s1 from m ts).1).
Proof.
move=> s1 from m ts.
case Msg: m=>[b];
destruct s1; rewrite/procMsg/=; do? by []; do? by case:ifP.
unfold computeStateTransition. destruct computeCycleTransitions.
by apply bfExtendIB.
Qed.
Lemma procInt_has_init_block :
forall (s1 : State) (t : InternalTransition) (ts : Timestamp),
valid (blocks s1) -> validH (blocks s1) ->
has_init_block (blocks s1) ->
has_init_block (blocks (procInt s1 t ts).1).
Proof.
move=>s1 t ts v vh.
case Int: t; destruct s1; rewrite/procInt//=.
unfold computeStateTransition. destruct computeCycleTransitions.
by apply bfExtendIB.
Qed.
Lemma procMsg_peers_uniq :
forall (s1 : State) from (m : Message) (ts : Timestamp),
let: s2 := (procMsg s1 from m ts).1 in
uniq (peers s1) -> uniq (peers s2).
Proof.
case => n1 p1 b1 t1 a1 c1 d1 n2 []=>//=??.
unfold computeStateTransition. destruct computeCycleTransitions; auto.
Qed.
Lemma procInt_peers_uniq :
forall (s1 : State) (t : InternalTransition) ts, let: s2 := (procInt s1 t ts).1 in
uniq (peers s1) -> uniq (peers s2).
Proof.
move=>s1 t ts. case: s1=>n prs bf; rewrite /peers/procInt=>Up.
case: t. move=> b s sc cl.
unfold computeStateTransition. destruct computeCycleTransitions; auto.
Qed.
(* most deifnitions in remainder of file rely on some combination of
system_step, reachable, etc. of which the definitions are currently
commented out
*)
Lemma Coh_step w w' q:
system_step w w' q -> Coh w'.
Proof.
move=>S; (have: system_step w w' q by done)=>S'.
case: S'.
(* Idle *)
by case=>Cw <-.
(* Deliver *)
- move=> p st [H1 H2 H3 H4 H5 H6] _ iF sF; case P: (procMsg _ _ _)=>[st' ms].
move=>->; split;
do? [rewrite /holds/localState; move=> n stN; rewrite findU=>/=].
+ rewrite /localState validU=>/=; apply H1.
+ Coh_step_case n (dst p) H2 F; move/eqP: (H2 (dst p) _ sF)=>Id.
move: (procMsg_id_constant st (src p) (msg p) (ts q)).
by move/eqP in B; subst n; rewrite Id=>->; rewrite P.
+ Coh_step_case n (dst p) H3 F; move: (H3 (dst p) _ sF)=>V.
by move: (procMsg_valid (src p) (msg p) (ts q) V); rewrite P.
+ Coh_step_case n (dst p) H4 F;
move: (H3 (dst p) _ sF)=>V; move: (H4 (dst p) _ sF)=>VH;
rewrite [procMsg _ _ _ _] surjective_pairing in P; case: P=><- _;
by apply procMsg_validH.
+ Coh_step_case n (dst p) H5 F.
move: (H3 (dst p) _ sF)=>V; move: (H4 (dst p) _ sF)=>VH;
rewrite [procMsg _ _ _ _] surjective_pairing in P; case: P=><- _;
by move: (H5 (dst p) _ sF); apply procMsg_has_init_block.
+ Coh_step_case n (dst p) H6 F.
move: (H3 (dst p) _ sF)=>V; move: (H4 (dst p) _ sF)=>VH;
rewrite [procMsg _ _ _ _] surjective_pairing in P; case: P=><- _.
by move: (H6 (dst p) _ sF); apply procMsg_peers_uniq.
(* Intern *)
- move=> proc t st [H1 H2 H3 H4 H5 H6] _ sF. case P: (procInt _ _ _)=>[st' ms].
move=>->; split;
do? [rewrite /holds/localState; move=> n stN; rewrite findU=>/=].
+ rewrite /localState validU=>/=; apply H1.
+ Coh_step_case n proc H2 F; move/eqP: (H2 proc _ sF)=>Id.
move: (procInt_id_constant st t (ts q)).
by move/eqP in B; subst n; rewrite Id=>->; rewrite P.
+ Coh_step_case n proc H3 F; move: (H3 proc _ sF)=>V.
by move: (procInt_valid st t (ts q)); rewrite P/==><-.
+ Coh_step_case n proc H4 F;
move: (H3 proc _ sF)=>V; move: (H4 proc _ sF)=>VH;
rewrite [procInt _ _ _] surjective_pairing in P; case: P=><- _;
by apply procInt_validH.
+ Coh_step_case n proc H5 F.
move: (H3 proc _ sF)=>V; move: (H4 proc _ sF)=>VH;
rewrite [procInt _ _ _] surjective_pairing in P; case: P=><- _;
by move: (H5 proc _ sF); apply procInt_has_init_block.
+ Coh_step_case n proc H6 F.
move: (H3 proc _ sF)=>V; move: (H4 proc _ sF)=>VH;
rewrite [procInt _ _ _] surjective_pairing in P; case: P=><- _.
by move: (H6 proc _ sF); apply procInt_peers_uniq.
Qed.
(* Stepping does not remove or add nodes *)
Lemma step_nodes w w' q :
system_step w w' q ->
dom (localState w) =i dom (localState w').
Proof.
case: w w'=>sm f c [sm'] f' c'; case=>/=; first by case=>C; case=>->/=.
- move=>p st1 C iq pf F; case: (procMsg st1 (src p) (msg p))=>st2 ms[]->{sm'}Z1 Z2.
subst f' c'=>z; rewrite (@domU NodeId_ordType) inE/=; case: ifP=>///eqP->{z}.
by move/find_some: F->; case: C.
move=>p t st1 C iq F; case: (procInt st1 t)=>st2 ms[]->{sm'}Z1 Z2.
subst f' c'=>z; rewrite (@domU NodeId_ordType) inE/=; case: ifP=>///eqP->{z}.
by move/find_some: F->; case: C.
Qed.
Lemma steps_nodes (w w' : World):
reachable w w' ->
dom (localState w) =i dom (localState w').
Proof.
move=>[sch] R. elim: sch w' R=>/=[w'->|q qs Hi w' [via] [R S]]//z.
by move: (Hi via R)->; rewrite (step_nodes S).
Qed.
Inductive local_step (s1 s2 : State) : Prop :=
| IdleStep of s1 = s2
| RcvMsgStep f m ts of (s2 = (procMsg s1 f m ts).1)
| IntTStep t ts of (s2 = (procInt s1 t ts).1).
Lemma system_step_local_step w w' q:
forall (n : NodeId) (st st' : State),
system_step w w' q ->
@find NodeId_ordType _ _ n (localState w) = Some st ->
@find NodeId_ordType _ _ n (localState w') = Some st' ->
local_step st st'.
Proof.
move=> n st st'.
case.
(* Idle *)
- by move=>[] cW<-->[]->; constructor 1.
(* Deliver *)
- move=> p old_st cW _ pIF osF.
case P: (procMsg _ _ _). case: w'. move=> sm' f' c'. case.
move=> A B C. subst sm' f' c'. move=> sF. rewrite /localState findU=>/=.
case B: (n == dst p); last first.
(* n != dst p -- node n is Idle => st st' *)
+ move=> F. rewrite F in sF. case: sF=>stEq. rewrite stEq. by constructor 1.
(* When n == dst p, notice that st = old_st
* and st and st' are related by procMsg *)
+ move/eqP in B. rewrite -B in osF. rewrite sF in osF. case: osF=>->.
case: ifP; last first.
by move=> _ con; contradict con.
move=> _ sEq. case: sEq=>stEq. rewrite stEq in P.
by constructor 2 with (src p) (msg p) (ts q); rewrite P.
(* Intern *)
- move=> proc t old_st cW _ osF.
case P: (procInt _ _ _). case: w'. move=> sm' f' c'. case.
move=> A B C. subst sm' f' c'. move=> sF. rewrite /localState findU=>/=.
case B: (n == proc); last first.
(* n != proc -- node n is Idle => st st' *)
+ move=> F. rewrite F in sF. case: sF=>stEq. rewrite stEq. by constructor 1.
(* n == proc => update; akin to Deliver *)
+ move/eqP in B. rewrite -B in osF. rewrite sF in osF. case: osF.
move=> stEq. rewrite -stEq in P. clear stEq old_st.
case: ifP; last first.
by move=> _ con; contradict con.
move=> _ sEq. case: sEq=> stEq. rewrite stEq in P.
by constructor 3 with t (ts q); rewrite P.
Qed.
Lemma no_change_still_holds (w w' : World) (n : NodeId) q st cond:
@find NodeId_ordType _ _ n (localState w) = Some st ->
holds n w cond ->
system_step w w' q ->
@find NodeId_ordType _ _ n (localState w') = Some st ->
holds n w' cond.
Proof.
move=>f h S sF st' s'F; rewrite s'F in sF; case: sF=>->.
by move: (h st f).
Qed.
Lemma no_change_has_held (w w' : World) (n : NodeId) q st cond:
@find NodeId_ordType _ _ n (localState w) = Some st ->
system_step w w' q->
holds n w' cond ->
@find NodeId_ordType _ _ n (localState w') = Some st ->
holds n w cond.
Proof.
move=> f S h sF st' s'F.
by rewrite f in s'F; case: s'F=><-; move: (h st sF).
Qed.