This repository is the official implementation of StableVITON
StableVITON: Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-On
Jeongho Kim, Gyojung Gu, Minho Park, Sunghyun Park, Jaegul Choo
-
Inference code -
Release model weights - Training code
git clone https://github.com/rlawjdghek/StableVITON
cd StableVITON
conda create --name StableVITON python=3.10 -y
conda activate StableVITON
# install packages
pip install torch==2.0.0+cu117 torchvision==0.15.1+cu117 torchaudio==2.0.1 --index-url https://download.pytorch.org/whl/cu117
pip install pytorch-lightning==1.5.0
pip install einops
pip install opencv-python==4.7.0.72
pip install matplotlib
pip install omegaconf
pip install transformers==4.33.2
pip install xformers==0.0.19
pip install triton==2.0.0
pip install open-clip-torch==2.19.0
pip install diffusers==0.20.2
pip install scipy==1.10.1
conda install -c anaconda ipython -y
You can download the VITON-HD dataset from here.
To download the model weights, please fill the Google Form related to the consent.
The input data should include (1) agnostic-map (2) agnostic-mask (3) cloth (4) densepose. For testing VITONHD, the test dataset should be organized as follows:
test
|-- image
|-- image-densepose
|-- agnostic
|-- agnostic-mask
|-- cloth
The VITON-HD dataset serves as a benchmark and provides an agnostic mask. However, you can attempt virtual try-on on arbitrary images using segmentation tools like SAM. Please note that for densepose, you should use the same densepose model as used in VITON-HD.
# paired setting
python inference.py --config_path ./configs/VITON512.yaml --batch_size 4 --model_load_path <model weight path> --save_dir <save directory>
# unpaired setting
python inference.py --config_path ./configs/VITON512.yaml --batch_size 4 --model_load_path <model weight path> --unpair --save_dir <save directory>
You can also preserve the unmasked region by '--repaint' option.
If you find our work useful for your research, please cite us:
@artical{kim2023stableviton,
title={StableVITON: Learning Semantic Correspondence with Latent Diffusion Model for Virtual Try-On},
author={Kim, Jeongho and Gu, Gyojung and Park, Minho and Park, Sunghyun and Choo, Jaegul},
booktitle={arXiv preprint arxiv:2312.01725},
year={2023}
}
Acknowledgements Sunghyun Park is the corresponding author.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).