All notable changes to this project will be documented in this file. We keep track of changes in this file since v0.4.0. The format is based on Keep a Changelog and we adhere to Semantic Versioning. The source code for all releases is available on GitHub.
- ETSModel with auto-fitting capability (#393) @HYang1996
- WEASEL classifier (#391) @patrickzib
- Full support for exogenous data in forecasting framework (#382) @mloning, (#380) @mloning
- Multivariate dataset for US consumption over time (#385) @SebasKoel
- Governance document (#324) @mloning, @fkiraly
- Documentation fixes (#400) @brettkoonce, (#399) @akanz1, (#404) @alwinw
- Move documentation to ReadTheDocs with support for versioned documentation (#395) @mloning
- Refactored SFA implementation (additional features and speed improvements) (#389) @patrickzib
- Move prediction interval API to base classes in forecasting framework (#387) @big-o
- Documentation improvements (#364) @mloning
- Update CI and maintenance tools (#394) @mloning
All contributors: @HYang1996, @SebasKoel, @fkiraly, @akanz1, @alwinw, @big-o, @brettkoonce, @mloning, @patrickzib
- New sktime logo @mloning
- TemporalDictionaryEnsemble (#292) @MatthewMiddlehurst
- ShapeDTW (#287) @Multivin12
- Updated sktime artwork (logo) @mloning
- Truncation transformer (#315) @ABostrom
- Padding transformer (#316) @ABostrom
- Example notebook with feature importance graph for time series forest (#319) @HYang1996
- ACSF1 data set (#314) @BandaSaiTejaReddy
- Data conversion function from 3d numpy array to nested pandas dataframe (#304) @vedazeren
- Replaced gunpoint dataset in tutorials, added OSULeaf dataset (#295) @marielledado
- Updated macOS advanced install instructions (#306) (#308) @sophijka
- Updated contributing guidelines (#301) @Ayushmaanseth
- Typos (#293) @Mo-Saif, (#285) @Pangoraw, (#305) @hiqbal2
- Manylinux wheel building (#286) @mloning
- KNN compatibility with sklearn (#310) @Cheukting
- Docstrings for AutoARIMA (#307) @btrtts
All contributors: @Ayushmaanseth, @Mo-Saif, @Pangoraw, @marielledado, @mloning, @sophijka, @Cheukting, @MatthewMiddlehurst, @Multivin12, @ABostrom, @HYang1996, @BandaSaiTejaReddy, @vedazeren, @hiqbal2, @btrtts
- Forecasting framework, including: forecasting algorithms (forecasters), tools for composite model building (meta-forecasters), tuning and model evaluation
- Consistent unit testing of all estimators
- Consistent input checks
- Enforced PEP8 linting via flake8
- Changelog
- Support for Python 3.8
- Support for manylinux wheels
- Revised all estimators to comply with common interface and to ensure scikit-learn compatibility
- A few redundant classes for the series-as-features setting in favour of scikit-learn's implementations:
Pipeline
andGridSearchCV
HomogeneousColumnEnsembleClassifier
in favour of more flexibleColumnEnsembleClassifier
- Deprecation and future warnings from scikit-learn
- User warnings from statsmodels