forked from RemexHu/BandwidthPrediction-LSTM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Train_uni_norm.py
144 lines (104 loc) · 4.89 KB
/
Train_uni_norm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import pandas
import matplotlib.pyplot as plt
import numpy
import matplotlib.pyplot as plt
import pandas
import math
import keras
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM, GRU
from keras.layers import Dropout
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
import numpy as np
import random
filedict = {'bus': 11, 'car': 5, 'ferry': 15, 'metro': 16, 'train': 4, 'tram': 17}
file = []
for category, num in filedict.items():
for i in range(num):
file.append(pandas.read_csv('train_sim_traces/' + category + str(i) +'.log', names = ["band"], sep = '\t'))
"""
file.append(pandas.read_csv('train.oslo-vestby-report.2011-02-11_1618CET.log', names = ["band"], sep = '\t'))
file.append(pandas.read_csv('train_sim_traces/tram.jernbanetorget-ljabru-report.2010-12-09_1222CET.log', names = ["band"], sep = '\t'))
file.append(pandas.read_csv('train_sim_traces/ferry.nesoddtangen-oslo-report.2010-09-20_1542CEST.log', names = ["band"], sep = '\t'))
file.append(pandas.read_csv('train_sim_traces/car.aarnes-elverum-report.2011-02-10_1611CET.log', names = ["band"], sep = '\t'))
file.append(pandas.read_csv('train_sim_traces/bus.ljansbakken-oslo-report.2011-01-31_1025CET.log', names = ["band"], sep = '\t'))
file.append(pandas.read_csv('train_sim_traces/metro.kalbakken-jernbanetorget-report.2010-09-14_2303CEST.log', names = ["band"], sep = '\t'))
"""
print(len(file))
print('Training data loaded!')
flag = 0
try:
model_mse = keras.models.load_model('model_mse_all_norm_cmplx.h5')
model_mse.summary()
print('load existing model succeed')
except:
flag = 1
for epoch in range(10):
print("==================== No.{epoch} epoch ====================".format(epoch=epoch + 1))
random.shuffle(file)
for i, cur in enumerate(file):
print("==================== No.{epoch} epoch ====================".format(epoch=epoch + 1))
print('=================== No.{i}/{total} trace ================='.format(i=i + 1, total=len(file)))
cur_data = np.asarray(cur)
cur_data = np.vstack(cur_data)
# plt.figure(figsize=(25,9))
# plt.plot(dataset)
# plt.show()
scaler = MinMaxScaler(feature_range=(0, 1))
cur_data = scaler.fit_transform(cur_data)
train = cur_data
train_rev = train[::-1]
def create_dataset(dataset, look_back=5):
dataX, dataY = [], []
for i in range(len(dataset) - look_back - 1):
a = dataset[i:(i + look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return numpy.array(dataX), numpy.array(dataY)
look_back = 1
trainX, trainY = create_dataset(train, look_back)
trainX_rev, trainY_rev = create_dataset(train_rev, look_back)
# reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], trainX.shape[1], 1))
trainX_rev = numpy.reshape(trainX_rev, (trainX_rev.shape[0], trainX_rev.shape[1], 1))
trainY_inverse = scaler.inverse_transform([trainY])
trainY_rev_inverse = scaler.inverse_transform([trainY_rev])
if flag == 1:
print('Training from new model')
model_mse = Sequential()
model_mse.add(GRU(256, input_shape=(trainX.shape[1], trainX.shape[2]), return_sequences=True))
#model_mse.add(Dropout(0.4))
#model_mse.add(GRU(256, return_sequences=True))
model_mse.add(Dropout(0.4))
# model_mse.add(Dropout(0.2))
model_mse.add(GRU(64))
# model_mse.add(Dropout(0.2))
model_mse.add(Dense(1))
model_mse.compile(loss='mean_squared_error', optimizer='adam')
model_mse.summary()
flag = 0
try:
model_mse.fit(trainX, trainY, epochs=20, batch_size=64, verbose=2)
model_mse.save('model_mse_all_norm_cmplx.h5')
except KeyboardInterrupt:
model_mse.save('model_mse_all_norm_cmplx.h5')
try:
model_mse.fit(trainX_rev, trainY_rev, epochs=20, batch_size=64, verbose=2)
model_mse.save('model_mse_all_norm_cmplx.h5')
except KeyboardInterrupt:
model_mse.save('model_mse_all_norm_cmplx.h5')
model_mse.save('model_mse_all_norm_cmplx.h5')
model_mse.save('model_mse_all_norm_cmplx.h5')
print('Training process completed! Model saved!')
"""
trainPredict = model_mse.predict(trainX)
testPredict = model_mse.predict(testX)
trainPredict_mse = scaler.inverse_transform(trainPredict)
testPredict_mse = scaler.inverse_transform(testPredict)
trainScore = math.sqrt(mean_squared_error(trainY_inverse[0], trainPredict_mse[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY_inverse[0], testPredict_mse[:,0]))
print('Test Score: %.2f RMSE' % (testScore))
"""