forked from xavysp/DexiNed
-
Notifications
You must be signed in to change notification settings - Fork 0
/
losses.py
148 lines (119 loc) · 5.23 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import torch.nn.functional as F
from dexi_utils import *
def hed_loss2(inputs, targets, l_weight=1.1):
# bdcn loss with the rcf approach
targets = targets.long()
mask = targets.float()
num_positive = torch.sum((mask > 0.1).float()).float()
num_negative = torch.sum((mask <= 0.).float()).float()
mask[mask > 0.1] = 1.0 * num_negative / (num_positive + num_negative)
mask[mask <= 0.] = 1.1 * num_positive / (num_positive + num_negative)
inputs= torch.sigmoid(inputs)
cost = torch.nn.BCELoss(mask, reduction='sum')(inputs.float(), targets.float())
return l_weight*torch.sum(cost)
def bdcn_loss2(inputs, targets, l_weight=1.1):
# bdcn loss with the rcf approach
targets = targets.long()
# mask = (targets > 0.1).float()
mask = targets.float()
num_positive = torch.sum((mask > 0.0).float()).float() # >0.1
num_negative = torch.sum((mask <= 0.0).float()).float() # <= 0.1
mask[mask > 0.] = 1.0 * num_negative / (num_positive + num_negative) #0.1
mask[mask <= 0.] = 1.1 * num_positive / (num_positive + num_negative) # before mask[mask <= 0.1]
# mask[mask == 2] = 0
inputs= torch.sigmoid(inputs)
cost = torch.nn.BCELoss(mask, reduction='none')(inputs, targets.float())
# cost = torch.mean(cost.float().mean((1, 2, 3))) # before sum
cost = torch.sum(cost.float().mean((1, 2, 3))) # before sum
return l_weight*cost
def bdcn_lossORI(inputs, targets, l_weigts=1.1,cuda=False):
"""
:param inputs: inputs is a 4 dimensional data nx1xhxw
:param targets: targets is a 3 dimensional data nx1xhxw
:return:
"""
n, c, h, w = inputs.size()
# print(cuda)
weights = np.zeros((n, c, h, w))
for i in range(n):
t = targets[i, :, :, :].cpu().data.numpy()
pos = (t == 1).sum()
neg = (t == 0).sum()
valid = neg + pos
weights[i, t == 1] = neg * 1. / valid
weights[i, t == 0] = pos * 1.1 / valid # balance = 1.1
weights = torch.Tensor(weights)
# if cuda:
weights = weights.cuda()
inputs = torch.sigmoid(inputs)
loss = torch.nn.BCELoss(weights, reduction='sum')(inputs.float(), targets.float())
return l_weigts*loss
def rcf_loss(inputs, label):
label = label.long()
mask = label.float()
num_positive = torch.sum((mask > 0.5).float()).float() # ==1.
num_negative = torch.sum((mask == 0).float()).float()
mask[mask == 1] = 1.0 * num_negative / (num_positive + num_negative)
mask[mask == 0] = 1.1 * num_positive / (num_positive + num_negative)
mask[mask == 2] = 0.
inputs= torch.sigmoid(inputs)
cost = torch.nn.BCELoss(mask, reduction='sum')(inputs.float(), label.float())
return 1.*torch.sum(cost)
# ------------ cats losses ----------
def bdrloss(prediction, label, radius,device='cpu'):
'''
The boundary tracing loss that handles the confusing pixels.
'''
filt = torch.ones(1, 1, 2*radius+1, 2*radius+1)
filt.requires_grad = False
filt = filt.to(device)
bdr_pred = prediction * label
pred_bdr_sum = label * F.conv2d(bdr_pred, filt, bias=None, stride=1, padding=radius)
texture_mask = F.conv2d(label.float(), filt, bias=None, stride=1, padding=radius)
mask = (texture_mask != 0).float()
mask[label == 1] = 0
pred_texture_sum = F.conv2d(prediction * (1-label) * mask, filt, bias=None, stride=1, padding=radius)
softmax_map = torch.clamp(pred_bdr_sum / (pred_texture_sum + pred_bdr_sum + 1e-10), 1e-10, 1 - 1e-10)
cost = -label * torch.log(softmax_map)
cost[label == 0] = 0
return cost.sum()
def textureloss(prediction, label, mask_radius, device='cpu'):
'''
The texture suppression loss that smooths the texture regions.
'''
filt1 = torch.ones(1, 1, 3, 3)
filt1.requires_grad = False
filt1 = filt1.to(device)
filt2 = torch.ones(1, 1, 2*mask_radius+1, 2*mask_radius+1)
filt2.requires_grad = False
filt2 = filt2.to(device)
pred_sums = F.conv2d(prediction.float(), filt1, bias=None, stride=1, padding=1)
label_sums = F.conv2d(label.float(), filt2, bias=None, stride=1, padding=mask_radius)
mask = 1 - torch.gt(label_sums, 0).float()
loss = -torch.log(torch.clamp(1-pred_sums/9, 1e-10, 1-1e-10))
loss[mask == 0] = 0
return torch.sum(loss)
def cats_loss(prediction, label, l_weight=[0.,0.], device='cpu'):
# tracingLoss
tex_factor,bdr_factor = l_weight
balanced_w = 1.1
label = label.float()
prediction = prediction.float()
with torch.no_grad():
mask = label.clone()
num_positive = torch.sum((mask == 1).float()).float()
num_negative = torch.sum((mask == 0).float()).float()
beta = num_negative / (num_positive + num_negative)
mask[mask == 1] = beta
mask[mask == 0] = balanced_w * (1 - beta)
mask[mask == 2] = 0
prediction = torch.sigmoid(prediction)
# print('bce')
cost = torch.sum(torch.nn.functional.binary_cross_entropy(
prediction.float(), label.float(), weight=mask, reduce=False))
label_w = (label != 0).float()
# print('tex')
textcost = textureloss(prediction.float(), label_w.float(), mask_radius=4, device=device)
bdrcost = bdrloss(prediction.float(), label_w.float(), radius=4, device=device)
return cost + bdr_factor * bdrcost + tex_factor * textcost