forked from dmlc/dgl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sgc_reddit.py
120 lines (102 loc) · 3.15 KB
/
sgc_reddit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
"""
This code was modified from the GCN implementation in DGL examples.
Simplifying Graph Convolutional Networks
Paper: https://arxiv.org/abs/1902.07153
Code: https://github.com/Tiiiger/SGC
SGC implementation in DGL.
"""
import argparse
import math
import time
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import dgl.function as fn
from dgl import DGLGraph
from dgl.data import load_data, register_data_args
from dgl.nn.pytorch.conv import SGConv
def normalize(h):
return (h - h.mean(0)) / h.std(0)
def evaluate(model, features, graph, labels, mask):
model.eval()
with torch.no_grad():
logits = model(graph, features)[mask] # only compute the evaluation set
labels = labels[mask]
_, indices = torch.max(logits, dim=1)
correct = torch.sum(indices == labels)
return correct.item() * 1.0 / len(labels)
def main(args):
# load and preprocess dataset
args.dataset = "reddit-self-loop"
data = load_data(args)
g = data[0]
if args.gpu < 0:
cuda = False
else:
cuda = True
g = g.int().to(args.gpu)
features = g.ndata["feat"]
labels = g.ndata["label"]
train_mask = g.ndata["train_mask"]
val_mask = g.ndata["val_mask"]
test_mask = g.ndata["test_mask"]
in_feats = features.shape[1]
n_classes = data.num_labels
n_edges = g.number_of_edges()
print(
"""----Data statistics------'
#Edges %d
#Classes %d
#Train samples %d
#Val samples %d
#Test samples %d"""
% (
n_edges,
n_classes,
g.ndata["train_mask"].int().sum().item(),
g.ndata["val_mask"].int().sum().item(),
g.ndata["test_mask"].int().sum().item(),
)
)
# graph preprocess and calculate normalization factor
n_edges = g.number_of_edges()
# normalization
degs = g.in_degrees().float()
norm = torch.pow(degs, -0.5)
norm[torch.isinf(norm)] = 0
g.ndata["norm"] = norm.unsqueeze(1)
# create SGC model
model = SGConv(
in_feats, n_classes, k=2, cached=True, bias=True, norm=normalize
)
if args.gpu >= 0:
model = model.cuda()
# use optimizer
optimizer = torch.optim.LBFGS(model.parameters())
# define loss closure
def closure():
optimizer.zero_grad()
output = model(g, features)[train_mask]
loss_train = F.cross_entropy(output, labels[train_mask])
loss_train.backward()
return loss_train
# initialize graph
for epoch in range(args.n_epochs):
model.train()
optimizer.step(closure)
acc = evaluate(model, features, g, labels, test_mask)
print("Test Accuracy {:.4f}".format(acc))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="SGC")
register_data_args(parser)
parser.add_argument("--gpu", type=int, default=-1, help="gpu")
parser.add_argument(
"--bias", action="store_true", default=False, help="flag to use bias"
)
parser.add_argument(
"--n-epochs", type=int, default=2, help="number of training epochs"
)
args = parser.parse_args()
print(args)
main(args)