-
Notifications
You must be signed in to change notification settings - Fork 557
/
sample_ddp.py
166 lines (147 loc) · 7.24 KB
/
sample_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Samples a large number of images from a pre-trained DiT model using DDP.
Subsequently saves a .npz file that can be used to compute FID and other
evaluation metrics via the ADM repo: https://github.com/openai/guided-diffusion/tree/main/evaluations
For a simple single-GPU/CPU sampling script, see sample.py.
"""
import torch
import torch.distributed as dist
from models import DiT_models
from download import find_model
from diffusion import create_diffusion
from diffusers.models import AutoencoderKL
from tqdm import tqdm
import os
from PIL import Image
import numpy as np
import math
import argparse
def create_npz_from_sample_folder(sample_dir, num=50_000):
"""
Builds a single .npz file from a folder of .png samples.
"""
samples = []
for i in tqdm(range(num), desc="Building .npz file from samples"):
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
sample_np = np.asarray(sample_pil).astype(np.uint8)
samples.append(sample_np)
samples = np.stack(samples)
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
npz_path = f"{sample_dir}.npz"
np.savez(npz_path, arr_0=samples)
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
return npz_path
def main(args):
"""
Run sampling.
"""
torch.backends.cuda.matmul.allow_tf32 = args.tf32 # True: fast but may lead to some small numerical differences
assert torch.cuda.is_available(), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
torch.set_grad_enabled(False)
# Setup DDP:
dist.init_process_group("nccl")
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
print(f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}.")
if args.ckpt is None:
assert args.model == "DiT-XL/2", "Only DiT-XL/2 models are available for auto-download."
assert args.image_size in [256, 512]
assert args.num_classes == 1000
# Load model:
latent_size = args.image_size // 8
model = DiT_models[args.model](
input_size=latent_size,
num_classes=args.num_classes
).to(device)
# Auto-download a pre-trained model or load a custom DiT checkpoint from train.py:
ckpt_path = args.ckpt or f"DiT-XL-2-{args.image_size}x{args.image_size}.pt"
state_dict = find_model(ckpt_path)
model.load_state_dict(state_dict)
model.eval() # important!
diffusion = create_diffusion(str(args.num_sampling_steps))
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{args.vae}").to(device)
assert args.cfg_scale >= 1.0, "In almost all cases, cfg_scale be >= 1.0"
using_cfg = args.cfg_scale > 1.0
# Create folder to save samples:
model_string_name = args.model.replace("/", "-")
ckpt_string_name = os.path.basename(args.ckpt).replace(".pt", "") if args.ckpt else "pretrained"
folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-vae-{args.vae}-" \
f"cfg-{args.cfg_scale}-seed-{args.global_seed}"
sample_folder_dir = f"{args.sample_dir}/{folder_name}"
if rank == 0:
os.makedirs(sample_folder_dir, exist_ok=True)
print(f"Saving .png samples at {sample_folder_dir}")
dist.barrier()
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
n = args.per_proc_batch_size
global_batch_size = n * dist.get_world_size()
# To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples:
total_samples = int(math.ceil(args.num_fid_samples / global_batch_size) * global_batch_size)
if rank == 0:
print(f"Total number of images that will be sampled: {total_samples}")
assert total_samples % dist.get_world_size() == 0, "total_samples must be divisible by world_size"
samples_needed_this_gpu = int(total_samples // dist.get_world_size())
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size"
iterations = int(samples_needed_this_gpu // n)
pbar = range(iterations)
pbar = tqdm(pbar) if rank == 0 else pbar
total = 0
for _ in pbar:
# Sample inputs:
z = torch.randn(n, model.in_channels, latent_size, latent_size, device=device)
y = torch.randint(0, args.num_classes, (n,), device=device)
# Setup classifier-free guidance:
if using_cfg:
z = torch.cat([z, z], 0)
y_null = torch.tensor([1000] * n, device=device)
y = torch.cat([y, y_null], 0)
model_kwargs = dict(y=y, cfg_scale=args.cfg_scale)
sample_fn = model.forward_with_cfg
else:
model_kwargs = dict(y=y)
sample_fn = model.forward
# Sample images:
samples = diffusion.p_sample_loop(
sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=False, device=device
)
if using_cfg:
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
samples = vae.decode(samples / 0.18215).sample
samples = torch.clamp(127.5 * samples + 128.0, 0, 255).permute(0, 2, 3, 1).to("cpu", dtype=torch.uint8).numpy()
# Save samples to disk as individual .png files
for i, sample in enumerate(samples):
index = i * dist.get_world_size() + rank + total
Image.fromarray(sample).save(f"{sample_folder_dir}/{index:06d}.png")
total += global_batch_size
# Make sure all processes have finished saving their samples before attempting to convert to .npz
dist.barrier()
if rank == 0:
create_npz_from_sample_folder(sample_folder_dir, args.num_fid_samples)
print("Done.")
dist.barrier()
dist.destroy_process_group()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, choices=list(DiT_models.keys()), default="DiT-XL/2")
parser.add_argument("--vae", type=str, choices=["ema", "mse"], default="ema")
parser.add_argument("--sample-dir", type=str, default="samples")
parser.add_argument("--per-proc-batch-size", type=int, default=32)
parser.add_argument("--num-fid-samples", type=int, default=50_000)
parser.add_argument("--image-size", type=int, choices=[256, 512], default=256)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--cfg-scale", type=float, default=1.5)
parser.add_argument("--num-sampling-steps", type=int, default=250)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument("--tf32", action=argparse.BooleanOptionalAction, default=True,
help="By default, use TF32 matmuls. This massively accelerates sampling on Ampere GPUs.")
parser.add_argument("--ckpt", type=str, default=None,
help="Optional path to a DiT checkpoint (default: auto-download a pre-trained DiT-XL/2 model).")
args = parser.parse_args()
main(args)