Backtracking regression forest
This is a modified implementation of paper
@inproceedings{meng2017backtracking,
title={Backtracking Regression Forests for Accurate Camera Relocalization},
author={Meng, Lili and Chen, Jianhui and Tung, Frederick and Little J., James and Valentin, Julien and Silva, Clarence},
booktitle={IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2017)},
year={2017}
}
Dependences:
- OpenCV 3.1 or later.
- Eigen 3.2.6 or later.
- flann 1.8.4 or later.
The code is tested on Xcode 6.4 on a Mac 10.10.5 system. But the code has minimum dependence on compile and system, so it should work well on linux and windows as well.
File structure: src/btrf_.hpp and src/btrf_.cpp: the main algorithm for backtracking regression forst.
src/cmd: three files for training, testing of world coordinates prediction from RGB-D images, and camera pose estitation
src/dt_common: common function for decition tree, for example, objective functions
src/opencv_util: wrap of opencv function for the project
src/pose_estimation: camera pose estimation using Kabsch and preemptive RANSAC
src/Walsh_Hadamard: Walsh hardamard transformation. Code modifed from : http://www.faculty.idc.ac.il/toky/Software/wh/code.htm
src/yael_io.*: code for binary matrix read/write. Code modifed from: https://gforge.inria.fr/projects/yael
parameters/4scenes_param.txt: dataset parameter, from http://graphics.stanford.edu/projects/reloc/ parameters/forest_param.txt: forest parameter example. parameters/apt1_kitchen/ : training/testing file sequence examples
How to build with cmake:
mkdir build
cd build
cmake ../src
make -j4