forked from unicorn-engine/unicorn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
uc.c
1366 lines (1150 loc) · 37.4 KB
/
uc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* Unicorn Emulator Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2015 */
#if defined(UNICORN_HAS_OSXKERNEL)
#include <libkern/libkern.h>
#else
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#endif
#include <time.h> // nanosleep
#include <string.h>
#include "uc_priv.h"
// target specific headers
#include "qemu/target-m68k/unicorn.h"
#include "qemu/target-i386/unicorn.h"
#include "qemu/target-arm/unicorn.h"
#include "qemu/target-mips/unicorn.h"
#include "qemu/target-sparc/unicorn.h"
#include "qemu/include/hw/boards.h"
#include "qemu/include/qemu/queue.h"
static void free_table(gpointer key, gpointer value, gpointer data)
{
TypeInfo *ti = (TypeInfo*) value;
g_free((void *) ti->class_);
g_free((void *) ti->name);
g_free((void *) ti->parent);
g_free((void *) ti);
}
UNICORN_EXPORT
unsigned int uc_version(unsigned int *major, unsigned int *minor)
{
if (major != NULL && minor != NULL) {
*major = UC_API_MAJOR;
*minor = UC_API_MINOR;
}
return (UC_API_MAJOR << 8) + UC_API_MINOR;
}
UNICORN_EXPORT
uc_err uc_errno(uc_engine *uc)
{
return uc->errnum;
}
UNICORN_EXPORT
const char *uc_strerror(uc_err code)
{
switch(code) {
default:
return "Unknown error code";
case UC_ERR_OK:
return "OK (UC_ERR_OK)";
case UC_ERR_NOMEM:
return "No memory available or memory not present (UC_ERR_NOMEM)";
case UC_ERR_ARCH:
return "Invalid/unsupported architecture (UC_ERR_ARCH)";
case UC_ERR_HANDLE:
return "Invalid handle (UC_ERR_HANDLE)";
case UC_ERR_MODE:
return "Invalid mode (UC_ERR_MODE)";
case UC_ERR_VERSION:
return "Different API version between core & binding (UC_ERR_VERSION)";
case UC_ERR_READ_UNMAPPED:
return "Invalid memory read (UC_ERR_READ_UNMAPPED)";
case UC_ERR_WRITE_UNMAPPED:
return "Invalid memory write (UC_ERR_WRITE_UNMAPPED)";
case UC_ERR_FETCH_UNMAPPED:
return "Invalid memory fetch (UC_ERR_FETCH_UNMAPPED)";
case UC_ERR_HOOK:
return "Invalid hook type (UC_ERR_HOOK)";
case UC_ERR_INSN_INVALID:
return "Invalid instruction (UC_ERR_INSN_INVALID)";
case UC_ERR_MAP:
return "Invalid memory mapping (UC_ERR_MAP)";
case UC_ERR_WRITE_PROT:
return "Write to write-protected memory (UC_ERR_WRITE_PROT)";
case UC_ERR_READ_PROT:
return "Read from non-readable memory (UC_ERR_READ_PROT)";
case UC_ERR_FETCH_PROT:
return "Fetch from non-executable memory (UC_ERR_FETCH_PROT)";
case UC_ERR_ARG:
return "Invalid argument (UC_ERR_ARG)";
case UC_ERR_READ_UNALIGNED:
return "Read from unaligned memory (UC_ERR_READ_UNALIGNED)";
case UC_ERR_WRITE_UNALIGNED:
return "Write to unaligned memory (UC_ERR_WRITE_UNALIGNED)";
case UC_ERR_FETCH_UNALIGNED:
return "Fetch from unaligned memory (UC_ERR_FETCH_UNALIGNED)";
case UC_ERR_RESOURCE:
return "Insufficient resource (UC_ERR_RESOURCE)";
case UC_ERR_EXCEPTION:
return "Unhandled CPU exception (UC_ERR_EXCEPTION)";
}
}
UNICORN_EXPORT
bool uc_arch_supported(uc_arch arch)
{
switch (arch) {
#ifdef UNICORN_HAS_ARM
case UC_ARCH_ARM: return true;
#endif
#ifdef UNICORN_HAS_ARM64
case UC_ARCH_ARM64: return true;
#endif
#ifdef UNICORN_HAS_M68K
case UC_ARCH_M68K: return true;
#endif
#ifdef UNICORN_HAS_MIPS
case UC_ARCH_MIPS: return true;
#endif
#ifdef UNICORN_HAS_PPC
case UC_ARCH_PPC: return true;
#endif
#ifdef UNICORN_HAS_SPARC
case UC_ARCH_SPARC: return true;
#endif
#ifdef UNICORN_HAS_X86
case UC_ARCH_X86: return true;
#endif
/* Invalid or disabled arch */
default: return false;
}
}
UNICORN_EXPORT
uc_err uc_open(uc_arch arch, uc_mode mode, uc_engine **result)
{
struct uc_struct *uc;
if (arch < UC_ARCH_MAX) {
uc = calloc(1, sizeof(*uc));
if (!uc) {
// memory insufficient
return UC_ERR_NOMEM;
}
uc->errnum = UC_ERR_OK;
uc->arch = arch;
uc->mode = mode;
// uc->ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
uc->ram_list.blocks.tqh_first = NULL;
uc->ram_list.blocks.tqh_last = &(uc->ram_list.blocks.tqh_first);
uc->memory_listeners.tqh_first = NULL;
uc->memory_listeners.tqh_last = &uc->memory_listeners.tqh_first;
uc->address_spaces.tqh_first = NULL;
uc->address_spaces.tqh_last = &uc->address_spaces.tqh_first;
switch(arch) {
default:
break;
#ifdef UNICORN_HAS_M68K
case UC_ARCH_M68K:
if ((mode & ~UC_MODE_M68K_MASK) ||
!(mode & UC_MODE_BIG_ENDIAN)) {
free(uc);
return UC_ERR_MODE;
}
uc->init_arch = m68k_uc_init;
break;
#endif
#ifdef UNICORN_HAS_X86
case UC_ARCH_X86:
if ((mode & ~UC_MODE_X86_MASK) ||
(mode & UC_MODE_BIG_ENDIAN) ||
!(mode & (UC_MODE_16|UC_MODE_32|UC_MODE_64))) {
free(uc);
return UC_ERR_MODE;
}
uc->init_arch = x86_uc_init;
break;
#endif
#ifdef UNICORN_HAS_ARM
case UC_ARCH_ARM:
if ((mode & ~UC_MODE_ARM_MASK)) {
free(uc);
return UC_ERR_MODE;
}
if (mode & UC_MODE_BIG_ENDIAN) {
uc->init_arch = armeb_uc_init;
} else {
uc->init_arch = arm_uc_init;
}
if (mode & UC_MODE_THUMB)
uc->thumb = 1;
break;
#endif
#ifdef UNICORN_HAS_ARM64
case UC_ARCH_ARM64:
if (mode & ~UC_MODE_ARM_MASK) {
free(uc);
return UC_ERR_MODE;
}
if (mode & UC_MODE_BIG_ENDIAN) {
uc->init_arch = arm64eb_uc_init;
} else {
uc->init_arch = arm64_uc_init;
}
break;
#endif
#if defined(UNICORN_HAS_MIPS) || defined(UNICORN_HAS_MIPSEL) || defined(UNICORN_HAS_MIPS64) || defined(UNICORN_HAS_MIPS64EL)
case UC_ARCH_MIPS:
if ((mode & ~UC_MODE_MIPS_MASK) ||
!(mode & (UC_MODE_MIPS32|UC_MODE_MIPS64))) {
free(uc);
return UC_ERR_MODE;
}
if (mode & UC_MODE_BIG_ENDIAN) {
#ifdef UNICORN_HAS_MIPS
if (mode & UC_MODE_MIPS32)
uc->init_arch = mips_uc_init;
#endif
#ifdef UNICORN_HAS_MIPS64
if (mode & UC_MODE_MIPS64)
uc->init_arch = mips64_uc_init;
#endif
} else { // little endian
#ifdef UNICORN_HAS_MIPSEL
if (mode & UC_MODE_MIPS32)
uc->init_arch = mipsel_uc_init;
#endif
#ifdef UNICORN_HAS_MIPS64EL
if (mode & UC_MODE_MIPS64)
uc->init_arch = mips64el_uc_init;
#endif
}
break;
#endif
#ifdef UNICORN_HAS_SPARC
case UC_ARCH_SPARC:
if ((mode & ~UC_MODE_SPARC_MASK) ||
!(mode & UC_MODE_BIG_ENDIAN) ||
!(mode & (UC_MODE_SPARC32|UC_MODE_SPARC64))) {
free(uc);
return UC_ERR_MODE;
}
if (mode & UC_MODE_SPARC64)
uc->init_arch = sparc64_uc_init;
else
uc->init_arch = sparc_uc_init;
break;
#endif
}
if (uc->init_arch == NULL) {
return UC_ERR_ARCH;
}
if (machine_initialize(uc))
return UC_ERR_RESOURCE;
*result = uc;
if (uc->reg_reset)
uc->reg_reset(uc);
return UC_ERR_OK;
} else {
return UC_ERR_ARCH;
}
}
UNICORN_EXPORT
uc_err uc_close(uc_engine *uc)
{
int i;
struct list_item *cur;
struct hook *hook;
// Cleanup internally.
if (uc->release)
uc->release(uc->tcg_ctx);
g_free(uc->tcg_ctx);
// Cleanup CPU.
g_free(uc->cpu->tcg_as_listener);
g_free(uc->cpu->thread);
// Cleanup all objects.
OBJECT(uc->machine_state->accelerator)->ref = 1;
OBJECT(uc->machine_state)->ref = 1;
OBJECT(uc->owner)->ref = 1;
OBJECT(uc->root)->ref = 1;
object_unref(uc, OBJECT(uc->machine_state->accelerator));
object_unref(uc, OBJECT(uc->machine_state));
object_unref(uc, OBJECT(uc->cpu));
object_unref(uc, OBJECT(&uc->io_mem_notdirty));
object_unref(uc, OBJECT(&uc->io_mem_unassigned));
object_unref(uc, OBJECT(&uc->io_mem_rom));
object_unref(uc, OBJECT(uc->root));
// System memory.
g_free(uc->system_memory);
// Thread relateds.
if (uc->qemu_thread_data)
g_free(uc->qemu_thread_data);
// Other auxilaries.
free(uc->l1_map);
if (uc->bounce.buffer) {
free(uc->bounce.buffer);
}
g_hash_table_foreach(uc->type_table, free_table, uc);
g_hash_table_destroy(uc->type_table);
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
free(uc->ram_list.dirty_memory[i]);
}
// free hooks and hook lists
for (i = 0; i < UC_HOOK_MAX; i++) {
cur = uc->hook[i].head;
// hook can be in more than one list
// so we refcount to know when to free
while (cur) {
hook = (struct hook *)cur->data;
if (--hook->refs == 0) {
free(hook);
}
cur = cur->next;
}
list_clear(&uc->hook[i]);
}
free(uc->mapped_blocks);
// finally, free uc itself.
memset(uc, 0, sizeof(*uc));
free(uc);
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_reg_read_batch(uc_engine *uc, int *ids, void **vals, int count)
{
if (uc->reg_read)
uc->reg_read(uc, (unsigned int *)ids, vals, count);
else
return -1; // FIXME: need a proper uc_err
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_reg_write_batch(uc_engine *uc, int *ids, void *const *vals, int count)
{
int ret = UC_ERR_OK;
if (uc->reg_write)
ret = uc->reg_write(uc, (unsigned int *)ids, vals, count);
else
return UC_ERR_EXCEPTION; // FIXME: need a proper uc_err
return ret;
}
UNICORN_EXPORT
uc_err uc_reg_read(uc_engine *uc, int regid, void *value)
{
return uc_reg_read_batch(uc, ®id, &value, 1);
}
UNICORN_EXPORT
uc_err uc_reg_write(uc_engine *uc, int regid, const void *value)
{
return uc_reg_write_batch(uc, ®id, (void *const *)&value, 1);
}
// check if a memory area is mapped
// this is complicated because an area can overlap adjacent blocks
static bool check_mem_area(uc_engine *uc, uint64_t address, size_t size)
{
size_t count = 0, len;
while(count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
len = (size_t)MIN(size - count, mr->end - address);
count += len;
address += len;
} else // this address is not mapped in yet
break;
}
return (count == size);
}
UNICORN_EXPORT
uc_err uc_mem_read(uc_engine *uc, uint64_t address, void *_bytes, size_t size)
{
size_t count = 0, len;
uint8_t *bytes = _bytes;
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
if (!check_mem_area(uc, address, size))
return UC_ERR_READ_UNMAPPED;
// memory area can overlap adjacent memory blocks
while(count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
len = (size_t)MIN(size - count, mr->end - address);
if (uc->read_mem(&uc->as, address, bytes, len) == false)
break;
count += len;
address += len;
bytes += len;
} else // this address is not mapped in yet
break;
}
if (count == size)
return UC_ERR_OK;
else
return UC_ERR_READ_UNMAPPED;
}
UNICORN_EXPORT
uc_err uc_mem_write(uc_engine *uc, uint64_t address, const void *_bytes, size_t size)
{
size_t count = 0, len;
const uint8_t *bytes = _bytes;
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
if (!check_mem_area(uc, address, size))
return UC_ERR_WRITE_UNMAPPED;
// memory area can overlap adjacent memory blocks
while(count < size) {
MemoryRegion *mr = memory_mapping(uc, address);
if (mr) {
uint32_t operms = mr->perms;
if (!(operms & UC_PROT_WRITE)) // write protected
// but this is not the program accessing memory, so temporarily mark writable
uc->readonly_mem(mr, false);
len = (size_t)MIN(size - count, mr->end - address);
if (uc->write_mem(&uc->as, address, bytes, len) == false)
break;
if (!(operms & UC_PROT_WRITE)) // write protected
// now write protect it again
uc->readonly_mem(mr, true);
count += len;
address += len;
bytes += len;
} else // this address is not mapped in yet
break;
}
if (count == size)
return UC_ERR_OK;
else
return UC_ERR_WRITE_UNMAPPED;
}
#define TIMEOUT_STEP 2 // microseconds
static void *_timeout_fn(void *arg)
{
struct uc_struct *uc = arg;
int64_t current_time = get_clock();
do {
usleep(TIMEOUT_STEP);
// perhaps emulation is even done before timeout?
if (uc->emulation_done)
break;
} while((uint64_t)(get_clock() - current_time) < uc->timeout);
// timeout before emulation is done?
if (!uc->emulation_done) {
uc->timed_out = true;
// force emulation to stop
uc_emu_stop(uc);
}
return NULL;
}
static void enable_emu_timer(uc_engine *uc, uint64_t timeout)
{
uc->timeout = timeout;
qemu_thread_create(uc, &uc->timer, "timeout", _timeout_fn,
uc, QEMU_THREAD_JOINABLE);
}
static void hook_count_cb(struct uc_struct *uc, uint64_t address, uint32_t size, void *user_data)
{
// count this instruction. ah ah ah.
uc->emu_counter++;
if (uc->emu_counter > uc->emu_count)
uc_emu_stop(uc);
}
static void clear_deleted_hooks(uc_engine *uc)
{
struct list_item * cur;
struct hook * hook;
int i;
for (cur = uc->hooks_to_del.head; cur != NULL && (hook = (struct hook *)cur->data); cur = cur->next) {
assert(hook->to_delete);
for (i = 0; i < UC_HOOK_MAX; i++) {
if (list_remove(&uc->hook[i], (void *)hook)) {
if (--hook->refs == 0) {
free(hook);
}
// a hook cannot be twice in the same list
break;
}
}
}
list_clear(&uc->hooks_to_del);
}
UNICORN_EXPORT
uc_err uc_emu_start(uc_engine* uc, uint64_t begin, uint64_t until, uint64_t timeout, size_t count)
{
// reset the counter
uc->emu_counter = 0;
uc->invalid_error = UC_ERR_OK;
uc->block_full = false;
uc->emulation_done = false;
uc->size_recur_mem = 0;
uc->timed_out = false;
switch(uc->arch) {
default:
break;
#ifdef UNICORN_HAS_M68K
case UC_ARCH_M68K:
uc_reg_write(uc, UC_M68K_REG_PC, &begin);
break;
#endif
#ifdef UNICORN_HAS_X86
case UC_ARCH_X86:
switch(uc->mode) {
default:
break;
case UC_MODE_16: {
uint64_t ip;
uint16_t cs;
uc_reg_read(uc, UC_X86_REG_CS, &cs);
// compensate for later adding up IP & CS
ip = begin - cs*16;
uc_reg_write(uc, UC_X86_REG_IP, &ip);
break;
}
case UC_MODE_32:
uc_reg_write(uc, UC_X86_REG_EIP, &begin);
break;
case UC_MODE_64:
uc_reg_write(uc, UC_X86_REG_RIP, &begin);
break;
}
break;
#endif
#ifdef UNICORN_HAS_ARM
case UC_ARCH_ARM:
uc_reg_write(uc, UC_ARM_REG_R15, &begin);
break;
#endif
#ifdef UNICORN_HAS_ARM64
case UC_ARCH_ARM64:
uc_reg_write(uc, UC_ARM64_REG_PC, &begin);
break;
#endif
#ifdef UNICORN_HAS_MIPS
case UC_ARCH_MIPS:
// TODO: MIPS32/MIPS64/BIGENDIAN etc
uc_reg_write(uc, UC_MIPS_REG_PC, &begin);
break;
#endif
#ifdef UNICORN_HAS_SPARC
case UC_ARCH_SPARC:
// TODO: Sparc/Sparc64
uc_reg_write(uc, UC_SPARC_REG_PC, &begin);
break;
#endif
}
uc->stop_request = false;
uc->emu_count = count;
// remove count hook if counting isn't necessary
if (count <= 0 && uc->count_hook != 0) {
uc_hook_del(uc, uc->count_hook);
uc->count_hook = 0;
}
// set up count hook to count instructions.
if (count > 0 && uc->count_hook == 0) {
uc_err err;
// callback to count instructions must be run before everything else,
// so instead of appending, we must insert the hook at the begin
// of the hook list
uc->hook_insert = 1;
err = uc_hook_add(uc, &uc->count_hook, UC_HOOK_CODE, hook_count_cb, NULL, 1, 0);
// restore to append mode for uc_hook_add()
uc->hook_insert = 0;
if (err != UC_ERR_OK) {
return err;
}
}
uc->addr_end = until;
if (timeout)
enable_emu_timer(uc, timeout * 1000); // microseconds -> nanoseconds
if (uc->vm_start(uc)) {
return UC_ERR_RESOURCE;
}
// emulation is done
uc->emulation_done = true;
// remove hooks to delete
clear_deleted_hooks(uc);
if (timeout) {
// wait for the timer to finish
qemu_thread_join(&uc->timer);
}
return uc->invalid_error;
}
UNICORN_EXPORT
uc_err uc_emu_stop(uc_engine *uc)
{
if (uc->emulation_done)
return UC_ERR_OK;
uc->stop_request = true;
// TODO: make this atomic somehow?
if (uc->current_cpu) {
// exit the current TB
cpu_exit(uc->current_cpu);
}
return UC_ERR_OK;
}
// find if a memory range overlaps with existing mapped regions
static bool memory_overlap(struct uc_struct *uc, uint64_t begin, size_t size)
{
unsigned int i;
uint64_t end = begin + size - 1;
for(i = 0; i < uc->mapped_block_count; i++) {
// begin address falls inside this region?
if (begin >= uc->mapped_blocks[i]->addr && begin <= uc->mapped_blocks[i]->end - 1)
return true;
// end address falls inside this region?
if (end >= uc->mapped_blocks[i]->addr && end <= uc->mapped_blocks[i]->end - 1)
return true;
// this region falls totally inside this range?
if (begin < uc->mapped_blocks[i]->addr && end > uc->mapped_blocks[i]->end - 1)
return true;
}
// not found
return false;
}
// common setup/error checking shared between uc_mem_map and uc_mem_map_ptr
static uc_err mem_map(uc_engine *uc, uint64_t address, size_t size, uint32_t perms, MemoryRegion *block)
{
MemoryRegion **regions;
if (block == NULL)
return UC_ERR_NOMEM;
if ((uc->mapped_block_count & (MEM_BLOCK_INCR - 1)) == 0) { //time to grow
regions = (MemoryRegion**)g_realloc(uc->mapped_blocks,
sizeof(MemoryRegion*) * (uc->mapped_block_count + MEM_BLOCK_INCR));
if (regions == NULL) {
return UC_ERR_NOMEM;
}
uc->mapped_blocks = regions;
}
uc->mapped_blocks[uc->mapped_block_count] = block;
uc->mapped_block_count++;
return UC_ERR_OK;
}
static uc_err mem_map_check(uc_engine *uc, uint64_t address, size_t size, uint32_t perms)
{
if (size == 0)
// invalid memory mapping
return UC_ERR_ARG;
// address cannot wrapp around
if (address + size - 1 < address)
return UC_ERR_ARG;
// address must be aligned to uc->target_page_size
if ((address & uc->target_page_align) != 0)
return UC_ERR_ARG;
// size must be multiple of uc->target_page_size
if ((size & uc->target_page_align) != 0)
return UC_ERR_ARG;
// check for only valid permissions
if ((perms & ~UC_PROT_ALL) != 0)
return UC_ERR_ARG;
// this area overlaps existing mapped regions?
if (memory_overlap(uc, address, size)) {
return UC_ERR_MAP;
}
return UC_ERR_OK;
}
UNICORN_EXPORT
uc_err uc_mem_map(uc_engine *uc, uint64_t address, size_t size, uint32_t perms)
{
uc_err res;
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
res = mem_map_check(uc, address, size, perms);
if (res)
return res;
return mem_map(uc, address, size, perms, uc->memory_map(uc, address, size, perms));
}
UNICORN_EXPORT
uc_err uc_mem_map_ptr(uc_engine *uc, uint64_t address, size_t size, uint32_t perms, void *ptr)
{
uc_err res;
if (ptr == NULL)
return UC_ERR_ARG;
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
res = mem_map_check(uc, address, size, perms);
if (res)
return res;
return mem_map(uc, address, size, UC_PROT_ALL, uc->memory_map_ptr(uc, address, size, perms, ptr));
}
// Create a backup copy of the indicated MemoryRegion.
// Generally used in prepartion for splitting a MemoryRegion.
static uint8_t *copy_region(struct uc_struct *uc, MemoryRegion *mr)
{
uint8_t *block = (uint8_t *)g_malloc0((size_t)int128_get64(mr->size));
if (block != NULL) {
uc_err err = uc_mem_read(uc, mr->addr, block, (size_t)int128_get64(mr->size));
if (err != UC_ERR_OK) {
free(block);
block = NULL;
}
}
return block;
}
/*
Split the given MemoryRegion at the indicated address for the indicated size
this may result in the create of up to 3 spanning sections. If the delete
parameter is true, the no new section will be created to replace the indicate
range. This functions exists to support uc_mem_protect and uc_mem_unmap.
This is a static function and callers have already done some preliminary
parameter validation.
The do_delete argument indicates that we are being called to support
uc_mem_unmap. In this case we save some time by choosing NOT to remap
the areas that are intended to get unmapped
*/
// TODO: investigate whether qemu region manipulation functions already offered
// this capability
static bool split_region(struct uc_struct *uc, MemoryRegion *mr, uint64_t address,
size_t size, bool do_delete)
{
uint8_t *backup;
uint32_t perms;
uint64_t begin, end, chunk_end;
size_t l_size, m_size, r_size;
RAMBlock *block = NULL;
bool prealloc = false;
chunk_end = address + size;
// if this region belongs to area [address, address+size],
// then there is no work to do.
if (address <= mr->addr && chunk_end >= mr->end)
return true;
if (size == 0)
// trivial case
return true;
if (address >= mr->end || chunk_end <= mr->addr)
// impossible case
return false;
QTAILQ_FOREACH(block, &uc->ram_list.blocks, next) {
if (block->offset <= mr->addr && block->length >= (mr->end - mr->addr)) {
break;
}
}
if (block == NULL)
return false;
// RAM_PREALLOC is not defined outside exec.c and I didn't feel like
// moving it
prealloc = !!(block->flags & 1);
if (block->flags & 1) {
backup = block->host;
} else {
backup = copy_region(uc, mr);
if (backup == NULL)
return false;
}
// save the essential information required for the split before mr gets deleted
perms = mr->perms;
begin = mr->addr;
end = mr->end;
// unmap this region first, then do split it later
if (uc_mem_unmap(uc, mr->addr, (size_t)int128_get64(mr->size)) != UC_ERR_OK)
goto error;
/* overlapping cases
* |------mr------|
* case 1 |---size--|
* case 2 |--size--|
* case 3 |---size--|
*/
// adjust some things
if (address < begin)
address = begin;
if (chunk_end > end)
chunk_end = end;
// compute sub region sizes
l_size = (size_t)(address - begin);
r_size = (size_t)(end - chunk_end);
m_size = (size_t)(chunk_end - address);
// If there are error in any of the below operations, things are too far gone
// at that point to recover. Could try to remap orignal region, but these smaller
// allocation just failed so no guarantee that we can recover the original
// allocation at this point
if (l_size > 0) {
if (!prealloc) {
if (uc_mem_map(uc, begin, l_size, perms) != UC_ERR_OK)
goto error;
if (uc_mem_write(uc, begin, backup, l_size) != UC_ERR_OK)
goto error;
} else {
if (uc_mem_map_ptr(uc, begin, l_size, perms, backup) != UC_ERR_OK)
goto error;
}
}
if (m_size > 0 && !do_delete) {
if (!prealloc) {
if (uc_mem_map(uc, address, m_size, perms) != UC_ERR_OK)
goto error;
if (uc_mem_write(uc, address, backup + l_size, m_size) != UC_ERR_OK)
goto error;
} else {
if (uc_mem_map_ptr(uc, address, m_size, perms, backup + l_size) != UC_ERR_OK)
goto error;
}
}
if (r_size > 0) {
if (!prealloc) {
if (uc_mem_map(uc, chunk_end, r_size, perms) != UC_ERR_OK)
goto error;
if (uc_mem_write(uc, chunk_end, backup + l_size + m_size, r_size) != UC_ERR_OK)
goto error;
} else {
if (uc_mem_map_ptr(uc, chunk_end, r_size, perms, backup + l_size + m_size) != UC_ERR_OK)
goto error;
}
}
if (!prealloc)
free(backup);
return true;
error:
if (!prealloc)
free(backup);
return false;
}
UNICORN_EXPORT
uc_err uc_mem_protect(struct uc_struct *uc, uint64_t address, size_t size, uint32_t perms)
{
MemoryRegion *mr;
uint64_t addr = address;
size_t count, len;
bool remove_exec = false;
if (size == 0)
// trivial case, no change
return UC_ERR_OK;
// address must be aligned to uc->target_page_size
if ((address & uc->target_page_align) != 0)
return UC_ERR_ARG;
// size must be multiple of uc->target_page_size
if ((size & uc->target_page_align) != 0)
return UC_ERR_ARG;
// check for only valid permissions
if ((perms & ~UC_PROT_ALL) != 0)
return UC_ERR_ARG;
if (uc->mem_redirect) {
address = uc->mem_redirect(address);
}
// check that user's entire requested block is mapped
if (!check_mem_area(uc, address, size))
return UC_ERR_NOMEM;
// Now we know entire region is mapped, so change permissions
// We may need to split regions if this area spans adjacent regions
addr = address;
count = 0;
while(count < size) {
mr = memory_mapping(uc, addr);
len = (size_t)MIN(size - count, mr->end - addr);
if (!split_region(uc, mr, addr, len, false))
return UC_ERR_NOMEM;
mr = memory_mapping(uc, addr);
// will this remove EXEC permission?
if (((mr->perms & UC_PROT_EXEC) != 0) && ((perms & UC_PROT_EXEC) == 0))
remove_exec = true;
mr->perms = perms;
uc->readonly_mem(mr, (perms & UC_PROT_WRITE) == 0);
count += len;
addr += len;