From 85a94a1e8de0e6c13095261ead010a091d977ad6 Mon Sep 17 00:00:00 2001 From: Edoardo Pasca Date: Tue, 11 Feb 2020 17:38:07 +0000 Subject: [PATCH 01/11] MCIL with CIL --- notebooks/PET/MCIR_CIL.ipynb | 497 ++++++++++++++++++++++++++++++++ notebooks/PET/MemoryTest.ipynb | 374 ++++++++++++++++++++++++ notebooks/PET/ViewResults.ipynb | 238 +++++++++++++++ 3 files changed, 1109 insertions(+) create mode 100644 notebooks/PET/MCIR_CIL.ipynb create mode 100644 notebooks/PET/MemoryTest.ipynb create mode 100644 notebooks/PET/ViewResults.ipynb diff --git a/notebooks/PET/MCIR_CIL.ipynb b/notebooks/PET/MCIR_CIL.ipynb new file mode 100644 index 00000000..12564464 --- /dev/null +++ b/notebooks/PET/MCIR_CIL.ipynb @@ -0,0 +1,497 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#%% Initial imports etc\n", + "import numpy\n", + "from numpy.linalg import norm\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.animation as animation\n", + "import os\n", + "import sys\n", + "import shutil\n", + "\n", + "from ccpi.utilities.jupyter import *\n", + "from ccpi.utilities.display import *\n", + "\n", + "#%% Use the 'pet' prefix for all STIR-based SIRF functions\n", + "# This is done here to explicitly differentiate between SIRF pet functions and \n", + "# anything else.\n", + "import sirf.STIR as pet\n", + "from sirf.Utilities import examples_data_path\n", + "\n", + "pet.AcquisitionData.set_storage_scheme('memory')\n", + "\n", + "#%% Go to directory with input files\n", + "# Adapt this path to your situation (or start everything in the relevant directory)\n", + "os.chdir(examples_data_path('PET'))\n", + "\n", + "#%% Copy files to a working folder and change directory to where these files are.\n", + "# We do this to avoid cluttering your SIRF files. This way, you can delete \n", + "# working_folder and start from scratch.\n", + "if False:\n", + " shutil.rmtree('working_folder/brain',True)\n", + " shutil.copytree('brain','working_folder/brain')\n", + "os.chdir('working_folder/brain')\n", + "\n", + "#%% Read in images\n", + "# Here we will read some images provided with the demo using the ImageData class.\n", + "# These are in Interfile format. (A text header pointing to a .v file with the binary data).\n", + "image = pet.ImageData('emission.hv')\n", + "mu_map = pet.ImageData('attenuation.hv')" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f62001b064d342f581324cac0beac629", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT03LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTE0KSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "bc0b2efa39c742a9b012fbc41216ab8f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "IntSlider(value=7, continuous_update=False, description=u'X', max=14)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "direction = 0\n", + "islicer(image,direction, cmap='viridis')" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "#%% Create a SIRF acquisition model\n", + "# We will use the ray-tracing matrix here as our simple PET model.\n", + "# There is more to the accquisition model, but that's for another demo.\n", + "am = pet.AcquisitionModelUsingRayTracingMatrix()\n", + "# Ask STIR to use 5 LORs per sinogram-element\n", + "am.set_num_tangential_LORs(5)\n", + "\n", + "#%% Specify sinogram dimensions\n", + "# We need to say what scanner to use, what dimensions etc.\n", + "# You do this by using existing PET data as a 'template'. \n", + "# Here, we read a file supplied with the demo as an AcquisitionData object\n", + "templ = pet.AcquisitionData('template_sinogram.hs')\n", + "# Now set-up our acquisition model with all information that it needs about the data and image.\n", + "am.set_up(templ,image)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "17b414eb9bc54a66884c46fda149e70e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT01LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTEwKSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4ae5ed7826b34dfa80957f4aa3aeac37", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT01LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTEwKSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ADD NOISE\n", + "\n", + "sino = am.direct(image)\n", + "\n", + "def add_noise(counts, sinogram):\n", + " sino_arr = sinogram.as_array()\n", + " minmax = (sino_arr.min(), sino_arr.max())\n", + " if counts > 0 and counts <= 1:\n", + " counts = counts * (minmax[1] - minmax[0])\n", + " elif isinstance (counts, int):\n", + " pass\n", + " \n", + " sino_arr = counts * ((sino_arr -minmax[0]) / (minmax[1]-minmax[0]))\n", + " noisy_counts = sinogram * 0.\n", + " noisy_counts.fill( numpy.random.poisson(sino_arr) )\n", + " \n", + " return noisy_counts\n", + "\n", + "\n", + "minmax = sino.as_array().min(), sino.as_array().max()\n", + "\n", + "noisy_counts = add_noise(1, sino)\n", + "\n", + "s0 = islicer(noisy_counts.as_array()[0], 0, cmap='inferno_r')\n", + "s1 = islicer(sino.as_array()[0], 0, cmap='inferno_r')\n", + "link_islicer(s0,s1)\n", + "\n", + "#del sino" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "import sirf.Reg as Reg\n", + "from scipy.spatial.transform import Rotation as R\n", + "\n", + "def get_resampler(directions, angles, degrees=True ):\n", + " '''example input 'zy', [87,13], degrees=True'''\n", + " r = R.from_euler(directions, angles, degrees=degrees)\n", + "\n", + " mat = r.as_dcm()\n", + "\n", + "\n", + "\n", + " tm = Reg.AffineTransformation()\n", + " mat4 = tm.as_array()\n", + "\n", + " for i in range(3):\n", + " for j in range(3):\n", + " mat4[i][j] = mat[i][j]\n", + "\n", + " tm = Reg.AffineTransformation(mat4)\n", + "\n", + " mat = tm.as_array()\n", + "\n", + " resampler = Reg.NiftyResample()\n", + " resampler.set_reference_image(image)\n", + " resampler.set_floating_image(image)\n", + " resampler.add_transformation(tm)\n", + " resampler.set_padding_value(0)\n", + " resampler.set_interpolation_type_to_linear()\n", + " \n", + " return resampler" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# create different motion state\n", + "rotations = [[-1.2,3.],[1.2,-3.],[0.,-5.], [.2,2.]]\n", + "rotations = [ [10 * rot[0],rot[1]] for rot in rotations ]\n", + "\n", + "resamplers = [ get_resampler('zy', rot, degrees=True) for rot in rotations ]\n", + "\n", + "# create the new AcquisitionData for the motion states\n", + "rotated_sinos = []\n", + "\n", + "for rot, resampler in zip(*(rotations, resamplers)):\n", + " # new ImageData\n", + " out = resampler.direct(image)\n", + " # new AcquisitionData\n", + " rs = am.direct(out)\n", + " # add noise\n", + " rs = add_noise(1,rs)\n", + " rotated_sinos.append(rs)\n", + "\n", + "del out, rs\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "f7d0a996de5f49e990964f00ca91639a", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT03LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTE0KSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "838ee0d43bde48b2870771948da9fb50", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT03LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTE0KSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "ba8888cf39594eaa8d3bbda8a054f1b8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT01LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTEwKSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#s0 = islicer(acquired_data.as_array()[0], 0, cmap='viridis')\n", + "\n", + "a = rotated_sinos[0]-rotated_sinos[1]\n", + "print (type(a))\n", + "\n", + "s1 = islicer(resamplers[0].direct(image).as_array(), 0, cmap='viridis_r')\n", + "s2 = islicer(resamplers[1].direct(image).as_array(), 0, cmap='viridis_r')\n", + "s3 = islicer((rotated_sinos[0]-rotated_sinos[1]).as_array()[0],0,cmap='viridis')\n", + "link_islicer(s1,s2)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from ccpi.optimisation.operators import CompositionOperator, BlockOperator, LinearOperator\n", + "\n", + "\n", + "C = [ CompositionOperator(am, resampler) for resampler in resamplers ]\n", + "# C = [ am for _ in resamplers ]\n", + "# norms = [ LinearOperator.PowerMethod(op, 25)[0] for op in C ]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "# n = [nn[0] for nn in norms]\n", + "# norms = n\n", + "# print (norms, sum(norms))\n", + "\n", + "from ccpi.plugins.regularisers import FGP_TV\n", + "#FGP_TV??" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "from ccpi.optimisation.algorithms import PDHG\n", + "from ccpi.optimisation.functions import KullbackLeibler, IndicatorBox, BlockFunction\n", + "from ccpi.optimisation.operators import BlockOperator\n", + "from ccpi.plugins.regularisers import FGP_TV\n", + "\n", + "#regularisation parameters for TV\n", + "# \n", + "r_alpha = 5e-1\n", + "r_iterations = 500\n", + "r_tolerance = 1e-7\n", + "r_iso = 0\n", + "r_nonneg = 1\n", + "r_printing = 0\n", + "\n", + "TV = FGP_TV(r_alpha, r_iterations, r_tolerance, r_iso,r_nonneg,r_printing,'gpu')\n", + "\n", + "motion = True\n", + "if motion:\n", + " #noisy_counts is the GT forward projected + noise\n", + " kl = [ KullbackLeibler(b=rotated_sino, eta=(rotated_sino * 0 + 1e-5)) for rotated_sino in rotated_sinos ] \n", + " f = BlockFunction(*kl)\n", + " K = BlockOperator(*C)\n", + " normK = K.norm()\n", + " #normK = numpy.sqrt(sum( norms ))\n", + "else:\n", + " f = KullbackLeibler(b=noisy_counts, eta=(noisy_counts * 0 + 1e-5))\n", + " K = am\n", + " normK = LinearOperator.PowerMethod(am, 25)[0]\n", + "\n", + "sigma = 1/normK\n", + "tau = 1/normK \n", + "\n", + "G = IndicatorBox(lower=0)\n", + "# G = TV\n", + "# print (f(acquired_data*0.+1e-5))\n", + "# print (f(acquired_data*0.))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PDHG setting up\n", + "PDHG configured\n", + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 1000 0.000 5.99551e+09\n", + " 100 1000 1.548 2.92670e+08\n", + " 200 1000 1.562 2.96015e+06\n", + " 300 1000 1.557 1.34683e+06\n", + " 400 1000 1.562 8.48726e+05\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mmax_iteration\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1000\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m update_objective_interval = 100)\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mpdhg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mpdhg_recon\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpdhg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_output\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/algorithms/Algorithm.pyc\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, iterations, verbose, callback, very_verbose)\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 188\u001b[0m \u001b[0;32mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mverbose_output\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvery_verbose\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 189\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 190\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miteration\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_objective_interval\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 191\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/algorithms/Algorithm.pyc\u001b[0m in \u001b[0;36mnext\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 90\u001b[0m python2 backwards compatibility'''\n\u001b[0;32m---> 91\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__next__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 92\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__next__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 93\u001b[0m '''Algorithm is an iterable\n", + "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/algorithms/Algorithm.pyc\u001b[0m in \u001b[0;36m__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_iteration\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miteration\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 107\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 108\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtiming\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mtime0\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miteration\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_objective_interval\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/algorithms/PDHG.pyc\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;31m# self.y = self.f.proximal_conjugate(self.y_old, self.sigma)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 138\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mproximal_conjugate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0my_tmp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msigma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 139\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;31m# Gradient descent for the primal variable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/functions/BlockFunction.pyc\u001b[0m in \u001b[0;36mproximal_conjugate\u001b[0;34m(self, x, tau, out)\u001b[0m\n\u001b[1;32m 170\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtau\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNumber\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 171\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlength\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 172\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunctions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mproximal_conjugate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtau\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 173\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 174\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlength\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/functions/KullbackLeibler.pyc\u001b[0m in \u001b[0;36mproximal_conjugate\u001b[0;34m(self, x, tau, out)\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0mtmp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtau\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meta\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 253\u001b[0m \u001b[0mtmp\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 254\u001b[0;31m \u001b[0mtmp\u001b[0m \u001b[0;34m-=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 255\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 256\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmultiply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mtau\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/ofn77899/devel/install/python/sirf/SIRF.pyc\u001b[0m in \u001b[0;36m__isub__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 393\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__isub__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 394\u001b[0m \u001b[0;34m'''Not quite in-place subtract'''\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 395\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfill\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubtract\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 396\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 397\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__idiv__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/ofn77899/devel/install/python/sirf/SIRF.pyc\u001b[0m in \u001b[0;36msubtract\u001b[0;34m(self, other, out)\u001b[0m\n\u001b[1;32m 219\u001b[0m '''\n\u001b[1;32m 220\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m \u001b[0mNumber\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat32\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 221\u001b[0;31m \u001b[0mtmp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mother\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 222\u001b[0m \u001b[0mother\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfill\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtmp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/ofn77899/devel/install/python/sirf/STIR.pyc\u001b[0m in \u001b[0;36mas_array\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 732\u001b[0m \u001b[0marray\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdimensions\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 733\u001b[0m try_calling(pystir.cSTIR_getAcquisitionData\\\n\u001b[0;32m--> 734\u001b[0;31m (self.handle, array.ctypes.data))\n\u001b[0m\u001b[1;32m 735\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 736\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfill\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/home/ofn77899/devel/install/python/sirf/Utilities.pyc\u001b[0m in \u001b[0;36mtry_calling\u001b[0;34m(returned_handle)\u001b[0m\n\u001b[1;32m 376\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 377\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mtry_calling\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreturned_handle\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 378\u001b[0;31m \u001b[0mcheck_status\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreturned_handle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minspect\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 379\u001b[0m \u001b[0mpyiutil\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeleteDataHandle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreturned_handle\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 380\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mstack\u001b[0;34m(context)\u001b[0m\n\u001b[1;32m 1067\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcontext\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1068\u001b[0m \u001b[0;34m\"\"\"Return a list of records for the stack above the caller's frame.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1069\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mgetouterframes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getframe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1070\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1071\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcontext\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mgetouterframes\u001b[0;34m(frame, context)\u001b[0m\n\u001b[1;32m 1045\u001b[0m \u001b[0mframelist\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1046\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mframe\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1047\u001b[0;31m \u001b[0mframelist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mgetframeinfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1048\u001b[0m \u001b[0mframe\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mframe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf_back\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1049\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mframelist\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mgetframeinfo\u001b[0;34m(frame, context)\u001b[0m\n\u001b[1;32m 1020\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlineno\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m1\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m//\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1021\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1022\u001b[0;31m \u001b[0mlines\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlnum\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfindsource\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1023\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mIOError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1024\u001b[0m \u001b[0mlines\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mfindsource\u001b[0;34m(object)\u001b[0m\n\u001b[1;32m 524\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 525\u001b[0m \u001b[0mfile\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetfile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 526\u001b[0;31m \u001b[0msourcefile\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetsourcefile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 527\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0msourcefile\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'<>'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 528\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mIOError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'source code not available'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mgetsourcefile\u001b[0;34m(object)\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 452\u001b[0m \u001b[0;31m# only return a non-existent filename if the module has a PEP 302 loader\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 453\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgetmodule\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'__loader__'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 454\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 455\u001b[0m \u001b[0;31m# or it is in the linecache\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mgetmodule\u001b[0;34m(object, _filename)\u001b[0m\n\u001b[1;32m 488\u001b[0m \u001b[0;31m# Copy sys.modules in order to cope with changes while iterating\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 489\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mmodname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodules\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 490\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mismodule\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'__file__'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 491\u001b[0m \u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodule\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__file__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 492\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mf\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0m_filesbymodname\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "# Setup and run PDHG\n", + "pdhg = PDHG(f = f, g = G, operator = K, sigma = sigma, tau = tau, \n", + " max_iteration = 1000,\n", + " update_objective_interval = 100)\n", + "pdhg.run(1000)\n", + "\n", + "pdhg_recon = pdhg.get_output() " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pdhg.max_iteration = 2000\n", + "#pdhg.run()\n", + "\n", + "pdhg_l1_recon = pdhg.get_output() \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pdhg_l1_recon = pdhg.get_output()\n", + "iM, im = image.as_array().max(), image.as_array().min()\n", + "rM, rm = pdhg_l1_recon.as_array().max(), pdhg_l1_recon.as_array().min()\n", + "\n", + "i_scaled = ((image -im) / (iM-im))\n", + "r_scaled = ((pdhg_l1_recon -rm) / (rM-rm))\n", + "s0 = islicer(i_scaled, 0, cmap='inferno')\n", + "s1 = islicer(r_scaled, 0, cmap='inferno')\n", + "\n", + "link_islicer(s0, s1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#pdhg.get_output().write('PDHG_MCIR_noNoise_Motion_1000it_TV0.h')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/PET/MemoryTest.ipynb b/notebooks/PET/MemoryTest.ipynb new file mode 100644 index 00000000..7b246efc --- /dev/null +++ b/notebooks/PET/MemoryTest.ipynb @@ -0,0 +1,374 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#%% Initial imports etc\n", + "import numpy\n", + "from numpy.linalg import norm\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.animation as animation\n", + "import os\n", + "import sys\n", + "import shutil\n", + "\n", + "import sirf.pyiutilities as pyiutil\n", + "\n", + "from ccpi.utilities.jupyter import *\n", + "from ccpi.utilities.display import *\n", + "\n", + "#%% Use the 'pet' prefix for all STIR-based SIRF functions\n", + "# This is done here to explicitly differentiate between SIRF pet functions and \n", + "# anything else.\n", + "import sirf.STIR as pet\n", + "from sirf.Utilities import examples_data_path\n", + "\n", + "import os\n", + "import psutil\n", + "process = psutil.Process(os.getpid())\n", + "\n", + "# schemes: file, memory\n", + "pet.AcquisitionData.set_storage_scheme('file')\n", + "\n", + "#%% Go to directory with input files\n", + "# Adapt this path to your situation (or start everything in the relevant directory)\n", + "os.chdir(examples_data_path('PET'))\n", + "\n", + "#%% Copy files to a working folder and change directory to where these files are.\n", + "# We do this to avoid cluttering your SIRF files. This way, you can delete \n", + "# working_folder and start from scratch.\n", + "if True:\n", + " shutil.rmtree('working_folder/memorytest',True)\n", + " shutil.copytree('brain','working_folder/memorytest')\n", + "os.chdir('working_folder/memorytest')\n", + "\n", + "#%% Read in images\n", + "# Here we will read some images provided with the demo using the ImageData class.\n", + "# These are in Interfile format. (A text header pointing to a .v file with the binary data).\n", + "image = pet.ImageData('emission.hv')\n", + "\n", + "#%% Create a SIRF acquisition model\n", + "# We will use the ray-tracing matrix here as our simple PET model.\n", + "# There is more to the accquisition model, but that's for another demo.\n", + "am = pet.AcquisitionModelUsingRayTracingMatrix()\n", + "# Ask STIR to use 5 LORs per sinogram-element\n", + "am.set_num_tangential_LORs(5)\n", + "\n", + "#%% Specify sinogram dimensions\n", + "# We need to say what scanner to use, what dimensions etc.\n", + "# You do this by using existing PET data as a 'template'. \n", + "# Here, we read a file supplied with the demo as an AcquisitionData object\n", + "templ = pet.AcquisitionData('template_sinogram.hs')\n", + "# Now set-up our acquisition model with all information that it needs about the data and image.\n", + "am.set_up(templ,image)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sirf.Reg as Reg\n", + "from scipy.spatial.transform import Rotation as R\n", + "\n", + "def get_resampler(directions, angles, image, degrees=True ):\n", + " '''example input 'zy', [87,13], degrees=True'''\n", + " r = R.from_euler(directions, angles, degrees=degrees)\n", + "\n", + " mat = r.as_dcm()\n", + "\n", + " mat4 = numpy.eye(4)\n", + " print (mat4.shape, mat4)\n", + "\n", + " for i in range(3):\n", + " for j in range(3):\n", + " mat4[i][j] = mat[i][j]\n", + "\n", + " tm = Reg.AffineTransformation(mat4)\n", + "\n", + " mat = tm.as_array()\n", + "\n", + " resampler = Reg.NiftyResample()\n", + " print (id(resampler), resampler.handle)\n", + " resampler.set_reference_image(image)\n", + " resampler.set_floating_image(image)\n", + " resampler.add_transformation(tm)\n", + " resampler.set_padding_value(0)\n", + " resampler.set_interpolation_type_to_linear()\n", + " \n", + " return resampler" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# create different motion state\n", + "rotations = [[-1.2,3.],[1.2,-3.],[0.,-5.], [.2,2.]]\n", + "rotations = [ [10 * rot[0],rot[1]] for rot in rotations ]\n", + "\n", + "# resamplers = [ get_resampler('zy', rot, image, degrees=True) for rot in rotations ]\n", + "resampler = get_resampler('zy', [-12.,30.], image, degrees=True) \n", + "# create the new AcquisitionData for the motion states\n", + "memocc = []\n", + "\n", + "\n", + "def f(image):\n", + " step = resampler.direct(image)\n", + " out = resampler.adjoint(step)\n", + " return out\n", + "\n", + "for i in range(1):\n", + " # new ImageData\n", + " step = resampler.direct(image)\n", + " # new AcquisitionData\n", + " out = resampler.adjoint(step)\n", + "# f(image)\n", + " if i % 100 == 0 and i > 0:\n", + " memocc.append(process.memory_percent())\n", + " print(i, memocc[-1], memocc[-1]/float(i))\n", + "# del out\n", + "\n", + "\n", + "id_old = None\n", + "handle_old = None" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for i in range(2):\n", + " out = f(image)\n", + "print (resampler.handle)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ids = []" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "\n", + "step = resampler.direct(image)\n", + "ids.append((id(step), step.handle))\n", + "for i in ids:\n", + " print (i)\n", + "\n", + "\n", + "print (sys.getrefcount(step))\n", + "#out = resampler.adjoint (step)\n", + " \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "for i, handle in ids:\n", + " print (\"trying to delete handle\", handle)\n", + " #pyiutil.deleteDataHandle(handle)\n", + " step.__del__()\n", + "# out = resampler.adjoint(step)\n", + "# print (id (out))\n", + "# print (out.handle)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "memocc2 = []\n", + "step = am.direct(image)\n", + "out = am.adjoint(step)\n", + "\n", + "for i in range(101):\n", + " # new ImageData\n", + " am.direct(image, out=step)\n", + " # new AcquisitionData\n", + " am.adjoint(step, out=out)\n", + " if i % 100 == 0 and i > 0:\n", + " memocc2.append(process.memory_percent())\n", + " print(i, memocc2[-1], (memocc2[-1])/float(i))" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy\n", + "\n", + "class A(object):\n", + " def __init__(self,array,parent):\n", + " self.array = array.copy()\n", + " self.parent = parent\n", + " print (\"calling __init__ {}\".format(self.__class__.__name__))\n", + " \n", + " def __del__(self):\n", + " print (\"calling __del__ {}\".format(self.__class__.__name__))\n", + " \n", + " def direct(self,x):\n", + " return type(self)(self.array + x, id(self.array))\n", + " \n", + "class B(A):\n", + " def __init__(self, array):\n", + " super(B,self).__init__(array)\n", + " self.a = A(array,id(array))" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calling __init__ A\n", + "calling __del__ A\n", + "calling __del__ B\n", + "calling __del__ B\n" + ] + }, + { + "ename": "TypeError", + "evalue": "__init__() takes exactly 2 arguments (3 given)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m\u001b[0m", + "\u001b[0;31mTypeError\u001b[0mTraceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mones\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mbb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mB\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m: __init__() takes exactly 2 arguments (3 given)" + ] + } + ], + "source": [ + "aa = A(numpy.zeros(shape=(10,10)), None)\n", + "x = numpy.ones(shape = (10,10))\n", + "\n", + "bb = B(numpy.zeros(shape=(10,10)),1)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "calling __init__ A\n", + "calling __del__ A\n" + ] + }, + { + "ename": "TypeError", + "evalue": "super(type, obj): obj must be an instance or subtype of type", + "output_type": "error", + "traceback": [ + "\u001b[0;31m\u001b[0m", + "\u001b[0;31mTypeError\u001b[0mTraceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdirect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdirect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m\u001b[0m in \u001b[0;36mdirect\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdirect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mB\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mA\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, array)\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mB\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mA\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mB\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mA\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: super(type, obj): obj must be an instance or subtype of type" + ] + } + ], + "source": [ + "b = aa.direct(x)\n", + "c = bb.direct(x)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "class FooType(object):\n", + " def __init__(self, id, parent):\n", + " self.id = id\n", + " self.parent = parent\n", + " print 'Foo', self.id, 'born'\n", + "\n", + " def __del__(self):\n", + " print 'Foo', self.id, 'died'\n", + "\n", + "\n", + "class BarType(object):\n", + " def __init__(self, id):\n", + " self.id = id\n", + " self.foo = FooType(id, self)\n", + " print 'Bar', self.id, 'born'\n", + "\n", + " def __del__(self):\n", + " print 'Bar', self.id, 'died'\n", + "\n", + "\n", + "b = BarType(12)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/PET/ViewResults.ipynb b/notebooks/PET/ViewResults.ipynb new file mode 100644 index 00000000..2a9e878c --- /dev/null +++ b/notebooks/PET/ViewResults.ipynb @@ -0,0 +1,238 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "#%% Initial imports etc\n", + "import numpy\n", + "from numpy.linalg import norm\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.animation as animation\n", + "import os\n", + "import sys\n", + "import shutil\n", + "\n", + "from ccpi.utilities.jupyter import *\n", + "from ccpi.utilities.display import *\n", + "\n", + "#%% Use the 'pet' prefix for all STIR-based SIRF functions\n", + "# This is done here to explicitly differentiate between SIRF pet functions and \n", + "# anything else.\n", + "import sirf.STIR as pet\n", + "from sirf.Utilities import examples_data_path\n", + "\n", + "import sirf.Reg as Reg\n", + "from scipy.spatial.transform import Rotation as R\n", + "from ccpi.optimisation.operators import CompositionOperator, BlockOperator, LinearOperator\n", + "\n", + "from ccpi.plugins.regularisers import FGP_TV\n", + "\n", + "\n", + "def add_noise(counts, sinogram):\n", + " sino_arr = sinogram.as_array()\n", + " minmax = (sino_arr.min(), sino_arr.max())\n", + "\n", + " counts = 300\n", + " sino_arr = counts * (sino_arr / minmax[1])\n", + " noisy_counts = sinogram * 0.\n", + " noisy_counts.fill( numpy.random.poisson(sino_arr) )\n", + " \n", + " return noisy_counts\n", + "\n", + "\n", + "pet.AcquisitionData.set_storage_scheme('memory')\n", + "\n", + "#%% Go to directory with input files\n", + "# Adapt this path to your situation (or start everything in the relevant directory)\n", + "os.chdir(examples_data_path('PET'))\n", + "\n", + "#%% Copy files to a working folder and change directory to where these files are.\n", + "# We do this to avoid cluttering your SIRF files. This way, you can delete \n", + "# working_folder and start from scratch.\n", + "if False:\n", + " shutil.rmtree('working_folder/brain',True)\n", + " shutil.copytree('brain','working_folder/brain')\n", + "os.chdir('working_folder/brain')\n", + "\n", + "#%% Read in images\n", + "# Here we will read some images provided with the demo using the ImageData class.\n", + "# These are in Interfile format. (A text header pointing to a .v file with the binary data).\n", + "image = pet.ImageData('emission.hv')\n", + "mu_map = pet.ImageData('attenuation.hv')\n", + "\n", + "#%% Create a SIRF acquisition model\n", + "# We will use the ray-tracing matrix here as our simple PET model.\n", + "# There is more to the accquisition model, but that's for another demo.\n", + "am = pet.AcquisitionModelUsingRayTracingMatrix()\n", + "# Ask STIR to use 5 LORs per sinogram-element\n", + "am.set_num_tangential_LORs(5)\n", + "\n", + "#%% Specify sinogram dimensions\n", + "# We need to say what scanner to use, what dimensions etc.\n", + "# You do this by using existing PET data as a 'template'. \n", + "# Here, we read a file supplied with the demo as an AcquisitionData object\n", + "templ = pet.AcquisitionData('template_sinogram.hs')\n", + "# Now set-up our acquisition model with all information that it needs about the data and image.\n", + "am.set_up(templ,image)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "attenuation.hv\r\n", + "attenuation.v\r\n", + "emission.hv\r\n", + "emission.v\r\n", + "PDHG_0.8maxcounts_noMotion_100it_TV0.ahv\r\n", + "PDHG_0.8maxcounts_noMotion_100it_TV0.h\r\n", + "PDHG_0.8maxcounts_noMotion_100it_TV0.hv\r\n", + "PDHG_0.8maxcounts_noMotion_400it_TV0.ahv\r\n", + "PDHG_0.8maxcounts_noMotion_400it_TV0.h\r\n", + "PDHG_0.8maxcounts_noMotion_400it_TV0.hv\r\n", + "PDHG_500counts_MCIR_100it_TV05.ahv\r\n", + "PDHG_500counts_MCIR_100it_TV05.h\r\n", + "PDHG_500counts_MCIR_100it_TV05.hv\r\n", + "PDHG_500counts_MCIR_100it_TV0.ahv\r\n", + "PDHG_500counts_MCIR_100it_TV0.h\r\n", + "PDHG_500counts_MCIR_100it_TV0.hv\r\n", + "PDHG_500counts_noMCIR_100it_TV0.ahv\r\n", + "PDHG_500counts_noMCIR_100it_TV0.h\r\n", + "PDHG_500counts_noMCIR_100it_TV0.hv\r\n", + "PDHG_500counts_noMotion_100it_TV0.ahv\r\n", + "PDHG_500counts_noMotion_100it_TV0.h\r\n", + "PDHG_500counts_noMotion_100it_TV0.hv\r\n", + "PDHG_500_MCIR_100it_TV05.ahv\r\n", + "PDHG_500_MCIR_100it_TV05.h\r\n", + "PDHG_500_MCIR_100it_TV05.hv\r\n", + "PDHG_500_MCIR_500it_TV05.ahv\r\n", + "PDHG_500_MCIR_500it_TV05.h\r\n", + "PDHG_500_MCIR_500it_TV05.hv\r\n", + "PDHG_MCIR_noNoise_Motion_1000it_TV05.ahv\r\n", + "PDHG_MCIR_noNoise_Motion_1000it_TV05.h\r\n", + "PDHG_MCIR_noNoise_Motion_1000it_TV05.hv\r\n", + "PDHG_MCIR_noNoise_Motion_1000it_TV0.ahv\r\n", + "PDHG_MCIR_noNoise_Motion_1000it_TV0.h\r\n", + "PDHG_MCIR_noNoise_Motion_1000it_TV0.hv\r\n", + "PDHG_MCIR_noNoise_Motion_100it_TV05.ahv\r\n", + "PDHG_MCIR_noNoise_Motion_100it_TV05.h\r\n", + "PDHG_MCIR_noNoise_Motion_100it_TV05.hv\r\n", + "PDHG_MCIR_noNoise_Motion_100it_TV0.ahv\r\n", + "PDHG_MCIR_noNoise_Motion_100it_TV0.h\r\n", + "PDHG_MCIR_noNoise_Motion_100it_TV0.hv\r\n", + "PDHG_MCIR_noNoise_Motion_100it_TV5.ahv\r\n", + "PDHG_MCIR_noNoise_Motion_100it_TV5.h\r\n", + "PDHG_MCIR_noNoise_Motion_100it_TV5.hv\r\n", + "PDHG_MCIR_noNoise_Motion_500it_TV5.ahv\r\n", + "PDHG_MCIR_noNoise_Motion_500it_TV5.h\r\n", + "PDHG_MCIR_noNoise_Motion_500it_TV5.hv\r\n", + "PDHG_MCIR_noNoise_noMotion_100it_TV0.ahv\r\n", + "PDHG_MCIR_noNoise_noMotion_100it_TV0.h\r\n", + "PDHG_MCIR_noNoise_noMotion_100it_TV0.hv\r\n", + "PDHG_noMCIR_noNoise_Motion_1000it_TV0.ahv\r\n", + "PDHG_noMCIR_noNoise_Motion_1000it_TV0.h\r\n", + "PDHG_noMCIR_noNoise_Motion_1000it_TV0.hv\r\n", + "PDHG_noMCIR_noNoise_Motion_100it_TV0.ahv\r\n", + "PDHG_noMCIR_noNoise_Motion_100it_TV0.h\r\n", + "PDHG_noMCIR_noNoise_Motion_100it_TV0.hv\r\n", + "PDHG_noMCIR_noNoise_noMotion_1000it_TV0.ahv\r\n", + "PDHG_noMCIR_noNoise_noMotion_1000it_TV0.h\r\n", + "PDHG_noMCIR_noNoise_noMotion_1000it_TV0.hv\r\n", + "template_sinogram.hs\r\n" + ] + } + ], + "source": [ + "%ls\n", + "#plotter2D??" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "mcir_no_TV = pet.ImageData('PDHG_MCIR_noNoise_Motion_1000it_TV0.hv')\n", + "mcir_TV = pet.ImageData('PDHG_MCIR_noNoise_Motion_1000it_TV05.hv')\n", + "no_mcir = pet.ImageData('PDHG_noMCIR_noNoise_Motion_1000it_TV0.hv')\n", + "no_motion = pet.ImageData('PDHG_noMCIR_noNoise_noMotion_1000it_TV0.hv')\n", + "\n", + "print (image.shape)\n", + "%matplotlib inline\n", + "plotter2D([vv.as_array()[12] for vv in [image, no_motion, mcir_no_TV, mcir_TV, no_mcir ] ] , \n", + " titles=['Ground Truth', 'No Motion' , 'MCIR Positivity Constraint', 'MCIR FGP TV', 'No MCIR' ] , cmap = 'inferno')\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzsnXmYVNWZ/z/nLrX2vkCzyCYisoO4B0WQaJQYjEqCE0WNccZRE6PRmMwkOpnEn0FjjMbomLhFjZq4YOISTQCjuAOiLKJsLXvTe3XXerffH7eq6KZX6Kqmqzmf5+Hprrucey5d91tvfc973iMcx0EikUgkuY9yqDsgkUgkkswgBV0ikUj6CVLQJRKJpJ8gBV0ikUj6CVLQJRKJpJ8gBV0ikUj6CVLQJRKJpJ8gBV0ikUj6CVLQJRKJpJ+g9ebFysrKnBEjRvTmJSUSiSTnWblyZY3jOOVdHdergj5ixAhWrFjRm5eUSCSSnEcI8UV3jpOWi0QikfQTpKBLJBJJP0EKukQikfQTetVDl0gkfQPDMNixYwexWOxQd0XSAp/Px9ChQ9F1/aDOl4IukRyG7Nixg/z8fEaMGIEQ4lB3RwI4jkNtbS07duxg5MiRB9WGtFwkksOQWCxGaWmpFPM+hBCC0tLSHn1rkoIukRymSDHve/T0byItF0nOsXxjDR9sraUk6GHhyR1bBmt3NvL6uj2tthX4dS4/ZSSK0v45n+1p4uVPdqVfnzK6jBNGlWau8xJJFpGCLsk5fvbSOj6vagZg1tiBDCsNtHvcPUs28vr6KlJ6n1o+90tHlTG2oqDdcx58cwvPrdqBEO7xyzfV8Px/npLxe5BAVVUV3//+93nvvfcoLi7G4/Fw0003cd555/VqP1ITHsvKytLbTjjhBOLxOHV1dUSjUYYMGQLA4sWL6e5s96VLlxIIBDjxxBMB+Na3vsUFF1zAvHnzMn4PKaSgS3KOhohBgU8jFDOJGGaHx9VHEpw4qoSnrzwJgDc+28ulj3xINGF1eE7ctBhVHmTpDTP5zh9XsL0ukvH+S9wBwHnz5rFw4UL+9Kc/AfDFF1/w17/+tc2xpmmiab0rVe+//z4Ajz76KCtWrOC3v/1tu8dZloWqqu3uW7p0KWVlZWlB7w2khy7JOUIxg/J8LwAxwwbAth2ueOxD3tpYnT6uIWJQ5PekX3s1tdU57WFYNh5VSR6vEDc7PlZy8CxduhSPx8N//Md/pLcNHz6ca6+9FnCF9Nxzz2XWrFnMnj0bx3G48cYbmTBhAhMnTuSZZ54B4I033mDu3LnpNq655hoeffRRwI28b7nlFqZNm8bEiRPZsGEDALW1tXz5y19m/PjxXHHFFTipr27dwDRNioqKuO6665g0aRIffPABQ4cOpaGhAYD33nuPM844g82bN/OHP/yBO+64gylTpvDOO+8AsGzZMk4++WRGjRrFCy+8cPD/gR0gI3RJTpEwbWKGzYB8H5urw8QMN9pujBr889O9HDkgjxlHlae3FQX25fN6dVeo42bHEbppOehJQffparr9/sz//G0d63eFMtrmuMEF3PLV8R3uX7duHdOmTeu0jVWrVvHJJ59QUlLCc889x+rVq/n444+pqanhuOOO49RTT+2yH2VlZaxatYrf/e533HnnnfzhD3/gf/7nf/jSl77ET3/6U15++WUeeuihA7q3xsZGTj31VO6+++4OjznyyCO54oorKCsr47rrrgPgd7/7HXv37uXtt99mzZo1zJ8/P+P2kozQJTlFU8wAYEBBKkJ3BbcukgCgPuz+dByHhqhBYQtB9yUj9M6i7oRlo6mu6e7TlcNC0PsCV199NZMnT+a4445Lb5szZw4lJSUALF++nAULFqCqKgMHDuS0007jww8/7LLdr3/96wAce+yxVFZWAvDmm2/yrW99C4BzzjmH4uLiA+qrx+M5aCGeN28eQggmTZrEzp07D6qNzpARuiSnCMVcz3zAfpZLSsjrwkZ6e8K0KfS3jdA7E2nDsvdF6JraqT3TX+gsks4W48eP57nnnku/vu+++6ipqWH69OnpbcFgsMt2NE3Dtvf9jfbP4fZ63feJqqqYZsfjLQeC3+9vlVnVsg9d5ZCn+gMckNXTXWSELskpQlFXsFMeeso+qU0LehyAhqj7urWHnrJcOhZp03LSHrpPV4mZVlYevMOdWbNmEYvFuP/++9PbIpGOB6BnzJjBM888g2VZVFdX8+abb3L88cczfPhw1q9fTzwep6GhgSVLlnR57VNPPTU9EPvqq69SX1/fo3sZMWIEK1euBGj1IZWfn09TU1OP2j5QZIQuySlCKcsl3wdAfL8IvT7i7m+MGoBFgX9fzOLTu7ZcDMsmz6clj1dwHDAsB48mJ+FkEiEEixcv5vvf/z6LFi2ivLycYDDIL3/5y3aPP++883j33XeZPHkyQggWLVpERUUFAPPnz2fChAmMHDmSqVOndnntW265hQULFjB+/HhOPvlkhg0b1qN7ufXWW/nOd75DUVFRK1//a1/7GhdeeCHPP/889913X4+u0V2koEtyiqb9LReztYdeF04QMSL874c/IO/oFfzu8+GcNeEvaIq2L0LvxHJJ7DcomrqGR5NfZjPNoEGDePrpp9vdd+mll3LppZemXwshuOOOO7jjjjvaHLto0SIWLVrUZnvKMweYPn06b7zxBgClpaW8/vrr3erj/v3QNC2d0ZJi5syZbNy4sc25Y8eOZc2aNenXJ598cqv9zc3N3erDgSDfpZKcYn/LJeWHpyL0xqjBXz57lk/q3sVsHsP28Cb+8vlfgH1pi51bLi3SFlOCLgdGJTmCFHRJTpGyXPbPQ0956GDxx/WPc0RgPLGd32Jy2bHct/o+GuON6KpAEZ1H6EaLLJd9EX3/HxiV9A+koEtyilDURBFQ4NPRFNEqQtctg4Hqe7BrN8eLOeDAD6bfRFOiifs/vh8hBF5NJdaph96O5SIjdEmOID10SU7RFDPI9+koikhO/LGxGhqY8cqjfHf92/isVKR+J1/25lEuzuDiU87iiQ1PM3/MfLy60mWErqfy0LVUmqOM0CW5gRR0SU4RipkU+PdlocRMi72/+hXHr/0XH46ZzkejVjG66FiKQ0cTXf8pJa++yjmvOnx4iYcHPnkAn3Zml1P/2xsUlUhyAWm5SHKKUNQg3+tOFvJqKtTX0fjiX1ky6kReufBElk2ByIz5vDftTJ4+43KOfPUVFJ+fSz7ws7lhsxuhdyLQ0nKR5DJS0CU5RShmtIrQx7z/D5xEghenx2hU38I2g/jtUW4dF7+OPngwxRctYNTH1YgvdnZZcMvYb+o/yEHRbCGE4IYbbki/vvPOO7n11lt77fp33313q8lMZ599dpuUxFxDCrokpwhFTQp8yQhdVRi3ahlfjCujetQn7E6sQUTG0xC1aIgmKAq4s0RLLr4Yy6Nx2tshPLrV5dR/j7RcegWv18vzzz9PTU3NIbn+/oL+yiuvUFRUdEj6kimkoEtyiqaYQUGyPkt5oon8pjreHBrCaJzC3CH/TmH8K9SFEzREjHQdF62khNjk0Yze5aDqjR1G6JbtYDu0quUCclA0W2iaxpVXXsmvf/3rNvsqKyuZNWsWkyZNYvbs2Wzbtq3NMbfeeisLFy5kxowZDB8+nOeff56bbrqJiRMnctZZZ2EYborrkiVLmDp1KhMnTuTyyy8nHo9zzz33sGvXLk4//XROP/10wJ3Cn/pwueuuu5gwYQITJkxIV1WsrKzkmGOO4Tvf+Q7jx4/ny1/+MtFoNFv/PQeFHBSV5BSh2L4IfUTddgA+H2BhNBzH10Yt4NMNn2LvjDCi2mJAgUlTXYz8Eh/6sGFUrN6AUBuJGwPbbduwXOFO56F3o5hXv+DVm2HPmq6POxAqJsJXbu/ysKuvvppJkyZx0003tdp+7bXXsnDhQhYuXMjDDz/Md7/7XRYvXtzm/M2bN7Ns2TLWr1/PSSedxHPPPceiRYs477zzePnllznrrLO49NJLWbJkCWPGjOGSSy7h/vvv57rrruOuu+5i2bJlrVYqAli5ciWPPPII77//Po7jcMIJJ3DaaadRXFzMxo0beeqpp/j973/P/Pnzee6559KVG/sCMkKX5AymZdMcN8lP1loZWrsdG6gdXIQVGUlp0MO03TZjN8Y5qVml4OMQT/3sfbatqyU44kh8BgTjuzsU6JSge9pE6P1c0A8hBQUFXHLJJdxzzz2ttr/77rtcdNFFAFx88cUsX7683fO/8pWvoOs6EydOxLIszjrrLAAmTpxIZWUln332GSNHjmTMmDEALFy4kDfffLPTPi1fvpzzzjuPYDBIXl4eX//613nrrbcAGDlyJFOmTAFal+TtK8gIXZIzNMfdOi4py6Vi7xZ2lwiOKJ3BVhTMvTFKa01W+Uze9hjcOONIgh+HeOm+T5gzexwAxY07qfK1b6EYlltVUU9P/e+6OmO/oBuRdDa57rrrmDZtGpdddtkBn5sqR6soCrqup8vaKoqSsXK57V0P3JK8fc1ykRG6JGdIFeYqSEboZXs2UjkQhntOBwfWvFSJEtRYV6JQXOxj6uSBzPv+VBRFsLPOHewqbqjqMG3R3N9y0RSEkBF6tikpKWH+/PmtVg46+eST04W7nnzySWbMmHFQbR999NFUVlayadMmAB5//HFOO+00oOPytjNmzGDx4sVEIhHC4TAvvPDCQV+/t5ERuiRnaEwW5irw65h19RQ1htk6uQSPOYQR6g6qv2jitAVjuOq0oa3OGza+hMpNIcqEoLiujlhh+xF3IinoqQjdLRUg1xXtDW644YZWCzHfe++9XHbZZdxxxx2Ul5fzyCOPHFS7Pp+PRx55hAsvvBDTNDnuuOPS65heeeWVnHXWWQwePJhly5alz5k2bRqXXnopxx9/PABXXHEFU6dO7XP2SntIQZfkDKnCXPk+jXXv/Q0PsCU4hUERg6NtHQSMmjqgzXmjjx3A1o9r2DN0LCX124kP7chDdy2XlIcOB76u6N3//JzdDTF+ecGkA7izw5OW5WMHDhzYKoVw+PDhLF26tNPz989Zb9ley32zZ8/mo48+anP+tddem16UGlqX273++uu5/vrrWx0/YsQI1q5dm379gx/8oNP+HQqk5SLJGSJxV1iDHo3d690VYjZr02mIGgyPQcXIQgKhNfD+g+4JKx+DZbcxYlIZqqZQPeg4SuujHUbc+1sukFqGrvuCvnTDXt7ZcmjyqiUSGaFLcoZIUlgDHhVj1y4SKlQrpYTr4xTGYOTkMlj6PdiyDAYcA6//N8Sb8ExewKDRhdRsGMmoeou4FcdxnFbrQkJbywVSC0V333KprAln4E4lkoNDRuiSnCGacAdF/R4Vp6qahkINR6j4qt11REcerUOlm17G0xdBPARCwId/oHBAAEMpoiAKQWdvu1F6Ty2XhkiCUMykKW5i23IdUknv021BF0KoQoiPhBAvJV+PFEK8L4TYJIR4Rgjh6aoNiaQnRBOpCF3DWxMiVBQAwBe2sDVBUd0ysE046kxXzEfMgHHzYNXjFKp7sGwPhuanIra7XUFvz3Lxakqn9dNb8kWt6wE7zr6MHImkNzmQCP17wKctXv8S+LXjOKOBeuDbmeyYRLI/KcvFr6vk1cWIlripiEWWwCnQEBv+BoVHwHkPwLCTYdZP4KRrwIxS+NHPAYj6yyk0Gtqtid6e5eI9gAi9snaf3ZLKyJFIepNuCboQYihwDvCH5GsBzAKeTR7yGDAvGx2USFJEExZCQDzRQFGTg5Gcsl1iKegFGmxeCmPPgUAJXP4qDDsBhh4L162hcNQotw1/OQVmqFPLRd/PculsQYyWbKvdl6WRysiRSHqT7kbodwM3AamnoBRocBwn9b1yBzAkw32TSFoRSVj4dZU9X6xDAZQBQ/E4kOcICgtiYMVh8NS2J+ZXUDD6aACivjIKEk3tTi4y0xF6yyyX7uehV7YQdBmhd40QolUdFNM0KS8vZ+7cueltr776KtOnT2fcuHFMnTo1XW731ltv5c477wTg0ksvTU/Jnzx5MkuWLOnwmnfddRdjx45l4sSJTJ48meuvvz5dxKsr6urqmDNnDkcddRRz5syhvr7+YG47q3Qp6EKIucBex3FWHswFhBBXCiFWCCFWVFdXH0wTEgkAUcMi4FGp2boBAO+gkZRYrviWB5IPV8mR7Z6rDzqKgFJH1F9OfiLcbuZKqpaLImwe/ORB6mJ1BzQouq0uTFHALUsgBb1rgsEga9euTU+f/8c//sGQIfviwrVr13LNNdfwxBNPsH79elasWMHo0aPbbeuOO+5g9erV3H333emJQ/vzwAMP8Prrr/Pee++xZs0aPvzwQwYMGJC+flcCffvttzN79mw2btzI7Nmzuf32Q1syoT26E6GfApwrhKgEnsa1Wn4DFAkhUmmPQ4Gd7Z3sOM6DjuNMdxxnenl5eQa6LDlciSYs/B6V0I4tABQOG0up7b6FB3l3uAeVjGr/5PKxFKp7aA6UU5iItBuhJ5KWS2XzBu796F4WfbjogNIWK2sjTBxSCEhB7y5nn302L7/8MgBPPfUUCxYsSO9btGgR//Vf/8XYsWMBt3bKVVdd1Wl7J510Ejt3titF/OIXv+D+++9P1zz3eDzcfPPNFBQUADBv3jzOPfdc/vrXv7ZbB+bFF19k4cKFgFvkq73qj4eaLvPQHcf5EfAjACHETOAHjuP8mxDiL8AFuCK/EHgxi/2USIgkTPy6SmynK95FQ8dQbK3BwmGQ2Ai+Qtc/b4/ikRRqVdT4p5JfG2t3FaKU5VIX3wvAy1te5tS844iZ+by7uZaigM4xgwo67Ft1U5z504fy1saanBL0X37wSzbUbchom2NLxvLD43/Y5XHf/OY3+dnPfsbcuXP55JNPuPzyy9OVDdeuXdtqRaPu8Pe//51589oO54VCIZqbmxk5cmSH577xxhv861//4uGHH+aGG27gwgsv5PLLL09/K6iqqmLQoEEAVFRUUFVVdUB96w16kof+Q+B6IcQmXE/9oS6Ol0h6RCRh4fdo2Hv20hxU8efnUWorNCoOeZFK127Zb7JQGlWjsMDA8BSRH7fbXYXISAu6+6CW+cv4LP4sMcPi+8+s5t6lGzvs257GGACjB+ShKSKnBP1QMmnSJCorK3nqqac4++yzD7qdG2+8kTFjxnDRRRfxwx92/UHy2muvMWXKFEaMGME777wDuJ7+zJkz+eMf/8jKlSsRQjB27Fiee+65NucLIdpMTOsLHNBMUcdx3gDeSP6+BTg+812SSNonZlgEdBW9uoFIiZ9SXaHYEtQqDnpjpZvV0gkFpV6oAr9V0G6EnrJcamJVFHgKOHvk2Tyx/iliRoI9ht3p2qLhZFmCPK9OgV/PKUHvTiSdTc4991x+8IMf8MYbb1BbW5vePn78eFauXMnkyZO7bOOOO+7gggsu4N577+Xyyy9n5crWQ34FBQXk5eWxdetWRo4cyZlnnsmZZ57J3LlzSSQS6eOi0SgvvPACDz/8MA0NDfzmN79hzpw5gFtvZvfu3QwaNIjdu3czYEDbukGHGjlTVJIzRBLuoGhefYx4aT4eVaHYFjRrFiK0o8MB0RT+cjfN0Wv7209bTG6rju5hUHAQUwZMwcZA8e0C9uWpt0eqVnvQq1KYY4J+qLn88su55ZZbmDhxYqvtN954I7fddhuff/45ALZt88ADD3Ta1jXXXINt27z22mtt9v3oRz/iqquuSi8E7TgOsVgsvf+mm25i3LhxvPPOO9xxxx2sWLGCq6++Ou2xn3vuuTz22GMAPPbYY3zta187+JvOErKWiyRniCYsfB4Vf8QkVJiHGUqgIfD7mxCO3fGAaBLfQLesrscOEGoRlaUwbVewa5p387W34hy1aRUjDIcNgS+wY8PSlkx7hJOCnufVKPDrhKSgd5uhQ4fy3e9+t832SZMmcffdd7NgwQIikQhCiFYpje0hhOC///u/WbRoEWeeeWarfVdddRXhcJgTTjgBr9dLXl4ep5xyClOnuqmuM2fO5Gc/+xk+n6/dtm+++eZ03fbhw4fz5z//+SDvOHtIQZfkDFHDwq9CMOIQKsgjsWk9AOW+anCA0s4jdF/5ACCOSpDGcC3QeoAsNbGoYMMOjnu1mShb+alf8O//toU6ZqT3t0c4kYrQNTdCj7T9wJC0pmW52xQzZ85k5syZ6ddz585tV8Rblsd99NFHW+07//zzOf/889ucI4Tgxhtv5MYbb2y3P115+KWlpZ3muPcFpOUiyRkiCQsfITwWqCJM5LX7AThDTX697ipCL3M9T0MLEmvY1WZ/wrRBiTFgpztB6Ij/e4C8qMPX124EnE4j9OYWEbq0XCSHCinokpwhmrDwJ9xBM11LUG8OwScaOdF8E864teOUxSRacQXCSWDoQeINu9vsN20b3dPI8GoHqyiPvNNOY+v0o5m7Ikaxtd0V/A4Ix1tG6JoUdMkhQQq6JCcwLZuEZeOLubP5vEqUBuUoQprN70bcA1/6fpdtCF8+HhHG0INYobazlg3LQfc2Mnyvgxjt2jHN530Trwkn1n3YRYSerASpu4OioZiJ48gSupLeRQq6JCeIJqffe6OuoPvtOuoTFdgVgznquDndbserRjH0IITariqUMG10rY6h1RA4ZhwAX5p1Do0BOKGhsnMPPW4S9KgoiqDQr2PZTtqGkUh6CynokpwgVQtdj7iC7kmEiRp+Tj9uMGeOr+h2OwFvAkMLojS1rdth2jZDw7vwWFA0fgoAg4vz2T22jDFf7MVsZzJSinDcJOB1cwwK/bKei+TQIAVdkhNEkoLuiTYC4CjuAGdxRfCA2gn4HQw9iB4OtdlnmA7D691p//5khA7AtAkUN1uUNGzrsN1wwiIvKegFPinokkODFHRJTpAS9JQQW85AAIoHBg6oHV9QxdCD+CJtU+YMy2Z4bSOmKvCMGMHSxz/l+TtWog08BwfB0dUfdNhuOG4S9KqAjNC7S2+Wz7366quZMmUK48aNw+/3M2XKFKZMmcJjjz3WqiAYQE1NDeXl5cTj8WzcdlaReeiSnCDloevNzcR0SNgVCAH5pe1PAukIX54HQwvia4i02WfYDgNDEUKlPj74+3Y+fXs3eSVemjcHaJpwEeP3/LPDdpvjJkGP+zjl+dyfqXIAkvZpWT7X7/d3WD735ZdfZuzYsViWxYMPPthuW6mp/8uWLePKK69k48bWdXfuu+8+ACorK5k7dy6rV68G3KJdN9xwA5FIhEDADQ6effZZvvrVr+L1erNx21lFRuiSnCDloXvCYcJ+QaMYSV6JD1U7sLewr8APikog1naA0zBt8qMGTSVHsPLVLzjmlEFc8ouTmX7OCOrLTqZEmY7TwWII4biZtlyCXi29TdI5vVk+tz0KCgo47bTT+Nvf/pbe9vTTT7eJ2nMFGaFLcoJIciamHo4S80OjM5TCcv8Bt+MrzAfAY7Rd09ywbPIjJk2D3QlKU2YPQwjB8XNH8vaSN6mqmMnut99i8MxZbc51LZdkhJ4S9ERuCPqe224j/mlmy+d6jxlLxY9/3OVxvVU+tzMWLFjAk08+yTe+8Q127drF559/zqxZbf/GuYCM0CU5Qcpy8YRjxH0OoUTJwQl6sbsAhcdoa9UkbIvCiE08MARFExQNdNsXoV34j2zG1AOseOm9dtttjltpQQ94XC9dRuhdc6jK57bknHPO4e233yYUCvHnP/+Z888/H1VVD7ovhxIZoUtygpTl4gsniJR4iRleCg5G0EvKgCZ0u+1gaiLRTF4U4loFJRVBlNA2eO2/YMNLXOkIfm88SN3esnbbdS0XVwRSXnpzjnjo3Ymks0lvlM/tDL/fz1lnncULL7zA008/zV133XVQ99EXkBG6JCdIZbn4IybxgCuqBxOhe0tLAdCcIDEz1mqfEtmLAiTsEsqG5MHi/4Qtb8BpN1NXOB6F9wgHRrN79fpW51m2Q9TYF6EriiDgUYnICL1b9Fb53M5YsGABd911F1VVVZx00kkHdgN9CCnokpwgalgIxyYQtbG8rigXlh9YyiKALz9ptShBQvvNFvVG9pLQ8zAtH6UVXtj+ARx3BZz+I+oKj6Fi4PsAfPLwX1udl6606Nn3hTfg0XLGQz/UdKd87jHHHMOECRPYsmVLp221LJ97IMyZM4ddu3bxjW98o0+uRNRdpOUiyQkiCZN8M4LigKW7EXpB2YGlLAL4gu5b3tCChKp3MqBkaHqfN1xLc9BNmyv1bgPbgBFfAiAWGMwsz7M8aocI7RAYu3ejJ9eXbFmYK0WeV80Zy+VQ0dvlcwFGjBjB2rVr22zXNI3q6rb1fXINGaFLcoJowmaAaALA1gbgL9Dx+A48HlFUBYhj6EGaK1e12ueL1tOc5wp6WfQDEAoc4S5rFw8OIQ+HhrJd1BcdzdZFd/Gn992Zo+G4ic+MM/TvfyGxfTvgiru0XCS9jRR0SU4QNUyKHXfav6VWUFh24HZLCkuxMPQgkc2tZ34Goo2Eg4PwBhX8Vf+Cikngc5cfS+S5kbz3iDCGp4DGN1ey+P5niBkW4Y2b+dWbv6X8qT9QecGFhD/4gKBHk8W5JL2OFHRJThBJWBTb7rR/k7IDniHaEkNTMPQgsR2fttqeF2ki7i2iIBCHHSvSdguAke8K+piyKADbh03nRx8+zo4LL0C/4iIGROqJfP/HqEVF7PnpLQS9qvTQJb2OFHRJThBJWBRYzTgITLuA/JKDn5Zt6QqGFiRRuxcS4fT2vFiYqK+QvNAqsOJw1L6yvE6wHMNRmao0U++vYsPIaSwZNpXPjO2sO3M63/nyd3ly9EbCc04gUVlJsZMgIj10SS8jB0UlOUHMsDjCbMTQgziOSrDo4CN0y+vF0IOYcaBpT3ot0vxolERhIYGCKrhxMwT35Zzrus5up4Rg827MUcMoXzeO3580AWv4KgQfY8Z28Y8dVdQ0wY+AI2q2s9wo7+FdSyQHhozQJTmBYdkUxWuJe4sByCs++Ajd9OkYegAroUB4X+pifszA0vIIFnlbiTmArirsdMrRm3cy7RT3A2C8UkuJt4xiz2AU715uOvYWghMnATBo7xdypqik15GCLskJEqZNMNFE2F8E9EzQHY+KpQUWyty4AAAgAElEQVRw4ipE9gl6IFkOIFjctsa6rirspAxPeCdnTDyNquA2xtSN48QBZ3DugP8lUnkVXz9qHl8afzY1BVC8awMRw8K25TJ0HSGEaFWr5c4772yVjtgVjz76KEII/vnPfVUwFy9ejBCCZ599FgDDMLj55ps56qijmDZtGieddBKvvvoq4KYw1tS4f39VVZkyZQoTJkzgq1/9Kg0NDRm4w95HCrokJzAsB28iSlPQFfRgUU8EPTlxxMxrFaF7bVfIA+VtF5v2qAo7nVK80b0EFJ2NhbsoiwxlsjUTrHyc+DACHpVjSo5hS4WgcPsmHGdfDRpJW7xeL88//3xaVA+GiRMn8vTTT6dfP/XUU61KBfzkJz9h9+7drF27llWrVrF48WKampratOP3+1m9ejVr166lpKQkXW4315CCLskJDMvGE08Q9RejKBDIb1stsbuIZPEsV9DdySSmYaLhpigGK9ouaadrgm32QIRjY+/dwEfGYOLCxF7nS9dCF0JwdMnRbB0oKKyuJWDEpO3SCZqmceWVV/LrX/+6zb7KykpmzZrFpEmTmD17Ntu2tb9a1IwZM/jggw8wDIPm5mY2bdrElCnu8oGRSITf//733Hvvvena5gMHDmT+/Pmd9utAS/D2JeSgqCQnSFg23rhBY2ERwUIdoRz89GzH68YxipUPEbcYVKy2DkN3KzEGhhzR5hxNUfiXPRkHhcSaFxhn5hP0NtL4+UTiZUq6wmJQDxIeNRDe2s3I0G7Cib4fob/158+p2d521mZPKDsijxnzx3R53NVXX82kSZO46aabWm2/9tprWbhwIQsXLuThhx/mu9/9LosXL25zvhCCM844g9dee43GxkbOPfdctm7dCsCmTZsYNmwYBQUF3e63ZVksWbKEb3/7290+py8hI3RJTpAwbbxxC8NbRF7xgRflaolICbodTFsuoV3biHsLAQv/wEFtzvGoCjUUUl12HOr6xdymP8Q38n4HjsPg5fXMq1JY9sQGwo1xikYdDcCASL2M0LugoKCASy65hHvuuafV9nfffZeLLroIgIsvvpjly5d32MY3v/lNnn766R4tTBGNRpkyZQoVFRVUVVUxZ86crk/qg8gIXZITGJaNN2ZjakUESw4+ZRFAJMvcqnYwbbnUb99CwlOIIpqS5QFao2vuN4IvKr7MgLX/y1gFUOCE8UtY3HA2ar3BZ+/tobk+xtATpgBvUBqvzonZot2JpLPJddddx7Rp07jssssO6vzjjz+eNWvWEAgEGDNm372MHj2abdu2EQqFuozSUx56JBLhzDPP5L777mu3YFhfR0bokpzAsBy8cRtLKyavBwOiAEoqQhcB4k17AQjtriTuLUTTw+2eoydFfmv5LByhstYewd+t4xgfeppRea8yZeATnHz+kWxbV0dp3TiiHigz9qRXWpJ0TElJCfPnz+ehhx5Kbzv55JPTg51PPvkkM2bM6LSN22+/ndtuu63VtkAgwLe//W2+973vkUgkAKiuruYvf/lLh+0EAgHuuecefvWrX2Gaufe3k4IuyQkSpoXHCuAID3nFPYvQVY+K49gYWpCahnoAont2kvAUoPvb97xTgt6kFrPiuLv4nnE1L1on40/UcnnDbzkv8iwTj9rLwEFQ9XqU2jyF0liDrLjYTW644YZW2S733nsvjzzyCJMmTeLxxx/nN7/5Tafnf+UrX+H0009vs/3nP/855eXljBs3jgkTJjB37twuo/WpU6cyadIknnrqqYO7mUOItFwkOYFthnDUnqcsAmiqgkECQw+yp6GZIY6DtWcHMe8sCoJtU9rA9dDBtX42lJzOZmctO5xyqvKO4W1jDGcnXsP3r9s51ozzSuQ69gycSGntNumhd0LL8rkDBw4kEomkXw8fPpylS5d2ev6ll17KpZde2mZ7y3K6Ho+HRYsWtVsfvbKyst2+AK0Wjc4luozQhRA+IcQHQoiPhRDrhBD/k9w+UgjxvhBikxDiGSHEweeRSSSd4DgOXqOWuCeZVljYs7eaoghiwsHQg9RFBcRDiOpaTD0fvbBtDjqArroeumHaNEbcr+9xPDw+8THuVi9jReGZsPF1hitvkafU0Fx8KqWRiBR0Sa/SHcslDsxyHGcyMAU4SwhxIvBL4NeO44wG6oHczPOR9Hks2yFoNmBqbslcT6BnXyw1RRBWVLcmelSDcA2iyZ3RaZW2zXABUBWBEG6E3hg18OsqAY9KzLCIJCw+HHABKBrKKdcwLvA6tmcsPjufcNToUV8lkgOhS0F3XFLfR/TkPweYBTyb3P4YMC8rPZQc9iQsm3yrEVNzvXOvv2eCriqCZkUhoQcxwyqEa1CjOgBafttp/+DmO+uqQsJyaIgYFAV0fLpKzLSIJkya8kfDDZ/BnJ8xcpDrBUeDwzCSHn1fxHFkWYK+Rk//Jt0aFBVCqEKI1cBe4B/AZqDBcZzU98kdwJAOzr1SCLFCCLGiPyzxJOl9DNMhz2rC0tz8c08PBV1TBFEFEp48lLCCE6pCM7uO/j2qgmHZNEQNCv06Pk0hZthEDMudWBQsAyEoGDMBgJivFProe97n81FbWytFvQ/hOA61tbX4fAc/6N+tJ8NxHAuYIoQoAl4Axnb3Ao7jPAg8CDB9+nT57pEcMAnLJmg2YaoDARs9mUd+sKhJD93SAnibFczP38PS8oDOBV1XhWu5JCP0hOnaL44Dfs++PnmOnoF4pYmovxRq9/Sor9li6NCh7Nixo1+so9mf8Pl8DB06tOsDO+CAQh3HcRqEEMuAk4AiIYSWjNKHArlZ/EDS50lYNvlmGFPz49GsHq/KrimCqABH6BSEPdR89BKG7q4d6g3oHZ+XjNAbowYjygI0RAzqw+4AaaCFoFMxCV192Y3Q67f3qK/ZQtd1Ro4ceai7Ickw3clyKU9G5ggh/MAc4FNgGXBB8rCFwIvZ6qTk8MYwbfKNMKbmw+uxe9yeqgjCivtl0W8Usrm2HkNzvXNfXseC7lEVEqZDQzRBkd+DT1epi7Qj6PkVBLx1RH2leBt397i/Ekl36U6EPgh4TAih4n4A/NlxnJeEEOuBp4UQPwc+Ah7qrBGJ5GAxLJt8I4Kh+fH0bE4RAKqiEBKuoCd8pdR5SkAPYmDh6cTOSVku+wZFFbbVuVksfk+LR0kIivMSVDaV4K+v7XmHJZJu0qWgO47zCTC1ne1bgOOz0SmJpCUJyyZoxDF0P0Fvzyc3a4oglIzQY74SAmtW0pB/PFHFRlc6bl9XFZrjJnHTpjCZ5dKQitD11h8EA0q9bK3SCUZlHrqk95BT/yV9Hne1IgND9+H19WxAFFzLpUlxQEDMW8KQnXH2FucRFQJN7dif11WFmuY4QDLLRSW1IFErywUoH+QuYec1ezarVSI5EKSgS/o8huUQSJhYmh+9hymLAJoqsAX48nVivhKa83VqSgqICpGeEdoeuqZQ3eQKuuuh73t8/PsJesERbqaCSl6P+yuRdBcp6JI+j2HZ+BM2lurvNAulu6jJxTF8RV6sURM4+r7/o0wdQVQ4aJ1YLh5VpCP01MSiFAFP6w+a/COPcn9RinrcX4mku0hBl/R5EpaNN2FjKX48gZ5bGFpK0As9xHylFBx/EsQhJujScjEs12Mp9O8v6K0jdK10GMJpxNJLcAw5/V/SO0hBl/R5EqaNx9RAqHjyerZaEYCSzGP3FHhobohjmTZO3CYqnHSZ3PZoua/Qr+PVOrZcUBQUUU/MW0K8Tma6SHoHKeiSPk/UiKHbrpB7gz0X9FQU7inw4NgOdbvcRS2iipO2Y9qjpaAXBXS8LSJ0v952sFZVIhh6kNqqyh73WSLpDlLQJX2eZiOMZrsJ6J68QI/bU5M+uVbg+vHV29wa6DFBp2mLnuQydKoiyPNqrQdF2xF0TYtj6HnU7anscZ8lku4gBV3S52mOhlBJFubqYelc2Oeh6/sJelQ4nXroqQHTIr+OEAKf5oq4T1dQ2onsvR4LQw9SX7Wtx32WSLqDFHRJnyfeXI+ZoUqLsC/LRQ26gr5nayPQtaCnLJdCv3tealB0/wyXFD4/2KqXhqq9Pe6zRNIdpKBL+jxGC0HvaS102BehO6pgyJgiara75f6j3bRcCgMpQXePbc9uAQgE3b5Ga0I97rNE0h2koEv6PGakEVNNeugZEPSUPWLaNifOOzK9Pa467VonKVIRelGbCL19QdeC7lJ5RkOsx32WSLqDFHRJn8cON+6zXDIw9T8VoVu2Q8WoQkZOLsNRBXYnKYvQQtADrlCn0hY7EnQ1KfxOWC4DIOkdpKBL+jxONJQWdN2XOQ/dTBZimX3pOEInlXQ67R869tDb5KCnjs9LToKK9bzPEkl3kIIu6fOIsLueqKYanVoi3SWVrWIlBd3r14jnq2hdROiepODvE/RUhN6+YGv57oeQavnkUm+SXkEKuqTPo0frMVU/Hj0zoqi2sFxSGLbT7Qi9KDko6tW6iNDz88GxUe0gDfGGHvdbIukKKeiSPo8nGsLS/BkpnQutPfQUpmV3OksU3GqLsE/Q04OiHWS5qIECVCeCSpDqqFy7U5J9pKBL+jxaPIypevEkByN7yv4eOoBpdV5pEdrz0LsYFPUVoDtNOEoekYhMXZRkHynokj6PHo9hqR70DNRxgZaWy771Sc1uWC77PHT3gyUVofs6FPRCPDRj6HlE62SELsk+UtAlfR49nsBSdTRfZlb/0dqL0G27y0FRrY2HnozQ9Q4GRQP5eJQQhh4kLgVd0gtIQZf0efSEiaV60DqIhA+UdgdFLSct9B3xpdFlfOvEYQwvcQuE5Xk1rjx1FHPGDWz3eI/Hi0c0u4LeWJ+RvksknSETZCV9Hj1hESnwoHkyE3/sn7YI7qBoZ7XQAY4oCfDzeRPTr4UQ/PjsYzo83qMpeJQIhp5HolFmuUiyj4zQJX0e3bCxlQxG6Go7WS5254W5DgavpqAqUWxFx2gIZ7RtiaQ9pKBL+jaOg54AW9HR9My8XVXR1kM3LLvTwlwHg0dTUDS3jovZKJehk2QfKeiSvk28Cd0AR/Fm1UM3rWxE6CqWZgJgN9tdHC2R9Bwp6JI+jRPajW64WSWZ89CTEbrVeqZoVxOLDhRdFcRVCwArktGmJZJ2kYIu6dNEm3fjtdy870xF6IoiEGK/PPRuDIoeKEIIjGSXnZh81CTZR77LJH2acPMePGYyQs+Qhw5ulG45+88UzWyEDhBPLopBQs942xLJ/khBl/RpmpuqUJ3MRujg+uitBkXtzEfoAHFFBcfGMTMzKUoi6Qwp6JI+TbR+D5bqCrqeSUEXAquFh25lIW0RIK4FUe0w2L6Mty2R7I8UdEmfJtpYg61kdlAU2kbo3SnOdTDE1SCK3YxDZurQSCSdIQVd0qeJheqwlJTlkkEPXVX2m/pvd1mc62CIK0EUpxlHBDLetkSyP1LQJX2aRHMTtpqK0LPnoWdjpihArWcQKk1YSjDjbUsk+yMFXdKnSYSb9kXoHSwkcTBoimiVtmhYdlYsl92ekaiiCUvLw0jEMt6+RNKSLt/BQogjhBDLhBDrhRDrhBDfS24vEUL8QwixMfmzOPvdlRxuJCKx9KBopj10q8XkzWylLTrePFBiGHoe4QZZQleSXbrzhJjADY7jjANOBK4WQowDbgaWOI5zFLAk+VoiyShWNN5iUDSzlkvrBS66rod+MHhUBVNN4CgqDVVS0CXZpct3sOM4ux3HWZX8vQn4FBgCfA14LHnYY8C8bHVScvhixw3sLEXoKQ/dcRwMq+sViw4Gj6YQSxapDu2qynj7EklLDugJEUKMAKYC7wMDHcfZndy1B2i3yr8Q4kohxAohxIrqahmhSA4AM46TsFt46BmeKZoU9NTPbHjoXk0lpLqK3ry9MuPtSyQt6fY7WAiRBzwHXOc4TqsVbx3HcQCnvfMcx3nQcZzpjuNMLy8v71FnJYcZkTocU8FUPaCAkkFLRFWUdISe+pmNLBePplCl5QEQ3SsDGkl26dYTIoTQccX8Scdxnk9urhJCDEruHwTszU4XJYct0XowwNB0hJbZ6LllhJ4S9GxZLju0IgCicpELSZbpTpaLAB4CPnUc564Wu/4KLEz+vhB4MfPdkxzWROsQhkJC96JkWNDVloKeTHfJjuWisFd1c9ATsoSuJMt0Z03RU4CLgTVCiNXJbT8Gbgf+LIT4NvAFMD87XZQctkTrUQ0wAx6EntnouaWgG1Z2I/S9ih9hWxgJT8bbl0ha0qWgO46zHOjonT47s92RSFoQqUM1BIbqQc1ChG4m0xZTP7ORtujVVKK2H81sxhSyQJcku8iZopK+S7QeLQGW6kXJYIYL7OehW056W6bxagrYOqrZhGnL6f+S7CIFXdJ3idahGwJT9aBmWNBb5qEbKQ89G5aLqgAKit2ESX7G25dIWiIFXdJ3idajG2ArXtQM1nGB9rNcsjIomvogcpqxlHwwohm/hkSSQgq6pO8Sa8SbAFvoWYjQlbTVkorQszIomvTlHaUZUy3ACddm/BoSSQop6JI+ixFtxJ8AFE9Gp/0DqArYzv4eevYidEeL4igejIaajF9DIkkhBV3SZ4nEGvGY4Ag9o4W5wBXvfTNFs+ehezW3344eByBSU5fxa0gkKaSgS/os4eYmAITQ0DMeobfNcsnGItH+5AeR7bcACO+Rloske0hBl/RZYpFmHECgZSFCb5mHnr20xUByMNcOuo9aeE9jxq8hkaSQgi7ps0QjURyhIoSC7s2soKuKwLL2T1vMXoRuFbiTihrr5Px/SfaQgi7pm1gGsYSZXq3Ik+kIXd2Xh25mcep/INlvs9CdVNTYYGT8GhJJCinokr5JvImEKbCTtdA9GY7QFSH2ZbkkrRc1C5aL3+NW1zDzitGNZpojmb+GRJJCCrqkbxJrJGGqWMnl5zIt6FqrmaLZGxRNeeiGvxRPoomoLNAlySJS0CV9k3gI0xRYqhfIvKCripL20NNpi1mJ0FOCXoaeCJEw/Rm/hkSSQgq6pG8Sb8I0BabmCqA/T89o8y099GxG6F5NQRFgiXxUs4mEIwt0SbKHFHRJ3yQWwjaVtKAHApkV9Pby0LMxsUgIQcCjYZl+cEKYQhbokmQPKeiSvkk8hG0IjKSg+4IZjtDbq4eehan/4NouhqFh04yt+DEjskCXJDtIQZf0TWIhMAQxnyvo3kB3FtfqPm6WCziOk9W0RXBTF6OGja26OejRWlnPRZIdpKBL+ibxRjAFMU8AAI8/s4KeGgC1bCerKxYB+HWVSMLC1mMAxOtkPRdJdpCCLumbxEIocYWYL4AhHNQMi62ajMZN20kPimYjywWSEXrCwvaZAMTqG7JyHYlECrqkbxIPoccUEp4giSzobKsIPcuC7veoRBImIuBeJ9YQysp1JBIp6JK+SSyEJwaGHsTIwrtUTQ6A/mN9FZ9XNSW3ZUnQdY1IwkIpcAd2I9VS0CXZIbPGpESSKeJN+KNgagGMLAxWliSzZq57ZjUApUEPQmRzUNRCLc+HOojWhbNyHYlECrqkT+JEGwnEwFYCWJmdJArAvClDGD+4MF1pcWCyGmI2CHjcQVHPkDKU9QmaGxNZu5bk8EYKuqRPYjQ2oDhgKz7MLE34GTOwdyb5+JODonkDB9NghmmK2r1yXcnhh/TQJX2SUFOz+4vIjqD3JoHkoGjRwOHoRphoPAtfOSQSpKBL+ihNTVEcQHF07Bz/HhnwaNgOFA4YhWZEiJveQ90lST9FCrqk72FbhKMGtqIjULG03I7Q/ckSugXeAeCEMWxZcVGSHaSgS/oesUZixr7CXI6W22/T1KpFwvHiEMESgUPcI0l/JbefFEn/pG4Libi6T9D1HI/Qk4IeSVg4SgRLycMx5VJ0kswjBV3S96jZiJFQiHlSgp7bb9NAchm6aMICPQFCxWioPcS9kvRHcvtJkfRPajdix1WaAq6gixwX9JSHHkmYKKl6LnVS0CWZJ7efFEn/pGYjGDrhQNJr9vQTy8Ww0ILuI9e8p+pQdknST+lS0IUQDwsh9goh1rbYViKE+IcQYmPyZ3F2uyk5rKjZiBpXifvzABCe3M7bTg2KRhMWvmL3W8feHdsOZZck/ZTuROiPAmftt+1mYInjOEcBS5KvJZKeY1tQtwUtDobPFXTFk9tfJAMtBkXzB5YAUFslLRdJ5unySXEc501g/4r8XwMeS/7+GDAvw/2SHK40bAMrjjdiY/rysXFQc91DT0foJiVHDAOgqT5yKLsk6acc7JMy0HGc3cnf9wADM9QfyeFOzUYcB3wRG9uTR0IBPefz0N0sl0jComLU0e7vIfNQdknST+nxk+I4jgM4He0XQlwphFghhFhRXV3d08tJ+ju1G7ETAsUBRysgpmRv8ebeYl+Wi0XZsCPRzAiJaG7fk6RvcrDvqiohxCCA5M+9HR3oOM6DjuNMdxxnenl5+UFeTnLYULsZ0y4EwFELCCsOWo4X51IVgVdTiBoWWjAPPdGIZQTBklG6JLMcrKD/FViY/H0h8GJmuiM57KnfSlwdBIBj59EsHPQsLd7cm6QqLgKoVgibQqjdeIh7JelvdCdt8SngXeBoIcQOIcS3gduBOUKIjcAZydcSSc+p20qTU4QD2AkvTcLJ2tJwvUnAoxGJWwAoNGOLItj98SHulaS/0WVhUsdxFnSwa3aG+yI53LFMaNxOc2I4phYAW6FRmOj9QNDzfRpNcTdCV7QollqAs+tfiMnfPMQ9k/Qncv+7bC7w5h3w+euHuhd9n9AOsE1iEajPd330ZuGg9QPLJd+n0RRzC3Ip3gSOohPf/tkh7pWkv5H7T0pvE28+sMGsqvWw9Ofw0R+z16f+Qt1WAIymBHWFrqCHFXJ+UBQg36fTFEt66EE3Kaxp1y5wOkwQk2QDx4HGHYe6F1lDCvqBYNtw/0nwr1+6Lx2bX37wS776wlf5v4//D8NqpyTqe/e5P0O7erGjOUq9K+hOQ5RQXhHgRuh6jqctQipCdwVdL3KdzpqwFxq3H8puHX58/BT8eoIbaPVDcv9J6U32fOLOZNy1CoDb3r+NJz59Ak3R+O3q3/KnDX9qfXxTFXzyZ/f3xp293NkcpG4rqB7U+jCRQFLQ+0HaIrS2XPxlbtGxWqOsV4XFtmwSsX6aKrnuBXh0LsSbOj7GcWD53YADn73Sa13rTaSgd4PIu/cSX/Nn2LzU3VC7iR1NO3jms2dYMHYBz5/7PGOKx7Bs+7LWJ376V7ASMG4eNFdBexG8ZB/1W3EKh+FpCGP6SvEENCxBP/HQdZrjJo7jkD/YrWXXaJTC3nW91of3XtzCEz99r/+Ium3BzlUQC8ErN0LlW/D2b9K739rxFpsbNuOkbK1N/4Saz0D1wMZ/HKJOZ5ccX343+0T3rmf+uvsYZzosUga7Gxu28e6O5QB8c+w3EUJw+hGn8/s1v6c+Vk+xL1l8snI5FAyFUTNh/WJo2oNZMIgn1j/BtqZt/OTEnyBE7kefGaOuEss3DNXagOMpwZevQ5x+keWS59UwLIe4aZM/aBCaESGiVvRahG6ZNp++vZtY2GD98l1MOWNYr1w3q7z/ALz2YygcBuFqGHIsvPNbOPYyVser+c8l/wmAX/NTqHi5uT7E7PxBMOkb8M49EKmDQMkhvonMkvuhT5b5v6U/4AtdZ5lXI7r7I8gfBI7Nu9uWMDAwkJEFIwE4/YjTsR2bt3a+5Z7oOK6gj/gSFA4lIgSPr3uMb7z0DX618lf85fO/8OGeDw/hnfUxajdD7UZMpQIAoRbjzfcA/SNCL/C5sVMoZlBYMRxPopGYUwZ7e0fQK9fUEAsb+PN1Vv9zO5Zp98p1s4bjwEdPuM9j8x6YeCFc+Cg4Niz9X/62+W/4VB8/PuHHnD/4NIqb9nJ9wOblU66Asee4x614qN/NBcj9JyVL2LbD2o1v8lhsG0cqecQUhff8Pp458hRWeb18smMrZ2y7mKd+8QFP/eIDEhsKKfOWc++q33LF3/+dF1c+jBOpITz4JPYo+VxVUc6iTc/gOIL/Ou5nFHgKeXzdn6gPJzCsHH+4ekqkDp68EHQ/ZsVMAISTjydfB0DvFx66ey9NMZPCAUPxJBox7AKo+RzMRNavv+Gd3QQLPcy6+BjCDXE2rej7C2zEDIv6cKLVv+qmMJ/s2UT1pndg73rCJ15Pw7+vpn7O3dTrFcSOvRLj46d4dcvLfGnwTM464nyu8Y/j0d1VHF04mt/s+Cd1hROwA2Vu9tmDp0O04VDfasaQlksH/PdjbzHx5ev4w+cWuhkCYQPFlIh32Fv+Fb5+1EUA2I0rSXiLeGd7M5eFLqJ49zOsGLmSeye9zb1HDKbmo6extDCK18uJu8aifXYMv32vkZryySyLL2Pa/3uOSYOG8eLVpxzaGz6UrH0O6jbDwpcwVlbhIBCGHz3PFcFcL84F7qAouII+sqwIxWrEcCrANl1Rr5iQtWs31cX4Yl0dU+cMY/jEUgrL/ax/ezdHnzgoa9fsKZGEyYm3LSGU9vttvANeQS/+AKEkEA6MGTyI6mVLGffMk0ystBlaraLaCoO0Cn78RiMk3uHvytcZ4q1llLeIQVv97D12I9N/9SQjEz/kksC7LLSex2najfAXHdL7zRRS0Dvg2D/9mrE7InxyjIcBI+axqfl96hPbCajHo2r/hmVvZpRvJ4PyNjKk5h2+SJzCxwX/xo4xP2Dmp0/wzXdWsLcC3jjO4uOpI/nOri84ulhhVPw3bCs7jecn3MxDX7zF2DEf8/H6AhojBoUB/VDf9qGheS8gYPjJhF+6h5ivGByBpyAp6P0oQm+OmShCAacBk3wsR0N9/36Y879Z83PX/msnOA7jTx2MEIJjThnEe4u30FAVoWhgoNNzm+pi7K0MoeoKulelaECAYJE3K/1sydaaMKGYyZxpTcT0j/CGP+N9azNfbsrnrPXVsMeDb7eXsnrXMgn5YUuFQNUDfGqpeByH6cpe6p6t2cYAACAASURBVHxFBBsiNNf4+Y8tHxFbCcvnLsd/9i1sXmlAw/M0VO+ieMAxWb+n3kAKejtEExajajbx1ngF7cZvMfuEm/DseIs7X7mPs9YspFjfyfQJrzD6shfh3mPBdyQVgQQT99zGa+K3rBeX0TBmKkfseIcLXvqMi96LM2BqMYXlbhbMsJo3uW7Sb9glzmLptiUIdSof72jg1DEHV43SsmzWvbmTLatrsC2bsqH5lB2Rx7BxJeQV+zL5X5MdIrWumCkqkZ3bqSo9AgB/ubtcW3+wXPK8qQjdzXQSYi8IlbrR/0H5R/dB7Ra4/NWMX9dIWKxbvpORU8opKHX/P48+YRDvv7iFT9/dzUnzjmz3vLrdYd55bhNfrKttVRxb1RVOOu9IJs0cisjiYPX2uggBYoS8r7C+fhWnrXF4YIVBSZUJBFEC/7+98w6Pqkob+O/MTGaSTHrvIb1QQiihd5AiYltdu65l3VXXtWzRba6fy+qubfVbdV2/dcWGBUVFivTeIQRIIIX03sukTTvfH3cgIAQSCATi/T3PPHfmlnPPnDn3nfe85z3v64JrWhquY8dS659CWY6V+mNN2O12rIEtTBkXRMT264maNBaOfov0GYx5zELWPX4rM5fuJmxWIQdGDYG10FpfyUDJoakK9DNwrKAS53YrpX4afpJwIwDDDCNZkP0wei8dC5J24VpVACW7FFPBtW+CuRXXvF+z4GEvDqxrY/+mOMoHDccpDhIbN2JZ/TmdSXr8RhvRWJth09/4WVASq+yd6H23cKBkxHkL9L3LC9m7ohCfECMGFx1Hd1Rg2WhDaAQxI/yZcGMcbt4XX6s6b9rqwNUXAHN5GXXeESDA4KfUeaCZXACEQUlBVxvzMP7ebXD4yz6/p81qZ9uSPDpbraRMDzux383bQORQPw6sKUajFUSn+KPTa2htMlNXaqLkaD0lmfU4OWsZPW8Qg4b5YbdJLJ02MtaXsPWzXAoP1jJmQTQGVx1ega597q1VXVXJVsNDXNUUzDP7PBi8pgF9WDCeP5mMcfaNOA8ejNWuYdPH2WQvq8Tdx5lhk5R+k59ew44vO0nXvovb8hYMttvwDPYlKNJA7e8eRv/4XxF/ex7jy/8LQGdTZZ/WvT9RBfoZqN69nWCgzd+FaM9opJRsWpyD3WZnwaMpuB7ZBjnFsPxJcDJC8rXQrCwc0hZvZmRgBUMC/knZ3C0c3N7IoZypxExwhW2LaK50xjMlBpfSLwnzsDI72pf13ttIL7kdiOt9XYua2beqiMSxQcy4JxkAaZc0VLVxdEcFhzaWUpxZz9CpocSNDsQ3xK1P2shus1Oe10RIrCea8/FCqc+Hrx6GWz46RaDbq6oxBU/ALVCHzaEB6gaA26KHw+TS7NDQce9EY+ugpriFpMAA6GhUQkpo++aRrC01seGDI1QXtTBsehjBsafaiGfclcTmT3MUZWB54al19XNm6PQwRs6OxMXhaXScsERvsraWs/XzXL74+z4AvINcGTo1jPgxQVTlN+Hh53JOU8650JXsoMBZElVsJXltPe6DfQldsvHEH4fVbGP5mxmU5zQyen4Uo+ZGnuiHE34UR3FmHXnfrKKzuox2uwfHKoLIev8oemMEKycM5/5lB3DfuQubFFibu03ncMWhCvQzoDmomEa84xIQQpB/oIaSrHom3hSHp78ruD8ARdvh2DoYfgcY3MAvHtyCIOc7MFVhCE8iemw0g9Ik25fkkbEePKbmE1JZQu3mYrArAuyOYCeKpls4ZNiNlGN7pelIKdn0cTauHnom3tz1ZyA0Ap9gI+NviCV5YghbP8tl/3fF7FtVxLCpYYy9PgYnR57L88FqsfHdO5kUHqwldlQAM3+SjLa3Qr1kDxRvV1bfttWDTxRSSjRV9Vgjw/ELd8dqU8b6A8Ft0e17Grol2Af3o2XUFPhAlNIXaG8AtwtPAnNkewUbPzyKwahjzoNDiEkNOO0cZzcnrrpvMKOvHkR9eSs2qx0Xdz0+IUZcPfTd9kMhBIMnhRIx2Jea4hbams0c2V7B5k9y2PxJjuMciEsLZPItCRhczk/E+NbtZo+zgXu+sqFztRH824dP1MlmtbPq34cpy2lk5j3JJIwJOuVajUYwaKgfgzRu8PlfAZD3rKRGDGHDh0eJLnmAIzHvMHTDaupjPbCbBk4mNVWgnwHnokwsWggcPIHGqjY2fpyNT4iRIVNDHSd4wu2fK8Pk6KnKPiFg6I9gxz+Vz1OfBpTONeFHsbRXFpOedQuxLyYTHuxOZ/ZROg4fpvadt3jq8yZ+fccmShseINyn55pNcVY91UUtTL09AUM3E6peAa7MfySFdpOZPd8WcnBjKXXlJuY/nILuPIS6zWZn5VuHKD5ST0yqP3l7q+kwWZh2Z+IJG22PaG9Qti2VioYeNhJ7SwtWuzNC40noIB8a7Io750CYFNVqBEa9lpYOK49/egCT2cD8lhIqy2KQrr4IUNph0wvKCshr/nFe98naVs6GD44SnuTNVfcNwdnt7BPt3kFGvIOMvb6Pu48z7j7K/MzgSSGUZTdQnFVPSKwX5XmNZKwtobqwhfmPDFOUoF4S3XqADVYfplSZ8U/rQJtyDaCMDNf8J5Oiw3VMvT3hNGF+ChFjT7wV/vEEGD248Tcj+fCFrZTLOwhPfwVrlDva9tpe1+9y5cpXfS4CTvU1lPtAmEjg69fSkXbJ7AeGnKqFarQw7KZTNapZz8HVr4B/Igy58cRuoRFMeWAKBqOOXSsr0boZcR05Ep+77yb81RdxMcPYwjwOlDT0uI5SSvYuL8TN20DiuHO7n7m46Zl8Szwz70mmLKeRFf86hMWRcKE399z0cTbFWfVMuyOROQ8OZdqdiVQWNPPpc7tpqe/oeWHHBXpz+QmTi6WikhY3ZUI0IMLzhIY+EIJzgeLpUlBrYml6Gbn6UNxMpVit0NTp8G5pq1NGfqV7z6v8unITmxZnE57sw7yHhp1TmPcVQgjCEn0Yf0Msg4b5Mf6GWBY8NpwOk4WvXkmnua69V+XZWhuIsBUyZL+FTqMTno/+HQzuSLtkwwdHOZZew8Sb4hg8KfTsBbkHgfcgRQFzmPR0TlpueCgNu1ZyJPZ22urc0XeoAn3A0mmqR9tkoyhsHEX/1WCz2Fnw6HB8gnugxWg0MPo+eHgX+J1qD9e76BgxO5LirHrKc7sEt8voSbSHCGbut7C9uOcPclVBM5X5TYyYHYlW1/OfMWFMENPvTKT0SD1fvZpOu6lni1qsZhtr/pPJkW0VjJo3iOQJShiE5Akh3Pz0KKxmOxnrehE5sL1e2dbmgt3iEOjlNHnGIJH4hblhtQ0cDR0Us8u+IuW3Hz18HE6dSntV1TnmNdrqoKUCOpp6XbbNZmf9oiPonXXMvCcZndP5m9T6gtB4bxY8NhxLp43P/7qXDR8cobG6rUfXNh7dRL5FT2qepH3BVDSjbkVKybYv8zi6s5LR86NImRHes4oMv12JpXSSCcnD1wXL6CJaPAZRZhqPi6XnitTljirQv0fppmXkht2L1fMOgqM9+fEf0vCPcO+TsodODcPoZWDzp7nYTlodGjItmaBG6NzzbY/Lytpajs6gJWHsWYac3ZA0PoQ5Dw6lrszEly/uP6cGZbfZWfn2IXL3VTPu+hjSrok65bh3kJHY0QFkbS2ns62HAciOa+hVh5Stqy8dpRWUh0yg3a8MvYsOi92hoQ8Qge7urDuxUOaW1NE0OFegszawf4cZu9Qoo5X2BmWCtBe0NZv55h8HqC5qYcqtCbh66M990SXAP9ydax9PJSzJm5y91Xy6cA/Zu7r3KGlt6uTwplIyl2dxuOxGqv1TMUy5hcaqNvZ8W0DG2hKGTgtj9NWDel6JKb+BBa+ftnvotHicTVmUOc9EYx4Y/QtUgX4K6WuKWb0smBr/ETQZN7Lgl6kYPfvO3c9Jr2Xyj+OpKzWRsbZLmw2Yez1WrSQ8/1CPyjG3W8ndW0X8qAD0zuc3DRI93J8Fjw6nvcXM12fR1KWUbF2SR3FmPVNvS2DE7MgzTpgNnxnhcGvrYfKA4wK9+qiydfUlJ9uKxcmNjlRlWfoJDX0AmVwA/NwMjAgPoMxHT0TRV9RXdpLVPrMr8mJns2JH7wHSLln+5kGqC5uZdW8ysSNPnwDtT/zD3Zl9/xBue2YMARHurH0vi4KDp5s4MreUseipbWxanMOh8rFUu9xE1uD72fFJBx89s5M9ywuJTwtk0k1xfeIimRY0mlrdp4CGPY13gKV3ZqHLlYHxpPQBWVvL2f5FHiHyAGN3/xlzUjmai+AuF53qT1SKH7uW5VOSpZgdNPHTaPK3E1PejKnz3Hbo7F2VWM12kiaGXFBdQuK8mP+LFFobzax6+zBW86lCxG6XbPkkh0MbSkmZGX5Wm6V/uDuxIwPYu6KQ8rweaJjHBbpd0ehtBl+ya31wNeXhGaX8iXZ5uQwMDeq4L3pCkBtCCGr8fIgs2UtwlBu7TbfTWZ7XdXIPzS5Hd1ZQXdjM1DsSiU/r/WjtUuHu48z8X6QQEOHO6v9knhDqHa0WCg/VsnlxDuFJ3twa/gxXuzzN5C1P0hqwiHk/H8rMe5KY/4sUZtyd1GeLmbycvWhJcCGqcAUF5rHk7czvk3L7mx+8QLfZ7OxYeowNHx0lItLKyKZ/4tJRT0D8xYutMf2uJLyDjKx46yB7lhdQ3eCGJcwfg5jAl+9tJ2N9Cbu/LaDwYG1XLGcH5XmNbPsij+BYTwIHeVxwXYKiPJl+VyLluY18+dJ+TA1dfyjbl+RxaFMZqbMimHBj7DnLmnpHIh6+zqx+5/C5Y263n2q3zM3V0y5dMLSsxtdFmcCyOLxcnAaA2yJ0RVyMD1RMeJ3BEQggdZiddrsH+44ldp3cA7NLXZmJHUuPERTtSXxa4MWocp/ipNcy76FheAW4sOLNg7z76y3858ktLH/jIO5+zlw1X+JjOUhxSSBmbQfiqniiUvxJGBtM5GDf81vvcBb8Ro0nvHQd3tZ8Niyp6rGN/3JmYDwp54nFbGPFGwfZ/10RyRNCmJO4kvoOAyZniI8YetHu62x0YsGjwwmK8WT3twV8/vxestyeIy/uVprTJVs/y2XPtwUsf/MgX/8jnSPbK2iqaSN3TxXf/jMDdx9n5j44tM9W58WnBTHv50NprG7jq1fSaW8xk59eQ8Z6xWY5/sbYHt3L4KJj5r3JtDaZObD2HBOk7Q2gUUwQUgr2bzHh1lFJiy4LfxfFc+iEhj4AFhZB1/L/xCBFoBvjlD5WX7yLBJ8MMlrm0GR1COZzRAA8vLmMz55Xwi9PvT2h131hS+kWvsj54jSFgS8egG2n25z7CqOngR/9ZhSj50cRMdiX8TfEMuOeJG741UgMVTuQdnDLK2FfnCAh+OI9gwCjk2dR62EnqvLfgGTV2733/Lrc+MH6odvtkuVvZFCW08i0OxJJnhgCHxbT1qqn1stOomfkRb2/q4eeax9LpbWxk4pjTTQePoD1n39nb0oH9766HieDlswt5aSvKWb9+0dOXBcY5cHsB4actoLvQolKUWzqX72azuL/2UW7yUJApHuPNPOTCYryJCbVnwNrihkyOfTME3R2myKwApKhOpMC8zgaGjpILljFthhIc3UIdPvAWVgEXTb04xp6wuCxtBn+TU36HiaO1nKsIYEdLXcxx/vFs2roe1cUsOubAiIG+zDj7uReT4IuylzEnndfxKtVknl3Jr8f83u0Gq2Svu3wEiXP6YRHz/+LngOtk4a0+VGnHyjcSlt7JC4dHexM1PCUT+Lp5/QhaUFpfBiqY2hxM6m3lLNrWygbPjzKrHuTr9jEMwPjSTkPDm0opSz7JGEOYKpCtEC1lyDMPezsBfQRRi8DsSMDGHX7FGzOpYQV1qM3atHptaTMCOfu58dz8+9GM+3ORKbdmcj1vxpxYkFHXxMU7cnsB4bg7uvC6HmDmP9ISq9cIo8z5tporBY7+1YWnnqgNg8WXaOsDkVCYDJ2qWGn6Q48vbQEVO+jKEDg5+wHdE2KDhQvl/hAd/zdDSQ4NPSJ0UPJC9Kgz8nDzduZVONSjnWOp9yc1K0NvbKgiV3fFBCfFsi8h4b1TpjXHSNr779Yv/jvPLTCxu0b7Wzf/hkbSzYqx8v2KYkfanMv8JueB3Y7FG2nuSaAdp2GQ1EGojzPIPT7ECetE+b4WIwmgbHzEGOuiSZ3TxVHd1y5sV1+kAK9ua6dnd/kEznEl6TxXYtyZHM1xmY7NV7OOOsucZRCnYGmaDcSSiU5mZtP7BZC4B/hTvKEEJInhPR+iX0viRrmx01PjSLtmujzHgV4BxlJGhfE4c1lNNc6vAfMbfDZnVCwGTK/UvYFJJPVPosGSzApEQ1opJ2CQIGfq0OgH9fQB4iXy5whQez+3Qxc9crAONDdSJ6fL/6VTdidvEg1foWbroHtLXcj286soe9ZVoCzmxNTbkvoVV+w2W2w4w2+3vh3Hl1mxykuFmEwcN0eDTsqdignlexWtm21SjiGS0nVYcw1LTQfqmdfjJ4gzyE4aS7+wqjQsVcBUJqbwcg5kQRGebB7WT5WS89MLzabncKDtSx7/QDv/noLH/95J+W5/ZcwY2A8Kb3A5lg6LIDJt8Z3Da3sNqy1dWjt0OTdP3kGO8fPxw4UL/pn3xfe0QxVfZiQuLUOvnyw2wd/9PwohEawa5nDe2DtM1B9BImWhpw8Mlrns3TjUDY1/4xg91L8ag5hcXaiLcANF50SQsBywm1xYGjowClDeSEEpQEJ6OxQVGXCSZgZGZlBlSWBsqLTJ5UrjjVRnKUkquiNu2phUyEzl8zk9/W7qC9zxrUTwhY+j9eNNzDhsJXsnJ3KiSW7ui6qyztzYRcBS0UFDe+/Q+E6P6waLUsnWRjiM/qS3HvC9B9j1UBLaRVCIxh7bTSmhk4yN5ef89oj28t57zfbWP7mQerKTEQN88NqtrPm3Uw6WvsnIfwPSqBLKdm2JI/K/ObTY4+01WFuUZqjw69/Mrn4TLyX3Ajw3HoUae/jtHQbX4C3xsOe/+v5Ndkr4d05ULzr9GNZS+HgJ0reVClPE+xu3s6kTA8nZ1cVuZuzqdyxjU36l/ig/h0+PnQfW1vuo71Dxxjfb5iXuo3Oo0eoDXPD17UrlILVJtEILor76OVCa9hEAPLylWidiYmduGoa2HfwVKXC3GFl/ftHcPXUM3Rqz8yBizIX8fLel/nF+l/QamnlG9nM8ByQfh44DxmM9623orNKvA8UUNdaowRMi5qsXHwJzC4ta9eSv+Ba8qZNp/K/a9E6wZrHb6HEXzAxdNxFvz+At4cP1d4Cl7pOAMISfQhL9GbXsnyqi5q7vW7vikLWv38UnxAjc382lDsXjmfanUnMeXAIbU1mti3pB7MVPyCBLqVk2+d5ik/1jHDiRn3PzctURUurQ+sJubi2u+6IC/XnSLwrno12Sn/5KObi4lNP+L5HQm8o369slz8J70yHVU/D/vfBdhZN4uBnULwD3p2tCPeTyd+kbBsKIXc1vBQPTacuKkq7JorgGE/WLi7hi5q/cLQyBl8PE1M8/sWdfg9y2+PhjLpnPoYpD9GRnU1ZsB4/F78T11vs9gEzIdodHsFDqTdqaC1Q7LY6rwCGe62ltNqbTYuzqSpopuhwHWv+k0ljdRuz7h2Mk+Hcy/pNZhOv7nuV9zLfo8xUxlsz3+KZqjZSCuz4jhiEEAJ9TAzSzUhshWRP7tfQ2QRDb1a8j2pzLtp3llJS8eyzlD7yC5CSgF//muiHkoi+y5NthgLsVjfGhF08t+HvU+PrhEe9BKsi1GfcnYyzqxPL/jeDimOnz2VkrCth1zf5JIwJYsFjw4ke7n9irikg0oPE8cEc219zymrwS8UPxsslc0s5GetLGDY9jAk/OoPnhqmKhnYnbAK8QhMufQWBYE9ndkaOon3KVm7duBHTmnXoo6IwThiLT1AeelM6PLwHnHpp35dSMbeMuAu8IpUQv3v/C9Z2aK6Aqb8983Xl+yF2pnJtxieQMFfZb7dB4RblfUOh4h1ht0DlYfDs0h61Og2z7wpn3fNbCQm1kfLoL3Ha9gJs/k45wcUb/GIx5xcg29rICzCecFkERUN3GsDaOUCIlwu5/j5EFtZSNlhLqHswwwI/xWQczKHNUkkfhxLgbdx1MYQl9Cy3zr6qfdikjTdG/57kqJn4CSeiD7VRaffCPdbJUaYG12HDiMvfxd6D7zFH5wwx08En+qKaXBo++pjGxZ/gc/fdBPzqSYSTE/zrv0hjBIWtB5BtsfgaL11ClkZ/T1JyarCXH0UTkYKbt4EFjw3nm9cOsPSlfQybEc6QyaFkbi6j4lgTVYXNRA/3Z/rdSWccPYYn+ZC1tZya4haCojwv2feAAaKhn+ZL+z06Wi3s+jqf0HgvJna3dLilirYWJ2o8Ico3+iLV9OwIIdC4Xc3S8RrSH/Qj8HdP4xQWSuPiTyh+cwfWylIo2qp4i+Su6bqwvgBeHwGV3YQOaCxWlpOHpMLkX8H9a+D3FZB0DWx7zZHT00FLJWz9B5hqFGE9aBLEzID8jV3L0SsPdi0Maizq0ubOoNUZj77HAq8/MerOqxTN0i++66Cz0tk7srIAOOzTemJCFBQvl4GuoQd6OLPfayRBDfCJMR4iJ6B1dWdS+BpuDfwNV8d+xnVPpHL/K5MYMbvnrrS7ijdgsEvGpH+Bn4sfNf94mcq9nhg8Lbi4dv3ersOGEVFt53BLDcxeCJ6hSmC52lxorYWanD6bIJV2O/UffEjVCy/gNm0aAb/9jSLMARqLKPUMoEM24Sl671d/IbSHKCuga/dvPLHPK8CVW/6QRtKEEDLWlfDRn3aSsb4UnV5L6swIZt2b3K0pMCROSSZSnnPpJ0ev+Kcla2s5i5/dRYfpzKaD8twG1rybRWebhYk3nyUOhKkKUa+jMFAQ5zvo4lX4HCQFReFrdmadrhyfG68mYuGTRM6oxmoxULrVD3n0O1j2KHxym6IZA+SsUlLhbfjrmQutOqxsA09aqCEEzPgz2Dph/XNd+/ctUiYwN/9d+Rw6AmKmKX7R5emKIM/6WjkWMV4R+rW5SAnmowewlJd32f/NrbDzLYib3ZXV/ngUSoPniew8rVs2g4cbx7w7ifOKo6XDQlO7hTazbcC4LHZHkIcze/xSAaguaKXCSQ8uXlCRgTd5DDIvIzTWs9cxe3YVr2d4ZyeGwq2YNq6n9r3P8YhoJ+wWf2RdLk3tShtrkpLR2MHe6IQl9S7lYt9Y5c/5pXh4YzS8ngrWnkXl7I6W9esp/PEtVC1ciHH8OEL+9gLiuPdSeyN0NJGhV4R7sHP8WUrqezRxSvuXZuw5Zb/eRce0OxK5+enRjLp6ELf8MY3rHk9l/I2xZ80l4OqhxzvYSFnOpY/ieEUL9NbGTrYuyaWhso30NUWnHT+WXs3Sl9Mpz21gzLXR+IV9L2ri6j9AgWI6sNWU4dKsId/fmVCPSztMOpmEQHc6W5LY76yn9eAncHQZLj4Wgp95ivZaHfWffglF28BmhmNKZiWKtivb7BVQcbCrsPYGyF6lmEIQ8P3M5n6xMPbnii39uJAudbiu7fk/5Zrg4RA9TXm/9s/wYhxsfRUCh0B4Gs81N/HVhlpylgZx7MUd5E2fQd6UqbTt2wfpHylhcic90XVPX4e5y1UxHUizmZb1G2hOS8SmFeQWezP0z6tJeXY1n+8rxaDr3zCwF5sgTwMVbn50BgeTkmdjfcl6ZeRyfARkNkFjYa/KrG+rIcfcwBgLyM42Khc+R6ubK8FpjbxXF4WmvZ4pz35ByrOreWiVMqqLKpcca3Z4JMVMV0xn4x6CCY8pf+YVGaffyGqG/R+csD13R8Mnn1L60MPYGhsJXriQ8LffRutxUtiKRmWu6JBsB7ueKI/eLWa7UAIHj8OiBVPh6TIEwD/CnTHXRPcshLaD0HgvKvKaLrkd/YoU6O0tZrZ/mceKfx3CbpWEJnhzcH0pZdkN1BS3UFdmorPdytbPc/ENdePelyYxcs6gUwupzYPt/6uYHIC2vAIAjnmG4uvWf+FHh4V5Um0ahVUIdu57Cw59AWGj8bjxdtxSoqhJ12HpdFU03OyVin28aDvEzwWDB2w7KdPN1ldh8Y9h73/AJ0pJlfd9pv8JQkfB148o4VtL9yiTYtKumEecPbDjjMVjKJasbVg8h2OZ9jqWaa9TebCBaxY7EZWlpTHCjmGSFd8//g6NqytF9/yE+g/eRwYMPiVzDAY38AhT7OdA665d2FtayBzqgYvOhZ05OqL8jPxxfjJ/nJ/MyzenXOQW71+CPBVPq+ahYxhcDOnFO8H51Pyf53I3lVJS2VpJYVMhUkpW71GSH6cNuY/KfT5YSirJHxqMXacjauQsAJ6baOAPVycxyi0PXG3ElUuO1jsiX0ZPgccPw1V/gbEPKftKzuDpdHgJfPMIbPp7t3Vr3bGDyueewzhlMjErV+B14w2njpKlPCHQ97dWYm0PJT7w0ipUKWHxlPuAqGxSzI8X4nzgIDTeG0un7ZL7pF/QpKgQYg7wGqAF/k9K+UKf1OocbFuSR87uSlw89Ey8KZawJB8WP7uLr15N76qbRiDtkllPJp85f2auY2KuYDOYWykoKscJKHJLPbHwoz9ICfMiUJ9Eu9SzkQZm1JTAzGcRQhD4pz+R/+O7KdkeSsR9g9Hlfgc12cpCkIS5ilaV/oHic25whyPLlEJNVZC04Mw31Onh+rfhnyMVDbyjCSb9Crn5JdrN0TQ88QTNq9eA1QoEAWVA1898LBw+mg+5XspE7fyQdP7y2aeUPfk4VWt30Fzgj9+wbRjHjkHoHO2aMBd0BqSUNH+7HI3RyMbgeuK1iezIbObnU2K4b2L/eBpdagLcDQgBhXGpjF79FRGLt2K7bQFaAM8I7PUl2I7swkYstsZGLFVVmAsKaakupb2hFg+zhuLiDCymNlw7TSmHPQAADEpJREFUoVGjJ9ZmZhFgEJ/S2O6M6xANhlAbGs9QZk2ZChlwTdtSmDWLI1sOQZATI47ZWV92GGKvO7WC7oFK1p+SncAjpx47ulzZbntNSb94fASYvQr2v4+8/h0qn/sL+vBwQl9+pev3P/n6VU9D7Aw6BeS0lmDvmMC8oZfWbTjOz58dfhqGlZiRL8Yh5v4Nxv7sgsqMHOKL0VPPzqXHCPutd59FiTwX5y25hBBa4A1gFlAK7BFCfCOlzOqryh1HSnniX7221ET27kpSZ0Uw/oauodmtfxpDY3Ub0i6xdNqoyGvCzcdASFw3XgE5q0BrUGzIBZuprmjBaAQ3n4l9Xf1eodEIrhkWxvu5w1nhtZdfNjTjl6TkU9QPHkv4n35GycL3KHq/gLChTRjWPqNcGDke/BNgzzvIo8uxaoLRVuejmfakYlIZNOmM95MWC+ZG6OxIxbx4OZ3NXlgO78NSkYi1LgONRwHet92KITpGsbtrhGL7FBqWFHzOIo8DfFxVycex11FatImVxWv5hcaP8Efn0ti5ktpjXpTcfz/CYMApNBThbEBjcEZotVhfmYu5qAiPG68nq3k1ab7zsdklk+MvPFHylYKTVoOv0UBWUChx88Yya8VOcg4sRWMNQkob0hYMn38BfNF1kVZLiws0G+zY/SMo1rfhGWDDFBRFbmsJGgTzjIPwiJyIe0g7xqLX8RMNaDxTlZHatD/AhoVQuI0ESwMfRk5ldP4RdGu3w5QzVDJ8jGLek7Ir84+5DfLWweDrlQnzbx+He1YopqKvH4K2Opre/APm/HxCX3sNrdv3zBUtlfD1w9DeQPv+RWxx98GOjXDXpF7l1e0LdFoNx0JdGHeklba2SIw73oDR95+Y4zkfnAxaxl4fw7r3jnBwYynDpoVdkoneC1FF04A8KWU+gBDiE+BaoM8F+o4vj9HeaiF1VgQbPzqK3ll32oy/V6ArXoFdHeGssaE7mhUzRdpPYf/7dGSvQNTYqfDT8dj0ixvhrSdckxLCv3dMRue1h+dT7+c590iOfzPjzY8THjGesieeoGB1AH5lW/EZ4Y/GNxa7Swh1eaE0/GQhtnYbWudA/KIC8HpwHxoPT6SU2FtbsVZV0bZ3Hy1r1tC2fz+y7XjYUA90Rjv6IC9cx8VhHDsGj6uvRuNyevJnKSWfLnmT0TVmwp08+e24P1C5/yvmurrwQcbb/LZV4j3EgOc76zFt3ET7gQwslZXIjg7snR1gteEUEYHvT39KxbgYOtcsw9QcjJtBR2qE12n3G8gEeRqoaDET+T8L+R/dLG6rDySh+igiejwaSz1aawXaG19B5+2N9PHktYpPWXzsMwxaV2y2CrR2DSvL6jikdaHNJ5IRzQcpm/JXQlKG0NreRskrS0nUlHS5lE75NQyaAHvfxVK8jw/aryIipIzkzcW0Z2djWrOWlvXrsNXV45KSgldKANriBsSWpQgnPehdoT4f6s0QMAdcU2Hds7B0IVQcgGoTnZYoapatwpCUiPuMqYoN3jsKnD0UYf7pHWDpICtmEg+b86nVaZFSsCBx7Fnb6mKxLSWZObv24ZwdxCDXXYjsFZDczai2hySkBZG1tZytn+WSubmM2T8dgm/IGcyefYg4l8tftxcK8SNgjpTyfsfnO4ExUspHurtm1KhRcu/e3ifA/e/dT9PmPB2EFmE3E1LyIV5N+06vUw+/igAEEis6NNixIwlogEMj/fjxh5v7PdKalJK5r22hUPs2OrcssPqe5o/t0Wrj3jUNpOV2YNZBk6sWb5MNnR0yYyR5EYKhOYLoMkmHk6DNIHBvt+N0UoiKCm8dGVHOHAvWU+6rReNZQ4veQLXm3BqyFBKbtorHay2MafPkCdfnWdZyE3/082almwtBNitSulArfM9eDmDX1iOFGUvhb5kclci/7xp1Ps12xXL/or1sya0hwseVGq9n0IhmQq1t1Gh80UsLXrIZi9AhJNRroVUrmN8s8bHB+96CCSYjoyoGcb9OWfz1pW0iT1gewtlJ0f79mw6x1PAMYupTMPWpU+4tpWTMX9cxsWARD2ztejYzww00uGlJzW/H2Hl+MqLWS/LRPA3lwRINdiQCKzq0KJ2wTvjSomslyNbB9FpvPrDcx4ZHbyfA4xLHUQJuWPwMEbuX8OBKO9XeYO+j2UUptDR5jqDRezyD7/QlbfZN51WOEGKflPKcD8ZFNxYLIX4K/BQgIiLivMpwcd6BsSadVuN4jK2bkU5VNPidueqyh7LYLrS0adzQSitu9jZ0AXrG3Pd0vwtzUPzRv/j5eA5U+vNu5tuUNpgw274XLMgL3rspkh0FTSTnN+LRaqHBQ092lJGOwBoAto0OIqBSS9rhWrQ2OyZXJ1pddDS666nwd6HM3/WU5LlGmz9COOGlOV0jPxMaYulwDWWTuw8xRk++MTyAvz6QCE0tvpYd1Oh88dKeWyPRMxQPEU9AXDL3Tvhh2M5P5q5xkeh1yu/gZb+ZRvtuvCikTReFk+zEz1ygRCMEom0ahptdGW52wYqkvrUFi/FnMDkemzkEc8QUUoOm8qnJysrDlVS3dBAyZBZy+CSEX8xp9xZC8PS8RFYcuot/B7ahtZkpCTRS7QiL8UWnjchyE0EdFWhsArvdgAY7TvZ2LBpnTFplAlMnLXhY6zFpPTFrnGl11tESUoeT6MRLOtGq9cTZ3opBtmNHQ5U+Ar3GlUBcuanNFd/YVFZNu65fhDnA78Y/wkvmQDZXf4mXqQmD/dyZw3qKIB3vpnSMXi/3WZnd3usCNPRxwJ+llLMdn58GkFI+390156uhq6ioqPyQ6amGfiEDiz1AnBAiSgihB24BvrmA8lRUVFRULoDzNrlIKa1CiEeA71DcFt+VUvZhfFYVFRUVld5wQTZ0KeUKYEUf1UVFRUVF5QK4IleKqqioqKicjirQVVRUVAYIqkBXUVFRGSCoAl1FRUVlgKAKdBUVFZUBwnkvLDqvmwlRA5w56PC58QNq+7A6AxG1jc6O2j5nR22fc9NfbRQppTxnTI5LKtAvBCHE3p6slPoho7bR2VHb5+yo7XNuLvc2Uk0uKioqKgMEVaCrqKioDBCuJIH+7/6uwBWA2kZnR22fs6O2z7m5rNvoirGhq6ioqKicnStJQ1dRUVFROQtXhEAXQswRQmQLIfKEEE+d+4qBjxCiUAhxSAhxQAix17HPRwixRgiR69h2k1B1YCKEeFcIUS2EOHzSvjO2iVB43dGnDgohRvRfzS8N3bTPn4UQZY5+dEAIMe+kY0872idbCDG7f2p96RBChAshNgghsoQQmUKIXzr2XzF96LIX6Cclo54LJAO3CiGS+7dWlw3TpJTDT3KjegpYJ6WMA9Y5Pv+QeA+Y87193bXJXCDO8fop8NYlqmN/8h6ntw/Aq45+NNwRQRXHM3YLMNhxzZuOZ3EgYwWelFImA2OBhx3tcMX0octeoHNSMmoppRk4noxa5XSuBRY53i8CruvHulxypJSbgfrv7e6uTa4F3pcKOwEvIUTwpalp/9BN+3THtcAnUspOKWUBkIfyLA5YpJQVUsr9jvctwBEglCuoD10JAj0UKDnpc6lj3w8dCawWQuxz5G0FCJRSVjjeVwKB/VO1y4ru2kTtV1084jAZvHuSme4H3T5CiEFAKrCLK6gPXQkCXeXMTJRSjkAZ9j0shJh88kGpuC+pLkwnobbJGXkLiAGGAxXAxc9kfJkjhHADvgAek1I2n3zscu9DV4JALwPCT/oc5tj3g0ZKWebYVgNLUYbDVceHfI5tdf/V8LKhuzZR+xUgpaySUtqklHbgHbrMKj/I9hFCOKEI84+klF86dl8xfehKEOhqMurvIYQwCiHcj78HrgIOo7TL3Y7T7ga+7p8aXlZ01ybfAHc5PBXGAk0nDat/MHzP5ns9Sj8CpX1uEUIYhBBRKBN/uy91/S4lQggB/Ac4IqV85aRDV04fklJe9i9gHpADHAN+39/16e8XEA1kOF6Zx9sE8EWZhc8F1gI+/V3XS9wui1HMBhYUe+Z93bUJIFC8p44Bh4BR/V3/fmqfDxzf/yCKgAo+6fzfO9onG5jb3/W/BO0zEcWcchA44HjNu5L6kLpSVEVFRWWAcCWYXFRUVFRUeoAq0FVUVFQGCKpAV1FRURkgqAJdRUVFZYCgCnQVFRWVAYIq0FVUVFQGCKpAV1FRURkgqAJdRUVFZYDw/wr0rP61900gAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "lines = [vv.as_array()[5][100] for vv in [image, no_motion, mcir_no_TV, mcir_TV, no_mcir ] ]\n", + "#print (lines[0])\n", + "plt.plot(lines[0], label=\"Ground Truth\")\n", + "plt.plot(lines[1], label=\"No motion\")\n", + "plt.plot(lines[2], label=\"MCIR G>0\")\n", + "plt.plot(lines[3], label=\"MCIR TV\")\n", + "plt.plot(lines[4], label=\"No MCIR\")\n", + "plt.legend()\n", + "#plt.label('Ground Truth')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.17" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From cbe377a5164edc0c51a4b9334659d803c7d01a80 Mon Sep 17 00:00:00 2001 From: Edoardo Pasca Date: Mon, 17 Feb 2020 12:46:00 +0000 Subject: [PATCH 02/11] updated after bug --- notebooks/PET/MCIR_CIL.ipynb | 226 +++++++------------------------- notebooks/PET/ViewResults.ipynb | 96 +------------- 2 files changed, 57 insertions(+), 265 deletions(-) diff --git a/notebooks/PET/MCIR_CIL.ipynb b/notebooks/PET/MCIR_CIL.ipynb index 12564464..006510d4 100644 --- a/notebooks/PET/MCIR_CIL.ipynb +++ b/notebooks/PET/MCIR_CIL.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -47,38 +47,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f62001b064d342f581324cac0beac629", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT03LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTE0KSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "bc0b2efa39c742a9b012fbc41216ab8f", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "IntSlider(value=7, continuous_update=False, description=u'X', max=14)" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "direction = 0\n", "islicer(image,direction, cmap='viridis')" @@ -86,7 +57,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -108,38 +79,9 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "17b414eb9bc54a66884c46fda149e70e", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT01LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTEwKSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "4ae5ed7826b34dfa80957f4aa3aeac37", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT01LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTEwKSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# ADD NOISE\n", "\n", @@ -173,7 +115,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -211,7 +153,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -238,59 +180,9 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\n" - ] - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "f7d0a996de5f49e990964f00ca91639a", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT03LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTE0KSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "838ee0d43bde48b2870771948da9fb50", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT03LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTE0KSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "ba8888cf39594eaa8d3bbda8a054f1b8", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "aW50ZXJhY3RpdmUoY2hpbGRyZW49KEludFNsaWRlcih2YWx1ZT01LCBjb250aW51b3VzX3VwZGF0ZT1GYWxzZSwgZGVzY3JpcHRpb249dSdYJywgbWF4PTEwKSwgT3V0cHV0KCkpLCBfZG9tX2PigKY=\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "#s0 = islicer(acquired_data.as_array()[0], 0, cmap='viridis')\n", "\n", @@ -305,21 +197,21 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from ccpi.optimisation.operators import CompositionOperator, BlockOperator, LinearOperator\n", "\n", "\n", - "C = [ CompositionOperator(am, resampler) for resampler in resamplers ]\n", + "C = [ CompositionOperator(am, resampler, preallocate=True) for resampler in resamplers ]\n", "# C = [ am for _ in resamplers ]\n", "# norms = [ LinearOperator.PowerMethod(op, 25)[0] for op in C ]\n" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -333,7 +225,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -351,7 +243,7 @@ "r_nonneg = 1\n", "r_printing = 0\n", "\n", - "TV = FGP_TV(r_alpha, r_iterations, r_tolerance, r_iso,r_nonneg,r_printing,'gpu')\n", + "TV = FGP_TV(r_alpha, r_iterations, r_tolerance, r_iso,r_nonneg,r_printing,'cpu')\n", "\n", "motion = True\n", "if motion:\n", @@ -359,7 +251,7 @@ " kl = [ KullbackLeibler(b=rotated_sino, eta=(rotated_sino * 0 + 1e-5)) for rotated_sino in rotated_sinos ] \n", " f = BlockFunction(*kl)\n", " K = BlockOperator(*C)\n", - " normK = K.norm()\n", + " normK = K.norm(iterations=10)\n", " #normK = numpy.sqrt(sum( norms ))\n", "else:\n", " f = KullbackLeibler(b=noisy_counts, eta=(noisy_counts * 0 + 1e-5))\n", @@ -377,58 +269,43 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PDHG setting up\n", - "PDHG configured\n", - " Iter Max Iter Time/Iter Objective\n", - " [s] \n", - " 0 1000 0.000 5.99551e+09\n", - " 100 1000 1.548 2.92670e+08\n", - " 200 1000 1.562 2.96015e+06\n", - " 300 1000 1.557 1.34683e+06\n", - " 400 1000 1.562 8.48726e+05\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mmax_iteration\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1000\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m update_objective_interval = 100)\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mpdhg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mpdhg_recon\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpdhg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_output\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/algorithms/Algorithm.pyc\u001b[0m in \u001b[0;36mrun\u001b[0;34m(self, iterations, verbose, callback, very_verbose)\u001b[0m\n\u001b[1;32m 187\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 188\u001b[0m \u001b[0;32mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mverbose_output\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvery_verbose\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 189\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0m_\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 190\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miteration\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_objective_interval\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 191\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mverbose\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/algorithms/Algorithm.pyc\u001b[0m in \u001b[0;36mnext\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 90\u001b[0m python2 backwards compatibility'''\n\u001b[0;32m---> 91\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__next__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 92\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__next__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 93\u001b[0m '''Algorithm is an iterable\n", - "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/algorithms/Algorithm.pyc\u001b[0m in \u001b[0;36m__next__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 105\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_iteration\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miteration\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 106\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 107\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 108\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtiming\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mtime0\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 109\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0miteration\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mupdate_objective_interval\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/algorithms/PDHG.pyc\u001b[0m in \u001b[0;36mupdate\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 137\u001b[0m \u001b[0;31m# self.y = self.f.proximal_conjugate(self.y_old, self.sigma)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 138\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mproximal_conjugate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0my_tmp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msigma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 139\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 140\u001b[0m \u001b[0;31m# Gradient descent for the primal variable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/functions/BlockFunction.pyc\u001b[0m in \u001b[0;36mproximal_conjugate\u001b[0;34m(self, x, tau, out)\u001b[0m\n\u001b[1;32m 170\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtau\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNumber\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 171\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlength\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 172\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunctions\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mproximal_conjugate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtau\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_item\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 173\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 174\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlength\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/home/ofn77899/devel/install/python/ccpi/optimisation/functions/KullbackLeibler.pyc\u001b[0m in \u001b[0;36mproximal_conjugate\u001b[0;34m(self, x, tau, out)\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0mtmp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtau\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0meta\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 253\u001b[0m \u001b[0mtmp\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 254\u001b[0;31m \u001b[0mtmp\u001b[0m \u001b[0;34m-=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 255\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 256\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmultiply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m4\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mtau\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/home/ofn77899/devel/install/python/sirf/SIRF.pyc\u001b[0m in \u001b[0;36m__isub__\u001b[0;34m(self, other)\u001b[0m\n\u001b[1;32m 393\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__isub__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 394\u001b[0m \u001b[0;34m'''Not quite in-place subtract'''\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 395\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfill\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubtract\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 396\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 397\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__idiv__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/home/ofn77899/devel/install/python/sirf/SIRF.pyc\u001b[0m in \u001b[0;36msubtract\u001b[0;34m(self, other, out)\u001b[0m\n\u001b[1;32m 219\u001b[0m '''\n\u001b[1;32m 220\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mother\u001b[0m \u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m \u001b[0mNumber\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfloat\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat32\u001b[0m \u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 221\u001b[0;31m \u001b[0mtmp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mother\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mas_array\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 222\u001b[0m \u001b[0mother\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcopy\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 223\u001b[0m \u001b[0mother\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfill\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtmp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/home/ofn77899/devel/install/python/sirf/STIR.pyc\u001b[0m in \u001b[0;36mas_array\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 732\u001b[0m \u001b[0marray\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdimensions\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfloat32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 733\u001b[0m try_calling(pystir.cSTIR_getAcquisitionData\\\n\u001b[0;32m--> 734\u001b[0;31m (self.handle, array.ctypes.data))\n\u001b[0m\u001b[1;32m 735\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 736\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mfill\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/home/ofn77899/devel/install/python/sirf/Utilities.pyc\u001b[0m in \u001b[0;36mtry_calling\u001b[0;34m(returned_handle)\u001b[0m\n\u001b[1;32m 376\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 377\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mtry_calling\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreturned_handle\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 378\u001b[0;31m \u001b[0mcheck_status\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreturned_handle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minspect\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 379\u001b[0m \u001b[0mpyiutil\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeleteDataHandle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mreturned_handle\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 380\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mstack\u001b[0;34m(context)\u001b[0m\n\u001b[1;32m 1067\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mstack\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcontext\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1068\u001b[0m \u001b[0;34m\"\"\"Return a list of records for the stack above the caller's frame.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1069\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mgetouterframes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getframe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1070\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1071\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcontext\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mgetouterframes\u001b[0;34m(frame, context)\u001b[0m\n\u001b[1;32m 1045\u001b[0m \u001b[0mframelist\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1046\u001b[0m \u001b[0;32mwhile\u001b[0m \u001b[0mframe\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1047\u001b[0;31m \u001b[0mframelist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mgetframeinfo\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1048\u001b[0m \u001b[0mframe\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mframe\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf_back\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1049\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mframelist\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mgetframeinfo\u001b[0;34m(frame, context)\u001b[0m\n\u001b[1;32m 1020\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlineno\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0;36m1\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m//\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1021\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1022\u001b[0;31m \u001b[0mlines\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlnum\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfindsource\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mframe\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1023\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mIOError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1024\u001b[0m \u001b[0mlines\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mindex\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mfindsource\u001b[0;34m(object)\u001b[0m\n\u001b[1;32m 524\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 525\u001b[0m \u001b[0mfile\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetfile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 526\u001b[0;31m \u001b[0msourcefile\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgetsourcefile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 527\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0msourcefile\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mfile\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;34m'<>'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 528\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mIOError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'source code not available'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mgetsourcefile\u001b[0;34m(object)\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 452\u001b[0m \u001b[0;31m# only return a non-existent filename if the module has a PEP 302 loader\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 453\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgetmodule\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobject\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'__loader__'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 454\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 455\u001b[0m \u001b[0;31m# or it is in the linecache\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/lib/python2.7/inspect.pyc\u001b[0m in \u001b[0;36mgetmodule\u001b[0;34m(object, _filename)\u001b[0m\n\u001b[1;32m 488\u001b[0m \u001b[0;31m# Copy sys.modules in order to cope with changes while iterating\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 489\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mmodname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodules\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 490\u001b[0;31m \u001b[0;32mif\u001b[0m \u001b[0mismodule\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'__file__'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 491\u001b[0m \u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodule\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__file__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 492\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mf\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0m_filesbymodname\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodname\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], + "outputs": [], + "source": [ + "def do_nothing(self):\n", + " return 0.\n", + "setattr(PDHG, 'update_objective', do_nothing)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "# Setup and run PDHG\n", + "\n", + "\n", "pdhg = PDHG(f = f, g = G, operator = K, sigma = sigma, tau = tau, \n", " max_iteration = 1000,\n", - " update_objective_interval = 100)\n", - "pdhg.run(1000)\n", + " update_objective_interval = 4)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pdhg.run(8, verbose=False)\n", "\n", "pdhg_recon = pdhg.get_output() " ] @@ -481,15 +358,12 @@ }, "language_info": { "codemirror_mode": { - "name": "ipython", - "version": 2 + "name": "ipython" }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.17" + "nbconvert_exporter": "python" } }, "nbformat": 4, diff --git a/notebooks/PET/ViewResults.ipynb b/notebooks/PET/ViewResults.ipynb index 2a9e878c..e93a4b38 100644 --- a/notebooks/PET/ViewResults.ipynb +++ b/notebooks/PET/ViewResults.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -81,75 +81,9 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "attenuation.hv\r\n", - "attenuation.v\r\n", - "emission.hv\r\n", - "emission.v\r\n", - "PDHG_0.8maxcounts_noMotion_100it_TV0.ahv\r\n", - "PDHG_0.8maxcounts_noMotion_100it_TV0.h\r\n", - "PDHG_0.8maxcounts_noMotion_100it_TV0.hv\r\n", - "PDHG_0.8maxcounts_noMotion_400it_TV0.ahv\r\n", - "PDHG_0.8maxcounts_noMotion_400it_TV0.h\r\n", - "PDHG_0.8maxcounts_noMotion_400it_TV0.hv\r\n", - "PDHG_500counts_MCIR_100it_TV05.ahv\r\n", - "PDHG_500counts_MCIR_100it_TV05.h\r\n", - "PDHG_500counts_MCIR_100it_TV05.hv\r\n", - "PDHG_500counts_MCIR_100it_TV0.ahv\r\n", - "PDHG_500counts_MCIR_100it_TV0.h\r\n", - "PDHG_500counts_MCIR_100it_TV0.hv\r\n", - "PDHG_500counts_noMCIR_100it_TV0.ahv\r\n", - "PDHG_500counts_noMCIR_100it_TV0.h\r\n", - "PDHG_500counts_noMCIR_100it_TV0.hv\r\n", - "PDHG_500counts_noMotion_100it_TV0.ahv\r\n", - "PDHG_500counts_noMotion_100it_TV0.h\r\n", - "PDHG_500counts_noMotion_100it_TV0.hv\r\n", - "PDHG_500_MCIR_100it_TV05.ahv\r\n", - "PDHG_500_MCIR_100it_TV05.h\r\n", - "PDHG_500_MCIR_100it_TV05.hv\r\n", - "PDHG_500_MCIR_500it_TV05.ahv\r\n", - "PDHG_500_MCIR_500it_TV05.h\r\n", - "PDHG_500_MCIR_500it_TV05.hv\r\n", - "PDHG_MCIR_noNoise_Motion_1000it_TV05.ahv\r\n", - "PDHG_MCIR_noNoise_Motion_1000it_TV05.h\r\n", - "PDHG_MCIR_noNoise_Motion_1000it_TV05.hv\r\n", - "PDHG_MCIR_noNoise_Motion_1000it_TV0.ahv\r\n", - "PDHG_MCIR_noNoise_Motion_1000it_TV0.h\r\n", - "PDHG_MCIR_noNoise_Motion_1000it_TV0.hv\r\n", - "PDHG_MCIR_noNoise_Motion_100it_TV05.ahv\r\n", - "PDHG_MCIR_noNoise_Motion_100it_TV05.h\r\n", - "PDHG_MCIR_noNoise_Motion_100it_TV05.hv\r\n", - "PDHG_MCIR_noNoise_Motion_100it_TV0.ahv\r\n", - "PDHG_MCIR_noNoise_Motion_100it_TV0.h\r\n", - "PDHG_MCIR_noNoise_Motion_100it_TV0.hv\r\n", - "PDHG_MCIR_noNoise_Motion_100it_TV5.ahv\r\n", - "PDHG_MCIR_noNoise_Motion_100it_TV5.h\r\n", - "PDHG_MCIR_noNoise_Motion_100it_TV5.hv\r\n", - "PDHG_MCIR_noNoise_Motion_500it_TV5.ahv\r\n", - "PDHG_MCIR_noNoise_Motion_500it_TV5.h\r\n", - "PDHG_MCIR_noNoise_Motion_500it_TV5.hv\r\n", - "PDHG_MCIR_noNoise_noMotion_100it_TV0.ahv\r\n", - "PDHG_MCIR_noNoise_noMotion_100it_TV0.h\r\n", - "PDHG_MCIR_noNoise_noMotion_100it_TV0.hv\r\n", - "PDHG_noMCIR_noNoise_Motion_1000it_TV0.ahv\r\n", - "PDHG_noMCIR_noNoise_Motion_1000it_TV0.h\r\n", - "PDHG_noMCIR_noNoise_Motion_1000it_TV0.hv\r\n", - "PDHG_noMCIR_noNoise_Motion_100it_TV0.ahv\r\n", - "PDHG_noMCIR_noNoise_Motion_100it_TV0.h\r\n", - "PDHG_noMCIR_noNoise_Motion_100it_TV0.hv\r\n", - "PDHG_noMCIR_noNoise_noMotion_1000it_TV0.ahv\r\n", - "PDHG_noMCIR_noNoise_noMotion_1000it_TV0.h\r\n", - "PDHG_noMCIR_noNoise_noMotion_1000it_TV0.hv\r\n", - "template_sinogram.hs\r\n" - ] - } - ], + "outputs": [], "source": [ "%ls\n", "#plotter2D??" @@ -175,22 +109,9 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi40LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcv7US4rQAAIABJREFUeJzsnXmYVNWZ/z/nLrX2vkCzyCYisoO4B0WQaJQYjEqCE0WNccZRE6PRmMwkOpnEn0FjjMbomLhFjZq4YOISTQCjuAOiLKJsLXvTe3XXerffH7eq6KZX6Kqmqzmf5+Hprrucey5d91tvfc973iMcx0EikUgkuY9yqDsgkUgkkswgBV0ikUj6CVLQJRKJpJ8gBV0ikUj6CVLQJRKJpJ8gBV0ikUj6CVLQJRKJpJ8gBV0ikUj6CVLQJRKJpJ+g9ebFysrKnBEjRvTmJSUSiSTnWblyZY3jOOVdHdergj5ixAhWrFjRm5eUSCSSnEcI8UV3jpOWi0QikfQTpKBLJBJJP0EKukQikfQTetVDl0gkfQPDMNixYwexWOxQd0XSAp/Px9ChQ9F1/aDOl4IukRyG7Nixg/z8fEaMGIEQ4lB3RwI4jkNtbS07duxg5MiRB9WGtFwkksOQWCxGaWmpFPM+hBCC0tLSHn1rkoIukRymSDHve/T0byItF0nOsXxjDR9sraUk6GHhyR1bBmt3NvL6uj2tthX4dS4/ZSSK0v45n+1p4uVPdqVfnzK6jBNGlWau8xJJFpGCLsk5fvbSOj6vagZg1tiBDCsNtHvcPUs28vr6KlJ6n1o+90tHlTG2oqDdcx58cwvPrdqBEO7xyzfV8Px/npLxe5BAVVUV3//+93nvvfcoLi7G4/Fw0003cd555/VqP1ITHsvKytLbTjjhBOLxOHV1dUSjUYYMGQLA4sWL6e5s96VLlxIIBDjxxBMB+Na3vsUFF1zAvHnzMn4PKaSgS3KOhohBgU8jFDOJGGaHx9VHEpw4qoSnrzwJgDc+28ulj3xINGF1eE7ctBhVHmTpDTP5zh9XsL0ukvH+S9wBwHnz5rFw4UL+9Kc/AfDFF1/w17/+tc2xpmmiab0rVe+//z4Ajz76KCtWrOC3v/1tu8dZloWqqu3uW7p0KWVlZWlB7w2khy7JOUIxg/J8LwAxwwbAth2ueOxD3tpYnT6uIWJQ5PekX3s1tdU57WFYNh5VSR6vEDc7PlZy8CxduhSPx8N//Md/pLcNHz6ca6+9FnCF9Nxzz2XWrFnMnj0bx3G48cYbmTBhAhMnTuSZZ54B4I033mDu3LnpNq655hoeffRRwI28b7nlFqZNm8bEiRPZsGEDALW1tXz5y19m/PjxXHHFFTipr27dwDRNioqKuO6665g0aRIffPABQ4cOpaGhAYD33nuPM844g82bN/OHP/yBO+64gylTpvDOO+8AsGzZMk4++WRGjRrFCy+8cPD/gR0gI3RJTpEwbWKGzYB8H5urw8QMN9pujBr889O9HDkgjxlHlae3FQX25fN6dVeo42bHEbppOehJQffparr9/sz//G0d63eFMtrmuMEF3PLV8R3uX7duHdOmTeu0jVWrVvHJJ59QUlLCc889x+rVq/n444+pqanhuOOO49RTT+2yH2VlZaxatYrf/e533HnnnfzhD3/gf/7nf/jSl77ET3/6U15++WUeeuihA7q3xsZGTj31VO6+++4OjznyyCO54oorKCsr47rrrgPgd7/7HXv37uXtt99mzZo1zJ8/P+P2kozQJTlFU8wAYEBBKkJ3BbcukgCgPuz+dByHhqhBYQtB9yUj9M6i7oRlo6mu6e7TlcNC0PsCV199NZMnT+a4445Lb5szZw4lJSUALF++nAULFqCqKgMHDuS0007jww8/7LLdr3/96wAce+yxVFZWAvDmm2/yrW99C4BzzjmH4uLiA+qrx+M5aCGeN28eQggmTZrEzp07D6qNzpARuiSnCMVcz3zAfpZLSsjrwkZ6e8K0KfS3jdA7E2nDsvdF6JraqT3TX+gsks4W48eP57nnnku/vu+++6ipqWH69OnpbcFgsMt2NE3Dtvf9jfbP4fZ63feJqqqYZsfjLQeC3+9vlVnVsg9d5ZCn+gMckNXTXWSELskpQlFXsFMeeso+qU0LehyAhqj7urWHnrJcOhZp03LSHrpPV4mZVlYevMOdWbNmEYvFuP/++9PbIpGOB6BnzJjBM888g2VZVFdX8+abb3L88cczfPhw1q9fTzwep6GhgSVLlnR57VNPPTU9EPvqq69SX1/fo3sZMWIEK1euBGj1IZWfn09TU1OP2j5QZIQuySlCKcsl3wdAfL8IvT7i7m+MGoBFgX9fzOLTu7ZcDMsmz6clj1dwHDAsB48mJ+FkEiEEixcv5vvf/z6LFi2ivLycYDDIL3/5y3aPP++883j33XeZPHkyQggWLVpERUUFAPPnz2fChAmMHDmSqVOndnntW265hQULFjB+/HhOPvlkhg0b1qN7ufXWW/nOd75DUVFRK1//a1/7GhdeeCHPP/889913X4+u0V2koEtyiqb9LReztYdeF04QMSL874c/IO/oFfzu8+GcNeEvaIq2L0LvxHJJ7DcomrqGR5NfZjPNoEGDePrpp9vdd+mll3LppZemXwshuOOOO7jjjjvaHLto0SIWLVrUZnvKMweYPn06b7zxBgClpaW8/vrr3erj/v3QNC2d0ZJi5syZbNy4sc25Y8eOZc2aNenXJ598cqv9zc3N3erDgSDfpZKcYn/LJeWHpyL0xqjBXz57lk/q3sVsHsP28Cb+8vlfgH1pi51bLi3SFlOCLgdGJTmCFHRJTpGyXPbPQ0956GDxx/WPc0RgPLGd32Jy2bHct/o+GuON6KpAEZ1H6EaLLJd9EX3/HxiV9A+koEtyilDURBFQ4NPRFNEqQtctg4Hqe7BrN8eLOeDAD6bfRFOiifs/vh8hBF5NJdaph96O5SIjdEmOID10SU7RFDPI9+koikhO/LGxGhqY8cqjfHf92/isVKR+J1/25lEuzuDiU87iiQ1PM3/MfLy60mWErqfy0LVUmqOM0CW5gRR0SU4RipkU+PdlocRMi72/+hXHr/0XH46ZzkejVjG66FiKQ0cTXf8pJa++yjmvOnx4iYcHPnkAn3Zml1P/2xsUlUhyAWm5SHKKUNQg3+tOFvJqKtTX0fjiX1ky6kReufBElk2ByIz5vDftTJ4+43KOfPUVFJ+fSz7ws7lhsxuhdyLQ0nKR5DJS0CU5RShmtIrQx7z/D5xEghenx2hU38I2g/jtUW4dF7+OPngwxRctYNTH1YgvdnZZcMvYb+o/yEHRbCGE4IYbbki/vvPOO7n11lt77fp33313q8lMZ599dpuUxFxDCrokpwhFTQp8yQhdVRi3ahlfjCujetQn7E6sQUTG0xC1aIgmKAq4s0RLLr4Yy6Nx2tshPLrV5dR/j7RcegWv18vzzz9PTU3NIbn+/oL+yiuvUFRUdEj6kimkoEtyiqaYQUGyPkt5oon8pjreHBrCaJzC3CH/TmH8K9SFEzREjHQdF62khNjk0Yze5aDqjR1G6JbtYDu0quUCclA0W2iaxpVXXsmvf/3rNvsqKyuZNWsWkyZNYvbs2Wzbtq3NMbfeeisLFy5kxowZDB8+nOeff56bbrqJiRMnctZZZ2EYborrkiVLmDp1KhMnTuTyyy8nHo9zzz33sGvXLk4//XROP/10wJ3Cn/pwueuuu5gwYQITJkxIV1WsrKzkmGOO4Tvf+Q7jx4/ny1/+MtFoNFv/PQeFHBSV5BSh2L4IfUTddgA+H2BhNBzH10Yt4NMNn2LvjDCi2mJAgUlTXYz8Eh/6sGFUrN6AUBuJGwPbbduwXOFO56F3o5hXv+DVm2HPmq6POxAqJsJXbu/ysKuvvppJkyZx0003tdp+7bXXsnDhQhYuXMjDDz/Md7/7XRYvXtzm/M2bN7Ns2TLWr1/PSSedxHPPPceiRYs477zzePnllznrrLO49NJLWbJkCWPGjOGSSy7h/vvv57rrruOuu+5i2bJlrVYqAli5ciWPPPII77//Po7jcMIJJ3DaaadRXFzMxo0beeqpp/j973/P/Pnzee6559KVG/sCMkKX5AymZdMcN8lP1loZWrsdG6gdXIQVGUlp0MO03TZjN8Y5qVml4OMQT/3sfbatqyU44kh8BgTjuzsU6JSge9pE6P1c0A8hBQUFXHLJJdxzzz2ttr/77rtcdNFFAFx88cUsX7683fO/8pWvoOs6EydOxLIszjrrLAAmTpxIZWUln332GSNHjmTMmDEALFy4kDfffLPTPi1fvpzzzjuPYDBIXl4eX//613nrrbcAGDlyJFOmTAFal+TtK8gIXZIzNMfdOi4py6Vi7xZ2lwiOKJ3BVhTMvTFKa01W+Uze9hjcOONIgh+HeOm+T5gzexwAxY07qfK1b6EYlltVUU9P/e+6OmO/oBuRdDa57rrrmDZtGpdddtkBn5sqR6soCrqup8vaKoqSsXK57V0P3JK8fc1ykRG6JGdIFeYqSEboZXs2UjkQhntOBwfWvFSJEtRYV6JQXOxj6uSBzPv+VBRFsLPOHewqbqjqMG3R3N9y0RSEkBF6tikpKWH+/PmtVg46+eST04W7nnzySWbMmHFQbR999NFUVlayadMmAB5//HFOO+00oOPytjNmzGDx4sVEIhHC4TAvvPDCQV+/t5ERuiRnaEwW5irw65h19RQ1htk6uQSPOYQR6g6qv2jitAVjuOq0oa3OGza+hMpNIcqEoLiujlhh+xF3IinoqQjdLRUg1xXtDW644YZWCzHfe++9XHbZZdxxxx2Ul5fzyCOPHFS7Pp+PRx55hAsvvBDTNDnuuOPS65heeeWVnHXWWQwePJhly5alz5k2bRqXXnopxx9/PABXXHEFU6dO7XP2SntIQZfkDKnCXPk+jXXv/Q0PsCU4hUERg6NtHQSMmjqgzXmjjx3A1o9r2DN0LCX124kP7chDdy2XlIcOB76u6N3//JzdDTF+ecGkA7izw5OW5WMHDhzYKoVw+PDhLF26tNPz989Zb9ley32zZ8/mo48+anP+tddem16UGlqX273++uu5/vrrWx0/YsQI1q5dm379gx/8oNP+HQqk5SLJGSJxV1iDHo3d690VYjZr02mIGgyPQcXIQgKhNfD+g+4JKx+DZbcxYlIZqqZQPeg4SuujHUbc+1sukFqGrvuCvnTDXt7ZcmjyqiUSGaFLcoZIUlgDHhVj1y4SKlQrpYTr4xTGYOTkMlj6PdiyDAYcA6//N8Sb8ExewKDRhdRsGMmoeou4FcdxnFbrQkJbywVSC0V333KprAln4E4lkoNDRuiSnCGacAdF/R4Vp6qahkINR6j4qt11REcerUOlm17G0xdBPARCwId/oHBAAEMpoiAKQWdvu1F6Ty2XhkiCUMykKW5i23IdUknv021BF0KoQoiPhBAvJV+PFEK8L4TYJIR4Rgjh6aoNiaQnRBOpCF3DWxMiVBQAwBe2sDVBUd0ysE046kxXzEfMgHHzYNXjFKp7sGwPhuanIra7XUFvz3Lxakqn9dNb8kWt6wE7zr6MHImkNzmQCP17wKctXv8S+LXjOKOBeuDbmeyYRLI/KcvFr6vk1cWIlripiEWWwCnQEBv+BoVHwHkPwLCTYdZP4KRrwIxS+NHPAYj6yyk0Gtqtid6e5eI9gAi9snaf3ZLKyJFIepNuCboQYihwDvCH5GsBzAKeTR7yGDAvGx2USFJEExZCQDzRQFGTg5Gcsl1iKegFGmxeCmPPgUAJXP4qDDsBhh4L162hcNQotw1/OQVmqFPLRd/PculsQYyWbKvdl6WRysiRSHqT7kbodwM3AamnoBRocBwn9b1yBzAkw32TSFoRSVj4dZU9X6xDAZQBQ/E4kOcICgtiYMVh8NS2J+ZXUDD6aACivjIKEk3tTi4y0xF6yyyX7uehV7YQdBmhd40QolUdFNM0KS8vZ+7cueltr776KtOnT2fcuHFMnTo1XW731ltv5c477wTg0ksvTU/Jnzx5MkuWLOnwmnfddRdjx45l4sSJTJ48meuvvz5dxKsr6urqmDNnDkcddRRz5syhvr7+YG47q3Qp6EKIucBex3FWHswFhBBXCiFWCCFWVFdXH0wTEgkAUcMi4FGp2boBAO+gkZRYrviWB5IPV8mR7Z6rDzqKgFJH1F9OfiLcbuZKqpaLImwe/ORB6mJ1BzQouq0uTFHALUsgBb1rgsEga9euTU+f/8c//sGQIfviwrVr13LNNdfwxBNPsH79elasWMHo0aPbbeuOO+5g9erV3H333emJQ/vzwAMP8Prrr/Pee++xZs0aPvzwQwYMGJC+flcCffvttzN79mw2btzI7Nmzuf32Q1syoT26E6GfApwrhKgEnsa1Wn4DFAkhUmmPQ4Gd7Z3sOM6DjuNMdxxnenl5eQa6LDlciSYs/B6V0I4tABQOG0up7b6FB3l3uAeVjGr/5PKxFKp7aA6UU5iItBuhJ5KWS2XzBu796F4WfbjogNIWK2sjTBxSCEhB7y5nn302L7/8MgBPPfUUCxYsSO9btGgR//Vf/8XYsWMBt3bKVVdd1Wl7J510Ejt3titF/OIXv+D+++9P1zz3eDzcfPPNFBQUADBv3jzOPfdc/vrXv7ZbB+bFF19k4cKFgFvkq73qj4eaLvPQHcf5EfAjACHETOAHjuP8mxDiL8AFuCK/EHgxi/2USIgkTPy6SmynK95FQ8dQbK3BwmGQ2Ai+Qtc/b4/ikRRqVdT4p5JfG2t3FaKU5VIX3wvAy1te5tS844iZ+by7uZaigM4xgwo67Ft1U5z504fy1saanBL0X37wSzbUbchom2NLxvLD43/Y5XHf/OY3+dnPfsbcuXP55JNPuPzyy9OVDdeuXdtqRaPu8Pe//51589oO54VCIZqbmxk5cmSH577xxhv861//4uGHH+aGG27gwgsv5PLLL09/K6iqqmLQoEEAVFRUUFVVdUB96w16kof+Q+B6IcQmXE/9oS6Ol0h6RCRh4fdo2Hv20hxU8efnUWorNCoOeZFK127Zb7JQGlWjsMDA8BSRH7fbXYXISAu6+6CW+cv4LP4sMcPi+8+s5t6lGzvs257GGACjB+ShKSKnBP1QMmnSJCorK3nqqac4++yzD7qdG2+8kTFjxnDRRRfxwx92/UHy2muvMWXKFEaMGME777wDuJ7+zJkz+eMf/8jKlSsRQjB27Fiee+65NucLIdpMTOsLHNBMUcdx3gDeSP6+BTg+812SSNonZlgEdBW9uoFIiZ9SXaHYEtQqDnpjpZvV0gkFpV6oAr9V0G6EnrJcamJVFHgKOHvk2Tyx/iliRoI9ht3p2qLhZFmCPK9OgV/PKUHvTiSdTc4991x+8IMf8MYbb1BbW5vePn78eFauXMnkyZO7bOOOO+7gggsu4N577+Xyyy9n5crWQ34FBQXk5eWxdetWRo4cyZlnnsmZZ57J3LlzSSQS6eOi0SgvvPACDz/8MA0NDfzmN79hzpw5gFtvZvfu3QwaNIjdu3czYEDbukGHGjlTVJIzRBLuoGhefYx4aT4eVaHYFjRrFiK0o8MB0RT+cjfN0Wv7209bTG6rju5hUHAQUwZMwcZA8e0C9uWpt0eqVnvQq1KYY4J+qLn88su55ZZbmDhxYqvtN954I7fddhuff/45ALZt88ADD3Ta1jXXXINt27z22mtt9v3oRz/iqquuSi8E7TgOsVgsvf+mm25i3LhxvPPOO9xxxx2sWLGCq6++Ou2xn3vuuTz22GMAPPbYY3zta187+JvOErKWiyRniCYsfB4Vf8QkVJiHGUqgIfD7mxCO3fGAaBLfQLesrscOEGoRlaUwbVewa5p387W34hy1aRUjDIcNgS+wY8PSlkx7hJOCnufVKPDrhKSgd5uhQ4fy3e9+t832SZMmcffdd7NgwQIikQhCiFYpje0hhOC///u/WbRoEWeeeWarfVdddRXhcJgTTjgBr9dLXl4ep5xyClOnuqmuM2fO5Gc/+xk+n6/dtm+++eZ03fbhw4fz5z//+SDvOHtIQZfkDFHDwq9CMOIQKsgjsWk9AOW+anCA0s4jdF/5ACCOSpDGcC3QeoAsNbGoYMMOjnu1mShb+alf8O//toU6ZqT3t0c4kYrQNTdCj7T9wJC0pmW52xQzZ85k5syZ6ddz585tV8Rblsd99NFHW+07//zzOf/889ucI4Tgxhtv5MYbb2y3P115+KWlpZ3muPcFpOUiyRkiCQsfITwWqCJM5LX7AThDTX697ipCL3M9T0MLEmvY1WZ/wrRBiTFgpztB6Ij/e4C8qMPX124EnE4j9OYWEbq0XCSHCinokpwhmrDwJ9xBM11LUG8OwScaOdF8E864teOUxSRacQXCSWDoQeINu9vsN20b3dPI8GoHqyiPvNNOY+v0o5m7Ikaxtd0V/A4Ix1tG6JoUdMkhQQq6JCcwLZuEZeOLubP5vEqUBuUoQprN70bcA1/6fpdtCF8+HhHG0INYobazlg3LQfc2Mnyvgxjt2jHN530Trwkn1n3YRYSerASpu4OioZiJ48gSupLeRQq6JCeIJqffe6OuoPvtOuoTFdgVgznquDndbserRjH0IITariqUMG10rY6h1RA4ZhwAX5p1Do0BOKGhsnMPPW4S9KgoiqDQr2PZTtqGkUh6CynokpwgVQtdj7iC7kmEiRp+Tj9uMGeOr+h2OwFvAkMLojS1rdth2jZDw7vwWFA0fgoAg4vz2T22jDFf7MVsZzJSinDcJOB1cwwK/bKei+TQIAVdkhNEkoLuiTYC4CjuAGdxRfCA2gn4HQw9iB4OtdlnmA7D691p//5khA7AtAkUN1uUNGzrsN1wwiIvKegFPinokkODFHRJTpAS9JQQW85AAIoHBg6oHV9QxdCD+CJtU+YMy2Z4bSOmKvCMGMHSxz/l+TtWog08BwfB0dUfdNhuOG4S9KqAjNC7S2+Wz7366quZMmUK48aNw+/3M2XKFKZMmcJjjz3WqiAYQE1NDeXl5cTj8WzcdlaReeiSnCDloevNzcR0SNgVCAH5pe1PAukIX54HQwvia4i02WfYDgNDEUKlPj74+3Y+fXs3eSVemjcHaJpwEeP3/LPDdpvjJkGP+zjl+dyfqXIAkvZpWT7X7/d3WD735ZdfZuzYsViWxYMPPthuW6mp/8uWLePKK69k48bWdXfuu+8+ACorK5k7dy6rV68G3KJdN9xwA5FIhEDADQ6effZZvvrVr+L1erNx21lFRuiSnCDloXvCYcJ+QaMYSV6JD1U7sLewr8APikog1naA0zBt8qMGTSVHsPLVLzjmlEFc8ouTmX7OCOrLTqZEmY7TwWII4biZtlyCXi29TdI5vVk+tz0KCgo47bTT+Nvf/pbe9vTTT7eJ2nMFGaFLcoJIciamHo4S80OjM5TCcv8Bt+MrzAfAY7Rd09ywbPIjJk2D3QlKU2YPQwjB8XNH8vaSN6mqmMnut99i8MxZbc51LZdkhJ4S9ERuCPqe224j/mlmy+d6jxlLxY9/3OVxvVU+tzMWLFjAk08+yTe+8Q127drF559/zqxZbf/GuYCM0CU5Qcpy8YRjxH0OoUTJwQl6sbsAhcdoa9UkbIvCiE08MARFExQNdNsXoV34j2zG1AOseOm9dtttjltpQQ94XC9dRuhdc6jK57bknHPO4e233yYUCvHnP/+Z888/H1VVD7ovhxIZoUtygpTl4gsniJR4iRleCg5G0EvKgCZ0u+1gaiLRTF4U4loFJRVBlNA2eO2/YMNLXOkIfm88SN3esnbbdS0XVwRSXnpzjnjo3Ymks0lvlM/tDL/fz1lnncULL7zA008/zV133XVQ99EXkBG6JCdIZbn4IybxgCuqBxOhe0tLAdCcIDEz1mqfEtmLAiTsEsqG5MHi/4Qtb8BpN1NXOB6F9wgHRrN79fpW51m2Q9TYF6EriiDgUYnICL1b9Fb53M5YsGABd911F1VVVZx00kkHdgN9CCnokpwgalgIxyYQtbG8rigXlh9YyiKALz9ptShBQvvNFvVG9pLQ8zAtH6UVXtj+ARx3BZz+I+oKj6Fi4PsAfPLwX1udl6606Nn3hTfg0XLGQz/UdKd87jHHHMOECRPYsmVLp221LJ97IMyZM4ddu3bxjW98o0+uRNRdpOUiyQkiCZN8M4LigKW7EXpB2YGlLAL4gu5b3tCChKp3MqBkaHqfN1xLc9BNmyv1bgPbgBFfAiAWGMwsz7M8aocI7RAYu3ejJ9eXbFmYK0WeV80Zy+VQ0dvlcwFGjBjB2rVr22zXNI3q6rb1fXINGaFLcoJowmaAaALA1gbgL9Dx+A48HlFUBYhj6EGaK1e12ueL1tOc5wp6WfQDEAoc4S5rFw8OIQ+HhrJd1BcdzdZFd/Gn992Zo+G4ic+MM/TvfyGxfTvgiru0XCS9jRR0SU4QNUyKHXfav6VWUFh24HZLCkuxMPQgkc2tZ34Goo2Eg4PwBhX8Vf+Cikngc5cfS+S5kbz3iDCGp4DGN1ey+P5niBkW4Y2b+dWbv6X8qT9QecGFhD/4gKBHk8W5JL2OFHRJThBJWBTb7rR/k7IDniHaEkNTMPQgsR2fttqeF2ki7i2iIBCHHSvSdguAke8K+piyKADbh03nRx8+zo4LL0C/4iIGROqJfP/HqEVF7PnpLQS9qvTQJb2OFHRJThBJWBRYzTgITLuA/JKDn5Zt6QqGFiRRuxcS4fT2vFiYqK+QvNAqsOJw1L6yvE6wHMNRmao0U++vYsPIaSwZNpXPjO2sO3M63/nyd3ly9EbCc04gUVlJsZMgIj10SS8jB0UlOUHMsDjCbMTQgziOSrDo4CN0y+vF0IOYcaBpT3ot0vxolERhIYGCKrhxMwT35Zzrus5up4Rg827MUcMoXzeO3580AWv4KgQfY8Z28Y8dVdQ0wY+AI2q2s9wo7+FdSyQHhozQJTmBYdkUxWuJe4sByCs++Ajd9OkYegAroUB4X+pifszA0vIIFnlbiTmArirsdMrRm3cy7RT3A2C8UkuJt4xiz2AU715uOvYWghMnATBo7xdypqik15GCLskJEqZNMNFE2F8E9EzQHY+KpQUWyty4AAAgAElEQVRw4ipE9gl6IFkOIFjctsa6rirspAxPeCdnTDyNquA2xtSN48QBZ3DugP8lUnkVXz9qHl8afzY1BVC8awMRw8K25TJ0HSGEaFWr5c4772yVjtgVjz76KEII/vnPfVUwFy9ejBCCZ599FgDDMLj55ps56qijmDZtGieddBKvvvoq4KYw1tS4f39VVZkyZQoTJkzgq1/9Kg0NDRm4w95HCrokJzAsB28iSlPQFfRgUU8EPTlxxMxrFaF7bVfIA+VtF5v2qAo7nVK80b0EFJ2NhbsoiwxlsjUTrHyc+DACHpVjSo5hS4WgcPsmHGdfDRpJW7xeL88//3xaVA+GiRMn8vTTT6dfP/XUU61KBfzkJz9h9+7drF27llWrVrF48WKampratOP3+1m9ejVr166lpKQkXW4315CCLskJDMvGE08Q9RejKBDIb1stsbuIZPEsV9DdySSmYaLhpigGK9ouaadrgm32QIRjY+/dwEfGYOLCxF7nS9dCF0JwdMnRbB0oKKyuJWDEpO3SCZqmceWVV/LrX/+6zb7KykpmzZrFpEmTmD17Ntu2tb9a1IwZM/jggw8wDIPm5mY2bdrElCnu8oGRSITf//733Hvvvena5gMHDmT+/Pmd9utAS/D2JeSgqCQnSFg23rhBY2ERwUIdoRz89GzH68YxipUPEbcYVKy2DkN3KzEGhhzR5hxNUfiXPRkHhcSaFxhn5hP0NtL4+UTiZUq6wmJQDxIeNRDe2s3I0G7Cib4fob/158+p2d521mZPKDsijxnzx3R53NVXX82kSZO46aabWm2/9tprWbhwIQsXLuThhx/mu9/9LosXL25zvhCCM844g9dee43GxkbOPfdctm7dCsCmTZsYNmwYBQUF3e63ZVksWbKEb3/7290+py8hI3RJTpAwbbxxC8NbRF7xgRflaolICbodTFsuoV3biHsLAQv/wEFtzvGoCjUUUl12HOr6xdymP8Q38n4HjsPg5fXMq1JY9sQGwo1xikYdDcCASL2M0LugoKCASy65hHvuuafV9nfffZeLLroIgIsvvpjly5d32MY3v/lNnn766R4tTBGNRpkyZQoVFRVUVVUxZ86crk/qg8gIXZITGJaNN2ZjakUESw4+ZRFAJMvcqnYwbbnUb99CwlOIIpqS5QFao2vuN4IvKr7MgLX/y1gFUOCE8UtY3HA2ar3BZ+/tobk+xtATpgBvUBqvzonZot2JpLPJddddx7Rp07jssssO6vzjjz+eNWvWEAgEGDNm372MHj2abdu2EQqFuozSUx56JBLhzDPP5L777mu3YFhfR0bokpzAsBy8cRtLKyavBwOiAEoqQhcB4k17AQjtriTuLUTTw+2eoydFfmv5LByhstYewd+t4xgfeppRea8yZeATnHz+kWxbV0dp3TiiHigz9qRXWpJ0TElJCfPnz+ehhx5Kbzv55JPTg51PPvkkM2bM6LSN22+/ndtuu63VtkAgwLe//W2+973vkUgkAKiuruYvf/lLh+0EAgHuuecefvWrX2Gaufe3k4IuyQkSpoXHCuAID3nFPYvQVY+K49gYWpCahnoAont2kvAUoPvb97xTgt6kFrPiuLv4nnE1L1on40/UcnnDbzkv8iwTj9rLwEFQ9XqU2jyF0liDrLjYTW644YZW2S733nsvjzzyCJMmTeLxxx/nN7/5Tafnf+UrX+H0009vs/3nP/855eXljBs3jgkTJjB37twuo/WpU6cyadIknnrqqYO7mUOItFwkOYFthnDUnqcsAmiqgkECQw+yp6GZIY6DtWcHMe8sCoJtU9rA9dDBtX42lJzOZmctO5xyqvKO4W1jDGcnXsP3r9s51ozzSuQ69gycSGntNumhd0LL8rkDBw4kEomkXw8fPpylS5d2ev6ll17KpZde2mZ7y3K6Ho+HRYsWtVsfvbKyst2+AK0Wjc4luozQhRA+IcQHQoiPhRDrhBD/k9w+UgjxvhBikxDiGSHEweeRSSSd4DgOXqOWuCeZVljYs7eaoghiwsHQg9RFBcRDiOpaTD0fvbBtDjqArroeumHaNEbcr+9xPDw+8THuVi9jReGZsPF1hitvkafU0Fx8KqWRiBR0Sa/SHcslDsxyHGcyMAU4SwhxIvBL4NeO44wG6oHczPOR9Hks2yFoNmBqbslcT6BnXyw1RRBWVLcmelSDcA2iyZ3RaZW2zXABUBWBEG6E3hg18OsqAY9KzLCIJCw+HHABKBrKKdcwLvA6tmcsPjufcNToUV8lkgOhS0F3XFLfR/TkPweYBTyb3P4YMC8rPZQc9iQsm3yrEVNzvXOvv2eCriqCZkUhoQcxwyqEa1CjOgBafttp/+DmO+uqQsJyaIgYFAV0fLpKzLSIJkya8kfDDZ/BnJ8xcpDrBUeDwzCSHn1fxHFkWYK+Rk//Jt0aFBVCqEKI1cBe4B/AZqDBcZzU98kdwJAOzr1SCLFCCLGiPyzxJOl9DNMhz2rC0tz8c08PBV1TBFEFEp48lLCCE6pCM7uO/j2qgmHZNEQNCv06Pk0hZthEDMudWBQsAyEoGDMBgJivFProe97n81FbWytFvQ/hOA61tbX4fAc/6N+tJ8NxHAuYIoQoAl4Axnb3Ao7jPAg8CDB9+nT57pEcMAnLJmg2YaoDARs9mUd+sKhJD93SAnibFczP38PS8oDOBV1XhWu5JCP0hOnaL44Dfs++PnmOnoF4pYmovxRq9/Sor9li6NCh7Nixo1+so9mf8Pl8DB06tOsDO+CAQh3HcRqEEMuAk4AiIYSWjNKHArlZ/EDS50lYNvlmGFPz49GsHq/KrimCqABH6BSEPdR89BKG7q4d6g3oHZ+XjNAbowYjygI0RAzqw+4AaaCFoFMxCV192Y3Q67f3qK/ZQtd1Ro4ceai7Ickw3clyKU9G5ggh/MAc4FNgGXBB8rCFwIvZ6qTk8MYwbfKNMKbmw+uxe9yeqgjCivtl0W8Usrm2HkNzvXNfXseC7lEVEqZDQzRBkd+DT1epi7Qj6PkVBLx1RH2leBt397i/Ekl36U6EPgh4TAih4n4A/NlxnJeEEOuBp4UQPwc+Ah7qrBGJ5GAxLJt8I4Kh+fH0bE4RAKqiEBKuoCd8pdR5SkAPYmDh6cTOSVku+wZFFbbVuVksfk+LR0kIivMSVDaV4K+v7XmHJZJu0qWgO47zCTC1ne1bgOOz0SmJpCUJyyZoxDF0P0Fvzyc3a4oglIzQY74SAmtW0pB/PFHFRlc6bl9XFZrjJnHTpjCZ5dKQitD11h8EA0q9bK3SCUZlHrqk95BT/yV9Hne1IgND9+H19WxAFFzLpUlxQEDMW8KQnXH2FucRFQJN7dif11WFmuY4QDLLRSW1IFErywUoH+QuYec1ezarVSI5EKSgS/o8huUQSJhYmh+9hymLAJoqsAX48nVivhKa83VqSgqICpGeEdoeuqZQ3eQKuuuh73t8/PsJesERbqaCSl6P+yuRdBcp6JI+j2HZ+BM2lurvNAulu6jJxTF8RV6sURM4+r7/o0wdQVQ4aJ1YLh5VpCP01MSiFAFP6w+a/COPcn9RinrcX4mku0hBl/R5EpaNN2FjKX48gZ5bGFpK0As9xHylFBx/EsQhJujScjEs12Mp9O8v6K0jdK10GMJpxNJLcAw5/V/SO0hBl/R5EqaNx9RAqHjyerZaEYCSzGP3FHhobohjmTZO3CYqnHSZ3PZoua/Qr+PVOrZcUBQUUU/MW0K8Tma6SHoHKeiSPk/UiKHbrpB7gz0X9FQU7inw4NgOdbvcRS2iipO2Y9qjpaAXBXS8LSJ0v952sFZVIhh6kNqqyh73WSLpDlLQJX2eZiOMZrsJ6J68QI/bU5M+uVbg+vHV29wa6DFBp2mLnuQydKoiyPNqrQdF2xF0TYtj6HnU7anscZ8lku4gBV3S52mOhlBJFubqYelc2Oeh6/sJelQ4nXroqQHTIr+OEAKf5oq4T1dQ2onsvR4LQw9SX7Wtx32WSLqDFHRJnyfeXI+ZoUqLsC/LRQ26gr5nayPQtaCnLJdCv3tealB0/wyXFD4/2KqXhqq9Pe6zRNIdpKBL+jxGC0HvaS102BehO6pgyJgiara75f6j3bRcCgMpQXePbc9uAQgE3b5Ga0I97rNE0h2koEv6PGakEVNNeugZEPSUPWLaNifOOzK9Pa467VonKVIRelGbCL19QdeC7lJ5RkOsx32WSLqDFHRJn8cON+6zXDIw9T8VoVu2Q8WoQkZOLsNRBXYnKYvQQtADrlCn0hY7EnQ1KfxOWC4DIOkdpKBL+jxONJQWdN2XOQ/dTBZimX3pOEInlXQ67R869tDb5KCnjs9LToKK9bzPEkl3kIIu6fOIsLueqKYanVoi3SWVrWIlBd3r14jnq2hdROiepODvE/RUhN6+YGv57oeQavnkUm+SXkEKuqTPo0frMVU/Hj0zoqi2sFxSGLbT7Qi9KDko6tW6iNDz88GxUe0gDfGGHvdbIukKKeiSPo8nGsLS/BkpnQutPfQUpmV3OksU3GqLsE/Q04OiHWS5qIECVCeCSpDqqFy7U5J9pKBL+jxaPIypevEkByN7yv4eOoBpdV5pEdrz0LsYFPUVoDtNOEoekYhMXZRkHynokj6PHo9hqR70DNRxgZaWy771Sc1uWC77PHT3gyUVofs6FPRCPDRj6HlE62SELsk+UtAlfR49nsBSdTRfZlb/0dqL0G27y0FRrY2HnozQ9Q4GRQP5eJQQhh4kLgVd0gtIQZf0efSEiaV60DqIhA+UdgdFLSct9B3xpdFlfOvEYQwvcQuE5Xk1rjx1FHPGDWz3eI/Hi0c0u4LeWJ+RvksknSETZCV9Hj1hESnwoHkyE3/sn7YI7qBoZ7XQAY4oCfDzeRPTr4UQ/PjsYzo83qMpeJQIhp5HolFmuUiyj4zQJX0e3bCxlQxG6Go7WS5254W5DgavpqAqUWxFx2gIZ7RtiaQ9pKBL+jaOg54AW9HR9My8XVXR1kM3LLvTwlwHg0dTUDS3jovZKJehk2QfKeiSvk28Cd0AR/Fm1UM3rWxE6CqWZgJgN9tdHC2R9Bwp6JI+jRPajW64WSWZ89CTEbrVeqZoVxOLDhRdFcRVCwArktGmJZJ2kYIu6dNEm3fjtdy870xF6IoiEGK/PPRuDIoeKEIIjGSXnZh81CTZR77LJH2acPMePGYyQs+Qhw5ulG45+88UzWyEDhBPLopBQs942xLJ/khBl/RpmpuqUJ3MRujg+uitBkXtzEfoAHFFBcfGMTMzKUoi6Qwp6JI+TbR+D5bqCrqeSUEXAquFh25lIW0RIK4FUe0w2L6Mty2R7I8UdEmfJtpYg61kdlAU2kbo3SnOdTDE1SCK3YxDZurQSCSdIQVd0qeJheqwlJTlkkEPXVX2m/pvd1mc62CIK0EUpxlHBDLetkSyP1LQJX2aRHMTtpqK0LPnoWdjpihArWcQKk1YSjDjbUsk+yMFXdKnSYSb9kXoHSwkcTBoimiVtmhYdlYsl92ekaiiCUvLw0jEMt6+RNKSLt/BQogjhBDLhBDrhRDrhBDfS24vEUL8QwixMfmzOPvdlRxuJCKx9KBopj10q8XkzWylLTrePFBiGHoe4QZZQleSXbrzhJjADY7jjANOBK4WQowDbgaWOI5zFLAk+VoiyShWNN5iUDSzlkvrBS66rod+MHhUBVNN4CgqDVVS0CXZpct3sOM4ux3HWZX8vQn4FBgCfA14LHnYY8C8bHVScvhixw3sLEXoKQ/dcRwMq+sViw4Gj6YQSxapDu2qynj7EklLDugJEUKMAKYC7wMDHcfZndy1B2i3yr8Q4kohxAohxIrqahmhSA4AM46TsFt46BmeKZoU9NTPbHjoXk0lpLqK3ry9MuPtSyQt6fY7WAiRBzwHXOc4TqsVbx3HcQCnvfMcx3nQcZzpjuNMLy8v71FnJYcZkTocU8FUPaCAkkFLRFWUdISe+pmNLBePplCl5QEQ3SsDGkl26dYTIoTQccX8Scdxnk9urhJCDEruHwTszU4XJYct0XowwNB0hJbZ6LllhJ4S9GxZLju0IgCicpELSZbpTpaLAB4CPnUc564Wu/4KLEz+vhB4MfPdkxzWROsQhkJC96JkWNDVloKeTHfJjuWisFd1c9ATsoSuJMt0Z03RU4CLgTVCiNXJbT8Gbgf+LIT4NvAFMD87XZQctkTrUQ0wAx6EntnouaWgG1Z2I/S9ih9hWxgJT8bbl0ha0qWgO46zHOjonT47s92RSFoQqUM1BIbqQc1ChG4m0xZTP7ORtujVVKK2H81sxhSyQJcku8iZopK+S7QeLQGW6kXJYIYL7OehW056W6bxagrYOqrZhGnL6f+S7CIFXdJ3idahGwJT9aBmWNBb5qEbKQ89G5aLqgAKit2ESX7G25dIWiIFXdJ3idajG2ArXtQM1nGB9rNcsjIomvogcpqxlHwwohm/hkSSQgq6pO8Sa8SbAFvoWYjQlbTVkorQszIomvTlHaUZUy3ACddm/BoSSQop6JI+ixFtxJ8AFE9Gp/0DqArYzv4eevYidEeL4igejIaajF9DIkkhBV3SZ4nEGvGY4Ag9o4W5wBXvfTNFs+ehezW3344eByBSU5fxa0gkKaSgS/os4eYmAITQ0DMeobfNcsnGItH+5AeR7bcACO+Rloske0hBl/RZYpFmHECgZSFCb5mHnr20xUByMNcOuo9aeE9jxq8hkaSQgi7ps0QjURyhIoSC7s2soKuKwLL2T1vMXoRuFbiTihrr5Px/SfaQgi7pm1gGsYSZXq3Ik+kIXd2Xh25mcep/INlvs9CdVNTYYGT8GhJJCinokr5JvImEKbCTtdA9GY7QFSH2ZbkkrRc1C5aL3+NW1zDzitGNZpojmb+GRJJCCrqkbxJrJGGqWMnl5zIt6FqrmaLZGxRNeeiGvxRPoomoLNAlySJS0CV9k3gI0xRYqhfIvKCripL20NNpi1mJ0FOCXoaeCJEw/Rm/hkSSQgq6pG8Sb8I0BabmCqA/T89o8y099GxG6F5NQRFgiXxUs4mEIwt0SbKHFHRJ3yQWwjaVtKAHApkV9Pby0LMxsUgIQcCjYZl+cEKYQhbokmQPKeiSvkk8hG0IjKSg+4IZjtDbq4eehan/4NouhqFh04yt+DEjskCXJDtIQZf0TWIhMAQxnyvo3kB3FtfqPm6WCziOk9W0RXBTF6OGja26OejRWlnPRZIdpKBL+ibxRjAFMU8AAI8/s4KeGgC1bCerKxYB+HWVSMLC1mMAxOtkPRdJdpCCLumbxEIocYWYL4AhHNQMi62ajMZN20kPimYjywWSEXrCwvaZAMTqG7JyHYlECrqkbxIPoccUEp4giSzobKsIPcuC7veoRBImIuBeJ9YQysp1JBIp6JK+SSyEJwaGHsTIwrtUTQ6A/mN9FZ9XNSW3ZUnQdY1IwkIpcAd2I9VS0CXZIbPGpESSKeJN+KNgagGMLAxWliSzZq57ZjUApUEPQmRzUNRCLc+HOojWhbNyHYlECrqkT+JEGwnEwFYCWJmdJArAvClDGD+4MF1pcWCyGmI2CHjcQVHPkDKU9QmaGxNZu5bk8EYKuqRPYjQ2oDhgKz7MLE34GTOwdyb5+JODonkDB9NghmmK2r1yXcnhh/TQJX2SUFOz+4vIjqD3JoHkoGjRwOHoRphoPAtfOSQSpKBL+ihNTVEcQHF07Bz/HhnwaNgOFA4YhWZEiJveQ90lST9FCrqk72FbhKMGtqIjULG03I7Q/ckSugXeAeCEMWxZcVGSHaSgS/oesUZixr7CXI6W22/T1KpFwvHiEMESgUPcI0l/JbefFEn/pG4Libi6T9D1HI/Qk4IeSVg4SgRLycMx5VJ0kswjBV3S96jZiJFQiHlSgp7bb9NAchm6aMICPQFCxWioPcS9kvRHcvtJkfRPajdix1WaAq6gixwX9JSHHkmYKKl6LnVS0CWZJ7efFEn/pGYjGDrhQNJr9vQTy8Ww0ILuI9e8p+pQdknST+lS0IUQDwsh9goh1rbYViKE+IcQYmPyZ3F2uyk5rKjZiBpXifvzABCe3M7bTg2KRhMWvmL3W8feHdsOZZck/ZTuROiPAmftt+1mYInjOEcBS5KvJZKeY1tQtwUtDobPFXTFk9tfJAMtBkXzB5YAUFslLRdJ5unySXEc501g/4r8XwMeS/7+GDAvw/2SHK40bAMrjjdiY/rysXFQc91DT0foJiVHDAOgqT5yKLsk6acc7JMy0HGc3cnf9wADM9QfyeFOzUYcB3wRG9uTR0IBPefz0N0sl0jComLU0e7vIfNQdknST+nxk+I4jgM4He0XQlwphFghhFhRXV3d08tJ+ju1G7ETAsUBRysgpmRv8ebeYl+Wi0XZsCPRzAiJaG7fk6RvcrDvqiohxCCA5M+9HR3oOM6DjuNMdxxnenl5+UFeTnLYULsZ0y4EwFELCCsOWo4X51IVgVdTiBoWWjAPPdGIZQTBklG6JLMcrKD/FViY/H0h8GJmuiM57KnfSlwdBIBj59EsHPQsLd7cm6QqLgKoVgibQqjdeIh7JelvdCdt8SngXeBoIcQOIcS3gduBOUKIjcAZydcSSc+p20qTU4QD2AkvTcLJ2tJwvUnAoxGJWwAoNGOLItj98SHulaS/0WVhUsdxFnSwa3aG+yI53LFMaNxOc2I4phYAW6FRmOj9QNDzfRpNcTdCV7QollqAs+tfiMnfPMQ9k/Qncv+7bC7w5h3w+euHuhd9n9AOsE1iEajPd330ZuGg9QPLJd+n0RRzC3Ip3gSOohPf/tkh7pWkv5H7T0pvE28+sMGsqvWw9Ofw0R+z16f+Qt1WAIymBHWFrqCHFXJ+UBQg36fTFEt66EE3Kaxp1y5wOkwQk2QDx4HGHYe6F1lDCvqBYNtw/0nwr1+6Lx2bX37wS776wlf5v4//D8NqpyTqe/e5P0O7erGjOUq9K+hOQ5RQXhHgRuh6jqctQipCdwVdL3KdzpqwFxq3H8puHX58/BT8eoIbaPVDcv9J6U32fOLOZNy1CoDb3r+NJz59Ak3R+O3q3/KnDX9qfXxTFXzyZ/f3xp293NkcpG4rqB7U+jCRQFLQ+0HaIrS2XPxlbtGxWqOsV4XFtmwSsX6aKrnuBXh0LsSbOj7GcWD53YADn73Sa13rTaSgd4PIu/cSX/Nn2LzU3VC7iR1NO3jms2dYMHYBz5/7PGOKx7Bs+7LWJ376V7ASMG4eNFdBexG8ZB/1W3EKh+FpCGP6SvEENCxBP/HQdZrjJo7jkD/YrWXXaJTC3nW91of3XtzCEz99r/+Ium3BzlUQC8ErN0LlW/D2b9K739rxFpsbNuOkbK1N/4Saz0D1wMZ/HKJOZ5ccX343+0T3rmf+uvsYZzosUga7Gxu28e6O5QB8c+w3EUJw+hGn8/s1v6c+Vk+xL1l8snI5FAyFUTNh/WJo2oNZMIgn1j/BtqZt/OTEnyBE7kefGaOuEss3DNXagOMpwZevQ5x+keWS59UwLIe4aZM/aBCaESGiVvRahG6ZNp++vZtY2GD98l1MOWNYr1w3q7z/ALz2YygcBuFqGHIsvPNbOPYyVser+c8l/wmAX/NTqHi5uT7E7PxBMOkb8M49EKmDQMkhvonMkvuhT5b5v6U/4AtdZ5lXI7r7I8gfBI7Nu9uWMDAwkJEFIwE4/YjTsR2bt3a+5Z7oOK6gj/gSFA4lIgSPr3uMb7z0DX618lf85fO/8OGeDw/hnfUxajdD7UZMpQIAoRbjzfcA/SNCL/C5sVMoZlBYMRxPopGYUwZ7e0fQK9fUEAsb+PN1Vv9zO5Zp98p1s4bjwEdPuM9j8x6YeCFc+Cg4Niz9X/62+W/4VB8/PuHHnD/4NIqb9nJ9wOblU66Asee4x614qN/NBcj9JyVL2LbD2o1v8lhsG0cqecQUhff8Pp458hRWeb18smMrZ2y7mKd+8QFP/eIDEhsKKfOWc++q33LF3/+dF1c+jBOpITz4JPYo+VxVUc6iTc/gOIL/Ou5nFHgKeXzdn6gPJzCsHH+4ekqkDp68EHQ/ZsVMAISTjydfB0DvFx66ey9NMZPCAUPxJBox7AKo+RzMRNavv+Gd3QQLPcy6+BjCDXE2rej7C2zEDIv6cKLVv+qmMJ/s2UT1pndg73rCJ15Pw7+vpn7O3dTrFcSOvRLj46d4dcvLfGnwTM464nyu8Y/j0d1VHF04mt/s+Cd1hROwA2Vu9tmDp0O04VDfasaQlksH/PdjbzHx5ev4w+cWuhkCYQPFlIh32Fv+Fb5+1EUA2I0rSXiLeGd7M5eFLqJ49zOsGLmSeye9zb1HDKbmo6extDCK18uJu8aifXYMv32vkZryySyLL2Pa/3uOSYOG8eLVpxzaGz6UrH0O6jbDwpcwVlbhIBCGHz3PFcFcL84F7qAouII+sqwIxWrEcCrANl1Rr5iQtWs31cX4Yl0dU+cMY/jEUgrL/ax/ezdHnzgoa9fsKZGEyYm3LSGU9vttvANeQS/+AKEkEA6MGTyI6mVLGffMk0ystBlaraLaCoO0Cn78RiMk3uHvytcZ4q1llLeIQVv97D12I9N/9SQjEz/kksC7LLSex2najfAXHdL7zRRS0Dvg2D/9mrE7InxyjIcBI+axqfl96hPbCajHo2r/hmVvZpRvJ4PyNjKk5h2+SJzCxwX/xo4xP2Dmp0/wzXdWsLcC3jjO4uOpI/nOri84ulhhVPw3bCs7jecn3MxDX7zF2DEf8/H6AhojBoUB/VDf9qGheS8gYPjJhF+6h5ivGByBpyAp6P0oQm+OmShCAacBk3wsR0N9/36Y879Z83PX/msnOA7jTx2MEIJjThnEe4u30FAVoWhgoNNzm+pi7K0MoeoKulelaECAYJE3K/1sydaaMKGYyZxpTcT0j/CGP+N9azNfbsrnrPXVsMeDb7eXsnrXMgn5YUuFQNUDfGqpeByH6cpe6p6t2cYAACAASURBVHxFBBsiNNf4+Y8tHxFbCcvnLsd/9i1sXmlAw/M0VO+ieMAxWb+n3kAKejtEExajajbx1ngF7cZvMfuEm/DseIs7X7mPs9YspFjfyfQJrzD6shfh3mPBdyQVgQQT99zGa+K3rBeX0TBmKkfseIcLXvqMi96LM2BqMYXlbhbMsJo3uW7Sb9glzmLptiUIdSof72jg1DEHV43SsmzWvbmTLatrsC2bsqH5lB2Rx7BxJeQV+zL5X5MdIrWumCkqkZ3bqSo9AgB/ubtcW3+wXPK8qQjdzXQSYi8IlbrR/0H5R/dB7Ra4/NWMX9dIWKxbvpORU8opKHX/P48+YRDvv7iFT9/dzUnzjmz3vLrdYd55bhNfrKttVRxb1RVOOu9IJs0cisjiYPX2uggBYoS8r7C+fhWnrXF4YIVBSZUJBFEC/7+98w6Pqkob+O/MTGaSTHrvIb1QQiihd5AiYltdu65l3VXXtWzRba6fy+qubfVbdV2/dcWGBUVFivTeIQRIIIX03sukTTvfH3cgIAQSCATi/T3PPHfmlnPPnDn3nfe85z3v64JrWhquY8dS659CWY6V+mNN2O12rIEtTBkXRMT264maNBaOfov0GYx5zELWPX4rM5fuJmxWIQdGDYG10FpfyUDJoakK9DNwrKAS53YrpX4afpJwIwDDDCNZkP0wei8dC5J24VpVACW7FFPBtW+CuRXXvF+z4GEvDqxrY/+mOMoHDccpDhIbN2JZ/TmdSXr8RhvRWJth09/4WVASq+yd6H23cKBkxHkL9L3LC9m7ohCfECMGFx1Hd1Rg2WhDaAQxI/yZcGMcbt4XX6s6b9rqwNUXAHN5GXXeESDA4KfUeaCZXACEQUlBVxvzMP7ebXD4yz6/p81qZ9uSPDpbraRMDzux383bQORQPw6sKUajFUSn+KPTa2htMlNXaqLkaD0lmfU4OWsZPW8Qg4b5YbdJLJ02MtaXsPWzXAoP1jJmQTQGVx1ega597q1VXVXJVsNDXNUUzDP7PBi8pgF9WDCeP5mMcfaNOA8ejNWuYdPH2WQvq8Tdx5lhk5R+k59ew44vO0nXvovb8hYMttvwDPYlKNJA7e8eRv/4XxF/ex7jy/8LQGdTZZ/WvT9RBfoZqN69nWCgzd+FaM9opJRsWpyD3WZnwaMpuB7ZBjnFsPxJcDJC8rXQrCwc0hZvZmRgBUMC/knZ3C0c3N7IoZypxExwhW2LaK50xjMlBpfSLwnzsDI72pf13ttIL7kdiOt9XYua2beqiMSxQcy4JxkAaZc0VLVxdEcFhzaWUpxZz9CpocSNDsQ3xK1P2shus1Oe10RIrCea8/FCqc+Hrx6GWz46RaDbq6oxBU/ALVCHzaEB6gaA26KHw+TS7NDQce9EY+ugpriFpMAA6GhUQkpo++aRrC01seGDI1QXtTBsehjBsafaiGfclcTmT3MUZWB54al19XNm6PQwRs6OxMXhaXScsERvsraWs/XzXL74+z4AvINcGTo1jPgxQVTlN+Hh53JOU8650JXsoMBZElVsJXltPe6DfQldsvHEH4fVbGP5mxmU5zQyen4Uo+ZGnuiHE34UR3FmHXnfrKKzuox2uwfHKoLIev8oemMEKycM5/5lB3DfuQubFFibu03ncMWhCvQzoDmomEa84xIQQpB/oIaSrHom3hSHp78ruD8ARdvh2DoYfgcY3MAvHtyCIOc7MFVhCE8iemw0g9Ik25fkkbEePKbmE1JZQu3mYrArAuyOYCeKpls4ZNiNlGN7pelIKdn0cTauHnom3tz1ZyA0Ap9gI+NviCV5YghbP8tl/3fF7FtVxLCpYYy9PgYnR57L88FqsfHdO5kUHqwldlQAM3+SjLa3Qr1kDxRvV1bfttWDTxRSSjRV9Vgjw/ELd8dqU8b6A8Ft0e17Grol2Af3o2XUFPhAlNIXaG8AtwtPAnNkewUbPzyKwahjzoNDiEkNOO0cZzcnrrpvMKOvHkR9eSs2qx0Xdz0+IUZcPfTd9kMhBIMnhRIx2Jea4hbams0c2V7B5k9y2PxJjuMciEsLZPItCRhczk/E+NbtZo+zgXu+sqFztRH824dP1MlmtbPq34cpy2lk5j3JJIwJOuVajUYwaKgfgzRu8PlfAZD3rKRGDGHDh0eJLnmAIzHvMHTDaupjPbCbBk4mNVWgnwHnokwsWggcPIHGqjY2fpyNT4iRIVNDHSd4wu2fK8Pk6KnKPiFg6I9gxz+Vz1OfBpTONeFHsbRXFpOedQuxLyYTHuxOZ/ZROg4fpvadt3jq8yZ+fccmShseINyn55pNcVY91UUtTL09AUM3E6peAa7MfySFdpOZPd8WcnBjKXXlJuY/nILuPIS6zWZn5VuHKD5ST0yqP3l7q+kwWZh2Z+IJG22PaG9Qti2VioYeNhJ7SwtWuzNC40noIB8a7Io750CYFNVqBEa9lpYOK49/egCT2cD8lhIqy2KQrr4IUNph0wvKCshr/nFe98naVs6GD44SnuTNVfcNwdnt7BPt3kFGvIOMvb6Pu48z7j7K/MzgSSGUZTdQnFVPSKwX5XmNZKwtobqwhfmPDFOUoF4S3XqADVYfplSZ8U/rQJtyDaCMDNf8J5Oiw3VMvT3hNGF+ChFjT7wV/vEEGD248Tcj+fCFrZTLOwhPfwVrlDva9tpe1+9y5cpXfS4CTvU1lPtAmEjg69fSkXbJ7AeGnKqFarQw7KZTNapZz8HVr4B/Igy58cRuoRFMeWAKBqOOXSsr0boZcR05Ep+77yb81RdxMcPYwjwOlDT0uI5SSvYuL8TN20DiuHO7n7m46Zl8Szwz70mmLKeRFf86hMWRcKE399z0cTbFWfVMuyOROQ8OZdqdiVQWNPPpc7tpqe/oeWHHBXpz+QmTi6WikhY3ZUI0IMLzhIY+EIJzgeLpUlBrYml6Gbn6UNxMpVit0NTp8G5pq1NGfqV7z6v8unITmxZnE57sw7yHhp1TmPcVQgjCEn0Yf0Msg4b5Mf6GWBY8NpwOk4WvXkmnua69V+XZWhuIsBUyZL+FTqMTno/+HQzuSLtkwwdHOZZew8Sb4hg8KfTsBbkHgfcgRQFzmPR0TlpueCgNu1ZyJPZ22urc0XeoAn3A0mmqR9tkoyhsHEX/1WCz2Fnw6HB8gnugxWg0MPo+eHgX+J1qD9e76BgxO5LirHrKc7sEt8voSbSHCGbut7C9uOcPclVBM5X5TYyYHYlW1/OfMWFMENPvTKT0SD1fvZpOu6lni1qsZhtr/pPJkW0VjJo3iOQJShiE5Akh3Pz0KKxmOxnrehE5sL1e2dbmgt3iEOjlNHnGIJH4hblhtQ0cDR0Us8u+IuW3Hz18HE6dSntV1TnmNdrqoKUCOpp6XbbNZmf9oiPonXXMvCcZndP5m9T6gtB4bxY8NhxLp43P/7qXDR8cobG6rUfXNh7dRL5FT2qepH3BVDSjbkVKybYv8zi6s5LR86NImRHes4oMv12JpXSSCcnD1wXL6CJaPAZRZhqPi6XnitTljirQv0fppmXkht2L1fMOgqM9+fEf0vCPcO+TsodODcPoZWDzp7nYTlodGjItmaBG6NzzbY/Lytpajs6gJWHsWYac3ZA0PoQ5Dw6lrszEly/uP6cGZbfZWfn2IXL3VTPu+hjSrok65bh3kJHY0QFkbS2ns62HAciOa+hVh5Stqy8dpRWUh0yg3a8MvYsOi92hoQ8Qge7urDuxUOaW1NE0OFegszawf4cZu9Qoo5X2BmWCtBe0NZv55h8HqC5qYcqtCbh66M990SXAP9ydax9PJSzJm5y91Xy6cA/Zu7r3KGlt6uTwplIyl2dxuOxGqv1TMUy5hcaqNvZ8W0DG2hKGTgtj9NWDel6JKb+BBa+ftnvotHicTVmUOc9EYx4Y/QtUgX4K6WuKWb0smBr/ETQZN7Lgl6kYPfvO3c9Jr2Xyj+OpKzWRsbZLmw2Yez1WrSQ8/1CPyjG3W8ndW0X8qAD0zuc3DRI93J8Fjw6nvcXM12fR1KWUbF2SR3FmPVNvS2DE7MgzTpgNnxnhcGvrYfKA4wK9+qiydfUlJ9uKxcmNjlRlWfoJDX0AmVwA/NwMjAgPoMxHT0TRV9RXdpLVPrMr8mJns2JH7wHSLln+5kGqC5uZdW8ysSNPnwDtT/zD3Zl9/xBue2YMARHurH0vi4KDp5s4MreUseipbWxanMOh8rFUu9xE1uD72fFJBx89s5M9ywuJTwtk0k1xfeIimRY0mlrdp4CGPY13gKV3ZqHLlYHxpPQBWVvL2f5FHiHyAGN3/xlzUjmai+AuF53qT1SKH7uW5VOSpZgdNPHTaPK3E1PejKnz3Hbo7F2VWM12kiaGXFBdQuK8mP+LFFobzax6+zBW86lCxG6XbPkkh0MbSkmZGX5Wm6V/uDuxIwPYu6KQ8rweaJjHBbpd0ehtBl+ya31wNeXhGaX8iXZ5uQwMDeq4L3pCkBtCCGr8fIgs2UtwlBu7TbfTWZ7XdXIPzS5Hd1ZQXdjM1DsSiU/r/WjtUuHu48z8X6QQEOHO6v9knhDqHa0WCg/VsnlxDuFJ3twa/gxXuzzN5C1P0hqwiHk/H8rMe5KY/4sUZtyd1GeLmbycvWhJcCGqcAUF5rHk7czvk3L7mx+8QLfZ7OxYeowNHx0lItLKyKZ/4tJRT0D8xYutMf2uJLyDjKx46yB7lhdQ3eCGJcwfg5jAl+9tJ2N9Cbu/LaDwYG1XLGcH5XmNbPsij+BYTwIHeVxwXYKiPJl+VyLluY18+dJ+TA1dfyjbl+RxaFMZqbMimHBj7DnLmnpHIh6+zqx+5/C5Y263n2q3zM3V0y5dMLSsxtdFmcCyOLxcnAaA2yJ0RVyMD1RMeJ3BEQggdZiddrsH+44ldp3cA7NLXZmJHUuPERTtSXxa4MWocp/ipNcy76FheAW4sOLNg7z76y3858ktLH/jIO5+zlw1X+JjOUhxSSBmbQfiqniiUvxJGBtM5GDf81vvcBb8Ro0nvHQd3tZ8Niyp6rGN/3JmYDwp54nFbGPFGwfZ/10RyRNCmJO4kvoOAyZniI8YetHu62x0YsGjwwmK8WT3twV8/vxestyeIy/uVprTJVs/y2XPtwUsf/MgX/8jnSPbK2iqaSN3TxXf/jMDdx9n5j44tM9W58WnBTHv50NprG7jq1fSaW8xk59eQ8Z6xWY5/sbYHt3L4KJj5r3JtDaZObD2HBOk7Q2gUUwQUgr2bzHh1lFJiy4LfxfFc+iEhj4AFhZB1/L/xCBFoBvjlD5WX7yLBJ8MMlrm0GR1COZzRAA8vLmMz55Xwi9PvT2h131hS+kWvsj54jSFgS8egG2n25z7CqOngR/9ZhSj50cRMdiX8TfEMuOeJG741UgMVTuQdnDLK2FfnCAh+OI9gwCjk2dR62EnqvLfgGTV2733/Lrc+MH6odvtkuVvZFCW08i0OxJJnhgCHxbT1qqn1stOomfkRb2/q4eeax9LpbWxk4pjTTQePoD1n39nb0oH9766HieDlswt5aSvKWb9+0dOXBcY5cHsB4actoLvQolKUWzqX72azuL/2UW7yUJApHuPNPOTCYryJCbVnwNrihkyOfTME3R2myKwApKhOpMC8zgaGjpILljFthhIc3UIdPvAWVgEXTb04xp6wuCxtBn+TU36HiaO1nKsIYEdLXcxx/vFs2roe1cUsOubAiIG+zDj7uReT4IuylzEnndfxKtVknl3Jr8f83u0Gq2Svu3wEiXP6YRHz/+LngOtk4a0+VGnHyjcSlt7JC4dHexM1PCUT+Lp5/QhaUFpfBiqY2hxM6m3lLNrWygbPjzKrHuTr9jEMwPjSTkPDm0opSz7JGEOYKpCtEC1lyDMPezsBfQRRi8DsSMDGHX7FGzOpYQV1qM3atHptaTMCOfu58dz8+9GM+3ORKbdmcj1vxpxYkFHXxMU7cnsB4bg7uvC6HmDmP9ISq9cIo8z5tporBY7+1YWnnqgNg8WXaOsDkVCYDJ2qWGn6Q48vbQEVO+jKEDg5+wHdE2KDhQvl/hAd/zdDSQ4NPSJ0UPJC9Kgz8nDzduZVONSjnWOp9yc1K0NvbKgiV3fFBCfFsi8h4b1TpjXHSNr779Yv/jvPLTCxu0b7Wzf/hkbSzYqx8v2KYkfanMv8JueB3Y7FG2nuSaAdp2GQ1EGojzPIPT7ECetE+b4WIwmgbHzEGOuiSZ3TxVHd1y5sV1+kAK9ua6dnd/kEznEl6TxXYtyZHM1xmY7NV7OOOsucZRCnYGmaDcSSiU5mZtP7BZC4B/hTvKEEJInhPR+iX0viRrmx01PjSLtmujzHgV4BxlJGhfE4c1lNNc6vAfMbfDZnVCwGTK/UvYFJJPVPosGSzApEQ1opJ2CQIGfq0OgH9fQB4iXy5whQez+3Qxc9crAONDdSJ6fL/6VTdidvEg1foWbroHtLXcj286soe9ZVoCzmxNTbkvoVV+w2W2w4w2+3vh3Hl1mxykuFmEwcN0eDTsqdignlexWtm21SjiGS0nVYcw1LTQfqmdfjJ4gzyE4aS7+wqjQsVcBUJqbwcg5kQRGebB7WT5WS89MLzabncKDtSx7/QDv/noLH/95J+W5/ZcwY2A8Kb3A5lg6LIDJt8Z3Da3sNqy1dWjt0OTdP3kGO8fPxw4UL/pn3xfe0QxVfZiQuLUOvnyw2wd/9PwohEawa5nDe2DtM1B9BImWhpw8Mlrns3TjUDY1/4xg91L8ag5hcXaiLcANF50SQsBywm1xYGjowClDeSEEpQEJ6OxQVGXCSZgZGZlBlSWBsqLTJ5UrjjVRnKUkquiNu2phUyEzl8zk9/W7qC9zxrUTwhY+j9eNNzDhsJXsnJ3KiSW7ui6qyztzYRcBS0UFDe+/Q+E6P6waLUsnWRjiM/qS3HvC9B9j1UBLaRVCIxh7bTSmhk4yN5ef89oj28t57zfbWP7mQerKTEQN88NqtrPm3Uw6WvsnIfwPSqBLKdm2JI/K/ObTY4+01WFuUZqjw69/Mrn4TLyX3Ajw3HoUae/jtHQbX4C3xsOe/+v5Ndkr4d05ULzr9GNZS+HgJ0reVClPE+xu3s6kTA8nZ1cVuZuzqdyxjU36l/ig/h0+PnQfW1vuo71Dxxjfb5iXuo3Oo0eoDXPD17UrlILVJtEILor76OVCa9hEAPLylWidiYmduGoa2HfwVKXC3GFl/ftHcPXUM3Rqz8yBizIX8fLel/nF+l/QamnlG9nM8ByQfh44DxmM9623orNKvA8UUNdaowRMi5qsXHwJzC4ta9eSv+Ba8qZNp/K/a9E6wZrHb6HEXzAxdNxFvz+At4cP1d4Cl7pOAMISfQhL9GbXsnyqi5q7vW7vikLWv38UnxAjc382lDsXjmfanUnMeXAIbU1mti3pB7MVPyCBLqVk2+d5ik/1jHDiRn3PzctURUurQ+sJubi2u+6IC/XnSLwrno12Sn/5KObi4lNP+L5HQm8o369slz8J70yHVU/D/vfBdhZN4uBnULwD3p2tCPeTyd+kbBsKIXc1vBQPTacuKkq7JorgGE/WLi7hi5q/cLQyBl8PE1M8/sWdfg9y2+PhjLpnPoYpD9GRnU1ZsB4/F78T11vs9gEzIdodHsFDqTdqaC1Q7LY6rwCGe62ltNqbTYuzqSpopuhwHWv+k0ljdRuz7h2Mk+Hcy/pNZhOv7nuV9zLfo8xUxlsz3+KZqjZSCuz4jhiEEAJ9TAzSzUhshWRP7tfQ2QRDb1a8j2pzLtp3llJS8eyzlD7yC5CSgF//muiHkoi+y5NthgLsVjfGhF08t+HvU+PrhEe9BKsi1GfcnYyzqxPL/jeDimOnz2VkrCth1zf5JIwJYsFjw4ke7n9irikg0oPE8cEc219zymrwS8UPxsslc0s5GetLGDY9jAk/OoPnhqmKhnYnbAK8QhMufQWBYE9ndkaOon3KVm7duBHTmnXoo6IwThiLT1AeelM6PLwHnHpp35dSMbeMuAu8IpUQv3v/C9Z2aK6Aqb8983Xl+yF2pnJtxieQMFfZb7dB4RblfUOh4h1ht0DlYfDs0h61Og2z7wpn3fNbCQm1kfLoL3Ha9gJs/k45wcUb/GIx5xcg29rICzCecFkERUN3GsDaOUCIlwu5/j5EFtZSNlhLqHswwwI/xWQczKHNUkkfhxLgbdx1MYQl9Cy3zr6qfdikjTdG/57kqJn4CSeiD7VRaffCPdbJUaYG12HDiMvfxd6D7zFH5wwx08En+qKaXBo++pjGxZ/gc/fdBPzqSYSTE/zrv0hjBIWtB5BtsfgaL11ClkZ/T1JyarCXH0UTkYKbt4EFjw3nm9cOsPSlfQybEc6QyaFkbi6j4lgTVYXNRA/3Z/rdSWccPYYn+ZC1tZya4haCojwv2feAAaKhn+ZL+z06Wi3s+jqf0HgvJna3dLilirYWJ2o8Ico3+iLV9OwIIdC4Xc3S8RrSH/Qj8HdP4xQWSuPiTyh+cwfWylIo2qp4i+Su6bqwvgBeHwGV3YQOaCxWlpOHpMLkX8H9a+D3FZB0DWx7zZHT00FLJWz9B5hqFGE9aBLEzID8jV3L0SsPdi0Maizq0ubOoNUZj77HAq8/MerOqxTN0i++66Cz0tk7srIAOOzTemJCFBQvl4GuoQd6OLPfayRBDfCJMR4iJ6B1dWdS+BpuDfwNV8d+xnVPpHL/K5MYMbvnrrS7ijdgsEvGpH+Bn4sfNf94mcq9nhg8Lbi4dv3ersOGEVFt53BLDcxeCJ6hSmC52lxorYWanD6bIJV2O/UffEjVCy/gNm0aAb/9jSLMARqLKPUMoEM24Sl671d/IbSHKCuga/dvPLHPK8CVW/6QRtKEEDLWlfDRn3aSsb4UnV5L6swIZt2b3K0pMCROSSZSnnPpJ0ev+Kcla2s5i5/dRYfpzKaD8twG1rybRWebhYk3nyUOhKkKUa+jMFAQ5zvo4lX4HCQFReFrdmadrhyfG68mYuGTRM6oxmoxULrVD3n0O1j2KHxym6IZA+SsUlLhbfjrmQutOqxsA09aqCEEzPgz2Dph/XNd+/ctUiYwN/9d+Rw6AmKmKX7R5emKIM/6WjkWMV4R+rW5SAnmowewlJd32f/NrbDzLYib3ZXV/ngUSoPniew8rVs2g4cbx7w7ifOKo6XDQlO7hTazbcC4LHZHkIcze/xSAaguaKXCSQ8uXlCRgTd5DDIvIzTWs9cxe3YVr2d4ZyeGwq2YNq6n9r3P8YhoJ+wWf2RdLk3tShtrkpLR2MHe6IQl9S7lYt9Y5c/5pXh4YzS8ngrWnkXl7I6W9esp/PEtVC1ciHH8OEL+9gLiuPdSeyN0NJGhV4R7sHP8WUrqezRxSvuXZuw5Zb/eRce0OxK5+enRjLp6ELf8MY3rHk9l/I2xZ80l4OqhxzvYSFnOpY/ieEUL9NbGTrYuyaWhso30NUWnHT+WXs3Sl9Mpz21gzLXR+IV9L2ri6j9AgWI6sNWU4dKsId/fmVCPSztMOpmEQHc6W5LY76yn9eAncHQZLj4Wgp95ivZaHfWffglF28BmhmNKZiWKtivb7BVQcbCrsPYGyF6lmEIQ8P3M5n6xMPbnii39uJAudbiu7fk/5Zrg4RA9TXm/9s/wYhxsfRUCh0B4Gs81N/HVhlpylgZx7MUd5E2fQd6UqbTt2wfpHylhcic90XVPX4e5y1UxHUizmZb1G2hOS8SmFeQWezP0z6tJeXY1n+8rxaDr3zCwF5sgTwMVbn50BgeTkmdjfcl6ZeRyfARkNkFjYa/KrG+rIcfcwBgLyM42Khc+R6ubK8FpjbxXF4WmvZ4pz35ByrOreWiVMqqLKpcca3Z4JMVMV0xn4x6CCY8pf+YVGaffyGqG/R+csD13R8Mnn1L60MPYGhsJXriQ8LffRutxUtiKRmWu6JBsB7ueKI/eLWa7UAIHj8OiBVPh6TIEwD/CnTHXRPcshLaD0HgvKvKaLrkd/YoU6O0tZrZ/mceKfx3CbpWEJnhzcH0pZdkN1BS3UFdmorPdytbPc/ENdePelyYxcs6gUwupzYPt/6uYHIC2vAIAjnmG4uvWf+FHh4V5Um0ahVUIdu57Cw59AWGj8bjxdtxSoqhJ12HpdFU03OyVin28aDvEzwWDB2w7KdPN1ldh8Y9h73/AJ0pJlfd9pv8JQkfB148o4VtL9yiTYtKumEecPbDjjMVjKJasbVg8h2OZ9jqWaa9TebCBaxY7EZWlpTHCjmGSFd8//g6NqytF9/yE+g/eRwYMPiVzDAY38AhT7OdA665d2FtayBzqgYvOhZ05OqL8jPxxfjJ/nJ/MyzenXOQW71+CPBVPq+ahYxhcDOnFO8H51Pyf53I3lVJS2VpJYVMhUkpW71GSH6cNuY/KfT5YSirJHxqMXacjauQsAJ6baOAPVycxyi0PXG3ElUuO1jsiX0ZPgccPw1V/gbEPKftKzuDpdHgJfPMIbPp7t3Vr3bGDyueewzhlMjErV+B14w2njpKlPCHQ97dWYm0PJT7w0ipUKWHxlPuAqGxSzI8X4nzgIDTeG0un7ZL7pF/QpKgQYg7wGqAF/k9K+UKf1OocbFuSR87uSlw89Ey8KZawJB8WP7uLr15N76qbRiDtkllPJp85f2auY2KuYDOYWykoKscJKHJLPbHwoz9ICfMiUJ9Eu9SzkQZm1JTAzGcRQhD4pz+R/+O7KdkeSsR9g9Hlfgc12cpCkIS5ilaV/oHic25whyPLlEJNVZC04Mw31Onh+rfhnyMVDbyjCSb9Crn5JdrN0TQ88QTNq9eA1QoEAWVA1898LBw+mg+5XspE7fyQdP7y2aeUPfk4VWt30Fzgj9+wbRjHjkHoHO2aMBd0BqSUNH+7HI3RyMbgeuK1iezIbObnU2K4b2L/eBpdagLcDQgBhXGpjF79FRGLt2K7bQFaAM8I7PUl2I7swkYstsZGLFVVmAsKaakupb2hFg+zhuLiDCymNlw7TSmHPQAADEpJREFUoVGjJ9ZmZhFgEJ/S2O6M6xANhlAbGs9QZk2ZChlwTdtSmDWLI1sOQZATI47ZWV92GGKvO7WC7oFK1p+SncAjpx47ulzZbntNSb94fASYvQr2v4+8/h0qn/sL+vBwQl9+pev3P/n6VU9D7Aw6BeS0lmDvmMC8oZfWbTjOz58dfhqGlZiRL8Yh5v4Nxv7sgsqMHOKL0VPPzqXHCPutd59FiTwX5y25hBBa4A1gFlAK7BFCfCOlzOqryh1HSnniX7221ET27kpSZ0Uw/oauodmtfxpDY3Ub0i6xdNqoyGvCzcdASFw3XgE5q0BrUGzIBZuprmjBaAQ3n4l9Xf1eodEIrhkWxvu5w1nhtZdfNjTjl6TkU9QPHkv4n35GycL3KHq/gLChTRjWPqNcGDke/BNgzzvIo8uxaoLRVuejmfakYlIZNOmM95MWC+ZG6OxIxbx4OZ3NXlgO78NSkYi1LgONRwHet92KITpGsbtrhGL7FBqWFHzOIo8DfFxVycex11FatImVxWv5hcaP8Efn0ti5ktpjXpTcfz/CYMApNBThbEBjcEZotVhfmYu5qAiPG68nq3k1ab7zsdklk+MvPFHylYKTVoOv0UBWUChx88Yya8VOcg4sRWMNQkob0hYMn38BfNF1kVZLiws0G+zY/SMo1rfhGWDDFBRFbmsJGgTzjIPwiJyIe0g7xqLX8RMNaDxTlZHatD/AhoVQuI0ESwMfRk5ldP4RdGu3w5QzVDJ8jGLek7Ir84+5DfLWweDrlQnzbx+He1YopqKvH4K2Opre/APm/HxCX3sNrdv3zBUtlfD1w9DeQPv+RWxx98GOjXDXpF7l1e0LdFoNx0JdGHeklba2SIw73oDR95+Y4zkfnAxaxl4fw7r3jnBwYynDpoVdkoneC1FF04A8KWU+gBDiE+BaoM8F+o4vj9HeaiF1VgQbPzqK3ll32oy/V6ArXoFdHeGssaE7mhUzRdpPYf/7dGSvQNTYqfDT8dj0ixvhrSdckxLCv3dMRue1h+dT7+c590iOfzPjzY8THjGesieeoGB1AH5lW/EZ4Y/GNxa7Swh1eaE0/GQhtnYbWudA/KIC8HpwHxoPT6SU2FtbsVZV0bZ3Hy1r1tC2fz+y7XjYUA90Rjv6IC9cx8VhHDsGj6uvRuNyevJnKSWfLnmT0TVmwp08+e24P1C5/yvmurrwQcbb/LZV4j3EgOc76zFt3ET7gQwslZXIjg7snR1gteEUEYHvT39KxbgYOtcsw9QcjJtBR2qE12n3G8gEeRqoaDET+T8L+R/dLG6rDySh+igiejwaSz1aawXaG19B5+2N9PHktYpPWXzsMwxaV2y2CrR2DSvL6jikdaHNJ5IRzQcpm/JXQlKG0NreRskrS0nUlHS5lE75NQyaAHvfxVK8jw/aryIipIzkzcW0Z2djWrOWlvXrsNXV45KSgldKANriBsSWpQgnPehdoT4f6s0QMAdcU2Hds7B0IVQcgGoTnZYoapatwpCUiPuMqYoN3jsKnD0UYf7pHWDpICtmEg+b86nVaZFSsCBx7Fnb6mKxLSWZObv24ZwdxCDXXYjsFZDczai2hySkBZG1tZytn+WSubmM2T8dgm/IGcyefYg4l8tftxcK8SNgjpTyfsfnO4ExUspHurtm1KhRcu/e3ifA/e/dT9PmPB2EFmE3E1LyIV5N+06vUw+/igAEEis6NNixIwlogEMj/fjxh5v7PdKalJK5r22hUPs2OrcssPqe5o/t0Wrj3jUNpOV2YNZBk6sWb5MNnR0yYyR5EYKhOYLoMkmHk6DNIHBvt+N0UoiKCm8dGVHOHAvWU+6rReNZQ4veQLXm3BqyFBKbtorHay2MafPkCdfnWdZyE3/082almwtBNitSulArfM9eDmDX1iOFGUvhb5kclci/7xp1Ps12xXL/or1sya0hwseVGq9n0IhmQq1t1Gh80UsLXrIZi9AhJNRroVUrmN8s8bHB+96CCSYjoyoGcb9OWfz1pW0iT1gewtlJ0f79mw6x1PAMYupTMPWpU+4tpWTMX9cxsWARD2ztejYzww00uGlJzW/H2Hl+MqLWS/LRPA3lwRINdiQCKzq0KJ2wTvjSomslyNbB9FpvPrDcx4ZHbyfA4xLHUQJuWPwMEbuX8OBKO9XeYO+j2UUptDR5jqDRezyD7/QlbfZN51WOEGKflPKcD8ZFNxYLIX4K/BQgIiLivMpwcd6BsSadVuN4jK2bkU5VNPidueqyh7LYLrS0adzQSitu9jZ0AXrG3Pd0vwtzUPzRv/j5eA5U+vNu5tuUNpgw274XLMgL3rspkh0FTSTnN+LRaqHBQ092lJGOwBoAto0OIqBSS9rhWrQ2OyZXJ1pddDS666nwd6HM3/WU5LlGmz9COOGlOV0jPxMaYulwDWWTuw8xRk++MTyAvz6QCE0tvpYd1Oh88dKeWyPRMxQPEU9AXDL3Tvhh2M5P5q5xkeh1yu/gZb+ZRvtuvCikTReFk+zEz1ygRCMEom0ahptdGW52wYqkvrUFi/FnMDkemzkEc8QUUoOm8qnJysrDlVS3dBAyZBZy+CSEX8xp9xZC8PS8RFYcuot/B7ahtZkpCTRS7QiL8UWnjchyE0EdFWhsArvdgAY7TvZ2LBpnTFplAlMnLXhY6zFpPTFrnGl11tESUoeT6MRLOtGq9cTZ3opBtmNHQ5U+Ar3GlUBcuanNFd/YVFZNu65fhDnA78Y/wkvmQDZXf4mXqQmD/dyZw3qKIB3vpnSMXi/3WZnd3usCNPRxwJ+llLMdn58GkFI+390156uhq6ioqPyQ6amGfiEDiz1AnBAiSgihB24BvrmA8lRUVFRULoDzNrlIKa1CiEeA71DcFt+VUvZhfFYVFRUVld5wQTZ0KeUKYEUf1UVFRUVF5QK4IleKqqioqKicjirQVVRUVAYIqkBXUVFRGSCoAl1FRUVlgKAKdBUVFZUBwnkvLDqvmwlRA5w56PC58QNq+7A6AxG1jc6O2j5nR22fc9NfbRQppTxnTI5LKtAvBCHE3p6slPoho7bR2VHb5+yo7XNuLvc2Uk0uKioqKgMEVaCrqKioDBCuJIH+7/6uwBWA2kZnR22fs6O2z7m5rNvoirGhq6ioqKicnStJQ1dRUVFROQtXhEAXQswRQmQLIfKEEE+d+4qBjxCiUAhxSAhxQAix17HPRwixRgiR69h2k1B1YCKEeFcIUS2EOHzSvjO2iVB43dGnDgohRvRfzS8N3bTPn4UQZY5+dEAIMe+kY0872idbCDG7f2p96RBChAshNgghsoQQmUKIXzr2XzF96LIX6Cclo54LJAO3CiGS+7dWlw3TpJTDT3KjegpYJ6WMA9Y5Pv+QeA+Y87193bXJXCDO8fop8NYlqmN/8h6ntw/Aq45+NNwRQRXHM3YLMNhxzZuOZ3EgYwWelFImA2OBhx3tcMX0octeoHNSMmoppRk4noxa5XSuBRY53i8CruvHulxypJSbgfrv7e6uTa4F3pcKOwEvIUTwpalp/9BN+3THtcAnUspOKWUBkIfyLA5YpJQVUsr9jvctwBEglCuoD10JAj0UKDnpc6lj3w8dCawWQuxz5G0FCJRSVjjeVwKB/VO1y4ru2kTtV1084jAZvHuSme4H3T5CiEFAKrCLK6gPXQkCXeXMTJRSjkAZ9j0shJh88kGpuC+pLkwnobbJGXkLiAGGAxXAxc9kfJkjhHADvgAek1I2n3zscu9DV4JALwPCT/oc5tj3g0ZKWebYVgNLUYbDVceHfI5tdf/V8LKhuzZR+xUgpaySUtqklHbgHbrMKj/I9hFCOKEI84+klF86dl8xfehKEOhqMurvIYQwCiHcj78HrgIOo7TL3Y7T7ga+7p8aXlZ01ybfAHc5PBXGAk0nDat/MHzP5ns9Sj8CpX1uEUIYhBBRKBN/uy91/S4lQggB/Ac4IqV85aRDV04fklJe9i9gHpADHAN+39/16e8XEA1kOF6Zx9sE8EWZhc8F1gI+/V3XS9wui1HMBhYUe+Z93bUJIFC8p44Bh4BR/V3/fmqfDxzf/yCKgAo+6fzfO9onG5jb3/W/BO0zEcWcchA44HjNu5L6kLpSVEVFRWWAcCWYXFRUVFRUeoAq0FVUVFQGCKpAV1FRURkgqAJdRUVFZYCgCnQVFRWVAYIq0FVUVFQGCKpAV1FRURkgqAJdRUVFZYDw/wr0rP61900gAAAAAElFTkSuQmCC\n", - "text/plain": [ - "
" - ] - }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "%matplotlib inline\n", @@ -222,15 +143,12 @@ }, "language_info": { "codemirror_mode": { - "name": "ipython", - "version": 2 + "name": "ipython" }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.17" + "nbconvert_exporter": "python" } }, "nbformat": 4, From 0404f7a7567bb4e14170646f39655077b532aea1 Mon Sep 17 00:00:00 2001 From: Edoardo Pasca Date: Wed, 19 Feb 2020 17:12:44 +0000 Subject: [PATCH 03/11] updates to notebooks on MCIR --- notebooks/PET/MCIR_CIL.ipynb | 41 +++++++- notebooks/PET/MemoryTest.ipynb | 183 +++++++++++++++++++++------------ 2 files changed, 154 insertions(+), 70 deletions(-) diff --git a/notebooks/PET/MCIR_CIL.ipynb b/notebooks/PET/MCIR_CIL.ipynb index 006510d4..26a43945 100644 --- a/notebooks/PET/MCIR_CIL.ipynb +++ b/notebooks/PET/MCIR_CIL.ipynb @@ -251,20 +251,45 @@ " kl = [ KullbackLeibler(b=rotated_sino, eta=(rotated_sino * 0 + 1e-5)) for rotated_sino in rotated_sinos ] \n", " f = BlockFunction(*kl)\n", " K = BlockOperator(*C)\n", - " normK = K.norm(iterations=10)\n", + " normK = K.norm(iterations=2)\n", " #normK = numpy.sqrt(sum( norms ))\n", "else:\n", " f = KullbackLeibler(b=noisy_counts, eta=(noisy_counts * 0 + 1e-5))\n", " K = am\n", - " normK = LinearOperator.PowerMethod(am, 25)[0]\n", - "\n", + " normK = LinearOperator.PowerMethod(am, 25)[0]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rotated_sino.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "f(K.direct(image))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ "sigma = 1/normK\n", "tau = 1/normK \n", "\n", "G = IndicatorBox(lower=0)\n", "# G = TV\n", "# print (f(acquired_data*0.+1e-5))\n", - "# print (f(acquired_data*0.))\n" + "# print (f(acquired_data*0.))" ] }, { @@ -297,7 +322,13 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "na = numpy.zeros((2,2))\n", + "a = [na, na]\n", + "na += 1\n", + "\n", + "print (a)" + ] }, { "cell_type": "code", diff --git a/notebooks/PET/MemoryTest.ipynb b/notebooks/PET/MemoryTest.ipynb index 7b246efc..70519bba 100644 --- a/notebooks/PET/MemoryTest.ipynb +++ b/notebooks/PET/MemoryTest.ipynb @@ -28,6 +28,10 @@ "\n", "import os\n", "import psutil\n", + "\n", + "import sirf.Reg as Reg\n", + "from sirf import SIRF\n", + "\n", "process = psutil.Process(os.getpid())\n", "\n", "# schemes: file, memory\n", @@ -72,7 +76,73 @@ "metadata": {}, "outputs": [], "source": [ - "import sirf.Reg as Reg\n", + "i2 = image.copy()\n", + "\n", + "i2 = 0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "mat4 = numpy.eye(4)\n", + "tm = Reg.AffineTransformation(mat4)\n", + "\n", + "resampler = Reg.NiftyResample()\n", + "resampler.set_reference_image(image)\n", + "resampler.set_floating_image(image)\n", + "resampler.add_transformation(tm)\n", + "resampler.set_padding_value(0)\n", + "resampler.set_interpolation_type_to_linear()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print ( issubclass(image, SIRF.DataContainer) )\n", + "\n", + "direct = resampler.direct(image)\n", + "\n", + "direct = 0\n", + "\n", + "adjoint = resampler.adjoint(image)\n", + "adjoint = 0" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "memocc = []\n", + "direct = resampler.direct(image)\n", + "adjoint = resampler.adjoint(image)\n", + "for i in range(100):\n", + " # new ImageData\n", + " resampler.direct(image, out=direct)\n", + " # new AcquisitionData\n", + " resampler.adjoint(direct, out=adjoint)\n", + "# f(image)\n", + " if i % 10 == 0 and i > 0:\n", + " memocc.append(process.memory_percent())\n", + " print(i, memocc[-1])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", "from scipy.spatial.transform import Rotation as R\n", "\n", "def get_resampler(directions, angles, image, degrees=True ):\n", @@ -124,13 +194,13 @@ " out = resampler.adjoint(step)\n", " return out\n", "\n", - "for i in range(1):\n", + "for i in range(100):\n", " # new ImageData\n", - " step = resampler.direct(image)\n", + " # step = resampler.direct(image)\n", " # new AcquisitionData\n", " out = resampler.adjoint(step)\n", "# f(image)\n", - " if i % 100 == 0 and i > 0:\n", + " if i % 10 == 0 and i > 0:\n", " memocc.append(process.memory_percent())\n", " print(i, memocc[-1], memocc[-1]/float(i))\n", "# del out\n", @@ -157,7 +227,11 @@ "metadata": {}, "outputs": [], "source": [ - "ids = []" + "print (type(step), type(image))\n", + "\n", + "import sirf\n", + "\n", + "print (isinstance (step, sirf.SIRF.ImageData))" ] }, { @@ -223,7 +297,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -249,31 +323,9 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "calling __init__ A\n", - "calling __del__ A\n", - "calling __del__ B\n", - "calling __del__ B\n" - ] - }, - { - "ename": "TypeError", - "evalue": "__init__() takes exactly 2 arguments (3 given)", - "output_type": "error", - "traceback": [ - "\u001b[0;31m\u001b[0m", - "\u001b[0;31mTypeError\u001b[0mTraceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mones\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mbb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mB\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumpy\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mTypeError\u001b[0m: __init__() takes exactly 2 arguments (3 given)" - ] - } - ], + "outputs": [], "source": [ "aa = A(numpy.zeros(shape=(10,10)), None)\n", "x = numpy.ones(shape = (10,10))\n", @@ -283,31 +335,9 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "calling __init__ A\n", - "calling __del__ A\n" - ] - }, - { - "ename": "TypeError", - "evalue": "super(type, obj): obj must be an instance or subtype of type", - "output_type": "error", - "traceback": [ - "\u001b[0;31m\u001b[0m", - "\u001b[0;31mTypeError\u001b[0mTraceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdirect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdirect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m\u001b[0m in \u001b[0;36mdirect\u001b[0;34m(self, x)\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 11\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mdirect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 12\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0marray\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 13\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mB\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mA\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, array)\u001b[0m\n\u001b[1;32m 14\u001b[0m \u001b[0;32mclass\u001b[0m \u001b[0mB\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mA\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0marray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 16\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mB\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 17\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mA\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marray\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mTypeError\u001b[0m: super(type, obj): obj must be an instance or subtype of type" - ] - } - ], + "outputs": [], "source": [ "b = aa.direct(x)\n", "c = bb.direct(x)" @@ -319,9 +349,10 @@ "metadata": {}, "outputs": [], "source": [ + "import weakref\n", "class FooType(object):\n", - " def __init__(self, id, parent):\n", - " self.id = id\n", + " def __init__(self, did, parent):\n", + " self.id = did\n", " self.parent = parent\n", " print 'Foo', self.id, 'born'\n", "\n", @@ -330,16 +361,21 @@ "\n", "\n", "class BarType(object):\n", - " def __init__(self, id):\n", - " self.id = id\n", + " def __init__(self, did):\n", + " self.id = did\n", + " #self.foo = weakref.ref( FooType(did, self) )\n", " self.foo = FooType(id, self)\n", " print 'Bar', self.id, 'born'\n", "\n", " def __del__(self):\n", " print 'Bar', self.id, 'died'\n", + " def __str__(self):\n", + " return \"{} id {}\".format(self.__class__.__name__ , self.id)\n", "\n", "\n", - "b = BarType(12)" + "b = BarType(12)\n", + "#b=0\n", + "print (b)" ] }, { @@ -347,7 +383,27 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "print (b)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "image" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "i2 = image.copy()\n" + ] } ], "metadata": { @@ -358,15 +414,12 @@ }, "language_info": { "codemirror_mode": { - "name": "ipython", - "version": 2 + "name": "ipython" }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.17" + "nbconvert_exporter": "python" } }, "nbformat": 4, From 0c8b5ced7ccaa957f1d087fea8116298f92ced00 Mon Sep 17 00:00:00 2001 From: Christoph Kolbitsch Date: Mon, 5 Jul 2021 10:55:33 +0000 Subject: [PATCH 04/11] grpe reconstruction + fista --- .../MR/g_non_cartesian_reconstruction.ipynb | 483 ++++++++++++++ notebooks/MR/mr_mcir_grpe.ipynb | 606 ++++++++++++++++++ 2 files changed, 1089 insertions(+) create mode 100644 notebooks/MR/g_non_cartesian_reconstruction.ipynb create mode 100755 notebooks/MR/mr_mcir_grpe.ipynb diff --git a/notebooks/MR/g_non_cartesian_reconstruction.ipynb b/notebooks/MR/g_non_cartesian_reconstruction.ipynb new file mode 100644 index 00000000..ab3f1ea5 --- /dev/null +++ b/notebooks/MR/g_non_cartesian_reconstruction.ipynb @@ -0,0 +1,483 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Reconstruction of non-Cartesian data\n", + "\n", + "This demonstration shows discusses the reconstruction of non-Cartesian data.\n", + "\n", + "This demo is a 'script', i.e. intended to be run step by step in a\n", + "Python notebook such as Jupyter. It is organised in 'cells'. Jupyter displays these\n", + "cells nicely and allows you to run each cell on its own." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First version: 14th of July 2021\n", + "Author: Christoph Kolbitsch\n", + "\n", + "CCP SyneRBI Synergistic Image Reconstruction Framework (SIRF). \n", + "Copyright 2015 - 2021 Rutherford Appleton Laboratory STFC. \n", + "Copyright 2015 - 2021 University College London. \n", + "Copyright 2015 - 2021 Physikalisch-Technische Bundesanstalt.\n", + "\n", + "This is software developed for the Collaborative Computational Project in Synergistic Reconstruction for Biomedical Imaging \n", + "(http://www.ccpsynerbi.ac.uk/).\n", + "\n", + "Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "you may not use this file except in compliance with the License.\n", + "You may obtain a copy of the License at\n", + " http://www.apache.org/licenses/LICENSE-2.0\n", + "Unless required by applicable law or agreed to in writing, software\n", + "distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "See the License for the specific language governing permissions and\n", + "limitations under the License." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cartesian or non-Cartesian, that is the question\n", + "\n", + "In the previous examples (e.g.`d_undersampled_reconstructions.ipynb`) we reconstructed data acquired on a Cartesian grid, i.e. each acquired k-space point has the same distance to its neighbours. This is not entirely true for undersampled data, because there we often have a fully sampled centre and an undersampled outer k-space with larger distances between neighbouring points. Nevertheless, we saw that we can simply fill the missing data with 0s and then everything is nicely equidistant again. \n", + "\n", + "One of the strenghts of __MRI__ is, that we can acquired our raw data (`AcquisitionData`) along (almost) arbitrary patterns. Nevertheless, in hospitals probably more than 99% of all scans are carried out using a Cartesian sampling scheme. Why?\n", + "\n", + "Well the short and main answer is __FFT__ - the Fast Fourier Transform allows for really really really fast image reconstruction. As soon as our acquired k-space points are not on an equidistant grid, we cannot directly apply it but have to use a much slower approach leading to longer reconstruction times which nobody wants. But this is a great shame, because non-Cartesian k-space trajectories have lots of interesting properties which make them a really exciting field of research. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## The answer of course is non-Cartesian\n", + "\n", + "In the figure below you can see a comparison between Cartesian and radial undersampling of a transversal slice through the heart. On the far left you can see the fully sampled reference. Then next to that you can see the same image reconstructed from a 2x undersampled Cartesian k-space. Next to it the same but from a 2x undersampled radial k-space. In the row below you can see the same but not for an undersampling factor of 4." + ] + }, + { + "attachments": { + "cart_vs_rad_sampling.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABdoAAAPqCAYAAACE2O2pAAAMaWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdUU8kanluSkJDQAqFICb0J0quUEFoEAelgIySBhBJDQlCxl0UF1y6iWNFVERVXV0DWgojdRbD3xYKKsi7qoigqb0ICuu4r5/3nzJ0v3/zztzuTOwOAZh9XIslDtQDIFxdK4yNCmKlp6UxSJ8AAEVABCuy5PJmEFRcXDaAM9X+XdzcAouivOils/XP8v4oOXyDjAYBMgDiTL+PlQ9wEAL6RJ5EWAkBU8JZTCyUKPBdiXSkMEOI1CpytxLsVOFOJjw7qJMazIW4DQI3K5UqzAdC4B3lmES8b2tH4BLGLmC8SA6A5EuJAnpDLh1gR+8j8/CkKXAGxHdSXQAzjAT6Z39jM/pv9zGH7XG72MFbmNShqoSKZJI87/f8szf+W/Dz5kA8b2KhCaWS8In9Yw1u5U6IUmApxtzgzJlZRa4j7RHxl3QFAKUJ5ZJJSHzXmydiwfoABsQufGxoFsTHE4eK8mGgVn5klCudADFcLOk1UyEmE2ADixQJZWIJKZ6t0SrzKF1qXJWWzVPw5rnTQr8LXA3luEktl/41QwFHZxzSKhYkpEFMgtioSJcdArAGxsyw3IUqlM7pYyI4Z0pHK4xXxW0EcLxBHhCjtY0VZ0vB4lX5pvmwoX2yrUMSJUeGDhcLESGV9sBYedzB+mAvWJhCzkobsCGSp0UO58AWhYcrcsecCcVKCyk6fpDAkXjkXp0jy4lT6uIUgL0LBW0DsIStKUM3Fkwvh4lTax7MkhXGJyjjx4hzumDhlPPgKEA3YIBQwgRy2TDAF5ABRa3d9N/ylHAkHXCAF2UAAnFTM0IyUwRExfCaAYvAHRAIgG54XMjgqAEWQ/zzMKp9OIGtwtGhwRi54CnE+iAJ58Ld8cJZ42FsyeAIZ0T+8c2HjwXjzYFOM/3t+iP3KsCATrWLkQx6ZmkOaxDBiKDGSGE60x43wQNwfj4bPYNjccB/cdyiPr/qEp4R2wiPCdUIH4fZk0Xzpd1GOBR3QfriqFpnf1gK3gTY98RA8AFqHlnEGbgSccA/oh4UHQc+ekGWr4lZUhfmd7b9l8M3bUOmRXcgoWZ8cTLb7fqaGg4bnsBVFrb+tjzLWzOF6s4dHvvfP/qb6fNhHfa+JLcYOYWexk9h57ChWD5jYCawBu4QdU+Dh1fVkcHUNeYsfjCcX2hH9wx9X5VNRSZlLjUuXyyflWKFgWqFi47GnSKZLRdnCQiYLfh0ETI6Y5zyS6ebi5gqA4luj/Pt6yxj8hiCMC1+5giYAfEshmf2V41oCcOQpAPR3XznLN3DbrADgWBtPLi1ScrjiQYD/EppwpxkCU2AJ7GA+bsAL+INgEAbGgFiQCNLAJFhlIVznUjAVzATzQAkoAyvAWrABbAHbwW6wDxwE9eAoOAnOgIugDVwHd+Hq6QQvQQ94B/oRBCEhNISOGCJmiDXiiLghPkggEoZEI/FIGpKBZCNiRI7MRBYgZcgqZAOyDalGfkaOICeR80g7cht5iHQhb5CPKIZSUV3UBLVBR6E+KAuNQhPRiWg2WoAWowvRZWgFWoXuRevQk+hF9Dragb5EezGAqWMMzBxzwnwwNhaLpWNZmBSbjZVi5VgVth9rhO/5KtaBdWMfcCJOx5m4E1zBkXgSzsML8Nn4UnwDvhuvw1vwq/hDvAf/QqARjAmOBD8Ch5BKyCZMJZQQygk7CYcJp+Fe6iS8IxKJDKIt0RvuxTRiDnEGcSlxE7GW2ERsJz4m9pJIJEOSIymAFEvikgpJJaT1pL2kE6QrpE5Sn5q6mpmam1q4WrqaWG2+WrnaHrXjalfUnqn1k7XI1mQ/ciyZT55OXk7eQW4kXyZ3kvsp2hRbSgAlkZJDmUepoOynnKbco7xVV1e3UPdVH6cuUp+rXqF+QP2c+kP1D1QdqgOVTZ1AlVOXUXdRm6i3qW9pNJoNLZiWTiukLaNV007RHtD6NOgazhocDb7GHI1KjTqNKxqvNMma1poszUmaxZrlmoc0L2t2a5G1bLTYWlyt2VqVWke0bmr1atO1XbVjtfO1l2rv0T6v/VyHpGOjE6bD11mos13nlM5jOka3pLPpPPoC+g76aXqnLlHXVpejm6NbprtPt1W3R09Hz0MvWW+aXqXeMb0OBsawYXAYeYzljIOMG4yP+ib6LH2B/hL9/fpX9N8bjDAINhAYlBrUGlw3+GjINAwzzDVcaVhveN8IN3IwGmc01Wiz0Wmj7hG6I/xH8EaUjjg44o4xauxgHG88w3i78SXjXhNTkwgTicl6k1Mm3aYM02DTHNM1psdNu8zoZoFmIrM1ZifMXjD1mCxmHrOC2cLsMTc2jzSXm28zbzXvt7C1SLKYb1Frcd+SYuljmWW5xrLZssfKzGqs1UyrGqs71mRrH2uh9Trrs9bvbWxtUmwW2dTbPLc1sOXYFtvW2N6zo9kF2RXYVdldsyfa+9jn2m+yb3NAHTwdhA6VDpcdUUcvR5HjJsf2kYSRviPFI6tG3nSiOrGcipxqnB46M5yjnec71zu/GmU1Kn3UylFnR31x8XTJc9nhctdVx3WM63zXRtc3bg5uPLdKt2vuNPdw9znuDe6vPRw9BB6bPW550j3Hei7ybPb87OXtJfXa79XlbeWd4b3R+6aPrk+cz1Kfc74E3xDfOb5HfT/4efkV+h30+9PfyT/Xf4//89G2owWjd4x+HGARwA3YFtARyAzMCNwa2BFkHsQNqgp6FGwZzA/eGfyMZc/KYe1lvQpxCZGGHA55z/Zjz2I3hWKhEaGloa1hOmFJYRvCHoRbhGeH14T3RHhGzIhoiiRERkWujLzJMeHwONWcnjHeY2aNaYmiRiVEbYh6FO0QLY1uHIuOHTN29dh7MdYx4pj6WBDLiV0dez/ONq4g7tdxxHFx4yrHPY13jZ8ZfzaBnjA5YU/Cu8SQxOWJd5PskuRJzcmayROSq5Pfp4SmrErpSB2VOiv1YppRmiitIZ2Unpy+M713fNj4teM7J3hOKJlwY6LtxGkTz08ympQ36dhkzcncyYcyCBkpGXsyPnFjuVXc3kxO5sbMHh6bt473kh/MX8PvEgQIVgmeZQVkrcp6nh2QvTq7SxgkLBd2i9iiDaLXOZE5W3Le58bm7sodyEvJq81Xy8/IPyLWEeeKW6aYTpk2pV3iKCmRdBT4Fawt6JFGSXfKENlEWUOhLjzUX5LbyX+QPywKLKos6puaPPXQNO1p4mmXpjtMXzL9WXF48U8z8Bm8Gc0zzWfOm/lwFmvWttnI7MzZzXMs5yyc0zk3Yu7ueZR5ufN+m+8yf9X8vxakLGhcaLJw7sLHP0T8UFOiUSItubnIf9GWxfhi0eLWJe5L1i/5UsovvVDmUlZe9mkpb+mFH11/rPhxYFnWstblXss3ryCuEK+4sTJo5e5V2quKVz1ePXZ13RrmmtI1f62dvPZ8uUf5lnWUdfJ1HRXRFQ3rrdavWP9pg3DD9cqQytqNxhuXbHy/ib/pyubgzfu3mGwp2/Jxq2jrrW0R2+qqbKrKtxO3F21/uiN5x9mffH6q3mm0s2zn513iXR2743e3VHtXV+8x3rO8Bq2R13TtnbC3bV/ovob9Tvu31TJqyw6AA/IDL37O+PnGwaiDzYd8Du3/xfqXjYfph0vrkLrpdT31wvqOhrSG9iNjjjQ3+jce/tX5111HzY9WHtM7tvw45fjC4wMnik/0Nkmauk9mn3zcPLn57qnUU9daxrW0no46fe5M+JlTZ1lnT5wLOHf0vN/5Ixd8LtRf9LpYd8nz0uHfPH873OrVWnfZ+3JDm29bY/vo9uNXgq6cvBp69cw1zrWL12Out99IunHr5oSbHbf4t57fzrv9+k7Rnf67c+8R7pXe17pf/sD4QdXv9r/Xdnh1HHsY+vDSo4RHdx/zHr98InvyqXPhU9rT8mdmz6qfuz0/2hXe1fZi/IvOl5KX/d0lf2j/sfGV3atf/gz+81JPak/na+nrgTdL3xq+3fWXx1/NvXG9D97lv+t/X9pn2Lf7g8+Hsx9TPj7rn/qJ9Knis/3nxi9RX+4N5A8MSLhS7uBRAIMNzcoC4M0uAGhp8OwA722U8cq74KAgyvvrIAL/CSvvi4PiBcCuYACS5gIQDc8om2GzhpgKe8URPjEYoO7uw00lsix3N6UtKrwJEfoGBt6aAEBqBOCzdGCgf9PAwOcdMNjbADQVKO+gCiHCO8NWBwW6PNpwLvhOlPfTb3L8vgeKCDzA9/2/AIvgjjMSFZk4AAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAAF2qADAAQAAAABAAAD6gAAAABBU0NJSQAAAFNjcmVlbnNob3T+77n2AAAACXBIWXMAABYlAAAWJQFJUiTwAAAB2GlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMDAyPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjE0OTg8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K9mnhxgAAABxpRE9UAAAAAgAAAAAAAAH1AAAAKAAAAfUAAAH1AApA81+4YPUAAEAASURBVHgB7N1br2VbVfbxtT2fTxshihhD4gXIVvRKP4GJiWI04SAiKIlRLkAg8QCJXPgpvPJjiHwLg9HEqBuVBEHxfBZ93/qNXf+i0RlzrjlXrSp26WhJn7331lt72tNa72PMOcdateq5//dAbq6QK82vQD5MjwocFTgqcFTgqMBRgaMCRwWOChwVOCpwVOCowFGBowJHBY4KHBU4KnBU4KjAs1eB5+76oP2555579rI9GB8VOCpwVOCowFGBowJHBY4KHBU4KnBU4KjAUYGjAkcFjgocFTgqcFTgqMBRgXuuwGM9aD9+u/2ed+OAOypwVOCowFGBowJHBY4KHBU4KnBU4KjAUYGjAkcFjgocFTgqcFTgqMBRgWeuAseD9mduyw7CRwWOChwVOCpwVOCowFGBowJHBY4KHBU4KnBU4KjAUYGjAkcFjgocFTgq8HKqwPGg/eW0GweXowJHBY4KHBU4KnBU4KjAUYGjAkcFjgocFTgqcFTgqMBRgaMCRwWOChwVeOYqcDxof+a27CB8VOCowFGBowJHBY4KHBU4KnBU4KjAUYGjAkcFjgocFTgqcFTgqMBRgaMCL6cKHA/aX067cXA5KnBU4KjAUYGjAkcFjgocFTgqcFTgqMBRgaMCRwWOChwVOCpwVOCowFGBZ64CVz9of+YyPAgfFTgqcFTgqMBRgWe4Avf5H48/99xzz3AlDupHBY4KHBU4KnBU4NmrwH29jx/v4c/e3h+MjwocFTgqcFTg2a3AXd+/r37Q/rnPfW6rkjf6uwZ9dst8MD8qcFTgqMBRgaMCT68CX/ZlX3Zzn1+svW//z//8z9NL4Ih0VOBlXoFLr6/H+cx7aYxrS/U4nK6NddgfFTgqcH0FXPu1672/2MP793Hdf3FdDs1RgaMCz04F3BOP+9izs1//l5k+zvfwqx+0//7v//72Jd3F0Zf1Z/1C6QtQ/TxMcrskvz5E7WGEN3HO4YaV3zV9Meqnb9zqs6mfto0drilssw+n9alf17I51a/2YWV/aVz2+cI8hZsN+1N2q0226evpL5G46PPV78WHl/20pW9ufKmEtca+1P8udjPWXfyfpE/nWi3vUk/c5Fddze+KteLAukZm3PjU7+GUb/2ezfQ/Z6eOe/HDPOebzZeqr+6T/5eKy15c/L7u677u5lWvetXN888/f+dzOrFh/sM//MPNiy++ePPf//3fX7B30+6ScR88upb4zHOzYlRv+mo+dav9qXk+82FDOj7Gnbv6iZWO3W0ycfdsw6oPMw7p+d6GdQo/jFP+rdeHs16b6ff6fIvRfM92T5c9//aFrjE9oZu2dK0ZJ6vdtMm/Ph820y59vXp8+Zd/+U3nlj6fc37568tn8qNLzwbWV37lVz7iwlZMLTkXr7zO2YTDVuxk5dH61IefT3HoNfN02ehX/Z5NOYqXff2K1Xzlk/62fsa/C8b0L9aK07w+u3r6ck1Xn4++cWv1szZ7fLLTT9upn+NTNrdhx3HlmX7GmOOuJXZiZN98xqUjcZy2E3NvnO/eWroZi86+aEkY9enXfsW5zf6Uf9e8e87Xfu3X3nznd37n9n5+Ld7Ex+0//uM/bv78z//85t///d+3Jb/8FqZ14znPnw6X8lOb7Ng01mejb8xm9aEj2egnzkurn99z8/AnF/r2a+4Z/Z6I09mzDnO2PZ9VB2O+H8SbXdgzL/ps9H1+oifZvjR76VUu85cT4U7hs/qtc/bxKf7EqG4rn2kzMVZ9czFqcQh7xjVuri8HfXqYYRiv+hnHmiZWdnNMB4vPxErfWvHDYGt/86GvwZ+S79Q1Lo747Ej24c1+8sw3n9m3BivccMJg7/xYLz6b9sX6KQl37dkXrzWYpPjG1sy7v2QzfbMPh19iDedaNmvP3tn9r//6r1y3vnxNihOH5vOcsAvbeBVrpL0Pi271C7+1cjAn7Fcd3P/8z//cuLY+cduz4r+E9MWvfEi+4nSfihcMNUvSl1Pxv+IrvmLjyc4av2zoYMSnemcTBv2U+KXL3jyfaVOd6Iot7qxVWPXhNNfzraU3Vxt5kmIZZ1tPl0wdf/HmOW9db8338Fe+8pV3/h5+9YP29773vdsFgZRCzSKXxMu5n5sdzzZ1PVCKLD/tNuHbhsPbk3mojdvMaXuKy7Q5N44v7Cnh6uN3W37sOoRhTXw5h0UPb88nX30+xU6XPttZK7oZV4ziwikuDMKXmOM/Za17WNMOXnZ8s4ljueovEf6T4+QOA27cJ16cigdjjrOdeFPHnuzxDydu+d1XD1dOONQm9jnOe2vTt/Gldtnr+Wiztp2XaXfbOIw4sIejrnTV/jYc63tYl/hlI2Y5XIKFGx9tT2B0HrM9ZaeObIrPr/zptVWsk7211XZvHv7e2jU6XDV1iEv9NThsHzenNR5OHtZ993d/982P/diP3fzIj/zIZnJXfuHj+fGPf/zmt3/7t2/+5V/+5dE5uBYXzld91VdtH3CcAfP2Xr8nbHwgEst50bPNf8+HDb8p89rtw1E4rfGb+zr9iz3jsidrrHCnf+MZY/pXi+JkD0sjbPKhK26cWzfXyOSbfRymH1vr7Kc//Z5kk8+ezTldsbOZnws9DLIe32LhXT1ay1+vdmzJalfOeo3AyG5TjBc2auF68oHZua2W+vllJKzh/miIj/PmC2H80sm5swjzm77pm7Y45SBGD9/jqV+FPWwCZ8/GWrmLGRd63DT10Kx5MEcHO7/G1Y0vW+tiVh/6JN5hN29dL0cYsGCUQz5sjMMvXz57wnZvrdh66+FcghGXMMLXqycpbnXKZsVXV3tfnq3zy3eOW6+vRvDxMd+TOFc3Nnzop5hPjPzWXKcPHPul4Zqkn7rW6tdrh+08RzOuNZjlYNw1E97as9HyXdebl3f1wKFrIf7XYOFNihsuDHJuHpev/uqv3u4tX//1X3/zmte85uZNb3rT9n4exgZ05Qvsv/7rv775nd/5nZu/+qu/2ry9j8uX4N09QRzzuFp373ONEudWjRL28tX48LVXeo24lxQrP302/MKYeYbFNl5++BAXPvh0r2K3J/Cnf3O68t7jt4clN3tjnyaOMb64dS3Vw7aubt7bzMWmy48vnSaff/7nf97G8DR2yawb3cTIhs51Nv2yLca//du/bXzU8ZSIvYcTljW16P0Rtj3RqildOYtl3t6qUeu4muvZa83ZF8cYjr3reoVhLi7/YuBFzLVyhQtPTxc/2F/zNV/ziFO44sDPn11x0m2BHr7wg915yL5YYdWrI2mdfT6NrZdH2HS484PB1vhf//Vft3H7Um3mtct3Ff6wazCN5Rqf5vm2V+bsxfqnf/qnbS/wJeUABz+NrFjsYdiDuPNh17VgXI5+AShhN33iVX34VAdjscLWrxJnen5a+dBVK2NiTSw9jrjgzI7oy6vY7gd/93d/9+iszxzZOM9s9Pzp9qQ6slE/Z1sseHzsu/sKnGqPq5yaw+Dn/sZXTdjzY2MOCx/NHD6/cPfyLvfqUNxZq/JuH9Su65Od+M70Zz/72Y1DdrBxiovcqxM9P/7Fyt77iDz5iSOesXpkzxcGmWvm6iOW99HORr56+fge/qM/+qM3P/zDP8zlEdY2ueDl6gft3/7t375tls257UK/IP7/OhOb3CFck1MvG2+j2/TV5n/LXI6kPMvZxdvF4xATOgd9+qiVi+NpShyfZsxzsaqJOlXHc/bH2tOvwDyz9xX95XYO7yuvA+f6Cnz/93//za/+6q/evP3tb9+cH/c+4Gz97u/+7s3P/uzP3vzt3/7t9YSGh/uTDzbdp9zXjd3P5xmeY/beA7unsdfW90x5dv+3BoPQFw+O9wk66z4QhdWHMv2MD6PPLfO9aI2VT+9N/FYRVx5848APX601Oq14xlOyp5NTArPPDGz4a6uIU6ywsk8vJrxV6MSMP7/GYu35TIzpT2/uS7+4xh4yVNvp97TH8vKQ/Zu/+Zu3vnPizPjMVq7tE+4aqXbq1Bcl+Zlrvrz44tBnFtj+FYovAET+fdloX8RjN0U8eLCJdXbrebGWrZhxESd+bMSy7gsEPWw2WvsDvz0vbtxmXOO46xuzneL6JrDwr7En4dAb44Jjtd6MLngRN+7Mq8PkvAfTut7ew8CBqA+cKfKwvsePrr0Piy9sftVb33hiG/PTxMCluqx21bv1OIllTY+Pnk31hmNMB38vD1i+XMvdGAbBuTzMZww4Wt93jMXJh725mNUYtmYOa9qGPfnRsWentQbXuJhxVsfW8Hbm7Y9x+Hg9LXG/cT1827d9280LL7xw85GPfOTmjW9846M8ruUhB/KJT3zi5ud//udv/viP/3jL18Md+2dd/j0o2cN3T/JgQe3cp9WHnKoPvM4OOz73IeL5YWQPgeyRe6h2qcgFP/svn3N5n8L8xm/8xu0hTWcUDjHHzfkmnS082Thb3tuKWe2rFRu82MycYE4RR5MH0afLDjYe7VGxmru//+M//uNFe+M8Fqtc9XRieGDl3MqXvj2RN5GTsd41qceXbz7dz+PMns5cHO0bvuEbtvryhWNdTZ0vmOpqXo56vPTdC+rFhaf2YeFOz8e4fXPea+VU/fmKvSew7V17Iwe2eNf43yadj5kHTGc5nnBw18T4+7//+y1vNmqI/6XXoThihqc3bx9mz1bd5UMvlj34zGc+c7IuM1/+ciCNYbjGcJcnPQ7m6crxU5/61CM48dWbrTGbuLVP7eMjp4eDYtdTiy1v/OQXz9X31Nx1M68dWOUFC0c/kPjkJz+5cW1P+ciBjevU/eAa4S+Oph5ytyddl+ancmL/rd/6rZuvWjgzOPAxV1Oc9Qne1hMYmvzE4ScfdvzUsnsgv/LOh70c3Ff4ueY071l/+Zd/uYVhA3sKH2enPbPGrzMw7V373mNJ9y884qbnG3/xwjFWW9xcZ2przdnqnMD6gR/4gZsPfvCDNz/zMz+zxZnxN8UtL1c/aH/1q1+9EUFIa1NsBNKKPzfulvj3tix2HBQhXjOAgrGxxqZi0bU27cPZw5p2xjAcCgfEOGxruJG5ccbxsMZe3U5xYUNgTeyXtJ9/hQF37kHc8s+aTfbpsolH89Zha3M9nKlTC3OHtto67HS1mT/76iQ/thqdJoa5Pn+c9mKrLYHpgq8ecI2n0MHr5mGOs1jGYsc/LjDCnFh74/xhFava4I4rGzrrU6qJWNaKGxbb8I1xJvLBmT0xjjvfapYu/M34Hl7EK+bkDLqYOJYTfbnKId/yYbdKeevbq9Vmztl1bvSkWhRn2p8aFzeOengwuqbby+p8CoueP3uCD6z8L92XzhEM/nEy35Pyhl/sajj9rcMm9PzoyORNxx8WO5Ivn0Ttqh/csFq/rX9c/4nveo9r9wtzvHCevKffqbF64McvjFO2l+p90PihH/qhm1/5lV+5ectb3rK5XctrjYXjxz72sZt3vetd25cz+6Yl5X5bHLXyAQXH6qh3BqpttaBTE429vpp3jvCakj0MeNWWDTzzzlh+sLT20Tp/Onh75y2c1uKfXk93StQOtjhsNfH11tLHOZuJx14jsLLhr050p/zhz/crtWIrZ2txoKte9EQc0lyvsePvvbP82E67zXF5ydcH+uL6YgGvWHEo5/QTKhy2BBct29b1dJoawWS3Cjv5y8fDHV/wOlN6jV88rRs3hwffXqh1a+n64lvOYvlnpj7040QvhrOPi1hstFVgsyfWy6fc6Y2rAVs8zHHDUYPD37o98FmdPr984lDcGVMsIl77hU911scLrvG8H/BlA1NPwiouHmLrw9oMH76EK651c43/tC/nqZs4xvHNBle41QUH40Qc3PSEHxuN0Nt7tV3rxq+85nhzfPgCDwffGcStVvRxZGqMZzmLi4O9pe/80lnLLgy47NqDMB/S2HjOewjb8MWAma9crBNr+BP8xSVs2BeXDkZizCbsamdeDnFfbcNkp8kdFrtwjPGxL12vOLOjzz4+sw9f/LhYb05HxCXwSPnO9R6OeNjxute97uZDH/rQ9oUdv7tINfnEgwft7373u2/+9E//dOPhIatzGK464oVLZ6F47oHOG9vqY40dXb5iybHvs+VXrPD0bNW3c6G+s3bVVAxSjdyL4fPn433DAyS89oQdDLbG6gsbb5i4dw/kz8Y6H+v8iDm9dfdoHOJWDeVC3/me1xgc9ca18wU3fnzj5MGWh0pE7T0U4l8N4oLP2vjAgYtHOfDBR0/Xg3b3eTUoB/58NZz4TD++8Wjdg2nvf7Dh2AsN53IqBp1WrdSLsIcrltidqR6Us+lBu5yta/ycAXHUVY3jAQ8vEhc9Ecc+4kHn7MOlVzdj/vEIm51Y1vPljzN9Um3Kx5zPzA3mmndc+GXf3sHAh421apeOT7p+Icb5ocdbrK55PKbgrvHXrItXbDUxJ+VvDQ+Y8LOxH/4FTbUqDluNvxzg2R/86eKpn3ttTSxnQT787I3fZv/0pz8d/MaZrxY3HLre+ODq7BcTH7jEOj+9Nvmyh4NLtcOjmuQvnnUcqn32dF0rcOC7/vywAL519VB/Yza4amKzj9tGeLzgLQ4b++A+Vw35lHefs9lWG7EJDNeE9x49G/ZdX/ngTEfwVYPOAN5iyxMX+0zKSR7tBz0O/KuVMb/OoTl+cOy3WlmPixoR84lhTvg69+Jkqx5+eUae1nFVK9zN5RJHPrDEpIPDjg9u1YJPNWCDv194e9/73nfn7+FXP2j3G+2SlQTiilbSkjBuvlXnDi8VQxHDUgjSZu/BtrHW4qGHQ+DucUyvJ8VsTncurnViA3HIb+JMPuxIum0y5mGUP7x02c6+PSjeistfzBrffIzZzxrFz9rqkx/MGrti6Ak/uA5qdmI0zq75jMnP+WJf3uWkz0ec9HNcLjD5Z1PPdgo7NybrfDW6xuLBoTOmVwf9JcIPdhKOebHgr5Jf11r8Jxaf8HBLJvdT9WLbmr78w19rF/ZtPSycSDWiI2EXr/m0t6bluznuvEyfneVHqvD0U8SuTf25MQx1cV7as2od37h3rZzDa+/Y4GIOO6k+zYtFXz7GM3b6+nzX3vrEwZfQazBbT2ednfmsP7vmbMy1VcKxBn/Fmet8q0/2dGzCnuvxZ3Ob5Mdur3blfhtO6/DW8xDHbK7pxfcG7zfg3v/+99/5DX6NqXa/93u/d/POd75z+wK4l+dtvK3L1wc4HwQ7r3ofXLQw2Gnm+TVuno2e4KRNYYt7saZNZ0b9G1vv+qMLLxt4dHFpPS58rJH4G9Mn+WZnrRzowoAdrn5ihJkuP3p+7v3y2PNny6bGh50ctfz1xZ2c4s0vrGKFwc8afe/J7Fdh473eB1gfUuPUOHvxtXD51bLRT10++lNr28JDv8bs4ZDq0gf46qF3puTLlo85/s35G1eD9oQNXT0//s6/PxXhA3+cq2eY9FpxxCDpG8dbn+THt88GdMTcPohD8DO3D3Ftj9gS6+GIo+W/GTx4ab7Hh015yV2u+LBVE82YlF986VozXsVaPnMtPunCK6f0sw8HpoanXl0IzPZSP3XWNPhaNV7tN6eHWPnAr/at4yK+2lSvalUu03byXdfZWZ/5TZv06co7fPn0kIiOHe44W5PjxLdG6DQy80vf2mawvFQ3+Pg4N+n0xYhH+HEDZyxGfWM+5dS5Z18+YdOtElZx2Grm6aoHX2PSuh4P+fgC7z3cb9u94Q1vuPm1X/u17Tfbz8XfwE68wCb+Pvt73vOe7UG7WH4TzwMcZ3LyUVfvz/zoZ0un7z08fDGMO4/VgN4DEg+Y04nR9b2Xl/Ue1hjj67cocc6Pzpo9c2+aZ1FMwkYTwz4aq2/3Gzb2uv2GDVOb93wx5KsRNSnurI+1YqqFh1B6+Hq2nUn+Gm7lyN88fGN41unM4cSjs2m9usNI6PkU02cv7y/Ol9geljkDascGNhz1MVbX9OZ79/z4WSd6DYYaGpeTMYzqYR0X672/iEf0bK2LQeQDg1hXkynsikdvTAcHfvZ0+MGOk1pYF8O6Fm99WOGzzX6tM5v21pjAYxc+XzZ46bOjF69zys9+tydqZ7/kNIU/G43Y18mvnPR7IiYeJC7G8OwTDnxbw1trzhaGfcFRfGP+rgN963xgqb/rnL68i2mNbt1ntoTenvkhHl08xKnOdO19uYVpboxH30nyo+cnj/ZG/vJwfcAVJyx82NsX9znc2HW+shMrfnwIW35yEAOX7j10OPTDOfZi8xGvh73lUm3Y4epaZ8MHB/vlwTDftTYw2hM+uMPjgx9/62IT/t1zjNlZK8fyzE5ecMVhF1f2XRP2s5qLp7GDkRiHYZ09PPrqQc8mgREWnXn3QuPwrMUNnv3Q04nDNq5i4a6erZmzUS/jHrS/+c1vBr2tbYMLX65+0O6n0IIjbHOQmYlfGPekmWJITBNDq1CcHIJTkl89bvznRp3yPaXvgnWg4RF8SHNjOvNVl10+5gQuUTtrrZvjT3CHZ+6wZ7Mtjhd2/LRzYr+KKx8CE34Y5mzCE9c6HtWAzczTOuzs4gAjn2Ktfnw0mBoplvG5vK3HhU8XWTjWizd19Am9hgN/9ubiGs89UBd28qpe4eiLUcy5NsetF7vaTZvG1bD5qR6vaoWbul/Ch015weYnJrx5fdPdVYrBv5qewmJbfabNJblM+znmKx8iDy28aXfJGE61qT6dkekvxt4ZmTbrWN6w2489jnCdU32yZ9faqV4MzX4TucDUTtW/3K/Na49DnMUqX7hiWIvDjFnc1vXdn/Ce95pizjjpTvVsi18tTtmu+njq89XfVfjKzT9Z+8AHPnDztre9bYOqLnfFleNHP/rRm3e84x3b38iDU40uxcRBnn25ag/0jfFn4wPOlPgX09y488h27rO13r/hsZvrqz97Om19P+DrnLOB0f1+8msczql5+tnjl5/44uk7D2Jr18jMofzF0ODKQ4ypE5ftWgN6jcRJv85xjHt8XVs+e7Evx83x4QsePqT6gN11KH73l3zKQR//OIDKbmKfG7OHRar1xGhsjbCt0eXv3Ga7GS4vrclTTuXIzJp6+cDeHr/2ta/dvhyJ0TUxIelhzf1TB/7sCRtcXUPtG53GtvqZ48APXteLcbWly96Xvb4IsWnPYBS3cfOuFXzishk/eMkWD1/q2BC54K7Phr71xnM9u3ISiw5PYtycTbowynNbOPEifvbFC0ffOc9d3eBWW3vvrFdbdsWNd756flr2YsYhO3unVvrJyXqYamG9+smhPQ3TmvGKUZziwgpXPj08ZZdv+er5hW3Oxl4TOHjAoccr283goU3jen7qyLa81HFeW2ziIYbGRgw+RC7FE58PG99T4cOrTtZuk7DY8ctnnsV0K1a52Mse5vSnY+7rQftf/MVfbL9d5zfa8fC3bj287nu5GqiN92cc8FZDtfDQrO/Q2bBTT3Za+ycXTS01tfAwDIa52PLsQY51DUY1FMOf0fJbh2H7zVU5hEGPA6HDs7XqC49dZyMfscWw3j0Nh5mTB4AexsiLf5zVSS5y6qGVOvEvjvjy5M9eDLHKL05qytfcWiKmeHxhVnvrbPEXT85h02l81nNmzvZbvuVbtv+YL16wXcNaPNRFbCJP+NUVBh+Ch1gEFzZ6oo79xmh5sTWOM07sxBKbv7MoJltzsdRCI+Zsa+zwdV6N5W+sXsULV1xjHPhocPFgbz/h8lvrxwe292p9Pvzwlwdd/HBV0/YtPDUrtnF588MtwaF/RddZYK++1Sh82NnocaWD136Y42jf1YfEqZjtIc74WNdgylue7Tl+7h1qJh4bOn7loofJ128Oiy9f+8AHHj5d4/iKLYYaw3QW6Kxp3Zvh4CaG81kuOKgvfGPCppzo4evhwTHGQ8PRvDrLsevLfviF4WzUER/rMI3Vww8VYcORA27FwieuxgRP+RK9+44Y8iAzb7ziLp66qqMc1dU6fPnyl5OH7eVsDUfrhN9sdGzx1ofFfvK2p7DZVS84bLKTV1g42ud+qCIOqUbF+pu/+ZtHP5SttvJvT/nbg84+jM4ILJzExZc/ga1Z70zgqNbtpZr4Ia5YhJ01teOntmzkK4Y623+49HJvjS9+bJ76g3ZFRhahJyGS0yTu4tHMbZC+g3Uqdr78bUIYp+xXPf82sosXlny7OGyEsSZG9rD4EDjszNngb8wnbvlvDide+LKHBXNP2Gjwir9nBwMWaf9w1075d2FY51OuYmmEDnY4m/LBi/XipFv76l1+5eJCMW7fV791Xu5xWtfnvBzo2IuzJ2rFFhc8m+/Far9b28Pb0+UnzirW7Ge1WNfnnH+14qPuakrM5QivOOVsjrM1+fEzp+fPzly7RsLjr8HTwts7p3y6Tub6yvtaLtfwPmeLf2eAXTnSuS/hRZeYy+Mavvy7lsKZ/V0wp39jnDVnC8dya3+skbl/c8147lG47TOe+bY2e/hsnbe4zPXG1bO8YaqP2Mbdn8zX6wR+/ntci6GPN8y4z/VLxmJVNxjaXYWvDzXe4J/Ug3YfJNsj/aXCVr18gPEhB097olVvfbrbcKub2lX/9jffsNvjfKpxc7zKqbMdF2vEnF9YxWiNHRsc2Bk7Z3D5EDaa9eJtC8vLes7lcY2IJ0b588WnHOKIQ2tscYsvG/aEHqf8YZfDZvDgJds5h+VzH+E//djj6R7oy4prupoYW+fDpnG1iz89ncaufOKw12dvDQ4fOrGaq0Ux2FmbfsW1v5cIbnLSVzd44vRhHo4H7X0ZEVNLxMQ1XnHoXgiLsOHny1A6cdWZLxEbD/NwzashHYHNRrNHvrxk4wuOebabw4OX5nhkW31b0+NWPn1BEk9N3RvkMPmy50cPb2Kxj2e4nTW82PIpb2vi8Jnj4pXL2vOHjwPuU3Cv9jBh0WnqUKw57/5AB5fwrS78zMtb3PJmy25+YaSbUt7i4D45W6sG8WYzJf9q3ho9zn2hbB0OztYIO0JH2Nkr+uzkLS6d1ph9tTBOxHBPYYc/n2pdfvp04hgTsfh0XuAXP+7OdN9VrdeKv9eXPy7sxYsLe1zZ0FvfE+veG13/OPrO7E/H/MZv/Ma9/OkYD6nf+973br/RLr4H7a5huaoRXnj2gEGN6OxxDzPkZ13Dsbxwrwb1MDV18JkBRnVxZt2fiosPPwJT7Oeff36rhf2x5k9R+Pu8MNjQx9F567M0zns1xgMO7uJ3dtpvuNbCVX92YvGl50PUxEO4mRN/HNirE0748cOnWuCgmceZj5ZYj1921tjQwxUPd42eDl+x59nrTNpnP7xRV3b86fjjQXAlfAgc9312xvqubRzjbE2TJ1z4Hkx6EEhnrbzFgknYiQmTnV5tSfWUL1/SeSkOnfXyVoMeJPNnT/DW6OTGRytfnDwwI2LhgXNSfWFrMPioXfHZ8xODyFF8vtVGz75zEcf8iglf/Vwj7Mu/GM4d/PYNnrM7xZrYsNTLuvdZvbh01opZX62aw+Cj4WKObxzo5n7gYF1tYMjBtYRjZxmGeWvmOOHMx35aj4seph4G3mpi7jqMK30cjeMCFz4fsdjDoTPHo9rEBbYfpHV9uS937bBxDtTAeVUb9s6Qph5sNGNNzDnHLR3ORN4+D8rd2WSPI+xqU530k7PzUB2M+csLnlrER71gETWt8Y2POvE3Z8umteLCpYOtV095Ev6aNU0+zkA+YckbXvz8uaN+uKHuGtz2VL72QM3LwZhN+cK2psEleIVhXVNr9VEXMb1HyZMt7vZUPOP2dsaw//mKxY49wUmMZ+pBu2JJwoYQyVUsfZtEb6zo9ObEuAOwKU68hDOxT5huavYa4UPiYCzmjDt5W8/XOP8w4yDv7LJhT+iz0+drTVy6yYd+lem/rsETn80U+nDLUV9+xh1qfl0QYYQXX/0qdPY7W+vZG8cbv1XYxa81urhOTGP6SwUOmRirbzyzmXO69PlVt1Vvna91km92a46b0cMXNmte8WDS2opPv8cnO3082KY3nrwa109uc1wOXdvWip9d8+KKqa05TA7xgsEv2zCfRF8uYpOVT7ydWbbZs5v550s/MejLa82J3psATLJeO9XOWnHp1rjWz0nxJ690+c1YU8eOWF/FmrbnO23jjnc+4U67vTFsvNlXp3TTfuLtcV1t2d/Ge/rMcVzKa+IU+9I9giU/HxD8Rvt9/432fqO9v/0487hkLB95+oDiQ07vEfN6gMNm7o+8nG29BqfzzVejT9Rg3WdzfmHMeuc3e7Z8smstffPZh82mWPynTzYzPxj56KsH23jPOOsYVnjs1UZPzmGtvLp/pIdRfFzE0E+uKxfzbOq9/8Mxx8fnMx9cNXp86fowD6MzX0y6JH7N4WqwLhG2CaxiTNx5prKpxvnCyTfdXs9fk2Pnlh1/NfcFxLVg/l3f9V3bh3/r1qpP9dvjYA1fGESslRsbjcQZl+pcLF8s2cHQh8Nvcje3r74I9fnuVI70fIvPl9AXxxcxwkYefdHclA9f4l3dypeP/KfAZZcYz7l1eO3J3O/VLox6fuyLCWvmxx8n5zn8bOiI3vmn19jDNeaTTk/Esl7s6gPH3plbS7Jtrg/DGC6edOVbLOv86WsT23rCpy/DdObhVB+1kROhs2/zLE1ebIpprC5T+Gn4FIt9dTaOK536aOGolfj5V3d+8PjUrInFn47NKZGDFg7f6pAuvuknFptq48u//fSQ8vWvf/3Nhz/84e0L+57fxDg1jrf/cM9vx7/44oubqQdCHshUHzURt/rIwbXtnqAOCTsNrn7WiA2dOvdgzrpYPZSGK0cPruRcXvDiqm+Nv7mHFx6IwCd0xlp+sNrzzejhCyxxSZ8/cOTrOpSnPQ5b30MqefDvmoOhJvJx9uGy7zpUP3zg4cvOWB5sxNfjSh/f+MGH4TPSKnA1PvD41Ni2jo8WpljsPQjysEt8Qtd9nA292PmpAb7lpFZy7t7FXw7mYquTuNUqjrDjVM507PMRu9w2cg9eJib76gi3urEVj+BpbF0j+E/fGRO+NbZykDcdLsbh6NNXu/KAJy4cPmHENR0ubO1rn3/p4ia+dXN7Yqxm9cZx7bzyx6ua90M6MdsndeIHB/dw9Hirj3FYzqsWL/hqijM72OoRnnW5asbxnbzaH7y1YrENl77PH2FXu3qcZgw1wxU+n4mLK9vEmP88N9XAdYFHZxCu+w1svOj94OMVr3jFVi984Pgu5N4Gp/OgF4cOJ7Z0ehziYc6uXOmN7cmeWC8n9Rdf3nHuXsRXPLbWwgu7uDDkxxY20fOpFnzSGRP+YrWP/I3ptfJmKz8Nns+5zicxh1dd5AIDH7WnT4dnecvXXmWDWw3vHnTj18Nu8fBiR/TVonMpRlymjXX21vpBBi7lZExvPVxrnRkP2n0Pf+tb37rFtnaNXP2nYxRZ8giRkja+LXgJKAZRJIXjp1mXcAVoTeGNm+/FTBcH88ZbsDMvxWUSF2P8zONL9zgCT6wOnDwTccqPXWvqzL78sr+mr6bh840LXK366q01d3HzN8dj1mdyiJ/1hG5iTX1xw9NPDHteDaYeRtz0pPVtsrxMPqvtura43uu0PYhrOdyFA4xqwz8MffjpSiK9OV/zOGTzOH35dV+4DSt7PJyr9pJfXOUQV+Npkx3bNddin9K3vtfDK2brxZ547OY15Lxa38u/Ou/5t1asiTvjTl+20w6GGj6uiFFOxQ5TvD1Zea02+d1mt/qtczj2hdxHriv+487neQ5r5lw9py67tZerPfXB2YP2x/lPWPaw/Y32n/u5n7vxz/vwaY9W23NzPj68+KDlPcK5mW31bf/6sGidrveUfOOinzVr79UlG+udV3pSPvquY2vmq6QLr/X05sZaWMbsi7fyzl4ft3R88itWecYhH3bznE+8iVFdrNPDgUFPR/awij/77NOtcx+YiwG/LzHrB2E2fLXyg4lX+lMxpj2b6rJyyb++/TFXt+lXPbLVW6+ZT/w5bm3ayk9LrInhgZrrARd/LqEHA9a8L2j8rM/PN+GI25oxXH1+2dGz01rvOqJj329jWddcd2Likn/4cPEKo3FfgqzPWPBhJvmZ89VgF09MQlfjb2zNAzBjuKTahJOPfsZtTB9n41kb8ynN69mKR2A44zMfnMw1IqYxO77Gzv+8NtjFJ5/Ji5+5szIfYtLhMrmpT/WDqfFPly1edOZxNaYrXrY4EXp49MYejtjzWddilXfYcJ0pX0SttWdrjJciff46NodRLvzC1qv35JQ9fXtBx09bRfzwwiqWPaKznmTfXL5aeWRrrsGCcUqqF272Vu++8MILL2wP2r2fh3kK45Q+Tn4b3Jd+fzoGvj2zD+Xmfdm9x/kSi95DBL/pR+wd/TyzeNuXcOTJDoaHtHrr/UZ7seToge98Xy8/PRyYcSyHeOjbn1m76ozjFPlagy22Jl++Ysw4bMSzLof2o2sCbg+aOtdw5KJ+enPx/Iemcq8+1uDBEkMsXNdnI2GJxY69HPRw2RfbunH55WPeXtER+6GFVfx+mBI/euLBlXOoF6c9US8x7acY9AS/ieH9JCx9XPnxLze1bj/wDgtPfmHwMWbTnpmLCYu9sXPLFp+4m/PrvIjReTS2xobYR3h05Zi/9ThZF0MjsPPLpt56HKu/eWdFDelhxp8vG/hhh6efwsaf1cAdV+8v9hVWPuzhh6nm6lOd6dlPH3HZsSGdKefY9QFbjTTCrv3ECWZ1ZFONG1sXQ/49aIcTR2u1sKu3M+BawMO+48KPnWYclr5rjQ97Nno1EyORv/p1ztm5X/nTS93TnG3Xd5xn7HLSy11ceYsRJ3M+dPBJa/QkTPlquOrpYWbHVpzm7XF1gxtGMcT3g0C21khcuudVn+bw+cld3rDae2vmMOAVBy7e3UvZwdWrM7H3HrLPnKY/WwIXFrvOm/0oZucRXmeYH//2IJzuheb89+KlkzNMGNXWGcenfaTvTOute9/2f6Xd9U+43ulBu0OL6ExMARC8TSRcsed4+lWU7BRPIxJXlOYVZ88HnzAm/t6Yf5jlsmLu+V2jm3jzAE+ebMoPD/leUtfbeMCFpy9PPsaaGJp6ZmvdxVA9sjPXCNtadtvCw5eJNfXG8KwTsc0JDi7gLmI62PTsik1P+KnZKuUz9dVd3M7Oijft73OMZ61a4XAXwT8s/uWqZsS5mZItv2qIw33mDvs2PDZ73HHSSHvZnG7FXTHYTGHf/k79uXE1qj7ZrrHT45DwJWxX+3WeT/7revrwsl/7S+1Wv3PzMCen6tJa/mzO1Zh9dVlrGsY1ffEnt2v8n6Rt3M7FuIa3evkA0Rv8XX+SvvLB82Mf+9jNu971ru23ONq/a7iFCcuHEDy9T2juP12/2emdA+t8xJRf96rW+NHHia3We/4cw2RL4g6HDYFhnC7MbXF5YZcfrPD0/LQ1Lzrx4VvTjKevOaHbex+PHxtY7OKh773KWvdzmNq040+Kba31dLPfq4UYcYh3MV9C//x7NGyf/3yg9iWGHZ0YMPiHpy70YmajL0YxxaDT4seuM8FuT9iEV3x9tSsHuHTZwHJ2nUnSB2/r+WwLD1/ipifs6ovnQYYvMmxe+cpXbl/6Vry44qIl7GbeUx+3dOVsri741nyJ8OVTg8lWnK5N3Ojy5W+PfEH1BRRO+fgC5rN+3DanhzEntnHNl6L2Wpz0+rWG8OjsQ7Z0+FSbuNJPgVe92E//xnIpZjh6uvBhmhO1UGu1qw76efaMiwvLWI3U3Vpx8EuKWRx6Og9G3DuN8dHX4pieT7XMhs46W7yJtbXWYc34xuomv3J0PcuD/4wrr/Kpt+5MlXd4OLAv1rTHzZp4BIYxW81YPdmsMelrfHHXVoFTHNy0MHGZGOxwoIsn3Z7EkV389+zo1MW+uhcQv0HpQftv/uZvbv+5ebG2xSte4vZnf/Zn22/W/dEf/dH20AM3+x8v15Oz5XrWE/dpf2Kmc0LnWlVn9jCqaTU0L4f2w8Nm9wWx5KF+NZhk1ptN+6lnC1cvDqHHq32g51fbjB6+qAG9Ho783LuM5dNDtRnHflQ72PFLp6fnE1+9+dTJ2XnCFeckfzrYWqK2+CXi4Nw9b/qISeAV173FdTnvq+xg2pvu63RsPTjDk773ImuauHRxpCPlgps6WoeBg99cpfcgz5yUX/XQE+vVGjY7PUwNv2xhatarpzl+8lcfzXmzbg0+rjA08zh1nfMlcMNxLYofp+4LsNjUwsuPj9hxllsc6OFYK5a4fHHVy59d+HqYMMonO+85BJZ1fxqovbL3nQGc2UyBMfHmWmO17HM622qx1rF8J9f4srWH8oIhF9I1wYe0R9vk4QvbOBrjosEmcNXAGVXn6pBdNuxw1Nhr6gRTfHjid0bZa+21dbZ88JFT9wxjMmOzh9te6lvXr/tRDTagBy+dGbGyNe46YUcvD/H52yscCR17c/r48HEurOPBX198fXH4GNPBMSbqwqe5tfD1Gl05hFPeOHgvcDbtB1GfrsWwPTTvByjVGBZcftnjERfrM075iCle+bLxPuc9lm8+9ew1Qie+vOMhP2dBbYk45cAON2uP+ydc7/SgXfA2eGP34EUSSCbm18g5e7gKT8Rtrp9+xhV1rtkA+mkLi422J2zDWP327C/RFS/sYpsXg06uxbbpM6dL4pyziUO92qyxmuM0D3wHmd6YTN75xfc2HhOPr7kmZ3Fbt0a3nrnw861u6fHoBpCOjUaqbTlkc1svnkZuyzVbMeIpL3JJ/Okfz3Szt6Y+YePV2Jpx9RFXC28jc08vYoh9Drs6xIdtnNDAlQ2xdqrG5VSem8PDFz7qMSVO1a05/2I0bm36XzOeMfawqoG1Yk/8crK+5z9tn8R48oePT6141VjPfor5ur+Pk0d8xNir14x9ybj63gfWuXh35Y2XN/getN/1J+krN3w8aP+FX/iF7Yt396Bpd+k+sfMhRbPXfSjTi5Ow06pF9572QM+nudy7dunyhWecHZzi0JNiGLe37I2zsTZl9ckvbHHkB4cOTjmYW2sdbnHyNz/13lUubDQ+dPDsf+twq0n1Dd/apTJra7zmai6m3nsnTuWWrVg+6PblTy0S9viR7PX05VKebIw1Uu7p9GLnvxntvPDT8mMiVvXhbxxW56YvcfTyodeqc6HynZitxQ1GX47ZedDuywXxhQi3+KiP5otGAqczkl18zMtNT7LhY5/6nGNPfPkxx0PDrS9L5gTO5I6r3/KCW/NbXr5sJNnrCaxyoBOzL0DWzOVgzVzDJe4Tw1q5ZZcPOzjZ81/5xw1+4/DYTyxzdlMHuxx88fYdpxgTb2LSqz9buba2EX34IlaNKhuxfUF073QWYMUnfvR050QeWnWGz6eYxtnok2KY8+16lguxHg7MeNPH1d5XJ1zhs7POLj+9dTL3EX7+cWOrphocc2JcjjOn1jejBy/iFtue1PLNPmxxjUl+jfXstXDpsjdehZ37tgeherb22Rf1j3zkI/fyoP1P/uRPbn7iJ37ixoN258d9rHOIj7gekPrBn2tavdwX/As2+4wTnnTGnUE4PbRWF3sWdg8n5m+0lzusKWutrVV3XOA6O9UUh7nnEyu/qTPmiyO+mrHcNGdKDLE09YAjjrkzIR4xL1c9O2ts0k+e3Q/lWJ7W4fAtzgb+4AWPPh+xMbc3OJkT8cIrL3b4esDdfRg20Ze3OrKlk3sP2unsnZ7Ip7MCVzw+4pG4sbHOnnhPwxWHbPkas1FrPSwYaqaHIa/m1jtDcOk1OOysy6W9FBN3f9JDjFkrc/hh8E0HO4ENw3ubvIrFVq3EzSas4oivEdcJ6WGh/OWyPqCFxV9MY3ZqA5teg1ms7PCBJQ/Nep8lYFjDAWdzwm5PxE2KSecBdvyt8+/cZQcbl1kXHK3DsOazjNrLw36xzae44TfnG47c+NkPrdqopxzdK63z0TvDehzkX83VFRdzPnDwEqdzCYMPfqQ842Bdzj4v6c2J2rDFrzMgTxzZta5vLLbxlOLAgAdDI7CJmNZc53gWtxrIha5awOQDh491cfkWn70xO/b5FK885TL3seskO7W0bg/0cOQppvjGrs/5n4+2Lr6Gi7PnQTgc64QePhx49PnEfTN8aCs2wVk8e0/k4n7qL63AtN4eNdazgyten8erk/Mj9+KycW46O2rv/fuDH/zg0/2NdpuKfEXbMn7wgngJWT8lEjolrXUYspuFprMuXsKvlq6eXRsZLlvj2p5vtnwbh3ltDz++xsnEPcVpL/70C+vSnm+tPROjGtFVD3aNJ/7Mxfq8mO19uehXgVlc6+ISumLHL182LoA9CS8OxczHelIMc+ta9tnc1k9u/M9J3Ng1xrO85WQc5solH/patsU1J+ouPyJe4/C7hqxpa6zN8Q4vxdeLAfvc9S9Etu03e36tWbcWzz2u2bhhJ9nxU1sY7MiK3xzneWZXrObn+mJkU+3jn74+7vjGozV9/tbLaa4/6XHxxRE/vqt+7tvkxC7bcnzcPODhcdvZmjxOjbsW7gPrVIz08T51FrKbPVsfbjxo95+hPunfaFdXjVzK0372gVmOrkMfSvBW19nYtv/1xSv2PC/tS2vTJz88G7eOf7rygGtds5Zt4+z5Zqdv37JvHi49X601GHsin3BmPLbmc83c+VRPPWw11Wvzfpf/jBnW1DXGvfccY42UQ+NpJyZpT6z5EOoDqz79ZvTgBWd47HApBr15bebN17yWDb3xbcJvSjj6+KkbrPj0BUJ+PQRgmz08/u3BGsN6OcKYv9Hun377gkF8XmaXf9dJ+xinvjRtTg9e8OAnPslumzx4sYa3PeAL355ovfe1F2Lh2F6GV3644l+u1n2hgc+m2GKWC6y40eGgET7yxsNasemnmLtnTF75x1lsjS27MKZercxhiZf9tKkW4YfHhpSDL+/tRf7txWb44AUPOk2O7PnHbdqlC8scF1/uPFiS51oj69rMN8zZZwO7GtCVE3/46jL1MKzRiS3n8rbGv/o019O1Brcv+MblqdfgxkksQsfW3Lg6s6enU8/OjVgavWbMl339Bvzgpbjm7GDjp2+v6MsZHh+68IyJOTFnR6ZuU+y8sHGv7iENXw8CntSD9mKJU83stbMlrl6d3CM8JO9hEZ7dl2CoPT/3RGNNnTQ+3VPg8FNPUr2qIR0u5q3RkeoHE346dnw6K8ZT8ps6Y3nh3Nm2z+21GPmJVQw+4sTRvMY+Ozbmc42PGmcXjrlG+GsJ/1lLXN1r9db4wY2PeTnB8BCwB+1sitW9I1sx7U0P2uUPX0+s2WeNxD2+bGH1ANC6NQ/I6PEgxdezcTbUPG7iaXzVqvjG7Q2cagKnc0snPp/OpNydt3IJBz57erHnmYRPYIclB3O2MPDW08Fx7tmaE+M49iB23qvFm9cCvzjqzdVHC5cej3DN5QHLvdc4PvaXLb7iFIsNKUZxzYn1WntobZ6X4sLWpr15AnuK/cOV4KaJkU8crKeLrxpY1+Tf9wYYdPZDndt/sa2xtc5fDeZnTj50PWjHhX17gwfO9jmM+uLy8YCfDa7iFtt+s6MXCy67mRs8Z5VOM09aKxbfrhW6KXK3JrYatB53eYlTHXHCO5+wyi8+9DDrG5uzEcvZh1O+8lQXWNboxeZLj5OGg+vTA39rWnGtFZO/8wcrvfzo7Z/Y9Hr4KxZMeRNx3eNwZEfvfqqZw4Gh1/g2bywmkR889zj+0wd+Te6+h/tzbW9+85s3X7bXyGP9RjviFUWPOEGi5FYyJbPq1zm8KRVxJrjaTHvjbPNd180nRvbZtbbqW7+238NLdwrrVOz86k/5n9Lzq7ERp2YfJy69vZ4y1+n5tP8ObzrnYBW+2YfdWQpj9clu6uOfT5zimo+L0Vgj2U3dxL1tnD+7ME/5xJGdMa7xwbPrpDV28YeZv36Pb7hsjasFDON8Jo41+vsS+Ux8Oe3t+xqPz+S4crI2817X4bHpTUle1Y6tMW5sCF0Yrcc7P3btz7SnPyd8Vsm/mOv6zH1di1cY6/qTnos/JT5T1xjHWT/6aX9fOYS5xorHNX1n4j6wbot7F954+WDygz/4g/f+n6H6G+3vfOc7t99oL/95nXRPOnVuy9c6jlrXoWvRh8I+BPfhKSy9eiRznG72075xPmFO+3W8ZxPOanvb/FTc9PXhzNhzbH21zWftq6sPpdr8EB5OZ9ncfoq1xguXno09bu9bg9N9zFrreu/pnQvz9teHUXP5FBdO8zDEoM+mmPXsa+n0l7yPsMtXv0ocnEtSbTqrdPKJW59fYOFcY7cKbH5sfGDvy9D8jfbi5avGXW/WwlDLbMVOD9t82qoLnr6g++KQb/vKl89eC6+8nClfVv32qxoVu4dr4ooFM1y50MdXL3b7lU9+8aeHkdCrGS5hWaOnm+N4b8rxEiYfe2qumeMTbvlmP3mkw1c99WGwK7ewCp9fXxbT1+NQmzp1dj13XtiUX/bmnRO6PcnPGp748Isnf7E041WylbNroLyr28TPd/Lr3MEh+lo1q87l0B4VC9fi5DPXrNMTdub5dF7zLwZ7+WjtDR5aOcNI+NXS1c94bOLS+trLzzVlb/m6L9zng3Z/m/2nfuqnbv7gD/5gO0Pef0n7b59rccNZHexX/NlUr/ZMT1ePf2cjv3xgV5viWFt1c82YTRhsk8b16bNtPntrk+sp3/Qz9sSxXlvj5Vu/+plPn9WuNTyd1675eNezM3Z++kzl/HoIZw/Uv/UenNpDeHztrYderh12euJceCjHDi5bHDsT7Ssssa3XOiPstWz0+TtXYhB6scm81rKpNvN+hKcmJo4ED81DNb4w3S/jDRsGPR7qFIcN4MELPHzinp7djCmO67V7Cbt4wu/9wFgjMDSx2dLD0ceD3piuehrXrFdDe0eqb/bZxNe8Guuz7x4ATxPX+zdc8Tp3OOYPS1NfjVhnSyaWOUytuobDnl/542o/Vh9zvnHpHknH3hmtVtnqCT2O7OSEB374uxZwMYfNxp5ZoyP0bDRj9TLGVZ34GBN54DZx4YnPprrAh9W55GtOrJFi4k8HI97m8oCZXi26P/CPU7xnHxfYnV/r5nAnX1j0Gik2P7XAiS8/+1D9rOFTXtb51tjiAQd2uK23350renZq5n3R/Uosdno8rIuHP13XBhvx7RU7c5zx675BpxG9eGxx5KuteN1L+bCvN8ZBbh60//Iv//L2vtv6Znjhy708aG/zZkwkS3RuzrQ5Na5Q1hvPApzym/bG+Zyzv6vPbZh76+WyrlWnqb+UOx/+p7An5hy3Z+KssaxNPOv28JSwnXhsw3DIk4lp3Pw2fFgrz2Jam+tiF7MY+vz1T0vW+JNzOcerPLohmCeznnTmp/LIj82e4EBmTfbsLtXBcVNsD8StncLgc2l8uGzJXt7W3GyJmtj7akBnvGLAYRfuWsv82xs4t0kcsst3xW5dL052U2+MW23FOOWzYtzXPB7w1C6hL4epb/3/Uq8Wybpf6dc+nz179fRh5I1vfONj/SR9L+ZHP/rR7T9D9c/+xMHD+e3c03XGVm5s2NOzc+37EMVfo+8DYBjliUt4U0cfZmM9yf6l2Uuv+bbWPJv0zde+9fxm7NV2ne/ZhpNtc/Uhez7pN4PlBb8wsjNXex/6PBDVV+/c+Wlr3DVfcx8g2cFdY4VX717pw2nvq/x8ANbgkDCKne9tfX4TA7/JC2Y5nMLLfuJl272+LwthdebNnVm+jfXq3XkPa+3Z8WtvYLoeXv3qVz/6LZmJw57IScONTovDmkM1zZ4P2/lFpGuuWMWJb3PYOGrq4QuK32TXfOEoNvvJrfMCT4zW6dnhRudM4BLX9PzSxYVOvL70Tn1rdOK1V/SEn7V8zGvWW8MtyWfWr5png+P8Igcn3noS9oxXrcKpZ1O9jUm6rmHzcjSejd6cGGtT8qWbtTCfmCsOv+w7S/pyMy6nfOMhH6Ie7PUau2w3gwcvc50OBn96+Mbq3rLXAABAAElEQVRxCaf9aR4GO/jN4bnWillvfb022NLXzBO4s9GvdubwCX5T+BI2xHVlbzVr/lm7L+of/vCHtz67zfiKl+J40P7TP/3TNx//+Me3zwiuH2txnnVQw/TVtTPv84Xrn01SDDbu+Z0DNtbCZp/t9KcvnnGSbfPbehj56M2Tvbm1PftsW2Mnh/YSLv61ibPmEUZcJnZr/JM9/2ln7KxMPsZ0fabCy1nW4HUvcbbsnXn3T7b99jUce5e/B2L+hYMfqIrbej+oZUevlR/sMIxJ7xnm7DonXRP0E6Na6MW01jhbsfnHQS9/DT9r/OQrpnUSlnn1EYOwM3bG+TvL4VtjjzsRRz3zpWObPVvjuV5stsSa2tCzJ+Jo8swXDh0xLm86Nmw1WASeOcw+g9HVrKmLRuDVekgJl30c+ZgTceHCp+vBaryz02s4l4N550H9+Irh/dMPSLKbPmKWX2ecbp4jsWHriTHc8oJH6LS5d7DlPX9JgE3XiDEb8/KRfw/aYVvzWSjcuKlR+6Xv/DhjsEj7NteLKR/4/PRs6DS1YEfwM6YPR0/Y2ev407E1t9YZpBdHLfo8Ay8prhw182LyEU/Dc/rxl2v5suGnXnrzWctsrcnLXK9m7kd+I95e0dsHscq/utMTGBpOGil+dc+muPDg2Lt8yrU49XyJng4GH/V5wxvecPOLv/iL259sY7PWhO6cPNaD9oIhNMUcWesVxTj7abuOJ9YcX+oPL79L4k1740t92F4r8apf/Ytdv66fm8M8hbvn16ESa8aDMdf4rjYr3hqXfbqwYXYm9vCyW7HN49OFAlvrAmHDf94YzPmxMeZ7LgaM+xT8ynnixp0OnzjRk3LoQrfuRpGfPr98N8eHL+HsrWUXlrm67PkUJ59TPbveJGDh2j6d8+ksXGIb31N5dz5aN+dTb0z04qlxN2j6lUP252rIbwqf/OjjMm3WcTXYiwNr5R8u7ns+K/59zsttjXsuh9viw1zxbvN5ua6rg+YsyemSvPJZ97O6+PDiN+He97733fmfrK31gu1B+zve8Y7tQw6edLgUd3KXT3pY6wc5fvM+3PVV3LCbn+qLod+TyWmun7Nvbfo2bq0+zNabrz17jZ22+rOf680nzim/bFbMYunV37nwhdk/d/Sh2/mZ544dme995umNu0/TsSPG2ZRDevYaEavfehGbxDn/Tbm8TExLnTljmIRN464P83Sb0YkX9gkesOjiWD3iGD6fdPry5K8l2UydNXPYmrEvPa997Wu3LxJ409XY4+PLgyZWuHqc2g+2/OPP1pegvjRYo7Ou5S/WKuzi0hcyvbPkhwL+1A0/8eHECY4x33TsjGH6UiUP8dn0N3X5WSfhxjVdfV9UYbINf85nTfjFU0xina5axa91a8bW8Yh7DxiKxa4vppNHOOxqbKfNRmR5se6aVeuZA1/Xrp7oy8FY40vENs5mUz54ocsnXX0YehLn+NC3Z2rRmbLOthoZ02nFN8aJTfiwZn5xjg+casgnPmpjbk2Do80zFX9xi8EWRp8948eWvz3UyouezeRBR8TPf9rElw0/a423wYOX/MKNky/n7s+w/WDU+/iv//qvbz2bu0jx/Y32N73pTTd/+Id/uOXv+iFwNTHVaZ6NaqoexsRvFE5fOjm7x6g/W3tcHcoVvpa0F+blFpc461vLrrVwzs3Dm3HDq+dvfcWBP3XZ0PFVDzmUZ3zKi10tHs3DnvP8s538jMNl1x7xp9fjV5u+2dK5bjQ6Z829hK+HVvIxJmztpQfW/pXVK17xim2NH73fKPVebq/Z2u/qgYOxFg9+3bey70yZ85mSjo/GP105spd7ca2Xn2vYGlm5VEe9Jmf45e7e4AfI1uY9HY46yV8sdt6zCdt6a0RNYFbjTfngpTjmxvLhrx7EWCzY8iHxCLt41vmH49rEy9z+4uuHKDhXB77W5awRuPT69rI6sw2fLTsNnp50pvjj4B6Wji9bOeDBx5q6yLH6OGv9Eg8bWDMGPu2TNaKPi/HkyrbarHo1Kq41fMTvB04w+bKxln+1ta5O814nF5+L9Oxxn2ccPz7tRbjyiKd191H4MOhJedZbw02t9TN3Y3HVW4OJt/OA34wL25rGT83Edm131svROmHj/g+PTnz+uFoTTy3nPQVfa1oYeGj85OyHLPiKDzef7PgWqwft1Yetxi+e5tbztx/W4Ntn6+1V/mGwlYfc2Zdb5xWmdXbGMxaefNh+3/d938273/3umx//8R/f8o7bNrng5c4P2hFDYhVEEdSz0cgs3Opjzn6VqbvNf/W9Zr7G4UsnZmvXFnYvflj1q82aYxwmn9Vnztmfwp52xh3svZhh7O1vONmY31YbtuIVE652qR9/tvmYO2NaYm09k+J1IVlf5ZocVt/b5mJ3Hcw45/xmjnxhyMmNwBqcsMzTwTS+VMIJY+4LjNb3arbGYOvmrGcf19VuztmKKf6lMfiQOE+8sKqBeS2/7MWrtXYJh/zvs7fHYsd7Ylej8miN/XrOW/tS9GvtL+UgP22tfXsCZ68ul+I/bTv3GbVofy7hno8PAdO+mvow9cILLzzRB+3V6VTd8cKHyK0PYuZ4k/iWQ3u7LT5cb3yunxz27MKfa7f5sJ1+xtNnjqct/fQrJn0+e+vZzbXs17VVb31PN/3i7wOyBzg+oNsXrZjZuL8Ya51LWPbLfTqf1W7u94zdh1V+PsD34f8c5/yLGx8+4nR2+pxIDz/BjZRDev2Ma918+hvzD1usiW2drr4YakNP2MfResInse5ajoMvLt/7vd/7BQ/as+Wnjr6Q9AUmP1xh1dPj3nWm98VC3a1NXubnpP0Wvy85ej+w+Z7v+Z7tQbtYMMms0x6ueDBxkYcx/09/+tPbF1A4ciTlZF0jeGjW1MtYTLkbk/jEqRzzM+ejn/dSvvQ9DMgenhrGFXdzMcvXuHW4xYRJ5jxe+b5k8YWvbHBz39QnOM17KTuxtXzY4ALfuLU4sAs3XfjWNH7WtHD4wFIfenXpTLEn6kIfbvH5EryqnTjTLkx2/Fqnx2HO1aSY+cHFZ+YOq3yyp6sm1hL+PVyQQ/uTX/Ps+c4WD3bGpD4ffbnprWcvJ/dn15ax+7Qv6h60ez/fw5q4p8bxn/8Zqv1wHccBtlzoXVd4WFMTD02qKx1+PmOEy5ddf66jnKohO9jVPJ7s9lrr4TfPln5dyyZ9fVzETsLRE7b46fPLtvX6bMItx+wndrZhWpu69PVh6MOZus7JimOezDFcD3u69uwRXWfWPmvOmmvadUOqldxcD36g+qpXvWrTW2Nrr72XG7Nzz4bfNSIOPR1OYoqjN6fX2Jiz18+xWPh5aGvcWjnoNTHjLkYcw8OzdfmxF1cfRjXRq5kfIJM4GssVVu9P6qqJEx67hC8814p+FX4k/zjCMnYNtnddf/nwg1m+9OZ48zPW+4GI/zMFZ/w12BMH1pRZk/bMOh81q37mbFsL0w9m+s9wq49a4KCJz6/PE7jyddY8QLUuBl11Zc8uWzYkPdvi49zeOAt89HOcjTWCi89I/Ua9uLDhzBrAINUAj/Jh67w6P3DbR33C1l7ah1VgW3e/zQeHKXDFxsl1oc7ilTtbY/WG076z71rqvg/HujU6fnIgamE/4soOJxzZOFvFheuMa3RyUEcYxkQe4mhyqLdm7rr67Gc/++h9Jp/iTV884eMWbvvSNScfXPi1h7i0b84Z3/k+JiZp39gbi4djectXvK5Jelhs6DVxxH/9619/89QftCOmEAQp5CTRnE5iSKav34wevtDxXWVPv+e/+t11vsdhYlmXy+PKbXHgzzzZN5/jczzYXRInm/DPYe6t2WPC/zYMttmHpZ57NZ15Gjv8XST56q1NXBzgTdvWpy6M/M3znWu35ZTt7Cd3N4YpuFi/Rtjj7kaxx6cc5L23fi7W5NLeiEXO1W3FzBZeddRfy2fFvXQurhtisctL3zgs8+zUrPWnxTUe9bfFr7btT9dL57l8wnuc/q5YzjlecbuUgz2Tl1ymL11cpv5S3C+VnTrIST7tDy7tsfF6zvhYX6/v8vdBwD859xvtb3nLW0B8EcamvOIFdr/R7gMRqebB4BlX9p0/uvaN7eRtr9jOFt70tz6x59jaJZLParv6Zzdjrj7mq99qE076c/ar7eqzrp/D4jvX803nA6AH7R6YqLE9qGdrrBk7k31m65zSw9Lzzce6sf0lxvx9qci2B1ls4rMZn3hh070CBsGNNGejzXNlzk4/ryt+rRnP88fOmrbKtGtdX858NXMyx9WIfZxwz5+9sS8vr3nNa7YP/3TyTvjJz2doX3pgEnpfKvQaH9hs2Rmrfw/ay4OvcTmbk2r60uzztcbPfcXZ0eP6Hd/xHdtv/vGJq7hTrK2YYjpTfXnDwxcfejn4EtWZg8XfGjtjNn15MibmxmxwsA+t0RE5aJMTO7p4i6PGcS42fRxwM+YbJ/hsza0ZF6+1dPFiN4U9qYevrnG0xleudMazsQ27fMzZkriyC2NbePgiLo7EOKz48DH2pRgm23kW+VUja+XLli/BS/3g0GvtdfHiOTmEBWPWjY98nHFc9Ou6GLDoq0fx9URMPGBoeM6YxnsSDg5EjOJbK5fpmw/MiQvDteW+jLM/HfO6173u5kMf+tC9/Eb7iy++ePP2t7/90W+0i60e+GjVpocU8VfTHrbLwzqurbte3NfLRa8GM3f5wNcSdtkY11qPl55kO9cbzz77+PFrf9jt4cw6hIXPlGkTd1hasuaQT+uTG10x0mdX33q2K7662o/VPz/rmrl9JObs22dzZ78zn43e3vYnwrpnsOtaM7bX7GAYw4ZJ6MRWBzq9evHrWrXOpzPDJp198zCMLz99uYYrTntQDNjWNWPr/LT0+vQwzMX2HucaZBtuOK4DeNbUr9qzk5M+THYEHlyNHym2cXGqnV6DLZ8kH30SJgy2/qxGfnr3au+nuLTHxYERlj5uk6v6V3M2WjnmC4cuDPctPHq/sCam+nRe+HSewsSxe++040/iYmyd4IofjOLD1bKXV419Yl/K2X3XDyXUim7GjGd14G8dB+debmJpag5LnNbjih9beaaLi14c62HS4VJu5gkuvVeImU32cOx3sejZ+dwmDn5yUO94m3dWO+d4wmKnFxcOHxjimtesl4M8+LMh1vjp8dFgmMP3n253v+DTHrDhN+37HhEuG1Jd2ctlxsMrXHtN8I6LnrCrxd0anuzVLzvrYogfP2N6tfanY576g/YuIiRLqnHzipG+ROecLnt6Mu1e0lz/GualWNkXKT/61jos2byc+8n7FM8OtFzL95Ttnr66XOK7x2eNyyZOzg6hczGstjMmn/zY2yc3pfzTbYqHL3S1sMMMb57f6duY/xRzvuJrccom3NWvuNnNni2seZNb15ufw8mmHm48+DUWi7Ru7RRuNuUcTvOwivmk+njUxx+flcOaCx+y2m3KJ/widrVaeQndOhvre/l4w8D9cfmLod125vdKMvntrZ/S4a7JS9xyaE/47dXlFN6XWq8OuM99MpcjKc940vMhM//W1cMHDA/a3//+99+89a1v3ZYetyY4rQ/a+/BT7HIoVrnVZ9fZm3sHXyNrP3VhT53xlPzZNrY+fae98bSba/lYbzzXL/Fd7e9rfopz+K1P3sb2wwdGvw3jwzq7mV/XV/uUfzbm1pw/Qg8zffvq/acv4HTW++AfZlz3erid9/WsW5uNP0x2+nn9mM94/BL65vmVSzb6+M+Y81yLK9+JNccwzPFKn67e9eShRh/+/TBEjOqMQzzoNXj2sC9PxeDjy0R7YOzLSfWhD0v8PYHlgUNfzjzwaG6NXuz2CAbMKeKQcp574Sxkz86a3j8fx9fZiaPelzCNiCln97q+HM4Y+RXPmqZm1jRiTq8uevi+ZLbOhs761IXLPwl32sEk7JN82MmDwKdvjS6+U2dc3noY7OaXvbjBCLM41ujYp5ux4hlva4QPe/E8vLGuqU1nKTs9u7jxE4/Ikz2dBsM5ENdYHMI3rsUKr7j68vDd0r7hUw5xZkeKER/z2fBy5nqoYA1GXDaQnZd4WGI7eaaDlbCvwZdDGK591xTxsMpvtHvQ7v18YoR1SQ+bfPKTn9x+O94Dd+I3XYvb/tBXn/bCnK1rks59RJ2N1aoHKubwqimsYrfX5ZBNtW1ezw9emLCyNZ4yMafeuLXi08FxDlcR0zUVZ74zJn0t37lOV7z6mQNf+tbmOFw64z3Jf8aRl/uf327V5wvHebY/xng2jhNfYzLrwZZYq275zH7GEqNrmx4XtZy49FrcOjfZ4Eu6HuI948QnnDDLYwN48AKrPMKEy64+zsVxX8NFDI1d8eDNex29HHv/E0vr8w1e3UfUYeWH08zLuFhh4ZWd/Q0Hl/Irx2yzb59wrs7TxrqYdHLWm2vlrSdscdvLwTrf8uYTDvtyiSf7KWyJ9TjkY070mvw1PvInxUpvPj8PsZHfxDSmY8cets823j/c4wgb/HuwWv7VgH/nBQa9nh0fvdo7A33OsT55mE9pjg+8YpnnN22Mi8umNX37UK7isKWfuHI2Vz+2auJcZwNLm/HlJye5WRNb6xzFRU9abx62vntWNva1sfqJo2erzX1gJ2YcxYoDXT6TY3xgyimZtuVqrTrGKft62GrHn/A1Zu/zsX+J9ku/9Es3P/mTP7mt018jd/rTMS54Ca6CLDmVTPbTLl1+c36XcdjX4uU3C0iXfm7mXXg9bZ/JfS92B+q2vdrzpasu1Ss8a9WKjQvqkhj8w3SRwcgf5hR4xcgvW2t7ZzP/+BZrzunC60LPz9raVl/zuOdXDzfsdHIII93aW7/ELm7Tn+8e/syzOmaLY+OJtY5h2Ft9N9VyhBnu6nef83IWS+z40Mth3cPJiQ0fwo6Ed0n+m8NjvBRfrMkrSNziYz2bOJfv3nnLNqxzfTz0s17mBL8nIfiXy8zvXKxZj3N2971WXLjXnI2ZY/ush+esJiumub3wxu+L+Qc+8IGbt73tbZu5tccRseeDdnMfQqaIYU9mLHw1uqmfZwbGrFVjfTLHcOY8m/rWirfOs1v77KZ+YjSe68b57fE65bNi3GVe3D3fdW3yiKcHOR7m+kDYemevL07dG2cMtvavLzut0WnOgPjeT+fDXX5ds/pVxGazcmGX3/SJ69R1rpzNfNjtSRxwrV7lu7cWN7bswi2v9fNDGMWefmG1prfelxz4zz///HaNVWvxXNtsfNmRI7v5xRIundi+COrtgQdlvlS1r3RsxYyLcTnhI5Z/Bu5PWPRQvQc67TUfXE5JZ4Sdhk9xjDVCR9j7suthe7+Jx4Yed03sMOJV3nK3Vs34WSNy0+BZJ2pIF6Y99Nv/8WJjTate1YhOvDkvFr9TUq5xNhdP3xrf5lMnlv3X7A8OdOWdT7HNW8/GGp2WZDdj4Vc++aqns8POmnrZE2M69WytGhZfrBWvutYXhy3/cGGwgc3Gd0k6NWCDUw+2+FrT2E/hq1njJ0ZnxLgzFne+xlo+5TBxrRFrrdPlwz99ftbwd/0Yq525xt4PtXxR95+h+lvtq384l/Tq8KlPfermt37rt7YH7mrpwTsRv2uYHS7VTe+suRZ70K5G9l1zX7EX2U+OcDRSLy/Czri65Nd6PPLbnB765Z+ueRjNZ2/Pm7PzvueHmu5n6u78uOfMh2fsnQ21IpNL+er34rK3Vh6N2YZnPPMNS0+sN86fPl3rzot8yiWe4siHnWb/9Goxr1M6wg92+2JMB0N9CB1f56XriI0GR0w23Z/y0VvXrBO1rdGLC9M9XW/eWWOfH9uEDf2MjwN9Yh1fdWKnlwNxhovtjJuzsY5DOdLjCkujh9nD2uLhm537kXEY4vElYhCx8WXTn7Ewh6O33pp4/Ojh4pQNXLb2qfhxFQe/8qoO+YTBLr7ViF++/DV81MdYTM0ZcR/gh5dG8mcTn/qw4BF6OsKemNM3FtccLht8tZmTOqpVdtnIs9rpnbPiGePvM9KM7RwXc+YA0+cEOPHD0bizYw1mtbAGA3fjOBavnCYGzHz0atUch3zYqUEysdkQuHEwp3dG4VUH3OXsXgIDpkbHlw9bdXLW6OTnvMp1xoKb0KvHjMVXPLrisstPfviFK/fOHntS/WFp5REOLK3Y8WFLhztb8/DzhdW5ihO7hC8MXNiyCYudc+g32t/znvds/wk5v3DCuK2/1wftBa8/Fbwk69nxuc3vFF56eGHeBS/f+Ew8hX/WZPK/T+5wuxDaM4eU3oHV1MuBd0iN6S4VmN18LvVhF68u3tUXbtzifZtPGPKVz+xhhMOuLwgwbxN+1WVi3OZ3ah2v9oANzHM1nHmzbd/ckPI9FYs+f3HFMVcf4/vI51zs4otHimmO/56Uo5rv8aPjr4bn6raH/TR06luN1fyUyK96nLKZ+lP7XW3VBeaXWsodD/k9LRG3a17M6ntf8eF33RoT16IPPD4g+WL+JB+0299z56k8nYeu9b3rJ7t6uVS78pprjcO6xCafvT7/Pbx0/LK7DYNPtvr7vgbCnjz2dHP91Jifhw39PdLs5NADhz5gW6se/IydNx82XVddW+nY0FlfRU3Yzdp0rbS2+tx1jsd6ncDCXyyt2MWgw51N/u535c2uc21cLaoBHelD/EuzL/zSKAa/VYqDk3+CXf1hycMXIHp9tnr2CVv1Za/5fPGZz3xme1jWw3ZfksTn9//Zu/dfa7dz/uPzjxClqJ2qNlQTSlDR9OkRRau1W7TUrt1DqukBISIRG01otUJoaSrRRH/wQ1UkFD1Qh0QItYNq9UB3q0rqj/iu172f93YZvedac61n7fqSfSVjjTGuw+c6jHGPec97zTUX/cbODiQ/92C+HsY/wuMP0VMHdnJA/N8KibU3uPxrHuB96lOfuu+Nljdb3SdVu+JuXTz00BAe3N7ossFbyRts8Ts3kTVUG7bliS/v8jW/KsHsNbL9opZ4fE4f6abPZ+tiXZGefbmRa5NHbw8LfyW2dMtXj+Bp4rMO/Irfn3uLm2zP7x5++5a9Zs6PsT5fbGEXQ1jm1iufdOyF9sMxe3nZH/YXe/Gi9hWcWr7ki4fkbCzO6p3esb66k7ObJA+5u8bFUusa9PDUG/VbfdBerB//+Me3r5O75557tnWsFwOfsxebeMtd3Hiar7ei78H9f/7nf27X7qwbf/mc+YZRz0Z9Ya4UxopDFy+b1jDM+uT6xtPHU57ylMPtt99++Nqv/drtIfVf/dVfHd785jcf/vIv/3I7e+aerAbFMv0bx5/4x/jFU0zNp+2x8cS0x5H6aepgH3Weib9mrfjxlX96c7pdJ3p7e+Zh7HrylV6u8V4v+CGD09pNu73YYaPWm3/XIX445HDwvb4Vc9c0v+J03dqXGv/k7VNY5K5nudPHI9dH5W0upmR6jW/3RGSdE9U5nTD0ZO2RfOjFRiZPenpxyQUOG7HlQ95kaq3mbMSil1N40x4+omdN3bfBZEMvf3wZq6/WGm7GZz/M2VlvsdHFY1eN+YLLj/uB4qDvlzhew9nga8aTYGn01cIvEn3Yowfe1SK/dOUlFn6nPVzxqFW/IIFLT35iXO3ow9DTdX9Dr1j511BY5WKuDhoSozH/1s88G7mZT144/KdvvdOBybf7FQ3JRYNLz1hOk8qRXD50+BAbPzDlSy4GsUVw6ZBHzfvLRbW0Pj5swRZu68w3jFk3ftLpXpNOJD44+uqX/2IUJ7mG5GP/Iz7FM+uOxxbuvC9urasHf9UC1uTnW79S2PzC7/pxf+p6ESedbMUjB7r+Iu3FL37x4RnPeMYGO2ux+tmbX+lBu2K1kSco58cCEPwx2cR4YHy5CpxXV7IuSJvxPKJbo2utzI/RlBnzo3cBuBDY27gOwPjHsPb4MMQx/ezp4c195cJwgRwj+3bqF2d1OmbX4VaucmNbrYwdrBP7GBY+PbXau47OszsmE1ex0SnPvXjEXmNDRx7VW67IHKVDT8sXPeNyMF4PW/PsNrCbP8JY7afORWO2CH7rbh3FXRwToxzpr8S+fDrI6eAhNjCLW/3g7WFtBtfwI1/517du+pXoi0n8k+hWKzlkSzd+NWS31u46c+RPTfnIf/HhHfNFp/Wh054La4155n/ZsRhnXdjn37jYj8VK5yLKFq49q4/UxY2Sc+z+/kS7OKbvYqhXB3K9vNc1qk7p1+PXVvxpUx0mL4zZJ1/1m9NNx3jypyx+uvXx6SLzZPr2V7x7te79udpO2anjcOtPtaMnNm90fHLazaN6i0nzmmQ/de3Qde3QiWeu0SsXZ4ibYPG0H9fYYJFVG5j5xoNlbxtr/BVvfjbG2Y/mqw/ycPWrnF345PyFpdc6K8jEEB4s40ny6fwkZz/nfK1ETysOY6T3BtMbMfdBfNHRWycP4MiMWwsxshOzM0A8MPDdd3vQ7uG1tbG23pDDLK9y7R5I782WB+32hzcZ1UWM1UJf3Ph05ry1w9+rARt8MerFy5dPl/oHqeIl0+Z9El31DRO+NzZ9QMNcDdjIrbjwkBj5qm7J6fLZnC4f5lelagQDFt/xqnv1XHXSy7d6ylHcxdhDhYlFnm3+moelDyMe3fT1xVPc9KqHNfGAJX265YG3R+lWd1hs9OInzzY/YZLzoVlXRKYm9sK83op7xmTt1cp1Azufrhc+6cLID3w67RkxI/N4G+OCH+UDf5I5TDFpXYtdM67x637Q/kM/9EOHj370o1uOH/nIR7Zw1MP1Lk7xODfUVXzynPVg8NCHPnTT/eAHP7g9dCHXqkn5zh7WzL8arvxZH/ZhTP4cizOdiZWveFOHvYfsL3zhCw9PeMITtpz/+q//+vC6173u8Md//MfbLw/UgG15hVdM67yYkpvTyW9yvLUlO7WH2R5pH+OJ2dlJZj/1INGaysOZmgwvHGuPX6ziw3MtfOITn7jvrxboqDdq/daYw6CL+MXTypvvuefw4eKL3z1J+48MVnjOnK5Rubt2e71jQ+61rZzYk+sRHVjFIw84xU1PHb3uoV4/6ISBTz8cGDPPsPHYVWsxdZ3jk7MVMywfetB7QOm12pgt6nWbHb48kLnW2vcPKMk1fH7FlH+8SWSauvbLmGzEhz9rbO3cG4hNTfj3sFuMeOKrBvkxh6Uh+B7edo/DjkzuyFh9YImXnJ8wwrfWfilBVr3tITGyozftjFtH+6wc9DNGeub4YjBXB2uVDI54ey0Sdzb62eQbTvcX1tt+gIdnvfiACZt962xcLYyTw22te8hMJk6Y7X22Kxac4m9d6NOzLs4PddTEyhc5G3hiR2JWewTT3D60NvTlV4zkfLWe9PA0cRcnfeP05UMuBvGIgR9yPD1M+1Jc5u0H/sTRvDjNYYgvnr7aFoMennjsGffffP3bv/3b9mEQ44ge/2zUz4N2Xx3zGX3Q3qFVIiVlrh0jhfVb9C6M9LKpj3/ZXnGQ/qJYTsGeeC3iKXb3p0652Vz//u//vrVj/ui2eboAp275xWtD0pUv+cw7fbVtrNe6mOizT6cLLh9rP9cpLLx5MU2b/OLlY/LCIG88fRgn04chzqmX7aZ89kNt5oXaWL41MYef3ezDT0e/ty7T5jJjeNZb7K3Bnv3MZcYiD3Py6gELJUsfrxolw4vIYKDkq217g/y8eMM8r4floNasQ3jTp/Fs4ZWvHjm06ckBLxtxxtPnI5zzevoagjf7bbLzIxt9McQTV/FOU3rrPqQXhhyyEz8+Yreu18S9rjF/+al+xdc+2fPFjt6MXcz2Oxy210X5glfdq0/+1xqf6hu2Fra+/Dfm2Q++4LvBvD+/o90bNr6KJ/+zn7WY+2XWm86Kg1erZuHiR+zQ5CWbffLVT/YrxuSTFUNxhzd9zPH0Qze8OU4/WfOL+nyvdvjJJkZ6ezJ65PaK+ypvepyB8eVr3ewn9nTN556jkx4ZHWegG3yUTL/GsvL4CIMP13o65uybb+BnP8qr+OgYa3RhaPjT/4pnHi9dGOJBMMzT06/EX/rJ1AKxRWFvk7MfYZY3Pmz+rEVvZtN3Zrl5d6OvdUNPTp+d9erNQ1jWw4P2PplIB49fOp2F4rMfkDervsPfJ/vsD/jFL+5iLzc28SdPTCjbbXJznj5ZMZOLxxsw8XqD5A2bB7p47QE9GVs56NVG3K2Dnk715Y8dYqMVa/xs4sNNthle8gec/MCq5R+2hl+tuMj/7I3peD+kRubs7APNuNzDr5/6M4Vimzy42eHDFaN9Uy2M1dZ7umLkW3zTduI2hmc/0YvgZo9nnq/isUfYJi9XubXvyYqHfbZ80eHXHoejlQc9cz7wVj/mckuPzqlUPDDmmL1Y7Fm9GMnTue4H7R/72McOL33pSw8f+tCHtvz8IouvuRZqKZZ4amydWwsxOxfUySfiqxO9qTPzMKY386ebLczG9as9nWjq4NFF+Mlmb5xOMfon8S960YsOTzh70I7uvvvuw2te85rDu9/97u1Bu/zZ0Z+xhsMm3MnDb86uNcVHbLRonccPo7l++iPPNr61czaQGTsT5GFsfZyj9jBe+OIjb2/jp8PGHvFQSy74xTFrgmeusUH2EKzOaDxzse75xNPYiTtKVw+/Z0jGqN5YfPx5bTNmw9/cm3iInWu4eMWWTD285pmT06MPK6pO/JQXGf9h1qejr9bFpYfPl9cvvYeKXuuM2SD+w8OHk9/45q5Lc+POFPb8WHe81iZ+uenVTs8ewQofn2/2ziyxwcW3t6xNe4t9McKhozadmzDc33g4TJcdWXsNrobgaEgssJLzySY5mf0jNrHCplseYZKpN3n1TxcGfXM45am2rS+ZVixiM8YTC/x8sReTnBEMuvzj86V+7Piw9mxhlcNmePaDLkpWrnhqWKx8wIKDB3vGBVdbr6dqYf87S2Cys1ZwYIo1bH7FNOOFYQ9bF/hyZSt/PsnhIjozZnLz4qMDHw6Srz3TfqMXLjs1Fa94+EH8i1dMsNSO3LjY2eaXHOlr5uHno7/iKBc61VvvGvHPzO+8887D0572NOJNvg1O/HGlT7RLXGJ6BZKEuUII7Bh5yP7yl798++2+NxgV8Jj+A/xPr4B6q7XflL7lLW85vPWtb/10pcGZm22wt2FrZ2Ld6NqEk2xs60qXrDU2n/b52Vv/ZBO3MX2YWhcInr2Bt1Lx5ac40mPDlpyui3Vi5WONqbnaah1m4c6+WhQLGb/z0Jr6jcV0ynWS/lX74svXKTjVpVrB6GZPbq2FHJq3Bufhw1XbbNLFU2ONjhcUh3DrkN6pfevtsITROhY3nGJpHeLho3xbR6QG7OmfkutmtPMDTo04PLU+hdgW+6zjfGGYOOWnL6fymHrGMOidGstqf5W5mMqnWl8F5/62KcbqeR3+YGqoPbriWm8+vcD76phXvOIVh2c/+9mbGv6tkNr3He0egMGrnYLbfhH7tDOGXYPVWD6T8FE2jTfmzR/pTJ7x5LM/Rque+eSxm/GHs+rgr7w9u+wv6o/Fkd15vvZs2VVH57Xv4u7cju/a7ka4vcduniV0ncFufHvdWK9NczYIjnUtXvZk7YvOdTZ06IuD3krr+UYvfPaNiyu8/Ic5Y4FRrPzlQ39ZWvMWDyqe/OMZ8+Emnp6YOqfT9wbDJ4u0+UaXPV21i+TAP/Lm2Z+5uvezVnyRTf/0+OxNi1+8PPjBD77vgT5ZcdAV45zDwhNH9aQ3qbzoik+8cjYvLvqtNxxycXvgo3mtz6+86JS3fo5hwW0d6GrFwU/6PWBgs9YF7ypU/Gxh5tu8Pc8/mViQfDVyDYlXw4ehxnO9ycytXbjlkE9+jCeFtfJXnfyqvTerrQ+9YrcmiJ/quzFu8Ud1gD9zki9ZdSMvLvFWrz335buuPQwNbr6qp/4qxJdYkPjEXc3wXceuazHja/j6637Q7hPsz3rWsw7/8A//cN/DKHmVrxjE53XAAw2xk61nhWtF63yRm3hXqs7xzWt4xnJNr/ynfuP09Xu+4ieb/cS1vsiD9he84AWHJz7xiZv/9773vduD9ne+8533ffK7NZ8xb8ZnP8JvPvspm/lNnTmu/nh8WQcNhYVPr1plk5wum/Z0cnPnQntK/mzCZ4fI8fS9ttB1zcenl704yg2eveBewflA3z6iM8919oh+udClhzexzeGLv5zxXEP0UHvVfpVjerAn4bMJv3NMD7P8emjJfr628INXgw1TfPzyn46vkughOWx6cuDDvNjMyx0OKi991xwd9vmgi1cPU3P/5VPl1i6eZ2VwxKNnI0dYxmJTz850PPcfdKsNOT02cy3kK458WWdx08VTFw9n9XLmowevcmWvFYOe316HzcuRvjlqDaoVX0jecqvW4tGmXfHBndgwxZa8tYQtRw2Ra/Thas5oD6Xpil8fdrGqnTNejK0dPLVFMMVKJg7vr8Kf+mpjf8HlQ5zWa9YYJjlMcj619qlYyoFvOlprm/1aI3HIjdx+6i8kxVkscNJTC2tuH/EHX6z855ctuV7+9jB7ujARn+z5pdc9cB8aoSe/1r1a0NfCEY8H43o4enXKBwzxdQaUq7jowe8a2IzOflj3fiFHzgYuv3pYD3/4ww/Pec5zDr6qLF/Zn9Jf+kG7Pz8VdIEoqIQrZEnjRWToYQ972PZnXV/zNV+zvcmQyAN0uQqotw3rO/V+7ud+7vD617/+vwFU92pOiBd/rlc6ePHTY0feRia3Ca1va4znApg27E4lduHpYWn51ZvLt1inL+MuTHINjn2VLbl5Mac/cYqXDV9ah02y+mpV3nDyq1bGx4is2OiwLa5jNqfyi6tamfN3XjywycVR7VtvPIedOhhXF/GGqzcnn8R3NvjG2RgXaz0ev1pyfb7iwYpnPAlWa2IsXrVmi/jHNzcmR/JzkJrDRnMd6d4KFZce5Z+vuRfO8zExWgf61melcqtOM/9V15y8usC+1Xz3fEwef9YJiVHLfzFP/fPGYd1fcVc7MVQX/eSfF9+ejK18O5fErh5w5Y/IkZsGD9r9cvo6H7T/4R/+4eGOO+7Ybvb4z+/m9MiP8p43QKmSJa82+lr5pJ9Ocz37aMrx2SdP1jwbfTJj8jmfY3JEZw+HbOrPcXb6PQovm3Uef9qmg7fKyTT8VRYGuTW0Np/3eZ+37ZtkemvcjfBci4lNxw21m29+4JnnG07nIgxtxkQPhoaSwZnjTXj2ozjCdz3k17mImvfalA89+2zMVxIr33SKyTi/q/5587DowIjyy0/jZL1ZpO86pgNHLN64uo/2nelk8sSX5xpjdnC9QXPf54G1sTrBZN+ZWm28riFvIB/ykIdsvZgQXxps9Zg16TXTXirXYmMLv8av1r0SPXGRi0dsCI65P2f3Z7r+EpOMHn/2GeITL33YxnrY3nfo0ZqvHNh6kyev6yYxRHzN2sihGvI9YxOTxh6/+ylY1qPa0SEv94lHNn3ygVdtYIdrTDYJj72+PdN7uPKwBmrLlp5YNHYr3sTOHu5FJG4+NLjw8fhD+OYavGIh17KZfqoB/d5M5wNOsRvHL798Tjw+ELtskyeDVb2NkTfvrmU6Wj7IPSjz1TE/9mM/dkv/DBUm8qDdn7B70M6nWMqNP/7x7C/NnLw1CscDC9drOWzgOz/ST2QOEzU2j1ft9OTTfo6Tw8mm8donry9m90UetD/pSU/a/PzN3/zN4dWvfvXhXe96133fu5sfvhvDR+aTig9+MryuhWkTXrz0w6smYcYvdvqzJadfLa0bfespBvvdmraeYRVj+9Lcwyw2dF0bbLtenL9sydnwJxb7wT2A+wW65PTYr4QPm23xdR3iR8nLCZ9eOmzF2kNMfNhymDU1J9PwnVk99DUvF/Ux5qP7mXIJWwzi0eiycS15DaLjtYqt2MwRDPrljZf97Mutnh6iI8f5oG/aycFDdn9p2trhGVsPucIUE4yubTr4XvuMyTVrbN3w5MBXD3Tl3J4h18jpa2Ty5MP5JXcYaq71+g2HDOEZ650t+RRL/mDypa+O/OIh9yv0ycLirxjpGBc7nWzZWDM9mrjGdMtr7mc8f/Hngw/qzB4mm/Tx7A/3bmo48WaN5c7GWllHdnKXU3tLjD4wUYz485cZ1hEOWzW0BvaARlccYiDT+AtfX8zVyXwSPjsx9rUpcOVUrMb07Cv1Vxc2aihWMZCzQ+T86OXHXiz0UbnAQN0D+4UDfLr2NLzWNBt98bS38led+BaPGnlormZyYSsH+np6/PAHk9xfdll7c3I8uBobWJ5df9d3fdfhyU9+8hY/X5ehSz9o94kpQdtcLXLBmQtAw4sK6hGPeMThTW960+Gxj31sogf6K1bA5vyJn/iJ7bf3E2Kte/P6NpM1saEQXvyw0p8beT0s6Whsj9ExWfukXizFgdcFyWf7Kn/kKN/x8eC4OFB42U8em5WKRc/vjD0f8c2nvnF+4meTn3TMsy/PdOr5DifeeT19B5T8i+M8fbIZ37FayVeDG3a24sNDxQqHPmwyfGQeGdND5MbWrIPQfNpP/YkZnj6fxtnSDas4yI2LW80c7nzja9UPjhafLcJD+OdR9sWQbnjH1j69evby04t7xp6Onj8yuHp+LoqVPGw1CHviXuc4f/zkq/oU86n+wmq9TrW7qp44o2Jvfpm+uNsH67qSk7mZ6RPtPrmF8G+FYL/jHe84PP/5z99uBE+tXbHOM6Y4Z0x4teJtfdOb8lNyYZ9tmKsdTFQ/9Sd/U7r5g86qlzyc+vj6YzZTZ2+8h7XirTrFWA1Xefb2o7Xx6WU34a7p4iTzOm6t2VdPcnM9uXsKb7QRG/d5kbmGOmvD12tTJ7viTTd++eDTqcEoTrrkdLXmq80mGD/IYSCxNlafcIb6ucNymrkzKIbGfOAhubh2e9OgZ989M5lPmnvY7k2BGMm7+Q8TDr51gK33CSBvZKyTeWsEIztjbybYeJPsQbteHEisxcsHfXWh7zUAiSV9MdBDdGp4Gls9PXuIXK3lS1ZeYu/rDntoII5pky37iY1Plw9EhmcufvOJtSnd1CND9LVboXKtXvwXU7jiyVf+xICvFsVjjfAiOZPj5Sd7c/z84VejsMOFZ1ybWGrkWrc2+vKwBmRw2cEm06LwmuvFy+aUewd64ucHrnzab7DJa3TompOlXw34Lk56cORTfdiHQTfcMOGxpzOpfNOfsjkWB3vExpvx3tzj18TlGvc6/uM//uPbV8HBvgrl78Mf/vD2J+zvf//7t/o7T8jCFZu95WGGBw/ik6ezohrx7xd2zhJ26rJH5ZHvfDTXV8t4dGorZjp6Ovp46eZjztMpTr2cvvM7v/Pwfd/3fYcnnH11DJ0+0e5Bu4el9jG96WcPP1/5mfHjqak8UXFnk259/PbI6nvqzfG0c/Zq5PZQGHo5df22n4txni/sxUwHhniKSU1gk8MrP7rOZnslXXr0ET8rwZi1oQtHQ8UeP7zk/NjD9qo+efHlU9/ZxVYNqgPZzMWcjjyMy68Y6OJPO9ev+rHrk7ZqU5zTZubVmI/84IlNLZFc+HJdWhd65WfMj7lzmM18beBXHl7z6dCFIVYyJEa14YN8Jbj2QLZ8ouyN8fgRNxzEh1jM+VA/OJo5+zDI4Ov7hTcZ3Pai+FsD9mHwZWwP0KfDlh95mUdiKc9qWXzyhGNefcu5esGSI73Ig1b3SNNffuiLAY57a/WAXSs2eMbsWntzebDV2MCyxvmvPvrk7Mjlw8514Tyno+GVA3/tBzJzpOdbH6984dtPfaKdPWJfnczVgx/NGJ78XStiLZ7w6fUegow+ossnDLrW2QNurz9s+MQPj74WkZmrXZ9oJzOfeupkjcKbMmMxwGo91Njrs9riVy89ffHS/eIv/uLDc5/73M/cJ9o9aLf4JVgB2hgzsYoUzz9f8Y9K/IdwbzQk8QBdrgI2gLr5bZlPtL/hDW/4NABrgtS9cT1+a2Y8aep0kbTO9MjbiDZoB8W0W/Fs0lUuLrb2TNQeSXfOy4PvLoDVf7HBm/sKPyyy8I33KB/pZd8BUP4wyyH8+vgrFrkWdnrZFQ85f+qzytJZe77UGrGbtV11zfnIT3Lz6Q/GXg7Z69OnK5/2zZTBhROPHtKzF/eMmT4K23iPhx8lb57tjCd/ZMnZac3ZG+OxTSa++NmEl8+9nu4xmj6P6eCrXXmwya6aTtvkM17y+FPXWO3Dcd20Nqvedc6raZjVqLzin9KvWKfYXEWHn739cBUsNvDUXa/ma93N3czcH9/RPh+0n1pz8dhT1Tu7+nJa+/LEj/A0VJ9s9lMPf/qa44kxx1OH/ZRNvFWPDK3+7+Xe+zOb+rD1eFq8aXfReLUJ6yI762N/9l3cbpyLzbq5tr2WI3p4iD+2bnbd13VDjZf9XPv2bHZkWpRNc+fLqkPGvma+YvCjFScdlH9+ps290v/6WRx8GOvFMn3+l/b+CD7/fOavM2BapAcb0XfjPt8sV3+6MLwZcA+stVa9OQgbHv/WRa9ZQ1jWyZtib1TmPZo44XjTyN6bCL98EY/8yWv8VA99fL0c6IvVXNz6Pf1k8MSI6ImLfXl5A+YTTB62ewhmzraeDWLTWm2Msx/JzI35EU9zOHuvX/LQ2NCZsW7Gl/gRDhM4UXE052vlkclLC8e6G9PVnPf2jHohPshrE5c+fkQ2iaz1S1ZMXevWRx350c/6sc0vXBjm4p80sad9vrLVx9Oz04yLYfqrvtnkW59+MYUhH8RWLOU3MdiQofxvk5s/8FA2N9lHO/rWTZvrKQYYYnANfvmXf/nhJ3/yJw9f8RVfcTL26rTYfKL96U9/+uF973vftl88tOBfbejYP3g+Heq6xxeHhzs92KDnPaRP0BZrOZPNMXsN7ekWFzm7bKe+8SQ22emLPd6eLlnY4tB8AOF7v/d7D4973OM2vL/927/dnjH46hifGlUL+4VdOcwYw5v+5picX/u+2OrTC6/a4NM5lhO9dPb8t37OcBiu17Dp27+9Vk97Y/o18+TTJ9/4M0b58ev8gc9n9uFtQd/8QZYNVtckXrXqOqNL7uFruBNLHHx3/vEnXjb45MUrbw12OcGaMbKL2GoonLDmnNyZp5F7bXXNpDPtxdS1zld5iqE89OL0wH4vTrrFYcwvX5r6lQ9bcRRPcSSvZ8enuTEy18w9nHTtizUd/Dk2Jy+f4sAvVrjG8i4v8vjwyMPAx1OvcmSX/cSdGDDpkdeTR2KD2UPf/MJlE/FpX3kAWy3oqGm4+vYeXPcj9ilMTS7Wkh45TBitCZ1qRAeZ052xxBOH2OnC1mvpsqPLR7+wYOOeEbERH/906IopOzpiMq/RiW/Mlzy9JsChj8JqLi4++KxmYcOgX2xTl0350ClHOObWw/lGjwwvfON8FL/Y4LG3FnSRefbkYtHY519t1A5P3eTMBz061Q4eHXuBPt/86H1I3OvMU5/6VGr3YW+TE35c+hPtPoUzEy2hCrbns4S96H/lV37l9iezklGg6yTF2yN8MRTHMb1s02uuX232dKb+VW1WjHUuDnVzcfzjP/7jwX+MX33N2Iq7fsVb5/SsqR6OdTXW2tDJpp8Vp5jazK01bGQ+7ZNvwps/+Em/cXHs7bd097Am7nnj/Kw6XfDkkfhr8fT8d4G6iI8RvVq1kINmThafX23PH/wZd7bH/KabL3rFsdqUd7rm7BGeOdvWw8FXo5Mv/eojnOItV3bXRXzUYFa/U3yV34xvxnwKBp+r/zmfa0x3j9LP957OyoO70l68ctzDPSWuFf//wrxaq9Var2qFv1ffy+TvukHHsOC7GetBuz9bS38bXPGH/NYH7fLirzXf2w9rnObapGkHsxsW42jqGM95OvXJ6ld/6V3Us9vztYcXL5/100c6k3fRuBjO0zvmy9naTf2xfQffnnJ/5iFLr7v8kbGDY9w8Gb57ut5gtA+KNf32P35r2rmf7trTy+eUTazVHz25eO1Ukxl3GHs2yY710+cxncmfeZeDuLTWShwa8uah1/tu3tOVg9dFOMj6eJOoZSM+LR/02HhzwAcbD+2sL/KGwVfJeDNv/ZB94tzwcB2WNwwPetCDtj4/YtfIUT0fdMQIR09WrubZ6s3ZzD0gdiRufPb5xfNm3wMwn6TyJpKOh336bNkU0wZ288eMgz7/UbE0r2cTHp1pl4/WL13ziT2xGuuLJ/sp2xvTr/GtLubFZP9YW/ww2wv50pfPno946eXDvJzcm3ae4PNlXhwwsq/PZzXLz+zhVjtYKPupt47p2ht05cuH8Up4Gh/FSh+vtWVrLB/XDVxzNvSKvzhXH5eZw+Pf9ebaNEbV2VicrtlHPepRh5/+6Z8+PPrRj/5vcjqnEn/IP0N92ctetr3341tO1pl/vumlK3+56l1vzolqba5OdKddtvHgVzc8DSaiSxZfH81xmPpqHybebOyzrcfLJ17r3yfab9y4sWF40P7a1752u8dxNloXlP9tMn7AqmEb7+kW3zD9NDuybPWw4oU7+WTTd7rW0b2Ts0CN5N06p2MNXW/qkE9YdM1htB/ouhboG1dHeq2BXuu8mH7o8c+OPz1f9PkgL4/Joxcuuf3W3sPPP58zv2RigMEmv3LonCHn3xpr7OjZ0+zCx4OB4ulRNdOLA048GKiaFZe10ei5nrqG6BaPnj05/3QRv2SwEH4xxU9HT1788Njp8Zqn19rR8VqC6KHibJ4PunzAwtNrSDwww00v3+aIfmMYyFyDX131SD215Hj5srbxYe35p49vz8y1F0f3SsWhr7ErrmI2Ny5OvXm+w5FzLZvqAJeenNSZvfjsET1Mcn15ts9goezINfpk7fVsN+WzH2T2HZ/iaA/mK3/06ZrnWx9efujB4U+Pr8mlPI1rxQ2nNcKjqxUXHh0UlnH1KV48/hCe+qifNaZbPHqYsBBfaPLYa3j5r97q5C+52MNFYtUQffXhV49P75GPfOThJS95yeGZz3zmfXrb4MQfl37Q7hM4grUgqEK1GKtfgUd023wVNdlV+/DDa0Hiw21xVt4xn1PPOMypP3Umf46LKYxTbKb9sTEczaGi5edYnsV/in+61gnZjGzmGh+LaY8PywbvAgtbHza7dY6X3y6y9NLtgsaPyNApeWaz14eTDJ6LrgNq8hvPXm6uD/pdzFM+x9VGj9jwL7+ZR2syefTnfMY9+fQmwVpzOVZP66dlI59iNNYcRuXhYY0mfzHkx5jOjEu8WrmLccpnzLcyzk/1KZaLMMuZfjatw5rLMSw+2ejDmLzqXmzHcPDTqYd3jM6TTZuw8OZaiWuuy57NqT6mrXE+s1/nq/5nai6O1lds5V98xWGeLN5le7Xmo7baw/di70/Of/AHf3D7fjg61WzVP3Uudg/a/bm1T5UivHW980PW+Fi/59v3Tz/mMY85fMM3fMMm3qsX7PPoIvl5tlMm7stgXVZ/+jo2viqmPeDBpO/V/8AHPrDdJNo7K8F3FvsTWA9XndkIf/bW2Xk9+c7qeW63VnPtN5CbP/BdJzC09KdO44kx12COV3uYcul1Jx/0anhXofzWh2PeGG5zvHLFN+6cNFfPdHyC1HqZ17LRF7sx/LCKBV/OMMjo99pqbF0/93M/d/urBfXxKTWfDvfQ2hh5wwbjC7/wC7c4veH2y5f2xPTLh3n7yT5gK3Y47i3LLV0+ZrxzP9HR2FQXuunLwS8HnDv2dJ+w8yl3+nxPym7yjOmu+LPeUx/GjEsMdOPTVWMULyz9pBkPWTWZmPRXuxUjP9Uq/9aoTyBnY23ab/k0t/7n+WGfLX8zdutsbfnFF7/rH542dbOdWMW29jCtS/Ugr/bh5GPaikNLt37qNC5e+rDsmepoLk7+vUftfercK3RRceivSrD4c71ajxkHTLHy7ZN7Xsc9aL+OT7T7Xl1Y99xzz+Zf3RH/1cf16xdYrq3WxbVX3egbq5UcEFsY4VSb5pvS2Y9qlw27ycOv5upCXiPjkxwuSqZH+Z2YXDzNpQAAQABJREFU9MPEN0Y+gOA72h//+MdvOL46xl96+0S7c6b9EfZmdPMHXns1X/rioWaMN8mcnYbC1le/dKZt8nj62sSHYU38EpaNZg9VS89Q+HYdW0PySF3Ms8e3/tZesy+qHb3WQBzm8coj3c4bc37LIb1s93q2WvuPjXURoyYfrVjJ6aMezvPrem7/Fic9159asRObs0x9zPXyL+Z8skfyoKMXU6/fm/DmDzXjN1ux0hMTX+ThMeG3Oph3neHBaE/yCUPPhiySFx4i1xCeXMrJPHn6cNyL8Cs+VAxTlx4/YoBXDnSM4clTvvTac/wbpw8bxowlGTv5lg9s9q0HPl29NQxbzOLD49+YbWtl3nqx18Rgj83YjMtPnDBWIkfhhNs6xQ9HjHhR/tSwDw2wde9V7dRGE7dmDCNe+7w5nXzMvMnVirzXN/H0l0nVM1sxFx9Z8YjPL/LMYSLx2y9w2UTGmjjg1fiAyT65Xp3FRI8N+YwHz7xcjDV7rfqIy/2QGuLT1ZIbw9GQPn+TD7e52OTmF7ByhUHu+i1nOiiZXPj3+v3KV75y+wsq8vwan0KXftDuAu7g4aANUZIFeorzB3SupwJtVGhtqolsjWwca3PKBoEXlj78y64tOxe0vcHWXBxhx8Mv7hkf3Q6OzejmD3ZhTv79ORZLTbyTxByvPBw0HQp0yzE9vHRnLtVnrXX86hPOqgf3Imo/TEwxaJP46IXOmD5bazKbXMUlFi8YXuwcXHhs2JKtseInS2+NYcZz1XF+9NW8Oh7DpCsmrdz0YcU7Zh8/jHw7uI1bg+qOh06Jqxiuu1a9aIqjm5K9eMR+av6wVlrtzdF157P6PW+upq1VubVfq7d5esZ7tTnPx5TJ+TwMsl7g748H7X1HuxzkZL0nlRuZcfN6unM8bY19p933f//3bzcnq+yB+eUq4CbaP9J7+9vffvj4xz++vaauCNbC9etBezen1s4+0oyRa8xa4yG989s9neYGNH3XQ3rGbOHU+Ey+gV3wAwaa+2aOp3mvL12TxSmGy/icmI2L3zz/eMbNi5Wvziuy4tGnb+w+pwftxVgPm44eLx/Tf7G55r3J4LfGzthDWP/s1ifU1Wc+aLdHkDVk73vZ6Xj99l2YfVK6+OWkwaaH7APyxt50ibf4y2FTOPshD3HN17R4+CuRwfSVFR60u1ew38z5EfeszWpvHv6sY+uz53PGTs5eK3fjefbNHNMvDlgaIlt18fFWO/wojGzpykVvjfoUK326rRP9eF0bYl+p+PRs8pNfvXXuOi//7tdWvHyGFd6eHlxNLsfs+FvrI39rcIoPuMXMznXHLjKGLz85iYceqgbp6pNN3ilj61K8YrAm+W5d+IPvIel1fHWMuGD65ZqHyf/6r/+6zV1H5UHOv19iedDsl3A9RHA2kNFBrVPXf/noJ9EPt37mGC8bsq4v9W8Pk5PxK95w8RuHq0+XnE2vW+ng+0S7B+1PGN/RPh+095Bmxpgv9tNPuOSoPn66+jDkl+6sn3i1bKfOxGm8gZz9CBeW8zDyut4e8/rOju/O3mLlE6k5PTj0nLteL7w3m7VvreEVL6xymXh4bF1bejZTN6yZAx1xWwf7r+vcHN+102ueuO3V9gtbf63FBs2HqNUiDK9z/NKVazGINb/wYJcbTLzyFoeGxz7KPjs64lYDvsQ89cPlS3z0+KBTvLDynX/68dZzDSZ7dnKUV3XJX7Z82C/idg6s+YRVLK0pPqKP+LIH7SO64uxMDVNM9hcM8ZdL9vkgo8uOvviNyfHl68Eq++pFxr+1NaYfPhs8axGRdRaSIzUSs3XiFwYil58+zE1w9oO/eQ/dOhY7nPDZhMmP/WrORuziEydfePpsYJRD8ZGlO/2qiUamVpoaikWO7qH45a/YzMnY4bGRV/buJ+nzg6qTWNiwn1jmc33YiB+JBU2fdDUY4cw9S18s/JMXmzm+ddDUEU8r//BgNM6f2PnBT2ZOrve6KNfyk69rhby8Wyf1Fcut/mX5lR60C1IAqCIVoGA/01Qxp188hZw056vNlE2bxlN/6k5+uvXFQL8xWTYTJ5ur9OFlu+K2Qa3NKsvm/ujFZZPaG3ybF+uMJb7YNJs8PXHNsTmdaY93Ea0+LtLvQivu5uyKr3j1qDjN5UxPS74pLXp4x3Ip5okbVjy2lyW25ZAtnLD4oNNh56Azz6f95IDVjBEb9g5cN0QOLjVIljwf+MVhLB5UHDNPeubxNsVL/Jixn4qTzfTNNn6xXhTGrDN7+cFYr8n2SfKLcMmr7ym6p+iIqXzFcaze9MoFbjXRI7Laxhg/6PTiLH7z1t6L4DGfA+Lk4Yxrxlutp6+pmwM1iMhbG/bn1WfasKsW068anodB5ibo/vpE+x133LH9Zl9s5SZuY1RtZvyTn3xT3vnxRV/0RYcXvehFhx/5kR/ZkT7AukwFPCzxj8//4A/+YHu44lyu/nO97ClvsLqBpmMfuc6Ms9E7p/GTm3dfRx4uObJ3u17bE/hhGl9EMCbuni15ryv05YT4ds8pHna1Yz7ZouKfenwURzHQD1M/Y2WbbNrii8/rozcJ+nCqa/7DK362e2Rt5d9ZyF+Y3nT4dLoH+njeVHqD5U9hveYidmLxoJ2tse/t18MNT9ww0BxXD/ze/MVbc6cjHy3cudfKnR6i475AzP/xH/+xPfixpj1od96dQtUwX+IX4+ovn+XZGuLjiQcPzqRkeBMzHPz8lXd66RQj+STy8NPRa9bIwwbYdOTV2sDJV7yJa5yddS4O/OkThj3S9W8sf/6rJ5toxp9/sjDT07O3njDT1c9xddNH5Q8z/WT6ePpI/BqClQ6MchHLXk54+TK+Ctmr6ozmOvE9c1ML16tPsl/Xd7R/4hOf2LB8ol0eHqY5u+VSHdQGX1MHtObNRrziz65+M7j5A29S64WXfmtAxp+/qHFe/dM//dNWJ+daNO3xsjWGV/30jcnYyWHy10+099Ux7373u7f7G+u0xj/nE6vxlPOLyIpbDP6y31nsF99qXQ3v1b73J/2VZn6rrLk1heeXbvTtIWdDe9a+E4OG4hejnr2a5w+v92V4Gp3izpYvYyT+sLy28Wtu39Bb84MplvyGVXzqJGZ6sPgmM84GZvHRtX/x6LaPjdnQQ3MuPn7hIj614i3GbOnX4Gjm6SWrFjBh08ODLa7wpgxv7nu2KPxqgDcxpi+ySeUFWxMHYgNDnnjOHK/ffrmSP/rlk20xJAsDHp74rX35VseJaZ3ozzXMnh0f+RGrmnVelY/r1GtfcbDng5wtvhaRweYzDDzxacn56kFq/LDYaRMXfjl3P9e8/GBr7StxwIDv/ibCS9eYL3O5qTPCkx9KV0+//JKxi6au+rsHhOWcYKvRFxM5mXy6D4SDh/InJjlpbFDx6cPFN2ZXLjOf6kEWDl1j8eDDU0+vEdbefL6m0qXHDzxNnejBiszbW3Rn/OVFZ8Zu77XP8e0PPOMZGx/Wk/2XfdmXHV7+8pcfnvWsZ22uZwzFcl5/LQ/aOVCY6XyOzwvgAdmtVcDmOK/WbbCL9G4tin1rPl0EXXDm0Rpz8eldVIgO2z1a7fd04sHUXDDw2F5kX9z0iweeeRfuXnz8pJffjTF+XOQ71fyEw3fxpzOx8r0ni7fqxK8nh6l3o9chKBZEppl3ACYjZ+fQ6kF7Bz0bsXdO0GOn5a9xhzG8ap/fdMn2aMqNI/5QvOaTtymMH3s6e7xh8mnD9PV8a/KceZGZk6nRpOKdvPbAnmzqXXYsrijs+vj6ckpmzjY+nWI0Ts94zT0enfYG3rQxvwoVF5/wqq359BV28es1NntxkIWV7V5PL99wjKvLPF/2bOm59vwm3SfafXIL7cWzZ3+MJyZfQ/K85z1veyNKr1z1k/hKFh/vlBhuu+227Z/H/PAP//Bm6preo3yumPHZrLI9nP+rPG8+/vmf//nwsz/7s4c/+qM/OvjaADeo1aQ62S/OEA/afSewvYOn2evVP33nczfUsMjdfGrpsJ1+9sYX1R3WtHMNoIkdBl1ysXc+6sUvrnDKyzwejOLGY2de3vmon7r51bOFj8Qyr9l80auJ1RqpOaKj8VuO5vSTZxtvE9z8kc98YeMhZ4Y3S3wir7M9PFEfpFbiue3s+kPGn/3Zn73ZhJOPTeHsh7l6dSY1t0fkIZZqnk09WU0+xuVVTM35ELNPFH3yk5/c/tyZjq+34Me+jrKBNwm/xpadeTFMXeNwJn/GiL/6kH927YV8pnvMJz77Y/FMbGuF2PBjXTW2rUf7OFxrFK9YJgZ8e4R+ZMyGDPGldtaiODsjyOjj55NNesYIlliibKxHa0KGH6Uz4yZrPnWnDX6xpyv2fhFENx29HLRiDjde2PVhNr+oh+cBQeeweY0tvHyqhbPBJ9qv66tjfEf7K17xisOHP/zhbV07A5zn+VavYiifuQfE5SEcm7mO6dbP2sAzn/XNh96esn8f9rCHHZ773Oduv+x729vedviTP/mT7S9YeggEG06tOYzwpv/Jbw319uxznvOcw5133nm4cePGZnv33Xcffv7nf357rfQVAeLJJkx45VUM00d6q449h775m7/58KQnPWl72P7GN77x8Hd/93dbHdc9SjcM41PJOonbw3xjdS2H8JqLO7/WNF282cJRM3x717pnC7czwLg5P/SsHQx8fjSy4sBHdJw/yPU5beCnl9/qTq946Wj0vQbxkay4w80/Oawo/HLST//5LZ7qqKc357DoyXnq841HH7ERlxiLqxoXX3HQVSdymPYWHqLjuoSBl08yOPDtDz1/dOiyEQ8df0XjlxQewLLPv3F47GA4y8QCw5ppxqh82CP8ZObFpy/X9PDS4UfDE6N87dVikY84mvNXDfDY1Yql2PJLj0x8xvi9TujjFxM8+uKi37rjs1WT5Pb/fChM396UgziiYtCT8QvXXCt3thF+ryd8VxdjsbXG9OnOPSQ+PGtNV5xR/viEVY3Z4Gmwqku4evoaUovajImdPGaOatYvCPmnUwvfXAx0fShI7uYIPrnXNPuwPcC//PTqQwfxga+xJWODz5++mNnyo57FRiYHNjAQncZiQF/6pV96eOlLX3r49m//9m3O/jJ0yw/aK5DEp/M5LiCJ9ue17FYdSUerLL4+PTqNp7zxxEjvIps923iX7afPaYs/Y5uyU8fq7UbJp5rOo2KoP0/3Illrdix2PrQuAng29bo3zvPDnp9wJtZ5dufJ4K2Yx3IIZ16M2ZKt8cz91LjYyyVM8lo8/cSffOMw9Gw7rI7pTf5adxgRrEn5cY2Woxfr6kCOz3+4eNnp6To06XRAOvg6GPlkG37rYp69mNKfvHyS4+9R+HBRflZd9ulks+rszdlpbLRjBHvqrPGGk7252unFXD3IJ076sxbxrqMX94w13+flyi+b6rkXB/ty2tPLLx2U3+Z7mKfwiiv88sB3k3EMn7xWLPpw+GYb3rFYwiCnax5e19WxGPDdiHiD/gM/8ANX/m64NTYx+GT093zP92wPvMiLZeoey634p+7e2KdoH/e4xx2e9rSnbWJnAt+T5nyO6Uz/q2xi/F8fuzn2ifbf+Z3fOfz93//99lDSGV19qo39Yh170O5GUc1R53H719wNpHPWGFY33vqJeav15ROJD27Ye/uIrhy6ac53bwiKn21xVwf99KVGfMkR5XvPL1m2+YSPV63ndYovzmL1xsIbBjoaH73+wYM1KVx99SCfc9hwpl86zcng1syRWnmzddttt23x9aAdNh3NODIXQ7mYN4ZVPq0B+STzdPDZlpMaxONT86bMg3a/MPJ1N9bHJ9rhs0Xpwg5/E9yU0dPYwkMzho1xCz/4L4fq3bz86aDimzanuM6u2puXVzx7Dy6ZntxrQns7DD2evcCWTvGKhd2Mjz5dtUtPLduz+STLTh3YsNWKB/6qZy3j6+lXx01w4g+4tYkDz5vjzjCy4px62epRe0Q99sab0gU/YM112FOfftXV2eAX5tf1z1D/5V/+ZXuQ/f73v387K9Xb2nWN8u91w7mkiRc5V1sLa+khnBqS4yN94znHg1vdpl75WgOfZP/u7/7u7etc/D+J3//93z/8yq/8yvawPV/0pj0/Yeib6/Pb+pLjiV++z372sw933HHH4caNGxuGB+2/8Au/sD1o9/VUvQ6yifJdP31P/8nZuVacq494xCMOP/qjP3p4xjOesWH/8i//8uE3f/M3Dz5JX2x7vmBM7Mb5mDbWgy/3UN5PydODND2yBhoMdTG2/j0wMsevwWuN+cGH78ygq5Z6jRyuVo3p209rzORasRcPXTzx8IvEHv7GOPsxfRWjvnjYqLu5GMTrbINvPmM3579Ymk+/039ysbDT4IdLF6+6lSv9fMAOH58uDP30ZQ43n3CN8VF54iP4rhV98eTT3J5Wg+rAjrwG13t3X2PitRY/n5uD8UO89oJ9JmbPkzzkDKs49dMPXRSufo7J2MChW8x4aulcrH50yTV8RM+YbvHHLxb5i9ueqJZ6cSBj9q4NbWKFCUsN0mFLTw8fhlb87RH44k/XnE368MWfXzWg2+tW9y308N2nyWPmDZM/DS58jY0GMx5f9MTc2uirMf3ygDtjh0FXrPpqQk9sqLzoqoU5zM6cYpKHXxCiYoSpmcM2hiNfr0/W0BwWf9WpXyDTl1vXvlzDo1NM+vjGcOSJV8z8NxajPPiF2fVUruXHxoN2X4V6++23M9ty2QYn/rjSg3aBSUAygkH1+V3n+P7U6lu+5Vu2F2MXtwL8/0Qzn/+f4pqxtJkciO95z3sOf/EXfzHFnzamj+o/TeFEBnub3bpat3XtyDWb0gbfW/8TXV27mrjFJb4uvMvGl73g5J59OePLm57GTxcsHcSOzqwdWXqb0vgBgx9ymMbsNcS2OMgdIJM6kOLRLxZ2Whj6DrNk3iDghyOe4pdDDT4b9n6RxoaemNh2gOerOpjTMa8GcI7lzQ99bSV2xQPLvDoZR3xOX3TSS+dYz+/M4Zhe/vPLRkNinHw8c3L1Q/LPhowNwst2Y9zkGa/85Jfp53XCjl+1yf+pWOJUg9YpHHw8mDPe1oMclfOqd6r/qVcsfETw1fiivOZ6s6k+xva1/lZo5rviiM1rpAftPr32Hd/xHZvKdficD9rlKK/1GuBHE+P0GX+Nd9WbdS9PNtaheT3+HJtPn3PtyPZo6sOacZqv+HsYV+FNv9P+Kv5WrPKwF2qrTj7xraMH7W52vRaka22dweRw3OT3BpYOuetBu45rrpj0fPKh2Wt6MehXss5dc2T0ikctYIURnx4Z3WzlERY9MjrZmk9KFp8tu3zqI3GLw015b8T03iyUE331Ndd6/YQRpvXRzGvlJ05NPK2LsZhm3vDy2Zhfb0i+4Au+YIvPGxn33QgWHP5Q8RkXA7/igjFpb2+wL0ZjtuVgbs+pZXWC5wGCN/++Z7pP1PrkqRqxhafX0PQLEx6ZGNnIF1Ub45mf+TGaenPMBxJLxDdKz1i+iG8xZScuRDe7OceLT0fLthqar7748JpgbchhtLfUo3jJ4GgwGm9Bnf1gR1cj03vD2n1a2DM2NvK0HivByGe42erx1n27YuzNi13Pb00s1l2bOhf5oJu+mOCI+yK7Ysu2/cd2EjlMPZne+riP9hVwP/VTP3V49KMfvelMu1PH8JBPsn/rt37r9s+x+RFPvsvLHvGwzUMPcnzrpGZiot9XTmW7F8e6dvLTIrbZP/jBDz584zd+4/b98V6HEF33G7/xG79xeOtb37rVRTz44onaQ+HFnz1ZuVozeXzbt33b9mD/xnjQ7hPt73rXu+776pg1B3NtLw9xaHxF9FwbX/3VX3246667Dl/3dV+3vc9J/ku/9EuHV73qVfddi9UjP/RgWKv2xapTPOnZM35RYQ3x/NVP62aOYGieBThL58N4fGdC9VqvW/cIYvEsx5msnvKm77zWi4lPtl0jcMMUBz6qbttk/KBf3rBgTmLHX68RMMNVc7nxAQf12gQTVv6LqZhbwx7EJYdRDjAi+l7DxcG/WPXs1NV1Qz/cdMRYfGIjJ0PFYpxP6+k1Ga66w+6hOn32/PCPjOGHuTFv/qgm6XltEIMcvA+3Z7y2wmUPm199FI8fevZD5yodPuhoxnDohYnHFrXHwhSL2OVirNGFoZFlg69ZLzy40zfMSXTtYfXUyytcY3L2fCLrBFfciC45Eod1aK+09mzpzFiTiafXYTx64ZFp5sXBrxistfqalxP/M2b+UL7pwdHExK819kEFtsZ02MHF02tybo/OnGHDcs6oHz3Xmt51IB727Qf8GdcW4M0f8cVgD1qT/JMlF38P1ZnSFwM+Ha9HaoPiwUH0YGuRuvc/SKq9WqiP+MnlrkXw1Kda6snlJx52s5b48B71qEdt78P9YheVU7gX9Vd+0C7YGdAs6Oq0DXPbbbcd7jp7ofqqr/qq7SCQxAN0uQqoudr7FNDrX//6w6//+q+fC9AGrD9X+Rwhe5uytexCymTiX3YThnF/9V088DuErhKjHNUfZb9eA3Q09eFXzVC81T9+emFuBmc/Otxg5Ic9PXb6DiJyhxE+ImNPvuKS06ulw4+DrBwdMBOH7+Jn0zh/8nCDDYdcc1DPFye6004M/BULeXnDwxcDG0S3+Mgm0dPI+Yaz6qy+4IY9sfbGYfFxHhWzvlinfnHOOhlrZOWfDZx8yyvCY6Nngy6KLdu9Xr1nvK3h9Llnt/LEA0dsiP2s8RpjuU8cOvlf9afeeePiaM2nrnqdkheMqPqIpz2d7Cq9uDS1mTniic311387v86vjulBu5twvpwba63lXSOb8RnPudxnnVbZVWozbSb26st89Ud/xph9/cS+1fHqG95V/OzhwMKH5wZSr03d5HrXkQcr3shZ02T2l5vJ9lo3n+07fW3dB2K4FRIvv8W97qWJnS59sRefMZ78khVn9uVq3ji/6cJPvg1u/sAvvnyxYd9r0NRXW9emJiY61qfXGzw1hoGcFcbll41eyz9cjd9y18OthcMGpbdNzn54oyIuD9rFNR+0s9X4RGw1xCd+8u4Dqgv/qy+1oj/zruYw1YC9OMpTfD1o90aRjjdLcMStVmqp4ZnD50uDA0/D741ZsYixGNjj75G46CE2sybVlm064SSD3ZisHI2LN79405959vC14m5uH8CcumpiXfTJ1Ge1hVG9xcD39I8HtyZeDwDap+TFkW1x0N2j6TNdtpEY5XxZggsHpvjsF2Prbl4dzlvrfJZT9YJrDO8iojtztD7tGbZhr3HA99Crf4aqP8XfXjzV04N2H1jz/ed49gPM9hRbPNe+1wOxJlOz1tAnXj1cCXfGhRcm2+zxVr3WyFrIzyf3H/vYx27Xs1g8wPrzP//zw5vf/Obta+u8dxUbH7NVw2Px4MsFyUEuPlnuE/Q3btzYsHyy3IP2vqO93Gfc1kSbNOMwbm35kPs3fdM3bX8F6GtjPEiKfNDtTW960+G3fuu3tj0Qf9Yu3tw/eMVUffWIb/WZD9qtlViQ3CeWa7cH7e1ncrnri8X6yI2OB17IdaThlTc7jR1fmnE1Ex9c8cZjizcpvGoJpxzpkYvJuc+feXh6cdk7xmTIvtZg4odnTse8eOnDEFdyPD75Ky42dIqjvOO7RtSePj1+6OA5j8RBFib/xdL+oc9v/5gcjtw84PUemS86cOhlRw9/0pw3Zue1gW1++kT7xK7O4ZVTOGLpdTsdudBD9MIzJ6sm1d2cHz1dfPPqE466Vavytpfjsdfysw1u/pCjB8S+lqt7lXKApYmtfNWTv3TERW5uj1hjuePRRfaZOV1NXTTxwe+BNH3x4MHjh11x6BFb+bXedBDs1o1u9uTGSB3IxGSf6vugghzFQre1E4c4xaaZw9OMEQw1rH72IntzmOJSm/XegG14YdWzdT7mp9qxEX8P2stHT5ee/cp/Mpj4evWBrdFH8vO/fsQYT07FTy528ggevvzoqpnGB4xa+ZCpt/fhPvD2v+JB+8Mf/vDDr/3ar20vwiX+QH+1CrhY/YO017zmNecCtAHrz1W+QOgC0GzCGhM8FK9NujGv8cdeDtOXOPZ0ZgiXiRGWtucjX9XDBbwSmRbB6cKOp1/1ktFNLg4+8lOe8RxiDoRJ84DtMJny8gtDHP12mMxh5FBy+GWf7lpHc4fhZ33WZ2358M22F25+i5nuzINfMvzIOH28qR9fr80aZ0+f/3TiZ5uvGUs69cXVnO60I88+3HTriy275uRs4psnE/ckemR6ebEx16w7futTPOlNnMb00fRtng9jRF67l3P6z4lVTFlPWTwxrfGQnZdHtsd6mPkKOz/n4VYfuNNuYp1nfyye7JPnp/ro8awpfNezf8Lyyle+8lq/o70H7d7w8icuvst1xkc+czUv3vT0+FE48erT428SeTr1YWQTP7t1nn785tlnd9399HOrvlasYl1zmnrG5Hr7Zn7CJ3uyzpTOZOdz6+rs0MxR/Ozh52P6Tn5eX1zWvDNq1Q9ff1mCX8ve3LjrLXn55SO/U48Mn+7EyIauhyAennmtROVVTelMX/yj8MjzWQz6bv69jsJKZs201gkWTD7ww8f3psK54UE7H2LsE+30Nfiw2WVPt9d7Y2+IZozimXtkjcEcbjbmsFE8+9P9gF/w9dUxMPvUnbjN9d4EIfnk21zccDT4vYkqH/b8oVmXjXH2o5o2r5/27MzRxIqHP9c3vSmHMXXg1OiT54eduPX5sxZyDAcfz7rozcMIr7qQGcPLh3nY9CMxur+zLmLQ8OhO/XzNnGDQKe96/KnHNlyyqxAM6y3WxjDtOT0e/zU+xICP4uvpF7fxKcSumuhbH7Z8qK9YjLV827vOCp9kv+vsQ2b+KWoxneJ36ogBfeQjH9keMPsqMddKNZg1F2MPUsTK1rzY4PjEq4cr4eKh5uWyxttcT1fjT65ef5761KduD6Uf//jHbw89YHrg4bvafY2Mh+58i4ddFI55MUxZvvT2An/+Od0dd9xx4Avfg/bXve51/+0T7a1xmOazVuFOv+Ky15z1Ps34spe9bPsrAp8ARfy/733v2/LxUN8/Ra3O5Hu1y3/y+nSLyV5ynTu3nd9icc6VB/32Gxm+Woh3YtgbdMvXPmmP8o0vDz09tlrxiNcY8WNOziZcYy07OumyEydePvAQPr1642LIv5zKm1x97ZnqDJOOng+k18ST3Jw9kj8MjW9Et/g3xtmP4mXXOFk9vsaWD3GVL51qZF3UCJbrw4NAY7Fr1ZA+vhg7j/MFd8Xml3121YWeM0dsrjt9RJcdosefeTrlQ4bSlx+iixfle8pgFkv6csIji9hqsK1H9xzk4tDWvUVXq04wZzxhF688tHImN1a3yPq0RtmFP7HFQo8tzLkXzeXIvlqKTSPDZ5cvOrBh4vNHT8OvTvTpsicrLuO5b8RCr9hgaOy08MPFK35Y5vac2jjjyNjz7xdCZLBXKn49W2cOe3jiqe78FgOMYgqPr/YqPfL0jMWovlpy+D4FryeHIW77iJ6zowftbJB4xBqWcXUK1zye3vXaa8D/2D9D3aI/+1FwzesrGLl/kuLPrPzplQOnRUj3gf7iCtgMNpY3Jz/zMz9z+MVf/MVzjap//bnKlxSKpca0PSA+4+ukLrb2TPmY8yUOF5t+JQdEdqvsvHl4Lka4fMIxdqE6RIvjPJxkbNWmmOPP/jw8dhqd4pE7nlgdMGTVvoORbjVIFla+8dm6sYNl7NBy0DqsOpDSX3v26uF7BY0dzPr5wrLaHJtX93UfwVtJbvyuJL9qXb3o4O/hTHv6YqgOybIL2x5onM7aZzP55aemja1P/uZ+y16e2pzPvMWsyZn9ut75Lzdzep9p4l/d5BIVc/P/6V5s4kSn7JdT4t3LW/3ht4+sLT3+8V3Pt/ona2ts8HvQ7hMEfNbyfV7exXrR3oEVtWfN7fGVZr3J2E77VT9Z/Spf5/RmDKt8bz6xL2u7h3dZXj7XOOKvePhq6xM+vWHBm/qw3Hx6uGL9knVONl+xrQ/s9Fb5rczFFL6xfS82/uZeEVvXCz0yexGfjdjaR9nTcw7SQ3RmjvTJtHzTM8+XOWJHR229xn3O53zO9mYWvk8WaWzM+fHaKcZi1YdTvuZsYJePM7148bR0ytO8tuZkfWH4Ggd+vEnwKTr+6bILl7x6i0XMCB8Gm2L1Os4WxqTs9fSzS6e8zWG5L/C1Mffcc8/2p8/k7cfsYYhFHXqzxDeiU8MjN58053I1b93F0DxM/qpNPsLLrvkpfeunJtVFHHzPZq+cis8Orv0HC7HFy585Pfnoq4Nx/tf46aiDN9Psq4O4LyK2fBePfNjNnIzx4K6YrcOenzCyhy3OFSNbWGuOdGvp3Wpffbu+i3OvxnK2Pz146JPe1/HVMf45tn8C6kFvD9rlWY31jcWlidd77vaKOvhLEn9VQh6po4bKLZ75lLUW8djg0XvmM595eOELX3h48pOffN/+wPed7T5s99u//dvU7/OdL7zwxNUYH8kL5dtX6r3gBS84PPGJT9x03/ve9x5e+9rXHt75zndu75HlTRdOWPnSV58NdPwg46t165lFKvy84Q1vOPzu7/7uVkfrUEz5yWf+yLVyCKs+PTG5hl3rcDsLwzMnt9/xrGk6sPDI2MN0dvOZLlvv6fDF0/Xr+sKfn+6lq8EXS2eF3jVpf9PX8yH2eSbwiU8X35xO55j4YGnVTw745p0pYuwBIAzERg58GyM+Zt741ZXc6yF5MYqFH69LzkBY8NmQ8Sv38pgxFgdcRF+t1AmFU33wWie4YjBHc43giEXsMLTWgZ25moq19+Z4qLjl6ZdE7Oiy0xcL/dZDjflH+dHTkW81NIaB8mdeffGM9cWZbvXOTi/PYrAmfjnQGSUe9wU94OW79dDzI275979e8JGYigtPLuqcvHxhikOPis36iQs/nerHdu41umrNVuML0edz7vNigglDLz/3jtWNLQz25O0Dcjy9htpnaiWuYiWjIwfvBzzTaT1hqIO+60Qs7MUH019B6eWDbx3EqNbViA/UdUPGPz9sYRUTnljQWgO8MOvxxC9ONWzt2IrVvPp0vYafPiwxiY9deYch1kn06ej5pse/uevIB97+R/8ZasEKTjuPvEHxX1sf+tCHbsGvyV5kfx72/yaZxZt0mbzZqpvN/453vGP7lMDEWsf5ql/ltzqHG3Z56NvYLjYbVkN002tsbmNfRNOPcRdCfH1jFzfiX+ODvr62+ivm4tHDq6ffGJ9+F+eKtc7lZ93WPR9m+g6MahWvns81Z3OtOOjw4UAS6/RJhsSiJnTi5WPiO4jJ4Wj0yyM+fDL+1dyLzozFYecwpLf64jMeXM2cvTiQsYZg5H9jnP2gT7e6iQWPrnhb+/T12aw8tkgevTiElaw57Fl3fvhEdNKLX1ziR2w1euVYzLDTn3ph0ksOC1/+ydnH19PNJn646bLPL537k8qZT7EVn9oYo+KjGw/fuBqaXxe1FvBXf9flo7zbz/xYF41Ma0zmWro/H7T7RDs//EaNZw2S1ZNNeTbJ9VM++eo8iW1t5ZvvydJbZfnUr7JsZj/18Y/Z4Kc77dfx1JlYkz9t8FfZtKO7p7PapGdfeTPq3O7a6o1KuM4jZ/J6rRXXem3BQfhdI7DQeqbgrfZ4UTGJv3jCal+Ub/Js9fwVh5t5N9X08JxdGp10iy8f1c08f3SLR/3KsTjI6cPW+4st97HejPCvnt4MeQMrjnx4c1O++N4MaWKafsjgdr9irOXXuFjEBrPY42/KN3/wga8+fHnj+vmf//nbWUKlGuWHDh6SD4IvnnTw5Flu5o3p9hqHXw3YilVPRzO39z72sY9tX3vh/FELMWj5o1eeYpv4fCC62d3L+a+fbOEiensk/mKt9ub85ZsdXm3GKB9zxFf1MJ96xsnYtPZ4rQUblIy/ic1u1sY6FXP86UP85MVIB/YaJ59kbMs93+0JcjTx6aB1j4hZI0+fnjgQHtwZz1xbMjpa14ox/WrVfAO8+UNedGatk9O/DMFC7FqDaS8X9e+TxuJXb5R+MYpJLZzJXsev65+h+iWVf8zmn6HCdib1YIRv11gPR8SHxEjHPYWeHhxf49T60DMWNxJ7a70xzn5UYzowkL5xcvX5+q//+u2v8fxTdHPk9eg973nP9pWnb3vb2+7bD5vw5o/8T57x9Fmt9x60+ytv7419ar7rpPhgTPw5Tge2/eaT+Xfeeef2EN9DwEj8b3nLW7Z/UM4H/fZg+NVh1iZ8OuqcTD/jIBO3Bzw9KLMOMMmsoR7prXHXETux0K3RcU8gJ9cVrK4nGHzjkXVvwBZPbPz5SlB7CLaGz6fXPi07Ony5RvgNu33IVozkxuTFyV8+7ROvqcVJD7Y+Ys+HWOhVR3wEFw+mMYJRHrDIybI3po/IZ6ObD37zQ8dY3vjqQS+M7sfM1SF8NmHgsW0NYCI89vDo6MVYnObx6BuzLT74xho+eXphpK8GfHWWpDdt8PKvT9a6i9HaVQP+51qXFxzj5sXbOoTXPip3/jRzuurlIbA5X3gIXoTfGlQHfuHQt8/M+cSjUzwzRr7kpo9ffubVBUbx62HNmMVaPmyKuXjDbl4sxQWzWMNVb5gIHn55t57k9h8ZH+TzWuw5Tb+ggUVfzq5v4+zKSS8HNdGHWXx45cqWPiqW6oPXuZZMHsYw2IrV64i/9LGe5H7JoifX05FvfvT20Hy99tqIxConvZrIEUYx1/P1yEc+8vCSl7xk+0sytvQvQ1f6jnYLIsBJHF/kXAH8SasXDwVe6SJ7cgVdabVbdaZ8lU2s9Og0nvLrGE//00/+pjze9JuNDfHJT35y+236lK/j8OpX+SlztvktpvDMVx5MG5yOC8VG1rKZPtm2ocOZ8jkmLw49H3D1yeLHUycxhK3nb1I2xUjH/taHYzzn7Nl1UJCdR2KYcbCdlL2DokOK7/SS45Hj18zFXl78dPDFY6chubmG6YWBn255OvjKLzu4apodGw222NmUAx0vYg7qMPFWImudyPJJt/WFT686NsdD9NJlJyaY4q3u+OzoGWsRHPNwyoF+PulmA59NeOYILxk7tZ7+k8HxApCNnFExhw1fm37p5G/GbFysxYVXbWGiMOVKPwyxhrspjh90kP6YzlA/dygO+aqxcZhdc+bFr0d4dOWiXTflk49bze9YbDNveZm3R/hHeOXq5uD+fNDuTTZ/s8bFjr9H+FNW3Md0V36+4rMPoz6Znv4en2zams/YVhn5SlOf7JgN/sx5xTEPiy6aWHu28eo3o5s/VttVZ50zw1MrD1Z7U2EfuwF31ofp2nEezzMpGZx17zsjYOO7Zs0jvBoMtNqnq5+25mzW9eUrLDqTYIsfjmujNxB4zg69vFDjmVt1m7ziLRbxaJNg5tf35nqw5R6WHr9q7Oa9XPQegKkXn+zdxKs7nHzxQWZON7/FOWOgI285Ozfprnrm8DWk9wuB22677b43GvzJma5WTen3egR7jsOatcq3uMIJiw+84oRX7Gr10Y9+dPs0rvOHDoKjsaVbPeQQ3qZ4zg8+YeQPDsKbVLzhyjXf7hfElG31LA448OnnT6wRnj2B0klWXPjVij6+ebjiQlOfTTx7wDXONgqDnvjFlH99NZ02c8ynJg58+erZaqi5cZjGER4MtnAisWko/HIznzbm7Od9W3bFMrHJYOVbj2ZuG+PEH2GxX/2AIFdf54+a0pk+5YLw6Jo7K/pnqNfx1TF+UeX7Yn1Hu/PeX6/MhyPOIn9S3z+XE4N47AnnktjNfde7T7W31/GKW/5zXaonnnG6xmuTv7rYo77b3MPqGzdubDGSeU/wp3/6p9tft//Zn/3Zdnbiq9dFxC9/rc3eg/ZXv/rV24N2+XeO0J9xF3/+ysG1K+7HPOYxW9xPf/rTt5rRsy/vvvvuw6/+6q8e3v72t2/vv/Fn/do//KlVcdKL6JfrWk86YnMmWVPntzVzPcCSj/dY1YCu15YeEvWwSqw9OLNf7RNzenKsHvyJhb7XJ2sDu71Nj/2DHvSgrTd2/pDDoW+/wZVL8fX6zJ6ehsTLdr6O4fMpBs0Yrl9iNKeDyCK+xFOsyerp8ScuOM3l2zrRbQ3im4s7mnh46fGP+BCH9UL98sWYrjVUD6ROrWU4+PmzBuoJD77c7EfyzsTi4xfGzAEWwituGNUdrkbWuvBjv8G1Llq2Yelh4Lem9Iuh/Upu7fwSXc3FB4/ceOJtk5s/4MDtr2zF7AMN9r4xX+Wt50evJvNBO351Ld5qWO7mGl3XBJ+oGMXBtjlZ9bd+1ogt4kv96IunfZ5PfXEkp5P9BnL2gw5a+a1Ne6G52OCIi40HzvCRXoMpZ/U3Viv3X5PsLWeGOOXFzpwfxIcaaWEWC3k1gi2OfOLDrG7VRTwIlv1hrobsXD+w2dBXa41vcnG5ltyDe01l75s9Wg928PiGA1furj364oHldYEuHXHkE59fuPiaOQwP2l/84hf/73jQvlX4gR/3ewVsypX2eKvOsbkNatPagF1MXRw2rHYesdf2YoDXpj4PY5XBEkOxwUF4LhwXiLjokRnzk1545GEUHx32yWbedCN62e7hpqeHcUqtxA4TXocQ+1kjfHpyhZkNPTHTdfDxiVorfbmR0ytHeuVpjO8QLgZzNamZh1tdxe2TH8VPpwc94kwf/kp8z3hgsEd6c1SdYdHPBh9PvPT5gyleOgifTlgbc/zAV0tYjemHhR8GfvUKU0+HTzKNba0Y6tWXPj0kduSFA/FVM6cblh61D4zp4sMrJjz5pz9tJg/2qkc3ggMzPPq3QtU3jOKGmy86+TQWX7XN7n9bLw/rrMm5fOZatI/cWNzqP2FZ66O2vjrmec973naTQo5XzzcSz94an8ILD86q33omS1ffmAzFm/z2x5Rvymc/pq9pk3zt6a94UyeMcNf51J1Y6SU3DyOeftrET49NdniNV705t7e8oXZj2B5y/tpj7JGzwc3r3G9hXNR31oQF47wzYw9PjOzzL068i0gNOk/F4ebZ+ckeX46aeBBeY/rIvPpujLMfYoGhkZunn0526uorY+Y/NHPj7o2lNzquaTgwxAcnf15vnet6REcTJx122ed39uTw6FTDKYdVjYpX7/X4IQ95yH1vprJp7djQQ7BRsRjzZT7ra66x1ejo22fw5FU+6XsD1IP2D3zgA/d9TzPddGAY57d1hH8ZgqFe6jKpOpU/mbiQuPlnxz/iv9ae3QQ3f9CbfsRJP13zctPnPz1zGGxmjtWAXIvo2ofFjE+u1uKHMeMhqxb6aGKW9/QvnvDYaeSaGMwnRrhs1lzIioNdcjxxuyZcR+ImM9erYS17fXHlc/Zio8OueKf8VsfiF3NNzOJBZK27uTjsJ2eyB+x33XXX9lUks870TiV4qAftH/zgB7eHE84j5017wvnu4ZOmjsUnZno9WPnQhz60fY2THFD49XJhqxnjV1djrRrPPqz83n777YfnP//5h6c85SnbGpOT+RqZN77xjdvXr2STb/PzqDrvPWifn2i3HzTxZdPezVfrQU72JV/yJYdXvepVB5/E94Am8pDdV7X+3u/93uFTn/rUlku2dCYufnWbOny2R9ms9QzHWvLt/LZmrgm27Tt22fa6wo+1pWffaXT48xDLNabhFVtyPVkP7KobPbH0VxPFriez1zwYFkNYYhCzc6rrmW77TJzyMIeDyGtw2sNyoN9abco3f+CpeXWfsjme1wA+O37ZIf6KHY+/zp//x96duFy/lfUf339FBJE+DjmEkiXilHY6moKGlmZZKB6HBhxyCEeQTiZGKBapKWWglpRmIGqOpSZSkYiaQ5qap7LB/+J3v9bzvJ+u3/rt/UznOcfgdy5Y91rrGj7XsNZ3fb973/ve91LYfuS3WpjLRd5IDWEgsp7JjNXYWuavOMz5VEc68KpROHSqUfhkxhrZ5JNF+HzB7JxQWz75slZorkm24p5UHPktfxjq1z6SJwpfz4b9jJM9O03t2Ivze77ne9YzHgy5scuWLh7dzrniKF49P3TFpsE1J4MlRj7TUSO45L0+L2b16lpji9jJC+GpJ/2Zc3HAJdeMqwH5KRIPLM24uTWEw6fmuaq44RojdvM52XXFrrjVAyaSH6LPDg7dcg6/OMjZi7/rNFzxwUBkyekXH+z8V29zxJdYNWuc3LXkl37ORnk7h50/9MXFvlqxMXcWOf/I2y/p06UnlvYRXHK9uO2bH/zBH/zuvtGusBVGAZHAJ8WfvP8fxupQ7nN8W+Ve3afPfCVr3rrtujbXTmw1Mj1bzZh9m3LapWMD2+Dm7POXrvnOSwaf7U7x80E+4+BnzyM/xQ0D6WuLcfaDrgsMkcHqImZvnP0xP7sOnA6balU8ZAge3Mmfce18uuXC3oHhQClecZGjPUZzcRRLvuk6iNx8+HNIOaD6TSM9/Oz1eHzzlaxci5mefaDHi8rBPF09PL6rMx8aH/kROz96sonROH/68iUL33hSfsSKzNnmWzzxxZE+Xvj0NRh4M69s692MtHDLrfqzLXb9jhWOOKJ0qq2+fPXZiM9aa9WQj0tR+V6pHqzi2XHDmnz5l2f1JcerNsmn3bWMq7ncEfzpX9zXk+TbmhiXDz9yEoc+MvbA4432F77whdf1n6H6s+qbbrpp/dl4+ZdvselR8SWvL876U/zk9XDDxms+eelOebypl22ya+3DnDnEu1ZMdhMvnHDJpnzyp2565FM/ncmzp3qgzM5Z4pxkr1lvc/vLnI0+Ytc+7BoxT3/qzjH5jCU8Pb3OIfPpg2zikKP9esDrmnFmetD2wtaZBk9OHri94MBzvnUGh08PhljKDa/4jLVywXcf8mZHL9S80a7GZL0A8WKAb7zs4RevXFoHMeEXRz7lx6YXKPSKi8xYY6eP5Co2dmGphTf/+fVM4AWrN0p8Okw+8iPTJi5sFE7j1n7WlKw4xGBML345ppPci1pvFH7rW9+6+AIXbnbVfmKRVdeluP0gKwZY6sgfvhzD3GNqXt5057XCDR5MGPTCLT6++M4/m2TZF4P5JHrwqs2UGeO3j4z556c9kn4YrVv57PL0YNgHcMSmsS1PdmLTkrFF9MJZjO1HMWzsNc1u1kes/Fb3xvp8V/cw4RRfdW9efGyKRX85gqnWcLLDC6eY+euNi+R0ijHbYpdXb7S/6lWvui7/DPXb3/724SUvecn6p6jicbYUvzjyPXn4zgnxVSvf9e4T7fRQdaqPV05zvtuQxauvlvaaf1bqU/h69UNq81d/9VeHt73tbYd3v/vdi2cNJs1Y8MOWI3ryk5+8vqP9xhtvXDLfnf7a1752faLdp2r5ljva84AVr1hvuOGGFafepycj/8j17W9/+/q6mD4BO3FhmWs7bnsHf2/w8SZZU2e1r/zSy7Xrg27rF66ejj7/8ObrCHL3Rs/7CI7cu+bJNTaoc4d/91m4eHTc7/iCkT9YzdUcuT/Skw8MfGNULPAQe7ryRHDxYDSnmw+9ucYOJXOusSeTjx7WJLoaKrfOVbrFl860Nc4XWw3py6H6xQ+HvHjw1INf12ayenLNGunDLK9qtZyf/aDDVvzVOVl8OuKko5nzr5l37ha3NSNjQxcVs3jgqnFvisLAp1O8bMIlR3KoDmEXDzlffMMw1siznzaw8cXS3oQRTayZezbqWA3ERJ9fDeHRyc+UG/OLiq+Y8YxnrHQnHvt9rcxh0UPsJ8Zinv3IH4zOVDEifvCznT15+K0LHn3ELzmCQ0crT3rpNiZj096wn43TW2BnP8SB+NDE3XlRzMUWJn041qhnWHUld8a7VsNjW+Or/dseZiMX8TmTjO1ffbGya+2dl8beaPc/R/yFE+LjauhWf3VMAc3FEYCgC6b+agK7Q/fKKtDmUOPGLPf5lJHvF3c21nGSTQerNWwT6qeNDazlh9wYXrpTPn2EM3n8sRNne4w9wsfT+KBL5mJxIJ7KgW12xqh4yw8PFpwZrwvVRSse/suJXQ2vGPdDxsWskRdvY3NxiC0erHDFdIzYpOfg8EBfPdjO+uxY/KhT6xOOG1W543mTwQOn3KuVnp16w/Fivtg9GPUJBzHDoDNvVPgw5tpWA/qwyPJJF19DM3ZxlBv+PDDNNfJkevjdmOCRI36M20PG8Ol3YC/Fsx9iaS+k51Bmi6rNmlz4kR9Tvuwph721I4Oph1Ps/M94Jt6xMXvYYoa3+8kHTGvlt7jG9KI5jnc1ff7ZiEfbx4tx4Qd9cSF5o2KvDsUd1lIaP2Bo0595tNt1faovH8VgvOuGcarPz6Xswrcu6cMr3uLIhzjsC/+MyxvtPrmVfjrX0vPtjXafMOvPO/mKilNfK7aZXzVjN/nhXKoPl07+TulP3XTi6W8t7RjlsvOvxU9Y2e6Yuzw9/HSN93l6+onhGpm/bCXr7KAL01o6m8LEY6dFdJBrBGVjPOMynvMZC12E11neNTz323mt//snGz6Lg5Sfrp3udd7wdoYi91Z/su2NXGd19nr+ig2G1vXPVlx4SG26h/BJzxvVfDmrfZqGf7ge8Pl1z/TGdj7IGuvpwIwPd9acTnV0XwpfPPTIanhh44mv2OK7f3gziE943mT357bu47CLpXWAUf56ccoJHh1NHHq2Wr6KgTwyhqPXit1e9Oe53mjX3HvIey6ih/Ix7cVUvHT4T59e8cPKjg2s7NKjy7YY4SH6YpyUff7yGaa5+qkrvOqi1+jtccBPb/qaY/IZo7H49+fQ6kJWbBOnMVkY4oRjbxSjfq5DuOLXTsXLL6Izx/ndezGEVbytN93Gs+74sNlpxvwhtW/OJrkcLxf7Arjwo9qwDxuvGOM5W5yxiC5518/ULX79bfFG+8tf/vL1Het8uo/3DFc99J0lxWfuma83o/yyyycCy0U+tcU8+wF/5+1zuvTKv3G2auANEp8Q9z23enPktcKnP/3p9Y9FvZndp0uz5QtNbHP7E/38z//84ZlnX01z43ij3T9D9YzTV1O1L8NgO3MIC8bTnva09fUAfZLduv/93//94Y/+6I/WJ9m/853vrFjUdBJsfuy7/LT/2jv4NbbZTB4+bK+7fuAHfmCd7dbM+sIR6x4/m/KhU83KS+9epcEh75rpNUuYejloyL3PWtkz4qTfJz/puB6cfXpxw6XnLKEHz33Tvcf+oydG92r3zPZtudkrCKYzig4ZX7Bg86NnW2NT/fmhD0vO7E8RHI2vXovRF3s5T9tqyyZ/enzxsTXmv1rEh0MWhrlcxNsv75OrX3rG1RqmnK1DOnj5YlO9xBgVA3k5k7GTu0YmZ/hhVpdqzka8akWmxmxct331Brn1njWwDmJuDcVozJ4vxD9cvozJxBrOUrrwIz4ZXQRPDNnhkcGnBzceHTI4YrEv5WOMV/56umoNPxx8NnQnVr74od+cHoIfnjG5uPTi0eCmSwcPhQHXGkX0e++ntcsuG/j0ek6BIafWBVb1cd6wj8RLP17xkIdvXOw9l6sVeTWYOcLT6IorfBjGfLIVEznb9iI5Pc1Xx3SOiK9Yydiwr81Y+dXYuNbtzfYefxoMfPbeaHef+cmf/EmpLtkaXOGP2/SN9gISMJKoYrUAi3nhR0VItz67OZ921zLO17SNx8/lfKVbbBPnWsfTZ2N+GrdJw29T2VgovRkbXvP67K0BzIguTG2STUZmcyM2rV/xsWnzT9vk0zd78/wkMy9efb74t+lRPopBHBF7tXDQVBMy+PRgavCKP3/0ys8YP1/stS6+Yine9NnALS83m1lfF6wmProa3fTh8NNcnFNOP6KHZu+66rClm0wMGqz8sg1bX5xy7oaSbm+0iwemFh59Ta7lzt7Ds5vvxJV3NS321sIcwcZD8NQ6f/kWV7mUA1yk56f1NZ8+jctXvWCi2cNvH8GiD49+8dBhE0a1kruG8kWG0lmTs/mBzPYAAEAASURBVB9qA8+LNjc/cn70MMpNDJqYwgpj78VER29NWjO9m0jrJDY+ekCCzyZ7GJfztfueczitAX54enntpBbtKXL27Z3iKLbsm4eVDXk2MNLLLv32Hv48L7JN71QfLnnrxvZS9mzoahH9fa+Qicu+8CfnL3jBC677G+3PeMYz1gt0vjVxiK/WvNzEo5HP8bF86USn5Onkr3l29cmb6+Odspm6lxvvGMW78y+Hc0we1pSFe0w29RrT09hl05zO5NnvrnO61ojM3ra++cWf+x2f3bxWwiTT2GdzTG/G2nj2zkkNbnttyhvzle/inrLuDa4Lb4R4A8AYOc+84eQFnz1b/mR8miOymW/555uulh5834HsPqi2ejL+vEjRu6/3gj6/5Skf52vzFcTZj/w21+Pxp1UHvHT1+PkwVxP3ELGRyY2/vt8Wln9k5412vXuAWKoHjHIVg3uS2qsjvNr0zbZ8+OsspYvoFpu+PaNWXhj5J4z/+Z//uWpGpn7wsmvtZ1zk2k75gcM/2+Kga16udDS4EztM+PQn5Xdi8tm8/LrfssVjx2/jcMjZFpP5KRJrtS1264Onx+uZsjmsYpvj4ix3vWtSj+RtfRBce0iMYRkfi1ksiL0xfblmt4SX+UG/uuu1/M0Ydhg58Sle/nqOkRPZxNhtj83Z7HHjofjq3BkbRrVPt7XmXy7OjB/5kR85/MZv/MZ1+eqYf//3fz+86EUvWteRXF3rrZ16tLbWt2c+PGNvSjirxAqn/9NSLvIUNyof4/LHM25OhvDTb9ycvPh8YMCb2Y985CPXHiazbt4Yf/Ob33z42Mc+dvE6Z3/MD5v22LE32n2iHc7+Rjs7mGzL0VjN7nGPexz8xcGjH/3oi78EoP+FL3zh8Du/8zvrO9n9UqK9FZYewe0abT+KnZ+ZQzXR1+jHpyse97e73e1u62z3nN51oZ94572f/5k/PsuPRI69oabWiE868MhnTewbMZD7Ja39bt8g501vfsNQD7psNHnApCduGOx7o50uuV8Ei8k4m2Lhx30LXr7oyI8/jW/68tHzQ4fM/TA/7OVGdorIXMOuD35h9Rp22s0xLHP+9GKbceCJURzVls6OwZ5fMSej53rRN6YnRjpy7twXBxlfWkSvhsemOOjli6y148ua0RU30ouvOTs1Ei87ObNRL88M4qZvvVExePOWTAz888W2cyFde4UvcnGg8psxx68m5vDEoGcfVRu4MMSQDpn1JuscN2efX/qtB1448jdPBisbGOWaf/Hkm3+xkKFyJi8OMZjDQuWPZ/0Re/r9YhCuGFB5wGFLz9qQwxB365KcHR5iBwMm/XDIigVPQ3o+uv7KTc+nxo5e9bHe+DNuY40umdroYbfn8u+Z396zV/D0bPkw55t9axZfHdpr9oycvfGOzw/b6mx+n/vc5/DM7+Yb7SXcZlgV335IDknEl8p74Few+Jv6xWlyPoy1/F1UusbBpXDyC/pSesmm/pWEw+5qbSYuWxfaN7/5zfUnuKfipFeM9eGY24RdDNZP2+OyyVD82bMNF7+27wU6LhQtrHCa29TFFA8+/9kVX3p6bZKLrINiz49PPHj6/Ex7YzL7c+qw6YJ3Mbu59CDBppiM3Yh8EqDa4XUzcig44ORS/MUjPtjVAp/eXk94xQODXKz8hmleTOnQ46MeDlk8fC3Cdxh1GMKcfslrbIzVvxyKQT7lTCciV1M0awADqR+dYwSneMuZH77ZZIdHj86kbPi31pPI7CEPgnMtYJLxrRezPuKHrBzNxSMfY5S+3qHewc5m4tOtbq716oc//ZtH4kFw/Gdu5237uOuILVwPoL0ZU33Ugi97Vdy3huRXrnCqSf3ETrcakeFVD+Pi1ld3+hpeGBMfL5p8vK5lY/VIXgzhkR8j8vyLk30Yx/TxyPnVUBhqvdvCdj37RLs32v2JNNr1FvMqfvDpRag/g/NCVO58dc0Fxc+sQeNy1u9EJ2oMZ485Gd1wW2u8qZ982tA5Rumekh3jn+LNGE7p3Nb8aqcv/z2uXcd5Qrf1sbeMu2amfvGHbU43H/HjWaNaOGHU49tTbPk0d/ZoyYrNnF5rbzx16MVLjx9Y3Zecb2Ty9MkU55rrSwyIHGY5zDrY853NdCJ4yAsGn2D3Jox/zMUvXD7yxS+e3j3DOW0OT4Ol8V8M5nIWp3G6YpvnQ7UWizGaOOGzERus1t8nu8QBU608j/RGOx59dtU+bDJ2cuEL8bP3yfgMZyltP8qNHzH913/913qDsDcH8a1BuWzmF6fVDqP6TWxxa2jWSC7ajDf7pbz9IIvKm337hGy3N3dWqwOSE1t2yJj/9ltxL+GFH3jsNATTGtmDsOWW38ZsPE+6Z9Mjj/jin860g1+tGtOxb6duNQyveXWMP2PGq1awThFZeHSM0y/u/OAnm3h4fLf3zNlUg2N20w+s6pIveFOHPLypY100+uTG+nTUoNrjeaPdL8yv11fH+CS6/7HiO9pd73LNnzhak+KLp1adUXje7PSstxM8RGc2/ObTJv1pk+9s1EEz92b2s5/97MMjHvGIVTt24vc1Mu985zsPf/7nf77mnd3k2fKPqrE32n1owFfSkPXVMb3RPvdHsehrcB/0oAcdXvGKVxwe9rCHXXyDkA//qPWtb33rxa+LmbnPMV2EN/Mu5vPS8/LGxTJtjOPL3Xfv21s9+8sZJspPNuVjjtLFR+zco1xfyBngXLF/+EJs2PsFtnsGXfb4zph84/G/Y7KlW7xqTxc+vAgPtgaDjXH3UnrwESy44kXz7MKf8Rmrl/j5hut81NOFSUebhJ+sHPkVEzukh8k/+2JPvuOai8W5PP3xwyY7PV61KpZqyFZd6PFNXr3EgPDI1BmO+eQbey3r2oeXHI7Gzl4gs85w6VSLMMnx5GXf6NmLVTNGxUmXTRTfXE58sasG+MVmHJGHY4z0mtjEUbzFIwc2+GFmKy7+EdnEMRYTe2MNTrnRlwe/amDseZAO3fD4qI50yKqHcTy46lCMcKr3tBGrebFUt7DUAPEBCwaZGIq9uMOdumT2AdtyL7bm5TZr3i/wYE46NhejfUam8Vl8sJ0Rejkislr61c2crhjVQjOnb21hVG/86hHPXGsOl381gA3XvdHakvkK1+c85zmHJzzhCSu2YlyTK/hxqz/Rno9LOU7mO8d+9Vd/df12wG9gFEVSycPCQzs/+fXoj/mFu/OLZfoU186/0lin3SmbdKafdNtcHpI8lLznPe9ZoeFHdKctvF1OFz9fNtxOu5053HSnfbb51kc2tM1a7G3u5OlOf3TZdYjSDZuMLoI18Vwg9hWiwy/KVj/t840X8WuvOkjxPfD4tLgLkcyF7CLU+EMTk10vzMN0mDqU5hvtbMSniVUssGGaGzefNRdDjR598nLFi88/3P4UThwwOyCrnR4O3WoCg5/iE29z41q25h5y+s0gO/PqWCzVhH4x683FYP3EwJcY9pji8ashPHYeJprre2FBjw4qXj2/3aTI6GgdsmoVL3t6Ypr1MoYlZgSbb+utJ8+eLV116kX0MrrwgxzBcANx2MPovFQnfmbc9GHyge+TKF7gVXtY1r4HT/n5TS7d7MTClzdE6LIpZviniI5W3PTiZQ9rysPK7pRMrlp67MSL2Khr4zD0+V/CC7rJyWDAzTa98Mjyk6wejiYnDcVLh4/48cKcftl3XqWnx3fT/6Ef+qH16bXr+Ua7F7T+g3q/aJGzfc5nNSqW8tCLm+4xPfrp7rZ7bZJnE3b29Bvr5zjbY3FO3VPynR/e3ufzSvTTDeOUzc7f7bLXp1ut041vbjwbO9fz3F/WlQ7+bkN/4tKzvtMej46GrxkXF4xJxUOnc6V7Bj1ytsco2x07/8nhOqvCJUed9eSuKTn7ZFWxOG/N3cfTUR9nnfOQX3x26uCXlf58/y53uct6kxqOM9N105tUxap3T63e/BevMbmG4HR+q2cY+LX0zBvDlqMeptZ9IYzuKWRsWzP3AeeJ3Iw1NTTHl7eckbH48KsxPc0cyS18+sW5hBd+0BGf2orHfcV3Qvv6heKmw6826wOinMjYN+dLa57P4pm27NSr3KZuemRzX4dPLj72PTfNvMnZVS9jZE6P7/TF2gvCGUvrQ69xeVgjr5P0MBGccjJuz/UiNdvpK1w9Oax45sXaPuAHT0N0kLjVoljxa/CSp8NmxzDPZ3XAkwvS4zef9sXBV/JyYRt2OM3zxwZvt+cvvj7scoOHwuPTmnQt6MnCKf5q7DnMC/Wbb775unxHuw9Y/fRP//ThS1/60sVfxFSbYs73+cjP/xSjfSE+1DWY7Xmt//mJDyfM8sdD+Hiz4U+b9PT0PF96Nn3IQx5y+JVf+ZXDj/7oj67XCORkf/u3f7u+puXjH//4+lobrx9QawejuTw8F+1vtM9/htoaFeMyvoBn/BM/8ROHpzzlKYef+qmfWq/xkn/qU59a38n+/ve//+LX61j3/NOrbvXZ6o/pHZNX2zDYGTtr5W7c+WVM7vo3bo3nfi1ftbG+ZOKmb4wPA743gbtftKZ03RecBfQ7a/TllT9YYiODGb6zErlG8MUUHr5YEH0Nhn05cfLBvlzFNvcW3PLq/l3d9PCcj+zm2Sbu2grkQiz08ZFeDPzPHPgkK2+65aNvzJZP9Q2HjL14EP70gyc/8vzq1Qbha+xq7QH87uf8iC8sc/VpXcKnk564UPGwaT3owxILUtuev+jD1eOzo68hce44ePyyQWxgN1/Msx/h0SdrfcxR+Yml+ODQ0xBsDdFBsNSULl5rUsxiy34ZnP0oRnM21tb1w8Z7K/TxwxCjlv/syV0XnWtej3suQjPOORZneI3lwF967GHjoWT02LIrhqVw9gNPLD07sMm+fd7awsYj73xg3wdOJqZa5BO/OsBoraytGjrz1Rt2z+XiJIcPizw8Mnb0jWG2nubGGmJrDIc+Mp51SpccLhkc/pyf1kfO7t/Pe97zDv6xdzhrcIU/btc32u95z3se/vAP/3D95vgK47tD7UQFbIKbzx7cfvu3f3tpdIGY2EyaDYPIbKBJbbCpR3/i0LfhEBkM83hLsP2gl99ENjFbvubmT54N39l2IXbYpqunp8nBgTkvRD4iWOkak3Xh5YduesZyc8H7BIoXOS4+3890pzvd6eInDOjwybdx9tVSzA7Scg6XvoNLDejO2GZ81bc/r6MbNswaeySn8jKna86XMb/+VLs/s3G4+RNubxi4AU+bYhMPP8n05cmvsXWVqzl/xurklxTepCD3J+v9l2g20cwdL0w45U9fK/9sw6GnscGTp4OfPpKLN0Z6MVpd8K0fO7zw2GSrLho9REdLzi95GMbydyOhx04sPjXczQROuamNX9640ck9Im8NjOXEXrOedO1JdvkqB36TezETPmznhRu6NznEzAe89jhbDw5i9ieyPaTjX474nDmkXzzmcql2yevJtGMUtr3YGK4GLzt9awEnHTb0yKJiTWfGBQe/a8x4Et3w6Daf43D18WHsmGKaMU8/7KyzN9p9R7tPbqEZ69S/0rGYvNHuRa7zpWvBPps12vHYqRsdsR0jOjvhzZjnON2wzcOox2u9kp/CYJPdKR0YV0Lh0N2xpox8n9PfbfY5O7Tbnuee9xnOKdv41qM1aY+17zu/nE18sWnPmVfbMMgnTzzmteK91D6Yus45c3Y1mOEUT2eeuTYpezGSsYUbnl7e5WAOz3nma1/Ye8FrfO7cufVGT+cuPWerc9oYrvu/url3ecB2lsKSs3uo+6Zz0jVTrPrOTLE7W4un60xc9PiwHnNN0g2P7s5zj3GGdy/oTBcLGX1xOtP18OUOk1y8iEyTp3sIfePWVG18uMAbhPjOITruJ+zKQ6/urc8CHz/4df9VM/dgcZprfGlqromtvcpOK38yuZLjTVm6MMjEUs7mbMn4ojvJHJ+OPMz5KCe6bPkWf2uKL3fNWvbiER/xz/f0WSzWAea0t04onjGe2nuOtB4zPi/+tOKFXQz02IpV3NNX+PpyNGYPyzXC1hjpszGvVvTlCCO5ni9+NRSOMTnCY2sOB+lhI/Lm2dPPhk61oJd/fEQPkU174xr75PTFbT6JbthhJseftSJnD4edXMxdN+rpL0m8hnjlK195Xb465hvf+MbhsY997PpEu1jsk85DscjPPJ64xWNvz1zbHzM/eFH51+PPsXk1hW+M6MDUR3Ns76qNTwd6k/vGs+9Gt8eRveNN9re85S0H39nuemmf8bHvk95oh8GHT7R7TeyraJyV7ZXiLB7+rcnLXvayVcve+ILvFxivf/3rDx/60IfWs7BcqpEYonLSa/moDvTws9355OGFRUfMnblsOxvDUZP08MK13uxgsXHewp/7QH6aencPgNGesV9nXGTlprd/nIUwYOd7GZ39IO8cFws5DLjsa/gaHLFad7b5xicXF2IXRrbygi0ONdHTcW2SwcO3tu5deAi/+0l5dG+BwRd+jY04us7wZ7zViI4xEqNY1Dns6lAc+OHkl296aqfHFyt+awQ7fT7oae4BsMk8IyBztmosb3pwYFR3+dBB+sb06bWnkvGTLzlUe/VJ3/MCPzDkqIkL8UevmPHgiCcferWjQx8OPxo9RCY/sfAFv1qXAz/pqhUqJrgw8NlH+MVanPRQfDWxz9h5noFJpz2f372Xk+cq74/w41nyv//7v1c9ipkPduYzZnmHJxb+spE33/DhIrqNzeGKU89Os2Y905GxgcOvMVzEl1rLlw869OVur4WZj2oIQ5sYsODz7V5gb8CGCV8joyNGWHy1tvaWNYebvDinPzZasZVzfuiShSsGsdXw5cbuvve97/pE+/+KN9orqKIKLorv00FvetOb1m+zbdI76Nor4IXha17zmvVA0AYKrXrjG7exWxO8NiAb/DaXPuqi0ePbiIj93vDDcaHkC59tc5uXb/ZR2Omwd5G5IFzU8ekbhw/LwdshLk5EHtHvgMDj24Wbf/LiY4/vxuyTFj795hDyJ4W+o8kLdRf4jIf+nOf3Un2+T+mE581xB5n42FSX8i/e/VCTo0PZIUGmPh7OHegOdpjf/va315vv3gSI6HYT40PjA19MYpixt0ZqghyO9773vQ9+oaZW6n7Xu951NW9WtH9gsS2v/F9tX2xihumBpN8Ok8nbi3z52iflR7/DVa2MkdzopMfeGLUma3L2A74HWbbsjNVLLeRVLN60JuOzeGHY233inB0MPsTTQyB9zTqWA91ujvoZFwy+YXujxD5Wc3w3NLH4Xk45sdPs8fa0Mzk99eJ74pf77MnFxO+uax4flji0nbomdz778PmY1/GuCx+OHmWn55NMLx4tvcYzLjz+tGNE13pOm/YNfXb5xU8vTDJ0Km8y8VmX3mi/3p9o90a7a0V89rB8jE+RmDVxVbtdt7wmf+cdsw07O3NrEM1xPP2OveOou4Zfv9tMvDne9VpDOns8Uzc9fWM25V0seMbTdsqyZ2c8ZWwjsnTw6HWdkLXve2ilG4+uhuiicgvXvDZ17ZXpdxmf/ch/OJ3z+XINkDWf+w8evn5S+njJsq/vmssOrvPvzne+86qHN7s8f7qP+0Wwh3XPFsj57Fx0HTg7nYNq5B7m+sMTA0z3S2dxbzaoU7WqhnpnuB6m+7i+3NWkxj892HxWA3xzdmSIT78oFYOx5hPingWd23Dguq987/d+78V7LFu/WHe9w+z+4dlGDdyb1YpvzVju/SM855Bxv7yVB1+oe/qabD/UjF/PHeJTE/fU7qt8yQ1f6x4pRs3aJs8ev1rpi0OdyBA7RF79+JrEDo8NHTbG4pBfeYnV/VcjgxmxsTf2+zA5PY0Penr21owfPPVhr7580hEXmXW0NtYoOVz2nuGsJT2kb4+Km764+ZNbOvX5YMO2Glp3vOT051h8rRG79rM8EF98atOOrFiN2c25OlUTcn5g6fMjL2O47NOjM4lOenTRzmtt2Wp8t650J5mXZ3w862KNonD0sPi2Dpo3VXxlqjd1/eKuuLK90r7YPMv7p2xf+9rX1h4SX+eJtZCfvaOVq5isi/j417um7BM2YYtljvc52ZTDqZVHOunVJ6ev5tZYHv5B6qMe9aiLsYrPm9xve9vb1l9slxN+tYWB+uoYX0PDz2c/+9lDn2jvGjlW7/vf//6H3/zN31zvRTgvI//41HfFv/e9713nfHu1nPjd8cjEiL/L8duv5FpYfO76eNbMmWLfWFfXnOdxduw762FriKwzw9hayx9+/o3VT9/Zzx5Pz971zx97OM6Ezjc4zh/3G/smn+zEHJa1FSd9vlA56fHo1MOSHx6M6rRj2M98iheVF7vOJfhyKxa47lv+wpyMPV3nOb9s7cOugzDx6LXf2PIvV3HTJ4fHRqOTfbHjqWW5qS8MhC8+vuBoUecLX2re+sBrDflyvuAh2PT48rpXDGTVgg7fGpn4YfPPD4JJXyzFbP3xy3WeLdUSBj19zw9wzOXpGas68AVL7HTFop5aftjmV75ise979pr1raZw+UHyLofm/MEVs1jgmqsH3Z3I+CEzRnxo8HujnU9YYhdLxA4fBjJn41nUfoRjnf7jP/5j5UdOV82KTcx4xQxHLLPhyce6VE/1gsFHuHiw47FrLY27Btvn5cx++pOj/GHZP9nR0+DzpS93+BEd9vzM/d/ak/WhDvnTbx/BdS6yNdbURp+v4pA/vj7io/zSa0/xK0/7QY7iFx/yRrvXzP6SDOVrTa7gxzV/on0mluPLOf/+7//+9X2zglZIGKdIEaLL4aZ3pf2OPedhXKnPqXcMJ7z6Yzp44dSnv/c2go3jJvonf/Inh3e9611rc0y9MPJlc3W4ptdFaN5FlH46enrwyOCgLqD66a+LJSzYEZk119iicMVHTr+L0KHk4KCDn46eDr8uwPZicebbnJ8Z04xZbg6oXkiZu8C8+Xive91rHfRekN949mkJL9IdkPzSm37Lb/bVBI/PalxfTvA0MSL84ncIi48NPDodcnTham5Q4kFiw2usdxB5sd8n8eTrxa8X6Q4ZxAZGOPkMzzwSi7m4xaOZuzG6xn2q3WEoXp9m11zvrYPeGiL4UXm3bsnw6eeLXzqatXcYGtOXKzJXF/n1gkKO9MuJ3rRJjk+vli/86kBXHemQGxenXh3dgK0hmXkxwpGLvS2vMPHFL2Y9G+vvWrd2cOhWP/WuZvXkbiRu5H2KAxYMa+6mLucw6IiBPTw+PEirqRx3opcvMjgzfuMpN44Hb9Y+bDxtklply16bvshRvlq7Y3az7sWSP/M9pt3XjMsYXutJF02MfIhJm7GGzcbeIT9G+B4ybot/hvrXf/3X66HB3hS3Zo/oi3WPqbWYeR7TiXcKJ/kd/dVXYO7/rNtf1ds6dT/Ba3/hIbzWMJuw9PZnmM3zO/U79/C6BtsjfBlrXjB2f4BTbLDN6fAHL3uY+Zpj8vjizE/715nlzKcH2/ODF9l09X4B7Be/xs5I1xffzmnfHQ7HGdizqfuWN8hgIXL3Evp8mRcPn52jcqk+dJyn5uUv7uogNhjkYhcPLGSskbN1jXYPd1/QXMO98V591Nyn8c2rk/O/+4r1kLumDp5rug/wpQZq5Je15GKl0wcPYKLwixGvmpSTXwyorXrJkS4dtpp5uThTqxsZIlcX9yX9xCcPwxiZ880uCktfK47w+OXfXH7lqObi84Jy+g/bmmvlhm9cTvmBIweNPFJb62F9i5tvmNbBWurpseuZwlqWC1v69XTzLyeULmx+EBt8c/z84MFKln656DVEr1qJT43kmpxO9sVQT4bUXINFl23312KZsRYvWXrnkf4nTzpavsobtnHzfOtR+sbTT3y9+rp29FE4bMLqOvMs7DXvS1/60tXTuRbiG+2faMfnSzxqqHV9G6P2JF25m9uL1gpvb8vo7MceK1u68fW1bPThkbGJ8Ftfa+f11UMf+tD1lbIPf/jD15lN1/XW17f85V/+5dr3chT39OcDCM88+yd18432PtHuXOQPsYl8XcxNN920Psk+32T/5Cc/efjjP/7j9Z3szmxU/dov+Q6XjnFyuWnxycKYMWQf3jK48KP1c96Ws+s5XbUxhhEO/64R+si6ulfZi/CKj5342h/2TFjtHzW2NvSc/3CNYTjH3YPo8M2GXE9OjwzhdV2Yux/T5S98umItP5hwouKWg3q4T/VMkc/w9NVOz7d43bv6pQV8/tSQ75pzC8GEU1z45V6ecDvnqgF/WvHCgKXx1XUGgx7M+caxOaz8Tj2+2Fhb+PwXE15+rZUxDPcJc7WqnnTVz+tOcVkDdW8t5F/94fDD1n0BPxmc/PIlPxhiFhd9rz+R2Mndr/JV/GKwJ9RKfegaI37Fzyd9/Orl3DKnA4OeeOjZm9UazqyTPY/EIZ7yK6/qpJe/NuOBxUbLLx17DEY2evNs+YSpPmpvDcrbOeNDHumwUdNikxu/fKgjyg/MYiZX994vg6GxrRU7H+LTWks8dWHT3pNjjZ9s8g/Putfw4ZjnW7x49WHAo59P/Kg6qZH86cJM13OptcSTm32z7x1xi686wOYDFnzycrKv1M+8fOmwj+8DN/6vyO36He02cotWcRSzgsbbeze1Bz7wgeuNN4VSpFM0C3853FMYp/g7tvnksbvcPOwZ226TTv0un/PqN/HYxQ8jnk33j//4j+vP3NowdGFODHObp4MovHTIbfjsWhOY4eabTRetPoz6sMIz70KZePmCiy8++0GMxuzdVN0cHUr0yVx45dLhyn4SXaQXo306CbYmZheRF4G33HLL4d/+7d+WPh98s2dr7BPtLm42Llx2Lk4HfvWaPuaYDRxxuni1cjbmrwcHdmR8F7+eHhxxG6sBftjdxMj50jt04dIVo4NI7A4n16/YtQ6oDrJih02v/IorOf/8wNeMNevCt54O0jfORl88dMrLGL/Dk3/4crEGzhD4SIyug26a7RGxotaq8wp/NjHBoIeMy9fcuEaGyiW79NUvuR6/murNJ76c7Hl5z9rI2yfPxezG6sHBHnVDNodTPmyjMPhQWw86asWP/eqThX7ZAgsGW3VUM/rs8aqnOOiFO/3Qj+a+4Ju/6s8ewcAzb83pRrMueOY1tnujU1z0jCeG+Vxn+pPS1SPXjHHz7PMxbRuzmXrm5ZvOxIyXjTn9fCavJ7M/bos32v1ptk+ReZOOH7H3EHMqnuI+lmcx19MVuzcqfXp4r4M5nWiO8Zqf6rObuvGyaZ5OeR2Tp3tKhn8l9uHMfLNLNvtku9/4dMlc9x7GvVnquuz6Im/PZUPWNYjHvmuBPp7WOjZPt1z1rnN8vXMCTwunOXxjfWeJubH7p3tc54wzJh1xmutR9sVbnGI1RjMeewypj18aO9ucl/Ddf8hhsfcscbe73W29scNfeM5S90H3EOR5w6e3ndleoHtjXo27TvjSXC9wixVmL2qLVw346d4gLnr6mSu/3avYRnRngyVeujMee4IP/ozhe6McGTvn2aWHnx/41se9Qu4Ir3u4OKs5LM289SUvJrbiIBeftXDPcT/jm035WBtjVGx0xEXGP3048lVv2OZiYGtP2T9sxIFnzr+GBydf5hpcNho9dmIwL78w8Kq1OLLDQ+HZQ+TsxOqNDs+I9M2N+4VIenwWJxyYmvjM5dLzobjUxxmg8Zd/8Wt0NPZ0y4keXrjN6TYm4y97eHhITNWjsd56iFMjx5Nv+ZnXyBHdncJONm2KWWz54QNfa7/BSBd+mMbpzhjwzGGhXX8xz37Qi4zVxdkiljD0xUw3P2LWnD3+kuZ6fqL98Y9//OErX/nKioVP8bR2jc2rmTWxJ4pb3qf2x8x51oUfsilvXM50dspnOhPTteHcfNzjHrf+weuP/diPrTkMz63ebPdX8P4xqX2P+AzLG+3PetazDjde+OqY/RPtfCPrYy38c3n/J853sntTCqnNF7/4xcMb3vCG9Ul6H0jhQ/3yQ6+xnrzcyYqJLL10pl62bFC6xmHo22f69lbYnRsT11i8Gmp92apBZyC9eOqBr69O5PzkE9+YT6RW+SfjT4xh0KWD8GC5RvFcN3hIfHT15JoxTK0YGjvr/fLYPyY/d+7cul/1TCHmzgH64ikPsdpfGj5csaSfHzw2c83pOGfFOSl7/PLPnxw0uHJVXxj5o08Xhv3s3ug+6TpA9rxnkfTxpp/mxQSrnHsDnQy+ZwCNTzp+qaWGziNx0ROrXryong0+O3mUn14dNTI6YtXjoWoCS/3lLye50dXEx7448Lr/w+Kn/SNG5LkLVrViz5d7PN8wvKZx722PhtPzIGxyr4fpwGDHl/3UupmTmdfELwZx8qvREd+cG/NbreiIz73cGsmZT7GI13tPPcvwha9nL261kreG8pUfumKCwQc7MbHTa+VAhvTiCgNPPcRFpqkB/9rUC4sNHVQt+bI++oi+nBCfiDx/5BG/fMll+k5fTu1zPHWVu3UJp7z4pK8vJ37I51zO9PDIavBhy9F9w3e0P+lJT1qh5qu4L9df0yfaBSYILYf6xrtTCUSndJJ/t/pZ+AotFvw22cxj6h/LfeqWUzz6c0xuM2hqOmV0k9Gb9aM3G/mk/NgoNq6NDSuSp9y0/IRPxo7MGN+6t/Yw+N5rZeO7qZGx9+aoi98YhkNRMy92Nr0giu9Pn/skND0XnReD4qFjHm7xF9OMeeYLxyGnFmJxg/vqV796+NznPrcetPBgsv/617++DmRvFPguP3n3ZqebRi94XKCXouqmTh0exnIup/6MnS7fmlgdKOJhV52Tp8O/PBw01ViO/RbfmG0HPL+IvbGeXweKG4m1oy9fByaZuXiM1VOvRWTI3u0XEB283gDR3NzIYRUDnfSsrRhhiYO+Jj95kftzdm8gqxcSg7zh0/NGwfd93/dd3Fvk+Hp+1bH1Nw5DX46NzeOx15BejOHpkRjVhj89vjz501ejcMyLp3qovbp70Icjf2M34h7GyO0/eYeprvjm+OxgabDVsz/h7zvaxeWaK56VxNkPWHxrqP1mnG75mMdLnv7cJ+lUH3vNeCc8OdAXh5YtXbJadc/GXCOPJg+ORh/u9BN/+gqjPn3zfMCXr3m4+Zl2jet3PxM7HXjWyA3+BS94wfqnX2S7bfpX2vP1iU984vDc5z537anqbI/s9weY5Ro+/2K7HLlWvRlw0003XVzPy9lM+e53yhpfTueY/BgP3s6fdd5l+T/WZ1c/deLBazzlx8buEd5k/4M/+IODP2t3Hdt30Y7T9ZeOa7VxNnrrbh3Z14tLo+88cz45V/TOXPuRTOMHH37XgHHnIFzzfjkqD9jkWnHmJwzYdNmizqLyJOfXfZGePLxY8Q8C3bOdl7DI2LhPu4+J3zOFfe4Fi15zXpKLjZ0XoXc5++en8nZ+etOdnrlY6Ju7VuCzkYPa0DfGF2eYZPhywkPVkD2CLQ49e835DFOffvWCxTY/4YpPTdwvydTKfZUdfWtNxz1EHejSoyN3Y76Rnlzu7uvsnN3m/IlBI1MPPDYw6LhveaPd+pjTlQ9fxbQcnf1oLWD06fliKYbOHThq0h5QM3ZyrFbNYfGlDvDUgAwmPDzrU07sjVsHuvxlXyx6uZLr3XPVAFlHNdFgqZs32TU6bDXy1hwOXS0MOmKzl5EaWTeNHSonPYKjiZ99OeKl076Zsmzp0KWD5KbR1YzpGNsLU2dNxg8xVMvBXvjFMvmwZ5xk5sWTTXmJwZhd1PrOeJPpYVjPMPDM+Zg2+SVH5mzbY3zmmwwVv3G64vEawl/GvOIVr7guXx3zL//yL4df+IVfWF8dY28Ut764xWJenvrWa8ZLT0PleGztyy38ZXD2Q547L8xs6KD8GLPhh6zYnvjEJx6e/vSnHx75yEeuNcnmIx/5yPoHqX/xF3+BtSis/Y1239Huq2P8Hxqv16xXdfBXBb/1W7+1PjjVLxWBeXPem+z+8amzik00c8lnMjnsNHX2utANb7dLN/t6emTtUfNke5+ufpI6Oyu7P6m3axOm8w7fGMEsL3Uzp9/9Tm3St3bsur+Zpw+rmPmy99JPL3w9HY0vc2ed85GuufPXX0r70NsDHvCAdV/G44+d85BtsfMfwdDInEfwjOPpxQqvOuhhu0fSLy8+NHM6ctfjyVHcenJ4rs/OePG058Xs2cTzimc6ufKjN+9eQR++GFG+6Wpw+BKHPd3eZedDLp7DjeXrGcjrY2++93xElnzmyBcbrTE5n9nokfj4lS+eveJ+iFobdVQHtWkN5MSGjoav8ROVJx5c9mrAtiZ3cZKpqdfK6simNbLP6fGjtupOH1kzsmpiLB++4fLnHu61s/ca3H9hixWenIuFP8QOHxaePD2LuA7hwtGrk2ck1xSdctfDFAf/aieG+GT0+RGD2qSvh43ffqGHLxZjJD56Glz6cmKD+O584Is+Pb7owfGcKUc1DENdYZJr+DUxGNOxDsYzHnKEzx+/4jAv1vT14qs+6ehR+sZ0NbK9wa8W0469mtgXPtF+a16HX9Mb7YokgBISHCqB87PzP/cEp+y7NRYTmn3jNqMNKZ8W24KTlQ95c3oWu00dNnk1MZ4Ep4VkZ6y3gbNnm071Ti+s4mheny0/ctBgs4/EhF8e+uIsz3p2XYSwEd8uMoeEzWjD6r04JTO+y9mLVjdIFyQMb5Q66B36dOCjGYe5endxm4srfXVyYTvweoETTjHQNXYh9iZBOvAQe5+Cm28EO6T/9V//dR1+8yDOlxp0IO31OI/6//5Ur9ZYDObVsNpPq9aLrnF50zVXFzxzNRWPvvyqFczGaoH4xVMXL0D1kbV0c7ae7TcyuJqbpRuYntzhb+7g5R/hm+vFqkbWyA1QPfOfvljo+bShfYLgWwcNTnUQnyaXYnLzcdOkJxf7rH3Dl7priC92+LXWha2aIj0/4Yg1PXIYZG6cenN+y1UvRg8+9npvKvAJS88He9cKPfjeCPKiTC5Ir5adt9ni068G1sB37svvW9/61sU35Nq/9IrNQ1y28PD1kbWovq5fDwZqI2Z22dLHy54PJLbiI9fgs9NPn9mww2cnh+Zhw6BLpm7i05eXmHc+G/pw1cGeMo7ok9PbY4ZbI0d0y51tRA+lZ8xPvsQ2dfDhIDZkdIyzwTN3HXpx+PznP//wcz/3cxdt1uAaf8Ceb7Tzo6mPeu+xzVzptSaXc+/c96L55S9/+cJX4+8Gzdo3vj3iUCs0fU5e48vF4trzxsqrXvWqgzccnHUTM/vwukbsKURXS77rp9M11HVk77lv2g/GzjFvmjsX6ZD1Rmc+XZfOQ2ttL+cXNp18NabnHqJ1zxAn/c7fcODyx7dmzh8M9xcvgrxJ0osRD/HuH+btab197jyAm397WqxwncF+sY7E4Fzv3kXPc4DzVszFxlZOWjnzZS4XOSWvx9cQmxo7caHs9cn1E6OzUOzVQ22sF3xja6VZR/bq4pN08lJ3tVIn+nJi0z2LLzxNzp679BE+W7Xh3/MdP+a9MOWnNSiX1tEcWRd1xbfP3BvJ4FgvcRZHe5lcM69m1qxaiUce8djTDaf6iBef72IvXjrs3QsnDn9847FRs9bGnrFX48148fjBU0f7SeNHnawN8ss193QyujNP9bYOqP2ipycG+PDYmKtDrVj0aksXiSXd4iPvulQzlL1xPH31x4dDT0wauTm+Br9GH814xCr+iE0++CEzL+f08mGe78nDV5NyTga/WskZnw9xROQ1vquReBrjh8PeWuv7sM71+uoYewOWZz2+uy7FXn3Fbe16PhenMbmY0FwbOaPipxfJS4vIku99OuHNeTw2Ypj1FLvr6CEPech6Q2N+st31/8mzr3V5xzvecfBmuzlbeH1H+43jn6G+9rWvXc84/VIatq+L+cVf/MXVW4/Is5CvYH3f+963zsHWlty4mM2N5xwPzXqkM3l0skvefNqzSY4/iQzpnTnqF2+uTzVNFx7d7tXtfbzOrolHHrb9Ye4s9gYtbOep1yzOw14feP1i7VwvM/7iO8ZbyZz9IEP2sPuQX45YL78490sTfPmJybOQr3/zqXZraB+4j/X/xpyJYtxJfp3FrgF28PA6F+XlvuM+idSr5w1zevyz05qrgRqJ2XOI81ovL3y+WxM2askXO3w1ouv61MtVznBg8hW+uOmx0axP90V6MPX4asEfHl3XgtbroHzSpacWeOrDlg0sDeVPfHStd/WQj/XQyMTID2w6apo9njE99a3eeOIQgzapOd/J6SN9jZxvjR+61bg1wCNXW/qIbnJzY3p0kJrYYz6Q6YOZnmvYqqf3juQqBrUqFvZwrR2+vucE/j2rInXQ7BlryX6SObl11MNkz7/a4hnDs2/4ZaNHe/7iSA4nuXEtW3pity5dQ2T2B19srTkd16448PgoRhj5LHY8uvJFMNnZD/IhZ09fQ3yQaa4DfHqoaxWGZyPrYe3Kgy5/5npzMcHC63rMF1v56TW19xdp/hLqWl+HX9Mb7QUh0ZIVcInVKwK5ApQo3u1NxVi8x+bx2igWAbXAHWLxLFQbSG5tDGMEj211CX/2dG02C6zBaIOkh9+CwzVnAzcfYk6fTj7h45NrcGZ88aeOnCa1lnp+2eebrovdjdZmdzGa96liY9917sbohR9bn1L3YtbmvjXkwvYmucPOhV/cxSQn/r3o8Ukt6zdJDg63XpyLTf09xH75y19euOZyxvMCyL7HY1urnhN7H4ulNWRfDeea47cOei3s1sl+0uTo8DMmQ+KZxJZPRAcef/jsHPrWQCPDc9O7+93vvtZSPOGTIzX3YrCbgoeBDni49LQZNzsHI13rJIZ09HLhxyd+fA8+W4elevfQJbcw2ZSPMczeaLf/5KM2ZHwhtlo4cmsd6GjtX9jigdU1zzZ9Y3J7ywNn54T9LU81Und8NyF73R7sUC9n2GL1iQP7Uwx+0eD6uFoS0z//8z+vuPw5se+09OacWFB5iM/1Uh3Ued608MVJ37qoiT2hR2KsDvJAHkKqCR68rhNzmGzUhL05YmOslsbphJtd+myszYwPDyabrgl9GPTJ7RH7lp/WFw7f8MVWXuHRC4cfY/Z6sknNYc1GJ5zy4IcPNLFgR9XEHvPP09zgf/Znf3aJw0n3ans+5xvt7GGq0Tzfy7V6llfreDm/zpHnPOc560Xz5XTvkF+6As7bF7/4xevNAPc8a7hT+8LemY2etbTn2qfm6bcHnZk1a+5s8sKTrrFzyZuozgZ6zrbu+9Ouvdt+6bqGg/Jr7KyQm2uzh2N8cfLjGkUwu5c7l8VHR4Nv77oPwTBH/heFF0T2K9/5mn7w1YWNsTz8abWHath8uU86R3vmFa97mbOTbfnsPUwY6isGNNel+Hc+O/rsdky6eK0ZPDGrU+cZXDG7HyVzhrsHWUe27qtqo3fNe7FoXB3kTb8XhvwgNVQ/tRCHxqZaWDP/fJYfOuGqWdjqXA4zD/cRdebLPnNPRHA0vtm2ZmpUDPTkYS6G8OVRXfhqrfXm9hG5+xu/xuz5Eq9aqiGe/QcPL8LH09QbHt/u6f0CHS5fcPhRU2N58GHv27v0euEOw19n+GeX3kiSG2rfi0/NEQxzjV0xyyV9YzHyS0dTA7j8mrNnax6PXO35oIPYiR3RM4+XDllrZbxTddfDQHzAwRNn/GzJxFPMYlVXdo2LS19M2RcbXT7YRngago+KMX59eWUDN6x8mLNvv7iWvA66Xl8d4xOQfvHqA0HisBdcl+0B+1IM5vaW3vXi+qLfPlAjrbjlza586suZPKoezfXpG09M4zmnV/2mjdq7zh796Eevr4O54YYbLj57yu/Tn/704Y1vfOPqXTf2iDfa/UL/x3/8x5d/b86+7nWvO/h6PGec680noJ/xjGes79d1NiH1+PznP394y1vecvjgBz+4XkNYs7nv5D3jZocn5skvH/JyxZu54U+83X7qhwEvwqPTvuoawZcL7NaWnrlcilfezgE8cmO1Vp/yzj4de8Medk+8973vvfTc9/0fLntMg+ushnFryZra2/aBr8X1nGrdy0F8fJ87d269LnHP8NrcOXnL2de/ug7KuVjM5aDJ273bmYYvfnXQPMt4xvHMQ09erlt8/tl7k1zdWwPnOQxYXV9et7rO2KQH31i9vR6Ew9ac7SlS/+Ri7j6rDmIkV6v0+CAzl6eenuas8MsLbxh7XnJuauzZyQOxc7+2r8rVGMGTF111USM6ni/UzX3bnE7YdObrZFhitO/UV5OjGP+3kj3o/2I4f5wZ/lJPfs4X9bTeUfVWg0i+7QU9WzVG6qhunuu7p2dXr1b07Blr4DzXq629ZQ09O4gTPxJLe0IM6myuF589Rac9Bsc+jlp3a2qv8sWOH7atPQz3Gfrw7Q848sRz7eCzLUc24evFZy+wJWv/tL+LQRz2rzzZkLPr+cv+tR5qhGDThce/udiKM79qTAeR8yFH+GLygbfb9atjHBKCaEG6SCQjCclMUjTJlKR5jR4bhIear8mt+DF9GMMVh3j1Wjr5bk7HwprTM7bJjJG+DUtHbvKvBnxlS3/PHS87i8sujBabHOHjxTdX+71Oc26swYUjfvGyw0NyrBbmM8984xk3h9lcD9cGddDq1chF5YbVRvbCy83RDVrs9o/Ghg6CW2x0IuPiTU9P18XuxaGLysUgFvG2djDF4iLkrwu4+OHaxw68Llw19gLdby0dfPzgebHjps5Pa8F+xlrMsxeDhuiHZy6O8oYJC09N9HSNq5F+rllzOZ+KJd/1+WWjNg4t64bwzK0VGf9zf9BRc80hJmY18WChLnyUkx7hyYvcAdsNgi8N0eXHL2P4huuAs65hVxt68s6eLVxrxU781htfTTQ2xQHHOJlxMrbyrt72sj2TfWtEH4+sB0y49rc81cccjhujvac3j8+XJk4YdMTkgbYbBln1ka/53qqDGrjpm/uU09/93d+tB1CxIL7V3s3QgywSi30fNh78zjo5irsbvHn+5WnM1jqVFx6Zpk7mSG7qp0fqzEbjL3k1XkpnP8jJ9LDkwbZrOT198nzi0WevDr2RpA6ueX7n2rYXxGAsN3JkfozKEZYxX6d0s6ejoWqandj51fDk6k/WfKL9er7R7kWoN8HtB8SvNXPN81vdi6eayo0O+eXo3Llzh6c97WmHl7zkJasm6nq9qHjq4c7xrfVzuTW8tfiXst99O5+9QHr1q199+NjHPrau81O54ju3NHvS/sdrPc3trbl+5Pj02dmTdJxPziXxGHsh5WwN10O+RsYOBuoaZqfBt2e0new5Z5eH4+7BfBdLmHiuBc8Mrn1yuOXmmoYBi392XgD1C1g8Onxo/Nrn7ItTz84LYb/05VMt+PIGgHsSG/bOk3yxQ/XGcGfPP154Xffp8IsHg276E3MBXvhBt/iM1cYa0MdXI+e22MnsIWulF4d8nId669KbA/zaG+ysq8ZefLDVUN6d78LBVxt29N3D+KfnngQ7G/VD8MQZ8eFZohdr1sCLc8RX61Z8fBlXH33rKQZyeYqDn/xlp6+GZGzaw+b8wTPWyMTIBsHGd3/Eo9t9u7G5/UoX0edHYyN+ZC+5h9JzX9Lk4zm0D3ioO1zETq3oIfywzMvXGhpr4lcLOUR8tI7FmKwetv1BNx1z/sJVS3JEp8aWDMkXnx5eMeKLE58+nWLWmyNyftVKQ+UtBzj08eiGRy+MZPRmPHTEQE9e/Bir2axh+OXEDs+6Vn+4yY3bf65Fn8T11THu5+K7FioXe+PXf/3XD7ecvbkoBvvVNWif8N81K65eH8nLnqEvL8SuPWAefj0eglleZLuczs6bOTamYxyGWOLlxzqhn/mZn1lvjvskuhojsg9/+MPra9R8mIS9r47xRvsNZ2/Kw/Kp09e//vUH//DdGeeXpjfffPOSux4jb+T+3u/93uEDH/jAOqdcl5PE2Z4pxvKop18u+qgcm+vVD/+YjHzam6P2qTE7c7XQ2ptwrXO4amKMT68cnP0aHl/y7R4+zz57Z8bCj9co586dW/X2DOAXiV0f9ri6woOd7/aL2MUk9tYbj4+auX3ofuSeYezNc69jnHVyoAvT/cXrRLE7C7ye8aEi14RrQLyzHmIqVn7a8/Dwy138nne8jhOrOvT6Bx5cuZcHXPWkh0dHrD2HtF7ssqHbL2CNydRPL55InuKEQYbURCNTR8QnPfXBE5PeXG2M2evVxxvE3stwFsDRnBlTTw7VXI3FWT3hajDVRjNWO2ecfQILLhvroUaeHdUgn3Tk3f4zL4b2hNwbz9rEWwW48IPurj9tqE27XZZ/PRJr+wKuc9Pz5Be+8IXDP/3TP61aqqFnG/V0xqoLO/WAb96ZrBYIJh3z7t9qYN95VlX3iF8kJmugxnp8deRD/cntAbb8iYuORoc/OsZ6ewSP3B7Rd42w1yaxE7f1oid2/vhpH9CvBnjiFGOxmMNA4iw22O0JY7WofnTbb3TEDEOzZ4ubD3XoupWTlm96cMQNB+FVCzn1uiIb+sb8aHL3gbfb9Z+hOigqtKAVSOAS0dfIIjpIUi68ikkXJV+T7Uc6+lN6ycinjmJGdNoYFkYsdOlo024fmx/jha23iBZIP2NWFy1KFt7EnrxiPxYfH5oXMDauA7iNBN/YRtGzl69NPDcuvnp0IXaj8QJBHPg2WDcX9fKbN4cmrDaoDZ4OzNaYvRjFNgm2uFwMHUTGPv3ksHHBwhErvoel8p05yrNGjlzQYpZXuRWPCxSuuCJzucjBjYJPNyMPa36DqbbFmw82rRMem9ZUzx8d9a+Jm02tfPTlMGMyxpeDuMPUlwd5MbWuYWTPP9kkMahB9RFrWHTx8cpN7NU9/3SMNXjqVI75Ys9/OeeDb+tkT5YLHWvgwGPnfPHA0hsBMPm0tmyM2YjTDctv68VORodfVB4wtUgsGoxw6SK9vOBo4qWXDXlNzog+3vRDX0xiwafbelR/tt2E6POnLuogLnpyskd7qOPHtdocthu1X1SIU2OHz79ryJ7+zGc+s34j72HBzQPR9Zta1zx9uPDL1Zp0zfPnOsdTc9d1tSk/mGzhir8cqpdevh7IyNjRZXOMiiNMOvThnCLyiJ696eHdw7g95RNP73rXuxaGfPORTXM4xaaOYj1F+WR7iujYJ7A0+dM33u3o4lt7L8xf9KIXXdfvaPeG7TOf+cx1tvIllqi1bK+W25QX75TFS89+ucvZ18f4JBRKnk3z9Hf+Pp/66qg2mjXuOpFHeyN7Pdvm+asnq8ldU/vWO9mpdYKTT+P81ONF6cGMJr4zYvoWAxzXm79UcX90zw8njHp16AWPMwRVK3sdVmdvZxs5GX1rhujxAQ8Vo3ji0+lMs1c057ZYe3NVLvScN+715Y2HyKsrX+TmfIhPrAif3NyYvbUWO13NPBsYXhhp4mlNxcgWBp7eHmKnBvA83/r0qbG42XvDsxcS2bJH+tpiXPjRXuQPll5DZJqcxIqKC36kvtpOYbHPDx229MVDRk8vR7UrDj7p6dmoi/Wxt8yrqbGWP31+jOFp+cLjyxy+mmlw+SouMYuHHnzknHY+m1sDH9YoN/vKJ7bI3Xf4gRUme2tIXy5wNXkUnzEeKq/kepj44jZGfNSTVa/8sotgZycW15I9VRxiw9eqm2uOXMz2mvu4eyMczwFsekZWH8/C/nJN8wYTPTHC9OaT2uOVJ5m55wfnQv569uqapCO/nfDlWIMbNl+eB+CKE8lZLOZsI/bZqa9nEvmqo9yrTThiySccay53HyLQ2H3pS19ab3oUo54Pdqi123H4S6f4ipVfdnDkVz3phWMsB2vIDh4iZxeWvj2uTr6O6np9dYw3zV75yleuv3rguxiM26PiEb/1KE7XIZ59KVe/wHVPMdYQ3XLACy95tWuezTI++4E/W3K10aZMrSfOHPPjU+o+ZOA728WM5OqTzu985zsP733ve9f/gfmlX/qlw0Ou0kQ0AABAAElEQVQf+tAVt33x5je/eb0h79n2l3/5lw8PfvCD13PrAjj74X+dvPvd717/+NRrDH73nO05Tf5oxr0Y4wdb8WrG5aGXYxhk1WHWsTroER3r5Fnb+qG5xotx9qOY7EXkenbv7YycsZB7zofJt/PVmeFNc+dDrzs87/O/rzse6lqFwa/eteyadk537hvzLyf4znQ9ezZ69vruTeIWPwxvYHpm9+wud819GJ6aqI8zkZ4PWnV/rr7lzo4+H3iwNbUTB2qdzMuztUiHLVm47PKlby3k4xxkp4Z8WRc9knM4sOShLj2v0atm1UjtjCM2/Hk2cV9Ua1ReZIgvumzpuP7FgvhQG3NxikVLh62vc7Vn6NG3PnDYzPrIVY2dc3y5Tzuj6Ltu5QbDXIzVmT8k3uT0+Ub61k7N2NXYGuvFJAc66YcBm571r57m4dGzXu5jbOXllznnzp1b38wgHrqIDzlocOWi4ZuXD31rc8vZL0L/4R/+YZ2zPkSQPR90ssW3l+VRHfDoubboGcMXj2vY+3DJ8OUAo/OsNate4ocRLkx5INc+cg1fD1Jn+akJn/ag2uJVOzr4ci4OMWn07CXXRXsdzqyNOFs7Ou0F/NbBuJz5kDsbz1n8m8Nki7oWxC2GcoDv2xae+tSnHh7zmMcsXTpXQ1f91TEeBAUkwKiC6mcAEp5zB4ZP5t31rnddG0Oix6hCTdtjejsvu/hzDkvhFM1F18LQqWW3+93n6c2ezmxk5m1sPsLR57OefmP9nM+LhczmcVH4j+weOtoo4bPNL9kP//APH3znHZ6WfzI1gaku3WzZd6Ha8GQ2pgscuRjg4MEwd5F3wZQHDDdAfDHzy85hTt8+YktPPg4JsnJ0kMwXyublSEfs/Gv4Lmaxmoehd9CLtbz1dOg7sFx4DioxevD0JrsX6eJ2YeIjWOwi/HjFoE9HrtWKDb81tvKuZl3UcsQPl//WKF5YMy4yDenZ8F2M02bqkotXT198kfjxNWOHvD2iqadai8+LILbGsODDwaPTTa64sq1O+atnZ2/YC8VARr96mMNTPzexakbOnowfPRJPOerxNfpibF3oqh3b7MMgEwO+3k0ClnlxlVNrL5bpGx/BnHEs5tkPsVRfccBVP80YFlsyuvL3kOChCNHzcORraPqEgYexW85u+h5c7Wu14hvG/e9//6UPx/rCFjO5a6Ibnhz50/dAIFdyPUy5sRcnPfhktfKBc4zk1trRhXU9yBnigVzc3qTwaSj/LMuDu3pditRBk1u13/XxUfHW42WjBpPkB1MjY0M3LHyxebHojXZ/Io2ST6yrGfPz0Y9+dH0KzHWLrJdGJldroJVzsZMVpzFqvibjB751bq2LGx81zyS+Xpt7Z15f7Npf+HTFh9eeoaOVAx+Nw09HHsaocT3ersc+fXIUZmN9NTNG6eijxvDyObEbk3V9pZdtWPj2iwdCf0XmvsZe3nRdy8h6GFtbMjrVDa97LL45ih9WPGeGJjYyzXw+CxQ7HRQuviY2/q1lNaNjjG+sGcvPOBu89Lo3yU+8fnHv3CsfPI1tDRZ9523POd5o8Ea7eDy7eBHvmUBO4kXZG+OVu1hg8qOfsbJBeOJuv6aXbnpL+YL+HBcDXzMOOnjk+cejg58/Y/5r5MbqoL7k1srzmBfM6kenN0mM4U/KBx4b9ZCP89Z93J7Y8+RHY6t1v4fBlyYuMcnJGS6m9pEY8OEi8dPnO2wyvPzU05+yWS86aoXCn7EbV+Psyj8Ze/EUE6xwO7PwjMXHTl7u456x4dmPnkt7scmnPWgvevPJszJbfDVyzfPHjx4fJmzPufa4vlj1rROc6lys7OPDQ3gaH6438Xq2JudHU5PWho9qoW/cC13xiYEeX+ThFIfe/pGve7hrmo1fmP/N3/zN+utTz4nsxaVFO5bYy5kM8T3HxdjaJNeHLT/+0My1GNJtPaypN9p9/Zf7ef4WwFX8gIt8sMRfpPV1geojtuTG8hBPPLmrN77ckF/W9Fdti7H9qH5hFzesxuEzjbfBrGkxpccuXH3yYrbXvV9www03rL+M8/Uv3cOcAz7t7DvbPef61PvDH/7wlatPqr/97W9fufrHmY997GMv2onPB03+7M/+bD3/uZb405CY6Mivdb1UTsvowo/qUG3Y2WtqDusUhV9Pz/q47v2/LHvHmoWvt69cfxpd8lo13f2Jy7WqhjDgug5dw/Dg6J0DznznMT33wF6XixFOORZT9wq9XLv/q6u9yZc39Z0/rbWxmJvzKwY2/PBvb/plkPsIHJ9yh43Eiufad2+gz7eYYMMxp2NMny9ropUDndn4pleuZKi5XtxqL+bihccOz9oZ41l/8YdTD9NYvGyc9/Q1POd19bVufDZXJyQ3uZejWPiFqy4o3p43P8VCRzOfZ/K5c+fWa0j47PWaWrev+RObfWUvic26eQ+F7txT5urXOosvf3yLqde+9PgUFww9P5oxv3o1ae3Nrb21YQNv6lU/2PzqycUjfnZ0PDs7e/RkMMm11qG8+aGDwlqTsx/id8b45ZFrQ/6uJ6+78MRtfMvZa3My+mIqfvkgvQZffcTmbJCfRobvurUf8OQhrvYoWy1M9ea//Phl3xrxu+u3X6pjOvQQuTGf6gRz1pjvYubLvdx57FmdndqICb7rAY5xawWLvZjpmxeTuTF9Yz09Lb/J1dc1pYctFo3vfMHQ+LPG/iLNX2jfbm+0K4CgBBRJGNUbSzSK71OXb33rW9d/jk52R39tFbApfvd3f3c1m6bNp+4dBpBtFl/g/2u/9mvrQm5jHvPaBrW5vGCy8V3ANloHnIf8XnjaB27CXox6aHMTZOvAQHx14Zt3Ydg7LmhyPsXORzpyoNu+MWcj58mnz96FRAeGMR36HdRuAOIXW/b0ujm44PDJ5eyBXtyIHRyySNzm1bqLmRxPTOyisOGIiw4M+fTgQL96uUnS0SbByXd8OnIRg4aq6W4v5uyNa9WPPh+TktFVJ/uhGw4ZfXtCbvNQD4MuGzcrcRVTuYjHuIcpOslgGuu7EYkjDD7I8ejAStYaqElr0b7To3TXZPtBpsGfJGf7DC4cvvHmdUJfPKh1qVZ4M+bw+YIlbnVkl/909HDdtNWLvP2kvgjPGf3ABz5w3Ry86S5/mOIOE46xTxy7PuxFOvkor+pHn0/7lY5ai9UnY9iZW6Pqri9ufibtczJ5eOgQBzlMNbXnWr8wwm1+qZ7ubHLwCwf/QdwLdX74OxYTXHXQ5HelJPfw2BrjVbPyaf+YV6/86MXmhfkLX/jC2+SNdg/EasO3GMRZvuWsb++KqXH7+0prcjV6fHSWi6szB694Z40nNnmxW2v3KORMVe/s6MlHHzVu7eLrk50as5l2+QkjeTrkUwc/nh7NeXJ8sYTT3Hqok0/2ec7ySzbUC7Gu/dbZfds54npz3brfe/h3/2sPdEaoE52IfzyNLio+a4f0eDBm7cKyFqgc6dfw2eWfPVlnQblXBznJz1lFD7/84JuLk89s6OGxUTf1guGNdmeicS+C1ET+2Yovkg9ccpjI2H4r/nRnX72KDzb7cqMrLy2iAxOllw847PXHCE46cpYfHhxjLyr73zrOePd0L4SM2Tnn3WPkKzexGNs/XVf8ehbs+UUd6FQ3Y/HSN0b8i6P1weOv/JyByenkF47x1VCY+Wi92hfqYo/tNaxurc+MQUxw2cYXr7meLR0tv8Zq43xSB/Zs9fSN2VsTb6Dbm56jyPDLw1js4uovAPhsnao/ebGom/XpPsuXGnsGaE2KmQ2/8MQsXrbweha0d8zhzDOEbzhsYYjVWE73u9/91i/38ycHLYK116pzXO5y8Cf8/jn0n/7pn659KgayasNezHzAwxcPYo/w8pVO+cp9YqU37bIv9mqMb6w2yPOYN9p9jZqvMplYS+EKfxSP5xe/ePfGo7VrLeVXzfmXu/NffMWqr/U6Ptx68RUjHqzWGGY1LWw66eOZ18zJwtEjcXaeG6uV/aE3pycvY29uPO5xjzs86EEPWrGwl5PvTHZG+QRqn2j3l1++XoauWtvXkV9MeBO+D1lY64gfDfHdfMZr3Dy7ejnaV2rTvnMNaO03fGOx04v4yieeGnhz2odn3I+6huhZB6/3vdnWucBWLel6Q9v9bOLvfsQKS0+vmMXlGnbfc+7z1Wt7/OK3b8KH0bmAbw4Hueatof0vLnGSo3mu06dLTw7VGK5fnIhFHe33Xpe3T8qBXEzVQuzmsOnI1z4211qrcg9HT098bDp3yp1+zwvizQ88tuZsjSOxoWpuTN5eYDPXTC1Q8mJczLMfcNiEJ2c29rpezN68zK/YyzssPCRWvvXVig7fvsLNXrOGMMsxefnae/TUg3/XpP8xwr9aasbwxdp1bowPrxy6V4jPniMrXzjwNbz4cNOzL8Sjx0u3+Ony2bkoB7zWXB+2nhxG9wV1R2T84HeOsFVLsfsl1rlz59bZpDb0+fFcpTb+8sa99JazN9n90pCNGsD3HOb6hw9PXfXl5l4Pm1+47Mhg8KFn6xc+WjWzxubipIPYakiuWhS/+eyP6cU7ZRefb/vTL8vf8573rOtajF6PuuaR+K2fvYcnTzlq8paDXOHQM9fDLg568m19yDR7wTljf5s7Xzpj2o8w7HeNT/cS/0zbfQjlY02u4MdVf6LdokteAJM43p1X2Pg+bfX7v//766aokHfQtVfAC0n/GOb/sHevrbpXVePH1xupthHRs1Ii6WCaWVkZESlqJ6gMTIIOFB0e1INA0goqi9LCICioKAJNCsoss7SDShadoPZLua/PdH/3Pfxxrb3X2u0t//tPA+aac47zGHPM+Tusa13rK1/5yjrkFJpNKucdworT+C1vecv6h3rHseYh3AOmzUk3XTaDwnbxdQjaAC7KPhnqT4XaJG0M685PG8DYxqBHcVfQ/KNXMaMBuDaNeNpE9NKRvuIrXnqM2aqRpxs+3XqyDnz1rOcTveLqAdMcH12gPt/opJsNNH6WK7gaWTL2jB6vOGx4MbEN4Hr5QXaCOdnko5M15kd7is9yAa+xlxyd5sUbjQzf9wEd6PQ78PVix0+PfFnP5NHKt0OOjBznC5v0kZUTc3mgg996uUAH8c21z080sdEH0pd/+YLODh30pzs9R+3pSTd9xVKMrT87aNZl1l920IrLWNziAPZc64fW2jVWo24U4OngDxtil2MPsx48PNy5IafLOrRu9MTrpRLfJ5RPuiaozW5+0Nh0wTofIA6/4LIngBzMWps2+H+u4NrlE2H+pNhfBLWW1U+5Nq9m4LT/BKp99qwHqJ7Ns2Vd5EKTX98Nd6E+0T5ftPOPD/nJj3yBAzPvjevR4zM+DOKPt3n8fLCHxN7Yjar6hcMvh+TTkaweXe747kxRT3Bq174nC/Bku34Rdj/26Y2mx1+b+OTyrTmecmsMb77FVYtbHnzhyO6zrZbcVPpkn09fuNFXs27m0dRYdSY3XqqjyY894TqtHlzzyZVDMvjxzDyhx1e8y8ndD3sXrhwXq3lnO9nk9MUnBxo6u9bcGDi/1Eb8/KGbj/M+BV18zshyx7Y8ZJMsvWTVVy/anZe9aHddO7l7EHLm8ZtMtpdDux90oMkjWvXVfY95eSCTP3Slr/zkW7rJznjhydBXM8dHB1/wm8NPgKvNfLEpx64ZPiWFJl4fnFAL9g3wFQPyL1Z09otdXvPLg6RaoVdO8AXG1hQ/2XzEC5obw/FXPGJD08Mb00HX1E/uKEBH+vHTxZY8aOxMMEeXG/2MI/vpw9s6qMn44fBm27yHfbgtiNuaXLT7+i016VpIVzrx80cO2PTQiNbazn2GXh7Fak2djezKJTkP9nzS8hHemrt3g7euycHxadabevE8YO/h56984tWc4faZXx77AEDAJ/5ugW7+qSNnlTj4xI9eqPpUs2eS/Ji55EPrQ7Z45Yxv5saAHXM+8lUejwp8p1+s6aGfDjo9Y5zvF+2+m1wO2JS/Gb8xf8TuBQI6MIePVx7R+LgFcQC0+OHoKK+TB++ciz8cPD3lA54fneezTqzvlF1Kdj/cz/rAmA+Q8AdYO3+hyR9/Jc+Gc9fZ5ZPuroeBrwP9wQ9+sP4CXI2Smf7yRysXfAhHB/ykp1dPj8YfemvqVm3Ak4dvXl2SS2+9NbUfxWSfqEex8Ens6snLNueDfJFD7ysv4I4KfGpN+WsPuw93xgPXQB+skzN86kXd8FtMcJ0nYoPr3BcH/a6v/G1/kBGHhp+c2NyzeMmIHt5Xb/Ss40V7fuHX8LFRjdPJDnz+5itc68RHMnhAeHN6+UxX5w46Gb1zz7pYBzzsW+Pid4bkj5qHL6bpc3g6yNAN+Jlv5PChRS926x4/O2pGb33sAT1d+OjbxhxNPOxnN3vWQh7kn65yVc2wzZ76pEM+5F7NWCs2xaYes0+2awp51xP+aeLiB51s2ctipgOgo7W+5sWG3zi6Hp0sHWJvjYzVbDnWp1sOjDVjsnTxS5xs5Is47Ds9wCcPZFznnvOc56x6rk7YsS7+B2C/QPIXGw899NCSZ4+/finllybyJv/2BTv5YS+5L8BTbuREDsTIfr6RJ4dOH//EYB3KI/5i1QdzHK6eDKgPf7aeTj66T/zDH/5w8J3vfGflgy/uG6yN3POVj+pOjQBxwFereJ1L6rU1k4NqAd9cn2jWwf6VR/6rb+cKfLWtN2eDXS/avTN44xvfuHw5dtw7gafekS81h/+wuByQLEB8tsMlD9aF4/bbbz940YtetIpn6iDXYp9JR3yTZxbEHO/jnXKND0vBYfjk6o/KF/9x+xmTsSJQlHfeeef6r+k2jw1nA6Hr5/iKK65YNykV0rSPf+pHE4/i1WyAdOFz+GmKXxG6kevm2hwPeTJ6FyoAz29QwRvD2ySN5xyfGklXdQdfzqdvdMCjN6ZPbtqI8Ml3cNm8+Mja2GJiNxv4yZdjeI2MBvgRj56MePGhGdMZzli+2IPDD2cu7+nNBh3x4A/yEd1ambMvNuMa2Qnw4eLRs1dPXzHDu9B0kaTfWFMLdOUzXzTQTaIDj66pv5zgE7M5HmO5Sae5OpoXRz7i17Irf3jRQD1f8GQbPtpiPMuPZNMjvxqgB94e5Av74cmJB69x/oqr3KtpYzz8p09u8dMLP3s65FuLPzvmxnxxIfaAXt7hNOuBJ789oOc73eqv3LPNFzHwka/iMyaP3g0AnUDPX804PH5jMnwoLnhAt/VlO73dbJiTtU/Zc+MBl+xScJYf5PHLkfPqrrvuWv+LgZ9uejyso82cZkNexJwOesjpj+IDOY2OcsPdZMOZ49H4IU++o92n7z1YT5k1OYcf/PAd7TfddNPph6fUoPEF8EHc/IAPZ5zf+sbxLMbNDzxbenO9+lJnbMu5ubPHGM66N9+nC66cqSN+a8YaUFdw7OHXjgNb/u18q4udYkQTx5xPemO9mINkooff2kYXm3rxjzzdqLvBlhNxAzT6yFpTe61rjT3tPIHrLMdHvj3QvsgntBr7Ezq/+ASi44fTZgzozScv/mh6NcA+QCNjXr3kG95iM9bwi6GagiOvtjyg+oUhPfImf2Lwiwf/30JO8plMLT/UmDzDZ8/1ik32ko1GDm8xwOfX1C2e4s1fsgAfSKeevnB6POVHPNlov4VzzorZV+bIh/s7cYu/Fw1e4qghsfbyzlhuxM62OD1kV3PmxcgX+UfTjPM3nuZiyf/inGsLhze5xbz7QS4+POxP3NSJLg9yQk95MhdXa0YmGn760Lb3GWSyhU5GfvXZja5nn472FVwxZdODorp0fa7251nIV3r01jB7dNGt5QsevpSX8s8mOfdxaBq+/GePLD4yGv3w/CJrzo51VRvOkamXbnxicP32EtSndb3IAdWEcTaM2aUbTn7N6WDLC1YP6vfcc896OUiHF4LqFV0cfAB0tA7FUYzx4Adi4i9b4RbhDD/4R19rxB7Ify9azueLdi9n3vzmN59+0c4+W8Uo1xqwP6tnecGHhld9oCWHX8yaGMob/UfNBR0BvXTIC5vlAz08Hs3equUPHnad5e75/CXEddddd+BrZMxBZ4l1A9WKNWzuLxd9ctI/SHWmiRm09sZs1cz5OnOan1veKVPu6unf5g2OrolPhx6d737p+cpXvnL9RQvecsIn9aTZS+by0zp2Dph33eKzvNgb8pVtfWurNsjg6T4AzkuoXrTihyMDzPlLJ9nixQP4Buccs17Zg6tGxUWf88RZd+LEidN66H3iiSdWHHJjzztf6KFbM2a7uNSa6xQayEe9Vu6LV6/ZC8WBx32AemTPnA15yFd5tk78ghNTeemMYt+YLNt4+dU648+n8OZAX+Mf/RrgD9/ax+bGfJZHsbh+42ef7nwkb05GT498FQtZjaw1o1cOwsHTVUx04GGHDvq8tOwXYPlJThxiwleOtr844QsZfOzKVXGWv/wvBr7Qj05vrfjQ7AUxtN72DBvljmz64PGJU8++vaaO6UyOHflGJ58ce/jdM7nWyaO48OITV99h71nUXyiRBWInp77wsylfyaI761ob+kD+G7PPt2yKixwcfebFVwzZJ2sf6MVvLG/GbIiVfXoAeTk5DrDlF3o+8Pbggw+uD+6y5xcO6pYtoLe2GtvFwCbgFz1i4YNGjzl+fHJXTS2h3Q80OI0v2SFnrtFDvzph14v29773vQdvetOblho8x4Fz+kR7hc1QgeXgmYz7DYI/eXOTZaEEdq4gqRZdM1Y8QBKDOQ637fFIdK0Ezr7xPlm4w+jxn40e375+G4M45dxm9cLE9+3OYsePR1/zlwSXXHLJKtiKiS30mbtw+VuOy60c2XiKr3wpRjhtFjgZeuAUKl3mfNfyk8349PAgfrYAWvJzDgfI8UXLj/jYVyd8ym885nKnoQN4rbzwVb076GzM8OyxTZ8xvJ6t7JDDA2es0Z1cG5kOduDhzAO6yE97+YgHPlm85nr+wEejO359c2P8dLIN0OBcLMRNF9w8uOBdDDrwl+CpH3wI8NHjZYZDL130tRbFQMZYnviiN3eRdIPsBYA6K65qTn7oM3ejCOimA16jR0x4+WC8BTwAPzA3xjsb+WymV5xuGviYveyQhRMPH+d6VxN4jMWWH+TVZTcm5vTgwasF+WqeXPb1dLgR09jCL4YuQnTaa84VjW5y4rLuZMw1oF7I0KGlE33iFvPuR3mkq1pIpjrAa4xHXakvY0CvuZsQnxRgg87jQnF6SPfJHbV19913Hzz++ONrjJ6vbJrXzMt/Y3k4GxQnPYH8a9GMAf2aPFgbn2j3ot3/Nom+Buf4gx1/Ou0fiNlTrSObIJ+MOxP4CPifn8b5ihbeeAtTdzT88OpbnOqzuoFTd9ktR2TTNW3zRb7Ur9Y5xv/48eTz9KHx2XqyR4HslY9tf5iOyTfH8Yczz8ak8U/e/OLMp2nkE58cyKs5wNe6doaYz5ZevOU+++Ya3ehbX8hGRyOXTfP4t3364+WPsYZmv+UL2ejRxDjpjfmTXT0+ujTgPtQnA+UNTg6dT8Zu4j0QyRM/pl3jYlN7ak4P2O5sxoM3MAfpEgccGa2Y8cBP/omLRiZIJx3AXLyd4cbkxGYsVs0vZL1kf+ELX7j2onPh5O6T/H756HqK1727fcpfOPHZa72EETu7ZOWCnfwhYwxPVsMPp9GFRwvg6cMHP+Okuzm+bOnF05wsvnjDp7v1RkfTgBdNrtMAL3o5M+dvMaZTLvjZPH31dMijlr38aL3KATw5vK5/xkBvLVtP861efOLmT/dH8YjBWE8WH0hP4/jyFz0fjTV5dl+nB+nSy48Y1Mt8cZ2c/eWlqa/3AOqBv2Ty23j6ml04zRp5UPf1IWR88OiRRx55yi966I6fPJ3VVDSxAnh0MTkryZlryeoB3ASy9MiFnG35z/eLdt9/7JN1PtGuFto3+Vd98Kn7TTzWJT/5374jl2x5CCcP1st9I1yxw4Pma3LqBxuzOWP5lAy29GcXbYtLJ7waocM/SPWd7O6L2Dgb+Gvrb37zmwf333//eonDFzGWM/4XQ77Qmf/hzBuj8zfcPt/xxqMmAJvWoxe2U19jPGrQeeyrCvyCRuzuU+0tuqrR9p4z1y+Z+rBIdrzEay+S75PqM+bG5QS/cXN7i122+Bi/cXzo5VCPVk7MrRufxdG56lzT8OGxLv5q6qLdB4TIi4HPfqlERq49X8GhlVuy6P1yjy3PCfiBvljwmpMF9PDdWU7ecw9d7PNXruEAu/KZL84IushrgB1QTPTIW/nJ58W0+8GfWrJoM3/meGYM6S2H/OCrs9aZKx4vLNkTh568Hp0cfs1czvjJDlkNP5zeuokhH+QAT+vAx2LTqxnPwfjzDT4+NtmmB1964PhGhi/lOpy400FfrZotL9ZGTNmm3/ryi0/k9PjpVi/h+EAf3mo/HvnFx7f8YIMeeP7211xyR2//L8k6+BR1Xwsza8ZY4yd9fuGEv3XhExt81tjXyOQLn8m2jsYawMM/tK5tZNW2OT/LCz3WBF3N23POK7EB+9QzuFjodV2wnvmxmM7yAy/9XcPZ0Xxw2HN57x/4Iidi18QjF8VVDPTNHJGBwyfmatxcHuSVrJjonTpznbwa5xcZf4V3yy23rF9w40E/Dhz7RbuHOA6WAL1WAWRcAAGnzDmsGZ/J0WTjiT8dbEmWAnETo1gk61yATgeJYtLTXUtfftTDzzjyb9LhAvoA+sSH06fDGDTX7xvTRa/cx1+fb+bGXcC2azULN9/x40NzwChUOHSFr0Cza9wcXeOrtUmGD9ZmboT48ICZ73RHa7OR2QLe8Hobw+Go5z8QC3/M8dCXTnTxoWsAjxg63NlQ72qsQ0os/MMnfjLpD18c0ejo4hTNHL4csl+OjQG97NEDkiUjtmojOv5w9WSiLyWbH3zGU16M6bG3Zu7kRA4cXJobcBcFuOLfqF55dNHw4tSFSr7p14phKwPfOqE5kH1SrhsdsmK31vjY1uTTyxFgbD+Lu9jlUTzV9GIcP+RBK6/lT6+1tvJAT3xsAxdZN73Zw4/W+vGVT/piMKYHlJeplx351dNHd70Yt4BOHi29fCBvHawpea0aN2Zbnl1knYXkt/nKl+mrcfqM2090yxm9Mx90VDP0k20PVBtqy8sv5zscebxqyI2LT+2GZ/O4IOcndy+SusB/5jOfWb9ZF3++tt6tiZ4PAA+/9fDl+TA/0oVePqwJHWjaFuwBeXCBf//7339eX7T7ZJc/g1Or7cHi5kf1LC5rM9cXvZyQSW5fDHjB5Jl88OrEzZvatKZyrKkTfmTjTD1/2lvWtH2RTDbL/ZNePXmNNY5uTCZojN442mH95Jt68TefPFs98cDLO8AfPtl6dDRz+WrfqB248Obp63zVt5blhi585OC2dRo9m/Hxgxx8uvKNHW0L2YafNdeZqP7wZDNf2KSvfYde3eBBU0udEeblAR+edLkmuaftRTu6hwfgWuLlRWcpexpdAf/g+KwBuuHyPd5oevRiKL5yOfVPGrz5bOWcTnQ6NTzm4un6UczFLz/qQuw+sfPiF7948fYpK3/e60zE70U7PfzuHste6+UHm+J1DTQmY54/fCHn+kdn/PDljm5+6xtHwwfQ6eY7gDfHD5wns37LAz5jDZjjm7rite7OPfPWEJ9Gjk9qwjhdxYl/C+xYBz7rtWzhT48YqqHWFT0eMnRYB+uGP31sFjff5VlPdsZZHHBo5vTyP0DLV/QJaECeu58rT8Whp5uPznV8xUveee+vmq+66qoVO1/VBjljdZVv+dt6h8erTr1c57uXiD505Gst6WIPsFcM+YXfuDin//a+aw8aHhA9nXyYgM86JBeNDrzuY87nJ9q9aL/mmmvW1zOILT+zK+/WB02d8gGPvMDJpblaQ+On2OA0uGKl87Wvfe3B5ZdfvvjM8ZA5DNKn1/jCZjLkwbRxmK6J55cYugf0qe90Tr7GasE/25MvNTXrIB/qyTTmF735p6+le/JE04PmdLCpwXmB5JdDDz/88Donq+l06tWmenEe+79qPpRon7snt17qbO47Mmrf/azmbLXm8gTvDCAPLx/OZ75UE8Wsx8c+enklj2bPlj820eHxa+GSxYsHTT3ymW368Ngr1QQ9zgkv8C7avWgXI1+cBX5RIha6xEU+e/jIwomPDFueE9g31+MRLzAPB4+HvOtY1zK8zgH+0Qv07gXyhR3Ap87shRg/+MxH/rIFzMWvgXzgB4DnH9l44IshPnr4II/Gmhya80md8V8cdJHHYx3JoWnN2eSn+MjjZx/OOrArL3o8rUO68QMy8iFf+MsBW2haPtPRS114PuDTA3Q+x7+Qux901uDmOYbf9VEz1sQw3+91j8AmunqBE4MmfudF1yE0eew61hqQB+KkR176ZZcY5Lb/seK52z1UXydjDci3Bmzyk5z70fY4vYBf7Gjy0stoNHqskZzIlXk55KuGxha6MVt08NF5Qz86Pzo36LRn7QuxAXn1KX3vFPniHRAd5I8L/PIMSg9fbr311vWL89ZKnGhyUEzlgy00dZbveIoXzhz/3CfyIgZryw66nIgdv9zoybNfXj2H+wfk/pIMHDfeY79od1POAcXNmAUTnKCncc4G8Dkf7lx6OlrUCtThYiNUWOllk081+OlT/vBdMi2YYiqOGYvxnJNNV3r28SSzpU1f0hNv/qc3ur5xvIpkxj154tXb4DaH8cwHWW3ymssJnBx3KLFprUHxqIEOCHrJKFQtwAtfy/cKGj6go1oKx2b24IzzOztw5PhSbaIVq0NLrtJTz7b4NPR8JGvzsZNu8w5H+PxvHzTXk2F72uGfVjzN+UyHOVCL6pCsw4ceBwPfyg9+zRw+e82Xot0PMYGJxx/wVQP52n629vY62/EYy6U8aA5oL3Y6pNLLngbQyOAlX07ZE0M1xUa+lZto8uGw7+JCFq2LIX6x0teLdnk0JgsP8PBHTwcobuPW1Th/8gkOmNOhZsia4xWvM4Rd/oSvx8uP6hM/nDiKk30AD8z5yla+ZZO82jGvkTEuf61BPluz1rN1MTcm58FVzsTAJzbRyoUxHdmppz+wT+jUkwvoNxeLi7OaMCYrJ1q+k3Xz080uHXxxs+J7Kz2k80Oc+Zado/Tk3EyI0Zp8//vfX/9czYUX3vfo6eVBDltDPhjzs5jzWQ/0jfOFj/mJRme60hNvPR/l4UK/aGeHT/Xs8xXws73Dz2KH144K5YM83epI/EANVJdqvbzUk82/bIYrd3znp/Og/Z6vbDRODg4kXw+HJ5jjcOlqvq9PburFt53vkz0TT7T0b+Xlr32jdlonOZdndACv9sunXg718o6/nBprgH22tXDwzfMv3c3R6dbCJWeeTTiybM8Gz54Y9GTooheYi62ziiydcPHGVx7S436yT7Snw7lDt2uOc8A5S2c20Wr0oqk/jT26nR351/Wcfn7Bd/aQJZOf5snlc3E0xxvQlzxc+eMDf+VEPOKkBx5OHtSIs/pMn2iXA+ATTOToF5uc2G/oXS/43T0Lv9jHX96MyTnri1Pf+V/+8Gl8RWOHHD1ihed/OavnJx/NA2N+kQWTZj7rxByIJ1/Ith7J8pl/k2YMr8Wn1/jLjn625PONLLsg2XKHF64a1aOJ1/lpzgYd7kPkLR/pyy6efEofOn6QHTrbK/gmJKem2KebHHv5q1dfeDQ8gCz8xRdffHDZZZed9jEb/LBf4m19xIcn/8zF6VPdYvbCxgtMvRpUlx7i1Q5fQH7iTw/94sw/cW9riCyZeJKH5xM8HeSC8Hg9o/pwwPn6Z6heHL/+9a8/8M89+S8+PT/YlZvWpdjhjafvnWvFxXd50eb4ox/96MHNN9+8bNATfTHt+YEH1OdX8z0iR9LJf/VhjTrTzqTT2qsH9YRPjoKjxhC/fmvrKHM8mjVxLfGd47620AtkZ+8232K0Xy7avXC+9tpr14v2zllng1zO/c4v9+3+8qrv5bYPNfvAGrNBrz1hz8z1zj88akODkyu9fJPtfoI9NA3vrKHWWazGdPK5c8Ba0IcWD3302D+uw162p1vcftnLBhkx4eUP3WqcHuP8pMezJn68xaUH7QtzjS763fvLD5vwnk/wuhYA+vHo2bB2bJDVgHwFdPBN7PNcLN+Tjw8aGpv0kwd68nKCBvA1h2OHjBe07PHH2YcmDvxyQYbfnXHoas0cjR3xipEMsH72T3mPB65rFXtk0ABeOL7nK/1iBOyWOzmHh+N7dvEVt9iSTwf5eNnR4PCKhy4yfOErO2LLFj78eOQo/fTgEVu1wLd0solOb7zm5M3Z0gNy3qF4bmXDvbl3cZ5/g3SzRyc9+K2TMR/p1+jVyi8cfzSx4S9uNZE8W8Yzx+xZI77wiy6ydPcLJfHTC8cP8hp+PrLr3tG+pd/8OCAWZxQ555L/N/nHP/5xndknd7809JKfbblnXxMXH4zJi4PvQB8fGt7yYK4FYtfQyfABvTFd6q/97hefXrQ7k8HUlc4z9cd+0e43GYxzUhI4wyltGp9JDx+uPvw+B/EUtLHkKlaHqLlmcWei6Emnnm8aP0E60Yz5LA6bo4Mi+SVw6gfcxGdfD6LXb/Gn1DylO0xHsk9h3k3ih2dny7edJw/vE6S+g7PNUCxocgwam8sLwN+BVGyLcOpHm1UOybRe1QIZud8nizd+trXWyjggm2/hrXmbHh971WL1SK441A1+8uWAbWOHC31o0eHjpx/eXC7ig8/G9DF8cZsHkx+Of7NG0R04Djg0NxkOunkhVKfocp9dffEba+Jr7fK5fLNtLG4tPcZiNxevT4y4ECdvrLkI0N2cvgl8L/f04SVDZz7QKXa1Y4wPDbBPPr/wibtDFV689q1cpAOffAG9mw0X2OozG8nXR+dHPhSzHvCHzXyVqxlLMeOJDy8bGvpc66V09wMu/nTiB9OH/KjHQzb9dDRmK76laPdD7K0vmppysexTEGTVm5vJ8iG+YkQ3pifY2sBjndVFF3w88en5YD9ml9+dI53BZHth2J5jm4xP+PiHj+ywV03l01F6+VEfejr8F3gPAfaese9s/+tf/7oejPjUnisXbJAL0gPXOFrxk9WSM95CecIjL/JwIV60++oYn2j3gJY/7PEd5IcxPJixGSe3iGf4ka7yYL06P4hVl9UmXDnMjj7/sjv1oqmh6qc46JqQ7MQZp8s4m8Zgymz55rzx5Ccf3hhs509i//fnlj71bWn/K/XkSA7d9HoJYd/IQ7kov3SET595+bUe8ObO13iyxZ90th/i0aM7l+Ihl064ZPAZ80tLll20WrrosB+Sx1+DQ88OWbT0p5sv6q9cmDurnDUeGKKpTzLOQntEXc146N83V4OBBwh8wNliXJxidMbiNwbsGWt057MY+CW2Yl8Cux90FjcaCGf95U7vYUpM7OOTR+d/+9D94UW7Fzv+CSwaf70I8ldkcsAneaK7hy++qw9xwrHF53JgLA4y+VUPp6HTTY9Glhxd8MZ0O5etARw5eDkxhqMn+63dpGUrf8wBPfIhLxPowosOjDVANn2N4fFOvPm24Qtay6lDLDN/8eIB9CVnbmx9xaypBfLuecRALr/SQQ4Ut15s2cUHpw60apaewJgt9GqTHB2tEZ1b38iTJecfNnvZbl357sxC43dryQ8NfjZ6+IXPV2awrU58XQIf1KwXj//+97/XS4Ou9e25ckGnONQ2X82Ll434xCIugMdcH5Dt7EgGje/k3O940f6Rj3xkXc8nTzqO0mfTi/Y3vOEN65/ItQ/0Wvkqd/kRXg7kDcw9txC7H3zT2Crmz33uc+vT1fH8X+iL4f8lX+XbX1188pOfXPeZ6kItlXO+Gqsn13Ffj+NsxqO+rYd12Z75zkdntg/JWN/04U+GzjlnqxrRA3Sy4dma9ZIuddZZg86/fKIHHaCRMbfn+QkH7DMywJ5lSz7EzT6deJ1ldMSLD6CLqTMq3+l1ntABp6l3PSCDJ4B3BrmOOSfYlINe7sm7OXz+s+lZpByQB+Wdj8bs4M0POFAMxnBiwcNndp1HchKNfjg2yz3dWnkXs5e65MVLHq94gTlA5xMaeXrhjPnQtbYaoEte0PJTHfMpH9HJyRXAF61c5BM9cPEkwwfrTy/e5MTH12oCjaw5kKPyqZcHjYw531wP1BG/yaIVMz1iz7/iphsOhKsG6dDEUl7YQqcrf8i5rrFlHdiVe3hx8t2YnHFzMvjoYUcuZz7JoNX4qD7pIafX2JQLPpnrq4di8wEKv6BhBy/onpdOduG9d1V/IF388IsD74ncP9N/HBAvG+Xj3nvvXd9X7yzzC3TXc2tHL//4LN9i4EMAx090NE1u5Du+6pUeYz0aPsAXuHJqrNEpp67fT+tXx9jMClaCOFKhVSiczvn6LS083sNAEhSoZAGLbaFtRgszk5v+bS9JNTrIafHxXxx46IMP8jFcPTpazTx9kweeTpCuNRnzrY59vOk8TEcy0ePPlt7Fy3dDKVjxxxuP+RZPD7wiM9bwAHmrV+DFuZC7H+Z4yBhrxslkb9qMl5w1x6O1WTokyKgN8zYKmeylO5vVUbEnB093+vmWbjTAJ/rMa+WguBbj+IGfLx2Mg3R6WNzxTv/JaXD+oYiXxQCvWnXBcPjgAXTh5U91DF984q3hzTac2B1K5M270TEmb6934LOP156ESye+cs1u0Hqbk8WnZz/ZfMaDjhbEq6eLj4G5Rr58GdfIOKPceMpVFzXyciSP4fRusvCTn/bYNIfvHCl/8OKYPhtr6Uk2+dapOPRw2ozfvBijm4Ns6OnPhjxMGfQJ+JI1dp560W4trSvoqwLyf8pP3RNvnC/G9Gp0hp+24dSQWsPTOrDZWYzu4u8FWL7RTcYn2v2TKDaAG0U6/xPgH+CD74T0PXH+5NjDep8W8nCLzzrJRWuUnH6LhyNT/M1b6/jDFwe89bQ2F+pFe/8MlS12xW6cL/m9ELsf6HzSB3jOBnQ7Z/T4rW31QbYcZFte2bDf4KLDoQH5o2vKdPaFW4zjx2H4GSee2hA9bSfcjHuOo9fTlf7sb+fx6vfpSu4wejL4nEfzF1Tz7Kjm6Elnvmz50OXbfpzrTRZEJ59eOHpmH689rKHxkQyoNtRHsnhAZ+s8d7sWoWc7+3TRAYzrqz16Nfz5QIfzw4toDwrJZdtDWg8dZMtXurJBDk2u0PjRA6S5BwdxADRn3ryHxhNUx/wsnnm9zQf85MzFyGf8xs5JD0b8oadz3hg/ffM67v7QB2g8MMG7Zjr7+C0O+55fHqZ7IWEOLxZ1wjbdclEe2Z9zYz7kB//pKRfGxYVGJ9r0oZjx0U9GK9+uG+zwyfp1Xc9W/PmaP8vwIT/ypfVofgj78hvPBPMpxz7bfDUG4pHTwwCfli57ynpbT3VMn/Vwj8jXck+vBpcsPWpm+sQuPDl6NTpBfuoBPjQ+6OnJBro5v7ofmHrg/YWtP6O3Tu2/Ykv31Fte0qPHJ149wANv3d07/+1vf1sP6+6h1YH7G/tZXEAsfOllSHrkaTZxVZtLcPeDDvxoYpTL5OMxJ+e51VfHnK8X7e5R/FO2v/zlL2u/yrV9ay3m+swxn/KHz8bdG0+/6dIAPvDpT396fRqfvsm7iE/zD77lx9l8KZb6ratb+eLe8s35VmbSzjRWl766xf9V+9SnPnVwcveJzeqwfUmeD2rJejrD7Wvrym5x459ARp3ZCxo63vYKWfqqWfRqAA5vkByZ9NpXGjk6q7PwZPmsNabfPqSDjBY/nH2nhYezj5wF2YarBulmN3/5YgxXftjmP1598nLinAF42dUDPrl2uK4ZkwH8YhsernsB5whZZwY7ZOjGy46ebDr4aG2KA41vGoBHp0fc1ptuuuDZNpaXvnKzuMsfP+SuF+1k0NigE9AhZ8VOJjmyYkLvWRgNjn+9byg3+ODr5YYcPjzw7AFj+UGTZ+Nq1Ridj3wQe3+Fznc+iFVfTeCfjR9o6ZE7esjB0+eT0f0SCk5c8ZQj/ru/ySb5dIiJz2yUA7GxXR7g6UqGHWut5R8dYpab1oOclhwdXY/Y4JP8dh9TXsRAb0AH38sVPmvt2oM3fLWZv+57vWwXm/tGdGuVr3r3j16ou7cSb7lgwxnlf0D6fyvWkE90HwfI0OsZ2z2nmI39xZaX7dZG7VhDH/7Az3YxkK2uxFztizm+6MUFLy90pA8u/6sx+xKfD6H4cNrT9s9QPchZdA6XUH1NgjmrNdajc/44YDNYfLIdBpKhSVwFmC/0V/jsmJOdUCIn7v/qWB7kZRvjNh4PUv1J1lyb+Mppa1SO9BWjvNqE5dgcPx54OpKf6wynBa0VfnLJbPXRa8PY5PmhFhxIILmpmz50jQ9sGMPTAfRa9tuMcMVhrL7SsZXhqzgmHU4DfEqeLIifjRof0o2HnJj5bOxQ8Wc8Dh+6HUDGXTTw0KHX0qGnV2xaOTHOXnjrC9yIqROfGHbQiw0t/5Mrb3qAD2TfuDziKW54AMefdE+5bMAZ48NvvtWDXh6N0YG4sjvPKTrk0AXOueHgNneI+5POeTNh7bRuvIzJmbOZn/m3DO9+hM//bMoRW/X4gLlmzm882U42uXTiVSPOxi5sYu9GDb8xIBPwu7y3BvYT/vzxQCovUy75fMU/AS/d1Rbf1BIcWvGVNz2/48nv1g2/2FzY1SO+/OHviRMn1p+c0wHgxHNcKOatnFx6SPcdhx7MfSrut7/97cFPf/rTZafzkN/7cpKvW73soYmz1triFUONXnXA1oV40e5TVe9617vWL/H4tM0fX/Mlv/nKp+nzYTksdnSxWiO9ufU0zmb1rueLVl6NgXk0c7J0wYNozadf6ViMe37g3fJPmX3jfN+j7jSKzmS34+aTniDc9GcffktPn73lgczNtb0+84Env9nY2m4+7XXmlv906KduMubhpi5jZ4L9yj9+dW7SU5sy9HWO0GmvoasbfY0+rbjwxpev6NM3utHyRW3KmYcIOPWt4XEWekhTm+mGD4z5JB49YB/gj5cerWuIcfeu+OMzlnP2Wz80uWjPiLV48WvOCfzk5Nm56aGbrIYmtuwY05fvxS8H9qdropdCfKSTT+45XB/cf7iuiq8484P+/EQjV57N8x0OkKO/szRcfGi1bCzB3Q/4zg6+8I29i059x2/XdS+d8WXHmD02+JGt9Jaj5vXsg3ym7zCgv3VMLtkpw5a11QAZDX4bb3Joc/2MNXi555fY5URs8HA1els7cvBwZEH5aB3Jg+ymcyF3P9ResvTgq6nFPhwFh84mnA/++MWOeD1TetgH+NigEy9frZk9U0zTDhw+/NW5mNwru46rY/d39rFfnvuLNTUO8PdJPWuQ33xiU08XG8YBPjrKX77CB+kiL14P6l60+xN0/p8LpN+L9uuvv/70P0OlzzqIgU9a9vNbDHIoZnxk5MQeTy+f4POPjOZraq688sq1Lmj42TOmr1xMPdv46Jl6+WWePrLZi1cvf+ltXX3S+9JLL10vHtXKYWDdn3jiiYNHH310rWf3jJM/3fmWP5MnWryTNseH0eGtibPTX0red999awyfTDbowyun1ab7Yc9k1k281aV8gInvOQafRq8ml6Cc9uKu2o3fuhoHzjJ7QeOr9Y6HruqLz3Rp+MipN7aL07h191zfC0V4cnBeJuPnw9RHv31UrOnFhx8kx8dw8PzIF/LqQMPHT+el65t42ATk5UgNAb+g8+IPHx5rwyd5wUePa41rPBsBPWjVMbvodKDJB9/sQ9Ba8ykZ8vLimo6uNty3yIe1oItOL03bl/XVCB1yhk/cfJc7/tCjF78Y+IMHHq57oNaJ7nSgywH/+QzMjfGLD00e4VoLY3z0yIMYNHnGzzexzlzlM/7syj0bGlBDxYNfPHR2HwBX7tguJnRrmy/yoT75JId8LYfs0IO3GOHwuO7AyVE55Rua2tCbJ0u3hpctet2/ib3cyz+9rSUe+UEHdJnXFnL3A59akcP46cCPli33f3SpabzWyNw6sCufnsfVIMiesVhc2972trcteTjxHwXomdCZxLZc//3vfz94/PHH10t3a+h67vzkFx52xNPYvNj0+SlOay0HoNrNtrn8twbw7Fsv8dPjL/B8OM0/IQdHjXEx734c+6tjLAYHKuwUMZzxgtQHEkL2JS95yVo0BSBBWyhZCtWGwAcUoURlg31+SMhM9ByTm35ViC0O+j7Ih320cMXYXD9tNY8+dc68RK/f6p06k4NTlG4iNIUULT2z9wDlE0tgH9+0KX/0sWFsHUB51dfg8cqrHpCTX/0+W9aNPP5phwygixya9XcDTpfNYMPr0fFv15EMfx0WaHQZ5wc9wLxayB6cRofeZsav7sDk53+24YG5WkyP9cFnDjpE8lGfTmOA3wFrw7PtxswFygt3um16hy682sdDP7kZW+MOFDHQKTdsoqOZa3Sgy/Vzn/vctU/p1IJ0NicDN3misafhsd5yA8zZR8uXZKLLBX68+MzZqG6M0TQ6xEEnGX3x4IObftNhHbrYo7vA9pUpcgqHz9hFkR5jba5v/unLw7QlHvNo+aPXwuv5XQzZ4kcyeNhJpxjViRsBcvzlW7njN5kJaOScp/luHC9cdcVukN18YWsLdFdr1RW/0mOMhy5jtdbFX5zw5Kp7sblpdG7hC/jrAd1DFjydbkr0+2Cbg8nDbvRi1Ks5NeEXXF7e+M36Aw88cPDDH/5w5YotcvJNR+s0dR82Jkf/rOvpQ3mCsy74PFSe73+G6kX7O9/5zqe8aGdbk4N8Cicece6Ludzti5m8dVWnerydx9lQ7/Yk3eqlmqmnF2/8+tYbz8TnQz5FC7+vxxt/dHJT1hhP+H0yydanc+qZcunCH69xtownhJ+80eHQ5cWDhuum2rFX4awDSBbvhNYdTk7N9Wow3dafrnRM+cb0kksmvH2rkXcGacYT2Jx+4Gnv82N77rAxG1n2NeN8zSf9BDz0uyd1hnjZJ2fqUD3SrXcmsi0uOcgGXXjIFFM+ZMccD52u3e4p6NDXpl9ssDVzXc706WucbPbJO0PF48EInv2gMT0a3+VAzXjYkgsyfPWVHOIvbg867kPmQzd9tWzQm39k59x4y49HfuDJib8xnTPf5mhwctS10px/cD5dJQZnuO8stn7iQFNH1RJbQeOtreizz/a2HicPG2IqFjRyYg2KQ/6tGWjt5ekwX8hZN+cpvnr2xMGGeMkD/HDi14C5Fk9rhIa/eeN6+tEmsF/+4I35R6Z7FOcRYJO864H61PikXj3Ek63howO9awR5dHlC18QN+MEOnLisgZqobtWu73/1KfB41AnbniuMAZt0sqlnn9253nicZ+IE9MFpoLGeHP3+9Nw/tzwfL9r/9a9/Hdxwww3rpQM/xMt/beaPL6253oskPN1n9QInv/GD6kIvdvdc7seiybW1Bez3XLYQp36kwzQ9dAF5tT7N4eSwPMuZMZ/x8s962CveH1x99dXrE5TOra3vdAVeOv/5z38++NGPfrS+v9+Zxu8pwy7g4/Q5Hds+/i3enN50T13VhxisgXPJGO8+fdZQXl2T5JbPxuInIzfyIk/m1tOamNOPRi895bFc6uFcf5JXx3jnuSIeOqwTX+NVP3zD37riNdfIaPidQxP4yr7e9cY5wHdzsbn+eAY1p4stcaWz+0hzUI7ryaGRMQ681HVNw0enfDor2OSPOnGdAGQBPXLk2RB4HlBL+OSJr2zIjedJObefxEwvyIfWik650/hhLk/k+Qf4RTfb1gkPH3vRTpb/coGPv/yhT+6M8Zvr6Qd84A+8Zlw+6FFn+F032S5GsuISJyBrzfjBNh+LQR6BmpFzNtDE1ot2+TFnB1++iBM4p8sFn9D5gl6N4eMrXXwtTvbEorXP2eF/v4DiM73ODvrI0o/P3hEPfDmOpz0gZ3zJJ/zlFk91JD/yJH5x1vCSIV8c5ta9+3+PkQAAQABJREFUWO0NsvCuX/yXT3MxTjlzPvIp2twPalFDFys/ABn2uu+jW97wisNcbuVFLpz/XQP4Tp4dtetF+3ve8551RuVD/TJ26kd+1U+aMZ0T/JK8a7b950Nvjz322HpuFQcf5TN9bG7H4rbm1au5sT5ec/nX8AL61Ze8Ay/a3/3ud6+vbDNP1vgocOwX7QrUQghwAsMZF7BAAJy5RXYTfMcddxy87GUvW0FN+f+Oj5cBB9Ltt99+8NnPfvZ04RymwQHs0yMKU9vCdlPYSB1eCq+ihJtrPNeZztZ8Fj/81M++uU01N1a6suUQcDFxgwHw2hB8w1u9zR4ffx0WDjh89OQzujEbGp14pr5oDhBAH3r+xruIp37Q2aZPr00Kjx/QZ/Oa00lftuA0OtA0sja5w1/fxczcwUtfa8lWB+gpl1bXAStnXXyMgbyga2zr7W114mBl/1yALjbEB6qZYi0/5TUb5OJJphyVX/FGwzvt0JNuuqaMsUZWbcqVnj4XE/nUw1c36F1wGs8csxHQ2xpNfHbZyXf66SOzBfzo7BQnHEhveLG7MMCnW77w0w9fPuHQ5Ny6AzRjvM3djLCdzUU49SMbW7/Zobu1qIdLb3aLoX3MB8AeHvsduMlwZnkIVpeAfTqdB/4M2xi/Pz8nuwU6yWgg28ZwbojsofKQL/TCy4UbPg9nLvZeTvuUuzrBa8/JXfrZ25c39iaQZSN/Zm+MTg/d1udCfaK9F+1844/GNh/KmzE8CLet3/xfTOMHvFqwfs4TY2Ct6KqOxKmZV9v4ymv+wAG5yc/4Z97zZ+KelNz/E38y6Z99Yzx0avHX79M8aclsceG38pMv+/rwerJBc3mxJ5wL8m2tWtvJn5yeLDktgJNbNd660WVMj7VJBm86yBeTXmPfflfL+Ky/Rj45euH06SUbqA9nMR8AnfmSPXOQXHXrPMuOXktGnpwxzhrXPjrw2/f4xO96m145qVarz3xR5+WQ/pkjcs4NMQC9uSYmvGSM04+P7pmvbPHTuFzJrQb4IS7xwOErZnTj5Oi2Nh62evGB37XMCwbnIN81v3TUPHjxsxzSNwE+Pyc+f6cv6MXNJ3GJv9yZG5efqQ8Or0YHn9nwF3licn77+hs+W8fJb8wPcRmz3bw1mrboxweMyVWLk6+xGkLHRzeYOuZcjK1d/oijvNaTMdboxAPI0pHf/JzrgwdO4wPIF7mjJ3vZykZ20NnQFw898aUTrXpF62WFHpRDNare7D0xe4nkZa5YrB0d00exySngg/j0oHsW/ql7eHbI2MfqQnO992l2LRl2+EGuNWCXLfLy05rM9RZneTcWa41PjfV0eLHjOu5FuxfurQPe4wB9wIv2G2+8cX01jtzC7/MHb/7xw30u2+VXXuyN9OIHW/9m7dBnjcREzlj+4EG89XRp5dFYLuU4WvbJoGnGZMo7nuc973nra2x8daB1A3josf4gOXMy4v7xj3988LWvfW39VeJi+g9+0Jm/7DauL9/FxlS0+Oe8vKEFalheXZfk1np5ftMDvJ0x5u0ZsVtTOaO3nJQjeGNAXm7IsIdXI1fjZ3aM2bV3rT1fwum1YmlvtnbL4KkfdKCr2/wmR5/7/uoZjj/qOt3G8Ob7ID/IGbMlXvtdXozR2JFX9sXvOuy6RoYNcuw4A5wbxl54+ioquvjKT3z2T9dxvOboxcmePJcL+jU8aECO24dy61zky4wVzgePyOb/zBV9rvlkilOv8WXaxwvQrAWb7hvNxdf9T/rcA8kF3daffX6QlT+6y0O24jc3pgNPsVoPecmX5LxQRQPWR47YrabY4yeb7k+01h2PdRUPP/FaV40P5uzJW7HxgT42xU0vm60Tv9DbK2yx09pE46+xGNGSJ1dD1+ho7Vtn+ecz3e0LvPLGt/LJDh/lMV35gxbwm24604ufL2jZcY7Kl9zIHb/FgJdN+bXePY8nK0ZAnw9nXnfddauGyLdu7AfkWjvj5tH18evp8aLd9doLdvvv5MmT66+T/P8gOaGPffkwJjd1pJOv1n3WUuuHh7+dB/ICyrEckPPLBM/M/roL8P84cE4v2i0ERyaUPLgCLuiSakG+/OUvH7z0pS9dxT7l/zs+XgYU3m233bb3RfvMO602iRtZRWkDTcCr6DTrFF1vjdOl327oWbz4W2dyxoBczZydNmPFTq/DT6OTfAcmXrh48ydd4bONjh/YfHRpxhPwFY9xvPTQGT9aGzR5cmxkBx6/wy95NLKBA8sFGQ9eNHamLXbkMdt6+vDqydLh4dEFsQu8G2gXk9aOTXodoPnpIu3iIq8O3g4WNukXU+tiHGTf3BjMuBbi1A94OsjHo69h4xeb+ED686MLQXg9GTrFJwfWE05s+gnTLpoc1qrRYiWHnw25ZDscXnbQHLbOPD2AQzenW+9iYI3zBw8avhr9eIphKTuljx/tz2TpmvrC85U/4oCLLzq8vdQFlh364bX2A7lZj/ylYx/Al5PodFbnxkCfLb115YsbCbwADtAH6Haxc07hUbd+e+4mwBwfP+WO7/Tpn/WsZ63fMOMvdvrYNZfPYhV3eOvlT9K8RKffy/vqMX/bJ3Li5g//9773vXXhJ+P8rR7YbK3ZPRuUF30+Tf/o4recXKgX7b46RgxqQDz5Mn0XCzzAZ6z2qpnJaxyvXh75b62MydOnWUf1C8Ktyam5+MGkTd35oi7w4psQ78Q3jhY/XUE8enrxxg8XPX795AkfTr9PBl/4erjkjIF5MPnC6cPrxSLfalc9R5t6puwc4+l8gJfbeR7SNfUYW1d2Wl/yxpr80eEmvXOIjNb6GXctymeyZFzfPGTgVSvqTt0AOLbyyVxjUwuM1Sre/GSzXLke+nNszfmExga7xva362p5IedhjD9iA/g09vmON7v4s42XDJye7s7xzim2jOnDp0+efjE46+wre5Y9+TPGh99Yww/0+WSeTn06nX8e5OnGK/c+dck/vjqLuscQO1lAXuNrkN94Jh49uXi2MubR4g0Hv9UXTc9v63nixIn1UsqDWA9o4rAmYtGM6RKXfMOxJzZxmgfwySWrJzv9Mcar73yMXk9nPHTEBxc+XmtovbXo+VQfnow49MWJtl2fdJMvBmN87DVuTfXyilav3ugO6CmHaPau+iRrrKbsbfN8s8f4Qq88XrT7uh/PhmyoQ+uIbj20eb3obKHPHvLLFOubPjrRgHH7nh11jd8nU43ZQ3dmlmc62dPElc/iZIMMH/ADetv3C3HqRzlClwOfZD9fXx2jrt/xjnesT+fLrVbcfGST360BX+TIL8/a03DFlN9kNbT8pwMOGHvha33kzDw+uWK3umrMj2jGQXbMjcmhZ4te42iXX375wQc+8IGDl7/85atG0uPDD85kL0LI+AAanPum1sg++/nPf37wrW996+C73/3u0pnfxdA8vfXweOILr58y8em1fC8efTzh6KDXXOzFr8bk14ee7Cm5tKfUGX581rG1xKOhl8f8gAPqWj7KyVwn+sCUMW4NyVh3OH71l6Z0w21zA4fGp2DGDCdGuPBkjNVKYz0dePkrBv2UST9eoK/htY/tdTWSbvHIp17snTNsObNANtjGS4e6cl2hX3zk4K0DPV60s4NOnj57Ex/bgE06yc/zibw8ug/xNb+tPfw8R8mXd/qsUb7iDfhgrqHLRXT2gTm8NdXMxVcM9jmfxCj3/OUfXjro1fhAFq6agS9OPXr27Ed2gVjgrZP3Gn0nd3WeDfGQk8v69oDzlR4yfM4e/e7l6LYWmvyJw5rSSZ9rfjGSQQfkioePgA0N5FtrwC799BY7/XIXDz/Z5jM9fJJTz7rG7IhPr4mRneSqaWvEP3N6+JxffGMPFC9a/vIPf9cO/qDBlZPWRxzVR3z04qupVd/RzpY4nvGMZyzdZOkFxSUfcPwznpD/evkpfjVpfVz3fI3rr371q/USnn55kCP7y5xP5DVjUNzlFA6vnKLJgxiLB5/40cXk7HN/8ta3vvXgNa95DfHTca3JEX6c04v2NgqHCsa4gMKx3xjdb6S//vWvr0+0H8G3/7KcIQOK1D+pufXWW9cGrUiJlPPEXRg9TLZu6JpiqyBbu9krNi1eG5FMQLbiJjdrwDw5hdwh4qJhrk+WHnQbWXFX5NGzaXPmb32xZEufbXqKmc/wE9IBx/cuhnyYwD5d7ONjwwbkszjoYcdhgIe8w3Mefh0sDgW8fMk+fcbs5C8dbAF4/Ob04OGr5rD1UOxloJrAQ1aOHXgOPr7KLX/5pMHpi3Xa4gsQ88wZP/N1Mex+mLc+egekJi90O8BaV7zs0OviIxd6eMAW2mzp5xN8a5DN6d9ScuoHvIafHLt0lWexm4dLrzkgW06Mp0/RyBhbB38aZ12Sxy82zRhNvF3UzQEdGjnrF55Mvun5kj/40csJPfKRbfPWFi5/4be66EGPlg6640Wv4U8GjzpKho781JNRA2qh/TDtoIuFDvWq0alO8bvAVUdsGLuRcp7h8zL+kksuWfXFJ+tQjtBbY3byWe/C/dBDD60bZ3mjFy8Zc35kO7/47Z+k2mcu7h7YTu5+wz7rkO3s4D8TsDXzZqzxFdDFrwvxot0/5PKnfm5sQbXDPr+0YrE++QqnRuHyM36y9NTgjfXx6q2RPZEOchPw1MJPHXDlacsX/3H7fKDvP4V01W/1HWZj4pOdfWt0Jn3y1E2xPTV1buXophNYV9Cambc+dMDbx+2R5vYpO2jJ4qGXnL0AD/IFLX6yrg3tcbz55Rzs2mC/afv21swRG9lhUxxavunN88sLZh9A8GDb2cOOlzX8lANnRddNOl1vq1/z7PEjO8b8R6NHm8A+3fYCHj51DaEfDp0+fvViQ27lrBxnL93ymi06NDzw5QIvnmTpkgdN7QD3Ma5n8fFXPFprEI6/8PQDePFrcPkBD+BBNGM4tvTy4OwXN93k5IINNHL4khEHIE/GL2vVkzVyVne/RQ9fAFl66J3+siH2bOQ7u/RlH9181oFzEfBn4unHH42fIPvZmmtER+uj528y+PlV/Ho2+DbjS0exThodNXg+qYOpe/KzTR8f7YXWCr68stM+ybZahbMexsmxZa00Nq2Zr5EhFy/7M3fm+RTNL6Z8X7k1nr7Tw5azRWNbc18Kr7aBve6r4dQBfLj2eDnS42EXH12Afxqc+ANjOI2sevZXeOfrq2Pcd7h++4St/FqXaZ+v6oFvcsFvtT1/kUem/KLXxGBMH1mxThueJ3opgc4W3d0XtA50NEbHZw7Kj17DO+n0wpOTwyuuuGK95PD9uHIJ+O6li2cf94FexJPxHb7+n84LX/jCde/kfhF0z3fnnXce/PKXv1z3PuLKh8U0fpSP6PlUDIN1DfGBeuOZg2jpQzOmN95swvFNXNbJWtoX8MnJjXNGHtqX7Z106jW8XgLbC/YcIJeu7IoNvzWvPuSfL+SMrb2c2sN4ydToAeLKJ+NqJBo5+MCYbHyNza13Z5M42MoOPXxiK3/gxAlP3h7HzwbZ7KZDHujFK26yAB6Y0y3Xnt30dKTfWdFzm3PFPTUe+vHwR+0l5xeJ1klO9e2nciIWufZVv/yx9vTwoXUpFj7yu5yYG+OvFozhy4G5Zo4XOBflma1yAW+tyYpLnOx7LipH2dYXL51ktGLi78x7vrAB8oV9L8b5gN883/HBy7XGH3m1vvyXHyCvPgntXKAjfXjiyz5f6XK/pzcnw2881gzkX3Umf8WOH56f5NGAnh4+l1NzvOlJ1lpV52yVO3rEmV75B+ZyI349yG82AD3G8sJeeDRjeXJf2b5Oplj5YJ3Vq3eH6pRMvtGBlw/0e9kO517aX225n4THk26y/M2GHAK+i8m9VzmftY4H3Rl2cnft+81vfrM+JEfeWH2yrZV3MnTwGY5dLR/4Jj60/FQD6GzNONWNX+S+++n86hgJnA4LTqI4VgIFGaCVyBMnThx84hOfOLj44ovXwgkIxENXANciweGdc7g5NyYzofnk28qZx7ePBnchYdo+mx1xyJFcO/S/8Y1vHNx9992roGbu6KG3Zs1ctFs39ApMj09+Ww90wF6HXgc9fpDfeGZ+J95YsdvQDhJ8es3hQmf8dNKd/g4neCBmG0uceLbxwtlU8G1gMvn/pJan+h2OX2JPf4d2dD09DgE68dqc3XQYu9l3YOMRsz+HbSOLUZN/B5MNzRYcfzsM6cWjh2NLm0CGPTaM6XP4+EcRxvjlwcOLA8/Bhze/6Q7Y7pDJlnm5FfN2bcs920CfL2StNdtuxuDNjVtXMi4ecuUTtQ5XOuSDD43lQeNLssVAB3w+k5l+GqORTy9cuvRTxjjYh8efjPzNHJKjmx19uuROTWj8sOYedHyqyM2YHAB4NUMOrzn9/M9nfNnFpzbkVl7ixSP/6PlCPt/g8KJrwRzDFUM5NyeXrvzQA77Ea85vsYvZWN7Uowt6tYavOsPrQoYO8oecc8KNXeeFXxz5zbLvS+tGEo198bWv+MovNHuQzm648cn/r3/96/WiHa28lD/+ktM7O0+cOLFs4qXbXnvf+9538Mgjjyw7+Ywm7nK1AjqHH2Knw/lyIV60+3SX/6AuD+zkP7tadWVttNZXbOatvdDQ5JqcXpNHeL35rMfO0NKSbXN6+QPqpz/h2htTlkzz+OCOCltZOs6mh0xyc3xUm/jITVvZTF90eS+P+/STk3N7Se3Ke7r28Vub6p3e1lS+mxvD02svqEd6zdsfnUN4NToDstVQ+4IeDR8d+cqmdSWDlw22gGuEvQ0nJjzFVp/NbV/+wtOt8dW1qRftYqOfLX/pwj+62e2soSt5PT8moNNBN3rz7bqJU0OXC/zssOsaThadDx50/OWO8xEfn8gBYz7QD8qXMZ54t3mjB45+6+chyjWaL4APHmqcvej04E8nm/ax65lruLM1H+rxi4GsVg7o0MzpSSdfyNDrwc7auMdVP3B86uxIRzJ8zkdrhc52/Oxkiw3xo2uguPFMn9GshbWhqzXX96DPP6BuyBZDa5hOPOzyWT+Bv+1X/HQkJy7QPP+SoQtPfpiTR88OmeSmbjwAH/vWBB+gM5t6EF8xbOXLIx140dmzx9UvOjteqtt37pHpVmN48PNB7tg3x4+W7upIvO4h/cM061MO6CPHR7Ls69n3MkAzdm/ghcxPfvKT9TKGvKaWrW124MRDr7G4+FttmcNPyH4+s+VB/YMf/OB5+eoYn6y95ZZbVuzi5Gv+8cNYfuRFa+31+Pmvl+etrFjIAzz2E//1oJdV1ZtevspHOWr9zacdOtCsi778tebR+Sp/vhrw4x//+IGvi3FGB3/6058OvvCFL6xz4qqrrjp49atfvdb997///cFXv/rVdd9G5lWvetVaf3JsuPfxsl1vPn1IdznQa9YTHyg30ZLRwwWN57qgTV2N9QE5ttSsvKPJhbyjGaMZpxuPNa2urRuQY3xq2nOHfNID3/rRhT99bLff6KdXi48OtZCMHNI114/tYtCrje6/zdnnMx30mrMltvaduqXX9Y99UJ74CuhC4w+f6dJct+imy3WjvOCnA749zm9zPVn66M8PuGTEwU/+4oPnM7xnN38t40xxLQB4xeFayh45555nCj5ZC+9lXH/RgJjZ7pmZXxrg/4Rypi8n6GJno+s3fXyFlye2Wm9j9rXsZEOMxWX95EJNwoubr/lgTufMlTF6fPTCsSmW8gynrroHiyZ36SRLj1zDy6c8W19yYmNLrP7ptf9dCLxoFxe/NTGY42vt3MOQ3UK+hhc3P6cOvrJPnm8an+HFmS10czrRt7luT6HTzxYd4sSbvDjR6RI/e0Bu8KPnN7544QDbZPnsPksNkgPZoQPIl3p1BvdhFDkjrxl7FpbjzqdnPvOZ68Nv3gHRw16QD823PV3uKcVaDunQyod4/UWaNcN71113rb+C4Gtx68m379W8/IiPz3IqL3KgxwvnfjMe9cEPc2vuL9I881977bXL7RnXNo5982N/ot3B0CHIGYskMAGUIIZmUnOqBdYLUADkJbHDHY2sRl86bXjJSpdeY7cxmegVHV/wpC9+eAA/+3Qt5Kkf8aS7OXI4Y/gpHy1cuTLH2zxZ/WGQDnSy8qI4tOlP9Ho0h66bWzIdMOjlSCEbo8sPyF6bz7pYo3j1IBn8E8zptM4uGjaidXag2ACa9acX0GNML1l2+Vps+dNcT78WjSwd5ujk6Zkw/WYzSAe5bERLV/ryVSxio1N9uvHvguSlYPWNzk+HhIsuXrrg6JYjPHzYxp0PsxejXAIXmpPjRTvf2HWD4kW7dS9m+gN26dHAlgZX7vCWKz4ngyf/650PHpKtL15j9ad2gPqSIwelF338Jzv3pdyYZxMd8BFOw2POhviSweucmHWMP318l2/5I4Of/LxQiZteLXtskcVvTDYw72zKV2ttb1pr+pyZvWh3oKMBeLzk2s/Zh2M/nc35wWfz+tYqn1oj8p3XaPHzmbxcgK08XDkwFq9GH916OZVHfIA+PHRpeNDUo3pgm11Ah2bugqc+yMNll4ybRc3YjcGzn/3sdeGni20P68ZssZmfdJCxR+mtzvCpu1/84hfrJgG9uLLPF41+9XvixIllM92+I86fMfuEOz45FAe6OgB0AfaKeSEO+SFuEG95eTpftLPP79bT+qod0Lp0di3kKbz8k+kc01tTLzV8Z7JYyoM1am+mox7fjB++Wpi0dPEVXl++k0/nUfqpY9pJ9jCd2Zz2kznXPlvpllvnpRdKPqHrjGh9pg1y8K6zaprcPsBHt/XEY6xuOx+TQdesF1Dn9Fbv1tj+qMe7zQNb5O0JvbmzQGM7WT1ZdGsbb/rU3KzDbOUzmaNCe1iuXCNdp316zFkBnNFeePNFw6+WxcofsRTPtIsmptamGLZ+4aOTLF562bHG1pd9snSJ0/2Fhxd5Lx/FTzfZAN2cXjmVn/YafSCf8cCx7yHbGdt6qDH3Mta7tUl3tlyzPOi5jluf7OinT/GH0+PJD7GUKzb45B6CPz34sCU/+MqbnmxxGec/Gt7WKpmZNzjrAOQA5GPrY961E47fdMKJWZ7yg3/w5uSyPfUa87caMQfiBvzT2KIjf9DoZb/8JtP6sEeWbjz6WnJ0bIENcvRk11z+yjcZ9uhDM04GjQ44+0R8+YaGD777fzpcs+0511Y5RHOPiNa6pRfO+lT/fATiVXs+1S3vfCCbb/nKvvOGDS8L3A93Bnkp9sADD6x7g+zRpdFPn9wBerLNH3Qgb9lls/XHX115CeBF+4c+9KHz+qK9f+y6HBk/+MC/4hADHD+tD9+AnOWv8WzlUd75rwfG4ioX7NgL9ig7dMjDrAF28bMFWhu9BuiZdDp9TYyv27n00kvXObgYdz98wMEHzPyTUy/YfQ3eFVdcsWx6yfalL31presLXvCCg5tvvvngFa94xelzgo2f/exn62tkfBUgUA/8DozxacVTzsQoNvgpQ3bOo+uLi9yMmUx6pzwedeUMNJY7PpZTNHpbVzzormFadDqBOvCivbWsfq0LMKcDsOHcp8+aqBdze5g9czXABqCjtS9O+GKgrxqZ+cHDBp/opJuuYqKTnHOhfcTmdl3Qui+hTzOXV3lzLnf+8EWDlxO6jNlxDqWLH2jFYAwXnu58Is9X8l6098vy1h+tF+30OX96H+JMchYWIxn65GCuY3mLXhxyWL7ykQ05dU2XB7kFZPktF3wvdvz8wW8MrwG5tA/FJV/k+EwnP+UD4OcHHDAWd+tFFo4PfOcHW+bw5nTqyejRemar1uS4s4b+7Yv27Lom/OMf/1j+dA+hZqtbfhajtbc3yAZ8DIzzmx9y29qTRZNT8ciHeqM7Ha0nfXhm3GTDW6viLAd00ElHPswcuVfkA9DT3XrzUcNPzzYOPqs7ObHO9M/6Juf8cc30QQ91i3cbg9qwTupHDr2Y91fmru18yW8+Fq9xUJ7QXI+taWvBB42eciO/vsbV/an4fdiYD2o4Hrrpnechna2FGpIbOQfk0NxPqCu8Gp/08uMv0vxy+2l70S6BNo6FnQVVEmdfElc0ux/Rmgu04pjJnElJhj3JaIMkZyGMARpZfXIlLJv/P/VypmDEWrzbnJsrQr9hwlNutvnDN3Wgw8m5ni0FJ9/m5Vw+o8NpfILTjMl1eBhr8K1dtpLPT7ate/b0E7IRLt+sOZpYNZCOcGzU2CWLlk526QH4HNhe0Dns4eXDRaffuMNp5ctBZkM7GOh3YHmAVPP04XWwdcFfhnY/+IAOpg8LsflBBxsOCIcOoNPFgK35G8t0ThXFCld+6IxXb52sHbocmWvm8UWXE/mQFzzAYa7JRyAueXFAdxH28tJNCsgHeQPZ1YNyhN4e4A+8/MuJHp0ueA3A4a3BFUdj/gG80fCzr4fTmtMt73DR2YWjiy/G3RyoITj8+DRy1rCLJ53o+niMNZAsH9DlstjQ5D//+MA+vmDqyka6+ZIuY0B2yqRn2+cXe/j5YL/PG0e46gg/W3D5m/3OCb368eLWL488eMGpOzeq5K2536wXA11k8AF0gI7PV8f480L0fOULIKuu2uP20kW775G1n+h0Y+ZTUT4N5x+T0ZnP6ViKdj/Mw5VLNLjilVu0Grr64Nvzn//89Um466+/Hvq0rjU5hx9s+OqYm266aZ0b5uLMl3zgXzXb+qDZr/Do5KxB+7+aocuNme+zu+GGGxZvtSdX5WOf+1samwGa+ZYn+oXqz2Rv+nch7Lte+KSHFwu/+93v1stYed8CH+XfzbC9Zn/ldz0Z/uKzZvSYq7X2DZyx3nXEupE3V4+dK9a4ukDTzKctY7XS/mK/eiFPP53Gzqhs8cc4n+gx1/hbC49Pg6cL8MWcTGDsnHT+knVd8qLdi2z3tWTQnMF4XaNc99NP98wv/fSg4zcG4RqLf/qBHw95+QB4PJC7RgC20LrHiA+t2LIHF6CR1eeHvvVhE83cWtLrIUnNZNPDjrPRHB8ZLZlqy5rJJ7+7j3ENFwPZcsIeyHb66stvcw9r7iM8TNHLTtewapXuqc8+0QL5TJZM+eYXubkG4slX8o3JGGv4k6NPjLNO2cIH1E3XeDIgXdmFQ0u3OcAXDzp/W8t8wTMBv/zg19DJJYuuZQsdH2icDTi0bOnxVDPqhS489q55stkzxwPgOjfUj9b11N6zTujqnJy8ya2xRr6640f7Q+7Vna9+kXsgB/lafPDk1beX+/Z6L9vdz/t0XL/EFCsddPOfLg3wpVzAGbMBj1fPTvxocmPuzDifL9pP7j5Y8+7dn7F7odR6sF9jWwzueZxlxvlnjzh3+Wyfyx1+furlu966uN8hU2zoeK0boFvOZm7Q57wxH4LsZbuc08s3/3TOd+K+7nWvW/lL7sEHHzz49re/fXDPPfesM8p9kb/Ou+KKK5bfXsJ8/vOfP7j33nuXHi/rvSC57LLLVo3RY3/6i0YvafyTezlyBgB+gdbfmI/5Dh8u3mLYxoQPbvLh3batPnN5lns9m+wb67c6s6sWrFlrBG8sp87l9ll7Vq8WNOuLVx7Y1VsTOI1d6wivnuEA37TWGJ6dGjk15jqBJnYAz659iZc8P9vD9rmxazQ/yalDfbx4yETjG17+i4e8Pc4WG/iM88OcvHrwTFC+xEMXPjkAbLKnh0cH1T9bnsNds5xLdNEtbj05vjnzvIvpGVn84qITsA28s2GDHrr5TT6+ctC+wQcnJnx0slHc5r0HYhM4azU20+t+x7kgf9aHTvtDDPzpnGYXrpzyD9STo1Mvb8Zo+EE92/B6cYojGj6xtBbVEZ/p5YOen/jKlXsXL23RnIF6ecAH+EMX/629dw/Wn3224TVyIJ/Q+Dpj5Dfb02f88NpWhj54vuML2utsph8f0OPND7mkt3rMNj/ECaxfe3r6kO58jEbGmA55wmesVtwfeuneuVBdyZE8mvsAHJ32q784710XnflPJ58m2B+to1+O2D/lhmyNXDWtN7e2znvXhMcee2zZUbvtufJRbfMP8KM8sFWesstf64BfE7f3Dp6ZfX0ZSNeaHOHHsT/RbrNKLqcOgxxEL1FtNDQLKVkSUcDJCJJuRV+hZwdPi1ZBtMnYIdcGIWucHrJ48imd9dmPHm/02eMN8DWvj6ZHrx1Gn/zG+Kb9rVy0evR4Ji69NooXUtHgja1JmzabFaX8OuDiax49HdZv0sytLTlNEc81Jl9hTx148Af8sZ5qjYw26fHVo+WbGgEzL+mnc+aKXP6TM8frAMbLV4eN74FyswLPJ7zy46ajPOnJkrPh+842vBftXtT1Jzgd+Pgcluo0n6bP0fKrmNT2rO8uUPJu7LB1MTfnDyj+NTn1o3zqWxO2NAAnpuJq3sWbr3inDTbzDd0hVf3Jo1yX4/jE708+fUIHTY7h2DMn05lRHbAJX4PPj9aHbBcjvpiXX338xmzprUmtPOCb+umByz988q5Hy445XXot/foAb+CGRqNL/PJDzjgcXjrhxEYeTb3xKf780888kwX4ipM/Gj16sWr7AJ0+dvHQARcYxxOf+ulGgj/m6sSaxsuf/Iej3xwYqzkPyb578+qrr1760OgF4neTSJactcmGsXxly4X44YcfXg9q0dhHF0+xiQ/dHveLMl9b40aCLRd2f37s01V0q1k3gMaAjtkb0z+BfnzyFK2Y6ZGnXrTfeOONSzS+qec4Y/a8aN/+M1T7iO385lP1wc/8kg/7S+PflOObPNJx4sSJAy8DPOT+F/6zDKi3j33sYwf33Xff+jNJOd+C3FsnterGt72Fz9q1fnprqFV/1gyY002XNbS+1UPz9CyB3Q94uFkjcNWCGkp/NrJr72psOnvwqjvnmmaeDBtzn2SDHVD84mJPj6d9zyZc+5QuOXKdtLc1PGx2Drrp9w+YnBdw6O6jyHjwyAbb7ZdihWPfvFiM4QI84gpnTxm3Bs48Z5h5fOi19JjTBfiUXxOfvB6dTs3YGujFLkY5EnsP4XSj8UXcakzu1Ac5LzM89MiRr3Tw0Eq3vImZTr5km1w4uo0Dc2vhRXsPv9ZQfvUaX7SAbvcWXQvM8cu7nFZb8NlNNp/oIwPwaYD/5TZZc7yzkacL8Jvdud7G/OB/eHqKZ+qkI7vZhGMPf/6EKx/h9eT4UxxwWnrJng3wsqkvT9bVHFjH7unKxcwde80bqxt7yLVUowtPvrZe5mKoRrMrh4A+5+I///nPlWu4fEUDdGhk7SUP/150aXxny8sx13L/hI9uOlu7fCqHdBZn8cCVH3aKF548PvvFJ+LO1yfanUlvf/vb16c27Uk+BezLG5/E4aWf+uCb/eFe3PUB3fOM+038YObbvpYj+qOLRf1pbJrTU/zlyXyuBfvp16OFM0+P/LMnVx/+8IcPrrnmmuVrMp4PvvjFL64POHiZBvwi3wuQK6+8cuX+0UcfPbjtttvWPY77QWtw3XXXrX8ei0f9AWfb/ffff3DHHXesf65nDvDvgxkbevMtL7wmpmCO4eLZjs3xovODr9WQ3po0tybN5Ttd8MkbW0P5Vuf0qYF0qwMND13ViDUwzu/Wix289vyMAV/rTY5OPPYcW3LrTDQmB/iGzh9+kVeveOmrzrxv+h/27q3VsqNa4Pj+KKsfgm++iFETxRgUETUmMfHBGx0vIRovqBgvCOmHCBpveZCIRPGSgKIRNPqiIrTiDcEnNeZF6I9y1q+6/31G5lm7s3dnGw7nOKB2VY0a9xpVNedcc63NNnzsUssd43KbXDz0KuyT42TLJzmgLq58MNaDQ33nlDMPnT4daNRkq/Ebp7u48iM78aG1nujEg57c1hD7Otuah+Yw+9TixD705Dpb0ZHDLjh2KNoBuwK8ZJgHMs2J65beqKdDvO13nd1k+VadmIqj89MYv+gik9306POdHLaxqzwqXsWAHuP40eNlkxLApYcd6ORFfHjZY67YRDZ9leIoj/gk7sWJHjaj0e66IP+9yOJZDR56zZsxdOjzh40KHUr5YFxpjpLBTqBPf3RkFgO1OLbWtY2zXY23PlyQTfra6IpXNHBsalxfO9v5S3+AXxFrOhX05qBSDqAjR056rnXzzTcvH+Gds61BOptPcyUfw4mffUmcyfJtJGeSGBRbeCB+ctjLbr6pJJfZTp/7Ih++mjMvwSl8Y3t5UTzJ4Qvf8CvsYVvr1Fh66Wazn45xz+xMAmhOA9f1oF1gBAM0eRyZiTCN4FybBANNFlzGcorDajgledEIGmhcAAXMwhckdiSnAFq4JS5eMpStnelQp6ca30kh2yZ9OuHScxrZx9FuZdWfutPpbS1vg4q7OKGVyGr95lBtXsRRAndDFd4cinsQntxkszd56LKfLvOipsOclQPmI7pklw9ojFUaP1SjySbj5JITNF5Nthziq3qCRSsOYuCf+JLjYJdTaoepA4k/gTbZeG3ebkAteDkoT908movWAp02D3awtRiVn+pyupjCkQcfD53mRUzhtNPBNnLpgkcLioG6+VOzpXH09OJXtCtospc99AJtG52DC46dHk56o0cO2oDFojcVxBWPN4xttHwQOxtwPrOjWOEt1+C0+cAWPrsw40N2i3+bdn7kC/vKgeISjTlUos2W4pYOPpPjUOULOvbi01cAvuysP+cDrguA4pkt7K+gMx4tGvrZmh09rNcH5gCPkj3wxvEDtdyGa97XwJU/+V1c8ycd0eqXm2py8TRn4mYOuxA3nn1s0ydDqU02Pm86vvSlL12HnXXJ3mwWHzGJDz0dXWw2f3S5EPMpuJtrds14swGvPJRf+NTkeEAgx/JLnvvamlg8/fTT63cB5S27yRBHtfHiYiyAB+HUtemg1wHvt13P8kG7r073z1DpY6M4ZCvdxbG4sZU/LqKsKW+M4Mn+bC+/drvd0T333LP+Adwi+s+f646Ai88HH3xwPWCwN8rNoHxRmx956kyRO3DmD70zzhzqt771K+beWLX5ty6ipS+95UY2qJOjxoOm9bylq28fyF487LWGna3t2+SBbKufDH0281c+6rM7OjLZQpezlw9kwdmzjRtzAQ/PZkVb3K1rtsCRSYd9RYztBeSxXQHkKdP3YqEmlxxFv72kPnnNXbLRGU8PGcmpLh5o2KjGE6RHX7yMq7PX+eHcoAser4dZcHxR89ceqDjH3bTbk9382ofJsK+6WWeXGi9dAI5tcpEOQD9/66vF1pygL5bmlA+zGAuKG/kg37Ot2JO5BbRkJZsscuA7U6ZMtIozh9xiiYa/yox3stHDA3bwKfpkoU0v3eizD/3EkZMt6vpkboEMpThvxw/1+UaWGsTPdoUsecB/tk06uPjzkwyxtQ77Xyvs5ruijUeZ9poLOUImmsac4x6+WsfZk061fG1/Md5+0zVi/vTAmZ1+/7wbdTxo1HQDcov1Quz/iBE6NGgnoGeDc/ysH7T7x5/WEr3WnjUoX7KBbvnCXjFsD2SPMWeJexmxLRbolGTAk4lee+YDP+HJb6/CV2mcDWJbLqub72JFBtn+f9vnP//5o5tuumldyzfu21yPPvroepO9t5Tp9ka7B+1+j519f/3rX48efvjhqw/a43/zm9+8fkbGt+xaA/h9K/E73/nO0ZNPPnk1BuQoweyzPdjmwaQzNsvkOU52NMbNqfnSZmd7ptiKtTNonul8Mm/ZgEaew+EX784sfWsDv3F2kksnnLHw/DV3Cj40xtDnhzHy0RpjNxlsQOf8dF2cDH7mI3rFGDrnTHFDRw4ZgI/o5Aka1wnOGPmQPLo9zBYfwK6uJcghnw++3eL84i+/8LNf0SafHrkLsgktO8gA6NHVtg6dOcbJUdzrWmNATPhbHKNLRjzw7KWv/Y0MvHSyR5v95XM+Gzdm/sVDnyyxZIs8ID8wTg/gL1vItL/4ILOHoWSSgReNuSA3PLnZbJwv9iT7NL/Zb5yO8iU7+JNf2niLFfnxiYUYs4+/9rLG84duskB+0YOHnOQbY5+XCjzLYRe9aMpHtECdbnTG7Z3mmlyFf+JNF7xnIHxHSy47zZdx8ppbuulEA89+kC1wc47W4IE/5JOdz2QmF3k61QrAo+i7p9bmp/mBI8+cK+aDbWImBmjlmD37zjvvXPMhDvBsaB7I4Df56PXJFxvrkW9o/a6+uRAvY0pzUvzk2Ln9S6vJca56ucPDdjLdlzrXxDRb+MEncovJcn7/p/jkpxp9+aNtTr3Rfu+9976wb7SXaIwVAMAgpXZJU7JYEBLRJMUjuDklSCXIEnKCPybUYmsBC45gkqvQ9X8ZxJHvxf2Qr2LqAa8bIoulRWCzEiMyJKSEUyt4JNf8VMo4XfjRNK/abYjh8RtX5rzqNyah0YND9ssxeLLpPinQQa7SAsZPlpKNcC0uvioTxIetDqaXvOQlyxeLV051wLsgl2/Zz1dy2e6A6q2wxsXfXNgs5K3ipqM5ob94sZNshR/Fk6xw7ANoyTA/gA3iBp9uGx0cn4ExdArZxtCQky40IBnaxuKhny1ioq3Y0C5durRu0tktjnz2Zq7fa/ZJpA3XAzs6yRav3/3ud+trQGL0r3/9az3kSA+b26jFTJsd5SMZ+sbIJ1efPV1ksUVfzqvzTU1+uvgI2M0XtMbQkanEow3QiIFYsAV9eDiANh3xkaNEzzbznxx8xSd8PogZG/mFXt8Yf1146hvDTy4adTiyA/agw0vGtMlYtsPXj1eNFxijo7KQV/DxinW5bx7h+caXYpXN8OwF5toHNR6033bbbSuHHMQuAtmMDr22Iqb02MMcyvjZZ8xFkN9o96CdDeYuPWywBuDlIshmcsot51l7AV3ebP/j/j+g2xPYTwba6JuDYtk86Af5rWYnG6wbvwd/lj8d40G7r1sf96EA24oH3wGbtP1enzwRO/1sVePhp7abHV/7fuc737n6ycvXav4Xk20syEl+9GdZkz11Jvs4fOMvZC0HXTj20zHOlOI+7WAzvLx0vsg/oCZDLhVndLXVteGT3Vy2bsmabfoqyUADyJC/cmGCvrVCjtqZ6yxgs3UCrClrqDVJDvnxaE+Apw8/X/XZhU8N+EKPnBQbe4ExN0r2eHzGyLb+2wM8aPbhr3xne7rFsjOcrEp2kU0nGxSAH459CijG+SgmZPGFjPxpPF/V2aKNT4mnWKTbGF3G8UXPBjTwfHRjiI5/ZFzan+POEvEQK/Pl4YTiusWbwTfccMPaT82X4ls+5o8OeYvX/GQnn8iGC/iMHqi7HkMLZpy0K+wOyENfzIoRv7Y3WcUuXjVZxYI96e5cMp6N6NGaU3i6lCkDTQDP5s7wZOEXn/zRJ5d9bFbg9OHRds5PH8irn11qeMBu49mvrp2Nh+rs2srna2vOOtAuFulRZwu7Gzf3zlEP2r25DPKVngq8Nl145IQ629Wux91km2N0cHSyW802uqx94/ZB1wTmt3whs+t6fH5Gpp8SQIMv2WwCxSP/8PE3Wu0KGvubG/V/54N2MXRdI9bFiJ3iDvgpDtatml0+VOhBO55iIvfZj59vZOSjOv/JJUffnjHXHllkorcvyFtyyFVbC/hANvq99fPnz6/rBvMWXLx48ejxxx8/euqpp65eszTXhx6090Y73wL588pXvnJdS/k5GXkAxM29h4ftfm5GX36wM2CnuQX8AXDZvxD7P/FUoxWfIJ7GtzU6OEX8uv4kh73F11zKbTEXB7YZg9fGr929EBsUMsjEo0aD1pgaL99ba+xtz5JX+miaWzzRdL9hnF3kk6XvOt3ZEk3xyHZy6JG/HrwBcgFZZOijsx8rbHY2zQftYsD2c/sHcfjwwHUG6Lt3h3Md637CWiAXTh4q7OIvm+gRf7zw+moxAM0xGcbYJof00bDDmivui2n/hww60aAlp0IOnxU48dPmW3ayR3zZbx6BcXSAfGPmPNvQtR/Gg5Y+8kA1fv+DyvWP81ws8OSHOIkR2WyiuzULb9yY2NtfySsf5IFCL//VINu18RorRsbwiK3aGP/c37FrG0d+KPiMKWyo6APzJY/kHh/zR9zZzRdAFt32MjxscP9kjyETn9jY67XlsbgZRwvkgjixlzx+00u/Pj5AZ/1iwp7ihE5BowRw0WeTsWjxk5NsNGxW4NguLvxmM3p9Nssj8wfPJ/PKD3Nw4403rm9YmX8yyeKXWJGBzn5FvvlCQ468RodGvvgZN/c35sGYGIq5cTL5JobWLl3avuHuJ2dcd6JzX+pca53TDU8PHTMe2mzhI99aP9lDpwLv/HbPfMcddywZ8KeB63qjXaK1kJrEjEo5fIUjbTguzgVJ0MjAZ/K11VvIIbJAegRIEMklX79kVCsmcwYXf/YmSw3Sc7l3mW7Shj9Ub3nRhCsGE6edP9rXgklHZn3J6EbGG5V8D58sfUXSOHAlpwUlVuTgN4bXXKhrk9GmYaNLFl599OG052YIL/ZkAblCX/KN1U+OfoBfv9xIv/HGascz+eHIVeDp0wb601a4coi/IJ42GrnqEzsybC7wNiIXDg55fTyKmPITzgW7DRSO3fwhw4ZDl2Lz6s3uZJSvYm3DZb95IiP79BVApk1CaW7R8rM5QGed8LV4Nh9qsuDZRF668BlrztgIkgvfoRONvgcUDhn0NlsP2n3dx4N2b8PZcL1ByGb+ipE34fzelk3t0v4GP34y+IVW7Nrw2cBe+GzS7+0B42TbqMUxP8p7fqIhW1zwagP+2+gdKM0fWsUYXiUgGx192sUvnXw4xEfelMXO5CRbDWcs+eRql6PGOtT42+GOxrzg385TNjanarzq6Sv92Q4P6N/ClEcvm+iGn4W/5rh8FHO0k55s/fzWRy9nHHhulMjgP7+CaTc9eMqZ5ha9w/xPf/rTylP5UwzIoRcv/MwtbRcV5NBjT0XHRjhfPyfz0j53zQWa9hZyxUQRC2NiI45Tt3brSM1+6+asH7S7KPnABz7wrAs8NvGHfdmgzwfARzHnt4sYFzN42Jwf6vwSd18p9M9c0Uw/6ZhADvkTH08yJ//kPW17K2erk7wtDRy6aOd4ODTPF7ay6LEv24vsjfbVcmvakF7zZa+Vp/KVPPza5lFfQSfmlfj10ZNd3OOpRqPdPKMtb/AoyUCDFiQPbfrZJU+csd0QOmPt/e1n1gyd8WSHeuJrR4evPFaLiYfpdMlj/PJYbPHaW4D1j5cP3nTtjVkyAH/lqrWp8KG6cTSzwGcPXQr9xaQYNk/kh+NPPk8f4UDy1AA925X8N0Y/fclS05ENbkRcz+ARH8VNixjZ48TJHImTM9zDAw8qPGg35uywt17cPxRzbcQObxfZo+mnT80uuajOFn6jB2xyFtMvDnjY1PmQvfmWDPLMQ+c4PrLcrPGNHWjpaYy++NNNPr3Zg0/syMKHvrht45mManQBWnL4EZ/xfCO3HIEXSwV9dJ3j+Z7s9FVnr37+qQN+KOwgO5rG1XDZHA083caKt5qsQNyKXXbnt77YWvN+Bs7vuoLWnDbZzZG+dudoctVketDhrUt7BVzj2StfO//ZWH6wGS258swcF1Mvecj7PsBPLrsmzPjMOBZbfNpssfec9U/H+ADb3sR+OW8NKnxJdzYWd/HwoEMNZ33iaf2x1/wooPkXa22ATwFTPhnFFb/YkofX/CjmGU85T4ZxtP6B3v333390++23rzlrzAcpft7FG4v2J/zkFvOT/HQMWejZ5zd2fdPulltuWbEzZu/ysP3rX//6+u1293dsoitfxXT6WxwaNzYLufwsbvrgEP3lkct/yeAf/e6T6CVDHsMVW/Mu5mgVeH01Hr66F9LHT+6cI2vBGHvYCcjB13lmzJ4jp9qHyCkW6IGx1rDxZMhLNM5098JoZjzIYQMaeuSIuQDGlHSkl03F0DzJCecN2WjodM6zAZ042f+dA3LNeUauN9qdZeKK1hqli31qPtt/9fFlE5nGFW1jxVe7eKEn11ojW0zxtM+w1XyYU3gy0qXG2/ywX58v6IujNtnGsqu4kWGcDjh2wYmPwh4l2+jagp9z9bDd9Rh+cvCwna98gSPPdZVrAlDs2CSG5pSNeOkxDpfMYkJWQAf7yw/9ZMkT8sxdD4fxFkdyFfrRKcaAWoEzzhZ7oBwVV2DO0Ig7HLp8oZsd5Mul5gYfe9kE5Kb9FQ16YC6aQ33zgd9ZA/gI0qkfLhsWwZU/+OHRsDcasQgHr21MnKdsdOxVjMkFODaLCx5xYrOiDe/5gpiZGzw9aHe2ALnRw3g2mvcesrs/oYMcMVeyzRvtPVOzXumQJ2QA+uWae1BzRK5fShBn5wTwTNT5jb94tC75CODFpMIec6PAocMTP9+d395odz4lYzVO+Oe6H7QzZjuJ0wHGM9pkcIDhLsp9KiA4Jjdnpq3JmLhrtQvWlqYgnVQeuv9twLctlAgS+YknnlhF8k3aYqLmlxsiP39iLqIzd+ZobmTxGbNpJDceNR7jYNJPvIURjYUdH1uMKc1LsvXxxHfIb2Po4p39FmO62BMtHwH6Fqhx+ZetFjGAswnYSI1ZZB4YiYcxeW8DsBmZA3RwaJNlY/VGe5sIO8TBeDFrXbAn+4wDNGytLOT+DznJMIaP3TY4dhpjC354PgY2JT7AZYM6mdlDBhwgi3/ikf3w+NDB2wjRxWN8bqD4XfC9+MUvPtrtdlcftHsrjk4yyPKQ0kbLTputw0ccyeYr2/mYH3ht8nDG2YRGPPMTr4OxeVM3X/jx2ZvsRX2NkB/wbPAhFl/YB6cAumrr4yk+xooPPhAOT/EPD2cczLxbiCt/+FEhs3ltbRljZ7lrTsROX9F38KPBw1461Xizk36wtREuf9GSgS+7jeVHtol7cxtvspsf/Mayx5wkMz3F1Ty5mHNxvNvnET3kOHTJ0DZuLtEaJ08BxcIFv3+g5oMwOWbcRQB+ID9A/GxTrCeykydf5LX8g/MWnPz1BoiDnxx2kMu+4lys+ZlN5Afw+sbw9xvtbijBpI3nNDX53ub/8Ic/vPYw9iTTmALHf/o7A8TWt1DklYsZBaDlGyAnebXrG09+bTWAp2+OwydDLLIR/qQQD7na9Se/seDQeGPqaCdduElX+1pjU95z0ZMjh5RDMuHZJA/NUXkJDye22unUVoo5XvMEyu+Ji954ctpH2UMOKMfJgM8mspMPX8Fn/Ti/eihgr7L3tp/hS0f2ssF6pEcbTTnIDjj7RnuHMXqKjXWMxp7oRge4SaRHrpFHtv3B7yG3j6HLD232sMMat1aMzfH8TG42hicD5M/ch+DR0TH9ro8HVIt1cuGU5lDdXjPtw2/MmnZjYm9ko/hY7z5ocK2D137uvBVDe645sxd7YCqO5k2c3Jy3r5IJ3zywT7w6w/PLHgNvHK14ws35Jbu54YN2PqNDzz52kWWMLB+quk7jI/nFhgzt4mkMjv/FiAxtNSim+oo+vi2QkZx40WgnT5ud6PjGB2OtK/TG9PnKF3TWBV+MTUAD0pGv6mlDNqfLWHGYvogLGnrTZRwOsLech9fPJ/OXrGSQo02u+bfeFTz6nTN49clubshWihXZck5+ukYrfvjQGecTmQqZ02ays1W+GMcHPLQj04eacp/NxtiCR9kCGrYVp+wuD+XlWf4zVP+A/e1vf/t6A9BaFcfuSeQG/dnMNoXdcK6PxUTf3idv+I+nOVMb50/ztvW5OCSfr+Qr2snEz6b2B3LwZpPa1/+/8IUvrH9Yag8M/N76I488sn4uxhpmVzbiA35S7737/wVz6/iN9i996Uvrp2Pah7K1+XnrW9+6eLxBz29Anp+Reeyxx45++tOfXsWvwf0fdHIqvWRWojGuZON2PLrG9dFvoXlyjencQm/exJUdcHIYnTEFXr9c1rcekq+fPXDo8Jl/PhkLyFbgjVtf9v/40WmTqQB0CpmAreykq30LvnH8bGit0yVXkiFH8Xf/Rg6cc0mOsM9e6FrBtai5tleSaSzb8BjrQb88oqt7hfQ415LLNjlL99yP2cD+CluzGY92Of4UtH0AAEAASURBVKYvBt3fx2ucfn2+089m9OSqQXi4/IIjM518hDPvbBEP9PrzjKDLWWy9002H2Movz4V6sz/dZAD35M5z9zPkAfqNkwPY7uEpWWKYbvszu9Gx0x6oGGencTVAw34lYHPXaWLGNnuIfQ5fvvPDGJvwKOjyFR0cmvzTZwe9bDTP/BNXYD81b9mlJn/SsqncRGtcoU8tz+RlD9rpFjvxUtDAsVN+4lPgxCFbq5PNFrqjMc6f1isf0MKRRxdf0bHfWtTOztYBPn7g60G7WOCXY+0lZJg7dpOB3y8+3HXXXWv9kE0Wn5oD/M5Z141e0hAH9oufucSjeFnNhzpsZAN+bcAHcy0nsp1trtvpk99stx/0og6cfJEP4kOG2PGh2NArXqBajMkExtnv/HbO+Amy8Ktxwj/P60E7YznHGIFjIIDnlFpQTaCAMvbChQtrYkwQnv/A6SIg3pJFIn/ta187+upXv3r1QDMPoIVW4pzbf5XKAxuAhgxJKvnU5ilaNMabP7q28iYteoAHXsGjAHKMgXCNZ+8a3P8pb+Db0CU8mcbIKcfSh7fNBx/abNdPFnoy5J2Foy//yE8mWRa2DQAerw3GJ+TxoJHLNlLFouVPuuiwafs6i1rfGF1kw9GXnfxkrz48eoVMc2Ncv3E0bIc3zi6HnEOMLa2p5LAXPT/gioM2u4ovfDrwaLOVrzaq/DQWXxtlODzsMl5MyXcQu5h2U26zNQdu0tGTjb5/hsonm6PYqvEDcvkgZ8tbctp40YhjY9rksrG4kKUNTx6fxc/m75s2YmgM3qeiHsg6VMwF3BZmzOaBwC88zTM6Rcyb660sPGTMOEfDJqWYkkGeuVbT5VBCU56Ja/6Ko/2iix9y6QNoyMVbrJOPBj5abbrEFE+684s8c4Re3qDLxuQUB/zJgKPT3GkDMvBW6CDbfKfDBZELRWPwcsrB67yBS4a4sod/bs49DHcz3eHcDQ29aOjMXjUgy4U4O4E3YuSMfIYTW2vem1E+ZDMfciufyFHI5jf78k1MAR0KMIbXB1Rn/RvtF/dvnXpLnv900xVkJ/vY3/qyB3oDUdz4aX00h2oQb3Xj+iDfzLF2eHVj6sbxGGOjOnr4k8Bp6U8i8zQ0+bTlmfjj2ngaU4vJjEsyjSl8tXfKS2vARak5VPCB6q08vGLcPEZX3MmwX4J0tafCGcebjPZWY2xqLFvh4fTlWDdqaK1TD7vkZvsRejZZZ3joa5/Xl7/t63whG28FPz3iYr3a58nrhgG9s4Qs/Aodxt0stT7gtRU8+nj4yx79iafDuNpY8dGGq/DLnuZmRJuMeJMfLbuUOZ5eOO0KXsBeZ7m6OV0D+z90iTlfFbziY2/1kNo5gga/vcBeKY5sdW7KNzdFZJgDe6uzW0zsu/ZBY2TkizFzreavXG2fxMM/44p2+ou7fm1+kMNmeWR+mwu22++dfc4iwIbigi8byBQbhR/ZKx6Tr9iKdfMwabQ7Q5I5+Zew/R82NNd8yc949dF0TaA2B9YFv9iYH+nMDjrKFzTwbAHkgvxUoxWH5BlnW3LZNGUbJwdPY+jhWpdkkkcv/9irhjOv8h0t/XLNvBmzTp3f5pP85NAvBl179CKE3GMDWvmpZgc+8pV8yS/5Ri88vXKZXvrF1hl3af/NNLmTbDbnT7HQp4eP6PgH4MhWAF/O+kG7D9591d41iTUpL+S5tdbcpL85YB8/xZ7/8M0ZmwEc/4wrzS9f4dXRVeOhiyy1WIm7Pp1iyi75mxw8wG+r33fffUevfe1r1zws5P6PlwG+973vrYfe9iWAd6v/0IP2L3/5y0d+Hs85whZ2K3QqYvDqV7/66CMf+cjRLbfcsvrkyy//IJXeH//4x4s2fXwRI3JAMuvDGUcXD1wQHZo5PvvJZLN59S10Nfquw8RXPokv3gAN3fIfjbHmpDFrUAHo6Ctvs0+dDPOvj0d+aYtfePLRkm+ew5PPFn6gMUZG9hgnSx7yq7UHB9jOR2dyD8jpQee8UfCZL2vUB0+uR+UZHexgkzYdHrzJBbbLJbaQV56KsZ/W7T4aHVkKWvZP28gGYmdcobO1Qi+gw14DyFTQoOUjf/ipBuRmtz2QfejEkh+KPhkKWjjjYuG8JlvfPsl+tqMzZs90L4hW/FzP+zkl3xK2D27h97///dGf//zntR+SBfhEvng0h2Ln3t71AF/oFm9xoRuOfPMpNt2PyikxIYdNc3+gS2zw8wGdawnz1x5nDYhR48WK/GTjJ19cFMB+tPDiSLdCDjxbnUnoABnw/OEbO5tL+NYoeQo+eetbv/Zk9PB8Z68Ypp9PaIyVN/Sgp5fNajLxwRerZLDRfKJlHzCGXuzpBOwwno3kmhP240VrjO10ADGWY9kM3xzAOTv94oNvCpEjLnTINXMgptaAazP350p+0Ml/OvH5/xrWKjvZgF8s+M4O8tlLfrkFT37rAJ9cN04WO+QL/fxjj75Y5y875IExttRfAdj/QfeiF71ofRPqBXvQLrACwRjGmizGMVStDy+YApRDguZhm4fDvmrwH3h+EZDwDz300Co2ZQsrMAf6auCbBBYDkNDG2qQsQvPUPJpDfTTakq85TUe0S+CVP3AVuREfPYDe8kO7pIYDeOWMfIFTA37SW5n02QFHJ7ls70CKNh+N2bwbtxjJl7v40et3wOqz38ZrMZfTFrrNpkObXrYAdpPhK6jqYksXPrLpQl+c8y1+fTa1KUdHj2KcLcanfXTM8WxC30akTZ6Clp7iWAzRwLG1C2R06IupPn+U9KjZJAbhyBQ/DwwdxjY8c+BQBvjJ9TawB5T8cvPk8LFn0API5EOF3+SYF76A4pJ/cPYqMuSbWuEDGjZaOz6Jn5/qs9mFmws4NhRT8gC+4qg2bq7hkztjWTzVtS9LuixLm03Zh7c4GyO3/tTBJ/LU5io6eaCfPIdZBxda9iroxEebfD6oD9nJDsA2POj4qq9uvZp/dtBvbo2Tl/35D09vuvDjLX50GY+OzLk/GPfAx1e6yHBh5KeJemgOB/jLXrbwz4Mzb0q5mRYX+uRieyh9eNTZTA79Lmayz4NnF5hsgMNDtrdA5LG9oZjEryZXYV/t4k9H8TAmx52ZHoqf5RvtPgz4xCc+cfVCqDUx/bXO+GuN8a814g1f3wYQPzbiia/27PO5vjYfK/pg8hkrxtrG0nOZ+mR/k4k6OSfjfLa98ZARHPLH2HH4+NTkTFnhJk24k9BGQ7f1Yx+Tk/ZFY8WSzHIrHjUoVmq5CB/OOBnWHgjfPqKPHp8C5D1d8Nrw6NOHJlp51kNb9lunPTCaPHjZkExrAz399jFrO5n44BRtIB7iorTWrX/7FD65nn3Fyd7vRl7+GUNHD5npor/4RGMMLigWaMtltGiMiVHnmT6axpKdTfqNkQFPXzrxsk8xhgZOXLfrPHuc8W5O1ejFwg1NN+XoxAne/tpNs7PcvuBswUunvaF9lU4x1GdfPps3xXwqbmT02UtGdMbg6C/u2oAvxVI87P/2cfMrp8jxwN/NFvucAYDs4kIn3ejJyka+kI82HelNxpyDxtBry7vmJP70LiP2f9iQb2i10bJbP9/5XeGDOelsJwstPjTZUW08m8Lluz5deAF9aAP+RZNNjanJkbfilP3Na3OZbjqaL7z4FON454N2542+/CNnyhBXMcDjLUsPMrpGZD8eNdtbU/Xp5Q+7u8FGY++hr/2SbA+JyPZWO514ihs5aADbpn3iBNBmgz6fPGj3gbmHWs2FsdMAXcC9xdve9rZ1zcxnDy/khX1TbtDNbwUPe9nGl66ZzUf2omMzMFfsUyvR5Gc25AMa8umslAf6xrv+ag1G7yHfe97znvWP9Owt6ffA5Zvf/Ob6zXQPSgBZE8hgw7UetHvgwrdsVStscgZ4o90/hZ+/2W6v8jOWfq5GrQ/kSjHSJ4cNtdVsRBNdscpW/e04XHTZ5yyQlx7uqIGcjVes5trARwb9zWVy49E3/+0T6ACcOc5GsoyRBc9vdXs4OvED6BSy4dHhB/jxKnDyTRs+4JN8NBdkkIuWzT1Us3fHy2cvtyjG4a3VS/sPxRT7Nl4+Abrw2CvKo/bP7GS/eHp4bx2Ryw7rSL7OdUJecS2edCn8V/jIH6DtbAFkKsWanej4j4Y9Crn0GMOvzwc0bAVTp1why7zykb340Th/6SNDHI27t+Ybvf5Pxq37b4J4CdPZST8b0SvuEzxoFz+yjLMJ0MNfc+gDIcXZqy9u1l62iC/5Yss2c8CecopctHwgXx/IffRsostejw8/PFq+F1M8cMYVPMZBsdeOV5vero3Q4O8ZBV5FLNiErrzIRvT8Q0OfQr77v95ob80lT40frRjwydySBc+O5GuTTSYa+OYWTl+RL2jFXp8O9OZD/gB82ZJPbFcAOrw91yIDvzJzT2zFAr08crb5wDQ5/EIjVmzq2tu1ozzgJ6CL7+YAnfty19tstJabF7bSxUc6yM0PcuSVM5y9xvCS59pP7tJRHOgklw3WDpA/6I3RpS1W+gpez1D95Nib3vSmxQN/Gjj1G+2S0GQyhrGKwHIcmHxBgec4w9UWibcPH3zwwRO/0Y53C9dycEt/Ldqt3P8t/a0PW7vEUuwlj9+Uc0EgkYs1ejIUOODA9k8DxEMxZp7MUTU686jgU9C2UTfXUw+eCembSWuB1p+8cHRNe9DSA9hIt7yKD+4Q5BeZcs/CQ5uf5GqT04GFRx63aC129lhg8C1kvHLeArcwxQutDdJmUt7nu3F222TJ0jdmcbd5FGNj2Zmt4cjAF782m+NtzLiNQNzYRY4YwAE8aFqTyUNHVjxily9oAJvh0BTjNbD/U6yMRU9mcwgXjwsYH/Tsdru1IYqjGwT0YkS3B3g2RXxip9jw080/eW4e+EaPugsNuooJ2wAc/nINXlz1jdFPRjd65KMxT2zp01W07EKvaNOv0IlnyqQbLh3xwU+Ax69OBjnZO/nxoQuM4QHoyzV9Psthvira8lWdHnNrT+YrGoCGHLIPQfrJB80xH5SJoytZxpKZDLTTP7LQmefiYTwaY9Hktxzy4Y2+Q9yHOR6Am8cAv/Fi4gMU357wUy98p89+YV+YupuDaS+abHBR2Q16tpHnbW+5U+7C0U1OtmS/Oh+3frKfPg/aP/ShDx3dfffdyyV0zwfY4QbygQceWPsX28wTyAZ5LSbi6+IGsEURNw8hXLRn+yLY/8m2iQ8XzYxnMTEWHdws8Oai8eScpI5n6jkJ35aGHDIOwXF4tPJiQn7BTZu2MqKrnn5MebWTZd62D9qTgbY8VcdTLobTD4eHbjlP9sxXY2QcgmQ1Zv7aY8JVO5fkmAt2608uOlfRJ1/NBgVkTzY5o+xn9AC85LT/8IEOF/lyWh6TaY9qbc49o32AHfKc3+jVeMgnk59qY9moj46NtdEpoBiiL05qOvmDR4ETG4Ws6LWVeOEnD9v4lF/oQL6ixaOwBb0x8RMveGeic9YYGsXZIIYerCvGu8Gx1xV/DyfJo8c1qmIPJAOw3Zmt8Le+Nt1BbTVZ2dJ4OaXmo2s088su88sGc+fho3nMt+JHLhvyg33h+IMf4JNf9BtXkpEts2ar2OevesY8WnK2gJY/xooH3dmgFmc4dOnSV9JFv3HlEIiXgj8aPm1tMq4ktzaZxQG/8Wxmt1wu79BOfv2pi8zWvzHnqrPcQxa5D/ArdJkH4INeL0L4MIW/9Frb6cdrfrOFfXSxC15fu1xHr4/ePYEHeHJHXOlU4wHFbHWu/MnG5JKVn9aJe18fmHsxgB3XA+n3oP3OO+9cv0tLtvVojZW3fMh/NoDiJ672WjGzNvkaTXTq5pqv9CrT7myZfsMVQzaQi4cM+sRQG9496UP7F8U86GNP4IWbr3zlK+s32c2B+QTpIy/b6PYTOu/df6X/Na95zaLxsMYb7b/+9a/Xwz5xiIccbdAc+meq58+fX2/UsxmYbz8j841vfGPZAcfmxtmS38YCvlfgshktvfrkqCvxzlp+Wgf+v41rTLamm/zymozs0EZTHtOXj8nWb/2gw2Ne4IzhIc8YWdrij87cNQ5fPNRsaowc9I1nd/hsQdO6776rfQ6NMXuzc4eN6On1QNw1jjF99zAezrnmtgYAOcbYxX73cXKJjWi65y8W4un88AGyXIRH0zlGFj+6bmCLUk6j1+czX8jST7928SFLnzx7D3rxhleaB2Px8YFsfTTmQqHXGD1s8RAdDi05yTLOb7FyFvLNvuFBuw+ZPChlc7KbKy8NWU9iR3720S02dLGzDz/af8WfLvT8NJfkq/lgTtlBjj6gE71YAD6YD3MjdoB/bLHnA34BfGjIoo9//IUrdmjYC0d2+Q+HtjH8css4HMDDf3YrfKcbLflKc0OPNhu69km2MXLEp3jSjY4sdtGVTu18o69x8siAi0acko+fDejbK+CMJw8fOWyX1/kD39wasx7kaLrNE9/oj9d69L/E0iUnyMRDrrb5t6eRl910uZ8UU3L9HyrrWGzIBvBKc0umcbjGzZfcIxeg1ZYn9oZeqsOT7ujUYkIuO80Du/gHL0b8cl6d358Tb3zjG7FcnafVOcGfUz9ol/wmghGCwUlgYQGGSlKGg5ICjyD7RN/hgZdDzwWCFqDf8sxxdLNfUsX/XPWUnZx01k/Gth9+1slDe4j+EA6/ZJhj2jOJ0EgEF1x+3qKEjid6tSLmN91004pdNomNMmHra/LQ0G9et7Yd4iEXnWJcgqunnfpAnb3kywv98oafIFuq4aaM+vLRg102kGWToF+Z/up3+LTR0qlEr+aDQ6kNp4WIzk1PawFd9GqHAlstUmMOFhfCNim8xuDFhB/KjA9/gulzuGo+2XjafMjgM5tBPouFQid56WSrNv4Z63BsJQNPNtcmPx/CiY8Ny1w27uLIBz1+696GCLKFbMX+IZ7kPf3000fPPPPMulFmExv5ZQ7wd2DnE90gG8jhTz6uwSt/yOKTAshlr8OBPHifxvfwIN+bG/bx0bzykU564NCSHy571CB71AA+ucUZ3jhZ6uYrGcYbSw4cmPr4n5/V6OkzJt4eRMjLYuXAh3cBlC/8yadsSe+0n/7sKsZqMPnQgOm3tgKmn/To448GLrnmQJ6z1wP3m2++edXyPxsnn7ywX3rQ7AC2do03l+UTO+hIjz7IDzzyxfxrs1FuwslXxcWDPUCMrXl+t8+Qxb7iRS4gRx6xA5Bn7/aPS91Yg/xanev4Q8cf/vCHo89+9rMrx8uNfKO7C2M+sUcc+OPBgxxRWx9kHQfsrESnP9uzv5WDTkFTnOLd0tZHCw7JPY43nmQcojskL/rqLZ9+BU3t6viqs6NxNajetvXj0RYjc+dbFj0IxVvs0OjL1/LNmAIm3nznsxq9cXj0yem8bg0sQfs/7WV47S3xGc8eMpKLX55lL357skIGv9DESw7a6K3jLv6j6dwglwx7ggt9ud36yjd9e0By47EXOgvoLmb2mmRHT05xCbeEHfjD5gn68c+4o7H+xSAedTHTnnhtclrP7FGiNw/shuMPQA+Ph24FiId4idVc/+xx/a8Y01eKCXmdHebEh5r2WWdMOUE32a7TyGYPfdrZSg5b8GgDtZLPjavxuZFzX6FNlv3KDZZ9it+AbmNqcuSv84M/9e153SCTLa+cG2SgIV/RrizhV/5kO7+2EB8a4/gPgXH5iJ5eMW2OmkO86NjmXEGjj47N8aSLPu1sTjccqJ892Q8vXuiKebTxxqNGW4z00UYPX+zJJw+YE4W8foage0Tj8FtdPuz1obZ5lsPNpVzStm7U2b61gVxgPDr2yU04tpErjuLrpr05KNaXJfx37LKRLrLKNdesbtT9X5SzeNDuGsZX2F0jyxPy2SYX1Oy3LuVya5hN/Gzdir/4+WAMTNv1ixe8tlKbb3McvvyKNxp0za3ctS94+/GjH/3o+k323tjG56cqvv/97z/r52KmHDT8S585OvRG+/Y32vHhyf744dnmZ2v8jAy7xAjQ86tf/Wr9jMyPfvSjhWsvLhatEfIA/LRXG7DTmGJuoomvOrn0OMP9g1hnVmuerOQku3UEz3bzboz98lQOZyd8BS0edMnQRt++zq725mxUK9MPcshVG+OvvtyEU9AD4/XpcQ6o6XZO9BAVrzhYe2wybl+zV/sgrryGR+Nam7902xPg6STHfq7AtZ6d7eSRDdggF9kDxxbrKfvtC8bFA9BDHlrx46+YWoueP+TvIh5/4OWcwjY8cGSITWsEHtAD6FH00Sj69AL87AVwxtKTD+SzGa9zz/24eyY/ISOeZHd2kOFDL99QMyfGrF1xE2sxp1Pc+Nuc4EPbXPDRPtS+mp1s0GYj+4BafMnA5wE+uwDb3Xd4EOuaDG984odHYQ/dYoFHDpGJnu9q9DP/ixs8wAPkEXqxFBc5wW9y2M0ncvQBWn7R2zypGyt+5Ggbo7uzpXlCr01OcdTnHx0V/NrRq/HEq2ZnsTGuDbIvufiM6QN9cZAnYgqPB16twImZOfKSA37xcC0mt+SF9QSnbs1OG/wTU/NKlrbrRW35hEe7XBcL88BnMuiGk1+uF9DiyWbz4oOZnpO6FsQjH8gkC4/CRzLkHeAffnPPfh+Unz//Aj5oZ0yLxETsdrtliItaeMDwkkEN38RwpAk1aRPwTVxBiMZYiQW3HdefgH7Km2OzHU31HNM+Dn8S/fi3dm37aAC82FTgasdTbUwSKGDiiy+c4qtBfpNO7PiimBO8kkkfnSS0MAO4uRGGnzXe5jp9zXW2pycd2Zc98HDpV08e+pKVDrj457j89NANvcVj4fXQ1KJskyNfDGycFpx+fuC1WNVwNlRFvmcjnW2c5KCzabJP2+ZhA7DpiKEDCs4hRZ8YwVv0YljM4OgIjF0L8LUhaOO1xtjKfvxKcVMH4fTZjD/Ak1xjZEWvLg7w015j/BZ3Y4qbJ/8ww+ZrjJ7k0UcXHD34/fRGPyVjfswNHebEhYy5wCN2fE2/mlzxNddbIJuO9FXnt3Ft85ReMuBnoYNuMY6HbvLyQTu67EKbPHU08PgmGJs6G0tG48koj8opOTnXeD6i0xYfFxJylu78dhFjjZh7Y2IpzwFd6LIBrnlMRnT62QgXwCliwtbkkXMc0Jdf+MhGn262+uqiDxNdnMkPgA89oIc/Lhz9/iffsy9ZaMUHHx3kbgFtaxSttuIwpld+y0n6xJEe8ZNPDnw1GcZBscyW5MGT5432s37Q7ob2M5/5zNqTiqX1ar9ku8I3Y+ytlhvyxl7Gr2n/6lz5wxegxsuX/Awfjf4c0w/CkwHqNz7r5FXPMW1zi79xdWVLe5yeQ3gytnj9crOx+uotZNPE46vApwdu0msrYmTOvF3iWx32ymKf3BkD+Vdck58cNT3bPEXfmHyX64o8RW+9yA/nrRpOjSf/6Ur2jAVcdmizPx86d61fdtNjb1PXNwanj59Oa0le62evHBcH40DMynn2wBc354DrWj7iA3Raz4p2UCzJID/IFn3t6TNdjTvjFMBuY+0vcNHFkyw1fcnlP9CvTV7xip+9xptTNRrjeMXctYu5NWa9i5MHPx52FDPj7ATFA397rQei9g2+GTcmlmLKLjY0B/mdr8VDP6idPPxwbuLYVN++5U1GdrC/3EdboRdfD/v47PqiPZu95JR3bMDLB/KKu5hN0A+nTl/8jR3iR2ucbfSwgU9qhd/8MaaYM2vMGDDOfna3HtTFCw95CqAPZNPq7P/kJ3p2gvTDgWSszviTTHQVOKW4IedHYEzftaKzfD7UipaNCjpnqevExqxv+4W4lU/qeMhnS3rwZY+8Y1d9suSCmi7xcx2kFtvymWw85S1afXrIg1fkVA/avT2K73qAbOBBuzfrPCjPV2PJNS/WpQcdfk7PHsgOMeWHwkbf7POtAO2gGJFXaUyfX2jync+V9Ffjw0O3HEV36/4N9ne84x1Ht91229oDku3tWb+N/otf/GLtuXTgSxY5gAy4aj+p9979G+0ekqPxBu4Xv/jF9Ua7ey32gilHu2JMfLwR7zrrVa961erDu37zUoY32/2Mhusee1e2JGPKbkzNfjVbAZ9mfOHyQxuQZR+zx3qj3Zw5a9DFj067nMWjL2eba2u1fSH72I6GXejh5QrZ6LXLHfljXH6hlfsArcIv4xV9JRo1+4xbR+Spyx+1Pl/pIN91gxdTABwaDyGNsc98st86x8cfMkDrk/32PvudMc8DrFlzyRZyuh63r+sD+rqWgXP2m2++A/Y7D+kEbFKKX3FIjhgD+OKin198q6CN3pzxBU+6xbtrjuYILnlzLvHRyWcyxQlO3BQxMS4u3mh3z+ShJhlkihsdwENtbxx7WMlXMdQWG/Yk10NWsUkXfnKUbCA7vPgq7BADuvXpEB99drqOLd745Ye914cmAC2d5kZbsdeSIwfIIZ+dU6c+PGAT+uJDTzr5m81yBV028wsdOeUWWnRo8lcbqM0t2vITDRy/+CRe5MGhV7r24Es5go8/5hgPfwJttOnVVuDDJZu9ZCrkTV408OKbPPTJmbLMlTWJjm367lt9gGMfS06y+Fi8//jHP648Q+Pe3Pwadx8jR8kqN6wLazI70NFpj0SrTQfZcqFYkukXEvCSpbaXiB9/FPSuBdX6/AB0keeFt3vvvXf9Fj18/mufBE79RrtElgiAYR7iqh36JRDjJKUaVGtzoImexuYwmvACB19fXQDQTZ766iC++sfV0alrb2nh6QPRpD989ZZ32z+Ojr+SowTCN9v68aor2WMckAMa97MdLkQkGVrFHNos2zxmkuJFg1+iG9OPtvFq89scozVHzZPExRev8XwqF+iBC+bCt3CM44NX67Mnfnz4jbsRtMDpddHh8HRg2OD46yC30NrMZhySS44LfguMDrLYoaYnm2yCNkh53wJmCx43ed5KIIc8+un2iR398xCKJ1308O9awNb40FaKVXFG09iMFzq+0LWF4sBG82Zuw6kVfPzSpmuCjc8+Aa94o93bGebFnIgVPN5gtm2KPt30j9UcQmwwjpdc+w1f5qZKDnvYZUNmO8j31bnyJ13GzL/54yOZavOTjEP8xIhdBzJ/DgEf2WgNsQ2PMvXTCeAq2342GC+myVCTTQdZtcWMb+rmkZw53/rNrdqBJEcdQsXBha4DqdiQuQVjlezLZrTG9PNPv9yDfy7Ah14sW3v65Ig9W92cv+xlL1vrzYVXPGQb70LVYf6b3/xm4cQKTBvg8ObPIhg0/EOTPfYIffRi68KiG/5yUG2f+Mtf/rJiSwab1OmiRzv52vxws3X//fef6Rvtbh4/9alPrTynjw/ZXXzNszzoDQNxtib4KR/sZwFbJxRPNfrG1XCN42ls8s+28Sljjm3bU66x+mSYo+LeGLnRbGVt7dr2t/T10Sl0KaB+Y9Eeqqc9+PGAYlA/XvSKfLIH+KDJfmufNGfyVAHlNrx9IZnG4OQpOdlLf7LR5g96ue7mSt7QhYdMeeG8dTbSqzbGNjVcc0HO9Fcf0OPC2TlCr3UAZ19mn9yUg2p9NNrZTwY9zgk2plOes2Prh5w3ho48ewUbneEeRLkRdR3BfjqsA2cGneyHB+Qq+tVr4Mqf8OHwoivG5KGhO9BXQHTxsRe/urYxYH7EBeAvNsaTw9foi2s8bHD9kt/mVezE0zWWtmKvE2f65RDAK4a+meZhqD2k+WGLeDvLO4vUcGp2kkWG9vSf7GJRvqrz3bgc5BP9PaSBRwPPPzU5dJj3znE2yDm2kism8qy1ItYAL9+n3jVw4A8Z+OIt3smADxd79Giylxx2sA0ODf0gGnLETG6aLzHQV+MrNmr+ZVN6k1Ns8i86NjQndOlvAS8wro1XnJNhzDw3H/oAveLhij3MPJQfxtlGH7sV95vWZmc9WrloXrTppD+59NXPbjTw2UMP//S7d8hOcox5yHRp/3vQ9jU44+Rokzt9Tq79sQftZ/VGu9+KdS1THuaHOLNNXHa73bomsl7Z4oGYa2sfHur7Zpv1qQ2yfVsXQ3j66DAfoHlBA6KtxiMu+M6dO7e+See30e0Z0f/jH/84euSRR9bPtDg7+NJYNTlKetLvt+rf9773rbfSjft99x60W/8z75bQ/Z9kqKdMD+3f/e53P+vNdmvFm+2PPvro0cWLF5e/ZMaXrGRXoynvo8ETrzaQy43ra4uV/PcWpTy0fvFV8JJt3tT17WVyDU7M5Wuy1daH/dx481aNXpsO+yFZeOhQ2wfVaLIZT4XtIL+iNU6ec4Mv9ljzWxzyyf5kvtx/0MFG4MEufXDGANuMy3F5RGZ7Gjr7H9/R2U+MObPZxi7y2hvRFz+y2Grc2e/6l33pdE3SWcFepbiprTt6yYtPm7/pZne+k6ttvqdctrHLGF5tuPCNmRt8ZPKLDoUN5b7YwIlV80+mPcGe9IpXvGLNC36ANhAzMbdnaIuHuMyHwmJMltjkp1iIjTiSxw9zUnyMK9lsnG9yjC94srH8Q2vc8wA1Gr7zyVoRQ7xs4f+cb7rg2JOf+agvP8hR0JBLPhlijZc/cPwVSzaLLX6xpgNvc6SPNz/RkWOcPngAxyff/hMfPogVWWiyQTz4yAZy2WMeyGMLMKagpa880Qf65KrRAf7wA54ceDbhr2SLPprwS8D+jzkyB9nODw/afZDjGpJ+NMa11fYpe4IPMOWXcT8fLMfQuIcxbi7oY4NYuK7JPnTGy798yr5yQhzlTDlGj2tSsuJRk1cM8pWP5rv78Lvuumu5bfw0cOoH7ZwSSIoEV0BN1kkftGdcwdCfzk4HptPojM0kgQumjNpoJ0zZx+GnXWjIUuLdtpMTXf3janKiVU/gr9KEo5WUcFuId9oVTfLre9B+6/5NAosz/Ra7ImnFiQ6JaS4nWADG8En2ZOOZxRgatGw2Fj0dbSzG+Zf96nB40MGRhY5NAE2L1Xi60QX0uvH3QBc4OOWoizeLlB0eJlp0fG/xGtOmA5A/vwoFxw4lm9CIp43BxkgeuflNj83CQc9Gi9pFQw/96WNvMukIBz/9Mjb75Qf8jC28vto8sgVET4b4FmN4pXgb1wba7CFPrd+4eWhe4PTjY7tNtBt0MRUHOehhqE2LXZMnfWpyvAX397//fd2oi6k4s9mBYD6Trc8OOgFfyLU/5WP+0skWJVvZbt7Qg/oe6MBNvxfB+ENXa0WMyMQfaMOxUWHX1B1dOowH+Oa8sD15jSUrn8WAr8AYnuZP/NhIBnqA1jggU7+3FeQqfrF3EaCPVhEvcpQAHj8bsssYHDnKBLxom7c5dqidj2KER509bGeT3OqnY1zQg3xFaz4VN6d+vxOu8XSStbUJDqDPZ3wOePOPHo2iX+7LS36LAftcFPngyI36Nh7kixu55GSX/csH2d60uuOOO5BdtWF1ruMP+d5o//SnP732LrEULxfK9LWu5YwLSDnBB77zQ5EPSkDmFtArfN2ONwZfgXu+kIzqqdc8iTFfAJpD83DIhilnO95YNbnazWX41kX9rRz97NaOTq1ka300AE++mEvrwNnlpoHOKdM4/tZO80oO+frq8s+egQfgKTfQkWMvdjGsxoPGWdrvdIu5sxGkG11zAZ/95AXsJlNhjzMDX/uQHJw3I+yhFx49WfF5q5M+/NYn2c0FvMIvY8WGHPRy30W5M9yZw1Z7CN1dMxRfvHj06Z4+5pcaXTz62aNNdrHVJ4+cCfiBGq/x2mKM3zyAxuDoVCvsUwA8+vraCt3lEfliL072CXPuTBOzHtxkF3l47R/2Wg9D3ZzPM4hd9hr8aMniS/YYh+/Myr9s1G+creWWcTxwbqqc49oz3kvJ/k8y6LaXA23rBi8+seraLr/iS+diPOZPsW2e2NxckEOGsWkfPP+LBzv4hY9v4riNA9r8VivlKHr5HL6aDHom5DOcseZBn414soU9WyhG/Iw2P9OV3vxLRvJdK3rQLsfkG35AH/vYr/aAePug3Tkmp4orPvx0KdkOP33LV3iy9cmS2/lCL3A9RK/1D7KRbLzqfJZP+F0TeKjl50nO6kH77bfffuQBNf305AN95lxOi6PrbrE0rvZQw0MGff/okC/iBdhdvGqrZ37SVyzxFNNJA1cfv1z0j099uP/yl7987et4gTfZv/Wtbx39/Oc/X9dIW33JQTvH6AB+Y92D9t5oP82D9iVg/4eOZPsA44Mf/OB6cF9c6PrlL3+5ftbmJz/5yaI1Bh/f1k4xMhfqxtDqK4G8zhc4tGJsrnz7QQ6az/ShNXf6ySdP3zkpb+HbL5Ktdp7adydOW8lGsuQTG7LFuDnUV8hWx6sP8m36ZC9ll7OEbfKSfXOtiIs9ytpy32wMDbz7a7qA8xi+6wGyFL4nj03kkMcPHy6xZ57X+mKqZLuYtn/A9cJRPtHpbCCTDrx0zJgkjyz2kIMfrxpf8vgG+NMahrPPJIfs6OgSSzLJBvjI5n+06NE4r7WNAXRyiY9s8BzPg1Dr0f5UjNGm0/1fD9q1e9CuZg/bi7F8TRf9xQYOHf6u0fKBTmNq9MbZBuCTWZ6R4Z5EzcauP3rIj07bmBiKU/I6N9AYh1fTLbfxKWJMt/F4mms4/sq52mzFz/5yEB89gK+KvnHy0cKlQzxdM+c/fqWY4GNr8SWLTfjU5AB2K2jTGZ8aH7nG9IEY8qn5V9OnDoe+Nl36UwZ+OUS3a1g2uW/1bSp5RpdcZX9ta0mx/zuT4H17wn2ytv3CfLAvm7r25gMa8pTuFeBAttJpLbJVzoi9GHcG2if4g0/NfvT6ZChiZu284A/aXShILAFw8eAwd0Hra2gMF2SOlXTTcYZLnv+vUCLw38RW9I1VmnzxCodmArykkGjoAFw89dX+UYGfjmlu4CRQfPraEk1yTmALWnOqHU+69CvoFHLQAoti6kpGtOTwgV5t+ABeksMDvGSzhVxl2oPWjbWfKMFjA4Drq074LDR8YiFfHSQOJXrx0GEjdQg5lPI7nfSxtTiRQ55NwALuMKTTZuEmHdDhQqFP0pJLH73KtGEx7f/AoS3G6MRA0YZXA220+nIDTXxiqQ/QFGf6A7StWzKMpV8/O+D5nzy64LLFAdmBZ8zFjotGXwfqxrz4JdO+II7AvIilmwBxtb+4ALPv0GNOzRE9zRHddJFrTvTZjhefNt02Zfz6+dueFM+stSfoFz/taOHCoydTX4zYVYz053wVZ36h1zdX0ajx1o+GHCUbtPlUCa8vrkr2ZbO5xtfcyV10xoE4ir+i7SLHQxP1jBm5eMhRAHuzQZseAEcvXLRr4Bp/oq3Gp00W3WyRWx6033jjjetMkh/AGHutO3ngA5yf/exnC59NqSYTTvybLzrgpz64LsrRgXidi3D0u5CwDtgrp32A5GvfYhgkW42uQgdZ/sGr33a93k/S01NNj4ubCxcurIsaF0j2TPay29zYI13wuJDTlkPiLDfE00WLWJIFqrftchGeP8Vyto/jjUcNJp0+GYdgKxsfXPPJJgBX+5CccOmZOdcY2YeK8fDaZOiD6tU5wZ+T0vPFebfb7dZ82uvo7TyyL/IBnTkG+qD1m53qcPSLXWui/YIcMuWN0lqSI84+ewbQb02Rpd1csEMhK3487HKBrhizDozLxZmHxuQjvPWVX2RoOx9cINMH6LeP4SEH3jq2BsSLPLkt79F2A+QcNw4nnmgUcvBU2C12xRF9elfjyp9ii54N6OJrLJuxJFcbXizgQDUZ2sbIEne4KRs9W+mYBT1e86ltTJ/f9jDtzl5z7WFN+SDnmjuyiwkZ4ufcNjfsKW5ygx9k4G+PxJPf2cF+ePOm0EW/OcOPjt0AHT3sMP/lPhpAVtCcNdY4X+MnI3no8BvPdnUyt3LIgwuPD+3s52t527xGkx3ZOvto8Kv5rc6WbEYPb07g6EHrWlQRH+PJiJ4cshV258tq7P9EN/nwsD8bos3v5OBV9POfTQp8P3dybv/2szk2t8bYLwez24c4l/Zvllvj9CpyKbvxsSX/Zptt+tlaLsOjJws/vJpcexB6OexlmR6M5EN+8gGQUX7aO9w3f/zjH18vptFxPZC9riPuu+++9XIbva3N/GCvuLgmcn9uzZp7edDbfOxzLeL+B9+MR7Zl54xhtPmpJrt+vGpzhtfP3Pi5GA+xxSL47W9/e/T444+vh+zsAOK51QuffcVATqDbPmj30zGHfqM9Ger80Qbp44Oc86GAf0Cvdj4A8+4bAN/97nfXTw864xozTsaMATvF2PwkH93Wjy0vWjnnhTEPq8yjeYMLzAHZlWKhzyYxbM1kl7UOj5edav3iGR0d8AqcXELPfzU8HF0AzvyXA/xVAH45wAcP3XpwhtbZ4BrTekbDR+e4+zUy881ZwRcy2Wrv56N4dO3Bl+znp/WpJgOdc0OfHLajpYdP4ensbKPHPUP3OejpdT1iHwDtqcUejbZSTOhHr7CRD9GgL1bFW784uEdtDuhjp/ioiw+5bEaHl2/pENd04EfrLHf/yxZz4Sd25Zhcw4d+Aj3m6NJ+n6Xb8wsPQ9v7xImd9pnuIcwtOXxXN1/Tfj6KAztaQ+bZdQJ9nfPmTm40R+areSOb32Swgf2APmPsAOwwxtaK/sTz077EFnx0Voxpw9PXfCabLvYZZ4sYN8Z+42QoyVaHI5vvfIZDr41GnMTE3mi/MQfwCp348AA1n9gAtnnG92xZBPs/+mzEo11MtIG6fCafjPDG9OWf+Kvxl6N+asULr9a+uMnNbBN/hR/uReUUXjLpoRNoFwftIDo1mfQrAL2YkmGuzKlCHxliK250eiYAzBl+MUVTSRbbrZOPfexj67zBQ/dp4NRvtPsknaECe8MNNyxHLUSfjksKyZGh0xg4kyrwDDdJcKAJ3Bo++Rvb8gjgaYDM5FbjP2QDXPQSIbiWTvTJUqONXv9aY4fsmDamXy2RbKY2nmRu+cO72fQQSuKUxGj5pKDL7uknGhCfMfwKn7JNHV/z0+YvH4L06ONBi89i2eYEPjQWS3z68bFJ2xhbyLHJ2vR9ABSvCycLyOKjT8FjwdnAXLR68JU+siw6X9uT4/SQi98mgo6txuQzINMh0Lc69G2Mct1XZ8i0ZuDo6uIiXvTTF/Y1Jtb5upD7P3xVyEUr1mp0gCx8baDks1XBp48WTfT4FTjj2mjJUuiaPGRnQ5ssPsWh6ybduOJQ701LBxpeNoupuSG/zTE99hIXTPDmyUN3X68SO/xi6wMVeswLKB58KAYulvCwy0WGiwobr3EAjx4v4Df5+kp08CC5YqE0Li8U9oLZ1iereCQLrliQg0ctvwK00Rtjr37y2D7tiAa/diW64hy+daoP2Fg+4UGvsK0H1nLY+mGH2GY3fvYVUzU7yVMAPeQaS+dsL6L9n3zM9/B44LIx+3yY4wNFb2jsdrs1x3wRG2uTzfLEW2BPPfXUOquSOWv2ir+Cn21Am176FWsJTX6hmTbbt+So/EQnRoo89vuy5Imhkg4y6FfgyLB3+8dhbihBMVud6/jDRjejvqrtZsf+aE2YE/bZp8ypi2prkB0VsWSvG3uxJEsJtv34ilm2Vx/iI2OO156y4cInozq8GE7bmj82BcfJmXzRxo9njmfX1AeXHfhnO3mH6im38eTr154+REeHPHNx68zp7Cq/7DOgtZcsuOTB8QONog/koTxxLmrL+fJFzmjjU4D86KJ1O1acyJ57UXsuPPnWs/XDNnr5RpYCp/CZf/LV2Sp388VYDyvI01fKXbqtYWcTOmcDXmvCuWO+7Xfaxl0DsI2/9hMlfeSyawJaJb1zDC08HflNt37+FWP45KjZjEcbkAP0xRafmp1zbBFd+UNHe7qaXvnSQzB89PQmP9norP9sTx9d2YyvfEiffUJB4ybavmKuyGKruHoYyCe8arTG6VC0xVpOGffAA4+5YycbXAfbr9CyQyEn0A+0xRWtog3Qt16yAS0bgvymV9waq53sSV971snJBn0yiic5yrQPTTj2oWd79jf3+U0WnnxR47cGxErM9PHPXIbDG+iDbM4O+OyDYw8cPfjTHy8auvBom0uQfcbMrWvF3W631r91D8g1/9adPLm0v+f0Moac5TcgE7Cj+cFHrrHG0cBX0Cv5jC7b2djagGM7O9yoi184MrXpIlebTPRy3De/P/nJT67z3Pj1QPa7DvZ2vAfl9Jg7cfDAQLzs0Yo2HvrEzH4mZvY4fPp8mb5P2/IFLrxYk2nO1Ggq+ZROc+ADBn77TXbX3QDv/LkY12Z42BSkU21MAWi0xdWYn455//vff/WN9uMetMef/Pr5qE+2OInb3XffffSud71rvaBWDoqVnzr49re/feS3hZ078gNv9k55M67pVaOfBW98anPnutHvZzvL+ZosfM2BNjyb7Vvi2vlMZjGCt+ajwSenzY82QIM+XflFPll8NyYW8sx4Y/BsUJNHbjbCux+U/85Rep0l7umcrT6IdT6wTR6LKWietemny/WAPV+us4MO+GjFjqzuT/StUTh2ALajl/uN0Y2GTGuVTPFqnL3w5kJ8QTHns9iRiQ+gZ7MY4WOnNhpxpI9tcHTGJ3bG6eajOALj8Pa+eOGMF2s6xFbNHrFkBz1s4bf4d22ob148w7PnsgXdBPaIi/2GfnN1ab/v2nec42JAp+sEP5FrfsojvtLND3PGbjLYRSY6+wG+4uJM8rNW/OcH3/iAT5zjVbMVHxuLH336aIsvumIQvRqPWjEHrQf+Z2fxYys5aMynHCAzX9MHLwZkK80FuuiLMTvJV5LdHNAfvZj4YMNDYTlLFh4xFIdkWzd4+EPetsx5rZ3/avZUN/5cMvC0HpPFLsUzuN3+DHcdXw6YbzYq5thc+7DVMzixc4+h5pMzyvrjI3+B+BinN7+be7aywVwUU7R0u7aPjxzzKKZyGY85Y5scJYd95Cjmwjy6D/fCm/MGoDsNnPpB++c+97mrjlAkAXyNz0PGNgF4xgJBYZQxXwt8y1vesi6kOCtYxg8BnkNjp3XwkOyT4LZ6trbM/mwnG04SqI8bj3bWW73GJo4sfYnqt3Yd/BIwHVt9+h4a+/1iSQWi1W9TWANjrH51ySeJJSAbSnY0bFDSEd+2xkenTRS9JK4m2+aNxk2ZhVYeqVtA6ZNDCll80rZxu7gjxybgk3T6yFQAG8lycHjo5S0PBwcd6bP4sstFDzvxWHj0teGKAbxDsDewyWC/xWuR0wdnM3QRYPNkHxxe8WwtpJOtjS2jxx/+FGcy2FZfHMgqjtjgZpzh0Cj00I+Gbr5lLzz5Afr66BW2iJXDqvHdfoN1s2RMEQcxbMMjj17xMMf4OuzYSYcxMTQmZv/85z/XT8loAxcJHqqaX/HER6ZNXh0UQzg05R27JvC9GIbn3xbyefKzlx6HQpv1tGHKSKZ6awt+MWcnW8jQ51OHb/mRreSIEf3o4eNnlzGAzri8IBPQP4EMJR41WoXcfJ7r0tpxAZB+8vnBZjhQXmmziX1kpycdxgFb6dr6enn0f/4lx4Hqgk+eyTe+2Q9cUFqrZLHHeu934dhZHKfUmSdiRj67yVDYRhZe/WDaDd88oGeLnBUf8TLmQkMpZ5JDLr0eMPag/XoP+GRWs9FaeuKJJ9aeBS/+Hn5Zc2xpDss5tgAxMK/o1GQpQf1w6Cto4JvzeI6rk2E8/cfRbmm2dhgvpuxJ9pQbTzrq49NWB/Ef1w9fTY8S32xHo2584uSOAtiQH8nkj7baxaQPH+2zeMyjPFPQtB6NaSv4kjt9zAa81pYbNOvLWkKHz/7shlk+k0+useSikSdyShuYf/mW/Xymg+34FevXzZ+1i48/LsKtaX28xYouZy9bnOf2JjKcJ/jJYRMd+OU0e4D1Ra6CFh1ZHgDgd7HvTHcdoV8M+eT6iyy4Q0BXceJv/qPNfna2T/CHL8bSM9vFqf0n/8nTpmvuRfDHgTmQG611fGLcQx2y+Ox63XwDtvJbTJy3bEOnFgvysiE8u4oVnebI/YKcETt6XTvIWftj84JWMWdzvuHMg5s317ReqpAr4mZPcw/CjhlrMtgBlyz+sBtMm8nHz+Y5F2iU5KjFIzuNySX+0OFcUcdXTR+e7JAX9KjLbePk4GGjMZBOvJOPHXzcgliSna7GyVEAX7XRdk2KB56O9JCR/qmrGCY7ffXV+PjCznxqPDuSo5Zv9hvxFBPFnMsPRRufPcd6n2cUe8nI1uJOt5K+9POLzXjQlm/Gs1kbnwLHBmtFzpevzkNzniw8AA+b5Kg3/B544IEzeaPdNYxvuP3tb3+7et1jPbjmpottHiT0ckrXOfxkM5uAflA7Xyfe2BxvDO0WwtHh/zI99NBD64GxPTbw7Xe/ee4fn5pDc5yO6mjVyZxj2eOBuH9SN3865uGHH16/qy5H4p3yykW4crv5jh7eS4X33HPP0a37n13FA+h13+1N/CeffPJq3jSWjeSQqU6mujzM/sboq8gxe9vrXve6VVuPQfT11ea0cy0/1OUjuWSUp2ygQ77bb9ApybH/GEdXrqBFo7Y+1Qo9wBha9lmjnef2Ute9vpnpLJafeODNj/NafspZfWdEcVCzAz1dHhT3YE+fT/wuPmLKn/rkXto/TCMb3nj3qvQbr9j/+MtudPBoyBIXdjh3xIYs4+0B+vD2Lr6zmwzy5LaYKHB48KKxx7nuwEOGGPJHaZ7V6IzFhxd9eumuiBU9gBw8+q7dzu2/JeQtdnNgDsXTnmFtsjW+xbz/QzcZ1ij95soHdb4VbA+CNw/FZrfbrT6d4sk+Y+ICV36RI1fkg2c1ZOSP6ws6xc31B9/ZxWc86MozfOxmJxw+etkKR4Y5pM91Hfz0EQ3+5o0842SZd/QKnejEyd7PJrj8QY+PPPHPHuPmmyz0aMhhl/nCB4+eTLEyjh5OKf+yHQ4Pua5T+UeOPLe+jaHlCx10lo/mtT45ct2Ywia6FH2Ahj35tJDjj3E5JJfwoGMXO/wihFyz9r0U4QMdOcg+xfM255czwDMEc8AGawHYB8wnufwgm08KYJc23+mjN1y+F2d2olOLMZvxeJYEp9BhXTQH6BV5Szd/zp8/v76VRb84ngZO/aDdwQkEwCT7tMsFrkNdYmVANVptYz7luHDhwjqAJS1H/i+CiQPVZ+kjmRLVoeST9ccee2wtGMkQTL1i34P2uWjg9UvOeA/VZJMp6SxE84ZfDigATfIkuHF2biG9FnkLAZ9Et0G00PmnyBuy6dFmh2IxtTm1OMn0oN3PlACHssXe4ckeshR6PFzyaZrc9cCrzcy4DZV9ioVJp3F2kEe3MX2ybOQ2DLX4WBs2Dwcp3+AcAm4ybfx8wUsmu7TRoFXEiVxjdAfaxVkbH3u18ZAB9NNRfMVMGz3Am+5oyFAaJy8d8NoKIIet4iwWxsk5tz/Qba70oREHN/HobGRw5NpMHax4zCEZxhSbrPlhnwPFpuwtGPEDLnq88WFPscnSTSafAf/JKb5w+c4upZip+YFeGx15in509Y2jB9GZK3PO7vDxkguKHR646Tdc66t5gmM/PLl04BOr9JMrRsbQkzn56WQH0C6H4dAGeI2TI4bo4CrR42GPWKO9tD/gzaM2UGdvuthsbos5WfjZzQ/64qev2MQz7TSmsBU/WdpyzEN2a7W1qZZz1rK8Y48PhS9evLjWPTvJAuQklz520Z8eNdz0IR51MvAWf21j+uyzJthsX+Ont+LsO3wnPzn5y+Z/x4N2X7v/wQ9+sPKVPeLfviTP9MWGXWLCVrax0f7mIsV4+HxHg15tDL2irQD954LigC6+5+KZdPgr8SVz6o8nm6NVR2+sEm6OT57ZRpt8de1Js23jmTrwlEtoy6fkqWd87Qs+eHTmRKtmf7TRW3+tQbLzUb0F12puehQX1WRaSy6WXazKZ3a3PuSPvKJLvtQnN73NA1nWWecCGu3OC3Ks4W4G2Vds+cQOOtz0KXITjTMaj/0AwIluYl+cAABAAElEQVQlejYAesQKHb8AWdYCX5w/9jc09pL87mbCWmHDnDN60OWf8cpScOUPHrT0qAGe4macnewFyS0fpk7jyZMD2amGJ1Ot0EGutW1e1GwQYzdFbKVLPPR7MEIvv8XEfo8Ojkx4ssg2l/QGYqTww/x40C5n4NCJvZtt8YUjj31sBmyBo498c8YuNz72U3aS7frAw3b+KHjEYvKSoT+B/Ojo5IfrMzLSjR5f/WxRw4kDGWo2ug4gi3+Na6Mn15h28xtttiVXP1o2kGWMjgpcstXx2J+bk2k/+uTQD9C5DmO3WNKhVujPBnxy5TjgG7u2wC6xwR/QwdZilg55YE7VdBVb5ye8dY3WHMlD65VO8vInH8mvsKH4ZAO+5tkYPjKyCw5kq5p+D+vEDC2cNdGco8cPyBdDdnvQ6M1ub/biuR5Irodc/mdLD9rty+R6mGE9iYn7mmeeeWbd2+jTyR6FHL5pw+tnUzqyL776xrc0s29uwOtf//qj8/sHE294wxuWTfF7g9GH/L5VKOfIZ0t61MoW0pH8xg89aPfPUP2muhw5BDM/6CIbrhzAY25dN/pnkf5Hjm+Ey0lg7v3kwQ9/+MP1szfOP3NcPNGQWSF720YzoblhjxzzoN0/jXX/uvV5G5/22HKZPjRzDeuLh1xgizPNXo2HP0py7GVsKFeynb14nAnqzi72kSNmdONVrF1y5af8l5vwgC72OK+1rR/54IyYetGznVz7vrVHv7ki2z6Hv5iwhR3p8HyKXLR4PNw1j/rOrQo7jNNHP7nzXIN3Rs7xroPR81UOOJ+yhQ1kihX72UWuwk60eIy317Irf/CQS2f2kkEffnqM06EmD0/jeMwLOnPgA+1z+3tzOsVQLHe73bPW53+xd2etll/Vu8f3S1n1DsTEDtRU7AliGzGaKJqISmwQr0QUbI4tMXZI8Mpr4403imhiFBQ1iC3kQryI7+Ssz0x943CetXfVrtTfcw5kwNxzzjHHeEYzm1+zVq1aiRt/+GVO2BOvZxb/asQzBD7f2XWfBcuaMJfOZr4ac3bni9jtF2N0rItyypYxeRcPX60Z8bFvnJ62NYnfGJeN+4CRDD/IwGqdyQVd+VHkiv9ywQc2kfzzN7nyzJdetLNBhqz2nHM28Phjv4lZmz/2VvcKdMiq5QifzI6VDN+M68O1tsUmLs+R1jl/+C0vXT/p4U0/jYs9/lw3ybFFTl60I/7p48sJ3+mTtUbMoXs68+fluvu0fjoYNv/dA/r/NH784x+vfyEBwzzIAZ+sH7EgPPiKmFC+8UUu5EHbPFpz+Z3v5d/e956An3yQA/mDbT02B3zkqzk25n7Tf5TteobmHC3Gdf5c+kX7pz/96WWEIxLqxtlF3aS3qXNi1sa8NHjkkUfWRes6fj0/fJ0MWAB+i+6rX/3qunDMjTDbYLyM9O3f+LO2IJWLyEKjw6YFa+4RntK4GpbNYO4tVNT46lzrk2kz5ANs68RGs3lsBoc2fbw2Hpt0OsTbHPo2kQ1u3CHgxbsNTAdGtvhm/Vq3XpD7pJb91iwdm1BxcbZh6SN2FGPk+WyjuwFWk3O4Ojxc1MTqwHdD7uIktmzRV+jwCWaHCRnFWHLsF7+84JdffBjxzBdd4/wvdnIKOXOpNkamuWUH0VemfDbw+CtX9NlxA+dTcgcsnljwzIuLlIOQPXPpMJUvMuZQDVPe5NQLdrZcPL1k94Geiwk7bnr8VIibh/wUr7wXD7niw1MQG2KNyLGtNqZNtrjVcPjSOBmkT9Y8ian121h5Ty7cfGktke+CXC4nLmzx4clVa49e/mmLoTj0I3piaD3h82knMYpByUcy5YJO65KMl20+QOKbMfvV+lbjtZ5aX+rw4OvD2/MmhnJHhqwSHy6fEL515cbRnu+mSZ6szfYyHWvKNzLUfEyf77Bhsmd+yzGewh9yCpnyrM8HhDcLHYVPHhSMmWe+eKGn1C9GNXtuCtyI3uqfjukb7eLnh7VlX/Vg0T7CN46Kka+dy8VsDBV3fePpF5u40ltKJ/6kb+h6slM9WfphzDof0tE3zu8pV5vcHN/54ZyqyebPtDsxztOb/NYPDGvuFK4xebbevWjvxtcanvbIyX/nd3OBLwfw2ZsE1/ntZtm57gwnY42493OD77qG8tW6yUZrCg47+LXpsGtvOAfZJ2Pf+SDVfibLJh+MlwO6CB4bziHXE2tazPZOD0YwEV0kbjLy5foM2xmB5+yCxS/XJjHS4xOeuNljZ56RM4fkym32jOcHHhlFzpojtXjp4sNXyBlT86U+XrowUWefvBRvbXoIZtcTbbbk2DUbyYvc42lnV+z2vhw1j2Gp+U0eHrL+ypdx9z4ebtTOfLjWqmu4/IsddX3RLlZt+ObVS4Me3OiR99LxqaeeevYaTJ798q5uTpoHuZMjcsh4/uZf9pMt3/lKT7zihgVbbmHRVYwp7MhbuZPHzv5wyMNOV1vJZ3VtOtps8SsdPHGwM2MuBnr4xpFY+WJds0XOfMFQjMOEL9ZysJSPf/SNtwbiVxunO/XiweMLu0ienAXm2Vjzo2+urW/+yLHcKWxnH0bY0yYerOaIfDkgh4/yg238qLY55Ec21e5/nAfyGb+Y5MQZ4zde/WegnoHJ3AyVPz/d0H+GCtvznf3gpaz95Bz0LOJlmHtnOSpWdosXjy9wq0/5VUxquvmhP0nu5MY9i9+Q92GAPpIbe/R73/ve2U9/+tN1/zXngwy8fNLPjnaUL/VP/XSMF+0///nP1/Nd8zqxsgsDnjFxVfQVe8IZeNddd529+93v/o+X7XLqm/nf//73z5588slnn0vKybQXnnrmj328Gbe2Ne4sfuUrX7meX9vHyfM/fPL2gkKu61Tz3Zok7+y2x5Froz1Fn4w9pZhD+48P+PYBHl0Y1n9nmVjo02vvk4dLBsFwXlv3runG4NCRw66jauvW9YE9486e7NOh3wfw8I2Lm22+IHHTR/C9m3J/Qo6MZ3nx6ZtfhW21cfmDARNfQfJhr9Et53TgkJcXe4++mCOYdNX8kv/OWblw7zF1ygt9OuJnE58tGBV2yVgP5V2bf0r50bae/Kxg/+qF7d6PdL/IJmy4CDYM90HF7H7oL3/5y/oQrxeVbHpJ6V/tiIWOvJUXPHNRDM5LOfIM7wWm8eKWU7Js+7CJb+aeX3Rg8gWvuPGK2/MUXfHhw2NPzumnW97Ytpb0I3PPHzbJI/gw+WM+jcNs/tNnMz+1xVLsZNhTzBciy571gycueuwq+ZzfxhH77lP5QF/bM5y853Oy8Fozan6wJ57yilebPKJfyR/98t7alI98d04orkmuR/Zs7+S6v4Tv3ZsvvTmnfdGVP/LCD7EZt470mx92FcSf8tQ+xSOrID4pdMjynQ1nOmxrQ789zld9cuVQbmFYp/fdd9/6ABl249o3Qpd+0f7AAw+sCeGog1FSHWQ2nQQV/HRE25ibgW984xvrpa9Nhvf/C0n+/wtk4dl8NtV3v/vds+985zvPHuT5N33V9o32F73oRWtxzHkhbxzmjdA+txZgG6RNAIuNZOE2Nm2QUcgr/LAeLGx8tQ3gkEJi7lBLr4PPhQiGvgdEG5uMi5iLvAuKDYT4XNtG84LdxdiLtw4atvnMJ7Iu7i6yYoWLZzPri5O8w9wNsIMPweYPPb55uHQR6ABhC7GD4CKHFmx9Mdtnxc1WhW8VGB0o9MjAV+snx4/sNZZdthtXR3T188ccKenD62CTD4epC6QbGnrmwEVYDt1048mX/CgdpuJWjJMXswcF8+8i4sMQH4royz8sB7kPUrpRkPtexPOL72Rh8pffcqptDBlrTWjjN89yKG56/MxXmArKDhnyChv04JFrbsjDT4YffFfIywtdMorxuQbYJwdPmZTv9BBdJaIHqxzonyL84qavH462UqzafDYn5ottN2WuC/YDHpvTF37Sy1+2jJcTY6g4yCH8/NhjN4ZnHSqtcbr4+uGUT37ym93izQ5582YdNA/GtPNLnxx8vHAaVxuvwOrhpvUlP/aAM0EeW2etA7H0n7Dcc889TK48rMZN/uGXDxr8ayj7pXx0w1YccoPHv0nk8Vz3UfGagxlzOvgKUsOf6yG5vYaVXrqnZOIlP3VaY8nsOHSU5OpXp6c/afanvclPfo7j7djnyeHzy1qxhurTn5j1rR1rsZ/hIEN3J7k3h8UcLhvZCtMYedcwZ62bZ+c6WWeRbze5SfYyhxxMduG3p8jxTZn8/CpG13D29eH3ojf7zvvGkyHHnn3k+mofaRsnr8gJGTFpK8b14blGk+sewj1HHxzw2VpX8r17EnsULv8Ubf4osNlQEN2KfmP5QV5JN3+nTjL0a08dfBQ2LG2+mQuxKnTMiTgUNsi6TvsgkG3nlAdyuSKPquHRcT444+VKLvDJyGN68to1mbzrguuzsxex65z1gNNc4ZtDmMbLBUzkWukew4sb137zZ568ZFfYa+1Vw0CtQf7zFb6irYihszed5Ngni/IJPixU3MbgJGNMbHKqwKEn9+49rVl+oWmjeI2Rh4nC1+ePcfPJT2TOp5/k06djPIx8xycj79mRB7l0zsMPu1zB2Kl1sPNhKnSmn8WYvHH+4VsX4ige10JzrSbXGL9h7v7DhKMYDztZfQXlkzo/18DxD/v4+cFu/qmRPMpd9xPmZBbnp/XqS2peQmd3KV/iT356zvCb5z4wt6b8y0771TM1P60r32b3IsMcskeXn9nWnyU3sjH7dCrp1Cen3Rx71vQFMC+JnSmRl3P+X5if/OQn66zm56TsTtw5Xjv7zZP7og984ANnrzr+vIsx37Z96KGHzh577LFlx3rBN28KfPNWWx+Raa6zZUzOrC0fbHjRcueddy5dMnzwM4Q/+MEP1jczrdlJYauVaUM7alxfm8/OxNtvv31dB60tfrDH75530jNuj+rbI2TIotatdtcubXPjXGJrxq0N37NY9ui5xstDxH9969y+18ZzjbEm5SKfPI979+NLANao/LNDR1wKG67hXuTqu070TM4P2Pz1bOn8Fye5zhz2YJYT8ta+PdIZyx77YjbmOsSu/OkXbxidgfjdK7BjXNz01MbF1PMrPhn+0DMfrTfXTGcqX5wLcuXakXy5KM/0yJVvfPbKez7zq7kny5cZl2u7M6LnZePsss/HyJyJG0aUb3w2L66z8upLFmLki+d7//qj/MCEka/ynM/a+NYZv7Tx3GexoU/XGhU/nrwg9hTj5XXyyMFVyJh7xdkMt3nqfoOMYlzRhke2dc0uvpjEx648wbVuYJZDMcoXUsPgUzHBJg8DGWe3nIdNh3547KP8sIb5UG66r4KF6Jt/OS0OePgwzL+518YTV3uh/GaTDX6o+WfddG6Iu9jFyD5Ze9R7HHNo/Wq39+HCkrs///nP62zhG1/pKsb4xRe25Cy/xFfccw8aVxA8bf6W7+LBy288PvOdr/jkK/h4/rWYD1v9K6PwV+MG/1z6RbuvzkuEyTMxageHQ1JiBFjJB31jNpUbhMPhsCZLEMj4KSoxxrV3ucZP6cbbdeLvusnt/OSbQH1tcpVkpq72xKxN1tge+9QNb9bhpSv3v/nNb1axENKvTlffRc5vtPMhu9XJG9t9tCAV8c6xcIzZoOwjcopFCp+c/qQ2knG2K2RsHjpw61tfyPppQ5BD7GSfHYerB3SHPhyHiU+vbHQ+wsWjg+B5+Oshvc3vAOWfQq+H/g5vfHHY5AofFVj5q6arkIe5v3xcThz/8F0eyLHhINPmDx970CefnPHyKw/slGtjCn7YdGuHrYYHR9GXm3Dw5EzBM24eilcf5RMf5N4+d6ji+6DDxV0O+QNT7uDAbK5rq82XG7tf/vKX6yW786Vcw2TH4UvOzQWiJ1dunppvPPMvp2yz2xozNksXDlhyQI48qt3cpmeMPwpZ+SiPeMmJUb/8wUuWrXyDh8giMmQVuGGvwfGHHTlB2vTlNxv4YVXDQmLS5qMxBcHJnhpmMRQruezkJzzz4Hwip2/uuomC5SJqTJsdbQXGJL6QqRjjg3ypo3DaA/meTPWU5xff6U472uRhNG/6OwYsfuQLPQWlnx4svjl7rFdrjWwPJG6SxC9nXlxZ73LoHPCi/ROf+MQt/c9QPfT6kJad4nfTJh/NAX/4oJAxloz5M58zJ2SKu7VUjldSnv9zUxmQS2eEtdD6Dqj1ZS2ZL7KH472V80/bukPk9NVkmyu10lq3lsklmxw8Z7iX+M5x8taFD6i99OmBOPz8oo/YVKyt9jmZxrWnbXGyY3+QNyZ+e4ft5MsHbGeM/aMmQ0feFMQWOTrFWHzFD5c9OMbIIdeU1r51zwY58sWmZhPRtdfpZ9f+6bxJpjOTTD7zLxxybOSH9kWULXLyNeW772Gn87iHGfhya57F4cMUH6rgw6CDtOvTdVZ5MZLv7PM9OT4Yf/r48zvlsPmHrdDtvko+6Mu1s0MuEF4vhWBaFz748fCmT4+d/cs+Yinvapjs4xdHvvK9/KkjbT6WC/3mTQ0L8VEpV+nDdy/kZZMiz3TcD3pZkc8TQ5s9RJadaPrIlnjkK5niMlYRez4bhxEO3BkTe/oIrrVCPz/KH54xuMlPXfrZmHw+6SMxprsYxz/8k8fui8jot37LMf7Uh8OnbKrZSl6/2MlpK/yf5wi5Cp/IsAOrfv7gG7cG6ZQrZ6MzRG3N2Vd+2uVTn/rULXnR7tvqfjLFB+b2ai8wu6/whR4v2+2J4ua/duugWPDFsNMpXnmpTkffnLrXfs1rXrP+1bq9GT3++OPr52L8Hq91zwf44WjzI1/wEczWCpnk1Pjm8V3vetd60e4FOL57m4cffvjsiSeeWM911hHc5hB2trKRvWws48c/+sbYgeMDjY985COrlmtkzn1Ln83W3xo4/qE7S/jV5LI95WDLnw9nvPyxjsRLRhzWmxjSmWeqMTIIjrXNHoLDX2Q/kSUz855v6Rg3X856dsSoz7Y6Hv/gwPUhQdcS8taFNeob1c5u+6f9zQ4s1xP3wewg9dPH64Z9BCPybOmZ0jUD0WUXHix+KNqu1dZD99fke9EO1/0vu7VhlTu1+OSr2Gae+CR2xTh5Pqj1YYmz/NJFbLIH27XA/M75ZI/f5ooN82ePq2EifOcK2XLDLjw1W/OaSse1R/4Px/tDOTBPZJtfccCHC9OYvpjMpVqufLnir3/963rZ7tpFzpjnfh+yiVnui1su8rd1U77467puXMxKfvEZLqKXDnuKPp+7RjUOk+38cN649yCLYLIpp9r51jrgu9wZkwu4eM0lvr459L6Hz3jlqzwuY8c/9JXmjq75UfDYF0P+GTf34dAtfvLGEX5rE1+bHp8RTGutd07lXg3DepKnfKeTfr7hIbb4SVcezJEy/UmO3+Ssa3lkgy3y5a4cqD07mB9YrXlt+SxP1eTTxeOXecNjhw77M3dkFPIROfIKW0hd0Q+T79a/F+333nvvf+8b7X6rzKSW0IJ1MDaZOa5GAiDnQOmQbGE+I/HvC079klq/hNR/rjX8i2iOa/M3nknTb/Liq/Pzoja75SR5vHAan/3ZpmPhy7lirPFqGEjf7yX5tNEc0FWaK+PxktcXn0VmYyE8suHTF79xxTjCs6HCbJ4bd0A5BOiH11j68Nimi4xbb9YdPbEXC3sVG9sB6tCHjW+Dd6GA1+Y3Pg8jhxJMm943qNkpRjcKHvwd0DD4Qd4F3EHrcMvH/EqXD9rkxM53suSSzVd8NlwstMnSmTbgoXS15YtfCqyw7Td5xJtUbGwYU8ebeacTbtjk5E0OiqWDzbyXfwct6p+rucFiKzvaYjUf7BdPc+YbOY8++uh6mcMWbAdjBzY5PtGTIzU/+NYDuPFe+tMrL8VdbK1hPilsiQ0W2ZmffIWFyOOVg/r8a67wpn9yEA4fyNFPhzyiww/85hiPfvbhwDBv6dO1JsmhfEpn2pdbfBhqeOT181ENO5zmXb+1b5x+Jb4c2lPOKW3jLv4ukHDYUYvf2PS3ONlH+SEXbE/Sx+fHKZoY7OjPQke/3OjDVGDycxLZuW6M4aH01Ig+2davueKDl0X2ixs28cuTD5j0rWn714t2Px1zK/8zVL+N51+WOcOKj/05B/Kg3zxaJ84hPL51g7MCPP4Re3GL1/73Aa//EA3NnDeva+A6f8opsfJ5HZX/GN518jG82U8xnWl7H6tPZsrtusZO2Ui/Or297ywyT7754eWJ3FuLE1NuzYs1Zk05a+kh9skby8909enqk2nvaE8b5tKLdmd5H6Dyw7fZfWvSzTIc+sWrrbBbbMacAXzNN7x08oPv7LBr/eHbO64X2nDJKPkJDzZ5452bPcR2xvCna1zr2xgfkDisT3ay4WHN+scXtzad5NPhS8QuWwg2+eyQ187+tEfPtSoqVvUkmHCUSeJHrqt0yinc8iVP1lT3Ffw2RoZf7p/8M/DiUSvwKvLgCwrmnr8Kn9rbzZk14htwzn++lv984Ssen2CaG3mBA5M9tfXgvkjbWuiDmOz2oNw8wtWGa75gKuIrZ7CTI1vhu4Jqq43ThQM3+eRmnpbyNX0vnvz0kr1pTYtN7uzp/o8O8vKg8Ct700aYeBFfzLkanx795ktfzGw2HmY4ajL1YcMQa/kqZnkmx6Y1FHb+zJp+dvH5MuOKBy/b7MqBObYWyom1qb/Ht9vTZ1dBzUn4arGwg8i1FvNjyuZz8vr5B1u/Dx+tCfHaV67lXS89f9hPt+qnY+wpD/32lbO+l0Z8Yd9ziXsI88PvCn/5aO7I4levZBz/FDu+MskY/HK7jzlz3K94Gf3GN75xrXU/q+LnVXyTvRdzcOe6gCOnrVn9bFlf+VIc+nwwj160P3D8V/a9aPcS8Nvf/vazL9qto6kHexI7p+JhIz0ycirP/oPS97znPetlO5/95rz/7+ZnP/vZ/7GH6FWmzeLBa1xd33pky3O788L5xUcyfDKujtr79oc5aF32vEqOTTidW3yHoxiDzUZ5VePbd8haNmfmw/ohX7+55JMz2rdZ2xN8s/6dfb5RLR5+Zrs97ex3nZVndtX+BbN1zCbiv7PUM53Ymp9iocfv1oz17184eJ7nh3HXEWsClpicZ4pnEsQfscFE8lVe8CtsVMqVmOjzi5y2fLDbfInTC0U6/DBfcswennGxOz/kGaaYyUZi4ZcYyNAz5+E0D66NxWFOfFHCB+iej40hvsHiE5/hmU96xvhnLcI2P/6VuT3t+VxexWhOvch3j0hH4S+fYPKvNcImvnGYamPmSoGFRw8O0lboKeKjI1fmTZETubLWyCD6xuSSPD1xOzPllO/iFT8s+WTH+x7zZn75Tm/6C5e8+PlsDI8sPyble/7MWptf7Ldmw842GZhKMnRav3gIj4wamU9xW0tkyfHFOBvl0Rx0D8UPGOJQyJNVx7MuyMtdeMaQPjtsyAkZ8vKnoGTxjcujOUDpkrW/2dFOhwx/6DXH9m7zTlYM4qUjFn349BAf6cKmp89XJF8zh9aA9e/M6EX7G97whiVL7zJ06W+0+wmSksNhBgVrQpt0DkxHBF2g2jNxFzmbzo53kc5lx6aNdPHi1+7g0TehLaCpU8zVjVWHZbwyc5HN9NXpNBaWus2i3Xg1HtJ3k+fT+Jl7czVtJ0seX3xzoeOxF76+tlzgo/y1gGe/trq1Q59uY/XDcwBMHBvAhmkj2MxKNvlgY7goOPT5ZgzfZoFVu4NRDvjjguvA5IPN5gDVho9seodvF3eHmAPcmqfHp/xQK3TFoujbI/TCTEafr+WyC2/2HRp0HRjlKHkYeOm2RmEqLjrFSibqQKOL4MSTJz6HWQxyVywdZsVNlzxb8tRDMR98k+FwOKwLKFt47MFzwVP4AUstBuSG2X825KGCPMwuwvlClm03AHDlSo67kTDeTZ+1Aac8qOE4tDu48RQ5gFvO6UV8ZEuJ8KzNKZeP8PDJw1Ng49Er19pk9ZE2HbKw+CSe7KsjOq1vbWPtE3ayMX0JuxiNTR/o0J1+4qFip2P/kOGjfpR/8mKv2FPmh649hmeumsPmf9ogq8DPdzWdacs4PXz1PpZPanhsoSm3GMc/8s13mIhM2Itx7Y9x9nZfkkkvGzC6uMsVG15cemiQj/LixYtvpDmTnIG+1XSrX7T/8Y9/PPv617++7PJFDHLSHIiBf+Vf21zx03w6j8x7sc2Y5QWm2DwA+zb+8/TcMmDv/K/jf0L/i1/8Yn0QYx1NMj/WrXn0Qq+HSXPRfDgfzCeyFhVjdLXbv7OPj1xHfEFi/jyB9fn08Rtnvl3pm5Moebja/HG2xrdeOgPZQWQnkeVr11tx0YMjbm2+zr2kb5ysNazPDmznvj6+NZwsO2Tw9rM7G/yA6/oSnjNMgVf+2if04Cr8UyN8vpGjo9ZnF27zwpZ7DPcA5BQYrqv8hhOesYmJj8cvct2r0IcrFkWfXfOnsE/emPMGpjPJuUM2H8ylfiRvXoI4q/jXmiwemOT9iwffvCUnBrGZE3hkFG14zhUyMPgB1xi/rIfu48RjTSpd15uD8gCX73CbY2uuYowMwtNXw+FDsarDImO8eVvK4w858nOuDPvgwt45HO+D+Cw2e9q3LU+9aBdz/gz4k01Y/FGKafqQz2pkrBwUl751g4qBHMoP+N0r45N374u/5944yo4arhKFK1e1jbFrfrv/lwvF+sJH5JsjbbRj8yk+WZQdOUseDy4b5Qav8fSM4anzsbZnDhhw6dpXzozyY849g92q/wzVzyh62etfRLSf+IL4YB/1zIDPb0UezFd7fikc/ySjz/+oHFQbk1fzOeXIk8GTR99s/exnP7s+aPdNby+hXSPkiBx9OBODb3TVU0Y84fOzcfrGetF+9erVpee5wc+p/upXv/qPb7QXI5vT7h6LseJlix6y3p37fHznO9+5fkrGvv7c5z63fqudP8mSn3amPWPws5HcrJ3FXlT7VxDOvfYYGTZaq9p4fFPTsx7k2ZhrABIjHf6be2R8xtecyCl7aj52VjtD9cUJI3l9Jd/sW9eP9gTf+OElrGIv8JOPXcP5wjf3l56pkb3jSyfOyXwx7t5G3otTDLDUiF9s8tU+/Nvf/rYw8p8+u+w5z+wTcp5H+OGaI55yCIv94s0GGXy1MfHLMT118yF/cBXEj/JHVr7KAx3++BBWHtjmT8+zYiKDD0MxV+wb63opFzDZlmtj5sTvTDuHvB8hS0/hk3wg8SgwxCHPcqb2Ybn99fvf/359wcIZJwZr1ZzwE/GR/pyTNXD8Iw98mnEbaw6aHxg7waMvHrmXKz7wq1zx03g5Ma/k9Omy650DO+KTv+YEhtiLl065kC+6ajjyZZ6sSTxEnl9858Ok+tXJkDePbBsTI38mjrH2JEw+Wbtix4+HX9ww+KbAh1c82da3TsSFyLClaCOxIjqK+Z5rnCy7fFe0lea/+QqjuIzLv376yRhz7lm/2mT4iuCxj4/kQQzOFWPtC/La5kltrBjomjPrEE/8fLfn5JM/CF/hi73jmvtf+89QfWLN+SaCoybVguagPqqu3UTs/Nlfisc/u6x+NOXxZz8Z9dS5iL/L6e/FJJmcZPWV5MLnS/4Yq914+lOuMbzGJ4+dU5Rs9Xkyxl2w/UuEFixb5qrFO3XJG7cJLEZxk9s3A5nyQkaJ6CIydGGGa9Eji7yLAOzWTrJsa7fw+W5Tw4MbNixy7LcpHPh8IKsYC5dNY3j8h8OGDcuGC7wHyHyiT86mh69NThzWPV198tM/fTbKhQsJG2QQu9nIN9j5ZxyRYYsNviDyZNHMQzxy9Fx04OF3ONLlA8xwYVQ6sMobXSUfyaVPRnwOOjUb9LWN8dmLboUv8hHBw5PX/DVG14HnPz/97W9/u74x58LooHMBlG8XTno+lVa7mPDRw7yHehjNuZfzZPhGpgOWDB/w878Y9cXJfzVqTJ+/SqQtl/Ii74itmXP81kqYeBNXO/xqMtlKVl/b3CKxiquY6KSv5ktF37jY+MsnZFw7eZhhNM4mSkbbXMAKPxk+Zss+sa/kiG19e6x50zc24+Nb+SxetdLcso/yR77DwM8H48gYHh+SU08SS3rJsCe+nfaYje++kQnH/Ch4bLg5Vdrz8mANeyiVH3r9Z6i38hvt/hOvr3zlK+tGjb/yJid8Knb9ePJnbTi/FGeZeedfuRW7PoLpRfv999///Iv2lZHn9sc3Ab/0pS+tF+1ezDmfJpkz69Y8etHuwcd5YG4Ua05/zi99Y+aMnjWojoyZfzV7MGG76TS/9jO/FPs4rHyB03lkrHHraJ4zc1/xRZ8vvXCG17oKg5/iUfOFvDO+vabO9/ab84XP8JLjhzNG7uCEr80mXYUeWZj2qPtfeggevoLSg8FORE4pF9rshktPcU1UEBk88cFS+AMb0ReXmmwkN66Zu056/BdTD6BsmGNzC8uDuHMHH/G58zhb/IbhYVMbwTdejPi+lfj08QMZD4V8cm/mHqFnCHPILltigeHlihKJmX9kFfdhXuS4/sNks1yHywc56dpCBuWbmk2luVOLs7jV/IGdHkyFLF6ER56suoLvvsU9UC84+OJ5yb8GkT822RGn+NTZgN88Zitf1OTgyXX+TD+SjQcr7OSLW58cX9T6ZBU+stF1mo7cdt9Mduaer1O/trocFc+UbX7NsXb5twe0EX/C4Ef5iRceW0pUf+rjwc1OMuWrvjo78IyXK/eY+YsnR66RzkV7zJgPrj75yU+uF12wboZgo160+1YpbL5bM/xD7VV1tprD2Tef+MWylI9/sqM/49Ymr8h746tx7Q9dc+ULNs4xX5SRC/LZgaOvVlD5L8fZUSdjjBwc+sa8aHefcfXq1cWf32j3Ao4v2VWHdc3dVWVr8rSzRSd7MFyb3Lc5t3zQ7Bws98Z32m2ekiVT4bPz7QUveME6L2eu4HdG8A81z/qdk9rWBkzng/Vhvjsn9GEZo1+e1cnxsy834cEkb9+r+aVo00N8c763J4y5NnvR6+y3JsTHT/65VsGF7yyRS1j2jbOxfwklDtcE+u5F1PRh8ZN+/miTtw/dL3me5DMev/jorOr8yq58wIPDZz4ienzC11bLmdj0K2S04ajZgaEvRsRu/hkXQ7bI2SvidL2ELz9yRy5c9o2Jr7hhG1fMrTjoaiM5sye9aHct4pcYKjD5SD5f1XxU+Oi5xL8QUHwIwjYZOYXvWoxgGuMLPxX2YCv8sofEBJucvJhzWHyXP/NqLGKrAtP8WS+upfr04CJ9JJ/kULb5Ih747NJvTtiFwUfzqZCDzVcYSIzmyNppjulW6Cj8VUfiISPf5QdG11Wy2vwnV7z0W19q/rq+qJFaSY9/rTW2Ko2r22vFRIaeseLmDz/0FbJyocYnn5/Nlb5xvhcvXfiwUbL0jdWny6a1JK8wsm2MXNj45pZ8c1CcZGuTI5NdmK1rctp4xY2H1Pwz7l8XPXD84pifPm9sNW7wz6W/0e7TasYFUTAm1IIWUE7uzpTI9G7Qv/8RsXyZ4HgVk9LEmAClsXT3WtyVZOtPO7XLUzj42uw2Fi+ZnU+Wb+fZSc9Dk/+cxkYs/xbVxJttduG2odgxt3SbezJz05HJ/+ym05g+u3BtJBdkdvDCzQ86eA6TcPSNG6M3iS8OR5gebGwOsnQc4OnmG/kucrDkhozDxwHqsBMv2zYzGfjZhRMWmeyUXzVZfvC3m25yqJjUE6u2mh4SB7koGX3tiYWnTyd/+dGNibbY7FexdhEKyw2e+TEniA/5oQ87e2w74DzwyiU5ffl28SJnPsy1C1u5oFdu1OGqYbg5/8c//rFukuTNS7uXv/zly46bEBd5fvppCt+0FINYPXj86Ec/WrmWZ/bZCldc/FG6cWGfz114yRrDl0MEY89DY8bZ4YNiHSHy4uVXa1FOrYvw6CmT9Mmp2dA2X3Dx8sP6NadkaqsRueLWzx5d8uHKEdzGXfD5lw26ZBuvzw4ZdqwjPupPOWPJa7NFTnG9cBPtBpiel8pwwuWDmMmRp88PfDUd9STzpRiLyKcbj57SWtxxpr3igau9Uzw1HLaLIZ56ysGob91Zx/MnBeTCw4EiB/8TPx3zhz/84eyLX/zi2qN8bn3yTRxyNnMXzxzaj85H81Uc5bDcy5eb+g9+8INnDz74INjn6TlkQK4/85nPrG8G+vkYZ0pU7s2XefStMWvKGWZMsSadFYiceWx+zRk8485Ac0fHueA80CYDD3YPU64d/LJHYZFTh69vfejbU8nU5gu/FDYjtpzT/LE/UJj2A1zyfKYrZnJeetDRR2TYt5bVzmYP7dNfWPmZPFltNvkCTx74rbi2wZDD8MkWH50K7Chb+sb14cmzdjx5Ng/p4osTqcXd/NMVV+ckf7rGWQN08cQAL3/Nm+uzuMSqyJ0XwXzyEskDeXbF5qy299nKd/rOK2e5uSGfnXRcr8kYt376+QB8vrPr/BOzueKLF9Cu5cb5g6+UA9dvLwv8x3he3rAlb+Llp7zQU9gNYwEc/5Rb+UD14ZA1t62b8rPLltsFcPxDFyVXDceDu/WpZousPPrZHXOB5M48qdkko8DJBzbpz3yEJ+YoPboVGPmcTmtYv3WYPCx8JXtqfTJsyK1zAA6ypvCi9JsLOunzRZm+aptHebIe5CKfq2HDiGAbK298S5a/MNUoPTWZ5IpZPxny+ggPRnL1jbFrP3pB5GzUJmtvuE5a+/akF+3+dZd9NW3AuFFiH/Wi3c84sCfnbGhbQ/ktdoU9c2R+kpM3c0e3uGBrl4f8bO0Yx4PZnMdTTwpTLlq/4ZELJx6b2VbjK3Pu8GGp8Y37D+re//73n129enXx/SsRPx3j/3dy3nf2hc82fQVNO9nCnzL6Ykb4cgZPvuknW13+9BGZSdfzxRx5pvLrAc5k+sUNU5tta0/fXOZH+4CMvSQm4/qdi3zRF5N1qpDjF3I2tS6cW87b7Jp3ZxZM+gpcdfkj65psT5Djq+uRPr45sccVfT7TZZNtbT45y3uOZNdzH10+OR/giVHs9lq6rhv8wcfjLzxEXuz4eGTZbbwc2MuKucg/PsBUi1kd8RkmLG1y9OjLR7jpGReL61/nHZ49ad12rsqPLziQg0NGKe/NKZvaarZgi1ObvFy59jp/XDfh8lX8xsnzV8xsFYOaLeM+NPdtdv9KwL0AfKUYzDMfYZo3emzIE1xzxq5aX9z5SIYsLLYQ3xWYKHv85DN592OKdUbP2uCzMcQXeZk5aT5gmDNfFiGfPWuEDf6Xz/yEiadkt7kxBqO6+acbsUmXv0jccJo7vmmzjawf/sgtnKlPrzWots7xEBtk+ZMemxVxe5agky0Y2uU73fw1Jia+yDU+X5EcoHJrnKw+m/IbPr+UfIET4fMXHjt8wEPpwSbDH/sWTkR++q/Pj/j00qdDVpFn69JYNq3h7m1dv/0k2tvf/vZlKp+ye7360i/a/c6TwJpIbYtZ2RM2jQtGkC0YY2GUGLzZ1o/iZ6N+49Xn8Y03Vj118JQmRI1MkhKROS/Jp3xrcUx97YmR7eynM/npp6e2cFvo6UzsYvGy5hWveMU6VMwXWYs0LHbyPTstSAtPQTanwiYdi7NNZ5w9eupswM0PbXYtaDcSPgWV2+KA26Yha025UUX6xuHSYZutKH9tUBcVMnjkXbhan/DZ4xM5L+UdZPh8c1DZYGo2lXxog8KFP2PnG73pv3EXFvJuBBQHDp9mfua884HNcqaukIvoI2Pk6aVrjCwfjau7sGmbQxdy/jpoyVbcEPE7THwYKL+zLS757kaADJ5v5XqQRl0o5Lg5yyfj7GSDLvKtdN8U4aeD1AdF/smOh2sXey/irZ/bbrtt/e6cnFtTfhLjkUceWQ+wdPE74OHyQR66UeMH2+K1Ftjnzzxw6ZExln94k+jw05rpgm3ceoGtwOCP3LGrlGPzZhzhWZ/lmg5s69caM3+KdeVGhTw7bobxEV14bKDa2TCeHbaSsRbY2+XLEz1kHvH4LWZ1JEf081972m1OrBH7iry2vcF/fXjFzD/9cqVmO3x28686++nRmWTcnJCfYzDT0SZHpjIx9jZ5cuZCHPkQjj5sfSROtq1HN7+9GDMHboCsc21n98c//vGzu+++e+mlvzo38Ycfv/vd784+//nPrzOAz/zlizHERnnIRP6bpx4E6Cavri82L9Xe/OY3r2+bhTdl4c1YZpvcjVI+X0/+RuUuwpk+3gq8i2w1Zp/7D6j8zq2HHHulfZ6M2vxZe/Lu5aMzDI/P+M5p89L+a1+ZM+ei808hS8f+c30Imxxs5wzcHgTlgT90YDujYGdbuzLXf361X5ah4x94zhf+ix2F62yFwRd6arJiE7NznU7YsFwHyDmn5M6e4iP/8p3/ZCr4bIafPJ4HTLkRE2KLT8UWhjE8dibBNg/lK5x4/Hc2FSd+c8JPcyU3cORjnpNsG5MH9zUIL319/phXLzHosgfXvPrQWozOIh9iw2Jf/L7N5qHDvBcz+84D61Ne2eEXm3DcAxhnRzyeHfzWpXWWDl/x8RBfPMj7/XK5bj2xBZMNOu45rly5sr7txx9rgF1+0lG6ZtK7ESoua4a/YkFyoNTfeXKq0EfqZLXl2LyJjS8KfHNg/sUE33g5DBNO9tWILoxskIWjz55cTT15ga0YJ0+/vQFTvoxNCg9f0YeF+MCmOWoNu57DROnkGxk2G4OjlGfYyDxai/JVLvDh7ISX/sydPMHOdrma8WVfne1iZGfnT/vk2EXZst/ck869ae3bA2T8q2I/AeebcdOPBXKDf/LTi/b77rtvfRlF3PaeNca2Wt6KX+zsWROu2/LqvhHf+nMukkXwFX06in4x5qbYrZco2foTr3Zjs4ZTXqdt7TDVk/iC4vtG+/6i/Vvf+tazv9EuF2yET5dP9bNDJl/IRPnSWH3jE6d+PH2yKF9X5/gn2+opb5wd578PO1/60peu8w2ve246ckCm/THzGB4Z64Ftc22dWAP2IRnj5tD+tQbIwcO3h52dyP2pwl4YdNiEW9GPxw5Ze8I4XBj2trairXQuikuc5NXsz2sHn1wz+G790uub7eRd211nxGE/8IUsW/iN2R9swccrJ/DpGFNcA+GTl3u4ZPNRm6/J05VHmHJMXg7oIr6gzkHj3bu49pkreHLrHIWlz77rnJjZYh+pzV9+sC8mOq0PNtlBcDw/u667dppPMfOXvHyqnWHmasZJhm3P3f1sjHHnNL444Ms14rt7Bb7QVVyzyYtTEbO+HPEze8bglC+1wo7aWHbEL+bixjdncsEmkh99dozD4Rcem3LgS02wxD9zR07+sk2eHj6iY9w6JqNkg6/y0r4xRjYMOPow+NragmuNkINBH355mRh8zxd8+0XJFzHTbw229tT2iPl0TYDDFh+M0YOBJx98TddYe4JtuSfT/Sb/ybCpRnDJqRFfYYodrljZa4zd1pP2JLpyjE/PWoNbPtlU4PGLbL4UD2xEnwxMeRJD5xE8Z4ozxz2vd1A+KPezYYjOZejSL9r9ZwoSxBHBlGyLBS+ajiRns3HYZpAAgSZHRrkeTfnrye7j4e+2Zr+2SWHLROyTvePWz7f66lM8NnZ+dqcuHqpujK7FZaN4IZl/+BWy+PLsJu8lL3nJ2lAW9pQht+PjWax0q/E6mM0/HQs4GeN48mXRmtvWSP6RwbeYLWoHOnxrSDzwYSN+WlM2Ekx6xtTFxbYxdhVYNpGLkhjV1pqLV2vWpoHbuAOfDlxEjk2F/3xz4TPOVvbU4lfY5n8vH/hn3HpX+OlTUw+BHnLhsg9TXd7oweGDdvnLJh5ZemHow0Da/NWnwy4deZFv+cCTWwefGNVk6NB1qBcTG+HCrr0axz/0zKULuAsBguPhQs7oyK0xBS6/6Cnw2STnotu8+aaOb7X1Qs/Nwete97plx7ca/vWvf621g+9TejbF6OdmfKPdRb4DHL58sceXbu6KEV9OrANt8h22/KKrNqZo70TG2lXYJYfU/FLKL1kER/yVxbz2p7zr7tj0+NsF2Dj85nb6p50vE58v9NhR12/N06vs+vrsm0f61s/01zhdmJPI4KnlyPqwF8i7OdCWe30+2aMK2XSNa7Od3zDpKNrT7pSZvmhbC/yEuevQi8KuP+typEZqc2Ft0UNhGcsffHJiMW/+xYYajz/WvW87Wk+ulx/+8IfXb4LSm77qX5b44Wb5C1/4wtr/+gpfJvE13/HJsG2e7K/mzlg+kRG32hy192fcs50uHvvZC884grdTti4aJ6PA69zRDo+9KbPb0J++zHYYu074zX8Yyd8oRnJwtO2z1mpj07ZYrDsPUR4SnWHlU+zOC1h4cCr8cib2IEQ2e+YYmRu6vnnsnNZ3o259wstHbft1nglks2Vs5pueNa/EV+vzn8986bzRnjHxzRj/vWjvhQC+ONjlJ+KTdeuM6z4iW+yRV8oRO/LJDzhk8Zxb7ifg8UcRo0KGPhyy7Ig5nxsjV14a4yM/xCymcqXNBwRXW4FFJhvZlwuF73jkYOYbf/nfS4zsOX+83IHpXsG11Tqyh/GcSR486DXv7lWsER8Myiub5ZBtufIyjz2yXqgr1pAHGDps+QDH/YFc0O8b7V2P8M2BWj7c0x0Oh7MrxxcQ7j3o4MuF+wO2+ci+awjdSc2bnCB9pK8Un3ZzX1x8UJDckgmPXWNkIzJyKM/mlwxMOZU7uvKGjCsoX9SzDy+M+DDwjLHPf+3w5IYNtXF5IiM3fC1OY+WCfraLj73GyYrDPhCLtvtf2Mb4M4txfWPhwGIjW+ruFVuX+ZDeUt7+GCPXOtcWF3v5hlccxrI95wpsuuUFdjFPs/HJK+4frcv2pnitX+sfln8J/rGPfeyWvGj33OdFu99oN8fmUuxsm2N5LFZ+aKutt3lN1jd/5KPiqa/mv1Ie5DXceFO++YQ1ae/DmfrZnnL7eNjx77nnnrP3ve99Z3fccceah346xjfanffykWy+hFHfXDaf8dT5o20c0YU3x9bAtbHJvyiO83TYsVd9k9032l3X5LozAmZnSXNinJ4x/uFbF/YSMiYP1olz2Dg5e8MatWf1rR928MmKk1570lhnfmuAbe1ihUWfDec8DHrarkvt63ycNR/g0GHfeWJ9sqHvhaix4nftsO/oOOvJoM58fP7DcR8gD2Jhk6zC3/D5TQbBdk+Uf2IUu/FiJifP7JQzmMb5aYyvCE5ybBq3F+XFtZccDNdXz89iYNOceMaVO/r5xwZ/2CMHT22cXWeRGg/JLd6Vax9ON5d8kSO+IPlkCw5M+Xf91vfln7///e8r1+S8lOeHMRjuv+hYU3SQeLz7ED8b4ikv5qI+PQVPLsQKG5HXZ8MY38mW89YIOXNGDy8ZNd1wio2c/Dkn5ImPiKx8kVNal+y1Xsi1HsSA6PMNsaXN3+zih6nNL3jmOqzm2Jg2DIVP+ooxOHT4jceGnDvT+cuXYi4usmKgZ468j7Jv9M1N+4RvKBx54iddmOLlU76z75yK2Ctnxdi+wEf85w/b8GFE2uwo+Q6nnOCRgdH6T18ejJcj9sxBWORa6+zHF4+4yNLnk9x4DreWnuu/LL/0i3bfvuMEJyW6ZLXYBY8EigSmmCSb3KcCXvw6YOhOuaXwX/jTpGRq7+NP3mync5m6GHfc8/hhs0tm2teWN5vqhz/84SoWx5Sho1hkFo8PR8ybDW0eGjNewUPVFqwyx813G4Msm8azrU3HhQMPloXcePgWNZkueh0aNroDANlAbLWeFvP4J5vZaqMUE/vwxemfSNkgLhz41ujTx98LdfDLhbzxwbjNFzZbbpBb5w5ivrBBhk9qG1J+tY2bEzmC66H1cDisb4mx7adQ/HNoNwtiy18YxtXIQQmHbVT+V+f4h23zX17yxzgcfFh8kAfj+A5CF0d8MgofUBh8Z7cxtmHlA7na5UL+7WW28MpD8zhzTJYvcMiSUfCuHM8G8yU2DxJetruwu1D7GQo30n6rzgO/B3t5d+MgJsRPh6Jvw5U7cRTDjIO8sYhM65RfYiGvXS7I8rtau/MruebFGL101XyqxGfXmrQeygm7+ZLP1rK8mh+EL6/ynowcwlPTxw+TTjb5Gl+bjppv9kS5aywcGPTK1dSjEz4ZRD/SNp6MesadbWtfjIpxRbu8assDfXYUumo2mo9pV3v60pi4GtvH9YtDnNr5nr7a2MxPuSn/yeIj/plLWHjskLWG4VjT2uyZC/Ie0P0nLDf7v53nQzVsPx3jN797+Cif/CkX5LT5gIrTfvUgoCRjnKy+gtTlTKzJmq85T9lbSrf4z+7P9I3dbFdfZP5GZKb+tIU/9bUbnzp7Ozm5b03Rm1jpyLVzy8twD4nOB3K7bDx169A54gGldYjvTHIdQuaMvJearpVo7k/yxUOWnnWer9lSo2TV1ob4Wl/G8cSrwPbSod8pxQu3ve/a3bWguI1Z314Ow+i6xO/WND6f4MFlt/MT336US2P4ML3Idf/gugQHxqRikz+22JUL8XVGwy4XbKJ4+gpsdsXWPYa++xU8eCjc+mT4JHb+4tPH12aHX8b5mD5Mc0vHOvB/orhvdN8gJjoezFx7XYPJ8dFc46mtPxhsGZtnhfPsyvEa34eKdNzviYe97h/Ebs7kWN74y36+i8UDvvtZ/vkWPhkxu364d2Bb25dQ+MXX5iVZ8uWePL6+Oaovv3ygnx9q4/H0k5troXUUZv6Toa9YG/hyDycdbXyF3/nOjrEwluFrf8Lnl+ukfFbk2P02O8bkRjH/CD5MusVgDstPNo01jqcUizZsmAosuavQI4PUYYl5xprPeNlPZylf+xMW39lQW3vqCh/af3gIZmuND9mAl17zYCw718yuCk/c5QJTbuU5fDbE0FxY9w8cf+PVvjqFOfHPaxeDNe6b3E899dRaM8VfzuBXYGnzVT74Jz7EN7pR+LOPR2eONXczjtkmW4GV7qzzybi2ks6sd9tiTIfcO97xjnV/5KdR9ed/huqc6jzMBl1yUXz1Ttme8tqzT2fXbbzauPYup89GRMa6csa55rn38/ISz5ylb53Lg745Vcig1gB567F9zI59aT8g10my9Ohbr85h1zs8cnS6R+QH/2A4t8lYO3ThWP9sdQbgweKjtphgkINLruc/tvjDPhkEl0x7jIxn584t4+Tdt8Du2QU2m613NTuuX/hda/ITjmJcER85fsBlVy7FKm568oAnZ/xubsgYV8OQDxjkleJiT9+ZzH/zyW85dV/tubczVL48FzfnMMixk79ibA7g0HHO8C9f+M4nc8ImeRiwYLsHhEM+/8Rm/p03/PEexHsRH4y/+MUvXh/Gmw/P3XCccXDJyrm2D9R7OU9G3HLKjvyYD3JyKFetWXHyDxkXl/HeG4kFBlsK7GTik2EPH75aQfh02LB2jIuXTmtCO1k1O2T5L1fF0fw332TlXizmQptd9hS4dFD22YTJL/Ji1s7P5qWY6MKiA5sdbXh0xAIH4WfbOFv6/De/arl1f+fei61iVxu31ujyq5hg4JMxL+WY/XKTj3xA9FGxWSf5vAau/YFVwaLPjhKWNnx55xPMiEw5zef8I4/oy53Y8fgMrzGxuX8k5wtv/kXazf5faZd+0e63ajgjCI6oW9jqmQQOl1Bjbo79E2j/Mefz9NwyYFF87WtfW/+pXTd4EFtsFoe2Q/VwOKxPRR0ScxNN+Ram+YxvEcKJyCh4yuyzRd7m7qKApx9Gvlnw+Eo22OWfNQU3P8labzaLDdHm07c52jz5zBZd+fHPlF/96lc/+008B6WLhotZF0225M/DW/7DdODAgOcwoMtHfXVtsnjGXYTo8NOn0C6QvhUG102xb1y7WSCDx39FHsQjTp+ieYgXAxklYoeMujE5nb6Q5VO5qm8d9EKcDrsOJ3KonJsDB182yjGZ5k9tXNHmSzy+iC8M+h3602dxmAMHPb5ceZmC78LtZsPDxoAq+wAAQABJREFUtnEfWrhxcPOj37eE5Gz6xCZMNmEiuSBXn8/Fqi4ONZlkd/kpp83P1ig70w99Y0prhbzSXJFhy3pXyh+eeVFbF9p84St9RFaMXdzSVcv1nPtiXIrHP3wnh4wVp7a555+2Qq58aJcfttMnV2zxytUS2v4Ymzra5giGm7bWjtq+az2Smzy+KM3FxGSyGLXJkCWjjWZ7yoa7hI5/GuMfnQhOa4uMQrczTRuv/NGzPiv66ahhmzcvtrw01FZ8yPSWt7xlfdBEJ/+1b4bYevLJJ9d1w01EceUD/PzSNl5frW9feuGIyFSMR9pit1bkST7Cs8bCnRjNCbn4ali7DdhwjVWSqW4u9cnsNO2dGk/+PH3jxqLz5GAbm7LpqKftMCavdvrVYeiLRa49BLn+poNfnHIevtwgeXSOeABT6yPr1DUNOcf0PRQ5X5C92F6d/rDVOcKHSvb0m5fquY8W+PFP/vPZddxLVdeHHsTokjHOJgxj9ow+f11LXW+LWxx8rm8dklPDEwecMFwvvfCIyLouuT71QbwxuvI2fbK3nOtdB8yN3JXfdPSLlWxzpe78b50XIxxtRdu8iT1ybvaiuvEwxCgOvsmFPl+Mq+XGPMu5h2kf3PCRnAcxP1shfhj8dWbjs4nwyGZHnhRryT2WwicP7dYJbLlRlz+yCgyELxfy5HoIwzfu3ROYH7lS+OLb8Hxj04f17hfERLfcwtVGcw1py0Nj5KwNMan1Z2kd4ckl4it9MXXtnnNsrMKeXJCDxXb21TDgKVG6+tpsG0+PnwrcirVhjbAjr3LjHrOY4GiHB7v5gJ9NbT4jNbth4BmXezbKmfHacNLXRs1//oebHEy09+VLoa9G9m1y+vhsK+FmD27YZCMxJaOml1xtfZjw45FVjFmrzmD33OZQ2z7yctzLqPCyeaM1W8gzjH/C3ot2OS+3ZJovsvKKxCU/bBvnK710yeRXc0NHmWPFS1bJpymzFI5/5pj2LLv89D+55mLv0yXPvt/M9e1+P41Kbr5od/6bC3Lki2v6TucU4c/484FsOnBQePXxpnx9NZl819/JmOuO58fD4bDWjrWWHp/sZfj2VvvLWqSbXfNrv5Nt3uf12rqUG+sDtrOCXfee+u2ZnsGcIfjtb7baA+z0YhrPtYWf1j+/6PFBPO4zjMHxHO5aYp74A0NB+Y/PR7h8cT33bM4Gu3ye9zuw6cgDHdfheGrP48adf4qzSg5di1zDOsd7AeysJA+LvHE4bCt802dPTpoPMdMj05zgkZET8YnVtUzdPLAnJ91D4cuZ/JsvtmDI37yGs2Wuycu1fzlGtuuoHMOEASsc8uZJvHz34ZSc8dm1lb73Fp6re1544QtfuL744z/rhetf1sjNleMH6daRXHVtN1/0xYXPBiy+y4H11nzzm39iQeajXJHlt/lWywHf2IGrX561FfmmJ9ZyD5ccIsMfuWTbOiLHLv/ITf3WvjVAjwweGXr85h89bX6afznBa87oFmP26SNy9OQBGefPXJvsKcUoPjZgaqPWptywC6e8GKffXBmnaz+aT7JI7uXXfZX7qGIlq/CZjKJdvujSK0/Fhp9/akUO+Uh3kj4b1idfUbaKhYwiVvMXsZdvYk4GTnw89vXpalvDYkzHGFvy5EW7f5Hmg11k7DJ0Uy/aJbBNw7FKC346UDKMuTn2H5W87GUvW4fClHu+feMZMMk2xMMPP3z20EMPrYXSYoQi58ji8S20Xvha1G02c6i0sMyPcRsavkXdhoMF08KHqU0GVosfz6Yg0wUhXhuRj/QVbYVM+I3zCRYcNd9sJi+hyHQo2gD5ESbdXth5SXX16tX10OhiwlY5ULtwu2iz4wbYOHyYvnHlsGDfwScG2Gr+OORhlMPw8Pnn5bD8GEce0L2ccmDxVZ7KVXkl72JmDsicR+Q7WPljntTlUgxk6qvJi7Mc89FFwUXeuJgVsfEjXX4oeOWaLSVea4gcG/nEf/lDcDsg9eni0cXvYGZXDuQxX/Mlu+p4sKLi1p/j/Nbnn7zwSX/6Q2fXJ4OHZuzm1HzPXGVjCR//tC7KET68MOHSae7SM84/xZo3R4r5yhcy5To9tXE61it9tuWquNX64ZR/fPLmIH/U2SGf3+WP7+auHOQH/JlX2OHD4FPrBQZ9+OwbR/Fd+BR7Jnva3QzQUdhUEDyysBRtVOzJTR+XwPEP+fYIXrLa/KYTHh6/Z2602UGwTsVtXSvGpz5c8ubZme2bml6aHg6Hs9e//vXrp7/gTvv6lyV2vWj/8pe/vPZZ+mITL/zmQlvc/NQ27hxxZvr5JoQ/S3jslIP9LIIzcytushMvX/D4wEZEvlynp979wJvj6avJwlVQsrt8Mo1PWe18y3b6xqbP+ufRKR08cV5E2cxH8+bBTd8eg6FG+z7Rh692XnjQ8qAmr/TyXdtZ5mzA04ePZ83oz/VhzHzHY1ubndrGO0fst+RhRbA7Wzw0+oKHmo+9xHLtIuPh0EMCnB6W6LsPcM3lNzsKv+lU7EWxdZ7LCTlxwHcdh931qW90k+dva7GY9LPdHGTf2Vy8M2Y66bFLnn/NBTw8MvZf1345hWfuejFA3xnpRTYM54l7H/r2FCylc0h7kj5536b0H5B74cMGvn0vn/Ihfna0Xa/Zkts//elP63zmO17xsNH85oex+GKRE8TXSa0x8TfHPnRxRronhGMN89FLSL55mO/DBnjK9KV8qPnKp/zhd+cP2/j6Cmo9Gwu7uRYHP9TmKVk5VLILUyzmp/wWJzvG8Om3PtimR671Au8UZRdOhY7Y3F+2funiWd/G6cEXA1vwtZExMeWPPhz6dKJ08LTlZpfLP+Nypc+OvnIRGbd+4coRf9B5evxQ2EDsaNefvhvX5xPcfcw4O62RU+NwzauXes4QL5P8pNfb3va2tZ/O8xP2RZSt/UW7XMBk11xbP+YOma/Wor1Czhie87FnJbLGWudsKXJAXolHTonyq/4cTy6sZOunoz/H8FtntVsn5PhjHuX03nvvPZvfaJ//GWp7sBhgaedXmK0h4yjbbCX7zMi//xZn9b9H/n0/AQeGmhzbchymfkROTK45/iX2leOLS9cMe9OeNd65QD8ctfXYmjRmLdgb1p7znB3YCiKLwpMHhU4+wvUhqvtt7Z3IseXsZcO1N1/ylR02PcOYo8PhsPYGW87np4//wrwPw+GThWHfON9hksV3ppN3De78ym950kadd/nfOxCxacPygax95PmCj7Bdv/hNzn0Gcm8hl7Bc75w55ZYs3XIpF3Kir80fvuzUWDG6lskPPGNs9dIPD8Hp/gGPjDgUOtZX9pK1bvhsXL74BsOeIEOe3V7ki819gzOBDfcA5OUKjlyovSvxZVn/3wSeF+3mBB7scsVvmPKaXb5Yy2TwrE/t7suKlX3rbs4Jeecq35sz9x4wyYuvawI/8BQ5YhMWW+SqjcmNdWbOYc0PAspTWPwjw37rgS0868Y+MBfWiHzgwTDOB7ktflgRGXqK/ZQOGwodNlt7cPkuliibfGWbTbG5PpBrXA3fPSOSMzrk1cYUuu75nAH8Jtc6g4Hywwcp8ovYbj7LM9+V6e8SvuBP+ZNfdvk3cfjKvrGIX0q84iFXPlozYoz4KU9qcsg4HOvCr7D8V/8z1PmNdo4pTbiJ0RZcpK1IkJv2j370o+ub7TY4WTTl06tu8gs+2foX6U+Z5JqA+tnZ6+yolemHdiW58JLVz351Mmo0+c9wrv+X/xaDxeL3qB999NF1YO1xwbbgHJZu8hxQdOgi82G+bB6y+B0E9c2PxW5zKBZeCzsZehWxk3FQJFc+yJcrvrYhJo8uPlvJ4Ok7ZB1i/IHvkMAzxj4cOtajixSeb2X5psPheHHvm+XiFZeLkAu9CwtfybAFx7gHSjLs2Wjs0FXkzkHSIYan7UCiyz/20uFL3wQjh8TJbocqHnlzwC4dOZtUDumJvdzwp7j4q8BHcqJPh3zj+vagi72YYSuw+BFPjfLFmBiVdOLxOXvlke4cD4d+uSTrouoC51Dtpoe/2Zg1THbgTptiw89ncoguXjlIl37rUNzk6qtP4dBp/tXlCzZ9cSHrQ3z8Q7AUuNNH8jD5roahjawNN0HmCD6C0RzCkiOU//a5eSVDFma2yZULbWNz3NpUiin8cgHTuoMHR2zk7Tk4fKErbjLFWTuc5p1+8cImj/DguHgr1gMeO/aHPgwEU0HwZs7hhck/bThyDh/RpVce+CEOfLxKesnpkyFLJx+KlS08fcQGm/JlbdCBYby1Q87698FoxTXzta997fp2qXE6z4XY6xvtcplfasTvfMNTiglfcXPtxtp8GJ8+zTYsRY7UCFa4xY9XwZPj9hEd/XDV8qpMTPrG0m8sm/Xn/GkrUT5Uh6fGi2Z7yhjXR8nUX8wTf5JrKHn8SmPq5KddbXzryHlhD1hn5sqak2/xt0b1yx8ZDxnOmM6NmRe41qu1AoMtc6PAIVtujeHxA35+abODjFnj1oSir0aw6OB1faXrA3M3ul60u+7z072AWnzWo2s5G12rrU33O84P+TDmbCQPW2FP7UGmeyNy/DHGhgdz2OKHad33bWy5EXs65YEuWXZnTOJOtribT7XYZ5HLciw/clHuyqlrhLkTNyLv/sH1lG3j8qRdMXdkFDx+sy83xsTtSzFetB+u3Rfhe+gS/3zRLhfOY+Ni9v8/sM1P8ZcD/harGNktPn63FrQR2eTV9PlJzno1Lz6I7OUhHh/++c9/rjjMqRc4YmSPfrl9xsIz12g6cI2j8p1v/ET5W77MXwRX7hqD1/ziyYV5cO0Mly4564Gsdv5pk6WHYMgBvnrKGYOJF5UvMSnlVpuf1rLzgZwSL3/gyAtcFDb9GTd5+4ccnEn5rCbDprVADl5xqxEePPJKNidmbWOt1ZkTPhdT9vX5TU5BdOMb055EDl85j8RS3Pk+seTcSyTPAdaotfrWt771lrxo95NI8xvt1jiSSz40b/rOPDz++BAWz7hiv9q7npeQOPDlDpXb5kOeyCjRnrs5lqy6nNJLp/mYWMbmeDJiKD7j/DSPp77R7kX7448/vq4L9hFdMbQm6PIJTpjZmb7Qwy8fjamLc8Y4x2HTDbeY8iO9iU3GurpyfMH+qle9aq0fmObJHmrdigmFJR5rvzXJZnFZg+4JyLZn6Gqjzinrg46aH/DY9dMfzvj8X0rHP+WUbWvMNcMZnC/kYIkTlvPvzjvvXLE1J64nXnb70kZnAzt0XOd9o9q1jS2+eNnnC2vOdeeXmIyxw4d8V4tFjHy397wDwdNG9pBrhXsH2K7/arZhioc8fQSra0l5mjmlI85yLB5+uPbKCWot6ZM3L/xxLRNvscPtviWeeXI9YDseHIXPsGGq2eW/a2Av7MVGz30CnGT1+cE+MidyAqcX7XIFSy7U7sO8V7FOzYOfxDUv5Y5P2ZMHa5f/5oj/dPD46XzEI+caIXa2Yc2Xu2StIWuM//SNu9eI6Mh/ORAvbJjmrj1Ejo/4aratSfjGktWGIVflS58eO3JRHHyAYb2yT57P4uYDLPGZj+K0XoqXHB34MOjyTa7EaX1mix3j6bMNhx18VE2fPVh45oB/7Jh7drXlAJ42fHy67n37VyfNqfwbR2TlwroRI2zEV5jsGteHv1PyOx8WG/DZ04elwFHTtR6aYxj8VyIyxmFp86nzLN/5B9MYOwqip9jD/9dftHPSJHPOhHJ2UkELxIa+7bbb1gVf4PSi5OqrC3hvJ2tcu5Ju4xJb29guFy+96uvpsHvK96lHJv+rw9efsvGrG5tyYRjTlmefJPYf4qQDIxkb1yfjbvRskg5vvps3GOYleTLmELGh2JzkLWxyFp68Nl5tHBkzt8nh0Zs6yc350eavguBmT58fNkb42uyQa9yGwGsN+kTcB0MuZg6v6RcZh7R4HT5k2FDkxD/LdMDxh16HRTlzcDiIHMqNuUDJA98c2trG4DmI2NNHxUtWnK0nsukUG/nyQa8DQJsNOvTDZLsbFLz45VcfhgPMQdX8GGcnu+SMRWHhTbn840t+kG3dqKe8Nl6Hr5y7kJgLPrmAWYthpB8+e3wwFwq8fMsOHYVchYw2goXKib5iPLlk018Kxz9wyZonJb365OYc8ilc9lC+0TVuPvAQ+3hy4WJoPtODYz1as10o6bBHH057o5xkWx3BR3Dx9eU8HH1j8NSw1OYqYs9cWX/I+MwB3rSprbTGycajmx22yXgIbF3gWS/2Gx7dcOjB4Y98llP2+Y2MlVdrhj6iC7sCJ1+M01OMw9VGU64845NrDF87Pl0xsD3n23wisubcea14MPaS8U1vetO6sQ1nCd/kHzZOvWjnW37zTRx4irZY8MnIv/PM9aQ8nucbveaHDP1w6+NVwmFTQeRR/fJKB0+Nl068pXTtj3EUhnaxaUf5EUaY6SdX3fjENQYHxc/X+saS0d4pP/DTOa8Whxzbm85zc2KNmy97pPy1d/EQG/ScJa4XHracHewYsy7V7Ttj5Onb985rY+Ev0OMfMs0HWW2+ID4o2a6/Bo9/6PKlNajvOu5Dcw9+xlzn1c4/sfainR1nZfPKRx9+O9eQcXnRVyP6ruPOGnGzy6Z2Z6zrdg9fbJEVtxgQXEWfXmfQzL19DQ++mKcdGHTnPOIhePgKG+aEfjbhmjfzToZt8XUfJx8euicW342LG8FC+S238u1ba4fDYeUDtodEubD/5cP+9+IdTz7pe2liTDzJybGcRrCKi44+yg/tYiEHqzE41qFnCS+RrAUy8gDLQyFdMfJLLvTpwYClTBv05JScnKgrxlA6bKGw9BUx0sFXml/62nzmI9nk+IRnjujAsGbIN8/L2PEP+8WQb+QQzOIK3xhMpC0++vCzA4cenri10+F3dmAiYzD0s0OmcTUZJX+MWxvmg50w1Ihf/DFPEzvMJXTtD0xkjH/wausr4eIXT7xykA4suQlXH+V7bfJRY2zF3+3gs2VfWp/WqQ/MvRy/FT8d40s7fi7FMwo7ctycFptaPq2jct65Wu7U86wQ45xPccGJV58cPsI7j8gkR6Z5oKPop38RL11z1Xy1ju++++71G+1e/CG/B/3Nb37z7LHHHvuPF+3GxMGOuBVtOcovMiif8ZXiN5a/Uy756uTIFqN24+oK7InFL1+y8J6kvdHeMcfknRn8hqngyYdCP/tsmHNFe8YBC48NBZ4adtd9+9aLNue4cSQecs0D+65r1rma/YltHA591xM/oeS8szesPR/a9qU2/a4dznfXfS9i+SMHruXkPZdnoxxUFyc/ybhP9cLey2w810JY9tDTx2/Hw+Kz3CE48iQWPrvWF5M44OOLPz11eq1LNb/lBbGtpKNtzD2+GLOHD8u9SzGqYZkb48XIT3j6+M2RWn5d481dPpFhBw6iT5YfCrvm24tIsr5pz64cyplc8Qvfz0AfjvcG+uaPTPnhk7mcfuUfG8bEJIedSfr4rW0+s8fH1qh1o7iWsmVu3JOwh9iDAbdc4ZPlpzG45U1NRyFfXrrX4zNSy4PcqfWLER49WMasLzHKK7/J6rPBD4WscRjaxiPteZ/dHPKfrtjaf/mef+pJckpPPGzxT/7YRvwuHrJkYIiTDXPuHsp9Hj/YJ5NdNXLvQI7v/Cs2sooYK+nqz/EFtP2BxT91+myEqW2cvXzhv2IsW2DzC08sdJq39occGKdbjtkl50X7gw8+uD7YhZc97Ruh5/TTMRzjlMIhAZgc7elIzqslKZoyeHAQ/j62Bq79SU63pMZTx5sLHR/m7lt6sIzrTx7+eZSPuw5+ZdfF50M+7uP62Sc721MWH4ayEz1kcfltU4vRAepQsunMWxsrWXja2YRLv766Qyp72VdPfXNMHqnhKGhihE3fwocRjholUx9vziG+eXaA+NTaRVWbngOrl1Ydki5sLirsyQUi72KHp41+/etfr4sHnngc0tY2/2E7dOiXTzLa6vLhAKKDyjd/ixWOIh56jdHH36k80UdTT6ziwnPxckMjZgQbH5VHWOZE7soheTx9RTtbdMk6dJRiwEf6MDu02KOvFkt2yRabHJInp1bIlbfkYJCVS3nUV8xJF8/48PNBXc7wYWRT/xSxSQ8+X4or2fDU2STvpoB/co3yPT1YCr38b2zWp/T4kB8w7Gc3UtY6Ph3FWHPdBUpuzVv98PPHGBl8/sMjq89PNO3na7bc7NC3/timp65kL36YcidvqNr6K05y5tae4lf2rA0vu4zDcKbBrsAzVh6m/cboWQdk4MoBSkcbf1I4yYi5uQyHDrliLG/4Ch2yxRu+MbLG+SIPai8SvVx873vfe3bXXXct8fxI97I1W/OnY+DhRdpzjRdLOTUud/LuBtsc4cGZvs122OrdFh57+EptNQqHfe1s1SeTrjZKp/oZ7jN/yUanxudYstnNt2mb/MRJZ/LjkZuy2TpV01GmLW1lYmvj8a290zj9aS886y9f8FprzhQFjjO+hy/7T9G3z+l7odk3nKxpJR/Yz7Z7QmRt48Unzwe22Fcrrr8e5FynrX8yfHI983Dn2ualsjJftHsIlwdYyLizot/sZq/zpL1PDr6xU3sSD0YPac6N/KaLmpNiUXe+iFXcyJ7mk/zFS5ec2GGLv7jNAdmucXDE53wmj+jSUbLNPoKPL5flX0zO1B6czBm7cOBq89O91O23375e+pRT+Aqibw34T97lXp74BIcMnz18uy7KNx5shQ98Q9kng0/fmD4/6cXDr59u9qrpkdMPO73yhq90vRELebrONWsdiSdd8vTVxaJGajmHIc/aeI2ToQevHIVnPSutGTmIyMBT6OmzgWBrm5uKfr4kWy6MNU4e3lwnYg8zfP3mbB+DO31dTh3/wLZusx8/fXa7V7BmyJln9xEwI/IXEdv8V/N9+jJtwUd4/GKbD+TFhuRlEj+MnfIBnvmYVD8dePLAltr55VugD9yi/wz16eMLwvvvv3+9aO9c8UJNkQt+iKF8NvfWb7GKLX/L0YxJe8qUi/TD3nUaj69PN318vPKo1o83fZk69MybfJJt/vwrAT8dc8cdd6xxP13lG+1PPPHEuk+ca5Eeott6wctOflYbS0e8+NO/BXb8M/XjVZPndzhhG68dttpaMqeuAYif1rlSzumJq/OMHJ75bE+UH2e5EvaptZp/2e46Rcd6gsl/fXb5RtZc8ME1hs94fGBb3GTp2ed4ftPbz+K4jzgcDuvcM27/W7uuJz6oxXMPYM94frd/6PtmdS++mwc+Oa/ZKHZYMPjiG/n04dAh7/nBN+nZE18xiVs8xUwflUs51kbwkX5zI4/xyg9suWndwlToG8sm38g4MxS2+ApbfpobctMme/myjF/r47kGy03z2zgsBIeMPpvseU/kpSk7CuILkhd5hi0m805HPPiu9a3D5ty1zf0HuTlP5LILjy9kzJO88MsLXj6UP3OjyBObOx5992piscbo8sN64BtMdvJRTaZ1XF7Ik4VjXP60rSNFO6IjD+ZJ2wdEdNJrLfEtWfuHTvNmjJ9iQrDykd/uT/AQHQU+PG3+ecEPh9901fZK9190y5146ZDLB208Y43LlRy3XsnCdY8kR3T4xo66GM0f/8IOU7/8q+lY28XNR5Qe/Pp45XSOw2E3ao2QNSZvM3fNJR/zi1zzxBcYnXHiRZ49PvShD61/laafb9o3Qpd+0e7BX/I5L0COK0i/myb9EjITUfs8R+NXw5kUpkSWeDUyNksyeOGpK8nW3zEW6PYnnI29uvvYeX18tlEy1Xj7GF5Erhzmv376akXsFpKDHFkwFhHZvaQLr7n837zd+YpmV9nG4ToQhajgCCoogij4h4jRRBQTJ4zE4EDieBoOCHoSnoxGQQ3GMRFRT+N7r93169xuqjrdnfZ7YL1rrWe4n2GtvfZ+d1VXG1fXfLMLI14xNF//ZPRXB8bOV59vPvE6RFwE5mz0UTmYs3HhOLwcgnTju2jw4cEnxzNPB795vRu+mpnzhfLP39rwd64NntzLv7zZhYUXJh5f8mVjXB5kfDa3rnKQs97h3wsI9nxY9/WVPR4bcnUxRmFuTMbsstWzj3cYXn/gIfmIX7+8YseHK071dcDRw9cQHnl+smEHu54uXA0v+9WvnuTOLDc0fvHpafh7QwmfTL56ftmYd0DTQ2QeTsRNVzx68dO1llsLdhoe3xqb4oATNh32/GooXA8g9Phnj7KzN9pD6ReHuevAzQRm8fJfzrCqdbkUgx4GfS/b+LL/ULGGybYY6cNE+BrKr72oXsVkTbTqThdWOZJ5GINDp3tPD3kbP9t8sqej52v5xSd+Oep3TJednm4+4JdzY9hyghMvm4Nx+qCnqafe9el+++1vf/uhb/AnF0eM+6K9uPgrV3FrSLybKz5d15B/etsLknKnGzXWk6P00slvPbkxP6ur5hpeNQ8/LDKUP/MwzrrpHQanD7o3YaSWbOdrE1+PfxOlv/J46a8MT12qkzl5dalm+BF5Z4DrA9E3zlc1sufsN2dCflyL5O3ZzjJzD9r7BSCf+vYIH3wVI9l5PfKv59e55DdA3dPExJffbHvL5Z8p68nDhecM8GXCOcSPfPlka+58oIPgw3PekIkTnrz1YmBL31jfl65s+K4+elTs8WH7IZS5c1EvruqXHl7ng1i6J4vFXKzOKeca//TpkGtydA9A4kZ8a2ISK5/lR59veflCChvxRS8sczZ+C5A/MfqyvF8y+bP+6u7LuTF//Ukp/p0N7ov7ZY+/1o+OmODyKW5x7DkuXiR/PtWEvXnPCeTsEFs4iF71MIfVWqmfL/Vy8wMBpC69aGdLt5atOPFQsTROt+ca8vTJjK1h9ny0hsVZ7GGz0dZ/PDrit0ZeLMDDg6E2aoSXrTjN2YuBnnjU1VqpYfGxMdbos6PXM465lj947SG1LV88MUbxYak3P+1xOq0rWTXAP9cn32xhkevxI77LCU8u5mLgF7Eph4Nx+Si39PSRWsBYG74RvXThd71ZG/8yzW/E+ZNMG2O499OH7YWj3+T+wx/+cKy966caWh9Elx+x6c3FZC3UAZU7mXxQPoyzj28OQ79rk43+ppZ9tnTEYL629Jb4iRqrP8r/xz/+8asnn3zy+A1w964XX3zx6pe//OXRu5at1daA7c4b4xeLMTIXY2M9/Z3TKbZDcP0Rj30xs62lKw+tvdt+zUavVvnVW+uNjY9q6fpJFw8eDHxrr7FtD/Btz+DRde3qzcXETqNXLGHkk658F8M93MtyPATTeese47owdn9xX3GvkZNz2J+FgeuXiN5yued7Me98c67/7ne/O+4vPXNWN/G3l/Xdi4z9Bjw8PosTlpftvSyUMx9qUrxkYhJ3ecpDnq0tXbU219NTG77M2br2PQN0FoSvp9860zempx7iYY/kAVecdOSdP/phHMrzwY4eX1pxbvzGxaFXF9eNsfzV1rj9Yi84m8NmLx666l4e9OlUW/dEOlrxC1Xs1SQ/8oZjP9CVOzzyGjl8rfzimdPT89cvStBF+dHzpdbykBsb+cuFrHpXB/XWkJislZfrfIvTC289gmevsYWvFvYCHT75KubD4PoDD8ldHHpxwBWzMd96cwTfusgXseGfb3jk/Gls8FxH9BBdOubqVAx8iFtTD3g9+4fFr+c8NnDErEfiZFe8fOTfnug+fyhfPsg0euIQTzZwxNGexxeDnm+xNtaLtX1XPjBckxoseupgj9DnD451dVaJW+//I3juueeunnjiiSNUdg9CD/yi3T8p7ULjrAIqjrGFtlEVqWD0jRUmitdcH68+mXkLi8efgmjGZGE33j687dNf3mLlk790zmPzaHXwbpvnl44NcNbDR/SSZ0O3zWes0UmPHR596xEGeXO87MJiVz2NUT7vzO580l+blRnDRbDY043yq6/RX5ti1ON3ANBfIoMtL0Tf2qEOVGN2ZCvHE5+LbuPMB1wXHmxyuFpjWB0+e9GLCYa26yEOhN/+opvO8ru2xIaP6GaH58Dl32GgeSjxYIMfpliNNVT+ejYO+15mkMNlU+34VPti4z89vBo9bek8T8aGTH07BOWLV37i7eyIlx29cspGPt341o8xHTc6efAJ1/nkRuAAhkWHnB45X6i9ZV5M5GpU/Q/Fywe+B5TqFV/8dK1lufAXNp46aPyISWxiLBb+2Ld+YdPXYGlwI3x+18YYTvvKjd6/4qArPxh8hrPY5GIVSzjm8vUwpP72HxtjvunSQbDlCN+4upOxwccLX6/Bz8acrmYM297xEkfM8Hvh1k2zvMjZIWNtH2DoodUv3/zJO2IvtuKjGy4dYzw2ez6QyUcrHryl/LF3nfpJ+gsvvHD8p1/0YL8Rgr8v2sMTa3WtJ2u99Fp7UQ79k1H1rgbnGMPffPE0PHbbNxbP2rQ2eO2Je9UhnHTWZzEWWzr1qwtHS7eeLj5Kf2WH4Pojefp6+bTvFiNeNmT0NeuiLtVsaxJ2WNnQRdYOsbFvz/pw3VO8rCDjX9+6stu5M8o1Bzcf5e/6x8unfvf85nYEdf3Bhm0vdOXL72OPPXb8yQXnlf0n/q5x57YHZQ/6cOXBlx45U/PNNt9yge8c7MsP/84UuZGz9aJeL4fyY9daVBNzBEPM/mYpni9hqOuGHOmdDZ0P5PJzzafL734JwFcbD/70NF8Y1MN5VgziFJeeH3Z0rW/1oa928mJHBis7vb1A35r40xf9a0Hxw2YLx2+069XZn27wRYyd/eG+2A+hqxV7umKTi5cu/JOLVc6+Q1iL4ums5VOD3R4Uv6bueGLT+MAzhoOM6Vr3fnDjtx7xYfaDGXbi2xYOnvyKBX/JuhVbOfPJRmPPthrIGW2s5HDpsy1+tvQ1cmsjF2tHBkOztudnq+LfWGGLw/VkL8KFg28MP1/W4LwmxUmfvXXUi5eteWtbncjECA+veomr60/9yOEj+sb68iSXJwztvN7FrobI3BiGeOGwWbtipC9OjZ7WWD2KDc8Y0YGL8OmZWxu/nes/U3sUL9r9gPszn/nM8beR+XAm2LtqJxc+i2NzE5PrzfrIU9zk1a645YGnTvryPhK7fOC17tnQabz1OvPYis06sFk7Mg01Ps/TD/exy73BDzG81FULZ5E/p+qHf/YV/XI8gE8f5xzD17fmxvFXf/nFGXzxw2j/qVl7OH2xafiIbvWHb62sWUTP+Zo+vnpWc3zY+YVhjg/LNYDXNalGriFEru3esafaVzDJNBgobHvJGK77qT9/Y12KBb97m3VyTfhXU/6lmvPf/vVDW98n2HjB7s8s9SLe/cVzqx8yuafQ38ZGU0v5WCfjXgBWBz07eM4YJGexVXc9H3Twd69u3vxFxmSw5Kbe8lQLzwDWEC4dzVhDdNXP3Prw6fsULESfvab2rbG4qmn7sjjIjLX1014rhs2Nnvuu+y+571PWnk56fKtb9xfxiZ0ePrkYrbeY2KlD9aYnJrJi5ktjh8RB5loWL/vdc3TJ+dInw0fh8sOvWNufdIup3hrx41rg29qrAV3NfjGHwaZrSG+t7V++za21nm/6+RdT37mtrXVDcuAbbuvEthzVK2w1pSMmNckGdmsih60vH+zx+NIQn9aafvWqBuplzBefcvQsKC85eVbgD66cYForROaHW2rGZzVma8xG45MPesZ4SG78wuSLDnmx8Oc6kD8b+uT0jfVstM42a2BOn513X9YcDlvPfFsLOK49Ocvf/dV9+9lnn7361Kc+dcQptwehh37RLiHUwutbCDcCi5WOoM6BSRqvAq/8Jn2+6PKDFEMzx99GvnPj2zDprm/zMONnT4bi35nd+YxXf7ZZO7Lm9LO5g/TaJz0bQUM7z05PXv+a9R19mzvZuV7Wh60edjVdjPOYrgbzXrQ50jNXV3bZbp3x+BdvF6TYXGy30cYCK3wXVVReMOHD1PBddBpiQy4O4w4AmGzDp8PGXncRuiDxImO6xVAdkuvJ44sl7PyKYW+ydGvwyTQxOLA9ZDq8iwOeMRwNlYOeTS/a5aCO1eRQvnxUB37LqZj15UDvJvtwzj19vtTX2urZ8wEXjxyZ59Mcn72Gr2fnwExv5fQdsmHy0+GrV2/6+G6k5uEYr9yYnrzVvfURF3wH9drjw1Lvam/OXlywEBv2ZGJyA+uBhVx+9lsYeFH1gAUHVZvs9HjFbb3N7QEPCPjZ40fiwdfw4dDVxKPn00OJuZsRntpo9DUkztYZFrt88dOYrnm21UkM+Fo6fKmbGzt7Y/cdD+vWPH98VafD+PJh3sPE+odTvvC3qX+UPz7pk+GtH7adE/IhDz8f4Z17tuLyUPHe9773eNHun0gjGG+E4Pai3Z4Xi7jbY2It7+IlT0+udKqhf37ry5F5dL8xiuWmxj8fZEgPPx/WVDz3omqYzjkm8zMvXf3KiiP5WRbW8tMNK1lYcom39o2zS1+v9prcksOxdvpq0vq1Tq0dG3rqd8ag62xwLpx9iqlrtnVxRnVt0S8fuHDwyOuN2cKiW/x6Ohq5c9W+F4dcxf7YY3detPsSQ+7a9iXQNaw5Azwsw60W8Mzp8onEhpevYnV2wTanLzfkS05fNosZn55Yq4VerHDJxOw3u/E90Juridjp5N85KV56xr1oD9f5IhbXqVjoum+rjaZOvgTRcfaR8x/Jmy98+mIglws89xv50nEPhWWcHZ5Y2Pdn+Xz5SA6Hb1+srIN4X3rppeNeyM6ae9GhkSH46qHR4UNOerFp1lM+YuSLn2yM4Yq7e7j48Plgg+ib4y/B40M9PDdZE79FSQ/m+qUnRs0YsUfWm43GF6p2xSEW8nDYiLUadE2IAZnDoteYrcYGhQVHXPrWzh4K23qoDzw2S+VAV+OLLqzu3fjiqLGhp/Err2qdLlu56Nnp7Tk9HQSnVu3soda6dTVXR/7Sk0v1LObsYKcHX87VqPyLhS0SU7GEbb7EVpMzfeNdH7rhpYtHl3+6zhe/oOYH5v6F2tkH/fuhauhFu9/i/tOf/nTg28tiUK/2D7/08cuNj84hMZCpWXrG+PLQ75yOFj9Z/Ho+qgMe0uOpIWq8Nofg8gFfQztef2Rh4pefMWy55yt5mGyXyFF4yZrDY6tHfKGN3Rjlo7j1ZOJBxaJPB17x022f0TfvGmpOt5d+MKpl8eEhc/svfLhdl3DtA+Ta0/LVNWMuTudC5whsONr648NeImfvnteL9nJ1LjinyDX3Lj/odF/xMt3edQ/3fQKe77Newvei3T3Bv1bwL83pOSdc+3q+xYuMxcuvse9l4iofOnx1PpKpi9j08sLre4T7HR57rTGdGszkcFzvqDzd39Q7W311ZFf98Ni4nvulAnnQYa/Rqabh21+tMxl8cRhrbMSaHzy0MRyMy4f7n+9PfNpn6qsu5jDUVN3VuLNXPelpxvx3T+ODrT3Ghj0qXj2io7FFcPqNdnmGIwYkhzDY7DVfruRysdb8wqcHL325WS+xdx3YX+z4pCdPdaGDxwbp7Q97FXZYxco/3/mnaz/3HAujHMoRL6re8iOHb6wZ4/GrFnyIWY3LXy+WjUcdwnVNyRlPnvIr3l1Hz4WuVz7x88M3vhz6Dkjm2qEnLjrFX7z8k+npsafXmpRT+4luOfPXtVpe4g8jbHO5yacc4YrBOsipPdrzZucGXLHw5Zpznrlve9H+sH/C9YFftHuzb+NJRECKUNEUo0VsY5pHO5a0Fu04veUZ86chc/70q7d48eHtOPt09XTSo1suKyuu7O41z1+64ejJqtmZ3zzs6ouP8JM13v6O1n8/zFSn7DY/69gmjQ8jm40z3XDyde6t0ebPjg1etvBr7JOfefzfRhsP7PaGC6/42Yap56cYitO8GtDnc2PugCBD+epLRbmuXofGxnHH+r9vKnzTQeUDx8UtDjhuvGLVzMNu7kaxBwe+AwKvw1mfHX/k4uerwzfs6qGno+W/XHddHJZ0byJ2bOjTqZnXyOUuDrxqX+3IjZsvBlmNncNZC6Pcqm+HN7nGn/i9LOhGy8ahS5dc78yjh/hD+RBPN7hk5MVV3ObVgxyVL5/p42lw8TZ3NuZ8i5fOjs3Zrh0esr72AbKmvbSBx6a9whbBrX50ouJh4yaFYKP2Sfp818qPDiouuu1NfHO68PnXjOkXmx5f3ZFYrZGaWCcyc/G52bZHw8VjIxay8Os3NvHQS5a/5jCLjV76xmqaT/qR+CJx5A+PPXKj9585+yfnn//85w/e6h2MB/wQSy/aPRTxLa7iJkfrp/jKM7m6wegLEptip7NYxjU6yeih9bfybO5o3dHb/ZBdfXrZrR86tdvkrenipRv2WRbmTfJ0b9JZ3o7D0VcL8s7wYmx/WZ/2MJ4HUde3uLsOOp/gZJ9PPT+uwezC1tPvTC22bHduzCcceEhs7R+87Orp88GvexFbD8L+WbkfBIrbf1TuC3lfUFzjfoPGl2jXsevc86ZcYfFT3uJG/JWHHtErTzUTy9aSnlb82ejDY2Nd2LtPy8Na+NvwdHwJQ+Ra55xc2ZWzOLon00F4fLvG5AEbnvu6GvWlww8DvKAIu9rDEB8f9Nm3BmTig4/YkqOtS+vDp/tFOIfi5aMzQHxq5T5qPZAv6s6GvgtYyxrf/KiBuvHPl2Z9+xJY7VsH823h6PlVi3T5Mo42XzWxHmIQp/0iFxj5VH9xdd3RhUePPoKJJ+7IGL+WHj6MdPXqqbYIJt/8nr/80dXINDhhqZ9rpPWFZc/sfa9YNl41MJeP9QsfLjLPz9rnV682xVNN1dUYvz0JC0bXZfWTb3nnk554khnLJV4xW6vWYteZr7Dq8dRHXIj+2pTfIbx8lHe5mSM45cImXnh44fKlPq4bL9qff/75R/Ki3W/1+sG739xWa6SGWjEV/yG8fOCrlXw0VE3sH+R6Uedoc1lePvCqR3Vqzr/xWedgzAes1UuUj/ozv3k9DHVfPDLzXRs8sRYn+U0+zrzysSdRMe84rGzTbe/QPeuc53BdM/ZOMnbFLBfXwebatUavPQAH35q37l2L9IzFJUaNfvuieoVXHubVwZhNMeoRuevM91cvi/Hh0c2WHzru53R8f+XDmeUspi92ZyO5a6h7vvPdPi1uPuXSOWTOFwx5012esRrB6/7Al2tAg8PWy0JnsDjhwwxH/NWv/MvbWe65BWbkvm5OpzEMcziN9a5n9ejeJE95VMMww/IMAENO3XeLtxqJvfjh7FolKw/3ausAf2XGbO293X94ncP8iYN/tcwmfnvBPBw9yp95+v1rhF3b4ueHrr6aVs/OMbo9HxontxZhilUNPUt6VqEDU+ytvfzsS3sGn72ebTjlgAdDruUBD4nTdWGPhEEPVjjm7PEQ23j4Gh/sNXO5WTNN7mGS20dhw7THkNjkFT6eerLXyMNhr/FLXx3YhoenPp017NsTZHDJYJZbfWsIS334CJc+uYbYiN+6VD98evwgtvSQuuAnO5iXD3nBgaE3p6vfxk9r5k/H+L/S/t9+o93/virxNq5xRZSIRAWr0BUbHy8yriD6WnJztPyK3EZJvrh4zcOI13zleM3r6fOl4dXkG8VbG7Lw8tWCZwcjnDCS6cNLdu7TTa95mM3519SqXiw2JF28YsvH2hqTZ5NO8Z/9048H28WyPH7JyaJiiLfyeIthjL+y8sm2vYFf/OsvW3lkkw/zyLiawoGrGSeD1YFnjO8wCs+4gxov34fC9Zx9B1jY5HhutjDx3bSKQU/eHAa5w1uPyBywvpQ7KLKhW6x6fIcNP9nBLke+4YRhzq59cBhdPlz/KGzjMPLJpn1AjuhrcDukzR2M7LNNx5wuag3zE4+tMylf5Plh01mVvbmbsZt6Bzpe5xfc5uTwYOM1TwdPg73EPzsNyaFaijcb61HO6evZo/KoBmJE/BUL/Y2DjI+tKftuwh4y+GXHN36xVSM++KanFQ8bN1V68eji450bGWx7rGuDLl6+zznCUG/NOGx6yfBq6enV5PwAwkZ98NWEb3P6YeObI37ooHwYwykecmOkfnJRJ3zzYmVvjFoPdvk+BJePdFx7vWh/6qmnDjGMN0Kwf/WrX1396Ec/Or5I3OQ/H3S1cqtW5YFvbA+4fvrtX3pa9vXiPsvYbys3NlH2errqxXf+s6dvnO3ZbvXoimWJPMz4YTXX09u+cfEVw/o7jw+Ay8dNWGT53Ri7NsVof7XXnAP2E3Jt7b0Ar/NtfZ3rxw/Mzh/YrlF818eeLzCLz3iJDzbF3d7GZ5Odnj97vHjFzq8XU/5UiZftfNPRwm2/9QJX7h7+qwE9Y3Wha86/HMzJ5L+xnHMQNzvxROZiRuzpwKjmXgo4T/H9lrS6k6fTmQeDjfvq3luruR4GHeuhBmKm24sJfsLzBdGLAbh47HcdYLDFL6fFLj82SLz0tMZh8AurvNJjV4316uNFRS/Mxe/LmFh9qbUWiD3sxSFrT5/3Kezw1UVD+XYGJYdDDmPtjIufLB01N1bH5NXTnFwe9pC1hZNvMnN51Iez/unDogfbn0jwJ3nY7BdYe7szVR7k7OqNI2vieoGHr4kPXrbsikOff3w508PLHjZZZFyj1/517Rqj9ohrVe70EH81GNZWvfK1svaomOhoxtWma9cadM2nCzuf7ODi8SMe2GKlsz7JizMM+tvCpZc+XY0evOIwRvlznvnTMV60v+Md7/ivuh6K9/mRX/+R41e+8pXjT8dYc37FJw59uRcHeGNrjMJh62Wmxg6O56JempTfYXT9gYdghLO+l9f42vSufvPFD29tznJ2yysWfHa3yfDln754tXzFX/zVx6cfjjnKZz15jTyM/KyNMSLr/KNvXiPH07q2m+uLm721R9YePwxrat3N7Ue6xuyRvBAewm//NCfLDs88H5tv8YjFPcLZQNc1u+c5nlicW91P+BWn63pj8GISnjxq5SgWMlhaa2qM6PGNX55kxQSPTvG6DpxdeO5RrgXnBX321QCG/KwJEi8dPPF60c5OPfgvNvbOAt/TixGP/2KH4bv/nlPOObFWX7rkcLTqQ48OTKSe/IuNzvqhV53zLW/3DWvARn5k5ih9Yz40Nq0tfLhsk4sBJj0EQy5sqj9+sbl/49PzrCD+YodRTmGQWzP1rD595zOnTxfJBRZduYkxnvXm2zy5nn45wDFvbdjzoT75FqP89fT1ckHhZp/NYrJtf5Cz1+PTK17jSA3UUxxipS82OZbn5squdYAL05ydvpZfGNWYL/uMH7Z8auIsVvZ48k/fHsiGnQbfc47YxaAlUysEE07xsXGNyB8P6elFYZkb04UHm644wqym6kOHfrnImy/XrPv2M888c/X4448fbsTxIPTAv9Hui7/ilbiCKlSJVig9PUnpySuMAMm3sI2TLQ5eBcFf2oSNm9NrTD+7M2/n6eXbnFzsq2dc/nTQ2jSX01ILyL6WbvNzT453L1p5eRaPGKqdzUV340rvjB9/1+ycczb46bHrAMIzzy6/xUt2v0SXfRjs4NTIw8Pb+dlH8W4c2YZb7PyRORzlhbInw8tWnYsH3+HkYk1+GF8+6LCF6ebewUoOwwXvAi++fOQPpkaPDIbDQM8XPfb9BqB5hwgfrQfd+HTSw+cbdr7I4rNH5si+MqbTtcLeWD5kxuuXHZnGrnOCT+dF/tnWyMIjr8GlE5nniw4iN96ziI6zy8uAfRgQa/GwNWfX9WPs3HNDhyH+cPDI8ZfM4VSr8u78LEdYGiq/Yk9HHbTm6er54cOXJTHJQ9/DGuzqDsMeNK9O8YohH3To2ldRvtimF6/6VW8xkdGD0cu1bOG3F+mYVws6aleDU7x0zRH9+OnIXY17CBWXNbLmYkJiZKfh0UkGH5HBNzduT/AjVnNjNZJH8dfDyLbYbsonPTrq5Afb/rbro3zR/utf//rqxz/+8VGDYjjv2WovHrGIHU9tkLzw24fq6++iejiGidjQ08o9XPOo2m+fTE+3RgfxLWaEZ65F6Zsbk2VrHl8fv3HzxYhHJ6x49WRo5431je9ovfZ55p/ja16t+XcumyN7HE9t7Rlf9txT0rP//SkTc1h6bWPC37WCzQe+NYeRP3bhFLs5au3FgtaH+a6/L9l+GOxloy+X3Wv881r/bLwXkHz7EmRvuS6te2cbf3LBaw/zgS9u+9JcHHsOFne2e723t/ViKmZ9e7nc9K5355nfupdHvv12d39zlq36heGcsEYavvrx5ZmBTDzVg0y81taLdutbXPjqookNHj1881o++Kej9vyoEV0xq3OEp/HNBsHglx2+OV9yV4MzwdZgwxKjf4mgdZ9kQ1ZdzOlbF/hkxlHx4MHQkDlf7uOIHhx11Mhhachcy9fqy0ndkFqRwbCX7CE+eqFPBrPasaOLL3555TffcMmsgRfkb7n8p3/i8KXTfYme+7d/paDxaW/jy1Hc8JEejj/VYG3iiVVMYsmvviau9GHDFXtrDYduddI3p9O624/tN3vA3tCLS2MHu7jZhkWuDkj+8NnToV/O+PJQh/KxBr0Qbg31+aSXLp6YtsGkr/GXndjMxaUe9cZskDEqD/pwyhEfyYW969WLdv+p+aN40f7qq68e/4z95ZdfPnLit2tajuqmVu0b8WjV8wju8mHfOK/YykkO9o0f2vU8XC7ZqIFayRk1Zl8d01mbahfv3MNBeo1+Lf6hcPmIL957UT7hycM8fHbGUWM66a49PfPbfJJtSz/87fmiq17Wy/Vjn/CrWSctDHp02BVbuuHQ0cyzo9N1gGc/anDaq2x2P8svjAPo8kEuzmoUv35jiSdeewu+c2h/4EoHnvNHg89neRt3rXce4KkRqgbsND4iMcKuFjDN2ZL1Mj0cWIjcfcw1gedsETdbc37cm/Vids2Y5weGWGE4E+mh4i4uzzS+q8Mg25ryw58Yqov1EEf7Lhy+08OTZ9dsNamGYpQfbI2cb3uATnIYeHqY8hGTe2z+6eL3nAJHfPSqB137jk+yfrBOlx6f7b/qRBe2s4cNXT9opisWzdj5pBUrnK4ffsnECwPxp7FH/KlBNnjVjg09eZCLx5w8mXXJVsxkPQuUG0yxsBGzsXzCIy8u42rKl7HnXzEgeghf7JoxPDXmX+OjnswaybO89dUaXvbVgz0bLXw2MOxpTd58qrG6k1sj9V5f8OVdbK0bG36RvNSnPzsIq1rlt3jZ0C8/tSEzR+ThNoYhj9Y6G3nC6p1PPqyl68k8X2w079H8fxN+uP3JT37yrs9jcJ8fD/2ivYArugQlJ1AJonoFTY9OlFyvkdXO8+zqw6jA5hU52fbZrX42ybZvXJ7N2eOtL7JtcM3Lrzi6MPK7sYS3fXav1/O1WOb5EIM1wbMx6aWvT/56Pm6Tw7Mxqwk9/uK3cc1bU+PabbhnfnHq3ygVr74auNAiscknGb4Ddm9+ydvvbOgjY+RgcqEW8+bMjtxN1wOJMbmDYWPpoocHn6wDgI25lxX9plsxi9VDRVj4xRdWNRULPQ0vXbGQaXjFb0xXLz772pitumj49MOLl2992MYw2OCxC499ZFyM8erZkbNNxzjc9MTRDYDc2eTQxc8v3Q717MjEl8x55gbLjm9zNx0PFdmmz8bYjcbNJD/i9XDEVszs6OHL/0x42vnmQT8b2Px4qdHDLXw3Q77DqPb5YadW4rCvqidc4/geMPFQvszJYakHP/KCVy3EYEzH3nTzsu+rEQw3+eJrLldjeotnzr/YovybG7Ojw691ZqO3Rv0knTz95HT4WhkdOW4sdOSLp2ff9Vt9t47p0UXi0m4iOur0v3rR/tOf/vT4MsGPGMpFzuLcusuretI1ru50y9Ee82LIy0V7AMHR2MDWRzsmq956PiN6tXjkYs+uefLVT2dljdfnxkPeXL8Y+aWz/ObbG6Oz3h3uaz6a1+e7ud7+U+tk9XKHby1cu64r9whxGjsP/G3T4k5/sWGx7zrmp3Xr3GpPsKve9gPfG8vi7jgf7RkvoMMLMmUAAEAASURBVHzx9GcvnAd9ecXz2+x4dJ2r/nNROThX+Ns6FE8xkSOxOXeQ3MujmOPb+52NcLV8yDlf4m8N4qXnXvuWywtTOYnDFxO/1e7vKPNLrxrJyVknXw/3fblp7roXI1/WUwzIuPs8Hj+wnWfOejwY9Pgql9a0GPrixI+zTm3UQG0RPTwNwRFz6xZuOfSylS7bpebicU9SE2vp3sknuVxhihPh8SUPfHO5ourPBoZGB5ZaaK0TDHOy1rw1CBNu/quna0ct2aunOqhvL1+M5QKLDrnasRcLn/CTH4FfPszj07MO/qTI29/+9iNGmD1TwLOuXjzYw+VgzB8sGPyL1zXT/VMc1tWeNs6nOIwR2/TlL2a1ba/QYUvGHztzYz7tHWcLv2pErmZrH4ZYNPb5gIHEUV1gZ9+6pQMfT05srYX6tIfIi1PM7Qc+kdjELGdjRJ8ePDEg+sZ4xaoXJx9k5vTMs+FTQ/Grhzp50f7Nb37zWOvkh/IDfBTjq5cX7d/4xjfu/o12OTh3fJdwzZjbJ+7H+uLamLm1/5xbxcmu50T7j611K17+jauPvtZehJu+fhtZlN3Oz+Ns44drbiyv5e06Lp+vcjde2drc5Gd5MLRocYzzkfy2XgxIzTqv25OtndrDw7dv9WLFa6/xufm0Z/Ha2/CMkb0Bi9x1RIbEgYrfXDOn29z4TOXNB31Ez33Nb3aTy8X16tzkU5yuQ7F0vYej1+iJkW94xZFcn4xvZ0PxwidDcPKF5xqx7/mFUc7wux7w7P/ORPVWf9cxO3FbN+euecQvnu/jxUze2rHzrNP9kh+x73qKUbxw4CUvJ3LrqL7dH/mi59rVm/MLV/7N+a/m9Fzb8oTNZ/FUW3M64abXnmWD1IkPZ4n4rJv1Nrb2nt/44RMmfbGxkQMqv160kzdmo8HqTIMFR3ziYM/GPYEeOZ5cUH05qK/4Nh46mvxgZgNXU9Ndd+vKXn5yMRafMf/ikLd6kBUHLOsSPn2x6PnwfxeoZfHjG9PRjOHBVwO+NHqasdiM+eGPL3O9xp6MnsbGnuJXDHT4kq/93PM5G37lJA7f9ay1fVUOYcNsXA2rgbg963gedC6IDQ7cfItLLHDhwNB33RnzsWROD54GQw5aeeH5/m+vyEFOdF3/7WkY/LBzZnjR/uUvf/nqE5/4xOFOjA9CD/WivcXdIpbYOm9TSF4B23DmGvvsJKyZo8bJFzcdvE24cf1NNmdZ8/WzYzEWZ/7Ezi5bfDbFvHPj6LzZ1p4OP/Hqs92++OrPtjYUEieqtvwvbjGT3y+xWYJXjcJeHbEkZ5eMbvqLtzrLL1a9lm14dONlt7rJ8IoHz7z6LMbq47s4XYRd9OTsOgjonOvoQu1AJ0fFBMfh5GDTusDDE2OxdhDAp0ffodiB4yBwGDooiivf8PDKp1z1YuBDLz8tIjcnM14yh4vE2b6CxU/XR7nGWww6xYAvRzjFRJa9HpEVD8yNS6z5r4Zswi1/8fLNl7GzrIcqOmHQIV9aDHYOa3ps4Jm7WYS/GNVJPPiInQcF56K8igl/4yiH4qFrH7S30teXk1jkBV+s+eEj3/kwlxs/agpbr1Vzvf3Kp56MjUam5vDkJh8PHOVTTGTFbg+7iS2GOYziyzdfMNjXYLMtznKoRsVOh64aFIc1cpMXJyIP10OEWqlFJCZNPHqY8MqvHOgXc3uwPoz8mIeRn+1hq7N/QeY32p9++ulDzNcbIX79RvtPfvKTY69W12oAvxzoJjeWS7k274xgIx8PTVo1VMfGbNktNQ+XbMfp0ktXT0fM6YpTi1afzpnCyj55/J3nLxx+Gp/t2cUL6ybdZPm5qafT/lbfrrueo9iQo3x0f/AFRn18ObTn/v3vfx/rU2yH0Xzkq3sAf52pcKxjOvr2BdnWfSCPIX/ZlYM8xOm+5UWdLxbGzhZxu5e5v/EvPz+8+ec//3k0ewnhw43KSy/f5l1vevtTHuLV2CfHhylGDZnb89UBprGGzx6Pnrj955rixvdl2hfFVy8vxfJbreDLvy825en8UwMy8enNNT7UzRceduZw7YXuX3DYaOSaOM2RXFEvFPDVk6+uU3Lz6mIOR8x6uTXnT0zWTq8W6kB+Ezl3/asX/7rCS2W+2Thz4cKLzMVXncVEFx/PGJ6zxlwd4KgxmRg0echNK3Y+wqMbrh7fOvAtHrXC657hvmbsyzXig9xa8MWHHlYU7rmm1tW/gvBb7eLu7DSWi3u4+1R54cszP+1TsXqpZQ34p6e2e05sLMZs21fih6mO+DAQPqzywa/x5eWua7W1T5a9vtq0z/iwR/RR+6W81Mt68Y2qsTk+ah3M6WvFitc1BxPJS51aV7Gxyad5+yV9MVaTak3HmC/25Vi85PhhmPei/VH9Rvsrr7xy/Ea7v9Fuj4rFWmhqKxZnghpVd3FurmJ0jtjr5cjOXlM769a+YFdN+So3PVwNhh5ujbyxnhzVH5N7zLNNzxzlR1zx4pMlP5RHf3XJzK1P8ZzldMIi09QkWv3ky0vv3POJ9NZLs458qbM1sw58qavri252rU8YB9jlg33rwBZWNTKHY//TczaQI/t5czPX2NDlV4/Oc3Z8aPTTcbbYj+R82Y+dY3S6DosXj27NPtPKG391jMVITlZNxKeWxQ+DL7nz5VrsHs2u2NmRdd7HzydMdnDhuW523djDw/MbycWnDq0tO886nZl8dF3p5UIXBjuY1ZVM/Bq5Bm/rogb02aHw6bBTg+IhsybuZag9xpYvecJr3axtudOtnrCTqQ+CHa697D5mDxTrri0c/GTud2zUwz02O3L7p+8W5nDEqGZizsa5JwY8sdHTs8Gjzy8iY5cOnrqqVzZ6rbXJNh0xq5sGB58vsYlFDuIh13c98EUPT201Pnr+hYPEvA2OePZ6MmdfTHRgn3MrF7346MuXnr3ftcFeLOaui95RiZUdfdR62Y/8F1v1LD9ztvLAUwMvunvRDmv3CaxyLhd2KBk+XHxjVH7N5eBa1diRy9n+7EU7Hl+ujWqOZ53VRl38MsTXvva1/7+/0e6LvyIrWkmdEyWLJznB47ErKYlVDAVKf3k7pmO+De9McJB+x2HFy6756pOtvphXr01ED5/ueVOQbX3otdmMV0YXrY87nJs/q0E1DE9Ppt56NUfGqxNqOPqHJbi1xage+nyLZ33ho+JozuYmIl/7m3SWRxdWdVjZg47hVFe25i5iFyN+8+Kz77sZk2ldC/rGLmQ45mz1dJG5nKsLPzA9wDj8HAz08RwGevuKHZnDjw3CR2R4fOrzaZzuoXj5oKOJh15UPuZig12M9NrbYmu8a4BnrqcPz+Ht+shXPXk61cYcbRzJ8HfszDlfr/ziiZlfNywPFPgbc/HBROWoFz9bOqgcejCAr5UnnezYZJeenJZvTuahw8OFGPlD9MhbL7jFxp8YtGpKH1b89OlqqNjMw5KTemj5s9/dfNs79u/Wmy81rzbrK4zdV3yzwXMz5/NeFH5x8r2UP760c17sxaamejpuumojbvvAWL1QtdgxXvcyfJjpif+cpxiT09Xo8K+RmefDmH+1dr/9/ve/f/WFL3zhrvwYPOQHbC/a+432Yi8usZSDcXw8a80+G2eMGDsjykfs6qOOfWkkY7fru3mXDl5+kxdPOmIga+/C5ZMPPPOI3pmWVy504GpLzdtvZMWl5xdGPtOnZ0zn3JKtLp48y5WsfcPeWJ2NnQX8pc82H/Ssi7USs3sAXQ+VxXr2yz5/Xdew+UOwYbFHZHhwty6H8PQBVwzuTWJz33L/EqMXtF4Qeiltzjcd+p17fHnR3p8lKoby1ZdPvF0LeMVpT4o3uVCzMeZLDOVdTdr3dMnMqxOs9HoWIPdl2370QhlZMznxL6bOUWcpTL7lzZacLzVxJrq349FTRzrk8F1jxuQanG3FS4dvBJcvOXSOyUNt5UIPNptyg21c46OxeMzp+EGA3NgiOumK1T70W1DqoiZ8+oIlDrpLYerhVetqr56aHGE50+HkG5Zc+NDDKZb2AJ/iRuzIrYn6wLU36fjC7EslH+4X9mTxsKOzMTaGy7/cxaiu+ebL9eA6wCPTxEq/lxzx6JBp61M9XFPtCzXIF90ldprc7C1xV4Pqk345wCBjoxnzxd5aqx/dah8mHHz2aoDYqy97JKfqUV7msNiwT8+4Vj3zyVad2OCR62GJB6mTJoZ4rb25vIrBOH06bFC5FRs9Y219pSvevqi/8MILj+w/Q/3Sl7509dJLLx115Ne50FkiFteFGpSPeOjJqTzt8c4BeW0N5WyNqhVZNaULp7WADVPDi5Lrq+/Kq+Hqsa3GYeKlIwdEBw+G2PDN1zY9scqn+OyLbA6wy0f45sbw1tfiZ5NOtvpox2KKjMURr71VjK2BWsOgW62zE384eBEePL3Y6JFr6mQtu+5aSz6KpZj5C/dcJ/iu+eT5SQ9WcdBDZPx3PeLB2YaHqnN4YuZLbNkXJ1lyMnyxF1/rkx5/rhPyaiQuzdx16jxGbOiT8W8MO5nrpnsxGXv+3Vv9KTyk1vBaP73nHTwxVJPOLThwXcfk5jCLgb0GVy+u6sW/htion5pUM1gwxcceZvc0GHh0yOnBdv+hIz6Y8PNPP/98qpd64NFnu+vOngxGa2vMjv9q0XcxOnzjI7bONDz3NsQ+TGO6Xs67RxsXS/WFieRJJib1Ia9OcFB7h04kd7Z0YGlsi0fd7CF6xeM6o5NvcamNZx4++GVv3dVCXMatB998FrM5u3zrydjyr0fi5ksrF7o7Fxtb8eK7n1vDchaDvWhP0MPX4MA0Fj+iAwfl75hcz/MLB/GtBn4ZxZrC6ju5sTqwae3YsI1vbiwW+mfCswZiEpu2+u3tdOiRm0d45mzf+c53Hn/67bOf/ewhvslndjf1D/wb7e973/vuFlqRBVJwbQAF0vAFawPoIw+WmkVkQ7cFWyzJlFCFayPRq/DphJ9dm0GP4qdXXwxtIHxFp0/WBuXT3CbR51ccLdTaWEy61SMsvXzxwyiW2/rqQs7GvBYvrGLBl0f+kuPfRrfp5D9585twyFobcjblfrYvh+Ikb6+kG8ZtF9U5hmLTw83OHGb8XWPx3UbhkbMxF2M3xW463WjI8boRr34Hqvrgn/3CreXPXNz2voPclz83a1iI3DWmdd0Zi4HN1rZYkucLH1WT/IVBjqchPZ5WTQ7B5UNO6ap99c+OvP1Pphbd7MqVLlytvVRPlm88DSbdzgc6SD342Dobd+3x26Er5vwXM2y+ELvyN6ebrDqb02Ffy7f4kuHR1WtkjdmRqVE/edV70KCDrxnTNXbOhG2MT47CljMMesadTeYaHDd99SiG6ksuJnN7UL7m9mH4/OHVDueXD7aIXnUqdnxytXQ/gE8vPj1yPDIkbnw8dnJB5HSz0Udh6jV5yhF5adJZrVej9ge8amyvhElePcjXL0yxdE3yVz3paXjwygUWIjOmz96fjvnhD3949cUvfvGu/Bg85AfsF1988epnP/vZsbeKRx8Zy7PGxrp1FuDT8WDmIaQ1tX/UrpzCbq/kQ+4wkxtr+Ehtqz8ev4i+uqqNGNggutbTg5peHHTw08s3/ezxjJMVF9zs6BtbK7ooPXb8kfG1eZQPHbJs8fHSrbeP1cma6+WJJycPovTghGVeHEdQl49w2WoIT/zsonye52sHm/8IhnWVB3sEO4rXXA/D2vlNb7+5TscXTS+h7R3PgHr3MWumiVPvt57/85//HDH4O469sIYrll03uGI5xyMf2OKgb53SKV59edNT+/2yQaYOZFrrhL8+jfuCx96XbdcGfJhqZ6/Ir7joiS/8YpUjPOeh81WN0oEnDjjtO3p0sjsGl4/y4R+pG1x8MejxULh4cJ2DeOWLr0VwWquud37KOz/WX4MDj033tK5V56/1bZ/n46ZeDLC0/BuLty/pfCO5dRbgybm80zHvfGED30vr1sV+bf3gi7n4YfMhL/p6+wzmkvr4UulFfXuA//Z7a6DXyPTy0+LBR+WNjyc+54bYyZzBew5vLLA1Nu7j7MUrfkSGB0uvITXmw542ZqOvvnSswZ4P4cDS6Ku1+sISP331sedQeVcbcjEhPuGgakCO6PeFvRqEyQZu9RIHgieOcsSjg8qdrZhbX7HQ0RdXNWh+AFx/iMW1+a53vevqe9/73tHfpLc2t42L869//evVk08+efzpmOKUkzU1V5PqJkdUXl2L5Nnow9aLD09t7JH9HgMHJhwY5c5OrVqf8GBlIz76eFrXAjl+McJobdSdbjl01qQDw76z1mGQsZMDHGP7Vsx8uA7tFfFbH7x88xWfr+qkJ4MJP73yZy/n8g5P3PGS15Pxbw4TNsr/Mbl8lH9zvVrKh13x0zNHxUevusM3Ruql8bXEXs00Y/VVBzHC5NN+1pvDqE75pwtXbRYLPyI3JxdT+OqBysm60TF3prHjB4nBHtVXb1jWu7qwbc34INfisWvf2OsaWznCKQc+04PTteHeWy3wzfuNdrH7wXPxw4CbjVzkq5Gx51MMYoQrzupvrNHTELtyr1bVnp2Y6cgJZvXi033MtcA+XGcz//Dds3qmoYMnF3FpMFtH9mKnA9ta6c3J+OWfzeZbbcTKl3jEzC5iQ89ec932nCBftQxPLJ4jYFUTY7GwpUeHrIZHJwx+zZdX7dRRbBo8vzQgZny4ntX830L08dLPp3zgshEnDGeXOqt5+6jYz/lXK3YaPT7U12/Bh0GvGOWF6OLxLx52MBB9c7W0hsZ0rFd7sTrRJ9fUqtq4R9DHY6tPTrdY+ULwnC3WspiqOV0Y6qTGdJA82Ys7H1tr/lDxG7fn7T+65bEYcqYHk29U7PSty3ve857jX5Y/7C+8PfCL9g9+8IN3ExVURREQahEELTEJWkAPrBaNfslLQEItxAFw/RGuHoXfYuKxVXxEz9xCtJhbODrmcPhD9DX8Gpx8kxWbTZp+GOnJM10LSO4C8ltYNg+qLsb0i61Y8G8j2PLU57NYsjdH5HT5QOqFJ/57UXnSPROsakqu8VfeZ/1i08Otthsr27VPN6zqY54s+3Ru6ouVjTjhsDMnM74J5yZevotTryG9vd1DqLmxOvFlz5O3P90UNLxiYWOsFSM714kbMr5rBA/BNu9QKxZ6yeTMZ3EVD3t6bPA0ehp+ZL+IBU6Y7aGtpzE7MjEVCxx7Taum9fkwty6uja4rPV4xVpti3bjpwNDIHZSuOfYbB3/5Ei/Kli6e69WB72Zszl5NjOmgfOvj62FpSM9OPGIhR2w0hEeWnG61UsfOjmz474YgjzD0MMSMnDV+S7B49W5SPezwm33xmuNreHo3NQ8AHsBg0Cn21W/PlDPb8ujhJ53sim3xyCJY6oHYWtOuHzJ25Hr+IrJwjFFzPsuveLJTV3owqxN9efQwh29un6qnfUJnfRYXP2TWBcG1plpx4fFJF59ua05ncWGpgRv8D37wg0f6ov03v/nN1c9//vO7+chRTOe6VTtxWwtnkodJtRRfeZqrQ/nDM1Y3exNutZaT88w+QdXmPDavVtVYHCg/x+T6A896dS0b28/8qzW5fCJzrdjEwQ+i1zrKwYPw2sq3tZQr3eQ35VMebKoTjHDEpx59ueu5CK5nCL/1wa66FqdYG/O/MeDzV550xRE/O/FqdDVUDslg8K2WfNAjM4aJ4GVnji8vL17f//73H/tYvvLUGtN1bclTr95evDqDXBsw+TVmU576cqHDnzjxEV3+yTTxw0Ybq7FGX8/GvZO+uVj12e3awCPDYydOawbLdVKedFw/nWfmxWessXffx6+mxmLf/aX29PERO/tGw5e/OiA6eHC05PDyEV568Mj7chMGvXSz5cu6WDc2bMk0durilwI8+6sFHpn46LdertW//OUvx4tDPujdRmTFEo7YxSFm+0Zc9PDpFE/xw6ajJcOjLwfNGIYcjFGx8yVmOcBAsKN99oMlLvdVLxHYINhaWHzYT+1ROnSdZ3h809H4DEd89hUsfLrdq+zh4oOH2NPVR+bih8lP9YVr3fiwf/DlA7Prib98wGFvrkds7WvXQ8+tcOmUq1492bSm5IsDG9WLVRMTu+blBUdtw2jedR1W9TjAr/E3D3I5qAMqvmqEt3GXNz6iL/93v/vdV9/5znceyW+0e9H+xBNPXP35z38+fIh3m5zNxajWcoiHb05mTbsfm7eX2JSfsTVvbq3kBAdt3enADl+vHlrxtSfFY30imK3Vxl7di6EXcbDFa6+7vsTRvofjBSc5LD0eH3J2Lbqni8W+K5/zGSlXuDBa13ITNztEjsgas1tc9tVQ3mRbm2y3VjDphWOO6DhjNHWRR+dENbyj+do5w6b1FSMbTZzFUU1bc3znKWwy2GTuNdZFXO55+1zQOUHGDq3falkNzNnwBV/bWqhZNuLd/OQOW6PDDpYY03PmwICP7PfOI/WjH7Ejh6MhdsbqJJ/qxc4e670WPfHAxEfmfLFf//yUs7jFR7dayEf92i/2KBk7MrbmCG7Y8eNVz0Px8sGm3ODb364d4/Llw9qKx3OYZ2hyWMWppupkrh4abHZwrJM9kT96ZLDx5EOHLj57saiv/yidrVzsM/rk/LNhS7dai6XnD3mzhXl+HrLfzvunOsGCL0/U3hQf/4gcdk0cPZvTJ5cfv3DJ5WOM4NAROxkcxJYe2/ZEeOTsxFVTC/qaupKLvz9JJHc+5QpHb85+56131w+dxnDpm8tHbGJfLHM28hBT142YEVs4CBZ9PvHFzBbPODJH9K2pX7BR485q/HxVK7mXH54c1Vis/ImhXOmtX/rhiKOYxcGeDL5r2H9i/txzzx0/4BYjnAehB37R/qEPfehuIgKSfC3HglAQCVp4D1n9JxBsNIlJRH9u7GG2sHAUEL/NlS8YiIyeOR1zfvTwEUw4YsOjry/+9Mm1cIoFBv3sYYevF69F5sNG8Z8+pcsXHdQ424N5+UjeXI8nDnmxE0uYqy+uWnmxZ4vY3URskNyrw1kPXo2ehuKFsXbFQFdd1j998tZ/84BhLkc2N2Gvn/O4WrFjby2M8wlbTOvzNh/ZwAyjXvwOIPu7PefQryYdUOaoByMXM+J/a4AH27Xip5N+smzuAMMTA328jac88Dp09PyJjz6d7BcDT+xLYePRhRVua6KuMGGT8UMX4am564AePI1+sdIj61pha4/AN6YfXvNqXHywrCO5mhYTuTEio2fenq0e5vhidePT8PjRjMUTDh68+MkOhcsHP8VabGTqIybEhj89HPrGmrjUw5hNscNiX/70NHoeguk5a/wN5jDl5cuEh6jWIRnsMODiIzZuar3kMuebLqKHxy9+ZNx603FT0sTLllxjh/AWWwzkxUfG1v51DVlbOWrVId+v18PU+GQbFbP+zKevrr7QVT8PNeb64tSzD7scNje13rVcX+xg0M9GfPhIvVxX/4s/HfPb3/726he/+MXd/da+41ce4hGbVn7OOWeSF2dyEt/WoP0aj1z9PKjbH8haWlc4+urBJ6qefMJDxcGnfUEHtibOdPXy0HqQ9cMn68YWlRtd9uLixzwcenCdR3y7tlxLiA6CV+xwipG8XA7F64/s+KpOahGOdbbXnfPOe3ki8fnNbtclf8VUbYq9vPTFYBxOMYmTHD8Mc2P4WrrXoR/66qGuHqq35nTKPYxyJZOL574Pf/jDV35BQ875pi9/uB6o+w8yrZ3fZJdr69Zai4+/KCxzcYldo8NWMyeDAROJsTj15U7GxlqwEaN9nz49cvjWRqxk1k+uePyw8yzANn173hfw7pVh8km/a0NvHonZeVTs8MRBR/58iLdnj9aDvdzTo8sOwRInObxk1QG/XOCJNR14xV4d+iJE5pqvBmriP7X1JbD4YLNfgvP73//++JNW/CSvX108fsTKrv0oXteqWFo7elF2eGKgw15rTtZ649XY8ic2xFaO1RAvXXquY/laazZq4p+0i40ePxqZtXBfMdbLIR0yc9eIONlUEzp44lVnsZjTZeNaVRM8xK484LAn10f85ce+cEa7l8PPXpx07H37kt9qSYbI4bJha9+7b9infMNmJ0Y6YpY7wtfY1/A3d2Oxa3zCoFvs5igsfGMx85X8ULp8FOv6IAtPvPJAcNSpswwP3vrCi9RG3r1o95vt/D0MFff5N9pvwqrO4jaOYNRaY2eTsf1q32r2MTv1rS7ilrsa6vcahE8PD1Z25aqWmrmasF9KFg+WeOxvmMZ69+I9d11b9rv6u9cbw/IClA2yVmzsF7H5wTVdcfSiiL/iZkNWnuZI3ehp8uBHnuJqbaptOZqLw5yeZq+Xf/p6mBp8uNVKbqsHy3XpnJGbONVBI2NHvzjxkL0gFvz2qz652OBZf7XAd2aJNyxy+xkWWz7J1YK9uNmKQW3xwywmsbBhT49dudLniy5qTJ6+MeILtgaDjV6O6YgVP1xx+5d0ziM1zLbYYfIpdzaIzHq1t8jwYPjXevDoyps/64LM7d9qpxcbn/ywEZu5mhvTgW1NkTnfenjZ0sGTJxwND0a043j08eWgnvxsXaup3nfB7qfw+RO/+4I60gkDpnrCh+l6Q/ji6j4Fw57pGoYFW454/i8ecn6cS8h1K146sM3VoX3oTMAvL+vhHUr1gM9GrMb0kF48sBAfeHTlod7VmG+1cM9rz/vO7dm8XOjCZ2vv0zUujnMOfJGLi22+ypeMTjUWA5lrB774YKtVL9rbR1ur1hqOBpcv60ffWhZnmPxWY31xyA+eZqwm8oeFR89YTHxU1/VJR9x80TVG+Boc57P6+i5gbH1r9kVrBiMbvdp0Hm1NxdrawBefPYnUhO2ee3zBpuP5xX9a/9WvfvXq8ccfP2zk8yD0UC/aLXZN8GcSRHwJ2fgOJAWK30K3GBJtQ7K3URQAWQxjBVo627AP4yZdGG3iFgEGXf704qvxa1ws4tJg5Lv429g2HbnF9tM5YzFZtPBhIBjZ41WbzdGYjljo0wln9cKi9zBUzrBvo+pRnNVQz/8SXXx1qbbJi/UmOzpqcVOO2d+rh1kNxNkeupfNbTJY7afNz9h6OqBciOVqTJ+dm4DDwBy5iDvU8geHDn05Z+d6cbM2J3cD60Bhmw89OzjG4jCn6wbm2kPqgEenPOhqeEvswwo32+pZTZOL0Zgt6jrTkxXXrqmxa8Pe4M/BRn/zhFU8cJKVAznKLxw5w0X85rM9ewguH+XS/nTjQnwgsbC1Blo++cJndyYyejDgm7MV19qFXc3I4ImbHf18kiG6WrWk68EPOWs8FKUD3w1QTnBhagg2veIi54Pci8n+xp0c42evhx1W/jrzxNZD2OHs8pEvWOWUT3O1gkneerFxLWnk9NKlQ/4wxAfSbx6LJW8PUmqrrmLVqye+3NXQfqV7jsUcH4ndGRGP3/JpXfLNBrY8kfjsZb8N7J+cP/XUUwe/HI7JQ3yIpRft8uLHXtKjYj2vsbVw/9bESN81SU9MxW2s4atXL9rJ5aMe9oiz0FqifB2T6w/6mnj4UnP6sNVKzGpIhwz1IJasL9Th8MMGJp0epsiX6JFrriF5LIkjm9ZNXBF8bam64LHvXIRjrCbOeTXCoy9WzxCubTx1aJ2qBz9iyL+5+PGM+aKbPZmxFhmnE2/76tF+gZs9mYYHQy7lZo39U9oPfOADx59Awo/oslFbX1Y8ULvmrIl8Wyf6xuVtXl67H+QrJjK65S02sq1RGHo2q+v67N6bTG0b6835EBdib934qBbd7+VMty/g5jDEqdfUgt/iwEN6vvasodda6XsG4f8mggE3P3oxikkPL8yzvfzkhPLJvsbeNWIN9UjPho5cvfDyT+l7NipvvVYt/XauvznNT/GJkTwyhlss9MpBDM5oe3Rt2DbPDm+xycUN27qJKzJm19rgy6+zxjj94useqK4wnSFis7/ppA9THLDUSuzykBMd2Gz12eUPrvWx7poxHXL3Y7702WbPJ+Ijm+KJT1c8aiEXNnjIWGPrRQJbWPJA9MzTtz89z/qyCk/cXStyY6/2YkXi1WDUYPHJFhmzUbfmZOV6MC8f2YfXmuGjjbU1JsMXV42s66v4WtsD6PKBXz3j6fFd+/7Gq/9r5VG9aP/c5z53XC9qIU4x1/jFE2PnDV55tH5k1rc1NrdecqVDv7MBtvzgWmt7Nd/Vlyyb1grPmL3a8gGHPV1UTTd+NnyLRa8hL126xsnsG/vIfrAfk9lzfCFxilkTj+cCuvzTZ8s3H3TbS/ZLOcNhW87tLT7KI3x6Gly9msKBy55Punyao/DowwsTv/rikZt3bYq5esIlg0uPLHs89RJvGNWEDYJP7qzW41dTNjDw7ef1q0780JGjfJF1YUMXr/zpbd35pVesh/H1B3/syMVLxxipHbm86JAhtYGJ55mq2PHo4tkffb8ghyXOfMGhH59vMfOt0fMy17/Y80xsDejz3Yt2tt334PHDv1qQqa+Y09s4ypUdKp/VwWsN4agFefrFao5fMycTsz2qZ08OU0N9BzLmB/EhR3mIGx+GejjjYXXdkPGjrurAhg91dN2SqQUeXfvFcyAZXfuMDnxUvOTicG7pPS/yCQft9xRz2OR6RA+umOUqd/Oo60F+7Qe+XQtqIk54zhEv+eHSRXKDT04fNipHsZPJic9irqfLlxjI2dOvVQP2cldbtbIX1csYv5zpa+awtLDFrP70+YKlHsUFy1qTi49tMTUWF2x2YqKXvlwifLXUa+2J5PVk4vO85HuB7z/OfNiaXKw7e7HwBVc8m/P6K+Z6OPK2J+GxhYEHl//2GJ597T9DfeaZZ/7//jPUj3zkI3eTtuEEFUmkxbPoxprCWDBJIItirFX4xZC4RobaGMZ8KKgejkbPPH16ZyJTVFhiY9fiuDjkoidXdA2Zn/1bKP4QXHMXoJcKen6K6VC61ssmnnm5JmMnNv7x5IqqlXG6xmdij6pNGyn+WX/n4erlLLalc05keGJtHdLPXznAomN+xs1m+2JZ3v2O803/jFNt06n+55jUm606IHN7ufiN7SM3bAcS6oBRDzIXKT/WkI7GDo+u68JNAb94ul5c3MVKtzFsOhoeOz0SK75Y2bjmzMOmF068+gPg8iE/vNa0HiZbcvnwZY4fhho6eNngh5WcDzpsXTMaLK36r24x6WEWi/4mYquJC8HU8LKJRy6+Wnr4rplyNBcvOYJjXOzlqM7GdM/EfzK4+aRX7urlcOf7TPkvhmzkaczmNr/5oJcdXjGxLR5r50W7hwe+ennhpofkzk//nNAeQ+zpw5QHvXjG9FwLiD1Z+5f/8mIfsZNfenr7uT2d3oP0xaQOsNsnxUAuvmKsRuqiBv2zRj49ZNETFzy6Yi538+KPx64c88UWZVst9HL1G+3f/e53/ycv2t2rug7FI4ZyNraWPXwYO6fwW5PNGV/MNbWxn/lwX8Wno8EMy97Q2jf5r07N1SiemrVG+sZy0IrBunVt9MDGP2JDBjMf5mLW1CUc/VJxZGudw9Dv3mInJjEXCx35ylst1cJDn/WuRvRdh61R+LCQuXYei7U6kMHhw5dL2OZyy5Z+WHryJTy1qh7Fxwd++nKWh/vh2972tqP3hfNjH/vY8ZDa/cxvr/uBnj3hS9U//vGP47eY1ByeeNRGb47yLQ98JI6t++rTY6ve4qOH8ORDruHrrYPak8Ftz7MpPzItqsYw6J+fKdVCHtmIj405/Z6J+ecTkTtzfUGTc88X+mKGqfFbDbI9QC4ffKxvc/HAQNXZmEyDtzblR8c4m3LIBmbxqJUvRV1XbMjzrZe3fNiIPz+uVXsAz/7wLxx80ers4K98xdp6s7d+6qWZL+G1huy0chYfWbmxIxc/HLGb73qZs3Fdik8vriWx4bHXFyu79iSf4kDFrG+f4BcnjHTZbbzqqLGjo5ezPaSe/Plu08uBxakuePLyZd0awTfHF1MNH3Z8vtSm9cXnp/0rB3Jngt/+tPblAsfastmcqwXbxvXlzUZ8sFB5iCP8Q3D5KHZz9nzao3yqjfv6GY8NHqz8mCM868onDEQGGy9/eO0f56Av6o/qP0N95ZVXrp599tmrP/7xj0ft+ZKX9S6ucmgP2iPi8EMv61Fe4i8P47UrfnL5Jcdvn6gH7GR0rW3nuWvTdxzXvDF9Mbre9dWVvhzYioG/akpHw6fHhwYDD5FbT/b6cPOFBw+fbTbk8dVk69LzQ1jZrE41olPMYtLKT958ht860WGPyql6qi8yh22fwjPX1i9cOuRqKA4865JM/uEdg8sHn3T1YoEB13XquiWDpw5kMMitpTm5emvG4bNFzoJwxREunvscXHawluhWj573zeWnsal25VgObHuOEqv9zq+xuqmrZy3NutBH7BHc9o/r5U1vetPd+MKo/uSuJf7YVGM+6MKmqx7Z6sWMj+RS7Obi8qxGr5zxERutuNWi6ww/LPjiEo8a57MYdu2yx2MXhrn146Prlg85yae68wEDqQc7PHuCbjXAZ6++YiI3Vzs8vnyvdO9gL1Z4atD1wkc45WTei3Z4+OKzBmTy4QsGXL6Kixw+fjHhWQMY8Baj7zL0ydpLrgeYrhXfC8XAn3E/OBeH3DzT06MDWzyoepprZGrvXuWZWWMvXn7tafuks0WOqJjDNdfKsxrQzYYv1Po7a9KTl3pYJzWhyz/dyFwsdKu3WNWA39ZEzHBg1MKox2ej1upX3mqBry9HNvKX6+7b5PySyROenPDYRK2DeXb0rBE9uXt28adj3HM//elPH6bVN5zX6x/4N9o/+tGPHsnamDaRxDmtQAK38VzoAlX8FqmFoEtmgfAifKRoki1x+IqMjPlE5KtzMC8fcDS6WgQTjhu/jWKM15cbFzseTHEZi0UrNngWjiwytzld8L2EUgc+1q5xdouPR55v/s3Vmd5iZX/GM9fo66ttmzC72/rwqrE6x2ODv/NwxLwbNn69eNjSK2fz1yO+NLr3o38vvLDURBzlUTxqtESPz/i7nnjtcxehAwhZI3ZkeK0ZHHxzjX97343El5sOdRhsXS/2KD0Nr3E4eMblxVZc9FxbDjWHBL1ypUPOTo+/dTXHx1MXsa6f7LYu8diycT3lJ9/h5c++cpDRFTN57TC+/sCLjIt9cVeHrrn8iwe+sba5rR1ZhM9GbJqcauGQu+aLH671xJdbfmBp7GCQa0thqLUxezr5YocXPx9w2ZjT4TNiS6YZs11s+uG7GRYTnhftXnTQd5P3YOBMg6/B6oyDj9hFdMz5KK72I9nGa87PmeSGrHP7T+++ovFr3yHxwEH8ZVt+5vH01Y/NYqQHjy0Zn8gZ7Hz38sc9Av3rX/86Yk+HTZjGSE+OXwyH4PqDr/xtDtk7B/xnqP+rF+192bEHkBiKVW9Pi0EO1lBrTdWnGpUjmfrW1E299PJsfeDuQ5tzCg+e3Mtfzdjs3Li6kW27LuvRLZ/+3/72t+P+3Hq1F7Ixd02rSXXBU4f8p6snw68GWze8rg16YcMXi3n1FI9a9IyUL9dFD+Vs4m8MjYuRTv7kj9RePO4zfMF19tJDbGp41W3l/IudHl/lCkujS9ZDqR8O8ece9vTTTx//7LL1dQ3558Gup7///e/H3+V+9dVXj1j6UI9iETsfYljCLxZ8+vTsPXnqO6NXT5xsa9ZB7ftyi8+ejVrAqRbrvzHd7GHRZWOMYPCJV3zq5N6vsUfs+PTlwgtcc3K/Ee4ZQ/3sKQ12+Ye99YFDhwyO3nzzwo/Iy1ucyDz79kS1CBNee1dcYnDPsOfYmKcLU53kZF/IR5zFwVfk/uMlor3SXiXX2IgNiYefc6xkxe5ssw/4oafB0NiLUVvM8qQjL+tlf/TChr4vkv6sk31Mh03x9QWzWPGRWNvLxvGKrfkhuHywb83CSKfcyfmPYPEhPrWTuy+Z4jSH2drIo/p17VojvjTy4oVLt9z445t+17Y9xpdzi1+EZ737W8bqDMce6b5zKL7OBxutvKuNuPCQvSimaqWnVz70nO1dX/LzvBPW2q0teQ2+HNrj5VOtxIPw5a6Xv396/vzzzx9f2NM5FB/go/icl9/61reuXn755SNnPqy3e604tOokXrGLxZn85je/+VgLMZDpW9Ns8GCWa5j8WwP7zbVAzxg2IqNrn/Viw5rwq3l2Q3TsKw0GO7GLw74x15urc4TPBomVDzGJVY+nlX9jenh8lZu42cQPJyxzvvNnjtoHejw10ozzK06N//yRd4bbg/IjY4uM2fCvnuqWLzjOVbGQw8lG3/VHD7Y46MlRM8YrrsP48sEnm/jlY2011LkhTrqwnBV6czGpk3G5Fl/PyviwXQfyQr2IY7dET97ImK/Wyn7gTy4Iv/rFM2ejV0cv2p3dYoKrFwMZHXmgcoFvTNcvB7z1rW+9uw7lTcZ393CY/ItPX81hG/OnZ4enV5Nt1sAcFlzx0WttyBAeHThitbfFa06nsd+0t8esARsxZKeu4uwaY8d+MeCw5b+804FTPuHAaM+wtSfS1/OJ4LWO4rI2bOXhLN79a7/Qd57wEx47zfrp90W7uFpbMnb8wVAvvsQCi9xcHcjpkYnJWQUfsSMXm7zY8GGdOtvM7Wl/7gQufXG5ftiLQ35eHMOBzVextDaHw8sHORvPg56X4cKiLzZ70ztWdvDJ6JMjMYoDjlwRPblan9aBTZRP3+/Vgh4867rPP60/ubyLR+35UAfx2D904MJQLzjVPb984IlJ3Pr2gxoaw4VVTPQ0+1ovDz1fNXnTtxZikjuZZxY+YJrzXwziwLdGcqPr2cUPyr/+9a8f/zeKuPl6EHrgF+37G+0SkAinAkWCq6gKL1kXKp6kJCtJY3yJZduGgGlD08PTFNKc7r2SJKcPd23EZg7b4vCPzG0IzeaK8pNNMfJdDuJBdNj3Ugpm+OGd+/DphiNmsZNpxt3E1BIVx+JVf/ZamHTZkds890v0xQQHrU+yM/Ep39VL56xfbGd++tvDgyuWarTy+8FIv9roEWz22jnXm3DFoZZ6cr2L0IHn4EHkNfJ84hnrXR9kbLK3H4vL2LXStYG/WPYEnHiH4+sPOckFhkOND/po12Yxz7mKD8+e5sMcRvU3bt5a0oHJjp8ORXHSxd/9x87ZgUfGD3/axrlx4/MBUzOHo62NcTGyh0mHH/bFiXemcIp3b0p4SA9T7Pr4atA+kg++eXVrzG88OuaLE744xUO3eoZBXyve4joCvP5QA3HQoZvffFKj49yCT49PZ5iHAeeOm6UbFB0Ew7p17rOBFxnDxC9WY+tlP++6VQNyxLZxeOLXYIoNhmsGDxaemMrTGE61g8NPMerpqMdtRBYGHGQfqIPfilYXcfanLoz5R/TFivJZPfDO+fElPvbVi116cv1fvmi3jnJz38tvtRO3Pe0sEc+Oy80aiL31KQe93OC2v9rD6gATHlxjzVnF9zY41gtVE2M8cWvFu7p0mtd7KWZvpy8+9uTy0cTY/jYuz3NfLHp47T9+l2eO2PMHU4/kr6md3KsB3fTV7v+Iu7cVTa/q7cN1FAqipqNxEQJG3HFbBLdi0GgWGHVDhBiNwUNxxw1RMQqejtEYFVfYCp7H/72er37N7UNVp7tt/QbMmnOOOcY97jHmfBb1VnV1e1RMvjuOW3HxUZ/ykiN+Xsr1OOxLdHsHF1b10hO48LYex8LlS1zNxfUS7U8E+nvEvknyHHvuuefu/VaYWK6brh3fQPgBiA9UxSuveph8SPWjqx0Lly/ZdybSw4w3HPnzZa8Zq73rzDcLzrPGVrytQTHCrofpviR3vtnZW/URn67awhVTbcTEwRqh7wed/GHaN7U0F2s5Vgc87VFx6JcL7Hz1ceHDlk7O9GpIxLPGBmdjsrH44Sx/Y7bOq3ukvM9SneQVvpjVjL2xD0L9EMYPM2EVEw+CCzt6jYhP336HKR86dtbz5ZM/XPUi5R8v9j13XKPm5el50Ddk7TMearDxDuDLFzq+eiKG2ObiN9cTOcAj6Zrz4Wvf4s6OXg6+Oe3eq+9Dgs52ceHSybF7ELz2Pbvqyd6auT3ka6zxk7tnJR7ZeBf1nuw6Uz8Y9pUtodNW+K7wqeHUODv+uIRj3Xx1OKmDH+SwM/ehAoGzWItDLzctfeeEDp9aeYurPnydd9+ov/baa4/lP0O9e/mg/Vvf+ta9D9pxsN9y63zV44GD69SHQk888cTRq3/n2Zh9NVUPedbkZJ3Aoq8e1YQNf3aeL/ZWTazL3z3M/Y6/a0Uj/Iz5qCkfGMbp2MXNOmEjBjzNejzZwGSjOf/50+PfdWTdGozOinXCtnjZ8Cvm+rAvfrXgmx/Mrq+uS2ti6vlo7Jwb+yWWNTzaW/ZwiDX2aowLu+oeDgw+BJ/Nt5h0CXvPpq5V70z4ikGKZx63PT/WcSdd3/G0/3HvfoQDwZ+wNYaDt1p0HTkPxWKDq0bg8DXHnY9Ynp/i4sSn2uqLIY419dOM6dy3/B8zxnDhGVcD57rvs9XWmcWj2vBxXxW7GHTwcVX3YsGEYR1fPZz01UmuuFvnb2/4sUvHxrVObw/EwiH+YvLFVz3jwI+tWJ0l4/iLIQ+8qh8ctgR+2HD54pStNTqcrMNSPzGdB2et89sa+7DEJ3QED3bu4Wys4yqmRtjKM1xzPDT2+nKFYd75h4EbPX7Vmo049patcyB3MXwgHmf35D4kFsP30/0woVz01VMuREyx1db34n3QDotNcZ0TvvYZP/0KW+vVoj1np5nLRUvwlKecrcOoHuKGx4etOthD93dr/Dz/u3eLE2d8Ycm5PRTXuiYesYaDfVUvePbQurXygY0HvbG6VU82reFkb/Cl23PKh/DDQc8Of+fWvWR/o91/Qk7yOyYP8OWhP2j/7Gc/e28jkF5RRDc2zQYgTSokewQriPUKbq31DoECsqXvJiZ5ki2b7IqjT/I3NxZPIRuLZa6Py/rGha6YdA6CzSg2nQ2lC8fabSL36oMLCZ9/vBuzpdPLL9viZx+uuTV2xPxBpTg38YNZfuGxc7D1G8dYXfTLY23COPds4HVhm5crW3Ot+pz9b5rj0NnInx19/G7yY+sm4YbKP15uPC7aLnwY1jQ6a/jzMa7ROcfmcLuBie3CNo8nHbz6YsPPJk5s6GtiWFte5alvfIBfvsiTLjy1FS8MdvlVP3Nx2OXfnliTq9610VlgZ6x1lqy7xtkWR1y5VC9xNDoY7GHwMWfPtnOPExvXd7oD/IYvMMuBrYYb/K5rWOIQPXs2WrytGYfFPyw+bPHR4m3dPClGcz7p2Ia564shNuGjxSeOceYjN701zQPJgw0f+VZjdl4UPPjZ8IHdevNimGu42JOuBXV2vnGQh7X4dO7Kq5xhwgnbGDbM97///fe4d1ashxlG9eAn7saiY7821U1Ma+7rakCv+Q0jv23QN+rFY6+xSQeXTq76pJjp+eBSL7//1gftP/zhD4+XwDiKSdRFXM9yz/D4qqn6Wo+ftfbFOAy98+PFUH06L/BhaPzYuadq1QCOGBoJMx7p7CHc+OvZwg072/h0HcPyYmr/7OM+xzeeMVy5ZBO/4uDZeOPxlWe8ywce2TqwYd/ZjEP3mzD4wXEPJLDUIUy6coehWROrZ5cYcPNhD9+8a741eCQc64QPG88qL9ntod+W/NSnPnX81iY98RtlXpb9oIOP96beneh9qOqDr96bcO3dUVzcnMdyrhbxxUlORF6aOZx0+LZP7j09Q+idO7atwy8/8Y2zt5aOXouvWsCiI3zYVjOcamLVykfPp7zg+OZlP6AsJlv+YvMx57dCVw2sVUMYaoQXPRu2GgmHHZ0cNGNr5WBefLkbW28/GrMLC4feb9JZ79oX39x16rr020zwnBdnxPOnejr3eCXFURfjOFcnOj6aHPCrDmzxoXdPCZcPKU88CQy+7iHOLXt47DU4SePypWevwSE4GuffmF4j1mBoYsGFgdva0OOkVuqmXvC0fHAnrtv4WuenJ/p4spF7zwVzcc37TVtz8fLD0bXWvQHvhI06V+verctRPpsX3tUXDl7y0nd2jNmQrY853KQ1PQwc1Cou2S/fdO2HXg1hsKv+OBB6Y2tiq4EP2h/nb7R/85vfPD5ol794+Ns/tcKn2OY42Av/MfGTTz55/IaePXDvYKcOcT4SuP4ih80Djj2HH66evz57WM3ht5f8Nfbi732+HOShtvz1nUn2bMSHKRab8MWA3dn3oV3nnF3+/OIhzTgb08OTXzWkJ3DF77yx02Br1sji7ZgtfDzVXU/4qUc1oWNXfPGM3RPFScpBHyfrnQHx6IvLTw3YVIPlF65YaowjezWsdmw2Lmwih8UVl/AVg/Cz3+UNk8AoV3NY5vDYeF6YG9PB1NhVy/IvZ9ebNXqfRXkX6V02PmIRNvLl03nkq7lm+MNtri+OdU2t8NHaD9jFYpNfew+D1PMlOHj3hmMNhnxJdaK3bk1d9GvPVhz10ggf/uw08Tp39PjB8b2f+zhdnNTIvHj804nvmiVqGDZf9njI31jDR1w9TvIlMHy/ED86MapBvuUEX+zOgnUc7bU11wEdf8K2WlWLMPCBoxe/WsDI1/VnvThixa9c4Ksfm7CtNefPhvDNxro6VWN6TUzvx96d9d43Erjwsu3+vxzVXT1cQ3JeH3O1947Jjp8ayFmcPXPWXSPVBQd1wpu+5zf+8oMBTzxSreQcBjsxzK3DqwadATx8/+gdo7q1P7Do/JKO7yPiaz2Ro0bYhmEuJy0OdOKxwRuO61DzDu757U/H/M8+aPcb7Q4AQpLYxBTcxrngKp7N0EpYEvnxbb2+gyNxuubisbcZ2bbehloXF741en42feP30IJN6o0Xu7F1OMTYQXKww1k765rY+ptk87fOH3eN5CsXGNZJfsZs6Yux/ptr6/nri9c4fPNE7OKHzS5u2emtL7fWsm++fT5sNj49zq3r8SD0m0++678xdgynlp/1eFez9dlx/4Tb+XNzcKG7UYW5tnTWe2Exd024PujkA8eF7kZIFw+YfFeKwabYMPKBxYcd3bZ0YcBtrE/CNs/fXq//1q2asxVbT2d/+BkvpmulhwBMdq4pjZ1rio28wu4mDF+O6kTHvnOQbbytpxMHl5vOLHt2cNhVT7oeEuXiZlwrbnVhX52KFRdr/OQYB9h0+uz0bGCHRyeGRlejT+Ki12CwWzEPh74xPU76/K3BiDN963S+IfXhhwcb/ta9ALgXsusMlCMsYk/aS3V27jvnYuJB7HP7QA8zMRePLVwNhp82i6uZa50Rvvw0Ui5wOrPwyuUwurYrdjyKS685q14MPZzN8aFTC2P22epJWM1xlm8cw8EPhvP+3/ig/Te/+c3Vj370o+Ol8CB2+SKm+Ph4MeuDdrpt1Y2OD9l1Y6Km6uPMbD22BmydBfHkak1NxDDHRYzqoabZ0LVvrRdb/DhZ4+P+oecjhm8mfNDuPPcBkbXOvtjhwKDXEzgEjtbZpmNTbGsJvLXbubzg94LKhy+c7OjUkcDBgV/n7Fi44UsYrgs+5nCWJ705LGtsEuNy7NpSS9+AfuADHzh+g93YHvotKr8B5jmHNyz3Cr/BrtZi0BXfteMluh/GiAm790dzsbtfxIu/Wtm39sVa9dC3R/E3hwUbXvea6lsNqovYfM3Lm7/Gtz1oDhN3cwI3f3Ocwo5LeNbpYOZP511aE886gUnYxT0u8OnjZ71YPTvN1ay68T1LvONbPD3dxlGbaknvmq/+riccqoseD41P+dNXr7jwtb8w3VP7zUp6zX3F+XHPlRM7vKtTOPale0l563HkC4vwo6su1TkcXNnQO3/8Ost01gmMcrFu3nr7wY7OGky+bO2FWtAn8tKS7PnQw9Sy4SuvvZfA1bLDXZ56OOz7J+3Vg14Tj/C1Z9XSnPhgAXdzMfHvG3tnw1iPX7UQQ0xNHewRO7HgVIeNL1Zr1Q4mW3bGcK3V+JzFGtt6dZBhAhACAABAAElEQVSDnsQT1+zC2NrjziZO1WkxiuGe42+8fve7330sv9Hub7S/+uqrx3+Gaj/UAP/lZK/sRfvOzg89/UmJPow61w33cqyecNPp7RVM6/nbf7la16xVO3p1il/1sR53OFr39M4Fm64hGBp8ApfwswfpxbGfninOgzWNL6zs2psDZL5Y1/jEiy1cfIrFxnq84jNQ9/zZVg8+amh/6PnjCV9Pis2HvXqHUby1s1Y+cmytGIfi8qVamsentXrx+Gkw8zHWxLpNrC338mFvDSZ8Ij4xr6Z08qMrT7XKBwY+7UX3Gu+qxuGUt7nnZ+txh1dN9WJ4h3Gddn+jh+nexR5ma3A0NtrGNWdvfXPIDt76sZWTs0/EcC/c/XE9iNH1fBhef7EnSTVtjrNY9HFmbx5+eeBhzXPAtZNvubHLF6Y82Nhjz2eifuGYy4sNW2Ot2PGBT6dW8DUYi1PsvU5gOQfqtlj2kc77AYl/3BdfXJjL7XC6fCkv9sUKT074icvO/SYO8hBTb9/KFw69WmjZdN2ba+z5lau98O7jvYoOjt67jxyNxfKezbbvR3F0rp0l5wbfBEZ8OvdwvG/ZS5zKg68zCU+O+CXmri1x4BE6sfKRUzpjwtYeycnYuub7huKY48IGL3bWqp8xzn/961/v/ULGAX79pbrLw/5VJ7h4+PBc7uysi6F+3VvYyEE89xD/Svfb3/721fPPP39EKN+Neb/xQ/9G++c+97mDmEC7eRJQ8ApvzkaTCFtNwpKo6HTZKEobyV8j/On5KDC7sOtLMjz2YtksRXRzKE7F5MN+Y7GJB308O8DWXFguBmMSn2Ny+RJG8+1hiknYbb5xodO6SWYTl+b8Cb8aXXWLB/tyKWYcrIVzgF1/EUtT+zizvc1+fRsvj3R6+viYh1v+6tnY2sqZ63me7Tm2+Tln81r2+W/Pxm/Oat24nMP2ZzkYw+qmwIZ0YbtwiRuYGwu9cfHFMg7T3D7Q6dnCzo7ODYGeTr3Yitv5pCfVkk/+x8LlS3zN+S8HY8L/fNatxd+689L1KgYecunhYRwf16fGxo3Xdbm8cYKPb/ziDYdt+PixtR5+NYw/G0Kv4VtN2Gj08ZJrNuVW/ovJxxx/eTbnQ1dNjMsTDp7tBZ/s9GGUbzzEaf/jcs6Jnl2NL7wwi8nPmD4sY/bNYbSOuw/G9p/0+1u67of2ARY/NXDfVUe+7Ud88PeQ8w1fZ4Wvc7w1KXcYfPGCCduYj7OnF9+15RnUNZK++NUJFnsiPky8E+s3if3LbmvKFoZnhBcevTnBvV4s/poYeOIBq/yqB3/5/Df+M9R33nnn6sc//vHxEnOQu3zBCVc1U0PNPtFpOLKhwzm+u8ZGI/h77qqF+rOT27ne1tTBfVVs+PL20i5O9s6U+hN2YZqLGTaO5uI1xhU+XH7msLyo9kG7Ob7Ot/OVnV4LU7zFxVHDiYhLtj7GRJ44kPz0atV7CmwiZvVgA8P1xzY8sYp3ON3yhT08kk855J9+58HhoX5+2CwH73hPPfXU8aHRhz/84eM6jiMf3xi0X/6OsLn64WGfGldzL9PsiXPnA3vngIitZvBxrg72yX1HPZLNga05/3Lnu99408ONO16dI5gwzHEJR/4aHTyNv/rQwRS3vnrCa8wHHj+9OdHz0+PiGtCyiV+27DRxNXz1Xb/WxKh+cZITW41updj2pr2yXv7Wy0+s7tn08PxAhZ+4MNQKH3PNXK3S8cMP/tbHGJ5e3rD03Vf6lxDOAQwxy2vzcVbbG2dMgwG7ZzF/UqzNm17cWrxgGCdq0Zo84VdDenWWY3tJl7/48NVBPYk1MfCNT/bs1FGM9kUsAseYLVxc1KDvy8JVN/8knb97tD/VIxZ/fnjIqTNzgF++WOMDp/tRsfSe6a5f/MTmHwbs4uMoPwJPC1tcvnR8V1+d4RSXDWx4elJcvgn79t066dyEZa4Om1v++vA8K2BVo3iyoa/B857/yU9+8uqNN964evrppw/e7B5Wim2vXnnlleOD9vZWnPKXi/pbsx/GeBrTmVeL9avOcsFfHTyXqg2+fDU29oiPZl4N+NqHGgz3eOcMVniuy86I3plgq/ZhipkPXBg4Wyf1bMSzxp+dOVzXizH/hL152Onr4day0SfntfT11p1f8fViafTqR28M0751PVRX6+zlQ7ovmLOt3vrqrCdh2HMxEr4wiZ795kTP9ybe1s6y/sXUi2lNjGpHVy3gFN84jnSaeX7VCq584MpDrybOtO8lnKXq3HXA3nlnJ3YcnQeNTjP2XqDBEV9c/gSuMTsYuOGZ0Gl8xSofPDXPOv5srBuLq2frOvMuaiwGezlUA/uNzz4zra2YVxd6c7nzoZeD+OpWfczFs0bk5M+heV/DD1drfAhMPjC7j8ByvVnzrlLu7K2ZwzDW2l86a/zgtw/rUz5hdl/WW2uOE4HpPLjX9F5gTRMnCY8On+K0jo+awze2jhcc9dIIf/cr3/MR+4mDvWLv/ZSvJqa6qZFzQooDg8Cn288Xcdi6Wafrexc85eBZ3r/6wwsHDR8ivrE6Wy8nzyac4PahNls28sFZvvwIfYIvX2t8YfBxNvwCnDVzUs2N2Xl+qhse+MOyd84coXeuNPnjbg0mTnDl/o9//OPYaxhwEzzVyXMAN7bWcYXjB86+n4Grlt5b94N2fKyVo3+p6wflL7zwwhFi61DM+/UP/UH75z//+SNxoDaSCNpBksQexA6ydaSJvnGbWsE3AWvaFjBfdvRrf4BfvtDDa7MUm7DFx8YZw4qXnvCtKXQHxYVLz9/YxhW7TW4Ox5i/nh8pnjHd2pcrm+Ibs8nOPN9jcP2FvkOx+o1N31xfvunXzxieplaEPV5iNY7XYXDDF3YwyseYT37mSdjwjfkWR32JNb7W30vCzhcWKbYxHcwa3QrbbPyzS39/1o3JuXcuxFh8vPLh5zroGvHNhxcCNwk2LnhY9OziJz4cZxc+O826Hp4WLzziQ8dXPmxhlG+8ypWtlrB37baefnu5alt/GOLzo3dd7IMBLsGFnk1x2WrytK4RMeDhg7exPDVjAsMcfjkeC5cv9NbL2biYdDjEw7w9zB/PHnCLzcc8jOz18Mtn86Ard2MPmOqAu3zKiZ5tdYbb+sYsb+tszxxh0JV3vNkTmGLbt7MvPPbEWs0crofW3bt3jwcg27fffvt4MYDV9aB2fSMafjhx8iD2Q6a44uMB3TosrdroxYPtxaT9w4uPmjgvXmJcT9UIrz0jbOEmeMHEY4XdWdhUH35wNbb2Vm08sL0oeUGo7uXOFwY9Dnz15uXZGdDL47/xQfvvfve7q5/85CcH33KMIx7iquXWDcd4ti/y5ievmjk7/O2TZy/M8nQu1Ip9Io549kpse9gLnHrZH/XkB1vcMPViisdOn02c2PdNR/sFFzcftOv52jffZJiXo15LigVb7M6ZGCRuxrgQ/uLJz/2fDR6aNXnJT73gWi8um2LgxQaH/1RwWxzjm+Zia3j7QbOxWjqXXj6fvPwpAs8xtYCJo5f+Xm79UIfOvpL2xJh9eVcr58ALsF4dcFKD9lnPx0u6F2R1ZbfCp/zwzZedb6bxxce8fQij8wYPVzjFh9M5tT/i6OnUxPhBBE5x9cXma80cDzxdB3TEuabXr8jR2eLXGXMNwd61fPCW2xnHOh9656zrFG7nERf+5SAeH3Pc3P9cS+z5dz2zY6PHTb1wg82GPdzbxFp1cZ36VxL+HqrrN714OIRDr4biiYVXNuXoLLFbgaE+ZLH5wNbYrMiLLRu5dLbFo6cr33M8ODCdI02dxOdrH2AVmy+czi9bIre4sWdnzd70YZSzROTsNxf9/wh8XKvGYpC4yKl9Cds6bDHcy4uPr7Fnut+cLg9+K2LIi78abi34i6fhrafT5KzR3yTiwG5fwoFfLaop3oSeTzGMNfVREz2xviIWDLGKUx+GXjx5Out+I85/au4D93NNFvt+42rlg/aXX375+A+DO99iaURstbLmPctZUTf7Tx8Obpr9IPKUB5Fb1ws8nOE7Exo89vrOSXWKCx/N9aqpmTV44uCnx0ePi5qLG5e4xsmHIezoWysObLzlA6M4+MErB1j51JejtcchuKmNvMQ2F0OzB+no2wM9fTVmKw961xOsdMYafznLXS78iwnHepIdG2MNXsI2XzYaXXWzRvjQ6fO3pm0843jxk3cYcYFDwtKLq7fmvcOcqAHpDFnzPHfP6SyplXsmkb+zr28vjOHwxUdj4x7ZB31iu2bp4YXlOYIL7p0va/Kkx4GfWDD4si2W3GEWV8/XmfeZknX86PnKXxOLn/jWz5JdPtbp2IuNC8zqmh2ecOnVVBzPBe9V4rQmB3i44ihPjQ0s/K27v7BJ2ifxYWh0hF224hcvH3jG+uzxs7fiFZdOboStPXTv9h5P8IUvVj09TuzbJ+P4iOseotGbi8ff2VGXMPDxLsoOD01d+brn6fnDVh/n1Z7QVRf5mIcJb2PDjjs79rDtVXb+lZN3InsnVlyM+YShznT2wnu5M4KX9e7RahaG9e49bBJ82FlnKy5RG2fD9wpyrVZ85VvzLLBHuHW+qg0c+yrP6ieWa8v+6uXHxp/Vsd/wy9MYJzHw6gN0en7y9Y7Sv4Zno5bVHUf+ciRy9L3Om2++efXiiy8eOlgPIw/9QfsXvvCFI0FBHBiEiL7NddDMNaQdUmPFqghtFN9sKnhrfNhbJ/RhmyusZr2+i5kuXBsWBj+YsLRiFGex8DW32TazGC6uuMJjw79GR+CvzpzQJTuOT3jZ1Md153zw1FqHCUNbwX/j7dp5DFc7+4hBvzjGOw+LLV5hGGerh8OG4Bp2/vXlYZ1f89Zv6sUiYq/A2BYHPYEthrMcHxeaG0ffQFjbevNj65zzh8XGDadrxE3ETcKNBz5/NzD6bn7VJE4w2cXF2Pk3Z9OcLv4w+NGd60SvZbtj9njApL9J4G1jA4sfUWvXhetFLYh1PubWSPjs6eOsZ2tdjtWKD37lmT+u5cKGmNey02vwSTnki0fjuLqJt5/Zx9O8XODB5s9e7tZhGnevYK/B1Ye1cTcO/8VmX2vf9XQrxU6/eWdHx1dbKS99fsVkh7eHlwe6PNj5p1s+XJGrXNi433qIt7d85bOcXAseeDCIM+QBihMczX7vHAZMscPiiytbZ8Y1pTd3fppXT7gw+RcD3/YkPP0Kexi19WcnDzieE/a88wPXmqZGzas9Paw4hS9P/P3pmP/kJ+mbg7Fa7Qft1YO+9eqiT1rHde1ap5db/MtXHeRWvs6P3KwT9tWSTdd9901rYrPPlh8dexzZwNz6psOJrfMFm0947J3T9sq+2T/7GCcxzeNLvzycs8Qa7Dixa46H+HjQ8cvXWrWDhWOtvWDrRRhfcQgczRw/rXj6lXzSicc+/eYkpmee3/rwA2bXJd4f/OAHj+eZa8rfY/dnYnyTi5v6e6H1G1H9OSkx7l5+KKfnA1eNnQG6Gh7W5CxOz8Tygi8f+0Vnv7wcw8Kb7wobfPTiEv7q757jbBmfa2WOU/sfZvnj55rMN97m4sQXzk1CX8zy1WevF4NOXnjuMxCmGBpbdRFbM87XnO+us9dga2F1BqwRPnRqqw7qQWBnU/zybm9xZm+dGLORQ/568/jBZINTfofz6Uux4+abNB+yuyb4OROuXeeCjYYP7PDxoWOvyZFf2PXZwaDj4zzpCV821o3ZyKkc9Gy7H1mXdzXY1KwVw9lXS3O4YuIIJy584din2uKKTQ8jMcdPHeC6h/im0nOciOG6xVmc9i0e6fXacsNXfCKG57omF3YEJ7HZ0cGQU9ez9ZqYxmy35V9e2cM78yxmtnpNbmpqz+NGJ062fPGq7mGx19jjr4Z6vtngRNZOPPcPH7T7G+2P44N2PxR56aWXrv7whz8c2PaguHq5qL/vP/pFHtxcc/rN/XC8fKmere8eyZlPZ56NM0Xsi1jm+bLdplaausPVYHbW4YRnTZz2g11jes8YNvDVVp+wZUOvt8YXdnscLz6N+WlhFa8+/OybW5fz2S7sXTMmbDvL5nLBVzO2rp6uJfHcg51HteJHzOGVE+7VpJhw5N2auZqY58enBpeNtcVozM86TsZE35hfuFunbBabb3yNk/yKo1cLHIj86WCy9Y7ifPvBvLMuvjp6v2Ajf/78jGtq6VpozdwvwXnvMOZrnV/3Crbi4YL7nq9yc53jocfPPmnF5QunWtHTsXF9GItZntVBTnzyrV7W+RCc2enTO0N8cCHxxp2N+NYJnea54JlKjwd8mOHioQ4afHo1Yue+D5dOTiTf9tYcDz1hD7O82bUeVnP51XAVV8OjOqi9H1p4P4AFw1rtCHr5ArNYMPClY5++uPrWqgsbOfD13mEuDzXVu257NxGTzpnqXIlXDazLB4bmLJgncWKvlXv3QnPfh/vt7n7AEA955xc+XPl4xqmdvSRyoecrpj3pOokDu2rZvomv5kR9vGO7JvXw+fIh5WwfxROLiFssPNW0ZwYf/rBdn/CIuL7X0OPKDyeNPXy8nGlYYuDTZw/isbXGTsMLTvnr1ac/4fo/+6DdH4OXADKISggZzfg8ryCt86sgikMUsgvIGoxd66C0sbDoFDi/8xgOO33+5m2CcS1fPVsbolmXq03XW4tvmMU5Fq5zOevMCTxiLsek9eY39TfZwHBQuzD4sYs/jhvzJoyNtevVppyzS19fTHbrn716t7ZcWl+dsZzgnPXFsXZTnDPe+udLp+GkGYuXnl0168Ft3QPYT79coM4lXX7F1as7f9hu+D6E0MN3sbpeXOiEvxsH/e5fenbVQcy4Woe/vbH17MsnvXnSmt66RmAuj+zr2cOXX+erePyM6fWulR60/F1X5nqyceFVMxxgyFf+4cbVvJzCOQCvv4Qbr7VdO+NsYBefrnsBvu4t5dq9gS/7cgkHd/blbexB1odKcPiFx08jenpcaq1Zp2uuN1cL50fcs7DJvrXzPD0sYh0/vOV2tjen9wKxD6S+YdfDsvc9uIzlRRaTnf3tWjCXi2tFb986j/I0ZhNHPONH374bOzv5wnd90cUje5xgW2ufw7R2lo29+y92fnp5iqWHG7a5s6B+1nHsOuGHFykOG/w94H2D/qj/ZO2chzg+aP/pT396PNfwr2ZxuMmHnXW8ytd8ay/H8i8X9l23/OTMppyrUdfNYsIw93KlXnGg29Z+VGsxNbHokuVKV63r+XSfgikGDM//OPPbcXO++dAZJ3D46OVBtiZ8reHXeTdmW97meDhDpPrxM4ahkXyMs+Pf/Bhcf7FO+DgHrj8c/GDZnzn42Mc+drwwi9OH7rDY8pWXmuHlpdfLvrH8NfcKvl3XcvANiLpahyWes16+npOkmloXCy6deJ0jduVmnFRvWNUWB/POe7Z6XKpl+wvX2fPNPD/z6sO2euOnxRdedTUm5hq/s9Bp4YhjHs/iZGPdWvc3dSP05VG96azzNc5XLFKuxvixFc99SnP9pGcDv30Tw/3VfZsfu96RjPMrvjkxLzfzeBm/l8DA2f7j5yzQedb6xtMPfa3jiHtjc3m1R3xaVxtzLT9rbHFLb944X/P2im11lkexjG/L0T6oBzxjNYVRPeVpTRwYpBjVkY9G6JwLseW+vdw015HrUM3gsvPMFqfGT+zis9HUPBw23pPFw8k14jx0v4ZNcKPrzLEVBxZMeueB5CMP+eqri7nYhF5L+OFDqg8dez1d8+zMxbeWj54PG2vh5UunuYfpcdPzCYft2rs+fMD+OD9o/8pXvnL17rvvHtde30OoDw7qot4+6PABotrS41pe5jjysT984q/Pzj4ldM6DfAl/fp2/9oO+dWP7rPE15++6Fdtc635Aly878a3HSd3xoINJrBF7wL79OJSXL9bhasa1fPjV6LI1FofwMWYXH3ZqGi59NuzozfE1Vh/25Wqtei5uNq2rVdcPHvDKAS5hWzNvXS000rq1zkTr1vIpn53jzmbrZNxeWNf4nG2O4Jcv4cVFX12MrRNxSGv56cWIn3uP78v9AlzPIPvvvlaN2Duf8uWnjt2j1Fmj87267/Ot4U8vntqbw7BWjvjFN15wcHLN0dnb7rHZxKPc9Lg6y2za+65JccRvf4obHj7EPvYshFluxqRrMBt+2YjfdeYH1Z4P1Y0N2T3BTa56wp+d+w0/eXueiI0n3x3jyoew19iR7OVMzxZ39tUBnrFcxOrdsZq4R3gXqGbVAH6+8oUBF76c4RFxCdvs2cKRp/V88YNFxK/BsvfZ67cGfMQO01gLR1wilnH7S8eHTo35wOqDdt+HJ8s9O/UyDtN51MzhiqfJg94+6wmbasw2HjC9T8C1F64B74HeB8obRuNqJE7PLr7mYdrD9oQ9PVF3eauHcfmKxc6Z7NqBCcP3IM41Hzyy5S+m/Ydpv9gQ8eSCs3uL74Vef/31K89dohYPIw/9G+0COURIIo2QVvEi0aZYa7xrEuTPz7oEKx47CRJxFExjS5+uC81By78xTLHZhxXXOLEhDopi6+mKZ2yjHCIxy1FPrGvmMPXp9Hxuk9uw+IWV721Y7DrA2YqpFnIwZkOM1WHncBPjWrpzzzcbY62cxQvvbJfPGe88ryZn3sWhLwZf9gl9dulu6vl0JpzBYoZF50LtN/VgeoD0DUUx9DVx+JvjYU88bGHwg2lNXNh6Or2L2Vo8jPm7GciXsMvGvPH6LH829gNOOdIl/DVrCX/zc41bZy83Z6trjK3Gd8euI9cmH8Le9cWXLX01MOZbXfCWu7okbHDTwrRmnH9jehiErrrsfHWH4fWX8sNdwxs3eOXMplz15mF3P4Iv35q814d9sRpb71rmX7NubcUa2x5S5kl+qyu2mJo1Ojl1BszlWQ67V+zj2zpbOhj9vVx2HpAefj7w8OCynq8YxvZl95LO/vcT8M57Z4QtbM1Y7mG1Vv6dAz3MXgjFWOGnsTsL2+yLyyad2D0r+KtF3IrPll1N3bz8eZY4F+w83D1f1DpscWCZ4/7MM88cD/jH+UG7b9B/9rOfHVzEUs94i0/Er1ljd5OUt14dNDnns+v06rC5Oh/qoQ7G1aua2CP3g+4PzoQxfTZi8s3fXBy4epKtXAl+xp21dOc88QmvejjXdOZwxSk2HGsaYRMGW/pqY90aG/nIS4sDu/JmVz7sV8zhhrX41uTofmrMBn41FFcd+mGyb1zV2390+uyzz17duXPnmMvP/YafWK5vf7rDte9Mu+7980s6mDiQ8qUT1z631+WMW2eQD9/eyfiww1scNTTWiDXtJoEpFxgwzW+zVZtiydGcvW8Y+pdsxdszszqc+FVnuRuL3flsTR4aKa46tN901aR8xbUH7DS5eb+AqV6k+hyTyxdr8YiLGPzVonNrLT7idf1YtyY2TtbaUxi+CXHfriZ+QIMXiT8/ki+8dMfC5Ysa3bY32dzWw5N/zx78xMLdPbbrU07s9NZXYLBn63yygVMObPlo6gRnay0frTz07yXyVUMxYPGvzj23YOBGrFe7jcdHwy1b96g4ykWTH9HLLeFjzt6a5lrzvPIN6tYPrjjyE9N7bteYc1VrL9mlKze9fOGKa67BNcen+sFRH3Wis8aOnk+SfvcgPH1iPW5iyZXv+oljvgJDa+/VRk1xqG7W84NJxHCN+D8t/OmYx/E32n2o8qUvfenef4bqB4HuA+okvl5Me0OPIz6as42vGuBPV23LuzrjLif+7M35OAP2zhq9eM6Ani890WtqzF4j1TB8On78NZjZdEbY4LrPXv78NMIHPz1btdDiwwa286hnQ6zDyg9e6+t7GM8XdmEVB0Y4dASGWDDLjy+d2ljfmHFvnU1x2BFr2aWDE99yL6/D6dqPjT3vXLQP8Iz54hpHY/cjeusa23Jd/myWh7h0sMI2508HW27lwJ5/ua0/HR4aP88dvzmrdQ/CyfkWKyy5isHf9+SuC7piWPP+Q+/5Gn99udq3vt8y5r/1wIfe9eYdytxZdZ/AidDFvZpU4+5D5uHr2cUHX42NvbOev3Mvb7bWNL5E7z7u+SiOOV82/PM17tpmg6s88TYvfrkWXwxjewDDNSte+s6uOYxqCscaocONv1gkLM9wHM1x5ifPeMcDtlqz18zLsbNa330lHPdFOrGLwT8u+NAXCw6+/AlOpHPHl8iPj3U+PSvYVQd2xtaJd06xxF4//NSgeuLMRx38got3cXtM6Oxl7zK40pkbkzgfk8sXuJq4Gt5dO+ISPsbVpZxgG+PtGuic84mz85GenbnnlDjVK9z2Jx56+Pj7l4zqyMc5swftSzngyWf3lz+dWnu/cUZwE0uTQzzoccXTfca/SHvttdeuvvzlL0vpnt0xeYAvD/1B+9e+9rUjSaRLBnnENCK5JUwvOfp8ss+HfTbGi2HscIhpTTzzCkSfPQyNnSI5KDY0v3yLxc+mdYNJX6wOqLxw5b9YjcvHnMCFscKXZGPOT03o+Gjm1YX9TVj0/OVYTcOoBmwWu4NDX57GpNj0K8s5rPhvPfjTx8kcFn5hL+5N4/DYlz8MmBp9Yp69uJp5ftnd1MujFo65sRq50Xkgu2jhyqEGn21z4+LybZ0/HA/nOOlhuinUmmcTn50XY3Nhl23creNFnD0xmh/Kyxc+cTc+17dzb03upDjmrgfXSzdW/nzsjXW2XavxZsOeng19+RsTdcCLrTqaw9LWnm28Ft+YLf/WzVfUVAz92Qa3cui+QhdmORWfbbWCJS4beRpvjdjSsV9+YcWxh5qYOOphxys7+s5p9ds1vmd/sdun8jeHRfASx4NMa60a40FXHeLkvulh58FFfMjen4/ooc6Wb7mHeThcvsC0L64ZeRnjlZ1xc+eGTfE7M63LLeG/NW3Pqw0f0pnIDzauhG086q3LTW892zhkx99YXOdi/9wBWxi9RMJKYPJx7+hPxzzqT9LDrBf397///dXPf/7zI3Zxy9O6luBhjRhvbtmc7dmt8Gcjljro81E715tz1NnqOoJhb7TuZbB6EeUHy9lyvZnDo4MRplji8vUuYG4MUz7m6YqX3h44l/Dgas64uTzh2kPxOwf68oxfHOnF4rsNn2Jb50fwdYY3/rFw+cJfLH3CzxwGMXcv9bJI4tjLMGxj/6mp317/yEc+csT0zaKx/GGprbzxl6u/jehvBftg3bXfHjrTrk+1LXcx47lc2Ymv1uoTbz1MWGJXj2oaBn3n0XhFzvC1MPR4VKPs1b79Vm/7TXAzVh/rxZXbnkdjccKAL449k5d9dRadEzp5aJszG7XWxCVy0IjY7SMbPKuf/VArArO45sbdY6ypAb5i6KuFNTji4G4cDl37ZMxHzcT3jRIusDQfetATPOkIvxr89qF9y5/Ng0h+2W7Nw6DrHKm3sd9u6ptROWjs2TrDfbgsf6Lm9sbeErxhsdXzI9W2M4DfmeNheP3FGmy1kjsO+cBQV9esGopvrVjxBkVnn/DBzTlznXomG9PB0/iRxmLW4MhZLxc/SPOfq3XNy7W8YeCMe//ag59YcnIecDZmJ15SbPbwxMdLfsYwtMQaLLG2DnAWN3s9H2vhiZVYw4uIEwfxrZ1b9dETWGrth4quOXHUX4N3jkVnD91bv//97z+2D9q/+MUvXvmPptXFn/BqH+QhP+fHh4fO0NbCO4j7gX1xHTgj5Jz3obzWd307F+ycEzidefcGcdojenXQ1I29mK4//KxXr+KwhY2XfWaDmxpXVz2/bPd8iWMvxdLMxSqeOMb0aoNzOHRw+dGxw0U8LT86tTQPD9fOJQwccCf0fOATfrVDcfkiHsxyKUdY/GDRFZst4UfPJkzj5uw1a+n1/IqJHzx2dGLhT+g1Puy6l7NrDzbf4hZPz4/AN4ZPXzzj7iN0y08c+a3g41ms8fMe6Nxr5uHax8QZ6hkF07XiGYVPNTZ2xrvf4lHdceQHX1y2zrl6EPcC8cTW6MN35n0oCAsGXxg9S/nDF0/d2cBgp29v1KG66a07L5q5dRzEg4UrG+PEc8/1xxYuG43IQZ3ExKMzoG4aOz74xcVcjPjE1Zx/seQKAzY+MPTsrWkEfxzkxJadJifNXuWDj5qy1/AgbMJpb3sWsWuv8INZLno6PuUTB/NyxVVsa+Kz1+cTh/ZA7K7r6oJH9ZWfuWc1Dhrf7uXiaOzjHxd67yo48POs7l4plvzcoz2njNUFVzUQlz8sY/5EHekTuTrrWmeAjyYGrrjxN9db6zkABz47dXBtdA2xo1PT9i/semtqCA8v/OXomqqGPc/UYfNiD1+Db01j57kHgy+pttZwJfLhi4v7gv+Tyr9I+5990P6Nb3zj2CykJIPQuSG6hJFVJBvBR+J8iDnJXjHYsV8RT3G18CoQ2/z5wCDsbJQLHWbi4OXD1uGzgR1CthpM6+GVZ7Ga66uFGPmFUdxs4pKfeuQjFt5acejimw9d8dkahwG/dTHD6WGJj3qySYy1OOcTD2uLJV7CNnv6DjYs/nxbz0cPL7FePqsrLp0xya686fJfjvRnYcevxt7YRQXXefGTbY2OvbjWspWfG083CXqtBwo8/l4E3CT4Freb9WJ0E8sme9yN4elXzLVi6wnbOItx9uUjnjVj5ypfY43QtW/w2Oqtu+66cdN13bDR7LsGQ3zCz7XbfqqthgufuMJbPQxrdOXChjQPs9jH4g1f4qNPGssBZ4KnuV6s8qk2dGJ2YzY3rlnjq/HJHk7XHa4rcjnnjRs7/mHwoXeufCNlbC19uPQaKS4uWno8iZ6N3n3Q/bG1cLLhX97ZOw/l1W+1+rAdDj1sfnoCM57mbOTvmnH9GRM2xdd3zcldbHmzDXfPkHVrrjcNVj5nO/M4sYOnwaeHo4lvDmfP/9Y/nPz4EGfBi5EHvJdeGM6YGqlfGIfx5Yu5+3V/G+6rX/3qsXS2y/5Be/n5oP0Xv/jFsdftSzWxLkZ5nHHVgY1GbuNDX73zMe+ayi+dWuBSU1+Ch6aOmrjOPb7qxp8Pf2e3c0hnLp749HDUFAbd7ntx6PY6dA/3n2CXi94LGty49+7QOUzPhs4cPw2PrY0czXHCoVpl46zjIx82GtHDDb81fvnSGfP3sgjfnN615qVXPeT40Y9+9PitDR8IuV6s+U1uIrb98Fszzqs8/IenPmj3d57p2MTFNayOWwd5s4EtJ+v6rg81ZC9/vZfhPpgp12pXDvTtW3XDl744cjcn/OJpTKzhgges8rbeu0Dnrrgw4fMT17xcqnG5d+6cVTmqYw2XMGHZC/HF5Q9TnDDxsI/eM1rjB9seEHsgprMnN30fqFW/8tUTHHDpTO+4PRVbrtkb44BvtWDjm0RzgqfaEJjtVfFgE7lWw0PxHl+q2Zq1x6szVhtNzX1D69pVDyJ/fuLDZGfdfZp9Z2PPFs7qtNcyX7UlbMuTv3FirsVf/eSdT+t6++w+Vw3p2ovw4KgrLp4pRA6uSbnSV1t7Yn9IMflq8ZGzOR+/HecZ3gft9HJkIydYMP1ADp41NvTOsb782LfXam4uRjqc4gBj9fJWn/hXIxhaQm8Oh7QmjpbAwq162ktyxts5f7jhq2sftMMpd7y1cmFvTT0+/vGPHx+0+824OMbpQXuxiN9of+65567+9Kc/HTV+4okn7n04Iz/74dx0ftS8Gnj/cP7pnJE+EIPLl14vliYH9yOYcrOuZn3Iw089uydZbw+L6b4njp7QZ1NO5iQOYqmz88xeHcVVO41d5yy+XZf82gOYfOUhFlz5OJvmfOHzdbaN48RWM4cHo7MDl8S3ve4aMlcLPd+V8xym+urFh4GPsYYDnBqs9Hr84lzeeLGvLxc9aa395leNW2dD2NhfPTt7JW41ax4HPtWFvXG5xZUP/HI3ZguXxNc6vSa++6JnDr33Fj8I16zBZoeXnjg/7J0VOv/PjPcanOQrHl/3l332lhO7bKqB86MRZ9p5I3Jg454I0zPZ80Sc+Pe8hFst5Bpner7sWxcftrWa/DV6/s6M69q4NZyqpzV8zIshDuk6o8dVI3LB17ViDba64MVXM3Z28bBG9OouJ3W1T63DMKavyZW9WooXDznhrMGUFx/xYLPX4MFgIxfNGDf7Dq99grm1ihf7alVe7YG5mJoxH7Y4qJU4dHrCD0+54Cw+YYubPgz3RT/UVhcNxn7Qzq/90fPDgfR9iLHntByKBdeH734RpncB6zgTdrB2T8XeHMSx9866PMo932quFtYJm8b0Gju1sxd97yZ2uejzhQ2DrfppaskGf/voXccYV88zudrTzi09HH64548HO3XzbsOXOHsaf3wJDHmI6zrwn6H+J/9X2kP/RvvXv/71fzvIiCAlCX2t4h2sL19saEm0UebsCf96evZh0psrksPGv7mDs9hsw7RhiuywhGmD3HTaKDE6yLDYZWuteZjwEzp5lms5WA8jWz3exFq58aUvlr4DnV1r5mtPTzZ+tnr81sbh7SKQa2swYBdva48bPV1S3vxru5YPv9skjDN39vnbo+bs42fMJt/D6D5flke+6gBDcxNwQVozdnF7oLPZGolnb/hYc7bY0/N1QYbp4eKm0tljw8c8jGK331KI16YTPp04NXNrhK5xewI/XT764hvbVzZ81FutzPka02lhGrteXIvWYey4eNb4mLMJSzxzdVMLPTs6trgtPzyaWw+vnPm9l8BPqsnGhOFhHjd9ORrXyqlc3JjDVhdzPY6uL3Xp5i8+v+4x8dGLv3njSFfuxuLwz75zKlYcYLBlV57s8Y+fcVINWtfLW7MWLntjGIsjjvzy4e/htX9SQr705Y0f0TeuZq45Z0JO5SqP6mDNPayX3Phlyy9fuq4316lYePChr1Z08cCretIvbvvDlt569aCLJwwx6PiIZSx/zx0vPV4W+Hq4e0mgK5d6+PbYT9L9Jtzj/KDdf6L2y1/+8t4LLC5iyYFUE7zVo7l8zoJvnNk316uTHm51rWatVUvnSJzm7MJt//ViOAPGri9zfs5gL1zFcE2zwZsOB2eB7N7Qlyu9Wtg3IpZv5MzZ4Qczrnhr8MvJmrn9pSP2nh+9dfG06sXGvBzNiZgau+X5/1b//bldDmJq4fUOBBuGuT/x0Qcxrju/6XXnzp2jZ6MGnmFqWH7//Oc/j7PrLPsg7l//+tfxTYK8Nnc1hCFPNag2cMQSd2tM3/2Xr1zNtc3JHrO1Tl9+7WX5qY1x17l5dcYTL3PSfqsJn75Rtu5+owbiEOvZd73IM50+2/LHV0w109Rix+UCWzzx3d/ocRIHpjl8Npq14nX/FZNd549fta12nYswj8QuX/hVGxy1dPSEj0bi2z3bXPx+QcG46xQOHvYDbz2O8XQ/pFdrtmLwL9YR8PqL9dptNmvv/Dmf4ovjOqTjqxE8CBv3EB8i2iPx5V49tj7WzXEhbAhM+9LZUxc4m1M+craeXzU0VzsNDl8+eOIoH/EJDuZ482eDv/3GyTo9Tno45V1d4Iiz17oPkn0AAAsO3OLzh6XZb77xoevabq/Z41Gczu2huHzBybo8ixVHNvSw+BWbbsXcOhx4rYcdDn7WNLbtc9hyzHY5wOHLR93URQ/HebIv1vBnS/Tw7aO/0f7mm28+tt9o3w/afXjo2qlG6u8+4trsGsQH/z5cx9uZcU6qkXV7qcmdDUnHjk6Oe1+XN9/2tT3Mnq3WGYFRbeCbd76MxbbeWadTa1zzZeM+KKbY5jDYafwJbvRrw6fGj41Y7NaPvjksseHoE/7lzr7crVcPuCvsEvjs1FhvjkvniO/yzy9u7HHQjNnGky1M/Nirv/Xs68snf/0Kbn1/bE2Dh2eYdOHAbUwv/p4pOn5s8NOMa2KzIc41f3O4zjMudL5Pd/9hUy582ktjPNk7K2z80oQPMvmrMXG9WHfN6MWq/u0JX9eXno1GnOvOJUwY8NnJ0TNHD9N690a4bEi1NK8ex8LlS1xay6dawWTjzPe5Fh2uBLZ19/audb5wwuKLo9jyri7qK5/y3rNYHmJYFxM+YRemNfchHNoXZ0H9wrXGV+t5Ytw7oBrD5MdHD19t2chDTnKVR/caenH08ORl3dh9ECY/c74EF/ZhmquLfHfP2PKDh092XSd0zuriVFuxxOUjBx/8GhP26iUewVE+7OTc3lnbD5xhsO08uLf7oN2/PPWsglH+fLPDpdzpxbdGZ4yHmstdbM26lrCTLxu9ds4VjrPk3d86kXOY5nDM4agde332zo88tPZODeiJmGHCiE97Z81+qYdfRvCOIw/7qL56uCQexjj4PvyNN9743/2Ndh+0lxBSFafNQpBE+JicvrBhD8dYUwQ6fdK4dYVwgRD4689mRQEdEHq2is3fT34cQr6JscYuHmHHwaYVoz5/Nvmm0+ebLr/05lu/Pdz4O0DxNBeDGBM455qlh8suf4fVTaBD66K1xh8PWLUD/PqLmGzOks/qyy9deTav37xx7IJgX4768mefj7zIOVbYGzObzUE858J5UAs3Yg8UN4BwsykWffW0RvQwugnJwQ1SzxamZp3QGbt58AuHvvzY4QSjPIq7+edrX6oXHT921a7882VjXBMDRs2cTZzgual5mLFxXpwbLX44G2tw4w+D8Gu9nh1s9eg8mpeX9fKOC5315WetOEew6y9sk2KWY/rtrZUjHvJ0Q+76UM8aW+fSvURvLp447NnhSG+sJ9bDMI6jPn99dZGX2nROs4m3dWv0K/TVKH2c8RO7muGTsLHX8sqObhu9usi73PHdM+LB56fFPmz34ledPMg2XjzFx4ngLZ9yYpOdXH3g6bdRvMhWT+t4afDpF4+fc6Yn1sKvTs5z3NKxpZM/H3Hkalx9wtPz06zzE8P+ic2XrjPFhnjgexnyw4muKX5iqpt4HvC+QX/ppZcOn3yPySN8gf/HP/7x6le/+tXxctF+0uOpnWM0Z0PqjXGVG7/mdAnf1ujMu4c01xcbdlz0sNSbNN76qpG5ermGnUVnU159kFBOy6W9oYuv/YNnTa/Rmfd3utnbU/p4WtfocBFfjjix4eOacA0YFwcvsTV6wn6l9WLFiW+6bPRnf9+EeuaIiZd3AH9/3Qc//nNTzyzPQL21aoWrd6W7d+8e71x8fbhObz/01RrfaiZ+15NawMDL9af3gb4PhsSzbs/cM/omsfhqB4fIma1vJuiN2e213ZgtsS4ee2KMt16t8VQTuatPz2418BtphA08PTxjrfuJnK0R6431Ww98nUe9NRyMO9f86WH3zS2OxbOexL85DHtD3xksd5jFVge25ura/nXu+KgHodPiG54YCZ14vgnx7qSOfMSEY40uX1hq7BtpPTu87b9/HaHuzqMY8i4XditilIc4bFesJ3zNa7BrbMJeHzydx86wc+k+7fsOfK0TOHLT+JvDwxsn+Wh08bSW0OdPB9e6s0X40LmH4eL8aLh5XuhhaMXPz7UQduuw4ginZ306vnItb9etGOyqj75xe6wvRmvxsoYHKY7adMbLFTd7yn95Ho7XX6pr8aiLZ1xMutVbI9bzFYvgZE/xwEvs/MPTy4Hv+qyt82Gfug6t1cRyf3ncH7Q///zzx3PcXns2iaFG+MrFdek605eDuf11L6BzPzVvH+QIb88pnfzZE726yctaZ9JZ2XtMtSi2vtp2r84GHhxc0h3Brr/Ih757eTzoa/FihxvM8zlggzO9dfMk23PfejHzyS69GqmbZgy/Xl4J/Zkbu+rMDnaNrbN0Fjz4aUm2fOMJFyd1UmP1IfzYsOVnHv/2ohh87Zk5W235GRPrGns29ssa7DDwsSaGvPKhjyssPu6f3hfcL8wJHhpxbj1j8O7chBMuG/b0dO973/uO55U5DnQwek+CVW5iWM+XHnd4fEjP0XJ0vcEqPr3z2B7S08XzALl8oVcjzVoipvNTHcPDXYOtyb8awNraGmswykUe8eJnHAcxiPcg9wx+Nfr2Uh3Yth/nZ8XWCld50O2+wRXfGg79vX32vjfyfhC3aiYmH7XX6Olgm8Oq3riWj1hwYfa+yc5cDnhVQ3kSPvCtwTIXp/j87bfeefVunb0zgouY1vFQY40NLDXz7FBnHOhq4riG+uEoLGsEnlzVhljDD09rMH2Y/Je//OV4b5cjPS5wcSjOAXD5gl8c07FLZ5wYa5478sefXfcQfDT8xKN3He8PudQQJ4JLY7ZqKZfqzgaWerALFwe4XXPWwilPeK5LNcfJs0ptnK90nYk48cVJz/fTn/70/58P2hHQSBthTFchOhSKISF2CTubvrJ4bJvzVeAurDZFHGthF49vOoXja+Mcar+loW8zxBdH44+r/qxbzDhnC0srfusP0sOFQ/hrcQ/XGt1Zsr8pLkzYxJi/A5eug5qvvhrwiZf60cfR2lnCz6da5FMt86PXxHQz8gGaG5QbDV/non+2uljhh3Pu4W0e5ZyOvwvXhdOFLGYNTzbqtDdoOOVi3dw67nCyd8Fb09x4zMUrXz5i6dNlXz1gtU/ZlHdzPsYEZ2JOT+Srbublbh3ObdJ1glv+fFw7rpf2MLzFiQtd+dwUi51W7fRxZq/BJ+zCaBy2ObHemJ9xeOm7cR4Oly/xr26uA+dNs6al6+yZG2v8YLphn6+N7OINKwnbHEe5k84OLJzp0xlXo/KBEy9xYG08Y23t+bR/YrZWDczZ4CCH5dpYvu6/XlDC0vOtHnh5iJ0/aOfrQcauOPzijRN9fWv6RB1cT16U/T3pfF1/BLa2OW0ts4+7uSZuD2/zcz3bc37ZG8Pma8zn7IcTG/eI/MrRGj/XlW92fYCJgzOoVo3dK/qN9hdffJHbvTodk0f4oqY+aPcb7fZTfhqxVs3LDc8Vea6ddbZ0xjU5a/T69OZ7vRV3cdmoXXVjr1Zqg2vXavdJGPR4aM6wGvYBCDxng57A3Xt+fvS1sPGG7exZM7en/NtzzxMvnJ1FNmJ1LZl78dUvPn8C35qW4FxN0ulxJXDY8KmecOhaY+t68QGmZyzRP/nkk8eH3f1muVyI8+C3PNRK7fob7K5dcax3jZnDj6caqJFerrho/syBPHzThpcPWnHwXITF1j3FfsFr3/Mvx66V9h6mPcK9vSpvudDzdWYIvuJVv65Nz2kNb/b8vLQTNr3oiwef6K1pfGBqeJiHYz1O4hNrnedypmPrDGliZmutWutr4jVmK45Gp3Z6YiweHPzkUd3tcd9wii9ufuZs6+nFhFNO1l0L9h02GznpzX1TJZ/qwlad9eXFvh800olhD/iFS59Yd13JgR6HpDU9PRz9+md7vx5+58+5c+7xTN/+OVtiwe/Mq5e5HNUzjvSdSTpNHdsfvTplYy6uD7x7dtLhg8vuKb8ErnnnQY933PHlDxuGObEOW13FkU9zmOzoNePwjcuF78ahr4lhbD/srXuAewHhU1z4nTVr+Yt33kt27K2xWz++K+HgK5ae0Fev/OnCLK7YrfMzzsYHIZqa0qurVq2c4/5G++P40zF/+9vfjt+se+edd45aun85a/iIj2v3464/5899Td7qLUd77Awb0/PVjLVqs3V3PtWLTi9nH1j4xQrvfvDwINWxa4E9MdfE78w4k84b//jh3N7QWYsfbC1uxgTvemNcqos5e1jtTTZiWSPVoVh0MKzrxeIPh8Rl+VonYe14OYdnHZdtdEl8zY35xTk+9JqYyXKKZ2tsq781Z8i+4ND12F60d+zwh0tgsKfHSbNO72wYWzd3Jvnh1zUC3zp9ZzYuzrX3BmduxfryMIavh+PM44Ezf3nhoXnnEYfIkc7c/cj7W3x338qLjzhisNXjD6ca8BfPXHz17F4Ak781mPw1Y9zrrSfG2u6p68C1or7iw4xvGHTVFtY5Hnvr2YhPcNbYuz+rvXg4xFGO3Qc2Hjtz60k5qlF14quxpYs/fPco8WF5F1U7eHSkPPm5f7jvsok/HYHNNj56Nmy987hXGRN2fljpDFRba3JWH1ydRXsZhvuV2Lh7z6F3juCUP1zPbljGclAPwg++Xi4wnKnmej744CsvMTsLfOCyE1sLnx8f/+LUnxfz/WXv8PLho8Fmy5fo1Wll970awuAnF/vlhyO+zyDl5HziGz/XhBq6/sTh39rGs6Z+e12EK+cw+cKAi4OGHz1+JHx18QyGSQfH3qlRXPB1Jqzx16t5Ns8+++zxC2+P+n34I/3pmA6OopKKYxxJfZtE77BKNB9Fkox5OnaKVWOTThEclopozZitjcEhW2N6+G24DXGwFLgDdjhcvrRpeMDia5wenvnGKh6M7OIb7vZh0O3YHK5GYImlbQxr6keyOSbv8aUDezY7Y+NeHmz5aWoVF/1Z4HRhtA/nvTdv39ZfTBefD86eeeaZ4yKks2e//e1vr/7+978fsdfnfmP85FAezpybX7mqsYewmHpngk5MZxrHfKobXzo2Gntrbrow+maQ3o1Srw5unNbEKH71q57sYLsR8COw6aplvtsXgw0J95hcf2EPi8S9uNcmR8cOTtcGW/Vz7WhqUk3ZaXD5bdz4rU4AXGvm1U5tYGVfzyYpBn9+7G8T/tVFn6+zhL95/ubykqu8vbBYN6eXt/Ogrx76xlufePPPd3X0SRycCXts7hwZi4Wfll11C0N82O2HsbOTjzhsi9+8+Onr19a4ln3xzdXRh8J+UEnY4tOzgA4vNucP2j0c1ViObHZP+J2luHhWd2NnwHXlt8N6qfDgpmen/psbPTtcWxPfmJ4Y9wLDXuwVeNU7PRv+YlrLj95e8BHT3P6my5+fWlgXW72cQ883HzpVK9dIf6P9cf9nqG+99dYRp3rhhnNSbvJbkbd8bhI+GmEjP40PHGeFnOt5KC9flgs/GDjx86Gg+tB1jrJnQ+/+2/3WS5Kz6nlvnS+ccHGKl/hs4Gls7ClxPuwNX639th4/zwEvep4r9LA0Uq6ucU1Ma3w1sdRMnGrHjz4fmHixwaGzQ9e5cY6s89MIPD/A9iGPvxEMz5+M8ffYnUuCH05wfGPjw3VYzqEPydWNDc7hltsBcPlC76z6plZT+3L69a9/fcTyjC+P6oyvWBp79cDFHhon7hdeeL0Dstv6VUeY6gKTdBaM8YuPnuBiz3xzpRcXBlu1MYZhXd3E4asWYVSPA/DyBW+4xNj6cm3uTPZDoGKy902a9xV29EQvL326Y+H6C3zc8bNuv7q/5qu+9sf57B2FnevDB2TOFN7ylh8/OfPBq/3eXBqz44sz364zev9ywTdgcKyfJVz19BtG/jQRHR72RD3iW+56cexzOrjGcNRKryauS9yKc45/2/x+9uJ0b3GNqJ3cXDvqnm/n0ppmvrUSGzd70z3KnB0MuM6856maypeejT1RF6LXqkU1aB/Nt8FxrWvVkK145mxhWaczJ9nQF4veuFzlH25+bFpXBzmog2/O/RkH/uLat/aOrzEpZz3Z2NlV4+VPdxa++RjDdE70Nfr2K1y9upcTH3mSxvbKPuLQPU3NiOvuqaeeemz/Gap79CuvvHL17rvvHvcL+6/GuItp7Brqmjd2ZlwPWxe2uHa/tt/ePejkCkd+mjFxf4LbtcXXtev/7+h6sL/i5Ycfn85pfPqlNzVTT7GdIXM84bAlzkNnVJ7JjnGstQ6HTj7yZQ+/vTG3Lha+zgHbYrGjs//ZwMRHnYi5RuDVxOEbrrmmDtVGbCJmTcx8xS2eddhixwkOyUfPJoEPg6ilxpedmsuhaw0WbvIkauDeY52uXNo/NtbwwlEcNmLCh03Hxr66DuCwh21dk6vz4p7v/YG/c+bdPqzqoYddHHGNxdHg86M3/tCHPnTvrFqHK081gmPsLPtQGQdY1di6+ObFwB2OOqlD6/Ty5EP4iM+uGrOJPxuxYcCzFic4ibh4WYfNBp596VrJVo8PPPlbZ2suFj5682LBzYd/tnpxi6fHJVvrmjh42U+8w2dLrGviaPRs4JjjR4prjTib3pGIGuHOvjh691v3nN4LYboPw1B3Dx+kqwAAQABJREFUvMSLg54fm+5V4rK9c+fO8a5svXcz/nIS37l0PmHgpraezdatialesGDKCz92bPCwXt70akrovGeKI0dnxJpm7L5ov2FaxwsHa+b81Qc3IpbY/mzMn//853vvJtY6f9XBnP39BK4Y8mIrH35y7j3N9xnVxjNBw1EO7Fxjrn89DLz16gWbwDem51eu8hUPXt8b5y9vddPEZ2vNGAYs8T1/9ERvjS1hKyc1Kzf74/nk2abufuHtBz/4wSP/y/KH/qD91VdfPRJBVPJIapKr0WtsiGS7wdlgwlZSfElFYUusV/QKvIe24vNnF4/wxIchHj96Popms5YfuzZI/PAOIpcvuOGqh+NA6NnSrX8+27OzucWAn5+esNHgwtPuJ9XmQWzjDP82waOasXFTcIhd4NbEw7+842eeLvzNCRZc7SZxofrnYT4M6EYG++233z6+0b/J5zaduDi2t/i7kPGzpu+C7zzibE1MY3sr991jexcGG2MXtotXY0tgqpO5bzCbn+vClo4t7PDpjcOLc1zE5aPnHy6/2yR7+YVHZ6xWWuOuDTrizPPT2j+x41dM/nHsmmbXPpSrnl21M+ZL6sMsjtjEHO8HyRkuW9I9Aw49//Kls+7Buzmog3uO1nVfXPOa/GC0pm7uN9XgzFcO7beziQ9d+nDq6csFv+LRs4mbOPDykzf7sI01XLX2Ehd8+Z39YZAwxPJC4wOF/GGWr9zheUnx4Y2fpqurWmq9sLMz18e3OqVrjitd/NXCS83TTz99j6/rGcds+BJzYq61Di/+rfXwZi8Hkj+Oxri0X4fB9Rdr5YFHsSwbO+vpFkvd2Dt/Pczx8PLW80luHvDf+973Hvlvwy1XYxz8Z6hvvfXWcX7UozPQXpdv9cefqJtzwu4s5bZ1o2OrpsXpzOafffN6fuLCcB06e2rl3uz84EyqP1vcOsdsvSjxg+H84WBdHuztTTnGo7g408VbPH6wOiN8zb1A+kbNfsENI8x6fhqfrmu2cGCLldCXD1uidnjoxYGrNr3UwqEPC4bnkA/W/XDKmrkP3fvNEjHZwXXt+jMeauW3FP2zU9jw2IhXfmKZl5tnXb/ZwgdH3PzA3Jr/sI+v3DVjNvaJfbnLVR3lLubabJ7s1JKdMVs82ye6nuPika0znfcN9xPf5Oy+8JOX86FOYrDHEYbxYrI1h4GHsZxxIOb08XRf9FKvzuHw9cEyTuzUrtpuH4d0xVVPOvcO1wdRD/XT8NHKk10ftMsp7nGEax/UIo56ebSPerXJF7euM+9d/iWFMyGuGKQ6HJPrL/zcA31jKAZfdVB7HHBiU+7c2MXDnstdk3P5dD2yrV4b90HH/BP4zqHnoN82r9bu2/YsW9yqC50cnKc9S9b5Ow/pxWFvz+h9IKCm4tJXc1hErbTNT/5q1d5Xezb0eGowCTvnYe1cl/R04vJT5z2Xh/Pli3XY7Nm0T3TWOjN6Ta7Oug/aSTzjB4MOTuelazLOh+PlSz5sjVtXW420BgsfOWxu9qazBIOdOWFvrN7GSXmms0fun+plT9VPD8uzwTvLd77znatPfOIT/7ZX4T1IXyy/0X7+oJ1/3MVUL+e/+5eaG1tjR9TFvrsXVTuc5WYub/bqWD1g+p7HNa0mrgXPDL8U1QdPYufDj63r2XMStvMKp18wUDM8YOntobg4i2F/+KmpGljHnVQTYzHZ8oWp19jjwbazln8Y/OIsd/GKw886Pmz0cOx5daI3FrdWDGvxhil/eDjFiy/RsxE/GzrzbIzh8ZVffuKJba289fgu/7jAab/p8MQtTrC8P+HTnpY/G+ti4hVXOMZx5tv1Zs/tJ072Wf2swYHrXHkWd3adGXjlp2cLW7OmwROTH/78rNN7BsFVA3Mc2IVL35mWU7HsL4EnR61YxQlHLLz4ZEcH29nfe6l6sCFy7nzTWYOzIiYceGys2zO1U8Ow8mEnDzl1TVkrFs5qRYpX/fiyax13a/gXxxo++s4JG+vswqhu1ax9Y8s/H/tPzMUOGzfPWKJGYtFpYjm77luej+4b4RvjJn57DAO+uT3quSo2WzXxSwF9WOw+rnXNqYN7Z/UQy1rPfO/UOOHo/MKELY49YC9+50UO1Spu/UY7Wxxxja+cYMWHv/13DghcdWs/+LluvU/5jXY1YmtvYPCvDnizv5/gDlsPg385yVf+nuf2KVx7owbs1cM16DnoGSAmO2t0/OCR8o4PvYa3mqknXxj4yHvb5sKGWHc9OF8EH5jyIHyqKc6aenm/832QsV8E9idcX3755cMH94eRR/qgXRBNwiWWTl9xlogkbVYbW7HZ5LP2FcmaIiiwAsDOx1qHK1986PkXg5+xzarBYbdins4mEj3MtW8t++3zYUOfH54E1q6VT3Gs45r+cLrhS/aWbopPD4NdNTrbsblJcOCjqReh24MJK721xHjzo68O2dTTuwB8M+Ynzy64ON69/G1YL2JyqOV3v15sDVf8u0nzMRdPcyN2wcVdLzYbZxUG0S8GLmz47zeC6fnAdQNyYy6Gi92YLxHPmF4vDoxuGriQemN22S5vvuz4683ZNW4dBjEn7PNxLbtO9GpHb+9hhB2uPNLjUS7F0RdDHGM1LX/91jibfGCHiQcxb/1QXH+J2202cikf/nC6F8B2E/VQoitGPnRakm+16n5ET+DlQ2cPytk8HR7tY2P1SOK59ta25sZiVStxinFbDwPHaspHrsXZtWyLIWcPfC8g1TMbdXBW5OTlwwftHvJeDtSXr4ekHh6dXlyil3MS/83RGhvXnfuFsRcMLyjsjT3Me5nhSxY7PPxJdcZL7mxJ9YmTOb7m6XbcHrSnB8jlC5ubdOKUf3U19/Lk5VKNPe/k4jfaX3/99asXXnjhgC2vYjxsL3YftNuHcoNbHmyqRTp26lZO8iLWreWfLr/qVRx5tsZWHDYbL6zWzJ09Z8h10jOcP2HXPUVP2PTOwN9Z5C8HjQ8sNdab47b8+LHt3Jqzk7uxnMy7ZxdbfPryaszPmN+eC1jaCjs2a2edHY7VNX5xkYuGCxvPKB+0f+Yznzl0nku+qWDDR26al8p+QOZcqJVzqBevHGCWe5z1npG+wfXizL898pLP5/+Iu5cVXa+q7eN1GnZ0hVexpXEDakRsuI/bJIjiJkaTRkCUqBC1kYbY9QTsKHgmbrBnQxTcgErcgYfx1e9O/fNe3G/VWlVJ8Bswa8455hjXuMaY8948z6q1lmcuDFhxNY5/ubPdZyK9+4vGnvARQw9TrlsvNnDo21u6alkuOLtn4MaOiOM6lJNcfFD3HOdLp8E2h2NO4mHNGK741vGMj96HEM8ccdonejx8EBGPX7XaGEewG34Ui198xdbM5aiJycY1ZX/sB1+5x18I99rqx9++mIfNli4fOM6Lnt4fYvQ3+9SE6PmvsFcP540fHs6kWvTuxSYRLz5ykR97sV3ncqNvf/Xmr4XggZ97i/o5h10/znxx2jsx44uz+hE+9h+OMeHLRo34wxNLfp0BWDDUKZ9imrPj27gz0TnQ463BJ+x73sSPn9zou9b48mHfPraX1nCNL9x4ZkMXf3sih7DoCVtt88iHrlrZBw0PvTV2xiR+dMaJdTH12aqftnbwCB0MbUUd2MTV2dPYq1fnmc69wB+Yf/e73z2e52Ev3m3G8fOl9pNPPnk8x90z4JPFxVd93Uv0eHYdbC7ycBaqh300FuumusDrnmk/XLf+0A4Of75xMe4c6KsZvu6D4ovX+el8xR9nY3uWbVzlZGwNLju6zU8cQocLW7H0K9Zr9HBhasbVQ+7GdHJvrZj5hb2YsMLBMxw+GqErpjl/umK1Rg/DHhnT19iTuGWTvrWthTX7457rvu1Zzp+NffVeCp/d9taXO2x8iqHW7HE9N1h82eDoHHs/YefcmrufW4epOQ+eS2zgEmPcYej7gh6+seY9TyyYxnxx5yOW88yezpqzZs1njXjSx8NaDQd+9faKrXV8xTUnO4bFRm9d4+semoitdWaNs3Of6XqhJ9bgqREfNrg5t5p4bOLBVs000vswHurCvhjWs6dX97iLhTdccfiKQ8rhmFz9gA8XP8IHBxj4wvHs4WtNnGrTMyYMduKL1z24fPjDqn7FdO8Rx/54R/FlsbPH3juRexo8c7k4QzDDwhmmOviSuZqa44qjs1tNqlv1wj0Rw37xhaMm4hB24jS3Tsem91T1sS43jaiJe7LP4Z5F8dDnbx22fSQw4J8F5/aajbqxo1Mb9fM3ZbvGisFWbuzU2TXGnuDATs5s4DW2jld5Wyuu2NWYPl/rBNd0bAl73PS4uAew41Ne7MTjg5fz4Z/c8Qsgaupz+HPPPfff+412/xlqha6X8Ir56iS1Yk2SEjOGo1Ustq0Xw8GxOUQhE4UiYabnz77DB8fh1NjW2OMXR37WEvg26CxxXts2mE+82MmTtNHGbMUqP/ZtPr32IIFx5r25iLtczM+4+MPR1jZ9+enbr/vxEl+emzfs6wSmC8AHWjcr8dtjX9i5UZnHOy5nPPpycDN04xGfmGt4we9iF9ecXzXjY8y+WOZ94IRXTeHgrZevusbTnF7DhbjBaM3pYJuzx0N8NyS64uvhxq09qgb68lArPMzDFCfbxmGbN3aduMZIubjhdF7YqQtc+Olh0xejWsereqp3a0eQ0w9rcJN4NdcXIx2buNKJBUOtrNXMtfyNuw/oexBdF7NY9WzUWW081KtDvtvjclPeuGhbz/i3d/Hdno2YxY1XvXX++sRY2/q2Vl9e8aeXp3Ph/Bk7H734bny1UEc8vaT4bfb9jXb+bDrHbHc/xOKLX7jxvy5Xa/SuL1+EmXsR8hsJrlXzzQM+oRMXj9arLR9j+cKOD7t4ZwvLNcqH0Bvjb6yFfxhc/aC3N9oKW/5enDzYPeC96LHzJ+nPPvvsxeOPP364XIe7WA8a49AX7V3vMNVFI/IoF/NdVxtrnbH86Imerpzk5ezEu/4wvvwBB161tL4Y1cyZ0djZo7jCyWbvIbvHML04+TJZD59OXF9Ee/HCA64Yiw/HvDj6cw7wlnNzfHDTuvfxhSkPerbEvBociqsfbAi/8kt3ZfKyr3ycy/4AmI9njn+24JFHHnl5zYdH12PXtw/S/tkOvynpxRy/9sVYrcWET8qv+HrcPLvEg6uxo1e/PgCJW33xg6tt/lsH/sUrP/7uM+5FuLGH0TOXXZj8w5ZTz1c24bGxJo7rzr0LNx++1K4PWTAJPL58EmvmcVEHczjttzk7zxvvN6733kPgWPNFh3hw8OmcV6t4xyUbMejM+XZ/4m+N3joOaqC31v1cTbs24gJDvPDcW/maJ+UEG8fu8/zk4UNY9cvn3PMT35kRw28R+RDoumz/2IirwabHRf3k5rpVV18IwcGHjfdKH6DZ3kbEeZCIp3WWcXfPNq9m+Djz8HDRCO50bP3BlmvPGs588TQvX/Za/vp0uw+w+eDVNWFv2OKHT/c2ddJ6f+HjjPQHG3DVzrp7pmuiMwSrs8YGZ0LveSKGXGDYS9cBOzE2JzbZWi/vfDqf/Ag8/mITfftsri5w2FWDakVvnJ59Qi8WP3K2MyfFPSaXP+RLYKt3dVFvdXN9OxPuU3J7+9vffvHDH/7w6OXxSiQuL17+EtLTTz99/F8r7nl7v5CjVgz70zmQYzWybk2PrxyM85MHW20x3bOIs9Ke8G0v7YmmHvQJDDWsXuy7fqzJTey4w8bP9U3iBpuNdXl1DuIPx1p4/MSsdrD4LDe6s7BXAz37jZmv9eJWt3BwsK5PjHEhxnzONRAvH9jGcOS9McLq7G5+xTvr5KGtLCZu7pX+YN7fMmfr7DrLv/3tbw+udDgn/MNtH62Fq4cLRz6afDwX3BuMnRV5OFM+U/Nh37PAWWHHhp/mXCyes6ImmvcftkTs7mv4icnWWFw1EoveuPrIUQx1aM/wYsNXaw9ww6U190HrOPAVjw2pLmzJ9vDk6pmcnj1s+49bMa2bixXnA/AKU2w2ePCPAzxY8aWXf9eZMc5qo/7GbPnV2gsx8LGOgyYen+oZJz5sraut+wju7YH4/Dz33Y+yLZY5W37Wq691ODgQ2Naq39aJv9w1PsQ7hl88cabkK0f3be9C+IhL7wyJBV+TO717r/dpa/DDZWMfxYKJBx92cUvfHB86GPzkoab8qk86672vxctcfdjgIr7nN505LLzi2bu+M0CsV8dDcfVDDcTQW4ePJ16aa9Znb/WiJ+zzkZ81ceRBL5Y8cZPL1gdGda5+cRBPzWHhUr2qGRy2pFzWV3x7zb8cjPEj/MVWN39Ty2cB9XrrW9/63/+ivUOgYMhWeGNE00nU3MVLV+JbvA6Owhsn6fkYu7jaEHEJPdyVja9AblyaQnb4FT6O+fJrg3bNxhYvWz1eGtv1pWvOz1xudOaaMeEbTj56eWl3kfzLgf85rjlhK3atg5jvdXHZVv/8s4szGxhqVl7Z3NS7WXkwOvxq0znwQcCNw97dphY4VN/yodPw0VxQ4mnG7AmbfPTmm0s3B7a4sOkm24dI+VYfZ42PNT0f9l6Kuxbgi4MHbjDpuuiNE/7w6XDOnr81Ov7G6hf22sEqN2O2xdC7Ntys+GfnmguPT7H1xTCWozlM/PkT/KoFG3zozsKXnXXju4i64JjAj19retyS9HRydM7cK9aG7XVc2YinXnzi2z2tGPR4qMfWpPVqs/uWLT+y8eGZa8UMq54enjqqJ6HDmR9ca2cpp82fvfzkpV6ah6IP3eUKm14t1ERML0oeUL4wVlf1haOxYe+a1otBcK4OcTXffVxufMxdU/4kXVz3j/5WTOv6lfjirxE171zi155WR3Ho9Z1Pc37tEz17+ZTTxt0xW3xxWYGlvr588Td5+qLdf57mr5y/1l+0/+xnPzv2DQd7oR5yrO6bB641uRtvffixr1awzOXELuzFLHc22aWDDwuvsGGIDcMe0fNjQ8LRs9HYEBycRWfTCxS9GGw9e7xE2xP4zqbzLB6/dAfQDT9wqC6w4w0TBukeUB3pzvU4z9l2tvAx1s52YmjWxJGTDzp8PIP8s2zvete7jhx9kPaHU3KseSH3Rbt/k921i3+x8CS40IutVUN6IlfPNk0N485WHDr11rsnwMqXf7jlQUfoy88YLxj20Z62T+LL1TPWXohFVwsDv65dNvCykZP3DtcgjP2inY/4cTrXJ27iEM+7xsXhI2cxfHnheUtnnbCXg/2TV7nrqxcb9nHBGdf2w5jYf3b0sMTV+KmBnIlaup56DrYn7NiUp7Gc1IGu+DCywa0PTmK7rpw3+fDnEz6/neOAJzsfdNVnv2hnz1cMNu798hBbjvKors6berH1z5P4DU22t5Hld5M9G3UWs3o7M3LHBz+5xANO9dLHty/azTUctWzba7U0TqzTnfdBTDj55UOPqz3GyXXjmnf+et7Bcu10bu2zdV8Us5envOGIEQe5Ejjs4VsncrFPsKorTtbZs6UXW1w5Obf8jNnZR2IuJnuNr5YOLi566/gaw+ZL2JJysW5N49OZMRa7PIpxOF/+sF6tW+ML11ydnV9/YOQ+pQbvfOc7L37wgx9cvO1tbzv8w7pLH/8XL79of+aZZ278oh0XHEn567eu+Lu+1MAf9mRfX+30hF5jS/iqW3nL3RiufbG/5oRfduXAHha76nwYX/0Q17lxLhJ21d1619lNGPzEY1dcurga3yTs5SdO/MWnN6cvf3MtaU2fWLcHWtjWnJVqxV5jK5Y+DvLmZ90anK699BvPmC9btWcDQ+7XSbHcr/0zc/6pN9e6M+Ms+79W8IRBD1MMuO2tWHTmxgSufXQNVHe8vK/3ZSx7Ns6UZwZp791/nCe4cvZMdj+3Hh9r5tb1sOnEM++e0np1qxb0e22IL0dnr7/9R0dwlxPf9oG/OpirD17VU3zx2BB+1vCDdRa5uo/yYQePwNTECM8Yz+ItVv5scDMXU63DER8/uXedLbY9M+eDCywNTnawrdXkZ13N9Qm7aoez54/nJWx6eMT9Us7qFZZ1rdrwJ3Rw1YuIFyY90cPpvUQ8+OZyceZ8SezLcpyJz1/eJdo7es9GWDiIjx+9L5n5iq2ucSnH9q8c2MVNzcytVWM6Mfjhfa43fmzFUkN2MMpJfH4wrPeeaZ6er/xf6RftcZWHGrln7B9I4UgvL8LO/jpjmhxx0fo+oXPGtlri3FmlV3P+3pHhqw295wicatW5MM+Gjo8zbc9g4UHsLX229s595//rF+3+jXabiqQkFWKLISFNsUpEgsYSIQpMKog5jHCtsW0zzK2Z08Mm4RnDdwDyMe5AKhyu5nCM8+FXows7vubpDqerH2IXH16Yq+NnLm42YWW/mOkWO/tw1944XD1bNXWI8mPDV954ELblV+7tGb/W9fsA6mIN5wC7/BFW2DBWl911vQtMDDct8XDla880vG8r5d+56sKCbdyFKubWB77Y1W7X6c23pnzhuUlr1jpbsMz5uCG4gOWj9xKBS7FhsxVXY7djWHSwNWO++fBPR2+uftmWBz3RN+anET2fvY7Zqb/rKbvqo7cuZs2cXfgH8OUPHNRKn8/27GC07/ltnz3d2omnrY5tedM7P3r5NaeTK1+9h46zbb0YxuEfyqsfYXU9ZQNfHvaG4GG8uaevjuZx5Z9P9bVO4KYrD3EJH5w0duaEPckuDD3Ra+UDl4RPv/dSYw9xLyDWwq2W/MT0YO+3sj0AfZBwjviyheMFgP1yxaVa6q3FFa+Nac5GbX2Jw9b15YWnF3i155OERSd2Z139dw9wZFP88gxnezH4rojDV7tO7qfHyQuD38r0wim2L9r9Rvtjjz12wN2Pz3Xxzjrx/SdqP/3pT4+9MYdZ3uzlUOs8s8lOb687kzDYq1t7TKcROj7Xyble7OA4J/ZpG30N9tY+DhuXL3sx4LnOnV/iXDqfzpCXN1hiF1/Pr7PCnw6+msRbT9Y37mwJG884c3g3SbGtqy1ufOnLxRqdFr51cz64eSZ5zhAfSv37wO9+97uPPPFwrThf8ndtuveZ95vEatbZtr6cxSH2VLNWfDXU6GFUK+da4yuWFibOYZYPndbculrICT6sPkCIXVzr9hI2Hy0MnM2zaa1Yen7Oh/uXHNxLfOHgvqJmfMRabvDPerrdb+t89Pj64lIcZzA8eq0v2jtvfPKD274Ys2fXPsjRnL0zICYbeWnFUH81NFdXe2WOD10xO+dx12ti8wm3HOjh6bXe69QcljW9NZzFarxnRn08L3wAYh8PtriJZz+KhYv7pg9H/JabeqoF2xWx2cGEby43nJ2h8qQn7Fb4lgMb147Y7NRXLdW0GHyNuzfo18b61tc8bnHhL5a2a2rCxrpGOhP2KD6uZXr3QbFhhNXewCEw2Tin7Dtn1RcOvOzF6dzoiX1SWxIfMdnC1giMzhAezst+6V/Oh/HVj3LFi8CFU070xho+7DuvxuV9BXfM6dkWz3wx1lY+1gkbY42vNfdW59F91Xl6rb9o/+pXv3rxhz/84aiT+5S6tRd4lGu54GkvslGf/XxSnnoCg42zoxnDsv/G9ostHYFbndmfnxvsqhF/1wYbY1J8Y7bm+MpLgy2ncMXDgU69F8daePy6vsWnx4+fsVg1sQk9P33Clx3RwxS/eWvsSNjGsOpxYxs+7lp8rO8+wdHUq7Fcjcuz2HRJMfRx0hdH/DiUm7nPqA899NDxh/Fiune6H/s/09QtPDjGzRvDMFYb9+jimeOt4e3LOes4y5/OddJzU6+5jqzDVRfvM33RvuesusHwZTxbeYnrXgILhrNkzThudD0j4u/eBNPfiKru5vmpTfsATxNL7s6onm16vith6tm2B3KVFyxrYsDrnm0epnX2fAkfIpac5WednRzp2cIg7NVFzWDiy5aw5bMxyomfxic8mOJpfGHq+bPRjGHstc+mmsvbL8PgDJttjV116DkbD3gEvn3DhV+CU/tF1x4ad17UgT9b75bsPYfEYKMWcqCPnxqzKc/iwMVBPgQum2pGx5bgQk+qjxz4whCPXj3aj3j4HG2dGDsj/GDzVSfPINcQTPUzZqNZg+s6JGzg4dR+4V3Dgx62nq/aqF3XMhv5eCZ5vlTX9W1v9HiEJW61VGNcxCL08i+WOT+ce87KG4YmHgyNPn/75X3e9Y6/dZjG6sWWzj3P5wANj4cffvj4z1D93yikHI7JLX7c+d9of+qpp44EBULKBvfwlZxi1CTMTpL6yDVuDY6CS0jxiJ5ez655hS83a+LqYeDiQLHPZ3HZJnxI+GHhTfjfJPm2Hu7q6dr4sOm0+PHPNyx5h6N2hO4sYcXXnL2D47DT01WXMIsXBz1dXMVha+7B6xCKr45qu3vArnbmd5t5nMszjnFrHqcHYcLBl58boQelHNwQrGnlv9hwramb8wuDsDGm25qmU2t1wrc9MoflS0AcYLjAXdzmcaA3ronHF7/l2I3NevVip8FIF2c8+MANj28SdnM9nGpuXesmZY3Es/XFbix29vngxZfwZUu3OM6WeNZWNj/6OBrzJxvPHDYcerg48VMT14IzTG89ndjhsDe3lg4uKb7eWjmYd99jV4507UN650jjj6u2eHzLTW8dhjFO5QOP8KWrxuZJ/GCGG2/28NbevFoUq3q4t3pQVxM9W7WEAd+6lyVfPBirtYdhLwVsffjkV45bH7zhFiP+5tmXGz/XtTWxXYseoq47ejp1rsaLLb68YHZdw6kexSs+rHTG8oArjtxbw0njR7diLqYWnvVi0KuXL43UyNwX7c9c/vbapz71qQPqjLn4txmL5Yv2n/zkJ8eLGe7iqMfmUe2cXz4JO1KO7DQ2cGps6GCq6U281z8MMVynfK9rxY9D/PRasXDhT+yVufoSZ7NzaI4HCaOc6OCFab1nSbZsSHbVoPiw3P+t0xG+ZylXa85kL6/5OHPG1uWjh7l+asKvl0d/48N/furfCMabDwy5uybV2VxdXN9e1tlUW3Nx5UCnEXtE37mh40fipMcTP3bW9/4Cszqz1dhsLDq18Nx0XTuPMLwI441P17o18cLR49g1jZvfZoEFc/Xi4qkm7l2w2fmNaM0YtrqKCZsNP/ryhGG9D2Ds5EOMNTGqfdz5WcNPM49f/nq84ceXDR5hxwdPY6LPTu/+Ir4YYsENg725fPhp5vXWxYLj7GjW6PTet+QEm589wdkYp85gZ5neuPxhOIv4OMdyrVnTzGHBNWfrPPuA7JzBxAcuW7nQxb1eTOv2isDzrgg7H/ik+jYWM87W/OGo55yxD35ik/jq1UxuenzEDp8tvDDXlx2B3T7lZ02DR8dGDfrQLJa5Zgy/tXLkb8zXerHYuU9mLyf3CBzsu2tw+dov+w0PVpzYbHxzdYBLygF/Ps6ID+ldp/Tlxt6YwJGTWAn/9PrEOA504cklgRN2OnOYWsKuWoZjLR5iVR9nUj5+k/2FF144PrBnF95t+7j5N9q/8pWvHP8EnM8UvtTQi4MnfBzkhqfeXIMRZ/V19ruOytM6n/bbPqkd3M4DrMT+iR0OWw3GcjHXcNr15RRP2PjAdK6cT2vOjd6auMbwNLHS6+Hq82VL7A17a4TfSn7srdWyMYfprC8G+xpbY1jsVuKWTfzZy4m9xpfoy09sYwKnGlRbtmxgLTf29An+u26Nr33sHRqGM2L///a3vx17xp+fNU3cdOHR4+8atg7bGt7mOHvu9IwsH3q88LDnYjuDfOisw3SPhu8M2Ut96+7dvmi3jgcfOXVt6NlYJ9aNu++b83PO8BbPHP8w8O2eWAzntC/v3COrpxjW+OOoJcbVrDrC1nCyJjfXnNbZx7H9E7/6Fsc6LjB7DuHOhz182GJ0/ZtrsEj4YeweiNM6PBy1chA/G1j0YrLVzMODow78vWt6dtrTcuQnBzb0aqv28ZdDccXqPPBrD9hWd2PctOpv7+MAS51J+7n+5YCfc6Rvvw+nqx9wcJAfG80e4ItXMejZVAf49lrO/NWFWI8zG+ueLfKFt2PzYngv8a6ntnh69xMbtue3+PJg35mWrxhqEr/qh4s19nHK3hqh97nDc2mf4TjLjfA592rDl6ifOKQ46tc1SC8HvwjQZxmc8IyreBqs8pCrd1TXtXrCIOqoNnpx+cD1WYCuL9r/a/8Zqv+YLbExNliyElI8xZKMgkiO6JGvcAohET6E3tihMlYwfQVr3sGroOI1Zu8gOTx40bdZ1sIL8wh89YMtqWfTQaDj+0oEjhtZBxkGXPVw2DvwxbVuvHMY2k0cWudLYPfC25raqgmhwyHMalTMerbs9iWnPbMPa7djfveTOPG5n5/YWsJWDe7nw1b+Lkxc/an561//+uNi3/MYJi6JMd9q4xw31ttHNw3Yyz2M8lo8Xwy4ifNXx86COOXDDyadMVvj5tlt3vEqtpgwnDM6uXctxWd7/mGsXgy+8TjXm15jpzUPy/x8TumKVyw6fOkTfJ0reusJPsUqrrXrcPOJA3vXWLVoTtcDio795mrsmun+tLjLoX3S06u/hjOdXNzMy7+886tu4Zc3rIRNtbIOW53KkV3c2Rq3h9aqk16znq+52oiHk/neY+HU2LmHeGAncPYexl/NPA/89X8PeD5q3RdLxtb0Cb9qpMdH3OXZOtuV9NWsF2bXu+vVNdgLU35sYZdb8a3Th5V9MbLT469v7xvb72q5OcCCq4707MTS2Je3dTX2HGPvS1Ifqh999NGDzplbHG/b4+nfaPcb7eLIwx7ZR7zg44ITju6DfMoPX5LOmK5aGp85XqfjR7pGuu6dP3w0mLhYg6FVJzGKExdrCR1hU73lFM+eieqsBvTw62GVs7PkusYDhr5Y7HHWxycO9tIagQFPDBJ+POnyt1btjdOHxyd/a12z1ceedQ79MzH++rMPn7gXR85qEHfY4cMm5tVGTJiadbH4s5E70Wv542asPzd6mMvfmK46t+6a9ix3HYsvhvMKQ65qy1d+5QhDbt5P2eOJsy/NfZFgPzv38hDLOlz3L2O4vhDwoUFs2HTFgMsvnq4nWGL3viAOzrhYg9sHHzrvBfKABbff2JOP2mt8ErESNoR/GOKpCWzruIgPRw1wkJ8PPNZ9GBIXbnUPD3b6dMWHpX7lYg7HWZOTOeEHlx8ejeNn/Sx85VxtrONaHfjA0sSE1T2DXRzV1Jo+/zDYGNtPNTfHrZhiwBaDhMPHWB3D1Xum4WDdmK9zC9N+6Nn5jMLfutj0YokP0z6t0LPVywGGMR84xkTNYInfOWRLwoADQwznnE9Y4eXDTz7OSc8J9p1HXOl7bsCRpxgkbnHHC7b4mnV4JA7G5ac28NRf377AwXW58IPZmj58ekKnmauTmGLBgRdvttY0OmvG4Vg3rplXs7WFq35qJBf/18rzzz//mv9nqO5L3nH64jLucZEzfuVqnqhttaBbX/5EnnLhz9eXET0zq4k6tVfF5cvePjgzzr16rLDNvjjFYmcNPzw18+XPBy8x4he+XMJvb+Pr7PKx3h4bJ+zE0deas6Hjh5PevPjZZ8fGswCfbNTKPFs546TRyxnu5mCMQxjmcaeXj7Y8wyiv7fkTvRYX464967hY695mTNiJpRm3/+bts/fvrWv2eDmvzq3rmoTLHh69uvFprThiwaC3TtpL3D3T2KiV2lqTh971sl/Ww7EmVmcMrjOr9zwVg01fGlpzX+zeJz5fccXvy0R+OPBtL+Kspy9medJrcIgz4dqRRzawwkvHVn1a01tzJog8xMOHrlqqM1tS7evx6Gzy42NNI9brxSKwxCnnMODAMD9zppOnurm3GIthD8ufjzEc/MVRO3HC01uzL2zhspN7exd/9ZUPHxiEPV171vk1z05MmOZsxcPbnB4uHGdE67rgh4eeLR/+fHDS85Nfz2/zOFnX4idH/8SNnqgbnM4NnbW+aO/+693P9YmbP9TIn708tUQsbWU541Y99URummtb/fBxxuLVvSFcfo3tw87VSv3UTa+13+quVuooF7zXFxc2Gp6wrKshbjCzV29fqvsFQfWgxxdXemfJf4b6jW984+Kzn/0s6APzGNzyx51/o/1b3/rWEUQxkULOhxlkFEwxkKwoElOcDqskJK5I/I2tVZTs4PPNftfZWOvQwrDuMDlIelKR8YJ3W2EvLuEH/5UIHJvan4rCgKvZXM0hebUxlpuYXdDimKu1/SHlpn7iauopx8bhsbWP1aK9Yk+qS31+N/XwxCXFW19jNloXXVi4tZ/prutx5QvLB+qHLv8aXBeqNTjwjXEpXjnCpLOm0Ws+NNlH9YhLZzXe4vI119hr9Dh0w4FXrdk7x2Lx0Ztr1gj9WVqjz8d1B1ud7LdenBV+bPgsBhtxnBXSOpu1Y1Pe2WVrfhNXMXet/Q1bXHxXjzsfbfPIR1ztLJ0Tfl1jnXF1cc3pl08YxYrPcrBWk489LT5O5j1QqnH5mGvN2Zvri9kcl/ItR2vZXbev1mDxs84+PPowNx/jrmVx2JlXP2ONnXp58KhnQu9eG0b+vnzxEuDhb50vP717vi8i6PknfKuNXIpbXtarBV25sWsMCwY7148v53zB6AV46yFu+7v+cLWV4vOHqa8erbFvnU213H2yzt7ZExvPRG7WCR917hnmi/YvfvGLFx/5yEeO9TO/Q3mHH2L1n6G2n/bJWC3g44Kfe51G6ORVfDgEX/nkS6c+2tnW2gpM+K6Z9h6e3J0XGPRaeDgYi8dWjOpX3YsB39ra0MVV793Fy5qzaV6fn/3sw1n3V3Hg4GE/21Nx6DXSGaOXQzWzBiOc9OwIf/Z7lujli2P2dDjgHO9ww/bvT/ZbxvxgWwuDP1z+7SObcMUzZo8PXuXHj4/1uLAPv7pbK7fD8PJHGNXcfQEOX3FaZ+/69WWo+2tnQVxje+IMweerGdOx6bfTy88fvKuJDwH23b1KbPnxY+f8la9ntntIX7TjJYa+GpaDs+Qs4M/PlwmaOS7W1Exc15t85QSr3O2VeLjgxY6vucaupjbVq7r4wsCYH/uur86pvndk/NW1fKo7f2P+xLzWvuDkGpWzhisf/1YnDmqiseebHzxxd44jnXj09kCdtjbm8mbDdvMWpxqJRbLFy1p80sPQcPWHL/HhX95i4EBgaJ35cNnS+fdO6WD668bOpb10Djq3bJ0t9tVTzeIsb/vT/rLHq3VzTQx6dgSevaCTp/PFjtCJEQ8+nXF2sAiMahMuLv1BinE1yF7MnhtxEheWRleefOJkTKzj21jf3lvT4u492jhu4mrNYcOqLnDwbf0IcvkDZueNPbs4WoOjt/f0ekIfFp0xnSZXQl98OtjOhNr7d6+fe+6542+o8XklghfxG+1PPvnky/9Ge59NuvZxWO7yrOGFO6zytVZufMtdvdWKsOHr3qHZ+/hYLx7f/OntgXPWF/Tw4dbYEtjOWPsGOxzjclJL8zizL6d05Qc3HP7GhL1G8DjvP3/r7ZMetgbDnA9f0tra04vp2ves4QeTbe87bMRyRmp0bOOqV4dixaV66GHC7ryz4deeFCdsPZ/4tgd01S4ObOB0Ly5WMdjhICc41t0z8HEerYVVXHaeO57rnqtskvCcu+69dPmyrdHDav/ojb3306uHM7VcPY99LyC2GO1/+YnD3rnSO29yYuc642Ota0CeeMhfXL3zjotair/7AEsjMKubWCSu4sCFD2P3Bbb8iHUtPz4a4aMR+eEhtrqwF19+8AhM4+Z8ix9na/Tmej4b03p7R188McMQazFwUVN108TkqzauC/caumIWt323RgdHHM8FNYPBxjn0/JCrOX28+fDFOx1+7NSMTlwx5AVDb67hjR8b9ewc4SCX9pi+PcDR/VDMctjcXD+dP/E1tgR3ccX0GbvPieLB73qSkzXfz7K1rpZ91rPGHw/6aiIGLuaJGhG6OOvFoJODvaLDTe3ljbceJ9cOm87e1h1GMY2Lo9bunfYPTg1G9ccdltjVKQz8NNIau/aIH+5q4HOCWqkLW5xxcp3bC39Q7v9Ke+KJJw68anJMbvHjzl+0+1N5BDRJ9kW74krCIdQURRJI6xWHjzGSyFckeoULtwLla15x+bKrsPnpHaY+OMmdHXu2MG5TnDZJz752i1r+HxMYbui+bIfTptM7/JoapP8/AA9QxLW89HJVY82YTfUFZ17t4qRng4d+ZXHos8uGr/YgKa7YxW1PrK3sRcHWOlt7/KBYfJ09Pn3R3sOMjn81YkunxQsPYy29GvQHJs52XJxJY43EO869AOPTjZZ/sfJrv8xhmJcDXDxuEmv5wDa3R7jFL9/yKTdzLcF7b/B4WD/XvJwXD8barZ+xls36VQucNWvlbr/N4YpprIWDH/+zyKHauh+4N8GiUxNz/XUiVlz05Vpu5sbiegiovTku3festSdxXF05bD7lzo6+eMawEvHLJV0927jDCct6eegJfLYbh791eiKOZq5e7lUeRPmwdQ+zHmdrdL5M74t29abrnu9P2b2EwORH9NUqbvFoXR3kRIz54FeeYbXupdqXKL1Uh88OF75iVV/5mGtJmHrnki07OZV38ayLsXhsSbz5aezCFq8cYFr3LLP+xje+8eILX/jCxYc//OEDZ7kdijv+gNlvtIthX3rZqh7l6r6pETp5VR9zzR5q5cnWGJaePT+2CZ25nKuZsVb+zhn/6lne1Z+dFhb9OU41FSs7eMbW9HLvbMJzLtQ//uy96PVFrxzo8mfLp7MsVvHoYRK6FVxhaPHOj50Y7ifWkvItNv5a8a0vFjtf9nl2Fd+6mneW6eUKo5zp1B5eMenWB3Y27XP2bDWC31ms8dfzFVcdjenlnj++rl8fYotfXGvOJ32Y/Am9PXGvwctYHP9h8n7R3j2KP67s3OfgwLX33iP0YeO3HOPvC2d1tG/WccbdOBu98+Z849UHXTnh4Et29yxc+uAJc+u4Yxw1MWB4z1AXOcBrXX1rPRP5ONd6tno5dkbUAkdzuMVRX3nIwfWjweaPv1q1R3D5w6XDvVh60j3GOlvYmnhs6OOyuYvHfmPBykZMdcCts6lnT2B7hvtbH7AIH7HYGLfvdF0jxnLPDqYPreLg48zh4dzAb0/Y4aOv1vpiw4MhdzbyyA43nOjKb2sDlxQDD42NOuKAk3V5uPf7EGmd0MmXVB82rg/nsNz1RN9nLXzD4VuDFw8+8da3hk95sZF/NTLH3R70RYk4fNRKMw4XjnW9Nbxag0Wsd66qhRpXq2zM6dlrBC6xBru5WEROmpjW2MjFNe6L9m9+85uv2RftX/7yl48v2n3GcH/3xYA97rzE3xyX6mzf8C2nalku7Qs/5wV3WHLi58xo9j4Ma+W+/tbVgL17hHNE5/4Ie59v4uPW+VdPcaunOU59kdS+s+fHv4aPlogJSyM48ScwtY0Fp3W+sPJpzt45yjb7A/TqB1z1w5kfnho/a2E5I641a8sbDBs1qFbmYulxCINuzzy9GHvWty7szWGzI3TylFPCRmxnTDzrap5N/myMrTsbernjUXM+CRzPRe/nru3ysAZjG27WSXlbLz9x4ZanNfdc69VbDubW+qLds5kvfM15JOVVLNjG8PuyEG73RTWHyw42TM8GnPnZ281BXegJTPbldygvf+BqjbAVo70Si72eXXjxZmfMRs+fXbnShYcX3rBIuMfk6gd8+x0OLOPiwuCvxVEtewdgJ14xw4ahjun16qbxwQWO2H1WLDc9HmKrE3t50cNRc9jZOA/OL07V1RoJUzzNXN/e6KuZeN23xBRj7z/8qjMOrgNzNXYtGIvLx/kh8DU6cax7P5QHERNue4SfuLD7D9it0XWvMccPTr8EAb9nvhob8/cb2+biiqO3N4l4STbxiS+OcqMXVyy2Gi7q7/nddXnGM+cnVvH4yUdT8+qgVxsc2xf+9HzqjYuPV5zT58/es8kX7Xp1KTZO3cv8E66+aH/88ceFe5nnMbnFj1f0RTsCFdRfP/AgVVykFbyil5QkHQQFYqMA/OkUtoJJvgLQVSA2xaRvQ9g60NaMu8j02ehJfg+qSQdEf1ufmzBhuKE7ZHjgBZPehuKeDkZcb8I76+O6vmpO9NVfzOLmk111ykYdV9wEsqVvf7LJv/lNvbjx4SPedfmys+9nuZ9PtvDxdWMjPkT6DTZzuDA6U53D6tF68WHhSPZG4WzD6bxVD7rFwMO+ezgbu2HgIW755WNO3zwOYhtXN/OztA4jO7zx0mAm1tnFkz4uxmy7Julbqw78auyNV/iLSb/1M9ZWmi+GOJoaW8eFZEPXmJ15OIvtumpfPGzcm6oHzOZ84twYbnWzZq5PzDU8vEBXI/vbWO/h0AMi3vS7/+KUQzHhZl/McjYX2/1Of52UTxh841wMfuV2xmBrTRPH/el8fzXPX33hihO+e5vngodUD3UvFuqu/h7uzctNrzZ4w4YVFxyta9ZJ+RV71/hb92LVl129ZDlbrsPw+bVv6aptMcWD6Tpma12OxbaGe+3sx5+Onfw1OJtrPrDVHD6dL9r9Byyv5W+0/+53v7v48Y9/fLyIuVa8yPYcxVFcuXaGzbfeONJVC+fBnK+16ljPly0b68VQlyRMc35qxI4vyf+YXP6AlRhrbOO5a3zbK/ufvZjyFqszbezMqon4ce23wuGoC0zCDw4Rm705PazWrBtbJ/GFw6/+WLxad06t8ROXmDtnhF5bDnDjzbYvqIyJ3t52VsUNvxodhpc/4NDp4cqbf/PqmJ1zK+ckfXN9PnDE1uiqfzb19suHJM9RPmzhauUiH/rEWO3k5YNG+fHxpaovQN2v7bHmWgtzrz02YruHwCtGtROfqBH+sIzlpMfZFwrsstGz68MUXPbFd878UzXm7pPxN2fXPQimhgt9XMyLt3r3XrlpPR/Z4lf92JNq3LOTrnNkP4g8YMqlewe9Wjkn+Ko7iVs5xjt9Pfs4GLMnxp3x9K1ZN8aH4GcuN/uHY88dvuw0NhqbvmgXm5981Il496PnS8dX7x6hj4/PQDiyVRM1tf/2t3uOddh82ie5lzM8XMVgS6x17vhp1jS+2bKTT3zga/myzd416szbX8IPXucgDDnKix0fNvHn73zqcUjEKx/xkuUGh531YsOggw8zG5zUUC09w9USPzE0fjA0AsM6vT5dNmc7eVUbvvGCbZwYry+/8hanWOzL27p88PcfUvvb4D6whxP2bfv4+Pey/S23P/7xj8d12R9uqRXe8HGw/2LzwyU+zlhYeHeO6fjVw+sdgF7O3umcCWeciFXu/LZZt+b87L0EFmx7WZ35sbXvWhJ+OTkD/M0JTu0FDGKtZg6364EefnsnPjyNv/XysVY91Sgf6+xhGtPzW4ElR/cX9xD2zoI6WCsuH9jlcMYxZ28f4MGJR/HiTR9OMfKrrvnq2dgDuIQN/zjIrdiuP5zZOD/66gRDYysX9w1rzl4ihmcNPnDgqQ09P3nR1/ATA+7ex1rnAx9GZ6JY7OUQx/DF8Dz3hbjPbp0JmNWgusSHXi5s7SM+bDrTYsCXF2zr6sPemlqUA350/Em5iJUYazDlwNaelIM+Pz0b/NjV0+FDp/HBJ3s6Qodb8a3D0EjzzlTcrNtnubDRxCB6mPYFD7XQwrRuDNP10Fq67v1iqbd19xrx2FQTOPZGrF1jY16ObJwP7y96OZOwjGFVc358nK2unbixlSsMdrjt9RIWGxzkAkdcWOKoGT9rcNsDtTDnC9uY4EUXP3q+3gv//e9/H+fQOr1aFEd8Z8/92lhMc3568/2Ndv5iEBzVmeC8wqaWng0Oejhac7btQdcPHa7m8m9P+RUXdrjsjfUEP7akfbamidUei9E+bg3bOzhs1ciX7K5ptSLiqZE1nDy3n3322f/eF+1f//rXj0SR1FwECEZaopqkEax4DiQb0iZIuCJLkG2HjH6LS88GDn99N7twYO8YXs3aXURsHF6NwPBAcaBg2Tj88Dfei9Q6rsld47OvwbqO+x62s03xz/r2Ei9r+ONpfFfBb6VzUK7tVfO1PccLK725C8tNTc3pPfj89lo3H7rOZxfjdTFgsesswfFg7kZt3VpnOt71zr4990DvBcWDBw9x+de6QZirRxjmhC4fcznUwsjWurF1Un9MLn9YE2/tzVfO1yg+G2/58rMehrFrNBtzUg7H5OpHPMPuLIjffqkvDLbW4RrnGx6MdPw9iPBorIejeaDBtX+Ejm3j9OfaHQZX9tZw6cGBm/2lKx9nxbpzFGfr9rJcO19xL0b49GS54MtPv5JN8YvJhn2Nn5b9YhjvmrqpjZafsfrCI8ZbX3bq64t0tbbuYeVDefc/D3sPNg98ggu+6rM1XC7V4nA4/eBDyt04PPvi2vWipfbGvmjzAC5W2PyrE4z2yRgX9myN5Sbv1tja691fa+zh8jlj01XfA+jqB1y14vumN73p+I32j370o8cqrFcjMH/zm99c/OhHPzqe3WLZL/HwIXKRq3y6FsudLQ7mcl2BpcmzOhmzDVOMrQe8fOj5bQtfLK21xaQjenptpTkOMKphWNvj453GeSW4Oad9MMMfBkx+zengm9eckWrB3hheQheWMX81JzhaI/y2juzEJmJt3ejMNZieiezT8UsvljWSvpjZ11vfa4YP2868vOTrnQzXhD6OdGLX+OKnwS8WezbwtT6U0yfscbdefp0lvrjSd175iedZDs/Yvcne6mFruHctuH/74jt7GBtXnHjnq5eH+597j3cAduWmd77cE8XBoz2A75cDxCT+CRK/HV0ctn1wyI8vDol5urjJSR12X6ypnRyrIT+x2OLfH5ay9eW/XOREytf9y7q5Zh3OxmJf/sbsl6c1om/NHI9wnSPrzeFr5hu/sTqpJQznsj3NXw/T2fNFpRq413luO8POBOkcbezOutzjLk78+dkfTT3bPzH56FfP3hxP59E6rMVjQ+QsF40PWzm7PyW7n/ngXL2qif5cR1hEbDWoFnizx8/Y+fVbYHu9x0X8xSlueRVXnM5KtSw3PkSO9qj3KT1xbuWMJxsSvrH4mrXqBFMdxCd8zz6dSz0/NvEvJ/P40sGAq7Hnqwb09tQZ8kH929/+9vFX0Nm8Ein+X//614vPfe5zF7///e+Pa9L/i6AW4pJ4OH/ud3HB256qcbzLDadzg8XXNe3aYGu/NXmZa+Itjry3rq3DF5etsX1VY7xxtUZvnYTNHx5bdp0v61qx4ITR/oRjrfqU5xHk8of5WcTCTyzragazumV/xkrPTjy1szfwXDvuq8VjQ6w13tqFbd0ZKm/6zb37DN/2BZ7meuHLp2urGPjZV3kSdXZtVM94wofD3lrXb7XHq71UI41dteOnBvfu3TvOq3n5imvMdrmIgS89e816czXBCa4eRnWpBrAJ3/y6b/Chg1N7yfolPvZNTmoCt/idUzl2JqzDwqVaw5SDPafjx65rQSw25zqIQ18u7MWhg2E9XzHpSHb2hK2Y7UWY1Wj9q0E8xMLb3BpfXOwnXHPjzWPtGrPV7IX3nWLChd+zxb0EXtyqqbn3Ljnw1+NRgy138eDJuxj01nF0ZtpzY3rx2MMiYtHHgZ36Zc9WfHhsNBji0pUzO/yJdc0509TNmvOgF3s5lxdssWHG5wC8/GHOB4Z3M++Hxmw7B+WEr9qrMx9c+1xDZ+7d0h+aZiMOf764k62LNRzSWafL1pxY735gzga/6qoWrhXvlHJlnx18Ui3jAkOj13bOvz2AHT/Y4th/Oj64wqwG7IulXmyKb+588vUH5U8//fTFJz/5yWM9u2Nyix93/o12gWwSaXORF7gE9YROqzDsjCWnJXQd2rDq+be5CuSwwFeoDglb0ibpNfpwivXf7h04daoO+ODvAt3c8KpO5VFet+W8efOBn1jrMNKJdcbfuPni3n7i/GrrCRdeNwd9+M5AZyt+cSoPfXkawwvTheVPzX1wovOw7Des8nGxy2nPXzj69oCNXPyDl/sAAEAASURBVDU3fG0fzuzia0zYqpF8vODun6Ligl/1jE+586crH/Otk7G1YujZ0+uJ9SRdcz3dtuzr14ZOu85+MdnYQ3Y4uUYXp3E2Z99itx8wjOG1F3zkuS0c9uz46N0YPXzwgO2h1rlla26NbTU1XxuxSb1xtdDzc107E3p24ne2YPdQ2f2GUw5hlr85nPJpzv7Mg8/6rQ99ufHTzOW3ObJbXPEIW3jW9etnrFbuvcb89dW0WK6LbDys3Kf9E2PsYJr7sr2XrGLKNYGFg0bO8+xa02dbT2df7IH9sFe+LPLBVE+/MYzlgyMunUP6apI9O63asoe/17j4JB/5s3MtELXsZQhWYkzP1gP+tf7PUH/9619fvPDCC8eXJeoqDo7GtXiqEZ38NXvLtvs2O+vE2vna4qOO7LKla8+dE3VJir/3CzrzYuLUePeoHDYOXDb5wxI7fdyKQd8ZhycnH459scSPnfViyQUfey+G9eLxzccaW3vLl+DJL7768somH731bMUh9MTcGtHjoPXMwpnggwPO5Z49nSY23Lgfjpc/4hYO255rfOTr3OrjFQ4sNsvfGIYa6Al7uYRrLAc2eJcn7nz0dM6QPXLvp+/+yy8ferjWxFaT+LYvOOKKB9t+m704/NRBo0uKoYflfmfdM4LOOHv3Pe+xYtNZJ3rxvMMY++e3/IGPHMTDv8avWsYhjGLBaC/1hA8x18IRQ77m6uivFfsi1b0azkOX/9eNf9LGhxb1CUOd+ISHJ9mzY62awmIvnt6c6BvDVEP1MQ57e/rW+MPX+OmdGX+gunvMn+TLFl/vauri3m2/+Fgj9PE/FJc/zK2zg0X2WucDN1+9XDdfGPGXN3vnoi/i4hjnI8jlD/pyhOc8qGVnuhqyz5d9PtbxxlfPxtie73WLs1jtm75rjJ1z4Tfq2iPxrMNkK07+YcQpPtbFSZ8dPYFR7cpTT+/5rVlXO7rlrzbWNGvVm02cw8bHevWEZ6wnePEjsOJpzE7OMOUfDr086FxXvmj/zne+85p80f6Xv/zl4rHHHjv+CThfJHif2XdRMeWEg7PtfFQHnHAkcmInj/KSCxtr1cp14XwRmKSasfEMd3bD469GhH37YC4OX3GsmVu3r3rc4geHXZzYq6V8rIlLt/cScdlbY1Nu5Y+DfW1v40yfDR+4OLGDIz91DU9PrGnXCTzc1I89f8+n8uMDX23bI7XBqZzZ8rXe2RePXXuAq8aWnxrEz2dQZ4OoiXOaLxvxw+VnTV9cvTzkUC3wK2+92NbYVQt+mjlfn8n9f0P+8JNd5yV/+dlb55mIgSsMAt+aHm/NPV7jZw6Ln3uZPOjyzU89XBOwOnPxz17PxrrntHrgzE6vEfqtd1yyab+rnVzaVzHiVJ3gn2PIw75lb11cuYrj7NCxE696ek6rX75s2cEpRuPmeMg3H/nX2MLQa3HW89eIvnX54WA/2PEndOJ41jkHuFvTxJYHUU/1oms/41pMsfq8z9858lyQv1qYq397Hbc943iGh+dea+Zia+VQHosFA6ZcxbUGU2x45nLtvc+cXdhyhUvneuVnLn9nOr569fD81fjDdw7Yds3Qq6M5H2PcfEFPB9M7ar/wJjciPls+BE889HHOtnW9eAl7fDrf6fO3bn980e5+wNaaXi7l3VnAhY7gJ36tsyLWrhvDqv7sq7U6GcOq3mKLF35rejh+4c0fbn/wgx884mwNDsUDftz5i/aHH3742CSJ+1DgJrcFRSCyikckxV4z7lBb1+gUTAHy1SswPH5idBO15tA6aHRsiiVeuPTaXSScu/rdFON+ONVEbuzKmZ502G/CXv1teIsTdgctjLjAiYe1blD42Z/75RPW/Xr+9r+LyiHGi7hhOuzkzO9QXv3AsTxwhWnuZuXifcMb3nBYwu3FzPrGzX9x4Yirxck6rm5+PZzFtzfOXjel6s8Xtge1mwlfWLhp3UjY5CPu5pEeX758jNntTaK8F2vzuW6crRjFFVsjYllLxx4HPZ289XwJ2/XZdZwT/sWm4x8G/Ur4a29dLDq4ev7itV9q457QyxH7rRdce0ZnHH57CQcmv21ix5VePZyrXsbia797wMeTLb78biPi4IETH74P8mcrJ4JLZzC/1sNlV37s48bOXDPGZeed9x5I/Kz3QJQrP9dE92UPdXvSF+3WPdzpXO/82eJGqn/7eygvfzRnn0322dzUsyfuZR7s9+7dO76EcW3iIw82xhpRO/nQt1YtzPng3HOLvevAueiah8O2ni1MdvTmnmNeOO1ftsbWYPpPWL72ta+94j9JP4LPD7x//vOfH3+NXdw4q03nhTk7XKuBXO2TZo1t10/weGvVlB2BQeQnjjpm41qVa9eLnsBPjGFY0+/LU/awNTHTtZdianytd9bKNx/r2cKAh5uz+uKLLx57xQdnGPzEYKuOmnX8nAP+cbBG+MmfsM3nUFz+gKXB5q+excpGb510PRjnC7M8fOhwHuXBx/65XrMtVvZqQMQsblyqrzle4nimuefBKV/41gnbsKyno8ddXx2MNRzw9sxVP/zxq5bZ0xnDcS/pN7Dp7QFePliXa/urFwcebp3Z8sPRGA4MecIg59h05WCNHUxfksPgHxYctu6Jrnv9xrQmb434w0hnrfMeb3Y3iTUc2JLmcTNXLzlv3mJ4nrET9+9///uRg7MPz78x7T869Q7ELw74r7ClW72xWotL1MGeikWWG1x1sZ/Oaj7FOxyu+QEfL7585OPzCZ2zH+dw2PAR2x6Z2281qM7CdHbZEvmR/PWa/WRb/nrYcjeG3bsoDmdcNfFBWL2JeDXzeFdXmHjiDhcH8djJVaPb2seFvns5HNerP1QRnx/BVxNDj4va9qxyRv7xj3+8bA/bnjmv8Iorz2p3AF/+EL/c8I03fXWjN94Gk9C5rvtDMLWzJm6x1o8PPPj49N4hN77VCg/nprytw6leYcMj7DXna6/nYrNXZ/fI1/I32n3R7hfe/vznPx/8feZRD+cAn/YWR+ej9xG9/OTVfsm9PPHtWrHX9tK7Gkx1UkP3Jvnwp2fnzDoP3ffVSyNq2bXOB4Y96JwdRpc/YBE2mhrqcWp/8BS/PRNXPu5JYrRP9lcTRzwc9ETPh72xHNUrOzyMteoC17mXX3vbmhib7xFkfrBnC08u7Ek54mHfcBJbrmqKP/vqCEMe8MLRhxPndGLQuUbc09jhDxsHObNlU058xAsDH2PSHprzPQvbcHAVTy7sPcf93yi+rPKHn2L2z06JJy97ah/tr3Ux4goLpjMuDh82fKqd2PJyfvc+hid8fnDg46Au/Ok1YxhwiXV+zjVcvkTPvhzxlCc/10X7WA72Ue3Y481eL5aY9ARGXOg0c7buLeLyoSsmXfHUGU/2bNRKbLUgdItbnulh83XOxaPXcCwGH3Y1uOXCNkx6Ip79gMnOOs7OIV2x8A7b9Wjfidjtqfzg0bWfbKzzqX72wB/q+JwHkz1u4otN6JvLhc3ukThsYHeGN8/qyI+osxjs3ZPYxpVeE5vd5kenPurRfY2v68W5xk0tum7bY/tPJx6e6sGeDj5ctmsHR737ol1ePpNr7bd4/PCsPvLDXz7WxWSjiV2t4K2oJ16t44RPZ9mZco35Q2JnlfQM4yOO2vDBJQ5iaoQe17iY46GJh69mnL6+fYHf/+OmftbhEPuLi2fovXv3jmfu+973vmMN5l3kzl+0v+UtbznIILF/GnEOGhG9ohEFMq/46axLuE2UqOIRhToXXjFsmIPDD2bFL+7hfMcfuzHFvyPEncxxLibHzfsuQDCqbYfkOv+tOztNveJQDZcLH+vs1OR++NfFPOvgOOQd4i5GMRx0DQ9n4RyrHOMbT3Z0Ll4vnQ9d/vYVge0i0efTDcD8LOXofBE8+YbjJm6Mh5js3MC60JdfX8zLk74PRHHpxoEHf1h69dYIPsY96Mz3GsGhesJbictZV978CD+xw8U3jnRw2OiJmDUY9NUkTHlohG+1D4MeRjZy3DVxyyu+fAg7uvKFgT+93oPGzdcYhj4R081b4xcWPPuYHh866+UOiz9de+LBIPfytk8eePnDiCs/Um+cnz59umpDHxc+JNuXZv/7mxXmOKpfsdnSqUN7zC5e7bG5a09843zwiBMMtWVH1MZY7ayJ1X7AhaGmXvZ6oJt7GaEz5sPffRyeWPyKKQ6bmrkY7Ys4txF4fDzcH7q8P7hPOOviytc6LH210RPxcKou1YxvNXMOug7Ege1eY8y3OsqDzhnhqxaeZcUWX1NPNj6cvNZftP/iF784/hq7DxE47h8gVks8xceV4IeTtjVil6zN5gmDT3Xb/e38WFe/rh02GhzXVBhiubfiraaEL2Fjj/hUb3pzuJp9SehJ+52/vnjOpj3y1yx7qbPv8ZMT/+6b8MTZezYunQ1+5mKf4/Ld2pqz1VbKh0788Kqd2uDDzj3KHGdi/1x3xWYjJl8c5U0HVwuTrznbmhj2Rq7hyE+s5RUWDMJWHMKetPf0uLlOfUGAK3yx5MmeTfVmS2effHi3V9adkXIXj51c+Fmn44ebmpxrLEe2fYmDIxs81VMPs1yMNQKzf/KFPz9r4uIgJ9e8lsRRznIXv9826izxLw776wS+lrAz12tw5a1VTzr59IWMuH6jXQ6ep/z9XxHumX3JFpZcV9QMHr2eXdK8OlQv69XHWH3cF7rO6MgZ6yXt//6UT9eomvnw6lxo8m3feVQDuTkr+OLgPa0zwo4ebtz15unY0NlLmPD44Lr7Re/c6K1Vn7DEVms4xsWByb7cNy4dvvaEXVyc553zMU9nrrZqTIw9C8TmC1cNnIlyoFdbHHFn74t2vgRfeGzsHwzx+IUpL3r7gYOxGOxgiqWtsOFHbyyOuZxdJxqu/MWvPmzzbcw3OzFh5kvPDu7uv1havtUwTFz57jmj40Pkbo/8QdVzzz13fOEO65WImMQX7Z/+9KePf6PdmfJPTbnPdJ/AUWNvvbrKjY2a42Cv8MOVLR/7KR97aN17mrX2pS9D+KsTO2fBPaP6w2kf9tzzgQVf3ISuei339lwMPrB65+aPm3y6ZuHTs8fFmC4cceSONyzizMuZ3Z53fNjocRLLHsMg1tjjZT0xhpXwL7616sLGGi72KE70+ONF8olL8eFoZOsXfnr3dDWDqybl2j6zw2MxxNQIPOue83Ty1eBppBzLU12IGPzdX32h5hnS39by3c3el9XAGXY9w7Om5sVXH+vW8BCbrvcPsenseXuaHWycYKmFL9rP312pLwzCDk/Y3ifkAUuNxGArNh2eYtI5h2IRtvzU3Jr4uNOxJ85u9nAIXHr+RAwY4uIHQ/3DgEuPMx178dQcplrwgccuDDqtebmpuXhw6djEfX2yxzE7cVfoO8vVT4+TOJ4l1uVGrPWdnljqICd5lL/6xEfO/K2riVzc4+yv/WOXLX/4xYpn+XXftz9wcBebvTh8iTWY5UrfXuCgdnTW8YdP6HB1T8UXJmzx6MXvnDp3YpDyZ2PMr3MlHlycnD02akqsmePTWM29I9PT+cN1vxBCr65yjqd1/OjKt5pYY0fkSU+XmMPTyt86/mITuXo/88sb7lHs2oN82Gt8YcqzeOY4tG6Mb3HM4bBLr3aa+tPDYuesuC/w1dgQ6/G6d+/exWc+85mL97///ccazLvInb9of8c73nEQVXwv3pFFrsQQKHGENGtawl5SrZs31vNXjJrD5UC4ECumIpNww9TzSw/rNlKs4udDfz9hnzzINrv6YpqXf2u37Tfmcjn73xRr9XzM279qSG9cbe4Xh+39BL5z48LRzEkXlvHWQtzl2DgOejYuVA/0N7/5zcfFIoaLuBj8jDcnsYoPp7MVJntn3U3TjcOcrK1awWxNL67mpgnfjaUbT/zLC1b1xrnaiAOLLxvnWo06z/FmZ8yWHX+xXDN8kuz5a+Zsm/PlR2eNL52WNE/HLlz9devVZuu+dtWtGPhYrz7p64vHrv2icxP3YtSDBIZ6WdPYu8mmiw+9XMuX7XKORzjV197GXW/unBizJfmEGVa54C/+Sj7pqlUY4sNpb/VyIsYwSTnwr075FMMaMVcbXIzzYR8/vdr2MsGuh76eDxt94/bEn6T3IbwvxODgqOcfJ3yKWb3CrKdfu2PygB/wnW/XpRdtY3G83PdSBD8e+uJVVz2de0K1sN/Lxxh2L0xwNh/7x8dL0X7gsIcwXe8+VOB47/IB/8QTT1x84AMfOLIT+9UILr/85S8vnn/++eNakbeXtM0VvjmO2p4ZeViTozOlVRN++LEp32qzevvtrNGtP0wtLvD4u6+rtzWitvT5i2UuF7VTX5zibS0bWPDLr70IG37rxvzg2Bf7Y961Zl0enWtrhD882MbVR8/GWg03Yz1746Tnjl6uhJ384dKlD4/eOizCt/zNy0fdz74w+GvsavzowpSHRmBrK/xIeOpVzejyiYs+/tbE6cMSP+fTvpE4ZxcnZ8oXw+4t1lzjfLLXa+zjVa6tHQGufuDE373BmeKzeYnBP/zyMse58y1edsWz5sOmtpji4O2lH4YzZ929wD6ecVC1Hq49YSdmvFrTk+tyxZ2f+xVxnn15pqbOiTUfRuyDsTjhszfHA46zp+98iKtWK9bjRX/mJG8cPBO2PltzPsWFAY8OXz5s1bO5dXWhF7+YxnKKv3uIeZy7TvizJWw3Nn17ZWzvwg2Hn5jxhNGcDp6c1dycHx5y6HrnoxH47Y0xP3jWy5leg62l99zpi9F82uvwxda6XuTHxx+Yy8971r/+9a8jLmxSDP3mGSYu6Q+Hyx/w7bNrwlrr+Zjza54fnS+THrr8Q3N7JiaOhA97urNf+moPxzjuaq2pP70eR/uQpIuXuJ0TNrD48tNcz/cun+Nf+tKXLv7nf/7nWAvrLr28iP8M9fOf//zxT8fgStyrXL9x7/zYQ36ate6L3V/U3VhdcN5+beQXTudS/s5s79zVGo7GHg99Ymy/1QyOdVL98qWzXn70RAwYevzsi7zVuTjqbw1mObDHV+MDm8i/3GAk7Mz1YrPDGY45Pe7N+Ym//NOlh8dH/mEUg75YOLMh4cHIJjyxCX06fvTmRP00OOqiEX3+bPFQR88aeOzpu0+oFx2f/PR07K3D4KO+cokLXH8Y9PrXv/44f9biEhYfz1rPfTr3I+/Gzhfbzq4Y8RDXte8+gLfY9qh7GT/7xic/599vPOPjmqnmMPFVewITvvzLkS3BRVySD3w56Il6OFee8XA0/p1LmHCypw9f/vTyYVd8uvju/oknllzpxfYlJj+48Pjly57Ap4sbHXuN764tF2sJPYERZ/HwIOqDF4HX3noG2Vu84dEb2z8Ci46v/TSWl7p3nnevW7evzpB7Lk5JOcaXfvPoHRNv+uppnE/1wI2w1eJOZ40Prhr+eMJjW88n3/ziWB2rRxjFo+/a4ktwo9fwFbP3Cbp87a25NX9r0R+W+2yOa3nCw4/ERU7xNdaIuMbs8S9ve1T92yd9uNbspS/a7RXho3VO6HBiq9FrOGl01jV64qzIrTw7f2LHnw5P1yvu4tt/dSFhsmcrlu8UPXM/9KEPHTblf0xu8ePOX7S/5z3vOZKRmC8CJKt4WoUQF0lkIl2x6CS0F/TyZM8mu8a9HHqo0yUV3DzM5cIWlweJuIS9cRtX/I0ZVj712bZ+7rNLfx1ma7ftw3wtsG6KCVsctTbuYmH/SuLC0qoxHJhhlxO9cReZ+TleOLh5uPhnY/xbcPbcxeTBeo4D5yzh8jufFzhxgCUmey1bejZ0uLjZ49PDvHO6ueHAPl25dLOKY3V33dSyFVftzHsA6d3E3KC7eYhTvGrNJ87x4EtP9GxhWM/mWJwfrbXOLwz+RBwtfe7neRjWrZmfBaa649U1z9ZN1hctdHGKOww6a/zbL/pqZJwsX/XvDIhjTZ20zoNxH3TOnM35FbO86HGpp28tXGu11sXCobOnl5d1ePKhMw+nWunDKVe9GOeHd3UuDjtj58oaMe6BHs96Nh5wXph9ccNWDF+Iebi7p+NHp/GLrzHZObziHou3+CFXEl59XxrB9xzzot4ettf5iVne1c9DWs3lZy+y4SMmDHhh0XWO6Ij8tTCdXy/2uPhDbB9M/JXbj33sYxePPPLI4RP/Y/IKfuDxq1/96uL73//+sS/lDAp2+OzURsNPL2eSHl/5WyfqYI2veqkJvNaN7bMPH3zbS/YrcYAF071MzboPhssHNnt27rWanOjCsWavCKz4w2Mbb31jtuzYaDjGU8zm8vdO4ozLjYgr//Do+LCll4scNDGIGOrrHsK/GL0E0rGHKUdSffStL+fD6OqHdYK3sWtRTYxhXifW2ke4Pcvo+O4+8GeviQGzc85ucazBW33xy8/z0wdveK6HYm+cYtGpvXu/6wdG17M82eUn7rkdi5c/woube4QP5fbF/hB5ZCdP+yQPY/lao4PBVuOrp7fuHLhnuvbj5xx6X/C+4gxUX75yqZbdJ8XTSGM+7ONxLF6ti0v0Gs4ET/XiZwwL185ya7vOd/2rAX956KsJfy1sMeMQJ7YwNPHVp/O5OItBj6d+pVroE2MccFMb42JnZ07v/iBXY4ITCfeYXP0Qn7DHI0y1Y9+9xRqdnPTm8dl69Vt+cOjtu+vf+YMnnhYXY7Z62NXCXA3N2erl4XxYc69ynbAh+cPS+BD1rvVu9Z///OfIwfn1G3H6aiSnfMPSr1hfO2tqEpf44prQ4Vh+9HipjXd99wb2OIoH3zp7fhoMjSyn7PXs+PG3p3Tmzox7AX1r3RPYqEExrMtF42cP/SHV6173uotHH330+EUgPq9E4v/i5T9j9tRTT1386U9/OnKyl+4ZODo3uOtx1G/9+qJdzcu5c1G9qlFzZ0s+7NmqCWw5q7nnuRj0GjGvhd+auTPTcx0ufHjG/IhaspEDX+vObrVmJ1fNmD07Yzj4i+U+yyepLuZ4sOObX/irY1M9YNf4EPObJFznQauWcc2PXXGuw2O/nNjwkb81vtURZnHpm9ORYsOwjpfryDVlzE7zTHVfYp+0Flecdh/sF13rcL3PugacUbZikO5L9sTzz7s4nTycK3+w54zB9E7gnOOyvF1jfMV0VrsXis9XLPjE+Xc99ss18RSTrbjwfdEuT59T9OJrjXuPdFb48qlGdGLiCK8zLH7XAm6w2JSLusDCvxqywRFe+5wfW7GqM/50bOXHz7qYiVgJHBL31vRw+IuZFCc7emN6GPHjK2/4Yrcf4bj3uGfSsw2jusHha//ZVDN76Czp+ckXjtjs5e2LW2dBzUn3OT7VlL69EluD62zJBXdx9dmqBR89YYcv3/K0Dsc8fNdO+8KWWCcwjPGqDumt4c63GsQ1HDbEHFcYBKZ7nthqxw4fdVUHvD0zPD/++c9/Hp9frNOHWd/+w9biHgd+Gn34Ypiz4YO/vZRP/njyc71Xd/72UI3ZGdtHeOno1cuaZk0fB+dB3u2huHTVgX/njC+O7h840JeP/NUeFumfcP3EJz5xzMv/mNzix52/aPdv1CgcIhLu8EZQT6xLqoNJZ04UX1I3kaW3KR6qYsHwgufwKCoc+GGwp6uPi3V2DxL2cWPbgYEHwybhbJ4UQ98hYIt3uWdbz656xG0xs7ttj7P4RMxXg3XbmOw2rpi3qfFd8LMVx34TcdRMX57VXk1dkG6yvpjyby51EXbjWwzj9nvrBhdWN5fiZJsfm3TtNd0+EPxmvZcKPLoxrB+sm4Qdv64TsfLtPFaLasBeI2zlgE/zzps5H01+4ejFw9WamPDYnM/+ATo/soGRf8vlwAYv2ETdjPG0dpbW4p2Nnq/ctuHrhupLXD7mbMVn3z6FI151xau9K66+5obcDT0/temllE7eWlgbx/pZ8MEtXPcNtcDpXO94wLDGhq79li/++VcXMeKRTXGuq7uHE58k351bhy9PPNS732hib12MnhH4Gncvt8anfxMWBuF3zru4+nMNdu2mcT54yZ/QVSex42zd/t27d+/4cs21i5NW7fAzX4l3ethiwC43c9he3t2nqp3zqjY4WPdS4DkHwwuIe5n28Y9//OK9733vEZbtqxGcfNH+ve9973jZws050uJ1HT5OnTfreNjL6mqdP7xETZwVLyvtrWc4YXsb2TqyN4dZ3OpBr4a1ai4Oe9Je0Wl82i+9F66+iGAv382H7izinxtu8g2/XOnSq4la4MZfLM8q9xQxnQsvw3h5CSTqTczl2UuovNi7ftm7p1gncPHgK46xvjMtPv/W+DSOv16DVS5s8Kx+YbbP+dCz4VcsMawXp72gN+43kro3yqU82PATx/XSBwx4W18+dOVdXWAWr/OQX/HFsuYe4Dek1Fmu8Pgaa4SdWpYnvfFKPHBly8fYfbM/GHb2vDP4gNzeVa/qzs8+08Ok18SLw+pwwAdnvjX+6iJvOMRaGHzUq71trt+2cWHAwp1ejLN/dRdH7PgYL5/247o6ikPOay9pX/oprjroy8uKfXTt0ONH5MOW0PfOhivBVYurXp7lwsacLywil+zM+du3rnlr4vjiyXnERe9LJfd/9nj2AXC5sFUf+eMt9vIxJv5ge5/LfPiKjSc7GMY+UHoeO5PWCQ7y6PrSu1+5J7XW9Veu+MRVrLiGCVfM+JuT9lIN+bMXT3xr1VZcDfe+vPYFnn0tB89UZ9CXLWrIlo88l9tLkV/6Cb/zUm2qj54fTDatu1eb4wq/+691deo553niWe4zid+G8xmlfJfDbca4kBcvv2h/5plnXv6i3blSA+fFOcKH4EeHk3qyw9dcb60zBptNe9o1aA/hqMH/4+3eXi07qj2Orz9DRGW3RGLE27uInRNF1AiJGi8oeZMQRFGDCr4pvim++eY/IyIoqAiaaLwlXts/46xPub7NOMXaO726O2dAraoal9+4VM2ac829e7f1UAe26iwPvtpXfBajMao2rSMe/2oOyxjxR5cejHry9MjVVZ8fY/HQR/TJxBsOeXp02mfGu144ejGxhcOmFn/qTny4UbmaF0d2U4eeWHZZOrMXT/7YtT5su+aMxZtP9vDpo+5pcFo/NjU+UPVZk+NHcZJr9NPV86exc/2plXvoY489tq4B1w2ZmMlct/YdXHuXTWS/+Vcz9hqZa911DYN+ZwS/zlP5yoU+bDr8sOnFOVtYxSp+VN7G7FyvauRPa8CCXc06C+iqn8YPEpPvOogPfHHzD7f7N0yxaux3YqepFV1YYoCBxMtOrcnwW0c2/JnzR1dc5SF/2GzIikVvHuW/OT+tnT5cPsTRdWrdrIF4YbpmnT3GUbGJK58wnZfs8GGUH9/itn7WAZa9w7c5W81ZS6+8uofYV/Rgz1qyaU/yRV+scNWnnBvTmeuFr04RfU18MPTlx1ZD/NJTM60fIIpPXuz4gSGmaUeHTzr48NVKo4vmD8jar2JlC5f8xRdfXLmWm3USh766iRF+eYmbTxh4aqre1ZXcWNxae5J+OYivWPA0WBPD96C+L+c7u/YuDNc9uVogvdjn/uIbdvu59aBvzJc9QM8chlq2b/nxov25555b/wl5dvp7pYtftL/vfe9bF4HiCH4uooBqc3EE0wLgu4gUQ0KKtNvQIfdQ58ZP7uWM5Pk0VxT2dDUEq954Liw+u8k3nvbpyMkGIpsLN+3FISeUX/7E3cZZwtMHLDYaEn8Le1I52+WDbjTzLQcy4+bpZPMgPSy48jduHuaD+roubv5cHORzvfkl05AaOUh70e7GRmYNu8HRE2d7xjzKv3XLJ124+Z454uc7PPPWXSy+RHWA03cY2VfZ5VsPmx96MIoDjyzcdPnEQ8ViX6lVPHOHTdjluBSOH+zJauGJEal3saazBKePYiMTDyqH6YusGqWzlI8fYu96gMPOvNgmTn7ERa7BlaNG11nhCyNdcrr4zfU7kbd2bIzFoCdD9lE3FHN8tfZQUM317Mg0vmYLi/2MZ9Zgl5lnV48nttbdvHrMsXOofNlWKz17DaWTrZppU5bv8uEPqbvf+HBzdqYjOvjWorUh6+Zt3It2drDhFYc+fLJ84zVPvhze8KFG2cupvMt9xkvuGvVPuz1k+wJaTPJw7/HggNeeZVNchUHOZ77wzV1X87do8MMUp6ZG5160+432h/2i/Zvf/OZ6GSNOsdm/c0+JLxI/WWcDGzwPhOVLt5zpkqsPHXm1Zu7piD/6k6o3252S4VsP+3gn66d1TVonsfAtlmLV810MxnLzwGWNnNvpVJPp3ximvrNCLPHExl/7hMz5gd91Mn8LHg7/Hhp70a5uri0YcpIzah307jNs2NPX6IufDX9yVE/nQUS/Goq5uPGRehjLoRrBECO/xnTKPV36iE64dOink4+lePoIrzVxrqqD/Mhci/KZcXZNynmedeEWGxtxwRE/TD1f6gNHo4Mnds2c3160lzdcY7pymQ2PHzTzxLPuzo/qYuxacBby7znl6upqvUAUH/u5j/hkK9fytTbqgsj4EYMW4WnFMzHg48u1uPgpP7UqT3386UPsk8SO4NHLv35fk3zCEEvzvqDxx+5eqJjg5Ms1Zxxu9dLjpesa4gufjV6sqNjoaogvebKpfs3Ju9b4Jjd3P3S/0yM+/RCVP3uDT3vhzp07az1cw3Ssb3WAJQbrhfCReNjrEbkX7fwVvxj4gcFOfu1l9yG+u5b4KG42MPRit2fVDo+dnj+5qkF1wyPjVx9Vd/hsJpmXa7Zh4xtr/Lgu3/jGN67rRY3E7v8V0Jt7Ed/5MTH4g82/esGtHq0hGRtUnaqVXq1h65F62bN8Iy9q1Aq+l3xe/oj3f45//s33Avj3Q9Xr1eOL9i9+8YvrP0PFcy+xj5xXcmj9xNf3H/HRKy/+nbFae95a2TPtA3XS4Ghs6VpD93R5tJ561B5MxgYeOQx8PRx1T1/MdPbayE9O9GCprR5fY1e+K4BTDGHTMZabZm4N4RnX8zt9l1e+xJwdG7pkWrazn7GwLVb1NI7YwBOjFhWbOR+TwopfbJNfLNWULB/ycI3wKx51gVXObOkjPT02qHE50UX0jK0FTL56jrLnvajyvbx7Cjw+7UuNLUz7It/ich5aczI487om50tM4Zo7l8SBD4+NfQ63Wq2gR9xyR3S0YnWO8jN9qJ2GikG+cjDPPxx71/cJ16E5ubw1Y7mLlSwyFmfrZc6/ZqyJNxx28cTAjj/4nUl6+uIWk/rTRWqmwRCLRtf60aWXf9jFxpYPZx379lS88NSjmsDS6LindE+iKyb3PL0Y2MizvK0lubjw+XUOWXs2Yus3+dnzAx+xY5+eHPiEjd9c3l5Cw6abDmxU3Y2TZYuH8Ks9fa28yWZTM/7dV8UMi+/WoLMYBhKHuOiFScZG4xd+38tnfsb8yZH8t7/97Trvy42ta82eV7d8wqPDHrHX8MUhfmuQHl2xwKAHJ5sFcPygo9k3YcWD6b7Zcz+/sOWr508Pt+sKBvv2lTn/Gh8wyWHpq52x2NUFz5y++6D7pTzY9qL96aefXinQvYQuftF++/btuwW04DWJaxJpQQSChyZf8gpSgcmypytRF5lF7yZt7FAKW6I24yVUDBaoWCt4OPhtZHoaP2LKXtyKr7Ev/hZXv1P+ij/s11owPhD/KPs1OX1Uu3r+9xjI8mWMmp9g7q7VlKWrtwnFzS7b+jAu7eFq8qomYeRzyuikrzZi0jt8e9HuwRa5SThgZ83UpRzo5N8Yn671R7DNrf/ME4+M7Y5F5sLtn7nBwhOjZozYRuVTfcuxOOY+F8f0CU9jm35zeukWRzEnM5+YYmxOJ6KnIXIN0VFTMj7iL+Hxo3o314dDX9zxyiVM/MlzDagFTH6cITW6zgc3CfJavujv+cw5P8WuBq0vXPvImurh0XUwO+TpIn2+2MISw075wKcfnlrQn2tNh3649dWEPCJjLyc2E8ccf9Yuu/IuLhjq3Dy9enyNnnPcDalzGr84nN+tjXXpxovnS73Gjn/+4LUXygFWOccrjtfq2cGO2JvPdU2mLuTW1MO888NNnj4ceYlRHshaITzNPF90o2LX04HZPqKjFuzTUzMPebDsLQ/7/hTWk08+eXj/+9+/YCd+fi7p+frZz352+Pa3v70e7tiKrUbOx2x01K09Xq7WH5mrH1tjWOxb95mj/YLooPJhq8VrvePBbdx6pasnt36aOOHq8fnvejC319IXh9z07iHuF67z8sGHo8+/MQw6+eCvmOvpGyNrL4b2kOtBswcQnPyLzXOPvSA2OdHDF5s5bA+ccPmGxQaOHOjIW4/4pcdOT1c8xrPxofHbmptPgpGOsVpo4asPwjNWA+N8k9GN8PMlJ1+KvWw3pqcu8qiusORm/8nLGC85XHjFTQYHD05rRl8NppwOwlNHZ4Ga4xdnuOaRcfN6eo2tn1iLkV9fEvuCJUdfyOXefaZ9Wy5yYNe6wac7/fBHT9tpxtLZI57yp98+Z++sKlf84oATn22EV23jzZ5cK4/8yrO64NmbeHSr+0358FHc8qIrDvGzh63Fs69QftWQjK4Gi28EK3s9Kq5iw68+9IuhtbDurk/rbYzE1p8lsp4wfbHz/AJDjFq4rZ36FAccumTi15PLy77i01jjV1x0anwa4/elkl77ix2ZuR6e8zsf7lfWylwt4NXExg6GPhK7+cyjePTZyysdfHXAY+8a9vJM/Zx/ZOJzXvKnFu6f6gePnZ6enk51EzfMfOjN+c6u3MiQubOBn3TVTS3M9eZ8WWcvDXw38Z+p+XNwcO+H8v/KK68cnn322fUb7WLhTzxyVhuxI/Hhi8NZaY3nWnS/USe67Ohprb26ygnx71qBYR/Io/yrFV+otSOHgdjW81kd6LQn4tHjT6v+MNWVPn7+zbNLXz7FAks+rTs8eyEMtsaR+d7SF4MxMtbyjZedMf8abE2cu36yqZetOKsNXsQGTnmLR0s/mT4SF7m6aMZ4dKa+8cxHXHQ11Lx6TF3jamyt7Uexuq/5jXYvQfnG0yPrbr+xhZmcDp7vCc5N/t2LXUv2DrKv+KPbWQ/P9cAWH2UndvjVylyjp5bVE68X+r6j8IMnJ71rTKPf9YKP8MRQXGIVs/jowCKnp9aNl/HxQ9wIPn16YS/B8aO88qXHi6933cOvtnp6cphrR1es4ogfrvNBvcjC11sLfHGRWR/48eC5V9CVb/eJcpUjPhs94rvY4IsBBl0yvtREPcVF3pkrVzZ0rJtx+5hPxBY+2dwb5tam3Om6d9pDrTdcjR2/WoRPb1I1FZ84tGyqn17jV3M2q5uxPpu5X/jIvnjwYIvXXlVrBM+6WJOuDZgIvhz96Rg9gmc92BSLfBGf5PmEkwy+2rZf05O72MujtV+Axw96ciUvLljWQ9+9ydqGzZbf6t2YvZxg8isPMvz8wuQvv/kyt6fI1JH/6uN5Qk3JvGh//vnn1/+XVhz6e6WLX7T7O3MtfpulPqfmkXHBS8C8TSdJBWlOT2FcYP4ZpYJVLGOyic32UmLP72x4E1c8Wv7oip0/enqLbbHIWjSx2qjpFhubFpJtLflNPTv2MPkyV6dqRmauR7DFTT+dchUfPa0Y9BE9WIgu+/zjZWeMyLWJ8V/JvX8WD9/hTWtypJ865i5CD9r1Xkr5LRcXKSqfMPDK2zjKL5n85Yyy2/ODS6e1CKfe3ui3V+0NDfGD2GsINjksNS9mc2Ny69l4j8VczHMPwBU7Hjm/Uwdv4hjbL66x7PgTj4aKhzx+GPXVi7/s8GDNHh6bYpr4ciXbMc1htrfF6+bixuJwReQd8GJgQx/xH26xlIe5NSjubrzVtGu9eM3tMU1dEPtihAcbXr7yrY+nhxmGWNnRQXoY6kdPT6fcltLxAw6MaWdcCzO8PW/86kSmtnjniO9ioKv+vnQ597LRd5PVWyc69pe5s91P1HsYw+ezOuSXr0l73lM2x+pRE0sNTw2v80Pmpu5M0aypuuNZ6/yHLW77beLCrkbVtNjgw/UFREzmSE0QfbVSV+Rc8xv2n/70pw9PPPHE4rF7EBLrL37xi8N3v/vduy9NYLa3yWf8xTJz5L89IAe25DVyOdkT1t31Qocf+WUDmy92+adjL7BPRm4N4JDX+EHk6t452lj9yLy8gsWOT70Y6PeQFQ59RF9MdPi2ZnDJjdlXm2Vw+iAPQw58seOHfmttrIazjvw4e9irU7/RjpcvNZCX2GCSwVBr15N47TEyvsmRh+fqiU/X/g2Xjpw0xIffwhQTX/S6htnPPM21CAYbvdjY0lcHeubpx5eX5jrzwy45pA+XHjx21a1zAx6e2to7xaZHbLQwyrEYzLXsspG7F99k5RMWneyypROG2Gt4Yq3e9DTrIWbxm/NXHawjGRsEA7WP1+T4wY4fMURiVIedYNDjb8ZTHeiT80Gn+PXFlp/iybY4xE8n/oyBDX5rxYe5WPmM5jrCLSa64cJKxi6f8jIWb9cSP8ie9gMcPcLnm0354DWmYx3kVI35rz708IvDnLz4Z37uE65pMjrsxAE/f+3rMOGSJRdPvvXFooeTb35cq65xfuWoiUdtNGPyMOiZiy8f2Znj03HOsCWj71wxF3N1nHsAvhbBkics+mTyFH850IVXrMYT09x1qbGNYCP1omMPwDTWnInmYi8usYhDj8pdTho+Hkx9degHYuZIPp6Fpn22zjL/mdqXvvSlw9vf/vb/U49lfI8f7YO//OUvB79Z97vf/W7lKDcvmLzQk7Pc1E6uXQPis1bibT3oqIl9WK3by/JQl9Zczz+5/eUlBJ3qyJ6sOlUHqdGp/nox6qs7XXFVLzZwYIaHh8w1mPSbxxND1z57OvZpZO3p8M/GGsMyxhcLG7yuezaw6KoDyh/9c0Rf/VF7hA0+m+z4jPDSwTduD6ZTL74IpnzKCU550alW8lEbuNXamB0deYq1ONjaG+zoR2yK3xjlMzzXh182g+sHYm9729vWXqOHZ98Vr1jZTVxysXp2U3M52sueD8jMXW/Wln1xikUO5MiLMi/aPcvgZZ9vPGO9HFtr9wn+nXf4YqPT3tHji02fjJ785AmXP70aktG378UcFtsIn6186IuHvpzIYMNja9x6Tf+wyNNhly09uBEM8ZOTWTcxm/MjFjG3bnq48rG/za2BtSg2ts4IeOJz7qijPOjkk0yDZ001sWlw3cOMrQNf4qkPh1zMetQzqxjkhchq+HzKCQZs5yZ/+PSSWQM+5YHosNdHZGoxCQbf8Kotm+xgZlMt7HP1qbZ0EBs65wh2mHz5vtAP6q0JubWUBwzXgrWwNtbLf4Ta/VsdvHTXWqfdp7zQjKfrNJles2+18p82MNStHNVUg9WepeMadO3q08WHi+jKu+8+rS05f/mQG2w1h2MP2TPuy3TViExd1BOmuvizUd5V4L373e8+fPnLXz4888wzy/eez2Le8HHxi/YPf/jDq3g5qsB8VGSy5PgSVgRF18w1hI8UTbPIFtufgJBwZPPTpXPT5kv/pl6x86cvFjbiFmObBK/4jaMWTG8h9eKz6OKG00WgLjAmL5ybepjTDg7eXoNyIOdT7GLhTw+DHRkdlLwY8ejV2GrmbLKjF8EIJ96lfdj8iGXGQxZ/xkIH3wHipYcLxth/jOQ3R+SK6FSriTtjxC8P/Oo7dWbuYcKlq5GLDxm7aLthdaDyUwx0wtR380hu7mDgC262xvmZ8c04whDfJPN80oFjzgeyZ1x7aoGyzzfdco1HD7/6waRj7hpC8PHg5YuesVZMzdmwn3lm13Xp+hJvD1oOSPjsusFkXz3gGoddPeKZs9E6ePGQ3pq0Th3c9OTGZtobi1WTXzj5lk889hqa1y07scEOIx49Mjj19kv4sMorezxEp0ZHHHBRNskX88xH+4S+NZg3unDkTm6t6HhoEre5G5jznZ0c0jUuFjjigCEHVC/myV/C08eOkR1bstq0MeY332ppbfXW3Nj1jOBo/Iu7NbOGdMVW/Yp/xgrHg0O+yGCY01dbuJp99sgjjxw+97nPHT70oQ/d9b8G9/nBjxft3/ve99aX5VkXkObFLwZjNUs260tW3kthfLhfe1jRuk7kKj/U/sdrDot/e0QjEy9da+Esrb7ZiQdPX/3N1c69gb3fihIrbDnhZQeTnXl5hy0uMvcXXxqNydxr2MExT79Yq6F1RfKiDz+eMTu62cPvxYhzzHXCjn96WvFUE7HA8hDteuILT83p68Xl+pN7OHStUfVYgR4/1IG+fepeyjdf4vZc5qxlMwlmVA30+OVIDide+vzJ0fqKXc+vHMgQrPD0MMVjL+nlLyZz++YmCkuPxMMP3/nAF6u4Wo/sypVNjSx9Y/Gx1cIVm8YeT0Pips8OnvXVjMtTfshcQ+nzSx8eLLoavWJdBicbY3J1U6u5ljARO/Zw8TR1cE3hIfGhYqMjBusnpij7Ysk3/8WoLuXFzrgczGGwDyNedRQLmVxaf7Hau2yL0XngFyD09Pmh71prLq6ILZya+YxNntVBLMXRPhQPXJh4XTt4bNWqGvOJj/iBR8dYi+hUmzluXfhyFvjCrecXTyxiFyNcGH3JhkPHfVo9yjG7KXcGIPbOEHM2MJ0n7YFqwXYS7HDFxGe1SI+tawdfk1v7Ch65e6gXJEgs+K0BHp3WLSxnIZ54i8+alDeM6gRT7fbvnebqag+JST7s7CH1YIfwYfHlLPMbcS+88MLhne985911XooXfLQP/vznP69/5fbyyy/frZ37k5ftYkJ0q5uxXKy3Xox44lYb8SFj9mokfrm6b2jGbKyHXD2/RXBaKzrwNRjmGkzXo7qLi37XA1346gUL0dPotSfhtMb07CNyPMSfuRy6f8hX/NnylY9s9OzERSYO2J155hosbRL98PhAerHLmUyeeHzgVxu6xR5Oeno8unzvRB5VJ1j40zZcOOKxxuTygCsmfCRnsc518xygnnSLWz+Jfn5gq6Nz1g/MYdqbXrRXX7YwzcXOPox662e/+IFO16vYWxNxu95ci+JxPVZv8+rM3stX/zqUP2cAjGrVutPnJ1/OF/66pquxXkNyq454MJPJgz1/0yYf6klfzOJC4iYnkz8+nhjim7MTd+vIFx/08VCxmFsbmPR2wmttybzYtHbVkMyeaC/io+Jm7/zsWhYXXbVB+M4d6ySHYoDT9cTGmnS/ZkfPdSsvvugYy6s9zA9e54pc/euJ6ganevBXXPyK2Zxfe5xczPA76+yB6ky3WpUD/OIzjvgMT87GbPRk4uM3Hr7vKOIim9cGv7Xwm4sXnhjE7EyGQ951rDb2El+eCVwPdDX/Ear7tzWWN3nPBPl6rd7+th58ouotF/HJLT6daqeufNLHI2uenvu7H9LZj2TyZOf+I2ZzfsRsr8Dhs/3MRi3FqBcnnv0E07rzpUb49ijbMP3ZKjWF+973vne9aP/Upz618mF3Cd3Xi3bF2x0pWC1ZfcWUhCYpvHDo1WwQCfvpzL6R6LPN7pJEpy4MC9ZFJJZIHPDF2QYgK5f0WnRYHQTsOnDomUd87BhkO69Y9DO++PmdseHV8Pmdja04+TLWk+c7bH34ZLDwprx8ktPRZi7ph5/NdT2fbOBMGzw1mLHSpaN3c3UY6l1MXkr5jXYy1BpP+z0GWLOxcdhFZOUoHtjh1uOVs74brAvY3tjzCjub9iM9PPNuJnSLj3yn9MOQKxJb+nSKcWLh08Nj1/VpHq7xxMGPFy479vT40c84+BBftsVXTCvg44c53bD40dJz03J9OQjp6LvJZ9eDETtUb1xcYcI1htWYnkO5a9octvXAa22M3cDIYJSbcbFUg7Dzb04HwdNQdVyT8UG/Br+bCTs++BYzGR96fM142uIVB39ILHTg0s+eDDYKV1/96RmruQYv27D01siZbqz5O+T9k1B+i4ktmj5nDkt4/BCvOIopfXJ4KKw1Oc2rQ7x69mR6/lz/1teaa84XD6DqTYffctHLu3Uk51trTL8cPWC1b+RBjxzpe6CGybcvKJ/97Gcf6ov2X//614cf/vCH68FKXEisaMZaXGpjLFd61UqMctDwp619Yc3tCzm3ZtWGLzho8mCoAXtjOmyrr3E105vTmQ3PGvYA7mESlibmdOmpMV08staptePXevXQTd6DG3tzcVSXsFdipw969lM1Egcyz0/29JBzzkOx+HpQ5iusYlfb9D08F2/8zgUPovKrdtaGD5iTikm+7qX2Pl/WRDw95E6bOWZPH8Gu7ublKgbU+slZTbvufEGXs1qyZ4cas7MX7RE54eu7FtOvX8bHj/ziJ8Pjh+/IXA54mjEeCsNcC8u4Na6m1oI9G/UTH8KzruSTsgvXvEYPjnk+6+HBIqNTjOWYHgxj9RKLZpyNMcpe3tl2T+QHT4z0skmvax0OXrVLV4z8qkd+7NvyYgdTKx+8iE2+WiM9fXugPa6+rn+64djTvmDhw9HE4YwyDiNfbK2p3OGZFxt9fhGeupjjl2N+9fxo4kPtl30PkPFTD09DxWffw0L5sAdgwndt+/LZtVpd2MPW8JwJ7MNRB7j08K1TcvrWCS57fPi+p4kHj6187AGxILGTTSoOPGcQG3UuT7ZqqdfIrUH1Zed8cGaUG1t6+eXDnE18cVlHsYfl2aS8qwss9vKpHumrAX3xwuKPnRpU7/KohvabF+3+X5R3vetdd/OUxyVUHb1of+qpp9Z/Ztf+9JLd/janJ17xaUh81k69InGmh0dXTbt3yN1e8gJGneCqizXDl3u1Yl/t5U2PrFqETc96aF33dM/ZiA2m2MmN2+ds7M/WGC4eHTWQR7ZiRXTpoOIyllc1w1cj2Pacxkas6kFGB7b4NLaIXnngtxawzNNpT5nDYV88xRIv/jIeH3yRFcuMxxhNHXrFS1YM1kWcbPCsbXtEDPYuebmRGZOhYliT4wcc+8cLMv/CXO5emBmTsUUwrSWcapYPcte3Zw97T1xsxd+aWEvXoX3J3kuz9nq6fDufXBviIe8MYM+3XmNjn2nGfIsx/HTJjOUNX5t7c67z3PNykt+0kb94qr/aqr+9Jn+58mP/tl7m4uXHmC478+opPnFqUTVmM0lM7DUyPxRxj8QvXjGRaXhw5cYfO+fe3Dfw+aOvfu4zclBbPPZ6tWBnrg6uWfiIXG750mty53vOe1bEs9ZqwX9rZg4XpnjFIS6kxnzjiwe+WrN1npqzg1czR9VZj/CTmVe/fLNH6tba8qt1H5Vb14Z8wuNj+ikPePTk47evXS9s2i+wNPq+B+XH3C/yuCd0fXm+77sSXJTP/87++1lMZmonn3j0jdvncm+tkrEzLr9s8ZE5O9e0/dg6qI26WT/xw+BHzPJA5vJRa2sn964xc83c9W2/IXN7xD5mB8PZ0i8E4nnR/pWvfOX/7zfa/ekYgcziSLi2Ij9+mEcVTsDGCtwmNFa0DhhFdIFJtGLSqXjZhn1pLy5FhbNTOennWKznCBYci2fMRszZXmc3sWad8M1rcMRaS14N8mOeTdhq3cWWTI+K03him6dLB8YkuvjXNfmSpXc/+bOfJLf84YsvHy7AHjBdgP7+oZ9eu/AR2w6BHXcpnHToiVm+2SRn197D47+a0c1WP+UucBezixgGebEvxRNWMnL1Cm+PN/tsk8Mk6xCp5uEVE72IrYYX35ytlkztyNNnnzws8mmXnA2atcpGX576CFZxWwsNDp7eGdFNnY1rrfOCLX1nh/NJHJOKR98433TVDx+GtetBAoY64Nlj8qFrbG2zo1cdihcvf3pyMaN8ww4jHXJjOhqfjfFhiBMPptxhmJOTpZOvKUunc5wMxpzTwYuK3bXQ9UAH30OUxm++WwN962bM1k+JPRDg53di4hUvfH7UIJqy6oCH6NbSjw935pQcNn52sKqnfeA6dq740oFfLew1OZgXM0z27ZN8iLMHR2tOx/6Bn1841Q3PHvPDw4f9p2P8k/Mf//jHa83401A1qOZi7Axl8ujpAABAAElEQVSgI36Ej+wxuoiteXjGXZvVl4582WhwNGO6bMPgK53i4icb9VFTRF5Mjfl0zVovmIg+H+d08Mj5ROZ8hFOcZPZBZwEdRL+mZuRyZYdvrcVjLp72R3I6eBqiowaw2Im7fOWUfmNxi4V+vuCUvy87xQrH9Qo/TLqIjpjk2D/DhUHPg6fzlw7/1xF7xGa2/GcrZmO1co2pl8avuVqoA70abDj4ahKfn/D5plcc5mR0zhE9dUPikW/2YhBT68Lf9JMNfXrs+XEu4MFiI97805Ozxi895Ayc62yswdQQrEgcGnvxFTvM4iWrTRyxaGEY81Vu6erZdy3lpxj05Ehs9PKtTz8/dOSplYtrvzF/YjHXslsOTh/FBru1opeNXg18kQqPqT3lpY+9Ha51aU/TYYvI2crHes11IhMjOWJTnubVIx/pl1c60wZvkrhq7Plg34sLMfNPhoqPjr3XeZodvobw1N93LONwOhOymXs2G9hhGPvirocBUxz2dbnhVw92xtYsOZ6xRlau/EUwphy/mOVZXnjxy1dfjtaxazRf7NXS3o9XTYuFP/7N6VWD4pIvmfzJ+TOHx79914v2h/Eb7f50zGc+85n1op1vOdnTPY+qL17XbLG5ByByPPFPsnbtd/mK3T3CCxh7A8ndvui6k6t5OcNFeg1fTfiCj2CHTz5lbPjV42vqiqee7fP8pgM3m/KnLzYx00f0+Ub06eKVAz18jS/NuOtp2qmVmpcXHfVqL1kD+DNf8vYsXL4nzbmxHGDkN7l4qxNZunyxMa8t4+NHNubVUw72EF3y4ifHI68G4s0nWZSfYrXf3/SmN61fEqFvb3rRPf3DbB2qOV06cJzdamvf4fFBr5qrSbUUR+vAtvPHOngJ13sCPrXWBKYYzNnBs1eMvbzlCwb/KL01OX6IR0Owprz908vjcoOlkdsfvVAXBx3nu8aOf3rOaTI+xFbt4HQ9zjzYFNcK7viBp+1EDw585P7oBSe+3O1VLVsx8C82Pl2b1sgZCgeFaaymzh05hCNveRQ/nNYFb/oqr3JX4xoc665W9Oi0l8WgmRereOCLuVj41eSqwaHTHiCDM892OOTi4DMscRd/crqITI31bLKlz759jl8t6NEPS2wIjnjUvH1hz6ixPl9kYkdyI3eWF6+5tWnP96K+HPjX+I9gwyyPYk2uTyc9cdfgTZ1qgle87JF1tRf1/FhrZ4t40qFXHrDVRYPFJ7tiJMezJ/AQHDyY1UoPQ628q1APL9q/+tWvru/i2S2Ae/y4+DfaP/axjy3HgtEErwlUL/BZhBlHfEWQiIsQWXjF0mwIcn36dPDmHO9eqPjSLVZzeOaNw9fLrQWNvxS3j+xjv5Zu+i1uc73GJ5oxOFBsjmTk4tt9Za+vxjtWtuQI5syzda1fSqcPuCi/+uLELya5TT7ZTrDC22XmYV8n48NLdl/K/QRWffzzML95aiwW+C4o+eVrjmGbw3LAqQk980gcLjR4iP7EyJ5N+cOYN1F28OmmgxexJeOnMb+T4uOFkU4xd3iQa8VZ7hPPGJ9Otc4mWT7ppaNXp2IgS77b3+SfzfSzJscPfDiu/3kG8NkZ0blBzzni/OALqSGeOGHNWJfC8QM//3jG1qfc7B83Z2tIpq7N+TGn094Kl32UD7yaeIsnPRjqTDbtk+vJxVfMMMIRT7nTQ9WPDkxytsb5IVPfSWpHL7z8TUy1ZheOWluXvviT4RWfeQ8B+Job2HxI6EEtzGKY8c4cioucH/P2ahhktZnjuXG1nfr5IHOD9wDqnLEP+LBu9mEPNuGyYyOeMMhgz4dRPF8APDiQIbjyyZZff6PdP1d7/PHHl066a3IfH2LqRbsHLP6sO1JjjY/ysM+RdaffnqdjbfGtKQoLXmM6dDXY4ck1f3Rh02VbgykOuvGM2+d45unx0Ry2tepapkPGB3/pVevk+uJqbD3lyR999x1rQ8+c3+ITr3PDw6EvmMXa+WHOtz5ZtWFHD9EJX08HqT9sPDq1MGB2puCZy9c+FVtY9q5asEd0jemi7l/s5Y/8KxTrlC94GmKHj/hA5vjVZjGPH+TsyPRy9kDdmaq+cuS3/Ior7Pj5nL3x7mPXLz66YmgtGuvJtOrJpv2TDC7ij152rol45GpQDvRaa32+2YTPxphdueDxN303pgNHLTU+krWG6jmx4JnTg1t8csCfuYkTL6KD2Ba/uTGZZhy2Hk8vL/tIbii/4Zhr/E8/bFHY8mlvzvrSw3eN5lPs9lQvNvDLhy0bjc+auTpWN76zSae+2M2nDT944WffXJ7VgW4UX08XGbvX+u0t90z6NTLYdO2j+Prsw67+MMRGB7k/kSEY7cdy5IMcXrhicTaa06/u1aD9UAz08GYd5K/hwe+szW9yPR49vpxhcMMWd3EVKzxjxE5cnbHl4Wyk114KD9be+J91mfnyUcww+DN3tr3jHe9Yv9H+sF60++H7Sy+9tPa4a7NzRLzya6/LVxxqJ0/x0EHWoX1rTqZW6eithTXu/qHm8ODLMRtjrXq17vDYqBldxF5L33ieL/hRMejpuUdkSw9++4IN/+SacTrsjdt7xnjqQ8/6w0F0xJM9PfG3j9had3We54la9RyzgI4f6cGC036szng1NvTE3rroYdCJyJE4avCKjyw7tmFZw65VdnDkWQ2KY9aCff7g0smnWPOjb+xZ2S+9+VOudNXI93L7QINRXGzgIH7Fh2ednd9yyp81EEt7unj1iAxueyS5668XdHSKtRoUd+snHhhqEwZdemiuEZ45PTrIGE+ccORgb7VGyeHLUZ9dMeCzp9t1W370+YVHX19d8Plyn2BbzPCLm66GxExf7cnVqh9E28vwyemRw2vt2LPzS1Pdj/CKy9iaua/IIR/ygiG+zhPYfNTM6Wgo//FgqJF1VWN8ObGDKwY9nfYDDHz5lBObakk/X3jhFqf4qzV/PaPKvbg7J8idD8UFN9/FJlZxqI86w+C39SWnq8fX6IhD3dSUfTnzTYbSoVe+rUV5sO+HqOpgHf1gipyf/OrNq4++cfWr9lNvBXL8ILNeGixET276aD4T4ncfs4bqqC54cPLnbBGL+qFqgMeGrt48X2LgS/54Gh1YeqRm7nt+kcD4Pe95z+FrX/va+gE3eVjG90IXv2h/8sknl2OBK5SEaxLALynB4NXooRbcBqMraZvVXFIIf9KliWXLpw06qTjwxIbgF7dem7KldMPHdfFNjFknm8aiiq361BdLNbC5HIDs6ZB3seYXf8rLQch01bU6ZK/Pnj4dbdom1xdPftKLzxc9sUTZN9cXazh4u175ke1EVy6+kPtJuZu4i9GLdjwXl5j46ULLF7vG4RZPc/IZT/noa3TpmIdZzHj8Oqitc3N99WVvrrG3F/LJP95O6ecnfXr0+aRDrhUX+dQNJz9kYYoDH9Ez1rJPt8M4DPUms1fDnzlkv4CPH+0dcz7ZRGJxRnTzYatuzggPEPHpiUMrThhs2cBkV25k9IoP37g6FWMHvPUj08SoGZN382afnTH8/KzB8SO5vrz1KN9i2Sn9aqzH08opezz+kXF5T36y7NUtwtNQNTKOJ16Y3cjCsB7Ob1j8W5seps3x6fjJebZu5sbkmp+ku6kZo/jViq9kxWNu3FwdNBRPjabOEp75aM9np+dbrxbkzpd+iMe3m7J6uGflA784ZrzJe9gsLi/ufSlBM5/i8SD31re+9fDJT37ycPv27aUH60GIn9/85jeHH/3oR2vdzGvtM3N5OLvkzWfr2jXRfrD2WvuxNUtu/dUJwYcZ8cEX2x4IjRGfZKh913WNRw5bP1vrxlasHsQ1BIcNH/paNnTKvdj04pY/e2ese466VCN88asD+85+92xj8YUDyxwVN//k4u3lPFnnOcxwyd3j7JHqpi4w6IQfNj386poO/+VNl7z6kNHTxKXRcY3ylZwvOggWe3r5DF+dyfIdNp8wWifnqpxdE8ZkGoKbXTz8eOnA5Bfpy5u9FhlPXThR+OTibu3gyR8v2/DZt16w1cBczz4sPujyQeZ6qL7p8ENH39h8xlwu9eHCUzvYZNlXW3y+NX7LDX5UfOVWrMWQnh4+OVnNHOmtfddtfHPXijoicZKJrTnc/MejV2yztviuT76KUV6uUbjZ2GfVAU+tWjM++Gxt9eZw6CaHVx500sMThyaP4mMLR0Nk8cQr7q4p8nKko5mjxurWbwjiwaPjHpuemPhvb9ETX7nwS98Xa3GRqbU4mjvP3K/09MnJWhN+4Xdu8y0XPPdGff5nbeiVk54Pz3Xyoud+KjY+EX984OVLHtVNnux2KtZ6vjRx9yJJXewHMahZOMVHXoNvjMSm0WufwZl5Zsc/f36j/Rvf+MZD+dMxfqO9Px1TrcURicU9z/2HXI3EKmZ1ts5i3ddITe2t6kzfejQPXw35gGl99OULt71hrK7qm18Y6Tamp8mBbbnAZc8/P9V66otZoxde69QcJizEFlZxk9E3bw84J5wd1k4NkBiM6Zavulpb+nDJ1RZOtvTVKqKHYNChqxUPuZhgI/Ow6Rurg7Urdvb8tk6w6dERW1iuoa4zWGKDRddYrxUPHtKXM7sZa3tILDW/QPLmN795/WtMtmrkT0DMa5gfcZUHfDlYSzZq5vmXnC6/Mz86YteL1x6jA1McbMj5dh1YT7pasnKip7WX6PAPi44WkSH6aqsZW3v2evXho9pUTzhi1JPD54c9Pgpn8uWG6GXHViz5M8Yjx/MCFaZaRNPWuFzodyY4N9SMrb0ip2KjLwYkh64ZvqytfBG8YjaGo6cPo/WBgY/HhzGZeXrJspVjzZqKl99yp19c8K0POXx8PX49fbXQJs1a0bX31AIGGUzPqfB70U7W9U8n32pWHnKko0d69nhI/q29ub2DijMf4tFmPOVIX/2tSe9UybT2In+e5/0rVc8BYjQvF7p84lcvvsqDPJJrjW565GG0ZuYozPYCvFkHcjW2xtrcd/li27+6pY+vnho89moZX1z41tGelTfCo9d7RDw64ukZyYt2v9HuX5Ih/i6hh/KiXREkgyqgBTWu0BWHjg0iCQsreRdiNwFJs7k0EbjnSGwWZJJY+NgXvdjFIK77oTCzzQ9MsWh4FlZro9Ev5+Kgx84F6+bFNj3xqXH1IpNXtvpioWfzzTVo0+nDotMFzxYGWT7J8PNVnfQ70dN2GZ44wjBHU4/fcttxzcnZ96Jd76bsb8oa51fvAnfB5U+v5RcW32HGz695a2Rco6+h9pNxeXSwsM0nuRpX0+zodKPI3t6YsWSDR8ecf/N6Nih5601n2udXzzd7cq04FtDxgy09lK/2Ex6Z/IrboTjx6cDX0sErRvww8gPfGeFcyEbd3DR68GeHN/cJew2fXLzkWnM8DcnXWPz51quj/aSpDx18euauR22nqZePXUcccqrBpSsWsggvHbz0kiebscNA4dEJs57cmK46XUf8IboarGyqr7kblptS1AMAfRhq72x31veg4kU7fjnNm31+4cG/Lof81cvZ2oRZjjCMb6JpR69cswu7fzlD30MWPXuUD0TPemjG4ZDBUpv2LJ4zXRMzG0QPvmb/3bp16/CJT3zicPv27bvyNbjPD3H96le/OvzgBz9Y68KP87G6lUPnZvvc2S/2ru+uKQ90amA+16rcZ77tVT7yo6dLr7USi4bUA7/apc9fMbDPtz5SP1+yrBUcOdiDjcWu8Y3yK0514QvPvPzUxQ901YVMz14NnE3ps58v2oupfsYvP3Zqaz9Yj/ZB+uTy8TDoPwuly68XIz1MixfBI4NRLuzVho7Yyo8OvnjYzJrCYR+mNSBH1UYfBn2t/WRMrmcnhlo28OXSFyZxqYG++Omwm37DgR+fHznIRzPXriMxJYfDhs8ovHyQdx2EPW3kna4XXO4j9otc6M/a8kOXrNxg1co5PDHlX4+yo6Phw5v38PDEouUPfrEZ18KFzVacxuTIPP+NyYuFXjHrXW8aGzps1NBeqvZwxaWRw9C3h/OLB5O82M3x4fFDxpfetannl95cj+b2Hixz8YjNOmlw8POPZw4PbnuheizF4wfZXAdy2OLEn77ErSF65WgvFRdZftWk5yA8Ouz85lW25vt6z3hguCezifDKT/xi4sf5WE3gakh8aled8NiIp73PJywktuz5itc/V+dLPs4zjY45G2erZwY6+OqvnmRi4AM+aq3N4+HTZUPXiyTYxs5U+OHSnbb0EHvYCE7rSS4G9Z5x4NNXH/4e5p+O8Tfa/cvyP/7xj6ve7XM+NWvAp+eV7ifilpfaWlNr0x6hL3Z8e8J38/Yl/Zk7O61akMGNBwde9ZC/+sJun4slEi+CwXbuezx1Zq/ns1zThUnOD5p45ukVL55zIn1yNvmShz2hfnTsfbb2Hl8TH59eMdFvn4mXH716IL6qNVs+7bviMcefNcgf37DMxegas+/ow1BfDVbrBUcu1gLNHGDxF8GBK8ZqYdz60uObnTzpkPMhf7aa/Dz3+C7ul0Tgms8X7TBQtuLjR62Ln0yOGkxy66wO8jVnx6e57xd6MfEpVnHx27MFfjVmR6dGxrdWXnTOERs66q+JT+zVV2x05KC1L/jGLwZ2Gp7YxUDXGJ+P8s6neKqznlwLkx6MXhDOHOCLJ2xz+mLXjM+9aK8G9DXrJ0YtX9ZGvZE1shfFRK6mrTk5Pxoqdnqa+OSN+EJ02JtXM73a29/G8mSnhUXfHtEXa2sAM2LDPn/44sPT6LY3YZPJtfdO7qVwxUgvndYfPptZD3pIP18w89e+ZiPuamQOWz27DmCyUQtj+vR6v2od9trDs17+LMq///3vtVfkLg/6xQrPmH4Nr7YSOH7Q0eRJxl88fXVMPu06O8TtXiO38NWhawxO9RULUl//n5M92x5QHzWlA7v17/zEVxvvHNzr4PJH1y9Q2U+IvnrQpeP/VvE32v1LMsTmErqvF+0tPkeCqJkLoEVJrsCTLLKiOhzbOBZYgdjDm5tj2l465ttCo4qDx0e8Ge8e/1K6xw+YfOnLwwbgT830NjS5DWCj0O8CF0cx0qnRdUMPl4761NiHm/0MGa4669M1zl5PLkYtHfzWBK4xKq4w9DuFQTbl8WfPli96/MBvvuOa01E3B52faHmR4oL0AgKPXONDzV1ErXn1rpbh8U0nvfzSw4NlHBlr8Y1h8wurtWVrD9CrnnpULGTGdMnKb+LHx0N0kLm1Q/ZJRD518slXMev5pFftzTW4eKg4jOG0lyafrDzwkb4xu3JYwuNHMeo7KI3tQWdEN4nii+cwFtvENEZiFx8bRK/cZjzx6Ii7A9nc2nXAWxd2dDRx2k/aTvnMpvmuV0xiLqbi33WbF4P5jkuGwjDPxxIcP6aNMV11nsQGlatxOPps8qP3ot1NCabmjNDI4Og9gPZb7OZucHTEab36m+3GbHa/5vhimHksxdNHWPRmPfg7Z0MnvWkDLj96RM+auqHbF/aAL7HInuz6C5Nu8fKPyOSs5vHmFwmYxVMd3PRvvQ4v2n/5y18evv/97697cLnlWx9PTK4Fc7XQ5KaenQFy6kE6nb3ecoYhr66N6ccYXmtlrn5wWoMeLNnj0YdrnF5+67tvWjd61speFAdf5j2A5ZPfWjG2ltZRTdxjWi/1QcUTDrn140s8MMIz5382euLti0O6evri9wzgC6w/J+TLq9jv3Lmzri1Y7Tvj1keffz0SC39h04evGaeXHB9Oe52cL0SG8MJwjVQzesnwtObsqlN503c/p8cnKlbxIH0NVs1+aK8txdNHMU57NnJF+Pyal38xmosFJdeXa3owuoeQdf+QXzr4YeDlN3z5avTEw5bMHOmTm5OpjR4WubmG6tUEnpa+Ph969pq44BU3nnnER/nngz3CL2Zzds4HDS5iby4P+oiseIzDEHe+2JGJhy4dY3zkDKKPj8e3e/SM3frg0YHVfT5/fMEQG/mk/OMVQz7x2CC14BMm/PzD1uDC0sw7P2FWk/KDgeghOsauQ89G+cFzH2ZPB1+u7Fvb6kvGt7PDPdmcDUy5I7qwis14zz8/dJLBRHy2J8iqaXps1EETg++CbPmVlzOajtjoqLMvvGSw8BB596d4MMTGlxaRqxOZa5Oe+jh35jri09XoakgNdoLHBzz1lnM+xaaxc277kzF+o/1h/OkYL9r9y/KXX355+ZRD+5pPOeD10swcyUUN5StWfPpIbw/4Tu4FAx2NPpoY5uqDV62M4evVVT2M1cjawm5/ZK+Psi2u6g6fnbpOnfTao61tdq2DGLoOYe17Wd5s6JPRt549M8DFUwc5wKBf7z7cfqKrwdJ3bbBHe/x4fKrz1KXfusjTmH+YCI711chcE2KjEw6+vOlYC5QfY3618sgnOzwNj8/G1Wn6aK07a/hy//ac4j9AFb/nXDz+xao+MNnYt2zMxQNbLw589aXHhr29QEdc09b5AFuM1Zm953TrIw58fvRq0x5Sj/Bh45PzS58MiSl8Y3I+9GJ2bomRDoLBdznBitQ2H3hix4MDA645G/YwWxt8MWpIfK1T8aqTMRsNwWAbljEZ3/lwVomZrT2Fbzyx+GqtyDu/xUzGt73Ixry2gjh+hDfncoBZfMVajMVc3tXeHlDH8qTPHzzj6ihOPL5RY3b5KB4yfD74NYepTmKEwae9qe9FO35yWDDI4cNJLhYt7FlnNmJubSde9vM64Eec/NBVe2Qvdo6Lna2G5EPPn4L8z3/+c/c5wJpp5LOxYRvPvHz0iFzsWjy9uVz0qFiSdXaqrXhbJ7rq0PqGyQ9dJGc/SNacMfyogfrww54O3/LFkwM/3jl4D1Fc9JwVbBAfGiz1dd9+/vnn1y+9kVdL43uh+37RniN9rWJwnLwgBC1ROjaBG7rDUWG05NnVZ3+/fQvNryKLoeLOeNtEeOVziU8XUxe/MQxYbRT4KJ8WlL5YypWM7dyYNoCG10ah33hihgOzHMnx+VdnRNZ81h0mnWpgbOOz12xW+uUS35xthA+jRp5NPHmKwxyVDz28sMPce7Xz231+Yu0mrp5+09A4gsOHNaim+vDpFQN/xuLSIro7b+q2hvSsU4RfjnCR3NS0WiXPprjCx6cD61w94oVHD0Y01zueno6YatetDT4f2RjzpRnDmf7mPB/lbB/tdq0JvrEG1+HWjUIOMOjYezVz/GT5jtdcjwdXK5f4en49kKo1spe04sOvqZl1tqcmwSnW1iu/9MiLQeyaOdxsJ94c80lPP3NIBw9GrRrgG6Nkxnj8tz/wkNrS4wdlr9foV/dicbNy42IbL2xYbDrv7QF6foutBwK1csPvn6+xQfnht9iLYymc+aBXnXaMXT29MPVRvOZ6uYmVnf4Nb3jD6qtZ8dK1b+ipc3uCvfhgtyZ0Ydl7ejrs2nceQm69Di/af/7znx++853vrAesmbd4omq+11Ts7R85y1/Dm3WTR9cROZm88MqVr3I1zj7f5vnnS1MjxF+1pYeyzw52vvDsuX5DIXv4KJ/NwzTns/XTu/blR5YPPR65sTZx8YulvVL99LDY0ykGGMbF6sv/1dXV+o95/IDZF5w//elP67cz1CJbsbPR+k3QGUv1WQEeP/KdL3ZIzK0tXg/CZHTzU63CnfdbX9zkxR4eopeus9T+16qbB175eOgvJnbGkXF1hA3P+jpjyFw7sPFhIf418mIw51ft8GDB1cyLPR8zBnKEB8fepp+dOuAVZz0slH1jc40cZnWc985leLKlI/byKrdiNIfFHi5+jUys2c8Y1M0Xl+IkqyZqaYyyh5HPfXzufIBb7sYwxcMW6cNJDofezINMLHzL0Vy99WKzB8jMkbw6f+BYczXW+IcFh605W3rlbjz5PQ/DLi5yfvhu/eDAoO8a8nwTll58dOSnGRcDbLb0EF0x0lMjemrjPqwvb7kVKzuY5uTVlj4+4sP1BhuPPd3kS+n4wb9Y6Dl/3NvFgnpmkyeCD9N3Pb05e/mzKRd8/vnCm/nyZc4m++TyESe76oOHzIvVPGx8NvW+L8DTpi25uWZMvhN+zb7S1Azxx5adc9tvxL3wwgvrN9vZ3A/BRF60f/zjHz/84Q9/WHvM2SkPZ629x6849BFb6x4Vt3W0Nq2LsRc/rQ8+O42NNWgdYO6NT7riEAMbGPzYF/TNYUxiN+M1Zq/RVUe26YWDr+01bR4O/WIRH9zw8GHIGc869uJGjDDIxSEPczYaPde6PYXyoaev5wvBkDv96llt2t/08DREjz9+8eAZ86fG4fClvumxIXMGyWfGFYZ8xSTnSWw1xKdxZyQbfrLLjxz5k5vv4f4zVC/bycWpTsatA3s52LuwkRw0Mn7E6Tu++Mt9/kCBL7jsy4WeGiB2rguxweKbnr66zLXhmxxPbNUWD7WnjasLHXhsxSZ22Hj8i7EXqWwQGR/k/IjN+iP22twjS3D6gMFeLWtE+LMG6fBTjOmIFeHzj4/HRo6amNpP1Y6NcfrqrDn3yz0ZW2MxisGYrSa/5jBRuOmwUwO1rO5hwdPEntxY/GHDNCeXp9po8PHzYwwXJaOHzy9qTfR0UHU1l7988NiEjycu/hFc9bLWGj1yrTWBkQ+9BqcGg231hSt+GM5u329QPso5nOpD7nu3xgaGGGB4RilXfotjAR8/xK3REW9jeuJQ8/hsyOEUO719LemJSQx02ahlWGxQvujAMPcO0PdxdVbfzqf2Nx24mhisl/cNnl/INPHSN4Zr7GwSg/vqo48+enj22WcPH/3oR1ccxbMm9/Bx8Yv2j3zkIyvYFqCFm8UTaEQuQckppESMLa6CzI1wafD5uKmviHTg18wrqrF8WmDz8pn6+OfIIjk0u2mYs4PfYcEOL7KALWy64disxoiesTrOWhsjPlDrYQzXGsx1wJ+bmP68GMMJ17rUqoH16mIoZnawio2fxnTEQF58eAhfXtlPnaVwwwcbdfVPPbxw6CeLbsoeastFz081NFYbVE7m1bqYzI1RGMWaHbl10ozppWPMZxjlDM+4WoQdX4/wNXowYZmjiTVrRk4XD/HdWhpPO3K6Ghkb9o3152xaV/rkO/FRg6e29pDDr71XHMnp5B8eOZtuGh2OMPDp0pmxGMsFJh0kvnIyZ5MtPn08eq5dTSxkjekga0yWnI1xPuHkm4+w87dATh94Ymxt6MKTJ4JTO5kseXrx9MVPHxUfbLIaGR1z/sk140niohPNcXGnIx7khuVlnrNBHhoqP3l187aGmn+2hScmte1Fe3kXpz7eAj1+4E2+uOggfP6zIdtzXIrHj+rJpnol04cxeemxde44g/hTd7JZGzowsjGWq76YnaX8O7PaT3R6uNDfeh1etP/0pz89fOtb31prJxYxaJEYUbURmzzNPVDLE5Wz+V7n8pBDNYChZmTtH7zaAj1+8F+jB6PzFJaxmGbcMCJ88/KwB431HiLLS9zFQl4Oen7w+M+fOVs4dMz58WWv3wRqHdmpFT3jcPSwkb7awYWHjJFziD4MPtXOF9jHHnts/Va9XP7617+u384glwvd7I29gPOshbfXOZ98zDUOg7yHbrbG/Mw46WiocVh6e1tcEWwNwVTb6led3c9dG/zxpU6wxckGTwsr/2ycL3RgqJf6Vm82MLKnJzZNrBE8dvTENNebPcqnuca+vMVl7eFbQ7r5NM6GXGz0ye1zffHyIw5n64wBP7x8mhsXHx3EHzytmPH5DsN81lLM1o3vbNRVDPHY58+4BiuCT7/Y+UBiVPPkasVPuejnmsDouRPGzMmc77CtOTle9SyeHbc42BjDEKvneDVA+eZfDeGKm557WPuNPj4MY79l1XOpeKyh67Df/oM962cOv3zMI/ZRPsoRhtj+9a9/rV7OnoPx6WSrZytP+WnljE9fPuKkC4eczLza0DGWxz/+8Y+7L/jpeRbwm/VkdNTGd735ol2Ocx8VV/nxqcaIrN54NvioGNfk+JFN83qYZNmJg601CkM/dVrrMK7r1Z+tmqojO/N88uE34vxnav6EzHUxXocfX42Rv9Hu/2158cUX19lpv1lzLxWtG2rfdg9iW4x0qoP18dt9XV/qokXsuhbn2hmXX/nQxavl0xmK7If2q7M9OzI29OOZ02XLl3iLhQwPnjzZkCFjskjOXZvx4OIjY7bw2bGHz686yR05I/DVSU+fb3pa5xl7DYWVzLWl3p03/IqjXFwXjekiOlqY/LoGy5F9uRSTvrH8+C8WsSO+tIlrzBf94qJrrBZs2dhTs1Zs0nMN+PvsV1dX64V7/mCQqRV9OMZ46oFghit/tbav+WYDg+/eHeG7ttyrwrUm5HCsOxnb8rdnEFtymGTqxUYvZnx9dYRBXz0RXYSP4LZm/VBBHcWFX63hIfjh8U+HLLm486XHLz76GhKjZi73rgfYycqFPT/5Kj44ZHIpH/5g6fGqhTw1+ejpwLMnu6bpi4ct3/wYz8Yfnd0nvsbOPdT+kEsxiKMxvlqnA69rI9z2bXHTqR7GzcVmXC2M1V1fTDDZavhs4FbP9nPrQWfqp9sa8GXvy5Nu6yWH9guf/Kuzns/msJPDcp/1XRyxT98cPgz84va9u1+Uo4PEhkeXTa160jFGZMbiRvypgb1bbPmt/vps9GzY0y83WObqr9ErDjJjuuXhJXv/ekb8zgjxR/SrWfuWnnHY5DX7VQ69W7Q+/gzWM888c3jiiScWLMxL6OIX7R/84AdXgIJs0XIqwA6PEqDj5uK3GB2AiipJh2h2lwT8ILotqNhQ/VxgOuLCs9jGFuAmcrFYGF+22xjpk7nYy1XPbxtJzYz51WzUeOnyr46wkXl4+Znz8OFE5DAQubENqcWfujZqF1t1oqfhq08xsxMTHj9dVBMj7Ikpb1T9Zw7p7z0ddVBvPzF3kXnAlKveoQsPwccvfrxqAkejo9GBW0z05BeVazGap5uOnpzMOurTJwuDr+qFN/2mx79aoWJck9MH3DCS47WW/EfxWx/68LWZQ3p6MZKJL2I/aztldMjm3mA/beCai1tDdDRz+0b86mHeA5Ozws1Hn/9wmi+waz7E2R6gLw48ftVArcjx+DaOX3z4eHTKY1/jfJBfR/yrUfnvevmeMe86cy4uDeXfuBzhID67fvXX1U1cGrtigIun/tYogmFdfLH2kLVjsuOXXTc/47///e+Lp7Z8+KLnC/o5+3RgVXex4IdvjNjvGMV6SQ93+g1bLnNtnTXOfPoa32KjY03cC7sOyfD0cOhbB7pw+NPoe3i01/BvvQ4v2n/yk5+sL/1ejCCxRMbWRKyT3/qzsQfozPUw1qZNmPVk4Rqf08XLf706+K0FdfHsoObO/64/NmqnZq0bnxPfWA5iN7Yf7VnEj2Zd6LSH6Ll/+zJHbk7HXrXv5YvvQcxvYffSBiYM55deXGzlXv50IjIN5Vse7Qt+ovaInq58NHGZa3LQ2JEZi9Oc/55H8qlnlx89G7V2bcJQaz2qxsVdL4aeJ+jCdA3Qh0mPTvteTGKxlmqo1u17OrDYsIVBrq/RlY85Kn42dMnEkVw8fGp47MWnzxa/a5YeDDEjc3pii0e36xyPD/0///nPtUfgwegHMWKzrnLWqzOCYQ/Rh8+XH0j6p719KcDXqgffsOlG1cScHnn5mGv0xYH4F7NmHPaetzryXQ3zW77w8NKBnY16wK1mYlQPudLxBZGduMjKqxiznbGGmQ1deGpKXxNP9aCn0dFHxvzRQ3Ctg7MGZvc317J7F4It3l6aw/TnpPhrvzmv+pufMHwBLk/2qJjZR3jV1hjFEyddc7UQK5794bebnWfOoKurq5VPa7Njd3669mCogboZsxEffHHLu7PS2X/n+Keq6MjHv6bxsl1dxGy/ylEN6ETi1cLFl4emjtUj/fTCEF/2eHzpxXgTseNDj+Cyk2cEt+vXeCc89u2PXW4uX3riqoepvsi17oejX//61x/Ki/ZXXnnl8IUvfOHw+9//fq0/n85PfsSpLtbM+tkb5uXuO5ImJ2ek7+aex3pJJgcYMNnJja65upGrKTLG4wd+a2rcHrA/+eMLX11cN+4rre8CO37wo8HhLzxjtmQ9G4mt/OCQIWO+ydnx52WtnPInZnLU2ueTzJ4kd01oyPWsvuHSUVs++NaT8ZEffHug5wfXkvcg5GRq0z2NDznCkFc/rAqvupPPtSUng9W64YmtPyfFF+xZz3D5ReTVS03oynESeXlXB9gIHrl6eenlz9v5fg6LjTPCuaMe9PgTN7kGR+OXjL5mvcnlJke1UUdrjEfevdRcXM4gGPSnLX/tS2P6xc9ODsVVjGLHo5dNMnnPfSNeGPyeIzj8VDv+YaL2LB2Yrmc45oiNvTkx+DpH4mObr3TYwqgG/IgB5RemnDU5k2t08ZwX3feKB789y2d7HmY1pUOGN2muOTxEB991096YNsbqZj+572ry5aN7bLjihis+1w1suhoyl9+sr/pVh+LHoycetuw0cvU05ouMbv71+RHfvHbx6dvDejnBc29tL8FqHfXm9MTR/YUuXNe7/Plsndmg8hGDMbkX7c5hNuZw6bvPT/8zF7ZhVlvynh9gyEeciK6zqPtQe4lMLPzCjMqvOlbj6sCGX3zY+N4BOmv4Vgd7FG5+9TupnRoicvnmi8xL9n6ZTm63HvB7+MUv2r3RVxjNBmvhFLvNYowUgZ6D0aK6QMkk1uZciifdxud6xUUt8jmdczz+NIVHxrD0kRjhKnRkLP54c3Hjpetm6VBw4MMl12wqi6Quu41NQa6xKS66czOyE5t6FXNY5mJEdMrBBoKRjJyNtdI3hmmD4WebLplWfGqkhvnR4+UjXDx2Nrxe3fA0OjD0cw3IWp/wxHGO2KqdWvub7P4zBA9yeL4guUjyK3YNVV89jPKIz95Ya22MEX1xJdeb77GWB7kbJcKrBnBQ9ubk/GmT6FSjc77CKrZikRdb+8hYXVs3+DD50tfyC8teSA8OXj704kUw8rkYxw9ytU8/uTliW93N+aeDP1s4bo70YTo8nRv5p0OmhxM2PDyxz/j5m0SG5NHDLl4x2zf2kjrCDy8Mc3b0qxks/PZ4uvXi0uZ6JNMXN998RtWJXM5R+uStR3GSaZH68Nu1PtchHX18tjNvc7bOi2KA6Tr3Jc1atfbhqQ2fbOgZW0NfFOl2o/MTdDd38hkznPLRI3INttY4mdjaI2zooGJek3v4mH5hVL+w+e3cLzawMz5r0v6BMWPDVws5u0eotYbfAyb8t7zlLYenn3768Pjjj6+o4T8IicOLdv+Del+uYcqLrL3ER7ngkYvXw5y1Q7OmYSzB6eNcrPlobdLB1/Crhb7r0MO0B2v1qu7uAeTsUJiN55weX+3fvjDgpQe7nPDk3HrwicdeDdjT5dv9x5d59x9rDhNWD/18s+8aXcGOj+LHYmvOr/wQLLxk1SeZ9ei6FrO4zNmJV9z2GL6xcy2Cierjs3VNuzZh8AkTPgy56LViI7dHNGN8fvXlgF/d2MrTg7k9Ly61ap35D5s/euVuTlfDK/5ig2vM3yS605betDfGQ+mKvdrrzTW1aG3Fjic3/d/+9rd15lUn69+zoPysLR5dOToLvcwpZr2Xmn5T2fMzX5p8qm156MWKxG4ewYlnzFdYevloYbOjB0Mu+IhOueHR4ROeeOJNfXx7U47VDZZ41IAPe8sXy3KCZ53br/nl2xjp6cNFYlE/uMVVbHxo5dQYHqJnDfnN1trwT+Y6dx2L0b7mW+Pb95mujc5sGOTOA39CAY57nzPj3D2ODzFF4mhPG0d05Ni1W035c46/9NJLKz5x+I1SesVZzGG3/6oXf/StnUZfX+7d4+XgP09Te2P/Gad97joVR9/xxDZjh0euodbSnGwnvqfOtCODjadvD0yMMNVWyx5fEz9q3nWJt8dt3hpNGV24mn2B1BFm9XR9i1e9H/aLdv+MXf3tCTVwD7L29om5NbMu1rAaiZ9e9xU9vVdffXWdMcUOg67Y2epRtayeerWEwTa5sfVjh9cPAew3MteBvRJudYVHX0P4xnJkh9RSfeHLT+3FmP98uy6RNXCuyikMZxL7sOHxzR+szhb7QsP30kW9ipkO33DZwsYrbzYae/nz5RzpBwz02crHtUfOVmyuZ42vmhjVwVz91Lw85Km2cPTVhl51oMOHJi7+YVUTOYiHn3TIJ7Erbz4iGBoM+fjtT80PGmFWE+e6+OCos3ysj7gRPn1Y4paf+uFpdOXt3CUTK3/2PVk1tC7iFA8+P60xPvzqmb/WvTxgofRh4WnGNTEj9mJWs/Z5NuWfHh0yenpytnzDE5u9po9Hhw+2xhqiT8e8WMKgy4YcmasbXjryIScLy7g5ebVjZ196HrEO5kiNnDPWRRzq3XUKmx4dsmLhqxrmL5k5v+6haoToo3TFZN1dl840cz7seT2q/mzEp4mBrn1RXvT4JhOrMRu1yh//7dfWNxt6xmIm02twkTESV9d29wz6agXbXhSDZw2YKP/1ePQ6M8QlZrk5X1oDODW2xvzbZ407h/lD4q2G7cdqyI8Wlp4Mlvxc26jaGlcfuWpsWs9i4w9/Etye9cnooPDwxEIPrz9VJQ73BI0On+ptHpWH9Xe2IPLuYeLCd3Zp9LRbxxftvoffvn172fB7CV38ot1vtAumpBXBXNKKqLfwbSQJuzBtAslI1CZig8wLuv5cAjYXgh2xRTfZKT5bdi0Qnjgj/HLCC3fG1s2AnG2NjoXoywG+eGDyqybFPuPEsymLBY4xHtke38xbDLCyMSeXA14+84dn3GanLz42NXONnmZdXWziyD48PV9TP7uwbV728pnY7Kp1eOThGaNka7J9qI96e8nup1lecPDjwGqdqq9e/PKo1uCKKT4Zag1m/dmHga+Zo/TSUU/jHmb5gZk/eYXBPnk6+aEn9uKi+1pUzcpdTdsXZGHDLN7iD7v402mtZhxizj67ejK+isU8wmud8WDg8akP0/ngrNDYm9tL9i/7KB9yCLd8wiqebKq9fMjUqsMUDyYd+6lmni845nTdHJH4ER5Z8/JjWxOnNvGW8fGDPoxuRvj08MhQtjM/4/b55M/c4bCt1mTFuYBPH/jZwZKPhtg7F6xHOq5zN/nWpvjoszdv7djS9ecuYMiTjhu9+wPeXpdisBbzXINVLnyhYi82cbNH4riE8ps9W7iROHvwomNe7PxaD3LnkTGZ/MRBXz7mcrD/rLFGvwcv/Kurq8NTTz11+MAHPrBc56M4Lu357jfaPYTAK6/iFoc4W2tzOq5H69e+KRd2cO4lNjpzXcRTix8ev2pn3T38qCf75urTvmdjrNeqJZtw1JxOuckvmRjaN9WUHuIv3/ayuunJ+bJmYtGbIzVSLz7wxM9XlC9+ybXqQEec9gEeP9WXnjxgJeOLnzDpa3h6xI6cDWwEE282fDr0+XBtyhWv/ZsOXhj8iINOZwF7NUHFka98qK17uS9LrZU5XH71SMzyLi7Ysw7w8GpwUQ/ZcMSQXbbmMNmHQUafjN+uUzy6ek0u5OKWJ3x8vRdJ+uIIC7Z17VmFPqLXD+fbM37I4Tcg1SGCmR/x8q/BF4/4kLUoJz7INTz2dPFnPvnAo9t6090JDj2Nr3TKR99+kI95ccNWLz2Z/aJHcF1LagqzVqz5hAVfj6eu6sDeWIMfPx09YguTPr3w6YvNeuDno/z0YnUGWB+xsylmNshLAC8KYNH1YlovRvpIXzzFYk6n/OiR4cFybdARR7naH/4FhVidM11L5PTYl5/4OquKQS+PzjU2rhvXfi/1nGV47tPyJ3v1+ILWb7F3ndKFIQ6+I74R31oyfFjJ6RjzL38k16lfPvgaX5PS1WvpwQ27Pnxrrb4oPWP2rVdrNuWw5dP1SUd8emulmbvWH/aL9s9//vPrP0O1lnz0Mlu8ncH66ltd5Co+edC17v2fOXhyqnbZqEW5WheNLuK7tUq/GqUjRvvW3qSrXvxau3SNYbVesOGJUR2N2ZrToQtjns3WovjDk2svYslgwDIOKxt8uNk6gzT8XujlQw6uieLUs4MPo9zZ88+H68eLsHLGsx6dNWzlRC9s+fFVvPy4xujCyRe5XFtb9r1zERfd1h6GPBB7TY6zHmGHb474tafw+YRT3czt9UceeWQ138/JZj3Fh2CIx56wP+DThWHc3iXD04zZyU3f3oABi4741Iscicfesw6oWoh7t5ETEkf1EQd++lPOXgzlyC/8SDzJ8eQlrnL9X97udNfOo1jj+LoIJD4QwEcICJOE+AgBEj6BSAgkgBFCWMxhiBhE7g0kEFyEGUWYBILLOPvX3v+cos+7tvdyTErq3d3VVU89Vd3vsJa37WKY58enuli3pskLDy0dTLHTFwOGa6azw0YrDvu48RG7+OYkH3Z4aPB8l+c+3+eAcOXeucRf3fVi8tPkLjYJU08nP616idvfErMen+V89cM58h2LZ539h8MfB7ZwxIbDHz/nRp7W1GeexVlfMfYa08FNjMWEz5YYwy6HMOIuNh7znODgXCe4qjE++RmrXWdaXfEPn497Bj/7Ys5WzcUst3Di4V7kPdWzvHqpUe/8OJWj8YxXzvR853VaTdjEZXKn09hp1dWYVFs2uMrDuHrAZYubdfdXZ8W8c8ZWndVFi28Y6q7FMUy92vpO0TOVjbm/ofPFL37xjf2nY9pARSkBYwVXEIl5sexA9acsbJKKqWAwOgytP6znp4nHf/KYvoqvHQkOBIb4hC1ca4ocLzdrB1xzqNy4rcuZzlhvTmA6XHgVZy1c/2CntaYXe+qYnsvLASP5Z7f7Z4NPF2E25ZYNjHCt2ecOuZrIUZ+IXe348S8HLwzazq+6dNMz5yee8yIemdyKp4evOfxefjzM+01Ce2Kf+pI7znHgL3f+1rTG1kjr9g63aTNxjK1VS3P1yab+Aer5n+zCENMYTvt53vN4pT1wFmGXp1yq9W25FYF9dYI/sbLRs8Pd3mnEuZh1pLNmn+WbHX0yXzbDgsPHHIc48dnPHh0btmJnWy3kos7E2FnqpkonB3rCF0Y8q0Nry+jgR3bVKoy4HrgsTt1L4i6PI5ELnvA0PIk45vrpa0yn5o8q1dS12z64p2iuXTUtz2IXs2vby4Av2mGoEd50XpDsb344zv1SF3vk+hY7H7mS4vKBodE9isCY9YRl3nU6MaddNbEvXjTdl9yL4MkN184wjHC7Vvl5aZSjWJ4zPrQ8//zzp49+9KMrLJ/XI/j2RbsXZnj4idd+sMHVHvXMcG5cl3t8vvndlpc6aSR/PYFv39pX2LjNdXUyh8GWjXu/2rmWrWvOi6aOcO1J/0GX9Z4VfGHALI74fMRo7+jUoWsoe+tq1XUhDzWE2bmERacRWLBhxFdvnQ9756KzIWa5qocxqTbs81sL1z/44+fLlHITlz3RW9fEiLeXV78J6MN6z3E2fAn+NX75G2vhl+9yuvqR3tya/fJhyZeS9oGoA974um+ooxYuv3le+Vjnw5cYq0cfInB1lqs3e1K+8IytG5Pi8uvsW6ux1djRzdzaq/ioW7XrPcX541/cOMuTznu0sRoR+PE1br9hEDmyVzOcy9F87jnbYvKFoxeHXoPvPMOzzh8eG/zZ7MIne+P46OMLBx4pFtxiVANzNc22ms8+/GnnHiAXOmNc7YEY4sGrTS7lwoZv9nzdx/12k3sJX59n/G0Dv91tj9xf2JUPf3WiN3af1Yh31r54cz9SF2eLiMkezvzQHCeYfYHBlnTPk0vSeTCHfyTsXbNsPXv9Znp/e8Ie+ieLNPcNZyl89jDp5he01aUzy4YtnvEpD89E+2z/XJ/iWSPiaDtv6+1J5+kor+KFx8a4PdercTHat7BmfGvtY2eeP75T4iqOMT/2fIl8H+cX7d6f7t69u/6NdjHEcy56b3Ce7C1xPtREXni7pq3hat/Z2p+4syNz74ohd/582JmXq7zN9a2ZE9j2u+sBT7y6L9lP5yZc9hre8DV84Dp34cpHPI2wiY8+LvT2QHwxii8GTHblu4C2H9Y8nzwPXbt44e4ahYcPLGJc/npnTTzr1uJaiGzp42t/NHHk67uUcoUDU7Nunh98XOnguk+1x/zxsJfW1F+NjK3p4UwM+tp+zbGFBRMXdnzV2Tvrk08+uf4JGRydGS3ecmdvDqNri37mg1N7X97yI+LTET29Ri8WX/jy7HMDO3otMbaX8cMFBpGPfdDj4fwQPrBgy99aexZW/Ng5M7PW8LR4qJF1OvZ4u17o6dQ+W/Hb97jE19zYuvuB8+kMVPfpx5bAxR1vsafkR685686iL2dh20OYaka6Nu2pmltjw6/6yIXAlrNmTN+1aU7U155Wr91HjcSavNnaE75yUw8642oIU1xreKmR2Ob0JBsxxBVDfvLurDgP4ug7e3zZitk1UXxrsGrs+KnT/HKbH67W1NZYTPHZiqepGWzN/dO6fZSD614zn8KWH71c/EG5dxN1VAs+6oEDwYFUxzUZP/ART53Yhq1P+Jar3Em5OSddc3DgyRe3ee/CGwYbjX/7p2/OXzOXg5zKpbg48MFR77x0HYthHSc9Lnr3s3v37r1x/xmq32iPPBIVUG9uwxWpzVKgDjGbKebp2CWKRE+nEIkxvUImu016dhMn/eyzgRtO+DZTsc21NkLRHXIHi415PniZE7VwccC1LoaLko+1LmA+M6/m8WFL4HZ45UXPhpSnMSxCB6vDRN942rPFj+QbNnz7ac6GX7zMNfNww4ATFl14cz3ueudJrcQyJp2xuBXfmrEbgw8tfQCSqz3yJ1teiMQk1ZuPVi7qaY2fsR6X6mYsh+I2n3mx5avX4LEn2U08+nhkp5/x4zRvDvweJsVhB7O5vMzbg3idw2PPpjplB6OWrp6teNbxdh6M5WWsdnA1wt7+asaEjUZ8ueMsmFvX4LCfZ03M2nK8+mGeyKN88bGGkxrrCU6u865vuvbAmOw4sBJr5Tpj7zZhlGP+crOGTzZ6MjGyr7cmXnXLlu+M0VycqYdjberVAmZY7CcXcw9oD0B6tsbto/V8nYPw7Znrm53eFxR6wt5+a9aLZ01NZnPNu2+K00M4ezpxcNKItZr1SwSvicPfnL6YxaJTx2rp/LjXe4nwwquu1vjBmVz45s/PS3kv5vL1V3Cfe+65/8oX7Z7T1Uedyw1X++wa9PJWvvryYJuoQ9d2ObbGztrElj+76TPtG2dXnfWkvvViyAFmfJwV17ZePM9tX5qxV2vXfC96bKyb+7DIL4FpH+GLWZxidW+a51c8drjQ+4DSexA/OGpJ8GGnp69ZK1a21uyNmHTm5V9d+CXl4Xpjx4c/vwSWNTVRAzjiqokPAHzZ6PnhHy9+RG7e+dizlX8iZvzT6btOnHf1NRcbBzrXECyidxbjLa6GS/uwDK9/wKGHSfiHZS3/8pRrOj1p7jpQMznRsXVtqi2d3MLOz7o45R2WPs5is8nHGmlPYVbv1qzz2eNaZ9vzN670mpiNYVhn21mwhs8uMOVgPeGb4KIe8OnZEz7OvHm41uk1enO45WPeGEZ+sLv3FweGM6ex6yy5fsuVvhZusasFP+etOXtjGHzsgTEbDUfXs+dPH45haOyJswxDjvpqzN+7qXU4fPQ4EbZh2Jueoemt8Sk/PuVnPMXzFEexnV9jvVju+/am/cHTte36jWv3fno8+GnqgTO7nh/81cT1aT/Y4FzDO8581QFveHFiS6zDI/zSs6W3rt0kxWMT3vSzrrU+8RpbV2vXeNc6LnioR8I+juG5HuTY/cF+P84v2v/0pz+tv8Z+//79de2J53NPf5NBnewBrriZ2y9fqEzu9NU07uVffvzlIUY4nUtzevXhF55efH170Xp4MKubNfbOEGx+1mBrxhq989U6nT1yltpTuJ7fnh/OHDy41SKfziPu9qozaT2u5TDvCfiI1Tlgw55fYl6LT/Vl78xXQ37ygWcNtnjizGtE8vux8gAAQABJREFU3mwmjnlx4sCnxpafa9i6OmjiefeRe/nSu37d03Aj7NRX71pnm31r85zz8cz225/+nXbnsfysuTeLSZxHnOxDe2ye8LMml+KmS89eDTS6GrzW4HVGjNV34skVFw13jQ4WW2LcvYBOTe2hGPLRjNUkPtWQn3V5EDYae62cqnN7ZK6JB4tP0v7yFc+aMTxirAY4aqQc9Nnm69xp2ZW39fhYl7czAjN7tnH0jOHjzLvnGRPrxjV86XCctake9dZhdQbUg05jA2fWhU6twj2yETccdZAf3mzbc9cLvXUNBzyJc6IObOMCb4o8s4sfHKLHYc/JH16IS9QYhhjidg7iWE08r+PJvr0RozNNT/i2lziZi+ezuNhiqB0dHPvLN/44a+atwcWFLz17sfGevmKFYy0bfu5DdGKzq5nHtxzEZ0uM4eSXnn8ipjk79cbV/cofmrKvdtaNe58zr8YwjP1n5t/+9rdPn/nMZxb8jFO8m/pH+qdjkKoQEpaE3ua6IXvJa7MQtTElvJOR1BTzdBXKejo4FXWuT4zscSJtVNgw4gPLGJbGRj4OuALD0Nw49Nb7IF7eYmQXN/VxQ4KZwIArnkOmsY+XMZwOKbsOkljxmzbFhsG+Zp4dnTF/42TGrkbs2JiL7cIrB30YfNmZ298Zny8cjZRPOK2VkxidGTFh0TlPxkQvJgxjF4wv2vsNIWv2xdyHmWKpcZjiGhP24uvZ2Ouw6WadxJODRsxrMNnr4SXmYViPT/b8iZ5fvnq6eIb3sL48+IobrnjG9giHOJ3DUwvSnvFNwi0Hejpci+PM891tzDWCR/eQatrNWzx/JdvDr9jsxXAeupcsoKsfMD3w2M7cjLViWtfkp1Xn/J2d9t2a8Y5ZTH14xeleMW1uGsdVXvJr/+WnNgQ3rVh0ccq//GDskq0at/90CYziw5HzjMev/aEXw3XpAW/M3ksHG3MxihmuNWN28uLvN+H04rP3gd9Dznp54agmNbHss72DyT97GHTi41mDpeFm/VKpFmHs/jhpxReDLZ37kzPlni8HHKwR9pq5nqiR3Hw48YHE2Jm6c+fOerg/9dRTyy6MNXmEH+L1G+2e1Uk82kf75Vr2HCflime8Jxfr5lMXtlzgh82mPZp1yZ7t5MO+c3CEn9/ew8BLfH76XuyM7ZEP5D3r7Zd/788zxBjH9tIzxX4Qfvi0bt/VRYu7eHzZOKf+08Be6NnIe8+9+rTmPMMQi/ATA47e/RA2kY+WsK3G8bDGvms222rjQ6azx7ecfDnDHifnJU7qqA5ismfjvu23YNkkYdHBSOjVE45aG5crnZdhe4MbLvDdd7rG4MDgU2Nb7SZ+ej7GmnV1xb/9p5vr6mfuOlDv1nBVK/mLV03hE36ue3jW5j7QJXOcTi8OXOv5Fjs7czVVjyQu1nrPhCHP6guP8HUPdZaKRd86DHXVW6fXF5MeNpvOAR2hZ+e3vvETm791czjGteU0ftDD6DzjX73hwHYecJcDUW9/iKZ1vdDjx0cTW4NP4M8zz6bzbIwD/K7rcPnTWcNFDGvs+bmG2FiXK/Hscp7dR9QrDtYa80/SNddbr0390dh123uUZ6u5Xt38O9E+YPfvReMuh/YW51o10zvL7jm4yd+zob20bg4fzpTqqifVii/Mo1zp2GtyhlmbdZpxGvORD4zysJYfvXWCdzVlm8BwFuyb/dIIezxg5GesJfm4BmG6n733ve9d/wH5+973vv+wzec2ffx90f7ss8+ufzpGHrj6hSPPLeeZHZ72yj5p7mF+exHPznE1wHHyx2XqXL9qwcZ+wU7kat0aH60aGeMmHp2zgZu4dPO+QI9nz7Tqn02c2MBlD6N7d3WwT64/1xnO8Dy35G/f+HSNw7Q37F2bchG3HPjmUy3FtU6MNbLXj84afvOZCqd3XTbVpn2Shz10Pysn8VxbaigOTu4tsHYuctPkAsd+sZWXuD5nw4Ev92phb9wj3LONxcGfDeFXrvHAr/23Zs7+f67+PeP+I1RxiTjOZ9fRPEf8wl7GVz/o+Oz7D689lHvXIh0fvb0k6iMOgS8nfNkknTm2uKsLnThs7V8xceHrLKkln2yKoRdHjQh7eew5znzhs5GPvfJcg6tZ68wvwKsfbDVr4hRLDNLe2UccCdvqsxRXP8SrhjBwys6Yr1w1dTSHmW3xYFjr/UydnD128MzZmNfo1Va9SXHLtTkbTSw5w1IXOHGqlnTOQ7708Ojtg1YN2lcY8uNTve1tn3vUUkw8rcPvfIRZ/JXI1Q821Y4tmTZi8S0mLq67eLhf4WXd9eJcsmnf8+2frmMHH2e+OOMgb3W3Zm7veiehM/dM8EU7iXc25njAE1N8ePzoYdhnNaVjzw5nPhp7elzC4Vfu1VydYLLPt/00J+VpDoOwoReXzrxY7IpjD9XQZw3/t6NcxOQjrnufv9FnDwh7NkQ+H/jAB04vvfTS+mdc6eJkfBt5LF+0KzTCDpeNdlNGWIERKvEjQnxJxCtgBc9HIQnMbPLJZu93O0XXJp9wYWl8bL5N0ZvzsUE4mfsyxDo9ySZ8OHh2YK0TG8ZPTLZd9Pnp2eJX/h1SevbZVFt6rVoY840rPT8tn2zDw62axMUhxF8PixiTbOj5aQlsDQ92xJyt+PnqxbcmjoPeywS9h42LF84U9nzVsi/VPVj59EHGb3cQdi6Wbgps9jzh22c3jGSPSc+vmlqfDa4mHrFmj6uPeTXJlm7adg7D5XuJwJUHKVbnjE7tb4OpXvFtX5vDrf6w6WHCJtbsmZ5Yxyv/dNbtifNUjMZsffHqPkL4s7fezZxercun65Q+sQa7GsAl5nKMPxw3VS/DYsnFOn0+Yc7eGgxxNBza/2l305ifeHiGJ9d538AJbnz0xYRdHl2bezx48DXjKdWVLpyZc3504prjZm/Ei0s5wMMtv8b2uua50Bft1mGc+6Jd7uWPn2ve3oi9nx9YeMCryWvmb36pVI+9dnDix6b47Ohx9czwkoR7NcHNfBfrzpB7mMbGubxz58EX7f+NfzrGCyXuYuE/988+2ys9KVe17zzw0Qgdf33NXOuewrZzow75h5d9OGys2Vfxj+q2go8f7KfAEJ/wbz/o1LsvedXay7RnikbfXvHxTGEDv3PYujzsH57WcbWmmTur/g3lnmdsq1tc5dwZsWY+864mbOwLTHjeuYh8ytM8buzjDIM9P3pzoucrT2cvzp7Hnsvx8EGKv/zUxzNTDYlz4sXfi7s9DhuWsXhw2nM+1RxW70Ww7YN6uyfni7P3Shh0mhzZz3rDjS9u7Rk9yb/6yJuN+CSezgpcceQ2c4Irdz7yURONLYHdB0h+k+MyeMgPOF0n+OFC156pqbjmevHo+DgXxF5a48cfZ/20VdP9i/bOEKwp8MWLQ2v06gebiCeGOvtDFzjlEGd2/MrJfBcYMMVTP/XsQx1s3J1PewPXuXXdejfnB5vM2u/88YLZmRez84wfgS8egRVvOnsutnjZw3Bu6aevs0LvXBvHbwFf8INfjVvj8OLnWnTt2l/3+Zp7h33xRbvnLlGH+KtR+bZfejp7KWe2xu4HenPNe4F9oSNxUjc10tSnWNbZwk+3HMcPej5s4zCW/9+QbS3+fMPRl5+xNfwIe/OE3tl2v3c9EfUpP+saHV/C3xnio9Hzfdy/0d4X7Z11X7RrrhP5y9Fe9Z5k332ZQ7rG5U9mzktxraseasCH3dwvcehbY18t9OzZqBE+roeuFXr1aQ/ijC/ehC3sfOAXv9iupe4/sGC6nv1BLV/n0TnV48SGPU7wuv75wIKLN1s8xOODV+dGzyZ+uJrDmzL50IfpOQZXrGoTPkw54MW/3F3H/AlfteQjbpI9TLl7rrKVu1juB+4DdM6k5qxak6s19wbYcoEXD/HF0spfHP5iwSim32b3f6fNfZGHP/zo3icXrZrBgpGErRZ8i4uTNS3/8uav9Zv03YviDXueZXO1UEcNN/nGSW5qSODm61pSKz5yZicGTkR94oIbG2vG7Fpjax5/Y7VXa3nzIzjGiU0x4VjrXOBHii9/+1pscfjo48K2/VzOVz/YqDl/z1j5igGrmsaZD27WnGtj9VBHXMWe+xdfOjbqy47QWYcdZznZF2vyruGj/uytiSsPPf/yxJctHHZwrZnr+bNJZ73vouj4itm1Aj+O9Ozjv5K4/oGburHlM6XawVcrzb2ZPY7OgHrCdQ7E7jxY14jnN7vydW408TTcYVhXm/bTmODoszic8oKHB+Fvbk2ueBrjBwuuPZRHZ4Rd99E4tC8wcY8vW41/uPr4Tj+++bGXF37EHmjW6TQ4pBqrH15q6T+LF1f+RD7el+xBecmVDeHrN9p90e4/RCVHe74Wzvy4+Iv2p59+ehVfESTURsJH2MuWVpGsl3TjCsZHIQib7MxLZNrSk+ysscv2wer5n+x3HxvkoutCtE6n0F2MONoga0Th21jzcMuFLl7W6M3hwc23tXD5yS1ffXNr4dNVe7oZ39h62PmZz4ueHx75syseWxeY/YRVY0PYkXjEJf+ZnzGZa2LypeMrlhuEg08vvgu3+DDYdubgqaPfXvLBxc3aBWzuZdMDHS4cdjCJOQx9udMbuwin0LFL4GmEXg5aNw76fKx3kRbbOpm+jR+sPPjpjNC74KcUz9qR0Is/BQd6HHBXw4S+Vs35i0NP6tunfPXTzhzGbHQkTuoOR2Nnr+17+sZ8+sBWfDp2fMrDWvkUgx1pbr26PVh5wDsdDOfDte2B0QNsz41dPuEUJ45iiVtsOXZeps8cV4vyEMNYLciMSa/BL2Y29K7teLcPC+TqR776ZPIrDlw21Tg/PtbsQQ9r/rjYEzo9nHD1YWWDo9x8Ged6hwe3F4TixtEaTHHszZ4ff5hErDjNGsXhYXtRzEt6cYpVfD2dc9XDvXOFq2vSNd5+yQk33K35wKfxMb9z587r+t/O93zUtN9o9wHUnKgl7pqxe699bY/YaXgSvNm2Z62HV89m7hs8MrGar4WrH3ymbmJks/diqLmaqX9iTEf0rvO45qPW7Zl1DRY7NvbLsyWdL8zowmbvC45eMPmIxd5YjZx7Y7GqjblG1LVapqeLKxtjOjVkW68+uITFdmKYVwM+zp5r0rj9xEtOcoDn+esFvD/8hldM6+zkJy6B6b7thdX13Pm2Jk6x4LFTD/F8KPa87osOPGB7pvelEQz2ziu+Gi44yYsPTtWq3ppr0Nx6/MsZbnWCQaoNX7nxq2b82BWTLx0fbYraWOMrPqwav3NijX35ZQtLI+lwo8NJ42NfSXkbVw894a+xt89hlBfO+/sHv+LV8ytm3Myta86BOREvP/O4WNfMO0vxY2eNXj7Oizyt01nrnPVvKLsWrSf2ob3EMW7WYVhjU43ikD98PiSbMNTJeMZj0zVkHUeCN/74GYe5Fh/yAyYc10BffNgfOnNfcLg2Omvgun+zYVuTD/u+TIhftRELN/r4m1s3d77Y6F3H4lSDrvvs8WDbfhmHz0YjR/bZ8jWODw43SX5HcehIccPJR6y5Rm+vnA97Z15Nulb4qI2Go759dg7MvV/6jfaf/vSn6wP7jBGH2/Txn7/Rjp/mPuqeias5XuXTXvnDFbHZPIyD9fIqVzo5wu2ailP28nANxYFezTp/caKHkUy8sMTSuj7pzfViuJbUVr3hEvrqj5sc2jc8jPlrxvYIjr5axp+9xtZ90vWXP1tx9OzZsHV96fGJS+cAF2tw9IQ/kZd1PvKtNtXLdc5HfLbiaNWjePyJubjx4jffs/nlI1a48uy6poOHl/2Dxc95iqsaVAe8PbP9xqjP4eLDgK/G8w8Z5QJHDxcXdurBp/rSWSu2sTU93+qNT7G8q+GNK2FXHPr81+LVj/IsPj/2YuCtLy5/tVBL/M35EWOCUzl0dtfC9Q9re4MvR5jOh3MNV14zRxDxhNFa8WAQccMyLx6OYhG+7at1Yr3WeWGDR88fuKS94kvnuaJ2+LX31soNhvX227nxXLe+NxzgWIclFuGrwdJIsewZjmxhi91eZktX41u9+IiHh2tNzuys6+M3fengqmN21ZdOTeBq/HCZTXwY1lxz7MOPr33kz45YF0uuOOrprHsH6A87zHEJL/vuI7Bw9L7uPZ8tvPYcTxzEgoUDm86MOsN2feRrjS3OhG8SD+vEnJ+5JpZ3CXGJvpqyZcPeHpkTPnTmxcJBrgSGNT54dt580U6vFjD0/uBM7fjnI2e4/PxG+3e/+93TCy+8sLCLtya3+HHxF+1+s86BkIxgbYYxwg6MPiL1uBhLXtEkU0sPK8mPTRthzXiuGU+//G/q+RQbnk3wgOjDiTUbaN5Gzg996cRgO/mYJzbKJrNnY7xfNBNDbTpgYYSdnVyrfTZyEEOfGItF4mTf+FubzXp5VEu2vUTHKxucNDy0fNLLM6lW+bbGD65eLA94cwLHvBs8rmLE31huvvDwUPWCKY4HeX/1HwapBmty9aMLiZ4PqVb5NI+7eLjps5GPdfkYE/PqusdlUw3YGrPlA1czd1ET+U8fY7aa8ZTJCQaBF4fw6fONp15u4bfONiz4xaAn2dGzK4Z+rltjo+7hiGdvNXtKjNmwd/8wnzHgdmbgWAtPTRrz16xrc8yGtGas3r7k0cNhv9c4vbUpEx92dvRxNS4u3+bp6luTpzoQ8TQ29PoZY/qIZ410Vtfk4AccNnzmdYBb+skrCPb2xdkkfI219q7Y/MNzH9HY2G9ftHtOlCd/uHz2uDCqg5jTRqww8lMDjV/27LTHLeJ0jRVLj6/7gheOzhU+uNLT4UOnGePP3ll0Pwvjf67+Gu6LL754euaZZxb98lyTR/gh3tEX7bg5Y11n9qtr8ygMHDJrqx54k9bxbTzPNt3MxTzd1C+wW/wQ23PcM1sdi0uv3mLbKy/l4Rdz9uxr2Zl7zrSXfWCkF8uXfD5Y9gFPDeh7f0DfHL8+FIjJDgYRq3NAN8+VdfaEnVyIPo7m2cyxa5ZMPHFcbz1Ps2eDJ1wv7X67zQu1GO1r8XDU0ovjOp6/NWeNvThwiJd6f1XVC716+JK9/9Bcbbo+fNCsfuI4nzjhjp8GH18+1aK6WqMXg791HHGpzvngWO2sO/tqwS99celhlxtfuN2HVpJXP6zzgccGFj5a/rCt1dgUF7diG9fg829NHy4bPOCpXRzpCT0pjnH7CyMfGJ7B+CfFi4e+/OyL80ToiyN3tdnjh5U9G1zlzrcaV3N8XXs42m/NvDqw997nGmQz8Z2prlvx4mbMToOTTF869tquv2ktvHzZ0slDe1SxJ30w9vxUn34Tyz8D0xkUd+5DdUznOnX92TNrmj2oHvjBmnvHNzv49hYGTtbkZ86HsCEw5Rw2PRw9H41/fmzT8zHW84mT+ZTmMBu3Ho/m53p+xTKu0eHkjNHFw7XSWROjHIydN+vOHnv3Mv9kzCuvvLI+sN+W085VfOKL9k9/+tOnP/7xj4ubOH3hjGfXR9eI2voS4e9///uqM96kHMNdyusf7bceZufWnL94RC5ypDdWL3G75sR2j3FPdd6qIT3bfHCe1ypM9pp42VY7nLwn4cHP+uTQfolnncA0h+ks8eHfXrKRp3h84JWb+vVcgCE/vuLETU5hs4HDTh8OTLE1Evfq2FnTVxs+7rF6sWCJVYPDXosLnZriEY5r1bUPx7WKAx8c2cqF+NJJPFjxdb0Tse2nvjqoHwzN89YX7f52kTnRe6/1ftRetLc4xK9za85OfY3F0cq/PKt3NRcLhvcxufBVe3x7zsHh3/loLF4+cosXffHUw7h7Hxu66hYmXria8zfGhYif8K3Rs2lP5Y47Xc9RvMoprtbai7D19gE/eYetLx4fa2pHykHMsJ0RjR1h67nTnB08uHj0TFIje94azlpibI2//YoTv1lvGF2fbNVGTvqkXK1bwwHG/L6OvWvXur3Y6yFu5x83+c0YfPiS6lN8duzVs5zgmfOxD/KgM9fUio9YsLPV0+HCPrzsxIoLnOzbV9et9+sw4LTG1v65B8Chh+Vd3G+1s1Uj9esLZznigIv6EnHhyAFG79d04bKFjQcx1+DwoY/XMrj6QefeBMN42kwOeJonXSPyI9WYf1ji4ulc6J944onFT55Er7WPuJUzHPvn+f29731vfRbnQ3+JXPxF+0c+8pFV5BKTjLHC2kQXpg1DdgpiNWs1NnxhWM+PLlHYfI2zSae/Sdhnk68eluZi9iCwCa0rtAdI8Vy4dGRiWcc1vh1Idg6Fxo9Ph83aLtWgusZj2tFZV/NdxIifNWOHkI/YmkOox9m6tVp407abeHtjbY7x0HCHQ/TVIL1Y1dEanHzLx5mphtZddA4+Xfb4mGswfdHuNznaG1+A+LDlQVt+xcULjhoQ6+rTOh3c+OOpWY+jdQKHnTU2M5ZxczYaKQ7fcLKFTwerG4cbFx8y7eNMD4uNdWMCg6hv/tZq1ujF1uPHv3ysJ9bDLY/W6vkWRx6aedjs2OATBzb2txs2fWP5uY+Yi1l8PQy+xvDhErnQN9aXz+yXwfWP/N18naP2kb7aMDWvwdKmhJ+NnsTVejnQN4/vjjdrFSZ/en1nJj+61tkbw85ezF2ywVG9YSZ8tXDpi8XedaoRNbNX5q4r8fPnA5ePve7F3jXcF21dz/xd6+ek+JMT22o1/dq79oGNhtfjlvYCbhyNxVZXD+h5/1cLPvT7XvGn78MjO77+M1R/iv7f+KLdy4W4mr3AT63spf0wn3nJbRd15WNv5FTb7do7mMZT4kCX3VxvHJf8m+vVy3PcM1wds3FGm7NT09ZwjXs6sdi1Jj9jzxk48OaX7vB8qPRXpT13yp8eF7zgeUZ5x/BOIRb9bGzo8YEhzrzXV4P4zX6u7WP1JvCmuL/2PkAvtrhi4uCDti/anQvccK1G7Ohq9OrkOubnhd9czPTi8fOFIFz3A/XxvPbvuapvH7L06qQncfIhoDMa3+rErr0UB9/2wNyafLvnmGvh8YfJBlcCA/6+N+ZT5Ai3+lhjk16M+MjFGCeNT1zorc+9muvsEvjlmU/82agfyV+vkeLwL38xe99Vgz6Q5cO2OsiL4OM+4cte9mynHRy2Wtytawk9O5zKu5rjRuIrT82+Ohvs8usXLMzjqWfnup0xi/1G9mojV62a6ms3ccFdLVwzrh8fjF1nfD1L/f8P/vCaDZ0YfOSfmGvWnW/Xqr794ZsPm/bOGA47Nlp7Zs+14uFnnfAjfIttTp9N+8w/HVt7qCf8NX444LVLvK1P+zjs9ufm8QwPVlziKoYz797lHIrBrvrApnctOXdyc+/vi3Z/Bf1SXvEVh/ii3X/K9rvf/W5dD51xcfHVi01vjpvz4ov2rjUcrNXMy0WM9kTfdWbdHLac8qETwxyeuMV2X1Qv74DO3F4rPuqNs5ryc407D+w18/YENxh0vSt1feOhkez1cPm01mdLOhjW5Shm2N4l+Jaza45fXPDkWxx2aiDfzijMaic2bI1N5905UTP+xYepEWvEMxUGPHE09vokH1jisC2msVraC+vweibP8yo/a70b4hpfWGI2hwNXDlr77nnuncgcZ713pp7x/HARH565PMXOB573JetEbnLVs20un5kXDN8D6AkcccpbLL7WwzJ2Bsyt4yxHfdeU3K1r9ldMfRjW4VSjuPKnS+BPCbMzwE9cvOGxF0ejJ/TZ4znPQPm5PvlYF7+41c5aezC520+c1N393JlnS9SRTk+yNQ6PH7zqZi3e9DV6XGDEWV6uO3p2amCuZyeGfSzfsNi07otme+msVVt+nlN8ceFHrJdDdcF/51tcPHF0vzHWWuucypsNjnS4xN8ch86jOOw6a8XNHieNXhx2MBrLoVyM5e5djLiO8CRsYPC3n2Lm533CO4Q6OA/zi3b50WvZ7/l23fANl714Gj/1UJdw6In686mWMKqjdb7VwJi/nPStw20f9Py1xnpx1JSt3i/2qIX7HPy+aIc5uZWHmP5G2ve///3T5z//+RUb7iVy8RftH/7wh9dhkQxSDo3iK5hDpJlPQUoridbavLmWLltzhSLZNc8mvKOebYfVenO9ppgOSxe0eBq9A1J8GwQnDvqwjDW2fOjnunmxG+POZuYwccLgFwc9e82YdFDZ52MNfwckH3bZ0mnyyUdsEge27Wv6MOIcl3zZhVtcNuLgQ4wJrInjPHUjsd4F3cVnHp8w5xft8N1cfdnRbxYWt3xnXHnz0YzLJR8649Y67zBImGxq5W6uJubEmM7cWCzjYlQLNp0f8fJlH4Z1dq3Fzzopzppc/7AGTxzCJjtrcbHW3HiKOFNmLrD4hZ8dG4J/OZob21fNnpPG9qMxzCnlQF/e1sU/kvJi27g+zm6+Xpj18bWmZTux6TTr4VpvbmxdjtUD3xof4+oRnhqR1qxbmzGs73M6wo99/rNWdJ0hNsRc67yJF7fJhW/i+vOg1tiwt39dl7DDNVYTPLzkeIB3fXuwNxfXfntukOLxr9HV4mKNjv+U6mOd5FdO0/Zh4z3+bi+WlohF5O3e65ni2eJM4ynH1uhwoteLZS/Ye0nupeAd73jH6fnnnz89zn+j/de//vXphz/84XrBiH/P7c5NvMrtqMd7r281m312Ycz5tAurOmavVzc1s9aeq1f+1rxcavTsrMlPLYk5nMbFi0/7yUajL5a97FqxR8bZ2a8+sBfTes9f8djAwI9Yr+GnlR8Ma3xg4IUHPZuZjzU6XKxr8sLdmFiHN8U1a6/ZEbZh8fde58sZdtVl2oYdpjXXt2uZLwx+9HQanz4MsJGHZ7gP5Z7ZOPLDV97m8mYHqw8JMNnFW+7WSWvVCUY85NK9Klv21RameXXhxz/MFWD8sJ4P3GmHk7WuJ7Y46WvtWRzYtyaMMaGvsVXHGhu4sIh4RP34xCl/a3JSUz7WewZ7x4WrHnTTZ8YzJtbdN/wtBntDYJc7HC0O9DW24YtFz5fOWAx+mrEcrZdrOPK37hz5YsZYS/KZutb+2315650PNfIsrLZqR+da2KVzUA/DNdSHQn5yUnvPU/p5jvkRfkS96NpbWOKrd/ymD521xLnCOx9jucBhxxcndtMv/9lnjxMRCy/S/s39Smc9Wz0R1zpMumzNH8ZjAVz/yE9P9LCdH9eSRuSnBu7j+IvJTqyuPWeUPRtrzuXj/DfaX3311dPdu3dP9+/ff41H57x9XmSvfsgDN/vkS5j46tl2PVWv8rfenrDTSNeqewWRn7Vqbe7ego+xc68uzoZ3viR7czHxyA9e55S/efmFq/ccVud0YbFv/4x75sKcuDh4Jre3ciPs7Vn7pxa+aHfe8YQtJr6kWHpSHL0Y9Hr2OBtbgwunedeOuUb4iOkLzvaMPv/py58NmZyM42qdT1+YmltXA3uq2SfPfmLf1MVesrMf7lf8iieHzrveLx34A3S1xROmZ3zvTXA7F/GBDUfN8YPDX+w4wuq81bNlY2/wUSvvTfZd81yg774ltlj8iV5c3OjFIsWFxyb7bMrdPDw4xr3/wOEnf1zaK71W7mzm/tCLyweeWmVr3pmAj4e61NgVM505Pd9wrdlbdcOlPNmwheuZwsZ6PMy75+MH2zq89hSv4hhbJ2w1WFoSt/acL1E3+9J1KEb58oeFAz8+1t3jzF2/ceNjP60TPhofOOU7sa3bTz19e8qnvaJ3rqwZi4crm2qCS/zEYa+pFZswcDPHR84w4OHABv9y4KvhFn8cfHHsuhUHR74wa2KIXb3pvTtocLru7bGY1nHQrJvPWqmlPbLeOWJXXa0Tc1zYxSWs8mbXNWc8Y8uTb3siN3E08XFtf8KHQfKrx8V9hb188TLuTFebYsIWzx+Qv/zyy6cvfOELC1ecS+TiL9o/9KEPrYK02QjaPAXTEEVCERJzeo0ckUyX35xLOj8xjmyyX4bjh0IqlIIptnGHuLmDrbWBbYo+qfDFwcG6ls4YRnyrxY7BFx+5kPLJLtzm1mFmVzz9rGvr/OToAifZzZ6+OmQzcfHTYNLX5h7zI+E+mD34KQe+7MXRSPrw2BSjs8TGeheDsfPWDQAv4iLzBYcLxw3On2T7ot3DFYaY9sO41p6IqaZsii8Ou/aaPuE398tamMYaLLr84CXZ0KUvVnsobuczXXzhZN9ZKI61MOl2XjDcxNSNXThsrYXXmj482DPOuVjxVQO+5om62T86a+b2uv2Gb2/dR3Bhy2ZygFWMiU1fztnIj6/WnsAtbzqN6J0j94ny1LPXjoQ+3HzoJt/ix7m1uNF3fcEwZ1PfGWevJcU7mhcDhhrCqI7h5qdnL4/iizPx+dbYwrRnXtLp2evDDice5jh4CPelHVtfDniJg0Vc5/Y+Pzq+NfNiGE/ZfebaHE+7qb9pvMfPlj48413Uxf2oL2DVGH+1MO6eBINeDY2dofzq/Ub7c889d3rqqadWmOLuMW87x/dXv/rV6Qc/+MHaA3ia+u/nBeaeX/H1eCfhmHeO8m3vzK2xnbrsJka41ujVzDVq3NmjUzOYes87NmpM2PLPZmIa40DYkWz5wyTx7P4QlzDzMdcIXZzYa94veuG2hrsmlr2uWdPE82xzb4IrZ7j0dMWxBiPOfHHW4sZHLPOkl/aZu3U4dOI5DxMnX3az0U+f/Vw4Wxpx7/CCKz4fvOTpD8nF7hpRK7mZt6+9iMe5Hhe2ciedDzrNOltYYdCRamVcTtnCsy/Thh3J9sHsAY64fK0Vly+BpRVXn846O/fX/OnUgx1cvbXwrIc1cdgQ8Y1rM4fOgx52e6HOpBhxLK75rGmc3dvdy63bz2LjVdzpS59Yx4EPPvFv3Rrhw0YPS2tsXa2ql/kUtrukq7c+axUP69OGXTp9drhlp+/5W37Ov2eeD8Nq5Sx6Lpq7JvKFT8q3nMXhA8fzEj4f701dT2LRVRc+dCS9uf2usQk7DtNvOV/9EFtc8WA0x8ecD0z6BF748YibtRmPj3lYcw2GebVwJjS29jy+2cEyvkTg40byNXee3W99xqBvX51V6zjgZQ0nvbl1fvj50ufJJ588/ehHP1q/2R7+JfzYVpO//OUvp3v37q3faMdP3M6/3j7YFy0fNvRixxVPjQ1dNcgnnjDL1RkoHjtrcjWu7bi483NOSfiNzeHP3lpc6WHK1T4Yi9tn9ulrzbx82LmHmzubmj2rtUedZ3HZ27P+oFu+rlXXbWeOnbNgLp4adO+zBo89GyI+vn02Lb7emhjpjPnLu2ef+PQz18ZiiKXG/OAl1bTziCOds8Be428dP/WtFnB8cemaVxN+xbLWvQhv/nH1Rbu/YaSGOMPsn/XCmcTduBq0x3T2DVdcWhd/5lY8684WbmHAh+E7AT7W9NYJH9jsxHEOjOmJ3Oa6tfYobHbstfjSqRcb8ax5v8HVuHyM4Wnyal8mJj2+bBM6sWphwsXZXGzxqpd5GPD4imvvccWTjl3nSLz23hq/fPiFJ0a5qnF6Omu15vVxY6/Bx9k+GFt35rRqgycOxcDLmrNnbN3z1NhZFov99IFLz0cfprzVz7wazbzn+eFLXENd42LMuHDwpNPiIsZ+H26+c4snbH5aucC2zoeu94hs5KDhQdjXytk++pLd53Hi/cS7XBh0xTAm+cbD/rBRhzjJt/pOf77OaTjVdCmusWGQ+OvlSPTm1dNcfJgzfjHDYAdX/LDkLs9srbUPdMXgJ4Z/o91vtPtnXAn7S+TiL9q9MEisQ4asgil8iVSQSaR1upKe6+fGsCoGP82cGFvXxD5Kvpuo+ArvQu4QmHdxp5/xilHc8msD48WOH33YdGJq/Ik1G0jUMD0//snEpds5ZYcPjKO8YRYrDD3b9qI84NOHo8ePHYx82M1axGPqspUDfHN5G5dX/eQFo5udmObOmAcBX2M3E2etM4ePi8CD3P55uGs+tBN+9hfejF/cOOrxnJKO3pgYa+0HzFm7HggTZx+HES6MdMYwZs3VQQyi19gVe8fPDmc47O2jutnTyb8cw+cbH3GPhH9rbMUgnSn1JmzKqz2j09jaVy+Pbnji6xvnt4C2H63BaV+McSGwy4Ft1xxdfNOJW52sVYf82B1JWNmzoeMnPrFmXs50Yk3O6sImqTb19HBq2dWLmRTL3Lj9bl/oZqz8Zt50YuHItvt8PPX2aL7048qWH4l7ehj2ui/a2Zp7qMMRy7Wt4RrOArv6Mecwz0m8i3vO7hL9jF3tbhOHjbPTF+1dE3J1vXR9s4PbHuXXF6z879y5s75of5y/0f7LX/5y/ccu9kDszgouWnUu12oW1+Z8SefFOpl+4U0dm6k3J/k/mP3f2adXTy0b51Zd9dU1m66LbMXWzJ3HuU6fwLGmpa/nqy6a/QuDb3Fm37jz6L4erji4mhv3juIZBrt8zOVo3rVhvfMktrW9xdU6/uLwKxd6eO1zXOe6sWYNPoz40+86dlq4YYqh5np+rv0+nDh39Lg56/CJZ3q1gCdfNsUovj7Bhw2MOFiPc9yKyY9PmHpzjeBsj3xgy2YtXP2Y8Y2by4Vt87mGR9jhWW9f9jqJVT44E37FME5XHP2uz0dNWsOl81dcWHThF7saqQcx50/Y4mZP3b9JuMbsis8vntZ24Sfm5MlGDC3/6UenEfz47kKvlXvruOyYbGDIaeabnXVjeeGawJp5m6uH99T4m/syyHNQvcRo7nrYpTjFti6+BlNP4GrNZ15H9nRi12DQhcmfxHtNrn6oB56e2a3BEFvNqps1gjcJmz5ua2H8SK/PXk/0jWFWd3zEtBewsxmwFw3jMJ3o7Kt7kc8YYoipn/syr4fW8HQfs+bL1b5o91fQH5UrPuSvf/3r6Zvf/ObpD3/4w6qHfRCnzw7Olz+8sV+TJ391Y69mfKxXP3P5asUSj96c3bzW5ZGP9XzqYWtqwdf1QPgVM375tJ4fX/bF8tlOTM0XuXLOl44fWznq2we4nZliWLev/Jxj9cKrPYfv/s8Prr1nZx2+67cz6BmlWWPLBx47/OA6D97tzMWmY0fKga5G37PPuxqshB6e/HByXdqb7jnscINbXZxDz1n8NLZywJNd57ya4uE/0BVbLD44+AxA+PXFnDW58/VFuyaePMX0G+3lqIfHlp8aVAdcrdPLbV5v7MXHmz2+Glv5WzPWCH9ftJNqp27W1QyOWHDpxSY4y5GN9c4Ie3w6H9bY4NI5o+Nrrn7WnSP5wsWj/YVVfmKXOzt++vQ4m/M1ho8HgYFDdeEjXnjs2fCFYW6MSzWDhbsv1+03G2N73BnkIwZu8BJcCKz0YhO9ddhEXzOHSdjYy3iwMbc3YZW/GNbZylOvEdcAe35s2KoNX0JH5Efo2dgz/An/7MzZaHR4auZqox6t4+CsVF+5lR8b+O0RXHj0bPiIq8eHnsA0VnO+4eXLRn7+xk1c+JMwjWFMXHj21z8d4xpmq9fwFEeMvRaw4Ghs1IJv59WYrn0xZ4cjG31SvdmIpZWf+257SKfJQcs2frjAstb+WAu3+NaJeTnQFcd+WuOr7vTw3LP902/f+ta31t8uhxGW8W3k4i/a79y5s0gqmk1BOEGSIIqg/kgUe/od2dyks/lEssUwnvErhGK5YM2N28AOtYLSdVHPuHzaxA4SPzcefjYywcNa3NowuWrWHT4cSFxhqJV+5hDu3rPR4JX7bjPnbGDXzPl34OnjnF/rcscX1+zZhEHPRh8v4w49XLmpVeehGolLiuUm4WYnDlu4GsHBReDGYB88VL1IZquu9u9tb3vbav4aOo5aF0z5z/jlzo7gUlwc5KIZs81uGV/9CJMfKcc1OfMjzJbxCXuOWz/q2cXpaD1dfIoZT+tyif9cVy/Svq7J+AGDPYFvb+wDe5jmcBNr7S0b/nT2zwO9ByMbba9xOPrqxAZOtvAa07PTa93wq5f8Oo8T23hiyKOXMvpiw8zWeNaiebpleP0jjPYEZ2dZTQh8fq4da8UJK/9ruMW1vWKrtWd8GofDLztYWiK2MxWX1toTfGDqXaMaLH6TKzxzeaWXjz32rKBPvOC7jsWlF0v8ya3c+Ygl5tSF1Tos69rMe9q93jEeGq7nYtDj4ux5SOvtu+cM/Tk/3Nh5WePD3j3ts5/97OnjH//4on6T721yU19ftH/nO99Zv8mg9u2LvKy3d8b4EHHVtbytneMSTj5s08E21tqnIxw+NTHxUDuid31qza13bVuHD1czhuEsamzjwFYcMnnOeVzjKw5dfsZw4BZTvGq1wLcffNmy4S8Xez65hz9d6fJtP/RHQm9v1RwumZgTh21tYuHIt9riqs16l3fXsRrzg2+cvbl7gYaTa966uNVPDTy/+3CKC/z4mxv34Q82gc1ucsFBXa1p5uKWZ/rWYGUD0zsFHuWSPTsc9DVxjyRb62oIw57jYBwOX3ESfnz0atR54seuln3c6LOhMy+eMd2UbOKpPkRsa/SEHg4MUhzc7Hv7GOdldG1XXLx2LvDVxT4Ztz/564uZDi9N7cSzzk+jF4MY46ZNXTh8YZCZj+cbH3yzwY0Ne3yd04TOWdGzYcu/Z1r4OKhTNfP8w/lhUr6ww8qnvJvr2WdrLq4mH41PPKYd24QNH+vwzL2D45yPXo7W4M46V1d41kh5mIdBr17sW7cGcwqf1tmbp5tY0+dRxnjA14jefttf8YtlnF22dETv3PR8cg/xBfuPf/zj1YexjC/4Ef5fr75o/8Y3vvEfX7SL1edS91f7ZG96hxVTm1+s4kg6G+XpbJfTTg9214Y9uimX6gAPP/Ho8HKNEfPqaKwROtw1+9w5628+4eo5AXs/a842fH5wurfEld7YGjzrfMToDLOxb97F1Md7nJjW5cHW5xdr4sPQ2MiBvjNcncuv6yU+1mtyZ1dO9Ob+DwbXHx/+eOGnPuZdm+UNB9ew9POLdn44ei/3WUy++KsnO/hq8o9//GN97lYrwocenrPQb9Jay9+/0e6LdjXj54t2e0Xwl1PvuNbxrO5wifzZETp1hSfPPjfKwXVprZqyFUODIbYxzsS8faxW1Z6eD3u52WN46mGNvTjFVTM63Pn13RJ/ebG1lh4WHmrIhsCo8dGmnTF/PbzyEE+jhwXDOmw6ebaup5ePxpYPO63rk40/WPFbzmqizuzlK/8wcMhfDvAJffzYEz1/ccozX37imDs7zkRiDS/rfIn4Ghw6a2zUx5jA4quxYd8+lLe+HPiwYVscPZ/2mw38eX23zpdeXLnKga0Y1bu6OAt0fIk4ePLjo7f/rke2ZM8jruyMy8VvpYtTDnzZ4AaDWOeDq9z+9re/rfuKeGJ7ZmhiV0f+cMy1cMphKcYPtuK5Lu27ObyuE/Gn4Mum3rq5+7K9pedPHw6dRicn9upHJ3Y1w5FPXK2zxY19OdHBcs2zLXfXvXusfyXjXe961+krX/nK6VOf+tSiXy1mLjeNL/6i3b8ZKzmF89A2JshGXEIlfkRIMg7Iowr8ilbM4tCT8G22C9G6Q+NC6PDEU+E1G0vC0tuANkyONlEP1zjb1szF1qtBh0Esh1kz1vjUVuDr2GHSsZsCG2Z++3q2YeBAzONu3uELh26KdXHw5WsehpjGuMSHbboOf/FwiIc+vXj5z5sSTrA0wt4D1r/vCtvNwNnDCZ69sHdvf/vbX/uinR+e9lorpr5xuc948amuOIjBJh1sYq5NnAcrD37GP505fJJfmPXFymYZbz/wn3bb8mvTYuDX/uCgWdNg6Wfe1Uet9xyA58/O+eBrL/Tz2mI797UY7aEHub3Ejx09LqR+TcaPah1nmKQ88DAm1pwNHMvJWFO/KXIKW606U5OHdXO22ZdTvtZnrfPXsykunu6hhD4ffXUPO99yFJuElR0df41uCh86fTitw9fCTe8h1UPOGl7zgRle9nr27aU5Hw8wL/T0xfdwp7cXMLU4zzoXAz+yc1zKqx985MU+n9YeZ/8wHmKVo3uSDwfOkr3qJewoBzrY7Dyv+LC/c+fO+lP0j33sYyuNI99L8hPjF7/4xemll15aL9LtV/GtdxaN1ZSoaXq11qr1UXy+CVvSvljT6MVNn319GGzUpfOuVx+NwKHrOk9XnPBdcxqRF594zH4ZXNvQ8+9sqYE45cS2+PDYauKc26upZ5t/zykxs6mPE1tc6MsHxm7Hnt5zk125hgOjONa7Z+w45tUqnrDo8LUH6iGWsyRe97XqMWvrmu+Flr0mfnhdM30pQC8ujHDgijlzsmau4dw9FMcp1nAt3zDFoNfK2Tuha5EtiUt7YM4//YxjXL2y6dwUm02+YrKrz5aNXNqjbMrDOokT/tnSkeLxSeBobMrZ3JiENzHCsQ5LE8t9XW8eLhuSDxzr8OkSentUvmys66dP9vXW1G7ud7hxsa52mrjlCwN+tQ+TDd/OJTxxxGAbJ3ydU3Ni3Rw+f3O9uhB2Gh4wNTE8A9mJcZNM3jjCotPzL28Y2RazvrqzNcbFdWp9Cn8SV7akfLyv8WFnzfUOUw7yNW595hUOrKOY8NoP6/HM3roGE1Z47b/5jsv3UomDOPD0zqb7XPnoxa0G5q2J1zo/4l7mN+L8vyiP6zfav/a1r51+//vfL272RiznEn/7YF/s4byu8PW5yf3XmK1erTW2fQ4un2qavTMDW4z2IBu5smsOA6badY1bx8v5n/uYLU5Ezw+fzh57XyBWX1/G9CWbtWLDl6Oc4FSXBXz1o2vGHvoCWJw44WXMxvuXBtd7HBxr4quDWrI3twZHvuzLrTNUb6348cGDnx4Wmxod8eVnOclLHeJk3r7gk9gnPMJULz7m7lf85KCxa/99uaTu1v/1r3+tL9rbUzoNL3x8Juefjp//bLAv2uWBqy+rxCB86XDARU01GIl9K/d8XEfy9FlCbvHV863G6itWcYzhWxeXvTppdGIVjw+d3MTCX934mMOy17gb08HhL3drfMxxsu4MpWcbv3IVD5bGVyy67Jxxa9UpfDESOj7VQUzrdIS/2Ps9Wr6dW77//Oc/129H49BnNrmys84fL7jF7HzFl56O4CB38/jhYg5TM2djb9i0ll9x2NXo4q4++BIcxZxzvORO4MPoPNDZo2IWH44zwJeUx9xHmOzoCD5yMKeHC6M9F5NOj0M82eMb5/3L7vKv7ivY1Q8Y4sDvX3tgm1QjvIz5FxsP/zl2/8mzvF1T+LIh/HAqvljs4BjPWOo3WznRwXNuqheMfNXAWC7iETrXnHPJNs788YO58+DLzxo8rXz15nysOy/4ZcPPmrqzxYXd0Rftn/zkJxdH9pfIxV+0v/Od71wFs1H9yUvEBEZAAm2uNbpJLN0lRHdbMSo4PEKnFc9YURWMODTmNnBuiLmbieLnuxyuf9A5WPkYy6/4xTXHJT7hsSfzILCdrbj5XodePvCTuNDxn2vThh0sMdmYFz+7m3oHTpv+8MSki6/csrVeLNhx6yIw5zt5xJMvHHjGRO8iY++8dTNx7jwEXHjW7J3Wb7S7SPni2n4XU6/holVDPHaJR77lM+3CqC5zjX8Y6bM/wmqPihfPfPX5x3uu7WN48cJj1jZ9OGyrQfHVd+dfjMmDLuyu++xg9HBno9G5qXlB68Zpf9vPvTbms8W5+lqrVnIwr3cNsq+Zuw+Y78IvvTzyza512GKL2Vhf3YzT56uPp7GzLud4mRP1oa9WcAg7+KS86WDOOfuwrLUeTjp9ko7NbK49DZdw7WU6+okDzxr+Htp4NO8hxgbW/KK9h7A1eOUFv9ysHUm2rU3+6W7T7zW4jc85GxzslXPWc8Uzxl9jNReLTTJz5Me2Z5V/o/1zn/vcY/2Ndl+0+41291D747prj3GKG5744Nd651B/tD98dgy2MOEQNuFM7LV48IO9mvQ8NW5uLTzX7BTc45keD42P9Zkr2yRM6/K0H435WU/KRfxsws3mYX18wuavNvHIPztzvNqX1mcPw966DvlpCc7lC4PNOc7FLM/qKl91MSdwnCeN0Mth4rrWex64T2jmsLtefND3DPehpVjxNRdXr5Hw0ze3NnM2J9bx6j4Jmy/+1Ry285aeH101iA99teWbtN4aHI1e/Jr5ztGcrR6mNrnRl4N4xcIve+vZ5VtM+uJmk1/89eVrzBeOmlW3dPYwHZtii2GuiROO9Sly3WNZ54NXeOY12PlYn/zjwMZaLZ9wzY2TcOIcTjHZ8cHX2SDiEl+ysFMH6/quA7iwuhataepGPzkssO1H8fXi6cstLDpx9OpSzvXVsTrhJv5crx7F6VrGsXz4JLA8163LmX384pJtcZrHp5j0xmTaNi7nuPEn3ZfNw1wLj/ijOHExV09x6Ix7ppuLyWYXa2pizf2s32j3hbucHkWK499o//KXv7z+jXa87E3c4mRPisOP3pl1r7WHYeHf/rKRm2ercbUvR7kbO8fe7wib1mFq5vQw1GB/XuOLR+8dcOThGhKfj1j54QeTxBs2n+7R9Hz07OXIB9b8DIiX2NWsL8bKwxnGi3/4YvniEk57CsPnF335s487HrVF/OpHMfDTzHHmk291L99y6guwfONmnW2tGpn3BTgdPzmosRhy4dteWE86A+Z9kY5rnKu9GlnX8CP2401vetP6N9n1auD7F/9Ge/kXv3MGF1+25Q8LP1Kd/CGB/XHPUXd1g6EWfBM2hF6+sNOxL2+5wxaTjr2eTm7OAVxxxaLDlc3kHja9/K2xr7ZxhMtWm3FxxZG9eHxh0bHjz6dzy6bGpv0QOyzj4rW3ehjysiZGOcOz3m+0W2Nb/PJRAzyJuOIT/uaN+RP+taW4/iEujvFk79wRWHEzPvIvZzjGxcZPvXoe88VXzpMrXELnPJE48yfONN8aH3XQ1Ko64CCOvj/gsNYX18biVH91NS5Hfq7H9o+f/WZTXvDNwzGeuHJoX3HPjx3hx74zxNY/GzPvYeIWmw9+cp17EAd4BC92apZt+no2xZcXgYkj39btGQw6dbTOj0+9/TWuOTOwzMOCV6OPMx1MPmrNT02M+Xbe8TPvPuj6f/e733366le/+sb+RrtNQsqmdGiQI8hriJISXZM38EccuskL7UBX5Pixo9fa2A6nNRtvzSYR+bTxS3Hwgx+sefCY0U8xx4MdfHG1YlkXm0266X9uHJZDZFyM4uvFJPLRpvDhi0sc5ENHjOnZqYUW72KZZ0/HRzOuzZitwYVH9G4gauDM+Q1oOl8Q+asy1ti7yF2Yb33rW09PPPHE+i0F9vzsv3Ux2cq7sRh0UyY3OagNXTlP28Ywwp54swZqJXYXtbn1IxEL9/Z+Yh7ZP2w9n/Ixh42PWPYJRjd667c55+yORG4aEdNe2DeYzfui1Zr6mruJdgOcuLi1LzPXOWYvFzl17qqhNXxg9ECIn7Vdqgs8jZ9Ye7zdz5wNf/iz3taKqZ/1NQ9fPdRCvdLzJWyqoX7nIy5pDXc2eBDrajJ5iUGvtUd07ZNaZq83z26Bbj/E9lzwh2I9/PnxwQUnzwzXcNfvhKjWOPARz/hI4OGtry7nbI/8p669hgPjUXEmpjEcNfdh2/1JjzN9vOU446oB8eLhb5D5n84/8YlPLN3r5SWmL9r9e3M+IFW3yUEgdtXE/ml0ctEn+eOVvTX257jKrxzDDu+oZ+tlpw9NetcxsYZP9YzbzoctfvhPkXdc853rDxvzgYuH/lFEfHUknWc63ODSkVnPS7jChjX99/qwicMKdvAjbmIXf/bW45q7a33i4hEXH2Tc69wv4uP9zAd0v2nowwe9GngudPbUWZzqDT9/tsZsrbuHTLFG9HPfy23aHo3bZ9hyh1OTFy70+BqL0R7GuZrFZcZpbep2u2z0GnyNiImb+GJrdHFhk1/2fOnaF+NE7GKopWe0PY0THzo98fwSi489YFedwwq7Pqzmc+/KJ53ctPYr3/q417OVX36NxWKTXf5xqJdXzyG24ViHJTfnty/h4LChr57GzcMyP4oZn+LvNmKWg7Wwsz/q2ajj5IaHRl14BmAAAEAASURBVKzhGnYc7KVr1P6GoU/geYbDyad6x01/JPHumsimONWaPu50OBJ86TsXxnzFOxdzOd7ix4wdVjV3f+q37Yod56Cbx9Uz3wf1V155Zf2namFmf9u+Gr/66qunF1544XT//v2Vf/HgslFTTfz22P3AM5QNe3b6zoG9JvzkZZ1t9upL15r6E/rW7H26OOHgWe2ZrXYwxHSuXDfsxLSmTj6vuZbEKQ+YxvD78phfzw0x5KcZlxu/8vb5ECauznP5sqevwbXuXHfG6PDHzS9L8OHv2aV3Pwyv+uFaDviUN1sSNnv1wZMPfuJpCV9Y1Vf9+IfBzjocdWSHjxzC875N4qLWmrrgIB777PChV4vOkHhEHGti+Bz+73//e71L2g96++ffZPeLb2rlWe633K3Fp9pYJ9bEpN/zdwblZA9wEBeOXPjzxan64UtfjGKuQOMHXGv64vMzr75iyAe2WrR/uOJTTmJq5uoKRx7VTNiJa16+Ykw7c9zFbCyua6a9iDv+YuHSHwhY0/jYk3iJad510x7PmvonivztCdytO09ywgUOX/ZizlpVJzHYxh8H58qe0cPS4Kqr88cX36Sx+EQ8efIXMwwxzNWl+hn7wzPXavzwxqPawVWvcupaLz5f2O41cO27ax1G+4GDMRGH8JHXXntzseSgDpr6Enp+9k49YGaDb7XQ88endbnS48JWsw6DzhrenVt+1YqdvZxc5Nf1LhYcueFYrjBxt07M4z/txIHF1np7IR4fc3o+BL7rxt6Ew1dO+Zgbw8Vfjj4rsKcnbDT86ONrnY5PZ1pM686L2pPy5SuGmtD5g/Kvf/3rp2effXbZ8btELv6Ndn8FCAFNEZAvaAWSwNS3fgmx29qKWdzpozgKavO8GLWp2bPFk95NWjOOu83Khg8pb7lNCTM7GETPB5ZxDyjz6YOrdXViP4VeI9b5dRjMJ082za1pBF96h4x/eNbCpw8vX2sdQP70DqyxNfOwYZUTXbjVLB828wYeTvbN4TlfboKEv0Mvphugf69dT+Cprb+u5t+H82Bnp049DKuxGlQ/sfYxPLFI+cRtKbcf1rLjJ26Sng3RO2NislObzhJb3JJw802/99bb131tn+/c+PHHQ6+OzSe3czhsd6FzI3RO4MvPPnbTNbaP9tU4TuzN+Z/DnXpjddQSNVRfMRvv63Kc9WLbfofTevGKAzOxVv3kgLt1tp2DsPUau8bq60HHj47A5KtWxeZjDLv4dNou065Y4caNze5Lp8XDOh72ScOVLszJ2ZieP+EnL1+0e9haJ7uNdX9wVuxldPUjHHNxq2Xr9erM1noixsOkOvAr33zg3QYj+9v08HD1Qune1G+1pxdTnsU2Jni69/qNdh+qn3nmmaV/vfzE+fnPf366d+/eqn/nEW7YYtfYs6leri8yeWZDn1+4e43ZsJ9S3HQw2NDrPcc9w93L3Se6h3Y22Kix61HrbPCf8en54p6+MYzixkNPB7Mzz47o6eEZFyvOy+jqR3N2xtUNl3jKY/IIL99iZiMuXXqx2JJ857gc6OQNZ9rTtb9szkk2YnQfjYMY1ZfOXFO33hngdp8X033CPYIuf7ie31r7DbecYRizoydyqZZLcfUjDru+GvKpBjt+GK03109cnNl0Ds2rJX5srVdv67jrSbbFYY+Lllib91i+cz1MuPCK5Zoh82wVh14sQjfHS3nwgw3sngdMYPcMM8ehvWYfrrU446jtEg91M26f+MHtOsuPLnz2nc3djs2sGVuNTiz2hK76me/Y8ZlrxvbGGS6OHmZYetik2LO3rs189tjW6aoDrO5HYtGru1rJqzPAjuzXIB1M0tnKt9jq6T3Ee5o+++V09UMcrX/H15jw15rz233ZVZPi0RFxtSPBkX17bVytxRCTToNf7GIdYZ7TwSD5htuzqC9jOhdiazNmNfAlynve857TT37yk9P73//+1zDPxT6nj5Mv2u/evXv6zW9+s/KPQ7HZVQu1koPa+YxErKsbnXXXdDVlW87xKDf6fGE5O3Aah8GvcXhxsmasda+AD8OXs37z2Wf2bLou9MR7I2w5+1KYnTUNhv3Rk840DmqTn3E58ufj/YwfLrBxc/bVhq1zLsZb3vKWhbsCXMeAER5/Yxj8xfIeR4ePew4cdtbYWTO3blwrRrXQk9br2z8YfXHOtj227svTPnPBYOdc9hv9uLBzPzfGkX8xiquG3TPUyGdwX876pQ2+OKin74n8YglxrXj3jRtMOHo8xfKs1+yBOuAgTrHYwWZbnWBo6fXxrVbqWwy+cIsrP2t07MIJo5xxYocLaR/pYRL+7QMdbHiwCR/iXqpuRL5sxeOrZ8c3f3GN597QaUk+ejHVxF7gVL5iwaGTB72Gj7PdH7DwoyPw2LAXD241sMcw6YvDnkx+/Pnp6fFjp3YwNPpqbsxeC7+41lw/fOVS7XGHT0ecM+fa3JqGY/UV09mHJ9+eceXGH0drYvPtXgVDDnyJNXvDfu53PvR46PnUyrf6wGqNrnU9Pezw8bRHrj1j2PnAqQ54uS677tnwqxZykqNeDFhasScnYzK5PND852cK6/jAqHb5WdPwwNEedA2w6Xqybs/kh+/Mzbg5LGdg7nfraiUX+Wn08cDPM8YZwdEfAnr2ELzZ+wNEv/GvF+eDH/zg6eWXXz69+OKLr9mtwS1/XPxFO4IdusgXCyEJEoT39eweZ69omthEXBxsgE20mTizodMrLjHuwu2lm+/kbkzgO6BaeVmjh6PlS6dZ77DxcYGLQ9iyqTcmYa/J1Y9isCP6Glt80rNtThdmHMzThVHPHl7xYVnrpgPDwXXw9buwDR9Gcfi54PGCqU7dZO1H8fUkX7bi9CGG3rkjLkD/tpSeXXvoJc2X7R7ycWktPuJ3DsRs3+Caw8O5eevhhcNOmxjxYwNDnHJkS198+Gy01nANH257QcfmSMKL+5HNkQ5mfMoDV4JT53yPa17jL+4UOmekhw9bdekG3xly8xeHvTyLN/NuHAc9++LWqwFprpdL9YRDp1Uva/DKdebQnpUbH615sWDEsetODPnA1jcWp1jl25+Sm4ednXn84l2ecZ3ruMAh7KzV4g8HT9jGU9jyp9fwsIda55p93PV84LE1FsfYNesDkfzsNzxr5cjHC0AfXsLVFz9scbSEnnhQs8Ut3NayrZ+YdPGEa61a899tzenPYRfjXM8PvmfRm9/85vUn8B7w9J0z9RAHH2PCx723fzrm6aefXvpH5bGcr36I87Of/Wz9xy726Aiv8zLr0rm0xmfWDvacZ5NPsR/Ww8VPXI3oPTd9WNPb7/a+5xAftaR3HYhPcNISdnErBxh7XHYkHub2hV0yY2Y/14trTUzc1KNrCd/2nx6+/ibBFS6s6sNejMmhMVt24s9YOMRV3z7FOezmceJHVz4wjcWbceJDx55f57p7irheaD0XrIclN3vdfvOj0wiucM2LLR5/Pdx6ds5DfKxVw3LSh5ffXNvHMMStmctR40+mjXF7a8wm3nza82LLQ0uqn/n0ba4O7OVQLH26/OMXx/DNrfE5kuz1amevcC6WPaQnYsp1x+KLH7Em3jmRT+eRD0z10scFRpjhdja9W2ZXjGz15WrsbGgwzHGXS/j86eMz8yoP59nzDka6uDYXU4NVLNjWw5ajNY2w5YNTvnDVh1/nGP9qFof2ZwFd/VAbDRbceNWzi3M+bO1t7yhs425MzL3HqUG6/Kct/rcR3MSd/OkS4/iLp6lb+HIoLp9q23o4l/TFbw88g/yhr/uTulfT9o9d3OLqM+jj/Kdj/vznP5++9KUvnX77298uDmLiUe2qUzXAR13aY+v/y9udreh2Ve8fr3vwSFDYsccWPBdjUFGiRsQuYhTFBsQDwebe9DbELnYBQQQPvIX/+1mpb/6P6/dW7V07Ow6YNdcczTOeMeZc6212pYKv9xeuey9ev+p/OOL4E7nU3ZfHzl+vy+XPDw7/zmp9gWfkjxsc7498ftNfuek77+X3vlEcTNd8+oLGeyw1meNu7jVHDE4JPux9T2DGi55v72Hl9lvbavFfTOPEr3uP3SgnPzl9SYMrTjD598V2ebz+4SS2GvGzpo+vOo1r4vkjn5jwYbmWRw5fGqnHPU3sn3OZP52aYckpFwzx5YWvHhhmzxRnx5f4fvHNtRh19kW7Xvj+xT9QyOeswMMXBkz+eo9Tdv1iN1wbeOk9fxhrlzeeZnnZ1WQtho98hK7a+PJjC0csvTVObOolONB17tj46p1ehxO+mLjxCUfNnW/94CNf5wtO3OGKlSc/c7nEJbh7busXO3EGca6P9cYXmr5L6bMAfEOcwU9ecdnUhXt7BZ+ts2pN8Ctf67jDsCftC/vmsIZP4qrGvjtyDYP4HMkHFrtzpl4+zmXPDPXwgcvHWt/Vp196LKa6nAk1wTZvfWLVbC/Fthd8s/GXz37CpcfZsBYvBw5wrAm/hI4vHHEw+boH3W+u9Y0Pcc0PH/XYW3ucnxlHuLDgVDcubAke8FboqofeWpwewJS3/Ox0BuHLDlM9XkPtAzwirhr3ecV/ecAh6T3DPG9gZpPHvuqRGun5t4d+4U0Mnf/yxpftbLj6XtH/m+If//jH8dyU6+Mf//jxPzP3ukuWz6F4zI8Hf9GuOQ6G5t4lijS2yXf5vhm95jlg5YOVzuZpvBvOg15jrN1E3Qw2NT/Xe1jj1caJd60mtVvX7DiIYbc2NsYBp8NBLlgNcWG5pt+1+ophJ3FxOBZnb5TXPV//CQ9v/PjjUs3WcDZnOfh0gN2Q9l6OfMXiZ6aDL8Zcn+WNV3lhVlc5xHcjwBPnZhEDT34+boR+o926PeyLdjcRge/B6wXcNYxyinEtj3GXsMmfr2tSrexshhrNfNpvtYUfFrtrGEa9xyk81/UZRj7wyx+eeeW8Xtv5Gh78cLPj1XlJZ47v9lI++kScQfDWC3unHte9uLEVWy7nYuuWp9rh4dmgJ2ISePqrf+0xf7o4unYuCIxwrIsXs9fWK9btF1y+eOOrn/GGzWZmrzZrL4D6QmDRGfE084/H1kDHrp+unXE5DXocwhFnkM7luR629owvHu0bfVjwq1MMiXfn1IuuDxnu0/jZI3ZC1/1rH8TDJHJvbduPw+Hyo36YcYPrOt+48qc31Ft/wmmuV+z1CYYhlsB+WoGhTi/sPkz6IAlPXryqnc6gM7x2Pffcc8dvtD///PNH+q3tafjg4ov2V1555dgDGNUYnh60D3Ryxi0fszObzRxvsXopxvwkshzgwAhPHudbD+XpvtO3fPjTn3t6LTc/It7AkyyWNSzSfXEsTj/KV6y5nnBlD6d87OnVXW8f1yvxfMoZlXKHZe0ab7XqDckeDl1ccXDNJ77nuluXD26DznWxsEk85CT73tGzz+u7ORzPCe8xvXluv71ncw0r7vnHRV72FbbtlfrEm9mIa3It/jBc+VGtYXCxL7DLWRhOcnQv8ONTrDUfa/HnHorV93z4iaHn24fC6iivWQxf8eURQ/K37vwdhnt+wGn/4Imja0/uCX2wSZ3tnToInUHkx716qtF5z+dwnB/0YdU//j0P1KOWs2x/xIulM3st80HOuW1txh03PGEaYs811Ec5q2c51tti+cQhnjDlv8YfF72pP3z5tW/x5FdeuPL2Yd6eE7Hy14/qDetwepM/Flu+OOlTHHHevknJD7eNWaynoRUW7PbPc2i/IMCpc1qOuFqz+zKh32h/Fn+j3W+0+8DvN9p7LjqH9kHN8ZbfGgc6PNViTXwupvNlhPr41td86qveJmG5b3pfJ25HvaeDDa/c4uSNLz0c74/8ZiFe+dCL79z7Ug2mWF+gFctfLzwPjbN0RvkTGDgS/n0RiRdh9x5Wb+j6cxo+Y8ojn6EXBn5xjJ/3wbirgfD3PsYMk5/Xvt2f+gRTrH3FUwzu8d9r9yk/seGL9xqKk9r1rXr4qZnd8KUpPPnUi1d58ISVsPGDKSd/X4r5Qk+98umPvfSPEnLZT7/RLpe8fKpLHv3BoS9v1StHveDjms41TvoRF/4w8WRn4y+HZxebmGL5bU1qK1e+9RQ3vPnbK7lg4arOcGH0XoYvPFi4lAvfcPnrhUHwhJWvOPHVww5f3/nwzW425CTy9MWneOJ8q6Xe6qX++AzqXJjpSPxd0+EsDi48OAaO1nIT3OIQbzHyEJzrhxzi4NRDsTAIv/h2Vqz1i41Ud58zrfu+z4yzc682uHGCYe9wqA8w7C9sg68Y9uZqE2fAty/6k+0gdvuDrj3l3/pcG3zjjGGtdhg9c/jhaRSnxzDNdEQM7v0jCp7w6BrWcNj0Vi7XcK6Jnhj1PZ84iVNn+8kuh5iktXyeVfYJdxKuvvb9QXxgi70mni8+U8sNQz7+9sXAL51rNs8nz3L6/kvzcrnP9K3/X4GcfqPdf5H2P/2iHVnNMO4qXgF32c7N4qtJZqIRxn3CV1N72LVJNrDD3YF2Y+HSITA3OsR741Wb/GE5hOU4c4OdDm6bLZ4tO9vWWg3ZzWeBJQ7+2S4+vOoR377wd1OJzc9M0oW/2K6r1eGzhq+f8Ox/Aqd+8Su2WjvY9Ek9j7Nc+o8bP7M9g+1fWonrsDwcPDw9HPEj9t1/bu5Ldm+EiTxeEM3V43rX8czfOq71Ru509Y//6qolPD0RL1cx+VQnDD5wDNeEPZ9zbhhnkYsUf8579mdf/PLJ1V7SXeMLix/JR43F0tkf94ua7I8Hlzdk9q+HvGu+xVrLLWf9KL9cqxNnXf5inE8PbvXRsSet6dKHGX5xq89353iZV+KEh3o85NWurvaRD6Fj7+EOf/PyoTOWOz2h0zt9huXagGFNypUNFh5mtRrEmi/OcYCBmyFHIp6fmSw/Or5q9gbHnsOJa/3i50OSe7saYLLHSZyzUg1ysfHnRw/HqB765SaGncRTHOzNwy52cTcv+9MIvMS155IXdX9Xzj3imeWs4LN7gJvhLPvXdv8z1Gf5p2P6ol3/5TX0Sc1G+etHPcNzzxjubPVYXDXT8c9WH86z3JtPvBGWa3m8HshNxBC5Sf6dDbpsrs+y8WKrwRyW/PzU4BwSdrp6oLb82IwVfuzEuRRrwCuPuV7xs+ZzTfjFkY/rzo44I3trMUaY7OULj85I+BrsK8Wa2eVQn9G1effBtWeC5wjRh+5reveBEUf3hPukLwzqoRyuy52+upZHtVSHvK7ps9GthJMOvlrukrDN/Mxqg38tLh94y0OcdXsRLr/6Wm+yVcP2pHOQjS8J23U61wkdHzM8OGHRyW29rwXt3xmj+yRMa9dbezHnuf2j7/rcR1gr1uWqTnzF0+Ndbvr6yE5vuPZ8qSa6fGEa9rW9LU+1xkdMNr7yO0OdWVzKz0bCd50fn4SfURyu/KzlcB0W3osHw1pevvjWD/EGu7gwymvee3N7w1cMrD7IusbNGVnMzRO2eL7m+JmTuNA18l2fYuqHXPyK51t8cU8y149rOeufZ5N/MPfZQm/J5o5be/JWfNHuP2H3N9r7wk/9+NUHHKztYzp8EnZ19LmLnp+9VpMhnp/7w5651u981ex53Wtz+MWbYToXbN7PWJv1hL6zBR+OesxyijHkNdPjHBdY+/phzdcg+OErn2v1pM9PDCkXfz2RpxgcvV/VS7w7v2L4W7vmb8CWS1z10fHjXz/l7st4cXrJ3oAJR438XMPATy/MYvDyXtvnYflIr6OwiDhfXvUPFbDw8CWy/sSJf7WY5Yaf4JmdDWZfSHnfL68eeY/rH03ULYf7BV956hGurvXaaz4eeOqLWnzGF4sTP7Hxw4FfZ801HXsxzpd6YfY9QHXwxU2c2Rr3+OmneLEG3HIXhxOb2GqC37WZTd1mXPUMLpt67SM8+Yie8PPlIT5sBr2Bb7g7i+1e5+PZLG/nGE97bo+67+BZ63X59cmQ05ljjxNcOHDby/qXjzi1bl/wrLf0fAi/emoNS+3s/PAgsEl7AI+Y+YnLx3dAdGqFoy59EYtz/uxx7wyls9Y/9YuVp3rLLX/+8tDDo1uh34GHPW/f61tcxNKVB49qczb5xVdPy7t6HMTYO/enHtDJDYPAcA6cR9f6IsZaHH8DLpshnlSPuvnz0584m4vl397Ty0nae32gx0GvxdVP19VKR/ji0uwLdvc7HLWpofMdplkdiTx+g92ftqIXD88v/7Gpyd57/vT8+NjHPnZ80f7yyy8fMPEJ83HzU/1GO+IKQnITIpusPt1ds7gGH7HbmHMcezeOB4mN7CBotmtCb+wBYWuj5LThYoqTV20GP3YSP2vXW7vr+MpVzMa53pjFYyPnnsWvfA4esW7OR864dcjrY3nZq71cxS+ea7583OhmcWrTF/ufj3j5Og/0/OOSvnz0em1fxDbqvzVx4xIPCbFqgEXcDG4ENlzYcfPC5QXbixTBuTzVLk85s5fburrFu941HZFv66GDKT4bPuFVUz6t+eYjzzXho79i4pNfuazZqs2af3msV+iLDTt/vWUr1xmDfnWu1WB/DGv70r71guXh3QMvX1j1rDO7PF2zE5xIuWGI735jt9fe5OVXb8XEs/jq5guLVHNn9lBefhRv7Tq/7M3VJa+HvZqN8NjlxdU1fXVX5zlXNcgZd/ms2cKi0wsCk9SzMNLFnx6P/OJm7RyooRetA/DyoxriqYZ6wke93rgZYvnLgxs/OWCzOxt0Zr7VKL8hloRfzeZ6dzhcfpSjM1ZNYcEwCNzNZV2OcvLLPwy6xwnccocpxrU3A75o96ED/16b9KRcrnt2eG3zRfuXv/zlm09+8pNH6rAfx+Muuzx90e5NmLUBt9qt6084bIY+59u1dTjmJL+1lyMfedSrF/CMdPGgq1ewlls+5Q/3vlk8wWWx4gZLTmI/8jsUlx9i8CB8q7N1XGBkb4+t4ZnLXQ7x3cPVSbdCL5a4XtzqYluf5cdGNme+9Hyb68ehuP1Bx0euawOW16G42Df3uzevbPIaxL3qvmcn7Hrmddzrv150L8Bjq3eu2eLemq4a2MRVhzVb9iPp/Igzf3hGutxgNOi65ivOqD+bz/Vi8SkWTj1xnWx+vmcpHla55aAPb33EV3t+dF2bF6u9sk/2z16dn6/i9Zx4pokvRzMOsBN6OuKabWuF197Gv9jWxdPjGb6z5Jqdfv30yJo9H2u540q/Nbpu8KnPaiXhtO98jHDrDTuhN8qXDk6xXR8BE7O55Mcb1l0Cjx/+5jjwXx7LJSz77bW813B6+Rsw2fll8zouB+x6ag/KSy8+3vLC2fzZxNCv7Uh0+UEXj9WVJ525Ol3fhbc+iwsvHvSu+Xo2+aDuA3rnIJ7N1WrtPemz/I32v/zlL8d7Ar/R7j2Fzzu44aLf9d7a/nV/4LQ98GzudXd7pVZ+4o2tyXsSYu/p+Xred79unLzWhjz6had++IUo2NZGvvUNrjq6f8xy+yKtXHycOWdQvNG96prwlc+e1Rd8yhkHvuXE1Zd88qkNls8zPVv4Ehj4GmepL2w4Eblc4yIHG+71GD9D7GLKL7eZTSxe+dLD3eczP0OtsLym1hu67lU48XGW7FE9F2ef8eNT38LEyZdRftvfe0m14MS3PcZNbn8SCH7YMKq7fZVbPH2fIXyRhiOJA8x6HycxdO23mU6d9YyOP1Gb0Vpe/OSA07OND8HBmdB7+ds3NrH82ORqv+EQdZ1x2dQtp1h4BGf4+idnNbDJA18s3oa14VrebK5h48zubDjD9qtnghh72D2Eh70SJy9ffYCJUxzUolZ86Pka8PJhh2fwq1bXfMXxZyc4spWLDQbJL99d21N9Kpc88NVF130Du/2n04N61X2DU/XkY42bHEa9phcvB1yztb7jt/XQk3zVpYcEjhgYYePP18ANF7rEtZj4wLCHdK7DFJd+exZXZ64a6Oy1+845kYNt7fg1+MPMx/XWjQMbUW9cq2P9XcebP+zFZ78m9tRrnzNe//RA3fXALJ4vzPTuL88WNuddXWrHj49Z7/RC3Ec/+tGbn/3sZ8f/GwWXuzhd40n3VF+023xEzskQQpho8tl+GO74IXblvlg2G+eh0ENMIxthOcxGNxhu4tjz6XoPEO6aLa46bCaRm75Dna5DFf7hfPkRJ2s9yy/75u/6bLMWJ550aOKWTg0wcOyw8G3NxoeOWDefbeWz12zhqNuoD3rBLl982OkMOjaD6E+DHY4ZL1jliWM1x4efG8kN4EYg1W2vnYm+aIcbjmtDjoTNvrrRemFg45eEIUdSrdbV75pv90UvcNew5KVX+7luOCQ7n+1R9eiHwY+unoqt567PEt7WwAcPOPaOuIaTP10+caDb+lr7TVn/EijWw7u9kpOONIvfWg/j6cc5R/H01Q7PHtp/e4Cr86AvfPjSGYRPdcSrPGxqT86x1vmuTy+KbK7VboZvwHV2w8bZ4N85qsflaL3c5Vy769W5Lkd6s1z0YdJdq5WPF2Fj+YZhjg8ftVmrwYuVN93+IQw2btnEwes3BeRh73zgl+w1H3sFx7XhnMrrmi+7/PV648PkS9jCgYlH/tnoYVrD5PM4gSmOhAejXK59QDfonFf++rR5nVl6z6VHjx7dfOlLX7r5xCc+8V+4x+IpfsjbF+1+S0teueK7kHzjlT0dv/P1xmbn0/mo1vWj0we12j89otu+weDDjkc+9K4JfRwX/9p1Me0pnHrQWaAjYcqdT+eOD3sx7A22xeDXOk6t93yVg7+c+RRznvmFvb44wa3Wnut8iglLzvTVYnYuyeKKJXCNbOaG89u1Z7DcXqv5wzXY6T0P5KlW+GLab7nYyhU/nOnizkdeM4GTz8ZUO10SV/5E3wj88lrz49OgS8oFv77zty4/381VPnp+1yT/s21x+RB549Z+xwuHas5HbaQa400n3rPdTN9rgWtSfph6DtO1vTTjBJefUR2t+RO+/OJCB88Ig41/OPHnS1fd/HuWshG24uLQ/LrH/38ty1/NeBlev+sBOx3M7g06eHJ0Hd9redjo7xO1w5OLqLcYumz1cLGWCz9cu8fCC1MediMp3mty71+Kw90gesKejc5aX2Dkx54PvvTxxg+OOWEzxNCvLR9zOPLxl1Md6x9WeMvlGhYMUg/gxSMdLM8m/1juwzoJv/x8yy3eZ9Rn/UX7F7/4xZs//vGPBxdfWsvdPnfvyG1P2PDRMzprHPnlS8fuiyrDdZjugfrsywniPX77A5NYuy4Hnbye5z4PwWXTD//pPhuRx+tDeeDET69dm/tshzOhL+ZQXH44T3R6AUcdcov1HoNOPvUY/HEqH/96hSfObOL44mktxhqGa/aEHV+fQ70m4UPnnvLlJdze78QHpzDgWRvi1AuvfpnZ2m8+ePNji1tfqrKrXx/sRVw80+W0hq9Wv6gGJy5x76zLSceudtfyeE+/eniw9Ei9vmg3996g3uuZXvgHFHa5xegVfvSw5FOjHPTiqxl/vPRE/WplqzbX9U6+9HQNPvVH/9w38rBb460/+idP55WNj3g2wkb4Ge5PteHZLwjS8+8cwFle9NXls7QcdHjUOzHVJtY6seard3Dskff7nQl2gkfn2Bqn9gDXzkjc2GDCxkm8PcGJjh+f7huYODo/dGz2ypBXPH5i5RZPZ8CPJx/1GcXExb5VJ3/YnY/8xRAzvvaofrluP/nIJbfhejnQEfjircsNW038cVMTXb7hZuPHbnQOynUkufyQA2Y1FUMXf7Pncbn5NBYHDzhsuPCv7/ycD0MvcCJ8xVm7xr3Bbs/Y5Dez0eEUhv2Xx5CXsIWbnz4aemqPYPAvrprEVUO9lKOcZnb1wWZz9uDS6UE+/Nj2vMpp8HMPuP7IRz5y89Of/vTmq1/96sFf3EPkqb5od/MpAHEJGwglDyVS3F2zZhF5YWuw5vQvGm0GTgaxafvgELMHGk418G+dzlo+dbmZcXDNbrPbcJtmkHgci9u1vLA6WOEXA9OAX53Fi+Xn4BGxBn96/MjGstGLcZ2/azzI6sKsvrjiK4e14bqc8MVt3uwOaJhhZOOvRwafBDe11isznRuDlN/s/Hkhhl0eepjOhBc1Eqbr/FwTazmcB8NZwZHQ41nOM1ec5CbOV775y0u/9fGlr1+uCR+66qaLtx7HKT8zXTa++Ilns67XsBL+STzNYrLhIZ7eSF8c33rDzyjetXi5/Sc4vmwlHtr2ygyT8OXX+lA+4Y/ymovXa9ftv2u8enBXl5me3f6FhcuK/V0dP7HGNWEn7jdn09obNTX3wqaXPeTj1xkSixd8/VUHDLr05vLwT/IT2zVf2PWYTU4cjHDXb/HEqWP5rz0u/OQx4Ou3N4VerO05e7nioEfe7InB19CrPhBaE3hGIj4sut2j9Gb1VXex5nK5ZodH5BBnLo4ve5zDjBu/u6Q8Zrit+cPzG+3+x1Ck50rPE769Zol1/ejRoxsfqt+KL9q7R3HZXls/qVRjPVEDgWdYN7vOL3znvZrN9Z1vWHx7xrm+y+dJa4gzfHt7lms48stLuqc3DhZc4jrf9bnruvOlN8vtPoz8cD33VB66+m52xsLLFp/tM18DJ8O1XGJbi9vXm3DMsOyj2fBsdq+77+GEy9c1Gz750+t1r8nsRH4541f94lyL2TPCL0x2ki6M+sZ+9sFNPMwzTjmLOcAvP8Jh3x7Tt87HzO8hgnecxVnjScLb2uj0zbx9VhO9/Py77n0bPVzPf+fGtdcD9vKbG50FWPxJefNhuyb0y5MPPPHy4uo8mcPAj90afnWIhSWOnqjbmogx+CeLFZ6YnslqXjy41p3LcMxbh2uyufcsHcY7fhRbb6pP7npwLVQc32qPqxra/43TCzEwq6dcPmD2+l8NfO0Ngek1mxTTe/J0h/H2Bx+DtAfy6vPWlM/qbiGOiX37o8awXa+NvhrrhfksfOLEJjc/Ix5wrWF6pvmzGH15JpZf56S8eiXGF3/vf//7j//0/Fn8jXa/0f7iiy/evPrqq8d94Utr4hlrX6pHbvuIFx0+ccxHHD9DXWryWTfu9se9b1aXL0/N/SKNOGfH0IMGPdE3n8l80aYPcOD7AtUznl1s7wHVIFYOHAxcxeAGo9cXtXS2j2SXH+noSRg4wMAPfgMfMfTy4GN2r4rREzozv770dI2z+GqVr72vRjj8YHjf6z2XXsCTh389ixtsPQlXDeo2J/YErjrp4emnazjsPoeZ5WHXPz5yurfZ5OCvp+r1Dylh0OMink2cfGLpxarffY9LeGb1qpMf7r5o910NHnA6M+rBybniL7cYv7Dj7PY38XGJd33n2zPVuRFHp/c4E3Y6fNjhJHT8DD544KcuNalVPK584OoTHDXKCQ+OeD5i6Yk4vp4VaiPOAP70sMJkE6tGOdng6q8vMenbXzrcYFSDePnighdOhtg+l8EqVj4DTv2Vuzrsgb1mq0423OInng9OdDjIaa/5Emv1Owd0+qN/eIgn8qrPOi6us/NxjatcRAxM51qO6mDHQ92E3uhabrWlw6fzKwZH2NsLePKz6zGJm7pd54O/WGcJl3gdQZcf7ZmY+oq/kS18dhjtmTU8NVQjnb8pro5qLpdaDD7sRrzF67kzKK7/1wKfegNH7vLjqC41wxWLn1gx1e0avrxi+BuuCTvM+qNuXPjgoj485aBnty4OBlu1sOdDJy/8MJw/3HCC7cyqk3SG2PGDa7B7BhF/OuYnP/nJ8WdcreE/RN70F+0VVVJNMhB5KJkwrs0aAFejic328NdA15pcg1zzbXPpO5TpYODON7EWRyefdflsQrhmtbGZtwdywUjiZL2HKntzeZcPnbxyOBj5lCN+7OKKjZ98RJxB+OYPp7jF5Ke2bpRirOVs8BMvluTHTi9nh52uvHrbgY5b/s2Ld4BffuTrBujFlk4M0aseAtb08sibXzysnQUPCjeyWLb0cKz1Ib5shj6091uHnOXqvNCRsOs5HIIjHRxCn648rc2GHPAMIlfxh+Lyg88KvkQ8sY5TePTnvWQLC7flD4sOVtf2xhs8L+xs+1CDQ2euf3KS4l9fXf8p1sDBvPXD1AfPBMLH/rYP/DdH/eAbjms4nXv+iWuDvcEGt7XaDXjmXgzZ5YPrnqwG6xWcDXsZ39Zxp0+Kz0ceftby1eONjWv4MKp/Z/zdu9nFEbNYM3851OQab28kvZlzfxZTHB++3sSKw4vII1+9CX/j45ut2sTDCUsOcefY4unF6hHhv9fFhRmWGQbJpzlOh/HyQyxdOdNb+8Dhy3bifOoZPvrMTufZQ9gePXp089JLL71lfzqmGo6E8wMXcq3ucXujxvXT05Vs+uLaSNTbGyz3qr2Qu/xd60X71N5ka15c+Oldn/O2R3E9x4pZkT/+9mr9y9Mcv42/79r+d56Ljd9dcdnxqIazLz7s4de/8z0tDl4SpjgChz2OdNYNdpKfuWFP8ZOTwDYIXdzyh6nXzgW+1cae5Gvtmp88nZ/1g1VsceZqzFfetVe7eFKtcedLl7TGxXXxrlesG2f94q2t6zNn+vLEr362jk/PaLnrEx+YzfaDnY6/95x01r2WtR9xsa7HxeElL1x2g+2a0PPLnw88azbX7e1ixBk23/Ksnn96uOWoRnbX8bQ2et3Ty67piZke7ko4sFw3+LqWWy3Ziy1nazN/+uJal9PaaF2sHCR+MPh0n539y2EuRrx1Xzw4B2x0KzC9ZpP4WeebrhhrAgfP7Pnnd98spgFHPa3Drr/Vyt7+0p3rYN9zEU79KN5cvPPoN9p9QOfnWUXYjTDttzW/Z/lFu/8Zqr/R/tvf/vZ4v+v1U132yr50v6jbnsQJr3ziVp34q8P7Z3idJbH73oyNrvd37QMdkYPUZzjez/icZZbf7ItVX5Cxi43XGQdW9w3fuKmtUU6+6sHXwEGMoTZ94bv+Ykh891qMwR9/ou7OE87y1QPXBjuefbmDC533vd4fw8KFjsTHHNb2Af++6GbnB7PnMww9wlVv+Xhe+wyGI3+59Ftu6+5ffp5xcjinvmjnW37XcOu7vL58Es/HgBGO3HzkwJldrN/q9o8rm7/eyc3HkIvgLXZ/o11ONcvFpof8xauBDl+9IDjAtHZdPhz5iTO61jt4cOTBISx+5YKjRnzKFw5sccTMxz8W9KzwBa8zBKM9g6sWeQnMhJ8Ydv0UI3f9lpdtedLBwoWovX/kcSb0ql7U5/KJNYh9lgsfGA25+NDL0TnEA67ZWWM31Kd+e2GtJw084eq9syEnjGooJz704uov3H1eZa+PYl2LUTOuXXeG4cJzb6ojLvioE18CJ650YbPxg81uNvQAP/nSi0lc48u3HGzqlpuufHE2E7U4Q/ZGPCy/3MYelhkWW7nEda7Fyb9+MHx270yIY+e7NcANW41wnC+zXqgdl+pLBwsmgWfwq87ufz7lk6d9oAszHDXVF/jlYKfPpqewYLh31BiWvM6ns4R7+WHzld9vtP/4xz8+/mQb/nryEHnqL9oVULElta5QujboIYTu8tUA2Lsp+69kcmskvw6BawehBuPDr2aWK86wSTiu6Qw+1aTxK+xspJ50bW2w61k54JX3CLyNPcfjSmw4G27FwoK5ucu3OOzldW3AaYSXn1jXDmIHFQcHD07jWi66rcuB3huXXV77Ul7YdAl9vaLHRZy+W/fAMLOFA7O9oXdtdEPBCFeMm68HNb+w0uPDX86wYPCDqQ/VAy+J6+r4hk/Ph+QrR1hdL9d0GwfPwI39PolruWFvX6opuzxGe82ebmc5+YgzewHzsPbCxc+59YLgDJA4yx8mPf4wVsQTfoQ9P7bVu3aveGCy8eve35oOoMsP/kb1pTfjGsbqyylme1eM8yiWzWxUJ12jOuCswF+urjt3W3c8uh/5qR3e8paPrnywXNOpnW9nzJp/PYl7uvRh5i/eoIfXhwkv6OVhy8e1MxFXMdnlJHQGkYfsmi59trP9CLr9Uf185MWFjljXl2oKm3+45vTi0rsmbNVkXaw8xfLx2y3+dAzpjcXG2sf20p4/evTo5itf+cpb8j9D9cZK7nMtcY93dvt0lvVlg2eQ4sqR72G8/eEe1QfP3PYhe/7pw0vPz7Uet58b2z0jP+72Jwlj+Wa7Nu8+Lk6+8Wg+88nv2gwPP1ziDOc+Wbu4s7DrW/cWH5zMzr97rTr4ynvGzA7b9a7pxBQn1ihHnOqDdRzKg0fPBX4Gm/Ofz2LibN3AwTUO3TdqLhe9c2XNj21j88u+HOjCL8ZcTLrDaXjUjzD5qdFcfWLCdx1WsXTXpNxsYs7rctlz/dh89VmsPrDLF4bZ/obR63b3jd53DaM41/IQOn5muvD33LCR5Y/PchUXf9fG5hCblMuMnzns6snf3GAz1t+14f2KfrlWj+tqyCfseOBYXjp849xanesHKx4bGybdtdqrQb2kWPlgxn25Vmv+1u1VMflYe2/hDJjra35mvvLInawfXX6u40hXX1wbTyLVvDji9GelHuBnkDie89HX33z4F2uGVw7x6fyDuc8Oeuj1i19xrouj8570Ax/4wDP7jfa//e1vN6+88srNH/7wh+Nebo/kIu6dXlOtq9t+2VOzmsThv3Gel71vFqsOPp01OvFi27vqNetjvTR3b2eDA98Xcb7UxZUfe/cHbrD5LlfvKfmz8dd/vcW5GFzdv+oUD5stTq5hmAku8hK41QaDT7ben+gVrDjjUVzPTD5wfXEoPr4wfUFGVz+yyZUurmb6Blz+1vGkaw/p7TuxP96LsxO90HM9izu+viDzmU1udt+puK53nSVxeNuDvsA/gC8/5DKKwYfomfwwYPsfpJYffzZDnBl+/MWKsb/07H25KFYf+OixXtcD+vD0oz3Ap1yu2fYcqLmzAKPXAH7yG0Tv4Mvnmh6OeINOHsIHjrrxENdviW+8OtQtbxzFWRt6Lr5/uLG2t/ZPfrHViS+Ry57oFU78fS436MPGg681qQ7X8rBVHx0/eA18y1P9/O0ziR+OZxz28PA3/GZ2dbGrx4CtFnzrnf3Su/LC0jdreXHEnw6meGvxzpI1odMfOoJ7/TwUlx+wSLlcb8+yN3cuYOsR32Jd0zWscbFWq9ztoznO+ajHOdr72zWc4vQah3KI1QM12i96/rCscfMcgBNnOjjdF2qLKx/X1RueGEOP6Uh7USydOH7xs7aXfNXQWQlfTL58xKpJPeXii6tR3/iwy03MauYLh/CVuz/1JQ8fceLth/8S7Uc/+tHxZ1zFhOf6SeSpvmiPxCZAHGENcF1TzA8ltbhd1/jWHsD+VVwT5CRtUBsrxqihDofGtVF4EnO8rV3ng7saSAdQno2pvnzN7DBcFwejvsCoX/SJOIPwxd+6mwG3Brt64lesnHyK7bCFacbNwIFszsX3sM0ejpnUB9fVXF3VyYa7QwtXHry6GdhJPMIR45ofLHGucZZ/HxhssN0scPQ7zPzFwIGZnb8X8x5scMTTO1/WfOslLNcETqP8h+Hyw3p96ct9l2/1d17jaZazvLBcw2mc7XyuSf5s6uoBFV45+eFfL+tXmPz4mA1iDa83bp4RaraPhv7nD8+Ij/lcQzqzOFh8zn1dTs6H/eSPe2es+vJt5heXdGZcxbQna8OjGH7VoMaei3DZGtabS8xddZSr+nHoTFRHPZGvPsa1OL5y4ktgGPzo4hTH1cGkN/MjZrrODP/WaucL233Zm0k6QwyfuMQbx3jmJ48aGkfy+cEezqjvvKwf+l0s3vISWJ11a7YzfjzZSOsw6PAvTh4iN2wzm+FNt9+GI5473oCyE7MeGvDEPvfcc8dvr33qU586fMI+Fk/xQ47+Rrv/8gTe1hGHOLG7xh2ns7A1+MYv3dm/3tHzdY/qgWeu8ykum+v6kf4wzg/6MM91wKOTxxnEPxyzsZwH9rgMT+17ffazjkdz/td8zzr49U0cjKcRcUZYegfbSFw7x3s/ysn3rrz61tkPx9zemOUUX93nvPzZNpc9aV9gsMGwb3Ia3ZvwPTfKE1ezWOeo573c/MQ6V9awsxeLE7/G8mNL6El+6XfmI1++YYlRYzzNi2PdUIfrp5VymdW6WHqgn2Z5ei3gW7/kFYOvD1zOSM9DfuLNxjWhFwsPjhx01mT5LA6/tbWfZ458Gtfyy4Oz3ofXPrQujm+1pcNJjb0+0VvzMyf5bR6cCT96a6O8ZmtnxLX84Yhhs65XsIrZPHSNcrF3f8LovMEIM1x5iFi9MovdGuGzee/vwzkfErZ1/PnKf0348BXHz2zw7/pa3DVdNbPBLe/2OB7ljaOYc/4wOmPhmnGrRnFyxLleeA33hYxem7OLjxsdf58lnuXfaH/ttdduvv/979/4EzJyeR3Hg+Da5xd51Ufsr3PdFxP8XPdMVTMd/3pS3fWTj2u5nA9rNTrTxeBT/cXLH4Z+0OuZ90K4WvdlYV/I4SsHfvA8j/qvZGHI64t6v/HsPb/8cohxZp1dGHERU27vu/jj79qzEh4R7wsnn2OqSxx/XOnIeS0ORz2Vl5+6+HWtb+xylS9OOPCNb3Y6NrHtMV39VINa20d9lbdcB9nLD/z0yZCDjz75ZQt9lS87TLzwNvTIl1Cu8RcDvzr4WuMEW/0Eb9f8nMW+aLeml8eMhyHW/tPbV//lp1r5y2FP1CEPUStc+8JOH55rsexwiykvbgYbMfNXo/zywNQnfuYw6LMVA4OPeHzh2RN745ziCrcvSOFbi+nsW8PVS2dQPjh6ow44arUHeuG84WbffAnPxj9+csuDD9/9or1a9IN/a3UkbPCqnz5fesIHX3o6ufirF2bnp3un3uRrrQfOGJ9//vOfR33i6qdrQy49rSa9lyvuZr2i11PYfPWrXuAZjms9N/THgKHXBhzCji8+hmt+xaaXr4Gv6/oFZ2NxEB8fPGGK215Z09dn12p0zzoDek/E88UZJgzXxeqbPjh/fIk6YDhrYtlhb13tpf3hg0d+sIk65VIfod/nAT1MsXK7psORr4GLNb3h/MCkV8/2sVzw9h+O4Nj39k4e+dRkZid6oS41tUdqc3/RV6OcMOB5/f7BD37wv/2iHXFkVjpgZs0hSBp8zU8jYWmuZtgEDbMRHsYaS8dPbtdxENOm7IblHzZe8V8bHWmDqse8/tZ81g4bX/o9dPBs4MYvD9flzU+MHtJvffLxOUtxDg3Bga5ZXL0pFz96Ug+sHcr01dJ+xoWdLX5qsDb4OOQ9ENjk7qYqlt4g4raGsNXDBxZeBhud3OzyVatrufgb9EROMfbHOXLD8aMzW3cT8oXNt17xM8h5ThdX8aS52I2Da/CRX65i8j8Ulx+tzcWxpXcNp57Rr7Sux93HYbW31p3f9iJsMxx5+LN37cHd80HP2eu/nDvgyNMcNzO9/SuPuPTFtDaz67l/fMOHrl7ytzYIrglfY2XtxWRn468u5490xr2Yq1W+6g67ODwJn/b5UJx+sDeqQ54EnhzbT/71bHm7louNT/WZ26N4wqs+8/pmo3Ndje03/F7M6cQb7v/uVfzZxOOyZwxe+XBupKt2sY+T6g9DLoKP+HppXV+yy1c8nWvx8XNdfPZwreNbfeLl5OM/ofVb7dbeIHsRjxs/uAZf+/7c7Rftzz//POg3sI/FU/yQ49e//vXNd77zneO3R3Dd/HEwV4c0+BhnEZsvf8PaSNbuHi2G3dpruNlZiEu88l285QWDrT3MLx09/zN/dtidpXg3Z4fPJ1z2YtgI2/rTVYdrIo6Ecywe8+OMkfvmL3dzNZWvWSwffei+ZaMTY74mxXhO5BOm/TLo07mGZ30+L/Sdb7n22UMv1nDu49m+5g+3XGb+fLyfMPApr2s6/ZIbbnnaU3oixnWDLj5iSLnLy564FptOLtdwNxefcNjjA6fYMK/NYpOzP1v5Fjd/PAw2A5d6tZw8r33o3P05Y7Q2F7szvf7TyUnwjTMdm3W94kNn7Xlgrl9hWKfjv8LH2SZw8y3n+qq7kd1azUZ9gdkovjzwi9XPaq23bNn56odBzvhiznn4heU6CdMMz2zP5Dfwz8daT2ATeCR9s9fn7R08r9O9bvOrbtzDhFeuA/j2B131iLU2ug5vYx53vRjtbTFs1VbeZj785eyajejfxsWr/QlXPKHn43Xc65Zrr+HtKx8x+esT+wc/+MGbn//858dvxsWD70MELnnt8kW7D/2+aJfH38eVxzUe7h2fX/qyQj729lQN/Lxf7T0rXPF6sUPOcx+tOxf1B55463St4bmOh9lz2RevuLL3BYkZlhzOMc7E88gXQmINePraf9XuWUGqUxwMXMrLZq0v8rL3nMGBiPMe1ug5JI7dGjfiOq7wce0LqPzrgxzi+Oh3/YBDZ83HEGOoj+gTvS/I+K7tcLj8gOlexUNt9Y+OP+GDLzzYfNTqCzt9rZ/iid5Uq/z9zW2YPuM5Q2IM12o2iqWXjw4v131RzIfOkAcP58laX82+2/H/MrLWHzh6IFc9gmngFxY/tba3/cOCNdFDAtfAk4jffZGHTg/gs1kbchh0+lm/YdEZOMqlXzi4H+k6W2omYuMSPq590Q6Lr3h7YIbhC0b9EOse6B9CxOIGS26xeImx1+LqNT67d9biVuTf+vnXG36t5eVL9ETNsGCK397stfrFtRf//ve/D97W9Oz5qEs91VTfcJDf3P0kRh61Og9m8XzCKU5suHT477mqjnib6Yz6o05ilrtewnMtpjg6I1z58TOrKe7F4asuI19774zQlUucAbt+Fucs8HfvwhNj0Hm28q9PeBKzvdOP9lAsrM5QfvLCIPHFtRrordkIbDGkPug5vVH/xatHnPh8+RD/6MdmbcZTLC58xepB/RaDPzs/+HCt+z5ZHB8xhmeiP/3mH7e/8IUvgDiwj4sn/PHMfqO9Bm1j6ZDeTXlCXodbmBY1RnMUb/bgNneDy71DfIcPBi6aSs8viTOcsNjiLy5xLX/YZpjGSjxsvlG+OPAVe86Znr88cIuhyz88s8EnP3FEz1ZgZasvOJDywKgH4bF3rZYw4lBsXPiTePEvhr6bUh64bObi82V349DX7/x7MMpN8uVXz+n0wPnjny88wreHajedfN7AeUETT8xdw4jP6g/Hyw/84Ip3XU726msuhj/hqzdwxZqzsZeXLgxzOcQSaz3kl+9huP0Bm+RXPN/2gr2a+ctTHFt5PcQ8lOq5F3S97pzA41P/YRhyLp7c5YPt2ihvHK0bnSN7LJ+1NxxwzxjFmOOws5pW5DPwOvvRq8e5IjDrgxlvfFzH+4whrnpdnwVmPVGXYU3Cgs1Pj3FhL4aeNGcLgw0OjrjCMmDt7JrfWeiq0Z47A3Lh4YW7Fyo+etUaTmeBvx7AKv/mivvmpuN7Fnqj+NZmkr5c9QFWvuu3WPVOLaTYY3H7I9zV8bNvhF1vvQF1RuX1Yd1rWOdATtfi+HsWPXf5ot2fjnn++effwDkunvKHHL/5zW9uvvvd7x6/CSfP1uOaz0rc8T8LX4OPQc7x2c2es51la89fI135YS0OvUHf/ocrJ5veFWNusCfVkO3MubzlEsc3vXX3CD0Jq/WhnB9ixbDDPfutbmvrXAzUwQNWfMQWvzzKubGu4TvHneVizn67lo8/PnDL3VmFsXp8SDWHRb8x8cBpa3AW4skffmuzXGaDjc++wZYXXrr8OmPFxyf+ccCXj3U+5mo0i6FL0jX33qvcZ//WixHWXTNseKR4upV8znr+iWsj32rzWkDMnuH6aMjJ9zz4hhEvWOVq5kNau07Hf/eFzb55JrAZ5NzH8h3G2x9xMcu1XNbPtXjnzxwX116b9nVb/dnFleOc3xkk/Duz1vyrw5nYethXYC6uGnbwXS7ylKv3IuK7t/NvH8WGx+aa8Pf6vK/LdNuLcOnDM597XA64ruO7edngZbNeWd/FqI986yMOfMTEpZjNsZjlKqa1WUwje7jsYfuM4JySfps0TnRiiX71RfsvfvGLmw9/+MN31n0E3PMjzNcrrJiOAABAAElEQVQuX7R/73vfu/nzn/981NyfgHMW3EvOGW4GHc54ONfbK73z5Yr3b2qu3vI0VzNqMOl7VrARtdennV27l3HCpbNDr2/d+3x8ZjJ3pg/gyw/cnEVn1DWJ62LDNMj6ucZXD4ga+NULHMqJX/c/zmzFyVlP6HsvA6f+msstlzzVzqaO8hUHU376cohzXQ57LDbeZjHmviCD56zJ5zoeavJ8aI2XvhE9NeDIZRDxdGLMcM1qgMWOH51r3AzXRI99QSW+vLDz58N3Bx2hczb8bXMx6oQRz/oJi83ARZxaOyf88GYnfLoH6MJhgx8XfsTMT68693xgGPLjt/1mpxcLE5/OKH2x9ISOlFs+OnsaVhhqgeV+9YWpL1v50/tcIV85xdin6nXtNV1c+ycPf/vGr7oPQpcf7GqTUx58OufirBOxekRn7ot29nphhsMOt/sgH7FqwoWtIc5Qk/xm3NjN/OnjxB63ziU7XfU6I/yWGx50OMLOFj96+eJTLc7A8uMjl5yEn1F+HAwx8uiF/Za7mtj40+HK3l6ms49yyOfZKQYuEcvfWeEnvnMjBh++bPysXcO2PyR+8KuJXbw5jnzZcS8vbNd8GvyIdSLO2iyvuWucyOaEW25xzou1GPnE6Kc1KXez+H2OiCH65xfgPLPEltP5gfe+973v+OW0z3/+84d/ccfiCX48+It23/oj2qaXo0KQdG1WNEL8FUj/pMJXvOHaJvQvd5rg5reuqfLIkdRo8Q7AfcKXD98Verg11Sy3PPzDTVfd5eZXn/B0QI2E39ZYLjiGtXj4YRbDXm1mufh1E8hRPeHVH2s4+LsmcoVxKG5/8DOqJYyNoROfzrXc4vAnceg6XOv65zoJoxcy/ol89VIsUUtnQU5DDF3/8gcznmHhKYcbjM258kWYF4py9gBgr35xsLeHMPmwuXFJ/vQGzHq+PQm7nNbydsZgscE2woCvB9b8xdVPsZsPBhHDj5SXrnEYLj/Osflmt9Zn/fVAsic9G1yz4+KaH/zEdTzp1FQv5S23uuAYpJ6x27fenMvBZh9hbfwRePmRDhZ/Et6xuP0RbxzFLFf+1r054WvdC5ZrUowaV8STcz3rEwZftXSuN7a8bPz7sISvmHoANw6rK759su6FNi7VYF3uZjp2Md68eRMHA57e4OO6tRf6clUfjKeVeMhJqtvaYFeva/mMYs75w7iLS+emOLh6+iRxxcJWvzNuwPKfxvpP0Dv3+PE3YHsWvetd73rmf6PdF+0+qPvwRurLsbjjh3ofV/Pi1Bu69Op0f3pOdRZdO8PtVf5mGNtzfSHp6hM//jCS4luXr3tBzHIMO511vu0XLPp9lslDzGwGDBzDMtv77HyLY8PNoCtnvgf47Y9wwy5nsfkW237Fg10sLtmKWT7pmsurD13L8SQCd4e4+OKCh7E+9Zu9nHruuVJ+Mezi6p/7hT+h8/rgPSJfEpY4OHHhW8/45Z89m1xiiWv6BF6Djo0PiSMdn2LlTYplKy5bM59zr+LDp1h+epXOmlSntTgjLq49o63F9jw/Ai8/nBk+YdGHsfpeq7Kb4+VafBj0OHkGbG/sIx37inU935zr47q48pzt1mzdB+03TLq9v61JmOXFo2v29jIsuoSvkU96czZxRpzla+Rvfc5JVy38ug6HTkyD3pDXXhE1eh3f9zB8xNQjs9E9yI6v/Aldkn51cp5ryL+ZvZ7QxZu+85svm70i7HKVwzV7NnM2dSyWdfZzHD/YZ9E7esN/Rel1ja56s+HnizC/0f7LX/7y+J+q5XPGfNw6Hn//+99vvv3tbx9/ox0/77XUJr91tZlJNdk7z0T3Fx1//P7zn/8ce1t++1rfzfHdHHyt85PL87UeN9PLachHOut8drAbcAw8jXKY7VV9wD2uOHpmVB+fsNn4tu9d4wKTn7xmYoZFxBr85ILhGj+56jHf9px/Z4qOLwlDrmqg4082v2sj3/48UHEw2eR333Zf+txaPjac1Ws4J30X40xWYz0NE5c4mashftms5bDu+aEeer3x2isWPnt7Vc1mog5cxPGBZ9/FV085fd5zr+EKV11s1sXTwcat81BPsvGVN317aybsBpHT4AsXhtzwO6P8en62R2Y+4fAJNx/c7Z1Yog8w4dcLOdPjYA+9Pnffx6EzAJMPTLpqoxNDR6qHn7Hc5LQurzoIXuK373D46RHha61GXIxqYeOHs2t6uRrw+bN19tnSw4ynXHzVxF6/vY8xCL1BxMlX/8TiTt9ZoLOWU53mcHFyTVw7W4ZaxeiJ70KIOOvqMMeFjT8s8c54n4/pcGhWW7+93r6xGYQvbL+0pTb+1vZTnM94dGqu7nrVHpZLPF44JdZy4GyQzb96Nuv6jYf4RBxdArf+8zPYDXr+OMEz4xtnGOKt4yVenHi28tmfziMsvRETvtkevOMd7zi++3MWCOzeE7/3ve+9efnll28+85nPHDb4D5EHf9HuW39EbTrSFbQNRUDBpMY/mNjtpmgabI3wBWhfpGlcN6tGwcenBrZRbdpB5o4fu0FcYMEx2GCQNtzakNcorzh6s1EPxPKzcXwTOj4Gf4dJzvDp9NmsXlLO8B0K/vGlN8ISwyavPOqBUQ7XibhkcehgdKjzC6t8xcgVLl25wm5en3TN4vD1hkD8Ci7qM/id94+9vGz7d5zos8OErYfOEj1/Of3Pjujl8MKAK7uZTzXVU7gJH/vFh2+x+tK+LI7r1uz5eeDhwEZglY/unJOvWMIv3EMxP+SIR7Wobe/pMOIPa+PY5ZevFzoYruE4K+sfr2iwia8G+NUHh9Q/PvwJv3rvmWCoVYx4+6gPhC58a7FhhRcWe4JrHOjCMBvs6jOs+daDMMz0i4WfQW9sLcWFv/Z40xFroz2m90wWm835YyftRXZze+PaIHvd2owzEQMrUZsv2b258CKe2P9+c6L68avn+b2Z2b6pFT7e7SMdad4cW4eYfOK4vudrvvVpr89+53V7LiauxXvGGPYqbmxdu//f/e5333zta1+7eeGFFw7oOJzzPOkavi/a/Wdw/SYc3eNEXufMHt7FAU7jfH7tj/vS/epaje1ZMw7liVO5WvOpp+bs9OU2s+FgrE0u9nMti38EXH6Ezda9pH7nO9xqKT5u1RFG8/q5pocB3wyf3pCjOJw6p9UQVhz4dI/hQV8MG392Ovdx+HzDKj5/+dnKSU/oxDde1/7fn+pqlKNZrHxy8Elvru50OHvG5B8H9nxwNBKvBb4Eq77NsfHsvc6Wt7phiyP1K9uhvP3BD47BHs/i48Dm+sy1XmRb7L0Wn8hhrFSjM9qe8QkXn3KZEz5iiLPh9Wxz6f/mWoxyhiUHEUPwkJ9sb+g8+zzn4grrjHcE3v4IO27N6bmFhW/2xehaDWp1rvIzV6trY7HFGPTlqRf8cD9L8WZxiXU2Onl7fYVt6FF+Zj7xSx/PcDcHXWtz/OlxtbbvvX/Rs/ZZHraeFfR0Cbx4umaHR3a/y0+P867pVtp/On7rK5aEIRdu9cj67F9MvIpND6+YbHTJ+qUz41len0v74jJ/s6EnbP7G67P6ov2vf/3rzUsvvXTzu9/97r/e7+KlFrzwszdE7e0lrr7ApDOTPh/xoTfay/aeH1z49Qu+Gum9rvePDfR9/smfrvfl6eqRfPLISejF4+e/+GuPYYiVz8DXuTWcU8/7eOQXl+rBYX8xJGyf8eRkF2N4LnjfKpd+8hWLL3uvGa7l9hwz85fPwKM6cfTFjTz0cPiK7zylN9MTdYqDR9dnYrGw4Rque39l3T1NL049faGn3j5fyrVSr+jUg28Y5uqKNz+9Mdjkxs3+8YdPz14ufe31HA++5nxh6q/9N8NzvtSHu9xqMeDiqYeEL5Ebd4PNus8h4uGmr65q6x6gDwe/ek4nFg7BGw97xWYNH6/0/HChFwdLHvvkS1Ex1ci3nrHFQU45YBrLwxpGmN0X1dKZ4EfwEN9ewMYPr3zYy2GGJb/ZWh1q1BuxdMTc4GPP5GvgiY9/MEhgwogDHzz4yQmneNhx0Z/OHC7qhts5qCfywHHufGYVz9/9RKyJHGL48Sd6A8+Q2yyWrzhrHODmI45drBh2A3Y6tdrz9k6N9r36PG/8yR/10IcpTn65xPiiHUZnhb/Pd/4Uj2t52asJZ9dEvDphGfgZCa58jPK5rkew8SU4GmLUzo/IJ0f97J4Xy8bfbMihJ2Kt+YjrnKq9/GriIz+dvYRd/+Smh48vHPzqBz1cMX6pzeujvorhaz/5v+c97/nfftHuP+dBTIEIKFIBCtvRhrHXXEU/qcDSBEPRHrgexm2eZhvy8MUBn3IVF8Z9eTs8fOHgDAtuNvHpXdOXu7z1wUy6EVrrWfzoxMfTGo4R53Sw6Eg5cXG9h4h/vZDHECevPcPHurrMxl1S/uqOnzWRGwdrOcrvmg42n/w2jzj+jTMPely9sPJNyrc9L0e1sRG+cD2o3Fgws7kmcXSuWrvp3vnOdx7nSw/1LclfTvnKmV3O8saLTb72RG/yqzfVz4aj2fkOf/35Nuj5EtfN4q5JPZDDtfykvPTZNic8+mqof9a9eWN33YPRenHFNOJ85ohPNnuCg5h0/NWOjy9RPBP4yEXnAc0uhu4sy4dNvvY+X3HiCf+urcNVt3sq330B40f48oOB07kWuQ22FZjhsmWPC5xixfF1zxE5+Xd2+LIZ/JL6ECZ9efKxFm/mB8PektbeCHgxos9XX3x461zw14etie7NSLmqCUf7T39NqoVtY/RLXeo5ixiDj/FQKWecOgtw2LyW+o323uiVh414DvlP1r7+9a/fvPCMv2j3G+32KLmvvnjpkd5VV9fWG2/NV93dX3Su3bNmkr2ZDxG7eIfy8iOdfYaRf/ZmeHEoho0uG33noLj75vKJc75xhJfe9ePwyy2WtDZXE70c1/h1Tnsu8iXlhVOcGaZc5ePrumeB+vkV79oZJbCMeqTOdIfD5QcsdqP6zfTh4uBZdH7GwhAXN37xD78ZJl8foMyELz2Ri9DhSeDK67/ATC9HIjYM8zV+6yNOnmoLpzqtOwvZcGWHLTe8/PnGlT9cAxfjPoHD9/w8oZMHbn0KZ3HZDP4EJ+vOF1zPczo2Uq7WYsPRZznjhF8cXBvVJJ6fmU5vvL/q9UquasiPjpQbXuvwxBh4bq1hFHsE3v6gU3MfyuGqCYbh+owV3tZUn/jiQOLoenPHl74zB1O/cPFsgWNtwGmIWW7sYo3Nx+8s7OWG4bra7LXXcfnjaqbHJ395+MTHWg14hK0X9LAJfZhnTtYbW//oyLVYufmx4XXmcwTe/ojn1i7O+iGSf3ys7TMervsFsD7vhc2mHz7DPMsv2v1t9hdffPHm1VdfPfL7EovEDy893D7qlfeonodeg+1Rr8X23j7bb35sBu766xo26ay7rn5nAK733j3rvXehh2foReddLIkfe58bwu/Z7e+4yy+XeHZY1vTu3b5o0/++iM2n50L8rf0Gf1+0qQ+WHho9y3CDjVd7rUd6JS87vWu8vIfzWQQHNjzrpVrx0X+vYfUBJ7njKI4OpkFai3WNnzxiCL8+e8jR5yE67+/Y+bLZXwM3+4MrLjgkOLPHgY++hMEvTuJwJmKqWc+IvVi7XoslfAx5cHEPmfEksIgvEOPY5z1+cPXSgNu+iXdtNvC2jn+9soZrro74ywvTWh4zH+ebP12zHGoq1jXfYvVOT/WdzVpPxYvlpwbfUbiWo/tTb/DozOEbH77sMOjM8sTF+VZrdYQll3NMwuNHjxN+9J0DeQh8dZnlgEfoxBR3KC8/+ODFDrf7Enb9qW4x4bqP9Mdajs4sPvDsJYzs6tM7NdHpn3Olfus4wzLgqNe9jaNcYki1hg8TvrjqqCb+7SOO9O0Vm5o7d2xyVQu8cvCrXnGEvfrsvfr0Cnc84Oq3+8AavvsEvmehXOr3X8H4/3eolU28mtTpWp/aJ3nrVTXTEVxxlFcuI34w6j1f2Ia6xJnh0uHAlzgPb3vb2w5u8oXJj9gTOvxwFWvfjD0D9ISvPHCdIeu4sFdbeHjDwhEnvfRZW3y8xeuj/H7h7Zvf/ObNZz/7WXAHr+PiCX88+Dfa94t2pB0KhFwrphGZCls+Non+LukGsUltmBdyDbQWa+6gy0nw0JS4aJih6feJeD7G1iPHOVYOB6OYDhy92IRdbvZEHL+ETzlwZjPoDSLeqF/0OLVmsy5PvtUBX08cpvqVL/xwXJ8lP5xwJ7CsxZVXLgeeP3582a3PPYBRDa7j6fosYj1Q+IcnZzG4uC6v+tjxS8S5oXDiWx3sbMXrkxFn/yMWeLDwwIGtXPnXA3jVZSZ8iTzNXfMJMwz1rMiRT9et42GNo0GHK7zyhLdc+FY3Xz0pnr/ruMCXG64Y+vZXDmsPLftPr9d0fIlrA2Z52eCu4GcUV970fOnY5cW7N1708uPpDVt5xGy8OCM7m1iDsNEl+Ra3ejV5AYMlxto9Vm/oincdLj8ip56mp+OfxJGOb371Tq3585U34as/nQX29odPWOLxqefWYfKDUW5+YfAP0xuAXshxIvy8yaevXrjVdDg94x/VbK6+J0lxHy+1G/k8Cd76iNVDomeNuPoQ6b8Qc2bp9Kf+8/Xi73/C8o1vfOPmhWf8RbvfaPcGjsgpXxKHXbPjR6rLun6zi9vY6vQcTd9vKLHROTOdM7j0pLMS/qG8/VHM6sKnC2Ptd12LK7a45nNMPN3nYpavmNZsu5fhdz/uMyLMemqu1zCLxaV7VQxbPOMitvjuu62BP+xw2jM+YbXH1vLsPsQ133jGMV7FVJP9Morjb2z+sJdL3MXB9NpitoYdBhxS/a7ZnDvnbXmsbznNcReXpNevcopf3nzZDCLetQ8D/MSqvb2nCwuvjTkWlx+LFV66fOi3z7DkqlZ+nbN6D6O4YsOz5g8jm3W1mruG0doMX17XcShn+Oe52nHSG886PfPaYbZ3sOQi1d+azrWBL385xdPBt8apesKpD/zU6DUMB3rx8taL+sm2OPzLzV/+aqK/S+obu5hw4cnt2dK5ZDMSuNVDpz6c5F/hF4czRvH1Vl7XfdkKR35+8XFdbn2Jk9xxLX/45U9/11wfxcE68y0uPPb2FW987pPw7I0cxkPkWjzdcvX63RdEnYFy4OjD+4c+9KGbX/3qV8/kb7T7ot3/lO1Pf/rTcebcL+0DbmfRO3tlP30Ri48+uBbn/bs+Gvzaaz7417eu4VenfPJ7L949aH98bmufYOYnFn5rM9w+o/E1nAuf+b0/4mOQuLjGAXfvM3HvudF9pTYcSP2Rm784WOLiEv/icNIzuHzcm754ESe3gTuueqqfrunDrlbxsGDCtzYIf9fmRLw+4A+zL1txrLdi+KgFD/F9yYSrL92IfOwGfwLTYGvQy5sfXznU74uv1uLUlbhmi7Oe4tKXVmxqZydmz9zeR+2+qTe+/HyBSIeHMwaz7wRgGvDF8DHw22vrzoGc+dPhabiujmZcxYohes+XznDNd+uiU48esOFl1lN+uHutE09wsX/2ig+7c1S8GOcVRnxdizPUKae5HovRX2s4BoHv/DqDMHCAac0fhvz4k3pLT+TZmmGoz9lQEyxCb1izm+3b1o1jdfOVg68em8Phh7chN6x6x6Y2NcEizr96uk/DCsMsRm1ywpITB/0kdHIVs/pqkpsffHiu+flMxba1yBM+TAKHvrr55yOeHp59sf9qosfL/uhltZm9BvHpOaF+n8H9Vrvzq165O/+wXYeJP6E36NsXXPVIXrmqh13fYeOVXvzWVW3ll8c5894cZ/3jLw+BKwZmaz58DX5xgbmx+uI88lFDtcCJu7oNmMTs3PgyHa/yipcPH7ZvfetbN5/73OeOGLqHyFN/0d7GKZK0Ma7TuSaRqiFmOgWa2yS+bBpiY8Nh7zfa6WtEeG1KecLRbLbHCbw4dEisXYvvENrUOMct7M2dDgYOZv3aHoULG1aHQk6HQC7Cznfx+dMZsEk6+Qh/o8PEb/MfTvOjejbPmI9YWGcMcWLKv7XShRtWnMtTfDdE/g682utD8esnV/7srnsIhVsecfh7MMAMh67rcsjrTzq4+fQzLrjDLefOuLTX4Vjzka8e8QsnzsXFNb11/vXNvPHlKjZO6cMqRq2dRb5q3bPHPyy8CDtJbzbUBcvDqP56uO+epa/PcOrVcu1F2NkvD7vr/HF1XU96gY8Pf3Vau8bf2Nrb6zD44muocznhSvgk7PzU480RPDnEe1HswSxneTd2ucJSU32GWe+KlcuopuYwzfXYdXUVv/bdA/oVuOzlYoOBG0w57E01WhutxZLOk954g+B8VDO7msXRPWu5tnd0hhrURtSFQ+u3gku1LafyNHtN80HSBwjPLcJm4Ef3Zv82XDya8elvtPvNLrmWI796E086/TOcz2L00bXBBueM1Zqvs6Emz9Ne388x1vDsTbnEiC1fmHgRvu1lPF+3/PdPNjhw+cvTNU92OcxsKzjkf7ZtzuXCr172HIJJX57lzUdt+fLbe9aaP0zXfOGQ8lYDXfek6xWx9Tbu9ZSNyGF0/9Pl4zrJvzWf1RUjDyx5e86wnfPT2aPiwoUZrrkehNdzRhw7DOfMazid3L13DFvvqi+dfOVJt+uu48Wn2tKZ6fjmL498/Nt7fuqwd+XiZxC17R7kw9Y5MMMz5CqGb7n5byzM8rLxsxbrnNufPjCyE/hEvs4kzLgWr+dqh3UWeepVewzP6zgsGHxgspNqi39c+ZI4pDcnbPWDXu7w4qsWZ4fw57cx6c1n7HT0+rZ7oK5EXthGejrXdK7xsTbkp49refgY/I3uo/KEL748YfBP2LyWe43GvTVfGHLQm2G132GGw6dc4ggdgUXCPxaXH9UVPn0cw8jXTBeG/HGIK27s6qNzbYTFP3s9wHl9Nt9d1/CcSxhiYbQXvhjzRYdzXN3h4OdLprfqi3b54HvOeQ+Nn/ddvnDx3qw+xIc9nXvMgKE2wzW7oU41Oitmtt7zds/yE+fZWn8Wqz7LS0/orGHQwbBP9VQuenXpq2uf29Sjzs6Avnu/7Usl97C49htmOT2T5MJRbj587Y248loT+fSSxPXtb3/7of/Xv/71Bld9EZu/PD3X4BukZxk+Bs7iiJ5We/lxT9RoeK8mjm/vh+TlWw1i8MaZrs8icopZXNxhwcBvMfVTr+lhqIOdmPGpP/LUB3j1XL/tndg+I9hPPcLPn7SQZ2PtrV8+0Zu+wPNbrzBhw5Mbxp5TdqI+o764xpdvIjdO8Aw+7GoVB4uP63DcS/gk8uNB+hLU2aJXtwFXb9RuqJPwqdedCz2WQ26x+iA2jvoEr3tMXDXxU099NuPvLMGV11o8Hb7VgocaYfDl08CVnthrfvjQ2R9+dDB8fsG784sDPMKuVz7nqEtcvODA3H6LpSPwsvNRc8OaL596AJsdvp4Tfta+l6CDh5Oa9FsN/WY1n86SuR5XK9/sci/XI9nlR9zVhhd/8eb61T6KwR8ve1KN+LomXdtzceWHec7vGeE32OW1z5256qA34igHTuzw+Hde8Cfy7nnjR8QauONh/3FrsMFgI+mt6a17hvBN6OVQN57W9qt+4t95FINbMdZiW1cXvbzldj/BxLleiXNGYbuWT377w9d/kfbDH/7w+JNt8Jaz9ePkTX3RjjhShsSItYnXEvPThBogXlwYxdTcDgF/N6nRDbJY7GIIvDDPuaxhxtGab35w2OgIfkQuYh3nQ3H5ka05/c5scOUxrMtpJvGG77DbYH7VVk1xK569eHNrdsOB6cHSg4YffVjW9aSc5hW+3YRnfTjFWqfjiwebHOGyd82nNZ0eeEGyV3iKZ3ddX9iMYs386NRL9MJarCHWG0U3Fyx5XBuu48PXTegmhuWFon9NpyN8msXJ1dlUJzy56VvzS+caBnv9OQDnB18j+87j9oZdnnziZpZr9bgZRH48rPWH8KWPu17BJrCItb55gTCsDQ8xOPVH7Dkefnz4wdRvvRZbfrXHPd3G9gIQRjXkgz9MfnDYccmfH6GLMx07X/WEdTje/ihP9xPs7lk2g9RDdpjwth46QkfYi8+v2MPhjh/4yx9fecOUY+vhYx1ua9DxKU2x+crhBdyoRi+I3U/109p9xj+/Zlhyvlkp111Y1SJfI51YcQbbXVIcO99zzuxnDou5PYTDBofeGycfPjxfOsv2jt7sGejvxvmN9k9/+tPC/88eHcoH/JC/L9r7G+3VFb69Ovcn3u1jZzs/sXAMvvXatdqyqU1d+6Yx3y0jXLaemfEsRzn55M/W+ac7Y8etGLNB34BbHF351jeu2fgVF5f6KE4PCBvpuX4tTzWU7wi4/FAXnftq47JXb5zk5xe3/Mw9k6t5fcLmB8t4FoI/Tj2D4ba3cZfHMzteYhI6fuJ7zYbn2W1drXC7ru8wvX909jqP8PhWO+w4lQt+52l5dG0Ww6e81bI61w3Y5Yxn62a47Z+41ctD5DHKU16YxYqLF322fNld62mvva77ABW/MOAahE7ucOnc1zD5ZDcnbNsHse3R4sZb7A44/HA2CDzX9OJW1MRG32CvD2GZ6Yj6rUnct8bDcPsjnpau+ckXVno2Qh+P+MsRj43dGPr8D6DLDzzF8ivuWl52+mxy6YvXbnO1b758em2/hl89cPmT+MDavHGnc88TMfR0xcXxcLj8CMM6mzh7Dqe87HxJfsVu7nwOx9sf1ZaOT36Lddaz0Tnz3vsbPdfp1UR8Qeh/hvosf6Pd32j//e9/f+T2m9/+0d7zTV+8P/MPZd6L42jok712jVf3jNqtjV6b1cEuxv73Po7OF4L0nqPW7l3+Yq3rETzX8A02MQmbWHq++sYPdv6e2QYf3A251EDg4eccizvXCqc8Pr/pD4zysruHGmzhxL1+9SWMnhIx/GEQHHENG073Jx08Yq6frvWN8FULPLGGvthbv9XtvVqfs+hhdtbUDxMGPYl313GJR71qDat+wzP+H3F3umLrVbV9vI5CxQYU/aCQ2B6CDWLfxL5DokiMTSKI4CdFEA9J0cOIBsUWFRU9iLd+d+qf53rvd9XeVcl+fAfMmnOO5hrXGHOue61ae2eHDg+c1GdN53c154BHvM0wCT27z7Vi8IbnC02vBVjup/cYNj31+wLuvmgXw6Ymn4/5wxRrr2f2uNQHedVi0ImxhsV3bdbOrvNbLHEEf/1Qe/3ofqjffeLLhqeceBnW5e6s6021yEnw6zXGJl7e7oI4PvCqQ93x1Hd2Axd8xchbD+0N/NPxgxdmcfUUNxzkxUk+OWDAsufL3mcqNsKmB8SsX85OXcSZw4aTHxz79DDqwRF0/WN7gK/a5eRbvH33TVz3k86aXz0O115f3MPORW30+MHHrR6Jg6MfdCv0/PHwHCYw4Rj1LKz4Oi+xfLwW6O0JHn12tWfjryY4/MT4kv0///nPodM74mzcZcIfJ33AyYwrTgRmcdXFbsihB+Z0fHAx403gGvzojWLM27PzHo/64y7zLTYceTwDzOn4JGoyOi8+K2zqxFEdcvC11+d6QcfGl+7xxx+/+va3v338/9Lgsd9HXvIX7RWzCRXVuI0Ef8QVSWrS4tRcF6TizS6N0WE2w7Im8sOCYaZnx1demNbsbPzNDs4QQ8eHmF0mEmY2uNWx/A/n6x90fOHJ7UEjRzjms/CVzyGTSz7FVFucxYaNl57R6ZnL6UES9/NDTD6+MPd84iCHS8dnpdzhFr+84dnz4X9J2HE247Ic9IyuF1+9lKv85TUTev1We7WZvcH30FULzHohv7j6z07ng46/4e5DgJ7iyG9nnLyhyC+PWuPErzukFpiJ/VlgE9y7LzAuiRzhybH4xYTH1yD1pBrizLa89eDSudU7b1CGPXFH6p+8YtnkgRsnc2v6PtiI0Ut9prPO70gwP1Zv7Rxx0Q8DLhz3wFqN1T0wL545DHF8qiGccqmFXS4++NL1ARzf8shhT/gYeMSPXn8MAquemeMjpvyH4+kHHuoWcx/h392XA9dyscHt/ODaq1MuNeJE58zt3T1rb+Y9a6pD7Wd+4s+6u/LvXsj/vyX1Aj7+cuKrVnN3o3210Fdbdbdn606E4blBx+a++qWZzjP79a9//dUnP/nJq3e/+91HmeV4qTXj0Rftt/2N9s78tlz6Uo3qq37Y9Aa9wVcdZnt19bquBnFnKffZRq9XBltnVD448aPDLbFW23LnGwa/cIoLS1z10ZHyW+Nlb8DgXx/pvDb41Ktww4KR8E+6F/YwiPev+nMorn8UE3762+a4nXHy1yO5s4ef/eXMYXZX9KC+s6lTPsOaH2FTn2eW9+19PlU3LLx7X4+n9wC/+Pfa2trgGjjI5Y7KrUdy4AD3QT1gC1McPFjVsrXGySwuW/WJz8ZOv4KLQdj4GOJgsekRsabb/uqVfRzrqVqNerl+sNpbl8eaVMMLuxfqUruhL/Flv1RTenP18ksffrF88DEeJJ1FWPWhGDiGutlIazHxrl/FNdcHefiUJ/tdZ3HOTD3do7jSxZNfemu+Zpz5pMPbmo5/vbLfNd7hwyBirT1n+swNi+Tb3vnChEPEGnKS/Oz5sdUzus7ncH7AD3Fh4QBD7Uk15kMvX/vNX8+KrQftxci3Qre1w1gfazr96K565lh75jzKL9r9z1A/9rGPXT333HPHe6vfS/yO4n1WPp/BfEbzOQxnw93yJbk6fMbA09n2HOXjfdkz0oBD5w50L/Wjz37V5lnJ3+8q9bW+dy/wkc+Xk2fhIxdOJL50Br75wD8L/+6eHM6BDs/ultkX1r7sw0UuAzYJozvk7vf+QcdPnf0+Fge8iudXHXhWBzteMMojrpp8gZa/PuNqxhOeczV8VqMnsOqPetXq8zbO6WHibC9OPLEXo/56xQ7TmdKrBQ86OGLwpSN0aqKvLrWJM6z5qI29e+afHfZaECsnP/fLHyL4gtDeGZFi+MLCq/duPOGy0bMTHKstndcAXXucyq/HcsIy6o213sGGSdSOq7nXifuwvRJ3SfbeyAdTnB6os76KxxO/uOFuX//js3nCg9N670S6nun1nt6Ab4j3WtYjPMPDCY/Otn7qV9zjI07v/MFU/RTfXZFPbeLg6A0Rhx9bfeAj54p4Ej8+MODT6aczd1Z8w6iP1SJHdr5xotMLZw/XzDdu8AgceuMs4vl7TcLDjU5M5y4fW3Vbx81zWh2w3TXPdefSfcTXF+v8xKnN6+df//rX8Tf36zU8Z6kOecX4W/u4wa7X/Ina8FmBvzXyxcNrECabGSbfhJ+BW4NNjjDFqcV95IOnPuWHC59w9cJ7SH9ow7541aQuNj20hgG3OuHRs5PtEV84eqcmd4m8/e1vv3r22WePf6fdPk7Wd5F7f9HuBdSBKGYT1hhkbxP+CtHYDuKSL1sHyt8haLALJ1YOIxw+JGxz/KzLZTZIfO01Nn01mdVqJHRdVDFdjPjkZy5eHhxclF647HHNN4z6S3+b4CqewCfVac/ugYcrjtYutD18ufALw7pRvPpIfXEx2fgl1rDSOw9x4fJrzTfei8EunnSe5uKscd6+e6ETOOHCNvLHQ91i+Zj7k3S9wLueyB8PfnDS+aDz6le/+vgT+WrjK09SrnphX4+t60/8zPTdn2rgJ46wGcWUy1x+Nmsx+kPoxMEnbHwMeeLFlk7NRjp68fyXEz2h87DqTS29/saDH8xq52NUj7Ue4uo86eWrbrrqDx/mJWF3lj5gkHC95uDYV7v6cUrocTaXpx7ZFxeu2O5NNm+q9GowxIdRHhyMhB98fvIb1vSErVHMeWavbtj29fvse97jLpY46+LtOzd8iLnz1mOxePYhRU65xXlOeFOHnR5G+HTWBn9Y7esn/9uEj3sh3961/OnhEbz5v1yBqUdmePLKgYe9muSqDn721U+vVj3rdSnO2ntbenfVhwk6H7D8jfYnnnjikX/R3r/RjkOjHuFs0J8FX3q1tc5Xzeow2A3SLzf0vadb60f9Mos3E7Gbnz/79rA+bq4j+PpHuPbdMX7WcMpV3uLkrP50fONijcs57uxbLrOY7qs9/MUp1kwfd1zVWJ/dDTy85mAQXMjyk8N4kMAOQ06DwJG/fj8I4z626hUjrzz1kS7+1U5HxHmG03ue2OOuB0avf3a46rY28zPs3Tv30GvLZ4LuTnnNBn2f0WDQyWk8TPhU0z7L4Tl/PC7J4seDX2egrmLZ8RJDZ9DV03jSqcU+Gx2xN7ZX9r0X4O5ZL7Z85uIPkOsf7EY1WxN+1mp2Z/GIaz719gh4yI9ylCdO1QC/9Rkq3muHhw+dWt2RrY3OXr54rn1z8DHExHNzrW/resGvGBxghMO3nGYDFzHW4uqrvbODW4/YEzFxCks+ZyyGzns6/OKyey/HiSzvfPmf9eU9z/y6k2xn3nLCM9jkIOHTVT8cI2HD07wSP3N4PYvzlRfuWTavWP50ehzPYqqt2b3vueX3Vv90zPe///1H9m+0f/zjH7/69a9/fTzP/H7ii2S/G3cXnafP5p2d2ZcxeuazBXG2nqHqV5/nVF+0waET557UW7h6pT7imeoLUJh06id6xa97pOeevZ3t4XT9Y/tVPrnkF2PA4Wd9ls5OPnZ+cLrP/NXZ3/rn3zOpM4yjPHDs9cVryp6f+vpChp8cCX9Dbn5xzo+ewDJaq1FPnEk5zfLqOZ5663Ogz9NsiVhxsJ3z+Yt2dnz5wOovVeBm0BOYBhx6d0BtuBM69fMx8zOs5TDUxL96zeLce3b8jFe+8pUv6uDJg5v/aaN/SkacfsBzZgacuPkb8XqRDlej/sHjy8esjz0X7dndb311x/Z85Sb8CD+fE8RUf5835FSbs672I+jmB3/SWcPZPhYjvxr1goiD7bnRl7TF4ccvzCPg5ged0WsUZ/ffF7Hm7OLlg8XHsNY/PWH3OtG/fc07QzyIHOLS4Vzv4KgJ//2iXSx/vmJhm/nrjfg4uSfWzgFvc2eXH/2unQMsOvz0zrCmI+w4hGdP2HHWp56FXjdGd4sfLH56VP1hshP1lUONnaGc9PVATudAby1vtZrFyQUPD3fNmTgjufk7W0O8GK9vr6Fe57jpi/6a+fH3h1phw5IDD7L9OhQ3P+AnanC+uNA7Wzj6F45c1Vvt2fYOi3fe8rL3OpGLH72ZqEfe3p/KexhvfvDRVwOn1nCcJU5yGs6HneitHsUtzuLw06N3vOMdV88888zxX5eLgXEfufcX7b5w7MIhpqmKIuYKicQeZOv88jnPCnWQLpjmi9NEzXLx7Im5A7WOB1sHa03s+ZgdUv74pocVN3q+HTgfQq/mjeFX3XHInr9YNZWDvcGnvObWYs4Srrmc5urL314uwlf/4hl+eYsJT30bX7+8mLqM4cZXjHi58g9/ubVmW4ETJt74wiLxdvHLwYe9wSdfa3z44GJN5PCBxQsMlr3ZiL/ZCA++F6E/jfdGDy9+nWd5u6vla14OnQN8g60e2tczmD3QqpEu4YuHmSxGurXDSI+XcyxGfOfBxleswYeO3VyMGYYHlnsRhi/a6WGkC1sMwWPP11qPvb6Jvb4Y9Ss8dngNmNnixCYH/j1g+bBvHCxC192yr15rwr7cy9MdYu+ZyF/eYsxEfgMvOoOfXHBIeflUE/2u7Un41uLkD3tfo+xJXOoDfTprfGAQGAZsgqPXjTeeeiGWbmsXQ9eHlnLxrQcH4PUPuuzyyk/iZG4chusf20Ox8dsebZ5zfDgvZd5zkTcu5uqoh3R8lh8fdnfa2oDpdW523z1D/LJB573uTW9609WnP/3pR/5F+1e/+tXjbzfEe/u0a7xIfji2z7b+h/H6Bx1Rrw9HXod6Uv3Fmg02g5jlW8kHrjUco9zlO8fwZYPXneZTvnLSbY5z/mLKuXFxyCf+9Szs/OirwbyyvNyd/MS6N8TrzX5tiyFu+cPcPGzrUy0wN6eYS7UsXjWZ6XcsJ+t6V0z4bDiJ5UPPh86+up1fvnpg4Jsvf2uy9dHB8ZrqM2X3WK7ziEe4YR7A1z+WN93Z354PMbv77eng8cnPnGyu8tSbYtbHulrVSOjEiC9vvWErpjg2a0MOffWeXr74hStH3KzZ2+trOTu73sPTi4mHNcHBIPzW9zYdPRxSvBrOEu982Xedv1h3LFtxsK3TV6+41r2H423N17re5VeMffeZnxzlL1+8zGcuYva8xdJtzuLZjO2R3PbE3Jcf1cm+rzF8jezN4ssZXn5s1oS/db7FF3M43fzIZibizjhqh5Xw7Qz4XorN1xyedb7WK+Vl76zoNm+5uuv27rvXvOeNvWfOY489dvWDH/zg+E/Qb8u3uS+tYZE//elPV1/+8peP/xlqX3j4/NwXFX1Wc35EnD73mu55yo+Ps7emxxmWesRs3WHQyUt6pprp6g3fBn/PBX0g+MTJXi79Ir0Guif89KtxOF3/oN9nDX/7eO/nT3V3HnD4hs9fXAMuDmL6ojLsvvSKSxjqM8TqASx7fYVFz1cus77EA6a+2zsD/mYjbmJ6fcKib9j3edtZ8jVg+gLJTO/3Xmvc2MVtLn2FyYfgSNwpvWtvrl448IpRA3t3yedYPvIbPgfyJ3zj4HdGX7arsftcjPh4uZf6hQ8dboa7h5N66PmIwyNMeeUUiy9fI6m+9noHmz6eOIkRLycstqT6w8VBPfytzwKbb73Y2f1lq876am7AC5uuOy9O7c7c72vh8udnn48Y3PSHzWtU7dZ6x1ffe23TEzG41Rt6Onn5+74Et14HsKzhiZNP/8rb+bEn5ZKDnk9+a6vHdH3JXv/4E3mqwR6eoQ9eP+W1x6uzVROds4fFDx96s5z05u4FG3+4al1fWIY+ibHWG/nE07HBhE+PN5z4hu1sy+0LdHtYMORUswFXHs80rzU+CUz+K/VCfkP81kGXiOXfkJd/NfMrB654hL+2OIsjcljLW36zoSfqInoMkz9ftaWTr14uJ2v6+tD9rpdwq5GffG9961v/u/90zGtf+9qDYBfvUvOWaA0wt9aYLYp/wkcjPCz7U3oN7yA84BxUWBquwfZ8OngxBn1ibYhh2wPPthhw7c+XA14crMtPx5fAUwcpj5yki8GHLc5s+VqvpIchX3F84IQNy5pOnjjwOz9o6Modfjrx8ZMPZg/y9c3/XLdY2M5ZbJz4s+1sHSYbX7zNRH4Cq/tmzx63xWeTG1ax9cuL0IsHX8OLzV22zsc6HnHpP+HrRW52F92l6rHnv1i4qAWf1jgVY80W3/rA1xu9M6NbvRyNcPjzCTv//Jr5y6Xm6habXW/4hKMWPYe3/bfPpqcw6bzR8UvghpUP/M7Xmo/Xu/7xYdPXXqd8zsKvkS3eu9/zKX92fBvVyKau23zlqHa9sibFtw+3PZ+tI333Ec+E3/rS529d3XgSNrq44WK/Eh599bE7G0Jn3R6G+9Frxez1783c+RRD7zVkJmZxccDNgI9D9yHdEXT9gx5uNVRTtebHjmPcqqs862dN/yAp34N81vYwf9zUwq8+41Bc9mz03VGzX0b8guL54gOA/xmq/9v5+973voPGw+pZrpfW8vVPx/jPCOOhz2HzIXtWbHzwz86nmNaLI97zSz09x+pN2O3FJ/AXd/Xl57M88jnP5XEfDfWuLIY1/7Pkw2bAiB/buWa67LDY14ctXmE335abPh/x1mFsDFuvPT759prFozPPVrx9/VnsYvIzOwciptrkM3odHw7zIz5iEroVuAZMA9bm4BvP8po9g+KenS8senncQa8v7zNw1Wj2ujNXU3nF6+UKbHFGYg1DHoOP1y+9vGwkvhsn57kH533+9Osvj+ctjtZq4CMPnXWDbvNb48rPsE9getbDFK8Oee3zs68H5TBXN6zi8s2PDVZijcsZmz/ZuGLM9bf6xVsnxcMvH5/24sMw46Bua8J3Rxjsakro40AXh3Pd4fIRszWnk4++XM3sZ9n6xN3WJ3gGXvy8VqzxK19zufOvrnJlxyXd8qrm5W0N36wH2ZrLnS3fxd185dj8sNzbehB2GPb1/4wPr7j8m8UZ6ib87MttTWCE43XodWDw88zxb7z+8Ic/vHrb2972Yv1H4D1+lPMvf/nL1VNPPXX1+9///oj2JSWb55vc+mDg1nONvf7SG/rAr9+B8ve84m+vbrgG/z7r87E392WndT0+l8XmuQtTn/ASb8SdnvChyw7TPcST0NPpb/XZV79Y/ob6vKa7t2xGIh5/Z2TGAb5c/naoLyth08HnF4ZYsjzjI59e4cCfXg/g04mhp0tvX8/5EDg+6/InuBhxoOPD30xP5NnfR/WhXLDkMdOLi0+1slvrSX2h449PZ6EufZFP7jDpfe4j8ZO/GmFZs+mT3xv3nMqDAywzX5+JDVi+EHYe9mww+fYHDHS4Vjcu8eRrkHq2a71T1/pl549PWMU31996Y2+QagmjmPLgrHa9wF0e/1WDuTNm735058W5q86lXPb6Wp1y64WZjxzZ6Un9VRss/Hz5Lg8OZ950BB5eeLgv/jkreeTwe4bfG9Ujnt3v+3KKERtnOpg4w4q7OL4NOfl1BnLx9SyUE569PpnZPS/4w8WlvNbqY6erpvKb6z1beenx6Zkoh/6xZ6MLTz/5x0mu6nGPu29xV7OBf3hixcDqi3Z2X6AT/bMncOJdvC/bxZeD3lqeaisvDDqYht6FCZeExQ6Lj9dOvPkb1Wm9omYiVkyib3D0Mx+x/Ejnvt83iZens9WHesGmFvP2GSbu8lnzl0N9dIaz8U+/feMb3zj+yTb5w7W+i9z7b7T7v2+7WIrpEM9JtygkNCVRbHEKW184fF14L24PGC9IwrdDryFiaxKb+Eb78prpjA5pbbsOP395cI6DeGuDsCfbi6177eLEGPHNfmnm3wXDyeEn4sOiW2zrrUGv+KevD/aL055O3USOLmBc6OATvkl1w3Hxlx+f4oo967KbCT9Y3Rv57atNPmv1ieFn0HlRmauF3hqGO+xh1QcifnDZ6o3ZC94f+vjgYO1+mo1y4tmLFca513QkrnIRXHCu1kN580MemNtbpvybw8KbToxhL7ac1YSL2g0+i0lHYLLVSzHnwRaGPOz10ppOH5yB3HRh0+Moj7lzgtk++xF0+gHbWAlre2lNb46TGDp7NRpxY1vfcpiLNxvdbVjqLr8azphwk7C2f+qX1+ic8i9fce3NxCyfOAI3mz1eBuww4kdH6K35ERg+sPSsV6s3d2/U6+f8+bCRcOERc6P+OHsSR7yN5QinPvKVk3885WWPPxuOYYp5mFRHuA/zv4sdZpyqe+OyL8/83QFv6oZ+eP2/+c1vvvrKV75y9cEPfvCAgflyRC5ftPdPx+Ch150bbD7OAoe4mY3lvTHFNfOtBvV4LeNuDnPxxd1Fup8wrNvfFsvPwNs490/8w+x4ks5zcbKVv3ztzfzdVSKffXkP5fUPcQ+rJd9m/vIvVrnMeu2M8M7nfNawstUHumrdtVyrZ0vEEvbbntvilx//+hUHOn6LJ4bwgW+fjl5Nnj+G9RmTr1ivJ7+E914jj7WBc/XlD1u+5bZ52Yl83ev6sz2IN9tKPNPZ88XjNuFTf+B55vXcE5vE09zd428fR7N+sVuLzz+9mdQf+QnfuOKzudn51ef1L54uHnHNZm6UJ1sx8WWvfpiLxcYvndkoFqa1ePVZey9Lb0/MDXv26oWnR+Vgt2evL3FnK394fOsxOwmbD38DBjyDbD5+nfFhPP1g657I5XViL098hPBjj1v5g+O7d0XPVqoXLr5G3KrxnFN8efnLEYfF3jWMcqWXR023CXuctnf80z8oNj+z+M5h68Irbj7jeN7I6/3PPx3zox/96PhP0OleiuBJfNH+rW996/iiHRf/Ezw9ZJd/+9nr1tzv0jg39KzP8LAucVOLka1+ySOf17kvRPjoiyEfG1/7uONv37NBToN/8eHzbY2ne8tX3mL4EH7i9/cyfIvzWVac3HitFNfvW/H2LOh54HNv8XJVoxxGfVAHO109tmevD91TeiJGboOoLdz404fd+xwfsjWJNUg48hj5ZU/PNyzreMsnpv6widWHfMRtbXzgOl/3jb/7ZcAx2NXVZ3g+Bp1+W6vRmTlP+PKx2cOF773coGOHq4f+y3M63OR4kNSDarUn6WHA1ofuOHuczQRHteHVOR2G6x998ZtP5yBH+HpK+ND1N49h9UU3Oy76xF9uWHDsfbGuXvFwYPivMuIKS796Duine83On+BvxENN/M3LW4w8MPXc2pee9HqPM5va8cCZDwx4nRlb/e3+H0Suf/CHpz5xasTZ3aCDT0/w5dv/DLR7RmcQ/vUKL/jViY+68eQvV2sxjQPo+kf5+OATVjniXm57Z8NfvfyIPPTOpT7SkbjZizGs9cBZ+4NAePXG/dRbe3nV6PzN/HBYnHT88RGjzs4aBzF0fMx8xMUxH7iEH95ErCHGCOsw3vyoD2xxZ4KjH86FD7s+qUX9caULe/PAwBcX8Wb79M5andVRD/jA9Lrg4w+FPE/8hbcvfelLVx/4wAcODHzuI/f+ot2/s6VQze7QzkkrrsIiZK8ghYgndPwNoima60tNw+WBb+RXY2E1io8L3OLg4spX88yXZGPZzzlhwHVAOHS5wiq+vRkvMfxJPme+h/HmB3/Sxdlc4vQoH37W7ctDT/jXIz7y87GGw5aO/+Kor3OCY+9iloOOv5nAKd6en3g6ozjrMye6XhD8YIZrputFhYf94sjnhckXR8PaefMj+BVr9oD0gvJluzX/elGP8fQQ7L+u6MXvXhr8wuaLFwx5zUa41gSfHexxTA8HBvzijuDrH+XgK2dcOxs6PEkc+NCLUbte1qfD8eZH/REnj/Or7/Ewh6FvCf9e2+xyqaEHtzi6ziVOW4M4drbOTkyxZkMuesNazOJk40vax9Uslx6YST5wYDY2p3VxYYtVd7zZDfHrw2+x9NaI/7mGYpeHdecMj8Sn882fTU1wG+UvJh96vgkMb2peG2Y5nbW1WAIzP+8JYbPF3bq+mp2ru2mdT/fAHqY5fmb7HTD1DaewrXsD5ktPmunOUqwayIN8z7EvZ1/eagrLffcB1Zs7H6+bt7zlLVdPPvnk1Yc//OHD7VIdxd9lhrt/o10MTP3bc3WXnEVcuz/6HofW7fMprtdwH9Tpu6Pywr6viJHPDB/mw6QYfnEtJs703bnuw/Jlp88mHm71WN8mYj0f+Bgw4s1WnnRhb64zNpyNs4+jsxSLG6E3iBo753RwGnwWJ05xLk+x/POxJvXkhd3//KQvvxkGPMNZmpPlky9d+esNDPaeTWrnJ1e8+Nj3i4jXWfjWnkebH7YhV+9dcZOr/uJKH9ZiyEfqm3U9q4b2bMnyDjtbs3zx6TkYXz7h8qk37NnY7Zv5xJPOvjrNdPpgwCwXrnpHjxM/fMTUb/705h38CSwxbOlam+FsT/g3wrOXwyDli1M2vPItl738cvDrcyActiRse3mb+Xhtr/CFH2/+yyEssT13l2txMOPM7n6xkeVmrYZwD4f5wdbnMvmszfxxqxdqT194PnLEVwwuzp3Q86Mz4FVzMfnQWyf2chrizNWcT3Nc6k+82dku9QD+Cr9Lws/IXq72YsqH/7lGsXjFrV7w9Z7uPz3/8Y9//Mi+aH/66aevfve73x18/bMBzq6+1j+c8MDJWeFBp8dEv8S5D2J3VH8YcOjMdHzzge/Z6llaLut86QheYu0N9kQ/7Y16m489jj574gtH7uULhz8e/mDD72zi1CrW51gzH/oGrGLlZtcr/OUoV19Y8aUTz68eiO1LIbb48W9dTjyKU4NceBv6k7Dh75yKpetvcYaBR33jb+AojhQLuyGWvrjy0ouXhw2GnugpoedD2Ax7PgYcs16oB4/uGDxc+dD5vC5XcXzpiN/LfZkIA0956OD2paTPlQYdHLj8X/WqVx2fofGqD2aCeCm2OgAAQABJREFUP4HJ37Cuh/aEP1+27o3XD3xS7fJWPx74xBlGd4+f+nuNlD9+1d1nEV8Yu+946T29PhFYcOMnv71+4VVdvoj1RTahl993aj0H5NTT+PPjYxD55PX7CB3Ocege4KduGPITNRYjBz1OYvOHx+ZvoOuBPHqnDlj8y1GsGtwbIx08/oRdvfHmQ9j1jMC01lt68UZ9ZyuPGbd4q58sv/zTyZmfWFzN8pr5862f9mpWe88cunCKE2OweZZ55vufn8IXh3/PPdji+LlHPS/ivj2Qh78a6e2dp56QuFuzxYcenzjLkY+ZLbGuHnms186Pzl+shkf0sHMxy+u+qMmzWB9g9ToQEyas8qlNfHnj7zXqjtob8umhWU/dWVz01P9v4I1vfOPxP0J973vfK9WLuY7NHX68rC/aI2neIpE1FJuw0ylcIRpFakgx7Jqg6T1gztjyidO84jZXa3EGfxcDdi+obGdfnOIupr1c1Qmni8YOozxHwM0P+rCqlx/p4NvfhBw4YogYOcvLl626i9l9vMJlK9fytKZXCylHnO3ld5FX18MnXfWVL05h4pNP/WQr3twaF778tqb67d7gxW6uF3zl7wXFbsAVWw5z8dXmgevNxos4P7jFWbuH3qDMcngQGe6p3NUaD/seDtYwiNyJXPRmcWaSL/5e6HiIy67O6ufPHtfqhuGex0cMXdjwnKMeiEn4hV8OPXcH1o+/PQy2BC7M7oj8+mDIrYbqrTY+bPUARnt1xbkc+PGpJnhyiudvJuHmW24zoTfUUW1xM28e9nDqj5wJWxzw5V/8YvNPL2bfJOzFqkG/8tu5Nd9ywLTXcwIjDvZqSVft9OK3BjoiB2H3puYN1GvEXg73wcyvPnntGAl9uVp3vvZ7N8V0P+oBXfzo5Kr21rgb8cAJz/zLG4/0sNO1DoO+PGz/m6If51xeE36J8Fwh9r5o//rXv371kY985NCJeTmiRl+0P3n95b0Pa4n+6TlxX/a82pv51Uv9t066Z8W6yz0n1SI3H7PxIDnbz3WzywNvZePOMfzW3j6M7pz5jK/OxsZtPZfy8aXvtQY3v7ioo1rY6A088oWzwi53vc6GY3Fxg0FH2HEpN11Y/Pka4dAR+/zM9nGzt86O01nYyGJvvLuSDz/r8OTa/Oz2zWrzLPUMUtv2E4Y8dO5iv9Coy/DscTfrY5xgsrPly0bfayV+7NY9x/CCl39re37EupoOxY2OPR9xYedjzm6Nj5rN6c3lYuvzNl1SfjMfs1ykGukaaotPuez1tNe2eno+wOoPDDsr2LgZ1cUmP6GTrzz8rA1rwi5/mOHZp+OX3poUJ9a6WsvPnx5/+cgZ81Be/wjbDG8/A+UDv0EHOzxrsfZi1e/+5yOumuPLnw+bNd+ED96ry1aO3rf5ymdmi6PY7kmxzXGNvxhc3Ils8OiM+geTvlzxa4ZvHR+41rfVwl++OFsn4ZgXvxi+l2zFs9/Fhz8cHMqvPuvOzNzQM787vP3tb3+kX7T7TPD8888f9D33et3hVs+Xp9doX7B17s7b/eNP6DsrawKjWuz7nUds9etFz4HuhXzuBxEPp9eWfWdYH+tf98c+LD7uhZwGwe9cNz+fLf2eplbx/MTyVSuf6jHjVO/igLtnV89zPfEFns/D8PgT+CSu9UAOfvRE7TiEb01nz08esUb+7Aa7udeaWL+v9txgq9f44MoHRzWz0y/X5QdXfDqxMMTRwdEnPaVLjztf52G252/AU4uzgOVzOT89pSP9zs0OX7w1P2u/d/iiWAzucug/3N7DfVY2+Igl7qe/DMovvmLrIz96mMu530kOkOsf+isGN33k7zspuQi70V1Qt9y49fldLj79/gRLb8oNBzc+3ev65r9SEce3esV3JmLg06lHfF+0dw7+yRb31p6dr9eFQacuQx/YiHy71pd6Ey4/OcV1f/TK+aSjN/CkV/cOGPS+CIalr+4YXXV1Vnzl1iv9hhlnfMVnUw/+cucjvn7BhKG34vjpb/50MNi7N3LgDled9AR+e3HEzC+bey4fvwY/eHzwgad+HMTHTc1k42Dpkd/d9M65inOmMOCKg+s15A8ycJAjTnLYq1Ntzpct7u4vHKJv9Y69gZN1d92X3yScYzM/+LJ1t6zxzN/a68v9J/D5dh/Vo1a1u+f2YnCDHVa4Yhv6A4cNrtrl0S+66uuM7eWx93zxRbu/0f6Zz3zm6j3vec/BT877yL2/aPdPxyjYgSu2USMRNy4JvYIVaiSaVEM1RRM0XZGKrSjx54a2h2V9li4pDI2vmfbhNm+sXMVad6HUS9jExSkdfaImwq84az64LF84hC29HpXnMF7/4Lc56eUxxBUjrjxhh9HcRWTHa+uxhuXSlQ9eDw0Y8oXNdpvkx6c85mLYtwY42x93gq8Hw943cfnhYV0tiw1v+6OucNxluOoicnnwwCZmZ+9NoAcyH/eoNyB+6im/vXX1Wp8FT6MarJN6s3d168K9+mCXVxwbXxzVvLjww64H4ZQ7bHO96UGUz+KI57u6MNSGAy442uNDV+/o0sc1XfPmLY+ZXT3Orj7QZZOH3SDwy9HZ4Bp/tuKLM+cTjlj9S/IRCyM8en7FsVmLN/CmM/iJr478Nnc42bqz9vnBUncc7KsJX2v+YVSDuRjcnL03asPrI8585LUn+VYLnRw4VNvu5a1GduJ+8IFtpodrbxZDrA2iX4a87NY9H9jhJOxhnfuRT1zLUc7sj3rWg60Nvj548++Dj9l/cu6X6o9+9KMHhZfLS52//OUvD0wfwuKgf63rRb3Sy4Y+4mAUU2/yUZtYzy/PTjXRxT0/PpekvNnKV/zZnl96M9/quWRPZ+Zv8G88CEsPsquFxPHY3OOHeL0xwyRmo7t9Ca78xZx9tlfWOBP1ObfizI3s5vpXfeL4dba9nujz59trOXy2aotD2MsxnwPs5kf5OhPquIptwFVTz6X6CdMg5u5j7z30fD2rzOG1FmO9teBS7fHjE1a+YfBvDZ/dXE1yFJPeXO61y2FP+DTU3plmh09w9SzvPVyuzQejenpmw+IPK7z6EH8znZ4683Idi+sf7D7H5y/PCn1ytpWXj7U5/2quPhh4bA/oNtaeqNOAUV3WYZnZ4ZH22Q/l9Y/42fN3784SZ77lgGNN2O07m3qfvbrbi0lX/nCri88KfOdYDj0qhs1YUQeslfoorqE/Bh5menHt45m/PLsOn46ts4Nl3es4P3P9bF6bdVjWm8++mDjQnWV92PieJR/41chH7dnM9aHe+F32He94xyP7ot3/DPULX/jC1XPPPffi8zY+8uufczdwpfMa9V7cPcO7PtOJV7P+i+lO8akmPv7LXv6+iLAn4jwHDDZ1y2cuFiZsMWcbHxhs4o3iYGye/PDDwd22pjfEqtN3B2KJ+Gpqz2b4zNjvf3z4qkN8X3DC90WSfGqw55vgCsv7SrXFs9rEEH5y0BN6e3rcxdHJw8eg7wsoNsOXcXjzY5fXgAXD2eOMp3pwY0vCZ9MvNmcNU0y5y88vfTXIs3fNHhef9/CFKQZXX/b5d7vl4uf3is4uP5zgEV+m+TLRF4hyq7kvv7rHbP2X5vIQvl5v9ZJODXLIC4evfXq+9YcP0T981GrNxx+Y9Z5GZ8Aj8GCEs3o1lbP7sTXDqe4w+rfG5aczdyb1XA56opd6ijNsev0yiBjx7vSed/7qI+Yw9RLf+lTP4sHPEIOLcy53Nvi4yWnAZOOPmz8M0HOvN9+x9IcFfMRuHzs/ujiZ7fkafOiIubr0OB/+7qMzwcc9IvTysvU6gAeDH7x6n1695aWDCYPeumcLbHbCDo/wMfRGr/l53eIrH192ennk12d90ld7uarBnojXX1j8YMCLoxme16o7YV+/3Df8xOCvH/BwOEuvc5zEGyvli7890dPutb04d4COqEP+RDwO+KgHjrrrEzy9gkOvl3SGPRuJD7tc7HqpV3z4yis/H+fi/8/on3D94he/ePX+97//RZxjcccf9/6i/TWvec1RqAL34spXkdYKqqlmtoZC1qZAB6tos+I81PpiM1/xfMykWXOsmw/jzY9ydQgbB9cBmsUa1sXAtDd3ofgXU35z643F1Z5/Ev6Za/Hl429tnGV92eqbGuUzOhu+4RTXjMO5L9nE4A3HOr09fEKXfmtkKwa3JF24xeBxfmF0zmLqoxeZGDpS/uowGwRPYs+vWXw9MrcPq/t3BF//oKdz/l6YeMLSNyOe/O2JGH6wDZI/20pYZhIfa9j01Ws2+KSLN//sYuQn1uVkr/by0LGb6XqIWXtIe8j28C5XXM1GmPLFwZqoQf/wqQfm9uLtNy6/eMNpvRysxeEHpz1duPnDSNiJuTuQjX82dkMvjHOc2PBxsMadLzH3+gkrDHbP0GpdLGtiFl/+s4/XAzx5zd15mGFsPfGDvTzsiRrC8aGtN6BwX/B64bXFL37icJRXDmfem6i94by7K2I7H5jd8+orj308YdgbhF5eb/AER3dXT4uhr3fm8PEk63cobnTlWF3r+8w4k/Ls3jo9n/qhT14v7J45jz322PE/Yfn4xz/O7f+KORT3/AH3V7/61fFFu19k9E299ec2uPixV4f+b6/4GM5Tj90BH+S8n5PuERufcw8Op+sf9N2ldHpVv+Qgcp/1cWDLzpcf3PLSJdWzWGzprcttXa/iWdz2gh97cbflrZb824urBjZSHriNFywv/ExX7/h3//ODSZfUL/vqsoZVPdaEb2u27o41fee6ftZqN/OvBvNKuHTndTHr3zpbs1i5GvWCP53XlkEvJj9z9WYXk86aiElgLP6Zd/70xVnDNOg23j4bPU6LCW91nVcze7m8Nq3ZvId7NlrLASP8cvJNx6/3pvKdZ76GOOcLR1w6/p5l7Cv8SHN505396dM1izV2X9/ClT/OMAh+9SCenUMzv8Uthp2EKc/mFLNxcRRzyTe9PjsbsfWUjdBVT9j0/PAg+PW6OhQ3P/jTe380elbT410f4hlH4eUynzmxbw/q4zkufmf+9dFcbtxwJfTW5nwOw80PnHA3xzM7PDpxfMz3EbHxPcepx2CHW33yJHEys7v//H3x52+0/+QnP3kk/3TMH/7wh+MP3n/9618f77F+T/Y+6/1WXvfJFwf72Z2evc9l9dizrt+z1VHf3EufL+GQztlftPN+Tg9TfWKsd+gBqSfWfA05YfBnp9NT6+5bvuKIXuLe7+HujHtdHXxaw6kXcojpmb64/Hp97PMRB/x88WfGrdepHOWi647BwtEQT6qFTV4SNzZrePUclkFn4I53ZwajeGfrM7o+EM9gvvVHPf/+978P3vS+iOND5HC2pLtjLUY/8JFHfvcKV7XKD6Ma+YSFDx82X5jpG7vR7xLuDhscOvnE81GvWgx2v3sYr3jFK46acJIDFzlw87ryJZg5YVcvTGK2F0PgyCWHsT1mx4fwqQ906taLcLLnD6f+6oM67PUXB7nM/AxrsXJUt7xx9bs3PV811Z/4mw0STv2My+JWMyy84mBt0BMzG3GG5bbH2cinmT8uzqc62fgW1/NJ//jg0/NFvD4ZvnhXR7FqM+zjfIBe/8hWT+zdf9jd13joxfq753jot+8a44KfWBj6QmBYi8et1w5fts7BLJbElb8Bj6+Ynkf8YOJBXw6v23pJzwf/eJkN/vpSvNeU/vFnx7MYPvLHS27YXjuec2KSet0Z6ZUa8gkDnv7Zqz29XPaGGDjLXx490Pf408FSk3i8xYhdDPvyiCXqEBuWuR7jCA+GucGn/nmt6V2SDztsz07/M9SX8xfe7v1Fe3+jvUZoJmIE+UZks2mOQRRtEHYFaVQN86J0AfbBxhd2GPakfXntrZNiNLwDyya3gyPi8umChGXG0SxG7fmH1Vxd8oaXLh+2+pLupcwwYMuDn5nAV4OLSvjY42zUE3Nc0oXBv3GA3Pwop60YQseX0MlHJ5cztTfWno6fGPyrAQf3wQw3zH2xH2A3P6qLvwEHvtjwYRiEriGWP57xsF7JHj4b32LN9uxmA3/5u1/F8k2KKZ4eb9xIvtVBJybuuxeXrVx0JHxxdOfBTufB7KFqLWd/qm5N4OqFEfd6FfbhOD/YfVA0xG2PwoPVEBrfYLKlt7c25NVjWKR+W7PTF1fdYpJ4w0zoDHUb57js5ri5myQexXsNWodhLoatnshTPZ4vxaiHzZ4Ub5aTPu78iH3+2drXC37prAk+cOH0QdedoON7HvRi4icXfHffG52ztyf6Ehf++dLXs/gfATc/8jPLL2c6a/zipVfeMPUvTvjZs/ETq+diw6InbOVJd0Pj8G1917naw7K3ljcpZ32wrx8+6Pqi/Zvf/ObVJz7xiSMkrOLvO8P3N9q/9rWvHX9jSF/wgduAuX2gt8cft+rqvsQh7vrbHegDNp/OV3xjcy4OrEa+5e3sim2OI7905s3tTvJLwsw//YPm+sVH/PKBHdZi60n7sKvPPp7rwx42n+40n/VjI+k7I5i9Fqo5bubym+3hG2FXpz1MPiSMuC1WHPjB7blvzb8c7JeEn1zmRIzY24SvvD1L48/fmj3uzr/+sJcnHzPOYVzKy6d81sXCu4vUP77FFycfe7zTN5fbnl+9qT6v55536vQa7Zf2xYZfH+o3DD00w6gH1cpvY6wJuxj4YeEJi7DZr6zfOR6OkdSj+GS3Z9ODhI0uzPTm7h4+xcYtzPW3Zi/OHjbdPjfp64t1/ma+O9hX+MAiOBkPk+rjh7f4chTLh97nOcM94EPix4fQ05E4wLV2hvvMFKPWYvjQLVY4B+DND/Z8qeQrh/Xyo+8OW+8oFhYeZ5GHf/jVfPY776uB/zkm7ucYfnKR4vEiy8/vsm9729uOL9rf+c53/j/4R8AdfshBfv/73x//c3T/Rrse9JfSfOay95nI5yBfhu+5Okvvy7jRw/MZQ3xnXD0wfAb0xQ1Mcer1xacvS/nRh+Wz6N7D+i8HP7kNPnj6cse+muDVd7N4vmHyxVVuMfwX2xoHw90h2eXzOUQNBGb5+Lt76crJ7n2gmNbVLIf+xk8uvWjIY83fYCfm3hPtxZe/ntWHfPn74o2vPuiBmHpOT5yhLyvl85r3z4/wUYMvi+CwwXe28vUFp3hnbtATudwNs/eQdPbVa8ZFL8TC75zM9rjLFwc4eMlTrWrQU4Ou2vx763D4wpcPJnGH/I12ry96cWaD5Kv+7nd5cHbGzojdHbFnD6MZlpzVbS8XTt2jzl189wImfmJhiWnAIPZxsucLCz/41aCHzkAPSPnF4hA+m3V3z0xg8c2f3n1wl8z5LT93Q29woYerB9UDl47A7Y7SiSP8rauLDV98DMKGgzPyzwU5e372nQm/rSl996UeuGN65L7FWSw7obNWE5HDs0Fv/TM7+MqDs3uHh0HE4CYn6U7FQQ/kjgsf+/pSv/VcLNED/nIa1v5JGDHW+MCVu3OoBn0z7Pn7vqYv2sUa+colpzvZWeiVoU6iNnyN7ouce056gWd9qgd86OXTD88feMWrgY8BQw/8T0b58iFs4knc7Q3xBj2+8hM97X7Zh8GOG07icMlmDl9M+Of+du7uh9/Dv/Od71x96lOfEvIiz2Nzhx/3/qLdG22XLWLyIIWwuWGvIKJwo6IUS+zpNcuscV7gHlAK7CAP59MPeTpcpvZ0Sdj2+Hao9nGxFuMC4ttBwBMfnj1xOegNOjHVeTjc/IibPAn/Xhxi1pbPXefywpQrnnoGt1rV47Lh24ssX35w4sWHFHOpruVXPP94LC9c2IzbBIZYvvXGHbDvxWVufcYpr5rEuEN0cjqrZHtUTvfOw0dMufGvP2KLM8MVm377CYvdsN66zxh86MRb3ya4qDu+Yoi9sZzjBY9eHLEvR3Fw8atWd8XD2oeEbP5k1QMzXL1VV/2VozOTR5yxwt+DUY97vcTB3rA3wypXGHE31/96We24i+Wz5w0DLj829dZLNjoiZ9j21c/XEBfnZn6dBX95zTDlLF96NgMeW3a+cNLz6c06/+VH170qBhY94Wu99RyG+cGfhBUffaQz3AP3YfnXi6Dkqt9xkLczN9vzI+XdvbPZc1xssWx6tAKHnuBE6OD6oIE7XvqkJv30nkXKJ06dxbGVD04jO9+7CP/Eunh48Akse1LO7syhvP7B7v3v8ccfP75o/+QnP3mYisvvvjM+/c9QfajVo3MfYMb7XLfXGc541MM4iNFfPobXfc/xYtY3HazqgkHsreuPu9Q9cKade77qyD/cA+gGiz/M+BfHt5x7LsXeZRZXLKzqgZ1Y7z79pRmGoZedD7/63TNjYzemmvAQY7A/SKrBHE+5YeAhZ/lvw6kH5RfnDpgTmHDgXhKxnREfvPe8qyObffzckWLjzs63fHyNcM4c2GCoJexy8bXGMZxz/G378sXjNr+76GE11JnA9sz2nt05eu75BXL7wb8anKv3c3vPTHvY/GHky0df6h1/Ix7mfPEw+Lbma03onZWZiHUn5JSfX3WFzzc8NiMOnRXf1nD5lLM9Xb2hExM3+ka2MOmrBdd936PHu3q6r9XEDudRS9yqKX7loe+9Ly7qyL/+8WevF+GyO/N9H2erTjF3lbC7X/HotaZnfMrtDtdHfFt3DnCMS6IP1Wh9F4kf/EuiF9nUD79zNbPTmxN7Nl9W9jfaH9UX7R/60Ieufvvb3x496MuSfofRO5+BnD2ptjNHe89n8Z1L/mI9N3x54/x9fleLLzcNcc6uM+Arxjnpk+eO+yEHP/4w6PCUk16P8CN62lnD6XuG+szfFzT8DRg+X8CVh3+fW+XpXOST30wHW55y4hsHGJ6h/qBi9b4U8ren5cdZrb7MgxU/81nw0iMzkUc/6eKCKz7dr2L493vTP//5zyOnWP3vbsHABQYdm3h3wNn1TNcnPRCPg8/JbPDZ6Ow7N7lxVLO+8+cD24yvfHyscRCLD52z8W8b84cbx3pEn9DByC8b/P5GOx92uQ29Uo881czHKJ4fLvib7cthlpOve9HdLAedXoUV153Fd89whe8++NIWD331hwBscOg6azh0Yuj0LuEnxmzUf+fpbhJxeoCvWX3VyC5OTcb6uhdyye0u+55NH+OHPz5Eb/VBnXGqJ/b0xFpcz2xY5eUPg50/rovHD28xbN1LOry2Rj4NGGrvvOKnHs8AOGLp1b9Cl16f5fK7kBh759azxV4uPSmfPUw2OeSDR68HdA3nxS4eLn77+hWjN0RtcPDwerEmYusfn+oRW4z/Mar/QtlzS1x1seNi1mtn7j6x95eZrYlYuT3L5ZNXbGfhHOH0epLHGp/OQUz9N++95hc3PfBM9VrJR6/krbflwa8+4eNseo7pKb/tFQ729QY32OnlqD5146I3et658ZXTHr4/KP/e97539bnPfU7Ii/mOzR1+3PuLdg9PjUE+4hpTUQqs6M2vWR2oOAXUeAepcc2+YHAJFF+zF6t85YQlJ3w6I6GDIUZeDU7E0BExfOlqMD5nLDgOxMyfD8FBHL1B5KUzSPpjc/PjUq/uapfTiAd8+zhVq/zqpMeJPz8SJzzqQfnpnPOZ4+6tYVVjGHRxYSsff2Pztu/NDVcPWXu2zk09xccdzuZUY28cxfHNR3yxdPrh7vXALx8cdiKvPPrGPww2ujiwWRu4Vzes6g8HdpzoLok89dHML07ZVtcZhMUnu3WDHR5/g97sXns4ZvMnq71xiFGfuszdObWVA7fOiD/h7zwMMeXiG5aY8F6IeuFnuGZxJD8zPa7OGScCa4VfvluvWPr4qKM9vIYYOS6NaochL18StnX68tjDInR4w1m719w5H389M7rXfHAm1U1XP/gSOvh4xc1ejFz8cLCuR96YnH2v//jAJnDCCFOs9fmelHv504XT+cCOc3a8DHo6g388w4iPN27c66HZvTYIHPHVERabNbta4ZeP7S6Cg/i4wEmqRw72as2/WHuDv9eMN/innnrq6lH+0zF90a5X6nQP7lrrnkU9UqP4uHdm+Ptg5/laTfXj0qwHDb0TU79gWhO9kzvpbrIb4vjU82LMcHpWxD/e/GFtXDkeNJf/HKuWOF2KP+epdnysL9UgpjM4Y4qpZ2a+MAy25JyXng7/7Wv+YbLxyd8cbj3go7/qxtMzXnzCvjjFZ+dbfWzVIMYa7sbErTixhC8//nErPgz7JEw2Q8/M7rDcRI7qL2/x5jBW1xpW8TA2N5/zvrhL8+Ypzmx4Zvf5VB57Xwiph+DQwMlZGTB7DtDrY+8p1nzM5TY36GESfnh05+J3GK9/FMNPjL18uOqzPSmOD3tx9Pnyq5bOCJfsYTTTG8XBzLccvSfyoauuYtnlss9mXw/kss9HH8p5JL7Hj3hfCsFdTu9vhn6Wtzh7v6sZeOPBFh/xxchhX0+qz7MbNn241uS2/WE8/RDT2F7R6ZFBH6few+lxxL+1vPyczyVhF1O9Zx8543622bN3tvzybS6eDw5ykfiwhyHGF+3+jXb/dMyj+qLd/7PlN7/5zfHe6j22Lwvk0zvDueNYLfrnPA1+hudzf2tZDXT8xfp84Msb+34/8ru5Lzc8F9Xobqi7fHL0GtIXsXzEywXfvr9EJxZOuZ2ZAcNzzPMrH35ys1v70qrPF+LlLsZrQi6xfY9gTdfdEAOHrrzi5PSlE5sY/n1JJqe7Jw8fPMXfJjDqQbn0AQaRr7ttLx9/voazovNFOz+xaq4WMb1WxPkSik0NvjwUI5fz0nN4avWeILc9vZj6V010vmjXP7Wu8GF3lvDkc2dwpsfRF2n27HqoZ2aCExuhM2CGS8/u33VXMwz8ttd4yeNs5GQzcBJr0Ktx+42n2mHqGXxYcveaEbNxfM9SXfRykl43cGHixmaPW7XyxQ1HdYmrBvvw6pfzcp7OWt5qZYehPjms2Qj+aiN0nW+5cPPax1MsgceP6K34cuC0vOLG19r51tPOlz8MvYVbTGfDbl3+/lJAcfDE4s/PIPTO0JCrfvjeUI/COZxPP+qfnPVNb/W4c/eaUD8e1aZv9SbObPLJD5e9gbee4MjuNej1CVs8nXh+xPnj5Mturyd2fuHysybFW8PwlyK7H+LUVW1iYMvvfUKN8thbsxF16IHRWcFm7y7JW4/EyEE6B/7i+9IfZ7niG7f6qz/1VH7x+ctr2KuBTbxzwYFY40Bv8KlH7LCdW2fHhw4vvsTroNd/PNkb7sB//Yt2D17NQaLikNUMe9J8bG5+KMAgZv7bUM3SVEUpugvpRcq/w+AXlnk5dDD0iXV5HMAegthw+Ygn+dCdRQx7uHzsq7lDp4Nnzl9t7ETe86U452ovvkuRzlzO6o5LvMXlFwe++amh/eF480MuPmzW5VnO6YTAsW+IjQOd3PlXs/3Zr5zwnLt+FV8PzOHppVEu6x4CMORyT8M10xtq4y+HsX0Qt9JefLmywyJhWvPxECP4w8aZWBvxCPOMy1de8eWgs99BF1Y58os3u5h8+TlLIyx98ro26Nj8CboHfrj6VH/V4Iy8VsNVQ5wP5fUPPg0xZPFgisGxHtSTdPyLqX98Fq9YfvTVEAY7W33AY2Os+RJ++uHNo5j6ZKZLz1+cIUbfYJUvjPw3Vt3dwfA7B35h72wNU6zeETnFkfi1bqavPjN8MXCqvT+BhkffbE2q89jMj+oNn8kZhGtfrHnx8qk/YeBLwjav4Eb0rxh7vakuedxfb+B9GOILi4+c1uViM+x3xA3+g0RsdRfPvzWccuyaz9ZpjbvXljf4p59++uqJJ57g9iLXY/MSfsj/i1/84uorX/nK8cEMt7vWJx1uSfWaq4ddDwzPCh+o1GEv14METsI3/DCzn/nWX358DP0zykmXHRdSjnDtYd9Xyt8cv/oQ/uLyyS9ezfxhuaPmhN7Ib/V0Bsku1uvEiAPd9iUMM9vmy1be7OblLl+69GLU732wfsPrXPhVS7zZ07k74vIvN1+DzRw3zwGjXOLksBfbvlhxcZW3OL7E7Pnq7qYTs+v2cYBhfRYxl7iFxR8XHNPBqT42g25zFFNtYj3/9j3H2rOv52X142NteH+GW/708Il9/Kt168yWbz72OMGpLjr2cshrzW7A4l8M2+KJJ5tfHO507o29eLrGC1H/E8eHFNseRu8f5Q4vzHzDtF+O9uU1n/2Le9C8PVg/WA38yqOP9M55z5+9emDiyVefreniB6+a09uHHad8YHd+OO4dg8mfdD/kE1Oew3j9Y3HjBYsvm1lNflk228OCc0nqz85xKW75hcOn2hZXDAmv/PQGPcnPDEdv+Ppd1hftP/3pT6/e9a53veh/BN3jR/h//OMfrz7/+c8fX7T32vUFivdaOfvM49w7O33z+Q4vPSZ6bA/D3Od7s17A8aWJWDWK8zyXx+tMjFk8/0Z9kqN8uLOz4SQHPPZ82vPBXV6DXSy+YfPVV3xgha/f5ZHfGlY68WJxEIP7Oa97tnWH7UudV7/61Uc+mH5Xki+xjh9deeSyxh92XPjALr867etJdnH+xqpYfH05ikvn5lydFT/vVzDwM/AhuOlVz0dY2eUXk1910PclVDzhiauGrbd4fVEznux4yu2LQDwJHtW9WNXvTMXxgwUHr3qpRwkc/unk4gfXgGHA1qPqFi9GPH89ibvvudwvMXR4iysmfLxI+O6rL3nFVXc8DsebH+ww4iQ3LmrE0bp65PCX3nyZ2mu4evmXy+syDGk2L3/5Fh8/94gtPptTTfb4EH5i4OLba5OOjR4OvtYbw1cMrHLBFxsnNn5iu3t8y8+PzSwHX2cTfzp4/OnNdGeB2YCHV39BS14YBn72zt0fNPEjdOLrtWcFnHRyyl3+9Hh2T2BVgzN1NnBhqkuN4vAg1YSLWJ/p1FhP4ocHqQYYdLC9R/jDL88IAstdxb9zPwzXP4qDLxZvA2d10BF7OLjAkMtrxR8W4MiWH1+Dn3g46jbo+Mu3/tZs+PBTV79P0rWGq0d8CT76SAcTD9zi29peXZ4ZBk6kmvQV5lvf+tarZ5999r/3N9o9PB10l+hgdc8fiHdw20RrzWTzAOhP22pUTdHgS9Kh3WY/x3Q49OU+++xezV1a/gl+sOTvoNLFhd2lcFHougjwHiaw5L5N4r6cbvNdfXEuPU44lotNLfHH08V1AastLL5G8WaYdL3Q8lVHd0e/8oPfi6G7wZbADJ8vXvgt914s4tnh4cxPLjr+3RN652EPm90cF+uEjawuW3M2eL3ZiyvWXO50ekRnPgv+MOuRtd4bCV15YVqb4fXAzpfe6CzDEdPDu/NyRt7c3dPtt97Wd/fZBzGYt4n+itm6+cuJY2dcDXA6o/hWs72YepWfmDjAwa8a2YrZHPSXJBy9q/b1g2HAX15q7L7Jx4edzry5w9BjvuqQl56/vGLouhvVLAY3vu6Y/eagx43ObE+qy5o+/tnk86bblzLyiVk/XPSWvoF7vtbl39xyXBIYYjbHJT86vtsDuviklzte1nrgQ4wPEuqqF2Y9lJc/yXZs5ge93hgPE1idV7hmGHI5K+t0i6eGBr18Xjv+6Zjvfve7V5/5zGcO99t4LtaD1nL//Oc/v/rSl750vL751r/b4qql3NXg7Hptqy8seGLYPSP8AtA5b45i+JZj7eG5c7fJxsWPL+w9N/mdDdkYOnuxYhbjcD79yHdxNgZGA2+9yF5e+7hZd+7xo4PhviR01RBONvHZ6Pg292woBi7dS5W49XqA252HSd+zh76zL9/WXWx152N2b3qmyhl/a/56q+bEvrvIB4f6J1Zee70ST9frEYb4ra0cMPmyGcTeSKw7A3N+ZztM9nrgLJLOxVwunMTEU54w+BSzZ8zXe7nnW7n84iMn/3jqXVy9j6gzTJzONcpbbnHZxSyW2Hz5VCu/FTY4fMMydw7iimkWzyd8ejXVH3jqMNcbfWAn9AY54/Mj4refdNUAc0X+uIWbXQyc7OnxJw/T47wci7/EBSY8HMR5z+OXbIze9ZksLvmZYThPtTZgG3Dg97pj7yzE1kMY/OuXMzXkEx9fMWeBvXciHNjusQGDnpirI12Y5al+ejr8qs1ePsKPjcTdPj70YZWrHGyJmOJw9QWHv8n+s5/97JF80f7nP//5+H+s9E/HeL3LYThbe31y/3DH2ecfX35Yxxk3I/Ec8Ht3X9ix+Szq85NZTXzkcE7Gvr+z11+2cx/cy3LL6U7kAxN29wR3+fF1FtbqwkXv+eMpf7lgqteAww9vX/DuZ2px4nHx+4t9eeVz13zB4vOwnGy44/eGN7zheEbkJwccsnzjIDbs+DuLXit44ABbDIHXujPwN9qdKSxfAvub3r4fiRu+7PqJk1FeGHLa6xd8/PXYsCadhX6L19fOpZ6xqYOIbZ1dn90z9akLji+scfaHBb7QhAHXqM5qjjM8cfDxg8MnPuLUa6iPXiy9vLjLg49nOrv6+MLiZ8AkfGHJR/+6173u+Gdr+ONssBcrV3FmOeTUE75xUoc4+mrEQw4z4atfsDsX+jjS/+Mf/7j629/+dtxDtcCVs7Oz9iUqDvCqR/2Ev7OXE55ZDeKscWtv5kPgh8cXBp3XA2y+nhl6bg2nGnAIk6/e6gPB053Hi7/7aYiPn7+d3jnSidUn/rDh6a0cehVns4F363DNfMWwwXBfvX46AzXWF73h40zZiw0HF88JfHA1xNAbzgqWOPpywmPXF+tqgGvNF5ZnurXa1YoDf///BXntCbsccsnRMwWePDD91zj+nwdsdOL/9Kc/Xf31r389cqjbWRr1p9heX7C3Fj1Wg/vApg84eU7jyw6Dnh0fc2t3QF6Y+txdE1Oc+tj56oca4Rj1Fp68eBO1uU/w9jzwoCv/4Xz9wz30z1TJQWCpqbP1e7gv2j/72c8edvH3kXv/0zEe7g51Cd8nIV8kNciBJpqhmQabhnrQ9sLOz6zBlyQM810ED00nxT4ojr/RIee7FwJ3LxACuxeeS2TtIojXww48nNtm+GHxsccjqW9qWH322+Zqxgun6jvXyNYLqLMvF182PnTmM7/Nrw7+fBvsdLDF0rvwhn6JcfHrV7nUbU3MHgYeIj2c9NyLTX35WncOnVW86dUjV3WGH1c8jSQu7GLMcOjLFYZ5z6q9mEtSvWL44KY/RtK+fHHQOw86MWL5WRtEDXTlULNemQmbP0H3EBWDg/4a1sTZdEbVeBjmhx6L0QvCb3vUujr48K1me1zxzJeNf3747etKzNYqLs7n8+Ob8IEpVx8M5Fmpb2a+Zj2v/uzlN1cbG6FrFievPnVfO8N8zHzUAQM/mOUMj16sUS6xl2RjrA0fODpvMdViZu/s9Lre87PGrTOKZ3F8bpNqYI/T+pYzzM5j8+sdP3WHYcbHByjD3YaRn3turZYH9UsN9WF5XVrD65ysV2DIkx23uOZXPB91et30RfunP/3pw+0cU+xdZzn6ot1/sQJPX26TOLHjvOIMugtbb2s2z4eexxsvrzOQu55Yx0W/yh3e5m6NA3vnVH86s32dwM6/ePM5r9hLgqd45yinuNvy4qH+uNuLhaEPxXWf6wF/vux7X1rzCzOO1cVW/dn0eHsQLns1WNOfY+nPAgt/OUkxaqNjx9Xa61IP8uXPboiTH2fjLN2r8PnSFVscbLZy4SFG3XiyEfXFWyw9LHprcaR8ZjqvQXaxhlg5m62rr1wH0M2PsONJXQ/kTqz1zSy394J+4Ys3DPZ8xFqzm/XA89uzDpZ+0Xv+2cNd3rjB9BoVy1ffiP3W0/nyh2OGteeEhzh2a2K9Us5w9EJMe75ywSb1qpzltc/GL3tYalGzeqzFJfme49nxE0dwEKuW6mEvt5kejs+dcojlQ1/PYW3dMMUkbHiXi76ccqwUaz5LeZ1/Ir4e0HX+nZ2YcjjLMOo/G67lrQ/svWbEkPLYbzybvcEmDm59tqaXv3OSh84gXg/utkHoxckJV5wYurOsrjo2Z/WtXxjywK7WfOKOs7ydR1zizub971F/0f7kk08e/0a7fM7b78r9xbQ+R5pxN/D1eZ6I0Tfcuofq8qzD1V3mI8bvED0/1Oqemg3SlzP6Y5Sv+s30YYnrDORhlxtuzzsYfPATZ/Cx96W5PRw17+8fODfgwtCD/Vwrrt9H+ODQ8089YuD7kkUutcdHb3wBC0P/9AaGnOb6aV0vzPzpcIEr1lrvq1vt/GDJR/au+ZIaF+KcfdHuizO1wOwPQ+STK6mH9Tgu6dWqZiKvWHvc7PW4L97Cza4GA2dfVNUXXwTC1Vc2GHrn82Y2vNXOjhts6/jDE4NnvYKvTwbfnge4dqb0ztSe6A1MMXLAI/VabvEGPLxhOGdfXDtjry+zc1M7HJjE3rBXDxxfzuFsr/b411/4DbFywqbDDw85DCLOH7T8/e9/P+qBqz9qwh8GH19M6zmduyLvcsMxDtZ6YJTHDFPvOhP14MTWmdnrCXz+ctb/sMSry15d6rOv/3TVgYua3Q1xBnt/kKQGIy7NYpzLnqV8cpQH1kp85CRq6PkQx3qDHx5497oVU43ywhfPL0x2HA0Y/Nj0nsjp9WpWg17mw56v2WvPrH784ut5gJN990cu56B2Z9Kdx9Ha88I//e3u4KbfvmT3hzhi+HjtGHKK44c3bHZ1dofY1YpDX0jjaQ/b2cCFka9Y++qEK1fCJmbP3Fqc2nA38CB0reUI3/2XvzvIBrc7GJ9iYHqm9voRq789//2N9meeeebqpf4efu8v2j04IqsBL0UUp7mKM2vUDs2voR14DbHvostt3cFbN+7CC6bmExgd2KVYefmouZj86GARGPziRMd25inGpTIbpBj+6ei7fNW2Nvb05mQ5xC2bObt1/OIeHh+52Y0eRHT5iCe7dz/KuZzo4k5/rnftXkAGHzFyGjiWazH4OSMPAy8WNv7OqrPLx2zwyRZWHOzlXb5nHza69PoQ9vaEH94epkY11KONEbcSNh84ajIXa717dr7qUjs/GPmbw3FO4TlbD/xi6D086fnD8LqMvxw9fM32m6Ma4q9mgx/d6ulW5KCLSzY6dcHByT5MPnTpw5Tn7FPN4Z65yNsbGLyEn706DTnM8Ay9EmvNxj+7OPvVWfPl03kVL6cYozr5s/f6UlcYchN47GIMEk655DPo1Wm296ay5x0WPHng4ek15ozSWdPDoSNicIX7MIkXfPFhmDs763jC48vWKK5YeeXvw1h1qs8b6PZwcc9c2QwcHyTy4tTgW2w9sM8vvPZ8jPZ8Pcf+f3zRjoNRDWpqfSxufvBx9l7/3cX4m90JNsNeffmFU2/Yz6Oe5Htphpfwx7Vcehi+ftN3b+nZCYxqfFBO8fyKKw+M8lhfkl4fxZob/GEZK+Wj45vPJb9sG2991sPp7rMv73DrAV+9sbdef750xdtb12e+dD0btr9h5ZPNnohzZ8T2DOFjn/Ch6+ysDXqDxKe1vNnN8bcWuyI2zI13juVcrI3dNZ/uv/Viyb+crPVPzWa5jHMcjGL5WRN8/YLgmUeHJ7v3dTOcc4/sfc7C0ZofEUvE6IVxjufPL45y0uVvTejTwSgmXz509movD32Sjp91dcNdgcFePne9XvCLC5/W9NXAXw/hx4+fQcQ17On5Li/7Bp9EXH748TGnt++1SV/O4s1x4UvM+Zn1z0jgdJ+s1UTwqOby2xM4dHEIb3X8wqIny4XNYDPa87MOuz0+25tqEmvtfbvPZGIu1QmThC0u3WG4+bHYuNgbcuEQb+7xt15c+tVZb43l1RNfGD3qL9r902/PP//8i89IX0oaXsd6tc8B3PDwucdnN79b49eXZdWIf89rdjh8eg3B8azoSxyY7kyfB607R+v6gVP508lZj8z6v/mt+ZjZwvMZFR95cCHiDf70fA06eQ3PxOI2d9zLEwec5XXP4Pive+19+SqHtbF5xVa/HPL22rPvDuMWb/2u52JhNMTwpd/P5urAzwgXtnybPzwc8Vif+MFiI/zjwk5g4uBu0S1+X0Tx84Wge1VfYMLOJr47GSbcapV3a7J2Nr13wRHn7vW9EbzuZ7zhuRf2/H0Jyl9+tmTX+mPwx5/tla985fHFtZ71t3Pz0wc+xZj1RV5r/mrHAV8c4Yjjozb+ctUnuWHSec71uzcdHH/o039hrm8w6Akfe8+ZOMjvzsPCCQ9foHbf5ReH0/9h7m5zLDuKrY/3KABz4SvixWBgIGBkWYCQjMy1QQKMECMADIOCeWBeBAgjxIuYxK3fdv+t9aROVXebvtdPSHkyMzJixYrI3Pucs6u6uj0zXlzYfK3jJx58nO09fHN777mgxl6unbV8+Wsk/jgQcWHaTzHSs+MPSw+7Zt7ZZV8ebGFZJ3JsnU35WNfY2p/s9ezy4yuOfPE3x4sfYe/a5ENfTcuXrpzY4idPeDA0tt278SPwCDw+OKq3MV9nLA5s48xeHPtiz+0niZ95NvBwx4cPvXVnRJ7mmhxqsOIdrjPmOmt/6dsnvfrhrZUfPLGWt7zY4kKKn4064iYv/GBZE79zzhc/sWCxWRz2fK3zIXTq5V/dwOdjXX3UBlffw996660P/Cdcn/lBu5+aISiJpOI1f5oeeUkptgJ2GBXFWDHTwatA/IzTVUR9hb8Wn+KFfYcjnFtu1oqbjw0tnv6UfOCzlUu82RrTt27OR5/OPJu9qG7FSxenbgjx2th01unYi2dMhyedsSYuDpo93zl+GjvCT2Pb+Fp4/FI+2VDHq57Oentv3Focs7Emdjz4uGDKIV97xy7/8ODkb5xY51Pt0+vL1Rh+ko8+PV7GaoaTs67BoK+u8adbbjiEUbx8suOj2UNx0i8PY35hZLt76cbiZt5Nl70bDdt4xVMvB7lU7+Jaaywef1h0amA9HjA0a+VqjR3pRli87fngRcdeLmItVvbFgFmtcCqv9aGDpR568/waX4rHL3SwxFYvnM3FFN+6NWK+OnrXVLzZFIMOjoZf+ZYnWzUjdPatPPMRi5iLIye4YvDBtRzp8G/Oz5gP32pkv/uJNxsx8YgLXXnxE/tJIg6BIQ7BB3/4mnlrrZvbez2bxq3jAVsfJ2e83ziJG+ykcbHYaPzvE7btLRtzOPmd3Bcn7tnrOyO+IPhJ+o9+9KMP/JP0jRW3J/1Ge/mwfyhv62ruTKj/7lcY9rR86NwzzMtbjeS8Yk2rJsZPI2FuPH5wzjPW3rCNTzFu8WntST0O4YkJy1wdXA+aeXmfsZrDUduV6lB/ay1/a+zal2yt4yV+jR1OGmFTfbquqx8b9tmwI3o6jY3e2bHf8sjvMn78wua+XHw2dK7cf8Isl+LD1Ojp0oMvZu8hMDSSrfF9HKwRtomxWPFIrw/bOJ90XQOnnXV1KwdzdVY3GOa7xnbrzW6vT/beB9zH4wBPDcw1eCt0+NXyY7Pj9p+u/FtvzgcHenFglpOe5G9/rJuXLxzjcgwnfJh0Wnwu0Me4jeuLDY8POfHp2OHDxnk73wez0bPBIy58Nde1ntz3vmd9/eVQrvxw07KjW6Fnv3Z7T0m/Psbp+YatpuWMk3Fr5sUq3vIODza7pJqk59PeZVNvTYPf2bMGg4QbD7WqXnycaXvFNz70+dI1Fye8y+DGCxvS+1P26eHFxVhcghMbrfzFZUun9535i1/84nP70zH+uf9rr732/oN28Xxf7gEETmqjFz/edD5TeDCGq3sFXXvEjo/8wuhzJXv6HnQ4L9WXv3roNWvqSMcPL+K6EiNbc0InjpiEPxwY3gPUUa9tTmzx13AjcRGjfRHfdcIOH+Nw2LPjr5mrkT3Tw6Hvz57wJ3zY4k7o40ivNmKI1f3XHAc1ZMNHrnp4sOjF1Ih19tbZ4eI/GvQ5FvaetTDZxg9OfHpgHFc2+MAptnjqpfawfVYW00Nc9vQ+/7PzYKwHbHzUi406wPNbrXzp+cvfPJxyL0/YGsFZk2dzZ0QcTQ7qqsGthrDh8qX3gBpfDzKJNTb4xYWtuOnZ4azu7HooGifrasNfDDbixx0nuvZR3TvrcNWHvbqrPyxzPjjA7M/EiFmtz4fv8NnrYaoxW3gEdu9lcnHdt3fiETHZa7DKMS50bKtx+HDlKTZcsTU49sm+xQNWsWDhWq3gWFdLTX3EoBNTDuJYCydcWPgRPRu1Lhf25ZMdG5jVna+xPMQl/Gr87JOc6NiwpcNLn+BjnQ8O+MeFDdvqVj5scVRDvvTly5e9nLp2YWqw1BAXzf7yh0XorJvjHV/YcOmM2XW94iKHfPThlhN+5UAnJmzXGVz+MF2jnfNyql7FwLP9p5OjvagmsMtxucGPj1o4a67R9gyuMcmPT3hyEpdPOOJ39vjBxQVnHF588cVHP/zhDx+9+uqrlt/HvyZP8fLMD9r90wMkFZcoogI/i0gKeZthM40VgV5ro9IphuKwFY/QmbM3/qDShoR54ohRXHkWt8MqPjE/6xAvMRqHL8f89NY1G8y+OnRR6fHIZ3nTmbcXsLO1Bst8ORhv7eJYrsXnvxyyK9ew2RG4YfAz58POftI5wBq+xTnrYa7xJcUxP2ttTXOeeiODrYm/56i88zHXTklX/F3PFz/jOImDmxyJG005q0ltscPX45sNf3b08Nau+HrxypUPoW8Pmqs3nPYNnhZf17M3E/+8z81FbLhhFYu9Zi43NSgfMfsQtHwvUo95NeZTrsZh8QtPHHMx3CPETOJjbo0U0xg2P804zGzq2RafnZi9kVR3urPG/EhrfNmos1rCxzHO7LR01tVbrY3lf8YIG541driG2TmjZ0vwsL57TQ9DLA2W3k+z1Yd9GHrChk+x6XB0H/ah1Tg+OFXfONefPOCcgrMWDtxya+30ac6HzZ4fsWGUCxs50ttbXw68OYthbTkWl311Ofel2PXis4XVPm387O7r+cWVDSziQ7Ev6N7gn+d/hvqkB+1X8Kd4qe5qX712v+TlfDkz8lPbPnyBL299/tVNHbOB8ZDwsbekvVj7MOnEKi598+zDKv7mk83T9HBgwIehN+98Wb8lXTfW1JVfch8XtSsGfw2+ujUPQx83fIzz17deX/z4Nucbdjg4nDH3vp3vFeSBF3bOjCZGQn9imBdXT9S4M+k+R+Dgyb6zdi088MJOPhszf7G2XtXUej54FFOYbIz5stXCYr/5siPFNO6e3H7UWzP2nqKJS/Rww4jztfj4JR56Ut6Pl6+uOGzwjbPF/LLPn/5W3VuHQcJOj7OmjnRwzhjFqo9Tc5jy7v3LPC6w4RafTTHYZLtY7Ut2MBL23vezMT8lzPDh0J225zyc/Dcna97PxL71GSjf6hk/erX1Wa266mETdTl57pxN3PlUT/f2PfvZFINf0n6pvb1wvRJ6c/GKmQ8cjU+fs8QWR+9az48PW1j34YUrZthsqzWshC4xZk+M+Tc2bz1cD6D8wPx5/o32119//frTMfj6LKPu1dCe4GfuHspGzdwX6NkSYxzN9dWQv8ZHb181een5qTVcok78zfXidhbMnbPOJ3v+mnh6/h567HMFfnx6/4AHh54PLrg5B/pqjkOYelx8XjUm5rhrfMTGA0Z82IjVg5fOAY5+q5gdgVktzeOMA5vqESdc7YE50VfPeIhd3mGUu5544Ophu8/v/PhYwwUnefEVz5jeORBbjdnIDd+upXJkb03+dHKGA8Oaz6T95ic9DnoCN2w9Xxjw/LZzNRa3P3OiBvyrqTh8+DcW15yeTr7G9BoMfbpqSOdhv7kmhr5c5A5Xrs4InM4STtZJ+6qG+bJjE3c4/DXj/Njj4LwR+2R/2XTe+cDGL98etIepzuHgA6dru1g9aIeDH+G/dcKHf3q9mNsux7sXtrV0YTXnLx92MKyrib3HA88eIhdDfM26M8nH3pk7X7DoiDzsQ+vGdOK2r+xg0/tuFyd4BJaxFl5rbPGVg3pmy07bOR/2uONhP/j6kyzix2nrYN/kyJ6/PPi3d3JVo3ix88C5s6EPg0354KVWsIydXzz2XseeP46aM2iOBx97BC/YfzsAAEAASURBVKN/iaAG5cZeHt1z8S6HMK0Xz4P2aqAOcOVoj8w1Uk3L09+a756IE6mOXStqJD5fvPCv8amuxu0jDHyInGr4yIlPOe77AXs4YuFoDWZ/Oub/7G+0+4PxCo0I0SsCkRiS2kOiCIroBqyI3fzoNbrdJLjm9LAViZ3i6dtgMXG5FX99H+J2rvETx6bALZZeI2LeFzc8GNkYL5/FLT9+7MSQr5onZ34bnz2/almtxCPpF2NryB+ent7+stVw0Fvbxm6xja2z5V9Meoe3hhvB1xnIh325XwZ3L3TlgF++fBJnxJnSh6UPT18u9GKcccJ6qOeDS3vYvpoXV95y0qpZPBabjr+asOtaMKbXSDHYi1GzphbW8aouO2YL31pc8uFnbN0HdjfM9pltucaz80Cv0bcmjjdVer4PCR83MDUTX1+t8oMHh611fWJsPYmLeT7V/1zLpx5ObzLq4cbvBrs3dXrtFLrqpIb8zjNfHtk27z5KXy6wiqOHVUsvH/b4NWbTGEdzWIQfbuLhp97G3tDVld8p/PloxVVP15Y3ZvUKn2/8YWt8auZs2Wg73/jsFweufdbyj2vz1unxgxGv4unZWbO3Poz5kCFHa+XIj664MOnK6VqYl3DjsP5xqB+3Jw7Fhe1e1j9Z+6A/ST+Dwe1BuzrEr/60f2jeNavXqoM+kYv3ej2xZqxvr3BKx4ZezUlY+sbXwryw1wgbWB8kH/78dr+Xm/HTCj6dpXJb3BNH3PIwLg++4vI1br7+1tk/iR+M6oKbePny14g+Phtnx/nHOT/8wo2rGMtt5+LEafF9GNas4Q1z888HFn38ywFWvnHqg3W2bOKiF4Owlx8797nW4tA9K19xNPeR/JcfHV9NLoRvXJcPG75xNidsinHqzPNzf9M6e/R48a9OcbuAH7/gY71z5j5fHGt8ds42vMURhz2Jczmzd49WvzCzy0e9xan+xbBe4xMXYxJutdN7r9OyxaNzixthV87wq9u1+PiFPxu2hJ1xGHz6rGDtlOyLnS/cME+fneePg73UjIm9Frtzun6NxSk2HTx74P1l+cJlu3u4/IytJ+ZxgeM+DzexXqNjAzsMe7v6eKWX49adrwZTzj7DiE/YqUV1KRYsYzGtFftyevyS7eJvXGanH9v0xjCa40eqhYeKX/rSlx798pe/fG7/Gep/3/2N9j/84Q9XXA98iiffamA/fFajUy8PbMqVDb3rxtnR01VT56XmM72zIi85qbnPT6Tc+cPW2IhNZ51v6+b5VCdxcfP9o8+nbGB4YAMThnG8rctJw5OUm54OvrgeDONkLmcx+BF9Z9i6Vmy1cx+EBUfO/k42G6IXi+irp9554aO2GlvnU47w85UjkRcefOi89xG2uMudnh8MD/x9V+ODI3vreLCBh69c+auBvdXY8KmGMDrf1mDhLO/qa50dHi+88MK1H9bbN/EI/mxg48kGVt8L4YjhmmC3+2GNn3XNmOg1MdLrk+zlrcHUqpVx+69vTT5w5euBIX38XFP2i3174gzKRTx16bzKkY6/Fjdj/j0gF4s/PNzsBRz6ri9j4m9n2z9zOL6r9S9xze1f+11sNW3f7Dtf8a3juLWJY/gwNTVWA4Jn9bLGHw4xt0Y2Bl85yQ2WvPwAQI3FgqEnsNjxqbGvPnRs9MXuPMJgJ19j+Yin1mzjRKeF01gfrjF+akpwKs/iOivG1Y2N/WDnmSg9Hl1XsO2Ba7TrEAZhoyZEHe2jNVh6P0Trfd0Zs/fm1ovDD45eXOfXL0F72G5efNenmuGCszkcueCFh3sD6TzRs4WjLmoJDw5+ejWjt1/scKQzti/0fO0POzxxFxcWfLVxP8XJermw54dP/vzkwJavWHTlChO+mHGWU/WCyVYM3PjKhQ6m+hI4mhpVNxxeeuml6z9D/eY3v3nZ8X8WeebfaHeoJIwkkTBiCQJPIiE5ReyiaiO2l5wNY0squHnx2hg6BSX3xYdtrQ26j2M49TiII+f1KSYdPq3ld5G5ezFnC6NaxZtNuvz08DRjvI0drqRYzcMwZ89PE8eBEZ9eH+84s0sfHnx60mE0d/DyC4e+lg6fxvmb87WGU+NixVvMuBoTNvzT89UIvcbGupuPC03uJG7VnF8x6TQ2hJ7sPNt01sVZLusXnjzZOD+LgSuJlznbrqew+VQntuWb3wXyGKecYDVeTmzh06VvH/R8nC9vUr0p0Ikln3Jlq8FIb824uH14il/9xobLzzXNF2Z5Zy8Xa/zYm2tJ3MzZ7Hr2cdTTsUvMSbzYFE8tnHX116pRXPitfzhq3JtQfNQl4V+djPd6EoMPXDGzZW+tswCrfLq26KynZ68lMNjKy33M3BtLD9rVPqlO5VJcenauLW/O9g5OsnxXbxwfGFrc5Lt1p89mMejg6/kkxq6v9LDCZmNdax2G/OXtzVWOpH0Qs9rzg8cn/pfxvGQDX2ObvznZPMb1waE6w/b++J/+k7UzEF7ng/Zqy9b4aUV91F/D2Rw+7qSxdWvb2Khrsc2rGZ26mWvG+Z78Wg8LzsZ/KJewisu22HuO6NuTbPI1z79+MYzjLo/FDYNfPuVdPerpy419scQnO2cHTyxj8Ukx9HtdL6617Ksp38UPW1/Lhh1dcc3Xd+2M2Z7C3vu4Zh2PPQPlF7a58eaxtZaPues9Oz1ZjLjAqXb2nQ1/63uW86fXqmn6eJnHJ9t4WCPxyE5cYy1bYznAWF0+cHwx07q3sS2X6sNuJSwx5cDOfZ4fMRcj7nR8OtfWExiEfecoX/PuF7DS84EB07q4xS6GtW35Fjc7uMXtewpbvnJrj8SLAww+bMQN25ywW0501sJQ6/Ylez6nwNUI352fts3DiWux5EHnPZ3O+zHMBL98Nifr1tTc+0s50MOs7otljYT33uy9eT4w+zy3tdkcYWpiwGKn7nTGOxcjX7YkG/ZyLndrMH2mWezi8YNlTX+KdbadAfHCyfb064yxI8XaGmXj4Ye/0f6LX/zi6ssn7Kft8ST+dMz+RrvPMvjhYF9xYuta8oCTzj75nFO9zY27HvV0asjOuAbD53q82YnFrjzEpU+aiyuGe0nnk64axQVen03FtrfEOj+59L2OvlrzY9te0RP46fFS//jB4hf3cuVnDZZ1WK4P8enkD/Mfd/9xIOFP39hc4weHyBUGX5hiaaT48YJlrT3pWmIHr33kC8svSWh8xFEfz1SM2du7HkrR+Y/+1Ni+WWePa3sMk4gnNl7WzK3Fjx8sPX37xpbwizsfenP8YZmL32/f4uY+Dac1NaiJgad5PNJV69bFF8NcX7xdF6918YzlYo9wNyf+ZbfvCbhrbDRj4izEuXNAL7cwxILZdw16c3rc7AUMY9hEnub+VJE1ePBh4CMufzxgJXQeturVh511djDMy1cMOnH05myLzZ/EFW+Nvj0Km135Oou4itX3TOffg9we4opJis+Wjh98dvEQK1v28OHqT97mMDy/gAdDg8FeD19jZ64PX1yNFCP7bIupZ2M/2PT/NoRrHQd+nqnYx+pvzf3QD0XY8CfOQnE8wO9siePzXHO28lJ/OO2Rse/l/WAVFr+wxMdPX15iOvf84mUv1ZAdXecJXvtrTKy1X+VHB9O+W8OvepSrvOXjBwp///vfr3ji8i2fxu0jH/FdB2qCA9yuR9hszTVjmGzC1tPjRq8eepgaDHGqk5zElIffaP/JT37y6P/0N9oligRBSltB9iGRMPISVtCKqsgV1lhjSxQku/DpKmjx6E7JPj2+p641/mIWV0wxFJyPxp+dZt4Bym85lI81h2N9xQzj5BQuP2O+xuw7EHFubo1NuNnSVdvwxCNhinFL4ptfsdjD10h9XJuz50s2Bn3NWjwa39pXmPaD8DV3UaWjN3au4geHXS0O4rGNG7xyDc+cfjHYxzVMcRO6bOCE1XrxzPOvDvnqiWusPON9LcwL2/zZwNc7L9WQTVjWNHOtHN1o+s9W+BL+YRSyWPQ+HHTTgknoNkc6a/nhwtd5rP7Wt1b8s+FfPerTsStW8a3FufX8cMiOzfLaNfnHV1+N2MMKVyxCz4ZfPbv0MAhdcfTFsWYez9XThctGbDpNrM3BGpv4wiVsYLiHeYNj403WB4Wt+3vW79mz7XzwF4+tN3Rv5vaPnhRTDBI/Yzb4xNUa+/boHFtPrBUjrNbo41M8/eauHuLU+FaHfsuETk3i2HUCix8OmvVTwo0zTvDv43z63zfvfc+XE7/R/v3vf//RK6+8cpkv9n3+D+lx7UG73ygIT60S+T6NwHL/7VpWDziaNW11xn0ws7Zx8IiLtRXzMFffmN/uO/t8Nq/s9e1rdvoEXtyyc9bwJxvLPAyx8s3PWjWwphHrzdkUn665OI3Dth7eBXS8hKkXgz/7fNJ3zrlbK34+9Mb3SXHuW6fHubinXfHojXefzJ0TZyu+ejbZbm/cnA3eGh8S18W4Fh6/8L1VA1jFZNp8bcOBLWZnI5s4LB8+cdbna8zfPYR/Ps6e2Ox23+AU05rmfbwvSuYwy6GY/Fbg1+CxM29sHv76wcXT9c+G/Y43rjXz4sCjI+FYg6MGWno9sZbwT+KWLvtwsqu25cUephzyNffelw0sY77xDY8tXe+T6W/ZtlYOxdazvyXW4BfXvPcvHImezrVS3mHxsxZ+sfVq7bMbH7iE/XJnF+byCD9+era9b1kP98RjVz7szNVfM9YIzHiluxbuXmDDUHeNnTg9jMg3vOyXS1h66zU+4S3PuOQXp/Trz49eTsSDJr/R/vbbbz+XB+1//vOfH33rW9969Lvf/e7aR9/HxSzfOJl3LvAz1vBSCzrjrju13Ic6zg6dz3w+18NzZtybiZhwSPVoDJsOvpjdz42dWZxhis2W4A1T3GK3v2ycr3iw5ZuPXjw9TvD14nvwI24ccYFF4s9ODHHjByvxMI2PB1c41qwb49m1mJ946mX/0xXDvPoY4yF2Yk2rFj4L8tXsh31yn+cnPtuuaWN8fMbX03uwbc7HujrKR2ytfOSgFhpddWldfLXUw9EWI/6w1Rk/NfAwT+3whum3b+lws1e4yRWedXoY1UQ8eraamNZr8RHfmrh6XNPpYWhETvxgqIe6isvXn7TA11rn3xg/fmxINaBTO3oY8VODvl+whSE+ezmrR3sUHl/fzeTOzns6O3mbw9BwZ8MephzKDRbe3eNx4E+y4QfPHOft2dFpeLOVW/mpq0ZfTeSRXXvU3sNuDe/i8SVw5ULfnK790auvOsiF8KXXa/DV1BiONZi4tDfy1egJXuXNnljnIxa/clRzObPHTSxrfR+2Zx4cV1N4amLOTuPrTLgnmcOwv/3QTHyx4Vvnq+FLV01g+MGKvjoY42cuLlzf8eQBw7ozojbmYsdHXJzkKD4RX1z+bNWiWHLTYIkZJnw/RHD2YBF+9ix/OjF8B/cDJfh4wOFjLI6Gw1kHuVWH8mHLT17s8THX4qk3xy1sXNoDHItVDPmL0Z+O+frXv87lsrsGT/nyH/9Gu8RKrqI8KbYiIO8ilLB5h6TiKLimOEmF4pPsesXedXYVT2/tFk86Am/92ygFzyb/nfPR5LL+cYbtcKhVwi7+rcHMP1s642yNs4EVn9WF3YFUSweZLR1ho4XfXC+GJv/wxc/2Anj80no9P2M4pw+8YnbziMvmp44461f4k7g5R/Ii8rLuLFkv/rV492Kejl3xrJcX3eKFmZ9+JczWrRnDx19vXk3WN1vr1U58zZzUX5PHL9masoWNZzWhV9vNsfVs3fS6mVjzJuGn+D6I8YWLv1h8cFyesH348yZD2Fmn37itwQin651duPmZi73zK8C8sCHFqQbVKn99tuyrW1xWpxb0qzNfH2vxuwznRQ235VfdM42j3psNPI0doe9eE/dwq99i5SfXfPnnWzw68byp8DG258UP05zP4qoz0e+bddhsO0t4xGXrx7a2+0J37vXinnuSvZi44kOKW0w6uN1DrBP+bHrQbqwm6gPTdaFnVy3yuQDm5Rbv4vMh9efY/Kw9HekDhw9SfqP9e9/73qOXX375Wlu8S/GML2KeD9p3P8CJUXsI3nVcUwvj7nn84NKJ2f5YNydnLmpHsjfOJh+6W8Ku2reO00N+t7CrRWswNVjWSOcjm2LU02v86Pgm+ZhnZ8wu/9b4t1Zs84fyClMPr3j87QWB2/1u4+Z7Gd29mBc3Lq1tby1feHyaO8vmG4fv2ljbc9E8vuzhhcH3FqZ1dvhkyzcJo/n24dHxN2/Pwwp/5+zLtfXuTdZI+sY7F4fE231IfLlX13iwgb323Xfj4MuV1ntLvvmwK75e/P3sfYHPSza4kHyN+dq39g6382zKg11xT7zy5xdXONUwHb8EVrVJ1/3bfDm2Xn34lUu2YlRX494D4IR1xgtXXHuwQkfKe9fiEa618jnt4mqdPRGrL63w7TO+9jDM8ttY1sKAY198dl4f9mT5tD8w1ShsdmGy0cKvDyfcxWYTdv5h5te8M1AMvp2ROKlLn234h/EQF/hkcbOv9tbp4O0a/Uo54MqXvTEfDx78XyvP80G736x75513rs8K4omDAzGvLubWcHFGPGSw92c+5s5tZ9+4xrfr2JnxQMZnf7j8VszT1ePjfYAPHDE0c/cOvMXQykFsD2A0ONUUf0LHlw8eBLax3DsL8OgTfjDwMd7YfMVxloqNJ70H7fLu3MErLh0fzTi+csCxh2piqh87NvzL15zUNxbf9c43+2ovFhGncXZi8KOXv8+SaqLBcRa6b5uLC8f9JA7tG9vqDI+dNdxhVHc6awQPz3foxPag3y9yqSs/3xut85UjP3p7I36tvMSHyVYO+s4zvTh8qlFzeMbhWBezZl6rJrj0Jz/YdU7ptbDlzoeNeuNl3ZyEKzYfgmvr5cKX4M/WHti7ePf/prGBKa56ELbsYMq1PaXzgwz3Hra+7/huT9iIhat41daaPXFGq6V4JP7ilIM1/nCIWpDyMGYvHv9qR1etww/HGj7s1QAWnVa95JxYPwWm5jzB0MqVvdY6G2PYmrFY+Ph+zJfIQV3kzgc/9rCcbz5+Q/uPf/zj5Ss/+5HAhaGxNceph81iVUdrRL+NDi8xcXBfqeanb/zwVy84+PAR33pnpxpUG1hxYNd9g17+cIpbLTuPauTcsYPBBwcY7RsfevcCZ7K6VxtYbMRmp4+bvljltH5ilK882Wps2Fc/OISue2X1oC+mNTn50zE//vGPH31oD9orQOQiaH6ftFkdRAVp8xTFxiuMVlHFURTN+haqONbyT6ePY9zC0RN6jaTbeHS7bm49vPzw6iI6/dmsvTnZePFcHRt+DsjqxSL5XJN5YcuGr7FaqjuBtZIN+3CLqZ7lCseY1LMz3gMczzjkz68Y/FxE+bXGx5q4+Lqg48SmdZhq7Y2BTXyt8zMPM67W4D50Rqx1UfLT+Gmk/paeb+s4w8GRyBOneNGtLXs2ejjwjdnU+NAvDpvmccouP31x9d1Y3ODi5YbnDd1P8a3joI7W7RMRK5GXD0tuqkRsIhbfrQV98VuHrT5h0hufLUz9ytpXr+UAhz78fNnIrzdJOBodjsbEWGMfLn32q6M3V6feGFaXLd/G+t4Q6KuxmI1hELr2iV8Y/KwRuebLNslWfuLZZ3bGHsgsXrZ8Ydsf15aeVNP2jX3cq1/7Lod4sCHF2j2xZh52NvW4Gus1Uq70/BajWOycUVz1G5OfOqgBnsb40+u1uNOR+mvy+AWPru/07LbhjJMWpjGbcs63Xs1dH66vz372s4/efPPNR1/5yleu5Vs88nuaXux90G5ePfNf/nFtrbkeR/m35+bp2Muvs8O+vQpr+3DpjGGS3Xfz8mezkn/crdGlX/v2RIzTvlzCbj0s+nTG4cOk3zj2+/Rrvf7Eok+nT9Su+ukfks0Ph3jlb925D/++mGJUIz73iRibvzjmmvPQ/aKc4bApT/N9n6fno8WdTWO+NXpiLQ76YtKzzcb8PolfPnIvTmt7DVsrTz6uBXbpxGFjjT4serr0i803W+vN+RC6MHHpHpatLy/u677YwOnet5zCab3P3vG4At29mGvibd7ZqY/97ZqJa+twrFUXHIleY5cvvTjmcIqXjq1WntbDyz4fWNkaJ8VtXl89zfm5//cebJ4Ur55eTPYr1QFuUuyuuzMmHy0pp7DiIZYvrj6/qFVfYO0Dm9Ov+3N1xoOdOR/CZ/MNZ/MMtxqzCQeWVo7lcM6LBYMvbiSsjde4/YdfLtZg4IyXph7qUn3ThyOO8c7FNdcTfXtGD6M189boFyff6mBu3Zzsg3a/2X76XkZP8RIXv9HuC/9vfvOb6765tQGjBuqhxRV398S+L8XBOrvqFg36znb7VRwPHj14bj9g4xY/9loYzihb3xXYtuahjzNIF78w8eGn4Wqu7ZnFx5wPf+8hxuzdA+MtJ9dN1+nasVcXPf7FcpZ8F/LZ0JqHafLmKy+2YrI314yJXmx11bMjfNWf7Yr1Gt9qaez+Xg3M5RyP3uPEkJv6EHbmvTfg77OkubwIXQ0mH/754Ag3zt4j2MH1HsMWZxzaQxh88KfjA0ft/FZ/f3tafLh82cZbbVwrMOLKnw2uHnipqXpYN+88d9ZxYosLvzjgTUfC4s9GPBzkh5OxHGGyVTt2zlR7as4fvlzh46WHQ3CPV3nIu3qJy148Y/zsTw94za39+9//vnpcauLDZK+H2fVUTmruz/zIyQ85PNS1hgNRQ/FhprNXcPCBW82M4ciXrTqzkZ+84YpX7vp4sCmWuPzVTlz4WvGsiUPwxa89NQ4HNj+8iDE7uISejT2zl9nRaWKwJ2LvDyKqBT/1ZQ9Xk1d8+cFwBuXifPt/M/BUJ+emerDb2nVW+PiPb8UpBz7s42qcrjqxlUO14u+sJNnDCJctDtbUw75YS5w79apWxYUrJ3o1cB93DwrDGoGldtb4Wm/P8LN3dOzkYb7xi6en77rIJ1s5qDcRz9k319TVvrGFk17udGLKEXb1hV8sNumN6eH3N9o/tD8dc2X7+KVDgPgpkibWFKcbpKQkYt5BplMgxXEoJLyyWGwT+lq6enaKpsFmly9OuFdkvcZGb52tRtdBzUcMa22qOZ/sYOzY+rOIOHjHJ24wjLVT4krfWN2NccvPmOCniUHE1Nhr7HFYoeOvZW89LH5JtuGtn7F1a8XXOxedifRs8WC/50h8OiL+KWHD0Zbb2tJ3Poq56ztmqxXXeQ03fnRbH+MkW3FwlsPuQVzpsg0rnOLHIex669nU9+bo5icmLGM/xdesi63+at2NNCzY8vKm3IP24unxVUP2p9DB5q+xI/i3Vr7mq89Oz4ZUu2vy+IUPffsYD71c5eOGLHc6WJ2fbM21+yRe1osHV+0S+s4qHU50JB7Ni0W/15l1a/TG9TDgmZNyMM+GfQ2mnH1xoMPTFwmSj9ytVRNvaO7LzkF1YS/uzvGLczmqRTnR3ZLi6LV845wPfvD1pL1nJ0Z8YLTn2Zk7Z8sBjlqoAX8fMDrj4tCbw092nA4PTdxT2IsDv/x2bI1v53/93dc0H9Q+85nPPPrvu//47H/rQbu64NH+xaN8cTdu3h6x6wNP9XdOtHLa/LJRgyQs2K1bE5MvvTrhVg3Nk/zz0S/X7PRsSXjmuBbDmpjLg+5Jwh6mvDRzjVRT3E/edMlypt95NjDjl+6hHg57cTd2PriJQzZmuuzK5RYGG/bFMC6vdOeZWFz2xXPe8Q3TNcv3vGbgV2Pj4lV/cenCow/XWvHicV+/MXCBWQw+xaaDS7rPiEHPBo6xfu9N5a5fLOPlG3bcrWn87KEvDu2lOO5rvkjowxKbTVi4FleN+yxOt1IN6GCTcrKGRznR35K1gY+DtjiwrGnsrZ126cWQCz757JgfPGL8tMJHXNjhw42nnpSDcTx776BL1i87uL2vyAcWCbuc6cQuL/Ny8t5kz/V0fYGFZw5DnOrgTHYttC4ee42Ig9dypodRjfXsYJNswwmrHOKbfzma426O20PCRisGe+cNBr5a8fDqWsAzvZ7AiYt5/FqnI2Jl21pzfePF4gePb7hh6XvQ/vOf//z6EzJ8P4iITfZBu+9HrmF7rD5s1Nf1Xz02nvdstnRst26wq7Vx54INe2vEgzh/+kO82unHt/PSAz51ILDUCZc447JYxe56CYsff3uj3/cXeOawfM7F25hd9RAfRvvkPPHpXMVPPH/Owb00Xu6TvvN0LmAYi2Hc/osnNu6uz857+yRWcdjyEyNO4VkLA55YbOx5z0tg0VsXR18Tmz8bv1FunY6IQS9u+8qPvSZ/uNbtt7zZWau2cMLACyZh177A5O8hrFriAJdkzwaO75IeDFv3mVwj1VbebO0lnOoglrxwLjZsjU11LK6cnBVrsOXkWmFnrofVvO+4Hoqyg8POddSZw6vrDWex4eJaLfPhJ1/4sKzzN1YjceQTDw/ajfOTo/nup1zwZEOsqWXXKQzf93Bgix++Gi50xHcOZwufOFVL2H1WYFvOOMP96Ec/+v556jzLwz56+Kke7Dq7xnTVuv2yn8SzCPzo5cyOvbhJe6oe8JxTko2c8SMw5LpnJEyx2FZnNmoYZ7nHCza/zoHaweX/7rvvXn5ydL+DA1MOzgoc864Fe+0/voWHP3u9lqy+86IvZ9jOGZ1xOeClwaSHgydhK7f05v5ckl+2DJstvuXATw79/wrs7KvYsMTNZ2NYq5byZKfXnJM4bT6w1VmjD8/YHrcXfI01Y1xwgi033Ok1vtZdC5s77GIYVxM9Oxx70P6h/WeoiBGFqS1paxHPzuZ3g1IIm+lmTO8wZK84xnCTDh29OOakmPRa0lzfxsEtDjv4Nmbj0POhgx1O8en46LU2tAPAj202YnaBhg3zlpw8zOHE+VyPg/7ExivuuMFgByOcbKxpiXUXSPp8itNcX5582bd39MVnR/Jb3tnxw4fonY2w6IplLJ+9eRXH2inW8CpX8/vE2sY87RbLWnmETccGPxdp+erZWtMIHT/NWvXPLs56uvIPk47E6ZrMS3HC1rt5dIPsRuYN0Qdib4p04XWTFI+kl1cfwHCjL1acmw+d/8e/eoWZfWfAPN67H9nHyRphW2OTT7itdR/Qw0gfT/bV9xYuHRuNL1u5wHO9JNaca42w333kZ41dMc3hJNaWpzj8CCz25uGyJ3Tb8PImoxH77YtEfmLsfqida0uz1/GDz8c8iYN5ds5NXIphrXWx2rdwwswvvV6MjZOvvGAR+brmNo/iLGf46gDP2JmPL7zzAzMbtqfALPa5xgcfvZbw0ap3/tmpgfdBefSg/Y033nj01a9+9YJYrDCfpYffb7T7UGWulp2VsOjjWp3SlReezkZ1MMa7vaFvHG59WPKBR9LptWoivjrBM2afbTbh6m/VqDrbZ7WHhSucpLj16c8+/OzMq0k68/ISa+e4xJt9Qsc2vPRs4h/++mVXn415ceKQTXtqPaw40hE+D0nY5bk44eLtDGit1xeHTeeoNXOtvaIXJ1zc6LKnLye67gP8i7O5rO/qG3duYfoMIt6ePf5wq5k5n2pmnjhz1SBd/nGmh8VOPU7e5qR1fnC16sLGfd29zX2MjTg4Zbe8jNW4+0110remX47mGswavnT86IyJsTWNxNP61so6X3FI/uybLy492/DKk58aZNt6eYUVvrk1DR+ibuGHC49kW59+eVvjT8RZLvaALZvWshe/uHwbh0XHVn7en2ARvRamvia22jq/XV/ZiW9MxIDLNn09G+v17KyxrWYw6MRjp5W38dbRHH+y/pdiXuCFCatcwoUpb3wIjvaOzlpNvLDYaAR/wo6wIen5ZUsfzsanS5Zf+rA8ZPSb7D/72c+uPyHTer5P28fxfNC+35/Z9BmmepS3XHff8LCmhpq5PDSyPIttzWdCD/VghWcvNXO2i+17hbnfdEzYOJPsSXMYYuC18Xdsrb1nmw9e3fedMXZw2VQLc3WAF389GzrrzX0udC+Fz0cvB+Ow+fCVi8afzromLgw2tZ5zsNPgVou4qYk1c20Fjjz5GG88tvayM6BO8M8H7bdyx7d4MMtFLA+34MDrs7PYdHrC3lzDjR8uzqe6GcOPr76Gjxj+pQRRew8u2wt9eHKDpY69N8dJ7OqLTzWCWR3ZVD96WHte6ORUXs46nj34VSdrsLu3Wq/2erH1cPV86NiLjUM+1rORsweeOBF6D2NJsYzj7P2eeLCrdmys+X5v/pGPfOSqoe96fkCijupDcNPwce0Qa+b2Oc7y5IezVm3wLxadB/t85anRwfdQWQ8PTg/r2eAvR8KePxu6nkWYazi192ITGMScv3MmDltrYsubDvfNhR+9HM4H7WytafGCxxa2ePVqhp847Z1nI/1gUS7s5QbLvB9W2e9//vOflw4+nHLCj+CSHh/+epga0fODT9iL5zy0Z7suD7VnpybwPIB21sLkJzc9oYfnOrWHfFx3cOBZF18zjiu+amW+gg88HEhx9fa5vebXGp/lxNfZbQ+cM5zwIfHhR2D63qu3xj++1ZVOznzwVp8P/U/HIL9F3YJYI4jTaxWqB+vmDsQWi46Pnuwm7qGxrkj6OBT/crx7qZhs4GiLwa4CdxDiuhuMT6LwZNfFoZeLWCemdbHpibnGNrkV11q5ZatvvD7xwRU2qTfGrzk/Aied8ebJxoHUtx9iaKTY5UoHg16vsdUn1th3k6IXn17fAac37gKyHlbxW28/Nm/+K/HJJk5wE7rmuDTPNjsYYutx4aNlp7eulVvr5mHDS58vTAL3tE1vrbNszJeteCv08NfGutq70bshtb90bpi7L2J4w96fEMYJT3vjOt56bD7lJCY9oWNfntm7buyjud56/MUshjF9azDpiDydrY3FLrGuWW/Mfn3Yhr228Sy+eTh6+jDNE2P4YcXdOp01Yu/U235key3cvSzH4lsrvrH6bB5x0cO0t/bbGxG/PgBlR9ebnhjG9rfrj108tqbx4E+qnVz4lG8+7OC3x5fTU7zwCzMMvdwWu+uuuGKpjT7JDz/SuYdvDNM4XHbmpxTj1DcXR1vJByZeu29srau568EHGn865rvf/e5z/xvtr7322vXPSXGrNssVj2q3eRhXN+/Z9rH7nDHe5vnr75PWimueLp9iw1QrsTvnbNeXT/brbywXa52Xal/ubKzHwfotYSM+Wd+1ZYNnuZizjXt+xVvfxtZW8oFp3Dyb7M/1aqV+4mtss69PH0e4fO6TMMLcuHTm7RecsPC2xp8daS/otT1TYZ0+2eqTOJkXhz999tmeNQx/1435477rp+/ix0dOjWHkk62e3v7E0ZifeHRkMZrTWfde7TznD9N93b1KPHjhu691D+MfLjv3ejXnv0Jn/dTnH0ZzvnzSuxfwJzA0a3LMDne61rOl1/iHFw99OWefbn34hcPOfPHyVSN6tmq6nLOBz47A0eKT/bV496LOsEhryy9OYVjLzlp6YzGta8b4aenF2jmcamvctac3hx1u5wHP4mZTzHo2xtm1h+m3D2PzMG7emWV3S9iFYb25MQ5yiUt81KOzX2301vPbeXysi7Xxylkf58Y7pyPrv+t4mnvI6W+0/2/9Rrvr18PAPovj1bnobJj7HG9eLupRTdShfHDW7HGfAas5ffmWH50z173Ldc+PnXh9f2CTiFVsY/H582XH11yD3z3KZ1h+8mm/22N82MHgF0/z4sHKz5jw12DC8LmmB3Z07Dyo5Ac/n+olFs7WisvHurOOszEs3OHjFD8x88ODTdhwrFcT69UTD3ZsYLHTs1F33/Gsw8YNbtjZhsGuBgMmwZ94sEafDV15G8vNGp7lRx+ONWfCOmGv4ZqfmjvH4njIqub5nLFhyAG+nDoX8OFYo7dnuONExCPW8TeXo/dH43LnI3bcYOGkJ+yy1cOCyV7dibEcq4Eev3iLBy9MvZz/8Y9/XL5w6TyMJXzFgYmz3Owzce1/8pOfvHJVCw9N/aKOh99wnBl+zkF59V3HvPMeJz2+zmn1pIOBkzVc9PRyEm9rag0/PLNn1/XJD1e9WpFqKA5+BGZ5w5M7++pu3Fwu2VivRtbDwcW8Xj4eMPeDHbVUJ7xIcXCCp1nrftq1QcdGT6cenS09HLH4+wGAsRz9IJLgw1dL+KiJtuvZlYd1uastgU3k4dzA4cNej4+4auLasO7s4SUO4beY/NiJYQ2WGsghn/LrnLAh/PjwNcZXXPjG7PjoYdgL1xGeBL7GVyuetWoNR21x4ldsfQ12tQ9DjdTBWcTBGC+9OdzPf/7zj956661Hr776qpDvY1+Tp3j5j/8z1IJKoI2sGK0hbF0rCRevBwkkXclVUH2F17dBfIrBJjvxtdbr4bNRtAppnsCOe+Ods3VIwndY1h+OuTjsjOG44OPDhk4j8W+eTzHo2eycjp2NF8u89XrY1vgS9vXFXN21+PiFnu+KesG2FqZ5Egd7m01noTkbjehhqk0+8dVrxVNnFxEpv/iZ49NFzyb/8qQ7hY113OKeDR2J6+rXR/01uurDFie+Yrh4rYcVN+eDPimmnj+7uLUWbj7q5kaihsXrTGSj78xW5+LydRPrjQK+Jhcx4+2m5WbMNgzr2cB3zepvxcetmMYa3/bAvJzh2EtSfdkmfMSpPum3D6/+rFtz6zW6Gh0Rd3XG5Vx8OvXKZ21g5G9MzNWQvZrA27mc7Yu2uHyXq3EcsgtPjAR2MXvz2f3m6w1Szw7G7qXz255YY+e8FZNPuSzHuJWbtXTlIdf2Ml/9LVEnfkTMGp2xeq3gWmvPmmfHd/l1L9L35m6dFKc6hbG9OCSeu/bQWB34VlP+5n1R8f7oT8f4z1C/9rWvXVDPGuOMD/9Xv/rVo29/+9vXg3Z46nMKu/vqpu7WnBFNHubtq+v4FubGEDcctuIl1jZP686QRtqv7Pnmv76N9db19hVOMeOZrXnxwq9ng3NnY+OyKcZi5aM2/Ox1fvonSbbsxDav3vkWT29981Mr4nqLu56EHcfW8SzOaceWsN1WXNxIdZQvncY3fTGzxTnszhTMU8RkF/dbNmGztW6+e5ovHWnOTlvJJrtw8L0VO9/yNW8cNj/c1Mb+lJMerkbYibf82pv8u4dfDncvnU01FA++e6QvEfpisI8P284H3Rm3+PXFqs8H7732YfIpDnv5qEc54qOtsE9f/ub02+KZvdyNyemXjn6lOOGas8nOHG52i0NH5NKYX3W+Fo+X5ZpPJtW33nrvDTgYw07Hz/5qcVRb7x/VGDctTPz4+0wQTnUUr3H1EIMuaQwnXGvlZX315bj17MyHefYwitMa/2LIbdeN5e9a0MfduIaHcXzC1W+NrOcfD3O+5WBcfGvxMSZ66/R8/GbjF77whef6n6H2N9p9RhPH92kPiLr+4ocPvn2W11cD+9/52bzxVxP3BQ8+YRuz0fg4h+1z9mLR4cHPORSDjx4Pwt7c59Fd54u/WHIyr/keKNd92AnXnrfv5uzZecgFSx3gVQ89e/wJTvKh04vrc5ffBsYfHo4eXIodLzmwF9Meu9fFmw2dtWplrPbi4qXx0bLHBy5bDVd2cmcXFw+hup9XUxjy1vjhzIbgkt2luHuBReg1cTW+8aHvvMAl/HApZ2N+6icmvvaePX9zax5u2ZP4yc96ecJRv7DFxb/PwmL7bC5+dabjL248cbd/4tL52+SuP/vJl449/ub87YlGx18NnGFc5dY6vmxq5tZg4M2HeGDJrxhh0olJb+xs4JItHHvrrOGgpROLL52YalPN4blGP/WpT125q/Vf//rXi7+94COOXj01uPxh4a1mYjjj6gxTnelhyIFt349gyVmd1YktoZcXO3mVm5js5UAnVtfG5Xj3ghM9rnpYGi6a9fWBBZNeg2uOp33mE0Y4YsFmw56e2DO5y0fO8mEHN1+Yaqantwe4qh8uWnWAY6wO9oMfH/z50ce5vakubMXGX93hxvMie/diXmPHBg+NXgyx+KsJHUxNPOvOmTX5wihfY8JXDnrCD2cCj5SbfPmpqzqKDY/QOyO4uZdVJ/cD2MXzfsCHrx98wDZmz0avJeqFk7Pl/FuzN3DwIGxwrtbtOf7VW47mnW04uKpN8V988cVHP/jBDx698sor7+Neg6d8eS4P2oulSMgrisIbKwSxZiwhidncCi2hDmabqjAVt00tDtzkXDO/5Ucvfnzyh7UYbYp+D0H29cXQnxJe+XfgOii7Xs3SZRu+uUNjw0m1Yg8fTzmVhxhhsd8cVm+tXPnyu5ULO8IGFxjswrrF4T2P9y5G8fmJRXDd+WkLlw0+Lk4XJvs40sOiw8O56czwta5G2vIszvYw4sIXjjjil99iFpuu9fz52SPc2HXh0xNnHldrK+HTiUvwxgUWzN4UrsW7F3M3FPbs1Em+YsGrdwOCBUezpufrZuhmiz97+uLjyM+am50bl3XCNnyxNbGrB7/s9GHxD4MuPT8Yu4/hhqmvJsbiJ9nQZYO3XLRiZl9PX77itXfhw9BgavTFCkNfPfhbh0XM0/EnYS5/+mIa8+mNNrtqZR5ntkm5VFf6xYDpTWT3uxoVg0/XTX17Ape9c9dZxIOOTfFh5GMMW+78V6pTtdq1W+PluLyL27r+3KP2775YfDon8PrgQAeLTkw1pCvW8oRNz/bW+trumJ8Yi0vXFytv9p/+9Kev32h/ng/af/3rXz96/fXX3/9ngp3P5fbQWI54d07Kwz4b0+tv4bY/aqWm2fO1Vh3V3Ljzs1jqZf1JEhZ7cTqHYosVl3DOWPGBQzoLza0vpvX7hG1nKC7iafC2wTDno5bFkIcYZ23VQtu8yqU65mPeeYt/HFqj1xLxtfzEacyGLb5wxDnFPUFbjvD4JPyKqTeXe3XJrrj8xcun9ezZiZfA8x5MsjHmH468tKR8iqHf+1u29JtL9nHw/pwNH2O98+C9GM9i6Qk8nKtLPjAXvy9U8OIAA898xMmu3LJXR7Z8YBM6ceNPZ05fbLoVa90PjHGp/vmJsfnB0sRhb1ze8Ylnca3TaWxgJ+LBKo55uBuX7y0RQ578igHPGM59Yk2N4/M0PjDLG67Y+W+u2eAkRl/Y40JnjeChHj73yQPeuW/i8vE+Dpuws3fmYaU/OV0ON16qXXuNS3Vkjgeb4uvL84TjGzc2YZ52zcPtswns6gXHPJ3+FPjFYC8+TJzLY+vC3xqh50uKk2/XlQdVfiPOb7R/+ctffvAsXUD3vMAl/emYd9555/19w6Hrr/103/E9mzg3Psezi7tz4L7gu0B7356x8znEQ0o45vJjx09TG3rxjNP53NLf8cWJP1/x26seiLQ/OOKlZhp7+wkTBl37Yc3cn+QJR+8zLntr/jZ1caubGKRc22c+fNVILq4fefdgWE18LuTX97h86MJRi+qBIz+N4MCuOtGz7YGO9WzZEFzsge+S4qVXF/vWewcO/NUJHtxsw+WT0JE46nfMn42Y9PGkM7YPnTEx8ba37NW8vWerWfMgky0/jR0c6+b4ykde4thDNnzYwfbQ3Fw9rJcHf2MY+j4/w/LA2Tnx98PjIg6fzlN7wc/ew6GTO/HLZubW4iMOnL4v4MOf3sNy9vg7Q+JWX3GJdedNXiQuMNWLsLW38rZ/sOn4uWZ7oAlfzf3rV/uPkz9HIg98+Rmzc37xohNbPHnxw8kDTvla99vwfkBRvdla44cHHHhi4+9PcoiDs+upmrn/seOjDvLrWuVHcNP8CRf5GeOlh4kPPNjFV3P5mWvWy4sdP3tSvmGUBxv4OITLRlxc4wiHsBFDs85PXp23bC7juxec5CNfvrCLo4crPiw5l6c9wJEePj17Z4CusyauMRHDHqo1gadVExidQViujX/9619X/ZxRa3x76I5rkh8sY42wkR+snnfJuWtYTIKzmmrykbN9M8cbnlqGFT+9GGz5tFf82OMjXnzM5ax2xRU7HmHJkT8//tUWF3Nraite15337//vHrRLyAHQS7KC6IkkJFvCEmOvSY5fYmw9gacwJNvs9QqrZ9d6vuLna6zQbNeOn0YWK4x6a/z0K8tBLBtX3vIoFjvx2XRQTpzygKGJ1aGLI5/1v8UnnvBW+FWHM5/w89m60K0ezubZxU8Pd33lq4UfH3jVp3zguHlkC4uddRj58DO2rj4aX/OHBK78NWMYxDhMc/pqCDNcPNpbPt0sxXYzyE7vBoNXOrikmMYw4sHOWJ5qW37s3Mi8CVgTqxs9ezHy25gw8NXcPLwZn28k/Egc4Xfjqk7W41JN1Aouf3nr2VvXyNY4Pz0s9rhqxnJoje/Gy/7U44oDP008eRKYxHpCF2c9e3nnq14wCZ216hJGPaxi4aeVL5s408WBzjjcrh824prDtc52ZbHpy4Ude3P7Vk1gOTPegOIgtnW2SXW3n32IoiP85KjxKSbb+Bqz3/PAt/ptHtltfLa3pBrhLBeNNG+MI1sSrtj4aKfgww5eYx9ee8NNV37Vc/OAWc2LuXHY1vBdG5ystQ/G+LqG1MeHl8997nPXg/bn+Z+hetD+ne985/pgjKu4zyp8qmt7uftsXFtsPmpgr9qv7Koj/daKPmxY6sXmaUQsWDDKs/1272w/qr2+JiZhLyaBU+x4wY9vMcz5lyt9OMZqphmzqfGDb55NZ5e/dXOxCbtwjcVsfbHLn3/njT+b5QnLPHxjjfDjX8zGMMKJ6+Vw95J/mHz5xY2dWPzoks6UeXHjUawwYJKw1S8svuEvt9bzNQ+vvMRbXtbxKhcxt67lZV1cDT6MuLMhOKp192Q47bc47QPdyc0cTv7VRy9WnNmJ757t/t+9+yJw92Idr+UWV2vZ48aGTlupftn0JYi+XPnEiW/nOyy28GHIiewcTnPj/NmHwaeapIOrma+OLckfHsmOD13NGlsihvUVc3pSDqdd8dmw19o3a/LTTjscYOntR+clO/Wy5pzo6e1BeLuf8eQDS3x27U1Y7IhcWr8U97ywg6HX+OMC35iuc0wvjpzKYWHprJ21gXHLPl9x5FR8MdQKjphxgn1K3OHH2Zh+/ei06hwnfXvEXlM3Oes96POnY376058+l/8M9U9/+tOjb3zjG488aMcR5+KJiY/eOfD9yZp6+Gxj3PseP591PDwz1sqDHX8PX/QwYciNjcZePVqzbux7PT+x8fA5hvi+ga/6ibvfP+CwxU3PpvMO03cDa+zENvb3p+2x7zJ6+fHh/7GPfez6DMs2wZ0/3vCJOR9cfGYWy/cpD5/KHYZ1PnIi4skBVrh81U1fffRiyJtUY7Ui8ORC4MMiMPjgoolHBwtPsfV8YBJ5s8VBXHP2xvz1cRSHX3yswdLEhWHcntpDWPzhssFbz8b7C6zODHt2bOyPh7D2EAbB05o4dGLJpzPC1ncQ+Jo98idV6PwQpJqdtY8XXJz+8pe/XA+LnQdruIhD8JMPDPbVWi3khBPhQye3+OAMx5kTBx85w+scygFXOgJDEw+2PRHHnL9envHjp6b+7jeddXHZ2P/OPU7uMX6jHQdr6t3eyS1fcfAi1tszuePWb3aL4yG75ozywcG9Am8x1YNfOeIpDkzc5GgdN3HxoLOmyYNeLHjyLVfxxKWDqfGFrcHiq5lbw19O5cUHRvevuLVv4TgHYasLTHHliWN7xr5x54CtHM3hW5dPsfyQxHnAqX2AA5eEIxYOWj9sgAObsMebzjUgLw13Ma2xdc+Cae5cWiP66qS35nrC3/3aun2yl2KUA994sdGas5Eb7mosP3nCDkOPo3W8jfET19g5wCcsvOXqDIvFlp11e1K96ayz1Yytiw1D/c21xJhf51VcnPHn136zU8vWxP7QH7RLaJukEENSM5aQphikh+xtjuQ1ReRTgWwoUexiWINFsr0mdy9thjnf1vla08dhDwtM688icVwfGGJqxl3wxYxPsfDBo9zCMifssimfdPoa2zD0cbPeAdwaLrb1jYdjUizrxiurMy5XNi4o9uW2MYybF5cPe2cAT2LNuJtYujCLX67WO0fhtK/LfcdxgXlychb5k3z0OIXLh282LlQ23iT459eZ6Fyk14cVxgV29yI/a2I478YavZtbNzixNLzgyV2Pl3jm/NyMyhOeG1wYYpYLfI2w0/jp2ZC41Ntva/zc/MU3b51Pvtaqg54N7PKAQS+f1vksFhu6sKzhqFmTs96ZTMzjQGeulSOM4lUreKRY+lP4kXxgJuKdMa3xgSV2OYiFr7588l0cazsvlh5WOM5iuenN0+VP33nm39kRw3Xn/mxdTnDlqImjkWponW37Zk0c6/Do87FGt/NTVww9Ww3f6swefntsbJ2dmOYkTuHRsVmBYZ2fD5Le5MUh5Qc7TLaNF4f+lohnTY0SuLhZE9+cDV3Xsw/N/sn5m2+++eh5P2jf32jHSXxSDvrG18KNF+dFc6/Td/2EY64l5aeWahF+9Wlf1DY+fM0Xy/y0KcZ9fbHgdk7UOrEeD2NNTPadOet07aMxO1zSmRN+5dOauJq1aseWf2Kt3Nh0RqzDsSZu2ObVk6+1XV8+MNiHb249LPhy3ZjGbGB3Tu/DKbb1RA7wNVhiiwOPwM4vrvTp+J15h8eOlNP2/OHxNeYTfvOtdbWDFz925U9P8oVVTnoiPj2b9pk+bHZxFEOt3ZONw2vP+YcFI6EjcPhr7b+eZGMsNn1xzJPw8dLwLj82eJHW2S/2zuGy876h3zjm1bH8ra9/McSsHnzkx8c4XOvrb1xja1ycYixvOZnD01c3esI3HnFRF2Ju/RRYxNriwY/b+hQjrOqTTevFg6mpB12Sv3uwOKRrDqaGe/mzdx1rcFrfmrExl5P1coMdzuaUnfUERtw6V3zF1OLKfrGayzV/+LXiF6eerZzYwVMnX7jprNHV51O/9YmLOMWiI+bG8ReLrx724rOtdh5WPe//DPVb3/rWo9/+9rdXDNe2eHHBxxnw+a2HMTj7vE+sEz58/QZu50EObGH5XO+7Ohw+e67Z8WHn7OUP0z2Ab58LfI4plprw7b5VzcQsh2xw66GJz0R4sNdgqysJq89tuHrgpAZw8YZp3v51LuCIa87OOn+6+NOFAdccN804Tsb8CB1MIm5nwRyn4quTdX70RE21/Kx5ENSaOGw1Y9zEYxeWeTHjpyf0fPmVszU6fbHDVg97Cl8LVyyNj1ro2yd9OPbHA3S6altubOjEste+l5qrPXtNPPXyG7jq1d6Khz9OfE5MnDxM9EMTZ0UsunzKo7p2bnFxltjCxh++8wdDI9bxxRsWzsRe4Yurh3p4woSV0LGBbY1/NRA7wdV1y679oRNbXD1urtOPf/zj1z5Zx0sMXGHnG0+x2Gl4yp2Nfeqs+Y12tYaPe3yN7Utnt+vSb2LDIGzEZ2e93K3LpXxgk2L0AwK1rJ7V7zK8e8Gdvdz0cqAj8PFMF0fr5Sy2GrNVDxyJOERcY7VQX3b5y6MzEAf29OXGtnztHRwxxeIDGy47ojePt/uxvYVhX5xrYznxl1P3dXNx7Rm9e6048OjE0tjA15qLgTs/HJyh/OHSiVnjR6eF0dmEExcxzPFuj6oZbpo5HPsAn6hRHJ1fnNnBIfDjm78cOkt0fPIzV7c4G/N3P2DDD7aYcPJln2/79qE/aF9yClGTVII4qZeoDW0zJKuZSxDGKRImbFY2zupvjeHa5AQf/PVxa+2D9OHH6T7M1sU4bRxgjeDaIc/HGp1YW6sOvr56WneI+IYVNnwYi7tc+Oa/en4Jf43gBBte8ayJb++6mPCwzlYLmw5vMYne3E3QnluH4QaSrXXSHsIud3rxzdknGx9WvtZxEYNOXH4aH1jh4LZ5l4Oebec6e9jF4VcrRxzDY5vElW+1Uk8/de5mXH6w2JNw448XPxiwjN3g3Mz0YqtF/yyMPd/ygrljc8JPfNdzsc3lb00c/dbrPc/33oj5WCPGfMXRzL1B62FoxJo8VicndkTMpxE+7bV7HlvVAABAAElEQVRc7TdsZ7V7DUxr1U1/Chs58BEbLpzqHJ+tQ9ytlYua4WNezjDsCzuYTxJc2Xvz08OLC37eTOjF0OD7IFXuOLDX1H4/pLAtR/lq7MohbnKzjxphQ9jjR+jgaYk1PvpqdfqIJadw5HDWJtziZlscmJ2VdGHw9aGoD1jVqVqx56/lE0aciyd+/nFZf7U8sWDYA/th7EOW32j3N9pffvnlK9RiFftZevz2T8fEUZ/Eq1zSn739wlXrOsg32xPDXO5qzV+epw1fOlj6znGY7R+Mp60HH1j27T5/8fDREjHE57P61mF2PvTmYfA1hyvu1pj+lmS/sbLdXOnMxSDZ4Lqyea/eeGPBwi//8NbHvpHqtGuNTz97rG3N27fq1D6HUQ/L9bCYO86fPW6dE/GM5eNsJnzjHk55V8ds9fCr3+p3DIcNnk+yzQ8v58G9WKsedGLCkgO71vKtx1uOYfCl8+WKrvzWfusFW6MTy71e2xouhtx2n6yZ0yd0sPCIN/xqXs/eurX88aezX9Unu3iyJ8sdJin/6uY8VM+Nexk/4aX7EzP1KJeH3OxZe6IvNzXBF4Y+YUPotRU+7WvxFyOf9kDOWteK9faCXv7mBI66wKVLb40tCb+9o8OXbfvFBs4tYSfmxi1Oea/ficUGv4Qv3tU0/fZ8uj/BUz+fdzoXa/vQOM7w4Igtbhx2D8OpJnHMBxYcD9teeuml5/Y32v9y91u6/kXa73//+4ubz3tyVTPxNGfBgxO/pWhfrXVNtPce1uDsNyit0Zvzl5P7QQ961IDITV3Ys4Xh8z8f/tboNT7dV+CxIfT4hc3WZ64edlRre+h+Bpe9e4P9FMNcbmKLAdNan3HFgoun7zlq4bMuXfzZ2xsYsMXl7/uVP73Rwx7Ynld4WOvho32FgZexnp/vUvErhrzFxcdnajh9Pqez3pmrNrhoRA3wwEku9rK84fEVs/MubnW+AO5e5AUPT42wW9vqooeJFzEWU73hJGKygWtNTHhk7eit40ofdrbmrdlrZxE2H2dLE4e9M2IvxKRjJx8x0pW7WNbUDpYzQsdPPnrCnp6/vWEnlof6ai4e2/aOL506dT715p09vORl3/1ZFbzTwcGH4MdXPBxwcYZ8Dyf0bMRvf+BozoK+/HHCHbbY7M3lBTt7uGzS0bNhmw1M8olPfOKqv4ff6khcR3JqX+IjD9ztoRw99MdbTmz4W8Or8xRP8ejZ4qAnYVtv33Hlz6b68OHPRm7GfNnI07w9ojO3V3p43UPwITBwfffddy87cdJXU3P5wRdLbD5+I5+9OZ7FP3XljJdnOc5Iuu7nxcRP636JgzFMOehdN2KqPRwNtjy3jnRqYP/+67/+69p3cw1f9YBhDAMv+9q+yEfeBJbf2LfOz5rG133V9cQ2HvCsiYWTelmTQ1K9rLWH9qUWvlzlLTaMaqE24mqdc2tiE/HVko86w7PGBle45sWnV+sP7W+0R1xfoZBUEL0EFLQ1SZoTF6tmQ9lLUKuY9WwlqpGwKzK9cfEuo3lhH4cw8SLxwz9e9MY7pyP4yeVWPuKHvzHf83y2V/jy0sPVL5/44V8TIb1+a8I/ux0vJvvFkEM6hz2/y2heNk51FKsaxKkLoRqBkKN19kSMPeh7wceFfXueLV/6uIjhYmo939bZi8kHZ/nBTIdHvGDBsaaFQW/Oli+xBo+I72wXm84ae770YcuzGOKScFujp4PhxunG7CbhZoAHf7ZuMmzousmERQcHXzcnN1CtvYFrvvvNfnON30Xy8YvYbmris60Vrzy7wYZBrw7sSHtmvbhy0KyxJ/jLiV++7JvrrRennu/a01cbmCf+Ypx+sHBn09hcLTX29qGzxYaOTWM9DnRiw8qmHgY8PVv6fPTe/KpjevvYP++rVniwDQueNXjuw85NHPDCaWtvzh4GLHtOJ+at8wIrXuzKBzaRKw5aa9k375pgLw59+VgzFluznr95+bWHfONkXK1wI3wIvdr5UKhW5jCKy4a/Rr8CKw7F4KcR68brv+NycB1p7N1D/N3F5/2foe6D9nLDhVSbcjG/T+yDs9P56VzAUh850MEyr2Z6uOzYGG+d6MjJybwaWo9r8cI0T1dM55nYa2uEPTEXs3Yp717i5TztPWh92Ox5a634+sbxO/HNN3ZjdeMbz/zqi73rxvyJ3NUfhrw75+0tG2vFYc9GjenUzDj83aNyqr6L0R51T9drpFrFk1++xWGXXi5iaHTlU1y2RMyw2bXuWsJVq67N+YnJt9yy2xzobgl9PPGSoxjlYb3x+uOmzu4x3ZPp8Ien7usbJizNnLD3Xt79Cofu0fzlUB2KT89fb00zVydfKOBbq87WNLzotWyyi281yw62MV94cG6J9XIzlpdGVw5xoFvecOnYs42vsdoWv9jFKe9i8yfVkD+xT8WDtRJmeZqz4asvZ+vw9Svlwj4e+XY+uh7jYN1YrxH19z4ufnb04ttX5xKf4lWrOLKlM8cDjjn7pDWYxLqzdp/AgFUzh1d+/MzjsrHSVy++2/ItNm5w8WFn7HOQZgwH5sa4lWc56reO4tCFYawO5vDbZ3NrJL50Hrj50zFvv/32c/kb7X+5e9D+xhtvvP+g3WcW94H2EHd77nO5v1WOn3Pk+0LC1sMW/PqbwHJJ1MfZ6aGLfBJ2ai2OGD1IptszUZ166CFW50HvfuPswunhszGBg68mNjs5wZALfw++PXSGQ+z3PniRo3sAHQ4esPAn4miuG2s+w6gTDA8W//a3v13fhzo/cvSnavpb33D463EVw/cnMek0Ojw9mJSDeuPqAS5e/NVIXlo1lqu6w5C//W2P7Ik/g+JBVt8x1aP4uMAUl+hr3UvMG4tBqocxf3q57BlQC3o89Th3f+Hf+bHW3ovDRu3hnYKLPPRyUHtSXDUTB7b6im2tHGCKVS3wsIaDGvOxpsXPPsPQE/72v2dS/Dww9fASnv1wRnBpj/h1RtnD7p7TGXA2X3jhhev7un0UB4ZYcNSGr766wrDfbOnaF5jxNxb79MVT7rA1OYsFS235yJld/GGtLkw6D8vVyZ6oI5193LOHE/54+xwihhzlbd/wp+OvBmxxtKbhyQYOLhobc2t8NbXAxfWjJ9lah8HeGn86c5z5ik1XDdnwwcH1qVbZwsDX3/dXN7Ywui7Zqmm1tm7Oxw9oSGti8CVi0f8Pcfe6YttVtHG870IRUTwfEb0JD4gYjFEST1FBROMB9IOaL+JVqbehkQg5GYmC3sTbv5n+h8fJ6k7vnZ28BWONMWpUPfVUjTHnWmt2797m+eDknKmdfKx1fzBmr+Y46mGIrw5yYaP3wNu4s0VnT3BqT8U0VhdnvR+k4GZN/mGLg4/7Mgzr8Pl2Ns39QNLzKHFJe+De7JoxL357xE/ecaMncIl18dovc3XAyR7AbK+cTXmyocdDXE0udPLAgQ1/9/KuM3NrYhmLo3adFzzU2g/Kf/KTn1w97P+V9sD/Gaqf6FY4RVEkTZEkVW8sMWt6es3YJjs0EpAYW73i6WvwJa1QrfHfxpfAJnEwhsM2/+Jnywb+StirMxa/XFuDE1aci3nGzeeuXuxiNC4ffbp6WMvhzbBh1GDgqC+GsSYHuMZqd5eUPxv25vzlAd8chjl9edBlH0Y8rLlgNBdX+niwD6c6h613wdivxTXnk73Yxs5yPOHzyY9POOlhpGuvrIVNZ9zZFoeIYWyNPZ5w3NTpEmvs1GDzgOuidwPYB+1sNVhuLPwI3zhtztZheAPpOrbeTdk6vM03TjgUr/Xi2ifNnllL5ElfzfgT3KqFeTbhW6PjX6Mj2RSneT54nuud3wFwg2HMTl35hkMPo3yLQ7/Cj/DF0c1aI3DzDxcOO0JnvZzYq1HrbOngtaf5teaNyrjawrKn3rTtcXsJg148+HqNrzNjz+jFI/Ccn/aEHazyoxcLBh+5sNHTa+Z6uOlg0xN+/Em262dMYBLzeMPER/214tKbw67FbWvLd+dsi6d2Ply4PtgVk01Srs31/MUvP3HzpdPMy2d9G7NRW/cEWD6w/n88aMdDPvqzpNM7I85OfHHOT67G1VneW0O47c2uXaqjWLVqmq+YZGsbB3p2hI6c/cO91PPNvtwOkOuXYsRdbsY1djCbqwMxrw/bnG25xCXOh8O8tA4rjHBbY44TTDpnWSNxpyf5wHD9wORnX8vrMLx+YZM9u/a0OOnYdP/Qa3Tsw8QjLvAXu3NDvzHo4bAVS9+YHV0C2xmNL44bjx37cMzZstuYfIg4SXaLGbds6otvDgN29+Q+f+BAx7ZaFU8MslzZmfdebt/E12vWu38dzvOyNcClOrmWxTS398Q4+/LQJ/nqt2Y4x8NYTokYYcihzyrp4XRWyzkeMNhlGw4ftkQ86z7TWDdPF976G4vHVg23bnLgwyZhF26+ehz5x8OcnXn8FidfMfgRuvR4xGV17ODCpFdbXywJHaGXs320vvmLt/myN+dTDmHTpbcGh1THY3LLS/ZyK364XOCKu7r0dFvH4vIh7cExuX6hZy+msb13bcg1LHp+bDQiPrGm4RoGv8Rakp2eDW7xoStGOXsw9Sh/o/3ll18+/jPz559//uDq84p7h9i4iy8P17OHCniog3oQ62rl8wUf3yf4y8W8OroufY/p/Z0vLOvF8/nRd3mYatk5quZ82HRPq756Zxa2mPtAy9x9kU7jq8lN7PaMvwc6coTHR472ng2OGh1bLV5wSHocYaiTenqAww8OHzyzlWstPuw0c/zLAWd+7PushCdbNsTailyrS/uGk7G1friAL4w4WNeIuHjbL3ZilDtdfNlag9F6vOjUxRmAYd0a7Bos/vnQ716pv7xdA8ViW3y+1uGz9ZAZhrnW92ix5caeno05vTGMzqa5GPB8ni+HOPLHkX1i7rmUePbHw06+1aAzbJ7ESRz59L2LDW5y9lvDcvJdTfxiiM3P+RavPJw5D17NV+CJQeBY5683l7NG1AjfHuqbi8Nfnq5rPvGmUz/+uIilRs4ZnmqBF5uuNz7xcL3xk3f18mAYhpjWtfiKY03DjYhpPQw9u/I0F9N1oZnz0bYG1uCIVxw88Y8jPalu9nw/gxiz7e/Fw+dDDx+PBA+28hDDA29jNp3H4siXqAmOpP22P7DYwhOT8HF/dZbcR+DiofEtf+POBx9jOHqYGkxzuTgb+/9YhGPN2QkDL7XkKy85wSJsvXeIrS7tpR5n58W4/RfbnL949HI+y3Jlx0YsuVf7cLpWqre64C82Tvz4i03wpy8+e+vyi4ux/eFjrFb+dMxb+ZflD/yg3QWkQIiSim4s+XpjSVqXgATNiQOzD9qtaRWLXbb8NXjhi23sMOgrkjEM+nhVxHwPAvOS3aguDvmvbRzTx1Ee6S4C3aLkj6sWV3nBk49m3uarAR882NxH2LEPv9rEHcaOm9+GHV/r5W18zh9muNb4lYd5OegT+XZDMd4cw4fRTcl6e8+eTa2bo3lnBQc17IKKNxz+WrXaMYzlu3nRw6XDffM51wBOcYyTYi1u6/J1U/PbDd3gxPMGb02e+YmflCubmrzlbw2+OvowtzxxIWEas8+nmpcre9f1+hmzq2blAoNeI137xuKxpzvzCYt/9ZUTO2t8SPscrnU6fRyM4fDH0zws2Jp1fho/LR+25uIWzxqBlRQXnj06Y1gnOFQ7c1j2SJxw83UP9gFOHLj89Oy9OfbByjqdxrcPzcaavSumPOj0eFozFtv50OCoabXZPHHmf+5hhG1dPD1ffTUvhzAOoOuX7PS4ZK9u+Gw8a9WbvUbwXRELJ6K3zlaO6qqpMSwx2yN27OMQJn0Y8WxNX76ruzRmV+19KH+nHrRXp+V03gdr7Z1cfZjROg/VRn3g8a/xvRQjfWvVsb2xTtpT8dsT+jjmT0fCab39O+/dxrHP7MsDDlwtnHprxq2vLRx62I19+KMrj/owwotPtvQr7NngSDZ+82Jai69xPtbPYp0er/LX018SHPLhJ0650De3X91jdh3mzl1PRMzO2KG4fhGrnMONlx5nbfOi5yM2H6JfnPWhT+KVT+8p8MuVfVjr13h7+VR7MeXq/df9RTOHa6yHy6d4sPJ3v9t7TzlUDxiwyyH98qke6cSSo1rBF8uXi+zq6Wv5WqvRba6wrFWncPLV03X/wNVcH+/6fMRnk50akbWzRq8O7IuvVhqhby/02YR7GF2/yAFW+NbDNA4jezo1YJ+fcfN07Om839izMya7tTW27/jg2pk01sQM8xhcv8Ck7308vn32Y0dHcEnodp5en33Yu3ZpXF56vvJQM30iL21l19NXAzjykndCZy4O7urk4VYPI8on3jhoiXVzdYXTvPX6+FcHdo2ziUt78qgftL/00ktXTz311PGfoeLq/BSzGui3RnKz73qcrXeNqxG9PWCjVyfnxvtWD17kZ2yNHZxs9OVrDaazzaZ41vHkr84e5MGjYxs3cexfn2Oz18s1Oz0MD/98rrWOOxsNRnO5sqGzJh7xfcXnrPKiw5cfG/bmenO+5mJpRF7y75p0RrRyZYerOTuf7/Klq156entDT/Qaf5jWNw5e7Ok03DS2y7W9CVN+7Ah/9rDaV3H4qNnuf/5xglOu8fB8h7/vpXjzdw34rCh/vr5rOiN8Ozv4wLNOr/GhhyM/uCQdGwKjurFlxwYH9S4HOS0GG01MZ4Qdf3uNC0x6vbk19iRfOnXzvVxehL86+FcQdM6yGM4bPTz7g5+16u6e5Yc8dOWhBsb2R75wtGR5sJGf60IsvoSenTqpI5zOtz3GieDRHqgFwR9XdehfU4jPFi7O+NljosadcTbWi4+bdfkTfnhZF4O+PcKxxkZM/nr64vOh0+RHD4uwE4NOXgQ+O/Zws9HTWScw+IqpjmdeMLvPsTdXKzjyV1f4GoEdF3742H/nhg87sTqr8hLX/UntO+Ns2PYvDYzFs59wiTHM8/WLA4Hll6b5sqX3nZd/1xl/+6IXszoba3zar2rDHoZ1Ovj2X13o+dCpA1u8q/dB7OaFjbjsNBJ3fnTxq9bFxH+5xhNGceGzJ+rNHsewN6Zrw/fwt/J/pT3wg3Y/PUbGIZEowiTSzRE3rkleM+9m4xDxY2tNwdsI+hqfLn624hJj9uZaBY3LYXTzonDWrVXEXb9tzL4YeJB4ndfCD4t9XNka020O69M6HWFrzD5/3NWiHOKQ/eF4eilGtuEXr7xObm865Y+HFlfYly6cBWObr57IsTzNca3Rw9ToiJguXE09nB83I+vepMRg70bjRtWNFT/NunPsJqO5SRI+bHuTwQ823Pz0OLGzZs5OT2BbX7EGoxybl0+2xTFny669Lmc/ae1/sxbLGwL+bIstD+Na1yuexuzlT4pBJyYfseJmzqZ2ON28sGlf+Kq3G58xUZ9qdONydLDo1RA+HK0x/3Qc2JunDyuu2RRXntbM+RJzLaFnp+Un72opXvXSJ+nCNedXLGNrmnjWja1ns76LzT5/8YydT3sVjh5Hb9Llo4fZmuuCT3pY1turzrn6y5O0Zt7Zrgawuu+0v7j1YaR8DqDrF350tebWq4OelIPxGYcuYVd+xs1b13ct4HYWvkSefXhm1/ksH3X14QAWH/rwyqPaFoNeYx+31h60V1/19z75//mgHW/7Ia9q7T27fYun+pW/2rb+oHlXYzHhdBa2ntU4bvpdT8/uLsmH3cYx1vK3n52b8OSXT/ttfps+PPm5hsj6Wa9tXPZ45s+vsd5a3NKn05PW4YZtrXU2xmLFaW3hWtPo5dj+su+eUPzW4JJ89OJkpyfFdj8z5u9ciecaY+csuB70cavPv/vTxoDFLgmL3pitxiZdtvqwxF57a8U3vk3WJiy2cnNv8cXGh3u5E7VkR8724ifq3p60v/m0H9nep8fTNay+8MTqvbka0i0HuNVta0eXHY75pWuejzzLOa7hNj/3YcHnC6t6tEZfLvzN2aRjR6demjmcGh+2bMKis46ftmtqZy4G4auR/Bcv285tudDjEr/VW9OI+ERce4UXn4QdG+tavOmLmT2dGtwm8bEebvkXN6xLGPnr+auDvKpVunzNreVHb97Zlo/4teb5h+97QJ8Hip1NfRzMNx4OWtIa3V21ipNebYjvzI/yT8e8+OKLV0888cTVX//61+NBjDh9XjMuf7mVh3EPVNjg1/t2NvLaerkPe7+XO+HjexE9DPbW4NDjUHxrmrj40FuPB53vZbBgOJPw2Wh8fYbFxzqdOObtgc9p4VqHlX+c9WxgG4vrsx1sOPRdH+bh9flQ3vT4ieeeHU754SV2uViHS2/s/t6e6HuwY40NXd9DxVIjPq3bg56VWI8PGxzKYa8Deucf9vJhY05P5Kul49f3Devituds2MpTDwMHtTHGKxtxNDo9nPYHrhjVpb2hZ0/UABdx6OAb46LBpGOjJ3DYaMb8cBNXfPpys4Yru/xgGi+W/XGmCL78cNPKO65++c1vf/dgWUzXvn3gK55zhY84/K05i3jBZkcHAy6fbXIt3/TVAR4MnMV1feGQnfzkIjaf7NUTL3aur645PGHBVGdj3++rI86w4NL7vmJNDl1ffEkcqi89nXn4/My3VVs9znqNTxh4wWouL1jmfLSkmHgaV4f2KK7qpC7sqhtceWn8xOj86YuPHz8Y2cRbbcXS0lVbcTR7sWP7gCv7+OPpt7nh0KkBTrDCxcFDYg2etepiDW4+MOIqjxV5aHys6TUCAzY9Du6R/nyOWsHU1AtP58WcrXUNN9jEvlvXt6fxw13tLp0r9YLDF69wwmoOC4Z7OB3uOIjPtj1ht1jOtu/hP/rRj66++tWvHlzPNTqUd7w81IN2G2IzESog4qQ5ooQNccFLyHoP2s35daj0JB/FVjhzhSbZGBejmOmWCxtzGI1hmfMLoz4MvXW+1uRLzGvrE4fVsS+WPNamHM9Yy6nxYuIRJn382NbEXWGjbnrCbvvGxanP7jC+8NK+OKx48ZOnWMZ3+fPls5zjSFdecDRnwXlhY11MF4ZmbN25It7sYLuQvOH0N7jgkLixcfF3I7AGn5+bLA54xss6EV+e7JxrdrBWikVnzKbaGK/+mNy8rB970lkRA1d/F8vNzBs7kUM30GqHM3vzGltY6sXHOSpeNvyyS2e+ORjDiZd9yUY91M5+yLM9sw4vaU0N08PV8mVb3Hp+2fGLQ7jWHkQ2Nj94aqxvn4yrpXFxi2WulvZLy9e6MYFlLR868+KbF0es7OC2v/TZdf7j1Vrr3lA6E/a02GIYq7G90rfWOTdfHxzhF8v+WsfNGdxzJD7uMNqrdPQaPOdCbJjpcTMmbGrm7QV78dhaT4zp5N3ZthaetWKJ7UOoHOjK39je+7CgV7/8rIUnlvpv/HKNx2H8kC+uCRzfzgft/jM1v0lxqZZLW/3kJi+tD9ps7B+u+uzUsnpufRbztrEa8xFvMRYnLjCMz+eAPi7GfMM0Z8+PpG9+KK9fOjPmOLX35tZwy0f9iHnXT/5iEfM9R8vZGl/NeH3bG7pirg3+cQtDvHI2jl/cWtcTtnEzJmKEAdc6HBwWh07DgY81LQknTPN4li/f3o/E5O9Mwd37F52zF0b14BMPvTmb1o01Er41urUVN91hfP2S72K1Vh9GMdLr6fgSNSR0xu4vPqdo7lf5V2t9tTLW8tdnp344JNmZwyxe6+feenHUICy67vNstmZrw2drF1bxs924Z7zOcFwXc/12DNd+y7caVws41rcW5q2Hky497hvbetK4/MQg6asBLOc5zGxwSWdco+v8poMtDrFOL0464+Zyj3Prh+P1i7VtWxe45WCM822yfIobB+9TYuB4lxSLHxFTI5tfuK01Z9N+twfiii//cOrZ+iygGSdwYOOjFac5u2IaL29x8ykPNivZ4BYv30Ee5Z+O8aDd34r9y1/+ctwTPWhwrbpHit/91H1Ffrjq3XO8V6tZ+eJZPdXJ9yk1o+uzPD1MPuKIZw2mesJwb+6zAF8xqzU7vuph3INuPnGBbwwfNl/3/94DrGmdU73f6JQjWzH5+syk3sZdF3ixKQcPWuSJo9w0vDT1kZ/f9uyzDju+Phe6X8vFXD35iIMzfnhYN+YvLj86ueAbbjW2hoM1uHrY4sLxEMlvCxuXR2e7nDpvnTl6OeIHn+CoFuawxeenpaMXu/jw+Kgne2P1UafqwhZnORAccbUX1ePMDy92MDRzfTzal+YH8PULTLXYPW3/2Iojz+qg5ubxb+/Fxo1dOcZdD18OrZerXrzOZnnQqbfP1H4RDr64auW8sxfP3vd5mY99rH7Fp+9BO515XM3F1Ej1YSMGfrj3oF0O6fARm+Cn8afHy7jrf31gkPYSX2cad7E8X9HkCsO66yTeYoqhlnCdzdboiXm6Q3H9Yi/lKS9c+RmzEwcfNjgYs7GWjVgayVZP+FljLw+/8KCHC8d5cQ/oHLC3J/JyhoqljydctaKDkw8+uMsFhljqxw4fPj1wNm+sbj1A5q+ucNWR+O7tukusxR82XOcABi7y61yZVxv+cTZWk9bEcjbsEzw58NVIteeDL07//Oc/37h/4IOjJgcC25jO9dwZEIs97O6Ra6tu6q9Gu4++y8MpJz7VIq7muHeN4oE7nTX5q4884mDdGJd+4e2xxx7j+kZ9jsk9Xh76QTtCyCUIXZI2zMG1UeaKYvNtjEIocAUJg11642Ip8G2x+Fqr8eGbTz3u8Web/pJ/Oljsandx4EPEPsd5feX1m6Vxeb8ZHiw2eMA0J/E3pqtO5gnOaqne2eSfTT08nKw7hHdJXLqJ5Lv1vOTPb7HF0sTla60xffydn7ipgYvGzUd8+m5KLnY69t4A+qeF+K3AZgfDDYjA4eciM66+eo3PJbv0x+K85C8HeN1Msi/GuLwx5EvUy1hd5OxBe/8JBVw3CHlkoxeHfedBPHpzN/7ejOhW4GmEfzzTxxdO2GpFzF3n5mqIw+7ZYXTzIm51jhsdfOdUvPCLrWdT4xe/xTZmE8ZtNmcfc7Zq7HyFQYdL1114+rhYI3Gsz5ZdtQvPfCW9WOz19tUbEvz2kx19PNOHZb0zYazOGk5wqnEffuwTnXXNuHmYuIhD7LE9wsFP1Tt72ZYrDGOi1+DDiRM+rZW3Od6bF44k/a6tvjf19mOx+IovdjnkqyfuBT4EdV8p73JnQwcfXiJOsvp0D9LbF/X1Ptkb/MP+JyznuHhe+s9Q7+K8ufnQ0V7g2LUuDjv1bf0c+83mOGhwnJ3m+YWv/sT8bJMej9btnTEJv3X62mEwL2z5tvfs+NWsd87oumbq8dTYNdaHJ1RY+uWYHd+77MIK5zC+eYmf3l6FvzbG5VgsfXzlQsyLEQ4/+eutiaGZVytjeM3ZwTTXrLtmvR+R7kXiwdbYuyZ8oM7vXOP4Fis7mJtDsemJeTH5JHDiGmYx2dCJuWv51scBTrbW5Oz+7HOKLw7GbOHLVy3Ym2ti8KELEw5b9970dCt8ycbedby0MI1X+rJDZ19bx4WPudqlL4fwrMV9cVvXV0dc4bTffK3fJnJiiwu/OOQPV21IOHS1alL8ciofePE7Y9BX29ZWZz/xSIohZvtoTNi133Txgqdlz7Yahddcv9d3vvQ1OhL+Mbl5EaPrb/WN+VYPuuIbex+1BuO+wn8xynHPSzyrSX1+YvY+jl/rOBir6/mzQL7WqgcdMdfMzzrrMLcG5tlZT2Cwk0t74mGHv/H6hz/84ZH8Z6getH/ta1/7nwftHnL1ncVeOoPyx5Oosc81bLTyxBdXzfXiMyU/Odhb94Dw+NCJRU/Cd3/uswCsamm9s+EsEjw8NGGfrdjtpxikc6FnZx0H2Oz9q15Y+NHjoNb+bIb3Cvb2gB4GH74elPl8x4euWhmz5+s/kfV9Ulx2zgw73xPlJKZaWev6K7/OJhzrPRwKQ95dl7gVQ3y1Fwe2OOzU2ndYfnTZsTUWQ0y2YclXjuzlTPhrzfV8mrOBE4d8qz1bfOWlTmyLI5aawNKrvX3gm1grVnzN2xv1IfKh0xI6zUN2uHhUC375Vi/xiVqy7SGw91xnhi9umlzUhcCx5gxWK5gEHxzYqJE842kfxPLDn9dee+2w7/pxZtjLlU484/aRn3VCL0YPRI3FUS85WS9fa/R0OMPR4+25h3MjP/Zds+bFKB7csPHQ5KVuMODlh7NrV2MnH38ex/mEIb6z0DMYscKxTpxtOakrXqQ60skLTrl2xvX8WusMxY0fGw1eAgeuZlyDwxbf3SP68sLdfhE5+0GK3IgYYpY3XFzoEvca+yIOXLlXP3awu76N2bjvqDlca3Q48pVz+XbvE8seyw8G3Hi5H1ZjOfLBGw7czg8dXHNja4QOh84B3OoXf3byE1++/iNpXLO1ZxpcvvTmzg9+akxXfBxwNs9WDWF73kAvFpGvevmuTC+GWhA2sGrW1LE/1cMXH7nivxzVXrPuLPge/uMf//id+89QFSZCklGImjlpI4ytEaQrXA/a01WICsOfpDeGQ8+mdfqV4ubXgeFLl6/C7lp++nyNs7vkv3Gt1/jzNRfDnMDacf5s1SUffsQ8XTwu+a+tMduzwJG7g0XierYzZysOHIcv3TE4vbCpyfWSrbjiLa9qU4560v50oawep+zZwnMOu4lZU0fiAu7G44L1puNiht+ZM4aJC1s4BE6x6uNxGNzYhKWmxiT7Y3L9ElZ6/W17zQeXeJnLkU7jK183aQ/Z//vf/x5jdvTlW53Z579YdPbK3uphr5QrfXsKCy9ru25M3wcSOPJTE71WvWEkxeRbPbKzVg2Mi8m/sX7xwt0+22LVr01ja9VNrzZbO1hsFsOYXXGqpTlZn/zKwRy+ubEmZ9Kacfu0e8UvvTcz+96cT+vOBD/SG6VrAC9x7ZGaG4tdfPN0h/P1Sxz1+bKH781PLGtJMfQ19sZJ54Pf6uET+vYgDGvp5ayxSay59rv+zWthwRC7D1Cw1TAx9mHEhxL3BH6aWAlMc77Lt1jZPUwPDzd7433yE5/4xPFP1h72J+lnDjj/6U9/unr66aePLwXV5Wy3cz5Eft1H6XDsQ7h1uktnydqDCJzqeubXOV286q4n8dCT9vC8Lsb6Ni5+c/4kXON46bOPs77xYhiTPUvs+GvJ+tCFv+Psw2weht5aube+8ejY4KOtfbhwymfrQB92NvaGrWuIf3tlrFnLJj4w3D9csyQfYz6w2Dpr3suN4fQeEw4d+zjqzYk1dnT6fKyL536gT89n18LM5ozBno6PXrzbhI183bvdO72fmxdbrOUeDr/a2vItr2zPfbzO+rjqta29sZoXq/u13KqHMTv4xLham/OxVj7FY6OVTzjpWi8vftnCJdacDec23sWJU+cQXnnEh22STp+dvjE9CZ8eJmlszVhs74vml2LgtHq2nX1xuhbZNDeG7cyf77fty0Fm+MSrPYEVpjWNTo8TDtarlTWNhJVPOLDF5xM++zCMbxMYciXGWvvWWhzYtZfZs3U+fQkm1TUfGN1X8i2OfkVeNfowjOkJn83LnB3JV0/Hrr0y9p3505/+9NXvf//740/I5Hc4P8BLXPyN9ieffPLqueeeO86DWD7jeW8W75yneM6ZzzRsNTX10IGtOqqnsXOgbnCcNfXl232mWOKxaW86C9adCfP4sqPvfoKH+551a/HjI4e+T1hrXQ8XDjtxfU5zD5WHef7eJ/CLSw+82RCf6+RD9ObljZOcewAEsz0tH+dJTfR01aBzhqvYeBD50pH2hh9sja3GBhZOmrjm+h76rz+MbOjZZm9NS8SBn449X3NjEm/61sOlI3iqj72wnxoRV/56+8JeDdmRcKyLaU/kBI+unLsX8lkezflpzoh1vnE1hx0/Pvap7z/WnTsx5Ip7da/27MMoBj9Cr4nZeWGv4W+ffS/3oJ2PuHK0pjZEHA0O3tacX42ufXKu46LHtetC/M5a15p47GDCUCM+8cXFeaQrvjXC17gatI/tkbjiwHat+OzSPrlePV+RZ3tRTvgQMYstljrxF5NeD1urPuyqm3HtALx+MWcvpjj6cmBj3bwGNww9yd9czuaEj3OhZvI2t2ZP/NBM/u2TNdhJ8djj3w92jMXBVe5bv354JCYeYtbUFxZ7tSflQidvXOKs1oQPO/5wxebvnHV22LHhC4edxpe9Zs3+u6YWm41mnZ38jO2tHzaZJ3iWPwz24mnOmJjGuITZueCHsx5/DUY546XhSCe3rgN4BCZ8axqORFw21tgkdLA0a+z8oNyDdj/gJnJ4EHno32iPmF7QDRxRREoSWcTJPminy16v2bB6YwKfLZxLwi6/fMWu8Qk//9bivv5s6LOJJz2dtfyyscYODp1N7YKxYcRafs3pNMLPOK4dEP1yOIxPL2HHTR82PFz0G38h4kAnXpyzb725Xiv/5vGAI2Y25sb1y61xtmHiUFxj6zt3Uakzfb7sqqPz0g0TF28IfZgz7wI9SN3wC4dOLFgr9kGDXU2rL7s4srEeXzbt4cbIR8+ejXV59SZizQ3Ljd6fjenvc9FvXfgRMY1r1dO8MfzNLdts9HDw0ZLyocNXPeVG+GRPp75ujNVhY1jPrz2xTujFKVZjvbXlczjcvISX3+aXLg7r15mpNvHQ51fPj536Jeb5NDZvb7Krh6Wx0eTTnA/R239vMosjbm+8YlkzhxOvOKiH8+8NzZtX+yCefdmcGuvZkfgZ776yEdeHjvid7c3ZtZfmxHxbcddO3KR1vSau/MqdbTbqoHW21wYeO3k4l72XbG1hyckHcm/wxbEPK8WERdjRaW9F1MA+uR58UfGg/Yc//OHVV77ylQP2reLL34P27373u8cHorvwqilO7OTozLRPffhSA+v0mvmOH6QexdQ3Fnel+HRs4pYdXfvCpnU9iZuej5aN8SX/w/HmxXp+i0efGNfoOmN08ci2fv3ZxIm+GjfW1/JfXGv5h6Wn3/rx7XrK3pxUHz7iy5mYNzYPr5iuvWLxg1f+5uxbh8Pe9WVsjVivmfNzvYrh3tT7Cn1r4bKHpRUnHX8SVz7wYCTZ0FkLI72e3/qwkePq6XConvDN3Z88jOgeI3+Y1oixlr+e1B+T6xe41Tqdnl2+5jiFZx6+vnm57pwuG3WoTuFbg20eZrHgGCdyMy8O+3DotOyLySdcONnrre2ZUgdt4xdbH6ZxOMbJYqbLRyxt/eJV3x4Xn2384Jnjl44fTOe+9xZzNnp2+nzh9lm2ezDMPoNmC5etNb26Euta6/FmI2bvdeZa9nBgsA+Hzpy+uPmEb27M9pLIT1tMPs2rU/PuD/DipA59hsFjfdj0WYCv+eZ0BLp5iWs5Zrs2xtY1OGwS/nHPzrXi/VHvQZQH7c8+++zxJ2TWN4z79PF75ZVXrvzpt7///e/HHvj85X6o2RPNudDwwpeN+w2dmqmV7xL2vfxxwM2aWGxhptOz5e8zJRtnp73hX2w2cidwfJ5RDz4elviMhReB2zXAnx87scqBnfn5u0YPX3Bu//nCYa/3nU+/woaIq6mPXAg/HPDSiDn+PpuJkw4uf3XU4hB3ds4hqfZiETZqAEOd5RYv68Zs5WistZe733S4i8MWZ3zZiEGKVc2rl54ONhv7Vq3KnQ1sdmyss2erJnjTWcfXd1O9M8IeDozOCp3fgvb5tjOBozo6F0nxd96ZjKM1ePgkbMzLCT86HKp99Y63NfH1dHzkh4Oayo2PNTq54Nq+l7cH7f3GLHs14Fsu8I3jKyb8rkP7JoZrVQy58cdfM4dBZ9x1BhNW+vZETejaK3yKUb3EKRbMxFm3P+LixMY5EB8Gvb599gBTLIJPY75hWIMBi6gRqT7tGR08sXBKX91gW1N3dvDE2T3KBxZbNnqxarDzYUeqAezs+LbfxvLR2JoTnOwBEceeusfiR49PjZ+mdv6Fhlrjz4+tuGzF0MOuwbdOrPFrv83J5po/XDnFl1/28NSheDDKnV35liMsXGth0jvPhB8xt+cET1Iuncf4hsOuGqq7cXzKVf3UTW9dLnoYbM31dJ3batH5xbG1rqVs8pP7Zz7zmauf/vSn7/yD9hKrYEf1bl4kLpFNXEJ0EvcTnP2JW/Z6PnpthR9/RTbWCPttYeS7/Pic8W0Km11jE35rl3CzCUPM8ubn0NkkG6heK2JcEpjlr4cNJ37q2AG+5E8nloYD2+qD2zmPMLLRr7/51gCP8qZvja6xmM3jCodkE4+Nmw87HOTtZkX4mevzyZ6tsfX2gg0daU9w8UMeF7dz5MayP7XNJ1y9Bj9hgzvMWrnY63zFMmeT8DVnH3ZjeRF+mnU3APm7UZl34+4/Qu2NAO5twq/6VPti06tXki398olzducaqKU8+Git0zn73cDNiTiEncYHRtd2a+ytJ8ZqQx9Wa/lYb6wv93zEjudhePNCV97xa3050FkPp3lxzBuHuXjG8PBZfTr+9iR8Z9o52HOdjp6I15tbuTl7nSX194ak0RNr9obEk05czbi8zfF1DvK3Ro9Lb97muGgwk/bKOjEPW5x0G5OOTXZ8G4ddruHyURN84oBf4zDLo3zpE1iuMw/C1JSv2l+61vDZ3PgulzAfpIfXD0V8Qf/4xz9+9b3vfe/qy1/+8gHzVvFx/uMf/3j1ne985/hCdBseu/LTd0a6F+DpQ7gz1B5mb16rPrfVoDiXeLSWLxs8ikMffvzo8mOvsWmcD53W2eC/+OXEPilGa8ulmNkWl60155DEN7vimoeh54+bZhwOf3uQlAcbjRQDNqHfOOZiJLve2DocZ9+4nPMJO7vVbyzr3SPozTWiL97e36y1L9lmby7/3r+Nm3cWYRI9HCJ28eUVrl5udPnBW71xjU1r7JLFr1Z08pK/MV+9+4r7i9ZaHMMujr4ciqWnh31pTQx6DV48+Why3RoYu6/vvb0ciglDSw+HVJfswqUvVmM9fzjslg+9Fq5eHuGHkb5eXH7qqB5JsfT3FfWCc5bqGTfrxuUaF7141ZufRh+2nrAzxjne2VjnR2CxbY968GHeuvzZs9NI8+ziwZaunr34fcYsFi7a5gmXjsDQvC/Chpdva+b8tbPwCctY40ea8wvDvsSHDb3aOLP82PKjJ2zl1Gen1sM+jG5e+OenZ3OJczbWV9Y/PW72ymcvf+vXb8T95je/OfpL2Pnd1Rf/1VdfvXrmmWeuXnjhhYOn3yBUf/c/cd0bPVzuIQS+auG3K635/mPP+XkQpEZs5LHnwhx/mMYEdzb01RRW1x+O1jqn2YtLZ93e8KkOYtNpxpq15SM2XznqcZAHm+ydRZ/dPJgpp+qy7w19/4NTvDDExYO/B2TqVjzfHe0lG+dOjfVyEVOrDuHBSid/GHQJzgSOGumrn9zwgNvnT75+s5adPPTs4ix/seUrXvWxXr3FM8d790Ge7NWs2uBkDJe/Vs3YisMGZ3P18qCdvXMTDh8x1QK+B+37XVwuhL8Y8dt9oys227iKA9OclKd5Zy5MdviKhzN+OIkL25yNuuqJelur3vS4eBhuTW9//G32fptXPPE1mLWtN2xze6zB1djGx7y8wig/ectPjx8MvNjLke+KnHy3aK+sscVhz6Ga03e2xCXVH7Z7i9gEH7H7kyqdX37WcNPHm0+Yxknr8VZXuvaXHSyNWMO9B+34do6ygYW381h9iq3n4xyWM0y5q78fmKhLeZdHteELAy4/ts6DsTOFl894reMijrqpn7la+oETHI0vv/ajWPzUwTo++vaYjXsRfngT8cXtHOVHz04s/nwTMTRr9Hyqo7nWeYWLBzyNrcamvNSHsI1H+HxhOSvtUbXmAwd/9z6+hN2eeTzVkp06x4GttVo86XESU9+5qt7qgR9xXjoz7P0fK95zH3/88WNdrAeRh/qNdokprkQuBaSXhN5GKWhJsfcTHIerorc5CsnnkvBTHMUgcOn48NfeTNrcuLDfQ2Je/Et5WY+r+HGAa0zKwRy2WHif8eCIRb9rdOVEr3bw6fX84OV/BL15CYuP2DiExR+XS37WtNb4iVU8c826vjjZ0K2Iw8a63lwTA7ewqhVfunIVh7jAfBCE0fo5FrvW5QxDE6u1Y3D9QtfF5OJxs/MwS3OzrQa4JrCrJV31xLG8qlv7LG9r5mGVs3n5iWcuRrWy1rqbjDcbzboL343cG5qxPBNYcPTEmIjLl9BpdOlba31zpcNlOadTB3pNLclimbNxjXdjwy1+572H07muxuUT77hYJ+HJxXhr15oahVNdyz2b/PGvwQ+vmlnL1ho9geOe2PxQXr+Y7x7R0xUXXjHYlbdxHI273xafzpuSvYJH3xieWnoDUvcw1XbPI333X/7Fx1HseOFKzPnzMU5vTWz+BK/eMM/1OAxueYHX/oddz2Wx6M3xTK/HAZfqZN08HT95i7OiXnIifN13XHvqbi4f15sY5Q77UQt8HL03ar7UffSjH7369re/ffWlL33pCFe+Dxsbfg/au7fCOuOyk6vaWFMHTe1ac8acBzbp+HTmqhX/Wrr4n+fpqy9ceIQOB0IPszXjfKybZ4vfWeLIR2O/Yp6uWNnmS79yzoUdG37OoPVqxQ9+mObWNZJPZzdfmFoCf+dnjM0jXNdJ+nIMzxzG5myNrjj55nNbXw7dv8zbE1jFoINpTtjhSC9u8bLn697Wvci8Ly/e39lbI65lfsWuPnpijb8WN2fcnI11Lb980je3Lq44+ubdf9Sgund/cU/Jvj5c8+XVunhEDHxhro81tu5Z8XDm6DQSbn7mcu59/DA6vcDQ5EVgExirq27H4vWLNTZJ83zSxwlHeWnxK4ZeXDbFz19PX43hn7ms7aXxxt51+mKWi/mO116dSD44aV3Lcbe+e5gdX/ztSfdXc828OogTB2vGGsxErPR6dtU6nuxxy5YvLviVQ3j82WmtZ9N1U5x8Ws8vrq2XN15k7bOhixMdLDhi6pMw5NN7eLnxkSus+8jy3JrexxcPD33clzxU9Bvtj+pBu/9s7te//vXVyy+/fOzbK9e/4S4nZ0Pz0KVfZrMX8nb/8Qs61ny2kI8HSX4D1+cA9wv58q+mfN0Teigpb1j08oPRXvPvnuMezAcWG629gtHY+Wu/6HF0T9TLp1YO+dLz9b1NLmoM0/nwwEVemjk9XvLQ8K821uIghkb4+Y7VLzSxE1Pt3vWudx02YsLpninHaqCHoZePc+gMqolnH3zCzBa++NbkJDfCT2NnXf/vf//74IO7vSoHubEl6kpP6PAwtydwqm17aI6zRmBpeODtPau9woEfXPbw4kHvwVXvbQfYvMCUu+/euMBWR591jfmTvvtWr+Lh4XyYl2OxzXGxJh9ze4YnP7E9aNbsn3qwlY918/YTB1jEWZAnLOviwXLd+KFC38f9SVff1atxdYch5/iFi6PYWnzZVlM++WVnnT8scVxrePMXW0z81FSf0MOSg9z5E71c1EEvv9b5qHXXI1vxYHteYsymvXLtEWv+jwO85BIGW9zF4EuckwQH63jiApfIQ2z+9klvnl5tsoNtXUwCy7raiAWXH27W1ND1Zp5US/spnrl12Bp/POniaS5/16Y8xBfPmBTLGVcfMfnIA2Y1pnP9NOfHx765Zgg+Gl0crPFzJq3xxz0cPHFRGyJvPPIXVyx86ukI32LaT/sC27rawjRmBxevzgd/deDDlp3GB1+11PjiSsS3zq8axglf9Yg3vb11v4eRHcxyWZ1a42eNwHH92jtjfurkORvOeKitB+0/+9nPrr7+9a8ffmI9iDzUg3ZFRkYCAtqEs5SkdbbmmvltD9olepvws65Q4YhbEW3eXWLdIYkLP2KuETp2t+VkTWx9By9bc+Nw9DapzWvtMLh+gZHsmF21gombng08fTUwPuOyLU/4bDSCSzmap18dPHOxtPKlh60VM27mcbHOXyO4wBCbjfnaxIGuNbawHfQeBu36AXz9kq+5dXxdzHBgEDj4aTipnTUXlAvWWfQm780DnjU3i4QfXPiEDRw5wWCfzpxUD2vsSP7rQ1+d8NRW5+J3wbsh8XfduanQdw2WFz82xVMDYp2+Zk7MN2Y69bNWbctVn05f/mpVDvmtnTdUTS2KbV0d9HwIHDqcjNlbg62nz88aiZM1fMKrJvkW43C6fokHH2P+xHhjwSN0NfP0cRKnM9IaO3j2Qa+dhS57+PIy51OD21i8+NF5EyJ05vBwUUcfltRRjrXOHh866yR+cVle6fT4tTfp+YuN547Nwz0W7niJN3y8wtY3liMxb1/FPe9d+wCTz9YPdjVeOsWlg+kNX231/PWuN5gwxBfX/M0k/vexZcPehzDNF/SPfOQjx4P2L37xi0eo++DcxQl+D9r7cBLH9aOTp3yJfLWuW2udMWNSffX8tfzV1X6odfZ8stOfpT0X07iah2m+flsb45p4a2deK6/1xcM8fPHwJ/kdk+uXxTXWsmkNd/708l+JI13+xnycve7HndFsNkZx0pULPRyNmMsJFzbntezlC4sNDvTi65NiNNefdeb4u5b0/OniI0Z+9NY1/DR24uKcDzv8ug8Za95jfIH2ns7GOiyfIYoDpxqVnz4MfmRtjOOlb82YvUbnjMKv0RFz94/uJfKoJupSXvCMiyH/eNHDyRauuOnyac7OvsVNDenMs40frPj7bJSeLWFPYGg40cGLD5/FzYefcWvmST7Ns4GPe/nnzy4f3MqHPq7GcTJeX/NLwubsXx3ZW2++2HyskfU3Vyc6fnq5lJO5Fn821omxJs/2Hlbv2+KlrxZ06cOFlZ6ueX2Y2YiJX8KHbjnSneO0R9njGa9i6a1noxcfVgJHo+NPis2+efU5FNcvbGHlQ2/MRz6uOdeaMTwxwg3jrn45xuMue2vs+OHlXuQ90n8U6EH7b3/72+OfoN8X6xwrPv6zOQ/aX7l+wC4/D9zVRv3d9zxI8PnB/TBO7HyXsqapibnPAB40WCd71tQyPHmYdy5wUUt5avw1ubkXyx0W+86WuXX27jWwnWcCz2cs92s97Fr7y9e4c+c7m+9vHoTErYdNfoCAD9zsxYXh4bEa8JEXXuysEZx9x9oH7XRy8pkML/w9TJIDHLpy1Wvl4z5vri58xIwXbtmLDc/e4YiPdfUz5iMnDwDp1E5OemsaLD0dLH58cMEze7GsaYQfTNcMCU+N8abnzz6+cOMGV1MHe1DO7GGFWY8be7Wwhx7MOq9isHcO7IE1tnDFg4sLDuVo//LjW150MPOj77qAaR1uedPhw44+cX2IZ//jzYbe9eM6Ul9/0hVndrDx7PPH8msMEzfNeLmrDcFDfnE0Z0eHi71RB/5isbPm/IQBh15c+WnVzJpcCBx6TYz4yYMNPPHU0Dl2Dchbzpoxfmr+7ne/+43zwL99E8f1qkbEWRGLHzsx8BBPPsXFXZ3E0LPrHuIaYccGd7myoYNtXZzyYMM/+84dDoSffOyneOadDT1/wl+NygHfrk1+chafnXia3F1TXd/WYbIVny0c/rDVgg+O9o09PTHny0fv2ZAf/FRL+aqDuRz4GcOQg32ET3DLDt62fKsrbmrKhq76VydnA7azQic3NcJFbI2fZ1vtBTs4cTAWpzrg2Pl0dvDlgwOc8majFtXFPD8+9Phtvq5jNWdHL3Y/mMFZPH865he/+MXVE088gcoR+xjc8+VtedCukG0UHorXXHEcNMkqMn0JSpLvSlgOCVuFYk8qtPnZL4z8cdDy47uNHj779NkfTjfrbMjiNebHPy4Ok5y0u2R9whDHGLbeXA3YwovrGZd9F9R5bf3yh2dM+Dpk7GA4ZGrbujkuiXFzODvPB16xyiX/en7xpmPvAnOz62aLD6zihbkY3QjYdkaMCT8cnTlrmrPkhuBBuzd6627ebmzW46UvLix21rtJmKdrXJ+9/HBWW77WF7PauznKw7qb076Byd8euHHpzUl4mzeMzd1cDIJHubERS1/92NFVY2OiT2+toMkziQAAQABJREFUGpRH69UYjpttHwbYaezY6BN1Vxsc2FsnbKpN9Yu/vjFf0hnZtXItfhzwN5Z7deDXWGzrYcLnQ3BiF9ahPL1ko0/Ya4S+ubEcxLS3sMVVj1rx+FhzjYQFzxh/tes+aQ43XXWSB5v7yuLEUzy88cOHxNt8874rjpzh1zc210hY2ZiLoVbZxUUft/jQyVkLk014YhKYrkG17VrUazDYw4BLNnZ4x8LNWrh8tbskf/ckzT3Jg3Z/5uXteNDun7mKGcczt2pDzw7/rls++0HPmnNRqy5qRdRLs77xyjld88Pp5oXP1s+cXWeOmfklyQ9+MRrr46VnG2+9OZFDa2GYxzUftsbsy5uOHfzW6O4S9vC7hszjDIOYi6G3TuJhrsW7PNiEy5ZNa+W1OMaubdIenGMci9cvYYUXPv++OFSTbMOCQWdOXNNwWjcOlx2unaPq4Cz6TOlDMRvvJ+KpIRtYYTYXqxrGjY6sTbzSi00nTrzZx1Mvh9bdS8zVIhtjOueCiM8ejpY+jM6nOUkPLx9j+e65wXNz21wOoJsXNq5tfTZwjTU5a60vH+v0Wj5hW6OzRnDEnX6lHMRgA79Y+enDhxHW1mJx6W8TdtnCWclPzyY+53j5Z29dU0e9fSCN25fsrMmza8ycVKvqVt3Ndx+qER0u5rhUI7q4wW2Mn2Z+W344Wtcaw4C9unDiAq+2MfOBFd/VGRO+ZGvUXAyN4KHtGTkWrl9gqbXrS6vu6mxcjOwv9ZvDrsOO6+obhy1H3yN8lvWw8JOf/OTV7373u0fyN9o9aP/Vr371P7/RLi8x7Yd7ofug1lmw7rtEa+rovuw7Rt8n6Lbuaot/ecjNenbqYB0mnRh0Plf2+ZPeHtB3rvF0f+a7+8euz13sa2zkQcTAAZe95++6vDw86brqDOBCPGQXmw+M3iushcNXbfARi2/1KH689OquJ3gTGH2WNIcThjE78fTwNbXBzd6RuOMshrmHSnDzPwxvXuDB1tsDYzw8OIonHWGj0cup+uPBBhf1YWONbrnC1aoNO+u939OvwGND2BE5yc010g9A6KtxD8VgieWsljs8OeoJ7Bp/Y9jlJaZnT9V2zxJ/ddfYWes8i2msThpcfDxgtxce9OHkBzN6nNkYq8XmLU71L6dqKC7eej56NuzpjemIdbVzdlsPx1oc+BE2OPHR2JSLPjy2YpRjMc3ZFVOdzMXs8w0b8az5/mJeDp0Jc3tiD3BSWwJHvfiKAQeuHg7b9pEdvjC698STnXWtWsUBlvXygEv09rdaF8s1Iyb7eJUTLPY4uq8Sts6DXOCxcT7tEb5w5eZ+6hzipcHnGz+4mjmRp5rJNZ9zHuLh4Z7FFx4e2euJWHKofubWqkE+a4sHfJjViY6vRqzBKT+cxaCzx123eG99w4gfXPyLV8w4su9+TScGbNeguTWx1V1OWntgLLa5vrycTXHoqgNdnO2932j3oP0b3/jGkW98j8k9Xh74QbsD4nDZkEuCrKYg+rMg6Cbg4FQMxTK2SWcfidMrPF/jpDi3xWodfoVk6yIMD1YbYKz4/Ohs+H0Kyk4j5WAupnh0cMqt/nC4xwsucli/5UXfWodHfxYY5YrX1o19Lb+NYaxmixsWe3pzmIStlvB3ZopZrGqnL541F44bRxjZsZErHPGS+InB9i5Z3m5efuPkPe95z4HnXPbP2MK0f+sDGwe69ptt3OjVGo/qFd/2KX58qoW+f8rJ3nXmrHbzg0vPh05tiqVP4Fh3/oyzt17t6LaxdZPOh13ntr0RIw7lEQZsa3x6UxLbXOvssePDn04+O7ZO736gh1Grhmzkzo8O/m0iVgKHn36FjXrBg6Un+RafDifr1jR46tO9jE3Cr7MYZvGtta9w1B02cYMvBn03fL7FjZO5unuDIcZw9ImcrPcGRa9uON8lOMS7Oq+P2J2zzoi+HBc7nNUZ08PW88W7Bp/o1785++pmXVx84pKvuXqxqT4H8IUXGK47DTZfmObVPze8NVIM8/gVy/zMK4zt8/Me2w8A+9Mxj/JBu/8M1cN7XwzExPO+0vnn4wNNZyru8u96b8/UnpizW8mmfteMq+F5HY79oNe6HtafDT07vNurcGGHw8YeknI4Jtcv8NvXbPQajBp7tuYbK5zWd35pjFO8YMHED+bixgtGuV7CW5164B1PPWkunvX2zNryyc46fVKd8STsrHv/6v5lXq3CXAx+4fCXK7yzDbsVdt5z+lzJ3rzzCYvoG5u3T/qzOMNwymfX14+NemXX/ri23DPEs+b6Lxc22fGFwW7fe8QLl++53nxIPX+Y6q1tnmys0RnDuk32vQOfeHb9LE7n5Oyz9TTedfH5lXc82GhEjMZxVjs+5jC1zgqf1o3vI2GwVd8VscubPs7ibYNhLX/88PAeaez9g6xd7ynHwvULO5hwyru909PFVQ8bP2vFojOGwYaPsRaWsTiLicOu46Lla92YZAeDDdnPAodiXtq/6jVLb2DCVg/YzhqJQzVZP2vp4RdjbYzhqse+h4thn4p39tk52+q4erib/641rvb83X88VPF94mMf+9gje9DuT8f88pe/vHrppZeOPM3lJrY6iq02xvaIHm/3YTr3RuvyrFbq5eFCv8lHz1cOviOxpyP5wPR9yUNSMVs3zs6edeaLB8vnBti4JWzx0K/ww4WfB1nilBN9OWYjPhyCo++Rvk/2uZovTA0P9dDD1+Cok3Gc4aiPB/jE2epBHH+f1/zWadj8+fKzN8Z8cIFvDj8fNtblVkxjOrm8//3vP+pl7P5Or67w6fT89vMYnniop++VePawjo862QN6Ak+O8OHxJcXEN07tFR/c6RNzPu0jLOviwAyjc4GHc+QXS3wPZ++68Wd66K3D1HDT06l19TbHD75WTPmxVy/iYb76Owv2jx1e9oFt/MTRcCQwfD8mfKx50O5cqZl1e0tcD3jxFQc3jchdXTQ4RK9e1nbcOcC98wKXHSlnfbr06kcHt3MhNyKGNfVyXtg6F7DFkgtbPVEfa5pY7T3sYqup7y1ilZ8Y1unUQc3EFkutxa/GsKzh0jlTv/KCUT35sHE2tPKEodmn9soa3l3f5dE12D62h+LA1tjy54uvsfqwlWP3FefIGv446vnL02dSZ0s89dTEwFsfZ7H4mauBmqsdvLDiYE+ssSe49MM3OvN4tOfs4VR3fmIS9uLmZ6+qGz9reOsJnYa/Z2dyc18sb/UyrvFVN5zEoKdTRxhEvPaEzXKytjq8+Wl8wtOrt0bPD0+1VFP29lvccmGjxRWXuDlDePP/7Gc/e7znvmMP2n1o6OKQPJJnqQj01s0b612QFUMhHACFcSjaQH3JZ8NXgWCmy97aCr3WpsCKF/7EnH7lEt9dvzTGKRw5wFUbGxYeHS7xOeOwI+x2fMnHunj66qCGRFz54QSLVAc+2plLWGLhD7eDfQBcv9DJh6/GZ8V6a8aETTVoziZhx6ZaGde8gbmBWQuvnv/ihBcWH7kQ40sS185eNwcfmN773vdeve997ztulDCzUcf4wTRvv+nVfHX41vCx1py/sfq4oF385nJ2o8MPJh0/c31c9OlvqwWczmZ98c3d+MQXx3h5wC9XPomYWvW1Fja965gvTnF3o3KDt1ZesGGwJWzUEh+66mWt+JunMbww2V0S3Ei+8DWYYuidkXLSE7r0dPzZhmMMu/NFjz/b6gGHXSLncPX2h45vPXt7QehwbZ/40GniyL16uZ+GsbWDY46bnsTVB4HbBA/7UE7mYprjAcMcN606x9U6H42cOYUnRjlly5fQl7NYMKzJuXXxilXdi5v+ML5+iUP46bcXz3XQdYgDPPrws++cxpE+jmLU6PMvR7pLwt89qAft/jPUp5566urzn//8Yf5m/pcwV4fTn//856unn376+I+byk99SXNjOvZ02uZjrQ+Q1VXfOasOcLwf8aWzX3Iw19NpxW+NH6FXZ/ZniWs9mzjDUXM9Xfow6PNbHX0+9PzwY7v22bG5xJ9fPuVOd5uwiT+/uIchXnHoss0Pbrr8zS/JYu56WHiKhwPp7Ipf3sUqBkzXh2uTPQxrPoDb89bhnX3DgH22owvLmnnSmH/3Kr34Plj7Uq3lb804kU81Dau1cs83fb2Y8Y5zebLpiwd8dVk8mMVdnOUGo9hqWu5wcDUv7n7eY6uFmw08ujDjrseFrB+9a5nA4Of9pi+s1vHQjDXCpzlcrbl19nLQ6OEa64u39vmzwaN44dDZ12oMg611vvmY5yuWZm5dy6czgsNK/nq2GlEzX8Zap6sGix2/5QNDPPbOTjUQu7zDpWOr/oSejVY+cS8um2qZTXmVMx86eRQLPj507BZDPHYE5lnYnvXsy9u6eTXUn33Yqtf6FC/sOJ3jm8Pnb1/22oBX3Et+q4PfHtDzK+/67NkR+MQ6nj7zar4z+432Z5999pH86Rh/KsZ/kP78888ftfNdCQdno2tIfOPOS+fPnsrFentfrfXqpcnBep/bd993v3yG9FnFvUE8uOGIkx+fuFl3vs51FC+co5DzEo5c+Wfb9Vcs+fouoWeDD98Vn+2cDWtyxYV/e87XZxvvHd5H8KQT1wMteD6798PU6iQuzHJVG7bwE2dEfHGtebjMjk92uMirOD6P2gfzsMXRCNtyYIMPkWOCe7Vho458qiNcceVqHTZcPOUKC0bXENyNy5/P7mk4/Duj6diKXd6wnQ/fY+hcMx/4wAeOOd50sPntOcOBL1zN+fEQ0xjX+PIVDxadmmrsxPRMSv64EvrmYrP1p0Q6L2ontrW4lTtfQk/4xKV7EmxctWrNFgZbOdETPyQxdgbiz59NNbFePD276gvD2RQLNz4aO37s4iyvzpLz79pW72zZy9vzCrkUSw09dCX2Gmf8xLUfYhO85de4OtLBcr2JZ95emONHxz/udHzUtzrAC18MfNnJ0ZjgxUYvB/+yl4hD2Md7Y/szQfLy2Q6WWO0nPDmqF04wytkcP/HwN7em56fvHiq+Oto/PmqtDnLMl434OOIH173I2H0LHtviwak+eJH2EDa76pNvsTpDeMLAq3MIx77T+9v0BD5f5wPnOIjXuYJlrnbw5BKHzqL61GDy9YMNtWdLqoGce5DOFh/YeBjLSa+J7f4rB9xxVHv3YPiw6fB3zasPHv50jB9uv2MP2v2UERGJa8jfJhIkJWmsOLc9aJfQbnibpHj84NggQudg0ZNiKaTWJrBT8DbAWMsnbnxuE9i7WWc7PPPHia25+hBzMa3FI8xs8TBunT9dN0zjchVPI+zVrbj0Dpk6wePHhi8OGyc8sdjC6AKHU63jGKY5gVU7FDcvdDA1OMVcm8bWioVffj7QuCCs31eKC0/OpL2+hMFG41dtXLQetPubii5Aa85k57IY+mpWfWCoKVvrxJomjr441tg4I34yLle+XdzG+eVrDttNQbNfxYGXsKN3s2gP9eoiviauc6KpubnYmrmY+vBhJrjV6GCzO3O2BqebszcGOOFak4+5Nee4GoZfXDYJnQZXy6Z1PR1OccsGfmdSDLhs4LRvbOLIBk89PM1aLZ2enbZrcbK+uDi4sdPhFj++u0/xzVefjzMAF+/eYMWrdsU2Z4MbyUfNrW18a8351MKyhh+Bh4v6aaT3hmNy/VJeG3tjhiFvtvDioDe3RnBh46zCoHd+2RnHgU1xrSVi8dNuE/F6Q/cmmz/88oZtro9HdjgWI51Y+a/uEgf+3h/de3zg8ptwb8eD9h/84Adv/IdhuKmNfPArt/iZk/LO3gcV12z5uoZ6D2dfne0REcMeqTGBJ99iw60+YbLpva01vsbang8+1R+W/WIDvxjFtbbnJa7LgW2+bK3hE38+5lpjPoSu+PGiI+blUp/eGhGDv54NPS7G9MWkb1zPH1ctPGPCJozyoEuKZZ6/3F3XW8Pi5qeHx1YL0/ua69Xaxsu/nr/YcRM7DHHZVU+2pPXXZ6/P6fi6t7l+/K1QZzIMfcI2vbhJHFrfODvOXi8377c4in9+H2XDtyYf51ozrtbVgM5ZZq/26cVhqxn3Ps4mXeti8mOnEbjlHBdz4/z5mG+t+Lm+1bXr8QCcFzaL37VIF//4iEXEoWPD3niFPpswrPOv1ni2FoZ5ObVmrsEk9NWma+q23A6Hkw+duttruEl5n/FxjovedSKeulqTR/zLGyaO8K2xNWbPl5gbb9xiWYMF+5y3+PRs5B8Wbt77rBsnbLc+rfHXzHecnx6fziAb4+K3nr8eHzbFwF1+WtJa8/r8ve/YH3HiZ6286ODShUWX7Bj/5mzXrxrSV3c6X+a7D/k+8agetL/44otX3/zmN6+ee+65ox7y3GsT/+rl3kfUks5nG3srF7XEE+ds3E80udjrvmfwJWz5ycsYvs+e7Dqb6ouTPYRfHDHN4eOh70zAhqlmGttqqTfHyfvJcoCjdX7x4Y9T14TPUrDLwcMyDwNh5t89Fj958PHe4bOYePDE97CNjWsejjzhwhcbJpFzDxj5E3YwPBTzXoGfv/nOjr1asNWrDbFXciZ8xfZQSTz+5tVbDuLHATdYbOyPng+eHi5234o3WxzlT6em6iM+W5zKRQzr7SE/OeBoTSwY9Pz/85//HGNza/jjZC5H+LDFtq72/mxiDx3Ly3q5yE8dceAjvvzsmTl+XevFpZcnP3HN7bWHyurnXJBqUo3o/ckmc3HFxKlaGYuvF1cusPERBw9NPcW2Lg9nlR+fFfg4s/MQE06ft/HHlY31YrNRfw1/DTZR72przoavXhwtXPnh418XeN7Hj4ijiasO8uInh76zWPfs5tVXXz3snFV7qMdFzM6rOMbxEIMd3nRiwG8vYMeVLRs84Rhbg6cOOGdvH4w1OeJf/eTgbIohtnU8jZ2JcMT417/+dfXaa68d1065iK/x4+PcilfbWDgSPKwnxvycB/vhh0yN+Xs+5AEzriR/50GucrYufv+aAh96/uLCTYzl7z7kPLKVPyxcrGvVXs+GDi/Xi3uWuV6cf/zjHwc8burhesG32lQnXGBVl85k+yc+Lt3D5cSGvXPlh13lhBc+6qWZw5Gbe44et3MdXH/q5Iec9lUvjx7i8+t9QQ74eND+85///J37G+3eGBCRrAQU+5J0GCp8hXRAHRCJSUBx6IzdDIwrWJvbYTKHR/LT25z0bSi9GNbwhI9rnPGJE7zmxit8YOPABoez0KVnx95crPJRs9ZwxCve5uKY4ymO+sJwkOLemsNhTZx8Ftu62NVk+W69Wi9HXOGYV8d80+FG2NJp6bI1519N0l/qw8WXD1/NBwEXC773lbjAuY/sHvBVD/V2xj/1qU+98dM6Nalu8ibsSfvbnG7rym99cMtW71y4wF384rjAXdwwlh/csHB08wnXWpjGfM17Qzd3nsSuxuZia+pt3oeA874tNnwSP5xg6jU4zqlrORt50VXH1xFe/wkynb3vHMuJH6zs8eu8WyPmbMMNc3u8y7cc6rODIz4cHIgc4q4vprW46PHT80/YpoddPD1bjVjzZqQ/4+Pc9cCPTY2/MSl38RqrG1nMalk94Vs/+xyON76dPb6N+eBTTbOPr3nnCke+9khfHviLu/zC0Ydd3OoGDw9+nTFrzmw2fI3Z8Cfi0SUw9rpJXy8OTPce99FETPjxsj+Ly05c+Gw2P3Za/MK81OPmQ4APM/oPfehDV9/61rce6d9o9xvt3//+948vjfJVI5yXN7571joD8qY39+WzD6LsXfOac2bePuRjrpmLyy4btWjvjVuz3pg+weFcz/ZGH3c9UVeck0v+rW1f3nGTF/54WRMraW6NHR/jPW/sza2rgX6FfZi9z5tXg+W9HIxJOj2eYvF3flc2H7zZx2ntxMXTe4l1tjDZ41J9m4upsdXElYf3GXNctPyMYZJ8zvtaXc/6sPjCa46Lsc+Zvix6v2wP4i4WCfuY3Ly0lg7eynndXI36YmHeOF9xjK1peHStwMa/WsNyj5RDuMXny1azVr3rWzdPsmVvHS4+WkKHU+ciPc54Wev9olyy0edfbuyJnn2c9SSe5mz4P4hsTmc/eHjLt3hsxCgOvbHe+dTjme8Zszm7Gn/n2nuFGhF1b9x5lWv5xsncOp7VlR8O7YE188S4L6b8rRN9vHEyxpGNeS2cuMQvfb317j2r2zjp9fBxK7dda1zN2MRPfPlY2/MqfjUwJtWC75tJ/t13YBF6scobZ3g4aYROLLbp6ItvzL89jnc1hk/geEhgbz1o8n3iUT1o9ydjPGj/29/+dsSRpzq6z8UL3/alsVydVfdyOnM2xkRe7lvwCO7uUXp2RF3M5ebeLp5x91hY6qYu1R0Gf3O+1jxE08PTiDUPWNgT+varXPBf7j34ZM+WHX/f/eVnH9S/urDrl7jYu37l2/sj+/Lj53MYOzni46EXUSdj/mKqvxjVEk7f04zp4ciZn3jieEDZw9bOYXmz7QzTabDkJx5/MbNr3/ArVj7446nxUYMeZFZvOPaosySW7yhsfUeFScqRrTzwhss+KQ6dz9N+QMFPo8NdHKKGGsGFrwe8H/zgB4/v4vYRN7zVlA2M9s6aucbW+z6hj+uhuH6xToe3PTTuQbE8XBv88CO4s9F70MpH3M4Lu2zjoOYwCM5w1Ypf3yvUsjrL1zppn/On9wMdtj1YFdteZ4OfvNSFP5944UT4a+bsxa+xrcbyx5ONB5D9i4sD5PqFXlx1wKO4auiMmfdDCXbVVmy1KLY4MNjEUZ3sLz64dT7N5UX2nNGxg6FVQ3UQT6yzsMdb46OOHrSzx1/ueLp/qLfYhL3/6NQPPfYsFx93uaqXfPDUxICpJ9bK91Bcv6iZz6l4iyMuLuzUSD01OOLBxZGdMb0mvu9k/PApT+Otn7pY66E1DOt4GKsjG7nbD1J96fZBO57W/BAqP1iuF7WlE79mjS482PiKLaZ1c7j2QE72hr/7UP/ZLDtc8fM92Q9FzAl8Z6drVSz+aqdXK/YeztOJIy/XJmGPv+ac2pfPfe5zV88888zV448/ftiI/yDywH+jHcEu8oIpUEnSIU/oSXbGdN5cOsT8FLZi6+nCywfG4qS3QfnQiZ2tWNYdSvpiKLTNCK947OnYWj/bbByxzpJf8fUwy9G4GHyb81s7c60aWBObxFkfrvyydUjsD3+53yb82YQXlt5hJOIaZ6NXk/ULPxs+xvHF5y4J05508+brjd3Bt65Vg/KEiUfNnE2tC8v8Njmvmauli9v5VD/x3Fi6+Vl34XUzj08c9WSx2cjNxS9PnNXRWI70bnx8XF9isSHiuZmoSbHdeGCy19gWlw+d+e5dN5v2Vo8DPdtu6DiF240mzsVhX22Mw8BJwzV+8cbdzYyewOrazFZfY6/FRW8NXvnhT+DSnQW3bWJqbMVuja64MKoR3SVcOi08OPnxzSe9NWP21o1xV1+1oyf8rFdvOmts2BuzUZfqgKO5MxLf4vMn9PJtX8xr6V+3/N9Xa2oLnz0pD2N8cHV22wtcq1881sc4LL0YcNaHnm9++rDEtU4nlntdmGxgmdeqt7VwiwUrsabxdy3Ym+6jdO0B3Ljlq89fz4aPRtjXVt9acdmotQ8O7gH6D3/4w1dPPvnk1Re+8IUDC/ZbETH2QXt4eBk3L0ZzfiQbZwnHvfbozNOVaz7lp/7qac6nc5ldsaufmrCNizNDnLl05uoYFt/2nq788oMXzjkumyR+5vDE5CtWnOLJhr61+LFrTczmcc+ezfIsBz2fcsvvAL15YaPFl715uTVen3DiYy1ddtZal0/XznJmWzw2rpt03t/cI8LVx5VPfA+H65ddZ0fYsBU7LvRsNToNJ7bEXK27Lxp73+yDO1uNXtt8YJ4FHr1zu/cCHM3l7D5oDsuH996nrYvhuihusfVw+ZULXTjiVvM4sNPo45O9e1f3xHy7R7Nnl1ivXvSaeZzWjs6aPPR802Vn3jqdeGz3/YOeHX8iZvkcigd4iQMXsTS6sOGeReyateqY3daHzhzuGau52voyVo7s4eu7/o3POPw1Z6IvkmqlkfDLsbWt3WF488Ium81//fmSYhdD37WNp3mc9STM1tOdr532oRrnV8wD7PqFnZjszmtsitPamUc49eLIPzzYrsc+m7SHcIrLduPAggGruOGzo+fTujVja+d1OO499tf7uN9of1T/GeoLL7xw9dhjjx2/0Q7fHux36ji5N3RPotO6FxjLsToZq5E89ESuzrXzKQYf98/yqn7sre81IDYsdei7E67iuD+5TxULh/YERmcKfjHizy5u7OSjhQWfbXyNfVfrvt96+eKCK8EVznKnYxs/D4CImhjjx949oPcA9vTy1VdXdfBd0i+R+XwpVu8RxcUb1/9j7u53tbumN47vw1BVHiSoaLwcgP8aSlJUKlJKhXjpP/4kRJwWDkPQqqA0XsJJ/PZndX/rsnLv54Wnj99I5p5zjjnGNa4x5lzrXvd6dnd9fsBRDxz89qm9JLiUE3v4dHr5FtMLfXr+7NkaW9/vnPTlKBf7qxEYXvR6uQifv7z0bKufuHSJMe7EGnw5l4O1crNWjdjS4+uloX/swA9nYy/gfUdmwwcHOfLTCFutuLho5mzFS5ctPy8ze9kmR7b2ip/9kateDuLi0MtAOHGCERex1FIOfJ0T5xV3OgLP9cDWWmMY7LxgtFbd8aIX0/kh6Yzjq4+HWGydrWrBNl7w8LNGp/cLh/YBZ/h0OBD2Gh0/Ps42e2fLC2li3rMQW3moXc1cHsWsxvRwcHbdqK045dnYvBz5iMGHfXVQX1hqm39+xcWzGOzZ4hhfvJyPrhuc5WVv2W9smITemYdlXe3dM8TCTf3YOude0OONl7jyYyMfcxja6vnBgm2t/eUHx765fvXlwj+hk4dG5G/Ml529FoNeDLrqxZ6/HMTufkbP39w5DosehkbEgVtMnIleDLnI3ZyPWrquXAvZ8XVG1ZWdZp/skV5svnDCwpeej9yIPPKzTmAZiyuO/xnqI/2NdhcTUsghk7RZW8zW6iuyGyUcG8mvpsDGiqKveMY2Of/w6PMxJsXX86EXR3EVzBj3DoAYbGr8rNWKGZZ42grf/GDnoz/jl9P6n+3KFa4xHzGNCX241So8Ng6HQ3LmmY141rVidxDhFlMc+bCjY6Mu5mfhB4vw08zZ3ybFYuNidUPAXRwv2l2sYm2uxsXCSVs+1vjTiR+PuF3iYo0fYc/fWcnfv3y5EXqY7Wbmhukmy37FHFacwpWPG7Uc4aqrG4IHGL0aiPvEE08cNw/+cnNee6Eldh8Ixdz8qoe19OLHp70TXxODjh9eOOKVr5t0nKtnvuUpFgx6/LVistHUUnMeW2dvLR/r/HBhl8/ahKfn78zgpS758jdmc5ZysA6fLRySv7lxDY4xYU/o8O46C8N68dPV8xPful7N1LwcikffgxYf9nRbY2cCfxys653HMPit4Fvty6cc0q+9MSwximUul/Ixl4ezKwf86PT0xoQ9jpeEjfikusRLfykeOz7VUF88PqSYrZmL1Tp9dvStFdO+aD7n+LIvR/HZn4WvfSBstOJmG761xmzaR3bOsi/mPh99TvrPZ7/85S8/9L/R7k/H9ACPjxz15YbXbWIN/32AZktnbzRjAlMj8nSmOs9isaUvbn18xGJDHycY5l0TB/j1DzFh6cuJD114bPnFNd+wzeNgnB0dDG35hsufjcZHL041NY+b8Qp7jcBLYLofw8gm7Gz08WJvvTjmcaCHQ0fOHOhrG4Nd8+KUU/oD8PoHvXjui2H1mVK8MPjw31qGo4dTLcqnuNbhm690lqyRYppb83Dts1RvLr6zpImRH71GNgY+9sO9QF8u5u4X6eD1m2BwYNC5l5YLbuVuzAZenI2ta5cEVzbqpJnz7QtOfji5j/XMnl957bUFr9zLH6bGj6660TVvXV+O7PHCo/rKg015GeOBI/tLwqbGJjux4ejpql95LRb/FXN58DeWN4nL2sqBvrit8aNz1tU2Lq3D1Ng0Lk42evVyzxcDZpz4mWty1Fpf/8bs+ebPluSTfu0bl3e5po933Ogbi6e1361Zz2Z5Z6/HCXbngz09e5Jt43jky2596IlzZs0ctr3pGS1exWUXj8P55kf61RnD3LyMibrCXG4w6H0/UB8vCJ966qmrH/7whw/lb7R70f7Zz3726rXXXjvyFcf9xnNDz8Jd957P8MNJ694l92q0zzZyslY+8ug7B73nEp/7aq2pr3sf7Oq/+0XHR/OMSnDqhWZ7hQOpduLGWVwt4VO89lguxW2fsmfrpQre1tQIL9J9Gz4767h0v4RpDV+c/IkHc3he+qo9W89Svst5dq/eYrC1F/jZI7+56jdofa+ihymmsVycF7XynZNvL+b8aYa+F+DsM0w+7mP81YTIwRgWPnoxyrm8y499HNjiLqaGEwx8veg35y9nvfnWD057Y9xnS/cINSoHa92DsxMbJl+NnzNtXbzHH3/8+H+nebkmn+zVtvz15mq3+O2tHNk40/KIs3rI1fMKX/hw/Nbv1lWt6cWG4XnCPsAxx58PDDGJs2KNyL86s4FF14tKY2cjf+s4iScGTGMiPznQwZQDfuEeRjc/2OCAa/vBDgZfZ94cXpjOq3V1sW4PnDu9OHioJX86ewXbmfAPFEQd+RQzez4w8BLXOltnRA3p1IEvXJzEw6P6G2s4wiFwNHzUSwz3G7h62DhUT7iuNz0fIi57eyIWrvaFvzF/XN3X1VPd6XDGAx/47aV1a85B/wWLOHzEFB8WDuKJLy8iDokH3Orm7PGBLS95q5f45nCcRXlUbzjL1ZngB7eaGbMz73lZXvRitfdsYHcPgKuJ7czSs+GjJcawcZWffSJ8xTHHiYgFTz3cg72Tiqc8vS+DIT+4bMRmHx774pSburnHwZcDH/trXXw+uIgtjj8d8/3vf//R/Y12h0ISCDyoSJxcetEuOQlpEmxzKrwNU5SEPltjDf65wWmtArIJL1896RApeHzXHkY3Tfr1g9lhFNecPZvG5tbOsvnioNEVQ67EPH+48Fbo7A0ecdt1YxjWxQif7dneGt7hOXxxY2u91tw6u3z1dxP2YjhTbkwuGOKC6eDD3rpVF3bx0Set6/ll0/q9evHscZhu9B58uiFbc6Hqlxdcc03N+LdXbnqaHNXEuhuRDzE9nZuL/7u8Bwk1IXRu0G4UWjeAcPX4kvaKbq8Nc1yst+/mxs1xwK+41s3tA87Z4dkYriYXPW7J7pl6xMfYmpa/sVqysf96WJpxvuzzFceZwUVdSPm1B+xXcC8mGzlqhJ6/do7HlrANgw7XYlq3RvhXp3TNqx2/PrjPHKo3n/yygS222qgZHDXxoaW/JNnzlWecqvHZjw1d6/zpziIXObQP1qtHMeh2bH6WePElYl+KGXY5hEtfffhaxy371sqBX2PxxNIIP9eC5lyzheNhSV/Mw3h+iKtZF08fl3Tx1suZnXjp2TvL7jcecPT9RvvTTz99RLst/lC561CsfqPdwwUO1clarRwugZWbe2D3JH7VsVqUP3zj3Wf47LPh31hMdWFD6Ff4sWez9WAXJr24MNiuXWP6SxKXfF0HhJ9mPcxiWBd/c7BWLLmXxzluPvSdBzr+fY7gkF+9mIRPtbBWLLHjoC7yqaZvev7rJ1sY1vO3akzCZ6fFoZ4fG/H0jT3EGmdnzNZ88z6C3PyIC1vSnhrzsw5Dvzp4bJPW9fJwv+yLgzmsvccVj6685UPEKzd7oplrPgfcH7pf8O0ljNg4FQdHUv7WyomtOOVmLR5sVtjiWz3j1zMUPzqc8KM3puODt7EY7UNr4nTerGnWcIDLR3xzdiueV6yT8PkUg96Yjj8bXOBdErbwsmVPljdfLawzDl84hA1b8XGlF5+oixqtnLkVh42xdfUVQ0vaGzaNi80m2+WBy+IYV8twq1vzc7/1Mt452+KuX3l3fvmUm/ysr2+crO1+r79cxSp+daCXA0z+zg9d+uz0pDl742qSD//WjJe75xJ7Y51fMcUldMU5FDc6eu0sYsYhvzD0xdbj4plMfXrR/oMf/OB44Z7vGf9e8zh50f7ss89evfLKK0ccn8Fi+F5tLL5c5e85xphO3d2nOq/2y1jbfY5fOe1nvO9AfR9xDuB5BoQtZzrxNELP3gsp9WDD3rMHW7zUFc7ytIZH54LdCm6w8ZYHX7bFLod8ik9vT+QkRvdFdsWEp3ZxosdXTN/N9PCM9ey9mPNdjg8e+IbX87HvkF60ewmpBrizw7m94OMzyn6K42UQrv40Axz8+faiiD1/+mJWz77PsWlvjAmsakuHS9eKnOCzkZeX7H6rXRw1x0ePs/rBgSF+uRu3R2yN8SkH6/GNG1/rbK3ZJ2eav+ZFu/9/mjriIGc+ej7EHC86nJw5vXk5svMsoFmTlzz2RbvY7L3Y25zYagS2s22P4OAktn+YEK/81NMacT7UGSaphq5TOjzUiciJzpxddcEr/HIoN33YbBJccMCVj3rSabCre8/0/JxBdmpg3T7JhT/hp6mHevm+QuTgjIrPJ45qRPh01uCTrkmx4LGVN1/3HP3mCBsGXnzlQeBtUwtc4KoxjM5KNXG9LUbXcntSfeQlJrH3zqY+O3h4a+LYa7Grrdp50W4PEnHN+yVOuePKl9gPuPSdG7mLEW9zecJSJz1bOF604ycHdu0XTE1s54K9usFVH3bGOMsxDuJss0dypCPtC716tZcwrWnEuRC7a/9QXv+wLpYcCP/2Haa9wbc9dj9li68Yvm94Z1W+sNjykU943T/N4cZXHuzwqg78H/mLdhefQyARpCqchMgW81DMj2xdkC4eBZKMxCRT0ek0mJo4CkLHjuz62i2nNi1uen7hWRdboyet6W8TOOXJ74xZHJwbw2NnnuSrT9hVJ7pyaOPN4aZf7uGdMcLOrzmMGl7VQs+2Czs8HAgfsfTsXAjhWD9fJHQrbGGS4vRi3U2JiN3FUl5bp8Po+kdx9WfJL5vz+qU5n2qKo7mL1IXpJub8yc+4C355td/y0sKQl+tGr170+mrHD67fYHXzoDcXQy9uvPDmH3bxm8MKr3NTHLVoz7KnU+8+SPLvptUN036w0+A11+PAj8THXAyy16085FQ+ejzZ49aczpgepvHWgS3usKo129pyYheXsPBavfUaPYG1HNLDWDzx1YGOD1ksY+saW/Xrg/8wvrGn18IzFnN5VB9nI70xTiv86DpH6hknduHEl864edjs4Oxa+TjTOJqLV27mJE6tH8rTjzO25bgXk39xOkt04vFvnV/+7DU29OVl3p6y7UwZO9seHJz5fO2ZPMNmd5bliQuhE4eImd7cGt5auHTuKx7gPMB7+Ho7XrT//Oc/v/r6179+PLTgJL6Gy0q8VmdMH1fnzrlSw+poLRs6MWDTE3NNbYqff/WoXnHia0yfbvlZr4XReTmCXv+gbz/4Frv17cPQx3vXjcNYfTythSFO3Iq/Puyyzc+cX2eQP9+4tM6mBpNeLdnBqgbm1jSijtYTYzh6cbIrnjU+GskmP+tdJ2yyd90Yh1c8/nxr6fXp9CTeYdCH2dpheMsP9vJQF9dXnyt801sr7tZZHGKt/NW0+7j1WjWG9e53v/v4gsLPXGs9mtaSxuVIb4yLxt+cnSYmPrjka9565yY797U46/sMh2nOnrAncbWuWdfHpZjxi5PPGr5hdG9IRx+mvvkxuPDjbJt98dclDqtrXKz88aZbXu1jdWRLB7dmrXoVTy0Xn19rxnxq5oQ9Dp1F9vbYfLF2jKt1PfskLDHI+axZDyfbxbC3Xadh6uFZ21jqwVeD1Zh9LxTklWTTXA8PrrY4/M4x2abTm+cTtl5rT8OXU+dc3HCs3yZhW2/vjeHzK05crBF6wgYPn4teUrgefI77G+0P6zfa//jHP169+OKLx4t2e63u7mteiIindU6c1XjLrfsArn0nsQ9ylRP7zY0PLHHgyMsLEs8n8vSc5DmWvntr/uz5861VX/ViTy92L4PwEo/gcr62xGkvystcw4eOn73Hg6yduTqJnT0O5urGVl16QQYDZ/yMxWdjb73w9b0wH1xX2PPzcsjYOfBbwp19fmKb46vJo1o2NofTeZRfOYvXGaeTB77iwSf07ZXc6OnEVmtrsOHuNWkM23dz/zgAs3MCoxgw2ks+9LDiaV0zLwd2MHC1hgvhGx+2zhphp95qaP/YiNlzMjs6MdRRz8d7JrnC0uSjrybGauJFW7/Vag2/7PC0B535+HQd4MF2Gxtz+TgjzhZpr+irLztcxbHPeOCEB71cnEdrfMyXH7sEhqam2VqDgwMu1du8M88WTjHVUp2JuGLSyVlTD5jxMKbbGuDBR5NvazCtEX7Gxd0xbBIvHNRPz6/z61o0FqO9N2YjZn50sMobL3O+zrj3HXzUXxMLn1o8+PGBQ3rRnL6cylfPV+3Pv+gBp7rBwtE/+MDk48w5X7Crjf2jg8efnp84cXV+5ORcG7fGjsATl7841aYciiUXOjYw2NkXjY2X+fDxrN6ts2UjBjF3lojaOV90cJN4msOxdxo7+2F/8RFLc33Dt074LwbemwM+bOn46bu2+LEPn62Y7Pqfofp/oxBrDyIP/DfafVAoLAIVW0CECQJ3I2HNpmgdFIloDhAcyW7js/PGbBWlg7CbxiY/2MuNXlFJvtnTWWvjzEn5vTn79zz5knD1JH2x0m2OxmHnfzjPDzjxZIObPpz82Wm7zu5Sy7Y14cRQK3gwHPC4sy9O1Pha7xyYs4NhTH+uY3pnyBobYzc5D21ikrCLpYd9SdjeJnzuts6PjSYXvTz55KcuNevyq7UvxbdO+MovzHKtr67OvOvAjRPmBz7wgeNf7tUlHbxwjVfiSNf+sY0nHdk9Kjd9e9o+2IM474cWW3vDTpOHfWOvT8o5XrAa1+O2NZY3nunM3YjVJv58jNOxTUcvLnxjeo1kV+x46tnQyycxj7N1/mHkcwlfbbperMOoVjDbd/dNY80Nfn2KnV89PHmri7HeXI1w0zsr/MnyNc5WbcqtXKpXfubwYZUnjDCtW4urve+zAHYtf7jZpoNrrCV0xcknnV69YBN2xJzeurFamodLp4bpF7+8+Rpb4ycXZ1rjC48/ffGP4Kcf/GERdrDo1DLdcmOrrZ+xhx8PYx5mPUS4H7zwwgsP9W+0/+xnP7v62te+dnwBrFb1B9l7/Cg3Zw7fzqZct5bVNuxypafT2r98rVU/NJrnm1+Y1mvZR59NWGzCsE6v3Y/wvZesTdy6jopT/NbDXG67Fkc9PTwY2ei3wbNes6a+G7+YZz/61S2n1lwDbFqD3T1KDGP3A32cjfkkcYNBn511OhKPYzI/dp3avJZZvmubjd757IyGEacwsjdf7rhq8tbizw6Gz3HY9smLdtdwa/qw4pauuXU4MBqbW6+n16pbPGARdtb6HM82e3P3s/aIT/dwWKQY+p0fk9OPalUcuaeTh8+mdLm2Xl44lx+e9ATm2ja2xi6Jrzmb5mufbTp99vgRmNrWdHWtWe/zwFg9i3kAXf9orufXfONvbeC4j7qfxg2WupB0nd3mx+L1j86MebUsVhg4kDDM2eAnH3kYh22srTg31mGqW5hs5GANvl4rhnVzwk4Ln317AF8j+bPdM0vPZ+NsznBhlBN/PBb7CHDhR5iW+Gx+mYsvxqU1Ohj2cV+0f/jDHz7+Rrsv7Jf8wr5bX/1ef/31K3/67be//e2xD16oWFNDsd2HeiFWXcTUqoU46uHFh5cx1ca6cTWWh3PqbBL3CnE8m4jlOwKMnjH1YlbH9pgvzHji6EULe7zgiEv40pnjw8deis3enIhjXszWnBXfJ/nDwpevGHDFlVc85YcPnXWxlo9Y8sBFMxYr/tb5ibW1oveM78WZdT5iJPGXD8zuI9at8dGs88vOenW1Lreu3WrBVt5warj4XOBTXfRsw5Q7G/kTuBq9mK2rLRwxcOtelg27aiUGXtb4aPzNxbbGBk+it8Yfbj7qvd+JrXlW9sufziMcPmK3966D4sE2ZlO92KlfL1bFFZ9Obv7LNHNxxZBrtTOOj5i9RPSPAYROYweLVAN9tVUDNkRc+6ThKha+sOnaC3adUXbtoXHCRnyiNp0HeHBxVx96/pp6WKdjs7jmat61wqZ4en7yyi5MvbXW8VFTej1fjW8crcGRrzzXvxj4x4Ut7v1msjFszZpWXGNxCHx19V9tOAPW+u6XDbvyXM54qK8607NXn7h3PtS+fOGbs0tgw9DzxQeusfMtT37WxejeCZPQs++6VStzTR2y2b4a8GVP4khH5KcRXIh5e6HHlfR5QKem7MMTq1qxh18d8GNPV4ww8LfG1/o2MdmrIyxiXX3Ut7m+XKuXHqbGHgexxC1GMcW3j/70m/8Z6vPPP/9v2MfkPn488It2/7lUF3AFEqciIXovQbwHAYVSGE1BtDYpLIVREHrFIOno81GwClUxs8uXv/Hama+0CauDk6w/HPMw4LdhuDVvXQ9rGzsi7m1SjHhnl76evn0RowPDz3z986Ej5rjkp57Vi45k2zi8uIdpzj/94Xz9w9z58SCkx9Uh90FinD2cRyHx1Rdb3M3T+SLZqkX80h0Gpx/wwmls3pivm6jfYHWjgus3WP1Gu7q7TtioS2fKnN3ukzW6bsgnGgeH3Ys464kehn3oX0DjudckXb7Zu7lr5dSeWifhtLfmGj7i6eUijhysnT+gDqDrH2zYlrt7hzFO/EgYx+Rm3jju5viZ441D/nQk2/aejg19XLOh3z1iW37pi0Mvtt6Z72GJD+7s8mFnLsfuk+x2joM1X+rw0KoTvBodW+srdETPxn0YPju6WjZrb4yr/ZcLruvHx1yzFgZ8887IsXD9A9dsYC/nteVrPVy9dU1d4wGLzjnT4IutVZeNB0c+9qR9CbM9YXNJ8Kmx0czF0uOE2/pnX544qb+99DDlIeuDH/zg8dtrzzzzzBF2/S/xuJdOTC/a/Uac37RKHgSXLa7uN67Vzow8NGvhiUc219bVNqxqEJ/1UbvzPHxYxUgXRnr+2YXF9myf36U+2zCzgRs2HfxitPf56q01h2Wsh6EGyeLQqVW1NU7iU8xswi4mH7rsdz0+ei1b/Ffc262Xr2vKdaIXn58zvuc87HCqV7HiHTf95pffpX59WocLUxzSuDkfUt9454fBLT/OvOOvVq5X92J74DPcdQyXj5w0Yzo2xdRr1uldT6Q6q2dSfHM+zfVhuld5vmot3NbpE2P49tD+knT05Ves8lh/NmvHlsije0P2+vLCx7ieHxy9JpaeTT78szMm+MYBVlzye9PqXz/5J8b2jPDr7FajdGpqXKw+D9gb5xcuWy1cPT7dE8R172wuV2Nc4qcvB2OxNTp5GtNnT0+yMW89G5xWxzbxOS4P6/StFYuvdUJnb80Xc/mGuz1MuYZtzEfuxvD0ONBnr8btATz2GimfxvgsVvMw2N8m8qpucczWvAbzNuFvH33H1Xu+96L9xz/+8UP5G+2vX79o/8Y3vnG8aMfXi3Z1i68XkmJqPqPxwZfN1pWv+8Qbb7zx1jO8nNha49svxHWNeCEFpxcr7hvOTbidYb7GbHffYDs3ff83JuyqKSy56Gt4+u3JhF4Mz0m4VXM9LDVxBuCz8XxKJ0bPLDDYs6Erx85OscW0hhMcPRuNDYGDj7z08ZE73uzUKn9z9RF3+eCHP+zi+Yz129z2xBo/azUxYGv8YYvPjo9e67mWHz2bMMoDlt9e99KRrs8EZ4rAUEd25ah+xuw1HDVSHuLhJt7qjeMJg9Qbxyu/4phbUzufu5oxaV/EtG/LB1c87IN6VTtz2DD4WfP5/eSTT751PlwL9hZmnNnioi6ep2H48zaETv3Y48qOvUbwwpVPNuZ8nPf2sr3FtXV8vbTsng2PPRHHuvh8iWugvKyl2+sbR7H54ETwsvfypWNjXP50Gl7i6dUQbhgH0PUP/DT88ttaqIf9EYOIjc++eGbPV3x7oZW32P5RS02KYV3u+mKx08Rj+/e///140S6O2Fo58IGv9u2XOf/qa84HX7Hyd490D1Y/nNlr7OHjCLe68RNPT4ydQTVhKyY/9xiY9gmWNXl4d+PclFuc2rsD9OaHNX5y0kj1UXMYi9N+FU+v8YWPJxvzzk9nRCx6uM4ev40vDh1/enP5wDGmq7EpNh2hw51tZ6J6WVe/9p+tfWKLU/U2tw903RNgiKXe/ou0l19++eq5554DedTuGNznj4f2ov0+4x1mEncgJeDgSJxO0ppiaBIl6Y0VpHUbed5MPppN0LNlY66IGh3Jrg07lNc/FNfaCg70BB5pw43DwC9/ccSjy4ctsVZe+vzfXH2wn3zh6cV2oPVxLpfb8m6d//KEgT/hKw82Gp/8LrFlWzuvu4g8fLjoXExi7M3mbP92zstnc5KXfMtRTapvfbnX81ev1o1bw18t6EixjJ1//5VIf5Pvzp07x5d0vuLq7aeL3xg+vWtGX43ttZvvYqtrPPgbW9/zFqY1e+Ahy76kd4PCsbiuU3HZt2/2s/x8WHWj5kPETsePLR/x7D88nLJ3b9DEwpforbNjr+GlJ/iehU/+rRWDfVz0Gh37uLBdfzYkHuz4tAf5s5Fv+9Z6cczVpAclNbAWXnN4RB26R+IjZ3ONn7kHTWsafu1T+R5A8yO7zSk/PEg29LjEZ9foPHj3YNga36QY5sVQg+4t9MVia4yDZkyXnq36wLF2rm3nPEwx2gs+1c5YO0tntQ9d+YkBI7788DnXAx8tMWarZ89/fbKLi96+eWhx/u2pPyXlz7z4n5+RS/7h3E+Py75oh0f3ILhsce3e0FmzX+V75kLfnvKvfvRnn+oWBvv4sc3XujlpnW9z4+bp+PJZTGvZhUOX0DkDpDNpzOecM3y2fNQlXPb0nSF6rXjGeMEjcLItx/rV01UPWGHcK26x+dTgaCQc42xdA8XQm7tONLlpi8GX8NesNS7mmxb/sjHPDgeYt0lY1uGZE/58zfnryyebw/Ah/BBLbPu2L7b8Qkqfx2yqjz4unaU4saNzblqjU+fiZFtOephx0Ls/uh8b83NeYHadFp+vdb37ns9kY35iatUvfXjx2TmblY0J07om/jb3ZPP4Zre1sn43kSN7dcOJwK2OsLWzwPU5SvirA8GBfTr45UzfXK9O588dfhop7u4tfZ/p9Gz0+IhN9JuD+Bo9O/itG1cjNp2hA+gGy/rmIJ45sdbzGC7p2YhhLkeNLZ0YPatkF4dyj2uY4R5BTz+s8dOvH5247TE38bWziF+s9sjcGFctbL5nPvLQ2Jxlcc9rzfnxV5ueYf2pVF/UH9aL9v50jN9od4Zct3sGfa/2fcLLWWN85KkG6oOjmnrO8Oz26quvHj0dWzb4u3+5p/USk7+XUuLBZUNnrjYabHn33b66wybm/KxXH/Hw45/Qdcas+b7oJb8xLHFg4Oh7AN7s+cHBSSw6dr7TuCeScoRBirX+MNhpBAb7MNTbGJdscVFTPb98POeLodb9QwUf8TxDlYe9hIe3xkbe/PofU1qPF0yc6Jxr1y9earS5wRUDpnX21jUxzElY/q4znubqJo4zjK8Y/RcQeMC2LqZmHJYxbHH1G0fcBA5b8cjmlw179wB9MeCZd56cAxjWw9BXT1hsiD3pfgcHtjV14g/XNeS/QKEvhnw18+zgO29e8op3586dI0b7oW54weTbOVMvOsIvwWfPFmy66oMr/vZBbw4LDzbGfY/nR+QlLnv/iMLG2XNtW6t23SOt56cO8iXp5V6d9fRdc3Cdl+ojR7H17LT2CS69HMRWH0JnrIblCIOuGvKlE5e95tzCgq/JzUt/1yRbsZ3pMI3//Oc/H9eZ+EQt1MW9Lx/XDVux4KsrbsbyJHiJJa54ew9m4zq2Z+WJLwx7LY4zwI4vDvDUklQf8/LBhx4ODPjycmgOFnYAAEAASURBVA7kCVP+fPZ84cene4FctPYCFtyuG5zihwtfTQy4uMYTpsbHmsYWVmv8NDHEDS97a3EQj56Eya85f/lYg+MzRd3CZ4ebOtCzNWfLl5+Gn72BbX/sMwxr6u3z+zvf+c7VF77whSM2/weR/+mLdh9KNlABbLImMcVogyRTMegJH2PNuLnCtXHZrq/iKF5Fqg/LvHYEuvlhPT78jenYLh7zs/8e+nzaYLxhhWc9gZOcMdPr+WgwSBcHn+IdC9c/Fl9dyGLThdMaPGINb7K4+etXzNWGfzbWjd0getHexeYiZL8cF+/tHItZi6u9aW/bnzi0b3yysSbXcLZu1jqbxmzqnX0PUR6K6d/73vcefzrmMLj+wc+FXx3F5qNvT4rrBgJDDiQfc+Pq2x6b08PRu7l5WHDzh8POTVRj0wcbPUz++BXH3D66SeHMJx707TW7bmh8w4u3OOWIB4G1HOS/+3AYXf/IvjmbahK+uRZ/vTWtteKZk3pjazjr+aiBfOQCi5ivrljsjdXHB6NaVz9+1prHRw7VHg+18YFiv9nj0cO9ddyyjyPscw7WxCLG1vMTmw6WJo5G2C2WPDy8JbsOZ8WafGCpW0IvTvZiayQdG2O1Y2tereAZq3n2enP2+mJ0bsKnDxsnZ3X3Ba65GOz4FXf5W0vCTIcL7LhlVw8TL3vqg9015+HAn4552C/a/Y12fzrGw/htfOJ1Wy8v5xDPrlV7Io/qmi/b9HuWVn/JBzfNWuMw9XTVN725lv3OO7/FOtuESd84XPtN7FH45vIpb3O+7XO2q4cTp3D4pIO19sfk+kf1Y7vnkJ+5Zo0dDPrEWpyKw7bGLly2MNY/HNdQwm7v9fIqzvrGiQ6H81p4emtaHPCI99rtePHSi7lYxtUv+3jREzEJvbYS1uoa82Ov5r5cun5h+kx3TyZyYJctPPbtdZys83Vulpf71/Jibz0/+BqBYV88Y+VD577evZ3v4huztb9xEtPnePc5sdjA0ha7/Ipvnb08Nk/rYtEVn849hH24xnHS19iKe0niEE82/KplfNefLS5dpzDUQJ+dsRpUB7h4mhPrffmmJ3Dpq8OhvNFXj7h1/xSPjq9Gskkfp2Px+ocY7Wmfb3zFpRfLnJ/enMQTrjWN7vyMZj2+1qsDLDUTwzmxZl4dxdj84ZDimPPRlhMfNtnWb2w2pLyzP5TXP2BXAzXBuVg9B7AtLjz2BBb/MOhaax1WHOjOwlcdfCZ2L/CnJPyn5160f/SjH30rx7PvveZx8aLd5/fvfve7ow6udc8n8pWD+46Y7keeIeS6daqeXibx9T9X7eUp/u05/mzgwFQ/3w+ckz7zYdHDry7W2OtJ15QxG3sHuz0Uk8CCo8fBtaHZQ8+YWtz59FKlvVR3Y3USky07NZCn7zd7RsXcuvDjz0eLHzv5WHOtEzkbywcGX/lq+YlrjIt1L8E8c3UmxYApj3KBHSf85Yy3fcBdPI2vuR42H7h4WefbvrDzTEnXXlQHtuys5WOP+412nGE7T3z49zJPbvaHhIuLJi/rBL7zWZ1wLkfr5lrSPF35OXd05V0t+OFRTnrCz35kJ2Z87V3P+PJmY8255AfDn4352Mc+dujMrcnLWM+OX3W3T/SPPfbYwVPemjpkfxC74cZfwwsH4+zsO1xrzq441sU2xl28zaFzxqcX7Z015wu2vPnBKCd5F5e+hpNz75cG2ks6+HHl1z6JxRde/4V+WGLxITAIX7jwcG9/rfErV/rmsO0pLI2vGiRyo4NN7Fn7hqc43QuM7c/f/va3oy78CE7q5frFAV8x9szgw9ca2/xcZ0Td+kdK8QluGj85iGcMmw1+dK51c7GrDzvNvH/Mc43SEb066dtzeNWrPdIXZ89O9ZVPHMNpr8Wu7nqCY/c8vuLDtS6OHjYs9dbY6dtXOIurBtb0MOylscYXFmmPi8W2s4yHRtRSzfBnYw6rnOHA9BnYvrrHGbN3lv0XaY/8RbtCtqEIP6jYHIezF+0KYLM0iZF64wqpIHwrvKLzpWtD6eLEjt5cM9cUMB37lXzTmRdfT9KtTXjp6oslrpzEo4NFhzu9RqfBile4zcPdPmy+Dkw+a3MeV99si33Wixu3sGHxq2ejpYPVmly11l1gDrGbhHPU2mIfzo/4x+bfuNrIv7G1vXnhvbkZE304+uoAx5yE5SW7f/0096dj/Kdn7NQKfr54dK20T9bclMSzthJnvfW4xcc1zJcYu9H0Ac9GjG6ixp0zPWEj5n5IiGV/fSglOHa/wGH5xLFcYcazHOMirnjxWE7xiVvzri/zYulbry6wxMmmmPpzy/YAuf4Bw1n2AS5PEq5e/vXwje2rD7T2Tozs4nAAXf+QU01sH+Lunc4h4asu1YPt1ukwurFjQ8qh6y69evGFWUx9+eBmTuLpWnZ2qtOxeMsPNmLB45+k15PzWtj0zkr81cwaPHr1D1vfuQuPbXkVy7z8+dgT5zcsNeo6Ka5YYeK7/HZuTNjCvpuouwc1zdhn5Nv1ov2ll1566zfEcCp/43vxZEOcFWewh5vqSp9U7+Zs1EIzJmIbtx/ib72yS9cetPf8rJH2wTgc9tbXxjqhWx/z/PTW+BcrLtY089rGgWNejOyXQ7zPuvR6fmGZE/22bNjRF/cwvv5BX6NrXH+2Kw85J2zFIWI4//vFwxp7PX82pLqZW9Nr59hsW8uuPMzZ3yb5Leb6Gi8neKR7JP+u582zePk33z5uzoAvVl0L/UY7W9jFNN/zYk6Ku7kY0/M3zu4Y3PyA6/6kqbXefcvnEV/CV659FhbDGhv5tY6bdbh9noVDt3nkT5fNfp7FWW9dL1Yx8vH8YK3zlg18+m10K2HoG7duLhY8cl6nr1mXh1qrHy5hVtv8tw7s5Nwe40ryNY6/MRGzz1nnxTMW+7hkH3f6cN9E+Fcu7WlnhB1+9Jp52Oe6W4PNXg7lUe7W4wAjfTk4M31GihU+P7ZwSXGqiZjW1TUfa+z1pFjpzGvWy894pVrBwU0Txzx/mNnRGRN6XGuL2ziezc89X3Wxr8418eLEi/af/OQnx4u7cjz73msOm7z++utvvWhXB8/s9h8uG7E9H2qeIdpDvNSCrbw9R6pPv6WeXgw4/OTguwks6+z5kmpoXH31/Jzpzl97GH/rWnzDCQM+X3lo5nhrsNo/a8at8ek+xicuvWh3P7O+wqaahMsGf/h4ksZsiL4YMMzrrctJ7eDAkLvrC4f1E5utmFq1KW5nWG50fH2/gkeXrzXjeNkr3y/gW3MO8ONP5BOnnnXFws+cP3tjPtnDb018+RE6sUjcuq+Hix8u1mHX6BP45mw0Y42tzzQ16kzjpVnLrvjtR/zMifjsccKZXhwCI36uDf+flY9//OPHPsblMLz+EXf+NTo1wY99enXAm8hBbLa4sZcDPZ90vk9l1x5Yx4+UezH0feazc9aKxVZuBKZW3fDgq6+G2fLHzz+04Q+XXRIfnDS2xFgecJwJsTrbYeit84FpL+IVt2zyYQtnfeSJP5t4GK/AY4eLJo6a8rPmOiH8CT0xLwf28cNXg4WL577iOzfGeBqrAxyY/ONrnYhvzT0qO37WxYZlXX00Ns6T69Evq9ojOnEIWw1u2PRw4NXowpSHdY0PTGtwEn7iaO2BNfnTFZefPKtRdaKPj14d3GvEPEtcwhYbfvWDySY+5aTnQ+yXPIha9Y+e/KoVHBjmxj5HxcHNPVZdrP9PXrR7KSgBSSOF4IOKZB0WLxQURqKK0c0cnqIRthWSrU2mE9uGnTcDHy0/GGw1cbR46xUzH7Yr6cMTCxdxyaUY679jtnBWYNnI8mNjDh8vwgdPOuuk/phc/1j/dJf68rbGh5SjMV08Vx9He36pXnBr4ax/FzSdm5oPET093f8HqR5ytc/yWSkfdt3ojMutPdPzrZbqqdG1BhceG2feg6ybtbk/FfHEE08c9t3w4oEXez2Bp3U9ns9Ffnrx4mAP3UzcjHrwg3FpT1xvXXNwxMAz7m5C/uVfTeDjBkczr25iNo8PLOvx0dPhhV++7MWzN1p56tNls1zp8GHDn1QDdUsvDj828WFrrm084+b2vrl8vXBWz3z1cmqfxNaIOHLsPopndofBzQ/4cTBmp+b9hks55FM93OfOa5fyERMXUh3yDUtvLf444GKOf9cz/LDis321qga7Zhw/42IZk+pgLGY1MSfs9xyd684fNz3+/BN7L8dsXAv9Y1E4eusa2bqF03o1KJ71dNmee/xd235zyOciPvbB32h/6aWXHuqfjvnFL35xYPqtF3kQ8ZJLubW2vZxc95p6wlBLvBN6OrZqyKa9q5b6vf7Ej4M1vnw0dYrr7gkba+zZEXP6s9ATtrVswmGjwXJekvjg1zo+bOLFll05mO/4Ukw2YltL1ISfVlz9mc/6wKiFs/05v12DI99s1JeEV77s3KO7RqzTZYefOfvNGxb81tgndJp1fpq5mjbP9tyvH0wY7YV7dHN2YRk7p2pM3Itxbb0Y7OQD45KwF1M892XXMFufiR7uCQ6wCSyNPbtqpmfX3Dgb+8A2/suTnfthnyP6chGPD5xyMK9Zh2vdlzv8rdGxt7/wcJJncfPXl78x6XkCBnvc9TDCzpa9sX1gz4bgo62wq60+btZgZEPf+U2/fnQr/OQiX2e7vWBT7uVBl701be1b1+NR/Hzoq3m5W9s94sNmfcOrTt0z48dWM28M1/hSTeHBgNe1XB4w8mVHzOGoA8G3c1c86+xgwogrnZbACKc82y9+xvmHZZ5OPPEXd8d8uhbkxI/QFzcu4pNsjGGx1XZ+TO7yg709dR/wuWju89yfoPjpT3/6UF609xvtr7zyyrG39g5feykXDQfx9eZq5QVgNalW6tz9wlrfJdQId3aeNb1oLzd41tULrjjEej78SHE6H3o6vuK253AIPWx28tHY6+Vi3Vo5uVY9e+Nd3mzZ5SdvceRHlxjj63zAsU7snfuhHiYbEqfGOLcOHwc5wYNd/D4TDpAbHFg42js+YsArhlwJfPnAh6c2vmforbHnJ0Z7DUsunsvzgyWeNX5qYqx27tk1L+/EqdZygSGenojHpvh0sMMvl144w1AbefDhm70+4VcMecWDDzscYTqL6fAibAkM8ejjwxZnQlcubKufPh9j38l9F//EJz5xnAW8nJGtxcYWI17qjo9G7znA/oinvvYcD3p1hmlPSfvovyroPKpdsdjgp5bZiiPnPrfkiguBAR+GMRw8xOejpvhY46e+Pc/jRO9asCbu1hmOOT2f3ufBFpNUb1xxhsMnHD0cvMrBOL36dK7F0dSUjXzxh0kH339JKKZ86eSm5v5+Plt+5SEuiT+OxP61R3ioAV85FSdftfGsJzYcXIj1c4MVf/ZhwFQ7edKVe/7VRnxr7UX/wArLP4bkL0b1YaNOalKdYCRyU/d8+bHV4rv5wOiMtI5X9cKZL1xYWjHocWOPk3uPuPHVh+n8WlMbAsce8JFv+vyrJX9x4LuvEjbOJ+7hF4uf69Ba90t+YlkTx3Ox32j/9re/ffX5z3/+wCzeMbmPHw/8p2O8COjDBP6DBoyT5BVTgg64zdNXDAkqikan0Mb8ErGz0S8Xc6LfjbRJiQ2x6fpLAq91frs5xjX+tUs4OMgnm7jy76DEl05Mja7DCrd42dZb27H5JSkXth3U5UQnhrzFtUbYa+YwrLHRWtOnK9f2rJu8dTc8N3C6xb/E91Hptq64O2/yxDfJRm+9HN1E2JLyN3ZezNUgqX7ZqZkz34tT2L1o5+MGyEcsApM9P7jW9WppfEnaF3aw2LmJ+PBxY+GLjzU2cQureuC2ogauX//wdufOnbceRuC4P6hL+Rebf7rOEXuit0bwg0FXi1c28sJteRm7nqwleNJnBw8fjU5NuwbzKYY5rLjpCV/81TJbdfRho4fLj5355krHp7qaa3yyO4Jc/4BBH545rp2Xc/7N2cureXh6GOFax6UcrNOtr7lGsuNP1EPOPtTUgr58sj0Mr38UM5tL68WBW835F8+YXqzlZR0efR+wuzf5VUu+nQtrXc9xk5MHFOcwHmdOZ/5hx4U9Oc8P5YUf8OytB67+EcW1/na8aN8/HYMnjltPe1jeF6j+m6p7En9jTR6JujSH2Vlnn4jPTr/1ah6XaqxXL9cLaS/CocvHOMkuPxw2Ln/8rPPfdRjZWgu/mGzP9t3D+BY7e1jEPLxDcfODvVp2PTmjxsS4+HDEhcOHnl3xbuCOLhtr5ciehAOLhM8HnuupuvF3X3Otuc+HwZaEcYlHNrfxO9c4zgfwXX6Eq28f8MKbDm7YwbDTcJEHvuXChp9a67VLsnVy3TrrMP1Gey+gihtO/MyLCac9Eaf6sDEuvnG2zpd7lYZ/ubBZ/+LGv/jVBE+fKb6s0RE+9rg9rD7WsrEWZ/b07Ii5cet0eNey4eOcs092TMcmzrtWLfAIJzt+xdIn/MPATUvgOC/lCp8tf3qtuooXrvGuweNHH0bzYuHZCww654w9O42Ys9PSlRNcdSvGOQ49KW44h3J+sINpr+WgHrDUgt6YsNPwTAdbrcy7JxWPLjv+xvDKY9fpNOtEX3zj5tlZ4x8fvbWuVRjycH3IS7/xjFf4kjDDK05xrcdx/XfMBg+f3a4rc9fWw3zR/vvf//7q+eefv/r1r399nAGc+twVuzEO5u2979hyss9yUhd1Kl976blHzejZGufPp+/pxmzEcN9zlt376PlVu/avveKDk+aliZhEjLjCaM/hmMP3fQNOjR9+WjmxVXN+JFvc1MUaYVdMc7w063ys6ePiHmu9HK11/VUfOv5xx0uNcWHDVx5+qaqzoQaw2VazMOB4CeT8GMcHpnzpSNctrvZDLKKnS3qBaI47CUt8PHw/h2sv+IqJV/zMrZUrrlq226dXNxzlXFyY5YuHmBodKY58jK3hKjaMctOzcS7ZOU9qSsR3nsXddTjsYOYPl06exo8//vjxP0L1t5ntGb3ayCPefHHpbHk3Zu1Pf/rTwaUaObfi4+N7dy/xXDe4i+uXXvBRP/Xyol0sYp0ONh1cfnjJzZwerl6s917/CVpnB5648Ow/jHjBhN1zHL3vH/iSfOIFp8aWWCN4eH6wDldP6tt7tVU3ggtbGOVnPey4wzCuxZ+fhq962AfPXfbJ/2eAGPu77epuD8Vm75oSC7Y+EcN/4cNeHGu4OTNs7Xdn2Bqs/uwvLvz17POBzda+iMsHBjuCN/7pvB9r79mIX53gaPJQP8IXB2I/rentt9xdA/zzrX7s5SQGnca3lj2bOLDBVzOmd+76rkynBuLLAUdjzbj6mDt3zoV4pLG4zm51FgOW/dPUUM5440a38XGgJ8bwq5n4eKRjB0vvrFgrFl8cXNdetH/rW9+6evbZZw/c8I/Jffx44BftkpSY5EvoQYPiJTk3CgWwad00zOHqFUUzJ8YKpBh0bdCxePrB1kbkg2NYekIHS7sk1jss+MaD7XIMozrA18Qnxe1g8GUbhjyM2W1MOnXmV65h6bM/gtzHj3KB2yGGjT+seOBAJzY5c6M/x+ZLl8DQ4HcjN/eB4kbiJsQ+H2v/K5FfrTzaqzjRVx89USN5sCXlonemt4bW5dh+Gmfnw03DoRft1uGycS2Y651DOnvpZkWPg7mxRtjAI3Dae7ZuvPbBjdicsNca62Ft3sfi9Q92zg/O/gX5zp1/vWgvZz2Rb2PzuHQPoRNjuTsv1vnR8wnXOB/5xTmueKVj1/3kcLr5ER5/9dQIjARG8+z1WrXv+uDjRo+3Nbia9c5++14t5FxcmORcKxzYlWd83YPV3tpKcenVId+1aWyte2x5Wktf3cLMb3u59GXJGF/5y2Mx+VgrD/NqaUx23Ro8GPQaMaeHD6v8rFvrw7uztX75qEsPCfGBo5Fy6ktJeejLi5/5ri3GrsGUDx2/5vqdW++a6kW7B4+340X7+X+Gikv81ay9ibf1S4I/zs4Kf3XV6JJs9HJsH8zVml9r7Vf7qU8Xl3iGVZz6tU9XD6NzJSasjWG8NssNhnV+cQmXnm3XDD0b99b23TyBUTvHNOejh4dvdSouXzbEuDzM2bDXZ2cMzzybPg9ag1G+bOBbo9P3GWPcvOssLgf49Q+xCLsHkeXILw73i1EtznnCLbe4FUuP534R4K+GenuQzyUefPFk4wuU8y9Wf6OdXoOl7Rie60Frz8I6x+KbPRs+6u8+1ec4rnsGF4MPgVMtGnv29vKnF+1sNXsuP5yrTxhxcI6yYYcXMeZvztacnTw1uuLrrZ9lbZYzvUbChCF39x5Y4YnPJvuNYS3+9HjtdcEPLr38rS1OcdhYI8b8SOt6+jjp5aPueph6LR86PnJKD5O+fFZvnD4/PSkem7Pk5zlFPdqfsMoFVvGqAZ26xD/O9PnRae158auFuXE+5/j50mdHF78+y63ZezjW5SKnnr/EyW9j0xNr9HKEQeJMn08Y1uniTZ/AwMvnNxtf1P1tdn865mH8jXZ/U93/lO1Xv/rV8QyJg3ieJ9XAuFY++vPzpmdWdeqMuV7dS9TMea6G6pA4s3DK28sj+XlmMabnp9kjDZY64FY8MXt2hI2fdc1YTHzc4/i6t/ZcxJcONhut82AfxOBPx47Oixv8zvtEJ15+ej7hdwZ6USd3a/LE1VhP34siGDjJTzNmJ5Zn9/2vnbzcZmMvqrlew99zfi8wxdRgZSMWXw1X+6M+7NRMbokXp/KAm75auY5x6YWvdQ0OXPvAzzx88+qDEz0fPV4wCRtN/tWs/NiRsPQEDls1FRNPPq3Rac65vVUnccX0wiwcYzVRC/b2onsCG3Fg8LUmT2N/NsbLtQ996EMHbz5eWuLBr3zte3vvOhDf/zshnnqx5SFX373V2Rhnej7//Oc/D1zYYuFNv3sttkaHs7y2Pl3P4uHtrMlPLNy9d7EPdMRYTeVdLD78+TgLzot1vOj0BAcCw1gN+LJJZ91c3a3jbE87H3KBzV5jy846n3LHzZp5etjGbMXlB9uLdi/Z/Q9OiRzUVu5w4um/WDAmcLa2f/nLXw4/2DDFVifx0xl39uw7DLWRh15e9jHebO23uPiasyXVxb7Q4cyfLyzcqjsbHDQcNHm84x3vOHydLTq5yrl9xx9H+ehhE7bEHA9NDI2tOcEBJik+HLjydK4JP3r8rfHTmxuLJxada6194+c8iwnfNU3HVlwtTDV0L1ErmO6f/WNCHMLBRYtXeTdnLx4c90e9hh+9/O3vk08+efXNb37z0b9olySyDkCHAOn7EX4K3E1CMt00rNkMSSpQB4ENnViKYK1DIGZ2CmlsHUfNXOGzqWcLj00bsPzpFJ0Nf5gJnnENQ19sPd+z0PODrZnLq3xxkZ+eDgY7YzrCf7mcY1ya41YTU+30MMWAB5eIR3+Oh5cGp/iLWT3YxNEF0kME3P6VlF78cIp1ifuj0OESZ+OzVJ/srFe75d6eOi9qc14zp187N+AeBLxY86djOjvi2ns+Yhvr1bizoV9c3OIpjvVuUm5u3ZjclO1DwnbFvLz1NXVy7boBeaHgJm+OI8El/vHiS+jFdHM2Lif8NHMcW+dXDuyNxb+0V2zpYZCw9XEz1vDqZsxnpf1JZ14exmqPq3F5+VDDu7ztE67lFXc4JG7507FpPRvcYLHT3Dedlf0XX7YJG3l1vypf68ZJuKuzxl88/lvL/NjLi8jfGZIj3u1T43zq4wK3mrZWLzZRYzh82BP4+RnTx5G+c6U3jysctTWXl8+ahE5MODDF7fqwn3DoteXTfobT/rAncEn+xTGHQ+JuTo+bh7C+NLimetH+mc985vDB478RPHrR7syWG305wKdfrueY7PGvdp07nyv7uUzfZw1MfuGrtZzb87hsLP7iVCNrWzfrMHHV7iYwxIxzXO7mcz9r1UIucelaxk9b/jDLK/vlT9c6P23FOsmObbI457pVZzWIn5oXK5z2no2ciGuKX2vuz657unhYO3ON1716GOGIG6dz3W7DyVfOiVrAolt962JoYshva8GPqBns26Qzx6Z7slg+E13H8KsRvXl44u1eiGGtdXM2Gh56PKsJjr5gaO5VsDvbfFf4wmUTj+zx9KLdiyy6YsI0putclS9sPPBPx7bPAuvW2JByWpzlYp3/WXBdvotztre2+yXWxmdffGOtHMQ1V9P8rOGo7/xv/HjlZ42OPQyyOR6K6x/Z+bLYvsIwXv6bj3ENDntCJwY/MTu37rl0CRst4UfYwPI5zrfzyJa+OOVabfLlI1/iXrEx+Fpr/TC68AN2dRP/fKaKCQ9+udIb08mnMT0M96ieydjQa3cTPGDFPVs6a0TO1pd3uPTqoP72V1zXlt9o9z9D1bP5T6Q98xvt+6KdXjzPhnrx1aL9wEEzx9kYB9/LXK+tO+O99JVjddSzF0dOYlQPc8+jmviwOv98NFgEpwSm2K3hFW9j6/hoYnkW8txmTXw9X+txhS1evvqEv2adtNbLHbrOabUzh82nF45yJDjJtTrQa3zZ46W+nT/x8O5eiwtRg+ognnNrrifq63MFpiYmHHjlII7rlw97tSFixBEv/4jis4If3nLDz5wvHHmKw74aW8Ot+J0rftVIPPbVzrwc2GnVR+zFZEuyKz57uRJcxdq6G+NiD9XVGK6X1J0J+aoDm+J2ruCWp5j0/Om8aPdyzfM3f3XaF/iw5CsmjrjiwN+fdsK1eojdnrknaXLtWoL9j3/846gvPR72ARbRw7NGxMaxuPbYmpyJa/E973nPwYctvb13RqohOz6wxRcTjrOGr3rIlx8btnQr5vA6k9WYPnvxrauP1tlhgxfseKtXuRkT3FwPBE427IzhqWNrXsKq5V//+tcDy/6rpdxxYo+nGnW24oATXC/q+cBkT8c3bnRE/PZdz18dibrIK55iqa0zoucLk3TNiEen5nI+1xFWefInbPB55zvfedSy61dOzpnveO7peOUPIzGmJzjiYq6VHxu5wKgOi0EvBh0fnDpT/PKtHtbVhx/uxdXz19pTtvmz13xHdk1WP7Hcu9h1Hu0HPppc5EXgWaNjS8Tjq3bw6WHjptmzfqP9c5/73OED50Hkv/qNdmTvJyAbibYJCBorLJG4w78fDK1XIDZEIazRK2LxcdnCsrWmaJr1/KwlbBZDgWtsds08HLGa6/Np847F6x/82eKbjbVwjWHWzNmbEweAn3lY8sieLtvD4cKPaqC+bKuHHnZzuBrMfMAV28VLv9zP4ayxy4a9m1w3jn2QC1uf/RnvUc7luTW4VNdqoW44t1fVsTzybV4e57l49kVzRjyIv+997ztqGBdYmrOvfpoai5mw7QZSDDVvH33guBml23PVGFZjGOUanpsfnuJ4ye5/3Oo/resajUv25sYaHlsTXPrwZ/e36//zt399Vc8484sD3dacHR6a3NmxURdC1z0ijGNhftBXY3nH1Y3bPGlv9fQ+wPCHz4dO7D5cirtru1fhbny6cIz54uYeWY70xD74sO56huMDITHfplaw9IlxHySrt27OX6/hQqqpM1R9jNXc3Plsjw6H+RGeXp308M5CT8Qsbrr0etzpxdaLD7cvHGzCP2PJiX/rje2hD1vnEhaRT235GMOBIT4b/mvDv7kxu/OcvprZa7+95EECJ/vuf4b64osvXj3zzDNM/83/UDzgDxx60e4fPfGhS3a8XFvfsy1f9mpQTeWAO2nNeYXF3rpe41f92MMofrzML9WfPhu+hC5/PuF1Vtnnk11+bEl7cUxOP9jEF//FCntd2NPDVDc9P2NSLFzimv/yS1cezgXJX9+YXsykWHxhsuuayZbukpRfdvzo5OA6c40Yk/hu7GPhLj825+WfS/W2VpzWLvVxaG25nNfYdG6tsdXE0qyR+4mL514Xzrjr1nUMMwxxNHvhXtlnsTjpy5mO5N/6PkvREfvSntKlPxZvfoiJBzzXJ754+sLpH/b9g/nZTx1W+CbxkkPnAL7fHhMLPj279hleGBtrv1SFX59dffr66mU9TnoNj2Jax0+j0/DrTMOz51qfaXG1tjjm1pZTtvFYG7Wo5vRs8O5eaew86NlZ72zGNR9YxvS4uxd0P8BheYQRFz58YYhF1AOO+Pnrt07s2Fef1tnga975Y5vw0bLXF9/Y/qSjhwVH/S89S4QnbnzE4ltvbL1zCU/e+bITd2XrFBZe1b668bFuLTHnv/by8H3WF3Rx/QOWl3Y/+tGPHspvtHvR7m/F9hvtuHgW3LNjj/FSC2LeSzR2pGcdNSJbe3mxc0a7V6mDOPtdHa7zR8dWzGpSrapNdcfJWG0StvxhicuHTT644cEuPzZycv8oZn77gtBZgI27dfHh6WHRwxBXfGN7Fpa81cozP3uxcDFnE6diwGDXfU18IhfjjY2/ezBbtbPm+x3+sM01MczVu5d14hH3MT6+48HHV3zr5ej+TmeN+K1ZLyT1vs8Q2Ofay1Pc9pWNeunlowZibh3C4UOsadXOmA//uLItBl3nTE5ywAsuDKIe6gJLnr6P6mH2uWPsGRdeXIrBDwaxzhZetu9///uPl+xeYC4uO1zsV3WAo+EGw8tNYoyLa0Nc2CR7Y/XzvdeLYevW9Pz0eNoD/njoterAxhgXfz6EjTr5zW5jAiMucOVAqqc1+yE2W6KnEzv7amRNDeDHlc5ZrgaeU6yxw801gTc7zRo8+ASWOu1LVFztv7PNlj8ceDU59D4ErrOsll6Wi8HO9eWa4StH56nY6u+ZpTOGCww1Ea88ywFPObLHnZ25Jl7XAjv3EC/+xRcb12ogN3w7C/D403VtGLMX23mDaR4vePmL76w7S7DMiTxrxaC3zh8ubmLJpTpbE0/+dDipi7HenPAhMPDqDNn/6mhdbhu/vM7XLXxcqoWxxle9tY3lvMQJJim3+BQXN3k5C3T4sXUGNDjyES8MvXP5kY985Op73/ve1Re/+MUjBpsHkf/oRbsiV+CCIUQqTPoOQn1JsK8p3B4kth3wimWd3gF1ABRsBZZ1cu7bNHrtXCS6/K3ZBO02iVM+2YlTrHTFYmtsnSyXdPTs5CZGePXFK4cw6M+SLd8Or7rxoYtLY3o+2rkG1kiHsJz0Nev5OR98zDvE+do/63erL6z/lWwdtq7VSU6NcbRPJD1/LRvju4l1GO25D/jHHnvsqI8btJtsoobq52YDP182mv0l9JqHQ/b8fJj0INY+6cW2F8akG6jcnRs3GR+grkc3NTdGPW7+E0gPIrcJXDi4rIiFk7PhZmfuX8/xY+/hzxwXecLR5N1ZVi85x08MOOy1leJbN66xg6Nu1ZRObHPCp/j1uFtXu9bh4KvtmShmfMwTY/mGQ0+Hg55e3TVjvNnL2/1Qn44NYaeR6sCGDkeNpHPvNZZbe2Ve/NXBMPdgk30vfuzLxjuC3PwoFl+49pzgUhw25X3jdrELK47iGtsPXJx33Ai+1jSxiXhE3nRs6Rrbe/nBywevMMMyr6Z02dwtB3hixaG4zp81nPoSBdse+42ar3zlK1ef+tSnDt75HpP/4AeuvWh3nZHqZLz8zNkXE8e1VXtCz84ZlIvevDXnlKiNHNVOY5evdT7Ni0nPtjXz22rMprj8G7NP6Bab/uyXbv3SyZ/EoRgws0/HNv1tY+vW5K2FIcaumbvv0Llu4mxePdnQ0zWGmQ0dfPZb5+6p+ZxzMxdby999zry94XubxDVu+GjlTF/MMLLZurWm50uyOyY3P8IuLnX4dIlxtTfmJx/1oCed8fWjN6+VB38614DPxc59z644VD+4YfOPR/doWHTs3dfw6h7n/rm++MTdeCVO4cLEp88PHH0Z9KXwLOecYVVHtsXsnmveZ4Nxzx98YOnxlot1jT4uOFqnq6Z8sr/Ej62cwmdL4PRsYS6WNQ2m1vm1Jp74eme7+vJNxFhhWx7GBH58zK2b1+jgaN0vxcUHhmatMXtrcezeSieWs+ae2jpfayQcY+v0xYVv33Y/4LHT1secnxzEJ/zUr8+ucKyxDcNYi1O1aR+as8cJpnNuD9iEx67a0MNsv/iGz9663HYf+SbhNg83runhlgddc3144uLBN1s1cqY9m9I/7Bftf/jDH66+9KUvHS/aXb+42Idqiau49OmMnRPc6IgXgv1SgTzURTNmwx6+PVFL+ZUXfTnTh6sWWvMj0PUPNhpc+Jr6sKPv/BjDJdkZx6GYdKQX7fIrJoxenBh3Tq0Xp1xh4Kt+1rdZ66zgQsTBoTMKn0245c9Ojbq38WWnjn23YWNdDmzjx6Z7l7iwxePPRwx7o0+sydO554OjRo8jbPbtvfp4MeeFpO9dBKY68C8eDD7tW3M82MEvhjh0bK1rdPnLw1zDlR8RU2z2bGB09pxRdvizEz8MPake/Nnins1yM+avLT96DSfxrfkO/t7rv3P+rne968AX317JpTqKIVbx+GvxOsjd8DOWV2vG9kp+mv3Ai+DS+TXnU9y444AnMfZfzTz11FPHd3P+6hceG7ZiOlfOlzVnjh0ePrfFsS4fmOw8ezgf6qLBzrezgivsniGqA1u848KGjtC3B/DEY6c3xwUPHDS+7KuD2OZiebFe/fA3bk98n+olO1+48ujzgb3rES94xF5XG2N8xOfLxpy9GMS7EDpinZ2zYk9c23IiYVi/NIaRP3tzvrDcKzt/xaqHJw/f5/qHJWut18NM+NDLTyOdObm3D3iqsVz15sZqSPQ4yzPubNSXXftdvewlsX987DmBY03PX9/YOl11E0eznzDaV3attc5HbFhEXmppLp4a4KmJobHXVzf76xdgX3755avnnnvuwIH7IPJQXrQjJDFSMSJRwshrbBVGy0+xHSIbnr2NUBRzdpI1Vhz6DoI44Ri3IeHocWKzBWebWIvTFrr1S/3it36p+HtYstOXf3zzxaW8z7zzkYe1SxyKwRaO+NnDPktx6Vun46MRWGLBWvtssrPGxkVW3d3EzLOxfy7Y5keA/4c/OotRK9fNv7Xtb6vV2tw2Vn9fen0wOBdeZPvwMtY6G/a1/XWdePnthoOb1rr/qUcvQn0YtRds9ma5+05fHGP/Mu6lAU644eRfzsUvnlqFUW7W7LNzgI+WvVyIeWIMQ3v11Vev/B1KX9Q7v3q5+ECxF2K6b7gv4CVOsdh2xsQqTvh6ttbw8sHCnh1sdROH0C1efM89LurlrJ9FLDHJ8lk7cXBhK545n84TvbH9dq/EWQ2ItcZ6a/y1ap0NnsbhwyPy5yuGuNaLqa/R+3IGl86ZUiv6uJYr3HKQG+FXrQ/F9Q9x2ck7vq1tz0ZMWGy7h9C5r/RbTLgQ9hvfuLVi4mLf6OF54OxBLQx9seSo8YOHi57AaO+Kcyxc/8hWfmGx4e/asmf2QsNNTvbZf7L2wgsvXD399NMH1Bk3/Pvt8dgX7fESzxg+fsWhxzk7emOSjXHrzhf+6fhXIzbW2zv6ztvhcPODT3E7D9kyyX99HtYYR7H1Yhf/YeFfwilfa2pfvXHovFkrb3VPzzcfNtWNjZpZ02Al7Rud8frDzYc9G9eHe2/XST7swgr7Uh9XWGHzM7eGM4mPcXbGZ2GXD5xLe9R5KQ4b9Vu/cFaXXX7LKR50y5uejtA7/855+D4vxWj/2FlbHHx9AeAHQ3z3AnXw5Unt3ePcmzTjagQbFnx+K+XRP46L4X6jGbce7/U9j9WmmOVWXtbouvZ9Jvgc7ZkDFhv3TZ+RceUvT885nmHkRace5ZTtmc9tc37q5V4uphy1+KcTh8hJ/hrBkc3dRIz2ib+8xQgLNpvqG1bzcuSnqQF7sr0Y4VirLuGYa+at4cAnv2zDbY88X7Wmlzff4ujVQeOLixiEHXu8q4Oak+Zs4JL85V19jfnri28NTjZ8rVcH84ReLvgVSxznxTna7x1syyX/S31x8NH4aXDNYcCvDo2zodfaVzFce34j7mH96Rh/msJ/5eZ/htpzg/i466uF8b6IwN+aHIhr1H3d/SSfY+H6B6zOpTVNDdwzimlun3rmjQM/9zF1EJMsHjvNNd+zKh5e6OECM6nuzc893PKOr56InT8dO2eLPl7WOz/Zmnd/pYur7xrtezysw8RbDp1bGGLw8dKWnfh6L8TgL8dqt7ysq6NrxH0UtnWx9p7Ipu8EYbLLXiy/aEXwx4F9+l5mt1+w22924sOjr8lPPtbC5GPdmmZO2OC49316mDDE0MzdswnM9gsWzvaQDVy9uaZ2dMV0rvGw5rsxLGt09sq4esOFRace1ulcN/bNf5nG3+elOb11tupmX+w7f/np4+lsu/bpNBz54aF33nuJ7boSBxcc4LLBk57AsF4t1FQsvr6nf/KTnzy+m/O399Wfr/rCgqk+xvxgqLl4sH2Hso67c+bc+MeY7qXFto5XudD3rgKONfHpteVkjb/41bP88GCLH5zN37w6GsvFZ5j/+aw9cF40e+W6E1ccvVzYVxM9DL148kjnzPgvi/FTX354qQ0beO0F/v6LwGKLS8S1Bls9ta7H8ocjLr04mjXXCzy56+0RvPZQ7DhXE/k5j84THVx2ixM2fvzjY16N+MpBbOv2XQ+LjRYmP8IWZ2vqIzYcjfBVQxy7vtnLSV1w4btSXeBppLOgb0xfffi0FlccwjDOL5781YWeP5EvrmzgONf+3yrf/e53jz/ZxqbcjO9H/qMX7V10Cq6Igt4WeBNDvKQqLD8Fd3EoWPoOHn86my+e2ObG5w2XsDU+1sKqEOIrYjbs8Cf54KPg6fPFmw4GuS1+9vrFyn9x48GWnj1dNaInYnYI3tS8yRdn7Zzn2hT37J/NpR4PMTX+BL/lThcvehzK1x6F4ebkQmJLXHA7P5SP+MfWrLqfKTh/7Ijc1E8O8jpLeNbZaudanX0uzfmdX7S7LsS0RvTidf7sjy/yPtCrcWt/u/5zLG4Yzrz/wYf/rMi8vTlzpLc39GKYe7HuAcP1ty/aW9e7fknxj8n1j/Bxjn9r577zqe6//OUvr1577bW3bspwuvmVjxx9kPlQ1Ny4CRy8NX44xQPXeFg3h6Nn01l/4403jg+sdDDE1y4JTPHVztknMMONzyXf1eECSzx9GOnTyVvDFyfrPeTAU0O2CRw2NX6t420dR35sjJcDHRs+auKabr98sFcX6+GKvXGLUS34wBK/eOa3Cdx44GZM4OCt9j2kwYlHftVELNK6OXsNlgcBD23uU9keDjc/+GnscejMpNvzd/bDgV+1g8/fNW5NLXwG9jnowarfaP/0pz99wF3itHHuNcZzX7TDk0e1ta6+mrX2kF67m5SDPNiuLz86ucFWa/NqeBs2vRrBMsZJ/WCcxXo47JqzFYfs2F5kB5+kM9esX4p1GD/ADzmcsfArjnFngx09n3IQ6px3vuzj/QCU3jINt7hqZUwvvmvLdaEndNY0cVes5a9ucOShkc3RPPvNhT5O/Pho4W5M/hp/ejHNiym+OT3M5sXLX0xr7OLNRszisyF86LWztObz2Jivz6dLOOHX+2LnszRcelzU3v3IlxL3Xp8x1b49YZs9n3jgZ+7zAb57yn6RtFZ8/d1ELtUwWzUzrnbimuPl+cM92Wc2XzZ61758jNm6J+DnGYOOwNHY4sj3bhKP7rFqJC4e+cLBX6s+Z+5qz057EClveHG/mz+b7pfOanzEN16hg1vbNbWD0/00m2q99VwcNVAf9mzVS87m7NY/TLzo8xFT7K7t9pQdXRj48iH4hMEGhnjZO+NxYRcGfzbhHGDXP6qbeXsmN1y6TmDcr+BSnrgai0lPxOj8mMPGS2OTrbnakLfjRftXv/rVq9/85jfH9ezzViyx8akOOHQ/odf+j7m727Hsqs4+XjcREQUJNeZDEAgGFCEhcQVggYiUswiHOLKVE4iSM3KAgVxUyA3k6wBykpggbCty7uOt36L/1sPK3tVV5e7OO6S555xjjvGMZ4w511p776quxr0zodbuLXo+1uVLYMGEzd66te4hxXN98d86WXMuxU/aY3bW3Ye874EvLh5a7+/jggfOzcOrh1vdi6uPj94ZI9nKpRrRl58Yxhof8+ogH5w1ugS+GnjP2Hth2DD4u6/5RSV28exzGBvSWbFOF3c46qP5YWuc1MlaNbHHPTvglQd7zf7wxxsWfHm4RnyR6ot/eOqGS37Z0dPxx6/rHF941dsaHOtdI2uDBxxSDcVQWw1vNgQPvmpbTcRhIwZdsWGlE7frnr1nXbz1Z250YfITj87nK/vmi3Y4nk19Dg7Hs01d+zwkN/nYD2P8xKfDl04MvTjOi4a7/YuLHGDjSpfAURM9vRqJEbdvfOMbx3cB/MTQxOXjWmOvvhp/Z8Ca8+RLWqLvS2s48vMDc3zVSWw49ktsMdhZE4MYE9jlFKf4qJEax4uPGOLJX4z6876zVTN5sPcfn5aTeH6TvB9wwMFZ/Gofv3DElQdMYs9814GfHPm5RuwVTkQe/Nn4e/jth7l45Ve9xYCvsbXfBJ41OVYv+4K3uQZLwwW2uJ0nvSaOHzrgaB2uHq54/DQY5vno6QkM/HAT11rniD5b3GAkxnFjI3a2cVV/9/b4dT+lg91+w8SnuGGxoWe3sZrDw0MrH1ji860e1vnEk405PTtiP1wDBJYz6k8kv/Q/HePgIYUcwpK5JNZr7DUbSCRgjTgMNlexrNMbd0jYOHzmMMQkbDVYW9xistk4/PjH19qO+TXXlxu9zUgHtxgbl34lez2eHZp86OHsnH85FZ+ObUK/8Y2vSbzlfRZxN3Yx9OzxtS6ehpc1jV7PxkWRjXGH1LoLq5uM+Ox3D8+cXsb8Wt5it1a/fOQjz5Vq0R5Yp1Orxmt/11jMPhDD8CW3i9yYWLefHqz0rglxzY3F6+yosTcAenvy/vvvHz+Z7k1BD534bAw6uG7u/lMYrYeiuOKx18RzrRLx+bVGh3N9NbKOV2Jerdh48/fBBx8c/ySsB7SHgLOkd4bYuR/0QOtmWSw93PyrDb6kOT86trji5W8XegBkE9/lfIDMC5xqTY0fvPIa04tD9nGTH6FLD8tYHHvd3uNGZ0+qNTvj5tbVKny9FmaE1gYuCScs+fRhSL696Q+j2Py1YtAnq8dNvuWczbWeb/sP2xiGe4zzgR+x1ljszZd9Aq/7k3zcu+RHR6xrZGvQvJqas7trv9lmkz0urim1N+5Ms7XH/Y32F/lFu/q0b9Wt2pm3hvPKWY+zJg9+cumNXX6tLX4x4K2k16/wzT89m1q6ejUP4zw2J/maX9Kd44W9PZvwz7mc9z6/aih+cVvjE2+6zfscx/wSR/ozblhh8HP29cUz75rUd9/ly8Z6Pmd8vAl9mOVpTr8+8Fo/HG9f2Gmw9MTZyffsfxjcvtCzZwsz3+z1xbO+cfOVr3Hr5uEUx9ruz65b634Mx4c+fEjx+bo2PL+M+bjeXTPtAduts/uSD5buUd2zPMfZwdDjoV9+1vphvBhi9n6bvXgau7uEbXkuR7Hiqifs3I99+PPhHV86+fRMNobD33sIvPjjoVnjo/7ns2atWMb5wOIjnjNb3LCsaYRt3FdnHPZheOUlX7ZhMc1XTKKvHYrbF/b7Gce8HPQwwknPhsBq7FxparRrxQ4nLLbW1NN5giPf3rObW88eZjpjtub5da7pa3zziUe+bAi9Zt6Y3tnQ0tOtj1oQfbHN2agBLLnZdzjG5VLPxrg5/wRvsuvlu/rzOi4969ov1zJ53l+0ey///e9///iXn2LKUaxqoxbGrif3IdzwlUdfYOBl7P7hOoGhda1Zh1EO/NUNppjWttbWCZ01MfVJ9zpzenPnP2642DPxtfjiLB/r9CvtVTpzfGHrzdPB0MSTpzGxLlY6fVyslws8jb8cV/iHn94cDnt7QGBp3jNbg1OzHi48Yxjq7Z5tj+LM1751vuUgTtz4ljcsdr647bO4dTWC5x6gqW3x4Wu4tkfWzdVn41YX8Yh47SNbmNnQV+fqbl0Mja+8CH18GsPBGQbbzTlcPGHorfvS1Jp8xOTPl5gXg06zrtH7wtafcjX2Ht1vLvdctx/20X1TPfiyE9OeiWffPHfDpGvvcbQnPuuqP59qok7W8YYZ73jB9T2B37rGx2dzXP3rV/r82ZcrfNxwaK/NrctFI9aLi6v3G34wxMcaXpsvffbOFEx8O+tdM3zDFoedPZeLHHGFpRbw+MNhZ2y9mrMxlyedc40Te/nbK9hhituZhU2vj4faZEvXedXD5L/7TEf06u8HMMbyEBffMPDbc9856bzDkaM9hIGH92b84eFJXz3aT7rGbLzPUhdc6dUSFmw4hE/1ZINXGGziKjY7/uqmLyd2xhpfa+mMNXzwiAO79sD5CQ+GurKPFx083PjHWw9H29jm1YdegxUev3jFs9xwSgens4dPHOmdUdeWL9r/T/50DJKIXBNJKwI75LV8Ko65xDuYehes5PTsxHAwrZlXCHErKJwkTnQVvrUOQjb11sPQa2xbF7v1sM7zxciv3hre5nJo8+nNw7JurK29POiWPz/N2jWxTvidZeOW68boYolTB7Qc9C4GF2M3Ez5ufIkLqTU6Ptr/r6KWWjcJ9cC3+i/39kguxupZHdVqz+l98oXRB2Bx9ot2c+uuC/9MzJo38PRdA8bOKQ5uaARve+I3xP35GB96rdkjN1a2cMPvgc/PQ+szn/nM8Z+eehC4Hum18jQWk8DpjKifuZpsY8e3+pqLrdGrmWvdmxC/seMHA86Qh74x7mxg6wn7YuNvrMFz83Q+xcMj/uWLOx81gqcXy5nlD4fE8ZicXop3l00ubNmt0OGFnzVc9Vu3uOPrDJRz9d83OfERw9ietJ6OH337AL9zxMeclFOc1UQ91UmzNzD4kPJgVx7hZaPHRzOGw/YugWd/2GXLtzrZL+e5OsHiE2+2WvtdLOuuhbjCcMaKASOcatK5C0MPmxTvmMzLpXW2at4X7WqnOY94uhf4ot1vr72I/wzVb2ngIK9L/Ib+h+t0fNi31/nqazDtr1zkuDblCUst4d2Fpf4J2wRmXIq7a/nh0h6KY5y9cfPqABMvNnRa5yN8ffGN+SyWnFfW9qw3j08c0q3t5r76a2P2eJdfdunN48WmvdDz6xow7364PvTlHLa+HGCHaUwemkP89HuODrCneDjAZaOJ2Xna/NPxZYfn6mDw5RMe2zCMk/z1+bUGt3ubsedoczZ8zH1I01rT40NgFjee7k0+mPcc7J7Hll/7Ab9a0bsGP/7xjx8f+j07yJl/PsfilRdxNLaXxD7E2brYPgD6oI67+zzOPcPbN7yz16tDzzdzmJ457MS/JOzlHJZY3cfXZ8dwyuWsvxRjddWPTh7tW/HPttbtI8nXXuw+WdfoCE7Z0htrZyy65b92xvjVisFeffTq6zme38ZNFx99GPWwYeDFtxrEmQ8bayQbunyMSe8F2ORv3Do+pDPSmvh8rdM5Z3T56RuLaRzPA/DpS/6ra1wt8OIrTuJ57Qy2N3o68ry/aPenEt58882bX//610eN7B1O4unxMnZv8QVcPHBSF41UJ9emeqifsXVz+fKpsVf3zmwYbLfW9Lt3cNyDvM8h1RFukr25OFp2emfVe3lja+z52we844ubfRAv3uqPHwx+xdB3rfHXYLnXqINY1vlU2/O+hyGm92vqw56deH32YIcPPGvneTnQl78xTHWDWT2MvWf1HAg/XsXAw5fM4tlP92G/+es9H6k2evHaw/KHxxdONuJXR+vm1tSm+oQlJm4EThj8xCJsYaidRronsbHePrKDQ7e5qgUJN3569j63Gnfm4fDJj2869vTs7T9OfskMF8/wV1555dgLc9ec/IzzVys+cOjt2+///u8fZwo/zT7wc5Y9y+0JnfqpERvreMAl1srBumval/6fvP0b8r5s7/OgL3yN7aHPsAROHOMZLj089vAJ7hrxXYEv2vGzjrO5pj58NXi419Sg9xn2zxnmLw57cQm4cC5JAABAAElEQVRu1Sq9NXtsrb031/rBhDMcBpzqxke9xc/HPvV5ni2x1nnAkw8M/OQiT/nFhT1+RAy27PCzx/aDvnU5mfMRR+7L11p562F0rbLFyVkS1/UAo/rQic2vOHh7j8UONwInzuZ8xO06pSs/Y9L9ii0cGHTm9tC11Jp1XMSGU77xVEPnOA763X8+dPaHXi59x4RL15Y49hM+n/IS2xw/PV4aHPuihnKlS2DRsQnLGmwcnC9x+YjJlp3eF+0v/U/HIIPYswRhyUlEgZCWZMU3rjiSYUsnSW8SFMw6P+MKVNHp+RQDHzrNRrCvLde4h23NmPA1roWFn7jXJHs2HQKx5QqDhMUmPdtis9m5MVv5hQ9DLbMrf76XBAe21XxtNi69uXjwNXVy8dIXB1ax9Wy6QLPvJoyrNXrjrc3yeNaYHw7V71n2j1kv986hHOQnb7VoHxY7TniVH53G9zF89ybrAeAmDIvgYL0/5+LmHEdr2dhr16i9d8O2h7/61a+OPx/joSm3vsDmz1evudnJmQ6+P13x6U9/+uBBzyaRZ+eCzlz9xFczczjhmRMYbLTiNlczb2rw8ydkPNS9qeyBKa9snSv+ciRieyCIo1mTqzOoBgQXdSkXPu4t7HAW30PCmP/zlOoBVxyiPpo5TqTY2ePIxpyNHDXj6iunxnrzatA5gFNOfM3Vhe7sjwd/glt+evXhZx+8idFnGyc+5REvvsVyj2/fYLG9S8Kz52dbsentoVgaXa0ccBOzuNbh7m9cOl/llh8bOcJNdwzmpZhsq5XlOBRr16qFa9xe4Kf1rPMM9IMuf4/1Rf9G+6RycYg/buogR/POjPGKWliTU29Y1saaRtezodzXrrE6VV/xiTU6a1tTa+Zn3+z44K8Xc/fLnNCtDV08w41P/uEX2/p9pVz4PMTvWfi4db+s3vh1/RSXHZ1WHsZ82RjL/yz8Og+tham3rpUXW/j3FRidOT5yONcH3jmOOd84dGb23PELP0w6tvJdae/psjXeXHZszdkP3/PMdcCXnd49yHVvzTOdTmuf8NDKjd5++EDlfuVeZ+65yEadxCvX7nH08PeL9uUqJr/i4/5YgatWPVPk5v2GfyGGp+dwjW2Nj3H16h4t5zD5yS279hhvevXW6Ik9VCNrcDVSzGPywBexSBjVTU8ntl7NzzbVuZBsPMPlWg56Oeuzry8HfunCutRnb804qR7maoSz/XKW4s8+DvnVW8NBz77zaswHfjGKa07C7X5CXy7hOQtnf7W0rhlbdz1pYYsvB+vGYlgzJ3TZdq5Wdxjd42V5hK3HxXVG5KRGziN5EV+0+9Dv/zHCx3tlvbNUbmJ7/+BPINDjyKb3Wsbq0d7jqX7nL0jkIjd4agrLuL2Gq53rDW/FWVcHEhc1yt+4c7V+jV3/uCXiy1VcOdhLgpv3Txo8Nr4IY+N+IO8V63T8NeevOtBbJ3DhsRGT4GDORn7ud8WFIx7OuMuTPxwCm796tg84EraETXUTQ4NBPAM0XDXx4iKGs+hLWGO47sO/+c1vjj8DAl9sa50ZmPLCmT1O8ROXDz7lJRaxBkfDjQ1fnOQNIz0fONvYdy3Dq1a4sPd5VAx2YtDBhwEXvnH6cmBj3X7Q4Z3Qw4KZ0G19u6Z8oU18Fvbb7fjA8zxTJxh8tfIIl48vv9nF0Zd5zoTPTf72uR+a0fGXC2z2+Jlrxvirjbz8lrwv/f0SjrEccXet48AWvpqEYUzMxSKwxNNb18TS8PW5Gzdnhw1MPxzwHkT+4rAjcMWGgY9rjo+x9zni1NhYI3g3p4PXXsMztk58we6XBXGgKzcx2ge/hNg1BU8OeLf/4RWr90ZyLo587X82R/Dbl2rXXvF1zbuvwY2DdXmIaS/lvWK9PZC/M6Ve8iX69qB7CJz4xUOexuLYE3Hg4lGt2x86tnyKDc+6Xq75GLOH6zrG0bNEK0dYfDuTbMKCo+58YYcPlxRLTq4F9vJVh2rQfQBu5wA+X7zi7hzGFzYc5wFW9eFHcLYeHr98cdkfVrDhL47+c5/73M1bb731cv9Gezf2g/0zXtoYyWqSRZ4YExvfAVDYLk59G6pA+XaY4MHfBq9Y7OBpbMStmZO4HJPblzDjlt58dcWwno94bFozL152erFt8KXYYcVPr8HVW3cwk2I2P/fWiXjXBCYpR7YOcxcePRzxcS4/PTs3gx48fMzLuxsN283hnPs1bvHSX/PBKymX5pd69mcffnKsns44wbmLMf6Lya+aZL91Wttnjfm5ebvI4XqIeqMFHwfXiIe3D82+bHfjs4aX1h7Zg26Qrht74It2fzPVQ8T+9GF9OYvvBgXLNSOONxf+53U86Le+7NMZiy8eG3z11dP6Sjb4W3OO+MBTA+fJT/vdiHH2Yd2NsBsze3nxF5PgjGe89OqgqUmx4sTHWHNjZ0Pg4vK8JV5yx4XIl168vU+xIdbimL99bz9a7/4ID45+/elWbx1uPKyRYh2Tpy9isMOxuquVZj/orOOMBwySTqz40MOLD5/qkT2bs7AppjFZ37jRw69vzBYv/Lq+8vemSg7mro3OFQy6cm+uX5FbcS7lYI3N+UzB7prWV6dq6Drwgy5ftL+I32j3Q6z7ihz2vPAzp5dHUq72V05q3dnMrr2Xrz1VM8KXVM/mq2s/imNeW/ti5as/izjt1xmP3no52rt4wmavFRt2MXdtY6ZfXePWxFuJH1112XXj5WAeFn33svYOXuv1dF3Xenr5uicS6+UPM7/iWl+xbi29+dZ6bY3DS5+fOd6wSPnrCT+2xaLX4pUfG7awNOPWwoSX3/k67d7Ar9gwlyf/FWecrd79Wk/EcD14znqW+6BmTuB3bbgu2IphjLf98CHT89AYLz0bsTRjfq49vevPhzg/tPeBML01rbh8y09/ltXll681TWycqpf7l/up+6tnsA+83nf4EBZPvTMKEwd5qodWzTqL1YTdCl+29GITPsbwyTX+x+I9X8pTXw3CLR9Q8aOzbr6+xvL0+cZ+GOPLTh7m+UQtHOvG4mtstfisfWN9nNiJpeGnV9fuE9bZxmExjONhzJ8dHdHTlTcdvLhZ1+yLuK3RxQ8PfEj27Brr+XZGwhbTGdNb14x3vZg4E2t0D5W48A/fdeY9WfVg0/l1jf/RH/3RzY9+9KObL33pSx/6PCYuH++L//qv//r44lR89wQ1FVMd6dTHfceXrc4YvfNmrbro1bq6wTC2B8b1PcPVCgbs4ogJE87i0pHqUH3orLVuTtRK6xzQGVdPsffcWJMXXfp88uOLq3ttubLBSUuWD7tiWYdlXU+sseFPZ4y3uqi3Xtww3J81wlYrJxhbSzWMS/WRY/smnsYv3HKPFz/r8Yuj+7AvKt172bAn2RnT2f8w6AibBH922chlebFlgxes1vQkrPjSqYEG05lb7OrDDoY1LWmeTi8+iZta4UJg2C91xSV7Y/bWjPmY++LW3N56hrrG7ZN60tsbzzm41tp/a75g9uztM5JYeMgdvs/j77777vHZFmcNtgZTfKKHZx0GTp+8/W12vwDnPYQakWKHU678YYoLRyPFPCZP52yrgc/gzguuxBhnf9bVF/Dp4RB+YuDjnkcvD3XAW7Nuj9XPGcGFXs/ftVo+nSHc2XgfIa6e2EP3Fa2zQddYfDnA2byKp6cXk1Qf71PwKy48nLoP4kn4imffqyvb6svGfHXWVsdffBhi7Bp+uDs/nSHrcVFbXPBUF3UtdvduNUiHT/HT1cNgqwbiGtPBEUMsjcSRnTOAYzp+fNTQWTevsYelh83PGg70aqDG1vnDMVbnxDjOfNnBosO9PYFjrOFWb+w6UUM+cZOH99VhhaPHy+fwN9544+bb3/72QQWvh8ij/jNUBVSk+4rkKg6COzZXZAdOUsaK5OLUm7PX2swd8y/pXaeDp9GTihpevvmXz6433hwWK9/lZL34xQi7Pn3++ZgXM51eHvTrl53+muC9PmuXn7qwqX7mDq1DZ0yKRa8RPs5BN2QXBntza6SLyRhGe3GNE7uzxDPMXW9NH+auXxqzrVkvf7r2WY7wwl37M+bGZUcucT37ned8nXs3NP7GrotuSm4Qv/d7v3f8czYPWzeA9qJrBwZd16d87Mt777334d9o9xDxsHLzZl/Oeg9IOteen+L5p3P9ZkR8cWObqB8f16q2Qq9dkupurbPW9d7NWiw3QP9BaT/97/7Tw1CN2KkB3iQu6qDBX1leePRQoG/v1/55jLcO+JLVqanWWj0b+u5lHsw99GDI1Vlgx0YLd3X5Fzc7Npp4HkBaQi+2mqiRM6Ne5mpK137wwYU/nyT8enHOY7Z31b2YWxM+OGjp90wVgx0xLz/2NQ/rYjtTzp45YQOzdihPL+pIwtOviEsu6e2jN+M9/9h1BroGX3/99ZtvfvOblv4XxqF8wAsu/jPU733ve8d1Faf6cwz21vS1wsXTejZ06qGptRzkli3frs2w+e6+hWE9oSt+e9E6f5KNcXhs6JN81ibu1owXj6+2+s7G2R4mXTFwSMd/sY6FeclvufLZXNnseu7Z6dl0XVvHtbPdPXDX+Wjuka5jbzjDcx2Q5uGceZTnYfzUPly2Cd0lCU9frGzlGwbd2oZVfGvZxpVN+uqfX30+5mIUu3n3l/VvX9Z28bqenXXPbTHi5JrwnPVc9Yy3H/Dgs29e/PbB3vRliTE8e8a3HKuRGPS+IPBbde4xnhHV0xpbGOnEE9ucbF0Wn19x2HWeYKpVeZZz9fOeww/35BD/coAXjvuGOuChwe0Zzi6+8di5WqUvx83D2mOlGiwerOKE27pYjfMtR5ydkc4JDGvlnl+5sLeeP3tNnfic89qaxIuOnf1Qp/bFHqivnogtThj569PFq7yspTNO4rX5iEvoOivhWotX2Ho4+nLQ12Dxae/VxTxs69VLzy8xf4yoD07hucY9y+0HniTefdH+d3/3dzevvvrq4feYmOF6L/y3f/u3x5d0cvTll/dlxtk4E653sTtT7gWdFbZywL97iJp1DnoW+CwnJ02+/LVq33ksrrxgw2XPLp9srWnsCBtrmnF162ynZ8uns7C5wCPW2GiwYOgT2ObFkXO+2bGJg7XGYcMKoxzF6VoOhx1/MWD0jK1++ZYfPzotTjBIZ3u5ZUtHiiWe/fNDTTbW2+PD8PYFXvfUdPzVrb0Ij47AwjG+xY3Hcg6LDZ/6xjD5kdXhRNTS9bSY8WCvmS+OGMXZHDxrqh+9vdITHMJtDYa49slzk97z1OcuPXs1NvbDa9cYPp7lrjHcYejZ9KWjeOzgytNvZ/cnXfELV+9+EkdYYmu4+wU8v/ymwbcuD33CV3xNTHzFPNs1ZyNnGMbi+CzUuaGXh/8Y9f3b/yPCb+P3Qxvc4fPDXS8uwa/3HTiJB9N9xb4U05qc/eCAD67eL7Bjz4+ucysGOz644geLffzFj7+ztNddteKjhUsv1jY6vuLJC9f8rJWrsdh82ZS73jzJji1c3PikN06McZOH/NnEpeeNmlcn+0A688biEHYaTDpN7fTysabPvjPDF//qjAOBg1O82NCJ3ZmHt4I7/+rX/ompTtZh+M7HM03uydrEmU0540/w0NjoYXYdwG4uH3MxcNbMqxM+mjPpX4/4HP6tb33riMHuIfKRv2hXNE3gu4JLmp0kjIli85GwQiiAwpg7RNoWiN7G8INl3obBMy9O68XRi8We3bM4Z8uuDTNO2ozm+mzDlst9RbxaOZg7RHq12fj3xV27rVUxYNKLEX8+dGJrxsl57gbghqupCRw3SL0YdCsbg81ir91DxjA1eFqSXozGu44fsb76/F92j2MfvnHqBt5DwEXvIet/ufbh2UPdfhC57HmTjxsHHDdCD0Y3LzdkD1BvwozZiRuGf37WdfbVr371iOM6JGxrnR9zewxDfM1abf3aAzq8EhjtAX945uydezdtP0Xvz984X/LuZl6d2ItL+GnsFo8Ngc/WmjOs/7+U3bt4VGuct7bugXKubj0Mqv1iydG8e2OY9HQr1uDCD0NsTX081NRe7czVVnPOnDGYGw9G9Q4nrI1rXC76s9Cd9yd+rg0c4MoHN43gchZ2+RrD7kOqsbOgwSR0YYZ7xiwO25Xz/Lym1q5hD3JjOMVTT+f385///M1f/MVf3Lz22muH+12Yi39tLOef//znx5sG94Pw6vltnuVGx8YcRkJXs6a17/bD2ZQbXTHoO3vhWStuOMXZ/bLmLJzPA9vi4mY9Xmd/tmLZ4ziVz/bxyL81e8MPzjX/Yujj3Dic+vT6FdjleubAjr3Gbvdn68DOGs6w2Funq7Gx7jru7O/a4rMlckrYJtk2F+uss3bOdfHY18o7jHI++xevHic+pH3UP8svf30xO0v842O9GHGlI+xc1864eM4/DDXmY+5DuWetnh19+HrCl589EUPvmdcPA7v3dq/iww6eD7fGvgTww3J83E8Sa2JqiXjyq0Z4NK7nd5Zdg8dGky/BB677rC/avRfpN+LYy4d9ebPXSBzYtQ/0YhYHtrH1/WCWXbhxo3+MiFnLX1y49xE8cC0n+yFPczjOhUZXTcMtbr7sibl2FnE0fmd+9sVZan86mzDKZ/3Dvhar9d2fdOc+fHp47atezNb15axvvrnS8+HrGpBPts3PnMI/8yqWdVJ/tmseD7Hto/dMnnWdW/7Fcg1+8YtfvPnxj3988+Uvf/mZ2MU49zgSX7T/8Ic/PH6jXX6+aPdeHpf2CA98tPayz9Tm6uOssVc3OBoMPZ3nAVyy+eIhZzh6MeRvzC4M+bOlizus6lI8Ouvb6OSAY3Hgs+Hfej7m4liTm/NNrLvv0FvfBlee1c28dWN6DQY9wdk42/iUi9jFwh/neIulVSd25gQe/Uq5uKdpxcAJtrY8+LJha9/cZ83h+HwO3z7hnJ34xom1cPl1nxDT3Fp7XTwY8i7W1idcfbXdcfWDgTccOmfVM4u+2LhYkwce4rFvj6zVioWz9XKkJ3ThmvOLtzF7Z88zuv1Sa40fcV37vO7LdnyMvZevxsVwHcnN3LUiN/i+aH/nnXeOf6HCBtdygocHEdPn/T/4gz84vmz35b9Y4rOPz2F8+8IPZ7HkYN7+sDWvDmLuHEbzzpy5pv6e3+/fftH+P//zP8dY/N6T4Ax/OfGjx6f7jXVY1QSXYvZ+yHpftDsDeKoDrGrTftHzl6P3FeI4O3SdHzp2BEd4mjG/3vta997JHoWbrTWYhJ9GYJNyYC9fHJwHWDgneJdzPu5RuDZnywZOvNUtsVYdxFPLzhmbfkjCBgZcNrun1nDXYFRn5wa+/OjyYUNPjPHRjHGEZy62+489hMFH/HIz1/j44VH1Sw+j76fETti7ttjDinP3APP2pLrhpPGDb509LDYEV7VjR+Rsrg720Hdu/oTrR/m/0h79RTuyEqt4CEqCLrFGsjOvEBXKWkkrYBtg3E8QYdBLXMFsRHZtNDw49DWFhG+z4gBLQeNmvsIOR7hrwwduYn1t+JG1wWcx8r2rX57G1bmL5S7fYsXlbNuBpK9WfNY+DDbycwNQj+zomusdSDdah9UaLHPjawJLndjWrtneVx+/7OHKUcOTsDEupnlC938lxVYTv6nu5tzNoBrrrXsQ+btx/aa5Osuj/PWdQfvgpgGrnxDaL3tqbr3atHf+XIyz5lr72te+dvBx9tlpy1W9mseBTs356K3XstGfz8fidObDcf16wPvpv78z2BtIN2P5dG3ATfIVpxzp1IZd8dTHg+GxUszwHoMDA7etL5wwcY67sXzV1zofD3IPg2yswayZp6secNxj+bf3dO6v3miIkcBRJ9e4Nz8eoOHYK2vm7Ig+jjBXrJVX+rDO+vJr/8IST67xYmetmphb0xLr4YnHFgbpTY448nHe9OZ8rvELW1+s4vDT7hJ1dj17mHeG2w8c6HzR/sZH+Cdr5/h4/uM//uPN97///eOawjHu2ZY3ffnEiw0dOedIr1XXxvKky77z2Hr2B+jTlzjpO7uWzO2NPVmBoeUXX7045QnLnL9zlOTHjpizq2Wnz48NfGK88+Lxpxcv3eEwL3FnG17L5Yq3NQ0eiRtcej2sYoZhba9R653v/Ky7rntznD7u7KsvnVbcbMWjW1neq48j+7OPtTDFJM2Ny9+YxOW3s9++LqZ1mLW1uzbmY8/kvbL1jTu75cfGB2HXrzU1gKPG7PBwTfSB2X0YFjtx4ysuH88nfjC697ZfPeP582MnrvcQxP3FM917aby2LvE/DG9f+JN6fHA1l0drdCR/a+Hq2etxZYuPHn/PD78V15eDcHqPyQZ/cXGNh74xezakmMY4LA86AjMs63zzC7M5e7qd0yXLY212nO2lHpdqal1dcCMwPHs9y4lY1vjEM/1hcPtirdjxNs+3OrKXd7nbB88X+8Nea706FlsMotfieyhPL85kfE5Lv6PPprzw0YpB3xocYz7p829Nj7f4+ZUjndzo4ev3nJiHbd24Bvea5Gfdvnm/7DpWH/GKYewa9CdjfvKTn9x85StfOfCv4d6lF5Psf4Zq7k8q2ksivnOl7VkrJ+cLV7zwZhNXvWZNU8Nwq1ufGdxPiJy9f/Flo3saPLHCMA4fhtba9sU9QG9f2MmlHPRywpnATdeZNDe25nyXgy/fyiNMvSZHcr4WxYeTqBsbmHHj78zA8DnE+2P3anN6tek9Hhx+ncHOmnsfruVDr8GuPvCcYzUylov19hhuLT+4/Ukh+D4zwe1ZY0xgaoSuesMjYlVLfKzLSWyCl/Wus0N5+2LdXsGJtzXzeHS9yEnd1NCYVDdzcWHIKd/iV6PD6faFXfVsf7o21Zh9NSwWO3kRNmLIGz/PTj1dNc7Gde0Z3p9k8xnMXN7s1aTPlvHEG57Yvqz2RbsfnMmdD2xr+vaFvT8T48s+z3XXmxh4VzP82SWwzMUzLr518/aXfmVzVMdqxIateJ7duPc3rfuTrq4RvOXNrn2nwyU+eGtxwIeP64ftxhI/jvZR3t2/7FHXAgzx3J/6AYgYcmBTHnHqvLLBC18NJ/57P+OLmx9WwYqPmOrrrFa3zhFM5wNWe8WPnZidX9ji+j5GHx84xrA1OYunPnzKKy5qVg5sjNnhIb64fDQ1iG/15G+NiIcfHDrXXXg48LWmhgRP/PSw2WtqZc5HI/xIdeMnV3p89Xy21sWEz0+Pg9zzK47eWs859vzzs45b9mzFkp+8cSnn9tB3cn3R/tj/K+1RX7QrsKK0ychqkq4pZsVlt2NrK3wlWDGMJdlPO2BasylaeApeseGZi6PB5MNX4fT02Vg/S9xtQjHYGMMqB7psjEm+xdav/W+t/vcrv5XlZU2diZrs2voYW6ttTdaumwu7a3WIDxs4blx0cjHfvI0dUDZuROakNxthLYfG8JO77LJ5SA8bphzVrXrQL3/zbJ83h4fw3TPjonZztlf44+784o2jG6OfbPuy3U/b6TpnbNtXY/uSb3vvPLmxeDj6orrr2DqsT97+7TfXmOvvj//4jz/8Arf4bNSMGIvT2TQn1R0vuvTlyYZfevMVnKzB0cT2Ad1//vTrX//6+E0ANv3wQHx28YIlllYca+myE0N9PBCuCdszz9WFi+NHEfzjesbB27pePGONiOsB4dxk03rcuq+yF0OD1bXRGTCH1QOHf+J8eEDZhx5U1uhxWO6wxYRnfK5fmPXiwzjbhUlf7nRiNs9PzuIt58WrXnw155s9G/tfHrg4E82tiynOXSLuOfbGX99sPd+8aa7ebMTR4uiL9r/8y7989N+G27jGYvui3W/J+xMO6Y7B7QvONbbtX7ys0WntT77sO4Phmpdf9aDrTGbP95KI077mj4vYfOjiyTYdfXZiZB+Wub3Ov/jmq4PJf8XeJGwJ/41Nv3zEW1n7YohTfLbGXZvlsPH4aXTw9enKB065qkc25Z6va8CzXG506ddf7eAn2RQ7/fbZX8sfz7N/OcExrq5hNBefmJ91x8LTFxjhsLuPsFMvdeJLxLMP4Zlr7LSw2fRFe/7W1VYO7DzHfZhj13va6mu9s8Cn++3mC9f7LPdj+waXDz0cH/qJ+4vfhnMNhhlP6zsOn54sH/wJ+2pZ7mKW12F0+2INdzHh8IPhPUlftBvT662xrTdebsWFLxZ8jV6PA9/1YQsnLOsae1IedKQY4R/K00v4YZyW75yKh0tx3QPjD8/zwD6JT9jtHhQzDtbpNLj8NOv84LMh2VlXK88454o+PPvVXsYzrvp0B+CFF5jh6RP45ZRue/UXe2PEae3isntona14MBI2+xynz984PnTG/I31y53tXSJ2X1a0n/DiqPd+3m+yP68v2t+//Y1Sz2/vhXH2Syhyx8W+9zl5zwRO7vFxlaOzhrM9J7jG2zqfrSk777mt+RKJrfdR8vMFo/MrfhIGP+PWjDdWcTp7/OWCP5/2zRx/a0Se1RymMT7s8RZD37+eYWONHSzChg6WWHHTJ+KpFeww+NTwdg/2ucrnYOfOGnt+6kPEjJ91WO59e/8OU49bUj509rG9hhnXasaHjb3CxXPCPZewV2+5sudr3lp7ZI5D15C5PK37Equ4dNnAgknYtVftg3WYfK2pBfs44lzOYnh2meMnjjz481ueG5dd9zW28HuPHY54YnW2YcG0Lh4f686Efz3uvBB6TTw5wPXFt/2Vjz/r2hftMMVxJuIRT77W7IlfHPOlNc5hyyEu4sL2Z1z/8A//8MDf+qsJWxzxJeawcKiJTeJiTCff1uhw40uPoxrBI3zpfXeAux/kiO+Ld98lxIuf60Ae5aK+OGrGzcUjcDqv8ckXH01+nRtraqbFmR++9sQ+VGc2nS38+ZpXN/vIz3XIxzXr/kaPp3y8z8IPTxj4sMWHbRw7K7guhtpVR3vSXokL0z1cfHYwYbPbz4i4lCMfZ4u/2NWQnpQfLI2NPLT4s2vd2Bo7MeUhFp36wW2dTWvGeMW5fRGffTmzy48vn+pmXnz2mphys6YWfKuJnl4e6kWKk84eOo9qSMKw3vvNOKmj2vORNxvn19gZcF370zEf5f9Ke/AX7Q6wAiCjSVDSEt5CSq5E2LVufEmsV0iboEglLgadw6kvniKKsRwqqBjGxOa3YfkcC09frLVRxrU2kdnimrMvLnuiL4/1PRYvvBQnfybVrFpWr3P8hVsfYz6LmW11YINfftYvcaFzAPXs+Ze3GObWHUrNuSCdj2p6KF/Si5y6uMozzvJoz9CpBulfEsXfCYOrM63h20NbDTur6myOJztfsPsg7UZF2HXe8mHv5qiH61rSjD0wPNw9KN3Q7GV2Hujs4PgPnHwRAFvd+GqkmurdkNjgR4y1bPOjI9npa8fC05fOL3vn3tyDzpsSX7Z7sOPrDbRzx6Z2jokficM5XrV9Gvp3uks+mwMscy3OvwPwnCbVQY9TMcHLz73SmVADa+1HNbGXxtXmTAt3zdnqwVusamDdte6h5FyVr4dp9wV98eNwLeZygBWGmhJ+u1f4m2cbL/nTWy9P/vTtffVi59xo+C0mWxzkI099OfILC/YlqV5nO74reMfHdeZNjedaXKqD2PbiRX3Rvr/Rjg/eZ654t3/WcSLxrz6H8valPbFO9OrcGx74dPapvTLP73CaF3p1YcM3fvWrZ7tzNu0FDFIcvfX4p88nfD58cV3hFzY9e61cmvNll604RM+WtGYeT3oY+erjmE+x6Nnmo1/b9Dg79/E0T4xd0/u8YJeNcX75bI9fNqu/NMaNsF+e1SEfa+VYreKTfz7ZwkwXjl5di7v6Z41hae0L/LDC25jOSVxc12z50+nxb+5e6028Z7hrxBr7vS7Y2rM+NKlD74GteXZ7lvfeiz9bGP7jNtzw6It2ejp8zk0tYJ4lO35J+1Hu7lm7nh09W/lZN/f88B+ba84bvQ/pYuOnDmLy06/EhY4dXzq+tbU3hlNjs37qReLPji6bY/H0EqdL+Z5M/9e0nGAYyzf+8JwHbXNhgxP7JJzmMNiUn7ma803oiiVf58QHThJ2z3Jc6GBq/IqZbbjb829Pqs/GTbc+xurdWSkev5VwxGfLh8QLNn1iHR/Xz+4nHDHiYr7r+T+rrw78Xcuuy93P+On9QM0X7W+//fZz+Y32959+0e79sFy8D5ZnufUervtK58n7Ghy7Hnuf33Nhz4/64K6GpPq65xh7pqu33N3D5EiHD8FFq870ncew+bMhOLRXh+L2Ja5syqEaw+t9E3tcreGjh10cnPkTfRh8NHsJS11I+nLQwxUz/86dnk6d3M/UWB707DsbcOMcFn49c435kHjHjb5ry3rnnF5jR6fnq5mHjZMv8uirZbkVrzmO7AgdnHKGT6dOevqNzQefsOrhsTW3rv4wjKtde89Wsx/OZ/jlB4N/e1HM3VP7TdjA9Qx0NsUyh1XLDh+69k5cfv4OOp44iZ3Axq97tvHHPvax4/Oy/dXsmeddefMVA5Y1z25/Psa/NvAMF1N8+1VMPnj4XO6zgC+R1aZ19kT+Gmw4enN56Um1q+64qInGnrQv1QJPeHyrOd7Ok+YZ8v7t/ah/McGfPT1MjS/OeMAQ37g5G3u2taKTW9z4aXz4Vyv8zBOx1Etjr5aug82VLz8x4LEl9LA0ecSZL34aP5yqh3utMxAHeMT+uy86F7DYrx9sggN89SoXvNnDDB8OTHo85WUfPMfp1EqeWpj6ngVs4Gv8zTU82LCFQSeW2PjSiaHxZUesmRO88pELDmKwIXp+xTSuPvIQg/Cxxl689swaPu2/GrPR1Fazzp9PdZObMcwam2pkDSf7Kh5cvNiyMXff8B2Y/wz1z//8z1/e32j37b7iSIhUUOQiTr/FtUYk1fhQnF6sw2jjHGBFFEvCLgi9mEQhNAK3jTQX3xp9XG1Uh5hNwhYm2/jBIjD4pM+nPp/yZSuH+wjfrV/8F6O48bmEuzmVxyW7sKyd8axVB+vmNZgaUUvNXO9Aukk4rNVZD+tli7o7L24cpJy6aM3Pog6X9Ge7FzG3b25Qfnjlphzfaufs4afWdBobOr7tu5xdM1pnj60bmOaG40bhp/Pi+U1W/9u5N+r9pkP765+2urHAevLkyXHNiQevuGLgwUePZzp1YpdYxxNHjcDK17hzsz7GcIrtfL1/+0DH25sTN3kf1j2ccWWHAy4Erla90lXLw+j2xbp2lvBghpVOz6cczMklnDPuY+Y41PKPg7nz7oMO3da6M6ImalRtwqiPN382WvH0cNSgh65r3p7x681HdWXL317zvSRnPV/YMI3LA1bSHrSnYrDrYQ+zmNmGYy0/cXCuNnLQiuXZZr1nXLWJx316cWvFza/6mrsWe4PCXqyuBWPPuhf5Rbv7gDhiV7PypSN69aO3N0l8m2+fr5o6d+XIxlyzBg+2MZ8zJr11erY4ktXHl74c9IsFozdd1Zf9+p79zWHwtWcrd/nxOUv2eGskrtb40OdLp2VD33mn79qDY02rTvnpyfbGmlpqzeE5756Tro/W8oeN3+oP8KcvxVjdtfHyLP7ZVj7iuZ716lDsaqJf4XONh7WzZNuaeeO1TW8t7mc7elydcz1udPG2d3DKAX547XtxnFMY9qQcrRm7H/iXS94vwPe+y2+XuY59UCfuza6vJ0+eHHPPBj7eO8MlfMXV1/BZfmI6E5sL33hXA+vLlU1STmyNCX44e3bjzNcXhWLjl134YW0vppbN8l67xuUIm1+86GHgkIQZj/T67I3DMeaT/V3+2eqXE/7E+elDvzksZ6czYq6Zayv0y+FsUzw+npmu9T5c0tmXzYkuH9jJxl29dfcOrb3Jv3rHL6x6+bcHfMTQn6V4cNjzO9+b+VovPzb4VGOYcMqD/hqvc/ydO6txxMFcL1Z1tA7fL8/4pZWf/exnz/WLdv9nkZjer8hBPDzcQ1z3xsSaffFeOTt9z2XXeXUqR+tqvM8DOlI99e41Prv4rG6Mg/pqxhou1khr1d8crjjtqbnGRg707Sd7Uq56wt6aetSKbz0OYYlXXOviVK/yW39j9vyJuThiGpPWO2twatbY41Gt+MBjQ2DFz56ko9cSWLvG1rNAUyfrOKkfP7m611qDb12ztnbp8Y+XdXXBm701eMbViW6x2Fs7n0t84IXDT8xy2TU27OWGizVniJ6Y0xN2aqqn4yM+bGN88rUubgKHn9YZs0/sYfYnOctVjwMbuNm6b/tS3vdj1uGqk/tqZw8fP1RWF2uwxDS3P+7LnoWej7BxwsPz3m+z+wzvi/Zyr3ZyiZMerrzZ4UfXOi50BAcxqwkbMfWw9WrFBma1Stf7j3//938//v80MQk/9gSe+5E8+BNrmhh0xtXBvYQ9XdwOp9sX9nGli49aiUn08hOXqD/sYtHhD4fAwE1ctakmYmv8tOWcH57ek2kbn33nB7fyzg+3OPMzx3lr0Rm15hz6fO+MscfReXFOqrl7u/0wF5/A7Ozlxxe2uSYHjY+a6PlZkzNdPubW23+1VSO5+s6Inzm9Mb08+fEpJ9j0uPllT7y3RnErfntVnawTPmrjOSYWvRj8rOGA7+4lP/zYWifW5chHK0fxqv8XvvCF41+Wf+c73zl82DxEHvwb7X5zElHJI1ERBa4AevqHCowKZBMcLAVUPBeCpqglKQ4O+mIvD1gEl7DTLbc2Rw+HTXbiO4jyhVOcS/6tX7JhH651tuIVu5zkw24xjMuTn5Z9uPEph+b37eHV4ubwxZWO9DASx7qz0AOeDfsujPvGfh526mOfnBs9Hvj1ULu0f1vDOFT7c41bf169c+Um4XrSd0PCV03x6GaMe3sjfuP4y91NoxsHG/kTeYjlb815E6A2btJ+Au03w92ssxPP32VnB9NP6Hsz3t7iZY3EQ6zi0bPRCD8CGz92dJ37+nBhWs+PrzV76W9T9k/tPFDw95vuOMKtHnyM6eJSXLWEpWXD/izsa+zCPuvSq4nx8j5jPnZeTH3xwpKf/VUDosZdB9U7m85TOPX8jK3Lg7251piNvVI/57N9c149qPDS2GvGYfBVFzr4+GazuJ3z4maz5yF8NjiITQdXo49LOOnEYu9NyXn/YbBzf2MDm8Qb5kqx0i1HOERPv+L+1Hm1P3CS5U3Hzm+yPO8/HdN/hrpftJ/z27nakHMuh/KOF37OlDei1ddYDeStxnqtGNVALLoaffHZV+MND09b7uzYd/atxwXe2m6McPnHLd321jfuXfa7trHotXR6c1Jfzjg7u62xbZyt+WIZ47jinMOpXsbOvbZ1tg5XDc71WrxrY7zjwgZWjb6Wvzj2yj2CL8HNvYGEFe9DeeGlPd68+ZLirxtd+Rkv77DWPizXsDPdMzwccbufhXXO9TyH3z0hX7Grg/u6D9pi0bv3+q0m9zP3ZGL/3DdeeeWVw8a15ot2PR8x4dXwLUZx2IjvGdv+V+/s2XROqttBYF7yoRJDw897Ds9uvMWRg774A3F1WHyx43HV+HYBb8IvodPO/nimzz4dfbr8rO14fY1JPuGYa+vn3GvEOTBWExgaX/N6Y/7qnFjjpydiGNfgqLV9cA/IzhxOfBYvm3KwRrf7VT5dq3GuZ7/5hq+nL4fy1CfG51jx74zlp27wrMszyc5886HfWNk/q3c9iUXip68O6eH7kuTVV199rn865vXXX7/5z//8z2OvxSDtCV7un+4Xxnixsd+7v84Jvu4j1mt07DonYcOBSfiw6b1nZy5fa8b07lfdf/b8do+HS+oXg97cvUhL2FZ/67Xs1UIT3/3QDzvcp+XYGWWrJnTxKm+6MPT0dHpCJ371xScOevPOrDqa8zfefQmrWGxwcn7jBI9f+GzC5ycfn8F9ids9G+7ud/xhkPDwF4eeTb2xtnkal4P4YcLbWhhbwwWePbD/dOHLD+/W1YQdYYef9d0f+xdXftbZ4tVavtaLVdw468XS4JmzxRcv/H1x6AtuvMobF3bm2uLJr8/yakT0muvfGSSuG3H4OpO+48LPb4fD9wNon3PjJr4/FetvRPtFOd+B4aA+pGuoWIfy9sVcbnIRy5zsPsHREuNqwEdOMPiurbF19cf3n//5n2982e4MshUDL6KHw8ea1t62d9bozP1gQ63Y+WxvP+gJO+PmamTf4ePDVn2NcYBBxw+POIlV/dha7/zRx7GzJ7Y6tOfNxYdZjelhadZgdr6sxWu5pJMzH7l1ruGYs9888bNPrnf5EXP1lz+e5YdDPNiJt7I5lXs1wSP8zhJfvKyJpcfbuWQTD+e698QwvD+1JgZ8OeHli3bfR+EBp3rp5RkHPnFg27j87AHho610ZvCGU21gENzEwYkuLjD5OF++aPfn2l577bXDh/4h8uAv2t00FEwyiGwSDwl8l61kFd3hkrziiNvDUiFWrKerAHv42bIhrR+T2xf6NqcN4is+aSNtxCVfuvWHl92OYcGETWy2tvVj3+azyV9u6qAXKy7FYZvks3PjS7bZnHu2bjIOILyE3sVFjzsexl1w1nGU00Pihf/YHkd17cGFg4aXD3H4qJuenlzjqP5aNb4vp3Pdn+XnRuQLbV+Ai9dDvJ94w+vsd07Ks7OtxjXx5LZ1ZwebXzVhpxbtr/0Lw83+61//+vGGgZ03DnjCUS8CB+ZK/uk652zVkS+f/Kq9HhcSV2P5pjfnJ4b/NMbfpdTj7TfbPYxxlCO8aiU2TDXUmxPrfN3cYfL7qNK+bD4fFfM+/u2rene/0rtv9uAuPzWo0cn9LPz4W88vm3yqnx6GOtqr7PXtQ7569iR+7Skd//DMw4JfTfV8z/dBD3FYcuOXL5wknZ69ewLeYrbGVrx4wowjfnse2eLSmYJxzoHNWdh78+FNifElXD7h2o8X8Rvt//AP/3D8vbm+aC+ePBqr96Uzcs7prjk8++KNClxz+Xum0sPXq3Pr4rbn1YLNfaR6Lm+44YcRXjmufTYP6c98xXuo4BCOMQw81Wz5sXFG2ydrtWLy5ace1vT7hpmvZ+O+8c3mbLfXZfgP6V0ncdAn1YhOTmTPy17nOHmOJOHxW8zW9dVu/aqlfuvH3hxeXPJXF2vFZLuCp/emPpSrFXvSe2S+4t1XyicfvRrGub1lJzdx9OKywd819uTJk6MGxt5ndOb5wcBLS8TwzAgDXh80+ew5yKZahVFvnY99y0ZMMeh8uPrggw+OZ7c43vPsmQ7nUg+7msobR7rnKdUKd62YYsiL4LC54U86N9bYxs1Y2/VqCmv3lU+fO+hJHPI3V0/1q3Zisu+Lh2KGryf0atd7P1jpOkfZ6fmxIdZJ+3lMbl+si6+xKTY9f42utfye1fMXSwsDjnPvGa6V99osT37LSw2t08GH9xDh4z2n+sO4S+yNH4599atfvXn77bePPyHz0Hjhi0vee++9mz/7sz87vmh3TtKvHW7OgaYuYp7t2OPnHKiHsevTWOv6co8TB0bvtT0/2KilGNaqMQzXpTke/YKcMXv7gZP7jbkG37o1Unwc6GDa80Qu7AnbYrPX6HDCXf19cYo7HeFvLHf2SXHhWWeHq7mWFD8OrfPZ/MS3RrefR8ORO5tyZ2sf9HTtXT+UhK8W9NWOTm180SYf/nLyr5X1cS2OOXu5xhUf82siRsKflDOMsM925vbWGYmbOOJXd+v2BgZ7zbp6VQsxvB+WN4FhTWOvFvGybsxWDZ1FeGHTibfXBpw48fN/oHlu0hM9/gQXrb2qjvKgl1exYPXlsTW8rIntT7r5ITidz7L8/ADaZ1wcCcxP3v6/aZ/4xCcOW9cMf7HhyYMtfvZfLyY/emP45caXjq9ezTVjmD4TeB5bd92qOX9Nns6eGOoNyxft//RP/3Tzi1/84sPnOTy8+OBhrnY48JenJh6O7GDB9Cfv+LKDzY9dHKqh2sBVj963sFU/Ii6e4cIslziEae6MsKfDSZz86dRHMybpls+xcPsiJn0+6c1xtvf4wWCr9z5NXHPSWmcJXrHY2Av56tla8yx0BsSxxhdm8dRXXOvFYSNPAstYvbWuG/ZqpxGxrLc31jX4ODg/7rm+j5Mvne9pcIMpNl7w6J0L/j0P5AMfl+XHBp44/M1X+PHRyq/a8MH7LNb7gU570LnSx9XncH+j/aX+Z6gKY1OQR8S4xM6JPGYuedguDofE3KZpXVTXcPFgH0bFdcBsno1LsqF3scmrwnYh2EybepfIXyPiwYApB3obL1aHw/h8iOj46sNhjy+8+IRXXtbo+OFKDztdh2XzPgLcvvBdgZFOLVwU+asPTA8/emOY7NLlu5gveiymnPF0cTsfdHJxI/ClGu724z6ihlp1f5aPOOJX97tqkK3aucn4Its/N7PPcXTRuzGVEy4w7Smhp4MlJw0ePUxjzXo3F2uuo7DsmdrYt848bP6+aPfGQEw9XX5wis9+cy2umPZCjwPe7OjgsFNbvGGx6Wwan3HN2cH57//+7+NPx/j78vh7c2J/5ZadGItvTX03lpzVGK9iHgAf4QXO1uMjQH3oChNvErZ5Z1mN1YVd90W5yrm8zdlpfDU1IurU9d2YvXWYGslH3M6OfTR3hjpvh/HTl2rLRsMTrnhihM28M+EaEKuzQ8+PP/ty4QPfOh+SX7mloyds+Tg33gh0DzsW50U8wm99+a/g0jq99WLQV7905nLvQ2dndDEbh+va809G33jjjef6n6Fe+6K9+M+jl6+9sJftt3nPdDmqtfXuDeLao84Mm2r5LE75Ve+1x6X72J4XfIrF/zHCTxO3cwpXe4jEfzHyx9+63rq6mSfVKR70dGrLVs7OW/tA57oNB6brgZ1x3KvlYll/qMCDUbxL/p0XHOPJx9lwz8GvnDdPWHzjGnb3EHmzb0/w18LKvvjmeBLx+bW3dPzo2RNcvUH3RQ4/euv9ORT8sz0cbl+sa+WxXIzZ57e+fORF5CAebu0dPX/PAu8rvGf0ntmH+eoBT06Ly8+6mEQcNntGitV6/NWXwCuPsDtP5SQGHB/mfdHeF+zVSi2fJbDFJmKLUbxn+VpnG0Zn4ZJfNcim3LKFoUZkzx59tc42DHM+sOn4hSMX486/Phw++bE5C529U1u4fMU4t/zkIp5nYbjqqJF0cdSfhQ1+RK/Bk1P5WYtv9eMXT+t3Sfz5kMVy5r2H0+jZ6LV4G8PQi4/b5kKvVvQaCSe+60tnrvnhGt9qdjhfeJGrZ74/yfjTn/70+MI97Avmd6rEJX3R/h//8R/HNS7HFXPcXP/eB5oXM4zsOwfVBl+tewq9+4nzxVavRvRyhy0Gqe7sqos1/r0fZYeb5zF+/OHF03p11sMi+Dhfm0dcsmOLO250+MhX/X2WsWe7/2x6tvBZsUaXfWcdvjWcNfwTekLHXtzOCJ37qXseP7aaHNjQkWooDu5w+PYlVfHpW4Oz14Paa/7lEHv+YhTLWC358D1j8SlvnNicBTc2Gvyw148PbPusFzNsdW9vrXfGilU+bIrBRlw2evsDT7+1qG50pD3mp8nf+1B4bOg6X+I5i74E90wvH3HgiGWvYIjDTzOGSd/Zj6cv7GGat8/OvxjWiC+Ixdb/13/914FDrzZPnjw5fpu9f2EOp5qIycbc2RJbTt6TFAsOjtbwtF/W9lyYw/Bs9kMd+1k+5Swujs3ZX/uiXXwYGj7u0+qHAww9PPWKJ27et4jrWlELvPEsZ7mwhwlb7sXBy3cE9gouKYa9VnNY7DqH1nHR6Alfdmyql3k1Y9NaXOhW2OPIn+jZxhnvhN53V+LKN8FNHAJPg6PuuHY90Wl86eRizF+cGj7LKfxygdne4FQMY+dX/cQWi6890ifi2GPn0P7LiQ9Ovtfqh4XiwbRGjyvfrkdx2w9jMQnu7MQn6qFmzY1h803ix5e9efZsjPHCAWcYWvmyMfcvSr73ve/dfPOb36T6nbwPxTNePtJvtCOJeMk8I9aDlhXGRlRYF19fUlQsm4WDpoikg8C/4tKzJTZuhZ7OBnXg6PiScKxtnmImYrZ25sTP4SXWlie/DtLm0TgsvvCLYd1a+jNGB/Ns0+Hlh4e2eRyAT1+2HmzE8KWmi6abbRclXPZs4rhYL3osDxeDs2K/8CD6uOIlj+pYjdhVi+UehvW7BGY17BzAU3vz4rChc6MlLmQ3Ig9PejzFd/Ny0bOvnvDiz7abAT27+BuLx6/YcRGzdbHE0LODzQe2/7QJL34eevvmJix2+cGlh71c0mVnX4pfXnyTdGHTwyDtqX9S5z9D9TB1Q/cbGz6kW8/OGeDnPDqX8WBjDT5ffrjhROgbm1vT7ivtz33t72OHjwY72bnc2jf3R2vy7I2HnDRz91LnhpRruDDkap1/dWdnrhkTNfWmiQ/pIXUtf3rYerjFLg/7RMxh6tuz8x7wtRZvPR8Y5R4+TLYwrNtzts59v/nBPx7sCXtCrxF2xTwUty9xbJ5NmGdfc9w8zO1VefMPmw1czbp980/W3nzzzZvH/m24+NWLsV+00+O1HOjKo3Hr5pcEZ8IuWzrYzk/5y929j16t6TtfYZz3VB3YhXuOTw+r2PXhWevah23dWpjmjxV4xYYBt/YQTBzgwMMrDDqNxLd5+PQaac28GrvPu27b5+7/1UJPp1WL+MCEhQ/s1unvI2LGjT2MOJ79xWDvPsRHLP36NK/uMNbWeGtovXjZlYO5lk1j69X/Ut7x1Du7npG+0I4vHB8gxJVPdT4C3b7kf64NPeHfGkw4cT4Mnr7QuU9oYhBj93r/zByG682HeWMCW1tMc7HVnb+en3tl3IuxOcKjDyscWOx6/optTk/nn8n7EK1GzpwP93q1zK5amMNP6OFpfNzXrdOLH9+48Ft/c2sabC3JJ/ts8tGvTxzZ47P2YZ77jcevmOyM4cC1B2GWs/rU2BL5wqFPl338itE6DnzUjxjbF83a+h0Gty/5xD9M68a4wmk9vTW6zqf52Y7tJSkGbMLPeYPnbHqvLIfs6IsXD/MknfzicOZd7tnmH7Z1Otc8381rccU0x9fnVn+j/e///u+fyxft79/+X0XeE/gb7WJ4D2bv5ISbZ533Gb5Ydh3jib/W9YGf5zB7n+noYRhr1ZldNWAjHj/4xq2Fj0Nnib3Y7DzD8UrnvBJ+1tXTfYudObG3sBJ6NuUDKzHGmY/eXMOH8MNbPL04BH+tmOxhhGMOp+vReKX86WCb46fJSZxyVNeeC2GsfzpcNGv8td3jYsHVXAvug3rSHvTFq7maxA12eZQXPzp2K9V6z1fr8bSX7MKFQ9c1Yt/lgE/3a1yLhYN1/NSd4KzBgUvkSqcnrZVfa3pY1uESOiKP+OEVRrno8fHMdO34rFOdiw9bgwkPZ/Pw4LNVEzo44rCXM3tzP/zxWZvOZ1l+zocfkPAL81Of+tTxPMfJOQ4fT/7OM0xnRF8u7Ym8464n2VT7+Nkj91Vz72msd65gO8PyEBOGf532L//yLze//OUvPzzb9MWAYy5HjS8O9HJxH5GnvL0PcM+Su7r6vkkOzlH1gMseBjzc4MOjw988e/FIteAbB70mr7ixhSVvjV++bMvDHpgT8eJ0KG5fYKiRZmxdcx7l40wsF3UQj8ijNfXGr1i4xEuN8GGLg1p0726t2mweR5DbF2vyCKPcxGdfbdiVS3XHSTw2y6l7nPrbX1zZbo35xMv3MO4J7MofP5hsSOfdWK47p1NT8dTZmsaXba09wN86Dpp13wfgZ09woGsP2ML3C29vvfXWzXe/+10hj/VjcM+XR33RrsCIXZOIXlq/a23tFUqCJW7TFMKGS95GVFxjjVS8fOkV7S6p6GzY45jYIFwcQjhh1bPLXs8Whh4urtrmzTcf/uzSlUfzDp8Lh1jHiYRZHH06dpp9Cr+LkC8M6/HYfKwTfuKyM/Z3vd2E1cL8fPHQaS9T8C9XOYjfXtmDaoXT5rpc2zM29op/tnT3FT7tm7hxoRfDDdY/MXeOnd1uEOzUkq/45nz2RmYuT7id7faw6wBGHOybOeEHC3Y1CrRP5gAAQABJREFUsiaONdL6Zz/72ePhB/uTt/9krQdhebGXSzj6eOnFT3acrl5sjT+8xtUtXBjp3r/9gPHOO+/c6OXnPPYwZu9aqbby6wtVecOQi1rx9QZBzDhaLy86PlqSnblYZ7F+SX+2e+x844chnoa7+yIbOZh33zSXs9zZxNFesela5utctYfh0lWb9qk3n3z64VtnK2736cXo/rJxyzWu9dcw95zjSPKx5r6ntace7JekuOu/dtbD3fHa3DXGzfnU4IQld2OY8cdb3X3R/lEe8Gc+YuwX7ebiuBaIOYkbPpf2ll027NmlCyt9e8umN810Cb2zmI6/c0lw8+xns/HiyYa+azUOdHGCBTt8PnfJYrPbuGe/zhS9eLWz3bPmYsh788B3dZcwllu86VYPo2sEfs8G+vDpjfk1Du9S3Pvq7Gtx5BP+2b9YenbN8TZX1wRGmOXJvv3Gn57O+Smf/Ot3r9is8LO++K27JzqT7qe4aezZ1py5fLvH5g+XvdrEAdfm7Mpfnu2dcbitn7E9x3Hz7BYfx35rzhwGX3389HiIL5beh+ytmzjVtTz0fPlYC0OfvjyLhZ8P1L5Y8OEarrkzyQ+36mluvRxhtAZXXPdysen5Viu+8eAnX1Ld4pPO3Brczbt1WGTrZr5+OJjH1zqBu/6/1f72NX81Z2dOYJWTOX829tb5Cw9X8QjuGpx8Fy8ftun5q5l9gWPeGnutvOReLBiJeERsvjDytWaunfcg/2s9LP7xjid7fDsz8b2Gs/pqE89du2ucHy7G9mJrvHWSK2En575of16/0e4XTX74wx8e/7pTLP/C03syeyOma94XVn4j13VsXwiO3fvZ4eUstadq6su63t+1764xtecjnveTsPXkvK/wNHp1NhYbL+P2Cxd4cJ1r7w3Y4Mt3ufYe1ucntefX51m2MPT02sbuHlFc77/E4QNLDfTl19mSGx9Y+GthFIsu4a9m6Yzl0jmRe9hstXLEmdDhI1/j+PnczSY/OWkwramFPereYEwXPlvc+RcHtjj4wsaNnznOhA2Btbkbs6l25QxHTHk7I+yK40tQMaqdNS1fsfHEMWzngj/c9vsgdPuCu/gwWjNm257ZZ3b4wIUfh43jOtHEo3dG8PJD4c5vtS0GvVjmfPAsDp1x5wxnnFxbuBLXn3gwxLFebeDRi+kzuS/b/a12eOoktjWc9XTlBdtcDdvHeBWDjTV6vI2t4QZHfPysm8tH7eKuPvx8jv63f/u342+02192uMkTHv/OGEzrRB5+SNAZ8YP3d99998Masiv/rlccYRD5ieEzPl16a+qh0cGoXvjA1azptx6dQ73c4m2uVWPne32NV8z5qp8m1+qrHu5z9PFTr/bCuljW2g9xjZcX/M6f2GLi1XXOx1z+mzc72LDEsq4ReGzlbt3YGnv1FJPA1djDKydr7kWeIcXQa/ILkx0/2N4Dwso+fmqEBz27uBhXDzh81dcZYUvEKgcxq601/nzC4ONMm/ORCw7OPFsNvh+U/+AHP7j50z/9UzCHzTG458ujvmi3mYpMJIIscol5m5tOT9/mWn+WsA/fDUnCNlwsRUlnrJhxKA77CndXrPzY8D0LDnCssbUp62NdwyGx3sHlh2Mblw09H33Y1tiRarXz7OnEyM9Ys25Nfa0Rc1wcHhLX1unY16qZPLvp8veTVje38odbLLFftuAvX/lUBzl0NvHZHM3Zyk9fXfhUE2P6h0pcqmFxqwt8/4Tbf27o7605D24yHrBuTNW5fPg56507fIz5xV0sOufcTZCvdb7wrMfDXF7W9N0oYWWvbn4Tzk0OFp4e5NngYKzBLVd6c/pqS3eW/OhxyF+/uPgQmOHi5kHsP4Dym+34+4Cuhnz5qAG+uLPvTYNYcNTJmvPLjw99sY7BvCyP+NHFe0yPvK2J9bylGuCQ4FCs1lsztw+dB3Vxr9TD4GfNPpuz1zpv1tLVs0uv9vR0fiKtzuqtVTNc8tXju2txhUF/aQ1PLd96ucHMp7447DR8nHute5a41mDwqxZxlWN6dsWhi+vZv1zu6vk6f1rPMPzg9yZh87XG7kV/0V5ed3E/r8lFndqb8/rO5eeepGaaXNs/drDM2XS++DRm0xjX5nQrra2usTWY2rOETfmxbU+u+cEu9n1jPAsrPLFx0ci53upJF2d2dM6OfqUauHY9w/XFCUefbn2rxzn+2lwbV/NLuPmUI1t2eKQzTy9+c7rFPtchrvnqnZnw9eUVTvcE9SP0rcWH3pdYnuU+JOLq/ucZ7n1xPJzn9W3Mf+PyJ2L3fGLbNQIPPh3O7mPtL1/r9Il7nfu8Zzcf9308CT/25/hx6L2DOsFYybdYsDUipnXzrmN6uGsnLlsfzn056IM5G73zaJ1/9wNjNa2uMOGx09RCwxeOhp85O3N2dMs7nXXCXl3M+WV7LN7zhR8c2GpBjOMUL7r4bUz+2srO+amHfelsLGZ+sK2zT4q5Omvlia8PyLji1BkRn03cjMst7I1VPuHGHy4//WOkuJ19uGGJX1xjevblGhdzaxp/dSLnfO7ixw+OOPZCgyM+MS5OnPS+UPKnY95++/n8jXb/R9Hf/M3fHP+yU37eD7v/iIUjHW6etb7QwUtz33Ivcf/H0/uLPkM7V/xca67RaqU+fNSeWLcGX7xw3LvozDVjDZ/2Hof2Q++ah5XQ1eiqtzF+flmkL9r58ccHt2yLGxd2eLJjz25FPDb07V852GfNnE3nL/+4WmennuUsVvfF7Ko3HD6kelcjttbgEHHpcCN4imW/fYYRo1Y9i9c+rl844VorP3VqT7MTy5jemJ/zgG9cqnk41on9Ki8Y/Mtbr+EKG9f2iK9a2XN+4lR/tiS8XYNlHo9iw9GIdQKnHFwDfrvcD6RdL2JZl4dfJMJLPJ+X+IdxAN2+FNM10OcsOnxgxQOmaw8ePU498+0dqSa+a7HHavvpT3/6uH/4wt01rVbu13DZE7HULG74Wmsen+pnXm2zgeNsdj3BJNbzx3trgee//uu/Hn+j3WdBPnJxNvFTT38i197DoMMfD7Wyxsd7An9OTj2qCR9cqldc9HhofNWxOux1Ix4umnjlwz+hY9d9sDnseOan16zx0Ug1DdM6PPdb+Ts3comD+lnnTydHvca3/MOXHww+7ak1fuxx6po0Tw+v/OvVn6864cE+nbG1rlO4rYmrZcOuesBpD+yVvRebwLKmJ2oaRz8kSYqrD7sxGz6EDqfw5YqXs0/EUT/1kuPWq3zUKn8+MNSnupUXLM19zOfwv/qrv7r5kz/5Ey4Xz9KxcOXlUV+0d3AlXyLwFYEgKhF9wq6mUBWu9bt6uF0IXUh6OgVVZJstHltxrJ/1Yiynu2JmCwu2Zsxf/su/Nev0OGhqUB3ilx/bsLMX03ob3uEUEw47OljhxLM4cSjPeMBkk1+crRNrNRiEbT5ydlPtBm/dPu6hp3uZgmf1EDc+5b5c5Ml+++oqR2KdTtsaLM6lcbj56tsj48TfZPvSl750PDidTQ9xv9nly3YXv1zC4tOZp7cXMPmxKVdjD1+2cmOjF1decXIDbC/1bngw2MJu7gM6LDH96RgPCuOzFIMeBxhixe9sz0Yjnav4wdp1NulgGjt/vmj3z2X9Ro/z7OHsQ3rx3Qt8qWAuX29qeljSxU3ebvJhi0eKiV/zbPi3p/HPht66fKrpAXCPF36kmNdc2Gk44sT+Lh97hpdeXbpPVnO1sLdhlnv3zfT4WCtHc7VP1Lg6x0u//un5FAf37PRa68Z4aptj90UP0vXJT6/+5Whs/zXnZ2X5yRkvsehhG4dTrPWBVQ6Le22sfvZg33TEyYMcB3hyxFvP9kV+0d4b4zirQSLnS9I5YIsnzkRtSLUy3nplJ1cYhK2x3OVqDFdzbtuLw/j2hZ6ulv5SH4619ik/ceNz9uWHh/jsnAF53iXsiqcndPG/FusaZvzEjQtbc3yIOHDDFitd+1J8ePm4FnyAc77Sw+yss+NHYBu3L+Eei7cv5WoeVmuX+sW1zl+j37XNG+7m1fzsg39Y/4+3e1219SjWOD7vQwJJREQUjEZFPIAE0Ug8n4JEJUSN5xBR8YQfxKsSFUERFaMRo0FjQvJFvY09fr3mf+3avcc8rpkU9Ozu6qqnnqru9x1jvHOsuWDPuhjz4xPPbOmMSZhswpP79GfjQ7nXch8S2Xkt8TqkN+/em1/X/B5HzHi6BrTOvThi42LP+LI1tnfiWGsfrWveR8DpT8e4V3o4xZePHm55p8eFH7EeF3N++95XR737GBvx+fE/JmJ6Xe5Bex/I9PLgz6b3PcbymR+MstHzEZsdHnGyRsxxaU5nrFmb9chePXYca7uEQ8+H0OEy58WKS2djORx+sM0+3bEertp2n2QjN6386bIrb3FxyLbc2BJr6ug1fN9jawk/DVcxiHH7bQ3Ongu9OmsEJht6Ek/juWbdPH/Yx/BxiSes4udbrObixB+29eb5sjlL7J894KMVE37XLhy1jLsHLm984xtPfvKTn6wHZvTXkfL0oP073/nOesAOywOq7ulw1Rov174vnnTmjF0vricc6X12wE9OdO4vnQM45uzVXiyf/+jKoTje24jXfQO2hjOc7MvbPL0xfNyqW7XVw/B+1XuHuMLh436iZ8OWnVxwwQ22vOTAll35wbCGh57w6TqDVQ6To3ESTz7TXgyvB2KWpxp5z22NwLE+61secAle7PCIo/xcr15zysueqF/5iFmesPi3N3BhxsuYX62c2OUThlrLSywCV97s1A4mTrDsATEWw32dXfjs5QtLPvyM6fg6m/DYEznGmc3cG3oSpnjyV1/84E2fzhts+9KDdueLnVjq68tcbPHuM7Z1fppxca3jDA83nMSHpQbmnQncYNrLahcu7v7/MfGteS2///7717dq/dIOnutdzaptecif8IubuXEc9MXS48ofJw1PennjEpaxhrMc+fhX5U899dR60O7vtVu3h55twHHe/Qen9oB950dd4PjCAh/PluQMl6081JOdXPEqvnwSmO4LennB1LMnalX9+ctrF/n3DCUbPN3r5CKPYxKWeFNg4O59l/NkLB921nDFUw+76x/ncugclx8cHM1hsMNRrzkL7Zd1uOb46zW1FMu6PVVnvtUqbtbUhPBjQ8SWsz4eeGrmejF6X5ePa08sYh1ednRhiGtM5n4Xt3rHCV/5Wedbr97OnZh82NXDVSv1CY8OjnNi3H5XI9fcG97whvXn2j760Y8ufjCvItd60C5RhBQMWQmSiNNrkwwbRWQjkX39ItIuQBsGA64i0Glzg+CzcVC6YGGLR/CI51Ic+THXw2JGD6eNzhVmuLg1N551MtcI3Hzgaq1XH3bysAbHOh++U3DiE/ZcM7YWj+oOs/j8wtATvTzj5CB60elCYQNTg3+RiEfO4niR/74OT1Of6tG5nLZsxNTLt7OSvtrIg46wh6mvHhNzH8PV2JYff/Nq4+x6cO3BmYfZeHsx6s+fuMhxa7/FcH7p8IKlb16udG7AbtzEHJfi46PNMwur88DHuvhs/PM0WPy9wHtzXsyw4sKX4GxNrmzFnxKndPyzNxaLDaEn5WBuDT//G3vfaBerfw1gnV0vbsbOqRuqPM3h4amn6wVnBTv8gKFZL79w2cw16xqJp/HUm4t7kfCH3Tk5y55NHOCKdR4+XE3O3SedJ3HgOI/OjTHRw2PT/qe3Zo/gzdg4uC+os3paj1e47HeesMIp7rQzxhNWHPTtJe7Wmoevp+MbhjONo0YXr3BxcWaJdY3Ar6Xjq8mzGMv4gh98xHE+52sSrtbSg+m61tuHO/3bcDs18frTMe4/5aa3phHz1ibGvD9Vfz5qMv340lmrjubOYvvP3lieWhj0XavG6WGxj+PeT77Z8rdXhA5uZ2vaL4NTGzE0gvtl9hp2fMIN45h/NivI9sOaxk/uE2diZce92JMvv66HbFwHPuw5X3Fof8zhVG+xYMx5PuHpyeRyS/P/f5aHeMUKf/LHmT778On5srWPGsFTC6MamcMoXjh6OdXyS89HLCJGcdm79/jmm/9bxYcfa+rpw4UPZvLiA6Oa9JrY3NqsaTzpyysca/aKyMO4fJqzLZfuwz7cwnNv8QsB6/nBLD5dubo3EWs4d18sjj4RM7zqY43PrOccw/U67j2PX5Z7kACj12m2mnuEOoshHz7Fth53cZ3nGQOHOVcD85p1Ajve8NgR9c2fTTLHdGzycd6mZAs3LOvm9peOTf3uP7Ea59trc3MY4RTDHojDpjjG2jFRB2e3cwaverMPv7zMCZvOuvk8m+aEDzuNn9b1Gafw2bNrna9mDjs9uykTZ+qLu/O2b62xbx+Ll/3Eaixf15SYk7c5nHTwidr60O+fnv/0pz+9kb/R7kH7t7/97ZOXXnpp1ccDqh5GFRMPZ8VDqPYIDzV0PemJXDxIYCPvrgljObi+vJfubJjzNxeDn+be0T1DXHN6NrXqaq5ezcWBN+OoZTXGEzau7gu9V8C1Bos9OzYaDHoNZ01sPp0la8YaHmGIAWueDevVrRzYyzO+5oSd+5qcioG//QijvPHCifAPw3zGZAMLN/dFe663J+qnwa4mev64tjftSZzYszGvLxfx2dfwap/48YHNXjOGgQ/pDMTJnsAqx3zwVKf2H44c2VtjT2e9fMyrU7nQwQ9XXPc1Oni7DywcXRcetHs999oD1554ferLKDDYEuvFiZseX/72Wb2LLwccNXxgW8OTXxiw4941jbfnBn5R97rXvW59kcweeM/hfMmBwMBPT4zDMi++uMaJmrCVD564wSfm1uWjLxZ7uRJfFPSnY/yNdg/LYcePf7WFT+hwF0du3kfx8VkeFmy1k4cY7GaeeGhEzy5+1VSvEVy0uC/l+MFfnWCITeDyb6/O8j1WX/7ygSV317s82xfYnSX+4riGxShO9nHzOR2WevCHz1bfGFfXh/qGq3bp1MB1WSz8nFX+1kj15N9+8YHJDp/yMC8XtvTmYtrf6k/XvYdP13D7Kq54xQyfP3sSL2t05W4NN+sTQ/3khpe1uPBlj0M663TaPCtiqbfm9dFzuy984QsnH/rQh4S9zW1NLvHjWg/aK34HA1ktkVBFSmcdeQWpWLNg2R3r+boQFJDwt3l0mnH49eK0xr7DxNZaG3osXjxhhccOXxvSJk1fPlr2xuWpJ/z2mrHfhY4P+/hWK/rw8mut+exhwbFner7hh8N/8jJ2QfYBSC58vfC4QHa/5jPuHFcbuhlr2lx2DCuRR3uJQxcMPSku7uK68NywupHR83HhyTc/tnxhXpSbOPy0yQ0GXz3xDbh77713NReu2F5cfLtLfNKZxY8vG+dWzfEkYqSnE9fNwDmJL5x588uPrzUtzgv08EMMZ8RvYbPzT9X6p5rs5FI+/IsnNjHnay2Z8+lr3VwubPStW6OTQ2M1evbZZ9cL+gsvvLBi0Wn82Hvx6B5R3fiXKxuCp3V+xkRNyMxh5khfy04f9j4OO3zrxyT/mfsxu3ST53k+4bJXk+6falpr38LGtRoWx5q6wWvcvqhh14/zkw2cPX8Y6cPLnq39h1W94i8mXXq+uJm3x63DidPUwaXfpRj6OE3eYUy/fNhdVvjgbA+qHd/09ic9ntWD3p+aern+RnsfIsoDn0Tux0SdEjz5TJ01vtXHenVkJyd9+M4gnX7GN9Y6v63tscw162JqsM3V1NrkQm+9+0088A4rPLYaYT9tl3L7YT2biXXMHyeY5wmMiWnMb14nu3/2etzdH52pcjH2pnzmU47hZytWY3Hw2SUf/UUSlj5smPNeEx6bPV41s9Z9ylg9NOuzwYKhhRtPfnuLk7M47bom6f2LKR/KvYY7t9Z8sPDQg3/xrHVN03ttDUe+5dYZMGdvDS8SP1ziE741uvzzEYe+D1He7/S3XdnMfRfDPAw1JWLIVR+f3oPApifFl19izXzWIm7ycx49RPBLc+9/2FcXduLhoYdvrb0tRnjFSV/PN45sG7eu59t1VN3pxMveHIeaeQKXn37qrcPd4zbfsYsR7uzzmb2Y6rPfL/nhKff2TqzZJnZj2PjaF+fAPF15wUhfLfin1xP2MI7lxD8b63za485g2NbtQ1jTb4FsP+K2qVc96OBOEbtY9PzLgV78swRn13YPPdSOTA5z7Hr0sMWDspt80P7kk0+evHT6oN032nsYJba6yaOz0plwL6Dveuuse5DDRg00GIlxnw2MYcKfn5fCpOcvX7G83+Ezr2e2ziedNa393u8xcem8mBM+xs2tFxtun4fYJdY1ggMfe0dnXLOuFtUjDD7VMZuuwWkTF9jyiZe52jk7sKaYp4M18cKZtbGu/przZc5fLNdxeXUNiSU2vnr25Z8tG/pqbjx11ZrOGA4MMWAYT7FuH9TMOl4Tu3E++Fe7qYtHfOHBjk96ubOVo3PHjk7d6M0JLub2wVlxVr2me43kax222vbwkn18G+PAn0/Y6ehn/MkXPl7tt/qpjXj07ZGH1q5pNfTFvNe+9rUnd99997qu2PV+Ah/S/utxhdN7kBmPvcauxhZnc+9jvJ+Boba4q1E5hm+Ou1+a/+53v1ufy9WLD9Fbx8G9oLzjrrdP/f8xvvTjWQh82Fp7GyYu1bt9wBM24dv5NybtGwy69Gvx8KN6zD0yZmdP5LD78MVPbvhYl088J7b1sMWq1nzbB770ce26MbcvnTNzscThm101tW84h4s7nWvAmF+1guk9LLFG5JSvWOydM01ca4S9mOWFu3yyn3vAJ95i48KOv7mY1ou7Ahx+mBdvjtkWl23Y+BnPZn3ujbEmrvh4EL2WrXjy8SVT76P1noV9/vOfP3nooYeWD9uryI08aC/gLExJzLVZVOsSvixhh6rDyMfYhdphbzPqxXKBO1DFwsUmtVHxjaOeji8bIpbWhuLcpiyD0x/82OBlzEZr45k5sDY4LLo4VAdrdOZs4Wmtd0D5kuLwCevWyq2fdHy6YGjDh1mbXI19Q8uDGGP2ejf+Ltgw6C8S9dT4nFW/izCs81efpDkdHmHv63K0joOLxhtLNVUXF7683JDgaZfJqRj1ODgz+celffOQ3cX6qle9al284vagHQ++bD3Y7oXJDQuvvq0SFmz7qSfOuNysw8JlXi/m3azlbSxePjDw8ULpRVUObPoNeucPdrVhI565dTHM6aeIYY1d/LOlC08u8NmnCxemF5Bnnnlm/fb8ueeeu11nPnxhlhN7uvTWNBLnYujpqkVj9uXCptzThWXONu5w6My1cs6v+SJzjR9wwiqH82DwUUfnoftldbJG4Gjm9l0rD+szprl1umrinDqP6iA/WGpvrLGt/tbo4ONB4LivwCBss2dbHen4aYSPM0vYdY/LPr05PrvEC6dyhFPb7a8yh0dgEbn2AYBODuVjf8zp8cRHs2e+0f7444+ffOQjH1k44a3JNX7g1Tfa/QslEtdqQCfOZWLxkUf2YTSfGNbKtRjqQqe159aImlhXB2vVpZh0NTr73N6b862utxBv/cx2PxNh8SHmbOUANx0eU6zHLZsdw/qsxeTKRxwtbGP8zdnCK0ZnBB67xBzn+NC7PlwX4btm3Esnn9bYF994Chscqom1+EyfmeP0N4bBn/BpXq3WwuHHnld6PnJn70xoMOjkNeuiZuzZsoHZHsKLR3yz0TuLU9SPr/ueb2B50O59hP0R1/sHr9HVBob3GOwJf6+vGo7sih8nPDV8tIkVF+u4iSsGiX89PjDZyh9P/zLNvYeIz7Z82WjmfIjY3ePjUQ1a1xdTH44+PTy4Ndy9VvhGrl+ae/9Dh2+c+NTEwDfO5rsUa+pxLnb853p84RIccMRd/apvOeEXx4nDDv7OAQaB2ZpxvKzBhqmvPun12cffnIhpb3zu2bHDKh++xQxngZz+4E+vdzbLUSw5hMdmSn5qvAuMfb/KT8934tI5W+KJY42/uT5bcfhqu4SfbXGO2e6+zcOYMeiSsHBUX9eTvRBTztOfT3M5eD/vQbv/DNXfag8r7Mv28ek/Q33p8KBdfHP3dLj4zX3EUcPZQwNineTjPjrtjONvj50N+0EXhnueuZjWfU5xbdP5ZrB/ReOzBD6zVuyd394LscfHGdA6O/y6huVYwwMGv2zkUu7y1OSQv3X2pP3S85nnLB3bfNm0v64593U6+ObEPH741+RDjyeb+MalOPQaoWOrGdsjry1qC4vAN9eM5cvfutd7ORmL317jy05eGj922cKFwY6In8TXnK+87WExcJw4bOyvc0/w7KyZTzxjjY++3OHhX13KXdzyoCsPebK1bo/k0bmqlvBx0bPB0Vn1sNdrJL36wVHzPlvQ1+KPQ+9BjK2TOJjHjR1edOWnx18MsXyJEV9YmrmaqfVdd921/jNU32zv/MFmX93M5QZT7niIC4sdEZ+9Vnx9MY0983Etw4Cpdx3jz4+wI657/4npb3/72/Wfodozwk58cfnLoXtINWEnF++liOdNfrnAp1p2/cS7cweTiGOsTvzkrpZiJHhnP3NuvX5yNmaLM1zjOLE3VjP3QvjWs7M+zyVbTT06G/KwN/RsCSw86Yzh4zH5s63Bcn3Biqsa2rvEfjhH3RPo2fLl1790VGcivjW5EHVs3+Jpjb21zgQ/+RD2zmH3g/LPzzoONb7yJDDp89HjoyfNqxVO6kTgx9G8OumtaQmdWFNnLU74iOFZnDPqPfRrXvOak0ceeeTk/e9//4JhexW51oN2RTxGtAIhMJM2V7CKxq4CXJawDZmHToFtrgPTARGHiKNYimRdLE1ctm2ueRKPbODTtYHw4t2ByLde3Lnx/MubTVh01rTJgU0xqh88sbOlF58dnXG5wSX0U/JxgVhrvbG+ePm7YfkgRG8dd/723jzexknj1sLCHzf6apBtvmf1Yem1/Jq3Tg+79fCsiy8PHPwWb96g3BTcoPxGNdkx0p/Xi+Nc6cVSp3nW/Ebaf2rihQUfcb2o+S0ue/uMfw/a1doLiH3oxSNe9lwr386z9c6Gc9+NUN7GmjizxdkN0Jvn5q4tnN2MYcmrmOowz1o+9HFkT+RaTczTs5sNtjrA0hPjzo0XEP88zX+84ttwcAnbcs5WDNjqQ5ee/Yw55/lYL5+4ilGt+cAj9GzMreOUb7WCx2ZiLec7+BEW7IuELU720J5qdDjT41x+nZn0YVc/fppzRMdPc3ac14nVfWLmz9ecD1uNqJ16wSCwNVIMfnR89LDEcGbN2fF3XcGqNnpNjF1g5Gstfsb5G58n0ye7+JnjBUtN+3BJXx70Gp944qrZq/423Ic//GFul+a1jI/8wNeDdr+d96BdTDqib0w/14ynsDu2fgxj+s18Owfdj6YvHzWy1v2HvbrQ19RNI9aqt3l1Nd4lrPK1bhxeYz1brTVxZj2MJx47/KpPGMXQwwjHukbgEHP8swsvn844u7joxc7H3GuI6yRMfq6R4qQvPp/wpo4dDvDTw9DYTx3bXazny56feW23j0N6c01u6uKNsOuJv5zk6Po3Jvpi5BtmXCY2nXV48iyf6eu+55tvvgEnPuke5PWpXPi6dp1d4v6oscXLevg4GhezeHLMBkY2OGSbXlzrfNVHHLhieZDgg3rfSqNnR4oVTvGqQXp99TQmfNmzJXDFZkfmWclOTj70+c8b//GPf6z3P2rErzpku+PGeYEf+RF3dnw1uvS5NBdPI+1TtcOTP6xy0pczH2N28px6a2pAR/Sti11edDPvcOKUbXnAomPX6zQdSQ+PdHbow2k/lsHhR2v0xJnp3Ji33+xI+RiHWS50Cf4zf/pi1cfTXHzXrQbPWtfJ5MCWVM81Of1RDnyLcZbt9Jvj/CZ+Onbti1jOi+uwOhcXf/7Z8jf2Qd3/zXRTf6Pd9fPNb35z/Z9F8P0LkeqHQ3XDG0cNZ/dL0l5678S2ewobZ0s/9xa2PZGPz9TEdVy+1n1G8VoD2+crn7PY8hE3TOtipIMlBzWMN5tqb6xl4z5qbN1e4BBX8xpd6/yL3/kqhpgzLmzC37i4sNzz7SVf6+pmXCuHMOPKt3xgF8PYmv2JK9xs9fbI50T15icWfLWGL6bc+FtnZ52dNbrJFaZ5HK2ziwssvvREb0701u0dzubORa9tE4eNc8DG+w18ifgkXHPcO4PsNZj8cCV0pPNMH3e5iA3L2XLuYNLhly9/mDCcT6+JXh99JvcaydaDSetez3GQB1wY8MKCL1bXC+zW1YhPvDrrOGvWNPzVRSzPIGCrg4aH+Mb+DJxfBHjvgfPkgmux5GYNN8K3/TQXm33r+Grm7PDFA6f8rMXJWKxqgJ8H7b/5zW/WZ3NYYmQnP2M6ta0eejg9zMRtf97Elx2J8+RBD4PgwZZP18laOPyY+2Ndi382+vZFDoSdMdvs69mqD/44hbscT33xcV+0RnDV+Hlv2Lmik595dbNezuzpCT7xx8FZYIuXvXdmnCVzuGzdP+wnXzprfPH2rIngScS01jVTDtWEPx08NjBwKye+sOyBPSl32DD4aPSw2JcfXsW1RvY++97LwuTPDqY5HOPiGNfYZYunXKYUTx3srfuX+ornX5Z/7nOfO3nwwQeXizhXkSs/aPchQxJIapJIIloy6fWK1Lp5BTG+jPBtQ9k37kKa2GIploPAzpyw6WDEpzV8tGkTRznyY0vXwWSr7b5izbqYswnD/Cxh1yHpYmMLL66N9WwdsPLhT6/hRujY0NVnV2/NfsLj52Jy0w2LX3vOp9xXgNMfbK3Js7pMbnFhdxkphj7Jt7X04tbS1asjUSPn15slFxAMNygP2fv7YmdhhHVeP/dA3mJ5QXcG/Uas/2jUWvX1oF1d+crNBe5M07lZuWnhyAc3ojevFuqtEX7E3PmHq5l3nuTd9dObEn7dQOGqjxd3/1mJGw5/+niYh70CHn7EC7619khvTZ/E3dyauR4uCQOOmH7p8/TTT5/8+c9/PnnxxRdv2/GrfhN/gVzyR/Ezj3tz67Vi6MWOJ464a3Tm1Wr3CfeV6uVjv50HjeDkPHQdyKV7aTnEjz8dezga/2rfixYbe6GV+0V1E4MNH/ceArua5a+nw6WxGK4NejrXizkcc6KvLcX4Ed5QrWH2Yezrzflr6pCYVz/+1UHtvJnS51dN9eUFi48c7Ie/7XrT32j/2c9+dvLoo4+uB+1iJfEyx33O8aoe6WfeYehbZ59P651FOfPXd6asTak+1aw1dnTpxSNixZOOXWv51mcrRjZx5VdjX43SFSN7fQ1WeHt9Jh+YGj/6ZOLQZ1e9rJN8zeMThrPTteR6cG3FiZ81fRJnffGtxasYk7/1aRv+njM7a3zlkI8+fb5sSfH0u9A5L978dj2JKScfKuQrTnXjP+uDR23Hbj55sfWaLKbr0Tfae6Ovrn2wEJtfueDAV+zscDKfdnsdis0/LLx2fWtidP1UN7VQB/Fw9UHdhyr3evbsanBq5V+PK7Ee92Lo6cuTnTzZTX3Y7Ph4T+lBof/Y3JieX7GKp09mzHR7L694GmsELv8ku+ZxNcdd7aY/bpMfewLT/ac4+UyuxrMtx1Nf45lz9UknTph6c03MPtfAJvT8+WrG6esnhjGbejb8nGU1aB53a43jpT8m03Zfz5eNZi4fNRcbH7WOBy7laI2Y801mDnzJtI139mf1uGjTPh2fYqpb19GMbcye4J29sYd5N/mfobp+vvrVr64vnODrvTFpT9WzfXRW1Fhz/4oje/cstc4vGz7sYLQ3akvX+0d+Ype3+433X3zEKa519ydzzVyvhvTxCcdc7dqH6ogvXXHZTR/jmrXZ+Ikpnjw0Onnjaxy+cY1ddVSbHr5kL0bj/PHlw7d7sDgasd75NodhrT2SgzGuxB75fNqXrejCnvhwYNPpzWERvddKcbV4syP18UgnN7FaN8er808v1/pqUQ6dN2fI2Zh1qLZs7Q1+sGFo8vB5lEy+xVgLhx/mxWcXllj04rKxRsS1j14T+9Kd5wE+q/ewV/2rkzVYcqjecAk9znKg46PnT8TVcGKjsednjBM+/PA0VwfNL1fEY++127+Ex9lncRKHGR9H8RJxcIGriUmnkWKnNxcTDr94izUxxOCDt7+r/utf//r/PGhn23UjjjmpHtbo4Ht/Qjrn9OJp8apecacn+GqdwWoya6A+cqELdzlvPyZHmGyr0/Q1ZgvX+YYt/oxp3TxexrXq6gyGYyyWuSY/zZh9+ZsXx1h8PEjPk/pFQz7lrI9TuK5jHDt7sKx1jq1p2cNUG3vlnBSDHyz7ad3DfuvG5R0PeHQw2fOVK1321szjbEyK4/rgAysOy+Dwgw5OWBOnmtLJWUvEtE5g9hpGL54vvH3xi1985f5GuwsewW4OFS7C5/UV8Dybs9b4KoDNIQ6gAnhQ2GbRs9MUrUOqr4jW2Gc319pQcTQydeY2X84EptYhouPX5raWPe7iWY8P34SebTVli2cxYZuTqY8jfbbh6q3XzLUOo5tqMe2pCwS3XljCzie86hefYluPN19xCLuwlmL7cWydrv0p/nkYG+TtaXsJq3/23ZsFOXsj42+NlVv7dRvgioN4+9Mrr371q9eZcN14w60eboY1D/jdJMVOypFte2Mdrkbiaq/k13nia02Tb2cm39bp3eBxmhjebKiJa8QbES/uaqZehH/5wdfaY+uN40lHin9r9r8/p13YcZaDMU4+XHjI7ptw/nfzma8asSPtnXXYMDUSh3r46fllt5TX+CFmcduDMPc8i6vPZg+Zz1nru/15c7zUyH4ldN642ev9vLARv5z4evGZbwr4uF/o2eHpvuEMxFlfK259+2Bd/flm2xpbOjFaY1u8XiytObea+OwvkmLIDZ45gb+fB/i75MM2odMIn9aqnxoa03s9MC8ue7ytqYW1l+M/Q/35z39+8thjj91+0D55lke1KRe8qqk1+nLjUw7Tv5rVt1a9zZ09ddCKRc8HJltn1lpxrZt3lun3xmaK9WMSF+vyiWvx+KQzZjfndLtY19Rr2sIUj4jV+uQ27a1Pu7kGo/XOu3XNNeD8ED2M8slHn1jTCH1xdp9s8tNnO+sydWzkrGVjfeY8x2HirLGNX3bOivd97kXOD1ED3+jxIcC5qG5r8fCjmLAmF+vWtDlmA1sc/2Tb66TXQB8M1ch9z2u4+hqLGwac7oF05VLN5VFty4mPsZjlZD7X2STFguM+oSZ05e4htrj0Xsf9wlwO5iTsWdsw4ywHwgb38rCuwbBWPdmGYS29Mb16eb/jT8f4gG7OXw3zgyGWFj6d2NnQk+aTQ35sjDv/bNnR5z/9rGviTIFR3unzlx8MYs8at853tnDiHV59fubG8O2XPa2WxppY4YlBR2Dz1dM3p+MTLr5hstHg8Ukm92xag0PqixNOdmf1xeHvnInduD3LpjjWtXjJp1rscdnFeeLEJ6xszOGZZ0+X0BM167NDPjgYs9G3L+bGHtbdd99960/HvPnNb1524V6lj4/3wn753p9Q7BdW9rT4csDVvaF9n3subg9E4m6dvR53ryPube0HOw22PdOqB7zytT5rwMc57ks9xmrIl+BnrnWOpz8btuxgazDjWd3ZGU+Jk5iaeTYwiB6+3hp8ffel9peNmOzKMaxqnL91/mTGpfd5rzNvXvwwxNDUgK198vrClohBb2/YEGvGcAmuk7fa89HCYVfOcaj+Ymjw2Fd/HI3pihlO/GHwlb8xO2P7Ky/ifTsbc6+pmrOHB+mhN5s49r4GHqHPnp2Gm+dCevVQI4IbPxx8pr3nnnvWa2Jnko1nAD5bVjd8etCOL04wa+LB1cuPjTU5iYVbWHHGzXnAj/BP2Ivn9dovz3Bnx96ft/Eaji98frC1iSFOsaqNno1mXGx2fX6CY965ZNdnvXnO6LPh6/XcN9r/+te/rjrIRT3iYKzBF5e/NQ0fuRFYvXdbisMPe8WHrbqS8jDHw5mAmajNnBfT/uBB5npjMazDZ0vslXnxy9sav2qfLz0ppnFrsHHmhyNsYzn2XIhtElfx2WviEWvF1yfeT3WfYNu9HB8++MutOHTqVw3Zs+0cs9Ng4WmvYLgOxCEwrHcuzbvPiCVnurD4GIvT+/f40RM5GfOv0eEnjpokfK1pxvxw1Iqr17LjL2fnOj1fNSZhWVML+XnQ7l+RfepTn1o21q4iV/5Gu78zLbjmBQDhLoKrBL6qreLMAkveYe0DUGuKRPQdTkWcm8A3cXjYWU/akLDo+ShuhyHbcNOHfeyAWWMPVw+PXb4wjdvEciruzou+Fh/+Dlk48Gtsy8n+uTD17Nk41PZTXDpztTHn2+E1Tmb8xuzFMZ+55bP35ZV/6/RqBq+82FxVylnN/ea6F/XydOPwZxTE0NTiusIfZy+W73jHO9Y3WTpf6umacSPqGvKbaw/66fCMQzXRV8/GuLFTi3T6pLq3d61VX/kZW3cDhe8G5kXem3bc+KiXb/D5j1x70aWTnzbzEtsaXp0nusmxPOgJe7op5QNHvaz7UO6F3Dfa//3vf68b5J5TOPyIdU38OZ8cqmF1yXY5XONHMbmGOWGK3Zq5cZx32+bH1lu7Si+efUvw9aCdzpnY+dO7P+r5GvfmAwZezoo1Z8EcjjY5l69+F2eAvvvNMb9wO1fm+TkjhM66NjH2eHMuX9w1eFqxukayP4ZZveZaOn7lbVwMbxY0a+qp5SOmfODJw7XpQftXvvKVk4997GNglt8aXPOHWL/4xS9OvvSlL60382JWt31/4lXc1tPPvKvjTouPGLuE4Wyph3PlDNFXe+P2hZ05vJ3HtDuLBxxru9Dx1+RT2+3Om+cfRhxnffhbj0M25bLj81WH+NijbOEQa/Res/XFaz/ZpD9WP3hxZ2suZvjF02tq2Br7KfTZ4WHOnk5sjZTPjtM+sI8zW3zyD985cV568w/LdeN1vIe3bOk7U3EVR7POR6zqnE/cvE/wkN016EMuLPc7D/T75/x8NW/aNXgENj1RBzJzx0Fe+kRcuupmLV82+MHQN6Znk10fRHBkC8M9Bn/vSdRMjO491ss3vrCN+RM2cU+3Fg4/ds5hxTE7ft5j+Y8bNe8z1Aq2nn3C1lxO8IzTmcc5XTWjT/KxX+FPbuzYi6EPK5tw9Pw1NjO+cS0O5jCLz58f/85bONaS8i0HOPbIGWzP2Fq3RmA6765/10N6azMWnxobXLVi4dPeW5841nArH/MpnTv+xtbFZn9M0s/zFba4crIWn4kRtzjhP69v+t0GdvgTq3rQFYtv9vRhGZc3P7WzN8Zs4hBO/IvrM6oH7Tf1n6F60P61r33t5Pnnn0dtvY6Lpf7tRxy9tpK40bNh72FJ79/YWGOvl681zX6Wv3zNnTt7Bcv51KoDfX7Vgl3vHfU+T8DEQx3TiW+etAd6GGLw0YyJMSxxNWP22bEpb+PWjNtPffbW2etrctbg08nLnA+hwy/7pTz8wFFO1Y++2sAK0zpMfc28PQgbT5g+L7YH7MPiM7ngJxevC2x6XsMu7jjxqRbmcSieHKp9GJN7/njaW+L1uLqKbY9dN+LCgOfzh9cl/Jwh68RDb+e8fPjAMMeNVGsxCBtjceTM3usMXTx8nvWvy/1ZVGPxcMHV50yvUWzFITiay1W9qxkOjePm9Z90tvHDAxYu7MSjU6fyMNbEUQsP1T0n6HzB9dwCX9iaHNUrKZY5XPP2Jxv4pLqllyNO+KkFPza46qt7furg3qG2fiHgP0P9+9//vnLY8fmIC18vBnwNz2qhRnRyy85YbPFcB3zjYKwRGPStL+Xpj/Sws6dLjIsXJl5q4rW3feKPS3umr/En4er3Bjt/9u2dGjv78NVg+sFk69pjh5OYsOjp9Dg6N2o03/e1r2z4WO89qliNw8RDLGeArn2H37VJ3/5nJw7fzlD3LDmxn1hywoUtH77widyN8RW7B/bw4uDcx6saWONrrhevehZfn7DBQQ3ocam+bFoTp9j+ZfkTTzxx8vDDDy8YNleRKz9o97fmFNgm2VTFQOiqgS8iqRgk3DZRLGvmNt8/q3FBtlnhsulwGFtXfNzNw1XgXkR2jA4oW/Hik968cRvp4MDvxkFvnm9cyqcDQZ/dMr7gx7QtFy7idRAbm2vm5Wjf3MxdNK3hrMEOw8HmI4a1PRYd3OtKeasjHK2xNWPx6ff4V4mJNywv7M6LfYcPVy280BZfnOsKDOfJN9gfeOCBk7e85S3rZuIFyZ+Jcc20586iFyv63hCIG1d5Oyc1/HG2rol1lrCTY3sXbjnOHq7ryIdx5yF+zoBvs/sGQDWb10s3SfbiiaV3b5jXWWut40JXXnJJh4s5TPvC7qXDf/r0hz/8Yf2HKx5wzDosx3N+8K/lZ07Esdfa1J0Dd+2lyUFcDZ/2obzpSVzNz9vnyxISH6aaJ3TukfZFjL0O9rp7aL50CR/75Bw48/O66Z7CVhy25ZY/fbHZw5q5tjf1zlRnjS8pph7GRcIvPsWvx6VYk8ed7gH8RD1dS0Qte71gg78XdhzE90bk5fhG+y9/+cuTL3/5y+thYXXfax9fffz3/Zs2zkfXd/bW5SHGWb58nB25qg3f9qAz130C3sSCDXfawTPXpqgznGM84msNZvU/Zhvm9DEWTx+n83zDOKuPh1wnF9hasY3ZdL9li0d28Lte1BjuWbzoi1XtzKeoX3lO/RwXG0d7Qdo/unIyLg99uPznWWTf3sWvM+P6iRM7r11qAUs+7HxYKp/itO5aY981x8eaePD8/yT+VZqHZP4+Kn+v1f4uqd7rE6Fn77UdHqkOMPFkQ1dN8RYHR2vs9I1hsGk9f3HgsIdlrjcnPUz33o4uvdd3v0jvA7rrzVi+xYRF+IhhTSPmhG265vEs1jI8/LCPuGn8Pcjw8MQ32tWcwJr8l/LwQxy5k/jo0+thasVnD48uH3HkZZ7OOoERXjr+Wmvs5OG1B0/6bMIwL3ZjeJq5uGHozY8JDLkQfu6H9tMZdlbgzTzw8SUN597e8sGPjby1OMDWrFcvcdjCwWueR2tTsuuMtBZf6+JbVytxxZrCpsZOwykdW1w0uoukXMRNGocRDj6kWOJWL7ZzPSz4bPi03prXcPUi9cVkW5342kN/OuamHrT3n6G+8MILi5eHkr3fth+a+73ru/drnT9cNRzdq+jVgvDrnmodZtdP+asHP+eOzpyPM6omMNSheMZwiLhqys79R43CsOa8a7jjBCtu6iiWODDM55o4nXlja2y09nH29GIXBzY/enHVLh70rrE+L8Oh65yv5A4/worXzKk8xens69UJttcSeObq2/2bTixnCB5/9WPPBob1We/yrL7y4cMXDzmybz3+1uMOk6062Cv+9pmPuOWPHx1M/mL5jA2nz9Rs2cCSAxEfrtdYr03WiiWuM+4/zDZO5jidXGfDwRkSR0zfuG5f+Ph/0jw087rusy17D43Z+Ta713D2dPal3MQ2Fss6vynWnT/r7sXqkW01YsMv32rMTm319tnn7e7dbDw7SK9m8NXYOAycOh/xckZ6j4LPlLiplbq3t85eeWSPb/tLp0bq5T2Qz+NPPfXU+jNW5YBLNdp5qSFO4uCOszOTyMtcPNefPRADp5kD/uzELC48+OqssSHG1QlGer3ccCRsNPPOojF/59VaHMTBSY9H+wqTfWINBn3nwFrXgTXj+LEzz0cvv+5FxRcPx2rgeRMu7suTZ/nS4aue8XDGrcOy7hfCrnM45t1T8J11Dsc+ssOXHy7VSgxr8PUwq2H58+Erfnk3Z+s+g6N4sHttEBee2nStwygX+PzLQ/y4WCN8NfrqKzaRA/7lr/av+Dfa3aQQkGwfLCQkyZsQBdcUTsKaOSmGNYVXAC+8Hbjis7dOz4Z9xa5no9DsFFqRi6MvRgcnTD7yzX/yFB+eNXHY8Sd08Q/LXC3ZwtGmZJ+OX4JHmPzZZg+zll7fPuHk8NpDjS1dDTadw9bBL24xzLPXX1fkoFVH+Goop3DL1bx8rhqPnxjOhGbPzcVx0++mw47uqlIe/F38/r75u9/97tvfaJ8P2rsJ2YN+Kyy+vMu5ix4ufftw2Rrwk2d15TdrKr90bNxkvfFgE7/03gh1M+pmh49ri95ZkbeYxDmDY9/KB1b7yIatuZawqQbOZW/ovOn605/+tH5r7p7Dly3s8MPY+/DxI/w0QlcNxDW/zt4vsEv+iLterOomvvlF+VwyzDITY8rM3ZrW2VIn+0jHDi86+2zP2WnVkx0bPtnRte4MzPsf23JlpyX0coc1629cTdonmCR9GNatwTpP5CaPuMU53nAnBtw5Pw/7rDUx4cPy5kKTq2tHg4+H2K49c43d61//+hv/G+2+0e5b8u494rn/nVU7vPAn+J0n1ZK9MZn7QrfX0l44X+5V8x4nFnvr3cemr3Gci6vGmvhxZmcddns8c7BOz2Zy5Y8D3S5si2G9GPSaOV892Xs6drNfk/GDvzNif8TAn05L4KpBH46MSdjWYeCqhnB2XtO29fBnz67aGp+X0+RgzM8+8isH/nhV+/BwaF+LPzmG57qBGSf+1UGtYMD3obQY7LvmrLHxGtz5x02s/D0E8Isu16BfQlvzjTcPjHvQDocelgcLXrfkIBZO8Shv/PmIofFlxyeebOjKz5gdjO4P7ZV4YoTvtdp9gz48tj0Ic61pbHpvHA8YYtWqcRzh1XAkcqHT8yPZx1eNcfDh3LfZ/as0uuytFXMBHH60BpvAkiehE6MaGMe1844Pe3PNuDgL5PRHcdSAsCuf8uCPr56unI3Z2idirMUrbHZ04ciFjoRnPX96Y/vkfZkHKp2n6qDHwz3ch2f7ax4uvhq7cK3X6LKNmxrQs4k7LsS82Lc0/3ufYY/frHd5hcVfHI2whScmnXE2xtkVSx9fdsaauOmn7bExP61Y+TePq9jsyI5dbNdPZ6b9hwNDr4UzH7S/6U1vuo19jON5urj4RZVv13nQjo8HhJ1N+4cPbppxeTkPXgdc9+rvXlLucPjmYw7TvVEvF/E1uh6084HnjDqv/GHC1/h1z7LGvnuQdXj46a27jsOJezVhN9f4wC8HccqpPWk9fDGM41i94iCWsZw0OPJ3jfmMJnfrcLu+OhP04ejLR19cftWlGsOeD8Dg+uxjnS2u6osr7vYQD3zaGza16iUWDFx6/TeHAzce7OHGHw5fogZ8NX7i4Vce5uwJDM21wbb6lEN7x5YfO69XWnHcx9j7zOdfbMQrn3iZT2Enpv2q3my95sir1wd/ytXruW+1uy75qD07v7Dy+ZJ/+y03NdNmnvwIPRFfvubdr8U17z0BH40tkad1OjGJ+71vrldjMV1ruNKroRp5IK3nr5WjntDJwTkxFrO4y+DwQ9zqLn57q2erfuHCIPh4luGeo3kI/pe//GX9v2ldL3EoXz0dDDmrR7WyL0Q8e1fLVw7eV3UPKYfs8RYXdvvTeStv+HKxno4/TnHjo9Hj1HnRx1tdjAksnOjgTN5iaaQYxmzFgJG9dVJfXnjFka0845reNSl3HF1DsLsnxLMeH/HjrLcPxTZ3xpxde8O2XrziwMvX3qgDbq7lasWPjZjs9dW3PZITTL7lbkxP2OMnhvG07+ywx01cjZ14Gv5iia3X6NlrRD9rSzfjy0EsPP2i/Bvf+MbJJz/5SWYLaw0u+ePK32j3oB0BF7CbkmJI8CalYrQBsCtaaw6dorjxKLKi06WncxDbSFgdNBgVnT7/GY+NOTubFTadtWTO2c45u3hnXx/usQMwbVqX64wbv2LYA7bNHRAv1uYdNtwat4f2UV3wqbGDx8ZY7uGwSehIuaS/ag9HC7vxnNPhQoqnz1cvt3zO4tD5KC/26ibXfOvPwiimdTHN7Y+bFPFi6c/G9M/TxPrPf/6zPmR6keomIKY9cjOhY9fNBiZe4bcH1cA60dPpu9GY49ONqD0Pb847M24mePsPW11T9GK6cfswB9sLuyzD/JMAAEAASURBVBu6hxdurL3Yw6tm+sY4NcYnnov44cc+LxfrXsT9czSxPdTwAd03CXtxCDv8MPee3ZR9Hl9ciFxebsFBq27G4sflTuKHpd9l4lu3v3T52HM82itjNppxzTx8Ps6Le6319HDlp7Fxvo3ZwNfYdt/Ss8kuf74aiX89vOIZd/73vNlo/PRiZ1su4UzsxjveVefFFNc9Qq3Er67GRA5a9XG9+d/OH3300ZOHHnpo2eB0J4KLB+2+0e4NvNjuQ3qxj4k9u2wt4JeXcX7xtpeNxeo89Pptzj8Mc/emOMQPtkYaTx86seRkzD9s88kh/7ia2wO+2U2s+BzjQsfPOS5XGOqrh03iU+z0bPiH4X4Ha/IJh40YvbEtRtjs+MLGOezJq7j1uLWeTq+2+nRxhJm0ni19e5JfNtbSlaue1BvDDyNe8lOP/PVs4mRdLVxnvulj3XXnm2J+Ae4BunsWDJhe43zQFqvXX/7svd/1C2ivd/BdMx62e11S2zjC0fjRVxdj75NdY0TMYhgTtnFfitMf9OFS2WdY3i/A894NH1yssZezXPHtnMJ2juLQPYgtLl7PjcWC4f2wD11e69VJbc173VdPmHo5qPcU+gQ3H8bFNsZXDsXSywP/zips+oQ+/umrF75aPvHCgZ6vPSlemHrr9GKXA3/jcuCr3r1H45OvmqlVwofv5GMcF3F6v02n2SNNHEJH7At8rwHW1RmWOnrP6MyKZc6XLV86nMSaNZ05sbOnmjFcdbDXfMVSB3qNZBNPePwJDM2a/HBin34ZDTvz8GGIbZ8IP2tzv+BMruzMcWA7pTzDmWvGccKVDXux4Fij07INbylOf7BzDdmjMOLMJIx8XTv+JfiPf/zj9a9jwp+YlxmLSzxo/9a3vrX+Q2Fz15czofZ42ENNjdovY3x7mEKPH3v7pQYJftXEmG3r7F2LrmFjnJwXZwd++zLvC/EWr5rAbQxHDL6TO7/pa831UBzXBRz+mjNULuLzxZveWDwx6MoPVjGtwyPsux5wg9t9yho7GNnrs8NFHP5du+Z4qF0intj8whbHvaZvg/NxHeMpblLOxYLfup5eLBzT46iJOxtdNvCrT7Fgy6OY7AmfMLPVp5u4xnKFReTknuU8+tyJjxzVjK3Pei8d/iWzeT7it29skjnGyd7zYe+6EMNrGb0/fexb7f0pODa4eF3qOsLFa7wzTuDzVQMiBptZM3p7Ba/4/OwtHVucqoF5ufCFVxyv3Rqc+FUbftbk5H2MsTX+6ikGXOfJOdLDZWPNuMYHHxh8ce11VhxzNq65cL2G+wXfiy++ePvzuH+lpl6eB4QtJ2P89c07W3DtLWw2aldjL56Gg/3hR/jNFq89jjlpL1qXFzGHoy5yd91p5uKLq8/euDkd/7nfsOjjtvuF2Z5PO7btI25xNuYXd3P5Wlc79bZ/sPT22vsCAjNfuZQvX2t0tfJwHaoFnHmG4Dj71viyF8c1M3FxS4y1eMSFPezJKb5ywo/YC/set/K2PwQuHV56+BpsPvyL0Rq/apUt3yRMNmHigJPPAa/o32jvQTsCiu1iNkb8pkWykq4o+jZOb00RNLYOm2YzuoA6iDbRBriRtFk2BY55GDMPYzGKw5awt9Y63+zo2Gk4daim3lqH3MFLwqdLXy+G9eLygU8nhj2ASfjI04WAV4ePPWnOx4E0j5/1YsAxLrfs2BD6yfmW9pZ/Y3026WBeVWCUL/+40GvleVnsfPDgU53jZb21dPXVg42a673x9vdcnQ0v6u973/vWiyFczZtjzQtSNwG+9qBc4DunzixO7Q188+JWd3pjZ4OwZ6dO6dbC4YcYcTF2LegJHyK239zhTyenHnK7zvHqQ7oXBnY9hMCD4KQlxvi0d+aw94aPZl1NvJj//ve/Xw9AevHXqxnfcIpzrL+MDb/L2LFJxL8pCfemMOFV68mxettzNp2h6smWvrXuaeZxM4btjPOnh+csOBdh7nHFsLfO347Bv3X7nl3Y1vntAmdK9nFtLU7sw6GDS47VqusEVnHmmN8eh+4sEU891UlzHREY5W9c84bGtejBlm/efPaznz158MEHb/uswTV/yMefjvGNdr/0E1/rXnOVvM6iIIa6yptMzHneWmOvVSfnqzdQ9Go39wletsWAZcyXrT0sNxj5hENH6hvHG9Zcg9X5sTfWzNnlA4NOjvMs0zvXSVyKUW+dv8YGTu+vrNFpjYuFG9t848OWjqhhnMtlYlnTcCl+8fiqK2FDDyP/fPOvxrDcF+ylMXH2u3/kRx9/dtnCN54xcaOb+6y26u39qA8J7HHwIc6HUeJvnPqllW+0GfOXlzx8GPdtNn6uT9ef2L5BxsdYY+sBiDji0VVfvuUpF43w8QEeR5zELXa5ZdcHHFikfTDXxCw+W83DAB9+vTay4aPGHiTgI0dxcOibYdbbUzZex33IMpaT/NWNvpyMeyBfPcSDE8/q0Tq+fmGutr12s80PL3WypqblUF3Kp73Vq2einpp46muND9HDmVjp8sdF/IkLL47s3Bddg1p5ikPfezV689Zh2hv5sNXEUH84uFYr9YWTTkyc1ZXeGbZfdHDVyV72EIgeZzbEGKZ4Gtxjwi8f6+b8NLHbQz3Rl4uxWorFz1zu1UXcatFatedjPCXcdPnAIGLgpCfFNq7uYYbPN392CQw2rc9YxlOKE7a1dK6R6kQPTx4wNHHUVywPxfzT8x/+8Ifrgfseh/9lJB6+dPLd7353PewSx1nwPl3vjHSPYW8vxMPVWcLFPRlfOeDXfrUP5QEbljlcYtz1CqN84RMxy53OHIZzpTd3Ju2b9eoGv3j0cNmGB5vePShc9bUeD9wIXbHgtL4WDz/E7rqQP1tY4scHFp01GNUAz8nLGAZfmGqjT4+rNa1r1xrhZy/g45Sv/TAm+IhZ/c3jDhOWGBquxWLnXlNN+NBphK1WLXGoVmyMSXp9WMXFv/zY4sIOd/nEjT2Jp7F19ZW/Vk3Cdo/zuuGMsiPxj1+5WsNNEx+vBK4H63fffffKV++1ja364KG23gO4P7tvw/DemK5zUX3jqS++Pm58CQ5iwDfOFh4sMjlb52vv+fglf+8zXbfW6Pmw9T7Fa3IP22G6tvXysQdyse98e60Sd3KVhxrDY8cPB3p2uOerXv6lgW+w/+tf/1qv7Wy8/+CDp9h0/HE1jzPexYcrrofF7DvznVn+ahWP5Xj6g46/fq8LnZY442zFYJuYE+vxVisx1U3DnY8GE39YWro4ZKe3B2zYi1Ozphb5ih8vHMQmfMvDOh/N2Jp7ae9TxYBHnA85xJNeDmprzE+98Qu39138nR+4cIiz4DWFvzo5B+LDtE/2HU414GOcrX7ysz45wU34OQ982HTWjWEQvcaGPcHXGCc9e7WqFvm3H2zKoTzVjE989WolFo56/7LVg/ZPf/rTKy7cq8i1vtEueIfQzckNCdmXWyTcjcQGE/PEQVUgOoVwMNzEu1nzwbOCtikKz0ffgQ6TrbYXto1r48Vml4hVjdp4MbQOCX2NDpbeAdCM2dMT83DFJ3jJqYMVngvIi0UXrz1jB0Mz1qrjAjv9YV1MMdjsuVsvPn8tnb68w2SbPX7sd8xsX+4eD/sUH/nFlw4vHNtza7uoTY0tPy96999//7qROW8eWJM+3PrGXL8ldwODWx1mLdRPI9UevnjV2pp5Z0lPunGsyRk/ym/uGVN5EC/wriH533P4n9mN8bCOvzc/evHdmP1Hqd7IuM5g8rNGxHINVsvytWYMUzP2QcEvhuTqt+VeyH2gUCvrJFvjvR50U6zD4qvNGk87Nlq1nmuNYdVm/Vq/k749FP+VkK5Tsfaz3TmqZpNPfvayPWbnzKlN9z/jzu/0r/58qjVbWOqPS2+ysm2/+VxH5p7BEIfseR/DlkO54JM/HSmHY75TV91cR94UzNcnPORYvmKYu2bcQ1xfPWj/wAc+sGCznTGuMsbnV7/61cnXv/719cBGPM11Jqfr1nrnUP3US56X4c3WGexMVH9z58vaWTjiWe/edVEeXff8NEIHoz0uJ+s4wDx2dtjz1aula6IPOTsP/C9bD7696cdhnhdx7Fd8rE/e5SSfzn354NC+i1Gj55d9PNXemQyzPWBX3tUgX7HUzN8298tYrw9kfkDAzdyHjPacztnHCUdxvb90b4BNx5aPxs7r0T//+c+Tv/3tb+uDoHUxYXldsR/+gzHXkpp5b6TBhO3sEzn4IOIBOwwPn+H0fldsY3jG1SPOfcMIFp11TQ5d9+0RvXF2ML1XwC9cdYfpFwPVOhw29gFGY3MffmB5IEVfrcQh8OXb9c4fpvcvviggjn3vrOnlDFe9zElxxeis06ur2ojjm27+TIz9MY9LD+3lZ//w7pwbq7t7nxiks1Bsfs6T/XdWcJCDcfUsdw8i1MK63KzrYeIkHjw5EnbqR/AVU2MXtrk884flnMmBnffdvU+C5cOq93/+5BA/Ohjtd3nyNRaX4KUWcpWPs6qW8DqzOLHjw4bo5zldyu2HOPwIe+Pp33lLxw4/ueIu965FevPEnGQ317LRh539XJtjXKs9H7l2xsS4yH9iNQ4PN2MC8yIssV3P7Vl4ex9PdXSWPWj/0Y9+dGMP2j2098UdPPozDj34kINmr5L2G3+cSL84w1Urd7bsXAvOhbqoM2Fn3jWyn4dsrRsTeM5xf36rc6HPxh5occNFLPHp7ZPry5yNdf7ix9ta94X2SGz+sBI4+PF1ncTBOsxa9vXFURsNrt59x+uYMRtcNZ9nXKc44Ox6d58Qs73BCxd2eFV7uViDKyfXPl4kfLzFq2cvjl7b8+6eUB7x0tPhpMGgI2KTvrRnXDx2nRG5tyYPrRzXwuFH9eLXmjFfPQ7liKua8BEDnzCN5WePOw9zH63Bguu1821ve9v6Rmq1dA/22uS6EQMX9bU/5vzp+Du3/NpP+rjjgRu7WdM4yxuv1uDGTZ4wYbGXCzscXMd94x6+b+FbZ++sWMeTyM8eWe+LfmxwKhY767DUmV583NR0xu9ssXGu2bMx95rmPdbTTz+9/oU+Djjzgde5UBeYfDRjWJ1pce2BnojBRy2qiTnO4bCrZuJYF7v6FasYs+Zs1IS/8RQ4s1Zw2Gm7sMW15lzQeT2Gq+VHjztsY5KNsTUiX/UlYu8iFlutuDDN+akFka9zoOHAlshbg23/vWeyJq73c7jbC+I9stcqPNnbX7/w6t6z86vGy/n0Bxvc5GzMBkeY075xttzLyxi/WUM6ONV3cqlGbOb1WG2cid4b0rl+5OT8wamOfNlquODc/cAXzP3pmE984hPC/J9cluKCH9d60C5ZJJC2Ub1hVLxZgAtiX7jcZlUw2FqbNA8wMAVSLJtHurF2w8g/XDY2lPBRXAJffjaweMZ06dnTwWpz9AnOsNkTc7bFrobWxKuZ87HOBydxCC5087DxM88+7g6TF5JyhumCK860Z5NYNxdTK4d0+WevpyMzVrmKQ28ODw855MOvmlibems3LeWlx0s8HLuwZw7GBK9dH2e+zoIP5G9/+9vXjcyeedBuzT6I4QOS/XDjcoGXq1qcJTjxjTMfmIROXLz0JPs1Ofyg518senMx6eQwfa17yNB59qdvXDtwxfVC64OzD438vAnxIMV/LOOBANyuIbzgm+uJ2In47OMC2wdUeXnI/txzz93+p2n84GXbPDw+cw039mTmXuzZs9NghTfXjfEXQ88m3rtdczbFT3dWX3w871Qm//PitzbtxU7f2Ho25a+27SnOzjKd+25+bOkIf3ZhG2vtl5pqdM5Yen7VOQ4L8Ao/8Cgu7MaTT3DW4lG87LORU2fANXEMh23++fFxTflg680jXqTrKrtqwEbzQMqbbN9ov+kH7d40uBepsdp4Q9HrQ3zupK+ecod/Vq2ss7WubmrjfKlXa807U3ixzb45ezbZ5W8dPqGTc3FgtEYnLv84zTX+8TROissftjp687bfj+MM25gYk31eHDgaO3WcZ6a944uDtot88Jr4xrD4i6PXpk0crfP3OlAca/TEWrGrQxzEvvfee9cbeP789F0Dxq6J+SAUng8L5QvLm2IfCoi4cL328DP3uuoD4B//+Mf1L6G87/MLYOemvwfug6tfCKslvDDryw2uD6xy8aHEg1q1qvb8q131cu/DxWugmERfXeDI2bmi4yc/4+zdR71XsL/0nWOYvSbTyV1jk7QHcHu4IyYRt4fWauVs9gsGuYjPVn3uuuuuFZeN+wG7zob3L/hZwz3+YsDBGz4bPub+VZqHge4zaladvFfqXxWwxb99kYP7nkYPsyYWHRyc7ZUetprYd2tqgx+dc2BvblrmGTD2pQAfWPF3Hp0772nsq/zp/PnAHjDQ++zUfuNXTfEvH9y7Hvj2hQT1Ym//2Grmif2DjY+mhvpiqGNNPOvm1rXOX+csDHYENg7W+ZFirMnhBxvnJR5w4VxVxJAnTmHoxZPnWZhsjgn78oLROBx+xaFLL0/Xk3Nm3dm19/Qw0lUje0LvLPeNdp8LwjvG7TwdfOKseWjv26XEmXC+XHv4hF/PBg81dM9VR3uCl+uHXX7s5IO7a0m+3QPg4CA/+0q61uFl52xr5rDguwf1Z7zYWs8HJk74sS9P4/yzrc4wcShHepxdK92LYZJ81uTww31NfL6978mufGC3j61VG3qx1JJOr45qBVMt+bvuxaLj4zkJXbH50ruO2OnlW93VAa7XgPYWF9hae6aHw76axSs+8mJXHemrOx/CBo55eyFPevETNkQMdq4HufODLw9NnqRYbNjzg0n42KdqBFsrR7Vlw56OHXtNnfCzLrfqAJedWF5n3vnOd64/2WQOz33Ug3b3Y6//sNXf/uAMGxb8Hng7J/ZOfrBJHPQ4Vw9z4xpb6+Jo5SqGOXu86L0miOMLb3LDwb1Dj5v4XuPxJh6OOiNy81ncXhTL/uKgV3sY7MzFlrO81M86vzjBhoubuHz8oviZZ55Z/1+a1ze+9Dix4SuH9hSGsZiuS/HZOxv482ev4ckWVrWMM33cnIH2IF91Kk/jclRbgtfkR8eX4JP9Uhx+wM83nR6P8hHHnhH7JT7McqKnq+blwEZMa5p81CI+/IytsSNilRe9PdHsH67s+OBjz9iIRydvMYh6upfAUhNxez8Bz5lzn7YGg6/cXPvixAmuVtwFfvojfnrCTi01e1hOp+YrD/Wvtq3HwRq+cOg0Al/Diy/+RI7sxeoc2QO1YYOH679fMMBQR3pntDq3X9bYeNDuy2mv6N9or2iSRtiGSVgxbkoUXIL6igvbvE22bqygRCFtjF6hFF2BtYpujZ9G6MNrLUzzpM2TO30NjnEbxJ5/GOGHUw+HdLCmnbHGpkOYvX7Wg50LiS4bYxeHB6LwNXb0eJHGzemyNa5G2Vmjg5NPPXvChtCrP/vOhXGH13q+xQwb/sspc9/EJHJ0U8GJTqPDLc4zt8mPnT3yYfhd73rXupGJ4Z+auEj7JoCHyN4M6+2XWDBnLSaucbXDQWPbHsczjuwnrnU+ZN8zGHR8cZ+43nzTaf6ZvRs3O/bOUw/E4buBuXH7u+6uMThuVnzjzI4/sV6vbvLT06uLM8veN9p9SO/bH/nhMHOBxV6T054P213C2vXnzeEWh388jvlkm90xm5vUiaeJhyMxrh2LxT67uR4OXVjZmjd2vs3VwR669zkL7YH1zmt12Pmw1Xaha4+rM9/ryOQ848sD9hQ69tnp6Ypt7FyXd+cWRjbGxWSfv15NXEtqxYaU35qMea9bHiT5Fu4jjzxyo386xjfae9COg1y8+XX/mHuCN6mvNkt5wQ8+1WLPM9dszGGz4+PsVGs2xr1hjUO+6kr4Wsufnp8+DHXV5CiGsfV4hqkn7NLB3iU7+nhVS2/mun9bZ9sHUDHZzTMUlh6W2Na9cffaRE8HU8t+1lYeSThidS22Fn41q7fODw4/ZxUHdewNevuSTfjNrVcLY2/ePfiARfT0OBnb19aKbV/CEV/+chcLNnuvMxruXjv8ctb/6eEhlNcia2x7vcXfa7QzrqbV1Wu0fYEvBw/W7zn8Sy4Cpwftap5v1wpuOMvBtY23vIjeGqHHmU4M+nItp/Y6zOrpg7P6VTMYtQV++AFDk0Mf9OQrhtg9tGYP3wMF70vkDgs3/D2UIOrGV74JH+/z7YWal4OxeqgPMcfd3INAH8jtQftnX+aDMPY44CKG2Hj4wEf44RwntnKNsz3qelAj82ps7kGEeHxwTtpvtjiw1czlLSbhQ1ej4zv9jX0gVRtiD3wukg+cPtjR4aqxrZ78SWtyLef2Bw/r4ar5zs1cC0tezZfy8CMfvTjVRTw5imetno0Gq8bOeF43cGDQs4chL5zpjgmbYxI3a8biwdcTuM1xOIaPw1myxzUvZtz3/K3TOSOuKSKuhlcYuKVjy8dZ9rDsBz/4wY19o/173/veep8srmu5X4Sp98y9mrEzdq/CiZ3rwv0FZ42Ui/qy7R5rHQZs+WVvbt/h0bWmr5bW1UwdJjf2zcVVL3HxM2+cHVu4eOg7W+XGXhyc3c/ghc9GI649vubxZicmXHzdA+jY6M2N1cR6seg6E9YmhvuAa797puu9+wQ/trCd4V6PwoNp7H6muT9Wc72GK2lsDlNTQ3wIvmzgEXb5lreeTfNqz4deDtYIfGLN2L243NVTvFo+bOWEF7HOtzjZWTdWbw02X/Y4GPOBlS+8cuLLxhwnv9zx/6W5/sTjZx/8Arh/YQRb/dVYTDbygO+1CJ51fmzFCItt8XCPF05xZYsPX7jlqq507HCl78y4VsSXvy8ruFbhsMXDawuuzgYbcb2/6fUvHYzw44qbuPzxYSs+jvPacC2xc2ateX7hC3DPPvvs+mzOn/BpzE4dYIpLqov4hL0zLzbhw5YdnblccYJDT6qfvn22xjaBI2c69SXwwjXnu5/1iWFdmwKDsIMvF9zY2Q86Y3lNX3Yav/TlSqdu/K1VL701Dc/qV03p6dSxHHFTL/dz8WDg3B6bW3dvtC4ef3tqf+m817WuVmLonTP3sHjA4dsemWukHHYdW2tzfTkcfsij/aILyx6XJ26kPWPTvrPjrzZEz09u+JPOEX01aR1WdXTtwK3hq37m7h/+3OrHP/7xhWntKnKtb7QLLkHikLhBdZAr6lVInGVb0Uuqwiu4OLuwbxMUX4EUXgHjR+cGomfLjhzjbZ2/jerwdlj4d0DwKl6cwlYnzXxK8cvNOhzz6SM+nRuwXu5ah0ZevUDwk4eL3cVBj1d+1vhpHVprCT1eCU5zvbrHlV11o0sf9u6/z/lPP1jayyViqafWvuOqhtox3nzURB3KdfKjcz58c+qBBx5Y32xn7wGDN78eFvP1AckNzcNk1w8du1nviWuMU3b2ZtbPeAoe015+8W3P2cOb+9hNjC1pzt9v8zUv+vRy8LBdHmI5k5qbO8FJ3j2UqXbxFqPm5sZXrwbOqjmuvQmiwzXB/ZjAZ+dFwrfl3JNglX8+xT4LJ7uz+vI4a73rR626hsV8OUXtxCX2rFp0L9hztZ79rG3+7Ksb24lPz4c+YS+u1hh+8dlNzOlHv8vUzfFud9l5+ZZzfvidhc+nNmshRzj8pm9YfOy9+4vePDGetaSHpWUXpuvJa5bryJvsz3zmM+v/fOCTjfF1RKwetHsAVi6uQ617CGzccJ5SrlN31lgsDY46agk9bPFnjatHtmzUXT3cZ+Orvj5MF6OevcbW/UBvzZtI9wb3MnOY6tzDBj5y2+sgDgxrcZo5wHE/d7/xumvs/uM+X63Ek5d6u3fKgS2fXgvYVAtxXGfW+6A+1ycuPZk1rAbwWo/z7Ftnw0cumpzVW33hGs9vIbO1pnkv1Tnp3ONerWBb14h5TR7yd59XD37Zqjm8cMz94qn1eFpXI6+zmg8G8NXf6xXc9o6teLM579aJvLx++RdaMMR3htoDdrjCpjPHp3qXFyx6+ZTTtGmsT/JlDxcvtcXB3Hq568352ys26sFH71x3zq2pmzzsI3EGvY57QAdbzZw1mGrDp9d8sYja7Wc2vZoU24Ntcczth1/M934hzvHWw3cO1RMPYxh+OYBLNRRfs16rHubyIF3vYnWO5VPN2LAPS73Uxrox7rDCo+cPVzMvPr0cxJqfKdTbHojPXiw28PkQuYnhXiFvds6rPSF+QeEbl9byp1dX9VYvmNbgqBOhw6nawsVDbM16/MtxOZ7+sE70MMVjl8+p2erEtm4tXDqtOhnHLVzccNLvQgeLH4FDZ46HuhXP+sQ2J9bZh3FLe+tneFNXXWBVk/ixr4UZbzzjVqz486nuriVfvPFw3Dfj8LuOiEe8P37yySdPnn/++bWnauIac1bkEE+2zlv1PLYmd1Jd2LIz5+vaoItz+13N+IqnbvzYWZM7DDr3ja5lvWvM6+7EhcNHzHzV0riaFkcMrbPAl2TffRN+Un7mcKzhObHpCezG5sZeu+XuNY/wh1kO5T0x6dxXXdP0rnUPtjpj8YMrFy1sa8WojvDS4T25w9TinV15s8UhfrCKO88Ffz7a5GlOwtPDYN++W6fTxOteR0/YTh8Y+LTfxvmIjR9sWMT5lld5GMNjw5a0Jpb3z/fdd9/JW9/61vWlMTje33ld8ktge2rO1j1V/WGVGzzcCD6txwEeW4JHehzSxd8aaY+qm3W+4bApLzawPOz3CwMP0r0GwXCWPF/wOi4H15T3uDjx8SU5+cOFV435xiG+rhe44qmxWvAzF8OX3ujE8kUGfXmpSTWEYR/4ev2beZQnTA0HeeNb7eTO33qcq3F2cIrtrIgpfvjG4VVXWFPgZ09fHdoDtdLoNbZ4Vbew4madnXiwp1R/utb4dc7Vzz1iSrgwqxOc9PEsD701Z8BeWm+tPGE5F/Jia07sd9dVa/IgMMo73Vo4/IgPn/jEl0+SnzUtv+nDJp7H/LLVy0FLh6MzIO/wYbk+nFn1K1/r1UWtnFGxa9YIOz7iENj+r6bHHnvs5IMf/ODSldeaXOLHlR+033P4tk8Xg2QdlG5AkpKkdpFIRivJi+ytX9aHHW76CmaskG2MdWsOfLYVOi58HKRs5gbz1YrRPF95WesAWedPl2RTfGt06lsN1dTNoxtIOfDJ1oGy3kW570O4MI2b859CD3eKebGKHW92xuGEvddx4u3jfMQIf7e5qblY9qAbinjV6lhs9vYtbu2lfOmdCxehN1/+2dZ73vOe9SGxffBi7sMSbDfT9sm8GsIWJ6Gng991Vo302eeTDib7+MLpDOVTjPRsu5mUf3M+3mR7wOJDL70cuoEZe+CgsSW4uHm58cE2jw/86sc2fvTsfHCEaeyF3AcH9xV2x4RdDS4cH2j8eQB6c/49fHF90BOY1m9a5KqRYtTfdKzw1H62cncG5Sh+deJDN+sQjh4Oe804u2zCa65vn/kQ54Rf10B6fTzCMS8m3Z1I2OIUM51+SjbZWcvWeOaOV3z3XNmSbKy7Hzj/6pA9bLHYwdbUh9542pl7EwDDG2Xn+eGHHz5573vfu2JNzktxxR9i+s9QH3/88fVBg7uYuLmO8NJrra3B4Uc5NOdH6M/jxS4buYYz9ROTjbX2xLh7Nl918aHDh4/uvz5k+EDinqX2mvtz59F9yX1abau7Ndia/N1/POzyxtPDgTioifue+wnhj4c+/M6A3n2YrXH4/KYevnsSG7buf2J7jWAnZg90rYvFdu4NzDha18w7g+bZqAXBt/OZvbXOXHx735MPTK29gcGW4AVLLyd54C+WXDS81Yy0/2xa46tVV/jiNYdlrsdBX0x+ndew//vf/66HGvbUmljqqC+OftZAzs6VB+1iWMfPwxH7Yg6jvYPLv5zW4PQHf1w0dTLPFvd5nrnMWoozsXHmW2uPYGrVohrYT2cdDttek+nN7ZHzJg8+aiS/6gOPT3zjBw8XLR284srJOdKz8YCpB4DmsxZixJseH9edsfccmjEOeLn+2kt6MfXa5GJeXXDDpVqzsy4PuNZxsE7SWc8mHVu4BIb4fOlJ1xSdGrgP6a1rYji/7MKxH9VfnBo8OctXXbqG7JFfXHhP6QEIezzhebivp5u8zOMjPi6dAzHkwqZe7ISuxkbjrxdDLpo5Hs5MuZmHWQ3g0rV3xQkTDn8tXzaw7L/3cpq5GnjoQya+OV828DQi5lnCJg7Oqbn9qo6t8w+7Wje3BiO9MQy9vXFP+f73v38j32j3ueKJJ55YD9rtpVydB/dde4pD/MufTddgOnb848lGnaoV7uXB1rp7Bxwi92zopp/aiVN9rP8Pb/faY1lR/XG8X4k2j4xRUYlRjEYRgmBM1BBN8BINipFo1CjqK/MR6hNNiBcUBC+ABie+kv/51Mx3/svynJ7unsaVVFfVuvzWpWrX3mf3mZ50YJGHQc9cLBo54o+9OT/6ZOTsNDK9POzH7hNs+QyHDcKnDyt/eOKPX3xsYXT+2+Nk+Onru15dq2RwNLauY+S8DWcxDj/ChxFeeZIhse241Z2PdIpp5reEhx/01WfWL/380IVHF+GLH152ZPJPR8x0NONo+oNZTOTG9GFaL2tApxrQaUzGHxv1Q/lnI0a1J6ND3/ojnwf9K3N/ftH9REzOU/dzzweer9jy1bOYmOjN2syawOWHXK+Ra9U3HlzrJt7qZ568GoafvtqwyYfzw/sFzyZykyMc91a/dHPfhA8Xhjg8G3cek3VfpgMX4fNTPcXjnu0coceH8/att95adVM7TXxisHZ0ejbGK2bY8GCLx1iecNVa3emywUdkPZMsxuEHWVjp0MPjH75rSt50YZPP2mY//dAp1vYiPaRvzIYufHp6c63a0UmPDuJfSzcMMtjtUfUTM9yo9YCZv9asesJgmz+66kyOwiDX2NNB+lr+my+Fw4/qV1zmdMyLpRzTTWf6Ck+fD3rVGN7EpFfNph/69srcS3SnPXxUrcOFY4yP6PkM6Ze98eioRXMxumbsMc/SPof7E65PPvnkwkhvTS7x48ov2n1z10WCurBaSD2ZHs3EF2P8IFM8AWsVdajcHdK9cmJ3il4M05dNmH+FbPGO+ZBjeSo+2zaJeZumsaDLSR2M89VGMW/hsytOdWBXDR1iPWzP+Oi3OdzIXaxs8NNLRy/mMIvxboHHgG5UbHoEt82bTr6aX7XnT+NDPhftg6tiH9Nv7fic+RzLgw59fbHR0+wDF6CboOa6+OQnP7letFsPNyv/zMqNUM26LuCEARfVG5OpBb/5xEfx9dPGHNFnB6P9hT91zcnx6MoD0bc/uhbIyTysaMYdym6GcvSg4sZcTnDYacVUrDNnPK3asvOwAJMtXPPOGbaIbFI+2pO+CecbQz0Ms/etHw9VrqH8VZ+Jdd1xMcGELybxTL76vF3ET36NNbFYy9ZFTMUTr3m13eObNnRqux7fyWBWY/4ntnGYxQCL/pzv+Jed8w0fVoSnFV/8GVe87GEUJz147S+69HYKXy5uzh6iXEfmYcFx/YRvrsGjm/8w8JwvPiT4n85v8kX7L37xi7Nvfetb6xda/PEVyVWcmvjEW73q02Vb7vH0ePJJv5qZZwP7GPHnrNHyHU76vnXsGztq44WWf3XzwOELAJqzqnryBQPhwcRDxeTMkauzwr3WL/l80wk//8Y+cDj34i2Qww+Y3dcndvnTL5d6+cDi19gHBX6dUz48uZeTOVv7EAPPNbVfV/jlyZexh0h1KUe5OxNRD472aXbGbPSInQYPibFmjq+pWbGSG4tZrcQvXzy56ue5aNwZBYsusi9guYb6MIJPR7wa3fSTiV2O8oPrJZxvBasfTLzqzaYc4bBhq072km+v4IvZfdyLrV4CwxK7Vk305WaM2OejuM3J+Wk/skPyIyt/fb70iD2iO+uRH/btDzmZa2LJn1jyUw5srJF7JF/VmDzfePlnb7zjiqn42Kqde3kfhNnRYSc+mAjfOlVj93HrUMxic33As+f4hl98MOnCEy+5scaXli/y4sjGvAZzJ7Ls9PnmR0OtB1/Og/Yvv2R49lj3BjzXKHnYPvg5v2CSsbEH5WxtvEz1TNn/XwODrVr6+/r02YqhfMzdR2Dr+RMHXbj0EL1pY4zHR828fOQBUysHz8H4xQXXuPqzt9ecp/IyRtZBQ/Th5Vsc4nSm+LvKt27dWvV/9dVXz7T09Ww0NOM3V6fZ8Cblz9rCUp/qSW9iwxEjos/XsTjkhK9GvtF+0y/a/bksay8214f94VqxBq3xzFm9xd166eXYmpGrtZzYyUujIxdj+5APOtUMTjbsqlU9OSJD/OxnMXy58GW/wKOjwSlW53xrTY9d+GzlnQ5/7PnTYCJ49XKHg8oJHj49GMVrjs8PvjrgkTvjul8X87SnD5/uJHMyrX1UXvHYwTeHGTWuHvgzR3KY2cEtpmzS0ePJ3RixlUt1IU8nPTJ7pn2zDA8/Jl6++DeGK29z9dTgOBOcDchcc+1Ubz7ghpMeu+5ddJ1z9HxBzHOz/3PFnsBzP3KtOE/YwBQLDLF1zaoZvobPZ37Lmaza0umeRs4XOXy1YounnnOdwyVjZ53F1f6j617gmbcX7eb8uR86Dz0ziqP7oxx86QQGfP4937k22MFEyYzZ04MFx9xaqJV3GO7Pxd51Bl+O7tviho3kUV3odC/jL1zY4mhdjMngwAxHD1dTowhW1z7/fNIRo14ukTn9MMqfnJ1YyOCR8VOjkz7d1hyfD7XQELlW7uTG8eKLRV1QeyRcfvdYJ0a2fHYOiz1sY9Taq0fXpjzEUo70jJs3xp+1MpaLXpwz1mN6xQ9nUuvHphYW35OqWbFZGzlpYsGXs9Y1EwY/dMSBx4caVCNYzhXXRDZkdMw18TlHXDOea/zL8qeffvra/7L8yi/aPQB3gxGEoEpYQg4sAaMWQdF2akPhw2gDHNODwwe9yxJ8dsXXXF8j70Jp8SY+veRyg0XPgdpmgoGnDzefbaL4Ngk88/JJpp921cOh5+CFheiVFx0XUjWnQx7R40cv3omR/3T3Hs7MKzmfxRbvfnp+yklM2ttJ01/11h+jdMnopKd3sboAfZNS7yboRbvfnLsp+a35G2+8sT7wt073qvmMwZq1zuyqUWtChmCnS0dsl6kjG1jzMLI/7E98pHfYOJDseXJ7rWZfyjXitwOtWhVnOjMPvvlg1wdy8g5OfiJ4ZFE1MS9na/Ce97xnxexaE6818KAAv2uWvrrdBFX78MQoNlS81eIm/O0YrSNf+aMjd3FUtykvPrbp7Ljp62HUdj0YyaylOaoe6fMDKzkbvGmf7nX7Yr1s7Lsfsbiui1F8tT2f3VY+9lcf9MKZWM5qhCdG2OzoVhsY9q7eA6qXyW7wN/mi/YUXXjh75pln1gdzflzbkZh6ODMWa3GmU0/W2pcnGZ58GqcXXjZLYfxgYw+ph3MoTD1Zct/u8bfre9HuQ4ixbx34cJUdP3wWh/kkMg/pnmecNcY+WHjR7gwqB3IvwfXqxS7c6qeG3dvLIV/m1lRe9MWnxq5RMTlDffDzLc1etJN172/f4GkRWzHCq8H3EOncFiO52OwlZExun4qLXGz09TBnncj5dK6LIxm+eqgTmevDXPxe+OCVpw8yGhx2+HDY6M2775iLW5wawmMnXrr6xvhylp/7lBzE6SW7Zk3DzP8CPfxgy68Pe/K3Pp5v/SfgMMUsFy/4rAUcbZJY5aEvLzrs4WtwyYzJzDU5dK4ky4dYYe7+8j3rgMcezz6Wf/UhgyMeDV9PF7UG/Fm//OlbV3rFyw/Sw1E/6wSvWpDDVXtNHcuFHjvrJJby7VnC3DOVdbAu8Nn3J2jExHe+9OWkJ4OhF3M5m0fkxcEGBhKzOuChYsOv0dXokU/iA66Ya+aaWOSjVUt1o0cOU95989K4a5gv9XFG+Pu4r7/++jor5CYutfRBUC+G+DBhuy5c864RMtc+v2o5awGLTcS22sItPzwYnns1mHD4EAM7lD65nPHtTftMs1fZqQm7fNPLN3nrf+vwUkmD8dJLL5397ne/W/nzlX5x5n/O1ZEtzGNEl0x+rY0xntoUV7binTHLkw6C1Tqr0U3+6Zi+0e5Fu7qJ0d5w71Ir9bQ+cmhNxSl/PHHis5v7FE996GnlJg9NTu5VfR5lr+Gz1fbaqsdeF+suTkQ/HbHM+OxPuvCL1R7Op5jkr0f6rjE24i+n8sJHxckfOzHQL57ioFvtjKsXXuelWrkPetHucwZ+forBHLZ4kpmzLRb4qFyzEbuaZxv/tvbtvd++4w+lAzv86Zc+P9mRGVurqddewEs/Wzz+rNG8V0x74/TVGQaCy5f1s2bV0L6gn1+/eFRzfvhgDwdu9eNffejQdQ6Re9nsG6g+F+a35xNrZc3Yqu+ODatW/O1jsdFnJwa+4NszenxkveglJ8NrHeXRPqOD5CG29jXfcnJf8AtofOc5LLrOAvp8uv7lI07XibryIQ91ZEfWfigv8cjJ3HOOezZSH8/C/pa9655OecIWF1txWDd+5IFXDZxDfOv5JoMFmz6ccjeHxQ8eDLzixEtXHK2HeIuNfjK6c33wsw+reMzhoWkDD5Eb88MGtTZyY0NWT86GroavseHHOiI28izX4qBnjPiFoWdrz7Cv5vJKzoYtOX77tNim3gI//GBDF74W5R8euZ59GPTw6cHXi8++iB9WPZ1y46u6THk15MeYjX0sp85/tvl05s7nc/hi0NiqgQYvmWvB8xV8BM8aFA8769r+9cWu+/kTrld+0e5iFzSSuIAEV6AlVYHIyXbCl3RUgtlNPr3k8WcPS0NTjx0+HjLfsWyMNtFS2n6QW2R28oDXgRq+Pj399GEzsMOLYOBpxYanITZtsh5K8aZu9um2+dPJVzHCnrLpO93Z068uxZXPe9lOnFPj6hE2vR2XrCZ28pugMPVwaxN7rmH65MXhInYDcQP0IO2D4Sc+8Yk1d9H7JnX/oWd1Y4vKfU22H9YR0bGXEPtiwG9MBpMeHr32DdkpomttW1967R88BAuug01zDdDp+m7ficeLrg5+N+ZemovNgcZ27mP+yfjiA64PCh6C8Bx4+aGLql1z8U0itw6+vSAWPul4QeZliRt7tWO320+sq4zDhFeMV7G/qm75s+OPf20n8cwc2WVbnOz2uNNLZ87xjvH5Lgb6dKZv8uzoWWNy6944Od2rELxjPuPD2rH32PIHRzzlMmszx+nXw7eP7Ts35h40yGGi8jXG46M47NV4cLq/wHq7X7TLl38kDzFprm998ScTt7E2Kb145jsvjHT0O5baOW+cG+rgQbx/NosH05nrXxA5d+i77o09m9BHzpvOFHO/+PRALtdq74zxYK935viQ0ocA80gd+jCjXvbtrI8YNGsHm05j8eKJa+fha/x6aNb45U9dxGU8CZ//6ms+62ysbnyx7RqzN5E4+3BDFhaZsVhaE/bw8MWiT6ZXA/FqZObs54clemzDLTf+5njWhs/qSA+GubyqmT49ayq/aiwWL2b74MmeL/FFbBFb15k9pDbu477Rju8+5kNmHzRh7BQu7GLjT030/NgP+WNvrtGng+YYTw7lR26MX83KP9x0yYuTD2Suvhqe3PLPDywy+cMRey/UjPH6RYQY8BA7LT/49jBMevaB6xB/j51NscOgx5YeX16WtJ5q65kKXr75qBZhwTOefHP4+YJvrLXnYEUzH7pIv7fpnw4/6aivWrZf8xd/6hYbPOdbL4mM7Um1gCUna+JMc5apB1x25O985zvvnm384mtIHbsvFUu2cMVFrs7ZyKU9AQ+R0xczTLGykw/CJ7dGej7C4KPmuZmuNecHnx6biBwuHj3nb78EFcfLL7989utf/3p9kcK+oQ9HH7Ue5vjVBP8U8amempjkgIrNHBaMeHDZ8Y/oaDDoyteL9p/+9Kc3/jfa+UCeu9XIOcun2MXT2ojVujgn2YhZX83ES6caGWvVqryd5d2X+EF02jvpL8HhBzsxzHrlJx90tOIRe5hwo9YmTHvQ9dF1Vt7sjcOfPaxiNc5n+njG1Y4vpC5wkDjMuyfimzufNGuAl7x48fg2D7f8Jq88+FIH2DNm+e2UHl0kRjiIDD7/xs3JikNPn108evyySxYmPVRs9Ojjdx20F+nBmDGxo2cN7Uly13mf08xhOl/ka84GRjjFp85skb3gl5Ti9KLd31R2/bHVnJ+a85ONayJZscu/vPHM+RID0jeuLnTKu/OPDjs61W3iyIsNWXrlYl+2j2GrQ2etPa9mbHxmVjN2nlPklL8wxDE/x8uBba18zJ2lMKqB/exsmbWCX13UrhrOHPGR2ns273mers/jns9gl2Mx86P2/IdhzB8q1nh6+4yusXrC1MxhJcvHtCUXh9zzYZwOf43xxV988Phr/9KN6JrzHV4yfuY9tfrRpztrwjceHI0tn/rOGeNypF+8+uxgh188rRc9Yz0d+dFBeLX0i488XjnQTW6849AXL+Irv4tx5wcbMZBH9OxndSOv0bF+rSF9+GLQECzx5Q+Oc0crPnri5UfNXE9wNM85Pod/6/CvwD/3uc9R/Q+7xbjHjyu/aPfbQUEIUFAVylyAJaWfNBOK3wLW00mvhM3Jo+TN9dkb7xjTtlgVfOJkP31lx6aFY6dZKHyUrc1vE0wZHXVQF2N1My/G4shvmPhskL52zA4vMmaL4osd4YcfTjpL4cgP+uyzm3EcUb80q5pVY4bVYoKQ860nL7epc91x2OyrG141kXd1MiZD1cBau5F74eNmYuw/XfGNSje/V155ZX3ryMudMPNZPeEl23s65Z6MfnHM3oFi3mFCbydyOHptHoZ0qz+fxvKUt5uIA4k+fvuZ3F73UPORj3xk5e3h5V//+tf6BrmbKR318YDgQ4C6uJHDcENFYoHrIcEHKf7FWQzkUfGbz5okF4+HENdieXgIcUNSm0nH7KfcePe9y6fOZfCO2V+VJ6aaGl1Ee0zlE78aTYyw8dLLDi+feOytcWP62dSzmcTGvmp9G5/Sn7bGfKUbFj6efRXRq9GL8tt87+myQ/kJR67xsiPDs8c9TOrzx1f69bN+MOjar41dZ91DYPnm9k3/jXZ/OsZ/7OIaze8aHH6IsyZWrRyNxYf2WlSzJTz8mHWcOTemx0buzph+mad3lnrOMHY9+6b6O97xjnXOii2+Otk/YtJc4651Z4zmm8jOFXTr8E1IHxjYIPHbLz2ki0vrfGu9lvLhRw+1Ys5Wj8SglfOMqbrw27kE21xjwy89OaQDtzk8RBeJMdzFGD9aOz3czr0+mMHiw/mreSaRh/ycleoWBj4/1QXfXE+Gn5/GQklmLGbxFvPEIs9XtYNvHK4eqYV6ib/cyeiSuR/P2rkXeTFZXMUUfnnAtMfsOWO9bwcbu1/5EzSwWn+xFBMMuGqsjhNbLcnwNDT7xrCMy58enrjxWns68emgeI3DXMI7cjxNbWC1/mpWLe0NefuFFr66+SAsb/tBHH65pSbiwqueXS+tKxu1QGpGPtegvSCXmXvXLjuxamLhm177dGLR3UlOYZNV1702+DW5pMsv4gfNGOkjMjbVIB9keNW7muMj/GoOV875URf69jE9vfuJdbE/2eVTX13Z0/VLxuoFB3Y65ho5v+GwNSdzpuIXj3jxYWvFC1N89oy4yORPbo3sjV6W4JPThWX/8OOXAvYTGeKzWIqBj4lrL8EvL19iefHFF9f/N2LP8d81Z6yFyQc8hM9HFL+5WMUlXpScXXO8WSc1sT5syGqth1+Y+JeWXrS/973vXTEssCv+KBb/QvP555+/+5+hqolrVu3FopVjMYkXX35dx3oxltexcNh17bUe6YlHXeCKgU/z2jG96YtdurDFoqklIqvO7Qt6SO/5qD3Ihr6YjMOgK89iNZcP33ga0ufLnD0fyWGLgS2esZyzwTNvj+JXEzJ4fJLD1WZ+dGrJYYSP11w+iH041Sd9WO0/uvjpsEOzh1Pd2BYbG+O9HumECS+M4nMOFJ/cJ4nH3nStaeZq4zqvDtOvMV9kMDVjduqs4Tlf/H1y2D6Lf/rTn1518EtzMfiM2Yv21qe45FjNkjXPjzgQ32T8sIuKs7qJiZx+MlgIf8rw6IVNxkYsfJkjn8ftfbz2m9zkpeb47h1w8Iu5eMUcbvfydDpn2cqB3NkCRxxa8Yul9Zdn1xm5BtPZ5x2AeJw9xelfG3onICak1+TTOrMXx1xrMhiTP2OQmzj0qHyM2WTHlzFb9w2++KknM24enrzYRGxgpYuPh6qDcTx6sHe8cPXtCXqtOf6et3nYYkp/xmI8ac7FxAbpZ4x4dOFmQ0dT33JmQ25fiMc4nLBhyQO/3OiVa/r0sgkLLyLjt7zN4ZjbNxF+/vCqXbHxJwcND9G3Jnp4PUuwdab4P1a++93vnn3xi19c+tmtySV+XPlFu4fxitriSqwmMPwuGAEJHv9YcOwkrhlPHTjsUHK8nfKNzz6MbOLnZ8bSOJvi0aOJke7kLaXDDxugxSOHp2ejwVMTLV/6MMtBH78Y8mEu/zZhNuqbLtsabDGgOU4e7kW9zRcG3xr7+6Hi1hfLMUzyfF+kd9VYTvnnKz/G6TXmRx3tfw8HXgadn5+vF0AuRr/18tsvH9D/8Ic/rBdZdBEs6zTXCr/11yPycl6Me/yAa++hfB0zmZjZxCtna8s/ap3taTdIfHrFa+wh1z+p8Vs+54KHmNdee23902bfJIfhQ5WbrG9haR543LzdZLsW6JF5ERaJ8TrErvWqpnDwi/0yuDtONbqM7dupI64aP1fJ6TJxha2fOR+bq7O1y2bW+5gveu254ravGh+zmbzpB85s4uhcnDZdT3Tbv/TuRXyhfLLnY+aYjJ5ftnmwd60gurs+PvswYIrPNYbgdR8x9kDtJfNN/432X/7yl2fPPvvsOp+O1Z5vVE2b03U/MC83NUXprMnhR2tjXr3xJrFRN2eHF+keys19q/j8cK72cO7vD3sx48OFGNozzg/k3POy5dbhZboHeL9A8IDtT7E4k5AXps5ltmIv7no65aCv4bdv5njmv+uaW0f3CGO6/Kodvhz0mprQIbPeGl089xR7g54Y8JF6wojoVlt8cj6RGpHDjWfuGyDOYXL18wHNXM9XjS4yR+YarHj4xvjFjofM6WqNxbfj39b+/5/0yzNcNaoG5HLdZe07ebEv1qk7Y7RG9p09B989zTew1LwX7erCXsz1RSoO9ePPOP9s8p+uvnWCRb+64Ysrvri19CdGY3L6FxF7edlH8M3be/jGzq0HDv+/gf/fRD3k7ZdUriP7hI1nHWebmPHkJmdjewZfbbr2xGReE6c6uS6rDVnEHmZENuuDLw45R9Vo6qXDH4x0ph17c7paNVQf9RCjWOLTwSdH/GnyoYNfnsnhV+9851PPjg84M1f25dDedA5YK3w862DOFpZxL17oIGsy96RYNH7zpy9+mOYo/3Dn+VPefOIXV/n7cGptqx975w49OmoozvPD2e5fjfiFFmIjXrhirq7mmrjEVA7qZp/9/e9/P/v5z3++zn6+vXzvzwjIS4vCwmuf4VUveuZiVQv8HSPd6hS2uohNvvqosfPFN9p/9rOf3ciLdveyn/zkJytfPmbNxaz+6qmOxYwvbuumofKH0dgaaezw2M316TpILnd+NGM+NDXWpxev2ujpw0f0xBH+Yt75QQceH+HTn9eCeVgw5Bim54jmdOwxeOTtN9hk8OvJtUi86pq8HKsdPTINrzk7ufGhlhOTLkqfzFirPsZyKjbjiP70Sbc5Gb9ork+2epgo3bBh8D/lxaVH5Gpgnr2xWuv5RLDg0DVG5mJzzWjm9FsXccCM2JHr8Wvk4tDYeH705RTXsM/i/jNUL4p94QK2z5ha5wT7YhdPuHRh4smFX3Nkzpc8i1P8Wvmly15D5UhGDw5/eg2phdjZ0BGHPZNPOva9xjes/DoD7Wf2Xgyql8/ZcOTAYcHXAABAAElEQVRLJmZnHKLvXo+PxGJ/Oz/447fnRD74yl/x4iOx8ItPByaZ897zReeqWPj0eV9M8kXyhSHmMPHhVSO1aF3w2ZDRn/UUh/qgzi4xsQmPL+NipWsOKxlf5vy01nT4wk9efDCQOaJXXNOOLB/GqLqWS3b0kDkdfQQz3+pmLFYY6aaDb1wccOglzwc99eMXRveRdOmR0YuKjY42Y6RDl40mxvThxxMHKkYyWPHCNiejB1erBmTpJdeXKzmiU0xk1c1eFI91te/VVPMM4xfl3//+98++9KUvLYw9x8W84MeVX7T70Osi0gTBoWQEK1BjhbDBZ0GMtQpdoOZaGMWqGPT1SGEQ3mUoPH3F50ch8ZAYuljCJKPDn3F+HUrFQjeMaYdXfnTLjQ4/5HxqZGhiLsb4kb6+uOnDgpG/Ys2UrHrTQXjXIWtarOzDDe8UPr52UX73iicMvvJ3L5vLyMOlG7Yc8c2LGa/akkX2vcPIb869XHcjsT796QIvff785z+vl8qwYMLRZi3htZ56Ptwg1Nw8W3rFXLx4UbGRnSK+UbozX7zi4JsuLDdcNxi5zrjz4wOED0wOH+eCl1r+Sa+/IepFuzp5geblhW/IubmqjUOsfzpGx57Cd+NFYrlJqnYwj9XvmK/WXi8eMR6LK+xjsmO4N8Xjt3XiuzXZ8emhU/Jdv3n7w/wY/mXyzneY0+aieHa77ItJPHSaG+N1LqavT8/1yWd6U2cfZ6MvTr52fLzWwL/s0FwviJ/9rMTHC4e9601D/Bk7A8hgPXB4AeYb7Y8//vjSKZ41ucYPPrxo/853vrM+cByLsbOCrIdurvgWn9iM5SFPhAc7Mm4+8w2bvbGX7A8++ODZhz/84XWeOkO9VPcLPOcGfNg9c8B3Zpj3odezhvPG2fOXv/xlvVSnRyff8uiZhT3f1XnGLi5tkjlbvZxO6bTm5PCdm/TFoLcHNVTd80MujuT4vXRPRw9b/OU1cdmTTxITTFjGGoIRTvzygonKY9bHOD/pT5/ZLoDDD3OxalF2zelo+OoiLjE1J8uvnmzWL7maV+PwwuCLzDVFL7k95rr1ch3f/sbjxz3JvrL2kTyqFwxjvGrJX/xs6vHhInZs5IGKKezFPPxgo8FF7M2j7JKLJUy81l5edNlXI71rQO4+SHz0ox9de9ZLTP8yzf3cvZqNX0TYz+JzvamJ669fnFeXPrjzRVcsZGJxDXqOhpk+vvGsBR47+OVSHcRSHsYoHfNaNaqvXrA1BCesqScnvqPpE0+88tcjGPTlS3dfQzy1bg3ol081MocnF3IkzhmXMZk108zhpl9fnfXFlB4dYzHxp4dTXSYm3SknM0euIy9Puh/gqUlrAc+Z41rysoUdHkw8//rzkUceYbb2hD01x+Lmj77GT3HzQ+6F2W9/+9u1Hz1b+lMy/fmEBXb4wS97xD87eRuTweQH6eVUbelOKvdyTFZexRheci/8bvpPx3jR/tZbb60c7D01EQffriU819q8rsQjRo0uGX35VmPj8pCvBsdeoluu1t9cjfjOj9oYtxdaM3bVnY5xlB9+W+9k+mzhhoHPf80cwZKDPQdPnL3oEwsqNr7k5kWsXi7FRgdWe4dduTXeYymPaikGZG/zDZMvJKed5DJp6pA13/XM4ctVzkhs6iUm1PlkTF+MYcI1h6GZy1W/XwNswqxWMMs9/Hywz4a+udb6s+M7n2TmMxeY+OpIL1/lQA6PjXu5fzXiOnb+PPTQQ+tMuHX4Egb/PmNqsIqhWOHB5kND5nwX5/Q9/dMPrzXAgx2Zu46sC0yUb3VH9q648cXbnsHvvIWf3L6l19oZ+2XDZz/72WXriyd8+dKJ5xk4PrfLQx2cmzDEJh9je8Xc/b9ngOJlly/65Wis/uKSYy8qw+VXSy4v1DOyMd1ZG7xJYpCfXhz8aWzws1e/ee2Jhxzxr8lBD4u9+GG2j4zFyM5Y7PlLT46w8SfBReKZVOx4+dOLpbzZiEFccMgRfjmYl0N5iAPRJ8uXWPFqxcaHa4Dcfqp2xj6DWRcxda3kuzj0Ox3jFaca5Sdf9pn4yxEefTHRUQM9nrEYzMuFnjitTXWwZuLOLx3ErqZWM2942eOrjdiqob3k/v3cc8+dPfXUU3fx1uCSP678ot2LM4GWED+SQh0AimIR9QInb/NIqgKyIUtHHylKiaanx78swa7xacz/9FNc4ZIpermwIXNRhVEcZGHRSR4WX8bJ8k0vSt4cJgo7XfHwpSbVhQ5MbRLM9JLBwb8qVQd2/IULqxjJitOYTKya+l6Xwr9u7Bf5hY1mHsY1MjqaGjbGdyE7zP09cC+aPciR6130Pqj99a9/XQ9V8NSsdaI3SW7VFL/DnB5+dW0d4R2rx447fZDVWhfycPCMrRX/fPHjGjd3mNEJgy25G7bfnM8X7X/605/O3nzzzfVww94/G1MrN2w3db9hd3jPF+38eghwky8W+JPKr74Ydr1pM8fZndKfuVWjbNRmrsXErS7Vcsre7nFxykl8O4mfDnlt1zk1rx76bPVRvvmd/OT6MIynzhyTTaqeu07z5OqNujbJ7aP0wqwGznSy9nnyY302fEVsZ67mzkYNebh1/bteUPq7Df9a6yWueX2ZwxCDs8QLZ9fXTf5nqL/61a/uvmhXs2JagR9+dNaI0TWsDtVOfJ0Pe71bG7qo9aeH2Gry6r7il5VetD/88MPrPPWnEtTSL+6cG2w199+eKXr+qLY+vPqWn7PHi3YfLvgujtYCjnzkK9bOutaZXm0FfPgRBjuYcucXhvkkutXSuHU0ZqfNmrQHJob6hFuNphx+/uEWE+zyyJ4ckdljiD0+DK0xPoKh4auX8Y4NPx162qR9Pn2xJd/9xafr/so3HX7SVZv8Ji8W/BpeuvAQmTzUVE8H+bajX+y4T6XjRSByT3LPsu/EzEYs1Y2OuSZmDcE3Lu56+BGeHGCVA54260cGD68Y0p89XPIw8yNfHxTUA46Gp9mfrjHfVvei3TVon3iB6UW73F1b/HjR7roVn3q4HvSeddy3Ww81kxN/enwNuW7pssMTLzxYWrXQm/dhh60YUGsEH9FF+Bo8ORpnw0+UT311oDd1PZ+IFcFB6bATe3s0mTi0ff3IYVT31gFvxgI/XOP87pj41kGbWMXHv7q1RuZkdNOvPvzjIfVG+a42dCflh7wXP+UyY6Vn3/XCy5w/vT33oQ996Oyxxx5bPLXu2rE/NFhwi5s/Y7x0rZPznr0X7L1obz/S47P4qndx4sPVI72Y8cQ5SR0RfuMpZ9N5nx48us4TL/9u8k/HzG+0W281kJf49F0/XVdy16ynOhpXR9d8dZaDXOjBkkPrU03opscXeX7M4ZrLvTVTEzI88rk2fGh8asaROFG4+nhzHbLRi791FKfnic5AWK4zOPJRu7nnyDTxVxP+tGIw5nvGArf42wv2OV344oLLH79h1rOvvsYzN3OUnE1kDHuuiTl76xJ+YxjkrW84+NWeDXs8/fRHPwyyagBTyx+9ePmjm41apCP2+HTgWzfNuDjUEf7EzSc8dfeS8AMf+MC65uxr9zW/LHc/s+d6jmx/8lsc7XtY+VETMSFy/sq/GpZzOdGbNHOwDuHjI70a6OXcsxpcus45mPYwuTFdMjWRQ/WC53nm85///Npr/syU+PsTeO4brgf27t3u8fDVBm9ey2Q+t7uXVCc68uZPzGJEeLCRPQ6bTXZkbOiJO3/ZsKNLlg1fkTF+e6gYYIoZXyxw8dSKDpl44CI41lDsKJ9024fkCBZcc3HWykHdYLce/Fcf9rCrj77YjWHkU89Xec8akCE2ycshDHLYqNjDMK/RT05f7Ob5cE3IxTUkVzHJsfrONcjfcnr4QbaTmPFhatUcHzb/M4cw6iceGz71cDS24mwvsmv/his/fC0MeeKLKbxqQE/tOh/I7SUv2r/97W+ffeELX1hh4V+F7utFe8XOqeQlYEO4OPGbp9s8m4pQL3hjxKbNtRjX+AGLz+nPPF4bMmj6LWQ8MSh8GPEnNtmUT5k8wp35p58tHS1+MeK1cciKGb9ciklPh0+NXZjyCJte9smTzZpnTx+RJc939rc1bj/IJBPrRcRWC3Pq4sMhK7Ypv8o4P3A080nmySbfWA3EEYacPET1or0bl2+uuHjdzP/xj3+svnVgG8bE53OvafuPbXURA6I/+XjHcI/xi6GaVlf8YnBokedj3lzwa+KQ97ve9a51U1cLN2XfKpW7m7Rrxosz+fj7ceRetLsJm/sQ3142dmbQLS45VPP86ouXrTivQuGxmestT9hIrauzXjzVYymMH8VDfgp7qC8f0++UXWfc9dl1NmMwFt/M5V4+spdzY30x62Hm1w0T7xhlT5b9Mb141TJ/8dkWDx3UHimOdPZYYLGxr9KpVuHvfXFP7H39YbkB+xBN3wsFLRvxadnlO19kSFwerNmJUzNGzpj+dMyjjz66eHt+i3mFH2KdL9rFB7MeVPkXv3nj8qPHLt3iMk+mN1dvcmeLM9Kfk/JyD0/vTwg4R3xAkDMfasJWXB6eOh/E0Z6rTs4THyj8KQEfqLwoLI4VzOEHG626k1drvVjKsVzMNbr69FtT2Hjk+QtHP2XWOZ3pr/jCcv9Ib8ouGheXflKx4He+xZMDat4aqSn96i6WcOmiY7z4ZGEt5Ts/8hOvuqpLPunwy95aGZPTJZNDaz5jwau+8fHSLd54ejnhu4b3F+1eviP7yj3Lh1mx0Ed8FFNjcjHT0TwD4JG7ryExIjwyeYbLxjhcenjiFK8xu8lvXcqFLJ949NXMGVXtYBm7vmo+WPmXeV5Q4PWnY7ygUAO+3cftTfd0+dSTq09rTiYHuYqlJjY6rS2dmg9crvHqRwcvXHpIP2tiTrf1TKc5XaQONTaN5TOvt2osN7go3ozBWKvW6eFNu9almPUzNnGw0SN4aoCyTWcxDz9gqG0fLuGZWzfEvnrCQzDg1WCgbMnlXBzk9ogGO/1ldOeHuvHZ8yK2XPjPL7nzXM830uN58exfMbERBzxkH4g/Pv/VTK/BJ7c/vEDi05nvpbtf9NiT5q5d1yG53GpsjeUFTw75qK4zZ7qt6wpy+xGGHOiisMXai3Yvx2/qb7T/6Ec/Wn86Rn3UzHWn508McixPPb41Rq2FnIxbw2qgL//68uLPvnBuyhcuv7CN+VJvzRi+BicMutaYfvGQa+nTLQ86zcUWn4/s2SEYxdje8VxmTIayF58awCn+ciCTZ2taXupcLHjGCLbY6Gv8VZ9+WVluy+DwIxwxTCz8apMurOLHS59uuHoxaAgGOV1rpIdBT3x6RCciNw93l4fHNl06fDbnp8aPRj7zJMerVub7vsmWL37tGT0/2oyfLSy/EPYt9j6Le372bW5/Cq11FkfrXD7wuvbpiQdPDK1FOcp39w8Hrp5eFK5Yy7F1qYbh5Y9PYwTPOUe3+PTk8NQEdU3Scz/3QtDZ53mYP18+8dLUteBejpyR/alF+xrBkz+/fV6XV/5g8dHaiAGPvLi6vuHhJyNXm7kO1YA/tNcmez2i19rAYt+5R0es9oF7jBjFouEjOsVv3JqUTzr8dCbQg6nG7mXl4LpWL7Jimjh84kdy05AY4JRDe44sHX61qBqx5RPhaXhTH97MORl/UTE3Z0Pu+Rc+e/tCn+/8sY2XvT4/6eHBVBcxIjI55q8c6SSvLtOmWoZVHcoJjr0QLn4tbH75Z5tdeMn4qXbicc34Qu0zzzyz/nPlYtRflq79ol0ySHAtmMWRAF4HO1kJHAuKvgJJPhy8cPBughSzBTZWZHMFvYyPYrxuLOxb9B1j1oeeeIqJTTXq4pr6O5Z5edJD7OGYh4uvDjWycOeFRe8UiTVsvcb3vCGan6JsyPN9Svd++fkqf7Ej84tizC/71oKNg9y3Mf09ODcucjcSvb3vGzb9NjCMm+pbK3HwN/fz9NH1iFe+cmWnIfbwmruZ0LEH2htwjOUXj51v8HpB9sQTT6x/fu6fnPei3Yt0mOrkrPCwQ+5DkBtU/9mamxnMchLnXI/yE0ONDkwPEmpdbiuhC37AqvFR3ni+nS8/fHjigp1O/TH4Yu76Ni+fcsHT+Jr1P4Z3FR5MNP20T5MVe2t8EX71oQtTw4PV3HrhmVsH/f0SfHEXY7HDxjMvjnkTvJff7MQcVvZkp2LPLh01nCQm/0y1b8J2rVU3vTZrX63kIZ72c7Z8ReLyUOf68jfaH30bXrS7HqN9v8bXiyX55MtBs27VdtbTWFNv9vJ54PCncPwHVf4DZfk6Q/zCzjmhDq47L/q8QPEBg51fzjlPnKdsql3nEfmtwz8N9rK9b9SKid7cp7AmwaKnIevDv3iL2xrms/1Xjjt/Yh8b0582cIpJDPIXMz6/7VNY+SwvOFE5iG8SGznhq69+7kkY8co5/+rgIVtM9MxhGWtwEHv+9cnc/+GZo+RyxaNbay3plHN1KX9zcjm0ptMvWfzqpMfzQojf5u0ZceDZk/afX/jQzwam+1T3MRgav4htNWjc9Y1vD4ufDQzk3gq/faYvtqVw+JEfmGLQqlnzdPVkMMnYIGM8czVzjfmwYC3J8Lz862WZXzS4Lj3LiNE15FpyDbrmEBuxuSbVxX6wznTtE7Kdiqdat2ZiQ+Rq5D4+7+X58SLAPZhOPSw5oGoFzxie9aWD6q1HusWUXEzt8WTmKEy9GFrvJbzgBxwxavDLf8ZQLYotf/bEZajcrJe17MserQlcPrT8zvjx1Qrht3fNYcPV6FRvsghPnaZc3vZFz03WBUbXLVx+8fzLaL/cUdf+dBPsrgl67PNdPu0dWHjyzc59AM997W9/+9vZq6++evbvf/977VH8ncQLR/3EyKf5JDqt/+TTI0Ns1eKYPVsv/bxg9x+Y+oZtdhPvMuNik9MPfvCD9aKdXzVzTWrqAV+dyDQ1FIdr1fqoRfHr6Yq9XGet8K1x+cnVixg5waXLv2asWdN48grfGJb94XOAfvoij8ISN+KLrXNMzGydRchcnHOcz/JrX9Ihw4c9/bcuZPy1L8qJPzVMbzk8/EhfjWCzjcevXMVX3dSGHA82Heumbq1BeZvTc1YXN7900y8OunARm9aMnvOVr+RqCQ/h1/hlS8+YjnlEL790yGv02JDLsRz40uTIXn3YuPdq4sS3pr3Yaz91j5LbxCwe/GJyrvgzaH6BZ3+Kz0tnL9ldM8XLPzsN4RdXMjmInywdMedv2sejDyfc7HpxmV71qw58VCs2MPDyjYfM2WjZwDJ2XfYM437+jW98Yz2DOAfp9DztWaAvufhMTt5LeD7sVeuklu6/8xlQjNYAicF6w7ZuxRGfrLH4rPGMm40Gb9Yr7HT1cwxL44+tZhyGXuza3I/4Glt41tK4nNrD/LfO6kCeHUx1JifrmcVcDPzZr/r2pD4qTn7ZRPDJpm71a1+w0fBdS64b50Z2Xethdt5NzGRw1EAufLemfNEn4wfNmM3pTxneJDK5hUX/siQesSE5zpzgJINvLlY6xuJE9pTcEb1qpV7tI3xxhmmO9vXGZ+Oe4xd2X/7yl9dnV7psr0L3/aK9hCUteE1BJK7Y+opwLLCKV9ItsnmLdczuqrzppwLycVFsciouNsU0fSefvH3Md3kVx9SBgepn3vTVNPupt4yO/IAj9nKDobVGjeVko2rp59tcKyY2Ygg7Pl44Qunwoy/uYphhkoWn54ffMKfuZcbZhctvePmBQy/dcPd5/L2fawDbgervC/tw6kOOOngw488B7MN1D5OX9bH7ND9m21rp+XWIVOv0xeGQQfTIG8/a4NNlh88Gj021s754ZJr9wq+btg9LTz755HrAcWPuT8f0gkKdHHzzRbsP777xPutT3Hzxbc6nNvcY3+Kyz9TZ4Wh+WQpTn0/jXkTgwetGpSbiqd/9hGefFycd+hq8MNM1J7sJ4lO88zrLj56MPznUTvktTjZsEZ42yRqQw7MOejY7TZzL5FuscKatOR/RHk/8Y3049hW71uVY3bLPphrwvcePZ/970e6aYDOJr+z0mlrR4xseO9du1xQZPcTeg4fzxZ+OuckX7fNvtPPDb3Uxz7+eDI+8PaYu1c+4Rk8rB/bsevCxb/wpHOfFxz72sZWfGvbtI5ge7J0dXvT5YKtmXqA4L3zI5UtdPPTSR+S9GPSygf/OrKVw+AFHLPJB4jSmF07XfHmWDz1+J5Uz21029RrDoldc1XXy26PiF8PMQ/zTnmzmEG7+9OTskHqh4mYfRmPyYlAL9acvVrWDl6653K0pm7Doin3GD7dYw6um7MOgA1fLj/jx+XIv0dfKedaFL5SNayvf/Jizq/6uP/dv34SDA7uXSPaSb3WpRfndRr99XcDQyMQpZ3Nkv5oj3wyXkzXgn34fNOmIb1I1wBMPGyQ+Oeirz8xdDPRnPV0rXmR2fyNXR88q8Xww969MnDX47sv+/rNrSg34UCd1cO/GE7d7r2vSPin38peTPPhrT5EZzxxguo/DVBM67PDUHq7mXCBH7OHis2fTesuNvXl+1QqvmukjualvGPiwEYzyCJM+Mr+Iyjv9icMXfvGQIZhdrxM7fbxsjPHtKWvmZY482HsOg8WHZsyOn5ln+wqfnJ5Gx3pr1Zq/qHjYa3KF0XqIAY76i2/iiIe9/eafY9tDvqjiPsoXDPbFDpu+hvihBxvZF4idfcvOi3Yv2X//+9+vfWzP4iP2k8zVrrOl+KpXdYE/qb0lTzUoJj2Cy5YdfC/ab+ob7V4a/vCHP1y5qa9rwC/2XIuukWpE5vpHdLrGyMUv9sbiNlZ7MRsj9SCrqZPzUQsjG3hyNufP2PpVe3jm5M4Mazd9kUf8hxcGf/a6OTtnBB17Ay8ybh2SF5c5EpPGD1n5ksHjq31Bnr9+mUMvyr99wA5uGOrQy3n3GS9+rVFxwKCj4YmDL/MInrPaeoYNQx2R+Gr80tHEY17sdCJYrXm2/BdXfsLKji686UfOrRG5uDRY+MnkRF5s9qYmTrr2g30Bmz19eTs/8NovYoGBioc+HC+R/V8j/eLRi3ff6vYfJdMtb7Zq3brDL04yOVYLc/7kGbGDR4euMYzWj54xnj0rNnP64c7a0DcncyYWC/udkuHzLTY+7C0+3M+/973vrXPQ/xWnNr1o75ea9PC8aHefd3YiZ6U1kKu9ruZd+2ysiZ5PjX/x6tmIX3zWVU0QfhjZzOt/Kd35QZe9vNmrm4b4xYdRLPme9e/eRVc8Ypsxhw+Tnfrg8cM/XTwtwiPrXgZTrZxBbOGQOx/FFy47pMfTUOeTcf6SwYNR/HTMteJkL3c2eHQ1pHc+aOTFsIR35Oydb60fG3paOMbqV1xh5099dn01UMfqrj9F+Syv8tbbP7CmTvHMWhjLQUNq0tlJJk9r1rMuPLhkyJg/Odrr4i0nMo2tZ+P7+b/S7vtFu2AFti+GhPBayIKnf4zoS16PwtQj/DAX44o/Jm4bBYTCJpuQ+cq/giM5aeTZ0UlvYjSml89TenTCgT/12E578ntRce561Rh+ccnNnE0XRvYzR5u2GMMlhxmGi8+a42ldAOnr2WRnni/j+yH+qpU84IoXX19u1/FRvMXukPLnUvymy7eh4fcg5Cbit8T6fBbL9B3m5M1xvuKZV//w5GZd9PPGwMaaZFO/1xp/7u1qqCfTN+anxsZN2wHkwcbN3Qe8V155ZX2DwE26WN3E+ydqPex3QxdzNbJ2cO0ZtsXPv3F5yo2Og9HN5LIkn9myg+2DnpskXOvmBtqNTHya2u1Ufdi198ROX4/4nD3+MayldMUfnQv8T8IXGyqOfe3Jqocxas62PNiVAx2y5nsebPJHZ8aw68KaFOYx+2mbfNqeGheDNWYHR5v5TVv62cTPJr/krnX738OtfaneyDq0V9g1ZksmDs3DADsPAfHENGPjw59V8Y32m/wb7V60+3tzfaM9v+3ZalD+erL5YNW+Y1uT46wxHA9d1UiufjH3wQ9+cH1T35y+WvRQqHdeeNlurGbODOeJni/XKdzWBd/ZozkTYPIdzZji1av9XLvOIzYRP5Ngs6kGU2acbxgTp3UmLyb6Yclt7hcyPPpiSA/fHAZZOZBPIoeHwtHTy7449Onp1d267HsifXxY+YY3McuDXIwav+mbsy8ePSrmcm096FvzbGafbvbmiA5/MPOfrjmyl/yyxx6lj++6o+ce4BpRh5kbnfyHU9wL9PCDbTZegrmX0GGnNuaacQSLTnbVWIyIvHsgPWtUjuI1VyP62cjFSwc9e82YvA8zXnT6PxHOz88X34sh3wL0ywLXYHF1HfZcw59x+yS96kguLjHnu3j18mTrmlULax3hOwfaR+adP9aUvXl11fPhTNbzzaYzBI6Gr0cwNPFF5WBujMSpoeRwTtHUnTr41g2GJg7+5YNganQm0aWHJjZ+691asq9u00++4RhrYYYvnvDtEdhiC4f/bPRkdKxx+zFsczJxOefbt3ThnR/2Wi/aPT/7RRcdMbQ+dPmBpeHr+S0u+WZjP7CxT71ce+211+4+i5K5P7iPsEXiEKNneTHyxR7BDFtOxpPKh4yNBre9VMzsvASTq7/R/r73vW/lMLEuOxYvunX411vPPvvs2T//+c91LfPhOrTXxS0muYjFOiIydaFbnq2rHg+Rsxc/mnnJj55azRferrPs2GozDlh8VHdzOsXbnL90J05rQt4+z55fNsVPx5gvfHEg/s3TL6/inDqN5Wl/hCPPzpvy0Wv5rEbZ0Lc25l7YuNfkE08TU3HxXe7FTKd49XzRL7f0zYsHjljM8dWanYbklax4luDwg48a2YyNjnjYwqpvLJbyYVvc5MXM3t5UX82YrlppbOiqt/UuVvcJ/ujTQdMfvs+h/qNlZwqfzhUvkv1yit8ZJ58ID54+cl4kx5t5pqPnH27YeNklcw3OvU8Xwaw31tiwbx+R42kRmVw1MevVyX2envu5P3PhPu5Fujq6l6sfPb8kU1//6v71119fX4JzNqBeHovFWtDLh7jsIzxyNSuX+vTlTB+fbjU23nHwauVoXo6tNbsw6fElt53YtWfoZANnrrPYyKw1f2TVXR3DpqeRzTNBzVzbKLn6yhUuezhkk+Z85o1vLna+0MQgq45iJcvvji9vLV97D995RMc6Fwf8iI34NZR/PR7b7MoTrvrLX8Ov7nRh7rh8sgvfuOueLD4sa6UhfpA6VAtz+mpI3praj8ZIXxx0jFsvfVQtxOJfln/9618/+8xnPrPEbK5CN/KiXWKCr/iClSiexXDx4tE7RhWSrEXY9VqIirzL7zWvoOK5LslH8WHo2wTyrl0X+5SdvFtwdarGV13oU/gX8flTN2unGeNp4kLiaW1bO/P/RXytR+sgPmO+xSiOLkxx3gTBdtj6YP7A4Z9bax463YDcyMTEp9+g2yfVzHjWRXxibV8fi40tvPshPmCIe/qfmGKhU+zmfO/+09GrgYcY+fuFg0PbBzzfJPJNtK5TfyLGQ47fnvuQ40As9/aOWMI27hrFo6tGYtFnIx8+6KbP9iIKb6+Fg9TDmZftbpy+zefBpJcl+bzXHioHcfFRXa0BCofs7aY911P+1LT46JSDWGdt6VS3iWVd5BntOZJpp+yzo9P6wthrxL44L7vesPMNG4ULg5+d0iM7JmcvZ3vFt2X65gwemWvAOdCN3zUXjliqL7985Y8sogPLPfT8/Pzs6aefvvY/WQuznp8XXnjh7Jvf/OZ6iWhe7J0PxThjIrOvNfmQiZ0t/epVfc2dEWr0qU99an0Aou9v3Tkv6cHwQsT/6eDDkLq151x7XUf5bd29JOSTvrhqcizmdMv7VC8mWOzEpMHLfo7DkHN7MX/JzNurMKoHOT/80QmXHD88fGN6qHpPn/jhtLdgaFehYmUDZ8aKZ24fi6k880Mff8ZvvOeMZx9oMDzw9tBrTh42n8icPr0wd9zbmv/5Ibl4XDdIHdUNP9n0ReYlmw+m/TKInnsAPfurXxjLVwz61rcY4IgV0YHhfgjDHHkGdjaopw82sLWd8iEHY/m7P1lvfqs/vlj4oKsZi8NLBvnQZaeWSFwwqwsb8vT7J+U+oPtFl/j4YeclZX+z1bNOvvf4zfObjL/iF6OGyqGzMn26MNr79LLJTkzsxELeL0T8SRJrKna/3O+XHPTh9aJg1jK/F/V85Lu9cEqfH7G1fqf08K2X9UX0tYtIHdoDxmrV+rPlu7qFI3dN3Ki60zOGZw/PGrde6oTyix/h8Z1OWPDInNPO+q4Fcrr2o/unb7WLq+uvPZW9HsnL/UA/Y4QlbnngW3c8flxjnj29TNLbH77d+cYbb6ya0RG7+7f4jGFo/Fg/uNUNb1J13+u2xycn+O57N/Wi3WeLp556av1N+s6d9oCaFXP1VBNj17X4WsPOFfpdg3SrO11j6yVPNbMO9KuXuvRCjjx8vTlc+ny2z2EWg5rSgyNG43jsqrvx9LuUDj/iZxf/op5/TYzw2Za3cZgTA7+4jdVDPuzgoOTGcJ35ziF4iG77hi6cPW9YZPA1NXFmuSfBKc7pd4EffsDT6LGbhG8dWzd+6LXPyfklTw+P33JIhx778p5++J3+2YSZP7345ace8LIjY6PX6NDFcz06U1xP2eAjPV2/yPCvR3rG9FLZfcv9iw0M9ZS32hcHWxjiyBf5sRzLF1450KvmcjIXP4xJbFo7cjbTJ1s5igGGvj1izp6O656epr7ikCts/aOHPzXpuvS5u/1jHdtHevd4Z4mzkS7yjOIa5wsmf8hc7WDokTiKlx674l4Khx9yE78mX3JU3eVRXmHAh+uXJnjmdKyZXMRazeC5DumFvRwcfrCpdvxVd3xEHw58TXzIfURN+Wmf4Hev1k87trDEwI4fPPbljFe96MqjeMVjHdk3bj/CoAuPz3sRTLpwwsuGffGQ82Fe3vR3mxmjHMjp86G2coJlTjcMvszZqJczhe5et2LTqx2saYMHE5Vbz9H06M894WxwBrivdz6Lt31AH828ycS/Ex3rL25/8u2555773/5nqG2guSglsC+m4PFcoIKukIqEzBVQoxcP3xw/nn7OYWQbfykf+VF89MSd3eRfhMGmmC3MpPgTE66FwiNn37y6kc0cw8xXtsWYPb1ss6GjsU2ux+OD7SmCRU+cerr6LiJyhFdvjE837ORw8hlvGd75gaflD452rBbTbo7F5kB0U3FTdUG6oF10HqyRferhsvim/XXG1cEHU3+f3bfZ/fkYhwhfHqzo2Oe3Dt864bfDw57R8OQpfwdd8mPxkMsTsWWH1K1WHfFP5UkHFb8xXg0uvPZOOPLCZ0e3fWvsxuAlmg9LXrjTdQD6RrsPN91I+jaBBx11CQvGsXjw4tMpVr7zj5dee4aucbEvw+1HeNnrYVrPRx55ZH2rzxq+9NJL68WfcfjFtEH+xzR8uuo259nXZ9g6mtMnl8Oul/69ehhhhieH8tjt6WiIT/Voz+024bQnxFmexZt/OMlgFwub9gE+Kl4YfKBwssMj1+gXC/69aOaULgxYris+TuHRQ3ScM84YzS+XfHuymzkcD69ezDkLul7ly1YMxV5O6qwl14tDj/jxp1Z8o/2xxx5bPBj3Q7C9aPeNFw/Y8nPO4Nf4aB2KO54HkmT02esjYzbOZbH7DxbPz29/UxaGc+PW4WzU1MiZ4ZshfZjDsz+aw+WzWsGAzY8zpXOGT7xj68gGLmpvi5vN7Nnzxb+ejK3xJHpIH8bOw2cbPozmdNsfxtlOOXux4snJPsrn7Bfz8GPHyQaGGE5RvsmNp89inLb5KVb6+eBHM6dHR3NvcJ3gVQ9j5P5nT/ThGY+ua8gHN/rtBzyEF3541VvefCI66el3O9ezF9LuXx7Mye0n5z7iz/UMmz1sPGtpHLGTMz1Elr98ykE9xcbe/nZe4GnkzWGwowtHjcz1aqOe1RxPM0fG5M6OfOsbL6XDD3M29FxPfTjBd036czfise/E56xQC7xyDyPMejHXTvFgyE9z/ujb48WafGIYxw9DHuonlwcOv/i3l5wptw5njDOis6Ra54e9sSZeGHIvv/zyhzcbrGNE1/qSGx8jfD7DED9erX2kDj0Dii+qPubVWWzsy5EsvWzJ08s/X+3vbMzpsjcWX739FR79YjZG7T82ri/P6NaDHp/8u8bI8fE8Q7pXwPUsxgapI92uFbYzNuvlJRodsXYvribFpiYw7GnfAn/zzTeX384lcdg7+XSNd50Xc2sFW+zy5LOYqvUCGT/I5ePl349//OPVi+s6VN39cvprX/va+s+/xbKfR/T44Lu4zekhNdTEnB5dc3g9D9BRI/GrT2dUtWHLRmNvrvHPtjjEQI7mWA3psRHbnkd47LIXG39ROvqIHC5iZw01OvjkYtNmPOYoWWM22bM1phNOemIrPn5h08MzZoc/Y46Hn1/+NHr4E8v6aCic/LNJxqaYjbtGiplePqYfunS0fMARPz18tuU/dekXK37XVDpz39DFL2fYqJz0ZN3rxNALYPtGTSN5dO64j3spZs+yoed9gHMCZvHJR0PVjW41oZdML+eueXPY7dd08eg4w+QGv2tGj6q73MoZn755ebjPwqeHnFFyIqcHDz6fbJ21fslMT3vwwQfX/dovm+HQ9y7EGaj3jNN93hgOXPuELr9wNTVB8ayr1hqwdb72i7xqyEZtyOWtwate1Z08//aIsbPcv36lLz4xkdVmPGGLz32ffVSNq2M58F2cYqeXjlqS2W+tsTjyUw7FLZ/syeDgxSfD734DWz7k8OVkXeHTrU7G5NaZbrHngw0sMrG2n/NHRjd9fDrJrZ8cpp26ZUMPthZfDOWX3dSH6Xkesc9XtWOL13rCKDe29MoJP4wFePiB15rkIzu52PvOAGtoj7JXX/uCL7r2ll4sqBqvyeEHvpyKU0y+0f4//89QBS4pwcxNITCF2AtEz2bWkEJqJcquTZucDR6sY0S+L8gxPT60cNhpxThjEMcxojPztDDpksELR8zx+NDMxUrGrvzLu9jopVt96ITDHvGHkq3J4Qd+dnAidmKevGT6/NbzF9bU28f0YOvFkr0YUHHvdlOvXCbWrj/n/CCHjN94+qDswjJ3kbmgPEzz4fDxARH2ZanYjtnk2zdwfDjwZ1N8C4xv10Q3LPv81uFDHn0ymC7yLmg1w3OxOwzsLfPdZ/tEjdhoMPHZ6M2rYbg7lvkxwk+39YaXHwdScj1/9DSHqW8lnZ+fr28kycON299o9/fYPSjA8k/Q/VadDMHZCY8ugm1cm/pk5sWw44jbAY6m3RzvNtbAC9PHH3/87PyQi4eF3/zmN3f/tmdx1e/2p+ZqxS+76lkcE8v+sJatPdk8X07hH+Oz5bd1ooMHuxiO2cWjW22rdTHDqCVrzr5cyeSjrtVg4ovD9aEPe+KJAR9v2s8c8C+TD79wwjKHrcGYtYE3Y6KL0peTfeKMsWZ+0ebllH0P3/Vv78wX7fDDZE8PVWcx4BWPHunp8OMFhL/RfpN/OqYX7b7tyb/Y+CyWai2WZOT4HsTLiVyc9dnLy8vLhx566OzjH//4Op/hsHN9+kWWX8j1kMU+Wzp8qCc5fNeDs8iDqrnzXjy+kdOLP/Ya+YypOb9srFckTnG1DnT54pt+Mc19zpZe9crWHOnDNTfW5BUOHblVx2krnnIx5is7vfm9KBv44V1kQ59PcbpukfiqWbbTtzFdzT6d9vmsfmpu7coTnrFG1oteYzz3FteSe7e5NXYvty784oWdX7GTyVmbpG70OpPIzH0g7l+miAHx5Rom5899C7ac4LjH7+dX8cBnR0/tEDv26ejtMRhyomeudz2qO4xqTR+GXn182O4M4s91of58IDz6k+AVA36x4MF0PTnL+oApZ/dsubZPvajAV5Npz99OydXhFJGVY+tu3eK3zuzhnSIyMchFDp7J7DX7xwtJcas1XE0+Gnx1bw7fejhT5v6Bz27GZsx2Er0aWfpTpzHf/KplvlpzMrlo1lEu8kseBl+IvviKpzF7NsXUmLx82ORr6uWLjO/qa5+JJ7kcxC8GBNd+tD/p2Ku9OCejb59bGz0dvTXzJ1X4c9/wfE1ffVyP1s9zPZ5YkHjJPV+Sw2ofkdFzjnR9iJNf/1rxxRdfXPeYZH0oZ+feYx/AnOsodvLqVRz4xl2j1WIFefhB7mzpP0PV7zrp3qvnH906fLbwod+388WjDuLmC+HRNcdXN/Ps9XTwteLBs8adJ+ZqZA316uFM0MKlq+4waiuIww9roqk9W3HSMRZbexsPHn6xhkEWiVutYV5E5K0PvPzB6mysFuKoDjDx2beexurAVh702/Nk+MVY7djiwTKWJ7LX5amv7vkPI/96fhA/1QVe9S5utnTk3PVZzeHQs2Z6hFescsuXOrWu6VUHMn7oZ6PnN53ioUvm+oMduabkW67xzacefr6cJfJi5/rlAzaf2ZHbn5p7mWusF+1w+1ct1RPGrDsdeGqnLsVXbuJJzjeCoVbtWzYwrY0zjC1/5H0moAOHTOO3cXP24vAswBafT589vO8gw3cvtqZqCsc16mWgs4aOf0Hjl8y+6CYuawLTedm93Jlq7IytlvToR/yrCTIWn9p2ZsqxZyb+xCJevUauicn6yF/t8BBdc9eE8yEZ/fe///1LX9zy1Oho+YEXDp66yAGZo9azHOVhz+jx1BNOsXX/giUuJM7yMi/O8oAVfw3u/BADH+SuB3VTTzHiy8X+4Bs+YlPs1oKPGTs9+vDk0drSLSc9Pb0WprhhaTD05cCeHD8csukfTnG2T8w1MuumfgiWlm86sJG62jedhXTIWhd8TW4wIvFOMlcHPsWpvq6B9hqe+7mzA5b9O+Ww5FEu8KpdMnG5tvxy+4knnlju9zgW84If1/rTMTaHwBTHphEIx3gSQ2QV2lySNjT5XBiy9MjYtTnMZ5HpRhUj21OJp1e85mzon7LJR32bgC0buehnrOUrZjK6+eKPPH/GbUyyPe9s6ZDxF66Ysjcuf2PE1nroizGM2xr//ZMuTDRjj/ffFrc5cHf/JDO+NvAxDPmVa3XQX4ZcMF6yu/m4cPh0sTmMPUwjF/JVX7SLR1zibr2Kp7kPAufn5+s3rr7V7XDg1wVtrfTF4OARW2sAtxz5kYdr6JRPfOsJoxqJEY8MLiIXHz6q7vj0i90cwcJrPvMmw3eAoXzAzq+DzEuKBw7fIHOTl4MbUy/anRHo1uFDgZu9m/r0t4SHH/xqxQO/fUVHjohtcRVrsSdPR69Fcxyv3tpZT3/ewjcC5OCDmLjFnI/iy+5e/cyLbRRec+svBjcVRPfY3kv/Xv2sDV/VRE0vqsPEZafusIpXXBocvPITa/NkbOUUBr90src30uU3H8UXHvtk9IshXvoz9jkuRjhR9YGHyNyXqnm6sPnTs3Ede4DuBt6L9q5v17+buYem8MpXvHBdI+GqT3noa8XH1rXg+rqf/4SlvOv56U/HiLcaFUt61bZ49GJyps61o59tZ4PeuezlycMPP3z3Rbsaq9Mf//jH9c/eq0W9Ghk7Q/lpTfhTZ9cKufMG9W1VeqhYxSPWWpjk1q+9RA9ma04flmvRGpKz0YplORq+yMqfzBieGjTHM+dXQ/ow86FnW2OXzW6/QC74IWcNhnYvojPj5tc6TNpxxNT5VQ549PSdAfp9v6fvmnDf7mVOMbiHOovF4QOleesjr2oVDrtqNWM2loeYxCouxI5P9zDNMwRy5ntmoMdODLDFz38fmvnCR7C18qVnD+n5gaXRFzuZ68Ae54Oe3n5u3y3gww/2alTvQ677Mh5M+zk5GzHg84PExW++i8mcHn0f4t0DXWN4zgXfhFPzaqomvWCDicJdkzs/+I3f/i6WXa+53Njo1QHxkV19+nvPrjx8C049rFMvFXoWqc7FpZcffH0vHuhF4iCji+gaW6fiKtbykAOdbMKqz1+fo9ipO7/5lo88Wudqns+w9Hj78wN7NUUw2fNTPsVIXv3yodfaH60nzO5/ajJrAEcc5D03uq69+LJnkXrwq85iguc68P+Q+Bvm/Himd13SlZPGDxs+2SDxsfVsaZ+a279iMFY3cRQvf/T8AskvetVefnKn52xA+K5L2GJlx69WHeBrrUW1xttJHvL3LVt/OuamXrT7G+2+mS8m8aoRX/LBQ+JXPzmg4jWe8ZsjdurWOQnLXPzqiFxXzkTY8NJfwvGDT3IYfInDGqq5OMVrvdSOXtdCsQ6ou0M4rdld5jagw2f7BN6sAbkWtbbVJnu1SK+awhKnnowOO3M9n+ohRvN04snbvhIPuYbH/hiR55tec3VD+TXmi39rx4aMTTE60+UaiYm+WBF9a9o1Xe7VofU2j1dszcOBBdf1D0fceK6/cJbTC36UKwxxysX9B7+Y5SMG9XANa86OXrSz4d8Xv3yrXQwIxlx3OuGoSzp4fCUnw9Pw5GI/6BF/dDz70uFDPdWeHoKnXuHUk8Fkbw1dZ/ZJvp2LGrk9BFM9+IYhby/X1Yu9F4Pu2f5sKxyxeWFt3ot260Gn2MRFN79iwuMzEr+Xmc4EdYdbPPDVmA29aqAO5WUtq79efvTVSTzs6Ot9UUcPtzOZr+Il0ybBEX97UM+PhvjT2ImPXA3FJza2chOTc86cLV08toidOPUIHpl6TMo3e/uz/cyWvlysNWwtoh8ezPwUh1jhsSGHQcc8bGP6CFaYYkqnutDJT7VJD256MMKknw/4xvaEewX92fLf+qu5NW2tyPmFYQybTjGJD5FNEps6WDP+9FrnIHt+rKUxvmtFzxfiRz3KkY9kbMT87ne/++wrX/nKtf+E67VftAtMwQVUE6jEyQRYoSWjoJNHtheNXpSt/hjlO/nUj8eOj5r51DO/LPFXvPKLwk6G38Zkkz98c60xWfXCq45h0p1Y6pctHbLkS3D4waYLBY8eO5sJFU/xHpuTiSX/fOCZa8YzdvKd6KFjsnThhJsufb71fETpwXUouqB9OHZwmafbjY2+Q8wNaY+BrLyThc9fueW7PhvfYvfhwDdxfEhVb758ULY37HV/+wyJU8wzH75qZB0w9OkVk3lx0YOt4bVXpi59emjypy/j6cNcXnpxkDUX+6xFcdJ1mHrx6E9oOOjIPEi//PLL68aY/1t3XrS7icJC9WKVBzx7lE3x0GsPGpN13dGpkSEyB6gXoA5VN2Q8++HYQcoeJh8eHDyY+FAoTjF7AGE7acaNX7wwmuMh+IiNJldNnfTHsMSrhbEATvyAD0cf1hwfM6MXdvbm2bOJDxuRTXkY6S2lO3qw8JOFkY6ejhwnZnnMWMLINr/m7Rn62imCO/cQvXCzo2OdxZRcX3x6GPa7B13XhDV07fsGZfj2nAfCHs5mLsUBN3454CE6GhIjvx4G/Hkq32h/9PA3F1Fxrck1fsDuP0MVL8pvY3Nxth/ZFNOsFR116eHR9eOFnR7P+eAlZjE7F/3TVQ/7vjmKr+WH//zyQ6bWznd8zUOPWNi4xruviRkfhTt7+nTYwyFD8Kdd/mdM1YOMrrWLyMxbT3K8+PzAIjeGgerpa8n05uKy/uYaPGdkzwD5P9WzQbAmhV+MZGIpHnxET9yoXKxDduJzLXQ90CtuvUYXTo2OOlgD9sbdy+WKh+hbVw2GD5QelmGKSax0yPKln34W0J0fbMj5Q+zZun796Te/LHcPoOMe5v/nEBc79wOxiRmR25tzHYqBTjnb6+hYjGzlpk+/54c+PLMVr3urD+7FMGvHVs30SF7ms47pJC932PTgdc0a48vZ9WnMno36l7d81ca8a5AOsgbk2bUmyZfS4Yc5WZSN3lrIt3u4OqmnmrGjk36565051lJe4nUP12eXPz0cuMby1FsDuc9YjdnL1Vje5nDFFCYscnNjOpq5WKulfPHCSi7+8pr7lR1+dmTZ4CUvlrDbB2yzyU4/eTCsvZiQWMhRMelhdgaYpx8umQYL6d0f7OFpZ9zLGrXyDO2Zml/nCfmsJ198RMXvXus521qg9PR8w9JrYhcHmRdNMFzLvhAjD3IEy75rvfMlHrb0Zn3UDs346OFrsOXqRfvzzz9/Iy/a/XLBS3u5i0Ue9u28PvkmE4vYyHoRho9HpjVvvawZvtjpqZtaxnOd8FndOrtnLbItBv7FaE5mf9Gv7jA110xUbM31bPBPEXyY9hA9fmC6Pqwhkmc47bN86eUsRg3RrUb0ybVJ5mzDDS87PZp2dKoTmbkmZn5gVSv8CFa68fTx9HSsizE89deMEXltMQ4/ykH9+EbiUL/yZtM1UC50a2rrvuqeYt/gu6Zcc152d77mW3wI1qxFsdh3MMjEQZ9/fTVyffHpBZt3Al6KGVtze8rzpudOudsX7POHV43xxV9efIjTHF8sM27++YCBL074XSvkzhIxGMNzbdGha14c7Xt8ba4VvXITR3mFCc9nX7+spIc8M/hFs/NNfGzcD28dPtu6t1sHPsWHqim96iwOeVWHpXj4wV/PI2KQHxx28mEnzvLjH1U741ljczqwqrE6+X/TYHgec9447zVj9tW8GPFaj+TstciYvvjEae3Fn744+jxjDdobejqRMR5Su2IxRuSw1ETPbzWjG1745cAWr8YWFnvx1sy1SO2KSV+jE/YcT7vWu5jCnvj0m+vht//ExAeSvzybl1950EXm7OPnM6zyLw82MOHTKQb7ruufjjOnc8ccDj/WEpb95fMpvnVPRxx4UfGwtd+9H/rqV7/6v/9Gu8DarApQE6yFs+ELXIL0NTTHLUiJ0WWnGZ8idi0KW/pwdzuyYiuOiZtffvCnbPqmF+06yepP4cw40i1X2DOnfJHTtcGqHz2ULX90atYlnfRsmF2f7FisxUluLRFeMddPvKW0/aC312qqFG/Y8Ohb19Yyfbr4mgvJDeX/eLu3Xs2ysY3j63uIpDpiE92RljhFH+DAJjQtCKIRQsc2gkgc8qkkQoIER7RtSPRHeZ/f7PqXy/Ss6lXV9bqT8Ywx7s11b8YYc85nrlWr9Ph05WfPacZI7A7ibTHg84ngiCNesR3C+cD3Zc4LML89tS/a3cDgOdT+N29jNwxrB1fLT/jVurmY5VMsXDeuPubVYkJ7kCcsVG+8fsq5eFbOd3wXTGM8xGc4ar9fkMjdAF9++eXjhxvskN8m8E/3dh3CLwdzMRWXXux8lcPK8bR88CNGL/b8Fq0HCjdk+8BDngtqdV3fMK2NC7VcnBtrx7YvLtWDj6i48t8cXrWiW5yN5ctHsbMTY/uVLYy7EIz8Fke4Zwz8KFn25msPM1w25OmwyQdZuOxr+CjdV2evfuanPln+ii3+9vnCU0dz+tUOH84SnXTj57seH8bO09XDdA66mRtrzr4z4HrDjxdkfqvAXisPmNrmVy2Llbw449W7dvjTMS+88MLNc889d4R1W5yH8A4ffPWi3TlBasTnNnvRmdHYaHyrlRzMPbT4QuVLjpp42Df2ZQcWHeRMhecaqU6uB8j5Y9uzBB9q6tyygSO+zjE9fHHoq9/GKL5iLIbqBq8x/43pGW9rreihsM57qhiLQU9Hg7d7NAx8Y7aIL/kUN1sPeHTSJasdRrd8sMnPNRU+1b08+NVQMe84fetEvnMxhsOn8ZLc2zPysH7Z6Ft7stquLTx7xR4yTkcdUHPjzbv8kzeH05n1wO0Hs16227vyct13LsRJz17FZ1/ezcMujuXLIZvNP93il5MxX+479rkzh8TgOacf8FVbuNvoti+sq4bEJ6bsitc8PT7UgR98+mrgxUjrBHv3Bz1ztRRvX9rp+cWGrhn8RfSrBx/FklxfTu7jriFqry7wWje1ZEu3eM2NXY98STZm43mEXfUPX1+9+FWDcky32PHx4MlBMxdX2HTNw0zGBo+/9oZ52PrmxSYePsjWDp8u39knN+czPl01sMZ04K0feubIWGx06SFz4+ziwVQrBNdcM9baVEa4OAAAQABJREFUU8YoXOvCjtyeco/wA1jP0fJxn7P/6Bdb8YWbX/pIb3/4j7R7USJe9mzKvxjcq50jL6DEIxYvnv/85z8fLwDtYz67z1QLPA0ugge/OKpbftPJP77cvPzzot0L97AOwEf4qK5etH/3u9998KK9a0Y1A8m/mslVzK6h7r3OhNhhlSM5kgt9rRzp4sPCU0fkzPOHR+46rjffmsnV3FkRAznStzbmZNaxfUwuBw2Zh6VfnEPh8hG/3OHLUYMrFzx7sHw2VjgwNDbhFSef8fO5ca0Mn102+njxFyO5vhiMxdd6pc/P6sdnR1+vBq19cVWD9OvpI3GxUx9rie8aphlr6Wyc1ZudfeB+4rnQMzOZPec7oJfdxgg+LAS3dRArYlcM+SLLv96864kf1PWLd76bO3P2nHu5F85e1tJ3rakufOLV+MvnEcTlg2+U32Ny+diYqos9VSNXN/va+vElJ/7FbMyO72qcHzGwIUew1FXc7IobX4PXDxjUnJ37oD+h6/pobu39IqBaqIm48g9T3IieeOCKQ3/ef/TJimX3FczFa0/AkGu1ME6XX2MNrlrL1TWTf9dp8do7fTdXA0RX7Hr2+JoxYr+9cfHzheRbfOzETGbMXt8a5Tdc9nxrbMRCRg+mFk4xssGjg1f8+Hhqo6/BE7NGPyKHg4qzusZPRq6x14xRua8eWy2dQ/H+RzxyvsLUi0eM1k4t8OipAT/0Eb2lfIlrc8RH+UxuHs8Zd0/3DE+e7/W5deysuNfssz0dWBubsbitj7344osv3nzoQx86Yiq2Y3KHj8f+jXZBOPwKU+ISxXfwCppMUDUxKUJFZ5MOGT2y5HjXiJ3FbEErCrstAuzV4XsJjoZgbJyrd5cxX2j9rx15OquXPplYqim+ePFtkNUzFq+GyoOufGGgbKpPOR7CKx/FQKSW1asahUduvHO8RyGY+dOHZcxvucHcuripuJE7VPaZhz76HjjNI3jFH2/7c/z8Ivz2TPOtry8JfqPVT7k8vNN1I/DlVMzi+MMf/nDUzw2PvLrnQ7858YPnAiBmNu1la7mxkmlbP/admbD1WrR8vDDhh+XCgk/XnhN3uNWAvgcGL6c1552OG6EvLi5g2bipu1FaF7gR/HIojmRs+eUPZVdfHtWUjrF1ede73vXgRbu4xNQDvLoWV+dDHl6yiAUuuRpYQ2sKA/ZS/pcHj234ZPS68Rpr/JSv/OBrqPyOyR0+qs+qhr08fqN8FM/mBq+9QJ8ueY0NnWyTX/PJPj3j9WO+lB6dxouJ13oZlzd9a4XiZx9+us3ZdE2gi26LTQzWz0O7642z7EzYM/3nbR78kH2mwRIrbOPFNuYbLh3zxtWdXXuRH/9y5uMf//jNc889d/ih/3oI/s9+9rObL3/5y8c5yR+fG4N93N5Uw+pYTvT7jfV+49bzgPpo1kVtelkGT+7OotZ1Rm1dQ7x88SUevrPHzjWDnd4LPHx+8ehFcoiKT5027uT1bOi0F/Dx2OOHaYzXmtALNww8VI301RKfDzHTxw9b33jjDmt1xWEenvk1ykexnHWS29fhV0828oRtbB2Lz9z6Vgdz9prxtnzKyTrL3xjxC4Od+3cPxtY4vbWBW3xiqcFrbcirD31UbjDJ2On77Xj2rvtetL/xjW88HtbZuObTMXaevRxwDuCI215nJ+4w+c8PHwg+OeqenqwckuOzP+upt2sOf+omtzDgnsd8tq7J+WCXT2O50at5nnL20pW/3z6shmF17Wtf8Get+hNO6uCLPHt+zPMr1nyro/Ft5F/Jud56nrIv+OhaZAwXwYAvDuvheomn0bGWWmuTjI14NGN1WMz0+YCdbmO9JibxGIuTHnKdspbkZHwgY9j6iF+8YiLTwrIG4kbpJsMzxufLOF/ssiXXyGEtPoxswi2W9cfOumn5sQ+6JmQLL4KTnVjY0nffcP986vJn0eSOv9cBtUTss8svfaR3T/AySa2RGrDRltg6R54P/XlAZ56/7P/4xz8evxBiLXe/wJCX1hoYq5/a5Mu8WOOVN/1etPvPUJ/Ei/ZXLr+V+pWvfOXB32hXrz2bxYvHt/zVxjn1wtF9WXx45cFGrZ0FduTy2n0lN/dqa9h+Z6epJ1t21oatRkbXGqlvfsTEn4bUvTNDh69iORQuH2GFi89fsZLHCxevWPT47Vk+shVbZ/kAuf8RPhu2ciu+ZGrItnpmDx/xi8zzmQwfTjK92mjZ0Wmsr47ZkCMysRQfjLCTh7Pz6gaPvvXPf3jhrM/1oz7ZWTfnzX1FzVwPfQ+096wxjPYYjHzoNQRPYxtPzxamxta+c092z+i+7H5u39t3/lSUZu/L3T3CvS57mPhwxS3v6nEEcv+j2u76s1li255VL7ryzYZP8ZY73+07fTHAyGbzZW++Taz8ytc7CS/akTy9ZO9FOzzP1NXCXhUje7gwUGewWMg763hs6Neqi7660ZGDuTWxPvKDrcHT2KgFXERfnPHdJ/ihi9/9HMb6U1M+EX2y9gxM84ivYtez09RDI2eTXnmQiSNctoiutphs+RRzOPrWu3iy69oCjw65ttjFGY9uOsbxw8bjE5GhMOrx80cXXx9umNkfIPc/ksk7G1j2UXu8GqmD9ddrxZgtLBhdP8IrZvMaHizEF77z7nuyOQzk2d21w7oVK771dG3yjOq9FHt2dHqPmL587DVy9+2vfvWrNx/72MfAPKjpMbnDx2O9aLfhBCMpxWqBBC24NqWC4p1Joeghcq3k9GRashZmcfhUgPyTtaCrT04PVgsdDt4udjGRky1ONq+3Lyd5ovpw5VVOZGLW2yBsI2PxFmN2+FuX5PjWBd5rEf98wm9Tw981Idcel+CVj7EWwRVn/vDLS+8n5i7e9p/D5FDJTW9vInhwNn+255h3ng2eem9Mxpra9Bvt/iaaMV1x7Iv23//+94dvh5qdOOCe/cHTis3Bljtea2892dGBdY7NnL56VbPiZaOhxmTFot8Yqh8ev2GyX0w3cmug9eXExetPf/rT8VDVvvFlBr85HCQW+DDP1Nqf+c3Loxzw1dda+OdmHij4lIs9oab819jl24OJL/XtE/HQY6/ZV8nyX18dza1Btdp633aN5EON9XxkE/br7RdPvkvJrvHVRVyIvJzM2e0eIBf/GYcuvfVzWw3T1dNho8EMN7/iCjN9/lF2G1+8dOHxYX9lQx8vX4fg8tHcQ5DrjYc+DxDqo3/q8pJAbXyB4KcbuxjtBbxz7fhtb9OrJp1fvBr7/DzpF+39Z6i+fPBjj7ZPzZHY7UtNjdoX+HJQF/8htOYaIIfqq3c97Is9/eqph9kzhB9UevHhJYgvC2riRUC/dUPPA5EzDbP4jiAvH+ZavtlreGp51mfX3qQnH33xkRtrYevZhBd+/LWnQzcfYW0diyn89Wkc5Q+GOLtmqSef0RmHnhaxR8ULtz2HVw3EbB/gsbf/ULVojxzMywc9pN+8jYtZnPA1BDddX3jdR8zdQ9SIvjOt7VmhQ8aXBl8LXy8n+HwZ04OTb/r2lus6nv1m79nD9h8fYnC/YGv/enHccwVM+u4zvkDSR3zYp3qED78Y7VtzmOVwKM4HPgxrIAe2zpj69EWM/TVig/ioBuwjdnQ0sdGxlnpNHfhhQ+6e7W+0n2MVh+cZuuzosuk3ZdXOF/te5Kkjopd/uWWLt3HSFasvTu7JcGHaB3r1aU9kpxenHMRmDkMt+PfliR2d4tg6GuO3PmLLh3jiF3+2+PTg8slX9eKz/bxx2h/yCJMMhpYv42yKTc0QGVtysuxhwo5PV07s6LE52+VDXumwW5IPu/KC2fWBnXH3RHgbA8yo2mXvt0/9izBNTvj2ltr3MoW9+MlqYsmHmJxjfz7F+iJ1WBKTxr9rjTP+1OW+7Uu5uK2Tf3Hp/+Sxb2FbR34Qu0gMsIohfj1d8erLPRt702/EPakX7f4cxGc+85mbv/zlL4dPeftBtSavcrY+fKuruF3HvGhzrsQm162ZuPHLo3ytkXrLzf3aOatGejK+NPbqiKfB4Ne60jUXT9c0vvDIi8ecL3j0jNmKQ7zhqD0ZYqNFrUE8evHgisG82vDddQJGtZCPcS9n+Ye1TVxs2zv5LBZ9vGJYGV58uOKzjuqnPmJUU3lrxcmmvOCTVXP4xsVpnp98sWltjZPzKe+NWUzZwYqK1zqx4xMmfc/N5OJ1VvuFKzz3ED391lMvT77lD8O9BB4iEwN5+waOPeke7p7Mxv3ZHuXXfcwZ51s+1hE2+/zCVGMNX1x0y1+MfFt7PT4bekt47MWgZyeGaizu6sSWf5jkxohcfOz4KVfYtfyS82HunLuu6c3l34t2OnStgXqoBb+wy4MNHeeQb3z1wLOv9enKrTqJmUz88jCGy5Zfa+OHIOSeg1xza+TWI0qnPSAHfvhFYq5e/LDX7AE+kdrjtWeqLX0Eq/iMNTb0YJvzj/DpwsNrLcnw6cJlq35a/OoBQyPb+NmmX4+H2BavOX7NXDwrN25fkqP0ydLlx7royRcnHl18ZCyW1TsE85FdMcvfHraurR178WlqED5dxI94eq40bv2Mq2nxdC9RV+9v/AsWP2TiT35sfV903+GPXXh0nK+uR/Dbq3j0ik+8fPH/jne84+all166ef755x/EfAzu+PFYL9pbVEUWuF5DbbB08M4LRacFJJesYqCKyQZfW/t09QqwvultoeAVo3F+w8BrM+SXrFzgaa+H4EV8hG98DZu8vIqJ/cYZDntjVB3Y09XgyDmfNk0b7jA6fdBD+nyzXwqLvPiLYfUah9lcjxc/23Imz/fit476fkrqYNpnLuAOlC/GDguix0cYxnj5O5QuH+ZaMRmzqd74eC4emsPtAcKXQQdc7+CKwYt2ZNyLdhecfOTnULp85FPu+ZFPa6YXi7iRnu7qw3ShKF42+cHLlj0fzc8xVX/+6TWHp7HTilMt/MaCpubs3Ij6ibm9hjwoueCRLxULP8WbvDNM50x0UXEkVye/beMLjRt5e6IeZg1G+Vkf+6kYqo+YvXDoQp2f23p4xQujfWcNWpvk4qjOamue7Db8u/I3j3IRS/Hwk694i128eOStvzm82spbEzwEn56eDM5ZJz381oLexke2duHGK77D6clv/vX0iyEbvHJJFg5+MdnnvWjvPDlvvrRbNw+t9PuiZkwuVrWDjcyt+fLEgN/5LZ72i+vKU5cXA0/6RbvfaP/Sl7704IcE/LuutYfF1b5sn4qJnpiQsd8O7J/syqN9zcb597DjmtwZkh8983gexF1D+40kvp07djCcX79di9cXgCOA+x9htq7Vu1pSg6mh5csxWT2dHYu3urT+7BAZCtt48VeuJmQwlmAjGMVunl9yMrVd/6sPl76GzyY7vGLS4xdHdvk170sBPf7CFFMyPpau+SBXp1o2fOTXFynNGbMf1Ki9Y62NxWaviceYLxSevrH4xEyPPmpPmpM7p/aVuMzdM5xljS2fYkHu535j1v1NPOR+4GbPuiawFw9//GiIL2NxkfGpR8Xa2Lyc+FYb+eKri/PGb/mwo5+NvprKia6WnD6q5uGLvbrmg3926uMHXXvfhk3PF3lt106dqlH/oo1P9vIunvUdjx6f21xT1NeZ51ctrYk1MIdZbaureHrWgkXOTgyttxpq5Evp68nDpNM6JsuWzsrEhidH1yzz5GLR2uNyiEdHy5c1QLDowGvt08WP4unj69mwFW9Y9eUAwzqgYjgml4/sqrc5PPr19k97h53Yi5m+MZ8RO/vOGfKvQf2iSvJi3fuoHPjTOhPVB6Y95z8EZYO2BnBhwijO7jXuN86WNXKP8p9zv3L5LXFzz6v2C3u28ih3PtRjY8ArZ37oIj17MuflSb5o98MF/0G6s6aeyHM4P8VQrXsJJQ718Sc83FvFJk857xrja6j1W3n/8oxcjmRw+bVObM1bV3o9g+Np9MQtRmPkbFhHPczit7+M1VysYYhNu43IWgs6MMzZ851fcdOFnW969GvsxSE3ceAbJ5fv2tOHQUe/cTaPJx7j5uRiEqNxteK3WhuT8V8eyeBFYZrjZ6PX1i+d9MvLnJ48tDORidW11z4Ti9g6P2pGR32sre9laox2X4od6cn5YuuMun6zR7BRecN2zXe/8KLdPYONPyMhJj59H+3/BFIDfttTm696a/KBz6dGp9qaF2s1OgK6/0FX7Lu/wqn+4ssHLDnJmZ582IrPHJUrXGM6sNjq8+mFo38l5DqA+HBt9PxCR1NL/0LPdxZ+FxMunfZxseC1nnhsNPj6sMUjD3N8ewHPDz38AECscMSg9c5AvnAjcbGT664HHfjiUxt+6Bm392AUE3+IXKtWcMTWGphbEzrwzfmgX2x8hcOneWthnC88/mEUH1/xipc+HXw2UZjFS0eLb4zY08m2+IqDTrZkWrxzPPhwtm7hsDNufoBcPoojXPz8wFJba6Kny1681nZzKy/29JzZak6XHT69YlHDZPDdj+yve/fuHetKl9yzY/edbPXy7Lri3g+/vWpP2gMIjljtWTZetH/961//371od5gl0oYThEAFLBF8BTLWkIDTN6dLB87qkS0GPQ3RRwrQuHk6bPN9KF8+yNig5DsXP53iMK7B2rgPkEf8WP/Fxn/+znD51tNpziaemJbwk+PLqXXhMwybxlqEG4Y5glFs7LLduM/1ShZGmPX0byM22eV7/SfjA9/BQm4qviC7seKRy81NxBdE+yo8+nCqgfnSxoBfPuzZIDpuYF7IugnyybcXTU9dXoS52fPvIR0Z+09BrRP9fJzXiS4eOUpPDKhY4ovJWYvIw8QXF9347YPy0DfOByw25ZvtzsnXlk3+jLtxh+0CphbsHvai/YwJC4lhY3qV++/6kJ2JjX3hy5T11+x1F049eY1t+amZm4ILPB5SNxfpHgau+SvXw+DywVZjq++6Qc88fTGQ6eHWwnkSPV/FYZw/Ps03lrO/cqBTvfRo8zAXezLziC3/KB390mIZN98xG7EX/xkj7MUtv2s42RdzuvjJ2NkLzq1e8wXW2ZcTPTp49pV9Aqc4jcn1i2tuL+KlH5aztOtlDsO+dH150i/ar/2NdudADGI7r7v6isl1znW3s2IsRrGy8YBak6va+HKFJ9fw1ap7v+uol5x+U9gYeRDvxTp7v4WDx058S9Waf/Lqi4/MERlKH58NPK25vjF9MnHX2OeHnG4xhRU/X+bFXlx49JvnFx+tX2P27ZPiywZGtS0ePGN8dq0v/urn6+zPXIuMYejzu7LV31isc3VeX/TtHefIddtcjvaKe4a9wxZfvItvHMUvz/XdnnBOPVzbX+Tx+ZOTe7svhGR0Nbh+wOPLqr0Xz5cB+mKG2VmlX57iLW9xNm5t8KphvHISg4bvnPFhXp67dnj0yPH5N5aT+VL+2NARt4boys9ZKx5zL+Xkjuc8uyaqYb896/z71yzu//S82PDS0os8pFfjYtGLDU4xF09zvtS366s5DNhikmMNnxwuzDMumb0kL7b5KJ4jyCsfYkpnfS4fNhmia40b28O75nTFTH/x8OWAB1uNNXjp0iHLnpxNFEa8fLGprS4c+GSoPPGX8gmXbLHaP9ayM8CWLr3wiwW/+Oj71wr9H0fFn39504Wh2aOdAz7II2vr/0LyvM0vrHp47FxjNDj2lP1q35rTh+dFnB8WWTNnvh/ylrNezgiutr6Kl058Np0vfp/ki3a/0d6LdrlZB7m2v3d9ikE86tl5MHamNHtKHcqTTB7yKtfycv1zzujQp1P+8bJRr3TwUH3xiNUYX/01scCSl2bsTIkV0RfP+jkEp4/iER+b/PCpoepDh1+Y6S5ccZxzDZOtVp3gWxMxsEHG+MVNNzs62aYHu1jZpAMLX+z6cLrm5Is9YktmDhsZ1+Lhi2f1yMz5WDLn23n2bKwZW6ee++wrtuLGL1e2dNmj6qGnwye5Zs2TywEVnzXp3u3lurH9ee/evWPM1v9n4B7ut9ph27twYUTi6BqjJxO7mMWuFYPYxaexWxw65vgaHcRGQ/CtGz08MfHDH33yYqBPT56LR7e1xofnOnDvkrfnEvGSu07Inx+xuUf78z2+n5MvJl+oNeJXnZDrK3tUfsWER8anuPiSBz1Ynqv6M5u7N1yH4KIwxQPXHBnLLTz2bPR8FmvXd761CI646OmT5UevyVM9xM8GPhu+0eLyG05+0ikP83I467Alk1N50eEP4RlX72JMl33rSwYLj34NDn4y87NfPPp08mEOW38bhaunBxexQ+JUtzDNw6Wzeumwg9czNUxroQ7FzS5f8OnD9izq7Pf8TsdaeuYLA74Yit2+chbsQTxxwO9FO1w6bHq2eOaZZ26+9rWv/e9etHuzL4GSEJRAkWAFh+JVZJuXnL5CVUxyzbyenoa2EMZss9E/DsFAfIqnBYiHr6F8HZPH+ICvITmFyydqfkwuH+k2V8fliadDCYOsWrMpdvzyjN8amJ8x48GC2xqEDTfZxl59WguycjIWw/oiyyY9vhG9sM2NNbGExdaNyBc+B8yDswulg+OB2Q3VgUH55idfxdIcrvFtMcGh4wWu38Txskkd8Tyw+2maC4Tz0J71oOHmjicGuuEUU3N9tTZGxStWcXXhhVP86eHRwXfDWV/WK319ssPJfOSvmiRaGz7QxiA/Fyv/FNVDjdrcu9zs1R+PjXXpoheuvrjiFUPz/GzM8FYvGZ6x1jgc86XznI39ZA3VS6311thFtrMGI1ux71mIX73NxVq82TZPH7+401kZ3l1JTGzFYI9F8Pl189HflXZ9HsUOPp/s9Yj9YuCLs3qR0XeOxY6PnIsegDoj1Sfs5ofBfBQDFvzO5qj815CNG6wvxpqHcvHYH8bk+dPbG3CNxb81wzvHQJ+O/MS0OnQj/vjtPD3pF+0///nPj5/Oe0EmDr41cemrVbmLWf6+yHgp7jpT7M5I59s1wFyr5tZPQ/BhIvZ04LqWu76qOR3XFVjq5Vrqy0LX3MP4Dh/wNSQnMZjDb83IzFs3fE1cS+ytCb1w6+mRh4HPXr82i5duPPa1ePX2oxjhNU6Gh8g1GGdqDdu/fG/O9PG2ib8a6OHCYYeS558tHfzd4/jWDaVzTC4f9J13113r7wsyHevth+X9kJPfYjFmRy88ffnDJjcXR2suTn7cv/thOV6/9cLG/oPVHuDLl1Iv8uxFfMSOzNp2TvVygVOzh+nCROKBYa7RIy83MTtX1pgcH681p8uG73gH8P2P/LKho18faiEGtP7FROYM92LcWqiTL+quEXScadcjz1tqpffDMc8/ngGsmzr9+te/Pu79fHh5af3LE0/s9mJ5irG5sbzFj6ceSNzVk1xrbcnlqv70xcieL3F7qWAvwYAfGdPRIrhs4MWPh98asNXMNaRnp4mNPluk1+jseOf05KheMMoZD5YGV503d3ZwtMZsm8ujeJPDRzBRcn1kLNawzIuXDgxraO8b80Our9HDE6884Fkb13l7x2+WF2e6sOhofJrzwVcxwYFpb/qNTXuTTzbpyc1+4Mt+ZkvePjGn67ogx9bFvcZvwbZ3xVWuxahfOtcIdvHAdd98+9vf/kT/dIwX7f50jP3urIih9ZRn1yaxVGM8epqcrEn37K7T+GIXd5gwamrGHyy4Nb4b16tRdYBbLMUQJh1yPuGQkxULvM6GMX1t/fB1ntOBA4/sGvFRbO2B9MyzgxNecj3++k2vvcYm/2qnhalX9844f2jxDsZ8wG9tYSP66tYa4NGrfnDFgLI5Jvfn5ZVetnSM4TtvxsgcsbMX3Au0zpJrlHuJH9SyEZd9Jh62/BTbYpLV2mf8RuqEsrH3/dDOb7S7X3Xf8kMtL+DU1i/fvfzyyzf/+te/jhrAVT8Y5SEWPNcLvXj5qqVX7dgan3OQV40OOX/2QrZ42cuFPj9d99MXB7/krlnszauluuCpPxtNLdh1bexfmrHjw/MOnu/k9gN7sSzR1cj4RWz5FQsZGzlp6ZPBJMOjr3lH4l+rwjOXp7bvBcjELxd7yDgiq36u855T7K/w9daNTvjZwCg/sWnFn05+W2s26rf7DobGJjz5Vg/8M+Fd49ODYR9EYuIPHpJHcVZnWHjVmQ5e8bArJuOzDC9744ietrT+ydqz6fB59it+vPTDyIZvDaWj9mGzdZ7x6LlewAxHj+xJ93R62fj+4B5rrgZ0rbVxPg/j+x949p/nQjbtY3uLTzHZi3Dw6P/PX7S/+93vPoLpsAhCsKiiGMcj1xwSSUiqTaYQ9BSFTA+jYsFBFgZPzx6Z038cggErKlZzsRZDcrzHJdhaGPX8x5cLwoufv40Tr7zZXtMnbx2u2eYfVv6NkXm49OA03/5V7X8fbD7pF3tzNh2ItSm+fOrZ0F+C116BHy4dh9JvlPdPxhwaD8gelH1RzxZm61kO66PxxhSPz3Lw5VJzUe9AOoy9eGLvIiBeZ8NDhj29awCr/WvcXF7szZG5vV3ucPBQdsbi09gi8SA+d4+zwdPycSje/6i24STjn01y/DDE1zXAl1ljtfHF21z+YnbuXTTJ4YQBWyzx+C7HQ+nycVus5OVkzHZrZdy8nMLiL59s1cm6qR2bYu7hohizM7enPdC0t8nwrVN2sFF29a9yX/3E439jLd7Ve60x33DglYv10eDVzvW9Cy4duHclsbRn1jaMYm0fiVt85h6U1YKOpp72jSb2xUhPjvj082ccPrvq8LAcYMAUg5u2m7k1Dkcf5au5PrlcqjNeceKLwxxuMfJLVm6w7EV7yzXO9c1/wPLcc88R/YfewXjED35/8Ytf3Hz7298+XlRU12Imrxb2knqIpRdr6YvZg3svK83b/60XXQ0frrVWE/m37tXBfFtny3lyPd/rx11S5ldMSM3VHq/8wjCPR19LLx29eOCozWIVJ53WUA+TrH2RHB9OfPP2STy6CA4MdTGuPmzEoFdLDaa5tnGQbRzriy6SLxst++bWDrY9yTY5/2qVLzjVTpzp6unwsVQc9rgvyfYXP+6tvqT3oj17ttWaXnmJJ7/Fg9dexDO3j30R9cXPlzm47lMeuMUmhnyJVw7i8Dfa5VqecGGicqArpnj4rY9x8+xWj104Xg7ISzzsy1OffzXQ8OSlkWnGEcxksHr+Tk8s1Yjcl1f1wHftUye/3eslOp5zqG69ZBerFxy+RLNjT8e/5DNXE7XV3P/5EJPYu74VY1+cqou42dNDbGGXp/qY68O0j3zhssbs6MrZD/y9kDXOHj47teYngkeHPzmnr0fZGeMVvzki19R198nihME2Cj87fHLxiFuuZK6BzoVaixHBo9ccL38w8pMP+wa1ptVQHWBF5mT8nrHpwEmHXfZ6dW1/Fls1FY894Dxq5Nbf+UPWDt96wioH8cNo3Z1NL9H8MAwvTD0bMcFyD8NDeMaeU5E47Rn7Go+dveJ7hHPvvqNO4mBXXQ/j+cCnJxc+itkYz/OEL+pP6m+0+9Mxn/70p48fAsqRDw3xjVoH+SO1o6MXLzlSO3ssvpiLW06atdyaWhv1IqNLbgxDXzz8sOOLXljk9tXGDANtjdnEgy3W4oTbHksPXv7jwcvmADt9hKNHxa5nG/Elj82lvUgn+9VvXE72kPWCAQ+/81Ut8OSg3UbZrk264pB7DR+va10141f8/BQfXXbibL/zQVfLNhv68nGvcF9wjtnLz3XfL76xcf33gndJTGTVrXj18Ku/2MoJjjF8vXPr/Lp2sJOj+9Kzzz578NozfiDlzJjLi1/4+YCFb187L3IVg8aGXnnRDVdsYmGL6KhpvymLLyZnhR65li4s8/zQqSbsyMsfrvzTZaf2ai5mMZLrxefeDc+1FI77hjVwvfSMBYcvrZj4woexsZBr+O0ZORRf+bDRYBSLGogvH3ThtP/ESlb95SSmiA+Yevc/sVcHOGKuvvyShwcDHmx+NDps2NLjS63JxIRXDdib1zc+GJcPGLV0YEdhy98YbvVbLDZ8w0KLIe/VTV78h8F8nG3Z8w2DjTzzw+yMjRcGWfZ6fLZ689ZVXnDTZVc+dM0XUzydDTJt/dK1xjBgIzr89axgzTaOYsnP7l+8YoAH2xm1VxBb+vmTh7m1cm7k/D//0zHvf//7j6K6OfuSrcCoRFqIg3n/Q6I9MHZoJMNGD0PybUIYW2B6eHoLxKbFrbBkqPl911e7YshmlfKtvwstxl18h9nmZ1Ou8tp2xuOrvI3T3RjEfT5M+Vy9eHp8jT8NLoJlnF3+DuHlQyx0qlVyGPGq9dqwo5NfsvTTK45dbwchXXwv2v0TVF/S3dj9iQEv2n25gs23fuuRTz3ip7Z5J8NzqPnQXLi72IvBQwYejC744vTAzm9+4BkXU3P7ALGPjNmSGffiihyGmPRk6pYfcahtMdOp4WWXn3o47at47IqVD4198TqrmnPrOiBG+VsTuXvRjsid/c0BRth8IzmI4S4kNrGgalBcMGA3h3ttb+XH2noYyYauFwVyQ+uHL3PrLlfNnI2YfAG2D8sDj0055nN7fjXUhX7l18bFlF+5avzYA/JRbzlUVzGd63AN+2E8+VzLafnsr+mEK3Y3NiSe1knvQTcsemKXhz1EV37k6p8POmciY69nR6drR7JqEQ5s69CN3EM8P61dWNnzyUfxJ+cLtjlZcjwxwCx/9gi/ePDI6anHvXv3jhft73nPew7d4jkmj/Ehrl/+8pfHl34PG/zaG+IOm45a2N/q4Yz4geJTlz9j42xbEzb+9ZCzYo7wtPJp3hq118uPDZl9yqY1kLf6qx2+M5VPsb0WwSkvYzU1L79r9mTFS97aZGc9xENPvOGqTTEtPns2+uXTxYOVD2O10Z9p+Y1hiJW9WmrhhcknHfGJg41cEJ2aeXmzoadlb334dV3BR8la53j4fJQ3vtjw4ISLnx+4vix7acvOWttj+q7B9MUrDnb68iajZ3+0VvIRW42OPdWLdntavdy33MvZ2W98VAOxkHumIEdk7VU+UHWEl96uo3jpkCWHg+jxU+9Zwnq1Hvjmeraw6O8+WGzybIuLnTq4N7Ve9KyH62rnytj1AKmPFxa+ZKhPZ9QLQ/8qQB293BCvdfNCsjr6FwBw+Fcr4+6JxW/t5EVHbrD0YtfHp4PwxaCvjnIxh6keYuuXIewpemLyMlZ88lf31peNWtbowyOvJnjZiKPY8MhaB/PIuHrpxbfy1kXPHsFqTcpLjeh4dmqd9O1ZtWWTvfnZD3n+8wETyZVNNVTr8MjFBk88u2/IkFrQgVEtzFtb8nyrQxhsxUCu8e+52r7Cd07tB+vZHhEHPfmrh7HnSy/y7FHYdNl1nmCLRUzFoTfnA9G1z+3n7jd8uK95MceH2NnAE8fW+AC5fMClp6Fyy69cnn766f+XF+3ytl/54les1kMtyeSKr0ZqtzHSUctqurlV89YWBoKnVp4N8kNW/vBqMFprYzGEszpw6WlRtTMvFvbtN7rWT08XhamP4sG4RuJZ3/TkFQbsaqCefOKJxV6hZ17sdGGYG2vkeNbGnnR9goPO8dGLB6N4zrHTUXNyVAx8GCMyGHjWTfzyJbdnxC+PxSEXH1325HTpwNIQ/+T03Ae07qvOIRu/Rc6367/rsFog/vmp9niLDdc6w0D0kDk8tdPz52zJTZwwnOV3vvOdB1+MdP3rcue5Ob3q1/rQ871J7rDwy1EvZj7FIg73k/CsKYKrpv1QQW3gwYVPfl4bPARra1KO9NWev3yqj1jgqjX/YuKXrtg9t3iu8ic1YHlOtwaa+2IYcMRgjuQuFvzWqX2Dzw+d9PnSigeWGFxTEBtzRFa+5tXYmA/XFLG2L8irOzu+4erhFgM7/vHstWzgqpH6wBKHRi97unzG48eYvjH5bcR/uPQ0c3xj9vwXH9/2h71Np/j1ZGyv+UsvH+KJd1ts8dVFE0uxlns6YV3zzS578upnLDfyrZc5Si/sfLGjY707N8nUJaz2WTWxJ/izp535bOnDFKOeP7pdw4yLQS8u+7/nKDaw7AHy4tM7b31H7j9D9a/LUZjF/lr9I/9nqF60O2g2jMNrjCSEKlSBCBjRVzxFppu+ArFpA7bh9Cj95goC0wLkq+LQx8+3+TXiG26xrQ7bsJd/bbx+s7umd40nBvbZFXP56iN6NTlXo/xvLsWuvyux18QAP8KzPmG2mZPj1/CKUW7xzzatWfph8V0N4sHLvhjoGNsH/nSM3/h0k3d4PBj3xYqeOLT1CftcL7p80TXeGuA7iD1MGDuA9r2LhS8ILqRIrLDJ/MaNdWIflQ8/xnxpS/jZ6GH1gGxeTulUF3xxnM+JeGrZnP2Zy7mzbE5XfuJrv8mvGnUhdHHs5ZuLm99wc3Hy5ZZf6+Lm53yLFS5+NeCrmm/d8a8R+zDgaWeCzQe91v5cZzbkYvbAZj+xoS8f8V6zYacuHu5c9Plioza+9HVhxtNuw8h/sZpXZ+PbqNzLrT1Hny/70w2p9SkGa2v8uHT2u3mVQ77I6GvIPB5dMZqLiQ6e+ndtb3/AoyMXtTEns2bmWj6u5QUX2SMwEJ7GVgzqV1349yXSw6uebOOmV7zFTqcY6MJF5WCMr4mDD/tHPOKgVyxh0yGzx/wg8aMf/eiNf0kW1jF4zA8+vGj/3ve+d5xNMcmlGIq7Pe6hBnkh4XrrLNPVXGvtd/YIlhppxnTImvMtJz6M5Umu0Vcj9XQdU3+kTq4hPYSxexjBQNUb7l2pGvDR2pePuTVB5dv6nWMy1+SXLJ7c0dpW8+pCTj8+Xfm0L8qRXFzFVs+2+rNlp7UOZ//4MNnRR9nj5wPfnExbPLYIv7zx2FZD2NkeypcPZ9l11Ms2e869zr3TmrMLN6x6upp47I2u1+TWEa+9Z27feSnsi3h70F52L4dhv7E1VlfXKHvbD+6LQ+z8wEP0UTUuT3w1gEW3MXvYiExjm7060KWHjDU2xaWe5nzUL5bzIu/0YIlB3NWDrVjN6Rvr3b9gqoVzby3YVV/XRTXspYpaev7pt+Tg+nMzvhdUKzW0lmIkF5d1U1+5mfPHr3jKC78c2BavHnZ56dm4PvVDAHb0+HWNcj+XAz0NVXdx8A+H/8XlF0/98Nlkb77xlR/sbMQgL0SOzI01vuG1n4pBrH05V/9dB2vU8ydbOOytXz7g8ENuLI4zlQdbdtYiHl25hl3+i1H9yOCzdZblVF3ohyGn6tG6wxCffW8vibkf8thr9kkxwZGj3Nl41nc2+w5Kt+c4uGIQDz7caoCvtnCN7XO+4lk7v6jjJb5nWPmx1z+MxFSd6IuhmorLn7P47ne/e7xwl8vjULVwxvxG+1//+tcjP7nBbE3oaeaudeIQ3/mayka+9lj1KS6ymjppSE1h6vODDweGxld9a0FHfWBGxunBUjd9lP/0qq85veqb/vrHy55duPGyEV9+6SSXQzZwy0Md8GF2ztlrbNnpsy0OPZ6Y1a56lj+bdMPgE9E5E/21ha2VS/qtXT1Mes6j+PMVFpkzI05UnvQQfBjlauz8OkO+d/Dj/sDOPoXnPutMlWMYZNrGTAem2Fz3yFH5ikt8dJwrfu1H/pC5l2Ku6XISjzicZ3PXJ7b01UBe/MN1DbA2fFUf/tkhWGzJxMYWTzyIrmuUl3hsYKpJZ5AfDb6Wjb51gM8OrhZm9292dOmJ1/WLHrn7XNj+VY5aeNEuJzIv3/G7H1eLrbG6iB2PD9jiMcbvWkGu0dfoiYVOtTsSvP+Rvmkx0mWLqr9atr5kdLO1J9RXU4NIfhsfvjojtYdHv1iN+Q6brTESR/Hn9xDc8hGW/JEYYe2e2nzCZpdPvXjwHkYwxUT/tXTh0GWTHd5dfdFFMNREM5Zfa9Y981XN//ykszn+p/Tf632tBuzUqfVna434c61xtltzewFV/+Klq+5yr17lbg97jnIO0pcfOT/ZOOO9z/Ev0l566aXj/0vjr7iN70KP/KL9gx/84FEAQXgQadMLDilSm0Yw+IpggfAlREdDEjVOTsdYKxk6FSAbfb7Sw9ux+W0EUytudsXE5owjBzzxIXbs8dIN03yxDoPTR/mwQYthvny+bSw+bb42Fx81ss0lvDZ8eLCvEfli0MHTwjLmTw3i1WefTnP+l+jzIyd7wRhv151ttON8heHAubg7VPx4CO/Ls/qy3VhhxochlzDJ8oUnPqT3EoAvNybxOqh08NzI8O1X9uTGr/WiHbbYzvHxl2868nLW+INf/GRROZCxFQMqn+zwl2ceHj/ijsjUVY3st2TNxYQnfnL2LmwespA58oDVb5Rdi4OO+KuF+ZnYlRNdMeCV9zX9eOyyZZctHntf0P1wIB9y8lDWBVZ90Pp1Ftn5G6P2gJq7AcjVb0PR9WDjgUttzMOv3niomIzjGT+MwpKDsYbY24u9aO9mxYf66l8PrZ8zTnUWg+Zst4/bW+zlTxdPPHTw8boewC5eOmHqEV1jsvbZIbh8bH3LN3s65Fr+863n3/XEA7y9Ty8bceafLmy9tpQO3sqMwyu37M82fGnW0Z9iev7552/e+973Hm5Wd/3edcynv6P8ox/96Njj9mfXFxj8yt81z8sP+1u96djTvdiAw1YuxaRvjG//afJWLzxjtkhPv3WKJ4a+BFgnZ/G8zgfA/Y/FKR48cWt3pWKnX4zlZH7mwZZPftYeb/dzObl2GCN5l78efvXR9zBJl7wHx/YuH7DYhVOcYW096LLJF50ID515+Ow0WF3zzfeMdx6qByy2bMTLrjWsXnSM5bXPN+6vcOwBfqJyY5Nv+D0468XB1phP9vYgfC9inW+4sIqHDl7rIR4Ynif8lli10YdrvHlkmy6ZsbY1LZf6syx7cjGJW670YIpVbNnp16YzVzzFiC/fdMnN6xvT49f9jJ98OYOuiV60e+bxBdZc7z7n+oCM8+Vl6P7QhBwefNe2zod6l4cxap8Vr75GXtx6tn6b3fqyhytef/7D9cp1CrVnWhu19TJCTuqqsXed66WkPSA3OfFfPevh4otXHDCMxYUfkbEpT/vWHKWn19iKTa3st/Yc/l5z6YrNl0Z9tunzEWZx1POtHuRIXEtskRjompdXeuXSnB59NSg3srCLjxyv+OwHjdy/nPJc5flKfOtD/ho7fxrB+vZb5+plT/FvDc01vlB5ioscrkaf72KGQde6t/a+U9jH/G5eB/D9Dzb5wKIHE75rztve9rabb33rW8ffal+9xXitsXiR3xT+7Gc/e/P3v//9yJkf+9PeUB96aid/928xWDv5tI/hGNsrenZnkoPaOOOtD16NPmxzGK4halST59aXj/aQGBvTY4PCpgsPLqLDRhx0yhGfbhhwNhd8rfXlEy6e2PQIXr6NNTiLnd5hcPmgvzy+w2vt2Xf9Sbf4D+PLRzbNk7OFY7+mIy48PZ5cznWHUy7GcMpJH09PD1489UH4SE7G9tJi4PFPjt+Zc366nvo+RM812Etee7L9Ajt7PQy65Ki9yUb85dB9B9+54o9dL7c9uz51+ZeX5OoiLvve9RzZP3xYEzy4xQ7HHHXNFxd9NdLowO2skWns2ntsxC8G91E+q/Gek3Imo7v2xtvEWOz4iJ16wHGN8kPl4vLDb99rfX9gay18r/WinS4ba8ovgtl+kkt8+RrLUd7qYo+w51/PVi8+RI8OPEQmBjjG8MnVQkPw2XumSI89uWsUTLFoCAYsMcTDN2ZXjYp914dMw6OrqQXfMMWmjnynA3uJnpjzR0Z34yS3P62RONVO7eVjzm9x0d2419eO+aV3V6J/jcIoBzrVxJhcjNZEDcsTv+cLa1o89eRqEH49uQZHzsZw12d+9ekYZyuWnt+rl7Xijz5f1pCO57pdT2tJXgzWwnUBuUfCTkdM7U/7QJzu31/60pduPvKRjxw25XVM7vDxyC/aP/zhDx9JCbS/jydJxLnxFk9BtAoh0ZWzI1MsVJIWE58+skBwKrqev4p8KF0+bisAewRzN43NFJ9vlM/4epsK0eEjvPyxKT4+aofR/Y9iJ6su4axemHjGFtqBZWMDqD1+PvRwNu5sq/Viri/j4iqmbM965vCqwcrD0JOLR9tDR5+cHzmpvTliY6PLD9FBchN7enjmsPfCzI/WAaFPD+4SO0SmnQmPrfiQvi+WxeTw0XFAyRzorQm5hwvxLLGRc3uOTfnSk2t1IROr3nq3xmKAs2Su0a9vvLJ4bI1habCrc3ng23Ny6MKqNuJ1gdKM8ejo5eXBwlmBr3nx7MuQHIqtfnOAoZGdqRzw+dFuo2TZlCN9uckz/3ovFD2MIHN70D8z9GW7NSBbv9bbF/u3vvWtx0WdDw+X8vTljw/XRi9p5B3Bt7764pRzftZHNnr62WSntrD4xmv9PDBYN3tQs0blne1iP8q4OLaGsOOLiQ/zfbASQ9dz8dKTN5zmevmEwaacwq/nE+npoWTsEdulcudHq+7szOvtXw/r6ggrvtjuSsVCv3qE1VrwSVYNNle1I7eOvWh/kn865je/+c3Nj3/84wc/lPRSqvrwrQYe0r30cI1DHtT9ZlAv0vDKyRhtDsbWxh6svnit3asW//2pdnBdS/T0xYea/7fVqxy6mlz41Nig8ntV89X90vi2nq2Y7RXjXdfizIc5yo95+xlfXV03euhON3w9kjdMtu3B8hGDcTUsBrb4Gt5iVZPFLi88Y/42/sZwyFsL6+n6iC8fjSzfdPHWPhu9RkZPK17+NdT6ubfLv9iKg28Y/Gr0XWPtS/ckc3xjsbJn0zXbmWpd8MmrtXiQOR+uWXDpIf1eU4uNHb9nKld2YZ91zMnsMf7KzdxeEa98wjLmt/otHj/VW+5h0Rc3TDwkXnO+t7Gzhn7Ixle1cAbF04t29STTvOjNn5cX8OC/8sorx33Ql0s8vulbV1j8tBe2Lw8xG5d7sYcv/uSew9yTW0/3b38ygG96qHzKSQx+MYBtcbneuY/LSQ76vhzzJU4+NFTtqi2+NaC7JPbywCfXqgvc+Hr7H08N7O8w6UfG1sWzpv0OT8z0e2ZLt9oVA+z2FZ1wyY1bz2qGJwYtrHOOdMLV08tfNnyRiRMWqp7w/AvVpy4vyuw/a7JEDw47z5VeOHu5ZG5PdVbsK+OuH+UGi+/WH59POcIm45ed+NTe2ttL/NClt3gbX7mSG8PVfPF/y1vecvPNb37z+M322+wX69q4Gsr785///PE32u1XZ9F690wuD/tHDexxdtYzuTw0udkrxmHzW/zqBIMPePgbu3G1Uyvr4ByonZYchpjIw+BTTHo8dnp6MKs/3EjtxdI+EB/7fOVXf6bWgh+YdPgqnvzSM0bhGYt9cdPXqx2c9M3h2IfiU3fy9ODdRnQ0uGxhWEPzYpW3OeJTbGqpmdNDYcA5Ex/tebEWm9rQDwNfDPZYPmGxpVdd6Nkjnp09O9L3wyk2ei95yTt7MHavsG+N+BaHPY0X0bGXtHzxI2c+4PHvX17yY65HdFB5wN4X7fiofJwLMbTXWk89rPau/OjgaWJvLkYv/NSPHVm4rQl7ctecfIuD7+Z09/rW2vCDj9yn1Jgdue+frqO+o6qBH0y+crkf+1dAzj2SM3v6alXPn3jVmw/25nTUjA8yfD27nVef3S9qocGD0z3KmG11tNf5Qvitk1qwrZZkGl7+w4Cp4cPCN9bEJr96Y7r2jUbHvOtpa3oENB98w9bCDl9M5Py2X+mpu/u1+smDHL65WjYXE6xrBBfdJr9mc9YPA59P8eZb7umL2R4RK53qZu3s/13/sOiQFV++4DcmM9bCTP9wfv+juNhq4lDPakXNOqlfcbs/+CG9ZsyOnB5fYdIXJ+p6gqfZa/T15vat+/eLL7544xfN0bV4D8EtH4/1op0TgTjMgpEAXkXTa5KUWESn5OJtsfHS6SK4iwNPkVF8hWDTvFgOpflgR49+h4Nu8ZHZ9Gfiszz4oFfO6aajj2CfDym/CP9sszmEoccXezdb8as9DD6i8m+uD5Muu9to87uGs3awNNiPQ+otny6YfMujvNofaiUWtT4T3+zURIPHjq4GqzV6rXzO2OZs8g/bl7H8kBWjg+yLpz4/auNC5Le4jeMvrtzxyWEZy0fM/Brj8y3X1htG8sXFZ0MGA+UDX6NfI4+vVy+y7K0Hvpzh8Y9Hx9yDYw/t4sOTC3sPFuI21veivYdNvhE5vPYRe+31Upjit9fMNQS/PMg0F2QPhoieXHyRcUOsLodwPlx4fSHzU041guvhzot1vzHAh7GHPxd5VJ7lHY8PMrUqvnQPw8tHeZjTIZcfG03c9gu+2MRk3g3oNtzw79LzwadWXeSiXmRiXL642oPtGXJ67MRULuYaG/jyoKuOUT708BA5verBFs98ecZ8ITp8LX5+8X0p9sDlAZRueZMZw0I7PhjzIUe2SDxhiNucTG1aF9j4ycQDwzr+f/zpGL/R7kW7M+la5QFQXuIUlxp4ye7FlQctcdvLXkCxsbdaOzZR+TRn59pBR45yYltN0tu+WtFHMMTINvvWIDs2rTFs1HqtTnrxzjjx9cVsn8ih+NMpHnramVrj5OraFxu67Ols3OnyRb8c8Nsv4kHJtubw4KpBesWm54sOW3bIvP1PzhYGgrGy9i8ZDI19cVcTODXrDUfDQ8VkXDzyI6dHzq+Gx0/z3Xflan/0sre88MQLX/Mw7ZrtTPGF6PJlTk6vGI3tdS/ZED0yewFufg7hLR/Vo9zDXvVw6YhZnq7h6iZWcdFBYgoz3mLBh1PN06XTvcCYLT1NHvRQZ9O1z30cv5p4Hvec47fGtb6AiZUsHC99xaG5j7r/u5eaw1Nr+Nnjiaf9JM7s1dkY0dMQX2Sa/SpG1yo/NDeGxacfeout9eKnGMQhBnmyI5OLa58fKva8Yl9pXcfY83EbiVdduw6d9fhhr8mDHp54jNnCEAsd9eiae8ak15d3e4ccprF4w6qGepibA9/4+sg8W7r2JDl8ewQGUtczLb6xlq3e2iBx8oH4wIfvt9nv3bt3nFU8NsUdlpp4qWR/ec4Sh/pZSzatrX0Gmz2CBaMYDublQ37VpOdX8clV7f2wzZ5AMPDDjHcILx9w4sHly55yH//GN77xxH6j3Yt2/8mj64PrRPtETfns2qEGxSyXSM3sazx1L25jjY34nRHNGJV3PTsNHt+a2ml02PX9yL5sn6thdaTXXrA+8Ko/nfySdZ0uPrHmq7H+TGrSujsb+aYHC3brZS6m8qAjvsVtH9HV1jdbvuRqLO/Hpfay2PJhzH9xqr1WTvQ21vUtHqTGYZjDQtnKHdHjT0vnEFw+ige/+llr/0+XPeP9EL57qO9FclEXPFR94cDgi9xcPtZJvPgasq/5gG8ME47rPTsy1xDycqg+7LuuqlXrAqNzwobMubDm9NubdMRHx3nTy0Vs4pRDsdOjX4zpyEk8bKsb//zgabDEAMuYf/WnFw5bPD6Q+5x/NQAbue/2f9jRc530kt06uJ7BZZt9fvkqXzlo+aajLnIo9sPZ5aP1x6cnDrZIHuWIRybe8/rCsH78IVj8dQ/HKyZ1aB+1BmTG/IkBpWMe37h5PNcVTV3IrK/9YXyNxCYGPtmg+vTpwLQX6cpDs7ZyZMs/P8atrfrjL8HS5FOMK3/cMSyYxVK++OLZdROT2NXGuHXiW2zm+J2N6gGHHJGbty7x2nPpsS1fusWilmLS8O2P/NFRb/db93FjPDGrcb7tP2PEj7jpIfmXY2eBLz+wevHFF28+9KEPHXrldkzu8PFYL9oFIBibpoOHpzACEGyF24JWOHJ6kstGrMaKoCgeAhQDbyl9xdEqRoVb3R1nF09cGn4+xKTBEqP4fKnwEN9PTMnk3eKGF0ZzPSxEBit8fhuncyiObnUjZ9sNwrz6iuVsH04932qkrucY17YYHbjbKKzW7za9M59d+Rg7BG94wxuOF9jW0AXXFzS/NeKmbGOLV4vCELMGT6waWTUpts2tcRhsjdVva1cfRdgAAEAASURBVLi4aq65EXkZ24WIvnqK0Rc0N3U30/a7eJ0Jv/1Jlx5fsOGZV+P8lyMdusWmr250kqVfX87Z4ZejMT4Kf2snJvww9sZrz1kD60OebhcuObP1Za/9Ze5C57di6bv5u+nTkS/iPyy45VmucNM9DB7ywUaDo++BRRyo3I1hLp/M2om3/PUeRJxvusVknK09y84PYIzl4qFGnfyAhZ7rhb3cwwT/iE/6GpKrFl9fLMbrn352ZCuvXvS1cOMXO4xHpTBhnGsYrliM6drf9pG1QLuHilt88ow2l3RgLeFHfNXwxVVsxUQ3mzMPH4+PfpCmtmLWnFNzemHUh2uPOAv04JAbNz/Hqg5ipEd/488XeVgeKnxB/8QnPnHz3HPPHXCbR/iP0vP9q1/96uaHP/zhgwdu6+WHC30pkD+eePuBkzy71/MnRmuIyrd88Kytva/ZC/y2r/WN4ZQ7O1QdyVBnEX99HMLLR3y1g1sNyenD6QWKZws8sbce5jDOhLdt5ctnH+HbO9ZO3nxramvuenHNVszFT64m3SvYywvfGOn5xbc21ZMdH+RybI5nzgcclE/jsOiw1dhWT3L6+uJz3ew3R/DYWit7xrqzNUewUNh6xE4zhx3PFy4NT93sR5h8WDe4evP8VAcY+Gzch2Db0/D60nM4unyoS/tdHNVEvK7lvpjKkx3iVxz6as4uYqdVp2Tm5ZeuvnoYb/zh6GGEQ+88plM9xY/kXi78qodmXHzi5xOPrnoaw7f3+sEEnmde69AL7a6RvswYs4HHh1jg+hvSnoO8cMmPuNTS9caYjd46aGLDEw+ccpCTebHSaf3xnS9x8M/Gtcr6WSfzrRksfuTIzvoi+dnPvnuIl51ngb6kiZMvBG/rfjDvf7B7GLGFs1jFJz9ta1GecjNGYqEnv82R3PnzvCWH6mTPmiN2KJ/H5PSxMRpr7OC1PieTIya8zZ+dWLUwjFdv8X0v8Czlep0e3WKGLcdXLr+dqamJeNSra3z+8GAjfetFH576063WxWFuL9gf/Kmv/cTOOfDboa0DbPooXDhwYfAprif5G+3y9s/Y//GPfzy4LtmjXXPtaWe38yse8dJx9rRysdflZC5XrX2mVyf5aWT07KP2HP7ep+iTa/TJnS8xqTe5WtqfYahd50Ev3vVDjvD5UlM48PW1bOlFxtYifHx14BtlYwxnbcNdGSx1Yed6oxeH+mpsxFfNzDt3sM2rNdxrRCeCDy9bfdfe8hJPLTt67IovOd+onpy/9Hed8dnp6V0jfDb6xu4R1sl3ejxr7Vos3mLSw91aiIF+8fDXtRef3P1c4zM8eq2nveZfxdhvYmfPv37zaC/DoOvZQCztSWeCvrMbFTss50aP8LXdm+UCf+NsHfhnQ+Y6ocmRvBjyi59vMdpPej6yw3Pd12t+MOj8e3/Flq46+C5uLVwr4CK9Jt/uE/RRMerJ80uumaPmerlpjem0Z+GQOSvFyrf19Czhl970dPDtIT8kEBcbWGSIvPXTq797R88W/KuJ7+Fw+Kv+xrDkhMc/++Z88WMOR9z8LZlrZOUKC7HV7C3XWzrW1Z5pr7I5N7b5Ns5HvluDrTu9h1EYfCEY4WS3suWpK/ts9BuzudzkWIzyVl95qgd9snzo1bvntXKxl/lDaw+PfXvEmWSLYBWbubVPLi7Y9o69Xyzw8PMLG899qdoXI5m43vzmN9984Qtf+N++aBeMoPWCk4hA8eJLeokclbxEbGyJRHjsbcYuGop4JnpwNPIt2jVd+qgFMeeXvXH89ZUPv6nqn5Y67OXm4IqxhTr7PM/zVw1a2PTIo3TPdSlWeuKEFV6226cTrxyb6/k41yHMs3125Newkp97+A5hB4PcYfCb4L7UODwOpAuhL7XqjOeg2V/Vpjj5Rvg1c3zrsfFtLcPJPpty0VcP/t2kOvhiF4s1tweQG7N90Yt28cKwTs7E3/72twOPHt/i0pPzQ7dYD8DLBx4qVvkYu/jE06d3KF8+zjjxt2enlaM44MoV8QVXrvTMyeUrNz0bOuZyLD7rV0z0rKuXl3z54Unrunp8iLu6FNfGcgT2Gh/lFI5rSrhM4dJpXN56fDlq1pedPFyUzY3ZR/nAq3bGaihn8nKE4WEtnOLkN0z4G2txqmtEN76ePSrW9OrpaDDCzj6dR+3DZAcTxWt+MC8f1cY6qBFSA639gldsxkvVHE5rRI5fS998czOHq7+N4FovN2MxImvXAytea7T4Yerjl1drpG+8esblaxzRRWTZNcYXkz8d88lPfvLmfe97H9ZDczsUXuNDvfrTMV4i8eGLi2uy3MXhDNu/rslascuXDAY966m3znrUetD1XOA8tGerQzhsqvWuNX8ozPZN8+I5lOYDny4/dDXxaK5Hrm2uW+TFR/82yh95+8K4NYQr7nJobn/xxSb/5hpd9mHAQ/E2/q4xbNS9nOjDZVPO+vyzM961Sj+/2dazN24eFgwkp3DpiMkXIvumlygwrLd7eF9Ui5s9YqfJJV96/jRE5kxq6sEPG3vS3Nrx0zOCvmttdYDpS7f7s7jZF0M1NvdsAl/P1p6FxcYXUr8V7Qfq8hRXcvuIX35qxU7vriRn+npxqRe86oS/+NWuWunLj31Ya4MHl3zrY979avHosPF84zpp7Hmcb3XAaz9Y+66dfGjIGvkhu9YLb7XDF1tnAbZnJHMxmJMjc7GIU62NW8f06bLBN6aXvnUsnvKjo5lr4eHJSS5i1OBYZ2Okznxp1TxcugjebZRPvlD7UV4ILp3qbwy3GhjLp/j1ZNnDMLammrjp75yNuWdZcj5ROR6Ty8fmGk+fv3zC05DcxVxceOawNMQOr1zx0ifzL6nu3bt37L3OPXl5WA9jP8BxNp3bfNiLrUs9fJQ/WK0VOzHvtR02Hlx7AQ5bPPF5wdYvBNlryck0RFezvnw4M/4z1O985ztP5D9D9Zv8n/vc546/0S5Gfq2fJj/58Ok7jLMqFnkVr7joIXznUk00GHh6+vZK9WKTLzJz+fMHs71Eh01y66LRw7P3XMv5qWZiUSsNsSfX02EHPz/mxULPnC2dGpxs0qdTrcjNybTm+njLDx+vvOGLo1zM6dWK8QC//1Ftlpf+9uTsEVxE3n6NR0dbXHrWXS9eMg0VszEdcnV13txzk+P7oZL3HXDOhEe3OMKDoz72FR17xZojc21j42dbODDaf3w4k/a051Uy+ah7+wSme/6b3vSmI5f2sF96cv/iI/96BLf9Ww3x+KXDX/llQ+beoofJbzh05IvKSW3FS1bMejbuY85G17pqRc6eTvU0x6cjN3iw9WrtWR2fjrFrg+uA+NSOnWtXL9qLUWya/F1fWzd2+HykKwb+mhdnfDJ2Wjpw8Wtk8sJXQz1SCy/aPQ/gwbZu/eJb69xZgyc++jDZ37t379jDxnyw9zzav1KrPvX88iVHTR41fM0c1hLf5dwaiFds5WYuDutAh0+11cNFdKtV+Cvnh0610yO+i808POMzhaFW5SG2/IR5mx05fC0sOGHpnaHFUQf4/ODLUTMWu7G6kIfLfxjVNjuy/LinqSvd9MnZOEtwjdsv8NdP61xs5Pahe1Jnt/zI6PtB+Re/+MUbfzo9X8fgjh+P9RvtghGkZGwcc2PBmuu3qGSbqOAtusMvoS0WPfYeaPoys3J5wUZwkxnDPRN8vhBsrQ2XLbsansLaOGz7DR4Hlo5c3XzcOGCFcfZ7np/1ir0FTR6/eTjmyfCMH0Zis9HQ2Ud26iBPDcnN+sGWa/ZkxfNafuku8eHG6GIoDqS+bh7W31qK1Sb3pwncFOl1SMobr3XHK57k4ipueCgb/vItR9h0F0e+4TvEfpO0Cz5d+9EecPEoJz+E0eTRRQWG/eu3ueDInR8xFVcx84kHH8U3xqv+7Vf8a5Q9WWNYS/JXh3Ikh+uihNhp1Slb8YlDrGz09ogHDbJqDNeYvJckeNbUP/P1hbsvvvzQK9Z8FfOZn/y2nh0bfePmYsATW/nKuRtDNt10xGWdrWEY6zeevnE+wtLDC5M9Hv8aupa/el7ji70Gh1969CM8RE885New0n+cPt/rp7MUXv6ribjEWW4wUPFmtz2dcNIvXz2Kn1025R1/ezrq72bsgc5DuTicU/HyaW/Qg3POjW74O95YYKSj3zx3LK58qg1Zcnxje/Spy99Z/NSnPnXzgQ984Eglnc3rUcZi/e1vf3vzk5/85HiAdVb7G8Vw7NkeTl2Lux+IkexMYlVTeWvwNbrOkOaai8jVlEyfHYya/Nor+cKjqxmzpbOEX93x04crHtdh6yweJIbu4WzpnIktTLr2ivWgG7HB01xb+SwPsupB3zx56x2OPtx6PPblga9tnOnS45euMX57j6/qRaahrV/6+ORk7CO4zoVzE74ev3sK/9n6DWbPbmKFXQ7m1Ydue4Ev/HIj83LbD0fI3F9htF7ZidPecl/xMsA6haFn7wWXdTcXi+cMexouvi+i9oaG50ud+K0pTD8k9gzYCysxeBbQ7CU22tazGKrfuRdHRHf1k1W3asoHPTGreTb6aq8uxkiOZNW+GPWw6VZH+vSqEx1+XRdcH2CqC7662Af08c3pIjXgV8+HWvnCr1bWxnUFjjVA7O0ra61nVw7lDaezaq35dRa9AOn7A91yomMsVuNiqV78kmv5a57dysRjjmDwpf7yrtbk7T3xra/D8P4H22JlQ3dt4ZGLC8mBf30xkNX4wdfyqW+cvdjgsMOzHtbFOpSDtVqs1jes+yk8iKN4YJ/9y4GfYikvevjioMMHMi9Pv4Dj2dvLMmtsT7KxlvaOuOn7be5XLr/Z7YzD56u9CLcxfH7p5BtvqWs3njjE1hrDsc9cJ/hwXfPSxjOt607xweaHbfnSx/c94u1vf/vN97///ZtnnnnmQQ03hruM4SH/h9ALL7xw/OkY/vk9N3znpN8utk57HuD4DiY/tkjudOi2Js6zPPH5p1uubOR63iv01KHGR40MVtdOGDDx4EbFRL+9YSwvPbkmvr3mkIlJM24t5aNllx+88sk2/PSbszHW2h/wEVx8c2O2e+6Sp3sY3f/IrnrpxY/gaPzlWw9P3NUsn+XCNn0yLVzrlc/8uKY7S56L29NsfI/1A60IL4KB8KoVH2KFe46NDh67YjhjZMOejrlm7B4tRmfRvL3ZtQvPfdpLMXvbvkFetHqWhVMN8nsoXD7kQF5s5vLo/pceeedETw+mxr8c3eeQsT3g+tH67Z6g07Wl64tz0Pdk9uoghs6pGPE1RG7MxnMLfLG4tuutJR3XIPHui3Zy1NmEzU495YnPXuzyrEb0imN7Nnyxs5/MER1xaTDc6zvH8sXXy8MzR2vnGiGWPd/FQNeYP7706u8HtfYJH/yzdc9wzZYbP+zUQlwR/WoMhy0fYtOjfBqTw9Fa2/IUC765PKvh7hsYdOBoS3xubGR02mPwzdt/5NXW+Ez8sBWnHNnKRW3OftY2n3j04ETV25xezZzetuJWV2NY9MWDjPHsYXmYi9OZ0KwNosPe/lDTsPAjmPhy6x4DS8PXnIXWiF1nzr2d/8i47zG+R3z5y1/+3/5nqDa/RRa8hFowARsLUEJIESyqvoXSK7qLTJsajw7cDlgHg87aWwjEpnHzQzAfbQh6sLUWPNuNUdwWy+Iau7BrYuFPjv2tWnmFMS5vHYoFlQtbPvAfBedWB/cF4hRbmwa2xk/rQlWeNqx1FFPrlz2M10t8emDuiypsvC5sxnzb0H6A4YYoVuuUbnG0bsUkF7obb7WFS0ZHfub07E/Y9BB5NYnnwu3vbzvQasjOQ74vKGzVrBdULuxywafLJx/+Iy77uxs1WTmtPzXnl121kC/d4qdfPmIpx+pAD5GxQ52rY3L5YK/lW2/9xfgwKhbYyFx+PQzwox56JDY595sAvWj3wsIZqp5wwjwMH/Ihv83xrnYgs5W7fWCt5NyeJzeGKXbr4casv80PvlatYZhXY/Otm3lrWP2vYcMTA53WmF628BEeOX2y/JGlSx4G/l2pWF/Llp5Gbyn/xSVWtXiU9YYHu/2aHxj5qxZ4fNXSOdcXBh371Pr7TVcPZPH0MLvu87N7gLz1IdPM+YNp3lrxVd74+aa7ccWHnT2eBhuulw6f/vSnn+iL9t/97nc3P/3pT48Xib6I++eWchefs23/O7e9vCwXZ3eJTU0O2sbffdzzgvzIYXUtpMtenrV8iYWcTbVwvSI3187EphrD67oEx1o753zzaW1dw9I/Y5mzE7fmpQU7+nCSG3cPJRevXhNrPHbZwMMPn552JvLqQta1ky0MxJ8YNGP8sPTV2hgeHWSeHpvqQB4OHv/86btuwmFbbPTx4ruHu5/nh56104dPV2waP9WJDVm/4CA29WVvzVp7dmT2mPsyn2TwEUwvcJ999tkHX/rI7e3uXc665xL3Kvcsfsn9UFg87vm+mPryZ/3J7WX+NL75Ece1/ViudKq12Oibk/ODzI35MIZnTEcPw7g1YAMH5SdbumtPjuBqydsb7PZZgA5eebO3nuzE2HrYc51JsWj0qgV89/zqrbbWSV0R217wGLem7ZMzjmsTmbPc/40jtvLiHwZqrCePqhE+/GqwdaHbXM5h8MW/pg76xWNHB+8a4Wt00mstYCF+wyQTXzw2eJ0DMYhNQ7t/8sE2fflq9q5ruxdCYeOXK/+b3wF+5SPsfLNH5ahvfAguH9Ud35rrWwdj6+olu5dlrgHOKFxnzb4Rt3l/lsifRmCH7MvitjeNxcgnHWPtTNXKGpCbs9Vg+h5gz8GwB8Xwz3/+8+i77hYDe+Mw5eaL/dNPP33zgx/84Im9aH/++eePGqiP/DY39ZGLa5Z60rGPnEXxiE9u4iIz18jkp9YwNXb2Cz4bewnfGOn5km9kjFdrrlb8wGxfs4HHZ7xqRzd5e8v1D5lrrsddh7f2fJeXfYb4keNSONmy4V9PVq56OpFcXLtQcbKjE2Y5ZXNbz14dtcbiN1cTNW+fhZGPfDfXb5zp6/Mhzsb8mNvjztJTl1/s4EudYL388svHi3b6eOqQT5h84eWXrHXPpnjkQq8c+dUQjFrx5Qcfpvt0L9rJ1Ne9xd4UG3/u5/6esr2dLy9Z/RY3HDrwiwmORlYO+bfX+v5+BHn5IKPHN59w2OO7VpDxhcjlLBY15UOs64eNl4niRuTuoXDZ/x9v9/Lr/zX9cfz8KZ/vzARRpbRVRBsS1P3SVpAiLkGCEUYiYmJiYiCCxEyJGBgJkVaCULdoMeH7p/w+j93z/P6Wnc8533PaLyvZZ9/W5bXWXnu/L5/POQc5e/BF5ujKB/rsA/ctcMFCj1rc4KODjD8d44W8+WJBt2LeNYEucjDbO/HRg/ik5D/7SvPixh6CUWFPHms7czp34DWmxtMXF/XxG9Oe/uKvz0fxZVtx3skTexMfX9x3zG+0G4efjjCHyRzf6eVfvuElo48nOXXni7nWbDl//CEWYiuGzavp24muia1540rrED54UOtNL75TlLw1pYcdcW0Ndxk604W3Ep/5rt/mEL2otVmd4w+85sKvX5k2rJM1Nydu9oVrWLnCDh3WNtvZoic7+Ky73DGPlw5xU+SmGh85vK6N894VdvLGUS/aH3744dXP59W5wo9rf6P9TW96063E54DFLgEBzkFOI4CUkjZMZB3uBaeFkCwcnA8z5sgLWguTntk/5Tz9Cr4SnL4pN3Hihc3mwNNiCzj9fPWwIElP2aOLnALvpImjcWPwqE9RiXRqrrHsqVE6SyabS6LlP50SGn++mpNo+cm3HX/2rlKTZ9+FyqfkHnrLF3ZcIIshXmtuoxmHCx7El+K8x0gfb1jJTF7zChxibK58zbd0sGVMrGA+HA4rZuIk91yAYIvHZnWodyObbXj4989//nP566BIN1kY8EQTL4z0zFzPB/WkxskrdCeLb/rFXjmWbfPlRXqNhccYXjqnb9odQHAWL3Uy9rWLn7iLm2//+ODBBylk6Z12luBtfkx/8vkqOvI3nNbLA5zDWszkXLiKXwfuZfrN8Z9+2OSVtjgjuhUUTz6E31xj2q17OoylszE68cGqnXz29MW9/u6D+VP2jZFhT5k8cEzKZmPkspOvE29Y4r9qnZ3wTDvmkLHJF8/Ekz2YrLsbMTnQDZrxdMgTbfLWdOpJt7pzgW7xxmd8krHk1dYNhZ1fbCtTPl56/W24Rx555Oyhhx5asulbnefxg80//elPZ9/85jdX7rvB9/DCH3vT9du118OCvTt9Lj8zG34484NvSueEvaTAjd94hR68yarRHkf88ZjfcdCtkEsWv2u4aw7qPHLNYZMO7fjxwKfUzhe6yhX85Uj+6yu7LD3pKJfw0NF4uJfRc/7a6h4AtHcZcaELPvatA78Uc6h2NtnPprHaaoUN+pItjvaNXIHHGFm6+aVGZJF7iGLbHJn0soPCpm2dyMOnbX/ap+ywza52uRN2eVu+yjN4EFvuOXxQ5aadbrKw4SMvP/jEjhqPnPchE/JCzYNpZ4Ux9uhQ7JdwFG/4W2M1nfGQR/rInDWLv/iYV9JpvLUpp8k0nx36UPGtNj/HybV2xUt8+7CBHFy9aGcfH98V2IyVc8boI4dPreBzz6SwKZ4eePtQxDrbV+4P6ep+kB8wlztks43PepFRiwebXsJau+wXPzii4lAs6FXwInW+aJM1ryarwKbwvzHz4mX8lEx82VDjZSM7s093vOHLNv72Db6pY+aS8Sj+eOWtPWNd4FWMiT97KP+anz6k11xrhF+bjbAmU58cGTaMZUO/Mdcif6fd+rrHtr54yVkb1ye8N4/fZndfKX/CmP9qeSKm2ZztNXiOBV5zsMQTXmN02RvuaY3jl2Neasm36Te95hFdCqww+kb7nXzR/va3v319o93ZhsIKY/tI7MTTPoOrtcLDLzIKMiaO+Cr46bK3xJ1MOugkkyw9/DWm5L/xObYEzn/Ewx475U/j6YdLzMXS85T5sJGTF3iQuexVh6EY5N/09xzSkp/8eOhkmxyd6vIiOeP4kHn8nSXm0I6xfrLkFbGVc4h/CnvpN85/NshW8kudbrzaYaYHv/2h6CN55Dz1xTHj+NnwgVYfPLNHVzjoSfeMD53FsHl1RC67E3O46U9emyx+12FnQrHpflWc0+k63ot2+I37sNzLZfr5Jr70mqtmQ46RmTZ7R2UeP1z0xNs4GbjMeaY0ruh7h1RM7SOyiE9k3N+wg/jCL/GEhQ453zmIJ71qmNgg48ts5Ok1ln+wiYsxz7ru7d0DZUM8wmecLjrYVBdH+hR2ZzFPlzk1Xc48xKYxPivk6FXE0pwxOhTnlZhoJ6OmZ9pMrzHxowuJoz4M5sRDzN2vTT300wEz4qdCRo3w6MOIVz+8xYJdtmZcyOJXzOExr58u9UWUjebJWsP0ZJs+pO+M0Ne+iNJRrKY/6ckWXkRncVgD5z/whadxMsbFrHZ8cmzyz1jgnyT+1tC+sZ5yBZFR5Ec+TDvaxunruoDfGJ3xJmsO8U+eFMPW3F5wjUc+KP/kJz959s53vnP1d8xr8JIfz+tFexsGYGBLHsB6kAFEEWiFDIe0yQi8IOprO+gFF9noHHQzKAB46BaIKEcFD2Wv+VmTj8JUX22+Qp9FgcmYRbVZ+JWfNi5fTlF61G0m7Wk37NO2WOaL8XiyScdFZI6sog27g86DExJnh7UYwk2nGM91FGcx9xAUhaH+dWprbE0Ph8O6yexvpbLrQdbfWHTot6YlejnCtpJv2Z7jxaQxNWpcPMR16uD7jGm82RInD5huOsQRHnEr//glP/C58PsWgBwh3xrg9eud7OAlg8xPYhu+in7rEy78+WBMoQc243TnU37NeMRPJnk69eW1UtyyY76xvc2GNbQfYLXGHozEgP72NDn65JiXFb4Z4b+ee7hDcGeDXO01ef6jcTWaPpCfOs5FFgZt+sglC59v7jowvbx0w0beN5P8zWp5LwfJwXxKdzbCqg6TPM7m5Mu+Ot6wGxMj40g86TCG5I4zUYy1EYw9JNOTXjqsTTrN6Yc1PnX26cs+PvwIT3LVa+L8Byx4kPmpz5i5fDB3Sge+aM5P2+azs/MaV+ivPfUkC4eCR23fephwPtpD8aWjNaKrEk99tWuAOn48xcF4MvTqi628wl9saqtR8mq5AF8v2u/kn47529/+dvad73xn5ZG1ZMfZ79yyt/kmx/Rh2bHNMb7QoaZH0ccjV9MpBmJBt1iYb8z4jGNrYT4+GIwj48nW3/no6yYXjz2E2KcHv6INO/5ZjBcbetzsGWNXH2+ET0mvce1qbbFQk2N3zuWPMfPJajun5CoZZ6v4dtbIka7heBV2+KhGdJMV8/JOe67BYjz+YLdYGAsnu651PqSEBQ/5vmEqV9hJP3zpl0+da/SHJVzsiF1rxQdntZfkfKfHnmWXfLHSVvjvWuTh0Ytc+YYHv/ufPuCnF+GHBw523MwXY/pcn/yquXkPzB7S6cKbPB5FjPGFyXzxgxvRiQfhqzYOU3ljTh+voh1WPMiY9WeDfPrMpa+aDD0TRzLG6Fb4QA8f3fckry926tZVXvG7PRReMadLn7wSpmIl5tbHCw8v2/HTa21vHL9FaX/CQjbc6ghG/XLDt57hdX0kd/P44tX9RXsDf2Xq0DY+6/yjn67yN/l84h/Sz3c8+nDRox+G+DsX9cVeYcve0M7naS9M8WYXD1mFXH3tijHxTjaedBiHUUF4raF1tS74Eb72Ct35syaPP/DFa54sXCgs2uSmbDKNTT32o33rxZCccC7I5a4r9LJhvyuoeGjTRS8ZMQyHMe141OT4aC5eY1PGuMK+8bA488TPmNjJm3Dknznxs4f8yRh/OubFL37xrZgtMNf4QR/ybOGB/5lnnll5B7/8U+CTV9YCiWG+mSuedOGDG17Y8TVPFnY54Rzko3l8xZeOfG19zBmrhDkb6uIJT/zwWgvzZCpwGBNr884L8rB1bYEpvdkzhuhvDI/CVnm9mMYP/MngReTx68MMB4JjEj6yiP3dhnky1oQelN/ayfcikh0+WoP0xmcuHOboVcPIdv7rK3jlh/VlRxxd18mZU5ub55hxH2a5HpqnM4zhyR5e7bDgw68fHjmib47/xvmvhFNtnj08vWTT9qwtdumUE+072PE6P7xo5xtMbHgB7TquXWzpC6sahYV9bdS+Dx9e7fzFa0wRO3PdD5E37hoFH/tzb+Yfn/KT3Xxig37yxY5+erIfHnq9VyELBxkxNK9mg4znXPf6vadzTaYTFjV5GNilR023OYU+BT+9xmaea5PhL4I1vGpElm5rBBdqvYs7HdZXP1/ZokNtrDmxI0+mQmf8YdCf46tz4kcxnX7Flo76eMsRY3Cg8JmHqbGJaQ0ef5ifems3TodSvM0r6S2+6buojp8ulJ5pr3XIlhgU/+STVYdRO1/Dak7beosRna0fveW5MXyu+fICv7yQw+0d+q23IrfwoOp8YAOVx8UpX/nSHmQX5RdM+Iyz45pnL6OXvOQlZ5/5zGfW/0vTz572VejaL9rf9ra3LScAbjFyggM2cDchxjmBr00hMNrGBUwtmB52BNo8h+nqxo/jbs5d8MlmrwXiaGNXcXrngaFSksABt9ocn+BCfJ9kHqnzWT98xncZ85F5hW2FDrLXpbBLVhelw+Gw9LnRE19rU/zYE18PQhJKcePqsJ4+XBdD/PA7SL3YfPWrX71+FVQ8HZ5uFP35At9yFtfik11+kNdHxUb7VFzi23mTI6OtTL3soOSttRcKXhzLTXitG4ziRlafnJz1Mh6/eNNBxpxNXr6Kr7wpl9ST9nF22DA+cdGbD3AqxvBMn+jWn+uc7LRrjA6Y8SM2s9tYfHjhal+qkTX2X94djHh8oCLP+sCGjFhYazc7Yik+xYVPbE4f8lON+KjEO/2mvziZNzfJmHnr5dd/HnjggbO777577Q/r8oc//OHsJz/5yXpI5xN+4/ROTOmka8YGdkTWOHmkrqyB8zFtfAqs5MPMLv2tgX3r5Za9DD8SNy8UxFIc2RB3F7Ls00dXOTvt0D99MxfmZWD8wKugePS7sdBmMx56I3obTz4d8VSnIyzkKvHsNV6Uz9pk2Kjgkd9y0x4VV/lqz7ZX00HPKUqXOpz4nGOIzsbVtc2RySfj1gORQebyQx/+dOAVZy/aH3vssbM3vvGNWP4jpmvgmj9gevbZZ8++//3v39qD8sjNd9dbtrVdE/JzmoHRWivwyz+1G95ijd88Xe0r/rmxZy8dU2/tYl4OFBd1NGNrbPLqtyeKb+ec/ZN+fD14dSNYTc46pUdNDplTwmUcrzoci/H8hzGxSB/fjaHw7XLGYbP/vXgSRw+RxsSTPjJ02etiaq0UL8DzM/3ZJ4OfXBR+PuZHc+Q8lDvX/WNe9xF00uEM8iDuA3P6yCJz+QcHTNmkb/e/PRpWZ51vNrkfxK/me2sw8Zpnw/XG/YvrC+plXTJ0F//FcPzBrjOWbucDHrq8WEDyn1422ERib1ydn61dNtT5T2b6bJwuPJV0441gtaZs4MNT0d/XKTlzfJbHbGUbv4LkkjXhgza9YuC+B4m/l9jOys5Jesl0JtBLvg/o4KS/c5ZOuSqeeMyLpXsB8Y2fDbllHRDsYZuxolsfP2y+Iexbz/ri5KWjb186t+Z6lWvFongsY8cf9IoVvOboEhPtyBw+MVD06cNLP8z8Vhsnr8aHnIn8UyO+i518hTds+OlHdOnjVfAg9Sz5B582Igs/ufxNvjjiTS8eOMrp5vSVciRsy8iJH8XjxNR/DPFr+jonYe9M1lasj/h2bSELE3sK32DWjvDMNWvdjLe2ZBRz+aZffBsng+iDBT5z+ubkePsincUfJnvLg/oXv/jFO/ai3f9tkfNd15zRckyfbXbLQ9jh7bwTRz7KP9cKeYDXPKz2v7jzxbhrtj2Mih3fUXEWE7ExjqeCh55sGG+N1XC1fsWdzCTj5Okp9mEzh+Z6GIO78dU4/oAVnznxgaU1bI3jpQOvcW28+nysH6Zk8FbwVMxrw+5a5v5TjPnQC89ylzxMYkO/3OoZmR7zcJCFiV79ZLSR8eZrdx3F4090uEaSY9s+Z8sZzS47bPTbDPpIrZBD4dAOR7L0GGNfW3615vHseUoPol+8wqjveZs+68c3NfvGnA/45a97ZtcFPOy6R3Gvgtf6laf5AVN4ilm1OZSffFGQuUp48VmveOjNHhl4lHDDrNDDjzBrI/JdU7OdDrzsGnfNtE/FhO+u5XLMvEKPOdjwyjvX4ZvHD6itO3v05Cf+dLs2GM+nfFY3Zj7ZxsJPN32oObnoC0+Hw2HZgdna/eUvf1l+sA2rvORn8nSwIwb8kT/5yI7SHFsKWcVc1Jh6+ma+MfrJk+Nr62TeeOtAPrli3To2Z363kwz9c25imzzhwjvXPhvJ6dcuBvTcjsjAX75lhxyMM375V3zxzFhlXy129JovpvFX0+1clAd4nRVd78UdkRVz+MxnozwwRw878kKfD/rwahuTV2ryqDXLX7wKHa7r5l/60peeffrTnz5717vetWTovA5d+0W7X2O38QAFIAcYNgYYR2xkc5zhPCeQQ8dGz1HzNpiXSQ7VgopXABV6HJZeAtPPVkEjf12n6T5FdCkSw0LyD176veTPn91ecur8jIfvCn8vo/jSkS0YzF1GeLMHrwPWw4uHEfr03Yh100yfg04sPfj4lpE188DsJR4idxk1n92dVxxsGhhe//rXrxtM2KynP6vy5JNPrhtFcYUnH4oD+anbuFjs8cWz81m/CE6xx6MdrzadkT58XmyInb7CXrmMN3mb3UsH3/oqZ8nTSYZNv3Inpnwrl/Bo05OPxmBOrljgoc+cuqJPR/jCah6RV+hD5ncyRg/baNrSLmbm+ad28Nj78oZ+9qyxF+3iofhgRT65gOPpBsCNjpt1sVTLO3N0zHjAom88v+ChS21OQcaU4kiGT9Nfbb7A6bD0zeB77713Pazzxwc+TzzxxPpmO9/ogEvJ5jJ2/EEXW5XWBS66jIeZnnxIXp0vePMlvHAapxef8/DG8dt+h+PNSDeZ9osXCv4ZWGehs0pBxc5ezwf6ikvY1fxDYcYzKV5YwqgtF/hmHmZk3pyx+qtxPgdXOhqvbg2LmfFpO75Zzxwgh8KZHvZcrJ193bDzsYs5PjzZD/u0E4965gNe9pTiWF8d0U8WJd/Y5Is/v52TsPpbtR/4wAfO/Mk2dEom2avUbPtG+3e/+92VP3JEHnVNZx9OfXvVdYFNcggmfTzFqznXGbFVI+MKX9RkuoZrK3Sd8gn/HJdn+BsXU3moH4VLLT+6hpvXJu+hggx5vsDajVv7qPzGE2821MYUdsp/vOXkxJ1cmOhG+srUVUzMl6cemLx0dr7ACqN4Kuw5m805Uz0UW0svUPTzUZ0ta0Z2+qYNF5sKTIgMfvdnfhvIB5WwsMumewW/EeQbY3NttCPxlmPipNBHL1K3TvZpOPnpvLNvsw9D6wIfOX068tnZqE2Pa7NcJI/iFy9tOsjj8YKqazi8rk10lC9iWf7ZE/YG/xH9+URvutX5Q1bM6ctnc/EuRccfMBlXtItZ8TKG4tnl1+Txh3G+4WdT0VfIujaIUw+xxsTXC2y2xO7G8bpjHGU3X41ZU/G2n7XN4bN2cggG6yeefbim9nCvLg7i7gGLfW2y4ksODwx0qdnA5/7Mi0sv2uUN+840Lx6tDz6kLuZ0WQPrZgzBS3c5b9w8XiViG4+iTc48u2SMwy6+yLqh4ibHXH/EFS8Z/tk/YhF/dsjiIw+zkk/skq9fjrBtnIzzLD7zeBVjYdI3ZwyR5Xtj8gNGpbFkq5fg8Yc+PeTD1Zx64k02X7Mfv3lz1mUW8bXWinH+qtlE7MrnqS8b+JA+4k8UXnbzwxjMKCzm6NFnW57DZByGYkWOfmPyw9rJWf8r4ktf+tLK24kxHFep2UL//ve/zx599NF1HyhP+G2vyS9rj48PbJvTNqbIQ89+xubfa4aZP3S0F4uXl6/2Ot/owysW/FCTKx76xUDNzoyHMTyuY+mnpxLOU/HAQ1dEN10KOfrU+MQeNadtTn/iE78dB71Td9jwWXt64Gj/mzcWaSvJVYurM8u1tGub81B8nXnxZV/feea6HtELszl+qBFsyvSHnghe53vPET4096xLxpqy4RnN9Vwu54M8JovPGFKLI9vm2DFvLPvGyOIt3uZaD+N4yOeHsfzBJ5f7H2j0u07jLwfJIXqdC/JQjP22kzNX/uN3znoOTzeZ2vRa09Z1jocXFrayiwdW9rp3xKPPJ7HMJzXeSj6r2bYP2M4W3eboNU8ODzJunl+ti35jcsicvehezV6nm57ixgd63Nfb/54lux6naxk7t5ctMlG48kkfsTF1aPML/tYdn3F56DcPXv7yl6+4war40pvzDb/7MPlPb7bUSFzFQEHG4bDu5tr/cE/syecDWfz6bEYwsmuOD9aDbrW+8e5T2rthpKM4qCftfXbpYwtOOsrFKRduPGwruz346Ztzu/+ndE5MdOQjXnPwwRQuOuWFGGsjWPCyj8+4vkKnmoz8wysnsqPPRtcvOozN6wp5Oo23DviMyRH5zG986vZqONg2rh+GcKlRewoPossYrH4T7eMf//iZP9nW3Gpc8ce1X7R76M+JFnU6KOk4PjdIwPErwHOcI4qLjotAf58Jj8WitwD5z9ce6Bxi9JmTnHeaLGRJZQEkgDGHEbuwhTvb5ivNqRF+c/BeRObxpTv/jLNfIpySZ4fuYoxfInr52X+47wIkXgoeDzdupl1cvRDuRbsPNBDbl9Gcz9f4zcEEh8P0wQcfXDea4sq+F+2/+tWv1p8TcQPH7xmf4jD1Fgs2jO8l22KlTHzlmrF0sjF509+LdnzhkMt0oPQWUxcMbWRDmk+XWIqttTE28wq/WJgzbk3EoGI8DOZhqeRfMcgPdXL0ayunKF3sIrpg5IN2/vLNgQiDfe8mrAsLWRd1N4/4tO+66651U+NFMP/EzhrbPw5mfTeW9rL+7gss+QNPPokLX5rDR78CL+JT/pBtnCxsDku5eM8999z6Rru/V/3Tn/503WDyj7xacU7RodCXTvrYFRNjcIVDv9gms8Cd/8CbL/j4o0bpyAcf4njRqshLvF6i/fGPf1x7x/6lCw5rNG3DL7500qeElT9hPoe1dOePeZjorsSnpsv81KE/9WtPyv4cqw0jXWT4iMKoVnYqZuRqh7uYGncGuYDbp8bZ4Ke5Ch2V3Q7++CZO4zM2+qcwG6+wgUcfFn069NGUNy5mvp1zp1+0//Wvfz379re/vXJcjtjTcj18avnjmuAlo35UDPVhhBmp7bG+uZmPYk1eX/xcb1zD596a+pey7QfdZNkrbvR17mLXx4dHsWbmxRCFg1/IuLOumzbzChk1Oyj/Vmf7ES7D+bux/EeXTQUvn5VyCyPc/KQXBrH0zTP3Rc5jeI2Tw6ffi0ZnbA/sHlDEmJ3pi/6MT7b5Cle8+FD8Hl69HPChuTMJv7xxfXPOq+HDD3sFTnzm4A23+XjVbDu/4NGXR73wIWONxIK/5tlX4KXLmvJfrrJHD8x0squfj+VEY+LHHl3ImSqO5hF9dOeHPeH6Ry8s8FX4kRysbMLHf/ku9giPQt48mn6RQ/SSwROfcbzxZ884wmeOfXN0wMpvxZx42fNq8/jE2D0he1136Mo+3fhgU8RJnnlYpx/RXXzFwhpaEx+8syUn3QeIIR304fPiz/qSNS6+3WPo41GjXlb5QN/eIGNt3FMq/OITgh02fb5YA6VcpVOBe/JrN6Y9McxxuvJdHpWfUz+7MIup+MILlxh4qeVFGz2Inwob4cpGPqnJq8XPvILfuDFY6NCvFAN2YEqPdj7Bjd+Y9XWvpjZurJKOWWvjo3cSmTAYh8+YGuaLqDXHp4ib/VyO8LG1T2f5HM7WjS7ET3PWjEwxCk964MXTeFjSoe+ZlX3+0sO2NSUrHxVjYmL9fcnjy1/+8h150X7z+CWWD37wg2f/+Mc/Vgytkf0DkxjBBxNs9lFrqnYfZF+a8yGZvWnP8JcsHXSVz3Q5/xTxsJ/bm/rm8TpDyZeH9CnsqMtTfXEmp9BhLIzFWD2p9WqNm0sPfxVEp/ir4VGa05726FWSM1dJdk0ef4RbzSc2Ju742MJDDwzxOwPcz7mWWgOy4u9MtIZ400s3klPu+cOv5jMKJ7lsmoO7ebbNyUMfUPpCo77nci+xzYspG96xuDfs3oGe/EvnUnz8QQe75uEoVq2HuXzAwy9z4TFPLvmpVxufnOq3lvTb7/KvswYOejsb5K4X7WTZxOee0znLpjGF7eyQ7+w2RidbXUPNk7FGycLDJjt49d1D8Ef84mMzO/QWC/aTIaet4FHTzS4yX6ymD/YUfRU2+Ws/Om+63tBpjbvm0+Fs927Ch9NiQ0dYl9Hjj/TNOTzxqemGU42/sXSYKz78Qnhg837q/vvvXzG0N9znfu9737t1rrm3cN7wCRUbemAyLgb0KXLQ+SVWxhG+cOnTkR59vMkWb+PGkqXXOtPtLOcPOfHsbNSnlxzKzupc8CMc/OFLOuifuoinN1zhJosX1vZgeshpxzt1Zps+80ibjpl7+FrDcOGHt2sLWXJhsG/EXB9v62VNnAl0ylHxxEuWDfegct08OXOwqPNf2xqQL27WwJ6Lh235rqbHeHi0w8mucbbZbH/joRuZZ9Ozz8c+9rEzf9EFZWt1rvDj2i/a3//+9y/jGQJayYG5oQt0myE8jZPhiMD1aWuLzDlzFhS/mwIHg5t7wTNmPhzpfqG1AFsAC44sgjEbnq0SKjvTvsXCawzGqxI5etXJJk+fchmRCQcdktA34bygK1FcgBC9fHKhl1ji6dNeB6+LrTjTRc9lFKZpG3++WB84YPCNdodqsfNw7hvtvoVkgxjP34ts0stmuNglk9/Znjx4FXzpTx6fHHN4tNHUDvtuQPQRjA4VsSRPlpyDQe7SY9xY9uWPC7zYhhMPXxW42wd4FbmeX8ngDV+21dOneOjITzLpX06MH+RnaSq/9LNvPyp0yxd50o02u+bsXTEQj1e+8pXr4uPlC/tuIl3I1eJHXt+8s6JYzHU0psDYPF14YDSGnCt0IrzFfg2MH2Tlon+MB59ctM70ycWnnnpq4aGvdYDNRYH+sLGBxMZ4GM2Hb+KIPyj4yMarz5610s6X8snNyIte9KJVxJg9+/V3v/vd2Z///Oe1DnKG3/ybtvlijj3ze2zCoSZHNyxhxm+ODgXNudr5gp8Ofig7xa9WJh87CgqrNh7jp/SZP0V8gIMebedeL3LSLb4IjngvshVe9cwF8uGmI5/E4yLM+Yj31P6EgXy6nCceGvwW2Z380zF+PfNb3/rWrfwp19lGcMh9+93NZLjyn79KviYjB92QOhOK/4w1eXvfdYZePMWKjVNkvDibL25iZH13uckrfvGQI5M9fXiVcoZP8JrTRvGThXcS28XEOJ7qbK2B87n0mit25aSxfCXDvlg6A1yr7UE4lezQB6/180DuHkXbWatNNz1KMtOGseyHLb+bg9MNsYd013LnJhl2fFPMn4FTw0emIm75WM0vfGI2icxcA2vCZ9cTeuSTWPA1n/DDjOgsV7uRJ4OfPD5y7Gjv/XSJTbq00y1X6XWmdv3jA330V+g1RlbuFUu89IqD+XjIGUPwhS25NXHBDzoQuai1Ncb/7BjXL3dcv8WLTzDgK+b61tiLGDjyDY9+2MTEXvaiCE84zOeL9bPX+yIHm2yziyd98x7KeOdRPHBbSzWdXhbdOH7jXs0vsfWSSB5aI/4qM+76+MyLOd2V4sePU7kJZ2tbPMhM/XBZc8QG3WTYdf2xj31YDi8d7il9MOB6jh+1/sXaGBvw0oPUYYCLrHgZV4yJVWtPViEzSd94pM+Wmp70WqswxBOe+vjRbsc4nnTCJC7x6+8UDx/4gl8tbp3nZOSrvnwio8CcTXWy4kpHc/zRJ6ONrwJrfkwd5s2RYVfO0kseVjKw6FsPbbWcw+ue05+O8ZsY9D4fYhvdPL5of/zxx1f+8IMt8emMzF/8cMGkVpzl7on44pohD51p+VEep0+c7XWFvl4ssUkH+/xvffTZ4TedCF9lxpRc8/HjKz7q2uLPPr7Gsm9ukvn4zIlHscOX3vRM2ebpJpPd2tkyzz/1JHwVcdAuT9zD+6axc6A1EE/nYrGy37qWk3Utd8YifSTGCP5p/5Sv4aXfC362kRdH3hHAJk+d5b5J7ItHbIabD+zgQ9NmbTV+uJTOQb4kQw8dE7sxJR+ySQZu+QyjnNR3/tPZPiMbb9cIe821gSy9eFyDxBnxtXOCvcrEpS2f5Sff9Olhd9rkp/1RHtMlzvYTG2Emr23eeHljXEwU8wiPcbrVyDxfyMGD1HKcvnK9Mdh9qUy+iQOdcsq6qumSc971+JOu4kOHcTqyUX8ZPP7Qb6w6H9WwIPYqxvNjTZ7Pu3Y7E++7776F0fXRy/Yf/OAHCxM59w3uY+kVdzqNKzCKh9KasGM9mlObC2uY0tN8fXqj5ug3LqbuixQ5huSSL2XAGb6wkMlv+ulD6onDGJn8ICef1Hin3Oy3FvgU64emTXbyfU0ef0wdeNNj3pwxuUdnuI21v8IFr72Yv+mSq+TLczrDQUbRF0/3RfSSST892WXLuLH0kHMNs86IHTliz5ELXzmTv3DWThd+cWNDmw7x0Eb4rDH73sP4Rvs73vGOW3OrccUf137R/u53v3uBOaWfM4AXZKC1XczVgO8k8ILmk/YC6HCQzOY6AATBJ1w3jzcZJaY5PHsysSFYp+zt9k/1yVowJMjakqoFUhvLBvvRXKTGrlKnjzx96UzfZTrIJg8bzGLpMCsGkklcJbV5MZdEDt++CefwFefbUZjYRPqNqdmwLjaFT/C93PSS05w1c0H3stCDBnvpuardaau1LwZ0tPmN8VUMlLAZh1EMxKm4iJEbIA/5sOeHi7TNLD50k3eY4OkgYIceNTva5MS3fBUTbfPwaMPPjqJdPtOD1ErraMxesnZ4zYWHL/r0KxcRfvPsWw/EvgOeX9r0ID6KkzFr1cXaHB4y4qXN/mtf+1pTy3f+ePj17XXxY9MNuw8gfJuLPnJ8w6sgY0o+5Hu4w54MP+LX3ok8nH41zQsj34RzyBuHy02mM0o8s9leEJ/WKXz0k403fMaNNa6PzFfomvxwi23z+tYAuVHyYOamyQ0yHrHzz1v9bXmY810eRuynb45pT9vafFaLbVhmLM2zkc4Zg/SZSyY+MkgfhUefv/TEMzHhTSY59VUIhvakeMhb1xF7sdxR77HSnzazFWZ9bZgnVjJKY/HXn3ryt7ns1Y9XHVZ54EX7e9/73rM3vOENi+UU/5S9XZvdp59++uwb3/jGuunGz17XUvoVa2NM0Xf9syd2+7Nvj4m/0lmizSb/6aLHyyXXHLKKuT22cDUHC4zlWDaNaasVlB42rWt7y7x4ygVkPJzayZOrTPtsx7MUHH+Yh63CNp5wGjcWFnPaKB9W5/jDnBJe42LY9cmZT9a88eyoxdS52vXJA6GxbMFTjrMbbnU21QqZij78HnSdmf2NdvPsOddvHu/HfJjc2Wku/+nXRtrm4NrvBbOnZtO62LfszvhZPzytHZ+ypYZBjk17YtUc29oKO9aHjJIMnGyq6Sfv4RRmfK5ZPejDglehq7XT75pJj1KOzD6dijmYyJPr/McLZz7MOJnLrjr8dJFxH6NW6BbT8MEvV9TFi00xJ++B14sYWBD9CvsRWfc3rp3G2YjiN9ZvPbhWwcJOuagPk7HOBnPlsjm6zfMHHn6oPfC6nhtH1sjaRMWZn9bd2sFVXSzjVxdTNcovONPXOsJLX/3u/fTTTU7xbOPLG0o57fzzD+LtHTL08z2f6UDZXZ3xI4z8kUOtYyxir9BDf2vSvNpYdRjSS07buJKdcsYYm/rm8O42kjeuPeMS/wJw/sMYzPK9fBWPcsS4eLJnTLzgQOHVnrrxZ9ccLOSNIbzyi91wGlOSja8xdsmYR+4l4YEFj5i4r+zckKN+A+NO/TNUHyp94hOfWF8SgbuzXrsCnwIX4rNnBtgVOMVYDWf5wydjZOWte1Cx4pvafvdiyUs6Y/nMjkLeWPuDDEz02bf64ozi1zYmj2FU61fgSQb2MPJpYqAHL4ofL/vqaOptLLn6ew0r7Gwi7crkbSwb5JwN5Lw09nLR85JcRvDDl1/OMC/W3efT4Xxwhk785PQVPGFnmy51Y9XG/Ja75wg8/pTRjeMLaXbFnB0vXX/961+vF69skDHPh/qtrTmUn9r04i1W5iYZx4PogU2Jz7w8Qfjki/sONTJfjohnstVknK+e8dQIzu452HRtsT+1pw/6CmLH+qjDpm5e3NnCE585dhS5r88X929iyBYdzYXZeLrYJmdOzrCPks3ncgVv93x49BXx8mLQ+nqBDa98cr/WB7twun57PreXnQHswcdOuNgqV+E3V9HHx89kYS8+C/zxB0zpNc9f6+rZ9lWvetXytQ+if/SjH60vb9ALb++mioNxOiIY+IJghSWcxtgOJ1y7fLqaw6udXvKIXvtHTF3H6VHE05+flZf6sJAVDzLxsWNcbcy8OIhl9yjm4y+GYYFjYoUpfdrim259crPQi+Y6NJZe82Eji9hA+jCr8Rjnq3Z9tVzht3iwBbfxsNTG04v2dFazB5OSj9rm5bZ7P7U5e1lhC8GoTFk2K4vp+IOs2OOLv71kXYy1R+h2brvm+ifkiNx16Nov2hkCEAFUcNTAC2xJAQxeF49eVOIpGJzXd6h006ytuDkh52DERxcdLgj6guDmXdFmk64omVMBgRXhxxfFaywebSWftfGZj2e3bRyf8etQtugPC3ltc6eIrdYhXn4ZcyNFLj89SIm9MXI2Q4nKP3wKUrNLD8p+WMhnpUq0AABAAElEQVTT5XCr4KOnxDfuZb+bTIcUXZLZ4e7XHh3+LvJ0TX/puR3lAz7tin5xjydf9MWkC6TN6qbHhpdv/FHLRXNwwefm0gtm+ShmyFxxV5Od8ZXD8lV+sg/TPOQaUycvBh1OxvKp2Ojjl+9wiXUYOoDgiGBMR2PVdMJEBx54+4DButGrpi89YiAWLtBhNu+mhg7y/ga6NQ+/dXYD54LEptzQ9qLdDaV8yK/8JJv8vpbw45sln6rJ5Hd8fOCjlwgulG448bSObjasL1mYtNXiY0wR+4sovHOebTJhqJ48+RpmMXcRwuuC4lukXnDJUTzi7wHdh1Tw0c+PiBziV+s25yYG8/wzpq22nvPGKn1saMPQRY1MuLWzqzaOv3UwVvz4aL7cM/dCiB067T/FXmiPq/mU7WknfPKCfD7gbd3x6CvTF3r0k9HGk9/ZMUZHlK5T+ZK+dMoDa+8fsPitIDR1pfM6NRs+5Pza1752ax+L0fRTmx9h17fmzh3nn/FTRI/zVYHdOmiT61wT1x52pl7nQrk4dRcvMREzMqhYaZvTn8VYa48HHueUEn55QWfxxpf+2uKgZMM8O+GKz7hCn1xSz1xgi1z8tWffWFjoYgPu9ot5evZcFVul+LV26SbT9cwcPrrzRZzYUWcfD534jHtgdA1Xk/Ng5iHItaBzKMzLyfFjjncDbrrYz1iwz57rMMxk8wcfPOTklTgosNv3ajxkkDZ9ivyClV/NFQt1hLe1o1u+uI53j0mPa2/3AfCQV8iyrcCnn+7Gw0aODnphyi6/2cSXLL9gUsTGeiLrA4s6Xj6Lm5dk+OnFnzy79l/34+zgIeO+hx4Pve7Z+ECOTPfiMJNh05gcoA9P/mrzSax8OcaLOTz0enHHR/bxOHtd59ihW+0BW4ElfNbCXLnsOu4+A2Y+i4saJnrJwgEDvemiT0HV2mTx40vWGHv8QuaT10b6+GHDHxnXN+7a3QcDcMJn//htEHHARwdb1jp74Uuv2pzx7Kvp42Nz1kZ7Yg9XNblkazenzp9sFdNyLZvWtfiKtfFolzWeb9rN80uBg/9yQj5ac/yte7L4kqEH6Yf5uZH/149/UvLpYyf78ZlTwqhG+BrXFuP2LNzWV4ysb19KsY88qH/uc59b+ypd2bpqzR7yRaUPf/jD6+8rswePunMijPyCT19+wZUO/fAWH7haV5jtscPhsM4jNsjY7/az/Umf/eYZh2zxp8NccYbB+Tz3uXOv/KQbVvzk5JM2nWxq18/feOf5hz++PaZswUcfe/kzde8yzYlZcYQNFePiWZ8NxE4xsS76/BdPcWcfmSt/2LCfPBf1QYZvG2vTrxQT8tmix7gy2/DTWX73ol3f+e7PspgXQ+9VPFP0oj175pWpm17zUX1jcMU7efDSU47MdSCjtPfTIwed8caNuS7KD/cbajoU+abGQ8Z1Rq3PJt3aSL4qzqpiRrYzDB9+eaYtT/MvPXwQQ4V+fDDQK5aIDLyuw+TYMjaJjDH6+IjHmLKff/jyES8ZMXD9ULOBRzHfhzq+qGPOu5abxy9F2LtwskGfvdvLdjrFVuETPQo/UfHKF7a08SL6djJvPGzm2REXv2HhC5hi7TruvPGb2p5x6XS/Bqs1QOlIHx+sW/PWQkHs8jteY/ooPatz/sMcm/hb05kT9qzfRvGltxvHl+348bm/+dnPfrbWnawzn20+noqbOWRe0eeHvIErzOp4jOdHOM9hr4oOOYCvtQif2IYjO3gvI7IKKlb0znE2FWO7TXEhZz55bcQn/PLKuacfpav5eNNFLznvmewPOsWNX+knW9y0yRa78FhXcmrkrCCjjyc/XcO9q8LrQ6HPfvazZ+95z3uWTPZW5wo/rv2i3UN/gCwgZwArYAXWODA55+JhA3GaY10w8Qm4i1Df3hJM82Rc2AVYwSuo5G1Ah4ZEFxCY6C4AMM3+jAXc4cKH9PGz0UIlw6cOM3P4Wgz8czHn+EyAdN3Jmm32YNJGsLCrjvhmXtzwm9uLeXrEuVjwU6zITIrXOjmAXFDoRm4UHOoOP/rI+la7i7w1dRBZMzcPeIu5+rpE//T9Inlr15rBapPCDnMPQfIPVge+h0FxQDYZvPJQztGVPnEKA9/oSk7fRaybULrm2sDTGqSDPms3Y4FHX8wVfbk+15h8ewgPPQgWPhmbRF/2zeGB3QvoDj9jYoWvveXQcUNmDfknN9iWA/SInT9x4YLkomnOS2G/juhbGXJCsV99K+df//rXf9xEhrF46LPPn3zIN/jEQp+f4oFgIoPi0ScPJx9dKL3A5IMckAv+NiH/6JG/bmA658i3Vkvx9oMdmNURXEqyje81OdjYJQ8/XGSthRtNNyXG6HITJB+djTAh4/mf/mI44zYxGRc3uayNnw41DMYUmBRt9tjqJrW40xvFawx/OpI33hrRdSeIHbkqVvLOQx0bYShObPGRz2GGy4VbDoTVvDxV57OaTvFJNuzF2ricwRsPe9riIl7mFO1ilR72G8+eXPXh9ute97rFlt5krluz8Zvf/ObsK1/5yjqbYOBXWOi3LhX8EUzyj09zvHkxdLa2p+w3Yx4WxROJ6cwx+pyRbqqdteye0p0NNYzpgLsxbfFrPdi2b+izxnLEXL7x5zKascgGGXboqK1PLztiWSFfMV+brnw0NnVP/+0zcuWNWiGr4C1Hl5Khtz798OQ7fnqROXrEyflv39Bv3LXZmsRn3IM5Hn47w+lCyehX8NCj3/VKf8YNLrJKBI81kzvdU6SDnvIIDznY+Wbf80H+sW2cLvzWx7Xbmdk1fNorxvhaS7boh4GMPuxyVNFnR7Ef5rrRzbfm9GGJyhVy6TXHtjOfPzNWcJBvHYsL3+wf60kPeXNy3cuG7JCHhQ61tesFeXFk17fM2BVL1/DWx5hrovi5LurTIw5yxEs3+UKXtULmXU/xw6jvoVqRQ+4H4HBt82dq1Mn501YeuHuJIE58VfhknT2ku6d05sPj/o19Lw3EY+aMtcEz12AZ237gE0eyyYgdmwqio752MSWnjZ8sf9m0JnJZEU9zYXMfxTfjxuC3fmTIhjk77GaPnogt8ubJiFO26TKeH2TMhWP6mr69zhfj9CDyfLY32OOHc1xO4EdhZUMxDg/eGav8My9OPQeyZQ7BPEm/YpyP4kh/PucjezvhV1A24tGnQw1T/jTPLn9QNt37ykX7iKwcdN2zB/jhBY0Hdb8psvuS3tvV4fQBjX/K5k9vOu/EzP6xL+QQv/kMN1vJZdc4HuP4nTfOS8Qv66rvDDkcDus84YN17hz17I3PM702OfHkuzZeNpAxZ5J7b/acB/Z266uGwRxM5Has9ZfC4w99dsQ5W+Qq8dWnu31mj2mLAx3Figz7dCuNG4MR4d8JLx468fGX3Zk3eNiV27AkI1+69hoXU2eq8xmPWDknERth1i7ejecrHkW/64m+M9OzLXw3jveV1heJnzz1ZzR9O9c+xhOFVW2cXTa11ZF5dopb4+rwJotXvPjc2ohP+4du4871Yuq6RLdrjTjNwgYZOsWYDJvq7Ki7r+n+pZi1rmRgYxvJdz6lO53hNp7PdDr/jBV7mLNBFgYxYMO4Gj+c2vxT7D9jirY5dugQJzqsmzxh07iCyDgT/CUBLwjpdxa5Nnru7mUwPTDcPL6Ad6aQN2dvajtb+KkdTrrYViPyXW+zD6e1iYyTSU6fbRjZoMv+tw/I8R8ZL3bst97WSmlvxE8v39W1i5saqadOfMbCRq94W6d44ZBTfgvEP291D5M/YvfDH/5wrYF1cBaiGR/xyP6aHD/EVyy6R4KfP3DRwQ55mJFxRF++asM9beCjuzU0Bx876V+KLvjBbrHJNjyN0Uc/Mi5e6jDApiDr1hlNXjEHW/rw0dGc64WzgA06jcNkbeSNcfb40jwd4iBedCna8pPveM3LcXsVLnrZgYWfdCra9pZ7Xtj9z4MvfOEL68+4spOf2leha79o99CfESCViwgfRwG10R3g+AWgRSDLUQdSwS05vFAiJ7j0FFB9B6Ck9gBQ0MwLUHzqU8R2uKvxKuwYm/iMlcgWIflk2cSDZoKS0Sej/XwoHJLkFMFAf3bhwBueZPIJr3axyWd1PNp8UqwVmSg5vCV9iYrHhcxLdEkMk+KhzUMRkgOSF48DHV86F8NtfuCFZ/qciDm4Jhlr7cTSodYm1O6TVBd0WPXdENKDTyxdoGCWZ/p0im+5Rq+c7UUF+2LDVwU/mmtTfM0Vp4mV7ckDTzbFDA7zZPFaAxcqfNmDa643Xn1yYkKfPn4XOt/y5j999BiLV9/NmP1mTzro8NHp4GNLDB944IH1a2s96HvJrngYh5ldMelFu7gi+hVEpzbbsGkb01bg3sk4Hpi0Izrwm7PefHTD6UYTr3Uz7h+MemhADli56YAmq6QnvdX0KmFvPH6yrYE52PAq4hFN/HAh+eTGWFxhpAsmLymcjfqIrfJSv3hNXPTjU1C4ydFDBg+s5mAof/Djqbho0UPmIkpXvuM3RoZu/fy/TM/UT37S7FtHa+s6Im9hR5NHm137J2LbdSd+ec1PPJ1NycDNn1NUrItRNVk2zPOXvGIfGGM3/+Nr/dVy1UP1nfxGey/andUwtEb8KkYzn/KXT2Tyo/FiLEetgyKO3RDZV+4Bih0/K2787LXn86KdPfGDqzizYYxfzmA4kDWGB9bWmoxSDPDp0wdfsTDWnHUrD8zji7R3u2JF3vmsLQ7sw5l+8tnDwz5iKx+SKzfw05t+uqKJyTiZ9oScdobkJxzi6KxR2CPjWuech5W8OHqRRA+iAz687MEMC/1q44o+PkUbL5v4xSrd6THHVucyW2T5r9CB8MAGL0z2vesfX+gyT1c25a1rjftG+CaFAxay+dV4D0HmyOvj4Qtd2grMxprTJoPU8NBpnP/WoKIPM3/gQPFrkysuaiQe/IKHn/itoZduruN0stWakoHXfnMNJkcX3eTc92i7dvtyhDadZHzAbh+zh+iWA71oly/4jYffPZ55duiYL9rdDxh3bfOtO/szvT707kV7uSpO4gqPveR+0jXcmc93a88um2zhJ2tOX/zFItKGV02vedi11a1La1As9BH+uY/ZIWfeeDrU8hNm60AvPNbO/lLTTcZa8AGmad+ccbrZTUf+sME+MqbPhpoMWTrYiczlN33aO7G1UzbJsGl9+YBXbnRvwG5+mFdgSp7ePVbwOaPlYteQMLO348lveoodX8mwwyc2yeLBrx2G7OvT3Xg+m1fMZT/eePTx2G/2TWcAf3tQN+8b7Z///OfvyDfavRTzt2L//ve/r9ySV/aPuIkDP/MbPvGAQTwU8/IB4e/+nZ/kFOeoM9U+oxe/cWtuj/mNVDHx0sIzgfFikR38jTmTfMsWFmeoM4hOuNT2R7lPDsbWq1irWyc1m0r21GThiooFG4o+O/zWJ0MHGVgU1Bg7+IyTxX8R8S074cueWpy9sMsOHPJFfI2bp19MPWvhs6fkERJLevGYK8/NGedDsdPXFlf68fqg3Hlrzlns7KRHrro2etHutx3tabaUU9Saws9f+vhXCcMuizfMZFoHdbEoD8jid8+RDWc8gtc5o1ZaE75YV7GUv/qIPP1wu+a4VvUsDyt5620eL6IHRrm6xxpP1+n8EXvXVNccsnBZW2dC+UhPvhijn7wSwaO4ZsCDrzNFW4zZpkefH2zShehin/9eDDt3+O5aM1+048VDx83tRTudbLNLlzZiQ5sN9sNnLYofPhjFNL/0+T4L3eUmvfrOML7TVY6XU3iMN6fmd+tYbNm/iOClpziSMcZmvqn5JmZq9pE99LKXvezsrrvuWnsnWbH78Y9/fCsf3dfQn68Tf/bpy15rxZd8Nkde/JIJs3661ekiy5Z5ZK49xQad1ql7sfgW8/hhnF3yZNhVdjIvPkibDfYQfnPhb93gS8Zc/GTY1VfjsdfFXI7CQZYd/a5X5HaylvGmr1zJF2er64+Y4bHX4DfPFlI7B9332sv20v/0RbtvtJeYOSk4LUxA6wfehrDIeGdSFOA2tc3ncPJ3tiwGeeRi7oJD1jgMgiXRBc4FiS5BnhQ2Y805iAUWRmQhBFONpow+n8Khv5P56bd5/Racvsvkd32zD+Pt5PFITnzZDU/xN4dn6otHrYirok1OiT9M9FTE0c2Yi7fDn5x1dqCLJz7r5dvDbrKQi5H1Uk499GZn1juGObe32eQD0iaLYIPRt7Z66WKT2dBuAo3hxye3bDL+G+MTrA5Da2ocj6IvrvLWjUtxMEYHf/EVTzUbCtnaC+TxhzHEBzEUv53yCTakZo8/yLy2UiyM4zPHprZ5B5e2/WAP5h/+DrTs2X/WzY2gsWzyXd/B6G+u9Tf5zeP3K4kenu3hHsYcYF4Yu8Fj37j4alsL2PSLFzzaxSxMxi8j/Ar/vLR2sbz77rvXN4uMiYU4//a3v103I2z4YMCLbOcVyi49k2AQX4UeffjxtebF2rhyGZmnK9/kkti2DmTlg3WQk/jTb27Gylx4zOErFmFlK5z4zbvo2Nfir62w72yUy162lNPkp25ta1482FEQbGGCiy1z+MOwGM9/7Njx0ou/+GjDRpe1lDfiJW4TWxjUCixImy5nQLlgXD7IPT7jgRvhCfsaGD+MN5edZJO3dtqwwYySi0fNLzU/POj6T+f97wM6XwjR62Hqq1/96tpzEyu9sz9twUm2m+rmxNL66cMNszipO1vjxedMpEMbiYNYy+muB+xE2tlOjzr9bIknPrrgURtztplH3UyZg5MOGMLOBjKfnTVw/iPd9M/cmjzadCs7j/2UvdYcf7mYn+zMAn+y+NGOceJNjxqZY2/GSB6mw5zYdGPLHhlr4ZzXT5f7MvsLWbPWkS48aj46y7tuGVNmniwFxx8wFS/yFePWl9/02NfwGW+d6ICTPPyu4fMBmz3nt7OKfXj504NGGNikk630G6MbBtc0fXN0zhfOePLNnFjFJzbGkJjUNo/IKtmiJyzwmKOvOJDT7j4ZD51hoJM8HnLmFGP6xRm/9XH9cM7RQ7dz1L0cHOLtRYwX7/xH7rVdy12vtenml7bruHxhu0KPh/vuF9ii00t1Ot0jkpFP7LIPC/Ih/M3jfX0xLE500o/ft+AVGJ3TZNmABTY++iIOP+FEe6yyh99c1JoYb86YgoylszHYWmfxVJoTf8VYOvHyn5w5flmjZNjRVqY+OMlmHx/CR1f6W28+yhnxZYecPdAepY9Mzz7PaXvuHJtYih0b2ubU6SHXdVOdXvb01cmq8wsfjBVnttJ+5HuU/OzDThd/p8y0z7Y+eYSXvelfOptrPp5TtulEeJxBzh946TAGm/iIuz8B6J+pydnksnnVOixecvvw/Zlnnllry6Y9y7480g8/W8k5S82Jk/n2F3z6fMQjF9pnh8Nh7Tf+0eUM9TJJQfj52L1SPjsX6GdbIQ8jYseaKK0fDMU+vPEtoeMP4/iQOZjpgCF9xdYc0sfbeGP6YsG+kr5sG0P6xQaPchHFi3/aN549+FufamNyXszxiZs9qt2eCosxvqrpzabYlf/m8sk8O4r4Wwdj7itdM/G6Nrov6wMUfTx0mFd2Si8/tSO8s9/4XuPjN5/VytxDxrs28A2/M4zvYqJ0jsk/WGGhp/v51iH9cPHNNYEMnfTJXePJwype5o2rI21zxdq4nKAHHrkILzzweydQ/NX4FPOT6MgOnHygR9v1kj3t7JPng/tmds3BHzax8lLYb9K0362xa6trsvixSd5vlrtuInP46CJnHaZt2GEwz2a+q3fCg/Djra22Jq5LYsRPH6i4N2it4fOs6X7DmSOufKZL0cZjr8CEsgcv/WJRzPDAWCFfzMjqmzPWuDq/YPXlA3/73rtJZM45+Mtf/vJWPOXW1E1HmMnAWD6kW7+zGD9SV9bA+Q/yYqSISTrU7LIV4ekZyHh5Hr74qvGUPzN2E3/+wCE3EF7xYQ/BZW3UZI1bEzU5OvIDbsUYHmSu+3k2Wpvm8OEht8ct3/gNEz5Y7JH2nfw2xmb+0p0umBEeewz5TbRPfepTZ/5HKYpnda7w49rfaPeifU96zgCMACiQAqFvjhMW2lwXYeNk8QgQvQ6VG8dvqngZdjhe5G1Esl7UORA6IAVb4PwNaIeEBKcbzTpsxuhHbs4d6uaQG14PZPPAwq/ApqD6JdAavORH/OS1/1uUj8WSnWx3wBgr0bXnuD5+66G0HtZkknHz8bqIOHS8RKebTmtrnVygrL/Yinefnjs0HeYOeIncJpt2ZjtbfNNGZJSJrxjDJzf0yWg7dPVtPn+bDuYuZPLNDYgaOdzhL9emPvbokcewlwd8J+9C4QIHG+Krgh+v+JCPtBXjdOdf82LIDsLHH7a6KdMmR37q528PVq1XOtX0OMDsAbjFiG16XNg6XNihR82+teWPOj1s2aPmHWz27UMPPbR+xYpetuj8xS9+ceZXwq07W/abl9leXOh3QdX2zQvY8Ihd8dEutvmFPxILcUBznAwf/GbFW97yllXghE18rfmTTz65Xgw4a/xDFh8OiD879CrZplsxR0ekr8BbEReEH6+aHuPWL114Jq8+Moantj4sqLymt1xobspN2eTpDKsxBJcPzXwgIT/sCy/XjImFmwrfevGBiTizT0++0lHe0YUHHvr1s6k2Brccsa5KOMybm/Gimz3ryFe88s0NGt14zbUm+sgc3mxmw1zjzgK68PDTmaXIDTzsiQf99PJ3Ep7ssqcgvK2xOJDD23ixwWMsWW36xPLG8Vr41re+9ew1r3nN0kn+hRAf/Xrw17/+9bW/YFDCvOsubvDAaU2VfGnt9MONVzzljm/ku2kSP9dX38ZzBpBD1lTbNaH9zqaC6Ox8yndYnQ99sEk3bPzoPkPfOFnEDlwR3nzRvojYp4t/+MKlrZhHxY+NaUcbD/l4spWucgKfMf0wkWcf0TExhw0PuYq+guhil9xO5vC5BvhGZi+KjNsHznnxI2svOBe6TrpGWE/j9Gdb2wtW61Bs6EN4+BV//sLAR/ORvnF65jeh7UEEk7whY584q+xjbXphk1NetrKJ1z0iv8RxYmJHIcdfOsyrnS+ub+yy6b7AS2I+0rNTelwni7lYTV664WYPv7aYTFx42IRBruOTw/rGxYd855I5RJeYuZ7Shwev/UhOXwwUaxcOeqytMfbE3Ld4fDGBbTF0veZ/MYXROSkeYgubvc4OfmNkXC/weVBV5Fm/wg63Iu6wKR6EFDFhWzEOq7Vwf+ADc/dychIOPltv/w+Gbdd0f7audSBrnE4FkUPmtNmARR+l1zqKZXza8mmuF3768dJPjzjAjugyjiccanziVr4v5uOP/GYzPObSER5j5sWPDbgUcaLXuPVsb4iT2CjtXTrhJp++cszYxKttDD6Y85ccTHLdWhcjWKbu8MNMh3kx6PpbHKbfrT275CN9fMbwlEPNwxoObcQmPoXsxKYPizl8k8xF7OZ39snYQ+bETswV2PR92eixxx5bzwh4ng+FwYt297HuUSPntzOQrfY6THC2ZmJh78kNY67DzkmxU8zLidbEfd+N4/2H56V+Q8Zedx/YfXzxIpe8OeeP/U8van2KDznzbLWmeFofbbytm7Yx2LXTY376KEZ0yCNtfAi2dNkD7DannrzaCh3hIB/OpfCCH+mCQT6Qh4++sKY3XGp8s8Qfxszph6U5+qy587t9xCbiq7OevmIrL/oQFZ95eWDfWjt6w23+Ir+zT69Chp25f+KBha7WwLj4lKvywdo6p+jRdv/oetJa4uEPrHTB27VCn208dJBBsLDBlnm+OqPoQfDIXbrI2D9hNidPdtzw8Td58wpeMuYVe8b1k064jLFfzsNDrtxkl1787WVy2s5ybTL4ur/pC2Gw89U8O/a5L7z1ot19DLp5/ADb9di9tjj4fw/OE2OIPtcGemBpjeiXB50PMIRFPYkc/jmOn7wiRubg5Rd/3W+84hWvWLiNWx+/sfPss8+uewX+kqGXfvrErfiVo8adu/JHvMJNH/72Dgx4w9pcmOmLl28wue/wPCMvzVtHH075Yh5ecaeTjmr66xujR0xhK7/Km3yIn10y9Cp0KXTwK5/wkYGBTpRctoyxky38O5Gh335RZxOfOZSPanwIFjEng48N54jznU/OJTmMxzzb5MlNzPrmzYmxHOZr60CX9UZ08JUd9sggPGScAXLAeHsen/lyCR+ii17PO+rdVzF03/qRj3zk7OGHH14y8azOFX5c+0V7fzqGoQmKLYFugfTxcEyg8JYEHXQcVOLFY1Fc3O+55551gbcJ8ft7dA4JbcFjp83o4i94UTotHD5UMLXdnFuE5jqwJQa+5MzzAX7jSot9u0Cnh8/5zfYkfswEuZ3OKbu305VP5tMXBn5lj08IToQ3zNrJrMkTP9jxgv1wOKyLCb3WT7J6GJPcYiW2vWgn48HHTZgN4tDGE4bdTHjUk4eMkn/k9JHNY2PknwNNDuHV9s0SuG1EfQeAi7maDz2szRft4oaya8Mq5b95+eRFu8Ok9XbB4qf+zP9iraZzj3W+ymkxys/iwR8+skue7vTzgV/mlZkP5M3H46DsMOIfHPDaV3jop4M+fWvrxsY+QeazBSPfXSwffPDB9Wl6ctbbi3YXJOtPFx0etl3YrZlYmYPRBQ2uXrzlm5jDyBYdfFOKj7nWfQE8/yFGYubX6ByUHlI8qCMy7PpU2trz/YknnlgPMdqwFeN0Z7d1OjezsBsz35qQLe5hZbNxY+KYD+m6qCZHnv/WT7v+1L/r04833XBNPrrdHHqB6QbIg1Y3u3LRA5YXGW4uxAZuhRx/kTiLWfbMhdk8jHKq+TDgEd+Jh48VfPQqxYv/biDjKd/wRtoKHv7DyVa4te1/uYuPX64xXaPMk4WZ7WKcfnjppC+/ySByxuk1hi+s+oo5PMb1YWRDgelwPF//my/a4VfEHhYFwYLgaF3MxQ+ns8nczKt8tjbyyDennK36YuvmuZeUdIuZcWeEfWiP0xEObetaHyb2xMZDTGeceeNirKaXHBtoticve3xKP7/1I+NKfjde31zrxm7+W9MoeX1yMBrDW9GPaottMTKnTxbmcJLnK3t46VfnN7niop1ubTrwueeyB9T0GHf9dv7iZ1cRbzzIdd26TSzGyVpf43RlW62/24eXD9ZRHfEJNna9pHJP6JpgnEyxIOPMkWOKvEDm4bh5vGes75pjX4fZOHmFXtjkibOPDbVvT/OZXj74oIhO1yv9CD+iQ5st8+IhjsZaE22F3WKCD2bjSC0m7Cr4YIRJKZ/pxNc+0HdWu67S17wYkYHP2ir2bxjM0UHGA457GX+X8tSLduc/3/DyTd+9AVvureE1Fw735/jce/mw2zp5wLff2XU28A/B5x7DXHHKB/N0u3/zQblvlzljyPDFGeL6JJbWx5dz4IKFLuPpVLd+bONBxah1lONi1Z41To8+mXTqI1i16RTP/Mq+OSXb1lJeG7O+rYF1oUs9ib3yiu5wGsNrHmYxpdu6W085TLc1sS/m/Tf98MGgDnv6Jl72sm8ev4KMi7e1hkN8yNpvUfx4tengt7ir85mdqxA++tXiqE6WfbGQG8bo3vWHPVt8r+A9RWT4hfCyQ39ycCh8YlttP33oQx9aL5R2m6dsnBrLLy/G3vzmN69cj68X7a27WjzZh49NNT65YFweyAd6rYM1EUt8csX9nxdL7sftWT47V3zQ1nNN9uihU7zlgL3oDKQXtc5iRLfYtjfNy5dwzLjPWNEBu9q4GtZyyRgd5NkpXvmO11j7mTy75pVJ+OjIljl2lKsQDPwkL27Wgqz4mMtHc3j0w0O/tgJXNmGCl4y2Yh6ffe5slGv6iE7r4pqXP9lxhjoX6IMJX+tGlp7msmcczVjRyx69Snbay2JOD+ocwGOMjc4osdaWZ+btH/f27kvwoc4v9x70wuysgVuM4ILBsz37iF5thd5yFD8MMNEjBvSLI90oG+RQNvhbjOnAJ0birM2WcXvtcDjcur7Bhy/bavyKOTLwi4M8h11xD9J5wi5etuwxL8jhz086ERl/T9yH0fC4TpJ1LbaHe46/ebyXcU/jGs62ec/BiM5iQgfd4sUHWIsLXpgQmfLAvGIuH/GQnb5aX/d3PhgQM2tgPTwrKL5Ia8+i9JOnE5apG4/4iRd/4Ubh5oNC3nxY6VCi9MOuwOgDRzg9E9MHk/i7z8ifqYPv9LNTrPRh4iO96dGmAzY8SNs4+Ury4sDWXAv8+sWcjPVr/7Cl4AtP/qrZolfszCvZNQ9ffvIhvWScPbDRYY+5Ptin+J0z9qR1QfjoDQM8fMkmveV8eUdP/qrD1bNGuoyTZ5M949bJHuE7PfAhvMWXTudI8VwMxx+wiaF7zY9+9KP/2xftjAM8FyzAbYTpyL7AHOV8jtNFnrOcksgc84Dl4LXpugj4BixedtQOG4etg2cGVIDNK/Qr7CGb2Q2CBVfSLzHIlQTm0kOWrijM9U/VydOBYFaQBS2Oa2D7Ee5t+NJuuMMcc7htbpiQWOeDeSXftWHDE/Z0qc2z5QW6Fyku2m0IMXQwWmM6rJuk76Ju3pj6FIbssBseY7XVrWc42jD1bTS2jfO5i7U197Dn4REe1Jqo6e7hXF7B1zh9Chvsm+Oj3CHncBIL9vTlrQuWgl9u4ic3KX14kNoYKl/tCetW6fDUxy+XOiCMsU+Hdjmhrm1ejBxE4qBPD3seUPlE1hz/w2iPWTs1GTzTnsP03nvvXf8Q1UWeDXwOXX+uwm+feIAWR7UYm2Pbw4MbeNTF1uFYjhifa6CfP8XLGCqGbOPRty4eGu6///71Zzi8aJez9LPz1FNPrbUSg5///OfrRUBxoJ/t9BbLfH/O6nM/p80pY7xC38RsXP+UPlrNZTtZMvAbV/SLx8Qz2/jCFJb0xif2zl97xc2eHJDb8tdNhRckzlv5xh7M4aMDJjkTrvSrERlroY4nTGq6wpY/9el2QYfRHDvdFOjv8UtOjei33rCXmzDQoY/4ad3lQdjZaQ+mCy+sYWZfQZOnPl6Exzy5aMriSw+bbuz86Rj/+wClJ9nr1mz3jXZnMB/FREHms8+W/m7TGDnnmTiJ54yDdbBWzkA3+G6anDX4nC9u8sWZXrxk7cH0wWINjIeHvfrWQ17SW77BHCbyeMzRj+SzMXP0wMIemSh/s2kcLxn6jTenxm9eDPDo4ysPpz58KBk8xTnd5vHRbb5inpxSHPY2GWS+Yoy+fFSTQ+lkQyx70W4Oj/hYI6TNR+eBnERzrdIZJmvHFt1hIcNma4I3P+09vGEyV8HjPtA3SuSSdWzNrSf9xd4+dj4Yg9k1xjVFnx41n/hSXMjibX3odj7hFRcvjlsTcs4/D6p045l+wZ8de4scP7SNTz/j5TfCR5+6Ph4+dlbBxn/4jDfH5x4qyNpL7pP5RlZc2AkbP4oDe+yYV2B2HXef5ENzL9nYpcv5f/P4YE43HXJAHHphB3/3dXCIq2tF+911xcsT+J0DcPKBfgUOBJscgk2Bix+I//P5oA9a+caW37jiA1y+8ds60A1fha7Wh6x2a8TX1kK7YgwVx3hgFI+w4uHPqfUmw1a6xEJhIz/paX2NTXt0R/jMqfOFXsU+rcgNBR5xdQ8nVuJfzK0VOfrYbJxeBTWHj03UnL5Cv/Wrz6/OCrzhJavNDlzi1diss7Mmxw/j9OUvzOJIZ2SeXzCEnT0lfNpTRnuPffrU4Wm9yRc3cuTFXbztS37Zf54NHnnkkXWWpWPqvUo7nL4E9Oijj65ve4od+/ZFa2xMLNT5WW3v2N/w2yPWC0bxE6fOBX7Rh9/56+wVS2tp//uSDP70aiO1Zx4v7Ow9esQDdvLsFCe2ix0MeNNHV7zGrKWSrHnU+uNB7ChkI/1yxRgc+uyZy2Y6kjMfpsbUbMZLPmpMn5z4q8MtNuJnjJzCH3zw7ljwFXM2ERvFLNtqMXZ9dh0v3nLA2eyszSYd+Lsng806wOU8kBMIJnzyAQb97MKcr8VCX2HHfPEvL4ybp7MiD32Yo4bZfnHPiJcv2vBlS8569oTXGGw+zHGewQgLWfsNabs+2Bvh4aPCXzJ0arPDRziyCXvPuuwZzwYfkT4+8/QhuWyMLj6U2+Zgyn/tcKWfTPEwj/BUkoXbddVe5I95c/SQEz/PuD7Y1r8xXhDbl5677dGnn356vWinC59rvHyhT3zVckoM+UfWuFiwh8gpbBsTE7xhiU+ND1lrOejdkTz1J7X8eczOMD79/ve/X8/l/l9LeVlupZMNsYAHqcWwawG+eKwJbEpYw9M4HdYL0YsP4fPc2X0yO+bFw3sMJFb42GyefDqM012eGS8H1WTySx22/OGTthhpW0NrwS/Xc3gQ2eRrs0W/ot18/GyJAR/c96rxIONsKJH54mQsXuPWqBjT27UJP/vGFDjSazwSH9cbOUyX2LQ+xQkvefuTLjL5RUbJRjHO9+yEWdycI+LpbDEOq0In3fbR//RFu79Rk7NACCyHBAJAbQVVC2bBwqPPIZvJuL4gtAiSyCb0YkxtXnKR6Zs6AllwyRUsCddBQD8Z8vDh0bbwggg7HcbIKNH0x1iHMfzkWngxmGQ+0m5zwGiTsIvYgo3/JUjx0k9/uma925xztXcc7PJb3BA8/FYr6SQ37cOxk3l8Dh0vrT2M2RTGxMmhnX4HpBjz3ZiLomJt9OmnT3tSdsMjNuVa/OaMKZE2W3i0HRpucl28XIDlVBdfa2CDdfFmU9uGg49+8RKn8hQPLGpj+LXlp8OBr2TYcMHqRTu+8j2s6vyDl57WxLg+X2CnN1+tJRvhIINXXwkXnQoq3+lF9LnYiQ+iQzxgVpvv22ztGxcVa6emly6FTetH13333bc+9fO32ukwh79fT5MP8sOHMW4CzcHrodhLjPTRL5f4lR1j+vkULxtzrLzilzl84gWfbxb5e1su7MbI8d1vzJS32taN/VNEZ4VuRE8YktE3P+fITX7+KMj6hncNnP+IZ9c/deFJtnrq0CafLv38n3rtEXGydor8U4uFtXNTYb3o2X2jMx+yQ3d85rXLX+3yHX9kvFzPF2PtBQ9/Ycc3CZ+CkoUh3+UGm+TNR2TwlOvJ44HXOZ7eZMqzXU98MwZ4KslXx6+uTTe7HnL947M7+Tfae9HuTCoeYoLCqC5m2uEKs5qMvFDowY/yw3rJJ9dwOVTOOAc7//GWM2p66GueTnYUc8haOG+dX7BZS7HCS9Ya0jvXGD/9cjcbeNHETV94sk0f/cbpLR7mzSn0oni02YlfG38lPn1EJxIjY+bFz3g86nIKL53Z1m7OmHixrU5fPPXV9FujHiDIKOaQNn2uCeKpmHPvopiLT20uHfpsssEfJI50IHXnTP6TNR4Gcq7ZXvzaC84m665YU/6553PNpsuYODTuwVGbHgVeBS6FD3xTw46nXC0urgvlFX1s2TvFKJlws9/eKn7m5C3/Zy6ZR2py4qDUN6Ydts7j/NEvJvTwiT9dy9j0gJg+sWg9+UQ/Kv7k3W+4PrqGi714kHO99mCvFi/3TvquC3ThcQ13TUfGihv8YqAg8mzBpeSPOeNK8W3enNhZl35Lkm9IHPjVC0Dx9y095wgf6S8GU685uI2ZFweY7Wdje2ELn5IeNdvq1m+uMZ/18z05OsQW9jlGx5TJVrmQjWJkHs1+9vmtzQadeOSHuPDTPNvG6KE7wstm2PA2b0yJJ5nGk1GLjfUW52yoK3RqZyvZdO61eXbps05k+aaO0lGdrXzIlv6UI198w5XO+Ohkm44IL13G8Im3l2xyVY7aR+973/vObhxfeIUp2avW2b95/LDr8ccfX19csbZsyqNyDBb9ij5SuxbDQ8a5KQeS45M8sF7aiB8w94GjF6PW0j6nw163/8Ogdo/otx+NW5f/4+1OViyrmjaO56WcmjkQX8SB/UARex1YoGKHKDZFKd6F/cCL0YFQImKLLSiKw7yUd/+W+S/CTdb3mb6pAStXF80TEavZZ+epLIU+e5IPcKjxInGDtTG5xdO6FS842SWjj1eJiukcm3Pm42lcXf7pTfecn22YFPjoqh/u5MNGNx68xlqz6TTnHhPjyYcfL7K++Z5NY9PH5MTPenMu9lxk7clF31amq7yaE19j4qqWd/lnP+zZdo/AwDZbeBCf6VSMwSPfCL/58mvcvD7b1pRvCXuep1+Bi43Oqz6H0e2zJ4zFBjZryho0zlb24WGjZwaYkTvL3ajO7/yCjwyCQUzYROzTiRcPrPiNs4tfydd8b16N4CBXDOjRjl/u7DE6kXEYyLOLl4/G+e1ZRM4QfDCk379I81kX+Wa7ZyjPCuTd4f7112effXb1z+SSNS4+7Ljbxdi6grN49GxODwoTjEprSnviic9YZyJMntm8yLz77ruv+sinr7/++ujjjz8++vLLL6++R8k3tiswFi/rAI9YsWNcrGDSDpM5pF9dW47opgvFm141XiWd2sbFiSx78yw1z3889MMXNnVnGx5446XLezv7Qpxqq70Ltf7Jey6Flxy8akTXxAgHwgNLpJ1daxA+tvHTq1hfjZGPh/72hn3r+XHqgCVceCO624PG6DQmPs4Ga5Vc+RVTOOKDFz+b4k63MSU86c2mutg0Zz1b8+4rePhIXzFR20f/6ot2v5Uv6IACEfASany2S45xvAIheJwSEG06kxFIfH2AEEwvco0JChk8AmzBtakkokK3C0YAjZFlx8KER5+cpNKfnHYJ067kkzm21UqED9FtvrZFZ4Pwj03z/IcPHnbTOfXSh3dPxvFnbz9fny72ED38VOQrOy1I8dzrzAcYw5fuaovRpeC3kr28JieuCt9clHJk48HsAcy3zCxq8/nBRmTMHHwtdnPafDGvaPMxrGyKtXVjXh8+F07fhjPn0EIwOKxcKC4tcSCH2E6vXMkfTHim3Xxgi95iLDZeWrsI6UwHPyvs8Amxp7QPjJMTO5eStd76KQ7w4VHMsa22R9hlEz72OjhgR3jlRDEvz+R6+MbvIYVdPivm8gnOaTcb/q7rk08+eXTvvfcuWfZg6CEJLt/I8bLPh2JxJysXePjksu/QW2BPfuBjE+ETc/j4Yo6d/NVXIjjETY48OCjlFw9cxb4Y7O2Vd3bZZKv4y50YTZthLOZhqmY3ee3wVBtD9eMNR2ufXdiN4y1Gf0j/+Wdz+PKDnHH+NK5W2BA3/lkjSnNk9ueDOZSdP1v/o8dexYh4kJNLctphYx9vuZM/fNlJPx0wGk/35AlPsa+vtu6TNZ89GNhX2w97wksef/rYVPTDNOfoUyK8+ntc+mz6xZD/+Oyf+EZ7D/BhhYUv8OSDufCHuRqPdWcNiF/xqMZHV7Ez7nxWW7PkFbl1zuHTnni0PbDSH45q+rXJ2I+ww6MYTz8+OdSfeca3xzplsmmMPDv8aZ+zQd6+aQwGhYxxVEzz21h28kUfHwoTe9phhpfOcKn1sz/HydFpDNEd3saM4xE7z1fdjXj5Kyfm5VcO9PGSdz4rnd/hJ6utwNB5wZfGsyuWxpV8Z9ed7bmpdaPvLvJhzLgzAF41390X7nDUGQInbF4I4eE73N3D8oXM7dcMXChM7gZ+0EEnHeTLnTrf1Pp40qEPV/HjbzaSZQs+uO0RPObEMFt0i49Cvr44kMGfP2r6jHu5li945NKLBjWiq3ky9Il3f76xnLcO1J6jPdsdby/9vMzJX3rNs2994CvWbNOvr0Z8aI2bR/XxaSNzCn6xEUtFXJExOt3daiUcdJDLT22FX+riQEY7fPpTtpizFy5tuKwhhCec+viMsSVv7JkXb+Py4xlMm11xQ83zSyk/5ujA35h+/HTTYz5b8TeWX3TFL1YILzIO++TNjvn9nDHEBrzkUfrKpXlxMM9X82LHPh/oVZJfSnY/zMFFnmw2jKGwhSW/6a+QUfDuif69fbxkszV50m+MPjxiYB9Zo541L2wvq5977rlz+dMx8xvt1j9b1hFbsCB1Z4758MPiDOVLZ0AxgV9M+SCu9rRCxt1Apxd2zmPnIDmfB3wz1r4pNvT63N3edw541qCLDXJ0KbDpt87Mh9+e4YMxsu1N+MhYR+rsLsHxgxxePqXXdDLlSW1+YiC3J3zKtM8HRLY1jocNOqfd2dfGI2/lhw6yaG9fP134py5zYiWvXlo7T/Doy4MciaOcyQlZfbbERmzV8MOghE+b/vyGjc/FMKz48Zib+5ssW/YCjHCZh9Evnw6Hw3qpRi4daueBNeMFYmdTNZuoc0MdZvbyhT0v8r2b6IuA1qL7yjND75Lo4g8M8IWR3p4r8BQf+0xs6cQLb0RH+xC/NSvmdCGYip04KOLWPL32F5ly4flDDNnrmYiP8Hff4tVHMJn33sN+Zc9/jOpPp4oFez0b+da4L8GJNTn3Z3vbs5P4002GP3JANzJW0TfPlniUD+PG+Em/tjl+WKv9FQD/YtGX9PDgFQ9fePviiy+Ofvzxx/X5nBx5NieFzxw589mDSbEuEJ7yDGfjdNSeuuna2yQ3ZdkiT6/9jF9fnIoX/mzjS0c1fsQeHNOuWCntH2tBsZY7U3vuoZudKL3187EY6StkqulmC89p8TPOTjHWVtiC0/ptnaefnwjfHBMfNtKJh95+YWhcTvHYS9Y73elhTxsfG/aN0hqlCz+f8CG8YdDXZsP+IVeejNkLyP918K++aH/mmWeuXngAF+zAC3ZOqNF0sDaHBA4/hzrsW3hkbToFOWQEq3ljbPcwE184BNuLPJcMG8Yl1Tgd+mTo1MajmFNLbG39cGffGIxkG1PTaQypPaTAjjcZfHyGR60f4VGMSbgy9c35ZE6rySSvFiuFH+YUuvgpF+xVsqkvL/m5t4PPxeCbzy40uWDDASquZH0YMy4OyG9RHewuu+ymNz/hagOyoW9ObPWj/Agv211UePDb9D4w9k+Uyjmd1obLxMt2G9iYeRsT0c93G9BalSvxEkO28IpR2BqDR+m3w+bJ5i+dCmpd6dONDw666HZp+7aheLJHbzlcCk5+4HfIm3M4iK+6g5g8v+hA2h525Ia9Lm1+ir15l5/5sLnwPXgoeBB9xcGh5zfUzz///PoWbnHkBxviICYu0CtXrqy1IO7IPD7++UWMC95eZZscMh/h45P48B0PTGToIqdE6SAHb3FvPhl97YhNsgoZsvxiu1zhkVuFLBv5Alv45LeSX9OnbO5r+sJgLhz5QKf8xZPf9cns7ZjjR/EjI/d04Q0f2+wYSwd/jPOVXTV9Z6GwqekSV3qRMW0xVld6ERi+8OCHQfzDq44vG+HTL3fGrEF+G0dhYbd8W9tTZzE5zXd62DanhJNuMadzxhe/Pt7GybDphdc/8aL9zTffXH5PbPDxsZIfMCl4i4E2P8Tcvgt/PiSjj/DT5zxB5ukSR3l2dvG3+Ih9cSlXYWVPaa2WI/rYg4n+SJuu/MmHsIYt/njNNwcfTIjt5vS1w8If+hHcdBmDEY/SfP5kw/icgzsZeuxPhX9k2FX08eVzemGoTR4l07gx2NwFfqGrwCAP9pt2dvXliF++xOBu796kP/zZgsd5jMonu0r8YqPoK84jzxP901E6PD/5QOaDoucIa8iYwnd3ivsCL9yIP84m/1Kq+LgL4Wm9skdG7IyFyzgyZ9xzghoVZ3OIjLa48r9+8+niF0zWunhnm5x2svj4Z6yYtf6NtZaKNV3WpsImXhgR3Wz6cE0O4REHeRMfRBc9eMSKzOFwWH8z1cuQZOnLL88W7mnPc54HrBH4kJoe4z7AwyQu5I0r9OBj23w+hkG88wMvWTrSnyz5CN/Mo3EyFbr5WezE2lhxgAHe8JGjs/iQTafxCB9ZVKyyCTesZLMddmvVGravjBUHbZTcHrc5+tPXfLbFzTyiI6za+V5bjb+4kSFLZpapr/nyQwYZt2atcUS3gsQBmXeG0G3NwGNPKnjpqCyB8SNd5tkWrzAYkzc1W0pxESeybCtsFwf8+mqET598Y8a1Wwf04kHGJq7G2bG+1D6T+IW5b6F7Pp56l5K/+CM7/qayf1nuOZoNxTpyBvCVfhitr8byt5fmeKx7Z0H+Tn86I7zAkU825M2fk7qw/dIAGbfH/bkm5wmdSvcFHWx4Ee+MLj+wlYty034Pe/jZ5Lf5eXbzxxw92tlewLYfZIxZH/lY/NTFg3y8ci4WMx7pm3UYxZe8Plm2yOrTWXvK1sYDg7iWs9ZyPGHMP+P0sjkxasNinfmlqrjQKdfOM5/bzGuXp3DbQ2LbelcXB/bgzJY2mvGDLTLOLlvadKvhsT7ZxG/emefZ1n+C6a5H7Wf2rDt3uucM+OgxXkz0xatC3rw1Zv2prc++Ne89AOpZwbp1h/GVLnrhU6w9suz2p+fIFhd7Spz7XG5ObBSyxR+/9e+XHcWCfsQmXnbhtkaNef7y/iQZc16oupP5YL3g4x/dfcYXB338iD1fevOCUE68aNcu1mLkS4/+LIv3MWzgowMWuPx9dL/Us2bo54/Cz/IQfuN49OFTUG26FX28fLcG5EesnY+33nrr1T3NP89u33///fpPzcWDXHph4Gtj2SWnXR7N4wtzONSoeJFTEJlySVd5Mjb1xUdX/HKPX188xFKNjMNvLkxrYvthDDW/Oic/6Ldn1HTwTVvuw9wZB69Cn0JfJbtsGwtnffNk2VL06d/jDwMc+OXP+qSH//aFcSRG5BX6yOJTkHWKBx76qq2LnoP51vnvDGOPHrzOFVQcrJO5Vvhhz9ClHYWJDrFEbKQHfnvEOYTXZ4+XXnpp/X9pePlyFjrzf4bqf07nOEAFHFDAAl8QA2OOQ0hNDm8HgzYnBZ2Mko5kBEsizNGRHoee5AoiHNrmXMoOEh+S4CUncBanNoKLnBplV+LbRLWzhw/eFotxcuksacbplWCLUJuPZM2p+SuOyabbnDEyxVafHDzN4/+/iLwiJjDwVezpyn6Y0sOveNgqJ82r4Yjo7TLThtdhbjOIt0veZnDpk/NQ5kHRi2AYInOwqsNWbGCa89pojsHMpocNFxUfrRkv2D0c+vBu/dDNDr9gcMl0mZOBf25Itq0fvhSrbLFHpz6d5CPY+e6SMsduawqfAj9ZpG++w9O6MSZ3YscWPZViQFYbZnvBvH3FN5enNmqfwIuHn3SSy0d7RlwU8xe2B2rxhBE2/oiVhxQxYZc+OuiE1W8iH3/88aMHHnhg9eXAPD7EhgvcP1lTw0iP+GaXfg9Z5loDeGaBSYzyWV9+kuGTsqdivx+ffXb4E9Vngy/ZdQjDjIobm/jU5MSR79pi2DqY2MzBdS2iDx58SF+pT6d8ROkyH09z+ubVcHUuwEOHGIo5rHiyNeX5BA8ZeYs3u5O3dnU81WxYh9YOW4hu2Kyd1qi+uBsLXzGkSxsOshVj2YF5El/FDVmTdMJSXORZgYlt+Oigjx3jtafe2hOTNr2ITnrYDqfx+GE2jtj0gtGL9vP+0zFetHtoQfldm33+GQ8Xn2ErBrX5Ye3ra8enry2u2ohO+5VOc+yUZ+Plmt/67KevnBtzRjrX2KObXnGlLxz5oqaDTWX6ijds+OLRTpcx7e42uuwRdbqm3zNuxvGImTo+POyGK9vZxYv4PONXPzm1MfGffEv45Ee6GmMXLyoe+eee8UGPjLy4t83x137xwUiO2HMP+NBq7xRDcviRtnF5YkcMkLbxeIuXObL2dy/a7Xe87iAvfH2jHSY8ijUCS/cSXrjpli9nk2cNcVf04SlWbIfXPIKvuODDTz//G1+M2w92jMkD23TVJ2s+v1vT4pfPeMkhsrDDzTf9ZNlmI33GFXroU/TpCgud2nR5KTD3hzjIW7mhl20YxYE+OfCNOM92nVls4EUwWQPi676mjz/kYYfFL2J86DEXLjUeNT4+4G0MjvDhoTO9aqQ217wxuNJjXr+SjH5x5Yu1xF7n4Hx+SAcbF013UQAAQABJREFUMBbvdJlX6su3Pv2oXJCfdunCY4xtGBSy7WPz6cY/7cOR/nyRHzmjs7nwGKOrQiYMtcVezFE64J59/ijpyb/6yU0ssLJhrji0zvTZNGd9eE5G9JlL7xo8+WEMxcNHJWz8qK1mv0JOjODLt4kNf5SO7MFoDD99dLCFxDLZ+NTG7Se1c9MLRR/U/Umm9Gbvr9b0InvOM4EX7WzY42z0LJd9/jojYY6c8c5V+CvFES68MNsLcuIZlz4+s+Xl3YXtc4E23X2GcicXE+tYjNXOGJ/D8XXeFMdswdadqs0+ntaSPozWC53lgn/WE15j8FfoMQaTs0q7+KnJ0EteH148ldYIPZPIITLwF1v8Cvt0TBzZTU9z7Isjncb4GJExr2ibR9ow64dZ25g14P5unfscLF5yQ498asMHN3k56X4Jg5iZi4yXW2PkEdzFUT/M5YQO89Zn9zYc5r2Msye8YPWLYPq7k+h3b/gCnLuXD8UIFoUt+ivmUevEuPXj7nOHiQvy+dB91Z2VX/Thh00bZmvSL4noMqawbZ/R68W3WBsv5/yTUzVeOvigTseMHz59PpqHk144W+vuJ/Fjs+di+tqfcsgP+0PNrtrfaPdynU/+83B7txft5O3JX3/9df2y3F0OC530iacvISp90aBYi2NrP9/ZM0+uYg6W+Ok3hlctxvyFz58f9rxhTB+PPy/722+/Xf1FnjiVZ22Ffnmb8aa7PE4+snCbU4ePDrFWENvk8NCrkMXHx3TWNkcX/nKPJ53kzGfPHNnI+KR4G1ezERY1ksP0hClb6UtWbQ6fGjWm3xg7xRNPscg+mWKIT1/dM4z9oI3CVJyMwZ4ttf2Kjx42jMmPtW4t6PNTcU4pbMCA35mHxzgd9oozDpnHh9+dR2/68ktfzvjABjzhdR7Zh3i9aH/llVfW/5dGN7mz0JlftPuzEAAJTo7kNJA5YI7jUX1OCLbawQCwNjlFf8olL1hsFlA8SotCEB1CkqwNo4cEHwYddGQlwJh2dmCHJ5vGm6+tj1rg+Ri202r+wlEhCxNZc3TnN/3Zn3EgM7Gxg7c4nWa3MfrYQS61/lMrY+TFwaJ0qMKByFTYkU+luXDGY9widVi6zLSRHIgrOw5uG6YLwgtUl1x5WALbj/CqxSbb2Y9PnX2x4Y9anMNik/JJ7W8r+YCuTQ4euPjtcvEbW+uDDkQfPr7Cgehqk2vjse74dNoGpt8m5SM7+URfOo2xOdcfm+JjX3hhjcyzwR4ZpA5nff7Dg2D1oMI/OPB6WWHePsLLdn6RYVtfvF0Q5uWUnLiyab24dLt4jdHnwaN1Lvf+93CXJuw+sCv08AE2uLxk90sOawH51yfG8bDjQ7o58RNPxI8Ke9ad2MCuT7eHB/uML2jmEV6lcTU/FTbwnkbZxMdX+8kB79sOcmUeTrGTX301W8lqG2MjO2rz5sK7t2+O3fia3+sln252KuT3Jfvyww8xN0YHf8RRm41ss4uHXhQea6Wx6QObePaEN/vm9OVQXOFBbLaurD346FLjEefyFW56wpTtcNWnGz9ZPrau+KCdDmtp7pP64aODTrWSHfojY+bEJPtqOvjHB3hnjMgo5vHy3QtG/xnqeb9of+utt9b5BG/4apdz4/nHD0UskHFkrNjFo+ZHfXz8pLe1RoZ+ffdDD9j6/HaOkKFDLV/2NRlnuHMtu+lWhxefWKcjTLCg8vNH74+fZJNvnLxiPdDJZvtc31xjZI0p+a/N72JRfulQwjVtk0HmjUdiozTPrriIhdhM3mTgw88OwlPcJk8xF3f85Ixp55++/NPlAVQe2J+UrJqv83yYfNqTtz4b7mpnuza8PogfDof1SyfrBDak5rd71n2Bt/UpTmy7D+A1V8zzv/WI11qBB695pPbMyE92+IP2uI0ba9/Q4ZnCWM89bHSmJA8/mWSdg/jxGkcwt9aNtU/oUpybKB+LTX7Q1d3PR1g74/mEzxg+9vXxeSHn7FGngy1tJLbiLr5KGLXNwSFu1gk+frCjtAb5LV+tM3rZdpeSLU/xk0XqcgkvEhvj1qNaIRfpR8XRGuOP5xkkHp6bWrPwIfwKn4ylq9jhme3wGgsDeb4p9NBBl3wreCc/OTx4s60tXmpkXp986yB74iBGbOQHmX0fHnblj159POELtz6+cqLPVjjphkU8lbBq0xlf+uiCkS3rkf1pA3Y8xlD21BVY6FDTH38y8LDNJjvtv3TRCyd5slH69We8tOnjU+s5ebzsZNs4e/g9Y3mp6IP6ebxo99zsRbuXZMXcuW3/ZhNG+8ragIV/Cj5j8JPlk/U+13z8Ymsv8skYX/zLZZ8L6HAW2af9reC5NsSDHDvznDCO9vGWP1iQmj3xhFHbvBI2uuHRj4zhKZ/a7ORbfHv9xvG1jvTJ7oktNslnS3v2jaPks3WaLv7JE8p+eo2ZZ1MptmGIjx1tuJwB8kun/PRnOeiGQ67aZ/jFxXnnjtPGN/cT3dlngw48eM3pw6hE+TuxWyfuEfd6e9Ia8o12d4z7ydnrrvC+hm7rTt/ZoI/U+uVTHx51a0G7YszeE4vizH96090+LobtCZjZ6UU7XQr/xNlnwO7GsKWDPYQXFj7BbV4e2TTOlv0qVvr47WE59Bk4bDAb8wLenpYTefKM0d1Lvs+gbOO54YYb1rsPuH1b3Mt27xXM0c2GF+nOkePtT8DB4TM4vNpipK/Ij3iEnU74Edt8a63wI5IfBT+dxcA8ebEy7i72pUhx1xcn9n3GZr/4mUu/ml4xo4sMn8oDG9lXGyePV4EXGeebQic9fAozGbz46DGn1G6ezvIpTmGmU0lOTde1qNiqUfzFd+JIT7hhR9lUX4vIVuLBz27yxtnlo4LUfLUW69cma6/Rm790kTGnDlM8aiRmYmpeTvHry4sakbdGwogPkUXx4oM7W+WbHvcRbHjEq/PBnqJH0XZeOh/h86L98uXLRxcvXlx2wrw6f+HHmV+0+7YqIIByYgYPaI6Y42SEp745hNfmBXgWOmfJITrIOHQic/SxScZh1IvBEiNYPoSx34UviOGgg6z5MKqNIXzxNEa3JJVMfMbgk2j85jrczZM1T9+0Rc5YurXx0dFiIo+Mxa99LaKfLPt0uXD9ZpPf5MXdS0wHtXgaY7+DIqx8Mc8WnfiQecU4GQvfhaaN+M4+Yis8ZOhT6Ebp0d7HBXYFsTVzwYZDjY9sse3ic5H4pQI5tW+z+y2uDWnMi2zrQLEuHOTw8CEsxWj67RJzcBYD9mxQfrNvT9DTRvXwot8a51t+qPWLnYubL2T9cyl5kbP42Cm2YWKzGIuLeDjs4Au/3wg7KMyJAaxsKcbsDd82IS+ObMBA3ryYKV2GciYG+SVebHroIAsbP1ya9qL5w+Gw/rms2hjM8iA+LtBekPz+++9Hx9tlDwf/4fKQwxab4t+aoQOfBzc+scsWPg8JrXPjxSOecsxnVBzpNtb8mjz5IVfioRYPdq01eOEzxx/yeNgyRrd+OmHhu3lUnPEYn0RGSV4b5Yc4O+vMo2rrrfxMW+ZhCgs9xrzEsvaLB1nrwjoIA/348aQzfcnhaY5c8TKOJv5s06FtXcgjHMVNfq07fhrDV/xgm3jYpQuv8exlcw1sP8yRtU7Kt7n0adNjLbMvf2zX16Yz2/i1s6mfzclTrJpPh/6kZFqT/D9s++aRRx45uuOOOxbrtDVl/2qbbX+X8e233776wGEMRlRbny2xRdpKfNry0bjaWlBPfv3iRre4qit8NRaPvjOlM4ou8benFfadadZo6y17s6bPeiALlxy3VifW7JI1T6e1oYaRvBKliw5Y8LQui1W8xQcP+7PPhrF8SAe94WOrtaBtrzp3tBEdzh0fLsTGOFtk+IXUxs2nl610LKbtR3HvHsx38+TIoPLvnGG/8TV5Ml9M8+U0e/GzQ6dCzlpwrrlTrAHx8QHMfeiDpnm287n7yJrgEx3sIrLmw6E2Bo82m9aIfeZcL0/8ilfc8tMYngob4bZGYFPTf7zdDUi+8LNjHj8q3saNKZ2BdPCDHvadydZKsYG3AjeePmDiIctPMtpy6oxlKx/n2uMXPOI98emHxbcj3etzX9LRCxEY2HRvG2NH7N3lciOGxZ5fCqKf38WGHHn7e8YdP5yKNtvWAZ1k+Cn/5NT48NROVs1HseAPOS/a8dFlP5GLz3yFHFvm8kUbqc0h8uazbYxseuJTO+vkhzz+SvtLH18ydIiZfLGhllv5wRO/2JeTKR8Pe3ShYjnx4avPhn5xT596kpjypzUNp3a5zbf0wE9H9ukyJu/lHq9iXNGmB379fIyPjvIEv3YFHkU/LNmkL9KGKz3Jm9cWj3AYw3+afPacAf4M46uvvnpuL9offfTR9WUVNmC1h5wFYm1MHpwR7Wmxsq9gx0Om5y3xz5/8MK9Nrljp08cOWXrkyZ6jWxsvGxU5gMfnLWeD+M3zm37EnhLVnzVd7CNyMCM89CJjcPAp3LUXw/ajfJKjE5FT8r/aHD59cq1tvHu98aqTn9iMi4Vc0ZNteO3X4sc3JXz4mjMmtij/wlZu5UWO/HKn53s87gh3CTk46HQ+G+8shSO/yJTHYmYOT7FqHC4FhZGPdFgrcPj2emvUZ/M+k5KByzuJ/lQLjMWAPnrYts7s+ebViM+wilU5IkMWv6JNpzY99OmXezFJVs3P4+0ex2c/OWfptwY9o7S3yCNYYGiNig2bPpPyDx+dCl58zgY1vshc+daGV9zwwsWGefeq9xl0k1fDGka/yBBnc16yK4fDYfkCGzz2pX8hw09yfolnn7Zn6feLNBiskWpY6UD045dnNYLbOJxijfTlRMzLDZuILn6R1zY/46VN3hyZbDrjfB5nmy3vFMQgbMYUY9lkx3rJDvv0Kyh87ODJpjk8fFNq0xce6wSxx65xBWUjHGtw/GicT/LMvjF46Jt26couHu1sUjntmm+suNQ31/xiOvlR/oqVeM1c6cOJyNObn/rwFUfj8kpGCVtx1SfTnqSTXRjoUNgWE3uFXfrI0VEhZ2xSOsoVXZ7x6JcrMQtTe1TetN1rCp3en77xxhvrrzXQf1rMpt19+8wv2n2jHZCCKABAI05NALUFCOkDjY+DNm48zRX8kto4G9psqxUYOngFsoeLAqfPFh7yDiYHeQ/+5sJc0tR4JZKNeIyZQ2rJtrmNs+3wlJySlR94lTCTN0cOkTU3+WZszaGJBaZrET1iBxuM4nXdddetF86+NWzhOCy94HTIatMNj0XsIUA/n3wIgQfmYpFtfPki5nToa4sfkmO6kDltha58NkeXPh7tbGk3byy+8PKxy8eHDX8D0bep2fDS3T+X4hdMsPRPna0BsfBbU+Pwss2GvjWTLbkVKxs0X1r3rTUxwqemQ02Pmp78ap6v1qd498IYv//4wwvm+Y12+IsnXdryyzayl4yLCdvZcmnKM6y+OdA3sV3YbHvI8s1yPumLI3kFPvqMs0OHkm4yeMz1wpccrLDAhNg6bJe7/5SFTx5WyNBr7ckBfpe5tcaGPy/kn4z5RQEeOXLhwyt+cNFBN31wsG2ty4HcFXc1rGzsC3z8YRNffbrwRubZxNthL/7wyhn77JovB/xTWlcw4LWGwsZGus1PooteZWLRptNLAg+u7BlT02WdWj89PPMF0WOeXlT+vMCyBvGZI+/BUCyLg7qSHH3pCmP8+vBMYjvSlj9+wG4PwyCfxs2Tr9BnPTlbrQd9RBYedsmId+PmwqUdfn7RIwfGkBovf/BmX63AKe/5SyYM2vuY0JF9PpBLt3GUPNthSU4MFA/X8vPQQw+t/yiIXPLaf4fY9XcP33nnnbVGYA9r9vEo+nNf8CF+tsVy8horZtrmyKiRtvNBvsUUiQ878qvgNcf/ZOWV3bBYo9Z3d1e5VecLHOToSX/Y46NfXsPCvn2s0G1+rsH84HdE92n2zbeHzGvDjx/lrzm40pE+NfvThwvbP9l3hvcyEEbt7nQyfOlO1FfYxsdGY9lcYLYffOMr+dpip00O9vDDRc9pVMzMkauuvQbGD/rZlIdibd33n5g5M90bXrZ3d9i/7gP3grOef+3pcLVezLFh3Fh5gGf6Kc76yanJGMtfMrOdju4EuOlhw98uN+9Mo0NO3Bnk9cXWGH5r1Rg9xsUhu3RYj3Ti9awgDmy1l8TBPZ8O8vCHj86wmdtTfmY7H6vxk+eLc7pYGWfDOrQ2tHu2ptMeha27iB/yhT9sfOcH24gP+KxXdXnAT6eibf+waZ4MEiNnQ77PPZZcetgV73CSTy95xH9rUxE3MvjZsS7TtZhP+MkYR+EiozRmXCkvYovI5a+YiWUxWAzbD/phUdJpPRy2Zyw4ER5xbm/gC6t2NvJfHMUqvOnQp0vRpkMRhzCw2Tx/WufFCy8e8myzA5c6/Oll15jSesIn1mTUsFfMyUW8xsOcHjqNhTdcxrOrRvxIThv2Ch0o/WTw6iv6cBhrTjwU+6YX7T6L4fk7FIa+0e4Z2ZmCrCGxzz+57ZwQf7GypsQo3/Dwz1iYikV+lls28tdYOvDbzz2b6RczvtvbXrIa9+1bWOztnuflFOVb8dMPg3nj9PqswUf+WBN4yq02O+YUbUVeyk228NZW059/+uQQvmKkLWZqMctGcsZnvMinN13i4QV4v+TrzHJOikt6xZRs+6tzgH7+smU+H9NvHF7rwWe+vmSGt8+82s5wsp4d5A4OfbUCB11y2P5lWxxhMz9jZE5B+MmJFR62fIPdN6zdX/peAJvPfzi8JD3eXvjCZ07JV3rYLebswAIHu3jZVey31oiY+jxDfz7Rn2w1ffaP/NBH3l3iC2Bib877BXbw2FtskYdJrBRyxuvTK7d04FUr5q0BcYGXTT6y2Wf2xvgtZtmERY6N+wzaPqCXj2LvOdEXE/Aa81mxb7ibc24UW+eCz9aIvz53s+dLfwo8rQu2et7kTz6LCXt0IuPw47fu5n25XzfyIYZ4ZtzIm1OQvsJ3fDCKnX8xb73DCDt8bJCjU4FVnxx5OOmKph285PFNm3iNV8RVOx55tz7oak4bsYu3Phljk8iY55McapPJB/5NHWylVw23OKJ0Zy872TWvXSybx09P8cIjzgpMiIy2tYUmJm2ysO5jkBzb2vDTKxfkOlfoxJP/arFlT561W7v8nXrDby/AYB6OYkevQo8Cq3m27VP8+a9ND1veX73++uv/3ov2/jPUAjkXbE7MIGkLJmcUQRJUi4dzAlMR4II2F1pjakRnOhxMLgpByT4+xWHSAmHXhvcSyoHuAGCXHri0kYWFt0UVbn36zfPZIenSx8sXOPpQERY68SoRHbDRg9jHl25jEm0cj1pBtcO6BsePdLDn4POhSJ78+ZSbbrpp/ccXfmss7g5XMWALHoveBncII36bFy/+wcJuC3OYXdiLuXiIi3jBW27I4kHa5sKrNlbN9iTjCA/Sp9/Fw0cbkF2Xlhfr/swC/XxxwWRXLHwA9ssW+eKLWLQJ+WjM5lLYg0VeXWg9qIantaFmj6yanta8sXzDJ5bG6MBjHXno8AACy7fffrteNDsEUH7yj0xy8ttDNp18iPDy2SUp3/CIgwcFuWGLvMv1559/Xj6yo0yCu7yyy55Yq8uF+S4XsvzhH0wILnlwyfsNu3Z+wxnN2H311VcrDn6zbtx+lTeXaAcfWTgU611sw2Td2oP6ajnRLl/x8QnVFycFvxLxcb+PzZX37BRDstZmD0bk+WEvWEede3SkNwzGEBzwGZ9YyoMXT/a02MNhXFusfADzcMTO9IVOcaOTDPLQLyfGYLEm6JC/4lUM6cLHn2K3lOx+mAt/U2Qag9M6sg7og8k+7kEWn3EFqeHxACX/+3WKh37jyeb3vrYe5/ogO/EWS3qU9Fpnk2AmR/9eJtzJqhsrhnQj6wKm1j+d4iJGzgAflh588MGj2267bfGnZ3X+xg/6vWh/7733rn74gJ/efEltsSsO/JAH4whu+vJPbQ2VB3L6iH5t54N7pjMED9/LLSzFhhyd4kG2eON1FvsQFWZy+REmcq13a9h8PuGh0zko1sh+odM+1cYDi0JPfna28Km8LQXbDzJITUfz4iZexW7iDVdy9CriaJ+Ez14VO/uzO8paVuhGfHbG84stWM2LGSz0onCtzskPfvIR9mxr46W/c8CY2OHXnqRPByrWc37fLr/WejHW9kLKfSFu1kx3Fv/44rnEixu+sVN8xRIGtbHyyG8+FCvzqHhUh4/PsFmnYkEnO+kWCzz6eMTcB01tdt1XePiCp/ugGNPZ2iteMIirAp/c4+ODPt+9tHJW0te8OHhxJX4K+YhtY62jeNTZxZv/ZI2TU/jMtnl4W1v8iPCdRu46z072k1h55nK/2Lv0ZYPNqU/85ElhG4bwsaNPXzrU+OyJnuv0W7PhV1fSQQ++sKRTHybxV4oXfnb4RMf0vdzyp2J+2ixOeOXEurZu2KVbQWJnn/fhb+IKGx0wyIv9Yu2ZY7v4iSWdrVdYwo0fhQ+fuUnsTkq/mHRHiQ2ybmCxNmHAO+W14ZB/MYd/T3SRxRs/X+RV3MNIPt/yCT+byFi8+vSmG8/k04ZFzX96+FIOtc0bR8W9tnm24CGvjdgTI2e2LwD50zHn8aLdl4X8E3Yvxcp5+zvfnBXy4KyAAyZxD2O+4edXsdOP+ElWrmc+6WrPiLO2e7P8kKePHPuHw2GtC3tGPHwO9yxvfcttcRW7csn2jHsxFUt69a0JPHyFsxzRkR664bPu9ms7P6v5TgciX7/8GmcbmYch7MbwTczmWg/adLvLbr755vVyEC//xaFfHNMLq1iS4Re+7m9tY+WtmOGtsCMmzpaeteDr/QQ++1RO2XK/0EMnn9pX5q0v9ooHPjJ0GFMQXBUy5QS/vl+W+0a1z+jWql8A0ONzCt/l0mdVXwYkY+3Czg5c7IiJNlxswWqcv+GEld9q/M5Rxdpnj7xSrMizR5+7TaFPn9xPP/20Yi9efIBdW8EnVgqdbBpD1fTzzRpkR6wV+t3lffYnj9e7CV8044+9Aic/Zi7sKc8VdFgX7Wk28Iu9+FqrfDbeuxCfw9kUX/rpohvB52zxpTdzn3zyyfocDj9s9NjDfnFhjB/5LW4+k/K7MficC55P1LBEeMyzDTPd9Gmb25MxumcRI/uJP/yg37niGSNdYkM33xA9Crun2cFjXeGftmBF8JlTx2ccr3iL29QLE/7s4tWmT01PY/Tpex4wT9YYH6yBfEqeLXblBp86P5fSa/xIng2Yrdvk1HRV4MEj1tYVWbFjO1/JKGERbwUe8tr04WGzWNFpH7GP+Is/HrYqYSCTLXrEBB7Y9MXKnrAGnK3Fn3266HGu2A/2EF3WtLOxdyaw0AkHH7T9+elLly79e386xot2geOAwjkFYFSQtAWNcwLZItBHHBckckrz5AWzgJojr7ATlcA2PHm6s4lX8OkRXEUCvLxTJAHhJwuPNhJY9mAJG3lErzkb3OGChx90wyJp4pOu4qE/8RtXEBvx46kPB1ziDGPyzS/hkx98N59efltIZPuW93wB52HH5qWXHZuGPzY5godfx9tvmPmDp5yzHxZ8bJtnW2wceuzTbQGrET48amP0hFutr+xpL6NPfzmwWeXHRehF++23377i5jLxoootOG1CB7ELXa741UEcRvE2rmibd0nzQ47FAFb6yOCBWV9bLTbiaR4/yj99fAiPDe+C8nDAVv8LOB/p4leXKr30WNd8ViN5yk4y5P39eYcHufmi3UHDtsOob7Szo9A/ST7llo8eMmAR+/zGzxZip8MrH9Xy5DeCvqXINtwddHTDDD8b9PlWvwccL1PkQb780sDfk7NvySiwhS/MdIkjfdp0lh+1nDQW7rBO38lG+chWMulIN73m+YbHHpAjsnTxowNdvoylN517m8nC0ZwxeRBL/5O8PMKfPrHykqdLA/+UhxEvvOjC9i1Ze17u5N+a8OArznjwzrhNHOnNxr6ms2JO4WvrF3a61faqdQIDmewWZ1icV3Jrni481cbmWsBfKUf45aELOHmyKFvhNG6dwQSz8YgtVIzowl9JB3lj5uNnh7yavFoOtRFbYmL9+Ea7/1j4n3zR3vrZYyw+ctYaFT94kT2Wn/mtxqtuj2oj4+6YHvKNmWN/f2+KhblyKgfk2cTr/HYuw1Ici2WYxJA8P9ggqw4f/XjoRtYW3fYnvjDwozzGtwS2H3Rm1xjblWzisXbVUTKwhb/4p6d1ByPM1oLz1QcXGCvWM1vsOpvFt/uXbn71QVO/eIRl1vkpbnTQSbe8q5G4KeYm5vQYj4cMm8b2ZIyP3Sva7Ds73Vf8xWMftGbgkiNnlA/CfIdBPMMoVmyKD159POKAX40/Mjf9YFOfHEz5ojZOll9qY/YrzH5RKD9w+LDMvhiSMc4P/OnVL7ewmGu9w2iebm3+iJPnBHuIPnN0OfMVWIth8U4n2XwR4/YGvVFtOuFAsCuIL+zSRS8bCv7sLcbtB13uEs9NYo6sQR/SjRd/elpzeOjhb2c9PrrU04Z+a4ucPjn5Ni4H4h8PH+gpb9r0kcMHAyIXHjLFyRj+9rIXB+bDpF1fXtKRDfaQfrzi6WWLlyLG2O6MECf7XPwaE+digV+O1NaJZ3x26cfXi0/+KXQr2mTwWA90GBPvMC6gux9kkFrOyLJrX7ZW+GxtGNeOkqVf/HvpUuziU4s32fIGm7z6vGId6bNvTB8fv+jmE1valWybg1PRNl8s2IMlmWKIb8qZp48ONpG2cX15Mk9vc+LkuaZvtJ/H32j3Msy/LPe3lTs/rCW2wmwt2KuKeMEmXmp4+dg6LdbGZiz4oo8vO8W7NYmH73LafisG7LLvM5g1YR4+54Dz25kFU3EVN22Ej3zELnL28VPf5zGYyyusiI580oY1vxfD9oNcBO+ezLOvaJPXFud0spFs/HBP3XyKDz6ff7xw9nIQbnETCy9YOxfpJ6eIu9L9DQM97OKrFDvjeOSsX8qKF7KHxMy8fQqr3Cn0IFjtLWPmu3fr44sfL7sIL1wK3a1H89aAu9znFWedeXclPe5w/vPPeefzOb1kxKr4sgsXfY1pK/krTvwmB4+15fzsRXs+Fju4tZV85a8+jOL1zTffrHULj7uXX9rWM7t8UORcPukxro3MeVZtv4i/Owq//NgbYkGOL71olzP+ZENc+RZO9rX5WFyc4WGnmzyf2bZv5MAv+vyyg5989NmPXsR+X0TV94U3n8Wty9aF9SpPvT9q3dPvPQZMMxb4xV8NB3xIzTd+IXP8mBSvMbx0q+vD7bnLex/xaD2FjXz5SRd5+NjVNi5G1ebEobHssj0JP8z40iPe4pANc3yKj26lefroUWqb826EPTGnQ17lufymhw+KvrMV7r9CbBRLmK1VcYrCVAysRbHGi7Krpod9trXJ0MVnY3Sp84VtcmzSZz/p44unGOFF5vBbr/LMhjLjYB6/GDlL7DOxpzMMdOGzf93JdLXuyHhngp9eviDz8Pmysl+U+79REJ1noTP/6Zinn376ahAFECjEcI431nhBEYj4jJFHFomN2Icih4DFJrAcJkP2NL0dMvQJkiSr8QuQRAooHexZsMfby2O2BFG/wwpPtshnk11tpKZPsVD0YWgjsM0OPUidr5LMn+JWvMzjy07jdMNIZ3rMpXfKGMNPv42hsMeWC8Jh5EKzAFtc6SXHF4eEuLMhbmr/s315kSey2TXPnjizV9tC1qffBwb8eMyTKVfG88UYMo+yoQ2f8WTp58+F7SWhC8V6gddF4oHWeLrpdXl32fGhw09sim8507dZ26T6/O9Fu/UFD/3864AzFhXP9OMt99qKOWSNe+jiD33sumxdcGwXN7z0iqtcOfjM0bU/2NjC06WOz4sLDzkuJn26XYBeXosR/g69ciBf+QWvBxgHFMz8Ztc4zIhelI+rs/2wV/oncnAr/JUrl3PxUCNrRs58u6F4+Oa90mEIV/zaYSaffWP5EE85k1PUmtJOX2Ppia/1a96cWonsnX4bbc/x07kmD51v1hGfkgsXHWJJb2PxyI9iTozl4XA4rP9Vng36Pfzgod8vErNDJqK3HOHlj3UBNzJHjq72OkzZ1xa/PdGrIDW9M1bFyZh1xp49a51ah9aTkh6Y2YIhHHSQhzF94Sgu9gasMCrhVhdb9uxvfXrCTUeyjecHveKcbXbx6ONJd+NTPv10T/mwq8NJj9Ied855EL/vvvvWf2aEd+ZT/6wE2/4b7TNe9OGZNZvlBtYwaBsXA7U+/Gq+ymkP9ObpdcYo3U3J2RNyk7w2frqRdSMuzcuhteoMUjqP2CZHL3444KVP0W6eXvr1je/XjDF6YKUXGXN24NVWYApXPPjNqc3hhzM5NpX406UOH7utMTjse2PdZXRlmxwe/M54MTavZtfdH6aJNQxwaJOvFnNtcRPfYrVAbz/YnLoaV8NCNpvaYWzO+nCf+KBpnbTu9a179xV5+DtHy6P8w8Q+vfj4q9CPksu2/lxn4aODXkSWn3SqywFeZCzCYxyPveouE3v6Wp8+9LGbLvxsiC3/2wvGjemLAz+KBzvInPul5x16zNkHCh3OKSU/qmHUVuhhm35+ix3McGonY0w/zPjpThefYHa/mwsnrNpiPc9v69a3N31jTj7ppgNvNsmyqzRnPt2wKGQ9c3eP68PPHsJPBwxiaX7qwWMMT+PadPCJj+zzF7UHzLPrgxl5WJD2XH/F2nz68dU3LwfW+eFwWDh6TsCv7QWHMtc5G+aRmj7x94t3OUDGrD++55+6Nh728fMRdvzaxiPjCjvV2njEyJrvRY1xMaNTDUO+Fhf2UTiaz56aPP3iPfMm7opxtuTdGtKnL3x06huPlz7nGlzVdOBTyOBR04PEAq+irZDBYyzdxsnA2pg+PvYUn6v8a6SXX375XP5Guy/QeNHus5k1JP9yYa2GE8b2OX9g46txvsIrh/jNhdm8Aj8y35lkDG95WAzbD3o7V+m1XuUHL/9h64ygA29ngb1EJp1iDJ/CttoYHnXPjWyyU05gKb/a+Ru2yWceDrr5jSf/zUV4FIQHv5gheMI0sZqbtrTpVuDzucD/G+YzH/88a/uc40x0V+BLH138de+LGV1sOnva23hgM54fxuyjGXdjciLebJRT4+ToRvSUS3jxWQ/yIxb48McrzvCy1953pytkzfPVt/h92Yr/9Fq39q/Pc2Kg7Q5zP9BvLZPPb2Odj43BSn+xpRcWeBE+McWD4Mc75YwXb/YU5L2CM9HLZjXfzNEBe89Y9NEvl9YGHtizBTffyo9fLvULFZ+J+zvqdOL1otuXyuhhs9iqi3+xUSNy8mNPwUOXc9meg0vOyMIXbjX7XrzzlS6yYsxfMsfbezJf2rI+jZmTL+8M+uXIArD9YJM+dmAtF3JgvXYewCpe4sEGfPmlj+rzCabGOpvoR2pj/OQbeXamHHvZYUtJjg7zMPKvNc5+c2oye9vGyZHnO1n71Def5Y1N55N3LOLWHc5vPtGHp3hoK8b7UzjsIvL2xv6Zgx8KvPTTG/YluP1oXj8b2sXBPIKDrDg6N8pfY8bzK9x8MT9xZL+abnxynn/46W+f4DHXmkiWP+TClowY4VHk3nh955tckqUzSsY4O0gMyLEhf2qEVzEm9ux70f7CCy+s/y8Nz9St///RmV+0P/vsswsA40BHAEdz3BjeFusESEbQO3AdQMgh4MOWw8IiFhh8+KfubJozLsCKgBlTHFguK2MF0KUmIW0EdgW0QC8QJz/CrQu7Pn3qxvgHY9jChb858xaWBWusQgYfGSV7sBu3mVsY1XimnIXGNzJ0sKGdP/j1xYaOaW85sf2go0sdrzY9v/zyy4oNvRYe3EgfH91twuzIWfYdDqjYw11M6IDFGKz6dER02NzmbSiXtHlrw0taF7cP4+bE1gEFt5jhczj5ZplvbTvw+E4fX7PDfrlgH08xD5+14hLrsmgcZnPk6eOjOYUNuIu3GBkzh4yLpz6/FO0L2y8J2P/oo49WTOiwP+Klgw/s4Q8/ffDgFwsP9+IihmTEpg9F1oHYdHjTQSc5vGRm7Nmm10XiJak9Ze8YZ9PeoYOMNhILFF7+h9mYvMmfPJKl2wHPDzlUu8zp9yDmX2N8/fXX6yFELsWcLb6Iw6TswJNPrT+28l8b0aWtpMsYDPyO4sfDhpixgdQ+7HqorM0f2D08dsZ40JJfPPSoFVT+6htjE4Yw8kNu5VPsxNXa9DCER15aq+WNnmzBjeiVh/4cRfqtNfKwwJkO/HiM06UgdbHVz5/smNdmS7F2PJBZm+bo44O2/cUGf8Xe3lJgEGt+uxvYw19s1GywjV8M6MGDip82e+bJ4CeX78bMq8mmk224W8P0mLe2lNZJcuaSVxuHoRiwy47aPPl4jONj0/qxprxov+WWW5hdfKvxN3+w14v2HtyKd3Hgt4K32GmLe6SPxxi82rDbW9aNcfh94JI3PMlo853fapQdY/TQgcyLjdiLiTZ5fPDLpZxbO53PeLIFlz6d/NtTdtX5mEw6+AJP8WGnfUEOFqV59owj7YiMYowNhY1IuzWh5ifecBvThiX9xtJDXhH31qX9ApsPcNkiO3Gxn550ZZ9M+RB//eRhUcKSH9XZED969T0b2Et8c5c4x7ygdh4Yk2d3IR/I0e0ecL6p5ZoevDDmk7GJJZx8p8PcPk+Th4+ITbpRMeA3okfbPL5sq437wNqzj2cU9yvc5b01KBb85LNCF1va5Onij1oexSsZd2N9/ux100sGP73V9MGfneySN06XvYuKpZhp8y9d9OkrYbLG2EVs40V4Jsmd+88vgv0y3TqmP7vJkaGbnygMavjDYP+7q4zxgz5+mFfwG8vHcOPXxst32PkqP8bEmB/G+WYuW5017nOy4WOLbDrCyg6+1l8xhY9+a9/LdrJs9CwFd3ex+LR2+BIZ44s42Uvix67iXMTL3j4P5Nm31sJHhjx9qHG4wmxOCXvnOz/IJ7caQwec/KGHDXjLdXaKJf10wU5OO5vadBh3BotPPMbZoE9bzLrn2VLgtncVfPSxmw08/EVsts/J4VeMK/jIpmfGiT7j9OG1njxn+UbceXyj3Yv2J554Yr1ot4/dr0rnAv/ZlRfzSJzgbX+Kr3lnDKxRPtZX04GXvFioxZqfSF1hW27sS3ulvlj6/IHYMO45Xo5gk0v82vGUL/bws8FHviF9cSdjXrzZIVd+jLcujIcTBn3z5c6YgtjcE7ts4DFPjr5wpj9Zc9OOec9D/mM9z8DmfanKeehzgrgZY0O82XMXuiO1yYuX/Dsr2I/YVMgrYe0cw2dPiDE5460Fc8mZ69ywNlof+YovEjs25cT669zkm3MNdrG/sH2m9edcfeZz5iBY5N+LW2uFTWPFAH6kn29emrs3nJFsy3vnBH6xhpMeMnisK/icVXimf3whoyDzYqyGWQ78q5Fs0EW3/NgT9JKlx5i+cYUdBQ448aj567lAX5x80clnRnGBtxft+nTC4w5KHg+bcife5vCIszvJPNz8haf8iaMCA0ww+mzhLwD4gqL80Usf3Ygu6/J4e+Fu3Yi/L8D5wlv//xsfy5HP8HCKH7vq/Bc3tuksNuzxER85c4q20vm9wGw/+IlfMZ8ebTrMazsD2Ed4i1V7io2wqLt39+dE+aOXzs6WpXj7AR8f7Glt69u/PJY7a6bnPzkv9mywDxdi3xiCnS1rz1kJLz77o3Ujnqg4sV8s1JFxMSGvjcjwCZ8xc+wpiH/WVLabw6eUT74qfKQzOXrxiL1Cxhg+/GwbQ+atQb4bR/jCZiw7YoTIikl7gw/WLZtThxi19vlAJ4yITrG0l8kYLxbppc8YHmcUjN5Vvfjii0cPP/zw0kPnWejML9q91QdQUGweBJiCOKlIACcLuPnTwBm3CDlkI9NNTkBtXIkXYEkx3qJcxk5+CArd5iSlwLJtkwkgoltpseJ1OLnsvAxzgJujD6nZlIyww6ufn8bjw4viXZ3Rl3yFP2Ln8IJZrNILb/bpwdMiTW/z5JDYiJOY8Y9++XGAIFhbrOlYE+NHMc8+HezIC1n4GtOevuIzZ1xb3NVsKTCFdZi82sQDYzx0GRMrl7Vxh8+dd9651oQLyuXgooAXL3v4PLT88MMPC59L4bvvvlvj5uDgC1tRdtXyWunBFZ91IU94wpoudfbTCQsyXk0vYl8xp2jLr3zx22/OXLz2BN/k0G+QbXoY2IND/JVpQ9ucS9aDjgc0bXzljD0HjQcWvA7V8C6A2w/88LaeWqONm4MV0QE7UntQMNeDjb2nkJl2yBU768Wf+7n++uuXn7CHi0/k7AO59A2D/pWFX6L4pVlYFojtBx/pR2KY//yxpsSCT8atiy7BZMjRwR/zk2AhB3N7ubi7aK1NPHzRdtl6WFHE3UOy9YQnHXAh8WCzuBSjcLGTrXCQ067o4y8G+K9F/LDWnB38zGc1OVgU/UlyKYZImx9yAEN68sGcteABTht/D3V4kNx6mFDCywft/BQja8J5IKfswyV3CE57RLGfyPKvgkcbPvbSbTwyBhPbSjHlG5v5gN+ahql1XcyKBVun2aBzEh7Y1WyyT5ZNNryE+af+Rnv3A0zsTwoPTPCIt7Fyxk/rv/0tFvaU+IsvIsMP95N5bXKtnWzqK+ywJx50mSfTni12M0faeNn0/GBvyX+81XS1NssZWXkzHt7pK1l9hX78xsJNzvozF15+0K+EEz87rSn9cC3D2w99MuLEnj7fxSJ/2NOnq5jhm7qMk1OyQw6+a1GxV6cLBniifDCPjy+VeE6rycm/QtaZ6Hx3Bng5aD/b1+GFlW0vqBXry53inG+P0Zlt7dPIuLVmz+IVt5mPZPKHfcRnNo3ToTY2c4LXWOMwy5G1wBZf+SiX5uCwLt0F8kCXNe3cZat4kgsH2+bFR2ldwIhfLDxDsutswlssYEbFwPkLB2yIjXKdTDVZsbKm8eSndoSHLjpb1/p4Paexl75kqunuhYnzhx13o7hMG/inH3KH2OgsYZucMeeOGMOE2CdjHja6xH1vQyzkIp/UvRDC71/e4aHfMxO8cLvLW4/swTB1w6HAAYO1wW/yycmdeXaQtoJgx5eONTjGxTEiL+ZqvpKzNvAUD37RbV4RQ/sOZnLzjMVXPPKDf61Z8+0t8/QZExe46VSyaSw/2LXvrVky9IaXP3TBDb92pE2nXGjTia840ME+O8bEWQ0D/9SIDtjR3m9j9MCFz7wCI7zpMI9PHx5Yk6NjEjxy4wW7/0zNNx7J/x3Kfi/affmEL7A6O+Qn38SZXZ+hzVtr9ofY0QODOblwFpMT0+KmVvhmneDho88U7NBFB//KeXEu3+Jv3ftMxr6zmAxb8LXnjdkb9pTP42wisVUQHlQM+AQHXjj5FQ8cxcWYAhMeBLOC6CkeU8eaHD/goDfCSyfd5Fsn+PTNs2EcTrz8xS/mxrTFUYzEJ3xs0AGbs+hwOCx+PvHVt4zFiT7Ehniazz55fcX6RfYHW+zibzys8qWEgw448RrLr2JJj33hroPR2nCf+UxhvSvWDB3WkBzTz9fj7eVt3+Knh254FP3WVfvKmLYzmO/0wIEPNvPx8BOv+KWzuLCNYIIdiaNxsdEmY5+6y8qr9yD2m88ocoAPBjbpzg5+viDz1qf44WktaLPvXu8zOj7+9GKbvnTJITvm1fw1JqbuJ7rYgqt1HW9Y+GcuLMXGS2JfClAbu/HGG9e37NlBbJEz5w7snYovYGpbvz6H+xIEzMUdJjIKP+iBCYm780rRNk+39VDu4IahuGpXlpKTH+lVF19rkJ/IueULEOLkvIPBOeOdn3yLmzUFd7Hir77CpnG6lXjYU+CTR2358Es0vouLc88zLP2tuxPYf6rYQHRYG/YP3NqKvNInRnj5UD7DBit5fTzt/TCbw8Nf/uGTG7Fxxmg7n+WEDMpX9sgVEzliX5yNq72PQ2zDzL5aH/7OnjDKO3vm6EXabMGn3X4sLu4zZyd76ZZnWMQmPvN0ywMfwq6mV17YpMOYZ2dro71hTrydM84s8fjPf/5z9Nprrx099thjCyu/zkJnftH+4vZWXzCA4SCDnFEEiLPG2mQFvaQBHQ+g+ATJ4vdBhG48nLZwBUzfAsDrQNJnAwZ6jesLmkK/DSDQgl7A6XZAhpk8mwLvoLAYwqRmR6Ef5ZdF0mZkyzw/lfhWY/uRDrJ8sgCNiZ2kq+miwxzd+UPGYmsBkkP4zfFHTcbG5CsSE35aLAifuJSDWc+2mNGF2DJHRzEzhoef5sojvObUxttk8YhzPsJbMY/06YJTTZcx8eq3hb69e//9968P6g6iw8nFvhSMH8fbBf75558vHV5Qf/HFF0tn2Log2UITQzm0Xhw+7OOTo3zQh638i6s+zEg7Kk/FzXjrUxuv9WzdybHY+s9KfPvFHPs2u4vMHoE9HOT5FOFX8Dg0/M1Ov4hwiLDfOmXft8r8YsmYFx/0kEX5IS4OtvznS36ozZMpHvriJObWEAzmrUmFb6h4k+MTGfN33XXX+ht+8MFtPe/JfxT76aefrl+kkPWfQbmcW/fxF2M42298lFdFm11Y+KVNRt+cdkWMJuGhl4/sWjP8pEcsFTz+o1IvST2gOVvEW9w9JHtYS4/8ONvoyGYxZVu+w4BnPwYbzO1JehE8yiTyET6x6UGtPc42uT2e5IyTYxNpK+WXLMytU7i6IMUMX7nFA4f17xx21mSbn2yZp8Ne8EDowaC7QLycj0gOewg2Tk+y8oX0jecrH8xlkz3+Z5uMNjnYe0FgHAZjsNFTnhojQ5857WtR+UweH51wWav/1Iv2d999d5057MG5J7jEJf/zo1jJYw9m+Syu8uFMm7lr//NJu3jQmW1zir4czByKgzn8aMYKP7vWkIcia8haCHe2yMFONj14Wu/mjWeHXG18bJBH5pLlq7PbvDEy8qdMPnPFcynZfuS7mm0yYkkHWTEWh86q4sIHRKaCH6lbP/rshlU/IofCQC5/a7en0w0Lfv3G9Om/FsEsf/YLcrZ3vveQ7zmPProU2Jzt/gm1eHjR3n1FBx6xVLSjMOnD5FyyRo0XezXKnjZ7fDWmhlU7vzrv8ImRs2ieeXyUI2tPbvjLx55dyTnffOCyTuiwD9o/+ohevOzyqw/SvWhvDjZ6ejaEt/t2Hw844Sle7OzXJ70IT2vOWQqXvjqMUz9+ONqPbHm5wrc9kYNbrHqp1v0vv+JXDrKRjLqYwC5OeOlin157UDzKL364zDeWH/lLjh54jWXXHe7OYsezJpuwusvlGH4vROwHOvZ6+Q4b+/TC4HySf/JhIl/sZnzpxGNu6tfml1gpdOsja4AOPhQX+rXjwVfbvmrf8Y+/9FXwka3gYcOa1Sbv2SVf2PWsKtbmYc2eMYVO8XaPt8fwwEkPwlc/7GHmH91s4Su/xvV7YUKXtUAPHGQivNapGhZ+8BnRS6faGJ747KF8mnzG5IL908i42PoCzeXLl8/lP0P1or2/0c4XeKxhMe0MMc6uz098cE9ZtxOn5xlnCx5x4Lt13p2mbV/hwctXLwbZoEuM6COnLZ5stWbkgQ6fCeixdpB80IGXHH77w/OxPUaGLfr4EQ8+cuWHPrxk5do4Ofr5Q7+1A6NiHoVPGw8Zc3jTbax1x3586aePTTzGzMOr4J9xKSeta/sGPrZ6Xgo/TBGdns8vbC98yy1+d6O9Jr7sF09rtByEWfxa/8508TJnnP58FpPw5RMc1hW98cbHP3z0OCP9CRQv3PH7/OoboD6D4iHPZ3cgzNaXb0Q7960jcYARHz9RfOWFXfsMPz3a1l048OFpzWnDLPblhQ3rkEy2xILf4io2sBnzOdxdRl6ufIbz/4ZZa3jpgYFddqwBvGzwmQ5Y8JKHwZw44OOnc1DMtPHB7AWwz/tk8NOj3XpS46PDOwovOMm3Z4sHfXDJjzFY4KLTGL3myboHFP1bb7316HA4rBzsf4iTF8e+7Ob/krOv2fEXA+AWg3LJT+32hjb7+mLvM2B3rDGx94znXi134W1N06FE2nj5p+QPn4ofO+JsHznnrBl2/JKATX33Bj1igozxVc0GfObEThvBpsgD/fjE0Lrhn3UiVs5qZ5r4J6vOj8bSyYb95HlOnpDcwtoagYs+PiM6YIFR2zhZJczG+KRoZ5ctaxAeNuUkXeKJjwwM1rviHFG3LsXbGSVPMChkFQQ3GXVY8bI1/eAjbOxre1ZiF4mzNeUeYq81TB9e+pFxZ5C8q8MPL1swyIu+2CDrgu9s4MdHnzNWzR//8uONN944evzxx5dM+Vudv/Djb71ol2gLUy0oUUHSL8GCzfnIOBm8wHJMMHvRIqmInGAJKmpTkpUk8gJSYgtoC8m4Bd9FQUeY20B0CbwL3ot+CYMJHz0w0EO3cUVfQsjigyMMLSy2ELl06Lfw6aFfstV00WGebmQMHx/xsEVXWBbT9kM8+eihQ00PWRvdBkcw8pksohfp42+c/nJFr74Lhf3yBZ/4I3YQPiVd5st/+MnjYVtJNiyNGYeHLw5HL9jJavvbdh76fBByyVgf5Iphm8hvW9lyOfpnTnwPo3bxDHu46dLmow3NB7x8EP8KObx0yaE2n4ujee3kige+xsyzRT/c9gB7/ikZX9nC0/pkRxyKGxsRPfmAz17xgs6a4As9Cv10OEA8sBjzsgOlF1ZthbwaZnUxVJM1Fk59vnjxzWYHtj2otK7YSraHFfO+Ac53OuVWjh2A5PjGjn/G54L3AsZe9cDpocRaJ0cvkhcEJ5/Ja7sYigef5EM8tBXy+LT5Yg7PpGJNL334ET4XbR9IfCOCD841+9BlLu4eLmFnS3G+WevZMVYu+SH/5T47fFUQ+2EgG7VW0tt4NRn44RVjtugkl99inp5008f3+tqtb7rJ0MMHlB17VeyNyze9bNJj7bcHkjdPlu7y5jJUyil5uYdpxkr+yNNNh4JHMS63c85Y8WTfHJzkjJODo8uYX3zgDx786Wi94kFhzb6xYqNNP5vw4zFXfOn3IO0b7f7FB8LzvxCs/nTM+++/v+JOHwz5n279fCIz80zGmD0uDmIDt7hbq2ryYcVjPhkx2sfFXHFhV0zUdNCvkNGfc+TEroet7qtiSkcEk3FEj5KPxuQSBsWcmgx/yGmzp6SLbfPWFJn8INu6w2M8v9Ixa76Jy1xT5O0LPuGdPrE1Ma/O9gMfOSWCFYYoHjU9+ZWccfhhivB0JpovF+SLsfFJ8bmzFX1nuzvHmefsccZbR86A9Kh9EHJWsuPDl/MznGzgiV+fbliUcJB1dpRP8uW/sfitL3Jq2JA5MaEHfzFp/caTXT7QT4ez3wcD8sbkUIE5XM5+eyP9nY/pc2aKkfjEwyYcdNprckKPu5pcmNRst2/0+b/3yRg+vmuzY604V/PZnPHiSlf87Ctk2fIiDh52kjNOl366PX/Azw8ffPXtI3Lx5g97KOz5RJYM6g4xlpxYs9cYPxX64+GXuKP0W5Od7z5E44G1D4s+ALrL6c7HpWD7oa9E7CVLxn4uXnhghI9P4TU+40pfMTHHZwUumM1bs2o6zMFGB91yE+Gni8/yhGDkLzJHLxm8CsKTjHl47YN8wce31tBeNvz0uEfZwwMfHfCiYmBc0aeTb2TpSY6MeXjU1pAxpRjgJYOKQ+snP8zRj5ee+uQUfjpH4qFHwR8Wctp7Mu4c8OLx0qVL5/Ki3X+G6k/HzP8MVf4VOYITZn1nCB+sQXdk/sEpD55Z8YiJeOMTP2eVM8Cad/7gxeOziXWDT/yS4fvMj/ikx/7GDw+Cj6yC8MHWM7J2sYy39SAPzcEFJ35ryDhf6S0O4WCHLmSsfPGJTGPm8cWrnn6Ro58ta4wcwkOXmox5BS/MahjhFT/4zPfcKwYoOTVcvYwVO/qdc17eyQ2Z+MzJuZqtcGgriG2YzeFV86cY0UQEaBQAAEAASURBVGcesU135yCf8CrIHFvOSi/WvWh35/HLL5kvbC/e9OlRyPs8LlfWgrZ73VlKp3mYOofESimWsOn3PETHPB/4oA9/9zC7MPJT0TbPXraKARnxoRf5/OzZ296QP2vTZ834+IG//BcPemFWiiefjMtDuTcmdu53uMqnz4veR+EzTk9rnn/s0EuXPWk/0gW3+MDDP3EiKwb4kyUHS4WsZwd7Ca9fCMolGWtOwStObNjL/kW5X5TIofz5BYSX7WIDnzUAPyx0FuMw0GeezXwjO+9VMjAgOlrD9CO+adOJL1v8gbk9J3/WoRfKzjr8vWgXczETb+PsILqm3uIIE5vm1YocyaM2W95hsG19sON9iDO0tbwMnPIjf9iQ085kesV9nhOwhc98svAr8g+XOO99ao0YxyMu7JERN3FuDyTLFjnF/lHEAD/ir+f6eebClbx90r5nky1+ktdW8lOt4FeKG1/wWzN0wFkJH53GWn9kxMb6gFnNN/mmFy8Za0ahF5ljW96sEX74lwp+UX7x4sXFA+NZ6H960Q7QNDjbHFQ40mYSUGOoxUzGeIunDWfTIcHgqMVsozgU6Ew+G2o6Spw+ObYVc2SUuYHZYEtALWaJ8MDWBzs62COTf8aQvpJPa3D7ke1wsongkExY6AuvOTrNzfnG6WMHv3jQQ7eF56D2IVZcLCx8fPAbRoeffj6Tra9GYWW/OeN4T+NvnFyysGhHdOnLhXwqrZV4y0U4klGz4aK+5557jp566ql1KPPN4WzORsLng4vD3i9J+OyDOb9tEHFkU17ZTH8+Trthgtd4GNRiToe5fOYnPmPTLzaLgzq/8dMl59aag8e8zS2XsDfWGkkvufRqwyoGYUkPXebgUsSXLQeMfjEwzic6HeYe5PgBWz7ip9ehhvCTM6+mC0449CNtfqCw4FPkD4WNPbwKv/CQMe6DiYNN/l0CZNON3z51EPqFypUrV44+/PDDFWs+oTAVI2Ns0KOEGxZxlid6p//pIBvRoeSDdjZgZ7/c9BBBp/ixo0w79IaHTmdcH0Lp4qfL2llkjaDsadON4MjuGth+0KecRnTQb82QU+hgo1yT45Nirj651sHEUlv+8DuPnE/46eCn8Zl38UgvrPrqMFgHznxxseetEWR/w0yXX2IUB7WY9SDAJtvInLZaDopX4/nIvjmxUYwbU2BIX7r5jcyj4qAmmx3riV/GxCR+MulXJ4+fjcPhsP4DljvuuAPrn+TWwBl/0O8/Wv7ggw/WHuK/Mtd7Y+HhQw8v8sqH8myOP8bIGW+9t6/4QRcbznD5tD/0850bsKHG1Mg4G2wZy04YzNPFniL/MNg3PSgtRduPdOLf+y23dE0b9DlHkzMPB3+NwZAeffNR7WSN1+aPwqb4WGti0zmID8ZeMhdzY2TUeIyn1xjKbliNtbfwk1dPvv0YmXiKt1iwYVzRzne6jNGDYOOfB3DfBvGiyZy8t6/Mo845Z7p4ylttetnt/Asn23KcXbZhUYzJUXnSx9tdmAzbteOFCb7WVljxKfaB2ryYsit/CpzswGifkKUXVnlV9M2ra9PBrvMu/rCpyZfr/A8PfjFVigH+KFv0kylu9OmTUejhm3FxUiJ85hX6ED6xFgP50zZPv0KnmDi/PZ/y3Zg5vOKkTY+4eYnhF+fm4CCLx/wkWGBQ8GYXBvcC3PTGZ56OfFWHIb3G2FLLWbEiB0f95OTeelSne+oiYy+3dpwfPlPAxw5iiw/6dIkN7K1zes2JjRjzgwyCQyEjVoo2HvL2TvjwTcpuuTBnTEmvtlzC7w7nTzE3zk7rf2KjE2561Iisde1Zky7yxvDk6/Sbbn6r07EUnfyADbGPL13aSv7mzxxnhxyc5isnqlfVXH7os2H94g9f8SCE17iS/XSyb2/6TwfP60/HeNHun7B7/rXO6C9P8IZZ/szDLU/tjbA5ozxvksXDD4W8defZyr/2NmYPKIfDH38ihF65pNPeo7/9ULzEyLiyzw0MrRNzdNgj7mvrgl7r2N6Bh232WjN0I7JzrfADP95r5StZcp3JsISxOPCDHqRtHh4UT7bZpJdNpC/+rX36+Ug+jMY8i4ob4qMxfQWf3NDBPv0w+NwrDnjZyaYaXmNK7aV8+6HfmDMjfXSWJ3Fny7xxmOi1HvhqvLvGC0zf4PUnXa1v5zwiL65q9nw+93LWl6R8nulM4yOd7Kj5I64oX8jXpw9P/DMHxhE9YoyHDiXd5sWF360n8/Tgb93pi4f94bmFL/rWIztqObBejYdDTTf+SJ8eceOLtpzWZ5ce7zHgNOfOtL/IonJJ3pi4kUP8MIZHO+x4vLR358BMN3m5sy5hhEExx4//8nY3LZpVVxvH66PcTQgkA4k2omlRUXwJUdMqKCqCE5WIL0HiJxEyCOhAwaEDRcSBIL6gqEggCA7UQX+UnN/u+jfrOVT7VHXaLNi1z957rWtda+2Xc+5Td1fD4L88m1tfgPMMx4ZYH9YsfbWXlj6DK74AR/jBAx58vMy5gpcxPnBxX2hOq8Wm0C9O81QcatgKLPMmBjp8lV993m94+e2Lb71Q9o7IGSrv9qRrvHAi5Z1v/aSYtOUg0S9Gwk5e8Yo/XTzw/CWBQ9h6pxemmGDJNyw4Ckxxu2ZLx3V5Ml8wZs6y0ydPzn7fZrdv9Sn2jjktp/rYEdhEnpxJcouvfn2u4yVP2eJdHoqzeYKHOzv2tVtjfOtnp/DVuoDROxNrSRuP9gMsHGDHR9s1PaXcqmGzpcO/fc4XPb+AeuaZZ9Zf1YBbTlyfRq7pRTviyDQZHEnGdF4beYtPnbAVmEK0YbKH6XDoBQocxWLwTSiHUMlgAzds7bjpo9cE8RE/iW4cdjdAteTy7YZAx+TRsVCyiWvx7Gt+6fLHL9EHS01snLhq0+cH3/Kj1tZPl5h0B4k+i11eHCAOcPhs5PDS9idU3Nji0EHKj0Iacw1vco4vHSXBx1hca0+98HGWzzaN/uLHc+JqEzow/bOzRx555Ohvf/vbipMu28a1/bZQnG5SHZgO0eYKR3pq5WpiDDbdeOFArBWHj/xNLNfWL1+kTY6fMbGzpQNTP11r2+bl083UgQhbjtgRtT52DkvzrC53agVHOMa7MfMTZy9p+EqKTZu+teOwZMMffuUBB+ustnjoqPm1p9VxLr/88ZPQU+QnXWOw5NX64B+uXKnlxJ9e8c90DodDUKuGIT559MLw/fffP3r77bdX/tjxdZLwgYM8NrewxGztKHiLQ//kOq/hkH0f3/XDaG7Cgl2M9MoXTuXYXDjj7GX7XIy+2dnDKZsKXHlgW5/rOOA5Oa6B7Yc+evyWK7rKPM/ppycW12qlNU2n+NQwzCtdDws9YOrnjxgXl3zP9SQG+YETvgcBOYElH/gadz7DFL/rRNs+UtPjE26YbMyDOPUT7eLTpmsu25tsiFpcFfauJ++leKzbOB3S/OtXxFg+G1Mb4wsPMft2if+A5Xp+o903UF5//fU1B3IuX3zzqejTVogY5MR8mgt5xZ9u8ahb3+yM29s+OBMx0TGHHo6cWexJNR2FwMhGu7zEK47pwLCXza0zSO388zCNv1zTZUfimG999OgYgyUG66kYcKCjVtjSmVzgkIl7uef/4suh+YXnTLLe5ESe2yvmxf3Mgy89bb7KRbGXEz715ZvN5MLWuFyEYdx1fctg/KDPzl6VC/HqC5vv/IaZH3E5z/xHvufPn19+xGcN8Cd+eD60+iW5c8G89aDPT/7Lc33FWHtQXpiwyyM+cgeDTBvXeIsHJhvzwEY/vrjmL0x41gh7vhRtedLnA2S2sH0QgCsncMsVPsbZWwPqmVt41jP/2bnmg17rxr1anzFzkrDBn65rY/IQRvHEgV25lgP6cGGEQyc/+NkfahhyUO7Ms5cxnk/xS9gqRC2XXsT4v3WIHOCVzuo8/lHcxcKXPn6dN54p8l8+mJY7fQodJR9ixt+c0dVf7OWufnbizR4eYePaXM/7B15eesgTzLjIp9jtK32dXeEYc58sp7Abcw1Ljq0pXLTxYsMnO/r5Y1Ms+lsHi/z2gz84xBzs1yz71guu5RpOcbGFTejj5j7uzJcT/mHzc1Lc+uPlunjFAK8iTkUO9dGj3zj/cMRUoa8PFqGbuN73i0m/mK0LEubcp3T0K3gUP32c5PF6/umYXrT717qw3Zc7O/jkHz97zpmDnxzMZ3N5s3ayL79qxRry3Omf2YvLvLHxL4z7pq+2NWYd0O+c4rdnWH7LzZxPHFuf+q0F92p7xNpS3A8UIv/WEl+ttX2utZvH1gVsHMyhPqIWI/3O6PTmHPInR3TFb/3gmLBnh0/CP12FrTxY++VUPPFka5/yabx90dqGiTccOcVbLDDUhD94SjxnfPUZL4f6iqu54VPOzQkerXc54MvLcnHiIR7im+u33HLL0f3337++GNULO7FPwffrr78++vLLL9fnGX5giX8WfRUcxY6LawUn8bIRD1Frs+u6s884e/wV43D0iR/PbOShvOszz2L1r+j5hd/asEY9WzrTW8PlET474rrzjz/xeC7oOYCOfQPL8w8fxt0vvecyj2KLM3tSPMbkQ0lHTPrlII7iUXDhGz/XFTHYf2xhlUv/seett9665lnOEuP02PlF3Icffnj0wQcfrL8ewDee8XIuKfg0L3TEpt+9geAnBnNgXD7tdXVYzYGarkKsJ3ra8tyagSOXfgnklwbWKz9y7ZcC5g8nf3ufLls4uPFZnl3LDb9ixpHo57N5qS9deuW+ehme8COf8OwjmDixKx+4hePaeWssf/gQOuVBH92wspcja6wX7frF5lncnFqX+QsXN9f2gzNAbvMtN61XvJrHcGsXp/jce+DRYR83fq1HNeGDXrrG4OkXg18E+VwK25pu/cEUt3ksFnj8tPZhznuXGNmJQbG24FlDTz/99NGf/vQnEAtjXZzyx5lftPvPUBEVABJqZBEkxoh21xJQsoyVgGzpSYR+CbTBHOwmnsAysRZgNy19MNX8E3gwFH3G88uHYgyua2O48alPPCbRYusFjkmS8DDhuv4lwUmhl24LLM7FCy/+anpsGtcmOBIbyEEJx6EpJxaaRauPncPDCzrfEBInkRuSP3U5UWuXS7qu+Y4vHbzo6VNbgHToxpeP6VM+5c84PcU4H+nBgiMexbWD8cEHH1z/RFLMdOkpeDgk/RM6h6a5Mn8OCOvGnPFDl2S3Gsft+utTs4GtxBOWGNQ4iF0hYhAXwXlucPrGKzjg6CYtH/DNo0OLrrXHLx8wa8Ok42Dgg+/yXtu4azYEjmv7CDbhL8m3m7oHQZh80i02PBzGcAlMa7DcxMeY2Nip514xxj6ee135UPjCN/6w/H08D3A+qMuTmMsXHIejf7Hx2WefrRs97vh5uLD+ixun/MIQE3w+FXo4K9rGzFlzkS0ceQuPLlHrlw/XbGHoE/fMoTH+xCzf+YuPs82Nwx7AVRx+iWR9yw3fdNVscZy8wtE/9ehMG2PlojE1bjNuMSj0m0Pt9Njoh6Voi4uOhyjrMk7GcDZH1qVc5DPb1g4MPOSjX67mx1gP/a7tp+Zh5lYf37gQ/sqZ6ymtiTg6b9pz9PTD2l+Xk7Abp1/eXCtTxMZG3DDEgTt++VJbU160Owc99BI6/43A7UW7c41vc4KPMfgznuKQE2eFgrcY6Cszx/oJXHu0D4X02MkjjB6ysp81+5mLYlbDr2gr/LNv/u0Va8k9wlozJqYKfBg4JnQIPDitRXtVHAT3uQ70lSt2JJzq1bn94C+e/MpFZ6jafrHv64MnDi87fMObLTs4RLuij77Cbzq4stFnjcdVm23i2jpUh9MYXXbWCD6us6cbZlyKSy0mL2Z8WPWiiR0b4hpP+1eMXq7Ls9yLVx1Hevyoiy0OdCYubLrNVbbZ55sNYY+rglu8w5cXxRis5h8ejvTk1v6oj671rY8tG+eJ0v0g3PzwawwffmAUf36KyRjR7py1buo3li18evy5JtZE+MVdHGpjyknrzXg4dHDtHIFt37Arr+5nflnavUA/PhOHvpeH7ufGta03BX6STRjG8qXm2z3TPMSxXMIof8Zwb00UB1xzQPQRuuzkSSHxsx+amzWw/aA/51obL+eQ9b3HDYs9POcNYYdf+cyu2rjYzDtecIxl03Nm+tXsssVdv7YYXSvyALM4jCXWETE3ck2X8OtajQtucPFzH/dB2Fotx3TERqezJRwYeFTrx4EugcEGf9cKiXttPmahX7tY+SDwZw7ypRazOAh9RV9+6IQr7kQ/P+53vlF5Pf90jC8h+eWUOerlnfOG4IKbtnuKa31y5trcqq315lhb/MbEZq16zvL5yv4Wh35/GsoLK89l2uLtHmk+tfl1/sHXLjfqBJ71rpYnGPy0p2B52eleQIeo55oo1+yVxDVuJJvG1GJN37yKG1Zzy0ZbLhpnY/30PAGHjhK/9MXNv9z2mcUYW59PygNbMU9frs2TgiO/bMPky9yEgUc5EUd69etTSNdw6cFmy6fYzAG/uBsPj61+evaxX7QY95LOvzz2bOqLceIl+CnmEJaY//3vf69/geGar+ZFHHHQV8GNrYIvLvBdp88XThNDm198iXVYbLDhyKcCiz5dOq6J2jsgOr7RbQ3QTZx7xs1nuVcr+PZsS1/bGigW14r8EXny+c7zD37OSnvMC2hcxdYaiLM+fONcXHimYx/Zv56BG7cvncFqegoe5Yc/dop4fZvf/Jrv1nHnxSK//TCfn3/++dHHH3+8/iSlHMCTH9c4sTUncOVaP1/6e9EOTx894zj77CBWXOTAvGir9VWsWzZ0is0YDM8fh8NhPYd6l0Bw9gtE82f/efaIq7rchAEXt845c5Y0N+nqpxtX/Yk+nEj92jDMg1pxZhsvVzgp+7ibf3jyQgeeAk/BJVt6BLYY3TfsZ+uVDTw5986heYinWoHnfua9Y/cAPOWxuM1zc4IzXBzYm59w8NMf78vsLu8/fQSmQoqt9Q8Hh/lskb480ud/4rOZxb60nxVijI2YxCEPMN2/faP9z3/+89KDfRY584v2Z4//M1TkJbPJn8nQJ1CkCVIFp911euo2kEkxaW6wFrR+WDa4BWhREG0T3gItqcZKAju81PjyA19S1fotOMl2zY4//um4til9EKRDwsnH6tz9gKUQPotTW+yNuY6fPtf88IsfH/r4NOHEweWw1C8XDmZFHuhbIA5XvB3g+iYfbXxI87C/bhwXPtQ4wGafvn489LWxXNMlcPQXy/Q3ccTkw5ibtb+NBtNvyv021SGfD/Z8issvETxoupnwQdoYeNLjQy73on9ywZeePqJNR3EdPh6KfKbbXNI1RsQtZpjstenrs67Mpba4lfRhkPTYkriYY3PvBiU+GAoOMN2s2VjTDrQONRj2C5vWAix6xQKHhDexi6t4jMHS77qcsOe/OLTFNtv8idm6wg8OHR8M7Tt4/Njr5h5vum6Y1oabpRy0zt0U/FIJjhum36z3Nwzzq45nnOPJt2s+Sf71JzjLVfmClz396cc1fX5wtzfbr3w40+xPHyL4YB+GfLBR85V+51XY8cxOmz8CU2muw8eJwNRnnA+1wp6duIqtuNixgaGmZ6wYPSw5i43pbzw8PmFquzZ31oBY9fOvlhNjrmG5gfbbam221oj9nw/6+cyHsT1n7WxgTcEDh/rFVdGnlB92U4/d1fxlV+7DoB8u7vZ73PWbF7p42QO/1ot2a5Fv5xseccIPZ7E5J6qtS+0ZjzHtcltemysPs85l+GLiQ1zOsGJtHcLRl8SndvPMV2sq3nHQLybFmVhsHvzto/Dlmy57otZnPfWgmD9YZM9H39U4izUJG++KPJbb9oKclCNc8LcnzBPfM8fTbzHxlw6fdHBXO0PpiXnGzYZPOoRfthNTHxw1oVtu8kff+vDw7gO4M0+5884710Oq85uOeDzMy7M58Y1957cYYRFzxlccXBvj13WxaSvpiSs9OnSVpDH62Vl7nbvyoLQe6WUDT8kXTNj02YvVWHrmtrzmK7/Nt32QjjFF7HIhFuuh+yQ9e639RldffopRbYyemvDfmaK9zyHOdGBNEbtCiqtx2GxwyA9d+701p91ex2fGPfnRsyasDXjuj5651fZiHPjmiw7f4jAGS76sqf3a1q4vvmrxsFVaI7CV8pOfeMsPW3h4Wb/uR/qmwMCpGOnjJi/5pO86iWdc6sdzSrzV/PKhDkttDZkH5wc8fvXlHx698iJOsVkjrf1i56fCTmxs4bLPzhge8tL6pWtveD6YH4bpyQd+BJ5Cpi992nCUOc63cfEn6cFXwlLTxbnc6NPubJ024dUnFwrJR9jpwp/5pVcOnYm+EffCCy+sL5CwvRYpB/4+8sMPP7y+iSn/nr34cF7gLLdio9+zJ5/anSfGrWvzTcql+dIvFvvRZwq1vMGm77OaZ3G5558+n/ktX8VfblpveOBDn8BNjCnWhv3fsx4O2sUDkz3b/LAjYczaPoWpb84d2/Rmv+uw+BBrnLX5l0M1e3kwB9Y6jnTU7PCUN/z94kIu2RUDne5BfMi9Ei81KVY6csk/UevjozVQH1t2ZD7X6FPCxgVmfnEyLi4v1Q6Hw+LrJbA/BedzjX6fx/rPG9l4xvIS03+U6bMZfJ/t3Oc7F3BVykF51Ec/zmo6+nERm+tiN8ZWW0lXn2JuzYeYxE6a73yyMz/GW8twrDe1F3nZVNO3ntjiJW66xs2jPabfON/xKi56xrWNw+ocklffFIZJ2Cra+NVfTHgbN/fWmxo+3e6pcsYON4UO/3Hnp9xbo+aQPV173S/WXJtv+77nO37tKV9w9K9rvvnmm4Xj3ZN/nSZP5RdfPpo/HD0bOLv0wSLyEBfrxjyVN/3NrT6FsFW04YpP0XY28SGvPQPLGT/4KfLUnpQTNtZa+7ecsvFe0n0fF0JfrqbomzHFNZ50zUcxw29eih0vnOSvtUo/f/RhwNaPm7jkmeCkyEdc6bJX64fhunE4fM73DQvs+AddNtaEfeEdDQ7WQO8aYZRXvMtD/swFDsZwNcd86oNFb8YohjjHJc76vR+QP3nSzzfscOgotekocqXwKV75a4wfcbRO9Pui0HPPPbf+jKvxcub6NHJNL9olSDCCy2EBcYqkfgQJPYEqibF01E0KbIFbzD2005UQCbUJtE2yjW9D6Oc/f3FSl2ScFFwkNe5sWpR8xCV9PBwchK6J1La46ORTnS/XFYuITXrh8KWwIdnKUb71a+OELxGrA4p++Yh38ckffnKqpJuv9MqTftf7AtcBpTYvYiE4FQ8s8RlrDvWFFQft/NisboDmzjy6WfsGuxftNjE91+bXITjx+HYD95Ldfwbk4DNuDssLPjDw1p/gQDc8Nd023V5Pm07rV775J+LnQyHFGfZsG5++5JL95Gc8Me4Ayre5xIG+GOUvv2zE5WbdDcBh5iCU3/TY4A9DDGpj+XW9b8Nub+CLl8JmHz/d+sqzPvpy0RjfMHHsoRSePSlOeq11e52orcP+mZMbJow+vFl7YvNw99FHH63frPugbm49MMF2DRsX+Grx6sNXrRBj8aRTvuSMrpj4dF2BWS7DkXMP392w4ZonnKxrkj0frvkTmzaJ78SmR6aN+Oko/Bdb13Rdw1Nri4cvtb7ikis+YOULHh/mwp51TbRd5y8O/GSbP/rGm1/9hC6f5gkHfOTNyzm+Wgf2qX3hYRBGMcQTh3jAzb9r/cnsx0EO1Pob045fuNmr+ST5o9t1Y/rkJpzmIB9qsSvZwKQHy/rxov3X+tMxPVDxn/Ar/3IuL/jjUykWdX1sJn9Y5tF8mi/7Wqz01TAV4jxzTvEFh8B2na/VOX7w1VrVDVOZHLTLKxx7Trzp2L/afWDSTx9u50PY2gpMWLOICVfFeFJfbdjGK/vcyjksPOJiT+DT/LCFS4+kG5/61HHBG/Z8wBU724Q9fX7iqS+JTzxwIObQOlGsVfv13PZ/q/jP0TojfCvKuDzzYT2YC2vCL8l9AFfsbVIeZoz6lHjCqbBxLU5xyRddgq82u+ZD3o3PdmudT7rKxEh/gW4/2NIhxsTeGV8/PwQvUg7VxspbWPnFVy7YmbPucbhV2HRtDtjKgX74ruNvjG5xa8tLeovc9kM/m7Dqh9WacK2QOPAvfrbGemanw0d6cMXcM1+86eCn5oe+NeIZuy9RmFdnSeuWzowhexhw1cqUeOsvDhjynG795kAfP4rciVEtDjbmqHUctjHC1rUSZjpq40prA/+pN+2NhVU8xnGXc/zyq9bv3OgzQGdItXGFv7lGYOuDAXPyNKYPF/mtrQ9WNuKRO/OkH7590Uvgff6cAUR/Y7DCU5NyU6yw+dI/86OdZFs7DPysJW04rSvX054df/mME3/65JO+NmlO9bkm6Yrf55m//vWv64X73s9SPsWPYvKFkkcffXR9Q9j9U3FWeC42P52DIO23ciTH5kMtf+r2Lc7iYq9P2/x4TvW5wvld3Px4GagNz3O8vY1f8c8YWxdqhZ4Cn5/a+Lom9IzP+4bnvuaJHR1ccS7X6q4X0PaDDRx5Cb8xtXEFJhGXkq6aDzU9wnfrvDzMF1B08Mg3W/x9dsUlHP3mQeFD3mAbd12JEx35Tw/nePPnnKLL3lqHZZwffuWU7T5PdNjQ5wMfOj5zebF+4cKF1XY/8jev9+vNOuk8vLT9OVe/UNAHU56cl+YKJv+4qXHVR7TxjL891lrWby2TYo4zH64JPQUWf3LFF/9wSZzEqhjnxxq2l/Q1t3JB4OuvhoG3fLODrVb0K84WLyBdG9+XYo2v8fYTTsXEl7HWumvxyY/5NG6s+zDOcgWjcTZ40HM9SzkTZ37Nf8/L5pqtfe5F++FwWNetWX6tLb8AJN7J+HMs+Psc7kuR/syvfOgrLvbi5V+f/FpDavzER/imk7RO9Iu1Mf3ZirO46DVHrmsbpy9mZ5z1yk7BrbPTtT5rgo7nE3z5wxOHYtLWXxvneMx+eHTot4bw0odThY351TYGiz8FL/b65VYchA3uCj/as7DhSx8b2Nr6CTyi377hP78wva/zfomws078soU+KV41gYurvehzAb/WpWdFZ2J7097DF6b5YuOaqJXmQh9c91bzYt3AxZWUIzZ40I0PPTadhWyKmW04eFnX7HyOef7559cvuNNRn1b+qxftCE1povQhblwxARIoeJJdtT76ArK5LGQHlAm0EGaiXCsSbMLVJgU+MUbghclvXCS1xWM8bjAUAqMJMiGSrdbv2j9x7UDIn9jn5BabDWBC09PvugXjuj7XLYj0W2D66YmTbbkWg5y1YeiUM3zEO7m5ZiMesedbTVfJN10fnnHgg40+HMLRLz5jcEm16/jogwPfge0FkhfpfkPu2x533333lb8Fxj+/MOVaPPEz5lsW/saW4oCEaZN6CFCzI920cGUXF3HDVKwxxTzRoUtg0s+u9ds4HWONw+SXHWGbuDYuV4pcsJMPcxRG+nRwIjDnPqBfPOnDy7/rXnhYz2Hjr/BZLK4TekROSD7cBOSULl72jrrc0HNdmx4OCsFLTorXuBgcunjav2zhNm9sw2TPBw50u4FYQw4/v9FM7E3/RPHTTz9d36rQ9vLdh3bzm5/4w8WnUiz8ixvHcoa/cbF0AONG4OLOrjzSgwsDlmt9rTnc4JWnxmFNn+GHqy4/7LXZmmu2ydQPb+9PPzs1WzlSOh/1hUlH7uXdnnVdvGxar2Ksnz9zLX57EUbc3WTZ0ZELZ0hrxc24/yXeWacfD3o90MMJW8ziha9PPgid/BnnixRXsaUf9/qX8vYjW3qujc99Qg+2MZJPfTjlNxw1nXTTXx3bD/p8mJvD4bBetF/P/wzVn47xn6HOB8Z8i9Fea91OznRmbvAstuKhr9hj5th90ryxkwuSHT3rgq/uaY2pjbNTZhuG/FunxtpXrvFvPunBYNvZxUbb2nMueNCz9pqD4qBDYFt/9nf7XRxwFb7mHMc3LnQI3Lhos9mvVfgKn63FaROmXOmfejAJnSl0+LGnxKQtd8WbTb6LcWK4pm8MfjGZN78A9UFMcU//wx/+sF4q9UDtzHa/9q11vuW65wX3bnNgXB9sXK2/cszGWaOP8E0PH8U4Xp3JYqNjXui1T8s3HPlrndSv3Zyzc61WOiPrUyvNvXEccedb0YefdUfwUOBlB4MuUeNC6IhLbt0jcU531vy1FtiwLy9wYNJX6NHnW77gK3thMzmVY3p8aBOY8JRyqt++ag3RZRMeDvJkz7MjxvXDS9g7O3xglzP3FmvEeVU+6cCPLxwY7jUk33Ki0GPDXk1/zgkbfelM7OKEk47zQKzw9O1LvOKhjZ+arty3HvQ3hoex9OufOs2dPvOpJPzZC3JmTxUvG7HlF749qm6seGDhpj8eYremzR1/cmLezAldenLCpvjMtf2fH7jpuSfgia9x58f0Bb+4YDYfYnZdX3mB3RwY71oNNzEmJ/pc90zR+ROO8eyqyzWfzbs+7fyxz38YYrveL9off/zx9WWjni3Ls7w15/ybAxxdmz/j8XVtXrWLURyJebUmPHPJDz01G5+12Jg7L5j5x0Vfa0ceFOtCwcu85c8etyYJv64VNvEx5lo//b5Ao5+eNSguMeIlptrp5Dtf/McBH7ysRbwJDLjNLf+wCX3CxtphY0wevI/wecQ1buG2tvD3y8POSLhyxl9zxI4PRU601fjQV8u366mnreDSGL9iF7c+MWqHV0zasOipcbJujPu/Ve67776je+65Z/UbM9dybJy+b7D7LO5lm3z0r5HChC++1puY5CAeMM0HqcbTGTbPpO6D9OLMB7zmU5z8qPWJA5aiTbd5YavgrI8dLvrg03VNjLdeW0dy4Dxsj6lh0BWvZ0u/cNBfvozjYVz++FNcx50OTvHApXjY0lUbN6fq+o2xL1fFEJZY6CowZ9s1OwWO5zPne7kWh7XnZbt3N841z4CHw+UX7+Il1p33d3h4f+PPyvhc7lnPPOAEkw+xy0Xzwk7+8CPlqfir9cMvr/TFaE9mp+aHGM+n+Kxhe4lfxTz5JVh9bODzh2f9+HffYkeM802KpbHVuf0o1zgoxcdWXrXpGAtLW7HeWg/hqfHjj76cw9BHzI0CHyY+cFq78YRrLFv24YrTnLZ35A1Xn/89l5onYl84A5o3c9K8NE/mmS0M/joL3VvaL8b5xgVvNaEPB6b9Zi7KJzwcPR+KUz8M/fRh6J+lfJZTeGz4yR9O4raecPGNdi/aL168uHTgnUX+qxftHJWMgsy5NuKKwASjRFDdgspGkgQn+b0cS0eiSQvFInJj64OIZBB6cNgpJX4NHv+Q4PhZoESiTQx9McFR4+zagW/MAvGfjHZo6BMjXRw6OOAr9LM9dr8qvvhMb47xB8sY3BZOfuIkPvzdkORNbvBR2OACQxtmdvpsIosJJlGXM7ra7DxQ4UKXTXzU9PnFQZ3NjAUGvcbYmTd/g9uGPWyHtA/n/pMBfKd4KPHN9Xg2924A/fM0H8b021h9ixsX4jD14IM/v+LGVRwKPTcS680c0aGLM59En3yoFWPKFLg4wBBr4+nrs+Zg0ptzkj94+uWJLn7xsIZgGE9n+ndNF096boK+VQibwCR0FP3WgpL/sPkmxSyvCj1jDh45LE4xEvYEvrF8hhs/+tamA9NLW3NkTG5aQ3TKHRwY2avtHXPtP0z1N6wbl1sv9j755JP152PsC//qwQNgvxib/PkQFz75gw/PA0QPlPWJrxyYE/6MKXJSzPSMETmGHwYdGNnSiX91XIwRtrMPhpJvPrqp5IddeOayop/Aw0v8xujaB+Ky9opl+vABQt49aJm/4rBPFaKP4BMvul4a6QvXjdEZyjef5sU1caabV2cPMYafOo764XdmsBWLPjWxDhW2hE75waN1Khdkr786j3+ULzXbzpg4T13+FL5aW3Fgr5+veT3tXfMhlnPbN4R9o/16v2j3n6H2YCyGOMudte/+2v0j7nuOtY3jqxaTYj87W53V7Q1+ipmttrWhiFW7kl7z1DrVJvLXeWHNueafnhJnuYapj4015Bo354J1qM9Ya4Nv8wZDP3x7Qp0POpU44wUDR/tbv3YSj8kJF/r48yFv2vE3rmgrMNrr+eEr/XxV6xdLD/PZqIlxMcIQn+urSX7ib3/2DGZ/27POZGu288E98ccff1yFPXy+1c5n68M9vHsnrmzViXNHH658xxmGInfsrTP5My5n5kdbLW8wrW3runH9CqFHYJL8uf+xbTy8MKzdPiQ033yIk38itwqhk97qOO7jo33At/wq+tPXT3DQby3EX02PX4VOvuCGbR6aiwW2/Zg2xWls9vMtN2q+4gtXLvgyF+WveuYLX2XGVAzFBoete7ba/cEHYeuke9N+rcZJ3vnTxh22Pnytj/aY2HA1P/wR+s3T5A5PoQdX7tjNWPWzgdE8wNRnrByEkW41m9aTPnoKvOwbzxd8fYo++mydZ/aWWHE1RrJrT3j+YqPNxl5U86mPfrzMsX3gvtC8y637Phs48kvwgWHfOhfs3daccbzYqPnwnEUPBn/wmzP65Yhuc9H6LdfFRp9v4+UOLlEr+uEQnL3ccX4QOMa7XhfbD3bNoVp+6Ik1Dtr0wlATefCi3Z+O8aWi+tfgGX7AJv404pNPPrmebc0LkcPmZubGuRQ/uuUy3s0lHbzKG0y68tLnSzrNMVx8nKdevvnMYZ7h5p+9wkaxXwgd4lnOfpM3Nq0J1/HqbNGWc9+OpYcLbP2Ktrr97prAap1psyl2/LWNi1NN+LT+1HDNN108m2OxyAv+fMm9z5ryIDdwjeOKN3HdFw/wgk23fLCBr1bmOrL3cMCpz7TpL/DjH3QI/O6JrvWrFSJP+S3/8MhcS3fdddf6cwl33HHHyolxvBR5kTMvU//1r3+tdanfs5W8yCFMenjj4Jo/c6+mY93oJ2oYuNNRl7/OhHTKlVpfhZ5r/szNPOfFD08fP/jp024N4eHauDE41q/7D1t9fMqh9d8ctv5xZu9c8Z7C2Uav9dn6kxP97IzxA5ffGVt5aZxuc4dP8xbvxvPDjp4CW3uW8qbPZy/PHPTcd82BdSxmemL1zGfP03O2OdN8Meok8a9v3n333aMvvvhifdkirPDaY2zNgfuJOu5qBTc5VbTFyFbRxk0e4ONeex8vO/nusz2/uPT//cHrGYCtwmc8tc3NnB++pm5zCPuXREz42Nt7KVY1PnKCZ/5ds+WbP20cW/vu7eaGPRvjcFoD7FoDfNOBZ02r5dR5ZQ03H/KGq/PHmu5ctd99kUabP2uELiyc4tWZg6915RcbbDojcC+m8lme4fItJnjEmGv70i/3xIM3HByM6RO7wk+5UBN9dNnQaVzMuCkw/Y12fzrmf/ai3Vt9ExapJqzEqAWXaAsGWUW7Go5kJewEaBJ6kW2cjUTDceBpm0g3NcUEGDdJEgafLo4lnw3R7hq2RKYHw7iYFHrw4BevxXdp+6dR+NnUYYiFvsUExzUs+ji7ngIX330/u/zTh0/PgVwe8SlG+Bb6jAPmzAUMtnjFrTk0Rvh1rfCv1jcf3viY/OjAMWf7uYSJB57x1edFnQ/kXgQ71B3arv3mXE5gwfUSyEb0z8rLrTkg1od/iuTDFz2xdQOQJ4eJGFy7GeBQTB50zJs5oeemWJtOuvNA0t88VePh2pic4GYucCH6qo0p5byx7Cd+WPyTcMOSm3ywV9gocOg7ZH27UD6NN5fV9BxCHXzL0fEP8SvWSXpw9PFrDchdHOjQjV8x8kXiSMc1fX7NDZ5q/eZh5o8en9MeZ334OOj9ssZasr7o4wTn22+/XesGnhu9tWLejTmU5wdKvODupQ9/uJJyJz44HkL0xc988d/cusYpzvTmmHH2dOKuJs1n+jgqxtkoBCax161/4/lpzcHQPzHo6JNL49owxSQO1/pxl2s1H/IsL2522mKwHuxBezI+cNvznUPm2XX8veD0UIWH9YSvGPB05jgX+CHtRb7sVSX+c43MOIupHMIxng7u5lIdBh3tbIpHv+vaxp1TBN/pq7Yx/fxlp4+EH5/p87LGZR7yfm57afmXv/zlur5o94vif/zjH2vecMFZ3bV7q9yb+9ZavE6q2RWDWBVz1oN6eWZrjD7h1/6aa8waUcROFy4suvLV2lQbU6wdPvSxIflwrY8PtXmDbw+7v7iPd+7kS21NEDhw20/GmlN4eFW0jWUzOcCCyXd2rvXBtLbxEAcpVuNxoQdz9uFV/zLc/UhfnsOkXx7jqg+WfqJfIcXFLwy87VF/PsAvy53F1os96zzWNn/mrQ+bcs1HvvkRr3PZ+eFaX/eGYubPejR/8aEHuzlRs6/PODu8+TM/xeAccs6IoXlLV02ag9XYfuAURjazPddwGPjjyz+BqcQje22ibl5hsPXsIpd0E7GR9IsjnNYUveaLfmc4vdZMWHxVyoUxRT9hl45+enyZF3WcO8vZiFd/vvGhK1/6ykH5nb7kzTmvNrfWkXuMfdJ8u+YjXnzC5AdfPPFT9OHGxjohzgLX5Y4+fzCbt3IfN3bG2Cls6BjXr2QTHht9Snmix4aOeIicKKSx4sMx+8Zh1QeHwJ1nCRyxK/SN4x1PuPLSPVxO2Cj0K+zl0V5ko19fnz34Fgc+YjBO134zv605enzgmK/uN8XYGoFFcJnCr3gVOsbFoxDt8jHtcCL8wuDP2rKu9Gmzw1XZYxQ3n3JYvGHxSyc+akUOPKu++OKL1+1F+xNPPHHlb7Tz2YsVucdbH149h2kbEyfuciwOOvpdx72cic893BltjdBVy3N73lnqnPK5rufC4oaDC3/lq3Wjdg/mA571YL93H+DLulFc80fv0vbZGxbBJVztYhEPfcLGHhIbn9pTcDUOS24IW0VOKuzowlHwpq+fP/dDZ7W5xsM4THG55pu+GNXyUox8wKanhuma0FP44Bcv7zzYxIkNHTU/Yc28sxVnuMXHB/2wzaUv0niZxsfNN9+8nj39p6A48GOOwnHtF+nff//9eqkMy5rBzdqAixOs5pGOPMDS51zRN+OxNpwtYqAXP/qwCH3FeDrG+jxIRxuG2An98pJtffnAVyHi1G/O7AM4rtWwu7/Qd47hB98YfS8A7Q3ro/jLhzmQI3xdE3lIxISbkq1xugpefOFIVw2brrH84IKvQo8YV4wpdBVry2c8Pq1dhY948WtcPPa7mL2/ORwOK5a4V/tFg2+0e9HuX5d3v7A38M03fH5aO/yIwziepBwYi69xog2jtelaDOpyQYetnNunrgm/3jP5LKBPjsq9mh0/+SqH6fEx/dRWx798V/PbtbjmMxAbtvDp4GfNqRP91l74MDr3ulbDkYe4ynm8xKrA0j8lv+YJTjnjw73GvHeOmVNfWsKPHR3j1jWO8xznm5gn7wBwY0PYlWP9CRtzAMe8keLAy1lhr815whmWuE9a+8byVe7Fwy996x5HBVZ/o93/jUKKYzVO8ePM32j3P6dLKEIzGXy1MCRO0GqElAJ3XQKaqEjT12ezefCDR/ihY8wBTSwQk2jTq7VNrgNAu4XFF98tJG3cFDowxSO5J8VjscA0GfjBMbFe1nUjwFcxKeHjG2c+2Cb64eGFxxRjJH2c6DnUjInT4tKHM59880GXHQ7w07NocA4zf/DKU37zDcuY+OG5lid14lo+WvTw8bIZxMXOppwvzdyw/ckP/8EGjuaqTQzHxubbP0XzIj3OxsRIxGxjWSP0CYz80GUH25qAR+TLBza2+dEnLjbiYZdPOVHYdw3HNZ3Wkb64lx+4runOPJXXcMKC5xqmulizTZ998dBlR0dJxOyXGPJLp/Hi0OdQM249hQ3LfOl3bf7oKeY1LuWKHb0K3nKJu/gJX2z5gRemNWLvmjdiPqxTGGzV8Q/DfOpTrEsvevxCwd8RpJOtQ9/ehOMFj5frPkyp/ebVuP1rXCw4811exYObh87OEnrG2Vh/7Sc+K/ITBj7F6xomiSdddvJSbukUQ3Oljw0dNckf/DDMeX5g41dME8NcarPle+5pscHQTwemc6f9zBdsNvi5Nm/NNxv43WBx5if/uLNj3wd7/uCaU2uWPf+tObbGSXPV3igf6dBTtE8quMwcNQfhLCfHP9jPfrrFzIcY1Om4JnzMuONhjA4MpX51ttV06cA5HA7rt+j+U0kydVbHGX/w5z8u+uc//7n2CHOc4Squm0PzcDV/8a6mJ0fl1FqyNuyVsItdTa+5ECdf1e1vXOjBYgOHTT74Jsban9NHfunZx8UD1/w5E5wD9gkfavvG+trPaz7VXcOlVxy1Jy+62rjIq9hc44CPGmc+269i0g93rqX2mfHJLz76Sf4vty634cWjGKrLkzppLujg6RnI/pRHxdnrA7l7rnMinngVh5z6oOV+K99EnwJXPNaInJs/Ij/OXj7pwGvu6ODIng1buaNX7ZqOmrBXxK52nrnnmIvG1IQOO/gwtJXmiR5+YtVPR15h4aifjv5q1wRunNhU8qFmo4Qt587edGCFoS+M+MlBa0wfLDqucVPiUr5Wx/Zj+jAm182TsXjRx0MfXPkol7jZ7+yJOU9HjQsOrSHXcNgbK1dsXTcPuLRH9bl2/7CufB6AQYc/tTbBI1/wjbeH4He9lLcf+hQYbF2L27VS7vXjQS8d+KQ2XToKPsblIJlY+rTlUqGvDR/HycUYTor8wdWXDv+u2cIwJgdw+dcnf/aP88+4OfNMpN84gRs2zPzqo8MHcV2hY2/ZY3wpOCoEDl3czIVCjNPNh+vWVOuO3+JObxlvP2bMcaWjJF3z79zgU5+Y8dCvLS5zpq+cwgg3vM6ecHBL2JUT1/awF+0vvfTS+mYcrGuRYvDtSy/a/WtNcytfPaeVN7yMmQ/X+FkD9ov5Lpds9demK9c4yoPPlj4zqfXLizVpDvFhLz73A58d+ISlX13e6LqWFxzpwYLDj/XomR03ffH3LAkHR/6t2XLr2pc1ur/kq1jkWB88tjDZapsXgld9+gn7cq2djms41enhhqcaFmzF2pq+9ckdToT9zFNx0YtL1/SIGLon0C8+eq7jNLGMkfrEU367F5oPvyiwTv1/aYftuZP4nG5ujeNgfqyH1oD2pe2XH77Q5KUyX9aYPHk24Kd4PSfIETH3zb9xdu07bbjWXLbigjXvFdmxFRvhlw/6jc/5ptsa5s9YPuSl/MEJQz8bnNh3frqmhxfhFz/Chr41LYf2Bj2YYXctrwobYpzgJS5+YLe3XNNnLwaFjjOJPhw1nIo46ZUnOvjAiZc+L9o9d4gXJtGv4KPUZmv9+Da7L1io467Gz33aOfX111+vF+3a9nrvYXAi1tOcb/awYZSDzg1+CX4KrqR8wIo/rvqLEW44rrM3T3iR1pic8d36WIPHP8LVLE/8wGSj0Cm/rom6a+3w7enWDq74d49xreDDBz3nDZvicv4bw0VNXx6a87jhFwfcYMHAw3qVg84tNtac537vQvhgT5/Qlxs2vTTXT8de70zkoz3ZfOPnnIBFPyk36eFA9OOr8MfemLWqlhs44mer7Vpd7uDwN3nlm4546LN3bT123/PO0v+x4v9GISetiTVwlR9nftHuYQGRFpNgclotKQXAr0RolzR97CwENhV2sE20QLPRR19fh7i2/haK2kJws7BBiaQ2yXHGgR81v/olWUlHshViUnzwa5GxhYuLQs/E26hKedGPa4uWHeGTjnZ9a+D4R7lQJxYXHuWRf9d84C2PMNnot6jpy4Mc4uUlIwmXHpFHJT6zHybfs49P+nC6hsOPXLuh+GcW3QwcwD6Q2xDEgv3tb397ZY7geFDyG0UPTuLh1+HsN4z+iVL59lKET/OkZosfX4rDQMzGxWOs+LOByZ+clf9i5xsu4VO/WM1hMZdnOtm5Ts81gSVv/NNjB1sJY/axp8dGP59qop+U82JPvzFtvMXdvGWbjtqYPFkjrgn/RA7NI4HVPIpDWx3HpbT9wIcfRdy4t7fp8wHHdW03CWvCgUyM59cNBmbrTtywjVdg4urmfjgcrujC4p+N/Lmxd2BaP/0tttaacR8yPSTyy49cyI09j9d+nsTY+jFW7vhUCH6KGOIPu/FqNzI+EnidQ9MOjhKGMfNB5BRfbeNyZ42XRzpsm086rtmwbVwbF2Pwmzd92s47uM4TOYCDL32FwFDiq088caHvuhiNy0G/2OBTPuWX4Be2Nh4z3/CIWtxqOrixLWd0amcfx2zopM9eIfDo4JwtX/qn0C8X6vD101VglLt87P1o8wfD2emfq13PF+2+ffTmm2+u+xOO/MRBPPrkava51i/+rnF0XTEmL4rrinFCX+xznqYOPVysAWvCdZKNPjhk7i/jYedfrUzc4jIXxlqLrp0bPWg2X/rh8qmP4BwH2Okaa8710ctGbR85v9iWY7X2Pg/66eLbuvU8YQ/mj2+FxEmbbf1rcPsRD/2up890jPElx85mH7rE7/rc9i8rFNfmxre0PID3od9+9YzhLHWP1WbrvOWvMwF/OTamlEc++TanfGgXp2vSPRG2M93ciVu8+5hhEzkUlwIHX1z4qV+NB3/w7NGEjXtUc8EWT0K3fMGbAovAdh0/flyzU4ynN+Ng03oJaykeY06/uOFZLtiZI9j620sTH1ZrwHWcYMidHDeHjce1tpj5khN+yqFxnGHpL3fZxc8YaS5WY/yY/kb34uU+pFgH9KwN1/rwUPAvT+IrXrwa7yye+HNtwqY/z36xtXZd09nHCB82O+PxyA87BS954KN80jfGtjmAR4xlw06BrY+oy2c+8m2MH/tGnvoXZXLXvxxdINsPNuzFyUZxjdPMj7WVrmt7V8Fh+i8/zUEY/NEjYpvxwa1kn55YFLZsyre2/tbWAj7GNoZ/c87OdVh04RSnmLXZ5ScMZ7FxcdIh8SlfdF07P/zpmF/jRbu950zreV6e8MBLnzG5ECtdZ699ghudijY99vroy4O10mem8txeW0FvP+j7BrRnOD5gqPXDnZjWs3WCV3niBy857d5g3jsn+NWGo+Ap53Tdb/rzb7AV/GA3L/Gs5s84kSv4BFelNvs9Dn0iBvNazvCC2z2aDi6w2iPh8kG02YstXP7gKISuPjr0lfKq37g1HU9jsPTDEEP+jPFnHCdz5vN537j2ecqLdl+G87mKLT1r4Kefflpt1+7z5ViMPjv5V8M+X+HhHi83vunMJxy8+0WMa9ysQ5/DmnO29iO+8OuXB5zlYMZHr/iq6Vg39PXhB7N88tG5akw/PuWXL6KtwDGenbG4wcmWL0JfjvXDV3rRHma4bOIlLvGwlXM4iX77SU7ptZ/osFfKO070w4JH4q/GjS0suVLH2R7mpzUFZwp7/nCHg6vnRF94814HluIeIE667jX+5JN14rOjOb+0/XLGl958/obV53CY8cMDBp8Krs40NRscza09py0GfPUp+ggMnMpp+MboFE/XziZx8Ulg0lHq46uzSB+d/MDRnjphZB9utmKFR/C0z+wPMYaHNx3vJXrXxSfRz8ae4WueQ3SMi0n+tMPEsdzYv34Bwpbf5tYXGc0x2+JoD/AtL91Tmr/uA/DLi7jEy7fCjm/jcLOFOduulWziJybve60HtnCcPZ0p7W92xDhda7P7E35iwb/zBi+21qq1S2644Yajl19++eixxx5bbXzOItf8op0jxEuadkl0LalqpYl0TSSlpLlOT9/UkYRwBN8GgtFEq43Rk7w2IlsL0uFuEePWxlTnsxqPFkIfBvFucZrUdGDPQo/gZ7E3Sb55YNLxIzNuevTxagwXOSiP+luwrvGDJWY68PDATcFDuwev2g4x3+xlT9hOX2GZT/bEOHwY7FwTscW72rg8ybcb91NPPXVlA/zxj39cCxsegU8/LjaNf1LkzxnY6AQP2HTMn9gcAG72Fr/5g2Pz+625zUb0yZ8/TkYZAABAAElEQVTcwsBdbB7GzKkx9jZUGGzo8iW3+psvYwSevuZm5k5fhY48wZKnfhOorR8XczfXnzjb5HRg0InvIrD9MMaPcfbNoX5xOkDMAV/GisM1HftCPHStD7lz4NAneIiTboW+9Qdbjsyvog0fHyJWNnT0w1ITfeVXmz/z2d5UG/dPc6wd8Sm4mKt4acPkhz1ebgD+dIH9rZ+YGzZEnzUFp3MCZxzEwI+199VXXx35DyLtE2P2LAz24S7AY8z6mwO1NUXkzDj88qaNV3OnxkO/+LuBsdfXnLDRVujzQ/ST9NTmVV7o4m5NqZsj/fJMh73azdoDkvVgvG8kiMWceqC27+RDW78bT/Opto5aE3goeNIvXmu5ueTHPFp7Cl08cIgvO/2tP+ua4F3s2mKjm5QjOnFJDx6+JBttRZtNOcqm3OWzml6ir34+w1Rrtx7ClBdrMV/0XCuTP31xe9H+4IMPHt12223LZb5W4xp+8ONF+xtvvLEeqKybzg1jJB7q+vAUS/tCW05JsdKXy7n34etLpzlehtsPbXtbCU+MMOTPOrU/1DDwMa6GTWf6hWFcCZcv/fSS5kpMcWNDT8GZvrXvgzw+xvdSvGxI/Nju9flR6Bqji8fkMs8MMRujh6e91wMt++zg4YdLffz8krDHkW15YSunztZz20v1m266ae1jZ6z150O4exo9uXVeKs4F5+yl7cPTDz/8sOY03/DFBJOdM8ULPvb8isv8OgvE27yWRzj07BuxF6caNhEr3myI2MovTMIPDta6a1zSm3lwDZvQwd25iB8ffMWNPR3tOMZpAYwf9BR68TSsTfThxYe6Pj7wyZd40hPLPHvpWAPq8sEn/WknJuPEWUS/mNRisC+d2/nWj2vxyQNMOW3u+PLFCH3FVRxqtkr8yqWxswp8OIprz5H2qQ/v+vC2Nrvv68OPT1KM8rUXfeJXT31+FLbwFW248qluHl0Tfon+RJ/Clp088sdX80aXHxzKWfZqeHyYS/dOL0j0aXseLj64ctNzLzz71dxOod9848WOnmLviVUutY0T/jx78WmN9aK12GGSuU7LR/xg6FOLHbY2DAVu6xcW/nRJNvIWZ33aCh8Tz3Wc2LsWV/phqpPmiV98YMiTnMaldZBNNS7snW+/+c1vruvfaPeNdv9/lbl3JpuH1qC4+C7v4iP2pbGezZo7MRULDPOpiFd/z4DNibPbfbF8wMSDP2uZbXxgm79yIVd80I1nfno2igverQlrD5aXlvJpjC883BebE/cXvxiw3uHD5t+4MtdH8zTr/TgMhW8lzp17sMWLD/742CMk/2KFS1eRP3nQV67Fgisbe0+hK35lCjs5omt9qRUSjnH3ZONwiM/S7hd0nNP+PxX/N5pvsBuDIQ76uBC+/BLuvffeW/u//nC15do93XmrX2zw/HKJfXHqkzciR168ei+RHb/8w8Bfnqw913IApzmgoxB1fti3PvSbE/zMvbYY8ZNfWGGwD2tdbD/EJldT6JVv4+avNcoHf3SMuRbDPBfTpxMP8RG4uNvPckFHcW0/tafm/LARR/awxIQ3XvKBi37+FOP64NCBa16mnWtnXM+c8sXGWo6LWGC4/1tP/uWDtvvPue350TXBr1zzb6148e5v+7tfy5MvZHgHxB+uk58Y2OdbjuRFH17md2/DvtzQhaHWh0N50o+nMSJufuRDbhTCT/MLo7zRZUP4bL3ANKaP8Cmf1j2sYjJOL650cXPeWTuu5VnO6YndL8a8+yiv8Oa/1Iel4GLPmZ/m2DmNGz7iYdu8OzudGXyWb3Pp87l84KqfLbtyWKzaxSMOuOWmOSifdM07LJjs+ICliFNtjC8FX58B6MKRF3sFltzSd170Cx3YdOWh+xM71/JP8HJmO4PwiYt+/sqH/0fy73//+/q/UdgVl+vTyJlftPs7c8gQzlyX0BZL43QQFpx6yrSdGNlIkMRJCF1Jq/BjEVq0am16FqLCH1uLzCFn0oybrPT5CZf/Js81HRPHBla4dMTRIWYsv2o8cLJJTJ6/XWYCLYQZPx/w6Rkr5vIoTlgtEv7gaxcDXW1xWnA4qum2KfHTxqFvlhUDDnxUh8eGzDabxGJU2OIST/7dxP1W85lnnrnyT8q9aMf9amLj+Gdn33333foQzi99BaZNYf4czr7l7lCVH3F34DgI4iueNgwM/WI3L8b4aw3kx9yUF9js4RPxaTcn8GYxrphH/XyUU/zcgGArdMy5vNEhrns445MvXBV4pLXDBkZcjIkBtrmXJ9fFwD5ecmkt0LMvHFByW+xsOnj1WQf4WEtw9ZlfBVZzr78c8IePMXFoh18O1HjA6SbA5sYbb1wPZsVmfzjkYJuv9pWYW+NegPTPGvnJX3MgdhjigqttTGz8w/7555+PPvvss/V33eni57AWA9FO+JilOVRbV8Zgq+VZaR3R4Q9uMcLuJoh7ol+BM/vDgEPkjdCVk9rG8bHW2Bg3Fi4bc2p9Hg6HtQ6MuabH1vz5wOKbKr0YMwf2nxjpiQ2GebQmyo0881285tJNXNzsjLNR+LFHnNNyY0yt8NP6k4cK3PIiPjy04Wsn+BBj5aw2HsbpK671yUP6av1qvGAYb06zN0b0l5tyrS9MOPIi5jizm37D0i+nXrQ/8MADv8qLdvsKX+u0WPl1Xb5wL266uMtXnOmTYqRbDHTSM07M6/Rlbypw2Srw1fLLp3MKx3JrjMzc8tm+Ys8HzHD5DdMYPvDsm3CaT3rw4HjwtwfYa9NRCBx6ChtthdDRl019+vkOo3EczHdnhnH8ypvafcJein9j8Y2DnM/1tQhtP/TFq/iMTd50cPBLz1tvvXWNWYMXLlxY57NfrMEwZ85JxXnhjOhvtRYTPUVcPajTc650D+4s90BPr5hgiCeRf+eP2jyXc/hs5Cp/4jfv4uJXv3HXM7/5UCv0y2VrF6f5oj0/6aqTuMHaS9zS13Zdm7448FPqV7eucYq/vOHm/qGPbbrqePJjTlvnrtlpG5OnuMkpYT/zrQ++uMp7XJ3Pk4P7MT4nidzOWHBR+DuL4LsXa9AHLL845wf/Pjy11vkp1hnLHiuOdOirFbjVdBQiBnOT1D6JZzq4xIc+XTlt3Rmb+dKeQpedeXY+ug/T0fZsx7bzzz3bOdazs31k/8W5nPTMwFbO6Dlv4Mine5e2HPClmHvrCVYfyOEZg0Psu/T004WPw8yRNVmuxTdjNBYm+/Tm2scxfHlwzY8CS1tJym/x64edbzUpl675nXmg37NOseRHm7758dLR/2/ml5WTA8zTSvj96ZhetHt+8jzXni/v2vIud3iqm0trp3mTH5zosJFTunSMOeOtHfnAQbzWE2Enxs5WdnBr0y8PeMGYOXZN2k/tPbh0cYDvfqM+bM+ofc5R90xq3P3RvcUv3HphBx+GdUtHfHCVkwTXbIzjocgD/jioxeiZVbwKG3nBwbqG33qUT+NqxT5rTWavxpMvc4QrDH7Y7IW9Qj9euIuPyKPzz3gxe962FnHxos4vz/3/P36hru9q4kW7/9BSDssd3DibA2tEznFRnAV+uSRfeLlPuMdbF2zZeK5S8CTib17wp9M81g+7uGHDIsbFoFgXcmasdQFLmz1sc+M6W/bwlEQfHHps8Wst05NX86MfJl/mLkzX1oK45Yotbq5Je1E8cTFOHzZ9HFzLn+JajPpJdnThwTJGt3zSL2Y6uNPHw3yUL3jl0LV1am4UfuCK12dn64hd3My3fyEB1/3HOVcMsKZYK76Q4X3Ope3LGfaNF8XeAfkMjitfsMQAR5s/ceFsTBx07Tn80qNbjugoRL957F6mj0122sSc8yE/cAg/5rL80SlvrY18arOVK9cKe+vDHhIv0c+GLo7pmkO+6LmGI27+nDm+XOqZlI1xa9s7NF8oLX/ywc69wT0gruzFKwfsikdu5FHBlb0Yzeu8r7NjoybsmqPmoD2Onz6l9YYHgWF9GRO3cTHyKR/05MZ4/vCVP7rlzTmGb+9unP+9aJcbevJgvYZtf8EwrnbGWOP8aIuJ8NXa96L9tddeW18iNobzWeTML9r9z+ktipKNnMK5xBhPkJa4xvU3rs+1wi7Rz06SFLiSQqeiLTEWI/smXM2enclS+Nfu4GFL2FnQ2nwYV4urzQDPwuwGBduE6YPZ+OQJF6aHE4sJHjuY5cwktuno86uIz8Jhz0afujK56eMXF5xaSBaW6zaABepF14wpn7OGV/74dd2BHb+pw69xN3AbWI488Psfym1OuXezxSXhDw+xi8XG9lttLzwdROIp1nyxl0c3fLa4iNEBotjYBF95M6dyWCx9sOdbLozBbr7hEb5xYt/h19rQr9A1R+WtvLDHiRjjW17clOLR3PLPDgd1Bwk98eEoF/kyDpNdPLTZ44xrc84/HHNDp3VkbuTJnMgZXsWrxi3fMOSGGINn3FyzhYUbfMU1P0qYeCbxUcPFl38FH/1uzIftIZofcbG3f2CL25woxulbE176KHjpm3xcs5NHvLTV8PgvBi9+rD3FGuPb2nT4arPBpTliT0dxTXCizx/RX675wo3Qk2N6xWlcCasY5DEf6jCKRR8dYqy1bN75Nj6x6Cp01daL/NNtrl3jZv3xo5aD9qo8GOcjHGvcHOoj4qLXPqVvDuxzmHE2b2549PAwh3LQPKnxMs+dH8abD9cVevTNEdFPypsar9lXvuDNfnGFq6495yx/xhRjzUc51q5PHafWUf7zkY444mOOfo0X7T6g+9Mxco9vc5Lf4sep+ItVvuRS25zTxZkuqb0a2w/9YiXs2NNJv30th8bCb77YWpftE3USN7rsrTv2+Cj6wjXGL7zicq3A0VeBXxzscOwMNgYzH/rzUR8dkt7l1uX7Atz8ucY9XsVoPnCJG33FPsKFn3TYh8GPseKDq9A1V/CmT5iNdbb3IO5b7H0A97DuPt55Dd8DqPtqL9q1Pehf2j44hRuf8szOeeIskFdtMZvf5pgtjtYmHUJPXPpaI2p6RAwKoeta7olzPj58lVNjzRccdiRdenLmbPNMgx+dGQv7bPQTc9EajB+71ggdds2bNgmbH/uerTj0x1Mbn85Eet0/6bAJ+zLq5Z/64Cjiyx4erjPnLOjLvfVWHuf5ng0c+VWMw/EhUAzx18dvuDMP/Mtb3NJbymf4wZd94R5sTTYH+Lc/+RWT9n5+uIKhn07rTH/8y63cpAdTv9j1EzGIi91e6JLipKPMNZU9DCVddvlojB17besg0e7MwlE8SmeYGPVPbLb2Jh35Y9/nF33lRb/xeLr/W4fEGeJaPsLGxb6b/XjzD6uclAcxKuzzAQ+GNn32anrTF17Z1m+ulCRcNV1xhQuz3Kpxmnr0Ffmw1uDy03qhS+jAUnBybv7ud79bf+P1erxo91LFP2H3f63A9ixlD84c4SEGeddfDsWLd3NCRxv3SnPBxrXnP3NlnD4Ma4MU57RxLvCrpk+H0KmYw8blyF71vMlPc0IHB/nsLHIv0gfXesPdfCh03Ftwc82OqD3nmzNxx1mNz17Kg5qo+Unf2sXdZyFc8KSDgxjUcMUVT217VF68FLJm2BgPo3VtDA5//DhPiTYbMcDGSWz4uFaME/3a7uNeRhG/BPUSlM9ehvpW++FwWH7oyL0cmnOCi8/dnhld4ygGGHzoc+9XcBanebEm+Sb09IuFPe7OGr8QcV7zZbw8sMGjtUCfiE0O4BWfMdfGFDitdzYwWg9s+cfddfkMVx4VAjNseaSb6Ffg8KXOdnLRJw7rhF7cmmcY4eIAp+ew2W/M2lHYwpLLMOHyK6cw6cglO0UbF+tSnV/9MPmER7StN3jG1fZSueJLgd980beefFahB8O/PGGf5FMurZVL23OiX4p794OT/en/5bMm8CTmzfqCmU8xw9UWG6HvWv7ga6vpEHU5o1cujImB8CFWYn2LQU5g6mdjLlsLOLCFrU+bLoGlXU7rY2+PKPCaGzjtKbqu4fILi2jDh4kbHX7hyJF9JK/mSj8xL70fwYc/eVDjYr2wz0fXrat48RkfuK7hzZjZtvb4hamNC1/a8HAn+rqn4KOIiY4SX3byACcs9vrlw/OH+J2p9OS29xX8F/PExkEMjdMvF/ob0weXX//q59VXX13/N0r+1aeVM79of/bZZ9fkFHRJlxxBCVYAifHG6mtCJdN4NgUugcauJsYUyTZZ7F03eWpcpsB2k3bTaSPqc22icAqnSc0eRw80atwsJHU86xenCTWRFsBhu4ERi5+OQ8Rm4FefG5oy+eAeHzHRs3jESfB0Xa7koYUZpxYVfRh0+Hdw8aXv/5Ps/JYSXrlxoCpidOP2Dfb+ppu80Ju577oad4erPwMjHxa5mPDixwOjOLTxlR+x2vxuCIRv80FPfmDC51uubA78xazuYDNubvXLGUzj+vgw3hqKr5ouPnzRdY0zm9aA2H3IxFG+O6xOyjOfcPFwiImbDd/NP190cHeI6nctX9ZHGPxba+UDJy9LPOTEExdzRa+bKn/y5hcwYYmtF8b6jFuv9eEJo1+iiA0vuaAvf/jhUP7Kjxx2DQdfseuja53Zn3JifvFrTviJj7zwyZc+WG4m7PA3pjYGI7/G+aEP3zrTZ97kKx9qnHxryG/dxe5lkgcB66pxOsWtNkfGzRFu+YDfWhAP/vTpKOZSKV/64q8Px3LEtz5x6dsLfHl1xinmmn3zwQYX9vLDr4donPgVs1hbX7jDkDPCTlxyCpfAg4UzgdUabf5mTOzMO37mvLHsG+cTX+MK4UfurMv6tYl2eV0d2w/2OMdVvz7894KrQpdO87HX08bD3hK7HKVbHnBxvZfG+SFxw3vq4wBTDn6NF+2+SfLWW29dOc/wbS/i1Vy4xqU9NDkaO60U98TNVi7sWXNqXC4U+cWr+cJBvtWtwfTpsrdu4bFTa8Mmalhs5dZ1+Teur1jlonXtnLBO+YKrOBM6Z+x3Jb75FgMbsesrLjVbfVMmJ9cJjrgo8MKkAyNe9Fu3cdDHv3icca7lha1zwtpVfBD0It2f7/IiiE99h+35ha7Czn9sam/LtX8l5oOS80P8YipmmOapuI2x57/9pba+W3fyFzd2HnLh8l0c8GEkE6u+xvmHb77lJZGvuOiDD6e14LxzPyFyLm/dW8s17NYIbHp86YdV3Ory51lGTPrkozXLDx04fFtvsMTBh2Jcmx9cFHEZw9t8zFzhqU344rf9Bas1hS+BLbd0iPzg17zFj51rIk7+cTbf5c8vJfCnhyPOdBPx4zfnki4udJu/9M9aZw/TdbGXB88z5sKYnCuuxeze1fNO90Ax4kWP0IMlV2IQD3vXxXEaznICV+6a7+zgmWO/iFbTI3zzh4t8E7nEBW/9uNmTnkX00y+3ahzZZr9Ajn/MZxPP5ornQ5jiU1sX+OGEm+dB/Pkxpt8azic/eBlX8g8DnmKcPhGjmIyTcsoHvfr3MaTHB53WXDlbYNuP8k6/uSwv/BrnJ/vs1HDZWBue9+SLHjtxqNkSPIpFPrxof+WVV67Lf4bqSyEPPfTQejGFu89jzutyhFP8ccCbnr2qvxyysb7Twd8ctpatzdZfdvTF5j4As3ywY0+sAVzoyjN91/zRM3e4KPLFn33qm4jyChsG/+zw1UcHnjYMZzOd5m85337AVOiaF7b+tZV7Fjv+8Cb0xIbjLOUEBuGTHl9ELUZ4xmBWygNu9rDPS3TKiTh9rsUNZnzp8CtH1hic8mBMKW7X/NFR02fHHiZf9ubDDz98dO+9966zwOf0/o52cc1a/Pa7X+D4fE78Usd56fMkXXPmjFd7DvJM0J9mFYf1cm77syH0cVDE6TzqcyS+/CjmVFtc8mWvEH1iET9erunwIXZxK7DpuqbXmJrgbJ92bzMfCv7NHdtyDo/IZ+8f4NLRh8f0SxcnWETucSY48G/Meok7DKLPPVLcrQ3x4+b+zQ8pP/YCDDbWvnVFXx/+875mzfPT/MYbJ9eKuHC1L80bXXMrP8b9jX3ziL8xfeUFP7kqPp/dnXFhi8eYwqf80xeTeNibe3Xza548U6rp+fMy7mW9A4IhzvKBOz/yJwd807Gu3A/50y82z3TiFAv75kZ++WvvaMM0B/JsjuDOcTHh17pgD29KZwV/eOJBn6648dQH37z2no2dX1LIZ2vUXNo77NiLT17Mt1jY8A9Pwa+9ZH2Ih2+5ZiMWuYGjHwf24jX/9m+fF/imZw7ELJfeJfWcx3fzCZdv/ujyYb0orglfdBTX5WbmzjXMqcOPwiYxL/JirvEUi7ibt/TUbOWGyD1sc0Pg4EtaF2r59t4Hf5+N/DWX/9nfaPc/ryIlERFughfTY7Jdl9TaakEUkPHZ5zobNb361sX2o6TxK0nphCvh+vEz+bUtOhvOImIrDkm0ANts9F3rMw6TPxOoxql41fpMfhvewqnNlxdK/FloJraFAhtH3GCq+Ta5Fg1efFvgCk77OMtTvIpfm8Q/nnwQ7RaZPoVNONod5uLiR1xi6YWtONJx4DssriZerFuwcOXVxuiDgByQ8hp34+JmY635pzLnz59fNxfc5aoXoHLGXvzmvBt68Tgo6BP+8iUmOvlgzxddpXzLo/wrzZkcWhMOb3mQJw+8anbmuznmVx9f8lbu9dcHDw/c1PzTg9NNw5pQOoTYwhUHHvwTc6Edlrp1WR/cGSdeCuyKcf7U5UhMBB7O/ONZHlu7MAh/xtJR49cDRetGDZM+7q75heOG042ST5ysDy+G8fHbRvyMebhsjmAR/l3jqm7tFjMufklCLynv5aA8GIcRHszmyxo3V3hYk9ahAqt1Tp+fcqe/nMpBNwp6pNzxV5utNtvG9ZHyK29wFTHYAz7EqPXBZy8u/OWCwIGh6OvaWFzpkzi2XnAy//yZPyUM13FU2zOKa/bFUjz0iTF4fPKnpuu6Qi9urmGUn7iKoxxW0yXaEwsnGPoSbT7g0VeKz1i81BOLfW32pDwUd3xmDQf+4XBYH6pvv/32ZTs5rY4z/uDD30Z855131kNXa1N+8DK+91E+T3KFp0KHsNWeoq9xOeBT7Pt+dnvf4YUJx5qKKz+wnPvuLeryqm3tiIlftTgJjM4ebWMwFTrG+abjTPHhw3zoo0vipo0XWzz5dK8QpzF6vZjBQ+FDYcem2OlPfH4ag99+Sid8PuLWNVt7TAz04IjBWepDlId7D850PNh7eHb2Ehzp8+nh3IfpPnSLr4dv5wfhM55i4g8GW7W2fDhnfXhz5tbnzFDMmz5Y3W+1FWfWvP8Wi9jERNTNEd7ZrcHjH7jDIvJP35nrHsOmew1bcRjXr2jX5z6v5AdeemoxJ7DkSRGbsUo6cM2tvOAjF/DFJ1YYcHFWxwWOmFpr8S2XYrUnlGKnq58tXJymzLmcPMuJGle+cMQ3v9qtUdd08VesM+uNPh9x80LXmLVBrzyy3Uvc6MkB3eQkffz5oS8ncqCGw56Na4WuOep5C641516uZgenwjafbAk+4hej+OdcpatuvicHc8uWlE+4/KnNW58HnG0Eb/HhHT5dfcb0xSF94+UiHWPibG30xQJ++J96dAls84YrHRz4smbVrVV6xon45IWNcVxgK4ReRZ/80AtLm8B0nd2+vZSOf6RTH26EH/GGHzb9vY2x/FlD9lPc5/qAy9aYYh6cKb1o94F9j83mNCJG4kW7/7fFy2O5bl+ptcsVfb7EK+8K7ooxeuaCTfHpK5f6nUfGmj/+rR15C1+c+lpz5VMdbjUcemz7vOQahrXmPmCvEbwVMeBsffGjzcYair/Y9BG+Zls/TPb6iwU2LubSHBpvrP0hTtI4G5IvXOgobMRB6DnrPDso9GHT8ZlAPER/+TNG8E/fdfkMG65+eIr15V7uSxlq68D5c257YeYX5z6zixMPugnuzhPxi12MXuD5Mx4+X+HQPM8zWx+8avzMg+JajsuTtlhh46rNrxx4NuBXWzxs2JKZE3barRu82MhXeZ8YjfPl3Ut4dMqNtcOnPqVcLuXtR/HBh2M8rvrEI0fWLF06+Cvh6rN/cJC/+mG5xsW7E/NSfos1XNysXW3zZFx8+IctZ/QIXCLnbNR44JgtjjAUtvgp+q0PvOC4H9ujfME3BzBmkQtryFz07CgWccEjfOPBPp/G4LAn1g7fcPhS5hph532P9el5AZ68OC+cU/DYwKSn8KsY6zm3ueSTvnFzGT/99OkpdIzJvWv5Kt/lOh/p4mBM3uRBXK4rxsRNX1z8yVn+4BlXYJlHcarlp8KOvcJWG3Zt13LOT5hyBjcMeeebH1x9DrAWxAiHPV32rmE2V+zoEP5dG1fkS96aJ3uHsEmHj2LAMV58acubvWHuGofbWcIWLn386dCd9yxjCh7pxAUPwo5MLmz48Szo+ve///3Rs9uXzC9evLh0s1mNU/w48zfa/c/pHEuKSeOwCf4lf/SaCNe11SfJ1frTlSSTq4ar4KEQ/BzkOLbYLHSHgRuPw4QP4z28ujaR7PRlB89mJmz2vo1ZFEqc1Po9YB0Oh7Ug+m1hE4xrm88i4H8eLvz38s7iaKFboMUdJ/ZKnNVy8B/e7mRFk6IL43hdSrUrURtUHBGnjcPCWXshgsOnoiJOG0EE8RJcuHJG8EJciAOioiLu+lK+/IX1l2NSrV1l44GojOEMzxkiMt+st6sj8WELLq0i5w85lE5zChxeubbRFK8Xml62V8jpnld29uS34z6k0+Ow4Is+YjO74Xftt/4w2yQeGO6555712z42xMVv0/vNHh3k6O7grx686GeXXxqyNmNQ3Kpt/M3Ji7HaYIN9uXUgeWkhHg4fB5XY8q1ayk82qwl2UbEvBubKLZ/xw+CQDRd9MCSjr6lrD1rFkh7ysNKRnD4/4FMf6RFnPqQPn3VXOOlx8KhPsaBbE0d7SR9Ga9o82MjmF3v6DkSYHbxs0IOPffGkjw4YvOTy0Ni+Ne9v+/mbbmz5U0Vk4fcSh75w87ucz3jLX/jJ+ZvE9m+UTON/urLfL374oub8IsBDq7jBYV5jW0PkIn7zVVzKY/nBE6b0iBV5ftCHF4/4tH/sB/n2oswHMx/SzOHT5D1M9rYHK3EwT3c22aI3X8xblx+Nf8at84E/8gtbOU0fXo1tuUL84IM5ffPhT861RkafDHz4Z7xgKv/04WWzOJE3zr4+mjrM1fCxg2AUo+pa7WvW2UHJ6ZO1bg4WxDexo4M+a/mG17y6dHNX4yjda3CKH2z4psgXX3yx7nPsw2ae365/R8UwrHAm35xxZE5LtzV+qyWxssb3/I9XjPTxhxF/jb5qF0/3bWcl3eb02aJnkrHYapE5NjW6w+PqfPAtEzXM/3mft66+qwX42HcuwUSvufn/hBgnwxas2sxtffFVw65swJLfYeRDcZm+WrcP8cNED+x88Wdh/EfI7vN0tueLh9j5IAmfXxKoGd828mxED/9gKg/JwWHdlU908AUWefTNeX+v2L2SvHt1L+3JwY9f7ModWWt46SBHP9zuPT28u2rk6QlnsSRTbViXa/zy2ocL+pyB4eCXvgaHWJJhWw7NofInHvQ2z7Y5mOEJ2xI6+mEujLBoeKsRuumAobia0/AVDzrClh38eIqn+Mlt92g6w2w/kCOjoTnWR2T4WD3CC6t5je90WScDn6sYi62aIw+XnLovWVMbfNrvzWX0yC5c9OGjI8yTRz+szV/MFXZyPlypE3339PnNbnP5yTYM2cp3sfB80zmBpxaOeMnyxbh868tJ8bEP9F3tRc+8cOFDXcUFJrEUe3mgB7EjdmzRI/+eAREea3LR/qDfXjdGYeIHwq8Zs0M/jPiM5zV+c3xUL2JjDyG4NevFg26UHhjpzf5a3H6YJ6P9HdGjoXS72g9iVrzEx3w8+NnIPjtkmscnVj33hJ8ejV/89fnllVdeuWTfaO9FO9zFtH3IH23mIf/glHdrsONTq+lxfpgTZ1djVFz4w3+5jvhsjAeR1cqNK7IuB84i/F7kwYwXHrrVWzW4hI5+kCXDdrl25TuM8BuXt+y7qjV8+UVlOYVF3dvz9kR+siVO9gq9Pm+KXXL4ikOY4Y/4wzdnnXswv9Pp/CVPFz564HBFsPInIlu+zPHXGC5rfZv4uuuuW3XmM4T7mJdD9hi+PZGD270XHr7pu8e7Z1vD4z7NnljQI1Y+25CBwVnjMzA/8Yk/X/KHDn6LIyyaueqQz8bIVaMjGXaN0wtDOcBDXtzJwaMVO1c1pgaKVTVAh7nmjatDtsIiT2TwlR+xUS8+Y3WvSJYeRAdf5cJ7FLVQzqzp23fWijE/xE0dii8+dsVcbnz2hiEc4q222GGXPnrbR2JMX77CNf3ES1YONWvFhz9ySmf+T3nrSH7UA3zFjFzfhJ/7JL/tx94ZyCE5dtSxa7rpt04HrD7D+vzac6hzl234rCM+wGKNHP9dxYqvUzd+sRRX9QkfKu5w6dMhH8jepAexSR8+13jX4vYDLvUnHvztPIAFJk1+Edz0mVNX3m/Yh/DBBkN7kF46us/Todbp0C8P1RN5eozF0zVfYRJzcuLfOyyY6IGpZi4d1sgivuuXB2tqOLv68LOBj75qzVWDJz42kLj1ztS6HIiJxg8+00kf2+zaD+oLf1jtV7Ku+M274s82e9UHWXg9/2h4vcd98skn1y+48Zo7CZ3qRTsnNYlHBevvDAOGT0AqMGPzHDspcLISnG3XEkgffB3mBVZiFFUvR/ELqMPSYcafAmzzWW9D2GD0avptMMkytpE0NshpeLwo8QIU+ZChEKzx1zpZjZ1sV6R8sOlgsW6z8BM/HWwXP+uwNWdMftLcCOSN6UPJN7bh/Ha8NcXrPwRwcPCTnQsRHAgPfT6ke+mo0DV+hA0OPPyQJzg0H27kT/Hj9Q08/wTON9uRg9RLTAetzZAOm9sYhnLUy3h6Ed7s5kf1hwc+OdA3ry6M26jk5UAtiVMPcg4Feslr8jllxHvmIJthgK2ckDcvJuzzRxzogwsGrVirKy9QzJHLdzqLrStZMaKTPvx4w5Zd8/jw08cv+bBXXK2b09QDHbAWJ7qN4cNjX9ATtg54ccRnnQ5y9MFjHmYPK/1zKmt4PPh60Q7PDTfcsOTlQQ7Y1PK7vlgg2MPDDiz2qCteGE9C8bvBw4XUr/r0cCAmfGEXsck+glFDcujm6SaKpxzSjye/ypf5aoEM/fjUiH3h3JBnOXWO2IMeVIwRWXbI0Wlv9aLdXH7FS6+a5os1eaW/OsHnhkavvSGe8sVXuWErf9kjL5f8CgO9+WetPYTXGt7qor61MIa7WLkWX33rnbdkyMLfWrpay64xPXzT9OlxPtFpDl7Y9Pfy9FsnV1zjLwfNk6fHvHPPP/+9lN9o70W7XIW3GIVhOXCBH2Kikc2H5Pci9Mmn9eJCRg2SFxe61Ig4RmTIFld8dCRrTc2TtaZOut+rU7r5J7d7n+hma9rDI95wZJtuPOb9EkoNw9D5lA4yePITRnZhgg0W54E5ZJwdYzzacYRXQ8UpnOyTEyO4pp/hhpkt62Ju7Cz1S3NnnvNGHU8+Op1ZzlZyXu75+5l+sS3G8PCNXTaLp77GTzzWnYl0wGB8ZvuFqWciD9Hi5F7twdnVmDx+OuQR8Zc+eJw3+vyz99QA/Hj02Ynw8UPc6Kwu9JF5Ms4qceCHsefDcLiW1/yQf7bZpAOPVh5gw4PMkYeFf9HMOb01WNwHrNOvhZcNRCddmj5ePGzApSVjDZ98JSOG9oZr/lWP6aaLDr5o4U2vOdj4KZf6ZKqFYkt/Mu4HePlXPci7L2JYOzw8/IvfbOwJDhg1Nti9VBTWPnizoTY9a6q9YsIeHHyFARUreDR1JA9h5K/5ckgme/rxxWNNvnwukTu1q8HiXg4XnqnP/qbH85I9IX7Fng3EJ/rk3hU/PrJssUmGHblhkw3+psuYDP9RGFpvDk9r5BH/5F+diw8S1/KpD8Oe2CILb0S3ObLa3xHeZMsjTGzBQT/8ez3k8lXfeviM6XDGOReLHZ58clXbl/pFe386Bm74xdQZLh6ziQmc8TkP5V49wiYm8NHROTrl8eERG/7Nlm5rnfliRQ+54uWK8Omzr958cQZm2NiAR71Zw4ffXFfzxXgp3H44f+w1mOWiOqMTFno7r/WRNY0Ne8BZKH98oD8cxmzSaT/gqxbw8KN44AsrvWzBJS+aOet0ktOPr3m+0y92YjgJb7b5Gn5X9yt/EsY93dVnUvvLsyM94rcn+vhe7fLNmdK32eHkt3cA/HAm0uNMcP5Yp5stnxnUENxqnx/WXRH/9KsrethjvzjkHx/FlLz18g2LuLniiU/c2TRG9MBrzJ73FebwiBXM5s3BUWzkq1pnE2826MVnHvHFWemZrjOTPH56EZz2VC/a5YNOesIrZmLXM5g1frdHl6LtBxty48p2ceULHfxhny1XOmrVJVxaGPXhsTfIqVG46NRgMQ83nflHXr8Yysm8H/GbLs/L+SvHYudKns3OKvOw8EMds0c3Mp+svpfPPsP60oo6VLtykP/JqFXxoru9ll+wx0cnHnrEi8/InH4+ird65ZsakVfr5IsFv2DFm9/Wvbwujnxun7BBn5iTI6MZwy6mcFmTQ/j4Yh1fZ36xcoUhYhsvPGRd6WEXWWcfJjEnay/3LGeMJ15jjYx96apuzYkBv+qTgzWb6pkMyhYemDXy9HUG6yN1ZH+IH1/kQG7nnsNXDsQFDrGho9qBg27XdJc/9sXFfDWpDzM76gyvF+1PPfXUf/ei/fnnn1/JygkBqwm0PgJWA1KQrGnGqODo48OT83TgjRrv5elA6RRoc/grMgnXEHkbpRszfg3BoAgFWJF7OZueNkI4bFr9iE16zbuGkz6JV1zImsRm15oicqUDZjLswYMUl0Kg0zq+itO6OU0MNHzWXRGc5ao4uWaLbn00dSjwM9uHYv/U0cHIrpeYFeMS2H7MOJiD10HIJgxi7+BQsNkML1l68eHHQx4ODzbi1N+Ug8c38Gw+vHR6AWAz8AFvebGh6BZLG6yX8fjIRuyyNetvxqY1NVFezKkfh4zcVUv86BDJP7bIFV/28O1jFh7X6kMfX3VpXCz5ZJ4u/OzCIjZk2DGf7fyDQ7/GFzRx4QkfvzvQ1W45Es8etqz3YLPXRT9dcGrs1MLuGi781r3wddPVJ8+2PeJGIO58EwPfhPPyR17J4lGj+OBK3tU6/JqxdcS+uqFXDRm7OfIpIvtPBKebiRzhd4VRq3bgVK9qvEPfjUPdw8Q2X+HpjOCrOWM2NH3EBn+ac5Vb8+JiD+mLL2zsyimi0752LU7G2eGDRl/X6oadYsqffMFnTWzVo7OCfn7xIzvmmoeNvMYXNvCFwzq9xhpdeNgpnvwxVx0YR/jCr6+FAw85dsNufVK8+KpTfQRLOM3RYS6aflhXB/THw2eYw5XtruLoW54+VN98881LLRv/huj2p2M+//zzVQ/FnE54NTY0mPM1m3uf4zkOV36QqT/zTJactWLCjjEcCI+497CIXxzNi31402Udv3r3cky901dtkMHLnhq0ZqzRlX+u6abTeYBXv/shfHisqXX5ioe+6kofDrL0GsNhTyDj6nxNbD/oCUNz5GvJioWYutIxiQ370JnoTKPT+Mx2X/eNI/eL+cxCh/OIPvdXz0DsOcOc991rp290avQ4f+kUe/GWMx+MxNn9G1/3TfzsiQv9ZOjlM9+ywR/98jnzSC9eTR7oR67WzLW/6NAXI/3yBo9WTsn1vCZ+cko/nWLhWu7oaE4fdmNEHzlkjk1EHg7+aMnTqYY09UQXXnJhXgq2H+kr3/jYN7amIePqwzo87Jh3L7A/NFQs8bGpNUd/OvVReYJVjIzDo+7xuYeriXLhqsl9sVIjMLiGvVqSh2JIZ4SPX4ieyDzcruaza93cP1F+wsIXuvTlKXzm7Q/xM9ce18fPrhjmq76Ya+ExxxZeMtW0MT5r7FTz9gie8LTf8ZVTvhlr6c9fvheb8NNNJ970mrOO1zOJcbnEo1/cyWmT8JDXojB15aMadw5piE4yePQb0wdLcXFl0xzqSg6F3Xz2WosXX/HWty7m6U02/7pWh9bzUV+Te/WgiVFxio+/XrRfqr/R7l8HP/LIIwc///zzOmfssc4NvsCE9LsniZ39xHf1Y1xN28N4zWnFo9jxQy40svzTR3jIoOyyaQ+Lmfg5C62pJ+NehHlOZxufKxm2EZzuC84Gttx73JOyQQ87fOJ7tsIcvrDRbf+Rdy55oTR9ZdOaxl+x8eycv7BrahOPqzFeNO1ap3v6xC+67OUZX34geMWVHjj5hujCI8fmyJrrvsWGNfdXL8XtKXN06Of/UjZ+8M1LSp/lxBm2fMpnmOSOj+7/rho+WMXRL809S7Bnnn/0yjFe/sileTLmXOf5iQdOOaQHwSC+1vhPDuZyAFu1rE9ObOgRG336PPuQpW/aKQd0z8Y2ffHi04eZfbGnT33wkR/8pgOfpk+HfMmBZy91ChtZa9VIOJrjkwa7NcS281jTx0sPu3j12WSPfcQePjzhjXcxbD/wkvHMhh+f2Kkn+NrD8cNvzr5Vb/ZdcVBHvmnOhvUz2zMmTPQa0we7a3sVPvzInFqbL3rLY7ERazFXr+TUgpwUe3r4JNdwkXN+ODfKEwzFztXY2cI3NWRMHz/FwRVmcXTFV02Ua9j18bDTfDmZ+xY2POFh2y8QwssHcog9ZMxulH5XDZ94wMUHc8icfdc5Zb2c0gdXZ4VYqQNzsIgDHuvyQg4Oa/3SET9b9MqzOGSXX+1VcUb41AwZ+tuT4c1HdtiDpdjh54vc6/MZn/XqyRiVV1d8+waHOetshzVbYgE7W/YcHv866Nlnn/3v/nTM/7a/UwOgBpAWAVTLOeslTSBzjrMawpuu5AVNH7kKZonAr1/AspVMcuYlU4L0rZNJj7FCEuAOeBtXIXmJS6aA02NMHpYKlo4wsmuMr0Lil3nNPAqHAnaYuIZpr6tx6/TAkN1yQXf24Ste5hwA8EcTn3k66BcDjW43CC+577zzznVD5cfUGS5+2nziVqx70c52Nwc2s0tX8uyGsUPUmC6b0o1crIs7fv7IqcMKH72wzY2SDvYdtvKIV58sHXjCse8ba3Tzb/LJl0MGPrHijxg62Fxh7SEnn10vRNmyXu7onZj4LT5efvjWNDt45YstN75ukORg6MBkG8aJId3m6rNZ/umXUz5280sn+3270VwHHz3lgR5k3Rzd0ydrzcEgP/DyU841D0lyTy9e/om7OdjUmQ8dvoUBb/p8U8bBTxccMFiDky510k2CnHlNH68HVg8H7CUL7z9RdYBPP538o1v9uek7XxzueNxkPZjCVx7Kk7lyXAzJdANV2/Tys3VjsaGzBxL60skf/GI4/bPOPnk2jMNvrBnbNwgvnh4s2Ed0qhfXMJnHzx+27R9r+dsNVP7ZgbE9TwaRCzsesvj91j+ss97J4MkGmXTxsb75fE+m65TPRvzJ0JMNVzijKU9O/JKzJpYaPJPwmFO7/syG/4DFOYys/Rti13/y+9lnn606mfkOrys7+Trt8i++OV+f3MSIFxWncrwmj35MfaaSbx4OdeaMMCdm5iJz1YcaQezYH2oLdX/CKw/wiK+mz2Z5SF9z1TybWmeSdbLGniOaXwa3H/QgfPHCqe9aLNObT9bJ2iPxpQMPnOYRbM4D1+TaJ7C5NxweHq4HRfPuE77J3jMHGSROziUfmJxTzo6egegX/2oFhuSW8PbDmepZhj15CpezmR/m+QRTfssD3Zo+siYniA1j6/Iph/tY0aeh+uTkgp6JkywM6ZUz9wH3CvwoflcxEi++FW86suNqjKzzE5F132wsbnjFn/0e4MW8mOB1Zmrs4afnuJiTyY4rXnOwiFX10Vg+xaKY4MfnHuRe3n6gKz/14Wh/tEYWj8YfuPOLPbrkHh7fJpR3cYwnf/MhjLBo9PIbv/tIe4pPaMqFBT897Ko9ffLwk4cR78USeTprbNe3phbLoTgiz5XiDH8+ZjOccLROp0ZG04cZD3ljdnrGNUZwWKeHXvkhY94cgim+dMlLTd3ZS8bWXTtbw0wH+2ErvsYRWQ21LgfFzxpM+YyPfnmp1s3BSqa+8ZwjE67FdPSDTD6wJUbhwaKvkZ06yRhbm/iaS5Zc8nKD2JwtveIpV9bEqPNK31lw5ZVXHrz++uvrSuY0BAvyzOuZwH9aKY7tMbXOn/zTt/fywzp8xQkOPPJBd/q75ptxMWTfPD0oubkuVu07fecrPnXHns8x7jV4rGtw4nNVz+JmT/VZx4tez/uwa/SIKxnnuDE9rrDgKc6dRzCY8+LT2YIPhvYQ2eStFaviJa7yaqzvivKBbnPk6Mm/eOAgzz8y8KR7Kdp+0ME2eRRG9yF+wuqe5WztC0H0mZfHYkA3Hfa12jQuZ/SKrfu7zwnyAkd28SL8MDvr5EGfDfd5utn35TfYyNPDntyyCROdckmHOTqcLfaKsXiwE16+6OOhSwzZwkMPGfPiTxe7fFYL7On3eZUeMUP4IpjYoVdfzPGygc8V0UcvPrbCag1f9yyYyGvss0mHq9jA0z4Mc/XDT3P44QhLuWSLXvEqT+WYDrGgQx8PXdblCP78gl388i294gCnhhfO8BvTYSwGGlx80pw98NKpln744YeFBb99aQ0OtSqPYp1dMsUUHztsFye22FDr9JFNRuyzqw/npNbM+QzgM6J6FwNx0oqZmPTN8WKVTr6KD9vWXMW2Zk0ztka/s439ZGAwplP+2PIOoFzaF94BVBf4xUwc6J526UxXftBbXMiKGxnrdPLPlSydPVPh6+yEXzzKM0zGZMSAnCsZ+sTUFU48qFiwyze1iAc2DZGnB9EvXuTM8wsOfTrVg/7MCRkNmUf8J2usGcOQTXPpTIb+4kO2947mNbLhs7fJnz179uCFF144ePDBB5ddciehE//pmGeeeWYBYYhTtYxyJsDmrEt0QeTE5NGnq0bGXM0YKQJJyUHO04mS7WqOPB4BlVCEnw744MLfBlcA5mHFr8Fqg/rw6YZkLbsKtsOMLomxTmc+02EeBnjo0/AYh4dO1Dwc5lx7EMAftW5MX77g0cLIV2O4tHJgjkytOPDHC0brNqFvU957771rLtt4I3x8FBsvXm0upDgRbPVhxi8W7CJjDZkn78aB1+bW5B1u69bI5nO66OBruaUvW2T4Tkb//Pnzf76ExCdWYswOGbbZ62DBw445teKKP1vwyDE/HZiubkBekLkitmszfmtx+1GujfOjuFgzx7YHGN8QFG92wyNXbkq+YZAdfjjoZqzppzfdsOAPE1v0sCdmcltsrIkJWT66sXYgu3mIAZt04Ws/wUifuE27sODPd4c3feZ8o/2qq65af6qIb3jopQsePLDZl+rO1boHHznwgp4cPnklwz4yVuN44HFT6MFfvNhSd76l4Z+/udHDf7GUj8fxiykf3Wi7IcPvz8vAx7ZaE19XPhUf68b89tAr/vaL/IlLD4Tk5KKbHBmYNPGoZqqp1uCdtWAeXq09B5cYh41ua2Lt7DAWVzUEtzWNrnCwW27Yg0nuNb7hky/+VEPFEi+iE/FRLOmpXmfN42EbZR8v/HMe1sZ42Snu5lsjRx6lAx+K3zpbSB/WZPThTDYe+ZpyxuqSXR/Q/Sb9vvvuWzrTvQan+EHnr7/+evDpp5+u+NEHVzit8z+fpz39mnU+NyaTHlfrtTnmO5n0k9vbsy4e2dBXe90bqkl8iLz9USNHRi1o+DpfZn3gd0ZXZ+JOd7bhNm7OPF3lXJ+tfHBF4cJnPT/muPn4k8mGeXtlxqZ++PDoJ2OdjfYOG/aaf0J+/fXXr/h4bnG2WZMLPourFxnnt3tjv7SkU6wmX35nj/3IuSKW7NEndsh5h1+s6RLL6j09rvmGJ9765cBYI9+9Z8rKIxzmOt+KOf30FlNjvO4H5MzLAezOZrHxAsuLBH5ZRzPndJc3+vCE0T3EOixiYY09RH8ftszjIw+H+MkfOS179fFp7CDrs1XvdKFyzIYmBuEQR/vCVXP+ht/VOQwfmWQbTxzW8MNBj3yZ8yKmX1hPngVs/CDXhzM23WPsd3E3JosHscN2uYQnu3R4XhdvPGTVOz18Tscw/Y9d9ibRIabqRA3ylS37B2b98MIhb4ie4mhOrNUBGTrM8UXe8BqT1yZua/TTlT42kSteNYDwmaNfXszrsyvvdKNqxF4QJzbI8RFf+xl/9UUuLOnAR396+UMfnPlAb7jJIXMawk+ObkRu9uk2Ni9G7KHm6KlvXgw0hF8jm1688CSHL936CI+Gyks2wlN88cituNnjrs6Cq6+++uCtt95af96D/tNQGLxo94H/l19+WbrtM2eG2PEjH/ktp67mZqzYty/aY/mTbFf6up+QoU+81AziixjEX1zZLM9sGIsRfT1z00HOHOz90pMNWJ0DapV+9yV/8k6NpaeXcNXLtAkb3Ro79lnnm3w4G/hMZsrBYd3zLL/ppsO+hLO9QH+4ydABZ/VPt/mwlbtqy1izn6oh+tJBj3U43RN8+YcusfGvI9yXnK3myKUfLlRexM2Xs+Ar3tbEQ21q4mKuOMAtd/x2nvp8JxcwdU8sRs5Xcp3fxRsuMYSNjz6raHIHB346m+N3mPmCDy52YGlN/MsBGWvyBEe1Ll7lgx48fELw5Sse/eLCv/IHt5znHzlrybra3z6Li1E5gIGMdbh8HjJXnsQCJrr0+aJf/uCs1ppjW77ym157Cl+43Iu8GxBXfrGHj208YuVqjd7wik3N2iT8dHhRXh6KN71qU7MP5fH7779fdvjlXYW4Fg+1qk9ebOgux9nxubE1+MRx/kKpeEyM/9SHQdzET786qy9ePn/Loz586lI88SJYzOevqzz1rBYPO/YKOTKIj5o1Z5nP7uqFff7gVefyFYmDWEV4NHEiV93MebzqiC3kWl3BArOaoVvdyLWx/PKNzvYI39lhD5nXYDQHN31ySneY9Nl1prjKpQaHRrYay5/er+QLfsRGtRAOc2yYdzXvbBNba8nps8MvfJo5jQxb/C1W8g2z+eyHB26++rPZ/n/Shx9+eNmJbw0u4seJX7T/7+gb7QwBUwCnLY5xlGPxcFpD1hEdFwOYHhtdsuOno8PLnABqrbuy5yqg8c+ChqF5wQxz+qz3cvP89iFUQumkwwHab5Tpt5ElbyaoZJqjW0FWwHxix1q4k61IXG2K/MSHYE6eDm1P4TSfDbrKgTl6aja2jeNgo9sGdDO/++671+akJzvWI36LjYc+xcqGPNHLhhiQSyYfpy598w4cseR3BwL9dJl3ALgiPOSKnbGGF7laU59sG9PlYc3Dh81FXmz52otCfB1K1Q8+PpnHb55OuaSfj3z3t0bppcuLDTeKC/m9QG4/rNMXbvrLt5jwSUzZVosesr1Y5htM5Mudb3IbWyPrqiHzNeNih68xHP1NPvP8git/85+sXIinG6zDTp9+8YALJtjzJ6xkEb0zZ+KnwWtv+WBy++23rzpgnxwZTd9eFAfNDcy8D7u+5eNhUE7NuRmKH1vwyY04+TvF9MgXOS/o+cuWvFrv7x3ye8ZuObD7kV+76TUki/jGRge7ufPb3nGjFx+xYtuNGB9+sq58cfUwQMa3e/AgsXbDQp0v/KDPNaKLHnPisSc+mG+dLvtNTvXl3IMEDNWmeTXj3IDPSzy/8LEuR2TDzj4/w4qHLfnT+AODfMlTNTRjq08nwu9h1xwc7DlD6I2sTXlreCOYqsPmYCoG5opb+PhDDzkxrm+ebnHQzIufPnI1pscafkTGOKziq0bwu8G//PLL6xtseKcvxiclvvSiXawQO+HOV9j0J+Er9tbFCG7zSL8mNtM/PPTt8Rf7eK2nE38YxEzsjKtHvOTSYc14yuFhW51ozitj8+TUmQdOeWRDTOjHo01bMxazjw/mbIW/Mw8e+vPR+EIUNjziYw3KmgAAQABJREFUi8zlYzqmvDkNT/vL+UfO1Yv2m2666c81+1W+xZO/6s154v9vcLaQg5c+GPCKDRthD2c48NuvWvWNV2NHI8+eVrzI47FWf++ruOIxj88+L5f0hJOv7Jdb2PMDj9ho5rNhvTk+uQf50AWjc8xLDecVHhjohiGbC/SRD/Raw6em9Nvb1ugg53wPv3uLOeSqHtkTQ3o0xC7KdvMwi4GGxBl1/7OuhosheTj4jfjJlpjyPT5reODW4NT04WQ/X43rd+bj8/zjXuwenL38CD875qoR2PwSWXw884cBHxsae/h61uQjP+Dvl/7mYPAs4bkW78VSGC/Eb11MPfO48gVm+wjBJh/iCgd+PBrs5sTJM4fzyDp+cuq32MRfbOk2Vwz4h5KnO2x4yhWMsJRr9ed+ax6WmpqRY7Kw8E8e3Iu6P8gTrPGwDxO7ng/YsG5OzPkjh9a1MHb+kIczrPjDABeiS6NXo8MVftd4YNIQWTLpNsc+sqZvHT99WmSd3mm/PrlsTn5Y+ESnGIhxdSwO11577cG77767nmvDkfzFXulGzmm/ePdZRp58Du05Nx5XPrHtCl/7uzi1N+jAM/3OX7mzh51ncDuf6OxcE4tyqT99o1P88bvSaU58qpVqECY2nBnqkM4+X5DzEtGzvVokTw/eakVcZi75r8FDl3ywCccka3joI0+f89fzrPPfGWRdfPHQgfTFZu6ZzrB0skUf/6sZmPhMp2Zfxs++NWeDxob9IOY+s1hnz2dLn835jyc/5xVGNv3rRXUCK93Zcu3cb468hldDatjLQbngn1rrntjLV/Py4vyDh7+wiR/M1sk7c/Tlk39yQk5/X0ew4a12xIqc3KcDVvFlyxkfHjLW8Dlf1bc52OjQ8pXeYlF8rCOxL8bGeFE1JC6em1z5qcEgRvSrGXts7i/4s6MvZuzjQWySMwcHm/jFD7859Sm29iUs1sXSn5ISY7bx0aNe6NCqR9fwlmfr4hM2WMzx/8z2Z2DoIkd3Nedqz9or8HrRjtwz1Jz44+GTmHR2hEeO+WXMF19sI2Mewe5zuH+Byf5pKFvl1DhSc/azs8WZKo/yoOa16lKs+C63fKmpuXCJC3466CVjTn7Na3LjHY5zGIlNtclXY3LVHD1wy7s4iYs4G6tr66ic4GEvLHIpv2xUV71XYyd/8LDDR0QP3WyVi/SQk3O+q0GY8djHCDYxFediEH5X8/BZg4uv9jBbYuQKC/vwFwPYipU58q4+y4orHAgffXhhxjeJbnjZUmuwwK6xHb7qhA36vI/yp9/8SzLU+tT9d/0Tv2h/+umn/xIMQAKXIeA57GpdwIw1jhaAZMnh1SbRm26FInjNCSx9rubo1fSRq3UkgPhq5ioC1+ZdjWdyJNEDsZezEkSvJCkQhwNc/LPmiuDgmznJNKa7eTzGdFVY+mRKvnX43SD4XSzxweeq5bN+hBdP/sejYMxZN+fKjsYP/rgxGPPPB/Q77rhjzaefnIbYsKncbPy9bJscXnas8Y0/yZIx1vga0WfcxiILCz30G5NxQOEJN3m6NTyaNcRPevHr88kB4mW4F6sOKrxqsQe8/DJHhj5EPyxiVO2mm355Vif+9rGr2PkPOh1qxZt/NbJ0sh+2bMn1zDfc1YAPkW4K8NOBD7my6Zvg9LEjXogdNO2QlRsNb8Q3N0QHMOIXKq7J8bm+mMITL53wwDxt8oO/5IpD/tOfPmt88TB33XXX/VkH6YKHDYd2D4FySb+bnBy4ofOBXrmFpZy6QXho9UKYTTc+L7pd+UWGbg8PHjDoYtu8hmbu+KDRn4+LafcDDzl5gVddmzt/9KKdPN/FUw3hK3flylWcvQjiqzEdapO//NHIVTMwNeeK35w2fQpuvlmvttnUhw3uco0HqRk3Xfr78IZfHF3ZzDY/YWPHnNg6T+nmvzn+yJsr4ieiS1yKjbEzJzljLVvsZoe8+cb68RUL/Mi4OWMyGt2u+PRd8dEjlsawTjvGZKzDKXZatukPf3Ji0cOYG/wrr7xy8Nhjj2FdulbnlD9g9HDyySefrLinc8atusinTPFD7JE8WodZQ/zIF3Fhq7hNfxfz0Y/iTBfCR0dxo8OcsXlUP5zpWIvbDzKzkbfn7KteNtChecC1d9ShsTi4koE9Pv1oxiV8+R1+12KARy27Tj3p62qtdTbI0KuJd2v0RuaKAx/w+SDGJ2v6/nXVjTfeuPYdf304UGP2nT3q6gx3H/dLU9id4RpbYoIvO2yLSz4b44OXTDHkr72u3tnDo08XeVQs8SJXfHzRZ8OYX3R3Xvhgae/Dmt/uz+xNnfrka/NcbI1u63R54Pa8JybONL9sdR/nW3qTcw0zrHCY07r/0KmZs84OG/NFu/ly637j/ieGk6YO/OyZ2+eBnDXnZz5VQ2FNbzbp4K94miO/90fcilPr6THmH3vVhL5aU3+u+Y4PsZP9/ICDXC93xXBv07q5ak2fzfZ3H5jMIfd78YR/UrbNhWnv8+Tf9+mfdezZTI3zBclD53yy2cTjHHUPp4NdvvNFjRuj8JTv5Iu1dc08PGJjzLY5fWTMDjzsOgM1MlNnOSbHppqwz/DSkc+uCA59/Pps4OOfOfrkCS5zbOHja+cAPWzx3Zo93HN2+M3r06EZs5stOsLAVvEwZ0x/9l3JFh/r0bQzeazjJ1vfOiLDH806m2KsDuVXXYhDL9qvueaapWsJn/AH3chLof4zVPXinHKmizWe4sxvsYRRrOyR1vB5brM/4CtG5Tlfzds/9jDqZZl1rTwkRz+iv9jDWH7pEx9YyIgbHRr87HTvsq7R6RndyzvP/GqHT/hdESztHzbIFAv8zhTPrtbYyj/69WHV6IBhf26IL1l7Ir+Mq1UY6K0O9BGM/DGGR+M/mzCyb02/WrIOM/1kfRb2eYQsHL6A5EW7Ppn8pKNGh+cdn3e9u4A5m3DBiUcLa3rEQDMWbzWMX4Ml2/JKp3NPPu3/MMPm7KeDfnY6R2DkH729eMQTnysesuILe35VE+XMuvrsfYF4aPjhgV8+8eQT/8kjfPyS1+yao8O+4Af7sER8RD6H+RfJbODR5MvzAnmyPg9ll0122NMXExjZJZtNePHAgVzFC695cbXn+UROTJw33sGIMX73cvkRH2N8jeFhC+ULPHyEiQ1Ejg35hokujY/kyw8fyXjRj+w1v+CptvGKCV3J0m2dT9btNy/ajbXw0O2zOvtw8wNmtrX8WIYv8APfhUicnC29F2JDPrWeL2FF1tSEZl97xhJTOWXDle8zn+bKnb782C90wk6POqGHb5oY0ycG+MQjPXSnR/wQPZp5TV8+XOkWu3Abl/9yOc9ROu1l8hp7+PHQQSd9apD/xu1tWPlKnhwyBxOfrRnzTQ7phIF+885nuvidrHmt+oUBLoRPzZODA186xbM6qZaSgUdu4YFFTugI81K+/aDPHJv+o2mfw8+dO7eWrZ2ETvyi/cknn1wbpCQwCCxHI32BMQ+o5HHaHDnBENwKKfmpg17rBYmzdOQgXcYFOF7r8cxAhwdGMrXmYQiHK6JH4iXFQxNfFL3DFTk0+JLNdFqDh98auezg0W+Mlz068El+hSRGbCia/HPNv+ySa37vQ1jwFMP8swaPMT88RDnwYHO4KS4vjG3OCD4xYZucDeRm6aZjDeZ08kNRw5ZN/ObwTvx48SG8NrP84aWvA4Af1tMXf3PN84E+emEyZtPLBA8gzRdjBwd+DS55zpZxh5JcGJdb/OLRb5Td8Nz0vSDzzUExh4kMmzN+MIm7a/iNs0EmHjg9mPgPR9Qiwss+Hjcxv/0Vs+wspu0H3XBoeGHnHyx8ZEeM6YOdr4gea2Hjo1zbD3jYosshhRcfgl9ji95878puNxs89Kg9Ocej5n0I8Jtsdhzo3YzgLYbwaHyhxwHvJYlY8JVtOospXR5Q3Lz5KXbqVkzhoRvRRwe+9JjPl2JCN7taH0D0jyOxISdebImhsYdgN3py6lKOu9HRQ6542QtIrLXqU/w0+viExL+9iJfdck2ntZknshpbmn51Ih769NDPVn6LrfyIrTVxMNa3L7IZ1uJjnY30iG0xop9eY3bhwS9uYuNqjIoFXrroRMYzX/G3FjbjbOsjssmTK3769GswmMcXmc+O/tSDRwzY1ZJLJt2u1umHq9+kX8oX7f710UcffbTOVrhgEOew53t1hQfhC7v6yb8/Vv+45/GRHtiRPt1kj6NspSt+MrN26qfTVb7Z2efPWva60mv/qB9k/zmr6eALXydNObanX9X/xI5fYwev2ojwOdOQteMoWVf8bJBJl7F9YGxvRPgRGb4kZz+Ki3PUf+Tjl5bmOhN68UCnWHvYdPY4g/hATznGox7NtcfUATl+4mfLmmYOTtj4gM8Zgoec1t5JLn+KKT2IHjjoca7owyN3dOI3B5u4aHQiuNgxbk4MnOn4ETut46fXv5Jiwz3g8PBwveRgP1thK1fFvngZd6/VL0fsseV+Kc5qMD487HsOcW9CfNcidjuz6eUbnMU6GXxixVZ68SJjudTI8cucHMmLPrniwo7GN/PTH3jJxUOme6I5WIs3WbkxZ40ceQSbBo81e5RfsOGnd9owR1fxpsdzgPpVE8YanfBU98vY0Y/iEk5jNcEm3frWLkTphzn72ZZXZw371viO8PLbFeFpPd/jtc4+3/MfL5zm43OdfXLstsfqwyamxnJvTC8iL6au+ewKn3OBP+1bcnTwgz6YEF17LPJjHmYy8ZKFgX4k1u1H+0HOykMYw4W/3NFXLIuJa/bwhglvuPXxIPzmjdlKfq6bQ+Gnkw946reGN//UpHOWT16wv/POO5fsG+29aFfbXmKJWTULCxxyap1ffJRD8zDj8azWc7dcmatuxNUYr7NEPpA+f/hOFx7+xl9M2KzRTUYrXuoIr0ZWLemTwY9PMzbvXPZs7/NbvK5sV1uzbszDRrfzhLyaCzOdCB+qBrMpdnAUU3E0h+ZegY9O5Fq/eNDHb5RPbLIfPtfWXcNGt3j7TO4+Trd7w1133XVwuN2XrEXpc6Wfv7085Hd+udKDp/hlz7w+//LVZ01nACxwisP8jKhe6KfLOv2dzdmisxzj0Yy9zPSLfTbkELVOh8981W9+kiu28qMu3TPxwmit/ezc8kspn/m8xK0O4UpH/NWjNSTv8kZ/fhQfdpDPjue3L0rxA7+YwSsveGHyDiB5vokTm2JSXMJCb7HPFlk4+NTZC1P7Fg5rcmB/4KEPJlc66eI7bJo+Yj9s+khdkEOu9pTYwcCmX/jwiR56yePhl39tj9SeLwSSd8bD5FlKnjqnyOU/jGqK7mqJrH2bXfXAb/IaGY0vxWoZP8EP9tWvZzF59GUTOp3ZniXUD55iD1N5Lm58805Ebtt3+OjBq1+jCw+b5lA1Y614ptsYsZ8MOTHtPGOXLfP4XMnTK95i2vsQuujMjtiqUfVKBxtiLh76MPGBHk38EV4N0VX9GZPr+YevmhhVl/RlXx/+/OUTPgR/z2HGZLLLHmyaPUiGDmM+qU3y5hAb1urD1zOmNTWnRXiTYQsO70JfffXV/+5F+xNPPLGCVxA5IwACUSsggEs8XkHFKxGCAXz8BdG6PuIoJ13pK3D0xV/SBEazVpDoCEcBN0eWLle8YZ9y4WDbRmZHYswrhq+++mrdfOhonT/8yk+2yPOdH2TxsE2GXbyu1tjHJz4Kh5x5hxs5B9nUyXY+kJuxmvrwhKFD1rpmLZ0w2XA2JVy+yeWfm/uQ3gbDq0gVJd80eCvUcoOPfmPxwpc9N21zDgvzeODLX/FA8ITd2DoZcUKudBa/NXn0Y59LMecTW21Mcm1IeeN7ORB/N3++sWG+Q14uxBqP9TA6bP1nID5EezC64oor1i8rHFD5Tk4ddYDDRW8+44PFGFZXuDXxcPif324IbgTWYMGH1Mnh9vCFiqf4Irxw8JEu2OEsj/wzT58bHlzmEB36/HTz1BzEHvzoaz0eODU2+aPxm89wqWN26TCfb7C7oSMydMCD+OZb6GIl5mJIV7GEgR5zdKvhHgTo4I+48s1Dgg8m5sTOSxUPpPp8gAlG/G7osJjPP7Y0/tGTr7C7acHRvlrgtx9zTL/4a2z2LVK8foE3H5bYJit24sVf9sRD7KOpH0748PGRDjFjj1/W8MBJh5jiNQcPG/ZnMhMrO7NG6BZTsRB7Ooo3bMWKXi2i0xp9Gn+08OY3DJ039MNlD7jmA9vVUQ9x6e2KN3vpFoswh8uVTDEyhhuvsyd97NmDnUcw5CtbGjtiLB7Wm6dLM4cH7WWzKS/+dMyl/ka7b5588MEHqyayLxbhMAcf+/YBv8MvJ4hveFw1PHCLDT2RfnHm71yLx7XYWq/26GPX2HVS8U3W1Vw4XenS9J0HyPnAlpcgfsFFt3F+8Dl/lsD2g7yc0cVnMcHDnrFGB8IDN5/FQsPnbEDGiM6IrDE5DdkLZMyTwdO5xxc6EXuTwgcjHf1/F75RSY5+e8q5Jwb5JQ76bLGZb3SrczLVMpudJ+ToJKNZq5F1vpjPDv34w1388ocM4q+Gj13ng7OGD2LrDKCLvHW8fNZPNz7YEQzIGUGH/DVHFsHl+cQHLrqdjz6o+AW2PozJ4qcf0SXWsw7mmBxM2XPvZUcMYSbHNpv8dF+BSczYUJPG+UrG2Jp6JpcP7MADL37ELh5rrp5tnKP6XkLgwxM+eLO5FGw/8qFcu8p95yI+PO6DYlwOYNHgM68e8E3c/KQvH+glL9biSD5fXGGzFm68Xiz0zNa8+NDJnhbxk4xmni5XtdNzUjWVzN9dYXc/CLf6sV/Mo7DPfJnjF19al4/iACPs1lq3lk5reKzRofHBHDtqTG70u4d33xVvfPkNh5qiW0ysubbvXclo8oaPf3wuZ/wUOzrDEkZxKcf0hs8egJl9jV6yzj11SZ9xmPBq5OnWF7NJYU/GGl66+SEGYmZdI08foi9Kf/PW8CPy5Brrs2seH1vsyIFzSmz9wvztt99e93O8pyGYkJeH999///rXm/a5WJVLmNjHa+/Yb3CxGUZrMMMl1j17kZUn8bBe68xkW5/edJljL/10syefYmEsh3DKJ6KXzIyXeqpe6SIPe2cJbNZ9/hBbGH2WE2OYrc97BB51p3l2bj/QjRfBVu5hzC9z5OHMr/DwAR9ZPtToo0OrVtjJFl/JWZ969VFxwxcWc+z5rOXeh/T9ff7LLrts5Rw+5EoXe+Lk/v7ll18uP8QeyTcM8PGvuK3Fox/W1BI+vvlcS588wAYTEg+xFVdnAvsz33CYN2eNLjLkwwyjfPqyEezJW/cZrs984kHO+oypMxou/vGNHL/YRc6Xb7/9dn1hy7+Qpkc8ybEHv1xrYkE/jAiPOHQfmPbD0Yt29x18NbGDRT3yoRzTy1ZjeMQULyz0GtfM69vfiG/k6S9H4iG2dKpzMnh807f4k8UvVq7s4COLsmdMj8ZfeWfLM5Crz87+daTGNzxsk2NLPOjynOpzrfk+s7Et9q5iLFb814eHPl9s44NYkKVPXthB9gAe71fIFYe1OH7w7WIJLx98FuhFOwzubc4kOMSBH3zEz0cyxnKvhssBmXjgg7PayV/jaoDveNgh59oaO/meP3LLBjz2nljhMU+ePmOx8kVFuRIzWNob9OODx7OmeJKl13OhZym87Ntb8u7ckT/42LLOPiJrnF/hEx/5E79wzvrLJp3w+DxChh62qhdrCF/2yeKjW+z1Nfo1vhnjs56sK9waWeswho8MHjLlVK3+5y/aH3/88RXogi0IbRYgjWeBAC2x8XAIcImPn0xNQDmfnDFZ/Hg4nw129ON3RY2tkcXXPJvsF9AwNCarGbtKmAY3PQr8u+++WxtRDPCZp7MEGyfPd77kQ3FoE05evhXXdCs2vIoBVQD6ybKhwctnrfjBYY2cmxFfImsofB5sHHgw2qBetPsPUc3jYc8mshmy52qTzYKHAy+bDixEJ3tuflpFns/Fl1z8ruKA2BEDumv05e9i2n7kUxunOLvywSFiDR6HvniICx8Re/xzyHd4wNiDojzjgUVjz5if/oagDewh4fLLL18v2j3IwsgvPhQ/PsCk6cMGC1yaPpn802fDDUwN4gkLWXk7PDxceNiB2ZVuvPB3yMENB/+so/Spt2qEb9bpcvWA77fW7Lv54mUbRrwaf8LtqsEhpuKebTez4kfenynyQoMtMvBo+eZmIUd0wI6PTjoQ2+xYz1fycuvKJzFy03BjgZMO9dCNkh726MRPll5z/IdTX4ORLnqQByp22ULFJH7ymloRd419D5lertMnvh4+s0mHxk/x8gDDHj+qK7z0sqNPpz785SKbYhMve+JZfMwXW/HVFweNvPXimZ+wiSUqD2xWP9mCSTPW6AsvHOoonXwwRzcMfHdWyK29ZQ+IBT548p9M9V3crLHDNjKP6ApTuMyHj4w+wss3GMJmzQcQ8+boxZdP5MzBZI+6Tn38wouHfGROowsP2f5G+yOPPLLY0pPMSa/sedH+4YcfrtiyJwbFJP0wyyUMYbSWn7Dnmz4KuyveGhk8mn42yBS/1smKa3s8m1OGHH4Y8SN6jFH29cnxr71MN1k1ZN+pL0R238znO9z6aq59FWbzGlsa+2pcI4fsWdR4DbYf6Q9n/thD9jjKNqx0WuucwT/95YO8tA8Pt3uC/1DXL37Ni4XYur85x8WDPBthm3uCHWdVZw/9sMKhRrVZP/rx0AsHH7Phqk0bxZGvxYMOfZjcp91TNT6Yg8cVX/mw//XNk4XRmUF/eXHW9GEPBlisIX387gnZdd/x8tj5xJY6Ev+wkTM/zzxrcGjil+1swc6O2NMHXzFxnvrwA5t1OMo1O/yf9stfPsCDv7MQlmLBhnzxzzlKN//CiI+e/DFGrubIk4HNlS7nIrKGzz1cfPEgcuE3D5c5cuQRXeGnQ96Muzelw5pYGacHn+YDIp/SSS8MrZPVR81Zh617j3zBaKxPRouSS0fz9LBfLtzDO1fgZYMefrWH+dA+1UfioFUP5qwZI3aKM3361tQDvubYUWPdN+ESF/Pl0JWP5OCjg23z/GTLvndWwEyH1nOLefFmHz85e0te6AuzNXbZL8/G6t/nAPbDj5ec5xIvl5x/1ug2XwunmFibZKzRFa6u8LPNpjl9TR+JH79d8bCnj4wnhaGYW8OP2GdLjPgpz1ddddUle9E+/zNUteq8YAOWYiwH9o9YhiufiofYqnd5K87iUZ3RZSyndJFzxYuKzcyBOfayZQyLXDq/ixv56oS8GtPUibE1duFjlz6yvoyCR7PP7DtxJuMeywaf4cYjD9Wafnrww4lP3zy/2CKnzsPaOjxswMYv82JFxpj8XOOjNTzIftOKrzUERzEjr9FFp7j5nOGcRnLtlyxntj9rKecoG+VOHL009KKdD+4p+Rc+/uUjeY09ODqX4BRf8eD3jA9e8WSLnnxxxSc2zh/2zOHNNzbIw+hfE3vJCSeMGn416TOmXIoZGTzFLpzqQ2MTseNcoUPev/7667+8aPcCUg3Twy86xY0PdLKFYG3/wDoJH3nPUD6/+SwgZhoc1hFbvuhQXszVpxN/8YEFkS0OsOHzktMcWXNshJMcLPxtH5gTV/EPuziKE5/M4ZcjVy2i3zzSx6/+2ITD53S/tFCHsLMNl1jLpzl2+xOEcuE+0V52pct15la+1SleOYRB7akvODTxVBNwiBM98OUDv2b88j3f8vO4edi9NBdnGOTU8zEcMPT5mw488Ii3Z6nz25cfjfGqI1dxkCNX9jRjmPXLd1jMI7Fkw3x1ZD7s1tmFTczZRWySYY+cc1Dt+cKseLENG1/oiMRcXOm3lu/tV/u+88dZxJ78yqsX42HsDLBOD2x0sGWNv3jVIJzswcwXNWSOTrz66sG9TZ2IN8JHDxt4zLNhTJdx+zBc2bGOjNmEjx9kXNnVJ4eHzq5q7OzZs+tvtJ/2X5af+E/H+G1qm8vDHIdLbs4DrJ9jnMRjngOKKofw6SfDOY2NgkO2oqUzGXqyTaY1V2NrrTdnni1Ej5Ztc9nUR7Bp9SXEy06bskLPdn4kQ299OOYY9uxOmxWTAoVNodGhwKzle7jpYL/CyB688Ycvm/EXY2P4FFQHod+Y+xaGTUqOPUUcvmTbSOKSPVjg4JcDgW6ydChqrYOGDB02TL4Va9f4YMyP+vTXx4vYpYecK5/EiA/4HZjwwcRXV7UVPjpg8UBnQyJ4HUhiQYbuNif79KmF/gSJA+nw8PDPb5rkF/sdPuTgMudgoq/8sDFvZMXTweblEFzw8g0WOhysfinCfzY0ctbMdcjzR7w1a/yHrxzRWwzJ0BFmMXEDhdWLZX4ifGRQtaJf3OmnR67p6kCXC7rwqTcvNKyXE7qQeLAVHj6LH330osb8wp+//KEfPvNuKmIldvx3uLtZliO66EXmEN2aMRkNNnjpwQ9fePGaZ5M/Gpyw8V0zZ+ws8YGBz+pHTNSaMX2u9pb6ImfODchDSnliny6kr0351mesyFZ/6VFX1VP+FoPiQ2/xIFcNsI8nzPF0FbN0zj4d5QhOa3DJHypu1sQBRnFIlysKJ/mwmievNU+P2IeB/OzzPxz06JM3X8zMy4c1WI2zgWc28TJGrunDnw/kkXG2xVNc3OBfeOGFg4ceeuhPntU55Q+2+tMxYsmOuOZ3mKofeSCjhb9YliNj5Aq/Rs9sM07ZIGNeK05k5cezhT6bbNOdXXLIPB6UHnPZrY9HXdJV3J079j477Z3s7PFV0+EMK7t4w6bfnL6YsofsV4QXsVVbE0c/0gHrfCi1nD5yMISXDT7SDSO8+evva57ZPpT7U3Bk6Mcv92JQ3tNhnR76zNHjqkbkm348rVvD71ojg/Dg50vj/MsOWa15PuHPP7npw4AzlW784c5f/PBZzy5Z5ymd5jT3cOe/vaXONLiLpbPFfRavnHnh5yWHXLDFDhswwoHIamJEFz5YOqfxmIeHn2quuuMTfvboYA9G/sHmap6cK97iWdzMa8ha8TPGr9EDgyv/nF90es6wjtLrysdplz/m2YSVLvi6Zxjj71uIYRMvjS06OutnPMK+QGw/6MePt7WwhRM+esMonrCQy7Y1dtLXmnWUDfVAnzhMjOSzkd+u2tRr7BlC/uuzWb2m2xqMZNniX3FmS27USHGGD1++5wdec9b184tPbMy6NrYeGRd7V3qyYRw/Gf703FEtuuJpTR8u1/yFCblq8YTflR46rGefDF6Y7J30GctLucAHq5Ztc/jIH9eKkWv4yIq3MVmU/TAVu8Z4yGmtdU2vMb3OV/mWZ7/ofPPNN9f9PH66TkLp96L94YcfXl/sEadelNMLFz7xcn5psGuef1E8+PGZF1vEf/N0uGrVr/V0iVfrrpPIhtU8XjjglLN0ZpdNta8eXI3ZaS/SFYbOZvH1otPnIS+HyNEnHvlJD3vW1Bu/6WGnvLviwZvPxtrMMR/ksfsAv8ho/IG3/YyXbGvFx7xmbB2Je7U9Y4sPHva8XPTFN7z8u+222/787MFGPhY/VzHxd7Lp6HzDm13xUJ/ud9N//HAUC89I5Po8irdY6osfnRq/NNiRObrMyYF5Y364wih/3qWwIQ6dh+qlz2nm6YAFZnbhK994jemAx71A39V/0Ome5PMlu54lxNQ6PfkgZmzTyRZiF285M6/Bzjf15/MbP5xVGl7xwec+7jP5jI84hD9/2UqGH3RoMNJj3+A1h/hhrc+uZKcuNnrPkT61yTdXc/TCQdYZ5Zp+upGXrOIlD2Tg8Bx5ePjHuw3+psN7Hp9jxUYOxIQNut1D4GO7M50u+n1+JAObPIqpHCOy+u1XvJ6PfIYvRnIGuxi3P/DRB/OkxnBF+vyFX73Awg95dU8XSxissYPw8Bs+cSbLZ0QfLPDBg+hnG1ayxnSGxxheMmTxlAvy5tjrSlZMYUs3W+IrzuTFWd7UvjhbhzE95MjjE3e487UzAV55Usdijg8Pn+1Zv4xA/ICJDjbkC9aITWtwwYjYR2JqjQ598vpwFT98eOhhn27xoc8828Wz2NGvWY/IFFcY2/Nyy+dih5+N8iM3vqz0bz6Hn/hFu/+IA3gO20xIQHLA1bg5vOYkzVyOCwJnXDk0+VtbyrcfZNqorgVaMrQClG76BFyA6EXm6JUsDVkjC19B3V/xmZt8fPEbsA4FsZAoG0+hhM9N0UGtuIoDm+SLl/liYM6Yjgou3BUheQXvqvEzHrLG5qf+5vINH8yKk172ycCFl6zfhrk5iVXrNh1f8CJr5Pcby5gM4ge8HXxiwz6Cx5gOWJJp3Zi8MZtyPf1l37orHvx04jHvSia/reM1zl++asau8f/000/rAIXTweJhx0sLhxasvaSBP5w9lPDXwdThSceeYCCnbtSS396yLwdkzxx9Y0FsHATswOHwN6eu1Jc80uNByGFAbweh+fCV1+yyJZewmmPXWHzI4acfPvrYcbi6qeB3gKsH/W6WfCRHRzmhX6MfmafT3vFNBmcIu/6Zk5uo2ikO5WQJ7n6wU73SGeULHfp04NXX7GN5mfXIX+P41MCMu9qqvsRTH+bD7YFDjIox7Jp1sYFPTfRhld/8dU7QL6YeNOUUXnVA1m+hyYsbvMWMbjrlHkbEJ7WuRsKIn74aPms1furDAIu+OVjpo5t/fNOyVT2pAbL0WyNvrXwZF5Mw0ovfFS+eyFgsOj9h4buc0Jl+ftGL9LX0iAF5MaIv3/Fb08y72r9kYWErPHitwZKdMLIT/uZmbdGh0dk8/qh5POmGAR6UH/g0a3LvA/pzzz138MADD/yFbw1O8YNuL9o//vjj5Wv725VNJCZ8UGvanNMPK//Eig/0ms+/4uFKn/XjKBvWtfIFD1k41Fh605EtV3Llm63yFAZj8xoKLzk1zxY/8Luqbc06fGrRuW9PIHN0so1fE7uJBR87/KEnwqOFyZrWGMZws8d/a4iu9KWTLnZgaK0YkPOQDHu+u9LZ80zy8OcDHrrsJXbwuHZGlgvzrbkWuzC3nu9d89WVLvjFm83Wwmvdvcb9rXU8NXwafF31xY4/7lnkyoXnGvqcoc5lzZ7PT3zGsNPhw4oPm2pw2sSvoXx3nxQzOMTXfRxuff7RC0sP9vpqi15Y2XMP1JDzDK81cTgunuWSDXiKAT/wt15Ny5F6t46Xf8m01+khB59m3L0ILzLPHz7bQ/Ra42/3BHzFDH6EZ9aH+faTdZhRvhjzH94ZA+t0hyd/4YzPmny0N/KndTrUgXqgC7la16yreXNk08MW343j7bMAHe7xYqBu5FSfj3whxx8xMA+jeTZg1YzZQ/tYWavRiU9uYTEPjzHsxUhthME6XjWg9vOTLbqMI1h7duEzOfjw8UG/ezZbKAyufKq1Zh6Z5/vMKx2w0xsO2OVUnsSSjJbf5NsfxSofrbFXLMJY/GFgL53W9feY4bVGPyrWa7D9oG/6ixcG8+Is9v4Epz8B535eDJK/2Gv4vWj3i3f3cbGh3xq9+Stualfc1ImxerQuLvj5Dqd1lN/lhr/W8Ih3Npqf9WJNQ/i18OiTgRPRr9+5Sg4PPGJL78wJGX72TE2eD/bZ+e3bpD5HVMthK490mytO7MhJ+4wedtX6rBfY4XCd8RFHupH8lns2xNrzMn666GSPDKJPg6nYiIM8uaaXjHVkzfl06623Lt18961i9/Rwwd9+ZrM42ptsVwPuJeborjY9y5OZuMLJvjjxrW/UZ4s8ggflD+zkEbmIzxoiAxfd7h1w4S0O/Krhs6Yu+qUKH9hRD+5fcpvPbJdbMfHLBnXm87v4urf6vIrkiF5X/oiTNn2Ql3wkkx/4PVv44pl7oLNJ7lH/CqD/546+qPyIFxn+0Ql/MXTlM7vWjPkId/xs+hfQ/nWqHPbOAF4+4eOvRpdWTKszcYLVi2W/wLKePTadVd55mBdXeMRHLbR32eITDHTxlQ6UX9bDARe/4e2b0vnKpn8hoB7yHUby4g1HNdI6e92D6O75bj7zhiW/+UIfWTaNtficKf7jZecsLHzEyyYM9JhrDSb6+KufPjL16S6+ePPRvPpr/9OBD5HX2KoZkycDB/7s8lkNwhkeesUXDyzWNH6Lm7rLdzbplB/r5OiTK7UHl1z0iwjvK8jipQexC2t5qg7pzK9iAhNiU5s4+Cn3ndXJ8Js9xA/4nCH2Ihl8eOBxjY8tNsRD7eoXo87AmQM24M2Gv1DxzDPPrP+EnM4wLAMX8ePEL9q9zAOQI25uCGiA6guug8E8B9vkrqgA4BOcQOPV1woMfvbwsoHf1TqiU8u+uWQlu0Sbx6PR75ocnPlA1poxijf7rcMxsYuFwnNQ6JPjp4NJLPDqh6lDFoZsKxKFpXAUNFuSTda89bBZg4kezTj+CmQ5sP1oLX8a0yu2Uy8sxnDC2yEGp7HN7EpH/pOBoZiRzyebDh5YyYhL/Aqb/Q7p6sKcln4ydODnP1ttZGP22IG1mywbYbSeTrryvysd1YJcweqQpcu82PPbh0h25aYHBBiRq3m24POCgx722M5WvK7W4Hbowo7YIu834WyRZYt+D5ZqjB2xsC5m8LPnMCDr5u8h3Bo5sXBY8k0cjcnDV5xcrcGkIZjhUs9w8k08POCIBVv0lxd9fD50enmM38OGGyoexJ+ZK2P26FRXZDRz7EcTE381hAf2+nzIx+St44cve8m48smVDbIeZGHw4CDW5JA5MaWDTP9MnpxceFjxW158nX/ix1/npdxaby/Ta76bAj1i6uERDjb4wCYedvkhbzN31uwh+ooTvHjzkw713P6gi5wbFV14+cA+28Zsp49ufpHjj6s1fk4ZdulVM2yRg4E+/XJPnn7NPMJn7Mr3ZPBqcsEP+NjOJzL2kJprD5Lll7rDjwexVTPGp9FnHp9x/Ob5DTfdcFivZuJLDx1kUHaM8Wn6jeGnD3Ut9sb67rcvvvji+gYbvnTrn4Zg+PHHHw/ef//9lSc5kivxgweJP9vyqib4zz9zeIqTGKAwmcer5bt+McI7+8b8LA5zjTwyx3Y1ZK74VS/JzTGe5OCEA/EheXL6Nev2pg8x9mnrsNiTYsFGe4+cNVe22CHDlrjOs4NuvNaOkyNbw0tP+7IxefPFgp704UFTN17+0mselUe+pJ/eaK+7eLGDny46JhY88ih2aoldjU3z8RrTnw36NPJ4NHbsteb13Wvcf6evMGh0kc9etvhnzr0zObx9O0dth9eVHHxqUe7odrax697ZPa4Y5gMb4SaXLX0fTmAXM3rbO+03sYGTLX062fJBgE9qsF8UsEEPTLBk31WzVm5gxI/4pImjBgOMeNmGsVia4w+Cx/3P/cuc+u9eYZ0OPM56+hE+OmCnE080efBpcy7s8IWnnNBT7MxpbLfORrrEwrwYwQyfXLiap2s2MfCMEnbPIPJj7yJj/tCfnDiqmTDho986Pex0dvILJvIwVyPmpl71Ti+7ePOnWLGRjnyyRie77LFV/OkXR1Sc8p88O7BkB99exj3BM033Bv6Sy3/npFjBAAtdYUgvDMUk+8XNWj7RgegXW2NrMPFNnWp99pBf83zPFjv4kXn2Zi2xq6HwznHydOgjuunRmtPPh8W0/TAXlmySFWs15kX7a6+9tu7n4U32Yq/Z70X7b7/9tnTTV9yLd7jzz7qYwVi++KnuzKNiRnbGwryG30s2Z5TYo3jVMht4tM6AeJrDb00exYVMFLZwtB/grQbKPx4Y1aCmbtSpvs9JxngQPi/gfA6RDzGCB+FzxvWcbi4f9PNPnx6t/NMfL5+czT7HwMoOPHiKFTnUmUIXLOb5KFf4Xcub/Ij5LbfcsurfunsKHWIXJvL2TTbTCz8ytlf5ieC2BifZ+GYd4xMfebAefvMINjmkG158KF5XzTp71UR+8yX71sUpfWSKKTtw/P777+vzLz9gERe/hBBzftNFN72u8LiHum+5j9OZfmv48cKI2GHTnHPPs0O+yG0vl2El697spaPPXvS2LsZyAZu/7ayPH+ZyXN5gksf2gSsciB1jGOASH3PwqXH/AtrfYuc72/6ki7qQT3r5rZEpd3Tb7+nhp/cFfIHJPd8e0vcOwr/axovY1cpN+VyL24/iaEweVdfl1pWceMHaXqCTbp/h3JdglDP86RI7a67lJb+M8fpyKN3mxQ4voo8tJF78TJcYqCk1wVfx8EsM/4JfLMRMLn0ZsGczOVUfyLkCIwzli93qCxbrdFvnK15zfMbLtjkNPpjYZgeR0/ih3sVGbMm7qgc4raU/G+yaY0/T18yXn/CZQ43ZU0NiJ77siVs1zgYdcNKJjLNt3Lw48NXVOqqGzNPZOhviq+nTgZePMBRTc+IlVul1LZ75HD8f/LKtc8C62mfHmhgjNtiEUwz80umll146OO2fcD3xi3abjxOcd/ghgAJVMUhMCeaUgBiXGA4KWgFfirYfAqIhusgY0+8qEftgZIcMfXTjqTiMBS5sxmHWh82aq3n97KYPVmuIjOCXGPw2qo3p73TbJOxJniJV/LDbHB4W8Tu44Ss29NqYZBwCiic7ZBWhMTyaOZjogCV/+AAX/HvCQxZZpw/RlZ94jLU2kD7M7HjI4gM7ZPCzx8/m6Nas01E88SK4+a+pJf76bTX/YWJPn2wYs08HObEUV7riF3dxCxdb8sCGpq9ZR/HBTQ+SD376p0MwsEuGf2zilQt56oZPjq4wi4ffoJPlA3l+aPimfbjUND7zDkw+2mf87ADiozVx4iO8sKbb4eEwMKcOv/nmm+VzuXMzEC++afyhoxjDWv6KeQcqf+HEI/e9+MDPvivM+s4E9n3LhIybU/+ZHCzs5S875MyJmYbImUP7uCWTnJhV6678p0c/WbyI3XRbgwcf/vTxxd/Ftt4+hIUd/pGnhxy/5AipDQe2/OBLpxgmJ47d4MmwH+lXe3TDAwNZdRVu8+UKVjxirjZgTI7e+njoYF/tpNOcBwg+4FFD6oJ+utictvMdL3Il2zlmzA83XXjYY4s+WMTRmhjo89M6ObXY2Zj/1sqZvv3GV7x8p6OHQvtRzdGfTXUOG4zFagHffrDBR81alG7rEQx8YV88ED4+Idf6/K/BoRnzkS2kj+Cn2zo+OtJrXtz8bdeXX3754NFHH10y6ViDU/xg23/a/N57761YyqmY8U2ffnbVb2dF+MUJj7H44CtO+eBay3c62dWsoWJgf7AvrviKZXrxmmdbS5f1mjl6yc45+DQk1ohf2XalE0925dk+9gtzevkAmwdsdUS/fYo/LNmhi06545O9xm72zIsf2WJkjby8V3sL6MC652Un+/AhuMwZs6kVEzb0zYWfL9UaeTzW6I7CVhzgtI4PxW+OX2rIh87iwmY1hR+2dMAqjnBoE6M9nm46nEkaotucKx3FXr91a/jpcC6IO/3qeT6/sCNHnRn04jVPH1zyrpE1l126NXrNacVcXxzIO1Px8F2zJk7sqit66cknL4fdX8XUvcQHeWua2nUPp1e/uslv4zCtYGw/2OOTfSYXMBQLMXLmGiM2w4qfbfEzBxPb7CJ66eJzds2zXy5gxuNKR/P4UHatW9Pog4NOeK1pfKhPpzVz+lMXXPj45pkHX+cL3ho75PnjRTvcciEe7k9yhOhpn4RD3uhkK3vkEZ/ax3zIZ3bJafr4+Jl8/lo3dxxlX31q6cTbsynb6sM1TNkt/2TlVwyicMOhT7ca7hmoeDsfxU1dqI/2Dhm4xVBD5dQ8GfboZV+fDIx0a/jptzfwk8MjTmrP3uUncl+XG+vF2Ly+uYg/bLBXHKzRDUs4mgtzOmfN4aGbHLzW8NFFj4bSYR6ffHg2f+ONNy75i3axZle+9dvD4ifO6hiOcMEciQ1s5GDmV3nCw1exM09O34ssn22SoZtsNUcnDGGZtq3hteeSN2ZHY6OciJvaUg/m2Ha/kPew2at8xCO3Pv95Sebe7fmTL+Rg8KdXDg8Pl056NDbFRy2rOTYRGT5MbHSEDx68ruKu8UkMOi+s0ys3fEXFyhlvLp9hb0+Sq07Zh8PZe+ONN65fHNLBTvGmIx/taXsWzuqAPhjwWOMnHeyb44MW1cejDwsZDcmhxoYY9sweZnjIsYmHHvziEyZzYcar8VUc6cwOGWPzasG7FV80g4V+57ZfoLg/izUMM2d45FeswpnP4q2xjchZC7868tK3ODh/2JJffGx5iQ8PG3D6Jb76hNU6fP70o7hXxzDRyU4kLnwtBvCicmsejzggOXUun9++ee3/F2PP2ehfQjsf6Rd7c2oN3uzSI/dygg92vjrLxcJnKF+Uw+fzrV9m4IWhM4Vv9IcLdjpdYS5m1vFp4sYvPPDwhQ26jTUkVvyjj21xx0uXfMmzWMICL1vZdfUlOXNqhAy/XdlXA9acE/Imbmx5zjJnjMTCLzG8AzIvp2LrDJdT2PCKHd39MgIerXjDy3c2y2V5dEXwwQBvvOrOGQYXX8VIfWnioc76pSF5sfDOBfETpohd432DkV+wkcdXnulEeMRe3OjlN/70k0P4xaN5MZj5wWPsfBKT4uFa/unwuQsPeX77bF894FM/Gl48MCO8ciF+UT7EY40/Yug8paeYqAV55h8eRJ4MO+b7G+3nzp1b67CfhE78ol3BKQybTXAZBA7oAqfgOVKSJSoHgAtkQXBtvSQVGIkW5II7nSNXokqy9eYVByzswVyy9nYVfZs+e/QpDjj02+zpxp/f+pLtwPJPlRQIP2weSRILesRBoulzNVbs9FiHUUzJu7IFv7V9IfMJJrrx5D9dbP6ft3tZtbNa2jg+L8TG3HY9a0MEGyqe8ISgURMU0hBtxAMqJGrDjh2xpRdhz6vwgAgiNoyCUYmt7za++Rt7/bNrv0R31jJYMNY4VT31VI3D+86ZlQQndgksY6RNxGbmHaYxedIWP07ZspfTeeiaEwc7Qk/8bXbjCl3+8MYRb/jitdkdMjp0tfONi7HinLkzTvibecM9LIdbH06xa5svXjjyhZfikmNn3rgHVh9mrGsvZ/zCosOHvvi8jMI3tpWZc3FmB8eB59MLrXjNdTmZ68Nvaw9bTC4PX8rJjUvav00Hrzg9dK2beXtG2zrFrzXRxxtH3Pi295x34+xd9nLBhsChj0fnQP7Y+6JdYVOO+FDkyhiBK158mzPe+tJT4qae9uzw6DzgQ4d9unDzF18+xMF3+9VvH5m3n8RjH+aLDhxr5MWLPyI+Lz/2MR8w6cgfe/nT9uBgX5y9tPCPP75qpb1HJw7FlC4dHPsNXLy3woZPOHTx04fpoV0M84FKR8zFyzYe8PnBVbF2zgwRl3UXJ319uq2BvSRHsMVARwzix4OuvkInDvh4mLJvvcz5QAXbnLPRWYHdWYbdPsCHmNcWXz7Lbf14yJUzz3frwL64tPFTwg8bx8aW46MffPENT53vePKp7UyfO3fuxH+SPn1q8/P999/vPvnkkxUT/9agfY5ruZM3OWAjVnzo6nf2ta8Wa/kQP2GviIs+O2KvKHiwIXyWB/04GZttc3DY8cMOd8V4GLDZ8Y93vtnTaZ3Ni89ZcodaF3aw531nn+Y3rnyyJ2zEaU+q6SrihB8/Y/EyJt/4GRNTXPkXQ/zjHDc+i6Fc8Is/rrBbZxi9h5Qf9riUP/0p/JiHQ0cbjr6iDd8e8lykT9R44FSbT3GpxdvdUS7EyoZ+PsTgLPNlnA7BhY7CvmJejHy4w+XdHF8+lLurzRnvXOOo8G0chncaX5R7drKFsfW7Bg4/2Mp3scoD3vzhB888kSd++SmHYqHDlzuZuM986BWzgnO5aK/gRWDjR0eZwnaeb3rWAJY8JbiYkwN71wcfdrjJg7zxWx74tJ/hG1PkLAw1HXG1VmpiTluhAyPho/WRz3JXu37Y2VXTE5sP6vh5JqinPQxx8uUPm+VDWz69Z4mbiGeeQzZhFosxUh5wb4/TESvfzohSPuiZI2q49gScmY/si5u/CjxiHfmy15wV/lvP/LKBkR/9/Kjpsyf42gO9U9Nl1/lWuyONsY1jeYSjGOcTh9ZLjNrm6JuDw79nLL/G4IrJuPjcwe1XMVpjc61DseAPu3yoxcNneaPb2OSZDXuFjiKGcgMDP8J/uMU08ejh6Z3yen/R7m+tdh7lsXXHG0e5tI/jjqu2QuhnY47M/JQLcbGxX73L+5KHP/OEv7kW4jcPszUxpt94/vJhvjzj0B4tz/NM8cfeXhCf/ULfO6d3S5/DneHiVu/3+/WFmLtAzsqbHPUM4Jfg0tmMnxzwQYd/mIp4FHl0V/S5Cm+82PFF2s/uUfrEfDlXs8sPDgp9/19azxKx8yPnuOCIi3PlXMJhR8+4vOIgP51fnMVpHgc6sAiejbcO8kZfIcWFB6zigBF/bVjme07FxxjRFzNdHOVFG/f2FF3rdPHixfVM0haj+90Xnz6btwfYJnTsA/tE7mAWc3HhjSM7OSuX9pDnn77ciJMva2yMvc8ens9yijs+PT9gOiv+Rmp/WMlX8eMIB6dKcZcrGMS8vPBhjG+Yvgi+fPiyXT7cjf86/HOz6jhr2zv6ckHkEo48iIut9wznxjr4ktedT88XyJ77dHHDnw6s9os53BQ8+WovyCe+dK0Bv8bYaNfHy5g5Z1F82r7TyA4u3847zpMHXfzg+QVFuvYrkW/Y1k1e9cUnf/yIpe9UYOKu74tr+bWv7EN/6OA7GXcfHLZ48Ot9bcYtD2LuOScH9IoRXzrG8YHV+wYcnz/4tib4tP5ybB/2XZQ5ftTWjeAGg798GudLwcG8WlzZ0ymPOCn0+OSPX/k1DheWHLNX5NFYbbnUJ/TNi7NxY4QOv/iIF6Yxuu6r7lA54N++bP+xx9E60Mufutw0RheGmN0FcAgecseXMVzYlAM1G/evX3j7x36jfX7RbnMg1eIhLnCELZC2+YhbhBbJXHbpsK+thiO5bLJtM9A1TkcCw6o2r80+jB6EbSIc4PJF4LHhQzFHR5sPbTrEGF19bRg2gI2itqFcxF5GLSRd40r+5Mhl6HCYzxf8cONo4yXsjc/NFy9zce+yyW7q2IgETnGo5VPdYbaJYbLFobUtH3S169ODyUae8zN958e60KVX3so5fW2XlZzpl3P22nyqYRA4FbaJGCYP9go7+NbJ5aZvj1gT3MQav3KgD8v6dmnwY55Pc3Q8oHCRs3JBrxiKzxjJ3mXDxoc/ujAV+s4bnl0q5uNlvfxpLt79gU9/cidWuZp50yflVl+85U0McYwDX6T8hSdnbD0kvfz7K6040L/rrrvWJYWLvvy0Rgvs8EOff4VOZwQHkj5//CiELh15IPjqGy+OxoznI316sOmq9eXPv0vHTjz2ZXPmcWtPyjkudL0Q2A/2GtFm275mmz9zcPiFpR9vtuIsrtYF53TC0lfaF/DiqK1cTfB15/hSR7z8TYFBh4SZL+PW0LjaSwv+2bRGeBdHtvIop/1th2Ky3+UpnLDht1/MKfrtk/KAUzbGCJ/WpvjMk+azNd56mqfPDnc6OMcj//RaF3p06pvLLs584CjeeKanrxA65Urf88FvUbz88su7p556ytAV/qtzgh98fP3117v3339/rUU+1Ym2ePAVHymm7jM86aibt6cV+Wgs/OIqB3SU1j2cZXj4ATtOfE8u9q412trQp6uYm76NiaXzqk/yoTavxsva0RGP82Wf42ovEHOtHUxrpSZ840uXzuzD08+Xee3yzT7eavpw+NOv0Eua088WJj/uKHvauvEltnymEz+cFZKuPnx2OBJtRbx9gDGOa/eZeRKOvnb8qvNZPhq3xnKq33qXc7i4iCt+4vNc5N+YudaEnRjx9dJsTh9fdgp+4eOp0O2OpE/wnJyNx9l8ueqdz3Oh+XRx9JxQN0aHLX8+CBAf9O07/uipxa3oK/gQfAmcOIa5Jo5+GKPLl0JXaQ/zIY8+6Lmntc15t/AhU05aW/b5zUd8wq+eXPCGSXe5RKIAAEAASURBVNe4vpqo4Xd3ti7hqEkxrM7hhzNiPekrePoADKc7hm44dNjg4IzEyX6mU1zxyk6dDzU9xVrCI7DaI9mr+bJ25Qg3tvSNu2d84As/7AV6+BEvNTxFHsslDGPzvmBbrGrzhI5nMSx5s86dA/Otifl05JENXvS94+GsT+QARv7ZmStPYU0++cGreNODaVy+nNniZOMLJGfFGWfHp6KdDTtthfArVnHQM69o86nduqn1iXmFvVJc5nDhV+wKPWNs6cmH+8sXbu+88876g3PjJ5Hi8E/H+M9Q/fvM3Y3dCbAVnNr7fDkPzi8M42q5M64uD+ITg/nid1eJQ058LvH5iNBRirPzJ34Cxxxu7kFrBt+8tVTDNN+dTD87uvzq+6IHhn1H2LYWbAi9YrYW+NifvjRjl/5cW7H3rBFvMalhwCN9Wco2HRzY4g9HfO5uOcVl7kkYxUsXDhEfH3ErlnyUC7HLmb71yJe8wGLX3taWT/caO/zYwSR8EXYw1XQUOvjgpd2XXezZyREbc+z4af/AjK/YYeBC1zh+pH5+1HIDFwc2/Mhjn8VheSZZB/HDF5/CzhfqnWu68YBt3/v8SWCzxSVurQvfYtK3X3zW7vONPPf8Y2feF7J9SSsH1l4+3JHwfVHtn3O9dOnS+g7ImNiLj434rKV9ZI5vBW8xaONF5F+BI0ZFLOxg+c5BTfIhj3D6gycc3ZtyBssel8+ZO/j84oYXrLjAM2eMyJex9pCx9NnAwpGNQlc8Stzoi0HBp5hgWrd+Gcyc3OJKB29/yFGu5N5ndzbl0/qx4VvM7Kxddvj5/gcG/zjBN89OjmHJm3XCW1zGnQ21vQHfuFi05RY/nPlorpoOXfM4uqfo8W8NcRV/a9s9Xd7kGb94i8u7i/NO2lN40BFTcdGF07sOHaI2p2ingw++CZ7ihisGIi5cjcmLd1d5pkvEI0/2nhjpii9f/LX2fJkjcONnnJ1ciYVva1Mu9bODhQv/ij4cvsOPB57WyvhW+OfDF+3+j5VTp04tleLe6v9Z/8S/0V4QAq9wri0AiS0BJUug2ol5+uyy1Sf0zM/gteFOff2Sx1aiS6CN0oOArY2l4A6fvkJPYZv//Oq3SYxlZ6xFNc6nvjZ+NpDF9TLqwjbvYBgjNqoNUNxh4BG2MaVNOHWN81eMamN04lIs6rAaax30FVgOlE1FXLIOBc4dhg4NrHKcL/Zw5hrjQqq1i5m+AosdnYq+ePQdKpiJOaLOtjFciPUl+ZBrMZC409XugellzJiYPbBcCtYBB5xhwuDLGGmP5t84rvrypx+X9lx+zSk4lDv49opDb5/mi562y8UDE2e6xY8nf14E7Hc6vrDXd+GWl9acnULiS0fO6eQvrnSNzbVla5yNXKmtlf9ExAd0Dw82fpPHH855AOjDr8AoxsnJvPHJm299sbYu2ReLvvbkyUaRYxwVOnzQi5M9oi1/vZTJN524qeWdrnMME7ZxuGHhkU7rbqxYYSgETnvEPqPTwwNue1jbHGGLl76CpxfQxnCC0b4SK/vyoO2sWxM+2RG1Ig66rZOaFHvnia29hn/c5M9+gM2HcfNs1Pa2v+2gHx9tMcDjGwe6cTFmDg944oqbOWJcXKQxeo2xJ9k7F/jx4czxT6wjgZ9PeOzioz33krzYk2Lnjy0bNRsiVvPGGwu3daIXXzp8+ILr9OnTu4ceesj0ldhW5wQ/cP/iiy/Wh34vk3zIAw44JvRaH2P4iFMh8SxWY8VLt9jgKIm2tZVbetaeHV8wzWebjdziGT99fOkp7OI6McyRsNnAIfzQTd9YOOnTEa+94T5zVmHGWbs4wgxnm0/Y9OEVb/GoK+y12SdsCXuczDeWTrVxtuWse6B1U+MMi8ALk1241oaeMfP0+VW3F8zZ03xlJzZ5KkY++FTyZYzEQRu2eTjw3MGeaTj4kMEPTDbF2J4w7l7xgcmzsT0t9s4kH9nNmNgq7Vl6eBhj732gPZNvXFuDOBe/vlh92KAvlnSysZ88K3FO6PDjXlLY0rHXxB9neuWKjpJMDunQz7+asBGvIs7WMT/uhZ7h1hIvf3vLmnRn5nNyyP+cy7cxvujTk5fJsXk6Yua3swUj3elv2xaPuwUGzuLRth7m+K3wxx42Xe1s1PTMsYWR0EvC1ceXD0JfThU4hJ027GIpPnPy4V1b7qfQTZ+eUk7V7PjBJV/yhwtdgk/FOF18+TOu79wY0w4ftvPDvzk6nvfp+5LJHtUncs93awAbh/KylI5+GDc/xViccUjEhQMxb87a+pLNFyDm+JgxZz8xtengpw1X7qwDLnCsj9LalQu6xaOt5AOeEs7kzY/3Ie/A/lNz/46ysZNI/vz7wU8//fT6DV/n0WcFnAmO5cK64ETo9SVHeWdjfc3BxkvRrs/e2ltXY/LduYJrjMz4Z+6K1V1qvXAyxnf3czzUrXO4sMVjzn6034j8N54dW8UcH3zZ4z6De+d0J5tz/4qHjvgVGOYUGPwXNz3viLDERujgIwa2iry4u421V9gmbOiVnziKI31+6U0/2jDVdD03cOZPjfMUGLhZb+/h7KwPXIUvff7NKXjBYmfNzcPx3iNf5vk2Rl+twGOjxgOmthoOHXba2ZuTf6VxtnBwoCf35uSTb5z1KzDkhA1xNxUTHfNx8EWtz/S40BGPEp/WRFy4K8RdfPnwG+N4yjUMPuGwtyf6vI5Hn9ntE9j+Vvt+v1//jrovHsXgrPGnaPe8h0voKPauQuiRzk6xGcNFgZd/4/jIiRjg+T4AJ8/x/ia2PMkH3HLBFr4+PDjNm2uNYdIrFnoKLgk7erDSN2+NxSTfxhN4xWgMP2vX3ySQc7m1N+i5C+xPMfCBi/vJOnl3JM68HNAnavawit95ssa44NQ4XWP2A77zrPEHh+9ibl30YcDFkU7xpyOPxhpPhy97rb0NS1ydTf0w2sNs6OAOl053A54KPmLESZ8e/XLBJuzyuRJ2+KHPHld28tLZxYWYY29cvu09bb7o2Bueg94hYRijzy6O4oi/Olzz9JJyql9u1PXjgXNxlytz+Kvzoa8Q4wQ/fPSdg7/7T7ie6Iv2ElhSkEFMMtTG56JrEwkTUHotQkGHF5YFLikFDot9idffJkeCjFtYG7ZFsFn1JR02TGMOpQuvC227sOwdePzMwWYX7uQfd2PNx9Um5xc/bR8M/eaTy6OFZg9fIXBsFvpwig2X8uxQKfzlVzx9YUjPHExtOnAIf2JyEGwoOeOHLht+rXe+cYkre3iw6MJqc2s3x59CuiQbo6fEiQ3Bh0+HKl19ulP0jSvlDAd96+lFA9+518JTuxA8hPxpOd8uaQ9IuGzYtt+nb7b0y6m5inzII53GuqzCUONI5I4N3vaC/dmcunxbCw8WnI3lny/rrZY3vuTZnjUGO39iIsYan324cTRefHiUQ37Z5t/eo8evPV3+6c+XPRgzrtqwWpO4wDbWHF19fiZv4+XHuPn405eP8qtPsmGXj/Y4v+4IGM3DUMIWH33xEuNx0C/X/MSlMTmZ47AUPOCJoQ9ExugaV/jAD4ZiXrHWPgAb6z7z1xhbexik/LDBh76HoliMEfj01PzFj46954WxhxZcbfHzS+SO375oz4cXUjzF4a9bqvlQyge/eOjzjWM65VHfehI6/JsrHmPh0TGuj4c2exx98HXWxeVLJeeO8G/MWcORsMGNwKDTnmpMDhS66TSmZu+cmMcnMe6eUudHDPzD2e/367fZ77333mVi7O8I7l9++eXu/Pnza89YN+tlXCHqYhCndn7VeCryo7RWYdARo37xNmYPzGeKcYWuHOTbesFg314yHz81v/TY4GldFW227QXz1qC7gC1ceq0NHbKt42cufvZcou0M2T/tl+bgw8Ol/aftTMHKNy76lXixtWfEFA867Ze45k9tjL1Y4RK21eGUX3wIuwqdeGrHdeKZDyt78zDknYivPn9w8mEeRsU4gWFPegZ3Pr2XyEM66YUFw77y7PHBih/PQzhxyY85PuJavZyPH/Tl3V08z61xku/aa3D8aG+Wv6b4s//bM+Zh4cWfs8ifcTmjb6y9ZGzmAR+69OSbbLnBJunSJ9X07Rd5puudyx/cztyYs+/wyE6tiBVG6908H+U7zua0YZvTFpMCx9noXtHGmY61ZEPo5rd8FDvb/Ocrf3Tm2Sq+8PDhh05zOE2c1t+8ufrVdDvf852h+NLDiT/98mcPu0+Mx8WeKHa6SvEUu3o+B2cO5AsnhR/PNnvPOekZw54NbHqEf3kQgzZu9oR3ZfF5B/Xlpb0Sf7ZhhFO9QI9+xL8ct978wFK2QhdWvszbk36DsfNpjI5SvtU4Jc3r40HEQ09/7hFzxuTAOmgr8qLgC08e2RcPjvp0nBmfL/3TA34Lfb/fLxvYxxW+iS/an3zyyfVLLXx4PuJoHh/xxkF/ivjwTrRh4J4Ul7yIDRZMRc75CpcdfYV/fftVvtKzd8xZJwIHD1+KyY+20v0CA74xGPRhKNOPuc6rcXZiMc6WnRjsee+f9j09e9izovn2nzjDyN4YLp7vcsEmbvjGH67Ct5qePaBNh432zLUx/sqJfjnkX1u+fY73PIQDN2yxtTZ0i50f9vJtDG57nC0Ri7xkH0/PGvrGibi1O2P5pkP4VWabT/7FZk4e+OeD6LuvjMWHnvjEa973Iu4X+wgOW3nAAzaZeGHBKXd4u5+cP3sNL3G7+xTxi4P+5AuDXxz9B6xqfud+ZWc/wm9fwuDTPiPeX3xJ7LsFn53g+sMmWPYJPtp8sSViL/dqffN0xQujvJpvDc3RKZ/eW3yu8S8qsNHG2S/uKO4M+17e8rMIDA72gvMVJ7ps+NSGx6c1o2v9+DJO1K0djLi1zupiWQZHNtnLqzX3t2jkgF/70Tj/1lI/XFhK34UYZ0PfGoqzWGfsdDzP6LFXG8Ojgp9cWK/ibM1gpwefqO0NhS9cYFsnRZuNuMQIqzmxVdjNNa9NH4a+glv5MM4Ofpj5VNM3z4dnuu8OjPWeKX62anN0YBsrZuspLmJcGwZM+ehu5o8uYYsnoccmPsbmOZA//hW6Sb7UYduDbPk3Jn4+K+xbT/NsxW+eTXnkA0fz5rRh20/+Zsqrr766nuH06BxHTvxFu0QgWeE454JBUilwpARXgOwVUrAFXKAl2byxqZdO/rPVz78EORjxsMjacCWernkXcS8r+OBIYPKjdhjaJPoWQOELDokTezr0HUp6xGZtc/Lv4e8CdOkbt7hq+mxhG6PLFq4xmxh+7S5rdriwddF6OBO6bFoTNT18YarZwFHmHN/WiQ5/+oo+PWMVfXzltzl9/vkkDqEYy9EaPPyARwdWfNQuUjUMmOxIbYeID3329PSNi9nlQWBMoa/A95s5HobsfTntN8HFIG5YOE+/2ZZXNZEXc/x6+MDTZ9uei4c6TDGnZ52VLhc6eJh3abv4PBTwYmfN+4Milw1pL/my1Rwd/tjkE970KwZ82RJ9umqFPns4cwwGH2rx40iP0JWHHkzwjCX68YEJQ8kfn5V8NhcGX3KVbfrmte1r62Geb4WNnPKdPu5EDuimYwyG3KrZs6XfmcQJVhzjNMfghFnMxmApRO759jLGVzzsP77M48te0Sa49HIn1+ytfV820cWbvr1AcIHnAwds8/Jkvn0rr3TUdDxwnRVt9mz4lhv3Bj/8u0v51habPesLemcAlg867OSLxI1fUnzm5UAh+GvDpYObwgc+xaQfBuyKeRi4+idZ5Ii9l1H5Y2O+tcWXtCfMxVWe9JN4FpM5OtYxe2eBHgwydbJX49Sa7Pf73WOPPba75557lk22q3OCH3z6ov3ChQvruSOXeJWj8OmJBXd5I62Ptnn5kit8k6vhmDPemrm/ii87NcyELhs+7Sc8yx09c605G3u355e8m7MP6LGDZxyWNtHvboBZietSOvphj8OBK+b4OZt9cBMTKQ74ckjXvm+fmoelmFfqt1f0ccN3ro/57vl8scdZ0ZYrtrgaS2Y+yt2cT09tHO9pAxN+uS0H9I2Li121cXzTn3Frx0GdwHFmPIOdTz7EL2Y2yhT6xB50x7hr5M77DxvPIxKH1gQOruwVNlP4ZQ+Hf3HQh6MmYWizlytj2vRac2P5oYuTMzDfbcTMn6JNH4baXSr3pPXQhktaB35nMa7kG2/FWJzUxsQnTvb2tPswHWP8y502/exgidOYOTj5ZaPP/9UERjjiUtg6X0prxpZvWFt9OiQf7Ak+CjGHm7y2h+nlXzv+caZPcCJ080FXP75L4eiHOdxx5U9N+Cge9fRv3pg82sfm+LcXeo7yzR+9uKjZ8OdZxbdibOrkN3z3lXPSlxRsipNvBXel8+Ju6/lP1/713Ox9jz84U+AYM9faxb+9Qj9e9M0r2oQt0W9Mn4773n9yqaanZMuvXMLGl7+w2E/Jp7p9Rp8/eXef+hyhDYNOevzIAV02rROf9hJu3sf8MxL++Tf/bvM2T5PLX7Xj74v2J554Yn0JKK/dD3zDxkUs+VHjo9DH3ZjCxlix8a/N3p4qNr6NywV9tsWrNqZW7Btxq3GxP9nrE2P03e/w4MqVeTVdJVy+8FCaN9ddKZ74w6XTGFt7wHuuO42dz3r9hrF97b6zV+SHFANM9nLBN93yyk/+tekq2uwJTH17B7aY8FJPHHbE2Ixb250sT/7tablqDftMILfyCQM2TuLnV22ueeuJE12xKOzD5MteLWf0nHPzPRtwlM84wyb6+LKd64gHe37khR6MuJiDYQ53uTLvbyH4DyntI3Ni84Xr3Ov8tj5stHFojxiTJ5js+Nbv/sOh3OCp0DEm13SdNXq49R1QesUhNsJWbnypbs53Cc67/Wb/Ee8TnQ15qs1WKfd08VD4oysHcqEQvnBUizvu5nG9fPhtfP/MFAzfMxF/w9ydaZ3thfY9HZyth1pfzvgVnzF+tJ0FdrjK0/y81x5QE9zxDjsbayKn5rcShtjky7rbf3x6ZhnXVutvBa68kvSsIf7K5CJe8djndOTQudBOyo1Y8YZNT27U7MVFr7VQwzGHJz/tY/lgp8CzVjCNE77ZwJgCX27Kaf7p4OZ+81wnbHHqLmTDHz21eT58B2lvygke8ow3UfsDL5/X5Yf/fJtnLyZ+6E5c8Sj8w457MbYu8GCIy7pp02Vjr/Gh5oOouzPaJ3zwxTYsOumKNQzzeLYH6hvTxod//PRhOyu+L3jllVfW3ySLxyJ0jT+O/UW7Pw1DooUUrDJFP+LIFkw6bGey0lWTEiQ59IyHmS49yaI754ynY+HajC2o+Q4dOzouChteUsnE1CbmYcC2WejqK9o2MF8wSXp0xU9m3LjbvF5eHcbmxBwmO/7blDDkQ99m4INP3OIPV7HxPKDxgQFLrLhqszPOLzzjDplcwIXPl3ltAgu/1sUYXcVcvhwOY/GH3QGDqfBNh2jzwT4b+satldocfW2Sr+JNRw1LkUfrEn925rMx7oJw0bhQ6PtTaxeOS0vs9PHFy3z8wjRW/PTxKpdiiLMcK7CmwGFTKb+wCH1jeMhFLwkeMK2zP1DxULemhK3igrAPcOSHPhycxKHwa84YPRxJvNUKgQmj2I2Zs/dg4drawyLtOX743hZYxtiziVP5qN6OsyH44GxeiW921kIpBv4UdgldfTph6KdjHdvD/LaW5Spu+Cvs5EINO8mvMb5gTT/axq1Z57M1d1fYB3g0D4++veALcH359nJiP/SiBJcvfjuHdK2nu6f9xadxcVXz357kp5dIeIrzA7NzJn44xuRFHnB3xuDAtYfZ0q2mXx9f3OjirNAj4o1nOS4+8/FtbtrBY+s3TbxwypFY/bNRXlCygVFe8ievBAbBNc76YjWmrm/eehkXA9/tFTqwlYSOPh5ype1F/YEHHtjdeeedS614sjluzUe/0e6Ow09sxkn4ccGhfUl3inH5s1aE7hZHvszD1RbX9uVpYk57bfmyt+QQPglLjQMxLw5F3vmascgpLM+41pCeYlwRn6KdfRysnTZ/xQMfrjPgbNg3+VTDKR61XNEvp9rp489He8S4gq+i3To4/wR+eTEXtnyJozjpsjdP+DfHRjE3pX450GcDN9vm2IlNoRdHbQVHos2GXnnRnzj04IvXM9jzi753EusKg4QddxjWxH5218D3h79y4Bynr5ZfOSP5jr8x7WKUZ+8DavvEHJtk24dvjH/c5FttjJhn3/2Cq7NgXnzubc9SvnDINv8wYLaO/Cgwi6U9nT2fhB6hV970+Y63fOmb7/5hB6tzoh3mFo8tjOLMxvgs7OiEg5P1Ky6+FRJXftvr7IwrbIl5PspD/sxpm7f2+MHJ1pwYYRq3x+PNtjU0D4OEbSx/+TfmnOvDUdOBY1zhG4Z15TMc94j9ShdP58B+wJsUszZcJVxzBJYx+YybfnrG+VHKsTn7MHw1//DhEXvWs9/fRqPP3peV8Y2PuBJ6sGCIk8SJXmN0pm4x0E2MZWtMbp1xX0DKI/v2DWz8SfuqfWxs4uoXJx9w8YJBzxwsPrThzD3CRm74IWx7vmm7u9whvix69NFH1z/bwOYkUm63/3RMn9m2OeKjOOTH3tMXB1HjWG7MwVCsiZjktHzRU+gpsw2rMfkqR7Dy2z42Rqff0mbHXo6V7mi1e5F/d6XCLn1zdDpnan0lbmytT89nfnzm1if2ryJOOVLEPc8qjM6MOX2+cMUBp3Ijn3wQerh4D5dPc840XXPlgX45Fxs9xZjz7z3Vb0bziZ9xnHFq32XHX/ba8TBfDrSLUR038dhLfMgHnnyYxxtPvM0nsPBRzBF+cSXFCkOuisuazLvQODv7hq4vhn///fcrny3heD7KNeFv5g0W/8b4xkvfuPwr5vTFJBfZwOYftpqdthw7a/RgykFrzb8cwRJLwracOvf+Jos702cenLzXyLE4+YJbjmZ+zZVb+aAnP3Sasw7uGnXjeMDzGccXpPKIj7uajv/Q098Csq/wV4g5fsTSmHjxTMzD4rPcyQcdugrO+DSPqyIv7Rv7oBzQJ+bhy2txw8DTurMpXhzp6uNDH/9w5EoJk57CJjtz6Yu3/ch/8WlPESce5WTmLLz442VvwNY2L1fW0PrgIS+wnLu5r+xNtuxIsWnDr5gXFxEv3mzlAz4/YbcO/MHDy550F6rpy7N59ywfcuKZb95alOf2K3+w4scHTsb5hUV35hZPgjdMNmHYE60bfnAUesUsj+WanTZe/FTgi0cxr+YPBhu5jjObGZdxemzM4WcP+r7g7Nmzu8cffxz80lmNa/xx7C/a/WmYwBVkCHIRR1Jw6m0CECdtvBmgORhsFYkJh00bJT1jfOQHVmPaChv60wZni6imY2FtCmVeZG0IXBWLk690w9XvMm8RxaKNQ2IMRnlTy6NYtevjRVdhLw82q3GXf19awbWZbVD++RObw8HWRc8mfz64ikthQ2xkh1MsxuiwJbjyyx4O0WcjJ+XDuHklW22Y5WCOsyPGtMUXx8bSlxuS/9U5+tFY9jCUiY9D+8i4eTkShxi05VQO+JQDB8uHdmvDh9JLADwYrRmbdOJpzTx0mlPTzyY9NW71YeNIDze4avzoGZd7l6Oijasv47y0yjUMNuZwxgVOOYJvzB5ozhiO2eqzMVYMxuRDvjr76bXG+vJarthqK7AJnbisgcMP/TjxS9Rs8r8GNz+Kq1zRhzPt9BU4U/CYMuOlb946E/1yi2t54Ld5+OWUDoGRn1nTVeYY/ez4EwN8+7CHIb/uGr/t6Zyah0Pn8uG3F/S9CHhgKvYgLLj5gkv089e8OVjuF3vNWnrg20vpqPmUL/mhD4ufhA5743Tg0IuvMfryRccd1kMZbr7bZ3DzT791N0b0cVc622wJrsbpKO5JL7/7/f5KDv0VVXcmGxzF2/2Ap5zKZfHwi3vrzQ8f5YUf7eb1CXvjCjEOi6/yZc6YPnsvxffff/91/aL9q6++2r377rvrBYq/9rY2Tngm9dNrnA6O1rJ1kKswjJmTT/Hps5HbYg2reuaJrj48pTWkO33GlU53jbyxxYcd3zjQNRe2ebGH72xZZ2N85H+uY7Hml454xKkYp6OYI3Ezb3/qy0O5oNM+wwFne9G9LyZjcNmztR/VeGqT9j1bY+bYwCXwJqfWZrsWcVYr/FSXV7jNqxOYChs66eFkLF/ZmCf5MI6vu8uXaMXmGaeNPxs1P51XuPrW2Bg8+vy27vzoy6fc8BXfcI3FwZi8+2DMRuzsE3qkONX8KnN8dQ4/+LJ++cTLO4d7MV9+McL7B35w6JvTlxc+xFoe8TFH4NI11pobZ0OKTR9uOTNuLL2lfPQDloILTKW405u25sotLuUjG7UxNuYVbVzKDZ25jtMP27DyqyZ4mis3uOKSHh3raF90B6RbDmF4DrXWbHEstzAIHvnTN1+e9O1BtvQIP85nX8qY49PeUpsn9oKij4f91z42P3mIVSmP+dJn7+6Qx/KqnuteXDCM+3CdvrlyKRZ+6divfgMOvnHx8GOO/0rc6JljP/kVB70pU4+tfnlkP2N1J/gC0hfY1hUfuXOnWgvzrWu4rVm4fIffXLVx/vhtL+Fr3trANkdPjNYXZ2PyotB3nn0O80Wpv5nm3YPNSaR8+S1V/ynbjz/+uPaIZ5aY8MCB4FFprduX+e5M0yPhp6/GtXzRM0avM6KtFBOdcOXKOL905C1h78tAY9nb79atZ7BaH0bPy+zZwIgHv9mzwYGOfLRH4y5P2mzs+c6lODun3oE7E3CmHlux9SzhCxYu2uaI+WKALVbv7c3DpRPX+BlXxC0W9wQcduIpF+KgoyRxocsGDlw64mFrDN/ph13xiFWhwx89c/pw4MXVmLY1pqsvD42riRof5wYG/PiXM5zj60tif2PG+7p5ouaj9dNX4IlLjtknxhXnr+816OBqnfPPLxwx4s4GX/sGB3pwjZnXxsN9SIfvcmDOmunj7nO5e8keY28tjfMVv2q27NoreJnDlW1rYJzgJY+4GJNbGGLxDoWbL0njSsc7hnuTLlyFvj7fxQOHP3s2v3zSmWtAL27uOj5wEjNd88bEUd85tRfgGjMHExfCppzg5Rmolhc63Sdw+c6GHRxjCux8pgcXDj1toqZnTN1eXpOHH8UgTwqsuFiDhF6+8ewLa/i4ikM+6fBhDB6ZXOZ9NMdxizt8a2vv0YGJixIHOZNrddy18WTX9wrtX/zo2QP8KHiqCVy2jZsjMO15Z4N/eMY6S86JmPC35mHo05MHY84pDsbps4PVuoiTbzV9fMw1b6z1SRdWxVjrwO/UFQf7KfAJTv6p2TNnzuwefvjhNQbrOHLsL9pvueWWK5tdgBy2sBwbk2wJKRnGJV2QpIXr0jJesltEOOYlw1gLV/ATW7vE0pVYYhxGiwuzUqLomFccAsVFqNDxBYyHLh5w6beptI3hNi8PsdCHQRc2LHU44mBfwZdO/PKFDzwHi67D62XXBiQw+VBg26D+BFUe+qIdJtv5odFLTnji03ZR9kAq337T03qax49/B6BDhoM58eCJj4u8+ODhjheBYU7RVnBVh6O9FWOt63ZO39zcd8bCjDs/eOOi9LA3pk3wF7v8GofRHjKON5x8FQf/7WFjDieJg/n440PUFTbs1YQP68mPnOs35yFmX+KMr7X0YMUPhvUWX37yDQMfOnSLJ738xpm/fBorT11+xgh7emq+xd5LHn72MF/5wYNefoybl+cw42jOGBtl5lB++J1xwVCMT/z4wa3gTifMYnGWCY7m8BePmrSHeomBhwOu2uRq+TVfPHC1xcBGHy6cxPp2/1hzfHDz4dLZtjfE5cHob2SYl2/nmF754YfwUa7ErdCnZ866ujsUXPQ7K/wUE93yJgfxKA9slXTMw+E7HLradODKbVzouTOU+PKpwGr/iau1VrNPR22svccXn+5kH3rlzxx856u7QA6N5Te+6bYnypk+EQcbcfNNZoz0xEMPbzpq8VhbdWNqWPLib5D5t13vu+++hcn+7wif33zzze6DDz5YL2p8ibF9GLc4xKn8ialYcTSuELb1WydrBYPQ1yfZaE+7sOWrXNGxljg2ryZw2Cvm09PuzPIrx/nOn1jkuHVqv7DF2bh2+zPO9oL25KcdJ7b482OMrvPYHsAbF3uOLh2+7F+c6ZvvvaNnCXtznvWw8YDL3h3gjImBPiw6auKZTS9OfNur1ikxB18JpxzIA/8KzumGBwN+edOWd8JWaY+bS9ib449fue4/8TYOQzzG+c6HdvcM3LjRh4k30WfT2PSFq3l1Eh9j/Hp/YaPgZ76STfGUc7blEQ/6uHaf6dMxZl1wYOsPF6xne7L1CaPYi6l1ihc+cOMTv+p4y1e5M0dfgZvQjYcx/MpDOPFR4zBz25xx/PUTHNtHxuQFJzqw48a22MxNDHbNabfebAnunZvi0nd21Py0Z5bB4YcxOApsYmz6WYNHP4w3VxvH9mN+9Z1nZ1Ss4sevLzzw4Mf57Y4yr8ipObjsyFzjxugRWHLguWxvlVtczMEJDy9tNW6KNkyFrXuiPGn3vIdn3rOTjZyxkYfyp89WnWjTV2Dgg/u0h0Ho4te+akzf+67PM+5AtvzIHVz2zpF1pgtDaQ/LD78KDvHLL6z4sSse/rMLq77c8K8vLwpca+hc7/f73Ysvvrh+A5/OSQQX4jd9fei/ePHiilOsYsIBb0K3vPFnXFzGi1PbXOtgPB9x1BdHfRju6r5U40MxT7eSD7ZyYXw+N3GUQ7k1V9+Ywoe4FBj5sUf14U9eMDw7fRZyrpxz2GKb680PW3OKeOZ605dH7wuKNmz5E4czyq8CV589wRlPuGr7U57Yy49Y+l6hGHDuPaU82kdw2bG312HH17nOPm6tb3mn27sEfvTxx5nIsfPRGpRfc3LMP6xiKmfhy1MCv71nHlb+9HFUwpIL+uy0i1sfR+Je8f5jHXGkJy/ZlE85hSsuOWj91HyztQ6e4zgY5yO+cIzTnfyM0+vdXJ/QI3jIE070FN/LEL8cww9uvtimgx/bPptZH2NwCN94xMfa0CmP5noe0BerNbIXYMCmT9TyZow9W/r5b649I/+w82WcGC8nMOFMwZWNWOmJjY/ylu+w2BeHu6B9AodPazL9aNOptHbwzeFsfeUxX9pTn2+69IwTvmC0l4wXi3ltMuPV5p+twk/fy9hffLCjJwf2hv1LzMlPZ50/9vTosysG+tOvuOTFWttH+goOfIgj7sbExJ6P8sM/X6QcwPRFO1xxJfEvn2yJfnp8so+L3DpfYsTBHOGTTufEmDNBYCn2DDu63ds4sJFf/Fon+vKkpqOYU4zJA/ze7+KspqMWT/deuUgPRtzSN2av+hz+/PPP7x588MGlw9dx5NhftN92220rWEQkFUkBC0BbIixE4xKIlKDoaCvaEsyWTnULBaekwcq+4NJnmw+2SgnjQ5JscIIz3Clxh4+PB6E/hfRlDBz/Vpi/fmM+3i4qYl7Bj4QBh19f5vhSzCakNx8a9PmecWjTs1HFEX813uK0AfvtSxj5EiM9F+//Hf4ZCTg2bpjm+g0CB8OHWfF4cfYlHWz8vBTWln+/7Wk9jcmfL97ZlEfjsNXlz5/+9KCA5wHkUMsTXvwWu7ZCwqpPJ8m2XBvXTlcfP3181BW45UFu5VARlziUeTnQhQ1PDa/9B8t4c3T5oWcukQvjxWuebjj09MPOlp0x+nT56TI07vI01sO7MfuNLRvxiA++Aisu8aBrH8AjxnFVJ2wTbXuSXwUHmMnMMS7Wn6jtI2O4En6yh8vWPC4wFbr4mcNpnu1iMC8OYozN9LONhS8+FLYED6XY+XMHED7N9bJr3Lxx58y/vScXcO2feLF1HjvveNEh6hl/MRiDYe2063vYOO/W05j4nGPnSp+o7WV5k49ywJdiT6jxiycbfesjH9rOqfvOF+30FPGpyy1dfXlhIw/yQdqv+ubm2rHh0xgMko423vIFwziMOJoXmz4+3X84tc+Ku/3AjzxYu+5GOeDDvUiPTvtNTfiGq5gn6s4VXnRhOZfiJ/Khb72s4YyNPrte2umLBYZx8ajZkOKXp5tuumn923D+fVcSz9U5wQ8+v/32292HH3647nK+jIlR0Y4vTvE0rsgLYWdOXlrPScd+FK98zHMsN8UAL4ELK9/l0DxeMPhhwzc97XirW7c4OSPWm76/OivP2eUPpjas+NBhY9y8PdYLoTH3mZqeQrJXG5Ob5o3ZizDFpS8/9gyhF3/Y5u0lz0yx8B+WfWs/05ETbXP2odI8f6TzYS1wIvR7/sXB+MwlHj5AwFPEC7+zTx+HKXCNwSGtE1tFv5IdffhiKVbvXtaNDc7mYeJaHrTlsD2qL7f6kxf9BEb84tjctNFWyi8ezTfH3nj4+vTVxszhLSY2uLXm5hTSPmdH335T2NFvv8Sz+OtfzY8cxCs9ddzlND6tkfls1MbxwIudfRSvxtJTT/44GePHeLHyAbe10obdntIm5pVwYcTTWHHIUb7YmcvOWnSW8DDnDHsXd2aIcbni37xiLB7q9qZan05cYBjDA0fFvNwqceHDWjrTxvmA14dTeMS4AqfYtKfQrRjPBzwCnx93nbu33NLLj5xp9+zSdh+wC08NC3ec9D173SP06/fsgilGtX3SuuQTt3JXPuibx52N9jb2+u6zciE37nYlXNhJa8LGPoCPjz4/4qLDHw7lyJhYjYkVT2NsCf3yaw/BNUZgyF/5ai3Nu8v8Z2qvv/76+rdeJ9dlfI0/cCH+7Wpf2v/0009rj+MyOfNNV57ErN16il8hbFpjPItVnvO1FMcP2DC9g5ZTd0Nrkyp7cfLLD7EWbMojrHLBvhIP/BU6zor19kwsvtYtHHnwxaa/4evzLX9s+cRDga3EVzuJC3504cuPcWPiMEbUuPis7UzQtx/ay3Li3+XHiS57Y+4kOPTxsjd8kS4+c/z5jA3bvDtL3Gxhi9W5NSc+ccC39+Dqlz94uLeP2fKLC78+z6jtB3lmaw4+PH0+zPOnH74c0IXJbzGZp8unvGjjQ48+wQlnOtps8OKTb31zcoEj/2zdZ7DKc3eA3NCHkV813+LzHjM/u7nrev/BCweFvkJgKcbpEL4rxsVQ7PD89jsbZ51N+1FcYhFXuWTPlp7c40noiG97VswZpysXMH0PI8ewyzE9MdCVl84/P8aNKdrG8OBT0YatwONr4mrTU7NvrhjEa17u3Z8EJj182JhXt9/MK/ImDnr5KN706cg5bGNyqdgXOLAzb0zcCV35hEf4kb+Z/+KGkV+8CX7w2Sj88+PZR9+XsOLBjx476+IzB9v8O4/OMy78maMLQ87KuzzSgUmss8/m/NGhz06BobDHSWyEbTnWT08bBj14ajgEBmxnxRh7eRSXuO1xOOKXO3HBki9nUR+eeeN05YNu2PY5bHqKs2k/GvPeLz+EL3eButzgETYdPswRvPnrTsA9/3RaaxzFZL64cYStEPp8szGGnzV+4YUX/rkv2u++++4rpBBqYyGtbUwCJcGYImCJKBn6bb7m1eYFZsMoNlwPC4uZvWSEXQ2T35JjvI0Ch8RPm34+4WrjZJN5QHpY4+KLJxdoC0NH4sUHT82vuLU7/BbTF+02jwepOZsAF76VJN+wSXh8OnD4lWdzbXgY5vjs8jTni3P+5hft9GxqeLh5IWHfIebbIVDoygOuvkzk05jaC4ADKs+EHZ5qayRW/3FAfwqPm5cRfxUMJzkVC4Ep9kRfKTfV5rNVJ9oKvYq58miOr3D17ateJMqzWIxvJfzw2i8wK8byTW/aGKdnTNx05Z9escuZfnloDhc6bPGD035Wh5nv9OGJy8OnMdjxUhN+rA0+BA4xXztOxnGZZxOf9NR08wMTD+POrz3V/oQFJz9scLEn8WGjGCtX+q1VtnDoK3TxUXfW2eSDLjGPF18KgdedFYaXXrzy6dz6YOE8E3ry6zeLevlz7oyz49sDozPEr/wR8/mkhz9OuFpnhV99NVz71f40Rh9u9yIMmAoffCnFbtx+oSdOD0z+caUjXzCN+YLdWfVQ72EaH9h4wsIJN1KOYLVHYMUlv92P4ZQDeNo4y7M+if/qHP3AWR56QcAH/3zbY+0HePrWgU641t3dBItf+YFDXxtfbWO46lfkgk3crL0XKnbyoO8+pUfHOCkHPkCZ029eXmCojRPc4Inljjvu2L355pu75557bs2lszon+IHTd999t/voo4/+64t2uOYUbXzmmhkrz8WFZ7lSm69Ypz4IlH9zcNipy68wtOuLvf1uDLZctLbhmCP40JmFrv3k7iGeib2o0rcflPa0Mbi4zbjdQT0XYbJx9vgSwxQYMw7zxck2fDr86LNJjHcvib/faG+MHr72NTvccIHTB4D4ZdM90R6DgZM7xRnvDBif/J0bv3DAF59s8Ome05+yjaM+fCJfxnBV2Ctilpv84NsXFOzYhGVdtNnBtU/Ucql0V7Ej2f27959nXHOtFT3tqR8vOdZO+E6/mMxpi0NN6LS/9PHEX924ulzQKR/G+RQfm78SetanNSofE7e41Ep7PD7h80/U7MUCX7EuPY/DoZsfOvTtO/zDyJ4uyXd3pDFxGo8nTEUs+dKfAlfMfLHlL590zbl32Gfruenu704wLgfOAtu4aRO2YrY3rS2fbKYveuJuzcy1bq2dOMSrGIPBRk7ZEXbFyk9t9ZQ4wiRqePgRvsXj7lXHJT3YfOu7D+Gz7/4wjou6Up9Ozztz8D3T+IDrzoItX2pSXLXDYiMf4rFW+OMBp3WNq357D46cWVv5YwOD0Jt+s4PNpjvGGtArbneasbjh5W5s/fAg9MUoB/YQfL7lUDzy0/rSNwcL15tvvnn9B+T+Rjg/J5H2gi/aX3rppfUb7eWBH9z4tzakmPE3Rsf5VHCgr5gr9/Ki8BXPapj0+PTZkp6cyoU2STd72HJpvDOkLV/5Ztc5gB8XGMXsi3OfWb2jFh9cOPow7RHv6T67e4bgxl68dOjqF9/ce/E3L19qNu0teZU/GObtfe/Klw//ZKPnonH7QeFPTm644YbVdhbxM45Tz10+6cml4n4y511FnOaN+dwh5/IHx/4zJ17+7F/vnvafcfzUfNGXz21+zXnGK3Dpi5mu2GDB4WOevbDp0xW3dZQbuTKuGBc3/XDpsMlunhX6fPZ5ig7u+ImRLl7auMul9zv50W/fWzN++cKDvfypcTHODyzt9g5fxYYvPubkTV8xXzz2LJ8KHHjOJTv/vDLpnMzPS+yJXNEVp/zjR8y3rtp48aFdbtnCdH/bC/wTeIQevvaWO5LwA6PctR/o8aEQ/USu9flvfvLQhotP2PT15S4xJkY+42ZMIbDZKHzCMqddYSc+58N+g2UPmJeDONg/5uQQDmy27WP+xANH3rIz1nrTxZfgIUa+YStyz9Y+48v3XfRh0OOTns/R5d28tbAn8Cbm4qedrn1NB28xeMb6/swX93T4FLe1pGOMX/tabvSNK/Ar+UwfR/G3DmJi47zwKw98GLfXxEv4EKuY4iMuYry8mlPaC/TtSf7wpefekxdj84t2schzdyWe2fAjJrjGcJUTY/2BbLHHBxYMenhom2t99eHBgilWHIzh1z8d88gjj3C/fK3GNf449m+0+8fgOUeshObLmCLgpGSrEzoCasOlX3IEajElxGJLhmBtrnRhaUsWPJzwsTDGSn4HtYTGHR9jEk9Xm/DjYe2hDtcG64XUPF2cEn2YCj4dUtxtPhtLm8DtQtWfsYh9xhs3/MzFr3zqs1fE2MGUN3yJA0NPPvDzUKLLjzliAzpwxnHFmY08iMXLBFsc5NdLBXx++C7P5mHwYVM6QOXJ3whwUdCPf7bsiX6Snvy3b4xt++bSTQ8G/vJG315S50cMDpB9YlxsdBQ65TVseGKLH518sk/yyW76M68fD7zkCQ7cuf+KceLmyxrS7aKePOmLg461VbsocOFHSeApJM7m2XUe4dHBzxw9ZfqBXY74JnTZia/8u6jjHI9ylA0//LNhz5cxOMr0HTd68NjQaY/at3FbpI5+wKBPly8FRrpyBpvO9ot2Z9YfUjVO14uVP4BTw7avYGnDdZbY4SMW46R5vugXJxtjsO0VIibnrDvNGN4w1eWdrQKLwIVhLMEP1x44dMzjCIt+v0njfOvjUoET9x5+xRRvtZLf5vUbk1/+xKXMtfMliLnsqotBDb9cs7W3xEL07Qd2Cix7Ws0vDu4kayOG8ixv5omcwis/aj6N86ttTB+GGNjD0u/hDCv+/NL3QkivXJg3zkaeG1fr43r77bfv3njjjfVvssJMR/skwucPP/yw+/TTT9c93nqJyZzCR3HKi6Ifd/EqOLIzL/flpVy133o24dt6w4NB8lfNT7nOVzzYx9kcn+XE2qdPz95w/9DBpbURI932hTZ8AlspLjrOW9hq8WQDK8GDf3Nz3hgcAtdcwq8xot0zUw48l6ctX3TYa4uRvnbnlL6YccRHDR8WHWJcPuxXYzMG8/qe475od1Zg4uNFXw7LN11CXzHeHJ7s+JDPeJsvv3jRwbE7TdsLt5qUKzb2FRyCN05hqY2pSZxW5/BjcmuMDv+KNlHHne9Kflsrusbyo2096GvbvyT+7OJKz34wlz1d8+XPuPhaH/2t0DUORwzyU5s/xTw+cc0P3fiUm3KXH7ZKa4SzNjFOykd+rBsdmOkuxcMPOvTF1fk2h4vxYlfrG28sjGrY5XvmLTzxOv98huFZ1xftxhRc7GmiL9+11c6XmDq/YcHnV+EDl+KOezGp536FSxcmnKtJ/KrpwMHXmZI/c/kIS8484z1rPJv0FTzpEnzxcSfwb1wOFONwpx0b9vy6N7Jh7/MALjDV8uD+ad/DupoYjxNdxRgcuSkvanNwzRG1eK0N7riqp12xsjfOno3aHEy1eMpTnIrd/MThW4zya0/AEIOajbm4ZKvvDvU3086fP7++cP+znMD/Kyl+v+DhN9r7p2Pkm+/iwImIvX2Bj70jfqVYi49+uZcv7WKwJ2Aag+mu9mWQvjWY6x2OOSL+ngHyRMwpOMfVXDa4tZbGtD2LfNnuGSQOooYPA1fc5Nq7us/auBnDD06xtnb65hR5SsoN3LiIQeEPlrPiC3Gfbb03G5dXcfDr7sFZ3y+n5Qu/iUtPXHR9vgjXF+24u698FyHn7ff8webTHvbObl/ql7vurcaqcREXe3HTT4x3F/AfhpjxNoYHLDjzPjIfJ3Py1frBtz/phKVdaZ/wjYO+fcc/fW148ONUTszPvQCDvnFr2y9c6MO17xQ6fIlJDmCrw4OpbaxCl8QRf3py72//a3t/kZ/OydYX23Knhi0mAh8PRTvdxujwKZfuX2vPJynmYhA7XPriNo6TMXhiU/NBBxdjCjHXnlkDhx/lqjywgU3sJbbGFKLPL5ywjPF5NTFXYQfTfjMmj/aAOMXgLInHehOY7gd69BubceONW/GyUeRTHunyV17C4FO+FWtNV5ue33bGs1yoceoPAHAROx28tflsXegXM35i0jev77sccfXFPZ8KLHzZ44+X/OizM8cPLH2FmLdm9NV0SPvIexJdfO0h4ziI1zgbGMVhrLbxeMMszrB6Jyv/7mpx4Og7Q/NEPNYxX2qFHV2iT4cUa3d5uuatBe5s5Y2uc2MMFo7lwBy93gusO0x/S+Xs2X/wP0N97733VuILAKlISrK2YGxWbQnrMjBPJMGcxZmboGSZVxK6HjY2QP7YwfMQg2+DKZKHm8WnE35YbOjBIbimq48D7hafjn6byHx4xmye5nBsw9Eh5i0yf/zYSB6mMOOmZmveAfMFuA+5/BNj+LAh2i4Y2Oxw5FdfLW82B142rbHyEoYabtzZpA+bsCMe6nzg6cB5sTbGB//FARMG+/3+3//RYP7++OOP9UU7vPRrw7AmrYe+Mg8aXWKcpK9urHopHH7gj6P8i8+8om1/iIXPxtXthfTg42vcWP5gV/KnpkuPsJmxtkfNywt7NT1504fvQnMBsp1izhrbG14crB9749aXnbMAS9z65uKQT5jG6Yhf25x96YWPvTFz9lo5wS9O5sWhyKfY6MPJD33zMBS47I2R6jDFxpao6benYZWffNdnT8+4dhjww1bXZlfO42BMHGLQ7kOEfWLcnvbCK/dwjIvZH0LJfVwW+aMfLmd26rkX2PNbHOYUMsdhktaIndjoqtk7I4Sd9SwOnPCzx/E359z6YOCBTR+GYt1h0mWniI/wzV6pn44x/sQHr/MU3+LD21qWBzbWywcD94g+Xfddf7rdXsCPwMiOHjyi7sENQ5nChhjHFw6RD2dFLMYq4jDmBUn+Wn957osLOnCLV5+o4xAPerDNlUvtbMzRhaVuHB6+zo1/qu2tt95af20tP+qTCp8///zz7rPPPlv3jBjFzHd8cdWXfxxIetrlVR6VbHEWy8yb3MEI271Fv/Xggz/3NF32MGHISWvTvoLDnpRbffP68BR69pG9bd4cHdjpqM0rxUQ3/PTM4cPeWH84ZVyJB06w+LVPxRoHOcgPfX06xuba65s3Vkx84GRMIcUUpjF2nQnYhK2cOm/w4us9Sc7lg8wY6Li7nEf4YubX/eHZFIdlePhBX8GJDxJez9/G1OnRhc+XuxV3xZckPd/o2ytKMavnmD6ZvODEu3yGsZSPfpijhwcRB1t1fWtljC7OcPjSL3btmSvPX7k1bw5HRR+e+1Bpf5izx5wBdmycS2Nww1mkDj/o41K+zRP3Ye99eMKZ/Nnhrp6FLt9T5IXAED+uxvQVwr82/+bimU286BrjuzuCbRyKhY52a2V+Sv3WTG6KJx90+BU3PH21c+t5Z78RdnJtjxaXPv0wrVH5Y5P/cOvPuLVn3HRmgcO+or8VPLoPcYmr55LnpudRHNQ48kmvPVQMcll++dG2r5xlvNjTdSewNcY/PePNwzGeH/q+ELRPjVlX6+HusVeMsU20jTVfzu2tuY7886uQcNibI+ZwkQ88p9DBVYyKNgx+FH4V4/PLBnZh5TNc/CZu3OA4b+b4UitETc/ddr2/aPfX2H3Rbn+KSS7kH//8xz0euMy4xGTfKOIwZ0ybTTl0PmDLv7XrTLQe6tYwHDVpjdo3cPlQ8NFnrz+5aStwlP1+v/7ta7+wJc9s2ItX0cZXba67Cq5niTMvTvPuAXHQ84zzbq9PzCvxxYHYJz3L2Nnzvviy/9uDxc4nPM8x3HwZDxMHvnCDQd+Y33z3W/j04cL02SJ+fjufnhxbB89hegQ/94H3WeextWSLgy+yfJ7hf36G2f7CXHtE3PJb/HInHrGLBfdyyQYPc/T5oNuexE+MrYU80TOGJ3vxKPl1/5R/2Ob0FW3x8gGDsGODMx2YrYd88Y2PmhSnmsAyJ0750idw7Sd5JOnxGz8Yxung6rMVLp4xxsTY3UA338XDR/HBba/FjV845Us8+p1LPvlr38NjC2eeR2P8sC1OMVfCs758KURN3/0Fs1KO4LJhz7e4smNrnq48KNow6LFLHy9zOBtjl1gT68fOGouZP7ycF98LhiPGX3/9dZ0f55XgBdsZsBZixo0vBS5/zg5sY8WPozkFjmcuPdj69On6D67xTMSDK724GVPyV/xw8IaTX3xhs6fHb+cVF/PikFM2dOjSy+f0xycbuuz02XTOtYm9pF1e2PAh3/gUr3EYYpv++cymO8C8MXeGfdS7KX/8zLu3c8om4UchxSQHCU44myO4yoH3b/G4m6yZ+1G89PD2HFHKBVu5wdW8NYGlyIG/iXbu3LndM888Q/W/9uga+B8/jv0b7R9//PEijHSXb4EjiDiykiYoiRCkoM0TiWFDl042EmycngDV2fi3zh0WtubYmJMsScVFsdn4agNkz29Jjne+40GHNI6Lh7INwmdxqiXf4bJZ0ucTFqGj3xfTcuJPrX2Rnh67dOHYjC4OF0gXtFous9GY+6XOAABAAElEQVR3kfMvtjYZezpx1GeHT4eQv/JhHobaOFv68BPYHlpiJ+oOfBc32woM+fKfgYRj7vLhr9d5cSgn9BTCh4KXQkfNr3XSV+Ak5nFht51Lhz6OYleHzcbl1nqGCydexuxvEk9tOnDMW885Zz4xL+/m21tdgvybb05tDeCZc1bs5/bRxLTf7EV7SJ6tHxu58pDv4hCby4UfnJXJtxzIi7Y5L2T+JN4eyAa+uWIIAy47emp8wzFGPxuxVeJTTNXxg0/khO8eXuyak38FfmvhgtTOtzaJA3uFqI237/X5YyNvxD1DehB15hqXNzn3ou2uITD4hwMf915qzMWFLj2FiEupT2/qxhdGOOxwdT7o8tl+jRt+xvRx9HLun8HqHPagFhP/vTio4fGltq5qYq5zyT/fcoO7OULfnBKOXPRBgY09Zp/jVNxw3PFyZu176LVuOHY/qcsbbJj8ipXPMPHBQx7Kj3l3gg8z5Y8ePzCM+eCieHbBpO+LytaaP3Nq+4hdGMam1McpXsVEDx8cm8tWH7Yv2t9+++3d6dOn19RWL/1rrfn+5Zdfdp9//vmKRxziI3EtHv67D+hZ+/YgHtZcfvAn+vKsbj30O2vw7QPCRl/R7gVWjvVhFGu+YNIXg7HWujZcc+l0ZszbU+bgpmMet2Jin6QDi33PEbrODLzs6Cb02+9iTc+YXPInDvtc0YdfiTu82vDZyIuaVNPBo+LcOEv8wmQrp/YvoW9cvq1p+TBnnNCB0d960yfOq/Mh71PKFfs5p803H9pxpp+uc8yX51pn3rOo+0LMc4/xG5YaDrwp+vINmz2h254qzmzkzjoQbTxI2NbNGFwYMOERuTGu8Kdv3nsS3vrlb+KJr3Xi05xcya8zA692uMYS+vJZTPn3XgBXPDgatxdg8EPYVsxrw+FPX8lWG394k0d2bM1np+anUuz8moMrL2JsbcRhPJ/lmM2UOBuDj5PaeHsrLsatmb55IufOrjosHMRNL66wFDqtvdiLEVb+jBG67PklaqX56jW5+RE/w+nNvcBXeXOOvXeo0+W3s5NeuYRZPI3JvbMvbvHjKZcwjZPOXNzYKvr0YbpDvE/AkR+45txr+GiXV1wV/e4+OvDYll8+cLIHtAkbepMDfu5k79XmYKuLVS0WBa/8lCf+6MDgzzzhg7/21ho8/DBGzLd/ten1xRo/xoqVPh/uNh/Ur9dvtP/222/rD9590d7zRQwK/4k2/+qZo2J1R7orrEdroLZubMRjbXv2yQF9dq1tfuW13NIzT+Sqd9HWSM7w5qM9EV65g1HB6cYbb1zFZxyY9MWRf218W+9s+XKGe6bYV+4AMfPlM7k5OqScweWXPRGDPMgnO37c8d5j57g53MQHF1e/aIZfn93krxy5i3xRt9/v15f+zr3nbF+0+y7AF/H2GD78duZwIfFwHsM2joMv6f1hAh74eKbzDYMfNnDwU9NTxC8W/Oh3zuAba/3wsUfkFQaOciuf2mzbG3xZI2Mw4PPVO4I5xRoYl1d5L+fV7BQ++W9/scPBGF3rgK+CS/Nsido4rvZEz832VPp0iwOm8fIjD8bEYB3wh1MuWo98sgs3/mrzcFoHPolxexCOPOIhNn74bK3YwYHNJl4wjJkj1qac0IGJk5zBgI8HDIW+PWi8OTkzR58tDgofdPCFiydd/vjSJsVYHrIxb6wY6LHDwRx8PPky5uz6zJiY90tE/qa57yRwpAvfF7rejXCBZc21y7n9bR+ZM0ZaK3y07V+l56b808VBzOVHHVe2RCyVcmYOPzHxGwY9fsRgvrbaHJ90O2PyjL/ntzMDl1586G9tzNtDxQij3LKTO5zkHx5dXOAY459NOd7eD90R6bv7nDFrAF+Rf2NqOMrkzIcCIxvt4hODPIshLtamdyS5UHBzT4uPLRt/+OlvoMBlT9ob2uVFbfzWW29d/4Sr/xCV8H0cOfYX7RcuXFgkEJB8AXIqSWqJkByLoW1x+tDxZwQFOze4ZBQoTPN9+cyfRPFHYDsgNj0+EstnCaSbfhzbjHSMhQVPe256G8TmgF+s8NKhD6fNMPt0LHKH3gPTw648qYuVvQtanB6GXdYOk0uLLjyL3sXDVmEr3wr/5aw+vnJi89M1T7SVONOHrU/o2bhtYrV4HHh4ROwED20+vDjAasym9sUWezri4De78kqfT3VrGhe6tenYH+zoJsYrdMVt3eg2rp0tHQUGXYKf0h7Ck366fJL6agJ/1jDNFac91wVtnI8wukxg2CtdvOHBom8f2BddWOVYrlwkCsFR3GxgxkWfFG95gbt9CaTXOhXjvPhglFOxEbHKm5ptY90Hk8+aHD/YKDDZis1e1yds8dCfa0AX/9aPr/YmvHKshpEfbbbG4anLhz1Merg4g1505Yi0r5wFOjjBZW8uTmLALe7L+PCDfmvCzjzBQZ+9+TlmLomr/USfWG+4Yu+BKS6ccHRP+pDiHMLGzVmXL/6NOdflcfqLHyw+7Td6xtuDfMEyjoNiDL/uLPP67lO+fGEAU7xy629UyDU9eVPwEBdf+vxps4FlXuHPPuQz0TYufkWMxrR9ka7OPj/yKL7uHzpihi02XJRyjw/M/LYefClw40mHrbGEjhwYn2JcvB7w1/uL9n6jXQxiEmO8ygMu1sF6FK+c4NT+xLu1xheWMW3FXPdQebDn4JkvV+xwsW9xgTFzRZ8OG75haTc280aX0Gm/aVsnNRvY2vwr9pN+ol2/+XLFv7vAns6ObjFpm7PHxZq9tlzqi49Oezm+8MI0pk0fZrEaw4E/xVx2dM3BVYdhHdxV6fE/c70UDz/klMDE1XNGm5hzh3TPrMGr/IiTKW25xh0Hfidf8zjLheca3vaXdyR3sPVj25rljh0+ivZWxAlHzS+dbGpPO3ozX/ySdPBqrHUoV/kWFwxYYnZW1MYU+uJXF6+Y4bI1Dlt+1aSz0B6Ie/ps+CCtvXXDN5tiUxtTSLHB0obDH67G4qptDM8ws4VjPszipcuGxFmbLs7WpNjM89W8Gk5ja+LoB1sFTveQuGDANGdcHye5wEPfnL7nTO/W8cHFPBuF7/yXy/KnJubhJuz5UszR004/XT5JfXa1w1LbA3gVFz24npvOYZ8p4Cn5g5UNnGLMBz24nmcKXTHLW+8z7Iwrxcm/dSlOtTvR+4Q9a83dKWp3HbzyaQwPHBQ5La/iNEaXHn/5xqP88U03fTrdYXSUdNQww2JjLB+48UVwby/qxyXuk3e5jF+YvsShD8cYvXjz7VngD8yv1xft/umYM2fOrN9ol0f++LUm+M/SGJ3OQhzlwF3kXBSvsXIpzpkf486O9aVXPuCVUzr5VLdn5YY+wYO9OcJGwZsOLvqJvt/4VnyJAtcYffmFY6x10ecjP7j5XN3neLW8sfes8ZyrXx7hlRtc7DX4BEd5wUVx17cvzeMGr8/6zggMuXP/4EWMyaUv6nwhTp8P57vPcrj55TvfCbBz5uYfeIsBBzbm2g/4a/ss7r0af757pvvFrPk8py92xVrhIU781O4KNcz2izzLg1L8YpI3BV/81Iq7iy4cGOow2FfY8C8e+jjRVeDXjqvY2IpBganAwb/9aiydYoWFa88F+xJWGPTg8CsG+qS4uufwdX+q5YiwgZewiVfteWekx0e+tOHBMTb3feuEIym+uNIn5s3BkndFzDDhmW+98SJs5Up83nfpsYddzPTYTR7tfZzjRT9fMLYCU9kKXXa4whODtbYnrKl97ezE2filS5fW51x7BxdrCaf1hSM2mHjxy94Zbo/zaRx/c4p2z8z2pJqe8xl/tcJva9ueC0fOxAETT/sGL6U8Nw5Hm282sIgYrCOu8uJ9oPNFhy9xw8NHTTcb8/AIPX7kAGd9RX7cWeXRHCw4Ch2++BeLwqb71TzBtbvPXJyKobjlBQbhx7yineDNH75888HGGIEhV/Ihb2JUFxs9cbhffQfA3hiseORDDVvO/EH5a6+9tnv22WeXH3PHkWN/0X7q1KkVDGISUDI51UdWMkuohAi8xRHklqTEdxjhwRYgXfZwffCCbS6BI4n06NMzRkeBZRP7gsmC8WO8C5EunRlHMTjI9P1psIPUw9TCeUjxCYvfMOhrixVXhxl/B5L4oh0eHwosDzt84JQ7Oi4G+DBh0EmMEzUcuh7EfUFoLC50upT82+n0jNlo1oVffMsP/gp747CIsTZ9Y3jJgzjU8snu/4m7m1bLjiqM4/d7OLBDxLepKIrOVBLECIpGUAfRqDGIQoiOdOQnUxFx5DuajGzwi3h+u/sfHjan0/e2fXVB3apatV6etWpV7X1O3+7eC4yeguaLHhk+y1v7pdjZ15bHByqmfIvBGj2Njj7e6hwGLj/IWNdnzxo9BzRbsJknp8fjc/0ab57JkMVXl3wZIwdfDbGLVyuv7CDxqwN7BiNM1Xfr1lxcnQfrakzfHsGymBcb3+aID81lwm5y1mCzl+2neiDHt9revSKPipcuEhe54sOTozMlj5/85og+//pk9XhwL8l78ZFJDna4xcs2HOU3THr+6WdH/PTkGyXLbnjkXo3rkTV+9GEp12qgvdq94EM8dKJ8lD+Y6DtzHqyITPGUJ/z8WefPHdIHFTFq+4Uzm3jypBe3mDV2xc23L8jJ4pELL39iVYs96OiIK5vG/sYLWWfEuv3zQchLk/X8so2KzV7JcR9C5MKYf3H4zSG+wyNe9yssdMnLgybPMCB+jOnx1Z7AJp5qhD5ejS695OhFeFF48ORMQ2xryZILE1/ycB9ftP/xj388/o329hAevsMJg/zYCw2Vu60FPPnW1IU8bQ6M0zNmf8+QudyLnz5ZY23zwj/bZOKzZ7z+zOOJCfbOk2ekfOZHrw74zGY5aI/M5QLG9Njzgq9m8cXDhrpUz+WOLz7JIFiqwbUPPz4em+5WNvCdGWQdseGDsrOSPX5hkzN4i98cFT8+YltD5bpc8rNyMEVk8oVXXNnIt1zQ46O17OLHI4/IyaFc6eEVo/yRMUf0IvyNAz97xmTbW3P5yY81sdTKV/rbW4MdT6NbHdDHy45eTvjBh9seicladZat8JPT8JPh17g183CH1zySV/rWYKCH8OrhkFPr+HTImaefTXNN7LAjssnhhSP74sl2funX2KaP5NDdI8Yon835OOd+sYgle2y7g9gTJ2wwyH8y7NLB01cP4mrPiqt9oMMO+2zqzdu78oNPR2+Nj81FdtmLj0enu9PaUn7yb82YT899zzZz9vg1Lz/mYmzPwqtHbLirPBvjwYFPFzk/9gi/tezzyzYfreHRwfM5pDxvvGyXC7ZhQI3Z8I4sPjWCyBvjk48vd9b4KQbyfBRDPTnNHB6fTc35oy8G2JesqR29Zv+rJRiSlwc2yjUb5CM5lQ//Gerz+qL94eVvCL/22ms377zzzpHvsIaPz+pVvMiaPxCo5ujIAYK9HJazjcGaud6Xwew4ZyvDjnV+e8/0vDC3n/KVD/jM5bF94VcjA6sx3fbJ88Fzz7MhklfxsEWeHn3jYhO/muwLdTbpVOtqwTo+XrkTm/dRn8URX3zr+WBDParLzgAbYmJDTn1vADfC8zynT48+jHQ898nBwna5pgM/vWKj5103G2LtzMh3e6Kn8+KLLx7v2/TUKV+w+U6EHT7IkYelBhud8lmO6fZegsdn8RcPHfVBjo3Oi88eZNsra90xcsS2huDa+oDPGrsazOxo1spbvPj2tvhag0FNyhs/dJMjK+f4ckxOTsjg54fcfg4We5jYhwl+PoqDjLG4jdnS8iluGPlRrzCxozbwwh8Ga/HKgTU8mMWgN8dv79g1R2vDnA5s+O2VuoGxRh+e5KsBc7HZH/jZYEuDwVwLCzmYYMRnUx/xZz28sKk5PtQWH85nMVrzGVBN0c0fffLhzq4ewWZfNDp8tmY9O+Lgq/zAQxduMZnzjYfIqh882Ng393lUb+63qv0NY3eFs0nHH2ywJ/8aLOWKb37IqU9jxD6/9PTW9XThh1Fc9hKFnV2NrO81+36AvrrznaV7ly689GBgV071zgH8dNhyT3q3YAtG/tuD7s/iUDth6f+8s8ZWfPr2nGyf58WLDxeCH4kfsWEd6VvXy6l8yEVzseEhfvkz19zLH/vYx26+973v3bzyyiuHTPaOyS1+3PmLdv85myCBEYBEoxy3mTZB0CWtIjcHPj26xvQ0co0lO3kbVJGUTD61koq/a+zaaJvDpjUJVOR6elp64tHgUzD0xWHel+viZpPe+m68eTlvsC+5bVp5E59cwgIDn2IMq9wgNhUHoqMo+DNmC0aHtAMjh/jkEL/+Mf/Pfvazx0OXPX/t0J+MiwOm9oNdzQNCY7Ocshs+dou5PPJJFi4+NGN2XDbW6IgXts0hew6sxo5DzhdZlG29xk4+9Gzx4TDaH+souXyZh6/eHtAxh9F+p6unay0bja2VGxj4J6OxFy5y7bM1lC361bu47IUm7/LNhvyRN5YPMcCo4ePp2bKP9DQ+8dmlCzddLdlipWdMLhn6dK0lz65a65IlW72SsX/FdwwuP8jAERb20kkm+3o++IVXj6fRgZE+m9bMYUnOnJ+ovJOXUzZQ9ae3b2yygfg95xomtsmQzS97bNujcsdGeLLXXK9GNXYiNvhwz3nQbg7UktZ+wuw+MKeHirk84vOVX+vpWYObfw9696Gx/DhzenMyGixafB+k+JYD+51tvujBgJcf9SIu8tacbbmCB48P/Ch7/MiTWNU4nB7e+GzjGSP5cc+zaU3Do6O3p+Q1xK+Gn3/4l9iIjIsp+7tOLpnG2Vu53R/2tOTolQf5kfP7+KL9D3/4w82vfvWro2bDAwOcek1O5Md+whi28JGVS3WgGeNlg1w5tieomqpG8Pjhr7NjTDefZNgsV43bTz1ecs3zzRebahepJ76qBfL54lcjryE9G4gf675oqGayyw67ZPNt/7JnzA851Ng8HpnuVTJ8tM6u54IXX//erw8ZYnl4+dLFH3yR4xcGY1g1tS9W+vjiIVd8mzs+o/TXljuu88UeG+TEUm8sBnEb74s1nezmH4+82MRvToecWOQgHT0qp/kvZj2fyFo+8NEZM1ky7FlDfJQn68aacTjyQT6+cfjZFJPmPkXVGxtrN//6tUWndy26u9Y4Xfg1FO+YXH6QpW/PxVjuqlH5LS904LMGe5jYaK1cxCObf2M6WlTc9MIYJrzyAQN9PJg0umHA331sv/CRO8h654yvYuADsWmdH/rObs878myp7/zg5R/mYi7GlaVj3Rq/bPO1NsiLKcx0yk9+WqMHox5+LRmxemcxL97+dhh58fEv3vxnj016fLs/8FHvE2KIxyc8YToELz/Cw4aYrOPBJB5jNvTm7qDW2IffXZJ/c40OHFo+yfPBBpnyDAt5cYrnTHjh1Ed05AxPfrxrtY/prGxx8GuMYDMnL59ssWnf5d68WjB2t/mg/vOf//z4zTi8Z6Hi9GXSD3/4w5t333338Ac/m7VyBAtM4lTn/oCYjbDTg1MMZJH9Kla5pU+3uPjILnk50fDKhb1uv+TKPttTuvxbt//GGgztuTlb9PZswOK56z8eNLZOjh/2ywFM6erZszd9SQ4DfvvjXdQ6X+qr+Mn4Es9zFvmyydj7rnzCu1/6yBks3jfZgdGXT5oaY6/cdQbhFxObeHzLZbXU3pgbR2JaEjs8emv8kNezz79x+0wGdnsAFxx49OUSjvxZ06r9bFsXZ2cSH7GXTXVDDja+yJYHsnLGpx428uqNrfajOLKthwXefJGPZ32pfCxP/YnfXvFdfGQ1WBDfcLBPBjZ+ipVcOvjwqw06SK8myLMFL998mq8u+3jW2FJ7PjcZLx62wkjHmAy/alnPjibvco7Ssc5eds3ZQfClaw4/WfVJPl/qkZ45vHwkq7eu7vRsViPZZ9uafLbfbMEhX+TCSFbMGtsan/TE61zDXI7lN394bCH2avzwL6Zsy5UGh7NbHq3TM08+e835IwOXL9H5tKaFxZpah08Ps1j8E07+wNQ7Lx90xUSXHBl41IL6yi6cxU1HPSMyZyo3YSCPJw/dD3Rgd/7FwjZM/jlhtcguPTasIfpk9RpM7JLxB3neSexn1JpeHvxBX+eBjl+aky/rYWRTzHzaH2eWXmQdBjL1ePRR+arH40Ns7kX89qia5ou+GsEj+5GPfOTm29/+9s3LL7/MxIHxGNzyx52/aJd0wLogBaUBp0nSkkAKAN/YwVU89MjvZjlAXkwkAZ+MgBWEgOPlYzc5np5fsm0av8ZwK6YKRo+fPN1ioq8QFIx//sSYv4q+uMjbGIXQg8qc/NoNKx9si1VM+myKVTH1IkKWDXx+5DjMfBSHcfmXWzEpcjoe9r6w+dKXvnQUjP377W9/e3zJxr6XCHJ0EFv+dMm/BcgW/9bhhwN2vsQPt2Zs3RoSuwZfX5hlH6/iNkZ0/YFAxe+vvHmx4SdKP6zWilsvZw5hB9ElZT/w7TuCk288a8b6vrBTmy46eMTNZzk25hu/Zg4HX2zoUTrH5PJDXjZH9DR8OZZXNtW+RhaPHfVAdnGXF305JA+jehKDerTOrl6OrPNJlo/2Cz8qJhcvn63p2aKnkUP84bOp1tgsD3waa3DSIUdHTw8Vb7blnyxbZBpvjW0s4mPP/iWrtyfyJ44IJrVJX13IE12+yic+zOYw2SM9GY28ujeu9qyLC8FZDZmHiSw8cOHRIQeLuXvuhRdeOGqAbbg9jDV1jddekkfm5bsx/HyZI/bNNXrwa/7ddljgcA/Ab12jg/gUa7VZXuB2RmFkg5wHstoTB3n3m777nK6z5wtzeyCv6sKLgjsHT378IeDDy5eIHtjq0B6R4Uc9hK0c8A2PeGuwb9zx5YAs4tu4OsRbHXy2tci6OMKAT07jA3/X0rtLz479uY8v2n//+9/f/OIXvzj2oJoIc/mEFQ8OOVIf9ta4GOVAwzvHK6dqyf5bkz82Okflv9yzyXd5LFfhYcMaebL5Vufm1sKs54+uZl2c7vl+Y6O1/JuzQY8v9iNr9iIfxmTYFZOzIVZj9qwbsxE2c3z25au8hQ0+Y77IhKN8s+tceeH73Oc+d3zh7sX0T3/6082//vWvw153DxuITX+Q5t6AvZjYyl95hS/8xQ1Pe2ssd/s8IFce2ENsOO/8WfPvaKob+mcqr/Ln3qZLTxz21V1gDgP77EX5tUYWLvJiZFeu2CRnTp8sewhfsyfw6VfOGsJjs/jkzt6sHTL47FhDYmGzxjeMxRLua3Gxlx57ZLc2Fpt18vAUA/9k8On24TU969bowr1Ehh3nVgzkYJTjWljokm3fyKbTON2N0xriC1+DHx4+1IOWjhjkzj5UR3TxNWQt7OawsZGP1uC1xh+s7iP1Zs5fdsoNrOFl1zibW2/WkHW25E/jix+43T/OYnX9SOORDj2+i8caP4jutuKmIx5r7gJ8vsTDb1jZMBZT8Ruzj59c55suG5r80CEvLrLF4hntWS5vyHMbDs9psag7Nsn1LkkX3/M8Pbrs8suPcbxyLTa6zWFZ2UPh9IN9jR758LPFh/rwnpJd9oxR8sZs0InaFzaM1awcuW/kiw067CFfCPlFJ1+0+8329LN32768+KL9zTffPP6ZBDzvRGoKDjj5ht99BJM43cm+NDG2BkO1rmY01BknQxb27gK2fQ62z2oDkaNLdutE7NZggc1+08dzDtjo3oVlP6PRpQcLPSSv3jW9D8EEO7tqTY2pqfy4K+iywTZ87Y057LDC4jMn7PaM3jZy1pDvPTxTYINFzv/9738f3w3kDw54YObP+7TfivcHHAg+uHsm2hP/JAE5uekX3+CVG3sLZ7mG0Rp59q2RwdfEBp9x+8ifPFQ7xuWODFl5oAs3/PYCHvb5sf/yQE6s9s66tn7zjY9gTcf+NA8Ln8i8vIo7LOoEVgS3nLMDN4K3u+RgzA822YE3P5bh2Tjx+Nz7cvHYIyQXvdfAwi47evHCb5/YEueSekFigZc+THKH1x6ww565e0nuYVE31jaOMIqn+7q/EUw/PRjppU/eWjr2VmwomWNy+SEm+67u6SD64qNvzJd4ED5f1mDvLoRfXGIlS4dtuSLHTrj6hdZqm045tu/ZYBt2+ohfNtwN6tdzlh81xH/rsGl8k4/UlroWp30UC6xatUmveNcGH+ZknR8ybOOJQ4+s4/Otlsh5XrpH2nf+6diL6jw7MFmDj759kQd77D+BpdN9RYcvPvDlwP3EH7vZ9E9WuZ9gk1v+2dDDKZ8aP+zJI9Kzgyd+MRirb5857KOcJgODfcHnx/sAHTj4sh7mw8HlR/GKme38Z9e+FMfmmU850Ys/glkTqxjlkA++EV54zK3xocb8ayD+A/IvfvGLlt7LwzG5xY87f9HuizRFIQgJA1yiJAEJrODwO1DkBIQnwB7eFZ8AyUqYdQ9Vc6T3oLPh/LARpZf/8OQblgqIDn9d4K3h0WNDY1OS8StQX/jQQ4quSzUdsdncHlJsV2TsIbJiMTdeO8YKW69YNTGES16Km23+NLGZk9MQOdjtk94F/MlPfvL4ot1vBND7zW9+c7w0kZdbVB6MvVD59674bR/w4cNb/HLBp4YvPr7lDjngDkf4ylUx4LNpzz1g2Ol/YYfpTHyQ2Tyw1QXrkrUuNy5PfHsR4cNWs6/k+HLYXGD2nx/YyjF9PPlgX0PJ8FPO8dnTyNFjs8NrvrzW5NLZgAGpKfjE2hhuc8R3+w+XsRjkUU6SCwsd+2Mf+VxiC8FLfj8c4Rd7WMsBW9bYtYf6bOnZgl0eUf7Vu31HbOIjfA2PvsaX9eT4ywcb9hcO/tMRuz1xlvhmA88YHmN6xuzKH93W7SViP0z8skN2L2r1w79LWd5h1bZW6PJZTfLJVmRs3/0hEzv8wuPh5Dx6EWdjyXox8RttHeKJSase2db6jXZYfOhQf2cfYujBpDazIz4v/Xw543BYtwd9gOk84bETLrVlb/Bgcj/Aotat+Xct/VukfdFOz0sCP3SWzDX5kwM5Ka9s48WHcfPEjjjaV3My9BD+ruFVI3xYI4v331AxtZ8w2J/7+qL9l7/85ZFL2K/h5788wAaLPMldcXemyW385mSrmXLPjrp2Ttovco3LX3tnbpxfOFszdnZ3L/HCEmZ9cu6B6pRteyeu9Y8nluwWF7nqYMd0xdNdBqsxnpplh173C/xhZFvrbOKTRfhsi8k68pz22+yf/vSnjzvCc84/A7RftLOfDXruDC//sGSfXWO2EXm422M8a+UgzHLHZnPr5LT8siH+7Lkf8Moj2cUhT+pEXcgRLPT5UV/s5ocNYz0+W+Tw2LS/no3W2GMXDnNE5kxywS+faG2a0+ejGM3pZFNf/sRS7sVsXkwwaogtNdlznA2t2MiYu4vZMKYDf3nMZ7m1jkcHRvYRm+5U6+nisymO8lNO8fiUDzJs6tlTQ3q28Ojyrxk3Z4sMPv/p8BuJhYyeTw2Zy1k22ZJ/udJb51vPtoaK176zi9ggW9zmGvv47bs6MWeLDzHDg2eMjFH5YLP3veSTteY56P0AT17gVZ/OrD5/rbNdnfHNhjhgCn8y5QF+tsl4NurFxze79DRjrRjKQXbxjZ1veUa9h7JFnozGJ1mx+wUkPWKfvneVvuQQp7vHLwn04ZguXmf7UL78CFu1EF7y4qqZW9Nr4k83W/XyV42dZeiK0Z1qb6qZ7IeDrXxn99w7F+Vdj9hBbPvc6gv2t99++7i/WzsE7vCjGB5efgHh+9///vGLUPbD+5J9cwb408has3/OMgz+Q1ExizVZcVqXU/xqS17dA84GXTLWfDliL7sf+Cn2vavwxQkLX9U2WTWjRvg257tnJXlzOcerTsh5lvi37uGxLubqjQ/yas77tXG26LoXxI6nz69fAOn8w8imRl/uuk/Uic9UsMkNH+qa/+TlRVww8+G7En+4oS/n8tK7ML/e78zF4zwheSyX7UH5tKfk4UqG7Rp8ZM3hYTfM4mvfYWzMp70yp6NZtz/ikAd3mbjJiLd42tfOCzvVd1jkkg59eSdrHzRETlzisU7fMwsO441H7RQTjOS0fB4GLz/4oqce+DFGfNFzX2ZfjBpihy6CxZ7Tp0cGdjLVitjkAt9+ksl3mIqZHPx0i78x+8bs0VMz8iFWsnS1bIqHDr/8OY9qTU8esSdWfX7I05PvzjZeMeaHPlvi0ZMnxy9/2QkbeTLIOttk2KtmioWMNXbVMTwa252nYmJfTrJhLBY5VZPuAnrk2FSrYra31bPaC3fY6fMZFneoRk7MYgkvu8nzo1lPjj96/Dn/YqZDJj37xh7/9MRtrg597mWDXXbadzy26OBlT27dW74rYJ+cf36GPWuILFtyhU9GfPwZZ7Mv2qtjfDbkxv7woRmLCbFbPPw7fz6rw2/sM7um1ssFHPbE/sqTdwXPEjb53LrOvhjErZFjn64zzR6M4SVjPVxiFHdkbZsY1Qpf+GzhsVdd8K+R+/CHP3zz6quv3nz+858/TIY3+0/r7/xFu0u+wpdEDoGtmS8ICZIEsgVu0zZ5dMnVW+sACgBfsBKRHJ6EmOvTba5X0Bp/MEmawliM5JbYkmzNBthYxeMhaHPFYRPzpxeXnFQA9K7h6wWAD3bE4wHusigf9BQhWXL4HVY48TQxbE5bow87gouMC8kX1x7q/jQd35+AuRTYkWt98nRhEPPiYjc88lYh5o9euZWLLjj5M7dGFsawr8/sia+8lEs9WT07ZxutO9wuE/Zr6cCXfzz7aX9r7Mq1fCA+8Pg1rrbYMN7aIaflk/zGJqaInLlc7gWG3wNCTWQzP/pyzY91eMnq1SASlzzIu7FYxWiM5JnfbOGxjY8HGx32NndisqYZo3iwGPeby+bZ4ZetMOPzU2OHf3x6iyU7sDkvzrNY4eoyNZdrMbmf+LGuqUGxVzuwaOYoOTb45Y9+OuZ8W9fEiKeHRQxssNlDyTr78HXmydBhu/NAF2Z1kE0vdv5dRXuK7KMXes2DstyzBS/KH9v45d2aOT9kjclqzfsnpMTiD+HsX/sAM5vkrcutc9k6u14I2ZVncu3RYivHcqIOfND2cuF+IYcnTvHJo7w5B74kdA+xDYc7RDNegocdvbVyvfGGQQ9HMcAsDnPyiExx41lbomO9NfJ4dyF4V++af/V2H1+0/+53v7vxn5rLbXEudnFtLsoPvGpXD++eafHT0TdW11o+6Kgj56mc6rX85btenpwRzdjebT3jpSuGcorHj3U1ha+u1Bl8eJr1/Kdr3RhZ7+yTS1dMrXteeMaqfdj41Xf/0hM3W/TPxFfNGhn45U5vTdx8+ENzX5i4J5wFv93o5VUsfEZs0PGMhwMGcxjgs86uHq/GX7r2VzPX5I6Nc77oRNnEk7eeB/iIvmadT/sqb97vxCsGcbp/4SZX/cDNTrrshc24Z1x2u6+tIXrbxMFm+/VI6pFNPslag5cfczpRWGCGvTV8e4Po09v8GpNlc/3Ai+LxK6bOGbt4+sV+KF1+8COf7IS5/NApBvKN2aFnHomHjWSswwSLFj5ymnV2xGVOL5liCDfZ9PhTt2ENhxjkM0xsycHaKBfWEF3+2/MwhUufX3Irv+eMPecZD/Hp3mgPFpM9lg+2u5/Kmbr3h83wsNm7QO8DbO8+No8HXzx98cTjRxwIDn8zDUZnyReS6o4Me3S3kdHo5w/O3pXo0bcuNjLywL44xONZ7Q//+1xEznNdc0+kw6ZnOT17jb/3yBHA4x/8sqMh83Ojj/TW2suDefph/Rrh06frrslG8vxvvuNfs4UnN2yoGT19vcaPdzlftPtPzf1B6dPsPckPTKh/OsZnOPumBsstGfvDBxwwqXu9mtx1tsJqLI7smNNTB2qFH7HYRzacET19a/KoL27ngX51ow7UD3vGfb41R2rCfS8WduEXhzm/7Hnm+fwKTzVYbRWvns/0zI3hggfBzh4/cmJMDj66/JknZ1wu9GyJwfuTs0eenjPR85aM3LDhcwG8mn1QA31W+NSnPnXUhzjsKyIDU2O2nDO551+u9z0KPo2/8NHlD67ww8wGvHKydy85a91P2YPTb7x677BX5NgpHrYQ3xq9JTx76x0lm3jspNt+48GF6MinXIifLLz8Ijz7peFVe+S0dNhI5lC8/BBnnytgoqvJHSw1eyB+9qypOzmgw2b5yyccdPNtTD5s/MtdZyw9tu0n/eq2Z4eckK/xTQ9lu14t81Wei4k82zU27YH16iyda/bJwKjRExe5ZPXImjG73atygQ9D8uGgQ5a97PruRo7oyQmdcqLX4IfF2dLKIx05sL/OU3Hr2a+1R2zQ4cNzS00Y22d1F14Yuwvowg+D+6p3AHw8c3rGsG7O7CE5PDbZEaszB2MEJ1xka4vdfsuNz+L2hh+/mEbHe7QehWPH6haff/epz/R0+O+csM8f30gs1R9f3XPyzBc9n9XZJSee7hExssMGeecarz2iU4z6/LZn1TY+WXw+smuf2kdY2SBnvXm81Rez5zJcqD0hy0f61tSDv5Hmn4556aWXsA4fx+CWP+78RXuFLNjbEOCCWPBbNNkgh/TWKzTJQXjsaCi7q2fNxtDVJFMxaezYlA5MMgq1zcp3m3s4evzDAWqzHUjxk9cUjXWtAmC/S6QYPGw6zPRtoMMip3zSxXfZKNRigFH+wqePjMmJXQ8jv8b5JWNdHhxQc5j5yi5ZRVfhwaKxQ15jV2Mrnv5MeL04GTucfPEhzvT55s+aw6oZ07F3Gzcs7NA5N2tss0uml3+8zYdxe1t+2ELWEBvWyg0bbOKV12Igi+C1ro6M6aDiNsZH5Zi8vVADfJcHf8rn0u8hw5dc8KVXK2qYD9jpexHSe7iwS98/++NCLGflFgY2YSUbVvbbWzL45SSZYuAXLz65eD34qp3iMk9fT0czZkffOllUfuGETfwa7PZHjYnLGhv4Xoz4DM/2+PLROh9hYaN48ZfwYdHYg08vj+mw4+XIg8u4ByiMsNLh18PZvujF5bKXs4gNf3oqDjZ8Id3fphEjHT7DRK/8GcOlwaCRVxvypscjH+4///nPx5f41nwY5N8aG/DCrncWxeaDTnVOjl32yOnpuVt6kXUnyoEPIJ1xH9AfXn4rqy/ae2FhI3x8it9+be0Ys8PXEixitd4aW/jZDB+ZasuYHplaOdQv0SeD8rHr7zcOAxlj/vleH/jwIrlQk/fxRbt/NsyH/p5F/BVXGMIRPr28ey61T/YIP112ULlhQzPXjJ2ZlTc+z9PDlyd3ofOgVw9sqEfNuP3T042sdWbZgkHOjcWgTsmnJxbrWsSGeteTtda9yh5d59c50JPJl9rnB8/5IksH1RuTJ4PKd3HrUbhhYUtt4PEhDnuBipEdY2fLGj09X2JJlkyY8Yodn7xnipzTs//hEEsU9nIKD/+wd7elx6aG6MHlQ5l7sP2013zCXi6T1Wtst29kNKS3Jj/G7ERiSkdPTi7KB/lslxcy4jLPB3vmYsSjrzbNNbG628SZbXFqSJz2UJ8NeOWAPf70cu/edOb409hMp1jKCZ3yQob8xmNORjMmE8Vv/+E2zk7y8cjnPxm28BEerGLRjOlaL1+wWXPPW0f8qBm52b1jb/2QPduUw+INm3zUylN+YMGjF0+v/uwPUvPqWc9fceH1/sEXzOKCn03v2r7wFof43Bn2kT5KbjEdC5cfeBGMZPkQhxqyjleunRPPVJjg9j5Y3fGXDT0bZLT2mC98+vaDbbHCLUZ8jR/vltY8O/wWmw/41ti2pmblio2ofbP/GoqXzPZ0rWuI7XISf+NfX2QjOumujDEcenHbf/0SvXTlXovWFh5MyZqztefd/ebfaH9eX7Q/vLw7/eAHPzj+jXb1FTbxauW5+GAz7rwYp2MMfz3dlWNv8+M553yo92JWR3CIW3MXilkO2HOO1YTaohM+euTN1Y36IssnfOGGj/3eNenh+TxdrdEhwyebYtCsu0PZFSPqfmG//LEHHztsiEHcfOGpd7bwUXmCkwxyvsXhmcx378DFwb8YPvOZzxxn1Lu2v2kOg1h8ZiNjzje98mNNfsw3TtiSowN7e0u2vSUHHxso/HDyKfbOePb0Pm/6TWm/qMdecuwiMtqZ4tHxLPS37s73OZ3wyy1s7hu6fW5Qa+Jq71ZHDEjM9pQvvGI2Zo+tfLfP/KXPn5y5E9mSEzzYNDr2uDvTnIw1PvXlDl+NVEvG/MBPDw4yeBo/9tN5IdOaOqnO2WYvvGQQ33SrUdjZY0c8bHROydMTd2cB7mrFOqKrsYPyoSertyYWjSw7CEZzOMRDVvwwJCMG/ntvZYM9smR6tzbGYy+ZxmzA0jkoN3ieu+aeXYj/6mcxG7Ovkffscl7Zljd65dK+++yrx7Mf8Pts7gtmtqKwWmfPHC7xwE/fWB+Z20NyZNg3h6N7AF+rBqz7/5rkFk+Tdzpi4td+02G3WPnS2HW2rIufPXh714SPvvMjN/hi0vyhvtjLMV8wF1e+6cMVdvFaQ/HCiBc24+LEg7+8GSP68Zq3Zm6t9eLH588ZsJdqVOx8yA/5sHc/wKEWPL9ff/31/91/hmpzgAAQbXIFf40EgHa9JLSWXvxNGj0BW1MQbZ756jeOr5gkVGODTTwFaaw5rF1I+OyT70OPJBv34kDHZtgYsnq5qAgrHBjIKkD5MneJKFxYtomdTReQ4iXPjtzyz455vsnJgTnM8IrLPL9wNWebv+Kz1r7xbY0Mm/ywITYy8OIjPZ7WHI8uwofXb7mKw8HFE4+GwlT89MufuPhnjx0xVWeH8uMf6da3BjN9ed54+Awznd07utboIrGTcbGExcsTHXkuL+X5ULr8YEN+82Nd7trvfFpnX18tWsOTC37lDmZEzrrepepB0ssHH9bwydMjB6/LEH52s53f7Jm3d3yT1+TcnC1zY75Q9o7J4x/2iqw1+YFDo0MX8WlND2s9vTPxzxYZNmr05RifXXLw5xsflsXcw7h8WlNnWjXC1u5r+4IHB/98sEGHLt/hgp8N94QXU3z1zo7fBPGBm67z4N8h94cp/jDNOrwwWufLXdQD1AeEh5cPVe4QfHtPrnMMi3j4w7PmHqJnDYkBLi8KejLZ4NsLfi/wfTFwKF5+lB+93MLpDLQvfHvR0Jw5+H3whlmMar+9ZEMzlwcY+ZXX7odi4Z8tDYlve3JnSp6P9iW97NBJzhrfejoo3jG5/Djr2WMy8me862tr+eRrdMhpZPg9y7KN1Jj6uI8v2v2zYW+99dZ7L1UwFPvGYa/UnnU5N+7cwAh/8vRvQxs7+fVrfi0fZNSqfJRDYw2xqc7Vp159yqNaxUP4zpAzEOZqujsFn/0aPb5hCpeYezaEXY+SST47dPhnP2qNLKwaPIg98vAbl2d9484gfbx807dv7LOZH/tHzlzPbrjxrOsRvrx5rniW2HeU3Xyl09y6+6caYUccKJ9hpZMfe+Ju4xNmvXX2UPkxlkNzfS0+X+VFbbDhDiInNveMMTnNGAY9m43bBzxjMdGF3VyzhuiY549PTQ70bCdHFk98vXPiaeypcSRuvN4fdl8OgcsP66i88pPvzmrxkVkb+SQfn3/nAA+REXN1k5/iz4beGspeOMShZYOvtQOfOflqiR35kU88RI5fxB+C17pmjE+ObvI9J3evD+XLD37DTR7BwY59SAefHWeBbTGoBx8+PcM9w+j0TlZ85H1mEIdno2cerOTY4UuPqnM4xCJWZ04LIx4c+w5Kl33+u5PgJrMxkYvKDT/Z5sfz2BdiYhNjc3Faby+NrYvHM548O+LpmS5OmCLj5vyLm453xDPhb52sLh81djS+lvBWpzk9tsNqTk4eNHLIeny5rN7J4IdvfYYhX/TEqI7oOOv+b43n9UW7L12/+c1v3vz9738/9lqtwcnXYhRjfDl1JyE4NXN8RA+VI3yNDbGIydw9LZ7yUczl1VydauVVjbKhqSNzNjpndLub6eHT5VPLpnE1I+fq1RwuNnavrIvP+fROSo4MYqe8uGPJ8aHB5tx6FyaDYPHLLmpdrvnD6/0CZrr4nRM2nR3vxu4JvsnQ8e/9+pwgB/52Glues/7Wqn1gT67kXmOTDTmCqbtIHORhpqOxhfiDwZwccmbF214fzMsPc37kjC/z4qHPn31HMMgl+ezwJXa8iH77IXf+aQsyyFqYYTPnW0vGmN0+k+DnW29OV63IY7HTKRY9P2zJRZjFBFu5wmfL3cwW25p72x1Hv3jIouTto71iX+PPL0/mi574u5/lDn6y7MphcZRH9tmEDy//5uwlx8fG0Rp5a2FmD+Ht2uahGoCLfXbzC0t7CWu5Zp8Nc7blC4+MxqZ6936X786HOtzvOtiQu/zDS5YeO+xqxojfaogcPdQzl544+t6u2iFbLZFB7TX8CGZ1JWYy6sIfXvNn/8ix50w6t7Ag+Ojo3TvW4WK/PHV2xaGR568alvPuAX7LS3atIzrujnLLLllyfIldQ+ETCyz47NiDh5fP6vzR1bsr5QiRK7fk6Xr+i8tdEhVLe6QXt0aPXxjUhBxaZ5s96+HcPpx0yfORDTGak3cnJ1N8Z93qBN7ioQ8P0ofZnL7GHpLbj3/84zc/+tGPbr72ta8dvNaOyS1+3Pk32m2+ZEsQKsn5OgNoLhAkOXjmEhc/ffbwSiZZTYL0WzTmkTHb2WeHLDsllCzbbbZ1BSYmzYWiuTy7LB2A/upULwD08c3Zhs0BVLgOYLj0DmJfKFnvIWWNrDX5NNasiwF+xD6c5GHnq5dhax3SLmY65NMzDw/cHcTG/FjnU3HZVzx5YaMHvHUHR59NWLRqgW0H3z9BIRYv3jCLyRyxzcY2+mJa+/yLg306Wvo7Dw8/5MXAFmI3v+SKs5oQH1vliw47ZH0ByZaxFzoy9lye6bBVXs3pscd26+J3KZMTTzlNnmw8+uRg5hdlp7m99sLjNyGMYcoWXfljR03BbKxlh80zj2268kyvF4KwtL/mmnzkk63ykg91pc7VffLi7GyVIzyNPrklPvGs88FnftM588yRdVTO2jO4+ELVGx05U5/w8cWvi1V+6UTljV015cyGWw8zPfVP1txe+TclnQf77IXr3XffPV46jeHhh28kh+b2191iD/3WGPt+k9wX8GyTkcfu4ezgqTe2xYjwYNq/OSNHsMIHp5j4JsuWMao3Ln7jCK5//vOfB0ZY5dP/6/C3v/3t5uHlAa4G8NgVI9vlr/OOZw/kNMzZ559fMkvlPR45fui3ttjxzOORZbc5O3iIr9ayhW8cPuvljI3s4Ruf9fJtzfiaHB/JGfOl/u7zi3b7g8IEV9j4V18a3Pao8aF0+SHO8kXvNsQX2/KXv3StsVkOzZGen60DOubkjZ0v56L7VI33YZaM+nOunCPyckveObBGPv+waWGpPuO5L4zDJR71Sw52rfVs8Knlg44WfmcEdjGR0dwBiAx+/q1lL/nk9ORgsIacceeNnbCykW7xWUP47gx/OOd5YN/pFp8xH2LWwqUnyx//xXEYnR/0I7m3T3wZI7kQX37sDUzsF7t5+cQjY0/1yJi8DwTWxWbf6LGvReykZ72x3rz3Nvbo5Sf/5Baz2BG/9FE1YSzOnjH5CAMfsNK1Z/JLxnwbO/JTM7cu9/bAs9zcun1DxlG24vFRvSUjX3TJwCQW2NUpvOmSN9b4R+zT1aorsdXyn6yefjmGB1VHcs7/Nr60cgwTfOb0jem1N+UjrHBpfNDVEHn68dSnXx7xvCTbM9YHU3couz4/8MU2/3z3+cA7tHdBa+z48G+sBsoTu/yGlV11Bx8ZfDa9z3RPwNqdR45NsvzrNbR9fLJyZ86PXwDwW/G9/4mtf96te58OnBp83jPab2vOmpqFJWJfHuUTLg1mMmyYIzZR9cEeosuGeW355Dem1tKzhtgny0b28Nvn5MRD115q4TZGbGx8eJ0vsdC1V/bI/pvbs+f5Rbt/MuYrX/nK8e4Fl7u6uhFfscKGLzY8uOHRkPO9vM1LcerVnXjYdhb2nkhH3sgiOcPnx1i904MTDvvvLOnDx7Y5WY2etfZAL7/qkyx/vsRWu+5IdvnUkHV862rZfUiPDbKIrLOpZo35cCZh7Z9KoWPNLy7xDRt9OXHmi6GYyVpXE75op+dcsSMf8ug3xHvv8F6OD587gj7bGh37I5bOFT/80ocX6dMRHz06bJrzieDpvmpvrPMZhV8M9rParpbNyyWdxUjHHEaND3voHvE5wRr7fLInBtjMIzqILL77Uo7lwV66e/k3F7OasidyQJee2Ktre4nM4WOTHv8wRvS9g8htcasbn2XkHtG1xg9M9s4fBDjf7FsTk/9jS5waPD4Tyb16hJ09dyodBAdM8MGuN+9smO9Z4Ecrn2w0xzPubFvbnLKF+BSzlh+69GCwTlYvV+2b/RK7np6ciJ+u70wQvkafrJyyqXY0Y2epZxx87Qk7SL/n2pwvDSY9H/CTEzOM/LFFhg7fZPjTiq/8wEhXbbXP4mWHXjbcB2ySs5di0NtPuWBHHNUVfndLtShP6lGNIPJ08eGkKz/+IBW5I61r7ROs9NR8f/MdRp9txG0NVX/mGpn2QC9Wz3x/o913DHz7p6v8wVLP+7Uh3+Z0nUH6MCH225P8i8O+kIeZPh9ws4NnTZM71BjWzqsxosNHeeCHDXcmWfYRG9UZu/jyorFhTXx0ETvyS05N0OFTw6Njf/xt/x//+Mc3X//61w+9cB2TW/x4pi/aJVBwOQMWIBSvcXMyJQePvEDwluIXZGsSVDFbY0Oyst+8RLGTz7Bly4a17rAqcsm0GZKuwF2g7DsUvmjvP5pgk5wDo2jYQvzKSXkhx4dNla/GCgFWzca6bBzK5PRoY2SbPh15qCBgdyEoYOPIuBjjwbM89mts81GjI0Z2HKousr2cNl76bDsEcvLgwYMjHhcNvz1Y4DdH5YAdMcnB7rGY4OO7XKbDl4bk2z6ZkyODB5Ncw8zuHmKymyN6fKFs+NBQPjxArKsFuNhGfEXWs8kGTOLPjrqiK69k2dCMw86WOf2oPOvperFQe2zRg8Eaf+Kmq4bUlfV8ZY/P7NOlR1+e7YGHER6Z9t26li+9xpaYe3DgqUcPI/6TgwF2OQiTWtHMI/YQv3TZpst358o83mIII9xaa861XPFFL/vw0RGr2mhf8VYnTPSMyVdP7OHxlQ25wDN3j/ii1G+wiN0HAx+SPEh9SCUnX9bY1e959iD3ko7v5c1f3xSbXMqb2qZnTE8vLn7w4cKDyYPYPVdO8cyvUblmQzNvDzqj9Pj3Bwce0GqdjJdKL9VwqwMY5J4/WMggdtjFM7bn5qictpd6xNY1Ih++1vEQnfSyQ7ZaMI5PLp9hyB45uUD5I2uMnx65pXyno0fxV9a4dTbl7T6/aHe381cdlwe+7Yn9dZeIyd7YozMVd7q7XizLM2aLD37pneX4k59yZP2aHD4Za3K151xduSedZTLOjA9Svmjn15my5nnVecJfTPRgcZbF3t7Cb41/8udckdPKSTbIa2JnIzvknMu9o9g33xjx8qtHZ7x4yZUzfjyD8cWy7xjk4ceHU940eXF/eR5UA3IAOzvFRBdPMyZbXGyjsD6aPfpZLuTePvWhwqpc2B842BIjYp8tuhu3OM3p0SFjDCP8iB3Yii+5bJE3ZssaYlNzp5YDa/YlX+TSIcu3XJAzt4bw4EFiU6vFSHblyMJSLsmZ19jg59zYkKN93+JT7NlPV4+sswODvUgOz/mnSwYm8cASHjJh0puro3hwwEMfjw329GQjPvNrzbjcmdPlU841a3jqUUveWmfZuH1Kh0+tmNkOS3vALnvtH4yek77wcX/QVQ9+88sXMZ5x5D3f+EGw8p1N74B04Hb/eIeDwzObbjkhTw+R33cxa+zyo2cLsZHOwXj84xwn3BrqPlNf4vXe5wO2LwXFY907hHeUviBiMDscjQAAQABJREFUL2KHjmc+WWQdZnsunnjswyo35VTt0xNfcdgHxHZ7Yi4/bGw8+HgIP5niy6d+dbPLZ7IwZYs92NlrD8lq6gqxUcwH4/KDDhzk2BIrec3cc8a/8fq8fqPdO+Qrr7xy88477xx7rz7VANxwwCi+cgOncfPitVdikYNySNY6G+LS2M6+WM71xpdzXh6yz5ZceJb0edmamoVZjq2Xt95JyeNbVyvl39ydJA6+1Nv5c2M5sC42MTqr5OiJ1Z1hHRb1TaY9F5/z6axbLyZnwdmAB18PJ0x0NbbhNqanvul5P+YbWZMLevIoD/RgFRvb+OwgdsLQ/slT9xye/LCn0cej43yzJd+oeyg7sJR7681h0ewrTMbshFMu1Qdii5x5PNjJsqeXf7/Rbh4Ppu4uGHbtMHz5wY59kGvxeF/1xZp9N8e3V/asvNNVi7Cw671CTx6PH7JyBVskPrLsiUfMcPuiXbyIHmIDdt8L+bJdHRS7/fQLUXzKDSw+I7krjdWQejPmx37BAQ95ftmqBqyTZY9/suW7fTQXX/Zg7GyHNx1zxB6fcshmdWO/80euXBmTMacDHxt0xW+tL9rxNHG0R+JiVw+L2pRXjS573bF8ic05LaZiZReG9hEGmPmyxk57aw02PPmQexgQeWM+jJ1VMmGpPvlVE/bZWP3Zy/DRdR7hRLDxKz71ymfPWXZ8DoeJjAaruTtBruTn4eWX1NjvXmdTDHr84nrhhRcObPyqXRQO9bDxmYu12tN75vtbUfzx7Yt37wD0ynt55l9+2aHb3cInGWtwGcMoDo28Xl7tb7Uib9b05LX8GluDoXjosy8HGj9k5Fifb/LZhQ2/mmCDD3tCBuHZA/aqt/j80He/+H813njjjZuvfvWrhx6Md6Fn+qIdWAnSAK2t45IXIIGQQ5KBv7x0s1XizMnaLHr4NtWYf32U3ebZ4GcJH7FtrAA6nGwrOsnl19zYhW/D2NIcDAfHZtAno4jaHHoOK1t4bC0+8wpf0VaUcgsXH2QUkssofXL0zCsgsnKheOjyjRcZa7tvFb/4NfbyS49trRyzDQe9eOKhK0axy6FY5cWF1G+C03MZLmZ6MLHn4IqzuOBgTxzWigUGPvngC9HBL2aybLPBtkPlwSx2/pF18uwgNjVEP39siNULCp59lhO6bGiR9dboseclji58fHV5k0P4Gh9hqxazEV/PhvVqik98vtoTemKVtzBma7Gmly6dcsmuVo0YI3b4yT7d9iKcYrSupuPRY0OvwSUH4rCP5KzjG8POtljlOowwJIeXfbzmGzO+OuKnnMPmoao+6W9Oi699tsZGFI7wOvNkzDU+NHbEb82fhHtIG6tFLyM+xPKP8qUO3Cke2og98rDie3lji2050dsfcmIOqz2kE8FP3r6UT2tw8sUOG8i43MDDv3OJJx5jLxnOcrlQ42JxxpH4fAGh7jvP8MFQLvlRR5o1cdgXc2vb6Ji3v2E9nD3hR/qWybOrj89WWIzLZzKZtRZZM2eDblh3bI0cytdZv/m1Ph022LdH/4sv2stFmPi2d/a5e7v45aAYyYdZfyZ213Y22o/W6Vpbu8315NTJ2lpf9O2hM0DOnKya7zlhrRdda9X/PrfwnOn02MlWdvkNizXj8lW9pxdGZ8kzqPoh371P5uxDzMnCaj2y5rzQJ4PSX7nk4UPOF6LXWcsPPHTlqDtCLsydbXEh9zLfaM8zHPg9a/lgO7KuLS8bcm1f7AOf4oXBPri36Wjs91ygW17aC3PjctB6OdLDhV8jS0ecWjr69SEuOYPDGpy964SvNT1fZNg2X6K/tbr4sxVmeO1N2LKTj+2N2YZTExtdttrbcsMOeTmtZosLHkTXuj6ir5GNikfPJvnGagcWc3at1dghr6HsWjcmr8FPX03IeXe13LibPJdaV0ueaeWLPnnNOHzll1+67VU4t+fHunrs2cyv8+zZ13M+n3TJhp1P8nIpBu8C2UknXHTCyW57U27EAUs5gN+cnc2jseex8yL/bGVPfmH3fFbXZGHruU+OTGdZXx3Km7GeXTpiM2eHrDl9FCYxwagXC8xkyMoXak+yRbe49fh0kjuUHv+wnkw62WXn3ODIj/GZ6MJb3RjbO7bFrz2J+CLv7qJjrh6e57/R7hc1vvGNbxxfArLtSxY5FUuxypU9srd410h9WRdveauXH3Fax2NbE9vWIDkyGp9nX3Sc284vX/TNja3rkZw5wxo/zonnAv/i9B6cbDirCXN2NbrmsMiBunQWxGNPnQ2xkzGGHT+M9JNTo8i7Lxv8ry9r1VJx6fE0d4QvtBA/8MgHO/z4Mk288kAeWStO8/zhiamY9RpdeK2HhR4++56v9MSq0ZEL/RI/mtzAadx57u6l446gzyaf/CBzOvHwNTnwBV55hdVe68mjdMxr1tWAfPLXveXeMce3Ln/GbNAt9+b84MGtVad41iM42enMWpMrvzAkXuthtiYWv4y5X7TDK9d45PmC1R+0qB+Yyy2MMNBhC34UduNiKV48vttjY35Q8eFpZ7Kf/Eds81vt2TuNjFZ+1hZefLKovOnlK/+ty6c9go9dvZg1ccB1jejLFcqmnh8tHNad7+xay75xe0qOf2vwaPbVc5CuGrVH+bDX9pI8G+TF5w9fyNovd5M7SY/EwiYqNnvXeys5dzUd+mw7V2zj8wmLz9jIvHjDhS92+r6TlF/EBj/8IXHB6m+T9FyGzRmCkx/x9F0EP/zSY1/+q0W+yyk9+mq7PW4vyGmoGtXLu54P8ZK/Ruymx4+WD/KLgw3rWyNkOkvll096erbglgO6eMg6e/mOJ7fsyK2/kfad73zn5uWXXz50FtfBeMqPO3/RriDaqJzpGwPcfHnhENQGtEk3rhV89mwWe5IT77wRfORz/ZXQ5bGB9OvLnLzCYgtW65It6dZhcfg0PAdI0bt48ejacHyXroMFq42r0PggQ5Z9xB/7bFqjo/AdngobnnKxxd8FTr+WTb74cLDYoe8BWj7ZQWQahw8OfDq9rOz+Fb8HOlk2NZcR7HT5gg9f/OWBD3bh8qGMffiQ3LFnTTz0uyTYsK6HRZ6KGX58ftmSO1/+dQGSLTbYYcIjmw3rXbL4fFcH1rYdYB//SN+UvAuunNMRdzXDL0zWO0/0XK7kEFxIHtgWUy1f7NTwED15TeZgPv5BFtUbFz8dvmDlRwzVGFvG9OD2UIKbvDySR+nRRfSM+SgeMvTY4wuVU/LqBRb7SAaxYY2uHg68jcMaO9Y1Y3Xi7PJHFmY5V0tk7LPfVuMru/xtXPH50/gh71xnl6+wkZcj8a4dc7XUeSBXDthlz/7DqO405E/BYXT3ioEeOseOx055Drc5m9klI78wOh/4sGvOoT8g49v57QXE2cT34il/+aBDlr3G7LLJz2I1zk9Y8djSiic5vZas9WQO5uVH68my3zg9tmFB6ZNpXM1Yxyd79pWsdT6SWTv0o+T0iH45S+bck01ePp2r+/yi3RmIik9c1YZ9VK8obLtPq9t6PPPda/xs5wuv/cJbvrWdd77wrxE7nSVjlH9YrLl7fWBvbe9j59TcfeDOMKbPr7Pe84Bu94l1emznky868czlzFkSPzlxGUdkNPytkeSzTd66PbFHxhpdMvyeqTV84/ag+4U+v8UvR+Sqgb4sZVs94CM5KXZz5109eVknFy5rdPhjlxz81tmQa/eafWn/5Nf7hLUws+l5Cj+8mjW4itscWUPFtDlfXTJ0yWnIej7osQkv/NbwnEsNXrxyeRi4/KAjNlR+2x99dusPwcuP836H1XqyYatPtx4Wa+o3fbpbj+Zk7IW7nJw8kCkmMeOTQ9bNxRMPH6+8m1sz16sdePKPRx+RyV42yDW2nk+YxFPOsw+jRs/59JxUO/TyUY1mG4Yw4ln3zGXTnC/jCH5Ufozp43uOi4eNdPRqWRw9A8nTd7bUtdrYONncuTEdffx4zpLWPhh3pshEnuvOi/x4dmvOENzOqA/Yzmv22bPGHt/6nVvPFx1j8fcuIO78kd18GItfr7UXyRVb2FeXrHmY+L1GT9Jhu5YeWTxknC4efxq8evVgfzvPcIQ7fXII37o6VVOauXrwb7w+r99o9x9Lvvbaa8ffHGRbTfFZHPDAYu/tj5wVJzzFaf0ci7g1MvS2Btggz37PR/bIaNYi482xPHa22Cm/YWYn33rx9LzmT5zej/HMyXg+ZBPPHrkHPE+s2Tf8zjc8/DkLYjeHG/FHn13Y1bbPOPJHhxyeGi9O+nDLkz7M1QpbfPn8yQZ97wF4zixedUKnWOCxpnU/9VmDb/psiYHfyFrnAxa58J2E3hrsdMnQFxMfcMoTW3hk2Ebm4mSPjDF9PQqjdXaQdf7IWxcrf8Z4K5dsa3pERovPH0z2oxjkS97kUD2SZ799p1N+2DGn23tMtvN1OH78oz2UMzbYVHt8ZnNrEq/9x2dTzH0P0l6JN30y7Glwo3JWjORh0KPyo0/f2Hpx4cPAFl9azyKya6NcHcYvP2ChL1d6umoApYtXHHjFQD6f1U37kx3yntHOp3wVF3z2tjrKB3t45SjsB6DLD3Umz9WbeMjryeo3RrXiPUGj5zMt3fYp/Gy4R8jTlw9n13PTs1V+X3zxxZsHDx4c8fDFnjWyYcDTxMmWs6hVr+LCLx90y7d8sis39lbPjlpSH+TkCYUPRiQen9X9lnp3Dhvw0WNXo6exU43CjuSl/WlvydJD7TFe4+xuz0561Zc8l2u2yPOVrHFz64g8fbkjTxYuZKzZK+dUjak963xr1ZQcIHG2lu1ybp4+e/b61VdfvfnCF75w6NK7C935i3ZfKHdoOQJegG14zgMiISUUz7jgktXjJ1uPnyz7jZdvjOhoK/No5ZHtxnq+tCV6KDt6pIDEJ+k2GYmfvk3ROkC9RGefjr9e5MDC3wuAdcXiIeifpPEQten4bDnE1unw5QBU8HCWaxjpwAdnMjAWjzEZsg4aWY1dMvhiQI31Gr0uKT750NNLt8KHmx224eiBxk7Y6JChI149e3B56fdiQw91mKzB4bJwaTgkfPkDjP5Ejw92+Cabrjl9v2HrEucfNjL82x+6YcY3h9FeiZ28Jl/krBe/eWRsn+Lp04WNHnuauK27gD1E5YdNctb5Lx5j8YSNHKpnV7PObvjoayuXHj45tvkzD2v7wh7Sk9OTpQdvuPmUR2t8ybeeXMS+ePURGXY0suHhCxby1zDQp6uR0ZMLJzx4fOE5Sy7K8oqXrrEHrn+WRdxhhslcnbEX0csfe63Ho2+Myicc8bJvjm9eo2Of2eW/fPHvoaEtFvK3JXXWb9I7R7A5a87Tw8tfG3Om5EIj66zA5yxqeGqbrheN4jn731haK+b2Iz/lgFzjZPGypbdes4bMs5We+eqR43cbvTNd07kmRy9ZNp9EyehRtt5PJ1vp2H81eN9ftIdNDx+/PXP0aqV45JdMOjCba8lc64uNnNpeKl42G1tfH+bZNb5GsLmHur/IZIOus+N8afHpdC90FzrTZMhb19h0T+jZ8mzgiwx9L86e/e4ZdjSyGn3+5DH5YtEjMkh+5B+fDXrJHgKPZeSwvJNHYT0mj3/Qb2/gZCueezo76cMrfjLud1/I6flgP5/kyYoHTnbZco94wfcsNy+u6omse8cXsPzzJa+e5XLIJhl3trk7r/jZ6ItBOOSTfXHBAXNUzPaIrXJJR7OO0tncWXfXIXy6+dObVzPW8cQKH3vhJdNZYgtGjQ6ZemuIHY2MPGRLX02QM9citmBiDx8WJLd40fokj8TqbqeXX2vLzx++MSzhKXZ7SQdZI2eNbfMoW+Uoe2SLg+zmhgxse7bNNXrsk1dD/jDa2S0XbKUXj70Ir7jxylHriy9ectb4R9lurf2zF8VWDPDw8ywkz86Pc+a5LHZnwjl1pjbXalhN1uyPBpPneGe7mK2Fq7yKsYaXfmN49n7w3sBvMbNXkyPj7IkfD+XPGC9Z8o3JwA7Dk6i65gOtryfp4C8ONrTF7SxriE1YksOjjweb3v57FjiD5u4g/8br8/qi3W/Ivvnmm8c/0+eOZF99wYzKg71XK50RfDw4yTeGX1z64jKnJ+f2tLz3buic5Y9ssfNv3l4Za+zKC2pfYUDljg0+zcnLeedFL6c9E2A1zwY7MPlM7X3+Ax/4wHvvzf7TwD7PsQ2b2I3Dxk57DEfvvmIPr7Pmyyu62Sg+MuKDk5345Q9eZ8U/JdPn0WLNPgzi1jdWQ74fcL+xTce5Y9cYGWvtQbnxz1TRTa/fXhW3u1lvrWcFffsrTvEjMuyRi8Jb/sRrX8QPExswGstDeVkeGQ0Ofsnxo7Gvodbkgx3zjR0PfmcADvnrPJCTc/zwhw12Pti1xg759hvPGn/k2Mg+nhrAJ4eP2DDG18TrvuYrottcrEjsiA78+O5oWKzB1XkgY705f2T48u4ln9a8P5HNHxlzMdE3tz+wmNfkzrnCJ0suHPllx7pmXSNLD5UffPjkiC9x0IWtuiRLzr54hvUeiFeM8mpMd4nNGnn41CEcdBAeGful4XtX1+RKzsSh5tUKHzDB7d20mMha16zT97eUfAFLFrFf/cBBBi7yMMiRXLin6PAFn3E2DkOnH3w7u7A6l/5wwDPAb6tb4yP8/CNyeBqZ4rcuXkQPlvYHHhi7263DHcGK5JCc/cRjmx+ydDR89mr2j0572X7CBo95tWAeXj7YQ2Rg6w9RycFOVrz8Z6u46OCxoeeDLD7dbMu/PdMXZ7ow2+dvfetbNy+99NKBJb1jcosfd/6i3cuswAQliYBrgoiAsBYFmIwgrC9Qsvjk2qDk6Gjk9bvx2W8zzbONtz6S1bNdW5xnHPTFxqdkh0n88WGiF/b8h9WF4vJgwz/9YE5esTx48OB4AfPPQthkhUjWS4E5WwoG//1oY3g/uf/3mnjkQV++YJIrB64P6eWZrIOm+L2g+PekyHiwepH64Ac/eOTK3pDzsGHLHLHDBt1eOO0bPhkHzRjRC1P7I++wsg1flxgbfJlbp6smXDZdDPyyrbGL2CWvZ4O+Q08fr9wUN1kYehEig8JsjEdGjoobH/GhsROG8LIhfvWVLL/skdWMYQszPxo+u9bMPYz4p+/FIjvsrj6fdNmTP/myL3hIzx7fZOSSvnl7Ff5yRE8MYaZvrbhh69KVH+fOy0Q6zprzZy0c/PLXxcvH/5PEjOrP42Pxyg/5lgcvMB7MDy9fqnvJV3f+Wtlf/vKXm7/+9a/Hg5usVh6by4lmH9S4fXsSkVuMZzm22SVnjzRzOu+nd7bTnB11p38awV97Fl9Ps986LDV++HwWoqcm7/OLdmcVwctfZ8o+qxG187Tc0inGrZlrMZPrXF5bL2/WsnlN7hrPuXdenXdnF8k/m9W0fLbG/pN80NOqTbb6YMCPF3D3h7H66z9L9yG/GucLFnMY3Dnunu5yuuyj4tbDhM9u64fQM/4o3+wteZ71rMIvV+RgUBuem/TNrRfb4s2mOmDTne6+UUPk6bkzNDHvX2eVH18geC/anMpR+8gXTOx7VsBiDJf82E+55geRN7a2e0BPvHDRJ6PXrCE86+JA8GrtC9n2LV52yiV+xJaGJwZ4EGxywxZio7jIVKOthZMcYk9jpzjZsh6Onm/k6VvT6PHdXiZPX87Zg9kH33JDDz8bza3LlXeycsZe+eTL2F6FIdxwIet0Nh/lOGzW5AW//MAqp+zh+1LJZxOyeJE8bC7i/z96eUP1t8UgHjn0Id8Hbn9o3nuWsT8w91yXr+zLCb18yYvWnnnv1MiRsX/k01ED7Rmb1Scc5KsRdWJNfbCHb47Ywq/hWevshtFcS749DE+YyIjRHBWbcbp4+ce/DcGH6BrzHy+7am1tV4/Zlyv4+HZ+1ae6M3fv+6L97bffPvrFnf5t+uK23z/96U+P/+vHM48feFvvXPBtT2ATE759tkfG+vLOP31yGozle+X6ApA+Wnk65YiOveIbke/ZB6u9l0NEhnzPCX7POTKHr7uxdT19zZp74EMf+tDRPLO933/iE584Pit6BmdbbuhszJtD66icitM959/b9m6kySW+WLbR4cc6H2Jn2/n1T6j4GwmeZWJ2fuwRe6g8qR82YfYLZd4xrMFV/qyjzVt41IX/00mOi/nh4/d/OnzT932D+qSH5/ktTviQWPhlpz2gR55de2zOhjpkg64mfjp9p8EurGT8QZ9aEn/42gvxta/sG/PvHYEvc00uzOWq9zO4fMEJM1++lLQOA7swdYeQVTPqUr7sATyIP/KwkYOt3NNnh/2tE1hQ8YiTjLzAg/igE362tOywwZd3KLJ846kDzTwe7NWE2nIv6OHu7tkaZ0dcev7g09pjdp0XubJOrhyYW6dfboqBD2vybCx+LRsw4vOFxKFe2BEjO+pFTXiG2w+Y2BMjHBE+THTY1NjHJ6cOqkU8cs4X256ZMBVD+x02+MjbDzJyIY9iYQOfTWt8+PLV91B02A2DXFjfXwQNfz2dqHF9fPY07+EPL2fXH/KJwWd5n939vwfyRs97NQzVGQzVdjxxIvLGYrIm33h0zMVnfCZY5J5dMoicPPIvP+zKF1mkJyOPzhhf5q33WYHfxefcOGP2ZHOrJsorzLCoeXeLuZjowckmX/j8scOHdfiLmyx87g38sJEVm3X/8ezrr79+/N8o4mLzLvRMX7R3MQDSOHABAM6YjLWC7ZALOlnr5K1lRxCShPjo4B6Mp/xgS+NDO1P+dsPJ0MHTo/CLwaYVh7m29vNJp0bGgdPIeli6CJDLxp+8+48S8W26+PFddOaooi4v+nDns7k1jR1r5Zcd85XD+18SLPYx/PBE+IrfJeKgFIf82Xe4PTC95Hg4OxReqFxyPVTJdWlXR+yw4cOIB2j2+O5CgaE85de6PSNj39h28NlvDrPGJp6xS48MghmfbWM22Y/ouUTETTcM1lvDg6FaMGejfcyWuZi1iBz/bGlLYXKpqC+UXLWDxwY+O8awtB6/XOnFY/+Sz27+yoM5WS91LklE3zrihz95YQsfVjJ0i4sNc5cvgk1t4NNF1vA6R3LZA5xd9aOWumDZ08zpbU4Pg/f8g+8lsRaPOkRyb3yum/TkrlyTda684Pu3Ij0Q2dP7gyv/eamHHUqnvTBnCyb+6GnxFms+8TS4z0SGbQ0ucvJLVlt7Z92ds4PC2fyafmvpl7vmz7MvPjaflIPb+pMPNXifX7Q7f3IIt/vNHldXasv4nL/FX4ztJdlqaOUak2fz2j4l86Q+HOmax6sOnGvnW96QdWtqrHF3mPUzlnJhjR9zvb1wT3Qf9EJmnT1fsPuA4MUcT4MBls6Ql0zPFBjbW7r5go8sf8bdZWEgh18ch+Lw8JG+HB2Mx7x043nuOMv2Dlnnn1/6nmWem8UvV1GyxUqGHTWkpjRz8ek9E6yR94HHl4Xsy4/cuX+9F5Wv7l75pgMXO30oN9bg4MPdblzcdFpj01zO1XQxF9fawiPjGS4P2Slu6+xqKJ9yw27r1uiyI274e/6kax0/G/AhftuDg3H5sViN6S42OZAza/CzKe70sm2OyPKBYMRno1yJRX205/nKXnb09O0peXLymT84jNlZW+e4YcaDgU1jtoqlNZjJaPJZrsz9gY3zl+0juMuP8l688Z/UF1vr7Vfz2/TZ2N5YDuTHuFb9XbPLd42u+ncm5dt7kzVzH8C9H5NhV853z8iZtz9qsjMZDnuOkuuchItt+5EP6/CwIwaEZ/1cA9mEAzbNuD0pB7t3i5ltMmzTpafPr3VERzz/DcFaXWUTLnXEZzlwN6m7ZIpB73z13gmPz3T+M7Wf/exnz+2L9p/85CfHu1vPvM1dY77ttV5c8Jo7s2QQvGJC13JOvnU67na89Nk1lptt7FYrxnLa85MfDY8ufN2V1R0emYhtczasmdNlW8Oz5nniF7D88ozP0Z4r/pDDl872gZ90itl+dZ+EDY998SG589nTv4+P5ETtI3LWNTGxIXZ50puz4450Xr2HO79s4HUWxUTfnnpfoKP3xZK4zMslX/zSEVN5w8uGvy0vL9bE457wB3Js0GOjL7/o4MHiSyufGcjBTq76L15+2jNj7zaeH8XU3UDfPmhqh47mM4d8ip9fJD62NLjljr2w+qIdFsQufO27u1+MyD6Tk3+/9Suf3tnoiE8++BKzuDS1Awvc5Niyzr45DPDApmdDH1kPu7EGuwaLNUSn/CeDxw/iEza5kSdjWMQkDoTXnlhjB26f8cRnnT+4s5sO+9boFAc5fDb5sY/WzemV57VhjMhVJ/TYErPcrzwZOYOHnHrpLJN3HrwTeo7js6M27U25wzOGC7EpBvPW7HN6ePzZV/XMBx3yGr/WyMAr39Y1fnvPN7dOHsk5H+4Z391Zhyuc7Fl3bsvJoXj5YY18e65nG8+axo8efjl0Z9hbX7g7Q2r6H//4x3EXiQmRYaPclCe5LD/5IM8+XfvePhhX9+1vOGAJDxnNnG376v1DD7umLtiAg1156FlljV3r9kX8bCE8Y3uBzybCC587nX/Ertp3XthU/3T5JaMvBr0csGuNbmvi6N4IC5z88+vfaP/ud7978+Uvf/nwS+8u9ExftHMOMCAKxThwJcocmDOgAqejIbL46RZAcz7OfuhYb9PSyV665jCQQ/iIv7CEMZuHwOMf9NJd/tpMT49aE58irpBtpDEMDrL5fsDEVwDWbC5SAHQUBTKmBzuesUYOj76HjjU5gwU/f/TZhjW8h+F7/gFHdXJtbxxOBwRmBFs65HsBIAO/i0zc4hKfPWKfDvm14SB2eZFjm0x6eOWptbVL1+HsAuGnekwXj0wxsmPcOsz8oeLKbjGHx9wZY8O+wmJMjz3YtXjk8SN8ttiHAaWTTPPqLJxhJBeebKgtjX37wD47XqLIwqHlnw1zpB7LqTjo2pdetOwlGWvFFqbs6VF8uMjLEaJnzKc18ublHkbj5uRh4juf7KFk2cjvsfAcf+Qrk/yIDf5yr+69HHvIephY94D0YRufLOyIPXpilkt7hdSSBxp9D2o6xl74femlbotRXy6Ma+zwXe715dgaWhywJP9o9dE6e9ayC2+y5LJvHVnTIj6qwfSyWZ3iZ588H2ETu9q9L+LnjPeM7za+5UGc9/FF+69//evjN+LUQHnpfpMf+Dtb74d1ZeCNyn39tT1Nnn9yzbOxOcRT0/YxfNU5fc3cWdac73wXXzWAb8w+W+b5as26MV0xal4S4+8zFM9c45tedszZMLfORjL6xvbZeSWD2MTrD3vpI7bkgdz6KTf5Eo98krHGVtjxrDsD7oXyTpcMeWTN3YOyV57wyGuRNXc6Pc3cup4d9zzf7h91p96se457X9HkI4JDow8X6nmGF258dpIxR/HYMLaH9LV02cFv/kjz0R1kDC9d62Qj/Jq17O46POpLLtQjHHj02NLjo8VBJp/rIwzpWovYzpZ4rOGlQ85YQ/KsJpB9YJN+9Viu2IFFTwaZl2v2xNdvKvKpFQ+5xnq61jcP2cALU7FtHVmDkY0wbO9sdS4OoI9/0Mnf8u9zDL8cauIWozz7IkH9G+M5E+ae58UcLnO4i5m8M0tWMybjuS7/3qXae3x+kbEmV6h809fMte5VcuTDTsdcjZMPuzmfzfljIzv5p99YH57FhA8D38YrRz9qjVz5laP0k/tv+nBVN3o1635G4hNz63hhsCYOa84SHWPvxx/96Edv3nrrreMLd3ifhWBDfqPxjTfeeO+fjnGHygnfiE8NDyZUXGGE2bozVu2U33o5tp5d8tUM+5F1svpia47HJz59fiNzzVry1vDqG7celuLRs1lzT8h7z1p3gi9ofc42Ln526Non+9PncHrm/e1z64hNWJzZMDsDsIcBXzMv7sVLnr57oLzCg6fhySsMPpOwU+3hIfbaO+v8s6sha+2/uujOkRf77O7gky45/DDTZz88bNpvfXGSQfyw7XMIe/B6X2FXzuh4ziM45JcN9sXZF5/G+P8h7+56bNuqco/Xl0AvkQQJKgjcIQnGcKNGAlEIsKMSQAwIJkKIxoAfTIjGO664hGgIwa14wet3OPUb1H+fh3HmrJe1a2052pI+e++tt/a0p7Xex5hzjqpVC55cqzdOdO07rjD0xDpfjY39yb7ccP/+979/2KofvdxwM2avwcILJ/djc3hqgxuxzi/hjy8+xjgYwyPp1KY49Ow0Ig472OwITE1t8eerfvjQE5z4muMIQ14eduqtOet8reWjL2Z7gYv47KwZ05nLp/zMW4NTTnHX89f4V+NqQmev2OHmIbbzYr/p2Ov7bWXxnCnrYhFjdeiMyIGdOpSXtT3TbMRWy84aW5j01V2v4cAH72LTtYYHfzHk4Fyxp9OMNZysVT9+BAfXoB80ydl7t3/h4lophl+C8x4jNzxx75rk72x4sK5ZEw+mfHDgR5d/unJrHRZ+nXNjTUz+8PiYp5dDPuHijR+B6T7DPz+1sOd7Tcmdn+8GfMRaaV6sOG+O4jtDOKoXPPVgUzz+BBdiTTxcXFd48qUrH7GMreEJw58J+sxnPvPGPmgvqYgjjxRyEtLfJxJRHEnwK7H8zLWETYeQfmPB0ehW2CkQPtb5p2MnVvHCWP8dW49rfuLFgw62RuiLKX6bHEe82IZb/fI9QO5eYDsQvojycbD81M/hdaH7TTrNRe2CYes35a3FmS09P/7sHrNPy+N/8rj6q0l7uPmqowvRGbKH7DX7l7TfnY/OKz1be9A54GMdrmuJDT/ngi29Rsev/SoG//YPjpvcXpOdezcxeGxh0MNckU85dz6t04ldvmK7ecEhbvZqAtMHU33+/MxJebBxBq2VB84aP7+xAf9/u9gvdbVnxt6A/eb5d77znePBOJ032O9973uHXn3ZqqGmvu4F6r1v9GrOtjdmvQ+W1d+5gG3fNfakM2g/xbEmDtuuh2t7BoOdPlw9HazO1/pbgy+unm9c+PLxJhmOWhE2Zz5s8OajEfauF9jWNeOXIXIQX4xL/O6Lyd619q53vev4gv7KK68c5q+XKy7/8i//cvPFL37xtX/JANg5cD7Un7BLGm9sY/bW5IkvXTbprbUv1UOM4tBp+RUzPHPr7g320P5Zc36cb3241jun+enFssa2OHEoN3ak86Jnyw7/ncPR+LKxrhbL2ZqYuBF7qdFp3UuNvSf7EqnnJ1bv+c56GNXBtW2MA8y+XJjT46ERNdLYbK7q2L7Q8xNXe24Rp4f2+t6XOj/4uf/LhS49XsbVTK3p9Joc7Y++HPR01UdNsg3bOruw+LPhk18cxDbORm2y4y83DeYKP5jW2hf2iXGxYMctPZ31YsC6JNbhayvsrSX4afSdPfiue7H445yP3lkIVx50nbdw+XuPcp6cMXsJVyy+4ml08MQwXpE727MeL3HJclvfX6bx1hxvNaEz9nnJD8v9cNzDHDpftn2p9oCkGsnHuP2Qd3tQPfhqRP29n1nTqjMMjdBV2zA6b9bpzK+JfbcuVg9lzV3H3Y/57ticHw64imEcP2vEfLk6N2xXrDs7bMPMTm3Yh79+LzoWQzyt8+5cm4vbQ4VyoMcxTvT2zT3cNeG7m9+I81vovrCzfREp3qu3f0bAl35/OsB7hvcDmNUZ567xjVNcdVQ3vO2phz32jr8cyqMxv2LD4y8GHZvOkj3Irv2wDpeNfiU+6dQMrrYcYfLF1QMlgj+9PHuAI1ZntM+5bM5xiqdXP9+fPVhXR3vlt+H9Frzv0db5+z7tIaD1lyG9L9qTvic9JY7c5apuK/2pKbruJfam+vLhS0eqq7mau0f1PYEtYQ/Lfcsv67gnqJPa2DvPGeCLzda1Y01e8oPbDxyN4dLbR7Ziwzcn6o+XPYBrrrfHYvdgL85qad2Z9q/g9fxJ5zwMOhzdn+XjvYwvrs4WzGrkDLONa9d3nMSofmzEkJ8xGzjmMIzl5/5A3FPYmKuhnMTj61x2TbDlj5dY7GHJyz6pCb1aqWHCJ790ejj0eOELQy1wEVvczg3sPrvRaeHiigPBBxaBg481NuLJ2+ddPwDrsywfuTg7ev7WjGFo/TCnc0EXvyPY/wcv6uf7u39dYuyHpt/85jeP3r1LPf/1X//1tR/4tMfqUC2qrzNj30j7oL47N24v+J3FHmtELDVlB8d+dX6LLw6b/Do//J0H++zahgGPHb1rSaMj7NzLnamuibCK4V5gz11nYvJxXagbbrCcIWeALxx6sd2P+Hfd4FFe8J0h2MQ132fY6hnP8ve+/dnPfvbmQx/60OFTTY/JI15e6DfaHYgSQkRQSbRJD8Ut4XzXPpwSNYcvHrFpFUM8a4p8Tpyf4mazMRpbKw5/LXuY/Om6SVjTrGlJOHoSVocBTmItbnRxpyPVpDlfB82NiThA/TMyN1P/dMU/vXaoXAwOD11vSnzwcsj5sZOzOpY7m/+NsvuoFmrfXm497KMzYD2fbmzZ0e/e2Wdzdp3D9pQPPVzXEl/Semv0fN0U9DCtETw1czeebtLssnUj7rqx//Y8Pz0RQ+7xPZS3L7iwT88ODzcuMb0Z6+k6U2xJZ0tsNubeNJ1j3GCpDd59wPAhthvfAfK/9EUNnTW92nnT8sb7b//2b8c/H6P35dyDdg/fze2fWttTtXYfcJ/o3CilevdBiZ0Y++Yi1lmcAdjs9TV24mri2k/S+T0mdy9sYLMxTmB1TunyXRs+NTbs5ecMsocrD8Ku6+9Q3L3gzl4j+Dpz4pRP/O5cntyFJdbyrW56NtpjY8HB2YN2/4naJz7xiYMXjNcj6uZB+1//9V8f13Cculfgl7DV2ie1W1FvPBN55kNvTMcuHL35OQ47gs8Zs31fHnCc7/ZQ72xoYcVLz5dNIsb5vPArVrZ4siOtG4cHR13CwovQx4XOXroH92G5D65698U+UIoL2z3V+7h1QlfPvuugs80PPy3uOHV/7vwfILcv1jQ8YWt8X4a4Rt3rid6H5eKL617VLw+4R+G0dZcD/nw6r8akerO31h5ZN4a9+9NnVzGqWWeOPTy+raszf/OEPbu1lyO8+OFrHGdrWnzzb1/ZuQbFgSsuG/NyMYeZtM4ezq5lU29Ng9eZ4S8mwU1MsvGLuXk4k+KpuXraUzXiBxsOPD786eNGn41Y+ORbfPoERjWpVq39Mvdq07kx9nnJ+7Z/9t1nJ++/Hu54mNX5qW7tqZzp1DFMNWk/1F+zXq34VHM+BEY6vMTTk85Ye3Qo5wU2W3FcuzD5uFa7lpmLby0cfsbpzPEgxpo9Lz492+zNE35s5YYLXE1MecG65Jf/Q33c9qzBLa77s7l44uNinpQDTuXlPu1a8d3Nb7Q/94N2fz7A52rf6+RuT/HofcZ1hkv1wR0/Eke5OH+XHnjAsh5GtecPm5S32JfqHwYc8Qk8Epdjcvuipt0bcBaPzh7w92DGvUac1u2L9weYbDRcxBJ7z0hnr9h8vD94n/VnSGGpp4fuPnd54E4Hw/cTzfty/OP9evuuI/diOfd54LG4clUTsueSzg9RNHWRhxqI0ZkoRnuhbx/Z+o119yk6GLvm3uVPWqi35w0epsN1HtXI/Y69fHog1pn0QLf3DRzEcq2oL2HnHMOxj9ZdR/r2FR/3pN436dUCrjzw8nfL1decPRuc9LDDdx/rQbsYeOBTXeCKZY6bM4df55WP3DuX4YpZveUltma965QeR3ZiwnLW+RrvA+cw8BCLPSz+9hk2XDW3vsLHOuFDxJCbZt33TbWwjo/89Hiop9qqnTl9udBZo+MLFx67fPnT4ec8uJ7saXvC1zVnHa68xYfHz57QuWaLA1sNzrkeyb2kF1yq31ND2CfXlM8B9tj5/Na3vnX8GRj1k7fv+vah2rmm5agW8tRwYKPOcVFf+OpJ2JDWjdOlV0f4mtjWxRXDHKbxnlU2MDV+BI9616O1uOLNXxOPP1z5O2v40ru+Ooc49N3FvvOxxk/rfLnnsM0Plrn7dvHwgK+HQ/DubKkjLnzhVAd25ux+8zd/84190O7iUMjd4IoqCa2NRtRayRknZ7v0eoXS4IS1vqsr5vo3Vtj1W70xHDbkzNG8jVF4trC04ueXvj4sfja0w3UEunsp7uqMi7XxXGQOmzWb7iYqloPkpuNm1aESyyHjU23E4keHD98OZpzFFrPcdmwtgRV3+OzKNxv92p3HOG5d5OU8wcKH2H9ja+VxLNy+wIt38dlkm9321vnExXh1xdLjp2UjhhuYC5wUiz6hM9dw740OhpiE3h7ow9CTYul3vj6w27fNg85avvzh4py9tXNjd66ZeVhiF9P+OEP2jfSho72EXS5s+IbFxk2TvlrQVQO+zq/GzzwxhiOPuNJpbGFq5riyWUmXv3k82bV+9nGP04q563IoXljmaqLmdGzw09qr+OrZa86DuvIxF683EZy9+frA6s3ZGwKdD4R+M85Pxgm8eBjD7H5QveXJVyPOsi/81UN/lnjjtTnlwx5f6+KeJT825zpagx/vbPWEvhZufMopPZ/yO/ub4+aMZIMLDHrranIp//Cv9XzhFDN+eMMLc3Oka34Nl56dfXzPe95z86Uvfenm4x//+GH+GN/7cHH953/+55svfOELxxeoeDpz7dFydJ3Ki46NMWFLtwK7mtDjqrFbfT4wknzzWb2YeNgv68277pt3LZmLqSeN+drrMDqzzdnT6fEh1vh3Vuiyo7PGJj2/fNLXd/+Ut3zw13e9dv+Db817iBj8teytx1Ff7HQ4lXN1X/6w4h23eB9gdy9062e88cx3XV5dS4tLpxH3sx7OdZ+Tl88ssIj3it4v+FW3OLPBY/mIl47efZioYX5s6Dt37OniWnz3RuP2JZ7qUT351sQpvvHWvrrCs9fN2Run41Pt6NlrxuLnhzvbJBzrl8R6+RqT5W2NfnUbn976mVt6teoLEj96vPWw6TQY7YO1WpydAY1sjny0sLNvDifs4mWjV7u4r/7sH0cYnRG45WKd6OniKr49bK+KIe7iqJMvc1r18gDLPLtqUh7Ni715Vku4nY907KtLPvqaevDhS9JnW72Liw97vF2/1gk9/sXXx+EwuHuBm8TLvFoWhy4OsPMrn+pBr7FZrvGC8yICv1jtJ5299v3LmhgbM3vx4pVP93MPIT1o9z7uC3t5PZWjWMRvQX7+858//nSMGPjYS/saBzrj+OG0Yu18tunKL18+i9FZr1adDfHbj3D0RM+eLzEWm33XZrlZL3Yx6PBiby0892d7w5cOFh6uJ2eRPbHmPaTP2d5bjPnZ195rxMDRe4bfcrdvYrDzPdvDwR4m4w+DLx9cze0HH3PYnpfAe0j6gVvxvR/CKP5D/vettzfqIJfOtnEt//bfXHzXvMa3/c3H96O+Q+AZVzVg417Bzx5ZE7czsPskJuEjJuG3fOn3zFjrntT9NO7OAdG7x7Yv8bZWTDi4ePDPFmdx1N/eWscZlnudGrQvcpIbezq2cPfc5c+GmGvs8dL4yIGw09RWTHbde7b+/Oj73MTe90S5qH8P5+XMT0w9TGMCO2GHx/5Gu3Pbg2158u0smGvlAkdsmLDYkuawNfbqiaP6qiGdNbbiWTeXo1rAYyMe++V9BHkDX/Bwf1FvD8v9KzVzHNXGdYy7s6kealie+OOuNs6Sdd/r/b8PHrh3vdDJ2z2n+vDpXFUP/nTmxcehGHyMYenZbD23bGqOk7yM2RM+OMihsyo32O0ZvXXz2mLTdQbjoY5anyfwgkkXXzxga8S6WrOBSbq34kTURAu/2oirwca1veDDlz2dddh08XZW/Yu0T37ykzd/+Id/yOWwPwaPfHnyb7R78+mNTIwSkBBiGtIr1jbxXTuPtzDh0Sk6UWxyjnEoH3jhA0sxifklvmeYOJ315/ly4kM6NGfba3MYDiVeJM4OwfmwVhcH0bo5P3vCz2Ghw0FTO2vEBdXhzB6+RuqPyemFPVwx4nkyOabtWRcuH774unhxJnh0cZiz46OPY3oxi08nPq7bxy0fPQk3f/2l/WFXPfPrzIctntYcr2xxd5N0gcK3psH05lhudDvmTwdTjfQam3Dsobgk/myM2bVO1xhme2u80lpx7MPmZQzHPhQPF/qw4gODWNcSflr21tRGjqs3ru7ZlgdeOMSNrXxhuHGyk+Oel3LDvxzYhI1f+rjqxfCm40MkPPblpsdffL7xofcAqTeO+GWrl9vmzcYbhTMRTvHFhO/cacblhxd+fAgczbq+usb5MJqXxd7cxuQY8oenZ5ftuYZy04qXPRA+eGrGZ1nbS2tnXRhx6TqBr0Z4kOIai0GPt2Z+7Zpi/1hRm+LBLA7/+JxrdQmb31n4OSs9aP/Yxz52mJT/2f6xc7H+6Z/+6fgbr36TrXOFL6lu1VedjNmxcYaJObnEZ89MuIfxnT1MNtXmEkb29eLGxfXSvm/d6Tr74sYjrnRdz7C8ByXhnPeiOohvjLM9h52Yw+sssBNL3Mbi5kcvDow48g/DGj8t4SM3NrBr+GjhsReLDmdjLUz9jtnHVX8WGOXa2Fwu5nHmKyae5Q1rcxDX5w6NTfe2agPTnniY0Z+5Y0MvDn+SXXzEsBYXNjDp6eKfXk9nHWfcYWoEN36uPw0WCStbGOJWj82VPTs+RK+xF09jzzecw3BeiodPPvEds2NYbc56fvmIx255rt/q4RTfeHGMCXtjX+5wTFecQ3FnZxwGPkRsue85ooMVnnkc45ff8ssn2yPA7cv5c0Nx2dkf8RP49rrPxubZhBvf7j/m3XfY8KET19mVa7zbB7043sfxDjtu2YcXv9br2Z3zXizrmrqz05sXH0fzhG97VF3YsqvZ64RvPzSjE+OMt3M2zcvNvOtkdeKubXnR2Xfr4sUzWzFeVMSAp8UFN+ez95W1ESc++dAZl5O57wIesPuXaf5T1BflWg08lPHQ/tXbPyGDW59TxSLOnX1qf8Xjq25hsLPXeHo/1Zd7uZR7tnr3QzjloLcXGrzOT3PrGh/3dmP4u4fxgG9Pl7c1OlzsAQw5aD73W3MtFc9Y/jD4JvyKzy8cPPj4PN1nd7Fq1UKd7aP3JbHpYdBZYw/Xg0Kf6c2N/Yek/iNWPnLXr5j7BRq/jewhpxw9Y/FQ3xpM+4MjfwJ7ceSpnfGzr9+4xvltnbKBf81vbZbH6o3Xv3G9dXHtmz2kN9ZI58B5UxNx7I99XRt7rW3+xaCzZh/8MuJew/C0bNzHwqHvAal1fmKKbx+IPWjf2XdOrLMjePB3xtgTc40Pf2vmfSbq2oCTXfE70509D9mdP9j8+/+24PbLl+LgrifG1U9sZxi+Mb7q4N7BXt18FtPDtCfVKO7lWM31fGutH8HnZe1TZ9tanFuvdvpsrG2snTdWr71m+NbYNA5TH6Z1/kT91dn+ul/4V+X+vro5e7XzJ2H4qyG92vVDG3XuPMNjp57u365/Yzjy49MP+tS9+zk/fNjxjys9fs6NvWGvEblXg8b8CHsNnh80ycFZIGydD/cfvbmzA7fzipuc/CuWRKz2qjPDRxwYYuHo3lYOfI3jqV+dsdjw4kKnpvzoiRp2L+96ORZuX2CK2w+ncCQ4wel9If7H4u0L/Vve8pabD3/4wze/+7u/e6irXzYP9S/0oF3BkJRcAdt4vRZZ6zZOkTYxNnT5XyMKhz97wl5rIx/yvw93OT6EsxwuYS4vuBqJ5yWfS7pqV75qpJl3AcCMb/bFNLfOhzhYxPySTVjxP4xvX8Jvvn3c6O6zEw/nahFGnPM3x1MfXjHMw1idfKpt+bIVy4XThbf7xr8asq0m7LsB0LemT4zFgVFca+bWxAsfFmyx4rJrOIYdLnuip6se/Eg1MGaDA7vW6Y3Tte/mGqk/JncvuNTONl3nYWwsPs3d3IiYbNPTyZ/E2Rrd+luvVtbZaolc1Zduc2AbjvHy5MOenujpyGKw6awci7cvZ85ixDmb4jXXF3PHdBp7GH2oMaYzr2501QHHuKmvNzZvHOmtJen0uMIwLl9x6Ak/a+nkbn5NstOz27hnHzblJTb72tnWnD2uMNkb0z1G2rOuE/508tTgbK54xb9YdKRz/pi4l2zEKq51cRIcWo9Pa3pr1Sw9f3vtbLyMPx3jQbvfiPMFTxwfgpab+HGWl7XyqN64slNLbXMuj+3hyLMPW9U+7LU9j3HxYa8PZn0g2toVP134sFprj9jQacbZZHcoTi9rZ6m5MVxnV0/kpCbta7GsrV/z6mcNDqGDA0OD0R74oEnOtQu7eObqzS5pHzamNXPtLGHSG8fHGNfly6YaGOPRPcs8Pq5TnHyo9yXD+QvXh3a/BehBgy+77MRw7jp72dLDFCd8c8KG8LeePlv95gwLd/rszRe/2sHO1no28oJpjisbYs4nvnQbP1z6lUvYbNOzDTs+699YLHXAzZjw27jWuqfmt3Hwt+69qD0Nty9R/LqX8lWDbPS18OuLoydrd66bdbzbL3PC55IsdvlWq9byK66+Wu04futnDE+uRI1wq57hqL/a1Nidz2Y87uvFqya4wdt9qzbFt2ZM4r1cyo8dXC1b2PZWi+/GguthAjvYsDTSWWcj3iVhC2/rx5ZPXPmFW+507LTisDEvPpunSNjFCge3aqr3nuyLuvcj8+rBfyX+cvGwxd/8fq4H7R7m/P3f//3xm5B44NO9EQcxq3vnbeulZvLrc2XXLwz3XPdgNuUOq3NmXG307IotZ7pii6k+zohY4bCB3VkzlofawuCjxVlObLzv4QdHY8/O/UhPiq9vDAcuDLKfpfltjeQj/x5gwiDs5GkvxRaTHwkbH756Ip7Y6guHvxzoYJD01jRx/ekaf0KjWqif31aGw0YN9JtPOdGlh63u8TwC3r7AjZeHUnCrkTX7AoP/cs2/vrzZGhPj8i9va5ew6DRSv/Hl6LOAmuLh8yo7e4SjsTrq46K3V3R8fMbg73zlo4cNh73WvtsfvvLQiPVzrPwOg9sXeD6X8lFT62rv883ytU/0uK2+91Tc1G/zwp3Ii56vZgwDN3ssVzY4yBkWHuYw8KNjQ3B23qwZE3hhwqCvljjaU7349LC6vqtT9TW33rXPPjEuF2O25vDLAQ6hZ6N2YrFJZ92esaVTB5zbRzm4XuRJR+LENhwc5RVnvX0ol2LImz8+WnsBN5349LjCJHBgZkNnXjMnYYpRjfniAlcz1jpHMIhcCBtr7Ut6a8WLx+Zd7ePPVpxyjxu79kF++Klv51kctQ1bLmE5a86jGMb8jGFX182neuv54eKHP3o+fOnLJ454yVsrZ3a40olVXeiWO2y8vK+Wvx+Yvve97z3ex+UnzlPkhR60SyKiJVHw5pt4hShpSRHFq6hn4s2tV6Bw+Fas7OguSXzYsw2vuOkv+aZji7P4iTE9/3Ojt3ls5Ki1wTiUxzXu1mtsFkN88awT6+GIq60uOz7lwIbAjXsYx8IzvYgjfrU4wxbTugsmXme7xTDmh7sz2DnkIxdSznptcdOxW3vxSbXrQi0Ha9m3H2zDr46LzydJv1yK1T6w6ebpAl/b/NWK5AMjOxysX6t3XLYvv3zCglsN1n7HbLXesIzhhIGzMwcrG/709eytlx+9PDa/5nSkuPwIXzbN2Rlnt9j02enZOkNJPuVhzl8emjk/8e4TuHIubz7h2NvOG8zeLFpvjQ9u3tT2g/TmioO5OOzx1uiyK6e4syPiZXMo5sUayZZv88Z8V/iITdoD4+LqNWsJn2JU3/CzyY9dMev5WzdXqzgUh954eYnvAxjb9im8Yj6lD5tPOHEOZ7mvDofNOzv76Zy8+93vPv4z1Of+0zGf+9znjt+gcr/R4i2+RuSAH7FO31k9lLcv6qdZY0/04R2KO131Vi85k/U/FFde/HaHD8zq4gOaD0Pw4hdn7nRxj5N1cfGnKy57c41NedKTsM569tbojWFrMHpP2lrFj+1ZcKlenQU6OOda8Wdzxos7bDatdw+HU4kWjeQAAEAASURBVIxyYpvd5nfmyIaOHxw9WZzm7Ws27lv8iy8njc6XUF+efUEsT/vqtwY9aLfP7FwHWrWJB5/NFQdzeo2v/OOppiudAT5ht86frE924WWrF0sN2evZ2H+NDp4Y9Ek1h7v61rdfW/Ya0W++q8uHrrqXj3j8woq/PrFmrmfv2uvLUzZ09rgcvVeJK1f4xmLrE1hhp6fT4MSpNTjqqGdD4t6YbfaHwd1LNefHp7Z5rv2O2WzdzBfHXMMXPz0Ozqo81MbcGI65Vj3KFSdSLDjlGZ9qwtaaOf84GNPvWjXJDhY/PmK5NuCxs4ftWbGs92U9zvqEn3U58VmJf/yqUzbmpBqceZcLm/Kg21rxVetywoM0L8ahfOClnC/5iNs5cn/yXuShFR17/PQaTgQerurlS/s73/nOm6985SvHF/VLMR6g9xqmgb+L/Q//8A/Hg3bviR5G9n4YDh7q0f3f3AMSnNUMB/PuwXjS4yq3zrPcFwceLPlZ46MZa/TqAY+f1j3evYNUr2Lg5AG2z2T8+YoRBq6w5ciuGPz6/MI+Yc9GM97PN+ycdbkb68uJLUz5iyMvQi8PYi3M7nvm+MlHDvnB9dDVb6rLma/3NHzE5kfoPNSxl+J6yP7Wt771WBPDb5r6T0dda7D9trJaOF9y3B9Y4199AMhPPLbiiasRetg40smBXfvIvr2ASfRa3NlrrRnjRvAi+XYW6cQgcMJiF55aqoe/ny9nXKujNS2e/IzDtFd0as6HrdrHgx1MevHa884+PtniWH6dW7oVeBvDnhGcXV9hqbH90NRVXNjisSV0sKwTY/WkJzCsqaU8qx29fbQWHz7GmtycM/HY6p1V541ePdjRiUn0dDDjLob86MTGQ4508mRfXOs47r4fwLcvaglDI/jw75d/woEhtjXnqXsJ/5q9xZ9t10j3Emvu166ZzgA++MZLLNh0crY/xPmzRleN4oOvfbFGx64c5I8bnN4f4XUOrPFhX6tm7NQEF03uchE/DsXFv9rAI2LALHYYrWfTnJ2zx0dvv+RCcJJfZ4MPbuzUy7UlPhscy4W/vNlZl681vN3njGEbe2huX9iIrScwigVHbHHygUWHG7yVeFZna9UFrrrBto5ffNhoctkzI5bf2Pevy9/2trcdocR4irzQg3aJI0raFKQjqq9gkVliEmPTIWFjPX9za/mIkY81Aj8OP9dcfs138WDBhlGMy97/V7sXAi1cDQZsbXPeuPT841B8sS/FV4f8q6Vcs20dD7ryoL8m1sSFm13cl3drxbqG9xT9OS7f8MXDSX2Kvdh0bPXhWI97dbe+dWB7DY9eTLLYh+LupXpnCzv8YvKFU03b33T5NI9PvVBswsPZzUbsS/XgVw3E3niwzM/ndGOxOYt1DUe+cIkeF7319PmHS6+JTaq79bjSl6NxeLtOl55NtTPmW8tO337gvfbxru5xCrdc9NXf2grf/Bpvbcs3n+VOZ90+xkUsNrC8OWhEDLgbyxsKOz4wvGl5QzSmL+8D4PbF3BoRA9bWY2Nv3Q6HKy/iEL75Z9rauQbitib+irnYWn7Nw19/OgJPizff1qyHUQ3Mq+XGoSN0bPvwYH/MtXiw2xjm9wls9jW2eCxv+OmPwd1LfLOFgaMPA97g+9Mxz/mg3W+0/+Vf/uXxn6DJXyPlXE9XHvHaa8B6tdNnq0/P5izqdd6PjXnJ3gdlH3ydc3Xp+hErqYZ08My1xDj++MEqbjjm6fjxwXVt01tjy9e4eWfMdRxufdjNYWVvLJa1+G2t6Ig4hF1juK0fi7cvdLCJvItDz49/NvqHhE9+9fmY4yoOad0H/ebi9+UAV1/afHFik6+99aC9L0bs6LRqtrHoyqMxDsZ8xaym5Y+PfK1rbO3VSnl0X22t/SgWPaxamObOKFxxca4mfBP2ZPF23VpcjcMwJmxxxYuwZUNXvmIY19gtDgx+9wl794k++/OBa27/+OPQuPrRi6vX+GnwWhOXL516WzfPj14tYRqTxcmWffrD6PYl3GLu/GzLB6ckfjhVO/Fh4JKefe/ZMKu9s17t2WYPN3289OrLRoy4sdWyqwb8s2W/uVvTSDlUSzh08ZGLuc8XWxu+9rbPHmHCSeh6kAB3pTnsa7Jr2cOHa95em7Ot9sb401cPuq2BeX7X4t+nLzabuNC5D7k3+TK+scWLl56PeuLk4YA/GfO3f/u3z/Kg3UNXvx3/3e9+98D2EKAHHWLHXf7tF7093ho6nx6YeFCmnq4xD3PCqj7s+oyghwmv/Ds3sOUtbmcZrvu8OHRs47X+3ttdQ3DjnB1ctta7znBjGze2CQ7tGRvnWK/hY64Z89dbI/ipg4c/YsGxhjseakOH49aCDsfuU7DUu/rC4CtPfvgWU8098HROxPVDZg+YYbJVP38P2r1VDDZ4amzkYo1tnOUkBg5y5Cce3po5+x5csocnRy0Jp7l41uOefXMYrhEiNrFWvsYwEvN8w9aro3o423KC1YO96swuLDwayw8PuHxgqX021mBWK1zYdPbjhDNM9nq4rZkb6+HCwis7vbrb/2z5q2f7X+3aJzzEam/4hRs2WzgwYOFA9J2B9asOzox9EZPAo3Me1cZ88xDnnHf52ItqgUPXEn84xbRWvtmLXT3KJZ1+H7S3P+xhi6ue8iTthbzsHzvvR/y6Trvm5MmOj9rBqn5hd53o2YUhn7jgXG2qqbhsyt2YDZzeH+HRi2VN7GrOH39zdtbk6bo3xtvZFG99Okf8Nb4JP/GzoT/bsbd37HDjoxE86WrmxDof/FxbRG2qf/Zsih0vdnKAJQ974gdAfMtbbYj1zjkcog7uCf0QlE814yc/wg/Pzlx5l1N6/sZxzg4f3MRyBjT34/e9733HvzAXo5yMHyMv9KDdxiBYYpLUJFITPOJtXoTSI1thrfENE35rCsF2kzvPwz73FXHt4e787HNpjtvK5hCWfoVPazvmu/P1aw3vamEdZzUhcQl7/Td+Yzjw+IVpLczqbD1suvThvGgv5sY941gTd3MuVzpjOcbt7G8OY+vA1jycs08x88s3HnprRB32wmWrhZHt1otObI3dNmsJHNh8V79Y2eqLabw8zMNg8xgRT1tuuMAli2ecPh/z5QmHLlzjsOHtmN/OrZ+lOGyrJZvitLdu4GJppBs8uz1TmwO77OvpVpZfOaXTnwW+RmDuPFs43hziFR49MTduXY69aXWWYC/n8xzGrhc7/GtrZ7ud48RPTo3POHEvl/zZ4a6PG5uznXnr1XHtih+WterEft9n4GwrFrvlsfkY80nMHyNxZlsO6eIczuazuo0rP++x3vD7jfZPfOIThzm81yPifOMb37j51Kc+dfw2k1jVJFw22+jZsE2/tq1bKz/2tWzrF0M+55zCoTf2AavfyDF3/ZD4FFPfeciX/Qqb/LvvLgf269N8bcILS0ySTb31sNyjqiHbeKbjQ/gQc2v807VX+cbtcLjzaVzPNx4wYVQ3NunEikO+5z4beGqolR8dXtU2bmosXvn04Z/OFyYf2N3f8rXXvlzb7+7rei2BLQ5dtdg1XBJjjU+1Lo/ytb74fOmsZxMeHGvi6hOY4a7eevPwzOGQfI7J7QtcLeHTe3Kx159OLdYnO9jtt54U95xX8e7r8djP/ub2kE4svOiIOGLSaeWut6aly54Ojj6/1s71ZpPOWFzx7KN50li/Db77q9pVi+rVHAad+aU151ZcuPDw0dhX9/UtN/bp6RI6AutsUwx8d81YzNUtJjyfh/Ckh61vLmZxi8GHTQ829GFmm00PEviu4ETY57vr18bVzXqYxcQ9/jDpzZPWzYubXTaP7bcW4dH50u2Lvi/inbXlULy4mfvC7m+0P9dvtH//+9+/+fM///Obb3/72we232j3IKazp3e2NWP88LHnes2ZkI/eHnatuv92xnDXOj/VgS0suHrr1R6m9Xz1XSf88clfHH58tHyqHVs2ai4XNh4+EePuO+xXYJY3THbs6cyd5/W1tvzD14eNMy7el8LqPYNNnK1p7DW5a9bZy6W8w++Bp3NC1FMrfzo/DIEHpweq5sXDH26c+Mux2lfn8mRXLeAZw7K+Qi9mUrzyZW/c/cQcdjXQl8+erez5silGffuuJuoAw4M96+WJWzj4xU1fHvIXt4eU1VSvqaE6aeGKYQ57MenjVz02bpjlD0Nt4cYHXmIMT26dEXb0ciPmcDeutfZl+dHJR9+1D4MOTthh4slOT8dPT851pcMBVs2cvfzgaMb0+bOVn7kxkU+8yyM79WIL175p+PHZ/Ipbzc1h8m0fxTJmk4SBE5586o2tEzrjdO1RfjBdy5oxO7HiC6NzlU97Atcan5r799bO9e6HDnzhV1u+cqQPFwYbnKtxOnWxptcIu2zbF7jsNMI2m+oAE777p31yZunw1gj/xsUphjlcPvbUNZkNX3HM476810et+OeLj8a+c6S+xuHBFxs3e1Qt9HESgxS/60K8t9z+jfaPfOQjNx/4wAcOG7hPkdf1oF1iFUdQBLWSaC7htSsxuvTZnslXKHbFqMBn20vza3y2UDu+hEGHc3HLL7/6ctBn29q1WmVXXL4OQ/Gqj3W25bO1y3f77Oga65P8w88GT3Ho7RuxptG9DAlf7OK7OMUzJ9VJn8S585Qd3taybQyvWNuHzR+WJu76dYaLsf7GhA2sMMrBPC7s8jUudn50xDxcvPNP93OrX3xdn19c+X9nOC1WczdvYm3rtfGtmdeyz6d9XH9rWra7ZnyW7POxzm5jLifrbOWxb0D5r+9i8HuMhMO2OGe/YqSPX/N6HNVIz4Zf+HrNPUBvrTeq7J7Cv33N5xqnuG0fFxiEb/eE7Fpjm+SXDu/86MojX370y7Vrydra4cBfvz502or12uqN+dfCjxef1s5+zfNhu1I8/tc45bt+57E99+Hqt3/7t48/HfPKK68cJnBfj+D3j//4j8f/oO4/Q03KN/6dT+vW7IcWd7kZl3+1o+Nrzl5/nxQvLPMw+Jn7YOTDjnrgEjfj4uvpXTf68tGfpfXllh0cDYdrGK3B7b2aD/utw8Zlpx72Na76asS3uHqSLhy2dPizMdaIeX7N2Z2F/cY0x3lrcfZpvu9n1blatGd9OI2Pfr8UGMMR1wd1H9g1djDstd8Y9QXbfuMK0zhhK34czAl/LQmz9XLVa8Ta2jVWDzbw8r+E25q+vKp7NcUTllw2Znh66+w3h3KJC7vWxdMu8WMXL76dm+ytF8+YWMM7jsbtd9z74lheejp2JH/2xF7TlT9da8Yr5WV99xWvcllf9rD15ajPFna+1cg6DPp46ZPws6MPW47VkZ2Wjg2JT3UTR2y2YS6Xw+n2pfX40rMjxYxz/nyS1sSIi/Vw8VlO6beHW0y49s516SGsPSbxYydONnpYnR3r1ZWu3PkT68U+FLcvrdHXrK3evNhsmu/4UN69hNP6rl0bl+PGzV9s9yLvRf35mOyzKSb8uHow/xu/8RvP9jfaPWj3g/cetPsN6K1pPN0z8cURL3thL+2XsTV7Y5/N2Z2vvfysJ8Yw2Ovdx/MTm+itEzH4OIOdC/p+WGEMpwfgxeJfLuWBfzF60MOuWPlk0zkNU6zOo7H82HbtNjYvz/jD9v5E5Ku+eno4pHHXXPW2BpNPsfhodB46OVdi2Q8/gGYHT+7+bruHejhZ99DZDx3UzTpeWnmLrz5d9+IT69Wy/NjEX0+PBzEm/MqtNfP0bMqHz2LAx7MfMrCNV3Fh1azDlX81gOdeRK/m+uLAaB9wg03iq7Zi8yFhwObL3j7Bi4/a4dycH7z40G+zpv5qmy1/nNtzerE3Txg4i31J2MabrTm+Gp+wsmND0hvH03hz3/rGI3vYaoLb2lmHXW8sZzmqsfnG46+tWIevGYelb02vnnDh4x0P421iisGHvpjmcTWutW4t343dmB08PJ2H6tE63zjRGePLR6xyLE9ntLPLnpjzkSt/fuLub7TDs1Zui8uWT+fOGjHvPBqXp3NT/sbEGoFfE+/sIw5Rh64PNnE2lk/x0rsOigufHRt57+cL3HEjbKxrMM35GmvG8OHiIwbOMOg06xpfPWHjPqtvbq06Hsrbl2Lxdf94+9vffvOZz3zm5oMf/OBhEl72D/Uv9KBdkRGLbMkUDLkaHdsKbc7PuqJcIyzRpCLw4dv8mm9+9fwITP7FpYcB7yGxudm2yWe/8GGxbbPptXgXK16bRzniWTx8SWt6ujNeuPrlwl5biVs5hF1c+MWFVczFeM4x/PMFJH6xxYqrupSPno1GrJ15s6mWxjX2rRmT1ur5bfu51c9fszHDTVy29HLpzFfT+FtPjMPPzlp5Wws3n9fbi1m94lQN3bBaF9c4juI254fbijV6uZcLHdneuDrlwya81uJozZi+lk6/OYgrhzCs51PPPh/r8TF+SMItn+zDgHtey6beunxwVWMtsUavhbk26fB4SNrTfM55P9a/2vNfrvztNfykGhebnk/1ZhvG+hmHBSOf6h2+fnNfjNVnv+vprmHkz6fx+uw4rqtrzPe+WsOPF9tzPHP5+6Dkb7t++ctfvnnuB+1+I87/dC+Ws7Z8O3/tO474aNbKb88of1h8Fo/PfZI9n86MvvrCVIc+iMah2LDxIXx8gNv4rR0Gdy8wNWutp2NiDMOavMTM3ro1ki++1le3/OjZeD/QNr/eI7IJ2/ws8Y2refWFqSXGm0P7Ux7FDbNc8r/U730V9uZYPPVv72CY+yDsIQqpBnjAo98HPez91qAH7b64sfdhm74aiyWG+Mb0+trmSkfytXbO1do2PuLSbS4H0N3L2d68+uBFigWjObuNHw5de5mu/Kxp6fXlaixOOYsTvrV8DwK3L3RJmPXiwSHw7RtO1ttDfXnRxzk+2VtTD/rNo9jnnk11steaOPzLo7jmxTMWszU9EV/LTp+NdfGWF5xww2NnLI+tRfpisCFiELZkc4pXNs2LuxjxthbnzeMAP71Yj48leBpdY1gws6tnHw9jIgfXpS/CrgVSvcSC6drVrMNWJ2Kd7cY+Fm5fxNk1c8KWxGPrQ7/zbOnDWh19ck3funhrU53pxSwu+/JyP/Jb5B4U5x9G8+zp3c/8Rrv3cX9CJts4PLaHTf793//95s/+7M9uvvOd7xzYfjCp9r6X2xd2uLqeum/S2yd7am9xsKZvD8tv95muOsDVYHXGxdV6IMK3uMZEz0bssNn393lx6Kw5b2zjq4dXTj4HmPPBIT2eiTE9G/7w1KZzLO8wrYeBm7U+b7BXmzD0MNdeHsUT37i4YuIIhy78zlR2YnqYo9Hx4SsOX3x+53d+5zhz5vLxn6P++Mc/Pvjh0MPkzRtOsXDDn+BBD6uc6OMDX4Olp8fRnN/60MFTT7lbs4fqVuw49xlucbLhGw4ubAhf8Yl82O3e0fNTAz5snCU8wlQbsQk8dp0BNkQMNcebwJE7HMJHnHMd8OcLpx8cVbu44MsXRu0AvcNdXbnuevnSsYXb2Uqnx6F8qmvYzWHJAR+21sUsT+Na94Uzf77p2MIwbw9wCT8s61r8YctDXDr7Y59w4oNve1TtikFPwjaGw4eN2jgDhE0ijrZ+rdmzzlpYbPExtw7fXGMbfzGLE/9i1IsDrxzka65mPuvSE/b06uNhu7gwrevXBh+Nj3V+CXyfn+GHjW97ygd2exlv/uy19lCumjoQMfmqszE97M0vu2rHnnRGYNtH/0cEnHIWJ7Euj3zSl7M53HiVQzWvZ5cPG9ep+NbN+ZcjXXl0zpxL79t/9Vd/dfPHf/zH4F7b72PyiJfX/aB9N3fj0dcqtp5Okvrm/LYo1hSAVCDr/BwAY77WniIw+fMTg8DZ2Jfw2PIjxbzkk50ebtjmYpfLpRjp2GafD784qwF9+eNxSarVpbVr9eOjtS4GEa+cLuE9hw6+GoslvoNfra2Ra7lWL+s1ODXr9NXQPMzn4F7MOIvrIu0MlNM5h3jkr/blzN+6OVw2zyXiwIbZHpvjaX4eZyu+sUZwu8QLftfLYXj3sr78zLc2zJaP9fDXNp04/NWHsKFrH/LPng3O2saBcS0XPtck7vDF1cO5T3AqF/54xIWfNbXLjs56/OjF2ZzYnGVjxPMc6+yzcz41WOJrl7iyS+KaL/36hZV9Pf1e/+E8lGf+b3Tv+ty8ix9vOd8nzgsb+cEpT71awPFB6WU+aPcb7WLFJT7mu3844aOVM9vOqbEGy3p41aL8yrG6FIM9LH2x62H6oKWxd20XI1x47MKgL5dzTLbW2RN2JO76xuUtJj7m7O/zLx6btRMDjprA7/yks745mz8kuMAjYvFPxDDXs/FBOE5sfEDlb53gHfdDceGFD5vFNtaKbw/KDYR96wM+X1zirO9LUR/E+fpg68uHng/M9hamWM2LX+2st0fsiJ4dsXYpz3Cyw40fPukOgHmh37j2EnZxjeMShp6+Frds9STc1ifsa/UvTjXlcy2/9W8cNh/Cn8TRl7LwjH15tV9xjHN7YY6LXlMPIk7Yh+LCCwy15ufMGIuNS3ysEfNyNxeTWG/MN//yzEZPJ6aej17Dc8+5sZy1sIuDx2I23i+d8OJv3bj58oPdWvrm+cVP/Gph7ZLgEF94xnxg6Onuk65L+64GxVYzQmdNa587G9kWd2PJSU1wwKlxNnw183Lk0/qZM3/ymJzOvnDPseDRkfIyTsdHDX7lV37leMhtbblmh4+x3oP25/yN9ldfffXmL/7iL177G+3ulR5u9mAGJxJXvVrbM3b2ic41RuyhdXy7JqybZ9NesA+rsXnXLH8+zeGoqdh+A9ucjc82/kSY3y6kc2/Bv4e07PHsfUt8dh7OwzdXd7oaPo1xt24PYcCXp3XvKz3oEgcWezzpcdL4Vhu9RteZgy+XagZDE0NN2JeDGNkWk86YXly84r8YavUHf/AHx5kTUwx/s33/bjsbdeHHRnxNjEQsOv7Ge77Z5YezdXka87GfYfNjy4cOf+t6tvbZPobJvrpVH5yKx06szkx8reNhncSdrbjFl7faETXv/xwQC6dqY91Z4Kfe/KzXuobY4ds9lD2schQbFzZ66zBchzBxYIM7THw3b/gr1vldkurLJoErhjMt9gp7sfAyrqmlsRzKgx1pH8448DsHW3Ncw+CrDoSOwGWznIuLA+7OiD6erjf/8md94Gxc43DkLa5mjEf74D6iiVV97E9YOGZvnV6uzjq7zrwccChHeOWlLnJwRujgyEULm32yPJxHD3thG/vXUTiw4YuD2jg74lTP+FQXsfiIQ1e87GGrF2y28oJpTHC3Bpdv+mpFX254aOzEVPewjLuu+IpZLjCtseHrOsVPY9uDdjzsWTj40bXf7GHCw6MaG2fLRgzNmLDT+PGHiYPenOBWfnR8i2tdHd/xjnccD9r/5E/+hOo132PyiJcXetCuGIiXzLU41jWJSqZi0ykGqZdgia+Ob0KvQPoKmE829/X5F5+vPGA9hONQ8M9Hb64ldMsPdpJv84d69osVx62peNpZ8uV/SfiEl78+v9bZvFEithrLT/zH7ss1fnKHtVKOYmkJvfaikr96aeKKv/NsNq545q2VO317b00t9M8lm/9De5ztxu9c0fHfNfbV3nglLDp+zXefYGmtnWOs3nhrBpeueoVFn4S38fmc88j+Wr+x+Tq7eu0+ya+c84mDvr0Ph83mYvyQwC8W2817fdloix+HMNZ/72nWlys/9/hqsDku/sZvzJe9xrY9bP2Xrd8zjrsmb7zbrzNnNkR+e15gnesDxxt8fzrmOf9Guz8d4zfae9Cu5ji3b7sX8d31I4nbl917/MnWojqwI82Pye1L/mpR6wyYG8Mz7gOjOPGDU7x0ehKfYzIvl+yq/XmNG872wgdO0v7GzXqSrnn5NeerEXjsXS/p1j8u+V7q8V5f/mdRO3Y+ZJPqw4++mMa7P+ZaYrw+5RbPenjlRucLrQ+xvjiQPgcaw7OGW3Vsr30Y5lscuHsm6DV6LbtwV2dc3uJsnvTbqgMcmGKeJfviLzbb5tVQvOUQnvVs6cwJHezEfO1a16th+9Jel194YsclfLrqyR4GqY72yZ6F4YtoX7wPw9sXfuxcm/CM6ZIdWyc4h5kdHS7lbOwM0Wsr5rC0eGezuK3xLXc+i1lMtuGy78sbne86zmdfANlqcr0masm385FdMfQEDm7mevz4GFsjdOaNq1Hrx8KFFznEke3GanzB7TUu9t5+6zcf+2IOX03YwMOzcXmWh/XEWjnCsQfWs4GjmfMv9/zrq6F19ub5ZKPPzviMZY3vxsEtLHjGYeTvvHvQ7sFaEgY8sj7P/aD9P/7jP24+97nP3Xzve987HgiL2UNqe7K1VN840Xs4ZJ/ww6v7s72Qw/IuD7r07LK1DrM6iaOJ2bXVnA1uYaqzB0w+48DufcB5Y2feGWbLHz+c2yNnsTHc9kdMeoIrnHDF2oco5UwfV7j4WytX9XUfYLdtcxdTg0PP3sMo9YZlrdjGdHixzTd/GGLD4PPe9773+JNqfNTNA6qf/vSnr92j6eFsSwcHZ/cDusZsjcWir1bqZa1r3Robtmw6Y2GVl5qxwTmM+PDr/YGNxp/oYXRm0uWbHT0/XNjTa+ZqRDo7+eityYUdXnTFgmNNsxf2OZy9f/Llo+ePGyx5mcPxmQWONTz5qwXZnNlr6cudTWMYbPLTZw9XbLkah3UY3L6wbS+s4ajRl2v501Xn/OvLj802vnD0YfNxL8lOHmq1czp81ESt4RM6vh4+V7vqXCw2sOjD4b8Y1uHAdt2xDY8eFptzvtnRG7encmyOs1rHQVz3Unp2hD+eifG54c4eH9juf3542IN3MejhysEem/PRxNfI8hE73msv5+rFHu9qudcxX8K3xi/f3Wf+5vD01TPurrfytr77ZA1/vIzlaF3MzkSY5aFGxuKIoYWvTuXDJs5i0FcXvbl1eGrJnpRLNvT4aXT26r/tQbtkHxKEOxjskSbp9CVb4cJsrl/Jly68XX9oLF4NtiIXa33FIcWPJ93GzY6eNL+E+XOLx71unmFuXChxOyPuYeN7yY4OXjyzKVb6M/bLmouLtzoXG79zzo+ND+dS7unPeb5onPjEufnmIa/wN2621T47c3Zrm00+r7df7MU663duLC88STnLLX7Wa4trHJZx9nTpG+utwzXWd/PNBsY1Wf/iZNtcv3m0P9k91McDjrb7/VhfdnCS6hh2+p1nUx7ZnPv1sZZ9ffbtFb0a86NTG+PEei1d6/X07ZNx+rOftUsiLp/s9S9LirP4l3S7vmP1iW957jldW2M27Mttx/lbM9bU0Rv8u971rpsvfelLNx//+McPyNdbE9j7oD1u8TqC3PGNF915nU4OSbbx255d+XZ+2Wv0PvT0Zai67vkzZuODD1w+xVu7uGyfHT9j9sbxax0v0jyMbPtgxq7PPmwXxzz/cg5Hz7Y4eJDz5yI24TyUW9zg5GO8ggcpTvHrrcUlfuE6gyt8xKn+9Rubzj4V177C8aGedH/gg1MfwhdLrWvhsIdbLHoN9/M4ntY2N77lpid0/PWEr7Vwi3cs3r3kwya/tVts+uqYTf3aXcLnx6b8suFPrFVP8/ikX9/ySqeWGp/sYYlF7I0vPnEw3i+bfGBq7XdnzBqBZdy8vK2lp6vW2cPreo8PH8KeTg8DP/5xycYaHWmcb3H0i8WOOJP5ytnZrQ7FbH443L7AJtbDDftYuH1hU67ZFsd8+dHDoqtv3Vy7Jtb4x/G8L2f/nRevB4T7RXbjd92qDX9rnZdyCVefsNszp0bZsal2+G9t8q+vttnEu/U40WuE7XKhCyeb+Kxt2GG6p/WgPXxryyVcOg/kn/M32v/zP//z5m/+5m9u/K12XOyR/dLbF/uOV9dRXPT+gz0PiIz9+RsPrnHn0/24c4O71pk1FoNdeVdXa9XHGvzi8ifWSfgeTOLI3lrxz+cVDmHjvlBu6rr+y4GeH514zqna8C0fmMZ0WpIPf+vidrbhWg8H1/LZe1b58OtBOzz75U/9yJ3N7pv4bGrWccbhLbf/GR9fa/5eu5g9pBLDb3H7u+32B79i4Sd3fOlhWmsMWyNs+cNmz85nUOvlvDZ82PRerTfXxAmn2B5i87dG4mBePH1rxUynz64YbLSVeNCLp250iyumtvzZdj9TU3P5b4y46+WnGeOlTuJ0JnddbHZh5UOPA9+4eBAYrvXy49O83Ni1fizevsCJtxyssyPWiicmriTsY3L7Ip/46rVy5KeZh11MuuysFSssOpzKz3p2amctoafr3JtvY+v6IGLCcl3Bdo7pxMWVHg6pZnGjs9a1bW4sNl9xXMPdA2CK6/qjK2d4Gt/NF2dzkm1je+03+f3wTLy4lZueD0yNwGNnjVg3dnbp1944m8Y44sOWT/cMuVoLg331PkBuX8rLHB826dgSOIReKxfr1YiNM5qvnpRb9ywx2MU5O7bG5WyMC/tyEBeetfys2WtNvXcNJxhxDIet9+/PfvazNx/60IeEfg3vmDzi5cm/0e4/XnG4HDRJIEZK5Bwz4tbZJ+nNwzAOpwLRnSV7tjs+212bK2B+y4l9mGya08XrUD7DS/EXl65W7GrsELC9ry58+Dts2ZdHeRaXLV145bh82LxRUt744mCud9E/VsqN3znvMOizS8e++qR7rl6sciov2MZaws6etSfp3+i++lSTamWOXy3+5dA5sp7Pcl9dPunCMhe/ernHNHYOOgvsNH7nfaPHgWS/PBoX6yG77F9WX77xqDYbj011lVO1XpvHjuVNihMunTemYukfkuofFuxL3Fp/CG/35BLOQ/5PWS8/ccStPTZub+hi8q0W9udSvpsbHzZ0SfN42Qsfwjxo96X6Yx/72GF6CTuMx/Ri9qDd32gv7tk3brt+jr028WZz9rHGVlsMY3X0QUau+s5j2Hr+W2/z4u14seVjLRz7SuB0DZlnwzcb+rPgFbc++2QjRjzpllM2l3ox+zCYX3bwipfuKX189jzLu9zpteLgTKqBHrdqys44XLbVjo60tnP15ne+Lviqow/KYrHjx9YH4MWmD/MIdBerPcmWX/HYt15OW09xymfx6QgccuZGl724iXE5lKt49M3ZZgMDtj7+YdXn1zrbBE/+WpytxY2e8I3D6vDQrBEY9puwszc9bDC3T3tWi6+vrsb89HDp1y5uYtBrxL6VGx1efRGCsRKGPgw2aqXhKnbr9cXaNbbW8zcnm2tj2GGxyzZucJcPzGKtTTWPD5zGejHYGFszr4Wjz2d16ePGRrNvnaXswzdn37Vejh4ieLjQfuYXX/2uwTMvDpxs+ZonasOe7VnUjFjXVsKgZ7c1b61ebGKejt9yar09ORxuX9is3fqzYf+rv/qrrz2kNify4cdejp0rv634nA/a/+u//uvm7/7u725evf0TMmJ3nbbPuIjtGtKqKb1/xeZhOz/f5T2sxhdvD1z6bl/t6au18f5md7hsa2IQa3DVRF/trcEx7/0+Hf6adT441swJP8LXwylxii2WZs6vNefSdbxcDpDbF3UqDzo2bNXCmnsTyQY2jqT95YOzmHRa63rrhA0cde9P5qi366yHXfLclo+HccSaH/KI1X7bk5/97Gc3P/nJT46H7Tj2AI8NbH7VFr+tcTlar04wiPPRQ1vz8OQkF77W7Ycx7M4c22oinjzjIE5nrfrAT8TXqgU9LPPEOlz+cM1x8FAVj9bxo6+WejXJB27YfDQ/jLLeD6KcobiLH49i6KuJ2ltvLXvzMIzT16un2m29reGr8dmWXh8f9nBg4KPOJH9jtpoayZt9fFqnI/Rw9PnwM44L7LjzMYZbPYyrX1jsYLCNm7H6sAmTb/Ho4WjWzTXrNfWzBieB4Uw4A8Qa7vTsYbhHuyarFzw11Fun19o/fdeucfmLARd+cYwJm+q2cXBwncVdfnyy5YfH4vLHi7BdbuZ48KlOdOba4uIoHp01dvIi8K3pcdCsw2TrnOsJHYETvjn7Ghx21mHJR8u+erOJgzzUZWvAx5ywlUO1oDPm7xqPe7ys84Wr7Vx82NWID392b33rW2/+9E//9Ob3f//3Dx85PUWe/KD9TW9605FAG1vRJKy9XqkginENcze3greZTy0AvsXU89crOAm3i+ZQPsNLmwm/QyKXPXjCiFtdN+9reca9ujgkbOEQeg1mudGb41EsupVqs7pfpjF+1Ueu7V95/3dyfUrt2JJr+/sy8lh+3Wj2zLTe+VRn50SzZs6+c3zmyIavPj82/OjtUf4w6Nnu3r2R9TjzvzTH7xKna/pLGI/VVTv26ifuU+Ow12Cp8WLQEzrr7cuhvHtZm/Ts+1BAxyZcOCS+x+SeF77OXtdtb/DwXoYURy3KGQdn7hLncqtGPrjRVUs+xvr7RG2LnV05wiNw5O+N/z3vec/xG+0v40G7f35c7Hrx1WP3z9g6XivyoD/Xi325WDfPhk9rsHyIkqdmrD6kuvKlz0e/XNmyOZ9ZdmLRs1dPHC75w7gmxYVRjGv7vDzyu4ZLD7N7X770l3wfyztfvfxx3X1TA7WoHuVVbuYJ2+7BYbWPbPjkJ54ctPYunO3zYY+Dz5EwF0csOs3nF7bVqnqVX3ssbuPlVmxrfZCGdYlj3PjAF188fvDNtz5hs9VwZZcNXeMwrYcNz7i4xk8R2Nr64bt1a23rhkM8Nl5Y9qXftCxnuks1O/uzI+0n//Kkrx54xb89tk74uubpjR8r4ojPBz6+5apfYVut4mIdJ1/S4Bizyc569SwPOtjOV/Z6HOg2Lp1Glz+O57oWA3b2fOj11dR6tuHp24N07IzPc9cekZ+HYNbh6fuiWu44Vgs+5uKUY37WEja4ktZhy0lv/bHCX5M/P/7GsFqj233Al47kq6cn+evpCfvqKw59e2A9zn6ruAczPdjLb3HZv4wH7V/96ldvXr190A5bfHkn7le4pS9nDw/9uRG964vg11nHX23KcfOAYd19oYft7aOaeejSWaBvDNs54yMuERs3zTjc7jnwxJNH+RWLP178NHzFwFmDpecPR2w/WOihC/1KZ6Rc+fCHyTZ7v/2Pg4fZYtS6R/En/DW2/iREfxYCDg5yZBt24+3jwIZenv32Pr4wNNeoOYHtt9r98gRu7P0NfBhd5+yN4RMc8e/s0PN1L2DL15r43aOtq42ezh7aIzZsYZZLccSCZT/58FVHzWfQ+LFLYGj2Ag5/Z4yvnPV0Glk7Oj64+AFF1wEdjvp+uMEvvtaMYaslXnJLt3Fha2Kxh8PeuFrR8SlvtmGwI7gYa/CIcVz4xLkc9fnwPwsfbdeM6cQo37Nfc+tiysdeh8O/tWy3LyZf9x+2ibzjTQdTDuWEl7rRs9Wrvd7Zzj8MesLP/qox2X3FJ87H4u2LOeFfLsYwNGN7L2+YbPByvs+1w2uvwWz1eGrtY2twcOAnf3nhrI+X2EQ8/sXXE7b2phrAMWfbD3lw549j9SteNcfFv65xjVjDS2z3SzGMO9PW4IlpLB9zfkRs+rWzxr57gzW49BoeBBb/7iN0YsOXh30xhrPva/zkC0c9id77jH/dY2wtfPHNqzV9/OAWX53xKT92b37zm4/fZn//+99/xKn2x+QRL09+0O6nqTauixAJjVRAY0kh8xChfLPjt77pYSbWk41fPD0uj5XFM4apyAksm3OJSzZP7eGXp80vrg1OxBO39Wz01ZqNeWIMo7rWVw/rGr/Nx7o4GgmTDa5wrK1PMZ/axyE/mJc4tf5Q337BaK/OeT+E8bLWccJFju3BfbE6F90M7rN9jrUzPzcZHPB1s9v9rs7OV7WWE71Gd+06KU5+7bm5JpYGL/zOW7bPke9zYJRr10qY6eWwdWv9RXv1SeAWp/rsenb6amscH7rG9rkcYOJtvTMYbvH4sUmM7ff6sQl/4+ZzqWcvZh9s4DkL5XfJ5zG6zX9583XOrdPLT3x9HyzKQR8OW80c1+7VeLZ2H2dYfMQO/1IeMPDwweLd7373zZe//OWb5/4b7Z/85CeP34IqP738a3Ik8dSf70lsW88+H2t01rfJ3Vp26ujDkt4edPasqylRh/DVr1pbo49zuPTGbOGx7zyFw+Y+YReXzR1u+fAvJh3Jj+9DEi5+9/lZK29n45Kw0fCpPjjEt72zZtw5L27+i42fuunDEV9jb1/O+8nOmjjLtTjWqw3s9kV++RoXJ3v+2eITHlscypV9fI01NjV+Gsm2epnDiR8ca+n4ZWstCXNrIR6brQF7tuIQ6+FsjGPxgZd88Yk3nX3V7zUDil0+7PErn/i0rzA8GOuM8HNmrBtfE2t7XuREd67B2V/dcEn4dbaMHytyxJnIqdb+LA7bckpPh2t643R6Es9yEqM8W+fPTo1bM5dndc8GbjGOAHcv6saHv2Zcaw/C4g+PNGYTBr2xtdVVK3vmwZ01+YhjzRdV3/X4hUtv3dxa154YZ2GjTnCTjb/61u/rxSXx3P3NrxrFt/jp17+6qiMswl5Tz+JkZx6e78G+nJv3IKB8lhccDz2f+zfav/a1rx1/OsbDAQ9KXC/l4P2UHr/uSfbYQ00PYl3bRE3om+Ovqd3Wq3NM5yGG5hzInYjr/RuHzqueHpYHSR7eeIBFz07N4icmTDycKXOx2LFRP3nEDy4cMdVXDvrOW7zYw5N35/ggPC982YVpiX81MDf2oJ2NH1TgRse3vOlw4GtM7yG73163P3xdT3LkW47V1jo/zRrpXOrVwJq6u1a3XmrBBzZ+nTn/6kLd8MSLX/Vlz896HMTEzX5pxoSN/cKRrjztj3OmsYEXJlt25YK7vXQ26X/0ox/d/PCHPzz+hYWcsjsC3r6wh6Hhbl08Pf+4sdPoF8NYXh4kdn7g0JVjD+LEFKc6WO+HM/jSE/7WxMu22DipLRs8s6dXG7rNxTpf9mz0YeG++6Km1jVrjavBEWxe4PCxzt5YT3AwT9I31/Nn13WVTbjWjLMNTx5sce9MsMG36+xwun3BjV6vqadrphrCdF6sOR9adaIjOIhlf/nSu8eEkY2+HNLxFVPDwz4746SHtLDl2v3UHvIrvpziVV2tazDxLQYsHPWk6wuGaxnncPkRNSh+vvIIm725Hg/85CB+5w3W1q8awsfNL067t+FB2Dr75uUnHkx89O2/uM3TmWvVmx4XsehhloNxZ0ds90l5ZsdH7bsGrfW+BpOveuKHN3GPcwbkoMZxh0Xkr9ak2OGKz45er/HX/9qv/drNH/3RH928733vO3zL75g84uWFH7QrUklUXIVv8yu2+X0iqWyz6/A017Mh1tbeRrbJh8Hty/JI99gedpj5iNnhT/ci/eYQ5+oFr7hrp8a7qeqlVaPqW11gWNcT+tYOxZUXNmKFly8u4anBrl+BuqqGFZflx6G1p+LziyMc/vL4ZRHcNteH8lNrPufzRndJ1POa5POQTedJ3dxU+HUewjaXh7Y28rHWGelGWmz+xhrf9O1Ra/y0YtDDDT8eb2QfVzFxIfHTn6+H1l4mb5zE0VdDvOJnnGRrfq5jXMOwf8b56JPilVd6cz7FhkHWLpxs8k3fXAxvmvQwa60/tr+EG2YcxOq8hls9el9Lr+evtd/GrgGNHz3s8i4OX2P2jcXld5/IvQ9OL+NB+9e//vUbD9p9KcNPDqQaNI+3s/PQfvBhXw2Ma3yJ3O3x2vqQ44NUHwzjEFZ+5tZgLJfswzwC3b6wb4/jdL4G2BDrK8UK07qY+rOtGGTX4hmmNbHDTb9+4RbTmjHh1wdKPMoj/uGy16zXulf3fkJv3JnN9wh0esHpfD8PN07tJz17+mpSzGC7XthosNnwLe9w2+MzXnHE4gMTBzF3v/lZ6wN5+HHJlx2s9jd9+DDjZ634cPgmxtaJsbjhptPTxZOduIQv/QpbjZ22Qo9L3PKtns3z4Z9P8cUUP97uOezsi4c27T0/uNUoTPoa3Y7NxaHDMf7mK/T2b9fN3Rc6L2t/31gcHIu3uGc/NtUq3nzlTBbLWEvYVzc5VjM9zmzZqCudZoyPdbK1DE9/Fn7hWGMTJjxrdH15DCvO8aav8SetqYMvpfqwjXvQnh+dOGLib9xZOgBPL3HgD1f/WIljPs35G1eX1tPv3BgHffp44K2RzUFe8tQTcaznV836jzzZ9MCYzTZrzpMHQR60f+UrXzn+U7W4WH+KwCY/+MEPjn/l9t3vfvd4sNIDAmuw3Xu8p3ro0v0Pb9e0h0ge7MjP+SH2PmzzHbNzZjtrHmR0VuTG1no1NC8/Y60HzHzZ1lzj/NjDdJ7Ey2/z4NN5sm5f6NjXWofHhlgTH358j4W7l7ia8jHPv32HoZ5iwqIn4sWFD/yuIbnZ9x4u89nrJ3784OhXxFJzfppaEBjiqJVm3MMn9ZAnvsZ8iql3f9eTamYMn70el+qVjTUxcLJOr6ffz25yWN7Vk648jPn3Qx8PxfDa/PnVNiaM6oV3NsUJo179XBs9iM1XzeQobrWHsTVwrViXH308YLBtzr+mttbZs5GnWGzp0ptrhA8bLd7tR/sPh11c2WW74wPw9uXMr7pZLzYbjdQfk7sXuGKKTczDhbH+zdmyE8/Zw5/Qh3Mobl/KxdyYD3v3CHPj8heLLj7lnI/7nNqKcb6PlK84/Ag82Pxcp3D507Fxf+weaU7vHFTH8iwvvTUNdjHEbt/DpxMPTzmVF50xce5IdcVRg5GPvvsljnysd5+odmd88+pg3G+0by7G1taXLk7lKaYxnmGyMdbUohpkE0484it/+9EetCebO1v3Uzp2MNVga2eutq5v15Q4eMRZ/GoFxzosuP5MFNt4ywWGuv76r//6zUc/+tGb3/u936P+hXwPxQMvL/SgXRII78ZXaD3y1tM9wOEXEsv/7KMYpMSNL8WoSDbBOi6/LLKb/djaLHf1lheRJ4FTHeiKoWevXtazP5weeIHZ4e1A08F6Ed7CiX/pvDxA5X/McvviPL7Imcy/+qunsb29JupNOh/X7O7TO28aznuGxKanc1bidcbCO4xdy17fWWPnvMWXb/XKfjFe5hiXuONQndOJjRN9a3Sd89ZeFm/82l/81PA5pL3CG+5T+auPGvAlxlp7Gkd2WiKOHMTPP4xsHtMXH56YsMqpfeq95BJeZ5E/v8VrDSaMOJ9xyqE84uD+Ca99O/s1x5OtDwIv40/HfOMb37j59Kc/ffx2W3kWuz7OcpF37yOtP7WXt5rVqut+kLpUNzzE37qZt5d4sLGuXZP2vPew7J2xPeebtxidQR/y1Ir/JVm/87nIT3679+byx0UsHwDjYg1nuImxdRz05uWRnV4MfV/E+YfFr3Mc7rU+3mFmV6zmT+njK79LXGDjWu3V3VjO7V1+bOGEqZbtEwxfjnyAlq9c1IVvjR87ejjFlA97WD78n+tVTD0ObLXOJR1f64lY5mKTMNi2Vn75hIfjYrV+ra9e53UY4VSDbPiIR/DwRVNOSTVYnbX8ykve8iHZyrFzX9zW8JEfm3zsmxbXY+GZX/DYnOQsF3LW4xq/+OMmJ2t8E3byoYejZ3c+D/xbz/epvViXzo6YnQHc2hsxNXM2OBFz9x4POdjHHYYxCc89pRrg/xgpbrwe8ikv9sWXJ72W4NFeidF+xLu47NnmX91h8mFvvVjh6/mEvXp7HCcP3XvYAyc/vurqHvRbv/Vbx99Vf8c73nExzmJfG5e7/wT1lVdeufn2t799YMMnmwPO9rcHRNbx9WDTQ0RYcpdH1x8fNppawFMbdnRJZ4FN9tnK14MOPTtxWnO2yiEsczjWqjPeOOG+99+1YyuOGPQJvHDKB4ac3dPO8f8Pd/e6Y+tWlXu8bgKNIGqUD2qCp1vQb5p4QMBjRDwgYEBNSIzGxGi8KQ9XYQQRiGBMVFCvYdfvXfO/9kPfY8xZNddciLslvXrv7fC0p7Xex6hR76xVy/cMfmdN9aVeqIefB84wssPtYU8Y5jjg5r6pSZzhvOz5+c3LXncnNzXhpw/lh6tuMw5w3ve+911/Q9jDIL+dSg/3S1/60sPXvva167fG48NGYOBudj7Z1UtnEHnx8rCaD6nf9J0Jv16L1nj5bX4+cqqhh+ry8eVXnF7Ayl+MfHrDl/4U97K7KR5u2GL1znkZ7gDMHqLKS+QsVu3w6LL3DwzwuuvVrEd7dmLrEb5w3WtSXfGARfi4P56pVSeeBh+55GGzJtUtVzVvf+pB/lfQ4xc+MMU12uezc3n5lAem2OLo1UBwrm58V/izhcNGZySwxfHhK0/nF3Y1sdeHje9O4cTu3rmLBC6B6zXofdvDVXrnJAauO+L/ZeH/e+B8Yca7/BfQfKkveFo7Z/9Fi1mN4unlcdZ9vsKNj7yEn5xmcfV6exVOv3kuDi49HDNcXEjnA0tPiD47XzqvE754ifcnp/SNLyx6nNzT+PArJ67WK3KWd/Wt4yJvdwAnOOKqXx0GHzOuchv8v/71r7/NK2ycCR9xcqjFPn3/CFpN5cFLPA7q9h5J5/v3Jz7xiYef+7mfuzDKcW2e8OW1H7QrEgGDaIzkhnXjqYRqAixrIww6jZBLAxaTDyk+DnyzXQ7v8IuDgie/XPDjuHxupeHXZaqm+hbfM64c/MNPB8vaYMPJIF0ss9j6kP3Mc2u/mC5pXKv/HudbWHTiG3hUD9tzscScsnh68u0oy2v5voqruPpfr+olmzMhbOcZ8yvmVXnChAEzvs1wdh1eHDaeL8m/O2kfH3P3ycwHhnU+9mGkL++7PcuNk6En9WX11WDGM584079K4PP3fvpUKR8ufTM8v9HBgrtc7vHhA0uPV+75r8+tNawz74lVTvXL29i4W9iv0olvyGnY1yfx8VtOfOz1sbtGxzd/Z8RG7/uRNX/7JH8z2Rx81ds3/mpeHzHukQ93cnjQ7k/HfPSjH2X6JrxL8cwvuHrQ/vGPf/z6ICk8/uZ440a2dh9KniLhqMsIk74Pvs7D2A847AYR1xqX/Nn0UY8IH/iNMOzFwdFzc/5nLFv2uNrDMvO37rVqvzEX8Asu5aeTv70PqrDVEa69u2DQwXXHyi3fCh+Y6ucjPk7W7MWwEx+m4fYBVXz3eLF3HT8Y5YIrR3nC37hXreMbBi641U95Df1IX06+7l9nH0c5rd0jP7CYcYPRXSufeWsvHz1/s1g+6qUzy82X3dpsOEsixuiHc3p2MQSGNZ/N2boZNp+kPTu8W8JWTGtxuIiRm9Rj67DExYldf2GI7QfBMPdewhAnj+FMiLqr1T49XfpyVhs/dzOeZnvnKPfK9nTj16e1WFj8SHWUv/tlZuNn3f1o332DEUcYfOujtbtCL377Dicu3Zf4sPE1xKU3w0rEG0QMCTMOeFZbNeBVHcWVrxkWm3g/VMbfHQhHLlh8/PDJ32CPZ3ziEF/4+Zxr+1sSVhgn92LirRa+5Wa3L95+fdRh7zz5qM0QvzHW9Wnj6XuN0/fb7fDCKE4fPdTxG+2f+9znHj74wQ9+Uz9we6rE7Stf+cr1p+Q8aPeeB1/ezsUaF68hNnF0OHldO0P3laiDn1h2entST/jQs5ejnsnDpk7vH+bW3Ulx/Pv8YF+v4C1WfGCqzege8oWdwKNb6czgV4+Hde622ju38uoP33jD4tOIp1zw/IY0vvHz8LiHcXoc12qEx18+Or31/tb3Y/F4wRe/ohZ+elDv2J1fOHi+//3vvx4EuVv+XIw8HhJ+8YtffPBfPXgYBUcfzLj4Lxvkdkb4yVXN6jEIGzwc+BCzvhB2nzHw00PY1r73+v8YsPO1dwa465Eht5mPOKN72tl74Mmv3NsjZ2DgVyxO8tvrkdem39pVO/FwEg85iRlvPGCJkaN71j8wqEF/sqsZllksfuK7L2HjTmCy9V6BM5EfhrOor/zkMavDWcCpdmeYXW4+8Kz5GPlv3/jAVIeZjW/6i9B80Sc4/Ik8RjzFiacjYapJHDsppnxiwgifNIV6AABAAElEQVQ7v2qgN9wDr1G9FdNgKx88OY04lsO9Exs+vTiYHoR7PdPhK5avO+fPGvnzRt0N9nqNAxF3Sufi3sB3Vvz5lsd56y08/t0xfjiwmfE0Oh9zPvi4fzDova7Un8BVi5ywCCx9gyHevbLnyweGvT8ngxM98Xriy07gwNAb+PK2vhwev3Qe7HxPgYGfYU3kqcfi89FDa3zqJ3++//Zv/3bN9rdEb+QQZ03w8Q8sBgw1G+wGzvTOodflj/zIjzx88pOffPj5n//5C4PPc+S1HrRriIMikXNQkjef66eS0oRGWPY1gk4T6DQ/H/h08p5NOPdx4U/u2fMzdxldAP7qLh8O9yRf/MXmW/zyX4ztazFhqTvuYsKgY5PLWp96sXkh0G3c5tu1PL1QxOOSpOfzVMEpzjgVi0vcn4q1ftXSHG7z+r6b6zP/m8oFt3ugpnrV3SmvfGzO5nWle+OewIK9+K/CFY+X9wVcxZoNeq8f89Yhj0HEE/eDFF+t/MS+W1Kt5bCXO87xps92cun1zR7O6XPut2+nzR7WPWGrb70fr+/yfFn/ts6X+S32y9bw8NID49695OP9pfeU7sJz+nerP1u3/O3XN25nHdXPTjbW3WSn8x57q7Z6ubngiFNnNVf33nd+BK7XodeMb/Bv+m+03/uN9mrFoT7Q4Yyn7/tPkXDqsV7BIz7cqB0mvRrN+kbqW/2/lI9f+Bv0cbOmE1ucufzl5FOf4xIGWwIvHPZsYsOUy2st7PKFERd6521v+HBNYBZjtsfJLL+Y5RGumV5eQ2zY4ZWbnS/cfrDVc35s6sln8cuxOnz4ks4JDpFj52tzfFlu4tubYTdWrxdyshFxRA/7/qRW+Q2x7pEP0+qs9tXV32oRT/hadyfp9Kda7eHzMeLUnp3ACbtc4qzbl+uMLZ69PlygL76kX10xq8vPrE/l5oNb/MrBrxg2/bV3v90bOnuiJ63Fs+mF2VCTntGFL4bgwb5SHF8/TPMhzsHormwM33DEx4dPOenbw9w9fXFmXBvi6fr8Yo2/UYzc/OQVV3767l3fh+mM9anGi+CLL3zo4cljEHma+ZQ3H3tx6es1u3V5zcWY+cctfLm9tzv/fNRh2MOAad/rL0x4BqleNuskjPY7FxtftviFUQ18t4dwceLHpo6kWHvx9UoMP/t86n2xzTD55Jfe3PsFn314Zr9x+HnI94M/+INv9EH7hz/84Ye///u/vx4Y9aBGnfXR68f7oQdNBA9n6Pyq3/ujoZbOSK16A0eMe6EeePQw+NJZ07Hxg03HxscgMOXseyB7cfKwEfr6DRN3NfQ9jE88i5PPqG646unBCkx7D008LLIOR94e4omPrxgCy8iGG1z56q8eqdvcGm59FE/EwIctVt/5qK3va5fjfFlf2HgYsNyp/pHAg2QP2z/wgQ9cD9rl9BDOg0L/KONhVOcMEz8PkOSGR2cQs7M0CKzO5FK8+KIGoibcqq+9fH6jXS5rd7Q7kn99E2PwhYNDZ+8fIeonrnGpv+1xEcen9zHcnVcPDeGoWV75SDnl5e9+wCCwxcM17LOrxZ2CBYOIr1/2cNjMBptz6+xh4hEWO6Gzrh72ctB1lvjoJeEfb/HL63J4/FKvwqaPV7nhGwQ2rHR84xEWnTWf8vORn57AMLKHJ+fGsleP+8XuHhjLWXz5w3d+8i4PeGL1iz6B7TOHe2EW13sMX/8I5c9qmmHgDh+3rQGnrQG+PHRw3B1z3ONWf8z5hg3f/a2W8HA+X3Pez/jrhXUxeLinRjnp+IWhHmfEp/c0e6IvdGxi+Pba3fsgH8FBHtIMS1znzsfIhx8u+iMHyccM28ymR/WJf358/AkqvStv+OLoipcrH7P3TiN/M64JbHdCX+X2J1w/9alPPfzCL/zC5YLDc+QdP2g/kyGA8B6Ihr+u1CgzTFh7AOWi0xBNrKFysnchlgO8MMUa9wSeg8o/Dvf8b+lhvCzHc2O2Rry6jHFUN+Gnfpz5sG/srbx4ijF6seWX/jm1xC0uMJ4TX+5zVstZz73zPmPf1F5NBh5vqq643TovfVOjuR42F/c6c2fkTQu+msr/Kjy+BA/xxfU6CYueD/xy6Bux1z/Cj9C9idousFd88fqWKw65427sPYt/Ps3iqzXur+LPn9zyK+/a680V9PiFj1h9fycSb1hxfx08fcJx66pfWyOfvtHqOf7ui7hqEvcy4QfjlpQ/2+7x6G5mb17udMWdMasvtjlbe3O1w/eeSnBQYzmL673Ehwr/qflnPvOZN/4b7a/60zEXwfnijPB9rqipM1KnHwqrPxt7ry8zOe9gvWGrX9bpm+lOYav/1uKJmtKfMfZh8olz97S7CQvn5c+/95Ewdk/Hv9h8bnFY3a37Elb5916z1Ufr9uGwVQcbiWd5cayePSd2sa/qoZhGHMIWGz954tDc2djz6weQ9OGY1S8PnMTrZ/9+MX0953/vDODHwQyX4GAk+dhbwyP1JD70Ycq/tfJnM5wL3/Kx3RP+8REjv/iw+6EpjnzyE1vvw7fvh6Ns7nr1dmfEknKb6yk9DDm9XvK1jwcfwkYntgft+YvVgzPmrcjbX/N/6vdBuQx1+WEqSaeufNisO1d7vbQn+MaVH6k/2/d8Lof5Qo8/7n6ghaEv29fc4cprLF55+e169/RG3NhgyKsHYWeXQ38MPq0Xv77DKi579y1bevtEPH29FKNuvKpv49KJlw+ntYd7zsXl255fujPGfv3W7sxxJd5j/NC+Dw3oxeLn4dqb/NMxX/7ylx9+9md/9uHzn//8lVN+D0bqW3en+6NPzs9DS7rumj8zIra4ztlZeB17v/XAVqweqad1r+/6092w14cecHUHwtSX7kmcO3M2edhx7HXV/8yUH31954uj14z85dbv3vfx9cDEQ1F+YnGRQ914ev8xdxfFGOwGYYMvT/cFFo71wmuoPHyNMKz3wU01wMOFPd2V8MWXelVOan4+R/mNWb3Glc4vMfgtcrVUo99mN8R7uI4fTHY6/KqNHlY2nPQm7suBrj0MPcCBroErP2eBa5zM6pbLbG/YG/gQfGDay8G3uyUf+3KQC447QezdeXH5xXv3dLDCs++BuFjCH7aZvRj24tjw1X9iHW9762LN9qTc1up3T8qV3UzEGLBJfPRIb9jEuotew7AJfzmJGIPEQ9yu2RbPHhZsEpa1sxCPO73ZGZSDj7j6VF+qgZ3wF2sOH4feJ97y+r/94md0Btmb2dxfQ3/Kax1nvnJ6beDMR9+WB5zlX5/geijtvMVVdz3wfoO/XOU3G3uG+Huf7bMTHKN7EV84cTlrFsuWwC9XfcarvvI1wjbj251RL196c2cfp2LNeHnvkceQ2+uueywG3+5OHOGKjV/vwez89QAfcXz4GnjGL6yd4XZv8C+/OQnLXh6YZ0/5szln/2W5n8P9AzdR93Pk2Q/a/SulBiJVY0uIGAKGYg1rvs+RjRXX4VnXrC20tbgOrUNlyy6eLB6/Wz5veb7lW53Vo/knZrhxL/7eXN579vQuLeEfD3v525vlTa9Hhpg428fNHC791p9/OtgJW/7pnjJv3vBfB+dWrrCzxbv9uzFvzvpan95UXXhvnt1Xo7l+Wp/S/WDD65a4B8XmZ4a7b7L5nBjl4C+H1wZMo15UB99yuJskm5mtOxtefWW7x+Hk9Dr78tzr0/KEXx3VvzmXZ35rf8paPj00J7DkWx2bnj33PTZMOcIId/nnZ2Y32G/5wIrfYp3+7fmIsdf3zv7Mac+n/Pzs5fINs1wb17pce67pzGT7HBabmHLKZU+fj/3ilvPWHE6x4aSHn7Cp0QdMv9H+2c9+9uEjH/nIZWZ7JyLfvd9oD3fr5N+evd7T4xzvfNJXH3vvI9YeSKhrdfTiiNk4+8rHWJ9i5KovxV+Oxxe27ht/ORrhLpcN3/w+/JHlU1x9iE/7eMXZLMb9DUeMtdnAdfntmj2MYsoVXnt+i+UM2c6z5FduM5/OqXx8DLK+l+LGF774GOHH69QL57OvR/n5e3+Ld9zo0pfHTGC4Z34QKg8sIy58GjDhi/chXU4j3GoVS9pbh59NHCnWOp/yxZMvLELHnq3zKZZf2Pzbs4vjn771pXj8slxg6JuZHg5/OkLvBw/fy+PAx0j4sJn1lNjX3/zOuRqrE/fOhQ0GWzrx9Ek85F2BU/zq+Rni2LeXchnqVHv1dacWp3U+8aCvBvj05SuG3iAbZ3/ykdsI00yKwzfhdwo/PtVaXn5hlKPeeD/zMx17/tb6wsbfnn/r8tIn1u3xXqy15W+uvnyLa5+vePmJ+0HsceRb3GV4/FI+c1jp8nnVLG5jywGHhO1BYr8F2L0OW7/Y3uSDdr+l7PPAF77whev7qdeKhxQ9kMJTb7yGPVjFYbmzuSN9L65GnKtZbfzE9voQ0z3pcxcdHzN/8d4/8THb93qOA149DGWjr2/LBQfY5eRDx9+QU+30xFxuvYAlXj5jH9rwheEhiloIbJjq5c8nbPoG3Nby1Pf6Wu+2b1eCxy/5mEkcnAUu9PUHjrX6E/74+q8o3CtrfjhZw4kz395H2b/xjW9c/1+ecsCsX3zVJBfefMQY1p2BfUIvtxxyGwSWvvcPmPqjtvovRi7xYbQ2i6/3MK3lFZe/PPnEMVx5kpM3H/5yGMXiu9j6oi7CJxFfT+nEGeXm292Dp05Cb5S/tX26+oa/2uxJdw2eOLb6jUt+7GzEg053R2y5m9lbF5vOOeEfL3rCH1Z3Q5xRz9jrF52xsn7i8BRzyvrhwC9fcfGOixq7V+Ht+Xgf6r1IPEw5OjczrK2XPR70RCxcfTfjpE8Gndywum/i8apfixcWjLiqg698+PLp7OK8GGz2Bl88zHyLwxsHvPjVH3prvPmy12N+xcBKb22cwl4dbNW2/tZxbS2vQejiUw10+VRjufBjx1+v2PUuLBhscWc/hU9c6w9/Ul452OTwc/inP/3phw996EOXD9tz5NkP2v1LqsuEgEuCbIJgBCId2fT53po1e0eHU0PY4JhrhvVKe/Z7srzVAfMeP7k7sPJ3qPCLYzNg53cvPz1+6is+X7EkfXhyLhc+fOmMpJ6Fv5csbL7FyFMu+l3bk+Ju2d7yuP/1jJWXDtZyu4/w7WHZOqwb6jDs3RNrvTe/SSmf/pWzvO3PfHvPb70eYHYP2A06AtOblfm8p3RErNFrnZ97ai93fnwXl189Sg/H2utxJX081vaUdfinL7xsy/P0O/diilOHda9RvtUWb3v4T8kRLl/xDfri81leenn2be0vW3dO59mXZ/PS4dTZnbjOvbqLzyec9jCMXjPsRnGtdx9279n27mg+Ye9e/43tjzi6xL4hthizPY6LKc4ephqeIvz1GqYY+825+Hy8jnx48p+sedD+pv9G+73faNf36q9OOlLf2En3nj2f6rocHr9sjdb9QNkP4fy29tbxyC5XdzVdM189NZeP7RTYe9/U4QzNYtlunTWccGF05tZizQ04DX7sBu4wEv72+pA+/nyswxefWHeXy5l/MenriX11x6e6xcpf3TCIWAPvYulhreS/unMNXxxf+esL3PoSTlzjxOd8nYXRD1nsy8tavNdPD9rh2MvHbpTbur7wcyb1bmsJl44/oRMj3ylshtqqZ2f+5aE/sbwHsHuPY69/Zr4k7Oxnr/jka01gGtUAw16sWqx9xvcDzfq8Ff1WzvolVky4eixfcfT2/Axr9ey9F2+w4aAW9uq+wF98ievi09U/3Ffg5cunPHT1qtrhkPSLY43f1lI94ZrpxGdrLlaudGYxBj1OzenNYtnibE+fDk786PpZIYzL+OJLdj7Vae4BQfnk4NPPeuXAL6HbemAn4fBZPTtswlYt+We7HOZLuWD1uq0WMZ3rxsdNLHxzIz/7e8Jn/WAYRM/kl9dv83mf8b2t95fy8HvTD9r9z1B/7dd+7fob3D1o6Ptqn4e8dv2WpIerztHriQ8+bKR61IivWvipwZrduhj99Juf9j0Mgu19WC9gwMLB+0Bc2nuIx+4BbL8pj4dcjc5WLjx7D4prOeDgofdGceWCxzfuYdnjpk4YOMFmV8vO1a+23g/FkHBhVavc8WAX4x8U9AcXdnnLAYeu305Xhzg91h8xeuWhqbz2OOHcfVOnnGY2wo8/nf+xocHmT8i4D+rxDzD83Am/vc1Xblz7vgqjOvWGf8IGxzmJVZda6PFRoz+9EQ+xerGvSbrFbC0Gnjtmri654faeVD/lp4eNE85hmeHBMPMhYvEk1S02KSYf8fLQi61Wfak3cIj7wI8e12LN5cCr/okpHz2Ozlhue7iw4k5ff3odsslF5NHr+gSblIO9QVdOa3fQfaArXt2GHPqMd1jp+OOSvr5diR+/sJO145DOnE/zZXz8IobwXy7uqXvcveInVm86A/Peo/jWn85OjCEeTmdTrc7bmSyWGg3+9UfP4i9Xvykvj3M02IvFz2uQb/fHP6LhUt30+m4k/OMOq/+CBzYbYfc+olYY4bHhqx58vb/orb25c68X/Ff4wJLH2tAn/tZ6hb9ZHr7xqq/VVA3iSL7WYhrlKS+9ur0PWuOc8Fl/env6Fbr4wXK2BDe8OhNn5L8s/73f+71v3d9odwkUhQRyyFcAnUaSbJG9lK/4AqfCuYYH62yUPBpyTzT/noTHDqPDvOVffXjhwNchpO+CiWWv7ltYq5N3Y9lgwlh9eOVkN8rfXLxZvN7h2kyvhnu1wmQTe0r5YD1HcJMTZrh0iXz/W6QeVAfedKSedlb69NxeXUAv+aJv8hn1U176e33snvNZ3qWhLz7OYuDZW5ONrVZ6XHpd5Oee0hmwTxEPD375d725xC7GvTrPHLvvjFZnDYstPqf9Vfv6xg/O9k0NdIb1WdM9bP5w87fe/t6L07+XvRfei6Ovv/ogl9lIzwcf+2rqPZNtJZ97Z58vfJwNfdsenT0oJmz78vPtA29+Zr4Ggc1fLkKPnz0eSX2GKSa7/b16+Dy17/JWq7jyLde4sPtQ5cOKB+3fqr/RLn9nowfdg/qkF/WHXe/ZsquF3bxCR9Tsg7wPdK86Nz0wYOtbH9oWN0w+zgGnOJ5+7bOLgV+cfWcS32LMOBB+1WctZxK2fWdoJvgvLgz5wg3TzM9c/fIQOvm8x7Y3LweY6x9G3OIMQxxMMWaD8BFn4Mf+TqTc8hlhpw9ffjr53X25i9ma6Jybz6FeJ/DE0fMTF3efV+HSuXdmvnKa2cphTc8HTjnVHjfrbOnEWK/wKUf82q+/3KS640bX3cQn/OXEh7AZbGKM/M1hx7v+l5ueThxfa711R9joTt/2bAbhW22n3Z4dH6+FXg90/VDJx4CxPtVSjvhXG97ltV6x58+XD67W1ctuxFdsMYtjffJIt7h09c26/ok1ynOu+ZU3jnzqrbjq5ltOujDls4YjrkGfsOPndeOM4+GHcbikODj0+16RDz9rNoIPLtnhJunsq4kOl+qg35him/lWK37iCI4kzouz/WIPn168ffEXyPElf2p8y2EWh5N72sNKs704/ga/N/2g/Z//+Z8ffv3Xf/3hH//xH6/XjjPwcKw/d4Gfh1D9rWH2eKrdPo7VRO99xkMFvvpjeG3yN0j/c0q1iqWXS7x64YbT+5bZe28xHo75czDuoB6KgSUvX2t47LBJPmyEXayH1AbefHCGYeCDXzjl24dl1uLkMaqVbz2Qx+uAjq9hbcijR/Ib1tsXcV5nMNj1IU50/P1ZFX/Gxz1h60F7ee3lVA9sGM4aXme0fRPHn+973/vea4j1J2ScHztMPVQ/LDj1PM5bJ14JPX847re9szOy6Y2HfPzoxPtHg3290d8Tfdnv1/k6o86CT/2WD7Y6uxti9MXcKD+uYrsjcK3Lg5d1NVmrRU9h0hN4atMLeYvhh5OaxTX4kXiKsSZirA1nIo81/HLwo8fd2Rni8JCLPw5wu890hF81WPMzL/d90K7P8i53++qEKa86YbiPuNUf+LdETj5mAh9HuLcknOLE8ve66kH29rW+iMMpXvb1xXuQfuFO3DVxCTy18ZdXv50Jv+4EHnGP054BDO/B5dlzhGHI6X1RHv5wnAHO8qoTR2eJD6Gzhqcm3MTEgR2WGO+z8vOvj2a85dZDD9qJ9x8Y1RBOcZfT45fOLUx2+fh3RvqkBjXSsasRZ2Itd3t86sHl8Phl88IIO178nAlsPaJPxPLfOVszf3b9w1U/xKgLXj1m++Ef/uFv7YP2/dMxCFcMwjWqhtNpgrEihpx6/gZ7zTQ7BKMcxZ7xF+gTvsCPA85yvExOXmLSiS0+7uZXCe7i8l2MxVQ3kZOUw1oN9ueAXW/OM1lsGKR46+Ksk+y3bPmcsxjcccQh/qfft9O+O3GrznpgXrt9Pe2OshvFrP/r1gsrfuWDtflP7L0fp+3cwyRqsI7/1lJMvvCN7ihfb06k3MU0h22/90NsuPnem+sr/425padbySfd8kn33Bmmbyjd8639OXWJI2Jg2jfidIsvXa+v6qMzniNyFReOOZw4dcb2cbUm8Q3nVn62+rI5+ZajuDO3vfxmvr3m8g+Dzdhc2eT0DZ7Nuhp8yGivn9npjITe4CN2RU7Cfsq+tuB1//NbXDX6APCjP/qj14P2X/7lX77cbuEW/5QZv3t/OqZ+yd35nJg4J9b88q2mesDPuv7prw9GPtBYi2M/hxrDheG1lc9iWsNef/t8zQTWCn2cm8+YzoI+zPLgQ275pIfrw5o7AqMYenu9M6xXyidnWNn5y7k/FPKvBn72fAiMtYVJ1xnnd/JYjOIu0Nf4Ij4MuY36kk0+HBruh8FP3fx63dN5/fqgrsfw+KzQw/KB36z//aDkdVXvxW6t9CcWXBg48G2Uj15MdpiETg2ELQxzg2/6y/HFFzWS4l6oXznBKz/n8ljHOx9zunrKX5/11kyqK9/i7dnUmM8V8OILnb7rA19C13jh9vZrY2sWY8RfjDXZ/GGwyRFG+r3nYbHxhcO/EUd3i+1lEla1rD+8sGDEe/HoxJhhWMuLb7UWF1c+1g39IfZbt328ylNMvl4fHqSUo/cqeGJJPuZEfBIWjPKwhdm63O27Dzh3xmwvk/Ka9UGcsXWL39zF1Lf6yq8123le7CQsMyxzI2wc3HHf03qwUBwb8duG/nTM5z73ues344q9jM/4Eq7faP/VX/3V62+0y+37QQ8L7L0ey602NaqXztogvTat01UfXTEwDPvuSf1zX+VfXHl6j1Wr/T7I8JBr/0eDsPd1Krc4mOXGq5zl4qO3hnz2Df78wvXaMuj1p/dlvLYv5eVrzd8cD5h07N4jrcXXd7h08hZjTepn/On4e9Bm4MJXP/se394sTi6+8sELA479YuPxfd/3fQ/f+73f+/b3Sf7qcQaGGog4Oex7kE2vhnonTh53Xb/Z8BQnN1tSf1bv7tDj1WdA/nAJfTXYW8Nmz2bfHdz7C1cNfJvF8KErBxt9/Vp/vTVI54kDf7XKK56On7l4ej50feaon/TlLw4mHZsRLp24ff1kv4g9fpEDfwMeLPHxs+dD4mdd7rWx82/kw5+OwLY242ZYh23P7v7GqRxmg28j3Pb5qvMUtjg5Ezn0hnTHxMEiZv3vDHpd4ctPj9zv//7v/377z+uIg23EtZ6Lo1NXua3p8DDUY4+P15QYOlx6fdQ3M333CxaM9uXiA8cotv7Q9RqQR6yH5Nbhi7futSwGdr1czvzoDXHysJP6QN+AQ2CGw0bs4dR39bHJoT9mPsbG2LPBLI+69AaG4T1DneuDX++XF4HHL+L5ELjW1UHHjoseEnnKtT0Qww8Hv9HuT8f84i/+4hUT92vzhC/P/tMx/jMkh4eAAjS9xtkbSNAlJ6liFLISDp2Y4ug1gGxM9svwjC/LTdhTcDaG/7mHszr7p0gxy2HXt+x055Ar3eaFpWfGy7DE8N3ci1Nsfms713w7Y2u53Ytvd+lFtlzx1xNzdd3q09k3+3qQ/+lzqx9ykNO33Gy3+J3+/MKyfpXgaiTw5CnXYpWrmGz03ixJuvBu6bY/7ki4G3NrDdvgvzF0MHFe/WIUu/Gnb7aN2zX7KXt36iPc+nf639qHK866/oYnpjMxr3810Bn26cTla/1UKWZna2dF6jVdHPPtDJZDeZdb/vnZn6M4M7/yp7+Hwb62xe2eVgNfZ9i++yiGLhx+OFSffRK+fT7ZzOzVCTNcM6k22PL7Bu9vw/3RH/3Rw7vxoN1vN8WnGQ/5q6+6s5+84yqOb7Xsfj+AW/tQo9diF68YuRowfcgi6Tqn8qU3E/ps5q2Hvdqsk2LsFy9+dOL4yW8+86Ur3mcka/r6Um4Y4cShOf9i0veh1QfExbWGm5Q/PvTWBuHrfhWzfoub/xV0fFmbmIR+bfTp1BNXuemrMQy6PV9694Vf/cTd2kOBPoeWwwxbj8xiYeidB+1+86cf8ssJ24iPGGv2elQddGzE2hDbedrjR+TsrhdD33pnazjFy1sf4pA/jCQO9tn506cLN99ydAfsxfRDkJ76jJ9/OBfg45f8zXKqE1dSH63p6sFps09ghEkHY3HY7csRr+biqwcGnaGmziO9OFK82u+Ny/GFb+uw8bEmmzv8/M35NdPJaa82a303tk5+sOPKn6/99igd//RmErd87OXpfYRP+cPl4wdYr7G+V/KLhzWxJ3hZmxuX4fFLMdnVZy0HX5Lt2rzYtzYvpjgY7tZiq+GWiM1mXX/4iq8vZ+zm5NPeOox0Xue91tlw8/2b3X9V099o/+AHP3jlPHM9ZQ+LeND+K7/yKw//8A//cOXARz+McnuP87DDTLd9sia9z+lnPTC3lq+zEgPHYHcv2Ld/xfERxw6bT1hs3ls8kLIm7ld3n38Stj3f/NObe6jWXRC/9bRPF4/41TP6c8Sj/PLhSXDue8ylOL7UC5i4Ebp42LOpae8Nn2LzMcslpxifocz4EBjqSOjp3L/v//7vf3j/+99/vZbpDLGwOgevc3WZ+9veOBC48Pib1eJO4UwnBjcSp2rkTycGTt+v6ZwbfvjIRZeIa/SsKRy+8hKY9HzLSQ+TsOHJZpSDvVh+4gl9sfj12qFT5/65Izp4YeIlh3weBsLHU83llwOmutmrBbYBk6417PpQLvvWcYVLxGbHwz2RR/6VMPPn44zs+ZoJrvTdc3HrUy58+Ml3ctpc5YNdHrpi1g7THq5a+Jj1ziDsG08nTv978KwGOveoPlv7TW93vddzPZAnzjvD4NOwxwMnOqJP/Ta4PR8CJ7Gml8fccN/USvj0erSuTnN2/QtHfr1333AoH39+7beXcMSxwWHTH/G4GQQGXDhGIoasb3ng7utbHIxwljffMOSCsZzqL34w/aMqgcHPGeo57qRY6ziefZBTncXIH6fiisXZOfv+/clPfvJb96dj/EZ7B6IAhBo1CtmXyR7i+oVDB2vlXsz6/G9bV2+X6zn86wcM8Ym9i2QmZhe9N5T8srHDgvGq8ytnfMUa7cOWf+VVuOv7P7muvu5e9dnXJz5nzdVfXDUUY5+P+WUSvjNbPrew4JxcXob9MpszM+SN49YjT8Ju31j9xqRvzv8Wlrjy5n9vDof/xtDr2auwir/HdfuOw/Jtn4/9crAncbtle8vj5V+rRZ7NhbM3f7j05Qmt2lYf1llHMWb+zn7js8uT3oxD+9bLEVa93TW84sM2FxtW2OZyh2OmJ9bLuZyX8cWX4tOFWS724spr3+sgnVyk3OW9hc9nMcq9875HWouRw9mKNXyDfzcftPutsuVZjXha46Q+a35me3zN+bG13pmPD0o+9KolvI3nY7Ddk7Xru/h6xlbO5Q+vfPEXW71iFre9mYgxwhDX+i2Pb/565i5nWOuNh9zbh7WXl32lvTtCYJz1l/fkUyx9fVgfa0Od4ZrtDaJ+PtuH4tLzk4vPKfSnf36bw53hRyemH0B8huFP74Oy0etl86uPb/H1uw/qZjlI+Pb81eyuEnuxsFfqT7XghOPWwgbTD3rVDW+x+LMVB5edH8mGQ8Inf77VT5ct3mLKUW4xBkyxxur4650fXpaPdfhwizGrPZveWRMzmz4sPzZxhB4Xo7rFhXc5PX5JZybVc21e7MOAXb7V8c1W3M583Smx/Mqxa/5xcT6Evfsm9hS6+OQfZnq5YDgP+Nn5x8Oaf7Ziz56k50/U1YC1504Pj2wNfPycZ4hJ+OYvzwp9ueOUfxjsRnrxbMYZs9jWxfLV+94X6Onwz285shM+9PLEIVvz5Thf8tOnfOKajTs+vV7x8ro3iIcDfiPuj//4j6/v53G7jM/4Uv4etH/+85+/Hj70gCtcPOT2D4uGPc7VH47UdO58tvzY+Kklf7PXtz576Ji9usXgEA8zXw8byyGGzr73BX7dz72PcZHz5FEMfTa6YqzzkZ++OorBO7/qdTfY9c/cncSBr4d0BJ7XSLx7TaXjwx+Gf/CAo2avJz4kbLziJsaazSweTz0Tl91s5HcBvvgiDl9/Uud7vud7Hr7jO77jiu2BlDj1hYuXHrF7AKmmcPk5JzoCu/Omq5746As8exwIf8Of+WAj6mIPi66zs07vH2TkIGLg8iNxtK434vDNZq13xvYzOx1RCwyDroe1chp681//9V9v11b8Ffz4BS8Y8vmHtfLu91Ex/qHffWCXy31SoyEvns4CXtzksDbobwnshJ9z62FnfZUPPp71UEw10men997Bpv9s5Y6XWb+9/xh86WDzJ/DEm8sZH3OYl/Pjl+LC2fO0NqqVj6GXu3bvvefm587tn3Cx77WgJwTG4sAj+PExrGGGa44fG1y1WouPazHlsC9vvWLjL5YOTljxYCOwYfT6sWZzb4wVtrjAF0Nn7Y6s3etTX+ItDq6zU1ucw+dn8CPOzto96D7Qd6fURfgYcscFTveHzZ7ID5cf7l475WWLsxz2Bl/5lxsdga1ufuqxx8vasKbDRTw/eX/oh37o4WMf+9jDT//0T1849M+RZ/9GuzeRmr6NO5M+l4j4mmEdtvUpGkFeJ8eJ9e281w81VufWXa9OOz0/o3WX6KyVT5dWv419o2OnC89cPjP8eIiLZxf0ZWd4cnkTe/xIPJ6DWW3VWt3q64WurupdbPnO3lU7PDF8Ght7rnuzkbM+diZwDNhGdZ51bw0n/r1996A3m9NPXrhbw+aJyxm3e/7VwL861uep67g81f+pfvHjf6vH9HI7p4SfvtUP52Wd3OuNXNvP/JvZzztXLnFscbyHhUc1me8JPDWQuC+3eGS7h3PqYeBYT8SHa7aHba6HMNaGdxhs+xoRwy6+XvC5J3Lt2YW9/uWKAxsdkadcYuNyGeeL2MUZ07UUF19rWGLUQ2/4Bv9uPWj/+Mc/fn34dC7ljGN1V589PwNXPbwl1Vtd/Hyo8cFXLXCI/sFmN9uvtM+fje/2vbhmvvKeIkZsdaqV0IslYg37xmWYL9lhybO52ucTp8LZy1vO8ptfJXyMePKPZ7myy6VWc7nM27/zvOFVQ3Hhri8dDgQesRez0g8sq7MuPozTbq8O8Xvf8hNXnT5YG/jFwdxgw8t9pSPWfoDuQTs+cvlQbq6O7mp3Rk4Sjjj1w7snfOHKJb56ykEHB0b4ixU2/42Rt96rXZ2w5aOvx/R0cYVh32D3Od5cfj7WdH7wh8efvrzh0/MtFnfrfji356OOvQ9nDD/85TSzi5Hn9N09bMIPvwYM62z8zpHtcnr8AsPQTz+olhuOWJjh4sDe+cDgg7+ZFJdv+J1bfLq7Yvjai7U2y3lPyhW2OZ7iV9LDlKOf3/Z82dRghs3PvrrKt7jnmk81xyE8/AifE0suHONzy2dzweIbZri4ErkNuRO+cFeXDZYR5/RmMfVvcfNlt4ZvWHv/8Lr3vY94uOY34v7kT/7kjTxo9zfa/c9Q/UY7bL/85j5u3/BQk/cgom4jrnQe5Ljv7kM2MaR4tVgnahTjwRXpPc5rnI10nvrmTDyU77dHlyPO8RHfGfDBp3uqRnZSHj7dzcvw4sviwVCj/LhUB87ORj56fBtqYPegrgeicvVwxoOdBH5xuPRwjI6Y1Yi/XOrxIIuv2ETOBo7yxVUcDP70+MIhbEYx7Aad92G/ye4hu+95xL3513/91wvL34Q3enBVn/xXjkSf4fb9kg5HNTl/PHAyrMtt3z9G4ADDoPfnOnxfyR+ePNWnLwb++u0c1GqI50+sqzMdXnTwxHa37PFVH1+YdNZxE8fHPenBuLq7A7DU1IN2cTiKwyU+6oLtGZnXjZzuvT7Ys8GEbZ3da0luOOqvf/Kccurs1VIf+FvLqdb6oIdwDTlwrw4+Ww+boY+wxKqN8D2HXL0+YPIth3xeM2pVXwL/FLpeO/LCiSN+9TocNqMaxXjffc973nP9fw/gy6u3zs7dw0tMGPHA3yDOZvuh/u58+cThZ+ZPtm5c4iXGXp+83qz1pXpwMgjf+gAvnpfxhR23vsf0/oyf+tRLYMDiK59hbeDlbvi+wUfP6fXJfRVLisOt1xD/bHLzxTHOsJ0BPL5sWwc7oTMIP/peJ/La67vXo8G3muCzw+ZjdG/gsXmN9VrHxdoM22tw92LV50zCgeFc+bsXP/ADP/DwkY985OEnf/InpXi7R9fmCV+e/aAdSY2veTW+XO1rfvsOL79bc75sL/PXMNJBXZv/z77ohUOuj8qrbrqVLuDGWPM361MXaOPgN2B0pnzoi23Np7E++bERe9L+2nwLvtSf594LfNWor7uOv5m9fm4p/NnF6nG9igN7PuFt/K75yREXs5jOjj3drXuxOcN4Vc7y85dbrvqQzVwdt2p5ag448hhEHuO5Ehd5n5P7VXnitpi3+OmTQeJwfqOMI59bGOzyib9n7y7wTfg6I3H0zbDY7JNywLHOP7u5eHO49J0RPVz7+LA/RcrnXt66m3AXk0/8zZuTbxh9sKHTd3lIsS/jJp9vogS+ARdWYm0sXmu5ilmsYvOzh7E15QOj3tDhA1Nsrz+xPsi8Ww/af/M3f/Pt317aWnEw8FOfQeqRPa5ka+VfvWaiLh+K+g0fen7iw7FfsU8XF/b0ZvG7L375pDNvbzuP4s9awt741sWcvLZu8dVWHH/31Bx+M8xXCR+YnUE8NhcdfFx6HYsJv5i181+pDr7xKyc/eGKqg+7EoHPu5bVPipfnjMvfLP4Wl3DY9NPoPOEVw4/eUMcOH8B9cO5DtNnrTE4iP12vQ7jZysVHLWd/L4D5AtcHev7x2bpPjEL5k/Bv5YVDrwdx7T6I3fsGR2+MRIwfyvyQIl8czWL9cJPUg+XDZq9XcPnI3w9Z7LD0jk9Cx4+IiddZAz+jnHyNRFxYZvv6ZM6+MelhdKZirfnjoB9icGSzphdrlPPkFX/++fGBHZZYwie+5iQ9nXUjuzmMdHLArzYxp8TdjKdzd8bF8rc3+MDIl/8KfXJyoceleqsjPf/qlqN4OQxxZHtyKeaLmHgXzwwP/3BhWTd2P3DXEp5xSnzxMezTLVdr+nTuu/cYrwXiQav/mdqf/umfXv/PFZxeR+Qg/c9Q/Ua79zP/kI1/uPWPzoMdcfrr7OIKx4MFQ9/E8HdfzfwMaxI2nYcSfvNZjPc3HLzX5dtdMsvbbx3GARZOm0fecsfXaxFn/WMjeouD3J133Nhh8sGLD67y773VE+fDlw9ecvVeWE38ymvNV934GXGoLq8rw54dnhweIJnpt9/44l6fyxU+O1v1mokcxaWzN3Cik/O7v/u7r4fp3cOvfvWr14N2vfAngL/ru77rsusFrh60edDOjgPRCwN/uHregy+5DP7lN7Ob3QsSlt6xwShHZ86fLv4441WO5vLwxQk2Hf5m91Bc9yRbZ8vGJ07FuyceeHtYSec5l8+tfT/L7gyrCYeGPERedeOmTuft7sipVpjs1uzuprwGDHjVEuYF/OJLvG2t4TiX6hAjt/PHpR65M7jUf35i2MPoLnWm4vmomS5/tbCJM/SILr7mMPStf2RTW7ybYSbi8BQbF3M1hAmnXOw4wLHWaw+QvWfw0WP5u3u9NstfHvzd88UrT+coNrv4Xuti5ZevGJzjzRdHZ6JXMJxD9cB35oQtHPmsDWKWBxau7rI16XzDKYYdD7hi44Wz/wmzPR789h986PLFA37Yy6Ea1G3Awat+4FFPcJCXwIQnnsjlddEZuF/64vVowOALr9ekPRx+ZiKvWPcAlnywm/Hz2u49wl6s10b3FI6Y7r98HrT/0i/90sNP/dRPMb99JtfmCV+e/aDdG0WFKVRhiXX7GtgB16h8783Fd1Fu+WkCqfG3fP636/RB77bG6lbb2Z96b3Zx2F0iAqPzuBSPX9bfmn+5OjO+zq199lsY4hv8W+f7bs9qkJfg/BwRF+dw6ll15HMLNx8x/GDgYDZIPrfi6fJ1xtawiLjte37h2ctJqjvdxrEXa128NbkX85b1ra8bH7+1P2VdHr4nv6fE8wnjZfFxPeu8l4O/3utlrx868Svh8q0HfPa86TsTsfkVGyYf6+ybh60hLuEr18aw86WDZ03Sd6fYys1+5m5vhlFe+7DCFv8UCRPnxUkfN1h0DXs5O5Ot2fsaG52zWp7iTmHfAZOoxfD9bPsZN/MpcMTIbY4Lv+KKqZZm+njIF1Y8+KmHzfDh4N36n6H6jXY/VMkT73iacar3eNMleBM9WMmneL3xgaYfLOhhNja2df0x88dvRWz5cSTt12/Xy6t6sy8ev3yzx0fcrtduHVc+nWc+YjvX7GG1z/fWzAdPOAYprlz2pFz4iDll7WsrvjNtz6faTjx6g2+DP04bT2dPL78c4laK4VcePr3O2JMwfFBnt+erx/HnWw54hg/OftjxAdzdpDPTW8dRrjgWC6+81tVXDL8VGLCrS6yxUmxYbNXJN47W1RIe32reuqtj+8C3+2ctH7v+ee+zT8eezSw3W7Ww01VfPzjRE378W+st3/izxRGOHGwNdv7VGV72emGfr5neIOFem/lSPVSdVxhsO/jEOzwz/2LiZF6f8OUw4BA+L4uBy44HsSfiCJx48yPt/SBMV8xlfPxC5+y7I7D5Ond4cWOnYxdz1hM3fuUpVi728Mz21ZtdnFGO9PETJ2bj+KzArafWCVz8zYTNKGe+2Yszx3t1rYs3w+Dbmk942ejw87rwvY/4wd6fjvmzP/uzN/Kg/auPD0x/4zd+4+ELX/jC2w8M6hse+oun/H5ex6dzqx5+HmB4EFa/vdbw7jWLOxs8M+Hj/nhwRe+91HsqfecnFx+zOO8zre3DwgsPg4gPB7bz5CsHX9z5EGs+9Z+ODXf+Bpvc1ciH7AMv+/h2f+qDnOXz4EY+dROccYujNZzq5GPNDxc44vGJs9lgk0te/u3LsT7p5DMWK53ccnqQ5rNX99Bv9fb/5WF773vfez2Mdz/hePjnYZsHTvVMDSRu9vuQ0L6+8YOjRlJesc6l+yYmXH5bcz3HX7xY/YArjx6KNZP0OFn3ujPbu4fr2/2Wh8hN+KkbR/m8bvRFfiK3nsDU584SFzoirvvXOfGjJ3LCdZf4seHtHzgMONVfj+jE71nDNnBTj5h45d/DyCvx45deB2qo93DFhhcOXssbpkH44G4UazbglZ8dZ33tLokvF9/G6p0BrmxqU6MYEg/cYBN+coVbDD1/er4wuz/i2OJcrBg6NjHyELN4umrl4+zo3dM4wiD21uZy8XOv6TzYpYcdL3sxhlzdrbiY2fbcw4fBP8582fhuneHTdUfC7B7CKNetftDpuVr4ySs//nLCi1c16gku9UpMdzGuvS7Ew8bD/ek1DMtgw0GcvM6guqsFP/m2/mzyqN1doTPk8N5nlgM+vRzy+dMxfjntZ37mZ5Ry+VyLJ3559oN2b9A1qMLLVZMRJO0VqxlGB7AxcIg4dlLjrs0b/HLmf4PQ3xIoPXIJ6lO9K7m93p367M3OhLhIRgIXPlmce32j79zkNGCL7QzvcS3nt8Nc3d3d7Z83BXajGtd+j39nxa4X2+czJl85+Mn5pqVzgivHU2p4Lod6dCuOrf6+W/nLK49RnlfV6s7y57f3Hh7eRtI+P3txvTk7O/vNyWc54UVOn3KYy7Ovd3FGr638+RYTj2zllas4/nBwNdufr/t09PFsDpuPcUp+5jin41tMunKZ6VafDg6pH/HffXGX4+MXsdVvJqePb9ZhXw5P/AKvnhXSnbCX+xZ3cXKe8XjVK7MPAh60+5+h+td0cnK/lM/4gs9f//VfP/zWb/3W279FIxc+3Q28jPib1Wnww8Ho7pS+OH7WXlNq8MGmPvkAxEbg3pPTdtZdrrDCKS7/uKY3t94YOPqgJiMfetzTtebLxz7Mcoa7s/hTxFVH+Zr5vgxPXrHrXwxuxgosvs4Yl8VerPTi+fY5If75ds/5F8PG/+SEBx2/cIthq8cbB8vovvEjdPzg4MS+M1x2PPgm1j7ku4vupL3Bz5203vxw6NiWa72T3yD8YK8UV9/Wtnibk0/3QRxcY2X94Rh8nYdYkp4vjnrks3fc6fmIMcji2tffauxcxRH7etdrulxmXPwwYxYTjli66ooHnYGrGSZ865WwylHM4ldLc/Fbr/xiqj8fMw5schm3JN6bF5Yeuwv1q9j1D9Msl4Hr8lWXwacc9Ztf/OBbO9+V7GacOn97+ejg40xH6G71Q754ZN+7GXe6eHe+/BswDNIsVl5DfWZc43Q5zxf+RJ5y2MMTuzno42Zmu4fL9ylSXrlg4lBP2OjyUY98fuP8x3/8xx/+/M///OHHfuzH3q79KfnWBzb56uOD9t/5nd95+Kd/+qcrl9+K9eDGuVa/14+HrH670/sdoeu+2YvzYKFzY/dQwZALd/58qheWtYcS6hZDV146dmdoDZtPOeQ9RawYs7y9dsrPP3x8CD860izOa8/7jhqcQ7b1YzfwYocZXzmrgd4aTnX3QPRK/PiF3SA4xStd9ecHX15ciboJPzq52DsDvIzeS/nyg4ef+HLCtjcTtd3qO3+/8es33v2m5nd+53de+GI9aP7GN75x/ZkX+P25l2rj4z6U37Mg/Fb4VjcOanEXt8fWcc2/78/qM/Sh/5qhc3TPe/6kTjg4OxecxPR5E747jovzk4fUYzp5ugP9QwC7vHCymcWzwV0ebPTqlN+edKY9kBUPt7u3/PEk/hGIjxr1mQ9MObuPcOi66/LwYzfHBQ89IfrEvj71uVh+/IupX9VeXXKLlSdOYqvd7LzrldzlMsM1423NLzz3TW/Z9h865OZHrHEWW4/Z6PWp+8vuDPuHNbyIWL5yplOHWDH6jvMpcshn5u/M+MlB2LpncEhc5ZSr+p1vNnmJvtM51+qhZ5fHTA/DqPdixMrJbshHqpEuTvTlrn907r+7Ks/ZX37hq0Od6fjiEg/9s06qT4y7DYf/vobowsTV2hymHPUnP7rOqhxiqrV6d2bTE2fmdQhfv4l/iHQucIl8+q5e/2X5H/7hHz589KMfvWxb36V4xZdnP2j3nxwpykCkUR5FVRidwhBFfgtAtKZYsy35XYf9TufydWDvFO9bHe9iq0F/69fZJ/tTtzzFwoDVmfDvzOjqkzjn3P7sW1j8wojf3otekGe8uNcReeMrXm5568nrYIqBWY+XK9zNl6+Z7Z4sTxyNe/Ic33sYT9HLo1cEn+Vvf9b5FMx8xHoTg6l/pyz2y3pxxr3O/lYuOrWfdcPPPx9z/TDHN7sYOnhG9RZn371hpzeS8PKzd/eMhC6/8rDB3R7DLc6a78rmpc/XaxtOkt9ixwmP8vK35++8ze2zqYvOSHctXnyBKw6HYu0N0rwY9PbVl624+sxvhX3711nl04cEPjC3J/mcM7/yLld+bEk2ezWHv/H5FpePD+5+QPcN3t+HI/kU89wZn7/92799+N3f/d23/zNh/ehDW3hbG971Vv7G3h86Pnz7QGk2+gEEpt7mt70pr5m++5G+14n9cmkNV1x7fMTgaLinxokLb3nAEZuwGeHTd2flMkhxxYrZ9fLafOE3xw8e/mFcSeZL/qN6exmvYs04E7jWy4H+rINOXH7WuFVH5wGvwe68qwEGKU5evvF6y/pW/8tz6vivVDeMzjcu8e09SV5rIs7eh+u1+9DefvNYF98PRdXOVi666qNP6PkYp9QverHVzrf+iC8fe/n4E/vuR/VXB4zOm60f2q1hxY0fHcxwYdN7Pzg5iC0+m7kzX070/bAUXzOpRuvFs2Yj4st3KeaLPPWDjxoa3PSh+Al720ds9uUMi4Rv1sf2bHESz1ZPN27PlF5NDViJtR8UnY8elr8c5s0tpwHfTHCIY7jmPfN86i27tR8i469n/NZH/vKJiUv18bU2CP/lxi6GntjLR8z26nbX8JXrFlf+cTGLhVsP2Ak8wmbdvvzZLqfjS/jVaE7kYYdHb529tTmpZ3rKrwftf/EXf3F9Py82/6fO5fja17728Pu///sPX/rSl65++y1QD308uKi/fJ1FrwVrDxQ6Kzk9WNFvr9Neq3GrZvvyivG9XA75svHtPPnQwzXL76Gbh13OmuBg5JO/++gu1GeYdF4j6dirDRZ9NrnUaJyvJ74JTLmrEV6DDz7yyItDPUwfTr70u8YnwaO+y+uM9EK/CR5y1T885GPvrPiQfPCWs9o3Rpy9mN4Diu9zmHhn0sNkHOkIXPFmcX6D31lXUzn5WuNExBti8YZpEPXInR1255w/G39+RE4PXemJuX9sWA7Vqa/VGSd+dOWon/I4A+fS2Zpx0jNiHR6+MOmsq5vOnsgBFw6dIZ/zaM+H3WCD0/t/d60YmMWpXS58xGw9bPWIXUxcYFkbxJz/6t1Lg8Aw2MUTOcsRvhr4xItf520dPn/xbPDgsKWXC5ZzN7wn6TPfXifs4npt1z+9pYPP3/zv//7vD94fv/71r195YPIpP27lNhN8+HVWnWt886kmXMS6c7jCZxPXHalGOrwMMUY9sw5zc8YF53KFgYs4eeoVHzF89BPv6mWTw2xsLXxg+P4Rf/HxpINlTvTe61DNYVW3/DDZ48vmNdX3JnZ41c7Ol857Entc+SxO3PwDjHrtvU+oofsbp/ia4amj84TpQbt81rDk7z2EDi/4uOPkQftnPvOZhw9/+MMXNG7PkWc/aO//YI2I4cDN9xIroOZFrMvYC6jCzMk9PHaY5GU+l8PjF74G7JqtgZsr3zc1P4VfPnI+pQ5+XRixeq6GM5bt1IlN2PfChdGLsH29claEPdtiVQfbyU+f2enNfFZexnP9znWYcMOg605av47Agml0p29hlZ9/43Xy3YopX3Xd8nkdXbhiOw851EnYjfOMLuMTv4h3b2B0H950f55I5W23rZtS7UTd2XDcda8Puu5C92Ft2fm4650Z/b7HsBvlaObPLy69H2bXw85HvNxEHH05s4mzfpXIQ8ST8sFtdA/gGXFNby/u7Acdn+rP70o0X8KNQ6b82WHZN/IxL2dr/rhYZ1t/az6knl6bxy+9x4krlzkJs9rpYeWb3zmfPHwfFNO5nf67l8sHAA/a/+AP/uC1/yV9Ma1x+ru/+7uHT3ziE9cPMt0jPZATv+Vt3xnXPzjVUU/EdAb81doHYfsw+Oe3eWCScNzR7OXqrvTByIer9bEujxg1GWqMj9zFvJXx6V/FhWuGZVirywibLn8Zztf22tjtca9unDuTMPndknLxw6dc9EZnLBZHfeQbbnO+u981XBwJjHDNRG5n3uc9eOnF2ctvznY53PiSvfw3XP6f/HIYeJjjuxjuTv2hx9WeyEkXV2tYPegJOy7lMZfDbKjznrBlD7OedF/jCJuUoz1/GJ2DdfWyeW3wdTZ+EPEDgzVuchIxdPzKxw5Tzc6Snq7e8G3QG/nAg7369lfCxy9w4mwdZzG3JD1fEo/1patvcWsunr9aDf7sbNb1xV4NJFtnn65ZXeL452tOlmd5w16ffgit//HK55zlkJs/vB183NvVWAAAQABJREFU4+LM+8Fx89cXcXLHk97aiCedXOcZtudrzY/YFxOWGad8YOPjDhhef84OF9LdsK4Wa/H2RDyxj+ulGB2fteHxMonj8uZP34DHjkvY1mcMnb6ojfhzEX6T/S//8i8ffuInfuLyvwzP/IIH+Zd/+ZeHz372sw9f/vKXr3vgnP2GuTPXP3741WMx+Hiw4DVtTfjz89DE+yLZGHW4Z71HqtMDCr3d3+ymF2cm5bcW64GuhyPys9Hh4D2qnop3Bwz3ARa737Dce9o9wcsQhw9/e3UY8OsXHgldvUpXnLnzhOu1b4ZFL/bETC9/70H1Ab5+65kZdw+19ELPxcpBb6gDPj0uhl7Zi4PfvYu7mV3NHkwa9db5GvpIOmc5nAV8tt7j6Ok6K3x60K4P7MaK3PKJq+c4dw74iqHzAM6sP+UUU43WhrwelLrnPaCD7x+sOlsYcOGrwcDRcGc6Az754mrg0cM6uZ2NvomVj78/saPnxeg93Fv9l6M+mAmMaovzcsmn/nd3cBC7/eQrb/e8fObV8alW8eoy8zNXazq+8rl7eBA86MTwN7dntzfUaZaTncinZvv6mL+cbMXgLad89M6kM2CD777Sh9vD0e6RmQ4H+OK8J37lK195+I//+I+LkxqMzuVSPn7hi6cZJ+/R3qf0xOjs+LNXb/Fm/OV2vnzcaXeGVKf6+BhyVbM9gYsfLuXtPqqtnsEj4mDor4fMcsKoD2xEb+IlRjys6tAvMf/5n/95jSvo8Qu/cpnzh2GUC35+9OrE3xnqpbV66fUEV/eMwMAFB8IXljhnHq54A77+lMP/xFl+tXsvh2+dwEtgydVrgR4Ont4DYHfPw1/ucNn96bdPfepTDx/60Icu6M1RrpfNr/WgXXKkSM24l1hTNbTmidlLxV5hbPnxuScdkNz38haryQa+sMXC1uB3QzpYc3XeyoMTH/xxeVUdYXRJi4FBxFuzdzmLOWd+8hM4RrHF59PlOzHu7cW5mN2L0+91616cuFUDmxpeVfdifLuue630+npTPHvNdM/00FrPiF4azz3ve/zgy9n9Ku89/3dLv/etWuXqDll7nbqzOPa+0+vMvHeruL17ME7p/sNcrPUrn7k3+9MeZxgG4Y9TXIvRbz44vq5Ua/nC6hzjs/jdnXyrS8w7kTjAkBdusq+TM38+T53d+Xtc1RQP/eZHd96XW7mK67w6Yxiwtp4zno8PB+/G32j3oL3faMdDb/Wgs731mqHrPQTXPWP9YFdvd4CvD0N+oKtONjXxe5mwd77lwi1+PozJ54ObPoUvLh7LD4bevyrvyzitrftS3WzyGXKY8cLFOt7228PFhLV1i3nVHTnj4Rudgdyda7q9e/FfnvGGLf/ec9xxFMcGu/tDx86/e37yo4evNtzeqdSj+lRu+x4qnHn88OEOqpnUA3XBo/cDyNm3e1yL71zFW/uB58x9DyM9//pJF1a9NesfsSZ4Guk7I/n1Q01+yPGDWX2C2z2lI3T6ApeuePpyXY4vfMVnkxN3POqtmLhsPD+c8IXB52USV/7GvZ7WA/mrs/zhl9e+86bDrzvbD6p85PIeYz55sD9V8N7cxYXvbAi+xvYr32Y2XAxcq3F/0OTrARudHPph1POTi73+lTu7XHRynUKnZ7ckjuZq1++GXLjLQ8z4EbM930QN9mHRVzcs9hX7sHEg9qffxjx1jYfc8W2NW1L99ccDQt/H3+SDdr9d56GSc3B/PPjuP/vHQ63bL68LDzLwZ8OxB+3eE+tnvauebN0B38/Z+v+7wClGj4vDoT74HNDDdnhxcAf4i9fPHvils/fexSa/OJzt8YVrbchFp+eGNd0pdDB7GCt3cXokh/xq6TmHGJg48E/o6cz83cW9Z8XhCVc9MPtNcjpnh0u9CDNc/ZJbv6uz/M34+37n+1YPqnCBa8gJF1Y1Oke41VrP1YefIZ9eeZBlXU87Z75w1YFvnOPT+fCTFz+zfZhi4yQOBi7q9dvJe94ejOWrdrnru/7haK+nMG6JmvHCxRqevQdvMLoXXk9y4yePfjo/a6KGcvDBfYVdLXIY9WZ9rPGVt/dqe4OICVcu9cGVz6hXbMWIw1GcvGb7sE4u4uQ2SD20LpaPHOHWEz7xstZLd4zO+eJKyl8P4Onn5nIG7lyvITncZQNn+87J3YUlHzvBFe5XH/+sluFBOx5iceK/wsbfIHL3s0o9FsuOfxz40p114+cc3ZnqVB8d38ZZN9/6zN9QU3zkJmZDPEyj1zbs+OHOp96JYacvF67W+um/GvGwne4UsfmyhaOfnQu9fsgJkx4u4c+mJ+6D1w889Z755PL6Fp9NbL2ub+roz6H13gkf9i0pH87WOOmx13vnrXcEHqlncnpd4PvBD37w4dOf/vS39kF7F8JhWyv+ZVLj+CmiYd8441+GKZ68zCe8Lhdfh2bGB0Y6e34dRBeqGVYvBnF8xbLn08yXDyxjpV6JJ2Gsz611eHEWZ51eHmsiR5fzFtb6Zg/L3jpe5tO/Hpa7vGEVm331Ylf43hM9gqGeFXwa7AachnM482z8U9aw4P5PSHlx6J6op3PYe/YqfsWLqZ9iwpAL7urY3pRsLW8K87k4vanrp9oMvOqHvTu2XNnqN313y0yyxYUeBn09LyafcPb1s1hi2bb/5VuM1uHH1V6ORn7N9PGuD2x4b0/g2JdbHGnffClf6DendT7N5bY3cF4OYd2aN3/89Wn1rTf+lo59zyh/31Cr+VYcXbnjnV81hrUzn2LpN4cenOddbHfIhw7/ku631173b8OF2YzP3/zN3zz89m//9vU36XCIR7VUm5jV1Tsz/dm37F5zPrz4wOUHGvWEWR/jc2/m3xC/GGL0Eu/W9vz5xQ/H/NjiZ/1OpHOEAas8caCnK2d87Bt8TllbscvfaxUuPCOxLpZ9e+CM9ImdsBvJmef07QM8Hls3jPbhxatc9n4YwofQV4/5lvDps1a43U/+6azL04yrWD71gB+h48dnbfQNfNl9KCdxhNmeDs7Wah+H1sVegS/5ws/AoTzxCcssH2FbybfZeRv5+UHBw5Jeq8XKpVaDxMNarH055ecnRu/O/tHzEbecW8NM6MIoxl5sr+d8zWHg0ppvHOtd59FdYX9ZzMbJX/3ivM5ImHRwDetG+2oyE3oY2fM3nyIvP1J94aQzi01vxtksj5/DypFPD/XClyM+Yox8N7aeibPu3K3jU24+t2rKL3xza/5hFYtLd5YNrh96987S8TMTvDq3SzFf4Ko1fnKXa9y+aclH7vw2hi5eratBDoN/fQFs3+vZA+43+aC9Px3jQTsePRR05rioXX7vYz2c1C+fJ/TUqD7xePfato+7925xBC7Z17peVHP3DXb3i70e8IMF24MRnPnxIcXJk87aKE5dYYvx+YJvZy2HoQZ6uez1IT86D328L/KrnnLBrSfyWpM+x3it8RXHbg/LTMIRp/dy063NOegtLmL1o4dm/OjjYFZfZ3sBPX4RDxsPNdrrB5199cP3WtK3cGF40NTDZv7w9cXw54H95QIY/n67B1L44cLPb7mrCaZzqyf8Cb7lFyMvHWwzgSOeqIGfgUvCLhd8en2rRr6dgVkOIqYHZnzi2JnZ6wneOC6O3ukj3x4OVpsc9dvaIDD4V2Pnudi4y0Oqv7Mo3kzS79o9wxsX8XLTxaGz2LrY1GKWm48hz3LrjpffzI+0zl8d+IXFh66+4CYXH4Jzvtbs9tb7eueLJxy5DMIXvkH8/yHf8573XA9a7WG4l/7rB7XD4Ov8nR+ccoaJ2/a4fHh3RjDqGV/7+mgfVrUW1xnxkRenfOkWS98JuzrZiDivDfpwizXTh+k+yEmKb10v7PNXhxGOXNmKo+vO0/F3LvgWC9s+Xvy9n8Ny57yvbP764lyM4sy+N8K39gDd67u69c/5iqlH8np/8l4gL5vzN6pHPL844I2XHHx67dtXI3+DL5EPtvcsft/yPx2jyF4keyAXuztfHEDNU4AG2HdJ2Cs6iL0A6ZrzfZkPXzn4rr8YzWSzxse64SDoDOsEZ8KvNZ8wiomTnOUpv3r5lXt9YdunsyfhyGktHo41nJ3Fshknzlto//eNHE6xXS4+xandKG/xdHzEijMXR2/wwY093/Tmp0jYaknOeunD21n+exLfjV1fdkN//iel/uGwd8a6WqvFPt1y7lzZqot9feWxh6tvYS7O/+Z1d0ZdW3d1qtvY/mxMfmcPYBnZvReK82ZNshdnX66Nc0Z7BnzYSdiLsXpxxdOHG144xVejc5aHtGbrvmRjPzHoVuQi+TXnA3d92OWpF/ndm+O8OL7/2BN4rRfj5NEel97TijvfL/Nthsu39309y9a8uXctrlFcWLd6kA2GDxMetPvttTf5N9r9z1A/9rGPvf2g/Sk14MNv75t6qo3dWn/7kOMDlBrM9W7vlpgV8YlcxuJ1j7qz6xsXPnCKN9dnetzMDfZTbulOn92HX042azn0q9dVuPT3pLj4wa62eqfGegGnvRg+nRGsPg+Uky4ezWzW1bHcFguP4je2+NW19gO9s28PIxx5xMatPf/Oka6Y7MXU23zPD8rqCVt+oxh6ez5rk5tPOcKWm18c6vmlePySf/nSm/meUs56bh9Gvu3zpT/5bDy7H9L6AU/frP3QaU3ip06vSz/Y0LHvZy266pVzf2g/a++OhF+Oepsenlj+nTGdvRkHdmtjpZzmhH8x9NXBHsbOpx4/MbjAsSf9XIOXO0Xf6+hyePxSbvgwtgd8+xlp69g1nPoUZlj21o3szfnJiasRFhtudHjgHtfqCz88s3hj+2ivN4Z1fOQl8PO3D399wyyGz/ZKXPz46rc8fsjtHOz1s56KCdf6FP7yGNZ8ibVB6Aw+YbUvJp/8F1NP+OGevV4UZ8/HwwR/Ouav/uqv3sifjvnq429s+ofyL37xi1cvvebxqF458fOAdB9k4KWH+soHvzju+RTvLOBUtzrl4ethCjxrA2ZnxKe7x8d7EBtcWP7hz4MZNroG/HzM7Ph577GHG18271/2xeHRXk65+InHx7CnJ3y727ANAkdM30/svU/yDYPN8N7qrqqPhB0/Onb84cSxOvjDFG8mbAZfcfXVOlE7juHhZm8strthxJuNqMfos5l+ORd/isH3bP8VBt8PfOADD+973/uuvsnlwZf/aaBeifEgylla0+GoJsMeLzocYNenfKsTtn76vKh31mqBDyvebMU0i0344pJfXNj5sTkPM175yVc/6PF0p3sPKlfc6htctRhq7H2LHn9+bHjAdQ6bl9+KPHIk8YOBk7nemNnhwce1OyQvrKR4PtakOwNne1gMrPBg8TfLB8MsTi5zOn7OkT1ucHAkq4sLXBhsK3SGOp2P9zTvPbD02t3r8w0Medn2nlVH+ctV78z60r0pHwy+9VtdxeDIj43eGj4MImd37FI8flksPSP85DHqlzj6epG+PRw86re1QR8X2PzpSTZ56eTTN6KGfGGydS58z/rV2oDLf1+n2xfx+hJudYmD6x9PnBnpHybZ/g95d7Zja3JVezzPM2DAljBGQggkkOieAsEFmM5gGwxXYHok5Asu6JtHMjwBd9zZGLAxMmC6hzj5+yr/xXB4rdy5y7tcPpwpxYqI2Yw55oxYK1d+e9eucL2n9AOGgSd/dYbpv37xB3KJ/N57nVd6s3gcSL3BQ1/67Owc+2zj50G7v/D2Tn8Pf+1/OkZjFN/FuBi/4EXxCCtSA4hGaSjRAFLxHfSlPF5gkRp/mK8tnPzC6gDZytMFC8OefzHp87fHP97ZuwgnJ75GB7y4MOMER+za6dTgIpSTvcu6nPiSMMyvEvHw61P+24MzB1siLrt8Z85s+W9suntzscXYyyeHdXb7fMI69+nN1crn5MvuPPjUY7qvt6jNeVdj+eNsxjO7O3GrFnHdr+1TseEtfuv/bbNe3apbD0jvL3v9zF/MLdHP9fN56N7AIdnDb76F1Tk+53PG4SXfyc/egLVn3n51MDcnHu17n5z+J4/tm/juIhz7xuJsnhNv9/yqx5rA8d7Ej86aT3zp+BikOLwSOv7F4FrdGx9GOL0nqw3m4ob/klmecuZPVy1y++HvP1n7Wn7Ah90sx6c//emHX/iFX7h+YaqW7OccJ/pqpSO4+tmkj9ZJMX2B8QW5LzHPfa4WB0f9uMHtjoV/9o0+XdzEh4Ff3DtDuEZxYRfT/qUznEYY9SVOL8XiBwPn5Rce+2KqIxt/NsNav438b+HC2zz2SXH2+YRLV264DVz42Pe3W/gSNVUX7Hi/ZX3rld45GXAarN2F8hZ/xpy/LFR3cfzxoA+XjpjlhO0O8yNijST/bN2t7M1xbg+73NYEj94b5ZfbevXVKwZG5xtHdTdgW/u+3h2oBpy8J/3SUr64wE7ql5mfQcJZPvQ4s8GSs/6yJeGINcpvrt/VU0xzefnCNtTSup7Zy69+62or98aH3dzDiHzF4xMGv5Mf35Vyb8zaX7WGf+YUU53mpBw4yOsBhDl9WGL0z7nr0yndX/7h1wNY4WycGGdI9JrYL0bn3L04ewWbLj9r+enL60zcYzNZ/EtxvIgjzdYbI5c8+tRazurmj282e1jscIj4xU9XLeLhe4Dg32b/i7/4i4cf/uEf/qqYC+wFL3DJF77whYef//mff/jMZz7z9kMuZ4orcSbe1x6Y+g6BB87dCTV0VltPnxU92BBXTrhq1X93R031R76Ezw55PcB1J+ubPHDwrX8w4OGDpznbcuDX6B7HEy+YYj1EUoechpxwYfmZ1OeevQFjx3KDW65ym8X1YHU5Vz+b2nHBCYbzsDaInGHLaW824BO++lUMHb/s8RfT+1q95dYHnORmF4v/5tUjfh4udU/gfdu3fdvDd3zHdzy8//3vv/y9Bz0w5++huwdc/ukJcXLG3yynmf78TGKLb1yci3ulnmxqDlNuOc2EDTbe9Uds/S8OPjy2zomtoSe+o7LXY/7ssIgc+mnmj2vvLTHys5vdLfF8/BMgzj9+5Rcj3yn0epvIT9egVw8Ozi+BhS+R23tfLnlhwLTWu85XjFF/qjVeeitv+vLKszzXbl1/wi0PXnRGGLgk5YVhrY/dWfvOWoyhFjX5W+582d1DZxSunPD4sRO506vD2r1yTnEVA8MeB2ep3/SdDxw2Z2zuPcEHrnwGPV2566M9G77+wABHXPTPLDfBA041XcrjBWb9EldOHKu3OuzlklPd9UUcnnHt7OnDkNZePu8Zen4GqZ71x5uerpjie6+Ixa+62fnXS/HO23sszss3TnpXbHb51QsjnfP0HsG7vrET/ZDH55we4fR1f9DuT8hdjA7nYvb0ogiD1Pgn06XProEV3LyHdcbUgNVbdyHSn3Nc+GlWedOf/vbxOHOKh2PsQcIk/Bvhw+JrED2jE2Mm1rBJ8dfm6UWsy2Pw5ePiFL++1vThxGN96Ax1mDd/fmxhpLs1izUIf3GnqA2nW7bT91V7uWDFmz9cI9ur8ogt7lrMi9iw7/V33N/VpXq6sxLhtWfLbtDr/T2+7MUuYTpSv+zrIX3r7HT/L4o6iDoMe8Naz6qv9xffPtu2//REn4r1PgwTFv/e671/wi+2+NVfwI8veLEvr2znzFcu/iv2t3LIF6f1v7cO9xbPjdm+0ZejuJfiLOauxeurQeDrO6lOa/3ovOQuP5t+GnwIDL0L81LOC18+K/CKsZYbj7isL1vc8rWHe8r6ZsOLry8l79aD9o9//ONvP2ivL+U/ZxzJ9tReP5y/OYzqze5LjC80fAi7nqmv87oMTy9yhVW/fMGlP/ML4Zstf3prZ1gePrdGuWDvgHEKXwNuWGdMeenPvlSveIMPnK2hnHDqE59iy5ufWbxcfGCu7BdM+nDLDY/Yn7GXYV58Lsa3e98ernhcwsHHl2e6ZGunN/idIs65ywlPnvzKqeZ6TNcaN3sSz+ouHzsu9MQ9XpETHg75iAmXLyz7c67+8PjgbljXg3D5WVdrcdVT3zc3H3lgsZuJep25IZ7eL5B8CAx69eqxQQfLqF98ylfPqpN+17Do5OqM5OKjLnoDPp1BxNSXauVf3mIu5yd/seUItzzinFd7NevDYloTPnHmEw8c7eNqlkdfihVPf0/g8pd//cpJt1hw9JBOruJhbDy/fIqHaYgjZr+Ibiwdf1j6bFSvGPnqKT9jucYXjsFGrPGGx6e+weNDZ8DujsC2pxe/Eg/2cuTnd06/aJvpOg+5YcISf0/yMZN8Ye1682bDZznHWxx/mHyJfYMdTw8P/U/N//Iv//KNPWj3T8l99rOfffuB356p94Cfu74/7PtB/+KJM2473Ff9dY70STFmNmfZ33iW11Dz9tGav175G4cegMnJFzYu9U8snvbxMhswDD7dC35wekBiTVetcnpAoh4YcuHduXkw5kELzMUOnx5mYq9mn5V6SuK+/YIfZ7Oa8fDQRh4YRjXBkVMdW4t8BAbhY91ZyVN+MzHzg0/w8hAcB7Wz4y+P2vga1gZMMX5WmDt/f5v9O7/zOx8+9KEPXbF66QGUGvh6yO7fUlenmHoFu5rlx6P+XwQfX/jGWV+di3uFK07OE0b9gNODNlgGXX/YoUdi62849R2mOyEOpj1bPwfp1YATXTXAUbd/z1pvxLk/fODIi0d/AOEZmRg+3vs4i+sM5cHxFLo4WFfL/hyRD2ccDD7ETG/m45y7L/bWauhnAy7FwVHrKcWn59N7LK7NfORv7v1FJ0YOPOIPC1c5CJwd/NwJdcDgr4f4mzt38R/84Aevv+muvv/6r/+6bOITPn0W1B8z0Qc9d5fFy5VOnLVzdjfxEcef3ho//+SJfHLgJq5z7L6pjfCrj+Zy+4xU09kvMTDYDBL3Zjr9rV9yxF3v5QmXDzss97LPZlj8jKQ+2IsxCF94fq+jqzZ6uPpozWauBzj6LxLEGp1tuN0t++6keDxgOHufM95n8pS7+vjCNMLsHLozsPD1OeMvjcNRhzO2ZsNfDkM+XHrQ/k7/CdfX/hvtPkQQcZCnKLRR882t2TTAfEoNWL0G8u1ir+1112GJu5WfzuhymVfEq4M+LLV0oPR6Uq301jDzUUe6sNngkXJnM7MZ/JZfedbXmh6OuVziCL21kQ2uYZ9Y8zVWwil2sW75suP+tZwfbmT5bd70dNbtl/er1uHVBxhnPa/CeDfsnXvY8Yobvrjbv5O6wzXDgbfYbwJ3c9xbd3bsewb3/G/pO8PTRk/0px6dOjnrJd96cA8zvPyKgeHM2rv3STmyiV0eZ/64Ft9cjNkPq1uyvLLDo79ly+fWXL74tOdLd97Rcpz+7cWFsTr6U/g19Ie/IUf9subTHkZ+u6YLa9d0p8Dks2Kv1vXn1xmHLaZ1vs19+Vlctr0zcTP7svpePWiPMx7b++WOd1+atv9iDV9QfHnyxceaDl4/D+pnuW71bnWbuz7JS+yTMw89vzhmp4+D+Ab9LQkDfxjhbFxrc/lg7dq92buwNr6LYS1PPK1PWftp27vMD/fNfeKV+8Sx767jC3elODb4pPOPO524OMnN3zjFF193J392eIkYe9jWiyWGDqe4WHdu+dvTi4VzCr+48yPFiimnmTRfm6c9fxKWdTXBbNSTbGa51Wgddv7NajCKV2+/mIln80ukmcCh977V33pKj2P9oi+neUc9CQ8Ouxz5VS9eMOPHLp7dIPmyVSud9Uox2djXR3y89ade8BFDiuFLx0+/2vPxS5laslsbfPkZ9Z9/fKyJHBvzlvYtv5NHNuchBmfYYWRvTm+OD1t78fEvBm52+Q1nUK/srctbL+w31t5IrMXyJ3G3Th9WufBgI7AJnzDYuh9s/DtHvwj3yzCdeP7xaha3693XB7pb0t3Ghy+xpg+zntDLH6a1US1mPD1s8zfa39SD9s9//vMPH/nIR64H7T04KTeeft7SG/pOh6MHkj0IqnY1EfY+N/S4s6ketfBVD7yww2nmZ/Axw/WQtb/RTE86Pz5xp6/HZrF4hMcvu/V+hvHpjonxmSc+/tYNP1vEitn8uMXFOv986PqZVKxcjTg3qxkPg058edUaLt70nRU9f7jVGebJiW9iLQfRXw+m5HbmbJunOusPu2Evh3jiec83fdM3XTNsnNj4lcMDKbncH4IrCY+evfPJBq+e6Kt762xIPbXmA8u9hKOvOBIc+lyg41ce6+5pveWLT+dRT9RDD48ufXFy+idz9JLOA0MP6JwbgasP7GqAb/Yd3vOycuKotnpkxjPJrmac2Os5G138xNHxSR8WXvTssKxx6P1vT28Q+1PCzl5euZYTvwSO3HqDSznM9mLZt29inX9nlV8PcuPhLns4bFaLnuPhb7SLtffgmOh9veDD30ynDjys8TU6I7ys9am8dO5mnOnDkteDdhInd4jU22vz+CKPODNhh7X56vFyExOXMOSypificMFTbfTZYMnFR1/Ye+/qpfx8iNngQ2DYi60eedfncnx8oeMPuxrZqhkmjnD00pmby2WGQazbh+lMvA/NMAl/eIac4dqzbY/giDP8wYmfy7jipC+dm97K464ZePgnXD/5yU8+fPjDH77ybn2X4hUv7+hBu0KRuSU1p4YhVFP4s58S6WLY6TSLv/V5eCfGq/awa/zpK0ejwzCvxAOXeIaZn5hqCc8+rGzF5RMeez5hsp36xdvYcIvhVw4YzsGc3Zydb7jZTy5d5jDW7/SF22XvclfTS2f4YcSPziB05Y3LS7HXD1cfJGbirtWr9ft6r6u1Gsu/+6+l7vDM5dLTXa/Pu7Xee2XdWb9OPnGd38bBSvStUd/M5WSzDydf8dZJ/Wlm60O62M0bZrbulr1Yvu5f68115hQTdj/48zGzhW8vN4F5C/cy3nmJNzNc8ems6eyNbGaDVK91+jOe7Z6EHT6/4p2Ztb63xqcRh/IWW3z6/O5xSM9PrNE6DD5qNdh3nw4vPzPPn2P8nb2Zj7Mrx3v1oF1+g6hRDWb8VvicX2z4dh5mdvP5Ra0elufErW/08vJPiolbenO52Qz9FC9mudXres++ORazNR8jvGLOuPziIF4eXAxSTcWKOWV7EObpY19sM8z8F4OvvOc9zEeMWBzjJSbJfu5hJuLgm52FL9NqLwf9Ysez+GZxBnt83CX7pDsFm7BZG3LgFbczJ/+43OMQJnt43efqyce8wl/93cdyLI/yx5OPtc+IPtfkqz62Yszdp1PnF05DHJweTMCPN16di3h6v2yElV81dW/pxSUw41iv8zFXD3/YcXC27HR86A17Yl3vLsXjC3+DbC8uxdPL4sDqLm5cPPMVWl6zfoljz5YdTno9scZzP9fFdmcvgKcXvmd8uGGEE8eNt6aHXf3m1vTiz9z2q4tH7yecrHGpHrkWz57NiLN1udnTry9stZnzEdfanD38Zthxj0vnYnbHSXjViMf2JXszv3uCy74vYBnFhh0GvVzm6ihGDn7+9ty79TfavY/0gtRrD1t8d/AAoVpw9JDSgwP3G1+283O23+35w+OzGGojxavPOZjrkz7ANRM2uIY4d43NXp76ZU34EHo6vmH1/sieTUx3LE589MLD4u43W+8R9npmDqM1v3orLn7bg7jCItn4ivEQS7/pcdVLXOJaTLUu3sbwix8c64ZccSterCG/scIHRhzwxMnDYw8NnR2ByVcf3B17ft0ra0Oe3o98u0Mw2Oq3Oykv6V6ZqydfeTwA9OA6X1zlgA2PdE782dRBJ48ZrodpcqiDTvzyq19iw4ijPuiJvTP0EFcv1QzX+7pc3gP91wvneasraY2zkVQLu+He4p1//RVTz9jiXPyJR2+IIeqsT51fZ1YvTozdx0m9Bg7iOgMzXH1JT2cdF/ZwnAWbB5/+B7zm7oP3rRw+s8zugzPwX2qoAW69EmPvfPr8Kx+9PnVv5He27OKLtaZzju47wa3BDqu89HK5BwR+56E+PfCdSj6+OPd+VHcCb/1wgKVmNrHw4NjD8IeX5cKL3fvS4E/CqG51xgXOnl/+3Q14eJBym4l8cnuPxu8yPL6IkQeOwZfEid06LvhYE1j8DWtSvH2Df3hxKtbM1vnKx0d/xcHTj3RysBnVSwenPtt/z/d8z8Mv//IvP/zYj/2Y7du8rs0LXt74g3ZFGgoxa3YHHZ8KUkzrGlq8mc1cc/i/GyKP4SDkMPB+qeBIzMsRJu7VtnhylXf1t9b1kH85YFqXuzz2YeNiL454cxQXpzCKN+e/tfBzpnT5Llf21fM16OKf/5kz/Tnz2w8G96hYvpvvzH9i7f7EUC+u+0aUq/5t7DfSujq2D99I/F7KRd9XumOru7fWA+cHw3qlu7f3mG6lHnbWYdkXV0wzn4Z4fu5L9sW3LocY6/zsvTcM/OFkOzHYN57f2TfYvdfYywvL/h72mctebDXa1w8Y8Uh/C/f04buY1U1/T/ivwFSz9yqbvM3WcYRtf4tXHOAWszl2zXfx13auw8UNT0IXV9x8sXFP8MteTeVhJ7j5ovZe/I12PY4PrtWjhhU+Pp99qel+mos3q59UJx0RS9cZNa/tcnx6kTufkw+s8NisCX9xekond/b09vF9SvWiaXEElNM6zO44HnLg4WcwX4O+msKwZwuD/qVSXL3S+7M2NhwM62KqR376bOY48rGOY7yym/nDJr0X3JHuQTGvmt0pg/R+gRNP+npkTtRTzeK854phe6dSH3CqLnhhqr08cjhrPHB+TuqZuTXe8omvb/Jkh8fOTx56Yq5mdYth94s/wa9esVnLQcx+aSzPpXx8ae9M4YvBKb25c4kHHTwjnosHQ0x2PnQGsYcV7sbCJuzly35rVj+85IyDJ6+ZTf/8kq1/JE7liif/cOk2j1g4t0Rcozr50cEwykW/+enFwC62GPH0axNPVm/PV+/dZZj2em025Nxc4uPExofkk42u+Hpj312wXl/+2RaXnsCoThz63BLTA4v6k684OeqDvbzs5tb0t0Qfut/s8TXHv883OrgED7zMy8Xaf6Lu32b/8z//8zfyP0Ptb7T/3d/93cXV+1seuXHvQZOHLr2H9MMDKw+qPCDh6+GC7xg9OOXjAZD7qzZY7kgPIdjrq3zqdf+KodMjOcWIlYcOJp7l5SNO/OLKaxQntr7qs3OXhzgHfmsXGx6bvxXrAV4PoMSqv4ehaixeLjEGwRlHMfL2GXgZH1+Wm/UpuFQ3W/56Lic76V53ry7l0wt+Bl/x1uLjyK16wyueL0w18KnX7NWsNjbn5W+u+6diPOyEz1/d7syXv/zly08f+4MLveXrvm2P3DNx8YFvXZw6+jmKh734emUt53/+539ets4EjnrMpPeqNa7i1OzhuBjY/uCATg6iF85eLv5GuPUnPjh6iCqPGJzE2atFv9TfXe795Z/TgQvHqNfWnZt+qMVMj2Nir7fpxPPtDoYnB139KL5ZPF/ifMMTZ02HOww/8+Ql5nJYG3jSiZNPP8Sphz0dbH1zT+qruTOEISec+IvXZ/8/AH87Pdv73ve+i1f/JYF/usedsBdbL+OMo+H94Q7AkY/OuekhkV/t2arLTJyzB9nVJt7d6O6VB2847gJfPvKw0/vDGOdozS5en90Tn0H8SPX3GUXvnhow8fUeM/RSrD9scAbVpFa51C5ef8Q6I5w6A1i4sNOr2XmZ5YPX+dDhBlsN9ESs3M4DLh9D3nzlNtjDKZYvDgZMgy6ecMTKY70CSx/MpHsmlqhBTjUZsM36Yg2vEQ92mGqka+DgvPD4ru/6roePfexjDz/yIz9y5Tl5XcpnXt74g3a5NLBGIITwSo2n50siXpHNxfHNJ907nWEvVodu1tTGS/HFwSR7Oc48i1fO4tZ2rmH2RmHD3RBb/OrCrsZ8Oof25Qmnuqun+HJ5E8UlW7Fi6KrfvjuAO/3m3TXbLeEjJwnbuli65bF7fvdE/NYYV/ry7H0rxz2890pfHdX9jcrzVf2pDn7dn1fFZBfb5wmds1zp7tHVp7WLN8jy4IsLvOLM+TeLy9fc3swnXfetuGb3DMf1vUDmJd8wwqQ/JS7pw6UvLtvO5UhnL59BwsWV5N/+Us7LxonNvxr2XCbsK5ZhpIThrI0+M/KptuVpXW4Y+YgXZ49H+vI0x9m+fNl2zs/s88pMzNVbrr6sscfDmvCJi9mXiHfzQbsvSvLE9y0Wb72H6Niqu30+Zvz7oqROg86odv2gJ3T864lZDiPhQ8rHdvrBJ7ix8zXCDSMf7zEx2dM7e7rVx6WZb3jNdMXgsPr85euOV4Ozx4W/eFJ/r83TPnt1ZqM/c2Uzs4mRr5zlyY8eB1ziLmaxixfDJ78wduZbDcWpG17vBfjl2Njn1n3xrYfVVt/FWsOtRj6J3Pj4RaPc9sn6prs18zOKhVvO5aIH7fnWs3zpwtg86bKLM+zFGmHRZc9HfxbDufqlw0yctR6oAVZ1Vxcdwd0vHCQbXGsznGzhsIlrZG/uDM4zFN/d4At/MdRG8pGH7JzPZXiyZaeDGe987a0Nvg36+lC/6h9eiyeGzizOTHo/nTkv49MLWwIDj9Xpk5HEr1z1Ecf8Omv8YVXfLVw2Ao+/ny9x8LmcLLdi8osTXzo85Eov1qCLQ/nMiTW/02afXznD0mO1i3Onu9fsy6W9XItV7ni1z8fc+5tt/azZ5cEDBxJHNjqDb/5mD5H80zFv6kG7/xnqRz/60YfPfe5z189TD27k6X2lBufp/WyNE54e0PD1kARfdnfA4Adj7xY8OGz8nfU+DNl+iKvm8pcbTn2zlhcuXUN8gy6RwxBHPEiRx3AO5TSfom4PTzwI62EXPw9P3B3rzqxZnnizq7m6exAlDx2eajHiJ6bBXnxY5h6iVhu/7jY7CYMPbok8fjaS8M3F8bUWl19nmo9YdkKHo/Pw0NjDzc6GXs0e6vm3r+VxVzxAxIO/h809jJaHvzvmQaW7Uh6zMxC3uovE4wtssT3YguGBZ7WI6R4Wg2d9lwuGfWetFz10r3Z97jOzvpnpO1P4cPSvPxzAzd90ViNcZ65++Hiwe1/xwZt0brg3qh8fWHJvbXGSu9rMuMXbvnN2j+HcwqCLg57oX+dtnQ4G7ok4OXof2IujU6t8YvDhQ4+3zxez3rgn7EY1xqdzo2end4++/du//e27xQbDfajv3Qn3sd7pS2cbf70Tu3n41yd6PrjLfYqc+oEDqWdhlK974CFuPepc5MBBHmt2d6xeq3tx3CW+/GC4T/opprNyXuqF4f3FXk16jgef5QsHRmfQmfLBwV6snHDh23fH6PGn4xs2X+dSjzqH8OzTwag/dPb84LY2lx+musIWS8x4qdFs7/1XLXzU252SozzF8OEvXxhhdo5wDRz0mf93f/d3P3ziE594+NEf/VEQl+5avPDlXXnQHtE41LD2FajppxSruBX7U7f2l67hazKseNmXl+51cu2Bie1yvYpP+V7llx22XCR+i3FLx06fwCjGTJqt+fZGyI8+kf9WjfVAPHt56ONlXv7hr708zfnYL8/sxWbffT63ZjwaxbqTeIdhTexv3dPL+B6/6Mn2NM7vMa13lL6zft0a6oFzsu6zJRKdqb31iV+MeL20L8baSPgQc2v79aMXny7f9vy7e2zu1qvu18aKJ3TL4S3t8++TW/5hdY/al3Nnde0PbTH3uLNVe9zo4n3a8tn8yynu4stL5wcpCdsaT7w6R7ryWrsj/MXzWT/2pNqf48q33Pmb78meNx4G3dYnHidfvPqfsPzMz/zMBZnfPfxX6WF/+tOffvA/Q+0XmTNm+T+Xry8xZj0wqgmmfT71sC9s5UifP326Zpj552fO3pqPIW/CRy/pFiN9MdnSi0nCXNzi+BVrFp9Yt2fzxc1Zx2XtYuzZCR91r9AVu/rWcrA/J3Lg3BfZYm7h5mvmdwqcBh8Cp57gbx/2LYwT056fX1J8OcYTdhjmxLoc1cGmh/1y48t7fex9FlY492Z+6ytHeWAa9tsnWHSknvCzblzG46UYHOsfXfi5s1fHmdfeLxr9cpXdZzac6gkrXXnYiX09yxenbOvPb3tUrfydAYkzW58HYVwOjy/lxJnYh2udrnV8LsPjS775wZFX7WGKicviu2O40RUTPtz6SMfHCFM+634u2vOjyyd/+8XITww593Riidi442uQzlpf8w2n/OLoDMKPv18s+RjqLK6asy1/uvLEh47oodFZ0C9mcXz5GLuGVzx9+VvD4iNO3d7b2ej9gl2+eJaHPdsVNC98cDPkD5M/oQ8vDnTxD7f9YrF5WOefjvmzP/uzN/I/Q/3iF794/Wfs//AP/3CdYw8DqnX7Vm3qcGc8QOpBhFp9xvqstY73WYfYMPW9u0efdG5h0Ld21+Jh5ps/P9gw8fI+6j2rdwYJiy8x83OuYvcMwi/G5xAO9KQ81+bphS/hw1dfegAVtjgPt8otv/dQD9PEs8W7uwqP3n01+MdRHrnFbN1iu7Nw+cAww+Ovbj702bbPuJUbhpzZizHDoq9PeDjncuDs4SNffP1BAX8PuTyY97eQ04l1x/TJKC/e+gcz3M6ND2x2sdZxyAd39chvDa9a+OCoF+lh1it4BjHH4Z5OnLP3vlCjfNVVrFzdE32LLx7qqNfluJI/vsTZPqx40qkFFky+xZsNeWEb4p1TOnzFwKhvMEl3ji9bNcLBF29C38CB3V5u6+6eGDj6ZBDnjZMzclYw1VINbLC6Z9b44Oy/PPBfU9jzI2LrZ3v3w6jf6oeTyIXjcmeDWX72eKtJDBw1hYXHcl+M6uGLOzxidgZh7CwGZvVlEwdDzzpz3NTtDxbihCc/Ejc+zqB4cfyIWtkMa/n5GXLbw+Yvzl69sOPBll1t4mDxE2suV2v4YuARc7VaG/E9ewUTXz54mAn/lbjI039NUH4Y3btixYeBi6FGdRN5Ojt+7HSw/Gwl3/u93/vwK7/yKw8//uM/fu3jdm1e8PKuPGh/Vd6K6QLkXzPs2VZqUDqFvqpYMSS/MDSVbi/9+rLZF1fOc8bXYccb5zBP369lH+9bGMubHef4s+FUfD217wwWkz0f9kY5spu3N+z6UH49uJdT3OYof7r2G9+6uTwnj2LvzcWbq41v67jBXT7e/ETc1n0pX/giljRbwwrvxMZp7fxvibh8l/Mt3/9Nuu2X+gmde2g+RS97b9ZzPvwNvRNn7P0NO7zuBh9SDIzOYeM3F9/OyJqw063fZZiXfPMv57h8xTI7zPC/wuHY8Md/pbrFL57atr7q2djn1rDOWsMvzl7+ONDLI6+5PsOx7gyt2XeUKxvsPv+zwW0dBzPf5JY9m/z5rp91o5rs8SM40dsXR2fg5MvX93//9z/81m/91sM7/b+dx7FZvh60+5sh5W3O7yUznr6wGN3/zkK8XHqtDiKHff6dJ31151eP7MOGd0vEd4Z8znEvRly++dB1f+jsDbzxWB09CcNMijfTVZu9GPvW9nzMxv6skS9s/uGYy3UlPF6KqSfM553vCzjb5okPvZwr8pK4mvn05VjeesSPv31xdMnJf/fW7owvwvDtGxuvpu2FtVGv8PNlOU71dmPCM8dBHB9xRvp80/NJ5PRlf2PpnEG9t2c/BT4sAwaecuRb7fbscIj9Ytp7IGLEJb9yVEuznOFfoI8v9t13mMYpfMTmx87Pe5uou97R42nf58XlNC/LIey45bY+8Ald867l47N3sz1dOcz25Qr3An16gbV9pua3uvKwrd4+2V7KW1/M9wQWyVceZ9v5ekBA571S/fzF4bg5y8PPuXkYou703S06Uiz/sLc/7HLLxe58xZq78/XpApwXfga7mT8sc7Hln7BryZ+v9zbOxN4v2JtvOdWP+nkFPb3ExSxG3sXhRndKcXzZxRqETR3E3wD2B+b+Rrt/QuYW1uX4ipewv/SlLz38xm/8xsM//uM/Xr324EldcM360oMje3HxSd9Z+Zz1wKMz6/3JP6zumnqs9Vougx8MNfagTz9w4Ec6UzkIXEN8NRVTHLtchjXh657HrTtQDDw5+BikWBw2P9/scsPqHPl6b3h43HcXeHx8Z4qbvB7E8isfjrD58qP3t1Xp+xu51oZes8nHF15ceogWL9zVnfA35DLHnY8B03mY7cXLVw+KE5tYy4unh6Y4ws1HDAy9gQPf32b3oN356xUf+Zybh1Ti7Yl/8sPPpmrkE292azpSve62HqjDQzW5ccBNLv44w+VHwuTTXg31wRwnGAbhn14+Z6cmujjzc07eR3R48o27PPYGPHtzXDaPvPW2cwm7eD7VFQ4bTmzxoHOX6PWEXlz5+8MgeznE1uP8caOLN8x40ME2CGw1731wBvDlch/g8qsG/kQMH/2tFv7u0r/8y79cdw+PPdP6Z4bXuTv7ONLXT+tirqSPL3SJGGeLAz9/O9t9pa9X1ciOz/YGlnqMcsLrD5zonIGBq70Y/ZMjzrCt8YCfXe04OaticY8Lv3DpqkMOOKQ49h3ZxMMx8hXPl8QrbnR6oia82Em9KLZc9g1+1cauV86c1MPqEUPCMdPxkx9X4h75LyHwYCPug88uM99kMfl39uxqEa9OHOWTg9456Kffw3/zN3/z4ad/+qcvyPDCf9X8njxoVwg5yaa/ZdMcTUg0YhuZvhlW/h2CfZeZHww2POIirsGePtxmWI14hwNT7JsS+F3qxZR/c8e3etW66ziJieviWVcvH2P71SXPZ2PjEUa9qb/0+Wz8PZ28RM7qPOPsG5fzMy/xka+c55qPHp1veDmWQ318Jt1XmcpvJjDhGPHorOydN1u6rwIcRfXA/N8u9aqzUnPvjWxnD+j56eXeR37umdFnSffuHlZnYoZZ/Po/dw7iipW/+/DcOZ/YYuQ98/ALHzb76UN/S8rB3zpeJ0b7fLaWW7irgynurLUexjUuYq3p5ens4NgTsfbx5ROn8MxwiNl9yc8+rMthXuJb/jF9xXKxW9+KWRuAcx8oPX6+DPgB/zu/8zsPH/nIRy5zNeX7ujPsHrTf+6djXgfTlx08O4fOUp7WnU8+YqzV0jmUs56Y2c3wb/VTDHt3o3Onk1MO61Po5DXitn5yGSR+7gw80s/Ba/P4EoZZXDFhiCtWTPnxtRZnLm8ze9gw6e1hmW9JPdg8sP3ykA1ONZz5yylezoSfvGL5kHg204UXb3tjJR9xpH1+ZndEz/0svtU/+HzqA06LY6/GPtfXZm2UH4f40qm78853ed7qf/nCsq8vMMjmuxRPL+WWV71mtZnhxEU8ezjt+RCzhyQ94LCHHd+t2bq+rv2J0ttx/PAoZ3YzG279khfv8pjlNy8X+RI2EhdrvgZs8Um42e3Dqlf5mnHeIY6fQcptvThbK5+wxRN2695D6Zrpw2iG00intjjFJVtY5bYnsPtFl2/3pV8S3/L6n7+1C78zqJdy6e2tB+3ysecrx8mpHOa1F9dZsm2PNs6aP364GPzjSl9efkYxfNn9IqwXBG8P5eoXO8EFpn22yzAvyztOm59reBN2LfnjGYZc9ka5PUDyc/xP//RP38i/0e5h1Kc+9akH/4RMnxMeLOiHfpv1Qm/UTPDStx5CWPuZ4A70QBZfepjE3YJL2KpRbZ2rn80emLz//e+/HoS6h91P8fpmxAsPDy/8jw1xxJV9+24vB+5GucR2z+PAxsfeqE5+OKtFjXiqbXGvwh5fcNCX7k/1FicGjpmPOY4etPdgTg1yyMtO8OhBvAdn/o1pNrxx1Tv+nRl9D4vyMzujzgCmgVOxYvSb4GHEQ7xcZtzrtXXCbrDhYrA7S5zo7eVVs1mt3ZfW9P52sp7oFQ7Ox88l//yMPsOhLx9sY/fZe9ho3x9K4AyjXrlP6ldfNnZ4zp3AD7O5msRlZxOLu37aEz7yJbDZ1G2txnqVrRhn56zoiVyGmO5uXOSUp/ckLp0FH9K5i+3OwhZjFq8n8aVzZt0hmLgZMOQ07GGrib74+gXHmh9/PvbOWgyedN43HoBWk3z50/F37/3BSZxh8/nbv/3bh//4j/+4ePjcTA9XXlgkbHMY8cqnuVrM4VRrsfqll+r3fk3PXw767rz8uPqeJYYdT8PakFtsn7fy9R5hF2+mqx9mOjH9YZczqA55w9B3tnrCR2wcOjNza3Z+ccOhMxOnRnM9EodTn53i5awmdlhmvWEvF+xGPrD6w6Cww4DLX24Cj42IZ/ced0785ILn5w7ObMSZ6B0fwo/diJ84e70zO0PvXXaj/uBi8PcH5b/+67/+8FM/9VMXLp/XkffkQfvrEMy3D4AaofHGvYJrWv41FU5SQ7us9B1IPtno+ZfPvkuVr5ldTGNt72SNf3msV+yXV7n1hbDh0fpaPL1U1+paL2ZvPtgub/XnuzM+BmwY4TyXa+Otq6k3oJxwSLnLY9+4HO68xMUsNgnHHg67N5acOGe37gz42Rsr+d7jU/zWAkO+YlvzqX66M9fm/f9tXR/VrS/6ve/pe/3o3PTTOoFndLfD70zya5azc6PjV0z7fG/NxeJBxMJofyvm5CLG2DqKg9/7P50ZBmG/J+4dTMN6Y9KnM/OBtzzojfw3V5hqzU98n+23YsSn7+zKyyYWFuHHpxrjwdba7MtK5w0rfH4rfA0C857v6q3JPczLeOOlXMXJ5wuOf6P9d3/3dx9+7ud+7opi/1pEnh6090/HbO4T+7l8bL4Q9QVU7e6l/nZHYfNL77ysy+m8ug/lYkus9YEtv2zNemWwEzG4NPLbubz5mG8JP++nauLTzwfrM1c8zLfsl/LxBS6f8m/NfNjkya7+MHG5x5dP2Posjm9fhNkNNZnjL2c9Dpvdmj6cuMWXvtj8tldh5X85P76kt2erJhjt8ceTr3W+9unC2VpgVKN4e35yGAmfMMPnq3/2hjh8DOuGfSKmnGY2eYuLm32+xZrLIcaZy4+nmb+z42PNh4TTXZTD8Dcu/bIhl3iz91zx1ay2+nHWCpvQiydxuTZPLzBhwCewy/Xk8nZtMGFVq711+/jw2R5kD0+cPBtvLaae52uGxx5/a6M+LKfi8m3Pl66Y4uWjh7GyD0b4Ej75NasNJhz1hxuWPdtiqBO+XwzprWF0R4r1i2c8YNfruDg3D0TiQt9diqtZDkMO8/qXa2d5YG9t9W39dr1nT1++4uIeL/7WeuOX/mJ66CTOuZBi04V5GZ9eYOUXb354JPblv4Uhrj6zG+n8z1A9aP+TP/mTN/ag/fd///ffftCOZw8b9cS5O/8e/KkBF+fSwyFcPVDy4MM9iLuZH/7uA5x0cLy/9aG75Wez+vyzDx6wuofyljscZ4MjHjh46OqzCr6zoq+/8hCxbN1LPn2+dEfY95z44MtPHfj14Jeerx51P+TE1QPdHuLIy8/Dtr57wCW9H8XB0zu5rONnnV0/YJg9APKgXT0G0X9ir0fNfHGoPmdVDjkN/Ojw7/wvsKeXasWZwIaHW7j0cVWHh0rZ+eDkrOn0hd1DUr6Ej8Gmfrw+8IEPXD7yOQOzs3bm8GDpB5sYe7O9YV8P/YGM+tj1gHR+cN0fnwHdx8vh6UWMB8ww4YXJXF5r3El+9vLCxYXQ1Ud+ztTQBz5suOAUfzrc8da3agtT3/g4Jzo51EHnXugRG0y+BO/NqZ/805v54g4PrgFPL4rtbsA2YPBnx5P03rSHq3/W8KuVrtroYan3W7/1W6+8cORii4874j3pc8OayK/nf/M3f3P9j3fV/sEPfvDKWS4+cODFxRmoy17u7mp9kFOccxBr3VBrD9Tl4KO+7VWc+eJkhs3XndZnOlJPrfXcnt0ZwSne2vuVDx0O+qEXbH4v83lUXHj88Wuol7881tnN9Qe3ONOT+qAGOcTy10vY+gOXztkaMMSL9dkUf7nF7PuMX/0MS7z6nLn+8REnhz0cZ2cQOdmInDjK6WeHNX998z/QhYUTMesd/nBhGHK1F1fP6OEadLDE4p3g/X3f930Pv/Zrv/bwkz/5k5ea7+vIN/fKlaYAAEAASURBVPSDdkUnGtKo8ZrxqoJrrhjS4VmL1VSD8JWT3uCbj9z8wgnXnBRnb91hVQfd60oXRdw9nMW1xtFcLeVUA706NiZ7OeSsL2LCCXf9W/Mx9IOfeGvx7fN9bq6vfHCsh8Wwx0eOW8K+op7iVk9nyFNtMK1JcThUn7ne1MNs9U18HPIJq/z05U23OdPlE076Ez/9S+fi1//MsbZ3Y70cNnf61cnvrOpjZ0DvjhH+Z8xleHophk85zDD3jpZjY3e9dyR975P2ZtjlsZe32Fs815f/ytqWXzjN1ahXp5T/1LeHS2DwhVHedPma2cqbvhj6Rrad5RLvveXLxqs+J2BVWzjiO/t08Yy3OGu82Ih172k89uzDOWcYfOH1+ZAPDvEzvxPZvomXw5cNP+D9jfZ340G7L4qJ/LjHX73VlM858+nLo94YekEHz1hh74ttedRpna91NrGd3doX07oYWPwNuZ4TMe5DuMWZV2Aa6srX3ekuyVNsPMKGI6a4E5cfW/FrZ5M3jvJb08t5C1P8xtkvb2sC15fVxaMXW132pBg1r9TfYuJq7wu7mmCJr6e36oSplr7Il8PegLfCtxEuu3U9UVuCg8GOc3ng4lyc2GqgY6dzl/PprONEn6STCw6J5+bhxyf/4pv1mX92OXAmGxtG+cyG/0rFLyN4h9MZ5gOHrveuHJsnLnTVICY8djYYe7709mISfkn9s8eFX/7lyca+/nDCwsVIrPXNyCfb4lln7z7HwR6OXltvrfT1Llx2fvSnuH/ywGYvZzj2aiNw+MhrbST07cOA7ZdRM5tflvHoPSdWHj7s8cAlodN3n8XW/I1yxZuuvMslHHN2syHWsA5T7HPCf89anBjDmq17Uk46Ng9nEr8sF1ctcXqOCywcwi5/GOmri57PSjWY4xDuu/Gg/fd+7/eufzpGX5x/DzZws3f+7kY14OKOpNcXDxA8FKOPf31WgzsGQ6xBmuuBewvD32D1gEq8HN0/MfjAMuTxcMd3DwO+Xho4nedVbHb5+BBzd6TzwM/nWp/b9h4M45VPMwx88PJATA/ly+77l97Y8zNnlxsmPmxG3NuLxYMfm/vpIVrvWTo5SOdmxsNnuHz1ue9NsK1h14vOSc/FwDXU3l20Z7eHIaZa7PniCdcaDp96wkesepyzPR+DmOnEuwt6Hg9xcvvZZKYvhk0snXiDmOn0TL+s5eULA3cjjmZYSXx6yK0mQl/OctDrs3216797mo84+fDQJ33Q/3Bh4hkOO07ulbW+dA/EwBHDn9DB732sf+LyyQ8feQl/OfnAg8Fur2+EnuiDe8NHLfUBBmwxpPpwracwyyuevnPh5w7H1dnYf8u3fMvbOeCKJ+J97vjb6jjFD6YHpJ/5zGeu9wg894h0B+NsJrD0wkNeODAMnOjVlA4vdTbY+DgXePrIx9rftHfX2ONXX9LBdUfE0W0PcSuuPrGrCTdrNfGhw8F5m52HPoSNZ/3nr2YYRjXJBzO7vZj1tTb48BVbzXISdfCR05DDnYm3WPoetPPVL3HOst7wgR0n2HzdC364wYJP3yzGKLc4GHqNI8794YO84vwBL9GvZj2HUQ/MfMurHnbDGqZB8IItL+GjB/9rH7QruEYpvP1V/eOLRmg+26ukQ90GbkwY/MjucTDk0/QkbmYipsMr3uwidSFh0IkxN8K8N4eBnxxwYLRfXmGwidMjdnuDyPuc8MunmJfGnX7Fh/dc3mzFnFjZn5v1xZuqfGE1h9nenO85s2U/zz9fdjmN9dkPX+dQ3uLaX4Z5gXfKxrDxgXlyuxUb1nKgi3PY3av8vx4zTngQvTOI81OLffzyzT89/+pWQz806O9JtbOLMeDDjEOYdK35Wzf4im3PnpQjGxy+W1O+1YKDIWYFVrqTHz+4W3d4G1f+xX1ufcbKH4Y5rrc+g+Maj1t51sd697f86W7hFbcx/Oib1YIvOc8gv42/ty7XyWMxNs/pdw/3lh5PXwL6p2PejQft/s1M3Pu8xFfee3XGs776YuhzTn+JvYE3n+179wX+2Zf2/I3yw2Rz58Wz3btvxcB/ifCHB79RfnMSN/ty5J/OXt5yh8O+evsk3DDT75wPXXxhW78qrtj1LYatPq4u/sth7ae+HPRiYTorHJ1Xn+PscOjM9Wd7496wh+leib8lxdeLYsKzLz8MvKpNfqOYuJWHTYwv99buMqGTj16NbPG1h59P2OmXrxgSHzbrxYQtDxxro/Mqh5h+Aak+/n6x75c02PKJhx8f+eHouV96+RF+K3zo5Mpm3R62/pQjjHzxYTPkWH2+9PLwxY+Ed+aKJz1fMcRcL8pxGeYl3+ztudC1t95+smezJvZGd+Et7Ve/wqoWfPMXy2bUl+opVzWaCV+Cm19GYYn1S6VfEp2lPX8+JGxzZ3AZHl/snR1cMfCWazWWNz6dUTj7+e8cCd/i86vm9juXI509zvWCvs8DHAkeRmfVL+Ht4wkn/8W7lPMSh/Djnx5evMz24ZnFGcs7LA9ufuAHfuCN/Y32Lz79z1A/97nPXX1xdoYeqB+3PQN8PeTwwN+DDnelfuIuTgy+2cR7GORuib/3HtVCvvzCgdU5dPfgemBB+lzxQEmMeDHW6rAmnR0dnngYJE7ucHeQzlqthnri5jOxh1s+89gJLvzClWf5X06PL/x7j7HzM7z/4MYx7nA9AJSrevnUJ/2xN4j8Br6d4WV4fJEHx2aY/PSLb9zro72+eJgZZ1jltvYZUu/tiX6Lc07i4Bnw1KC2aq9n5X4L4S2udHJ/6EMfutR650GifMWr2x+S+YMHZ6OOeiIIhnrZxOCln3zUUd+6I3yNpL7gIb97QcQaMImY8nZX6eLa2V3OT/6w9EgP4Bj4Fi+GTR5/uGBdv+DUs/UXo9fukoGzGIJPeez1wvnAcY74Ez58DVj5XcbHF7rujDWBEXczXHHErFZ6/PAV50GrPyRTH7v7yBcPdv709U6cv7Hd+8FDbHm8d/71X//1ivO9xe8jcMRVs3PunsIJVx42NdPLSWfgIxdfPnrUz0x22GR7Kp6oQZzzxRMXfuL5xK+e0xnOCo+kvbh6zhZvvMKTq5r56os4eYm7wEfuzeX9467IK74+iKkX3YV8urf0dPJUm/PES/1sarCWM5z428Micus3XfU6g+5FveDLh1RHd4FO7YRP98H7x5ouTj2s717oE17EOl/+xeBInJs6+eCFhxizO5mOvVr1wH9Z/g37N9qRNwjixj1Zv3xqlL01qSldpEv5ghcNlL/4F4S8fUi4uYByxtMcJ+sO5qyxg+YjNww6fo3nuPDh34UX77LAMwjdmVe9Bpu8p73YcoeXn9lYrrsu7p3Ot/LfwsKfxC+f+LU342dUO53aV+oVvOopB7/0+RVrn1/czXhsTBh0xXT3zni+4ldu4eGZ5E9XfjZ6+PmWq7j159s+e1zb35rlS+LR/p3MOBhhNesXwSmd3OVf3eZ9aQ1w5C2HuN5f53ulPpV78/V+jo857OLWZm2wbY3yE/riygOvQee9X1/iBDPe6fhuXDzods1vhc3AI9m9tfxx7QtHvq876wM8Y7m/Lg5/3MJopreuns2VjzgjX/rVXYYbL/zCyLx7GPK9SuKWnzjn6YuVfxvu3fynY+SU/xZXtWSLW/X44uKLSe8bdnxXJ7Z7bg3PfZFr+yQ2+6mvF3CMfc8tN2tyq47LMC/9/OzLV6blEF62nfVAHhLfzUuXvvsW1/pXrnDCP/erx1cPws62c7nzWa7rp4+EXxzv5d64XYctrtjWeOJr31qsuqu9s8TB3aEn7d2teF6GeQmDbzmb5SNs2e3F5GNmC4ed2Ivvc806HHP3l194nWl4YozqWwxrEg9r8XDNata38rCX1zpsvv1SI094dH75MseRb7/s8QtHz/2CRPicwi43W3HrU6/iZE/4irt1X7dH+YoXU8/5kM6+/aV8eomTuNZmIx7WK+UOT2zxdPzlbG2fLxy+Sevm9GZx9GJxMcP1O8TWxI/dqPZw4rL41s7R2fLXN780GtUsl7FnYs3eDNvIt1xxkYfuzJ0fjvk6YzikWVyx6S6Hx5ew258zu5jw2e23Hjp9rAaznugDfTb6xHr36c3w4ykviWdcxFYTn93ng6M1P6O9B9w/+IM/+PBHf/RH1xzOleg1XuL4T//0Tw8f/ehHr7/92cOB7oU75kx8jhhEHC752vNRh3ukd/GlN+zrZTpY9RaGoQ9ye2DqAdF5j8XI47PEgxm4eHgI0+/UfGBtDfb1T47yOWPCBhcW7HzNO/jK46GUh7Zw8BBH7OGosbW99fl+hcsPn3qDD972amuIV6OHZIvHd/trL4ZPg10c6Z4trnP1GV/uaueLs9ziPcRiE0ucDZ6k3lezmeDQzyBx1YUTgYHzxi3HeqN2/3wIDA/G3ve+933Fz3hY7os/bPEgDZ/Ftlefu0lwgsNH7ew4OUe2+lMP+KnFzzdzPeghJkzx+VcTHV96vVNH8XRsamcrtlxi3UWDH57dufobj/oH25regKXnMODJY03f5345xOpDZyQ+PPXoiwEfVwPOithy8tt+ql0uPgQX+PbwxdG5a2L1Vo44u3/i7Xsv1F+98cDeEGP2Tws5YzFqkYMNtkGPHww290ZOvoSPtTPv7seVv3W+1t05sfqEZz72cORSJ77VVg1mOdPrDXw41uZ86M/Bh72essvv4XKfyWzVjRMfIi8fufngyFYP6ORvX0zc2OWWz+B33iW6jYcvjsDBi53EHSc4+u/MnVeDr3MgZu8NPe68w1eTs/WHOf1hghg59cAdsVYzUQe9Waz8ZkNONneUnaiXTl6Ci/ONuzhSTfh/w/6NdgfSYSOtKQq8JZrRASquQtdXY4gmfj0k7mZ8usjvJHeH3aV+XQwcXBI4y2X7Rq93ycbI26VkF+eiEjGGPX0SV32HbW/d+dC9U1neca6+9nzkcN7xi2MccEqqqbpu3Rdx9aHzpatWWOLZ+Mm/PSkXu0HEwuCnBvp453/Ot+LXhx1W2Gfd8OUk1W2Ns7jW1+INvsRb7uXwJlLgrc7qglnv5TL2vN9EzsVwX9R35u9M2Qi7Phv1YXl1HmGx1atsPuD74RIWW7mre/m1Lj/M1xGYnV98uivh8MHXiMvaiscZxnM8i3tuFq/v5XzO93Vs1SqmWs/4vW/Vw6eeqB+v58R95c9Xzs5GjL1xq5eLyQdG/jBw9sPfHXk3H7T7EiNf4+TlvNVI8OPn89jauTXiXz/o6cS/ROD13q/+My5s9npK1/nCIPfiF09v+cURzsZbs92Tvsixi1XnxuN03h09WX3vJTqxxVcbbBzTl2u50p3SmfEjuJ5cioFP4tU++6tmuI0zb7xh+qLqLvOl5yunQey7Q/Z8fDEW089/+pdIWN7TztmsF7DkKC9ecTavsMV/9a35G3zqmb1cdOp13oubXxjmehcnteIq9pTi4yWWf7+Q8eej5vrMFzadhxb4JWzy+GVInJjEnl2/um9i6dXU3crfHG9x+XmgZQ+bLr2zMEi4/IhZXQbpfWhfXeWHpz76ePJrXd4L6PEl7p1L8fWFv17V/3DFl0cMjjDqD90KDP4rfJaP+Gpfv12XU77i/UIYPh0MNafDSd/1YMfWXp3iYNR7ufOT22BPWvOHXZ/Y2eARHBbzUj69wHxV3fnHxXwPL181dcfr2/YbP3u2U/CVI+EbBl08bsXXi+LtxRp0sP0TCD/0Qz/08Ad/8AfX32yvj+V76VwPPGj/+Mc/fj1o9/714MG9qH46f4PYTHDRcw+z/vu///t6wHHmrAflMNP5LHOf9qzhuW9ET5y73N2n+gVDrXKLIfZ97sDO1zpc2O5XPRWHCzwPoWC0N68vW5z4+5zxXxR4cKP+MOPGd/nB87Onz8Xuag9oxRnijPjHIXw2OgMnMT6rDQ+h1BtWfTHTszs/In/vK/6w6PQbljXRO356x6+fd+6FQfS9vsHBTT6+eNPBqSdi9E0e9mLZ+RrEPl39oO+OwPc3y/2Bk3zy6rGZiJW3AUPe/otLPnQeyvGFq25Y3c3l7az4wZe7HuCrFrNYHMj2TY2Ej1h/ExsOvO633HB6v8lNcNRjuHzEOIt7Ike48BI47p/8hvsgt56Y2Q0iHk5nzt+aLw7W7Ooy2LsH9Hrl9wDvDb75seEgj/7BYvNZ427WdzF88PJgFB/169s3f/M3X2fGp17B8v8p8FAdpj+AgYtvn031jR6W0VniLh88nP1BDZGDxBv3etPduBweX+z121wcfCORo1wwcXXv4sZXrD0bH0KHt5mPe49L/vU/PzFwDTnp/c+uPYQmcQrf3H2D6x4TvYchno/zcVZmfOjY1V0N4tiy88dBX51nefhVj55sX/jD9Aet/A346sSdr/ti0HXPnduXvvSly6ca2fEUX51h4pDgK6/ZH+b5fHdH9AI+/vrnruGtBz47zPx8DvUZDBOXf/u3f3v453/+5+u9oE9ErKHP78mD9t54F5sbL5qgeebEZTQQJ2Z2DTVI/unaa7wDIy7AOxHxDm053MKJF/5xxUfeeIrDjZ0O7i1hcxm6SOrga29mX8xbGHRydblg7Bv7XowcYnCs92HBM+SOUzpx6dmq0Rxe9nt13+O0+sWVW166Ffj1fespP35J/OJvH279Etc6W1idCzy49M9J+ObOsg8g+96sYeBF4LLfE375ro88RGz57OkXM79X8Rf7OlK/qrd7U757WOJOjqvDU73pwhFDX23lq654tC/udWb3WTzszu6Ml6fazfzdIfeyu3TG2PdeiXc+avIDwQ8V4p44T/nzfa4mNkMM/3uCKwmrHqdTl3EKTCPbGW+vbvn59LkqpvPiU9yJf+5hvNT3jN09nM7nJfmdD77EWaqH0MGyT3cZjhfx9Zh/Ikb+jecXJpu1PPl09+jZ9dK9oPdPx7xbf6PdLzJk+VdHerbuMm71Cn/32Ig/P/faCFON7osesL9TEdt5df9g1c/Owl7OlXjT4UqK67zpirvHtfOpB2IIfzhx6FydY3nEsht9bqSDwa9hD0Oe+mlNzlyX8ukFnlGv4MWVDh+Caxz50Bt09vjBOXsFg50fEcOXVL84srWywTITGPzMCexi6dRdvnzMfOSXt17ArbZ8YDfENModP3M2OLB9v7VmS/KPs5jq2ZzWfPEPu5iwxMpj1Hezs4IpVoz6CT4kDtUvpng6MTA6P/H0fon1eZK/OY77i1hneSV7fBEfB9hGvcpnZ5jFmM/6xdNVo5muX4i6b9VQ7njfyl/dZiORx0iHdzo+9vBgV7dZnzq7/PjUvzDM3Wk5cKZTk7WYU+Qz+LNbPyfsOBUnxi+S8GFkxy2dnnWmsNXZewk3GOUXs8LOP+yTnz074dt5hdEv0Xv22cziYavJHNbpQx+X4mDe8menh9kDturbM0hnTsrj3Ej4eIrd+Gxm/tnitXY2eboffrH3n57/8R//8Rv5n6F60P6xj33s7QftHiLofQ+znL8HGx6cEPW4Ix4+eJjVQ7XL+PRSXWoz7J2BBxMeNKil81effHzcIe9fe2eQsIXZeWfTM5hGuXyPgF8d5ceB2LOrUU5rOHiZw+mcOx+4HsR4mOKBovcCrAQ3vvDCrGZY7PR9hoo1xLD1Ptj7Cjs+1uLFqE2vnA1efNZuT+88DVKeuIUTn/XpM6p87oGc3hdErwwYpPOlk1tc/bOm8wBNrvpGJw4vvvmby8tOnBN//VRzDx3l48N/R7WKxdmZ8Q1bvJ7rIR1cw/nbG+z4wpJDH2G5+3K5P2Zx+kP0TZ9whWXAkdsfklWveqzZ4MhDJ6+eFmstR73iT2dvsNEZ4lvXE3h4w6NTt3rUUU87Q/py1Vc1weCbHQ67ATceeqnPPditBpg9eOVj7w54QIlb97e69LCHrWw4ewjKXy79xcXcg3b8fDbCUFv/TIh+iIGDg5nQGWqB43PMwK1+8OteWNOz64dRr830K3zVr0452vPBVc7iygcjnPyzwfDZUw30e0b21aT+OPrndNwtdhgrnSdbnyM46R2O9EQN8vKxhu2M+FjjLE69ONn3eew+yEPo84fN33mIIXTuh/zxF8tuyO0uGNa9N+VQp/rqNX/9kBMGfkZcysevOHfMexR3+dWnl+4FXsT73J11L3D3hzv1jh0Xf7jx+c9//m1+OBCzPr4nD9odmAYgESGkNH0HXbJ+GkIcGumArIu31nSi0fnKTfIzJ/HZXNk6TLnyy3bOXf70/Pew6Td/9eRvFgMnP7owqosuPtb3BAb+ZLkstnVS7mp2Vi4gqTYzv3pfDjHlwDc/uvDg2O+gW4FXna+qEa7zFQOTxAsHunhX5+YuZvmVXxwMeKQzyC42W7W2vwKeeYFhlN8HAJGjPIXD5pss/3Tm6gwznsXCXRu988U5n2Lo8t0crfkZxcqdnPziX47s/NMVu3nLsTzW33rPLQx6OcXBu1V3fV684pvZGidn+vBPDmz1o/Xyqefi2Ul116vVXQ6PL3zddXdFbHXJL95I+Ia93NmLzfeciy2evXV1ybVccain+YdT7ex99vMvhs6anDXQ4bsSLt/Wp8+5zy8ce4ITfnpqDVNs/uE0p994NhjVEE65zpkff+MUWDhUWz7dGXnFn3wWx+e1LyZ+QX/TD9r/6q/+6uEXf/EXr1+65awfm3+54cqHrr6oyZcWHPWd3dzdXszOp97KU4/qYf7l1bsVuAbRG5gr9Vh8GNnt9Z7A6Fw6w2LMcNIXbxYTrrl9vJuLyTe/9Od88j6x9Rcf9VazPhcHT0yDXo1mOr0yw4kLrtbtizWXh0841sScj9h82XDcvsnPnw+9/HTlDDNcuVbXXWJPYOUDx7qc9it888F5fa3DMcfVWozvmHRhw2Wzb52dHv7mz9d8S4pxJ51PsXDgGqRz7jtvNv7qK95sT8xwcBVv7xcPGL1vxLPrefdLbO8R/OSKv3kH31PYy3nem3zDCLt58/LdGuqtmZhbh5ePugz7epV/vuaVjbGWWx0GEV9/rUkYfOTJh56uPudfTPvymFfEw1t/ucXhZd0DCzpDrvLB03u/dHZ3YNHhBR9OQxyM8lYLe/psF6nHF3rCF+5KMWxhVaM9sZc3PZ0cp6wuDqtbf3qc/WJthl2N1nilO/PiVW9g5lud6XYWE461gYOYhr0zgO0hg/8yzYN2/4TMYsN9qVT/Fx//jfZPfOITD5/97GevhwdyePBnuCMeLLgD3tv1Gl+fAT2AgNVYztXCZu2M4ZhP3nz02Z3Ue7mJODHdwXqFJx82D+Cyi+EDi90Mg91IqoEPLvD4GYlYNccl/h4keshjvzH5Lkf89DB+cvX5Wa/4yxGX+tWMW/zlpC+Xhz5h4w2T3ZC7B0Jq0Ve54YUjp3NUT7yr3x6e+exP+atBPjzqSRjwOwN9kx8vondw4Yu3hldMunI3i9NTOHKq0QMss/zw5DTgqc+DW3H2cMXzw8cMJy7uvvrEW5vheh/gxganGroDcNjMvW/k6rOEji88OGzW7nyY7PThmw21ll9ePoQtPHmJOtjtDT729Hokdw966yG7XsDCQT/EiWdrhN85r56vWo38YBEzvHKI1w8DB3bDmi1f5/qBD3zg7c8g/P793//9ehjru4haDP7iCL2HtfTxV3f3g49c/A29F+M9QK8meOLt9SLRQxzNpBx4lStsPrDZYNrz0YP6Lw9hF0fCkZe+vfe6fi0fdgLH2ogTnbsvX/bL+cm/3NVoxlUv4sxfj/x+Jnc9ri7cSFjyW+u1er1/suXLh00+vTT40MsLm6jDmq8ht/uAC/FQG6Ze+lv49PUmfLjqJ/LRyxNPd1UO2PrrQbs/0KjnOLgX6qCLixlvP4/3Qbt++8OfL3/5y1deMTjUA/z9Hv7JT37y4cMf/vDFK9u1ecHL/3kMeOvWvMCZi4I6MA3e8JphjmywNdFeI4hG5cvfsNdcw5rIYW3uQO07gMvp8SWM5ZRtcfHme0o5zCu38NjDtI5jGPb4xYnPSvXds/MNq7V5uZQf1ilsjX0jpBMDy8CBHl+DTozhjNrzsTZvPN0p7LDIvX6zhcU3/PLtGbGRzW/PZ/PnF57ca991+eC8RMJejOLY9AofOW8JH33Z3p2+5SjevlrkrScw2OjO/tb7Ux9mc1zigP+K9+lZq5xG+de/dT2IX/pi6Mk9nHIWD++sWzx+6e1vSTXC4hs2fft05YPDXt/DZU/EFJdOH+nEmcPP3gwnrBNj93EXd2KtX7jnLAcMUjwdfgRfaz70+16HX/4w+Ou5kT8c2N0h+7iFy7fesJN6Cys/OHwNGA37YuJiX54w/BC1hkPW1z6OcvMxwpCDv0GXXdw9gWPcksVlh7c9KJ95efCl4+uLjx/wv/3bv/3wJv9nqH/913/98Eu/9EvXf5qLp3y3hJ69PlZTMfrtS5J7w8esH/WxdTVtDhh9WYKxOepH+cSFbd0Zr53+OVnf7ktf8NgMHJZzeOfZ8dkYfnEuRu/g8evemfnVn1t9ZzfYfAmtL3Dxhle/6eyLCbsa2MSQas2XzSBydNbnHZUrnvEXZ90ehpwNexKme2Js7rc8/udnwOZhw9eIo9jOLb784madrzVf/BIx8MrDF6b4hj19OGLyh8Ov3rI12MTekziGm7/73y+xYZkJX3zlKy6cjfdLRxjF8cMbFl7sPRjQk81lHa5ZLjrxYqurs81XLtJeTGdGl76Zb3mtw2WHbb/nVc3N4djHq7PIJ4z28pwSzurz35mffe85/nTlLv7EK4bfKWzhLtf0+qOmhE/59cZ9cY7bp/Oei/dzw2dHdwBePMOEJZaUdznxNzqz4q+Ap5dT13ulWHhqI3jR08ltLp5PfnTW1WhfT/J/Sv/2RF9/xJZDHnr7HW8HPi22T/ziovYkXPY4si2/YunEej+Y/a1ND9j/8A//8I380zH+E3e/9P/93//9dcbuhIcKZhw8XHH+ePh80AP8uz/OPY5qyM6H3lhZHR/9csdIPeo+sfus7w6yl8s5+izCzQMSednFeDACg/S5Jw+sFfH8ExhGvbfu3PkZvUfYcIEPm+znIl92POXtAVk4csCyry7x4Ysli1Ef6MP38FX+/NmIPVw2HNThQbeHaN0lGKQ/OJB7Y+JaH/TZoPdACVZ1wJHHgGGQemLPFy/9iC8sepz6jnL2QKwYM5tzE2/I50GXf1rEPzGiR/Euh/vgv0AoToyaymMdP3fcAzy+BDd47DgmsJ0prDiZ+fP1bMsfANnX9zjTOQ+4chtszkoOa3Z48eqexzlu8YElTrwehFt+dvjljCvc+u59T88vX3sxcDu3zpgePqEzVle97PoZlhh+/OUJTw5n6eGle6YHeuxvGotXk9nfFvbPczjX/oBFDndNzs6w/PVFHmu55ZXPwAuuQa/ncvWQ2J4UV06+BCau4q17n1o7ezgwxMPla1jT8asHeoMPgc/Gj845OQO+dPWRDxx7Qy66pLzlymauNnzEEn4Nez5hFhtmdpzowsCdrn028WzVxqdYPtb6J5+anWX5m2HS+wwi4vB3d/SHPb5sYegf7Lix+S+xOx9Y7p33Lukzx73az2a5iLvjPe6O8iXuJF4w8TDUIZcB3x+U/+qv/urDT/zET1wx9K8j7+hBewXcSraHukS6IJE30xnp2ptJh8ReA8zJ+odhviUuA/9w1mdxyp39lj9blyK/1cXXHPb6Wcd361kfcTjfy5/viV+cOYlPe3M6MymuN5APBSOc/C7nJ//Wp41enB6xNfLfmV+5+an39MeJZLOOlzWRq15WQ3js8VmMznD9+J6SXznLw4+u+Oz294TP+uVLh7eek2pmXx82vnHKjlOxi88/oV+bWPvmbOm2zjCa5Y/D9pRdfFj2y19MH9rFs+MOR1xrsYR9MZbf6sWfnJdLvvJ2R85cb2X8yhrKZyZh3qs7ffnC3BkGDrc4n367xz381d9axzdbfOjh1H/2arJev8Wg39ziSbF62Q+ocmTbOLrFsid0+aejb7186WHKuTFxNy+e2Gz8rTv7fa/BLdb6OSnvcz7ZTkw5qydbs7oMXwb80zEetP/sz/7sBcXnaxGce9Def+5XXrjVFLfncvnS0hdJ/mry3i7W3JBDTSv28uXTefBJx04frnUi/lY/wsyOF529QezTtd6cm0POfIrlS0fY40VXrdb55ROHcplPKS7e2U/u5aG3rhfF21uvFEPHZshD4FTHpXh8ycfel1XxcbY2CL9qvRRPL3S+0LorpD5YFyN/mPSEvwG/zxR3QAzJPw7msMM1x4+/+Hq6cfDOfTk2Jx3MHeHyI+W7No8vfNnoOyezmvyS57t0PefD16ArT1g784XhF5K+j7PTLV5508EkYZv56IvPG9yI3tPZG9b1jl2c2jsH++zWST5s+WaT1+huWBNc1SFvuvDt4wQP7qljLx5eHKxfIvUQj/pWnFwGPmZi3RmXl07e/LYWMcuZTR3pxXivGfLna+3ObI7yiK/HdN5zRrgX+OOLXHBhwMUbT9hxpA/LOqnf9nzP3my9fOKET1It5vRqwmlzxi8/2I2wdq4umGK8J/ziDNe+sTGtxTTSmcWsxLe67eMsv0Hi2Z3wEMqD9jf1N9r9Z+6f+tSnHr7whS9cuTwYwrW8fiYbfX7i63PCPxvjoYLe4m6u97gXbyZ0fKpLrfKoC761h8bq66GFONiLJY4ODi7i6ZxROmcll7j9PBDH35y0FivOUAc+bAYce5geLntY0kNUnD284SdWb/jxj4+ZrrPeuvj5rFQ3HLXwg6W/7pz8MAj+sIja5DdXx2V4eol/Ntw9BFpuXO2N1vE1Z8MJP4POvnrqFx6GGkh1sOOtDmetd3zUpk712Dv3/OKsn0b8cILLn09n7CEbXPxwMDsnPnzhqr2aPEzXD9zg0Ru41F8xHqqa5WcXg4+8cpjtw5GPL5uzIf42PR8ccYHfz2q+RrXAs5bLrF8kfZyL4VNsPdRHNekvXgZ/dYRXvXSw+ePE7/8yd2c5tiZX2cdzFAiMkbmkEchcMQLuEBKdMQLEBQgQjY1vEMKWkWAGXDMPYAYMAGGZRhRGNIZJkL+3zt/f42DvzDx5zqn6lhQZEat51rNWxN658z1ZWeKrDQa9HPBJOa35k3qczd46UbM8cOnF1Ws5iNeB3173jyZ4GWzOzVAH3t0Zazj0+tu5hV8PceFXzdZ88DGy6YF98TDF9vpi51tt9Hqlpzg4G7HunXvDj8iLW/HhwyL2fPnBMMepHngv4LOYfIqFA18eOoMslj08nKuJDg7+hJ3AMpL28Ba//M5VbHlPH3F7PvpM+LF1tuqDhZ+cnQHszqp7zcanPnpArjb2esWmp/zo4HZu8sgbhnuOY3j8q4kOT758cHFf5bSmJ3K3pufba5beveg32n/+53/+iinftXnBl1c9aN8XyObowOhuEWFXiOKz21sbHXQzmzWb4sWdwp6E2X6xHQD7PQx2/qfwb8TLvvXOxZfHIbFXh3UCg/3knL04fk/5hJlPdaQPz5yPWe6wy1Vsdj73ZGsN9/SNwy17tmLg8TPYWrOXC99bwt9gN/OvtvzzWdxbuvybYTXSwV4ui5nPU7O8RByBT6f/vWnsmwVdfvnGnd45dZ6X450vG3OPc9xAxO8WXHeFDb+w8WAzksXEn82baxjy9GbH17qzXJ7Wi9UeJpG7bz7lNhez/vprX+/y47tnu7H5yGeIhWEd3+LpnxJ+xT3nW95m/i+JeSp/Z1R9T/k+Z1NHOHuOcqQPw16vtu/ZzOwGTGN11ls3nL17ncEV9MY3LFxI8XGwj7/1DrEvlXiHf8axy5l096uRPk5mw4cKD9q/8pWvfJAH7X6Y0D+5tlbr+D1VDx8cDesd4ZnVCEeelXpNx2/3YuARcZ2Re7Pr8vCLK1145t5Lxe59OfPBDTs8ucXAYEvyhcHee0F5+a2/PazuPb8w2FbY6uXirY+13OGdthM/jvzYdsQTP69fe/ZEHjaDvnPJ3lw/N17fvNd3BvHgy686w2hOb1YjgZHErx7UW/v48YlLudrzI+aNLYaOb7zL21x+dsMPAid2WObymA198EOCH0D1nI7AgadmccWW13xi+DweBlxrs1iiFjHhpW/mI28PGezrPx+xamuEZX/6ia0P9ZCPmlbiQscOk7+12n0fVwMd3/Lw33rkIvm2D6PY9PIYhI2+3HT2+mfAKBdbwn/581EfnbWxee3DCsMMJ3086MW6G/tzVr7qNMTFw9n5AXL76EGC1111xxeXapMr3jD5ED7iipWH2HeO8sOJw+VwfOFrhJO5Wsw4O2ujnPSdZzH1k/8pbPGxxh+e15Y5jmZjpZrT2xvt87WvDviEH119L6Y6zHR+sP/85z//8Od//ufv5W+0+9u2X//61x8+evwTMjj4zV99dubugnP3Pbk7ga+HXt/61reu3/x1buL2jukfnVqqs56a1cFO+Mhhr7bv+Z7vuR5UyU3ky59PfUjf3oMo2PQ9iOOvFvHlDZfOexQfMe5Iv9mtFnbY+Inhp1b98SDQb9ny8eDE4IuDIR5muPb9ZmvnCw8uDA/m4PUb2eI8CPbnEDykIe4ejoSdwPJwuf5dyjdf+MCWBzez9wBnV3/ywcOAp09y4SxfGOWrF3wXl587467UczjqllccnnrlnO2zm0k+Zti46CeMfOQxei9Ql+F+wu4zpL7oJz/nzLZ/TsQ/FOkxbvIY9UNu9eHrT0mY9UJP9A8nHOSSWz8786uQN7Wog905iodFZy2mnMVUS/u44yKfHHG2jyc7XwO+PSy19eAWJr27Fl4Y6tZf/sQ58oPnzocBk5jFErM9zM6tPX6JHOxw9VPtcI3ysv3gD/7g9bAdnvzq9f+R8LrrvUa8AV8f+TgTmIRNDfwJP/kNPgaOBlFD9cSZj37jDIveuRls/PFzt9w9/VMLnTro1cAmFpY4Ys9G4hG+WuKKPz/Y3Tl+xmLhSOJnzQe22PjS8+01Uv3yiSX4h59OvDWsPW/xfHGsD9b8q6u+lqN9dnq4ztFafv2GI2dngHfY+kJfbbDYvOb5wQlfPudSLfD59H4hjojh573GTNTGv57Q1Qtx3lN8vyqWvf4Uh6v3DJjW7sYn/jfa/SuuFxkCp9QoeoWcUnPZsmsMOQ+Tnn+i6cWke2oWG/bGlWdj+Rkd4Nr4i5c/TAdH2u9cbIdrHzY/AyY73Ft8whDHfs8nvPzNahB3Cgz+yfaTXoyx/KqzmJ03x/Z3fe6t412u6mtWg3W4ctlnP3HhnHLLN79s7cWmW5x6Ul+y4aU3G7Pr/F4y42B098L1xiKvfW848Smm2WuxuOdyiiGv5Ss2vmGdrw08qyd/ukScb6ze2KxxgaEGe/XoMQwz+z2+5RIHw5v5Pd+4wDX4wa+/MODhcU/yMecHqzX95t/1iSkX+z0fWCT7uT/xdn/PN73c+r9y5skmJhvdru3Z4Rl6WT/T8c/HnI/en5JfsfYN/oY90XNY7csTJv3ipDeLK3/4Zrqt78QMY/XW8oi3DpfvLWw6IsbdIeVWk3jDhxc/oPuN9i9+8YuXH/x3EXn6jfanHrRXz5kr7vTeo/oA2Guqmb0eFXOLu3pPP7HlF3srLnx+rfMrH71191xPnXsxnVP+9I0w8TN6P6YnYgw598w+tn78tTx8rPM1G2FsjDU9/+7GLTsdDDXIn9ARGOLhVLfa2dPnF0843nvXzqcc8cqfLYkL343Xe+/1+kfkMPhXoznefOoLvXi2crMTexI3mNb0YqxJecMK+zI+foFdbJz40oVVzC2OapXPbPBN4NCJwydO7M6iH6r7niWWvzi+ZjrrcONAB8MPLuKdG5uZrnsuTi0r4bKJsdenfliip9tB1wjLHl/na1191mLrIR+DPv6Lna/4zk4d1RQeDBIGfaLe+sRPbn3hYy8H4WNUN721eCK/dXhw+J8SrtjqhEXfvrziw4k7vGLlige9OHfDEEfiGE6YbM7OD6ww2Pk6S7XgY8RNnHzh0hN6eflak2LhGXxhEvFw7gl/ePzNJB7FmnGH485uPjYYSXiwrPmu0Lkv9K17mAYLd3pjBd7misP6WOtJtvpDD9c4+aTn42dm/2D+Ph+0/+mf/umDPyEjrwcNvX7NajJ7XVrjy+ff/u3frgcI+i2u/rDrAeFvELrOuL6F61zV6Dd+PRz10IaOn5h6yodODnN9sne/6QzreMlPB4NfezoPSmD2/uBhiDrsCVt3Lj8PwvwP8DxggbEPmDwMM7xXyEXM8DxswUvN1VONHr54eO/PAvkMJEYeDxfhhaEma3XLTdTgbPBL2PiZ+arZLB43mNbJngOufLaGxRMDTwz+cPnywcMDrOryOtRTdvzE4OtBOx+5souH672merKvj3ywGviIhS22z5DuUg+2vZ8Z+qn3hofu/aODXqWPB3547IN2fSuGPztxrvUrXmqxJmLkcL5w9V4MDKImQ27SXL/MfMuvr0QOeM3lbq7/8KpLH/inkxc3vga9uvjFVV75+RI+cbZvXb3s1nBg2Mth766b7fWsvDC8lj772c9ePXf2dM7Me43XAx1cfs7ZGjc2M0wC313gHxe2eOg/7ISe0OkNXz6dMSy57OlxNvN133GRy5mqN34w1SterfWQDzwSP1gw3ZV48ucH2/sSO9lYnNvHL59iqx0uLnEWSydu76/7Vg9ghSs//3KaW8NUt1h81SO/2OoRb0+Ks+evp9b1j4+9GOcJF2b++MY5LLXxs5eTqKPe0cGQA193vHsE1x3yj2K+v/HFH578YgiuBpv3Mv9AKlaMvMRcHP7up/cwazGf+IN2b2IupyZryAqyET9tFaNYtprKn45sTLrL8OaLmPVZ264XM73GprdekctwoLdETg0nMJaD/Y4w5DBwLu+JzdY4bcXIxScp1+rqVXXk2wzDOO2bO1wx9PEP45zzN/Pfnpy+7eXnf8oZXw/TV9+ZYzmEWUz7p+aNP+Pq1S3OeOzZijVeK+WIA169+cjl7sW1HPbEjMvZm/zOOZyTMz0ecJ6rJV/+pNdG+3s504v3JmhO5K0G9RB48bzFSXxczOLrxVP+7ldcyysuvHjErTm7GT4/67Dy6/7GJy7F2xv8wim2OV/z8rEvPt+dN2715xrnk7c8sGGwhWUdTz75hcmvnuqj+xAOGwnL/NwZxS0O5Sn39tc30JXNEyc6scQarrjOfPXs1Wp+SuIJJ4wzNh/2fZ2Um32l3pp9CPGg/UP9RrsfXDqL+rZcbq3xrYc+zPjQY67Xzfjz66xuYdFVb/nPubj84LVmq3/63nnFr9jmzmZj+JJi2Rr0chmro18J17xDTHvv56T9zmFt7enOudrizV4/FtO63lvzcdbWZy1h5XPa6Q36OFZbmPTlZyP27nAfuunCsg4rPX86vLNVg/0tXt1fuGHysxcjdzbfc+Cxs8nHZk7Kk55/HPjFMS5sYki4YbHJKaY+xcV7gR8mDJ+l+ZQzbuGxrfCD1/BeBo/e2rAWT8INI9ydrfE149znD1yqv96EY2/wFZeEi0fxxbKpx7Aup7166lf1hFm8mZjD2ZkNrpr1lV856M5eiE1Xjvaw6iW/BL5B0osh9OqA1ShHuMWY4eOpbnYDX/rtAV97o5rkoefv4QAptzOBGYftgXydzRX05svWFVfxRB7r6n4T8uSUf7mLrQ45cMQZn0QuNnLmt+e/XItrrld+UPazqnz86Q18tnfW8sFmM/NbiQ996+yw45nOXm3Ew7r3/aD9a1/72sNHj7/Rjq/6zL0O9dIDjX1fse83TNWAX+891WtWC9586kHf3+3V0oM/Ofma9RAPs/xyW4cdVv0xi6t3Yvjwpyf2eg33jKffhzH8YYXZGZndAZ9TPFSy77Uhpj7hKod4gw+dYS/O2mz4vgZPb+Rlw6c7ByvO1cRHLbBh0q/kD88g+ts9Wl+xfMy9nvHiSyePh1Ddf/kWl33x44NDNeJrD9NDLvF0zqozoVNPNbHj090TD5sdrr0hHk/YbPXTw3Y6D7esibjy7nnBaPALr3MR0wMznAm+8OoZnfzdcRj4eXgqZuuWGyZ++ccNjnXc5RG/z8r0gd1grw/i5GWnk8Owpnd3w6enE5/OLFYPzXzcxXDZYYmRmw/ROxwNMez6ruZ40NWDzgkfOHFmF//tb3/7wirWa6F7UF42fdQXee0Ta5xJ9aWDn17elfom1rngGT9+YruT9nHZu6N34uj0wF7u+gLXvhgYBqkOPOhwF1edYgh8Ys8Gr/ro6yc/6+xy67G+06tTPd7PnTNd2Gzi6Ej9vDbHHl/YOPODQVevzWqLv7riBY8/HzG9Vun56V+9wAeOM+9eykfHV3zY4vnzUyO/fNTvc47XN2y5vU49aO8fbXCqV/notbsIC6+4wlcPHLNeGPb81S3GffiRH/mRh9/7vd97+MT+dIx/xUUcSUQ05ZQ9jFu2dF0I/sXQpc/PrGn0cvIl9qeEZdak9prXgVmzJfTZ0u0sj0tBwl17+jDy2f7QJfBcLmK9XPhVFx+29vzZw0off/MtUa8Bby+1+MbG0RWzuZabdXnzN9+T/Bdv/c8e1B89lEdcPuLsDX5hys0H97DZWp/c2KqBTVw5epNY7OI3R3Y54sXvXBd7b4ZjwDZ7w2ivB7dkY6pRPXE5Y/Knz781m1j513Zi2OfLn3TP6fUNRnUsVvnNJJu9tWEtlqS/Nk98Cc+M057jhrF1/1cvXzXUg7W3hl+u5SjGIOzdXTzg5suHXZ10/MzVbU74hZvP+q1vMebyxycbPSmufXYzvmRz1y9x7N4H6y8/ej7O3Z5t7RfgfCkmVXzasxvlzb/8/OQi+tL78qV4/CJOjPoXYznRx5MvKWbzLTfrfFuHv+cTz/WBz0dOcuawX2yx/H0o+KQetMvZ/cRR/mS5dc58ffAxvFfZ1/PqM9PBah1ms7yniClPtl5Heg5v48qXrz2/9PreWhwbiZd1eMXikLDRPyXFw2yUU5yztGcjZryKY5PTyC+7vRGP7l2+9PCaN+5K9viFzSDV1n5t6TYnXXtzPKvBvFzkoDN86O1DNz3ZHNbhWMNx9nGsbnt1n+eqVmOlGDOs+FuHzVafxHYnrItvnQ1PEpc4Vs9yg2Ff7PKE433LDxM+S1vTWZejPOb4W7N7LcSdzUjvc/m+J+KRxNOeHn/9sM7P7IeNfqjbmOqupnDDqv7w8CTijPzM1Wm9n3Xko7sni1HddNZxtYevD9Z4yd8Z8LOvZ/Th0hN7wtZ7jz27wd4ZwG9dXLOYuMnHL7F35n4AdQ6ELv/mcqkHF77OKDs+zmuFT3WzW8ezhz/Lsdjqi0d6uYiY6m8dD/tGcfnEBe72k93eKIfY1uzty2OOJ1s50rHrlR+We9jDFiYui+VM8OLTXWSnS/Kn2zPMHs/dOwOY7/tBu7/R7kG7v9Hee2u1y+/hov9h3P7ZjfqudrzU4/1Hn+gIjOyX4vEL3x48qdFvr/oNdn78nZse97Cju2U+z5Q/HnJb95uj1nTEWk65DP5+89BsL5e14eEKf68FMc4OL349pIGJRzF7jun4iCm3nsYtLuL0at+jxYTtTsjZ+znM8Pp8xBdGHKqZbyKmQef7pwdDHi51TvLGPV6w6Z0VPzz8qRUP45xFseUptxijnPzqI8zOsfiTu9iNga8X/GAS56OnPTPCHb9eR+L7nqNOcWb/JYhzsOeLl7mem+EYMMvJz7nR9bfWrXHlA8M5iJcbt/Ky8/Ma8vqARcorBld9ZoPLZmYT68zMctR7ebqjYeqH+8yP5GOGl8CCzU8u/YBh8GU36M189v6Hwxd3g+DmQSUO8MXrufsmv3z6EV896r8M6bfn5dKn//zP/3z4+7//+yuvM/MeAb9zhgPzHPREfv72eOBaH+QwyNZavfTF4a4+fnR6bsYRfmeEhzVc683ne6k7AV8smz0/9ehtZ2nOT161x5uf9y4xcMKkdy/hxbMaxPp+oefs4uD2OZodb2fmfy7r/GDEw5rgdPYHXph84BCY4rpT1gY7ru5BXK+Axy84+a9c8JPbWgys+kdPR2Dpv/dsPdcTvSHl4y9erv1HQna1wHXv5JK/Pva9px47g16f8srj9awO+OUpLz1xPnoAB3YCz4N2/zPUT+xBu//8qsvWCzFCL501jSioYtvTGadoLNGA4h3ILYFJwuHP16zJmr+x/B1AuCcmHDFx7UW/ftngE/j84nD6yieGPS5h2NPjs/Yw6PkSduvw8mlmw93ogvElYZtX7PcNaPkUBzce7Pkszrnmb5Bb/ssDVzncMbOxdnuy58ZuwMafj3y3conNHq/iYJSfX1LO9aMzyhsmn2zWhM9TopZ8veDF2zs7Up5wwrdP19k+dUdh5V9/wi+//T2Rt57B6a7Q9w2CrnrKFV+zPOlhWRtnzD0Oq18c+eOTnm+c4Vuvjb03W1zu9Y5fUjwsmOKsG/zgOLv1rdb6w2akr/9wwoRVv+iLoW9vTcScdzccceF/7P3/7oF9tmoIqzNRiz7V33L3vhIGu1xPSZz4rsBky54Nt3ydMaHrtZEfrnse1vkWD3t7yF7N1RR/++LFtd4cYZmXZ3WIqSfs/NisDVJ+a3b+vvF/yAft+6dj5KzWOJjJ9kvv7fn68OfDj/Ov1voSHj+1mDuLj1H/79d6Aas8vGA5Z3YYZrp7Ild8irUn8bq3Lg7GyuY7baefenGEVZw+EbZm6/iUN57i+3xV7+hIr7d8YTT4lP9yfvMlzmYjf7MYM2Erj17H17rYuPLrXNjiAydMd9hnt+LZCH/CTw44OPBz9uxx4gebPhw2cVvr+hcjLm5iu6vsYouhjxNbUqw93/bbA3oj3mqSKx8xcW3tM7Qflvzwkc0Pg9Z8SNzprIm1e1F/L+XjF/np4LLDWL5xzN8ME+cVOufVD4XhwlNTo5jNky3++BD7HdUCm3Qm9tUPK5zLab6IZ8ufr3WDq9z6wJfd7I7B52efD/36wbY38ykuPRuhJ/nBJez5iDfYdi1GvPM3qje/C2i+iFWPGP1yPolc9TAdvHTZ6dQvn3uCQ5yLo0t/2viwVR+7HHGuhrDyF5NNHTiYs6tJbfcEfjnMJA7WsI10fOD5Yd1rqp8Z5WRbP1wMgue+hvPPFgf+8bgC5wuM/OPkodP7/I32/meo//zP//ydhxpD4Xq46iGrh+31Or44OTPS+w3dnqv+kPrhQYPvX/Sf+9znrj8TwW6vtx5k9PezYTrP3ofkNfjKEx97D018hqDf+4BfnGB5mMSOj/dMGIbzdV4wzF4TYvnhVQxfd773A7Ox54uPIV6tHtj1Dwz0MGCqq/zVaYYVLnv97L3Unl95+cRPL0kx8lkbHm7uf0VAp1axDbxgi+sBqHo9/HQHen9xDmJIOboX9oa+46wPbHrce8UV+OZLcXHuzJhhGOmauxs4wMQZzuaVG6Yz8NDXX1CIi16wiRcnXm2LGx/59bjPuHiJMejFmuV2bxabzp2GK7d8nZc4/edvDo8PG1EDDHtnY893+yIOvuFOsImRz0j4wYbT3eELc+87vx1x0Q8Co1r7LKp3HlL2oJ1vd616YOLO5n3An90w3DM8cHLHPnr8r2u+8Y1vXDU7N7+QqzbnDMvQQ3iwlqu9+ty17LiqMR7mFT2qZ+HT4W+GQ3CHBb87h4eBe+eaPy7ywhBHrOMCo/NKzybeeciPlz0/D3jVJY++s8HQM7zlI/VEzv70UZzUIEe8xDkz3wd60A5DrAELt+4cm5jqtid40MkjDj81xIVNDYb4hC8/52wtl/dKazm9H+Oq1sR9dN96/3YeXmNw5Y+zmOqLHxtsmPJ4b5aHvT8nBRsOXvlYy6tH7rmcsODLgzfptdL3ETjp2L3W/emY3/3d3334uZ/7Oaor17V44Ze3/p+hvvZBuwIN0twB21vvYZ78NYWPQ9d0Ym+8VMQZXa7i5KePV/qdcctnD2FjrNvjJc+t/9bbAAA+30lEQVQpcTCT+BdnFlc+duv8wnNRiqGLG798yyEeppji6kG+4ZrDEKfvZkMskbfcfLNfxie+iMEp/M0d12zy8nfeK/mlWy7pzPUe52qlj7e1XHHqRcdXPSduezN7fnBwoqezNvi0rqb6xDepB3S4tu+cxLhv7AY7HQnfvhydES6nbF62MIs//e/txcm9fOLd61RsfQi/OLZ01hvTed3iz/cpkQ9W2HFqhh3vE98+ftZi7I2ELqx08BqnbzzMhB0HGHTiwksv9/ovh3zLvXMxMKszOx0R33tXuMXlu3NY8PjhJt56ufArR7a1L2brYuKz+rilM8MLu9cqHU4r1Q4fDmkWHwbdcm6fHfZi0O8Z4RBu+ePIl8TFOp16ce7OF7O5+PPxQeHHf/zHP9jfaN8/HYPHLakv8cQprn0wUwudoebOB544tWS/lSNdvZfTB6ntL5sBB+Y9vmHxEx9vvOzD4We/OeKYrjxnrrBhwEviZi8GTrN6+Pb9zDrc8pqLZdc3M313j92+HrMb1dI+bLMRNr/W+cqTPzs9kbPXp3zlEJ+fWIPQh30pHr/AaNCFYSbyyqEv1nx9oE7PB6b89OXY/PjybxTDl18xsFvzKc5667MnJ1c6GHG335z4selHeHxIftn9YOAHDT+E1WO61vzKVX/h4Mwn7uZEDn004mhWM9v6iqGXI7E2cG9mE5dNzInNpzz8+Dwl7OHAFhvm5rqHkb++5M/XWp2ETZ/KZaYz+MDgz8ew3xqL41MeuPHmX0/5rORDV2xz/MQ7J2fuB0AxSXh8d8SFrzMirc/71vmxG9UGww+o/dAJozqsnxKcYZmJuHjALdeJsXFi6kV1VtcZt7UXZw6vfDhYJ/n6od7Dns5381QHLvwTfYIfRvqd4bBvXPZ4mMPy8OV9Pmj394+//OUvP/zTP/3Td94T6yXu7lQPufBg0wNnvpx7z60XamCvPlh663t+773f933fdz3o0Dd2vnB7MOlu0RmdM1w4Bl15eyAjPx1bvnpH8FYLPH74heF8fV/Fz+zzCJ5ixREcYeMIg589Oyxrg81eLDwPazxgCU9Pe/ATh3iYxRtwzeWuf3iwGdYw+Kmp/tOxGcXrkYeaONHj54FnvRCjNoPgLCe+fuPVg2Y2ujjyK2eY5YyDPHzUjLM1HXv1WhP6/Olw7Sz0mw5Or8XFEC+3IQd/ou/q9I9UdGz21nHFI9zO9wp+/MKH3UM2+cSr39rcOfHTGyNe1vCqu75lFxOnbPJak/CsYdQb+4SvHO4ePD3D8ZbI251lD98MWzw89fJNOhf2+oO3s5ELpjOpVnHde3iw5HAHYblbfpu4+6c2w88R/myMuVrk8fpkpzsFfjnY+fU6l9dwB0i+YbDhjxN+vX6tPYRlqxf6Wm/h0De2p/UARmfLDzd5YBZvJvQ4xlOeHj6L4+f1129T86OXt4fM9uWoPmcAm7DhZNDFTb/846ae6Yd9/vbOrHOjx4WPmvKj8/pRO3Gu7gY9P/7W8Br1vXsUL3pCv3npyi2PEZYc9vW5XrDTiysfmzV8fbbH3evbex0McfjI7z3TfSV67QxgEr4EBilO3+Hbq72hJ34O96djPrEH7S/50zEX++NLl5W6w9O4ij3c/4+enziXtBgNeVsRey8u3BOTHldDbBdj+dPjZyRnHv764DKwGWGXm65LwxfevkDC3n7SFb8c5CHx4FNefukvpxtf2MNltjbqRbleglVc+Td3eHxgqR93e+d9Cv3bSrWINezlInppJGydQbpbHLeGMPmvLz3sMJ0lHTHXu3Ril0v9uAIev2xOOv7Fdi/pTz86fvmyG/a3fPk/JeHw2fhy1AOcqpEvOxtJn2+xesT2UokLnPPOn3k6i950y1ENsKyXEx86I87FxRluPNjWL2z6/PjKwc8o1vre3eO/WPBIMdZwNke4cYdN+MCr1/ldxscv9kZ9EH+eZb7m4m/xW7/WT/lny7c57LWny6e6+NRbNvvi6KuLbft94hVDf2st/pQw5Ogs6IzOClYc6DbGHabzgcK/pH/pS196+MIXvnClye/M+dK9vP3PUPuNt7jdwxBTXh9ieo31IbO9Whv1So2t1fSUlIOPuBU2OPVme7Z+fMqZT7HZ4lGO+J044vjmn707Zt/dgdFZWxvi0lt7rRkkTjjE9zK8+cI/bCo4+eafD3s2a9jNYcSNfvnBWH/rxgXy5osY+mKpy2+OnzzJ+qaLZzaxvsf3wVq8e4+3D9Lhums+8LIb3TmcqkHMcuHDNzsO9vUvTqtnI3DLg0Nivf0J6+xNMfRk/dwBPyD5z/oNe3Z9sC43nXU6mOGqlf/WJg//ctqTOH+8++6v4cnlh4z2Zv2uz+Zs4YvRI/pd5/fdmT7eZeNv2G8N8qS/FZ+uvuhDudnqFcz6Wi6+9YfOno+5ewGjmpYXntVt3d2iE0/CFmck7OnyYXPnDXZ4uDjT6hdTLP84xgWW14pxCjyDrwGTLA97NjnOz0NsK2HAqTZ8CN3q6fiv7L661Eu/PSmGLq7mfMz4yl2N8WAjZtjePww9TV9u+3Jfxjdf4hnW2qzZ1YrD+oRlNnDyeiIevvgv0/7sz/7s4Sd+4ie+K+5yeOEXuOSjx98e/c3f/M2Hb37zmxcXDxLwSdwHDxk8OOgO6EEPXfWA4KgWArue9V5cvma+alFXD3jY6PMJyz6dubNi71zEGfpIFy++hJ4ufXzhqdeDPDrfG3Dy2cRQfzEw+IqJp312vTM8rOk+yu+9DxZsvnLFMRx6MfDk2XrxL2f+/Pb1TR/3WzWLVwsuRA5+Hj6LE096H8GlO6ee//7v/74eRNHzxdeIKx28YuKXT/hmPobYXlP5bd183TsPPPvter3zEFacHMS5EXjLy5rAlM9v95r5+wcrD3qdi71Y/YTrPqqTTj/CZeNbf+HjYPAh5nTscuu5WvQxTnzZ8pdbTvZ6VF188XZ++ORnvpVLr+IMD++4hBlfHOjM8pr54hMX96PB3n+ZIA4v/bAORxxe9vVKvPcRZ7lxuHnAaVj328K939D1uaYa9CHc7RtupJ5ub+jVJ7c5H5jW9Ebnbu3c2OXg467orYfI6iFyFGPPTy16hA+u8tVPeA3+fMQYauqBLny9Yqc3/8///M/1vut+dlbicAgLb7H86cOWk9QDft2p7hWOYtxT96x4PAz+hN7gT2DhqGYPoeX23q5/3g/rn9zx5hMHM55x7r7Gjw1/OfXasBcnRr3OxnsD3iTu4aoRH3N2vHqv5hdPmEnn4Fxwx02eOLQWT/QBlx60VxNefGF40P4Hf/AHD7/wC79wxRR7bV7w5a1/o92bPOIK1LiXJuywXsDpOogOJPyKlxcWYcv+EtznfORowFWfffk2ni59vvyLEWe9QqcucXE/8cMSl58LeAtLrJGIJfnKtbJ88137uYadn/WJF1f5ynli2MsbT35h5su23Pi0v4W7XMLLfzHZwhJjyL2D/+aPq3tGTly6M54uWax03WVcejOJTz4w2b3o5eRHnspVbByrld76FDkTuO8q1XDm2h6wba76W104xD8+Z0z6W7NYb6xk8+YLq7F8b71BFxPH9s1xrp7z9ZCf+M2ZPztbY/VPnTd/ucxitj9qKtfmLxc7yUd8eGy9j1vTmxvi+J8Dl3jwSejEfpoSd3N9ilf1nfxOv7WLJfBurfMNO7/1pSPxsHbe+tgHsjiks/cBw4P23//933/1N3i5VnD5m7/5m4df//Vf/85/vrj2W2u14W70Awid152hBgKbXg3WZoNOPUa9uJUnHR9DPjEEhnHK6VdsfmGIZUus40WXXxzxJvZspDku9unYy1EetvKw94Ez+8ZYr4itdnp86OTowzO7ewSvsRjW7MsxPnGoPj7lbBbb2YZT7cXJEVYc2KzroVi67Q+7vVw+0PpMyY9OTv76RdK5a2o3Wi/m5okfDtbt+RtJPPiFxYYXnVx8EnpSXDH08tPfqpsfn+ryAd4PqH4g9R4sRnzCF1Yx7ekMOOLEsCVsK9lOPZ+w+ODXD6mw2bz/9P5k5pMUa18P6NRhTg+7kZ1/Mfzo+WQPIxy2zu8CfvxSH9WfP796WAz/colJYNvXPz7FWJP1Z2uwybl5wxMTjpm033z0vR9Ug/P0WpCfb3ZrOnfeD4SdiThnRL+5cKHDj5TfbMCqRr7yehCwkr14e75h0cNfPDzJ4l+K44uYaotjNXJVV+fC15q/dSKHPnh9WudnNuDppaG+1bPZEzUZMJJ8s5uL4Ytzezax9EncnA29Bxh+UP/6179+PXAvd/4vncvx0eOD9t/6rd96+Id/+IerDg9UvX+G6wFDv3lajB54r8Fdz/i6I7iqhfQ+bA5L38Xmo6Z8+cBzDuf7Qz2pF9nxgedhSTkuwMcvHnR4IOaOy9cdMROx1mZ3wsMxuL0GeihDxy98/njgSid/90tPPFhScznE640+muMhzoAVjn38+r4kvpzVYc/XOVkb+KjV6HMVDmLqt1ykHHETywaH8FdTa/7911L5yN3Zii3erB4x1WO/drXJnZ9chrx0hjxi6p2zpHPWesynuvbuhVV+NYTnIWm1Og/Pn9xtfOirTWxc1CC+XpTT3vddfaAL17oY/Enc/dYwfvTltNdHOePJ3rnXF2eKfw+55THENHDQi+589viw1/di5JWDsMlt1FP65QVD3TDL13l67Vjro9wwwtFvvKoLhteLeuLpbOl8/4BVLv+ot9jxFKf/ewb40hN1EHt1wgvHvjvMB082vvgbakzs1aYGtfAlcAy52MXjrxZ9dfbOLuHLBpuv3vKjIz1chyeHvERc/RIbRzMMtemLOujE0/MVK0c8+fHHVw782PEhYvBxL+nY+Ykh8DuD5eF1aRB1iIHT/eErjz3BcePp5RQjr3zqSaonm7MQn9DDN0h56yX/6qgWZ6UvfK1hFKs/1W5dfvemPM5EfDz0hW/9qc/s4ux/9Ed/9Pob7Z/Yb7R7k9NURF8jyNewPcDFYlf0KRrqQrHDsa/Jp+9r9g43bAfUYdDhKpe8HUg5ssUFjnGvvuJ27oKtzlo+wv6uEu8w3wZPjMuoxuqiw8s+3S3MevqUz624Wzr51GHI74xwal8Mm3zuCxsOJP9b/RSzZ9fevHWX49bcHZK7+8CPHg6hl58ON+vw69VrX1/wyGvjr+AXftle1c9qbL9Q9ZNue9DrS8+K37in1u6kb6LiNmd751+u8tbre7jdFXzuCXy59QBeeejFd6a34rsL8OvhU+fFB2a5xNUr+cjWXk42MaQehFWcvGG5O+z5VNdyE7d37Fbe8v//OFebmtX3viRc/YHbOPHzq+d9g6+P7Aa7DxgetL/L/+38zI/fX//1Xz/82q/92vWgnb27cPpmw4fgtHdkPwQt/+6qmT9bA9Zz+dj5bQ9h0buLbO3pYOMWBzqxfIiY/M94ceUJQ3x3/AJ48wU+X/bymkl7PtnfhF17+cuT/qUzPHxwt/ZBcvPJWe2LWQ/FVRtdZ5gvW/awiumHAO9vbOIN/kRd8PCpPr727rY5rM4DDr29NbvPlDDp6Yg1Ka88Bk7uXvev/PwMuD6A+wEgjAvoxpd44HoKHOPEUD+9vETd8sa/uvVBbXzz40vfg3YPi+pXXMx0xBr2KeXr3NbO1hDfWJ90uOFkdq/wta9GM1+18jHoSDnsrcU5m/bbnzDp9CefMwauHMXKzQev8vFJZ+bbnv/bihjYelnfFwM2mznhL04dRjz5bG3rD6M68renJ61h90AhW+fjwY17r2a2+rncYDmHegjXiFvnWA1q9vAkoeeD4wp9fOjZ6Vqb1S6v+Z6IiROe9rjJmc1rl9gb/aC8+NZ7l8TwTewN9dHjfvaJb/1QT+fCV0y69mHvLB6XfOPo9aQXHrT7Pv4nf/In1wP35bg4z63hk29961vXn47xP0PFy9/qdX7WfOTt/OkM/dbDfitYH/jw786b9Ys/wdPeezMb37i33t6Jg1uP+eiFzzH6YG/gUk54MDxk92dpPvOZz1wcYcm7D8Dg9pAPhod5avD5X83dBX5izZ2FHHH23qsuuf1jp76sH194OMGXC394Ygn+cWMXL6YHenLBYcPZXp7W1c3fa7rfprzA33zhow+4GnIYOMAl9jiqndCLk8+gx53OAzX5renE8leXPIa6zPmUp97KwdZc3KWYL3LLQeLSXjzO+mMtvzzVOTDf4UnHz/MnD9u74+6WdfUUW074zknvrf1XnL7nWhcXNow4Og+c/JkmvNTP36xmeGR7D7Me4up92sNLfXcf2cV3Fy+Axy/0t4RfdcHFh2/3jk79OBj+2oSZn3OWkw8c5yqWf98/nD8+hjx6hq/7yNYMC46/+f/R4z/yqd3/FLW/buF12P+jQQ655HZO+giLrnNmi5vcYuCzez2k03fc8VWXPS7uPz3f8OWAg0sx6dRlrUY5cNEjmPpBJ9agd8e8Z7Phwl9e52iNKy79SRi+coqHJZ8euWd86en4mPPDR23q6D7RiZEnnmLwMNgN9eAAC649DH0l6jDYiVj/gGCIZ4O/rw1c1Lxc1QNXLryIOHr+7eNSrN7GUy562PITvfFfufQa5MNfLYk9HNzFOmt3Um4DH+etBmu6alQ3zOrErxh52eHiZV3P+dB7HcjHjsMP//APP/zGb/zGw8/8zM9c9OprXJ+b3/o32t/lQTvSmqcYA9kaa01H6PglbGI1Q+OIi2UUw05qABv/9pfxBV/C5Vr88qbrgMpJV02lYLuVm1591X/LJwyzPohxufMtb372eBNcTmGTk9/Gwtv9GZfdDEPd1bn5nAl9+PbF3sIUWzw/Yh/2GbN7/moxNiZ9uLjgYeghfz76U4/4Vr/c+VjvPd11fJfTuYYLC4785TDHLxz7eIXDL3u618w4EDxeg6ducU/Fx5WfdXekHp+8+RjqhmuEcfq+ZC+fb1T3MPQfF3lI9dzjx2ex6mFx1Ym//vCF3evT/m2lfHJZ47b3hM4+v60HB6LOuOKz8TgT8XzEt64/9rDKY1+eaoZhvXWL7wzp2U//7GGL+TSlWvE8+0b3GlGbsfHyVHv9rDf1UC4259L52+Plw8WP/diPfbAH7f5lH5/GS+rue59afdCyt8a9Hpj3LsFXj/vkQwt7NZfbntjXs/xu3Re2+lWMOGsSvtlrM1324sUUx2aIyW6PN6mG7rm4/Nj58WfXF/t4iGW7J/wam5M/fWINW47ql6fc+eHFxwdvHzLFwU2/udQhvl7gak2clzxxp88OQw7Duvg+iIsTD7szoMOBr7lafZjnl8BbKZcY9fdD1smvGDXjuTjVwCe9Gadq4LO5wuNj1Jf6GH/6fMJX89bNrkZn4gcNww+NfODgYMab8JfHnn6lvPBOGy5hig+nmvm3Pu1sdHrMJz/c6GARfvUiXnz7Xrx1w8u3fOGK7T2hOuQyCD+x1VkcfH2hpxNrZA+r/QX2zBdY8V5X+Y3Ft1cL/LhVmz37itjV88V/76m9QfaHWzn03g+l/TDcOdDpHxy6+MCvj/LCxam7EDf+avYgYeOrDw6xN+oBX/i9t+BH4Bm3pFgzPvLyhVM/yldf5CTmahAjv5yGGJjhsfPXQ6M4fTBOfuVPL7azooMfZnzO+vjUP+vOi64H7V/96lff64N2/zNUPP/93//9egiEm1q6E3hs7d53cPEzPF8c1cUHT1h8jOpM5zzg6fMKnZz8DXa6emnPLpeZwOx1lr+HGv7/bx62e0BHPEDxHsk3fPdUDD4e7nm/8XCl7wPlVoM87fUEB3Hec81w+rMXuMUP915rcPl1/u4TwamHVLjpn5iGPSmf+OrxuY7QeT17eKQO/BI2edUAI77s1vXaHkdDjLMUR+xh4hKGGff6xd9ens7FDJ/A6ozPHHzW9wp486WYdLiQ9GGFAQe3+ss3/mLwMNxf/1ikzzD00nB25RCrbnFqc97h9qA9n86JLzw4uDgPvfGgHQY8Z8VOjysRwxY/sezq4u+15oGs/HzE8zfb1z/c7cnWUQ/yNXfvxMrf8Gd29EJ+rxM5rWGowYxTd03NBi6GdQ/H1WeNa78B7L+c+dd//derdrk8bPc687BTX9WJn1z0zqkH4Xjga7D1+qx39SFucHBwPp0vjGKrpQfH/NXr/QKmOvnUTzhG/OSDy08enJ2ZWBzwNvPh6yE7bL725t6b3ElnQOoznj2Yj0P9tleLvTzuiDMVS4ejHA26vTf2pNeOWX6c5OULP67w6NQjlxqzy2nw1Uv9gCeGxCU/cQa9nJ2f15g4ou/dST3nn857nVi98cAbL778+HRmfNj032u92TrRH3cPd/444t/Z1x/6Xgu4eG2wyYm/dfXBxAdPZxPvH/qhH7r+XNsn+qAdacTeVpDukmiMAndPl48mJ/maiTjCN5012b11+8v4wi+wDHnEWzuU9g6HhL/zcynCNpMwN05P8iu/frgE1b5x+Ya3WOLh1eds4WaDQUda28uZrx5kN9Mvj8t440vxp4neIJvz9Nt9fM1iSByylQ9393R9+Z950y2eWvnBFk+sn5Nyb/zGlCOdvVGu9K+dt9bOC+/GS3CrAZa18ZScOV9aC07PYT+XV42dD98Tb3PUezp3I0nfHgYd3M6xmugb1c22eIvDZpDiVpevuTrY+RLr8tB1jmFmk/9efHjs6tmeXEnefAmr3PVp47nCOLnYi48fv3Ba2xu45me/+O3pjA8lnSse3s/l3XrfNu/2pHpgrqg7G/9E37y/mxMfCHy48KDd34b7xV/8xcv0rj3Bqd9o9yGF3MLk1+CjN/zqFa4+0PQhiY+aqkMsH0NctbOHm409HRx7+cKgI+nzF18fO7uPPT/+yk7YVugN+GzGYvOFy4fN9xD7fFovD1j2JPzWbD4MmsvZuhj7aimPntU3Nj6wzx7KIyasfOn7sC024Xfu6wFbOeMkJ7Hnt/atlQ97WOVwl/VQHKGPq305xRVTnvb84qF+PzS4f14j9mo258M/jNbhw+Qnb/zFxymcbPw3pjW/FfrEWs1+8IFrb8aBzg8mftiw1h82HIi1XlUXHLoVe3GdRTZ56Prho77wD4OP2tjM9tZ9rm0fphmX+NiHx9dI5wch+z1rOVbOvsptiFOT+YzRN1Iu+HTLw1p8fmGKqfbLeOcLzHpdHq7ysMFIv+vlFm/2chbfecGEQy9fnM322XfWe++1+msdD2emTvzoyn+BPH7ZvXz50Ncfed3DfONrviUwDPF+FuTX3QijuT6Y+ZnZdg/Lvhrsret5HPCsVzDkVP/iiSVi1bQ/q8rfCNMsvjh7XBr2bMbq6FfyCQe3vj96YNVvtPufosJ5jYTtN9p9JvA/Q1WPvwPs3rB3N+TQg/pF7z3TQyGzODp270P2/L1v6Fm9h1nddPLw7e6og52encBlr6+9VzsrvvTscIyNKZYOHn7i+cfjCnjzpYcweOKtFg/AvL/GR45w4fGtLneEX5zC5t9nGzHVTS8WJl3fX8X3MGjvJHx8ErEe4PAhMOjURwe3utVL2Dy0NPP3oGgfHrtnHpLpEx7EvDzU4GGeAR+WIUe14AqbVKf62PWiumF1Fs1X0JsvcvMl7LCql56dvrrjEZZZDrnLxRcHPa4uaw/EvL78Bip9ftuHHkzD9Vrxjyv6WI1ixLpLcugPm178y7/8y3Wv2HpIqR94lWtrcwd9ruaDnzPpIap+OCtYapanGtlIvaLHVx385BJjrk/87fmI66Gz2jwc56+eztfMrxz4iekfeuC5m/TqU79aDJhqc0eqDTa9+vDFw+jOw+FDqhOuAQM//SBh65d+ssMRv68XekMPTqH3WitGb/KtT/Y4m+WGjQ/hozdsuOGiBns1em/Bk7/8+cHZXLCcWTWZ7cV0z9wBvZJHTrXCjQN/PM2En0HkhYUbnTU/7wlw4MpjFJMOV/nqhxzOJn7lLcc5yyWW8IV71s4mR5zN6jVwguFueS1uzb0u6oFz5A9LHlz0svMrL1v2+MA14i8nMS9G2PT6wF9Orwt86Pn40zG//du//fCzP/uz38G5Fi/88qrfaI/oC3N8lxviCtEkjbBfodcsxSV8NJfQO2AN+dCCywoeHap1h7g+uxZffbvm0wsgnOL4dUHZuoheIPI1emHwKQeMkzPd2u0JP6N6PtZ+99fyF2/GTYx1Z2APi85wRrd4hM7nPEO6JKz2O5efrhzFts8fP/1L2Ot7fcz2Puen+MuzPK31jyzXS/GKL3ofXuH121yvsp3zcjttt2L5lzP7iZE+vPNc0jcXX9y550fXWfbeQJcvH/G715d64/7ls/OlfPzCD774vSuLEfYtnmz0e8/pxC9e+Z6axZQr3k/537KVu57BMZxduuooPp7m4pdL/nGzN4qjhy0m3xO7/fqK377l86HmOMKP+8n3udz1pR7wr2dhnhh8xcnP10jU74OUv+365S9/+b3+z1B70O63UOJQ3ua440c6k7530/uehKM7xK6OfS/gY0/qp/ms9XJ4/MK/fOrPt5xy9B4ZHn949uzPCd897+5Z9Zn5yAlTPj724pK4NdPHn84oj7X3qOzw6gFbsXQJvQ9+4qx96GSHAbdawxQXZjyLXVxxaipv+fI59fbhnjax2VvnI8ZaDQ155c+n3Obyh1PfT1979bl3fRA3G34wMhN2vZGbyFvfxZfPbM+XnYRRr/O9jI9f0rvbbAZd9fHD0+dkP/jUc/j0/Nj6ATVe4mDigzdMo3NkT+CIizM9HunFkLjiUO/p5Im/GDo/WJgJXbXZxys7XcJWXq+T0weOmgg/smdgHx914ynmpbJ1dwY4wDy5LGb1yUfM4k+h12dz/E8fegNm7x38i4WrNvNiwHVW4jpP9u60Gog64LrX9fLkkB97uWGJhU/s2Xs/o+db3/jEBa/6cZ5XWOx4i+nsrfOPRzPf/GAQGOWpN82wiHix+dGfZyyGPl+vPT3v9cNuhHEBP/Gl3KdL3E59e3bcvB8ZfvOzB+2+nz8XH845x8dvlfqh399ol8cDILM7476o1/uLoVZxeHzv937v9VBN/+PIx4O07ib/zp0PvL7H8/Ugiw8dXD72zkbf6eCzm8V7kOe9JcHTXh4xMMz7kJzOHeLrAac5nRm2vsLvvP1Grd9yN5x9nJrF4Rc3ayNpnV5+gqcHQ/LoY3Y2tdMTnKpZLno9U5e9z0tq8XDPmk7vYeMonxj5nIc83aPPfe5zF291OQO1erBGcPKg2dBXOOLkILBh9SBOjh1s8ewBbTj0fPUfDm57bleC+QKrvumNGvUEHpsBD641XOchxnCeYuRQK85w1MMPB70x2/sHCP8VhLugXn5yyQFHv4ux91u0aoTPl9ATPLtnYvj1G+2w+81l/jjh35nDMnxP95vf8lcTX3jszgo/a3UYfO2J/IY7Q2DAZJfLnI9ewcWHnq9ZPnV6WKh++HHAmcDCxW+m89FLOJ0tP3+SSv3uqPMSow/y8MOd4IATHPnx1Tv6hK+Y+gBLThzk7azhs9F5XcD1ejHLq2azmnASp7ZqF6O/3nNwkc+AR6zxECMPX2Jd3u5c58QuX+cFQz52Ayd4Bj+if3LqhSFWnBzOxT8OxU+cWti7U9bp4Cx//vZq1C8xcuiFPDjoa/9AwZePfPKbDbH8xbG7c/oXhjhYxarTcG7q1yf2cPklxZZnH1yzie2/LnEe/Lx/hW2OqxxqVqP3PnzLq//dDfnp8de7+gQ77tb0+ouHQUfE2m+NfO39wtu7/L/SPvEH7QpCnFTstXnzZQ81veIVrBGJ5hg1h8/7FDzwNIfdWs7y3svJtzeEDq966ekWg38xHXx5861mOU+bffFrp5PXKC9fl5Pg0IW8FG++xEdOa8KvHOnK+ybsmrKZvVjKvz7xp7M26oe+i7F/SsqzWPxv6evd5nkK+7W28ujVKXhlt966n6v1xHpq75y7e/p49uep2O78+tTPzmTx2JxxPuLkVmf3ir9Ykt9TvMTz41O/xHY/rOnt65scuHuDzlY8/ziHnY4PnmZY8sbf2qA/7XxeIvLGM64viXvfPurQFz3qPNRkv7VUK5/qx4W+Htqz7Z6O1N/8b/nEpbzlEh9u/b4Vz+9DiNw4yRn/1+TRZ1jkNTjicfBhyTf4T+NB+726e63j2Idia33r7MXWS/6JXvShat9n+MJI1G5f78q5d4HNHVld8fdmeeQVV044je4cW7zjUKwa87uVJ9ztxUs5iiX85e37rV7ICdOa367jKJbenv8tWdzs8oV3co0De+s9m/zNcpbX3hDjA7IPvuLocLAm1u3T+SBN7MWzJ/HMzsdwrn7Q82Gd+D7QD0r6Je9KuuLhJmx9PpL/FDH85YS7dfO17wcC8T741xdxxbBZLzf3Dq6axfDxmlmf+BSLryGuH7b42NPDMpNw1EAnB501nfxmOvH5WW/v2YstD/zirQlccQYRh49hTfjAMOjXP7tZvmrBKxw53S99gsHPKBZ+udLJ0Rm7n+zxyCddeOUzs1WTvEbc4LJ3vuI7R2t+hE82ezWFiYu9eszZ1ArfnvDnC781fHb4Rvnyh1Gf8mGLLxwxca1/dEYc63e5zHxviTzEHPf8loOcRv75xCcb/gY5c4pVi9ddZ2NvwHlO4OFYPfC2BzjcE73J3/uPhx3+JIoH7H/0R390fT8/a7uHdeqr099m/5Vf+ZXrQbv3OXXKZXRf6oHXhTW9zxP8rdPpR/dff/j3IEM+9cB1Z9g9HGGHw56POwmXH38PVvJhw9HDNz5i5HU2pD539mx8uic40ckPw14eDz7FwGYz9n7AUKcRtnz28Ij6Omt66+pgp4Pj/Vze7j4bsWc3SLXAj0s89MN96Az4eLiln7iHY4aLR9x6zZ+4m7fex0msOHp1mGESD7o8rDd6jehjdyEMn/GMzo1v32Osq/ECffwSd3s1JfXVXkz9r2b2auajR+5RZ48/znIWi5M77YGjvtp3XtXr74jziX+xchk4erjoYXL3Xn7xeOoJjvUOTzHdOTbYBps4I4x8y8vHIGzinZHXi3x04uPCjmc2OPydiR4R/vxIdTrXesMmjk2f9FUsHENfva74/Nd//df1m8Zy4kTY1IsDqUb+Br0cMK35Orf6sDH89JJv95JfWHGSHy949cxMb8QBtn3181cj7vyXA1958HPmhj4TXOLjNeAc9Iu/uZ7JEyZ8tmLV7B7RE1ySajSLUT+sztJ54UVniMVBfrPh7ovPx/nKHU7rXpdmnMx85DTqC3+16kM55ZPDIHw7K1xx7wH/ecbxEqcWeeHRizOcFVGPvP5BCAd6uHJZ880PFn8CKwzYMLoj7PHmh3u+WxOb+2HA1nu1OGM94SsfXDXg5Pu3/4rsC1/4gjTfyXNtXvDlU3/QrmiyDdKcLms1dGj0HZ7YbWC+72OG3cVdvA4Bh6dEvMvCz4F14MXQV3M6PoZYo1odukFXb6wJDPjx6XJlN2evp2JwK5Y9oeNnNvSgfS/YOBRzb5ZbrBnWrZqLrU9m+FvPxsEKD+ZK9RXLxqeYe3GL8TbrcOPRHsb2NEx2tRlxwbXzye9dZlz0wdi+PYeJT3Gd7xkPO521IW7fvNUSjpx86Nwda8JuDSvJZu9uxj9e5nIXJ6Y4s7jeqOHkVxzM+s8uxusKt/hVO18iL/4Gf/rG5XB8Wb78N9Y+TkfYB9/GS49I30js1Zzgx2YWYxDc29fPbMWa6eqdmEY2dvHyGuyn0OlbeU77h9jLiVv9kdt4jWxfbtUHU8+3vo2xFueD1Kf5oB0PA0+zc+2umPvhRj3Z82k+451rvuZk1+FlcyanHSf3NF/9qtd8jdVZ42Qsh844PDMf3/dImNbF84HBVq7mfMyvlbj7EEjs5dRzw37z4BEfer7LOx7i+OkbP3ujHHFu5mfASsffXg5SHnu+21s2Pyz1A3I5r8DHL8szfDofegldePKy5Vdefmx+CPBbQh62i3E39wdsfoRNrJj4bF8/9vr49Zl/umZxYnqvgLm48P1WpYcovq/gLV9ib5w1xKMa9bMflPiTxQmPrtEPJd0TOcqfjzj6bOGY5Xb3+9wXJ3P9Kq66+bIXX3/MO9jFitt6rMXXT3OveTajnGZSvmvz+KU+0auzPPKT4qzZiTtj7Qe9eNLvmh1fZxGX5vzs9zMEXPl67RTPJ508+dCpN7z4m+nVlK3epOucnDt/A5/W5ZGLTtz2Fi49jn0Gsq9fO1vDFkPExIPNno1uJbxbWGc8n/Ksv7zwywHTEG9eEaen3Qnrzsj69N9Y63DDjgeb/DBW6sf6ifX+44d3v23rB/U//uM/fi8P2v1t9l/6pV96+MY3vnHdYXw8NPCe5z4QNeDjTOuZh3P44EbnHvDxsMkMx2tB3zpnPuLcaXa/rev9PBxYRj7yq9s/eNIRdg9EvCdaE1i4EVy7h+17T8Gjv6Mu5tvf/vb1cAQv7/fuPc7dXfhi8a2+zl7NBI5Byi3OWox4P0cQsXqj5h5+XobHL/kXGxZ/uQw6djqcOiM56DzkgY2PHhg48CX24V+Kxy/iVm9fHrjWdHA6c3s1OTd2eT3kMnqd6KF1ePycowdgOMjJRx/MDdyLwZEvqd/X5vELPBikvoojbOLwJ/okb3xg9UCsGPWph2/3MZs86u03ttmzlUeP1eBBsnvt+3X3AgecCCxDnJx8ep3ApM9mFmew4d3ryT5MuHDscVOrNT7udHXLB5M+HHU51+4orGrDEw5fPnpjr9966/MRHVuvEXfA6wrGR4//s1P/zwc5/ZcC/Oo7XnjAgmmor3OGB2P540aWX/zlqN/s8NTbHXbPYBfL3+CjzvT86engdXf4ke5aMfh5IG74BzR5YYTjvUr/xNe33l/lKS9se+93Zq9j73GJWHqD2KtHPr2id/bbYzbCr/thxseoT2oRB0MMfmGK56sOQ7385TLqg5ndvS+vWLJ5nJcB33CH1Ax3/ayrkQ1veyKX/ornx+Yu+R/s4iA/XDXxs+fjDpQHhjOBYc3e9wZ7AzbpPOnixJaP/xLG0Ode+/WQv7zwDT3zX6R96Utf+uQetHvj7Y32qugVXxRLOgRN1QQzW/aaZtYQwlbcpfiAX84XNH5ya/5zwlc83vGlI9V1YhRjrg/ie3Pjnz4sus1hLy/7rTzpstsbu5cjffns5eFn0BPrW8KfsPdGI75cG0OnR/VpbWLFrcAM/9Tb37Kt3/tcL5dd38tRP7PjetaX7ZOeOydzfcdv+9k6vZq9CavL+e0Zw+BH5zVjzb+7wz+8rVVcPvRiSDnLcSmPL+5+3zCZ+OYPM+zFwo0P4SNfOen2brLnc4s7fzkMcfvaZbsXw/ahRU144VDv60m56etFup3583lO6t9ZLz1dXODkGyZ7Z5buk5rjcvJ+3/m7H5un3pTLN3g/oH/lK195+OIXv3ip1z+/t5nl+Ku/+qvrN+J80HxO9rxxTqz9cOD1Fie+vf72e5DXl7x0e3fojFNWZ90Hr/WDEy49DgZ/PAifuC0mW3prYu/OieEbfzb703995TPK3TrccjfT35Mw5PM5y0xn1vPFtu5M8I77yXVz8dG3cJZT6zD57YdcMbBhnEKnJ2LiCs8PaT0IsS8v/3jSGXGDsyLOuJU3P3fEbzj6IQsHH5rdT9+bijfDlte6fspdzeE9NcdXTLziLo7OD1xq9/5fHjbcqgNOYu3OrY6f+M6gfjWLtQ7Pnr8ae62xGTjBNhNxDfvVi/XeU0y8xMcvXBjZ4RD1Gs5kY9j44xdnOaz5wyFiwmTLP75i4sZfT6tbLCwilh85Y+3zEytuubQXuxysje55PJZDP0zGm78cfOjkDpctLpuTHTaO1WTWFzo2a8O6+i7gN1/ojcS6WDoxxccPHxKva/PEl80Bw965J+VfPHn1wZBfXXT6s/5nTHs1WBt9bxAHw0wPy8OGfuCnx0/Olwh/eVbgx2H1fAl7ItbDCO8/Hvb5B/Ovfe1rD+/jb7R/9Pgw7Hd+53cevvnNb171q8nrdT+H15/zXPnoGX319QCnM9G7rdN9FsPeg1m67o76w+WHi/dhOuJ8fS/zQJPI23l0Znu3rePm/HxOMeNkjbvc3u/p9/sLPW7iDVh41wd56w0u9g37eKgDt3pi3p50F4rdGQ5/kt4aN73Bz4DhQR/+sKtbboNOvDrgba/yEROvfONWL6rFffQgi5+czqOHqM6810x4ODtHcTDw0O/+YaCYauUPW16i56fgy2dz8KEz2Amecodt1qvFxEcf66m92g04MLz2PFDjkw0/d5NODXrg+7UHfvZJ/vZx61y8ZnCJn3zyxz8Mc3fXWt3N1vH0XG37C1tOXPnA6HUad7XzSayNeKuv84bB3+cienUQ9boHHlji8x//8R/Xg0f+/oGQr/Muv1mMPHzE6IGc+IfJ757gj4t4WGIJTPruD9z6lV0OozrZ1WLAk1fN6qSDHQa7ODndJXV7yEzk5G/2XhX/6tIHvGHE17o4ul5T2eViN6zVY6QvH7u715njk68c1vjs3RejznrutRI3NncFprMTz697w69zw5nvPXEefR/D19BbuXFSa/XA1Fs82azp8sEBN7qGv9OOA1s95iMv3s4CPznwLpc1fGdYv6vfHoZRrXForwavOeK/0nIPep/jK6/8cuDl+/cf/uEfvvrn8Lf+jfbzQbvCDY17qWiqGEUQaw1oplNsh9He/C4SvgaeUn56fiQdLoQeJ7zTXYb5Um1irV06/tZiGoXEydx689YDcWHXa/7xoLMOx7o64Rn5yL057MWRMKzzT7c+dOGWs3iz3HxwTg+Pb7mt+dAbhI0Un8+lfMsvcntjcAb14i0h3pt7das3OWtN/9q5Xhcv5/aWno4sj0vx+AUf+riaO59i6LIX173k28ivfWfPt7q9LpwLX3qDPzudNWldLc23zpSvN0bnTsoBi41Yw9j15qLPN5+1xw/GiSuuUZ5iYX0aEp9y4xOnvhmx8XuKc7Zwbs0wukeb55ZvfnsnxOurs+2MbsXe0oVXbbd86OTr3ok571F9uBf/LnrY1etuPlWjO/z5z3/+etD+y7/8y1fa52p7jpv8HrT/6q/+6vVDa3j6QJ46s/Wx9lkAR5j2fbihszfYvP/CtVZzOeXTC4PtltCXY+36BouEx7e89N0hvE4RA6NY9vbh0Fl3X9bXuj0fg5TfPjz6ztz6nhQLV20+rNZDtYQBF37+4cVj82ZrjvdTPnCJnH3I1UMxxeFS/WGz9XmnfvgQbWwtcRAnFyxCL2fneikfv7DDO/XZ2dyRfkiD40Oz++lhTH2qf/z5pDfHN8yn5nzNYdUrPSB+APBhXR4+clgbxL733nCaL4c3PtZ6Wu/lCYdOT/p8A9N52Xc+/I2zxjNXHONfz/Oz1+Ne29WlhmrCtR7Lly+MhG+cwjDDMUgcfB8Xy67O9HzoDLoGXxj2bDjkZybVE26xZiLm7BX94uDiPhviytPZuIf8+Zn5WGdPV2w9xEn/EnsSJ379sJ8eBj/3PVwY9Al7GGGy42Nv2Bdj7k6lWwxxxPmuhCdXUj42WDiyW+tJ+fnT2fNZ/7C2Bj5G8eXhS4+/10KvB7Ewww3z3hxec7iwSTXWn0s5enb31wMJD6z8RtxXv/rVd3rQLgc+fgPvL/7iL66/odxrbGtVo733H8M99R4sDi8xeFurp767X2y9hsR6UJOdL2yzWPqGGPfOwJHdIGY6cYY7rC/OPzsfrxsDB+cntwdi/abxnkX+MNSHV/z3NcTP4Fe+apS71wqbnHFUlz09nbP0GjPbd7/KzZ++GVe1wKdP6GGkh19MXNlwFFff6gGb3vWwS82dNSx2Eubi+41RcTDrCf75mNvrpz1fXOSE7U70D8hyrPDFhy/uzi5hE28WB5vQieEvp5G+u4CrGHeYnz2cpL7RhcOGx/d///dfnwE6Nz5wPZhMB1dNait/HOMJt3rLF182uO2XGx5h8qu/sPh5LTgTZ2OPi75lr1Y83Dl6/MX1vUCcoY9mIpf6DLruLh+YavVw3Z+KgeuMYXvNsS2e3Gxx4A/fIGxqpG9Pt1IdcJ25vXiYZnrDmeGSDx0xw8zXLKdZTfyJ/opXdznoz/z8vW7UC5s9Hza5ug9y2Bub0zmI7T2yHvCDBQcPfPixF89GFzYubHSE3shn92LldqbWRA86HzHwDFz4GHziwhfv+i93grs4OXx+7h+q2GHTw9LrOIqxhuMe6B1s+3T01sXgJA9MazF8YMtr5k8vhm8DF+veE/jCWfueJ7s9gSVf9s0bp+WuXv9A7hfeXvtz+Fs/aPcH4WsY0kteAS+RCtSUmp6u+Br7UszinprlMDrsfB3QmT/bzvzwOePzWZzWHZgDFNsQw2dHOlxI/bk2j1/SL0a2cz4vnNjFe0m98hRTPeU2pzOfUlx1t5e3OoopT3j093pczHMzTC8uozN4LuZD2rdmvVBro968S35Yen1Kve28+BF7457wwzm/fOO89YQZ7nOY+TvjegFvMW9h4FCvdn36+mbi3En3iL+85mKLs3+pVL85Lmds9dG/DfaJ8772cYaH84o7s3zXtutbfVt7681VTLZ78569eHGd272YU1/e53KWCz5R/9vmOnO/zb78YpzFeR5h0bvHP/ADP/DwUz/1Uw8/+ZM/eZnU9y6iT3/3d3/38Jd/+ZfXB63w6Mlz/Ss3/374slaXXhrWdI16LdZ6ay6OjX982tPBPIUfnOXLt/5mF0d3ytqtb0n8xe8dOXlubBzolpsa2J6SYsXJZ6Rrbc9ubsBsba4v93LFa8/hnq/vnQT/7UE9jQuf5W1NxPu8aN6Y7HSnXp4V9qfqYuveibP3/u8HkX7TZ32s421tvEaKg2Wos5768L51lLM8aopzOM31pjtT3+nhl8PMVl6Y+myUr5iwy2+frrX4cmXjb83W56ls1YCHPPmZjfjnD4tfnMxJWPb1zfsfDH7xyn8xwilnfGCyNcTGzRwGfTnle0qK6V53FmLY4mAf5/KXI1+x8hnWYnG+JfWnH5TzKX8Pt+TauvlV82KLKzasZhjqwzefuJnT9RlLnJhT+Cbs5exMu6f5NPPNP9zNn1/z5qErtvcddfBJH//iXzN3T/ZM4WyPnZXhv6z5zGc+8/DTP/3T1/fzanpNXnV46Pq3f/u318NBPOT0fuPBip52N+3rAbvfRpfbuZnrW2tce4iiRx6keJChxjjLVRyfbHTZ+Oavxmz1TB4PoOpdcfS48VOD3EYPjODwKb+45SCufnTG5c4Pn/Ksrb7xwx03ujj2jwNmwqY/Rj0Qt3nlwZFerrBXf4G9+cKnUa+YxHsoJg/9coHvjPHAqfhqYKuGHrby6bUb52a+O3Dm30Pd7oRcRP6En3096iEYezYzzDh1ZvENN//tVTFsRpzDN4djdpf9Rru61SuGWPcA1F7OXjudXxzLWS6zGvFOV4/qG8xbwl8ufmLgqA8X799Ef71WV/COjxn/Boz6gVM1iucDn/QA+9o8fpHDLwP0noDDWU97c2N50JH83LUkW/vliePiWVcDvnh3L7ae8hTbDNuw11vrekEHg45Ys7kbalnO5ZKf9NquZmdnDRNGve1Bu5g4lad67MUWX644dydgnMK3wSZ3Z7t14WeQ7pk4PoZ1fWHvntHLn/DFE3ffu/xDkHW1LUYxzdWjr3JUs3U6vnGpFjm9X/Bh2/9a2jmUuz7ZE7gEDqGvx/bVrl9wk/zo8rc22ORpVvu7/hz+1g/afYOPGNKRR+qlciumImGE1fxS3Of8ygF3sePT/BROcc3rW/zO9cqBn3nF8s0/rPZi89m53OZ8izVvnnzO/MU1b/yu488v3/LzW/0ZZ3/mpduYsOK5ObKJeY3Akr8aXoPxvmK2rsWkf9c64cEpx+LDXvx8Vrf+1myLd8v3nj38cMyrKw7m4qbfOOtTNm7j18+ZlzOfZn6LYZ+v9Usk/8XcuPT5re3TWsclbvGgz5bu1lxc8y0furCe8zvjl4fYt41/ae7y9N566/3p5PY+9+WH+VSdbHw9KPRbOf6nTq/pyckdpv/8+h//8R+vDylh0sfpjDn3cesDVzWdc3HlsK/v6fa1mv/OYa7Ouvjm7Pmvnu6W8Fm/Wz7hxfuWz6kr32Kr8yUiNl7mzR/u4py64tfn1roct2yrqwa4fR+1PvMWw3971Z6umDDFpDOnbw4zv1v6bOtrrd/upx+oCPwddPDKb/8uAqv+wNkfXG7hyvvSuw+72ncNV87ywmy/OYtd3dbd2nziF8MW3/UvJr+95/ll2/kWp2LVQOxP3cbFdfPwLz79xsTh5F1M+fK7NcOrz8XxK1/z5o3r4tHxjbN1sevXmt/Jrxw9HAhTTDbrxU7fzH5K9eVzxu/+jL23h2VUY/v8V09X7rXnk+7eLPasId8TN/3bzPE4sdLDsnZeflD3sO+zn/3s9dDijHnbvB4u9CdUytFDDDXD9/6zDyXE9OBzOcbT7P3SwDkMcXvH2cSz71icU88mDjZbeazjUh3hyym3ujZ/D0zEkmZrGOGlT2efrhqLoZfDyG/3MMTI3euMvf4WB68cYqqFzj4/WPnG71I8frEnzdbi9SKc/2XXblfbiIEwjN7/Vbt9fzwgjB38gSHBR2C0O5JGs8dunKqtlvXlrZbWbm7PsH7trH+17VXb/LXWre968WpermpZ/Fb9zd28s/VM5W796miv9Wv1PWOxcqwvT3Ob0/3y7gC5z8zGq3d5N16erLa22K6z23V5N17NxZZ7c8/7xa5b+yxentXS56o/t9frdl8NrVvfa+Or6Ww932LLv33Ksfdm/7iwnwnL0UHqme/W87S+vv123/zluG7F6lu/fq34aq7u6+fZvOt159rGyrWxWrH1yzuLtfY/rxvbe7Hxnut876pz4/sZtb49lmvX7XU+x+btVeu+vvjZl6v8t/Ju/lnfrtdurV1843u+tdXX/N1vzeqZwz4Xe23OWffmXd8XW3z56hfv51P7VNf2yHufyWra7+25FVu+M2f7lav7zel6Y8uzvrbr6jtjrWtt/ea/+/fwpw/aK0xPgAABAgQIfF7g/CXg3d3OXzrezWU9AQIECBAg8LOA7/CffYwSIECAAIHfKvDqd7iD9t/6jqqLAAECBAj8F3j1C/4WnoP2WypiBAgQIEDgMwK+wz/jKisBAgQIEPi0wKvf4U8ftLeRv6x/+i2VnwABAgQIECBAgAABAgQIECBAgAABAgT+gsDLB+1/4eHUSIAAAQIECBAgQIAAAQIECBAgQIAAAQIEPi3w9EF7BfU/2+uL6wkQIECAAAECBAgQIECAAAECBAgQIECAwDcJvHzQ/k1InpUAAQIECBAgQIAAAQIECBAgQIAAAQIECNwTcNB+T0acAAECBAgQIECAAAECBAgQIECAAAECBAg8IOCg/QEkUwgQIECAAAECBAgQIECAAAECBAgQIECAwD0BB+33ZMQJECBAgAABAgQIECBAgAABAgQIECBAgMADAg7aH0AyhQABAgQIECBAgAABAgQIECBAgAABAgQI3BN4+qD9crncyyVOgAABAgQIECBAgAABAgQIECBAgAABAgS+TuAfAAAA//8/HoCNAABAAElEQVTs3VePZVfV7vFNzjkHYxtsDAabexBC4op8AYgkkixLBoPBBAl8CUggggR8FT4FCG4QItkYNyaYnHM89VvH/9bofaraVW2/QL1nDmnWTGM84xljzrX2XKt2V9/rXweyO4GcUP0EyEt1ZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGXg9GXgXhfyov1e97rX6Yt0MV4ZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGfgfyMAFvWjHw8v29e32/4EVWZArAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDpyoD60X7qVquRXZlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGXgvy0D60X7f9uKLD4rAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDpyoD60X7qVquRXZlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGXgvy0D60X7f9uKLD4rAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDpyoD60X7qVquRXZlYGVgZWBlYGXg7mXAf2a+ZGXgJBn417/+dY762kPnpGN1DjKwv0f+nUlZ+/Hfme3l66QZuCevjbXXT5r9pb8ysDKwMrAysDJw4Rm40M/w9aL9wnO+LFcGVgZWBlYGVgZOXQYu9MBw6gJdhO+RDNzVi53/H/ZTObjQWLM/akHg3hM6R+Hf3fEZ913xvLu+/lP2M8bJQbxHzU29/1T7JOvx3xzHfyp//w6/J1mju+Kz1vCuMrTmVwZWBlYGVgZWBu6ZDNydz+/1ov2eWYOFsjKwMrAysDKwMvBfnQGHhb/97W+7P/3pT3f7xdFRB4+jxs+XmP0XB/XDqj4JxtSFp+zj7PenjTabf/7zn/vDZ/uHYZ6dPEHjrniA4uvfIbgo9773vTd32ve97323vnY81LPI036u0o13/WrjMGe9dQ5+TJ2jxtIJI7392rxSTOazmRi1s88u3cb39epXZ5e+eh9jzs32cfTSqc6e/zg0dlid3fl0zzcHMwz1Ue3jYGR7FE8Y4aj39fXbe+rmp91h2IeN5ee4c/nIZ3b1J95sN5+++rCxOX9Um93c1xMrftnWn1yaq24u3cbVzc2x2vscGr/QuPjKthrm5DDH81c99fbtjtI5H9602cdubtawKve5z312D3jAA7b76HFsJ85++x//+Mfut7/97U59GF9jh/k4SneOs5v2zVW7vo7CTqd6n/e007Zf0tWvNJZ94/raSfst/aP00k9v1tMmvWp66aY3/TeX/oynMfrWKdm3mePNHeZjjs129tWHYZibNulk05xxZcZhTpmf6+lnf5x6YtJ3PUwe8OVpH3u/v48DK97aZHL9vyPnxr+Pmb3x/bnsj1OzLX9Tf8Y5x2tnp5//6sb2457zE6c2n3TkYvqvvV9Pu+bYhzH9mZ862c46/anbfLb66akbr24uu1mba756zodRvZ+/dNnK0f6eyS69w+p9zLDU7MOoNq4kxuunY262m298YtDb1536089h7cayCUsuGktn+krP3OSTrrGpb3za6NMp5/tz+/qTyz7uxAonncO40U+mvrH4NK/Ot+efBz3oQdtneGNT767a60X7XWVoza8MrAysDKwMrAz8L8iAw8Wtt966+8IXvrC9bD8qpA4hh807aJj34mA+MDXuALp/CD0Mx5jDjQcsRVuB08MpP/e73/1297///bf6sEOOsWxh6u+P/eUvf9kwHZhmbHGtbi4+f/7zn3e/+93vwJ5jp8+HX1r8/e9/39rGzidypSTs+SlGcc759KqP8hVXeLBgiOd8Mm3osWOT7cMe9rDd4x//+C2vj3jEI3ZPfepTd4997GO3dYi3X9YocitPv/71r3c/+9nPzq4dH7///e83bHuFD3ps5Izw2foWuzofdNhZX37aH2oYahj2Bz3CNr2wzD/0oQ/dPfjBD978zXizYxsujLjJBXv9dMIXIx7WRpsd4ddeKya22or29LkZ3PkjnXDmXJzZh7cf91//+teNS/h4Tl7w8Iqb+cq0EVP5ZWMu/3HD9YEPfOCWm+J69KMfvd0X2BgrP3xMCau1DyfsdNnhIS518+zzScc1+qtf/Wp7AWnOmH2mzibMo2q6h/Flby6s2cbJvpRPa0K0ydRvDWDhF391IhdKY9Mvnda9+cbsgYc85CFn5/Xlhn/7Ej/1LHhPHFgzx9mxxR2W2vgUfuAo89oq58blQ1z4Nx5GHMrLzG1j7fV8xSfsMMKsjq8a1rSjw5c8TGlPwZxc62dTXtju+2eHs5jFbm2e+MQn7l784hfvnvzkJ5+DO30fp83XHXfcsfvkJz+5u/3228/ul5krvkm51GYntvZpsem79nA1lo26OKyr+7f8/fznP9/u6fmAW4x04ORHDUOxt9z76bfPHvOYx2wvL/Drs8T+4pvQzV6+//jHP25zxmC7n+eTPls+FOsKJwz68XJ94JkNO/r52o8JDt844k5P/ApduHj4nOgagC1fv/nNb3Y//vGPNy5x2ByPH/jMlzj4KMSc/IoJD6X7Gt9KXFpbdvRwVePbNRBfusR414CcyKl7uFjY4uHe2ud6WJvxMX7QF7c9BpMPhY+HP/zh29wf/vCHbV/ZW521gm5d8GYnv7Bg4kfkHm8x4Ss/4iJqeVDqG1PYswnTGvPP18wlu+JmM9cxLDqTozYbtbXFXZut9TJnT+NlXEykfQ6XDhGTe4h82Q/m5GXq6Bc3fDGJR27hiKfc86ffvtOHpW4f8itW+fjJT35yds/hzw5WazB5ZGeMPTxroy0OXKaPrmnzijhhp8+mPQA7ab611ccfPnvxFafcyh2/OCdsXFftO75I9ubhKVPgyoFzcbHJuVy71uHk0ziBpchLuYHbuD2MW2sA35z8iL9YtO0RdbmCLzaxtN6tiTzArcCNkxoWO2LP8OMcZZz//LJT9OWnNcKPrnGFX/Gnw397DYfitVc9L+AQH/ZyopY/4/piJezh4qFtjg4O9qm+uXJZrlpXGLBJOGzy5ZfX3Sfg4spW++KLL9694hWv2L3gBS/Y7NmdRNaL9pNka+muDKwMrAysDKwMnNIMOGh86Utf2n3sYx/bXkoJowONdgcRB4nzHSbYOJg5sGhP0VcchsJTKw4vUxzMHG4caDqEGetw1SGNL4eofU4w02+uMZiKcQdQeg5h5o2p4U++2uZwys5BPN5siNqYAyOuzRdbPqZuh8501DjxKTaHZTr5mHp0HCg7FM85/uNAT97VcRCHvkL05SUbY3SVDrNesl922WVbXE94whN2V1999XbY9GCRvcOtw6ncqn/4wx/uzpw5czZ3YvvFL36x+bV+/Hvx4IDdgVa8Drpw7aU4yCd+cdMWP8zmWiOcOyzjFj91mPx7uPdwVJ7xaf35oc8PXDzM2y+Pe9zjNn76dHAod2oPGrg1xraDPHyCo7bxuT50iRo2nWz0p9BhW2nP6NNVrIU9giuRK2tNzMdNXLgUi9qcoi2m4mELB2Y6xvj3sCe3OOPxtKc9bcsVX8ZgyCdMY1PMWzcvYKy/djr8kPIrph7+jJvPJ25eBvzgBz/YavP82Z/Tb5jmDxO6coUvzMR4uTA++3TxioscaIuDTTWbiQlb/ugTc9bE3mztsjWnbRz2jEOfjb0dh+6V7Nyf5MH+1BYfvmqYsBS6dIpdvqdNeYFBlw0+9pBaHK4tMeibD5+OtVUn5orLWDZyVt4azw8fcM03B9PYYSIWpVjV2dLn33z2OMHLD53m4mod2bjO4OFG2CbaxsWsPOpRj9o985nP3F1//fW7Zz/72efoZnOcOi7f/va3dy960YvO7vXj2E6duefsQeumxltMYhVnceDv+hT3bbfdduhnkF/C0um+Im77sbzZS17gwLS34Ht58chHPnKj1i/J7C9zpHhhyDf/U/jIp3G4frFrf59PXC9s4dNtT08bc+J2b7JnfGbhcJS45nxOsIGNMzu/FFHOJ/aKF4Hupey61+Egn4q45M68XB4m1rBrTK6s5UlFvNbF5z/+uPz0pz/dnTn4XL87Ikb5kXvFL+6dK8TmfGVf8eEccT6RZ7myt/CTI2N9CQBfGOaIus/E+nIjjwk814A9KM+J60TOydTX77o/bNyexoutWl/M8JSuC77sPTo40Ddmr1k7fUVM7u/yZY+Ys2+LEQd9ZyuxwReP/ozHvpRv3O2VcqkPC7f2oWsQL2vzzW9+85w9BwOWvUYPn65ZWNr44A7PL9TiaA43+8z8L3/5y23OOA7i7PrBXezFKe9sCH25M3+U4IIjDnJnHfRxUeDyYd/5jDyJyPGTnvSks7HJnbOuX34mfSbr84ezXFkjvsVSPHgpOLdf2MiPXBqXd7Y4s+vMBF9OjeNgji/CrvuCWm5xt7Y4d4bPL5sf/ehHqnOELtt4wCL2mPuRcX5xTsTTXrH/9cVNxx7H9yhhxyddMRP2OLgGxMAfv7DwIGzMs5c313652BTu/FE88N2z4blPW5/D5IorrtjddNNNu7e97W3bNN8nkfWi/STZWrorAysDKwMrAysDpzQDDlhf+cpXdp/+9Ke3BxIHFQeYDiPmiQOIcph0wHFQZwvDwYVk11jjDjLaDk3zkNLhswOOORj0YMxDYoerfU70489G0XcIVzrcwoZXjHBg6pvDT9HucIuHBzAYxkn2/MJXmzOurYbjUFkbjjH+YJUf89rG5TI+m6M7f9Ax1wMjfX6IObF2gOUjPmz40nfw1Cd0jbMLZ5s4+AHPYdaDyaWXXrrpeOi+8sort29jOsTSgeGA7bCsdth1QPegIVYCvwcYecebnnyaKy7cemFCh8CnQ6Y/fBVzdMyVP21iLczR41dO7FUPI/w49DeezWZ48IOd3MgVXEUuPBhqNx8+HuL10NcYTP6sZYKDAqO2Ov5hG5t22be/zIWBo1j0CR1rYU82Jgd4zTj5ED+s5tWEXjHBS4rNWBz5t1dwgGXcCxR7JDz2+WAbZjjW3oN4+WqeHS78Wg85VvTpmMsnfN+4tP/UdMRgTdRhzhzA3xe6fHVtNB9/Naw45YeecXzkpBzGFS5bYo6uvjVon4lNv4fZTfngR7rZy3FrS0df/j2cty76cNh2bbp39PJjxogzTsbo4sEXXftIbc64vqLPpj0EQ7vPAzwUgkMc6TQuJzBhiUceiPHyZlxhw98UY/yS/bn0wodJRyzG0jfOfzj69mMcJ3ac6MCQT3nC21zrw0bMeFsDeNbGLy2vvfba7YW7+QuReH/nO9/ZvfzlL9/dfPPNG4xxnMuXPh844UaM4aq0bmLXxk8O6BtjO4v7pmta3O7v7t8zR2LsRXvYYqcjX3i5Fr0EgtEauFfAJj4XfFbYXzOX5nAxLuf2KExxeJHlfq5tzPqaV7ThlDN8cIPV9WGOHuz0zeNbXuDLoRc5XuDGj46clVd6vWiXDzaKXwBaJ7ryAZ9N64U3buzVbOTHOGGn4Je9l2/WCQ4exuWAX7zFTX/e/+inG2f4xltz9nJ60UUXbeuJg3i9bP3e97636cHGURxHyZzDPW72iBgV/7LDucKceOyr73//+5uvcpQvNe74eSnmxamY20fuOz5DYIm7F+1wxGDf0GUjVjr64oAJz+e7NRar/LSPi2VyKd/ihwGT4Cg2eNpsYOm7fvBrzeIlv/BcB7Ccp/BoTfjHV9z2l1jptUf4gWWtxc1OzvnUd13REQ//Sn3XQecaXM11PcEXi7X5+te/vmHhIl/G1fyUFxxI+0/O+YHv/kLEQQ83fuC5JxDjxQlfv+vNPF+ETUXu5Ers5TqO+PHPDgd7TQ7xm/mDYe/hoW1esU44wJ0CH67cORe6XugYc1+85ZZbtrURn/3OPyxCT4z8wIalVvrspGsvyAF962ct4OOlLbdw+BYnkVN7p3tz+4N/Oor1hWEMHnHPhWdOnvh0juo+iw/b7pls6CpwutfSK6/q8ph/9mzESqytL0bgYZyUW335gElfLASWvJjTTt8esE9h4WpeXa7ENwVuexiGPPIpbnk15prk21ppX3XVVbv3ve99uze+8Y0bFJ2TyHrRfpJsLd2VgZWBlYGVgZWBU5oBh4z5ol3fQcIBa1+OOkwYd6hxoNk/uIUBs8Nc2PodtNJzKDOmwKWrbTz/7PiBaayDloMUfWMKG/2KeQ8e8DqswSEOag5X4g8DvjH+4KnNa6fDNr9wHcx6KDJnrMImDHpEf2Jtg3eO44QDn/tinN0s6Ux+4Zub7fIH2zg8tWLOg4EHIsUh1UPJU57ylC02h2R9cZYvDwAeTtRic5htTPwJm+Jl25qYbw1wIbjQEQ+91swYzPJuvpIdLHpJuSxGNT9im7lgo6TXIR++cfoeQNT67Vd+9OkR9u0tYw7v9fnFv1zMNYShsFfHDwYuSvj1iw2usbDZE36sBwwF57lP80UXF/PFBUPbwyvbxHj4ar7xwNf+0IbrgdZDDBH/9JX93A9h9HAUj6mT7+JRG2Mrfj7oeyjy4KgvJx48e3ln78iBmg9Ch4gFV3mzhz08phN/PvmgU2FLb2KWF7rwi6NchlcO+VXoike7ObHpZ8OfNh/q8mGcsDfWvSa++OVfHSd+SGPiFpt5ufMwrC4+sZoncZxr33rgHEc8G49z9vz2koQ+iYs2Hvlp3hhpHKa2umJePnHFXTtc9vWNKezDqK2eUp+t/MoNfD7lJV7Z4Os6sIZenFx++eW76667buebcXxeiMTBC4oPfvCD2wtc/vmWR/sfF7USPzp4uMZaw+ysFX7WCH75MK+viJkPxT3fPjFPwmav1FfLAb9egmq7FuG7xrwYsXfa77DTN8Zn62eOTzGJQR9+L/DoKdZFHtTFwb/PNphsjHvpCYfgZC3dL4uTDl3rx07fPuKDqOH28tQYndZcHrJx/SgED5+jbOmW29ZLLTZijsBRjFfjAsvLNfdfXHE3LnZt68yvNoHXGumHxxYXkg5MHPkzB9cLvGyq6ZvvMwt+GGq+zYtLjuWL7rThXz6tmzWgS2DNNaMnZuvWOB70rJNc0BGzb6bCwR8m/rjgVL7aL7jgBYOtvUkPlpq0B2DKKxt7V5Eneq0NOz6M8amwxzPM5nCzXvDsZRgKH35hzF+6fOEJR9ytAX7a/Ex8PtsP5gnbOOMYZvlnz2f3ZPow5MS4Pg744qgYcz6yNnKob1xsYrFeitwaM6cvb/x6SUrw5wsvGDiXbzjyYJwdnjjoK3IIC3af3dNGLnBjC59/+yVb9zS/YMGvteVPHmASPpWEHjwlX3jIlVj4k5PWnp34xIQrfIW9dWicD7yar80H3Pwah2OMhGkexvRLZ+6XsNT02q/s5M+/YMGVzeQoJvitqbmwxK7PBhe5g8E33HjR0W//uf+yNZY0z1ZeFH7CETvhC3/j4fINzxx769cahk+3GOCKS+0zqTjm2uL6nOc8Z/sXaa9+9as3GPonkfWi/STZWrorAysDKwMrAysDpzQDDhnzRbswjB1XHGo6ZDisOIQ4lHTYgdOBCC5dhx+i7wBUW91BqMPgPCAZYw/P4cphDYaDPZ8OYOGp+VFgdsgyDqPDloOZPizcSRjG4PKl8EXfQSyh22GeDxw6lNIxhoMxfoh69o3BKT59vvgvxmzFTvTLsXZxpbcpHfLDPExx8EH0He6LU9u3c3zD0D+HpSvHxtjnzwHcQVQutf09SofTciAvHqgSdny2xvrFoOanPJdD+mKDqcSZrXwVdz7MwwonH7BnzMbZ0p05rp+9XMxvKdnjPWDAEEs+2PIPj46HUGOkF850YctbD27tDzUpBnuP/w7+anu0efGYL2/5hwOf8CVPXmyUL3PWRT7xgacul+wr5rTpsifGxJi/xvjCDydt8/NbVnLXvWHa8qsQ4wSGYrw9Zpxf2NN/WMbgK3KvlmPjcDzEe4juW2/2p1Kuiq84jHvBQcd+zD88AtP60zMvL/o9VMopXXjpsjNeXS7Ts5ZySIedQsprOWRHxJ5ea4iL9TUnJvFaQ9z02bKRn7jQ1aejGBcX/TBc214cNC4mc2wVMeDXdWZe277lz7zCD30+4qNP5JpdfTpxpKttDgYxlohLnsyXV202YpIXRS6M0TFfHOrw46pP6GpnZ16bf5jyooYHHxZJX/xdF17qeNH+jne8Y/esZz1r09mUL+AHXu67n/3sZ3dnDv7kgT7/XhR5Geq69fJC0ZYfubMu7uleJvVCSSzGveRTi1E86tZP373EOvHVfcS4WLOB1doYIzBcl74h7aUTPubw9w3pcgYLR3ny0t+esn58tj/4tQ99JtEn4jEmHjV8RT6KwV70oh8XfAkueBE5s8/FyE4MeClslPr8yhNucPFVs8MTBzkqN/rhwHVv9Bnb9cG/cfco9x1ccMyvNl+KdtzE5m/+y4U4zLkHue7FYV/yaw+wiTdc/BTciP2BD+FHLOy12VkLtbwm/BE41o2O0rWoNgeLT3H55VB7ka254qIDhw3e/OnjFaYx621M/DjQZ9tnB1zx9+eN6MgtP4n9BdOYnMGAaV3lSw6NVdi1V+zBYrKH2qu44g1TzZZvuVeIsSnG7Vt5FYNrUIxdh64P/rJrP9MhrQF/5QwnWOaapxs3c3IofkXccicP8kbah+V4Gzz4gS999jjhZs9bd3tR4R8/+0dsOPDDr3XoGjMGg56c04PfOpkzVj7xJ3LTWsm5dbEG9BR47svd+9iIo1j44Nv9oOvQdSCW+OEvpmKcnMwZJzh1ncwxvBX85Lb42ciz9cbDPDs61t49SD6NFbe8zW/hsxW/mK2De373R/sWlnsSnmp9+5VfcWp33fGBh3uSb94TOtYIF3rlHQ9YCt6wrbV5fRJ3bdjlEyY9ORGbtWDD5yWXXLI9R/DZGrHHnw5b+0iBUZ5hhWmt5MJegCEPnVnokeqtc/ADDv5KvHBmK25ir8HGg54/+eZfpL3qVa/a5vcxt8Hz/Fgv2s+TnDW1MrAysDKwMrAy8L8lAw4Zd+dFu4OHQ47iIOIgaaxDlFohtR1etB3YOsCl44BTcXhRYDvEqumF7wAGw2FTO1w2MPTVDpDa+cIFVoc8OmGZI/yYh8+f2pgDVw9a+nAcKvPj8Lvvxxz+eBRPOjCIueaN4aNop8MWJ+Mw6xvDQzF2PjEvFofkbOA5PIqtfHrB7u9r+yfdxqxt//QVT4dd/wy+eB3yvWx3KHeQF685ucGPX3YEd4WUYxzKs3GHajbG5aqHg3JBB3+Y6sQ8vrBI8fJToWNcIfqNxUcuzNvPHm4a15c7vKbvMNR07Uk506brJYix/IlPfmDIldKa0mHT4Z4dLmr++SCtSw88bOjBab/RlR/+GpdLD5PGZu60FXpyrmavzp5ffsQVD2MEn/KjbV7ujJHuD2zxNB+GPDRWrPT54hufcmmMnXpyMc+v2sOWvLClC9+e9eLAA5QcyH/7Cj9+SZjmvRSiUz5hk3RbPzrG9ONLDx94xuW2eOmWe2P0Wl9tUjzaYpEPOmHCYEtv8pIrMcLn1zWoNq6wcX0oxYGjfnuEfpyNeVj1sAxXfM0VQ1zjCI9dcdnL8TSnEDhxb5+Vj+b5wLNiPvv4q+G0Z9jSU8zBtp64axszxyaucoOP/Wo8HfN08VCyowtL3UO5ePlJT02M4ybH9uYznvGM3Tvf+c575EW7+/DnP//5s//0Hicvr62XeF3rXe/tMevhc8y4/YGXPSzu+aK9WI2XKy+u0u0lFj2SnpyUT3NyKAd8etEuB/JkDH8vQ9nIOV38vEDq5aWY+HQN0ykeL/Rw50N+xULH9QpfwYMfmK4j8em3Nj778ILh80vpJWCc+ORHfLjAxBOeOXvGCyc+zOGBA4FrTNGGA9dLLbmAYQwevu5RcuKaI7gq/ORbjT8bvv0i12eMWIzLQS8Zux/JH79i4LP15IMOO1gKnuWwex9f1g0X8ekTdvT1zdlj3QeMw+NL/Nrye+bgl0I40GfPh3ltOcxGn61CF2797vH69Ej+WxfraG/Bx8UZpXWgb83wlU+5p8O/9WDrui4utTXAgbTP6OLSXi0mucardeNDm+AML97m5BQH9vNFu74Y7Hk2RB3GNnDnj/yZE1t7Tcx8t07tA/tFrsu5XODguoYlXz4DzesrMNTywIc+ffyN+ZePrktYeMq9XGmLhbg3scELtjlterDxk5OkHJpL2PGhiNOau47LMXvXgDXEzbi8xN88W3+Cp+vQdYCD86z1pysmtfzjlRjDWzHedTbntfnFFQ6eOIhDnrvuzNOzFnLauaO8mGPrnqGWK9cz/vZKNriLS8zmWh+1/PDHTk0PDi7wrRN8+cBRzspfenStIWx4uNj33XfEQeDLCVx16y1mGIr8wRJzv+yQd/tC3ERNB5/2JV7Zq+Gr6boOi5UN/kr88VGm4GHfiMGcPv32J10czIuZD//HyjXXXLNetM9ErvbKwMrAysDKwMrAysC5GXCouJAX7Q42ioOVAw4chy4HEm3FQcec0gGmdizoOdQ49E2BPaUDUjj5yHe6ONCB6UDZA5y+w18PXPTxo++gBgf3/Jg3th+TvsOWkj4uCftEWxwdaHForEN7/WlXbNXw4MRTvzY+SvbqiVl+1AQm3mKHadwDgAcjB1SHXsXh3eHXWLbsFHl1IPYywMFeXtUO9x5OHIjxE6985xcvtuYS+PnFzRyb9BrTh0vKe2sLt1zhat6+VLcH81fNhi91AkMue4gwru9BAm77xRjd/OajPOnz7/BujK5fWMC1F/DCvTzhYS0mF204DvUO+OxgKvDoxw+ffLfXYNIzTtdaGJvXAQ70K+YJ33HSNy//SXGrYSt8lXf7B3djuONHetDEie2+vjH87CW58pIeRsIu2+IzX4HXvDzxZw1wgS0OD2nyzk9xqxOxhE3HnvZiiI05dXux2OmVn/jK7YwxfPzKTbpq3OUJbzVbesbNy2nj/JpX2keuwcR88dFJsoEHWymG9PTlgz3McOShlynmw8ouTOuGc+N84K2mo7SO9c2T4oqv2loo+TPGjjRmns9y1zwdbXrlpHiyVeNjHo4an8bwbg3EbR6msbiprb85+r0Ehh0H4/ixcz/xoH5PfqP9c5/73PY3rePeZx1uxYiDeQUPpXyYs8+tszHSfb37VLG0fuKlIy/l2TXnfn7YvmRnf/hcKU/G7CufJ+XXmP1OV870Wy8+tV3HfPfiiX/6XZ9iwKH4YBQ/PRhyQ3zWuc/CcO+xfuriwoGNfNEx3j3BOcBY2Goc2wvdC/GYueJbHrzga18Y84LNi/bw8cOdD5zDVhszZz172cYfX/IgR3KAL+zym50X8zjA8LltHdjpEzY4w9M27p7Mn5dXxBi8RFue5EExLz55kkN9ts4OcPTFgptCjDcnZjrhwdI27zriq7Xk2xwd88bloP/U0Lx1FYs5Qt84Dsa0+WvMeL7pszWmxlduzIvPZ0386MKBaQ3o09Wm276gxxe9sMXkOoqDNfD3onFP6JSj2ngQfuW6X+7zaT+xx4GvGSt9WDjhFmdx2ovWiw9l5gZH+86YPMOHYU/JhTEiT+6P4sERvn1mXJuoa+uX4/TY0sdTjvXx0eYTh9Zk4sASs0JgKOVavPJ06cH/PyQenMXrFwyuiXID030Br3zHRUzG4TbPV/Fql19+K12bfIhh8sYDZxhs+VDjy15e5NuYM5b7F/8wzFs3Yh9U0y0X9No3/OPd3oTHn/uBHFg7mGwUnNjQkX/XIf8w8DPODxtjalhw4ohT+YEFR5n3INxxbu+J2by42Rrnq/uqNh7szNERU/N8V7akHPzgOxzt8pIt7sZhwsbR3vYv0t7+9rdv/zcKLHYnkfWN9pNka+muDKwMrAysDKwMnNIMOFD0ot1B8nwHBnMVByjtDkIOI7AcdhRtYxW6tdX6MLQPO/ywVxJ6hE0lLh0C+e2ABdPBzIFPW+3w6tAFtwMU/nFjG6aaHky+46LtsOVASZ84JJtXjMEsB+bxLUZtvnFRN8+2GLfBO3/gkdSmC4f+jDnucBU6dIsBjgOjIgb6uHt49g12B2bjYjA+8yFv9gefuHsx4qWAHHeYNa7IdfGo9Ql/HmLU/BA+Pazxhy8/DuRK/PnMBzylHMKGh2s+xQvfOrDNhh5Mog1DrdChLzfWFh+2xvTNh6vWJ43PHBvDx8E8Xr7lBdM+gLu/H+IVLk70YHjwwVVfibOazDG4c+21jZUn/daDLb/60y7duJuzLsn0z16/PMhXeY8vO21xWBe5YkNPTjzgyjuxzvYVPHknbOjlw1gctIk5PtRiJOzsbXEo8TIXb+0p5QOOuO1nfMTPp4c8D3uuBXlSujbCVIsjHri3Z9S4qBvDO47lrPzgrG2e8AU7Xz1wq4sfd4UOYduYfm017PYH/excf2Lly7x291M2Cv1swpRzbbGr81dtLJ7FnQ1MuVKzNx83Y1P0lTiIUa7KKV1zCb9hqYn51ig8dfy0Wydj9I3B4k+bPbxw4Nob1ik/xtjDUrvn+ZMx119//d36Rnv59SLx4x//+Paf+OGFS77ouLa8HOhFQXbiwVFtzMsZ3zzs3isGe901QI8OXNerNTPWvaPcmHOds7VfykPXgzXquoZL8KUHS5uf1tJ8/Pgu7/RhwjLOptjDiZOa0FGsW8U4vnhbG7bZmzOGS9ewMRzlyjobJ3xrqwk/8dXej1HfvcnngvVhJ59e8MH2gqucm8MhwR1HuPiprUfXETuFj3JQvHS1zftzGX7BDoM/v2SxJumyn7lg65vzct7nOE75ULPJrznYeLGRY9jWTTGXsJkSBn0ifjh84KFvT6v1E224Sr7EFr59Y651kgeYxDh7xbx1ad2NwYPTy8f6avOtAU6w1IRP4npwPckFXDpTYMQtfvLverTX5AxXnNtb9PEME4Y5ufbNZH749xnGNw5iYAcLNlx24eTbvHVmZ954BW/Yrh1x4oQr0WcrT2r5mYWOPg5wtekR3IkxPOe9h64155MeHaLNXpz04RI1fXNxo6PNRjHvFwO+CCEe+XAP7BcTfCq4lP+w53rjEme62vzHJX/ypNBRcKPTXgkHD3rmrAtf2rjgYR0V69G6NU8Hbvj4woXHVl3sfikKwxif9MzBkCslTtX5UdO1HvJovjicF3DIBg7f+mLBma5+/KxL6w2bHnztOBZ382r3LeN0XQd08VfCVsMXp7ywU9jwM/cIDPyMKfkypq32i/K3vvWtu5e+9KXn+Ng6x/ixXrQfI0lLZWVgZWBlYGVgZeC0Z8BhpBft8yGrA1Dx6Xfw0K44LDnYOIAY0zamD7sajnYHp/DCUdPnQx1G82yJvoOSQ5uDk7ZC9v3F17wDlocVh0l6Hfr4IXgpCT9T2Ewu8zDngG6edIg0VgzGJ5c4w8tOfDNG+pODOT6nNG8ufsUqN+XSXDpetnjA97LHuAOyBzLfDOyQSheOw6uHLLlT+3MEbByaPUSZ54OuMblVGxM/PMW+MqZ4kQCfX1jmPRSKjR/2cNXi6yCszQ+Jm8O8OOGwh1upX77g0MOBwJttczh5aMAJDhs4CtF3yNanH1665uHGuxdb9P0ig60Y04EJo72MTzzzV370CR0Yib4SZv3GrIkiT0TuFFzsVdz16avpuU70PYQVI5/GSGOzX97teTHo07OWbI35hYp4yh8dHKy/Qse6e7jvJS9/1qX9wlZhS8SNB18K0W9fsKMvXvFYE3uT0I/nNnDwA548EG049m9j1sq10P7vGvFgbk6sxuRcHxf+xTZLcRSLue5FMPjuHlJ8OJQX7fjlB0a+iqu8VG+B3RkbeyLGMNjzJ0b7oOtZPfcAHX2Fr9YDB2Kc4BnX8p0OG/6sDcGnPYcTPThxi++mfPADB4XEoZouv+Ybiy9skv3kZzw/5Sz72cdbH2Z4+my7DxrnI7ziFqMX7e9+97u3v/XaPN8nEf6Iv3d90003bX/nHFd7k6+uRfc093cvlOSaPzm1por4YfXP+2Hq4y6G1hJe93X47CYOO+M4GGerdv20l5qny54YU9pjjalbI5hy7n6Bf9h4lgc6U/SVYjHH1vqEpw9XyV4tVmXaTizXu7jYwXBf85kqP+G0d3El7RV9cdkHPhfco9iZ9/nol9jWUB8+bGtIwu4zFT95rOCiEHPKFHkmct3nPn05cd9qTfCzdjjwmV8v58Xp/kDEwhYGXbj6bGHxJzbrJhY62u7Dk5s2H3Bg2C/44GGsz8Fe4MGF53OjzxS6fKoTfT5hGIcZFp/m6BSjMdh0xCnvxujAINbIZ1RjYsWZXXzYiBOuHKmtmWtMmy6BoRDjYjLHnj/82NuL5vXhmKOj2D94qsNxnePPJn5ix5M/fuDax/aa3HRt440DH9ayvQabHWzzin7riwtf1qjPKT7osWl98m8cP4U0z++MnT4dfpwhxCUfsMXTGmqLsbzDd43REwN+5mHL1Sww6ZuXE/tPLGzCnxxxpY8TLgQuX3Jmnq0xok30Z6FHzCuw8M+/uOXOuHmc+IgTDvQVWArdSy65ZMPtOrUe2vLAnr6YfSZoy50X1rjDJrDbj3jgDd8YHwpp/YuVD/vcusFgC5NfMVhDn0fyTydc83jS5cNc+dFnSzdc2OY9l7DjJz289BV6bOkq2mKma14bphzA93xk32grpJq9eL1of8tb3rJ7yUtecs781jnGj/Wi/RhJWiorAysDKwMrAysDpz0DDh29aHdYIfOAUXzGHEY6hDXusOUgk+g7uHTAUXdAoudwkzi0OFyR9IwROOka66BjTh9Xh+LEfLb8dYjKN94dNNk4UIoHV4KbEo/iDdN4Y+zgxoudOWPwPKQpDmRh8kF/4tFXYM8CXwmTDhwHbu1ETPQS+sYcxpujH46cOED6Vppv8JjzwOuBuxedsIzDkC8HZmvkwdILHTz5LPf6YpJPhR1/uDrI89fhHacf/vCH29o6bNMrbn7hsleKyz6ARS/h2/or9MyJDe/w1OVb7lqH8sG3QuKBK15yAXffBhfrGh7buZ7Gw+Xfg0QPIV6osKXfA0f44lGMt2/Zs+Uzf7jjVe7jXhzxiQNf1s2DtDF9a6DtwVyc8LM3D9uDJj0PYXgQvrtWtek2rk8Pd5y1FTp8s3NdeICREz7DFZv1Nc7e2lvXvl1Lr5cI/MAvL/q4y4k6Hvp8q+MoVv/HgJi0869mN6V8GNOu6NP1ICkuteLbgvY17vLnuvHQqk9waQ350xarPLTe5aH1pWd+ro888tfLhQ384Ee6uMmzgnOxTf7xMYaXmk/rrY+PNv4e9vlMp7zC0BafUkz5K/fhqgl+4kxPX7GetT2Aa/NLD5a2El/zJD8wjeHJhsRZO3/ighMf9sVN/yhhz0d++GrdYLTOceDDGhnniw6Jm/vMFVdcsbvhhhvukRftt99+++7GG2/cnTn4u9fEi0Bx8Yene7x9331erO7JrjP7CV+xdd3jZw+xbY+q3b9ci3BhiBeG/W6v6ItX7K2X2rXiPuTamLZ8Er7sAfN4H7YW5bzrAW75TZ8O/NYq7satAT38cDbnvmOsuezxcY/ofo2XfIWLo5jFKUfEZ135pcePnLiO5Bg2KT9qefZnK3zm4IKHz9v+tZj45KXPJRjhiAGP8HAs53TiujkdP4ybZyvG/LKVC3lRwhWjfCjk4osv3vZSMZkXIzx88RC3cfHIDx98tl7FzQ/ht73KRm77BjZctvadfdwepY+jvLtn8BEHsUyBT+jDLp9yQZrX5kus6fCLE+x4+hck1kg8pGsJJ3ZsiPiMseNLXnyuwYKptG7pyBcOcVLr2yN4iaF8p2Md5cZnKOGTb3uHlEO2CjtY1si9opzSl0e27Wv8FCJe2OILWwywGrMv5AbH4oCFoz4uCpz2qHl94/Y1zLga12crt9bamsdfTuXfmrNn11kiG5w6A4mFX/fDznr8t0fN4y43sGC0b7Xlji9j+nKFC8GTHV/adHGaUtxsCT2FL3PyJD4cuufw0V7FL0z6uFfEyT+MF77whZuN+wke7r/WGTfc2Yjf/Qd/vvqXNMUGRy6tNV9w8KRvTs5IMZlny48/dYRn+ZEzhS6fnj/4z5f42Iubnr69YJ7o8wsPhvyVb88lrutyuhkc/NCPW/nTh+HerqbTnNhwxs8+0zZvXN6LQT7Wi/ayvOqVgZWBlYGVgZWBlYEjM+Ag0Yt2h1biwLMvHbIcOqZ08DFGp0NfBxqHGG1zavOJg5LDCzFH6OFEj602mX7pOIR1EKXTYTV7tvlmb75DuX6H8/zGLTs6HbzYpmfMYba+OT7z2yGuBxZ6+Cls1cXVHF/5TY8uTDqVHm6MEzr51zeuL6fZG89eTh2QHSQvueSSzacHJA8d82GBjUO7w7mHJngOsh7K8ORDDorLgVQ+jWnjgauHPw8NxvEx5yFVjjw0FUe8zSv8GYNPF5Y2UcPDz+G3MfrhiRfPxrTbT9r7uYHBRi7w7QULXzBmTHTCYgMre/1E20OKvNL3YCH3rY95XBRxiMdDReNqcXd94WIMH3pz3fNpDh+leQ9WrhViTCxq3ObDRti4WHdr4EHIeL7Lmz6ZdTnGVyF82TdqsfQSwrVBnxSn3BjjF197zd6TO7btT7YzLzDEo9DluxzAUsyx8/DkZXtriH8FjjY+cSs+c1PkX15bNy+FPOwZVzwsesDVhsc/0a6UL7UxvsSIO9z9+fZhPugRdmIWOx25UbTjr60k9fGCY33KEx1990o8tLNNNztcug/El715dhV9XMRJT5ncxK2v2CP0+NLnmz1+8LTNE3P0yl+65rJtzlgYxTP5mU/YkjDU8U4HbjzghGmen9YpTura7ou+0e7l+JVXXnmObfjHqeP5ve99b3fdddftbr311o2z/chXa+La6l4s13Jo3bqP4m//2LfmepHV9QTHnoJjrrjVrlXXuPuX/sSGKxfmXS/8waKntm/xbM/u7zdYCp0p+sUOX1/hjxQ3/tp04ZD4yYOSbfM4xYe9/VWu6Jvnp+sDtmLfurd0bytu91KfjbDgip09v7DKKTtj8sQGPj3jfkGpEHxg01PXp1sMYlZaD3awCa7aYsJJ0WdvDqfyYj3sY7x9VpD+xBzfBA4u7Xd98eoTeGKADQ9fe6g/1UGHf1zLNzwv/frsMOfzSq7ss2KRI+Nyw4f48RJLkq6+cdzYuB74S/ggavHiaE21YbQ3zftc6jOSjZjb/zjKlXhbg+Lj20tIOTCmZouzfuvBNp04zV8mlG/xKvz5TBMXfvwWG1w6MyfwzfPtcwoef629OTgKO3Pa+MMTY3vEvLZ8WgM68gMTD77M4whXrOGIjQ6/8PkxNwV348SaOJPwxaa8yz1cevzRM0/kxT3Kvc28fcmnPWN925u4ic08fdj5xQFuPNtH5vHOlh47+1Ib3n7e6cOq0FPiLrdiFBMu9PBlB6/clbdq83Ju3j54/vOfv+XdZwFRWxd5sJdxFr9fDtrjeJvnFxe+4Fi3OMdTHoyXOxyJeesgftcHocuXPJjDl0/PIPwbh08Hjv0oBm3rMO8jYZnji2286RqHM/Vg82kuP+LFXV+cirbCn+ch3OTCXL7M8ceHX5Svb7RvS7x+rAysDKwMrAysDKwMHJUBB5D5ot3BIqlNR7tDR/PqDiiNdaDpAOhQQucw3fDyQyd79SwdetN1WHRwS8d4B8Qw+NUm5h2SFGPstR3WzGXjoSDO8Mznm46+A9eM20FMMS9uGA572mHjwJadOeNhwKerwNCHl07csjNvzPxhEh9z+WPLxiHTIdd/5iNOB3sPJgRuxWHZQ6GDL95y3UMQfDlQ0zcvn43BEovDOHzzcXIAx6NDeuNh5R8GPRyLmw5cOvjoi0/dITgdduW0HMx1LXfp0cEJ3x6u6fDjwA3XnAc082GFgyuMyduDSvheLMgHffzp4qe2D/mQQ/NhiRsndTbmyhFO+goxDgtnbaIvN+mwsR7tUfzM4aJuLenx3Xy8NtCDH3jTD7e+Gl+Ch5hgwZE/D8nyQie/2vjo42rveTD0ooUdgYFDD0ls8mmcNCcGcRe7Pl0P3daP//zNGOQALpzGWyN9ohYTjuF7wPWf+8m5uR5qxYK/cRxnDvGZ2MVAV5nz9LKvLh/00mUnLvxJmNr0k8aNyU3XDvvGxGYuO3GX1/ZXtvDiQS8M8zBJHKvpsaMrPn2ldY0rfRKmml6in8Djc3LRpk8v3vSM0TWmryTZ16erGE9XnR5sJYzyomZnXB7yZ/95wf7BD35w99znPvesXf6OW8Mmt9122/b3Yr/97W9v+bOe7QP7T07V8hzX1sV+xct8LxZcp/riI/jrux+4fu0vff59Jijw2s/0vfiA3XWopsOOPX7aBD8FbzrsYWvjplbap+ZgKMbTdU3Wx6V9xYe46SlEbLWnHh76OLDJv751kwPjYpMvccEx7v7CXp8dHbnRNi53PgMIHbbm5Vs+SDljQ+i7Zyk40He/8dksH3DEwl7R5ktN3/7Gt3jUsN1b2baOxkl5YwNfgSs+Igf4smVjXh74gSv/XWd0cGGLD13zXmL52/DFzFdxmMfNuaP1xMlaw8EXJj0v4+GWPxhJ8cLGS19hBw+GmtSHla/Wij8Y7Wc+8LJOxmEWd1gw6LGFWXzlypwSH5y0828ubDXp3EE3/+VTbqyLUizia+1hzBeR8PjAu7jyj4M2gSUGRVvMbBqjp89Xa2BP25/2RPE3r8bZPG75hK2QuT707QWY5l1fin2gz7c5mNrw2HhR3d7CC4ZzJ2y5EOPcT+wUYh43/OESmJ1l4TbPN/3WCwdzcYFpXk2n3OZLPQud1pLf7LSJvjWgJ7e4tBbG5NU8rpdddtk2735B5MC5xIt2vHGh5+wPR27ErOZHbV7srZVYxJZ/c3D0pxjDyxqZyw6mMdeWe4C1Kcbi8AUL+7tY2RAc2RJ4xnGxRuLBkS/5s0dg67PBh6hxDqs42eZfmy07udJnp89f+fSLcn+j/WUve9mGDesksv50zEmytXRXBlYGVgZWBlYGTmkGHEZ60e7Q7cDgIKPMwwM9Bw71+SQ9B5MOOeym7cQwzo+SrboxvmpXG4uj+iiZfqattoOaQ5NDHQx94w5qCu7GKtnrd9gsPnOTx4y3uWnnUIdb9uZIOcoGpjbdDq5xLTY2cIgxfcKOOFg6OHaYdnj20tc3MsRpXO2Q7cDaobWH+R5Q+KcndnzxkL/aDvhs9XGIL05s6MeZjkJH7TBrPok7fUV85hU24YvNHHzrqGgbw1WhT2rDnvjGO3iXy/LJn2vCQ7+2B4S+icMmfvCLrTa/Hnxx1GbXywo6fCjs5A53vuQjDHM9QMsR3sbwLB/G9AkdGK0DnfTV5YIeMVbRL357RHzs8SetF50w86ufDt/p4DbXHlYPWdrlRh744oO+GOwtPGHLjz4d6yWP6ulfbHgbh+PBsv0AU8FHPl0PfMcT92Ji7yGQ4MUXXPh0jHm4w0nNl5o//NT+Zuh8EVZcahwILEVfYSteNV7G+FLoZWNdcJ+2zdPBs9jCNg5XIa2JPh3XvvwSY3gqCXxFnHTFDqO48hM+O2PiUZfn4tHPt/nEWPunvZqNmuQrm+r44JlNeYGrFFexNdbeSJ99nMOv5j87Y/Tot3bG8ldsaj7p2Nv209VXX7378Ic/vNXpsT2JxNc32V/zmtfsvvGNb5y957jOuv/g057tHoOzvW5czmHhIR77x7x+eW3Ourh+2BL2pHtbtr1sMw+zwn5eg2zbs3RbG/7LMw44up5dX7B66Ya3QqeXSOwax1t/8ufPWrAp3j4D2OEhT/Y5PnTYeCklr3Twc834bIizWEi+2WlP+9aEvW+Qfv/739/yDZ8urPKBk7zy60WrOMToZZRf7OHZ/co3nt235J8dn+KTs67DWfNNhz6/xS9POMBW2NBTzNWXh/rGyrH4jZcDcYpBDZeetcOXDt2KPs7uMfZP93zjcuK66V8N4CYH6cAXg3jo8qWEx68YzBUbrvr4KWwr3fOLxznInoBRHOa08eNfHPwZ07c28PkOZ+rTSdimx0d4cstmvmjHX34UbX5ck8UgD0q5YU8XF7r4GuOPX31t3MtNPPltrY1lVzzsCb7lxrVKTy7N42LN6eA0r1M2xYsfHXauE2vgX4rZD3gbU9OHm+/a4jBfrvCSk74w0jqp5TU7XHEmOPDvulGI68p+7aW0PJmzH+RL7mDUFi8JP794t570zbOd83Rw6IwSRjUf9OOpVtjFRw7lQU2X8Cv36fBrXmGr4K3PF335l4vian+0vvTYhaPGW678Io2te6i9V77xyVe88dO2Vu6nOLYfyw8stvpyp67wGy4c+7X7dD5wpaevZisevMQXJ1zg23OuebEWFxvrzs4vyq+99trdK1/5SiZbzrbGMX+sF+3HTNRSWxlYGVgZWBlYGTjNGXBA6UW7g4XDhEOJw4ZCOkx1SGFD5zCh06Goww97wqYDjzlCN59TL1v6HYo6YLFz2DHuEEToh7kN7I3RJZO3Q5YDFTsHQgc8bZiHcWHPr1Iu6CmH+Q4j/h02jWfPDqcZ28Rim75ckWJwQNTu4cMc/bl2/DjA0iEeQi666KLdpZdeuh2kYePVgyRM9g6YDub1cYLFXzmQM2LMAZS+ueI2DkutwBCDMXrFjrN5MmPfBu4cCwM2DA8BDvU4wfICBh965sXrwSHO7RO601cPp83zHwe8xOWlBPGg5yHCPy1lh8vcK5vSwQ/2xnHABQ9/F599+Gxr23cePsWAmzlFnth40CuPfGjv54yd2OTAepqHYZwfeZg+zRN1D2DsPRD3d3hhsWVXnPpEDTseOHU9NUaPzuRQTmBqK9r2WXsND2Kc6MNWy7u1l1McKuUZT3rlU5t/9j000aU3+eNM17gckNp+MWUN5DA7umHDET/xrbEzZ85sD/d8kvlwS1dc5bF1LQ74Cmls69zZxx0Pc/u2YoAtN3KkH684lge5xp+o04sbfbpqvtTyJxb7ovjhlDvjCRs823fsxQU/7OnfGBz4RAwEDjv91s2YQtjNmj9jSnnkB3c1H+bEK75i3EDuxION51ESfvP0Ye/n0Dx/BJ62zxt7+Kqrrtp96EMf2mp4FyLlwDfa3/zmN++++c1vbvfE7o2urXJOl/+uMX05dc+R87DwnOumb06e6PmcEKdxRdz4syHp81U++BFza0oHN2NsjSutEX/WWhx0xIC3eUUfvsIv/UprzEd6bO1N+kQs1sE4e58j3Yfc770YEmt7Iz5e3nQP99KN9EtYvLKBSa8/QSA2WHTcaztz6ONFH1eCE+HTmDzIATyxseUHjvzC7jOpF+1s5BW+9YUpdjZqc/h4GebFNT9wzOFToS8XfLbOfMstO3VctenwpS7/avzVrQF+Cv501Qr/ijZ+6vDFL872gxj4EiNdArM8hmtODuCajwc7GNbeurrny4F5pTXRpgcDf+sCq7XLN7+KeTZ8haudHX0FBjEOX6ytEx540eGTvm9p41RuXYf2XpzM8aOwd+0oOMG2luaM8Vl+cAjX3vevBKw3TgQPOcfFGoQJQyGw2eLCH/9En50xvklrW4751lbgqekb1/dLJfiuT2coXMpVuPEvN70Q54+dF+3OcGKKP0z8YPFjDg58e8G+l2N84LUeMPmxVtalPInTOCw+2ME2hqeSHzb0u1aMw+efxMm4InfNZde+b55OPuiYV2Dx19rRj2vXj3n24pYTsdOx51zn/eJCvM5VzjjuA2JjB1vB0Rq5TrXlwH767ne/e/YFtTEccKWj3Zjaepnjv/F06NtbajphiJOIw/+VYy9qZ5eu2hhssZcbNVy+E/bN12bTHvf5/a53vWv7BXe+sz1OvV60HydLS2dlYGVgZWBlYGXglGfAwcOLgAXzmQAAQABJREFU9k996lPbAarDhbq2A48DleKQc5Q4kDiwKB1yqs054BDzxBg8tdIhSLvDET0HOoep7M3rd9DDbx7K4JBqbTbsK2Ix5uCEg4OjA7nDJJl4uNAnfMqLvnEy2/r8KjAIn+yyNc6meTowzZNpWx9HB0E2eBOc2Xk4aF3w7xDJLz+tCR1/H9GLdsUDAR0PHR7aHFB7eDAOW12JC558KLjiw9YDWvljU7wb2YMfdHFpTp8Uz9a5ix90xetg7+EEHj9yYU/IjzG5muvCTjzFxw3/9OiXP3pKccH1sKcvXz189MDGbj+O9ou51tpLDQ8y+gqb7DzEe6jzgGMsO3Gx6UU7znInBjWBhW85NcfOGB5ihilnxohxbcU8v/a+a8HLIf/awcvl9hEf8yFkAzn4wVbhW03fPlAbKz71jJt9nPAyxzc7nMzJQdeXMXgKfcXa0gs7fX1cPBCKSy6I2v4k2dAzrla6x9hbhH8vS/wzbNcNHwr7OGnXZyOPHixdTzDNeTAVH/4Erpj1249w7Sl70dy+HJYX3GFMDmzlxrVh3Hw50Majlwx8E3oJbsXYPdacWNjKoXViq9DBTds+1iZ4yGP3LL6N8VWu419Nx/4hrS88dnJj3eMWFpuw4w7fWHnGLd7GSfGIBSd4hK5+ZRu8ix84woWpjSM8bWPxgin3YvGg/oEPfOAe+dMxZw5+sePbdf50jHWXJ3kvfrm0r9Q4KQQfe9N1El81/myzY2ud7WnfMLVG4qWnnpilKt90cGkv0Jdz4+5t+vAV+6v8s/GCy71PvuhNX+7LCjuc+YNH6ImND9xwp2ufWQ/7VDEeDz6IGOXEOsFJ6JVb2F4o8U2XwNeGibuXTU95ylO2+6m+eS+dfAubD7zk11y5ims84bYOdHE3pxD6eLln8yd+fQV3+bS28s3WNcBWvnD35w/8UlUfftcwPfGrcfbZBIuetRe/f6GFW/zU/IhTTRcPtf1I2OLMHh+5Kla+jU2hR9Q+d+VcGwZcMbDnzxgOYcNSzPksKFd0xMK3Mfd32Gp40yfdcikXbIzB1YeLd/uNvfVUy6c18ZLS3oKDq/zAKV4cFHPlA4Z9T+Kqn2/YPmesjfn2aTk3b6/2r+hg84eXtaBnTBzlhW/7t2+Qb84PfvCpyIt4eoktHuPs7Q9c7DX4cskHvHJDLzHXPQonfSXRxg0n16kY6dmrcmNNjeEQjniMqeWKPp/m5aoX7fLCzvpZC370FTbWSpzWlp24xSxW8dGvwDfOVptv+u51xujhJJ5yaF5fXsTXtdK1G4459nThWVNt9njj0mclX/ICQwzsrIl5607E1L8G0TfuGqdDvz1XrrLpSzlyysY6Ow+39/lz/cgRHvS18cPXf4r61a9+ddsL7I0pdNWkfSR2e9b+0RazOaKPo1xYI+0KLu3nr33ta9u/EhIbKd9w4OnjIb9TzNkr/IipfYWjNZJza8nOnH+R9t73vnf3+te/foNhdxJZL9pPkq2luzKwMrAysDKwMnBKM+Dg0TfaHWodWBQHBwewDvEORvPgI1y2+9IhKt2po908XH5IOvlNR42Hg5HDDsHDmEOPMbbGOsiyUYzz0QHIvHhg8ePATccBysHKwcyDAVw2E4etQmAobBrjvxjoGGdPyiFMfnEyl41xtvRIOJN34zizzQZndg6cceFDjOHhyZf10Hbg9h+aeQmgD0seHVblgj1hX97jkl9zbBRjYtJuTfQVevHYQA9+4MHG+GzTP46wddB14J4PNB2EYYjLYRx+66DmA0cCh9CDx4bEmb4C18sReeHPC9e+4SPnckuKmQ2/MM0XlxfX1o9YL3qJhx0PJq4/4+0fth5a+HPA18dPrrXtlXAab+3zyweO4sw+v+yN5Z8tXx5oPfDANiZX8tPeZJ9tfujgKA788KGj8C+msOAq5Z3Ovk22fMk9PBhyq8AMR13OGsPDnmYXhusFz7DNKeUFB9I6wfTweskll2zXTf7psIHFn1psxvj05yC8TNNno92DHd9xNN+6yq8HTLHBO0zYFncc8I+HufD5tc+IlwrG4ylOfMur8Qr9/MCmky6urp/6akU8MMUejrEeiHERK1wCNwz6fJhXcCXFYh6WNZGbMGqb55sPNvpTjMG19oo2wYGdAr+8868Pj+Rv69zFD9hiyRYXYziEL39i8aL9/e9//+45z3nO/8P5LtycnY7bmYMX7ddcc83ulltuOedlKx50+Fb08VHH0WdeL0XMlQs13valIk9e3rgXikFssOkR/caMw6pvH7YXjFl72K4t64CLvv0lf4RP91s6834Jl721xMkcfzDkFX77yRh+rbU59u6zvcDjiw/8zHcfhk+METjuV11TPgdwlBP+7Ru5xI2e+6gXW67pYqPrRRYfeLCnix8/Cu5KfsVg7fg1RpcPsWub85nuZZf4yyVdeu7t6YqJDb6KX6h6MUYXR3593omlaz2+sPgyz1Zs5beaTbYw4yJGYi4xbx/JAzwcWzc65ok5uZdHv1CQM2MkzrjBoaewNQZPba3V+ODCF65srL2XiHIHL3t1ccGDwcY6yKFciocPfSI/s9gDPr/t4/y29mziWDzx4nuebYzHb3N08MO6+FyBUa7MlXM826P5krv2L5tpZy3sTy+k2/vwikduuk6MwcKTf3a4yAd8+aTv8yCRa8KneOnBoKevLt9quHIOU5uuvUoPV2P04MgtfHlS5BxHws51KV/4us7VrgvYclPO1LDkzTqxwU3c5ux9/Plip208XzgZs3b80mOjhkOXb216uNo/k5dxxV7jozlxZ2t98IdNzMlD91hjXojT41txvbpP4KrPLx9w+BO3vFnLvlii7wsinhXkgI2cyGdxwXNtihk/51x9uHJgX/gFMJtiFX+x4FrM2q4ZcZBi3joHP+CZU7RxFnd7RD6/853vbH+6Dz8+ph9crYH42eATF1gwcQmbvr51tecq5nvR/rrXvW6jR+8ksl60nyRbS3dlYGVgZWBlYGXglGbAQcOL9s985jNnH0gcwBwuHEQ6QDiwOKQoHU4chPalgx2d9NUOjQ5CDivqfNBPtMPugMQ/W4UYJ/mpT48tUStxb0yfnbo48gm/mI1NCW+OZR92vqeONl/xqM6meTXZ95O+GDtMO9A69DrMkvKydQ5+sLFuxrVhlkuce1HssKiYE6/Ys9GHUT7SsXakXKnNKdrWVWGvGFNPic/MX3EeZTPt6cqB+B2O4RjjS4EvVw7JeOmbdziH7+CfH/q9pIAlZvuyGPil2xhMDx/yX+7474GAnwpbODDx8CLEQ4FiDfBqvgM8Pj0MsIFL10OSOevhAcFDINz4qvEk5YA9LjBwNF7O+VbKT1jlSU488OBaPOnykS28xmGIxwOOhyxt8z0U4Ye3XOKSwC827Wyyo9c+zK8xeIoxMbYG5gg+cOWTTrnz8KmdPZ348G9d7a3yh08vOYzZJ/DKGZxiNw9bnB5WxUpXPxx8eqijXz7MGzdvPGE/Zb9vjr74zSniwMm42KxJMZrnQ+GTroJ3D89iwqscmadrTe0/OQyPDszWvtzixYaEg48Sx3yriXE29OHrwxOLNilWuWrN06erwCh2duzF5jqjm2jnm762sXzRsx/gNWeMrrGphy8/4ZVjePQVIq/2tr/x+p73vGers9kUTvAj/2cOXrT7j9m+9a1vbdcsHvgUH9/4dP+Jj/uol1muV1jW1lwvqrqu1DC7T+Evfnb8yLn1z58xfbXY8sdHnONkvpK+FNDDOQ7ZsqOn8Edn6htrjg2erZW+ebFYB7xJ/LSz1U6Kqz4cOSgv+l0b7I3bnwrfBIbrhu/4eInl5aE84gPDy0l5hkMPN/hKYs5+xl/87ld05ZGfcmvv4mIMtkIHBz77bIE78fXZ8MOGvj4se0MRv/1kzh4i4utlLX7m2KRbLujGozY+fPFTLOJgr+8luxd+Sfbibw/QY28f+5yXR3rdy8zb8wQ3pb0sl+mxgZOO3BgjOOGphsU3Wz7VkzNsvL18FId80imnMOPPDl+fFb3U51eOff6oi09u+cMX5uQGRyH8mNcvR3SVvvUdFj34JB3+7a1yhh9MYk6O9K17XOy5fsFknF/Y1pd+fI2Lqfsr3+UCvn3kl3rm8Ze/pz71qZtfnPkrrnJbXsUGq7zg0V6AZ1yeccKHLgx4eLhu55rDZc9nuaFrXVob4zBgZZudNS9udgp9mF0jOLMj8oQfe7rGK8WKi2K83GmHLWbt4vWvQZxBYdo7an5wY++avvzyy7fr5vbbb9/G6OHd+QdnNs6//RLJ2OTW2uBJrDF9el1PfLZn4Cns/JKHDglTTejILbz2jb3p+uq8hq9fMPgWveufT7HJA/vWWEz8q411f4qzOflha4ytvoKfnD7vec/bflH+hje8YePH10lkvWg/SbaW7srAysDKwMrAysApzYCDzJe//OXdJz7xie1w5xDkANchsIOUQ0cHj9odYNLpkOdgougTBxSHlw5XsDt8mmffQaUDlvFkzhubOtr78+lkP2v6hM3EMRYW7gk9fXUirn1bcxM7To2ZD6OxdNThNRdecw588u5Q6ODq4Udb2X8wKP/FEX/2bB1UHTLF0VrCb706EGePizHrR4etPcKWHc50jav18bbG1r6x9PILd4r5bMuNftKYhxJx8J9N3OmGny09Dwv4Ocyrw3JQ7yU4rj1QTZ1iESscOS9uh3+FD3pirXQN4VN+2XphQF8O5bUcGbOuYTnQz5chHsC9iFHzxXY+cJe7/OmXF/HArdgDeJtX0tXGQX75p0/Y46umYy4MXIy33l3f7MTLDx0PUx5u7SM5op+NPoHdnma3L/nChS1hk5jXF4+Cv5rgKF+tC5/GFEJXTB7cygcO0xdu8Iu3awWX/BrzDS7raoy9fMkpvPLGBztY9OwRemoilvKiT79Y6qv3pRzBrA2HrRhxaD/mQ07sK3r4WyOST3bisIY9gGerFqu1FQ+M/NVW41MJm+0s4qcLj/CJC1x67Om0R8RRTsznRzsb8bQnjZPq2mFYi9pqueKTwCb68pEY56N52DhaZ204FZzcQ/zZjhtuuGH37Gc/+xwuYR6njqe/0f6mN71p9/Wvf337LOCbX7EouKnjxU4McigvcmyMjnjntT95WxM67OTdXoCtlGs5oKNo80nUSr75D5tu9ueLe+Y9PGMJPD7zq99+FxeJT7wbaxze9GM+vHTVsGdNRxxwwlDHUy1GY/aF2gtJ/7rMGiSuLaX9XwztN35wt2ba5mHBNmYuH9bRvVwfnjk81D5H8LCWMGDRkye+FGvsbNE1Rs8LNvsXHh21fVB82j5j4eMD037EIy7s+DGuzRYODvGTAzEVP1uf03Ghp+Cn8EPguA95USmvMI2Jma9ewsItV2r+6MMMC3+2dLtnm4cJK/7s3aNaEzpszPss8YvrhB0scfBTYcNXn/HyaE6uraN5wjeurbU9R8qnOv7iaR5H+dQ3jxddOsWtj1c1X/oK//SM5QMWzuHiITZnKuuFI106XnzSZ59eOcWnfBqj45vTd9xxx1lfdKw/Hn0eZKdmo8i7fIUjj/yXB+P0xVIO8THfmtkjRM7wsiZ9thmnZ1wOxWmd2cMtX2yLF2c54pPQg0GH4MRncbDr+smXmvBrHp4Cm51xuQ6XL/3yAN9eYtM+NY+7Whx+6cfO2QUmDuLOB7+K/NrTXs7ryzsdvr3o9kuSeNDxiyY8jNG3HtaQL7bGtPlz3eJHl4SLo9yKk6hd9+JSzLGDyz8sAgeGIlZ6fIpL/t3/nLG7Hujbd+5hfCp8TZ7G/Iu0G2+8cf3pmC3L68fKwMrAysDKwMrAysChGXCw+OIXv7j7yEc+cvZbFA4sSgdBhy6Hiw4qHXgcXhyaHELgdDCh7/Bk3kOBQ7ODj0MevQpCdDsIGdcmjWlPfeP6+zJ19uf0p80+xrTNfxj64isXjeMd5rQ3v4+RDZx8Z6t/mP7EZz/19dk4HDokelh3kHUgDGvWuOtbnw7GMKwHPw6bra3xqQOTvXVW01M70PaQ3lrjaG/ww5/DcwdafmD1cMDPvojB4Zk9H/J1mIjbQ8P0O2PHQ1/NL84KPHzUxvkJi74YlTjioF0fBr94sldm3uHm0xy7YtDGF4b1UsuRedeatth7mcA3LC82FOIhpgfW4sNXnqevOFgLOK29caW4rV/XMr7miIcuc9mZw7FvCbLxsNVa0VPEp7QWfBN9NvDlv29r4VzO2SfxrM+PPBuXLzY9bPNnDFb+8tV4ceC8n6/s8yU34id8elDEmT+CS/Fly0++6fAnXwQemTmQT8K+9TFG177An5ibuOKHQ1cp5+XQvDE1rPBwLidw5apCXxtfMYqlvLGJqzHzvbjInp047EHrGidj+cTnMKGb/xkrW4X4/FD4o1ue2qPyBV/f+ooZ13ICA1Z5jIs+PLra5ZwvPuSZpL91DvkRV1iJduttTLtCH1d/tsM32u+JF+3+TwB/K9bfp7Vf/SKv60Vs1szLB0VfTEo5iLv7TNc9vnTkR7HOcmOd9Um5UbdPtomDH/qNma+YL79q43JivfCBXf7U+adXDmE0F/fG9BtjY12V/XjyFwe6SfZhmaMXlnG8Jt901LXZJPTtYXXj+bGH7V2fRdYNt3LNpzWxZ+hbB2tgn8ORu+5PXSP8w8lO7PRabxz4gEeXmNOGW+2zzktT9w++ihu3PguMwSfl2Lw9hycsBRcvxOjAtU/7BbcxOVBwc1b88Y9/vJ0bxcs3vvDY4EhgarOnIwb6dPkUc/s2HPbs2BC65ugWCx5iDg82G+N01GzkQG2MDu76+aeHB950tOH602xeVLKRKzbtDbYKLGtvHdXySQcGcS9mi2P8Osvwy6b7If/+k0h+6MpZfOjRFz9MumK1Rnh46Wp/8Wtc/nDHi+DEhi6hw6/84leM/oUXH/kvn/wT43jAxc1niZedMNgROVHMK2xae/yKBXf4dJ2Z5E6bruvIfH7ljw8v04l9+fSnP327V+JsveRNbsTKJ19qXFsfc3DwkiNCT67pmJdH/gj/ijl88KIv1nTVxsy358WBj5ybp88nrK4NXK2bcXZ8Fn97Q22d3PO1zdPnS9FWjLOHzydcaxM3OsVCzz4QZ+fU1lUe+dEnE58PPOXAtc9PQs+6WRd+xGueTdyMaZNw1cWOl77rAw+64hCDe9Kll166PUeJG7+bb755+/N/+nziDYud2PjzL9Kuv/763Wtf+9qzfrfGMX+sb7QfM1FLbWVgZWBlYGVgZeA0Z8BBzov2j370o2dfgDnIKA4opMOSw4aDh34HXAcrh5g5zsZhxEHZw/08EPKnJLVhJNqzb3zfLl3j6R6lM3X322zPZ+dwpYhn8hI/O3I++/yxhTO5mqufXrUcH4Y79XGwJh4qfBvFQ7E+HSXeYRZLGPrE2s2DsFgVwod9UPxs6rPDEd7cE9r07KEeEGGlS7+28cSBFg8PH+ZhxCPOfHpAoGeMjhIHvmfu4IhBjoiDMn06ctXDKR17GWd1uPy3x/HrQaT9Difhq37c1IprQN5g9IuR5jw48SNuDz49DODgAcMYbP+U2jUVfzVu7LWn0FeMq/lVE9zF7cFGDsSu4K7IFS75Cce1bD3xxos9LH0iPnzow1MbM68vLvYecnCmq8gNKR9ygQcbY/go8FoPD5Ns9RvjK8540WcPv7XmV+mexJZOXPnsG1Jyxi/ObIgYipkdgWE+nHziAk9hgwM/8cI3/3TCNk+aNwdTCW/q8C0X5vhUcJdDdQ+M0y9sJa4w5DR7czgrBE8vEspF9uzk0lwP4PTjwufE4Y8Pol3ujOELt7Wh07cJ6cJSYLd/u1asmT3JFlZ+4BcTvMS4UhxwiT7B5a4k/tmEYbz9W9268em6uSe/0T5ftHvZ4kWevODDn3Xpb+viagzHijjx80tbe6W9bFzuOg+0Luym8LOfL2tufL+wKydzb7WPcGPT/uG/MfrGzbeman2iPWPKT/e4aed6kQtjlQ3kzh9w4BHzsODgYA6nytRJl364ceJz8jVOisu16rNNHzfXFJ/2i3Wh7xq1Hu7PcoGDl1N0rQ8dvrvuw6NnPl7yrfDDBi9zcPlnz6+Xqu6B5ujBcU36LIJHzJHWBkefs3gSecAfFoFrr9mr/LDjV+HDXvXnH3zWwTDWHoTBJszyABef9pE+O2OdQdn1sk2MMMIVF33jMMUsN+zZ4W8t9PFl14t2voyZM66Go8irtUlg+yWb+OVNLtnwRRf/PtfM881GPungTOTYvTg++LoHFh+urT18/2+Imj1cNc70+OC7dWvPyYcX1b2Ebg39SwxrCAdX8cGG4b6DB0yc1Xh60Y8/G/iwcNYm+GiLlV8+vehma22IWPkwT2BVsucfN375my/r6ciPYp4tTD7sEfP21zOe8YxtbXHGCU77iu+Zt30cvOQHT/i4EPbyG3++4MgDPnJmzDx/rmk2MOjwQ+Q7LunSx8v11L7t+uQDBl0CR0zyxC+uxswr+No32uzgyhFu1liefJ5omysfk7t1dw3jSlwHeFlbfAg766rwg4844bdPN8WDH/j+H/bu9VW3qvz/+P1fBGaxO2jREaKiCEqtJ0ZgGFZG9SA1LCQry8ie+KAI8tDpHwkiKMvUDkQQFh5SLMsTHf6L33oN13t3fWdr217lk/1jXjDWGOM6fK7DGHPeY8619r19trMVS3UUo9zpt0fEgeAXvzFdefFh7tqFpe7+s3tf46Ue7B977LHD008/vWohdvXR+Gg/etF+4403Hq6++uqz/tbgPH/sL9rPs1C72l6BvQJ7BfYK7BW4kCvgYPHrX//6cNttt63DncOEg4gDTGM6DjkOHXpzhxiNXnI9csBy2HJocgjHr5GzOxfxrZ1EEyM5XvonydOrp4Pq2TauT1dfPA5qjbNJv/m0M04eP4wp29o2Z1vLftvT1dTTy1jfw+hBwcEU8YesWWtljDqYrsnRDzbWl164ZGJoL9QXoz5i1/4w5ttBdj4UwNr6zV4vtg61xvDTn/gO5Q7tiJ+ZZ7myLV48+jDwyIzl7OANj4547V19e1/Phg+x0YclV/mwa51gGqPiNuYPJhw+/UKk+ItTD7+HwHA8CHjIMPfQ6CU14pcPDx1qnD841UM8iC1sxL+HKX7EUPzFrqcrP0QOkx8Pf65rZK/BoDd9y5E/OJp6socDF46HFfXwgGSuj8ROBgM2WzG3fuQw2fDFN56+MSy+ERk9WPKGrV54sLX02LOTF5/i1bcn6MGhk5048zFxwq8W7Ko1XsQWwZz7io5YxcSu3MIrP3HwpYVPJm5Ef64zfVj09eZzLZLLOXu9OOnhZ8u+69ua2ptkfBY/PPGILWx25CgMMjrsy5vd3B/h4rtmPby3r10nGnuUr2I1R/ltzfiik3wpHf/I3+yJ6J6rZc9GnHp5aeb82YdetN98880vyne096L9kUceWS8TfAbYb8XaNWeNtvUQV3vTfca+sabqY23od73gaZPUoVwnv9zxtvUjq5HxU2sdxFUM+ayGMPFaA3OU7fOz539mUzzZyEs7Kfaw+Cj26gQHRrWZOuWUf7ZRNuUSf/o3dq1q9jWf+dXDsH+sRwSvl+xiooOsKRzXibjI2Bq33l1bbPjGt/7psO1lLR0NDjsv2/jOn569pq503CvCdK3CQuKan3N8yxcfwe4rKNznYefLtaMW2TSmk54YNTb6YoXfHmevqQkdZC5esejJNDXR+IJJT379wpjtrDGd8sGHgWfs/OC7xvtM95kKqzisrSYm+mLmu2uX7zC7F5vz1/2weNVKHvD84kIM5jA0ep1/zK0bTHnyi9e/RpUjHzCtnb0BT+z2Hzv1TweGmMUmF2NyczFodJJXH/b0YPayufWhMwlGubLREAy49J1Xio1MvurEN4Kt9mqEZ4/2dU72jRqQ0YEPk576qAH/+SpO+PTo0zWuTuWNz449Hip+vfytRzr08YtDXOyyoSd2ceGJXdzGbBGdGlu67ZHkxQdf3bR86sVVbGzowdQXH7n1Vo/k5Ul3kjmf1sW+ck2xD3PK2bVHw+VTjPmqZjDpkLV+8m1vWA8kf/8CjP8w/VLKLyro51/8fLkf0fOfmPuL9g996EMLh+w0tL9oP021dt29AnsF9grsFdgrcIFWwKHhgQceWN8351DtYNFhREoOEA6KqEOHMTvUAcNccxjrLxocfthMSi/7KTOGF2ayqXvS+CRetif19PnQT9ut7lZWbOpRTdgYhxfGxA5nm9fUbTxxJsaUN66np+4Oqh4S+iek+A6cHZ5hewjAd9C0NsYdUo1no0+mh++QKdf2gUMtmcaOH3unQyld9myrV2P6EXsEN2wPB3SSOfRqKB/GyenX2PHrwC7m8i8+crrNxcsvLDmx1cSslSc9B3J2CI5Y8htPX1yN5Q2TH+sEi32EjydH+GR6Lw/po150pys211oPPjN+43CKE0/8XpLPByz8Gl34mrzk52HFvcEvznp49i8o2mdyQ2xnw2OLB4sPtayesDwQ6iM5waMrBpR9GOQ9XNFDeraRsXrTM1YLe59v9nq4+Wi9+bAG1kLu7GCf1PgqXzh0YPeAWyxTL5/0YevD4LuGV63Yi0/jIzy2GsI3FnPxy1sLX4/gli95MbsnwCGzp3pAZZOv/NGBQ0dvDfvn4vTJ4Wp8oPIhk6d4yFqj4mNDp9pnv0COftATBww6mmtEww+32GBp2dEpb77EJe/889Ocbj6M8dnCQ2Ga45tnO+XFJVfXoK+M+cIXvrAe2On/N1S8vWj/4x//uNYfXg2ucTHL1RixF4vrAtnzqPXQt5eLsRyX4tEPfDjFkh55vMbN1eIkqkbpw2rt0oeBn5/6KU9n8sKMJ49s6Rcbefh6fHHZA8WN3x4Nj6xGXo2N0cRPtrU1p8+Xl2Z+IWuPWzP+khu73vDR3IvTt3jYIz7b5+4P7t29/GNj7fkVpznb9j27bFsPOkifzL3HXuKz+ngZaY/p4dGvFnTaa2zFQGbP+Ytmn23GeOQw8osnxhkbe77p5N8Yhrjl7S946ZgXy8xVjGGwg0Nejck0tfN5SCcc9RCXJhZ5a8bihO0ehScfa+Iz3b1WHeg4r8Ak40fM7NSCHLa5mIzbS+aoOR1roZeDX9Ib880OwfbC31lAPDDKLzx+NbhqwJaOXpw+v/vcyF6+atIebb9lS09MrZHc2wfZkqkFHA3ld02OftgPYteLTR35rAbsWjc++YcPBz+ZuuDXh0kPtQ+LDV9tW1vY2fLROdl6iala2NNsNDVhJ4Y+O8XNHtUb41cHY7b8t77iMsYXB2KvptYIlTd7jV+YxkhO7LNhL17ray3oVc9sy5tPY/K5f2Hg68lQPX7XNHvXhV8QO2eqd9jiYk+HrZryLx/x6s3DVm88awjD9eXlfXsJHiy+NRh8k9NlYz3gVBv+2ZHxz853tPs/Vq655pqzvtfgPH/sL9rPs1C72l6BvQJ7BfYK7BW4kCvgEHHfffcdbrrppnXI6cDlMGKMHGQcOswdMjp0lbc5HVgOSQ4sHX7S0ZPXJn87dqDS6EZzjDdxkk1eB7rsT+odnLIlP8kmTH1xydeBK33zLU07sumnefbN9Vve1q4Y6KLk+MYOjr46wAta64VnzYzF6VBpba1TtsVvriZz3R288edDQ3XbxgKXf/6QPcAufD28Yl1KRz/MI9gaLH0yB2cPEx10HabJYNITM145ezjoJS6+JjYPZXTyk405glfc8I216ig3NmSaOM2LtzxmT0/ecPiZD1pksIu/eODhWS8vXeTtwceDkzzI5IjnQZccPp4xgtWaVju9X8aoZ3nIWROL+IzZlZeHEC9RPQR5ABFb3zNLh0/6GhKbcXmHq6/x4YGmNco/OTxzscBKZk5uno75lvKhDmpDX5xy39aouLMxp8uvXq35jfidPo3J6Rpb5148VI9s6+nPfcOXhtiQ68WvFZvYNfmkxy45THvLHg8DZvUzRjDhsENitsZya25drDU+XXXQ7P9iY9e+dj/xV6h0I3tVKwf46YtVjPTJxRgV78wh2ezlno77nZeH8WBaB/g1tuQaH+LR6J6L6LZWxmoWnjpo8YzpkFdbuGLEJ+fPPvT1EbfccsuL/qJdrOVdDPwj81lnPPeXXkqQiV09rJtY0w9LX9765MaIPN3FOPox9fHSZdu4GrWe+MWjD3OLP2Vst3L+yj9f+vCKJ1n29Ww16xcOWfuYXS1dcnFpUTrmk2/OLv/myDXsRbvrGZ7rUAyIby+PrM+0M4ZlDavLjLnrzDX8kpe8ZO0T1y1813b3MPaw2rP2Ap+oa2V7/cIQc58r5Q/X55c9Dw8fhtjtU9h4fGv88tXLrvyqAxx2SF7VJQx5dX9iBxfelMtbHHIsz3zLSWMDGwZ/9GE0pk/WGvCD6NVgiNn1pacDW306g8Drl9f5ss58qREsdaPvTE1H3jPe5fjoh3jZ0DFWB7WHwY/Pb/OudTpwvdz0st1YfHTaM3rnC2uBxAVf3dhbP58TelTt9GJhy7ca+MU8gikmny3hlTNMtmrFXkP46lls5HjVt/ORWOTJLhu6/M3YYIpLgyt3dUlH7Xye4MFRezGSV3++Nbqth/iQvNnJj62xGlprtdCsKyw69pGvqWk/igmmuNmKUx7InN/ioyN+Nag+9IxhixueOMVf3mpkTKca0TEXKz9iV9P2VP7haXzLAW6x2gtwm6fLhwZXYyNGcfOrJn4J5hdC7kns1SCf9JEaiZ1MDTU+YMIXO7yef+wH5xL7jR3d/KobP/StmXWAw0e1MUblSc6nv2j3f6z4v1EQ/mlof9F+mmrtunsF9grsFdgrsFfgAq2Ag4cX7X4770Wag0cHEGPksOEg0SGzA9M8RDnEOMw4sDjcRXQQGzgdXJL/t32+2eejfov5QvxzySaGvCN1kIuGmieP1xz+ST7idUBrnv20O0nmcGh9kunFpO8/SHVwRQ6pmtp7eGBnrVoLNjMO+cKypj3cGfdABTMbPaIPt4cOPDYaCt+Y7vQdBhkyr+aNHcTFzs5BWT5w4NIpx/asg7IHhQ7t9vTc1/A1dvpigDfja54PddfMydjyCUeffjL5wEPx2NOPp4eDX27F5kFE3vJxXck//3jysy7qzA+eMV/50MNhqwZeNnhYS45fLflF8rOW5h6+PHB5iBEDHoz+GX5rzI5fdag+xdJcr/EHS/zuGT3Al4OY6PGFV3x8IHK+tGjOjem0z+UqdxSecfEYh1X8euuhR+eyI6PDXv3VC814ph850ReTXptyY8SfHBAeOwS3OV5+ylE/60de/diVRzw1sg7F3b6yPq2LOnjAtPf4tK7k9oQxDA+1MPijQ95+FDc9cfFLXix42dBLxxjRO4lgaPDmy4fyd12QwePbGMHjD79mjuAZN299WqOldPwj/+XRHCbC3zYxuJ4vueSS9cvtF+M/Q33yyScPH/7whw+PPvroWp+tb/ve2rme+a/JUd20yHpZUy88ut9Xj/qZE6xqFcZ/6tUpghVVv/CLs3qmpy+Wejx2vmv3oosuWl+lZh840zzzzDOr77OMH7rFbVxM4W1l1j8i67pgi/TtEfLqMnHSDad+y2cjdmvmhZH1oyNGfq2P+7G64Gv0a/jt9/Iydz2Kyz5wRrDWePzhubbLIVwxsqXL1p6AzxcdtuUoTnsbFp184bl/xIPnPuGeAZe9OIsVr/ryz0/xdY/CC48OW/Wyl6d/Oj5fYOI7R+j5FJ88zFtfOOXFRqx4/LZ/+DN3z4QPiw09OHpN3j4jrWH+2OaPbZ+pfGlw8wkTnhitE30k7mR6DfFBh28+1IM9PLF2jyTnB872vl78MOnxSxfBhiVOvoo3n2wRXDLrS18dnBcicjL1DIMeap/ga2JA4rE/EX8w2m/yMrc31XPWmg4MPCRGWObxyOMbi6G/9KcTZi+Ft/bVCr7Y5IXkJE8YaqiW4tHmHqDjPiUHWEgcjeGQwYFvXTsPt172CLnGTg7sxNKcjprikcEKmz/ybMjsGa17xArsODZ+6euti3z4ptu6lQ89+EgsWvuz6xWGmL3sto706ejh6otXD5OcXXnz51ons+f4sXadL+VWLawvf9mWq3lUzc35lyseu/4z1P2rY6rW3u8V2CuwV2CvwF6BvQL/VgEHj/vvv//sV8c4TDgI4muow4h5h43GATq8+c+LHJIcRial6/DjoeNcNA85dJqz16LG9fjG6TefvfGW2EwM8jmH17x++qBvXjNHzfXZPS/510988klb3eb1dI0dNB0eHd6NHQJR/hw0z5w5s/6Tnw6kHVgdThFbB09EZs1qeB1q6cA17wGCPLIfxBSWOZ9s8NiVJz2H1LDw+dZmjvjZkMGzbzxcIIdrPPHSY8tvOHh8q5GDNr4DPTu+6eOxKX64+PltDxcXPp+ujfynrw+LHR96eshc3elpxV78+QpfT48v14zYqyXdYsazjh5s8mmNmstR3Hz7a19j9feXkrD5Kb5iqYZ8FAc/vWDhB464PPDBNs/eGAYyrpnLiay4xOkh00sjDzrmcDys8YOyN9eqIf4kdjU6yLz68ClnffJiMYdHH+HXq8GsU/716dEtnhknvPLIF92JMeetKx4qH2N11uwpWGGQRfjFKu9i1MMqRr24is91Yg2sBSIztu4a/XzrxYlPx1/pWTdr5hdb3f/F0gP99GvMLxLXnJcXbJj/iaoBPHHZk/Z217kakJVn+ZizRfyXI/8aeTHLFS9ihxdfz3ex6MMPr1qb03cve+UrX3n41Kc+tV645ysf59uXw1NPPXW47rrrDo8//vi/3Z/oqIuXRPa/WKqDGquV+MXs3qBmf//739d31Lp3IrJZk22uW5k8Z07GdKLqYl4OU44XBr6Y8xlGPvVk+XvnO995uOKKK9aLEHn75cMPf/jDw8MPP3z2swB2fosh/HDq8Yt35qF2xRVGeubiKsbk9fQm5eskns+8XvqRWxPX3Nyz1rV1hN0az9q4FrvHWm+4dPNtjG8PwKqm5UCPT/cJ17r7DJ79TJ89W59VZGJgSy4+5N7ARizuHfM+vxSOfpBr8OBorRU8dS8mPZ99DvFjjAcjfS/vxF5O1YoOm+IVMx7Klj+x6MMQv+tET789sgyPf6ila87nbv+ZuZytn5poCCa/rZk5Kodk1YA/OPgRWU2srYm1MGajWfPWXRz2gxwQezlrCI7GLl4xqwV+eupHN4zqIxe26u1aROZit/ZwjOth0KWDp5WXnp8w+DdXp/bf1K0+8oVnvYpZHmyrTfHSw1c38bYG8jD2yyn7Bbb6dS2IE/FhDLda0M0vnepETq8534iuBmfykol1xsieD3z7Qqx4dODAMLcf9eRhiyF/xuT5YScfrXVcwqMfsDXxa2piDWDRFwuCkTz/5d29Rl35lYM9UQ706PBTnOIuFrx88FMe7jHZksc35oOMT/sCPkw++a52bKoZfWN5IPpi8gvyG2644XDVVVctPpvT0P4X7aep1q67V2CvwF6BvQJ7BS7QCjhI+I523xfrryocIhxE8NG5DhDkDh8OIQ46Djj/+Mc/1iGLbNrR8QLkXe961+H973//wnXo+V+Ij/zUw+N3K5ty4xeik+Qn8V4IQwy1bKtHc328sOY8PbI5dqD1TyF/9KMfHXwnr5db1iw9ug6Mvh7EX036q3YPn9YAWSu119NDZMYdZMk1PI2uNuPLrj2QHn6HUvpaay02ewvRj89/8WXDH325yXk+JDogb30s0KMfxQrb4dnBH7aHATbmCHaxk5vXyOEgPHJ4/HoAg2VMlh4dsZpXix502ZLRkR+7al19iltM5Ppy5o8eneojtnzSxedXzh4C9XwWt30AV/09/KtpvvKtp5P/5DDEy19kTJ5OccE4F2Wj5wOu+4YXR/axmOGIvxrSKT7j4tNPYpcePnk1ya6c828NG7Olzw4vDPmxQ2Ka/tPNtz5ih8ojXTx6YkqGx6f9oiezdmpe3cVqH7iWxQMPjjaxw4cNJ+z08dp7dDRroOZ6FE+vLmwjY7nBYeMlVnGy95CdHZvWpJqKt1qTw6OP0jHXyPJdrkvxhB/qpX5ehqiP+OwnviKY5S4H/uBW4/ynr+cfX0/XmC8NwbEufIaHP2Pv5QO59fPizVcv+WfnXrjD/W+JHy/G77rrrvX1A+JqDdQAtr1TvK0RWS9Eys0vALx0eOKJJ1bt6GhzvcRZPYo5OV+wZh3okKdTXWZPNv2Qdf1kBwcf8RPmYhzz8H1nrl9gXH755ete99vf/vZw5513Hu699961V8MNi32xGMNA8dLT5zP/+imfe2rqLsBjzHTi6fMZb+Jbt17Y4ns56hdj7uOw9Pa8NebTXm7d6uOzwxOzNWrfwoGtt4/7jIbVHqEPx73adUWPDQy/COA/264F+VQf14B7vLk95qyJJx7EN+KHfS866fOj8U/fGOld8+rDf4SfHX1+slW/7qN0+oyWJz33CLrm8lQDlE9jPI2eZo00Ovh8ige2z9q+roZv/1JErvTlaqxHsGAkx4MnLjyNjrn4xJpOcafHvxo2F4c5Pn9yE497OB/sNbjiVxtEHwbS45OXd3uIHF+DDSdiI19krOWPfn5hik0NtOphjMSiVbtZP3z3Vq04+LGX3fPkGi47GBof5OrAzt6zn4p3OT76YS2tIzx68Oxn15R8YbcnYPBNTx2Mpz98ftUTnhrCR2RweuGMJ97qQgaPD3bx7Qkv/vOnpvD5pYPEmG9zOKj6tr6LefSj9VBTuhqs9JqLBQ9O1wwZezE6xzbHQ+Zs2LKzBuo55fyS84nfnqFvLtf2GTwEs5qY2xdhsKOHp+7G6uZepC747FtHOrDUkIyOOJG/aN9ftK9S7D/2CuwV2CuwV2CvwF6Bc1XAYaMX7R6iHCwcKvC1F6J0HVYckvpLq2nncEPPdzRee+216ytq8Bya/lfa+pl4ZB2s8Od46p3POCy60+cL2fL339B/itOB/Kmjv2D87ne/e/jFL36xfrlhvZDYNAdCL01e+tKXrhc5xh2E1Z2cnxmjA6sDJlkHWrzG8GFMcgDFqz7hFYce5c/cXtCQw3I2i3H8o9hgy82BVw4egFB+jWFofDTWl4sxvx227VX4xRiWmIoX7jZmODC8VPAAwK442YlVo8cW9VczxYZHl5341NaYjVqLTcuXl+Py5hfBCZuOuvQADZetB0bXoV489Nl7GWNuLC79zBmeBqfGpzEM8Rq3fumEYR4GuwgfybMaZUO/BywxG/MldvWoNnjVClaYxltiMykMPu0lMWTf2ptnRw8fNe5+KA6UbjiTZ4zPhr0c1W7awGm95YXoewErPjwxeGhVE3jWqwdyYzw48PlhN4mcjF+N3Nwe6UUIP2EUEwzx9tDOBunpF69ebPTI2MMOD08M+a8W5GGQI7WgTwcZszOPFy5+dnTNkWvSteJ6UEs+elkBAw8uvtY+YC9fc3p0ksHlS0teTObJXYf881F8cMSMxKFWbFx7vhf54osvPlx99dWHM2fOnM1hKZ/yh9h89v785z9fL3/U0lel9E/w5YpnnbxQ6AUnN8UoZrGpHZ4X99VV35iv8jdG+nSmXmM6xnD16etrYtxeI2TRFgufjfqKB8HXnDE+/elPHy677LLFf+ihhw7f/OY3Dz/5yU9WTegXx4xlKR/9yFd5xi/+5GHkX98eIWu/skN8JZ+5hV9PVi7tH/vLS1LUiyyfQ+4RPhP9Qh156ecFIDtNTTVj9eqzBb796CzRy9fygiMXOvYNPbLy7Jpii28/+8+1+0x0DZC5V4mPb357MQnHfn3uuefO3i/w6KsPeznZi+b8IXx44lIjNnr3wj7LfG7Y53whchhi06sFuTkf5Maw1FVTJw2WJnbEPp/mcm+d+LdGclUvNvTF657u7Ct+cXnRXm3gsaNnjLY+imcJj3/Qlws/4lAjeYm32vBvHeCJrxjgiZuc7dwfxu2v6ixuDckPn52GL37E1n6ho+dn5sQfai/DoUuPvtqoHR6SoybHsOThHt+5Cmb1IrOWaqsexc/e2QI+XtRYD79awoGPj6eechU333OtyPlSM3GQFZM5vvtw+7AaVD86cK2T2JFawNTE1XqWJ1tjWPxZg2Ky/mzouMbw+2WLWGHLqxjLPUy4xviIb9eJP9oRJ7tysE4afaTXrKEY1BEO/64B/K6N9gp9uEit3L/kw2++rWdx5QMujHLiq3q4L+abfrXSV8vwxS8mf7hELla9OuJnU53lZV3gvuENbzh89rOfXZ/h4sc7De1/0X6aau26ewX2CuwV2CuwV+ACrYBDRy/aHdaRA0aNfNI8UJA51DjE+n5ehyWHoGz0zV/96levB2DfBb/T/1YBh+jbb7/98OMf//jw7LPPnj2sqrdmjRw8HXDf9KY3rX9N4LBoLcgcMB0aUfoOrQ6vHaAdyvHotYYwInbm+exQ2v6Yc/ZhFBs5SpYdHkwkB/vLQ4gDdA/3+OzZovIJy1z8MMsPjrGcJuHLo3jYaGHR5Q/PQ0Ev2umHb0wnX/h4HtjgwyoeeubqquWL3CHewwa+Bwwvx3twEEfrA1uO6XgAxPNw4FrswZINfHpe2tMRTw+q5tWanobwkTjr+Y7IW4MtRjbpVjvYdGvVynq473gBKH9+5KAGiB1e83BP2/NrnVsn9satffnHEx8bD37FzEZ+6ZZDNSQnM29fmVtb65VMLnjul+0Le6uvPSGHQd49FZ7rQBMTgimecsPLhzzwyekZ6+0RdeaXTIvI+bUm9pAeD6aeDR4bMRr3cgevWOmjepgaG2tJN164+knkYpYHyufMLz6ZPe1+pz5qBc8+4g9GD/T4GmwN0cmfOX7xTX/d79LR08P3kM5v+uVqrt49uIvTOnvR7vtdz5w5c7ZO8E5L/MN+7LHH1nrI2b908rLcWK7WyMsE/+Ger3ezjnIUG7m+HIzZzXoUU7zqgx+ONYhgTDKv4afLFqmVmOBHc4wXZj0bbe4PuXz0ox89XHf0NTrvfe97F96DDz54+Na3vnW45557/u1Fe75O6sVWfHzCRsbFVj3w6bY/6MiRjd6cvGuSfjSx4uWvtWn/0q129jq+F2H+upKue2ifH+0/fM1cj/T2hM9T9sUN27WQf2tCjy2SAx5ii+xnL+Jcd3DE5FroemDb55r7PLmXj34Z1L0kG/auIZ9nPvfkKx9+fYbxKXZ8NvjGeuSeZZ/Dr+bulV7aw5WbGOD0Ug0ujO7F4tVcA3zjk8MRXz7VqrWADadcXY+ILt/+9QpbtRQj3/Dgui+FS19eCJZc8yOf/LEnsxb4fX7CLm841oQPsTl/44mNLRnf9M35U58+G/DKu1itV/tDjPDETledyI3piJUMPr18iV1N8DV+2cpBa3/R14pHbczZ2vvGs25ixNN33xOjs7L9gMcfyu+srbgRe3taDq09Pl/qKI58sa8m5PZBOaudWvvFCn/samTInE254MGzT1qn9LJVy1r24oLBpj3ieUwscqFHpiHxi0Ht+RMfXXrqgE9u7jp8+ctfvq4ZOnwj9Wmd6bODY73Mu1bdX3zeuZY0ualr+Yk7PHz7kl9YfFdzcw3JkW97ha/qrucrjLm+7OCGXZ7yt0ZqIlZkr4izWsobtrm41cZ/hnrjjTfuL9pXxfYfewX2CuwV2CuwV2CvwIkVcGjwov2WW25ZByFKDjT4DlX6yEGjw44DC5nmgOyw0sEkGz2evu+k5Wen/60CvqLnG9/4xuGnP/3pennSYVWdq70DqIead7zjHesvzjog6zswtpaicch1eO0A6hDbQZrcejtwIj7CWYyjH8ma04HPV/uCDA6aGB3Sl+DoR3tL7wDs4coDgwM0zDDkOPPNF74DdH7zpZfTJPgazOyri7iQ3PActsVBv2ujHnax6Nl42GDDVj3xq5sYNTKNL2vggI/Ph7985S8MfDHCrvdSwgMC7Ox7mIEpL3XzcGoMi43ePP96BAcflT/ZtjZiEKMekae/GMc/ij0Z7GpGRV08DHtJJG5z9xP6s1bmfCAxTjIvj8lvzI6OWMScvnEPuWqLyLTG8oMt7uq1hMe6jWfPHrb4kZxm/OKxD+3R9in9XiAkZ6OJTZz2kwfPcOmJjb9iM0d00uMLH04P3Mbp5gMPFn1rYD+R0Sum4sWXVw+e5L0U4V88cOC1R8z5SA53+oaB2NTgGKNilpe1xIfJzr2uX0q157qWYKivnq7GVlywwsCjV858pkvGPmqu1/jP1ry82KujuuFbP+t85syZw8c//vHDq171qrPrEPZpepjy/N3vfnf2RcZf/vKX9ULderTudFxjXsbJF5UnDKS+bOjixV/C4x/xk6lJ6xjPXIvUIF59Mj15+yJ+WOZh5RtP7Fp6zb1ov/766w9XHH1PO5kX7b46xmdlL1QmHqwwjCM8e6N44UdkYcRTB/rJ5MQme3w6+m0Lo35ra5+6/u2vcNzTEf4rXvGK5atr1l5TTzhimnhsxCQ2GJq4NHqu6fSNvXTSl0d7xz7Gc0/yOSUOvjQyTdxh2le9NIfphXi45cdWjjBdT/j84RcrPH6RWhjr6cC1vzV6CAY8vZzVqHspO3Gy5af10rsGxNx1Ky73FTji1uihZHy6H7rei8nnt/+gF+GTywVOe6Z90Zxu+HzApa/XxEG3OqirnOWGyOjL21iOl1566bKTJww8ccPHk6cGi286iI5WjYqrussTBtvs6tnR04sFyV1NxIX4oc+v9avecrRO7T+6cOwL5x0yOYqrVk3VuLpZRxjdC+GgaqcXQ/ef6oavLvLjlz8xmdPBYydeemIw55ctve6n+PKlozenYw4nWzz29olmDAfRqfGvmYtJgyNvGHzImdw6w2h9YFX71h0vPPbiQ+ysl+sbDh22xURPk2d582vMDt+6s7fG1kITi0avWIw1a8uPsXNq8YsVniZGxDc982rBrz3CDj+bclqGxz+Si0kcbJBYxUcuV7Ul44M/vevpE5/4xOHKK69cNnRPQ/tftJ+mWrvuXoG9AnsF9grsFbhAK+Ag8atf/erwla98Zb3w6nBROuR4WgcrY4cNhxMHQi/KHJRRB7Fw9MjL0re85S2Hd7/73Wt+0sGnA9xS+A8/trr52fInTLHh5T87PLbTfsrIIzqwIvOTdCdWuts+na29ebJsxOxQ7S90/HLkySefXA9XDqZ0a/QdFh1yvWi/6KKLlh1+B1APZbMG5g7qDrR8kyXPzgEWOXiKw5pb/2Kd9V2KRz/E1OHY2L7RI4fWfMDQYMinhwcPOP6yuwdvdmxgijXCg6d1KA9/1iV/2Z0rZnGKBxVvcbEh3+rEE7sDP308+taD72yLNx4+f2IXt3l1hoGqkXiM9XzQM1YTa6gvT3rW3MMOTPV0LerDoUM/m+Xs2J8xPTGQi615vuEmS55dsfERsQ9Dvl4A/vOf/1wPYfTcTzzooHKHLy++2BaruVYO/G+JHZselsjNtw9lMOjOhyx6eGTG4pktX+SReORdXOxrxWkud/ui9W6PpzNzs6esmZqLA+m1ao9XXeSK8gOTP/vDSwd8JBcycXhIRuJxXdNjg+jgs8sfG3oIz5h+OuRyEDs/7DVYiEz89NWcPqK7zTNd+mTtX37hdb+ATwcZVw/21kSDj7KhU8z0ygMu2TZutsnKxdrBlX9rEqZey8bLhNe85jWHL37xi+sv48KAe1riy+fBD37wg9WL17XkGmpt7IX2TjHJiZy+nJHPE/9CCh9uddSLsfjpTpk5vPJIF9+4deArMp7z+PXFRAcGf9a9taOHH0Zr5Hvv+452Nn/4wx8Od9999/pqnV60ZzN95S8e23KkP23w8926st/GVt50I7b50jdOni822dmzPss1LymtZ9cLHXNx4OldR3DE0z2FX/tdjw+na8E8e/sXpt71794MFx5bfGNrgfBq1WDmREZXLbq/wDcvPzpi0LOlLyete4fxzIWtPDVYbLwyi0UAAEAASURBVOXg/ubFWTWorjDZuC74kDuC73MAPh048pOzXGHiuX6658CXS/eJ8IpBPBFMdjO/zgb0+rzOB30+4Yu3eojJXEPitR/gWidnMXHBwYPTC226/vNG+ogcT98+EoczYL8A4RfBoQeXb7Gp7Ry378QoJzrkbPV8df5Qd3M1gBuOWqunhro3d8YMt/zER0dtYcKhE44x0tfooNZLfIi8mMnEBbv4nZfsvagY2PGnHuzVz7rh8wXDGtCv0dPUih9kbu2Kj6xGvl0D+RYfWXVoL+GpMZ9wkH76Lmdrx282enaovVHsakOu5vmfuHDkz44emXX2i2XEp1qR27P5Jqvm86/Y1ZwfuOpjL7CThxqIgx97Bk981sPnq/1Gp/sBOd9ikE+2xnyzLe/y45e+WvpLebFVe3/l/773ve/wtre9Tfhn125NzuPH/qL9PIq0q+wV2CuwV2CvwF6BC70CDhf+w7Cvf/3r66DocOSAoUdzbE7f4QMf9TDmL2rIakt49IOe5jDjLxQ6dJGnq28e7mIc/WheP3W3Os3P1bN1oELh1eMVjzEiy9/znOd/ppd8zqeecbJw6pNN/XThhp2euTURv0OjlysdOrOb2HQ8WHnRfubMmXX4xOvg6kBsDlfvEOtQ6qCaf/40uLA8cCCHW+vpobUYinMeWJfy0Y8Ot3Dmvpr7iG75iZG/DrXb/9BVvFpYbGFN/pSRywlVo+oZfwmP5XKQ49TtME6miQ2vesVjJ/4eJPGRBwXxwaQz/cNyuNfo0yFPp1zM5Tnrhkc/G/GQIzyklv4jL9geGlyDfJKHTS+f4oSRPTs50aWDyOQvF3Ky4jLX6FY3NsVKxp6thx//zNlXXfSiwN7Gp1MM7GdM01cx4GkRf+mJQ33hlbO6eBDW49Pl14MbnfKYNVUHLZ980Q0TDl/ajD0dMRnrt2NrEp6eD42+WFB2xuF7YNWa68tVTu3R8pNj8cI1lrN7Als+zOeeZVsjN7ZPWicY7h/iqF5k1V0eYdOFYU5ujOrFVP3SNddaE2MycbAzLp5w8PhA9PLHlo6YWsvsxT7vg2zpsg8PjoaXf9eV2Mxbx2zYpQvfiwDf8fq1r31tfbVX8fJ1Gio3Xwlz++23r3/dJB9rIIfW2b2ITy8uqhsZPYQnvr/+9a/rJb0xCl8vRq0aLIWjH2zTK4/6dLLLNrz80MNTv8ZhmrNPPnWmrPr6Op5PfvKTh/e85z3Lxov273znO4f77rvv//xFu1i2lJ8tPz9bfuvKTlxqgcSqlbcehV9u6TVfSsd6sOlr9pP7lJdH7uPOUf5VW/cpa823tde37vZ3/3qJD/J8pueaEbtrvf3AH77Pdp/xxtmJhz4dPLLuL+bkrYUc6Np/+LAi8zDpdB3GEx8f5URHPvaxHrb8u9eww5ODXNREbKiYjdlM37Bcu73UC0cOxvwivZg0Z6V5XqKXzDh8/uGYk8uFLz5RfHniaXhyEify2WQNJ5GzcY+HK9/+kt/aI3I5iVvzPfr2UP7ZIn7UzFq7/8MRB79ij8SFqoNevcXCFgbfbFoXsdHh05nDHI4a4YnRuPrp81ncapgfNW9vh0NvYogdL2JLV4+MW4t0ydLLTmwarGqWjK64xCJ/Y7116EUzXTV0ZhYfX/D4r4kDwVM/vuhpMDW6rh97hx4f8enDsJZibM/js2lt8qefeRo3Z8OHWPEQfeuRTnnwqaUrntat9ZErnrjUAH7+6bRnYCByNvY6m+ZqwU5ubOwt/sSqvt1bitUvihAZvNakuOCqV9c7XXowNXLxeqkuR7mTm3fvMfd/Hlxx9K+m3vrWt4JYMa7Bef7YX7SfZ6F2tb0CewX2CuwV2CtwIVfAQef3v//94Xvf+97Zg5pDSQenDjB6hx6HFAe4moOP73314NehqXqw6ZCG19yYrtaBLR4dpN+2JTj64TA0Kb3J247DzW99/PTxo8b18fXqw5ZMDjOmGQ85WS0M/BrelG9jymb2bKOtPizxOUy+/e1vP7z2ta9df5FhrehaE2vsYNk6OsS27uTJ9Hw50Dps5peOQyxMvswRebnwxR7ZO2Q9KISzhMc/8uWg7aEwG37x1BmJmT9zjf/ywYetsRfLScRG29aOHRu2kxyuwzJ20OebXxj008Enby6vXh7D2Prs4N9DBns6mvp6yBAXHLnns/jokevlX254sOD6TmjjHnzEm76YyPRsPfTxEyYZffNJ5mz01dKYLj7a2uAnN+bLi3Z/hWsPislfUcJTv5NypTNzbD3wi5tvc/bip6Nlq1cL14i9LRaY9GGQZ6fuZHKxVnDIzKt3e/ekWs18xYXYTl3+ig0Wyo7v1l1vnr65umkw2cBF4sSDRx+ZTxI/jPZZNXKdanzBa0/QR8WaXO8lw7y+q72alWv7gj4sfNeKteihufjESk9jR1fPt5zEpJm7RjS5INh00i9HMZUDfPn2QoqOHOjwidi3DuZs8NgheuzMxUcuD2Nx8VUO9e5nb37zmw+33nrr4Y1vfOPSW2Cn/MEX+vOf/3y46qqr1nez9zJNTOVBTw7tjWKmEy/9WZvCyU9z+ccLV4/kjNKhl+7sG9Plkx2MqT8xqmXxsUPZkMvrAx/4wPoPUf3LOVhetH/7298++6LdXtti2SdsI/IaDHG0nvH1ydilE49+RBeRRcZy0do32dJvrxjL0T3cd6GfOXNmvbR84okn1t7n11/S2lP+6tJetpYamXlrk3/XjPut+6z7hhi8YGVj77Kha/9o5SZ2+7xrFZ+tWBurJRy8agQT330ewXSfIGdnTfrsK9ZZA/WByc5LMPcTfvHoITp8yEcu3YfwxVzuS3n8IOez6ze/VPjZ+qILWxMPat1gyce8+onRGC4fXgDiafL2/e1+eYJvXdyH5RGmF9T+RSJb2HDY8q1HfoHhDO4Xbq2jONUd0VUXtYMHh1wN3TO7j8LD8wsdzZyseMisvX0m9uqqFvZgL8LFg1e8fMnPPMxZdzhipQMf8ckfHl/2k3+RIl589RGbvNSMjph9TY+9BJMNf/JvP8Jmy79mfBKps3jh+EzgNxuY2z0QRnuQrZg0WPbR3OPk4dPhpzqogbw0tu7p6iMH163riH91aJ3hq4PY2IijXwiJzRw/P+z4ryfT5AkH8auJT+7FrJ50NDGIS0Pl0H2IrXsTbLp69taODTkSt+ZlNh7dk6j1EoucxQffGKavTbNPjMtHHWHDhe860MtJDF0fevVo/9PhD049HL59Far/zPzyyy9fYdI5De0v2k9TrV13r8Begb0CewX2ClygFXCA8KL9+9///jpQOpBpHYocIBxGzOk6SMXrgOKQ7y8JOowohTFi16GJXQcS8g5u6S6D4x/TfzjZOiBtKWz9SXjpk9Xwpr6xmLYUXj294sMTT7Js6SD8mWd6+mTZ0EuOF0by+q3OVo/cmnlI8XU9/tmwhzlkbR2QHT7FLQ9zD0cO2ewQfuveYd7BE8En76HOPB6+NnPukF9c5rC3cePR6QDNr7mDsYeP1t1hFwaZxt/EjM8+mxX48Y+pWz568bAVe77jkcOaDyr5Llc6xuL3oGGM5OXwr2cv/nKHKTf6mgcqPHJ5WRONL3G75jTYeOHwQx82St/Dhfp5AM2Xh+0ecGBOjPyKVTPnq3os8PGDH3KNLhs8hNfDPj+tB3l2Hog8OPpFnQda9vaiPMSb39a42rGfscmHzL5G6sw//ObqXJx4bPD0xcN/1wbfqJqKp1YuYmg/kcERq2vPmK0+O/5R/sSZDRy2k+jzZc3lQkfjt3p7oFY7WOzxjflE5pPmnH7Y9hkSjzrAdW+gX47G4dKpvuTsvQAwRnDpdu0alz+//Ki9Jsdk9MyLgy7ZtM83/2Liuwdqc629IhYYdMVUfPjq5LqDTSZn2PT1cMRSPc3FZY7o8EOn+LqGYYRDL10vB/wn1bfddtuL8hftXrR/8IMfPDz66KNr33nxICZrp5+1M66uaia+6j1rQwfVr8nxD7xwsq0e6oOmzsQwrh3DrRjEASPZtqdbLbPTt2/4ta5etPue9hd60c7OWsBD7MyLHc+4uRy1yUsmTqQeYmlMnyy9JRg/klX/iUMNv3xh++z1cueSSy5ZL0uttWsNufbd4/ur5daevb2orjBch+Kh737rvmu/W/fuvXTYiAcfFmKPYPl8a73LG64aqqXGdzJ1geW8gIzFzkYjFz+/1bCe/9ZHTF5Wul/AJ+MzwnONy8mLX3Ix0G9vwcLTjGGWEx48duISjwa3/Mjhu3am764DeHT15Jq51rnGdanxa01f+tKXrheGYncP0yPx+No8X1NhPImOBt/npfV87rnnzv5CXzzlLX6/6Pe5b4/gk8vfOogFlnWB50Ujv8bJysu9EobYYSAY1lbNW+c+h8npsZOD2vLF3hrrNZ+Xmhqh1jaeWD1nsC0WsfGNx4e4/TLKXoIpb3ZiMuavtRQLG1iTWqt45HKBQV/jzx7gW40mRjWFo86uWzri6UW7Mf+a600r7/YIfPnBVgNY1cAvyFyvcoFlj8IQJ5tiogNHzNXTmE25GM9rLQz596JdTOmLRy3sf77EwF8+xSnenhWqwdRj35qQq5U5PP96VS7JybYkBrUTl5ra18bWxYt2z6LG8rJGaiB/uYrL/ugXCOIm5y9f8PwyCWa14q+9ZPyKo/8Xw4v2yy67bIWX7TbWc833F+3nqszO3yuwV2CvwF6BvQL/H1XAocV/pHbHHXesg3IHUXwN4SGHLQcjhxM8Bw8HLod8f2kRzUOHcfP69Dow5Qe/cXGkq8/eQadxcvMtL1l92PnFnzaNyRvTMc/WHBUfvrqIaRJ7LVs9neZTlh0Z0uc/3laneX162VkjB15/OfnqV796PTjRad2snXjoOZT2MFFe+A6n9BxYO3ROPz3M4tX41+Cg6hLPHK6DbbIw+cTjy0GYX/MOxennA35+jNGUFdPzkn/95Ce78k3Khp8ePuKzQfhzvfEdxqtP+nQiPuSsh82HOJExe9eVBwx9tmTqzzbib87J8crbnJ2GD0v9PMDwXW35ojPjMI/i6+XcAxF5dumUExn/8ixXe3DGQocM4Xu48sLHQ7SHIpj2FRyx02kfsLNXy58uHbFp9pT7kXgQuaYO5a7WMLXs8BAs+nyXE5/s9Wzwk5nTj9jTE1/1hYWy1c9xeHDYtZZh6osLNj19ZK6Grt+w9cVVT58vWFo5kIuxe0C58jHvCWpbfPmmi08332IpZ/rWTi34bB3pZoNvDoudOSpu+Jq5mBFcsVlrcSO2MLRs65fCsQ6s4uNXTF5UFJO4NDiNyYozLDyUj+T4rjG46YRDl2/Xo79k9/+ivBh/0e671T30P/LII6vWfItfnfg0F1P3l2KrVuLU/DLQy5nWAK+al/fsy08fJn/VhC7Z1MPbypvzy99JGOxOovZxa6YO/pO6+dUx/qL95z//+crPtb7Fb63hF8vUyUf+Zz7Fq68GM+fw8KqrWPPFd5TPeny6bN2r/LLUfVwO/nrZ/keuAS+Q/IKlvRwGnzUvO9N3r53XDAx69iYsPuSk0euasYfmPhJf15RrH66XrsZkcNRFnuKVCyz+ihFP3PTyKd906cOiX09Gv9zY2e/89xfVfNIjo2dMJxu1EJ+69AKfDh+aGOWGxFMtXEtiqYYzvvzp8+dFHjx14ycf+uopFzrFXP2thxd/YiEvz2ouDnV13faiG0+O4tRgevnIh1z1xUBXo6PBt480/uRoLcuF3P6Ab4wvf/FoMPoM4AfRSVf92xvJitVZofMCXrUxFqMawK9OC3zgy5U9X4iuuvBnLI7siynd4hMzv6g65re9LE+1hm1MT0xygw8DTzxe6pLZP9aydSVXt2zyRy6H6suWDz0y1tjCEDd/7PguPzp9PsLip5jEUhx69nD4UCu2qBf41aia0Zu+GsNXK7GxyZ/90h6Z+cKrVsVrr4uPPruuO3j0YfJnTKZWMMxhPPXUU2tt6Mm7a4Nf+tZAs8bsYNnj5Igf14hGv9rAyz9b/4n5Nddcc3jve9+77MhPQ/uL9tNUa9fdK7BXYK/AXoG9AhdoBRwefvOb3xxuv/329YDSgaIDhrToOIA4lDl8OAR18HOw8qLddyx3ECHr4IEXxavH7wCVrb5xdvpz8cOqnzaNk4WB7xBm7qCF6NQW4/gHHVR/zD6ri9+hOFl9NaKjlSv5lKW/7bPTi00/KcwOmnSqvTVyUPai3T9P9uBEXr4dMh0wtezgG+M5uGry0ybBcoide0F+GmKfLwdTsdL18EFm31S38oKJR99Bt4eB+fCUTvHkQz4aeTGRaXj50JtHUwdP/LBhoXSr0WIe/QhHrdTZ4d2DATwPK14ERnTlg+hXD7rmiA6/WvtEDPhR8+z04irfYkq/uWvWAz5cNVVP68DX1m+2xWLORo780YdTDNUnO/Nk2ZaPOZl4s1MrL9q9CDBGXkyQy9f+E381M6fXetCRix4uvrH9Zcy2eOTRnhITmUY/qkby7DogM4ZD3ry1U6swioH9JPN4MDQ5wsA3F6/Gz5bIW69k8ehn17p6eAw7ffbkcq4OZOIQtz2rLwc1hE3evYAfuLVilT9senhyMhYjf3oNv7zDaE35o8uHNaand5/BYwtbnL1MEyuSG/yIbjxjxFbjN2KjFoi+6zS9dIq3uX76zZ4eX2qBp8FEZIhv16IX7P/rf4ZaXv6K72Mf+9j66hg+1QqRy08M6uoa1sSnGVcz+Xhh71qEwXbbYFaLasgOD45mnI4eFYc+Wfx6MZIjOnOd4pfLUjrWK470/TX7ddddt/5JP7u+Oubee+9dL9rlTZes3PkrVniN86OnP23KFw8VW/OJk2058s8HneIuhjkPK3zrZW3YuWb0kfXt2pdjucFD7ObnqFjsdZj88G/sRb79aQzPfbfrkx4+X4jc9ekXNHS8eLR/nAf7V0ligcFm1lV81QVW8eKJjZ0xYmefuQ/A57P4w6aP7wWoNmsstuprPH2ogbORF6Kw1Am22vLlr4fFJn4+4PgqF7n3dXD8dq+c2Gzw1UM8rYGXidaCDzI+yomNGmuwzNnRoS82dVYPcrFVVzL6eg2GmOU8/xp8FfXoB1nrSb885QaHP7X0WcKXXDS+6dbgVDc8Y7jtN/cjGMjYOsoXDh+If36z0feX6TD5J1dH+bC1XtaPLsITH1/GmnMFf+z4VitY1awaykEM8rY+5Ozlwha1P8x9BvFTHnh8wxM3gtW5S+zOh/mGbR2tq19MsW0N9P46Xw3p+SMmOagDDFjiLYftOvANc34OwOGbvXrJK7vqC9N6sKNbTfBaJ3wtG3lr8Om4F8gJhnlras3UTA8XXz2NEX7XQPj+qlys6kFXj/hqHcUBlz/tb3/728JSezjxxaie5Q8Hhqb2xasu5Sg2+HTkYq7B8J+Z+4XulVdeCWrprMF5/thftJ9noXa1vQJ7BfYK7BXYK3AhV8Ch4pe//OXhy1/+8jqcOVA4WEzqAEi3w4kxvgOKQ502DyXZ05sUBl4Y6cA2hrOldLLbyos5jOTxzbe4ZNt8p58w9PgTa+rNMR/N0zff+k4nH+maGzefenNMz9zB0KHSWsjFejiIag6p/tO9XrSz8XDogJ8PB1wHzeoAs/WmAy8efgdqWOwcYOnRgWEeVj4ccNmiXvizZePgqg9DLuJ2EK9m7OnwnZ+w9fTYwUJidmjX5CcmOmolDhjRxMEjp6eVCz69enEgOvPw7mGAHr8O/3xq/HkgrAZiba3yUc3yUcxsNLgd9ItlBbH5wRf9maOxJhYx+qVAOsUHUwzm+SwW8Yo/gtU+K/7wxTgx1Qpea0Mfrxysj3uHh0n7Ugz2Bgw2asn/3AN8s6OL4CO48MWiR2wRHrz8smmds6dHR434h8HXzKc65Tts+CibNTn+wcZ+1hA8JN6uIXN6eFpzusXHJ/x8k4mXb7b0NPJejpDj0dGyic8PHhnsfKmv9VD/iR1W8ZFpfKqVfZ++GOTXXilfLw3Km256xmKhx7+5mDQ8PmrhmhezMSpG8zDhonjVjLxrnY57TzL62eMh9vkx54v9luw7663Ok+Th+nNf/tKXvrR6Pv4bKqZnn3328LnPfe7ge7tdp170VBPY6u2XV9bTWiCxiUPs7QX/GaoXJduYZ3zlj6fBwxNL8ZRL+wq/cXbm/JiTi9cYpdMcL3x2iKx9YSwGtT3pRfvdd9996EW7fOkVU7b5gtM4P+lWJ3y8aOrjh5mdvrqFn006M6904dMjE7fPTi95NbmTZU/efrPe84Vze5ScvkZfg20ut/aOawCfD7Gg4tPbS88888zyz1cvnF2TffZ1f4brxaUXjvyJ2bXhZZVWTcWmFRM/NetVTvkSE39Ifpq92H6Ei8ThpT8M+YjdWF7m7vX8lh8b4+IyFnMvVdWKPoKN8IrB3JhOL2y9/GtNYfkqGC8RkX+Z4IW++yaC1XroXaNqJ2+54Ym/tRdnuejFG4Y48MTp2perNSbvjEUHwbEu5vQ1WGLrbM9OzdQdrjl9ja4ehtz8wsb6qgMsayBm+8Na8qfBgEWm1ybRsSfoWTvrAI9eMZMjGDVzdfLSVy8+NuKhbywXRFYszcnaJ3yTd46lr6HilvvEbo3UoxzUHxaCrw7WxdqLhyzcfNBzT25/wAuzuPjtzBI+fbbN7R2Y1sQeEJMYizPfdIzlVdz8TT4sa5C9NdWQ9eHX/mKvLvHFxIbMLxJcH+1HfBjWuOs6H+KRIzt5wuSDXpjsxcUetSfYaWysn2au3u0B68AWpjzLLx288hCTvHx+f+Yzn1n/kow/9ToN7S/aT1OtXXevwF6BvQJ7BfYKXKAVcIh54IEH1l/XOVA7sDhgbIkeSubg4TDT4caBMZ0Ou83DMndo6VDSHA/h482W7eyTT16YL8TLD50OUSfZwd9SvPSb16dvXpu8bd7J6sOd88mbfuLDtAYOjw5/HT6toYbvLyc92HlYY+cvfDy0kSN9D06tLawO1+T4+eKj2nU4LWa66fNVnA7I9gsMLwuKFY688BGdDtT6cjaGxTfig2+Ez64HEHP5OPD3UEaPj/IKFx8Vp7484aFyJWMXPr7ae2BQ2x4s8Pn30MCf2PQemGGzZycHenLSqh25ll/29LODVfx6cu0knvgnHh17QiyTsuUTiRNm8aqFBzR6eKiHEb3YycRmrcRLD57cyIqxPGHQ8eDiYb4X7fjqgtjA4L/9AC/fZPKDny9yFJ9tcYsvOd/iLNb0za0lG7o9WIkFiX/6xaNbDOUHLzJWdy1dMnn0kIdPL3vxmWt86/llo6ePT88YmcuXrgdOevLpIZxOdtniqYs5WVji8HLEPsaj0zoYp6fnr1zkU8xi8MKvh+GuS3y4fKhxL4DDrAZhywNPDxufP7Z4s1b5DoscNTemwybKjxr0IJ8+XWSeXnHgs1FjRA5XXCfVnZzMtfRivmj33cxf/epX13+K6l7k/+PoelE393t/0aqpu5zI3YvlK1Z5PHX0z+5di9YX0as1l3sNz/VRjc3liNpP7c96Mpjm/DamP+tKb0uww6erlvKD0bgX7ZdddtnS9RftvWj32ccn3YllDgOVW3M8umpSnfAQHY1cXx0mvzqQtWez1ZPXwglLj/Bde15MXXrppeuvKbc+xKaJ03UrV2upPmrNvvtAeHNN7Acvvewf9yn49oprFmb3FXnYR74jHrbr3ctM+8BcjjWxi8n3ffuc5AMuLH7wxATfPZdfOtVDj9j4LJfP/GtZPDJ6crGO4jOGK0/xVQe6zrjuN/IS71xTcxhITGJ0reLBUFcEp2YOgz+x88m/sbzF5l970lcjtfGf0/saIDy/JIPtHil2MeirgV+aeWlNhz1+MfKl0cfTYE4y59Naysc1z2auM59wWwv1cd+Wh89lvsmtG1t4+cKnh6+3hn4R5Hvn+4t0a6B25Mbw6WnqDEsM1kSc8mlsT6oluT3ts4NMXvDa8/zjaTDJ2MwX7XSsJzw+5EFfDnDI47dWakmHvDMefLXQ+GGndrDJ5CcnBI8OXfmmjy/X9iJdOIi/YqMnb3UrN7FosMQOtxfW9PlufcKEZ9yeZqeO8mQDm434YedLrcqbPT478ejV2HVojvSw+4orNvCtW3Vx/vQ9/z6n3NPkIT7XgP2mLuz8goENEgc7zZg+meu5XPnJthzoy5mNOlkna0FXEz+/7GCKxRjPXL7yYcMPPvJ/rPjltq+PQfROQ/uL9tNUa9fdK7BXYK/AXoG9AhdoBRxovGj//Oc/vx7IHSYcQPCRA8RJhwiHD81BbR60spl9WPo5ptPB0xilU/889//+TBZW0pPiTKbPzriD1rlswiZvrJ/64Z3EOymv9MITx6Tk8eY8G7z4fDhQOjxaC2tnPfQOkA6Wr3/96w8XX3zxOmzi9cBIB6begbJ68A0Lrh6fDnII5zub7IoNnw829PTIIReWeD0QOLTme+YCn658yoleh1z+zPkoJvjZ0UNq4EDcQxnfsxUvXeNac7rlX75kUTXh1wODg3y+yfjX4NDR5IPIYcuBjnl4cjIWj1rxXdzG7akZP/nkkxV78bKFqxeHeNlF7FF6+Rc3Hjx7Kb7eWvSgJhd65Um/+PFRtq2dueahxoOklzce0vD04oWhqS1sMny+23vhq131Ww6PfrAtFmM5V4dkcKsFfPNetItVm/XkNz98s9Hg4ZOziS8WeuoHN190rb9c2dCnF7Y4mpdPc3356NkivetH3wsGtfOwSQ+lX09XfvTEBrsaedkiRrqamGqw0qVPz4Ov9cze3AsWnw949ovrEp9+tcKbNTNWh+KprvyVKx49uPGS17MvFvEiMjTzh2VOv71mjNhrKBsY8eipX3LzYrcWSHxsNTLr4UX7Lbfc8qL8RbsX7bfeeuvhT3/607q2veiy35Aa2wu+oqJrTPxi6wWEmMXoL2+tV3N61QtWcznEh2/OvnVoXL3MG4djbi8hcj5bq7DTnbjL4OgHHX7tAWO2xh/5yEcO142vjvEfvXvR/rOf/Wy9uLFWrd3EymdYzenw377XTxks8mlnrOGXd/GJGU05zPSShWEOx3r5S2H/34r/QBMOzOooL42u69bnvF+w0EsHhjFqz/KD7Hv3Jy8LfUbgu1418dHHYw/78ccfX3vL9e5ll+u5mMSVLp9eOHuhZozPlxe+XsbZp/D1+PzYC3gIFnIP8eLNizi+4Ph8797ZGky/eOJTh3DUxv2nz5j88SH+9pNY1NvLYjzXEFsEC7Za6GGomRzEXr3ZGotZXGopHt/vLHf+uubw+anvGnSN+oWEmOmrS306xd39tPj41Mxhi6/PNutsLn4yWNVfDPwhefeSXC6IvsYvYtseab2di9znEDz3eHUytpZ8qxkegmVdrYtxeuKFTSYWtvJsnfMtDzwEU6xi7LPHXOtFezVj01qyVSu++OeHDZ4Y2MLW1AovkotY6duXMKstHTbV25zf8rUvtlSOfHd90YFfDMby59u5Gs21qR7xxSPG4uRfax3ptS5s8wWfH/b4amOd9PxZW3Oy1tl/Sss+mtecOronaF0j4rBW1lju/LnPwIMrZ3H3ixcx07c36SPx8aO3Puzot+b2pgaLTGuvtd5s5cJvuO1t864LL9pvvvnm9XnDN6zT0P6i/TTV2nX3CuwV2CuwV2CvwAVaAQeL+++/f/12vgczqeBHHSIcnObhySHQwaMD11Y/u7Dq09PjTT785vXp1Wez7cmjZOeKAb/GJr3sT+q38TSfB9X8bmsFT72i9JrXnyuOfKVXz4+DoB6+WPQOwA7I/fWUAyeeh0UHSQdZxB/9/BbX9JecDr4DJwyHY9SaTSw2mngmZodWPT65uBCeA7LDsNgdiPHM+eIzPfHnt0M4veoA0wOPAzPdZPjiLJfioTPjnPj4KBsPkOSah2APJ0hdyse4+NRB7HpY7BA8RE8cejx9OcWj5zrzUEan+uqjcHpgxoeL2NJVVw839sP2YTHM6pDvGTMs/tVRjuWMT7+6ZYuPwuBDjZDew5IXKO49cmNn3eAbs2sfGPPNjl9Y1QKvOb1ikaN5jX5EprUedIztFePqYY5vLi57UaxiQGEnpzNx+fSQaN/Ihdx+0OCIHQa9sKrfjDdfevG0d/XsEDv4fnkhPrF7qcVvOrNna0/Yw3SqIaxiKxZxwqYDm9z64bnOPBj3wErXZwM5PTZ47NTPXGObnE+xJeM3HbZqUT30eOStDZ58pv3MFT972Mgcnx6epg4wk9PBjxdfj0cfwajhiyXM8OXbi/YX66tjnn766cMNN9xweOyxx9Za+2tS6y5u9bYGri8vMayJfO1P9wBkjsisRXmKGdU3Lhf4rUEyffU0RrMGz3Oerzv7sPTmNRi1/Ou3evSRONTWX7Rff/31hyuuuGLpPvjgg4c777xzvWh3Tcg7H9mGO/3MOJO3nuyKo9ptMdlPnjFdvXok14drnMw4e+vh/uGvoHth7TqTM5m1lhcc5FrUXGfk21iX0tGP1o4fBMN9QM+m+pNVAy9+8b081s97ABz+elnXZ7gX1u5B4qMjl/nyHXY+1uDoBz3r2b1CPvavrzfCY2M9fVZ0/8CrfsWuDwOm60GvITHKl131MPZyTr3FLg7nJjh91stFHtnK21hrHfTWqRft7F1j6YTrc6D74rxfihGG9a2W5Sg+jVyO/LCFD6uariSPfpjzJ0e47lkwYctXy5feHMGuVmrd+bG10cNwT1MPxBeb6mmcD3j4fGjqJhaNDjw61lQufZ7AKH7y/PA1W7HjIbUWHz4M8+7XxQKXv+JVP3N8MeGzs4ezh0fPvqQrDw3R559tcSzBsaz4yY1bezrTbtqKHbGpbuR8Wkf7cubTGSoMsrkOxuLk21hNrKH9rk+uBsYaYmNN5FzNOseQG4vP9V1+bItNPGLlw/5tLVwbammusdVQsRhXZzj44rNP9MgZhJ29WM74eNmGiw9Hkxd9Y9eRlpy+JkZ1peP/vvLHaT5vUPVZk/P4sb9oP48i7Sp7BfYK7BXYK7BX4EKvgEPDfffdd7jpppvWX06c68BAz2HDIQo5lDh4OHg7eLGjg8Koj7+EJ/wgT6dxc+rxMu3go0f6qdNYXwz0zKP49fjGc57u7Cd2+A5p7MLXi6mDd/bz4DdxkutfyH82UyeeHj8fYvKA4Z+aO/Q63OI5KDpck4VTHfkPr1jg1ehrDtg9yJuXK9sw8Pmjy94Y2T89KKgPvkMyHfYO2WLVPNTQNebPgZoNHTKNb7k4tNMjL0767JCHEbIeDvDYzgcn85Nyac/DhTH/ybuX1uKRh+ugfHqA4Ud+Xgq4XmDlI39iEJ8eqYMxbPow8fz1jla98qV2SGxhqQl89uTqoOcHrjYfdMiqG6zW0piMr3SMkTg0c7ZsNH4RnnG44kNwUA8uXqDIy5y9dVO/SA5a+DNvWJo4iqG68tdDW1gwovaRni2qhvTi2VfV0Rp7mFRPeymd9MWmsYEbeanpJZX1Yec67FoMI/98ock352Obm/XkR9z01UJ8/eUnuf3Kb+sSNjy29oH4ZrzwWlf6cMvdOhlbJ39tp/Zy8deZeOR4xvRaG/EVYzHw0bUiPn7KW3zk7PVaREZXYxe2uMPAp1eLTxevGIyzN26/FQ+eMex0iwNvWze6Nfp0mstBvV/Mr47xn6F+/OMfPzzyyCPrZdDLXvaytd7yVVv7zee0tdKLwX4QR2spztapPMtbj5qrDx01q6bpTF41yk4NyBG71hOfTmugJxMPvbDZzTG95vTp+ot2v3S4Yrxov+OOOw733HPPelEr9unHWC4amrmTTWoN45GXA164xVSO+uT6bb5iYrNt4XWN+pdp7uteArWObPvsKAfr3Vr2OWDuWiw2666JH6/7LX2tOoiXjljw/KWye5trG7Fzv4ElLy+43G+8lHRPEZ+5e58xsu/g4PMFu5jVSmtfus/yL3afE/7VBn90fL+5X9K699CBL0Z43Xf4kx8eoqOeYkViEbM5THrkfqGh3uLE6y9nxQxPDXyGqj1iyw7ftcVGTNbJfRHJ0TUIy5i8NShHMutrvZCezNdswOabT/H1Sxe+2HjJqMGs1vTlpi50Jnb3gPYIPdheglo7uGqjGftXMZoY20/yEJcXtNbYfrAe817DN1/6mviKjX/+6CC+4MLxOWYPlENrnJ66I/LWFi4MvsQ1sfNPRxOvvWI/y4ldvPY0H+oCS4ztHzblKYb2T7Xniy4/sOXUeuPJm671hcU+m/KUl/rii828WsCgB0d85DD48q+X5EEXr/jI+JuNDIa97rOjf23hOtPUhz4cfXy54MmLL2QsZ7USM30ycdbUkL9yEjcsfuxz6wV3Xl/2QLUrf3jG9mOxOGeriz0LA2bx42uonr3aVSd8+44/8eFrYoRDhrxo9y/Srr322jUnPw3tL9pPU61dd6/AXoG9AnsF9gpcoBVwsOhFu4cCB4baTImeA0eHIwcohxsHD4erDhodYJpPjHON2WTXuDmb7bjDjz65cXonYYgnPpviyybeSXwytMVgi+dAN+3yM2N6Ib3n0U/+GS5p+Z6s+a+c2FgfB9petDvYitMhmcwh1VysxpOqCbmDuR7xb2y9PbBZf77wyzVbPVuHUwftcMTBH3l4MMWEHNJ7uBO//eZBQ9x8mrOn12Fd7+GQXrmIi40Ds3G6YtGKG442YyofcRmTIzE7lHsQESO+B3WkFtWWnXw1fuTmAVXdip8/4zDhwTbX5O5lBR324ughvVri18RAV0xwypcfOj0gwBWzFwZqZn4SiUHsevbyy5f8kL6WLn2xIvpiqgZkyFyzNzwkeTngQbN1wa929KoV2+KCTZZ/vTk5n2KoHvnVN4ZFLn/4ETtzevBQa82HNRSfesx1yL+48LOBAdPDo7rzx9691prQR8XF94wnGXw6ZOIuN3sepjmCZ8/3wsU+6IWWOKpRuPDEOq8dfjQ5lpe1gWud1MBeN+5rGeTiK0zklV2fDWGUY77Fos0aGONF5upZrYtfLoh84pYjvXTKB0+rlsZI7fC05tV46uBNX3T5cM3hG9fyGZ8tGR+uO1/p9WL9RfuTTz65viv24YcfPvui3brz1f3OelmP9px1p2MtNXHO/Iu/fFZhjn7Igy0+YqNG5tVWX6MTBkxEZt2yzRd+NNc8XvbbOX775lwv2rdfHZMvfdcU3NbJOB1jVJyNxV/N6NbSE1N5sglPPeikX33ozHE24nP/6OsYfA64Fvkmc7/X57e6wmpvdv3SQfOFq5zdk8TqXmJfsGOPwsPrsw8eYtP9kL57ifuNl67G4uqXuuT8uw/65b/Pt/ZpGNXMXI72Lf/4Yn7q6P8RwLM/vGT38r1cxMdfunTKF4axWlUTc3XFE1s6aiBm9ZYvct2Qm9N1v+y+iq8e6ohfTnjWyot2ay0ecy9BxcwOT18dfR7Kmz4/XZ/+lQps1Oe3GPlCbNRCTdioA1w5iktzb4YvLv7UYZ6b6MKDa/3EoKcDyxlGLnIQNz/u9eLxkpYdns8eOfbZwE+fUeKQlwYfqT8f9gs+EqMa8aeXD71w2MpBHMZw6fCF8IztM2tMJr980jFnD9/6GvOvl5cY6MhdXaw3HI0em/5IoHjoizF8ceVn7nE866kZ29PyQbDZlRMdYz7oTjl+9S03ONZAT1f8SC8n+WnkGjsx96LdS3J6XYN6euz1XZd9zofHB554/BJInejDMsbXjMWN2PLPzt7xyy37Cb+1o+es0XVvzt6awLOn2fJlPVB1FasmBqR+1dBcfdofyV0nbPjQ6BejvWK+f3WMau20V2CvwF6BvQJ7BfYKvGAFHBq8aPd9cw4YDlO1DOkghw2HGX1jBxKHJHOU7pr8hx9s6E+bxlt+UPgOR8nryY2jqTd56WRXT+ekeLLd9uWbXfPw8efYXF1R/Hq87I0j8smX938i+pp1chD1ot0B2kNKB+UO2eZ8OExmF755+nqHY3jIoXauO4xibX+YG9O1Pxx0YToAOxwnn/6MyTxwefDiE/ELCwY7pPdwUM+mB5KlcPSDX038cOUJpyYeGMno4aH8sBEHvji8HPDA5XDOjkw9PQR4IKHHFla+jT0MmFtDNh3g+YIrdo1cI8cPSw+/hx5+NNhaVLzlZC5fDyowkstDzaqhmNpferoRP9Vfj6bPqcuWb0SXjK5xPTzUg6qXAz1oklnniQ9Tw4M3/cFhM5sc6evLjw3etI2HH2Vnzp9mXcLpgQ22POVlj1sXuuTGbNo3+taXHXkPjsVQX+z8x9PzI0dxwKu5rsVR3HTEA9++tIe8AKEPpxpWi+nDGPFlr8KABbOY8ci0eOTWz18f5hcv+2Jf4JsffOZXbHQ1Y6SXhwYTFbMx3swJD6VDruWjeT2+2sDAi/CtRdjVO5ypl4x+RE+rznp6yL3tda973Yv6ov3qq68+PPTQQ+v+5KWcfcG/usmhfWnNWo9ZU3FZa7Jinz052vKqI1n1q8dD1YAtIhfTrHmy+mKb+Mt4/Eh3Ym6/OsZ3tN91112He++9d72EdP3ARtnP+PDMUXngpbsExz9mbI2zoSK/uZenLDy8/OHZQ8nyZe4a9/KKrmsvvWTZ6O2z5NVZHD6zyfl01jNWD7qtPVv3DD25xmeY9hX9agjf2P6CS8ZevGw0+x2vveVFmly6R8qTPbkGRzyaXMUQnpe38eiyMxcHHf7xvRArRnJ65csffURfI0N6Mft87+UvHnt18OIZyaczCj98IPXU5MDGZ5yXzvmTk7NA16G++PR9DsqFP7mw7SUv3F5++/wWa/Gx7f4slmKCw45f6y5emOXZOsDh1/rARn1usWer/nISl4bEM1+0exHvhSc9BFODz6+4xKDBVS+1VHNjRE/9YNG3RuR6NnyT683lSKZHePITGz4ig5V/8YjBGrg2+AyDvYb4YGvN2dDR2NlnXVd08V0jiB1fYZnzoVVrde6aoicnuOnAozsJTz3Vqny3OvIi06oRjBkLX+Irb/V1LrTm7Is3e7Z07eH2LRld/OIXn+v7/7F3Zz+3FdXex9ffYXKUDSp2oGgUo0LUC6M0UQygoigoIioQQY3x3iuDMbGJ0cR4b6I3XNkGRTSooIANECTYRC78J876TPjudzjf9ezG7HPed5M5klpVNWqM32iq5lw1a61nPWrUGB/5g6/oN8YXhZ648PMFBnvskkH0ySk9i/DFGmVDTs0/ebrGkDH87OvP64hP1q15FY/xir580X/pS1+6u/nmm3dXXXXVgmvsdGj7RvvpZGuT3TKwZWDLwJaBLQNnaQZsLPwz1DvvvHPZ1M6NUyGRaZNh0xLZDLVRmxsN8iei8A7JGEu/9ho7/tRPJ14yh2oybZ7W4/hhNUY+Xr6olfjqxsjP9on6U652mPQmxU9ujmnHV5tHDwb+eZpvZtlM4ttgGrM5FSvSN5dtesmFlU0b+x4IbF7pWwvkyhkcY2p8tfVhg2wzDsvGGBYdvOzoK8Zs9OdDVRtqvrepXxzfv9Bv0z030MUpJqSv5Cs9xQMee+zytxjEQTbbcOTQt2w6JBAPeXnwkCvWbNHVLx/kskmvNnk2+GC++Gi80rwswPsXesWkLR+w8dT1ycMIjx+Tisu42NlWI76npw+nvOnnO/7MebJ4xsjlW205aQ49FPnmlYd3PDLiqA1DySa+Pt/yZ44Xf/4XYzj02MjPcCcvWTU8RW5gwdVvjVoP/DX3Hs60xefaaC7ZoCsn9BXrRSFf3tkrl2T4xE5zYv7wXIP5Q944XWPlHa5rLgx+yl255xMyLh7+87m8s+XAxvzAIWMcT92aDhMObDlQ6yseVmHn+zNW/8+9lN9i5Tf55NiDjbTFo0yiqyAycNbz23h6+uwgeLWzrz8LOX248lx+p20ybHdv5AsdMvjJwrAO9B3+nH/++Wf0oP2aa67Z+Ua7+5lDL/cT9vmyJj6aF9eemPiOzB9+lO9qFJa6trHZn7qzHRZeuQ8j/eyQaUwbzb72xDPeGvGn/B9Z/TPUL3/5y8uXCXygJ17xo+yFpZ52Jj/ZRfHAC710a+eTeo09IeY6qd04LLquee891qFrwxrCF0vrnh3UPQWW65FMc27cdeYglJ65h+M6J4vyAZ+M+wdMxHZ29MlUw4WjkON7+jDbLzjIdXCczAKwfyl/MMlH+h0Csm3MPM5rkiyesWJV080f/bX/+ko26VfwZv7lAI8PbLdvEHf3RbpiRuTE7IA7HRjynF33SDLxig8+W0htDhB/fHDa/QbPOLvIOGx4sOEh1/U8QJSL5kYc2snKo4Jmjo2LFXb2yLnn2BOZI+PseO9gk1zvf3wzF72PaOPBEB99+QmbfbGwyz9xk5cvfES2QkYu4NLRxhMrv/TlpA8jYCH1lOeD/Iq9mNmkN+XghVGcYrC+9fkhF+yj/NTOJh5b9OCJS97UYfMdRn3+yVdrojmBCyNM8uHElw/j4uBftho3t/iIHTmIsg+TP+pZyOGbT4fk7GjD4WNx4FkTzRe9sPkRsU0G4ZPht4IPQ+6KB745Kn52+INPJxvwtGHCkUc+ksfrA6lynr/8waPjuer666/fXXbZZeD+DXthnORlO2g/SYK24S0DWwa2DGwZ2DLwXMiAjcW99967PPTbYNhotSGa8eHZgNlw0kE2L21Gkm2s/qE6mbnxWcuRSW6OHcU/JJP+uiZrM1YJUx2PjL5NFV4Y+Gs6NC624queeuXt0Bg59tZj+mse2XjqNpRqm8djx44tB+0ezPFsGtXmUZuOeW3zrK+wb2MJQ1uM+nTa0Nqki8MYPoKNp1hLZNT4YZLVxmMLwcjG3EAb0+e/B0JYdMIPAx6CYc7Y0I6vDqc44PmHZx4KihNe8dHBt5lnk3wPlDDw5I28wqeILqweRMgjcvHo85Gv+aQfGVfgRPrskIMjv+YPrtz0EKvPBwU23yc2DKUYjYsV4cmhgvjnYcQDZLzp98Slq69GbPBZXxzWXQ93Did6+DdWrOUIj221WNVwwq5Nj448yAG+mJu7/MEni7ThKfmHR7YY80e/9ZQf5NjItphgiZcPxrIrt8mxDYMcXHm1LtlWK2yR125d0oEHqwfD/BS7Ypwuktvi0fdhhsMP+ecf+Wr3fd8cNMYvtowVq7p7v5pMeTNWbPTxkdpa7PonE/Gz3PCxeGEh+PxD2Vk6qxeYChm5UOjiwdVXH6J0jfEFwVFQuGr+mU91Oa2dLfPE3vTXGIJP332EnnuZvzS64447lp+QSW4RPo2XYvMPIm+88cbdn/70p+XAZh7EJaPmHz/kyNz0Txr5zkdrBB8VF70wpmv5XO7m2KH2xKCbPj5/FBR/jYs/MbSV8l197bXX7j784Q/v3vrsb7T3jXZ/teeDBTlonYWnZm/i8UW/YjwZY5HxfNaO8GbBb7w6WT7BTqZxtbjMmZ8sueiii5a1Y46sI/hi6RoMLz/DwZdf1y4ddf/DIR2YStcwOfpsu++77/DFdalmH7Wm9N0zYDjMZIOccbp8CruDdnJd5/lKjrxrxH2OvjH41qk62+5xbKD0l87+pfUETwyIT+5zYoOLtBVyFVh4rUs2uk93X3RvdsDsmsbzPia+sGGQ0RcnrOJiB9+88SlMMnMuybCtZgfB9SFFMRnPbzFp48E1F8UgbvdifcQmLHEp9PDEoE6OjDHYbCryrzam1CfDf/OiwKHbOL/w+MG/bIRNjvwkffGr5Vs7/+QEj//Z4I/rHD7Z3n/YRvlmHI+eeYFTTHCtUfPHRxjujf38Hxyy5BRy+vaRrlPzI6ZilZPsl099vrRuxGfMGm8+9MlZP7C0xeTaYIM9/sHhI5vlj27XND1j+SlmPHPd2hQTXofM9OWEP/nPNpo1Hddw17Fx+ewnluj3AYwYYPGDjMIXtuRPXyxhiUlbTN2DxME+Hbrw7cnV8MXDBh1FGwY/tWGy0b2I3a4BfsH1gaw1VJz4fRBCH5aDdv8X5e1vf7uQj8sunVN42Q7aTyFJm8iWgS0DWwa2DGwZONszYGPhoP1zn/vcssmyWbEJaRNss2FjYWOqtPERN5k2I9XwUH1tvPrayRiDHZ1ILp21frrVU27ysh9P3WZs6uBlQ9tmbm5g6RlPTt/4xMCb9rRn37hN34wd7xBN3SmPn8346uZE2+bz+c9//s5PCTh8YTPiP7/JmW9zazzcNr5tMPODTWugB2ptPA8cdGAifJteh3v5RI7MzB1Z2IiufIdDTmkz7QEDLp/bNKvhK/jFBae5g21cLH4DEr6Nu0P2F7zgBctDgU0+O3yA6cEKnk22jThqw710jngRSz6xX5+utjz3ACwf7JUPNZlK/EyJXYFP17XqwQieOVTmgSp9MYhLrDOv5sZDg7yYOzGSYxvxi7x++feNSrKoB0w2TofYZJvvxSIefrKlNuZhSM0HvGJmi5x+vhonD1d++STf/J4PrcnnLz0F0VGKW34jeo3zvwdY/iOyYafXvNKz1vjLR/bCyz8xIj73AErGuDxPTGu4ucLnQ3MJozVnXSA41sXf//735ScMum7V5dghjKJfTHxip/zze15ncPHIV7MTidchgnwlY6w8yk9xpVPNDv2IrTVln6w2PMWaQc0lG0fZWWNmN9/EpcCSB3xtOTY3cPOtcZj4sMolva4xuu5jL3nJS3a33Xbb8ifoYaz9OVm/uP72t78tP/3mH0Vmx1riU76woc1vvpnr5lyMfPQtZ+si3GLRV5q7OR5PjdiBN2nGp50v4Zrr1gjdbIWxlsfPh+afnrZv9s+D9gcffHDnn6H+9Kc/XQ5Q5J+t6VPzChNOPmRDTYauetoPR/zkKodkjCW3gOxf8ODGn7GS4Yv7x7nnnru7+uqrl38W2D+kLGeuf1QcrsOug65huXFvhG/86aefXvJhHeCZe4dL3q/LD59guue4L5FT8K0vvltj1pSaHl/gd/2mL0Y+0XeAZz9ircULG46DM+9XanoIJl/Lob5/Auw+xy6+GOWLf3DYpu99i4/0/QNVsvpIrZALW82fCCY8fBjsyQdc+RUDP9zr6GXXdU5PTmDQEbfcIf5G9ODCV8RHB7a2OQjXISuMcsavSfRgw1HD9fM15IuDrwiuImd47R+0y4NafuSJrPkrBv6RtbbYYa++NUCX30r+8o+9ijFEvrjJpG+MbmtOH1kf/nrHb4rPefTBo7VFx6Epv9jiC//g5itM+Xze8563zA9cOTJXxsi7Jnww5Zoxl3DZkwf5SNaatdfmU/HCaw5a63wRn/uv/2tiTco7XGvKIS5cftC1trp26fHXPw11mC0OPsk5f2GLD3bXOB1Y7dnMJV5rjY18Eqv3bX3rFyZ8mHT4iORSQeLihz49HwDIAzv0xUIvDLmD7b7GJzpyaD7ZL0/WrHmUy+4H5FB+iMszDpt8EBN/rSMkb0rxygtcNXn6/OAjX8Tg/wKQ4Ve+mWs47pFy7S/SfLh9+eWXL3byZ+mcwst20H4KSdpEtgxsGdgysGVgy8DZngEbi3nQbjNho2NTZPOg2KTgNTZjboNR3eZryqzbUwZ2NPnx1PhzzOZnUmPTh3jpq42v+bDiqZV4aps8ZW0TL73Zjpc9Ncq3Z3rPbL7nxjX+up56tdVKtrTDqrZ5tqE977zzlo2oBzxzaFwsNsDaNpvKnHPjdG1qFXLw1GzODS2++OHZWJcneDa8HhLymy458lGx6OPb+LIdFt7cmOcL/AofEHz2Fe2KMXZspj1QGbe59jDQhxAdXhoTnw2/a4A/xlAPDWRQcS2dZ1/yj272ydXGh43EiI9ghiseOmKPR4augoy7HuXXw4VceLjQ96CkD5+82oOZPJb7Hs7Y8oBhnsUXsSt2duh5kPEgFEYPbdO//KKjTNKXGz7yt3uJXPOxPJDhew/r5W2NRScbajrF1JyJSRtGshNHO7/Ybf3RWVMY/OY//+Quv5uz+unLT988oyNeMmzIpdI6wOMzHr/UPfzp889aJKNdrvjTgyUpAg4UAABAAElEQVS75VmOFLnx8OjQQY7IV/PHmvHgCUMciI/WQ9crzPDKZXb04YgP5Rcb+PozP3Iy81QbjjY75OUFj76S3GJk/9IYWZgKe+rW+Von3UP19DM8PKRvfvhUCVttLJvki4EeeXls3uZBu99qF8d/Qtl30H777bfvHn/88X+7lvlDpvyxwU/2zHWHDfKnWAfmMFzy2pVygh+xgZ/MtBUOe4dibJzt1klyMCO88NNR49NVZ/c/OWhna52rtT3j5rFY83P6M9tr/8ViHL+x4pq4xRyWuFzzPhC+8sorl/t417GcKeYsLNh41h+y5uDLk/eFcg3D4R5dNqwFfQdb+uHxg333Ibz4MCvWlMKuewsMdvjSutd275RH770OrsjRQWGT7wDVdVKu6PKVHT5pO0hkj7/k1LWbL/dQB598dT9yYIrgyJG4yOij5kgtBnja5LT7pquc2FPhu7/Kbb7AwhcnP+LTEVsxwYu05UJOlOa0uO1dxEDX+4k88QvhacthPsNrbsXJb3JiRXzWl2NzAds9wQcu7gPa4ZPX5n+HkhNHfPzkP/vavZfAlQPEDz6i/FXzA984veLQpysWRU7JayO5dNgsH+zwibwPlcu5D6X4xYbCP7gVOnAc5MJHsMyhHGvLiYNXOYQLA1/eujbI+4lG+0kH4cXEX8SevIgtP6wZ/lnHrj++i+e//uu/Fl+KnRx9JHZ22eC3vnmGzSfYZOlY63wmUzzFJAbXg7VmnC7f+GF/Ss5cy4/8kaFTIYuaK3zEvjUlFzDZhVHM5PFghy9OMuKSX/6Tkxs+krd/7Xqba4eeMdcHH/gKo3VknSvlydr+17/+dXx/X5zmURt2H1A0d13LcKwF+fYb7Q7ar7jiiiXu8rF0TuFlO2g/hSRtIlsGtgxsGdgysGXgbM+AzcTPf/7z5adjbLDarNhU2PC0wWojbUPRRsdYNDcabVAaW/fjqyfGlAsv3qy160+s2W7cBq+28drVxifhV/CNrzHwbQ4nRjrV6ZFdx1Lf2FEEJzl1tsjrT179WZtHm8/Xvva1y7cnbeCbU77ZWJJvfm1OjbdhZq+NMpvm36aXDmqd6BernNS2dmx2ezBpnm2ubWjJIRtj2MYdCnSgyz/2YWrTM47Chk8fJauNx9cODmDYLMtHG3K1h6sOIujxQQ74oxYbPQ8ObGrb7M8c4euXF3VtDwhs1xezvMLXbhyvvKnJw1Ti8w9f38NFuLDygbycNI9kwiifbMGhI0/acjfzR0bJhppNhZwxvk/f8g+u3MMmpy+v+u4vHuQ6YGEbNizY8JIln4/yzn94xhVEnn4YC3P/wkc6MOmciPiAYJKFBVe7MeP15ZNv6nTSn/J4iB4/jImHXnbYKp947MoFHnl14+mSady15QDAoZkHa2TuPQg2B3xkU+7l3Tj/K8bg0NFG6bDTGs1/fmgr5OCp4c1rHZa1iW986tRmq7jx6OgnL1ZkDDUvS2f1Qoe+OsyVyCl3p3224SnNR2sOD6mtN+OouUq39UlG2z3Og/qnPvWp5Z+iFt+ifBov2f/rX/+6+/jHP74ctJsvJIbimJDZoqttjhS5634arlrOK3DSC0fMxuuTqR1O/fSbx/hrX6cNYxF+mOkUY3O//meovtH+xS9+8fg/Q5WfdLNffLCzFy9fp0/8oavkD15t9dRrDF/JLj45PqnRHNPmj3GHaq961auW96sOe4vdmprXc37hmx82Xaeuf3kyrt+1qz/XbL6E7/2aD+TY6X29ePitTd44LBjZp8+u+wM514ECh+zEYaf3+3n/JgdbPMXnOvJFAh9CeF+ma7yYy633em33OIds5Lzv8xef/XWdvemf964nnnjiuM/0ERm5TJZ9NsQodkS2A8hky1e1+XE46p7uQFDO3Ncd7tn/wEXyAp/PcoHU4ajlPhnjZO13fGNaW47tCR0MW1v8lF85ak8hLxF8MmzzA75xPjbn7CryoORHfsIw5+IUV3bwYbQm9elPX/DYZo8e7PIMH/FJIROmD5j7QAkPzbhgmCdrRBsufbljD8m/91N26MJRss8mIg9HIUdezsoTbHnHo8MGkpMOxNkWN5/gI7VSHuWmGGHDMoZnjG9syJNrTp9cpE3OWPcEGOTw2Ne3VuZ+lw5f5aI5IFehbx7F5a8M8LPLt3zG558YFTL8x0f6sFojxuS0DzbKG1k6PVMUp3UkhnKRD63v/KfPfteEcbZc564/8wUTTxF7/Je//OXLe+72z1BlcaMtA1sGtgxsGdgysGXgYAZsQvwzVL8Xa2Ojb0Nkw9UDgQ2LTQi+DYdNnw0IfpuRg+B7Jrw2Oodk6J8KhRFeNV2+oGRq67dJasOUTGP1jWvXXwCPeJly2mykp7b5U/AR7Gk/W1NvbSo8sig7+uUsmcaNJW9uPIi+7W1vW37b1UOW+TOP9GxO+agNz+bTRrI5JYuKw1qwAYVvk+yhovjI4esXuz4MeAq7eB42bW6zzaZNsXGbaRt031Dhuw01zB5gpj3ybaZh8cm6ZBPfg4tvNnmwxodNphxo84Wstc4PtWtAW17g2tz7Rhx7/PBQSkfOyPRwWL7kAp+vHeKLW4HXtaMtvmLUp2OcPjz+IDxEht9w+UIXjzxSZztefpKLGqtf3bpqDeAnq66NX0xqZIy+3PWtn/hk5Mw3lBwkWEdkxeLBU47NjzibH+P0PNB52PMNLpRv5UoO5MJ6hiM3CL9cLozxMuOIfYjX2P9WLd6uF225UCNrwUOx/CZnrTpk9efnDhOQ67gHxdZkcxOWviKH8lxOF4D9C571brx1E0ayZJoruK4DPqqNkScLRw0nW3h08sGYPjw2tcPgEzkyxrQn4SkwrRXj9E+X6MCxbvjBfjj42a9NLmLTPS0eX+ijcK3F7gfWs5+OcdDugT074Z1qXS789MDnP//5nZ9MwLNOFPkQC9v8RuaHPb7yx5y5No23vsphsYo9W3TFVnyNrWNIPqxigqnEn7W2guDPeWhsjrcWp7x/hnrTTTft3vKWtyxYDtrvuuuu4wft7jl8DRte/mizqy5nc6y1nL11zPHpl5epj4/YjqYtPPbDVZdn/njvMaeudfc8uubRvVEuuv7okTem1qfX+xaf8FuzcLTdgxV6ZJBaXzx8geMe44O7fM3fKS/PMwdyZ33RwQ8vDH22FP4ocOVK3X2te4r3jQsuuGDZ31xyySXLX6qJAZEnp67g48ld7zls8UshJycKvn5+hOkDzT//+c/H3/PF0/VENn2xIDWeuRKn697BdvMkNraNqd23Xcv9lEj++oYtjHDZKl90KzC8P+iTt4dqHux1/PyQb0vT5Ys9IX/aa9ETd/NQ3PiofJCZlLw63/KPHHkYxtsf2J/JA58VeRQvgqFNthzjmV+y1nHj2uRaJ/LtehA/TPsN+w7zToZfZFrT7PGvQgaecbmD0XORvWn7C747dOUfH8jp44sTHjvWWv3yDkNxwGtvyY61BYOvjz322PH3CnH7QIR8+bVO7Gvts9jouuW3Qge2fGkXmzmQN/3WHnl8csg4P8j4VjrbyLgxsbZ+yfBd4Qcc4+ripuOeARMfqed8wcZTrEV+a8PKX7UctFdkG6b1MO9X5p09c6bmGzz+0YEbmQ+Y/soVvnsaX+jJCx5qTYhbgXXhhRfubr311uWnysjAPh3avtF+OtnaZLcMbBnYMrBlYMvAWZoBG4sO2m1G9W0a5sGr0PDaTNjwtZG28WhDQjdKtv6JxpJRn0zOuNKmc+rGS2bW5PKZb9qVMMjjqVExF0t4cwwvu4vSsy82dPRmTS4Ke/ZrH4WZ/tws5mu+VdscOnx805vetDyQ9pMpdOG0QSZv/mxa1fyykbRhtUElRx6vDbWNvQe3/Mnv6nwqb9XGjdFLpvwYywe2+G4DzSeb3vzRNkdkyiGs8ODAtAG3YaYPx3pW2uDj28h7UIKJT0+tGGfHw5VvzMHXh0UHNnly/K4vNn7hF2fx5yPfwiMTrpi08WD3IMEf8o3rwyQ3HzLCNE/4ZGDQ61s72h4u2CGfTLbE4T4gRjJKuW8tyDEfxCFOOGHRd0+QW9Sf9ZL1gBh2/vNHKY4Ztzb71pr1wFYFdnbpF7M2iqfOt/jFvgg++yKXZPmh0PnfIrkQl/Xp4dkhhHzpy6VxPMW8yH1k3sjhI3nXx6eniKV1Vpxdy8bZai7ToR+VC/ORbXJk+Iefv3j6CE+bbKTd+oXbXKibMxiuSX3+Zj+MWcOTu+yQhZ+fU/ZEbThsmXuUz3DKGX9aI64Jtsip8zFe+rDCdfhAzyHXi170ot0nP/nJ5cB9ypI/HWLPAY/fIDfvsHwjtnuUvpj4jeTVNap2Pcpd/v/hD39YDvn4m0/G9CN5Lt94M951O1xy4alhTFz4FbKIzCzGy79xfRjmhxxcfd8w9E/qLr300qX/0EMP7b761a/u7rnnnuX6kYvWJRxk7SkIXlj5n2/5swjuX2Ys2uk2rsZH+atNrlou5xj5dNjXVvPb+665c4jk+kVqh6XGkNjak9Gx1tTsGAtf33rsQMy61IYjz/p9yNx7MV2+dzglZ+zTo1MetcW0Jvk7EYkzKg5rVPuPf/zjzj+0dRApB2yJy+Hxsf0/fHdAJy8Oqf2UkoNLckis5ZT/9jUKe2T4JQ54+OL2viWvDhrx7QO8DzUn8lNe8BRy+OKHWQwO8OQDtnG+GI8nf3T55t7H3+y4pr1nuq8bpyP/xmHAYk+fPdc9jMaNIe8rrQtjDmodQuOTp6vIBx/ZgN39gg6+PGlH2njFJg5zIVfk+QuX/2TlzHhjcMJg0/pbz4VxOaFnLBJ/OYintjbYNUZP3pQIHlIrrQ08baWxiQ9XPsXim/K/+c1vdu4vTz311JI3H4jIqXgnBh264avlSS7Ks3ljk5/mXH4Q/+WEPkxx4Zknc4PwjCsw4rGRvLxZZ+trlQw9cubQNeT9BA6+8dYXGTjm1lx0z2mNGKenrhgTD4zmXP5c14o1SdYY3/zeeh8ouo7lxRyQI5NtGNYuX+kZkx8+2yeZC3mSYyXf8k+OtMUnDrpdN3zWTsdY68jcyoG/SPO/QLafjlmW2/ayZWDLwJaBLQNbBrYMHMqAzYaD9jvvvHP5RJ+MjY3Nkc2MjYU+svGwkdFvw2LDZxOSzCJ44IV8ZOMS4c8+frKH+I21CQonPeMVMvHVbShrzw1wOlOGnLj4kV087elbuvHU9NYluYmrjeikT47v6xjxD1G46anbZHbQ7tspyCaxjbMa2dyb5x5G8G26bUBtYvlBz4YVtgdRG97/CZIzftgAR/rm5T8hOeWzDbsiL/rWrQdgxaaaXfzss6nv21H+PF0O5IVfHhDok4XnOlHCbv6zPf3GI9c6Swa2HOPnBzmFL2oySnbp6qfDjra5g5UtbQcHxhQPJTO/8ORATB5oPKjIC+ILvB6c6SM+zTUTrwcreOz6gMe64b+8wWWDTdjF1FqHS5c8/xW2rTlt+OzSpYO0xaPwjxzc4jQeTXvx1GHwecpPmf/pttx4gPeQKA4PkXImTgdM+B6E5a71yCc5sf7ErXbvliP9qHUCV57KDSyycp5O64E+O4q2OWle0mNP29pxfcHRR7OdH3CmX/jw5/y1BoyZC+Mnm5OJqQ2DH+lNu3hKOvDzmR9zXLz6+SeP2g5I5JKeOGEoh4i+deV+Ku8dtN9yyy1n5KDd9eSbttaBebBWrBNtxDa/xUvWPJs360lbHHx84IEHlm/F65PFQ9Xa4pUT+Y2PVy7VSph0UHxtuogMkjftmT/y5JpHY/IuFpR865E8f975znfurrvuup1vOes//PDDu6997WvLHsd9TR7MV/JkwtLO3mJk/8Ju/tFpnRifcWvTJRPN8XAmBt/ln10l3Wo8pG7NdZ01n9ahw2Zriw0+dB2S6Zut2cq+teKe2iGUe7z3enj0tB14df/GQ2JyyHZsf7gtb+TJsX2mSawdBFubd9999+6p/aEm3+VErPY1/sE5n8j6aZdHH310uQbEfIj42n3edYDEgScPsDrA7x9bOnRX5EwOyLqO1XIjF65tfW2+8d893bpDxpVyRc57m7kzv2JqbFHYv/DPe4B1Ujzki58vMPlAxnuG/Jhn65yctg8e+kka2P4Syj9PdpjJR3b4y4a5F6d29xR28NnShhvNtSMO68G+iZ9i5BdsJGetKbLiVWCQlw/85qEPithj+/8Xkj8f/Pzyl79cfrJLnvxFkRyfKolRTObHNStG8ygf5Vfd2oBrfTW3cqqNyLX29Juj1pP17VpX4FX40PrV9qGO68h497Psk4PjnqJ0LbR28oHN1qq5lxvYdI2JtfVobdMzZt34ANqHWmL7y1/+svhjHdvT8MO1SQ4mDB8YWTPwxWy9ef/zgZu+NVXM7LBPRrs+GbJs4sFms7kwJhfV5uzFL37x7kMf+tDusssuk+7j87B0TuFl+0b7KSRpE9kysGVgy8CWgS0DZ3sGbCzu2X/by5+xezhHPSTYeNgoKTZ0NihtwNqE4WsrR1GbGuPk2xzqG0OTtzBWL8nNet22icJTV/Qr8UBri0dBYeEnzyebKzXeyXxcgPYv5NYFTjbIrbGSDyMf9E+kN8fTUZsPG8jXve51y+8Ae2Dkgw2pDXmUjjEFyQm5HrzJmHebYTJwPUiVq7BmLZ4w59qIX/wzbptba408ewobNu3aa7+NRXxE1drsw8KztjuA1GfHhh+P3Wj6g+dB79j+UIEOH2yyPYjYjCO6rhOFn/SnD4vQgZcebsqDnOMp9PkeHhn+irf1aoyM/pwHfXlS6JVLccAly4ZY1PqwyIlFXB5+5AaPDTF7qII57Ruf8cKBka415KFJbaxvs3dfyRe4fINV3GpF3B6k+E+ef/TXVO74B2fGOOfDuAJrEpl0pj+wlBPRehxW5Si9xtX05UfePDh6gJRzh6J45kru8K3jaU8+8MjhtxblDmWnmMXdOhYnOfPY3MHA09dujuLhTx32GtNOj27tclCs5JXw2Whe8PKZvrZxZZJ1Ya0pdNmWi+TysT5cBYWZD+a9taxtPMoHuZI3ttTuhemxq23sEMGj474Jx1r2oO531f2ETH4d0j0ZD7b5939WHOjJi758iAnxDenzVdzyZq1p8w397ne/O/7zMwtj/1Iu1Pwsr7DwJn/mWC7SLb7G65cvcuYpPLbJsFUxzs9imdjh4r373e/evf/97/+3g3bfaPdlgpMdtLObvXzMJ/azk39qFL+cPMP99/f41iH81hR5pbFshleMxsXt/Zi8+4J1hNQOLo3DpmsNsEHPmjOWrWT0rWH3GXYcRrnHJ997vINsdmHBtm7cz/HpaTv84gc75Jr74iin5YUeOaUY04nHf+/NDo7Z9EHSPft9qgNOB3v0yPgA2c+h8IHsU/uDeIft3qPlgVxrftrKHhk25cL6kg+xi89Pq/S+OX9mRTxiLVfa4u8gunzz27XIFzpsdq3JDbv8ZtMYGT4q5kd8vQfUV7NFFwaiz6ZYvHeL1xj95qAD+94nHAj3D7LZoEOfD+ZU0Xcf6V4iF2Jmm7+IP/p8UvDJWEvWlFjgwCeL34c/ZMPivzjkkI75kBt+wJU3bXIz9sWJ/QsdpA5XLGyqI/kgU0mnupyykR1+KcVnXuXv97///c5fAfmwQozy6RvtYcDUZl+tWNPyidd6IWd+jBcHGdRaIm+MD+T4QGbqiDt9dWP4/JdTNruPlnM1GWMw+UJG7mAYQ+FYB+YGnrhbP2zK2bTd3OPDVFsLPtyxVl0fbLDtmaIPs6xd+STHJzpit37Yh9ueyLqAjeC7z5sffhS32pgySUz2l+yxQUcN35h+pC0n/PCBgIP27RvtZWertwxsGdgysGVgy8CWgf8rAzYP/uzcQ7+NS5szG7uKTYi2MRsVtQ1HGzH99DKgP2luWPAbP4p/lG7y1eRsiGwWbYD4V9/ma26W6KRXXTxw8PJLrYhR7CjerMNZBMbLUfwhstibNo2FXe71o0O8xtY1WRtQ38Y+tj8oduApFvHKlYLkxyZU31jjeG1O+aiQTaeNrf4c4y/bbNmw2kh7uNBH1pKNs4JsaBU6c52xpTSvHtpsxuHH5wPb+V2bTg9oxWXzrbCbj+yxrS7PsOB6iNC2Cbf5hx2+B3oPF/k9dZegTvACg/9s8E2bnbDVkZygdNjhq1wq+samTv7DNs5HNXvNQXbTU9ND8M2bUl6Mlcd0wjWm4CtseQjkO741JEa2PeT3UAY7u7DT5QNf8wOOBysFnr45hMMO3Gyr0ezTmdTY5GmT42fzgccW/PU8GzsRsWH9wJKPNWVL3ApiRzzZwnM/kwvy2nB7CCQrBx7sFWsbBqLjsIN9Omzki5iMuz6UxunBy1+1YlxB8dTlpes4TLbYMH/8VqLiDi9sGOTpwRarEiVfn5z7iodphY6HckWcET6iz7Z+JUx97SmbvhofZnOhDUtfHY66MvW18eXHmpAfhxTnn3/+8huv/gQ922u9k/WzLe4vfOELuyeffHKZU4cR7pV8JGNNWS/yXI7Nn7VkDVgrfHBw5FuZZFpL2ciXxtTG5AAVw5TP1uSFQ6/8Tbkpq11fnQ5b1otSjNm/9tprlwOQ+Y32r3/968tBuw+q5L81C5NefhSH2PmE1BX9fKqeunNc29gk/poLBYVRjVcutCPj/PYe2P3UeoLPf/5279DvvQ9WB1Ww8kcNhz/06PiJFB/GW5tsWRMOvnxbHF45cGgsf9YYu2F13cFSkFqsrlVrTRx45ow+XHoKe/ltnA9kHfqx7VuqvoHtrzBax96HvS/wm759hvugeWaPf/mgFq/DPT7B5A9bFTbFozQmz9rsOCC2jyKPr+5+oG+voLjOmxM+sQmD3+aDfeNIzHQR/8g0l3zkt1oO81tO2M2+Njl63mPV7OGhMMLDy76Y6SPjrQm1Pv/ZI+cDHR9AyIX1Y9x7BpnmBA7b5PnHNt/NCUyx9t5ITimH+QmDjFyyEdEvpnhqGM0bm9awWr6sB2sBDjn6ZPnBbrbLQT6wr9DzcyYOVrsWzJlS/PKTff7g67PretGWb+vAB0bu13K2Xm/h0bFOxIusc1h8K4b81I/X+tAXjxolI+bWW7E3/+WtewDb9PjOr3JPvsIHsXsPFht864CeexUb4vSBbtejMXy4KDtybV1Zu63NrpPitubIlXvY5aac840P/ELiopfPeGxat3RgWWds0uGftjFttsXl/VTNJ777gPwjH/nI7sorrwR5cF0uA0e8bN9oPyIxG3vLwJaBLQNbBrYMPJcyYDPxk5/8ZPexj33s+DdvxGeDoSCbDiXCtxlR2oy0MSFjHP8Qrcfqh5N+uviKzU11myYbNlRfnYyx2mTYmXG0cSQTkTmqhJEsLLKTJpb27JM71J+82tOH8I3Fn7za6umPubGJdJBzbH/Q7qEZz0YR2YAieZI3usXEVrlKftquXb7JtnGGqZ8tG2wYeEhb7o0r86GyNr5NLT/g9i0WD9P0+WxcDK0LPO3iaUNOjr8eXDogzxf+GIuKw8bcgwJdm3DfZoPLtg16BwetoeyqERylPKnrGycHu/zpK+JV0PSrPPABlc9k0jGWLLzG48srmrayHW8R2L+wpcCb86SNx/ds4BWfdv6R8+BvjKy14CFI3pLnI7lJsI3DMW4uFXJwjMGZdtInHzZeOvTWhGc8meKlj+KzI66jKJz0+G9+D9kMAzZS53Px6CPXbwcaPWT20EjG9SK/1raHTvbhuS48tM71Bc+4wq/WHz4SXw/J8kAmP/JVPx4c9jtkyD+yxuCRVWfXWOsKvjZfXdf8IYfIZXNhjBeY1k/XYQdQvlX4+OOPL38yzi+Ur2wVT34NyBM26TWf5WXGwW8x4GUPIL14ycsRvnuKB/XbbrttuT9PvRM6sxqEi3zL1++9+yd61oziYCB75V/Nlrq54zu5cByKkKngn8i/xvJFrUx9GOKOzAEZ+UTJds0YK+fqcpm+unXVGi+2d73rXctPx7zhDW9YbPjG6Te/+c3dvffeuxy6sUkXTT+Lo9rYoXG8dPMrXvxFYP8Cq9xru77kfb0G8z09dX5os2OezGkH0uVKPHLQvULfWPfM1iYccoiMcf4obLlfKN732CPbNW28e7afZHB4SaZ5zBd98bmPofTc9+nTEas47Ef4wJf8EQMsfX63luE4yPPPzf0sjHsdPNe83POZLGy2u1/TQ8033xzY8wexQwaGNv8q4lfqO2TnM//w6TRvfDUv8te9DD6ZcqLNvvs13/Nt1vCMFUO+ZQtW4/wqV/hikpfw6SBycM0ZPHGi9fowBodtNrTx3F/hitk+yEGs+dMn033Y+wA9dlurDrz1YfRN7+ZWnY+wFPbYR2y4T7a2xCBG4+U9LPa0YZDXF3d45NnSbz6nfeNiUYtBTOUXz4cLDtvFDtt1Me+tdNnms/FigNV7qnE+mAfv12Lhj1rf4br1IU/WuHbUfPBJTtgRJ7zsuga0YSpThn9dy11zsOhX0zXmZ1nst9lsrPyUv/zC52f7Dxhizz598RtX8yOfyZoDsnDszV3PPiwmP+eHPTJicH0p+tac9S6H+nTkZ85hc2UM8c/8KmybL3jWuHsMv9JR68u10vXL1ste9rLdzTffvPxUGVxYp0PbQfvpZGuT3TKwZWDLwJaBLQNnaQZsfBy02zT4RrtNSpsfIRnXnxsJbZsmxWbKxkMhi4zXXhjjZT1WPzuJ4iN8Nmx4tG2Yeqi0+UHGFHJo2oaj8M8mS3yojV86yRjLdjXemubYbJPLfnW6s6+tsE+//pShl3/x6xuLVxtOvpgbG+fXvOY1uxe+8IXLQ6LYbU6N2UQieHDwbSTJyJXNq82oDag+XGNk6WvD0J92F9D9Cx49JZ/x2FCnp29eyPFBgW1u6Sk2zx4APDyQtwZskJX8x9NWWwt8s0604cEVT5vy/OQHPdR6puthQ+1h0YMWXPoeiDrcK+7sksErP2p9ZL2JMXut13JRHIvw/oXcJH05KZ5sJ5MdcrPwKaxk0sHPd3U+iFuuFfo9LInfXNHrwa7cqsVr3ByJlT3fdtLnt5qMMaSun4/4tZPLR3z+6MPOBp1iU/Nl9unMPJBHYRV3c0IftnG50J62ntF+xk8+Vcjk4yF76YVX7PXLT7E13/p89EDoG5XWZvc+fDgzZmMOhcSD+DRt5W95ZNccq/HoK+Qm5Seetrl2XdGRJ6Xc8TlMcgqSF9jV1lg//UCHzeT1o3zJLuxi4rdDuEceeWT361//erk+yZNV80/Jf/UkMtPWHCsXcpkPxrXx3GPEMMeKg81wxet+Rc78+Ua7g3YP7MlMu6fSzuZT+5/L8I/ZHLTzV166P7I7C1vmqGuaHXHg90HktC1X0z824RVb6w4PGa+kV1+NZ37VrU9tY92vYfO/9/mwp190FLJ0WwuXX3757uqrr95dfPHFC/9Pf/rT7tvf/vbuvvvuWw652Gxd0ENioB/BLGeTl3w8dTw1fyJtuBU2vfd0jZObMuUZTphh8cW8ej93D1CLg5+uOde6n1Dp29b0yTgY9C1cOqj3y/Kbb8a637dG+Wae+Kxoy5G/ePCNXP3yyDeYeO4H1la5UJdbcnT4wzfzS684jIuVDj+89/qmPfKe6xq///77lwMxtswte/TkQ9GmG8FS5IRfMNRsstWcGI9H3/sbrHj+qq3fhiYrJjhyKNdyb7z80dMOgz9iL2/6/LIeYJTL5OCzU4FDPj7f2VDkwOGk/bv9Gjx6SE7YdI9Q0zPWgS19tuEa50/5UnfQTs6HDeZEGwYdth12qtmFL3fmzb6JfRj95ZE4KjM261ifD2o59cFF73V8tP+QczL6dKwla3fOfeP8hGMe+IXKm9iQGMTcGofv2/f5QU7MfQjFTvGLl5y6NaPmJz22yItHTlynxcmuYj/pgNlfa9Bzff3qV786Hg8fxQcLtg875BYe3K5//OZGbsxv1xf/5BFPPvi/JrxsmB8Y8KPyNft45MoBDDHhF7c++/Hpk6vo0xf/D37wg+UfzPqwl/6cK/MiHjEq7MqX9Q5bn9/WqL411zoSMzx26Bgz3+nIrw9AfMgBA75rWV0OYbrGzBecl7/85cuX03ywi9b5WZgneNkO2k+QnG1oy8CWgS0DWwa2DDxXMmAzMr/RblNkA6IYa7NlI9FmQm3joRjXT/5keSEbJtn68fTjq/FtuGyA2pzZOLWBJm8TpSSvxlf4xU+1DbVNErJxm/7jpaN9IipmMtqwJxXL5GnzPyJTwas9dYs33ro/sWqLAZlHDyEOHPwesE0+XhtTm/Zs8t/DUg8x8tLDm01p+aMvz2qyMPThkMk2P/HKZ3On34NcscAyJ3zgmwKbjgLfQ4WHBA8V7FgP2jbBiC14bczVfFPw6cBU2MsvNssBHH3ycNmk7wHLQzZMOfIQoIZDNwzjCuxiUiOYNvj8oJOsNnk1yq9kFuZ4kQuF3CQ+xGOLfhhshT91ahuTZ3J0kWtLvj1o4FsLHjDMjfmjIy/G9MuH+PQVbfHLl7wny9eIjDJ5jR1Vw1H4mr9in7mGifC1+Us2vbDrl5/Wc37h96AFqzzjhxmW8XC0w2581uHzGaa+tutATV897eCZFwdqcq/NBv/UxpHaGvGgqI7gsZMcfv566LQ+zROSh+JeGM++8DX/4GjTRXT4pJ8d6wamuKwJ+nxy7aoVD7nuTw6qipcO3emr+TMOG56ij6/9j3/8Y/npE79V7oHYGD6M5l6bD8ok+cOb9hrna9dHvGp6YnaIgfInLP3Jh4PXQfvtt99+Rr7R/tT+EO0j+z9jd1jBhutRzNpyrK5dDuTYNS2f+SnncpbPZJNfmPsXuDBbc+aVjD6cWfARnfhy0xqig8iRkcvWRff31soieIIXuGJ5xzvesbvqqquW/03Cpp9q+M53vrP7xS9+sRymyAN7+QOSPwoqlmLM93xdhE7yAoM/cik/sPXlvOsARDLktNd+8RHxwfXlnuw9vfuUcdepn/TwjVuHTPryIJfet/zkhfs4mvcKmPkJR57LtT6frAff8nRv0IfrINC1JhY+wylXZHr/Npb/bMuf3ONb/+5j+mSUYiLLDl/sWRwgIvsQh+SubwfK8uiDNfZgK/wQYwevxUefDT7nO78V14p7FlkY/KDffgOPnA8D3VPdW8iWHzV5uXdf5kNYfFHEeYjIzTVRLsgaYzce3PjwyrlxMbiWHRCbM/nDR/yXK98UFic9uPY3fDMfijUqlu7n5MKGr20+rD/yMOiQL4f69Kw38yZnfDV39gH09Nktr2pzLe9h8tv6lW85NU6396iuKTLmSSzswobDJ7HwGUb3Fbhk2JEjmGpzELbagSteOWQfRj7CSa97JvtyA9+aNK6NB0dOfPAgh7DEzb4PIPxPAWtZHv0DUPcqNhW+igGWvg/O5NY1BFcuHbzLtfdQctaOcWP02WFfLvHokfl/TeVXrsX/3e9+d/mQQU7kE5Fp7vnempBfc6UUi9jdV4x1ncq1OYDHjhx30E4O3/qxPt0b9M1RH1zKOXy6Poh2IG/9+YDcX4F7r0H5sHRO4WU7aD+FJG0iWwa2DGwZ2DKwZeBsz4CNzI9//OPdRz/60WUTYVNj09DGoc1QcTZmk6IYx6M3ZfFmP/1ZTxvJqm0Oldo2pTZR8W14FXwUf2Lzh3895Opr4yEbcbwoX6rj51d8faU+Oe36yac/a35G4cy+9tTXXuvoT5n017U4bUwvvPDC3TnnnLNstPE8hIi7DTc9fBvWHmCM21iSbSMrPnI9IJDVtjHlTznI5+mjudOnHw4b9M1Dc9TGmW3zC5uujXAPJ/Tp4Yshyq78GE9fn1121AjGJLpK2Gx5MGHfJt2DDEybdBvtcpgOLHYUGOIpLmPkxMR+/iVvnI4iJ0oyxiZNncmni9gho0Z8rg0XJZMNfXLJ6st330jTNy8ONzxoeLCk62GEjrg8WBav3FgbYpUHBzX6cOYc8KU8GS8G/DXxvfFyUJxwy512ceDxoZzPeMOfGHjWzHqtwoNVKY/pZie+vjZflENkvJIMP8uhseyps+Whz8GC9dn6xitmtshbt+TyPWz4xvMt2/jmwFzi0Z+YcPnAr3IKR7+5449rxVoxr+StBW06athwyarJuIYdEjosdBAAkx5fUPpkFURGQTC1HTI5aP7tb3+7+CAmh0+w+Fou0i32xvC1s6Gt8I+/+PrZrDbmUKN4koNfIYsvr4i8DxfO5DfaP/jBDy4/ncMfuWMvn6xptvkjn8icuJbFXS7c31oDeOItX3QmpjaSZ1RsS2f/Uq70+aFkp34YZI1Zy9mAJxa+4+VP+Gp64shHsV122WW7a665Zvf6179+0fHTMd/61rd29+z/kaZ7N7x8y5/WdJj45S7b1enoR/mv3zgev/KvfvnWV7KNH4WhJsNnh2gXXXTRcgCEJz90+OmQ1/3aNU/WHJJxH3dgJK/sRPRct+7N7t1kyVjrathyaX04lGrN0HMI5lDKdQ5THsoVTNebUjxiMI7wFPcJ7x/sKojNckqmw2v3BTJ8cT37h7385pOfsVHTZcN6EcPcK8AWk3H+8V0dyZV+fsIgDwOxzS+Hm/y2hhA9h3l05Vyu1c2nNvnpCx/w+agtTnmEIQ621PoKGbbLceuBnpj5aoys/DTv5PDZUpsPh8eIbXz51TaO2K7Qr4jRGiAnHrkhh8QK232DfX0+w5WP9lDWmLyLzTi/UTjFKS4xIDLsKfw1Jk73Gzhs8YUdsfCvQkYRAx+Mw8gefG3jcNg0D2Gr2VfI0VXSY6f1yi8lHhm5KFb+G7MOHBL7Sw7XaWuSrNz4+S9+eB9z8M634hGDHPHBOtTXzk/vJ66n1uDi6P4lfTEYI1fuyTTH2mT4TIctpMbnlzwpZMSbf/IgNvHga+OdDsEVv2/y+/k36w05+NYWp/kpj+aTre412eKvGPlmraBiVIcDq5jw+W5/K/f6cmUvohYLHnvWcfeeV7ziFbtPfOITyz/fZkeeToe2g/bTydYmu2Vgy8CWgS0DWwbO0gzYRPzoRz9avhHnIcKGAU9tc4HasOHbFBlr42WsvnGkj+ovndVLMsklC8/mxobQxqliY2mMXLx0gg5TzXebLRtDBeW7djK11UcRO2FrK+UmnTkeb12nu+bXN76myUtfnb21fH3+2UCee+65yzdpbBrLCX2bVTWe/Nh4qpvX6uJkT1nPt34ET795wsczXwimNjs2vUhbYcfG2YOHMfNtHZC3eW7++QCzNaIdZZ8OeTVeMUw5/Er+wobr4chDkTYcfW0bdA/7+U6fDgqLLXGSmXJ4+U6WzekfPSU845Om7rQ7bdOZerXzKVl815eY0sknfQ9yDjisHT56wOhBpAceBz/0XWPG1daQ9lxH86BGPuQh0jff5r38NKYuZmPpledZk+V3MfCrmNXGxJEMeUS+Wttcyws5thV2xQYHVac3Zcgax6uGqz+pvrH8Mt51AScfsqcvLoVOZc4jDNjGPPBmG665KY7y0Dg9doznU1jqeGSaW3YUfeRew6b1wX8+ZI8+YhdfDPkg5w4Jj+3/j8Q555yz4FkP+aLN93ygT1eJ+GEd+f1lPydB1zr07UAHRXykl89qeM0RLDxErjHjYpLjeGS005n3h3wzrh3WGtu9uIP2M/HPUH3L+Lrrrlu+ve2Qiz3+8UMp3/hyg4wrETmHCF3f+uTNpaIvHliNqeUI4SM65VU/vfKh9t5jvWSfDrl8mm08/Wi22THvaj66n1xxxRW79773vbs3vvGNi97DDz+8+8pXvrL81Z6DFPOVz2HlLz8q+VAM/Gg+8WZOp29hqg9hpEeHrUM1Xvriki/34ve9733Lz8B1PXTtWU9kunf1rU1zjYfo4Jcrc/3U/i8hXDNskIPhvc7ckJNbRdzG8VyP7umuK33UHPHHuJJvxsQcnpitUdcV/8jhldvyLyaHij6Eoxu2tV4cYoJtTtXdg9QIFn4HkzDo0oNpvDo/ySv61hMfte0H1A5FkbxYT2KFY77gun7o8cGBqpwiMvwUF3/KsVzCoMMX9y08JZ/kJp/IsIEnj/hsq4ufHeNsw+CX+ZLz9lLrNZOt1tDi9P7F+z5d4+GWN+sGNp+Lm11EBtEz7gMa+ddXtBUYYhI/LHlFxVzc2SRb4auYxC0H8cNlx3ru2sgOm/AVuMVAD6ZDVu9JckWnmFqvfJK/rpVw6JMRizaf+MYPMny1r+pQXF9O2ZBjvvDNeoCDD4McDHbpquF3r25e2FDoWD+w6MGBkb0lwfuX/NKHJw+w+cwX64uuL1jwp/kRH112yfDJmmZPW17on4z4idjgr3sRW3DYc/Dur1jko/UFt3zzg9y0xS9z2Dqmp8BsfuBp47Gtbg3zh2455aOcsCn+5skXmPxFmg910fRhYZzkZTtoP0mCtuEtA1sGtgxsGdgy8FzIgI3ED3/4w92NN964HCLqtzmzGbERsdGw8TCGZ1Nhc6KQ1Se33myQR9XaZA7JJWNDY6NnA9dmB48P2VJPCnPW/LQxmpvexrNVf2I1NnnrNhnxHkUTgw2EN/lH6eKno31I5xBv6oRhw2hj71DUwwaf5UUubYaRObRZba7J4KnZIXsqxL55qqQDo3mDaU7ZYpMdbTV9G2Bzlo/04Hmoaf3BJWss3swHPp/zw1i+GUNqfCVZ7fxjz4MWDHx2yHkI9OBJ7ihiSzytu3xNJzt8gK82Vs4P4RpX6Oa7Pux4YRmPtMnIp5Isfg/p2kpj4vSg+YIXvGD5WQuxewjxIZxvxWmT74HPPMqL2gONByaxs8tHPLYRPl5kro3TL3566arFlf/08Cbl91wLdNjJVjHikz9EZHrAMk6WLT72YIaPV9FHfCejaMMqB+yt5elMv9miw196Sr7ShUleIYOHyIhb0UbGikWbPP3mCA9OsupssUtXIUcP6ZPJv+bTGF725E8O4iVHNwxta6x49N2L/MSFb4nR6b4Nv/WhTU+hw1Z+GkPWpm8D8ttB4kMPPXT8g7GZO7EhfuZrvNaRvjHXCVvJ47OrIL6Q8Z6ljfITFjk4fNLmhwM4B+3+gemZOGj3gYLDZR8yOExhP//4k198kFsxkJH3OQ8OER1Ekp9+mxNydMREX8GrpqNfrPgIjrGZE/cX70fkD1G6R42lJx7+qovtne985+7973//7pJLLlnwfQP6S1/60vJlAvGZSz6ubejPMm2zVxzZlgcxwULx1cmTKZf0rRH26aWT/MLYv0y/jMm9A78LLrhg9+lPf3p33nnnHc+xMfa7Ftigb+072HQQ3Hu76x+v+XEvt16e2h+2k+Gr9TAPh13L9KwpY7D5ZA2xIecR2/rp8A0VtzGHaPTFj+/a7j5J1hhix3uwvcux/Qdw+goMMfEJue66PuWZn9aVPIer7Rv/ckQfn/9iRmy2PudcsScWhQw79OVQn+/9Y1VY5OREjGyQd/jIH0SXD9a+/Zh8mgvy4qGj7yDPe619Rr7xq/UGh53ihcmWfHlPhi8PxtlQmws2rKO+QKBNh675gC9X3T/Y5o8vFvDRfE2CWT7lwr1XXsmJBc+1CceYXMmpcXVzQFb+wuCncXrqE1F+850sn+C19oyLrzVBhh325EXukLnjq3F5sffxUyzyKQd8Fqs46NIzt+bR9aLfOHw604dyySZc65Ge/JsvNdvk+GosW2x3vajJssWOvRY9hV9ij+YXQsjz0fzKFWKLPzDpmw82yxceX9TWvHE2rU92+GXcGvMtfblCPhwTE72T0ZThjxLJ4fe///3j//yYbf7xA9FtvrXr4/HLPIrNdSQX8iMP6WhXzL1xNiN4xpGcKXRbJ/666I477ti95z3vWWTInw5tB+2nk61NdsvAloEtA1sGtgycpRmwuekb7R5ibKDanNtQ2UC0ISNr84FnU1L7ZJuMuYEiO+WNwWe3tk2h0gbTuHKIYNGbuPnW5rMNE/1p+1B/7Ws24x+y11iy1fk1+7VnfUg/P48am/zaU0fb5tDDqkNjm8/yIq9tom0eFTkyXplYfNWPN9vFgQd3PVd8U9I1z9rZzTacHr7wyLUWPfxZD60B+sbwwldnO91qfOMozPqtMWNih+lBx0MUWXIeUMh5COygvXjoTcKHM+Mybi3CgtkDEb/0D8lPzMbJ8gNO1x5eONqzJNfc6tOvlC99betF20Ok3/d1GOjBy0OOhy2HM9pkPcggD6nyIj7zNx9a5MJ41x+Z8sYXeaDTfUacZFsb+vwp/nJbjV9MfNIOvxpfOzk+N6Ydkeuewwe5oMNnhU/psauEq01GbujyWR/BxUsXJlLnkznTVsuFnGnTRVNfP7vGm7tw8ZpHcnT5Ls8zhsbore20hugi43j6/IODps38ME7OWPNKV19NTp4nz/V9bH+g5tBZLukrfJQLuSQ/Cxz9iI9k/Qk6uw4E/JSMuvuKdWqsucsGLG0kd7CKzbW/zo+xSvF0QMVn8nBaQ+wpkfuLWB20v+QlLzm+Nho/1TofHbT7trPfI3fwMfNLpjyJfa5Rcsbz99BB+/SdnCJGRFc7DDzycomHwu6QR9+9Qz+/FsEDL9lRK3DLY33xZNM68Zu5H/jAB3aXXnrp4sP6oN2ckA97mo2nrm1cLMVYXHD4nz/ajan1xaquyHd6ZJJLjy12w9QXs/dq/9D8+uuvX+oOnIzBhpktOta8vZxCBqa51y8uh6e+Leq+Lm/0rWFzwx6fXDeuKX4bo8sensMr2BF9fsMynm+uj3S9N5QLst2TJka5oOMAzzfa8dxz4DqEpofHZrHzjY717z2LPB/Yd/BHLgw4/KQzcbTzTy1nSjLwHG7C5IO9ABzFvUXeu77kTB6tc/rlg4+ufzV+B6ryodBnQ66M85EP8MSbD/oOXeGwwZa5wzPGR0XcCJ68dPhOp0NV8gpZNTvsKg71mzd48sJPfhhX85mMHPBZnrWLQdu8IRhkxNQcwSADR15R80CWPbbwIjx9vuYvnPwyJh75aR7osqGQo4fYxINJ1mFx//wWT57g8ZHfYpDrDsnljJy5VMSVf+WfPbE4ZO8DGHPR/Rouao7KDx0xFCd5ueAzf7SRmk2FrQ7h6fGHH7C774pHEQsd1wTf2bI+8cirvS9kT57YgmOtqeWCX2z4Hfq5d16cO/ACt3sFvHyBAZOd733ve8t7Gr/Ewwd6fKbTdSdeRZzyZT5giJ2eUv7VYoVFPhy85oC7dPmi5htc4/zS377RfmBSN9aWgS0DWwa2DGwZ2DLw7xmwgfAb7TfddNPy8GTURsImxKbExkZfQTYm1cbIqeFEtcnWbix9fWM2TTZGamRjU2HzkD6MCh0ySthqfhXD5JM/RGSyVZ1e8vWr4ydfPbGSOcQzlk5y1Ufx4YSVTDVdY9Xyuj5olxN5tRFF5q551kbZmFjJsVW78UVp/2IOFfPXmHZEV5+95mbajI+nJD83zrBgwxFDa1ONp2jnR+P0wounXwnXw4UHB9/QIWe8XNmczwcpOhG5iH/8VyvispHXRj0w5AfZ9XoNLx0yqBiXzugXh7oc0Jl6xjw8zAc3sj3cyLO2+P22r292iV3MDmQUDxpw5NeDhzE8/uv3ECNmhB95MELltfyoYarLFaxiN4bEgq/A1TcGTxzpV9Mxn/rlAb522GRQeVCT6SFLm72pn/0wsoevzSdtpJ2f+boMPDtWLpItj/KL4B3yNyz+Rng9TGsXiwdyuS8GdXkgpyC28p9fySdDZ533xsijxuFo0wmXP62x4qbPZwcbx5799io58RvLT/LpLIbGCzk6/HX4JffWocMdbfHjW78dvJM1xke4fET8U7JvHcA3zheUrJqua6QDrnj0lOTLpdr11UH7mfhGu5/TcLjcQTt/+C8niI/sdv9qTvCMkVM7fJU3bUUslQVo/yIXUXlRz/VKRz9s89thF9murbDWNsKPz08+dzBjHM/cmUNyxvX9Kf8NN9ywe/Ob37z46qD9rrvuWv5qz0Ez2+GqET/yRf+o8eSMy5k+P5BYG9evrUbG55w0Hs4itH+BV2FH23r0YfmrX/3q5X3JPHY9wxVT+YbrfmwurfXWLBz8fCcPIxxyeN4bzBccvCmvzV7XFkxULPkbX2x8c7AI23tFMuZKW6EPtwLTGu43rY3z08Gta1obL332FId9HfrxXZnY+nxwP5BDNH1lP3n+omxUGxcXLBj4armFK64oLDW5fBJb8x7eWia/YJrLrhl8+RervHa/hzmve7GwoSA+0o1fbsy30j2vuI3zWVzdE9zj+NGa4bPCR3klp18+9BGs5gy+Ik/Z4Jdx1zKCQYZPiBwZ8fFfG29i8BVfLWZyrb0OgfH4KZ8OX9mjU0lXTu3/OnCWZ7HTJ6PmH3/KG74Y5IsN/rEvt8bylTz/0leTtbbJ6dNjA8lFeU/HGJ9hGiefDj4/+EBeLHCNa7sPa5ejsOTCPLIlXjjk1PJl3LzChuNDBnKTyHve8F5urLU3ZbRbI+5PrudyJZ/8kzO+3H333ctvtjdnbPNXDvljDnu/h1H++KyP5EhB8oHEwTYMPvK7NWycjdYAn/gLg7w1Td4/Q7355pt3/oIKsX06tH2j/XSytcluGdgysGVgy8CWgbM0AzYR/TNU31KyYcBr43JoA2Ec2dDYfLSpiV99KCXGbGSqbVpsZtQo3eyq2VEO8ejYLKWn30YrHWPpGkfJH+LPsTmuXT+ZZ9CeeT0RL72TyTcOa4037ZObMslmR+w2pDa+vmFiA4tnw0jGppOOdnnSDgd+WGpz3IY1nPTyxRxOXFhttrXNu3F61g3c1oK2EqYaGReHAj85fJvhiYtXyRf9iC/5g6+dvXBgelj3kI+H+Cx+Ptuky0P+GSdX0Uf1+ZtevtvUl0ty5daDRPODn/zE0uZPcc6YnrH8TM6Mw1XLRQ8M8uhhih4s43jGlcY9aPr2FVsedHyryf2B72Lna98WiofPf2Ns5zcbyFg2q43lC56YPazST6cYsxs+2Wyo4cs16iG/h0E65g6fXDRzzE6+lmNyfEkOjtL6xeeXQlfRTif9xsLHz3ftiC5iP5zG1I3ThaXmA9LvQBPPvJM3f3xOl29K/UX5JC/w6JQ7tpo3qo2r4SrTjnbr0BqL4Fh3vr3q23D09cXRvJcnsoiMeBCefnNnXtjGa9z69NcYvsFrHcsHOeu3b12ShcG2B32+lmNjxQS3tpjI0HHw4N5hHM/8wUD5gk9HbL7Jfuutt56Rn47xLX4flD/22GPHbc7c8YHd1q224nrIXzJdGzNu4xUyyZOpz1axmg+xm2N1ORVz8978wEL6/Km/MPcv+WncujOP5q48Tp3mxE/oyMVb3/rWRe7QQTv8GROfYRZT4zAR/tq3eFNmYoSfnrHsLKDP4uKt+eIqHrJyaG15T7LWJsGdc61vbZtLRbs8ySFcc2W9znXunmvcnDVv2WWPHmzxWEeuG7hr/4sTv3XAlrk3d3SsO/b4Uexs1YZBvkM/9sVBp0M/MojPCnIwKkfqxvlLl/+1HbLxpb6xGQddvvOPX+TYUOsbh9n7XvHgReTlSbzkFTxzwh4+cghsHtjDhy/27iUdRhqHEdHrAJafdNR8JCceGGqExzaf2Ojad12So1/MMPinJs9vON5L2ej9GY6+cbEr7MgLmWyQa92yoZ8vdNNnjxwMuPLSuBjMK31y+DDYYJe/+cDXMKwHeRIju+bdPkZpPcLMLgy48oHHTnuh1jH75IyVJ/bw+WPOjMFl17zqK+mRNU4Pjw45fWXOGwyyeM2zWJKTK74ah2vOxIYndvxinOuNPqKTj/a+5lmfLbpiQvxUjPdzMWJiDx+ePeOx/QfmfuKK/iEiJ8f+WsL7shySFWdzxeb999+//MPj7vver60rtrR9cO4fIuuLAa5c0CWHJ0/lauabPt/LUfMWhjyI0fWBJ0YyChv+2vOG/Qe6/vk2Yut0aDtoP51sbbJbBrYMbBnYMrBl4CzNXtyvmAAAQABJREFUgE2E32j/8Ic/vGw+bRjasB0KibyNC7LBsQGxKYuMo+r41XTb9LYBVEdt+Gy+EH8qydTPxtRvTD2J7Jo3x2uTCzesxtJXT7nG1/W0GWYy5TjM+KdTh1k9deXRhtCfwXpQ8NCyjode+V5j8K+80jMfNqYRnvlv7m1i29Amow4XFhmUbG1jcOA177DywSac/+p8UcOhF3brEq7Ys50d8vQi4/W14VibPWzoi5lPxnuASScccmxP++TzIXnj+B4yFNjGuo5s4ssnTHaN0ylW49rGK8WVPH488Xi46oEBXy4R7PD4ZozP4lfo4PPVg6mHk+bIN4mUHiqLcdblgD/x2cWftO6TnfL5Ri4+zPIJS+w9DOl3COJBW0xiyF9yEbxyHi9/qpNpnsozeW18hT9KPoZn7JCNYlBHxVo/LL7AYC8qH/TNnTJzko54lfxWK/CKMcxZs50N8tarWLTznU1kTJFreuTU/CFLx5j1qISr9rDrAd1fUaTjWm89qskpfIatoOxrN1Y+2GOfbQ/ezb9DQsUB9T//+c/jcwbLmudPecwmDPiKtoLYIu/wQVyIbvr6ZJR8cT16UP/4xz9+Rn46xgcId9555843281B/0AuX/gqr8XHD3HguS6sDXHSxdNG2sWtjy+OxtVk5FnekFy4d5i/KaddP1xziKfu3seviG1j/MLXViI4a7r22muXbxrOg3a/0e7LBD5k4ReausU0fSw/E59OemTJ5C/+IZ2pf6gNp7WiLZcoW2o+O2Q855xzlsOf7uf0IrabZ/Hom1v3bPMrbx0uGVeaWzZ827/DPuvEPHqfMJfIHPAPDuz85IN1Xw7zR00+LDrw8Vx73k/oTj3teGJ26Oa6okO/nGiTa0+gzR8Hoe4jvv3PJxj4xhFfyPi98KeffnqJvzXPdjGxwwYMNvSNu4fQpeOQz1+QiMnalUu1EqYaTlQuzIsxhMc/McJgx7VkvhFZdiPj3WfCh5GvxazvfqqP5JIv5k885hfPWiIDIxx9dsh5H6UjN3LBpgNScfKbr/h06SBx8LsPY8jBFGNxymM/S0OuvQU8MnQUscMTjy+MsJWd1jX/2PMhjGscFt/ZVMy5fYA2PHIOosUCSy7kQVtcxsk1l8asK9/ULo98Tq77J5uKPLce+DXXAB/YEaOYYLOfjDHFN73pkmMrG+WbDrnmlCyb+vGMs2fu4KjTN198jWq73sWo79qzDsPgg9zy2SG0nCC+wJZPdvzck39GzRYKe+k8+4KXr/Hp8lltnD2YCN9PwT344IPLdef6e2r//yVcg8asFZQu7PrV1okcwW690+saZw+JTw7MT/NFz7VgLtD555+/u+GGG3aXX3750j8U4zJwxMt20H5EYjb2loEtA1sGtgxsGXguZcDGZP4zVBsGG5cTkXFyNjM2J21q0oGpHCIbGxswNRkbGTU8tY2VDZG6zUt1eOs+PQUZOzS+5oU16zCq11hhqGeOyDc28bTDOsQ/Smcte6J++NXJmhObXw9bDtptHvncZjw5/TazMJTmJkx+wjMvk8y9MfKwy8mhuGAZJ8svBbXh1YbHBls9uNGxRnogyQd42QkXr0JfG6ltmtler6tkyBm3Nm2yPXAYI6/wl38dFpBnX2F/+kuvnGgr+SPfcGzaPcjpK+JSmgv69ORCYSOs2San8AOOmi3+6ovbw5KSr3hoytPJZ7ErHqAUD3EOYjwYl7++FSYf+Zxf/C1mvHwrJmNIbRzlS2ML89mX6RtW2PkbPj/lFHlQ5sc8aPfw6uGYDJ2InH5+y0/+sG2+xIhnjtSRtnElPxurNjZ14vOfTjkqrq6N5Kr5yD4/Eb11mTmBQ9ahAj36bPBFPM1b+Grj5ab5Il+c4bDLd/IIljE6qHiNk1W3nrrnkzOG73DMh4Jsw+V7Y+XDmHjyXZ9MZCwf2FCM45tzhwSKh2Xr9/HHH18OpdnnH7vuM+wp+mxkT0z6FXbTcyjh3sGegh/py4sCgw0H7bfccssZOWj/xz/+sfvsZz+7HLSL32+2W//8zCZf5MO9rbiMy0vrs/j4rhjHkz8UH4ZYi1GuxIRcO8bxwoCDqrVbL2T4zA92Dsnkg5oeyvbS2b8YU/x0zAc/+MHdm970pkXmkUce2X3jG9/Y/exnP1vmnF+HKLzmrpiTXffx8dgszvwvhnVNJztq8mJ339I2V+aGD3TxkHlzH/MtUe/n8uvwkCyiVz75o4/gumer2dFWh2/e6bHl4Mo4fbjm0Rx7H+AHOXw6yFg+k2Wz2IzD1MfnP334bLv+HIhqp0e+vto1Kc4O2mHCM0aWnjG2y5kcyY/i8Mxcs93apG8v5JDdB2xiLcfwYZOBr8BW8s2948knn1xkHBT7awnvKb2fyI0ix7DX+Pzkl/mQDyQOdhF5bbk1v4hs72XGmpvWTfMCl55azGoHw/xHvf+TZ1N+5QVfG7ZCj47ciZttMTVG3weWeHyBwS4MuIiecfPMTzntfmBcvnyT2Xog4z05TFj5Ar/3LvjeH4y3DvgCny15ck83t3CNsUnPnFsb8DosVcs3n8VrnRvnm70Of8iUK+9PfkqPHD1rgUwx8rnrRK3PLzKtMX7zhx2+icUab40ZZ09tfck9YoMvKB3zxIY4+Sx+Nd8QvvHmxZywa77oauMhdcV6cF3RtQa7xvgL33zQd8iuwOG/Ncdv8+GvaN/ylrcsthcDZ+jFB+P33Xff7oEHHliuX9ei+zt/xFk8fFfkvbj4Zj5aj3T4LN8KSl4OzLOYmw84cmzeyfmLtBtu2L7RfoamdoPZMrBlYMvAloEtA8/NDNiAHDpox5/UJiZ+GxgblzYo5Buvnhg2P21+tcnow4Khb6Nok6iPspu9iUceH1Y05fHyI35yh2qyyRtP51A9ZbWTWeNOvPXYmepnoxqu/Mmth04PGTboNo1yK8fJlm/+482NZzLG4NmoInw8WNrN5Wwnl2xjfFJs0BF72jDgWU+wyRjDt4luI08Gj0z+JAfP2MTEQ/TZES9dxCelNps22DbaPZyzp9Bnz0MhG/TkxFj6+NM+Plt49LXFRweWggcHX98YXn4ZU/TDXwzuX8RZLo1nS5xKfovFA1048pn/dMjOfJOVhx5GPOR5MHaoULweIHtQllPEH6X1BRPRwTNWXPkaj294hyhcukp5qE9PKbcwPBQiD9n88JDEfw9KxthD6erzE6YHR/4WRw/75PHIpq/PrsJPvq3JWHYaY2fGBY8MffNxFJEhWx7IauOHmQ/GyHpQLzY28WauwsxmWGHTVdLJdvGSbzyM6mRhyau1Zz7ooHy23jzUI22FzHyIbk743zwsCs++4DucgMkGW3IBx7VlHVsHiuv4qf034hxSh0XH2u9+Iz5jdDvEgAV/Ejm+87WckEmOD/j68NyLHbSfqX+GKobPfOYzxw/afbNdrHxlt7l3D3IvwDPGr+bN3Iox2fJGTl4j/de97nW7V77ylUs8YjK3cobKOxuI/CFqDo1pz2ukvMlVc5Mf+oeo8Ysvvnj5R6i+cQjHt/vtb3zz0bXP1xORuNHa73U/mXVukqtewA68sGOt+ukDB7Y+sDQ/5W3mp3XZbx+Tc32QFaPx5OUHT9+6ZUNu9a2JxvnHh+J1b3SfMA6XDderQh8WO9YHHddJsmTyZYbKD7Ktja5NtfcOOsbJKfrx2HI9Wa/G2GJbLRZ6fET6imuwb9ryCYbi/Zw8Gdee9zIfLMBC04fpsxjJyxW+/DkAtYYc6j766KNLHK4bOer+IlfdM9gkD4NPMMXfe9CMmS9k2TS/bBabPIhXPHDgyYeajjFFGyY5B6XqckWen2TwswMPyQdZ86WwXUz4fELWanHRZQ/hVYuvOOmaS/EgPvReTAZeB9v8QuLij/deWGw47G7OYSZDDiZZOO7t8i9OPtOTCzpk3Ae8B8gHGb5ZO9ps9aUCMvxpHI54ywsc+WGbf/gwwxWvMX4qxstRds2BXPNNwRejnPCFnhzxRZzG2s+RLW5xdejPbrKw9ZVsZo8v+VUO5UsuxOO6sV7lQJ8tPsmHvy6wt+Jz+ORguk/5Z9RiM0aX7WSb3/KiRjM/+vDo0GfTvdI198QTTyzXsG+4O3RvPbIl9/TkCZ64FDasCePackAGNhvZNsYW3xuHm7650Pcb7f4K/Morr+TqMr40TvFl+0b7KSZqE9sysGVgy8CWgS0DZ3MGbBoOHbTbgPw3e3e6a1tR/X183YaJkH0M+EJABUPsFdvYYgAbMGqIkUYCKpBoor4wRl9gg80N6C1oIioEUAERUSIKKmIi8Uqe/Zn/8z0Zzqx9zj56ksdj5khqV9WoMX6jqZpz1azVbAW1CSFrw4TamNmA2LzoG1f2kc2MjUsb8+To28C1IaXbWDhk+BBlJznYiAxZ1Njs114EjviT3nqYbvrVyeRP/XXd+D7sibvWM5ZOGFMmP6obI4tnw+mg3eZZ7tGUJWfezJ8cpkdO3/wn33wb20fkrA125ga5NaTGZ4Nc6whfYY8NZMxGl7wxa8aDhocaPGvFhldp3dGBUSGXPRts/k0fik+N+GWD7eHBQ4ScwW5zblzbA01YdPkwZcJla1IPN3QrMMlZtx5gwjKOenAiI76uw7DF14OaNpnsZBufvJyF0xyoYar5TZ+8hysPWT1UeqB0MOFwAQ7Szr+JQz/CR8WjzV4PO/rTNh+mrHHEb4Vs81wukjeWHB1zJxfWvzVp/Xi4N3+tBxjkwuKX+PTh0fHQ3kMuXDR1wqBHR1lTPk5+/ooZBn1ln2x6ZMVUDvCzqcaHJQ59db6GMWu2lOJWT4KBkplYfJFv823c2D7/+cRnstaTayw/+Zq/1j99uB7UX/ziFy9j1uG8Fps7vrKbj2pjDtHg8Iut1o04yLCNR9e69slWD+7s89PaV8ix0X2nAxX+ZhNmc9KBBJ442U+OjIL46Jr1ibg77rjjnPxGewftLxy+cQD/qIN28XXoyBf5EWO5dEjl+shvMrMtdnn76le/urv77ruXmMSFN2nqTP7p2muM08keNQbD3CrlG098fP9vIuvD2nvooYeWfPoWgnWBuiZcU5F4rCuEX3xyLV54av05p/hkjdHXhm+deJ3zJjye9Y2XTTwFeV0yDls+3U8dxhl3nayvs0Xp8A95hTzb6vxzjdKFgVcMkwfHGGLfvdj6LD8+Fd/rkJjlj18OVflkvbPZITVbdHvTuFjZJlsO6ciL+5DDVTrizk/ycuL1xH1D4Rd/XEO9LjoAZINPMFx7Xo/oiUUO2BIz24p7HX+bKzH5JLd/mkyfD2oyfG4O5Iit7lPafEL5q+9+Jha47lnyxL780SVDnn0+i7N7ozj4q4/oKWTEShe2uPDcX+HCar3AFkN5ItfrLAx9dmHJk1y2Llsri/HDP/oKzGrYcNjlm/mzzrvveYOHbTbZEY+cm2+67JMxLg7FuBi06YhRYSMZ/fzQJkfP65h5bW6sV7HRLc/mUtE3L3yhIyY41oqcw5AL8w5bwffGgNcA2Mbpib01JV9dC/ji5CPf6fMFtpjlw5pgV874o803RM64a8z6gdEcZvfg4GD3xje+cckZu12TsNgPJ/vli+945YZ9thSfnpcjNoybY/+T5MEHH9z99Kc/3f3zn/9c4pUrcc+1yj864YtBPAp/zK3x7nHG5YjvxpoHMvzDv+yyy3a33Xbb7rrrrlviEcPZ0HbQfjbZ2mS3DGwZ2DKwZWDLwHmaARsKv1/qH4jZ2Now2FgoxpQ1kbEZselQK200yNNF4aiN27DZrISpr2x09hmw2bOhlEu5nfmHpm8TaYNq496DgrHyT6Y2/lEUvnmO6LFvs6ptjvVt1CdP2xiZfGxdwDKejL4xfsNKzrgHAg8CxtqgtymfuDDYogODPIKVncb1xWQNGreR91Dm4cxDDFybbw+M5SBbMBS6MKzreR3AVshkn41JYcCkq6D6HhrYZ4MsPPPeoZ5+OVKLtXi7rsojbBjksque8RgjD99DEWLDg6GDdjGSQXgeXNgho9bnr3nJ50V4/MFnMxx9JSpONTJmLsyNGJIvR/XJw1TClyu6rRk+W0NwyNCdtfgU/GyTFxN+slOOLLzuhWSQXGjLjTaZScVZHoot/Slbm45YYKL8L+5ih1WZePT1K/TjaYsLBh591xxZ/a41clFjc/75Rx7B0o9HzvpStMkp8d07UG92wU+WXT7hFa92/uCZqxcOD5v5DZNd/EgfvzH3RPYdvMAxT14DERn2YMIzRiab+THxitXBAL/LQ3GqYRr3iXYH7T4ZB+vfofB9pd7P0PgpHCQG82Vc/HzsAKWY8VxTrnPXCR8cXPjpBWOT4Bi3PuDee++9uzvvvHOK/Fe2+VyO/hsddF9xSORnf/wMgjkq162JYrC23JfVXQdiIm++zKFivo3jw5s6+Mia9slsB1n2BnSs79b61LdeWg/l0vqlh4/HJxiuD2sEllo/P+go+sbYSC8M49akGnZrl7wDV/dv61Vc1mE/8YEPr/u9Q8Dk2KhNxmuq4vBNbsWswDNevtlwH4KF132IL80Bn+jSE6v7RPcKcvnFvnjUXo8c9DsoRA4E5Zg9NsyXHLCB5EA+Lr744mUMrzzNaxlfDPYqfOCPGNWw5FhbQXKVXeP5y2e+8AFPbHT5T54+39nCI0vGWmaXrHxZA/Kjz19xkUcwms/uq2zRhxNGtuloV+izQV6M6sbgGENw5NR8O4TOL/LkFDJiMDfa4gqPHbjy0/qOh09eQfgKSham/Td8cmI1P+0nkuWj3NKjY80h+aInV/wqR8b4ZA7FZAwmbH7Rw4MHG0Y5UevHW/vMD4UcG2o5hisOvvWPUK0R+sZdB4iPZHyjiH1vLDmU9qYVeTwEly75+mwoyJhPsIsJsc0vNb/KizcY/CwYWTq+HcSfed+Ti/IiHwriQ/b4BRd1TXcfks/mgg1598bXjTduPx2zJGz7s2Vgy8CWgS0DWwa2DOzPgA2LTwXcfPPN/3LQTroNmU1IGzMbkzYoNjA2j/pITbZNSRsUtU2ST+b4hAc5xaZFWeuzFd7SOImdP5M32+HEC2fdJ9fYur2W1Z+4s52sOrx46/6UgRHO6eToTDmy8msj6HDFJ2/kP7mJJa82jjbFHoptGs0dfkQ+zPhhrOclnWkLpk1rm9Q2seY7aj2Io7XTGFtzjWiTV/KDLF/yHV/M1h6yUd+Hm105UGyO1eW+8fThegh2yN5BO3wPOb0BNX0lDwtOscGaeWRvxjHbsCP6xmDRQWL0gMi+Bz/jHjI8QPDP9YSXTW3+qfNHDa+44RqPjE9inw0PROYSttpDnEMNOdTPbnNCT9sDTp8W019TttV0ELkehPTLQbJ8FK8DCeteXrJbTaZY6Cly0XqEaV66X9FLnk3t1pgx+mHisysXyPjESa81qa/IhVrue3DLppqNYlU3thg5/GMcnY5f/K3L/M6ndNW1YTauzg98eK0h8Zr38lF89eHRD0OfjvUjHrhiDw8+MmZeuh6NW8vuUQo89xUF6bNZDOWMHWQMseeQyIFl1wvepHxR07euvLGG8KzdP//5z8saS7c1J7Z8qCZDj0+o2Lp+wlgGT46Lx7iD9ttvv/2cfKLdJ9j9Lrmv1fPH2kPs80l+2XSIk79q9xLxu7b49dvf/nb5NLx5mwTHuLxaB1/5yleWg/bil49i1Y4mP966nvLrsbPtw+qaFx+yPlyvzR8/z6XNs/UxeevPJ9p9yME3BBwYmSuFj9V81Xa9WK9qczHJfJljRdx08Dq00zZ3Xk+Q6+TZZ59dxvv5B+P41o58sekatDa8LrKLYFlL+OWYPT7LsesFRvdMOHRgtf7gs9c9oHgd/Duk681ReuYTrtdBuH7/GQ4MvA4uzbOc0oXRNVgccOh4IwlO9w369lHzU8zGuk7hiI//sOSIX8bdH8XBf7bxtcnz2Tg5unIlXn54k4NdPHPqOqRvTGzlCY7rDZbfB8eHB8dc00H02CVrjvlEV7zq8k+uOVPrxyMrL3zmrzzKAzmFXTVs+yG1Pl8aJyNHfOGzXOnzG158fs41wj9y9K0beHyQF/kv33ykyy9xdYBezDCV8g2Pn342yr2RT+wo2ko+z7lbkjr+kGOPXyhd/eadT615OUUwm1uyMPjTnLKtyAsdfplX1xYbYYhJPxvykB4brQVy+amNwmWTbePlgF2lOMRirtT5JiZvrNA3F57frEXPFa3HYoLtmuST65TPBwcHu6uuump34sSJ5Y099ibRmZT/7D3++OPLT3+FTw42/8Rs7ZF/+umnl2+T8PW+++5b1qe8ixORYde6EIMaj3/s0Gu9kS/fbCA2javNgdobCddff/3ubW972yID72xo+0T72WRrk90ysGVgy8CWgS0D52kGbEActN9yyy2nDhTboLQJq2/zZXNiU2HD0ca3TYaarI3I1NW3Qbv22muXA/3001unju6akj3d2Fpn9umtMeqrjU+ZqfvvtPf5GU529U8nl/ysbfgcsn//+9/fPfroo6d+M3TKwFdssm2IPXjaNLJl3swjMi+oTfXSOeYfWG0+bdTbrMPUnkQWT936adx64WcPBPrkUHFYZ/iN2RjbIBuHJyZtRDd7yat7gCAHDxU/fWRzLl+KDTny4OCQmSxcsjb4MMujOh+ySTdftM9EZOnmk/g8QHog5y++HPHL4VgPAeWzmNVi5I+SXvk5nR/mCK6iXd49fDuIELeHHH5OG+WUHH89GDUva3t002/d8VO7GIxH/BCvB3UP7sUFn05x1aZLJzv8LSfikVcY6WWHPkxEnwx5NR3jMNX6xZgeWUVfyVe29fM7u/jwWlf5UW2u04s3azgwyYTTuLHsqFsjje/zxRhZftUWI1nkmiu+hXH4h3w+qhG/5a823yamPhlrSa3v2nTgp8A0poSNF8GiZ15R/qldq75Cbn6ymZ6aLUXO4XfQzl/Fpx4dQIo1fe0e9PmDX6nPn8iYA0P4bK2JjrXsp2PO1W+0O2j/+Mc/vhwoia1DFjHxwfUsx0o8cu4lPnHp9YFfTzzxxPKPVGc8+W+8dX/TTTftPvKRjyzYzWFrh5yi37yVr7Aaqza+pjDw1+PhzjE8Ot7M9+nJ3kBxSPTC4bcc5qf8069e2z6qfzo/0klmjR0/Ofn3uvK73/1u98Mf/vDUPwdtjZJX4Jgzc+h1ybrvPjWxjFtzcOmozbe51baOvZ7Atz588rPrDr65xVe0yXl9p289w0dq60YhE/GVX+zAUOuTsUboscdH15PXiQ4hy02fsHd90MOnq3ZtKz4hyy/XOz/x2GNLbug6qITd2mSXffcvb2i4N1sryPrwBpvXt65zWMZhiJMem/JEV37ZFyM5fLbU/Majwy+y4iJvHvjhoJ1dcbkHlV/j7CjyRLc8njg8qMTPl+yx2b2Q/3DVdMmyYRyemg28fC6/zT9dduYchEWWnPukHGW7uSIXsd0bDXLY9QgfXx7JIH7BgCle/pkz80iXXdhs0yGHzBlfepMEpkKXTnPkzVOH7fkMf+KIA0+ZMbCRLCxE1vzC4rP55L9+144+HD7whRw9BQ7b2ddng6xa7q2H6Ufrm135oZtea4of8pqf8jxx5U5BzZdxpOazOWefn2yUc2tK3/XQQbvXDTbFXSywXI98cg9m78ILL1x+RsY/cnYvYftMxB+4jzzyyHK9whEbf2DztQLPmyjWARnfEPLtS74VH3vkrCXzQVcu5Yodeq15svpskkPmpvsJebi+YXLDDTfs3vGOdywyc74Wxhn+bAftZ0jQNrxlYMvAloEtA1sG/hcyYNMwD9rF1AZFrdh4IRsTGzhkY6HfhkVtM9OGUjscbQ8KPnV31113LfrkNzr7DMilr0l+7WtfW35b34Njm/SJJr82ih5MPbDYSDafzRksJTKnxtRz45ieucWnY8Pbg/2cZ/zWS7hqOuTCb4xsOtXk8sEaa9Ofnfyvbh2mQ651WC1HCj/ygZwNtYJspj1AONDwsGO8B0M42h46kDFYPWgZj2+ML9lZBk7q4PM3X43BUWCojYnZQ0sbezz+e1BQ5IqdaLbx9NmZmMmqy4U2bHZhWjNioscHOB48HEagaUdboavmq4dCfsuV+B2o4CP+pMPm1K3PrsIXBYb58JDmgRqWYs7U9FB1mOKgzzcFjnj4pdaP8h9PgcFXRZ+OdqSdbXYVmPj15YxueVz7Cyufw2U3H/I5TDLFpkbGlPh49OPrs4G3lsnPWZMnR7/rgi5f8MRY7vI9X+gi60rMk6YsrDkvZF1rDkgV9syde4t2eYVXDK0NuPwqV9adf37Z9Wws2/mTffgO9jvogknf/RSGQ8nwW3PsV8JNRhyNud/2oG8c3zjb+h74fSLOQbuvoIeVj8et4SKf4vfQ70BJHOKfsZsT8aoRPX2HXycOX5e9RtDpE+3NHzl4xUZXDA5bXJON43c9sJt984fUijiVZI3pwyw/xZROGMmWq7DwEbtw3/Oe9yy/m+ufosJywPaDH/xg9+tf/3q5h1lbYfyf5v/9JRtm49UkjOebfjma/uFPHf100q9vjL/WnJ8ScY+RB+PVZMIzd77xYcxhm3jZ1u96WM8TvnhhsuWeFHWAC4ONrlttsrDsGTpot16yCdMaZpterxfFBmP67fr22kqOT2x36F8eYXtd65Ccn3hw4NJRXLN8wXdvEJPCZzxj7Lmu+cimtYpPTq7lPHltvnTwa+2aC7J0+cQPeRBrb9iQI1Oc8tj9EbZxuGTETC6+PQS+2PnWNw7FyU95ZxfBgeveiN+cG8s2PT7yW460YfPXmHmSfzHICeoNCTU5uMVNt+ukfBjHh833/Ig379PwWxvk2HSPISsH+ZhcazRsfLLyxjdY4lDwFTz7gX6nn+/m0H5DDsnIj9qcK/D5oyavTUY//7U7MOcrm+K1TuAbp0N3+omnkOcz4qPY6KCuRz4h/PD007Xuihkm2+aBP/ymUy7UtbMrFj7TZcs4XSUf4WdTTa5rVJssO7DKlbxaQ0rXMhzrUh82gmO90ldfccUVp346xni54y9M/iFYCh7dxx57bPnWT3E3R2T5yCZbzbd15dDdvd4bieTZgg+XDpv5iy8216n2xKFbPs0bnfyC4xtp2z9DNRMbbRnYMrBlYMvAloEtA0dmwAZjHrTbLNmURNpk8G1+bHoiPBtJmxIbOxsT8lPfRkf/JS95yfJpdocLG/1nGfAw8eUvf3n3k5/8ZDkUkndzNMnc2CDa6PYgZ9wmkax5bK7UeOaqTfDE0k6GHIwegrSRtWGMXLxlYPwxzq9JyRuzlsQCm5wCtwezdMmi/FWTm76HC0uhwy/4cGpbu61p9j2ky5dCB65CXt49sNGBAdcDsQ2/TXg21fmuhqNWEHuTP/WMF4+4jfELT93DAMxiIpMeXH0lG8kuQif/8F1M+aamg88Ock0j8Yrdg6YHPrj8oc8fhU7rkKwHGHH6eQQPrvB7YNNG9NlT2MZX9GHCg+FA0AFMD7p4PXg253yKYEx/smcexcQPbZRdvsBovsOCnzwcfXJKuHjx6RmTM+PwO6zAm8RWuvGzT1e7tQYTwVOQ8daSPhl4YaSDV5xw41fnQ3361l5zLTeILf5Mm/hhq82bOj/CnHLaxpF5Mrc+AaeQ5yObavYUbbiKsXwirw3PgcS+g/Z8SLf15ZDJde7wDo8da9c/pvRpY3rmvrWWD+qIXXr5pnawJA/F0Jg+TIcD5/KgvZ+OcajsmuFPMfOTXQWZW0RO/C960YuWHIjRIYVP28oFoqOthBF+a0Ns5YBOa6T5xeOLfnU+GJs08zr9nzJnal999dXLP6l75zvfuayZJ598cudN6Z/97GfLPJ5J///HuJzKY9Q60y8Pxq0b/Q7RtPFdQ4o5opu+salvHo2pHZbBcU8l02G4MfND1+uaNcIufOvK9YCMwbLOO6zNPjwYanod8BqH697isHmuEevGYVb26HftsafPPpl8NM5/ePTFo5ZPrxnF5FO1/Myu+wRd/ntt0uYrXD5Z2wrfu5/B4r/7QmscHnmFb/r5TIYd+NoIJn/JiAdeuWEL4WmLE5VHeckX/OyKodywI47muDkib5/iXlcc8Nz32C+nMNOnA7f86rs3dug75cRV3Gyb4+zR4zc74ioH9MkpiC3+G89/8uYk4ics80vGQbs3PtT0y4m45ZGMtrmxNoyTY0PJZuuafXH4dLR5I4/IOox1qG88Pv3skiv2bOtrZxd+MavLoRpOZIzfrXPXSv6q04MdaZtTNZnWJiz2xajke37wEdHrOk8HP9/VZOQ/38jxkV5vDBnzzOEbW8bNu+vPOFtwwjKfdOHKDf/IsCEf3vj1U0+Nyb1SrshZw15LrW1xw37ggQd2P/rRj5YcmMfuC7CtHb6UK3jyy1e+z/yxCy8961GbnPj8X7MPfOAD0rTMydI45p/tE+3HTNQmtmVgy8CWgS0DWwbO5wzYOBx10G5MQTY3ir7NiM0espGyqbPZnZtiY3MD6Xf9fL397rvvXvg2Maej7O6Tyfa+sf91nk2iTzDec889u4ceemg5yLR5XJMNIr5PTHnopCdveDaV5tJ8mUt9+TauaFcmrjGydKYeGfbQPr1l4Ig/U75NvI0sPns23x72rBd9lL/ZVIun8UzxUYzk07NZRmw44DOeLRh05MoGHs0171PdDvJ62IILL7/lVimvrXFy+cdH/s4YtGffODk68PJZrR/RKcbk6cYjhy8+Pk0q7+ooWbjy7uESHhmx9GlAfhnni0PFiny6H3R4QcY/aPSADkMNR7t4+SV/YsPjQzHjkQ8/X7OvVujwc1I5UCPYyFry4EUvH/IHDj6bjdWnS04/W/p0KmRQfobhAdCambGTCxtetrUVGOkZi08PbvJyPH1KzjhKd+kc/sm3+mo6MBSkng+0dBT87IVLlz/yrHh4VouV/+TKgxoZg2PMdejwx2+6+qQ0nnG44ejTreBbN/X5Rt4hkE+k8z2f8WEqrSs1/R70rVuYiJxvDFn7yOuadRvmtMkGeXlhRx8O/Na0Ph2kJuMh/1wetPspsdtuu2251sQlX90r2Ms+vjj4jPQb579DK9cu3WKBV66nLHmkLv76eMWtTs84WeuCbXL5ps2vCp38pBefXP2lMcb0/aSNAxC/nQvjqaee2n3jG99YfgtdfGIJwziadhbGETxjdJS1342pw0tWnf9TThsZn7TWMyaPXpfkz/2rOeIHvuJaIidGtSJWeMZ6Q8m4g6nWA3yfAHfvNsYG0raOYbOHb69Hj13YvY5a8+yQcY/tQBbf/Tt9MjDITKJHzr2APTasxSnHXr4Zd126Tsnhz5+AgQXHteZDHq519xwYfOODGFwPavcAtvmLxK6taIvTHLKnhmMdq/NLf65tPsaDSY4P+Ijdir5x2Hj5gW8e2eeH/FUbIwsPLpJnuhMjTLlQ6JtXh5zWgVzBb65bN3I6c/X3v/992f90aM0ebDHKJx/4x758uqfzI5/ZNVfmKVkYdPGLgQ7f7Fv5heSG7+Izzm7zz0fYxWMey5GYasNQxNW8sNmc4YvNhwNaF2zzn60+NAADFTfZ5gCG/CF62uyLUdzWc3E2Rg6mmOgbdy2KlQ3x4eU7uSgb4pRzuQ8jOX32xQYPySG/+ABDW37ppwfTuNhgIHKuJWNks4+vbcxrm/tv1z1Z86uwzzae+TJXbPDNa604s/n73/9+eeMXjw/yTJ8vCpvuaVdeeeXyTVQ8h/q/+c1vdj/+8Y8XWXPmzWM5hOuewK6aH3DZxpNzPHbMd+u02Lu25NlB+4033rh773vfu+SlnC2dY/zZDtqPkaRNZMvAloEtA1sGtgyc7xmwOfIPufxGu09y2DDYbCBjCp7NhtpmpXFtm2EbFZ/20CfTRlRd28bKJx1shBA5BD/Shq3AUlCYasXmSD11w/hPapiTTmfjbG2HHebp9I8aw5cb+e6foc4HgmyIQd5tRP0USl+jxrNZbJ5gkVGi/GsO1IiuNZAP+Ef5GdbZ1taIDbDCJ77YWPvEiTnPXnW+8q3CZnmA0RrC5zMbyMba15l7GKDTw54HCOu6mMnDsfF+4fD3fnuwMo4P0wOh3LKpr7RO2SWbXzN3ePW15ZgswocPU8z8UorJeDFO3XRghN9DERwlO42rK+x7MHM/EEP2fbrIQYM5MS7eHt7l0zrzCVkPRmSUZ555Zpk/Nh10wePfjKH8sYOM8VefT2oyHuLiweFncajJTpIf8xJf34Mu3+mXX76RKS/mlw/6yWkrYsqWPr3w2caDq2gjGHJCD+GnWxxiqZ0MPxWyPWzmpxoevkKfzfxJLlz9KL/ygYwCh5y2OI0now4rP/X5YKw5bY7w5RGesfKhz05j5tXDtk+zO5ihxzYb9LKVDTj462uBnrn1YF3O8p1NpTWkNmb9Wh/uAXAV68t17h6LvLnkOgizWIqHzMxdvrEBv+uOHB1+iNdPxjgcPxc/HePNP29g+yQ++/InJoX97Mq7uJpfn87t05vyIdflBU6lWMsjOfmur45qi18uZ4HT/HYd4ZU/tRIGXyK8Oaav5BtcdNRBuzel7VHkI9mw1eFls3rK1J5j+YRXgRVNXrLG4ic368bUSG0uzKfce51yvxU7fodExnsNEqfc01WTcX0ZR9Z942T6rX48+SlH+nDJs921KRZ9eNazWtx8c5+3tjoA7RogT8a1T47vzR+f2IFVnPQdeEV8ose2trVrTu0P9NnVd2DHJp/E7aBdzTabMFzPbIvHPUtu5MDeIz0Y5Vge2KWLYJUj/fKBZ6y5i48X1tSTi3Lq+myMn3Sbvw4G4bi2+EZGSa+54j89svlGpntd4/oOKuVbDthw8A6bH8UrV7D+8Ic/LN96MS/mMuJ/cZCDD9den09kFb6aK/fU5hHfHMPkY77RPzg4WPYX8saX9oXs8s+9zD1fTc+HSi644IJlHvWRmg9s862aDp/ZzD828P2fD/h06cg3vjdx+W0MH6+1BEcceM09v9mGw0/7J+tTm748K2T0FblUxN81Rx4+IsPP5ocN+HLj2uFrcsmqYfCvvMsDvdaR2gEyPNjGXTPwWp9w+Ypv32fNkG28WC+77LLlp8zgyYX89joq5+SsufaObPJNfvhJB66D9j7RDoMdeRC/Qg+Gn6Zx7Yrzla985e65555bnmnpeE18/vnnl3uCWORIES875dLe1fMpDD66h9hLmM9syhcM14g3Ez72sY/t3vWud53K99I45p/toP2YidrEtgxsGdgysGVgy8D5nAGbDZ9ov/XWW5cDBhsPPFSNZwOibwOm2CzZCNp02ST5BzQ2PmQVREdJv3oZPPmHTnaw9LOhRuGEZeOjPfW08f4TWuuvbUzsbB9lN3512NXruOOzQUdB04ew8OlXklHXlmubSQ8fHbTTM2/ympw+OTT12Qp/jqW39n8BGBj1Zyzx1DOW+DayNu824T0w2PTOg/bsp1ON3/qqFic/Z1zFaoPuUNim20MKfzzs9QBuM03Phh/JkwO4PtFuE88OagNebouDLplizXdy8eiXyxmDcTjGkqGXDePG4pFhT8EvzmkzO3RdQ8WgrxQvvgcyh+rk5JEd17i5MCceQOaDi/uANyccWPRARM7PWbg/wOhr9/zQLy5xupfwmR/ZSwaPzHzQzvdyrI+KQzud1oMxcSni4kelPKn5jV8+tOnCYYdNY/uILL/VEZ38bT3AQ/kPLxljirWowCPXnJHNlx5y9fNZG+UzvfwNW43IVmCFXX7I4U0sY3Tw+cVuRc6tFQQPlY+JIccwzLlr0Zte7lXllx5MMghGOPj06vODnuvXA72cIX4Yi6xX60zNF/raXf94+vSL0ZrvMLo8ZBcuntI85ps8TB/x6SHXik/E3X777efsoP1zn/vczidO2WRLHM2FvjyaD3lvLTlMKDYyYpYDOSpGfWPFCadY4y1BnfyDVx67N6n5ApO+/PLDnKEwwz0JteDUhktOjbJdThvbd9D+zW9+czl4cf/hS7L8DC9MPFS9dFZ/jDWeH0TkKQoXj6w+u0o0cSZPe47BMJ/ur3Dce10zYle8hjnU8rrZnDcmXmvCmGvMOIy5NtlKn62uQXLGXB/WBH6lNcTOvC+b23nQbpwPcMuBuRdDPrKBOnxzfcB3n3bwhsLwWmJM8VqkwIJtLfv0qsNM/Xxz+No1DgemQoa/cuHe06GzWL3+q5s/WOS7LzSXxlFj/ELxxcZm/pR/MmTlAmZ5JUeXjnH6/DPf+OzC4Bu+8XzioxziwxFb6821b9w6Mt61Li94amvAt4qsJ7bCoMsXnxT+4x//uOyD6CP2jeU/HixrzRscbIqRL2TNn/mhD5+efUb7inzni3njS7m3N8wvcZl393xzKSf2ufxXl+dyXy7Fyg/+FBc/kBqmA9byjEeHrNcCengwWp9qcYitdQ2vfPNFfA7qYcw1zb/ig1sezbc5xoNbvvlFRjzG5KP1ID98xYNJjp4+v/kmDsR/MopxfrCJ2MDzCW94/G2+2DIninnGh2uOzZ3yile8YjmEps9Htn1LzH2BLBm2XGMKH8yj3IiVb3yYn2jnN5z8gEuOf/7Ramv2kksuWfYA1ikM3/510G7vLkY+y5N2sZKzXu1dtcXitdE65W822Sp+v9H+0Y9+dOcnyhB/zoa2g/azydYmu2Vgy8CWgS0DWwbO0wzYrDz88MPLP2azGbHRQG0c1HjkbL5skmyMbOhtbmz4+iRRelNXe5YF/PAPPBTu0jnZx2NDraRPRtsGUm0smu14p6vp76Oj+Ptkp3/r8enPxKydrjrexJj6+MknW38tZxxPbVPoMNmDh4dX/PIKk4y+OdVWotmmZ+7VPbDUT15Nx1qZWGub5PCUKYdv8+vhgq82xGRsem2+zTlin21lTdknkx9k4MTTRmzYXNvoa7PtgcJmHvXQAZMtefKw5BM2Nv353jj9ciKfNuV86NqBOWWLX12ZMWl7IDAGg/38yE599rTJyVP8eNnNjr6HB4UOMoavL+ceHj38kIHDhgfiHrqMmysPxO4D7gcerHyyqAc6vnjQocP/+cCYzdaftSqH9Ys3OWNyio9g87V5VaPyxV9riF+IrPjEpPTAKbbyokZh0RE/KjfGtPfRzPsch0Gvwk52wyUfdn7wUREzOTHrq8nCnQ+f9PisRPSKwfgs2SQPr5yEnY/k6OFbG+SyAd8YWTRzQMbYvDbwigMeefNk7VhHxsyd9ZCv4p/rI/7MHb9cn16LtMlYL2qkhqHA12db33WWjDWdDl+seQ/dHQSxWYx0yt0CcPiHLvxiTrYYyLm3XHzxxbs77rhj97KXvezI9RTmUXV+vnD4LRvfSPOmlnuZe1pzqEb1rQUxIHVrE1ZvrJkP/idTLdapGx9PgdG4vIpZkY+uXRjuD90j0lVP/MX44Z9i3DeOJ7+oOI86aPe7vdYGf9g5W+JHvtCFM/sTj1/IeHJ4fCxGtXH+F0M6+BPbXJhXB4/WpznTb22Zb/c5Y63tsPXLv3t1/uDxxxpH5gsev/Cmr+ZOwVPYV8ixA7M46Lu/umbMsTG67IXv/uEa1S9O+bHu3APEhsgpZMSH3xo1zgckP4r9q9fnPhkL07XtDQrxweEHufa68NiQO/ar6bhO+Q6nvJUDsSvFIG44xskXF7vyrk+WfW0yYWkjfHGQUVojfJIXPuDBxOMbai608djBEyMb9LJFxrg58hqOD1N+7RXdj6wzsePDUZP71a9+tfxutgNR81de4JcHtfXo0+zuccbYcf8UX/sKfDHCMAd8tU/QZ098XhPUZOmaS/jGEXl69PHlyJslfJdHWNkMG4b8icf8IX6QJ2sOZ96MwybP9+acvNfe9hPGrXfjfEZk5NWc8NEn5Xt9Ml5c2mLiL2KPLr/45FqCa1zea5MzrpRPetpskuUjubCLlR02za+x9GEl6xqA4w3K9sX68qzIJX15YSu7PtF+/fXXL+ueDePevPBGGBxyrgl7RWuOz3Dk0jzlm39o6o1zc4KvaBczOW35Lm5vmLHZgT27PhzT67cxVG7LAT2+iN08ssVv9sjIoXXDjjm96KKLlm9Pvf3tb1/wytnSOcaf7aD9GEnaRLYMbBnYMrBlYMvA+Z4BG5Vf/vKXO5+Ia0NnY9HGQW0TqbY5aaNqM+0A1ybMZkadXrpyo73us4naMM0N45RPjiyZaNoJo7Hj1tPOcXRmDOSnb1M/fvVaL9nG66/rOV67OtnyNm0kg2dT7LfxzZPNIfl0wlCnM3lyrNjUG28jO2Xwp+10mp9krZs5f/lBd8ri2zR7UOrB0sa8A1ryNuQ9LOjnu3YFpg0y37Xh6is9WMiHzbVi028TzZZNNh1+wKab/x4EfMrF9YBvXDs7+ooHCflCfIoaN1a7MXj4bDUmD9ps5EPyyfSApGarfBqHR1dJ3jh/5QJfv1L+PGD0IE6WbfnpwYOePFlfHoYV+eSvtvnqQdy9gaz41rbzsQcYMooDD/EgPpErP2o8fhVvuOQbd5+yhsphsh6i50MXXcQe3QqbbPB95mkR3vOHfHPE1iRrTsnnbKgj+pP008Nvfq1Rcye/Sg+f4mC3Epb+nP9pk0y54xtcRJ5tlK/aeNlfx8hfZfJbz2o4xrMHK79aX+Tom3+HauSNmUs86yT/6YqfzzCtTYcZXsPwYMGQNzj0YOWLePCNw89vdtwPrG02xGvNeH2DzW86sJC8KXCzhQ87u2wbg0kPvkOoc/WJdm9m3XDDDbs//elPy6GiQwDrgs+uYz5XxMkfvnRAK6/4PnVI3jXTXIhNHuS4IpbmgV5F3FF5Jgvf/VQblmuKHT4iWHIVPl75046mHe2ILFzkoP2mm27avfWtb10w/Ea7T7T//Oc/X+aR7FoXL5o24qnJzLi1FXxl+h6+8fKAVy7V+vRaG+FUT9vy5wDRIajDLzLubekas26bs/w1jped+Zpm/psDvlsf5kXhH56c4tMvdnzXnesNpSueri/6vVbQc32xnS/Gu9fALjfkXBtiw1fKn7i9Vjus6/pmz2GdIn73dYdqvtnRG+LilL/IPcEni42z6xPwrhNxsweTTHsD10JzBUMbiYFOVB7wk5F/sTi4hq0PXxtNXHGKn211a4u811YlXvk0BtMcmRPzBZsv8u96Nlb8zTcZh+XG+xkXcfqU7pve9Kbd5ZdffurQkZ/5e9999y3ffpVjsfOfD3LPP3Ms3z4ZDMu3dsRlXvqWAX/4KS/dn923+eEQOlxxKYgd7daFHCP3Y7jmD7HdOtOXB4WMeNnmJ7tyApd//O+eR949X13c2aPDD3YUeHwXX9eKObKG6cqNtvni6wuHb4h6LVmvfbboz3zC1jfGhj4/3DPJ5odxfHVkTIzWhL2YMf7Kn3uFMQSL78Wn5rei3TdgzLe1wx+xdI1qi4UNWPTk0ifar7vuumUvaJz/9oFywCf+wfBzcb71YM7w5M665a8YfSrd3NFx3fNVmx3yaviuZfbp6/tWg0+5yz+b1odxtTUmFvkgz475dg/pE+3WYH6yoZBt/vnL72uvvXZ31VVXLbmUm7Oh7aD9bLK1yW4Z2DKwZWDLwJaB8zQDNhEO2u+6665Tn+Sw+ZgbtzZ2Nho2UjY5DtRsTmyQbaJsYOikNzces12a2sDM2tiUNRYlZ1zJTjLVye+r6SWXPrnJ36eXzBwLZ/K08RuDu48a3zeGN8dP1zbW+IwBT3w2kwcHB6ceRGHbMJq/NeXrxDPvNtx00jOeLJ72UaUc90CYHgyFH2QUY/BsYj30eBgw3kZeTY5P4rIW9cnQnWtW30bZwwkZuPodErLtgcvDu4cJDyDw2CBHR58cXf6rbdBt1o0XA1tyxL52OvtyjOfBLt05B41ll4w8INjlEJ8d8nxSV8LlXz6S1UbGteWlB7fGy5++PHkwUeSET/LV4QkMDyPmwX2gAzv+yuV8IHKQQZZtNpTyxSf5gC++/PcAJza+oGJtHB+OWikmdbJ8448HS3psisWDrgfD1hMdGOnxRzt/yeU3WQXRmcRfcdBla47rl2+4ZNVo+jzxtNODVT74UzFP5sSa5WM+16ZXgZdNbdQY+dYEvv6MQUwKGba6RiaeNh/pliNzWjGusJktcvJdzvOpwxDy5tFrTocj/IDBDj+aR9emB/rmlhwc9vmln50w8rl5I9eadh9iQ4HroMZrnLyElR942cFDZJSIbZjkXDMOofxGuzqdZI9b8x/5HdoPf/jDu6effnp5U9XvvsuHQwq+y1Hrjy1xusbc/xx48Avf//2QP7kmgye28qCvLZbG8dC6LtfkxCyvePDm/UUMldYNvGLTnpQdvNmmq++TlA7a3/KWtywYPhXZQbvDmuYk3WlHG7+xabf5TF5cCj4e+/mQvrGZK7lrHmDTS0Z7FuPhyJ258klRNbvuuXSRdvfM/MAn1zzA1q92TZlr64SOa8l92v2En3h8NVdhLY3DP+aQLLx0+WqeFe3uE+zxXzGmT984Kn/WqBi8fiiwFXpkxG2/2TUoLlh+V9knUV3rXq/sRV0PHQa7tssBPHFb5w6Zkdcne1ivWcVAhr3ehMenm+/05EhujFXEpcgJYtfrz4kTJ07NlRzAQvSaQ7ziZz97/Bdb80ve9Sov5cA8dS+Eyzfz2JsN5OCZazmCIWY5IiN2r5XuG/6J5ate9apTB+3TRwft/p+TT2abf3HKCX8rfHOA6qBd0bfO2EN0FHPcfYZ99ypzy2/EX6V8alvn7Fkr/PJa7r7cnkyc8itnxtMlo+jzs9cFWOT1xS+nfAu/udEnaw7wyClyzncFweeneyp5fvBZ7cBX3tTwEB/Zo9c1xx85I1Ou4BdL1ys7fKBH1niYfJRb/sk9HL573enbrWRhwbZ++Nt61qZjb8wfb0xZN4hvcqVo02WjdcXupZdeunvf+963yPDPmPklx0/49F23DsTFYe7UyZB79tlnlzUhvvZtYqIvfvnj8z/+8Y9Fj6/0fZvCm5L6YvQaSM8asA5hmRM2xWnNuU7Fq29ts0+GneyRR/x00P7BD35weZ3B48vZ0HbQfjbZ2mS3DGwZ2DKwZWDLwHmaAZsIXwn1z9Q8iNo42Wwokc2GTYfNmmLMZsOm1SbXBsYGMp31pmPdZ1NB6zqb8ff12Qlzys12eupkj+I1fpR+GI2Tr22sdvzZnzZrN66u3di6nuNTfvL36TRHB4cH7TbX5ip9tc34xNiXUzwbZbLWgHpS+uWvMXy8+NmCp90YzGyo22zz1fqCYz3aaPODHjljNtGIDJ6NcbhkbZZby+zAsCk3RocND0Ee3m362Tam8BG+erY9MPSGEgyFTTp80Ed0GjOO9Nkoj/m6DJ4cN0aGrCJOBLsxNWIjHlmUHmz5oIf0a+try00yjeOLxZhcyaG88cnDqHY6xvjXQbt8kvEA7WGHLH/ky0MO8kCTPjtIDO4tipj4UnsROPxTrPXJKBG/2YPJJn/55qGPf3ji6cEyP+iHQ4bd1pZ+dmbc2WGzcbLisGa0izH88qoWixI+Xvrh0cMzDwpq3uNVt87pwpXrHkZhK8aq123Y8lbRJ6ufDlyEJ34FDiKDiotMY63P1nQ48lNcxsiJF9E1Dx7iUWtK3bpgs5LfHqa9fplb/sHzWgVfMTfs5APsfM4H40q2kpFjD+cdePCx/KjF0/2inMGBq8+O8fyxJh1q+b8o5+qg3UO/f1boXt9Bu9fmfM5Pvhejw0T3QPHy0wGl69U1wOcZp3Y5p18e8SfpK2Ivv+VCHwZfzJFrEpmrNU7rYWInO2tYKN98sv+Tn/zkvxy033vvvbv7779/OeyxhlB+7rO9CJzhj1jWeQiTL9qwySiIr4px1LhcaSuoXFSbD/PaQTs5r1lqWK6V8k3HekRzzZFj2zhZazF/0jEn7h3J6lv77IiXvFj0w1F3LbNXfvHoz1hbD2x0MDevG68hDinFVs7Scc0oDuxg4/PNAZkDcbritg91eHpBlXoAAEAASURBVK6wAz8bamu9A2ZxuGfYv87XqeRcH/wRA3vk0YxJ/IrcsK8YJ2ve+NZPqMSX//RmnNltPmE0V12T7DfXfELy7L4nH2woeO5Zajbo803u9N0v3R/E7R7htdK96KqrrloOSsU+55Yvfn7p0UcfPXWAD1uO4fKF/3x30H5wcLAceFpnrnO+RGTNgzG49gvmTS2P5c6cllsxOwjlO7vk+O6NAmtCHy65XjvwyLOtyIs8WKMz/+yIn/9IPGRay10TxpsTtsTF59Yy3eZLmy1rlqwc94YO//liLswZHG28/God6ZtbsSBySFxs4cNT+FbhOx5sGHLturKetcO1J4JJj03EX4UsG/Kc3eKDwQb78sMWHfE6hPapdvPATyW/1Ii+e5pPn8sTXPntW1Vy4Zsprk9+KWwpYeDxv29NsmNde02Dy5904FljrnXrHh/Jg9hau3jlrDUBh75Clq/+GeonPvGJ3bvf/W4qC87SOOaf7aD9mInaxLYMbBnYMrBlYMvA+ZwBm5ZHHnlk9/nPf37ZgNhI2ITYgCCbF5siB2g2xzYkxmxGbB5tXtQ2g+mcKR82Lm2W6NSeenhrfv02SVO+djL6p/PnuHLhnq6eWEfJrWX0y8N6bPo9x5Jf29iXQ5tCG2E/HeNhz9zZIJpf8sbC1seno93GmJ1yzTb+pDbm+Pk248JTYMJR+MBOuPHJkDWupEfWmrMZx+Mne3gTixzik42/B6AekOKzxT+24HmQ8KDuAaR1DVtujBdL/ljj1juK5wEDbnlbBg//6POFX3DgTzxy6aWjJsMHdfqNe3DhV5SvanbKAdva9LWV5p2swm88PkTk9OUt+caKgS6SC/54sJLHfFPDZhtph+sBZz404pvT5ldO8dha0+Rp84OsUuzly7iHJGu+eD3QeiBnv9jYVsio+U5PyQbfWkty46F65id/y0s+keVX4+IphrDZRFNHOxJPc2je2ch2+GKB17XgwZOPeGToN9flB7+Svepsq8sTu9qKmGDPnNPFU1BYarpdK+JNJv36i+LqD33Xpwdy1ygcxHekb368FplbD9Hm2bixDmr4IH+ua1QM+Er+L4OHf+gq5K0JfjcXcslGh0Js4ZEXS/NFJx4fYfEHz2upT3ueq0+0O5C45pprds8888xyLTow85rserMWxCfmOR988VV5nwjmj3GfiPdpX3KzlJdZN2/q2sbTw5vrO118+TDWPObbxEo3THXjYZNpjbILzyf7b7zxxt1VhweG5Lz58N3vfnf30EMPLfkwD/moRuwrEdxskDEGOz+TS6Z+eOngk6nWrg+LHeuvfJBjh35YeNagN4Rf/vKXL4eNM2447gkK3cbSc+10jVgT1icZ69CBlOtKH8Fq/cqrde3a6jrRJ2s/OPXyt+sFNl7XjDXomoEv/l5HXZN8KwdeR/jk/kuWbYWONcqmQzU8sbrmrWM6fIJHlu9ihRF+uZFH14V7hXF50/dp496oKwde22DTJYe8puiLtYPIxuWHLlx54psDP5/wlRPj4cgPX8lVa/NXIY9fbpKjJz6FXf3uR2Jmg32FjBqG/PUaIg48vpoLrxly7p70hje8YTkoFSdd2HDY989Q3SMcWrNtXuXOAbIDTrzuK+4t8kNv+iM2tpp7Y3DaF5hHOuzLfdcrvROH3wxQyyHfrYUXDn+ORY3KEeza1oz1Ika5Ercar7lwfbVXgCP37Wv4R7a8Gqevj89vbbhi579xhe9i1W6OxCqf/OeT/LXuzDdMB9vsZqu5Ns5X/jU2feFD+aZjLJIT/qVfXPzhP4LLZ0W7HE5fyLUu2atNVnF9WWts05MPrzFek7wB0/VDV27cn/jEJiz/ANWbJ7DU1hosb/y0huG2du3HrT3x4ssdefEia9Bc6pfb3pwxJ0is7JgLdmHh8VvO+EXXaz5byBsJfm7VT5WhmeuFcYY/20H7GRK0DW8Z2DKwZWDLwJaB/4UM2ET0iXYbdRsGPBsNmyG1TYqNkDGbE7XNmbbSRnluNmAcRTYzZyL6+zDY2GcHL/nqtWw2jefDWmZiJ6+emOt+Y9VTb8o2rl4XcmvbyYe37sevbhyOTac5Ozg4OHWYYj7Nm3FzSl7bpjU+Xny48qQPz4OUTai+dZG/+qgHljandFondMn1cNPaCtdYOOHCxBNHD9L8YVvd5pr/2mxos9EDEB5ih57NPR5MG3APYnLBHwW/9a5PDzZ7HoxsyD0s8Idvxacmi8imuzAO/xTb9H/GmVy1seKjy3clP40rxvDU7Cvx2RKrMuXxm3M1Sp9NsnRaE+H1gEzWmFzJnwcg7VnmHMFnxwO5hxl51IfLFw/PzUHxTH1tMsWWv2oYyFiYycPygKQvLg9lzZMxpK7IIzvWMaJnnltLbGjDQnyPYJQ3uaObTzCnrLZCp5joFkuY+sYRPDrNJ374+a1v7YtZLsjD6CHRmL4x7XIhHryIX6jx/MTTZg8OX9Jjq3WYj/HU6YY9+8WyCJ38A1/p8K2DEPqNsQeb//0EhDE8ObceUfmRw+znU1gnzZ6Sp1Ohp+iTF3PFenBQgozDF79anx01f7rnul58Is6D+rn6Z6if+tSndn/961+Xe5P7mpyYd3Wv2XLo6/rdSx0C8tM8i+fxxx/fPf/884u/4pkxaFeMReXUHBpXi1/cycsZqk8HxafDvnqScTxltsMJY4756Ri5eOvJ32j30zHf/va3l9+Wdu+xJviX7YmhHbY6Cr/x+mSKP9nq8MNpTVoLERmldRNu42o88+XNcj/p4cDJmrPnap2Rkz995NpG7tfm27prnVoPfCJrHbp/6yts4ZdzGOKDwwc24OSTmKaOOJpbsorx2YaJ6MJ0XaTHTwWGGBxqddDWIabXDj5as37Sgq8d1HWQCJtc9zvyCjk/VSF3rlm6bMuJvS++dv45BPRGH//hGZMvMcFyEMymcYdwCpnssW+99ZMUckeGXflWuzbJabdG5IAeGcRHc2CcLbLsaONpw+g6p4eP+IrIyqtiXBzurXDhW1c+eX/llVcuh5+L0kk9GHR84+Vvf/vbknf3FvkyR2o+mUv5cKAqd829uSpGPLJygcd3fsND7lFsyW8x0+G3tSy3Hay6njs0FS9dc2LOyp8+fbZQeYODTw82+cbNtbXJfv6W47DErC3m1p8cymvXiDiLW/7Xr6diFrsxc0BeX3wKeUSOjHF+wyx3coXwyajDEZu1hPDKq3j14YZtjKwcmkMkJ10fYi0Hav1J+jDkQ97MAV3+qH3gxyE8bLJsabPHjnlyj3O/NqewvKa7XsRh3Jxo54c8mwdYYjLGNtx811f4RYauw3j3DvMsZ9aRb7l48w1Wc8Y3esWuljd+XHLJJbtPf/rTy++0y4Oxs6HtoP1ssrXJbhnYMrBlYMvAloHzNAM2NL/4xS92d95556lNjQ2JzYTNirbNBjmbQIdVNhuKTYvShmduNshH2nPMhuhMRGdiJA9nYq1lZj+56jDI2PypbQSjNXZ8dbhhzb52/alTu/Fk9vWThd94vOPUYZOFYX7M34nDTwF5QPFQTQZfbV7rN4/Fpq4tT2jOd/rJGMezofXwli24NvIeGtpwW0Ooja82HPrZZQvhsd96tCb1Pdgg646szXIPDGx6QGFHOx/J2UTzT1tuHEi1mbYm+QS7jTtb/LbxRjb9NukeIujRYddmP3vlhm4xqWvzh53GF+DVHzJ8zH+ybIUjHyg57cbpFTO5ZNTphw1ffPioWPW1xdQYfbkzB3h05dCDZQ8y4vKQo8ghn8xN8h6gPDw55Cg2MvTKOdl4/KfPjlJs6jXxVzFGL5vWCDx880Sm/Kwx8MmWNzbF0toiLyfFxO9J9OEbN2eIXZj68YrReP7g7fMLP3k1PHJqugpcvkz7/Mwe/x0kqcnLvXZ9tTWeLX4hcmKJyg3cbOV/McLIP3L48cJR4zVWTPq107G23E+69vEr7ORHB+35IR+u5WzwZfoDgy0FVZv75PJH3/pUtNlEYpdX6xqPbjrG2UD4/LGekGvGAbvXXA/s4S2DZ/EnfJ/GheWQvOuoPMLmo777nQN++ZQbB+1ezx00GPe/Wp577rlTfoqV38XFnvjyV78xudBX1y73hZR+GGymY63Rw4vCwlPqN76v9hM6t9xyy/Jb07D7Z6h+W3oetE87EyefxVicjc+x7gHyHbGnrAmPrpzLF1w8PoSjP23qJ0PPa/hrXvOaZe2Io3tZc0S3PHn9Y8/92qEnH8n7BLg8k3PNu7asRbKo/JYbc0/GulEbd/BN11qmhwezmPgsJj6owy4n5OjCm6+9rSPyZNy/vNZ6cxaJQenw0f3KulfLAX147hMwHKJ1f2ufYN273mDYk6DuK3DKDTw5d/Dn8FQc5MnIlxjpOfwTh3F58boGW07I4okDFuKTmOQXBjnXHz7beHJDHr6+XIiHLfNBp2KMr/D4AAORL58wjLkHaOOr7WGsKUXeHIJ6E8KbOWzDRmQjc+Gw3TdorCd5VcjyuTm15uRaXK019vklP9ryAEOezJMCp7jloTYMcfKRPbpw5FdbLTdy1G/286e8iYE8kiP5QDDJlC92zJfrxJjXfjzjcm6sWmxyKU65ZM96kQP7RCSm5hsOXbj0EJ/E3HWmTYe+1xT5wcsuv9k1Lg/6+Q8Pjw1kvRaDGq7Y5VVBcq+UX365Z1jj7IpJ7uiS4S+f8mcBOfwDl3wknv7JKVk+u45gNy9yK1euaXa9GeUbFf4BqtjFVQ74T1ctZv7wRc1/2OEeHBwsffj8sIbES7c9u9z4Xfeuaf9MXN+884cNMYldERte9yD3Q5/Q9xNl73//+5ewZ/zl4XT1dtB+uuxsY1sGtgxsGdgysGXgfyQDNhIesD2o27Da4NhQ2LjYoNgE2bAgmxqbE5suxWakzVcb7pkW2KjNSmNsIJuT2W5cTSf9yaez3tQkV538PtmwbbzIi2PiTZ2JN2XCD2vKzbHaxivx2J+0D+N0PP40Pn2LZ8Nt/k4cHrR7+GjzbD7LOVnx20Sq6Sja+2jaMW7+EUxYbZ7VbMAh48GqjevEoCMPyZJvvLHGrUeFjM0zmzbx+vy3NtXWo7bNvVjgILg90OBpy8nc7MNko80/OXpsKNa+h+kO6Plts2/t5wveem7ZNxf5yja5fDM+iU1FzsjxS0xwy3V5yTf6ZBU8sSO22JGXdOWJv2oEiw575NLX5zfC91DZw68xeSqHMMjqq/kRsc9Wh6EOF/KPDF1Y9JKlr5//+vwvXvmZlM/hwsHjNypmvLXuxGGHTTJqa7m5hakN03j5TD9cNZl8liuy4kkGljL7fK8fJpnm2lgyM17j8NMl44G4WNnnd9eI2rpVyOorbE2iZzwSD1tKvrSGklEXdzHOsaPa/Idbbsmx4fr0kG0ejMOuGGefj60tY/jmznotJnz69acf5Nk15mFcTZ5PsLXhuTfAQPhsO/RwABU2Hr1kzIF+r6mwxePA7zOf+cw5+US7A0dYDtr5yFd2K3zUlg+HaR0Q+nkHhwsObvnvJ+R8YtU6ReWA/9rlRb6QfmPw8dVykyw9lI5+PLIoHblLTg1HSa7+onT4J9n66g996EO7m2+++V8O2r/1rW8t/8RRnOWG7j59fitoPd4YfjGWK/LFvNbFl1+y8hVucYerLtbwyFo7XsNf//rXL9eB9ebaJCuXxcQn8t1vvE45SKXv9ZCedU7P/cF6INN9Sf6VYoPreui+j9/hFB22YdEpRjUbfOALGXrFhUcXrmuaDTLyo1aQe5P9qE+ZIjEo3dfgO4hjW04VmNY/H6x5Y+y1Z+2ADLY9CZu9nsH1Og4XH46DU4eoxS0u9yNEr+uIHa9pChnyanbZgsV39+B+sqa5JpNduOKALTdkyuGMjTziZzh8yHY65daY+ScLXy0XHUrzTZz2iq9+9atP7RUXI4d/yCP5dtCueL3ghzzLGVty4/W//Sab+Mblhm0+mlf5h8G3cm+NiJM9evKA8MXqoF0+HV7LJRz7MVjWlHXqk/Tsi8laMkfmg568KJNac3xDcOFnnzx/+GmML2o+03Evl8tyaN7EjcTX2qMHgz2xILmIRw8eHTG5L7Mhdwp9BbbCB3HlvzYewutZrmsMrsJ2uYFLR4z49JpDvuCxSY6M2pyXS/Jygy8O8trWuzdxzZ++OKwveSpONVtk6LnWfKPCT8f4nXbYvaHIBl08MRR7ds2x+eKrN3n0+dAcipcNNpH14ifSzA08n273GuraZGOuEbbhyi88xTrzf1B8c+rqq69eMKfOwjjDn+2g/QwJ2oa3DGwZ2DKwZWDLwP9CBmwkHnvssd0Xv/jFZYNng2Ij0cbTBsMmygbLBk9tU2FDgmy6bKTUEcxIu/5xNiPJ0p/t8NYYyajXY+t+GGT5XwzkKmTSCzsefrzqMNXx1JWwsrWWTye5+snNfjLTlvaaT8e82WD6ZIkDFXNqw0h2ys+NdGNqGJX0pk82rtYImfD024yK1xjdHhj0kTH6tcMgy+/8wCcH0wOYTbmxHvI9qGRD28ZbsRatVbww5cIG3MFDDxFqeGTgkGGnBwA8G/HWPEwPQXB6IGTLuM2/6wSFWX6Kc8YFW0HsK6i8TFn5khfyxpNJvlxPHWP8kTvj5YoMn8sNTLzyRKc40g3XGnJ/oCPP4tM3L9rmpXEy7LIFO7sezK0HPD7Ir5osDAWePp1iDQ+vexIf8M0bu3Qj+gg2neKjm75xctnCJ5uucTRzxV92k2N/zgk+XlQfT+EH0mZHTUaZPqavJldsbCtkw0yfbHhkIrJiMK/a1qpSbrq3FxcMlB1tPijFSmadR2Ns8Eebz3TWZBw/O/lBB5/deA5uHJ4o1oU1mV7Xppg8LDsI6rqEQzZ/s0eXfVRbHwaig4zRwVeLRTGutuboyaN7gnXNZ8QmoktGnx4duK4jB+3+Afm5+kS7g3afNGXLfar4+coPufPJPwcgclRMDhy8SUHuL3/5y9J2HRf/EsjhH/1J5VBcsOqz1f1jrZM+vkKnWtt6ivSVcngUVjLprQ/a/RSBg/YHH3xwObwS2z7K3r6x/DWWH2q5LldTJox8U8sReXUY5UofP8oX44ocmzu/C+xgz5ozX4iucdeCIvdqenxzwGWcjsPO5kbt4Ekh5/7Jh65p+uEbt3aNz/sGP/FbT+GwF5UXsrDhkhdP93m+uAcp+Y7XayssmIq1TSYs9tllx72iN+XIuI/AcX1qs+ew1gGbw1Qkfj7JDezicy17necnW3SMF4c9ggNdtXG+8xfxBWb26Zh7cvDlUcGn171OfMVjfo3zH45+vHLEDhwyleYNX2xq8jNvfDQmPuvD3Lu/XnTRRbvXvva1uwsuuGDxg302In46/HQQWrv7Bx/5Lh8OO+WZbXEjWPpqsuJWw2nexc8fNuWK3w6cjcOxblrHxSQu+wnY4mAfBl8QXjkkw6YctZ7U8kqeXbju5XhypMZjI5/V7PKxNZ88e2JE7MGHi6c0P8a165OFZx26H1urMPHIwOC7fHidMw+tJT6QNc6GXOnLhZzRdbhMvrjZt17bn7GP8h2GWGDHy188/pVjdvkJg61yQU7exOQ6UlyfcKc+HX359izq0Juf5s1YuOyYi+LEZ8shPHk+8Ck58eDzI7+Ms4UnRjHR89Mx/X8SNromYaCZA/77fxl33HHH8sbuHF+Ej/FnO2g/RpI2kS0DWwa2DGwZ2DJwvmfABuSJJ57Yff3rXz/1yRAbkTanNi02YzafNpf6bX7EblNi4zkfMoxHbeDitWFR49VPPrmj+lM+2X049KdseGrySr7hkT1K3vik9NX76EzjdNhKrr56jTn7+Tf1pu7Ut4G0qfTw5HDZprtNpTqCaa7b0OOXl2xn1xg5m1sbeA+22uHCCYsuHLU1Qi88tZIf8fXjpWvMZtnhlBj4os+uNjm1dckG++xZr9akPkxruk870Y/okUE232yIS3yotc+OhwYPOOsDZzIKLLb4o+ZjscHSVooRD+krbNj8Tx1YSnLGir128TSHMGCJKzwPDuT56Holi/I1H7IH04MPHTw4Hmg8ZKRnjJ1qfimw8pldfTKKuZEr9vlhnuQVsWHNeiCDw1c6E4892GIzTsecebg2Z/rG2YDPPoKD6CkwUX7RKX/LwOGfeHwuBjLJGafPpwqe0sMdWTJ4M47sshVmMvqT6MkHHWP5P22mk/3ypI/kofWpXd9YuVInD0/cbCF5nbHmf/b0ydArV3zAXxM+2XzkFz1Y1h2bbOu7Fq2H1l56cOnxmT2fRnMIYf1kU52teGtf8Ctw+FGsyRrPrpqPrgN8OnLpE4QOMvD4Xx7DpmcO8Tto/8IXvrC77LLLTslm77g1bNQn2h20i9f1JG/lLF/4ID9qccqdnDmEwfNPBbX5CQfRFeM+MkYv2eRhH0X5ku/kZjs9cpV47Kxlk8lH/wz1pptuOu0n2mFUwq4Or/HszRjJilueui7TV6erza98w4dTHHOMLCLDh8bU1ptrwOGO13K284uOvjWnkHff657ldY+sa8U6hY1ao8bE4B7qnmXujJGHoRi3btIzRoYsPa+rfKTvulAjvojVGDvkFQe8F1544an7NTxr1tpTh69W6JazfBOz9e2eD19cbOur2aFrjTtUF3u5d2jOFh2+4DuMdw17PZI/h4Nidh3B4leHuvridpgsv3DyWZu//DMmd3yOygc+YqsYyXvNpcsG4j+7cCP4+q0RMgocuhX3GfbEbh7ZIkfXGP99kphNr59+R/vyyy9fDsrlkBzMfFHLXd8ksBfykxsvvPDCwuefGPwMiA93WLN84Wf+8wdPTvDhyzkf5ZQPZIy7n7q3yb055iceH8RRXGqYbLd3y4YxWOzLuVzKAyKjyOdco3RaS8bJ84FNOZBLbWStWyfwmw98fWNiivDyB45+a5t9uRCbtSiHYgmXnHE5d8+2VptLMsZ6PuMz/9mWM2RM7uS2tccXsfAbH8VjD4bY8hGumGAa0xeHAgMZF4u+cXZdS97gde+yJqw1684apIvIy7F/Wu3Am11j/BKfNQKrvPMJPlsO79mFgU9OHhH9YjPWnLAtBrmQJ9/2sdbYKp704uHLMwxvenpz2+sNInM2tB20n022NtktA1sGtgxsGdgycJ5mwObD1/XuvffeUxtQGwqbFZswGy+lTXobKOGSM2bz0wYIH2a1zUr9hXn4x6YkHrxkJz/ZxmZ/tuG0yame47Wzt68fRvprWTrx1EqbsPBmPWXjh73uJxtff8pmB89Y8rOdrjpdebWRdNBuU+shBK/xqYNvrs0nsvkklzwfFDzzbRPs4dqmGW58G+UeVOnSgRVONvU9/PSwFR+OuOjYzBa72gOxDTVdY22S86uHKeN89CDtwcLGGCZ5m2sY4bJLXiFj0+4hwsO6mj/yIi42XRM25GLWp1Ps5NjSR8VCJmK3hxM2o3SMi72YjJuT5qV88ROuQl5JFm528gGvPMiNOcqmGn59OPB6aM1/8XpAksdk6MAV+7SLBxMvP/OVffMilh6I1GTlRt49kLFHlh5ZRVts5Yf9HrToOHihx7ZPhSnuS+TLUTkUAzx24cz4jcVT8xcmnHTKWfp0jCM8+ROPNtns0q/MsfD2+UEXdvhTBhaKlx15gckGcv9unsiSM04//+TbmL680WlN5/MCdviHL2wUY/YbD4f96SM9OnS18yF5+toV68GDsHlFsOiZTziIDWvINZ+/y8DJP2vf51hx4MmJuPkGP9/JKCj78ci6H7pHyB9yfc05K361eB2gXHrppcu3yByeivXfoXDnQTt/4DnY8MlS9zLr1wGNAzKHjnwjI2cw6CBj5lxs+PlVTSab2tHkJYu3j288Gfra7JnL7OLLfSX5OU4GNSavaN9B+z333LN74IEHlsOp1sz0L1w8NlE+FUM1e9r5Sw7hV9JV48FUo8ZghFmcxvHCSdf6cvDmN9r77WPrtGuHnvWqwLcWFTLhsZFNesbIuCcg68Q1Rq7rwLi1jO++37qhb62rXZv2F8ato/JL1rg+//kmHnwHvP5XgNd0Y2zCY699Zq8r/AyTHF/02bO+3R/EzFY5Lm8w4XXQTl88YiaPYLhXd4DZYb8+X5vD/Ou1k33XsZjlFTafu/8Yt0ciky1Y5NlT87N4+SKXCjl8uK5dB6/l3pi5Qnxij0/FJT+KvNrryDv7/IMln+yag4ODg92Jw5+LsS9S8Px8Bz1Exz2CHl/Mj7x4XeUPm9ruP/jyyp55ddAOW5xswmG3HJhDBU7zYz/pvjjn25t/7Mun13dtB7cwywlc8RrvcB+PDGx+sSsv+nyVX3mpkFfEyb55K8/ljWxzLTfWnlypzQW/5muQXLS+yStdc3zX5xcZ9hCf+dtBNHvsIrU8kjHvSM2mfalciQsmbLmHzQ+Y9MQoPjIz9uIWBzn9ePTpzDVPl6yaLTVsOWOTX/S7pv2muW9KuI+p/Y8Sb7aVdzkWw/3337+sJ7bKJTveSHcdkMv//JM7c4tcW2ToihFlQ5uOPoJDz3olzwZiWzFWnsq5eTNmnfpnqNddd92iE+bSOcaf7aD9GEnaRLYMbBnYMrBlYMvA+Z4BGw9fr/7e9763bIraQNlE21zY5Ng0adusGbf5UGwu8NqIzlzAVcipJ7Upwdde98mmr208jNr1G5+19pomnrH0s40XtvakZPGKffKOkp182NmiO9vkZr82PnsRvQrebOunpzZPNp0enGxutduck43ypbnFb25toGHZkCYHA5aHSMVDhjF8nyLxSZs+TWKDbrMfDmyyNqsKH3vgMMYW23RsZtlFcDzQeBiExaYy/coGPGvV+rXJ5xd9PnsIUNgoHvjs6rML18OuGoUFA6ZPE8EgSw+x0XUSbxlY/WEj2/lbrokaZ0dtXJGjMNnBYzsc8uXJWDjGIxh04ZpncUzc5NQw4InRAwgdhU0H7eWdjFy79j3c8RGP3R7A0q02zr6cIn5YLx5QYRmXew9gHtbI0jWmoImlT84DtgMT/umT9fDv68DZyrfi5i+scluNR5ZcBV56xsjqy5VSm674FX4kK/czBuPZjh+WmKKw66vDp7+P2OIP29nAM0/mBeb0H0Z9coicB086sNgko8BU4Lf2skM2IguPvUnptoaNlw9yMMjgyY08uhewBROxTT8MfL46hOiAij6sdOjBVRA+GVhqfrDH52IjSy5/0tMno3gY56O1CsOYNS2HcBU8pM0na9xBg59r88m46eMieMw/4Vrrn/3sZ5ffTuYL/sHBwfLpUNeGvLgW/IZ71wQZ14bcujfygd/yaEzJr+r4uZeMcbElZ3zGjT/H5Gn2yTaXMJE8KWSjtf2JQRatD9p9iMBBuwMcr0sTI/+tLT6g5rB1kXyybGpPHXr4xdXaKCczhmINR9+6048XXjxz6o3EN7/5zctv7FtzXZv51XUCz+ue61edbXLZsjbZ7BBM233dHJDXh+/+7N4sVutEjsXGL+udnEOu9hf0jZMzrqbLX3zk+vKTK9a/Q1G4CJZrV7Eu+ajueua/0uuPNXtwuMa9TqH8pqewzRYMB3T8wdc2JhfIJ6hhOIDt2x2uF4ducoDIlg9jbMm367h1i8ceOwimOO1Zmkc49MQgJwiuQh8ePXGyQ88Yn2Hrs9f1iicWc21ty5Vx2GTkVz+58grHevL/GuwPvc7bX5GXDz4iPrWO+M6Gw9AO2suTe4rDa76abzF7PYbNF+uMLl+tg9YE38w7XXPjcNkn6ltjam8OiotP/JRfWGr+tS7Ea9weAOGL20+KiZv/8MyzubWuywsf2IdHjs/um+ajOWhe4eKpxckeOTZgd+8nk01t2Oy4pmBp579rgD2Y+PIkF3CzJybyckwGiQcWuz4F7tsF8NkVW7GQ0xdjesb4VdE3L2TEwi6aGHIsZjx2zQsqj/h8lj84MMjAc71bW64J6+KKK65YajLiNafW0cMPP7zEwhe5hK2YR9cnPPHQY88aYlON11zIAyr3auNyyJ4c4rEj93DZQzAUa844+9awmOi6RsVz66237q655ppFB9bZ0HbQfjbZ2mS3DGwZ2DKwZWDLwHmaAZuPp556aved73xn2UzYgNgY2UTbWOgrNlb4NhqozQ6ezZ86golshLTVR5ENSiU9fe3ZX+uvx4+z0Zk64a311r7mA/n01zJhJTP72tkorjkefjKN1Z+2yOqnkz/Jpqs2TzaKL33pS5dNuzaejeb0Q1tp40k3/OSmHRg9xHkYsOnkE30bVZthDzF0bVKtk2zCRmRtXslMn7LXgyJdZBNtg2/zC4vNHrjzLZ/htX5tjtnhB58VeZg5rU2fPbjsqBEsm3bj1rkHAv7Qy3/XCTtsR8bCxkt+tpNRK4ivbImzvDUWr1jzedppjE5tenKuz1fXNl+nzJTVFn8PrXxyoNLDhzzhwXBfUMJT90DCr+LRpidPcsq2vFoz64N2n4YzVxOT/+JAYWl7SPWA7VNSDgrML9kXDr/O7uGTL8UpLpgzr9kwpoSNn2xzC8c4yhc87YoxMvwXO2p9ZFceWkN47PBZXtQR7GzWVuerGjWmna/FYox9cwRbP5vqSNs4PbVrhw6+ePAUvoatrg3XGFlFP1+yUW1cDpILQ5+OMQWeHCrGpj19OTTGFt/kzwNzeHgzRjrh0EmOX+Sah+wbT18bpcc2ufybeXE4JXfJpqvmk+vIJ+K+9KUvLT8HQu7foXCt89tuu235jXbXreLNKodd7pWuMTL+iaH7c9eE+5nrx1rlg+uR33IUrX1jc/Jq09GuTy7/4oVZTuuTk8vmBp+OnJLVDivf8CafLFr/Rru9TQft7jPZUIeVbfrN4+Rl2xibiC4ZZBy/cfz085Nc/hqrDSeZeMmqxe+e5jD7da973TKv9M2hMbatRXNuHo2ZR69TrmFEphisP4Utc63w2zqxFsoJfOvD9WSN84GOtjGHv3DoOKTlg9fteT2Sx+MbPnk+++S0b9p5o57PCJ+97jtsaLuW+E4Xjzwf2e2QfPosHnJsw9QWA334PvWrXT76CRvxOLCUO/IdHMOAD5c+PDzxiK15FoMx9yDj8un1U+zuaeVOHunCJCdG9ozb43gtg8sWHkwyrUt5dv9gF8HooJ0cPnx27M/Idx+GpU3HQfvBwcHyuum1XWEbX27ZI+easV9oXelbW8bEqu+NPnnFl1c22XYYWSwwxKOInQw/s8EeHf+zwnhrxZzIPXk+anefEj9Zhc/GrcX4MOmzSZ9v7oXmuj0QWeP8yDexyh8dPHGyq60gMubLnsNcmy/3VtiwUGtMmy/N5ZwPcbIzD9rpi0NM2mw3H3Thyh09+mJhu1yxx5YxxFd9PoZVHPmoTo6sPhk8fqjlRKz4cgJP7qNk6Ronxx48h+tej1z7rluvfydOfuOhGLyB4zfaHarDLR7j2tYXXPgKGXnIPzz3B/KuBbkrT3wzXj7ljJxx66aYxAKjexYbcs+u3CvsbQftzfpWbxnYMrBlYMvAloEtA0dmwObjySefXB5GeyCxqVDa3LVJbLNhU0JPaQNnDOFVa9uoKPFmDcfGR62sKax9Y2ucte5R/TCrJ3b+qud47WzO/trOHJvYa7mw1vy1zsTTXucTL50pa85sxB20exjwwIOa02TlH6/+rLVtUCeRt9H0EOmhzMabTzatHjJ84snDzP9j7956dCuq/Y8/b8MLkwbP0XjWmBgFMagoCFEMCKIcRBNBvXGLUUOMd0Yj6MtRBBINQoICETlFEePF/238+1NrfdljT7sXvQz7Yu3MkVRX1ahx+I1RNeesWf300+Sa9+aYHTbJKnBXjIUDbj7Sh91muE2+sTbCYbRhhpUva9Jatib5QXSyWYz49PjBU/hiuwMALwo27Qi+XhzCzRceP9kwBgc8xcAPfjEug8c/6JAtR70QZJ8cGX22skG+sfwWhzF+JuGR86LQS7w+nXwnz4eXql5a5d1LcLmiox0uvuRBvtmWi/yxEy65bW7U8uqQwEsPeTbl3Qu/mn22FePZZK91yT55X5VhTerz79NR/mmbtniQWvzsaRtT9NnMbnHxZwxWdfzypK9M2+zhyZl1PH2ypw+jNWY9ks2H66e5YTP7cCH6M57WO76CxEcGNQ7/1OOvMvFnA0ZttrQRffPLljH85LKBzye8xuhncxk5/6O44tWnxw8bXS94CpnZpktOicTkWgxP+IshbOzEo0svnfzXL9b65OnPa0E/vja/M+d8Vdh3L/Pd7K/XQfsrx79UuvPOO9c/M3X441r1yUHXhTXoEMbhhXsz/+KFz4GVa9I6hM89E/biEdPM0wry+Ec5qU+m/BRnfTIn2Ui3mnw6tenxpZw0Nu2SQScdtP/85z8/PPTQQ+vwVD6av+0aoy837JLJJz4y1rg+mUpY1fSstfTxFDTbJ8ktofM/kjVHnuG+Zsi88hkOftxrembpm1f3VfcSuuTZCk8+ikefDcV9lw1k3HqRJwXJn3Xi/mqMTYV9Y/wly6+15b6sbo/oueKXqQ7d+Aufaxdma1PxXLCXQJ4V7o+wkeeHvkNnbRjgsX7hbm7xWq9svPzyy8sHmzDDIW75Yp8MDB3qlWeycx3WV8PDP9/tOdzjOxBnk5z89HzSZ5tf40ie/EKFHluomFbn+AcbPR/Ls/lWzAscckTOLzLkphzwxy7f7hEOPtXmQHFfgoFucXfQjjf3PmJmC3459Wlq9xe2+YPRPY4eOfMJG7vG6cNJXr61+faLD3KtBbmhI1axsIPHJhv4dBsXB2JD4UvO6fIFr1yFhx6MCnvpGlcQG/yVE3bpudc6IOdT7t1nrRtjEVlEV0ytD3064bAGyfKjwCMucjDTax0XLz8wk6ETkZPTfJHhR9zms/zxZyyM2sWaLb7kz5gcipX9YjEOa1i0jbeng4tN15n16Np3L7Nfcy/r2RO+J598cq0jdh2ui8O8GWdLrPoo/GSLAQ7+8+u+6HoKI3023VfEQF7uxcYOmrL5Updn4w7av/nNbx5uuOGGpZPc6pzhx/6J9jMkaRfZM7BnYM/AnoE9A5d6BmxQHn/88cNPf/rTVzdHNkaKDQtStwGz4bGpqG/Mhk5pszNrG7Q2c/gVdtu8qCv4/1sULvZnO3/hrI5/1nraLJ7Jy46xk/iNn1bTaUObja2d+jaaNoQ+SeJlwEZSXIhupG0DGdFXyCptPhs33zbbNss2yjax5K0LnwLroD2b7Cv01DCR1ycTPzl++ExOH3YvNTbE5OTA5r8XAPLa6bQhbh2zUd60+c8fPv0wGdfnE7EhtnJBz4sKPuzWvVxr00NkYKDDrgKbPjllElmF3qR06RkLa7J4lXzpZ48tvvAiY7CTz958geGTvDEvKfrWj5fyxthKnxy+PHiR86JpDLHjRUpfW07JeMnxklnuYCIjf+zRKZfFEqb8ymfzZA32EseHmK3FDmnKARterpqvcqEWgxKxTb4XPDaKHz+CJ36y+tZjNuhGdOVVThVx8C8fDkPlL/tsK4hNdvjIXn716SjGFWMIT7xqPMX8N+f6xZB8vGXgvA0Ye7ne5i/f1dlJbmsvu9uaHBvFLX+1jWUnvPr5ahzOePJQW50M/fhyB2d+pv8ltPmRDTVZNHFqW8PGyrFakXf43Mtez4N2B1033XTT4S9/+cs6rPKJQYdW7tNwOLBQrDH3UKTtYMj6S859Tc5mfopx1tqn9dluTDuaPLmLam/H5RHht97TmbLbse1Bu6/F+8UvfrG+ksA9wf2BT3E3T62nfHU98Rc+bXOXP3OJuv+tzvGPiS3deNM+eeOtHW3jU5aMPqwOqPp/K2JonfNvTt0z8dkzjz2jjJFBxtkqt8XJtzXgvqSQk5PwWLtk2SHnvu1TzDBYL+7p8mE8HPT5IW+fAD8ZfDLufQ6V+SNH13jXibY16n7It3u5T027B8HFjljExwb95oY9MYiLvXIlJ88///yyuxJy/CMMxjr0dhDHrzjp8scmfwrf7JbjYoVZPtTweAbQZVdNF48MrIrciZMNeyoH355n+WVLzAoeGzA3r+zCyQZZONni32G3PJQXMdf2SwrPdB+WkL/mrXsBjEiMfJdf/vkWB7++2uXZZ589vPTSS+srZZbS8Q/za++ZHkxIDOUIdmSe2HPQTw+JR27gNS4utX5rpHw21+wZlwfUHJBLt4N2MvkVj3syOTb4Mv8K3OzjTSx48HaIKxfdY/GKjR4StzwWuxj01ai1gidu+nzTay3mX62QEYOiLd7iNG/NIQzaYncPVDfGNx0y4mcXpmmfXWTcWoEr/PjG820cwZwtvtq/W2fNtXuC3LMHg1itJXnky2G9fCD95PTFyz4dupOnTZaM9ayEkY7rWw7EgM+2OYOdra4ZMtYJW2QUNo37zvm77rrrcN11173qezXO+GM/aD9jonaxPQN7BvYM7BnYM3ApZ8DG4rHHHjvcf//9a/NRLDYkSmRDo9h44NtY2gjRt2GxedFWIu02R7X1UXJssqc+C9nopEt+29/aIEsGaU9dvPA0PvHipat9IZp26ZxV7zSb014yeDbEMGYfL9lqY+bJhtD3cDp00canryD97Mh/7eknm2FQ25A62OylEM968N2X/vzTS7E5pcumtoJstG1YjeHBme9kjDUv6jbmNuVhZMMG2ri2+JRi44tdpXylayxM5YNPWHrJ0EfhJ8ePjXkvtWyLmx4yhvKrzY4ysRmfWPTLA1xzjN/sqhXxsEkuW+HNVnb0lXAUNzziYV/MXoZgyA4/ZJAX9j5pRh+RKydqefBi4hNT5os+WT5QbS96PmlOFq/4iousNsww8QMf8jJkjE1zD199a8O65Jtdc+QljX19udJ2n8IXK54xviK8ZNXimuPw0KmUL314p66x5GfbC7qDDgcm4qArH77aw0umPjLPSsR26xOPTbwKPXjFN/3R0Re/ejvf+I2xhfjFy3++2Q+DvPClNs6/fvjlA007i3GBH/BF9MyvWjFWTvARX3N+8GDBm3w8BU0f9MVjbMasnb+ldP4HnkK+OGGJD6e1qOafjLWotD4cMPiKBN/R/nr8M9S//e1vh+uvv/7w3HPPrQPNy47/JN8127Xg0MPBC8z4YnOY414Nu+vGmE/0wlmO8U4r5USMycSrLk/V5E6icmeMjH7zjVee1VsbjZFD2+9of/rpp9c/en/00UfXIZN7BvutK+1IuzkrLmP4cjLjbJ1nLzl1clus+vCGObuttambDB33OwdV7sEdsjYuTzCQUdgy165TbWstvnXZoRNf7oHskJMP66V7Kmx8i7MDL2Ps4ffpZb6sG2ubjQ7S2FT482lWh8jG2YXHPdABvBofL59yDxub7tf67ot+Een50v0HNmuXjeZBPsQBB3tsWNMI1meeeWbZhM14HxbgxzUh1mLCk5/mgA+FLt/u2bCwIwZycMPbvODxzw4Z+trF2v2aTYfMXbfsI+OuX3GLhT7M8orYh4FfNo3zo7CXP7J8FLfnj1/IuVfYH8pZ43zzi+YaMS7fMFpLML3wwguHJ554Yv0Cw7PdPHpO2x86xM9f8ys34mC/+y6M4mHbvJUz+aUnl3gKe/rIGPlyAbdcs002u2IwhmdvCre51afv2oJXDsphOedPHsVULHLLZ4ez+ny2NuUzgpWeuMnA0XxZB4pxsWhbg/KIV9xiEgO87Ohbo10bxSev2WSHPpxqPq3t7vHlnnzr15zywQ4/2tnTlk8xh3XKGYfZ2jBu7rIFJx59uSrHXbv08OF88cUXXz1oD0P5YYOcPlxigIEfpMbLXjW7ERl2ix8WcrCIX1vNvuejOWtc7GIw7i+Fb7vttsM111yzTIchP69V7wftr5WhfXzPwJ6BPQN7BvYM/B/IgI2G78XzZ+w2R208bDRsHhS8Nlw2Kdo2T8nbtOiTQ7O2SdFXtJUIr41Pm6rGTqvD0/i2H18djngn9cPTWHjTYf+slA06F6N3mv3sNa5fDvMRj4x2fPm0Kbz88svXS4QXChtym1UlWXOJ1M0tHzan2w0qOXo2ml6cvZzYoOKZfy/fNqdeUhA7rRu1vo1/m2UyfMK1nf/yBwPsXqbpFh++PpvseUlSz8KmQjYcfCJ96xZ242o4bNzbhJ+TPPeTH/lUbL7JsqHNR3bgy9fkyzkbyHjx6ZNjrzLHxNN8wanAMG2xh+jBzg6bKJza6ZCTL3bZE7MXwF5a8MojPS+OXsrFGDZ1MZOl735g7ptjuPgkq5DzCTjfF+2llB/rp3nkC8EFizVFhm3x9Kkz8dNpzvnAs07w+CKvNgZHWNlszpIrf3zjhVvNN56CimfmOB25RzAbrw0L/4isOPySyoGJ+PHkzYGpl+x0+VLoKvCwpY7Hpr7Cjvhgzh8+e+zAhS+3Cr6+sea7WNjFS4cc+fTYhaVcahvv2qBPFrHDx5b4QmHVJoev4FsL5lZtDC8++fJRbWzmg0z28KPs4Jk3+nh8FTPZ2WYnDPlIJrtiNb/s5NehiIMPuUEdtP/gBz943Q7aP/e5z61PlVpPDmQ7sOOvg1LY8cWE5xPCrhf3c/H7RWkHNHKBxFkc1Y3plwftSclM3pSZtuBSJm+bd2P5YpP95NWRT/Z//etfP3zyk59cMg7aH3zwwcOjm4N2/vhAYVXLQyX74UsO31zCY56zQQ4ZL2/pxM/mEjz+YZzelJtxkrf2rSnz2uF0+mrjXav6DuJce3jmG0Y+eoaSR637bXxh4dv9xL3aGmbHc59+z3h8fxkhH/Jp/VlTxeWeDLODXfdsRM6hlYNYmNhTmnN+3UvgC6MDUr+gdeDu/mbcWmWzg3bxssN/GOQB1mJx0B5WGMMgzg7ZPcfch8nRQ9mVAziNdbAqf8ZRczd5PUPoFadx1P3UmDgUbXjgg8meSo7ZkU+/bBFfa8x61aYHHx/dh7SLAU/h297tsuNDdp/M7eCeHDt8W0P8N4/hNb/WlPmDyf9A8P7gHy3LM3zWiPl2n6PHBhxq9s2p/Kn5FAu75jK8/Jtf9sQlRnMuPjx26Wkr7LBJhy4/bLHb/Ve+raO+Iog9Nhykywc7MKrby/AtFjLsITlk132TLBlzQwdO8eMhOMnjwye3/EbGFbbJyGG/AKUnLvJqRc7ESM7aKJd4/FtP5IzJlfXEPrny0PUjR2FJFi42jCkw0dWWqw6bw9I4O/zIo3mEhwxf/MqreOQFXy138DUmB/46S2x4ZNhUK8YVbX7hZD8KE518NVYs6myrEb3WEp65Vns+ws6eucY37+7F/lrjlltuOXzqU5961cZqnPHHftB+xkTtYnsG9gzsGdgzsGfgUs6ADYWNsk/X2ZxFNiRKZDPSZgXPJscmxIbHBlJp46Ku2KRs22xNmr4aq55yr9XO/1Zu8mc7bMmHMxkYwhEv2QvV6ZBJb/Km7knj8aZctozN8W2fHF/mxeb56OhovZjZINoMt2FVN59qOoo2mza0Nqv5SlbObKRtNr1QsIusBy/BXr5sssNFj1999tjNFwwoGfWW6PDHTy9C5OAQn1oJrxqfLD/5JoPygW+Trg+bcW1F7uhO0s+2tU6GLBvaqFwVX7bL+YVsswHT9D1zVq7iwaut8Me2woYXIzUKCzk21Ehem19zJ6ZeWsh58VDgMc/+MoIuH2zS0c5u9wNzn10YjOcTZod5XmC8FJpXL1pqsuzRNdfabMo5m+415tR4+dQ2rrDhZUhdzOrmZgV9/MOLbthnzmFT0MydNrli5TO707ZxssaQPnuwpo9v3MuqnPoFhpjIis8vIBwEZDd9eoguWSSnxsOSb3OolPNwka2QnWuEbHPOtnF6eHSQGi566vzKZ7jktesBTx9NO8mqFcR/hWwyxuS7tWisuMKVPsz8pasmIw5tBVXnD4+ugteawhdnPumxxeb0TW4S+Q4jyLEpJ+bXNcaPAyhfHfP9739//VO4ME07Z2mXC7+gufbaa9enAeXKV0I4FLC2UL75cb2J0bz5xajrBV643LvtAcJNd2LTrp9vfXlRIjzjycRXp1+NV06njYkhPTrZ3vIau/nmm9dB+1VXXbX8bw/a3StQPulNX8Vi7rXnODmEZ06Ny2WxVoeFbLxqY8WJh6Z//fSrYbZmfHVMv5zDC5951g9fB+369IyxZa6V+h2g6SNrwDXUtUBfHtyrWxfds6wp+NXWjZp892Bt47C51zmcba9gTNsvG61Hz2uy+AqsMMhx9xAYHEB6FhhT8Kz3rjdxmI95zYqx/QhbDoTnXrW/EOBLjOJQd6AvLzCJQ+74Y9/146C9ewTfYmhOikWfbTHRE2vxigEmNuCWC7FoG2PDoaOv6XE4LBY4OmhvffDBhn555AtedTHAyDeedeGX575ruu+pzw68yrQFE/8wwWj+zLtfXPzpT39a39kvJ/LDttJ8szNzA2eEDxNZsWkbZ8tc6PPZnIuhNcyX8XTk0tpvfyZO65Eda4VdtfUgPjljTzzul+whevJOzri1a7+rLUfwkIVZLQa+rRs5Mo9k8VF6YhLHnCcy/ImBbX7dl/H5Qc0tPfabHz711WzT1Ub6iG1ETl5gpF8+ybNrfsXDLxyo9RBmGOUTrsbIG4dRWx7FK8947PMLB76aLhvZK1Y8v0yDER7UmD5dBQ9mfsWljdRKcvxos4sPDx7CY6c4YGsdmWtte7HuFdamdWLtGX/b2962DtqvvvrqZS8Mq3OGH/tB+xmStIvsGdgzsGdgz8CegUs9AzYbf/jDHw4+XWejpm9zMjd3YpwbFePIJsqmyEZ2bsyNsbMtNjeKzU0bEzKTjM3xxpKvf1Kdv7OMtdGik+0tlpPsJDvH0rvQ2JTXTmfyT9KfPDpTb9vPFh3zZ7PoZcqLmU0iag7oNhfmsbzj29R6gejFh575Nc/IptSYFxA1Mm5zb2PaxpzN1hGZfPOnTN7qHP/YxksHFhvcXhwnVvZRm2vYyPXiRB+JSZtfMcLrZQDebISvzflSHD/KGRvFZaMfHti1iyHfeHRRY8Ps4uGzmV3ycIhH0TfGVv1keikxLp7mgI/yUvzFWE3Gy6m5FVfy5ZA/ubzs+NNvxsLhkIGeucYjJ6fTVvj4Ep/1Qc99hp5Pijls8YLnpZZ/fh3MWFflygGLQgeVKz7FRR9Gh0BecpG1Dy88yWvzwU65ZMM4rArSn0Vc+S6PyS2F8z+mDnm22cSPtHtJ79ohB5cXO74mhSk72dJX6IqFP2PWY1jZMa7ffDcX+Nkix1Zzj9+L+hzDL2/49av5bk3gWYf8sMvvxMoOmWmfDD4s2kiOrInmM/x0lXDzDXOx4htnD8GAYCj22vj5rMZD9PC2sudG/+dP2PIDs7VovdA1v4r8GHPA9b9x0M6fgwDXRDmTG77lwjiSJ/c/BydwitHhoue5NlJXFmPwZl985Vm7eUm3mo6xLTXX6TZOz5g6yra6trH6vjrmjjvuOHziE59Yeg7aH3jggcOj5z/R7t4JK/mIj+mneMKTn+ToyalxPDSxZttY9wvj2mp6Mybt+tVssgMrzO6J73vf+9Y/ETSvPQPI1W9u3UOab3LFRi4M9IoBjx9z36d94XDtWc/uzcbY6ZCVjuJe7nCMjH5rjx55/t3vWmf8IrLu2dZp18yMHR5rtDjcS1zfZMmJsU/+wsSH+PikB2+6nm1yjvBq67sWYcFnkx/y20+rw6rICXmyHSbqi7M4Wi9qOWZT23j5gBPPGN/65QgmfXG6Jv2jUYfaZPn3izQykXj4cW+BS/xILY9skVfkCA61f0j5/ve/f/0Cx7yxodCDDZVXWMTLhzE45N//hfCVZ/y2vvjhA14EQ3GyQ9d6Nm/a9KwDvoyzz17zhicGcZKXJ3ks79pk+KEnhuJm11z6C4XsGmcPxgoM04Z1bQ0Zlxs+tdkIjz47xWh9mku4yCgoGX1Y9bMhZhjFJe/8mmtxiDe5bKn55SO75Oi6dvkngydue4rGW+NyIwfmRIx02WJzxpR98mwYhxNfX9EOo1jFx17XjzZIcfonAABAAElEQVT91hH5ucbI84nIwcQuPipuenJvrDlYAsc/wkcGPvbIFJc+O3gKqk/GmmY3Pb67XsRsTO6aK/tMn2j/8pe/fNgP2lc69x97BvYM7BnYM7BnYM/ASRmw4fj9739/uO+++9amzGbFRsPmpU0JPZuNSps8MjZUHZKxVaGjzR5SK3jsZHsr36aJzKTkJ2/b3tqaOhMLvYmH3JTd2q1/mgzbp43R3eLKnpre1N/amX1yk6bdyacjj14eHLT3Xerk23SSb2NpE2nzK+fy0otPLwBkvUSYZxtTdmw6O2inZ4NsLLx4in41O4g/8jDy13o6N/rv+bJ5VuCCGbHJH9yIDbisXS9F/oRVjY/oInHw6UWmQwU2yg15hR284lnKxz/KbfHBoIhlxqpdrpPNFrtbSjc7ZODsBcU4nOpiKXewIuPy2stmsuWNPExq9hXYvNAq5qU8mnu/oDHu02lHR0drjK54vbh6KeQrwvfSIq9wsJU/dtwrvNgZg82LvmKe+gShtk9tqsPoE32vvPLKqy9EbPHLH/tkzXd/4g2Pl3h54ZMvscGrLsf4SlSb38b4gpev8qaupFtdTvmhQ3/KsgtXuTFOTulgwdhpxH4UXrrywVZlylgXYVBHJ9nKt5jLEx15RtmnW6zx4XCPCIscwDhlyTQHbBkLW3amP+tQaQ2TQezSR+Rb+2xPe2LgY+LHowuL2lgY6aJ00kunMXrlfxsDWZjdH12/xvHkxWGVWBy0/9d//df6ZHt2luOL+MEump9oh7d7pXWmX6zijeBxL4TTQbu4HcpYg9rNW7nkaxZ26mefjqLfGP3aapScdmPa5bRxY/CzsSUyqLH6/hnq1772tcOVV165bHfQ/sgjj6x7jPXdvKczffCJD4sc1eaLnIKMKcmry1V2+aoYNx9kGl+Gjn8YQ+qKPjk+6Lm/feQjHzm88Y1vfPX+wXY+rTNyyDXg+nVNoGwazxe+8eaKH/dHh6fumey6r7JrTbiu8axd91bPBP6tmX/9619rXevjG9fOr9rBlTH5a56tO2t1YqoND3xhNGdK9wLxeS7A1IEtrMiYZ5D1zZdnEl2YyCJ8RB/lzzUqXrmgA6+82UOZA3jZgWseUsrLzK84yLCnmMtskWUDD1bjSGxyJO/Gkeesg2x/CSYOMfoKIbLlih1zbo5g0haffvfDDovp0xO3A/sPf/jD6+tj+CWrIONsmDcx8+EZ3TNUrL4GzkG7v1DTZ4Nt8cmntYHYhEs+EOx8t0eDqXnlp3iaN/0wk5Mf/uSznMJLzpy1ZvDIyqFPiSPj5GBU0mMfZnNRHs0NXnNCD51UyxW/YqWjIPgQPzC3fsIuHmsSTjryC6s1qJ8cfIp1wYZ5gd84Pv8dtOPpmx9zoy3uSnniw7UONx3+2IcT3mzTYwPPXJUzdsgo9ODAM29yXq7FT698y5E8G2cr/HxkK990yzd8YaFDNyx08VqDYqKXnFqZRIecZ7J6khy3D+WTjBjNk32mvy7aD9pnxvb2noE9A3sG9gzsGdgz8G8ZsPnwifYO2vVtKGxCUJsT/TY8GWljaBNt49SmqXG68WrrZyvbyav5MF7ZjumfpIc3Czm2wjzHaoctGbWxKH796il3mkyy1ezyN4lutl7LTuMTX+3qbJOVPxvbDtptzPHNrU3sJLJz40vWC8B8+bE5toFuQ8p2nzym35g1oeAVM936/LZhZiuZcnNSH565wdcWQy81dOGhKz64YaNXrF4ebJi9RJHh20sG3LCx0eZem0zELlInI5fseRlTygtdY2JE2TKOZ+wkwldgUSJxiRfxB4OXAMR2L5x05IOMwpdCXyzasGuzUaEnB80fGTjkzkG7tpcXL/e9JLLlpc7LR4cZ8PDLTi98fMOo8ENe/vPlkN3BkRdNL/Ed/HmRKWY+/RM8hyrWKDsVONg233Q6aIe5TxN74SNP13yHV/woW6uz+WFMTOaOTbnB00ZyWXuq4pmL1ic5OPk0Zs7kplzzAZ8X38anvdr06SByCh4/4mIHvih/8DcP4TAWZat+NXvG6IRVzlG2yUR8m9+w4E/bdBV4wpptusZaz+Ez/+a3NV98zUV4sisXZNhlS7s+LOTiqfHMT7HSQezjb+Nml07yZGE1n/j804HZuu5exa+8eFaKxT9D/d73vve6fXXMddddt/4xYb75FQu84uQfPljjuQ7JudaRgzG8cq9Ons6k+Hjstw740E83OXVERplkfPK10xXTSZRMumQctN9+++2HK664Yun31TEO2t0L5KQ1EAaxsVFhRwyV5OAgq98YWZRuedLXppOe9YSfvXOa53Rrp6+fH3o+RfmhD31oHVCyZ72JJZvaCh3rrGvQeDZrw4C2eXD/kSP3aTIdAFoT1i077Fsv7rX61oz7swNCfQdR7r1hkSd+2fKLJ7j5VeZBu/4k60nBF697hnuka0cx5gAadX/AJ+sahKuDUrnIDuzarVc46YgLn45YxcOnPCjiNQfkxUlfXtg2Li6FLeMIDpjZkQdjU46McXJIPuRIDtmg47n4yvEvmR2+8ifGDtrpwM0/H3C7/8KGpy8etubX9NBDeO9973vX18KZHzjokle03R8UJCfs8yUWB7nPP//8wmgO5AfRlUu5QeRhR/kg2180yCkfrWUx8S034mi+jPOjaFdgieRs5tvexX5E/uBqjG5zT5cfPmEWJ5z8qudBO/vwodr16bOvpof4YJvv8Oa7uMUj/+zIb79U0SdDF2UHT2FH7PiwwA0zPhyuZZ+ON6aUR7aK1Z5Imx3jbGWfjjgUbTjCQw7p0y0+cu4j1m0y7JKBi1w5yqbx2q4PMmKnr5Tf8KsROQUG+op1Zdw85m8Jjx/sKeRhmddMmF1nvd/Ij5jE4P7hF0T+Geqtt956+PSnP70sh3G4uWBz/+qYC6ZnH9wzsGdgz8CegT0D/zcyYGPRP0O16WoTMzc5NiQnbSTwbVIUG/o2KWUmG9Vzs0WmzQ47k/ThMH6S3+zNMRsu9lE4pn46+SGfHB5ZfpObusa3sngXooktuWkjHrl84qV3Idl0k0823fg2rQ4zfTLDS5z4iju/8mwjqW68l2UvAAjfZtvmtRzjeTmw8WTTS1EvjcbCwi49PsJpHNkIJ8tGmLS9eMXjsw09GS+jXtKSYYttY2Rh8nLUizw+/F5EvACwy6+XP+s2v2FhS+70ybJHBo9N+bERR15kFIcTYiSvIP1sa/OlRMYiPosTv5cR49lTw2BetOWvF1Ry+cMvt3heEhw8mAt82Okr+TKmDUPx+xQcHn/WkBd8eaUnn2yKXV7LnbnG49Oc9TLNpny7xyjy4FNtHbSnIz75hiM8/PBhDE9hD+HxwY61bm3Akr8+0eXQwScv4RKrcXLaykkkTjjkkCwiq1+us9E4Gfjkh6w2Wf6aFzXCT06fv2T0TyJ22Iz47bqjq23tyH0x5l8sfMiZNaCGEQZ65NggwwbbFbL4fMdT08HjC+njx2OH7XSMt7aTUzcH9Dp4YE8cMBULWQRLhU522c53mPTZN6aevtgiJzfImHa5qk0mu8nxiQ9jdskg+bKOGyfDFgz4/gnhvffee3jHO96x7C6li/zBNvKJ9htuuOHw17/+dd0P3Je7R7UOyFboaFsDHcbB6+DMtTZJjvOTXuPZE/NJJfmpn25jzac+X1G5bh7YaL6nvXTYwf/iF794uO222/7toP3R46+Oce+XD0S+ucqnuninj2ILC7l42SA/dbTDSx7pp3eOcw7HVtdYcsVlTv0VhHuytWZ+u1bNo3XlOqanbW0izwe42VHEr5Cjb0y7ZymZ1qiDJvd9PPdrsj7xru2Qlh33bd977r6aT3LG2Ker777sl/7a7CvzHuT+bh/p+SE+61Gs7u1sdK3x6/qxbh20e5awxRcfns98sAen2OSFDcUziA86xuSxfQyfZIx7nifDtzG4HNoitnuO6Rt33xITLGzDoWYPBnz+yBpDxtmVL7F5hsk7gsWhq+tb3mFnXx5hZsOaom8MtvLBhzwV4wc+8IFllx/rzbzBxJdfIsBmDuWVTjGwQwePL37Sda8wZ0dHR+uvLfzykH9Y5c4zGUb5a079s8snnnhifd2QvLDr+SCfZPiFz3psja9kHP8IS7kjo8BHN4xqhS1rgv3iYhufTjHmH2bt7oH8mANyfKvps02WTTnTJmsM5V+dPL78saFoG2O3552+OMyLdjKtKTb4Mq4mS45vNvlD2g6cyZgf/Pwaz4ectx8KPx3zpe954JdorSl8+ZC75gLGnjf8wEYOX+GLH+tGbumzbUwdwWe94kfJsavQV2AkB8PMjVy4Z8DQLwvJKeWJf+vO/YEt+GBDrQnxWFf8kOebvhqP33e9612He+65Zz1v6Bq7GNoP2i8mW7vsnoE9A3sG9gzsGbhEM2AD8dhjjx1+/OMfrw1Vmyl8tN1A2JjYfLR5sYmyqbGhw4vanGRHbbwNnzaZ7OWHnHYbnDA0rp/N6Yu9Nm6Np6PGi08vrFOmdnarp95pMsmqT5OJz17t9MI3+dNvdpOrn/62L382jj6V3J/o4s28sqVvzvMlLza8vXyya4yMuZ7zJt/mE88GtE12MaizT1+frJIu2/XTY9MGmkw8bXLsick/8PISZdNrLHtk6LDLhqLf5ttLYjFZe/hqMmxrKxG7fBiXE7lkG0byXkbYtP71EQzG6VTEb4Mvh8mQY0vhpxcY4+Rhy2Y6vQwUL2x4iC+2vCSImy5/XpRgZJPsfKGhg58fuCcefPJveMMb1kGP3Bebgyvxq8kpYvSiyi+Mcpk9frzY9XLqEEWBV/7okGW/eRSXFyK6YjWePWN4Xq4c2sPoFwFi4pcfL/1weSn20ojHFsInV94Wc/zIF/nk6NTXppud+vlXI/JsNXflmM3mWLzGk6HHnoKMK4itqOtObVzNXz7o48mT+SAj3w4xrBFjXjRbl2zTgQuFoTnRLxfiK36y7JczfW32lezApq/Go6+vho0OfIp2vPSzi8+fYoy9bCY7ceLxg6edXX5R+SIzbecDFnrJ189WvvEV9sxlcYnH/QPPer388ssPd9999/pkXDYXkIv4wQ9yeOWfgD733HNrnvHKIX/kxAQTfvG59uA213gOLvvkZ7a32E7jk0t224YHTX6Yzo2c+4k37cOkxN/2p43mpoP2j3/840tv+4l28ZtTNPHWb77VYTGWr3jpGoviFad6ytdWK8Zbo9kojmzow2LN+KWMNeQeK47GPJNQ15E51Va3rvnRZ0ehK59sz7xqI/atjw7UySO/rHR/h4NtB1a+o939w326+xl9Bakd5h4dHa24YeHX/drBOHJ/tvYUNq1bY7CSly99/4RQTR4W93fyYoPJoaUYjONpl0sYPQfZ7hkod/TKjxg8IzzTpj7/YhM72eTkGXW9s51PbXnzbGOLHpIP8uSMK+7Pnq0Opztoh5s/+XWIDj85c+I55/4tjzBYE2JW0+ObjHGxWjv8woHKGzn5JCcmPrSbu3JHx1zwBQ8/5d2n4q+55po1N3LnPiR/fmkgb+IsZn+Z5prkny85gVuO2BYfUpuXDtvhgK88ypn4e47hGzdH7JQDsfFf3NriU8PGTrpqenhkFASnsXj0WgN85k+dDXp8yC89OvH0w8SXdvkmp93c0rGm5QM2z2q5kmf+0iVjTeXD3hjBR48943TEo0b8KTDxgU8H2TeaYzklY8xcNW94/JsD/sXSupYfY+quJ7rdH9T8GEd8w0gHsS0PcKFwNRfk6Fjban3FmjEHfIqbPkxqc1Ec8hgWaxmfHXLiYcu1B6O4jMPKP3v+mblflN94440LH18XQ/tB+8Vka5fdM7BnYM/AnoE9A5doBmwgHLT/6Ec/enXjbGMxNw5tYvBsTmxk8GxctG3GbMraFJFT2EazptdmDJ8cf8qUXZ3zP7I36znOzrYYT147DLXhyHdjyauTy65+/MbUW8oGvna266vxpi28s9LEc5IOu+VTnnuRNFf45ku9xWDummeyNr1tzvXZtem04Q27Nlv6NqGK/iR+4EiGLYU/Yza3c0Pdupo8uuHV9kLq09Ve1G20ydro2yAbt4m2HrX5juDHh5N/xXoWBx4f2jbTStjpG3fwwLf1bpw9nzjziyZ2yItfDOLiO9zyni+4ipssHGTlJR12Zq6LgS5bYZu5JMOWfChswOnFrLjJG0NsiWviMs52ZFxeHQC85z3vWTmHEd/LtIORbON5wellnw2fdpQfcZYLfL718wUrfTUM5JNR127e0oPFOvUJLsWLVrLi8rJUHuC1NuSPzGsRPOag9TF18lEs+uzSmXHmY+I294oY6cBXLsSjIGNhNWfyEiUvxuYv2WTUbON3nfDJTn265kyNT7aYZ7zZao702RIXHXgmPuNRdsLCPh19pE9fTtgol+lva37lSI3IN0f6c97yEb8+3FPf+CTj+YANzdibo3xNXWNKenzqO/xwWGWd+lSq7xL3Xa/lZ9o4Szv7r7zyyuHOO+88vPjii8unNY/CIddidZ3w3/pzEOeehm/+n3322Ve/b5k8XOILH3+KfnlUzz6/ydduXF1hf84B2Un8zPnJdzVdRR/BYQ346pivfvWrh4997GNr7Jlnnjk8+OCDh9/+9rfrqxSse3nJ9vQJm7Hm3lg4pi/84scvpnJlTFveJ7FFvuuEXnLa6akV8viufQfV7r/mzPXKtns7W0dHR2teYafnueQ+5z7MPl6+PL8UfXOupkeWvTDLj3Xi3i9n/LDlgNShLz0k53wZo68ga4qeeK05+Pktn+Lwjzg9w/nB94vQl1566fDPf/5zYYYBdsQWfToOosXo0BweNQxRmGCc9xR5+3/Hvxh2AGz/AJvnGhnPMWNi83z3l1Bi6r5Lhjw8cmSMfQV2hKeE2Ricnn+If88gNuWHPVgV+RWXGOVL7OnTa87p0HXdkstG86ZPV13+9e2PxKWwqzbn5t4cNwf16YrDfIoBmUMkT/juM3D55cdVV121Dh/th5566qn1KfzWL7ywFo91xz4+meIr32LhG5buT3jmWi7hYYsNB+lik0Nj5s9+x7icNv9sNU/Gmidt+WmMjvuzGgZ8cbJNVl7LMRmFjPVnH8R3+M1zHwbJBxthkcMOruUVJrbFYx9DDumLwzgc5o4eP/yTlV842Ef8GZcXBItx+jCKjV16re3mPJ3GXavWCL6vo3FtyAn8/MBZTN43YHI9GYOZP3owW3MwWCd4+uWEHjvlin88xJcCA5tiISsuuPMPpzGxs0u/+LTJK/KcnLnTzhf/1qgYrTU+1fyWN7+4+vrXv374/Oc/v/CV99U5w4/9oP0MSdpF9gzsGdgzsGdgz8ClngEbjO1Buw0FMmbTgWwwbCaqjSk2JDZOShskcm08kmMje22m8BCbCiKzpfzGT7Z+Prb1xDFltWdcjW39ZM/4xEVu9qc+fn7VUfz6/2k9c8zGxDH9ypE8e3GzEbeJNG6zahNqbOa9OWGfrM2rkl6bTDa02TD3YbAZnfNCTh8+hd2ws6kgm14bYZRvL2DG9WdMtcXkoMqn2mFss21jzqeNc+uRHVgRjH2qBiYxi8F4WMnY/Ct4NuTsk5NHnyZj38abjJd8L1jyOuOkV07hLl/s64u5DT9ZBY8OO3xvcyqG+GykU66M48kfW2Rg9KLTYTj7xo0p7JUD+ully5iXl8suu+zw7ne/+9WDdnwvSl6ovJCIT+FPLhD7vsOVfxj5wjuJwmOsdYInF6j5Sp9M8YvHy6AXZC/e6cHYoZD5csjRCyp9BcFlTWebr+aJDzEZJ18MydLXxhc/kmNtvPDTbT3Mec6PMcSfNj6f9OOFlxx+eMQpPjjo8Btps2WtKXybCzW7zRn9/LBhjU/87OErqLj4hKOyBk/5QZc/eMoPfW32Wsds6ZM3Hmnjh3NiyC4duMmq9fObLXqKPJeDfKjxjZMvLrX+tEE2v9oRXXYVGJB8O3SxTh2ouZ6+8pWvrO9Hzmb6Z635Qa8cH7Tfcccd65BS35o3Jp9iKb+uEwdXrQU43NP0xffnP/95/S8E/eKfc4CnFBNfM9/GUPkvLnU84/r8wVY/24tx/GPbx6eTj/Jbv3n2CcPXOmhvneVLDZMCk8J+GPjVV09Z7TCJr1xpy3m5IZctdvjXJ6e4HtT8p6ddbObDc8cnh81fB1auWc8/fx3RgR6f7leu3+5b+WGPHc9PuOm7dyCy+vSRcWvWM1XRRg7BHZIVNx33d3i7D/HjmQGbeLUd0jpUR3Th9XUmnuH6yAGu54W/0IBjzgEbZH19jnVr3P3c4Tw8cLADh+eP+MnINexqfH+1IV9vetOblryDdvl1iMu/Z5rnmU9tmwu67HquaLPbvIQRdjkmr2jH49PBKB3zZr/ATnbTKye+qkduikVOO4gmS08s8HTtwsGv2OWsImfabJEVl/jItWcRu/m15mFkm157Kfjl1pi1w1afaHefEZNDx6uvvnr9dY5Yn3zyyXUvokOeD2sBwcq/vvsRmeIzRlYsrct50M4f3NYqYkNcatcQ39aE9ciGmOTLuJovJZJPBR5kDKYOi43hZTM9dXHJFxnrgn++u47kkC3jirmAiS7bdORPjhEeGXjFTVZOPDPglxM5MI+tb3xrgQwqFm05UNiE0xh/MPIFn4N2OYeJXzLlzjjbsBjD59tBu5yYN3pwFpfrHCbrHPbWrz7f5cm15rptLuHjQ57Y1DcX7CJyrcViNAa79apN13pAsJJjQwknbHSaN+tGHHSNIbL4Ys0n/2zKG3/7QftK1f5jz8CegT0Dewb2DOwZuFAGbDDmQXsbYZuUNj3alWzZjBi3AbH5tcm0oYvSr08WqcnNPlkbmMa3db7TgXESvpLP2SeHH025eI1v6+wkl66+9qR842lX9JPNfn1jUWP1T6rppbu1n378Nu02+n1qBa+XenOg33xn27waszm10W7zzW4y6anJG7OBtim1GUXG0smmmr/65Gxu2/Syb8OMp07OxliBi00bfy/d/VOwsKrZt3HuoJ0tmOj2ouJFKJKPcoJHn5xYio8NfnsZsObpkLPu+eMDXiQO7Tb/5ZiMwtaMCbZKNsoxW8ZQY+HVh6n8lW94FTbEam5ghgPfvGa/eOFCxcoW+3yRdyDxwQ9+cH0aUFzkxe2lje3uAw4svFCxD7uDeHliCxb22Fa2FK+aPjsKnr66NptyA4916gWo9UqHLxiRNlzqsNFnM7vkjMGrjspdsvGrwySXZMpbfpJLH97t2tAXi/ybT/lt3eCzGeUDL7ziwqfTXJIPG/vszppd8nTp0DfOpjVDN9LGV6J4W3xzvJjVdPmrTPt0yETGyJ0kQ47P5MMhBrEgPP0K33hKeuHGm4SP6LRG6tNV8OkVk/H4tfXzZ17dh61RvxDySfbbb7/9dflEu69j+Pa3v70+RcqfwzT3L/lDeGLq2jfHCizuQ/jG//GPfyxdY2Evb8W0DI4ffJDZUjy+UXVy8lcOjSkz19tc0pvj8CrkUPOw/eqYPtH+0EMPrdjcH1wHbEV0Fbbym91q8vmHtbWZTjaM1VbrR2Tllv9J2SJfPumRV5N3kPaWt7xl1e5Pnm/up8YczppLbfL47lldC9l1LbDTQa6+MXHNezO/eLDKl8MrzwBkbfGNyLFBF8HOp3nxLFa06TqwU4oJz/PE4Ts5fhxs+ToYB7nWrxg8X5Bnvue9T0+7fviCxYGdw0c4YMan57kMCx4Si7z5RYFf0l92/IsuY3JBl08HiPay4nH/g931gVwj5OFSyzM98SjlWK0UJwx09MMlFnbxEHm+5MdhtvtEPmDxDINHbPiKOTGXckefH3jgQmyzqSbPn5yIjzy7ZOVdIRNuc4OnT95zkx05wAuLudH2FwJ+CS+n5tAvM/wCBCYEh/zThVec5VNM7LMFv3G4yMJkfcDDFl/47Bkja90bpyu+PvjQ3MgdefHT4Y8t8VsP5NhUkGvImmCbPOKXrBzAVi7Mk3kQC3viUMw3e/hzzePRVbThyB6/jclV6w5efWPkzUd7LrrGykNyZLX5oC9+smEUj745bi7IyCN5serLrXF1Mbrm5Ng9AB4Ubm35oCvvcsueuvtRbXPFhlzBElZt9thA2gg/W2SR+SGnhEEuUDLyCrtxbePiLldkjZHPt7jgUuQiW9k1Nw7a/XL72muvxV66q3HGH/sn2s+YqF1sz8CegT0Dewb2DFzKGbDJ6KDdJs5mA+FH2vHjtbmxaeuTJjY+Uy/ZbU0mueppHy9bjVeTm7Js16/Gm/L6F6Kpt5XLzoX46ZPVrr/ViX+SzcamzuRtdYzN8fTi2xzKoZc6m2WbQ2NzQ0nH5lXJVn5sTm28bZybC5tTlI82ufRtnL1k9AI37dngsoHmy4U+m3PTSy67arpimC+VcPnkjBdmbbHZQMPMPhw28WKhL2Y1bA5+58sV+V4I4KFDvpzoK8VO3ktE4zbj2mRgL25tOvrZ1yaHYIW7eNXGyGRDn5yC1zUHA4zGxVX+mtvyR4ds8vpsyRnZcBkvJ+xF7JOjI9/+bN8vOPT5CDs5OXHo4R+3eRmTa+Ns86uQka/w5GfWydJV5Jb8xEieT7LFHBY1oicmJZva9NIlJw75q6bnRVafnhdEmPlJng82InJIHX8bI322ybCtsJOuNhzWRNdqMYQ5H2TDMPNCn44SDnXy6RQvDHCVQ/bJ6Is5bPh4KCxTL96UT7Y4w4M/5cKHF24x9YI7sdGN4IzoKmTpIW1rsHXduBpNfRhPI/jSZRPR3eqQISu3arIKWQXfC765dZDz1re+9fCNb3xjHRyG6TQMp/H5QQ61fvjDHx5eOf5kO1sOQhx4uQ+KH4VZnV54xaJtrcsfGxNT7anHJr4YG1eTUbTjx6OztYGXjXKFF86tbn31XFtsiPULX/jC+kR739HuoP1Xv/rV4Xe/+926L3lOFC8/yLqjz2aYJ/5zUv+NaepMeTZQvPqLefwjzNYC0hdnRI+Okn81GWvHL809j5HnrfXNhph6DpCVB/MoLn028OzVrD/3fxQe+cgfnoLosutAkQ4Z2NhtXS3B4x90jCP2Jp4Ot/hG9I37hL6DZbF1+C8mz273YM9qB+/Ip9g971039gLi80tdz5rWOQxwec7Yy7IFkxoZ84zq0/WtH74ctLMnR/jlqWcvG8UsL/KgX97YL35tpA8TeeS+pjg8bh75ImNNyLG9mny1Bsi7F/OVP7bkwL4o2WyToavIkZp9+WanQ1Z+xdbaKU908GAxT+bA/l4M1hz7xujzSd78wYKvL5/m0DyEuZyRk//wwUSOPF15Z1uB4+joaB30GlP4sB7lK/zk4LcOfNIaTvbx4BcHWXkwj/CRcb8LX3nj19ywqY3YQfS1xWJcLIqDaP7YVvhLjl9Y2edvjpkTvsTDBn/02CIrv9rmjL4iX/mARykXfLGBZ074kjN9OvLMFh4SA7/0xUQnH3SMybcxMjB1yA4XXj5gpaPEK298hct4MdLhjy1x9f7JHzLOFp3WBV06+SKXjXjZV7OFj+RbzGKCHSa1OPkSH1k1PNpskJEb+sXtF37+cuqzn/3ssk3uYmg/aL+YbO2yewb2DOwZ2DOwZ+ASzYDNxDxoF0Ybk0LStylBNhRtfvBt2mzEFf2pO9vZ2tbJtFHRb3OkvS3pk0/H5qd+vOwmrz6Jl/yUe602O6fpbfnbfrZP4k+e9uzTC398faWNaTryYY7MmRcBm3mbcONzU8omWWVLdG1ubUybDxtNlA6+om8Tb3PKfvjIGqfHHjm4JhlH6eiTLTa4vYgosLCh7WVNgTEb7FiPsHiZQm2OtW2mjW3zlG8+bar5VMKrDr8YFTxEtzlQIzX5cPHrRbJNvRzkI52leP4HXji8FIiRjWR70WLfGFszZ+ZAQenol1uyEfzJi4kMHTLNN54XDYfsXvD5dCDQi2YvaF6UfCrQJ2zLv7hhR2ovevK3XQfhKXa+5UBfvL0gwljO1frws80mHqKnzVe8WWuTERs//LlOxO1lHZ/d8KdbfrIf7lmTVeBRyMLXSy8b2Ukv+3CYT1SsjcVbg+fHizl71eKo4GVLGz85/MbYhZVNWKffaYsuKsaT2uy4XlubZNmQa/UkY2GgZ7697CJ5a27JnEYwtw7I6LOTXbXCfrHzqy/njZ9kn1zFeDa0yyffZKZtNvWVrmexu258Iu6ee+5ZNb3/hOBADtr9M3PXHfvWrDWs7l4BHzyT4Jq+9ZF8T35+0tWPR26WxqrpaGc7G9uaDOzJVYfD+JbSUYvNnPtE+/arY379618fHn744XUoaz2SzS6b2uVmO5ZftTkMFz2yyW/t6c9Cng364jRWvzG1GCphIu+e6z7bvcH9kFz48BV9esbMebbUrmm2rHd9WIrJtYqPikubve5JMJNjo/tDMSZL3nhFnx/PDZ985hfPM/yy409A9zxx0K508Oc57eDbmuaDnANqOmTE73B8HrTDDRdd94/uG54BfBp75fiXUfLoGoSLbbbYcfhKB3a5VJNh1/6WHTjidc0bZ6fY57g2vMbEjjxHxc+HeZVf89BcsNs+BQbj5NhA9OCHRZt/ttX85V8OxEyPv/gzPnqwi1t8DqvhkCNjvt7DL+3oqmEzT/wi/Qr/Srb4L+Zis59hmy33J3HO5zs/8Fpn4vPLJW1xwAZ71wG5SjGQi8qLfnbZ4FchW97UbMm1vY2Yyp02W5E2f3IAC3x0+cCzj2BPzGzhy0n5oCsOc+KvUfyyyRrh25h8WI/k9eXK3PDLDx+tG7YVvpTyQcYerMNr+gpc+eePHB08+nyIF+kj2PloDvDEbS7xmkcy4go/OfZ6BukjcohPhX8+XYfwsIFHjj6S4/pkjZMTA34xlGc+s89GbTrlT3x05ZI8/2TlKL6aHBkF0fcLP1/95p8AI/YvhvaD9ovJ1i67Z2DPwJ6BPQN7Bi7RDNignHbQbkyx2VDQ3LTYXOh7qfdJBzLk0bZezPM/6DWO1SYIr5KtbT876ejbGIWr8Wl/y5v+tS+W2L6Q3hyb7ekHfzs2+yeNp5+cTeOcG+NtFOXEeC+vbeJtRBtjh/yW8Nm1wWwjXl/s9JXmSNtGdftCQhYGJT06+U0/3Gpy+LVh8BLi5cVGF15/Ot6fWOOx10tTG2abf3z6+YYv7OzDRSZf+uL1AqHQo8M2TNpeVvJlvPiKJV4xsC3nXljNgRdkBJcShUM/HGKGg1zrGwYvYGpyxuWAbX3+4YOzPpvNV7jIhdkYe2pkjL1eIPHI8tVLihdgBx/9DwAyfDqQ8Kl2L4diclgCLyz6XmYU/vT5UmqT8xInJm2FvhdycZFD1fKCb95b28by18vqVodevsmK1acmxWeuEJteVMvLYh7/oDcpO2HSL5949GGET9+4fJZ/tvDpGJP7SelkK3kxpCMGuq0r/Qo/dMkj/eTx4GvMuP4WK0xs06Mf0QsXnXwZ75qlg9Tyyxas9CrZwW+NaIvPPChwkUfGIjxySjLq+mwXH73w09OHR3vKTdv5xMuvOlvspZvNqWNc7sSu7R7gu6Z93YsD9ymb37PUYXHQ7p+ZO5QUizXvOnTQYk7kzrWpoLBr851/15wx8uUL3vyQR+mr6ZLNDh4dZcq23pJfg+d/0DEuR/nb2iYaztmmQzYMfXXM/GeoDtofeeSRtU8hLyfFdx7Cq/hbP8WhRnB1DcChr7bGtrbIG1PChYeK71zvf+YSr3U87bZ2+Jcndrs+6cBs7tzDjCP63XOKybyKh4zxco7n0I8+YpsO7Eq5MNbzKFuwJKstPngV7eL3S/F3vvOdC7vrwL3W86MDxg4dPU9cH9awZ4dPtLPrXsJGf8XmeeBrYMh41sPQWqdbDOJ0P0Ew++fc4hYHfMh14Vohx454FQQ/nk9GswuD2PD5UPMBY/PEvjF2tcXDHhl9h6viNWfikndzS4aew2DXLzLmsJZ8MnJmXxcPBkU8csuHfnkIg+cqjPra/HXQLTfk5ZId2Nhw4OsZiAcTnv2X8fzIG8z0kXyIo/yQg4s//uWhr/yhx7dckY/EaI8BJ9/G2lOwJRfI3JR//RmbfjFr8y8+v1Dhl554FG1+5FteiwkPNhizQVaf72ITV7ryg2A0T4isGNQKedeAr0PqOig3bPslEgwwe7cyT/Im79aDYg3zT6bc8kWOb3Nn3YpPDO4HyaWnTodehZw2zHBoi5sNObWm5Ynd/opArvglb375Je/aEpN+WJfT81jDYkwO62vjodaP3LHJl1zIgVofPmvQ3JYvPDp8i0Uc7NNrDdGll05zGRbyZGFA+L7G67bbbtsP2ldG9h97BvYM7BnYM7BnYM/AiRmwkTnpoN2GxJhNiKKN12apNqM24DaDqI2RuvYa2PyYY2xF6W3rMCRHJ702r42pp/348ejNduOvVx0u9mY7+3hb/uw3PnnpztoGsE2peMibn/LRZt5LS5t4m1Qy8tkGtFxM23hk6Gm32SRj82rTiofaxKonZvphNKawV9sYmWzQzRdebZviXkjpegHrU0A22eKwubeZt/G3aba5J5uPNtxsaiOb54kXtjbvfCYrZ4g9cSvaiI4YlPDmMx55n/Qm68WrnKjpTAxs0rOp94kueMjgkWNLfGJgD04vPuSzKxeKcQSrkp3qcBorP+SNy005mPPSmPz7ZJ5DAy99fJkHLyu+67mXYoeA5oQvPuAio10O2VfEyI657sWKXi9B5oEcqmZDTsx9NotVzTdZbeORfjb4kEMvyPx7QTXGphdzsluSh0hbSY49umzgw8131xs9/NaHNqLT3IdtDRz/0GdD0VaKiX5zzbfc9ZLIHh4ir5CvZCN+duVUm1w2+dhiDkuxkc2G+w4c9LLTCys75OiFTZtc65cMXPInNzDpo/zWnrlhJzzk69Mp7mXk+Ee41OFRR/mDRYnI66dXDceWjMmBa1l+XNcO2L/zne+8bgft991337ruzL08ORzrMEnuXAetr+IQWwVm1wByvc244Z+kX2kekscXY+PV5a8cs2esmk7rJJ2t7fp0tBE9toujg/btV8c8+uij67omP9fRMnL8I3vWijYMxUGGD/iU+uquE+3iCacaruyR2VKxqsnxbw21fsnz2XWkX66Lmay1Rcb1hdgw366d5GFFYqHTnPBtTdJH5IxXZgyeCXyQkR+Y57XHFn55Mkamg3ZjsHoOut9ac2TVDtk9UxxAwm5P6cAR8Uve84asNeoQ3i9FrXNYxdq9Qr984sHlGnDQjtjAkwMY3XP4pIdPF4ldrPzQt/eANz75Ypz3XT5hJEsnm/py4d5IXt7Fpk2GL8+c/qoKTgea5OjCS1ffc9JcFKtxcyjHMPWcZdvBaH7Y0Eb2SeRaK/JgnA67nuNk8ORZ3PCYQzwy9BXxylvzIBZ9GPPHp3EHwGyzqS+36mLhwx6jvBkjz6Y4FVjwYecn3PKiTVfcrdPilV/+6NNT80tO/uSWDH9skOUDNUfi5RuFR4zNFf9yxBbKj3nJl3XhoN2aN890yInRQTW/ePYj5sWYeREfP+3rYSLXGiqHcsyOPpviNBfkxEoPdjXb6cGLV37NvzEF2e+5FmGAsYN2OuxbB65bsRr3iw349aNyT0eBA67WFZ742NMWHx1xKPDLGSzk9PHNC38wF1O+yj1bdFtD4oJZ4cs8sgkLu+TVYbFGfKL91ltvPXzmM59ZIfF1MbR/ov1isrXL7hnYM7BnYM/AnoFLNAM2FicdtNt8tMGx0UA2LPj6xtpc2Ng4bLfRQcYqizF+bPn60WxP3laHf77zD5PyWpSd9JKv3/jkN4YXvi1v9slt+/Emv3Y1GaQfr/rcyH/7D2ebwMbbUMoFXRvDXupsKlG5sulUtj6ypZbn5pq+jSff5tmLR2Nk28ROe8ZhVPD5bnMLK36xsIGmjjZ5m9429mx4Sfcy3maY7z6lZGPvBcimmSz77BSvPj48/GuXN3JyZsOvDnN5Mj71wztjCDMbNuTwy5cDZ2Ow4/Gtr0ZsID7DJj6yyZGFVe5hMuZFw0vDfHnykuhFwzj5YmQnW8YUNvNJFsFirPmmIx9hVfPrRdjLohc/8vTY6MWQLW3xGwuXly6Y8CvTrxedfLFrLnuxZX/i1cabBU9+sm1Mvxfyba71xaogONmAke/8kVPkIxtL4fhHONSIPyQOOOJnS52N7NIxj+IvHjaMwyFv1ne2iss4TPra1p3rPpxs0hFPa4FsWPjVL+faClky+OafvSjMs09OoUNfPmFpHTXOFv0wkYVBwTdP8/5iXA6Nw6Suz3/+Zmy185F9/UliKk/ZKu76xsMOH1KXD/LGkTYKk5qsmLsfOKDwHa+v10G7A8fvfve76y9J+JEva9g1I08znjmP7pONwwwfXXpqtM0NnnjKg74Yyyt+uUp3K882+fLHBtrKp5f96nPS536WdzbN8Y033ri+OuaKK65YGJ9++unDgw8++Op3tItfPsIwbfEXH5aJL7zx+CU/c6tPDoW1cWORMf3Jm2MwpEfW9eN+y2dxwmFMzObRfdJ1Lj526buGjJELd36Lk1889xz6KN+1WyPkPGtax/CwbVytRNrsZAt+B4p0FL4cQooNNjyHop7rrg+45wc46BsvRnYdhFqr3dfnfSEs2Va7d/qrD20xiEe+UPccNvDhMabGg4U+HPRnfHKZLfjMBR1FfJ6R6bBnD0AOT5vNcsouP65f4/SNlaf8mAeFPf4RvOTIiKc9Of18kjdODnmmKM1h9tli10G4cfzihD2//Hg2tUbI9KxS6/PfgbO+uRNfzzPxhoM9vsh7hpFX2LfHM474x+MDj4x84ZcrbXsTRJZd8YSLPF5rRVts1p/c2bsgtqeMtdkvCIyb7+aq+edbDsVujD47YrcujNvT+jS79UGP/2Ssa7JIm09jCn9izHZ+rAe+yMqng3a/rGKn2MjwRSc7sKAw8kFekTexqo3TMTeuRbbw23vTY9d8OuAXZ/r2ozMGmNjjW43Y5hOpzV3rlDxbCj/iFH+/dOCXP34mHnJ8FI8aLz9swWUNqY2JzxqQp2TVfLAl7je96U2Hm2+++XD11VcvvMWwOmf4sR+0nyFJu8iegT0Dewb2DOwZuNQzYMPhoN13vPZ9fmJqI9TGBM9mwsYExcezqaNrA6tvU5LMapz/kY46iqcfn43K5KeT/fowVeJN/Wywv/WRfPVpMuxlJ9lZN44328ls8dRXhyndk/SNhS35NqZiT0etL0c2ol5cbUZtGvPV5rc5Tjess84nX23s6duY0uOHTPlXR+kmgx9PXb+aDzh7GbCpxfMi6tNuXkzYh8PBgDEyNshtruESl0138bGvrUThTU5/iy2Z8hO+sJdPNuNp25DD5+XWi4J8+dQP//pk5USBXx2xOf0Vo3G50S8WfbmRLz7Zgdm1qGSXPTr545M8W5MHVzHhk2GPfHMPBzk8vr2U+IUA2ebOGBm6vdSy2yef8OBx3/AStz3YY4c+Ytec0pFHes2LcTjD3Vzi9fJEh7wxL4D0yZOBKVv5M04ONd4YXjkzRnYW4+zhGQ8bnraSTH4X4/gHHzOn8IbdmPVtTuXKWH60jc91Ye35igU8OOQznORrhwGPnFxH+vHhhg3RmbHhGadrjfCJ8mu980+/HMw8wCLO5pZuuMRFVh3m5FsPZFHj5Yx/Y+laD0oxLaXjH3CVJzz+2JpxkqmwVyHPT/nIJxv080WeD7lQd9Duq2N8hQy9/4TYRb5C46677jq88MILK9d8l09t2M2PUu7F6LqCkQyCrXspTNlfg8c/wjnj346xnz/trQ3y+Ztj8fKbHbYQfmUxzvNqty6+9KUvHW6//fbDlVdeuXw/9dRTh1/+8peHhx56aB2cWYvs8KeOiilefePJa4cZLhiTN4b0K3xUstcY2cnTR9mf+XBduc8aM6/mrGtK3O4J7IaJnD5ZpbF0+AlXeOimj4eyY50o+my431vD1hNZeFD5mPfe7FtbPUPIw9Xhfn7YxiNn3LOhA2fPGvsY90ExwyoGuq2zYip3+DDS4999vU+K84X4IzOvB/zwGmPP/Qbunt/5JcsPeWPkYUNix7MHIx9e+aNDrq/KCQc+LPyh5Fbn/A88z/zut/ywD0Nxebb6VDE7ZP0lAD0x8EuenjybLz6Nw6tkx7wbz36x6dPtHgIaXtj5l28xt37zT6f7NzzkrGE6+uTMt/0TOTbZaY8HDzLW/qF1pi4+MmKhmw2+teXKXKnJV/MtX3w5bKdrTGEbscFvOOiInT1tuBC7lXItvhmj69rcZ9uYvMLNFv9ss0NGjvCM5Y+sNZ4OfH5J4K8wXD/0jFl3rTO65lis7GdTLT+ID+3mCgY2+uUQfXiNN9d86bvOkL54+sWKNh12+eWfjD5+88MXjMVNjwx8EXzici+yxozJj8P27onmDc7y1TxnK9/h0pfLDtphRPRgZUsOLr/88vX/QK48fs4gehdD+0H7xWRrl90zsGdgz8CegT0Dl2gGbCT++Mc/Hu6///61ubRZUWx62tS02SjE+DZBxsja2NiY2sDgb4mczY4y7dXHs1mp1p6bl9kmM23wZZzv2jCepJNe4/WX4vkf8dKvNtzYlDdemXztdKsbP01+6mhv/enHK3fFki7bNp42izaNNoY2pPg2jF4QfBosvfJG/zSy6WXD3JK3IZ4xwcReNrOTDKxtmmFQGismmNvk2tSS59fLiBfFDtr5aFOuFo+Nfpt04zCqI/384Rlrc51s42rjijZ88MMMjxo1Fn48bTJy7hPf4mBf8RLQC0C6zSHdk2jmyia/lwb62vLFR/mUCy+JXmxgkUO1WOrDF59/dswtG/KJyCpwkzE3+pPoeHFrXZDxSSdzhYfgRPx7Oe1lmR8YrUMFbrJ8KRGcdMmrK8aLJxnzr+i3JoqHHp540uWvucHTJm9dRHzIV7HLFT0y1hyb2gqZxvhD8YqrvnH+kivHXmKtc2OtaXa8PDpolzM+4cy3eGHMpvXgoD0en8bosAtjpA+7cbFNwiML27SBp68g/rt22Uief8W6ikeePtvZh0uZuNievsOtJmue4dZH2uWDXiXcrQ0y+TUG+2lxs0sGdnK162eHHKpPVhtONcqP2v3s7W9/++v2He2+qumWW245PP/88yvfcuG67FBFfOYBbmtKzhQHIvB07yAjTz4FyUY5LIYVyPEPeYjIoHh8sMcW21Fy+uUpHTzjk1+O2dAOy9aOOPDU5lYe7r777sNHP/pRZg/PPffc4Wc/+9nhN7/5zYrLfYk9vuhEE0u8C9VsKJPCj1c8fOBnf+Inhz95W5vGzZ+5JNeaco3j43mmzGth+moezQkdVNxym//kyvcSPP4Be9cVHnyebT5tbI7pF5822x28sYnw4Gw9WGPWYesyDGzDSY4Omdao55x7jE/pToKh5w87CB76+nw4tGUTHs9gfhRyxtiFT5zdh+iyDY92OtXG5FOf//ZZyYeDnH0YGzDxyV/23/jGN65cwlHsMMAJE3n9iB5/7iHsso+nwMIGHc9av4CzNqydo6OjxddPPpvkFURfzhT2+FboTBn98NHLJhl5TocMm3JlDsypZ5lSvptn+REPv9aYnDiwJYfn+Wf/IDdkxeh5yBa/eHxrV/DChxcuc8CXItbwiQNectYp/dZXtvGtSzLiE5dCDsHIF2pcTV+s4tGHgS9tMSFj5sgvZ9jjXy5aM/xms1yFH1/hx/8usK+CFYlPoSNGeLX5R/DSrcYjg9c88WPd9eEduuT5U2A1J92PzBkf7OCLkS2FnrF5bciN+WSLbvIw6Ffgl3uFHeu73MPAjoLo8N+88tnazp5xmOiwpy82stmQf7G7ztVHx9fT9ddff/C/QBCMF0P7QfvFZGuX3TOwZ2DPwJ6BPQOXaAZsQB5//PHDT37yk7XJsVGxgbHZmZsHbbI2JzYjCmojZaPizwVt7MgpW2rTo46mbD6MaW/9p1Odrpos7OlNjBNLOsazP8fj5WPWyamL33g+a0+d7FWfNDZ523Y+t3z9ORaeeDaDDuxsGG1CbS6NmS9z26d16JW3k3zgNW9sKWJhgz36Chn87GWrfjbowAKHMZtaY/heKBw02sh7KWizi+fPa7148WHTDr+XsF662kwbF4/CpoLwlYhv65ycdmXKJKtmPx9wsUu2dr7I4MHvoN1LAPJC4cXHV8hM38a2PsuVMXlSENvazSU/7PNFx5x4WZAfNR6ZMPLLRi8l+fUSwQ451zEyNvOYjTV4/EM/bPwguKw5/yjKgXv21+DxDznyUuxFlB8vVX3yyssZfNlKhw2+tv6NkxWPAisbCr5cuBep9RW2+AhX8eE1n3jWRTL48sMHEiMZ606evfjyI99kyNPvpY1f8uwZU5B+/vXFZx7lTyHHvnwh+RKb3PGnP/3SZVMsMPqkpPnRh0fNnxomMnzisUWmdbYcnv8xc0dGPtmI4Az79rCJPfrFTKe4w9SYWjGuTNJPvrHiKbfmQamfPnmyXRvFapw/cwZ/sfNzIRIPHfnLNvva9Vsr5ds4X3zw5dpw0H7vvfe+Lt/R/vLLLx9uuummddDOtzz4ZZfintn1bk06RJcDmMg1Z7C7/4rfYaZDLXLFRD5qrvTjywtSi1Fp7tmIsqeOzx5ZtuKJAy8bU1+bHKyKduvYJ9rvuOOOw5VXXrnm6Mknnzw88MADh4cffng9L7qW+aKTLTbyvZjnfWjDJx51NHOAF4Zs1J8x4SnTTvaqt3bLY3rV5sq8kjdP7kfznpOPrgd2xN51oO+e3zq2FozJe+u3HLWOYcRzr+n+0hwZI2c+3JcUbVTdOmxcv/jY0eYbdn7EJSZjYbU28fHkwjWVnXTDwAaeuNmET4nIuT66d4ofL7lyzZfrBAakT8cei33PdnsW+xQx8BsGfulN/+GRe19B4etD2GALyU+HtTDps8sGGc8HOvYX2VqK53/A71nhK6U8Q/j3ndJssWucPbnLZ/kut7Dxh68gumzIBV0y2ZCr8kUWn9yWrDP3IJ+2hlFs5phd8yiHMIkLbjEYx7N/cl/qAFZsMHlGNm+tGX3FHoNua0/s4tLHh1Pb9VSO1fyLD+mLrWsEVoWtxsmzwXZzJ2/k+MGHB+b2rOyygWcfxId8wGy/a43Ra42SZxNmY4q1qKCJz/5Yftk33jyVJ76QcW125S6+MTp0y6U8WXvWevki3zhbDvjFAzOSF+tAXOwrcoLY65phh4w9vRr5iwy5RF1/MCEy8qjISzkwZ2FSw1SM+ubCunK9yR9dtuWOLzJsdt/RT8Y9D145ODo6Olx33XX7Qfuajf3HnoE9A3sG9gzsGdgzcGIGbOROO2hvg03RhoOsYlOjbwNj42Mjom2DaLPSxpgsOZQe3TZF8ZfABX6wkZ2tTpjCY7x2+MlMmriym0z9KV87X/rkFDx+0qtO57R+/Nfye5JPtrd8PDbxbSBtdG0g5dqGVrHJVMyPDW24w8JGlC366bGt38Yaf84le21ss6POPllrRWELH65eaOB2CGUjq21tGdO3MbZpRzbyXiQUG25+s5d//YkP5uSMadvwTz48+MW+nB3/II/Yg0k/+/Bpp6tNxouIFxKY8cTlJdE/Rc03rOmyjx/hI/bliH15088nP14ajMuteMytFwUvNOTxyzt/qBiKkw2FPD1krOuYPgqTNhtKPvDgEqc/q/VCIrdyRk/R9vLnPsGPebQOHZ64b5Bnb85BcfO1JTaLTZtthQ3rwssTm6g8sL0txunjk+9FMD1xsanItTzmS44UfdSaMwdhh4NtGPhB+nOtsm1c3qwbcvLDLpvi0ZcnuVPwFONwIT7h9aIuZ/qKuPjTJl+BQ7xqvC3BodAjkx1yjcFtnTt4so6aq3xMm9MOe9kQP/mwTJ3plz5Slz/t5mHqJcOmPJGRt/zmMwzZnTZqk0FqONPFY791ZowMH/BVkzMvivuZf4b6rW99ax24FxOZi6Ew/f3vf1/fF/vSSy+tVt8K9gAAQABJREFU3FsnPnHsIK4DCnatJQdc8NK1Lrv2YXDPhU+OfBrWdVos4ohax/HIhMXYzA/+Nj566RpLXztZdvKTbf4bV8uvvKenL26HkO5D1qHrxS83PSvEjQdfunxMPMU4fU0sjYc5bNkIi3rypr10yJxE2ebXdaU2J3Bnv4Mu+vx0OGScPBv5J0PXPUK+XAvG2cazlq0FfCRHxtmSM7nKL5vWiV/iIHLkjRsjD2t6sHRt8McWP3MuyMBXYZMcO0o+6TuQpEuWDOzWLAzaCN+1To9c4zDKE/t8InmUg7DDqq0gcmyLmX8+6Gvbk+jba7mmrTl9uuFngy4dxB5/sJD1rOygnQxd2PuUdraMpcOX/FvrcKDyT45v8+nQkx0yb37zm9c89PwQkyI/6chruTUmF8bKFV3j3ePhV7KRbDjde7YEl3uQ5742e+Llyzx5/pUjebNfIsc2//ZQ7m/kex66T/Gp4Jc7Oq57fLabm/CFV6xdT3zza47EhejJqfun+cgP7NrkyMsLgpEcMp4ffetPPOzxq4bfXGlb72TkobmVR/bZQfh4cMKLzw98XVva5ZcOX+IIO1/aFXjpqvNDnn2yCgxwKWI1juZ1am7NSwftdOSWjHwp5gjB75rhj318v0wpP61fsq41tv4/e/e2atlVhHF8PYdR6RjFeIzgG8QLLyJiiILtAU1MTGIreLgTREUQxfdSUC/EJCbaKG0Un8P1G+l/KCarzd6xbzaMgrHHqeqrr2qMOdeYc6/eLdc40qfHVzzpWediVKer1qfLL7z2MVw41kGe4Cr0cWMjBucyfF1/t27dOj399NMn/xcIoXsd2d9ov062tu7OwM7AzsDOwM7ADc2Ag8SlF+0OMg4PxwMEfYcv4vDiYFLfgcRBySHagSrpwKJPN31YyjvJkcfRRn/qaOPW4eqIP/loJ0ec6We26U+72uraYR772TYebv3sqstVfXpKduE17yDqEOkw2do4mGsT8w69HgYI/IllrLwZb14Nw5y9ocCK3xwvFnPZwyX69glbgqvigOww64CupNMhtwcQ9h6kHIo9GOCR4BAPNSk2nNjyozZvj6ZHt3Yc2Sq4slezJ43LiXH9GbfxfJn3UIxrD4UO8r0MyA97HMLhpzxoeyDwcGA9YSr80CHi6UErvsbh4wI73sbzAxcmnPzjCk8uFFKc4dFvrnlYHkbU9DyUaRMPh3y2bvB7yPSyXU7gWV8PXewJP8W4BsYP+uUCrpzqz4cl6vyKTVzFGP6cLyfqsPGXZ8VeJfx4OOOTr9aVjcIPfG26+mFr28/sxGmcrnHr1AM7u+KhX58N3eIJFy/+8HQNyQOBzSZfxunl07i2PaBWsmUfv/zxzd6a4Etf7fptP5rv+spXWPBaA3Ns20sztvSNybOaXRIGPHNK/HFkQwcPufMCI07FWC7CVBc7DEIXz+JQx9c8PSVMbX6V2jDtI3auDy/a79y581BetPvTMV//+tdPXrTD95LFHrIH8omLPdRLKDHgNvdONvaBFyZeUsmbuEi65QJm7XTUOJSfxhfA+Yd+689+ivFK4/nUP2Kxt+bpmLe+4mwMP3tS/s3r45YfY/KgkMarjeW3Or3w0p01neIzTnfaax/12SR4ui6sH11xGgtDPMXEj72uHH3RZ6eYy0a88sKHMddG9vr0j/ktT/Jnb+mzd09kg2P3XWtA+BADPPNs1NYJTnziqMaZ79ZSmy5fveyMnzqM1pnf9gA7+5otHPsfh/LonNQcXnTKmXEFhpdr4oxzfPinA0cxzr5c4ca/3Luu5gtUc4888sj6pSgd/q2DzxIvlcn0o8/GLzR76SdmdtaunPNlTKzG6bz3ve9dnPpshYN7gm/5xt+8XLhX8aftzIgfu3KUbuvQHJ8+D8xPHXzEZ5/AVNxj8BWrMwIMbcXzhDlj1p6tGl+fvziJKR/iwZHIg3sYe/Eo/PMtV8aJcb7iah2N6RMc5YZt1xA+xmHgom9OLNbOuDV17jPnGmgf0GdrnL7nJb8MzIe4XF/2Vf7oa+NpTay/XJHWrfWmR79CRyz8iSsxb5w+vuW1uI1rZyMGvOxjUuzyohDc8ZFDtgq/ZOKWEzEYhwVDLvrMgWWdzPNN9JU4a8tJPnAVFw6XhF7Xqxq2InYFlkJg8AOTrrjZW0f/Iu2b3/zm6XOf+9zSpXcd2S/ar5OtrbszsDOwM7AzsDNwQzPgkDFftDvwzAPa/wqrw5LaYcQB0OHINxF88wiWA0gFVgcbNWGbNFa/+rqHGHbFoD7aH/v5UR+5Gotzcw+yb57NO8k76eZz5kR7xnPkYQ0cSHsgNN8hUe3gqDbuMNu6TV/mPAiEnU+6DprmFIILySa78PjywJUOPWMO1x2wPcD69q2HMmM95Dh0w8+/P0uksLfH8IeNV/6Wo/t8xKqEwc5h2SFZG9fywY6eAq+DOFz9YgjDGBFPB3NzcSkfOLoGzPkGmhgJXA+DCg6Tf9ffHIOn4D5zFJZaPGzz18MCO1gzBnPGxds8jnTUsMobbDpEXorRPstHOPTYevjBA9773//+xRuHXlb0wAJL/O4V/pmwB0X21rk2O37wuiTm4Sh4sMfDw3QPbHTw0W8eFkx2xDwxVlzmtPFVK2IQF94ezOxTuPjOnJWrcsJveWJjD3tpoB2nHiJhE5xqZw8jP/FPL75xFTf/9Nnnh545At+8mDxEG1fKN3sSlr5iXl7s6XKoNse/eTmBbzy88NWN29ds8DPORi4IPH3XijFcp8TLmDaBKyf8s4crzxPDuEKX73DUcqGGMXMtBvrZLGeHH/ljp8CgD1O+4Mrzhz/84fU32h/Gf4Z6796903PPPbf+dIxYxIoHX0prj2oxqF3DcmQv6lsHnx1erLHzEsufeTjmXDzmSe36alj5aZxubTXM1tucfmuibp5OsfClTDEfPz7DoKNdPX1bi4ljf8VFnc/s2U5cmPk013y+1Mn0W66aU8Pl7yjWcd4n8xOGNTYmZnssftX4mRdreXGfssaKa4kPhbg2YGZnTFvJJz9ylY7a9e/zG1eY7mld9/zbY86F/PTymB2suPFFjjHSwSkRWzracGa8fLjvqo0T/fzDE6d8Z2teKUfw2YvHWQR/8fv8Fqd5vNXlIl/TP98w6cLiEw//d0brat6Ld5/pbK1PX1QpV+bomA/T2DwHsHMNi01cBD+8CT984zDvDfXVclO+9dmzu3Xr1vrGPVwvQfHjj05xFyeO7NRiVOJRzuCw1Zd38/DsHW17U03gm9OH6TPdZ25rqG2vqXFovcTBli95VLeH6YrhGAdOxYRb/tU4WOt44YJ7/PBii0u/CMDBWcGf7MFNLnp5jgtbNtbNLzV9c58PvnDGgR29zjL0xejlvX+tBI8f+YAjNv3Wo3yIwTh73JX2hjk++MafTnPapGtADVM++eIzzmoiR+z50Lau9px1ZSuu5tsD+PIFry9pyS89GOVKbn0m0TNmjq2iTbTFym/95uGljx+hi58cd234/HNfMydWAl+M4tb+1Kc+dfrBD36w/iWZeXyuI/tF+3WytXV3BnYGdgZ2BnYGbmgGHBrezYt2h5YeojqY6jvAOAjdvXt3HZoceBxuHEQqM1Udgjoozbk51kHG2Byn31y1MToOSYpxfYc5fe2pS58cx479dDp8LaPDj0s2B5XVLYb065uU2w6Z07YYxJFd8/LocOiQWE6bCwtvh0e21kmbaNNJ0qeXL77TYefQqZQLuubTMa4N2xwbGB4S/DNm/wkYnvZMDxX69Dpwe+jQ72Gqw3M+2WWbL/188pvAYVdutCd/eubYhlvM+oQPDwAeGLSLcU2ef+hnA0s/vx60uj7ow9GnJ8c9kNAvl7jAS7QV8/liT/ThsMFPoSdG4/iSmafGpk4Px/yIW42TgjOBp02XTnyM0/PQooYfRni+Wefley8X6LDPh4cdv6jzd6c9fMrR1KE7Ba55pRzQwSEe9OM4bbXZk3D1G6sWF2lv0DUmb+HyTbJRm1PLk3xZK337uodycdOrmFOIXCittVqfXwJPftUKH/XNywndHkwnV22ixil7Nq1h+4KecXHYV+1Ldu0JuniHxwbf+mxg5AdOXLXpsocpxrDow/AygQ96JNxi1Nduv9GxRrO4xpRwarObEi+Y2U9/YrEv44KjnOmXS3bwSfsmbg/7Rbtr5fbt2+s//uweg0sFF7zk2Qs3OtbNCzx7w8sDY3SssZftXoxYBy+B4FsPNnIFr1jLkX45KgfqKbNPN9FmDzeM5qvp8t1aqeGxSfQnjrZCrJF5JQxz+tYu3/lLN2zjzRkzT8Jfnfs/pq12dulmm83ENocfvkp7zdoRe9d9rZeNdBV7yj3VHjPn/kKvWFsz89YatjZ8IgfW254tL2y1FRzZqNnER7v7Dlt7iV/+Zh74iEv5gGEsTHymDgy8jhJnL92azxeOMKph9qKdH3POSfY5W3b2umvB+MwN//Id9qzlRLwwtfmzBr0414fHf/cb8/7OM31Y5vju2oNn7eRPG4bznJeq9PlSyzc7MdAh5YqvckKHjb5ch1EerHcvLrWLiX46/qyNXzDA9+1wL6hxpF/+8OjFfxzxaj3hhhlu+5WeF6h9RhnHszXErzWQF/uaLrxihS++MOUj/7Dk13xrwd7LbPe0MOQbDr/0xKeQxsRp79HDBW+5gEHgwaHDb3Gwx9u9lJ0ckPYX+zDMia0Xzri0H9jYU/M+DINP9o3Tw8G+V/inIx51/ukRfUVc8sZWv3jLA/yuWX4VMZarYoap3Rrp9/IaBml94gwLjppvnIm6fPh7/b75b0/giicc862d60+M1rg4msPdNaFuTt7af8XJpz0j1/TY0+MHPxhPPPHE6cUXX1z/ISqeOF9H9ov262Rr6+4M7AzsDOwM7Azc0Aw4EF3nRXsHCgccBzH/hNGhxLgxbeKg6JupDpcOPQk9PieOg808pNFtPrvqo17j9KdNPhpXOyQpYUx9OOmaT9KZtYPXw5Z88iMfcqkcxWFPIenKucOfUv6zwzW+8BxC9bXLRQ9EcTCHA3y+tAk7OsYcSmGFcWkNjSnlXdtDoz+b4D/M5Cff6cL0MOdPifQQ07ePWgMc6LPtsK0tdgd3Y1PY4e6wDJ9fY/pJ2HGCYwyWvIqBT4d0c/TwUOgVo745hc9wjeOoEId4D6ew8PCQ5oFKbtnwZU7NluRn5t0cnfzEEc8ED/zCFRMedEnc9eWwGPjXbr3FRODApwsn33Bwa93Y8p3Av3Xr1tv/WWrxxYOePLhvvP766+sFXznjmx94x7yag2G8/MllPPJfjReJt3Zj2kfpAUze6IkzP/waU+BNTG3j8tS1iStuHu48fIdDD5Y5L6v44lcMdIrNmP0Cm44ctu/zZSzf1sODKc6kPJlXCLv8q/njly92OPNlzZXyAEubWDe881sNj30+tOXC/oelj7+Y+ITZtRAnsRsrD7DxCrs+Hu0pY+2T2nJRYQ9TP27siT2HV/ZqheDXPFxCVzs/5ul3fzEvT+XNi+z+dIw6nAV2jR94E3+j3X8C+uqrr67PZDkgcZI3HOTcLzp9bsu5F2hy7vM5zua8rDCPr/y4Hv3Sy4s2Ul60+YCvTOHvmNc5X8x0yq810S6u6uzkXiHwtadf+jDCCZd+uc+Wf/MEBhtiHI6SL2MVOpNXGMZJc2G8NfoWLt3w0w1XTcRV0bcurhOfFXTsWevlWsOZH/rWTKHv3uKap2M+H+VPzcZa2yt0YLneu86MyRld+9g8G302+NAJ05y9wiccsZpXt0btS3GZ4z8feCtwEnbd6+gXBxttMfJJzFdwogMLZv/Cz7x93Uvh/LgfOcd6UYsTG1z5lg/SfTcb+eBbfAqf8u+a8nKTb37hwKCv70X7vK/2ucAeXn7ER2C+5z3veTuH5QvP8jc5hS1W83DwExMfU8TnnO6lMzu6xvDAly/3C7khdP0LF/uLnvVhY396kdoepctWrsOkj5O+Wo76Uoh1hFmO5I49Pfec1vj4uUlfgSmPcuVb5PpEzLj1WaNPv89Y61LOteWpPaNPr3y3b2CI22c33q5FGHwahxF3Mbu/6jvD3jv/y6OuW/zKnzitDVsFR//KDwdz7Qk6cgaPDr8w1Ioc4IcLHbmwdsZg8C2meMImcNsbdNnCkDvteJprjB2u9Pie61sM5QRXXOz/9gR/sPXx4EPRVtiq6cH2POAXvv7vEHvCPHvrZV4fP3sAjv1EjOND5Mc1jgddc7jDs57afOILW65dv+y7PszD+PjHP3761re+tf5DVNiwriP7Rft1srV1dwZ2BnYGdgZ2Bm5oBhwcrvqina5CHHAcQhyYHVqIvrbioOJg7gG9v7/sQOQQlITnMFU7fDoOL8ocq62eh5t0w65uXO3A1KGr+eqwqvMz7enWz+469cS8ZFdM8qHIMZl28ucgWM7k3OG3w2PxhaVPn1gXh8nsjeVHnYStzx4PcXcQZu/gqQ47ruVPH074sPj3ov2xxx5b32pOx1x8PVx4KHH49VBgzzg0d9Clywdce4wdHAd2D5byYW5K+vj3Mo/dzAOdYoWhGMPZwRoPuHKtVuLPrhIfc/D18YSlNk7w7aEFL+siRjh02fFNjJHiok8niY++8fjrl6MeRuKNBx+Jtrn0zcMxLo7s4dProU6bqPEsjvYK/bjC9Ddp/WsGORWfwo85etbfw7y/O+3bS3CNlxe42uUk3mp6uIYDC+/rCvspxY5jfOhM38XOPzGXsGt/auPVy7LWkr5izgOxvJjTl1PtSrHDkjvY2ubbV8WAey8D8Ik/nuHEs9p4vozBti9w0oZRMc4XP7iWl7DoiwumOfo98Lb/6WRP13WgGGeDi/k4w2qd8aDXmHwYq6+df/zgwmOvLbd8ELUiTjZ02Denzp/5KWziWk7iy2bmzwO8F+wvv/zyQ/0b7X45hUd+5YAUh/ujz2t7ROkFmtwmxl2bOLeX5OvNN99c1+Tcj+WrXIehZi9HxzylM8fhhBHnS7ZzzJrzgRt7Yr7YwwwvfXrsjGfHRmHfWL7UxPicq9/YUjr/SF9/tvXjcmkODv14ahuzb6yba4bYr70obF3p+Pz3QlFs7h+u+a5Hdsa7fuPuWlH4wq17t/1gDK6ib64xNvNzUB9vej5fXVfwwsWTwCLlLPzqYseVrbWFlRgzR+CLjw4xF642THi4efmmb1yOjOWTjbyUv84QdMTDxxGbP3biyidfrmu+un66v8kdXfP+BA3OsMViXemxp6eYFx8beF600yd4k67h4qIrV/aGNjxx8aG0XviKRxFbLxnjA1sbhhy4XyjwvPztRTscHNXdM+TWmIIXn9rFBYNfIm4FN+c7e9acePkleDgLtgfUXogqccyfdWPrha78lQM+/ALAPDGOT/sUZvzEgo+8yY05bbxwF6eab9eX0hkVj/ToEHp9lovRLyxh0uVLm462fMXNOP/tBeNs4MpxtnS020/tN77FYd3kQz5h4gqTDcFXoRtmMZgXO5/TP6z2FU58t1/DhCUuMaVj71sHOSRw28N8FkMYajjN+cKWl+y+1W5PlA/z+Klxkx/91kVsfMEyL0f2RGOtpXWSGzikPc2GL3gwCB/+5Nvzzz9/+vznP7/GmludK/zYL9qvkKStsjOwM7AzsDOwM3DTM+BgcZUX7Q4sDk4OHsRBxYFLIeY7SGnDVRxSHAg9qHvp7lsgHYw61LBPv9rYg2TapeOgc+mwcxxPp8Nj9sc6PfxrH3Uu9ele4kd3jodZPePWLof5oIeLYl7ePdA5OBLrwSa7fMUn/A6MPQzKQ4f9fF2q+aXHb+0OqzAuiXkPOB4u8bR3HFC9bNc272HFIRe2veFhzi9oPBh0iJ8HeX70if1YfPD4cEDGsbwuxfOP9qn4L+VG3trf8wEAR9jh6YclD/oTr3lxw2RHDzbRJu2/cNfg4Qdc146HQiI+JSzz/LXmmetP33xMntkdx9jAbl7cRN8czkrz6uZgEb7o1m4NywH+PejIo3uGbwH2gE3fA08PwnA9XHnx7mG1vQavXOKQv9U4/zAHy75Kr7n/VePf/koPxoxbXuyR1gE+zvh1feFdHuIXXtzY8BU/Pux742xxMVeB0/po8yGHrQ18/fbrxBZD/tS143SsYYtRzT9/8VFX4s4+ztpxpVf+6OLvQdX9xzVCj+CKkz59fbGwkRcFFlHP8ekXZ3N02LdG7K2N/Gqz4afri75x+46NuI3hQzee/GuHq0+azwYHMeTLmtj7OHkB4m/3PqwX7X4h9eMf//h07/yNSX7dQ91LxcI/TnEUiyJPXrT7U05extArpvJfLGKTD+NeeHhh1LcKy3Xxq2dZjs8/6E0O8PBI+IprfJsL2/jEMZ4NXfPZmqOrPIgPW3PZhDH159pP/HRhTJm26U/85o1pt9fygy9MRds4nXkvZusz0/4y53qST1LMavPWjL59R8+682tciT8/9PTZ0WmNul/El8/0XcNeUuPH1vVEn3/6MBV988bilm9j8BL9bOmyJ3TcN8wdOZqLJ33xds358yfFLQfxh1MeXZvmxGNe7OacT/LrZaHPLrzLu1rhy1z2OOColA+fdb7RTgemgpfCX3mRQwUGG9cnXX068as2x0ffsrau4mcLV1sO2NMzJgb3B/HxJRd4saGvD1ebH2349NtTYYudXjzKKSzCJ18EFt32nzr/8usX8XCN+aa9exk8cRvX9jnrPk74jKc1VGCmb03b92K2Hmzh+DwwJlZSzDjyTy9seGIXCzvxaBO8FHvTvV0cM4Zyjbc1gAmvL5TAkStzfJYPGHTlFyfzfPvikj+v5x5svr3buYqeHMDEpb74jNEPzxgu4vH/5MAvH/TMOY/jJA5i/eyVrin49Mx3DYSLHz0xaBvXtia40DcmB3zgRQ+mXMC1Zj7PfO4o9gX9ri/6FTljiwtb+K2/Pkyx8kWPvnjoy5kx+vKGH67G+zzVlpePfexjp29/+9unL3zhCysn7K4j+0X7dbK1dXcGdgZ2BnYGdgZuaAYccrxo//nPf74OMA4cDjDz4KDtIOPQ4YBFHFD0zcFwQHLQNNahp0OTA47DkYOmw6p2Bze+CAxYcBUYVxX48WCjrdRWp9OYAyXf+VXzmS397LTlZQr9S2J8zs02fH0+YMYpm+bVijw0xxe+zelbi9ZAn27z6nw1zq8HDLWHY/jicmgtXjhTJlfjbOg6cMaPDm5h5BcHB91bt26tQ6sD96c//en1z5HNsfOw0beWfFvKA4S63OAXBzWfHbJh0DMmFx2o7TtCHxfzir6D9pRyA4tdDxF4G1OMqekmsOIDu5i16TuMT5v8t9/xEAeM/KiT8F0v1sycGPFSZ9M1ps8miU/5i2Mx6CvZGdfHXdu49SL1wzJmfgpbXCaueXHaK9aJjfk42LseaPwiRtEndBUC0zd1X3nllfXA1zUb72KGWc6W4fkHDDk2l09j2dBrTm0OvgLfWNcHG2MKntZXftJxP7GPe6GQ7uQCK5m+jOvLVTqTZ3z54nvmWJvEr/1gDFbjsN1z1ZX2It0k/WK0Hwgs+mHSw1FfIbi0Z8zBMMcfW2N0epC1j+Eo9OKjtmdag+lLO8lGXoyrxa8dl/ow8eheR5cP15aHaMLOOrZ2dIh6lsb4SGcp3v9hjL/i0ZdH166c+KWS/wzV33hVz5gmzlXasL18+OUvf7m+8Sc+v9D2csS9A4fw5T9Ocu8XXP6El5dwcomjeS/U9Cvsratc2t9etnvJY54PeWRLT+60WzsxGKfLv3E54F9J6Fgfeumboy/PjRWPuI11D4XdtZ5vY3TozrXKLn3zCmGTPptZ+C5/dHANgy1cvvOvX9zmYTXHXh7kik+Sfn4mXnZd3/Yp38a9EILHDlaxarvm1Xz1QpwN7OMLp2LCWTucrhsc8e2aomNPu4cbKx94wJ9irtxp2zNKseNE2GVbbZwvPsSKF2FjrP0m1uK1t4yr/Quq7tXsjcPj25lUHumJhV5xm3Mt0He29cJbwcuYuNUKOxjyDFuM1kju+BErfC/accCbH3ZsiomeGKyN+HzOzJiL2xw/arbs8PVimj1c/MzB95+wEpyKXdzuf2p67sv2iDjgknxo0xWPMTkIGz59ccIqp+I1zsZ9gp1cGQuLfv794u/RRx9d8+L3eerexpY/Oet+LV44OKjN4aGYw6WY8OCXWBf5sa5yoc8+LDaw6OBN5NLe9TlhnB1+eLNrD7ivW1/FOK7uw2zZ6RP6+LmPemluTt7lB3e45R0Xc3GQE9/sVmA3b1+2T8KwjsZgiZMujsbkieCJn2cyX2ZQs2djP+Dp86R49dnKqb1JTyHWiE1nX7h0jfFjXh0v1xRdOedTXnFU6PLJH+69aPd8EEd5YiOfbPKxyNznI1bXgfzxYd1hWQvYxukQ8zDkW57wxp8fubavrRUbL9pfeuml09NPP71s8b2O7Bft18nW1t0Z2BnYGdgZ2Bm4oRlwSPrd7353+tnPfrYOMA4fyvHg4CDj0OGQwcaBpEOuvsOOg4na3CywFLgOrx7SHaIcxDpUwjCfD9iJuaPMsSPn+mzSayweDlp84zn54eRgRz9dbWP6U459viZvuvDj0Fy4YdIplzNvxthmH199PM2HmY46n43hoc2vvBOHXHo4OGAeY6lf7GziyDebxmDjxoaOvWLMXnDIvXXrrRft1tbfNnSwZc+3Q6/C3kOiB49etMeZn9YDNv8Kyad96dDe/jPHvtyyo8tPYt54fOPsQaCHRGPFBIvgohBz5aU+Dj2sxkE9ebsOepCDG/YCPf+gz4cHCYWPYoSdz+ppz7b1UyvGlETM2aYLwxg9bXFkZ7w1gJFeuUgfR3OKsa7z/IbHJ3wPNf6Fg78Fa/0an1zvnb+p+5e//GXtCzmLb9cPbPqTnzH9Hp7waYx9GMbY4tq+VhdfY/Qbw7v7FDs8rJGHYLWx8IujPOmb028/aMMQm3Zc4qYmbFu3amMVY2z1CT/xsA4eEu3/Cv8JG7ZEG1bFOJuu2fCzxZkf+nKjLR5tPoqLvjGfEz3EZlsuYBtTCN8KTP7nOB/FECc1fWvFl5otvWKYPuXF/YedElc2YeKh3frrw9Dn65LELf507W/XRy/afSPu/3nRHj8vQvyi3N+wFaf7p5cRYpMzeuLBWXwEDy+2etHOzp6mw46Igb28icP6isOLL8V8Lz3glRN6xc1vuWje/Usu1Ik5ftRKa13eG0vHuKJfbN0nrTv//CrmZ4HlWigXxQWv/dRehqXIDV/Z4I2jXLEj6rD046U2B4ewk0eY9M0TdfmOR3lUk/YcLumUR7GKjR968PAzbn185hsPx1xrbby5+OCszQ8Mgi8uxs1bR/dwtnTwUjevDiO+5sWpjy9hD2+KfhyM8ytn4tM2p86Wb4U/egp+/vPtciQHxtnhYf9aU5hyZE6Miv2kGHMe8G1l1248nGPYZcsHXbxgwxUnPuquuTjgTZ+9dnmyN62LMX75KRfFqk/UxvhzTTpD8cuXdSkW/3KFjnj4IXLlxSN9GPw4r/GJE7E+rRFOdMtdeeCLH3owvZCkJ/d0xC4mXOkZ6/xtDyjG5dZa0cPTfVk87VE67OCzoVeBiTOd9pUxnzP4ia884dJLUzmhx868Gg4dHOIsLvdVcSnm2bJpDeWuf53HTm7Z4MOeDV/0iZe3rZc9QdKbfOw7e8scfS/E+1vl/IuRvXzzy1/7zRwdY2ov5Hvx3D6ga+/4HJn7g09zftlhDbThG7dH5LW9sciff9hD5ok5seLGjqjZ4TrXBjbfOIodt7hoWy8v2T0fyKvcs5FT+gpsfbGyUfguXvr2j32lpmetcSbtheN1IO/uE/ho4+5f5r7wwgv7G+0rc/vHzsDOwM7AzsDOwM7AxQw4nPz2t789/eQnP1mHCUoOgx2M9B1+HJgckDqAd5BxqKJPHEDMZw8jnA7hDisOqoSew45agekAp3RwogcDh0SfvjE2HbpgEX2FhM2/Em8HMoemdBzCeoFgnH3Y7IqD/qVxY3Tw5jN99bEdh2zoz8MifXMk3mocxahdXGp5yAebbKuNJTDYzAO4eOMCB75+Rd84OzUO2Rgj8mWP2APWT9uDnr8v6huTxtk66DvkegBh4wBvLbQdoP0SRmltWne2ceAzLvGuX5xqY+wVfNT8EFj6uLZnYVkH+5w+nXIQlnr6ihOs5tj2sGFekcMe0vi3Dkr806kfHr70zM9rIw7hV7PTfiehJ241bvyo4RIYten0UEXPnDGFdN3pi1v88kha2zgZz05tX/SQiA9bLwC1y4UX2B4CfQOsh3176PhQ1Votx+cf+u1d/ivmtcVCh6jFIdfqdMsNnZlz3JVw3NfcP+xbYzDCZhueMYVvOuU9//xptxb5hEHgGONbLtu75hpXJ3Bwwk9s+a1NDya89jybcoELsXfZ6OeHb/uCGNPnp/wZzx87uu3hOPJFp7zTw0M55kBfScKOf5hx1jenj5M8qGEYU4vLnqKnGCtXdBQ4YeX7nerwYRL5dW3IgRdK/nTM//uN9rC9dPnOd75zunv37toTciku8cpRsWkbI/LrM8CLLb/oModbewDf9Oc1LA/GFVJt7eNT3sxrz7UtD/YuWzZyrm0OPpvWyrjSfjROn91cE2P84N+ZxBj9rs3Wvr0cNn0Fpjl2+CnhuU+VV3Fp2zfuQwQXOaAvjpkDfVjyy879rFyp+wyCI9dz/8FlC5vgBlvNNpzGjNNVjOEoTrzcZ43hgFN7xJh+/LOVLyX+/NNVCFwxwaWj37qlow5HnZ027sUjThz5Fq++AhdGuWdjzBxhzy+dsNKJm29zWz/iJZrxcK1FazjXW0z6hC77Xgy2Hu0znGFax4nNFq+4heNcRE8MsBRt/OXPutgHxvBwZiLiykadZGvf9BJaLsVaruB0LcSJfi8dYdPvRaxY8KGDj3ltxdrJOb/8yIN46NB1juOrnMcbXrmiZ03hmGfPv5fKRPw+T9nkj63x9rQ59u0lfMRrXIxwcZNf7dYBN9iwjMEVB3sFF3H2uUBHXv1pFTb8FUux86sNCydiXzmz6MNQ6NHBBxYuYZnHy570clj+cLfv8KPrpbc/w6nuhTNfMOQTBmyCj3XkUyzmnK2ssbnyLx7FmvBlHeiSYpAPuPDMt3/Z4QVL7szhzV5pXcXRGJxy3jiMfMAhsONh3l71bCBHYanhKfT98qL9Jyf4yKX8ETzFZD3b1619mLjhrbSfYOOFr2vJL8ifffbZ01NPPbVw47k6V/ixv9F+hSRtlZ2BnYGdgZ2BnYGbngEHFN9o/+lPf7oOH/oOFOoOMQ4eDmYOJI07xBAHj2wcsDpEGku06TssOVx2EDXv4EPC7YATTgfT+nTjlQ94FXN8ORip6YTdYSi7dMXg0OUg5xCnDQ83nLXxmHkxXg7CV8Oimw917cmbLb2ZP30l/sXATsEjDHlIpj9jdKpr46Ct0JdP8cAUS3rTrrHqGQc9ODAUB3AvkDwoaXfANmbf0OXLIdhLdgdmcRpTK/aGQ7A1iJP84DpjhGc8XmytlXyFF7/yy6a9ZQ5nuD08t078sFEIH/Gjwy4utfW1m4fLH9vJ0b5SGq9mm4QRjzioXV9KXLPPVt1cY3TCbF5s8ItDfO01utmYz0Z75rYcTe505Lj1gtP1A5d9uSl39dnCZO/b7V5GyCGBYU/YM/LngcyDkr1iDndjPbgWA1uxxVE73nT0i6kctI/YJuIg4dY3ps0/HjjA488Ymb75oK+u0A9PPYvcKNNvGHCblzt29IyJEW4xliO2xDh7NZlcjMtxv+yKm7zQy5ZPJX7s9HsJok9fjY/a2vYyIp/8w64Y71o1x47PuNaOVzU9/snMKX06xvLR2hjXtm/yQ0++ijd8uLjVp0/0jdfWj+savK9DX1yKe6QHdf/0/PHHH38bM/2r1vnxTfavfOUr608syS9fOJUHesWHX1zc+7x08TKCfvcXGNbMmPzIhVqffbhhVpeL5utnV20cprwbo0+6F4fH51wLesYIjEp9c+3/xvhxXbpXmJcLxThs/q0JO2IcLg7tb/vWZxr/5tnDs9dhEPow5BCePv1iM2ccB5+B/JaP8s1v8dKLRzHRN67GTeGHGFf4M279iGuZ8C2/bI2x44u+eEjxlgu64Zkj+vFqTn7gGY8DW2Ksog+HHd/Z0KWDc7HiZF4hrdfqnH8Yp88fLLW+XIq1WOxtv+hvTVx7+eWjF835F4s8+WZyL8T5ZF8Ju7jNwzTf+jdmfPrTpoOrdvGmI07XhT3LDw69aIeJMxtz2RjDn609KRfm+SiPuLae4cibz1GfrUTczmt9A9g6eVEsR3zqtw58wIbbeQ8fmLjjI/d40CPlGJY2DJzwlDu6iXlzjWnTh2//Fkuc6CvFW+2lKMGbrgLDNRhPvuda4mcNFDhs5MCLdvnlm458KfYcPXHgAJuw9+LXGO440BNTBU52cNn61rrcySv94oWBR3tWv5yIhS2u2fBrTfTpqfGFyy8OfBN2/IjFPFvzcuUsIBY29gYMc3TKJz2++gUBf+Kx1+1f+c0PO4WEgb+9iCMcop1o40evdcGnOMzLr3zLj3WC3drimw6MnvP4ws0+ERcx1+eFGEh6cKyN/8zcN9r3f4a60rN/7AzsDOwM7AzsDOwMXMqAw4e/0f6LX/zi7QO3Q0WHIW2HGYcRNXG4ImwTB5AOcMY7SGkrDiwd0rXNqx2aOszAyl8HqHw7AE5ebLKLa311h9Dm4lndww5d3B3ieuhwaMTVgcyBTduBlB4OhA7bY6xTj+/iLwdsYchhsU0dPuCWq/ir49rBvMNs9rATY2ymsOe7GOKEizkl0c4+LH1t9nHH12HW39j27fX+BAiOlQ6tYvr73/++XrTLLTxY8ShmayE28/AdgGElPZTFlx28aZcte8IeTg/axWDP2tvmjSnZxKv8zPjNKdO2eNjLTzHQg1F8+Bjji0y/tdXipEdg83Ucm9zolJNldP8HDHxIuDiGzQYO+4ReOubaa+nIF8zyRlcbP7ZhW5M4uWbMu5bpsqE72zA97HvR4aGN8Ml/+8g9w0OlaxO+vofBHkBhslFwx0XBg38++DZXodv68HUU9uGxgTUL22KFba4cwjKvGIeTrTl9Es98WW8l7vy2DvRnvmHQE5/xYohz+DjB7IWQebxcP+5/RJ69VAhjDZ5/xE8fzuynwwameXyttetOzss73fRglBtjClsxmGuPsDE+/dafc3wr8ps01n2dD9jGtXtwN3ZcWxjGcGyOXgWG8XyoJ0f2rbmY5MA9yAt230J/GC/a3VP9rdjXXnttraucFR//xFj7pboXaviS1sp60SftU7VcyYN9LmY46Yk7Xe1k5qU8um4Ve86Ygq+8tC9xYcuXQmZMfE0udPFL9Onkk64x+feihG/7PIFN2NBrb9HHRQnLHFsx0FXYy4cXNj5TtO03ewsvfVhk7qX8rYnzD1iNxUOOFePZ4gMznnzJE1+4zHjouC+IWwx0CV2Y5o1r8xMmHe1irDZOr37+1MbgwNM2BgNX9x01v60pLPrG6Oc7/vrp0EuMwwtLXuwdL6atAX759HmiLf8+V7KB0Z+E4K+1huHvbPv2r2uBX7rN1y4evuWUTxwUAtNY616+cIFhHob5+rjZm1720cMFf8Ke0M+mHKvlXF7LPSzccTj6sR/Y9FIRrn3bi1J82N47/9k235623/jEee4zOJ2h2PCp4A6LTdzYVvgzrtChzw4fYgzn8hLXGR9+YmWnVghOYlasoXHXarry2/kBBl/iw40fdtZTMQbfZ6M/XdI9o73mmsKTnRjUdNX2hf1F3Acah8mHvWWvsi8G+F4Ww8ILP35x1oZJ2NMRk5ywc/4xz7dvxculGPTlBB7fcNjj3rWBH654JNZV/uXKPAxrajwcWHGHab/KZWNi9C+m5Ks91Trghq8+rr6AU1zFyA874yR/+jDhy0PYcqy0TmJnQ/jhUy7tBxzZWgO/jMOTP/968l//+tfKR/luPeDx609g3rlz5/TFL35xYRu/juxvtF8nW1t3Z2BnYGdgZ2Bn4IZmwMHi97///frP1DrkdogSknaHDDXp4OKw4/BCzDmAdZgz7vCjwNB3sFHYO5gYc4DrcAiHLlw4+XVwg228g1NY9Kfky4EKfr6qs3e4gqvPBgcHMAe0DoAOYx0yO+zhQJ8O2w54OGjjbF4hauMKzkQbNwfXDvhr4v4c3PIVXzV7eWGnH89sq/MfB+Ph8E1aw9U5/xD/HKOvTIEnvtbFQR0fB89Hz/+JlX+i7UW7BwdYMOWwv0PpgcDLIA8E5SSufImPjVr8BL614jM+5bh8yoO9C59fmOp8wNHG12GaPbGW9pU1kFP91jd7PnEi2nPcmNjZws93OHgZ01fjq+BHP1/a5VStT0fs2sVNv9jjAw92e12dfjrsxEgP3vEB1vi0ocMmfuKwjnSUuOGHDz1tRS4IHcX1HT4cOnKmNp/tjNs6edFhL8VLzV5tPVyn1ruHTH+707fvPCzCoic3bMonXvHkV65mvujCY/cg4Tu7bMXHRqzG+CiH+Y4rXvTLiRwYU3BS2OhbJ7miQ59vHLUJvfKoXy7V+LDLtvyas+ddU7Bh4ebhVA75dS35cyTmwsien/zX1he3Ov7NWcv5Qnfq8iUGtmLDWTssc/CUeBhrXOzmiDE6bGd7TZ5/8Ct3+Sgv/Fo3XMi01zdO57gv4q6ObxhxZE/4VozLYy/aPaj7Zlx2b2lf/acYSC/aX3311bVnylV1vu0nLyZco9peQvEtJ/Jo3J6wP/AMn4/i7DNSTugQ+HJAp9jhaZPyw481cI3aYzDYsCe9pMHNnoFBn09YYcbFmsCCw4e+Nrxww8aVfXH7XPcyCm57YpE4/xB3/uSkzwdc4JvDiT9+iNq4te3zqlzR4z9MPLLhm56aX3Ot21I6/2Cn8IGDWK1juq6D8lROs1UXN17ygQ8f2uWHXbb8sMEZdutmPI74hGE+G+Phpm/MvrK+2vyUuzBcg3DEZuwo8TFuHjfrAitb8fn2bC8P6bHjO32f/62Lefug9bE36Np7Xrx5KS/P4hATDPez6d/+4B8Ooe/6YUP4p8MGhvjkIKFrnl46+NnXxsSEzxRrgguc/MRRPspj+woOXriLsfVQ01GI2OkYxxWmP0flpSM764erfPFBD5euD37YEfp40zfGhj5MOUjEDIPIo2uSjrzg0n4wZo6Odhxh41Ixxw4XxXqb69kGD2cZ+VWz5x9fErY8uqbww4G9F8FyxTd+4mv94LTOnZVgOKfAsD+cg+kR62dNYLSPzYkPt3zj3n9SihsffLK1Xsb44bO9rO+XI17Y4w3X2tHHHycxuFYeeeSRFTu9bNoP5tnAljf5lFt826srmPMPfTGVD7zkjb6zHBx5No4PvIox5w8vuGG0H/hrn2vjzA/9fMGXE/PmWmuc6cujgovauPjbR9bd/eIDH/jA+jNqbHyevvHGG+s82ToY51cfvyeeeOL0wx/+8HT79u2VAnPXkf2i/TrZ2ro7AzsDOwM7AzsDNzQDDidetP/qV79aBzX9DhVCqj9rbYV0wGDjkOUQYs7BZh6O9GehTxy2Ogjps2WXrRqmA5E2f2wd1vLNLsm3wyZ/yfTN1sHPAY2wcUDDxQGMbn0HM/ymsO8AhlN+4ChJ/WKdejD4d2idMu3FV5za7GHJB78dVKe99sxLvufYJX35mjr5DQ9XD31eJPBP1wEVf8U32j3UONDjBs/h3Uv1vmljzCHWA4E4HZblWSHiU/TNF6uHCm2cCDtiDfCA6/DcOrVPZi7pW3Mvl8ybExNs+9b+6lBvjq9qeZ55pKtvXi7Yac/86bMzxh88semzreBlHgY+cTM++eizMU/iBleBO/0vpfMPPumKPb34Gq9M2/zGVX5dB/lQi7t9CAO39jOOijE+E+tanGwIvbDCsSb2krWKM5/s1da59e6a9RBunxnnw7i2h0Y2xRk3/bDjJ07Y7UfjbI8xmG+v0jFvjC/jfOBQDuiYhx/e9I2L8amvb5+5tspjGHwQ460VjOzVFTrpVlsn2PKOh5hdk/5VAL/i8EsLfM3DhmNuxg3PvDF1+PRrW0v3Db6KE06ibbzY9MOkU0wTs7jbf/TTK//0teGFKZ7JVbv15j/duJU7euWCDjGWzPl4NKfGj117wj3Un47xjfaH9aL9y1/+8volprUVi/gVMZQfa+7FhLzR8yKF4I9b+00tjnKuxh9u15W8GW+tYOSPz2nPzny6rkv3E2P01HTsdX3cvIDCM5/8xyMuPqthWRt6OJVrOnAJPu0Vtc8o+90LrdaYvsK/Mb4U+vIhP2JXjJPJTZ9OL6L006dXPsoNXf5w7swBN734NBYv+kq5Mg9TrPKgsCXmmheHa5Ee+yQ/xhX5U9jhyG/Yxo0p5okx8enTVRqPB/vW1Bj/eJJwGoOXnTmx6bMXs7axuLlXdd+1Z7wcdy6hEz5b+ux9rsi39Sf2IS6tsxy5Pr2AdKZx7ypG+rAIfXjqrgmxs3eeIPr80hEL7rC05US/s0d5k0vxtDftp2M88NKHQeCKQx7DLi84wMANf/7Zs6HTnnZG4I+0pvfO32j/97//vfTlxbUgf2xhwDOmlnPYRN91Zgyf456jg/uRi7iJ3MpNsdD1MrZ9IyYc8DRGL93OqLDtB76dRYlYtRXjcHGNP0wiL+KMP30vyvniWy7Fh2Nc0m1v5ZcPeMblTGHDpzj14dITD7/FKSYvwPnHjY18K/YBG7psikmMPr/xNQbDPmaDhzHienHGgmnci3n30/LCBj/YxuSTbvsZhphbf3GYExvB157qhf0cn+tGV278Kzr4SgJfgVVpz9DjG64xuVDjq7Ajxok8ud75UpdP+8X/VeKXa3LlSwb3zvveXtSHSeLMnxftP/rRj/aL9pWZ/WNnYGdgZ2BnYGdgZ+BiBhwi/vCHP5x+/etfr0NWhwrKtR1UOqwYd6BqTt+cQ41D5/EQRi/bagcc4x2EHIAcYsKid7RLV92BTp3uMr7PxZgDkpJPNT+KtsJHsein3zyexjrgqdk7xBkn+DTPLpvm+CDp0DcmXge2eaikN3nhloQdZ3MdgKed+Xyp8xeP8GYfdrGbN6eUa2MeKhxGPYA6fMN2gO5BwYGXPoGFmxd3HhI61Br3rSCHdrqKhwKHfHh4EL47sMuRtvmZc7psjcslTPOTc3gwtWF5QIJfuxcjfMjp3A/02Fnz8gG/BxDthJ6CT4WdNky6fGrTg6eQ5uY8ncaz0VdIturw6MGgY0zBQV6M45JubVjx0zavD7drkn0PX8XGBz0lTDmcLw7MyZXxdOKtT4qJrjaeMOwtD4LlkG6ccbFnzOHY+s894GHSy/ce3PkrF7BIeG/13tq3YjVO2MBmF9/G0tOnHyfjxaJWxGwcVj6z48e8km6+XVOur3LGNr90Jj6dcimHHnDNt05sK2wJDvBwd726nhpzzcoxzo2ZV9jEf+Z0xqCNOx7iwIWkg6M2HBz5gZ3Oapx/mE/oZ1/sbPFpXG1MLV4SV3r8tA71y2u+9LUn1nFOX6ELT67gFWf68VC717sW7Gv/Gaq/0e6Fe7rFedUaJvGNx2984xvrW3jwy2N5yLe16MUQPddmseONn2Jt2M7CT2tkb9gzeKvtgXLGBna+2ZlTCJvWQJteuO0lXHopaD5svoqNrj2rZn/0od++EE97EJ6+GLxUKjd8sulzLHv6cqLmW2Ejl/h7aaNmL241yR4H80TNN7z8iQl/egQGfPbG+TXGxjh9cZdjNnAVNmp6Clui5s8YP/kyZ4zQ0WZvHhYxVizm6IlBaQ5P0ly+jMFybRBrWlxs2LMh+VAXA5zy5F7SS+C4ht2154WZF+lqOEo+1NbMy3NraO35iYf8KnS8lHbWed/73rew6LBpv8GV/64l8/ZhY8b5w9l+kqvEON5s+Kcz9wMce9O+Eics1ykctoR+eYNBYOJXLozZK8bpe4kIq9zR5UeNC47dH8TXPvevnJzZ+JF/PGDqi7d7fPvBOJ7NaYsJr/IGI6Gv4EpHIezpsWVHzOEKUxzG9fGpmPPymD1ca2mtnQPMwdAXOxtj+WqvwXR+kBtxtSbs2ODlPKyIv7UQAzu+isk64qlP6CtwjU3++gof2ehbCxwIO/7SU8Nof2rj4SW74pcTsOwBgl9xGIs/n3zAVuC0z+TBPF+JttzJhc8ze8NY+4A9v83Dkl9inPBjDA5O9pl7BJviyicOcy+wN6fAK2fafOvDLd/80JUna6LQs/a42ydqdv2SQpvAIfo4sPnkJz95+v73v3/yC24Sz9W5wo/9jfYrJGmr7AzsDOwM7AzsDNz0DDhE/PGPfzz95je/WYdP8XQQMjcPM8b1HVockhJj+g7yDiHmFZJ9NvQag+9Q1eHIuMNPByV9hxsHxw6a4fCVbYdPOHHMlr02mTgO2nQ7gOICB7420Z/YcGA4rLMlxrTjbV7buFiVDmjG4u/AR+ATc2GxkUdFOz5L8fxDXykebbakdjnUz6d5esbgTjFWoe+hy6FXno37ZpC/J+zvsJuDYx5H8TnA+0aMhwyHYvl10PdtqNaATXHnn26HaH7gWRNFboyxs/7i1Sdyzk6tzLjCLr7m2DYH3wOsWGaexa7kh74+0WbnUC4vxlv3OKjFq4TBtlyyZ5P+1IGvj6/5/OFH9NOhx3/ca7smzJVzeZPzrh/YcTZGT57ZZxcH83gUU+3JDx9iDI445TRMD/j6pAcouPT5IdoElng8HHnokeM40jGvxj9u4cBiyy+x/3zD3cv24vJwZdw+KhZYcpDESW3Ota60njhoKzDi0z42JpdqGOVBH142/LGdevTZKubkSyH8VvTp1q9dLuRB7hJ43StwqJTDcgwPlgJLrprTlj8PxMWhlpv8su+61baO+OMDk6RDrzjN8WOfahuXN7h8tD7m2Cu11XTo5rO4zSmk/PMjF63fcT3gzBIXNWludc4/4ODt/gebP5hKYixu3T8+9KEPnZ5//vn1wh3mu5Fiu3f+9t1zzz13+utf/7ryzXf7jl/5tw72hFosinb7Wx8PmGzZGWs9jYtV7sRbzu0LfXPG2Fh3PrXZVYqx/FSzc/347ICFR75xxIEurvJM2MQhXHWYrS/fuOAkJth0rJWibU7M2u5VfLeucWHbNaTt5RJs9xg6OOKKE1z2JH/62vxYB7bG6FfTz38c+WKjkPI/c0o3MY6/Urzpxot+c+zo4t51aj5exRG+cbbu8+ziqc5PfPX5dM9QGzdGF276aphqIk/axUHfGvm8ppdO6wEbLy/Y/bkxa2MuH3CIGPvWqv3Gh5jb47C12fszeIqXtrDE4KWlPcoXvc4/8TaGp5rPPvO1xUS07XGcSfp8i9McX64rYzjTUfOjyCPe6nLFtns0bLbtK3z84gBG+v2fJnTLQ1zE61ojvZSEFQ8xsIFrL/d5D7ucmyfq8oejnDg/wSDG5LPPT202FX2iX96M8aWwV9oD4u5Fu3H85jlAjtxDYJmHK49iURNY6chzfuMkXjF40S6nfOLCRl77l2FwrCU/8J1p2MgBX2I2ryb0xCZf2jBhs2OvjY8cs7FG9BS+isk8Dl5cd38yJnbjeNKHbzw/ctWeNi9e83DjZ1wxjo9cyLdrxri42MVNfvDH2zhfhB7b7oViFlM5hS8XYouDOntt+mLiK06tGzsCTyl/MNm4lrXxwLEciqk1ycZeVejSM/7Rj3709PLLL5+eeeaZ5Sdeq3OFH/tF+xWStFV2BnYGdgZ2BnYGbnoGHH560e5QnTiEEPMdijtMGJti3AHFocmhxaFKP9HuAEa3AxQchxaHl/ypHZrUdBXzDmKEjUOWQxpb4x1EHQjN0VeHo51fbcLOGAzSgUubjiJu8SjlgL44w+TLQQ9fYw5/sI3jmt+46JP8l0v6xS5fctjhdBmMH2zw5Y8dbmolfFL/J5gAAEAASURBVOq18xFE66GmY15MYlM8UHmx7qW6b4Dx5QDuby2GxZeXmMXtWyD+0yYv28VmLRxY7al8xCcbfCaeePnnb+aQL3gd+NkYgzNjFo9cqI8iJviEvUKvdvrGFBzUPVSlj18PSvJvXYsvPBzSM0bkk5259ol4ikO84iFxwpd/3PmwD+Gaz4c5Y3TzD6f9lr++ZcW3/cp3PmErcakNQzHeHH75KTZjRM7wwbn8+WY63jg3Xi6zD5/f5uAUd/sFpvl04sG3djmhx5cxsRJxe8Dy8GlPwpwPakvp/CN8fTnyQObhjX0+8NUvb3IEs1yxrc0GH8KGLbuj0LOGM27xtGebc5221nDCp6svrvLFHx5yIPauqXCzwSVOsOWAHZuw5MFDun0Ep1jMk/i3X2HTsTdxbj/Qbf3oaMPgT00vXvmQs+xmvQbv/ygXrjFtBQ5e2rCttzXVNs430Sf84NH9Pkx6R8xlcP7BFqYXGtr454MNaY3gyq+XNL7J/sILLzyUF+3+HJf/lO31119fLxvdaxQvGPCZRSwKTopfhPqFKG7u3fZK9zdr136kWzytm749osit/PFlD4gRTvvJOL/yay/Jl72kz07xeSGH1t0e4xMveObN0Y9/cdEzj0P3Nv2kmNW4w9TmJ3/pm5/xidGcwo/CVmxq9wZj4pQvnPTZiQEnPujG3fWgHzYdc+x60WQevziWp8bKJxttPviDWV7EP8fw04dFR0zw+MJJnuUGpjm6cNmJz5h7ABsvtMOAl6/2Pkx5LEa1sUQfNkzjfPDNT/njxzxdY/D4pB++vjl9a+IsKA7YBKa9SI+9zyM1UXtBSEes1gEODOceL+XNw3J/t1/tUbzYePHv+sA5XnDxhY2HeW0Y8qQ2X0zWG286ONi/7WFYcJXs8NNn031V7uSAPY7WgB4f7LS7F8AkxUKnvMdTrOIUV9cUjOKJE7/iY9+a5RMHtsSYAkM+/asDdtnQkVNc1eXCtUUvXX1nTvcPuQyXDX/yZpwP3OAZFytb+sXjnhUGXhW++WNb7uTVvJzDVfNhX7UGOMDs3ja5acsRm/aM2HGLA1xt/4LA/ZxPe1+u/cKnmOgZb6/kR1+MOBvTdj93nyV4OaP78yzG6ItVXASffpEFgzQfJr/aeIqX4NP+4deeYdd1ax7uvK7pGZdH+5K+Iu/GtOHTaY4P88YIHvJnn/bZC/cf//jH+le09rCY6LOFQ2YM9MO3R9zb5MO4Upu9+0ZnWX1/0/2rX/3q6bOf/ezCpX8d2S/ar5OtrbszsDOwM7AzsDNwQzPgMNGLdocxYqyDlLYDyyUx5yDo8KI4dDoMOVSZI2rFgQaOdocdtfEONmp+HaLU4U59bXoOUPzQ7UW7wyMx7zCohKVW2BO6+Hh44KtDmbl84MaPIk464nNwTIevDrhwHORhaxPz/MYnO33t8kTfWFx6mFkg4wcOSsKeD1hKEq6++SnFyke2cig2h0g58aDZn4oRvzEHzfyI0UOBePH2AtOfiXG4Lwc91MRXbHiVD5w66Grz3d5xiOaLLX0PMcZmXHEpblitk7joKvzCFgcdY+ZnXmrzB4OuMTnxjR2CmzypCb+wCUy2avPsPDTAMuaXFK4PbcVDoZjEVj7aN+bxhCHvk4uxMIy3bvwkcMqfcRw9SOCnbb96QLE+fJNiMV9e26PquNEtR+oEJ77aP8Vtz+BJ5KP1LUZ1/ujUZyN2OGLhny2f+W8t2Rlr/dn4diMu7KwjH+L1yyAP6+1NebAWdBT+2aXfCxY45vBSy1O5Mien5Qsf9nKrLuZ8GIsTrLirxayYL578Gu9eRze78sCGT/mytwhOHkTFiSfBR4zxglNM2nDoKrgSOfNCFpbcFbua4CA31hg2PFxaR76sy+TKjh7BE+/mjYWRj3iaI3gSetrmXR9hpF9eeoEFjw4Rn4KbWt5wxpcOjHTY6RvP3ph8yI98GTdW4dsYTHnR9nLBi/YXX3zxofzpmF60+89Q7Xu/IHW/8XKmvBePXJUX6+M/OnTvxs/92z6xx+Sj+4+aDWEfltjk1N6XN31zPh/dM+0FuGzhsZUjufLSh9/WDpfuh+WUnZzZ99bAeGvFj0JHae1wsR768cUrwcN9mNDh376z/1qrMM3RUfhma/2Mw6DHHzs8jcULPh7xiaOaLixS3PyztTfMp883nPLbvpqxy3HXj3lz8PGSb2IMrj48cZiHT3C3XnJtzjhduOzsAVytm9pLaD7404fVfYedHMFJ9KfQh82+nPBR7ObhKoQOjGptMbEpF9rigMGOjjG/FKCDj+tDOyyfT3Rwt1bE/vcyWLEeODobK+1RPnr5yV4fJl25kxvrojZevOVGPz44a+NgbbpP4WIcBjvYsPT57iUl3/TM+5xnj4M+kTMc1UmxwMOznFgTn3lyQV9foTf3hz4bvhXt8NsH7dl8qr2ctnfEnH7zcoK3wta9KJ/m9N07xMhH8dGXHzbG2eBjD/TZZ1xfbuCo9dmKBb5abtnrmyewjbd3XCPy7x5nr/BFHyZuOMIi8YSZfnvFXLk1hosX4X/+85+XHf/W5oMf/OA6e2vT44stfySu1qyYtPu8Ni8Pzj5+sarNHseK+Ownuu1RY9aofYdfnLWJeXoKac9r08G3M4s9yh8fcmbcfjDGXt8+1TbGlo1izp6BHyfXin0s5/KI59/+9rf1mWYNCP1s+MWpfRN3enLl2YUYV+gWg3tB/6krjl60f+lLXzp95jOfWTawryP7Rft1srV1dwZ2BnYGdgZ2Bm5oBhxoLr1o/1/hOFQoHYY6wDiAOEB1UDJP1EqHJmMOOw4xpANN7fCNTz1tB8kjloMUbHZ8qx28HArpKw6PSocsY2wcmhvTjzMu+vAUbYcv8fVgpM8X3GLInz4s8/A7oOorDsnGtYmaDemgpyZTJx7ii9fEmfrL+PxjxqQNt7i0YTpky4XDrfh8I9LBsm+uybGHBX7LpxclHm7E78DrsOqAKzZ6xh2Gi4Mdrupi5a/DNU74lS9xs4XVQ5SYwqOnwKKLYznRL1f8sWmudSmv5Unf+sLBqb4HLD6My9Mxn/qNqfmhK5/afPvFBUw4fNgPYioXxrUVwk5uYNDHRV8hcfMAYp5fGKTcxwumNZEPOh40PYjhIH+wjM9carODUf7DNwZLTdiL0Vgci7uXffTsH+Ps4q/Pboo9I399E4p/XOjxw746u/yHxZfCTzxheJiyV+XD/pQDNT0xwxGDNh7y5MHUWokfvhonhZ6arnrmSDsbuEoy9WAWW/nDx1j5ssbNGRdTecRBIXDxsMb04IhBjOInMBWYBC967NQwij+ecuAbX3JHzzzd/MKA172RHX7GrGWx6GubT8e8trUgcNniyJdC+DD+IDFfXHwk8YQfd7q4t8fLhbyFg5d29vT5b75xmPIix+bFApe+Ni6wXP/ENetPx9y5c2f9OS4470bKhW/x3b59+/TKK6+sa8Y92z3LvWP6Lp5y4xrw4tSLCjG5nxtrDe03bbzZ8Nfe0Rebfc9GvPrm6Sva2eWTnv1oL/msaD8Ytz4w5A2mvLR/5MccmRzo4JUNPnExp2THVpy4tTZyYv2sHcGTTjIxzBWH3Gizg4Wn+006OMEVh7haK7jlkR/c3FtgiKv7fRzMsy8f0x6OQlfMxV1O6bIlxuDjK0fZrsnzD/HwLR9iKG51utrWDlf3Zn6N6atbQ7U5JVs1HaJNxNba0G2/hDvnceoa0ib12cGuLxac4FhrLzjFr+/aS5+NF33ilpeufdeOX1Z5uSZOWNZI7HT04bETC7/a8MXePD/lnZ547Iniou88gaOYzFXajzAUuEpir4kFRvkw7yW59Z0+2BO6eCji4INtPuTDmHsZHAJHPERe5IMNXbX48JdzbeP2avj6/NGFJV73Jzkjxqboy4EYcLE+Xa/yj5dijm7xsOGXndzAN+Zzyzh9+cELjutCH4ZSjHiy1S/fcOQIFzk0L455jxWDPYIbfDgKW/j2h1/quJ8WO/x8yB3x5RV/Aqy4+PX/InUW0ocpTnGlJ89iKhZxu7+K15x7vF+k3jv/mbG+DGO89eHffoJXLsRKYBqnW86MNyaeYmLTPqMP13o0xgae3Bj3nEHMy0327Un6dLtOyhMbeZBzpVz+5z//WXGXCzhs1K0pXbhxouvZRck/7unb2+4hCo7KY489tl60P/nkk6is3KzGFX/sF+1XTNRW2xnYGdgZ2BnYGbjJGXDgeDcv2h1CFIcYhyyHoQ4u5UP/0rj5DlLaDo2Kww39bPQJHPrEIc0Bi+BOOqzS6cDn8OSQCZd+hzLj4cWXn8Y6qMKdXPT548PBy6E7Xw7RcTZGB174fDsUqzvA9UI67pd88UnY4OVhQRsPdbnPX+PFoI4zfJIfbfO4e/BxmPdS1EON4hDcwZeuvHkAc5Dt8O7A3kMLbg68xQkbR/FplwsHfvsGZ/MeZr2E5oseew8rfHQgNt4ewUWO2fJNR1tcMOVk5sW4eXmAYw2IdtzWwPkHHWsr9h4O5EJesuObXpJPdeNixWG+jPAfq7ENRw608ZiCK4EFx8OPQo8P8bAtn3TZmDdePowTOOasH6HLL704mOvBlY/myhs983HHASa9YsDHePmPn3zWtsbwE305Ep9xmNbZCz95ty9xaD3Fohjjm742yb/55qyhFybsm6c/7fTDUJdDmPLiOvXQaj/q27+uA32x0z/mAgciH+LS57928dgPxhPXojmCC32FNC4/+eR/8qNHHyau9NjJgzpe9GrzI1+tZbmgA7uHWNeatn3wIIFpvWHgxqcczBjpNEZPsQ+OuTDeOsqvWNK/5F/ccAkfxZcuWxiV8PWzUfNVHwZcdeNiUbLHkehX2x/yP3nDsb5srYdvKX73u99df+s12wVwjR/F6D9D/drXvnZ67bXXVi5dU+bC5dc1pk5ws5btbbyscevG3prg6lrUVuCowxentjWEwd7922eDWt98glN5KafxY09XTuXQfrM+xruW5NEYnHDVxlyTdNt3fOPXtRCH7OrPmh/z8SyHdNpjxsqTF0DtIfNiUujgERdjbFy/PuPkvriPn5nFKhbY7Npn8mwNErjs+cNbsT4wzJVDfVz4l4+5hrDKfbjmrT1/1sJ9D4bPQj68lMJN27g6ab2q3RPoiBnPuMTBuLUrL3jDyx6uNi5+QYUXURuHyYZkw4fCtxdkfIVLjw1pP+MgV/SdR/xnxT5/up/Rtw50tK1Heys/8MqvMT5di16wioedQoc/Y64txdrgTtLTtqfgkHzKk3Y5p4+b61exLmzYwqTrOo9nfvjk2z6EhZfrtmvXWBj8O6vJSde6eYUveaKLh7WEReTcnOuELp/0ylNxiIGugp/amG8OWyMx4dVnEmw45W367V8pwMalz2t4/MqfteOjNe1eBdeYwiexVnJnLflTyq95enS6f9LDzf6099iKXVxs9bUVbQU3nKyTX0I6L8oZjrDo0skPX/Thym97JD4wxJ8vuD4n/vSnP61vfLNniztc+HDiB4e9Yj6s7glxnmsaP5zhmKOn3bVdbuHbR/IjPsVetD5KcdMz54W8fQBPDoiYuxfwnX/rb6/CwFstPrHyL2/F5Hp2L/MLDvc4nOHjkC2frhH3Ppzx8KLdn2t7cr9oX2uxf+wM7AzsDOwM7AzsDFzIgINFL9p7iOjQMtWNObAoRG3MIaqDYAer2Tc2iwOPfjUcB6BwYZqDQY8Yc9ip3YHJQYh0KGZHT83GfNjqXuCa189XfPgkxpWk+Wz0O/Th7YBoTHH40+8gzlcxxteYgyfeccBbgUFfmRxwad44PaKGVx9HfhQYc17bQ4ADI/5w1L657nDqMMlHecDPgwosufONGAf4Drpi4I+f4wOM+HsAiAtd36CE74DMTo2DfWQ+nA7b+JijC4fg7bDsYaGx9OZ+TLcc6MNpXBuWIofWrQcJHGEWB250xGRcO9E2pkw8D0rtg174yt3UgyHP5QhWa0nPmuBFcDLXg4Ix/lqD4qk2R5dPY/T4UfdQBc8YPTkPm2+5VAgbODDZ5MOcMYJfuPpdl3Th2Xdi0YYBW3weXtgRHDzw4JEP8/atXJYfPpV04FVwNceP9TQOv32Pg7EHiXyYh4OP0hppuxYUbTztQ9eFfvktdjjtDzWRp/ZV8dATJ95dX+mwMQ+b39aTLp8Kf3DzpY0/KefmZs60CbzWVs7kFKZ1cI3X50ObsIWvwFXI9KFvvjVqPp7lxj4Qu71A6Idde9Z02OJQDHFob8VvzsOQQ8V4mHw9SMLlL775ZhOOduNyJn/llI45cavd77zI+973vvdQXrTfO39L0X+s+sYbb7x9/YmRf7HJreug+wiuBK9eiuElH2SuYfFZIxg+J3yT0/VkTrFPzanF7qWFb9l7gYFDccO1PvGBgSc73ORM3z7rGnMmEQMMOkrrlq5+POG3B1o7MaWTnlrMxDXMJ8m2OWPZyIGiPwU/vsShFO/U4Z8fAkOfTzGIiQ1c+TIOUz9f+ODGVj3nteOGR1j8ySMf5Z7/sHBQiHm+YCl8tE76sOjSg+eep8+vtedT31x6xuCIj53YSP7VfLKxD/ngiy5b2PJJD0bfNHefyBc8+oqxClxjdL10C0dMPpfVcOPNt71L35828YswOviQcmCPEmtkb7KLG1t64ixGMdjn+nFT01PzX55wplc8+hXYxtmp6ZH89Rnkcwi3uR/0XZPi7sUvTkr7lQ4M57PWlo908Ojs2IvkeNBTxAPHi215Kre489t6Gu/+aO3FwE4u1XDp0O8b7fQ6F+BiX+VXHviWd3rs2MO1Rl7Osy2X1fywo+NFNP/G2E/s7kH2A1w5seZqevzYO+534vLLCPzMyznMYqKvrcZDvBXctYlfKLnX6lsPNa58uVZc13iR8JqnIxb+XZvikQMv2v15MV+WgVke1Gxwh0UfF22FmNeGKQeEP2NiVdPR9vnmxThdOLjyj7c4xG7OvpBHNvYhruUAJ37omqeLl3E6fGvHQ5suPM8zCrEnFPM4wuCbnj4svOwPOTEmdzh3poODAwxY2h/5yEdOzz777Ompp54y/TaX1bnCj/2N9iskaavsDOwM7AzsDOwM3PQMOJz0ot1h0WFiHmKKr0Ocg0nC1sHFwYOwdWBykDFmXnF4qU6XPswOXumH3wPAkY8+ccjsYMgmO/OwKnwTh0APAA5TuHR45mdyiyscNjgSePr5cgiMmzmiD88hzsFQ21yY7PnqoEq/fhzU9PKtr8CBCSs7uaNXH1f8euCI+yJ3/sGvh1WHUA+TcB2KPYjCLg7jMOSrlyUOov6+o5zDxUPNhr69I6cOqcY9lHix6aEMFq5svayXHw9QeCsEhljowRCHMfuruJfi+Qcch2OFDT2xKfTLEQzz+s3nb/rWFgeu/XNgdsbYJtYTl7nn+SD06MMSP07wxOp68C05dvTpKnQU8cifORiKcXbtIZhiME5Xv1hw1Y+HdvMeINvz9ORX8QDYyzF2cm69PRDxIU57g89yUD7zWxz1Wys2hB++1eY8OOaTLTuxdr0Ys1dw8a12BRc8rIu63MQJRrEvp+cf8TEuZoUPa+CBv7jS5yNhm/0cq03XPpcrtT3oGvnnP//5dqz8ibt1mmsKR1+OWluxGJNzOWbHT+uvLRa54c9+4SM79WzDFi+hdxRj5Uys7Ql6OJm3D8TAZzpstPHBk535GV+5U9Mxr9afHOPctWRfuF5IfOiwVXBSwjen3RhOYapxnX6N0Q27nBpLbzm/8INt1wG7fImbiJEYL25rZB/rl2vzRJyPP/74etHugb2Y1uQ1foRn77300kvr79PaM8bzLz57wf3YHDGPu7joKcaKER8Ff/vNfqTrntFLDDGIq70Gnx/6Pie89PdyDwa/rbP95T6gsLEesBUvNugbg9PLD2P8uD7YEGsm7/TEyP64D/llU05aC/jlXNzHl1blBiahyx/u4iDaxnBU44db91UY+OGulis1Ll5C0Reve5wXc+5J/Ml1OYdL6FbiIob2lTlxyn/cy6H7lHaxpMdW3pTWMWw85UWMYsKZPRzx2i/8tLfcm/k2756YP7zYsadvfIo+n/yLG15++WanGLPf5E0NS26sG+HHGCyYinm+8bdn4dGTa7/0tv/M822NKuKg7/+noS9WIq44lid9ubJ2bJx3YIoj0W4d+dKGW9xiS4ofRjp4iUeOxWBODsoLGzzcr/0Nbi/K9eWDvhpHc855/uUibPdbGPBwEaezgv0Iky2+8icndGDpi9N1wJaYw5EftT2CAwxzfMk7G1iKPLRO7OjjYIxftnzJjwLHdUHMlR+6FTq469e2bq4zsZkrtzDix3cv2nG0njjyQVxD1qF8uYZc550j4OLWv/aUZ34UPqbPGY+4fcayhU/kGL7/w8NZhY7zBY7iYi8me59dsdNTyp847BM8cZCDe+dfyN69e3ftERhsiZp/Oto4WB92xUxPThU6YtYWG328jHW9+Q9c5YcfebEv5ZGO3NoT6vKhjSs8uET+wzbOFq9q+0UexB1ve1P+u77FpZgvJ+a6Z/FP2n/6cuh6evPNNxd//oi18q8qzH/iE59Yf/rtmWeeWXNxXp0r/Ngv2q+QpK2yM7AzsDOwM7AzcNMz4GDRi/YeXC7F5CDRAWfOO7w4DCUOR0qHS/MdWDtUpevw49ACuwNPbTZh51tN2OHqoOUw6PClJB3+8NKmjzsbBz/iYNVhku9pYz6f7LTNK/r8Hvnq84ezQ6PikFouwsxXsRjPNh/xpVMM5jq0syFyFz8Y7MTk4KnWT7J3EPbQ40HSmMOwvsO9PuEThgcmD2gdaB2WHe7xEle+9XGhp/ANz8t0B1o2PQTAkyPjahwVvtX0YMCOc4d9fsRp7WAqhJ6Cd/mGBUPNj2IOhnElMcbeQR9nOWJHzImHLR7mrANfxFz2xrSJNt18e7jX55dNfMUjXjHJIT9sFTnMlzkCX47Ytea4xtdYesY8PFlHbZj8e/Cw7j1s/5e9u2vVtar+OH6/jojau+fUJIKIToIO6qCE3BJGRkFCWpZabCxFoUPBF2UPIkEdBSFomobZ6/ivz2x9N+N/sbatFftkwRww13wa4zd+Y8x5Xfe8rnXvtekb8yDkQYKYs0bFgxcpd/k3D1s8uPbwxBfxAIu7cXhw5YQ+W3ryalybrlx4SeehH6Y8WBuFDjsFRvHiYIyoW5cw+fAAZq9bh+k/zGX8X37wh59cqd1P8PQNXnmWHzryaD5+fCj8KvIpD3NcnOzZNZc9Ws1ZK3kSJ3s5gicH7LpezGVXbvS1FXhsFG05g6U9X7Sz4c94ot21iiP/ira5+MHUN17sxZSduK2/dSFs2cFTi5cvnGGwU/Rxp1MetY0TtfF0wzVuTB/ufxO64RfDMdaJEW7+xB8Xel6A3MsX7e+df6P97bffXjnE1z1F3uTHfpBjhYihvNhr3U8aw5ewt7/psMHbL6u8VNSGbb+5tq2dnLgne7HiP6XzS1W25u0rukovOvBpLWC5V+BiDeG4nrzcwAM3PhQ2OMZPu5jga8etuOVEYYuT+cZcy50LwlEfBTYeRDx44gzLOF9e9HSPs/584Ymj2KyFe5CcuEfIkb57m/zhIWY1fGK8/aYPCza/eJqDB1vbmHkYYuO3eNz38cweBj/FZVwh4qXb/UW+3BfgGqOn7lvH+tZNHS825Y2vKfSMKfarGo/8qcUFw36TJ7nVFxMbImZ27GEqYjIuXi/ocdCH4WWzPcimdYFnneSQ/kc/+tFlYxxu500Y+YmDPcnG51vzeNlr6erXpiOGxozTJcbLnTGcFDmWD3P8tdb05cHnvP9I0/nK+qTHF3v7zOefuIzJY7nlB4a97KUu4Use+aJHByY7XGAQ3BV5lHM5gWPf4yjH1k5+YMCFmT4f+HWdhAWfHoEhTnuZwMg/zLDU7NsLuMgFPmz5Ms+2fa1vz1pf9vZJMefDfUh+zBHzXoKLiw5c16wcw+pFO85xpSd/xcKvuOnjiGvzbC7zol3OxC/v2jjiAkd8Xet82x9eHPcvjbIVs4KL+xEs9nBxtYbWn9AzrzZPxFhs+nSt9Y0bNxYHsdmTihyJm44ctj9gGOsXOMUk37iUF77xVMMRr3WTO318YbjGu77pKwRPfu3f7ll8w09PXw7ly38ULk+wcbIPXB/8P/DAA+tPv+0X7Su1+8fOwM7AzsDOwM7AzsBFGXCw6EW7Qx9xsDiKg4bx45zDjYNKAs+Y4mDTfAeaqQvToe0oE0P76Jedg5EDlnkSv/DikD/zDmYdurJ3qErYzAeYebCkw5cxtnSJPmx+Kg6IHbCX0vkPcdCFQxdG8cU3H8UcpvEO+sU4sWc723xZB4W9g6YXJTdv3lz+HcYdSglc+WBnLzh4e7nuYGncWIda+vkpJ3To6vPnoczDCBtzijWAb15sMOiLzzh7ZXKXS3268hSfaceH/pRiNlY7n/AU4zCNezjpAaB5uB4QiHg8YHkoYNdamdOGwU7bvNyqFf+CAH45o5tf+8kDidxMLOvFV/GXI3HGD94ch9Ua0GnPlztj5mEq7Tt+W2Pt9go7MvXyGX/+E+2pK3f4hueFkjzKiRwocWGLg4cnDzoejunhTE8+YdNTjKmJmi4/9Hvw1C72XhJYY7ps4MWlvnuAdvy0E205FVc+PIB5yeElFP50PJDRg3GUsGf+8CRyZX3KYTrFoa4tLvj402NbLmHlGx4bfpXs6efPvum+Bte1LhZtwg5O1zI78/qELxzosaFrnh5/zaezjM7trJl5ts2zyc44HLiNG6s9x+nBKHZ6CokPfWM4KvpT4tIYXWNh8huuNilO7e5Fca7mx5x9fN99951u3769HtjDYHsVKS7faH/iiSfWy233GPEfZfI1b5+4t7Sm9F0f9n58zNkTOBuzz3qBk56cGLeGcOm6bv2izPXQC50w6br++IKVyI17YGti/ynsW1N8s6FvPemYv2iNilOs7TE84sJGu3sk3/rlNW7V7QHz8Ih4cZEPMZnTh9N+iav4xO/zln33OZ+RYsNXLDBxOcY153GGyx9Mxfzkbh7GjAlPusatrRwSY2z5neuNmxeHXkyVKy8ueyknDmvCnj+28zqDXd7KBz/a/POnD0cpBrV1w5cuHj57jePBzt7g2xxbeK1lMVkTvxwKx8tw5x9rAJd+n7240xOrz2vzxvCzl7XZlafiFHt7U5tdRU7wItpKa2BMLHONxCFuOAQ/nzXhlqtyQ18u7CVr4nOTDaGr8O8lsLh70S5veJRvOq5bn1tsxINXfsSjbbzPzyN3OmzwxQFnWPTlXezsrQk9pXXEv3sF7mzx6/qGLd9qMcNl237DxZyiTczbq9YOJ312cHESD4GrEPziSh8POWWfX7b2CBwxiJV9XJ1x6DYXrrhxU+Qi/vRI3M1Zq/IkButTjNnFWY2fc0j7FW9r2xrIgT3gvkyXHj9sw6OjHw+c5KgX4PTxoF+O6RB5JeKWG1/kkUs5safsrbgZb/+xU9jJK2wc+MID//iYU8zl3xyO9BS4hB6BpcgxP3T5kVvrxy8+BC5hi7e8s9O3xvLjGqPnRftTTz11euSRR5ZNfFbnEj/2N9ovkaStsjOwM7AzsDOwM3DdM+Dw0Yt2DxwODJVjbBeNd1CausYc8irp1J+6Fx1QHJ6UpIMVHMLGAUjRNt5YByz2/KmzM5eNA6N4lQ5YdDuAsaXrkJYd34051NXPvjjzHS/cFDjxZR8/Y2ziCo8fdZh8ORQag2M8e3Ppzdo4HQdKB0xzDqIeIv0NSBzE6yAtTjnpwcWhsm8Vx68Y4oZLYx6SYBgjYuHXIZZ+OcShPr3G4RD1xICDpzGlvNMrfn49PDgMlxt+HKjzL3dywCY/6g7bxmEfdewPD1p8ewDz0A6XLh/x1k60zXsBAE8M7HChL37+cDIn7w72x704c6g9BZ9yZU5bHsLRbpxd/LIpd3RwjYv80TFOZ8ZIz1iibUwJt9jMGbMmjfHhIczLivJCT4mr/eehzIM3W/7lRTzyl251ceFgb5dj+wEGvIQPe92en/6LHab9QIfApncU69V+a+/5Vrt9Yo54INPmk7R/5SSBH3/z7V86xstt+WWnjaf5sPgIx1zz6VhTOunFpevQtavE3bi8ZcOvtljTpZN9fPnLJx/t53DUkx9cwgZH+OZbD/jyr89HPvOnVvhqDlZ+1PoJH+1vY9MOTiLHR1tzxsqdmuSP/8b4mH1tY3Iqf/apf3r+/PPPnx588ME767gAr/Cj2Lxo/9nPfnbnT8fIl7wVh3XlW37ja5+7FnHuGtF3bdBRzLEpt9WtYeuQvtoYG9ee9edbsbeNtzauU/dRki96fMoVW7liY4xPNniT9OjgRcJpLfXbT+y0idyYq5Sf1kkdxjIYP9gQOS6/dOXNL1DcF9yD8eYzv3LsRRiRZ1zESJ9OWOHTg1tfzQY3ueRD21hx0Y+3sfaBdnPyr5DuYfr5n2tuDFf/IaVvgZvDw4sz//GudYKdLUw6YpVTOYhPPuiw0S/v2u659oM5GMaskzXX9lmKC58w6eDvM9k3aOXQXjAGl434YeIOB3c4vvHKHx37VGmvwYHplwv8yDVO7ufy3Z9e0caFFCO9uS/wNwc7Hfo40cNHHLDM44On+wMexuyRXlLSNcbOPF0+iJjFLhZtutXWw78y8fLWf7LJN1sYfCp02IoTPg58WVs+xJaNMRjmWw/9xviFx4aOcXnXhqst5nIoRi818aeDDxt++hyFhZcxhXQd8Df5GSdywN7nsutFn604XK/afMFVwrD2MPDBw36XG3mgZ/3EQJ+e9U3gtS5yIC7XgXuDc8+Mu/WEYy0IXfF0RpFfPLqW6PIhTwpp7fDEB0fYbPnT7yWxvQTLnMK2Gldt+kRbzK4XMfEHnz38/GgrBD/Xln0mJmtrDfihU6xyWMxwjMu1WPkgxsWqlDcYeJjDzS81XK/4wTDmPus8RlcMxcsOlnXniy479tpJ+VCzYY+XHNpLxu6///7159pu3bq1zIxdRfaL9qtka+vuDOwM7AzsDOwMXNMMOLD0ot1h4qoHhruF3YHG4UebNHY3m3RwmoKTYlzpgN4YXYeqSuP5ZmOMqNk7zDl8F7Nx/BxwHb4cxug5ZCna2TqA0S2u5paDsx+Tf3479KnNO+jhpw1n1vCKxRwMxWGQb/PHh4QwcAjLGD2HWrYwHW79GRN/ugAHDz4eAuTDYbji0O6fezqw8s2Ovnn5MFbc2g7UPdjxKza+yyNdYlxbHPjA6kC7FMaPcNR0+dEuPnzg8+shAQfYdBSxWcvilgO2SmLeOBw27Rnz7OwRueDbg74Hbbj0Jw79uGnD8TAG27iHN3ZwxMu+Ofz5UfAvPjUduc/XrGHNAtd+hmOdcCD8wxAPfKV4zdPjRz7Dh0voETbm6dIxr21e0afDR3kwhocxNvR9K9GLEf706arp4k9fDPOBTl+O8p8Nu/ias88V/jwYe6hsTxpTPATa7/yzxT0e2q5/HOmScp8fNW7tdzFr96LdnFg8lPFNXxGbYm5KuPyJk05jeMXPmL44jcnBxGreWG21vmts4rRO6vaelwU4xFMtdj6N82dt7C0xmk9/xlObX7p0ym/rhsuUOJYvMSpsrVP6+RQXLPNiqMCkWw7YEn2FfbE3DqP7GVwyc7UGxg/6Cqz8xCW1eKnpqPko1+4DXrS/+OKL9+xFe3+j3f2s0h63tvZo9wR8ra0XP8S42PXds8zrl9fioWft9e8m7MRs7cWssOkaLse4udYSNvBhKzi3z8zZQ2zwJnTC1g639WVDjNtL3bPhwBAjMYertSFxhvlhwg4fewWWWNxXvIjpxSifCl37xRx+Xuzgxac4wzCGn37xTA784CVPfMDK1ri+uMMRp/sh/+bF1pzaPdK+0BYL3+y7TmDj6j/u9Q1V+PaWe91f/vKXxZ+N0p7hR1zWLn/G+MAjfX1xpOOzVQ7N8w8PJ/7oeqFGh40+kQP38z5bxSIm/vnCn30v/cKZ+xyGF3PWgV/6/Hi5KF7j7KydOOShfNIn9LRxN4c3/rCI/ZXAsk/oyTVbRZuN/WJeLmCyxU9MckWX8GF9xcgvbri6zuSInnwYZ9c32ssFbjjgo8Bn63NLHw+c4NMrHnb8GYeNY2uFU/7U9PBQ24fhis04W9zwPr5oh8WHf1EpDhh4qPlT2LWH5ULe8O5zFH/rphjTh4FLew2OsfzB8QsJeccJB+c/fXP0WyPrgIOCl0IflrZ1gCG3/Dn3iHvu+/zDJHTh6cOQH/Gr8c+PWj4JPPvYF2PYGpdbbXj69pDiusQBHjvz2opcsqOvmJebri++2BvHhbQHYLIRj2vSM4Y84GBP0SN4G7dW8hlOccURFokL+1n4sY6uZec1+aIL2/3JvzDESRETW+38zbyLr2uVT/oKYSde+0eOracx/7fKk08+edov2lea9o+dgZ2BnYGdgZ2BnYGLMuBw0ot2By2HCKKuTcfBpBJOh5b66g5MbGqzo9vY1NeeOHTpVczj0UHOuIOPg6Hx9Okl+QpDTeibU+A5BPYQ1GHT4a+DMp1pk51DWLlQT6Ezx/IHpwOfeX7wMi9PJN3aa/DsR3H0cENPO37aYUy+7HqwcJBk53DqZbGHZ3GyVeShh+MO3Q7IDpcw4cPqoA6LXlzlMnt+y492PLXhsDWmlpPaxaumG07j9BvDXQ5x97CAJ/8Ez3KszU5NVyxT5KX1DputNjsHbA972h4gfDO9F+h0ZoEbBl/zodQ/2fYwwL94+Yin3Ln2+IpfHNhkBx8POvnV11bD9VCmuEZwILDESI+OnFsHfdJ+xrdvahmPgzZ8eMa0SfNquIo90bwatpovel6YyCMsRQ5woaewt47aBKb8GG+d6FfChSVPdNjaD4p2MWvb/+Kkz7YSR3sKR3186euz0Vfg2HNybC20XSse8Lqf6BuHT4+N0trB4WOWridzRN06wdEuX/rtlWJYRmc/9Ftv+OmZ18aj9dKW77imH09YjdGzFnTDaL3DjYOaD/bFgX+xmYuXthzN61echH57ZQ2c/4BF4oEjX8ZrW0tt+PTS5XeOm9cn8eVXm4RXmz0bQk+BXTz62sbCVcuV/WGfetH+wgsv3JMX7e++++7pRz/60emNN95Y2F7qeEHaCz1+5RdnucRPbW/jVSxscNMvFjlQxGLtu8/qN7cScfYDVmvctUHPurq3tb7wrS9fhC8cZ760GzOPsz1tTdvbdLrG+RVT8ajZ4ciXWNV0YMCLv3uv2Mj0uQbOftCjP23iYSzf2l4Uuf/ihmc+YbUG+aVjLGHfPQwmKY5yq2Yj7vISr3CM0zOOg5iJ2IhxYj3y7/6GKzu8rBEO9pLPLi8f4fp8kK+//vWv6z4Aa/pny49S/mGJubzzo81Xc734ZIMTTLzpsnUP7pu1YiLyLF/dn/HqRR38/PgXfOIj9Ls24NqXrsn4Ni9e/sWDpxds2l7Cy4ux8oyvOT5dc/YabD7VeNHXLi41YacQuGzkAoZx3MTEl1wp7r/wynt7BQ/6avN0iTYs+fNSsevHXHzosu1FotwROVDoWXu88ssGrvn2j759ZQ4G3/i1ZmrjfPVZIvc4ixGWPOXT2YseDMVcsXdfMV/urZ984wFPPDCKi39r1BlOn62c48Wv/WRfyDtfuMIrRvraYsTBerDLPu5igqPmpzWljxscxVxx8UM/X/TC0JZ7NV6EHRsc/UJALozJqTZ+dLXlJSzjjbX3+W0/wDZPnNfEFkd4OFT4V9jSE6ccWy+YfMmvtSnf6ubhyZnS2TUsYwRHPuQ8fT68aLde8pieXzj4khB+OLdv2mdqGMbl2TWt5pOw40fRxl/u5Bg/nHxR6Sc/+cnp4YcfXjbwriL7G+1XydbW3RnYGdgZ2BnYGbimGXAQmS/aO2B0+HKAcABxKHHA6DDCTkk6aNBRzNFVpl722anDcqjJRs0nXJwcTsPELX7h5yOs8Ge/g1M+YDhM0nEgdIjiLxvt2YfZIcyBsgNcHI4+s2ej7aBYjA6dxnDij6Sff2P09eWUT0LPGM7acTHXYRQu6TDpIKrtUOplsW82dcDnwyFSjuUEhsOlwof5xFh9ugQHtuaM6TeunT7OckWM6asVetkthbMf5hXjaqKNt/z1MMKntVOLUT74aS+yM862nIUZDl1jR7E/PMDIpwcI30ryoN7BvL0UT/b5LlZ8/HJD7o1NP+zk3kFeDNkbV9h4KGzvyFU5Lnf51rcOYsSXL3Nq8cdnzuHSNSA+e0MuCN4wycRaA2c/YBMY+OHVHsouHXrGrJ0CDz5f2mxhwIqfcf3isYeNVYpNH5YiTjgeKOWVT8WY/Wm+XMA2V82vOQ+FMLXlxAsKY/rlpHjZ5q9vvhnzoh1vggedBI5CjONAjMlHc+Kb+dNuXrvYyoe+8XC0cRGXUqz5nH3514dFsmFP2Fhbe1Rc+nS0y4H8ps+mtcWjfKrZZR8//mHhwE4h5tm0Z2Ap1qH42ChE7NrpsD/uS2N0cDCnT5/Url8+mltKQ888XdzFpY1DPtT6xe1ac8/xN16fe+65e/I32t95553T97///dPf/va3tV/dL+xZLxBcMzgpOMSluGbu2uM4ygtpv4nN+nr55NrSJsbFSIq9tdM312dDOdI3bg1J6wBrStzowoJrH+Cppu++qS427Qp743TlvPtDL2XCF0/3QLaNxyVstUJgzD3JRnx9DunL9Sxs4fNFxEUvTPXENV+hn561cU8xZyyM1pYPOW2cjvxVwoRDT9/nmfxqlwN2YvSizecQ8XJLnP5jRbYJbP6MNW6MwINlDcLkD984iZtvnOwPMnlbc5+9XoDDIeHiiLu90It2+Mbh+sarNnz+xCIObfsYjr0Bg13XDz90xAXbutEhuHcPgmGOL9i4svPZoWbLt3jYiY9PYlwhsPlU8OXXfvJLFTnXb0wNW8EDtrzby11f5Y9P8cpfv+Rmn89yb0/1uTVt2euzFVO+W+vyhgffOItPHOyUMPC1xr5lLi/iIubFLP/FxY9fXsstDGIs/2zlXs1W3tnLAW705M5L185wOFkj90ax0Be/dnmEBaNfZlkf/OjRMS9mMYpFjZ8xekQMOMgFHgSONn3z1sReY0evfUA3H8bkSV7Z6vM5/RqTg34pgYv5cgMPF+vr+uBLTud6w6CDPz6kawMX8+bKES70iTlFTOVInxR715x8w4NDH2+67RGY8sNXunDmnsaPvTWzJ8sVPb9Qsdbi5DtdeO0XsZvjE1/rwBddXMylq823NZA3OeHb/7Hi/0XZL9plfcvOwM7AzsDOwM7AzsCFGXDYmS/aHdAcMhQHnnkIchBRCDuHF9KhSrsDk/lZzOkTOrXrG5sHVn7gw8bJ4SgubOKWjgNR/o74+XKIgzGxxQmDDwdPB6n0YNJnPzH1HcyK35xylOxh1FbTdTjU5pfkQztf7HAxR9+h0Jxx8eOubZwOPONslHy1bg6I/ekOB98Ou3Rb82yzh0HyR2+O8auIw4FUbV6JC3u8lSmtnRgIG+36U7e2OQfseThmx685sYqLwOezdaLTg0++egBgE181LHGJ1wOXfNBxsO8FFtwK3WxmTmCx8+JL7j1YmS/nePTQw1d45cs3dpTWhU57VDzlm2+lPPBBwrlbmw3/9HHz7T851Lev8CfGig/H8M2JAT/rD0vRpzMfgozH1xwc/OLNlzH5mnaw+DCWXzZEHwYbtsScHOFDzPPr4Xn6568CXxueB3ZYihzIvz0HZ15r5ZotXx7uxKjv75Kah2ccJxzbn9rmrGd+3VPgF8cif/4DJsHBPFtjcOMKx7yS0JE/c2E0pw4HVzFkq8+uPLM17/pRhxmuOMzps4HberHVxxN+nNR01ezCohuPxuStuNWwy6E44ts+jUNzuOHIF5kc9PPXvDESZ+1yET91RU5whWOMNBd39vS87PGi/dlnn10P7OEuoyv8yM8//vGP02OPPbZetNu77mm+udo39eTKvmrviol0H8k/PTG43+FpnG76cmx/99JBrsqruCvi5UttDGb7RQ2f7/yah13u2ZDiq28MpvhcKwReetYXb1gw44+LnIuDLgx27QdctIl5hW389LNdSmc/2n/lhr1cFEc4fCn0xGGeHgkXP/P8GUvkI5xqc/QmXzGbz4958Sszp93DzBtnB0d/2uonOLvOFBzFbd5ZiU9tfghMeTVGVyHmtbuv8lX+4CvtTfbtPXhxoe+z9+bZf+IOJx/p4GJfKmLqXsoXOzUesH3OKfwag+1aMZadPWbPsONDvErri28v+aynPY0TG3kWrzOKGqf44unzoDXrHmYcD7GVC7mzN+nDKLfGcKcPH+d44tFnUOvDh5fsPsdaA9jZ4iwPfPjcgs+WD3Vt8eLW3mu96bU/zMmHeOUTL/NKa4CjF+hq+WQrBnkrdtiw4oOv+BVciboCg71Y5ot27V60wzQvD/LReuNVLou59WZjDj81XXkrL3hoJ+Ke/ForvK1Ltvj6wobCXpz5kgM4uKjbL+Zhy0vXLjx68P0dfrk3Jq/G2OjD4d8vOOhoi9EvVnCkZ1wNj2iXb37h4KZuTlss8kK0xdM1rE2n/JnXVtjgVYFJjjb6YmZr/yqtiTXHkcDxkt0+Fr8+360ZTuIWrzlxwmzfaJdfuYCjD4udvSRnMH1++39R9n+GulK/f+wM7AzsDOwM7AzsDFyUAYeY44t2BxEHG4cMhx86HX4cWhxQlA5XEzebDjIOJQoxBseBhr0+Ma/PlzklP3Rw6RBoPL9hxVc/bmr9RBtWPtVTnx4/DlPwOmDilE36DnkOZ3iSsPI3bZfCBT/o0lO0i6tcwJRLxTxfHXLN5QM0W2NxzU5N2Cuwe8CoP/NFl02HdD7gNu6w2b5gby57vrPTVuKRL7UxNrjoT0mf7UUSl74JZB3gkLjoNwZfkR9juHu440ds/MhH31DH39o7kNNhS6e44PCtWI/igE1XX034ki9+zNsvXmL3jXFz9jQ//PHBlzWGzUaNnxf04qPXAyD8+uqZM7ZKgpMCQ22u3OmzFZsHGA/TxsSCc6KfvTZ9ekl5EpNrCD9+YHioYuuhDn+x6rNpLeSJwPUA7IFY/IQ+PX122agJPubUcTdHF57x1r41YUdHwYMuW3mRAzaNicOcIhY1O5hscdduDc35dlk58KAMV1x4WmN9PopN25iCM8m/djzpKTgQNX5s6BM1XMLOnjbGjl6FXTq4erCkx8Y65kOMbGFaPzmkk7Bhz0adfthx50+BxYbwoV0cbBVj9OxtRb8xObQO5cp41215CIMPvHGDg0tYfBYjXtrWUk2H8NWcMXN4NUbHuLjV/PNNj04lTBxcZ/4ztZ///Ofrn6DnC9ZVBCZ577331t+LffPNN9d1Y5+5p/UZ5Vris+u5/MsZ3sVsXN890lzXJB/FLB65bA/0rziax0mxPop86Jcv+F4q8SEXiRxYp+xnDuea0vcStOu9ewWuuMQ9+/bK/Ozkyz4WB95zr9hTuJLG6WvXZ2MMLzFq8y8eOkQczcPMp/jN0YODl5e8dLru5JZeOu3B+nC14ymW1gqm+fLNb1zlCl/++ZIrtrAUeuZgqJPGits4fH7YWLf8qMmRA3170HjY8YfbS1xz3S/USiJX/iVe+1he8KbDr7wpcmHPx6EX3sbd4+yf7vH86fvzOH4Zzs5YOeebD7j2Cwz+YPosV5vz4rgXc/ziygccn4f4iROWzwM2/MgJHTb2ADxrRNi4Dq2TP4fBf+PFwA8MNWwvUq2pNeEDV3mWMy+Y7YH63RP4pe/bwPzYx7jSg6ngCsOY+dZZ3by2/Ni74nFugVM++TEnfvcAPPEzjr+aLhzjYu8b9sbEj+dFwhY/62cd8GAj93z1p2PEPF+0T5/0+S9G/glM/MRC0jGmiBVfeWGjDUte8IWHj/WwttabneveHqHnlwFs+LIH2LEx18tw80QOK7Dx0n/v7HNAvPiwN97eYlc+1bgq3YeNWfvuJXzJTdhiKm41Xgode0ru2ZgjcdXXhtt+tAY+n+zh9jq+5gmf4hKHOky58gtk68eveQW2+PkRD67Z4RgX8dJrPh/x4NecHNqjCl4wjPdteWP+E/Nnnnnm9Oijjy7O+VidS/zYfzrmEknaKjsDOwM7AzsDOwPXPQMOMV60v/LKK+uA6iDi0KXusEpHcTBxcFM7lChHcSBhl366+g4jSofbbOHko4Nh+A45DjY4kQ5f2nToO6DR4asDT/YTO/9qHM058BJjfDlk8dUhVy0mc4QP/Hu40Tcffzi4ZL+M7vKDHlsYFfHhRfILu7ib7/Cnps9vHNjFwRhR8+Fw71Ac56PfcoO/Ul60O5zzGW75pQczzvHTTyc7fSUJa9o2N2s+FAdjh3trHw4M7eJhR7e46cJ3EJ+5cWh36LcPjFt7cdJlC6M+DA9BHobynT+6ceBbvjwAwMTLnvGi3QO9NbRnzcuJa40e6UEMrraHVWtG2HiI7IGeTfs1vvTipE3KAR3Cfw+I5U884rKvy6N+ccEUE77FY8w8kSdx4CMuuvTkS+zsPLiYk2P6dCrmjcHEwR5lR+iYw5teNuLRx8FcXPidxXi56l4Bj32FH3pybj9o01HzkR/zxtjBrLZHEvy89DOGh5zIZS9e5Bpfc3Rhi9t4c3xP0Y8P/0lxsk/gtZ+0rQtJl2+5ZQMTB2tibfTZeqnBT/GzNS5/irjpEjUf7KcvvlsrbRh8KnD11WE1p6/giVcvWPhhg7t8tofjnG+YhO9qGF3H9CefcOk2rm28dQoTRxyUdPIfTrGlV52eve0/U/OiXW38f5E4/fOf/1xYvWh3/bhH8oN/17U+G4VP+bGW8hKWHLq/qFs7ayEGebc/zbXfvSByT21N4dB1nbQ++uXRHnJteGkRxuSDV1xgslPjYG2I+MJzrYoPV7juMWJqHXEwP69bWGKkJx66YdM3hnPjsLVbp/jgQlffvNjoFIM5ftUwXB90cC+nuFkruTWGk2Lfw8QDfny04clRfsOdficvuvq9xIVF1xrIAz/4ZQ+3NRAj0VdwVIuLHpvyU47Mt27adPTtPzbhGStGn8PmcePDeLzow2Dbf0ZuzFoZp6+WM3uT3dx7XQdy717s7OBezBd+2l7ge4lnPfKVX317FT4M/mD4Dx/l1Hp50S6f5uUajr0pRtcHjJl3NoR9e46dvV1u+aHH3i9u3cPEJg84d24Jg37fWKZnba0Nv3jIMTsx8yMGNf/y5oWu61ms9OMLi+BlzLwxOPpEn3+lPe5LAnSU9iM/1iCe9O19HMSVL7z56UU7H+KhH6YxggMM/NSuh3DY9Is9Y2LGyy9V5A0va2Nu1mJQiP1jPfkl/OGKsyJXeHXd4k6M2TP0teHBiqv1w8Gc/6yWf/PWCJZxY+5pcLRJuZFL2HiZ9zkgXmN0+VHq0wlLbhX6xvnDwdrA51tu2OJdPsUNOy7id/+yjxpXlyt82fIbNl17sWueLh/FqM+vvGrnyzl4vmino8CNY9eIcRInbTriglls9LoGtOnDs+9wnmtpzHUu7/tFu4xu2RnYGdgZ2BnYGdgZ+NAMOHT8+c9/Pr388svr0OUQ0SGsgx4dByyHkw4oxpQOqNoOKrPPxpg50oGpQ7wx8yS8qR8+Hg48+h2+2NDlwxy/2tO/+Vnyr2ZjzuGcDVGLvQNZesbkJXscHJB78DAef+34ph923Jazsx/0jOHNvnjqZ18M+uYUop+Ofhj5L0bjBI5DpcN3tvlsTeiyr7ALT+0wrGZHN+zw4iMu/uWSjnF2c/1gX1XgONjLPyySz2IpP2HrF3MvA9kY72HHvsb1uNZi8BBCH4b8eegqXzAUvsnMB7vWwLyHBA/n9PnpwcLeKk8etHCh4yEGPw9e/HsA8NDtYYLIJx+tCd/yztfkE0f6BL69m585xj9bNuIl9fnFVb8HRnq4KWKio+bLnFxn57OsAABAAElEQVSp5aF5fPVnCYM/fsWOn3jExaeiD1thX0zsYBB6rU/z7UccxGA8LHX++e1lBBxcuh/A7poPrxhgJrA9pLWmfLKzZ+WiWMQVD3z5ijesOIVLX7mM4JeUP32Y+vGgh6c1aT+KSZvkj93UK/f4mxNjD9L6YlSbV8IyHp+w5Q6eOWtOX18u8JgvEunIk3y2h8OGx2c1vqR41K21Ov/acNMtN2HRq5jLzrzCvjzAoDP1wmOHk2vHf6b29NNP35M/HXN80Q5fsZf5VrtvKXKKR7G5n8hvY62xee3uL+LquiyHbLwAtO7yV075tI7tZXrm1fLk2ug+DHfmUJ8eewUWKb9wjIUpTnow3HtwsWfo82+PlAs29oC9mn86dBWin+9iat+YN3YcxydOdJI46sMPxzi+bOSUP34JHXlXyifdI798FrdriD4xB08xj6+2PKj5V7xkk4fw1XFWE7bpq/Ez5l6mxotvfLVxOPo3boz/RN9+VCteulkrAgsXUl38/ka7/YwLPBzo8EsHP31xhg1X27y9gbtSjNpwvciDTYp5dc5+wK3wxbeXtWqYXhzLpzlr6nNPTHh4AY8TDqSXzNrs6bcP9NnaE/zZ065RGK7F8ouzl8bs5FEtPnr2N7G2xoqTPjtctBX+cLSGbF3P8g9v5oCNPMo3Xbja9NR44atmbwx+GGKHYa6Y5I2+WMsNDDbGzXu5KR5j/MKAra9NtMWgaMtTc3JnXfiEaU184cHayRsssSjm+WdfjPDneTPf+PKnNsZWbOyU+MqpOX265dw+6xwpTnnHGSfnj3LDRvzlFh9tvlpn3MX3r3/9a8WKj3VRcCR0YMoFfmztD/ntHo9DfmdO8C+fsBMxWbtiopedOcIOX/zCto+ca60FWzESNvnJHiZ74/LVS/3Wml5rRUdcclO+8FXCKzfyrw0fVmtJr/3ps8Q8gadvPfnxL9J++tOfnm7durXm4706l/ixv9F+iSRtlZ2BnYGdgZ2BnYHrngEHiz/96U+n3/72t3d+g+/g0mHFAaLDSYc3hynicOIAog9Hn26i7RAFg05YDmfm2Gir05mHpnDMJ+z4MdY4H0r9dKuNx0XNV/ZqtvHpYMXWHD4OWF4OiMG84oEFd1hHPvkNQ83WQbNcTZ3akws+Sth0+Jpi7hg3nTjSzd6YtSruI5aDZw9NOBYrfbrh9sACl5R7+Me+3DnEd+hdCh/yA6acxnmq4pHIfQ9J7T/82LWWcZZDmArBR2yNw3KAZ9eDEkz2amOKvvz0YMwepzi3DrDpkll7APAA5WU723JMR57kD0c6HkRgG/NgYYy+b2bZhxOXbdcqnSkw8MIx4dtae8Dhh096avGZ0yfqilx4QSB/8PAqF3TK1YzfOFx8zbNj73rCWU56MJox5VtNz/ooYauza6wcsOGHb/kzTkds9ox8ZcsnHYWOGl+5mXnqIZG+/MgpmbbiM18c/OCAi7HWoX2TbvzpwY47fJgKoQ+PfcU4Du0B/XTEQfi1zvPahlm87FuLHoTNwTz6kTfrZw4Gu2yMe6lRTszzjc+U8tMYXzDo01WMKXTNyb95Yl5s7QltY9bWnpS/Ymrt9cMrJtjFoGZH+KLTGsMm6trFoA57KY0fYbCpreYLV99kv5cv2p966qnTW2+9ta5J+LiJXy1H7nNebpjDA28x9mcVtHGTJ/PyYb37Zh99e0jeYWjTdS3TI+zpKfwqpLbxhC5+xLg+PfnqWm0PmyN40Wk/tCa4KuZxUXBzPblHKeIzb9w9NB0Y8I1rw29/dS8sHhzoVMPo5aq82H+488UGz/JjLDxx42sMHt+4KQQHYg7OvL7p4CcmeIQP1185pAObnnZ5xVGbP1Lcxopx+oahwAiTH9x9jsHXt0e6J7CnKw/m9enA73ONf7j+dZc9iZfPOGM40Rc7e75guA8o9jE9476ZXE7FE0/tJBxzcPT5m3btt/ZJenQV0nqVJza4GLeeXlraD2yN8eFlLr1etobhhaZ9Q7fPYLFqw1SLkbTHYPATn/Y1O7HwA8+esxba9PEl2qR19JKz+yVduXX/dj+gA1/Nn3kSr9a6OHEg1pU/a6hmn8AxJh4c1em07t3r9eNkbxk3Jqd8JnRgxE+b737BQI8vgot5/yLi4x//+Nq/YjQGPxv2/mWMMfHAto7+ZWHxtwblJv9q9vJjznX5/vvvr9zLkXz7hY49rz/XVu6Je6tf+MDpOnEeoQ9fMW6evRpX+8OLdteOPPFRXuHiZI5ufTYffPDB4mne2qsT/OmXu/zrK2LkA2dFLvnAq/n4lcuw5V5O/dLD3sW5f7kZvvt064AXLByImj8FBzbxw8G62/P2i9yZ7/qyDq4ZY3gppHXFn18+zRlvDgd4n/nMZ9b/i/LNb35z2cZrdS7xY79ov0SStsrOwM7AzsDOwM7Adc+AA8Qf/vCH0+3bt9cDk36HWYeYDkgOMw4YDkV0OtTQ6ZDh4NKBRF60p64xOB1Y9dkksBxyeihga15hF7YaR2N8a8c5TDbxMpYuH9mHke6MhQ4bc8YdutS4OYTh2QHN4WvasosTHBjqclm84XeAzKc6O/km2ar56uBtji/64k3PeDh06ZhzwCTzMGwcR3wUdnxU4OLIhuibI/HU54MvhcCVLyX9Yl0Khx+TQzxSgYl7eW0eF4VtceLETw90dOPFnqQP05w+jjgfS5zpeUAoh/SPuPHhAw9CT+48THhoKmfmyqUxWHTg42zOg7cHA20PRh7Q445nD0NxjDtsGHQVcavx95DNT3HDJvFS17b/rB/fHsTsfWMePsXS/qQfzgI7/4FPeObxhKft4VY81inbdOQsDnhPfHM9BGkTfsKga5yfrls8PQw2hkf46Rvjy/1JvqyDdg97U782n3GGjQcxls4aOPuhT/hQ2sON82msPYqPAgtuOaE/sZs3Jk5FuzVPV00XT7jlTFue7FFt8/NBE2e2hD1hS4+NtrW0P9jjeSxxbL41ZdtaTh/s09VO6Chis3/VMLyo86BuzHwxmGOvJuW9PJSLfPOZj6nftcSu2LQrC3z8uAgjXq5BL9p/+ctfrm/GwfhfJM7+M9Tvfe976z9DdU32JxuOeZMb+zk7+0T8cmPOmsuP+42+deklLj148tO+0obBRlvNxl7oRYfYYCnlkA19eubZ4YSHPnz3J2J/4UXijQc9/TDNszfGXk1PzbdrP35e4PCfwJq5Yu/aV8yJHY/8pQ9DvGzxtf+6r9Lx8sx904sfPMVN4MXLGH58ErrioM8/bPqTr7nuUfzgxi4usOGVc30CjxSrfCiEvTznh425cqmvsLV/vWjH3Tr3gs4cPko+tfESEyw6uLP/7Gc/e+dltJj47r7DNz3rBsvnhF/0tn/F5qVpayQGevmD036ICx/wFHbGcdIWk3jKR/kvZ/TiyFciHjjmSNcJfq5FdnJrnNDtG+24to5849UvHujCtLb2kSI/+BnHlz58hYi3fVAuywE7/ggOzhVdY8bly/XoehezebbZsPOZjy8ueBG6YoVJl42cEH0FX3p4srOW9oQ5dor84I4DwR8XL72Ns3VfUocrJn01v2LAzfWtbw4XL7dx13aNesFrbfAmxiv48Rk/vNjINU5w8bVe8tf1zj4O3ddg9Es9+r3glQ9Yrh25oK9PcJYrMeWnvBtT6OKpiJkPnPXx4MsZj5/yL4f5okOXnT+F0rUCQ/7w5kcbxyk4yRvsOOKcr+77rYv8weez9WYnRntYYSuP/Ukfe0wuW2f+2eOltA5qpWtIu/sE7rhOv3jzq2jj0by2QtjxnR/j1t++cc5wjfol4Te+8Y3TV77ylWVD/yqyX7RfJVtbd2dgZ2BnYGdgZ+CaZsCh4tVXX11/49UDkwNIh0chOYg49BAHonmoaryDyVI6/zEPOYb0HVg6VMGZBynzxAHQYUqfbgegDm7Z4Knom5vz+VqA5z+M4SueMNl3qDXXwxDM/Jt3cGVD8HOY62BLbx6U48OGbTh8aSf0xKfgpBA6FT7FRfAz3kETXjblSd/hMKHPj/XEhXiAgisGdgR2MZtr3Bg8uOJ2iOaXlKvVOf+BKz/Fyp6EoQ8nX+bS0U74h4U/UXcoP/Izb4xPpXzx40HCw1o2DuQOyvAUftioGxNreawtP4QuDDXBPZ8TY02OH3CsG27WIj58mlObm1j6MD0QKkQ89pq9pcirb3xZlzi2P3CjU1yw+fWw51tE4oBP4LDHJSmn1tNDmm/h9Y12uH0bUZttMbHXLjZ8iHj4ae3NexjC315MzNtb5QVvY5Of/txTsEh1GHyHBUfu2RUv/biyyaeY5Abn4ku3GNhlyzd+HijNG4dHqlfnvB82TkrrQEdb4S+uMODr46gfHxwTdq4TcTZvLs7p6c98ypHrpb2jts9cO60fbLlQcGZvjp02XQ/tsIq5+fzrK/TxlifxtEY4T2FnjG+6RzEWRi/a6Spsuy740CfN55dvfOIch5lj8cbXfLba6cNmE0598/E0J35r5J+e/+pXv7onL9rffvvt07e+9a3T3//+98XTiyXXdzkTuyLOuKi7l4lNcZ2LtW8r07e+bPGWT9eqvhwQL6HsCXps1V4uu1e5Hoj9KOY+D/mVdzryk//2Bm50+eHTXmw96POjVuhZU3zsQVy8FKHDFiY8L0f4wcl9R2zsk/D4yT8suPLS5wgMOjOf+uKzB/lmZ6z7G/4wFX5g8k/P53E2xt0P5QZ/mNNXXNXm4ZmnLy65h2FcTujgm99pE0Zj1gxf+YKJJzv22saIvs+Q+aLd50J2dMqNGOOPF9GXp09+8pOnBx54YL0AxRV3eVaz40f8coOHveL+Yu/gg7fPIDmkH75ctGfwIOWcn/5chX0DVw2TL1gzVz53WwN8CHx4fOKq4EIPvjwo2nG1NuxwZCfP7AgdfvGwF/CD1TrSoy83xcOfvNDTLj5+6anLAxvzfOBErAF/bLUVNvap3LlexQ4jwaf/iNZzAl7sYFbo0jM+he/2uFzYa/wR3Aie5nAot+L2N+ON42rfqflQrIm+woat68fZHJ4Y+f7EJz6xvsXOj5wpxvm23vjDIHw56xQ7HOtCx73PODs5ck/pFyP4lH+88VHoK+WAjtzx0z7Vh09aD/rGxNB/uqsvZnjsFTFbD5zp0hGTfSSm1p5e13i5dk9rLYzB6ZdAMMTBrvWENXNOJ86rcfaDPn64mNe2J9sX8TEPi1/iOvALhRs3bqx8y528ty50YMmVHLKrbj315cF/6tpnCxtFDHzjVB7jD5sfOee33MPD25x1/tjHPrbOzu59PmO/+tWvrr/Vzr4caV9G9ov2y2Rp6+wM7AzsDOwM7Axc8ww4fPzud787/eIXv1iHLIcPBw2HCwcS81OO/Tl3bDu0OKgQWBWHVO3j4QS2w6ODkTYuFYey6VtfCTvO/PELmw/22h3o9MXGh3YPcuzoGCNx46ODlzGHLwdUB3pt4sDMHj86+WBnDI+4LoPxwzw+kzd7hV0x68PokB5uOvrFoMbDGDv5xoWI1/g8QA86q3nMW3GL88PkmCu6/MtrnDq84nCRxBlWOuoeesXfw2m4fLT+uMfXYRvnYne4d2Cmnxz3OVv7B7Z2OYWbjziWJ3Ul3FnDwZsv+VeTfOAjXuNq/WLycNmLdg9C9p4HEHpy6eGvh3Bc7Wu4BB6uCu548O8hIR7mxNs1swzPfvDPXu2atN8V+4Zv//y6h7m5pvSLgb85F7aaX9w96KnpGisG/SQ8sZHWRD310lfT5VtNB4brQJtdRdzaCT0PbnKIT9dL88anX/HSI9bYnLzxC7u57NVs5n7iUz9ho/BVzOZgt1b6bGAZV6wxvuLEgW57gX5SDPr89MCulh/z1tm1I4eEH9ePwg9s+nS07UsvwtjTVduXdIoBVvuhNWVrHv9jrmAkx7nG5UCsrhGlPSsG3GbO4NFXjNPhW303KcetGR4K3s1la+yIlb9sxI+nl4zPPPPMPfnPUL1of+ihh07+M1Tx+2agPSzHOIlVIfE3Z5+IK8GNvZfn1pmUn9batUoPjn3QS6jG6Ns7XtKwodeelAsCmx4d/oxbG2P44uQeL5f2EDwyc0k/DngQ3MTFFm57j52Xu2pjvQhjn2iXL/5hwiFsenFDh2/ccGVHX76ta5+1dPhxf8O/PBeDfPGBl3zkmx/Y+t2v8jW5ig9mecMRJjGu8AVHG082M2bzOBjnV4FDiot9Nnzpi9NLMXbW5/iiXV4qbGqH6TPNS6v77rvvzot2fouBXvmXGxi4yaX9Jh6+/cIYH/lR5jUtF/YTW7rmib0NozOEOT7qywl8Y/Kf//IAUxsuvvrlEW99vuDa9wRvgh9e9kNr1V7lBy/87CW6fKQPU1su+YdNjx98jeNjPXDIV216ckoXVvHykR/3y65JXEhx+2xzbpATOuUTnrgVeVDjwn/2fOHKT5/5dNhmD48P/MUpFrpenBqHIeb4TP/8FoPPIS9a4YjXXvULAnuFL3tPbObibbzc8OU/BZULmMYVghO/9PFxloQnJ+IxR4etGGBpp08PL3rpitEYHcInXtZLLV7cxaEtVmvKT75cfz57m4fV2Qwm/vaca8jasccPN3tTDUu7Pgzc2OFE8OEft/bdmjj7QZ9/+LDsZ2NxlR84xrq2YNgninzaX15iWx9YavrZwpJTtfxVyyssfXlwTsa964VfGGTy50NMsPjHC3dtc9aFrfzJv3Xw2dqfvPna1752+tKXvrRwy9HqXOLHftF+iSRtlZ2BnYGdgZ2BnYHrngEHjd///venZ599dj0wOWA4aBhXjmLM4UdxuHBIacyBqQNnBxt6MNXpdQgL2wHJoYjApKdo158YHZaMme/Qh0t+zTkgmaNPzNHX18bJIS1/1Uv57Ee+6Sn67Pipj7vDWQ8W5sVi3Bib7CdubT7D0i4WbRJ3fTHpa4erz97YLGzjZD3lIhsccc6WLr7Gw2BrTDGmzwYGMYYPYWcej/jSM6ZoK2ysvfzJkbFyYy4xTrKREwddD1psrRkc8+nwi0+c4Hto8KBgjv7MLX/Glek7v3jXjg/7DuH5yv+Mna2cZK9uL9Ij7VW+w6DjgRQnwpe4e0jtIYMeO2vTQ3u5TgdmvnCFYwyWh4Xi4AeX4i0fbNmp+fEwRk8hfZPLfLEahxNGnPhN6Dcffw+A4tBnY5/VlnP4iphbK3oTN19qomYz9xm//IejrZBiiB97enLATiF85mPa58+8cX7DZJcuzNrV4R77sIoRD7k47mF46eHYmvHfHB5hG4trtYdj10ovAegr1tw6hGvftY/tA/MeaLW94PBSpJhxwqF1LI64ipno44FfOWajZPMfzf/8xJ80p89OcV+wt3HEw7UAW8ERZvxmbszBCysbfsLGzzid1sJ8NnGnAys7tX5+4Xg542+8Pv7446suFnhXEb6JF+3f/va3199o56+XP3jC5lMt/nIiR/T6Mwp4lx8Y9hkxjrs516X1ttb69HBQ+OCvvBcvHeNh8uteJOe+eWoOLkxz+vDwtX+6n8F3z3L/ogcPhl/+tS7041HMavd+tgSe/V5e8ORTMaZMzuwJvYo+30pxylf31GmTjpjaG+yJ/Sqerjvz9AkMnMq/8Znn7gN0s8MlHfbG5URMsPBTWlvXr3ywKY5iN6boV+BYd1y0szPGV2LuWIrDuBdo/uzLpz/96fVCEH76MPJrnXFla53dX4wRa+qbyuLhXxx40RV7ewS2dmvCD1tj2vJvP/bylT4x1/6TGzyyg4VjejjAwaGXfNbWy064sGDgqVhvPGGUF204rkmFLzYwXR/uz2zxs5ZeyMNnI27XjxzZ23iz5YcNfS8w6eazfPCPH4x80Yu3GOPom9Xi8nkNl93MRbrG5xzO7bl44oFX+eYfX+cA3MWsT0+hV47FyD/f1hE2f/azHFgD9ubc327evLlekuJHjLfebBV7gA92/WtVujjClhvc8OQXF78kY2et5Eje6XjxrW+cHn051e+sQ5fA01bzU67VCsEXRoUuPtnJhTb+dMoX7mIz7r6Nl33EFna5ba+Y93fevazORj5g5Ns4XH0Cpzk1Lu0j8cQlHmzwJ8bKjz5dL7Pt//pxVMuDwq5xejiKX7F2YsVBXHFQmzcmBvsYDjFmDnfc+gUKm+Kkl2/PIe49jzzyyOnrX/+6qeVnNS75Y79ov2SittrOwM7AzsDOwM7Adc6AA4u/0e6fsTtoOYQ4EBq/SIzTUTuIdGAz5pAyi0NKh72Jlb0xOA44Cjxz7MI3lp5xxQGpwx7/2vQ6SKXTwWzqxpd+evC1p29j9c1N0XdQIx1a4+nQ5uDXQ052zYsrPFwa1ya40klPrPTpyZGYjg9MHTzpFSv9YjWvEPyskVyJT6GrbzxOfIlNHV9tQh8/XNQw46+fDj1zagWOvBmDXYzq7NjCCg8/fhy+HXDh2J/G4mUs/bBw9eDVwxq/ciPOuLS+2fAdDzpKfXN8wlHLZ7mjg4uCR/kIny3O6cMt32zShxOudi8ArDcb2OqjwDBu/cRs/2nDgI2vh3J6eHhIN4YPgRu2MXZKexGGfE7+eM69Rp/QxWXyDI8PGPmgg6uHTw/I2nTEID/payvZwWObT37pVvKtloeEfv7lYsYQb7oTNz12E5defIzz3by5+s3BuUg/zmzsLXrG1Gzx0sfVQ6miXQ7YTb7a9O37fE4fMMOVG+vq5YAXIGyMtd7to3Dwr2092HmopU+3h3j4eMDWJtVx1cdrjsM233rrJ/TSbWzWdOXGt+LsbZzg5IMtPoq5fBlvjxhT8qUu5vJq3r53TRLj1oPPbBvP1r0OF/PW2IO8fxHy2GOPrQd2fv4XKZdetN+6dWv9jXa8cMGp/VYtF+WkOHwzGR9z4ZUfnIwr5dO1KZ5yZtx8eMbnvT3fannDy32cjb3DJ072D9505MNeNNYeKuds5RAeu16KlcNiwB0n/vq8yJcYEnzNwydw2cETGxtzCn+KeXV7ia6xYtSePGobL4/a9qtYejEkJ3TNhVHu1fyY5wdnOlPM0TGvjV8vB+XB3pix9lnBRu7N0RMr+1nyI26YCk58scknPXhJ/BsTv88fL6p8q93nev7otJ/Yw1RgeLnqfEpHXyx+WdUL4fadGm95FRN7ecqHfWUPyT0cdf0ZgzitS3vUZ3EvVcu7GgZ7PGD7NjWe/PvMFR89vMRGtI3hKY/2uTl5xKfPfdh0zXt5bD2Lw3XbN8xdbz5D3X9bb3kSA1x58AJTfDAIzHgYJ+WevgJj3ru8tDYuJ7DFYB3wzh5GOPjDIGr6+OFaP9+48IUXOzyN9S8+0m8f8M93a8cGthz0OYaXe5tfvsopHdzsc7FYs/YuLPz4ZZ8/tXhdK+wVObBO2dAxzlYM7Il562+drZtiXsGDv+zyCcuc2JPyTXfmSRu2GPjCCSb7Cjw5tieV4qAnDvsUhnG/yPKft7qnmi9u8wSOGOLNR+Pm+FKsDTz8jOPWfce8WNnCsr5qNsatlTUNR20ez64LeHDjMdfcHoDFTr7UCpF3c8bDMAfLHM769gYe8im31tW+g21/iuVzn/vc6cc//vH6l2Sw86F9Gdkv2i+Tpa2zM7AzsDOwM7AzcM0z4BDVi3Yvu4iDR6VD1gxzjnXgMe9g5QDl0OEw4yDkkESnMePTnp1+Y7Nmr8+2g0yYamN8JrAT8/zmH44xZUo4zbPRVncQddjKv3F9dmJ1COODjULPGF7lYPKcfMoXPg6A7BTCjwOdA6Y2XQdKfju0GuPToZEPc7gZy7++AoPQw5s/wobkm50SH+2E7RT54esiMV7hr7XBA44iF7Undm26uIu3QzYcYzPnrQPO+YJRGw9cxepAnRiHY7xijLCdggseDt+w9LOppo9fsXpgwBUXY2r4bOUb33jq46YY48sLCQ9q/BGcFPPpeJDkh3gI8MJU0SZwcfCNtmKQy2KY8eIolqQ54/aBPr9E3srdHNemy6ZxenwbL1fFIF4PMe49HrTY9ZBGR1+e8h+3i+ow51x8cWnNZl3bPF8EX2JM21poz9wvhXMd7fw0Xm6MWwM1DEUsYiouNtbIWuJD3/qorSN9eO4F7T95xFeByS7hq1jomWtvwTKvhl9M6vajcWvCxjhho50+HevlYTx/xqwd3/jyUczG2KrpGw9THQZfccebHpm2a2D8EKN7oH3dgzvfPdCbx4cPHBXYxgndfPFjvDnzxWCM3ixwrVXXEx9EDMUhJ7iww9ELOH9f+rvf/e7pxo0bi9cyuuKPcuM/Q/XS/o033lg88ts83vFUE2ttje1tBW/c7K/sjJV3dbmzV8VrXpE/e4WdWrzZ8ZW++I2Tcsi+/MEh6l7ytFb0cYfVyyFzXUNwYU3RFzsbcWnLDd346ZtX+IBNXHfWDIZxtnzxiYd57SniZw9LWxwKX+ztUf7cn+Hi5GUf3Pioy0182Sjh5Ydeom2cHn7a+MmjGpY8k/KUDV17oL1h3lj+2fOdrb515gumzx/26RtPl12fRfTYfuQjHzl98Ytf/H9/JoJP+fYyK2x4eJgzZr4cyKW/8+6eiQPdad96spVTUk68pPYiTZ9t6zV549nnKB2cvYCDV5xw6eFiHXHzMtOLZDbWt73SupRn47Do4g3LGC7wsjUudtcq/GLA3zfM6do/rjl55gc/a6vmA648mW/v4QnXmvDFL2EHg181ffyKh3++itsZBYZx/OLLl8K/EndY9iTfxnEk7PKpzzdMvMVojl+2OMGT836ZQZ8/+OwU2GLDlS0dcfqMkDvYciN/SnzoKOz5+fe//732JTvjrnExm8PH2rDFUf7cR/lSEvMKO/Hwax43nOPHZ3Ndn75hbh5Hvvhkw54OPtbB/sSPHqFrf8HzEt2aa9uDClvrihd8fw/fS3ZtPNg6l+njaSx9fQVeuYJjXVvrajqKNaHDTm3M+hina1xu4BFxyCk962y96OPd2rSn2bbu5U1+4Cr5jd9ycPaDjX0UB3r8uEfwKbdy7c8JWQd7Tw782asnnnji9PDDDy8odleR/aL9KtnaujsDOwM7AzsDOwPXNAMOGL1od7DS76DiMKP/YeJQRN9Bw4FEzaYCwzxx8FHoGFccpKbO0Z+5xthq86nNVn03YeuQVjzquFxkA9t8dg59DsYdLtmY1ydxiGM88XK4m9xq04WBV4dAfYfZ+W0M8/k3T9fBGY74cegA2cE0G9wcPBVjDtV05J0NftpTHGrNwWen31h6bJTyBFu7uGd7xqs97bRxEFeY+VAbI3KFtzx4yLEW5vhlmw91ORdDcYSDFxx4PeDBbxyeufTNzbY+wcNDVA/LbIhagYeLok3XOunDw1GbLo7y3Lhctwfo8OVhuhftdGGS1s9DgIcrfmC6/nq4speSsOjg48FCPuTwKHzgVPz6/PGfGJOz1v+oX7zp86uQ2ulYDw8vfRuPnx6k+aFPR36IMYXAuIzgByfOcQm/PixjXd/GteVJ21xrWH6mf/NK+uHij6s5AkM8HhKLix9riaMxGOysKTFuHT1o0oXdPtc2n8ShfWKeL3jGKtm3FnGkZz3Sh8vG2mSjjZu1yt6cQpcUr1xpz3l9hS0sdVJuzcuDGma+G6dvnK1rwMuGrjnjXkjAFr9rFm4cWqP801FgV2uTxuR4zmkbsx6uxdaAfn7YuxZd23y6j1lnfzrDQ7pvthcv3atI/N59993TD3/4w/U32nERs/jDpWdcDuwhffvBixeCN93yJy7FGKwKTONiLZ+w7FfxhSvvxuLQPVwt3+HA0Len3ZPibd85i8Ck21rBx5U+HvT5Kc78zT4bfn12qElrrp7YMHvpMu/FfMLBa16b1njKzA1cuuUBhtzj6B6Nozjc38WBi7Ew6SuNpWPemHjME338Ko3j270Ut/DKqXwYY4cbzvDNE+P5N4ajoo2POWsohuybT5eeXBJ7X9/fzP7yl7+8XmbZS/zSp9dLRPr8G8cdL/Nqhb+bZ38SxLUEg67rTLz2duvKnk/zijnf7vailY744eeLfvHBo+/awdk3yOmKOx3YcmA98LJvcWBjfeH1BZb08JV7+ub4gYdL16n5eNFrHfHUF7eXgbBwwLNrgR17WPT1rREM/PD30tD92343hxs9HODD0sfPmhgXo7HWQR8P9sbZ4SIeBQYpX3KBZ2tE3xxbtXnFukzeuMkPHq6d/PPrjOTFaNjwxZ49jmz8iwAYsLxAdf/FnS82MGGIU07lzhxe7q8w+LLvYFpbdu6hchR/vt1HiVyIkfCtdI8tJtdo+YLB3hwuYjDmJTkd68UXLnzH12eeWBT8jLPz0lzcxL+08Jlu3pqr5V2cdGHTga9tzl6BoRaLfNAXB/+4t8/U/LIVsz5cMcipdoW9drnGr73Dzjihxy8ucm/d5B4mX+b4y6fx1q3c0VPg46uw45/Alg81PeP2U38vnj+5901/v4iwB62P/2PFi/bvfOc7Cye81bnEj/2i/RJJ2io7AzsDOwM7AzsD1z0DDiRetN++fXsd4PQdqBL9xGFiHigcTkh1Bxj22anNs3NwcuDRT6dDmQPWUdhWpu8Obh2M4pTPcPKjVhyQ+OXzImFvPjuc2HRoZNMYHcK3Ntt4qOO2lM5/GC+eGQOfDvpKD0vm+Xboh4+zAzYMHMzLJ9GH65DZQXsehI2Zi1PrcE5rYTqsWj9zinZ92DjwqS7e8MJJT42nQtKLo754xN1cGOrw1Xh7oFLkAqZx0joaO/IONx5yxE5MCT6Nx1l9kcCxHg7ebJT404etT2DIVbq4sY+TeWP4G1Pw8hBgHfTF7cAfRrbwtQk+8kIHJnsPsfYJHGN4WX8PKdrls7jh4EboK9OXcfPFoE2n+GEaq9BPmqNP1MYUbTY44+sBzwNN/faHnLomFDaVOMYnPP2LhM840yWwjVmrKfFW08ln4+mGU19Np+skTl1HrZtctt5d7603W7GLQ60QPOm4BrRhtyZ8KoQPc3Rg6Cv2g3sCPH226mz084VbD/P5aD57OvB6QRFf4+ngoRB5nBjGmpODbIyLpbliC99866YdP9eAa0GO5LCY4cKQDzUcBYY+oWOMGE8HBzhqhX686DRmvOs0HLzkQr/c0/OCxnXtBfsPfvCD9a3cbBaBK/yIixdBvtHuP0MVv3weebd37B928zrLZS+BZm7gKDBbJ/ltf4lJnPaBOOi4jo3JAaHfuujDY2eMjZx4WZQNDC937C+68Snf7X9z4jCuwCqX+vmnD1/NBi4f2rgp+Cjywx8usOnAbD3VR1/FZI4tP7Dsq/z02UHXyxqY5YUPYqw2e/Mk3+ZhKu7pfOFSftg0Bgd/e49+eGHREyteMPIlbvp8sSH67JTGygt7L6rUJL1yBM/e4M+LQFi+Hf7ggw/euV7pyhldfPFO+GHLrjlt/m7cuLFeNvf514tk/vCEyz4MmHT8axIc6LRW5nAvLj7sY1hyQ9/Lt/JFl47avGJf2bds7G37Wh7dS/nCU67M6YvX5579AMuamqeXjnFxw+QLnvzQcx+hh3NzrRs+7eXWWux80eUXDo7du3Cii5eiLyZ6cukaMgYHBr5+ecIPYWO/8zH5mmNP4Jnvs7614Rc20Sbm+LBG/MkjOz7EKQfONe77+nKVDQw+xYaveM3h2i872ROYsNm3bmo5JB988MGKpxftcoaXWOB6gc0/jmzcR8VSHs0pxJrJI3zzMNrX5tk3hy87PuiUO/FYE/PiFKOY+vyDIxYv2XvRrhZne4wPfCvwvdC3f1tvcflFQmvJl8KGTnsEljUicIyXO3lQil/NnhhnS4wr8I0nYiRiE6M1g01XjHjgx6f1Ft/RH4ziZKPEARbsadfnkXVyvYvJN9rlx941tl+0t0K73hnYGdgZ2BnYGdgZuGsGHE7++Mc/np577rl12KQ4DzoZdkByQGFDR3HoJQ5IxisTwxg7ug5GDiodxIw7bPUAkz91WNodjIzlW5s4OBHj06a2cf4cSNUOnA5f2bPV7pCX3azpEAdKBzF86ROY8gNTTeKyOuOHebjNaxO5UcRCBzZfCh0HSYdg7XJFD46+mq62XDl8OiAa64HauD6e5uOqdoDskIwP3eLh0xrNuMPAKxx6FXyMK3SVuGuLU4zN8UmXnXE5VcTjAacXJWHi1+HaWH1j5dCYoi/u/OWHLyXfan08LxJ8OpDHDz6Jt1quyjmsdMoN/biJn5STuOMqdgVeOBOLjjmFX7FbQw9kcIoD5x7+4HnYkw825TMebBpbxM5+xJtvc6T4cchmrmX5WMrnP9jSNcde2/3Aw5ziAVIM2q0ZXW3jfJH4xZmOoo8j3Cn0zbcHzNGRi9apuNjzVT9f9JV84RKffNGlY7z4jMW//OHJh+s9X/RdX2o2dPNFH/fWOr9ximN2+BSrMX7k1t7ABTZMc3yk455AzNPVp29eMV4xbu3ozXk2/DUGv3wUNwyCPyk/5YK+0rw6nmo5as/zY0xfzCTfxZi9+fJiDA4/9HBQ64tLn+AKj0zcNXD2wzy77k/ZGROP+e7rfCp0P/WpT52efvrp0+c///k7+GFetoZF3nnnndOjjz66/nSMPc1feapur3f/ws19Io5w3Bfmi4xs5YmezwgvX7TlohyK0WeqMfHzL/7yBUde1SQ7a0HP5zK/2cHw4kuf0GPDXj3XBBdibuLz11rYG17SiMPa9hIfPzZy0n5qH01feNjXuPKvtI/41ocrB/k0Vj7o8NF9F5Z53K2BNlFXZjxwipkNPuKjS889DJ+5n9NTsyWtI3t29qF7Dhyx4U6/GOiQxvGY+dHnV2yw+ZEH43Fha4ydP1/GjxfuN8++jW6sGOa+w2EKHThyJXfm7Wd/4x2mOOTDnvFS0j7FgcTRPN/mfDvdy3a4ODQHl7641e6ZinkvdDuH6IddLaf821vuiXCtizzgzgZPn8P6csWf64mdthzwIT/WBQ/+vSQVO/7FAFfe4dJTx0tc5ue+0Idhj/KlxgFPuSxm8cQPXvtKPvCnJ4d0YLJtfayzPPRZw4awoQuPjhyJW57EwwccXOjBww0WDH01O9z1iRzJmfsHHwqs9hI9OWAjdhhsFHr0zcm/HPOHg3l8cCG44mldjMu7Wixs5cM8ezF21pIj+AQXPrvmygVe7NKhh5fcsCd9purTz4ZPuq1h16E4cXMtyBm9rpviY2fMPDz6fWObHzzYi681YEPMWx+FnlgU83HTNkdqZ88OJ8KuWn6yCdectjnrYq3FObHsN36J9aYfvpo/wkYxZl3EZR3dlxX4xZodLNj2QPcWXLxof/LJJ/c32ldm94+dgZ2BnYGdgZ2BnYELM+Ag8dprr51+/etf3zlUpWgucfDogNWBxaGkw3CHrQ5cbKc9PQc7h5YOwrDpOOw4AE795ozxw7c63w47HdI6NDkYmz8KDPg9bDswiWf6Y5d9PjsQdvhSw+lw30EcFzIPZ7g1z+4i4UfJjr90jceJrfw57MF00CR0+ZE/uniYkyu5dlg37gBpnL6aP1iEH34duB1Y+TFGJhcHWN/8gIUDG3l0QE+mPr9wGuNTW/4Ie/ONh2EMPj3x8OufeTtgt97is+bqMLRxb7ycGueLrYIDm8nP2Bw3p0wxzx6naa89+7jjbI/Ely0++ubp46Xkl6/08kuPP4VtscTdPMkPH3IgXlhEbX94SCTy6kHQGDs25UqdFJOxeMhtOuJQ4hZGvnGEH1e45ogxtubxtY98W8j+48NDL11c+W5N6euXJzWsfLDBQz+d9I3h2pzaXrZOPWCx4cu1ox1GMcHCAQ5u2oTeUcpLmOK0fsSYvnshf/ryAVMdx3IkJnPWzBjBhV66caQLD7f49UJAXPQqdOnAwkP+22P6vTgsh+zMs1PjryTG+BAbHfrwy0V2agJXocefwjYbc+nFs7n2r3lj8kIfBh5yUH7CYeP+h495OVX4x8mYIg/d18wZI9qw1TCN8ycHPlvgm08XRvrFrG+/ecH+m9/85vSFL3zhDv4yvMKP4vKi3X+G6m+04yCH8tF+kh/j/CryMvONE6y+MUhfjDDcyxT6fgHW3ysuB3DFJmfyUY7iVi2s8gjXGihs3du9gOrFGz7dC3AVR2sJJz1j5ZUfuMa0lcnRPU9c9rQ/h2DNsu0eEAZ/7RMYbLxMI3wQnMXOhuDrvmXN2UwpBi9R5ZJvY2zkVHsWPPWPIn/wFTr4848LXHzYyR+drkN2Cpvs6VnvXp7Sxcs8XPrFBq89Um74owOnPLC1NsbN02Vn7+h7KW6OX3++RVuu5NT62Js4zvzhQA8OjtZCzaeX5b5lDg9GL0ydbfhkhx/fcGHQ8aLdS3pj7S0xw81G7vmyRjCcffr2tH1rDDcYfNG1lnzLAz784kmHLp7OMnTpdE3hJGY+5EVM2mx8Nrrm4oYnP/RxUPCxX/ki8eLfHP8KDGssD+3/5tjBFL9C4mx/8asmcgIj/+KAp2ib1yZ0+JAPRdxy5FqRB7g4dqYWA/9h0qdjrDOrNcONrhhbX+M4yjNMMtdX3x4zBl8MPq+cff3ZFL7CkE98+RWLOJyhWlNzMNoj8eWDHn54l1P6MPFTmy9ndPAt72q4+BHrRgceP/pqenCIGne5picWe0fO9MMqZ8bEPf8sjW9t8xuufWYt4eJXTLDYxzf/chQ3unGj1z6jEx91tnxYmzDbN2HQw52Ogg9M4t7svkPokLBxlTtijh+YeNLRd127LtXGzInbdcl+9o1bS3+j3Yt2n7sk3qtziR/7T8dcIklbZWdgZ2BnYGdgZ+C6Z8Ch4/XXXz+99NJL68DiwOCwoTbXQacDi3GHIDIPXI11QKoflsOKw5DDpUO1wwpx+HFo0s9XhxZ1pYMmHQesbMx36DSe3wV+9sM8Gweq/DqYGSfV8YYRDz6bNyYWPB30HJbZGBcDO/Md6oyHRS9dPsM3n115ojd9midixFu/gzpfsHBip8aFvYO2nMfPuDZb6+aQTYzBdiB3yNYmcVDT8YDhYVge5R7fXrTTmYX+LOHRwbM+DIUUN7vi4AtfD55yni2O7T22MPSNi1mbL+PVbGGT2s3TSei0Lo1VsxM7nTCObfM4e6CaOtaDZG/t8CT0xMzv5GJu4rPB2Rg99RRz6YSjtnZechA5bR35/T/27rVVr6tq4/j9OazUtmq1ioei30JjpRpPLzwUqhCqtrZVX4mIvvIrSbX2RVEQBEvTeAipVUT8Eu7ffPIPw+VOs1PCA5E5YO55GuMa1xhzrnXPtfadHcKmsgbOfsDGB0d6eGvzQczhrJjnJ9/m2StzPs70m7Nm9pEHXfubj14ksCXhZm9Mm8AKL7344Dr5lnu2dKyRe4L8GFO6T7HDkeAEO86uJQXG9LGUb/6QZ/Nk7tdsjLkXwiVilVPz/KgrzU/+6ajxg0fKCzxz+uY8INqD+nwWU/706ZhT5MFLCONwxJlNbTpiSModf+GICW91vuMIN+zyyBan+IfNvvzAU+ixKwa4YjSmbVwhxmBaF7V5bTjpqsVQrtgZUwgMOVDjTejz6YWlPWGOT3rmyoNxRXz23Ic//OHTD3/4w/UnNMJfgHfxIw5etF++fPl09erVFRO/4sJHLW9itc8Vdnjh2Jpy6+Uem+bY9mLDWC9mvIDgA05Y4iLwajdvXOzFKf9Ke4IP1yI7OnTtK1iELqzWn29ibL50xzdcc9mLqRfK9rSXfPD5IXyXF2snV+7hanHzYU/g1n6iT6cYfHb6DKVPj3/4+gQ39102xuDg0stDOsbo5SN+8BQidnlKx5j48FEbF7eSPS7s+bVX2RuTE7nXhlvJF2zt8OjJb59v5vjjl8DufoBP+eOXn77Rbp/5TI8TTHPWQT7xwL0SHzg+I/jgc75olzdrZG19fsAgsOGaFwcdL9UUY+W7ONXli64iRrnyIk6BSQdXbb7w4ts1Ig/G29flB4ZftsCkg4/11+fXC2J58LfXtYlYvGinS+TA5yWfcYDffpWz1ok/8RH49lsvUuEVq/i0jc1xOPas9YIrj8bg5Ae266OzPXs+xCc/FXraxsUsV+KGY5/w0f3HGD1+FDEbk2NcxapmJ3a1OOXbN5PFLf/EOL94EzGwgS+H8N3PvHDWpw8/ezZywwa2OXjGXEdsFHF3z4LBH51pj5frArY5+l2Lxo3BgSdWc0TsiXb5KKbs5MSYedj2jv1oXiG4KXTas9bL+h2/0S4vcGY+8MOLfRIPfXN8iVGeCM509HHUnxjmrKH1g8ueHp7FxEa/NYevrcZdzuDQz6eaH4XIsfUXDz8w2dt3rmvrQ+wJeRM/29bEfi2fvtF+5cqV05NPPrlsyu/qXODHftF+gSRtlZ2BnYGdgZ2BnYH7PQMOJ7/5zW9OP/3pT9fBtwNIhyPzDhEdgDrMdFjSJ+loO+w4VNFxSGHbYcXBxaG1Q5eDj8MOnLBgsI1LdYcZBy726cOOL9vGtdno88GvGl5ztfXj3WHNGFvFGB9q/uNizgHRoY/QUZrHswPi5BxOscfTeLbw9AmeDpP6fKnLbbjGJh4exJjSPCyHSX7odLDvQcE4HSUuDqkeNGDwRxxEPbAUszH5INnRJ8bD1a+tnvnVxlVO5U3pm0T80i9uOIR/XI13MDYOSznKxIE3JS44HEUs+JQDNd/14Sp05h6H6WGGrnn9csY//R4gYE1Jz1htdbzpazcnD3OeL9eYb8qRHhiLwxj78qfNRoFtXBs/7ebZiYWOeeOVYsCDH3rmiLnmjdt7Xhx4yPMgw0cPOHBJ+NY2/3MuHvzZA+nTjTMdsSc42GP2deP02dvT2nGd+621VfPDJx/qxPiM25xiHGa84Go3zl6f4Gv82J5Y5unjq6TPB//m6OMnz+psZkz09Oc9Yb44aZ4OPH1Y+nDzo42HdTKviKNc5Ju+oo/rFOPl3Xj+GisvbM3hkB5/8TGfwEwvn8YmN9c7vGPcYajZKCTecMVrH4mTlPv2a7lQ0/dA70Hdi/Z78Y3269evr7/R/sYbb6zrlN/uJ2qx4aStxl2sCk5q4nowZw2Ny4+XEsVlvJcN8kSmrtzybQymvlLe1I3xA98YXvJnLolftunjYk7fnHuHnB5jhFP+6YoDvv3hZYm5pByZpxuWmsAXExt5oYeHko55n59iMkanXLAx1r2GD/PG8VGXr3JtLP7lABfj+IQBR2lt+U/oVOD7DGIbnvve9Dd5hBEPdvliY6/Agc+3OToKDrCNh0nfy3U87H9tevrwvPj2OQXT3hJ79xNc5I++/Weejb+b7qU0PH3x2Q8K+/LiF1u4EJheYithlku+SbH4HOKPXxjOIXjSJ9nD9NLSi021vWCODW5qNnJiD+BZXujbN4SuM5aX22zwEMs/zr5pTGCw40ee9fmxtxVt44QvWOI2xke/CIBbgaGIHTbuan06XkD2oh0nPmCVK+vnc0PJVhsGTnJHt/WgI69imHp8iB9vmNaYXjow5A1esVpz8eGktqb2g7aYCH3z6vaeNcBHEUv7Rp8eXPxnLu1fBT9z7OiTfDXuFwl8Gc8vW+uBC6HLXlz82fsE7nzJGwYcbWuirujDsgfh8avYt3iIjS4dhb/6ckyPT+3+89RsYMIqx+ytX+sMi38xhclGW7ziIuwIXQWm3DZuDkZrb55efs0bg5uv1sleKG7zxgluxFxxyLFryz6hmw4/RB+++LuOccSFGHMNwfN/TPjTb5///OfXXFirc4Ef+0X7BZK0VXYGdgZ2BnYGdgbu9ww4RPzud787/fznP18HCQeLDkAdMBwiOug4POnTcVhyYOnQ4lBjjK4Dj3YHHTazwHaocbhW65vPZzzU8CYn+nSTeWijm4Slr42nQ5VDICkGWPkoHjWbecBdRmc/6Dqc8ouLhwS4+TAfJ/MOkA6EPXjAgS+X2U0/xRaX/KrjBFduxZCteb7jQUf7KPCLHYbioI0z+/g7UBqDgbuDangwHEg7dPNRzrTNFwe8YqGvH4dpg5O+fLUv9HsA0yZxVIudsFWag29ODuKxFM9+iIGe2I5zfFTomVe0jZdruPpyp7aOcpSNOh2+5EptjExc+0DMHgDhpEMfPp581DcW7/yZo1dMxonaA7IX7TD46SWDvnmFvSKHjbHnBx+8zBPzJA6rc/NHtuZgseMnMZ9fY/aDh24v2j1Us2tf8UdXftjZozCJPl3z+NExJzfsmo+HdZNfYkxfLhS2iblyCFuBq8BsfSY+fwrbBCZbY2r6FTraxvHQZs/vEcccnebn2sPBqwdlfZjyobAJL3/mFYJb8cKQf76Mabf38LJOav6mrT4f1d1H6Lh/4CHHcJV80+fHGG5httbmSPcgbbqErXG+8CK4xZctTEWbvvn445vgZ1/gRQ8eGzr040bfOL1iMVZ+4eRz3ufpwFXC9HnhBfu9etHuP0P96le/ur7RLn/84ND9xNhxP4oD37jhSYfIIykP2uXBXC87jXv5IE/FbN66lBc62uUGpqIvj+ZwmRyNu87omMexvNMLi18vIs3Lv8Iu3GJTxwEfe53Qy0ec+Ck3dPJLj51Cd+rFxxh+3fPsJdeRvWqcv+KEQc8ayRl+cdBn017Egw8i5vZlPGf80wdfhC0duSLypE/M8asQ9jMvfOGjxKE46RuLhzZb17v9wI+4YDg7+AY6P9q+uR0/tc8nuaDf/d8+87KVOLP5HCsvfHpp5mzAjl/5ot8vUujgQad90T0ftxmPPn04RLxeVMIyh7Nvo4uBjjjUMHCKK+7ihdXLVXYw5Jyuwp4tzq0nbmwUvGG4vv71r3/d2j90vexjL284FJMYW1f2fjFgzJ5l89Zbb62aX+N0youx+NHHyxjuXhBbFzmgj0PrWuz2OTvjxsRrfcRgXBzFq22djBPrB1vc7Ih84tw1IF648MRLr1oOYPSLEGsnFv4UnOXKmHsvP3i2r+HiIi6Sr3KAm8KnQte+YAcXHi7y6d73xz/+cfmiiy9fdJy7yls5pMMOfuvtLCQ/dMzjTEdb4au1x5deORYTH/Zu92H5Md8aiU+hK8Zq5zD/ekJd3uRO0afXvb9ctf/KLx90rb05fvBRH8W4krBT4seveI3lT47gGtPmNwzj8mjMHB1rJEY68u++0/XID1zz/kWl64xPuTLGN0xjMMVOzzXuRfuzzz67/m8U/M+Lr7jOq/eL9vOyssd2BnYGdgZ2BnYG/scy4DDy29/+9vSzn/1sHe4cSDrEdFhxiNB28HDocGBVjHeo0e7A5nCjr8BLV9vBRk3gOSDD4NN4hxtt9kehR+Kgnx/Yin4xpM8mfw6u8GFUzwMZm+zEXewwCBuHMX5w9yCndihTm5cLmGwb96DYPN98mCNqujAVgq9DdePp040fHYf4cPnkn2RXnGzKDQy5wjOu7NIpH+bg8MNHAqeXCNp0jsIvH8UGW2ncHFwFhnE4HirKFf0ecrRJdXHqV8zDak47fW2ib55/deN8KzO/OCk4Evrsi1d+XBM44gzLIV2JU/jyRzf/EwseH+bVdPhl2xz/xvg0zl67GIxlQzeRTw8XcHDAdfoxrvBJZhsmG3sMdvPT5xq8+cN4xRBb+UyOdh4GPVB7yNHGwYO4/afNFleczOMQPm7ljB9zXXPyos9ODasXMrjow1XYkrnu+vmJczpzThvWHNOvGA8X3wpexltrPnC3J/FNwskH+wQGEav9BkMsMOe+oMOXwsZ8BR5/7OWdwNEPo3ljXTN0ZoEtl3TiLx5+7L/pPx9qfHCAq/A5c2DNW3e6sN17vYjwwMvHlPIjX3wTY7iyrWSDl3ts+TUep3KjnvN06tOtGCftKf7psa/w34v2F154YX2z3dw7kTj4Rrv/DPW11167lWt7Xd7tB3xwKS51e6GXL7DYuM7ZKdbSC6VeHloX+mKIs1rfHNFv/eRcHzZ/5YK+ftescfzCwE+/l1ddn/my5rDZzcIO5/ZpfLKLC1s5gY9H1x37fBWTeboKXHuRvXFCb3Iwpk/C4Beu3PJh/8JwbuilDxv6cGUGxAAAQABJREFUXubIN1/6JK5wzNGRHwLHuFiU8tZ8OGHzg0ucF8jZD/NwxDVjsybdB+jSaX3U+jgofNpDPl/U+sZx8Nn48Nl/gEpf3L4ZHh5/XoKxgclf13i/HIDp5R0c+nBJvMsfX/JjnxK5Y8tG3F60dT9iM+Ohwz+B42UlLBjWjn/rBYceezzwpW8fdf8ybl6svr2vLZcKPX7zw0a/dcaDsIErFj7lU7xehBL6dLMr58bo8q1tz3pB6Jvx2RoXE53uE8bERZ9PnKwLHfHII1yciple9wjjrQddfwsfpjX8+9//vrDFLqd8wOAPD0UcfIobrm9Ym1eMs9Fu/9rvYu5+5b6qWDd++FZwZicGfujXN6ZYF9y1+cpOnuf6wKKLCx/EGB6+/Y+7X2gQGDCNJbDY88NODO0nfuXGWsGng6tfQrWH8WanhMuH3PtMhE9w0zbHRk6sg7xOO3r4sHcGw92f0WHjWuPXuvAHDz+FPn705FT8xF4wx84cHRxaC2Ph4cG/uJMZGxxz6cHgCzYxj0v3U7l0rVkHeuzEhjcefmHklzH9woNveXb+9Bkq9vIKi664tPl2PpIj/vyi3J+O+dznPre4zBjWwB1+7Bftd0jQnt4Z2BnYGdgZ2Bn4X8iAw8irr756+vGPf7wOSQ4MDkMOHA4X5om2A6FCx8FF7RBCx2HKmIOLA5B+Yt7cPPSY44d9B006HcI6uLDlm6524w5P8IyFb0yhk745oubHAcyDA8ERBn2cPcQaywcddrDYJuaLV54c3MzTxb9YO0QaFwO/9JrPVz7gKubz6aDNlphjr6/Nt4Ng/0SYnfyXAzbFaC6Jj5qu2OWB8AvbuAOlOWN80idqOg7trQEdPown5hRr3DzOdIzjBtcYzOKmb52Ms+shg52+QvTZsJUX43EzzkeY6slNm38lyX76KIbWQD+BIU+tgYc8eNbAXsonTnQ6tOsXv3aizU/+4WuLrXWHySeBYY34LDa1Aqs2W3sEthKP8mtMW03U5QK2PW3v8nfE1p9Cn56Cg7UMl17z5QZ/DzoequWNeKBhXx66Bsyzr8DA27wYjduv/MmRoh0XemKBS9jqsyV0lebhwVAXpzl+G4ujWPkxdxQ65gk7op8/fXbuF/kzlvDd+rAh055ftkQs/Nl/cTYuTrbsYHXfNUdP3jy0wipumMVj3loZM18Oiodf+TWeDV2+7LeZJz7T0c4nLA/qrbM59xixyAvudPW9MFLrJ3zhUdzlgp0yOevTU6cnPzCMJfyGJwbtYtTPhn54xuR37rUwxOha8qD+/PPPr7/V3lw+L1rH889//vP6T9l60c6v+6f1KCdqhbQW6n5hAQsv9wnFPdc6eOniJY11sP6uTfGV59bcePHzUa6NlSc+GjcmR83r89F+0veixz1VLPSstT3VCyVxmi8ufu0f8/T4g0PYK8Q4TPtSuz1tDqYx625crGJUjMmBGOjEKczs8EzHHA5wnRPoeOElTnn2509gyyc790Ex8EP4xxNfmObYi5n/8pUOHHnl05xrpPhgwitGOkq84RNjhL2CV7kzTp8fWGzgq+HaN9YNHzrs+bW33ve+9y0scftmOFyFP/ryAIO439h3vRgWvxdfXqTRhet+JT66cYfHn3Fj5QOmvHj523lCHIo45FOtzw6GXMOBgb/1ExuO5QhuceDUmtgrCq79UgGu+fjqa8ufcbjtZbZx0cbBHB94TX28xYabPIUBzxwfviXtBa5rg99y7pcHXQv04bju5ZZ/uRIDG/js+pyQI9e9NTLWPpATuXrkkUdWTF5O+n8kcJYr13l7Ej/4OGib55eO9S8nbI0ResR+wUnBG1d1L0PljC489gRe11v5NdfaqBV84JlzvckJnuUWz9aYjjl/tkYtH7AVejiItxxZQ3PlW07p8UuHvT4Rjz1r/xULffYJPFysbf5w0lboyokiDn2FnXl1e+TNN99c93xxurfKrbZc0sXPmlt7djjJlQKzzwo2+aBXzo2LWxEHv7gS+uI1Z4wvPgl/5uwre1au8HC/pCd+Pt7znveseyo9wndrmi2u/MJ0ffsWv3+FoCZ4uUfJu/jFjltrw5c//fbNb37z9MQTTyybYlidC/zYL9ovkKStsjOwM7AzsDOwM3C/Z8ABwov2H/3oR7cO8A4aDlBK0piDktJBrkORwwdxoHSIcbiZhw/tDjz0HKCMOch0gITrUMNX+nT1zeGaOEApjWmHmc70Tw+2w5iCN/0epPDX7mAXrjr/4Vbnzzco4BG6RKzm1eJzSORXGy+4xSA2evpq8/SMswuTjfH62h4GHDxhsxdDh1f6k0c5zUeHZ4dvY/QT3OEohC8lgeXBhx0+R2zjCvHwARtm3I2zIebESszjxYY/cz1kmDdXnszH23g8mm990jNOYCr8p6NPjGnDI2zoTIm3Mf4d3D2U9GAmZ3IaD/7pWMtwYeYb70rY+nKijs/kzDd811s4xpIZD5/4wdKWW/sVPj38FO0KXWOuCzYeUnDjUx3P6vymgxNdvlpbOsYmXw87Hiz7J7l07Ct6uMALQ16Ny3n4eMqreMzJR5IejGLvGqSDl9iU4hBz1zI88fMFi5gn6cNV6MZtKRx+sFOyExs7Ygw+Xwqco9Blz47o429MzPKIt3lYxqYvOWod2BzjFqM9W7zq8s0fPMV4fPnBVT9+dIkx+nzJeRKn1k8fZvnwEqn1Z4NTvOjwZ95LBeOtDS582SvainjZGMePrWJOX81/uaBHf0o29Oa8cf1yOm2Mi7m42SoEX595/jPU73//+/fkG+1eYvlP2XrRjpPr3T1HnIoYy0djOMmlvSNuuXOv7YWV9feSqTWhJ+fsxUjsOXk0V5z6RK20Bmp9OSBxgsUWhr1AcMVDruQxbHl3v6Bn3Dxd88TLl168rIGzH8c11YfN3h4l8YIlPn74aC3lBm/67OWmONizYdt+URO86MuTNSH2rnn9vmEtFzh4UdXLKrbs8HT9mmdrHqZCjNNRcICFt3HrKw5t+YUHq9jowYl3fNVK4+wTsfIRZ7mgqy9P1kQNO3ufH1680tX2QgwHOeTfXmWDG3x64rTWsMXGrhft7Jx1xGRNWke6cI0T+cCDiP2BBx5YvopbTWfq4cy+F+34ePHWS+lyr4bJJ744yFPFmJx4Aaumb854OvyUA1j4wDOmnT57HHGzv2EZKw5z9rTrVztMbRg+X72UdH0Q9nJqD5Z3/mG6xjsXd26BIQfsrEu84PlFOU7ix53YA15Usqfvl4E4WRvxi0OfWHMccDUPQ15gGisGY+b0rQkbfsStLXb+5n9siiebeOVL7K0HLuZhGsNPLugS/I2xKd/0cW3N6XoOoCMn/MIisOi5duHkqzj06eMh9/QS/twjxAYHpjFcsyuv1gwOXFjyxS8ba2+djMWLTrHj5UXzX//613XN2Qflkx82/LifzLXGScz0+cY/n2yMsbdGdMqxuTCLVd860oHRXoCBNz/uAdZ8cilOdg8++OB60W5fiy3/fBhT4IhXYStu+1ONAxyx27/tS2N07QW+/aL86aefPl26dGnRF+PdyH7RfjfZ2ro7AzsDOwM7AzsD92kGHCxeeeWV04svvnjrm1YODQ5zUxw0iINLh5EOfI134HNAojeFrsOogxk9xYHQ4V1N4NLTD9tYc9qK+Q42Dm8dGOehik3jdPHnH65DnD6eDqeEDnvjxWr86N8YwcEcOxwU2MbC0Ffoxrn80c9ejSs+8qJNwlIrMNgrxIHRg+f73//+9RAoFv/80cMpHbkuB2pcPTw6KM/xfIbLD970zRUHn/rGFXnMRl8brrqCt8MqDOKgKz8TZ8ZnjeiLjY05cYTPtjzBM06PDoHb/uswjQu71iF/YbIzlqSrT2fW2nwo/Dr4Kx7w9Pnitz0GC7aHAzG17unMfMWnMXatxWzHx1jFGNHnExcC0xi/RJ489MQre3rp5pM+Lmysm3E6xsqB2hjhc9oa50ch01abvrWyX/3TcvvXmIc50ry84dC6ynEc6OUDFzqJ2GAQNW6kmOVk8jWn38NeePSLgW/cFeOJPn28jOsn2nzZ2/DjYY94eGPHBra2Qj9MOGHCp6cvJoWeIkd40pFDeuZhKemr6cEg+trsihM3LwzsU9gE77DWwM0f8WQDIz5srWkv+8RFx5i4rRV9bTUOdIyriXFFXzyVdMzlr5wUG11zxis3Kd/CMS6mcuUBWztcuSFwjCfhmm89m1Nbi+5h+unDdS35Rty9+ka7F+2XL19eL9rtMTH5Exf9AlZ8cfQiRBx0cLHXFfy6J8m1uPS99JkvVrJlT9TtC3m3vtYbBkxinA5d9q1lHMzh3f5hY0z+cJNLAo+Ol0a4Ge/8YE484lO04YtD/HNP8M9WmWsaN7Zxp+PezY+xciMnXR/s4isO/oo1LPOwiP0OCzfxWSd1+YDrhY46HfP88GtN4o7P0ZdYSTkpRn05Veikx96c2hifeHetutbCgFus6XX9xtU15DMGR2PaXjb79j4/xl0DMPWJnMmxb62bs74+F7w0pSdOul7QWw/c+iWQ+4m+HJnzWUw3O1jisTa+Xa5OxCvupD57mDM2cfishysuccolbHve2tDHlQ6/sMWjxo99Ouy0+SHm5ca4mNjIi2JcX+Gz3LLjJwyc6OvLnWuBtK7Fx0f46tYUB3j8t5582QO405V3MYrZedL1SL+9CMs6WEv+7GWf72zlFZaCgz4/RB9vfW250c4Ovthh42SdW2+85Vmfv/LhGurzhy9raJ+JBRauinFc2bHn2xoa868BxEcHH375ggffuhvHgX+FrRK+a9YvO+DZf8blwLh8woFn3DwsmIQ/8bKVF6JtvpzBYi9X5uwBuNbGePcTc+JmK0ZxsbXm+LGRr2Jnaw+pjVmDOPAFhy+44RQ3nuKZ60QfvrjVcAmsJF/N1YclL/P6nf5xk0f/WubRRx9dnOCGjScRj186qNnIjTyp6ba3XEt8EjGFg8Njjz12+sY3vnH61Kc+tebjujoX+LFftF8gSVtlZ2BnYGdgZ2Bn4H7PgMPDr371q9N3vvOdWy9oHRo6VBRffQcOoq84mHYIUXcQg9Hhg54DkQOSQoeuMYdXByA69B1sHHTU5o1Pf8bmAbmDED2HPaJW4DkUhjsPWvTMOWCqiytb8+dJfsSBC2wYan32/BQrfnF0sOWrsemr3JUbeESdT7j0YBA4vkXj4dPB38HRtzI8oOaHPcxwzXkwII1p08unOBR+Wydt+sWQfVzME/qzwMTTPEwPIWp24s8mvtbWwVz+xEtX7RDPdwIvn+Z7MOEPluIg70FCGy69YgwHt2I1hlNj4iDmST7paNunXmgVE458qRU4BA79cI3Rk8/4hF3u6OA7beizY6NkUx7zwa5Ym8MHtrx6yJzXWHzCFC87ff5wsCbw8w3Pta+OEzu42cOlT9jCPMZtTT3c+WfN1otee0ybfnsBf3hq4+UqnvXzhzc+cPIfBi7lqfVlx8Zeok9Xzvk3Tlzr4m7t6OW/9TFGX03M23/udbCIvNmbPexNXfPsw9XXJsWI/zHf+nB6WYCP+N0b4sNuinGcFHP6an7cJ7q3wW1dzbeO5umKo4d0c/haz36xh4uCm3F2+myttzbJN4ykmFtzXBQ+zKkbowMjjjDMVU+7bNT8s3EtkzDbG3GgSy/RlmMSnjY7+8u8kh1+HuDv5Z+OuXHjxvpn7NeuXVvrx4drvJdJfBuTZ3uuvNuDXoB60WvMnPXyEoR+MWvLB1F3zdcXZ/df68sPW8L3FPaz0JMr+y5/2cirfVl+8eBbyc56ZWtP8Y1D/sv/XAN8zYuZL+3iK1bjbIrNNYQHrgpbfhS2xnCd17hrwl6nM3nIhz6uSth8WTN8rIUXP7BxiSd9uGI2hkc4c13MwcM5W7rsjKkVPEi2dI3xS19OzcVDfszbw+r848wWZmvGj33hW6aKF6/yhK+8xIOdcZ+lXsb7Bi/cPhf4lAt786GHHlq+cYLjxVp72j22fQ8bZ7nnSxsv8+YIzgrhv9jFIHc4sKejLV77DR8YrhuY5twrW2vzSvfGuMgFG3P5nvmlh4d5a0zYyDVu5clnMY76hF/67Ow/c/q+nYyXvvHOVexaz9piE7N4cJJTc2yMG+tzxP1B/uXeC0trI08kTuJghxNdxVzz9I3JAy5yqK9uLczRg4GfOORfgS03+Cna1hZH+Si/XqDaN/aKMbmkw4YfOde352CyFZPziNzxq8aNDxz6LMdbnmHDapwezqS1lz+ldTDnLP63v/1t/RICR/zE5jpoHcsNfSI/RB75bF7NP35E7Rct/i4/XOuJp3isMRErv3IM1/VmLeniLx9sjYmf8KnAaS35VuiyM44LgdF6yQWB35qYT9i2jxtTw1PEVNHHgT1fOLEXg3vIBz7wgZV7vOVdfPjBt3+LG+905GH6gZ8Yt6582Wde5H/ta1/bL9pL0K53BnYGdgZ2BnYGdgb+OwMOEL/85S9PzzzzzDr40TB2FGMOHh3kHGocYDqwNOfgYk59lHCPczAdlIhDoFJ/+s1Hh+sObh2AHLroq83B4Etp7sjJnENYh02HsbcTmLBwxFusHRphGYtfceBkrm+tsCewyufb+TQn9mMMDohwxWpe25jDZHN8d8iH45BrDjdzRI0LDEVMysyFPhz2HfbVxok42IaJizm+OuTSy5dYFHrm6RE4uFlTtdi0PRTIH3uHXWPlg14PT8YI7g7UPSxZE/zwLy5YHmhm/viHUR5ghWmMroc1eHjwaxx/DzLlRE34kjcPAHTKz8w3nAobOnw60OMjR8Y88PRQC1eR49YAplzAwpOo2bdu5rzw8K0usfNjnlTHUb91oSc+vsRrToyuGzrG473AzvkRF7rs7VPXjpisb9egmi+1+NmJbfLi+5gDmHQU+jgr2R0pmZMvNVvSGmuHZ6+VT3m0p/CduZADBScY9ke4cOS6lzz2g72sZBNH8SrnSXHBL764tSb84+bbafKHh5cIYbZn1PDY28/zwR62eFtXuoo1ET/+1k4evJSwFmLxrcX2J/6uPzZsp5RrtXLMwdSVY/j0tOMtXvyzx1mBZSwpV3TZtvf0w4A/pTVQs1Fg0jemTloH/eZhK0njdPny4uFe/ukYefen326cvXDny9rg2XWjby1aDzlQrE0v2q2p3FlT9yp9+xdXewOueTZ01MbkRVz8zZiNKcbYdW03zpbg2BqWL338YHZf1IdD/HLZdUtwhGVenPYnX/wak2928bTfXQ/03Hvo0WkP4FPeloOzH3SMdc807r4vL8VoDA988YbnRZoXffIFIxwc2LlW+pYre7ZeSMMmrmProHZ9iaF4zHd/8UKNXvuUnvxYO/ccvsxbfznBgw4e5RF+uYMtlvZQuHDkmL1c6LcnjBG65RMGvY997GPrxRQuOIvZXjVXLuS3b72rCT72Is5sfImgP+fAH1tz1ru4xOOe1/3MOI64tLZqfXPyAkvujYtZXHDscQVnuuKiK3d0rZMavjVSmw9brhoTz+SgTWDKmcKHok3oiMX9GU/99hYdPPgTf37wNoaPb2IbLzb2bAi94tWPt3m2rXOfY/yLl11xuX7mC+nyJGcw1OKxFq5ZnOWWHjwFP+PlIS70lO5F2p278MYXF3tAfGr7yy8yYJZf+wZPvsSGC3s5E4e2/ea6g4E3n/5lqNjguI7MaeOOLzyx4QVD4d/6uK7paCv4yGP/USe+/PPxpz/9af1ChF94fPnPT+HBNua6nXtv5khMePHDPzs2Cv5KfMu5Pk58uu7pEvcp+fKZLr/OieJ1D5MrIufGcOObLVz8+Ca4iBcGvXLAJz2xlx/rgX/jcgfP2BQ4/MLSZl+c6Rm3R/2iAnd5tpbx73pWJzjCVIuHTFxjxWP/idEaedH+9a9/fb9oL5G73hnYGdgZ2BnYGdgZ+O8MOGC89NJL60W7A52DRQeOqd2hyWGHOBg5EPXQ7eDjcJRt9cS4Xft4iNJX4FUcdrTVDmeKgxQ9hz/FIcg8jvHESwlTHIkDlcOfOfH0YPB23Onywx9fsB3mHB5h4+hQjl8PKfzBd+BXw4inOk7q2/mGKyZ1UmzGsoWPi7oDowO1teLLepnDMb/wtCs4TB7abOTHw682kTtz4sEhHnE0z6863daML3piwBOOMRzp4Nd6yiO/HgqMsVMb17YWDthyzh4WTHF7QOAjrLjgT7d1jI8xBW6FLtG3Bj1wwvRgZwyu/MiNos8vXFy8JJCL9mV7IP5iETfujfUNQHjG7B97TVz0FH7Ma+ONk9wpfCj8W3ciXg9kHi7Fwab8L4WbP+CR9pjavqIrJqI9/RvLJ3u88KktBhK2fFhTL6R6ycMPrnzRa0+0JuzpwI4bHsXABw7s1F0z+TRG9MsXjgl7Nuzzb23SsZ/cJ/HugY3u5ATDXmytzXs486Am/2HAkb+44YBTdnPcXLFV0+s6EVf69oeXr/iZt4/4ZUcHVzVexu0D/PILy16UY3klarytE9xi8FAOTyy+Qanu/pMunNsJWzkgYifG+MOPbSUuxovXWLEYF+O0h2dMIfTN01WIPjx989pKNuVVf+5DtvTKm3464U+s8OX7Xv7pGGv9k5/85OQ/suNf3tX2LP/Wy7q4f1g3McqpPezlj3uBMdcjPWtqTdjbs/YGvObtr9Zs5kB8rYU8tZ72Q3ui/KjLF5tybEwbP/b2r+vPWBj4dq+UezytofsGbvQIjvnGjS4s9+xy0n5QK66H8hYnOew6YU/cQ+XGHOziwtkY/u5rXnTJs3l6sGHQk+d/nH3jtFyI1b9O8wKarnWUc7V1wQdH2Nr86PMjHu04xxcWX+Y7f8QVl/auOTxbVzrlFmbXDBx+5RAufXvKPD0FD+Pp9aLdvofps9ALxv41mDGx+wWIP+3SS1lx4yReL419+9cLUfmTHzVf1liNs5jcezsLxMWa8YMDPTzV8os7u9aeXnPmxTFzQJ9u93Ox4opHewFntuaMkfjJmzbBD96xXpNnP8SBs7zTw4U9/LDV+kQe2zv2Fg7tuXzSw18Ra/yMa7PpPmGevfH2u1jlw560v70cJXgZx4U9PYKTGOJebvEWkzJjYMOnAjt/4XQN4m/MvYCuvW7vyGXr1Tfa8TEmn3StlZzCcA+cL9r5vHH2iyAvnXEVdz7lAd/yLSYY5rtPsmen4EJg2NuuG7rs7efXX399/X1wuaTvvuI6gAmbL3j0+RYDoSvfxLh1Er/Y+KTvF3AKG2sqXvfH+MuJ617uiXn3JPcTGL2sNmYNjPFTKT65hMEP/9YDf4KjYp4eXmpYxu0LtXHc+DZ/FLmAzXd5gZFfvuFYf3l2b6ELTw5gi1eMciFnSVzlhcBViDG4XYdis87+Y+f9jfaVov1jZ2BnYGdgZ2BnYGfgdhlw4PCNdn86xmHPwULpQMeOjmKscToOOQ4v6mzoOYDdScKiqzg81Xaw6UAFj8SBnsO10mGUfsX8efaw6TsoaSdw6RMxmMtXsVZnQ8cYPbUcOCgS/uMAV5s4uKUXF3MwCN+KfhzWxNmP+DhoEnokXvHQVzooqvHi1+EVH2tljF6+w1mgZz/gh9WY2lgx6HfIxVcphrD5d6jlmy6Rf2tL8qEm+Jiztr34M2bd2Dskl7PW2Ly80PcAwz4e/Cp4tJ/Erhjj1/hcJzzi1Tqq0/Vg4BDfPlKbw01pbdR8m9P2sMJnh3q8FQIDd3XjOHno0oejht+LpGxhKsQYO/lQ8FbMe2FBmvdAMnPcGoa7lG/+wF/O8NAuJrWSsFXklLDhP/tpZ97DmwchD8Niw5OOF2ZsyntxmItfftWz5H9yERtRZ19/Ys8xesXavjImpsb1cZaX1t88P/awXBM+YCjGXEPWw1qS+MGLj3F9hbTG7Nuz2vzoh6HGQV5dM/abB3B1OuGqjbGfGOITE34w9F3H1svaaCvmxSH/5rwMywYHccoLjNZrBXP4UYxqevTZE3FrK2HE2/xcC7HInzElOU8fVnjZ0ecbRrlKB4ZxOVcnxo0p2vyGRy8sc827h/SiXZ2PMC9awyO+Gen/WLl+/friIWfW2/0EL2vjs93atY/k09q5xyh4W3M6XuzIgz3hBYN9Kw421tTah6PGv3ypaxtX6LBV4zzzVQziaM3YaNNzHxOLMRjG8TU38djjNfcb3Qp7vPqs4DdOdGApYuYPvpjpTTvXG/HCzMszenTYyhmpL79y2XXOTzml032geHHzbVa4fBZPa0JPfMbxoGPN+gWKeIpTDNbNPZ4vdvjgWVz2Bz044YoBTzbGFWOwjanZ46g2x5YN4b9cmpenxx9/fP0Ljl5+eQHsPx/ELf9i9wuUXkYWq9zB8xnhxSedbNgT860hvq2xXJuTI3js8M6GrlyyNaewLT/mFHGzV+iqYcvv9AGXvT0hL7iHv5ye/TBn/8o9wa18ya1C4oCTa7A+33TgshNDMtegfUGPDgxxlCvcjeFLig22+wXuxsrJxGgf2Zc+Z+jDFhsOij1hXxJ71T1PruIAH8c440WKk67i+oFP5K2c62tbz8bkVGnP4I+HmMpxMcuLOf5g9IujePsFAv74euHsMxQf+jizt8Z8GOMXNrFXCVvzBHcv9PmSU5zo+eW0z033AjhikSv5Vvhy7+YLHjHWOurTw608xK97Ph18+ZBLWOXDWG1z4u6sKifisgbyIhZ++CP8GIMnHmLeeuNC6MQnv2pi74lV3Dh0vWiLNV98zLKMz37QKXY1HbbuC9YLrj0qD+JvzfCBbR6G9WBnP+qra8Oka23hFp8/TbP/RnsrseudgZ2BnYGdgZ2BnYFzM+Bg8fLLL5+effbZdaBy4OhwlEGHGAckB7OE3jwsG+/w02Es3WPNj0OMw0748BzWHWbmA49x+oS+OYUuf8cCz5xD4sRx+HNYMkY6QMEMl41xGHBJ+NpxcWjTbq6DIBxc5+GTnXn6ajZ8hKUvjw6reCvlhC3JBna5+L+Z/8SefuArcYGJHz89HMGFx46o9SdXOjjJm7jTh0uPhGOseVjiYsMnHRjll54xkn/zHWpxNW6MfwLHOLs46lu31o4eO7p8kHIaX3NKduazEQPO8oUrHTj2j4clLwO0YcFwTSgeRvCCpYZRPtTGJnf2Cnx4vTwpFx4AzLMl6c+9aYx+c2rCV1zMd91qK3z2EC3G2vFbIIcfYs2+tROrkuCmr8aFXhzZlw84HuB6sJvY8kbCFQd9OuUQz5kH4+XAftFXatNlA4eYI/rHnBkPD/9yk4218sBsvcTjxYOHcg91+nzxyx+RX301jPYLXesgTuPljT1e7JtzHRnDRYFlTjv9iSGH4qLnnkdHXzzaCtG3b+lrw9D3sC0mfo27X3hgVTeGvwLXmHm1vuLBGVY6y+H4wZcYyws/7RE2xJgCbwpbMajZaMsHaY3TpzPFvBImDnSM8asPrziMm4dvHfMTJt2uXfZ0jYWjr+jD8tLFn4554YUX1gt3Y+9EYJIbZ9++fOqpp05Xr15d+wlHL0l6uWXN7FFrUax4Wi99+cdBHun0okoM7f3s4hlne7m9Zkxu4LWOamJOwdk8vfLYHF1tQs88DgoxFyd9MYRvnI391x7EOT/5oCMmnzFq4zAU603feCXfsLpHw+gFn3lz8uB6gWFekRf5jI/aOBzCVqHHv7Y1s5dgwmJjPdxbcFXrzxeD1pF/uuVIHPLc2vLBjn/Yril+xMkvfSKn85rLv5pO9vYYO/pinNL1Sh/PT37yk+vPx/glAj7uLX45BAvfrjPXhW/zsjEHWzHfHpY7fsVgDeIEp1yzbe+zLbd8i7f4cI67XLgXwy2HYlYS48VGDx4ufJhj716rZmet8ObDvIKvP38jVv3WDW77EH/5VZPyCFc+5A9+69YamrPG6mzh8gOvXPAjd+WvmMzj43MZd/G1R/DQp+tewj9f4jOGo3kY+nC8hNe2Zl5W0zEvH92PcCFiEQdd3Okqrin62n5RI+/tCbm2V4pDnObwx48uO7hqvuDjSY8OfuzwUozxaTyxJ/lmWx7FrtBnx5dckdZHHOIi7jfzX5bhIi75g0HoVszjpdApT/xoy69rmohNIXxOG21jfPDHTuyNs9Eubv/axDfA2biGxGut+MStPPLNhm05xI1O14G57jt8z5jott5sYOBlbfT5lzP+Wpd86ps3xxc9PPHxrwT4sRZ04OqzyT/fraU2W77hs+maNUf46ToQE95+Qf7000+fLl26tHSM343s/wz1brK1dXcGdgZ2BnYGdgbu0ww4WPz6179e34jzZykcOBQHk6TDlIOIA5ODEHGIoTcPGfBI9erc/GGsYujoQx+2g43ioBNOtXkHI3U8pg9tug5sFTh0O1SxJ+Y7pJvT7wE8Dg5ySjbspm++zMcFjjgc6jrY6csVoS9f8qjINVs6xvNLl3051jev0C0f2jDoqa2Rmh6d9Orzpd2hUpttvvgh9MSCDwxtBWcHWjZxwyE9to3T64GADkw5hgOTnjESP/PlvDkHW+tkHCas4mZHJt+JT69+OLjy47Dt4ccDmznjhA8PmjCNW3tjDtu+UYcL+3JnrjVYAGc/xGdeXs3Rp+fhzHh88TOXH3MKCYNO+aptHq78ws1PD3/m0oUvd62RcfrNm+tBQq5wU+LBbs7jQs+4QtcYUddnb43DUbfvjePqIa6HdfM4FY82/HDYwJ++arPJLv7itsbZpLuInv2AD1uJMx2xkfjMOOUtfTYwXEutgz6M7hd0cYBpTgzxNNYDH39slGLWti9IsdOfa2Gu2POrtn/Z8KF4eSDX3R/sj4oXdc2Jj505usUjPuvVWLGUD/rmjRNxwzRmzrgx3BSc5I+0h7TpigcH+kq25qc0ry7O7PiYazrttLPVjgc//E/bfMfZnlJwTsxZJxz4T/gg8NnQ0fYC47HHHjs999xz64V7etldtOaX/OUvfzldvnx5/RkC1zIf7373u9e3o+2X4pJX64ej69CfnDFXLO2NcNWzXRz2n70Jx0st1y8cpTjrtx76rZM80CPG5VxJN7/8ta7aFfZ00ocRN/sNH7HygWuf6XTYwTRmDqejb7HJW7nEkx2/Cvs42//yx59rpGu2nLLjA9c+O/XNw9GG0XWEM5tEH2b54kcxJh484PZyiB9jckL4IOWKXyVbukSsdNnR5UMunQnFZcx8uaSHZ3r1pz9tn69etPvFkn9Fxa991j2fndjdr8L3+QrbnEJwlgP2RG39jLGj3/3GvBewYjJervIlZvEQvgmd1pueebYK4S8/+uloywFMfHyT1nlCX8HJL5Ph4Sp/vWhna976mefDfihmtVwpXvbCh+lFLl171H4sPjzgqc23V/lhB7uY2Mpp+ObYtBbW3nw+zIfv84JeMcqL3PEHXyzW0ze1xWA9vag2b85+wpNvOAo7uXG+woNvmObKjXk+Yavlw71UvtnzRb95OER+ylHY7SX6YlXEh5P8wrVfYdLFXcELBn/0u6b124v4slPDL+/yxJ6uMTqwGlfHpz2Bv1jp5oMtPYUNv+aK27zrSyzswiiPkwNdhQ9r4kW7/YqX/Krlhq/isn7FDTsMXOQZPl2c2NFVx4WNucndHJzs6Zgv1+YIOyUuxu0vdmLwr2XU+gRu2Gp4+LWWfNjjBEfY8ihmcxV2fMG2Lz/60Y+erly5cnryySeXbfxW5wI/9ov2CyRpq+wM7AzsDOwM7Azc7xlwsHjllVdOP/jBD9ZDs8OZA6SDTOKA0iHUvEMHmTrpwktmu4OIsQ56cB1uzE3ddPhR6sPV72B59JMPOnx0SJrY5hyyCByHd7rZ6DtIOaipHbgVbTj519c21kOLPp94iKvDoLpc0TfnxZfDsIMbO2KOPT4w5FopP2HCioscdpClGyab+JULuuyIeQUWXDy088VGjB222bHvgYRNfOB1QKYHA54DuYeyiSvnxcuOxEnNL53WmC7s+QAbXz74wqvY2MGYmHJqXix9q86aefjzQsoDlVg7fMO3PrD5Ns6X2gP8jAFuHMSiL9741GdrbbyYot+a1I53eGGKo3wVd3PWe36b0T7Q96BgLiy+xSqWsKxjOmKXD3X+5IwuDPa+gSd2GHSMadMr163l7OM6x+0JvuWTf5yVuKq716jlydjcQzD1SbmAq7DhHy8cXc/axHh89PNpzJx46bZ/0m1OHedyl39rA4/AgJW9B0GCGz2FyB9+6vr2KN5s1a2JPlwvFayVOXz4LIf6rY8XZGyM8ecB2j9Vtwdbg/JlT/ZCzbqQciAOGLibgwW3NalvDg9zxPrYi8botF6wyg9sYiw/9PJjHF5lKd/8EQc8lK6n+MPjB8ZFBU72cSqe+q5TOS7PzevzV18tFpjGrZd10/Z58sEPfnD9ubYPfehDt2wuyjO9YvNnOD7zmc+sb7Tjx/d73/ve08MPP7yu28asoTVRu0f4O9k4tt/sh/ryB6f8ahuj614gFrmyp2C2D/iyZ1vP8mC+dbLHu67F4lpyT6CrFBcMha5a7uCz14aXpIuLAtOauF58dvQ5D5vtvN91XfJN2JnPT5yM80/48BnBD9/ypvDXNY03G7X4xej64w8HBXbXh3j0q7VxcN91/9aXc37KEV1j+MA2B7+YcKOr4GH9xKDvxRpOxJqZ50Nx3YqvP2tBB1+5xAk+bDUcHMzDVovJvM/WT3ziE+sXS71Ah8UH7vH3cpMNe/nDLy5wrIfcarMxj0f51ccXF3Ze2KbfOsLvs1GbHjuYYlf0W0tcFGJu+irPateNfMmteF3fYeDk3ouzHLt2HnjggVXDtW7WgD58XLTtK7V46Di3yIs8+6Z416HY4siGvjXBl7/m8CPwrQ87Qh9/uUhXHye6fNKVF58T1kktf2IiuHQ9sTGOs28Xa4vZvwSEz088cRIPvvDpvetd77q1j2AaJ2r29njXHb9db/mFB1fuSHuq3OIjN8VVjmGyU3yjG1/rRB8/Nf94wJITY/Tli39zcmteGxexirm2cYW+Qtc6qQn99gTuhD1f9PlV65tnJw/GvCDHhdjn2vzmX82ePzz1FQJLDryotsY4wlXbC+aLoTOEPgkDh9bMvmoO19YDXuNqfSUM8eBGsoHb9WfeOvAtPvlyX8HVmM+j8gIXhlKsE4sfxR5S48kGdzEb45fALOdy+JGPfOT07W9/e/2C23z8tS8i+0X7RbK0dXYGdgZ2BnYGdgbu8ww4WPSi3UHLodLhxcGCOEA4qDTeobi5pTR+wFPYqZPjQcdcB5cOOA42U8+hqOLAw0bfYWtiGyNsiT6sSr74yZ4uTAdDY4q+QxR8xZyHXA8AHTqzdziLEz2HP3N8qgkffHbYi7PcelhxUDTXePbloYM/HHNq+e+Ay78xODDpdyjmPx64wezAaZxt+WfbmsMjbBzIPZDEh06Hd7b65ZR+OWCPowO5hwZ+iTjllf9i5i+f/JR7/Ogpcm8NHKj5g823Wl8pj+zgGAsXhrZYPLCat37avl3WC2S+2cOKt5jsCXjm58uCFdThBz35hMEv4RtuD4lij6d5fCr6MJQw6BK4xQxTDvC07tpq13AvE+jAsY6+Edf64GWftP/Mi1Ge2ZiPj764vWDx7US6hK7xYlyDN3/wmbBPtPlV7OP2sjgTtsZxEw8eU+Su3KhhqsXfnqAvZ7i6NsOICwztY6HHTp6O0n7lwzqKYfIOq9zVh2mv4Vi+zcGTv+4d/OnjrNCRYwWmPizrpOBpDJ/WEqZxvjwsJ3R8e9mDeNyr7Sf3IvsmfuHgUe7EClfhV799bgwOe1KfD76zZScWhQ8lqU8n3OKGd54Yr4SLByy8jd2NwMIVBxLPMPTtDWui5oeuWr9c0TcOSzHOxlpbH/cyf+PVg/q9etH+6U9/+nTt2rXFmW8v2fuPNe0XHOTVOlsT94033nhj8bPviPWTA1zbX60FTPHTdS8Qizkv/dxvzCvs6Mz8w6RrvlzImetcvz1Mb0rrCJNvuvJcPPCIcYWOuBTYdN2v8Z2f1+JT8GRDVyE4sBOf/W+ewKePizUVd7lcCmc/8LW2PmfKYbkQv/x2/6OrEHu2WPivGBOre7cXkMb5VsNLuoatg/k+D8oB7nyJS0y40ZMn16g5cdHjU9+aiM9L4q5r9r1oN0+fj/ItVzNHcOTj4x//+OnRRx9da4EzOzzEwR8M9ya8YYi5vKtxk1MvsNmyIzBwoqO4j7UXe9HOFh49ORNT9yW+zcc5n8aV9gl//MLIn/zJgbr7rzlnCTzZl2M5jK855w55Ib3Uw23ulT5f1HS8wBdHMdifPo+7p/BlnejSiav4rIMxtTjEKTZxtQfKhXnrYS2IHPNr3EtM68SGrcIOb3oKbH6sgxfteInVS2sYbODjia+2PLKjZ5/jDEuu4g+TsOOfjRhxoxu2OPkganHgR6814Utf7ozhal/gQ99nZ2dD/NsvuBC5sx9xwqN9y58x83zgUh7FaS35w1WBh9vcZ/TFSLc1K/Z4z1jZip+OfSYWbZwVeDNuvFtPfOMsTn79Ys29ja/8wDHvPgOPD7UxEj9tOSWuRdhwzONA0tVvbE3c/CEnbEhryaY1FKt1x0WOrJmYjNFvb7ZvcMQjX7Dgmxcfu3lfMV/+zdFjb/3UfODgT8f4f82++MUvLq7hr84FfuwX7RdI0lbZGdgZ2BnYGdgZuN8z4GDhT8f4e7EOGA4mDhUdLDpcONgoHVw6sMxDjFwYVxw80lHTa77DV9jqdDuw6FfoVzocdZBaoONHOB2mHNAcmKYPfXHAcDDMD2z6asWByoN6B1N6BLbDGRxjPewYN9bhF754+FLMEYe1DpFr4OYPWPlmJ98O8sQ4PAdchW7+6YiPvoMnX7iwKW4YcTE3HzxwgWnN2RI6/MmHdth0WyN+tfMVd/ZwzDsMq/XNyxXebAjcciHfXoh44JJD/unhKt9s+aMPcx72jbc+2uY9EMiHcRjs1TCtqxcYcMVI2OGJE2y5M0eXTfuBjjn6Sm1+ahuPv7Y5uIp2uYKr1DdH+LAe5uCQcOrLAx11pXznJx7ihAVfLT90mhdnuHzRUZqXN3lIR40zHQJX7HjLHT7EmKKPm3uMB7e51+C0J2b+cSR82w9wyo820Wevbs44PDEpcTR+FPHBUrcGb6cvDtzLXXjxYavQixvuxcWP0hx+8VfLK+50atNlzwcd80SefRNd6QGbTuMwCC4enntBgX/r37pYk2JiB8d+56/Y1OYUfNiyMa62vtrmFDyazxafMMRVMU6HmCfmjCnpqY8SHj1+5f88vaPd7fpwYIYTvly0p7T5MKfufgUTB+O14bCzj62p+5tvtH/3u9+9Zy/an3jiifWnY+wNXHrhZw2775mz7tbfXvAnZ7TFQlp/HMtfuShOc15swDXn/mpOPxtYxW+sPM55POzZ5uQMF3ViDmc+04Mxi/H0xGlP4lRccu4zRZ0uvble7VN+5YCeeKxZvugbw4eO/PXZItbJYWLDNC8u3PjqOpm5pQejWLOB5SWr/xckMSd37NnIpReFnd9cy7jx2UsoNmKBJy5zfVbkKx0ccIXj3kJP37jPAHnQh8c3v/JNWq+4yb297l9Y2Pf8svfCnj+FrW8Rl0/z9iQsfNVw2IiXDXz+SXVxm/N5Z82zFbNxeeteqA+fXrrwlXyXC/HS1+dP25h45MCeMGdvKTCI3Hk5Tczz4yUufnDM2xPlEx4smCQ+/BU3G/ZetFtfOnIoNmsBK57m5LJ171pX80O/9cWn2Pgj+nTh2AteoLIzzo81U8uXHNNV8Bc3XevmCw3ZiNd+5ZeeYs4aO5Phbp/Z8+0FsfNjjdnhx6b8aMeXDQz6/MDCgY38KsWn5l/uWgd9v6jBxXw8+SLFqg+LH/5rL6WzH/pdF83JDW5K3OEpccGDHRu45orVOpYLuc3WmP9YVRx0YWjjbo5ftvZm9zW8YRA22tasF+34wOm+UjzlCS4pDm1xGW9fNK/mw1x2+vTfTtKnJ1ZxEOP44AhH0S5v2eFmbkp9mPaK+ytha65zUtdxvuRH7Oy8aPf/mu0X7TOzu70zsDOwM7AzsDOwM/AfGXCw8KL9+eefXwcqhxUHsA5T2koHGPodAB1i6DuIGFcT7Wo6DkfNNa7OV3PnYaQfDqwOlw48bPFR01GI2sHSQUoNOwx2bPQ9+JibJXt+enhonh/FQ6M54kDWIVBtzsHeQ9DkhwfhW5s9DrCJWnzli57cw8CZjYcAa0PXmJoOUZuXVxjFabx4q4ubHX2Hcrb5K07zxJyHlnJonh3BQTFXMR8fh31tuelBHT82DuQKXvLln8j7Z7seJPGnZ9xDmLVk48DLRh7YEXr46NurHsj8M1jfwuLXerDHg8D3MMUGXnnFFa5xvuScLnzrbG3p81OhK94p9NmKYc613urio1vbOMETD338YcRHPtiQxrWLX60kMNKHQeLM3rzSnHnt+mrzOM6xdIoPptx4UMHduLUwrvYQ59tivQxg7xoQj9zimC4cRV/+7Rv5jkt82cBgr8g5kTOF3p0k/vSK6TwbehW8poSRffP8K+Ybyy7dOM7Y6GdLX/4UOTFuf8izh2v73AsQ4rqQX335IrCshz1+3LM4hV0MdLperXlC1xw9Rbs1guHaqW8+vvQI+zDCVFtD+ubU5UVbIeXCXJKeml8lmXqNXaTmBw+ifeQgH/bVzAtf7qf2If1yAEMfDn06avcQf6Pdg7q/XV2M9O9GitEL889+9rOn1157bflwrZiTd8W9s3+ZZby9c+PGjbVf+DRerPhOmfzMzfuateslqDZ/rTs/cOm795o3Zi/an17cwZYXOj6DZu7kSk6V9gh7+9gawaajht9LOhzaCxMDdzjuNzD14wuXdN9i1/2DHo7uL8bo+nxh22cSfTrZiIueXKjLob449bX5Y4OXkg9c4ONpv3ipal6e1L69KkZt+XAvgMuXz2ltwo4NLIUvhX923RPcN9jCax4+frDU5sodLCIGuYADsxxrp//II4+sf13hPs6H2kvUrjN+/vnPfy4cdq25fNrLcHx+W19Ch//OFfr2wIxHzOJQ2/vlQJy+tetcwD9f9q8cW0t9dsUJF79i1Ff4NA5DTGo8424/6NPx4pKwM96Ldrkq7zDoiqlc0pcrseNsjg1dMckHnriYaw/AiaMap86jYjNW/uwVsVlHOARvPIuRP2OuWX6KE89+yUsXtjm51ofNVgz+RB/u/MDIzr4qXuvtpSe+6gcffHCti778yhX94itn+vHOFge+7CvXgJwXt3hxg8cWDg7hiIN/OeMXX/OJOBR4FfHC4bNcyrE2HTh0xGif8dGYefkmcZlz9NtPrT9cfOOi/eabb649AE/fOaB7Db/2ufuLHBExyQGecPiwxoq+XMOQK3j08FMTa82XWiHm0hODQuAlxopZbIkxcTXPRs4U3MzDLm45NN6egMOmdWBHR8l/eHwYkw/PG8S+MCZeuXFPyC87uTLH1t9o/973vnf60pe+tGzN343sb7TfTba27s7AzsDOwM7AzsB9mgGHl77R7qDuEOEw41Dh0OPQ4mCjdDhRE4cSujC0G9d38GjcnPaUDjzw73RImTgOdA5ODotqtripHYrypXbYdsBUdxikww5XYw56dKfE1XhzxU6PLw+AcOjyoR22A7oHIQdbunKkpkf0PSB1gIZhXh3Pxvg1Z5y9NXEITFcND0+1XBBc2Bhjo9YvjuLOTw/T5ZJehY7DrAN4cZYXdRhqfX5wZg/PAZZ/ayZvM24PMebtAznx8OifDzvk8gVPHsux2GDbnzjxwa94YSjy4wHhrbfeWg9a1t/DHv/8sYfpYSr/8PBgp11c/FpLPvDTlk9xlW81Hon48WnfxdmYQtLhp5ya0yfiwKPY2gNy196DocSVHf17IfzdTuacttjVCt4eosuztWjcny/xzUX3GXrilV9rYz30y6l5uGrXk2IOVjlTi7/1hePBicipuftR2kvlVAz2gpyqjdt/rscbZy9L7fNeWtrDxu3jrmV5KJ8zH+0Vekr91oCdYlwx3hrAwZOdMeuMn2sj/uHyba2yVyetZ77ZTn/arXPj2Tann6/m3kkdXvz5rd2cfNinijH81b3AaG1mjHDou3btS3vZn4y5V99o96Ldf8r2hz/8YV1HrgPr4Z6udm152eTehYeY7BPXY/tJvnA/SvFVF4s8wOn+6Bekxqx1Lz60ibi7vvFx/fuFmxeQ8mQO515wlHNc3bMV2OUWd3ZxkX88vMzji555OHTYdj/QpqtPcFTos8NPHybdbK0vnriYL2/80XUPosMfHDquhT57jRH4rk168gQHH7EqfMQNf2M+d9zztdV8+QUbe/zCdP25DnqJyZ/PUxy7PujD4T9+xaM2bp4ekRd85dwcLPO4iRtG1305N67Qw92fMPKnQ7TZ2YfWij7BzX6wX42JX4xy4Vrh12e1l/M4ErX7nNgJf2yLU18McOxNmHxbB7+k8AK2/PKDk/WjL0b7kU1rac+Kkw0+arGHiYN4FXbVONnXcOji1Yt2/GDkQ47p2hPmFOsn7qtXr6452DDE5IsCcsoHbjh2zcPMp5j4FCdM9vzSLS55w4/woejDlWN28s3OfpUjPK2bcetBR9zm+IBvXC570c0PzPYoDPh84WkdXGNie+ihh271zctP+eKLnWtAzV++5QxHc+5x9o79Zl6u8PJLf7HDI8b5gMvWdaaWwzjyYe0J3XyGKza6eJpvXWFqE3sMrvzyKT/mxN6+Kh74Cv3ugXDNK/yZJ2J1DhBTftsP5ruHhEUHhrXAAQ4OrnV7EBd5sk7lqRzRFZMy22zwwAu+OXzZmdNvTF9M5Zh+9mxgE+OKHBu3Xni31ji3R+nbe+0xdnyUu7DgKLjQtzeJtTMmXj7sAbZ8GZcP+x2+P4flRfuXv/zlZQv7bmS/aL+bbG3dnYGdgZ2BnYGdgfs0Aw4Q/kb7iy++uA7MDkWKw4tDTX1thxOHIYcKdop5tfEOL41LifF01YRe4pB3JwkfluKQ6oClxiUMh6KjDj0HJePm9R3ijGn3UIADnXS1SYczbTzYhqU21uE1XJjG4MsPfmrjRPwd4NjkQx2HDnf0jefHIa+HA7bGm1e3RvE0xrea0IfNf31zPUxMXVzCEUMP2+LKvvnWFD67/LJzaCXWSw7U5c6cwi9Mh1sPRj3osiu/5UwO2Kj5yScOcIyLx8OUh0Dx8kmPHT0xeOjpQU1Ote17dZgeTr2k4gcPvwCgKy6FL0V7cuHzuD7lip55hRgXWxyNiQMPunJF0kuXfXlcCmc/9Btjmz0bMSnxyEY+ZhEf/3TZq4snm7DVdEltD2q4E7hszXnBYU08zBnHwzp4CJRbeq2fmo68yrlirDy3h8SqbZ3gdI3BmvlcZM5+lJv61eWm/DX+/1UXq9wr8iVWhdiX8mZf07XnXI9+caHY52zSM5etPJdPWGItD9quiXyaD79c0Gk8HL7izA+MPjOMk66LeBhvznwY8NuTc14bB2sZB3ZEvzF6fOA2ZWLN8fPaE2/Oh4EHju0reythax+bI7hkp2+evj2u9jLJi/ZnnnlmfbNdHt6JFL8X7V/4whfWi3Y+FLm3pni4Jlwb7nds+LNeXqK0Nvy3XnTSm9yMyYF7SXtKzK49L0SN0bcO6nJAv+vbfcH9wX71QoN/9u779nf3Z3xaez7ai3DtM9j8Kebg+2aidSD5Ni/nSvr4TH5zT+OjtJf4Ln8+k9iaF4e6PBmX4/r8lwe+SNesFzY404FhXfjBTxxqNuwnfzbug3LlPipXBBc5iZPc8gHDZylufNOHIReEb4XgEk8xxMccrDjrm4dDxx6zbvCV7iPm+RWbF+39GRC2OHm5Vd5x6OUWHmytY/tKX9xeLosxO37zJ0/EnLHiwsHexBWO3LlfetFO17ic88WntdanZ05OFPzcU7XFwFY++YHbHlOzq9CTO0JX8UUCe6l1hmfcdeFFnrXE27y80f/973LRP/QAAEAASURBVH+/rlcc+XAPkUf5lTN5wc/ng7a1aH/Rf/js/2xgi48Y+KPXPds4HkrCHneY4nG/gGuf4yd+e806ZI+zuXIGQy6tHYkTO3xhKOzZ9aJdbP7cDF98m8eXPR94tt/MGaNn/eyV+DlzyJEX9/JA4Mi12OXB+hF1a9n6GRc/vTnGJ93WQ1889glsPCcWvnICAzd1+xT34iw/5tkTPtjQwwMfhX06cijW1kKM2vTotK9hlT+c49C+ti74s2HfvUSu6RhX5j7RDhMeXWKM8HO0ZSNGfMyJW52tucZhwIJjXsFBTtjLiUL0zYs7n3GLs3FY+jDsNTrsjMmdOIzh0TVtv3QNPP7446fnnntuf6N9ZX3/2BnYGdgZ2BnYGdgZODcDDhYvv/zyOjQ4VDmEKA6NDh4OQA4lHZYcOowRB5EOv3D0s0/HOFF3QAvLOP2LCPuKw5GDozp7bQdqHHA0r98hyYHJA5SDGB49THnAIsbSgaUvfgVffTHhwIeDnb5xftTEnPFs6Tm0KfDDoVOu1Hw0xn+8i4+dmOjBwoMY51MpP2wbi2P8OjjSIeHg2bqwlSeFHtv8sBGvh9f8qfEMi44+30q44ZhP5rw2wbG1bAwPeckX/HLDpnHt5qyBXImtBzpjcTPXPm+sdYPDnzj7NhYOcuJhKhzYroEeFtnhUi7wV1p78/LROqSvr7SOdPiAP3Mgh/r5oG8sHG08FTHBgCsOc61tdnT4KG61By0xsTNH14MgzHzhV4FhHC859XAOR/68UJAzOH37zQMLYcMHXLU+TLqKtjEYHtbF3EMQn/rm8eNLgUPCNUcv/eIuf0v55o9s1NmYYnu3wv52MufyI1Z5kXtF38OieIk95yHPfpVnJR1zHooJfTjZHePlT3zlSmxwrJs1I8Zq68c3v+bT4Yc9fW01vXCzgZM0ryZxrJ0/uNpzPt9szafDr2sw2/yrLyLTR/ps4x8P9+A+e+y9RHv6nn7N2ePuafLuWvSfoV65cmX9/eqpG95F6vxdv3799JWvfOXW32h37fBpnRX4XVNw2Sldz8VhD1lDc8aKP37G5QmmOlw4XZ/Ns1eyKb/y6f5gj6vNy4uc2u94Tr9x4VObzH0TD3n1Mg9O8eDl3mOMHntFW5z2S3EWIz/2lGuo/YSfl3fdy/h3vYRBnx1/pLa6HBh37YoZtjhxhgl/6ravq/GIC32/+A0Xjlx23eFmHftcc86h22dd+cRdXppX48CeX7EYkz/rgjNxRoTVi0G83H/wKD5jsOArPj+96IQH38tUL4/Z8JXP1gBffvloX7WOuLChKwZxwyF88Ttzoi/PBJ6/Fy8/Xraz5Uus9OSGLp84GsNN8admxElXXw7EyZe46FtHgp89xh4+rmr5gXH803hiY4OTl6X0nEv58rLZLypeffXVW/86z17kC1d+psCxVvZZ+ZEX/xkt3mIvJnZdE+oERvtJ3D0X4M5WrDiLvf1cjGr2fIuD4No64tv1x4c84quWL7HJldq+gcenmk77km5zfMBsj5QX+v6sGntzdFoTY+0bmOabg2efKbhYZ76sc+svRjbWyTgdueLPL8HEZr/5dn24sMpr64SD9aGHn3XgQ77EgWdrhAN7eVX4hGm+WI2zcU/oPiMePvClD0cJ1zwe1swvoMSBi/WGww++4hCrufIXln6lGPgibI3px1c/0abDPx9K+urixpFeAkuu5IkNXtpyZO0IGwU3unHny5i89Awoh6QYXSuwYNvD9O13tW+0+89QL1++vGxwvBvZ32i/m2xt3Z2BnYGdgZ2BnYH7NAMOMi+99NL6dp1DFXFocLhyoFAcbhxWSAdNOmw7/Oh3sGIzhV6Fnvn6U5e9eWVKuup5uHJoouug5FsJHrTxc8D1MNA3fowpDmFqonag6gAF14FKHQ+HsR4C4qUWcw98OMEl5jrIOaA5uBkT44wzjOKRX4WOOePpwDHeGEylvppPRZvUVxP8FJjGxFkeZtzsFbodzOnmw0Edlx4w2Ca1+VDEg7t9hK8+adxcfWNsjBUvDrgah22tcKo/16q46cW1mGHw72HRg4M2aQ2tcXvbOHs48GF4KeafvYdrzoMIO1zkg72in9Q2r+ART7X8GyNhF5OxsOVm2hs3lj+2xc1OG2/4dNsrHtzS44dvfRLH1sYDhvhg80O3h49pEzcYjdNnCxMHftV04Sr2BG7FnS2cxu0D3Pn2ckmhZ5x960bfuAKP8C1Gfue4uambvhpONq2LMVgzThh3Enj5Pk/XfDzyJW/uKe43PSDzna5ciFns+NA3Jp9ewNvbxLh5uMdSnPZH1zcb43zBF3Nxq6c0Z4w+/zgbjyff2RUbXZJOPMKTC222RO7YFj/9Cr1y5aFX/Mb8Esd12XobY68m7JPG6qtbj+biaC7+OLkOFBztl3Czo38U2PSzc0/x4suLdn+r/e1sj1izn28v2v2t2Ndff31xsi7Wlz/3autqnVw71l4cOGmT4pv3apzgK3T16VmjxtlaC/M+R9XHEke2YbFL6ONhrpe45rKrTa/9hEt7RYywzXmZi0frIucK2+lfTryQcp3RLTZ6vRBsnh/j9Jwz5JXktxcvcVLToescwr9YjHdty7O1gOGFIu4Kjl3j5vmWX/oKHPdBccLGybxrH3756T4CCyacrlXc44KjeOHYk/JClx0sc8bp8w/Li2DnRNzlBa646MiFPwfkmiTw6Hlh6uUyPHq4O6ux11fkCQ9+9c1pGyNq+0S8zbMRK7/y1T2NLU7GSDZy51+SsHG/aE+01/T56DzJf7ZensqzeX5wsEfyC9s4DDb44id+exJW+dGna4xvtbzb/3jBtC9geAHrlxLXrl1b93mY+NHhn11+5Jv/coKjYtzLejbWzhi9BAc544+uebp0/G14a0rH/VVeceezvLGVF/Zi5+O4D8RM7AFn8/LU/lHLg3l49OVAjOaIWI3T4Y9e3NnirrRmfLCXD/EQdtZkxkAPNoEnfj5bx+xbL3p828e48EnHteFP1Vhn9uL0/xPIC1s25roPpMfe9VEscO0n47i1l7WV7gd8lAP85dycthfm2uZJ+1Afhhjzp++a94sef37GHrS+/IqLLhFD6y43CskHv9oK7ObEr98YvQrfxsu59eEnftmo2fCpbh6260Guis1a09PPhh99YkxuCDtrSF+89Oyx4ofFt/1inD+59Au7p5566nTp0qWFU45W5wI/9ov2CyRpq+wM7AzsDOwM7Azc7xlwiPjFL35x+ta3vnXrgc2hoYOD2mFD0XbQUDus/Ju9u9mx7CjWMFzXwaiMbcAGy4yQmAETJNPgPyzjIfIfxlhiyhzJ92TjSwAJRAOmLbtBcB9nP9n9WnHW2eWuOjSDtjKkrMyVGfHFF5G51s6VtbtasSFx3abrmA/4bbyyq6+NUJstGyxtekpCj191bRjp+ee1l5eX62XCJsgBu7/J6NtAffsGNhvCziZVjT/ucbIxtwkzbpPppbHNfnxdK9nFU82PzSJc7XlNv1j5tnmz0ZNH/Ul+vbDY/LFTbMzjR3fGo92cwM63Oj/6iTjwI2rjSjnWJwbXJLt1cf/H7OM7XXEo1guuHXC7Jmox2djDKNfim3mIi9pG2kuXFxA2YoqjNv/q1oYxm2JFHGy8JHoRmS8O+Myc0SsffPFtE2595UPtJcZcNGf88h8XuOcEPl1rFDascON/zo6OOHCVJziT97ShCxsevdZOOjjry+/krm0ctnlSYFxH4IUVR3bsjcGVe3NvzunQr9BL1z1hvDVi7pV03ZsOPbo34OeLH7zFby6/iD+7Cr05B67D4k9OriswrR/+z0l56h6jz1c5MX/8W3teuFvP7lEiPrl0b/3rX/9axcsxHHZwPQNbY+zFxoc49FuD8HChr5ZP9l8kfBA48qIQWM0RP/Tcf3BdK9p846PNF5x4Nef44Jev5eD0wzVdPsXuEEixnu7cuXPhwJnOOTv+CJ8wrivs4LGTQ9x6VhbH0d8RGwZd61r85tQ32t9777118PegnB/xus6vPx3z4osvrv8MlQ9i/XUwYK1YM3w7OMVFruWtzxNYYsPFfWdcvPD0myf99OUv3/ThmS9xGuNr5lgbHt04OGi1Rgksc+qQBz7hky5MdmqFLixrlR+f78RYh7ls6SmtU7HCMSb/7PlyjZ8iXrz0ibUif543ctGadvgpxx0q408PN7kQm1zHhW98lZkLPvUZ129d4wUPp2KXC/Hg7hvtuIiZDntj5cs1Lj6j1LBg54eNPhjWsvmDiTc9MeVLTsUQP3Pk8w8GUbOBwZ/DOp+z8PGRL4e8/mPL5kq/3Cn8KPRwkQ945kv+1cQYfbaEP4fQ9kj4yBlbesUEF5Yx/O0jfJbjaT5bT3GgA5cfeSZyRvhhx8YvDvjQ17rim8AgeNKBY00ZNxfmV1wEljzxoeAqnzh49uNlTjoILOfsPPd8e5p/fNsfweMHXvc6fesRPt84dl/QhUEHTmuWL0VucbZWzD2fYYgPN9jitE74Z+PA2WcSn2xhw/NLosvTXp0/HPlW2MmROYIjB3T8Etm4XDSHYqUjx3TYKfW1L9DHt2trmn+4fOCLO8zWkLjgEXnHmQ/rx3pRi0efMfbWLT/GfBbbZ7qmJy+e83zqE4N4+MNHkX/9YiL0YMIXj3nySx56+PNNX1vRxlmNf/NqruQXBsFVzPJBtzUAg574fIb6vx/wyzdbPvGiKy5zxQ8Mvq0D+q6r3St0+ON7+sRTPHBIMcjTFLxg8GFdqtmaT1xcs4GvpssvjsbirU34U4zjKiZ8PZf0ixtGeWWfLY7WruKZeHlawy+//PLFD37wg4UN7yayD9pvkq2tuzOwM7AzsDOwM/CIZsAGooN2m0AbBn2JaxsexQbEhkafDYlCt02GjYk2PbWxNir167PB6ZoNfVhXyXHTlG02XmQeO/0Nyscff3xtkLv2cmcD24YL93zbbLWh0hd3G7U2/jZ1bYrbFPJpk9ime+YKfzj82MCpXeM/80RPDMbSg4uPYiPJr/lo8yz/uLnGxTV7uG0cYZSTmTMvDW2A+RYvbkRtY+/lIzy6Ns/Gwj7Gib9S7vhrHnFgJ0e9WOAMQ11+W1fVbOIPV8HFHNpMiyOO/OGnVuKhj40Nfi/v/Hr588Iif3hO4VOfeNjzI36Y/Ho5hwkH1158XLNTx2Hi6p8Sx3TFwp/+o+60o88/nvInT+nzH3c2dOHCFA++9KfMuaN39A+PH+uQLl/5mzizXUzq5hCPfMOB1wuWfn4I/+wUfuQEb7oweiluHLf54hs3Pkic6bPHRx8/x3wtg9MPutYMHb4JXW3rtTjWwJkf+eKHPy/K4nCt4EFnxmxO6ehPb3LtsE6fHFiX8ZEbL+oONP7xj3+sAy55gAPTwVl5da0Y518/34q2uHHoBfaYz8Kt3zVOcdHvfukABAf5mj7oE/4q8RELXjh4xsmV/E1/y/j+D9ieK/2SgZ5vfN49/cewxDUsfsprWK7T0W4+VucVP+ixl0O5ap3woeBrPOxg9BUrHXYwzKXPqv/GQbuc8yt/nn/8yq+50ram1K49C815B1m4Ef1iodcaMX/6PdPLWfE1z67pmR+13NTnnmXHh3XiM9oaZUvfvHtGq9nqpyt/BBaBoQ8PRS7pWX8OXjuoo8s3fXji5QeO+6hYXBc3XYcojbu/6MmPHOJkjD7ufOon5VNNx8GQQocP2MZwkVv5UBcXrq1rcdElxiswzKk5lEN5gKOwN1904cDoGckn6T7jlw5u3ftyZ83waw7g+ewrTtfG/FLHIS9fCTxc+DOHHbDSgXl5OpTypQf5IPrlqPtBXs0bPkTOce25y7e48dHmzxzMg/aeG8VULuQML9z5cN+5diBqjB7ucBX2/Cj8yC0dMdmTya+Ddvz5LKdhsIFLcHaI10G7e81zC2Zzwid9fbD0i41/mMUtF8bo44C/XMOUY37o0mv9uDeKDwf2fOConU81X3CsK/7T4cMvTvRpK+GbP/rWSPch/3KVHX84iEec5swvXsSAg3lhEy9zhIs1oTjkNy5unIzzaQwunGLEUVtOiGtYsM0VXzjjKl/mWp85wVmbfveGOSbwxKw2Vjxw8OHHuM9h9wYMsfHhm8/xEoNcdl+q8RKXeyM9HOGKEY65hk+P79aMfLYe1OIsp7iIB6ZazvgQk5zBYq+ICZe///3v6zO1A2c6YmEDn561ovDDFh95xJXwp19cdMRi7vOpD0+5xIsUA4x8wqXHF1u5pNf6LhdsrHt+YfOLJxtiPG5xN04XHn6w+bLW4DReruFou4cctHsfeOKJJ9Yvt7/3ve8ZXrxX45o/9kH7NRO11XYGdgZ2BnYGdgYe5QzYbHz00UfrG+02gTYgNjFT9NVv42W8vjZQbZDgadtska7DdJ0NHXgJHQX2FBslG0+bIps6G3sbHhs4YgNk86PPRkl/L6NtwGzqbMJsqPiwebXZM67oo+MlT42DDVcv2tp0CN761WJpY2bMtU0ZTLVrMTcWhjiMi79Cl9gQ2lC2ydTHFz+wFG362UwdPsqzGj69YlS3+YwrPf381OZDvo7zQYdu8cVBf2Ns8Jcndf3acF0Tua4Us7E4y6OXBMWGml/84s131/oq4rNe1Ma9PNhIm/O48G+MwCX8svNyAcvLlD8dow93LyQKruUrO7YEfmV1nH40d3TK3Vwj6Z2rcZzYclvOYVXY0jWm6L9K0lNXyiVf054/8YpBm758qJvnfPNJL99eEJv/5p6N/Kjpwcl3bRgKMRfuF2O4sZ1rZSkdfpR/c0jC1R83ffXzb62oYR8lvGwbn/baifzASoqPfWXq65OPnj30HXyIncCz/tWtBfnxTLO2rUl4cKwrzz96+tTlQRz64E9++t2r6cc3/up4T67m1LX56XksjubYWDmffuHjJOfiVNNt7cSNzZR0HIK6n4v7s88+W9/odviOU3HQJ+G5VozXnvjHNrtKecRbn2u5FjvJ18RIr1jZeKZ4UX9YB+2ffPLJxQsvvHBx+/btlUe5tE5w43/eS/XhgbdcWe/yoVh/npHmjw4c3MVGt89PMZpXePQSevqL21i5VsPyWW6tmHfX+mH7NnQHJey67/mYYgxPNsZgKOLpGibBJV3c5MZnibjSoWdMzHjBgu3ZJV73hVpM7I2bQ/cjDP3GrUd2+nDnBx5e2eLOF4FrHeOHp5IvOPRmHo3D5Vvu+Gmeut/qm3OuD5bcwjBmrwdbLMbtnRzEFTt+cinGdNiyE6c14xpGBb59lV9EW0N8it0vLxy0+1cA+nC3Z0vg88MfLvjBL/fwxdyBmHzRhctn/vAxr3Lu+adNt89rc4cDbvJO+CoOmGwUuubAfJgzfLpP/GtJ8+C5iyMfhB4M8ZgPbXHhLi5++MOnOYcPlz4dfuUMB7mCqT3zA8fBcHHTFzMdWN2/eLrXiBziqhD+y4M+fqxXe2u8W09ilCtczK1D6fg2b9ZN97J4rBG64oTDN0y86TpsLx/GCR1xisMYbJx8gx5PfUQuYdAleCn09fGDX7krz675L5fmD745xnNyxYkfhQ3fciQu+vrwZc9fOObEeoRtnuXEl31wo088U/CDIy64dM07Hb7g4ckOF3Mgr2LgT81GbOmzbV7YeJbSg0NXLHJLsqXPvxqX/hUCX+nBwI2fYjbGBxzjFTpix7ExbetTvAo78dGVx/KpzaZ88gGXPt3WMW64ku4V+DDpym9zTifOMOKsDpc/uZED61zO4YrD/cROoYeDfnn0C7uf/vSnF9///ve5WVxX45o/9kH7NRO11XYGdgZ2BnYGdgYe5QzYRPSNdhtJmx2bnjZPYqMzpQ2QzYoNiGt2xMZGOWJM+9lma3NjozQFBr82ijZCXgRtfLwM+OeYvinicJ2eFzCboMmTf5tIxcbMBsw/p/RyQhzMeGmwSWOHfxvVGfvkpI0nvjaI7Fzb/LFnl45+3BJtuZIzejjDyZc4FXb61G34tPnqGk4CF45xdvDFnmjXZ1wuXPPFhuiXH3HYpIpF3rw0tHGlk7CnY9PJv+s5Hhf62vjWx44+0c+fog83xXU28L1YKebKHOmTCzralXKuNta6wk0e2qRPrniwZ6NfDdt6Ym/tOWjX30ECDuJQ4GYfhlisD+MwlV4o+JOLuLElR06rc/yIG7ujwDsn+eFj4tc/7bTxV7rP5Ny1teBeEX/5b0xOrRExF3drSM2OfbmYPOnrV0/BFR+1vJXfyXFyZzuv2YWrv1xPH/rDFWNtOmyJPrblHM95b9EJh25xpG88Kf/0YfARR2P6WjNwpj48dta/gxAver1cqvlOX23tNz/868sv7ImvbU5b03LBXmEzBc7kzLZ71z2Dl7nWR7QV2LDKM74KH2weO/1rJIcS7Dzf5YIdf0pSDPTkKkw8HCw4aPYfezs0YWdtNl/8ZV9fuNXGST5d95zBfQo88+I5inu2U0cfLLrsm0cx+wzzn6k9jL/R7qDd34r929/+tnx4ZvEnTkUbF3PnHibucZ+p+MlnXOWsw1994m89w4LBRs4Vc0jq12YnL+z4phOOa2vWGHvimo459Pznhw95EotnsWu4caEPy9oqTmuG6JdzhQ86nlHszZVDWLHDL6a4sCk+MVlncNm7JsXn80/BybiDtu4jOLj7nOeHjmv6RH7Y+OZv+V4Dpx+t7+YFlpgIOxg44g6XD/xxrR9HOedTrnA3t0SO/Zml8kUXRl9O4Ku80DeuEP75MVcwcWsu4MmBw1GHg3IBy/w59H3yyScXrkN29zzOYsR5zln+4bmX4+fZ1yE/n67FRAcnbbaefb41ba5xgFNu5IvffLofjOnvmSp2vMwPWzGKQezsxKLdfLOHiROfcOSm9WIeYLrnzIc5h8vGflSu4OItN3yJGQeFf78gYEvE6SCbf23c8VH4wYeNv0cvR65907p1xhdu4pNPOaAP3xrQZkNaB3h4P+hA2hiOfONrjYtzcpN740SbXxzp8wGbsPPcF78aLl0+fTMbP/Mqvz0TtMUAl55r94Uc64etsNXPDi6/6sbNAX2ldQHP/aDQY2vc32A3b+4fuPJnPL7sywd9nMWTT3pKwpYNfxV5F9PE5RMegd/8sSHwFdfZ0ZdXa5FP65KO+cZbEYNrc0bf3PIFgy0eCoEhjz1P8MZVzYaeeOWKXnHiq+STvpy0xvnnGxYd8wdHX9z5N7/ipocvfGuJDnyx4S2m8sdOn2K8axwIDL7gaOun2xe3xGKcX8UYbLoO2l977bWLH/7whwvL+E1kH7TfJFtbd2dgZ2BnYGdgZ+ARzYBNw4cffnjx+uuvr427zYQ+om0DYZNiw9FmRJ9NiaLP+BwrFfWHp78Ny9yYwFaIDZhvKvkmiI23jZ0Nj2/B2MDZAHp50LbBgq1PbROGsw2nDZcXPi8YXmRs3GzkbAqJOn1jBB774l6d4wcfeNJjKwZ9R/3yxbQxffFlZ+PINjnmKl/q/LSBhUngsXOt0J045Th9Ns1ZOTMmfhvINurs6OlXh8OeuGbXnN3rvbdx5V9J4tS1uOWOP3p8KPBsoJsXscGnbw206S6WxuAfS2NxiSdb8bieHHFzDYcfLyVtsvl3zcYLloPjciIPyvTvWjxyWVzw+U63eWOnv5jonRPj8IqL3Tkp3vjwE584GwunHBe7MX3y7ZcLXib0uW/E7cVeW5+XEbrda2pzarz7is/jyz0+CT1zrsSvsWqxGytHfFfSwV9M+hP6rs2fNr906E4JS794lPLBhm9xwdDvmmTnunmmo+hTtB8kOClEDic+XNd80Zn8cNHnPo5zvvRbx2oxwC0WbXknMBQ8+VLq53MKH+nFyTU8goeXZNdw+GsdGC8GnPILE8/uNRjPPPPMevF1r8GQezjsZ5yuK/SsIQdY/kPQ1qE/c9HBEJ8EZ4VN9uKJl/7G9XkJx0u7fjiu6eLk+aDWp9bPn2s+XNendn89zL/R7qD91q1b68/nWO8Oy4h5wFmOxcC3+1Gfa9yIa2L+8PYMlhNz2XzSFY/x+tno16dmQ+jh0XxlW78xc2pu4oejOY8zHOtCLA68ym85xdXceCZl49kDWz99dXw9v/h0TYwpchJX/fKiGNNPH0c5sadQk55z8Sp+eDj6rMbf2oAHwxh9sdJX9MGUUzpyqKSvjbc1Tcp1Nvz4trh9E7/wumfo6y+OYsLdFw36RjQ9a9J+a/KFo+DLjzyLiQ/3muvmVC0/+n0z1tyKSbww7ekcfovHZ4d/0dF+Bo541HKCJzu6fTbAwK880Wtu8FHkSd7YO8wTNwxY2sasA3ZdtybEaE3RkR8HgNYje7H5PLTvdI03f+LFh8Cr4CaW1gh7dnIsDw6s2Yqtb4kbt9YdqFvvrQ22uM15gTvtxEOPjYKHebeHVvPll3Dlhi86RN7xwNe4eMStD65Y5bPcyQsbGHLAL97iMj/yiZsY6cDQh4Nr9wJMNa6Ejtybs2Lnn43Cnh/juBC+rU16OMuRtSnH8GDz53nHDkc2YpM/tuysDb75xUm/+8IYDDZs6YkLJvv2Qnixo6ckXcOgI9+499yCh6c6ruKUN/dPz2nj+uHRV8PTD9O1uaOjwJJf8ciHvDTX7sm7pz+vxocY2DUv7Myr/IidL7nINz9wYPNvPchF8eGjGNcvP2q5ETO8hB6B790MFhxClw19fvTz3ThdpXFYOBI64cHIhj1hp63Arg/P1p62L3B53+RDzPDNvXdJuYP7rW99a/0rcP+SjORjXVzjxz5ov0aStsrOwM7AzsDOwM7Ao54Bm4YPPvhg/Q/qXkLaMNiU2HS4tpmx4aBrc6bPmEL0t5FqM1Ne9Ff0sQ3DdZsmGMQG8fLycn0bx+bdtU1Q/wEVHZsxG6V4qG0Obdy01V4IbCp9i93mKL9885WtTZQ49ImzMePEtULi2ubLdfpL4f4PfWJuLD12+mGHyaQ+/dr0tdNTk7mhp5dd/GFO39PHAjj9gCV3sNR8yZf85Rde7TCz/6IaH5hKdmpYRD8dvtrAa7cevDT14iRX6XthaP3lH2592kRdXiaHeKXnWltpzrXlphc2L41hyBU93PqlTXOiDhcH1+IRl0LCVitxNEZffsqRvqMYa47jdNRxDXfG4xr+zLE+eaOnhBcn12J3KOLbtnS8lLmHfIvRixkdhw7GYHs5M59e1DpYL6Ze6PCjO+OUT7bs5MwYvqS88GVMSWa+y6eYxEDYhFVbP750pr1+og+GYr4JDvz2sp/drM0LHfHrd90aZp9/bSWhiwtOimvj4XWtTyyuZ5827DjDyAdcL/XhlYu4lctyEa750UfY1IYDX19rKT5hG/dchs0PG7oET1jqiuv63HP6vaR/97vfXThyDqP1AYcPhe6c7+J0bzp05t/z/49//ONat3iwmfHgTdhql086xaSNm1xqw51jbOF2mKmtwIprePkw1kH7u++++9C+0f6jH/1o/Y1dfn1m4hFfeRUH3w5bzJF2saxEnH4Uh88DYk27f61nUkxzDZQDY+GJ2fyUC76U+um65x3GsJdf/OCGwZ/nkEPZnjXdm2wcPLJxsIuvmHDtMMs93KGQODpoZ0uP4IcTPfo4Zt+BD58EN2uKLb2+IYwDHEVcxtiwx19O9bPvGcEfHnzy1+GW2Juz5fS+X7nilw2+dHomwXrs9O3wvnzAzjMYJn1rjR/8arP1jXa5owvPmCKv+OuTV0WM/ODn0BEH8YuHuIYP12eEb/62zvTD9C8I/EJAfrR9ux2m8eIRJ8784axt7bGRT/z0VeTUGP8KPtaBNp/NhxyLCf8Oyvgt3/To84EL7g5b40P3q1/96jqAMw6fb3Pi2jh8JZ/G5SMMnK0Hh3gO7eRdbPzgBKccWfMw2cDDS67yix8bdTmQh3JB1zPAN+/FRe8Pf/jDiheWuPXjK2fmuNozlD7e/Nl7scHF+ncfiVue4eCJr19EWBv40IMDEydx6oPBp/k1J2wTnDvs1G/98tW9IQ/yw16uYME1jit7/hX2/OIoz3DZigevGQMe5sXBqjZMa5gd/mL0HoJzh8fG5kE7O3yU1lRtGPzSkXNc5FMcFXzZyZ314G+lm1/8xa1ufuGyE6/CzvzJA19Ev/2bZwJf5QJnv3wuPv7kDkYcymfzFia/dPgWD9GnPeeTP3z8p6rmib77FqfuDdh8W0fmg39jdNn3vGoeiz2f+eVbG5aayBsp7nVx/wc/CX9s5NacW8PuTdfWsjk3joMceab51xWemfq//e1vrz/95s/HkPyH/6B6H7Q/KEN7fGdgZ2BnYGdgZ+BLkAGbmA7abXqIDYkNh40SaRNEV79NBZ02vHSM2ZQ0pk9bvw1RmyZ2c2Ok3ybMRpR4QbBJ/NrXvrY2vzZpXlZthGzE2OPTJiueMLWJjZMNl82eb4fY5BN82ePUNRt9BCZsgnv8p35xTrvGl+Hph+vKxML/nG554w8HfCquk2KGkQ297Ca28WkbRro2s+XTxlg8xhTt5rZ8FMfEqV3NH32+cXGtwHNtrLzBV8xbvvCIS7liNzff8YBLR13c2nwfY893vCZfeWBH5NK1NTdf2PhRvHS4R3Cme070i0ecCoHPBg9t47XV2VyF2bzAol9xnYQ3Y2dH1PyrzYEXI/W0YdfcefF0KOIedG96+fIC6CVDm64csZcTLyLw1V5Cyw9/9MVL6MaJrbl2r6rFPovcsZN3tcL2WODEXVuR47C02egv5kXm8IOe8ea6YbZiwpGEp5+ocRMbHtry4JrUlz4e2vE0rnQt7ulLf7HDmzi44Nu8GQ/HOpYDtgqBjVfXdOnA0TZvcaGrTeho801HIek2bq0YC/+oV47xzSe/nv2u3eff+c531uGOHBLrxxoh2fObjX7+cfPi3gu+w6I///nP69kvZjqtqfTVShI+TkTtXukZIS4YzQEdseCNjzbBT9vcwMyPNkz3jnvLQbs/gTbxFsA1f8TTLxeef/759W1+fDvc5RdffQp9OTIvfM7YuTR/OOvHlW3518de0T9t6YqZGNeGo3ZNN315kU9rvMM33PgON27y1C/aYbGjZx4cWonT89j8KtYJfHh0FVj6rQf4rnsm4U2/zxfXbFzXV1z4dwCpz8GL5wK9YoalHQf88aSPn7wbt1bwUOPaPcMHvfIgn9ruBZwTes0jewdDDhLlA76cGCcOSsWEQ7+whuX/MnDgJib+y6d48OdDP/9yrhDzIU8Oi82hOFwr8uEzQm5wYAsLLweZDn7pOQC8vLxc8VsnMNjixS8O/NGFISZ64tBW2MiVuPhQ01UIXf3s5Mi4ePBiC4Oo6RYjezo+76wbumwvT3wdxFl7+ujxz964oq00zp7PxCGrfSxs8yN/2g5+4ZrDDqzFLhe4yR9+sNnIvXtHvuBPDnjIn3mSc225/f3vf7/wzDPRLzfwKtYZLvSLzV7AuhGTMcUvEMSPnxzj7YswfLKj0/3Glz7XhE/rnn+2cMUuTn7su/TzIU62fOmTf/GJmR3eOCvmmH/2ckfgyrP8GeMbD7ljY5ydGHu/gBl/OnzHCR++5V2O6OIFAx8iJ2wIfPz1iRkPa8Bc4sJWjS97enzcuXNnvb/wJd6wYdKZ69U1HtYaf3T5sn9zn+FGBw/vRP4li/u+OeTDOA7WkXyJTxsmbONEH85x4osdHzgZt77oW9fNm3Gc2NEhM4/0jcFmLyckfT601Yk2/3zET+3epSvX+Sp/xitw9LuWNwfr1jA8940514YhJ36x6Etbcqfv2WefXX/67ZVXXlmU8hG/B9X7oP1BGdrjOwM7AzsDOwM7A1+CDNg0+NMxb7755ucvvjYNNh9t3Gxq2uQYm4WOzQocGyU1mRsPfdnTb3NkQ2Tj6WC9TbSXU5veXhxhJvnlz8bRZg3u9Klto2jD6qXPxstmMZ5hqeHBiitbnBQST21+0p12xRaHdIs3zuoj13xNW/Zdh61vSpj6YMa3fnZhH+3aPNoYZ6evWGHMOItDHx1CRz6n6DNXvTjgoOhjS2Cxay70a7Ml5lPRV65gtJHHN13tuXkvD/zFg20SF3FPPvlJz7gXvl7MjIdtzXlBiXNcsq2Gbyw9tZeW/FqPRAyw9R/nIKxjLQ526rhrV+LKrjzq0+ZHfF5C5Ei/ok8u1ebPPeh+vDwdLsi9Fw33kpcMbb7o97LkfsNffryc9tJHj45cKLXzi0+FLnENI93Vef+HMT6U1is7+VDK+cTE37UxfhtTJzCMiV1e4qIPbi/l+tnhxn9xqfUb1zaO4/SZD5hJfV0bK4/6jCuTa7rZ4kvyL14FlmLe40/nWHCcfuJHb7bp5KfY9fEfhra4+STpZQePjjzLq2tFm+D9zW9+838dlsBoHceBLhx2+ujAoeeQRG0Nejl2r1mfDhm8/DtowbE84E7iop7rwD3BV/h8sY1L+u4puuUCNzjG9dXP1vPFAfvD+ka7byn+7Gc/u/jrX/+6DrD4lgPrUI0/brg0J/jIjTqhYw7c2/Eu/2p4raVs5KH42EwM8RszFz0j9JUneMYdrnjmxDfu4ui5BHva2jfYI8DCgQ2OihwTdfPfMyne/IYpZthw1K47iNQHR4kfO58DsHEk8JLmXt7LTxjliH6+8i8GuJ6xzU25sGYTtnGB4VBIPuSRP7Gy51P+6PDbvMoRHc9zh458EHodArrmRyw+C61ZdnT4gM9OuzmA5TDKNz/dhzgaY99BFkzx6jPn2sTBJU7wxCIm9xTe/Bh379LHqXx2QE6PrcJH+cs/G2vXt3rZdk+bZxhds+OnQ17cYDuEwwmX4saFXfPM1joXR8I/H3zy41C3g175wYc/mMb6lwlyTdjqjx9sOZYP9mI1xk/3irzJId7ixsmfjtGunw2f8VVbe+ZNHIR9h474G8M333T4dR/aL1gjMPzJRjHKj/lgKx7+rB8xWatsifVuTH5gsZETz2t9zas5EC//OMJVyoH4FXGyIcZcdw/IH1v9dOjjIi9yIqdygb9Y6OGGo9iLg99iaQ3H0xhRw1NwoCcecbtufrQJP+K212pNdL8Zq7DTD4cPnNSwxYBH+aVrTMzmzy/YxOZ5YkwpRnpiV2DgLV8K33Tlyxifij5c+CU4WH8KPX7dd+0L+Mone2P86ldbQ/CKST8c+OKt6KfTXC7npx84i92zJT/h48CfedWGwZdnkV8CWsN09fEpD67NveeBYu3h4KDd5/dLL720XMO6ieyD9ptka+vuDOwM7AzsDOwMPKIZsKHwn6G+8cYb6zCijY2NlXbXM7w2MHTaEMGxYVQbP4r+dGyEbGZsWGysffvCht5miq26jSj/bfji1LWaLqw2q/zaGDpgb0NeHG24jtxcF+fEEpvSmBoGHmJJirvrcpAOu2T2FWN9U0dfpf7qeBiHIQdEv6JfHs/NQzks1/TrKz9hwAnXmHzrKwfp09EPc+LGY4Hc/4FTPKcf7WO+6cKwTmzwzQ3B11ibfm1+y6e6MbgkfrDizS4xrrDzkuDlNn8w4NucW1MTc7bDqoZnXFxsE5v91hUO5ZZO3NhqT9FXjPq7xm0KHYV9uWlexO9FVz97pfyqxexlxwu/e9K1Fw4vvV403Vtw8dcvH72ImRdrpDjiyAdhQ1yX+zikI1/h0YVZzPzCV/ST7LX1ldfy3Quffn1ezNJhW47xKW/a9euD6xq3/IehTzGeDdzG8dKvr5zrI3FXJ2E1rtaX1A6v/q69zFvDpDjMEz5xVBfTtA+7vmN9tIOvELaV/PARprZcWmNKts0tDP3+RINftBaDfrHRI2FrhwE7Hu4tPvWZb2191q4DIIcN8mEerV3tcseH+4Rv6372a8OUR3Vx8cvGQQ07/fGasbEPw+ffwz5of/XVV9c32jtgsc4VceIhHjzxq8iPWJJiFweu2bGVd/pyyaZ50O5a3OaQPSzX9NzP7LSNe/6o+cDFmtWHLx19rdfyBqv50ecgxTNKrT8+MIoLL/G7VsNlKx42MMtJOYCjr/uIHlE7RBJb1zg6hCH8Wk/8EPp8FY82XKV+/Fw7hBaHfngO2VqjdPgJd4GPH2LAKX+G4MgvvvJqDI45gMVGDhw48YOjMT7oxlEbBm5qesS4/MBRiNx2SNifjpF3umzdHz5T6enzXHZwjR/BxTqBR09OOnTG3S8F3L/FCkex3hVcjbEXh/ucf31w+ISvn27rj69iY9daNZfipSuf+NLLL/sOBenoZ+MQ0xzyp1988gdLH65zfbLh0zh8fIn54Jet5yEssZkvf1rEeOsYF3bVeOGLh9yVP/7xgcOnnPNv7bqGzUYssPiEhTN+5te+mo5cwcHZHh5Ha0L8vjWttn+AocDDQ5te+RQjTFy0rQn++cAHhtisWzZ4wsaZvhyIS7u5oc+PazXuCr7p0HetsIejD0fYPi/Eaxw3fHAg9BRxKNmGI1Z+6MPiOzv9U+DjGF/6/MkvgUknbq0V18YITNfmQp8Y8FXrj4t8yp3a2MTlr3W5QE8/8KcrD3jRl1u1mIxr86mIwfoyT2q+YVpjcLTZ6aerJvHDQT6LwTWeJN/GW0vwFPrGE+vVutWHo8Kv3LWu9PEvHmtOYdf8GG/u8MBfgcG/v9H+zjvvXLz44ovLbXZxeFC9D9oflKE9vjOwM7AzsDOwM/AlyIDNxvzPUG0YbFDU5zYP9Bu3CbIJafPUmHFlCqw2Yg7WbcZsWHxLxSbdNXsvEDaa6jZJfLTB5Mu10kbSps5myxgxxt4mrHj0G4+r6yn0+MepTSB8HNrs0amPP/pErLXDdF3/cWzqGDs3flU/WzwUgkdc6tN/zl6f+Ok1P+WETbj04l5/cXfNTm7ySR+P7OqHlWink3+5VuA1p/Gjo5gTG2ybYsIv8YJDF642nPy7zgfd/ORLH7t4uqbPj7XoBTxdseONn5cGXNnSr921Oiz2hL1iTLGWFXG4Ngbbxj49drDjR4+/SnHjpYSjf/bRlwsx6ZfL8hi28VmK38sKGy8YvhHshdg9haM8eGnzEqYP1zgbn/xwaEyN67mylE4/5CJucOURDwI7X3DhEH14sNXn/qfbPBrD1YuWdsIuX+z4at6LQU1v+tAman4qMHBlE273iTElyd/sa37pZN+4a36IPkWfmh2/5rFc6cOvZynbMCbfBXjFj3zAEUcY+eQDZuNy57qYtYlx3LqP2Svlm461Of/Ju77G1YR/2Arf+VuDpx/mn5QP4/qsXb8sctDm88WadiDoW2p0woqfHMZxAZ5+FCPf2mJjJy7rjC2BV37CoKfg74X+Yf7pGN9o95+y+VM5HbJ5lph3sePT5xrOSrHgo91czPXjOeFZgK9xcbt3yj9bz7FyXuww8jHnyzhMh64w8aIn10qf8fSyV5Py2Vz5zJdzOGzp4SVuHPnVV2m+2OOAY1jyxI6o2fSZUz74c6CIu3F5hukAmFhf1pN1pd9cJ+W2fUrrh662v1cOWxz8e7Yq3bd05JhfAo9uPvT3mSJuB24OjmD2/PPc6194iM284llePMvdF3wRuUnPuuaPX8W1b4HKI9/yDQdfOD4r+Gtd0IHHjr2cmjf81Mbpszcux/5TUN8wddAsJtx9U55tcePJvjUgbn7kgr46rvjjyQ/ecZEnbbrmQ/7lgC4s/vDjs/j182UNGNfPRuyeL3zwp5hzuUr0FQPc/BmHK4+4wIDL1i8djLnW7z7nT9y4myeYitjMLb99XrMzF2IIx0GyZ5/PRGMVceMIly6b8i0/7c3NCT0c/CLDOnNt7v0iAK5/qRonuUr0zedKa4bv7it88L68vFyxyIncwBWXazjmQcz4sGcH2xiBIVdK8ZcD4zDZstM2J3DkBy82ck6ndQZT4UPMdLqW92I1t9Y0TIKDHMKHR9jhAwtOXOCGbVyBgwt7bX2kuNI37l898E+HDxI2HtoV12xwk0sxwJcT8y0X8g3HeH7p6OMXf8W9SwcWkVM8its1YdMz1jUO9AhMpedffuBal/ykj6M1AK+c0FFgGC/f8BTXYoi3+Sr3i8DpByyFwCG4s2X39NNP7/8MdWVl/9gZ2BnYGdgZ2BnYGbgyAzYR/kb7z3/+88+/0W7TcU70t+mwCWnj1oaETZu+IwYdGxQbcn8ewIbMtRcqGyViI2NT50DEi2YbQv18qRWbJzwU1zbANl82QfFKP73wJ9fl9PDD5g+vsHFQ2E1sOm04izUdkOzLlzqdg7v/+JIfsT8IPz7yNXPgWnxJenHXX9xTT3/5ZiMX08b4lHDp4auQNrx8mFdFW37hKebEGrF5NoazQqrhNW/62cWJDQzX1sVVwoYPG2/r1DV9RVu8XnTkoXj4L3742o11nT8YxtjD8fJC4Ivbi4Z2GHhXYJGw81vcxtjSlwf9dNkVkxwoxthPfTYKfS+qctALDJ7uy2LH37WXai++rYt4x0288NTxUxeDuuviXB2HHzDm3BZX2GzFIn/mSD+ucuogRbxiiC89NiS/OGvDliOib+bJOHzx6k+HH/36xMrflMZmXzmYcRlvHqZubf75jieMSrkuJ2y0ceqFVTsM+SqG8I9180aPX6X7M39qmPCM8Ulck/jRkRdrqud94/rpqR20u/e8VOuDV0yu4caFfRy18ZRrevJo3ZcD82+tOjhQHKI4oPZP6ZsvNj5LzL8222KDrfBfMcYXPz7PxBXnyatcwWPrIMNBu2/EPay/0X7r1q2Ljz/+eHG35uXB4YY56b7Hg39x4K42rg9veShmY+Jx0OdZIB/lAnbrUC5dl2fzAAtu2PXRwcXBnGdMOaLPnzkqp42xJeUVhrb1gR/OdNnxh0vx6K/cQ7m3XsqHmIiDO/cIkTOxGeODrvmVB38/G3dcXasdrhN7FuupZySO+YallMeeP9ag/PkzBA5T+cIdB2u1Z1j3HX/lh278xUzfnkkO5NYhdf9SEA++7t69u/Ijrg4jjRHPRjp88wNb3O6Hck5XP1vfNMYBN7ljw7c5xEOMxvS3RtjC4N/90kE7/3T4Fp88+QKGvWF59uc0HB6yx4fQtQbcT9aB2jgc337HQQz48i23csVGIeZTHGxwEAOBzcaYGMTCvjU8/dKFax0psMoVvfa6cBR84BKY+ggcnNmbe2tI/OaSX5g4/ulPf1q6xsRcXuNrzvi1JvCKM18K8YsIOaKjj2881LiZI/7Zix0GXoocpScWz2s1fevI3xjH079OwskceCbBYCcOHBU21p39hHVEN9F+7PQf/cI2BpOuHOOApzhxbe3h6pcz4YjJmBj5ootTsWYnrtarmPHhB1+28KyV8pJ9XNXWIK7mRazdC/wSvmCKha/61WKRFwLbvNYHC2diXVgjdLJvvHk07rNAHHjToxM+HLr0cMRLcd+69/AXt3HrQy7oETEq+MBVtCueC/runp41fOjnFxY+5a37Vb4IXTnhhw4becILF5itS5j6424dGaMXP/Zw+KSrDS8O1k35hWf+rS9+5ApO47XxFIdxB+1vvfXW+r9R9PN9E9nfaL9JtrbuzsDOwM7AzsDOwCOaARuLqw7ajZE2OjYvbWBsXJQ2p/Top6Oe4tqmykbsiSee+Hxj7tvs7GyAbLZ8I6jN6PTBDx762sDZ8OiHa7Nk42UsuzjB18f+izZEOMKExYauTRofxDX8/NNR6JN81L86Tz/ghllf9Tk++pSJow2nMfbp4GwsoUvUdBJ6x9yIpdzmA5Z2ODDSC0stN4R+ZdrNtvFyYONaztT1l2v+6OCreFmgo20sPvS1+TFGhx+iLwzx2TQbF0cy+Wkb94LjRc3LsT765cwatdEu7sbzh4O+GevRl3Fi0w8Lf/gwW7/G0+Nfwa31pW2cv2J0XS6Mp6/2UiEuuumXQ7W+bHB3P3nhkjO5x8tBRwc58uk+9dLr5aT7gy1O+MbvGEvXxivsxHaVNLe40s1P9mr25kcxjjPxgu/l2HV/Y1PeyyWd2t0H5UI/O5jltjVqLFt9zWVc1+DpBzu46dePM11ctekp0951ks7EKRdqMvG6NhfWWnbx0T/78r+A7v+Axy9dMRQ7XT6NK67pGCdx1S+X6Vhn1pNCjNPNj9phhmL9GWvNpo9zfLJfYKcf+r0wZ2fe820OjZknc+oAwTdkHbTPeffSzq77pLjEps0/v4o2X+6TedAuZv0KKVdqvvhw0P7LX/7yoRy0f/rppxevvfbaxe3bt9e9Lr/m3KEMzuLRJxf8E9y0W9/FQac42ZgHzwP9SeuAjftfTsVWPrRJOSpf+uQVphxoT+GXLtyrSjzUSnrsiLp8mwdtOo1rZxtP68L6IPIhL3TMqxpPnwkOPDuEck08A2E6YHQQDEt+5ELhQ8GlORBnttahQxv7IH7o8Q+n+aNfKQ6Y9PluPfd8Nt/uIYfVfVPePHmGw2k9wGBP8PBMh8F/fDvIpafotx7wlZ+4ihW263Koz/X8lrc+eZBHe0FYRKxihuHzCm8+HOKywQtO+ZQHcyaWDs3U+PHvXxqojYuBHRtYdOTO3MoTPnT5x5fgYZxucajh9HnKznhc5Fge3Xvliq61wh97uK7xYudafz7igQtf5Ykege3/YjAmP+6jYjMOVx9u8iVHOPKpDZ9fh+zWA86uiRpvtgrhz3qWC3PkGpcZH39yrM/e3XMV/8dOh+R84+T5CCMf5r15YeM+8hyRLzhiYmeN6MOdf/nF2TzJKR01jnTkUazWJtFfjvmmC78+4/x2r7GXI3z4oicGMYYrDhhH0S9vYuUfNtx0XcNtnc9544MUu9yIjU4Ff1xxKo/VbOXFmNz4ZYe6eYFf3GzEKV/NLztt/Lsn+XLfmR+6eBiXC9yaT3gK8WzX7lkTd1jNhT75wQ0WKabmEIa2GHDF3dwpYtEPkw5O+tio02GXvTH6Cl/808VljsVXbOnQK1b2rp955pn1/5r5T8gJjJvIPmi/Sba27s7AzsDOwM7AzsAjmgEbmHMH7W04hGXDQujaZLi2WWlzVG08O23SBsRm2YuqzXff3jJmw2bz6aUAjo2MDRmBwZfNlL54qNtgs7FZsxGyqZ0bKxj4JOziU1913OGwiT88PrLVVsKlJyfqsLMNG6bNnzo9dbjpVefLdflUw+CDHaGnTL76YWdHPzx9tekR12Kkl92s6eST3pR45F/dpjQMfUQt/nJBj6RvvLlja700ZkPOl7VhTNt68GJA9MGFMUs5p5tv48Wqjy3Rtqa8KHi5VxOc4gUHB9fsFGsTnzkPsIoPBj1+s1GHa5wtHC94fMSvONUwmztxwVPjzJfr/Kpd09f2wkCvfv4JPyS78u1FS4HvJUaefXPTfYon7l7AvIh6aeQHJhwlXH24q/HRXwz86m9MfZWECyuO4YXBtpzST9eBjRjk1rdOvYyKAY+41GbPjsAoTrb1pztt6cEkeClT2JaT+vHmI106cMpHerNuLB9d06mtzpcarjWVNAfx109HmX368SNxSy9fkz/u0w87vqwh64+N2lyo46Gf30RsPh8cEhrrwIEOH/Gszo4u/z5H6M57g04x5Nd8WQ/WtUM52Hj5LMGRPUx65l9NZ+bIuGJNel64x/BnKzfGiL5yiaOYHubfaHfA++tf//rik08+Wb7cm+7VDo860BCXPBDcxEOXXhzV5UhcnsPyom1MXe7peTZ0f7gWp/jZlUP64pY7funIFV5x0QffuDL51J+u2nOYX7j80gmz+XONb7E2d8UXXvEYl5PiYKutiMUv7Ry2uS4+tnx7Djpst05wU+LGf1JcruXe88h/xAcXbzW/eIgv/3Fkpw92ueLTYRg8bT7k1iGtw1h5gIcTW/iKeBViHj3P3T/8wsAHTvOYrXukX2Di0b7LuHmMl2s+3V/4ETzwYW8/6L6hL390jeebnw79cGAHkz49a1wczTd9a9VY38LFxzhMAqe49fl84ION3ImndcAPe2Pln//2B3zR0cdODHIhDv18WSd9lsKhJ3b92YXNjr01oc23OaQPmx57v1gTk+ek/OGLO3w5kge155t5pSvXMOSMXwef0rJOAABAAElEQVTt/TJizpl8mvPuTVzYiafPTnlzrWjLQzmm65AVF/+iQg5gipc+32zwxpNvuOIWBz3CRgx0FQJbPGKFwzbuzal+uOzlK12+iXH98ls+tWG7hhMfvuJkDuUErlJcExe+MbGp84UjHHjug3zpT+gSeLD5ktdir5ZXbfjs2emTv/40lL5///vfawxO+vDFSr/Y3euuiT7+82UMVzX+fMpDvwAzV/JLp5jo8kE/0dZHlw/xWS+4qfFV+C6f9PSxrcQNP33uBZjyoI8+P90D+rLBhT5+bPKVjXG8YOUbjj6ij0+50u9vtL/99tv7G+0rO/vHzsDOwM7AzsDOwM7A2QzYcJw7aG8jZ9wmQ9G28bA5cd0GzQbEdRubNjEc0nXt5cQ32X17ywarDY2NjxeHf/7zn2sjo98G0yYOB9h0lLDUxm14tOERG2SbqfRW5+kH/23E4BmfEl86lcbpFmvtchEOnsWeXTVsMclbG2d2+uUP36PAx5NO2PDblBon7JuDiUGXTwUOHbV+vuPNpnG+Em26CqE/c6CfzhELVzEq+Q8jTDpyoehLT7u42PfSzF7bi4SDAPpy5qXF5h4HOvqJtgJfH1wxFn85pIOLcaLNjxdbxQsFbBt3a4++POYzbDzoNA/0jMUHdr7UU/iOn80/P7D4JbD1405Pv7p1pBaPWrxicD39lJ/ynX84SZzZK14Uu0fdY3LvxdzhRXw6oIvvuRj5lhe+ylfriG/9lcbjNOvyyTaOxuGXE/61ibbiGeEgRY1nB+3dc/AqbPUr+gibDp7qxze/5kWbfvO/DO//KDbj9LpOJ57G2JdbekehIw+9/GnrS9joI8UEU/scXnZioFeZmHRc04GjJvGupmO8vC6l0w/91ibOcW+9wlLosOvauvInI/zZAbx9O9BapCM/eLJRsyk2tfvHYQNd692885sOvt0n2vQdCvmGKGw82Sj04LsHFbp8ipN/AluBhaNY+WJvnU6/dAg/dJ966qmLX/3qV6sObync8Acf7s33339/fTsfvs9Ta10u8fUsk0f3db7U4nM47PAnftM97OJTy4n5I2ybc7lRCD06PUPZuI/wap5dy49DZTh8y738Hf2x1zd5azsw7CDRvNATn/vdXsO1eYDLV/PHHy4K/nwXu2vimg2/OMcffp8L4fNBL1wY1otnplo/wbEcsRGDzxI68qDP548DUTUObJJwXGvb68RXLR/msTyzh+NQrGd5nw3lEr4CDwZMz3jrhsRJLgg9bbjWEzz58bksR/LAl3H5KUa/zIKbP/NsjtznYrfOmh94FTHwAVdeLi8vP+fLX3+2B0+8zE25ta7lFjYurWVzyLa5kB+xsJeD1gYObBT9SvwdcOOPV3kxxl9xwOMX//IPm28+8YBNP3xtcyj/8GDgJkfmN//i1u9PGcGBa73Btt7549uzUL+c2HvD9rwzL54Z/oUXTLp8iYe9PJpD/OSRbwKLPh262uXJnMLAAX9zZ357JpZLvo3hzw8cccNpvunAkjv+4yi/2rDY0auEr84nXXz0tQbkyn2nxJ+O2JoH/PW5JvKPa7hqOcYP5ziUC7p8GuNX4QuuORAHbDFkb5zoaw7lIKGnuAfhmVP++cbds9CfrnIPw7BvoU/PtcKWb7HhqmjrpwvXtfmgL0fa5Vbc5s0vBs2tdr75E9Pd05+M8TzwL0XyyQ+/co9v8eEmRvhErQ8XWMWPHww50iZwtPVpEzaeMzD4x1cRF0y64hMXXQWueWHTPd06ix8/8kBf29z786cO2vd/hrpSv3/sDOwM7AzsDOwM7Aycy4DNjYP2119/fW1SbCTamKmNt8HQtvmxsWmTEiY7hQ47G5uKPpsy/zmSfzJvo2KMvo2ODaKDdgK/zZENEmmjxi87tc0aPW0bTtJBexz08ZEdW4K7vmRu6CZn4/RgtKFjq5QHY8XL71H00VXEM3VgwjpK/HApB3iIl33cs+86HHZxMhaePm2cE+36YGc3eYbBH4EvHrYTS595UbRhhANXyYe46JRvuHgYZ99LGN/m1+bXBlkO2iy3YWaTv/DCbgx3Y9Zefspn115abdAdEtlk48uXFwd49PAgcIm1qRjDtRgbdx23ZTB+0MFJDlvjXkbKK9+uYcOAz0YMBHb3Qfl0DZNu4vq49uKZHh0+FHnoHqUnz7791ss+XC+M7jf86LDHDV6Y9GobU1qz9LOhN4Vewt48zfvAOFtSrurTL1/0xeG505rx0i4WuYZLL3s1bsbU8ORfzOrmd9rAyJ5Nol8pRvZdz9jirDZOL99hzRpe95Y2mwSGYi6IdYrrOZl22nymW3zsjJUXNclP7fzBkLv6V+P0wzy0JtXu5eYyndY4f3Lg2+y+DcmnQ47u2XjS48s4PkTN1iGUfj66v9PBtdI6cUDg79mKmz5hq9Dxgu0woWfNUjj9KF/w6DqYYu9aPe95OArBm65fOP+nfzoGntgcmv32t79dB+3wHbS7X92feLoPHCKoXcsfO3lyT3i+xQ9mok881WISK3tFv7lT+FXgmuMO2tk0zjef5lG/ZywbOGzkDX65K484sOOTaLsvHRTCds3GZ4ZDTGvGNUw+4PBZYWNeXRdPeSlWtULHusLTvCl4wI4zfBzoiV8t9+Uf53DYFqc1Rac/X4KrXxTwAYfNlHKuNmfG6bmWj55V/MsZHPnAUyyehcUEV8zigqPGBYb1TtjJqRwRevLqfuy5Ko+4wGpMHNmI0eFuB+34ih83h+cdSjYffCjw6OIgFofb9o9iVeD6lxzGYMBUe8aYC2uDjnGF4OceEGtzZZ1aL+zgWhuencYJW/1sFOLPmYgfP8KfMTGwKxdy0DMPP2Nyy55P9sXNRtsc4C0H5kqecG4t6ZdP9g47jYWLO3/yz7ZngD6/uDRPDmT57aCdX+O4smkOzbG4zBs7/HHnQ5t+eVG7litccNX2i4ByX02XH/kTG39s5K/5llP9/PBvDD49nNgrsFzXx0ZxDUsxl2r9ahjyq5+e+LXFKDZ94pRnwoccywcMcZRjtb70YNNvbfBXXsUgL/zwx68Y4LFxHU9r3hw2Bp8uwU9e6Chs8ZUnf7KHDzjuYzWcOOIgdnFqi7GY+aInBn14w3Wtnx+1deeg3b0rLw6p2xvC8B5nb9ihNb58wVHDgY2Xoo2nfrXYxMpOreiPr35CvyIO/XLIt7z4VyBs4Stw6eEhB/QVuPOgHbb7EFb86LHTp8B30P6LX/xiH7RL2JadgZ2BnYGdgZ2BnYHzGbCJ+d3vfnfxxhtvrJfuNjxtcIwfhY4Nh02K2jXRbhNqU2ajYjPdpspLjQ0QvfRterwU2YASdgr/Nm6Evs0fP20I42dcm04vLdmq4zb12YirzdlxzPgUenAUfpRpo60ksJV0tPFOJxz6xq6SqU/HZnHqxz9+xioTMxt+6Sr6XDemj5yzp5dtOuKZMWm3qVUXO31j+XNtTMl+6mq3Mc6GnvlXrK82y+a7GIpDDcMa0lbYt67UxR+vXqqsVQcTirZxPry0lDdzj58xwrY1UQ71x4MePleJsYlNzzVcLzpeytxn9GDZ5HuRm/EZU4oRBk5HDq4T+kk51Cc2BxZeLIkxL299YwmGgpv5wJUdf67lC1+Cr34YCX3XbOJT/PFgZ8y14oVOYcMH/Mbgsydh6nOv9NyBJ5+eNT0j2MclLNds4fOvZmO95YMuLGP5VithGsfTNU6up6/iVuNGh9Bjc5Uc9ekq+sOAp8+60a/kO9yus6823ph2canFO8eyybcxOs1d/dZkMeLYva2vfrrwjJszB48+J/R1r5VfvIo1DvpgmFuHDfI4sY2T+tRw+YLlsJm9OfMtULGkC1MuFf3Fpd11n3nxgnt8VhtTxOHZ4hfO77777n/0jXZciL8z/5vf/ObzfxXmsMMzK86eGX0O02dXHA4Z3MtxN56kd6wbV5fDDiLkhHh+8NtzSh8cc0aHP2Py0f3BxrwYk3/j2nGthmFeOjCBTYzLe2tGzA58PC/1k55RfbOUD3yOaym/+nFU4lQMMB088QfHtbXgPvDMlFv+2PKhrYajhOvZBkOBJ2/88yMmJYHP1oGpnBuDab7FpK95p9shPm4Ox8o5O890NvjyDWeudbowjOGDrz78zBVM8+D+ERs9/c0jzubW+qI3BZ75gUHY9/zDzbjCn9rzwC/g6BuHZ93jZ47V/NIXjz2lWOiGix+c5kJ+fdb1SyjjeNiLymfPs+YdD2IfKwet2+ax+Yq7Wh89GPzS9csUc45ba4KeMblSrG3jYrImcGGvWFv6zK1xudBn7vlkp+0wXQ7E+OSTT66YPN/4El/3vVjiZ8y1QhzqWydyIw74Pd+M64tbsYqJjl+MpDNrvnDKbzkwt+VFnLDxFZ95xYHwYxyOIt7WpXWAL0766NEn9Mptc6J2nzqoljO6ankVg2s1P3jAwxN/XMXAj7ljRzxv5Imwg8GvnPMFh1/9xaAWH19w2fOl6A+HXbj5tVbELAbY4qTXvMDCz1rooD//+vFgkw8+SfGIFUb8XJcTOuKy/tjzz088i4EPbThyxh7/9JbD04844EXXtRo/Ek41veLUp23uWkfGFfbGs+uaf9xxwcs4Eas41YSeWMWGjz8d4xflL7300hrPbl1c48f+G+3XSNJW2RnYGdgZ2BnYGXjUM2DD8dFHH61/BueFyYahTY3YtG121DZKNjLE5sXmQ93GzGbFC4Big2Kz4yWmjRq7NjbZ2uSwz6eNssLehgYfPttM4WKjy35y0Y5LnNm3SWNnnOBZPNnQS0cfv/mfmyhcFX30YR0lLDXJns/84m/8nD1cemRykZP61+D9cVh8GMsWR7ZxMVasbPXTiUMxVYdfTU/hR9G2WW6eXGvzryT8ipFNPBvTR9c4+9rq/Khxav7NvbZNr5odoSM+oi9M1zBsvttIu8arnODFno6X4PmNNS8O1qiXQXp84IBjvqvjAF8fHT5cT6FH5lj6rQexeSnyEsU3XfeFe6mDBX1xhwdDH/x8NCdHDvSUKa7pOwDhq3jE72Wq+xKWPNAvRhy9hHihVIwbw795YafkO//xVYuh/BrX5xcf5gUebHzMf3bhz1jEocgnHH7lqnlkm8TDNT25V9PRnjmmwx8cY0cOxnAr7nzTDReGfqX8lRe1Ig9xoD8lTL74b+1kqw8/2MbSCyNcekeZGPiy1Ve8XYfhujULT875JPmfPnBvboyzdd+pFd+CdFBBhy4O8s9fmPSsEWKM8Cnn/nWU/JNs1sXpR7lWW8utq55jDiv8GRn3XXMFq9jh4cSXWrz6wtPGx+efZw2dRJseHfeXP+XgT8f4Zru+/4+Ef/f0z/X9M3bfZOfD53iHHTjKl3gV44mxc2vj2MdPvnCd8fcs8pwk8iZnzad55Fc+tEn2MLXd0w6g5CV+1eWGrTmHW1/2MHDGYT4vzYM57nnO1vzg16FXts2ludaGjcPk0ToQA850HLoSex2++oyhyw9/5bP7CT6Jfz5wEaMi3nKoPz7uFfl0iCpe/fDE00E7bvwbMz/WNxvP0OaAT4eoDqTxS6884i3PzXcc4ODHXqzWmW+04oKvOcSRDhuiNsY3rs0TbBzV3Wf0+ZgYdMTguSDPsOXSISwOcWdHV+zuYZiELr840OUPBzHCNYcOrX22lksxySNduNYSTsS1/p7xbPjFpfkxno4DUDpyxl8H5Gzkm8iRcdzNo2cRoS9m3OnAFA9f+MoFG1zExI85sR78nW5j8uYXezD18QmHP/bmxbV8wXYNH7/+NQL/runP+xSWPFbgEJz9qyQ2cHGD7Vr+YOTDODvXfhFCxOBz3rOMLa7NT3NHv3zj3Jq5e3oestWHL+zy7DkjV0RMOMmV+wAP/OjjYV3IJz/scaHDTnzWkpof43JNxNZcsYc3Y6FHn29STtXt74zRYy8uPojYcZBvY3D0Waty5lqucODTnPPPRuxiFT97sRLj1fywb9xctf7EXc7g4SjO5h6GGFzzi18+6BHYzZlrHNOjq4hB4YudPjzKqbHJWXtei4E+wVN+2LAvBjyIfnFkry+O5lc8rnGQN3GJz3+Gug/aZWvLzsDOwM7AzsDOwM7AlRmwgeig3QsB0UdsTGwylDYkNi5zU9ImU58XOS8RHbTDsIkiNo02KjaE8GxWjHmRIK5h2OB6MYZjg0uHjU2iDZFrG0pYuOAan2p4xaBNpl7tNl5d45CPYocpdn61y8c91P/rR3+22tnqk6sjLzqJMfgkv3PMpm/a4wu/uLOHoT37i7VNZRti9nRtQEl881tN31z1MuFaiS87MmPPdvJiHy81+zbU8qPoi4e8s8E7rsWnj9AxpsDMn802XXp8uIbvmo5ra8taYuslp4N2a1gszbu2NejFEx/6sG3G6VqrdIoNvjZ785Toy3/4xrSLyzX8/MAqN+VHn5JdvviDo5/QOSf40iNstSuNxVOOfIOSFE9+rIE45dPLXC8380BIPOxw4otdc48DMdZaMz/0OxBl4wAFvrmQo2y0w9BnrbJPjInHs6O8NsZnnPTRIzBrFzec9LX114dffsQvH+LrRVjNVr96YvLHlk/9csA3G/0kW34I3eI2Rqw18c01pz+OfLOnr4+vMOgRtj1fjRFx0MVJidMaPP2A2xqNHz02iX56pH42HVaI2YGQAw788oUDu7hX40CHriJXvs0tfmPiyA+fxU0Xhs8a3/L1eYOHteHAxX8q6qCNPfzyEwf2+uCp+W0dGzs+D+JLHx/xOmB/55131n+KeswlrtcRvgi+L7zwwsXt27fXuneQgVfcPddw0s+/uIrVgQw+OMDzmer+Koc4y417yT3l2UBX0U9f4YvwC99cygkdfvlgy0f3pnG4uDhcJMZhw5zzhwdM+saNqfE3Rlx7LijG+fF8Ns/0ypd+ugQ/vjvw8awzn40Zx5O+ewJXOPKDo1rM8Fu34hQv39rmv7zDDkO7X+rMdYqfOZO3cqgPF0W8bNngos8hoP0b7HInBhjGcRSneYKpHzdYMBzGujbefGrDax7E0TqSD3MhJz4bJq5cGIPLL3/mDg/9fY4a109wlwv6YsdHPuWRlGefz3LBn0OvYoEjFqV8s+MTHj1xiI0fvOXPuHnyHFDTo2PcmtDGU77KZePlhk9juDZPbBSx+hM34sKxdaLNP670+C1n/PbN83LWWhK3sfDYsYejiJF96wFXvuTN2tbPr3vCXOIOs3WpjktrPox5b/APh72YrR1+uq/CEBNO3d/0+LW/ly+c4co3W+P05dacWwP6+FLkE5YxOZcXOPIESyyehzDnXFgLRCxibD25ptszA4Y4xCWvBF/4OOFIR3z0xGcMN7z5lxt6+lzTZeNaP1wFDyUfdPiFSeiS4tCmj4caNp3pi2/+5Nf90Z9SE591L9bmrhovxTUO4oHhHlSzk6+40xOra1ybA30+P+mzg6PAlOdyLkZ9JBx9bGDGYSmcfpSvOPJPX17MTfMP370hRjgKTPOkwGErb7AIHOtLHNp08Dfes4YtHDnvs9Hn95tvvnnxk5/8ZOHwdRPZ32i/Sba27s7AzsDOwM7AzsAjmgEbi3nQ3kZHOMZsemxA9NvI2DDpU/TZkCg2VP6OpkMxGzTXc0PG1gbZRqUNjdpmib0NF0wvAHBscryUGPPiwK7NpY3UfAmCo5zjddW04M6mDRg/NmB4aovdOHEtFvj5UsPQfxS2lezVfJU3duU3+2zoEH750J9f7QRfeSP04mdTOPUmhn7XRLvYtPNr/KgD04a0PIhFKQ9tmOOwHIwf+vMXNlv9jcFrY86Pgp85qa3GhW0vGnTyzyV8fTbPOLvmGzYfxgi/NtXWElzr1tqb34CkR58/69eLCz58s7fevQxaq3T44Q8fmMWqTVy7hwhdpfjVCZ98GIfLzr2CP6zs2DTOZ1zliOQ/3Gq5kY84w1HY8aN2v+lzv3mBKabyxx4OTtmrvcyz5dshgxxr48xWm18+lGyNK3DNW3PlWaCw8UJuHnrZnrjFpvYS3ty7Lp/sWzf8sq/gwn/j+uVa3MWuD484uy4mtvlq7o3LhdK8syUTUx8bvvXjom2twSB05MaYPuP5WQqnH9nAoIMTu4lRnGzYK2KIP4wOHrIzBnP6TL98qM2Zml3c6U2ceY2LF/Xi+sY3vrHuJxh4da+xyY94tAlOuBP5td7yq46j8Tiw59d964DNn6Tgn73Dib/85S/rm5+wyyN7WGwnf/kwt+zj5znivki3ftdicvDnP0N9WH86xsHSc889d3Hnzp3FzcEDjuWFPwcS7mvxiNM97ZcJci8PdPFzfzj0FBeJu3sJjkJXHMY69IFL9CvWgZzIg2cjTu5JeYelX1uJD5/mCH4HbcXAF0y2eNLlEy4MImbPGsWYeM1Fz2fjRAwwCFx7C+udL3XPLrh8qunLmfyQ5j2e4mnfA98+xmdDnwuwrUf6cHCBZb3pN17sbDpAioNYygFOODYHrh1wKT1nxM9H/vk1rh/X5rN8tmaN4yM+tc/G+MlBucS3+e95j6vY+cSpHIvLmBisCfPj88S4a+MwPNP5Zy937SWNyxUe/sULztYMbjBcw8mfuLXV/JoLfMQk9/zLB1x6cu0Z4HCSHg7ySM96oGPt4q+NBz6KPPBtXA7VxWSMvT9xwwa29YoPHePwFDybCzb2GfixkQ/YxuF4xomFjWIe4GnrZ+8e7j423+5zsVvr/Po8NZdsYYq3mOCwoQdPPuQSrrxZd2xaf+a8+9u9oZ++fOFPN7/ywy//8s6/ecSNL3EQfhTPZza4EDjWCkx+O+Rl19x4Dpo7fd03bPnio1hhWEfixqH5wB3v9PGVexzFxo/xCj228qTQqTaHCh15Jez1FaM+ueCXHtykPJoPdmxwVYuF5FsbLj/yK0/WHgz3ltwVAxs8FW0FHlt5g+P+49dzQ67okOy0caVnHuTVfY1fa5m9OWht8SFGnPiARcTGb2PGYavjJ6fsXePZvWR++DGX/nScWOHCz3/Y+RQPHf6sIxzpEHnjx7uAfhi4iM/zmh+f3/7c6o9//ONlA/cmsg/ab5KtrbszsDOwM7AzsDPwiGbARsbfaPdPz20wbBhsehLjCrExaaPUZtGYts2IFxUbRpssGyH6bXhskmzAbPbY2ODY2NjAtJGCw97GzWGnjRQ+2dno2OT0ogST8FWB3WaqjeFSOvODP3Zs6IqtDTJ148ZIedFH8Cb0jZ0Tuopx+GLuWl4az0cYs5+da7ZH4XvGCCfbdMOulnNtsc7Yccx+xsNvPugb0yd+1/FqLmDUF4eravb4JjDD5VORJ3POr9L646e1pX+22eEDqxetYtNXG0/YCnu6Nu3WsRcHuQqLrg28F2DYxesFuJdM+sUDLx222ngSbeOTh7ZSnDNW9uL2wo0j2+ZZnZ1+fOnLbWJ8imt26YWhn10vSe474r7zbPCyhAdu/JRf9z47RQ7cn15k6H322Wefv2TDZ6c//zhoszWuwCuX9B1MKHTF2Itx8zZjqy0G/Eh+5X2+oPJL8FHokWJcF6cf/DSX9Ajb7HHEi8xxfbAU+QhjKZ5+GM9ObHTo1kdfmfzExK8+uo3nO5/1xxPHhK9ijXvj4cqTvqlXLPqLEya8MM2bNqFPXOM149AP27y719S4fv3rX1+HSsZdy4nSNSz9c32IleDsYMF88aWfLj+u8XbNlzz6rHGvO5SAx4+1O7/RDkscxQsLRjE1B/Ey7nnQZ6D+bNTy4D4W53vvvfdQ/nQMvrdu3Vr/qavYHBzgGGfPDD7dV3KCswMX97R+eaDLRryec60HnI3JDxyxFYecw5K3ck43fTnmk53DMm35KP+uCV/yonQNE9fWDTs5VbQ9kxS45Rgvh4GeWzDhy4WibVwRQ/cRPfqwtOVFLPw2z/CnTxhxLp/GcZOnctpeyFj65Qq255g54LvY9R/zBRO2MbHAxbP1LRYHQEpzGyYu+Lo3xDnnBlb5nAftrWm1fJYPONmYJ9c4iIM/cfKHv7ZxnNXlRb97zLfg8dYvN/Jgbyg/+vocVuOMA18O2tnxxy88c9t80uWvAqsDQ9h8y4M2YS8mzwHrgj4MvuRY3mDlIy78y49rNuKG0zoTkzF64qJL8DR/+ZEfxT3BFh8+HW6GLZ8KG7z8qzo1G7ZsavODtzitB+vKHLMXd/e2Z545J2zkF1e2zRf//ChwjMmbcfEpBLbY3YsEHk7iVMPlFw4uPsvt7xu3xhR2rUd8+JtzIv7WMT785Vf8+e6wFU865UZdfswJLNewigtf12q5Ne7zSYz0xaAfF3MZtlyxK1fVcgTDOF0FtuvWtD5x4Nt8rmBOP/TxY20Yw0Fe2MJQ+JJjNX/wrGfzb7/KTv6LmQ47fLUVohYnXzhb07Csm3Tz55rIg3WEPw5+ueO+xJnAMqd4x1FMCqx8ywkbJR+w0xNDYty18daetjl038iPXBD9Cv2K/uYHPn50cHAtXrzkEH+cjMt569hBu2+0P//88+AW59W45o990H7NRG21nYGdgZ2BnYGdgUc5AzYWVx20G7M5seloo1WfzY6NyVe+8pW12aFn40y3DZXNmtKmpmubtzZYNnNs4REbYxsc3zCCp9/Gx+aJPWzfmtDmP4GBWxJe1+fq9NX4tFGdtsWbTmM2X+LQX26u8sEGvqKNq80dYauvTZ42zPzS0T4ncBRCh214Ewe2oq8NZfl3LRYSP+38i5GEJ0fG2M2cG0+u4tt49VHPptbGWYEN0zyb//zmh21ttVKO5cA47njmByYfdFtnvUzA9zJA+LcGiX768ufFxbfJbLj5IHzIH1y+yqc+tjhNrmxgxTXs5rF+eo3xoR+v1o1xNsaa27jWz6+xsMPTR7e1Un5gatN3nzn8YKOPfy9RXoi90MiVWL0IVxyKeIk21r3u28FsYLLnl/94a8NxTUcRp37Cv5jny5B++OW3nNFNih1u8RkXVy+46fBVjPEORw0/XePyVp/x6dc1yS89POVMXYzwXCvZh30P4d4Bfy/U+TTGlk32an6I/krXxhrXxz5JN55hTn26cqSv/GgreJUbMVv3YiRh5C9f+dBP3z3YOvCf9rmXzJM++Ep5U6fbmoHLl8+Ivj2q7yjWGWwFjppvnzNxZtc6x9M94PkjbnyNq/km/OprforJ82U+x+jyTxxK+Bvt/42DdjH5FihpzfFbwY9YVx3mmYNyKR5xF6e6GOmIiQ9zYIyugxX3OD398MKcc8Uvfbl0P3eISle+9NHHUZFTumz4LqeuzYlCn9AXo2cPPnRaM8bhEL4cDDloNA/lqBjpyU3PCDaTDz241o08dI0rGzWuxvia/GYutPF34OzwxnqH61lqDA5uRD9MeL5laW+Ur+JmL3ZxO1Czbh22wqKDpzHFvMHqm6ja5gJn8ZcTujA72MPFOHu5xqnaWPHFXwy4u7+UnuPi9a8p+DQH9Ny31mP3GgzzJFb8cVH3C3DXeOFgTcajmq4x8yRnfFsXPr/54JMYt67okuzkApZrIn+JOZNveSOwxUG/9SPuuQbg4GsPwVfzop7zy0Zf86SGmR4e5gd/86A0pk2XDT0c9RE2/JtPY32RRb+8tJ6Mh88OVr7Yw7NG8cQbFv9iV4wr2nJrDI8OKM2VeeffXBqXE89c3HsW88k3W235gyvXMNjl1zzgwR5HWOzwO86DWPnzywr3BzF3/BYTvH7xIw7j1og2PLzkqNjxSPTDxRdv7fJHT+7wtwbo8OVaXK7FAIMUs7i1+RMX/67LNxtrGmfjsOXWc8B9xl7+6bAz3tzBIrjhgJ94XXumyxddGM1J6yMO7HAxzke5/x/27qfF1qPa4/h+H0rsGIPEYBJHTkVHEgQxckwURdFBTMx/kxBF1IFOdCK+H1ETIYjgQCV/JHoQfR93fyr97bvuvp3c7nAmfakF1VVP1Vq/9Vur6nl2PdX79ClGPpTyII4K33Dknm9tYpxvscHxLFDMA2448CVG3AhbXPjBQX/FOEzX7OMWj2p65kShN4sYis1/hupPv+3/DFXGtuwM7AzsDOwM7AzsDFyaAZuT3/zmN+s/ZrNRs+EgNiTGFBsX/do2IDYpNjQ2ZDbTbfjo2bC3abcxsVFSsw+Hvc2b0qZZuw0Q7Da+uISBkw2WjTLMMPBK9JG5wWqs2hg+asL+tC9ddVjlYPLnT79CxDD5TFvj6YlxXrOBpa4UC73Gw5dLm9M2uHD5yrZ62sLLXj/R1/zFVT/7ajoKH/wag9P4ahx/xAFOQpdtePq7Tj9debUerCk1G/PtZUVN4j99ZK8vjuopMzZjfDiQcqCujZONPT/8WtukeOUID98Qsh7zD4st7rhp03WfGEsPljZs413rY1dc8YZjfuGysd57AXBN1OzgabNVwos7LDKxu6fqM45L96wXbvEaLzYvNV5k2RrHx33qpc5LkrqDdnmE5T9oZIODWj/MuMPGX12BK4Zyx7aY6LoWm3FFe86JWGB4KVPS4ReH5lk/HnEpT3jDpK9MMaaP7WUCo/k1To9N+dAnlnyFRS9/+BA2Sr6MizM97V5G61uG40e4YYyh1WwcR3jiLvbJUbs8xyFbQOVQbOW0PrbFxCZfONO3zsuJAxjPRvrsFGPm0/oIS51/tTw5GOjbnmzCzMa8hBM3vt3/uOhzTVzj2cu8gwqfa3zFSVuRlynG+VFg5su1MfeMv0V/J/90TN9olzv/CaH7Ub6IOBwQKK2nYpOj8q9PLGIixanWZ9zcd7/qE1v45RCm+w7unDPj/LsH9XtWwPCsd/gmL93fxunzx4aUS219uHYopI++eWqu9MVb7MaL10E7nzDmmhBr8ZhvNjCUKdnQJ3O8+W79uQ6jvQ1cMbh/7We06csFTvqV5kSf3PjMMr+Eb3kqV3QUz22H1grcYoBFcNHvXvP5B1c+Ouiip8SvZwy7xmCKyxyLCXdFXz7ou5YrcSl03Kc+S3xJwxzQcXjdwZ7afUcXL3VY1lXx9hkEVwx4KNrywE5MZ2dnqx+ubztbf8aJwzv3P+n5F2f9sMUqbjbG5NV6Ejte9Hz2uZYzY8T84FLc/JrrONLhEzYcfGHQp9O4OFuL4eWnuVUXE458tzb1y6f7Agfj7a/hwMaBNL9qmMboaLPF6+yYT/NGrI3uLbhkxq0Nw5rEw/xZcwoOxNzLC7G+5YE/HPwChl991pFnBls85G7mBj6u+soFHDljiwse3nP4o2ct4REmfXNhrZQra8Q6woE+H43zo1+BjzMfcmFM3ut33V4Jfzq4mXOFXthyWgz4VFaSjj/o8kkHT/Hw5RpHuHjoF5Nc8ScOz0xtduLA2TUdvKxn/ubcw41DbTY48MVn/I3r1weTHzUebPQr2vqIdrlgW19xmj86OLDho0LHWDZ84W5cbEq6dOLMbmLRI3JkncIh9PCFYb3z5T9Dffrppw+3bt1aOnhdR/Y32q+Tra27M7AzsDOwM7AzcEMzYNPw29/+9vDMM8+slx+bCZsPpY2NPhsJm41eamw+vQTZjLT5sZG3ea2vzU01TLo2VDY7io1dGzX4xvk11gbKdW1YNm5tiugZr9AjcbpsWoyxxyfd9ODMvnD4JfBPudFR2M6xcNjyxTZdMdN3TSZ/ekp9YZcn+vjbENuA9iKUfxzayLItznxe5hfmlOzYwlPiSi9u2vXTLVb9hB4u4kmKj262xvjwwmGj24tNL2m9vNIJC3YSThysweI25lpp3r1szL/HLjd89IJjXRK2/MmzdecbQq0F4/DSKSf0W8t0pjSWbrbFVT97HNXFREdJR+2ajprQ5cMYbkSbNDd8GisXxvQZ1+ceFquXCnjw5ceLXC8wdMyVF0fPAly9sLru5RuW/wyVLk6urVU1X+Wida1WeinGiRSvNi7s5txqdw/QMe45ZQ3hVi7Mv2dUccAPhw3f8qhPac3ArC99ffHTZu8aP3kRX+PFDY/wQb950aedvmsiJsUYXONyCQ+WufCiTMcYbqcYcC7r00/Y4FqsxckHnnwXMx2+1PW9i/LuT7pK0rqZ8bKLP7/FJh/05M5zzYtuc6Kvzx06JM7lx5pzeOdgwVjrqPUCS1sJg29tvvByrW3dsG/eHMy47x1c0AuznJcrPggc7a7V8DxTtK1Jf4veQbv6/eZnAb7HD37I/NMx8nR2draebe5H8cmNGHzTs8MYcVg/ct3BimefuSU4scVb/ulbex0iyQEpF3JePvTLoVymhysM82WeXHtWsOG/g2++5Igd/dacHOPL3rhCl52af/zNkzhxJWGwhZE4sOOfyFPrrVj7LGCDI/wpcMUgR9r4ml/XzQuOXdOBBZ/vcGF6JhWXfPPdQZ5+3PXBchB51113LV98Kmz4IriydXjpl07muznlM77mwEG7/LGHi5e2WOnyzZ5v1+Iy1pyIiX7zXNx41G5N8EuPDUzzc3Zcp75VL4aeY3x1v/HjXmFbLosVDn5ybv3AsPYVnx9scTC3/vUI33w4aOdfPMQBq7WKZ+sLNp9sfa65hid2PPDDHxdCBw4fdOCUJzjw2XX/4Is3n6f5hQlP3MbxlBNrBAfxyZnY69NPj0+xywW/1pq2Mc/F7n95aa2yVUhrSLxslD7L44qXb/PaO9GDay2JmQ5sPvHoc7x1RF9sfZu99eCehSF2axt3WOzefPPNlW+YfLdnk0N7FHMhD/Thy4E2UYsBXusGXzbiMoajeTZ/2nIhFkUbpjG+CR7mo7hxLGY+6JtTtWKcfzW7sMwjO2MwlfTEY63iQIpHG0d65oo9jvTd79ph0vWsLjf05Uz+eu7JAzu8cHUN29pwjRPf5UobTuuED+3JXx8OcqEfduvD3MDvPqVjDuAakyP3inVL5Lw8GZNXMcHk11j6cGFYE+4zuQiTLT+ucWPLtzbf+Y+LXyLJVXbFwx4H+g888MDhueeeOzz66KOLq77ryD5ov062tu7OwM7AzsDOwM7ADc2ATcTvfve7tWmwIbLZaJMopDYhbTZsQLRtRryc2dhkw75NDlsbEyU8NTwbKRiKzbbNo02ZDVD6jetrY6Rmb6NlEwSvcRsthdCprI6TH8bibEibhBXf1Xn8QR8v+HgZj286amN04GgTujOmxqqX0vjBzhj8/PFPbA6LEW65kwvCzjjb+NErPnm+qhQzW5ziM+0nF/rKjJcu23gXhz6F7hR4Nvk2z4prc+2lo5ceGPor+Q0bJt1ywo8xOIox4oXPC6uXPht6HI17uYEx12j5tNZ9m804XPluQ89Hc1o9Y9Nufi4bF085hu3aCyBd6yd/6trGTgs/5eQ0v64VeJO362y0xdkBgP64dW/D0JYjL22eBdZiBwTG5NIceInWLg741lTrCnbro/i9QOnnmxQj29o4xFkNrz44uOGDH3xjeHhBnuspG36a53zCZBM23SnlDad8aLvP4kZfrpViLoZ0mu+JrY9v65G+eIiXXnlVjItFGxYbHE95TtzTNl284mhcXK5bZ+Hq6wCCv/9L5FNeFDFMHFh8lwvzrRDz5v6nL5fWVs+61gXO5YGe9eqgQK2fb59V4dNpfvUl8ORWX21rxnNIHmDBdWjp800fnHi4xkWM+pL8ipFv4x1ued74G+3f+9731n+qdpVchjtruGQetIv5Ix/5yMW3hfmVkw5erRd8ibXkcNVzprkVr5jwFqf8y49rzwU5KJcw4NMrhmxhdh/TKzfWj3uQyDM7nOdBO12FT7wq+Cpyi5d1Yg8ir2Iy5s/KeUbzQ8JwTcc1n+aAPfH8st7gwiLuLX6LR16KUW0MFhsiR+KQi+bFmGs1HDbyJTfZGpdX/PSJm29zJh5+PU+LW54cRvbZwDfOcMuZOW6+HUw13/l07dC1g3Z2vl3uEBAOrnQUfvHRR08MOBnT1meeT+MWszyxo+9aflx3jzoA59NY8yNW8+d+0+e+5wO+OdeGGz9zqOiXB8VcGCfG+JEveb59+/Y6fGw+HTxaCzCbc3ki7UPmfPMjd/IiV+aajw7n2MmLOOGJDb5abOZGTDjCdU0vvq1reHjAkgfPILVcf/jDH754LrFVxIOLHMPQ5kMbjpxaEw5eSbksj/rkWHy488vO+sFbv3nD61Of+tS6X8PtF1uu6eW3/MCSeyKn1rD5MFd84cUPu3nQLt6//e1vaw8B137NOrVu5UHu+PZMkkv+4dEVv2u+tXExB549Cmzj5ds61JZHc1v8dPA1h9qw5AMGv/SIfvZErPpx4pOYIz758dzDn43x+LrmX57lI47sw5Ij+gk/dOe+NF356aDd3IrBn2LyzKcj756XxQuDFIe1hFNc2PA9+XYtjmLhS77hyJU5KhY61n/r1PorbnnD0brQJ1f0iLHmrnvPWhJLzwhY5qTnC1/8Ks0HLP048pHM+8D8uKfZKIS+tQVbHjpof+yxx9a4vuvIPmi/Tra27s7AzsDOwM7AzsANzYDNxu9///vD97///bVZs+GwobBxaPNgY2KDZ0Njg0i6tvFgQ9emqk2NTakSTm1YbTL12VTZxOjHZerVpz8deL2YaKejVkg+1ZeJ/mKEjT8JAweFGCeuw9eem03jMOnqT+8yHvlQF1M+4JBw8lEcNq6zr013L1kwjVfg4Co+NX/h051++aDTuNq1PL0Xn+zjx+Y0Zjr8pptOvvKrxtt6aJ2xsdG1pvDIduauPvb06dG3FvnQZ0yfdVM81qBNei99XgzkUa7Y4MGPYgw3m30vvGHELz/pL6LHH/rj1Rgc7XhX62ve0jW/BI4+eZxzSB83PBJt/BQ2/LOPCz19YqWjPXXoeZFRui9gwmod0ZFfOfTi3Yujay8/xuTa3HnR62VFv3Z8cIErhnLs2jqPezqnMeovJvyLWZu93MVHOy74FNvEZIcDXUVuCTu8i13NVzGwg5N+beNkctNnXGzTN73ipU+MW7NKOZl95m9yY0ePfs+DydF4RX9tvoqn9WC8PuNxEzv8cmEMTkIvbH2um9vipg8bd23rmZ5xRZ/8u/+IF20v3158YdEprmo2XrAdFHTIAdNzhL654ac1Bjd/9IzRqc0XDkkv+T7r4i0H/OKgDZt98ecTRm0xaYvnTv7pmHfeeWf9rdi//vWv6wDLgZTiXhQb3h1SWBuJecDJ/VIcxs2xMVzlwbgY3dPuHbmD2/zRK5/0FHbl29jMDx+u8Wu+tctP88AHW9zknZ3iWj9enuFqOOzc3w6G6ONB3/3buqXH1tpofeDKF/HM0I8LjgSWHFoHcAhcOcqOLrvm2nU5wIsuDP7p6cNbkdcZV7z18cfOoRnBz/pxCMUXkTu+XMMXb4ds5gt/ApfAdfjl2S1/7Bw4O/xkz2c5lqsEZ1jw4dIh6RiHVVz66cubNt5s+HftT+DwmZ4cwXYA6F9CsStG8yFOPmCIRZHLng10FP6LmY2DdjW8//znP+sznB847hMc+AlXjYtnj+Iax+KzB2BvjvXLPQ7mpvuCfRz0lzu5ZUcPrvUKS97x5g+fcoVz9y5b8X30ox9dtvrNgyKnYmCLD150+cHF89GfvfOMlDd88FAn7F3PPHRwGY518tBDD631Asdc9UsAPmGYE7EY16cWo7ZciJFeY60l/Q6Cy5V175eI8HHlW7FuxWiNi0cOCTwStrhhqI0pbPTFDQ6/7gM+9Cvmg6itHfHIsWt8cfKcCUc/ezUf+l3DFo9rPOyV4PFLdxb8rBn2nglsiPmYgoe1oIapTd8c8VW8cm798MGfNdUvDejInftMPHy5Zm+O2ODPNz58ERzpKNp80lOzgUvMQX3lzTjRr9CBD4cY7x5yLedhzHiN8W+MThJXOYQJX1yu8VLoTJ/TtnHr173jujngi51c8f3ggw8enn/++f2N9hK4652BnYGdgZ2BnYGdgf+dARuSV199dR20e/myKbHhaVNkU2EzY/OhtPGx6bARaZMG2TV7m5PsZ61t89OLBxvXfBDjiuv68ZuFXxu3Nkt080EvLOP1L/DzH/WFSS/d+uhMvbhN7HTVU/DWF8bUq11s8tpG8RSHr/zBN25Dy1Yhjcs7oZNdY2Izrs6OnnY+caUTDltj+tlN3OXo/MfMW37TVYdBvXxq8+PaePxc49TmWazk1AcbekqY6oq1Z1PuBWOuQ2vGNXtiI+2lxwuWFx9+8TLOt/HywJe2te7llrgmMMsb2wo+uCv6wmDXPRTnBXT8kZ46fDpEn7WCm7Z+mF3TSRcffo1rV8JhLx/646COrxc0L26us1EXA1067uMO2r3I9Zwo1/TkLD5e2tk1L8bFKQa28kL0KcV5ep2dGsfq/MDCR4Gt4GTuvGRbH+zywQ/hX0wOTcSqnw4bzzU28tKLG78KoTtLMa7B4490w8x3/fRmmx7OfNFtnuHW39qb8yS/cs5ev5zExbV2/F3zqa7tOi70XMMiYaVfbYyOnIUz+2Yu6cHEg8w1xbY+/fQcDrhHzYn5Ka54yQ0shwT96wnX7M1leK3P/OtnW9FfSdcYn+LuRV9OlO4PvozRo08XN20cKq1Jeg7DfKP9iSeeuCPfaPf/IHzta187+I+HxWytOODR5s+z0Bq2NvCZ3PBX4m5tiUccdPFWu27dFdNK7vGH69P1KZcwK8Zx0a/t+aq4Zm9M3qyBqWMujBtLcMFZH35hwIt/cc3r1iZ7HGCzda1owzM/DrL7XIAld54fcknUsHGDiz888cKQe6X8wegArpiMKcb4Fw8OFX74YMc3P67pd9DOv2cwX3zDUOCFy841W2Nq3xjn256Onc9C+aNrbRM8O0CmS6x9sTtkJPT18YW3vJZbuMasPWN48k/gOTS1TkkY8mwf6lDY50V5ER+O7GDxRxdnGPrpuDYX1jA9zw8H7XQ8Fx0MwxcD7ua6g1T6M3fiV0hxabPFi0/5FydbfrumR/TFGbaCe37mmsLDs06c+OLnENlhqINd8yI+/2E0PuKRA3yK13zxhxPu5cqc+7M5/jPY1gE98w+LHn8knmr+zZ+4+PZten86xi8o4PRnX8wfHVjiUONFWiN84EWab2Nxxd18NS4+6wAOru01+ixwX5jL1mL550cxR/KLZyJfruNSDvjFmTSfdBJz1rybBznBjw9SHK6NyZ3cuk/LLzxr1LzIFV1cWg/GXYuHvWtFruCXR375MOf66BLY4eqHD5vwaU3JnXmEaU35Rrt4YPArh3TZkxm3PnxI3PijX+5gwS6H8Iwp+vgJ23V9+Z3j2gqBSQd3hZS/Pq/o8o9bOS4PxsoHLNfFoq2ky4+4jOtPXMPg3zfa/em3L3/5y2t46qX/fvX+Rvv7ZWeP7QzsDOwM7AzsDPw/yYDNg2+0v/jii2tTaiNB2gS1uWkT16bQ5sbG06aljVMbFZsOuMqU+m1U2nw2bizffCo4TAw6fMQhjvqMdc0m3bjlpxoH+uIg6Td+WU2fhFmMceyaDjzCxqZNiV99NoNKdurs6lsgxx+u2wBmj0dc0mNPNzEeJjtifG4k5X3OI70wTvG6VrPrGjdz2qYbPqHTRhhmc6fNTzGEk+9TrrCL38vRxILBjwK/temlRV882LDly/x7uVKs7dZbMdATA134+FjvXtyKER4fcscPXaJfKffa7IuND9L4ujj/ka0adraw2Slw8tW6ohfXxvKBW77igLNc6SfZ0/Wywnc2jcuTvBA5lkOHAr2kyqE+Mv3gA9dLuRf3XlD104NZTtnyKy6FnRp2Y2p8yYyZrkI3PDHSFY8XSbHpS4zFlR/8vYzqdw2n5xxf2rD4YUf0K2wUkk446XadXrbq5mIBHH+4zo95Z+N6zh072Iq2gwT51Sb0zRWs7o0OG4zVrx2nZXj80bruOkx6cWNH9OEwMSa3qaMdVjbhGUv0WV8OK8yJ+SBsFdcKng4OFTE2Zr3iQ8ca674zrr8S5gI//qA3nwe1jYvX3FpH+KmtqzkH4cDX33q0tly7X/ob7ffdd99FLrK7ag2f3D7+OYxvf/vbh7feemvFan756R6wHvTh2yGVnBh3WGVNi1nuxKamG3e64tavLj/y6Fp8DpUIndZNeTYOQ9E2L3JRvzjoyiVbQtfBkELXtTnUpstPz3lcjTe/rvFKmme1frmAwYb0TCiffPrmp4O95kwuOnRk6xc7cqcfZrmCh6cYe17ygxM/dI3nH+f8xrM41eLsQFHbwSLf3Q/s+1MaOBB5nRhwyxcdeXPo2ppg03xo08VZHhyouv/MrxjMj/XSmqdb/sRUDOz5YmP9acsnocMf3nDZhYHb/PY1jvTlch6K80tP/HiKt3XFd3Z8Omg3hoc59BneM1I/Du4FfnDBWcEZVnzl1fwZ468DejmBhztho4gRNz4IPAUHuuzEYH75lWe/fHDYjg8/uPoWvs9OPmA6aOebyIP+PqPwkhP+1cWD+9///vf1DfHucbry0+cdTvAInmxhmxs5oOvPUsmnZ5h+v7gQDzs+8DambY2IgS1Ri9ncsNXWJ0fiKU9L+fhDruUHX7HAFj/e+Mmb/KgJnwqBi5Px/OjXhxM8OvRh9ssBeYuH+IlD7eYpexjarYeu+VLYWq8f+tCHFu/WxAI8/jAuLvlVE3zkRd7wiyOd/Joj+VP4Kb/yYR2LJy6tAdhyZoxfBY6YzB//jcFR8qemC1PJHiah25rDHy942vTFYH7lOB/6y71xmLiaX3PJH1w6ChGrcWsVHil/5ac+mOYQBux4q8Wj6CfxLK502eKLlzlm4xoH94HP7W9961uHhx9+eOGEty6u8GMftF8hSVtlZ2BnYGdgZ2Bn4KZnwEajv9Fug+e6DYVasZGy4bDZsRFqw2Kj0wZD3cZPTujPzRKbNjE2K2Gya7NjM8OGrc2S9hS6+a6fjj4Y02e6NknaU+jaBNO3SZu6sBJ6U/hKV38+1ae6xukr/CjFrI/Ig0LCgK+d7Ro8/5EPNTxcFe3GXMNQpmSjT1vhg755k3tt/dOeTtfGFZKt/BLrxAbYRtgmF07YXlT4YONFQm1+iwE+fZIv1wodxUZdrvRp67Op5wN3a1Fduw1//ODiiJ82LId4rpsX483J5Gfjz684fAvI2vFSo88YX+LKV5z5ScSc8OOa/dQxXp9+MdGD11jYrukobCoTb679cBfQ8Yf56H7N1hgbfsXVmoCJh5dRuadPR67kT78cKs1T9285geXbUx228x0uXVjqeMqRa/a18WsN0kvg6KerlCP94mhMG2/XxhRS/Gq24iD8W8vmtzg8L3AndOPrujmmK95s4DTf6trxxmfiwJpCv9xMbG0FDzkiuDV/7GYOjOFvHXfQwV5ejOEwRZ9xAifu/Lk2Js6k/OXXdSUddX4aKw9TR1u/teU+NQ9iZKOfhIOHteWgvXG61mZzpD/7dBbI+Q9zQOiwUcRBtOW/dUFX4Vcuren0YIePp8Le+u7ecRB1//33H5566qnDJz7xiYt4Fsg1fvBDHJo+/vjjh7fffntdO1wi3VPWrzmmz3drCS/8rQmxmm/zGW99dOREvI3LAwx61ppxz0RSXuTGeBjG+HfNHq7r8q2N41xP8uUzRRFLny8wYNP3bV827MWpP5k22uzwnYdveCrEeJ9P1o6ST4cr4udDjHLuwHsKDqScibP4YBs3puBZjuTSOKHvs4Vva56OOXIoJk5r3MErDCKuDqzDhYG3OWmfAwd/vsTolzKw2v/EzTgc3GE4+IUPB4b453qSCzkVD37mxLX+5oIdTu5l/cTc+jMhfNDroJht95RDQP1yI0558QsQeRGL8fJVDRd/dmJyaH3PPfcsP3j7/DYWZ/rZ4FFZJI8/YPAPn4hRjtxH/YJDPnHpUJiN/PVLQhz0KeKXdzGKYf7yxi815MRaE4O82ZN7tvXNbrHffffd61Aeb9x6posL/8kXZ9fy/MYbb6wiBthyiptYcJMfsWiLF9fmES5+Do79nXQ8yieOYmED01rRFiMRi4IHfP38w6TXvcavMXrNi/cN2PpwoQOL0OU7P8YUoi5/rs2ZPj7V8MoVzvJDR7FO5cgaoec+WlUkbwAAQABJREFUN7/84EKn/Z/r1pLYGudbHvxiwlqIV8844/TNHfu4yamY5Zcdjv1iprkQD15s4PCJr1zmR10O6Sp0YOdXPO4H9nIgbv5c80XUrvVrK3xOgd388qEkxuRLLOmocROjmuSne14s7gM6YpEXNSw22njwFV8c5RI+f8XcOBtCj7imw7e++tVxhANTrvjFyT3qzzf5NvtnP/vZhZXturjCj33QfoUkbZWdgZ2BnYGdgZ2Bm54Bmw0H7f7enA2dDYZNl02FzY6iz0bCBo1OG665oTLu2hixgVHYtpmxMaIH34apjQ99/WzpV+Y4HUKHH/r50EeXnVoJL5/vWr/703gHDmKiA0Ndmyb8sOAltfOfHt1EWzGGl3jF7Trucmwjl+ifdrWN5zPdcMKqnw3RX15cx0WblCs6NqLFnZ162rimQ1e/dcFWf3heVjqcwI++TaqXIXPGpxcLtnJBYBCYsCr1saHvxUa+4Krp23yzh+0FBjdtdS8wOITNzkaZD/PhxQKuNlw1HYVPfeWHjTh8oxCGOOHy6wUXF77ZKMaURBww4OWvscvq4jIGrzp89Wmu8lk/DKKff9cV84Iv3fC15Ut/xTUbGF4ce/ExLg75M+/mU3Gtlj825Z++A0mHDJ4hruOHm/sgG3y0FWJc0R9/XBN+4q6mq6ZrLVQXc37V4bAhsPjVLz7xekbgq6823fhml99yVt18w1bEoSZ0iOvJZ3We9xvLF/1wq8sXGxxxtR4TcdfvvvCybdza5bN2+nGTu/gZ40eMM845nk729Ni8l9BTLosbX8U96lk979Npx7/iMErhk8gXG+uKPqz4q/lMyo1r977xCj1tONZ1+HT5lUtrGkZ+1Al7NuxhE/eRg/Znn3121Ww/iOSng/Y333xz8XDgZ831HGt+6XtuGeNTsR6saWPdk9qKuHFXxNrzVR7Ew16fcblW66NbfsOa8dHTT7fcwrNO2elXep70fOnzBRY7fM25mpgLvhOc5Nr6gcUnHw7arX0+4sFGWz70N998sneoijdffPzzn/+8mHe2bPSrcbP+5FnRLpdqfuIvf3zAJq3bYubP54tnJmzPUAftMBRxOQA1167DMM8OehUccONLW+z+9jUcn2ns+FEbF7uCg7gdtssjDGtFgYWP+SpuGMasN23jMOnAhVe/56oDKzwJG3PT56nDzQ7F2csPG//5rXnln448it04LDpyaB6J+OdBu8/vnnt4y5/CZq49uAns4lTz54A6Lribl7DZwrRufEvd/DQ3cmLNWqtikH9cjcOUa5z5xI8e7H//+99LT+wOu/tXBvTE4yCw9Q9LP3xtcyk3ng+KOSgOexlzS6+5Y8uG3hRxiFltnF/PGn7pNhd8me/igqfw0fyKjdDzjLc25AYeXRhKvxTT1/Oh+ODzrWZbibMYxZS+Gsfmlr42Dq0bbX5bi6493xX3oZyaf3NrzdAz/3yJTVzmSD7E5KAdBuGvdQ6HPu4wcDNen/XDDp57Xz8fxVJO+YkrPuKhUzzp8S8X8stnpbkzn2Jij1vzg5M2TP75M66dTB90G2NrTBzwteGr5VARJ2x2cOdBu/tBDo3LGx22sOAQPibfckmn+ZE7wlbflPIFWyFqPvmGA1OezCtOftF09/GXXV/84hcPn/nMZ5YNHteRfdB+nWxt3Z2BnYGdgZ2BnYEbmgEbitdee+3w8ssvrxcbmyIbCnWbGaHZzNjs2NC3kVIrbTLaqMAkNjYVOtm1IcxuKZ//aDMUxhzTZjP90A/n1CZujU8sm3ubPDrwbCCr49kmjJ0xOPkwVtFXvxqnaevahk2BAV9fm2k24WcXpmuSXeOrc/yIc7nNZqj8jzyFz69SHtTFSYfEoU22a7GEodZnzbSBdg3HJrU1I2abfRzZ54semXW+9dO16bUuYfBjvJcP/PnBT9H2UsSXMTYEhhdFgh+usLXjz4ein7DvxcJLsZd/L8K9APRi1ItAOREbzOIQs/jiUz8fxa1dv77yk444FDphpz9rdqf+6fNdjubLiTH6xhW+FZjq+ryQyxl9OGLyQlce1a7ZKekVixdGL86tBxzgGG/dsoPTnOkvLzOHOOFMX7+SX7bFUi6sCXNVLDCN8U3Y1M4n/tZaa4ttGGyMT5+uCT39+W7Ows9GTfRrxzm9NXj8kR/XdOJNL9uw1Mat/cbZaOvHX/69aGun2/rNp3quEbh4iEUdHntiPN+up67+y6T++GUHszituQ6D3JP5Z0unGHzj0wEWHWP893yNb5xgsE3EYh0Sa4+9Qg8Xbesg/3GAIY8O2MqVPnj5Yq9tTXWo4LPHPz33H5D7e8f0P4jgRW4f/3TMN7/5zfVtVb7kxDPMMwpvc2s9iFEMdPByrR93WK7VeBZjcRiDG7b7vDjZFGO5hH+Z6KdTTQcWvtmUD9xxUcofXTk2pnjO01es69YDXHZyIN/mlYh16nWvh8G+PIhJvtg7XFTzyb+DN4dC8heutjF2p9z1ETHCN66tOLzhh+TTuDnw7LHGHPQQz9AOmOWdnftDHHzDYytun1PG6BiDBV8bhnsGnj4+5EabvSLXDnQdtjuEwxs+PWsq/mr5m2N0XMPDs/njW3HtwFhOjcs7GzUueCnmil828uGQy1rRV07KVYez5h0OTvr8p6tszI/Pb1gEP7lRYBdDfOOuhid/xuDL6/xGO1x8Zw6tOc8v8wCbD3HLvRjxsH7DxbW9hZjwi3N/6kcc5sR8wIcnF/AUbb4IW23x0fX32f/1r38t3Pr5NM8ED/zTxw+H8PqlgZjo0LcnEgO/4uuew8sakTtteVOa43CNiQkHfeZUHx9i9EyXe32n9xf/Pdtwraxgzn80r8bEgY+iv7Y6fsXAF3xx+kWHOXMtTlzNvzkST3NpDE7rU8794qT4caAbNjxtdjgQePrY6CsndEl6YjHGlo22ucQXB/eVvJkbNvTkynX+jSts+fPMMH/NE3/8KProZQOvfj5br+mr6evvc0huiX7jeBWntmI98aEtz/HBXf70w4TVHMqpHOAoTzDlHi9Y+ti5NhYPHIhrOgqM7qPyKVY5w0Ve/asav7y7devW4XOf+9zCCGtdXOHHPmi/QpK2ys7AzsDOwM7AzsBNz4CNxeuvv3746U9/ur7tYHNjM9GmtY2fDVAvqGJuk2MTYuNE1PptZuDWVid05ibtdIOSDXvldByO/inh40wus0k/WxsxG6e4itOmLIxT/a7Vbfba8LEpB7jANUYPFz75ORX98Tkdcw1LoQOfH9ewws0+Dnwap5f/8pHunAN2Cp3axac2V1PowRajDbQ2PNjGwmar6LdJhpMOG2VKtmrClsCzQfbiZeNrXHzG8U2nddg8Wq+9ALHnz0usb6KYG4IPfQVuG2m+vCwRG2wvf/ypHarBMc7emhFfMeKrxJNOUrsYuxYHGyK2+l2nW9vYnH9t8ehv/ujiK2Y1bDESNa5xhK+4joc2WzHCNm7Mc8HzAaa+fNClp2i3ZnDjiy1hI19yqs/8ePHTR8TA3gs2LDz0sWtcrd9LkVjod6jknsaJ4GBcYc9Gn3Z4S/H8h77WUBhsTu1d4z4xcBDrFLzLz5yb7BpX8xOmuvzBM958N6Ym8I3DhJHko1p/OvjLu3nRJtrWtnnIRm08LsVSbpbh+Y9ikQc2cZ46p226YfHLDzvzrm2NiMm96MXWIY+1Z5wdfuxayw4NHX5as7DjUDyu64+LMf2K9tStT81fxVx4TuBiTLzWsIM2XPTNueCLLd+eQ0RM/mTMSy+9dPjkJz954XcNXuMHX+Sdd945fOlLX1oH7eLH0UGQ55R7Qj7NeZ/frbfWQHzpiUuuxYg34UeuxQkHf0W++OBPP4HRfJ7m1LXx7nnXfODs2YLrnKNpv8DPf9Ch74C6z3G6Djph93zBu88p+uzcO+bM8wMXOjiUS2MzV3BhyOfdx88OB2cw9Ltn/OkabX59NvANy1zLJVv5SfgtV/h4dvkPJn224WEucMCtYp7YdM0/2/jjpo9efXKq3y8I8IDbPYWPvDlAtG6N+aWB/MExjot7Td4cKJtnvOCS7LTFW/7ygy99WB20GSPGFN/2xVEs1gx9OmFYrz7HXavl+6677lp4ch5e/vnx2YEzaR5c4yE3/LLjU2nNGeugzZzJmXHS/Da3xvmZ3+zGtfzyGz85NLdiy46ua3r84jNjwdX6UeOAl7+vzg5Ga8tcuOaLjvlXm0P4cqYm+vLFr/lVSP7hGJNHhW/27Ij7zX2PF1vxFjdb/eLFS228fpzLCyzYris48IU/bLn1pQi/HDDv9PgKL+6uFRy7Txrj0y9zrC3f5OYjexzNMVw8+YBhHI+eI7DYwhYfMZ+ekTDk1ZpSEzrmBC5bHOSCiK0vGvSMZEeXTnEYY6voww8nevDw7B5qbvS7n3ou4+ZfQfhs4EPuxBBPWIm5YO9eYId/6zEdPFpjcOKPY7mkIw59/MCA6dnRfOOLi2eNGPBQYFhfMJon/hI+5cC4HMcXV/ODDxw25lUe8GhO6Sv41YbVOC584Ok5jqN5pg8XJ2OKfv/Hyje+8Y3D5z//+UUR1nVkH7RfJ1tbd2dgZ2BnYGdgZ+CGZsAm4k9/+tPhl7/85dpc2pzos/GwebFxUdt46rOBatNk86GQNi3sbYRg2NDYCLVBpacfplppgwSz8TisjnMbum1m8t81vclltmEphF1tddfaNlzxaoxNPvKpFpPYipO/9LKlp4Qhb4rx/Ikp3KV4/oMeoccP4cM1n+XTJlCbPiw6tfPv2gbVmL501G0yp63+yct1senXxsnLawcd+mBZI15Y2kCXI3mNFwx86OPONh/5wZOtePW59mKr0DWm6I9TOLB7AcQjP/Rtvr3AlT82eCnadLxg2kjPlzCbbmPqDvOsAb7xER+ffBWLOTOukOIQU/70hUFHG7fidk0XJsku/qfrwbiiX27UJI7a8iMOvmcx5pouOy9IHVAY0yd/HUxYe/TFruSTrmtjdMqJWIqn+XcQ4CXJmuEXZy9cDrPkm142xmEm2krz6qXc+uCTrm+gKZ4vruHgGI52GNXGiPzKI/9xpQNDTa+5cJ3AJMbnc8+1PLAhcBSiz5iij+7E1J7XbLoOxzU7Ei8x6KtfzYd4eq7ThTH7wjKHXjzVJF/VYlVcdx9Of8bg53+BnOPQn+ucz/JQ7nElHZ617uCerm0+vLh3mMIunqe5MqbPOFHHhU/3sTXEB06n/rrOplisZbbweu7QjYe2AtN95Zvsr7zyyuGBBx64mM9F6Bo/isGfAfnCF76w/iyE+0GRN8+w7lOx8c1G/Iq+5syYuWbruS6+9NgY83xXPB/h6/cNY/rlzJrp273yAXcKTD71a8sJX+y1pxSfOht1vtiJUW0e3HN49Wy2rvOfDT14Yle0rZ2eibAmj3lvODDyjCEOn+XBOH32Dq7FjCPc4sqnPvlx2FbsuMLCGw5bY8S1tqJf4Y8PnGGJy59gEad15942TvAzP7DF2l7LHMubPnjw/RkZvzToWYwrPWvVoSIs/rXF43OQaItz5o1/+VCLwb2Lg2c7fT4cZvWM5Ks4jfMrLvysN37Fqvj8ZkefHXyFHfz84KPPGL2EXfiN81Pu6PGNMwxifGKwr+g33nMyf/KqmBf86fj8NB908aCrn45avpq7nndqfPypIrnAiU+YSjHoKyfw5Mq3weEZw4Vva6XcWA/uVc8unGDx1zqHV97lwS88rX94Cvvy5hquAoPgiwv+7af4cE2KYeYKjryYS/lyr7Ru6ZdP3Ah9AoM/fK1VPPg5OztbHP0iiT0xd/CtI3m3Vt1PcgBfTNanvMBnJ6Z+AcnONZzG4fLpGo42jtrigcuPOZFz84Jfa1abjlgVPvTJF8EBHiz8fNbhXK76pVr3qfF//OMf618wtLbkCD82cBUx4MqfuWUvNr4UPN2vbLXlFx5hB8s9xw5eucGdLxhsxSx+sYlTn9yoCXv3Nv3myZhrQpdf1/Hu802suOnHqZzyr08pf+oKPGViFxNbPImajpo+vz6/n3zyycMjjzyydOK5Lq7wYx+0XyFJW2VnYGdgZ2BnYGfgpmfAhuLPf/7z4de//vXawNlM2Ez1ImezY3NhI2OzYZNi40LotsFQG29zYwNmw9aG1LgxBV5tvrTpq0ljs60PhjI3Q3RwxCV9HPkgbbS02bmOiz66sNtE4UFPyae6axtTG8u5yY47PQKf1M9HeYyPfBoPp9jY0VfmuGubWAWGaxtK9rDp6tNW56e50y8GcRon+oh+enNMLDOe+Kn59dJhYywX9GygbaZ7cdNns40f3HKiX+wKv7jwHX4xWzfG9bPxIuEFkL6NLg7G6RN6YeHSi34xZgOXDcwpruHBVegTWF7gxNGLUms6DD7o5Wvizja/5qW12VgxGsMBrlj0y51CmqPiDo8dYaPop8OesMcNLp4dphjPt7H8sjWv86Va/Oag/FmHcL30yQuc8mpu8SgW/Ulc1Hi0ZvCzXrxc+9YifFxxEvfMrb5ygI910d+tdU3fwYR/bh+XcstvXIsf1+LHVYFRvmHQhaFow1HYVhe/PjzEQzf+9Eh6xsSlGHONR5If9myKOR3jib7wyn32cYxHL5b6E23jBB9z49msPfX4wUUpH+ppH5c+L/KBDzt5UeixExfh37X+MORRYVvhj701yVa/tWIt4u06+3xfVtOBlX+xwrD2wqWDs5rAJvXj5pCA//LXoU066uzMcwftP/jBD+7YQfvDDz988Z+h4l6JtzjFha92MaibOzEYc++LWb9CzKXcKDA8H+n4FqX71WeB+ZB//7rAoa2DKjmNA5zmnx/9c7757z5ItzjkT34VfXStTz7hiM0v2/yZEFysDzodvsHlmz7dYmbrW7MOjvWJ3TNIESMMh27igQGXf386oG+QwvQM7KBdzHSJOBW+ifw5PCyv+vnCqXzAl2N9bGcO8HGw5E+AwPJZhQd/YjVPHTzB6BvgODUX+Cr5KAfy4EASBuHf2vbct2aJX4LKgQNDoh1PXInnpXyYH0LHZ4lfKIjFumDfAa+51c8eLzG1BsWLn3kXo3663U9sFD7Ml4KPa/3Zts7CF3v5xtO6Pf2s4CedcPmFTeQTLl5q+sbMqTF4sMXg2i+kzs7O/sfcy7XYjJs/BRZ/fLcfcU8Z06dMXT7FLDZt9uIxn/zjw4fDQf+Shg6udKwjax9H9ubb3s58wfEsoyeX/csGbZi444E7TnDVcNhah3JTztlo41rMbOGo5dY44QPH5l2fMde4lnP9BIb7wVjPInzuPv4rFPytN5zgxkGbX2u1ZxV8MXcgjjO+MN1L8qMPV7HGU01Pv/vbNcFJn7Wg3y+0+pNT1rJc27/ghJ/5YuN+s0b5Ekc+mxPPJHjGrCv3JTwcxOSb7P0/EmzKF16w4s0HDDWcnns4s5E7z77WMn6EH2sTjpzwDUcbd+vXGDvPRXysM/NkXsXLh/mSR/aeM3O++TFG6meDf3PYOuZHP7/8w6MrLjr8KPgr5hwXMbLlR0ww5BKGddB6s87Zt4YefPDBwwsvvHD46le/uvjxdR3ZB+3XydbW3RnYGdgZ2BnYGbihGbDBcND+q1/9am2qbDxs1GywbEC0FW0bDeOkjZoxmw8bDe3GbFhscir66Sg2L3Nj4lohNkWw2b+f0FPCm7z0xSU843AVYlNI0hMDDvzOMrnIlQ2eDaZNWTawsgnfmJLMeLXlki5buHzH0Xj6jcPPtz7zYTOIRxvAmUc6YsfBxr3NZHzU+dDmWy6ahxk3vcZh2sTalHv5kAv8cbAx9XJl7RQL/Sl0+Snv9PiMi3Hc26jr19dBO31x59cYnXhr20B7cRK3fjrWId7s5HJKPvilM/FtysXFxubct6TLO1x8xN69MnHfr11+5zrhQ77g6pcj3BKx8IcnHfpwynG6xpSuYcmJPrX5OcU2Fid21pWXwHJl7flGmzzCoxuuHGkTOPIBXxtXugn/cTE/cuulEQZfcnt2PIzgnx4Rd/PrenKl10G7NYkfXYfsDhHMS3liJ39KuQkvTNfsxaOPHp6tV/EQ43DUtfXz1XyoFbbFAA9ueZ186Exexpqn5jk7vi6T/BjDFZ75INpyKtfFWL8YipFOhyTxM14e2ZQv6yId/VPgsDuVGUv5qA/XcsheDOa4NVTu9Cvyy4d57vApnjNGHGAY45ONawWm2Is/3bDjqL92/qtxhcPGmsYnXXakGBxm3Mk/HeMb7fOgHQ85wy2f4nbt/tAXN7VCxE/Ps7fYW5PmxbqRY+MKXYdPDrfde9ZCBzMOqnrOwMYp0cYBH7h84SVnzRkd+MboEfzo40vPuuPTOD6eVw4DfVboNyc4w6VL6PoMMP8w+HH45TBInzHzo2jz5/nkoJNffmA73O7b4vR8Noi5ZwUs2PgrYuEPHzq4EfPkMwcmEWP5KMdypY9/fNyb/iyEtoMtPGDDVbf+YJ8etMsDLD7lXBtP8cF0CNh9YKy8Ongl8gvX5yBf8gkHNzhEvuUDP+P44+nzA6bPZodudGCwbT3IAzw1PHyN4QTX5wOMRF6Nq83D/Oym0xzAUeCKiQ9jCp7WqrXdc6G8GGcjDn24auuH5zpsPOjGFx7ORC2H1g0fClvxa6vpWB/x5ENMivWJozGxdi+yKybzYoyO3JpPenH1/0L4kxfioIufz0jY8isvfOFp/YujL07Qd3/Jb3HKm7XWmsVDTGox9RniGq5a4Z+Ngr97ofuh3NIzR3SM0TMmNn7VCj9EW6xyiGe+7r333rXe3ON05QeOggc7NnIRD2vb+rROm3/Pt/7Ek/gJLO0Kn+KXE77Ytj7gw3Vo7YBcXOVaTvGB01r0DCtP6sbh4eWZJL98mCuHw+Kma+7dz7eP/3dHv2Dgjy3O8aYrx+ZW8Uywl1LTFYM1JxdypHjGGKPPFgZ9seCCg/WTLzkVr/2YdQajNUBHvDA8H8SBpzkpd/HVbw0YI/LBv4KTucdXDue7Al902eNCj37z3fzzRw+GXOIidj5xZNO6g+lfoj3//POHxx57bPERy3VkH7RfJ1tbd2dgZ2BnYGdgZ+CGZsAGw5+O+cUvfrE2HzYkbapsMmw8bEZsMvQbJ+xsgoy3yaDXJk5tMzZfavTZVCls2vio+SJh0VX4ORU6jRubHOgrdLLV7podsaki4mkML5yNpdcmumu1cXrwxcw+yafr2d/4rGEpbPCApa3Ury0+wqdNrI0tfbnFWf5m7vl1TUdebbxtMMWiHx5ckm7tOPNPX03YZGdTbTNrQ2qDTIcvG2ovE71ghaXOHl9t+vobywde8iu2fIu7F2i2/CuwCBtcXcOTDzHbHPMDp3U4Y2LLF/uKjTts+sS6h0XC1aZfHHyUV304xElN9OWbLjFW/Oxci2H2L8XzH2GLh51C6M8S5rnZhQ86uMpL/vRpK2Gp5cBLk/UjJx2y51ssbPMlJs8HLzByRuh4KWFDV5sO//TpemmUX/7pmQ+HOda4ayLvCl9w9JdL3LwEO2zC11rB2Yudb/T1XGHHp2s1rNquYcq92jWhoy1n5UdfUvz1sc1GHK2tuT6MywPeuKZPpwMyvmArZLbjzI6/OLDRZ1whcqRP7vSlIyZlxkRPIcbME9FHD7+w1enyT9+1dvPClt98uE6KR50UCywY5oKtfm2F5Mf19EUXr9Ye7OYtG/qKsfpgsuOXmDPtfMeLvj41DHrGKmzT5Vfs+TdG2PLlmelvs//whz88+Gac/g8i5c83F7/+9a+vPx2Dg/vK88s9bK0l9I3zhxs919ahmNyXeNMrR2KuzU6BqWiz95nk2+Tlt7ljWy7LsT6+y7cahmLN0YNL9IWJA2lMTdd8a5sP8XpOOSwqJnZw6PBF332WX5g+G8VNhy4s9mp9bDqIxR0nvjxzPvaxj61cs+9gRhzFMv3zVd5nbuDR06fA9nlnneBhLrVxgeuQ7e23317PTbodDHmmwHGgRYeuXOjnA6Z5EyNR18bdoarPcPkoP3LARg3bcxle/LUdSnV/6jcvzbe6nFknMBT4ns/2Cmzg8FO84uKT5JsN3Sn0cKITJ+P4iI0vY7Vdy6Wc1mfurIk+F+nHR97kfcZNXym2OLHruYRr60D8ivy7T1ob+ccJBkxrDW5rQk6U1la58wuRflkhFrk113Rh+Ux10C4mnHDzSxf/8su1+PixTsSOHx35l58+f4sTH5+vfOHfWvQMgQOTbwJHER89bXh0CH1rjE/tCt7lmx3BJzvX8qPIL5EPNq5hKuWBf18Gwdc+AyZdeDip+TTes0/dt87FBt/69lxRxM8XPWPyqE9bwc3c0KkPDz6sdfOoTawHeaGnHz/8zQfeYsfPXlsbdzV7Ogob9qQ84WAfrtCBId5y6xon3PkvF/Km3ziBa45gqBVxsaGLP32cYBDj1gyOuLGRR88VMRqbnLVh4N48Nu7exhEPeYEJLxs+yxHf7HFjY0wcdOOkzpZPbXjNiXH95rPnD176+Tfnij6f3/ugXda37AzsDOwM7AzsDOwMvGcGbGL++Mc/Hn7+85+vTYSNh01FGxqGbVRsdGzibFDa3E1g/TY7ig1Lm9A2SzYoNuNtTOF5uVO3ubPp5m/iwFUS2ISNgkt9+ud1my39JO540BMPHdxs2mzU1PwTuNo2bvTjQd+Ya3zrr17G5z/qmxzLUX04iF2tr8JWH8HZoaKXKn1haOOAo1y7tiG0wTWPNsqu23zGF7a2Ais8/WJ1zYbUB5sPm/++4UMXhpc2L3/mVCxs+Cf5gae/eTbGnugjdKwROSb8tYGma36M05MnPPWFbTMv9jbmMGyc5a849BHY7Ans1ic8urDkjog97OaKj9p02Cgw5xqBrU9Nn04iN7AJGzqXSf3lMhtYxloz+unoi4/aON84k/hMPDaK/Fpr9L1Q9U08ugRPJQzz7IXFy11zbj7kMV7m0P3mEEAevfyy8byBo9D1YsunuSH4KsWQnjE8vZT6Vq2DAPOH8+3jt7kc5MhFOcBLEYM+HBT6078xOaBXLHwRupOHPrp4ZyPGXtT4Z1Pe2OLcYQYbOuLr4ISOPpzkkA7RBxvnxvnV5oOolWxg0RcHPfoEH9fvJezZEnr8mqc+G7IvrnDwxZuU68ZO6/Djalxfa6t+NUxj2dApFnatRbESesW8Oo4/6DfP9eHPho/GxasfBn1j+pS48BcXdvk3TuRLYUNPyZf7wDfifvzjHx8eeuihC5w4XbXOl18qPf744+vwlR8HOnzMe0h/camtN89r8VmPas85ZeaNj/Jibiv0xcOXe84BHj2fTQ5++abLl/zKRbjWkOvWLB/48V3e5UA/P0octBP2PmvgGufPs8Bzq88IsfUcoe+Z428Xs+nzgF24cconXDzo88XemGuHpp/+9KcXPt5sxSE+empSfOzoiFOfvGizYS9X+uXO56vnIP5y6toYfd9S/ctf/rL4iE3u+0WjWHxr1iErvmIsF3Q8l/jjW5249ly2V/DZiQ9/4sdLoQ+fT7yMqTsIPI3DtXmWC/btW5qTN954Y/1SwJj1GtfTteveMiZ/ccMbvgM//nHCv0MzPNnhKH722mw8exXXShxh40JXnmDyKRfmgg178fDTGtYHZ/qEY424z6wDGObVZxQ/8s2Gr54l9PW3BsXYc0Wf+VDo+Sa6zzjzhatDYGtfbgkfngt88yEH/j47PRhiU1tPdGHiwx88OOIqJm34rh2ansbGjh+YanMoZ+yMyV33DU58yp+8VOSMPRtjirnFp/6Zz/jClx+4xjtoh4MLfHwJDvSLi0828iD35c1huTa/fvHvXrd+5ZEfzz0iLvNK+LEG3X/a+BG++DeGpzE85Mc88Oue1o+H+5bP5pJvbbz5gmH9WYds2Ltm61qBoc+YPLDHvXWJmz545cJzU87ZiZs/tvLDZ/NjDePXM4meeIxbGz5XuufFjRcMXOCEJTfsCFv9hE/88LGOiNzBwc84aS7F1Zxa3/r5IvTzLS/0rCdx0zNuLt1H9OIDs18swTFmPYhLbhy0P/vss/sb7ZKzZWdgZ2BnYGdgZ2Bn4PIM2DQ4aP/Zz352sRG0OVJsfio2Lm1aLkd6t7fNL1ybSJu5NvU2OTa+NnYKbN++soHSJvm14VHgEOM2Sq5tgmy26Nqcneoug/f5AQMvNd9t7HCyccZXWz+dNnFtwvjUn2QvdjxdK8R1seHNrg0l3GKkX4zp01Xglleb215Y4euH0SaSD+1eZsybzaFNYnliV+5w4Tsu8Eh+5WEKbvJjE9zfrGQP5/SgvXjKhRouMcamWPXhTQdPm2G+i8+89LKm3zpS8G5+9MMTs/jV4oTbi0Zc+CNi4Y/w5Tpd/GywYSWwvIjAJcbcF3TnfMEsl/TKI/sZszF9CnuxlCNjU2Aay5+x6aNr+AosuOXAtX4xkTg2D+Wejtz2DSfrzWGOfniknMcXppcVL1ryTnAzj+lo42It0pdHxT1Il571S88Llrkgcw5wjjc+5srL1dnZ2Xrxg4Hj7eMhhMMmOkRsfONm3PVcH2HO3Je7BXD+Q67Y4nta0le3fvnnd/LAea5neGLs7/ByxQYn6wYnBcbkrA8H/cWEX2sRTv4bD8d1nOhNoVMecYufta7glr0aT8Ivvl3j+l4+pr/TNvvWTGM44ZHQUfTz2/OAT/1xpj9ts9NPBz82/MklLDpEO8k3rDDETsTMvthhmk/3KXENi75i7u+///47etD+3e9+9+DgEk+HEtafw4Q+c3BQ4oCbAwaxyB0xr3gr9MQ613i64mzduX9dO1xXe1Y4hOkAB5/5jOTHdT6MN9cdRNEp3/yUV22cEjkVA97G4Dgc6eC1Z7maHX18HUC2TmCxExsdWOrZh4v+vpUpX2IQ5+lBOzxjfea6br3A5dfzTtscaCf8KNaHZ28HcXIqLpw8Oz0nHLT7vMXFL0EdxonbtT2VZ59fespdz1S/jHSNw6nokxv5xN9aKSc4tYb1yafnMz7WGX5zDVk7zRVceWMvBnNAF6e33nprxYALHP2Kttjp8C1X2kprRJ8xvu1FcJIbn0Fy2vyp5VPcpPzOPvMAlz3ubDyjcREvwYeNOOTJ/MpT/MRLl602ve4nenDZy0HPBn1ijRt9pWcFv2FqNwfsrOHbx884vOE6BIcNj3+x+JcuYhMH8cUI64Too4eLfLUm8Ich1/yo6YqTD3ysOxzZsMeLXX7UOJkXGPxYL2zFh1s+jbOvxo0vvOH7bMeBP/bdM67h6lNc4wKfXzZwrRPYxgkb+VZwNsbOHLFV+0Wcg3Yc2fsFhbyJSWx03CdEn2cdgWU+OjRnS/iEDa84cZYTPMXpXhW33GjzaQ3Sl4N0+YJlneNgXGw48W1Mn2dA6xkuP0r5wEss8Nw7xqxxuYBDT37Y6ou3WOTXs09NmgP5dl9YH4pr3MRt3sLQpw2bH3W68Fznx1qkIxZFruimYx7lhj49v0zERz5IazSf9MTquSE+vORRzMUJR+6td7kJh3/3PvGL8meeeebwla98ZV3jcx3ZfzrmOtnaujsDOwM7AzsDOwM3NAM2Fa+//vrhJz/5ycXGzCbIxqTNg9q1TZyNi2ttGxObFZuXRNtGh46NnA2LzYo+G5xeYOjBbPNiM0bg2kjBxS2ZbWNsFf2w1VMn7uzrT0cNg12Cj01bfI3jodA3Vpz6EmP61aTNZBtJPKZOmHTZTVu6Yc+xaW9jrBjnw5g8pyMmeTE3bRzl1sYTfnGzJfpqr47jj7DiMPvxkyObf4evNrkwbFi9nHjJ8GIdZvGEcTpXuNKlB0fhN561iztuxq0rtWJtqY0Xk7XaejU25ztfvXCxwyN8uji1zujnqxcaffB7uWFL9E/Rb45gGpuxGisH+Z+24g83/9nTO/XlGh4d/uIPG1bjYU0dNnSy9ZJD3wGOQ5rpj57cdV9YX16yvLTADqdxMZgjL4i9xFqf5Q6POMlV9uxwr/RMwY2Nay+7DhnUMPD3otfLMN7lkE9zFp6a/qnAMUZfDtir6aoVEm58y3dx04GTjdpaxleRE32egw5G5r0jPriEH75bK2xOOdFzHyrxyqYY4eFT3tkQ+vypFXq1+eJX3sofPDj6jc82O0KfhLcurvCDbwWueSgP8Znc9OHS2MwLrol+km395SKf6bgmcMnEXR3HH/nEb863NUkfNm54uD/kXL9DVN+Iu1P/Gap/ufH000+vAyL+fKMSJ/eIZySezU/rR42XwwQHJuzMl/vTIU25Y1su1OIsVrH4bDFHYuLT54F17Znhc0IfPbawtOXCgYXiGk/FtRzhouSbrWsxKCQ8OoQf9xJu+rLteYGLPveGGNV864OtnehLtNPp8Fy88uNgyp+OaY2qlXLb+sdNcS1GOPjzSRc3dkT8xsSimD+5lVMYuMq5P2/RnkmMFTrwPWP710XwzIvDO37EY370wyPy2jNcTcol3sUyD835kgOHkPDFkq2Y8BeP57C4jfPXLw5gpY8/PPzYWQ/q8m9M29zBJPCsX4d+9D1DYfI17XAUC31jrsXPF7/64Sra/OLoOa3dOuETLgy868dNLo3pq8gprtaauHHku4M9evzox4Vv+nJtfRkPWx88ffyYf99qtxeRe3mwRlrn7D0H+C6f7nMxwWgdaMNtHciTNcdGfz7F3uGk+LPJTvytJ3042R/i7xpnIg65EyvfxBgdffjmV7+13xyxNS5H9GHjKxbX+mG4xqXY8hEHNdvs3EfyCF/bQTsO/ML1S8Q+q9nIrRwQcSr5Z29+XZNq2NZn1/zLMTxj1p4xPHwb3S9FwrW+tcWq0HFv02u9tB7ziQeO+eSr54z4FTnSj4tr844DTPHrb6w1Y61aR+YFHj382dDhs/cAc8GHPLLjy7U5xEsczTe/9PEgavji1Y5Xcxz3cNnwL09w5CPuccCDGC9GNvjjoeaHP1xb7/pad3Tg+I+Fn3zyycMjjzyyMOFcR/ZB+3WytXV3BnYGdgZ2BnYGbmgGbCr+8Ic/HH70ox9dbB5tLJS5eXBtg9JmyIbDZs4mBkZi42iDw9YmyeZNqW3zxMa4TZrapguWdhspeK4TNkQff9m2mdIXj9qn9nTD0bZhavMFG/f66PGhNAYXplyQuMDqutzFD04lrKU8fsQbXpjZuCbpyJ/NJZ/xaAObjjkyPwr7Npba7LKNd3HGj2/zJR/ahK9iwsGLat+0MW5ja+PvgLMXMf1T8MsnPNjhqoudXoWO+GygxU3CaRMO07zhW3ENU+wETv5ci0V+SL7oTx7GcNJHWh9tuvW3XrXh0Ffguyau46WvPK7B4w+2+nDVpk8PX7GpiRrO7KOfsIOhwCPVbI0rZM6vPBSTMfjdr/DNtX+9oL8Y+YAFV4Hhxcncuy7ObOASL4j9Kxax9GwoDn6tL8IHwa2XczbGrYli0HaAYI1oE/PSy9TqOP7A10syrrDLdXW5oc+P/vkC27i6ErZartkoU6adfr8Q8LLayzt9eXNw0kt6eZXHBE7YYfIZF7VcKdnRL1Z95qO+1gZ8/WIOS18ctAmcckcvHP1KOY8jHmSugfDVBKe4ro7zPm067mNrBDd6ra1swhFLucjWdVzop9u4a+OKNp3pp/inbbr05zg7Ytz6xNs4seZ8vskdTg7bHLS//PLLq568lsEVf5QDB+2+XedbrvxbR+bD/dH9UKyga5svh68OcspVhzg460ufjeu45luf2D2b9Ynb+hZj92hzqA6vexqe+1bO+C5HuIkFpsJP68u13IbbPMCgAzt7/vAzprYWcWXDN6wOfBa54w99U+jJp3vU88A4nvLbLxh6bvFBv1x1X/GHk70OHPrhlic+J29+rH0HPp4XruEp6ckRLnjVp+3gzucxf/zw4RmJB8ye53iSMOXCWiU4iodO8fimPB1xw8LLN+rNtxxly4eiDx/PNXzwZeNwHi/XcMwlX9riVOOkplcbVlysUWvN55P5dS1eOqR89QtYeXIIaL3hC7uciAlHfPGGqVgrOM688IMTPTmCQ9iaA3WCq/UIwxzA84uQ8oSHPjh06OOZDzj6xAS3mPrzQHiJHVd5FZtcweCHjbzKrzGcT4VfuDjgQg9X/TDklBiDU/7nPPFJxC9ePj1bYOLQnLClA8cYOzj62clL+YNhfug1Li7juLGlE0bzQMe4OSr32vxkS5cdXNzkUc7p28NaM9Y4HPefazYK/niyxS1+2bMhxukSuPLoOi64K8WvH66c921qfdaIeYu/e7svEsBTxCwe/NiUc3iuzakYzCsdgudp4SM+dPk1VzDUuJiT+PDrecYPO7l0H/mFlzHxlUsc+JYnMbBrncPHRSzlr9zgWju+cPCz9sXNnpgLGHBbF2p8i71xOcLZuD5zRMybfjb80BOLfv75dND+xBNP7IP2lbH9Y2dgZ2BnYGdgZ2Bn4NIM2FC89tprh1deeWVtflzbXNhQ2Ly0gWmDY7NhY+La5kPRbsNiQ6QQm542ODY5FZsaOLDp2sjoI/BseNTTvzHX8cBBiV+8Z52NvniJzbVNI25qmHDSg0v040nYEdf1rY7jD3YkLurwYOVz9tEvB8az4TNf+tLJB75KOmqxGU9HLuUUFqmmq6QXhvHmhD48cyU/2sR82ESzMa82m15E2jzbaPcyav7ivYzPf/DLni8l/+mUH/1xVPOliJuOnOrPhzZO+uPmZYA+MV4c8kLEY6OvhkNHmb6X4vhhDA59BVZrNwzqzVvxNRa28SmuzUG42nHmT6Gj6C/W8PWFUW7xgkfYm0u49Iojey8l5s78wjL35lUOYZjns7OzhWMcjtzRNw5Hbd7hqMtzc8UvfS9gXsT4dNDcL2vY4Y6nQwMxxtXhiGKc/+ItNmsDVy/ErUdzT48fgrO2+YaDH3zF2KmISb9Y0inWUw7hG48zfPZ0pxjH18unIj90vYT3TWK+85E9u/rgxYkPftX6xCbGaacvLnM+2BG6+q0TevgYy1/j+eKH5C8bfuWYPTHfdPKpD265cR22+lTYWg8OeKzJ1mt2xvkmMOe8wmtd0suWfna16ZaL1g1MNnJC0mVbMR5v7fpxNsdqscO2jsqPePzpmJdeemm9sLP7IJJvB+x9ox2WQ7iZe334uadw0pYvfBzouN/E1/zjinNzVW1urVN29OGwkTPY+Cj5MqaI11ovH+7R5lN+su0gCrfuVdyLU79C4LJrvviEiXu2eCps4uqgyLfQ+7YiLM8Wh1tErAQ2buKEIZ8Oh3zOEZh0caOHR/HhrMzc8K/AwxFXGPDyuYCPP+jogwEXZ89gvmDyo0+bruKZip/Y4Xs+65NT43yXO8/Ke+65Z8VojFiv/HkOK/rlAM/icn85aHfIZ4y+5zcsfFzzj7uc8Elg4eGXrNp02YmNDl1rhB/X8h2OmONCxzUdPuLJPj508Qi3fNGB6//BMNa66VvgxuDBLecOrq1bebNGfHbB5kNerKE4N5fWiTzFk65Y2LUe6PJDhz0sY2Eba67UMK0TbTaKfznoW+3GxG5OrREFf7p4wFSsCb7KYT6q5cd9KWZx0TPmM8m8wcDTOil38lhMOODFp7XHPxz9fFub9Alfxvgzzk/3mHjkjMDGgw7RD59ucfFJ6NAVY7mib05hsiG44Ebw0Tbecw2ufr98tDZgiBe+Mf7wNafs2OvXB8O1uYCBKz3Cv3Hc4k8HX3lgAxs/uPzJU2KseOTS84oev/pxSOJTn9q68Jw3f/yyyxc+eONG1zhh0xzyYT7cD9YBPsXnOWPOjcOFZwzmjFEeiZyYF/4JrIrY9LMTPz75lhMl3XRg0NNvDWjj4DousNjiqLg2TsRDT/ww5TV7OmISDx7a5sxB+1NPPXW4devWwuDzOrK/0X6dbG3dnYGdgZ2BnYGdgRuaARuJV199dX27zobJRsNGxKZCIXTaZNhQtEmxkbJ5NKaPbZuZcGyubGTmJr0XGjZhlb42f20i20DZ4ExObZj048dfxbWSaPMTN/1tytkYh6NMTvzxP+t40GtMm9DLd/7VfNDJF13t7F3PdtdxMgZHPWOAKQ/5ZEfMC1v6pJq+EjdtY3SzMQbThlyxqaRjPmymiwUPm/A27m1O54Z0zlc+1ebYZlsb3sxLfWp+lXhYS3SLCWeFLs7G8DK3XhjVxciWHp76cPDi3EsZW/2tK7pxWA7Hj3IrPvHalOOBa3ZD/SKOxudYbWPNd+sIH/dNLyjlVl85izcc9uLq5QKnMMxj3KYtX3LgxU1Nh67DEDk07oXr7OxsYRnnp3+5wBc8/PGD4TmCR3NinI31kx/c/D3N/vxQNubMP9U254Stwx3f2i0//MB3zQebvtHnhVXM7I3hE7de7tjpU8SnPpXiLOds6OIDX5l2xhR2dOTFNdFH0rdG57zCbj3Ki/HLBE4lPPrsi8m1kvBZDGzjnn16OMsXYe/+1EdgsGNfDOpirs2uHBsTkzE4ij46+MQXftjahB/6bM3tPJh9V+O/czl9t+6zp9scNF/0+Y5L/OiWH3UY6nxoE9fKFPgEtvnDWem5I275cA+YewftL7744h35RruDdv+M3d+8xsu9ZN3Lc1zNrXvCfY2rMXPs2j0jH61J4/IvFjmthunQrc9mep4VYoTPRpyKNqEjD/x0T3quuF97PssrH54NeCl9nuDfWsBRiR877Wpc5FhcOKjhqOHT5dt/QOsb1T1j+nvm+PY8Ky7+YeDmG9nmjz/4eBarHLApb+ysAz56XhvHQQzyxdd8HpYvdbHClTvPYNgKPAfVagILN3NjPyZetUMrcyb24sDXYdm99967uOkn5oiIT2GDP878q/EtV+zE70Dy4x//+NKRF/nXn88444QjHfPeepAPxRrESxtn3OWdH7mQx/Yb4oXvWdPzBne2OCt0XKvLO24O2tniReSRb32tE/a4WCvGxO3v4jtsJ2zlyzheYqIjb7hr09EPl19x4GM+823cNX/Gmovl5PjDNSxzKU5YbOTDQXu/UIMnp9ZI/0qKrmIMjr2OPIhLn3UAW8zmS57MSQfM4mPnMJ8ffvEUr4JvBa61CAOW54+5088XH+YTHh1c8eRP/PJDX+7o0uMPPl1+Sfh4y0Ex0ucfngJHfMb5dY/BJ/D5I+XBmLljw4fY7U2sDX5wIWo2cPlgw7b1ro+IjR6exrXp0O9+d63ffNC35xEvDjiqidhgFCt7+bUe0sFLwbW88C235oAtH+LpHjNuXeEkH/jIFXs81PStcdek+S8HMHC1F8RL7lrL+PBLstcnHv4UPvDTD5OeZ5g8wnJNX6FTPHzoK1Y+XNPvOYmbPvHBKy7rxJpyX8OBq681wEZMSvzZyrXr8upfpD333HOHRx99lPvlazWu+GMftF8xUVttZ2BnYGdgZ2Bn4CZnwEbDN9r9M3YbONdzg1NsNhsKsSmi57oXABujNkvstW1kKjYzNnk2OTYxbOnZvNjcwCM2fDY9NoHa9IzR025DlQ990y8eYcGjT+jggA/Bw8aNxMPmj22bPNj5hINDfOnUB1tb0VbgzL4w6+OTuJ4+9GVbzK4Vmz04CsnXuhg/8qEOy7A2WzXBgY7N4/QlL142esmhY87MdZjy6KWmF025C4eOIq6ZMz75Tle7edRmQ/TFTV8bbHX65Rx+OGrx4e2bmmJwDUMtfzbe2tZWB+0wyqU6//AqeKUDL//yYiPfi4N+NqR4XPPddfO9lMaP+ukp7OS5dQpDn3WcH1zp5MMcdN/Qj3N1+aOv8IO/uRULPfheRLxk4eSAw58aMNd8yZfceTHrJQYOf64dqMCiq8g3nF403duuHbL3t0jZuO/NnRc8vgiOXvYVNnzzI0Zt2OaZjUMCXNm0Lj3TcDM/8WJX7DCVRD9h0xh/bFyXv/SnLhv2SvdCfhqjj7Mi19OH/NDz8qm+TMIPF7cKm9qwib7WA5vWizqZ8et3LV+Evev46ouzMYWo5cjcmvvyRTcdbfzwUbvGiVTra93ol4vWXTHph8lG4Stceac3c0vHdRzp1+Yv/fC6VucrPTokDG195VM/O5x93vXM4g83c+z+ctD+wgsv3JFvtN8+/qeI3/nOd9Z/hoqP+0jhrzzh4d7CCT9j7lX3uT68jSvmWjxyCsd80dd2D3XP04Pb5yrc5kG7vJtDuOXCoY971WE7HbllB1eNC3+tWzHREYsat+aPH6LGg50CR20tKtp8eT7cd99967nj8wtevzRsjuDBUvS5F8yb2NVwcINrjE75LQdiwLPcaMuBXMhbGHIqbvzgzNjE4F7wfMO1WNnLH5/6jHsWNzcwPc8dfs17EVeY1ubZ2dni4ZrA54sO+/jzZX2wwdFBtWe/cbr/xd7d7VpWFW0cXzcCdkOCgECiB16FUZREAxoaRYmAgB+HYvTmVC5AVGhaG0+8jXf9RvafVOa76N6b9EmbUcnY46vqqadqjDnXmHOv3u0z4qmnnlociqn9Irf4FRN7fTmA2Zry4QUZDtruIe7bfU7Ii9z1jVw6bPEUtzURR2vQ/YJfxRrwi1efAeyJzw1+iXjiDAMnPPHuFwzFYxyfiY2Pwg+RD3itLVvc1eaUPh+NibPCTput/WEdG5N7L/0V4wQPe9u1Jb90iPi1rZtx1ztf8iVexTwe8iAfMOwp/v2CgS2usOS4PVx+9btviN31ZO3KDY72Iv7G5M6+4UM+2OChLka1Yh344b+44oy3OMIVvxj4M67YR17edt3mR2xw2dKXY2P4wfCLuM4/xhW6cofnvL74wcXaE/sCNl/ixp2O+dZSH5b1kPNetFvvPkP5I10H+uKACYtP2HCI+XLCtzWBb9xebr+KpX2Fj3jwEVPrzEb87Ihxa2X92bdmcFyDbJu3l8RPj50Cr8KGP+PWF3/67PsP4flRzM3c01NIeOYV4/aAWh7M4yVGAt/68mkPhm+8PcBGbstv2OWVnvj8Z6i//e1vT6+++urCpncT2S/ab5KtrbszsDOwM7AzsDPwmGbAYceLdv8xWy+ljE3psHE8TOg7kDicdPhxMGKvOJAoDjJqB9gOoeY71HTA5tOBxiHR4dKBjA5R13ZAmgKrQxQ/caDfgcuYQ1a2PSyIgS0ODlGwxKKYg6GOb3hsjOtP4Uch5ujow1OHqQ+zvjoxrhDjtXFkJ8bmpt0avPqRzbTXzi81bfGVZ3zZyY0DuoN6sdCZh0/xO6zKKR3z1s0BOp9qmMbD5le7Bw0cFNL66osRlzhbtw7GDsq46dNRcFCzxckDQjowFPy9JKCDgz1WTMWZrvjC5ce4sR78YBjz0DNfOMfDnHjCkJ+w535fgZ9/0EuXHn7s4fFLjGtbn3T1ywN92MS8Phxj4jRGX5k8W9u5v3pI49M6eynu5U4P4B5e3C8U2PnS9qDdA4m1aL/Kt3x5WMTLw6y/48qXdWHb3ism/j0ow+Sj2NTlw14Ny7ob55MPLwnY4eufwffQKhf0yvMCHj/MEXryYr/WNwdTPdtL4fzDmJzGtxpWa2D/ELhhyZl1kQMCJ2GXhGMef75a97jChwU7H/nuPmgehnl2dNnRy6b8yOeRc7zjpR8XbcI+LGP6cZw6dOHTxa89bq/mu7jpEvyLEWbFGF2+Zg71K+zzn3660x+9JD39YtKe4zAUMdjX+LcWxt0Lxfb888+vP/eizi+sm4gYif9E97XXXjv9/e9/X/5aAxwJDuVUbESuXBM+k13T+q7zXnzATgdnmIrrR1/u4CquVfjyYLw5cRc7PPMKn+4linE8+ZoiJ9aqPMOsD4M+HuWAbfsnGxja9MSqLz73Ct9Yda+Ib2sgRmOw5IqvMNzrxM8nTPcrBS+61jsO+MFkXw7My7F882FegcUHnJkPGOzLLxx2xDmqveWFGF0x4q/uPmu8GOFrw/My1Zx7Dg7w3Edh0kmXL/rio+/eLQfafMmnX2rTwZWtWMzDKP6uB315UOSTf3FZC/uCfznlB7584OeaaR6GMX7EqdDlQwzFQU+JGz5y4+Ubv0Tu4IrPvAIbJ1RADXwAAEAASURBVBzFx49vdfuMoodja6nNB8m+/MExJhfa8TGfD3jtjzDEYk/QYSsf2oSteWcO+dM2Bse+kkd5kLew6fgGfPnBA277DjZde9O+gCFu417m88OGn4nLBiZd6yMX8srGHsEnX/LOnr5x+WNvPtG2VgRncafDb5zMletqdnDF0Lx184sVn/vWDoa4jWvLuxoGbvzz4WWtkr90ulbU9qd9BI/AbM3wgI1/55bWj25t+aIr364/fuQNV3X5Dpcd33KpxpuNQjfsuMAWh3n5lnsY8oN3cbNV2MkBXvTEnw3s9ik7GAq78OICQ9EPL2705xrMz3l+/ULL9cyvtVQTNnEuf/CJvsKXOOEQ89YAP2P2iP0kDm1jdNiKXcFPbstvvuJtLdh50e4b7ftF+0r1/rEzsDOwM7AzsDOwM3ApAw4a/jPUDz/8cB2oO3x1iGHTYUNdMU4nfX0HnTnvQONg42CiODj1N2HNOQA5CHUYYhumw6SDlQOOcW01H2yJucTBCT4/5uPChwOUMYc2fNhpGwufDt04zPjzaa4Dmfl8GKuPD73JzZxinNSuvwbHD7gVw/QUucZZjERfgUfS084HHtpTxzwxZh4G23QdsD18OrSGQ8caiJUe/fKJq9yVa/PGwre+k2dc1GKxJuk2Zj1hJK0rvx4GfQPIQwTbctW66xvvQQEfvD0ceWlL+BGPg3Pxwy6+6Vce6MDzYM6PYsyLXJgeumDGuVzCgdv+Ne4Q33z6ccY7Hrhow1W39sWsL08KHZikMX3xeXDxwImvPPZwE65x/NTxgEEPhri9mPLnBly/xQ5T/B4M2dIVm3Frzhcf9NV8yFMPqNZRsY9wZMumggtcD53wYIQXNp5erPhmvBdoHlrlii0bD25h+FY8LHkl9HCeOZ59GPE2rg1LaZ+wVYxNzDnPFlZFPrSJa4Ztsc21g5tkO8fiA8M6EznmLx/auPABQ67tZ2tqH5mXJ/baCly6Xc984mXMPCxjin6czNdWw+Ebjj47Bcc4Gddma021+cKPPVHXXgPnH/SLEcbEjFO1ee18aoenhmMMN/0+G/TN5YfOFPOwcdEmdLMTR2MwxUTXfvV3wt966631ZzdgfBUphnv37p1efvnl9Y12PuSClCM8rDVuciAOhR5989r2BZ6knLomrV/5VRd3uWHjXsEfwctaTp8w2DXnundP0Q/T5zcucNgTNq0NDHziZt+KR1+xh+HFo/yz82KSLk6w+ff5wXcvmScXvlt34zj0ggs+X/o44Agz7nT5Ki5YbMz7XPUZwsZY91h9RRz4wlfDKv74wZYr9uLxjVjriIMxnNxjfd5Ne3bm05MTOnziBEcu8MSFfzGUU/Z0jRW3Ph9q2HJG5jh/7svWm/RC1H/aiwO77kna/PIvNrrwcYATLhy+8PfZIV+9WHR9mYu3/QmXreLzqc+s1qOX7eZh2Wf8soODp/XGoWsmTDWu1lKtL1fiKIf4wgkfNl25xjW+csuPmOiy109PXvo8bH+1LpMbbGtqjL2X3/IgTr5gGC9G+uIy33VozjrLB+7q9hAM8cp1+vjC9FJfbS+VI1jm8RGLvgI33rD4J/hZI3N0FHYwxM1WLhRtfMSnGKOHq18S4OOFd7bq8j3jyB5vwg+hYx3sGzkQm+vLHmmeT3NqOPiKQd7Zyq88iVHexKK0783ja585U6lh8d06421Mvxzwb3zGpM0nbPc4OYQjTzjFG09cWiM6EytfeLFNjMM3zgYO/sblALcwW2/zxkjxaJsn5mD5hZbY6ffFDrnkr73IL56JedIekVf2sOOpr9ApFhg4wyPxY4NjPsoJXRzw7EX7/tMxK3X7x87AzsDOwM7AzsDOwKUMOHj85S9/Of3+979fB5zjoYoNnQ4oDhuKvoOMw4mDi9JBOAxzdBSHkw7mfQOqA06HfgcaevmC2UHI4acDUvPmCD8Oew6yBAaf8Dpo0XHQMscOF23z+pViiUsHNj4Jzg5hbGHGpXn2HSRhGE+PrT5bbfMk29W56htrnF4lPvXDYKt9KQ6c0uO3PB796fNpHeWyh3eYYaj1w4mnmBubuPwaJ61J+8FYh3RtWHJjDIfib07Nv5fsTzzxxKqto5zQ12bjsO9hQt7bk+w8IHlY0jandKg2RnA1puCOqzyIT04c/nsIN9ZDnD0Mr30BqzZsuvAU9ni2H7PTV8zhkQ0sYlwJB7fy1zgseTDOL1+9aIcJ3zwJhx/FuuIMV4FlzAsM32j3dym9zKYD28Or+HtpQdeDiJcf2jiZxyGb4jKPo2JOvmEWYzWObNT01Hi1P1ofL4kUD+p0iH3g22xw8dL2gAyPpKddrObo82Usvvk1h7uSvbrSvH56M5/imn15Z9P4XH/jiXF2pHH8+JE7sRJ8+Z35y4eY7GXr2bUNy3XRGsXZOCz4pNw3byz/dOOvnlIe1GHiU56Na7MrdrgKMV8sE7f1MRdGfONYn186xmvnI+zG+QibjXZ99vGZsYfL1jgsNtYrfPvVSxbFi5zbt2+f7ty5s164w/wqApt40f7KK6+sv9Hu2rYf+HZt8Run9gl+zbMvrnIAV5sUP53uq+XAnDXjg69pp48LP2wr1sR+M+d6JeXZy1hYE5c9/vYMO/dZoo+PmsB3bePDNxs1LD69vKGrzx8/dOXEPcM1UT7V9JT8s3EPgWFMfvhsj7HhU03XfPnEz7g+Tt2j4MuDmrCDyQdc+tr8ipuemPW9RNPn0+eSXxzIHzw46dGFCUv+1OzoyImcaXsh51zm5ax7g7F4aBO2xeF+AVfdPdWcnOKgTldbzNYbFr64+mxgC8c6wM8XDHz8iydj9HyOlR9jdNi1LnICW45bF22+cICv8OuzgG2f6T7X5EA+5UlufI7JY3HwaR6eHOIEwzw/7PMvd+UXZ7b01HDN4+R+IN/sYdKF65xCcPH5ar92LZUHeESsrZX4cJQLv9iAW46MWQd+fXZ7Cc2OX2OKnLoW2OECyzyhb71x4bs1FTcducLdL7TpOTOwV7IRP772M319PmHA45uY588cXuISh4IXUbem+vnSJubtjdaSL7zETPTx4ts+s3ZyLE9yzE6cdOCIy3poh1N++BIPPnJH6IrBmLjsZ/d+6w1TzZf4Wj9r7f+jmWcouHKWD33tBEe820PGzecDRzp4GFebw8n+s3bGiLzjDQ93OSjn9NjBCwd3+YMlBnmDgS/MuImVrj7b7KvpKnzzx4f7BVx+rRWp5ss6KGGb58OeKRewWu9yUK67bvSLHz4M8dNXjOEJiz9z/p+PX//616cf/ehH3H7Ba3Wu8WP/6ZhrJGmr7AzsDOwM7AzsDDzuGXCQuPSivQONeYce0oHDoYM4cCjGHVQccNTzkOWQRAeGmo4DlMMMOwciBzMH9A4204YvB6EOm5NDhyO4DoCwYbBXSIcq/o2pYdLVdnCKPzxzina4uNLNN0xz4fHDr3lzDmTHHLA3R9iZp8/uKMYvCV1x4oNj9nGLf/7pEDV/7DukZ2NeGyfzCnz56YGAH9j5gweHn7iKberMNh/w8wFfIdZfTASPfKtxOQpcL9q/9rWvrQc5HGF4YHEoN99DGm5wjMHC14ODXPBlDY3FnY45D1Ew2OMMg46HEr5hFH//LJkN++LMjh/+W29tusXZPlIbU8Ohx2f5LQ/GyztduVPzQ9TWzjhbvjy04Wzd8gvHvDF+YOIIC3c45UNe5dvDhQdS83S9DPDtKw9k4biO5YbA/+c//7l8w52x8D9Fn7/imLrGKsbpwUtfTB5gFQ/L2YoLN32cPMT2EMg20VbEoJQH860zjMktH2GojWWvLyb94xrh2xhf9GC3jrgYZ9tce4OeMb6KofXjMzttQjcfMFwvrhV16+geKE7zBJ48lZf84BMnY+WDjT7+lyR7XGAr4ZSz7MOgO+M0Hw4f5Yq9Ika4JJ7lYmKVN9zFD9P8JaFToZcvuvGcficGOzp8wNf2QsIe9cLl1q1bp5/85Cenp59+euFO2+u2y8e//vWv9Z+yudbcC13L3RO7D1jfXhKJwzw+xq0/vr3kKCf2Q3uFDT062uUOTnuZXbnPDgZ9+PLgfuS+YcwLy7DiAwt2e9U+1RaTPcl/fmC15tbBfY49G/l2H4SFkzk68WhPGCsGeafPlk+1YoyIn7/GYeGfFKe+Np50yqdc6+NH4OJbzMbwUfBjx597qvs3W3nAA2f2xtT9KR736nLOH1s2cuAlGGy4ipy0nu6b9qY1wS/O5al44ggbJnvc+GCDF6xyzw4fvHx+8u+FKr7ux9aQrT3RvZk+Lv6Vkl9IES+G/f1mfouBD/zkiB+8+ZcTOTJnbL5w5ssLU59b7PDykt3/QeK6lEs8+MOpcylc6y5G3NUwxE/48UsKvLXxZO/zhx+c2MiZMfPw+JQPseib579rxBr5VnT7Mfvyii98ecQFLj9yLX+4tJdaA1gwxUi/PaS2F7t2+cJL7PzR58MYH2J1HlATc/j6V2TybO3EhCMeamtHTw7ECRcv+w5nvog5+6qx4hanNmFbMSZOfXEo+vyxESeB296gKxa/pPLFDb7Khfz4l4r6dNjdv39/cRebAjt9bWN80if6xSi+/sVde0meFXmJk2vCnwKz74pHvuAr8MSjbQ0UOYYJS1tcRFuhY0xt7fnD0XVq7xmTP/vIvpN3ds62ityxN8ZH+8EYW/te7nCyR9rz+Cv8Zidf7PJXzthqmyfqriV8+bY34y8H/TJEDPYXP+y0xafd2vOXX34U8Sri4z8dXMtluTMPy1rg8M1vfnO/aF8rtX/sDOwM7AzsDOwM7Ax8aQYcJOaLdocNhXRw0e7Qp510CKnvAEI6sJh3SHLg0XZYcqj2cKHt8OLQ5vDioEnXYYhuByp9hyG61dr4JB3EYLJT84lHuvr0FEIPBt/0CX1jinb845IOzObYxlkdz7Do8a3gn+5yOH4Yf5jAcoDEx0ExjsWir5QncbApJvgOi3TwVpvjW17iao4fxeG2/IiNsMu/uNjBLdd0pk/zpDWY+bT+SutCxzy/2oT/2rj6RY0HI9+Ycqhm72CsjZuHEQ8qMNnKBw74OZz30GVem03rIi57UTxs4iWeHgjN0VN7MIKpTacY862G3drTgS9GfPGjo5QXfumV7/KnDqu8TBtzcOROgSE+ufAALM78mqNvDDfFWLkuDvbivnV+MejhwoM1HfF7oPJgJv7y5iHNNQWbeAlYvHzwV2y4tq7mCGySvXZ68iEHbMqJtvX30rBvVmWLE2764ogb//k1l35+zcNXsys39CY/81PMi0+ZmHT4i7c1UGB1zRSPcWtHzCn0ilsu4sa/wh89PsNbAOcfjbGBA9u+a++Jz94VI378w5ArNvmDky/jiTE6yoMkzrCV9kEx5AtGPukd82gez3KiT+iKoX1kDHb+Jlb8W4Npw47wgQcMwsZYEob5S/blhI0Y8PViwwsJL3b8B5JvvPHG+nNMl2LMz4PqOLjGfLPO32h3LcBz79YWIz08XQ/ujXKPDx1j9gAdcZQnGGztEzjZ2ytiUuCYs6f0YRhTerHSOpmHwZd7JnG9EnNw3Gf4lDt1MejDxFWBqe++0r0Gtthg4QOvPS4m90A2OBajtjjplqf48AlLDU+Znwu4mceHwFHoJ/DpED5xNM8fMdc6qAmOdNVEW1yuR9I8bFgKHHtKmS+I2MqPnCv4lwNcfSbAJn22WRP84r0mxw9+xey+SuwH3IzhMu8tMBR48BV6fPQL6+499gQ+OMu1l3deFPucJz5nfBNdPKR9Ih4lP8YJXDHi45wA0xh7L+y9EBSLa9J5wst4L/bgyAk+fNIPWxzWiT5sf+bCvLb94FwLQ1uuxSNP8NjBEb++9ZAvWDjgR8QCk2/7BQYu4lLMy7c8sWfnumVjjxvny31G3LiwgcWPQvCCjQ9pr7K1hxSirxA88JYH+q0jXwQHsckLHl6008VTYYMHn2Kgq88XLDjioSsWL7rxhVEu2i/8wSPm+FO0wzAnN2z4tE44WpvE/rDXvAQvZnnm2x5p7dl9/vnnCwsmPHktb9r84MC/ggtfxrwMtsfEKJ9w+S6X8kqcqXrRDpPIE4x80NUXDxy+rLMid4k4zBG6uBqjo6aPV/kVI/9qY71oL1a8cQ4TH1jWSFzw/YLC3qJrXuGbjcKvPv7yaF4MxBiMStz06VRr4yQvuLqv4IWLnONuLelbE8V4uWFbDvnvsyEO7OWmdcKXHhvradyXTvyN9v2N9rV0+8fOwM7AzsDOwM7AzsClDDiM9KLdIcuhIjGXGFcac2hx4HE4cojRdjgx3+GKbfrh0nMIUhvrkAfHGH0HGVgOZcbCoc+XwoeazDF99vNAB5vAjk/+4eQDfjyr2cVLO50OduwdGOPSvL52/tjSKz79KfTL2/QXLjs5V+fDATLMxsRqTJ3/aRevGX9+46p2KLZODtDZxwu2Isf0YHpwcmDFid94s2mvGGcHP18wjuvMxhqygz+/7QQDL98qu3V++attLdT2ktg9QCp8wMYFjoOyh3U6xlo7fe3EHJ7qcogPXsYdtnv4UKc742I3Y89nPvBRpk45YVspx/o40IEVfnmCWwzGFDr4xbU8eDAxh7cCL51yr+YLJp5esH/7299eLz70STmEJd8esD/77LP1QA6TPdyk/QHTnMIWjpKYr0+n+VnjTfCsyJU9Q4pNnY84LYXzD3b0lfjQ9/BmjJ02vzgphG750U7oV+BcisF865MPYwSWvdzLEBiTcxzzzYZO+aqOQ5jlJ97ypOCRTVxxMibu/OUnnvr08zP5mEvM51udvjq/dHHhyxgp7jitwasf9Ai8BB5h335j63rPj36c6RbbrI0TOYBPP97l2bwxOqSYVufqhzm5LSY6xqyr9XU/8/8dPKq/0d6L9k8++WRdq3LgJYWXVz5H+ZRj4uWEeffp+W1Fc3S7tstLuTBP9N1n2zvVcIl8yxV/5SEO8kbPCzs67tlywydMvFov8+x6QQuvawMOfbZeSvUixQsec3SVXtLh5d4Ds30hPvwIG4XwT+rDwcFLbPowlO6ZasIO//YDfBwV8dWn24s+XIiXreWdD7pwzMPEvbMZP4q806XXyx/54k+etHEn2fRyCWc5ky/XOQz+Wye44leL3YtIewkfBR+fo3DlApY2Gz7jxbe+vYgTP2Ljq89tbXzgiVG8YnCNeFHsX1LBs2fyCYc/uvJQrLDMiak9Zg94WU+HvuIFqtgnP+vby0L2uPhMkzP+nTdwInIBx5/4sJ/lgG86foEAh53ihblveBM4ciQ+bQU/3IzTl1t+cZBrbbF0DZd/PuVSfnFJjx0sOfevZeDLL/32hdyxpVeBax3FIxZ2pH2mbZ/Rw58dPLFqmysX+JjzrwTwY6MQXMoNHnJAV+HL+hEY8OgQ42JQ80cXX/GWK7rmrQ+8riPj+ccTNjEv93LlGhQXfubdG61dvqyL9eaLiEsxzycbZ2CxtY9cO17g82/veNHOPyzcCX/G4MIxzi+d4mkf0udPLHKhtFZiYN+eoOcaU4zxQ3DDS/7KiRoH/9KDz9bXNaCwNc7GHH3xipWf9jU/xvDgR37Y0cWV0DFG4Fknejj1rzvExIec0GUrt7i0x/iNj1qfsIEp38bY4l9u1MYquLm+6ODGLy72Bd/6xBxhZ87faH/33XfXn2wzDvcmsv90zE2ytXV3BnYGdgZ2BnYGHtMMOEDMF+3C6FBRSPoVB4oOLQ5YDiOKQ8083HbwmHYdXOjmwyFJO32HLgcZRdu84vCVrsOPA53DESztDtBw8GJL4qcdF21Ct6IfJ+1kjsUxfHPw8TgeyNiHrTavsGGffn7gOMTRzSedxsQ5800nPtoKfblQHCD12ckF28mH32xal7jQk2tr4IELRjhs4tohGcfji/aw2Fk7NT4zV3TwgploN6Zm6yHYN8U8NMDg16Hcg0scxMiHuD2YzAdp2OKRF99UgqHgLZYZf3utfDUPX9sDkL3GlvCJs5qtWv7oznkPCO1XcbS/2VZan+zgiY8uvPIiDvz5wkuBwZ6Yqx1mfbrw9OnBFYu8acPhh2814cc+ePbZZ9fLBGuCl4c7D1R0YXjRfvfu3fWNQfHCKg98eQhS+EqMK6QY1HyWS/HKHeFHW6FH2NMxV5zh8m+MrtK6moePu5yUa7oedOmxtZfCqo6b+ijG+PHAzF6fHW7xi8fR3ri1kVu27PApptr0FFJ8tdVw49Fa6rOH2XzrGy7bYpy4xunEWx1WttV0k/LKz+QzudClx15+YMuda8wYKX+XfJhvnF57C38YxuY8fVIM2vZzOvr4moeRXuunj3869PX5qa2vEHak/cWXF0HPPPPMelB/7rnnvohzKd7gBy6kF+3+dEz3Cj5cn/rdb3CSWzlyfXqxgrf8w6IrLnEbN9basaVHR60vZ8Q17WVFOViDVz/oeXHRyx3+6Xc98yUnXuB0X5Uzbf6Nux7owBCXcS9S3Hv6cyJ8d83Fi40iBvN8wRY7sSZ04Slk6tGlI49eoPItdtzx6x7E1v3HvUJu2cFlK184aPf55bOJTbq95JMrsYo5znS6HhbB8w/YYiF8yT0d4+z4dL/upVpYfLKD6XOMnVyIWUnwIOzk3C9ZfQbTMSf2+TkKM9/mtfGiLxa2Ypcj+TOn7TMdPvHyu5eLbOTcZ7zc4C1n7svs4bM3xt5eaF/Ctg79Eolf/q0BOwJPIdbQOFw6pBxpywFdXKw/ESOufMh7e1m+xST3MBVcXGd04JtTtGHDan1gipFN+ZNrhW82cKyZNWw92nvWEwa+cuIegxMbGPzkS766L9ibdPj1MhMneYVTzowpOLBlI2fGXM/Wgg/zrQkORD7bX+LCnT/Y7GEp+VMrdMuxeftC4YNvPu0bnOHDY2etxKad1FbzKQ+1YeFsDC9nWb/UsRbpWmdcxGiMfvclOOUPZ2uFj/j9p9cEH2vhjNS3vunKnfWEK0/tPbHBJK03P2JvDeVRv31X/O1l+94vydjxY5/IIxuib1xsfIhZXPKHP3y87Clc4bCPI37G9LVbY/iuA2uFEz/mYRBj5lwHrnOYYnCfkSf86eJT7NZZsTbm5IB992S4xvnq/med+BVHuaFH9AnufKjpE9zE5XpgT5e/8g7fi/Z33nlnv2hfGds/dgZ2BnYGdgZ2BnYGLmbAgeJhL9o7ZNB1mHKg6aASqDkHJocVbaKtsH+QOOSE6aClOKyxdehysHGo1TbGt0OQQ6BDkYOg4kCVT/UU/fgZx5FfNg+SiYdjcTqcyQVOxTtxcISvHHPFroNptumaK8d0jOunx0d4DvI9gMkxfbzkooM7OxzNs6NTHJPvsc2ODVuiLX8krrMvj63hUrr6IX9z3eZcbbzYEn6UhA/7wQOAtZYLDwK+PeagDdtYh3k8evCDYT78Iz8xmsORz7jabw7+bNnIJckPH9okvmGEsybPP/iA0d9zhenhAr54CA4KKe/m5rXQPpV7fGDyRQdfuO1vD05yUDww2ccNRn7UrWcxGYMHWzturknjuHmI84sOL6DEw5e95QHRt9o9pLLzkiEu4sPdHqV7FL5ab775o8dGTETcCq701fp0xFhseBLXQnHpH2M1hrv7Sy+8PFATe+rLXiAuhcMPfORYDN0ftHETR3nMjP4loScWvNinZ7zYxaRfHvgl9MWuyF/j5Ur8pL0QJlyCZznUN8+2PcZu2raObMJgg7t9wS7+cVIbi38x8Wdc3uWMmJML68/XXMulcP5RDObjY4ydujWnj5dC+NLGh59ysyavfhiHQbdcZqs2Juf5hXXkyda4XNCVl69//eun99577/T8888v/Ct3N6rgkl60f/zxx2sf28utl/jsA361y7U8aruW+2yVd9eLz1a5Y+M6pIO/AoutXJVbe90LEGN06JdPHOEbg0fkjK415pOOeeMKXOO9BJprwF4c7v/9DWr9cjz5WwdYOMk5bLhxZUfwMkfgiF0O7Dl9nz0+a70IUos/XPlhT9/LZ/ji6prnwzwcNTu89Okq7QvzPs/nZ0P7PYzy6B6Fpzx6AWUN9ItBzr1k81kpfn5xFad8ym0v/PjQx9kcKUb84wSjtTQvBv7ZaPODpzlxqcXmviomfXjWSK5wYaOwh29ejD7b+dKXL9ysR3vZmHszXDHShYOPWHz+4MB+YsuBzy37h38vaeUPJ3HQ58Oa+4yzb/BS6JtjYw/Jt5jY8dW6ykG5YEevdZaLOMkzWxhscehFuzGSX5+zfMsD3+0vOvLSvueHfy86/XkqeeTfvDm48YMnb/p42EOKfHU9dt+lK9eKHFpXerCtg/0PQ77mt/rNE/b0CQ5d2+IuVjzg0pU/sX/66adf/ELFfhYPbnJoHVwH9pJ1J9bIusEJ1zgs4vpVzM+1wUOfDVy/wOtFOz7w5VDdPpCHzqVsxScG4/pya58Zgyu3//nPfxZfbWNyxncFPlscrBfMmSO+FULXPD/yzq85Y+LzLzn600v9UkKu5B620n0OlmLtFNysAd9ybB/kT+75UeM6Y7De5uw/84ROgpv1w1eRv/DkCTd4/HvRLuf68YVvjk33CXtSH1drpc2PIj4Y2njxYV5sCn3j2uYIH/N+zh97wgfdF198cf2N9ldffXWNzxjXwEN+7G+0PyRBe3pnYGdgZ2BnYGfgfyEDDhBf9qK9w4mDCHHg6NDhYOHgRRxcHFLoV4xVjCUdSMzBdXBxsHGYIg5PDozqDkAOjb1UhcXWQdXDBp0OU3Dgh62OjzqOfHWocoDTpssWRnHBNk7Ym48T3/Smj6V4/lGeilXdIZWO+bjCJTjRoVtO1GHQ0VaKpcOq/OBFX14cquOXrhjZilftsMgfLpeEXbGWH3rG2eGrTWBM/mvw6of88AWLHo7Gyj+14iq2cM2xsx8UOHQ8rHqAmQ85PRCqywGe/MCIH+w4OGST/NL10MKXmh0Ma0W04euXt/DbJ8XGVhs2Gy/a5b6HA/ja7OnAUxO25vpWEBwlLj2M0MPV+vfAYIw/pXzBZM9HfszxTeRDfopJjszD1sZLoa/Pl5cVHuK8fLIOxvGz9zwce3nBxt81tRfZ6OPew9Nyfv5hnG8cxWJfi19fPGysKb3WUZuww58Pc+ngQ+TBmIKfQsIuZn49YKqtFX22X/ai3TzhB5YCy7h2PI1Z9+4r5rMRW0Jv2mvTq8Bki3++6fBDB5baGlk7fTbq2vSLv/EwGk9Hnw4xNvcYPwkuCh7WYe7nXorkX41bew8ObHZqfUXerXnjamP181/NvzkcCO5KvLThk3yszugXKxxCL1x1ucynOhvY5o3li83UFbMcsvHi8lG+aL937976z1D/9re/rfuWvPNlLfCa+0GO8MUPV/chhYjddebz1H5l79oOC47rki0c9tl4+Sde17liz5ujmw/2dODC5we/ivF0XM+4tO58lVP67v/uP2KVU2PsYfYStM86nL1cowfPPLzWh52ir9Bxj+Kf4M+fF/te9rGVQ3iw1fTd8+QFd304cNPBkZ285IdOZxt5w9N9lx2hxy5urYWXX/yI0T0KV77pEZx9fvishMtvuaKHHwz3a3Psu4eyl+titF/ZGuvzpnyJRQxyYowvetZXbf/gwD48+XePFZfcKWxbQ/nqs7244fFDxx6BhT+9XrTn273DS9L08cgHbH+Sxp/0MEbPy0ecxAJf7sRsrb3EY09aC7lT5AsPsbO1Fvow+IknPnIud3LBLyy4xtmwt3d76W+MnpqIESY9a8YXvwS+MTGImZ195F+g4U+3+PhUcLOX2k94iMc+wE0uCR9xlA9FftiTsOFbI5/drkv5M1bO6GoXNz9sxcMHTvaAGPGvdm+zRuasGXyc+bfvvRC3D3CETU+O6YRbDuG6JnrRTp9/ORM7fcU69Hf825MwjPMDRw7kduYCnrzZk3hYb/nSDtd5yC+4rBmBN/3zQxef1lhujKn5JvTqi9X1xZ+80MHDOvjTS8bsD3570c6/NTBu3YjaPpNnAld+vPCOC7/FCRcvMSjm8DY/X7THNb5yZh3tETnEVZ6J64q+vj/Vo89HOcIRTteYmOUbBr/GFW3FHhQjsQ44m9eu4GO/6RM+2NlX/PIHSy0PMHyj/Xe/+91pv2hfKds/dgZ2BnYGdgZ2BnYGLmXAAeLSi3aHCuJQMg93Dj0dZDr8pQNLu35t43PuEq7DFXGIceDJZ4fGDtfhdLjTd5ByIHNAgpMO/+JQ4HTIcnjUNw5n8iwmGIp+B0X82OHXuLFypc5m4tA56s8HjDkPw1zz8IjxeMbBA0MPwHTE4gAtFx2M2TiEij0O5VpdYT+FX7atBZ+KcX7gmycwjIUbzuQ78zKx0q2mZ56tNv8O02J1oObDw4tvLYndvuDbHhC7PYBbB/Qwyic/9ImcFH/5lSuHboXIWfp0lPqw42mc6OPM3gGejsO6fzKMG/x4a9Olwx4XtT5uHkLg5MM4PvBwYCsn/MAqb2L3EGW++GDAjidcPmDCojfFnNyaV2DDI9rWwAOZh1o86cMuVg+l+l6oyD0bnHCzTnyWW226/IijB1W+4NJXzMshvARvOMaKVQ2zko59kR/5mDnBz8Of2gM8PfY9gOuT8qFOauOh0A07Do3nf+IYU+iIX95xNkboik9uxd84HePm8Tauzd5DbD5g4lNe+EnKjZo+gYM3m/rWgY90qpfC+GGPsOcDjx5i6cODEVZ6YogTHX15V+df3DjRm5xhhGPuUnvaDapfxMJnscJW8lte8D7Gnw2/XRutR7zUYhezfNCzz7xof//990+P6k/H/PjHP/7iP0Pla94P9CviKkZ5KS7j4rHHvNhyrZhz74037u4brTF7sVkr1wzhh52ctB7tA3P0zVtP9whjCWy86fAPVw1HXvnDHc/+RY17BX3FXoMrBjbq9pB7Lr/w3IdaY77hhYGPNWOrFKMY+HRdsS2m8oGrlzPm8sEetnzBnzHolyMY6XXPxxUPNfs4thY+T+Inj90X6LETh5j7ZS1/1hIejuLCVy7ouy8rMM3HzRwcedaGobSWYanxbP3g0xcbe7U+HvLjfj7jMt5alFtc8SDZiM+42phzQS9/4eMvH2LrWqTLV3g+t/ziRB8PuvOFI//W2UvH1ls8uOBprdnxxadirnuUPn90m5MfebCHjOlX08MV735pYqw41WzlnA8vS8XOnp6xPluNG7Ne/WeouMsB4Zc+ab3UsIyzL044hA0Mv4iWb7r5Ni8P8kGHX/lVyyu/9gTu2uzo+cY2Gz6NpecaFi9OxryYpqttne09eObZm+MHJt64uobM458+TBzwshfNlQv85c8awHAd+IWHPUEPJ/7T0bZH+LEu2oSuIh7++THHN37s/Qu/4y+BWj98cMAHjwpsc/rw4VWKybrgKTf44YCfcTpi4ldp7xY3XHxh9osIGEq884+fMWK+cTVxbeDYi3aY8qC0bsXAZ/nBFzZu2nT8YgAebPsSX7kqD+KyvuKETdjNvLHBl69iTA//OKiLmY18WS9Y/Be3WixetH/wwQenH/7wh8svzjeR/Y32m2Rr6+4M7AzsDOwM7Aw8phlwMLn0ot3hpMNDB5AOVWwaS0/foaoDTfONm3Mw6kAkXeYcDo2bb2webHAIYx6U6GfjQNzDJluCo3aFrQMSX8bwdogi2mTqsDfe4W7imuMbLzKx9DucZSMGxSGtnGp3eGPTuHoeFPkypuDegZWNh0UHTYfC8BxIHU71+RdTDxvG8IbPBv/8qS8J//T4dijWd9jlAzaZfMMoR/xpp1PejClTsmmd6PLhYWb+ndgeIHpowsW3T3q4hikP1kUO4JZrbbEaV8pTY2yLVxvvHgbLQTozf/QIzvjb1x5ytO0hD1h4wsB/PhTBKRdwcDE29yOePaho04PlpZ315YcN6YEKl+KSi5l7+vCMkclhrgN7PPANv3m+PVB5GWFvwMOphyG29lkcvBzyYCwfxuTDg5W1Kn5c4ORLTY8NHmr61i5pjVtTMeFAt1zV55eoZ7sxeQ2/nLSP6MBW4guDX3azxpVOfmBlF0/1UewNecU7fnDkzcO/hz925vhUzMOPp+vCnw3gj1hrOnTloUI/HLW1I9pzHA58Emf9xmC3VxsLz95U4jjtYImzog9HjSOM9IsVZ3P2jZouvbiVA+NszGXDj3FcEvjiC4f/fNExb0xuWr/8haNfO9ww8sfeNQLrUb9ov3///umnP/3pyd9ox1Gc+MQ339ZB2xx+7YP03We1fZvTPhM7m16GwLOXikPc7gtwvPwr1ukbBp/s8h1Ha0iXncI/PYIHXGuHq77rWYHp3upFqL3eergXya95uPDdf1zPfBtvL8SVr9aKDQ7uPzDpspUL1x9u4qXnZSL/3ffouk9Nrvr8hNXLXByNqfkqRrjzcwE3uSp/+q2Fb3vKiZjkiRR3scEvpzBgw6MnFvZ844Kbl7w+Q+GVf226/JYfOYeXz+7XxmrjIBds4CfacaFbLuJCr5zCkHtzamvJBiY7+ffy1wtYHOn47HOfbC3ES1eNDx12XniXC2sMu/XCzzXqX23RlaPm+e4zCF4iLrlSyineci1fYrEW8Oa9CwfFvDWwz+Z+FZdrkA7fOPrPVbt24PPdvuMTFn25qu2lu7jM4ygPeNIxDocuHPHRMd768QFDLHh2HdpTrSEdeHKndiaHib81wgk+7n4BX6xxhdXeSlescPTtC75wxYvAV8SCE2w84oJzv4iBwR4H8cszGznt2mzOmBwQ9xXrYMw8bDjihO0zGx8Fpv1HRx83NX58uk/yZR1m3vEoN/2CorXFoZjoyIOcdq9wL3QdtE/owlP44Z9vuHIuDnxgidE8zH6RqG1MLPhbS/FqG4MFGwZfSX7lWV5g4AjXs4p8wbFGcgCnfOJhneGHWb75FUcl7vy0t9rbfLKDDcc4DuXKPHtY8tv+p8sP/T4zrDm+dNvzdOzRF1544fT222+ffvCDH6zw41wuHlbvF+0Py9Ce3xnYGdgZ2BnYGfgfyICDx5///OfThx9+uA5hQuow0uFBX6nvsOGQ4qDjEEK06TiYVOik5wBTgeOARbykcwhikx9zHRL5IuZg0evgp08cIDu8wmajaIdJt0OVOQc73MOPp0OmA5Y+HYc2h7/4LofnH7DEzAccNaGXb2ONmxMTwQmmcjysmmcfTnGr+ZMr/OB62HfQdHjGFR6+/LAv5g6ZjeErZ0k5qH+s+bZ2fMHkx0FWWyFh0J1961We6NCnk95SvvphrPWVX7ps7RH/bN/DhBg8sHq46CVCD25eFMgDUcttvMSsn1/jxhSY8mlMTSfO5mCZk0cPVXSUxFy2OFsfDxV4a8uXFyNyJo/G5dIcP8rkFZZcKDDxsDflJc7aRyy8PMwp7AhbNsXFjm9c8q1Onx6//OFirrUvZn5aBxzoKvTMFYPY9eXe3ye1RsaIfHiosV/jpsZDTXC0vgqxFoqY8mGcPj+zzQ98uvzrT7v045seXPrGcZl+Wo/l6Mqvebb02SlyLG8EhraCJ93KUjj/MA7bQ5xinhhXrKdfJvXygi86fKWHB7FHb9++vdaYb7gkffeIrg/j9gY866cOp30Wf/Wcj3Ox8aNNj+i7ZuyJYk/XPD/4d6+HHX4cwtM3hxN966ptvDnz4prYOIqbjfWna2wKvsbUSmtIRwz24LxWjPOVhBcGH7jBaQyOPaF2b3iU32i/f37R/uabb54++eSTleeulXKHe+tgjXEoJ3TlBU/XMd79k31j7NjAYOe+YUxfDtwD2Nib9I2Jv3VWs4PRNUHPOtmHRJ7YuafT0W5P4KlPp/tAXL20dK0Q64Z/3IzZIwo/eJDWBiYc3HBp33Qvo8snW5+vvl1JFz67J598cn3+6sOOI77yiT+++gp8ODDlQt26TP/w5EA8hI6cK7jjwL8XkPzoE/p4mOOPhE/HnPtCezA8urjj5iV192ec4CtwuoblR5vANAeT37gaxzVssZZv4+KfXMzxYx+R9hsOzins+6yw3vT58BLVy3Av9XBwBrROCjwidrlhA8+aePFn7xjHOXxzrYs4/ekNLwhh4WFenGpccdCHzY4eH9pi1+fDNSJu1z08sdgf7PBT6OPPD4xyaj/IFXtY/Pocta+zN27eHFtYeCnG4Ts/wdQ3b53FIf7yLV/lwr5nZ5/ANy4f1r5fZIgfv3TYwxOvujyxETc8OLj7ZV7ntTjAUugZw9832uWFL2O4GCfa9eHKKd6K3NgrnRvl3hgcuq0nXTztf/bm5jri4r4kxuZbCy/g/Ys+ewU2XmzdC62FPMMzrp8fn+H64lHgmaNvb7gO+cWVwK5mh4vY5Flu7X/PAuU9nO59OPApxp6T4gYPP3n3ZRYx2Q8EF7bh4iFfsMzZa2xbB/PG9eWFDzxdo0q/CGVvD7XXxS+3+mp9Aj+RVwUffmDzjWt/KkgsbHCQz+blCI+uqbBgy6V5eGzlXYz8GGdj3JrEzfXo/1b55S9/efr+97+/KLZG8X1YvV+0PyxDe35nYGdgZ2BnYGfgfyADDiO+0f6HP/xhHcQ6MDhodOChY1xdW+gOVHSMdeDt8OiQ2AFMW3GocTAy7mBDHOKMOeDAIeY6VMUhXmzh0NcmDlVKByHcHboucWMHKx11/OE5WHWg7+DmoBUP/uiJJ77my09+6RF25hR6hH2HuXDTMW8sO7qzxI++B0a56+DOtxzEAUf6dNQwxWbewVHscK4j7BzGxcze+rCNW3HAMj7545HMvKWrhmttcO1QTNeYBwkP1R3eywHfdHDx0ObBAjf+1fZR8Ym1PccffnSm3jGG4ki/B5xia/3pVYyJwcNXLwCsu4cctfl4467oH7H4NCZ+Onzybx3iJQ8eIHsgoC9Oa6u0NrDEDgMWOyXffMBVFwfbfNHj2xihQ+wHDx2tl7jxMVY87TG1FyA94ONivTz42b/6hA/+SPHLm31NxNFaxiNfxQjLnLWFXUz62cLKZ/PNwVGMh01fW07I1NHGMZxws20diovetKenyLHc9VIgPuasp4fTrnX25hXzfMTXengpYj3Cxtk8/e6t8e0aoG8s/mp+CHxYzav17RlzavzbV2zkylh7Jwx2JHx88qOGnbBR6BqP/7zPsVHMzXUwli0fbMIvL3HpWuA3PG3jYlO3fkfbuBnnD8/4TPyuMfeGR/2ivW+042o9CS78tzbWAYdyIh8+N+WGnpePxL88MS6OY/zW1/6CRbyEEr9ru1j1+VTiUP7KIY75tW58wWoP+nykYxyufBrDS9814sUNPnQUscmtMwU/9gKb9hcdOPoEv/TaN66/OIiDrhc37t9i4YN/n0X81y9ONnzgDlNs9d3rjPFJT509HcK38bhqi5EeG7XiPgCblB/zSvlk6x6tFmu/yMB1xsiXON2Pe9klb/aH2NlabzjW3ucNDo3zUS5hxyEe6oo56yN/arEZ45s/bb4Ubf7lps8KvgguXt7250zwodt9Epa46OFEcLAuzk1yYZwf430OmReLfeQeCt+ayTdMuVYbI3wYU4zJo4IzPSJf9MTrGmtPmmttygEe7MUDU36slX1P6Pmb2WLVZl+MfIpFzZ82HTHePv/iVVw4GrPOeBiT0/yxpaPID/9qWNaMnhyzhesacM3QgVtO6cVB2/VqTn6tpV8cq+HyodATC1GL331F7PrNG4dtTIGLr3zjJQYib160W29rgJ85eK5nOWy9asMxjyeBL0b7ni0MvnFxvjNnXcs1HC/a4dCHjy883KwvneKGA88YfbUzUtcT22LEhy5/9q89Ki59+eUDRjjyKxa+5EYxB1McOOKkLVde1ncP5quzBh/48C0eHOGyhxVXNkSuXJv07ZG4du3KvRyJEx/+yw8booZfn199esbYEPmzBviLEzcx0bMv+OyeZY8RPunCkVvj2o2pCUyx8dt9kV/73Yv2t9566/Tyyy8v3XiuzjV+7Bft10jSVtkZ2BnYGdgZ2Bl43DPgoPTXv/719Mc//nEdPh0kHBocVDrMiNEYXYcXtb6i35hDiYOVg0tjbLNzcHFoo0PYOyjRZ0vo8su/AxEdoo4bXYWP5hyGHP7YaDtUquMId9rAcqBSzM0SdzqVeJhzOIuLcVzjEW/9YkkXN2MEP7b1px/jzeHMH6EbN/MOkOYdQmFX8kfXvLx3oO9A6kGn/CzwB/zgF04HVfh8JQ+KgU6cteHMvnYPEg7FDrEeIPDtEOwg7WHJA4W4rZmYe0jQF0u5x81YeeB35lTfHJ1jzswR+ubEVty4lkfj+BV7NumLA2/6cNgq/PYwrU1/Yizn5x/GcJCvfOKhwDFvzh7ogQCePHhA8pBFB8fyK15jMOJevz0CA1++ycTQTti7jrve63vg83ICL1iJtjXDqwdsD0Ueujy490DIR4WtWEnrVw2P3syr9Rd/66rvOguv/REvWNrFKm79auNs556VJzpiUfiCiz/9+BrPjzoO6vymk511sfc9mBLc+TAvV/aN3BkrFlyJ/CeuIw+68PKnLrbWtzk5Mzbvy7DEEld9bSV7PuWG2KPu7Upc2rv6fCkEDyW82s0ZT+LIZ3baclf+jItBkZfsjYdpvM8E9mLDq/Xip3jjFV/jzcPLtjjxgEnoKXwbq60uH+4LzzzzzCP7G+33z99of/3119efjrHmJM619ZM42UddL+a8aGHvepSv4hKHnBS3+7DrgLgvy4O9CZfQhWNPGGOvyIm++Zmf9rK938sY9/byB18bXwWG+4t7Tf5aX2O9LDr6yicMIh6FrYKXa4C/dNWKebrWcOppK63txNWesdt/7UHc8iFXsI3VZsdnYo7gJ/+uM2PWiH/3n+6hxhoXi2It7DttIs98xh9uOHIfns8SPNnxp2ZrrdjjAZd9fIoz/mKxz1pTa2SvsbOP+OWHT7rtHfji4N99zx6TZxzU9gAePmvZ8AeDrvslW5zgxF8/G215wc3nUC8WYcP0DV8vxssnHmz4ECN/+MIQv7YYi5MeW9zEKFax23/lhi/FPEy88cGZLwLXS8ls5IEOG3rsxUdwNK6mw9Yaud+Ux3yZY4u7mr9jYVORb/M4ikHfy/euw/KNC0wlLjDY4iQ/YqVP+BYHXZwUbYWfcOUvnuxaV7XchNs1hIf1Y8c3PDrWWQ7jwB9e/BiTa3zz1Qt1uHCKT/yuBXow2ML1C3F9ePwRbftB7oyZh2fv8GVuYhjnhz/rx4c+G3zE5T6nbxx+f2YHDh/lDr7Y5Uku2MxcyJ0x93JrScc8TvJSHozB4kvhB2bccO3ciyNe9OnRZ89XL9rlij0xpxQPO/lkS/TZKsb0CXvrIF/Gu+aM42MPyl85bFzNX3HkX781Lv98yqc5ft1/vWj/xS9+cfrud7+7eLC/iewX7TfJ1tbdGdgZ2BnYGdgZeEwz4FDx0Ucfnf70pz+t39o7rCgdjArLQYJuxbgxh6wOLw6dDjQOavOQ5XDCzmHIHB02hJ5Sfw1e/WDXAUitH9a0wcF4h6EO8/oOSWzpEzz4oj8PbFcu13g+6eZHmw1b/uYhEA4xz3e4bAi8Kfr06KejnV+6xvmRMz7NxSF844r+9EEvXLXDJhw+HGTp+4ZGPvMH4ziWb3mAM+fZ6SvpwVaIscnFGBxxtR4OyQpeDukO+gpbBW/zfFhLeB6kPSy1BjNv2vy3f4uJXfnUTqd41CS/2mzxtGcTtsaUMIszHXPi6Tqg58FD/vDygIG//cmveVIc+oo5WHib66FBHQf5UYiY5KQ9GMfyWIzpwyTwFOMwjJcfGOzJrPNrnuCr7R7gBYprXN/a4W/eHNxeNFhPufD3Wv3ix0MS360rG3255A//OPOJT8U4vGLno2uMjnlj5aCx4i3f4auN0bOOYlDsUXO4emjmE1/raZz+xDJGJ794a+NWHprLl5wRuAoM+vWL0XiFvjbf1tI11NqYI/wUrz5dNsYIO2MV8ZL40avAtibWhtDtOi4HxmEdBZ7CNxyFjT5pfvKTq65pOnTT0zY315uOvvHm5K8x/pR800+a4z+e5hpXi5ct3+VEu3jjxw4G6Zrxou9Rf6P9zp0760/H2Ks4xJVf/Oa1gVvj6jj3Uqo9x8Y9Su5hsFO6Htm5r1l37XD47n5iTP5hdR3ow4mj68j1NF+Q80mn/SGH1k4xBl9pHYz79qu++4xcm3cfmvsSJk7wlfjhlMAqbvNwYMotXBh05ImePr/mxdS9ny57olb4dK/QZuv+Jx79bItJzO1d/vTx8ELs1q1bi5d5pc+U8syPnMYPl+4r+OCq5Ns6ypV1Zis29nBhlB/j4vOCFWd72Z+FCLvcsYUjNzgZ12fD3ssqtjgYO15D7MRrXF2u2cpPewdnRXzlG1dnBD5JuRUrW1z5JfBh24NqfuOHo3wTPtiY96IQvrjYG6dL4ChxkAf82fGNIz+4GWPLn3jKQTHDkzNnNZ+RsBJYipgILCLWJBw+bp+/0Y6TvYcPvfjgBEfRFrM9z976i4e+sXT5wFte2MFWtI3Na87+8fK59SxuePQbn/GHVwz8i2P6lzP2ahitR5zKg7wp9Nrb5T8743waxxWuPJi31315oF8omcMnfbWYxGlfqAks+eZXu2sp38XCvn0iXnGIwfrw47NcrhTXjPt01yu/1sc3xP3pML8kNSYe6yNnMHCApw8nvvjxTxe2dcOLdN3iRIfQo4NfevAVeXE+MqdPF77/n8g1I244+BrHsRhhs8HPmLy3JrjDwpk9XuYVY/TpaNcXY5h4FheO5YGutfKLFdwIzOJR67cv+WDvWv/GN75xevP859q+853vLDtYN5H9ov0m2dq6OwM7AzsDOwM7A49pBhwmetHuINihQn08PNAl6uYcYvQdQhyyHEI6hDkUOcA4GKXjoOLQoyYOUJdw58EpX+ra5uMBS5uffHqYcXhVG6OfaHeAaqy6+PmB61AWvrHicECDSxqH2eFQm9BXiteYOVz50mZfMa+No9w6MGobI3x20FwD5x8w+EjyqWYnx7D4w4O+3BDYCqFrjl4YjbPDJb75K4Y41jfPxnj8sokPbA8vXhzYM71ktz+KFwbuHiD68wT2qQeadMKFF395iqsaD/x7cDZWmTj8tebwilub8IV/OcOtg/7kQVcuYNP3oNaDm/Xz8Oxhgw4stpOPPltzijn2ciQ/fNJRmnet2X/GjrnHgZhjmy9j5hQ2fFbkkL4+/faiMfpxSB8WLsYVOr65iLdxD4fyFZ7aPvzv+U9V+LvQ3X/69l58+GWHQ75wyB9sfbls3V33cpGOOdcsDLrlTD8d2IRfQo9f/HEQj/1qHO9e5sC1nuzNhc+HMevd9Q7XOrHxwIlj+wR3wo6w6QHQXBjlgR/C3hw7Re49sIazlM4/cCk/8YSlsLGviDlxH+3LrzofckNfzvhU6xd3OVnA5x/6FWPZwUs3P+aLTb7ESGdK/eLQh6Xfy7Cui15wmSMzX3FWsy92+YKpj+u0SQdePNSTi74Ct2vGNfyoX7T70zGffvrpWoMZG47yZr8qxUMHr64t/fliEV95s0flrb3HnphXfOa7Jrykae3V4fLfesJQ4PJNT3G9K71oh88PfPPWAwY7RV+RT3uWL+PuI/ZJHO1Nny397WH6MOm79yr6bLPBz77BR42/vLh34QfT+solezq44dP+h+/zjK5xGM3Dh81vL1CNyQc9HNkqbMz1YopfPrz486JH7vGmgws9bfHo+8zsBRcsuUxwbL1x8S9gxEcvTOuOoyJeHLXx9Kfc9K397fNLXFzg828N6Lu30ZnXHR1x0ONfvMbEhRNs+TxiGIMlp+5NOMNgJ1ftBfMwrIs8sGFLyi8/3d/kTKFLDxcY4qGPq7pvENNxDpFX/vXtQfsfJ1jtCZ9nSrmDQ6xNn9O44yPv5vmHA5dvePz1/ybQETOfc49M/nRgqMUP2zVgXeEZg6GUB361i90cDv5MjRfPsJoTq3zD4Vd81pg+O9eKexxMvu0Zf1eefzjiTcd32io/AABAAElEQVS8XMQfb3HDkt9w2eGnsCk+PswRY/rlBYZ1EoNrLqEPgy5ffFiz1pMNjnDMu97s9/6lHnt8YSpyynf73Ly+uLpezMG1r/EiOJByyFcxyF9rI9/4yD8O7mmuHfz5sD73z/+qyYv27i1yLce407NWCm7FnV98rCc/fMSLvpxYX7ps7TtnOvcL1whbvAk7nPm277V9geIf//jH4ggDJhs6BBcxwzCHR/7p06VTvPqNw8CPPm6EvXUThzE6cI2Zw0kRB7/W3S8CXJM4lCtthT/2dK1BeXL/9Zm7X7SvtO8fOwM7AzsDOwM7AzsDlzLgADFftDuYdMi4pD/H2Dp4ONAoDocOXw45Hbg6RNPtwGK+A5Z2czDoJI3PsebomncQUqeLewd0B2AHXP3mw6JXO0x9pcMVjvMQR888W3HlO/s5rs0nwbV48yHP7BXto9CXQ4c77ewcMpUkvnwQfZJvbTjiiFM86cA+cjOfaMOkY60nvrlyBStdNf3jGnWA9jBm3YkHWA8DDr72jgO1mK1ZvuD4z7MU4hDvgaW4+KZbKa9qXMzDwN+BOz1YdAgdBW88cciOn3TM6Zsj9cuhcfjWtIcqWL1oZ4OLA77DPb3yNPNJjzRHD3cPQ3JULvni03zXGn5ybK74xF48uLZWfMBqvfQJXYU9bPr857fc4xdW/O1PbRz8nVtrS89a4z7zZ509CHsQ91DKl29nuW7ZED6V/KzB8w/x0ank37jcy4cYCFyY5ojxiTfXL79qXHtIs44eXunCsoZi5cuehJc/+abHH9/ilEt9tu5NbLqPsO3a7n7FTiHq7PX5iTN9tvqVmeNinvmBQdof9N2/E/kulsbYK/DoW1+5oSdXbPgn+MoLaYydEi4bc+2reLIVkz5/cgTLmP6XSbh4wJDfsOQchjzFA05rzDZuYjPOF3uCJ1zjSm1zR07xjD8d+vYPW/c5L9rfe++99U/Q6X0VKd7755csP//5z9eLdj5aU5z5E4PYvTApr2wV92E2OOBo33avkCs28s9OMSbecsXeix/3N/aETzlUGiuXuLQG+CleCLvm5SXf9CaOmNgprQXdXkLhBgOW65I9bnj5j0vV9quY3Y/sDS+++BAfXALHfcgLIjoEL/eufiEsFvnkR2GDkzyq8eJDkQNjan22OPLLj5c8sPDFja17JJ/4wvY5QZeteTxefPHFFbu8sIXRvUQtNvnwklafv/YZP9aFD9eeOZ/B7m188gOXb/F5eYcDe3kx78Wjer5oFyMd/pTW2b1Ov3VzLcqtfOGhwHH/ER87/ujwn7CXQzoEjrZ1VounnJvDHx/5URd3+5JfeeLDvDyYgweLvbwa93JR3uXFt8vZacsBn35JAV+s8MzRsdbioAdHbS3Lh/zLA79i0KaHMwx5sI73z9c4XJzZ8IcjG1i9DJUjpViKG3e+5YXAECe/eLOBZdz+sw9wsD/5N88fHNcCW+vUy2Z5Cte865Lvcoy/fPIHZ/5ih60iXvpEG76Y8TCOA3tt8elXZgx0zPNn//uTKmIgYsRdgcOPNbMm7RP5NC8Xcoarf7XhGjHWOtsHcK2vsezzL9dwzdVW80lwlyNx4lC+5N71YC+QrgucXHfN8SdveNy7d2/tEfuFP7ztWX+jnh+68pFvtb5Y+ZUXa6aWO2Nqen1uyJe1g+kXN/agedhqfvjFASd9+fn444/XtWAuaf1gknDYtL7yAltfDuQVBt7Fo52+uO1d16McGhcfXbk0Jj7jcknf/rI/rFMxTD5xxos9HHnyov1nP/vZftG+Vm//2BnYGdgZ2BnYGdgZuJgBh42v+qLd4cOBRe3g5IDjIOpAYszBpcOdA4vDG+kA2cGIrTYbQo++sSRb/XTVfJhr3piDlQNtLwnowFNP/WxghjHr4jLPDjacDoCXOIrXeNjq+IpTPy75wjehS89hUJ7mwZeOA7nYHDrDglcOjeGawOsgakyfjhjo5avcTx24uMUpHX1SrKtz/hEf/XI3+YgFbwd0h1U4an2xtndw6sELFp6+taPAkwP8xdVDjXElKcf69AhOOMArZ2p2xaSmbw/jofBBtNmXB2Pa9BsLB2b7xJyHT5jG4ZhrHg6JsxoOPbbaci1HHiR6SGBjTrFO8OjhSKc4zZcDmLWzr6ZnnvArbrgw1a5vtviZU+iJyVgFD77pzhdc1lkJxzzdXgp5QOPLw3FtXHDCjfClJHGmwz+/5u0f14k2HeN8JcbpJ3TEUvzGG5NPXMVrv9LBs5cbveiYvOjTa0xdoe8BT4w4lbe5hnzzEWf8K/GOb3HzqRhXwzAHNx/ZmiPm8BKbh2iSTnyN0VfEpIYvL/akPl01HIK7/KebjjkYOFbsVWPio1fcMOMPy7j+5AVvChxFXNaHfmtvT8inPgkrzuHoxyddfXzxU4vdGC58TTHGLt/0YJYreX6UL9o///zz9R+z3b17d62LGOPEN874zLwaV9yTir+9JjYCIyy2FXMwiXu2F7Tub/LCDzv7A65inC8iJ3FrzvXv3q7PjtBh0x5jl3/jMOVTLrXx9LJEcW3hITbc3IPwg0/Y2BuuP1iuR9iEH3NeIMKxlt133be0W3N29tSMBwbO8mJfF6OaX7xg69vT4m5vsxUL3mzhwPZ5h0vz7R98cGl9cdfHy8s/91EvxvXL/wI5/2AjFj7MeYHa5zAMWIq8ypOcEC/Q4MmneVy8/BNvsWYvVsX6shFX+RZTnNjB47/PrdanNShOfnDGn466vVbOzccfZzpKbfoVebKGuOChsMcjDnTjB9fLc/wJXtbB5wKRK4WetbUG9iS94jUvr/rFw+9cD/uxtbeGrnF8cFPkik85lds+73CAq+CNh7brQA7aq3yxVRtPvzH70Nrhb7+a94J3/kKm/dsvEvhj33WSb7myb8TEH974eHnKBg6dciIGvo2LWZueUvz4KfJmfK4xHHHyZ/+IobOjdW2vsqEjd/TY5KNzlhisveuDLX/G8AqXLaykvWpdWnt+2BgTD5FTuvyKlcDnW67FSuRUrHLnBbf80YPFDg9fVPCFBT4IPtbKvY9t+VDzKQZtudLny7XMLn7s9Omq+ZQ7+bB+eJqDodCB2b0HD9e+vStH4fBH4PObT37lxLjausibNl/Whq0xuvDU8aRnT5UvfNNtXY3RU9jLof1t/+GOCzyiT4zRh6HIk7/R7pfb+2+0rxTtHzsDOwM7AzsDOwM7A5cy4BBx3RftdBMHjw5nDi+kQ3qHGYeiDlUORA49ChyHHHMObuw6cHVoyi6f6et3EOOTXocufWKsQ2QHLfYddB2WHAzZJeFc8gsrXW2H2/SyrzZ+nMNZvvA2B2Pq4VZMdOVCThzscTVGHweHWIdW+uyypaOQS/6byzf7Ysp3MeAaDvz62iS/5XYNnn8UU1zghm3MvnBA9y1n37YxZ6z9oo+f+Dyg9FBi3RyE9UkxZFdu+ahtrpir2ca9ulzR0cZB/j3UwFLCqt3DKTxj2bLXLmY+5Ni4fW6cqGG2tvTE1J6kD5cePPPG6DemT8zTJcXU/jEO13g66nC04eAYT/jsK+ZhWGtxE2PadGDEr7p1o1uu8NT24Gfte2g1Tvjnx7XlxYJv0nmAjGPx0okru+KPR3NwlPrsw2B37MOJi/nEmLgIHzPmcmv+6CcsdWvNXl9+7HFFXuMFwx7Amy699jwdftoj+Fir1hKu0rrVx9EDa1zDYT9zQB+WYrw1PMYOvz2Io9gIfNzyy27aNt7+av1huNflk15xGyPFHaa6fC+Fqx/FoGabPl0FLo7lQu4V+gk7OcCLsIND6Bk3X9zm4rmUzj/EyK611acvdzC8DOhF+3PPPff/7MN5WB1vL1l+9atfnf79738vfl4cuGeKk3St4o0XEQde5orFdefzpXiKjZ/yyT5b416AiMfLB3hy7F7Nlh5sL97o8GUcL7lgCwNX93vj/Cja5maum+MHDoHLj1zn2/VjvvjsNfffsLyk7OUaW7gJXsQ8PLhi1sYpv7Dxi3P206946fEBN66ue7bNdU2zDY+Neb7Ni4noG3cPhU/P9aPItT7BV06tafcT4/zCEB9/YjdmjeQIRtxw5osOXeO+oepFMwzCb2tPX1++yyPf9MUl7/iJZ36m8+lbsl5m9kINthjkKv84iNk6attn4oBHB44YxFI+8MdHzUahS8SDn5rfXhDri0/uvKBlax4OW9zFYT35NK7g68WigpN/geflpxj4xRtWZxl+8glHbPKWj9ZJ/nCByZ5vLzv7hrVxmH2eiI0v+HS18St3xhW+5przS99ade8SE3zCn293i5stf+0v+RZLwt7awFTEouBhH5RP/uJvLVof9vKsxofgqrTv5QwPtXjKl/uhfBC2eLTO9iqu/BQn/3SIeefTXqzjTh8+PqRry97gB451wYM+Pfq4dz/FjZ2abyL2WYzxVX6sW/lr/8SLLjy88bDP9OnBlCOxWBN9OPiIVU3PmBpXvuiaL872DT7l2RiO+vErv/D8EsmesGdhh2cOj/ISTz6N6SuttTG4uBK5LQ465sPTJtbA84Vxfo2Xb/YKgQnbHB3FWL7ERbdrjQ3+CrEHX3jhhfXL7e9973trrLnVucaP/Tfar5GkrbIzsDOwM7AzsDPwuGfAIeM6L9rpOcA4hBCHEIc5hw5tot0BpQMMG8UhykHQgddBSZ+wdXCDpT3t2SXpx6ODDx0HJiUxR38WPh0gHcD48BCKi3johVcbFswOYOzpNIbHJSle8/TTU/MbRtzi3cGVnlz08FYO6OHrINtBPvxiYEu/9Tjyo++AqbZW9Ge86RtXCF2YahwUbUVu6k9bc+xbW9/A6aD+9NNPrwcZ39gxbz3EBQc3D6kO6h7izBnvYYaPOGu3F/ErfzCNy1+5m/ytIxE3bHjmi9cayb89aVyBB5eO0h6FY56IGaa+eYWucWI8H/rxVNPBRT5hELpsjMkDCTdMY3RgqBN849wa5T9c+TKWb/61YRV/MZSr9OmVb2Pm45RONl3rxe5ByMOi/OKotj8UOnjY431bDB8vDhU+7JUeKIu3mMzHhV95K6d4wWqebpziDi+MsNXtQxhsym2x0jHOli6OYRqXK761FZy6F2qnK3bjMOib026eHzpigINH66BvXN/6sTEmDzDZVfRh69NJ2MMk7MIo7nI4baYtzISOGGDAyga+e4+XAHgSY7jIGz0xK+UXL/OwKvrGlYS++NOxf4k+/XDjqc+nOht6BJYC3xxe1eIK23yxLcPzD/Ni5sdc+q2Vve5F+zvvvHN69tlnF262N6nz6+83/+Y3vzndP/95BmNehrp/WmfiZUYvtorTuLa1cK/U9jfO2boPl1c5wB8uHePWSzHOHr7rWF/MXaNywN6LOdc8XWNyTN8LHLj6yswlDJ9z7V16rUncjdlDcTMOA09j2hVz+FkDfODCLwbjbHoRZxyOeHz+yItv5Xpx1r6gI3fstOWEsFMI/8ScNbBv5MC4fPTN1fzhJf8KvWIJ07zcdP/MLyxFHOUEd3zbh3gS+70XpHwQvGAp9PTFFma2fNtb7tHGGocR1zjAah3Nd4/X5ldO4dDzi4NeMMpTL/fES1pH2PTZe5nnc6Jf0siJtVXsSbriEAMb/KxdOYxve7H14U/OvMD0uSNG/ro3aNsnfjnQ3qeDR59b9ozrUYx8EnsAJ3rWl5RfPK2bmh/2YrZHxYmzcVj0eultjayndXZ26toVL6HfWsa1PWlczOIvRnHzBdOYOXpyZf3ot89xa/2sV9eV+BQ4fMGwz3FhW5w4GoMtpwr/+vaNHNCBYQx/XIzhBot9wtbe9GdU2PIj32xhFA978SnmYCiwxeCMqo4fXuLpW/niEreiDYOuOOF0X4HPznx5tYb6uLARk9w4F5Fw2LLBm//W3hrYM7ias979IsaYnMC2TrAITnRxxQ1uPOIuV/Y0Pb5haNtffqmjhgfLHDsYuOGgGHPNdH5nz8YasOeDLV3rS8RPhy5e5rTTg1++6Gsr4cKmbww3eHjFhw0xd8xDOO0reuVFHnGeeZY/HI2/9NJLp3fffff0yiuvMFv+V+OaP/aL9msmaqvtDOwM7AzsDOwMPM4ZcKC5zot2hxSHmg7lDjoOI8SBRbuXJ3QJHUWfjkOKw0qHLDYd6hxoFD4UbXb4HQXWPBBpK4mDlwMayZ7vDm1wfQPEQZmvdHHNNn117fC/rOZLTJN3/tViUpeLsOH18KFNT79ci02ePEzJX7HypcCElW25WwPjB78eQNQO4mIXb5jGk3jPMXOtF798sr8k7OSTn9vn/yxNLaZvfetb68Eiu16i4uCh1Lp4WE1aD3jlznoZb73kW67E3X7jS5uNcTlrncNWiyMbOHJS7vXN0YFB2kNwzeVjTZ5/hNHa6bMn5VTePPCUSzrmmqcrXsV6eXg05wGrPLJR4p5tdRjxxX/OxR3GFP3ilYsHCTz6aly1y50x8V3aI3QJP+4Z/jm0Ir7mJlf/yaP/UEss8tHD4oO4mbNHcIBZvMaU/EwMY+Zwzr8xGKRcy4uHra4fNkRtrTz4sgvDnP2n5FfdWOPlS996wdNO4MmZPONCR7716cqPeQV+JR7m3Xvd9+TQNddcPtjAE5vCR3j0u1ewowtTm03cYJnDLZ/FiLcHWy8yzNMj9JTa9PObbbp0tI3/H3v3smPZUaxxfD+JqTa2hbm48cCPgcBg02bAACGD3bTlCwwQICSEQALey5a4jGzAxo1pYHB4jLN/6fo3wVZ1u4rTZ1BShpSVt4gvvojMtXauVburszGGA76NWSMY+FlTscsxOzzoyYP7qjE5pKcQOmzVsBNjcB8mcSs3eLkniNlLFS/YX3755cNTTz11PwcPw7toDjbxov0HP/jB+ka7vNh/rpP2rWtMvl1fYi5O+fCSx0syY+67XiZ5OdQ10LqWb7XY2xfFBZtuuZLXXppYbxzEz7/cyIOXRvDsM/c1etaM2KM+CxQvEAlshT2/MMQoD/oKe37o8SVGPLQJ7riyM8fGi6RerKnlA1+8+LI//B1f/9mgbymLsxew7lv888sWntyJ3xrwAYPNvJ7kW7z+hY9vCeMEh678W0M5YCdOhcA0j3+5Fh+/MMReHuMvxwk8+vYMjnicCn3YfJYHOriJ0bgY6anFCAc3a6XPDwzjuClyz4Y9bnJJ3xjOxsVgPT71qU+tl8ls5IWOmp0x9yH/6kkc9i0e9rIX0Nav3NBlw9aYfWY95RA3+RKjcRzxrsgxP/RcF9Ychr3kF0euXb7g8z/PL3zYL+KzRwh8/mBZ23JRfoqNv64devZCwj/fxclGvnGjZ03xEy/hQw7kRo75gm9evsWNk37xWmd9eeDLdcoGFmw+6IqZnhxYM1j4ula8cMUVFntnQL7ZiM04PD7wcP3QN8+XmHyW4ixGIg7zfPNLT5suPMV68U2vvcRWn+CvrWjjZP3F2b3DL33MweXbWra2uJvLFx193MWhiIsdLvamvrZ46M78u/4ff/zxw5NPPrn40ZNf/zrJmpZ3tfhx9fkh59aNf+uu6OMhN/SKwZg88a8UO0xxwJVne6rrG2c8zMMSDz3rRdjCxFdOtNnIvT3Pjo58dE/lAzd7RE7xsEZwcXX/UOAYg0vnIjFvvZRyyo4+LsaI2HHGZRb88oNDv8BgL0fFLafG5DfO9szNmzcPb7311uEb3/jG8gPrKrJftF8lW1t3Z2BnYGdgZ2Bn4JpmwMHHi/af/exn6+HDAaVDyDw8OLA4YHQor0+nw3IHeX3zCnx4szhAGTfvUES/Q1yHJ74eJJMXnDin70DVGGyFOBR2cHMgdKDq8IULDuaVcqDWd6BN+LxIjMOYAjf/YtKOHz54sukgG0aHdlj05amDnvj14bFlQ4fAz2d+18TxBzsx03dQJ8VrTqxw2MFVm8eRtCatJd18aWdPF545e8JDlsO6mJ577rl1oMeBvnVwiJVfDzMevj2cmE+Hf1ziw1d8YfAD294sJ2r2pHjYiGeKONmnG5Z9CCM883HAB5ax8pQ9HWvJ3hw9fOGY02fvGlDMxU8NJxtcPezIDSy4YuzhhP7kHg57eSHaJH6rc/xR3Gym0MOVL3V86MAKJ1z2+YUZLn0cxCDGhF2FDw84XkT4z8as4UXiRbv/UAuWnLlu7H9c4lO8055fenKEIx2+J5/4w4mv9RGHMT5hsNHvulTjzx4mW8X15RtdJG7azRtT4MHmS7u+MbrZwiZqcfA517x80y/OZXD8AYsdHTkrb/aTUg7TV9MXEz9ibA+Ywyt+ccY/PsbsTVzosTfPF1vzdHuwtZcJfvSsLcmPduvDlo45Ug6NkfKgr/DT55F5fMSrhiVObddXLy7DNkcuyml8zD1MiqF8yiM+cuLe6yXdd7/73Uf2jXYv2v3JBLzcP+1D8eHr3qvIdzlUy7cXcIqcuP/OF+3iK6/iKD/2hnhgm4dbruWdLv9yq22uFzgwFDbGzLtXug8Yg4sLe3Hg5IUTvq0Hn/TU1hQGv+ztLQXH1teLnfSMy4U58cP0sksOxIOH0ucVrj535dYv+7zcpedzi38vhPGFKx6xsPHCiB0f+vjhHG82Xkx6qcd/141rxYsqRQ4IbPsGxtyv4iawzCvw5Ru2Pt/mE9xx6kW7+Skwlda1PLAzng+Y1kQeFXO9aFfTx1td7Gzp6sN3n5QjOF0bai/8bhzPDPICwzye1so8THnwSxjropY31xUb9vFlY03gFJO88ut+aE6M8mWefpxxpSNWPpxTcMfHi2W/LOMTNt1exqrhzxftE9fe6YVie0Ju7AF9+PYsTGuFrzYeOPLdfyZKXy5w6xw111Qs+NmbXV9iUPIJ0/qVZzVfdOxP14b84qDICR8KO9fLfNHeLz/4psPey2Q8XIdigq/QwUuRI36M86FtvdnxU25ak/jgy1YtF/YVHfn0rw7M8Uno4KBow7T+vWi3H8SMAxs5sBYwu6+yM18sanpiwJWIC/9eluPTOoqFyL917EU7WzHZO160uwfgboxPPuQaV/uOP7j0rL115FcRExsxwIirfacN09qo05crdl0HdMVp78iTcRzwNw4flpzjAcfet79h0xEjzvh2jcknzq0RO1jyJUfaxmDDIXwaEwvBpWuXHRs6bBR9gm/xwDJePs2bs09ws9f08cNN3MboW3vnBG252C/aZW/LzsDOwM7AzsDOwM7AQzPg4PLOO+8cfvrTn67Dj8OKMTXRdsBxuHAQ7CBprnG1A42DDz39Cj0HnIqDjoNZByfjDjeKtkNPDxxsCQ6Vj0f+/QJGH6bCHq4DXv7wUth3wKLjAOowRW8eGo3TM07MhVdOGp99Y3yIY0q+jdWeHLWLXw2j3GmbV8TnQIlL/fIe7vRbG0bCrgOxwy9xKBUvyZc2bFJe4fBTLozTz7d80WmfiMXh1YOEv3npwErXiwl2DrMw1D2AOHw70Dqo40QPZr5xYlPcfKYDm0+1+XTY4uyhxLx4s6FjP+NsjhjT94Aw8WA0Rw8GyY86njBdC7iUr+b1cbCW7T92zS/Q4w/4SnsWlhjgwtfPjk3trs/2r3ES39U5/mCv8Jsvc/FQmycw0tcXw8TVliulXBqLP/1k+qRrX3gQ94BXzu0beuzh+OWLIqYe0no5GvZpvPE0zo94TvdUtnwo9lYPafw3ZryYi6946ZhLx70NN37N8Wtev3imDbvmWuvJi33Cjv+4mcMjP9rpG4sTvz0MG1OKE3b29o42fRIPfRzjaY6fSnzot258mFeLiy1+9rA1t9Z0iTk6OBEcwlTDwQEWH9p0tI2R9Jpn07rTh19+i0PtGpSbxuiWG+04LifHH8Vc/0E1HjAJrmJ37Yrbfu9Fuz8hw89/I3CJF1vf//73D/fO/3SMl4KuE/HSkW/Xl89V8ZQP9yBzrjd83Yfdg+1feTEmXhhs9IlYykuxtZ5ihGldwjDX/ReGufKhj5vPCbU9yBduXm7NF+2n/uOkxpMfMU5fOPRZzx5vPuAbJ14SeqlirpdCvVwybz94+YWL3Ii564lv6wxb21xlzjUmbvvSnLZc2Q+466vlBzc+6MHmA4Zx6wRDPx9qYkz8vTiiR8IxL3bfOhaXvtyV29YbF3mCRcybw9caszMGCx/8vJizf3qJLJ/lu3MdvbhaXzHCgafwax/0CwjrYR4Xa6LQYWef2/vWxTrLIzvrOWNiy0YucG9PwNU3r939xxoYD8McX16a0hUDXo899tjKMz158EsqRVxycvfu3VX7z2KJXIqtF+3WuXtNuaUjDzjyE1f28iafuIkVB3zkohft2uzg0Stu69aaNWdN6MCEzU4hdOjzYy8Zx1dxXyFq/HHGhQ/7sxf+2fHhFyDyT19u6GnzY03Zm5dHIm6xzHsCXTbmCF04+vHFEz5u7SU6rt/2HV15E3fc/XKm3Ft/e1ihq3bdd0+1H/jRh4snX+zZypuCK53a+IpRoU+XXy+47RFjfDkD3zvey2HjWGxquZRnawenewVsMcHgDxf+xU5gKfq4t49gtd+tEXu5oyMuGGGqa5cDtfyzwc/1L2a5Ngfb+nZfxg0uLnE2xh9f4tGur57rFge+xKDwn546jPIGn+CjDaM1YI9junLY/qSjD9O6yB3O9L1o9+fabt26tbDjuDqX+LG/0X6JJG2VnYGdgZ2BnYGdgeueAQePt99++/CTn/xkHZIcOBxE1A4PagcOB7cOcmJ2mHFwcYDqoOQQSLeDzcwNLIcxhyIHLYcXesbZ8GOen4lDp8PVxDXmkMQeFlsFJwU/ApdeQn/iGGfvcOUBwSHRgc9YhU5xsVf4Mj+xtPlSGq+GcSpTtza+8c9HPsMqhmq5MNd8OVCfChv6csyXPFkTok8eZi835vNFP98erDwweTiyLzxEeBj1T13lr3z+/e9/Pyj11TDxkH8PNe0RdrDkp3jai3EQU/sxLLzYitUcGyURq3l5CI8P44o2fNjEWhA2ivlEO1u160SZIm+wFAd2scZ56mnziwPuasLOQ5EcF3fj6mziEW9zZNpox1m79WZjvHUxZwwHMReTeWPN62vj20MbfbjtFxxgmYeTr/Jpnm8x9rdv6cCFIf/artFevHtYC79csiHV2uWRDt7lqDjV9PlQ6E2ZWMXcvLlwxMu+B9TyZszcxNE2NnnXzgfeyhRzinF5VKffuPjg6+Pm4bD9lt9TPnCsDVs5dT/0cBl39rCINaNb4UesMNiUv+KJv7V1b3C9lTN8uucWB9w+A/AxTugmxREn4/Rww6XcpodLa1vszRnHnV2xu0bNK/8XwT+xXmJzP/SC/Tvf+c564f7f+igvvtX72muvrRd7sPrmpbgIv3LfyzBxmhOjtpwl4u8lSOuYn3Tq89Uaa1sL31z0r1O618o1fYXOtIHHBi8vSH1eWHe67HwOuN69vNFX4qRmC4+wEUv7Zg2e/6DnGmCf/+7B7NxT2bHvM0wtL/aFYt7atZ7GcPMtd/j2cHk3JyZF7kl++TOvlmvXFVx9PnxesuOnaw5XucDf9eX+Ejbf5hV4dNjC8oLLevBHr/1AD1e6YlTyRVcfBk7xZGvM3u1lt3zhAwume0Yv2vIldtc8Huzg4cKfF9Ls5Mb6aJvT95nPl32Bk5fnfkkPQ07h89svP8QiJ/2pE37gTCkvakWc/PDrRboX4Gxw5dseoIcTX64LvumwFZfavDkv2dMTD0w8XQ9svLT22daLdjr420c4WDM+cRIz3/Y5vfpw9OnIhb2jb3/4RYB9yCd9/vCVC7iw7B3zcqW4TvkhckiHbfu2tlrhnz2xhnwTPBS5gCMWa6etyFN7Ccd+IWPMde8XbWKCZ1/xYW/FEYYx8/zSEYu44enj3LWEExu68tL107r1Dfw+k/TNwbSG1tKawoVhfQgdYsza9UsVORSzfMoTKXZ9ecHfvuITT3z1FXuJDq7+1YwifrbWGa5cEWug1MYRL7mCyS+ZvHG176wvfftB3s/OzlabPlvxi7t9170Ft3KMB//G4sS+Mf7jCJMvYpyNNeRHTmFmJz/0iTYOxWJMjPKgsIGDqzjp4VKB2zrA4YsOfPl0bVgDQi8dfXiw2RSHmo45PPyN9tdff/3w9a9/ncnSW41L/tgv2i+ZqK22M7AzsDOwM7AzcJ0z4GDiT8f8/Oc/X4cfBwrSAaPDlQOKw6RxNTsHlw44DisOyg4h5hJtGMTBpQfCxvUdvsKC02FKmy+1Q1H+YWWjHVcYRG2+g1oxrcnjD775gNucA5QDu4dFPNl2IHToo6uIBT4dPooVjrn4Ns6ncX362gp8ueqwZ944H/T47KCnz2c6fJA5vgbOf8AhOJWT/LIxDgOetrHG9SvncP9RsStGewKu2kOVPwHigaXcik88cipeMfXPio3xwx6Pcipmha4xvjyEwIkXf+UJudaKnXax0MkOjgccD9H5hOPhyBrQM06vef5wCI8vXMVFzBdruQwDzrSLu7p1ZUOmDTvjxuJEhx2eOCfG+CB46qtPBR4sooaRH/aT52kcbMxbj+aMsW8djBPY5SP8rm/zMNrzdJVir4bpIagXJsWk5sc16Tr1cqKHNWMeUOfDO39yYT/EDwZ8HPDTV4oPP4XNg4Rue6yc0w3L2uIFvxyILR9sFP1pD4Pe5Np6pxdXfXryJ5ZsYLAxJg6STTp80LFOcgFLPNbJQys97f85/seY7dMFdI4VJr3WbGLD4pOIkR/XHU74lhN6fBNtfOlPmT74moVe89OGjvHWwxw/sE9LuREvYRenbKpxLDZ6p2Is/HgaC5Ov4ncP8qLdf6b29NNP38/XKeYn9ePx0Ucfrb8V608sWVPxyGfrIOfW3Oez+x1+YvGZp4iRnfVmp6/Qw9mcugKPwCCuP9ee+K23Fz5ermh3rbXurQu/rhOSH9zKUXtfvxzCz2fXGd9htl/LC2xzbOiJCV7x4GSefjbi1453bWvmG59iY+MlFfFLP333H7/wcA3pz2usfJVX80SNm89Ca8bmxvFPpvh2a59TbHBqneTZCzO85M18cesr8mQeXp+dxuilA88YDnS9iMShePEzD18uYImDvVoOteWVrTi8GMTP/VkfVjzc0+WMDd/ypOCUT7jFw7e+PWTNvKD2r0C0E7zgsVeX1/rqRBsmjp1VYCn4Wzv3PHpe+jrLiLkcWQOx2rM48mWOGBe3F7TW0jhcnMQQjjW1tjDCc+3ya8z+9xKQnuuHPeELb35he4FP12eke2t7SD75h83WGokHF+cy0j6CzzYdc3T5YA+z/DZn/dhZMzzoJmxJ+8m6WXPx21ddF+aLHQ6xR3HBGX/CDjf+yp85ecpO216Tm2zESh+WAlsc8dPma768LhY1H/4zVS/a4cKAKd+wcEqvf72AR3u1/YojG+vNp1wZo4dLBZ5inI714deekie+rbOYzPNtvlzA4VM89jWf7OSFFHt5yx+bflkDA6ZfGriPFU+2eLfW8tHeN6ZPD0848I3ZP3g0H1/xwVPEIm413e4ZbIyXb21xibExOM6A7r/uh/o4FBO9mVP5kFOc6fGBr1iIvarglf/2cvns+mK/X7SvtO0fOwM7AzsDOwM7AzsDD8uAw8Zvf/vbwy9+8Yt1eNMnHaz0HaQUBxDiANMhpcOReYecDjEdYOiF6cDSARIGPAcg4/x18HJY68AKzyETNhu4SgezRejkByzzSjzUxovLQYwPffzoOmA6EHYQdPjEzyEOV1yKnU625vJjfuYAtnlFrkhxyJlYy4/aHNwOqtryouaDDfx0zCXmYeRTnV1+1cYq+vT4M5bAKiZj2uaLD4cOs9bH35k8OztbLyPklR5uHrI8gHbA9g1Ah3lzMOnJTRzk1VoUl3jzEx9jM59srBsf2dEt7/hrw/EQjTvhuwc5bRzM1YY18wTTmHlCv32qTfjJni19dgodY+Ij9OLIb2trjG5xsiV0lHwZt26tXVzzt4yOP/jB0zjsHkThGJt2bIyz4V9bfl0bdOc8HPsXJ7jq9jM7hV1rYn1gdp/go5jKgzFr0t/a5S+/2rB6cIfnfsKHlw99uxFGunKDB4EzOevDU+hZF0XbXHZstY2Zq5Q38wl7vHBgo2iHz0abz3zkJ325MGfN8NVmF081gdsa6bPTz1949I1VvGhwLXh4hWt9PUTKIV3XkgdYPAmc9h39eMfTWOPGigeWtfTiyL5I37gSjnY5ZVuu6Me5WIy1Z8zpx1EbFl3tOKnzEdfGxK6YJzDZ49ZYfNTGibqiny9jfCtwmjNvDL58+PvOd+7ceSQv2r0Yev7559e3q60pDrjzSfCQf3MKDmLp+tHGTZ9dOeh67pqxt+CYJ/wQn5FeFvJH1/7yQtp1rs9O4YPw0TWMW7mDS4dfPO1RWHxmx1ZxncHgWx+GvliSsOnOlyyw7Uu1GNjA0HYvoU9wUcTgW6e+be7zg54XsWJyzyFeUnlp6jqCJQZ2fT7EsZwVs3Evilxz4vz0pz+9Pkv50cfN/sSJrs9OL/iKE545uvzh237GQf7klS1d862v9YZjPA5igWWsvFhHOPJZgSN+GH1b2HkJv3KQLj0vsXyzm285ptdZix58/Il1tF4484OPb7O7ZvBSii274sZHPtpLsLORFy/nnFUUGOxw8Tex/TkdIvf+3B2/OISBk/1m7eRGHNpquPaANrHu9pia4OC6t2+KTe2XY/zKHV069pqXiriJQ5FTcYnPvwa0JnjygQN7OnKKG85ELa9etMNrH9j7irVJzzwsvKyBOWOJ/W8dzdMjuGnDbYwNn+4BcoybMyD+BCcc4ymWci2/5vmGIR9q+OKDJQdErumr5ZcdPuVc24tuPOCZx4e/rn+c2csbXHjOqNZSnHDZWg+/aJAzvP1ixeel6wYnvvBUxE+H3yeeeGLFxk8xtwYriOMPvNqjdPCAZ4z0ol3fvDzYs+VKPNZFrO6Z8izfxBw+5d71Ij94yoUaN9ewfeV+Jh/8t3/n2sLUL4bitn7asNVioEPEF185dR12j6IrrvZ2+nJuf+OvLS7Xhf2gjyOu/YIMLizzfUlDX2zmxMeGn/yZw01O/ZJC/rTFIi8EhmvBfnCNy7l5fzrGvyJ78cUXl15rtTqX+LG/0X6JJG2VnYGdgZ2BnYGdgeueAQcNL9p/+ctf3j+4dfhxeHBIqxhX2BDzFeMdipqnU5ueg1cHrDAdcDu0OeTQdwB0mKKjduhxwJ282DgonQp7OA5U4Rnjv3F2Dm4OhcbN03cg6zBGV9sh2jgdpfhnHPjCgVtc6qSxOIcjNkX/VMoXTKW+Qx6bYlFfJPFVZ59f+tlri6k10CfTRl8MxS5e6+FAiwtOHkwdVB2GrRdf8uaBxCHbwVvOPFh6UBAPqYbPp3WgZ5w/2D0spMs/fLqEvgMwH2Tmnl5YHhw8cMIlag9D7S1jsIuz9cqv2ljrSU/86ZdfNRGPItfG4oK3Nl9haYcVf/3a8PiZvmDjA1+b0G+cD202YtQWw/RLhxgPQx9O/uXXdUDosYFpPt7VxsyHixsbAsd6uu7gF8+0geNh0EOWB9vJCYZ47SvrDc+aexDyYKm4n8Dgtz1XzuSdLxyMwYanaLOpxJnP2TY/bdjFkV72MwdibXz6hB03tnDp4q/fAzGs+Ikhf+mq6cDSVgicbKeOvdADN5/y6Jr04ArfWsslzglswjduxRcvutp85p++a85Liu4JxTkxcOA3f/ra8c8XPO25hsZIfuGUUzj84BVmY2zErRhrHE4xsiXFSCcxFi49fNX5xjNJ1xx8L0W8NLx9+/b9l4fpXqXORy/a33vvvXWdy0+CEz1+7fuutWKSL0VsrhfjdNngy0a/nFtH43OfuRbtnWzt2z5fs+uaizNfrlVSfrTjCsPece9ny59YynX87dv2Xp/ddBJxiY8/43DghW2stdeGYU/ApytWMfuc8BnnnkTP54i8+GzD2YucvpmMT3GwhWOsPaLPJx1YrjU5lCsvM71Udv9jSw+fbOl54VM87LXpyhlM/a4DY/yJRyzmiwkuPRgwXffaeOTXvDVwvyDsK/IIAyd27OVDLoqPLjz5ExPf7tfOBa0XfvDdl7TNN8eeH99o93I83zDtMfcW/ODiWkz0YKnLn88N3PplhvVjZ8wLO79cxNsZpm+0yxs9gpM8tffgiRtfcZujY0zeXefiai/h6syEDx32vWh3LYjDi0J2YitWuuWDDa7W2x4MHwf5p9f+w1kOcBETHnzDlVMYSnmgWzxw9Jszbl/iZ06emjenDz/h05rLb58nuBNjbBRtHGDhDduY9VVcp7ias07FB2fGDCs+8hj22dnZ2iMw2xNiwk/BGT972HVjHfzCrGusOPHoRbsxXFy31h0P+PYvrol15F8cbODLQddy65s+zuasESzz+NkLckT0e9He/VO81tc1Iud8eTHM3py667w1Lx9qmLD8wkc8eLKxt+jjRAc/4/CVci6P9ORVrNOfNlu/kJDj4hcjjHjQwTE/xn3ZAgc5lX97Ty74sQ985vQvZOHSs0Zywc5+4MP6uN/Q0edjrgG/riUv2/Ftz2vDYIe/PSFPYv3iF7+4XrS/8MILa13k4iqyX7RfJVtbd2dgZ2BnYGdgZ+CaZsBh4ne/+93hV7/61Tq8FIZx0gFCv7HqdB1eSIdih5MOYdoKccChay68DlfNm6vQyd4Y0XcIc6ALd02MHx3a4kVPW5mHxrD4iZs6/9r0p422g2gHRbb4kPCLDQ4MMg+U9PgWg0PdqZhTwjEfJziKeQdIh8Ak/RnLxKKnT9LRNjZjNEaKzXwPGtoOux5E5zdOHLaLEVf5cTD18OpBRl9xYLXmcODjL5/4KGzNlRv5cYCeuTSvz5ZNa6LOHn96hA5uDsh4kg7vYvEw0n6KF27s2jfh0uuBqnUwpxA1GzGqi4k/+gRPOAopz2KNs3H6+UiveX7YKbXp8kPyK+fafNFrnC5booZrzPzUMV9+tZuPVxzyLb84wFO8XNBnly6c2ur6YVgPD1VscZ4ip/aLPYWXvtqDl/2gDbMXUh5K8YDjelHr09FWcCPFZqw+/LmO6dNtPB2+42Sv8WGuvJ7qw6KjEHV5M9d+jf/0ad447DDU+tZaDrUV+2rGxo7AsE/lc95LxNBDMc702NNtXxezvrl0+A7fdaKIwzh+9Ejc6BqHY/20idpcfugba3z6oR9O8+rylc/6YYqTX9cIyUZdMV584Rgj4cFp78XzY42Pf9KDh7NrwQsYfwbD32h/FP8Zai/a33333bXuXjIorsXyEkfXjfjxsDbit/5i65oSAzuCNzGWjbp7lZjE1z1crdBX6M1C32eJGidc6Jc/fWLP0CsO+nBg4tr6WDt9WF6C2MdzTxrXV+b6xYmv4hFHn1Xwy4EaHy+xcILTtakOCze6OHU/gkkmD234rlFr5O8xu0/BNWZ/uP9pw4OPI2EH0wux9jFbIkc4tAb02gN04Suw+oWzPsGXXfmXR7gKHu7FfNOTS5xwY8+POTZeaLERI6HDHx5yRU9+6NLhj47P4V6O4THzJybzXlLbs/ow+xMwXqzp4wIPrraCK058auPmlxkKHDnjz4tJOWWLKy7mi0EOcPrwww8XljjwVrOBYe/Yx/KBJ37yxi+98gBXwakX7bDtLWtvn9ElML3UFQth45vUfMgn/rD1K+nSz6/cwREjwR1HvsQ29zGfriW2+YDZ/70gn+LlW57iKvc40GUHW5zw+iWuebj5xCPe7BXzuFlz+0TMCv5ybZ6dvOKh5tOehGs/tD99+cNYQhemdWqvaLcfzbeHrQnBD16x4mAubs1bazq4KPrOyeXAeVgM7RH5kzvY9Im6/LS27MVL1Hz7fLZGxH4V843jn52Sc3xwZG8d4MlTcTffGF25MM8XG37KMT/yT2ARGIp+cWjHH0668K2/aw9O4wvo+IMfeeDXvDVgLyb7oHWlQxdXOZBP/7onTLpyYN8Qfujxq7RPyicsAs+6sWNDr3jNi1Ou5EHe2XnR/sYbb+y/0S5BW3YGdgZ2BnYGdgZ2Bi7OgIPF73//+8Ovf/3rdSihZUxxaHLI6BDYXH06xEGFeFDokJaOQ0kHmvTpGtNnm65x/Yq+ORwc1tTsemhzwEtnNY4/woRBX78xhyU4+h20Hd70+VHmIcw4geXwRdh1YAy/+PT5oE8mrj5sQo8vB0hj2nRnMW5egX/Kj24PdtpT6HZ4Nj79hFP+zRsTXzkzRuDSY+9BzTeajHlIf/LJJ+//U9Xid1CPk9oh+N69eysn+Cg9HPQQ0eFV3vDgyx5yaO5gLRe4lVf+tB2i5VK7eGEUW7zM4w2bX317yEOthyEPYsb5UZKwO3Sbyw6/8g5P4Vstl3KBEwx69MOmx5+C4yx0wy0feGtfJHTZw5Yv/LTbY3jgXy7gmCP5Mlf8xRxvOmJqfcKNo9oYDP7lsljx8KCpXyzlh/9iUsOhb+098ChigcsmPmpcxCXP+oQOoW/MixPfMFUTY65da5K/NXH+Iy66tdnQz88c5y9e6dFVjIuDaMstW+1qNoq+2PGeJYxyAIu+8Wlnb8y1gCHfHrjNKTDYxE88cmhfaKsV2GFpu4aNs1WzUYrRmHWgS/huT1vLPg+0zRH4OMmPcfGbg5Ev/eLCjz9jFRhhauN3OqZfrsvxzIExuHwqsNkUS1z5CasxNazw2bsXsS0mc4k2fDErXqL6kwIvv/zyI/nPUO/evbv+dEzfaLf2XlK4hlyTuFpLL9m8nMDTdYqH/LouiJcI1rfcGmOryAEsLyTsJ+tszF5rf+u7n/tlKh/6sJT2ovj9gtbeKIe9DFHjQ/jCnx4f7WNtos9v+mqfy/yLBzYO1ticdrFYr/gYhykm0i+YtOmIgVi/4g4bNy/yzOHq25TyKofl2vVRnHi03+wJ+bdW/mRDLxH54ge2Us59TrHRF7f7GjzxyTcfxhU+u9fJN37lAoZ48ean+OLV9W2/2CvisOZ4svUSEjZctrBbY37NF4v51i0O4sOFP3h4s4fPjzYO9gI8McIRVzzo8O9l+Y3jizUvtMVEDzYbuHIDxzeP+TOHm2/++tcJ5ctce4cOznwkuDsr4POHP/xh1XTyKQ528qLo48pHdubhtIfwx/ODDz5Y38rFc163dMUg/85R+jiJyUtLnMVrTN08XtrlAhdjzmz2DCxiHH/j/HYGousakg8YxnEm/YsE+WwPsIVDcIOr2Kfm1PB8FstBOvaz/c2f9ZYL88XienJ94GsvsuveBZNdeOaIMXxdh3TkxlrHD/a8D1pPeVTEAw93eO4D1oQNbiRMejiriXzz3fWsb45fObPP5NMv1OQOB2trD+ALl1/CHyz5mePmzYmJbzmFY9z62Gc+U9jBNtZew0d8ONhP4lbYu17bS8UgDiIPcsCGTwKL8KHgJD68CBs64lLjx9b6h8MP/QoMubBf6OJjDo9iaA1bK/zh2dPypNDxi2v7Cg++Xe/uj/JlHcsv/fjhw3/5pituUt7Z8SmHxrxof/PNNw+3bt26r7cal/yxv9F+yURttZ2BnYGdgZ2BnYHrnAEHCC/af/Ob36zDiP7pYeqT4uvA5eHCwcghyVgCM1xzhA+lw226DkiK8Q5z2g5J+XGg6gDm0AMHvjahB2MKDAclOA5WDpnGHK7YEjgd/mqH2yHNQc9hS3/6Y8+vA21zxWqcL5gKO/zyZa78qGs7wM4DIR9sYMAUDz7146OGSUfpYJtfOHAnv3JOh39z7OLggcFDrXkv3b1o94DrQE3wcKh1cHdQVXzzyj9zlo+44AwfrpqefMqbvgPvXF+xEfxaU3ricxgOt3jpsqno40zPmLjh8OPhxAOdtljLE3z6RA0bhpyI18MpjsbCzj9s8XpgyA6ew7+Y6RNYlWI0TldfnU+8mluNcz1tunBgi0MxFjf5xiW/6mJS89M6w8FZDGpiXtv6GmcfNzUJW27dA+QIFlwvdIzRKfew9LOrxptOD/7aMORTKa7yO/kUB7/w+raTBzH8xWqPyQX7fKprr2DOf8CDj6sy8zHzp63ApMNGwSNp3ePLX3bq1rCaLV3xu8/hUqEf52Jml2izkcPw7Im4iUUO5EI7vnGDww62a5MOn/aR601drOaMwY6LWK2ZYt3FEB7e2sUlzmzNxcU4e5h8GddmG9Zsw9Bn17w42JQrfTjh1S8+ugQWG2IMD7jJ1DNGXz59nsCnb0zOpuBlXayFFwj+fMWjetHuG+3+VqwX7a49efei3R7gUzz4uSZ6KUuvFxvdk92HxSIGfOeaiNvasnPv0yb63XPY+QzwMqk1K3+tqbX3Isz9sDzzz3c5zBcdRQzs2Xbf1eYXBq78hWFvy7/SmrcmavNssismfXvePMEdl7D4xKM199nhz5kQa+peZ8yeKtd9RsHJtzG82PgM8ucP+I0rH2LGS91LRzzEbEye4dnP7nF84o8zfMVca1MucLU/vKQ2R+RQgQdH3X6xlnLuBR48n+/Wq/VvXdXyhlcx46K0TsbJ5MIvW/h4afPDh4IPaU/IGR1r4Rf/N45nEn9iQq6Mp0tfPr0wdQ6Bw688++Wvb2fDwI8/4/ixoScHRE5h2bPi82cW5UZM1qX5/MFiLxYvefFtLYqBrTXkwy/J/Ks/sboe7Qe2xLy1tT/YyDl+9hZ98zDlUI1LetrGcRGj+4G15Ktx6+osgyOf8sEHvq6l8Nr39Ih7iPsEX/GlyxdswqcY6ciXF63llY5Yrbl5eVXaw+0HOl5OWxu27XnYeMKRA4UNLHFYK2162mp5kyNY+Ct4WS/2rRvu+vYNXXG1J/iYedWOizn7gX9tGDiKARf59KdZrCe/uMuPfSu/CVvjnRf5zj/+xdL1wY5P63h2drbs5Io9XTYKfdeuvcO/NRafMWvJLxznfGuKv3F5YKNN6BH8FdjyUF7CEjddOtbVL0zyVc7U6cgRv+ytBbzu/fJjHg7eSty8bJdD8/S8aBdH1zufdLpe4FoXOcYdv/a3uOSutTdH2OAJ0zoaf/bZZ/eL9pWd/WNnYGdgZ2BnYGdgZ+CBGXDY6EW7Q4S+Q4UDRweNBxqfT9BzGOnB0AHKGKxEH665U+FLIR161cZmrQ3TwUjJj0MWbAdSfsI7rR22HOLYOdjDgwMTf+NqUh70tWE116GcL6U+Hbj10zc+x+A5tKnDhlOff7b4KMYT4wru8wBerOmVB/XkQU+uPGTBTc+Yfn4dVj0IeXiQIw9qvqHFp3V2sDdO35jDrwN5h1qHeW3fvsI1cUDmk/CnL2cwHIBhzjWBT1++5DA7mGyLm064xVDexEbfuAN2OZj7dcZOL5F/fNhrl5ce9OjB4/u0ppN4SIUTx3T5zdZYPHBQYORLHDgQc/XTMWcMTjmXM7mT3/xoy516YvHN1rgSH1jhGOObbgWGNv/2lRIXL0HknPRwM/mFgZuCvxzDkC/9+MBID0Zt4/nnVxvfHiazt888RBk3VlzabKZMjPZnfvjNf7G0r2HxDRuGXOFEzxxbEnd162zcWoobhrZ7W+P6dBNtRY4mf2Ps4lksMOM2+deGO9vul/aOMdez3CkwjIlHbopBnPy29vEXT4Jb49r5iytsIiYlP+bLp3oWuS4P6uZqw6Mjlq6FxoznRzs+MOIA5yLBKdzywkZewmEXltzIhZcQflH5qP50zL3jvxr61re+dXj//fdXbnFyDc0XFbhaKy+rcMMDHy9beqGkln9z4ig2Y+xbX9cxHWPWUrs1h+G+L2fmjGs3r90eYS838tXaGOObvvuzkq/WAH86cMzzQ8TXfQ0OPTHAVxsrJv7aa+41sGBmjxeubNiXF75gKHz7ZTPxOdk3q825dtxntKe4jrzkg8feOslX94/0yxl/+NHDRZ8dfgqc+dKQDr/8iFHuiiMesHyWi5eOPMFtHenLJV5ekPFjji9nRNiEr3ioYXU/oK9kK4f2XjZqfhX+2qvWXQ74glde6MHCnT6+8u3zxWer9eNPrqwFPD5cl17y4kXwcJbxZQEYfcoxfwAAQABJREFU/PFl38qbdaOr3x7jlz5bv8wSP1+u4/I29zS/cPnBQzwKewVH1xA9+e1FpnXF3bwY2Tg/+RcP4uYLV/5xlRt5KV9qdnzj1542hitf/R16vnEwjiPf/CryDl/c8IlcmDNmji/4nRHzZV4xDwcXtRhhKfh4qco3u/zBlR828fFi2pqEKf444ZU/8cqddYINlx+85ct6ihlWn2P8woJBl8DHw95nY45MHfzgW5P8mOdLDZMvmK0FDmIpRnrNwWBLrDFccwQfnNVEnKQ11xevXx6J3ZoS4+VVXyziVhtX7B+8YPMn564l+8E6uA7YdH+CQ6849cUp3taEjbg9HxQTHTjiaH3hyIE+W3z5xcWYuT5nwoEtf3jTgYc/Wzow+wWi+Oiw6TqJP33YrZVxftkY40PBmxhT4PEnvv2ifaVm/9gZ2BnYGdgZ2BnYGXhYBhwg5ot2ug4SHTIeZGte6dAFx4HRIaZDFByF0KVjTrvDqIOlA4xi3AGyg5t+uo3DCqcDmEOTNgwSjoOTA5QCsz77dPmnr8Y9f3BgVsSRX7rFSB9WnLVxNZ4Y6wBpzJwDYHqwy4c5fozxrZ3QqU+PjpKvWdee+vzR76AJj4jHQ4o8altHh/e+7STWDuEwFDF5cJZTxQO4hyljDrbGOgjHRS0Pxc23GOGr+S4e9sXLrgOzeBRzdGBNMQcjzNYPhjnjSbpqwi4+2cuFh0nxGvMwgGc26tmGoy/HPTAb800hWPFoX+qXT2PhzXVqX6r5JnFtDDe28tJe04ePu/zlq7WhZ4ywUwg+carPBg79OJrTrpY7MSr44OjBrXzJR22+ynUx5ZcPe9GeC58PNvmHPee0w6uOAzvcxWB/eogq/8aUiVVOjHtAtLftaWIOlhIfWPa6OWP6YiG44ErMK/mqNo8rXeupwDGmEPkwTmcKP3STOBib+Sxe4+UKln72xrMRn5j1teVA7jyow8ouPLbisMZxNNZ+0CZ0zIursbiry6u5+OEgLjJtapdT+vBnoVNOui/xQYwr+THOl35Y+Uhfbcw8WzbyIS/a5spb+Ol3XXjB5G+0v/LKK4/kP0P1Iu7OnTvr70fzZc/KgetKcc/qRZ29b82KEW9j+t1j5YCIp5yJBZYYXJftUePW0v7k24sIe8UYHXVrri5n+ViOjj/YznXThskfvzi7Hstt6+Tl0rzPluvw+KNrjbSJur2MH3w1G3NK9uWAXzoKkS/x4Ue3z8f6+M646eApx75hzQdeYuKDfmJcCWP6xdVa9jJRXPJtzWGzU7sftdbFgwORV9/oNk6PDf4+5/p8M2Zv+EzvfmlMnz/c2CtxV/Mx9wh/8oSnF430i8cYTDZzr7RP5EYs5uWIPj19+Xcd4SweNubwtye85OYHd9/ktn6th1jbM3BwoEdHLT4vF8PjDyY8L6tx0uaLjvXAQw1PjDD5KxcwXBvyx79x8/SUcgfXGivGvWj3jXZ8zRmTFzytHbv2qDE5InLSZy8+fOGusNHHHQ+c1eIRh3m5IHy0BjjRy4Y9P+zUcAhsNn4BxLfY1Uq+eqELky97TcmXWOHImZi0+YibmNnKi3Gc7AdnVvnFTa7sOTn0zWb+u4eozePGF3ttXPCmL5/G+OYLpj5deXJmNk5g4V6+2BB+2OBNx7hiLP8wxGCcDzF1bbBrXdkUG11z7MTsRbs46CT2cGvQfsmnXPChaOe7vJcr8VgDcRBc0ymGmUs5MN+LdjqwCUz9ePLtviUOY2Kf90J29NlZF4UvfXFoG7On8uO+qA8bLr7K3Jsz391X+hzEI+ww4g7PmPW/efPm4fXXX1//kqx59WVl/+mYy2Zq6+0M7AzsDOwM7Axc4ww4oPSi3aGnw9DDQqLj0KF2OOpA5JDiQKMYq+aDfoch2A4zxKHF4cWBKVzj7MPNl3mlw6J5kh9zjTlAdeh1IIPhEMhXkg993B3A6OUPrnElXG2HXQ9V2kRcymzXh9Vhju/4y3W8+CHmyMRbA8cf5uCkY7xD5Kl+/OlMbLY4WzPj8qjvocE3w3rZ7vDuQcihVazFAo84lHp49c96exBSe0A1J04c4M98829NWj99vvnqwbd182CgTehZOwUX3OHrp2N9zLWmciNOdWsHR6HXujTGj3H64lf4wauHz/p0E9jGlcmBbw+gxuH2H4mJnZ68tOeNKcUCmw0M+ceBtN64m4dj/fIrFrhKfszRl3di3L7T549NY/pwCRs4+sbpl7ulcK5Dj/Aj1rm/2OJebrTbe7DEY0yM8bSm9lF7ED49uNrs8hdXfW0FDl0FthckJFv44hezUq6W0rleeaDnhZyHdXZ8y0MPrTAVeuYTmCR+5aa9oN8YvdrtV9xJcfDrPikP+VTjHx8cCJ/09cVB4NA3roTLb3kwT+qLQUxqxZq4Z/EXh2Vw/FHu9a2bPh11e1abqIu/MTrtEXY4qCc/vE+lsTDDKM/pF3exyEtjan6m3/hkD58eHUK/nMLCV77VpBcT2cTPGrL1Qugzn/nM4dVXX/1/e9EuVnz5dv9yL1fjiJccicE9SAz69K2xlzPiUcoZHPx9RrivadNnT1xrYnNtdI7Qh5svNd9s4scWtrnuDfqKftdEvuxJbfsQb9c3LtnjhovYjOHAp1jYGbO+XkK5trVbJ1wI3+wIH3wqxuGq7XM6cPVxMGa+uPXjz4+Xv8T9BA8v87x0pw9DMc6n/KgTHM3TFV9/e9p6lk/6+gq+rlkFFlsCByd/UoN+17N7sP3Ry0P64eApV/peWsrdxJPX+IkfP4UferBxcGbIv9y094wl9OWAsMEvLnItfqLus1Fuk/ZoL5lhOJOIlY351iic9lbx0hevGOSEf/vMdUuXXli4Ogv20h8XOri6Fvjy0tG4vDkztS/Mybc4tHFUiD4cNvYIDnzKlby15nQbw9t6w+BDDqyBHBi373rhbBx3tubxw4WNMftH7V6m4ALTfaQ/1YMjTnDUCa7WDW9cZh5bH760022vtt58s5Xr8i3P9PFVXOuuKbkXD37GCE7W4G9/+9v65YLcwITVGqrLq/i1xW2fipkPY7CKQcza8x7ID672jAKDDfyuL9zwtNZ84WKuPS0fbBTzMPIvHvrmYPCvzaccyoE9Bo8NsT/E0TVnHB/YXZflFnbCryJuwkbhy5j4W3fzxsUAK058uF7sifJnjB0dNZ+uD581rW/+zCnGq+kWG3tz/IozP3zlR5ut/dw1jKtYcKBHRx+O9Za/OBo3lo1+Yh8+88wzh9u3bx+++tWvrmG+riL7RftVsrV1dwZ2BnYGdgZ2Bq5pBhw2etHeYfSTQunw47Dj0OdwQjpsw3SY0e8QNDGNdTBx6OvBgY5x8w5Cijap5tPhJ3tz8xAZF4cnB6cOrHQcnPjCDUclXGMK/A5V+nHgL24OzT3g818O0u8hxhwsfPmPNx++2YSbeRwq8TIeD2N8i2nGLVa+4pjeaQywzRH67GDTc/D3bev+4y6xwDPuEB8PufQwJEa1b1n5J9n2TPlvHfXjyV5b0WarDUftoc23cRxe8bFGXtR0yMWbHeweAPAzlu/wYIpVLU6xqM0T+LgR9h2i18DxB1sxe4jCB065aH1mLtnJJR01fYKzdg/Q+v3nczjAaE/Qj191Y+xw8aBAwmebsBGLArtinD1f2qdxt2Zwyq0xPtixgaVv38l1OWDDH/24mKOrlAs42vHoOomTvgdM8VknmPaZb925xjw8GrMmCrvixK+CzxR6eMHwT4mLCUZ8pn5teOzsszDsRXw86MmHFx+KfUxXkQc5Eiehxw/Bl3++xThzZN9kwx++7LRxMa/AMG6sB04++PVgHx/+wjcfDznmG67CZ37jbw9ol1Ntay4XYpMHawMzW/7oTzmNO39TZ47Bcp2IvXXiWyH8xSu/cZQXbXZdg3TgZzv5lRN2Clxjp1IM5uIERx92Y+Hlg29tayJX+YHPDke1/e5F+/e+971H8qL93vFPx3z729++/6djxMW/NcXBPcQLBwV3HMQo79pE35zPpQ8//HDt7z5vxGnePdGLNjiuXeP2Ix/2Fx37xbXRPoVtThG/HJX71pgOKT+tM7xsyyWf2vamzwixFVP87HdYcYInF9bGuL3GvnsarsX6MZOPf8a1+yN7+eIPBmE7x9mUXzo4uPZx88tWeWMjNp+fcp1N2OJzbYvVHCl+tRj8fXJYfCt8KASOdfBStT+bAkeMMNlbRz7oETzxVeJf/uwJL8SslxfF7jfm4rYAjj/05Qa++BScrAfeMAgfxu1RHMzhpYgFhhpfucKHmCfmjMGxh+NinVpnc/zTTfBLtzE1nbDFyC8ca+ZaNe8XE/5UTdcQLIUdzM4MYhdP14FYrLt45fHe8VqljxtdZy8vSvHll50aNr9yZB3tVSJubX5bJ1j6xjtXwu78AdPfB3dfgk3wYW+ODzzF4EWuHMDiX/7Na1tH5xj/v4S8sGkPwdFO9HHBi64zHgycipd9vsToMwY/vNjBIOxaO3FpyzEca2JtsoGHL3tY8t1nddzg0YNRoW9cDPa3eZh8KXLjrGqdrB8edN2DFG0x8AUrjjjwYd/45Zg9xRa+eFtX1yN/OMQPJhxz1oudtuueiNPa46a09uZw0scJHhy82arLFx/lAFc29om14TO/MAh/5oqPrVjMmzMuR/YRH4k5fbaKHLVfy33XLgx4cdO2F/KBP5/Gupfmiw7/9hlca2afiE1O1PCnsIFXHGzpyAV947Dibz9//vOfX//Hype//OUFBeMqsl+0XyVbW3dnYGdgZ2BnYGfgmmbAgaIX7Q4tDgyV05A6TKgdPBSHng5eHaI6yOh3OAmrfoc7h0eHGcVcPsIylg0Mdg5gcVTX7zBHr4MYXPOK+Bzm6OFOtEn+4gXXHH7m9NmITcxeAjqEEjpK/s2Xlw5w/LOHY8xh1hjRFyP7+NA1T98cv/T0E7zyTYfEk71Y2BWbtkMkbs3re1DpRXsHazUu9BSHeg8g/HhA8ADvG1I9ZOBarunHBQe8y2t7LL589w0peubhq8sLLOumELzg0SuHxQhXEaMDt/zIidjZpD95LdBzXA8iHobkBQ5f2mp9OEm5be1xSOh7+FETMcJlIz94qHFrTc3x0Rpqs/GAC7s5tvEoDlja4Wkr6ZW79POpb87aweCj9dIWmzm5TqYtm+zEqsx8xKdYzMXJHis+a0XsM9+apOfhFD9zCowkXPNKAhsHOYLhJYcx+WvvwymGuGTPrgdYefDg7GHVmDltxUOivNCRP/sVFlx81PzEubzQwcv+FH9c6Bszh6u++a5VenDx8IDJr7zziyM+5YEuf+b5k7uwjcMm1fjDpN8YLNd716HrPB38ihWPxBjhf+o0X52eunXBETdSbPpyruAFl+CGKz3j9ORNrRgzT4pH25jCXsmPuSnxY4sfv9r1jYUbD/bsjFsP61RujMPAUe16fuKJJw6vvfba4emnn76PNTlcph3Pe8eXSfNvtPNrTRVxusa8+PCCIC7y5P5ULHjZIz6X/AeN3Vtn3PYjDC97XEuwxUn0iT3Ctpcaxtrv8Pkp9+WHD7xwMk+M4da6GmNXsS/54pcNXdzcM+wlePk1Zw/Ra8z1otCDI1d8EjU/cXWd85c9PLmgU/zmYJH0un7xsQZeChqTGxi+berP/tDPHoa8dG/Rb964ONj6BaLPqvIBt2uIPntr6TNam4iXvRzIlXFxE7ZyWVww6PEFR+HL5777gvGLBF/raK0rcOXUvmAHF373Frhdl/TYE9zkipTb1Tnvw8dbgWkdFVjG+IKnEBj5bmxNnM9plxO5tmauEXheiPss8dIOP1jwzYlF3ujjROwL8dJlh4+83Tteq+WVrvOPPcs+32o5wVEO4MiVMWKMX/PFZJxPn03m+S0HcuJvs7sviSsb9uVMLMVrj8g7H/ZMeNZRLO5d2mRypg+7cXuGuN+J07w9K4fs5Y0v8eHNJ36ELm5iVuiyaf304VgXX3oheMqB0rXiLCFuflpz2ObV5Tk/9MRMt3WiJ5disE6N84dzvMUrFljySeSHuGf6ZQMc9jDp5su83MWRTZzdN9hZU/vRvmntjMmLvM4X7XInp2LHpzXHX5E/OcAPF3ja9igbPoqVLgmj2Ngo5Y6e2HC1l9Jja469os2nPY0j0bdusGCS4jdWHuGXPzGyCZtN+1hOxGePuNdZK/7g0Ce45Kv9oC/HdPxikF1z+bGfP/vZz64//fb8888vrHBW5xI/9ov2SyRpq+wM7AzsDOwM7Axc9ww4bPSi3YHRgeGiQ4OxDlRi7kDk0NMBRK3fAQu2dn3z9dk7XNGZuPwYSzfs8pyuQ5gCQyHsKsXRPF3xOTjBVMPCd/rTNn6KtwaOP8zBdpB0yE2vuNQOmh2ow8OD7eRTrGqcilk/vfDhlMfldPwwbp4dHw6GSnGETcch0ksXtb4DqQcIDyvaxQG+nOHiocBDCxu5c0Dugca8Q69xB1l+4TioO7DDwUftYQSG/JAe7uiah9mBWDxwrFFxseWPHw8pcIm1KE713JfmyxFbUq7UClwPKw7RPSQYh2VczUdrni9Y5UwdnrYDftdDv0ygL87WRn+uVzyNs5UnOeTPHJFnfohaTPDyra5P19rwSegqMOGLu73CxlwPjnJRvrNPB1b+tHGTm/JeHNYJvr59J5fNqfGQ73JMv72FC7EvFVxaA20lDsXbuuibz46f9j2OSfr65Q0H3GDInb74xSGf9p3rwbh57b6tSce8OfYJP7gXAw72PD+JvvliwVkxRuTDtYFDe8hY3OgpMJX66vaPWpzs1KT44qs25loVnz6fxQSDlA/t8GHW5oNO8Uwek5s1sv7FKh62+tp8x5cdaa3inM/WLR7qCgwlPrXrL+CTH3DjPevasOWFGNM/XSNj8aPjuvKfoXrR7oHd/H8jsIg/j/DNb37z8Kc//Wldf3JebObtq+4jxhvzgk++4iff7r/+BYdaXvAm2op96+WFzw99ws41TFovL2v6fChX7UsYxnC5KHZj7RuYdIu1Ot9dy2ovq3AhsHE3bozv7k/2mnuc6xRe+5/ffNtzfDSmDqO1NCZe9RTz3aeyiZ91wI1f+cHB+tDnz97Brdzlyzy7/PUv6uSJPgxroHY9lQdz4hOPl61qnOAab+/KnbzAw0FdvnAVI372hnvdg9aOLmzCj7jxwcucMbZ8KMVT/tiyiZ97K99xSU+ND872IvzihAmDP766f8BUcDAXhjZ943yd7j02Pr/Pzs7WFxLoTsGDn+Kj35h1sFb4W2u5M0/XmGsQf5hxpWfd2lewKriJR4zaxJ4qv62dcfb80POZ2r3cODwYcmY+Pmo5d/3iaQ4vueHDtd+/zoODS5+R9MTUvSb/7LpfyId2ueZfvApfXauNt3/pO0/5DHf/hFnfvsfDL678Isi1075iF0fxwMXXWHEbp5fo27OKttzB42/yxk2+YcnnKa5YYMipmOUOnr5cscdVH7Y5OVOLUy71vaAvZ/yLoetH395h04v2fBSrOAk/1fgap6PND05wceJbjlsPdnzV5yMs7XxaC3zkxNjMlxzywRff7T84+vJRLhuLmz5c/hU4dHGlo/DX9YS/MfcH7a4pfnAyJh+4TB/6fY64VtvbuObHmn7uc59bn98vvvgiagtnNS75Y79ov2SittrOwM7AzsDOwM7Adc6Aw0Yv2nuo6UA24+og5qBC6CgOLA44hI5DkANRGB22qh1y0qXvAGNM0Wannb5+vtWJA5ZDUAe3MNVhzMMUPQc5NubZ549NHPJtzMFKvGzD1GerT3CKlzHxe9DoYWNyoB+eQyxf4YpXW+GPb6JfDZNec2q6SXnKR3psKg7CDu5nx4dG/h3gvWjHkz0btQO3BwwPL/AcVL1oT6fcwSAd/Du4i8/DgoMvXcWcB3W+PCyR/MHhx+GZHhG7vSTu/BjvgK0WP06k/KnFS8wp1oXfU0mvXODMH174qOGpjePNBhab8k9n5pAOXQd9vj2ohysXYajtSfkTD0xjavpdS/zD50d+cCvuYtLHB74aRt+yotM8W/vAAwNuhC7Bwbqz92DIL7vJo5jp48O2fOCesHWt4GveA4wHSjlJT42DMTi4uU7tE9/GNC8P9hNfagUfc+HwZX725YF/Y/CtrZceYjcmLj4VttnrJ/SMTxGPe2Xr5gHXSyx4xnB3vcileAgcpTYfcjLzpk0fBtEXp/yIzxxMcWnzBzMcNV3Y5vTN02WfaFvD6vCKU797ZWuthqOGraYXVz5xJeZht0/p6qeDI1/G6FrfrhP26cMLB5ZxIiZYYeARVjGo2cdFHX+6pDn22tmuyfEjf+qELg6ktTCWH5jlaM7z7Z7rm+xvvPHGI3nR/te//vVw69atwx//+McVM3+4xlu+7QW+XQ9q+XY90sG5vaJdPsVWTNaZrTnXsBjousdpy3U5gdn+ad1wInLWtY4HGzL9GrfP2SrpFRN9e0YhbPl3v8IPV7Vx/twv3OvEqI8zXPHwD18hanMwcCCw5bBcwU2mfRjG6DZnH7CBgYf44yx38ikWOfIZ6wWP/E08WMSYIg5FnO4/sGGJ1bq6z/nsJXC9OPXteTHBgq/IAfGtWXH6Rqv7Lj35whU/vPk17/OB3cwDjNaHnhzyC4Nt+wRnfuHIcbkpX+bbr+zpEnHhgrvCzj1Y3vBjw69xwi9+4pAfWNnRhadvnp0xRQ5wwAc+/3R9fvsmtxds+vzApCvWcskn33j5nFHzQ1fhCzZRm+eTTVj4+hM9sHASNx1iveW+8wI8fuRAzaY80NPmny/45aDzGjzCDj+fW/w7N4hT4TtcbWuphs2HEo5x+87+w4k/Jd9qXKy9vBUP32K1d+XCurTXtNm5vq2D86o9RZ8ufGvlF44ffPDBwoTLxr/UxFO8+taJbuturLWCpXRulU/iunEONoc7W9eTom0v4EDkSV8tT/4FQLhy075RK8S4eGDgipM/DcWeyIlrGw5/1kcRC12c5NJ9w1rQwx0uHnKhlmN5n7nHgU/zRLs+TuUZN7jtVz6Jmh9zdHCG5QyUDT1rWd7xwYXYXwR/a4Q/TvHGBQ4ergP++TIuF2LRZoOLfNsXfBBjfLlnyRddPuHIHT9s+dA3719J8Oc+CJ8f3OLN1p+O8fn90ksvLT/lb3Uu8WO/aL9EkrbKzsDOwM7AzsDOwHXPgANGL9odKjp4XHRwuGiM/ak43DgMqSsdxE71wzRem41Dj7EOUdMHPYceBySHvPQcqMKgb7wC03wHPPYOTw5/2dDpMMc//A5X2iSMDrEP8gkr3/AVGIpx+XAgpGdMfRrzHDefbjHQNwaPqNNbA8cf+h0scRafhxV/ZxMHB3IPRh1a1Q69DsYe+hVrQJe9fJiPg7i05VJNl+DGrwNr+8qYgzQbXOm3jsaIunn6M8bGpw/xwehBV5sYF5tDsTE1PmEspeMPa6DwU4xqevyIyyEdVw+OfknRQ4wY6BFtGOqkFwDGe9FOXzGm4Cnn+PNlzc0bLwZrJgZ8jOGXHn+KvnUJS84bV1sHtuIwpx0H66oUNyxi3jjhX5sdiXs4fOBHrzlx4ATPPHt/ckkJN3s1ffYe8j3E4mndPPy7TuG3l60ZvgQ2n/Kk0JNPGHIKNx173fp17bFTCE7srRvBKb01cP5j5ljbnuYrv64Ze8ZcYk7BJcGJj2LHWfyEHl44iTl7MStsi4u+vtK8uXBhnvrKh/WRW77p06MvbyQ8/q2H8dbUutpPSRzai/SKw5xYFJjFo26/wWFTzPjIAVuihpetNtHHQ229aucPjjnYzbELq5wbI+2J/H48+m//+MY53YkLz3z8tM3zL3+uxS984QuHH/7wh+s/VUsvP5et4+dFu/+U7b333rsfv7ny56WXlzWuJfsUF2sgV/YoXvQbs9+0jdsXdMSktleKWU7dD10z9MTp2uLPSzFx0jWuJHIQrjWiA4uP1gRHNsaJtnmFsMMfTwID73iygyWu+Iat3x5jr7T301WzVfgWO96uddxgsWmP4UAvH3QUPJRiYdP17OWZ/Cm9oOrlovyIBYbrTiHxw4vAxi0+xuHLvbXQ5tO8UqzW1t/t9kIMN3tD7d6r0LWucOCLG7Y+PPdkvonxyQtOxTw9OuzqG8MNH77wKa/ptjb62vTFpI+PF4vtB9h05NT+8xmjb7//4x//WPh03JfNK/zKN51w7Ck+4IjbOrDzmeClrRftYp1cxdpa4xaGl358vP/++ysf7OwXuVbTlQf2uPLBlxd8f/7zn9d4+VLTMc8XzvEO03rxAZdfBT4+/tQQfL7Ly3z5GA95wEcfjvVmA0u+7Y1iLz/mrA3/+LGRPzWMKfjRcR+xhvzREUN2+u053Omz6881Fps9Qw+Gtni8gOabvuKlKV+4s7OeriU5yKdrrz8LQ4f/8qD9l7/8ZV0r4mjd5IBOXOgRNWwFD/7lBU/86BPczIvJmYS+OXEo9qd8WAd9tTJ/gc8XPnKk7dzhHgW76345O/6wpq2X+HGH11rXLte49AuH8MsXbD7osLeOsIlxuen+oA/TnrZ38GOTrr1Fyid9ImZjdI35/HJdypOx1lxtX+NUbq139zCcpw0u8spGXGzMF39xm7NnWg+8tflm70X7nTt3Di+88MLim+/VucSP/aL9EknaKjsDOwM7AzsDOwPXPQMOaL1odwglDzo0NM6m9mn8jTvQOMAoDkpsjCmXkfThhWlM6aDlcBQ2HeMk/fywmXoOcA6GDoMeVvJBx+HXwXgezhzm2HQY0w6PD37zqeYvYWNMHYYcOGDCMMe+fKn1w9QPTxtG/tnHg45Cp9K8A2oHWgdIL339Z3wOoWJ16HT4lpOKg7F/hts32tn1kOvAST+OagdReRIP/3z3EEDXuLHywIawUfSLszoctTEYibEO0fA9xFhPuTGn4OtQzI6uUr7CkRexWe/s6BBcYcoBDA9EvRSBFU9z2hU48OwlevoeuPgqBj7yiT8/HliaV/MPQ5kPMvyYyy98feviIQOWdrGqxZidHMVVjaMHFTowZ8GRsKGnz2bmKj84WMf6cPAwno0HS7noYc04fVIMrSVbnPS9EKGrH9f8sMXNeitwehEhb3Nf2ut04LROrZHY7BcPdcbiBX8KPPvdelk7xb1T7GrXjgd+8wSOXMhhuTWuLSYFZ7ZiTgefSrpiV3An2Wt3DfFXbuDiO9eOnnEFp/YMvXDkTY7Y8cHf3KdhqOO2jI8/9GG1n3GZuRYTHf7VMPCobo31W2vY9POnneQPBmwSZ32+pw5b83Eo7vDKOZ1TiQMe5tMxDo9Yw+b1zRkrf+65zzzzzOHHP/7x4ebNm/ft6F5F8u1Fu78VO7/Rbk7c1s/93nXHby/nzCnWSKFPl07Xhz1gb5jHX+0FxozNCzz3NdcnYeullZeMXrZby9a2fHuBAdc4aW/yB7scl1Pc6JqXQ2KN7A22xaKNp5LtUj7+oAMHBz7wVPRxVMzDhaNv3xJ47qnuQ677+KjFTl+bTwLfnlKKxxwcgrdxL7LkzwtcbVy618kPezZ8KmJoby6g4w82+dFOhw9riV/Xn88RbXr4fPTRR+ub07DgwuHfHoEjPzBwcW8y5jNQvMbETGBpw4YD33optcU7hb57rTzTsa6tGz2++BEHTNj6OJmzF9xn7UnY8My7v/t2vj9vAtu+dH20x+1f+9NnELEX6ZgnbLx4tR6te1ztaX/qCScxK4R/Ba94is1/fknn3XffXVjFJAYYcM3LEzu55V9cbIybx8O8AsO4dVLMyQ88a82eHqGHl/GnnnpqXY/a9K0xe+vKRzzYWI9iaQ8Z80sZL3PZEGvguiDibW207TV9dgpOfIiZwLDm9hxf+Idh3pwCw7qyt2ZqNnhas4mjr8CBJxfufdb3X//61/IvbjkzJxd4yvv8IgQ+4uqa8ye5fKudb3Otm7iKB2dtOrCJvWgP6MOz11oTMbk/2qfuzezg4SbuXrRbP3vWuLhdd9rEOsJpTa2PfMAqZ/GDbb3ELy5Y1gN+62+MLVxjODgLyWVrZD+IR5+OeODhxNYYP+0RWDjYN52J+Iw/7gSOQh92fOmKBRd7gY90+VTkEUfjRJ75I2xbD9xgw7HmbAhMwpfSnivX1kM84mrei3b/mfnXvva1ZYvvVWS/aL9KtrbuzsDOwM7AzsDOwDXNgENQL9odwhwY5uGssIw13thF9dRxyOnAF26HmotsjU17h6L6Dkm1Hag6bBtr/CLM5tT5djhzIHdAVAh8HB3SHf7oOlTx1QHMfGNs6KRnLuEr7nArsLTN8UM6HBqrpG/eGGxFLuOinfDngErSZYebcQdHh0o5E5sHRn+6AIZxYw6T5VR+HIq9YPaQYhwefYdWnB08jZdfeZRTc/nt0GwMb7pKMdCDoYj5IuEXTn7SYYuPOQdgPHGA07jYFDoEhrmJZV5MjcPlk8ASpwdfNh6+Pex5EE9/YrUH+IProUQbpgc5/XSKS82HQ7010IfZHrB2SmtgXj7Nw6JrjNDpQUqO42gunvnHy1h9HIvdnELMK3wUS3bGskkvvGxbWzZ0PeB4eCvn+WUnphmDNjsPqfYWf2KatuYV3FxTcix2+VTkCo4xvuSSTrkxNuOCbZ2tnznYdGvrw7PnrFelvY9rD5XmxMRGjcPMz0rweY6bn2sbt/TEjxc+2rBgaytsGxNHOsaLsRwbw0cRC/74EhjmwygGcdurrrNs85ndAjjHKH5x4KIuj1M/f3iIB1eFP/EqhM+4rIHzH+XOPMn+fHpV+QjDYHZimMIeX1xOBQ47hQ6ZOahvni7Jt/uq/Nl/vtH+ox/96JF9o/0rX/nK/W+0i7F9YQ29yOllhJc2+FoHcziVdzb2VnufnrU2n579XZ5heKkpHnrsfZa4frzMVPNBf+aie50xayzf/PLT+hgvz3CN42CctMatU/HiTAd2Y/RbL2N03AfcL2DiqLRHteWgfcC3vezFpDhxLQ9wYE7hKx7F0B6gC984W58LcuiFH7E/YPMnDkXb9YkPe1jsSbhq/OlYFxwr9IxZD/biMecb7e5V7NiLzec+//rW0tryreBtDAZOMMOj35po4y0H2ur44kL4hA2TjrVnQ08/nWJoTfhkSw9PvOATc3LqpZycsrHXfKMdXzY+H10Lrgk41tQ1wT+//NkX1qPc0/OZ79zkXwK2VvYOzDgXv5pvHGD6cybw6cmXzz+xw7UWijZc89bEL82Kix1edODp9/mGo7j5U+JAl9C3ZmdnZ//x0lQexC6HrRNd/hX2sPhVE7ycCe1RUn7oy1nXgmunvtjgwmgfGLMeSjGyYV9uYZszxlaM8kbk0py6Epf2JX1xu77E6SW0vNkv/JuLIx/OJWLFlciv60Ee/EkaL+q1YZDypM2mYhwOPXvGi3Z2ePGdWCvxuE96IU9g2FN054t2a1U+cBI7P60Pf/rWx9q0H4wVj7a4u2bg4Qgr7ubDNIY/bu0ra9S+ZQuDDU7WAY/WRRzixoWuM7TrTGxsCF/dT4xV2CitFT3rQ9d4fPnnx/rxxTd+8mWf8os7XgQ+PeteXMbFJT/FVD7FBB8PMZYze9SL9tu3b+8X7RK4ZWdgZ2BnYGdgZ2Bn4OIMOGD0ot3h0mHEgcOhRZs4nDjsdACaB7hTVIeUDjb0sknP2Kl0GDROnz96+Zl8tBUHILWD1EWYsOBU+MhWrQ/DYYq9A6BDqHYc4jUx5ERuiit9tZLMGPhj00HNXIe7fMSN/cQyTl9OrQFhYwx3fGDhQ+LX2hnvgda8h0zfonv88ccXJl90HYI7TOIK2wFTjuJDj191h1B94nCbfXnA8zSu9oZxOEo5WEAX/Mh/ejDE5MAsJ/Jq7+JLx54oZvFPPvwlxuk6wMPUZ58fHO0JDwnaHjw8uM0XseIvB8Wqb01ga+Pom0vs9eEXkz7uPfTiFg9th3p24mA395F5kr7Y7GNr1h5l0x4o59O/tnXDQR758w1LD4AEDp2uM76S2nDZtifYGDOvzh8MpVzLe3s3znTFwA5vIq4w5ZKNos2HHMJU2OBiPxYTTPZ8sFHYxK2aHTw54BOWte4bp/pxgke/2NTwfZvqn//85/rFDx1+cJkPmMYUQocv9sXUHC4KMW88/sbY4U7MxY0NrGnLT6V84m8MRjmAD0d/rkn97glhWXNz+mKcYq3L9cwd3OzwZgs3e+vIrty2thOPH/P5Fmu5Ma6EIU7+ijU7PBT9KbDK3RyvHX46+mHTaR1an2Kn50WIfe9B3Z+O8cL91H9+PqnO/927dw9f+tKX1p+okE+FyA0d93z7WB7dZ3DFwYse8+m5XtwL8CbtE/qEbvps+HGf9aIDXmP2nnuW9aIjfu3Wjw2x3jhZg+7d4c/1MlbO+SBwjeFsTJFbY/mMF32fb/YBEQ8OCrv2jTlce/Hm80VceOPJl0K8eMNZnDBglzf99oM2wakiHmJOG4/2iHuPPn9iCVs+4CvavSBlD1fOyy87el1ndMTi5Z1Y+dKWr3LmxZSY3L/Ehf/MJR9EnMb5ggtPG2Z+2So4GGst6euzkVd5FifBtbxpK3TNw5YXL8fsGdj4mIONL33S3mu/48umPHoZCceLO2PmFHr6fCrh86Htc99L017gi6084cevmOgq+nzA7s/A8IHnjRs31hy+8i8eIi/2l29P+3Mz+MBR5I6o+TNXfvHVb4x/642rmr1fLIjb3uKnl8+9OC/H9oV10YefD3570d49ojk+5JudWMSo5odMHONyIk44+nIcRmckY9ZcDvEXI/GFCucxuW+dcOOj/MoDXIITPz6D6dur8lCcONKNo/3kXtEXN+QSHmw+tWHgxja/6vYR7uboKTCysY/cd/ESF122rmfY5cZeModz1085gGUd2cPOd3mxdnTExba4cdLmR2FHx1h8rQPfxsxnK8f8mWfbdad23+AbF3miK74w+LAG9kU+6eBIT1thL8d09LXDkwtxKfTMEz7g40Ssi35rJS62hC5bcSiwzLs2iNwT16T9KTa48PDIvz3q8/uVV15Z/5KMDeyryP5G+1WytXV3BnYGdgZ2BnYGrmkGHFjmi3aHCgciB4sOWnQ6lDiYkMZm2B1kOgjNOj12jRtjA9s4fx2M0umg49BjnpgjbNl1yDJurHG44Rijp07SNS5mh7MeEppTx3n67KBmLP70/pe9e2u17KraPT6/R1ArKsZzFEVvvBb1IiFRUUKioqVF1HgkeEBECCr4hUQQghEliUoUMcTEQynoxm+x56/v9c9u72Al1oK6qZfeoK9+au1pT2u9jzH7GGvWqnTyY0wb9/gbY2M87tNWuxjZaDss8qnNJs4wHIzZGLN+Cjv9bOVV8YDhJaoHGAdddnQ7CLNlZ/3bA3Ezno/y1Jz1UdiQqbsGzj/o8olTOaGXGKs0dqzNO+w7oPfQiP/0Xa7EGz9++XKAVufHodnhXG6N4y8H5tmKs5c08uyllQe11sI6tv5siPjYtgbm5Zw9TuznvNw73IuBbrzpeIDlEyZuHgbo4qrwwa9aiXv81Wxb68ZhGycw7X22cuGXAvjGkQ5OuLHntxjNEbb4e2BU40LHWqjZxZE9gRemPIfLFztzpDjZZ9McjtpsyhtfctqDEx25kzcY5UA77GpYcqDPzl7zIKY2Vx7ZwoSl0JcDPrysUszDmA/5cjG50mFHz56Cb/4o8Pkp1vJSLMaVBJ4SLz6KKR39cMVjDfAj8SpHxszLq/UNT41Dc/T1SbnSxgU/NZtyF0d2lXTp0zU+81b+4loM7Ej95vnCWx2/fMU1XbZk5jXcqWtsjhdPOGrz8Oba2JP2kr/17D9TU4e7HF/hR/79aQx/K9a3YN0X5V18OPFvrHFrZ4xOL4npwuqXfa1pVMqFWjEPg4043ddgmTNuDL64a4vZ/rZ2ri/jcgEjf15A0SE4mVeKg552wp99l1+67Aj8/Jlvz2or+HWdudd0v8GZHY7iSo+ueyQcOu5zcMTN19z/8TRWbDiJlW1+zdGRM8Vcn0c+2/QJPwkMuv1Ls+aNTdGXK4VNa4QrXPEZz97ae+nai9eZ56knfnzgqeHJkVpcCn2xKdajc5VxNvyzsSfkvfG48C0vrZl5/uSknPLjc5QP+GzEjAfM1r6+mq7Pf/P8l9c42j9h0Cd8azs3edHuP6nkm545tvDwa9ycGI3z5xvRxnBU7j6/aIfH3jy/4oKl77PDi0uCp1J8bPTjx8ac2MTTvPOdP3OjpuscId9s8XSm8eKcH59ZuDpneBFMX05xhp/YG/05QZz5kmfXrWJ92PlXEe63fNHBq1yXB/Eq+vTww7V7Q9egebZqn6Ow7VW2xa2e+HTlg297xFqIgw58Bb5xemKRA222ru1+OQ5j5lq//Stn2nDtVTETccixuLo/yM1cA3YEL7G093CAZT/xG++lfP7BF1zzan02MOwduYDtfq8tLjrxhqldCdd4+8Mcv33WF7945Y2Yh4+rfWRd2BmjL+9HvWKZfGCyU4upz2m2Xf/0s403HxU+rRsxRp/QlQtrocx+funJYznMjj97WV2BBd/+8bl948aN/aJdwrbsDOwM7AzsDOwM7AxcngGHj/mi3aFlHvznoWUeWBw49KfAcihx6OkQpDZOYGWnDrsDDFuHHsUYO1gdRM0fD07Nq82pCfxw9fmq6JPm2cAWu4NpB7zG480GrkNaD4nGkuKE5eBWfOZnW58uHbracolPGNV0tDuI0oGF65wzhm+c4YbNnh0fHvA6/E+f2WYPmw8YZOIbtyZ0YSvacUp3clgg5x98yiEbelPyrb5M0j8+LNFloxSrfOXHmEM8Ph5i86Pv4dKDkQch/K29Qoc9n64Hc7jLXQ8k5mcO+ckn7B4a5J4dTva2v/NOjx96XW98zv3Pznp50YsHffvTQ2DrYx1wg8OeHmyF4JTM3JuHr2arEA9S/HlwNk9gwmFPyk1+zBnDz8PejLtcwTfXSxGYlWKBLUceEq2XNjGvTOGvePGc6z1jMqfIk5cLcl2sMGfs4pD/HhL5gzXvR3jRY9d+hwOfGOfDSwn5oCtuebUH5LB9EC/2+eGrPC/Aix9wyzs7uK1LMRoj9OiT+KQLW2HDJ6GPfy8Ps1mTF/Ow6VjbHkDNt4bNqfPFBnZrx9/knh4cugpd43TxlMPWzDx7+ZNPtT59dhX9KdYJb1hiM6+Gx8+sjZMwWntjYokDvwldcRPj9OJpLh/m6dnfXoL5G6/+hFe+zF9FcCH+1vZDDz20vgVrj7k/8iNvciIG+7aXJMWrT09+jLk+3F/wj3drpg8rTDrEOHw+Ychf8evLg3urUi7dE+C2HvTMX7t2beGYI9bMvQ4nHOnbe1Pgs8eD365JOsYUArM2m3yYkxvFfoOlbn/RC1/8fNh37cHub7h5Ach/XLsPlhO2sMUKt3zKKRtj5uwPNR98G2enxLNf5IlJTvhqbegr8RZjMRkn6rkn7APr709syHl86OKPK6HHJ27Gy5caZ/tA7szRZef+Jz/5hqMtd3C0ldZSntha9+5J5hRz5dFnozZsfsozfPHSV3ffpUtPLQYFV7WY82WMXeuIm7i8aL/nnnvWnDH5I2KojXc54ktO//Wvfy0fcfSyHnf8zFs7a9g6iicpDjrs+XUdqYmY2z/6uNs/PsPf//73r89x8eKPY3vKmthDfmEjz+zY+NN4eJib+0fbZ5p/reVP8cgVDl4es3FewAvWv//975VPPNgpYg1PvgleBC/2zmJs6MLCiU/x0bU3XWP46avFwSdhh5M5PuROnsVe3O3P1gm23Fp/djDktOsJnj6BARM2XW3c1dYMD/b2idr14BcXtfnmj257Fg/7DF750Wabb/ba/OLCHy6KfvsKlj59+YQrruzUYanhqAnfrkd1mH0esDNOtxzERxz2ED90cDDnDBVWuRZXvuiYL+727dzL7Mwr/IgHlzCKQd94etrFxo82/May4x9may1utp4H5MJ6Gisfy/H5hzmf3/sb7WVk1zsDOwM7AzsDOwM7A5dmwGHjshftDjYdPBjS66CldoBRptBx6FOIg41CzyHIIYZODwr6xFh4HSDr0+kwpG3e3LTpcGYsH9M3H8WCh3aHrnCMO9g5XHUIppcdDCJ2/D0QOLzhIt6JUw5gvpLQFxf88qmuzS6udMVtbuaTHzo4FDddmObg6ydse/BgZ85Y60GPLTv22grd+jhoe8jh87hO5ugr2bKJhzE2cyx++VG/kvDpgcXDc/mfuvzAF1dtvuRPXD1A4mG9PVx6wPPAZN5eUsyzx6U8wuBT0eajdaFbwUceHODZ8u9wTp8fD2J07TP4PURoT2zt+IkbL/vTQy4bhQ81vgk/fJLyjE/jfBtX5IqUczoe0jxA8z+FbjFODO3yGT+5he86ETP+Hsjijg8xri1PhE8PmUr+zcGHh2eFHfvWu1jiOWsYHhzt2+yMKfDKBZ9iZwt7ijjFoo5ztXiNE23f8rIucD2EwvXw6VpT2jfsxcZf49bgKLjEh598qVvXbMQjLvraeGjTvcyPOTryQx8n+4qUQ21xyZ+Cc3zU5tqLdHGiU37owDKu4GJMkSPCt0LPmDl7nj/jYciddZDT9PjBQWGv8E/kIm7xhlU+6Ggr+TdGB1dYzcdNP6HXPkoXr6MtbPzcC7xg//KXv3xbXrT7xuzDDz+8/kSF+6Lr13qKGS/5kiul3ONvnJ6ib5+yEY9SrGzibi2KlQ09OL0Yomct2CpsrZVCj417gjm5oG/MPf3u8zd9XSNyp7iX2JNepvHJN36tOdv52WU9xBI/POiQfPMrD3i3P7pH4RFn+vwUIwxY7MQkz+z418etb9qKa+afncIfTHbw8SsmnPnCrfsfHXzY8KHYO3Lpc6z45EdpvWcMeBNj8GAQ1xUsxRx+1t99SxxxpSseheQzG5zDFFff2oXX3uqeT5e0t8Q5YxQnXPP8WX+c9LPNnk9nGeOtuRziHSdYMHHiByciBoXgUOx4EvmF370Hjjz5G+3+E/muIzV8tQKHDT44q+1f3wLXx025du3aOnPwJT57oH1gDengK45iwA1nfXOEPzr5NOY6UpwbPvCBD7z8wtXaxBuG/dK3w/kUMxuFL/uAXsKPb797ye5P24hL7O41XiaXY7hetJt3jbBTiie8aj6sgTMYLNzlvuva/yMgN2KVR3tTvDDx7v4Ajx1OhD6fuHVW1BcnnzDhKOGUd3qth3bryRYv2MbiLq/2nv3Kv1+ksJNzf74nPXvIessvfDZw+BUPPaIPEwaBad4emnvAPC70FW3zdK2ja4i/xtV8yFO50qev8EnoEestv83jIX5+y3N7XEz0+DTXi3Z9OcYLLh0+i9U44Vu+6DcmP2wUfsyVKzj8xEVuyif9fNARa2unb67cwmxPwYbjF0f4iwmW8fjrW8f9jfa1bPvHzsDOwM7AzsDOwM7Aq2XAgeXZZ589/fjHP375gdbBqAOgg0eHIwcWBxQHlQ4sDh50iHFtY4TOZXph0GEDXyH5qh9ehy/60wa+OYehJIz868exg1NzYZmH4+DVAc9Yhzfj+rDkwQNBh3aY+aSDi1Ie8Go8XWPp4MJe0Y4THaJvnDQPTyHsqrXhikVhmy7eDrMOy9nCsx6tCX7lEw5pTA7oG9cm/E0f4eZf/uJHn61+8RhLjFf4hDVti8MhWBwwmo+DfvkKi56Y+XaoNh6+hzt4Dvpimgd6OmzEAFOOrLkil8bUteOSHbziZWuerQd2nOCKic/y1PrICU49gOp7iPXg5PqEC9/DnZpP+PDwUkht83wqxmDjpB9vtX4vkcyLjVhPPMNhL6ew+DQuBjoeIunDoqMQD7T4mo+zOBT6hD924a/B84+48UOXL7X+UXAqruazkzu2+QyDDcHVSwM8+FTiqD2v+TjEJ33jfqnATg7FC8/aqouR/vRPl3/zBGe5nZIP9XFu6vFN0m9OnBVzhK51s7/41MfZvDzSN97a9uBMTzHXXhQ7XmGHF1d44jNvzHx1bf7Mx6P9RI+9PHk503UoBvrx1Kcrt0TduhvPt7bCL1yCv3Y64apr85NkXx6mDhy6Ew++feCF3WOPPXZbXrR78eWfsb/00ksrJziI13rhZU95OeAzS97iJY9eJrgmrQmbrk3xFZsaDu5zfY0TMSr8plfccPnnV03HtW2+nNHpZZs5fTV8+0oc7SNrma3x+BhTxNC9pf3EJ8x07Jtiwl9ucDNWTHKUsG8NteHIpXWUQ2P8yiV+itiKr3bcxcYOd7l3X8SZb37MK9p408WPXz755i++bPlWjE//6bCFA4/QKT/69OCwx4uUA7g4kmKiX17KDY5yi7s5uvzAhRnuAjr/oJ8tfSWe2tbXPYngCotfbbF40a6PMx/8hQGndrmDU97pE7k0Vuyw2U3efIjJn1O7+/zLoPanz4nuQWwIe4WNeF1PPrP16bB13rDfidzyLVZtL7/Z0BND+TEvPmO4xA+uIgax+Dauz2/1e97znuULDzzZtwbzsxgWTPHgJudesrYW7Rnj/h63l9+4wsOPbzkWH+5szRsjapxqi50/tnyUz3JZ7PLohX97vV/Ui4EvMfTiWg7Y8eV6hq14aaqPo75c4wgTvhiOaw+LD/Ns+KEXP+NsWgs+2aTjXyziQt/5kp5C4steDIq52tbCWuNbHtR48GFOrU+HsNdXcIMhx2K0DsQYkXd801ezh0noiYOwdX9qDkdCHyd9+uVTn27rrY8vDFzo4hdfdZh4wKTLxlwCkz1e9Omq46GmA99aaccvvuKWL7pKubPO4mRL2Lp2rJ21Mk5fTDDNw/KL8s997nOn++6772W71bjFH/tvtN9iorbazsDOwM7AzsDOwJ2cAQeWZ5555vTEE0+sA3aHTocdBxsHCwcNh4xKhzPjDiJ05gFIuyI3temRDkHGtRPzfDqMaVemfTZqMutjW1/BU9GemMbEwl/SvJrIh4OYQ1e82PVy9uhj2oehFhesfLELT5tMLLxmno86+sWknS9tuBU6+QkvLDba1sDhsbXAtXVI1zo77MJg18HUvGKsfKodYO2h9tEK8PwDF0InibvDbwda/hs/6vUi2LwSB3q18Zxt8dH1sJgNDh4ue2FiffBtnXAQZw92+Hlo64ELPgx5yx8OYix/cawWnwcxWK1LDyHGHPLpsIer72GNeAhXcOKbjgcLfOETmMWtJjgqk29x8Jm+GJTmjDcvB64BXI33sgBHPhW8cMErPvD4Juw8SFkDejDZKOnTgwVXHozjoMCC3d5S69NX57c4YIVtDF7ryzbOan7y1Yt2HPhlQx9/+wgW3Xyqm+dTvwc+9vrFM9ci3mqYxUk3HLb88qee9nSKQZxTWm9Y9itbEha7Clsx4tyYfnmEhYcHajrlQ8zl0Zj9QQ8GvnGYvIpBTY/+cc/EgR1/SusI0zp6kaBow7Iu4jRPwsUDHh/q/BuHSU8tVlLccOgQNsqxHTYMbSU99jCrw6frfuNPUHjR7p+g52c5uMKPfPlzDt/4xjdON2/eXP5821kc4qIjR65Xv7RT22d4GXc/cT0akx92vVzBVV/uyhUde0o8+TfX/lfTN09PgW1trBEbfXU50++6Ej5b9yDrmy594/nFy+eyb1wWJ1/GldYkO3NiVuIhFhz0+dHGP9vWpVxNjPaguIiYexnEjt+KfjnSLg6+xNA1xe/ky5+Cn1yY8zLV/ak8pG8Nuz93j50vkIqbHWFHn508KOb4EluxGvfL6b7Zir+xuMqbAp/M+ODpmxN/+4pvYjy7yaG1Z8vGnFzJb3p8etGOR/mDxWcxLifnH2ziIY+w7BFjff6zyU97C2fCh3mfxX5Jjj+OXuK6lvXp8i9vdGEr8VW3Z+g2356xf+TZi2xrUiwzP2z0xTA5WjPXtm9P+yazPaJ4GajmT76soTUn7OWB4I9bn/t03Bf4mmvBxrhvluMt77i2z8QojvY0bGNyJFcEHq7OcHjzXZ7kuX1FF9qb7OkAAEAASURBVD+cYdLx+aMNk930b17e5YYv8dCxR1yj5sTjxb1fBMCee5w/uPyLja15tT3IL0wYfM31bv+LR1zOa/wZF682f3DEgzdf9PGdeeBb/ti0l/iFVQ5gxY9ea6cm5vHjR85Ie9ha8Bd23Iu7fQFfzOU7DNgkfjgZa93gyrd9J1fiEbOYtNPjt8KXfODslyn04JtXE2N8GStf7MhcE3vXeDpwSfHCo69P8BEzCceawXA9tu7WVO5wYOvz+zOf+czpIx/5yLI1fhXZL9qvkq2tuzOwM7AzsDOwM3CHZsCB4umnnz794Ac/WIdwBwsHD8UhxAHCAaTDnoNKhxXjHcTgdDAyr8+2gw5dYyT7sNJTO7Qp2vwTtkqCSz46uIXFR4U+HNL8xKGnD0OdzjI4/zAvDz140BMPzF5Y0BU3e/pT4sGuuBwm2fOlLj9HO5iKQ90Rl25c1SRedIvZeP384DLntek4mCrw6KQnLjp4y0X+zIefD1zbA+J1yFe0Cax4roHDD+vqkK7m86jLj+IQ7wHFfDrG5xrEkwu8eiHSgztdfsKi095vT8MWd/tRbA7bsOgTOHwpOCTxEocCU85geCCWa0LPQ4QargdDvPglXgT0or2HRHj8qq0Jfq0HnASn+jDLHw4eCD1QaJc7+vp4qOEXFx8ePDwwGffSQe7mWpUr3Ajf7Okr1oy9hyn5gKloJ2yMwYgDPooxcdJvX/FpjI12PvklYcu3tdOX73Tps1dw5FNu2ItNjuwZeSZ4hM2WTf6XwvmHMXzUONO3X5Ryk11+jcNOx5rgqGjTJ7AUYwQHMeFHJ5+4E/G4V8EPI76wjeEqJ+1DmMZwyRdd87104JNOfs15CQObvcJnGIvMxY/ioUPfWhYnFbjw+TbHZ1xhism6KOLkw9oq5uHDxYmIkX2c4Gob40sxRo9fGMp/E/rhHHVxUODgVx7wwvN2vmj3DdPvfve768864OPPO8gbEZccuY/4Rm73F9yMWzOfb3JKV/z6cLThKHKEu5jtU9cTDGIPWCPCRilmNWz6+eAnW3jGldbDnHsLzr2QgwPDPQQPL5G8wMGffzYw+LbusEj5N6edXhxgtTbmYLEXL27Z8y1f7BRz7NpzcPiWNzjmlHw2ryZ06Lsfdk2Zyz6/eItZMcafF5X46OPiOoAjH7irvUyUG3koDvz5Jbj5+9fzT9BYV5815ZwuTnTcs/kjxuCah4kLHnImfwRvc2zMs8ELlzgsxfMPY/DowOHf2uNo78mJWp7oEPg+g/g0rqZvXM2mIs/sjMsfXXniV7xwuq/T9fJYzOzxySdbL3GN25/+BJxaX9x0uzaMib38wDAnNuvCPx1cCL/G/T13n7NyBG/mqjF7QT5cp+xg+gXA3edv27vG7Qc6+vjxjYv1ti+mX/xaK20+4eLAxmcHDL7F2N7CW9tLd78csP9aQ7HR5Zcv/F7zmtesfMPy51zkXT7gshOPwo4NW7HNNadnLulFOzuCu7hf+9rXrpou/sUlnpvnX0b60zbwi904W/uBT3j2in1LxIaXMXzpKewU44o9ay/ZJ/TM5QNXe0pe5ce8dcJPrY9v9zV44YvpyIUuztaOvRy3h+XJGsY7bJi4wSsnan6sp1zzr82m9Sxe4+b5hsU3vebxwRM+TnTEal+7f8irvLNhSxdnAtu8HLFpHj/6rbE+fJwJLglsfujPnOJnTMGxom/OmsPjU18dFi782bPWltB905vetP5c24c//OE1xu4qsl+0XyVbW3dnYGdgZ2BnYGfgDs2Aw8avfvWr0/e+9711cHa4qnSIoePQ1OHKQUNxuKBLLx2HGHPEeAeQbNR0YKmJQw09cw49Dl0dyOAeCzuHIfr8mw9XrWQDtzjYKflKDwf65tQkHTwctjx8xQse/uxJvlbnop8vc/TZwoSXPX1tZQob+B2G51ztuOcbBnxiLNGmm+/s5G0KX3KKd1hs2OOMv7XBKyz2E58tDDrwPZwobNPThq9/FHbsHcDN81NuYJs37uDbg0f5DJ9e69Icuw7srQMdvhzI5wOKGBW2xZkNfQ8qrQuM/OWznOCTf+0wcfEwHH8+4BNjPRi2Bj28mfeQ7EGCDb907E3Y8m28Qh/fcLRx5F/+PPCq4bApf/TaC8aKgw8P1h7GiIcOXHtQ4ke8SrmoDZ/A9aDmIbD9gb89ksCRD35xZSsvrV/zxc0HHXi1YeFgPCwY1nruyemzPPFJj/DpAdZDnviJ/OA2JU78E/P8Gtcu7+2VdPCr0MGRfzaKmJRioUv0zWfLbyVfuJvnswf/qT/zhau8iJMOLH0+iDHCxnj7jV15sa72Jx3CpvjbY42HZ54va6nOH1yFXetlnl3x2XfyZT3kzH4WJ8kf3HjgxV/28Izlix3/dGpXG68YSwd2+I2Zn5I/HLX5xNO3Tb/yla/clm+0eznn89ufkMFDvxcieMuHa9316n5ib+Bjb4tfjnGjaz191sExB8e+aN2NwZJ/NoQNPWJejPCtDd/01Ep8spW/dFsTOnKEqzq+/Lo26VlbPnvJyoY/XI3jBJvPcj+5wNTHFRc6xMspBb4cGLfP7K/2G1/tLZzo8AWLDVz4M37Y5ir6eHrxpmYbBnyYMCp8Gxe/dSOwcLeu7MUs//i7V8OOk5zxwwYOcR9urfWtqXzzEXfj8Lrvw1fgtHY4wowDG/YKfnDp80W08Zmib1zu+C/ffBi3//Dn21h6fFoL4/yV93zANafG0XrpwyO9aDcO0xye7mVsWls+xeEXVQQ//zJNvujB4984LP7Zait0zIsNtnwWR36N+6VZL/nxVeSQrpouXDzFDVcMXrR7md31bb/ghzNRe+GpwJI30p7GDTYf8oyfNjz7DQ/jc8/YX36p5/+IcC6RA3GXb/b8sPfym8iFs0PrC9e+tcfm+rKDBwtfJVxtduZbe77EYD3kQlww5Iquws6XFeTAnHgVc+q4m4PHlvCrkHTpd22WO76Vch5POO5L5ciawcfRfoBDl8hFueeLHky6dOxNecLRPN/yaw903cL3SxW6xSI2WLgp7PQVwkYu+deGXdyTW2tkXlzZ1y8mPuTIGolbkYN4mMMhHny2D3A2DgMe7GPMxghusPRhuO8Zyw4//WKgRz8bGDjyxyZ+YrfXcTLuX4p0HYjbL8o//elP72+0S+CWnYGdgZ2BnYGdgZ2ByzPg4PHUU0+dvvnNb64HMwcShxPjCjHWAcWBRLuDi4NJbXYdvIw1Ho65DlgOK+GEYd7BxkGrA48xetW1O6ClB5cOSae+MXrGFUIfhw5cjU/e7BVjHUBx01bCdCibdrDCn7j80otz/PQVQt949umsyYsfdPKXL1ONqUlYM1cOjcShmh4dwh9f9dfg+QdeHYIdSOMz+bKBJZ8Kf/pyJTdqfbb62eZDDUM5xp1dh259+B5OiH46xcAPH70gMs6m9WbHlzH5gMVGnAq+arhw9NX0ejCiH9/8wiXGCTtCN0y6Dux8J7DphI8n33S9RFGIhwgPT/Dp4OihrAduNnGlz4cxIk4+5NHDsziMweI/PTqtYfbW3YOOBw85xcsLB7xwZps9X8UPV9GvzGsHFv4KPaK2Rwgu1bX1xU1H0U4mD225CAtP8TY27aa92Hoxou2FAN2pX6zFyT7e5nDl9xi7cTbV8MuLWl8p1vzmJ7/81W6uMWsnTjjpGEvPWLjqeFsLhciRtlqhZy/Ei41xa2lv6NsfHu7pJubr80tPP170jM17qbF88kc/G3blCR8xErV1cl2JVYErhuKFOe3NG6vECX5t2Di0JtrmZqGvwFO0p7AJwxx/rr3b+aK9b7TfPH9bEzcv6ry4sgfjynd7Q22P+3au+4E5enjiV97YuzatrXuMYs7+yo6N9bEPiDah45qTu9ZvTZx/sCF8kvIjf3T1vVyypvmx3jgr7PCky0afH7q4ir3PKrHCa23Eqo0fzPgaJ72gFrc59tarl/767M3jUIxs8VDowFf4Voy1Z+nAcC/vG5x8GZdzXOjCZpctH+1F61CMfYuWPl8wzCn84MnXzfP+sIZThy4pH/D55xOecRjxEzcMgi9deIQOPONwYJiDQ4+dGp/iZFc+tM3n13rKgzEFD2vLnvCh3f2DHRt1nHEyHy94+efXC0prK04+6NlDXiLD4IPAEQ9devanb7naG/Csh73Zn0Vhi4t7kn3Ml1ywtebySMyzg+Gb4X/961/Xt8S7Btm0JtmHDR8nPnHxC3w6RI0jW8XnNUyf4eWbjlzJSXZsxaoY66W4vty37815efq3v/3t9MILL6xviRdTeeNfXHLUn9zBBWc+1fJRvuHjprRG5vmC2TobU+glsMTCV58DMNi4DqyrvjgaV5N8wDPPF58KwZkYJ/pyLz5rx2/j4lJg8sk33O6ddMt5uSg+ego/eGibEw8b43IkX7CJcWtk7e0zvvn058ToFgssMvOev3zKR3p0y5WayCVM+8gY/viFqS//ijF9cbuWlKMd24r1oz9zDMd1Sbqvw+NbfukrcgDHuPscjPaWcWLO+LTTNiZf1tF60pMH+c0XLFzoEJx8fl+/fn3/jfaVkf1jZ2BnYGdgZ2BnYGfg0gw4bDz55JPr78X6poeDi4OEg1KHFIcRBzC6xmd/gnZgU3dgg8GOqPXh85N+eHQ6EGnTjUPtMBx+FBgd6qZfeulo86Ek/LPrkGY8HThs0lET4/g5gHmooE+vA2T+px/zuIexgC6wjJnLr7nizEY9JZsOxebFmR4O8NTEnHyLk2iTDuHxy66YjBvLj4OnOF9NcCvn9NjLlxIf43wYI/xU1sDFj8bUcHtgxWf6MF8OsgEB30OlOI2L38ORgosCp71Dp3F1OWwMHgyHcTYJbhUYhG0xxi0cOvzO9WKjD9/6NOdgL24+ifx7KDCPg1yI0Rh/xN5szfAiag8KalgeumHjgZfY4kw/fFzM8+sBxp63D9j5hg8smOzFxS7ucNjiYi49Y+l5ePJiSwxw4+CBLkw42vVhwVCM1YapTejwCweucfPym/5SvNCNO//a4oZNtHEvrvDM0Z2FP/j0a7NrbegSY3Qqjc85bVjlJJt0zaXfnL4Y25/ZFle2+vIjRm3ra22tBzGuby+Jg448uHbg88e++yB911nfAuUHP/uSPd1iySed9MwTuIQ/epdJdnTTM2Z/+8VPL1nYi4uOwoc6mXziF3a5pdsaqUk62vTwkG/taUeveNI1Rsd145+ef+lLX1r/Keq0o3urAo94qfLVr3719Je//GXxtY6tH+ziF6eCFw533XXXypfY6IkDZjr2Oix5tNbWE273Tb6LceYWnnWwX7ThWY8ZpzH4JI6145c9bD7bg+mp249qL5zsN5xhi6eYjMdBPHiZI7jwgYf7kQKDPj33Snureyjs7rn8tg7stcuPmhjjC4a8G+ePHy9d+S8H7Vl+w5aP8kzXWvQNUdhy7UWr+/q8X8Ewj69r8/e///1aP2Pu57C06RWbMbkqbnxhlit2cnMUOGzlRd4IDLyrjdEzj1P5ETtbOYlPOeRXGw8c+8UE3bjmzzrR6TOeDj/uTXi1PsYV/X6BgufElIO40GNP8NBXy7marnXTtgb2IYHtJbhaHLjIXZ/Z8uJFv/UTg2+H/+lPf1ovr72Y5Ke1F1Mc+fPi2rfEvVztlwXih1+s8gPX+rnWxdNcsZVffNPHy95Tdx3jbr927VgTcdw8//Lm+eefX9zNw5VHPr385Z8POWBTrviCT6yP/awWM2mN8ChuHGB1XWjzkw49mO0HGO5X7Vk+5YsNLNeRsXLML//s4eCrL69smqOvb6+p6fHFTvzG6MC3jmLmj4794D5gPenSU8NW9Pm2jmxg45wPmPzQZQfHfvNLUzzZs/ULG3HTKa7w9WHAV+NlTs2PkhinB0ccMBVtgqs88G09XAPFj4v94rnSXtEu3/DME/7EYa/Byr8xmDhYR3tEPsXH3rq3Nq07P/TZJeKqsJsxiq1r1x7Vd43gSXAsN7X5fPvb33569NFHTw8++ODSo3MV2X865irZ2ro7AzsDOwM7AzsDd2gGHDx+8YtfnL72ta+tA5EDSodAh4eK8Ogqxhw6OhAVusOJg4qaDl0HILrZqvkw5vCTTYfH9LOB0yHJGFt+q/nWhwuLrrYxB7H0jHWojC9f6Rgzz0e+2Shk5qF5PmA4qPFLcHAQdDDsMLomLn5MvNqmjvmCW0lPbW0cZONTTsxps2kObnlonE4ccdanoz3XTl8pp3JjfgqffCWT57Q3X3wO4rA8MBiLs5p9dnQI3tbQIVyh18MNe/PGFH2FsHfo9vAG1+FY7oiYwg/LON9HCVvs9koc8ps+vXIMmw8S//YKfubU/NEtr7j0UMUWZ311sRWfmNjae+ryJq/wioU+XA8R5cGDubH4xiMbXOVcvATfHtDhiRUn9jBJNS5T6DeXLXwYeLpOPKD38IaD64fP7FxHSv4ah6ENl9/yCl+fDR9xoCsuhS0xVqHX2Gynnx/6rSe+6c6ab3o4lxPtOC9Hhx/xaJiuIi4c7F9516abHNvlMDz+4ZQ/8+VLfjy8KvZSMVqDGRtbe0bhn5018/CLn3X0Mk/c5SE/fBmLD97mpuAnp8Rea79NndmGlZ/G5ac/GwA/Lto44qxMPmzNkXJkng0fxvJlTF8O+Mq/fLSn05Wv1juf+nRdi3ef/37yI488cnrjG9/4Ms4icYUffBHfKv34xz++XtLhxU9737w9gx/+7onic213L8YPlpccveiAQd+c/IhVYTvzY560dnBg94u49qoaJoHrPmX/0Lfv7B/cSRjp89f+KA770x7xkgkvPv3pDDHRNcanoo+nnPArB9p48GVMn8Dkj7AjsAjdarh8eWmGpxyxJfT14Rrjh7519/JRgdU5gX0YvXBsTegpcQiXXrk35gWvnFs/vuxRbTVb99iXXnpp2eDj71TjVw7klR/94jdmTRQ4cz3kC246arH6vBWXufSLxT4krWWfIfjbA/Exzh+7Xpx5kehPofznP/9Z47jaP2zw1bcectxnqFjsq/9z8Z935neuq9hwF09rhbf9JH/m4XhZiCNs4hww/3QMezi4l3f3Ijr2KBxc8IdvjSpiZX/z/NL6ueeeO7344otrvcTFN7G29OXK2Nve9rbTu971rrWX+BO/XNgX4qhPXyzyR0/srQ0erRFMunLOT2sjpmz82RX7iL0xutbAN/HNaZuz/nD9XzRq2GLRtp50xYtjOLgrMAkOeMcJhjFnFwWWvMmrAg+2X8TgwQ4+PubCpQvHOB01LHESY/LXOprXZkdHHxZMceIcjljoxc9+kS+xp9O/eCi/YtBWlyu47PiRA8WceIg9aJ/bg+bYKzjJE/5etHft4ByHBXD+0Vh7TC0WOK4j86Q10i7m4mYjl/HpuqNLcLYWrj/x4MUGtlzJZ7HJm+tEXNrtGThsyomY5BV2XGERObb/zXVOFxO/dNpT+cUDln+Jh4d7Ob9Ka2ld+BcHXT5cR160+0X5Rz/60eW7fK3OLfzYL9pvIUlbZWdgZ2BnYGdgZ+BOz4CDlBftX//619chxWHEQYdcdnig30Gkw2k5cDCs0OmQ5uCj6Ct8hEPfQaZCD266OMBSGzPHXsm/Q5F5WHHrANpBbuIUG19zng7MuBaX8ez56lCcXgdcOg5iHjY9VDngJeIjbGB08G5eXcw4FGdjxW5txE74g1U+YVfiy06MdORG4bsSrtwZK9f46jeuDzNhx1d+5hwdOHNN03M4Zhsu/uXE+LTTxxt/h/8eKLWN0aVT4Rcege9Q7oAMny0ba0UfH/zgm58Y7M3DUqauhwn6lezUdOMvd83RFbc1Dav808fVOC7w7S9Y1hpvtXl4U/C3x2Bph6UfDzbsPUTU7kV7scFOH357Dx82sHEkbMRTHacw1K8mbOGzx7MHqB7E8HDtWKewZnzTL9/5p1PcdNjiDYeEZQ/w3/rFxTzfyhTj5cEcf3GAQY52bFpTunjkTx9G/swR4/wQePTTM2bOHmof04dBykF9eXAPIvmrpssnH/Tkx8Npf84gXvZVeGzwwaEiPtcWW3jWrG+0wzaWHzgwcCD6jRmnbw62vofjHqbNKUmc6qvZ8OW68bLVftcXH3322mISL+7xUZvjv5zH25gShnE69pB1MBeOMXOEfntMnz8cxEfPy4Rr166dHnroodPrX//6pU/vqsI38U32+++/f32zFK9iEhfx0qF7iPUy3r6XD9zYuK92bxWbcTGTYjXGBoZ4rZMxuYchdnF6sdc3N9ka49O84rp3f2Zj72jPz9X2Amy+yqn8GevFh1wS49fOOdWHQ2CE07rbW/1SCQ4Rg3k8u27xii//cWicD3n1ckgezPd5X9s1aIwf/Oj3wpiv9jk/eLJzDbkXxqecwpAD6wGzvzNtTN8LPC/brT9u1nt+ZuLiRXtr50W7NYCLPz8kP/rG8XLfaf/ANpet+XzigTtfeIlRTHKqjY/xiSl2MVl/mOZ9BsqXdfESjHhh7T8f9aJaDIQfOeSDsPPZZt/xIRY6/sUHbjgY51MM5vkxDhOWMfNigid2wi8sY8RaepEuJjatl/ywUXzjHGe6/NizcOSSHj8KTvjdPL9o968O/CkW1ylcuZETawtTm69777339L73vW99qx4ePdeRvQ2LyJ/c8+2XO+WFrrVt3cUPly5bnPia+ZJjL9TjxRY/Pq2Rzw/5McYvW78c4NtY+WfvxStfhB4++W5t2Ymra5MuTva5Imcz1/Bx6KUuPNjWGX57BK6SX3Fri5nQhcWXtWaPRzZ0YHX/EnOx0LUf/EsH7daDDzbq9ifM8myv6csp/7DlSS7otFdg0nHPsR+617GlExd8vGjX57P84wBDadxc+ecPVtepvCikGKwHfl131sH+Lq6w2bB1Xfs/Q9wXur5gmWuNYfBrf/ZLqfzhhze/MOBpy4O84ZrQ619l44QLn+3p1r69w84auSblmQ3hW7/7GtzuT3Jkb/Si/WMf+9jLNqtxiz/2i/ZbTNRW2xnYGdgZ2BnYGbiTM+Aw0ot2h5QOdsYr4nP4IA5IDmbmHHbSMe8Q4lDicKSYo6+kC6N2hyljhG36bI8SHo4w6CYdyGAad6hyIOqADJtkQw8GrAS+fhyqjdPnw7xDITFG5MNcOg53DoP5bJwun8q0Mc6+Yr7DIA7lQm3cfJzUYiRh4wiLD74dwpXGjJMeEPhwGG28OWPWNJxldPFj+r1svpjVceUf1/rstCugs6NbHuS7hxHjDtfGtCtsWy9tvD1oWAfj9oK8iAmuMbbq+toEB6V+8cl9vs3hnb12tnDZhGscX7rlA7/yTzcf8lNhkz8YcNkfxZg5+y1cbWN4WXsPMbU9FPFRfPDCUBuXK4UNbrg2Jy7jaoXwpbyasKcPlw+41sfLgfkg5kHOOomBH0K3PlsFXqLNPz3Czlg5bizf5q2nYowufHU+2fAjV8S8vnmldr6X0sUPPIwTvOiWt8bolNf2Flxj+vxps9O3H+Y9rXzHN+7qmT/x5VPNbwW+62S+IIM7H4rZ4D8Lu1424MmfdWSrwLcX48RWu3n9eLMneBpjp7QubNhWlvL4wUZxj/AtSutVbrNV41xe5BQH0roaiyO8yTHfxvFyTakVel1P9IgxZfKwhuy8IHnd6153+uQnP3lbXrT7RvsnPvGJ05///OeFX/7Kq2vffQQfL/twEodcyAnO4rC/xCEPiTl25YvtzKHrV27ZwqRP1z3GiwvxTvvy2r7Tt9e88EhPnrTNwRZHHPEzJg7FmhN+vPiUW1zY04UFR05wh2W/ayf848NG3Zw+v/wZi7v4tOHzr02vQh8O3Li39l4keekJGyd6MGDx4TqUi/jApAcrgenFj5ov16GXgr14w896wiwX1skLL2vHRg6mH2N8EdxmrLBxLJb00hUbX7DxwjX7YqSLC1vc3Me6lxnr/q9tnD3OxrX7RYIXkHJjDGf4/ModfHtdHmAQcYob1syLGNkY04ZVPmGLCV77txfY8HGUD+uYn7k/xGfefvSiHXd+5BuOudYFFt/4+eWHa9hLUr9wmWvCL1+44vnOd77z9N73vndx4K/91priA5OutfELHuuIB1w42gp7Y3JpL4mfDcG1tfVC3XrgzF4t965DfrUVMerDlUfY7Qnr4TmjfPGljT//+BK2/KrptCbuYzjFOx329h5svuHgWL7M4xsuXgQ3/s0RuObk2hrpT470ypX8igt2trjZFwQPuaHPDo57Imw+cCke+4wO3nNP848Hffb67iH2lD3BzpxxewYfGDfPv7SxljDFF08+y6nx4ueTDjz82OUXXtzoKF1zsOwrpT0TT5yst33TmphTrAtb/tRiYK/PjtDBr5zAkk95N0e36wgmjvw0p7Y24tSGy1c1H+1XY9aifNHXx4l/vvmlz6cX7Y899thpv2iXxS07AzsDOwM7AzsDOwOXZsABpRftHmIcNBw6Kg4cibkONGqlg4sDUQc7NrPAYtuhLjy1cUKfnhouaW51Ln6Yd/hxeHIAejWBFz96xZRNfuqr6cfFgaoHjbiYV6aYC0sbt1fjR1cM8uEgqO+g20GOLa78O8Di44DnkEm3wyk94mAMi54DK5Eb2OGwKQZ2/E1xeA5PjYv1DAN29tmJwXixG0/HuEJgG6df3Hzg2p7Ijn5tuHJtDTw8O/jSZ2fcvDhhsTGnX9FP4iqPdNsb8YxrONlVw7Ie8WDPr3FtBUb2uPXwEa/4xBvP9K2HfCv0rKlvLfUwRe8YKx3fGuvbO9bMw6YHXTjyZP3UHrRxlAf6xoq5GNX84JdoixNOYqx4Z/7imN5l9cwVHHHj6yHRQxIM3K2TPOBLpz0UZhzp/zehg6c9A4+tMaU4wqBHh2jLk2uHyH9rqN/6a9Obog+b4J8d3+xgibG47K1eyBjn21zz8FwHPfzBiQ9dRZ9PumLlRxEnDgodfbU5oq9tHq7amrQG5vFnk539YL9ZM3PpWDttHMLDzRgb9uQ4BoNvQpfo01Pnoznz2uYUuXGt2NtyIB5c+IPR/S/+8kPg4hWWMXMw4BL2+nOscXG2JvQSuHzBlSPryB4/17UXcA888MB64T5jyv5W6vj94x//ON24cWN9Y5kP94Bizye/7hdEbvDxDVA1rgQeLuaNsXUtiFG7tWBjbYnanPybn7lKvzF5VdwX2dhfhE+lfM12tvSKFzcv1LzAiTOOvYyFz4+xPivzoyaut7knxGEflIv/p/X/f4GIU1y05aD7lD5/clWequHAlFP4OHlRluDhm8/2EJz01PqusWJlE+9yB9M3MtXxM4dfOnIUv9o4OE+4zsXOD55ywgff1oPYr35xQvxSh65/iSEWOvzgy6fCFoZ52PY/HfyIefnpT93gBJMuPDzUYlLTr5iDgyd7Ol6CxUGc7gNedloPc77lPP3TUQjeYeKLC5/4EHrGYFkjn//l2Vhc8MGlF4Hm5My/sPH/McCBqeBmjq3/yNhnX3b2NL7qeMkV3zDYuJZ9o13BB197Ue61xaTwpY+Lb1mzNQ5HrBV949bJi3Q2YlbSkX/3le73YjUn151T6Nurf/jDH1bxLwnY0YUrntZRTArh21zzxujh7T+dlCuczNPVVqypAt+cMW22BB/rYl/JTfjidb9qn8tdv0AQz7Vr11Zc8TNnjdwvYRG5LBY1XWNyYq34xhU/83ziQgdPc+XPGuJi3JqxcS9zH6MjD/BhquXDHnINw6PvOvYvVqwR6V9g8EPKEzw81HiVT/PWzpz9JVfwtenQxU8e5dhYfNho820ctvyKWb7kVww+f+gWC174E9jtPz7KpTrf/Oa7teRX7sLkg1/jeEz75ej8A554cTXPVk3YWQP49gK+uNkD7iW48ecXXf5fFL/gJjCvIvsb7VfJ1tbdGdgZ2BnYGdgZuEMz4GDx1FNPnR5//PF1UOrA0MFFWMYUhw+HkynpmXcIcmBx0FHDrrDrsDfn2VeyCb/DD2yHHVgdorSTOGVvLls62XW4FkcHxjDo4BGGWim+cBwYHbTU+Yg/HTzxTX/Wa/DiR7jltdzglg0dBz1+HFgdhLU7WIobbzpEbrSNwRMjoW+cr2qHRr7oGvegRx+mvrUUi348ph++6M94cVNghlt8+uUJJju6zeOpbSy9/HqQc+CXczoV/LOHOTlrm1fMOXTD45dMPtqEblIc9fmB4SCPByySTZzZyY2c09WPCwy+jMXLGFHTc8hXwxNzceNtXJ3vHmjsa7j2iHWdGMXupQQ7a+jBrv3LLy5HbjMu2Pwaa1yM8NTlylz5NWa++MRornG1IiYPifNbTx5qpi4dscHKLh7lc8ZRLHwm7HBVkrmextgpcqZOync+2RW3sambjTwXP+7iCZdNMRUXTA/o6mSut/WqwBX39KsNVxEr/2rjfPQiBw86uCgznx50xUXHQ3P7iD4c+sWhdo/pobR5+48enLiUPzYKwV+hYwxHhdAvxtY33ebbv8vg/KPrTT9duPD14c11a0wtz+UhjuyIuvYaOP8QK6mG0cvd4itXdORpxuYB/g1veMN6Of7mN7/5ZZwFeoUf/BIv2r/4xS+uPyGjP7/1K273IfcIRd4IPtYON1wJvNai2NTlQFuRq+P+b874XBvj5VQ7PvP6MKbwU0xxgmfdzOHcWtmf7htiio/7WrjFYw62mqTrRRZ9nGDzp+jzUV7M4W8MNi7Ny59rhk1+8I2zPSkXYsIdpjl7xRhs3LwEpWtOPOp48OFz30s+4+4R1tM9El9cvJjts56dtpdbinljbPs8wpUf4+W5z358cDYnbvP6ija/MNvv4gjDOBu6Prf4E7d7jzyZg98at3Z8EeMKfsbkq/yaby3U1sIa0ucXB/jm2JtXGzcfbjrwCH2CV/deNninC8cZxDrxaa1ws//U7IqFXblkZ73Ylj/YXpLKD59yY53Ea8w6GXNN423t/U1zL+z5YOOb8nef/48HNS7lXYz88ItXLz7peGnavprx0jcuVjysb/d0erDLH92ZV33XkLOFmtiLTz755OmXv/zlaouXwGjt5VwxJ+7WBg+F0LV//ELSXpNXL7txxJWdWgnHmNIegKHwLR/mcIYnH9ZGrmDANy8+6yAHPsvMWw+5tK7tFxzpJzMG+a7fnsIDNsEXjljpWle8+FK05RQ/OMXLn1hIuTKGu+tEfnAk+IuZLaFTjGzLjXYYYpRz8eMnR7ix01foFps64cveIWGYN66IRREbTtaxvR82P3i33+ROPkj7KN9s6MESg3ExuT75r58+DPP6YgivXJgn5l3XuNHnP31t83Jyzz33nK5fv77+ZBs7OleR/aL9KtnaujsDOwM7AzsDOwN3aAYcHByKv/Wtb63DRQcG40RfcbBxqFHm3DFsBxcHpHTC6BCldhDqcERXcagh7LLtkMV/B8wOS2xgNKcOkx29eMN1wHNwdMh2yHKYcqibvrJvjJ544SQOyzAcGumTDsn06BP+iyl7OSw+Y+ZxNS4vbPUrcPLhsOoFir78sQ+Df6JuzoHbYZbgbI5vvNnBio++fDis83MUfODKH125hwmjhw/j8VbrK3yIs5yaK6/80CHmw4CPr9qh1p+DwJstkSf56kDemHHYSvPzMN76xo1d+Y2rsdYuTnGkixPBhZ45eoox8x6eemg2j08Y9Og0Lj/sii2+5unJu1wYV4y3bxaR84/yW9zqBL618rBPcPONKJjxlzd6BA/t+mKmR/if4/g1XzywCBxz5ca8Of340oFp73nR7sFW30slMeBI2GXLJo7m6uefHR/6iTY9fM0RtT1lnewxIjb+XQf1+TUOI+7y2TVl3PzMOdvyGyZchdCF2zUfNhscyzd/eOs3p0+a02cPj8QXTvG6z3mIdj/AgX8lvzDYeVDOtxwocZ5xTv6uf3MKXTbiIsbg4cFHftWTP99w8GTTdUaHqOOlDc+aqekbY8MH38aSMIzZ+4q1I3LKDm/4dGcMbHAzpp45Y9/a4u7eCI8uO7radNofxvDD3X9m+J3vfGd9M27yhXurUmxeyj366KPrRTss149afsqluPkVe3uGHxzxMla/z8XWBeeZAziuHTljZ86655Ov8in21hYOfXlqLfiki6t4soNF17gSF9zE1P50X2Oj9OK8tRIX/4QNfJhy4DOFrXm+iHk2rhP3Inz14Wm3d/R9TuLS/l8A5x948FW+y0X5E4vcERjwux/LSy9ycTEP37XbZ79f0vhM6FvscL3c7HNbLHGTI/ZixItv8RNjuMEyHj9zdAluxsWusKGrhj3XR9s4/+KbL+l6UdnayQ+hm03Xoro9Sr+9zAYvfuVfu2+cFhO+eIpZDZ9dn6H0xDNjxaN9B7M4YMGha9xLbS+7vQB1/hOT684+MS9mvNtDrQEeMOUtP9aYPm6KcWtx1113rZfwbP2/C/yr//jHP64/VdE9xi/pvKx3HcLGlcCQE5hs7Rn8G4+D/LGjJ9/GYci3zwA5Zid/4mytxW6vtj5s5YJP8cDwLfaf/vSn61/J8m+MHzZqwj9f7Sn5wwEervraMMsrPvM/+KRzmdhP8Mu1Wr8xOXPdyx/u5QQ3uvjKvz835BrjZ+4DeZMXekpijD08+43A5C8u+TJnrH1R7OnLcS+M+ZCrYrAeinuUseKVn9YMrqIvx0QtLjZEXPy1Z42LU7570S4/1oEtHmJsbXAuF/zg6BxHYIiBwFRgGecTd78U8Askv0iCDSspl3E0jp+cseebDr9i0ibmWle29IlaHMr0Q0cxNnVxcx6FHTd56n4jFteg/2PlQx/60PIRh9W5hR/7RfstJGmr7AzsDOwM7AzsDNzpGXDA6EW7Q3aHnGNcHejUDiekQ1u6bDvQGNOn77Di0NJBz+Gzg1CHH4edxjr0hKuGo8B0oGKn1u+AqT8PUtl30PKg4pCEt1gd+NJXZ08fLt75NK9Nx0G0QyMfuKRPr2IuLLb85sccSbdDMb3G+YJtzGEVZ4dMB3n+FDmrT9+DCt4Ovmw6xKubx8OhGC7/6h6orFEcFpHzDzGI1wMK2/LZywj6fMbJvAJbXR6z01fwYcvOHMnOwVbsYnulF+0eANiSarhyKXa1PgmXT2PHGJfSQQ9mscmzHCpHrnPfwsdZvlpbdXuULQzY8WBPx5j8xs1YPssTHRhxmLzDDNccO3vCn44xD891IL/8Hm3CNZ7QExdu5VMflnri0EmKVRwEF7qKdnmxrz3U2oPyNF+0w2gd+cJLief0BVOhp44rHb6Mq9mr3YeOL9rtKdcOe0J3rgmM1kQ7ndUYP+iIk+A/H9pg82OPwo7PtDHWNSAOc60ZTPGLQZmxslOa1+bfyxJxzYdmdgoMPLr/s8GXDd+tFx1YYeLfPTQebLrP05cj1/HE4DPBU58ubvBhibc1VrM33pw9Xf7VxuOlTtjlg54cuj6Nl2/64my/iAEX48WsxnNia+MrD17ydu/lz3j30rAbs+f803O/3H7HO97xPzDjfSt1+Tm+aHctEXlXxImb/d4ewj3+ajriw9maNqePt/gVscCRQ/7ZGeuFo75iPczDkcv2Hl5s8aFn3rq0huYTY3TEwAcuCuEPT59JhC8vd9R04aoVccEyh5ccXPaiHQ59XOFb1+zVcYHT56WcTOEX3z4DygUOxJz8wcNfbt2b28/uzdp8yJt4+erz2t5R5ot2/0klrkR8bOzhYuC7/Y4PbH7lgS827W9z85oxjicuxpXGWjs48ismYz77xCFOdn5RIIY4wqBf7vTxajxO1sFnAaGPp7jY6csD3WJqn7GjE7+udzjGzOXbWDHHQb7kB181Xv4z1uOL9n/+858rN7gcfcDoXgiftPe8RMXdXjCGkzi8zLcX+PQneqzjiy++uP6DVN+gtb/50fZCkQ1ssaj1vQwUB1t7Rgz40RdHeSnXOJjHV946F8slXtbNOEz3OPjWVd+64+NM3Z52L/rZz362nil60d71UKzia43KCz7pwdYWD3zF3vKnUfqMon+ZiKMY+aPXmDhxtjdd/9bAmDj5lEN+5Mzfy7/Ki/a4wJMLWPyLg8AXD1/EXHHS0Sba9od9IG7c5UtMeFnT1sQcPHPW23wYeFjDxrTpiA83eVHwIPmxloo+//Fnp/BnLM76xq2nl+a4uv79UgYH/t0/5MS4OF0XrutetPOF01HYK3jC5Wfm1Ji4CB705I2fbI2Tcl28a/D8o3VoHA8v2XvRjhtc+wauWn5cg160f/CDH1xQ+Qn3v9X7Rft/y9Ce3xnYGdgZ2BnYGfhfkAEHi2eeeeb0wx/+cD2YOVg4uKkTbQcJuh2IHHocdBLzxhxKHHIcXNKBpzgUqR1W6NFxeNEm1dp8sq/EwZxDUz74jS+8+NGbAttB1wExG9hw2SmEXnHOmI3RNR+G+WJQT33t5vHlO25qOMWRXvP8pBOuXDso67NjL24xaBNz8kKKje48FJs35yG8vOl3eG9NcQgDrnXyoBc3/NhYU2MKKYZywZaEpZ0+3uWJXdg4O5jjqu3Qrp8+3kpYYcOCod98fOhqK+nR1Z5z5vnBO27xwsfeNTd12BtT0vGQQifOHi7kFj49kn8xwu26WJMXP4otfX0FtyNWsavjTMfaeYgnfFhHPs2R9MuF3PFh3pgYxKU9ccuBeJpLv769V7zG4JQTtZx4QPOyyH7i14uZcrUIjh/8wwm/HMA1N3NDp755XIoJJ2tkX/UATF/sHg616SgzH11L8MzFg++ED9jm+Y+D+Wwaz6aabcKHMoVdvmBp9xCdHgzrHDc28imOxsqVWjHvnlB+5EDJRl0e+IGpz3eY+vZ59wS1NW5fh80f0RdDbX1iTNFPd+41bYVfPOjGhU8SJ+38GiPhw5Bf14I5OWDfS6D0w1LDUvKfjX1kb9BRl9PWS13OPKj7z9S+/e1v35ZvtN+8efP0hS98Yb2cw821pJZ3XBT83Ae0zeEnBjXO5UJ+xES8IOnFTnkudvoKvK4F/XJbDdvnFix1vnDrukvXGsbHGGx61sc4e3syHf7cy+jChVee9QlduGLSVuh4yealoXjY8UG6L05dtvEvDxOTHX9hw4QT9/JDr7hw99LQva8zkDEvAVunicmfPt7W0t/27j4lL8XHh+vYurmP4ssurHJNL17mtNsveIjBOHt+XBds+Wod6bDBR7w40mOnD1NOuibdE/XjMq+zfLKjpzbvhRd9e0HJvhzTU/SV+LoP4QN3zuvjE0/YeIpBLOaJcQJT217xAlSNB3s55gOn4izf7clw6OFhbe03GHTwlF9z/kyKF8DEN6qtqfi1vehvn167dm29UOxFMd94yht+4sHP56m1EhNd8fGZsEnwpouLwvcUdl7Wu95whyk2can51LYvf/7zn5+effbZhYOb2HCHgZd1pW8cFl7yUm7wsoddG+zz5eUsbiTu5hXY9BSx4EJH3PLCHzGnLU840RFrccCSB/75Mq9Ph4/8htV668dBXFPPuDE8xCheHHA1ri8PRN/nA2505JZvfuTOfah7Ea7mzeHofiIOGPDM0SFs6dDFDaej4NM6xDmesCrswoaPXzmEL05/ZgkP+9t1Qh8+XDzcm/C1R80Zn77gGFPYZVtexSkmBQfjYvbLoK5TeObpyrGCE114xHzPMXiY8wsivLuvGcOHH1jWxr9I+/znP3+67777Fg7bq8h+0X6VbG3dnYGdgZ2BnYGdgTs0Aw4Rv/3tb08/+clP1uHCgcJhYh4cOqw5nDiomKPjcMVeaYw9cUDS7gDWIYWdAxAbOj0YhFMa46Fmq/BBj/0UOsrk3Dx9ou6wpt/B32EaHlsY9PBS164fjroDnLkeYrLBNU588uXQpibmjTsY5ltey4t5Ao8eMaY0Rlcu+aFjfIo+bgpdOvSNw7EucRSLg6XaXGsZPlzcrVVroHZYZkP0+UrCiYdx/vg1R46czcPgy4FfTvQdnh2Sw6cHQ59fbWPapLHpe02MH2wq2cFjM/NpTgmrXLZWcsQOV+s5MeDEUX5xDCeearZiVsIwTle+5Fi7OPnUTieOrVd9NooHNw/w+MijfOIfVzhswmtvsCXs8Jo6a+IVfhSzeGc81GGaJ2qx9aLdwy0fauPa9ONa/HDLAQz5U8zjHk+1MUUM8gvPODv9+fCFE13Y6dArr+bFw5dxMn1oZwc728b0889WGy9CR1z8axPzbOgYL251YtyDq/tYfuiXD7rhsYmDdr7EJ9/2aHy6HxS7+dpsYcaJj7jhQY/gZe3kGC7fCts45Y/+zIc+nXyWC7Xxrgu8CL04ho/fFDoTDxZ+7QsxwIBNj9BRpujHuxzId2PwtMsv3Lhoux7f+ta33tYX7Z/97GfXn1aQX//0vdjEZ8+6n87PKTmaHOnTo68Nxwud+cK2ue4P7Omx83JFWzE+seRUETuRi/ipG5Pz8gRDTvnUbm3sLzr2lHj6paF46OCm6OMCn36c+bC3SWsmN/jSFQfsYqUHl1926mI0B1tfHX/6+sUIKy7GtPn2gse3OnEl5vi2f/Chp5QLOrji2N9jZkOX7/Y/nr3EKhflYOYFLjF39AuXrlI8dPPBVml9tHGQHzrFVC0mnzvlCWaFnbZavMWv74xBjDlDlVdjYiNsykM8+gxZChc/6DQPm+BnLTqfmW+svcCnHMtRvujgTPBwrch7uPLiOodB1zhsfmAo7L08tla4+Yz2jVx8jLGTSy+mCQx6dPwHun55Dt8Y4VOe+MHZWky/7Sn6xmfBhQ3hV6FXDvSd/8TUdeP+bg+L3Tw8v+Tzfz75D1HhKfjwnd+JFV9+FHpsXBd///vfF2bx8VfOjdGLt3ziJQeKOTpeunaWFFvXsLnWWo7DLg51wsf0y5Y/PsRsLjyY2krz2vaO3OFTDvkwh7d57eJga17Jv7o1ax5HOsathb2Igxy0TnCN2w/iZBu3rlW68mR/4jLjqB0XNgpMOGpz7Ig1dV/Gwd714rr8ms/GWP6Nw2BD6CRyArM5sfJZMV/M9pD7jM8GY/BhicucOImcGJcT/3JBTWC5d8CGYz+SYlYb8y/R/L8oDz744JrH/SqyX7RfJVtbd2dgZ2BnYGdgZ+AOzYADh2+f/OhHP3r5mwcd+NSKQ4TawcUhw2HEoc9hxOFHn44DkMOTcX0HmYp+B0VYxtUORDC1FVhqumwUUp2eeRhJ2NmF1TzcsNUOUeLxkEDYdSjLRzU9JcGlA6+2BxAHOblgI37zMPkyLsYOf5Mj3LjFr1j1HQzVxHhcjOnD7hCqz3d5wSUx17i2Yh6XDrzxUsMJix2/DqqEnTEHUnHqxwcuUcNROvAbL8faR2HDj3h6OIKrXW7ZFFcxGNOmay7fauWVRAz4qekVBxw8SDr510/PvBxZW+vvAcq8MXHSU0h2cBT+jPGlNK7mOx/0cCTG6rNV5F9NzOmrp8hn/3TcWvSgx085iwe78MzDYgOj8RnT0Ze+Qjfbcgm7OW3iAceLdg/WXYs96Jhn2/5hKz65bW/Kl/wr5ozjpy1v4lIbs3/1ib4HQ3Yw9PlSFyc9baV9QjeM9NiQdMxPLLz12c74jU09nOO9AC9+wMvHtI+HmF3D+MgVP3DiDiZOavP5hoc3e3mPoxcSxopJzvXDjYd5bYKj+fps+LF31HGgm50x+sWgj3d+7A84dJrDoxc85hI6c03KWfN8wlWIebzsAdj1zdMl4ZknfCh0K9maNwavPaufjXnYrr9etN+OPx1z8/yN9k996lPrz0yIR27izSc+7qF9TuFGcJP38sHWXPkwPvMvDnlpb4jbvHHXFjz22vy5vuwnQhd+Pq0h38Zw1S6PdNipYZvn11rzR9xvvczpT60YMxcuO3hwFG1j/LR38ml/ipk/tZJ//LTFBRsHevow5YgO7PZMPM3RpUeKvzY8L5LxZitOtrCyyxeO2mqxlzNYcg3L/VNMihdcrmdjrS8fsAl7MYjNGI7wj2Ic72I45oYv+6H4+VL0K+zZ4Z6eus91vOKqXb7ZEb7pOj/10hlXL6Nnvrqfm2sf4IJjOPzCKx7j8cOxHOBqb/FpjL6cyadav7zggD9ufNGH5Vu99qg+mzjos8XN554XkdquT/rWF096rY9r3F7ht/vHW97ylsURFvz2UDGp4Zh33iXtAfnBV9160RO3PNob/Mu76xmOOI31OWrf4iR2uOb9Aug3v/nN6fnnn1+cyjc7bXnBxb9SlFvxsWuN+BWLvIi5ewhbXM1pk2LOh9ywh6su7nKIA772TesYRjmApdCFl+grRA2bsBM7XX6MZ29cXPrtJ3/qyvoVN3t45tV0cWLH3lgc1fzwoZibhT57Qk/ulDCst/hb99aPnTXFDQ+2ivE41L9s3/Bp3r6Vd7Hxa0wc/XJDrCT+5Yq9PUAPV3bFRV/bvjFOt5yr9XHnlx5MemGYZ+va6n7TfmMvHntWG+/WBe9yjIPc6xNx+kb7jRs3Tg888MAa4+cqsl+0XyVbW3dnYGdgZ2BnYGfgDs2Aw8nTTz99euKJJ9YLLwcGB4oOquaJg4tDSAcZeg5h+go9h5UOcQ4m8/Chb15pDqaDXYckfjqosc0eNt0pHUSNmYdpDD67aaOtxFXdYdxhk60DlyKm7MPmG6/EfHGYg+Ww50DHjzmHubCy78GCP3MzD+zIjBNP+VGXC23rkK4DbbHA47cc0DGWP/1ywU9ce9CPA3u5OMbAbzr4OBiLg8ArHjrmzcHCsRjKnbk40M+Gnjw6zPJHpweT/KTLn3k2YahJvvmjo1aS8tK4fhjw2JBwWn97jMRBX3wO8goc+XQdaMOn24MCXPpk+jROr5jzj4uCR3G2vsasU332+VwOzj/459s3qdjDt1dxyFc+8slW23z2bKYfOuVOu3zwT09N+Iaf4KxkK0++1edhR9u4B3cYMPHAtXuEPSm/7U0cXSP8lA822jCINiw4rYM+W/2w2VWyg8G+eMwTfeWonx78REz0jCnFbqw14MNe6h427eHQlUd1ePXlwj5gE54c5Ye9GOmnU9zmcKbvBUT41qIc49b9AL/ywa4cs+sagck3e2Ou5fjzr5QnujD4wyFMfrS9EDHOJzu6xvrn3fT4MsdHtVgVYqxcwIm/cTr2RRi148efNl1lSjYzbvP68qvkOzt47mce1B9//PHb8jfaffPzkUce+R8v2uONIx58enGoxq945NY66cuLfPTCBGexz9zRd33aD/JtHayB+wN72Hx4aePFBt/tDXuTH/rW0AtvY7gak/vWTc03zGLh0z6BAdtLScX1T9qz9OfadN3TMedzywsnHHDDQeGzur2Ev9j4w4d9HPmQu3ThEzx7uaRPH+fyLiZ9WPKphN2LMHN02LIrN/iIV9+8YgwGn10PeBVn/vgg6vIdDp2Za3qwxQZfIT7j5AOG+PloD4Rf7tkn8hoGPXP2o72m75et9hVe5sRNX6xs+fWC1r+wwJPwK9f5jSdbY/TgWWecxGJcPunGzzgbpTF+vQz2ucnWHKz8s4HTOO5y0brZL/3npjAVc4p4FG3fpvX5J472dNdouWfrG+L0yuO99957eve7372+3W4Mt64PMZY7eWIv12p65nHF2b7Bg7DBgX9rLG59a6Qt3/aVMT7Z+szoF3vybR1/97vfnV544YWFy46ozVvD/hY9PzjZ8zBg44CfP5njz9DQtxZsZ37Z0ZvFmDXphTGO2mzdG+QTX3HwVy7it4iOH/CI2jrDE4e+os2/eu4HY4RfPogcdr+SP/ryZ82IfJNsJjfj+cFDjsQJY3Izp09wgqnQY+86sIfELpf69jNf+PkXFe4HbPFQigW2fcJOsVb0FD7xEdeRF5vuy/DS5UcccGHgYl34m3HRV+RebV6JG137qH0DSzz8arPDS+49J/GHTzHQtSfo4m4ePntrw485fuSSH/civ+S6fv366f77738536txiz/2i/ZbTNRW2xnYGdgZ2BnYGbiTM+Dw8utf//r0/e9/fx10OlQ4oDh0dNBx0KgYI3S16Zr/OEsJAABAAElEQVTrUNUB5ZgX+g4uCoHv8KJO5iGSfhKX+h220lHzHzY93JrHD88Ogg56xhy02Dg4OvjCnQKDb7ZhqdMz55Aab/24ddjjx3yH3nD4pcvHxGveuIcM9gl8hQ5ODpkeCOnx5xAtDvPh8qMYqw5D/NZr+sTFeAUODoo2oePAymcCI5x80cOtvMgDG/kOs5oNPWsjp407KMdXzDBnHOaUuMHhA3+6cNTGtUn82GgrJJ/plTt+Ccypr42fw7e14EdelHzyQQcmfftAXQzm466OAx37lW/xqMWpnT0+9cPAszYOMPAzps2/HJez8hc/esb448eaWQ9YCik281P00wsHrraCa3zZ2ase/uY32j10yQ19gqs9pN91qqaDJ37tK3uZvziw12abHhsivvKrT8ecMW348ts6FUfYavrlTVzGLhM6FfPljZ/6fLWea/D8o/n86LOF1X5gI+64s5XD4qYrdvPsj3HDg+Hhk+hbFzk2Ln6ltYNLx1htPuAbT2DkW02mXbmih39ryqdi3pzCN+HTtdWL0jiY4yMeM1/myhvMOONC3/7SpqOd6Lemzc844NCR2yl8t2cbZ0/guU/4G+1etKubS/dWa76JF+0PP/zwetFubXtphR/pmveiwXWsX55aY1hybtz9AY628WLGXe7ht9+sgzVgoxa7a9X9xpjc8Gds5om9F33w2Sl08gvHGE6tAa7sCGw+xARXDs0r9PXxnnudLzkx38smY/gpfBK2rQlsOXP/JuzDDE/NNnscXUvzGmweLv9EW4z0ywFe8iIO8+zyVxsnxTjf4nSNWBvY9PDsOjFGRy5hKsURBh3F+BS6+Tfuxaf9C88crr2sY2tMLAl+ccyXORx70c7GZwAsHBP67UXrzK+XYuEf93k8YcPEh+5cB2PWEy5e9NTZios9nWKFYUx+7Pdsis24NbRmdGHA9ydevOCzVnTNKfYaf7iIW/7Y2/9idO+AwYYtee6555YuW3uxF+3+pRosHPi3D+Aag0fwZaOWX/Ny0n6hIz6+yjNb+nDMkf6DSDp44Iy7dYOp6PulgP/EtbVkX7yuWXmRW3GysablAG5j/HUfkTfrHabcwFW0cZUzMbCBY1zceIpXX328xoyzTfg/Cj8wCV9T2JsXjzhxpIOzdTFvTt7seZz4s1Zd5+WbjTF2009tHCowlHzDLc9iiDP/xHr7RYg97P7Ev1zwyb9/gcFGvtjzqRSfuKy1giOZvMTHvnFtOPDY8gMLR/koX3SsixfthF1x0Vf0Cd1ZzFlv616++SuvfMmLvHff6l5ZnuWAtGfEBIve5Px/2buTXcuOou3j5zJAoky5pbVp5AkSUwZgmYEtbAsGmMZCNrjBRiAGCMRl0cgGLIQHJWGZomzcqOhv49u/pP6lYHOqOe9brz4VypDyZBfxxBORudbOtc6uU12b/H34wx8+8efaHn744WVbHlbnJn7sF+03kaStsjOwM7AzsDOwM3C7Z8BB5dVXXz354Q9/uA67DjEdrjrIddgpVvPNGas9HzjCycbhSYFFjzjYOAQZTxyMHJrUpANMOuzzZy4susc+O5DRY3+M6xDVwR1OB+TinXGy16/wh4dxcahrGyfwiXmHysaLwVycq83xoU/kIbvqNXH4Adc3ds6dO7cO8Q6GXlh6cGGPDzyx4QLXgdZB1DgdMTtw5h82P3TLjz4sdXbm4MCmS9QVeMXvoTNMh3HjfMKauPripe/gn78eimGab634jNvMU/gd8OGS8LXxhNecMaIfJ/304gKbf7bG8BSTYo3NW4cO+jDodchnx0Yt92o+SL5wYEPEVcxq3LKhP0uxsM3ePBs+iWugB7L0i1cfttoYf+yzMa4vRoWu2hjJb7injdOf+ZMnLxv8bVcPf2w9EMLGgS7uijk5a11hGSsvdNtXi9DhR1zUXafa9bNNXz9fOLSO9MUnJuMKMWZOv/UMa9Z8K+nPPIqDhCGOJL9qkm848qOUU21rRTwMG6dnrNj1s1XDDRt/Eg/3iuJfE1d+0Md/Fjb8FYs59uWEDR14XR90j/XyXQ7YK/rmmodhPIy4zNjiPGNkT5dUyw1hq01fW6HDB7tw1MaNZbMArvww715gH5kn+RKHe4FvtH//+9+/ZS/afaP9rbfeWtdCL6TyGUeclPaCujhwbu1cA/rsuj705Vve4bsGzcmBfdc1k0/6hI6Xlu6P3cfbo7AIGwU3WPmWq9bevL5CcC8WPM3jkj4dOJX6dPlwj7E/zeMFSzufcGDib44OaUxMCh7lSZvY47Ddz7p++CTha7PjUy5xl39t3BqLvxoGm2IoV8WNs7b80tH3Uk1N5Nt89toKwUsbppj5wyf+dIz1Atp6Epi9aKXPF/5quYpztTH+5RSGfcOvM0v3CzpzndnSV4ohfnyyDxe2OX3jihjUjXtRxnc5Mm59cZE7tWtUHsKhC4N/bePWiH8CQzGn4AzHZ225Sk8c9go8MSvi5Y8dTH6IMf1Lly6tF5EwvVz3J6f8+Skv8uMDD6+kcfa4WZPyWh5xEbOiLe72NSx7WJzs/aszuewlufbxi3b77eLFi+s/Zi43civnMMovbnFyP5kv2vm1h+wr+WMDqxe8xYgnvvDhySlduHTECmfuR+Pt0fa2nJd7OZzXXrmESYfA0K/wzS8+sPgjsPiiZ5xOL3xh8RMHuSc4sxFvcbLPJwxxwjNe3Hz3TX5+4Sqw2NLTtj7yaP31cSD2lX+9waZzGJsZozm25tkSvhS69nlczeFYDuhrE7riF4caP3zsg8bpFGM29GDIjaJtjF95yVd51YfTvhYjzOzV8i0mOOZIPsKfGGF96EMfOnnyySdPHnrooWXD/iyyX7SfJVtbd2dgZ2BnYGdgZ+A2zYCD0a9+9auTF1988eqLdgcMZR6yGitMhxIHJdLhymFKmYeg9B2gHFIcijvowHBoD4cuvQ5b5sNWE7VDFR3ioNTcMUd9vggsdmpjDo0OxA54DlKEvrYSplox1kFPjXN6UyduzRULfVw70BnPBz5hF4MxbeOwlLibY+vg+P73v3/9M0aHbAfG9957b/1zZDq40AtLjL4l5KEGLjFnzeSDP/q4ll9z+W7s2GYBXcHKV3GYs+a4w/GgoS4X/OmrWyMPDfZK49r4xgVX9sQ4Ozp465vvRUcPTeZaf76OpXzwCS+sxtPXb4/Lh3iUfmGEF590ilndgz17PMzjKV8Vttr5zB4nY/wp8S939OaYvjLFPAx58nBqXr8154PwT9c8X3TwFZ+cEDyV1gEGgUFX0TY+8eAaY6umIw++ZfXPf/5z7V9jcPmlzx6eva7Plo0CI7180U/o46yGK55pY04pV/To2H/asPgxn07c+SX0CF1zja/BKz+MyXsPergYg91LADjGYCjpgODbHO7FTZ+OOTXJj7Fetmq7/sRFT8lWrZhT6sfNQ7n7o/FyZS1gHos1Kxb2igdyL9B6kMXddQmXbvtfW8yEL2262nDkVmntjsfEZMw8mfnQh5MOvcbU+op5MVqjRJxsCezwwzBOhx2hq9Az1n3PnDFz4nAv8JLsVv/pmF60y7scxpNvbf7xstZqa1nfHJ2Za7HRUQhMa9WLdvPuJd0b9GFYV58xeBAvA32LVdx01DjAk3e+FWPm68PpXlos6tZXXDCm6IshfTqKMbjixZcebHpiaN3FZ4+2J7Np3+vzL6b5d6Zxp2MONvv2uT47e7qCEy7uC3NMLMXNjuBeGw5RK/ibg1fM9h1cgkOfgdYDFq5yUJxw+FTLQ7kwRod9/mF7Iefbr3BwF2s83C/4ZMfGesJTwyHido+1D+QMd3uKbbnguzUr1uJVw4ND2CsJLkrj5SVdL6qtH5zub7jYB4q2c6kY3L/oJTCLW5x46suLnM49YM462Cdxp8sHvfhMvuXPt3vFT+D4Vyv8ydudd965flF39913L6yuB/mY/mHBwNkaKbBwkWe6zo1egrdnxG69YLLzuewFu3z7Egd7608HhvzYV+Uax7fffvvkr3/96+Luh1z6Mzr44YMHG/tBsfa9aD/Oi76cwc+m/W4N7UP5pSfXfHR/4ufdd99ddq0hHXjiUOSerXiMw2bf3rsaxGjIjXzAVPTZy2P+jePcntcmcifH9MzJIQ76hH9jU2DRUfNDtzWnJya+z58/v7DZ27v2kPXhG18Y5ZCOcXHCsv4wrB87PuQjP2xbK/uKLT74lkf7Oq54sWXHh6KtNIeTQvDBTXziaS48dXzV5Ul7Xk9wrHvXNX94hKldH2a5ar2NwYYbN3nofgXHdX7fffetf0X2+c9/fvEvrtW5iR/7RftNJGmr7AzsDOwM7AzsDNzuGXCweOWVV05eeOGFdcDqwNDBSHwOJsScAwhxCHEAqW9uHt4ah0/UDrQOdNrwiUOSwwsfxsN10NPOnq42PTjmw+lAyKdDUrqn8S0WBzGHUYey9MNXK+zVJH7GlPiZ4zdbXJQOqmqFfYdu8zO2cgFLG55Smy19tfiMw5AHDxq+XeEA74WWBzIv0+nwi2s4OHpw8mITFilnrR0duPFja6y+Ng49JLAnxukqfBaDtsNz9h4y4JN02Sr4mrNH1DgqDrl8dnjODwz4csFHuA7+Du0emKwvbHvMvDapPm7j2foVxzK48oMdLubwlfceVKmY418+zcNT8GMb3/TKk5i0q2G1T1or9hXz2rDNa5P4s+Wr8fzIQw+E5ozTU5Lynq04WhM6uMe/fcOeXWuBhzH4RJ8YmzHaRx6yfaPd/iWws9O3bjjgw9b89Jsfc0q88WFXfnArD2zgKsaTYp2+jKVjbeMPg6iVyZu9ko6828fxgSF2+1QscQ67/OnjT3DnAyZ9OhU65sKXS1zN92DPBoZaYaPM/BonfHjo7poTP2y6MMOCR1csveDQV8RmbT3si0Oc8Oi595ZL16j5fGsr/MDRLu5F7vAjHf7FkE/z+mTGqn+sM/2ZE5uHaG3SvFrJvnk6OMoLoaOPm3xZczX9ydN6+Buvt/JF+1e+8pX15xpwkWMckpk//ORH3T2TDZ44yrOiTUcMCmn97C0+zLuX+AxnX97Z+1cq9g/ppTQ9NnLMJx/ZsdWuL5f89Tkjh8boKfr8mG8u/urWS+xwjBH4rkM2xs3j07nEnrQ3FfP04oU7XMXLPb88cP/XpyNPdGC2z9V4EvscPi506Npz5uNCT1+hU5xxMZ+9dvPaeBDriot+9wE2XW+42oOuQ/P0zBF27Amf8msOH77kyS+WxW0NcaRD6Gi77sWqb63ESMyJmX+29o45GO2p8lD87PhVxFCMcHCBRcyVF3j12SXhWDt7Ut/6wNCXEy+FFTF64ehvqPNFl+/4i8V9DV+x2FOK/InZuJjo+zIEPjDEW9z6U/TlDa4zmhywg/WPf/xj7Uk+7jy8aHfmu+OOO9be7Zpo7fi0ZtahXFjr9iI/cGHZw2LtXmBMPuiw/fvf/77OkzBd07ikX4xwCRvX/DvvvLNetOdHvP4uuzxlI0Z2eMpTnx10iFyLi181rPZhe8MedP71ixN5ZRtP66PgIg+JOMUnNlz4YWucrTFc5Idfwjc55mTMnHG5b13lIM5ipJOe3Lnf8IUff+bax3gpBC4xhw+x5/kyNuetm/3gHgvT/csesofhyw1OfJZHmHIZ/+4JbPDjR00PhlisFXxYCizjOHcPXUQPP9iyax9rV7JX888eN+sQV+tiPhs4Yc12OYETHzVbuOxxMa+GH1exxN88yUc29OW3zy22rj//AfkXvvCFZcPHWWS/aD9LtrbuzsDOwM7AzsDOwG2aAYeLVw4v2p9//vl1MBOGsQ5XDhD6HYg69HQocaDpENihhk5j6RlzcHF4UptX9BUHRz7UlXzCqLB1AOwQyGcHT9xh0s02HuyMVTtgddB1sCJxXZ2jH2yVxOELlrjYq/OLfxzTw6NDt7GJJ4big6PQr22OL3XjfBhzuPcg5xAI37eOHPRh8jEPpPrN4xAezHDzVZzFla4aJl+tPZ1yEU6YalzZEXlpvdnhScc8PXMO2z344OzhgS8PTPQq5mCIxeGXTTHj54HJg2u4OPI3xRibMPXpKwR+Qsd8Nvx6QOfbGGylnMMNu3zAolsfPtz09BsrB/kPl2282JL4441X/OES+52d/Noz9os2u7jQ08ePGNcvH2HxjQvMcJfB4QcduOkah6Efb/baMDwQehnrW3Pa5mDKozYu4lHrT9t0+NA+LY5ijIM6HuIyDz8xZo/iGyad8mkfKrjHpdoYGz5gqonaWnpYg0UfhnjtU3Z0FHOkeOFNMU8Pv9aFL304RHyuFfc3Ol4ciYlMvDC6JuGS8PGDkc81eWWeDzGYhykOD+hs9NlouwbV5cbaslGMwamdf2OKHKjh0S03eBhTzGdnXkz1m5v9iUFXoafw51pO2NFXm0t3Yhhv/4RnvnFj6RvTdv35G6+36kW7f8XkRbtvtFtLucKZb7W+Il/FJEZ7A3d7EjdSTuXDfHvDHAzr3Atj+Pa1Aqd80/VChp543Wvm/YYubPb8alf0FZwIPvYMoV+Ba84eFBOhp+BBL51ip1Ne2BYr/t3Dy5c9CRuGsezC8MLMCz4vbenwJ1dqAluu8MmPz2W4dHAkcI3RwxOWOXWFvXlSG7Y2e3qkdvk1LgZ6cmqcaFsP912c4sCvudYm3PjQkytx0ivWeKr5UrSzE5eiD7s5L/Zwot+eisPENi9+ecqXeTG093DjQ7xKuYyTmqj7/OMLtrX3wtaaulfiRccXFrzgbr34aJ/gYo+zN2+/VvTx7SUnbHziHEaxqGHLKTz3bi9JtcuzdYIpXnheqnp5HZa8mlNg0Y2fONmrCVx5F6P927W5Jg8/cGVPXw5wwcOew5UP/uB0jcDj1/3ef4TqCx/NyYvPPvNs4IjRPD9q61+O8JCr9kr5gQMDL8W50JpZL/rh9wsQvnDnix844lBIuPp8kWKa/vEi9r04zREc6KuNtRb8pVMe+cAfRr7gsscj/Tjpi4fwyQcRc/u+/IRh7/Kh3/7EBab8Wzdz/Cq40TOGH27WgQ3hx5h5/un6LCf84JUfa9oeMI9//MoBDFyURIx0K3C1SfuMfv75wz0c9vwqxHz+xFSs9PNBl5/2C524wRBv+nTEYW3Z0FP7F2lPPfXUyRe/+EUm/xbTGrjBj/2i/QYJ2tM7AzsDOwM7AzsD/w0ZcJB4+eWXT5599tmrDwanxUVP6RDkMOKA7GDtYGNuir7DypRjneY66Ko7NPFDX+mApO3Q49DocO0QiIO6Q5l5GGr6HcimD37DVYtFDOrmjJ8muMCGpw3f4TR7Y/GJExzzHnwc6uKCp3YSV33+J4f8Gpt5NZ6uQyB8vjpgascNroOyPt/hw4uH9jx0somX/PAn5z280CXsw9NnEwc1vXgWvzzO3Jt3iHXA76Ukf/LYwxns8tsas/EA4jAsLsJ/L3vMwy4/xWgMVuugXz7VeNaHqc+HB9TstOnIiUO+ePip1jbn22DyUN7DhgsLrjgJPHoeIrWtF26uNQUeXHHkJ+7s4gZLn/TQrS9Xvg3mGsonLCUphnKMA/4EJ/Otb7Y4kGptc2JV6ONrjI7rpm/vzbiMww8HBz7ZGlNglAN1bT4Jf+zEy5awM07iRUeJE91yZkxpL2rbh/Nhjl9xyY+CIww24ar17Wtt9uK1JvGescYRz8bpabM3r+DZnteno+DoBYN9Yi/4ZZAaLzHkE/7ce/nlhy6eYqMvLvcO1317HX8v68xp+1cJveTgR4y4TH/GyazZH+uYx8Nc8+rGw9CXk3TkxJh+Ujz6/CiJOLNno99YOaWrXX6yVaer5ic+4aSTHh+uv/+Lv9H+xz/+ca2neLoH8GtfWjM1ab9aG/dGunhPzsVhXpl27Qlj5VZujIfTeurXLve4WCd5IHHQzq89a761wY2P9gTd2nSIPdg9WJ9NOnzmn06//MFD/DjQ51Mbj65nbeumaNNz3/Riy31UX8FDDRNGvsu/F6/ubfTibM41NK8TGDPWmW/cXYOw2PLRnhffFFzN8+U+4RfyeBF9v9z0ucROfvJTjHC7v8DACTcc+JePdPgpB3KjsIHLj7jlmR57a6VfHvgm+PlMVWCLUXFfgdMew8X91GdYa2aOn8444sKxtYevz1YhfHjZfOfhW+J+cWJNxYybl+z+BArO1kdtXxYXP/D4MQcTHrFGvtTADiYdnwF84Vkc7BS54xcGG7EStr513n6iq41H93U+jbFPT8w44Kd40Q5bXMSfjMFFnsWDH7/WVbE+9gE793F++bOu1g//uIjLGuBhnd544431sh1G8Xhhz4YftTXFq70GS1vRhsWXOOjiaP+KkaQnbwos/K0JfvzwDQMPvIwR+vBh8sWWj7iYkye5NAaPnrUwxr44zOFYTMXFDxu6MODhTh9P+uaajxtOfOBgLgx45qyXdWifwrE+1qz9yIaIqxy3X9ofeNKXG5zoFYs2Pv1ZoWJtLWC49sQjFvevzgF022fxwAU2rublg399Ik77x35km8hBeaBvP8cXtpxaX3gVOiQ7nBUxTeGTLzlVm49PevFvTXDnn68HHnhg/Svwxx57bKkbO4vsF+1nydbW3RnYGdgZ2BnYGbhNM+Aw8cqVb7Q7sHWoUptzICEOIRV9Bwt9By2HlA4l2bDrUEVfP50OJfra6ek7xDlAdQDK1+Rj3uHeYYpvByWFD6UDFCw4HZTYmcPbIdFDmgNj3MzBpG/sWHCNr8MbTgQH48VuXJl5Me+wOOPILzvjeGUT7zjQNQaHTqKvsFXTS4ee8XDZGItf+TdvjF1c6udHbuRTfhyaPYBNXW3Y4deXpw7ZuFkDEld68TXOh0O3tSleY+HhWi7UhJ71xA1Pusboynk5oastNuO44gO/fVEMdIlxOjjy0bcYcYyfBxYHfNcC4UPx0I8DcUCHzQYmgUng28+KefzZ44VrGHFTJ+YJrPDyb1xOCP/pmm/v88Hn8b4Pjy7hc+7fOJkvHnq46xuHQU9tnL1+PDyceQCfD+H82DOtIds4sCs3jelX+KcPAwexiav5Y57G6U8xFjYcpXuNORzgtl761t+LbTkWHz0PgPmTX33rDNu+oCvO8o8DfYUOXvXNlfv2q7gUexIGn7iqSXuRvr0K01yFTrGza13M8+X67gWgefu7ly5401GLRQ564NanD7troj6f8auNl/zAcJ8wT18hteFVslUbK1/6ckKMT5l+zfGnGOef6JP8lLPWQT1xlvLhh3Hra671N5a98eLUdu3dym+0exn40ksvrb9HDN+6WZvyzrc90v7DG0+f943rZ1NccZafcgaTD4W0dq4BAsfesA7m5IFt+ubtFdjyQM9c68+WnZc8/TIQx5lPHGDQ9fndmuvbc7jwQ/I7cwFLn088mjPOF//E/NwLzeWHXevOTwUmLCX/cIgx6wA7nT4n4MFW8KdjTcQqJhiuEfpw440D3WzUinl64qHjJR2f+HlRBxte3NThhGWsuMzF0Xxz8CrwW/fiU7OzNrDEJ4b8rsQcfngZ+L73vW99Y9v9tXVn629t//73v79qw9/U0bcP+II793L8ce6FoDHi5e0999xzcu+99159cQ0LjvudF7TwegGNtzyYt45ihdsZJ1/lhg/8iTnY9I3pWxcYxhXjPhv8AkTft9fxcy3IRzFYS2cR+z8e9OU2f+VXjbP8dL2xdf0Zx12xz8Rsr8FhJ1+9aHdN2jf8mPPZow+TT+uL94ULF9aLdtj05Kxf/OqLuxzICzw5qJgXq9ja2/RwLj9dFzhr54utfHStqsXEv5jo0bF+ar61+VYr4sITx3TECFdNzCkJDnIld3izM98+h48LvXjAMk7ExXdtvAgcn9/ywH/nNm1z7PiwZ7TxhmnfkO4bYmIjfv7Ln7Vt77KHqdDhi5358sEON+OKGPnosx4+/+boVaYPNnDKH3/i88USdXmAo5hnz4fC1nhnMPHjS7TNwSmHxSw+7SRu1oE9H4k566WGJ3dyQAcfvyh/+umnTx555JFlYu4ssl+0nyVbW3dnYGdgZ2BnYGfgNs2AQ4P/DPW73/3u1RdFDh0OJOYcNNTGHGoV4mDh4KJMod+BFUYHG2NwSIeS+rAduvQdbhxq1A44dM3xo93BZ85PzKnTYRCew5SDmRqWBwQPdn2jB555Ntod9uIPV2ErB71UwyefbPQdxhw+y1X8xFfMxghbY3DLw4yRjvlyKhdKfs0TY6RxuOU/m3wb78Coza/Da1zU+BQ7OwdXB29rUvzh5QumwtaccbgOvziIoQN4+PgqifXxYNG64MDOuDq7uPGBU2sGi2/6hD4x1hxbvHBll21j6vzA9uDERvznzp1bD+fa8Bz8PWB5mIM3uRqTW1zKES71WzP+26tx4U+hgwv+uMAvDmNETZeewleSLzzTwYm/rgs+7X1rPPMUhhomu/C18YAPZ3KZMchJfORVKW4v2H1rUJ0UszjhEGMKf0QtF+ryoSb0+DPHHrf6uOJPh5S3bNbglR9s6IrT+rOlz497h4d+9w96XsaIQy0+evQnN3188LIW3T/sdRwJHfMwibY44ckjnnStEyxz1jFu+BoLpxxY28SYghtcfD1sx8eYe9c/D/+Xg2+ot2/scS+b7Gnrh8ss8tR1jr/SPdBcMcVDzRe+YsG9+2V5p6OtnGZvnsAxry4Xjf1L4z9/4g6XZJMWvvmUK/MKrlP4IHzLsZyyg12OjSXsjbu33coX7f6O8k9/+tP17Vtr48W7F0vyj4s94iUGv+LAgZ41x0mp3xrgLD78i1tsin5xwZYvL9iM2U8w7FPF2s51odt90t6HBdOYvWbemBeLXWNyawyOIt/2rPi8/OPDmGJ/dt8t78azhcMvrsYJnDgZz4e57OSta9U+97e7+TF/LOHypYQpDhhyJmaY2nJP2OEiNj7kouuzF75yawyOdSThGYelrm2eHl8KH+ryFn8c6dkvMOQDB2ui3zhORM7pi8MYHH0lTG17wDey4csZHIWNwp6w8R9m+g8+1e0dsdH3kt05NWy1fIonfnLSGuFvPA7WQU7cp9UJf/fff//6zw1dI/RwgquGofbtdNfV3/72t7W/+fYNXDzF4VqyNnTFaryX49YTj/TCpwenXIrT+rvXun7F+IEPfODk4x//+HpxKhfi+stf/rKuZXlyTfdSEVc8+IEdrljFxb49gBs7/uIOG1f8+MYHD/scnvwoPg/1+ZYDunR8jsvT7373u5NLly4tXzDsIz7wo6tYA3MEFn6tuXncnbF8xpoj/PHDR7zhahN68omjWOUcdp9d8sKnYn0VNvLQZzx9GHIBFxd9eNow5QcWe/lkY+3FL1a5NabtM5O/uOQbXzrszSVyxC4x51rFD085kRtcYMUFX1jG5dHfECdiJ8bpwqaLr7b8WQuxwJMPOHjA4T8+7NkSHMyzkwvj9GCwx7eY1XzAVOjXx4u0dq5f9qT9CxO+9eAjbnxYF3sCHiz3K3b5h2ucT0UM+eRDm045wVVMahjWyDxMbfb6Pr+/8Y1vnDz88MNgls1q3OSP/aL9JhO11XYGdgZ2BnYGdgZu5ww4aPSi3aHMIcbBxkGDOHRUO8w47Dhw0HNYOxZ25o/t5+Hm2AZWBxiHrIoDDf/mlA5A5h18mj/G44uOA7LDqbaxDmbaXpb1kMKenkOeg1uHKuP8ygeJizw4oBLY8wCHk76Dm5ovdmJMjB1LMZZ7OVTo1mbT+uDIJlw+EhizlN/m2eFG6J02P+PGQV7ki674K/GDYz8UN+zyZZwdXflSxIQDnTCa74Gig75xoj4tbjk33rrRs//KAVs6xotb7dDOl2JezOIqDnYw7RtY9oeHW0WbPgwPp/YDTDiKuIzLBy5wynVtfXPyYUy8uMgNe0Xe6JlvTeCzKy940mmeXQKb4GecjjL3OZ9i5N/c3G/hqOWGn3jxH/e4NAaDLhtjOMtVewGefx7vha4H1DizkUf2Yib68sCXuBXzs+YDBnt6+nTEJSZ9ccKBR2/mkA77cPg1Rte+xyWO+h6m1XR6ydADH1zxssGFnbac40Svl/L2EV6k+Fbn8CM+xvHgi64Cjw9rBjOha5yw1/dwXlzG4qeG6+G0F2rsrJOXYl5oaLP1wqCXLnKIixxqw7TOPhvg6Sv61rsx2AlMvOMODxapDUNb0T5N4IgxPW1x3UhwZ0PkC05SfPr8zrVMj4+4i2/q6JMZX321zx5/4/VW/Y12L9p/8pOfnPz5z39ea2LtXFvWlPgctFddC/aN2K1Xa1dM1sv9ioi7GO0xOvTZzbjsRfH2QmmuQ3sUTjmmC8M64aTf+vKvzc7LMteYXPERF75xc2+1N+kUEyz3OTjtF7EqRAzs5QFeOnCKW6y4TmFHv/zRl1++jJ8mbMTYfhQXXPcA62G8/OAdDu5iU5dvftwzxIGnEjYMJV11OdYmxc23Nh7yBqMcyIs5fVzZuna7p5VD43TY0jfeWH7MiUeB60Uhn/YIbhU47PkjvoX7wQ9+cP3tcTmyFgp8f47kt7/97fJLl13xsNe3PuzkQ47Y8Y8PHHpeltt/xX3n4U/GeGnmG+140oOFI/uw3Qu9pLfu1oZvL5nz1Wc9W3Ebt3f5dh2qzbFtr8kJPXPaxHz3Wvl01nCv8MsK1wHurnfXjr/R7t7e9YEre9xxgKsm4vVZIz/iYi/W9hNcbZ9L7Ftb93yx4clGgQGXb/uIrj0qNz7LX3vttRN/xorQs488W1gLwj8f+LIVOy5K+5A/+PJsvL792Attee16hwuHPo5iJ3LDRk75I3JRO9/0+FbEJx999pmDC5Mt7gpdY8UvV3Lo3mWuuK172OW1/WccB3maeTFvTNz2kZqv7ofsioVP6w4HPl37GYbY6WqHj7vY5M9861C88l1e+DBOpxIvfLpWcEjPePdYuvzLJ/9xqI8vyYZdcRgj2cDnh08cu9btAdz4sgbs7IF889GasZ1ijr/2P1z+jHduggNTHObU/jPzb37zm/tvtM9k7vbOwM7AzsDOwM7AzsC/Z8CB4je/+c166HcYduBQSIfBDmkOjgobYw43p4l5JaFbX+2gog7D4SedDkd0FH1Cv+Ig2XhzahiEHZ302NHPXu3g7FCndtBS6BvroGnMYa4x2GHBU/hyCAtfv8Onwx3Rd0ArRnlzOOzQWB6Mw+cXjvHs4GjD7FDJJx1jfFg3h1G1fpyKG0ZiLBtrqh2/bOXDQwZdfOSFDnwHewf1uOAcH2NKDwBxhtOBNf/4aCvsyyffYaqtgbXAbeYBH1INhz4/rUtz+HswNA/fg6cH2B5ejLHH1wOINhvjMOTCN6zYwTAmTvo44camcX3z5sSWjQdX48ZIfNXsp8CAJy/5yYd1sAbybE7dg6c5woc84MyuEm/YXQvi4691aA+yL//aMCbn4uDPHDtjsMuJvrb92QOZWi56UDKviEXR5q9+3PmBrSTisScVwk5c4iZsJ6dje/OEDv76/NODJV5zcmw9SfnBj9953ZUnenJH2iP0tNnjZ4/xx2buN317jx4u/MNS6LVf+McLRlhyqh9H3zh2f+/+gEP7xssVxX1AvHKpDbcca7MtfnwUcdApB9rG64djjOBUjtX6+aiee9PYLOFkC9MYnLDoa4t9jud/4hmDRYzzHY52XMPSl/fuFez4b49kawxe+l0v+u43HtRfeOGF9RKN3v9E+CK9aL98+fLyZy96sdR9RhztvfZDefSnM7xg1MdNbW+wIcbYGLem5orJmP3AT784wikfxS9Xfc7CsCeI+035bi8bZ989qZcp8Qi76w33rjUYU8SMX3seH/y6ztSEjoILDNcQv9rF3fXKBo5fEIpbbMlcx/IoXm16rlvXO+xymk99/sRNX47wFqfr1ktM4xOXX3nh17j6uBgnsPltfbRxEzfxYgq/YsbLWuPRNQ4bH3b0SHjywhc886R9Ip/dr2CUb7Gy48vnrRz1C5bWHy82b7/99snrr7++5nHnS/7LGVs4uKrZxM0+44df30jHxTrIuW+L+/avl+b4shez/Sz/xe5+iqM5ecGhl9/iNeez2By/fMIUB57EvPvw5Ia3GPBT2MKgq82PMwssvMWNl7b1YiMOBVZtmHLXOvGPEzv+5UhM9hV+4jLO3v1J4YueWm7yKXf8wpYf/xmzb7D7D1Dl2C8k/GKitYDJNwnTPqLLJ5xe2lt/cbM1jxsOdPjUNg6HbaLPRh2/dMSp6ONhTXDiZ5b2q7xZJ7kxRldu2Wrz0zrLCW7tAdysWXuJHr+4szdOxKGUI7GUC+va2tIv13zTsVby15qJgZ64caFnb/JtXxLjdHApL7D4VxuDaW+JBYbY1HAmV3zEKB529OMEix/+tGHghSNdONnIFTsiv9bFnJJowzGvjQs7vIzhwr+5xtiGgQffdFqLsOEmrQMMNq23WOhN3mJy33jmmWdOHn300QUxscK8Xr2/0X697Oy5nYGdgZ2BnYGdgf+SDDiEvPrqqyc/+MEP1gOdw4jS4aVDRuMdzK4XPsx58NBPHFwcZow5DF0Lj55CL5tqh6vm+MlXfuB3OE1PTY9PeuYdmBzutI0p+g5aHdo8ACgOlYSOeWMd4hw6w+iQVox8dkjDgYjZoXbGjhfd8NXG5uFQ37ooJJ89eKh7gGEfh3JQ/MbFHp7DLsz4ZOuwSY+9GPKrzZdDubZ5XMobbsbN9/DJdzmlR4qRLi78yb+HDG24bOTeA5icFz//CtziUsMkxUbfGJ9w4WjD8g06D7HWz1i85NyDGf/i5x+2dg/+fMQ/DvnlO31jOOi3Xh7iidhIvvXZZs+GjxmTOXrm8Gy9y4sHU2PmErn0CwLxVMofvNZZDZfQwyve8uWBqXVRmy8GNnTh4aJurHGc8FPaa/lbyocf7OjZk2o5y8fU1bZvCK5yxC8b49bKurZ/l+LRD77C5KNctw9Sp2NekTf5xY89G/MTyxjexnCRO202+vRxlkN7K39qfBU6MOjAY0+mDSz71EtVD9T4wZUHLwqKB2cvPui5JvGo0IVhTbqe+OF/rm8crFux8s+erhq2tnnroK+ea20eFmx1/Xyq4RZv4+nSV1ovevTNK9lqlw8YNyNhTWw47S8Y5ua6xN+amYtfWOzF2rrR8RLLt2ife+65W/6iHb796eWse691sdbtWTHEWRz+JrZ7IL72KZ7WTD89NvrWUeFDMWaN7R37jy+xwtVWrAddY/LIpjH3+kSe6KjLmZziA5OtGpZ5MeHpnmROcS3BZKOPf5zbg/yxpwufwLH38WKDR+spBjH24jMuvlXruuFrcuY3jnLeGtDjU4mfGMJgx6+1YI8TWzry6zODn/IIWy4J3vSLERZdsZgjMPNrXnzmw+gzN5vG2cJik8CUF5K+ef7lEWf2xvAtn2KHZV5OxWq96No/YihGee4sYEy+/XLDC+fup16Eist9Xmxw5QwHvvPf5zvO8ubPsfgFE9v77rtvXQNikmf2av8qxP0yLBxwas+wbY+Uj3LNL11+6fFZbuDJGbxyx45N8eZDftmZd+6QR3bteXlTsjfeeUY+vGyFJW65JfzAkH85t6/ih7N7Ezu/wMIPf4W09/gk9q5f8vmzPhcvXlxt4zjzWY0L/tnRwYeOMfhip8M/fnPfx50+XTzU+Nbmi41Y+IvzzDFca9J+MMc/Wz6K1z4Vm/ywIWqYavlmQ3BQiLU1LsezmNOPc9zolie+CSz+cRSb8XybZ2OP4tfepCdmhS5frhHY8iHGeOYHB/r2Bxvxdx9nY8x6uC+wZ0fHviE4KuaMK+WErmKOjjUl8mYMP/P4weOrGPSNE3V7Gw499vlZSocfsMyJEWftrrPWLI75x4HAN0caKzf2JEw6eMGki8snPvGJk+eff/7k8ccfX7Y4nEX2i/azZGvr7gzsDOwM7AzsDNymGXAo8Y12L9odujv8ObR20FErDin0HTyudbBwWKHTvHYHmFJUv0NTus1Xs03YOAA5kFX02eIMy6EobLYORA6SHUDpN0+3w2ljfGmzVTpw8RcXfvj0wpY96eCefg8MDql0y1eHWn22OLAhaj7o59+42IyZx8M6WBs68TKWn3loFItxnPkkdI3jlphzuIZ7fIilQ98h04NnXIyxUysEp/r04gpXX8xypS5euA6x/OLkQdoLcA8K5ce4voMvHDHCZFdc8Fp/8x7CfbPKC0dzXjTzzZ98wOMLHt9xLQ90xGIP0aWHB5xyLF5t9vQJvfLAH9/NGVfoFBsfcTdmnj4+5dc4MSd3OLFpzDiBy0bRTsyH3Zj5ink8wkmnvpo/Rfu40DeGt3x4ydcelRtF3q2J9fBAZ6z8ypO1hY+72Omr4fbAVz7iij8b15W1aW8ZlyeF/bWEXjL1ZnvOGxcjHur0Js7U146jms0U9sVivL4x+vXV8jpzIjfy6Buairy6H9DxgsC1mj9Y1sNc3M1VYMOjF0969szkl356dGAaZ99DcnrGYNMTA7v86xNjxWtPpGeO/3wZr5ib9vpwlSnpzLEbtfkjOClimX1j9ty8nvixf+039uJmN7GsTdetzw4v2v2/KP5TtfSWozP8KL6+0e5Px8BynfWvF+REXnFSx4stPupidD90rSWw8jE5il8eiDzYW/wZE6ex9mt1e4+O69U9VR7g42Y+KcfyCYs/etrwzcO135Lmuw90XxCjkl0x6SsEf3jyMPOljZcXW85G/OJE5osumLC6/6jFKN/04JP2Rfkz508dlFvxyUvx9ZIML8W89aHTdbeADz9c8wrO7OWDDQ7FbEwxj6MXYPJF6PEHA196Ypj5M2aPyIH1JtZADPOzmD88CF2c5SdcunLqZff0bxyHYuOPqMPzIhkvscEzXv6soSLPxsTJr3zJucLeSzJ/m714+PAS3y8jxe++6pryf1Roi0GuxO7/DdDH0z23mFz/4vSym0/5FCM9fPCUc/7ba3Tkjk/t5jur4GWP2HvWQTz2gD8ng7t8wVITHP0SwXUlR/TUeOBaXumWT3jygjNdGOxbl9aAjXm+fN6IS468YH/zzTfXPae8w4JrDaxT69MehmNePOZmyR8ssenTw9dnGq7yZA2Mm1fav/LFD6Erju7NfMqjcXhs8iNHxnAxjiM7/YlfDo0R84kxff75wLF144etMcU83fDr05PbiWuOGBPD9B2eXNircka/X8a0zjhVYMFpz9K3rvYiDHua+NNE9jtsJR38iHWGz6daznDjRxz44scPnXI3OdPjX2EbFnz+YPENS403v4RtXJuTbzr6pDXhGzYxj4M5a23P0GdL6JpzLYhJbPLStWzsgQceOHnxxRdPnnjiiWUz12sN3ODHftF+gwTt6Z2BnYGdgZ2BnYH/hgw4UPz6178++d73vrcOEw42Dh8OOQ4y8zDqwOFA0uFF36HFIYMdMVdJV/80YdeB7LT5xtg7iMFTO2g5KOUbBv8dsOh3cHLIczA65tJhSz35zQOTuQ6A8LUJHQ9VHdb4wEnR9qDigcphl8ghGzyKQ1vhQx6NNxcfNmwJPQdBh8Ue7uIevnoeJs23nnzAaw09rOSHjsOmNZ9Y2dDrkB3PRerww1y5nXXcHVqV/Dq8ylHcPeAo/MqXl+weED1stm4elvAtf2J06JUHuDjA6wCOq4dm/5TZN9Nw9g0tOGzZ8GUsfmzwmA8acOUcZ7Gxx4sNvsTeK09r4PCDHZ84szPfXmmfxrd8qo2p5Q4uP+zFZcwcPvaeNlErfBJ6sz4en3NL8cqP9I7rqXOttpj4VcTqJYz10VY37sG8lxnyh7cceRFiPcTPRuzm4Wq7nqyBOVhywrbcyAl7xd4y1/3hNM4w/jfyv7U/zXd5F9NpIh/2uz1B5MWLh3fffXf9bW4vUsRtD3sx4+VN9wLj7Mtr+K2LvMp166hPv/0YN/rppE9P6ZpUm4vj9Jl966ivTHzxpzdzoS2OdOEbS4dfZc4vEmf4wRZeMerHL//5lJs5795gz9GfOdBn02cDO3vZn6vwoH4rX7T7TxJx7wWh/dL6qFtnnOTS/RTX9pQXK+5vCb1jETNbhbh+YXi5T+RArNY9bPcAny/G2LHhx/0XHp50EmPyBGfuQbblHVb3YTyzcQ+wFmJzX+CrvnUg9MPWd++HZRznrjN9bZ8J7mn8w5VjNnT5pWe8PaDm17jrsXth69Fecp36fCKTv3nYfMDQN6+4F3r51bp2rcHCkQ/6Clt66nxoiwNH+bcX4bJj72UbzsbEUD77/PJtZ+PuL3yrvaSOKzvSNS4v1lq+7QHz8iGnXrTzjw8s873Qaq8aLx5r71zVdWbOuskV/facmAk7fjur4SLmT37yk+ub7Obkk71rRxziwcPLZH/P3T2WnpfsziWuEbnD03wxyRMdsfIjRrb0cCPm/AsSucJVsf7yjjNc8eGIs7WyrnBgit+e9nfsYbLjJw7833XXXQuDLr548SceawyTrSLv8GDLqWI98MSFLhx5xE8e7A2/0IPlfHXhwoX1sl3e4Cn02LG33nx1fZmzf/ilQ6yjXPBBt751ocfGnHsMLs4LOLfX8iEP5RIuLq4VOYDBtrNn+edDLOJqH+mzsQZsFHOwzeHYOD+kfYoLrgT3zmrs8JPjci4/hA1+MKyVXJpT+DKfrpzBKJ76amcAPOWGDxyJPOAkZj4Ie2ssl/T49a9G+KZH/NLGfocNQ476lzz4GIfLJ9zWBGcYdPjBxfrLQXrG2NMTnzYekyN/8IsfB7HzA5tfvLXpmLe+5rWJcT75DguGQoc/1xff9iUJs+uAvbW3fvTZfupTn1q/KN/faF8p2z92BnYGdgZ2BnYGdgZOy4CDiP8M9aWXXrp6wHNQcthwkHE4UToAOZAoxAGkQ5DDjj4xptBTN7Yahx90iRr2jSSsfDu8OUypCZ5EP12HKDoOdB2qOjDSNeZQpsQRPjvFWOP0cS0e43DTc0DjG364xrSLUZx0wld3uJx5i8PxHH1c4Ti0kvzzgVO+YMQHNpt8sItnMbJzqIXbehgjxWz9HVbZiEvRJmp66Rpjn2/7KdweknAnHcDpWC8Peh4Y1WIg4uavPmx2HfD5L5/NORh7cPbwYb71KBfw4HpQFVc85EGfiMcDl4df+DD0zXc9qGHiX47Lh3i0jWsTenDFosDVVxcDPZg4iScdenh7QIJLsjFHN9/1G2u9zGe7AK78oIenUmz0srdnpq3xbMRE9PH2csD9g5jDEa5/YdCDWuOuI/HILT3j/KvDsxc8sMJWiNzhpG4tYXRdGjNHZry1q4/nl8H/px/itadbd7HKA/GQ56XNzKsxObXP7XdiP8t/D4XitBeINYCnr5jTNz5zq4+H9VAIXeNzzeOnxtm10zXJxjq2lvokDnCmwFf4M9f604lvnI3RbVyfHzyMExjHPtbEdX6wtaeKk6p247jxqba3jPOhtu/YEjwmBhv63YPsZX+y4lb+jfYf/ehHJ5cPf6MdH/e89gourUE81Pgp9os1I17wuT+T03InTkX8CnHtWiv7Ty0H5RA+391btdnJVS+y+GGH51zzfKjxVeB2TcOmD1MbL/OwWwv3XDnH0RiMxP1B4X+ul/bkqy1HvUhkw1+fl/zCMM4Xfnzxbdz16vMiP/DkGxdr5OVhMZYbuvQUUi605c390Fj54psfPNmUyxkXW7iEbxx9rvWizf3CfUOcMMQF12dk+5Yt/8ZgKfLg5TxfjWm3LtZE/vGVB7jiV7zkLmfGzeMhDjlO8I07vrDyRYetwi9c/Pkn/PNRfccdd5w8+OCD61+UiM962bt+Yeleak1giMkvheWEDq5dH3KHo3l1884trm2+rAdc8VgnYt38osJYHPnRF6+80vGCT20MH9dza8n3+fPnr1534sRX/PKMIxw56pci/HuZ2LlFnz6s1sB+FYf8igEG/3Qr+n4x4FvseIn/8uGeo+hbExhh8UHU1rB6rh9MRRz8zL64xGSdzImB4C3HcBRt2HTYiBNO+xwfOqS9QM8aqLNpD6vZyAEMMRnrJTTsuf/gGsMlHuWCPxjs8RNL+aFjjOCnj7tryngl3PKHTzGbg6lvL4nFvMKveUV+FT4IG9y6nthZQ/u2PNhL9iHhuz2tJnCLi69ixRseX3jxJS7FnH6c6bBVCDs6x+3Wk89yVUzlBYa47Q85Nk7gdb3ph0HfnHyzs974iM/4vA6svXH87Mn+dMyXvvQlkFfzujo38WN/o/0mkrRVdgZ2BnYGdgZ2Bm73DDiMeNHuod9DBXGo6aHNgUNfcQjpUNMhpsNbhxY6pPlZayswE7g3kuzodUhyKHI4IjAcvjoYaztoOXA50NEzpp+N+R4qwoedTfE4SMKnQ9TmSPlwwGQbjtocO6UDIbtpSyeM8gwX13hPP7jRc9ibvmDyrzbOXjGWj/wYKx9hmMOxWOHQqdBjB1M85a5YcMy3NoFZ/NXGYU5d8XSwZ8OHOOehnU35YAuvfLEhxhViTjwO0B2ajVXYKPp0Otzjoa0Qfj1o+BZaeRO7a4MO/da2/C3Dw4/Jp7jMaeM/c1t+y7F+MfBB5CVM8wkbpTE1bPp8sdf20JC9GGqnE391LwLYsYdvPeLAd2tgHga/annxwAaH/nxQ9pLdw7L8sS9eaxsnccNUtIk1gAMTfvljXxww5h7hWx5mbmClP/M1x7TZNs9GXGeVaX892/ImVg+iHugUfQ+HCnFv9uKm3OEkH3JtvBcd9rs9TY+Ihw91MnPTOsJSiDFtdsWhNp5+60RP27rwrU+HNDfzp02/sclPO575gdN4XIyxD0u/PaNNzMHIz79Gr/8Tvj0TNm0YxuVMmXs2Pur2YjYTA3970zWk9nLr3nvvPfnOd76z/lPUs3CcEeTft1X96TffMOXL2tsv3dusAxGb+wCuxlznrZn5+Zkap2rzpFzAIOIh9qk1IDjETR+GPJZLtl2rbNqP9lB7Iww42gr++QtfHPAnL21jdN03vBx2f8kGJ/2w8CkeNQ6uRTHhpMipORzE4XqjgxcxB7M9QoddeUmPjbXRhwmHHXv8jMtJvmdc5ujhzYaYd45R482Wj9aVjTl8zJUr470018YDH/mkTy98/pTG5MBeDpffbLRxL27jSTpqBY54+Je3aWu+fcFeLsXFhtDFBw+lcfzFbm+LF35z4vUvSD7zmc+sF+3w6fpFpf9s1b+4kgO48PnjFxdnElj1W18+XDeuaZ9T+WodYOAEDwYOuMExpqZL2MKynvTwcA17geqzU9u6+9a6Xxh4sc9G/kixF3fXs3nrZ9y68AsHZ9/45q89yIauWMXos4hfXOTKLyRee+21q9+eNi6eYioGGOwV2HKDhz4OXT84l2+1XBNclWIw19oUL1/8VNsHfNFjGzc+2ejDE9vco/HMv3nt+jDxspaEPt75WIOHH/ZTfoyxKR6YcHClZ9w6wIGXXmNdP3Baj3Sq8YMLU22t4GnTUeOj8AGbmMPBfnR/pFesUy87e9Q8bDmAEz59gqM1hiUvbMzlXzyN0ak0DwMufPbFaJzAyhcuFXrtAVh86Ftncwo74/n/F+K/n+vkQiH2OQ76eLI3pubXtek/Q3366adPHnnkkWVj/CyyX7SfJVtbd2dgZ2BnYGdgZ+A2zYCDyMsvv3zy7LPPrgfADjAd9Bx+lA45DjMJXYcv0nj28+DBx5yH1RjshE521eboVuh0sHYIouew6KHBN7QcIB2y9BWHbwcv4x3I2LCl5yFDH36Hv3DlwAFLjPFR42xOzQ6uOhy1GM2nX8zF2hw7Mek3xoZMW226HRi1SfY4aytihTn7xohxbTk8tl0Khx/mPBQo4TbmAMq+h1sYcautL166Ds4dcI0T4woRs7Y5dXmKn7788ufgmy9xKGHOtWuuebgeFhXrWa6Nd6gOp5p/cdpD/vms2PQVLzazC6u1W0GNH+yOxRh8nIm+NmycCR5ha5svnq45dukvo8MPemFnT8fDgVqho7BX5FihD9tDs3UzZ4yu3ONnjEx+bQ9TXwAAQABJREFU+vEop+zwcG1aP+O9RIbdOsNmO2M3Z8/gYs7LQdcpTDhKfFsvegp+xRd2nPE0pj/HsmGfrTHYx35gXE/YsBU7vPhNG/PxVROxycvxHmWPU/ei7jtyoC2nfnmhJnJmLh8zB41ZD9e2nMNXyjkMfXyOJb3m+eraTheOwle19rHAIMWv31icpz0MJT2xe1kjbuOuSS+k4KU3YzCeLb90qvmpPe3X4OGHMbnqusJPDuMJN7xs1MXDnq17GBz3FN9o//a3v31LXrT7Exb+DM0777yz/PBtT3ihO681vn3m4WOPuIdpi2Pmxpi+vHStzXmxi0fM9oA8my/fxmEk9Rujyyc+bMzrh8WOrvHEPJ98m4tbvo3RYWNOEat7Ry9Ap502/2q4ary6X2mLXeFDibM5ucMXhnFinH/jXvbJv1rfuHn71v2VP9j6YoITBv1802OrFB89+vDU/fKkuNnja86eg8EPLuULvnmxE/PwyrG2vaPwTTeBp5++PNMxrpBiwMk9gq441XEIrzr+dOD7zMFfH3d54ycMOHQUucHdPN/uB/zCca8jPgP9beVPf/rT62W1OfcQL9hdO76t3TUx4+EPt3Iod3zBa0+ITdtcuceLLd7GYKjxoidXcgdL23xxwMOBrlj8uRY1TP+/g3Lu3LllD4Ot+196+eWHjW+391KVLu6+sawYbz3ZyV9r5l9c9IshufLLvD/84Q/r/oKf9ZnnRPz14bg38yW+9qE+7K4N/OBU2gvsCbz2lD6exojxinF5EEv3PLmWs/ow6bHhV5wEnnEc6Citl7F8GtcXA3s6jcG0Zu0Deq21thyYYxu2euIsMocfdHAzny18bYXE0zj+xru+9ZV06ItBIfDNFXd1+8j6wCvO8hd3c+KBZ0zR9/xlDvf4N78cH36Y50+NQ2ugXb6Ke8ZsPv/a7PnH2f3dHjfvcw8mW4IXf8bkWjnGoWPfdK9xndM3TtIvh+63H/nIR06efPLJk4ceemjp4HQW2S/az5KtrbszsDOwM7AzsDNwm2bAgeWXv/zlyTPPPLMOpR0YHHYcMJQOKEJ0aCHNqZMONzAq8CuN0Z9jYcBOR53QNQdf0TZG6HlY8PcoFYd8LzJ8C9kLUoeiDr8duvIBhz7/Yc8DmQOmhyQHWDngk67xOVbc+ITTWHHGN85w+Fcai1cPdHzgYy0U4x4E1WRi1oarHQ9th9EefvT5lIva5pRszDm4GkvMsYNPtM3DIObjT0e+cPVw5uWhPlHjr9AXXzGaE6dxh9r44G8dHYTNm8NRHZ85Zs6ai0Gbjgc7h3DryR8fxsvtMQ5bmPzaR3FR9+0yNsUsD5UV6OFHc/rsEpwUOcxGu356094YDGMehJLTdPCGVT754E9Nn2gXUxyMy4f9bX20xWgeJn1tAqec6Yen3UM6Dvyyo9svO8KmG4fqxqwRHnA9SFmHfJtzbdhfOCbxwZXu5EQn++rs1PwfxwhPDvnTFvOx7RwzV37tWXj1p512uWnN4csbf/lyfcGhU0zxkUN72T/f9ze5vWSBy1YsvQRiqyR0urZdI6T51s0Y3nHXTxqTd3nBA6Z1xpWkgzNsfPAic53ZkbDgscVr3nvSU5uXA/cVL8bEb9zfWPbCmb/0j32yLbd0KnMPZbuIHX7owxTfjAdHffFcT/JRftjYz16036pvtIvdv0jzrVx548ufm7AnXENkxtX6GHddeclgzPrLD476re/c/+atMz90vEyzB+RBn5/a8OdYuTImp2G0/q0Nu/aNNmGLl7zzgWux5cO8OX3FL+e8/PGnOOSE2Dvs1HT5yY5/Zwd29MNhR5ceHtrszbcPxFD+3Je84LM3fe7wR5cNHTW//LHjSz/u5hXzxhrnO//wzOu71gksY+bk1tqKH7b7pf3QWsaJPWGDh71gfeG4v/SyFAYRL2FPR58Nju4rPqONweMLJ/kg5unpw+YbLl14dM3jERcxEPpyap7wLUcJDL750KYr1+GwM//Rj350vSTz96fN8es+cvnw5098ruNWDsVRLPTMwVRgeXktz7DFar6zjhz6/2bMwy3GYtAXu/WxfvZWa2NObhQ5ca/ziwC2cn3//fdfjYEf9vR8Dly6dGntO9ek+4J1Ny/e/iY+fPucb/ktBvmk35mN3nzRbi/w4U/s0JMntq6v4pALsciXfykAg8DWNs+OPY5407cWzdHXlh/z2fElXmssN3DMK+nD0SfmxdK6GaOXH/Nw2MAt3/T51M9GWymexqvN4QVHIe2JuBmDLe7yUQzq4qQ344YNg9QuDjaVMOVTrmDwRbo2+KGnaCsw5cB9z962NpOzOPhIP3zXBh/mYfhcU8NobfPVtcRWgc/OnipWPmoXb3X3CRzo8CPP9l5/Iolf+9N1wj88eVDiz7YCqzhdVwqBQ0dOpoTlmvF/rHz5y18++dznPrdU4J9F9ov2s2Rr6+4M7AzsDOwM7Azcphlw0PjFL35x8q1vfWsdUI4PDPoORB22HJKMdVhx4NFXtDsYOcQQfSUdtUPTlObCytY4W/oOPeradBMHLf9BlOLw5dDvwcI3fhyKcJ76cDsIxiXfHpTMOWx5WPCAZ0wfF3H3QKU9Y4urQyW++eVj+s+mw2fxGicOug6gHtI79PGFB9/WQh8mm+yNKeIz1/w8ZDfHN8GxBwQ84eFuXh8eYaeEb4xtNnw1j48DNr5i8LCDM1HLa/nXF6OaTf7KHS4eAByoxUEHN4devvnEmX45V/fAQ494ye7lk/WEQXAm+OZ32sL0kOoBVZsftl6g9DDGf7mmkxgn5at884UTP/gr2cM/lvILhx4duYIPS8kXW/NhFpf5dNSw6OU3HsbSFac1ShqvTzcxN/GKGT4c87jImbW33o1PO/pEHs3TZesa9hAXT/G7PuwvejDKA316CUxzRNu8QtjNdmuCP2EHv2twDV7jR3GE76Ft7ofmYWrjyF/7yng8zSv9ggFvePY0/HLjuvLSwzcyvRBhY95e88tHPtjGI3zzrnk1GzyI9Z75uEaoa1iOunb5wM21wicMvrpGGejzZV7RVggsOVbYssMvnclJm1/Xc3+fHoYXUX/605+u+mGbT/yUeDWef/1rCR35a63Caq/oF088w4o/HfrigmU/+9Mx/hWZF3/HdtnfqI6/b7E+99xzK35548tLVTmypvT4KM/aOFl/fzrCSzfSPbk9aT3m5408wejzRJsPn1fw4La+5ugfxxYXHOHo88sPoW8MDkyFNBY394ZeCM15dvXl2XXgPNC4vcNObPhNH3z7nHHdzf3Hp1JsbNjiJA5zrkkxGFfLS78Ac58yjjP/7IqrnMEwpn9a7uKKA3s6ijau2rDVsFyLYu/Pi+DgHkGHD5+DxVAO7E9r4lo21+d391h57WWU+Piyh9jAUMs5e8IOjlyT7gfuW14+lzt8upfDganwZS3EyIbPaQNXThW+xMxGjnw+GJMb+9uYtl9wnT9/fuVFnsTgWvHnl9TWjp3CFx5isGfsU/zkUKy94IOBP5946uPhz7vIhfsUgeEMAldMOPV33fkRjwKfT77oic9Lc9jOQv5sRTGUJz6dS956661V4+MXb3zi4DzMxvUOt88WOcGDP/GJwYtK+8O6yDm/bGBqq/lrL7lmfLHFdZbQ84tP/OUSLh9yrpRjPvRxoAuz3MiTfPDFP672lxzQp2u96MCBT5c9fSL+rru4VbOBI4fWEw+YzqyEf0IvTG3Cjj4/5gh+9qBCDy++sxGzvBrDk+Ac7/SMh6lNzBlTZr7gKDAS8zjwL34iZ/YBDsbV7LSJWOnghiOhbzz8uMI353qGI2eET3mB2f5ha15uFLmGKQ6+3JPokOIrp2IuJ3BJHOi4xlw/9h4+9oJfmsFsvxlX6GfLH976fBI69kA+jePJLsFdsQfdR5544on9or3k7HpnYGdgZ2BnYGdgZ+A/M+BA4RvtXrR70HD4IB3s1B3KtB141A4rSgcg7Q5K6nmICS9MhxdtOg5t2kp6kwN8hxsHIbXDnQNhB0c2Hih969iBy7yDkAcKB399gp8HCYc+vvqm2fGh1cGUjpgdGB3eHAj14wmLXjHqxx9fmA5pExuHmR993JRyJy90pt+w4eOv5hcf+uWycfpJ87jMdcs3G+M44EqMZafNZ+P51U+fLgy8Jwc8xOGhrAcL83Jbfmff2Fwf+LDVHpQ9GNoDcI2VX375jwMbcw7N7Rl+evGES2KcqNtzbOWDLUx7yd6y9+RcPLBmXnAoDxMPLr6w2ecH/wofbGEk9JQw1XwXJ0z9ONNNJhft/DdfbS5d+AppTDt8tfWZWPIUvnGiT3DDSb9rh479oJgPqzjpVsRJh655D3C9QGnOOliDfC/H40fc6WvD1oanEGPV4rdGarGmw7YybZfhFYx4l0P6HiqtcTjmFHPG4hMHY+bKDa7ito8JvF4G6Itb/O5jHiz7pqQ5a+PlB//TD3x2sMWqxJ1/9zo1nnTiBpOYUwgceVLouWbwY5cf/otp4pYLurjSI3SJ+cZO48CnB+muadiXD99IffPNN9eLLDjscFTDU9Mzl5/l7AY/ykU8w8IvnmI/Fr7yPfXE7J5yzz333NIX7f5erJdsrel8IVbc8lHsuCk+O91fteXVPI4403cNqtuXdKyzmI1ZB9c4exJuvviepTzJH4z8wGVDNxxzuBxjm6ePW/6M0Y27cdePXDsrGCc4u27UMxf8snGfUVxvbPC09riGrY4vjuzCzYfzgf3ZOcN896xiXIQOP2DwE8fjfOFpjB7J3jjfuMkdTq2fz69ix59/e8K80su0YgyfrqIvv+4JcPPZ/ci682m/yZcaj9Y0P/jxUWzi5Ns9q7hhWxM2pHFrABuG3OFvrxYvbsbtPxzF3D1I/uHq+2a5mOD5kyv6cAm/1skLOmslZoILvwQOPDmEoS8OGLjQ7ZwIzzw9fuj1zW729MoFfPHYn/iV7+IxL6/mcBOjeM6fP7/OQ8YJX3Tl1Ut9uvxcPtwT5UdefFlA6ZdObGDHxVrya10V8RJ113d7TC1GfMQkB2Iop/KBi1+mWEt9PNjRbU1hGDMvdljaxU2XDzpwxMuP6xr3uf64hke3uOwZ2OaIcfj8hAsLJ2vFn/jNw5k2YbBX6OeHnr5c40j4lTtxZVvO+I6vdv1lePiRD31cEv6UuJlTYLEh5uSIL+tnHC/5y382ccOdDc7Wio09whcb+nGk277kj2969mY+/IIGD3Yw6StsFePtN/bGiq0adlKO2iP581zgrMMvP85B9r+4+RC3OEj5hsG3eXHiyV6JC67s4uq6TleefKP9q1/96v7TMS3QrncGdgZ2BnYGdgZ2Bv4zAw4PfaPdA0eHKQcOonYgIXRJBxa6Din6isNP86fZmAsjvQ4vcBJjDjhqBx4HG4cphyYHYt8U8m11Dw10zHlgcTCCw9ahCQeHRIcqpRdSuHr48TBAjw1dB7UOlXSMdcDTJ/F18CJs2dFL5qGRPlHLT3HGcR7u4jJ9sWGbXzrGcGus+TibS8wZr+Bt3kNMdnTFrXTwLm8eZsJtb9AXh/Ew8mMuX/xMLtow8gFDO798WSdj4oQp1l4YtL7w2YqhXJdXtTFzHZThWWuHb77owJ7c9Al/bHvw8tDkRTs+7PuGFxwSF5hs9YtRnQ917ck5v+qZN216xaUPf/bTX0Su/IBDZ/KhR6rpTKxpw07ePDS57vTtGQ+s4rfXjcmLWt+aFWtrKVZ599DK3nw68Tav0MVBIWo6xtW4tu/NG29OP8meTb5w1DcnnxPbXGthvD2HUzZ0ws1v/tTmKuYJm2lnLAztcPiYhV/5w51+3GDJQQ/x7esw2VgHfXjicD9kQ4yX/7Bbf/r5tU76/HZ/WABXMPAur7VbPz7xazxcmHErjvLDDxu/IPXArJ8dXKKvFKs2DjAVsZvz7ck33njj5OLFi+sFDL32pXk+SblfnRv8YCeuuQ5MwpNDn09iMKZMaUwNQ8HDteMbcbfqG+2XDy/UnnrqqfWiHScvSuSlvM01wYHIIR37xP2VLm64VtObGO2TYqHrng2nvcZXeuVaDUdN1HyUW23z3SfSNQ5XMYazYhwGP7jgYV49Ma2NfayOH73KInP4gX/7DS4M93/rylZ/4rIrf/ZgeGwVPNKZ+9Q91NrkKzu6bMRVbrWNFSeOhE0+6KQHEyfzMPBWwqUnBn16eNCTH3PGKjCMyRl915GiDZPo48He/mm8XOKTvvOZe1b3F7Y+j/lJYOVfm+Cg6Jczn8XWRr/PJLj67RU29XG7++6711ri6m8rq60LHZ/nvmXuc8oYW3lRiyXO9jl836AVV3M4w1GXd3lmr6bn3GnefnLtw+SL+JyVG9jGrEtnFRjOuL6NTo+OMfpeKMLFix8xqcsjTv3iwNrg7R7LlrDzeY4Lbngak4fWlp5YFWvFhxhgiJUNvnBgEHrGYcBL4uVM4Zd7cGDgKV7x0Bcff+bpygnsOPDdC1365YpfhZ/2gTZ74+HKETGOJ1yY1qU1sK/MEbbyZw6ePmEHs2IcT/3OjmKTn/ibg8OWGKejlB/jdOimh4t5Y/Ki1o9jevJZu70nzjDN5aecmNM2Jw8TFwZf+adnPn08FXZ40dfn0z4i4aVbXMUO2xhb+6tc46MtJv6sdedPmGzo803oK/az+QQGbGP5pNOehcMHocOX9bMf1HyIp19e4SvW/jPURx99dNmyO4vsPx1zlmxt3Z2BnYGdgZ2BnYHbNAMOJz//+c/Xg/p80S6cDix0OiB1GHFoUYw7ZCgOU+rsYHQAUncYmfPGHHQ67DgYOeR4wHCgdtjxsOTbQfqKl+z9vUm482ALz8HVQco3asTUw0Mv2vE27hCMMww2DlHaJK71jWnTx5UuEb82zMRYpXzpd3ClByPf+uaM0eMnffnQVxwq9c2R9NTHEn/juMXDodFcODNfPXTRp+dhSZ3tXLf8TT/HfOrPONnJNR/GtRXY1syBmk/5MK9Yc4dbh179ci0f5TE+fBpjX75ht774luNpY8wcW7568aftwZBf+8WDOY7wkuKEwVf5S8e8mIzTUeAZV9iUR+36uJg3ly5bon8sxsw3x56wh5nQKTcT1zgbD7iuNw/4xe16KXZ6rk+69oy8iE8pN2J1XXhA6cG9uOJnnj27yS+eajjlhl9tRbsc0qudbnbGwy5mOsaKN1u1ciz5zM58MTSmtt5qGPk/xtLPJl7pyAeMxmFoxw9/a2NPasu/a6C4wm4N2fEFR47nfSr+bPi0Dmrj7GBMHWO40Cm2+mr6eM21tO7dU+S6NYOl6OPfn/nyr5Bgs2FLygldfMRDwmvcyzJ/PubChQtrD8Lwpzvsx3LIrtzX1oehPq1dfqdv7fy7j4pb/I3BTkeb6IuZ+HzzzVov2r344/d/IjCJPyvh772LH5Zv51qn+LRm+uJhZ51ctz477Sk5ak/FM87siLVR4PFDr9q9mV64rTvcKcUadvuAjvu/9abDDykGYzMOfYV9edC3Dq2Fcfbiip8xazb92mv59ZKNHzatK12Y2fADl54c6udLvNr5ZEPg86OwoyPGrpfyhFv84dJhG798wVcIDPNhlAM+wqdrnc3x77oQn0KPPV3+4ND3uWu/OD95Edpa8BkffOf5q/jwFLv5viQRfj7KDX/5Vzdf7OZxtIb+XAtO2dDhK8kGD3z9Ism3T8XJ3n+GKn4xqX0DvBfWfJRXtfnihCt3zgX0rDs7e5Z/nMwp/NCXYy+C6cLB/a677lr3pfzjHX+1uNiq8fc57BcF4uBfDq2F/5TUn4ziX46dkfnGA3e61g8GPv6sInx84LtnuD/Kk3jaEzhbFzY4hFX8fBmjIyZxOBfMa5edApMdXbzKk/sfbnDo4aTA45eo7Sv8YBB5bI3KhXk5KYfm+VM3JgfGGofn/sSO4ObaoGdMLPlUFy+uEzNf7IzLnZjh4WcMHr0KXYXAhjlrHMVOPxEjXHNyx16uWjv9uGTHN+zwJ29teuzERnAwjjc/ZOoZg8Wn3OFD2mfdR4yZo0PgKoTP+OWfPR7wyxm/xtoj+vxaFznGI+5sGrM39buv0WHLf+stb/i1Z8Kh036w7+QZDky29rjPBm3j7iP+X5THH398xcbPWWS/aD9LtrbuzsDOwM7AzsDOwG2aAQeen/3sZydf+9rX1mHCgcGYuoOaQ5ADmXGHlA4vDicdjjpMzTQ4xFTYEphhpAtfIR7Kzp8/v15AeMjoG3c9YMFz0MEBTtLB03gHo8uHb/r525sOSel30MKb6E/Bo/hPi8k8W3ZiOU2K2RwMvmE6tJnTv56Ud3r0Ewd4czDhxTV9esYaL47sq2HiQg+WA6Z44hq/eGd3oxpu/tOdHMoBXw7OxdJ+MKbo22/yrOAa34lLZ+bHHB9s8DBX/1gvrumwFa+HHA+tXiSHwTcc+6oHQtxPExj4i1HNrjxPm+m/PMz507AboweXzFpb7HMMH/r4aONSXstxOcjeNXf+yjVozgOua8gLPPEb88sH9nDN20MeeHqBwKfi4UgeCF1jib71zr593Xy8p01z1Tjjg8tx3PrG4RKxG0svDLWxudeM5R8/XPmRQxJG14/4xcmGTrHSy2YZXvlhPN6t2bSnBqvcxT1888ZaQxj5gWvPqovB2ti/5SL/+TbOlz7J7+ocfhiPTxjmauPhvsyuMTnhB09cFDiKNjHvodbfLP/Yxz628oZn/uXeHpkYbNwLjRUzbvbee++9t2z9guf1119f+9ZasJlCH0/2+NRuvxiHLybzhA6cYoFBxwsB+S42usZh0WVHNw7i9fLvVr1o9zf6f/zjH69v9YvVSzjXqRzyaR1wwKkXSnIsX3jLZfHqx1scyYx5rglb8bhnit8+my/e2POrhEFPm+CHG45wcZ5rWu6W8hl/tLbWB7+uCS9S3OfxoCNn/Gj7hY29Iz/WzBiO+Ce4wyQ40zFWXGHJTb6MlYf2AR/uj60PPLnnFyfj2gp7AoOOdVTLlxdAYcDGg552GPEzFj5uijHXGB9s4dr3ijx5odyfAcEhe222fMmBcQKjfWScxFsbF/OtiRjsGbnsWsUFd4Wwh8tf+bbvlF7I0RGHXwr7e+VwvXz2kpmt9XjwwQeXvesDjn/ZSNc6FAscRewKPTlR0yO49n+10HFe8ItCMdEVh+uLnlj0/UtML+j8h6W95LbX0gnHt887f+Dv7Msejuvr3XffvXquNcanc7NcENyN+VczcmONP/vZz6419Hfb5cW98fLhfCzmuQf0+VTaO+JmIx4v+dX67V85wY9eebPG7I3LBz7WQN8a8UNH0bY2uKoTc+XG3nJtsm2fZc8nDPXcI3D4Ts8ceznEX+6IeblXt1Z09YtrKV75kS/Y4dPDVcz2NmGfDhs++aYrhnjLW1zEbx3p0jGXDbzyGJZ52NcSGLDV9IoTlqJvHG/XhGvevYW+MXP2grXh0/p3f+Q7HHrmG2sd4DSOIz1x8wMz/3T4g22N0mkd2MmbPafmt3sMWzHSxdX5VQ7pyJ392nVGFza/5Z8d+9ZAv7n8tsfp4O069v+iPPbYYyv14j6L7BftZ8nW1t0Z2BnYGdgZ2Bm4TTPgIOFF+9e//vV1GHFgUDq8CMvBw6GmQ4f5DibGiDGHE+JwpU/MG59zsJtXd1ij7wHDt368dPEnBTxAODj5BjsOsNU4sXXoUhzSFOIw5mHr8uFBwjd3HNDxiDMdPmGxjUuxxMd4c+nT4Zsd+2sJPTbqcDqU/z/27m3Vs6Pa4/h6DyEmIiLGQ4iiNx4QBTGeYlBvvIhNOomHCBqSK698LTHg4QGUXBjTIqxH2fNTWd/ew7n/3em16ZuWGlCrZo3Dbxyq5vzXrPXv1WHqw6tmxuJUI7w2fMWcLSzXdIqteKo3/qRsydWwetrYNid0XGtIrghfbA8j/qbv8oeVTG7iLEd1zLc4zB1ZteLTplyssJFY4IlNHy/fenbF7BoePt7MKVx8zYuOlxlrLjybcjHbbNu0u6Z7ifDlM/Mq1vJmVz308fUfRvBhs6vhybF4XWvyVMtigU9Hjnr29PSN2cjd4YRv3aq9vB20OGh3nQ4b2F5m3Hu91OCJiT8vn60lfLziZUOeTrG0HtSCrnEY5/pUg7leylvuycVaXcKdWPTYdV8kg2HOrU1ED04kvnIXY/nh0eMXRvzskvFZbLBhuAdQvthH4bAnF29rm061xScvvl4UjdNzzXf+YdfIxKbHo+PaHGqo+MjpWivNMXl6ZHS1/DUm8+LqoP0zn/nM8mEdqbccvfy7ZpcNvjVcfHzhWUf+Q1Q1dCDwt7/9bT37xcGWjobE3LzgyU2vlq4RG/c+P6h5oFcsZHR6jpCJFb81WU2z6RDsl7/85brH8rec3OIHX8hB++9///t10G7dOWjvm9l08MQurvNBuxjVUgzlYozwNHGTwYLTN/vYyhumAw461lmHpnTZNnfsw9Ij9ubLPLN1XT3YV7t4y+jmx+TB5p8+fk2MDl0808iRg0Vrjm9kfbVu7RWsHWsJFlzxw5mY5tw4veZcXsVcbdwXiD69Pk/c53ybn/yzYY9HFpZaFAv7Pp9gqB19tUPV3DVcfmfdwzdv85AVn3/zr7kWr4N2zTUsenOexIUfsROjeuNrbNUQiYXcvLT27NfkAReefOSmGcNiD0ctYHaoJg/87Kw/B+hyp+PPzeTv+eefX7Z8wfCNdp9r5hHBgEVfbHp6zT87RN9Bu/jonQ/axe9zo/UBw7/E9C9YHLTz6TlnrcGUExy/wHZg37+iM88O2ukiOfm/KNzzbNVL/vbJchW/+uLxZX61r3zlK8un/8dBbP7Mlm/E80vOBjZ7WBps+dFRf3sA94dY6Lpf5ainA6Pa6bO1Hjr45Ltc0s/GPeleMSZTs2pjzVmDbPkqT7qa8Vwj9NMzh80fe/cVGXzEFzkMfHnD0ujIFR4ypp8vvTEdcy1n+SJ813oN/vQ/8+QXiVUdik2vvupG3xzr6fOF6GS/GDc/8MRNX0/PtVyLv7rAV2vrhg9j+YjZeuyz3YG1OW8e5AUTqYExbHYav+pZ/fDI4Vl38sVrrVnT5dUzetaYX3J+1Fb8bFHrTPzWG2y182yxdlyrAZtsxZ5/OGSwI7LWuprIQ42ee+659YvyH/3oR0sV7m1oH7Tfplpbd1dgV2BXYFdgV+AJrYCNhD8dc/fu3bVxl0abIxu1NmdtdsjwazYldNrAZD83HnQ0vsLW49lw+QaPFwpjmyQH7F5KXJPbFNmUsedXj1y3yeIPJpnNmM2VlygvBzaQyWdc5QILP1ybL60cyeVvnF7XZOJG7JO7jo+ntamja0yuwRZLtuTGKJ0w4rPBQ+FOjHJYCjc/6NMRWxtNPBtI+WTvurrCyXf+wpnYrvNZPGJ3DY9P1720wMhPfsXRZpYuYtcaiMfWtRz4qNZqouGhZK7pa8VBBsfGGt81sjm3kXYYlo0XYPpePLwIpAtrEr4mn+rpuvzoupYjgg8XT72zWcKH/KDPLntx1PC7Jkf0w5avFxh1Sg+v2rl2333kIx+5/7dtvaA4GOhwgA9zAtdLK7n4vQC51vOnFnIlKwY+2SN8cmsiYsOeLMKDV91mjV3L01pAxnzkX17keGSzTX0x0W09kBWreefbGMEO31hu5PH4KFa+8VH2XRsXGx7/aqGm+NUpXDpRsbGhF7b4m0+85qg5yR4mWTj5aq7wxYDSkxe5lpxdcnMg/vINK5/wqjE7Dc/95Rc7voGZP76QuGGmy68GRx/BUXMHUPQ98/2SVa+ePhMcEOvFBb8azByqHR58OcGe+vmkQ59O9xQ9fPFp2aoRPpoH7Y/jT8f4V1u/+93v7h+cqYG85YnmnIhVXnLHF18xdshjPuiwV//m98yTH91+MWnsXnHQqebskJq41sNQs2rhGp8fzw4xIXpsxKkZi5MP/Gpc/Ho6cFoz9OjLy/OKDR3Pd2MyvlunrtWtA1L8/BancZj05avHh6/xq+HxrbnOVs3kFI51q7Hhh1/105qn5PKkY70h9SKjxz7Knz4SJ9LTF1frgU+xq4v4+MhWTTRyxA+/cLTpl5yeONOHU8xy5lvMeBo9eHCyNW4ui5e8tcmPWOf9KR949HxO86NO/WtI+vaVsD0LyB0ceibwITZErh7w+CNjKydrFIlfTfjCFwd78dOv0cvGPtehv89Ra4yP1ip9/hxwO2R3cF/9+XBQSB+vw2581C+S7JHpwJK3XGGSf+Mb31gYvtEuP7+Q9K16Mfu8Lze1UEP5Ir9MUCM4YtbmumyO1FI84lOL1hUMPoxRdSn2xq2R6kw+a2PsXsPLlo2m5ho/2tkPzO45+cFgN9eo6+zkErZeTWd+dPnRkyNydaGrfoiMXvEZ0+l+zVYNyom+WlcXOPTh8meO9fTNI2xjNGPEN2YHM1n6xS6G/POjTurFrjqdfTYvdNjCgIvCLZ/yyIeeDj/yZDfr0BzjW8NqSb8c+NYQHrk4ED124s9WvVu38iPnl3/2UXGKpXjmdfnQh+1vtL/yyitX3/ve9xYE+9vQPmi/TbW27q7ArsCuwK7ArsATWgGbif4zVBt4hGfzYnPWBgKvjQyZTR65jQ4dPBsXG5lLxB7ZsIRt8+2b6p/73OfWIQt7mzrNZsmYrs2XzT6fyEbL5skLDFy6Nk/F6AXIAbsXfpur4tMXxwK68INPeSL+ssdnK2f8iUMm73iuq8Os4XQnFnbhThnbah1mcr7VBE37cNoQhpGdnk/2+vkiRNackEWu+dfLI7/VYOq5thbaGGcrrjPBCWvK4NbiqwNM8TYvsOGadzzNON/G8sebNnh0UNfyK0d8cuuvl08yvm3MrQVriv8Po3Tkw86ahMWvtYvvWuueaG6zPfvAn3G7LlfYqD7bcw3k4mAsPvvuHzJ8ufuzTV7UjcXucMA95V4UL99eWh1Y4DVv7k1881ssZMbs+NDkUj3UvDqolfsaDjtEzpYvPVu16oVfDmGyJ2PLzqFascFq7Z1rzH81SQYXBrxihS82PdzygB0Vn1ij8KtJ/PO4+OTD3vgSFU91o+faoYr1KwZjfPXUlxdcsc/4Lvk487LDh62dSa3C5VOd9Pypby+5bMVD171lvfnljrH1KI/w6cnXfFSv4m8Mmz7/s4nPuvGfpfqmt3WsHvwUJ9vqY775V394+RRDPvUaau35RbE8wmQLa+ZAn5012Z+O+dSnPnV/XshvQ+Uut7feemv92Rz2fsnsnlSHalxNilvO8jSWO1JzscldXn3Owqo+8iOrLp4lDgY1mJ4VHQrm230KCwa75opPOsb4PTfwjcmKm476ihmO2lrnDj3w1Rnfs9UhKyy5Nc+u1Ytdzz/4KP/k9MQrDzGzx9fEpCG+8dQmnCU4frDJN1m24rT++aOjZtZ890i++BW/OOTvWjzya03i00fw47vG51es7YvYwsnHMjx+FDt78Zn/WU926eQLhpiRPOkUC57r8jeGrV7yNV/uR1+CoKeJ05z43OHfHLHnozlgYw/IvhrClVNr3SG1b986pA4blgNufXMByzpRQ77Fxr/1z6/144CZTDxIbOoiHjh8m0e9/MVg/2x/ICb3kHhgwIIr7tYNTHOFJzZ6bMQhfo0fdfIfPPfnoOiKs2+9s+eHHYz2yeokZj7IHQiKzf/jgAePLj++2MKWnD/1ES8934Cny6+xObEWyfH4j19t1IV/MamPPDSUjZpp5qDnA7kaIzUUR/dm9q2txkv5+CF+2Hq2yJgezNa0eZKDWoud/hmLrdjkGLnGkw9ccaEZDzkiV5NwG5evnmzaLsPjR+uq+xsOok82YxaTOMpP3q1p+cE3Rnwaw4DJlqyY8dVCf47b/NDLP59hqCUstp7NdIzxUbh8wyDDmzWhJ172xUTHGtKLh5wPOLDxxKCVG561GZ6ebs8QcrHz0/6CLb544NOvTuVJJhb3Lh319v8m/PjHP16/wOIHxm1oH7Tfplpbd1dgV2BXYFdgV+AJrYCNyjvvvHP1+uuvrxd0G4Y2LzZFcwOBb+OT3AbMtc1HfOMHEaw2SnTo+obP5z//+fVP6G1svNjMF34bIS9FDg/aYOm9DDkwsQmy8WErBmObad/W8YJDlx+NbzHQlZt2jpdMPsimL59w2WZHz1h8ZOW/DI8fcPFQebMRA4z8FBu9bGZM9IxhIPYav+Lkm04yevTDX4LjR/blY+NKL2x4cI0nlmu2YqaDXMNB6dMRD7/V41yTZXD8gNMLQDx9tRVHecAXa3nia/zY/JYn3/nH64UkfPGKx8sn+3LNrjrwA9fBGb9sNHri62WG/ZnKF74cqxc9L7HskfXJHiYfrsWnsRELLNewJpGJka1rVHz516P8Jcfjz/2lz48XCPddL0rkvgXoP6lEXl7cf+4n+edXHl6G8fgSP129cXrVWz5iET+q9uarmOnA9GypRnCsF9jksPWtIbYw6OPzR8ZOXvganWJbARw/6GpigsPGmO6sMR6/XtqKwRgu2czVmB88GNVi5pn/ejYabE0sxpcoXNjZiEMOnoXWPl/G+OqpHuHhiUm7RNVgyvDYiU0vPu1cI3kj/s2h1lyIRyOLYLjfrDeH7eprzhwA0RUzf3q+6CM8JC55VNvyFKd1iXx++DMJDpk6aIdXPWa+fIqnex9uufPJV71YyMXVQVy4cGCgal3s8vOncvyN9sdx0O4b7W+//fbKkQ/3qTlXy/yrh9o05+J2vxs3Pw7GxNb6MXcO49x31ZW+fKuLvB1kOkSVM79+IZdvtXMNiy07MeJrsDTUL0Diq7O4rSk24jU3agyn5zR72PjiNd/8sS0/PTInzZWxvGCVDz22cta3zuiKSxzy9Mx0Ta91lA4MjS1ZduLX+CJXN7/MlJ9Y6dM15tv6VRM11fKtP8emBvhafvHaG/EHQ8/HjFnc7Oh69peb2vBPV8wRDDLEV2vDmC45voZgW1u+VKF29m7+1QU9+uIk95lr/ZkjMutGY29erSuxwcCjpw4+h8Sgnv25QTWEYS07aGYjHrnzrxYIBkz+9XB81vElZ/VAnkfWmzmBQwYbsbEOHLT3bXMy+cgNTx5ikJ+++nev0YPJj+egXORwffz5w3fffXfVS8zil4/nJV3x661p9vYZ7MQKgz6fL7zwwsrbM1Bd4IqZjj14tp4d6glDXg7a/csga0PM8nd/Wa/ysJ7NBV05ImN8+c+1xodG3r2pN4caYofEwA8fbKqX2LXGdPmASVcde464FremTnTgitO42k8seEg+/ETmvHsULlt4bFvncmCj9mKKuqYLt3VI1xhuOnqNTnEZu+bPGuWfnK3aqJkczU1Y8qNTrfC1cGAaF0/1y5fY1RO/tYAHt1oWAzkSW37NAVuxwhRH/vHIxIJXPdVUPPjywkfs5WdMlg4+giEWreexOMjNdfNiLCdY5sg1PLGh4mpMjxyffvcuvj9v6s/GfP3rX1+29G5D+6D9NtXaursCuwK7ArsCuwJPaAVsPnyj/dVXX10vBNLAs9mwcTkTmU0SmQ0WvTZU2RqfqY2ITYuXF5scmyEvX74d4JtdZPDpTj82kF4y2mDx28sAnDbMfMKwsfIy5eXMJgyWJuY2Tq4v5ScmGPT4y2c8+Wr8ItfFzQfKXz1efvVsbCSn/GxHD6lluPHCIINTLOVHn+zSPPDNnl0UXuP66Q+2WsCG0aY5nXyqhZb/5DDTwavRw0fh6uORmxNzrEds8eWt56+NeeP5IpQNPS8lc+7pa/njwwtDL+fx2cjZxr2N/Qrm+EEnv1O/PMi8eLDDg6FH9GFb091P4eFXp6V8oy/X4saf18bNAVtY9NUDlR8eOVITLxJ02Lo/vbz71hxyr7mf5i+75OBFWHNdfTqIKG6xicG4nPnAK8900oOhFmzSrW7hVhvxhaW+1igqJgcoiD057O5pfHhIPeBEs4Z0+AtDPxuZVhz0yY3lVkyN+Ui36/yWX+Nzzw+aNTMOWx7mWPzuD/rmTwxiQsUe1mI+wg92rX3++BIHgqWJnwyZQ37Z0BOP2Hpe0RGntedwyeERG+vRwVF6xTl9icVYm9fN7ZwDc+6A3Te/fdu6zw5r17UYECz3AP98yyNZ+ZUjn7PmHd6Wv9oUP10Ei9wL+8c//vGrN954Y/0dZbz/D1VnB2H+3rv/CJYPh23Wf7j8q4sm/vJyYGBcfHLXuhfMW3NID8FUJxgaDLl30O6gw3OigzO64fBjDCO/4uUPFXPYePQ0PPUUH4JjbK5QOvyabz6j/On5g1Ec5WPMhxjlLBYY5MVTHwZ8z3WUjzW4GceP19pnL17PJnXjj18Y2Rhr3T/0xahW9BzessNDrTdjcbN1rT7xzE385ngZHz/khidGDeVfvcyzcXz1QeKqTtUATysf2OKQr1jUzH4uPTwynzv8GLPlT1MvNu5XzwrjfJlvsdDzuW0tur/Iw7W/jCcWf7/dc8C1+hZfawmehp8v+MZqAVsvXjUjU1tz0r0nDwfN1qi45UpPXw7iM/9yhyOXia2ufonmsFv+5puePbPP5p6R4san796Tk1rQE7/rb33rW0vuCyhiUANz0F5HbL7N7hkiXmP+PFscvlsT1avPE9j48ig/1/jyV3M2ZBq+Fg4fYuZHk3trTw7NgXU2a8+Orj4MftmalwiPHV0NtVbEp4lHbMnpsBOXFpVDcvUOH4+9+RM32aSJnS9xsSfD46tYja0bsZFnTx8flTuevPksNzxrjA4ee9j5DLca80eGr7mOyPKFz4+WTnI+xEbmWi3CFI/84JDRKWZ+JpZ1gMTBDpGb12yM4cCjz5dr1D3Ex5ngwW2dlIfY5FFserrWR1Qu9Nj7F2kvv/zy1be//e2lwuY2tA/ab1OtrbsrsCuwK7ArsCvwhFbABsLfaPefoXpRsGHAexi10bHpsEmZNjYotTOGDYqXA98G8HJhY+YbNb0owLWJ71t0bcz4sWFsMzQ3bWyyT5/cBqzNF51kYir+c3z4NnQ2Y3zZiLJznY2xZpMmz3Inj/CNs9G3gZ0bsmmTbX164cSfPR2+2jBOWXbhkOEZa/mWm3wah9EcZk9HPSL8Nqh4xVHu6U1c12LV1APpNXbwm9t4+ObEpreXDHbFLQ66ZPr8GbMt1zbp8phEPx361pIXaOvUGJGzs4l3iMP3JBh0ZxMLOxSfnRxnnnDljGfNus4Gbnku5vEDr7UHlx8N8acZzzqrn7yy7Rq2plb06+Xv/uxAQM4OELyAi1PM7lG8+QuwFcTxQ1zVrFhnfOLQJsVjJ6ZywZdPmNXybM+mGrI1V8gvDNh7fohZvD1L8k//jDdl5VxMfKlBzZxpxcaWbkTGZtLMy3UxwBDvtGeXDp/FEUZzTdbcZ8OvdTVzKP4Z09nfjNU1XRhzffI14+JfLIhucS7G8cM9aO1Zj5F88R04+Szgh44DoPLLjzG5GOSUHFZx9KLNBq5eXD5XWq+uHVz5Vq2Dp3IXuzXfswImyqe+nPTGSD6eF+UFp5jJ4TSvYpGbb7T/6le/eiz/Gao/7fDTn/50/SeL7mHrm//iqF7mRMzFQ7ccxVl+rsVJ1jMBXjnoydQApnrJnz++3WN8VtfwJj47ugieVnzs4Gv5otfYNTIO0zX/xvGMxS92BLfGN390+EAwEJ1wjMnLPx1jenCKQ87sjDV2YVXPZPhi87mWXb7FBL/W87ta0HcA67mMRx8OPWMxdX/0rDe25tnCpS8WcaCuxanh44nR3LovYCAYsLLFoyt3ttU/OZkW4Vcn+shnjlirKx4b+SD6mhzpsOvwOQxy1LzDcyD9xS9+cT1b+IXn8NhBM32fCerIFztrWW3YwlVLvecEf74xD0McPiPpwYUBq0NoOHLSqxtszya/sI5P5gsmYlRn36Lnx6E9GfKZi29cfH1rv89n8fFPVwzyEptfMMjF8+ZrX/vaill84nUgT1d+8nHPXl9/8O15MjqaeMVDR91R67X5SabHE6t8kLF43GsIhqYmcMROPjHpsdOSs/FZjkcXwZB396A5URP5uha/2LU+F+CJ07zRcY2noeKbPD4RHnljvHLmS45i0tDUW4zjR3Vl1z1L1hpUC/Z+SVEO1Q5ecRXv9FENxWj+2TXf5oQ/fTg9J2DhadYYeySOfIu3RiYPxKYaiN24HPTWgTz4gIVnbJ7MAX9k8jdPdGDDYVu99ezKgY745afJPd/FpedHm+uRT03cEfsw+CJXKzri40uMngHk/uN2v9x+6aWXFkT1CO/D+n3Q/mEV2vJdgV2BXYFdgV2B/4IK2Jz84Q9/+I+D9jZUbURsItpExTO2MSFrk5GOjUh6ZHzYVPnW4tNPP72+uWjDhGxo+vY5exstuK5RPJu+yWuzRMdGij8bIZsiesXFt4bir8HpB502WOmHxS5bPK386LpuDDb7XMBt0xhPH+7kxS/+agkfBj7/6cEgmz6LB49+scNyzT594+YRb9qmwxebNsHF1MaZnK74bE7J+Q2vPrs5d3jG/IqDHzybanzXXpzwe6EqFmN+6Gj81Ni6juCJj202dFwXqzXpUEGzXsVUvfTWYC8u1Qmv9YrHp1hgo7DnCw6sWnnD8TJYjeHArRnDol+ufIi5tZUsubFGT/4wGtNB6pEdPVhe8tRczOy8XPhGsPtUzdl4MfdiTyaXGRs8Y3zXWjTzxqOnFXN6sy/uajhlXcNA8JsPtfHMkZc4/SLRy5xaF1+xs5WXhofgsCtnvOTZ5Y+uOLUzpVuM5OXUPLCHHZ/O1M+GvnrmxzVe9WOTHb/Fq5/89PRTj59LJL5iJJ9+jcms3eYaJhKX+uNbS+bEPE7/6Vl78nLo7vCJTi/k5zjNCR/wydiJwWG6MSx+yFHxVQdj32r1LU7f2GTTetd3T3VfujfZ5AumnPjlwz0jN9dsk6XXWI3k9MlPfnIdtD+O/wz13//+9/pn7P/85z9Xjfmo1movZjy5VLfiFq/YUOuArlzJ4MgHjrp4LswDEoeAMOUOs/qUL0wNH+HDROz4MSd8dmCSLrzaMrjwgxzpxclX88SXuOWRDj28eWhSfmRiYycmc65HbNIzNodw1ZQ+v67Lp7zZd60vNz08/lzzHY4etoafzFgc9D2L5UDXN6fFQ0YXXyyuzRe++npm4xeP2GBpcBCexlZ85trcwigXGJ6LxtZEtZgY6sBPJHZ4cM07e37T6bnAT5TMuJjFU130E8N8yR2+WGD65Z3/A8hnOmLjgNlnF1u67Lq/s3M/ixepHX09vpyR/KsdXFScevqoNUUHPht1MCaDR9+zq2+kO4wnbw7Mo2u2cswvPGNzq6Zw4PnXQV/+8pdX3nCee+65lavPQDqefX7Z4GDffSc/suvjsN01HcSPhsxp9SmXYhRb609u6tm/GmADr5jphQ+XvrF68YGmX3J18lnOn/Wn9vRda3Tkbc6tEfHQUVP1Cbd1KSZY7PKFJ7bWYDHDI2vNi8+YHZ309Hxq4fMBj275keOb09aZetHp3nJPy4Wu+dHnTy9uPqLwxYCvXnK1vunyp5EZz1jZ4mt0yFE1U8v47OQhHtd0q5nemLyYPRv861D65Q/LXGnNkzmy7uRfDtUAZv7yWRxhygHRgw8Xz33vlw54bPBca1ExlC9/YagJgquW8sLzn6HevXt3/2eoFXH3uwK7ArsCuwK7ArsC/7cCNhUO2u/cubM2+W262ozMTQ5rmxJk09Lmp01OG5U2benpbXaeeeaZ9TdpbX7a3Ngo+Sf9DjzmRsimTQx4Nl82OfyIB89GUsOzYcU/fyOCX/x6urXFvPlBR5sbTWO65SlXY73WBgyvDWa+ztht2uTMjg1d9apm0yZfeLDZ0C9fMSG2dCfRKw998ethlZMesS8Gttnnkw5deuYKkWl4xYJv4yxGeYYld2RcLuTp4NEhFwdfZL1YktmsexExv/zSM+5lvXj0xR8u3+WeHzzX4qVfLXop8M0pL1dkcrb2YLu20UbGiMz6bB7yLwe4jcs9X/Xk4oPhZaMXDdiuG/NXrcXNHqaYq7kxmdwmzVz5KyY6xUiHvbi9/Kl/eOrspdyLuHjk6qVILeRfXGI815QP/iK2s1YznqmXvr54YVf3Wb9ph59Mbfz9WXZycCg4nxHFIn421pU5xocpt/nLhXTSF1u8csJD7Gut68YfaPzvfWScb9j0zsRP82iO1AEvTH21gSEefbHS1SYZp8s/m/SKYerQjcjF0zpXNxhRvqwh65OugwPNfMzY2FpX2Zszf7sahs8Ka7H6lFf3xczbfPmFEGw++OV/kjiqk8Mp6/revXtr3t3zHaSxg82PdW79iFNM+Ho44bErT77x6aH0XMOzLh2w+0b74zho93eXX3zxxat//OMf67klNrlo5geJvWemGopJfORyNa7G6khHDnKho8HzOa7hw/TZ7eDSmF9Y2cDEa87EQWY+ycSD+HNfwlEfJLbqtxjHD1iRa/Lqr9fKgZyP+HMsF89aDfX8pF9s4jDn8Pgha+2yqQb0yKw5eeRfbTTj1vqsg3jUAmZx6ukg12rJFoZWbeVkTfKN51DV3ODD7XMEhgNbOnSt9+JKBy5iK0/+xOC6uVIvY9hkrSO64nePdq/Rg8kfX5EYxCgmsfcLMXI25cYXnfLmj19jvfkRKx33nGtED67PJWtJDOJ30O7bp3RhiME8afyyM8/s9Mj9aX75giEP+nSN+cSbc8BGLeTBD32fHfRgiZdvteIHFtKn75DdHNEVt95ho/8rpecSPP8Sh14YrsVvXtTPnPumvD8XE44/dSEezzt19Fl4fRyq+1Mx/KqZ1v/v0Lowr3JWK2tG3/5dHTQ6cm/uxGV+/b8YiA47fl2rkbEmR43MmlE312qihan3mcBeHOKr8QeLjlg1mPDkrCdH8NWQj3hLcPxgA0MuiH866kkWFpk4yGE1D3ThGtNvTevLTyziZg+3ewcfmUPPQYfT1gss8yJu/uDAZq/nE79alBdZPNfRzDk8MjriTFdfXcXBH8ITi3iTq5k1oLEjlwO5HD2f+GKjXnTg8ceWrGeCmI3p+MWKdS9mddFgkMPWXCP69PguHjL3j8ZfNvTSd229hLnAbvDw2dFRV9juXbY+t70z+78PEPltaH+j/TbV2rq7ArsCuwK7ArsCT2gFbCL6Rnv/ZNRGwgajTUYbGro2R8jGRLMxapNhE5UOjDYzei8bzxwH7Tb8Xkrw2Nq4+Ke8HbTj2yjZ5Ohh21zZ5PBHjmczTMe1jSCyIRUDooeKzbgNE5xJ6eKlRxexn3m2WVMbZNwGNZslOH40pisXDX4xsVWDM/FXrtWbjo0syp4tjMZLePzgg089HDrh5R8PJS9WPNf04sGfseJr+U1PfmKcG1Q4E7NayMt1cdIRC4LhJZcObPNrnZhfPqwHY40NHX5qMNlWO7HTic9H1/rIunTI7hu1c4PPLz319pLnGh7fvTzwoR6aOPLdNX1UP6/ZWLfzRQK2NQ8fNrxybb3Ddh/0kkvHNX6x8GOsbpd8J5eTRk/uamEMU519862DA9gdTKhJvuCzMb5E5K1ZcmOx6bVoXsMSg7joakgt0LTNbzrq5J/Zq4na+obdfEaoK5x6sZkHY6T+cmZLD37x5wtfqw7L8PhBXm4w6TROR+zxyHvGJT/3dN0b1aIY0iPX8MWM+JDPWTebYq8GxlPXmEx+4WXbeqEvRy3iF9+zQMzF3lqll5/WOR/8OSRyqALDi7q1GH5xzHqLA1mnDpLoqhFfZHCQGKwlzTU9n3m+Ce4+EycbMVfHnjUOAqZPccKFD8/zik+8cpx+4SE+5eM/QfVPzx/HQbtvtP/kJz9ZB+188ysXTXx8m0N1VqNqiEdevvh0xFh+1YsObJ/jnpHNiYN2NeSz+S5/2Kj1U208X8TkWQqfTwczninqDafaiUND8dbgZqzmMMoTllb8+Brbrvnmp/taneRHR370YIhP7EhMfNFD9NipVfV1rYYafBjsxcK+XPhxDcszqrjwmygrLQcAAEAASURBVBuY+BMLj0/5Fpuxf/0BB58ffvlH1dq4uefbtZYebK04xSJfuOJMRl/d+EDm2j2q55+emKsFHHmIs0NyB8N+IUZPLHQ0fjT6+LN2dLU+l/gxB91z5eT57l5lC8uBpXtMfOzlIwcNhua6zzP5y4O+2tGHhS9G+oiNPNSCPt2eAXTxHTbzKQZ25GK21tVPzHq1oo8Pl09/X50/B7Geh+KRK/3r44Dc5xJsOuUMjw8Hi2y++c1vrkNOvo0dojukZ+Pz3HPDL+n8Al3NiqG1RU8sfJsT+cqtg3Z5Vyu1bi7k4JngoF3t0oMnlpqxBltPl21zb8w3ovP000+vvnUrf40+4kccenHCUhs48BGehkcHkbkWlxysMTy4/FrfxmreuqcLoxjI8VDxwFI/GHjmOd/0zRVs90YxNgfdU+zMTeslP3zBRWxhn0lsZHTlV1yu4aDZq5txPui7Vo9qWg76YpanHNSeL7GqFbk8HJiXP7tqDZMtPTmyIUtu78YekTfv9OFN3WKnZ82wo2etuufEZawmqBzVsPrPGtKXDzldvuQlBjL/Is3faN8H7auc+8euwK7ArsCuwK7ArsClCthE+Bvt/hncPGhvI6K/RDY6Ni42J66RTYzNiY2OjY8NTBt1vW/X2HSFyd7m3UbfS0YbLLY2OBoevTa48W3QXJPpxdALgljwbIgQDOOu878YN3I6GlnNOJs2dvxpsMNxnS/62cdLLgYyuOHlczk6/QgnHTnnkyoMsYSFly/Xxd81vWJyHYXf+NyTa3xF4jBP8FzrxWf+9flJVtyN1aI5CoMP1zCsHdd4/Jh/Db8Nby8tdOBO7NZQGPp8ppt+fq3R/la0jTq5NdXaVDNrvLyN1QTPNRwUPp/5rW6XenZhz2ubei9e7rFqpTZiEwM/5VSv9qhY8q+nf4nCTrcDBhj8iMM34NQ76uWve6H4zU31OPszpqe5rsXjD088eoTnhdTc0DPWuk4nvr581KpvjKlhhymu6WUbll7sGqJXnmcdeWv45zUAOx9q6premaq3HqUndxjVgMw4ffnFWxfHjzDI6Fq37LVix49cF5N+XqeHV54zNhjp5LcaGBe3a+txrtWeD+LU6MKiQ8ang9z+dEz64dNlA9u1lk/r1MGvewY222Ridp3f/MF1ABW+g5lsxAJLs66N+YuMxeKZ5DOPHZ77h+/qULzs+LGe/cL5cX2j3YEWrH/961+rjmLNp5jEIm+x9zxxLzvYEC8ZPbGZZ6088cmrl9jNjcML+j674cCFpRYOZtiVv7yrlfWgPmTWKGz3m2sNJt1iIXON6PZ8M+ZDXFr+YFgH3cNsstPzKzf5a3xVHzKHlOYy/3pYasqOjtYeB49vPT14muvG2YmZLX244lEvvIhtPvT5NyeIrVY8YveMMy+wyOiSszWGA1e+xcK356H1Hi+//LimA9+zVw+DPmwy2Ppzw0f65ttnVofk/PqFmIPo8qgezSdM1+zFZ315FuOFbQ7IyxGGGNl2T1prvhEufr7UoM8BOYoLDh/s6Vg/9qWwxUwGDwZsPqoxPDh0WxPioWP+8c1PNYLlnmmNsue39ULfwbyDdgRbzvAQvz3j+NHY0xMrW81e+/nnn1/PUnZw1dwBO129/9uhb7QXj/zJxauXc+tK/cWLxy/M6mIsN41O+3qxpQePXC56hNc869NhJ1dj1+J55viijt4a5EOszSk9Mr40pKZs6/ONV1uK4wcMOYml+lr/8Hs+ZVse5dIcVQt1sr4QG3I5uWbDh8anMTsyax0vvvjZ5g+eePJTXnN9pq+P6BV79eIfFV85k+MZe7aoKSz1Fk/x0jvn0Pyzd//ZU7vG1yJ24crZGuQPptYvdOn33IGDyoseG7VC7m33m2/RI7F3D7cO8NmzUzM64rK+4SF9mPHEKA7koN3/a/bd7353jdXjNrS/0X6bam3dXYFdgV2BXYFdgSe0AjYRf/zjH69ee+21/zholw6Z1ubH5qRNlmubHr2GbExsrDQbKBtUmxg9mU2NzVWbTfY2rzYweIiOF5Y2jTYwZDZ4c3Mnrnzjw6LnesbsGvFfnOWDP3GS4yMyeOeWHpyw8sMuvp4tIk8Xrw1jvKV08wMvyjd7NZl+yh8WvemDPXm8xvoZU3jxyNH0m2xi0emFJL4am3d9uPrGcKod/rSTs0bXGqkG+bYRNr986o3bOMNMT1wwtDNmuHTzDUMztm69oGpekNi3ueajdRh2vtgivVae7OMthZsfM1asxlOXLy8e7g/xweqeEltrIVs45eu6OlcL2JPoIvzs9MbuWfhi0IvDQTuCR6f646mrOIq5l3Z67tvW+jlWcjytOcSDpyX3wuVgr+eEerCBy65cw2enVmLXxEyHvdjEiapBMeDRm/i9WHaP0XFNR8s/TNdhmTfXfKQbBr4YtWqe7+zxw6YXZZM+ncmLL258jQ5yjfgIuzHevBarnIpZDq4bT/1wydS9uupnfq7NhbltXep9PjjgdEAkLi/G1mC+VmDHDz75CsM1HeRazR0ezdyX8OYHu2IQpxfyDkLwrY3+LIP1LRZrpjXMR3m7rq5wrbPisVY9p4wj+Bobz5lPfOITj+2g3b8Ie/PNN9e3U/lQB76rk/qqqV78auZQwbeKO+xkZ75b0/RmruHJy/NRjnKho0YOOOCqA51pD7ta6ItDvY216QsumTy6/2Cwsy4QX/TCDoONeFoXdKtDzxS65rc5bs3iy8v+w3X3rbrArTZk8/kCVyzwyoNfvBobpNfEJ3Y4dM5U/cjo8o0m3zXfza+6w0RsxKMW9PjMlk/r3pw1b+Rss29cnvywrw7mmW7xkRnTU7/2cOzdZ+pq7uiYW58nfsFlHV7KH47GHlkHHfTSF1/5FqteLTxLHLTxx95zRS92a55feSOfLQ4Ci029/OLIYbhY3TdILNYRkqsYtK7Lnw47TXzs3e/45sMBtF/ci4VNedKnkw07cvF0sJxP9vIRs3lAjc2rpub+M1S+rR31c0DvgB2O/PwrUv+p7vxFWXVVx657tpk38bgfxMZn68B6w4edPz7L0XpAMFG5kMsdTusYr2bO4ahT3/JXu9a2a3KkfsXkmi89efXOv3hnDPyh5i37MIwjecJkT86GfWNzaCyW1g8ZntrkW2+MLz84yLhmnD5eOPjl4potX3DowNWnT04fX0NyUne4k083WzrmJdyecfjFXBxsECzzJm62fVawJZu5wSkv9sYIpnyKz7pji59NOHjVjk9/eu6Z45cyeNYdffbmDAY/YmFnrjwfyD0T8FA1gecan477l71/kfbqq69e/eAHP7ivvy4e8cc+aH/EQm21XYFdgV2BXYFdgSe5AjYQ77zzztXrr79+/6C9zYa8bFZsqGw2bDpsVtrg2HDQ1SMb/A7FbDI1Gxk9HbY2K23I8SZWGF4SvCDYZGVnk98mjX2bNjZ0whLvjJ/cWMvX3My1aZNbjQ1q8xb2B9wP8GCRp5Msu2TZ8s+Xvnhd09NHc8wH3TDVceqSifnsA0a5Th+u04cpnnTzs5wdP7I3ZqfRtxYam9vG1YOONmnmxD/dKH06sDS8cqJr3s05WzI8cq18HobLpvXomq4c+PICZk3CtH59W7NvbIqJ716q6NqMFz8sLwPVwRhuMadXrvUwEd2ILw0GOzHyZ53Lk4wfLw69+ODRrcFyPXGLKT/11dkYDpt0e2GTt7q59xxOwKZDX3zImE68Xlh6kfGvZOAgefOTP9c12MgYnntfz49/BePwxEsOrNYCGUz1OZNaaQgmfLqzpuVCZ9YNvjFcNvxoxmG5jjevw+IHn4+eV3o8FE55L+bxgzw7+GwiNpr6IfJZ0xkzO7qo3Kp7evrZlvLxA646m0PXiF7x6I2RWOGGbd6KL+ylePwofjUpD+vQ897LsQbPvGuue85P29Ycnlg019apb3ezKd7iFENx6uH7rLK2OohzOOCg3cG1wye46qDGcMqxfPDEWMxiwJuHtXTx2Yqbrs+2x/mN9uvjT0n4Rfn777+/nmnydw/3bNL3iwzPDjHK1WGnX0y4t8WmftaNWFG1pY/kQU9+cBBc+p6LcnOtTdueNezT4cc9Apvcc63nKB33ugPGPvfNl3VirpB5Yd/c4PEJV49gw9KLm58aO3UiJ9PEJwa+EB0N5sRNT107zKVXPvKHxy9+8YRnXN58FSdctsZ0NPFp2Uxd12xgzLiN8cWsjmzFg9iQO1xWW3JxVYOldPwolmlHZtz8GouNvb5YrG+fpdYIntjUCY+tuPjum91ioqOv1q7D5geOPNyX5s08wkTVBjbfDmQ/+tGPLn/itV49l/i03t3jcOBbT/3iCKZczKPPMTZyoGes8YX4ol8txMRW3Hj8dg9a23juOTnTg8PeXsO67n7KP11YYnGwLgZjdWBn/tiqGyquOQe+yQ8XpvvFc83BOl34Ppv7pQN5sbPRxKzG4ieTPzv3JQw5amI7zxseYidetUR6MbOvDq7pqJf5YAOXrvjUgNzckomVTXNijMRrbcPRsxG7mNu3qQ+9SJzi0FD2/MgJFU/ziC8mNuHptXyyM4anj2bO4rZu4KtJGHLvmixfrmddw6TLb88iOq3H9MmbKzHAYqcWrtVTn4+uyc3D1HMtLw3xoeEj+O41PLbmw3W5h40XsRUfIhebcZjiK0+YdOCZC9eIvnvdL7E1OYuRrfkXk5qzsSb4t87dS+pFhw+NDR1813Stt77R/uyzz1794he/uPrhD3+4fBfDGjzCj33Q/ghF2iq7ArsCuwK7ArsCT3oFbCo6aPcSYMPQ5oasDRC+TYeNCj7Cs5mxCaHn0MKmxQtVGxyblGxtUmxm2lDBmJswuA4/fBvJy4+NI+w2yvzbJHnx8ILomn92NXG45pPtw4iuOOnThae5xitOY3nQ19oA8qGdiW1xsE3HBnHG5roGY9oVvx6fT811ZKOpRQ/SIy9u8RRTeHzUwqqf/tVaqw7ygUGnOPKTfb3YNL6jcIrDXGjGbW715gR+a6k5x+MbZvrGkfjokuu9zMBnJxbXNt8anvXm5bWDXfGFLybrzj+/LhY8B00dPBVX9RC3azjlbYyPxFBfLRbj+EF/2pOLv5eM9OvhVgNxaQ8jWMULQyxsXHuhdO1+M1Yfh3Je+MSFV17iqc5s8B1ilKOXe/c9fHiIPRz65oB9RM9YDHp65kSdPTt6UYJvHsg1fid5gYIRX8/Gy5I41IqvGtvyqu5s6DXf+WFDVx8vP3Bc95yk14FAuOxQ2PSrCZ5W/eFE7Lo/2BTX9M1HbcbouhaeXvz86SP2nrn6+MWHx+/0Ga71VHyw1Hnq4dGddaPvmf/UU0+tv8vOX+uCnvznuiGDwReiXxOzb2kWt34SvBp7a8q97m/BGtP3ueI/FXUYJ8+w5FHsMMqLjhjlUR08D9xf6euLW619Pvq70f7ci3+CHtaM9VGuxYH8nWX/hN1BO19y8Rnqs9jnq3uhz1UHWeRiVq933313/fkIPAdv1qr7DvY5f77w5xz7288OwNghc2G+1E2uCLb8qxvfniVs5K5WMMTZs6DPfL043MsdLsL0TPGcIecTDp988Kfhs9WQGPhSE7GJk076dOCQXcqdPV01Fm/Pfjw5WTvhqREs/GohX89SucMQi1Zd6PMBg40YXGvVUoxnYgMPDl2Y6ghPnaoLOzzxOtyFLz79nFO+YMHVxK25NgewrRW+JrGBY/13D/DNRz7FWbzqYA7w1JI9P2LWqyc/yGezeXPwSsaPzwUxhOOanoP2Z45vtIqBnnvB2rJW/KkU93Z/Px2fTZ954nQtHjVyrT6+Dd5/tFwNyeCrlxzFJV9yOcEi11zLy+do+2Pz5P73/1GIQXx8XB+/ONPko8EkVzc48vG89NxSE77lozbuCf75cG+SI75g9nfTxcyfPb+4YLDjj59iVgdrHb+58TncemQjPmPX5lA/qVrgi8uziH5rAy589SSDIV5+Pc/dMzAQO/OB2PesgU1H3Hywl4f8rSP14WPqkePBEQPqWWlNsRMLOezmQAzk+OzpmBc+NTEgMrr8sA8rPnu5kBVvtRO3+4yuOeLP9YOID7GLgx5stalWxcUXH9WR3Fhs4sbXLhEd9vS0WT8++SDn25zh0TOvfBhrqDFfrmHR7ZkMJ1365PBhqQs7a1Zd5GBM/rGPfezqs5/97Dpohydmep4j1jt9sdnLs2u++cKnr8mBDlt64spWLHz4P1Zeeukl4a0c1sUj/tgH7Y9YqK22K7ArsCuwK7Ar8CRXwKbCQfulPx0jL3KbHmTDYQPS2ObGZsZY73Dcxtwm0WaEXLORYmfjavMCk7zNKTk9OF5uvEBpNtpkNkg2922qYcCyCWIDS4M7ie2DiKwYYPAvRs2mq7z1dPHoaXg2e0hNLvm5ZC/f8Mo3vOKcdnj5vZQf33AitvTOmORkyfVs9TOn8kxfX50mZnUz564RPJSPNRg/8iPe6stWY4Pgqas6pUfXvBuLhR828FwXc3VorLfxhpeN6+aNPRzYXrLYkzmIav3RwddcW4Ne0q07PPbWuxd6G/aZi3ysJYRfrMb44kPFoQYafo1NctfuKy8aakKHvlrBNxYTmTE+3pnyk46ej/js1MFYXfTy9QLvnlMvxA9d8fTyAwulJx4H7e7f8Ni5RvSbk3hiaR3o6Tvc8VwQh9rpNbJq1fUCPn6IyfxXJz1b8WvNB7/VmC2cZMbs+MJrrGejkZ99nzH4VUt++SvX9MLjQ83CLF5jjT/1Uje25OdY2ZcfXL6yLWb8CE7rhh6C2YtyPD1+LT781hD8+UwQHyoGvhqvi+OHNWR+HTY5GIJbnHq5qD8M43zpEUzX4rLu/CKM3+Jlh4w149a4+9ZnloMrcbODce/evfu/UKuWbFGxwVG36lFc+A56rD9+0tcj8fpcc8D2xhtvPJb/DNVB+4svvnj/P0Plx4GVZ5M4PDc819S5w0dxqKtfKlwfB3Dy70CnuOmoSWuy2tGVDzlM+K1tumyaAzazNsbuBeuLf3UVo0Osntd0yDw3NFh0ejaTmyeHJw4J+UTmIn984tfIxcyHGsAXh1w1+mzLec47PqKj0Zezedbw6ItVDOojXnb8kMlTHuUOTyw+N/IrVv5bU43xNBitJ+PighUfj38x0i8mOghPvOoNo3mqDnD4Ra7plgNs6wp+B5dL8fgBF5F5Vrf25CsGhJ8fWA6uYPNhbvkztjaqJz9IndS0X/h6Drp35ZC+GMyLA2jfaIfJzsG7Xhz+A1Df6rZ25A4Hrl5M4lOb9rLszAcbf3aFDZ/02Omro9jpGsOSj3rAgM+/e0wd8DUHg/2yylrmxy8DfG4iGLCss2pnf+Jf/3huiUGN4c6Ddmtc3nJhb61d3xy0F6O6qUOf1/yJnU/NvMDpoL05EWfrBnbrtHjNA5zWBKzqZF2oLRt4YtfEJMbWgdoYy4ucH5Qv2GKAMWPhR87qza9r8XpnYKPJC75enDA0PsyVX76qjT0Pnnllp9bsXGdTvfglC1es9BCMaipPTR6tJTJ+xYOmL/j+E3f3Cj4szfUZH4Y4ws4PTPUQWwSXfMZAHj+9+nxXO340+urDp/rIBa76seFXXK7paOKP2Gvs4IUVdjmSw3d/i5OP1g6dfLmf/FkXfzYJBj4986+GrvX28jBgWnPm030gNjmSefboqwlbecF10O4b7T53UXGW14f1+6D9wyq05bsCuwK7ArsCuwL/BRWwsXjYN9pLsc3M3CTZkNiE2xDbfPQSz6bNSZsrvQ2OZtPUhsZGB8HHtzG28fES4eUC2dzYLLe59XJg09OmjZ0mHn4fddMjhmJhZ9MJk32y8hYHnobayLvOxnUUrjEM+JOmPFx9vuUyx/QfRGxQsZ312GZvk+pazHp+pq/ihJWNXuOnmsufXTrVfdrNOOKnRxZuejCtJY0+f+bEmuEXFTd5WPS0OaYrV+uymI01tnxYu3JA5UaO7wCJjK3m2ouXg/a59rxE2Pz3kgObLr826UieMPiIijX9cx3LKSx1yE+5suVHQxMzvFljdo3pImM4Nf5c9+JRHMZePNyLYjE2X2pVXHr3Lx1y+TvY8AKD8PHyxbd6w9Ebo54n9PjnQyMXNwz45UtHfY3ZIDUJMxxyc9fLHL1ikTeiExZcJF/XdJPhFy8Zuyg7Y9fihaFH2cHCy9Y4WzxxynPiNz/k4boOo2tYKNvy1E9Kzo5NrZynLll55I+9fDSxqbk+XPZkjfVdk9F3+OKwycEQ4gc+HDlq4s6H3vzqET361pmDKnUrX/J84vHXenPP+ozxeROGevsWpXtdHDBb8/miC6tahU+OD1ezjsWIh4rXPeKftv/6179ehwLs/z8U7vVxgHbnzp31CwJ16TNWrsbuS3m6h9iIXw3wHVw6zBKb+1u+ze2MadpVe3GrlzqQa3jVhX38erzWrZ6+eIpVHI3F0XrrWVMODi3tA5obulr2emOx6BFc+w3rzX5CrvzS1VB25YVX7LM3t7D0+HzMWNVWncoVrjGiJxaNbXXQt0fiH6b61Ni2fqs5XNd6ePV02XvewXUdHj1xG5Mh9dXI8OHwRQ++mPGNycRZXOHSQw6SHaaqgfnpsDT8fJlD8cFzgF8tqwef/ETwO+RlM3MgE4/7roNo97W59q9H7E3Nt8+jfpHGBo5WLcwRXYf19gDw6Dns1Pg3Vie6c02EUT3kIUbx0G99wDTmV4z9AsIzxwG7b893T5Kxl4e68eke8Ayx/uCosXvXvSw+daAjB774oe/ZCF/8Gjv3UIeOsKtFOXZfwpRPObRu6KPWwhzDQGoUrpp6zpOZe/Or15A1Q1eTW7j66roUjx9icZ+IBV5yNa++4k8PhliShROfz+YLbrVsnZYHe42/fBqTo3jlgEemFWc6eGy7N1yzKyZ61kX3AT1yfFj0EJ71YA7x5UwHPpk6ZJdtejDI5v0Ek174xogeH5pYyX3emoN8TFx64hIH3XwVF0w8vuY8wdbopSN3MfLDR3571tK3tvzS3i9Lyheu+rV+jdnyCQum+8AvqvgTL1vPCzZ4sF1bp64//elPry+n7b/RvqZn/9gV2BXYFdgV2BXYFbhUAZsIB+1+O2+zYdMT2WyQ29TYlLQJcW0DZTPvhcpGBdkI2dD0MtTGSQ8Xjt7mBoZrGDYuCD4MhwI25GR4NkU2OG10bIjYiiFqA4gPW3sQ0TkTffiIT3ho5m7MlpxveejZTX9sz/bswiKzOURqkz/8YnNdXZbi8YOehuipFf/ZlHdjenBmo2+MXPMR5mKOH9lNeTViO/mZ8T3907mkl/7s1VNdvBS2psy9F8HqNLHmNZzq67oci6W+tWeN+VaYl+pe7rx4anTxYbjWq5OX2Q7y1JpMgyneamvcC7qYijMsctfNF+zipZ8ePt3i6EUjPPx8xpP7pOYYL1x26qnljxyGhu8lw/NAjGKA46AB372oTnJ2ANAhnsMSNTVn4b/33nvr20Tw54tL8YrFi00vifRcy128iI7cO6DAE7cmvq7xJ4mZDV+wtOJnB7c46tnTC3PGQL8DOPZnglGjqyH3DLxiyBcMdTo/P9jQUcdesItn4rCr1g+KB59evmGfiYye3FoTZx21LF56rjXxILm2TlzDrBaznxjszKv7z2GSX64mh8tnZD3U4JMZV0v+rMnr49BZTcjEg8gQX9aWnh0Ma9gaQXCNq6m6WfPue4ct6dCbfuGLV+yIb5hz7dHnl63PNQftj+sb7Z5Jb7311vr702IRc9/gM1ZfsfDts1mc7ll/w1lMxuJj41CHjnzoq2HzWr3wNeRPUbCrhrMu5Pxrk9imp1dnayo+f+IzF3jsi4G+cfsMfWuWTIxadnJrXvDF6ZnlM8W8splzpx7mjw0+X7AmHj4dvKgxO7GqOSz2Gt9yak3QwbfWPE9ds/V86hmFN0msMNWFLJ/yJytO17CqK7mxxo5cPOngwey5y2e18lkMF1Z1po8HJx+wzKGx9e2gS77uG//KxMExOVs1SCZ3OA6U8YqBf/lpsN3b1iWibw4a020u1AdWB9ieKV/96lfXPtWc+xvtf//739e3xhfY8UNe8K0lOD77xQ9DrHxp5O4P8SC5VAsxIHrk+PKVj4M/PDqw6ZDjhU0Xtj8d434il7vPU/+fAztzhIfUTTzqrVeLuU9Sh/71gXqZE5/nDuP5ZMfGvFhv/MG3LsViXYqXH9cwkPq0dvGMtfJJrldXRFae3hc8d4zLAb5Y9BEbGN4D1FCtyPH51WC0tuXjujWmTuzxiwm2usirGpB1T8FkZx0ieNXJOoZtrE501MEYf8YjLwSLL7JqgG+sFRcdungwxWM98s/ONR/Ic4Uu4ru1ZswOJhsyVAzxy5vctZaevFqTeOEvheNHMcMUZ3UUm1jLi35x8TtjoGOskWl45tb6FzvCc+/xgcSCZ6wVJ3tryhpBnlfWes/ZibcUbn7A0pD4r499g2eDuDw/2IuJXzx15xePnV/e3b179+r73//+wsjPGjzCj/2N9kco0lbZFdgV2BXYFdgVeNIrYNPwpz/96eo3v/nNevG08WqTVG7xbDR6gbQZsZG3CbTJsBnp5d7mBI9dm7U2Rvo2u/Bs7vQ1PtsEwZzXNlUwbcrbhNKn16Ytm2ImP1OxiSXC0/ibRKcGG8nJRjNf7KIZC15x0BFjWHNTnC3f2Zf3lKkROzKbQxtK9bP54wexr5bTH5mYZ35nH3Qi8Yr1jFuuEyeb9PURvbPfZOdevL3EeLGUi5cWL5B6vsnPVCzkmpjNUWsPr7GeXO1848sBH19qpo4a/eosJjKxeCH1S55qki+9GOjS02ZM4jVOTz3oIrzs9I35FCNdPPMNt1pOP/lagKcfZFMOS/zwqo/5co2nJfdySb/8e9kkd997ufEccHDlBcfLp8OJXhKFMv90DGz3LXs+5QtbTuqtb1x9YFQTOvI2nrG37tjIlQyWeLyEIX7xvczJw5gdLNScGcMQB7lDDDzXtWzqqzEbDRZfyV3nH4Y46ZQjvXTnXLHRyMrbfQBPs1atSXVF6U4M/LBdT8qv+chXOcKXCyJHeM1hmPXk1aFrMVeT5gZ+/uAh82ot9SzzGWPu2JhHMi++rqsZnOIRg7r4/HHILBe+2bRmxFYsZAgv/HJsHePjWcsOZB1SqTWfYpi1wYNZjrDnNVk54nveeFH3N14fx99o76C9PzfhG/lqoSao2vKNJy/X4pKvJh8yz1p5qm+kTuWnp8te3fmRPwx6+Bqexldrij6Zea5+bHruwhArH2Kx1mDQ0SaFqW8NsmPfnJtDPHJYemP+XVsn8O0nqhUfYqvRo9O9ZayVK7xim708G4cpNrw+Y4ytdXjqpGeH5IU3idyzyzOpb4DjlVv+9Gz5sX5dl3f4dMpLbsbnmI3VUD3Vgy/X6odPznf3BT9wzKPPBbnhqa17yJ9eIXdva/gaHXhk5W3MfmLQc/BKJjfzJobia87w4NDz+f6lL31pfS7xZb36U0v+ZVo66cOXj5q5D1xH/hSNA2K501cL9UPmpOcDvjjE5D4XP8IrR7UQC3ufR2IyB+rmG7n+dY/PLRjw5JoOLHHyOT9nxeVzWL6u4fEhR374hOeZyB6eQ3YNDj15VQt+NRj8mxtrqDzSm2sHj56cxRAme/U0FoN17zofbMSoxZcnf35RAo/MOhMPn8YzJvps5UYGm1xf3MbWpTrTMb/06WSP7/4qDrL2YfIgl4P1CzcceuzEh8jMt6YurSt64sDT1JNuVA70XSP6GmLf+hIHPh7dGh6/4m3/soxvfkysGQ97Yw0lEx8bPZ/mo3cPc9Eva8g0OGe/xQYXjib/qDo21suBHiKHgcRSUwtrWp9f8bkX6FiHxuKigxcGbDl6jviFsWcCPfetNYLkJ04+6JsXGPugfZVn/9gV2BXYFdgV2BXYFXhYBWwa/vznP1/99re/XZt+G8+5+bQRaZPTpsbmxYbeS4EXDHI4bdrZG+vJYLhus8XepkWz6TaGbUwvXXHb5ODbALmG1YYXHl222fOLyOgiPM0YH9lAscUXI4Kfj/TYaHSS0xVTeDaE4eNrxqgY9ezjz+ulePMDP4x0+EH8yLOY2+y2KadfLapH9YShhsV54251ZMUVv7irUTFNezxEF4aWPzxEv7lbjONHeWUXH5714CXGC5GxFxcvaeYcPpo1ym99cZsvzZg+e1hqRVftWsPTFz021UoM6g7Dy62DPHJ5ab30zdjoauQRuTG8sxwfrzlzTc/Lgr71Sa8WRrp6MiQ+/ti6Lt5kaqCZq8lTH40tn/JlW1xk8sXzImWu1M7huheT5q35gu3bjHTFB5PPevHCbl271uDSv1TT+DDEQUcvLnjkCKZ4zDFMOua2A5HmOQx29GCIsdp1CIFHtxrzMW2tFzYarPTpiZU/PSpOerUlGD/ozLUlHyQeWObPfDgwMUZqUVuM40fx1sevl4O4+NLYi931jI0en3yld8ZkO0nMNVj0pz9+8MjUXg/bvDlINFZXL7nWV/PDT/GoAT0vyz5/HFyR8etzZc6LuclPseJZbwgOXw7z9NXFmnFIqFcDGHARHY0/WLMm5QuXHKZr94wXdf8Zqr5YFuAtfuSrg3aHBbAcGMyDQvn1mWv+1F2Ti1o7WBCXurnn1ZDcOOJLq4Z6cvc2vvmBga+HnR965lVPrg7qgdiaQ3HNg0nxW+tq+yAqHjlr5gW2fJsjPeJDPGKLV93la/2EI0bxzTlmL372WljqasyWPMx6vouTLju+6KqZZycypid2/tnP3MN3YKo29l7s2ZUbHBjiYWtu1JBPOfOvJ0d0zIsejjbjpiMWdtWCT631zof6Nb+wyc2luYDHv7j9SRRk/TtIZit2/sWtt25g8QvH+kT44vNNc7jG/PInPvEUE73Wpef/F77whfVZykbrUI1etvyLlZ3niF9amafI333WzJcaygkWO3H45ZbnQ5hi5Nshnxzlo4bi9ZkIm71vmLODR98v3jwTfAueTfG4p90j7OE5dIZRrdTUAT07Ptk1L3TYq2fPVTn69rwvDsATN+xIXprnATmSd/eF2MRMpm7G1Z8f6zhMOubfOFw2mnF+jekg1/itc2tDPnKGxzd/zV+27Mm0sMQtPr48260pcvWHq2WDJ1Z4kZrZL6ojuXmEARNPrdnryflD5NaBXsxirwZyw9dc45dD9wFeOjDFDx8PrnnGo6eJRY+n/u59z4oIvkZeI3ON5HAmsfFdvHCtNfe3OsjZGuZHPGITP341LC/4xQCvNuXTf7njyW3GJ2Zya6B1Ry4OMdo7i9taNHd49PlE5c+3Ne5+9xlPLj82xQVHvcncg2w9C/Y32lcp949dgV2BXYFdgV2BXYEHVcCmwUH7m2++uTaYNis2SjYZUZs3GxobFhsOGxnfNrFJoU/HRrLNJntY+LPBtGlB+DZCNmw2QYgNWz5ms9lBbGw2ET2+5SA2OuT4ekQWDh58VMyu4bFhT5fetCfLrs1dGPjVhF6++DXWJh55udDRzkQnP8UDR52mPr/yrgZtJPORLTmiG02ceHwgsmLWw9XOVB7NGXn5xoPFr1iSF6e46OcXnrXhJaaXCHNjXVV/Y1hqATd/4qQDU18jh+tFx9q0YeffuvPS5VvtNtYwO8QUZ3OKX/zWuoN22NVEPHzyj+TLhs/yWoLjBxv8c+3pZdMc07HZR/xN/mIeP+jAJIMLA1bxiJutcZRc3GTFSKcawTX2Mk9erl4y8NnR9ZLrOaCJ1cuXWjr8VUu2XsLowuxlqbkKW5zFz5c1oC+2/MsBDr4YInhiw2u+1ASOePRszJ+XaHmJBeE3d/IRR9j49Io7fTbFoBcfW7FF+MWqZmGIbxLb5g2fHWKbnbG4kDUsV/Ond2/oER022qQw65MZNxfTl/yNycQG13U+5XLGglm+4bObc5ucPSwY5Pj8qAUyX9YTvvvQs8D9Wu3YkRUzOy/Y7k3zi+Bq4c5Y2KL8FmM61oz5lLPmgMeBlAMxPvnTxFGtYMSD7bq60TOWCx58fw7C32h/HAftDjB9fvun73y556wLNUZyqRbdJ/Tk4lmrtvJUD/eqfJufBXD8IJOD+0pTVzbd5+YsHXrs1YYfeo3J6FYbNq1ncy5WNj2LuxdnHK7psA2Hnmv2PQ/r6ctLHOJWi2KjI9+edXTLA57r4ueTPb7akfU5RQdPH4a+OOUtNiRfeurAnh0Sl3jyKUbXGoJlnXuO+ezqnpBb8fBDT73pqSMc/PDTYaPRF4/mWuOTnnj08kbWcOsYz72cD3Z45GLTRz4T/EJILD4nHF6Kr1rQI4On8ak+HWjKR3PvqBlf7nX+6MlNfZszuDAcjD/77LPLJ1z5ul8cdvM314gY2PUs6bAQjm+0d4htXL3Uib7ngzVkLB65ixU+HL7Eh98XUsSjLuzloyZPPfXU8uXQHZnb4oEhPzE2t827etuP+1Mz/GdHzo98+e/Z5lnmYNFhO13UHMvBtTzFrk2eGMibLz1duWr86LNhb67UjB17+bLTXyK29PxCRj7yUAfPNfGSt55htnbxNWM2SGxaNVYrNVFHPV2x6I35cB1OXySA17qCIUd2eJq46IhLz95a5ZvcnIkBX8zVgtx1tdDTha0GqJq7B9jzYS1lx4ZPNnjkfKo9/HJcYOMHu/zCnYSPVwxwzK39nvuSD3FaS3q5VkNxngleda4GMFH8YsHjNzlcshp59as2dMRhXsSnN08+V8SW3sTg17z5RZQmLvPtGQXPWJ7yRmqK53P7lVde2X86ZlVl/9gV2BXYFdgV2BXYFbhYAZuGv/71r1dvv/322vTbdNic2YyQtbmycbH5sLmzObEhbVNqjGz0am1m9Kgenk1PG0RjfrT08ksnPr1sxGcTZIzvuk2RMYrnOoxiwJvXdBE9uSQrtiU8fvCHkuvZFht5MU7/8dnyodn0zRcSsogtbHbFwMbGsc0nebmaB+NwiwceLHOiJ0dw4TTGk3fzSE5WftMn3eisH59tGHjG4YmlWPUwZr69QPCZnG04sx74jWGUay81NvvwxeI637DU3kunl1Nrm7/ycW2dhy8mGA4UHMrQ41cLF2Y5l2u5GcMk18qtvNmi/KUn/xrZXC/46YdtDJNfucJBjbPB7/4lY6eXi9rByG5dHD/o1OCohfvY4YAXL7FpeGS9kLiu7l6Cehktd7FY12rcXOLxNSnfeNWEnob4yw+euTWvrmHz64DDYUg5wpwYxc8uf+Tibi3B6VocKJw1OH7gq2c54hez63zq2aLmzby4FrO+e9uYbnmGXSwL5PghVjWHLQb2+uJhV8NDxVaPRycbY76N1VjLfxj8WYfFX17mtPVZ3vyEkZwPWGR4mmtry6Gil2U8uPhRcXjZd9jVIQldNePb+jK3eIg9HOMwjWv0e9ay40NNm3tzYFyN5NL8yB/JNf9i0GDpfY46aH9cfzrGN3Rfe+219R89OpQSlxjn2sATW2t/BXn8cL961lUTOmrY3LMjkws988CHMZk6wETpydNnNP9qA2vOLTnKjg6/+M0RW3gRX81ZPHL8ZGpLJzvxNi/lTd7cmGNjB3jyyC58ehEfUXGQh0femk5Of+Ytlg5+6Mi5OrGH1xohR+qBp+HxobnWyM2Ha/FrMB3gatYsHt/mTo2Mq7keZbsGxw+43TdiEyvSF6ve+nF/zrhhVm+xOSyF76BdnOLzOco+ao3g0S0v9ULWg1zEX93zL4ZZW2MyvuTgs4AcT/w+B9SGHzrw+HOtL3fj6sK3+8I6kR9c9dTLxxpix5f727VY6ctbPfixJtWkPPT5xC+X6uGA2nONTtSzsFqJB7ZaOaA3F/zJEY7aiQG2ueBTDeCaB/aw6OrnvMNSOxjkdF3Ty786lUc1ZFec6uZQny0sMraTwsKDoRbqyGdzICfNHOKhZPKHqwZqLB446VQH8yO/8/2RH/rs6MDgq/VjjquD+RAjf3StD3NlvrOFJS94+XctVg3RhSHX9PgUH1/pkSH5F6sYyMWpqW8yftUaPj1rlFyN1AcefHw24YcphihMOjDnuyB7n732VXAR/TlH4TRncMqrdRCPbTWDJx5NjfRw1bqYYOM1ZqsW8tSzm3sIfulnoybmzC+n3RPIPeKZxp5PJHY++Ibh/1j52c9+dvWd73znvnxdPOKP/TfaH7FQW21XYFdgV2BXYFfgSa6ADc5f/vKXddDeIZSNRxsgGw0b9A7UbH5sOBzo2KTrbVbgIDINtbFag5sxPRtwGzY+2Nq4aGT5tcnRwtV33WbXmB3ii+0cn/0vxZsfyWB0TQTDGL9NVnZhFyMdzVhPrrHH04zhxA/XWC0115PYFRNZ2DaPbZzpqzO9dOmlq0ew1FhfPmTzmp6NJ51kemM+xFAO4fJpHvRkc67wHmaTn+LjIx4ca0MPJ6z8FsesCxk9JFebfy934oOryY8M0VVHLzc21Xo+8+XaSxRfNf7g9vLKpwaXnWu6epRPsjCyyVfztwxufoTBrpqwoztfkqiLCRYblE3zTY5nfJ4r4/Tgp+NFDuGx1SJzEqZaqJFv/2jqqVnPZPBhwAvLCxkZXxGZHORWHvpycd0csqGPyMXSGGb5iNOces7QMfZM8+09zzh67MhqMMXgJdJLVny2XrB7ufO8c10O1WjG45pcz086fFzyi996yY5f11o50JvzFu7sxSpHhA/XHGiwUPW0pqpfcS6Fmx/zmTBtutbPe7f54xfpqyMZH/mbMc/5vnG9OvjmYv4ybMrDwvOi7FubfXZVM9jWpbWqpqi4yOgV7xIeP1qLZF7Umwu1V0droOdANSjPsMQGX7O+ZwzWphf1n//854/lb7RfX19f+XbdvXv31pr3eS1W82d+NHG79/TNuxjVRb7iNmZDL7vmWvxq4V6vlmzUu3vDWK5az4DWEDykHvzBVUc+yaxNduRwWqvqSgfPtbmY8fMNK1nzQb/PV5jVg5zMfS4fWO4ZeeCj+jU4/RALXzC1YoMjV7bJmeLzSU/sDu36trL85+Eduw5aXbNTE/Xu0BJPbfJFTga/3Nz/nrWavMWUnnk0xtfEZ8x+kljNE998hWP9uM6XQyzf9BZD60gtxcDOWvfnP+TTN0btG32rHAY+39VJLIh/vtmTm2ef6REenebRNV31xUPlJXd++IDTM7zcyZpP9TEHHa6KkZ5DaX8epv8DQmxy14fJzty6R6qnOXj//ffXnPEjTnsOds2Jdap2xuJQN+uCb4d/akWfPYLPBhZe8wEDNpmYYIid3C/jzJFnKR+el3IyT+XIr7XVs4qtOrAj6xnSvcJOgycWvbFr8ZoHdeCDL3GQiRPRRXRcN/dy4tM7B1sx4ckJhjEb+mLU+G7euoeaA/JygwvLvFiHcgqn9QLLs0GcfJUHG/p4qOehXk3MlZqzg1GM4cuRb/xkdK1b88ZGrPLs3sWrNvr8hwXPfGnlAhuGdSBfGNa82uGpDzv64q6ecio+13yIhzx/1qg1oYn9nDffbPiS9yQyJB5+qku8cigecVovGn96MrnoNX7kIb4Idvd868i6V2d8a6F1FJ772npA7uF+YSVWcebL5xp8n98vv/zy1QsvvLBszrku5kN+7IP2hxRni3YFdgV2BXYFdgX+Wypg89OfjvEiY0NhI9LGxUajDWybNpsKGyyHDb2Ut4lib6NlM4LoJoNpbMNj09Qmjg8N4dGxIWqzZDyJTnr42dKbuvN62rue8SWb9sWcTB8vXGO+y8t44tIzrsGgL3dk06tNmyUYP/JJx0ZUTcrXPPFhnF59EGKrVvwm13cNw7zRnbFO2xl32K0TOGKbcYSjh18r5jDiixEO/ea9+PBc1+RRDcIRK4LjJaO1jM/nXJd8itfm3UGedc0nguvaiyI/fCN9a76xftYgXXw++ERhu6ZjTN684CMybcri0RWzlk6xVgs68tVg0Jv5x6NfTfDUVaxeWLyAVGc8coQn7ny5761dhw1asanbxHbNBo6DbvOCF4ULq/sifbHjlRNdVEwTQ+7FK07PrO4teOJ1uOAlja7alCccY3bWgoMMY01eXvatKXbs1Ykv9mLRyPhhY1yOeM1HfvCmb/p0ip8euXG4bBBejc0kOOrb2i8WsVu7xcQOrobYXSL6ZHBcT39h1NMTczWYePH1+Sq2Ypj6rulpDlu89JoXawHGJGNY1paDMLmKCc/ckZtX61JfDOTaJXKAwBf/veyXp/tDLa2Jamg9oJk7PxqCBdOBDB2ff17UH9c32q+Pg/Y7d+5cvffee8uHWpkvsYpbHq7VJl6xyU9sdNRDTu6V8p1rsH2Agyc2dP+HvXtbteyq2j6+LkPQxFVuo5ioUUEQQc8EA6JGC4mKGoIGQ1DERFFBEEU80KsQxBMPcuyBqIW7qKDRbCpa6o2889ff9a+vfZNZSVXIe1DSG/TVd6097Wmt9zFmH2PNWiUXCmwYYlX4z5Zee8mctSD8EHrmZ/6MkdapfMZRbYxf+PrsCR5K96T48EHXnDWwHvJhLcWQTF/hNRcfGNp8yBXsYsyeTfnXxkPufObggbscxAte90EYfIjJWHvHWHmlw785tuYU179v1/ayDofy3jUQhjmirq3Pb/krNuPsFH74F4+XWPYGfWNicp+EJ8/+PBt+vlWtxk0bBj9K3Kvpwesebp2sEXyF0LHX8y0P/BkzR6/8qcUhN10HxQErTD7h+QyQs/LiRVz/TwMce7gX3q5/8bL1WehcQcTi5Z2X3ASe/LNjry8+15Lx8gDPnsRJ7SV1eSjm7GDgIxb2/MMSI9/G5U6+Wyt69kYvhu3FWdh3T5ALvsTSfrW+uJUbeMUAx5w+W3ZyY83xaF3lwxwM+tqJvrWUJzaED3HKTWN8aRs3L6fWXtHnCwdClw9rJCe9WBWT8fYC3+z4h4cfPOOed/hS4MmLnPJRvuWGDwIHDxj0laSY5al7Qmtpn1s7+sbYlyvxxjUf1ksxR49fGLDLBV7mWxe89OnBI2yLP97F2jqJDV+4fMK1tu1/9nQVok9gK8SYol9OYMm3PPIpBlzxkAM+1fTpqOmJQXtil3e+2kd+kREGO7yLDXf59ksSQtc9WqwzD/aefMH3fyl87nOfO7vvvvuWTf5X5yZ+7BftN5GkrbIzsDOwM7AzsDNwu2fAgaf/DNVB0oHBQcKhpkOOA49Ct4OpA47DyjzkOLDVpwuneh6+OrjSdcCi00GlA12+YTQn1+bZdZAzxj4/+gkdttPeHF2HOtjiITfSXZOHH/lId44Xp7H45lNfLDOexhzk5FWu6RdTsahJvtVwGo9z/o1P/8UeLtvwwqFTPls7Y/mgf+zHWHzT5VcsHj6UeNgT7ZOw1Kdk+qwNB1e56uCrNu+gjBve7T11DxAdpNOB1UMjrh7kPJgb42P6sS+Lgb12LzA8WLEnfDmA5x8vugq7+sWrb73VRP4SY0q5hakPSx3Hqd+Yef4UMvvhNa6GPTmz0xcLfUVsUzy0lHt68ualQg8w4nJt0yHw4OJojbyo8HAvj+01sfWQ1b0gG3jFU5zFop4Sf7jsrA8bPOVCLB6k1GzLTzjh497Debw8XMGB3QMa37gTGMrstzeNVejyq68m2VavwYsfYgoXPzY4tG7m6Bg3r98a4pyIuRjo42ZMqQ83gReWeVJdLObZKOb0SbHFSV1ZChc/5hh7xdgUY/aX69Tes65Tpr695UU7HuysnXWkg5M+e306xm4k9gDdcq6ecZc/fuwHLxrSNUbS1zdnP/aZ43rxoP7oo4+u/1St3N2Iz43Gi/8f//jH2QMPPLC+OcuHcWvbHpyxWK/84UgfN2PqbPFm374vZ3LjRYT7JizXspcUXtzp8wUHNiw4uPRyxDpYUzrm2PBhXj9u2gQGLOPNGavfGF02rd201S4XbNOBy8aLFhyywRE/esWAZ/Pqrq/OMse5ojPj4StcNbzj2MSSjbn2FNtKNnGDZT/p0yf2pBe0znPllb358kWfbT56Ac2eLj/xwRWv5tjZN9Y6nfga06YPBzd/N9yYF85qvrzolGNYbLKDx5/7GO7yzIaY67Mavpzru87VMMSlDbs5/4GqtjW2T/nv3pc/vozJBzx7FP/WXU5xoWcMnpfa/MCVbzWu5bm1LHdy5rphA7vcmVfgdt1q05EfpfUyRtcYHDHLFTu1cbj4uifiBMvnLr59c5quPLh3iQsm3krrEU5xwWGnJPjgIWdqOHJER47kQ79v15efclQOwtOnI157B9/uaWpx9cIbb8UYm9afHXwYr3nNa66/KKdjz7hf+dcV9kLr2f0BD3rtKXz4hSU2Itf8irGcyY15+RC3tmLeGPzyDMMYP9YLPn/67SV46aW7Bg4/+IVHh82cL5902iN09AlufLERh9yZY6cvh+zirzbHlxrW3Its22PsiJhbM37yFefwYBenveNeql9cC+zwgz1sNf/sEn2cm9Mm8Rav/eB6bl3se/sRb3pq+0D8hH57SCz4yFP7DZe3vOUtZw8//PDZRz7ykWUjpluR/aL9VrK1dXcGdgZ2BnYGdgZu0ww4qPgb7Y8//vg6dDuoOCTNw4vQOlB5KHWo6LDUQSkdNUzSIdQhiHT4cVBhr+/QRsJkS78S1lK60ONzYmajhpOEOcfM0fPAI0aHLALTQTCbNTh+sFEI3vFTT7/6Ha7T1++gGG9j/CvaCWwSThiTl7Fw6OpnB0tfOY6bbmPpibuDNoxjP3BIc/SNHe8PfKyl4tCsDwu2PSO3Yalrw67PR3HM+OTOw4F9iXe57ODOh3a1Nc1n8arZe3CDDcPLu7Bw0KbDlziMwXUIZ+OA7uHMob0HI3MVuoQunvmesZov98bpVPTTNSbXxNi0SU+dL3rZNN+Y8fKajlzBz4d5Yx426MCFY1xf28OHhxVtduVwrov5cgePPSwYHuoVeWyt8g+ra6E2O/P8ib+cGlPiaZwt4Y9+fWtDj742v8VTbOz4ItM2XHb5C4PutKltnMAOXzxwk3TxUIj5bNSEXuNqpVjSLRZziRhdA2Hr421/sjOnWGtxeYjUL8b8sDNG8i8nzcM69p8+PaVY41Ydnj4/hC7MeMB2n/ai3TVnX5UTc3TZqr1k92JJron1txfpV/BJiiGcdMxrx7/42pvpqc3JnZdY5bb408NNu/sifDG9+c1vXv+Bqf+oEc5LETEQ/wnqJz/5yfWiXfy9POEbtliMy0fXBZ72RPe7eOLausktLLEpbPj0bT8xsKHjXuu6bt1w4o8veMbpxcXng3lzxswp9Ehj8KfUx0FbcR/Gl00vSpqHrxD86eDEhuSv/W+Mbfliq5+wV0jnIC+H6OHfNcQmDjiy0Z8xG59+YBqDQ7c5tuXfOP72UutorM8rY/r0rW37ADaO5uHxow9HIb0oNt7a5WuuHz0cxY2jNl8w41ec5u05/yqFuD6JdWrvpcsXff4Jn/IpBpzZ6KdvjA58e7gzB3s4+fZy2b8ekSP21s31Kg4Cj+DT/omLMUVc8PNTnMbo0vHizudaucXDfGvFxhh9vOmp2bC3ZoQOG3y11b30h0Hoahcn+65T+HIjPt9i93JQn45cuJfCdfYx7jzjxbXYjcONN3598xuuYp5/c+xxoK/IpTFz9oW6fMTLfDHQMQ/DvLoY4+E/h7XXwsHVvUY81hOXcgeXnT2hlkf/aaVzSyJPYrYX5ahc0ldIceGjfcxNXPJVDqZNuvgqMI3xYy3kOB3Y5o11HcIVW9jm8aCTLdxymz2s8mlen775BA4/inF6rRP94ggfTxj6FTrGrTW8dPHJ3pz9FW/j4pID+uTYjo3rq5zgV4z0YdFRiktt3N5Ts41n8RvHV8zFYt8o8I3BJGwUff7xpYO7+4ZibWB50e4X5R/72Meu267GTf7YL9pvMlFbbWdgZ2BnYGdgZ+B2zoADxZUrV86++c1vrgOsw46HaOOkg4ZDqYcCB1ViXjHvcEIcchxcFHMdcvQJPTodaIzRIY196EcSAABAAElEQVTpK9mYg2VeTaafDkvmJna67I7FnBgd0NjrO1Q5fIVxbKM/MU/FRsf4PBDyLxaHPfaVcqSvXbz5N14u4Bp3KCbNhcWHOEi+wjdGj6SnzpZdB3TjSpKOOlt5wqsHq/yolThrE7wdUPmIRzr5UZubh346+XWw9bDl8E46bMOOf4ditT3qwVc7wceD5qtf/errDzrWhL0iPjHx48HMdUAcrO17XNQe0r04wMWYeQ9QPejCMV78MIpDm+griTgUMuOeazHx0jGmiIMUS/7zA6f80+khI7/mjdORM305loOJ2beC+DTOr5xZH21Fu9jgeEiJR7mUL770FTowxQXDGqjZ45g9neJkgwObXrawyTdd9vDDERs8fRL26hx+wDseo8tX4/nVJ/HGI4kDHaUHtzDmPJviK9dyQ8I2TnAplvyzbXwpXegd24hdMS6GCl89RNoXsOKXPlzx4aM0n9/m6MXdmJKuuWNpjh9Y9MUFozH3aX86pm82tsb08XXdsfFSycsT12U86dY+xQUGWzmJrzG8ilNfu3mY9vi8P/iGpBdA+EyBk709wI6IyYt2/wG5B3Y6L0XK37XDn47x92Kfe+65xbWX3jDT4V9uyo+8eeEkDtcbDvaEON3/6FsHeuIy137APxsx0evFJV2FfQWHmX/55q+x1qg8WBP+4GqfElxI/8Qf5ryf6E//rQ2+4oMLg+9izD++5hXt1r8xfruvuPeY5w8enfYKPONKOGz1CTv7iT5dtur2GP50+cKRuN8qdMMpTjgwm8tv+Wen3fWVH7g+2/CHRc8LXmvsxSw8/tX//ve/1zmxzz8+rJW5YoRRXDjZY+ZdIzPHxumxU7SzxYmuwofPc5+9Cf2w4bDTJ9kYsz/e9ra3rVjwNOf/cggrWzlpv/HnM8r1wS9e7j/+1rxaHw7BQ27cA9xHjRdH/xLHGD35pdPnH398uHZww9fe7M9lWUv8XG/yh5dSO9zu3/DtR+Nyba3MEWM+v2Hh4lv+1pl/hR5cxdpbX/z8AlOuxGQ/yLF4yyWOeKsV2PpwxIUvLHlLjJmDo93nNz4wiHFY5+fnizMu9qgX//i4noufXjbsYJhzrftPp8VjnIjTWrlHWgdCj47Y2Cn8KbDKi/Ekn/qN000/HPPGYMkZX+KUI5ysGV35JXzRFV854AtG+wpPfWJOYSefbBO4MNTZw9A+5q+PG79w4Nl7uMLQh0NwN07fGJ/iEB89Prqu4KYTTtzpGiNiUuibV2CaN5ZPewW+MUUbD7Z0rala3xzf+clXPuiIw/UGP6EnB64hMcF0H1DLj9h60f7xj398mZWbMF6s3i/aXyxDe35nYGdgZ2BnYGfgvyADDh2/+c1vzr797W+vA6gDpxeSDg4OHB00HE57IOigInx6HWb0HZAccDosOcxoz4OIA1QYDmnm9R2I6GdjjKizTy8b89oEFs506TW+Jo9+eKBxaEsPpw7+R6onuw5mxUkhfh38zIsDfkV82sanpBcOPYI/PDbi6hBd7NX0w85mcltghx840oOVDzVctUIHRtj11XHAt4O0OKfuMQbfPQCIg7CfB9s1ePjRwZqv4jZH13p5YGuOT23+8FL0YXiY8iClTeg4UHth558SO5jjQt9LDHtcnw4/Hkb5Ih24zXvQ81Dq+jCPA3sHcHr5W4YXP9jRKy9zrnb86c64m591eMbkkX65nDj0pm4xWuv2ufhJdvP6kSMP5sYUWF4cuGaIsdaRfzwUY+aIuPnipxx4UFHkwzrJKZ30YcivGq9jwcM4DPnmz1pYM9z4SfgQN8GBnbFq4/RhGsdbndDjQ2Gf7/SM8a/kl05t8/DEQsKmM/vacYgbH2Gp4998fPjOj7kbCTyFjpyIqTFr0IsPHONHJ8zW1lyFL77LYX01HePlwtiUfBizlnDEQvBTjFlXfwPaSy7r3F4359rDHUcv2r1Aox8OLP718c8n20S87ItBmw/9cqHdPBz7zEsneHji4O8ouw/QOxZjOMBl47ryov2xxx572V60P3j4z1B70e5lVDHxXW7ds11bxnD2d+3F4p6HlzG1l5PuhfaHmFqP9gwchfTyzVqwdS3bS/Ik3go/2hOTvsKX+fq4w+NvXjPNwzCn358FMca3FyLtCbiK3Ntj+cK5dTfX/bt9YU7MfBCxuB9mI3/m8WSvNAej2NnipYRtLMEHFjGv6JeP8iUuHEkxlZ9scOCX/cSCkZ9eJuLj3mucjRq+GKxDe8I+8GdfxFlO/T8A/uwGHuxOCczJhR5s+Wxf4tULsjizgWtOPGp9Nva0a7xcssHTPUGdDV/05YeOl2jveMc71n2Bfz68PHa9EvuYPV3C1l5xfvCLOzUbefBLejXe9NofvbzNJzzFfQs/6wefXv9PSfvCS2PXiz4ucu5exw8bccFqveUxnjhYa2ujwOBPDmD6ly58yqWxzlBwX/nKVy5d8cktfXEr9Prs75cSeLh3wHKN0cMFlqKNi1zFATaO7PoPcePuHAUnznGDD8e4Gs/JpTVx/dG1P6wHYdN1iY+8Oe/hZJzY52KVrzBcFz43xMinYs2aVyvWGy6/fCrymrAz375oXC0PCl/WmS+Y5VGfwGv9xMMXO5JfMSvyTujzLZ98x4kdDEKXfTbG6Ok3J1/2Cxxz7pO4wik24/SKQ7zikFd7tPyIh7+4GIdB8qkNe+oY06fDRtEWL598t97p5kus9hwbOvxry4k88wXLHJww7U1tunzTlQP/p4+2nHjprhYrHnfffffZI488sr/RbhG27AzsDOwM7AzsDOwMnM6Ag8Xvfve7s+9+97vrkOIA4qDscNLB1aGzg8bxwchhxgGKrtpBxsEWrrrDnX5CV59ubX32jU87482ZjwN7xZhDknFFmzRnnszaAdLhypjSYSzbdJfhsIWJm8Na+Gr8iJhn3OmYxy37GQM8Upyrc/iBw5zDTV+hq6YDi8Q5nfTYFRc97WzgWIN01PnFNT126TrY2iPlkB47h1AFnrGKsYkDvxIubDrTP/5heBDyMGZe7uVYm51aIdaxg3EPMeYcjn2ryoNbDzVsO4DjYz94uFDoEw8PDt24eDhz+PbgJ3bcxEbHNSJumFPiL7bjufTij4O41Amb7GrDJDiJpXjKn3kYcOkQean2UNR6wMwuHsbkwgOyOQWOF+3ihp09X+aqtfOlPfOb//aDfHroxYdPGGLxcsQad28o7hXA4Qee5hT5sl5s7Ek+6VsPBRd9nOPNDgaZuSoPxtjot5/pGyPlSU1XIfDD009/4hmbOnykFyf9Y47wpl99/sRLzMV/DYwf9ORhFroV+XfN2MdxMWft8CD84B33anPZpKdfbozxn452vGHQk2N1PvBszDXv5ZNr1zXZ+sKl18O9F1jzPw00n/BjX/FL+ErioxYzTLrltfniNd6Durn4e2FmvxmTM/Fmq2Znrxp3L/MnY/y5Ng/s5SZON1vDJf5G+6c+9an1op0fvxRXu4ZxFRcRF99iwZWez3vXjzEvv3Cngys7+W0v6msXC/+uOX6IPn3X9YwZB/cNtVj5tr7FjZc5uKR1sBba6a3Jww8c2PNhX7C1DvarfQxfXwwKPVhqumJO+Jx7Xx4Ie37Y4MemObU4FTxaVz7YzfzAUMQAi2gr9GAfx2ccT3Pw4BavMfPum8UUDh64scmfOX4V66Qvp2LW5secMbbWiQ/Xmvu/X07zzR/cq1evXr/Owq02r+jDUkhrIA/N05kc0+M7/fjR8xlsf8LMX3uKnmKOLj/Whp7PrLe//e1rTxs31p+ZwgVGZ5mZP/ZeQHtxB9t9CJZrQ58fOSPtO/gw5Nl+kTu1szORc/co68aef9cKe7xw4cP9zhnDGDxr5FpNr1jLL1w4cPsMNPb888+vz1Z8FPhqvv2CSh+3Xnq7btjB4F98zjt881Xs1oIvgguBSayf+4kalhjkQP5aH/sJJs58mG8N2BG5oe+XFfD03eOtCf/sYLdf2OAkR8ScWL1ExdHa4Dg/62CY499+l+tscYSXrb6CR37L/zK6+MFHuTCkTZ8vRc75whsevvmhp8C1FvELr/nuDeU+//asOIka18kHLowp+nDat/LT/Xvul4nDv5wpxvHnW9Evp2GLtVwZ40s/W3zEar/EH0Z2dK2lvNkn2gSWkh5b+1ltHL460S5WHBSxwDSXb3ZisUeLDW5nVf7f+ta37j8dU2J3vTOwM7AzsDOwM7AzcDoDDhh/+MMfzn7wgx+sQ4pDjcOIg55DRofBHgigOIh0iOsA1UEye7gOQA4yHayMEbqzHZYx2KTDkzHzSX01nvyZD4N9/NiYpzvb+g5L7MPGqYMWG4XQzVd1B119Aofwm7/s68cvvHJQDJN3uOrs4WvnW1+O6HSwNAZn2vFjDY91irtc6VemfXphw5E7D+GKwzhe9oo94jBq78AoNjZwjCn6eLHLv37c2YlTHY6HPA9rdOYDgHljFdgOyXio9YlDuodHnOHSJ3hpw5HPDvN8EBgeAMyJz4MnHfzY4O1hSeErXLbmFXHSa2zqGCvHdLtW6FSaVyvwwqUvnnCaN6ZND4710bYXxBMHdbnPHywPUR76E/H2C4byB7+46OWLD1hyZj4e5uWo/WiNeuCmLxZ7y8O1mi4bGNNPnPJhb7ziFa9YLwL45K+H8ukf74k1453tcse/vIVRHPxrsyHZti76raN5uko48Om2L8LiK6ypH26+zMlLJR9s82FsipzDF5OSHix9+5cOMabd9QOXrynFYNw8G2Kc6CvmptCnIz/adHAh4gzLmLbr0IsWJZsw2KTn5YuHYXjmSb71j3No3nhYaljixq/4jjHgKPZZuHTtZbbGekmifVzwcx/zgv1rX/va2T333HOdJ063IrCJF2qXL18+e/rppxcv/t2jXBddR9aYvusaf7Ea85KhFw2+LSqH4knwJcWtL87wrA9f/BD7yL4h/LFz7+BXTWBU1sDhBz1+W381Hwqu9NWV/Lsndc0bw63rCHZ47PDhwz7q+jTf3tc2Toeufvz7zGkPitGaK/HmOz/sYMQXlzDFAls+4KrDwN18XNUJGwLTZ5F4+SmeeNMpv9nAKWb2+Fs3/mFoK7ikqy23vZyEZY+I2Z4pRn614fY5iEPcrD2drg/cxKk/Yw2nmNUwiFgV105x4NCcGj867UG2Pu9da64Fczj6kyq+la8tfntIsYfFXJFj9xU4eJbLfNWHAxtf+QqHb7ZeDtORc3h0FMIOjpjE4z4nX6Rxc84drmt4bFs7OfN53kvK7pP61w5/UsraidHL+65RXOixbQ9X+zyGb17MfT6LrTWHCcMYDDVRy501EoPY8CUzV+KAYZ3giA9H+PloDGYYfiGApzyG156Ze4p+ecKFDn1Y/HZ/NkaPLzEXS7X5iljiG9YK7CI2YyTf2vwpRJw4you149P+x0UdJnv+2xf6E8c4OeUnX/yIUx+WvlIsC2D8oIOPtevaMW1M4YtkT59ue1hseBWjeetJ2HdfKRZ22vRbS3599pQLdvZguvZuzwCwxVbO04Fn38PsrBPXrkn98smeDZ9scDDHN3H9m4cln4ox8z63999oX2naP3YGdgZ2BnYGdgZ2Bm6UAQeLJ5988uyHP/zh9Yc3Bw4Hlg4rDiLG9InDR4eciWveAcpBBK7DmIOlMg845jrksIENk13YHZ7gn/LFj0Ky0eYnbIdLvujNWhs+ERuhSzpAhk0XZnxw1C5G8wqfp3g2ro6HNn/6sEljcQ5XTdT89oDFvwKjw3e65QOW/DogyjHd4oSpHT997WOZnM3Ds55ehvrnzR6MjMujByEPhB4mjbXm+BBYBAZ9fOl1SM/Gobg9Y0zcHoR7+ONTHuCXP7h0+SpmDzGw6YRpfcsTm+yNafMLXy0/8gYHB7UY6cWdz+LhS9/cLPyQxuYaGGejyE/7qnG66YtNO850YNZPzxgsxRg7xbi8e1jIVm2O/4Se+H1LHLaceWD1gKONo3Hxir244Xhg6eFp7lHY+uVKbZ/4xmD7RY758C208s+OrkKO80TPLwTuuOOO69+Ex8PLRy8a6MtBOYmrvnF9+kS+xKUYK74wwqFrrGJ8zmnbn+KhE3/j+vIgj/zoG+fPdWp99PNRGzec86ldn61xfZwV7TDMwTWeLzZh02ucnbkePMNWK2HQw18sbJU44EpmLGvg4kc5hjFt9OEbK965h9JlL7fqfOHGnxwmxk4JP0l+jImh3BlXwjCfnZpvdXt25sVnZ7Fnwx98e8ELAw/q3/jGN17WF+1PPfXU4oOz+yU/rg8+8TMeb7G5J7rG6eHmevFtXznUp9s+VdMXb9csDOvjmu1zgI/jnMGhp2bTPaQ1yMacNW6dcZ7Xjpwq5gn9PgeMFWP+1cUuHmI9FLHgw0Yxb7x4W7dyII98saPrc+H4RWxrHr/8qY2xU/BSw3PvUsK1d2DjlD0OSn6tz+RsLsFbXujiI35jU6d8W/t+8exfeuFBjw0O7gFefolTn/AtFuvND/3Wlp3PSHZ8mJfPdI3TxX2eL+HRVXDFnZSzYpKj/lQQHHucn/LFPx/lEDfx+dcjzg7yYd5nw3/+859la+/CaQ2sM77s+IetZlds+FXMKTji5Pro3oQvfl60t17i8llqTrwJG375h+eFMtvw/OKYfzEZc80q8mtcIb1YlgO/TLBe9ll/Mk+OlPJmbeWFvrX2jXtzcz+KHVfc1PSJmCv6k5u8ypH59oW42OI682Gcvv3oF+byKA5r4l/rOB8QtfWAy6a9hxPOsPnS55fASs+YWFrTuFezU9jgI8/wCL5485N/4/SJcZxg8Ue0YanNKdZLbumUd5zYE/rlnj6hq+jTxancxj07erDkSlsc+vgr+VnAFz/iKV649OLbnDiNmS9HcQJDz3i8xKkNs32NIx12RBz2HT3t7mv80Gl/s7P37AfFtUyHjcJXXHC3p10/2mzlgE3XXHGwtab9iw65Je1z3OjQV+SOPl/+9NsXv/jFs/vvv3/ZmL8V2X+j/VaytXV3BnYGdgZ2BnYGbtMMOCD50zHf//7310Gnw4dDoANQBwx9B1T1jQ4VxjuEwXWwcchR9B1QHIocZAg8h/sOsMYcZuDQVdjpT5/GlGTOGTOHR3bNTxsHQH0csulQiLcDWuPa5uKDY1hq43yUr2V48cNY43DiVTscmBM3jOb15c5B00MIf8XAjujTccCUU8V6OXRr8xkf+vTYwpr5NkeMsZlC3/r5htSdd965DrDm+fHnEzwQ9ncSjfNXjsPiDw7/5klj4hWHPSNXpIOymh7/2vRgVvCFh4tDe/vKfGs68wm7Q3rjsD2YwsexPJrX70EHd8X1osxY6Cr8hssXfmKiK44ELt6nbOhMXW2FvtIc3PKVDv+wFQK/61s//bDMK+zba3Q88HjBYW7yNJc+XA8mvgHXPUK88lgetO0Fejh5GHL968NS2Hjg9nBmfQkbmK2vMXN8Wy/6ly5dWjVf8nvt8NLQNxfxJWJqvfjWxxmuPiy2fKRvnE7CJlv6U7e58mMP4WicD+PaBGfxyQccc3RcP734CB8nMvXEQcoHjsbo4tc8HT7Nx9uYtlJujJH4aU++xq2Bvd/+b96cdSMwcahf3Gty/MhWTDPncRTXjJsp3cS8wk/j+tp8NtZ9R7/Y2Cj6jR+vMd/m4sMv/fLFl/tJftTdi2DLvzzxz64Cjy/3b/9Boxft/gm6+Zci+bfXH3roobNnnnlm5aW4ywm94s6Pvv3nHu7axo09rF5SiMk+Fuu8L84/qSFWtq2p3Ll3KK1h+5MOTvyGi0/5ad8Wl7UUS+PqYsMNJwUmDt2r6fAVjnZ7Udz01eaPc9/a86WYL3etsTF4anGa50OcxvJdLviD5T7X/qTjvuoXhH5hLR/G6Cj2T3llG7a18XnOFh86XZPaky+8FxrzN8d7selFrM90+vLoPu6z3ItOn6Xlq7Utt8bxaA1aazzoVHAxR9/69AJYjpqzF8wr5RGf5tV+wd/e6aV764i3/LiH8oWTl+h33XXXuubkSe68aPcLJdj846/wSdjZo50ZjDl3+ZwxzgaWzy5+Kvixxb88Wjv89N3z8S9f9PHFW5s/+SXtL/7Y4c1P+bTv48IHfLheKPIvv/6+utpY/ykoP+J0RuvvwxsTjzX3Lxa0E/a4wG6v81euWicYRG7wxcE+Nq4dbzzZk8Zg9BnuP5kUm779+MQTT6x7krx6Ido1xMY+cC8VXzHgiz8/rSNOOOjLofl04DRHj44CVxzhWiPYcQ8bV3ZyVOGDnXFrVPxstEm4eLge8DVH37U9zwHylLBT6KvZKMfYMK0XfuzxxkvNbkr2MJT06Wlbe7VCxAVbncDQb33zZdy+VhP5VloHPAme4hY/P62fObbWw58Jc/1oi8M1obCNo9o1Za/Evbl8i6s1MgbL2qnZGLPP3P/UxvCy31rTN73pTWef/exnz+677z4Ur18Pq3MTP/aL9ptI0lbZGdgZ2BnYGdgZuN0z4BDx29/+9ux73/veOtw5bDj8qDuQOfR0MHIwdBBhd0o6rHXAckBxENI310O7Nsz+SSx//IRNn4/84GKOOOTpx89YerXrs8mu2hxOpHjwMeZwrXagok/XXA8ZxjoEauOAq7ZyLHO8g6kxeHFkA1OZQq88lD8PIL5txS88GOUNJu5y6aHAIdFaOoxqiyOf+auGZZ4fUtz5KDY1Hx48vSRwOGbTWjqceoCLEy4KgU9wN9/4GrwY55fP8q3Pn4cpB12+HJx7KIWpT1+Nn0Oz+NvHMOg3nz81O/7g0tO3ZxUcPWApxY97ecWfD7HTZa8k4eqXezgwwjPHViHThs7EM28s3YmFP9vm+TCWr3BwtueJeUInYa+0xua8rPBC7pinmBQ4cmCfeQmnzR8+cMwrri2+6eEhjx6KrBV9OvDsKettzfikq5C4wmZjnVwT5+fnq7bGbP71r3+t/zwvfTVe9ob5+nOPsOVf/Plioz/zV59u4/BwVIujhzK6MIwT/V4QyAcMc3h5MeLlDRzjcy/wk154/MArR3Rq8zVt6CV0ykFjsy4mY7Wtm3VS8p8vPBQy22Iq7jV58cNYfMSZLTwi7taXHg501PGhVx+etXPt4macnbXNT/rxC1eNp9pcawoTn/zWh02HL9K4/WpMn/DdZ0s6avy8KPDnLL71rW+tF+6T4zK+yR/lwl737Tovyo21p+NSXHJK+BODa6eXrWJ99tln10st16Q9KKf2qutQXXF/91LOvHi6R/LX/XPeb+VXLvjAgV97H94UWLgVlziKhR78rrFw5F0sfNib7in5ai1hGmMPu3yojwUufVyUcsgOnvlyrOYfTtyMacOg6/4nT/jJq3jS9zl+6fALQi/a7Qk23RPjK2ds5Bi2vHtJ2p8CkY8+j+gS+PmIS+N8pOflev9nyetf//r1IkvMXvJZY//56N/+9rflv/3us0BMXTPlhL+ww+fTWOO4ljvxdI+n12esnLUGcMqredy8aOPf/sLdHsKBfzpyjD87Y/LqJTNfcip/fnngXkvokHxpG8MBNj/4+4UEf+K3nvaal3nyoFgjGGyV1lvdWYLtq171qsVXHuhbS+snN3I8Y6eDgxh8ZtIXa7pw6bfG7NuPMJ3F8DTmxaBrTixwfXNdgWsMf589XrSzhUnkVAz8yEX+Ycx1xc2YeXra1oJoFxtc68hWnuib9xLVOvkFpPX19+2N/fjHP173Jf7lCmbXhrhcQ84L8HDFXcxyBJsO33wQ4+yLix09+GoFf3bli649pWZP7AHz9Lq++U1n+uc7bLZypcg5LvIrL/Sst3jmvQLHhA5d9uWwPZeeWo7FLZfm8TGmZjtl8hMLrnzQhWUMBqHbXjCeGI8HO/xhGKMPp1Ls4hc7kcd+icaGjrq8yLU94ZdrriN2rmXFddDe1DbmuZLIAZ7lq9zxjY9YiXlFHLBdC34ZZz8Zw8+6yKfr0S/vPv3pT5994AMfWPawbkX2i/ZbydbW3RnYGdgZ2BnYGbhNM+AQ4UX7d77znXXodhBRHMrUDhD1Oxg11sFE6HCIw5HDi77Dj4NPhz0HHgefDj9w+5YKbAe0MOCQeYChT+BpdxDkq7IUXuBHejC0O+TiZgxf/PJPR9thcQp93OI854xX8hce3ubgmUuMV7Kpnod0h0wHPlKe4bEtv9bFAd7B3zo69GqTYjNO2NEnOMZJ+1Tc9OXIy01/4gMXscijBzcPah6I5CXsYucDPn/5LE/miHn6xabuwcdht1wUaxzpGGPPNz6KOPlq/n+9/L8XAPDYqWEp+vTxty87lJuD30NQ83yIo/nWI0z98HCDMaV80GNjXptop984v/nSTs+YPh8zv0vhAsucePJjLl/q+FnjHmis8fn5+dLLX7FZe2056EU7HePllQ/cYHpgtT9wsEcrYoPDxsOma1F/5iaesPJLD08vQvzyR57ZeJHiRUM2auP2hBhxxFnRJ2Fq0y+XxWwcRpitwdQ1bxwveObyF66HRpw9sLke6ciDb+B7SNRnC2eKcfg4q+WMDn7xKj525ouTbWP4TE6N0z8WYwpcHL1I4D+f2tnjkh9jbOiFsRRv4gcc8RO29RuDqRhXcDBn77SWeGiXF1jpw5y82NO33+CwKb/G6JvPBo5xY/SMW0u2sPAwbo8TbePlna4/Z/FyvWj3ZzC+8pWvrBftOHXf107KI+617VEvD73AEIM/NeGacY3iSk+cbOi6D3ixZQ8o5sTlfujFBAzCTi4UbftALuSBjWvUNeA6J60L+8m5/VYeYSm40YMvl8bKL5v2XbHSNR8/PFx3CtFvztqlHw58vM3xCTc8Y+bZKObgKdrueXToe2mDe30vEl/3utdd/5YmfTpdY7jRt57urcR5yedsL/jwlp9yAoMYN1ZcOOJOGvfLU5/hxr2IdQ/F2/r7half4PhzRHJarty3tPkUb3nhV7/Y+TM267jwL7fyAIuOPWQcnjG6FZg4yKGcscMZd/nlh137DLfG7LHXvva1a6+Z58d9Vg6POcsNLgrhAy4ePltcJ+I3ho89jxPeYqdvb6uNWzN6/MCw571MnLgwrLcYxQWbwMPDdceOTj74gyFPsNkSY/LBjr69wj97v0hxrcA37xcpXkbyz15utJ3f8JZDenjzS/AzJja1cVyUOMDHGS++jWvjxj5f7FvH8uta8B/XspdrufrJT36y/gNeuDjbm7jyLVbXgTWGgbO4tRU2Ym+P4ckWL9dUOPRwwVOhD9NaEnpw2cHlm577of3Ah7jo4KfmqxhhtF5xoy+PsOkmuNDlK4x4wVPYmsODvnmiX20+n9OGbXp08SF06CswSbzkpjH2/LV29PTNK1277mONh3Ucu/jh8S3fPlvaO2xwwVXhz7znDvuYnTXkR/7Z8c+nfez+xR87hfCjwCt/9OnBsm7mw3YWM0aHDxxh2Xful/4D8v2ifaV2/9gZ2BnYGdgZ2BnYGTiVAQeLK1eurId+hxaHEAcPhw3tRNuYA4r5DpUOHh3C6HTYoePQ5QCkdECZD4gOWmwcjDwAOdB08NQ2p5AOS9o4E3xg8OlQ1ri57LSNK3EzRtg4NBFz+PJjnP9TMn00z4Y/MZc73LTzS1fOyIxlDVz8iDMucZ3+tPF14MO1g7AHgvRByYmHDjUO6vLKN9180dfGVyFin3hr8PCDf3gOnR6CPAxZT+Kg6iWN4oBa/PT5ZKvgTbTlmR5u+V6TFz/SEW+HaVP44icXavhyoIZpTIErDwRWoo0XnzNWfTltj5cjtdJ+to4zt7Cmbti4GIfLlt/0Jqf8qpWpI45wirV8Fk/+4oE/HBJmumHjo4hfLAo783jmi70HHN98NTYlHbU8e0D3Et1atDblKUz7wzclPZDyxTYcfLRJa2cMNh7dO4zB50duFH1FbuCygcEvaZ2tnYdYvAhd2GKPIw4zh8WQPhu5VhrTnnr8TWGTrodz38xS7G1zcvfcc8+tlyNhwRAbwc34XE/zivHWTmxiL+7mik0tLwqbsPOVnXG+jRvDkT7s4sRF27ii3Rx7Poh8hqNfLsI1NmVysNYKLo3Dglkf3szLHMfL3PQZn2zmXDzKh/yZh3nsEzbpeqTHzssAfOWKvbp9x6fryZ+Meeyxx9Y32/Of71up8fJy7Ec/+tG6rnDyTTyfp/IPuzWC24sMdtperuKLF+7sccXbPd317H4uRrq9GHbt2WvODK7p/kwTXX328qXwLwd88Ku4VvslbfcL64wDodv9xL3CeHtBTL1kMa4v3+4PsNkaM9dawzQmPrxdd/SNiRc/AscYHUUcxviWL23xdN2Kl478iCMf/PDdPSq/cOQbf7/kuPfee9fnaOsCSwzlQexeCltTfPwC0QtweoQuP3gp+tZdTK1/ufOyWG6smTmf4cbY+Sbx+fn5ipOtNXQ/8mcFceADtrjpy5dYta2leX34/MmHWI3LMx26kzNdIjdeCrdn6cEID0b5g6Vv3pmgc0H65tpbco+Dc4o2f3jb033+WAdj5Z2OPJu3/+QCBnxrVL7sAbZ44Wsvuz74kiP5FZMi3/DpwTAPU3xi5gMOH/iXu/ps/IKBff7yjysca6Pwo69oK3z514fW20tKuPatF+390htf8XQt23P88du+SQdfecoPTuaMsbEm8s03nur46SswfQ7S7/7iX1i8973vXfnx2ehfevz0pz9df+rHPrEf+ZYfRRxw1TjAxQm2mM3hojZP2FtXzxytCyx6c5/hL+/FqE74EavcyKtf+LClI59///vfl099fuhac/HKhT4+ajps+dO2H6yLNsEdD/HgWSzyjYfYKzDhT6FP8ktXztX8Fwu9dOnHi8+uefry1/WSX/zkzzVgTDzGwoQl5913+MTVvGuVD/HJARz8ij8ufIdNn+iz4VcNU77tY/mBEYdiVvPZL53EQteZ1C+a6eMODz5MNu476nDf8IY37BftaxX2j52BnYGdgZ2BnYGdgRtmwMHiV7/61dnXv/71dRjqYOJg5qDSYQWAtgOPw8cs6TiYOIwoRO3A0kHRAUc/DHYOTQ4vDjzs1R4e4M9DI15kHhg73Bo3zz7+2oQPEi82hN+45Sd7OumxN5/fYg03v/lLL8yJFQ4b4+rww8OtGLTZNGfcgVSJH79iizvdDrLyrF+hkx7sONDrwE0XXn60ifnWyJyDpwcaa0ocbj0keEDtMFq8S+HiB7z88R839Smhw0cPp3RmDOzowFWsq/3WwThcOoRvecTRwV9ccVgKJ360TvmQh3C1y128xG3/lm+Q6Z+AX3NscGNHl88ZV/YwxZfQM0bYiwufrh92cKxZe0lfnsqJ6836iQWeOPnw0MOmF+1szBvroUmbf749hNkD/BP48Vbj5ptGCl24/gSCteUblmuSXwIHFy8rPMDCK6dxx0dsHrY8yMIi7Oi2F/NffvA1xmdFP3xjdNRstEnzdJVkYhgPv/lqczjiqsgpXfn0ksM6ZA+TiFWcCjGvEGPs2ze4KunCMKdf/ugr4cMxh0v66rne4o4XW6LPVzba1rV5bTqthTbdfOsn5XVyNWcfuv5hkOJo/fPFrusw3HJQzXdzsNjkL2w86McnW/NJGPAILopxY+49eOOs4Gh/W1s5Me8/Q/3qV7965m8Shxf+zdZx85LA33u/dvj76vz3oqa8x5M+njM2L4tch3S8fLA3zdNzLXuJ73rV9xLRL9zYiM96u3f00g5vuv/85z/Xt0+7pmFXis2a2v/lWw6KRz3zJmf0+Oz65hu+NWeLn/tGa9pahOu+AtdaKHAUvGY+8DMPFxZ7Qi/seK6Jww/6BA59fbUY+MWNLb7a8oy/PPZta7pwYdBRiPuCb/J68QlXruUYH321+59rVWGPO1/lHw48OVfo0SkHfPvGs5eG5uHaQ/6U0O9///u1b3FTrAF78ZA4q8WsaBcDPvT50M5Gv2tEDNYYJh3xwCDmYObPC1h2BFd65QKGa0xs8s4vLHHiA9u15xcdPi/Y9tLVPobDVts5RmnNfP4Y72UiW3jl1Thca8uv9e0LJLiLV17hzXyYU/iOrxq2wsa8a9S4trG5/+VDLviATwev9rxxe82166UwXNe2PeUXN3IAU0zGrfvVq1cXHmw5tAZygyd7tcKuthoGG4Xf7NgSvBVrEmd5pW9tvcDkT7zuN16uWwfiX+7Y/2HxpfAhbusP2xqL33jtBXD4wZaeONX40+VTXGwI7vrlspjNi5ONa9c3m+UVD2Pulz//+c+XHT1nFz7NiTd7c9rs+LK22nQ7i+WHb/ziiDM9BYZ5+GEao6NOavPT/mIvX3TLIy4KaZxfNkQ+5Jotf3zbZ9bT3g9HPYXdLLCzxx2+PQCvwh5vWDjwow67nPKNM3zrSophdQ4/YGbHd1zE4R7btUrfdezZppjDsE/bf/4z1C984QtnH/7wh9d0+U33xer9p2NeLEN7fmdgZ2BnYGdgZ+C/IAMOH7/85S/PHn/88fUyy4HEAcNhxOFhHiC0HY46gDnoOAQ7tLBzuGGr1O+A5BDloESHDYwOWHQTB79eSMQBR22+888Wtjo9bViVMNXxogOvg372YdMNRzt/anGq5YGP8gMvm7iwpdO4ttjZ0OnAOPHNJenxOcfFEY42fP6nzsSEZ15hh0fCnh0fDpx40TNuveRITaeHkxmPFyXm2TiEhhE+u8mFHnFQp88fvMkrHbba+OITF3j0CQzc6cUrXQ+W89sxPXTaX/TF4yGoB3N4cYGhHRdzCV7iJOGIRyy4ll99og+LDe6nMOnNXBW7OO0TfAju5jywEe3yo+ZTXPi0V433IERfKVe44CQHPXim76HJAwd963x+fr7yzoYfL3s8oPNljB6fHlo8jFgb4+WSnx5m+IPh79V6ucOXl0lsrLNvBvZQiqsHbN+YFRs/sPjim7DxbT0FVzrG5K+HdLnDt3VghwMs5VjKDX1+6BiDebw3+FPMK9r8ncLlp3VVE7HQlztt+I3jSM+6VPIRfzW7bGrr46CfrfqUGLdWsHBRihNGnLTFFw5sfePyZG2N6VuvbOMsn0p2xgl8xRzscmMfuI67Bugr+ceXf3g4s9cnapjlj24lG/zgqWG63sKmw9a8dr7CNp7Ejw57nO1r90d9vOTGHnQ9esHuRbu/1Q77pUj+rx1esD/44IPrBZkx15kXTPzjJYZyULz0cO2lo3EvF/Rxx9E9wYs41zr9Xn7Bhoc3O9et2OTaC1ov6bxs93JS3GyVKdYVP7lp31g/nODEQbucyqVxfsNjm41Y7Tl88IJnXxB2OBvnk394RDzuF8bpz73Jl7743NfU/LhWcZAzOuJU4MePnjzyCwMvc8bp8esXjWIk8LSV4mNjz/isMg5HzPFSw7dv1ezkgx4+6jhp+1zkMzuY+LgXu3/KEwz3Y+v4xz/+ccUsN0TexJTwxQ88JYk/3/zSmwIPD/606cGFr7CHVyxqMXq5yYao5cc+VdtvXh7bg3zCFRs7At+3pP2Sy7en5cuaitU1U77sG/tIn1/FL7PowcBL3fnH3rGWeBcLW589sPinr80PPPHxL/+Enf0Iwzgdc62/MUWe+pzQJq5Lha39ybe4yy1svwjwEvv88DkOF0b/OsL1LSZx8Ovv8v/1r3+97t9+az3EIlaYdPki5hWc4IsXnra4+SP027/0zeMKUz4V2GLB2Rwsuq4Ba2CdYWYPtzy5VmDiUUzyKnf0ib0hT9071uDhh3l6raP46MIzpw1XW27du/1LEHuJ4O2s8rOf/WzxYd+LdnbKscCCHz/x4tsLXeNw1HJPV1zyqMQne/jNH/vDTy75IOzlET4eCt90iGvAPGyFbxj5Vuuba731W288lHDpEbzkkl57q3U2zkafHeHXXrA35L0cmKen8AsXpn738zBgxs016Bci9qTY7Rnz+MHwL42cQekrONG199xbxO0e8uUvf/nsE5/4xOLI/lZkv2i/lWxt3Z2BnYGdgZ2BnYHbNAMOIr1od7hzsHDgcAAhHVQcQBwmKoXrYcIcmw4+2uE49PSg4ZDkQOagw6YDUj5gOig5BPeg0wGGPk75gs9OoaPmNx7ZpQN7HjLjYpwNbL61HeQIX+GoFXoOXmIyry2O9M0fcysX6lnoKh0c4SkkX+aLQbsY6cTVvDk22iTudOrTwTV/uNBzcEyfPR0HbodVNXEgdtikS0f8Dr49TFkvOvIBiy81XbymwJBrNQ74zLzQZTvnPIjxxY7ApMMfaS+J19p6oeCBqVjxhYejGl8PQR22py82rekCHz/yW4zFMeMtnql7nIMBeT1HMJR05c6ebQ1ap9YwP+WYrfhaB7kwJzY4+trGKuJwvXlZwS7scmjeQ7xvbYUn5x46PKCIHxbf2vKpwBIHGzzh0FfknnjpoVjXHp61PeSImb3aS3b/gZ2HaTjGcVDEY529IPQNOFzpwOEbF/py1wsZdsaUFxIx0Z2x8KckMOjxOWOVC2NEfkj+5FihT4eP+MEylz6b1moNHn5MDuzYs6OrrSThZ3PMPT0+zMWpvBlrn8Eq1uzU5UDMvcDAgf7kz9Y4zuGET48+/+VLbW3tRTWho8SXfTngX4kvX3DzwS7fxsKS73TdJ/Th40hPG06xqM0dC78Kwdn9sT58+94edC3+X7xof/7551f+3Nf46OVfe00scS82Lzu9xJALL40V147is92fLPEijq1rq5ej1ql8uD7EZYyu/5T1xV60y7Mcqds3c23M4R1neu4F4pJLayK3fONOjz4M9wmY6uKEF2frI74+H8zBhQmbjdjm2smFc4v9zR+/fMoxv8byV16Mw+UXr+4j6ftFg88psREY5vhtz4nDucwLZGIcPzwIbAUGOxhiqOCisIFlT7pX0uVLDMr5+fn6trMc8+F+bD/1jXY6RM7KG0x+xMZvEia/zWsn2nTwkAP8cVNbl34Bw9Y4Xb7UvWjHka6c23vuV9bH55Ii1wQmvmzF6yWab6OKVw7YitXnkjjyCVdbXDh4KQ0Xd2N8+7yJs2vIPuKnmGGztQcadw8IN37m4NCDay35ECMeYtOmZ9za44qLYk1dt9YOvjmxxocdHf9qwee4Ody8bPRniOytYoLnT5/MF+1i4N9c+cRRv7XnI37G+ZATOWbf54l1jLv42dCdL9rZiIW9OX2Y1te1gHvXGl7mYVpD977EHHvr3742Jv/42CP4GEuKTz7M6fOtrVZwllv7yIt2f04LBzbue0888cRq8+P+mYRRX803H625Nq5iFSNffIqjewlcORUz4VspDvqtyxyDBYMvAkMO8DYXD75Ieyns/IiDLR7w42bvwpnrDYcOW37LZ77V4cY1G7rZ2gvuC3wYZ8OXwr9aHOGJ0zi9RBtne8jet4/EItfFAuP8cG/wBZB4yKX94iW7wsb/JfClL33p7PLly0tPzm9F9ov2W8nW1t0Z2BnYGdgZ2Bm4TTPgINOfjnEAIfPAo+/wceogYdxhTN2BpsMPDAcdpQOcg5IHgvDZ9UATvkOMw1/fBqJD37g2gRmGPls+HFDN4WCevjkFvw565tJtzmGKX3rZ82meGNc2Rrd49Y8FfvzYaKevHf60wzW+cz7/dPntkOlgSC/dbKdfNsWjPXXg0C0efswTuelQW9wOsNY6Pvx6OKKrLXd08IKZL7WxsOFrl7f4T1xj8W6eH4dnWB6cejkSbnrs6NpndOyHfOLocM2XXNpjxcSemNO2V7TlCIa2nHWA1+bbw52DetdB60uf0KkYU8pHOvTYVdIzjsspbvxXxEzKPft4GLMuYjdGd14jdF2DdKwJzOK3B9h4yPGCwks2DzpE3O4X6mz5kgfjXUvyxSc/5ujLO1/+GXsv2j0g40HfS4GZcy84+iYRHKJW6NmHXs7D8/KmPOLVyxEvJ2B4YMKTjnUJZ4Ge+GHeXlGzmXs79XDq0+VPLfbjvd66wcNFoaOWe/MvJMVHh4044xgWv/Ti3z5Sm7O/5Y6wV8RhjuAD0xgbujP+YoavJO0l8wSOQsdYfI2lk201X/jxV3vmBBaeeBFYcPFVyk8cw81/fOJdzPX5NAZnzk08c8SYkn4Y9nEvHszhas51YdxLmkcffXT96YFs4nmzdRz8EuqBBx5YL7jlyXXm3ue6cK9srem3V8qXF72uN3nr2nOdu4fSdW9zzcCl1z1ATPLofuqapgNffGy8vOz+qqZjTh4qMBTx45OYx0Utt/zwr1gb+op5fX4V/eISD39szck5X4ReOdeOh7nWM73G5MLehgszXLllD0ch+riaU/PFXg7KszFzvQSMU7ZhZss3btZWzuERGPliQ59ec/CNF9fUXUqHH3x3f9emaw29JHz66afXvQwGUSv05DVcfuc66CvylI6apGt/Wmd25cVnjoKncX74s5/9omf+6Rhrb43da+XH504vw4wTOgqB2Tf68yGPdO0b/tTGFOuHH272s5yIJ13cxIJffMVonh4MOnzp07Me5cFc+cGPP/P40gnbeFJOYdHDubMQnj5H7RHz7Mxr+wx3z/Hta37xdc36JbZfIsifcWPuJwqRU/vNXD75ZR+X4qFvTOHb/YKNPMA1TuiLWyGw3G9co4q+X2J4gd0ZTk79QsAvBvo/XuY6wLSOCt/85gff9pl88JsunXIUv+LEQ9zyKga6CrFOfmkhn84w4XqB6/81YMOPa94cYQtv+uEDv+bp0rEe7OOAU3N0w2hdzFknfrXZmmMfZ/302dNRwgqfDoHFFkZz6lno6uNnDbWJ2hx8uS5/xsRbPK2hvrnylj0s/p3r7GHrSOgrsLpm8iUPfR4Ve3tArD6PnAvleGLAxqfrBo4+XDjigMvG/7HyyCOPnH30ox9dfMrh6tzEj/2i/SaStFV2BnYGdgZ2BnYGbvcMOND8+te/Xn/jtQcJhwrjigNEhxWx6huv7QDlIEKyWZ3DDwekDlUOL15+zv+QycGFzw6V2cF0QDUeF3W+YcaBjTn4DmJ8OgiZN+6gpDbeARyOQxWcMB3w+GOXfbYOgOyJsQ6z+uzFr6ankPgZn33jdHBKP/uleGGLg8K+Qs8YOxxIc2rY+TWXr2zo4E/KIUxY5rSJhxsPSWrjxJp0yDSm9IDHDww66nDC9OBnDO9s42ZM27yiLdfWB+8EX+Ps7SMPzB7U2ZNw9dnaCx5wHf7h4ubg7BuXcm+sBwC2/BpXtO0V4zjA0A7Xw6DDvbH+qbr9yjYxR9TGy7F++WhejTdfxRiXajrm8cKHnqIvN0RM8I03JkZxewCHZa7c8knfnpi2rQE/fFpnL7LPz89X7o25VmB6seEajid/xszzYw1wNN/1LlfWoxft8D342F/45RcP4sFImYKDeT68gLnzzjv/v5dFYuLHyyK+5cA/64YjVrZqxXy+8iEv8oMPLDrG8K5Pt3H1bHv5o8/e2sPXhllhP/HEZN3ae+YJv+zjqJ/g3z42zxd+MPTpGssnH3Jm/7avcVXYsSm31jDb9kxxqssfG4UP+saJMfHhlz4fxujgpqTPXhs315h+2OowtXE0T2DALXb9xqv5pzP5axN4+TIG21q1XvmOMxs6/NA3Xs7SYWst2VoL+VObt9/9bV9/4/WNb3zjwoF5qxIv3zy+//7715984EOcrjv3QGus4EPce+RfseZenLuf6ouFneuyvdFawYXnvmuutfIfyHW9y4eYFXuHrWva/z3gOnQ9ypNC5ILAMsZOW8EXn9Y0vebNid/nVLHRETtcJe7GcW6N6ItdLuDRDe947/BhrLWurTZXkR/7FrZ2600PJ9dAv0w0T8LKzhi8MNQ4V+MJQz7jW65gFh9cNvaZtZVXY8XaNV2ejLu/W1+48tZnpRexuIfdNcRGwTfRp0fgKITvfK2Bix94sW/eNW898TAnptbNvvNi05zYCH+42Wt4eRnuRaf8GCflThs3+5vgFlc4+TPOVo7o4oO7feyzQ27o8NnnWLEZY4tLgr/PJzrW2fmXP0Xs2cDEoXjlxJgzjmuUGGODd2cQbXuNrs9h1xmexlsbORCLf0XjW+3GvbjEab641re/rDkcIpfG2FiPuc/Mx5N/JY44iVuc3QfMFXfXNRtjYcsB7pcuXTp717vetTBgwfCC3Tft/fKnZxW8FNgElpzBsQ6uc2P66fLJv6LNn3nt9rf8KnBbo/T5oW8tXTeuMSJ/9qC/K98+gcdvwldiXcSt5rsCR5tdOtrG8IFhvCI+c86i4i1O2HjCo2Oc/Sy46LOndyxs+AvTfJzgG2dLrBPh035Ty4PrRHG/5Ute3Zvo68PAT6Ezc2aeH7946b7QPHzXS+P4Wyt7V8HL9ah27fHJFx/ub3CMu7coOMOY9xH5LCZx44O3a+nhhx/ef6N9ZWf/2BnYGdgZ2BnYGdgZOJkBB48rV65cf9Hu8NHBKQM6DhjGzTt4ORQZU4x1SOvARJedw0kHIgdS30hyMILhEORQ0+GKPzYdzozDzb95+DCNJXz1QAO3gyHbDvRsHJDMGafvAId/Ph3SCB1+yoV5MdANM9/qONKbvKZObbjwYRP6+B/njY6Sz6mTDXu+5Ytko82ONMbGGBzCXzg9QJgz5kA6X7Qbs1Ye4LQJLAfmcooDnbDSg+lQq7YG4jaHl7HihmkOLj0H4OI3Z0xh49DdL2ysCzzjijZODs2KNcZJcdj3UkjO6PKHtz7hW4kfbnzCM94ekx9tGB7svbwXY7h0SfzzE76H9vzAIPlSm4ufeuLhIjflQ3wK4Z8uHYWtPe2hVNz66Zf3cocj+3jQEyOxzq5bD+ke+sVF3wN48esTee6BDwcP9HBg2x++IafIu4dU3waTz160w7amCi7s5FYcXYM4m1PD5qNvlnm4J/LAzouEMK5du3bDF+3LaPxgH5dyY0x88ORS0VbomCdqfM3jKVZYrRPe5d1ctnTkTEwTy7w5ax5+8+a67ujAU/jimx7O/LGXQ/j2kDaOvXSkB4Odcbhi08fLHLxiLn7zxWMsMYZLuYCvGIs/fWP6cBTcFO1TAtdcXNnKQ/hsGqNL8qPOtzq+YcKdbT4UY+kuwMMPeYDBJkx6rZf8kq4leYdhv991111nn//851+2F+3+UzZ/8sE6yYN7n3u4a7f7BS4+U62rNXE/dz27fnC2LnRdlziKC19xigGme6842guuqb4RK/b2FiyY/LlH0PNZXz5xMS9vxuRKsUf1+TY/15QNKd9q13t5NsemdYmD8TjjyIfY3YfZphfu8TqzfyGBKe9y3Vrr8wMLvny7D6vF1z7BV87xMEbYwVHoquHBch/3EolupfyxKwY2zlnWV1tO+Gjt82+c+OWK9eXDmsmP+ztf+IfNHmf99jyf8Fo3eHAUQk+b3RQ2xLxiz9mzingVuYHr88efjanPjj0++ImjzyMvh+UZJltc6eLpJSx9do3JS/sWzzDxcGaFLSf2ixqO2uc+LHHZp83rw+YbrrwStXOL9YABNy7aeIqZHe7EGrrmCG7s6MiVXLBR+PQZ6mV0+zoe9O1N32j3LXHxyifxp076hrgYfHbrq3GQS3Fqxw9/YkzBXWm9xc6n/IlFjDiZ11e6rtmJCaaCmz6e73nPe1b+5dCa+AXAn/70p/Wy3RmCLV+JNnt5hiV++5gYTxdnc4o2PuYJXvjKr71i3lor5vSzcd+0NuIk+LjG8aTb2Gpc/OALDzHmVztcGHgldMTPxhw961C+tOnIrfuweOkao2OejTFFOxw+jLHlc46bw6tCL5Er66uG17rbj4Rf92U68uC+r9gD9O1F+zp9XMuBswib6Q+OPFsP8eBqnn8YsFpv133/pw8dePStp8KPtcSF4OIle+uIizz6Fx3qXrTjoLDvWvL5vf8z1JXG/WNnYGdgZ2BnYGdgZ+BUBhxGjl+0O3ARcxWHKcVch68OcMbmOFt9tg4uDkQOQg5EDqcOpvrwHHgUB2l4sI07MHX403f4UpM4rc7Fjx5oHMRg0KHv0IwLHg5Kan36dLXDp5uwJ/kqZvq41Mc5vC2AkgAAQABJREFUyQYePYXQJcWnL7byp8aLfXja9PThpTP9ps/PtNOu5Ld+WHE1byw9+A6vDrUOlHGQG2uSHhuc5RCWeORlxpUuO/p08WBnT+BtTEmXP3MdaukT48XrUOwFrb1Ej335W8qHH/rWuH2Gl4cQD40JTvZd62ScXiUu+NCVE76JOXYO4x5we6DDF0+luODJTWvgoG8eR1K7OIzBnnu+vKUTvvjx0y9X4jaOs9x7+MNRn66c0CfqfKlxUvgpbvtAvr0c9KLAHN1ebMipGOHbJx6C5ZWe8eLWFnsPU+4DPZD1Mr2csy3HYpCL4sTZnFoscPxnfv0Sjz/z/PjGLa7uMdrWCQ+CbwUWO3WirfANg6jpsVPrVxprXE34Ew+uRH7xI92ftPmiY+0IvLDFDiOJJ24w1HBr06UDo9yFAd81TsecNWGXsMHZnBhwhU3MKUkx8lW7OWMTRywwFe2w6LAtL3KgFOPEM1bBS2GbH9jEGHx1bTr5Lf9h0wkvfHzilB/68WaTwGVHjx92c73l3IO+NfA56BdDDz300PoPCidOeDdT80d8o90D/1NPPbX2Di7ujV6y8mmt+cfNdWmt1X7xSE8Rkz7pmqRfvsTTi0IvJtwL2XgR1zdgxSE+casVvlx3OLoHtbb8tO78lGsxaXcN0IHBFy7Z8EWvly/w4NAzp9gL9I3RnevaHjSejnk+woKXjTF65mdetBXXkgKv2POJC7uus3wUEzsYCTul8TDhWCPFPdk8DLGUNxj05M86ul/7PCgvbN1r6Yev7d5pfXFz31TcK93Lw4fdvds6hmmciAGW8XKlj4+x4qZrvJKt68KLbXXXi3u7+P3yxzfau3/DxAtuePHt84c/nKwHfTj2Om6dZejAUMzrm1NcO+XE9cIOZ3nT9plSbthqW2O6/JFq83i4Fls7c7BgNi9u/XDtb+uIT/7lnh488Snm+oU6DsVc/PaAX5RfOnxT3Jj7D1y5cl16Ear2bWy/XLFH6PWiXSw44GtN4OFITx7iRi+fMxa25Xjuu/IjL3DdW9g5a7z//e9f17d42bu/+de3Tz755Dp78A+zfVUe2eNA4Ff06ejjO+3Sh+d+g49Ct3tmOGo41tFetU8IW7mXS9gwW1/z7KrZi8s6afPBHi/+jVVgEPMwxMe3Yh3UsDrf0JWv4osvPsVpTNFX040Dv4l9yUe21ebZ4USMt97sxYU3e3P4iItN/OHSpaM2Zw/jwYYYg+O+IM/auNIXszVSwzBuL8q/+xwd/NR8lms8+CDGYahhK/LoM637SHrlQb790sq/SNsv2lca94+dgZ2BnYGdgZ2BnYFTGXAImS/aHVY60JmrGDs1DrPxDkyNsXVgMq44zDgsOVBrm2fr4c0BldDvkKXvoIWTw5GaqI0n9B2iHLgclPgyRq8DtTFzxtl26GoeD/rFAptuWGyyZcNen5ibfGB4CKBXDtTxZzf9wDCvTBx9Qpcc88lvdvSUGUdjanrNLcCLH/mBx4fYOsjL6cRkAmPGws76KGLWD5M+e1K+WiN6fCmETfuktWqsPhsPY/6mrJcDHbTxVMw7RDvYwzIGAwf7rBftrQE9nBNxzYM4DIXYuw78cMoBPA8HcPiBW50d3+UFP/hxo6/kZ9rYQ8Q8MQebbzjGXUftRX7MG2vd5MILCA8e5ul6YGCvxI0vuOU5XubtBfm+++671zcf8TDuIdvLdtjlXC6Mw4Lh4d0cXnLQHokLnvAaF2cctHFkB6+8qhVCFz8vULw40GZjHib/fOGAq/vMXO8FcvSDPsl3uYFpTEno6qtbF3ONa5uXi9YPZwUeLvmjKx/Wh8Djmz199gRW8bOnozY2uerHq30Cwx7QhylH5R4uX7CMxSuc4lwkDj/iUJ/9sbCZBSZ8pXwZo1N+4B5jwzXGR37SY1uuxE+M8QH7VDnGYpPPOcdX4zBJfFfn8MO4MUJfXy3PbBW59tLM/rRPLx1eeD344IMv24t2fyvWiyj7Ry56ge6eVXGvxLNcuS/4LFaM+7a0FxVdk+KgK4/EvoTb3/NmI073wKtXr17HtXfo8gejb8m6N1hjNmxbK/3yVO7YG0vPuHb7Bi9j9nH21ewInQpd43S69urTga2vTfBMT9+8ewj/5nA3Bm/6hRFuGGrCll1xG4OhTMl+YmvTY4ujF8D2l7Z7mjkxlid5sc98Vs51twa9hJJjGLCtq70Jz+ebNeRLzN0f+MiXPUKm3/JQnOrGxJTgSMqLOTxw9YsBvOHjY2/C8EJTzF6A2aNs+GZXDPjih3+f6627uKynvQu7XOEIT17YFissOWwPz7XHh/APlw5u8NnDaR3gG8NXYSvv6tr4KPwpcMVA37UL22cXDmzMy50SDh5itra4z9zm27fEz8/PF/d77rlnvWyXO3auYf/6689//vN60Z6vzjcwvHQ33ucsO5+vnS26Xoozv7jhRIzhJs70xSOHfjHoF+bW3Yv2973vfeueGUfcfvGLX6z/oFc+5BW2MqW1Lb/6dBpvbfgl5RA3Yh5H/Ig1nD7CodP+o2ecnhxpmxMLKSfm5MK8fdBetN74sDfPN3x24ZrXljv7AnbXiM8WX/qw99hYN5jxFiO8MOPEjznY5ZMPYsx8e7v8tKfp02Uv1vZ1PM3h59rVxkWBKQaxx8c8XC+3i8EYLPj2nBi7PnBhCyNe9OUXjrZx9nymU9z65QT3BKbc2es+H+ERnOmxE6cX7X5R/qEPfWjN83crsv9G+61ka+vuDOwM7AzsDOwM3KYZcHCYL9rnIcmcQhwk5mHCIcVc+todRIyRaV+fjkOiAxIMBxgHyw40xuiYD49fh6d8dcCL23J2+EGvwxNc+h3uHKASdvTM9wDQnLH8sIFD31j+tDsksuPDWKJtDOd8mcsX38eCexj5yW+6xdA8PH6Ms9c2xq+2MVLNzrhC9M01vwYPP/BzmOwg33y5gM8PvfLoYdXB3nj6+cAvX42VA2vcOtPhQ58NHX37xYOYnMuRQ7dvWHsoM+7wja+2eVwc2PFon8FygO+fRJcLYzjHi4342mNr4vCDfQ8HHsrZyCNfMNjQiTf8KXjBVtjhBW/GOm3osYFHR7889TDBnzGF0CGNsReHB2I2+vxaV+32glgUY/kICx593yh85zvfufKOk3k2cNXW3gOKf3begzd+vWiHky4/E197Fnb69Ih2XMuRMW3FHimf6mytidhJbTj550cRT1jm8DSubW3lUJsObGI+G2P5bJ4fbTqk8fzhnI/m6HbdGcNZbok5+iTf2niVmxmbuQSWvPAJR22dxc2GHzrx0W//048LX8fSvHF4xxJvNYEV5/DmnHZx050SVnlojl4cy5e42vP8KOmFi2+c1fmGP33Qn/b0KjgUR3zYwguHvX73U7+s82cwXq5vtPtn7pcvX15/o93aWjsvJbwgcU9U8+llqv2FlxzLT5xw9E/uXcPto/aGnNIn9HvRLgeXLr4he+3wp2FguN698DHn/iZu15D7pGsRpn7XVXkvdzDYioPoy2/5NAcDlmKcGC/v6Rpnizsb8/a9HEy/zcMgE0u/PPBHly3c1h3H1pptc8Zcdwphq2S3Bg8/5Pd4LDw1TD7w0C4Gc8ZbHzUdWHxady+qtekp7tMK6fMHJl167Fun/LZe5uJA1zyBS+RFwaN7vX5+8CX0cawPx5rYV/6vDf9qzPorbIm8+QWuP4+kbq5fXsGCmW8xug7wba/x4Zvc8NkRNr4Ba+/7RZPY8YHHd7krB/DZ0BGbWLxI9AsCtTmxEzrmcVdnY64+fOup7oxTrLB60e5b5nETPyw28lAexRo/PvT5Ubv+fKPdfYe8+93vPrv33nsXb30vrv2yzH/k2Z8LYsuX2Pl49tln1wtIeVHEKXewzeOD15RyIBb5UsNlL24iXmvjHuVcJw9+KYCjs545sf/lL39Z32j352P4ZUfKJWxjeIkZJ1jq8kBHSfCTQ9zpKXgd69Evn7BeCI+ueZiuK20+FLmyN/Fsf9GX43D1m8OPrr2sxgs/84r7cb+EKids+nNAsIjcK+VCjZ/84MU3bPuHHyJevtxD0pHbroXOCHCtkVjhwikW+NaVwIZZzmGHaw5eL9rZ01Xg+yVMv+CBFV9Y2gldccE2Z/86j+ItrsmVHlHjz4bYa2zkU6zigaXgQ9//rfKZz3zm7IMf/OCymRzWwIv82C/aXyRBe3pnYGdgZ2BnYGfgvyEDDg+9aO/lZIcxc8k8SJhXiIOHOboOINMmW7XDSgcwB0T2dDsQhW+8g4/awWj6g9GBM/wOh3Fh4wBHjCl88dGhyVxY+TBG4sKmeLJvzsGMXRhqZdrTnXZ4EtzCDl9MeJLmtMMsB/mh4xDoAJnwB6cHTON8ZcumHGUDD6/iaty6eBh1iGfP1piY8yEH1giGB7W+FRZnNmzjkC+1OcUczHJFX79xe8Uh22HdQwVbh3cPy/4puQdROrgo4vNNFIdk0uGZjgO0BxA6cMTRAzn/fOJEzJUTNV5quYXfWoZlrnjD4IPom1cSecOpnE6b7OgXG7uuhx4kjZUr7Tg3xr5rAz5c/uRMG3dFTAp98/GFqS2v8u3B94477riep9aKPw8mvhHnW7VetuECi59807EG8Zz54Eu/gpc2W/r4tU+Nw02XLaGrGKc7Mczr40yH4F2uioUv62ucvgc1NQlbm/7E4jPJvzobGPnPVj3t+LTHWx9c8g073ura8nBcwkwPbj7hdG0ZI+lrw+KzNYJh3pi56Te76ubgJHzwrxC6s5i3x43Z1zCstX0SbljqUz6ax48twd9LDbzhmFOzV7Tjpa9tjJ02XtmVk9bCnBySiUd/xmsuvzDF6Rp2L/ONzZfrP0P1d5YfeOCBs2eeeWZxt2f5+x/27q3V0qP69/h8I8JqPKDGJAYPAQ+hFXLjIWo0HkCTXAQ1ahS9jgfwxvfirXdqJGiMsQ2YRmIQL/ql/Oensr7rP/Zk9d6rQ++LBTWgVlWNGuM3DlXPM+up+fTs7jEdBDrIdNjedSkecZDjKxyHbB1KyEX3Dzy5FY83jx16iNU9Aa5rG5YDy9u3b6++fMDODzbcb/1mu/szbH6Wb9gwyxv/yrncuTb6DGDP5w1ZJeJDBRYfwmHHvczBER3xqX2Oiq25C1PNJ36S6Z6CDwvBYINNPqrLm3GxyzcfrGl4ZBA9Ba+CX07I5Qs+mWzD0+czu2yaIz7iF+s8SINXLuCVa+3k8p1fxmG5H7qW8OCKR8k3PLLxYZQvNh3Ambfs8YGfERzzcnZ2tg6DfcbgkYFF3hfk1rfDYOu7z6T2BbD4Zx6tMTKtWZ9H+PYzDnDf9773rS+O89/exU+m2BuYI/mUD8X8yYH44fCDT+nyzbXgS3/XhRiNq/moyAEMWO7tsLqW4JRrdsnQt77pyJ3r12cr38jzQc5hybl2BRY9frXe2HLNidubuGQ/9alPrWvXwTZM+bpz/LLMz7LIgxzCaT2RccAt//CQMTlmix98FzcfyLMT6ZMhS0dfQXhyZI3IJTn3FG/d+78DzINY3J+81W6PwV926MFhl7984zvMbPCLHPnWUzr4zYuaz2pyzVFx6MMtx/rklGIp9nwTkzZM88tv1xNduOznu1xoi59e/pSz5jM5NpO1FsxHvvn5E3k2Tm7agccOG30RR0ZpTuEo9F039PnsnmttwjaeL+bIPh2uop9dGOT5L1eo2I2ZN+Oui4ldvuXBv151ffU8Uk7o8Y0tmOKRZ31++Dxy7cBlGxYZX4zJWXmwzvD4guf+RZdPXQP0+cRn19K3vvWtw+OPP77iKRerc4U/+6D9CknaIjsDOwM7AzsDOwPXPQM2JPOgXTx4pxSvDYxxm5I2ZPg2ODYpl206yNocqdsY0bFpCRumzZLNUA85bRDxyGXPpgcW6kFZmw1y9FB2V+f4Z/qmbZzP04dk8GYha4x8sRZTtfH0s6mm2yaTvjinTWP5nl72yNHRnzybTJvAiF04+Gp9eZA79vIxeTW8NujTb/NiI25jm69w4GWjOYLRQXsPaPlMN31yNqrqOa6Nh8pNeh5UbbAdENkYk5N7m3pvv+HpK/zjm4cZDwRIHOIyJi8OksqNuG3+yyFZ9pFcIb5Fydt8n85Vsunzk93iLMfiIsNW+dTPTnrpyvF8aGGnBxA65gMmoqvAU2DwU01GWw0Pjywe3xR9ePlSzU8HGt5od6CQ3+Udpnn3z/r/9a9/XfwTc/x8ge1hp4et/OLHKZFV2IchXnqtHTr5n6w6HjxzzAYqv2HCxYOdja4T8vw0LifWUT5Wh0dXOSVyfEVk+cEfBWXTWBTPNWfNky2mZKqnXdjlEn/mAL4YFZSeWIshTDXd8NSIDjJWWYxzHh+RscuIbWu9dRVGNT9aj+aYPbV7OkrubvjTJl/Ku/x14EJXPM0/m8WvLj/Gpwxf9NPVhoU/cwijfMEKn2/4dPDFKRcOk7wR94Mf/GAduF8lthln7ebGAdR3vvOddVjITl+Ya/PTYZ1/keIA0xdmrtv86j5E1oFEv/Mrf113tfW13Yt9LrD/6KOPHm4c32rHd19wD3jjjTf+jy/b3KP5wBdz4o33ftqgXPKj3JY3Pipk+OzARzEPrkulHNChz0bFPODB4J++OXAvwxcPfZ8LtcUgF8bZoec+YD1q49EhpzaWXT6yTQ4evrjg8YEdvHTzC072xEE+Pf3WE9tR92uy8stm90hYdNhR+FSfPHuI/TD5Tobf+a5v3Jwp4fINJspX/Xzmi3zxkX1zz8d0YCrFDcO8WEeuC58xbPmc7bPWunzzzTfX5zdsuA7GYGsjOnznKz1tvlhr2taOL+fZcLBWHhyg+1chHU7ypfuwmOSJTThkYMqNot1Bu2tLjOTF5D7eNY/XGu5NWTw+qJFxpdjV4uugvTnwsxZiZlfNFl9g8Qeewmd5Ng8O2sX9wAMPLB8fe+yxiy/J2LZ2HLC7du8cD9y7h7SXhO2Ncl9IOCiGzxZsxA+FXLnhF8KTF306/KKPj2qLvf2mXPLXAas88s9946233rrwgb75KXZY4iXLTn0yfCPHX2Nym1/syrOaj3wlI3a+0UPaFePWFDw2UXLa8GHln1rpSyt65Mmkxx9tvlqr5BE+W+JiS4GfDfmxXuOR9WUMX2GxMeM3zg6deTDNDr/KERk+0FXTs3btr/OfTXp8MGds1adfkcvyaRxfnhV9Y+7nsOUWr3lkv4N2eaErB2EWI754YBqH4XrtwFwu+em66T/8JmPe3Us6aBcr2+mJW7xqNo1bm/ugXUY37QzsDOwM7AzsDOwM3DUDNhr/r4N2MhVA2m349G22bHJsWNRt+NJR47VBbDNG16YIGUP6cGyItMnG00bwbHpsyJCHKhsgZHNpfOLG45uxKJ/04+cjXvLGtOEgfugjGIhe4+E2ZlzbuBpe9owhscDATx9POz+K922Nt3021jh8G0IPMvIDj682ovJhbMYHZ/oVrpqeOfCAXPxtuPnBRg8mMG2QPQiah2LkF7tqhD/jPPWdTDrZZMPGWPHQCsMDgsP33nbKBl0xephxWIpaB415UGge1PKkZs8Gurllh07zQYbv5VfMxslF+vRRmPow+KOWU3L8UrJHx/gk42KmY0yZPsNpTrQjvjXP/Es3n8WJjOGJq3nJ/3wkp+0Bx9uAHdSZgw5Q+GfePdz1Vqxrkl38fLFm9Lt247MR5auaL3JAx9o6Xb/8lw8FVjWsxsTVHCRrXEzljC157CHOAx/ip3mDVa7o5OMSuuRPttVky2/2i61cBwHbeudL80E2gofi6csJ3DCN48OuwE1XG1+drLHG2YU3eafY9PKhOZzyC/j4hx1rTWmtn+qRFTN982xc7UEXr5zlU9izzjYZ+UgPjjYfyye98qJdbK0ffTryo2QXD1WXQzJ04CNxTqKP8F0z5tZhgDfiHLR/4AMfuMCceldps4vuHA/Gnn766fW2Kb986SkevrHrHuKLSfdL900+5JcxftHz0xmuYYds4jEHruMOPIrdQbVrX989wVuxzTF9//EpDPnng/uDa4td8+Ozgo8OOKefZBFcxZgiTvhw+IvXYSodBU9M2nOtwRGLaxnB4Dv5ePjkkHG5gMVXumo5wCPHnykXj13202XjMv+sdxjsyxE9/XBaW8uh4x9jeAi2Uh8+X5ovviKYzUlt8+zznH3U3Gp3DeLJLRvsouLJNh5M/qrpssUXPD6IjTy+uWdbG5GzFuhpwzAnvji/cTxs9xkDw2e1NSI2tYMv+ZJX8dMvb+wqbLKtkMMTEwzyrgPrtS9b8K1Vh7jZIien/AqfnM8FcmwUNxsOhx3cweaXcXpk9PlATszWr+usw2pyybNrfuSJPWP6csdun4EO/PFcy3TYgS9muGo2q4255txzHBDyab7Rrm99i99BuuvXYT5iS9xk7hzvM/0nkfyDb57Y4rNS3Nr8MkZX31zTEUfxkZ8YfYGn9oWLfR9d8+6e4csAL0vAQDBhZFc+tNmV1+5Bck8Wjz1FG89cyzOZsJLhJxkFZrjigG0c0StG+SYXlvjlQr89UHMetjocsq4ZerD0ybOpr61WyPBbmb61b8En0zqBoZDFm9dlmPDFxW5+q/GsL2uFfv5ps9P6hxPRk5ew1WKli29cXy6tM/lBxrX5Ss5atya0EZthuqbgoGyZP/mWB9c/G3wk617j+jfvMMQrF/qIHn98lolVW12brH8Z8uyzzx4+97nPLR3+3AvtN9rvJVtbdmdgZ2BnYGdgZ+CaZsCm4rKD9jYOxm1SFG18GxN1MmrjNjlqlJ4NU7rxl8CQabMDx2ZICYt+G0KbqXBtwE43U3iw2sSxG3b+GctvYzDSMWYz2ThbqL42HHI2XYhPcxwvm+qIzOxnF58ddmde9cngReQq9DyE2HzyB9GxOW0zTLe485OMwpfL4pu24Lax1TYv+co3pA8rX4unmv3mDS8dNT/ow1ano62Uaw9B4uyQxYbew7gNM//EaT740KbYgyW8GTe55sDYLNkUow23BxC6YfOX7swfXr7nLx1+6xvTpuNBma/eBj2dFzh8aU7o8EO8ijYMREas+vDlxvUBO9vWgIcLPuCp5aZ85t8CPMeEqyDy8ORBG8Fhh03tvugwD3woTmvPw7iHJjF5k46/cPjsAZl//GGvuNkgA59dMWvj0e+QIR16SC2fsM29Ohyy8pCs/ukagMGOPDsA1XbgEG526SHYlxH57CTDHn/E2rg+ysew8q08Jx8W+/kebrzmlY623Fm/zTNMOgoZmI3p88kYvr42bG0FmXs49PDyy1hy9Oobl1NzaS3pq/kGR5+8wj57CN88KnCNaXdvz4Y639T0yZZr461549rG4Rf7MnhuM6x41flFR4m0W5/ZhK0geGHidT2J3Tpz4PXCCy/ct4P25557bv2GMtsODvk9Y219O2DgA9/4r+9QR5+8a9OBlly5lnuDUZ+8+XPftb6QWjzhulZd+w7o6PPDGphrwf3C/fnO8eDOeJ/lZOS1NcGn8s72zD8ZRV6NwXGtFkfzo893Y6j1Z85aY2KwvsXPB3VrkK6izwYyLgZxwUd8Ma5fm552MvLODj3+wZQvfWN44qFXTvDYg6HwG6Y5EDeiExZdfXbUZOnr++zxrxq8HYrvM8m9zjj7MPStH/aRsXImPvdTPvOLP2zIH33jMPiI+KfIaTmmo+1zQzEG3+dJh9XyYQ05WHfoC7d89CaqOPmqOExjk6/Z1OajvtjZpYPKqTZca0PhOxJLuaNDXl/cDnnljo/mwJi6g0D91gFd15O1jl8OfD66rvhc4a/r0N7Gvo7PxUCXf3xVXFv2Q3LRgSy+nDkgJ0tHzEgb3o3jlxjmX04+9rGPXfwLtdaeuPjq52G84U/fvyLw5bn4jTl8tG7kormmB5MMgmdeXSNiULJBD05rhA1tOUPWAuJz81As7CliZXMWMvIrd9Y3HLmXZwSLPGLPvck438ylos0Pctkh3/rHFyefG89v+DDUxUbeGiAPG+G1PvD4rcBFyYoFn6y5Q7DSxw/HWHz6ij7M/O0641v5Zv8yv+DBEEs+6MeH2Rg7XSPtn/TdJ/hnTbAthnRg4it4SD6tW/14+rDIda3xnSwiJ+euBXPEHrvmlQyf8fnlWukZgl45Jet+5x7SeoBtjbVOW7Pd+9h88MEHDz/+8Y8PTz31FPFlazWu+GcftF8xUVtsZ2BnYGdgZ2Bn4DpnwEbrsoN2mxbUZqyN1ikvOZuvNoxqem30GmtzBUshZ9NivA1fbbhh2xi1KQs7ebUHDBvnNlfL8eOf7Khh2HTBt3lD+G0U9bORv+TamJJD2afLtj4/GyejjZeMuni0lYkbrzp99sNlqw2imqw3FG0ebUjDs1nU72FELG10880YGb7Hg3dKbCpIbsyVPn25pk+Pj4qxU0w8ukgO+J7MYo4/ZPlLhg45bQ9sHso7pO5gx8OIOeVLB0La8mZzXO74KD/4MNkx1pwkx5VpnxyZ1pUxfqmLm0xt+vD5JOceDsjLl0MDsTiQIl9ssLRRODDJehgoD/HIwRMLO2yUBzpILjw80AmbDsouXfKNk1UiY+Yb8ZE8ynfxmQ8HAx7285W/XYvy6tqUe20HeD3Q6MtrD+yw2WFXKS/a1jRMMYTFjwjWLHSaNw9HZPXpkyvOdOBkkyxbSFue6WYvv8IIm1zYZNLPBvn48ZbQuR1tfGtdPuHBzo6HPrmUL/6QzaY5hJ2O9eBAxVwg43TSm+1w2JKDCB+pyc91iM+vfCu27OW3NSMeawXxUZlysM1v80oum9ooH+ObR3lIh/3G8NhXtBuTm+TfRn37r3H5oV8OwiJRbK0P/eLr2hED0g+rHCcr5j7r3L86aPdmHJl3QnxBfvLle9/73sUb7a4xxBcy4tF2jSrsyaFibvhFxlyZM216rk/XQrkO02eONZbf9PEQnlz3JixdvHxgw5uq7PoMklf+esuXPXkjb52o9eGFrc83+nwoRjJw+G9M3VyYd2sMHh7iT9h8aE3Sg996IaNM3+i3lrMPb649thT87LIBX2GTrtz5PWr5g8muw2MHpu7h9MNmlx795pFvxunVTkaNxMOON8bbM+B7O1jejcMUo777tLXBv2zBEoc8mlM2jStRvurDNCYmtssvvlitgYcffnh9rptHB9VsicO6cK/jn4N2dumQIQuPf/2MCXvssAd/UvbxzQ/f4WsjMSv6/GcL0ZuFTXpsyoF7tDfj8fnW4TgceLC06biG2JcDtZ+zMLfmC5E1Zm9gLYgTLr658GU1Mgd41rnryOevtd51y561I8bmRQ07OTUc6+DG8eDdT+m4H4lBgUmfXf75uRiH7jD8bIvfyXfYLv/lUo3kS/7E2Jyyj5cfPo/dG+jjK2KiQ2auWZjGEDk6U1a7NU/X+hGD//DW/Mg9Wz47zQlZckiu6rOpsIGndD3xC+VbawKPfThkEfvG+YngGIdbfMbzQV0/O8XEH+P4ChvFP30hP8eW4XPb+Wrc/CnTTraaA3LG6aFssycWlE90ZlywrVk1GQRPTuxRxQOvnGTLOB4sdsm29uecud+Rs9Zcf7DoktVGMOTbGofDD3ps0822PMJRhykX+Q2DbTL81K/QYde966c//en6+ZhsLyeu+GcftF8xUVtsZ2BnYGdgZ2Bn4DpnwCbllVdeObz44otr8y8WPBuLSN9GxEYGtYHTTg6P3NzQJWcD06bHxggOPPI2+W3Q9JHNzdwIxQ9PnR1YHjxspm2C9G2eYLCB2KZj06UmVzzJk4PpAYEcHZstm7o2fGSjsPDC4ydc9qesNn/yiYw2PfkrvnTCUEflj382esY8rHqg8HAsX/ys5INNJhmbT/hskfWgBxPBmrayqU6HTbbp0PcQAxulbyxM9pE+OTJ4cyMeP9t8My631kTz7UGyQwIY+h6oxEXWHDmYcMAsfj7La/me/XLNJhlzUK6Ww8c/5Iupmgxb7PILpUdGmz3x8t2Dt4dWbT55i41tfLXY4ZSfmTdYiAzZZFpzxWVO+CMfjfHFevCAOTHFidiEaz3Q1w7fWPOtDVPfnJAPDw4f8cTDB23FnEziK5JrB4Id4uB56HbtWkuITaU5UrNtvTmsMM9da/zK1+RhaMNgr0MOfH506E5GLGJoftVdj/HpkTOWLf5MH8OmW6zldPqFp9CFT1Y9iXxfIsHLJr7DDWvcfY6eMbUy4xG39eAnScxHRK5Yu0fwAU61+UZ41enIA365EIcSX166P9Dlk3G+KPoVfO1smydzzEd42VaXs+yKzzqQBzow8peM8XjaCF8+m6Pkpz9kkDiaG+N85QM+3/DQqZ/xyMOCEY4x+u4FsFwvDtq9EXc/fjrGdfX8889fHIhZ5/zMx2IrXnmWQ9ciHt8Qv7qW8eRJDsWhVmBZo65zbTJittb0tfHcf3zG8IWtrj0HIO9973vXZ5d14R7kcPDO8e12NVk+hWet4sHkN1+Md39lU59vDmf55cBSrvHpNPfaCFY1HgwFmR968bILg6yCp69uXeDzLWxYcCJzQVaRI33xe/vW72b7IhnPtWA+HW56c7i8W+vGXWNizG82+ZL/bJJjQyy12Xr3u9+9csMHcg58fVYg+YJj3syDtrkxD+rmNXv8ikcWH7GJX+za7iv8KD/Wz43jIe/NmzfXF4J8c7hsrtl3r3N9O2C2Luja6/iZIutIn03/H4h8W7PywqY+O+WH7Jwj+t07+Cuv+T/nnJ7YFW0+0vMfgqrFYB2bC/Y72IPfWpcj+NYv4h+euHyezfUj/3LgC1K/FS3n4hC///xTv894eOTZxLfPcD1oFxufkfzji4NtOTZmntiTU2vQ+lP7eZk+B+h7o50PMP7whz8cXnvttXXfKDZxWLPyjeRQXOx5i5gdhJd/Psf40ZrNH/NEXp74rW1ukpNXbfLGtbPLBr514N5qfuS+z033Ij7QU8iGo269whQb2Xj6SM7p8rMc8a9Y4KD0YRlHsMRDjz4cvPzQZlM86RujA6d1ZByGOOWYjjElwoMRPn0EzxyU43mdkNE3xr+pQ2/2ycFXi0Ne+EJXaW3yVdva1CYvH9aMAoM//KVnzsjSYc+4mn129Iu1eVBbF3CT82WV5wWYxrunurf4jGBbm0456rNPnlxfdIyzyT/YZMUB98Mf/vDhZz/72T5ol7BNOwM7AzsDOwM7AzsDl2fA5uGyg3abIpscmwybFXLaNhoIT2kzZFzfhstGsHEblMgGziYKThuY3sqxeYGhsGFDZaPDh2yrYbABXx910G7DC5tOfrJfaYObffLiZDsZ/vEfNh9tusiFN2PhQ1jk0yGLr6/Nn0hfXG069dvYpjd1YIRlc803vuJ5KwnPATNMfvK33ObT3JTjya0N5/Qr/+5W2xDLO9vs2Ijyoc1sPuMhduTH+CkZu4zwyTcH9NkTszevbKDZ8dBrU+4hl19i9kDlYYpvfJADpRi16Ub4cw7ye47TQWzIGT88CHRtJKumjy8GeSLHR3NrbrzRbgxPLTZjrUk8xC9+hlV+jcHlS3HR9YAgH3xrPXqIcIAid3Dh0TE+cwqrPjvkER3Y1g0io5+PePxkV5wOtvhm3hRy8qE0H+Lp913jWUMOBlpL9PiQL/Tx+C//rvPmkP3k6ZR/4/iKvLs2+I/PljyQPaX0+YnoIjniH304+rDDyDb55sV487pAjn/oisvYnOPG1cY6uIGv4CkdQHlI5IsxNX+1w+cHHx2qWRN02SWT3ekru/ltvmEq8cOGT589tbjFyFby2mwaQ+xaD9ZGc2pM4RdseK5f8wsXRnZgsEsejzxfrZ8e1OOpleYtjHTnfZztU5rzFUbzlQ/pwBQnG2K/DI/s9K1cqF2z/z8O2r1tC1+OmpN8rhYLf+XQgZ++eafnejZfzSsdWBWYYua/ddqcwDBv9ODgd6jhEMT10yEZXYd77uXsknWw6yc5XKvWAf/Kr7lQ8KyV2nD610H8NOYzrXtS9yE+t2aaqzkvrV/6+PxvzRQvHxvXhtcaETPfpgwcvElyxCf4xsnz1We4L1scepIxLz4r/FyH+eEDW9YvXdeS3ODxU5GzfGUXD5aCyPvccfjkfq2P5NznJl244vK5YT7ES47PcgSL3/gzfjjxtfNJmy/0WlNi5itf3v/+9x8+8YlPXKwD8cP15Y+DWHPJN58ZMB1Au6e57uHIk/XOtjzylb1yC0ub/eZInNYiDPrG1XyST7h4cOTa+oQrZmuN7t/+9rdV6zuUJuNa6KC9tS5+PsDGk0PYrgNxqfOvebUXth76SR3+it+b5F1b+SzmDtr5IqdsyJuYxBDB9y/PxMEXJC4H674scLAv/2pvg1sL7PDfQbsvfth/+eWXD7du3br4QqzciRF2+VPDF4fa/CG1z2BrjC45fuLzkQ3zpa/GMy/J9PlvXKHfui+XcmJe3B/4xZZ8001v5iZstrRhilsdic2YdQyDn82nMfJR+vp8m2MwrJfuA2SzA1MMdGBqIzpsyZe5I69vjpqn1hidYmg++Cu2aYctcmyVP+PasBV5NwdK+aADixweG8bNcdc4n/XdZ5B4tZNXi8N8uKfxhY/0ybmW8PhDFrFJhk908Nklh+DxhYziGvL5kv/y40tFny/suvbc4+SUvLjYVVD5DHcxz//IMX/2QfvMym7vDOwM7AzsDOwM7AxcmgGbjFdfffXwi1/84uLw1WbCZsaGKmpDYqxNWzwycGxs2qg1hq9tc2JjaONFpvE2TGq45FH247HLH7UNVhs0smTaHJGxIbOJaqOWrfTYsolqMwlTKQbj4cLLLh4shTxSZ0c/v8Ojyz8F4eMhsjaI7E68ZNnJF/L818+mhysbVJvP/GyDTb7ck7H5ReaBXYfS4s+X8r6ELvlDDwY5OuygbBSXsWIJE08bhjFxaBdn5qyLDkqsk+bLBtzm2cNgueS7OdcXjxwUT/4Zy5fa+nzRJ58OH5rXxvDkG5+Oos+vMOKlC18c5oa/1jx/FJt8D8Jhqekh7QiGkq2ZN9jJ8sPDARvadMRjbtmBTRcOHeMIn7xagWluyfGTHPl08MmgMPDosK2woy/u/nNE8nJZ7YCDbx141/cA5HrN7mX+whBb9hfo8Q8fySPrwJqwNsnpe6jiG2KjMX0y/MtH/daOGsE2zo6cKcbYae3AtP4QDP0wF/P4R55h4JOJkmPHderQpIdUNsqLOOTOGsIXGzt8gQsfrtq1421CviI8dshmL/tqWMbkybgCEy/MMGZsZOio2WJXwaNnzeDr0yeHskFGuziyRUZ79tNR80vu86W+XOFnyzibdFobxcqGMbJdU+wheMgYIqcYV5srOsbzh1xt8c5+cdCh6xq53wft/mNVP+vgWrSOyn3rV9wKXxR5ct3xxXoTV3raxS6mipjoNqfak+hltzm1Vh1qOPBy3cNV2HWwR6f14uDXOqcbkRUDns9sGEicPiumn2LiE8x8KX7XpzjIs5d/xsOAS18hW3xqa2IWPDbkInsTB1Z5o0c+W+l2nT700EPreqXjkNkhuwNW80On64odeXMgG6aY5bbDYzbFxy/+kFObW4ePsIwhuZRv/sAk4xrCo5e/MPXVdMwpzGJq3VhffQ7Dp289dICmT/fs7Oxw8+bN9RvhDnv5Kzb3NrFYL9q+rPFlAxK3Q9TWCFv8tAaM+eyxPnzu0eUbH9nURnRg4snBjIuMQkZOrQ8yYoNj/wH/pZdeWjky5iCZ7/wSo9zCoMsGn/CsVfHB5bMcs6PALJ8Ow32h4O39DsZ9meAtejZgwSHfvU4M4rfXUM+YioOP/ONzcZrPfBejzx22HSCqjSFrUE7FY27+/e9/r8N2X4hYCz6TzIk5ay2xwVeHnWzyGZ42v2Eq1krrk618027u6GqXP350H5VnMcojGfhybU/Enlyw0ZqEgaewpY9O7dKFDZcMH9l0/bCjLb7ymQ/yJAdk6PBDLlHzYr7lAL6Cz575PfWPX7Bcm9YSIkPfGlBg6MOVG/Iw9dXk46nNNSyy8MkocOiIyTg9dbL6/Oxa1xejIr905UsuyNh/sKHow6WfHlm6xps3OYjPt64VbXrFqRYL38y3uYANx5ozT+aIjvXpnuq6n+vNmAKHHpp2xFFuYLPFX/cWY74o9P+iPPHEExe6q3HFP/unY66YqC22M7AzsDOwM7AzcJ0zYLPhLZ1f/epXaxNhMzE3gTYfqE2Jmkz8NjT4bcxsXGygUHJtVmyKbI7o2eTAUittDOlp01Vgq/lFXp8NmOSq52avDbaNG4Lfxo+8zRosPPW0l8/sKHQj7amPT58OjDaK2lFj9avJKsWXXeP5K07tiZed8sx+BAvBUsTXRldf3sl7KGA73Gk7rFnzwfyGe2pHHxbs6Q8MfePNE38UfDHANWZteFj00Gccj789SPMBTge0xZDvxrRbJ/mqNlZO9flaHsmj8Iuj9YLPF2SMv3iouIxrGy/n+Y3vYckm3c8B0JV7dslP4huauPD05Uo+unbYlCf+GIfnGrC2W1f53rzDz9fy0nywA6P8TIz8USMY/FGXC20PSw4KPOzAKVf0+OC69AAFW9uDkDfO1Pymkw905Aeuku3lwPkfvPLjAaiHT+1ybByd5hu2wmZl8mAr/Bar4t5l3cpzuWZTTPlnfNqa2MayOeX4yI789dANHy798tWBmn5YYmNbn48OnzoUMIayBct8lTO+hNNcFgfZCI/sjKu1Rc88d28v39mAMTGzBw8fTmuoXGVXn5z5pKdPR62voDn3sMjIUfFpW1+KGBAZvlv/yeFVyOQPHspXegoKD4a2uOnFJ0OPvDH3hft90P7d7353vflqfYqHDevIvPBL/HPNaFtb1gk5Mg6GrB3rsBwWt3jIqGd+yInTWjUuPvrWQnl1qNYb7ubJgR1Z90T6DgH5Qab54ZvrqvlV67OTD/IpXjWf2HZ9OABkx7UgfuP00zMf+go/yNGFMfnkTqnYYaHypN2YGsGWG0U7+8bLU2vBQalxh0LevnRPdH+USzIKPQewDpPYRfLhZ2YcdJKHAVvMyZDTFic8NZJreUJwzT85OUCw+C7vyekjeWUHkWMPHn/4af5bS2LzpYp5huOt6ccee+zizW258VkuBge4MBSfl/jw+EzO2/7ml02+WmOtAbKtM2N8QvwvFjLiVJofMvJCXnzyyL48wDHmX9Rp3759e8VpjKyab613Ms1v92HXF/swrc/8pY/HHj156l/uuR5gO2h//fXX1zXKBjl5lgPFdYxv/uRYXMVhrDyZK4U+YhcO4i8ffW777el+t52uGOQ4Mkf/+Mc/1ue1XPoixE/4+C191zWfxQjTlxPlg0+KcfG6J/BBDsjOwhY5Y3w2FsGQb7zmjyw7xsiL21iYxZ6OvpjMKzl+yGX2jFunrXm2rXc5gsGOOcRjl31rzNp13zIfsMyHLy7Ck5ferGaTHuKHeYMt52qkTdeXUa4dPuvzlS35N4fyqfCLP2LCD3+BHf/IG7/ZIwcfqfs8MC5OdsRh/vHo0uMDO4iOHPFFkQN2yc+XLeDD6l7MP741R10/1rzYWpeuf3HJpVKs7PIfpmcFeWaTXzeOP0mF5EYerVf3hOZSXOTEop0vMNnQ5y/85pe8Ym5hqf2riWeeeebw+c9/ftkrl6tzhT/7oP0KSdoiOwM7AzsDOwM7A9c9AzYj86DdZqNN0Nw8tPkTb3w8Gxa1jYkNWhszfHI2MDZIbarwbYpscuhUayt02uzM3OJPuzY+7PIXhjZbFTbnw3qbKtjZgk8/3PptUMm1yYJfDLDmQ0L6anbbsOX/tBePjM0fW2y00SuXbODb7OHBbl5g6PMHL/vk6CFjShhqNm1q6cjN9MsYgoFgKvDIq83b9IGcfuPTp3yhN/3TFpMNu7aNsgMX68b6UWyg+Y7o89kG14Mcn23G+X8ZweSPeLQVbXrswjaOj5f/+og9uWpd1xcPeWPqWcgoeBE82M2Bh05xmHNY/FfI0MObvugryDi7cmYOeqhIzxh7sGHypfzCNCZ2dVitD/hiVYzlD741yWeyHqI8DNYnq802IhN+Ntj0kMgXPHPNDjkFuY48rDtA8XDEfjVsMYmHrctIjmArdPkMu4c+OuXWtRnlQ/r8p4+KyRi78l2s1ip/ur+oxeChsJhgtB7w8kvNjpj4Z67ox8+/7HcvmxjWMgzEPwVPySZ9uTcWsUEGVnw1LEX+XHut+/RmTRcGLLZaj9pKayh8svk6cbRhoXD4nG/0FES/da0mQycKR002DG0P6XJIT27lXDuf+Cluc6sdFl/YwONHmHitNTLFmZ5agV8M2aAbboer9+s32u8cf0P56aefXm+bsiFmB28O7tzvikXO8pF/1l+5MEbHm4hqc1u8YiiP9Mxz16N1Zv07IG4dw3Iw1P2iXKjNSV+sNZ+urw4Iuz84uPGfYbo3uN/LuzHxwTGXYuErfWN8puezgh3j/JQDBYY4xA3DuLq54TeSkxkLHrvslBfjsNQITv3mHP8UxxgsNTt8EgP/yrN8dsBEVgzNobeoHYjmCzkHnR0mkW+OYfM3e3DomTPk4K88Nad0KnBcN2TExgefY3yAC8vceKOZz+aTLQdffqZGDcs9U9/PlJCp757PBzxrorec5aH8sguTbfny2UAekZm5qm1cPGzT52PzLAftUWHQgYtnDbJDH7+DPjpnZ2crdjpkjFmf1lKfNfRg8V9hH8mjvlj5L39zvcOTS/kyt64d/iI5Mr+w5AGxIXYFGYPn2lXMDRk5UNifB9v6fGajebf+2PUlTi868MuBIp+KQT67b6jlwO+2+09T+QrX/ch65JO4kZq/cBAc9sPlszlQEGy5IlNOzYM2XbW48fiJ8NhonE05a771xev+a18iTrLuXX4exzonY576XNZnhw1Y+sWAl304YjcOly/uvx/60IfW9SYeL1mw4/C3z/rwi00czTM7bMOBWT6tTT7C5LOCh+AhvpUPfZiu+/YFsI2j2nLNlvVpjD2H39YGPT7yh+/sKeLmi6LNvrXsGjenyJywX/7Sl69iNEd0XENw8MOnr03eGILFP77yOVvm1ksbcs0XOGThk9GXLz7AguneI15rg32xitt+SJt98fXZIk/m1f+L8pWvfGX5A/deaB+030u2tuzOwM7AzsDOwM7ANc2AzcjpQbtNR5uwu4VlY0G3zZONnU1OB6X4Nig2LjY18JK3cTOObG7wK21Y9G3q9OHY3OCxg5IPVz+/baBspmyObKTSpQePHGw6sCfRbZwMe+rkwzjFzX78GQcMm1S28BV29NnS56N2REeObA7ZNpZs2GEYD5cf+agdThj6ZM2Lmkz62WYnX8kbV/hjLNwph6dfoafgo/BgmHM1+zbKHjBthNvcasMxzi4cBy7eBkIewGy8s0EmebVcVsLgh00zbJT89FubX+ZK0YfNXzjsaaPGyFfwEFnxWgvmiE6HI+zCFIOHdeP6SnrqqDF6rhvXlwcMmNkjK94eYPjuYScccs0FvNqtP3064kBslZ/8gg8zGTqV7KTTXFu73o6TczjmGo8/dNRy5KDGW5kOA+h6UGKPjlqs/KMTNl2FTIV98qiHqeTw8cggOijftZMVV322+a9WHIrxhd896HYoEBYcMnDwzLHrjQ/sa9NxAGTO4nfvWMaPf/AVpG6+9ItdDU9hT1xqvpor42zyQa2voJlPstYW3UpyS/j4h/18FZ/1YE2W/2ySJyffCB5irxxVswun+WWTLn+zpe16FyM99siFMdvssMfXri/6fFHCIEcPFr8n8QVfvvhADmb5NKZdXGyh/GCvucLLTjr3+6DdT418+9vfXgftfBKna81hknsqXn7IWetBfvKd/3QctDmss+aLj86cE/dROcNX+5x14AYrPIcm4iTLHjJmHt3LfWnqGoAh3+5pDpOsBbaMO5SC64CD/8YUOnTluYNFGNavewhdPrGLLxZj5s015t7bOoArTmMRPb6yg5Kx1hV9MvxUEF9g0zMeHjklMtY6ostGb6vS0edbB0F8I29M2xw5tDavcuse8sYbb6wcwSPHFzj0xN56du/tWuOHPMhj2Op8VyNY+YLnc8zPYfAZrnz7mRtriRyb3ma9cXyz1NzQMa/6fose6VubfoakQ8e+fAmD/+VOm2/IvM6cs6vImVisfXripqM/D9rxrbX2VXTJWx9yyn8xW6c+h2DKs88xcdO35vntLW5yZPilbv7Lnz7f+EKGnvy4Nlqb1XLCBj+sJX5Z//4zVNQ6gGlMXhS2rEv65kcsePyETd41xD++iE9BXcv06VlfXbcwvJHtnjCJ7eJxjXp+8PM27kPy8d///nddg+Igy76CmscZA5512RyIyZw5rOdnMYqHnjWilg88hYx1UWzpkIFrztkRr7VrDtyjyNtX8tn8kJF7xZgcVLpPFBM+fHz+KPIth+zbK/hZKLFZZ76IkCNxwaePwqeD4DWmDaeDdvZa03JkPmHJO78QXX7od62UJ3wxkjHOplJM1pAiFnmTK/NIr1jZF0/XlXpel+J1+E0nO3T1xZP+vF5cV/LG33wWkzngC1lxNgaPf54dzKXr2RjbrjF7SnG1tuTPGhcnX2GXN/cvdqwNGOKVczU7xsRr3mDDePDBBw8//OEPD1/96ldXzpu71bnCn33QfoUkbZGdgZ2BnYGdgZ2B654BG6F3ctAubpsmmxO1DY3NrA2TzQ6eDZJNimJzgtijo0Y2P2T1YbRhmX26NkDx1ApKvhqP3TZR6uyTgZUvU4cePt0oO9PuZTGRJ0PfxlcNOx/FZ8NGF78ipsnLrjyQtzmWq/ISvnhg0MVrHC/K9+YmPpn8o0+OrXwlZzwZ/FOMsPk/5aYeHSXc4rQ+bGDNuzEbYMVG2ZiaPz1M5Y9NrgMU/tso90DegwP+LHzJJjxj/LE25ctYa4ofxhEZmHKPT1a/MXw8ZNwY/OYAD8HnIxt0PHiw3bh16YGDXLx8VuMp/IENx1qQI3Vxk0Vqa08x1jUWzhI6/oEX5swXnjjUsIylq6/ATZfsjDsfxGN9qsl7A7K4zbOH+K55WPz18OLwzcOMOB0KaMsRH+SPLWP5km9yUzHGLt/llj4iS5et8k0HlQPtcIpdXwzsqxX+8wWWhzU1Wx4E6SH2yo1+PqsRv6zhHpTzmY/WjPwh/a71YkuWjfw1Rhaxy0+1gvgYTnkrbniIrHmJyo9++aAbkbfGXK/x6WSTvfIfr/y0htTK/LyARbdrhz0+whKHWLOXL+HGFz8da0jd3JunMIofBv/S1acvFroK0p9+JwMnmSV4/MPHSr7RpaN2//PTMS+88MLhgx/84MW6Sf+qdT7fOb5B+uyzz67faIcvTgckDgvcL8jlv1j5JA8dvPEVuT47aLEW6JSnmUPXgwKXDn1vharNHVn65rU8lWN2HfA6oHUNoOzbP5CH4ZATpnu+eeSH2MLpOukwBJ9NMcF3bdKBZ40WD/vyw4ZxeuznAxvInMYrf+Kx5hGeOPmByOu3FuQOwWCHPFvy1r2ZL/T12c0OjPDSbaw5kitY4nXg21onlw/s9XnKH/KtQXKuKXkwps+WgmqrycDU7osYuPTMoc9mtRisOb9f7O11awnx1aG7w2oy+fTPf/5zzTE/zNm852e/uRGLPImXL/nLrtK8qpH5RtaBzxN8GHxhXx5gWAtqfAd3YiJLL3/kzSGgAz01P4w5ODV/rbnmAMbMGz/w2HLPh8EeH9Tw+St3HVDKhzi7DmDwHw6+uj7/+WRtOHiEhQdXvs2f6wiWuPStVRj0FGtb/N0z+CYGP/NjzskbV+DDlSef2964/89//rPyIQfebvfFeb7SbZ3xOZ/wzS9f2ffZKgYkp/xlo+sQn05rEb4Cj6/4YbZ+jLsHdh+Ub2vx7OxsrU/yDlr9/xZyzpbaXBnjWzbY0UbwG1Nnm4x7knF1/ym5eNzP2ueI624Ez9xl15qQd+sWPl1r3lzyUW7zt3yS0zbOF/bvfkEAAEAASURBVLrmGaaC1zjfI/s1Bc+cyBtfIrquV7YVOPzhAzx9dnz+8EFfoWfuxeaa4a+6HLJFp3sSe2T4obhujIkHFmzr0HqRHz6yjyc3rnl9svzpOuML3OzwnWx4dMiLW87o89O6tk/1uYW80e7/RXnyySdXH+690D5ov5dsbdmdgZ2BnYGdgZ2Ba5oBG513ctDeZtAGsIeWNnP6bbJsXBSbJZsktc0LHrIZtbEhn06bFjYivPht2OpnI1k1OzZINlTq+nyAe6pz2p/24OmTsTGDqX0Z4U9dtirx9cVqc6rot3nUlj+5VLSNpdvbI+IJl83a+RSmOoJBL1017B5+kqsmD5vMZThyMfOQj/ky5zQcG2NvXfW2m42xOPnQOjJfHrKaNxtjcdvYozb18PM9m+r4ZPmEJ1bt1g5/4KB0a5OxJsWt8Atp29AboxMevjbMsNTw8el7kGguYZUbcvlC3vpE+FOG/zMu45G2wlY+9aAWj6x28ZDXVpcb+D1U4eur+dd1k0/k5AlG2ORg9UBE1vySQ+bZvCvx+STuHrzMuUMBb/J5MGWn/Ddf2VMXBz+yDxOeglcOipPOJOMIhna5Lv5kjZtH+mSsf7XSXBur0NPmf3nTlx/rWUkvG8b4TU4ulOk/+dYIf2C3pvlhbSqITbwOp7IRXnWyct1cl0s1yhbs5j0eX8uBdn28dFfj+IdPMOa9TRuJle68x7LBT2PihtmcZqt86MPnH5k5//RgwCZvvFzSmdR1ym72jMPnD/yuk3yZ+vlMly16dMRtzGemw0gH7d7yZeedEFzkrVL/jN1hFztilFOFn/DZZd+BAz0yihyVd/IOOzq4ICc+tTisIwcOxS9vDuIckDncINfaJs9u8+26KWfk2ITHrw5G+CNnirb7Pf+0+aHO13zr+tE3b+ySK+/sd/2RUZofudMuB/pyQKe5E0N6/Bc7ypZruPyGq6+g9GG655l7ex6y4nOoJyb2EL7CJt3WqHE8eXQIxL6C77NSDMmEwSZ/8z9f9BF94+Tll768qfUVOhU67t3WkLlD+SgGB8gOoD796U8fHnjggdWHIW/8psemNeLA8datW+vNU7pKh4fNaT6xUe7KFZ9hmWt4+U0WiYu+HHtjmQx5uZOX5MjyD5+PiA3zKqd8Ie/acV10cJqMXLV+zQObfOMPvr45l/Py2qEfXO3uh2LkC5/lh6445jzBwSdbPvHIWbti0BYfLDbELgcwrTe+Kfykwz49fnrLmx6CYYx9bT8j477l4J19PDHC9S8SfOHi0PIvf/nLmlsHk8VsnvgJT+GTIr/43XusIX38ZMSrdK2JT1ywyYmFLwqa65lMeTHmiwT3LOvUvwwx7i3zN998c/luzt1PzQE/kPjlhF3YCvsKKkZrgi/0+CtO+1164pcrMtp0+JsN8hGeuS1OX1iJIWIDBqxyU77gZr8x8ubLHDeGp8ixWkzs2Zv3xUrzLhflGX66/KcnTvnRxpOX+nzIJ/4bh6Vmj0/k2RJj9zJ+ipE+e/H1y0s6bDUfPovoZkO7wib9av7wmb7PPbrG2KVPFsmz68Yhu88/tnxB7v9F+fKXv7xk6N0L7YP2e8nWlt0Z2BnYGdgZ2Bm4phmwCXknB+1tsGwkbbSQDZDNj2IctQGxWbJhsbGzUWkTY0PZAwZ+OvTSnRsl4/DxItg2c5Exutlk18bJhlF74rUJbAMJY47z0xg8bfo9ZGbvtM7v+OHlFxy5ym98MRW/jZ8HPw8++IgOXJs9mz7taQeGnKuj2aYfBr3iZrMy9dIlNwkfr5zCnJQeHn/Ema/seJB7z3vec7hx/KfkrRd1Ppgnm1mHrW3wxcxetuCxU87YoZ89fEU/23TlWyGLzxaCpZAJ16ZfG8a0w1frPXvZkJP08YzjsaNvTulqI/jWPWx+iM+1MXVmDPyuT3bKsRXBh80e4pMSGS/f+ZKMvthm3NpssWm8Mh+uwiYnFg+r/A3HuDY/Pdyae4dNxWNMnujT9eDuP4HzwEsmOdhkUfMarloc5QWO0hyns5TP/2R38vKDr4q+WGBPHjt4MLJNdpK+fJkP+RIHDOvaoYECOz2yfHZ/IUtOCb91QgfBImeu1ah50aZHx/WUDhvs8T27ycKjIzZrsQddOviwPRir9ZExhR2+ImOwlcbLFT/d25TWqPwYFzvdrgVtxRh8MSj6fGycTTwEXxz6cCK+dDgBi76+wsdJ+jDUzXPjbJZ3vOyGoe/6Yi87xvhV3qx9B+z+6fn9OGj3Rqbfe/fzB2zL0WkM+uaug59yaQ124C0u8+IezVckfrpy6aDIvVgs5kwuHFh5A7I8wHPYZi7llgy7Puc7VGFDfthlE6Yv1hzUsWMs2+wrrS86MPlHly1jeArdivHudWHi8UNM5PVdH+G6J9PJprjCbm3Bsnbl0AEQotN6Nk6vnNA3Jgfy77CPffkUM4zWIX6+0WPDmLzg8zeZ2uyQIcs2PxU+wUD4MPTpi6/rUD874cCkU6GnOPSD7fMZBh4/6Htj/ZOf/OThC1/4wuGRRx5Zb1eTyW+ySK79bMwrr7yyDoC7TvCtH2uH3rQtdw7D+BemudIWF/vlhQ26xmC6Ptyb+C1mfhgTI571gG9N02OfH+6BZMRH3tz5AoFd/NYq2d4Yx0fGzKu+A3o2FfZau3DZhYenyIU1wWfk8M/hs/UjPgRTLqwjvkfwyajFwRYb4vCGuTfwHX4bK19ihg1Hjl371o1xcq09OB/5yEcOjz766PrXCvamiC/ilAP7Ul+O//73vz/86U9/WjHIG4LHL3bEa17MCXzED/m1vsQAl25rQV+OjdHnjxwbbx7glONiNCYe+HThu+d+/OMfP9iHsGGv0f9zIA4/1SNn5BF9c9Mc6NdmB4aaDn9az/TpkScjVnKnlK/x6fUCEl3/SgFOOYEPS06RmI1lu37ybMu7Yixf+GsOmhsx+RLCHg0+P9TWI2ztYmO3+KwF69h6i4xlCz5fxKmwb/74I04xtlatH/dF+mzRY9dnBB/okzcOg164+q6J1kc+GhertcAXujAUeXV9WRcdtFubfKDDV7U1bn0bY9Maeu655w5PPPHECpmNe6F90H4v2dqyOwM7AzsDOwM7A9c0AzZDpwftNheXbRzIVmxqbFI6MBO+jZpirI0WeWSDY8Nis2QsfBg2RjbCKN3G1WEY17ZBUicDm8+TjOEZs2FT21TyoTHjCiwbOiWKR2/iw4KDpg/1q+eYtsJvtuHps82mdhtN+nLooccGduqQt+FzMECn+LXlVInwpgw79NMhJ9dkaquNp6tPZ5JxPDHMTTeZqReOuMwx38TibRlvhamLLZ9gyq1NtQMUc8WGmNXZCJt+60WtsJfNYksePszypK9NjowcweBvD2bGm5tsTbvG020ujdOJr4ZJH5HT96BBVj49TCjNEVxjzRt+15Zc8B3lizY7bPCdfbrKJLGSoccGSqZY8cg0b2yzmbxxY2xMHvv88kBDB8HGb204lPPWlPUtHhj81UZ0Pdg5ZPc7m/xg27wZgxWFyweFreySbf1MnXTvVpOFk7/kzAseXyZfm121cXLNCx5SNx/lnG8e5Kx1sU3/jClsuVd2v4RPVhEjXDLyBjfsclpu+MMW3+LBgqGeBFM85PhQLouRDfhK8cHQJivfk9LDIwfXfLuvKdYQvpq+WGGVA/rpFjd5hXzx0MFDfEPG8IwpxSQPsIzxV7846aUjt+WC7iR8uZg0fTUGJzvGyhvcDtr903NviJ7iT9z/W1tcaL7RLr/mnA8Ke/pkrUOHCWT4h99nonF896SuTbzyIRaHDA4b8GGr3ctdzx1gOqiaB+38Y7eDTHrw5UT+1T7P/Od1/aeadMjxRxGDNUFOQebM3Om3FvgKT+EbPaU46MHlC5J3/Q5Q8PiKV36am/BgJ0dm5oMeOf4o6YjB/Fvz5l6BI1cOlny+iSV5OBU48mSe6LCJB684yZrL1ps+m2rx5zMbxUPeXIsXFS8ZY5OMKfyzfuB2TzGXHb6fnZ2tA8ybN2+ut5/JwjJ33cvour97g9hPjHTwCzs58bLH1/Joj8gWGTw48kiGz+Qj4/pss2ttqeUMBjJGTp7cfxS5wrfOzY1xuVPoWzfeZJU3ZJzf5sYcqhEeeRgwfeY1B+GR05Z/tpsvscuJN9DhOKS3V9KO+Ch2h+305QBPKW+w21/ImUNq15drk7zCN/rlgLw1ii82MmIQFxlvtPvNdl82sG9O5JScOZA3vv/1r389/PnPf14/x8If9ptn9uiQhWvNIvx50M6+eMjAULw1Lw8dpMI1Pte1cb6qYZgH2ObOmvFFwo3jAbvf2HbfYsP9078Gag4dvPOvnMsHm/LNd4UNuuaLH2TFwl4+iwufPhKDeQkXr7lQ1zfe3JLnO3tkykvzk45+hR2+KXj6rXF4cIzxu2uNTTbkxL9a6V5Cxn6cnDzHhyMuuNaC66o481NdewU3/sihuKw384L4ZJ3KPXz28MorGTboGuezUpzaDtrNt7a4YZOVB3h44mwd8t8XGeWbDfc293Uxwzan+tZH17RrYL/RLlubdgZ2BnYGdgZ2BnYG7poBG5IO2m0m2pjZkExqY9WmqA2PDUubnjbexuAqjcGdG7uwjcOw4bEpswlio01bcuowqxtro1Wf7wqbMOuzr+DbPM0NeptCslPHJi98dunSuxuJp5inDF65g6HkIzlxK8hGUk48+NDjDx/4bhPId3xUjuvHO80RjOwaa7OaD+mTmzT7+dG43MCM8kVN1hyKwQOU+RWfgxkP5jbmbM45scG2mfUw2EMY/8Qr/nzBQ22i4bCl4LEjPn5E+PRh4Stw8PPXeLnnL1yFTPj65BrDR3jx2U+/nJtPdvTFok03PL4o4cA0JsetN5jFRRZGvuUDHfZhz7kxjuiQoadGbMaPRz+fjUfabLMxMeb4jIEP+cqGhzIHMOKAYX3oWw/w5MYcWQcO0fjjIb03neDlQ37BVeLzBY7cKcnl491qchMjORhi4IvCT0WO2DXGnmvTekbkjKHyVF8M5HqQo4/w4Sgo/2GVx2LJDznURvxp7hfj+Ae29SOn5WLayafkYSAycMOedic/343TmTSxjJHhn7n2gG0N0CdnXE74M+PWJ9McwMAjHyZ9fCVMbXwlefhyQa+8mAN88kjutemIUz1JX4E7qTzB1YYBq7414HoSv4d6v9H+/e9//74ctPvpg2eeeWa9JcyO+FxXPo/r80cbjw+IbxV9OspcQ+UFpjw5aChHdFy7DmYcBopbPl0H5qv5gdf9X9605dBc0CHrWu9AFC45vjqMkTeycNnns8MfhzJ0+YinTS//m7vG4cqBGPH4Rx6uzxs8/eZPP4KFHya/9DuQi6+WH4UfYiindPpcYEfM7mswxIf4J17FWuYj37ITdvb52BwbI8+H8sBeMcGXI7bki9z0u5zAQPRmPNr8Yts1DMtnuUNL68BvmPt8v3E8yHR9k2fLvdxcKXJm7qxZn/PGyeEjPrQm+SEmJJeKXOCJ2aEpXX4g8sUXDnz7Wnz59PljrBzAESddxfplw5poLvhTX2z8gIGy79ogV67h45n7ro18W4rnf8StpEfGGpcj2N62lVd4/Mt38wqbj+xmr3zhmyO4dBTzoJCHLQ44avKKvhrRse7kBI55dxDrbV7za859EeB+BoPvcufg2lvhCgyxOMhmN1+t/T6T2GIXTm//i8c42zDowdEmK2flU43ExE/+G5cv/vDVHhTf+tX25Qf/yfjip3tPff6ZP3gIhtjlnH18ueFTa4Mcv80fyu/84pN2ZFxB8Gafb/OzjK4yZeqLn6/mAL41IG+tBTrNMR2EJ6etKXw+uD7Ms3FjsBVYavEZY0c+4cqN+xz57Ms7OZQsfIUtOTQX8okHWx4VNuio8eGQIavIi3F8MeQfW/xH8sFnst1L6bCNx1+1GPgPHxYZ82oO2ceD5R7iftV12X+G+rWvfW3ZK9bVucKf/Ub7FZK0RXYGdgZ2BnYGdgauewZsLF599dXDL3/5y7WZsLFANg5KmxMbEhsTBeHbnOAnY4NmXD8ZGxsFlg2RTYsNdNjs2awpeDZgij49WOEt0PM/jenaUNnkKQgmXjbIIvbbuNlI8QU2+XSSoV+BCyvSrsRTw5KT6Vv+q+PThclmPotX7sppPmdHbfNq80dn2koWL8pufTUMMZPvgVO85YoMvWzqR3j5HHZ9Y4jv4rAm2LCZ9TDsQVEb/8bxQZVcG3GbWkVcHgI99DhYzadsZT9/8NnAr13u8ef6yS9y4kXa8cmHYQ7m+jM2x7VRdqdNfOMwbO7Fi8RCTr7Eebqu2M7+Ujj/A8t89aDbw4k6eTKw9dGsm5d41huiw7eph58cPTLsIG357DppHD+d5OCK3xi5HlbIJa9GMB0GWCMeLNkzJndq9tTe7nMwY220/uWl9gI7/ine+vTlOh8b11f0K3S0m5tkwlAjOROfoo3o8MXDmHsbymZt2GHghUtX27i1WdtauYzkg11F/viByMfPL3y4xlxvclZ8XfdkEH9br29z/vegLV/hwFPI80WpT58M+cb12VTzyxz3wKxPN/yuzewXq355gqvQC9t4vqjxUeuJLH1zFA6b5OTE/YdMcvwwVgwL7PjHOJ/ZmKSf/uTHS0/cfHKg5O1QB+0O3I2/E+If8p9hPvXUU+vnD6wJvru/K+zpK0i/GMxX9ynjDhz42PzhlS9teZGrDnH4re3gypv5bDc/1cvo+FOs8BS54w9y/2ePjDFru7WC15ypHVD7KQzrGhl37fGhmPjbnJNpPuUAwUHWgMJmvPxXR/H47POsXJ/6Vs7ImGv3ODr8gt/BnNpbujOfxRw+LHEVZ9gdDrENG+4sfIXV564Y+AvHHBoXsxxpWwvmQVsekH4xssuOWPy0hDc69d/1rncdPvrRj643ScVqvuA6lDKf8m+uHL72cyjs+4wvRrb43nrsnsY3BYmTXx2A8cu644MxxEf20hGLMXw1HdcEnOKmb5xP8qyYDzj2swpZB2x8dBCMYMDMBh7/+S5vZBF9X0QZYwMOmwqCo6CuA332Ycupw3bzhlc8xpovtvgo78mUSzLaPl+N8wF++TZf8/OWvDzRQXDJs2c+8c05HZ/b2n5uRLt7Cwyfhf6DUeRz279egGNd+Cz3dr25lHt8uO0F6JiHDl3FrPCd3/Cb98b0+c0HWPqw+eFa6eeaYNMxrsCTM7lBsI3z2VzBRDDmQbt88J8cG2yae7oO6cMWB8q31Tn/QxaRpV+/OWCjeSUHo3knQ0furFfrQ/7wWs9w80lboV+BGU0eP+DIDR1rhD2+sAMf5ae1Rcb8wJFL9zXy9PntWu++nB5+PonB+mIbBj7KB/kXHzvGG+MLO+TwxWvd9FmiT4++taHPbr7AESufzRUMtTizDd+cWg9wyTho/8lPfnL4xje+sXxp7lbnCn/2QfsVkrRFdgZ2BnYGdgZ2Bq57Bmwa/FPPn//85xebCBuhyLiNiE2KYpNiU2ETom6TTq7Ni3akrZC1KWqzb5wdPOM2VgqMcIzHn5iw+GRc22bTZghWfTxt+mQRnxVkc00G4dlc2TjbLDYGL5mZEzrswZ/ER7amr+zX147SbYye3CqIbTayH6+865ebajwEuzjf5vzvX7hisfFkmw2bXJSvdKcdePzAKwZ9/OJQWx89nJpDD1/9U1QbZGTcw4nDU3g91MJrg+xhDB+mvMDlK3lUnviSD9MPbfLiVMLQLp/aNt1tvJOtpjPzURs2+/Wzo1/JHjnj5c7aF5c4mt/8Dm8FeP4HDln6xuWwgxN9BL+Cx/+7ERz2yPENPl28SjmGEZaafDKN0UX42snxM99bw42nww5MstZE82CuvW1mLPLQ47DGb7e7ThUPt67VrkN4+ZFe/hYHGbEr/NBXWhPmpHlJp7mDCS9949p4dLqvuXeg9PKJHcQuPf3saZMTS3JqNpQw6Crx5Uye4aF8q48Hp3XXfY1v2Z6Yrll942SbO30YakSGDfbNXxjmzPqGjdimo4ihuVYjPDLk2UsPTutBrMmWh/ozBnL8IMOeNgzEhliKSR+RxRdbRLfPgOyFS6ZYk9eXC5jkTyldMta24oDQAbt/en6/Dtq//vWvXxy0y8s8aC+3fJB7a0bp4AKfjs+E5kYc9Fx7rjdtpfkVq5i9peye5C1XmNYQXKX7Nj05bj3BVNhkm46ibR7NgQMNn8dsswXL58k86PR54be++URXbe2Q5Qtdc4kfmQ822CMHm1+KNp9aH+mo02udqdlg1xifYdCFgeSgg3Z9cnzy+da1oi0/rVk+GYPPH3x4ij5is88BmPrsklWTw4NFrnGycqbgsQsXf95L6FfIiTOf/P8qfof98ccfX9hi9NMLrSu5dqDuyx9vCfNJjO7fDt9QvhYDH9zPkXnxecCnGQ8da8i6kOfiI4eKWd8YksPaajGwiZJX81lO1OWZLj/4g8cu+/lG1vqcPrItV3SR2hzIjbbDOjnoOss3snTNAXkY4o3HB3Ol4BsnRx4GOXyFr/kkT4hccYiBjOtP7OZPTvI5WTUy1j3B56/rCRbCdz3eOL484TPbfQ1PG64vU/hmzWvz25vtf/zjHw+3b99e+0B5FBdf4MKgU34bY4/fxviqFnuFv/Lq0JcdfLr+7wd9Y3jswDGmLs/hWiOKtStetujh8U8bngJDPsRHzji+HMMzD/KM0tHOd3V97eYWDlw4jTcvzVN8NsjxQe75icy9mH0OiDmq3VohFw8WfIU/5dQcW2/sOGzu3k2OjDkz7jrHM+7LFPkpd+bFWuIfHmKPDFt80M4+Ob7Dx2sN8tfa4D8dhX6FrOcL9xsycumaLTfGUbqrc/wjNvbRHDNv1on7k7jIwPITUj/60Y/WF9zpLOUr/tkH7VdM1BbbGdgZ2BnYGdgZuM4ZsEHxn1K9+OKLazNhI2JzgY/UbfJspmySbGBsktRzk26cfrozL2RtWGxobFhsZtgJS58uvDasbCn4tWEmSx/BtQFT4GXLGF3llPiYn/Q9NHkY6J+MhsEW23KgXbHhkoMw4GvP3MVT08tf7WRha6uNK2zDlys2yE+s2hNHjHDwxJMeHsJnAzbZ5q2NK5kw6Cpk0WzzDxbfwl5Cxz8dLNgg9wDuIcwBiTmFZ+79x1w24vp8VcOCaR481HrQwG/t8Y1dxUYXHh2Ff+FM3+nYsBevtvFyDduaVYuLnLFZip8dthEd8tk/1TMGEz89efYwpKA5R4tx8oceDL4gdQ8M8fLHOHn86Ve2kxO7Nr+KmczMmZxPMl58agQjO+QVtuUXv4ca/LDpJAMnDDoKWXwx+k/1rE8y2bMe+g1nhyKuVQ8/1gxd+Ux+KY0/7IqDHP8UlG9qY91DYBWrscsoW2ry/FDIs+f6zSe2EdnpC3vZLgZ18vwsV3jxYeDLmzo548YUtvThu+b4xh+UzWTw4Mg5Xb53IKdNzrottmy6DjrAyCfzJC6kFg/ii7l1b3Dt8qVxNma+jPOlayj9BXT+Z+armA3x1Zgan139bGQzLGN4U9ZngHhhhJm8GqbSON1pE78xudImLx7F/fB+HrS7n37zm99cv3ttLYjHvCjsmXs8vuB1zTkENo74757t2i2fDjRcY9aCfMDBKzY6DjRg+MkQ+Oa4A3FtWHTTN+8OZOTYeoLFpnXBN2uKjEMuX8Y6mKQLy5vU7MDku1hffvnl5aO2OTbGH75Y9+xYk2jOWfbEwF6+aOMpqFi15W3miy08NX35SZd9+WRHfHDIyGUHUuZEn9/0+Cd+NVnj2a9mS6x9fusrxmHQQ+zDci3ln9h8vsoHXnFriwsuPVQcxsShGPf2+he/+MXDl770pdVfwud/6Fgvb7311lqL7td4bDYP8OBU9MVvHanl0zqQg0l8lV/45MSrJKctBjE3R9OWttiMNWd0w5WTcPkmbwpZMfDf2odv3Lzls3mCQ44dBdFlE19tX0PHFxNinDkwzp48syGecMzpXA/G6bsmYNAlKx62yIqFz/pk4OHzU5FHfsNgU17gWKsKG8ghq4NUxHefu+YBFnvWoX+x6OdxxAXPG+5+Uugysu/77W9/u545HIK7RuW1uWdLLGzI8bwG2ONj8dYWHz/cE7y5rk8Wri98xCu3eIqcwMeXl4lDV7F2FWScXDowzK1aHhQy8iaPZBHfxdfcZF9fYUdNni+In2LxBSZduHjyCl+/eRSHwk75C1PtPlw+yeUrO+zJj4KPYJh39smr5dNcsk3WIbbrmc1863PEvRrPvPmPueGJWU4ctIth5g0eWTnouqSfTj8xiafIh3VrXfO5fNKFgcjxw9zJK78VdpPh+5xLcjM3+YIPjzybajbF4ovl559//vDkk08uu2TvhfZB+71ka8vuDOwM7AzsDOwMXNMM2Dj0RruHDf02JDYP2jYpNns2YcZt0mzEtNs4kWtDg39K5OnZ4Hhw1qdjQ4jfJqaNEX6+aLMTjzxdmyBkk0Rf4XO2jJFTkLE2RHTx9emL3QOwTaQNIhtKcdp8adcn02ZvgR//8BdufuKno13+6JFTylXxqOmUE7L5DAOlg5/N5iFdNQpPmz24dOTZmL5YwjKWz9V8QNOGXNNHdIzZgNp0e3CzqbbR93ZTh2tsyLE33rwxlK/4sKwN+beZtkaQvCtskEOtRW18/vFHPX2ec+HBlB4Z81Pu5QG+fvKNw2dTKW/GFP6ynaw2giEXMCP67IrJwwXSV6L01Qp82PW1+doaSq+cJFdc+trywY5+BBuOcTRzl4x6+gBHXEg7O8WWLFyFv/nGvvzRm/OZTrmC6eHOQ7s1VEz0PZBZM9aqHFpH1ok1Y7xrlo1T4ocCL9/IzLjp6St8vRuFFR697PNLv7zDMaZPXl+N0lMr+GS1+akv3/KIj+SrnGjDVeQvOf1yT5Yuv7pfZR+ecTj5wJ6+HHiwdE/MZ3mma7xC3nyFw7Y1Xv7SzU/rlzx/i5cMe/xTI+Ou1fyBH9WmX97Eqy1WOmGr2Uaw5UFNFoXBNgxxaYtbvMmRrV2sarz4sOizN/nZIS8msblP+ukYD+r34z9DddDun7D7DybFL0b3O/dd9sSCxz98PPEax+M7ve6RePyl535sTuVF/vp8LHcOD+n6l0t0OpxxQOcaZgeOYq7NkUMkOYbBL3npc4Nv5Hor0cGeAxYyfoLDT1Xwz2eLa/nvf//7ug/IM/9gtt74zY5Cp7kwP3xTyM+119zhI/3a4mSznImXv2o+wxFffJ+B8kEPhiIWOUN0+CgHU8+YvnFY9dUwxGfuEP/41Dqf/sp9cw2Hf+avfMBnB5HlJxyyCh7/HdZZs8Yeeuihw2c+85nDZz/72fUZzx7/ETz3DT8ZonTQjseucZgKfHlkE4b5tkbYYNP4JDL5Ty6/YTQfdMUL07hcacPThiFXzSG/8dXmxfohA4deucMzTs465L8cOtDjS+uHHMp3dsgiPsqDtd9BOzv45LVh85VdRBefj+y3Hui0fvMxLHr8KKZ0ygcsZD74zias1pAaT41cZ65NPvK9g3Zj+eynbRyKOpR1j/eFmH0fDHrZ1HYA+7vf/W4dtPvpJ5/rrgG5h2ediVtOjc2c0hc7OW21Qp5d9y8FGRefvaYcyBOewp9w4c05gGfclwribZ3Ro1M+2cQzrtAzd2KWe0RWbIjs9F3bGoPDHh0Yco/f/NDje/NMjz3Y9BT91qZxPPlwj5APNsjIqYKKpTWPJ1/8pwuDH+5hrn9+scEvOggueXa05Qu5Nswt+fznB1yY5Zg9c8yW+Iznv9q6klNthV3y8MVDDx8eOwi+t+7NH5niUZOlwy95kAN69MsHDLJwyJEn69rVR64XPx3jp9/2QftKyf6zM7AzsDOwM7AzsDNwWQZsNF577bXDr3/967WZINOmpbZNUJsPPJsPhVyyNjFtpCavto1hGxx1ujYxNlw2RTY8NmxKG7I2mTZ6bdDYJm9zNP1p48QW3Hwk08aMjHYPF8VC3iZOsaHTVyvw2Eb85p9xOMWXrfyPn059edKmS1Z8c2xuBuWJHJ/hI36QQY3Rj7cGxp/iwyJXjorHON7cuGcr3fps8DmyCYYjBg9W3mxqc2z+sieH2XAoZEPeAwg+Itu8WQ/5w57NPjv5wZ6++JE8NWflRE0mf+nA6aGAHpseAMTB33jiNIb4F2bx8wOfDFy6xvCTyb/kjLX+s0NfoZOv6vjhJq+vGEcw801bYU8dRu3yAN+13Lh6xhi2OvtsyC8ePCRumHzH186/eGTNI3xF/ORcy/SLOyw4/PNg76DOQ3f26HrIg+Pa03b4YK1YSx6uFNcv3En8hwM7W8bxK/kKu7VHhk+TyBtX8wWp8bpXsD9zE7YYtMmnrx819/H4aq4Qnew0Tp6dqdd9mq2pJ44KGffqsMUslx4mYcunN4rx2TzNgX5zvIyc+5dfxrXpmmv3WmujnNAxnjxfFTmcY3DEprCXzVnHD48OOwhmvmRDza+ITbGjZLXJmCO46vTIJFcNI9+nb3BQ9synPLgH+QkO//Tcm3Hl4W3pq/9lH3lr0xvt/vNBNuC5rynmmH08vumr5bQx8eE5LOsNSH3zby0Uv2vLunD/dtjBfnGzy4515dr1r1J8FuizrRiXR7pyDh82mXnQTta1xI4DEwfT/HH/FhNbPm8cvDv4gwvT4a4+XQTbGKLDXzatc/d86xLRFSe7XU/5a5xeucZXrGv+qNlBcmpMzZ65lh8xJ6PWR3zTp6PWL6dkkiNLJiIDG09e5I4feGyLUYGHR0ZbLU65z0725zzCkB/5ffjhhw+PPPLI4ezsbNmTd192mGNy8ByS05d3bW+09zkvBvdltn0Zo5Zj/lp/8iSO5oDfiH9k2UDlqC9XF/P4h5xSfqrLpfhdb3D4Inbt+mzIgTgUeggOX8QFH46cWH/aPn988QuTHv9dH1OeHDuw2CFHxj7JZxseffbZcB10r4RT/DD0i02eycGQR8VaTJf/fOdj68qal28ybBk3hteax9eH1/XCBh1+0hFD90s+KfxLT8wO573V7nf8i59P8K2P119//fDSSy+t69WXFea061YOxG0exGvu+ILYMFYe8GDiIfEoEYy5T8AvRtdM+77mRy1OuXLPMadIDGiuBzyxInpwmwttRW7okOUL38QijmIxxv90tM2H+YSfnnUjFpj2PNYAX8nDZLt4YLZW5RPRFZO54wefFXhsVOBMHfOdj9myJuSPj3jGYXr5oRyyBXvqkOcrefZgm3s6YpYTto2j7CYrB3TYyi65riHy1io8+VFXyMmxPr/oaPNHPOpJbLBFhyw/rQtrQo584eg32v1kG4J1L7TfaL+XbG3ZnYGdgZ2BnYGdgWuaARuJW7duHX7zm9+sh4A2JjYykbaNUBsVfe2IDp5Nks1hY3jJ2rhUbJzgGbN5shmFgZd9GDZOeJVw24iRjRpT20jBZCdi24bJGLKpy1c6ZI23ma6tr50tNdlT/Oyc1mJswwgH6cNgv800H5RiM66gbGqTJyOefE1GjeBU5/dijD/xk+Wb3Ex+PqltLm1ixWOeHcg4SOmhQdvm2xgZWDamDmZsuj0c8NebLjawZBA5RTzZLmfG2c5u+RA/WZhqvsOEH4aaXHb0xcDv+Hy3ye4BhT3y/8Pe3bVodlRtHO+P0gNKEDVKMEEU8UDwNYYYBUl811E0GogGRRQ80DP9QiKIZ2Z8x3eNGiYoPF/juX+V/g/L/XQy3T5zMlILqmtX1VrXutaq2vuuXX1PD5/htG6MsWstuq5MH/TY4oqXGl5rW7v48nXEDW/iw9TfWBzhxZXvKfrLK/8EpjWkn8CJRzj6Zn/5Nc4fgddaZA/Xy4o+Y+yJvjjzqb949WfLprb5sJ4c5lgbhG882Otrvs25dWCNeRnqEEAfHS9c5Ug949JurFy1FpfT04+po08MdJpbdkqc1OW4mNhlk5/mxVgiV2zD7MVTXvCAocy5K9dsxNb9yIaUb23XhB96fMGTK89hOYSj7XBMHU+2caDj2lj3XO0Zg7XQARCehC2B13wXlzo/02/cjeGslFt9JCz45QQeiZs5g6uwi7846YQF3zUshR4sOol+PtVy0DrLln147IncyIlnjj+B8vTTT9+Tg3aHmk8++eT6Rjsf4pd3hT888DremzjhrhAHoQ7JSLGr2YrdGnHw7U8+WB/65UBe3XdqfQ4j/asU969nN04KXXmcOXNtzOdGnx346mtd8st/nMRH1yFc32x3r/v2qj8348BHTPLenMHDTR+uuMiHcbZ8wddnLFtcWmt08TdGr3tNPx1tYixs3PmLBzwlX2xcG4dbjPXpr+jjR7He6LuWb59tfIpR7N274iYz7+YJB3GqCR6+ae3byHIqt9q+ufmGN7xhzScMPsQk1/yLzSGpa349g/15EGvEPOh3OGVv8OY3v3nFhyP8PnfFZQ4cBsJuPRarcb7peEbhjzscY4o4+Gp+tBV8W4Nw7Ufopd+akE/jE0tsfOKBKxz3FFv69jfmpvWvjz1ubGATOtWu5ReO8eYWpjk0X/jJA5z8tn7p46VfDs2bMXVrAJY8mAs1TuaAnvvGOM769eFKtHGCoxA8YTcn8PhX6xMzPDhyTdhaR4888sjCNmbfxY916XDdf45qL2jtKP0rR/mGLX7PGOuGPcEDR+PlFF95ihe7BC8+8ez+ZgfHHLhvjMOkS8SDn3y1TujjQI/QVfjWVz89setPL3784ihHsPRrK+zxoKPA9hlhrozhb9239s1dBRZd/5qAbzjxCk8c7i0xEeP05I3EDRdjzaNfdFpD2jjBNx9+ISt/+MHGz5rgI2ldGMfVeqUvR+HxR4/gkg/cEn344c4HXwQGPePlEXe/CCxvxnCyjtyrbPGR0/KMj88pa6F11rOIT7rw+YZhffHrF5DPPffc+tzFh951ZB+0XydbW3dnYGdgZ2BnYGfgPs2Azcgvf/nLsx/84Adr09MmxKaF2JDYnKgrc5NGh00vBW2i9BP4xuC5ro+ePhtguInrNpH5a7NGh40NkY2bTdJlGxx2bGyQ8k/PZok/9q6Nu44XfLHxEWc1W7pwbcJsPm3atBMY2vDx5z/fMBT9dPTjHjYs1/ntuhzFTx0/NriojzmIK27H+YjvsY5zWHzho/BpM+pbSuJyCOrbSr7ZZoNKV9zyositDa6X2pdeemlxbE7V9ONl40q3OPiTG/ObDv/8KoS9GPmRT9etI/blbcZIR2zG1DbjHSj0ciTvfKkJPT5xdh03LzW9vBuHXf7waW70a8MTD2yCQz604Sr6xDaFTXaz3zXd7NTWsljg4KtYI730sNEXL9fNBVt24oFFxESKqevs6SsElri8mBcrHId32o3DN1cwpsSjufdCJ8e4s1XkFSY+c+2z1WdM4cM35/zpAi+LjVtrYqKr7yh8JMbh0G9uG2NfDti4bs6NyeUU7fTUcOmR5krfXBf05KL5pKuPsM1evDMWa8Xa7pvJxrWLBVfxmAO5VSv6wsEJjvuSDtupT1e82eKVbTFodxA014hrOuLig63CB26u9StEv5Je9uWYDZk2q+Pwgz3e9OGRYjio3uEhd3E/6tQ2D/LQS7nYpg96fMMRM97W9mtf+9qzmzdvrj8hY/w/kXLuYPMTn/jEOmi3Zvgw52p5KWf8G9eWA/nwDO354BvM7jnxiIGtexcWX/TdQ/9z+iavQx84CnttdnIqJ2z4Y+8zwlrQhiOvYm7ucMmfa5jWr8I+vvBbjw5y3dv+UzrPHHn3GeW+x8/aNSf4ipFf+eiewlO/mGb+6eFiHBdcYcuFMbqKQxfPINzSoUcnfdg4pDfnWI7k2mcQP93PsHGUPzjGxA3LtXwo/TKBP2UKPTi4lXMYOBsrDvNinJ4/ZfTOd77z7L3vfe/65Q8fMBLXipz5D2h/9KMfrevG1c0rbj777QX08edb3L4ZLw65dA/wbRwn3NixwZXQU/g1bm7Np/kp5/KmhGMMnrbCd/POt3VjTtjANU6/dRWufmuADXvtRL+2OcKvNSAec6ePwOcHhuuwjbExv/LcfWocthw47DVuryF38kUPHh2+2PIl5u4N46Sc8Q0Xr3SMiZcdH3Me5EJc7il68NmT8mQNwGIvDw56O6zUR/plIj4OZh966KHF3xhcIgf0zbt/jeJf5PjXOe4X9a1bt5YuvUTsfOOCG+7yQvSb2wTv1hldXOOtLfawjcXHOsOhXMoFHM+wbMQgtxNPjnExpuAmD+HAd407O88ohS8iF8aIOAk83PQbhwungpv9uDWS0J37Hz7Z4UfXc5WdHCikdWdd0OfTOoTlF25srTfPjGxhsnNPuj/ZwsNNP+7mo19uGZMTxRqDOTnIJ4HLv9zRdU1wqehjaz4UnPn1p9jw5J8O334R7T2kLw/otzYUtvJhftkZ81kmf+KHUz74Li7faP/a1762D9rXzOwfOwM7AzsDOwM7AzsDl2bAxqKDdhsmmxUbEJsLYtzGxyZPn2s6+pP62vgbV4ixxtvc6GevTQ+uTQzhpw2n/nlNh76Nng2YTVL4y/j0I7766cdZ2yYJHgwbXNc2e9mo2/jFTR8cG2PXNpM2bHMDxrcxvtp4x0cf4XPG6povfnAjMNLTb6NKR38ydcwXPmzCoIevTasaDgw6U6a+fvEc86WfPzy8LPUf0TmQ8ScPHLQ7LMi/zbZNqs01bg46+0+R5AG+lzT6vUCwUconvubWht7cxJutEidzB6t+8fKBbzGXN7G2ibfBb969xNrM68OHXf74YQdTwc+YtefFw1onxuApXVsDuMWJXfcGTO04tga0FZzz27zNOIwlxQqPrvtBLHAIPni0RujLF66uw6UvfjiNsc9X8RvTl208jeuDYT0UK1xrRM7o9kIkl+UmH/zxb8690Cpiac7psSP6xCTPfLMj8Pk07pu3vjHnwIKOvtYL3WKv1pfUxwbPuDauX4EbNi5emOUIh9aHtryQ8sem3Kn5E4NSPswnOzHFx1i+XdPnK7tw+La2YSja9PkXi/sTV5zhuZZbutoEJr1yXHx0y4laf5zZ5VPtHsY/numJq3XKH105waH8Fbd2eROfeCtwSZzrL19rcPzANx+6+Qx/tpsf+LjCJXDDjhPfMK0tfWzEWazL8MLWc8369mLvWXqvD9odgPKBc774k199FTHgau56PujzXHevurfwp2/twBKX/Hmud1+lI36HZXJBB3b+zbNnrANlWHKLE11ryTyzcV1u+ZUjpTUEE6/y7BuwDtp9s9AzB45DJAckDtodkvgs8tkCWw7MIz24fUbphy0W42p8+FLrE4s4jOEtBth04GnTE5c86Qu3z+hig0G05cV9yg9cY4r4+VTrl18Ftn7Y4ssve2P50G5Mzumzly+5MEaMxdlB+7ve9a71n5w6ROL7MoHtQPSHP/zhnYM4eniLGwdrwWe/Wl5w66C9PJlXsbARo3jol1eYdI2zN+7QTBzFNznyq984PDFX2CvGrQ9zYu1r65cP7XLcPRMeHTzwIfD1lTvXfMmndYKXPnrWFnzX6uzwVeZe1hgO9pfWsLY17c8wWSf8xdU1f3jhaV7FwI8CRx//cPCyXhVtY3SaD7U5xKn1Ti+e4qbvvmnvXDzWMZ4+s3Hh38GlQ09iv+SXLDjDO4o58f9L+Ja7A3Yc1c8///zij1u5x0GcfMs5TPnGnW9jYiZs3OvliW/Y9Ng2p/rFirfx1iAfMNiLUWlu+eNLgcceF7lTw2IrJ3wZJ/SNsbEOzbUaHh0+iyMMeES/gi9M+J599ub+BQF7fTD8yx7PSPsf2IQN3ZkT66K8iLvngz5tueyg3VqVg57Jce1fJeBG8GCPi/XiudOcyLl8wsg3XRLPcsEXn3izlw9j/LomfBiHAdu/voGNCx7y4B3EL6N7b4uf2nz6bLJe+SL05C19PuHziwc/Pnf2QftK1/6xM7AzsDOwM7AzsDPwShmwgeig3Uupto2LTUUbnzYZbTiOWPptWmygbFxsfhR2xmCRNkWu68tXbRuZNlX6FJsqxTXMNtfwiI0P/23E8gmHjTax+dKn3Ya3TRrcybs2XPrsjPNhMx4O3K4vGysGGLCKRz39GU+XnpgUOuVx1nh76VD0s4XRNU74aMPIt7brCpuKWAhsObYRNqeue+Fj5+XBhr35hiknNqY25w5DbNi9QDmUwYUdMYarNjttBVd9fFtDimt9+Jk7hQ2h3xwa11YbL17X+hL9YqELu0Nhfdr0Z2HHxlicxexFBb/mK998xWX2iUHO+IlTvIwRbWOJdmugHMy46Gq3RnBU8CK40TEvijZMdWujPvjxaC3TVcJqremLR2Nw2PMtPwou+vxTXm124s9m5idf+IonDC+tMOIcX/rF4JrQKwfa1pS12MuitaNPLsTCvwIH7lFwMWYdt87o8MMnm/jAhkuXDdvmmg5eamPFGoaaPh213Craze3sd51kR9+1Uh7MRX3Gxdo9JJ64wCo+/vTTxVeetBW5c8DiUKD86YdZDHzzCwd/1/JQHHzFWT9e/LALS7s49M+8zf6u1fjiQL+8x8k40RZnMenX1xpwXVtNiiee+tllmz5MuZGLOBtLPyzrWU681Psb7Z///OfPHnjggaW3HF7zR7E5RHjqqafWN43Fj0OHZXJPT596rhXtcuLaQbtDCnNB6JpHdfby5UBUvMRnBH194nUfOFxho/DvOevQhG42xmAZV7cG8eCzMn3joNB3kOsw0iFJa82BkDngHw+Hs/Y0sOWjWByo+GxSph++xWI+ywu+rWPXfIuTn/KkhuO5Vcx4wolL3I3T1ZZreZFL/qx1IifdN7CNKey6vzxrSPnBCTcFt3jmC7Z71+e4PBn3r418jsMw9/51wMMPP3x2fn5+Z1748QztMFBOfaa/8MIL63k344bpOeFgTWEDW77hh1suuj/YWT/9UgRXOvIgXtfGHH7JQ7HpN2eJXGVrvtkbp9/cmnMczY08lWdc2MdJLXbrKB+w2ajFzYf4jOPiWr+SX7pdw6TDLkz3RBzSw0+e6dpryF2YMGBaa+4r+RFfOaFH5Mm6EhNu9PThD5cP7cbUcQ0bHzmkz695dC0n2nzCx7+9lD441pk/FQTXmINgtlNg4GPuPcN887hfpvgG8q9//et1/+ABxxpoLfKjv3yXl2IwpuBGh702vmy18VGMi5OtOZe3qQND7OIISxzFyjfJJxx+pv/s2MSVLzGZC4ILXsbZVvfsxDHbfOvDT5HLxPrpngrHuvPZUxx4kjDZWxPuDTzMM979OZbmz5gy48WnNhzPPQJDjHhag3GVT9dsCC54VPTTV+JiDAdY2dWmg6t7BRc+6ciBNaV4HpkXAss4e+vdsxgnYj6sAfVlcfHloP2rX/3q+r9R2MC7juw/HXOdbG3dnYGdgZ2BnYGdgfs0AzYb86BdGDYSNg5tfuprc3NZqMZsWGyM2gjZxGQDr82QaxuYNjHaCtFnM6TU38bVOAw6NlUKnTaONoh0w7bhc00HjzaRcPKn33UbVtcwCP754Tf+Ykzo20zmkw/cw4jP5MIGV3X5oVfc+SmP+TrW+BG2+dOGO2s+4jFjgp/enDsbct+g8hLuhUm8NqLa5ROezXxx+1aLbxHb2JZnG1U6+MijuIzJRXzjihc/9PBNp/lhp5DiSSeM5ggWncQ17Dlvxuinm766HBn3MiD21gEMfXT4FT9hl3+6Mxa68ijHrolYvGixb97VBJZifnoR5yvfdOC0ZuPGPzt5gaUfvvWpyDkc416Eul/YGIsHHe1iU9Mt3/T554/Q18eftYOza+MOwvA2Xvyuy5XreLmuLcf0xZjvcjftF4HTD3180lf4pF9+YbQeO/ySf0VcR4HHxvotV3Rglh+1Qo+OORULW7lUl6fyS/8o9OQDf3HLIWGrj5RX4/QVWNMHPW0x48OnIj7zH798wSdx5ost/eY6ey+uvbiLl54xceIBU97NGRw8SLyNE3X+1fFt7cGABx8OH65n3sJegBc/jNPnn40yecAXf9xhhA0i/Grcyr8+unNOy52+1olrPvlxHRZf9OXCuIMTfzrmi1/84vrWZ3oznqtclwcHVP4zVN8KlT/5cg/yJ47mih82Cj0HC3jiq88zCrfmhb4idvy7J48Yxh2A0XWYYZ1YP/wSMccnv3zr44sd3fThWb/WnAMPWO5n3BwU0efDtxUd6OKPmz9f4ReaPX/c74r56WCHP+KQXoHFpnUDq3ule4COmNVdi4PQxVu751UxGev5Us5xs18h5gfvDn/h0JMveHKOA07NEX1FjnChC49escJujtQEJ/7e9ra3rcN03ByE+pdpfCnG8ZNr2ObALzT856b+5AoMeeeHvrbPRnnHiX6/wHBdXoz7HGg9mg/rpIMva9D+Qa74hSV2PlwTePmmYxy+60ROcGJjTtnTgUvfuPXCP2Erd0qfUd0PbPiUJzlko69DWNjWlPwT+afTmlmdpx/x45uuNSIP+DTXrvFW03GtTH33V2vAmLyLsbmCBbc+PNjgRJ/oEx9dcWkbEwspn+4x86WNr3yK48aNG2sPyEbBR47gxJ0NMee+xS4G/vCMh1zwjwtbecXV/e5av3nyTWR9fMO1Bq1Ha6xY9CswFbrNizaOdOOFAz70jOONmzj10+eTXmtPDHRmDGKkI3fG4ygue4a45JcOPHPkmuBlfpoT/o3RmWuk5545h1Hem0Nr0i+hmgvYeOHAP27w3Nvh6ncf48o/v8Zxgk/4sg78fxs9Y7oHYfMBj473hXLhvvZsFg8/8MQAgz6Ru9aMNj2+FdiEXXkUq/zLAazmAoYCT5zyae0oMNnr69koVn3V/GjjZQ3AwBummsB2LS7PKXj+1c+zzz67/zPUlaH9Y2dgZ2BnYGdgZ2Bn4NIM2EAcD9rbYNh02ISQNhuB6G+DQs+mxsbMZitd9dywwA27a3UbrDY5fLiuTadr9dyYxoevNrB4tcGzKWrzZhNvwzY54EfYzs2pPmOVYmojbFPqGh9jCpnY2nGZMeqzacPNNQxYYbDTpxiHaUzcU9go02c2alL+688GHjsx22D6JoiXNHNoE+vaC1cvILDyI482nL4l4lqubfJt2otLH77FmL0NbzHpa+PML/zmjV7zjLt5a+7EACPfxsUj1uJTFzs/2uFrs+FLTYpN7Lj0QqLtBSF8+Zq47LSVcuqaXvcDDC8ivWSwkRcFB7FUcIETlvz3AgCn2GHEiT9STNYa3HBcy51xxbjcdV8Yl2s1XLXSPBnL3rgCxzg91/pwK26c9OFe7ue1sfKsxjVuXnT1WX/0lGKhU9GXTB39/LtHvZRpl185F7eYqo0lrlt3xnHxYi9+orbW5a/46Vmv5Y9vfvB0zb8cdB3XYlMbp1f+2GZj3NwbK45884sTf4Qu2zmHcBPXCj0SXjnVLjdidG3MvS0X/CXpGg9XzmHzrw9nJTFWrPq05UUharb8si8OPl5N6LLlyzXcYmIXpjwV0xy/DDuu6vKUH/rFr3YoAI9uz0BtfglurXPr2p9VuJcH7R/72MfWQbvcitGzpmeYPusn/zM3uFrPeDqg8qwzh+JkVym3fe5pKz0bxS+v1iJMtftCbujlHwfPfHaeB/rxZW/u+JM368zhkWLt4TzXkjbODuj45YfPDqXms5YuKSY+2eCnDw/69Kx5pfmES09fMcFyTcf4XEdi1WZjHEdt2Pny2apNV58Y4NHTl8BmX8lGjtLTJ6d05JGN/PoWqj/b5XPHnCm+we5PFvmsF79fnDsQxQEeDrhYD/Lvfne46RfoDvPSU/Mz2zjjj4cxhUwdPsyh3MArf2ysGTk2JqYEpmKMTXmCS3f60RYX+3nYWh9M1/KlEGtBkVOYfNEJOy54u25d0Ms3TnLlX/TJG1tYithwV1tn8u1fFOAHj215MEe+wd5hOXs+zKv8uJZD+PjGyTgs+A49xSYG+vzSz49+YoxNa8lDxounAABAAElEQVS14j7AD0+2fPAp3v6D4/rgipceHXybJ7jn5+erDy5O8sxGrub8w2bLhg6BiSM7/rTZKdYncehrD2p9iq9nmfzB4ktu6RvnQ8EnySc/eODv816e6JJqHEi4cHBjS0fuXBNtPnt2tfbNj/szG3pw+IY/c8FGDuDgZZ7piElb/5xj+gQGfGNstK0N64sOf82dnBUrbGON968prAexxbV7Ruzpq/mBVZ70ya9SH07mwzyKAxZOxsWEF4xw1Gzo4eFPUFmbMI01v3G3rvQTtTzQlQdt+K7FnY3+5lEMYpUr8SrGrXOH9z6P2PtPor/85S+fffjDH16+2F1H9jfar5OtrbszsDOwM7AzsDNwn2bAZqiDdpuPuWGY1/Sm2HzYqNjA2YzYDNnQtBlrk1KdLRxl6tksKaQx47PdJpIfm6XG1DY+pM0g3vi1GYXdZsk1bDpqnAl812Liw7i2DZgxbcV1L0Rtqm0C6RoLR03i2wYSBh9eEnAxrs2PErd4GC9nMLSTbNTpGMvWNR7lUjueeBDcbaj7O6DmE54XwTbmdHGVT35sZr2AKzbNxei6zTIbRd6NV4zrL06bZy/8/Oo3bh32AsAfWy8VSpzp0mktwCsfYlTaxLMJJ32YcVugFzrmFBfxyx1Mh0KkuXUNj6RTXvEwpr9cGvNt0V5+6JijuSYW2OlH9tpi5NuLI/18lEs6fCl06bgX4GrDYuNav1ox3j0BS9s4ezZE/9Q3L6S4yx8besXMn5yJv3zBVFpP4ciP2Mo1TLy80LiX5Qx28wqDjkLil/9w6enjz+EAHgQ3kh0c14lrawIHGK69KHu56kBB22GUtSd2OtnAYacYI/KibS0qrssLPo3r167gUtxdw8PNfOXbC2t8YNBV4Kr19bLJr7YxYpzgD1OtT17gi5U/fe55MVsn7MNvLrRhl2s2+dOfZDtrc929qr+csnONCzxjxHVFGwe5gkGnGOf80odTnHOsGGAl4RQPHaUYjcNTGstW3jyr4q0fTvNvzTtof/rpp+/JN9r92QUH7f5DQevHvSof5l3tPnCPeZYUD244utesnzjSxS/7OTewYYrDNSz3sGs5gGm9uFcUa0W/cYUd+w4TYfPDBmdYxs0Vbr696jPGwRcc/dYDcViFpzWpHwZ9/Q6XxTu5mnd6eJQL/omarrnlt4M5+oo45KjDIXOvTa+1Vuz0+cJH3Trix7UY/TKgttq9RZfIh1j51OeawCUwFHpqgoPx7l/PTX9z3TfW/Qfm/Jl7a85BnxzQF7PrBGffRPVLdGvYwbE/EyPHePDjl0TWCF2Cp7nDFVa5bJ2lgxt7/a7ZyJkYYMu7NaPWr8Dkp9yy0S4XxruGyzZ9PPCBTUeho98aMQ9846R0jS9/9K1XhcgfW2N0+W7vIz/WqM+J5jI8sRqnD8PnkV94WLuk5yqexvvlhzVKxERHbooB1oyLjrZ5cQipptsaMUf2m+XcmJiNi09e4ouXX9LYl9Gbos/6YcdebLD5hkHE6uBbv1/owDWGE184tL5cs4UnXr7NTfNkrYlH3unxJ1bx8+/Z4Fvvt2/fXjkSo3mAY+5xUDqcZwNbcV27POBvTvHHjdCRBz7Ls7q5F5PYYPDrXqtdrOHgVA7Fy7Z7UHyK9aUub2L2L2/6Jr/1zb9aoQcXjvXjGl/Y3Tdq/qx58ZRL/KwrPvT1PGOrD1cH256n8PNhXsxTeuzMe7zkQh74YiMfrWE6nis+d/TBiBM+8qzwXy1/YvOO4heF1icbWOYWlnnWhwuf4pUHdvyHS48fzzd9bPTJG978znXYOM7mwC922Plb8H5R/sQTT6D3f+6V1fkqP/ZB+6skZw/tDOwM7AzsDOwM/LdkwEatg/Y28zYoymVSvw2JDVwvNHBsSqpdz3ZYxm10CSwbHBtGmx1jRG3Tw742PWJDaKMTD33s9dtgpYdfL25tsmzC6NLBnfBD2oDDUeJm3Fj9uPHTCwC9/MKla/PIji47/suXtmsv6mJmjwu77PXlzzUcNTt1Mn2VK+PwFNf66TUeNxjGzZ9Y/A1NG2qbcdyLCQ4uNqc4w7FB9kJu46kfDm6ubX7Z4EyKQ1868TJuM+/l0saYjjmyeTZ34dA3bwrc5q8XWDhixNtYeSxW9gQXc9F1+WwchnzgoogVppyQ2sWmL7/5bkzdiw87Lwf48MmGz3KCF2FDl9Rn06/gzc54tunQ1we7taZNHyY9ay09OuVBnzG57R7kozjYwjWOb5I/ffniT2kOioWNa3k0TuDLsRe28qSfHy+6cuWlnn9zohQ7f8SYol0fXD7EZw071NCXf9wmrwU0frCzjumJ2wtZhxTyo+0+cA/QpaOfDT9KXMDWB88aKUfiU2Y+uufYwdCmI8f0xOq+kCN+9bsHvASq6bCjJ0a++fSiWdyXxd78w4w7bLjigteLtJiLiW76+vJf3HFIp366XdOxLswvjsb44N8YTsqMyRhMfdXlM1y18Sna4bGrhDd1+RaPOh/s8SuX+uGxJ8b09fwyVj8cc6F2P/vTMV/5ylfWn+5g859IeXTQ/slPfnL93Wx5sD74ct38u88U3AnOntUOccyzfnzZOEgxH9afWl+5gOeavnJcs9aSNWrdmEdy1Pc50z0vH3jQlxf+WgOeAw423H+w6LjvzIODHAf24gjDwRt7/DtgsfbxF1vzp4+tfOhX97yXO34U86KISY66H8SDEy64apdPeN1PcTMOB09rXZwJHb7U9HB1jQccds1zNtrNiXGiD77a57m//f/QQw+tdSZW8elr/tmwlRPCzrPNf6DosNK10sESbvA9k+XY5zRb3D0bcC338knfuHzQNX/5dm3O464Wb+uGjZJe13zIDf1sauMPo/0HLvkzRh8n62ausxX86YfYFIK3656/+sRk7uDky/zzL345c+DnGm/CX/HjBuP8/HwdtuNBOgSGY826N8xXvuQkP/T5xg8eP12ztya6d/HUlgMcrN1yY0x8xsRY3GocHa46JCfwYRPrCm928TDmmi+1+D1TcIZFPDOsPzXexqwJawc3/WI3L4q2+OUCj3IBH/d8dtBuzfLrAN8vO+jjSA++HBsnYjQvsCr68IeNF/7yrg1HDQf38g0v7p4nOPdMEqu80seJvcKv/W73I5vyX46tcb75wYsPfPoPqGHSUcw/TBh8ljtxwoZBR5ET94Q+mPqKiW9FTDMXfmEn/+KSH3G69gxQ82tNiVHBGy49+13c+OS75yUf9k/uF/PSXPDf+nQdT9d0rCXvKH5xCJvwB8ucs6WXf+tJm2889SvyJofNHxw+Whd05JE/fQp9fL3z+EySN/+fhYP2xx9/HMSa33VxxR/7oP2KidpqOwM7AzsDOwM7A/dzBmw2O2i3ybQhJNXFpm3zozTu2obOZtSmhqjbiMNus9Km1ri+8Ni0saLjWt0G1Dg/4bOjY0Nkw0PXtT46ij42xpX0ba5smuio6fSCgNP0wQ+c+GuTahs5sZNs1W2e8YdN+OdLcY2TDZ92Mn3p56dCp3F1HPTnu3625cO1/gpdG3KbSDUccTjotnnWh7P5I3h2CODlyIYWlk2tFzd9dPiRT/1qMcIIS7tiww1DfgguNrY25HjPF3f8cIZVXGxdy18v8HDkvbXIhl618a7xILBdq/ODg3zYnMPSz7cXB2J9iKk1tjov+vXR5ZcdERscfQ582/BrKwSH5ovdXIOuzQk+8lwM4o+764S9/sa0YZsXNaEfVvnSNm9yryZiwRfPbOgVGx39+ceNDUxFOzt8xGKe5a84XMttL0P6zau1pSb8Ge9+Kz9r8GKcn3iVW33wzIE+vviXz+IKoxoGrnzzA8PLnLzIn/hbn9Y+PfnyXOlbVWwU+mqCBzwFFzU+Sn10WmfNVTph8N8zDDa+/CvZwINF+GpO6lsDF2Ps4Yhj8tWvz0ustUNHrU9+SLatCX7N+4zZNX01fXzKheuK+RV7zwSYCjy8+NWeAm8WuGJVK8b4VifaFf14xVEbH9J1c5O9mk6xauNV7o2xtWa657SV+NGxln3j+JlnnrknB+23T9/o/NznPre+0d69JJfWD79q/YrreIrd89iBh355pu+e0VbktDyIo5yJvTyUd7hy4R6RF/r66NFRYLoHXeevfDlY8wwOzzgsufSs9/njsKM1BZcNTP7cG/z1DOJHLGqCO0x41puCr29KzoNFfa03NtpypOBDXPcM4JPQZRe/5l5NOnTit1y5d10r4unZBCMOy/j0g07zWQ6bE2tKkQvPOYdRDqYc7HVv+ZyX20Qs8gFXfh0iOdCzJuSIf+MENyIG3Dwb1Aodug55+TUn9MXGh2ejGg/iWu74CKPnGCx9pLyko6/PFn0wFLbyYJ70y5H80IUhp/pwkhv3QWNsyLxfyjPMuNAvd8bxtN6MwxCTttoYHf5gaCt8n58O2v1JHweVdPBnA6f7DR+Y1pMcGZdTHOJjvhRtueeHxFEbPlGbt9YyG3y0cZQb14o8WCfWDTt9+cR/7mnClmvxmF98+6VDa4Rv43y5pheHeODAtzF6cuEaD/24wJADsSnw+VLDkY+eZfDo4N9nuLa80lXLGx50iDYMXyCxpvCoyGvzw8Y4DMKXcXzlp1jNmwNowodSDmFpw6jg55dbnnFs46VfDEp9YcoL3/Kq4NJ8484WXzpsrTc4Yi02+vQIe/10xaHIvz61Z4wYxcoOll8EuMe14YrRgbi5Eie77lX67hNta4W/8mks//yVbzjWmF/0KK7Z0Dff8OSQLRGrgk+xNeczTrrG6RIxG8+va+Pm2jx6PlpvfPvXQTdv3jx77LHHlm24q3GFH/ug/QpJ2io7AzsDOwM7AzsD93sGbCSuc9BukzFlbtb0t8lx3aZJzU9t1zYmCjxtom2zo22z08ZJX5KdjZNCtw2z62NJv41Zmzs1O/pELRb8p982X+nAsanDjw38MNixN2ZzmQ7bYmOv8EV/2rpW+Kw0rg4vn8UWt6MPGOz4aZ5slG1WHSzot2n2zRXY2onNpU1sL0s2tV7A+ZB3+cuffGizkVP98mAzrujDRdw2qvzoJ+VcTS9s+vHGjcAl9Pjik55+cRYrO31qhZRv1/SMp6OPnhdw+fDCQmDHQ21OjeMDL53pd3WefsCTay8JrudBO534sC2WXhb0EbbyxF98q+Omnb4+uWmNqWEr6av1wxQPH6Scmmc6zR+e8LOnKx5t/fmuH+4RU1xwvLR5SZJfbYUfPBS4dK07L5xeoODDZCMX9PNLn5QTbZikPMQTvhdAHMKhByuccKuNs4c/aznqUMUa7OXYyyP+dLuGXYFH4tnayL82W/cA0RZ742LiT928xwtn19k0DqcY1SQbOrD4w1u7Pn687Bsnajpq9op2XJtLuhMnfX3iMH844pJe8y9WfbAJXWt1+jXOdtp3za71wT58NZn3RX705W8pXfyAWd51uVby3Tpje8SQE0XsjcWbvueCF3X/mdrrX//6xXP6vuo1LuT26aD9C1/4wvpGO2wHnu6z1o58y7F1X+7Z4eRgyVyLB1f5Y1seZ+7E07OEvXzwoYRbPrJLDx4dfvCWH/cQDBzcU77p6T6n1/3evdoBmG+v4unQ3eGOQ0GxwWVDjPOv3S8Y+CH4+0UeYSMmB+1w8GJXKb/FZB2G3f3hHtFHFx4/ijY7+Ip2c6DWxgUOnvLDXuwEpkLio2Zrjn0O5ct8+RZyh+rFTafc0DVPMMWh7TmLPy5y4tvrimcXPVzmnIkHX3NBBx/jxeMw2EG7Z6yYzSl8mGq8+YIxD8j40icfuPGDH2yctRX+xKqfnvnHmx9j2Ynfsx4vebUG5JZo64fBBi81neP90fxkxwZ/BWdrWE34lhOfBfg0N60J+XBfOoA0V/gR94DYWyN8wrHvIvBh26/hp81/n5HywIe4+ISjDzc6amP2fGr2irjpstEvB3Ewf+5FwrdCxC//1lX++E5fP+HfPu9vf/vbHR/84A3XGmlO+CzPruHR40u81gxf+sQgb/qLtTUTf77zhYt+fYpr+uZH4U8xVm0++oY8fXzUOOCCF6Evj8YUPq0rORCjtnmUh4Q+nDBaL3zCkOf2Enhq82/dsONTn1wk7Ii++vnuGR4/djD5bM3jK5d8KM1JNjDcS2z10XE/dl/xC9N7gXzKD2HTL/XixWf3ePm3NnGVl+YAB/h88c+fazzzi49cwFPY6lP4UbPBGbZ2wl9rS061+aQLh11rQa2fD88ZcZof4hfln/nMZ84effTR1aZ3HdkH7dfJ1tbdGdgZ2BnYGdgZuE8zYCM0D9qFYdNw3DjUNzctdG1M2uDR0W6TYyPTZoaOTY2xKTZCbcbyoU2Pvmv9/KoTGzwbI+PGGqdztA8jGzqubaBs9qaNzZzNHd9tuHDMt+s2iLjkN154F/cxBrYKadOIG+FPITDpqY1X2OChH7bryjIcP+pnKx6bS/g2lV7a/K1DPG2OvRjwV7xqL2leZJV4yxnf6cXBPNjgygtdPtvM2iDTLx4b/TgVpzESdhjwlbgXHjyFPqHPtz5xJ+JW9IWlTvCQg8a8IODLJm5iFhsfcuVlTw7ZkTjAUki49MP3cm3+itVcNGYdevngB1f2xsWNUzHwpRjvOn9q8bem+VHMjRoe7Pphwo+DcZjzRQVfuZlx0dMup+zjo09bmXzwYufFyUu5ApudQh8Xgq814sXGGjQef3NDNw6ujRO1mJo781ZOjZdLa72XUDbNfdfszS/RF6/VcfEDRy/HcsWPly/fgvMipi0P+JsLXBUiv8ZI/cWi37hcKYRvfPCY821Mn0LEAAcGm8lZn/ylwwY+PP2ucXb/1Cc+fdrTj34xqePJjg/+m3d2xsM0DgeHyY/eHDPeXE++dOKmJsWuzXd8cAgzPtoKHfj5PWIu4NOP5iQf5UA/gXUUuPXHBX4+8i2v1p+/8fr1r3991dkdMe/Wjt9LL720Dtr9jXYHUQ485yGrnHuOKPJK+DSPPTf1pdd9JqbG1bibf3ltjfXMVBM54qMc84OnPnau4bh/ur8d3Gp3sEIPnl8AK54X/PpWoQN2vF544YWzP/7xj3cOinDu/2MQl4ILrArf5sH9igMcxUGWZzV9fOOsHYbnFU7FLVZYcPiCbazPD/HqNy53RB+cnn366WTDFxx9Cvy5hlx7NvUMg4nT+fn5+hMxPmNg8XOZsJdz+ebLc9Yzkk/9nl+KXBPPnrjKiVzJf4dN+uTNAT8ePdv5b07FCFM8xvl1zS//xuHyqWjjSU8+y7dcKK0Rer5J6znrOZzgbO37F3pyYe77vOaHX31w+cGzvPa5IC59cBVtGMbZ4Ub0E23YDlV9DuAkB8b5wgceTv5kVHsI4/yLW0603QfyBcO8tHatUXNBmq++yY2XeTDempRbzwU1znJvjnDFRf74k68+Y9jqg0OXiIs+McZXv9ARI376xBgHtbjcn+WxfaQc9C9I2OBD1/oTOw7iM3fG80tPDA5wPRNal0vhGj/kuc9tsSl8Ksbk6x//+Mf65ZC1Inf0jfPZvSUXBNeKNWKeFH3iETfddFrvamO+Jc2nOZAra6E5Y8Of/bo8s8GDHt5wXeNtTNFmI1fEGDHmWcSeHR1z3D2ijXf3BZvum56VsBVzQV8pD7D6lyzlFH/X+XWtmG+50Q8LhhqGZxu/bOVEvyJ+tubCvISlxomI1b8GgEtfPxwxFadruLXpWa9EbrQvezZ55pkX3MXtoP1Tn/rU2Qc+8IFlWx5W4wo/9kH7FZK0VXYGdgZ2BnYGdgbu9wzYiHTQboNhw1D5/8QG16bFxsbGhOjr+m7YdG2w1MSmafKyqbLJokOMaRM22dVuUwiHno2nTZPNUxs1WF4abPhwp8dPvvLRhgw22+y1yfStzS6/auPHTTvfFX4VdsUHRwyNuVbypVbqc81W26ZSTPrMh427b1S61i9mMdmgVrzszX8qSRdnnOSDnljKiQ2wnOKXHxtadvrY0MenGMIy5lpJJn9xaB/HzZGCi41wL0Qw2NhA27Sz004/LLWY8DSWDo5s8LVGHPDg7CXAYU4vIOxJtWt27GHKq/jh9nJaDPlS48+Pwg/RP+dOX/nO32zDlX8vMPIgp/QUOHiQct9YPMpB/Jby6QdbwhcMbbb05Kw+bWuI3tTBSV885NALmdykhwPBjb570rPINVwxeQHtnik32bPFBaa54Q+Gl3d2cOHQ9/JOJ96tCRjNGY70ceZzir7mqwMSXK2RDqnYOiihR1/BQX7USXFr49z6Za+0No0p9PXhPm0nnn7+qtn1vCpfzRMuinUnhtnvGg4bBV7riy472N3XdOUSb2P6xU/YKnjTgUePffrh8UvPc8m4a4VoZ5O99swvP/rUMNTZwi5GfWHoc53EEe5RJl/j4eMfhti1E3zKh1x7Hj/44INn3/rWt1adXfpXreN3++JPxzh8tr4dmHj2iV8s/Fnz2qQYOuyIKxsH9d0f8oKvebTWzb846NCFA9u1e0/b3LqPZq7jqVbgdX9qW/facqnow9sz0+Gxg0nYMPlX/vCHP5zdunVr3XN44eTwA/ejLrvWMWzzwadCt2cNHbrlA5fy54DQc0usMHoW0U3fOu35Ulx84McnPT7kqnlQt8bZ0O1+zK61A6NfpOCl7UDtrW996/oTRD7Xj8+r5ejiB30H5f2rsubUMB/a+LqWF1IucXft8NZzVT7geVbeuHFjxW3e6Rj3/LO+xAQXXzZh0hMnX3CsCfPAvzkwzpaojRuTK1js7E/4oJ9Y4zg5jLU2zaGcZOPb9fBwJT3LtOm3BuDzaQ6IuYdpfcGCSxeWgpv/K8G3uPkwzhYuOzFax6973evu3F/65EB+ihmOmPDiBycFH6KP3+4f8yJe2NaCMbx9Fv32t79d+yJc2MsNLLnVp209t5bhiyVxzS7ffFl//iQRO3MBp3xo63fPupYP49YcLvIhf33Rw6G5/IjVLw3aw4mhmFojuMCE7aCeH9hiua68ko348DCHnqUOwuWmz3Z5MGf01OLGHy/XnrvWiWcAbuJiy844vebbmHWiuJZXQk9s5rPntftG7tpTWC+tTTy05a51BCMba4m0jtsj4R0nucUXB/G61kcXZ7hyxieuxuhZS2rPaftiscO19uRQnvi1VvGESzwf5FkuYOXLeoBljbDtWcCG/+4NNTx2MF0bx/P3v//9un/wImKwlhR8xcym2lqjE7fuLfkUr7lTd0/yLSfuYwft73//+5efV1pTa/CSH/ug/ZKk7K6dgZ2BnYGdgZ2B/7YM2Kx00G5DRGwa2jio2wwZc303sWlRbFoqYVS/GgYd9vmKj7pNlRcT1/DpurYpojNt+akNz7hNnM2TjZ4ycW3ybHDhwuRHYZOtNsxKY8U0Ywz7yM+mj57+yQ+Gvgqd/Kj5OvpvnC7h07UYbChtJG08YYrPy4pvVhlrw9yG0mZVsRHuBSN/dNlo23CzSdi0MeWfnk23op8NTtqubcDxhuEaN1IMXR9jq19sveDAxxcnvo0p5rENN7/0j0LHGL7ljE+Ck/XRt5Js1i87aKcfbzau+eplFJd50G6cTT7ljh+b+ezZmGv8zBlhp+hXE/Eq7OQSjnzQIeEVo3a5n7yNzxzBNI4HgYdvbX2NFwcdc8sWPzVOcaDnMEAexRUeHDqtC/OIY3jacoRfPqvLiXy7p+Dy20EE/3Fg417ohYt/Jf+ujXthLH/wYNPJF25euOKIn3tF0c9/L8XlQWyVcgczYdN9Ihckfq6N07eey4M+JV7mpj46+mGJn23+9NEr53Jl3YiZDrvmke/68KNnLugqsLPDl1349PnBC4a6kk585zy1DmEVLx5sijXudPiNj+swy9/MQ2sBHj12M1b97PBkdxR+KzOf+hJ4cJP8yId73Pp74xvfePbtb3/7nh20f/rTnz7785//vJ45Dlk8M+RRLPxpy2VziZ95bw3jau07bOnzgk7zbc7lTmx0PNvE5f5wrchB88xWodOc5ZsePP6N4eAeSh8XuuJwSKmmB4stPd/et29xUOWe49+/0hIrHZjN6+QA23jPFPnBAwZhYzyxDmB6Zjn8khv+5ZItKS4c8ZAT1zDLGw6wwyseNZywykX3GDt5t3aI5ycecIzJzTve8Y71H53KlWdV2Mvg9CPf+Dj0dBCGM0ycXKu1+XWdyEUF7u3TL3Xky+cZPXwcvMoLTrgan5/HcK1FNmHhVIz6xM1O0a8vgWscfzjafHveHnXNi7mSC/NA5IQdDL8oEIc5lXN95tN1z3nt8iEeAtPngvmFBWMKHrD//ve/rzVpnC3MPk9w8p8ospdzMVqHcSgn7jmxwpBXRQ6Ni12Mxj1LcG1NuC/hwvP545dRDjXh0JUPcbPBy7V4XMOlJw/84KaPX8WYnDhENt89T3CByy99mP40jH7fLmbnFyIO2uVD7A6k3asOVtmKF08cccen+82YPviKNeSgvvWWX3PBl6LvlcT4K4m48XjxxRfXPLpXcMHfPSP+1ob8wBJza0f+zUXrw5pwH8gfPVj65MH82VfyoY8toSc28cshH/LFxuGvXFTw0W8N9UsKffjAawwG3vphmUNciFwVB7/m1Rgcc4kPrtqtBeN0FbFa1/3JKG0xO2iXIza4sedLn3s8vvD1w4KDnzWBr/XAjpgbccuV2ri+RAzG/vKXvyy+cmfc+oZpXuDyR5fPYtdP6MsRfu4feM23a3kQjxjdxw7a3/e+992xXRdX/LEP2q+YqK22M7AzsDOwM7AzcD9nwKajg3abTBshGw51121K2hS9Wrx0KscNDTvYbXC06eZPOxv9rnGw2aJT0WcDpCbp6pvCvpIPNWFr02STSmzetNs0w6SjsIGjbuMlBjpK4wvo9INuMRqDwc7G17Uxm1iiHYbrhF229ONVH73itfE1Xp9+enjo79AFvg28/4zr/Px8baiLoYOHNrJecGx09ccrPPg2nXKWaGerjy5s3Is7e9zirm5+w5o1GxhTxGSzazMtdjx6CaGrr7q86MOnjTs82DBgGcuXWsFTHrwMufby4kVP3UsQP+nDLO/wemnh20ulOU9XnU857kWTvX648sbGywJ9feZCP9FHn6jFBqt86y/PcLKn51phZ927xtehQHrxg0OO7Zd7X+bhmi9Y6ni5xhlXeeADl+ZwzgveuJnP1lyY+psn/MpReWkt6Ofby5Kcsq/AhMEn/3DKIXx2cLyYsTGGbweX9MtNXGFa914urRPrhcyDduP04wG3XPJZfpbh+FFsceQbd0UfO/auK9r05JjwSa86f3FR42fe6JUXeq0j2ISe9UVXvporugosNq7FR9jiU11/9nQJO/gEBwWeujVyxCgGOuVi5hUW3ySubNKNQ+2lePrBJrv61PwXq1qbTMzVcfoRJj1YanrWh7nxp2O++c1v3pODdt8cfeqpp9bBmgML69U6Lw7XirUtV3KEj/tMDnDFjQ77nm/pmBuFLj06rS82rvXBIfIyc8InPbUSj6V8+sHOmpKbfGjTdf/BxlnbWqDvW9m3T4e+DjbZwe+bpHzDoZvfGSdsBQ5M9tZe8aarLYdw8IDvUKY1nk/cYLGDp0304QKndnja+uVqrm8Y5oUP0hzSc21uOmiH7/rd7373+sW5wyQ6U9jB9Dy0TuRNrPT4gNE1PXwJu3x2re5PM/g/R9iK1+eTmr19QPuG8gTTnPtsIeVlNU4/yruDR38OpkPNxvGjo8h/vvjByTzIuWJcjuSitRJP3Pwyynp1jxhXYLRm8jPnzXhr3DoId94/rv3S51//+tf6BQDu5db6lRt7AP+SsPjVE4MNv9am5yzhV37Z48a3+NiaR/rwrU26RN7lxt8aFzNbf9KGmIfyCJetfMqx4hq2oo2fQuDIrz0QHPbm1BrkW/7jB8dnoNz5XOzPyLQmfGFBPuQTvv5iZAvXgbp7U4y49ExoDcw5af7ZWg/0xXkdoS+n1qF7xQE7XLlz3xA6eMZZnog46RrHk9CxBxGbMbzxIjDaoxgXCwyiLkbXcsQPPLlwzY+iT476xVa54i89GObFvsZ929rHkz0c+nRaR80TnQ6dcYYFx5yrxWMNWQvWBBxrTu7gunY/t1Zxwrd5bd30LBU/HXHID34EN3MLnxjHR6nftXniFxeilsu44U/o8FOOxKnAal4ay4ZPecHFN9r9jfb9p2NWOvePnYGdgZ2BnYGdgZ2ByzJgE9FBuw1GGxgbCtdtwmxA2uxchqOPrg2T0ubERqxNXxsXOI275kfRR7+izcZmCx9txbV+xXXcYM0NVL7ZwLeRYoMfXdc2fPTarE4eYmJrPGzjNnTabfrmNRuSnRonPOMdnjoJl67+xvTrE6MNbbmE62UMF5tV4/S0+VGLT79Npphhekly0O5bSfrYyIvNsBywjQuM+Kj186ufDd362dpM66PDN33lKDjhEj6MqwpdG2cvH/Ih93D451N+Wn/8lBf4uOA3BdZl84efOOB6+Yctz14ufPOmuYBP8FLY4aAOV/5948fLSGsmDny477woqUn2+PLj0EBf/N0P+BD2cTXuxUaMxo3hxFa+XNNRZ0uPb/1i8+cXxKStlltSTlfj9AM2HeMwXOPVGsp/+mp4uCpkvgB1j8eRTrltzlrnxsojHvSMxYlvL7jyiZ9+GHJD2OuLd3HgwL9cGefDnPn2nRdLfvQp0xcf1r4Xcn6J+yne8ut+Ke/8K4RP/uHxa63wk+5SuvgRp2JnV57haathHOeb/3ypFfxgHgU+DmISG0x+tM0vLP3sXRuH1y+7YFovOMx1M/NmLuID2zV8cfOtwNFmJ6bup/g1Tse1QoyXD2O4wlf4IvrKybRtnE54rl9N8pEt7kRbwQd3Im5r1X+C+o1vfOOe/I12f1P4Qx/60Ppn8z0vmrM4aZsL9xw+YivHdOTD+jHul7F02STFItbuW2PhznkuH/AIfbysB9eeZ+4nBz4EF7oOuMyJdeBwzv1rjeEJ3yGQQ0Yin3TtXRwq4j8PdGB6nvFl7dCBRc86xRsGrq1F19a3Nr0p5Uvu5AKeWPwZC324zHuDLc7zfoZB+En04aHgZAx+OuzlTtzG1T2LrGefRR/5yEfWMwqf7CY+PQfkP/nJT9ahGV+Eb/qK/E8uYlLiVtxybD48E/XZg8infMmJQznzJgZ8w8TN/MMzxp+44oKjw00H4WpzReIll60h/nGWc/NrHbmn5EodLv/s4+PZ/POf/3ztgc7Pz1cc8gebjjisvQRWz1F9YqELF1829MWueM476NNPJ2EnHgfLDzzwwBqXN9yIWk7kU2yu4yEmHBJ5jLMc0G2O+NTGhT/zoc2Xb5TjxYcib+4P2NpsK/jAIHHjS8x0fSbSdRjuP3d9zWtes+ageYkrG7G7l/0pFm35sZ8yZx3WspNXxTUf9qnnpzkqBjieD9afPvzwl9PyIVetsyOXOF2lFrN/neCewcW1g2Mxa/ONw3H+ra9+WSRWOHTUuHl+KTiKR79Cd+be80dfQpdfZV5rm2c++td04eEnB3wRubpx+hNP/iWVX3JYM9a7AgOuYm4VYj2L23yJDSdjnnmKvOuzxpRwcHBv6vNMNGfdW3LXPYMfXupya63wRY9/cfBhvSief9YJsR5hiREGMWZNu3fFQ/CAF0/8cFXwlL844tG8wtXuHpQztvLuG+03b948++AHP7h8zPlaHXf5sb/RfpcE7eGdgZ2BnYGdgZ2B/4YM2IxcdtBuE2PzYNzGwobDZqbN3mWx06czN/7s2/AYD6fNj3abFHb6iX6+tG2I8IGj37U+mye27OZmjT27cLVJfTBgtSG0OfMyYrMKNz9sXOPBB+FT0Q7HNZ1Ev0Jw4Kc41DD5TIdeG0Fjlwn8Dhnokg4EbCrFzxf+Cp8EN74qNqs22jbKvUS2GbbBZIsjewVmeXONn34b1HKl3+ZYDusLI664sMUnzOY3rnTuJmxtgHvpFhefYuBTTuWCFDMbYtzamdLLGV6kmHGlb6Pv5RAuv16UvGDIHT9iUPhgy04/XNcEj/PTS6OXlLjob1zevVTIYf2N9UIsRrby2YsYTgrd/HdvaONRPPho04Vh3LVxL0H6rC9/Ughf/bDLqb44LZKnH3QUQq+XFly1j8K+fMEu9/rYtlbiRofAI3KPR/36wtTfPNCXS3OXLWzrk7BX4m8s/nybWwJPThwkOBTQPuYADht59w3CvsXnxa0c6jNn5QoOOz7ZsZ/3qXm6TIqVPYFXzuDFT22tEthEfvmi3xqJHx4KfL7DSZ+N4qVWkVNtNdzil284BIY84gGzfmOu2bF3Had4se1+FBd786u41qfwq8BhYywpH8YnvpgrxVLcdPWFH9as6dK7TMLFgx7he3KDLy8OPJ577rl14P5KeJf5mH35uOyg3ZjcwnaNU2ts5jA8uvJIx0G75yveYjJWoW9OFePFJ6b40NGv6KMLT3HPO1xxP/UNZzr8OGTBwTrw7WD3cJzwcv+zpSsGer/4xS/WwQhfPr+tK1xhisP9y3Z+tsE1bj3Jj3sTlmtrWJtfOolrPsUMH55Y/MJaP32fQeYXFwKfDv+EHh90E7jG4bamG9Mudz47tMUjb8XvQPKqB+0//vGP1/MJL8K3WOSTwMRFzRdOdBXX9DzXXLd/EK8+McmrazkMDz5McdinsNVHfLbBhqv41wn+xrL1rI1fuZRHObDO8IPB5/Gg3Tg9uHJtPXjuu8avg/Ybp0NHmP3SwpjSOuAfX2uWrSInYlHTswbUdHERu70CHDr4l0d5sm/wTVjrBCe24itGnIvNGiTyJiaCA//zb/G3ftgRXOLTPPD9q1/9avGir9gHuj9gm5N4qrPHyxh98enX7hDTOvQLF7+cb02ywZMNwct9/ac//Wn5kB8H2O5jNt2f4jQf8NmI0eeuvUmfMa59ljZP+Dtoh8MWL3PvWhwEl+uKtXX79K9l/OsE9v/85z/v7AHxE6M5xKP7XW6sBwft7MSvz75OjZO1ip9Yy3P3Qm15ti6myIfxYlJbBwoueMhxewyccWEnJ9pyZc37l1S+aIMPHWuWP3wV/Dxn2ci3Q3bFWjJuzDMPhnuHnhi6H3ESb/eAueND6f1AzviUSznBRcHXlxXwguuQHw6/zTN+7IzzI34+9RE41nRrVB9udCva7LTxM0fWpXjlln8cm6cwe1bxJ4+f/exn9zfaJXjLzsDOwM7AzsDOwM7A5Rmwiemg3WbKRq/Nng2J8YrNjM0Q0dfmZiLbADVm3MZFOxttGG2U6LhW0k9HjYNNWZvt9G2U2MCic8TIH9+N1VdbTfjhow1W2I0Xz1I+/dC2+cKFqItxdVz8YD+5dW24HOibgssRK/9tHuPVJt/Gjx1p86mmxw9+Cj2bY8XG28YRtvmeL344yYESv3DzIV/64opLfPhVjCtT8CFxU5eXeT1t5jWdXqblAx4f+BB5EGv4+RM7Pzbu048XB8V8wpGL5h+edWcDDocOn14SbcLLq1oe4KqbQ1gw+fbi6IUQdzp8GMdJ7jukCROG0jd5whInffawmyO+lbjzAYvoJ9owiXHFWC/18uCXMB1STN1pO+0X2OmHOOTKMwQeHvA7PKCHN86EX5jySq/1xKd8ZdcYfDlvPrUV43DYxFE/X9ajcUX+9JVzHOiVR3xwg+FljuBizh2QOHDRNk7y37XYvUyKHZYXNzGx8SJHH0dFDHDo4aNurHF9eB8FnpLf9OApbOpLZ8Y4ecOhrw9XXMJ2LR+tMVh0xCdWmOzU/BlrfvPfHLKFw1clbLqu46VN6JHZLm/idB3/ONB3rX/mQizWAo7x5i8OfNHni0648Pi5jEt5okOKA2b+04Htmg4engG+0f7ss8+ub8YV48tIV/8ZLweTTzzxxDqk9HxynxQfbDH0zFRbY/jED45reTLmmUMPbzgwwqNTvhrXNtcEjvacU23FGBu67jHPUdj685+tZ651RroncHIwB7tngUMtnMybQxpth13anmdi4YdfYv6tUzVfxOe+Plxa3zC1iZpu608ujOPg2aAfp3LDhj+8xaomMGDxTVy3XrTzAS9f6uKXIzE5XOeX+Bz3p2P6lipMa0w8YsGVPweUv/vd7xZHeST0lHIRnzl3xrSNEZji7u90myPYzUH3GF182eHgWhyu0+mQzRhxoHf7dMBpHuXCs7d1xbb5d42TGOWHXuPyo+jnCz+c8bCmfvrTn66cddjoAI+9NaDANXeKZ777iW25tG7xlRfYxuJvb+EzAI5+hZ4iP+bMn47hQ1t/uRA/zrCMt/bjIhZF25oWY/sfffDE53MH19aNvMDyjXL8+CRigyEeOvziW17llj848F1ba4p8abO17hyI29+YHzzYKq7Z4uWX0Hz4ZZh7lC57PPhw7d5W13bfFg9u1qrcikPe+qVT9zc766X7jG86xuHqx0G5m/jMxptf/8Li9mld9kUcvnFRGyfyZu9DxzomcoRveTRfrVXc5F0bH7miB1PuisGYHNHNV2uKvmK+cTXPeLBVF7u2vGh7dsgHPL7Y0pW7uPDDxp4UrhjosrH23Pv+nyd4fIrZM9e84IsTW9ew+SAw9ZHi9yypT1wO14sfbtfWnTVTHnCEzUYfPDh9LvDBH9/trekWWz5xNZfmO/5i1Q8LrryIlX/2/PmXKR//+MfP3vOe93B1Z25W4wo/9jfar5CkrbIzsDOwM7AzsDNwv2fAZsRB+/e///07GyqbpzZtNhzExsSmw4aMTdfH+G1+FHbZ0E30wVDDsYmhb6NJbAj1ZQPHxgcfm5z8soVB30bJOKGTjzZg+vhItElYxvTxZbMMDx99Nmf6pw2fvSDUHzZe8BR2yVFPPx34BBe8la71s4MpZ0TdNdu4r8GLH/zGgW2+YTvs9dKRXTlQ0yXGxF/sxly36W083Ozyqz//xXdBbXHBf/prjH2lvmMNu5dp8yumBKZSH13cFPMF2zd/4qb28msTb1NtnfUCRReO2mYdrnlX5guuWOjNwsZ6ZCd+Y9a0Px/jb2TC6gVAnss1nrD5YEPPfOEolmzU4XuJwLtY+WanEDmCmw5cfXzgbiw9OXL4Ub96Ch9K+jDyI05xyF8vZsa8nIiJOJDpIJ6u/OPbfMDmkw0u5kRf43SJPv5aW8UrNvHAoKvgqA8Gbr10Tcxw6ZknOSgvauN8uhYLP3zLKZzWDW509HVAoO2+waOXtZk3uvBh6u+ZBYvwexSYievijyM8+SXwxS0n9Oi3BvhiQ9966mBBbDjnmw17mObPGNyEnhzohwMvjvTg0eE3rsbDry4HbOIPF+bEwNs8zM8JNnTp8QErDPXkhnf88l0sx/row/iMIX0+yglMOng2n/yVZ9x9s/WZZ55Z9d045ONYF0PfaPefH+Irdlz4g63PM78DJ5zYmlM1fX1iUNNjEz6/cMqx549cs6PHphj0iV2bfzbW38w/WzbuM3psrP2ew/yZx8S4woaea7YOfbTFYY04zPvNb36z/kM8Byd40HOY6iCQPS7ibD2JcR6O4mus+SwGdfOOF5+eT55VMMSh7rkVV/mhW+7glNd81RYXfbjNTf7xocefw7IHH3zwzrP1TW9605oz9jAdGHn+OKiS6zA8f+F7DuGrTZcNWz48u/tMkVPj5k5O+KfH3mcZjvA9E9iKeT4f2dAv5+z1tX58jovHHMotPf75g228ZzFb3LX7rHa4Rx9P8eDVITQ/4lLgGhfLz372s3UvyCGfDgzdGzjBImLQxz9f8tfz3BplR8SGJ15ih1FO2RD5Cdc69A3w5hanOLomzZV+ooahuOYTJ1+WsDeInzXsOeA/g+RPnvplCFuxN69wy2cxiskc0hGrOPjCBzfxeWbBTNc4e4ft8ui5Ie/WHXt5J805n3g6iA6z+xdf+xzzAhcX+TTHcNjya66tDzGJ3TyZL3hslObevMh3f+YErtxXYBIxFqc2LIU+Hf/SwnPF89VzhW8Cv/XLr/vAZ6gcsoepP6lPPw5i7tBbTHw1V5ODdS1286+fbp/DsItD3LDxlhv5VLThyl0Y+mDiUS2X1om5g0mXmHtteYZnD6sWv3j9uSe58Qsy8ZY3tvjyYV7dO56PcKwb9jizERO/Cp6k5wTfdOOEV7m1NozxYRz+cb1Zz/LFDje600Yf/+YNhnxYl+bWmFziLj9Enz+Z9OSTT+6D9pWR/WNnYGdgZ2BnYGdgZ+DSDNhYePn43ve+tzZZNmRtymyAbJTaiNlw2aQoNhukzZ3rxtoQqenVhqWdvWsbGhsghR8bKNd0yazp0yEwFZKP1bj40bixaQcbZxxg0VPTIXHJr02fDZgNaPzp24TBINnHh172xl3DhdVGmG2bRToke1yMT46Nqbsutpet//1nHPhQtNsw/7vmy/mz8WycfnPAh2trwbqgA6vNcLGziY+avk0wPfY405V79sUwuVgL8Onlf+qxIzbp8l877PxPTH3y2AupFwNcs/GyY3PO73Hd0ytumHT4lavixtk1mTnADZ4+1+JxCODApzw03rqAiw++9HG3wWdHvKQqcmiMjrU5c0xPbOWt6ziyKw45cU1HzX/rgF4YMAlfXn7E5OWvewAPfWrciGulPMESFwxzgLP45Vc5ziU7NsbwxAse4YO9MX5J/rRxj7+20hqwJsVQzrNX42A+zYF8sMEjX/x4SdRHNxt84BKc9XtxUzeXajGocSPG8Yalj8/8GjcGu3lQz9imTnnXlw6e/MEMg69Z4oB/nPWJGU7zwIaOF1Y1f/i1hvV5RrLli/6MDQ+S79W4aNNrLvksbjrxahwfc2QelGKT2zk39JV4ZF8OYYuhOOLHX/mj47p4tJPyWf6OcbFrrnEOkz/PG99svVcH7Q6CHnvssXXgITeeF3y4Ll78zJX5cx03OumJXe4bK3dixL/1SQ+WuBwe8geDTvlwTbSVKcbcYw4L8etehOVeL5cODD0rrKvWiHnEw/PHIVVzXpx+kepwznOmw2Yxe1axKybPVfba/OAgHrHjy4+5Uou1dWGcwKJPl296Sgd/1qNY8GMD3yGdmi2RBzryVxww6fSshantmZWN2B955JE7nxUOOcWHRzriwlnsMMhc73SNw6aLN150m1/99PDHS9t4eI0v8NMPevQ7NONbW47Yi1XMcuMzXLFujBF65llhp79cGeMPBns+/JkZf2KIH+MdPhvvoJc/WAre1oT8mX/41iFMuRE3PXMhH/rFxK91aE6M81UMrXtrBBeHjXyzNa8dpMJw7VA6DH34Ka5hKKS45UKfeHGkCxuWOOhZG74JfPv0rWt/lkWcxn1rXyyw2bjGm39YYqPX3PMlRljuI+LQ3J4DhkNrh/v8xQs3efS8gd/c8aOPL4K3vMF3v9HTh7+CXxzZ8EefnhpXh7V0SGPGK+LGBy7BAWf41nlizuQOP7ZidPgvx/x2/6lhmdcXX3xxFXMrXnPreSV/8PgWF9EfB3X5hm8dqfGXr/JGR9EPi2/ciGtr3HNw9tOXD2sYH/rsxQBD27W5JnjyKZdiUNdmp/TMDNvaUOjKp+eMtmtiPm+f1p38sG1d4cVG4RdHsbIzH/Dpsifiss48u80hHfl0TxJ4OMtn8cljz5jyTcd4uWOrzV8x4+Ran5jNqXxp04331BeDMTz1+xvtX/rSl9a/JMuH+qqyv9F+1UxtvZ2BnYGdgZ2BnYH7OAM2F7du3Tr77ne/uzaBbfJscFy38bDxUdqk2GyQdGx02pi06SktbWja8Ni0tKlxbbNjY8TO5gvm3CjBoZ+Pie+6sa61FZJP3LKDLRZ9/Kkbz24Zn37YWNng2ozTDc9Gvc2Xmj1b40k8xCcmG0MYeNCna4xMO2MwcSymMNVww6BL4MQtm/D5FLO5UyszTtc2ssUBK7ywYeijq4ZB+FIILgod+l7IrKN06biesepLbMLjEfd01V3LvQ3/1OEzLvGBWy7Fhncv5XTkt0N7ejb4c93jKg5zx5Z+L0b0YXQ/8EWH4FKe9OFpHXkp6yVMP2xjfGqL3QEAruXMC4o+eB0i0eU/XNjltTyo9anpKkQNvzhaY2r5bw2IDT79sLyQWMMEr17S6Cl4yVW28VQbN2derDpwkm+FTRIOn4ocsVNcE3Xz5Bo+nK5nvGGLTcxyZV2qJ+84yoP1VZ7izB8xR+Y8W7U885/oqw2ndcLOtbj4Y9e86e8lNB3cxaSdFBuMfItFMQaXiGPGwDcxDrNcafNTXrTrC4MvPM29+ZOLMNi51ufFGBb7+OEeZ9c4G1d3DWPaweOPuF+7Z7VhiKX1K2fwtRXj8W3O+Cne+OCgj18FBsGFjnI3gYsnnKPkp7oc0MfzXh+0P/roo2d//etf1/p0IOVZ4/7kVz7E5ZCngww5VKxvaxpPc+vekBtSfDjDsB7oljft8/Pz9e1m/YSuAq81oF+74hnjmeZbkcS9wsZB6cRx8OKZpzZH5hM/vD23YTj0EaM+zyRrpcMs33B3AOQQrecaf3j5VqZfevILFz6hZ7x1gZtxax9/fki1XPBPDzd8yiksc23cmFjU5VD+zJPDV/E0V+4jz0ix4MF3h3jmho+3v/3tK36c5NFcuzbOL36uYZj75lIsuPIF2zWRy56xdMRVvLBhwsN/rhM68S535kvOfV7gIZ9iFiMe+PcNVzb6CD0Fpr5ZzBNOcuaeF5cviJhjucFNHqwhOg6LccVNu9zAsE484/XhAo+9fPAvXlxxZs9GLOJmo81GzlqvxnBR6LK3vhQ+xKLPvwRwzR+Jn2vzrBg3F4QvcyRe1/yXS3hiE78D/tunA0+HwvRw861buvAcxDokZwNDPs2N9Ydf88u/w3qFnb9PDpvcOP2Nb/r9QlV++W494RJ3enw2//JK6PKBIxE/3/Kpbt3KDxt5aE34Nn2fzfxY1zio4Zk/NR5sYDpo59P+nQ1cOcFNjuhbq35ZKcdE3V5Hrhwg+w9R/QkZzxb25tEvMuSUH/eMvIjBnxXBgagVHN0XsJpL/daaZwTMcoSnHJkj1z232fKDU7mSH+veL9vospEHXKzJeS/zZe3jGy/2ci4PdN03PiP4sC7K07ThuzWEpzUiP70jwYbb3PI715l+PM0dnnEWp7nQj5O11bOL/2KWV3NqnP0UOazIB19scWCvXWFXzDjgTYzzL0ZFWy2v4nXtXxT5028f/ehHlw1f15F90H6dbG3dnYGdgZ2BnYGdgfs0AzYlzz///Nl3vvOdtWmxmbCJUWw+CJ02ZjYgZG4+jNfvug0KvTYg+hObSmLTC1edLxs+JbtssofNRlvhlz3BSV/cYBhTs6Mbjk2Xa76I8ezTUcuDDasXX7nBE6bN8dyYsc8uPH0KfTg2dezppXuMky2e5Ts9/YS+vpkD7XLmujiKP87GlHCq9bWRZZsd3pX6+NE3JZ/lXZtPMdsoh6EPjhKPOKjFZF5wkTd6bAh9RZ8XABt5ErZ+/uPQGBuYCh2beDbw9ZlHm3B25hffNvf0+NfPFr/0W0vwjz7pTtE2914SHTC0JsqHPNHBpxchbUXbSwo/Dmp6YSwXcW7++cXHuD7XtY3hLXe93MW99YYDfuyJfoI/3/LHBq9e0tKVL7FM4U8cYoXtRcWLZmtDrqcNDLxh8sPW/FgTxQiLXfdjc1Q+m5v4iIc9vuzEEhb85tm1eOnx7znlYKIXVnG1Nl2zq4SnH462seKAGy990y8bscIu33SKzxgsNuGJKQz5owufHpFrok/+4Lbu6MaPvra8dG/UR59vIrfyptDVVpoH/eYVBmzCFgbBu2u84x5uNvRcK/S9TFszYRS/mMyTnPFjPWvDFTPBhYgHnpp9eRJ3uaAXL9f0Lqv10auGKYb61sDpB+4V/MoFXVw7aPfNuKNtGHer4+iQqIN22J4x1m2HN3hYI3LpsMaczTzSkxPz15hxBTcxEjrWlRjkU/v8/Hz98lA/vUrc2StxVVuLnoUOqbTZqD3ncMGXjUMUh1MOYMxTzwzj5hoGv2xx8blg4J8ryQAAQABJREFUzq0Xug4IHXx6bso/aa7kiH++wzbGP93WYGOtpXCKCxfx0HMPWJc9r2B1iMleLHRwxg9nz1G/fKUHi5gHMXvu4NS9lU/4b3nLW5YtGxjmvTnARyH88gVHwRMO38WmLffuJX3WgD4Y+sThWq7g4SXHdIj849Hc2Ss58FXjZAwOjrjg73DQIZ5xOEo49LXjPK/pKzj4Dz79vW/5ouOQHSau1jmu4qQPu7Xp3ijfONMx32Knp8/awtN8y4e541ObHsxyJgfGrDWHjuaOD2tMnHzxrc8BbXGx4xtffuVUET//pDmDj6Ox1n5ry33tgLT/tJMebh20a8PjX0x8weVbf2uHP2sNliKn8msu+fUnWOiLzzzKC/14iYMeH9ak+0ueCB3+5E4sahxwocNGoVPM5YwOcZgMt/nkW77U8PBRYBBrzkE7HM8SNR54OmS3VrT7xvr/sndvrZYdVRvH1/cQtQNqEo0HlAh6K5Ko8ZRoUCIEExAVNSRpIyreCN7qhV+o0x7AC0Vi4iENGr0Rv8W7fsX+N4NJK3vnzc2GGlC7ZlWN8YxnjKo5V83aq3fjRaxbMcIVj0N3eZBfOtaHX6CYy9YbHuz47qBd/vjCA5Y1aQ9FV4ywxWI+zYE4W+vNt7ZrdtagOMPkCxccrLVs6VgTfIpP3Gzklx98rGMFBh7lHEd+cLG+rCMFT/r6q+GKxXNWfuQMDl229GDzzS//rvXhhR97fGtbd+Llx7gx1zjDZStO/T2L8CDFT0fBhW3+1XGCRZ9/8+vaOKEjL/pIMfNj3Rv3n5l/5zvfWf8RNZ10XV9G9kH7ZbK0dXYGdgZ2BnYGdgaueQZsIm7fvn26efPm2nDYTNikkGqbCHo2HzYj2orxNjnpsqOrkDYg9altuLJVh2fMRsYmimRDx+ZGm9SuT1tJv3r6pquNr3EbLfGEGQd1eGptG7Y2rPjZAKqLHV96CV+wlTiGk395dA2bGMdl+tbOPmx6FX3p1FedvvF46LNh1eeFJF3tNrHTzri4q9ngrH0UvPkRl5pOeVMrbMM72muHMfnCwQ9vLxXaxhX9cclv88xPhwzNBx0+2OULZrHHj2089TW/9LwU8c0+zvmefNbgxQ8crRnr3osiPaIfjlofnviEr+3Flg3xQuBlJu5y2uGma4KvQugVKyzSi1kv18VhLN1qY+zkwotbL4n4ecnETez5Ztd8dF0blmu57N7xkgNXnaSjnY2889M8iA9Ga4qNvnzxrY03PQJD7DCUcsQmO31sm4NsrHu+8DGukGyr4ZaL8OnRZ6vMttyGp5bX5l67dcgGbtjaEy//+tjjreCghGmcbjzh1Raj+0Vbv+v0+JsSrnH5xbMXVtfG1bBc56drtfiI6/JbH32ltcePscbV1oMYxcaPQyTrUYzs4IoBjmt8SOPF3TrSPko+4SnlD57Cho5++HxNjtnnU5s/zxAH7L4R5z9FvZfvI5d7tfPloP0LX/jC6bXXXlt58A1p+YGLpxwReXbgJJ/6zRmM1ocY2HVf629MXc7Zya2cONzsIFFbDuDnAwdFfznCxfPHYVd5he3AyL1nXuWIwPHsLOflmD7unkl0XBvrc0LO9ePaM5J/+WejTuLGB7/8E/q4w1bH3zVcdQdK9LXx4huGPDpspDN9hKcvG3kgzQt882WcPnHNRttBn1j1EeufH/7F0KFW6zufeLUH4AteUls9+dMXk37z7iAMv2xhtz7EwSc9NTtjeHY/4mj+zXX5yrccu66dj+IUGxtr4s6dO3e/AIGDz8nWrnUOiy7+eGnjzrdctUaKSc1PseOXXb/86JAZJl902ciHA0ffyPWZhqf1bV7ELx765o0u/vmCgYv5Jrg5OBVTxZh8artPFNjigydeHK15WLj37X455Csd13TVOMHBAXY54YtkY8xnPj3feG4u5UcurDc1PfHOGPgXP13XbMuBOYFpTlqzMMRrrvBR2MqpQ1/zzJccthZhOuh2UMyX2OTALxvo59vcyBF+YqfreWDecMKvQ3bXuMiFsWLGt7zxQccYHPH4xRl/OKgVGHzLp2tj5UW+xAZHn9hhwRS7fvrZ8M+vEj494+Ih1oUxtsbwFXM+5AC+/OFMt5yKlXSPwiX02KmJfrHIl7j4xl8scoCDWMyLYr6MT574xFE/HTb0Jn+Y2ny0xuVNEQdObPplBF14+uDjQle/IlZ5gUevPIuLHhtc4DbORu7dL+9+97tPTz311OnRRx9lsnTWxSV/7IP2SyZqq+0M7AzsDOwM7Axc5wzYUNy6dWu99Nvc2YTYTNh4KKTNm7ZNyGzP2Nu0qBXYCjubFdjs4evXpxA1GxsjNZn2MLQJnDaS2o2lr881PSX/019c4DTO97TVXxseexsvG0GbveJs86k9fbCNWz6ME36Ld3Wcf8Q/zmyyT6cxXGEZb2NIJ//qciDfdIjNojEbbDWZPurTHz+1GG08Gy8f2erHrbxqZx9XffS1Z65hkeKvrg+mlwSbbRjFA1+b/txI68PX5l+c7NmInZ5xgou+Y/5w62WCXnGwxUFd3MaLWR+J12pc/OCztU9fmx7uroshPsxc29SLnfRyyg8sHL0wmxdYxIuPfu3mnD8vsUTtBVwcjdPNHjY+6uKUS374t/aNOUDqRX/O5XJy8QOOMbGxwatY9eEN1wso3Hi4Ti88bYWo4dKffemojfGHu3ZrYOqEjYtSDsTdnKr1F0Oxiie7MPlqPCx6055PdnCVcOJSn3ZxhB8HNpXJwTXuzeu0g2dcH46zmAf3Sfe3vJlra6l4+IPbmtCfHX32HTTkVz7KSX1yUT6KsXXBB2nearMl+CfFr4ZnXXev4KkPvxlnODDiYTz/M5d0teHPOUlHTcc4f65hJvGjl7jmz/3sW4/f/va31zfbJ690L1OH7T9BfOKJJ06vvPLKOlTyzU9j5k/+48+PNp5q955rXOmLozya59aS/jBcuz9hs/FcNVYu4PacOuZVTPoUOA5yCD+eRw6D4Gl3yEMPdrHSb+7wsObUhE6HrT3v2Yuv56I14VDNYaE1O8eKAX65M44PPPh0jHdg1mHXzCGfxWSuPcfjLFcdzlkL8PTN+Pgux8bKiRj5gdchqnzTn/F2CIdDfsuPPPdZkH+YDqv41KdNx3w4LMaNH1zNbZ85MIlxPMtBPosNlpzAN/d0xUBcEzHg0D1bnltD+hWcigsevXLHj3VjnC4e5Q83MTiIlSu67Pj0+eMgUGzEmHmTR3Z8sHWgaO3gaiwubPR1kAqzGPkobofj/twIX9YefvKAT3nQhkuXb/MhFvpwCG4+fx06yytudHAgzYc44q/Pt479MkBO4fHrl3IORa0LunJHFzdx0xOPPof/bBxm4tL6wQHvbOnCs0YJvSQ+7MNgx15OwxATv7gS+WErbv9KgL6xcMydZ4F/vcIWd1w9C/tlF17m3zzxM9eANS1/MF3DKAd8aM84YMFQxM+OPZ1iwEGh2/rg27V++OzU4qMHC++wxK5fSejkWx+MYqYHC0Zrio7PRjmzTno+i6s1L/d0+NXH1hyqy0f6MPInDjEr4lD4tjZxhOdZaW7CwdFcwq5oK3DFQ3BqHHdiHA+6+vjSxoPw0brBpX76BB6bsHGRz+JQN3/i1K6w49P96V+kOWh/5JFHFi6dq8g+aL9KtrbuzsDOwM7AzsDOwDXNgI3GrfNB+3PPPbc20DYdbdCF1Caj8GxUbGDaoNRPz2bLJqlic9NGyXibHDV7OGyMdQ3PWCX82jDbaMKZ+nBq58umiQ18hU5YUycO7Okr6dWnjmebs2Jts6ltc6m4nv7gkXCNKVOM4QVfSTedNpflDc9iTDdcbRg2iGoCm63NtJp9fWHSEyf+9bm2oT1KuaJP+NSHA1uFaBvDn26b4+yNJXTDM467AxQvmPptksMJl544FCL/Xoy92OjLhh4MhU+5MZ5/ddzhaCvioOflg+9s8q+txL24w2ATNr1yky9juMBvrnrhV6cXb3HA8CLs5UM/nV6CtOnosz68HPABy4tnLxoTN6762NJhA7+XjvyUB9j0k67VSnzDgctGDqwp/M2TFyRzRt+L0swfPYXtUaY/NuyJfja4u+afvdzyndSvTlzPwo6NPnhEG5a+4uQ/PvSMFWfX6mOBp6+66+KF67oXPX61J05+i617NaxqPuQIpoKnF2Gll279ruWvfMLNv/kzZs7MnWvz6PDSdb5wKP/xq17Bnn9oK2z4ULNTXIeV/qwbYy8fDtk6DBJD66l4cVO0FfZs9YWBA9vGtZsHfa7l3/0cb/loPuKnnS08pbYDDX/S4JlnnlnfjIPzZqT4HbT7W7EO2t3nDs5w7VlAL99qY+bFuGuCg3u6g+H0xTrXOV02cS6fcYHpmWs9yD+RH88SOPKQX21YciknPfv41mc+Pa/Ywy/HfFqf/HhWdK+xd0ApB+zF4ho2e5zpOyx16OjAEyY+uBq37nB3P7g2jntccKbH1vonccPbPaLQK4d0xM0HXp6/hJ3YlHTLEd/0jclBz2LXDr99u9gYHbrwmxNYYfLRfIlFjmDQneteLHJKlz0deZND+ZETQk+Rc3gKHwrMfNE1Jh5zAEfbOF39/BN9MM1nHOqPo8Ndh6RyJ784OsiFK1a+5VbRzi5fanH42+OuYajlzjPMvxYToz5zLXZYOMPWj6M/DyPn5qPDRGPFbh74FpMCE3c2nk3ue21YxnFV5IM/8SjmiW/rlf7xF0rWebnIJ79zHbDHTY2v/6/As4IeXPz9i5r7zn973f6KHi7lHj9zgisczxXrQhuG3CmujZsT4pq/fkkDR34UeYcRV2NiV7pv8BCHnCnswjbneMDXT0+xblojsMPFQZ6sQT4cxNMzLt9w4RB91rXc8KutwNbHj9iMyQE7PMRTjuHRN6b0bLL2rDPPlbCN40onbHNvnViDcTNWvvDEgT91nGESNopxY2wVPPXFQTxxlBcxWFPmU2z6cOFDvugrxhTxwOer+7G4+LGO2BL+u7dds2nNF0c1/+m4B+gZw0cO+DjGygdfcNXxFJ+24hpfWM0ZTKLPHPBN8kmfbXmkx4dnw0MPPbQ+v/3JNgL/KrIP2q+Sra27M7AzsDOwM7AzcE0zYCPx8ssvn55//vm1obLJsOlqEyasNirzus1PYdNv02jT4jqduaFxbbNC2LTJtLlqg2WcbTr02iSxV9qUG0uPvTZb4zZUbQLzpc5/etOfPvEq9xL2xtpczw0wjjagbczbeIYTNz5wnZLPdMxDG7645Fdc9KauMXEoruf4zJX+5klNVz5x1RYDwU+f+cFXv+ujsG8cdkIfhmKcGG9tHdfI1MluxuSl0MsSOxjlP1z+igWWTbOXCi8F2jbt8iDGaSPH5Uw/DFIeig93eZJ7JRvjFX7Krxhc66OLLz24+tW4KHSN4ecFq3nnR7v5XsQuftBnZ701b9q9qMBX6HmhlDvXsLx8zpfMOIEuBjVdNvBbB9oVcdHTnjLxZj8cOSzn+HopcmhlruLu/rH25Cn/dOMG07VCipWOglfzAGcK3zg0f+Fok7CmzdTvHtCnZMNf4jq/8ONOP87ZlSv9uNWvXV7ZG7OGW8cTJ7/V9DsYC4N+mMb5NR94OmTyMs0Gd2PW1RT5wcEaVbNzb5k7OTFnDtphk3KgjcPMz8RtDDf50eZb0ceuMu2O1zhbr/6TS2tbG8dsxWp94eqawCfa/IpRnzY7fenAU7TlYD5/8JYTY8UDq/UBTx7oKA61bty4sb4R5+CNrzcjfBEHaA7aX3311XUI4GCJv+4nOsXCPzGuEP5dd8iHe5xcKyQbWPmWT/3abNzPDlUU/ok1C1ve6Fpn5iYM82a8Z5J+PNnJs3598osLDOvOutU2L2p59WzLl1rbARIfpHXqm73sYeLTeremux/o8svW81PBh9DxzBI//wSH+Jp7PM19hR9YDsmJfOCoT7xsxMoOH/nT132PixjZW+fsYfMv7wpb80C3oq3gxxc7bXaKa3Gz15YTcfjsUZtLsdLrF3Ku6VXEU7wwCP98+uxuXuLETu7gsOszIA76Z/HLEYfcDlnxV/xZENiuiVr+5BKHcoEDv/LvP22ES1ef/Ind80+ceJkTeZardGDi5u90W7vG8h2+mj0b/unD9TfA2fizMf7khD5ri2QDX76tMfMNQ8FJ7A6IYcCHK58OnYudP+PGxMSW0A/bc8KfmTJO14Huww8/vL6d6x4h8OTNuDw54Dc38Hw7XG74oGON4ievzTkMuvIjFr7hNBfWk4NKwsaYHCjWOn2c6c9nS3nFE284/LCHg4s1KrdhG28u+YTtM4qOHGjzqfBPn1/xlUd+4XZATsfcwaDbnMEwJ9affOGkiIENPDb9Ao+tfjzo4M+X+G6cPxs8w2HBoMunIl52pLzCoEPKkzHPD6VY9fXcNL84d7+o+aSPI7G+5cXaKyfuFeP48gnDXKv18YEzn67l2JoqTmP5VU+hD0M+xGHu2Lom+vFWw1HY0Gn+zDMMc0bKB6706eFr/fAfXzZiJ/qVMNnlkz5e/jPUb33rW6fHH3982ei/iuyD9qtka+vuDOwM7AzsDOwMXNMM2LTNg3YbDJuuNnPVhadt46Gmq1ZsNNoEzU1NGxbj6drAEH10028j1AYnn/Syh1exiYqLuqLfBk8cbcJg2ezRYU/Sw6t2vo0p2ur8pwdfPzz8w7Bha9M2N2fZlQN2MNX6ulYTfnFvo6kfnk2iwi69OKvFFt+wYeALY+YbHt/0XSvG6bUxTqe+5fTiB7viMT6l+PQXH2xctI3HLxz29PWXU/HgbtPvxc0aM69ykF1Y+YKDtxcTLwj8tbFmz46way3RIcc49BlT8IDDt1w3Bm9yKcdhNy8wiq063bDo8qN44Z4H7bj9N37wxOxlQYy96MCVLwcHOLqWS/W9YtbHB10ctFsLrou1Ot7VdMSEz1HgFh97OubHy5/ivtFn3sQBJz3XpPjhxJWNfjr5UOOtJPTnnMx44BF2lcblAY8w9dOvT39ijMz84xcWG4KrEj+8zLVxfeo5joO1R2c+E/KdX9j8yZ+aHMf0K+F3kObAhOg3L9nrg1HMuFlr9L3Qpt8BA05s6bjOv+tKffnTlgPCTkknvsbYH4WeIj8OIa1tOXQfFAM77e4NMSiELnttNZvZpsNevxzgaQ7U2oq2Osk+v3JE37PD/feOd7zj9JWvfOV03/nbpPeKKZz/VfNBfEv1ySefPP3pT39ahwDwj/HTo4+jms9qcdG3tuSQjj465cm1GMoNPH1KuvCsO4cx7mFzSMyHZ5k1DMN9zl/5Li/04qfu+aefbW3+HPZYt32e0HfIovR8Fk+H7/oI3w4PfTva+sUBX+vCdfeCdd09VN5wwJUeW/eIOIoFF/lT0xHrLHzg4aAQJr1y3lriAx6e8OGUPzbiY++QlS5hC7tnZvNSTSccNq5J3OecFCueCt9y0uGbXOEFm9An2nBaC6vz/IMvMfrsVpunijHXbDqEFDeBNfn7xcgbb7xx98+GiLlvNsdB7hWcyztsAsuadGgtLodl7HCQN/GJTR+uDh3xNd78snfQTp9/vtR0+LHeZw7EAlMxBtN/KCqfxWkNwGjt4KVtPuNcbvjAz9qzruHNtcaHucGh2OTXnOOKu19WiIeug2H/V0T/yak88U2KQ77cK2KUb/xww0Ue5KT1QIeo5a41Cos/Nq1leuLTR/DFdeaTHZ366fBvfsyhfr704yQvcguTXfi4NJc+o8w17HLDZ/dFcZkfnI2xMYeEP75qyytsHFoPxvjWl41ceaYYa27zaT7kkIhPnmEah2NMgaGNA+7wcdRvHGdx6ReHsebKOiH8yxO91lw51DYuP/x41sAy/3wo8NTsCduwcSj3xmGIwVyRxsq7seJYChc69Pjl33rhA1ax8i9n+gh8OnzCxN8zHoZC0uUPJs6u2Zk31+mwaYwtPnHng737xr9I299ol6EtOwM7AzsDOwM7AzsD98yATYWD9hdeeGF9S0vb5rKNhnYbEPVs26RUjLUBo0PCoGO8DYv+cMKOHF1jYdRfbTx++trwwamw5cOmi24c6RuLjzY9wtbY1GcfRuP5V8fRWGIDWBEvaZM2fbEvH3RsItmla5zvNoHitEG2QbTRo1uc4eLORj99xRgbY/HUz15N6PMfh/ir9RlX2JeH+qrhhK8vyW7GdbQ52k0/5cDhkZcPnMUy46EP35hSXr0UlKc27Pryzy4s+c6v+ihsYDjs6SUvPbbyXKz102s+cEriN7nGvXzz5UXDi5drmOnD0cbd+uhFR2xefJXipGfcSzWeOHlR1VfM8Zp1OVLjK4/FJVa+2Rsn1XTopzvHXLNhS5+OZ4YXWYcJvahZ5/rh8CXu6Z/t9Jcv+vlwHQ/j9OPdXOHiWq0cJZs5hzD101fDzr92NnEx1ry5ZqcWjzky38Qcmxe5oU/kwDgbHFp/8YGjxMd14rr4jcNR+NU/Cx5yr9Cl44Wbfhhw86c2Rp8evtrW3ZwnfSR+sMqFPkUfPZjNQX6W8cWPeBhjR2YtJ54P1nk5dPDAjh5s18WvrcDTR0cJP5sL93er7NStp+YmvJT5U5pHvNx/OHbQ7lu5fL4ZwZE4aP/yl7+8vtEuB4qc8ttamvjFij9+zYn1peBJykVxpRuWNp2ZC7m0Lvg3TuAp/NGnU3+xw+CbTnF5tnneqntu+RwgMPCGS59dz0LXhE0Hc8boWevWbIdS9Lpm56BOEQP+ilg6UHRNT395U+OPizr+xVbbOhGP53r6nsN4wtRHh13z51p/43QdssLIn7zRiw9u8qO45p+udQGLnj7ro9jlgQ58nBRc6Du4kpNs5DApRvXxmm8Cd8apDbt5ZedfCPCBD2Fb0fatWgfFDpdxZANHLR4iJwpc+VPkAGbrxTz61rB7kMBgr18RLwy/zPA8llu2/Fg3vp0OV7vcquUS/z67YOqjhw8duA5R9ZdDc8KHfCjmmT++io2/5gxnPK1rMbAlbGAq8TJf4in/DkwdQMKCKY/4lFM4dBW29PyCw7fA8XLvWb94ERj5y48xtuLyS0/9cTOWnlrRZ1wh+pLG1eWntYmPPlxdw8FHbsu7PFhX9OLtvrYeyhH7sPGGYwwWTsYdkLPhO350+M2/XFVgkHir4Zk3Nb1yZA6I+YYJrz529PhnR7T1NxYuHcV80OHDtXF8yhsMfthbO3zRlzPr131mP2acDVu8m5/pPx50+GLPr35xEPquFf2zj++eyzjBoSevdN0v8TNuDnAxh/jQp2du2YlVsc4VYnzOk7ZSHHLgF0J8iZfALX/xql+cfPmXKV/96ldPn/zkJ+/arItL/tjfaL9korbazsDOwM7AzsDOwHXOgA3H7du3Ty+++OLaYNlktDlqQ6JPsek4ik0MfeM2IaRNVZsZNVubIBukbOjmqz7txHXtOKhtjOkTeG2G0q+OvzZ9m7Y2j7i24YUTftj0xaGtNg5H2+bMOHyizl67a/qNtQE1RsKMey8ItdnRsRHlS+5sgPWJQTsd42Hixgc8OnSV/FXbsPKV2MTKiXzOUo74EDts1wq9pJi18VLET2CQ2l3TwcE4+/JVbZxPL5RtutNT5981HPxbY/oq8PBVs9FPwm8s/TV4+GFMHr3gWkds9DWv2vBIuF425ZtOXHFQ6msOtM2ZlwjX7DpQMaf0xGaMfXwcBvCjj70XNsU1DH7l0H8ghiOsXirwLGb1/xL+K+zkorwVk/HiDIvOFLYKG7U584LoBa9vWnlhEysdMbgWD475jAvs/BfL9Nc1X7Dkgj57190b6c08xJEdYUNgFdfRp376xWgc/543+uHo64URJi7mW82GTuuZDZ7mToFfDGxn/Oy06ZP4ya17Ph70jNEl1pVnAF/m0JxMfvT1K66bE5hs69PvGo5+PlzLSxit4fxOXPriS7/Y6BYLvHKgn3hOeuGWP+N8WTNxCZMuTDoKwbk85GMNnH/UnjwaU8ell32x0BVjuZJXXOiaFwdW952/yf7000+/ZX+j3bfj//znP9/NAX/8iq0Y8HVNcJSreGrLkfWFo/wXs5qwFZNaXtkqbDyHWrv6ym+2C+DiB3v49Jt7fdr6CQxtz1qFD88t9whMfeacnVJuW2Nq9uYFN8/t1hRsMSpstcPosFTe5IPIZd+SNM4XLDU/RM3GuLzDbM2p+epAh6+wXYulfBUr7sZgVvgpJ5752ehzTbJx78ZDvviXv3jqc+/2zJVLufVZCxsm8byw7yhu+AT/ObdxMcZH85o/dTljaz7NDb9w8iHX2vTlUCHGHRJ3KAxfn9zECXcFrthgKQ7dxCEm68DhMj0y80VXHHTMVVj0+JPTvu0LT+7048CfQ12c+vzVZz7d63DF6t7nkx3hq2eHmM0Ze360zRs7OPIiH/yxMZ/yCAsf/I2zyweb5ga2GIzRJ+z5MCf0tBW5giV3YmrOjDX3zZF5xQ9O+aAnz+UXVvzpFBOfeOM1+YeJJwx82k+1Pujox8e1Yqzc4ef/YiD8wangQ/jPdnWcf8BLD17zLCZiXKxs+cBRcY+IwdywU2AT/hQ2Ct7mr+dSnJtLdbo+i/GR47gZh6fGjw6M5lW/9WfOcWTb8xO/5lg/seb8WaV//OMfa87Fx44Uq5qtXOIhPrz4ELv1jxO99qTx1MemfKTj2QwHb7nDBzd6clPOjXdfWCtwCUx68Pie9yFu8ozzxGLLFzHmF0Lu9XyVO1/+cK/JAyzX7MyLP/nml9uf+MQnFo7xq8g+aL9KtrbuzsDOwM7AzsDOwDXNgE3Or371q9NLL720Nks2DEoboto2GzYyyhT2CR12Nj82I6RxmxQbMhsVGzXjxmyE2lCyzY5t1zjY/MBnA58d/Tmm33h4MIwT+l4kbazEYFOKS/zU+c9vG6wFcPGjDWKbzbDVcOMIS4GLg37j2ngSfrQbE6PSGD0YpI2mNg5sCB1tIkabRX5sRuXbuD46eIhf7eVJHb95sBZfPtJpo06fH2Vu7LPBo/wf+4qFjjE81RV2dGCrcefXC5uNe/bs5Mmair+2+dRnHPcKHZIuf67huU70NSfZNEavXLNLL6xiNobzPKyIjzEYsPGtPyx8zXNrwLyZL7W4ii0MdjDlK0xzTi9eMM29Awo6sLxU6GNLj05cinfW+cGLLsGBX7VxODAU14Q/4/wQtvoUwg5Xa9ELvRcpbS9sfM249JNs+VC04auLI51lcP5Bjy94akLHPWye1OHxK4e1xTOFvdwd8zd1YPNVfnG3NmGxx9M888Nf/KybckVvxsGfuSsnxpTwmpfw6Mk94av7Gwe69BQYfLqeh2le3pXyjiNbetkXg3Z94kxHH37wFfaVGR99dgo/eCvFX5xicW3MnJUrfeUbPgxS7ZrOMYdwih0fwt6zs7hxU8KdmK6N0XVgAP9olw4913Csufvvv/908+bN9Z+qTcxF4pI/xEQcjnz9618/vf766wsbD3PnfhJL81PNn3jFj49C2DmQcBjoWm7SU7Mz50r5sIbZ+JvhrU121nIYxadm1zxbz/oq4ikmffiqibq50JZvB0fig8kOx8mPfzqefb7FrE2v5/P0n1/3idzxJQ429Ok6xDFGt/XKN7/6/Ueb/ga2Xxoat0YV9p7jvgVpD+I+g8GWn9YuX57Nvk2NMxvryTwqhI5+a8j8yRGdOSd0+VDLG1902WnT1WfuxMTeHPqcNY848gPbuG80eya3HvjGU9z65Ia+NhuxNw/is08wT3zSx8W1MXzkAVc5ZEv0KfDg0lXkRk5x9rnBLz5qOevAzBju/JoXtfj9nXR1fOmJzyG+fBDzJR9we87gbZ7Y4c4//HiKtxjEUd7YPPjgg8sWngN88YibwKNDcJQrOPDo4CGucisH/Le22NLlLz5ypk9sMLrP5RZv9nwZa33iYR67r+TAOH14MIzzx17Bxbg+PI3LYbnXJuyJHJYv88QXP3BwF7d1G2f67dP5YJMfOnAV1/LTuoIB0xgu+s25WimX7AhOrTs+Sbp0xCifSv70s1HEbAx/WJ6ffOj3PClmtvLdnLuWI1g9V/jGXT8uzbU8sdPXOmEDm76ajnF+FM8hxZh72tr3d/bxg1/OjOPulxI+S/oXDDDosYNt/ZozPsSLB1sxOpQufnFZs7ibV+Ni1GYrDvMIS23MnPFrTO7p8unaOJx+kcUvCa97nl65tV7Ex4cvmbjvev61zlq7/IjDXMLUb934FzRyzB8bHOjIiT8d841vfOP0+c9/fnHh+yqyD9qvkq2tuzOwM7AzsDOwM3BNM2Bj8etf//r0gx/8YG1qbRj0JW0gbEQqNjBEu/H02+hoz7E2ZjafNmw2XKQNpTbc6btrOG2c2dhEKTZhxMaIThu0iWOzSPBqow7LRsoGKh9s2pzRh1e8rump6dgciiH/sI3zxca1eIoxPOON6XMd13zhRvTDh8FO3mz69PFH8DHephk31/RtCsUHp809H3gTm1Z6xvXLB3y5xAu2QrRtUjuA4YewwQvO1J32+ouxeNkWrz4FBhFPa0is/Nro402PyBGeMOKpzxpT9MOrZjf5uc5v9nDrwyHO2RnXV+x005nXcbZGGoeBS/b0tXE2pp9P/fqM1S8XyrGfDaHHjhQz+0SfFwkvGnStj15MYOhT2NBVSDHpp4dDOTeGr1y0RsPAM6FHh27jxartGqYXMS+EXra0++ftfJJipw+TbTzDo1cM+qZOvnBpDI45chBnjRGY1o97x3UY4RY3XvLYWqAbnwV0/lHc2mKCKw4YdPV5aYPNj365jJ+c8aOPjuva+aBDH155D88YW9j8dNjVuDobGK7NAx5set7EWV82/LkWEz1jjfcMKW7Y5SKeamKMv7DKEe7HuRJLNsY80+orDzjAgA83fdf65M+9MJ+X5ZfujAGOtvjNlQJDX5I/OXCQAVcshF1c2OlX67Pe3ve+951+9KMfrf9UbWKGfZm6GN84/+3qZ599dh20w5Yb8+B+wo3vWfiT+9ZH/PAXh0MS18bTU7OTB5hq4jPGPeRP4DQP8ozHcb1m79DCNZ7/S8ph3DvwYOsARdEnp8S6sNbxExP+uHn2KeZeHD5L3PtihEX0K30O8ikeHHtOiBk+PbmVYxy13TtvnOfB38l3sIsDP+zDeOCBB9ZnqEMpwgd7eYKhxtNht29Z4s6nexc+wRkfRbww+JIH3MQtv/Rx1LZO5AIP8fKpr1zBMF8O2t/+9revzwdc9HsW/uc//1kHafKhX97xxLl7UX/3GS7x4QsPOIQNHLr6xEeng6zmEm/9OLAh7DpoN2au5NiaFZt1a4+CkzH4cmNe8JEzB43G5QGuw73+PAodIpbuI9f8yjtfYscdb/r44arwp09tbfz7/PfN+XCvw2BrXsuTWr+5IXJgXyZfcI2LTa61xcwPG2sZR7zMI1ulnOnzy2s8xQtLbrVxiru8wVJc+4UUn9qEHX1FX1jhwZQjuTUOV077LFkgFz/wFgcRk7liIyZ21rn4STnRzod9i3uCDf+wyos2fDzLA1zz0HzScd38WwN05Ey+tGEQOnHgwzoyr+W3+cfbGPvuNwe7fPHtXmdDH0784eej+NkQPOQTF2PwtPHR1zqRL+P0SftzfYp17fDcuDFr358sa//HBiZeuNN1uGz/JY8wrHnPI2sNd2sYntj4Z+teE6c+Yh3xIT591qEcEP7MHxyc4MOD4c8yGecbrrWtjQcca4GenLOhx4c1C5Oo+YZPXHuueW7IIbvWmTmTT3mXUzmAaa7E45cO/CrWMx1zzcf73//+03e/+93Tl770peUH7lVkH7RfJVtbd2dgZ2BnYGdgZ+CaZsAm47e//e3pJz/5ydpM2NSQ48ZBvz6lDWAvRYVOx8bHZpZo2zCxsXmxsVFsxNrg2LSw0Z6Sr2pYcaBvA5YN7Hi1WQ1Lvz76Noo2jHBsmnEhdGyw2uSFkW/tNn984i9GfUQMcSnebKqNu1YI29rGZq7io1+sxmzwbPhwtAGd3PQpdBVibsTHB7765ck1mZt0nG0k4ZfLpXT+wQ+MNrDscafXxtM1oVdcOCv6Zm5c81eetNkUP325bV2I1SbZhpwe4Y89sYFni6f+irHJAe6U8jf7XBeDfE6h33zQSQ+nYtbX/Fhn+ovPywExTu+YA/NDd/LKz5FHOnNcX3kIm3995swLPh1+vODIK3vj1a57IcJFkU/j7ODSIY2Lh5/8N67NrvtEP3v6CmEHv5csLzr8e8mhyyec/NKHSeAZ01fe9Cn68kc3PVyy129NeSbIT3j49CJHV8EJB4I7XhXj8Omoib7i1sc2DO3Zx2824giPjjmCU0zGxWaMnmsCG+/EGF2S7w4EigMG3PzD8Ewg+jw72OjnJxxttvmkp03omEtj8sMeF3HEJ59qYwr7+IiDbmtEf/HgobSG9BNtevx77oWnNkYvf9q4hcGXcbYKPbwnjn4xGUvYwNdP10u8OPXBrF8dtjHxWXMO3/xy2wu7/jcjxe9AwJ+h6U/HePbg5DODP/g4uK4988g3np65Dtk6sJk5gkEHpvzAyU7sni8wCTscmvfmrfg7kKJDxNE8uK7EV97ZFpNY8HSIQqe5wj9+bPh1bzt0cQjrXiLqPl/gWg/68Laey5G2/sb4DbeDF334+ix0sHXnzp31S0Oc+GArD2J1iI2PAyN+i5uea3wdGsmlwyHrBBf3lGciG7mmY47wbk7sZ8Su7XPcvYwTG7hi8bxT80WKx7X8G4fNLz1Y5trBGzw64pBPPODQw98YYYML3z0bZj7xocsOXxwUnOe6kmdYbElrwLzLpzE+5BNffcbEAB9f/s2Dw0PXuDu0lDc8iLyKz3zyJSbxwFTTJfjyAZ/AE2ex6eNLf2vQLyjk/l3vepfhlTeHnWIRMw5wrRECDx/cxWcMD3E1t/jhJBZzgCNd+XNf4QMbDwecavjWizFt+YGHh/zBUFzTg13csOAT43KAFx7F230GA75ciqU1wZa+ePmkLyZ+cNOPDzvx09XPHg4OzS8f+umQcqmPjsIGZ3bdN8b1TT3XhH94FX1dq/kQK1zXcMQp3/pwr03/bW97G4jVHxfj7Nw78ii//Mtl8ZcfeuKs7dmlDVvu3Cfz/qYnVrjwcDTX1p8vMLDrudGXVujBki/6eFovnk2u2Sgwe3biYM7wE7vSdXMubnrdk3i4T2EVL5/y0FpjIya+mxO4rnEsP3Csc7kkxsNS80FfrAoM/Pkq77Dwds+bNxjsYMspe7l07RcP5l3hV2HD10MPPXT65je/eXr88ccXF7hXkX3QfpVsbd2dgZ2BnYGdgZ2Ba5oBm4zf//73p5///OdrE2FzYmNhs5G4tpGwKbEBpmMDpU6Ma9u02azQ1bYpCg+OAoOOYsPdpn5i0Zt+4sCmTWL69IyLZW54tPGp8JOvOIiDDV0F77jNOuxqGy5+6bepNEZwia9xmz0vaHzTUbTh59sYTunoxzt/s52fGTe/YcPlt6IdjhquOSEwxGKj2Yuucf6Kg54YbIzLCRwvMWzokemfHpzGzJlxm/j6ltGFnWtc6Nio2yg3z/zqE096dAme1fmLv354zflSvOgrtuznGO58T6HHP6wKPeuHNJatzXj8+epF3jjJr9q8Ww9idg1Lv+L+UcQBhz9FjLDKSWNqdsVND7ZvJdGXR/ksPuNErUx7/bDYHXNojI/qfGrD1obFNzFfuMJSiNo69NLj20xegNh4yWEPx3gxyoNxftnm0zV+2nKTL3rlyrjYiTjplnNzxab42RgP1xi/hG5zBJ+eMTquif50tPXrK359pL5w1LDypY0DO31yoTQOg1/3oBIOfS/ExcO/6/C0FTj6YcgtjHLtpZKv8lnNjoRd3PFjp48vmPDkTK3oz951fWpzZM7TUcexPKiJfpxwxEmNf3z0dU2/Nhu2sBX+5Mq1Mc8nvIuBP8V4gutc4+zMtz7iWckGRvNV3vS5zx2wv1XfaPefofpmnW9Ti0WRy3irCZ7mR/zlmy7u+HX40bMXRutdHP1CrLUBhy6M4i3n9ZeX1gCcDmj08ctPnF3jBq+1yY/CVjHmMOud73zn0oGh0PE51meM9nGO2RvvfpAXh8v2IebPAbdv2+LDFoa8WRNxgyEXfIkXH5gdSFuH7MQhfnaw6Hm2OZA3Lt8Ofvk1Rs9ewsGW4tpnswMzhz44OyjzZ4d8M1X++HWYhguOuM1vflqLcRCjX1p7/uefD9zMiZiaG3GJWyztdXDEC+9EH/5iZWNtdFjc/e+5y84hM18KG/hiav7Y41URi2IcD7mDyYao5QA+PLhs2eAMX1tutHE11/T4Io11P8DyuUBP3ugak2cFF8IH2+aaf7YKP3iaB376vIXrurjgsFPg4ihGuHT4DtPcwLRGrJkOqou7ucKn+K0L1+bYny1iq03wkjtr3Xj3KX/G6InbvsWaEJO2+8K9rR1fvLRxIXi75o80BrdCp2KO5FaMDnvNK07iLJ8w5E4NozWiJsb8Iss+p70WXn4JqchFdvjTM8fuj+67fJkL67h8G28d8SVua9y/XDHHck7gy8973vOetYbMibmUC/mk596hI9/dl/LAl5rfuLbW2MOGITdq+vCJnNBtHFc5UPg0Jjb+jLHTJy5rAL4ihz13+JEnOjix0afu+WJdaLdm48DGcwYv+GKWa+sfB33m1xrmw7riX17w40cpt3C16ZQ31/FnH4YcyhVeRP7xM2ew1XD9q4vmja51Z07ZwyL0+c5/c8C3Pwflz7U99thjS5fOVWQftF8lW1t3Z2BnYGdgZ2Bn4JpmwMbij3/84+mXv/zl2uy2mbCxaZPR5scGZG7W6CZ0bfSIDRZcbRsbm8KwGodlo2QT5pp+G0a4bNR8q22GYNBhRz9Jzzh9MvHauLHlS91hCD/6Etjx0Tdt0uGjF1L5sFlU0yVxdg2vlxM6sBWbTTUbRbvNMO44i0tMpHjpuuZDTspLenT5rGizyRfcNurlSw686Nh4tlkvZ/ywF4PNMYmLjSlbbYVNPOK5DC5+GLdpV4cxx8WrX556+cOb7w4M4Is5XtrwtPOvD05xwzgK3XJnbPKhrxz7wiu32jgT+vrZuDaf2uk4hJEr7fix06ZrDYlZnOzpKM0LXL5gmCPtWei2JtSkGGA7mPGCYI31z3qzoeu6nGjnj0925oDQq87/bItHPz21uSSwjeGkrojHS47DpNaGF25+6TTPMJr3sPigI8/8lB+6xd76pCPPOLVW5MLLn36YjXlmwRW3Gq5xmPpgFYd+45OnPvmKP9309SXh6WOjxK0cFot+8+4epdc8iK81Egcc5QMuvfRh5r9+Y/IqZtjG6fEFF774yj0+YfCnnz4d+r2UhyFG+cWpHMBgS5q7cjr1wsWRz2nPH26Kcdz5x0dsimvimj8xiostgc+vNQDbWM91+uxIc46DPjU7Ug7iDdPcaxvjS41j+u5Hf+P1xz/+8emDH/zgXT9L4Qo/+CL+LvgXv/jF06uvvrrub8+QPkvwUPAW3zzE6zlL17jngoM3n8liLE6xsnVA4XCpAxY2dM1v66P8OkTp3uIfJ/XMMTs+jMmJOajoF5+8ySF8c62Gc+PGjfUf0pXX4nOoYg1mYxyWGIk10EGcNjvfIHcQFK5DfHER/thYW8blwnw6qJEPfvC0/rTnGuSXjUJw8az7+9//vuz4dPgsZhj0+HXYpcgfPH+C5F//+tfCcJjoX0OI3zhuDuE7iBWPzxqfzTjJq3nGmz8HjLDFoM0fG/ZiYtt90nqRAwLD+oApFnZixB/35laMcmy+9NP3C4L7zv8pqDizMV7+cDTWvaI2Ln6+1GIyv9p80mGn1GYjblyMKx204eIAUB8d/OnDsxatQzn1OSw3+ugo7htFLvCEHy482O57sbIzjq9cwhSzGq6x4sbbGB90YXaP6pdzdfMiVr8MgsMXv8bhyZG1LyY+/PIapnvRc0Z8+RUHLIfZ7vueWfDkBge45hEn17jCaG8G27qhiz+uypyTtXDOP+RMkWvc+GdD5I8f688hMx2crHVrtbnll7ClIxYFDj3/QaV/PYCvfnr+lY/nov/oU174cqDsFw/y2HyxFxuB3TwUMx/6jMkzrjCtde0EtvsTFv9yCQMfcbvf+DRenuSWLm6erfZCcstXOWtd66NbDvmFT/Awjqs8yik9GNYkPbg44WOu9Kvx6U/LyAUcPI2Jm/84wO4ex4UfvNmIAab1yZ91Bc/9bx0aU+TBHPNBT5/ctSZg8VNM4qMDTy137d/kT4xqfPGce0lzZZ2KHV4H7dpEn3uFXuscDl5wFSI2NnT8MsVB+2c/+9k1Fu/VuMSPfdB+iSRtlZ2BnYGdgZ2BnYHrngGbiD/84Q+nX/ziF3cPGdqsFZsNho0EXRsQ1/ps1tqI6LOpIzYiMGx49NFrI1JNx2bJy4fNPRwbG2Lzxja/bPTBjMNSvPgBP8706Ldhop/PfPDHtzZ9bTr8uWZL8oeX/kR/GzmbPjGERweOQuTLhlCh2waOP7i14btWxzn/C+jiBx388C5W+lNgKPTwiL8+mHJrc0m0zZENpP4wi0HNJ+424/liZ/Mq9/wo+iqw9TWncGA3V8aPQgc+fzbgcuZabnsxYRMG7OatvjDhxKu+amN4smGvJNnJVWK8vOszVlxwtI2r2Suua4urAzycCMx8FV8vERO7e4gNX3JovuCwhx0WHTEp5ZKeF1SHR3DNoxcaNYFJYIXvWoHDP35ekmAqycwvDoo+duzlhLhOsqm27hwi9FIFw4tQMWanNhaH/BWTeHCFhy+hiwtfzQ/9bPV1X+JoTA68iJq72jDYaMfbdeNsGlfT90yAab74KQezhtUaKffq/ybG5EUNRylmcfOLE0w8wtY/ZXKAZZy90vyyt2bhp0NPP96EbvNExzNFCcMYDuZGXf6yjaPxcqnPtYKn/MFzza+aDmx81drloVj1sWPjGg4d47gSWHi57+gZM/fGFfZqY+YQJ1iEHaGjaMfPsypd+mHRd+3Z5htxP/zhD9+Sv9HuG+1PPPHE+ka7ddfnUWt+cpUDuRC7+6RnLJ6eE+5zhyDGSTmSZwcuDiPMcXnhy/yl33zBkAe+YZefcOjxj6NagaHII/3uG77wNjfm3LgD4/vOB7ewK81f65gdPHOBI+Hfup5rw4GPOOg53HMAp03whOfz3rh84SYXfYbi49rBqkMnXHHSr7BTxOhQ0p8ywdUBlMMtOjOf+h1U4cC3Qy2Hb/QcFN+4cWPV5guOX3504CdeHDxD5QtG68DcOvCCLX5+9PHts5wdfjCLW67kjOBPXw7YF6N8iI8d/Q7E5cGY+8uBrs+g5pc+fvwQHOHBUFwbk3fXdHEs53BxYNfzI3t+wxBbnyf0xGwcTj7U8GBZs3LWZ6Qx8ePBhk8SN370mRv4bNX6Wwv64MCWP7EYZ1M+8IyXcW056v7ssBNH3BS4eMOBhx+euGn3mep54/CXrVjYVFsLYRmHZcy6w7k1EU9rwHyKhZ/uA3bGYMCnr8BQi8WYa9zYNqYPd/NkL0BwNleeI8XHp2vCVo5gqcXgeeD/irBOzImxv/71r+vPOfllVesCdof4cijHngHmDa6CjxzgZrz1Cle/vLgnrfXWBTt8+9cD/CtELWY48qQ0d3yIQd57xvIDz5iY2fJLr9jUjdO1bog+vNyL+eSLrRzQY6tPbOruDc8HuaCrD5b42MUJRzlWw1fzhQMsOfULOfbWijVvfsyfcbHT8fxSi09ejPMLR+3w23rOr/UDszUGR9u4git8uZYrNXvPtHKhH1/5ke/i8/y0/sLAZwpOBCYf5viZZ545fe5zn1v9ja/GJX7sg/ZLJGmr7AzsDOwM7AzsDFz3DNhY/O53vzv97Gc/W5tHGwZ9bX5c69O2wVHa2Ihd2xgdmy4bMhsYG6U2TcZcs7NRUeuzmbHRsmGCod8mRj+/2uyS8I4cjBuDnQ57JXENV+HLBhAOfQVvxfVR2NBNcKfbpssLgRhIucBdPuiKyYaWT1j65ga4fEzOrvm0kQwTPiwFTzr8wq2v/NI1Xnx8atNzbY5c07eRpqefuJ5zSU/Bg4TbS13Yxo1pTx5i1k9cwzd+FHYwxOxlSGz026CHrY+evOkLO/7hFnvtYx3PGTss2OIlxvKTfT6zj6+1TOROftmxp28ui4dO3GAYFxOfdNT6ypExUt26gsFPbTrwKjBcW3vWKHs8rBectfPdNX0iBwofOIlNPEo6bBVSPI031rpJr5ywgePFx8u1AzzrSV81rtpx657LPyy49MSoLR/aaoV/3IjrWegp8Ams4nbNzhzwF2/jxvQprivlABY9ks5qXPygz6eSHlvzqPB1lKkLk51YiLx4edbWH++J0drLVtzZ88ev54Ccde/OfLtW6BXn9MNvvvkgdPmw1tTxM5aOXPBJl98KbCKuDgbo4mrNeNHv+UOPPsxiohsn18aO2OzkFT9C3zUfCptZ4CTxYwOjMXXrCpd8ZwfXYYy/8friiy+umo83I/n0Demvfe1r65ubnpsOz3BI8BCXYh3ET1sulbCKt9zBcN366EClcbE4SOFXHxyFD7WcW1cd1phrBxrafLHRZ47lUcHRM1/BUZ+153CrQzSHQQ7E6cYdV7HShztj5sucKeLFj61+XPgn/WkVY3T1i1kRK7+w+Vb08WktOtj0LGu9lkt8cJEjtX55YX/f+XCwtZ++ZxlcRWzyg6Pr5hJ/12w7iJcfbVzEiL/nNj3Y7H0OOPSyDv2yor+t7+CJPV/0yhMsXNmzwV/8zV+cxGhcPxyHW7DwNI8O1YpHntkZZ6PImQOw7OJLl4gHNl1j5RQfc4VTBbZSG3/x1A/HepIXeHKmFHtzZZzQkR/8kvIxazx8tpq/JB7ygAPf/VLkGKM2znRbJ+bKHMFhbxy++Cc2f2LoGS1mfMUEC4a5NDfiUuBYk2rt8tW1uH0uu1/5g8kn/eKBP+cCRzzU+l3z7xctbIg4K3y1NuQPHlu1tYAzHmwVvptvXOAQa8svrRwU901+dv1rj+6H1ldYuMHsPQRnmHworumYV+uYlCexmU9Fbqxh9v3ZFPzKJf/WkD8b5RmmzcZ8qQm+ck2nOYHRvlJO6MC8Vx7igR87XFyrxQ0bBzzFBUNcckFf7VluPozzxc5zDV/xm0fjMPHGyTqTC89G3Dxj/CIZNl39fCriTcqPNn/wcKTDt3+phS9sY/iZC/OijVP8xA6vfMIrBjW+uLnGw7rCXZsdPH4IP/Kmbdx6VMSiiM9Bu8/cRx99dNnQu4rsg/arZGvr7gzsDOwM7AzsDFzTDNhk/OY3v1l/L7aXWKHYlBhLbFQUfTZBZG5ebESIjU4bpTYx+tnNDaq+uXGCBYNf/WoC44hjg4hDGyO2xGYpHtrstNV826DBDs9YGGzbeLEt9jjzwU4hXRu3EY4D/K5xhFNM+rXDCBsPuvqNxzlbeq5n0QfXxtg3xXCQdy/6Nr7w8udafES89NTGjdmwqvnNB902n/roph//XhbirVbinx6eMHD2Yqeff3WxpSt/vazyZ9wGnz1c4po+zoRe64WOfuPmkx/t+LNVkiNXY81XPtLJbzxws6bwlX/rkk33gGtCr5jiWW5hhU+frhLH2nDYiiP9Y02HncKOwGTDP5FfcwBr+qCTL7jG4spGfPqJMTlV9NW/Bs8/8q1ffmobZyN2vOCYI2vWy3EvS2q2OBEYruf9OXGM4aqvdc2HNtvmgQ4u/KrFFXZ86MQ5PPqkOOm6zsYYHT7T0ZfQ46t8xsF4PF3nr/w0JzDhK9MvPDrZuVaIXOnnu5jUMNKLhz565bdr8yCffOYXNn1Sv2s22vnU54VWLKRxbZjdl/rp8Z29sexcGysndLRx67klDjiKa/HhGM+ujcdPXzbywk7dPcxPvMOpza5xvsztFFj6HAo0H42Lw8u6v9H+Vh20+0b7k08+eXrttdfWve1enfHF0brGKW3exiIAAEAASURBVG4OQORX/unLDXHNRj5at+VAHwy1WPRr8ylubcV1+TZPfLQvcDiizR9dc+kgG2YYeMRbP54+1xy8wPUMc1Dt77Tz35rhw/pontXGFHMWpgMjByb82ff0CwS48/MGXp9z/DlE4983NtnThUkHDn6ucVB3oCP3DgP9EkTeYVhr1gLBTZzG8o87fvr5UOD0fNKWP1j8FXe5gJsufPPVZ5U2X/YPMBxwdWDGJ9/mRZ8c8EH4JOV38oPfXDa/1o8YrQ/XfDUndOIldw6B5QsO3NYpf3KJh7mOAyz2cYlXc4YzXVjlSm5wpKNffog+hZgX64ANDIUfbXPDjqgVmPDw0DZfuDVvdNmWH7G4Dtc4W/kwh2z5MY4fLlNgEZz4w5c+f+HSkSvjrs11v5BhC1cJi0/5Lvb2C+5VeTGen+aA//ISllyw0W9t4QPLIXh5EZc4jcUFfxj8sLUOrEm+tY1ZQzDY02Mv74ox96ZizRqj07zyx859Dru5gotf841P2GIh4qajJjjgK3dxwLH7Tx5bk7ASfT0bWodyxQ6WcXPkb8rD0Gf+PGvgWB/swoaLP+7uMfzY4QKneylbueDLOFy2zSUscfnFjueUXOHmnpQzvMXsFxlyzCcM8cPFK6w4FQMsz0V49PDBg13PXX14mXNj2v7FABs+lPIuTrnJxrMDP2Lu46MtV3BxIGzYKkQ/3HKYntgmf/5bJ+6lGzdunD71qU+dPvaxj93FWReX/LEP2i+ZqK22M7AzsDOwM7AzcJ0zYONx+/bt0wsvvHD322JtxIy18XBNjJE2ImqbGaWNl41vm5vsbGxsxBS6+m1wbMqUNj76lDY5y9nFDzb0bPjg2/zUR0U7ftqu22jlv40ojjZnCt7puq6Ivet0wseRb8VYtVj4qG/GgkuY+LBJ4qnPtVjU2hVY6bmWS5veBx54YL3A25S+8cYb6xso7HHBg43Ctw2vzag2EY+NbRt4vvCHT9oY46tol4NsluL5B5/NQZzDw0Nx0KCPT1I/TPg4e2mKO87mm8AmuLs2puBKn+iPoxcT8xt2cfGZsCfVOITHD9vG0itGeF5KFJtwdmzEZn2VM/56UaNT/HToV8Llj065UeuLfzzo8DHjqU//1AtDnvCt3VxqK+z1qfnjtznRl44ct27CKHfZics1m0RfcdKHY036FpcXQ7rNWVx6gWSnj7BTypW6PGanbl24jld8jekzJ+FoW2/04fGBp5IP9q6naOPHhm3jam33qjjEVz5geyksrjBq8xkPvviFH3+8YeVP3fqC3T3Gb7ows6me8U1unhPmgsCWG3HkYw2cf+DNn/Ws1lY61IARH/ek51SHBmKZL8Ywxa8QOGLWLm51Oq7xVyt4FqM2e1JctcsZncatB7ki6bmmO+0nLl/ykoSrr7w3psbbS71vtH//+99/S77R7pt//lasP5OQTxwVfAj+5k2MOFvjfkErTuuEHn165pgOXXowuy8cMuCvbU7NsZjY5GvWMOkp5jF/1go7/tz31hqfhB5OxgkdfdaNgx/4ePmW7sMPP7z4WGPWVN/A1bau6DuI4Y9vMYnB33L2/1YQvmE3jodr/hUxsPPnJhw0acuJmHGjj2/8+Nbm24GXfrl38IizvLOLs1yKyWeEvzOtNuYXkPTE2kG12vO7+xkHh2N9/qyAzj/wJ+xJOeVLLMZhKKQDtdaC+TIvHXayb35wzU6f63Ig5+zg8BE/vLXZwk6vHPcFAfNEYIpbXES/nMghTHz08aW/9QUXZ3OuD06Fb/7otx4cUOIen+bBGtePs1rb3kWB17yrxWoNwYBP9NNjmxijaw70x4cPXPH2Weha7ISNttq6I+VxNc4/5FZecCRwrU9rTa1tzfhltj8zBAs3/fII3zWfcNwf8iIGPvPrwFf8rXu2CtvWsNyKg417BVe8/OuJfBqTK3PANwx9cOiwMW5NGtPWz7dr93kYfcaIEz+/QKND5JgdfUW/9eJ+5Je4F8QqP8T8iNv6UcqL3MCDIVbt7iP5JMZctw5w11bjJ7f8tKZxt27kASZdh8uvv/76wvMDf/OIB3384ItBTHiI2bOJnljMgb9Nb67pxQuGueMLbvkRryIec48nG/NoDuSKXzF43zCvdOCYB2N0FD7499yDITZrWhtv+nzT0e9P+shPfORDHtJxDQe2PvFa72rrSrz5p4tv9yI7Y3wpxsXc/dL86ZO7nu35F6N8EX3i1ebXL44csvscJ3xdRfZB+1WytXV3BnYGdgZ2BnYGrmkGbIxefvnl0/PPP782ljYUNkM2DjZfxkl9bShsTmw8jBtrvM1lbbZ02sjZIGnDUWvb8MDTVttQtRlMd+LY8MWDrus44K/NX31s6cHWb9wG0ObLBg7n+NKjo0yJX5j40cGPuKYT/67V4oPbRjQf+dV2rZD6+Sp+nPk0Jkb+5MGGz9/f9O06m2qHLjbrbPkNjz0sm28b3HjTgycfruE2H9kWGxsx0CM2sV2nC6s4ltL5B55heFkKR25I3OTBRtaaUDeOTzyzxSNbdjPWOMqHzT0c/um1Zpfx4QdsuvTo46VM0YYvRrri6fCJjTG5VBtvHYsHx/zTUeA0p2pxqvkpZ3C08VLwJPE1Pvvo6DsKDBy8nNDR5ovwRfjPN13XOHs5ybe+GSebuMwY9cONG/x88qvfGvJC5xDAfJHid81PubO2CIzWmWtS3opHH3x81HjgH7Y+cSnlqj4vwq754L986tMuR/lQE7Hkn65rBQcxKGHB8PwRMz/6Z1zahJ5CGlfDb95d124emx9tL4bGE3b6Ff18yYM2bIVPL604hk2nuZh49Plzr8lBGA4GYIgRnjEHHV6E1WzE7sBADVNxreAJSw7pus5vOnDrM54Un/H69SUTqzkzT+6NbGY+2GXPlg7BUV4IHtrw5NRzr3lcCucfeJsPz+yXXnrpLTto/8xnPrMOaPgvb8XBN+76W4PWuMMZsXgOiQE3eninS0+bnWeAzxn85YqtwyhrpDibi+KlIx+Ka+M9+/JnLVgn2dI134pr4roDJno+Izrs6HDJuIMbhzrWlPXns07hk39xeGbL/40bN9aa7HMCn+ZM7qzX1p2YfXveYQw98csRETtdMXQYxh+//uyCPrh4OtDhV571y19Yxv0ne3IuJ2zpaff8dVCHP5/yIB7ftGfrmv5RxF087FqvUw8XeTCXRNzaYsCluYIl7vZxrpt7OTAH836m58BKjQPOYcNvrh204yBvMHFkI3Yx4QXbZ6042fEDQ63NPwzzjzc/cNjzq+BPTxGTecWfX/h0Zr7lwvyIwdp3mFue4Sr8N/cwYRC4injEzocC33qgRz9OcuAXRWKlo58+fPYKfbHCVIg8WRc46sMJvl8k5cf6sJ78QlvssBV4Cjs+rS2/uLHe8AuPrnXmUJc/Ir+KMTkqF3KPo7VuDLf+M3aY4pDr8qHGibSW9Jlb3Ojrl3u4+vm1Ls03LJysDXNkfhIxyR9d/NhmT0d+yh1sWEQM9iVsYDfn4mltirk50Y8jvuxmnHDxwE3++ItLa16brX3Q3/72t5U3PGB6zhG68iQWn6HiwMG8+FMmN87PFfNm7JVXXln/F4RrHPFrjsUMl091Bdb8Rrs4FLmGIQZzwJ8Y6IsNJ8U1PT69Z7iWT+vOunatT/6scTnuFz/68BAbf7jhrBB9dHAQozmx3q1XeeOfjhzJC1/61Yr1pC0H7NnJA3y+rFV5xo+e2NLhXx//cTCPH/3oR9fniPF4ur6M7IP2y2Rp6+wM7AzsDOwM7Axc8wzYEN66dev03HPPrU2VzVKbBmMKqc+mhNRvA8OmPhsV7frqV9tI2ajMTZQNjWKMtJnRpheHrm2U2ii6VoxVYLDRjzM+6nSNaeNnc4Y/0baZyp+a0K0vDvptvPPRRpQeHTHgKC7X9Iz1wiQ2fUk4uBJ1vOOhn10xacP2cmGD6EUKvkN2L+/iwUVMruHBsum1EWarrd843GKduTSuTejZIKtJcbumE0bc1QrefCk2uemKOx0Y2vJqE90c05VHvviGQdTlED4bNcFP6SVMv3jzu5QufsDQX6GrD76+o+hrDKbNuJd112LB07qS9zBh4DM509VXzsMsH2zlAh9jxBhcxTVpLHvcu5/q4wMvtTEvKOahNQBnzl245RMX12p6cYepiIPwXUk3rKVw8SMMONaslzmHI16yjMWVuljxxHtyLAcwwsNDW9wKLsWIjzLFmCI2GGxcW3uui7N8svW86KXtOH+97NEzd4QOH9anl0TXBIYXQvHTwbX4jMfJ2JTiEwsbeuoZHx6w+eCvA5hw6M4cibf7Bz6B6QXVXKSLH9HGq+en6+aRjTYczxk83LfEnLGZL770eqbkJ3scjLOrbwGdf+ivTzzlbl5n39zOMX3lwTU8+vJA4mKsdvra9Amb5pQNndmfTbVYPC/eyoN2f2rg6aefPv3lL39Za6z1i7siT2oc+txSO1QxF4oYipVeRXwVa80ahk+fTuuPrfibr5WE84906MMxbl26160NNuZf2xh9tfZcF/D1J+5J/H0zHSfrz8GNAte6pa9W5D2OeDhYcWiUHl3F/MMm2eEoX/QdMNGDISbxK9Z1h2bZ+qx1kOQQFqa8+bz2rVBx9vl03/nvtMM19pGPfGR9lrt3/KepfItPYUPPZ72DK/xw6N41Tr9cNe/6GsNBoYMzDNfWAJ+4yrs5ktPmqPnmG397Dn2wiZqdmJpLOcLNPIkfJj2++oYrjuaGH/5c41oM2mxgKg644l8M4mj+XMOhCxsH9mHyHUexw6KDmwJHXPrNeTG6ZxV98Ni4zlbu+GVvXJn2uMoPftYRLLatS/1youBlnolrcfi8ts7g6GPX/MqtPFsjMONnruJvjH95Ztd6gFeeYFiD7MRPxEOHGFfERXCWTzUdfvHS5tfBMoElZj4rdPPdvOMuL8RcmEO1eOnba+GaT34UPsWHez5hw/PZFxYM8bDRx05O5ZZf3PQRv7Czl9aHvxyXf/GbH3305RUvPMVifRF+PI/CpN/eC1brlB6uuNkL+bvy+DVP4sKhnPHDJx047i/3o/uSHv/+jJj8mQciDtfmr1j47Loxcckl4UOu8SyfYudDDZOONVucYijfMMSGj/ujPNFxrc+7Cmxx4GBMm4ifaMshXmKVQxzMmzYxTl+O+ISvT660XcM2XtzsjIvR/MszX+Hw15zDYCtmOfQvND796U+fPv7xj4O5y3k1LvFjH7RfIklbZWdgZ2BnYGdgZ+C6Z8Dm4db5oP173/ve2uTNjY4xYvPRtY2GNj0bEpsUm5g2IY2plcR4OurG4NnM2PwQG782f/QInWzp2WQpbSLVirEKzOlHvz5YpLE2X8XT2FIaP+jHQR0WuzZyYjKGv43ojIOeXMlZMasrbOmow8lnnPic42zFbeOnbj5sjF3Ds5Fsk8nWi5aNsHzA10fPNdFO8sWPa5hh0xF3tnRINur818eHGPimr01HoaNPzmxwi4muXPIlf3T0Nd98ZmNNGIOHqxcNfPmEwR8cvogaTljG42V88qwNx6Zczc51PuWaX0XOi1sbd7zgTykn8MSRwJQD3Aks8+YForyHryaw6ReTvuybtzh7WZFnbRxIOK711a/dHKm7Ltbsspk5bAyG69pq8XjZ8pLWixjs4oOnLQZl2k4e+uPkWpG/8hAv9cw/HbjqJLt8w5rPGvlvntnwa64VvI2xmQcjsOTaWsGJnrWptE7ipcaBDYE168bjac3AzJ6+vDoww8W4l9Hm2Xi65cPam/fOcnj+Yc3gR9RwlWI13sGNWLxwe6kuJtd08CB8ly9rR1uhr500l/i1xvTVP/X0yUXYrRP97PUTMdcOp/jV9bFPVz3tjdEls3/m3xg7nCaOa/bisQ7e+973rj8d42+1h8X2KhIXB7I3b948+Vvt5rsYYMGWX0WMeMTF88Vzqeeq/vTpzhKvbPkQo1j4pIuP+PhyrdCzvnqWGbP+80uHz+zpu7Z2WjflVw0r0e4+sy49R9Q4wDWebTkw7jBLvzXPF25iIMXFPk506Siu8VXEr0+Nq2cD0WbrG8oO6zzb9MFUd01f34c+9KF1EOkg8cMf/vA66BR/B+148iP3Hf741qsc4ovLUfTJA+GPntJnq3683Le4you2gy+42uWMf3a4OojzLyHuv//+NRf8lCf3OgzPBH38yas5IvrFIDbf3KWPY1zVxvHVbxwX/Wxx9S8K8NFHcJR7/via860PHoHJBqb5x4EPNvmDVSxw8Jb39NiLjz82zUnrmZ5+tnJVrvVps1P65by+8ty6hI+zA2PjOPHLhj+ir/tn+ix2OuXHNbzuG/1wcSLaxSwXfCj09Vfo8QuruI2JXcGDhA1L0bYO4LnGMXwcYJgT2PQc8tMrp8bkhl85YEOXP4U9bjCtTXPW5yr/9jl05J3wT5+O+8+1Pvz4Ly8O2q1RbaUx+nyYH/i4WZvwzZ11hTs9tT586WnD4U+tzU68+Ku1zS1MdvqItSQ3fMpFYhx3z+G5v8Cdrs9++vFnhxuZXOBMXOP05BhPOSyPeBnTlsd+KaFfHywxxh1Wc2Vc3uVJMb/65Li8ZBdP9nTE5zDcPNMVX2uRDtHHTh7VFf6JNiztYvO5AQ9u42r5wCU98Sl8+BcETz311OmRRx65i7suLvljH7RfMlFbbWdgZ2BnYGdgZ+A6Z8BG4tb5oN032h3O2IQoSRsV7a5tPGw4bGZsILXhzDL1XTfm+ihwjdvY2MQoNoHZGCfp9OJpc2SMbhvJNpWzr41ym2lYbLVhwU0mTn2zLgdy1LU8lLM2Z3Hlm558lSs6ijE1oSOP5dKYUg7SpceX9tEmnnw1R9X6CFtFPwkv/vpc61eS4rJJzrbNbGP5Yoe3tk264rqcyD3+4UxfxrxUeJmxDuiZI774Nj/lzhjRx0ZhT8o3O37NNTsbe3U54CM+xV0u4ktHHx42+r45xFc8zCtccbJRxNZ8i8+LEwycjSfGWs9eGhqHjbM2OwVemNnPHOqD3RrWxn36hyveXkrzUSzllG3Cnp9euLQr/LFNahdj/OiYC/PClngJ7Z/LF1dxGo8LLIVd1+HTm0KnPDe32eAw7WZ/GPqKBw488wKLiMG4ttyJz4tx3wTtPrM+jOcPhj5zYy14ybSeW3v8iLeizU+c+dVXTOyUuNHjmz+cvACr6Tts4DcuYcJLjGmr+WLfAQIc61tb6Z7GX+zlwAtrfuHS7Xlx9JVfNT5yXe5cKwR2a6Y+/fGFK2eNyYm+SrrFXn+1frnRDiObeNGBO3NIhxjj3zh9fNWz0NHOjwOTBx988P990J5/Bx0//elPT//85z+XH3MyY5G/5qx1hIu1Q3CmLwY1ezYKfeNEHPI0Y9OvLymv8CtwrUN28OAS4/zh4Xmkrg8HeXUPeT7qhxFnOGLqoAaONhu6fGXHFz3PGPfpnTt3VpsOcYDHv/isV9gk/w546MTNGCyCD5zWT/6NdX/0bBN3z7xyxv4DH/jAwufHN/R99uHrW+tEHMUCH56Dds8QnAluxU1HwUtpjF5Yrv1izMF6uZPz7m/8YMMxB+awGH072b/I0M9WvvgRr/g8A+iyTYzJPT28fdu/vPADX9xyYJ6tObgKH7jJic9eOTM+80vHfeVZB4d/JeEXH7kQYxzFwJ8xPNio9cHzzDZv+uVqrh06dK07scDmm41+9mEYg4FnPHCTk2LDSbzsfUM5bP4dmLb2teVQ4ZsefDkUJz/yY0ytD1dCl/90+KOjrZCwtMtL+YYlx/Aq/MLNlg198dBXEvlhH1d64jeXMMROxIh/OaHvXzO0Pvho7amNF6PnITxzy1/3DtzWrLmEzQcRq7jD8FnmFzJxLz98eVb4FzGwcDeH5t9exnXxsxGTGp/8wdCv5tMacU/lH2dzKwf03Ct4eQYVT+sWdnj65IF/+tYMrmKATc/9af3Dbm5gWAdy4heDM27+ywEd8Sri1VaXK3PJBw7mieDRs73cspcrz5+48BPv/MFxbQx/61/84tQ3Cz325bzr7HEzppC4qsUN294e/2zoatMRa3No3P+L9eyzz54ee+yxhRfualzixz5ov0SStsrOwM7AzsDOwM7Adc+Azcqt80G7v9Fuc9emQlzG2pzYcNic2XB0bZN63GDYhFToNd7m5V754lOxOWrD3IaRvrGw4Niw2WzZfMFvw0XXNR1jNthtSLVt4rXZGLMBtBnNBm46MPIJtzjKj82ia3pq4loMciQ3atiEDoxw4jzH5bcNML5yEDe4ruEoxpsH7fT40l8xBlNN2oB6aSVh4JrgSN8YgS03NqPs8seGrriJmG282bFR67NBzQZvBY/0YHRtfmymleLnl7042CbsFH0dIGQDb8ZNByecmzNc6YsNH1ybNz4mNiwvD/4jO8U1HzC8LChs4cSxl6Ww+TUWb/auy6215xpPUl0sdAmccr46zj+M0VNItvCM4de4Wn7l1ThO8q7EfYGMH2zEp4YnH3zQL+f5xU3MxunVbx3AMJfEy5ZvXjlQqq95hgE34dMYTNjlIF/6SPyy736vbVy5l/AxJS6tRWP8m/sO5+j0gtqhAB15xT+u2rjgYV14IZcb2PqJXBYHLq71wbPO+OqZBlsxh2o6bOAr5eH/2LuXHcuOYo3j+0mgGmNuMsgImZGRJzAAIwECJMQAcTdgQDbI8AAITxgyYIDEFPEK3AYGCYQx2GDMTUYtnuTsX7r+fYJ9qt1VuA/nlJUhZeXKzIgvvojMtXaurOrd/OKrjw6Bmx8c3NPmxjU9zzbzIi5j+r2g44y7e6jcuObLvFpjeOKhwIHbc2I5P/6Ih7oY4cEgYXetfdGchUOPP+1yUZ+anOrCK0fZwCD8uZaLajrmoj56E9O8iCVceumnq0187tztg/Zvf/vb6ysHcPc9zPJeTnCSW/PRcwBfa9jasEbYidFc99xyXe7FVg7EXXEwQ19s/Oh3DR+uPJRnfMoPv/4qlA8HHP4pfgdw6XgeypV7pHUS15671qXY+OGzZ5o2LvDdl9au2jPn2WefXbmIs8NbuWDTv8rA1TjfePYd0/IBVy7x5LNc4Khow2Jfmx0bh4C+6oetfDpkgy0f2nLAzj3j3ptxwRKPOfSVNOLhS57mga7niTz0bIAhHnmC3fPG3Dkkw6Vnc2uGL3zo6us+97UW2tavMXHhhAd83NojZIenebJO6MmDwzz65RNXeXbgKBb+FfMNx3zTt1b4xQd3pTVtLweDPRuFqPllB5+wJ3In9z3j6Snm1VzoFx99OX/66adXfGzDjxubDjdxx8O6UuTSPJCeoTDNgbUpJ3DY0bcm8BCb/OFRLtjJp5KNMfGZX7zklZ65hcO/tkLkks/mSoz6rAMS3+4neMblyy8B1PIjn3LefSBGPsXUWgkLrvuZPj2Y+ItRwU38CZxyBd+/pJjfD04ffxjhwbl58+bCkwt5wZNfOvDpew7IH3s44jYmh/zSEa/cNf/0FGsQF5xay+ztY/CFITbjYoVb/ozT7Z6xRjx/zDeueDrEN+dsiP8c1bW1NderucEVT3X3O7/+4lrc5VMu+LWGxS5u64QdbHnzXHruuecO//jHP249g8TPJ5zyAkd+5IJtNV2Y8hw3tV+QWNPWsDGxWffWh+dhuWALQ6HXM7F5EUM+Jncc6Bszp/nXJnjHUbt1UW7YW8f+tQwxDwofxirm2rrW9vz7xCc+cXjve9+7bOheRfZB+1WytXV3BnYGdgZ2BnYGrmkGbEb8Z6hf+9rX1ialTeXc9LjWb0OntAGxeTkVm5wKPYW0ETrV14Zt84KLTblNjtqGiLTRgQXHmNJGiU5+XIdjk2fTG1ZtOjajNqI2zTD50mdzp9a2QSPwFIKLHNioGsch3+E0bjOaTCz62moFNtzyALPC3jhsJT3X4YRN1zWdsNVw04mvzXL25pFOMjH44V9ObJS9KNCVH3HSNa7A0ReWMW2+cKLTvGXDZzxwM1/8tLmnx7caXnziqGZnzTTX5aY88MFef8UYvtZE8413L1jxbV2Iw9rwQuRFE0c61oGceHmAB58Nf708xkeNa/kpdn044CIO7eaPD6XY4w8/+/IHFwe6+khc5nzTk6vuM3NSHvgOewEcf5Q7PCYvXNgq00Y/v+q4qOVQfou/g3aHW/GlZxweXJJPY/or8PGdvnAkcbOOshMz7OJYiuc/YNLjyzWhJ5/mOi7GOkDxUgzPgbSX7Dnf9HHDQ55xrE3PmuHPmpJ7ko1rPNjo41Pe6M91YlxMcAm9fNRmz4YtrsWHl2vxxcc1saa9CIvLutHvBdZLJl048BQ5UtNhlw99Xkyz52sKrjg0d+VaP4y46Fcusqer8FVc8PSR6um3azbZyVECp5j0wZDT5gbn+l0bp28e8o1/duloN27ddNB+3333/Y/YloNL/oDrsMJBuwN2MXUIi1d8rR9rroMCa84hEC7WBxGne7RnPHtFTuDIgVJM05c+7eKGn2445ZuuQyMHG/y59stL99Vcy9r4uUf0K3IIT47FZD3C4Je+wjcf9Oh4NtOzPh3w+v5i13TgdDgKw1+P0jXmvuXbIYyDNcIXHh3SxRcv8cIg7OVV0S+HfDpc8tfochG+eShf836mA59ecyQevsXh3uKHrTx5TuEBQ5/CHidYYoXjmUhOD9qNw1NwDkc/X/LpP1t3fc899ywdfXJC1GLEUbyKPs8BOTUPuLC3Dt3jeBVDh7Zi4b9Y4KRrfvHSdsjuuQsLR/s5B3rsCTvCp8LOQa2c8EvkVp5On/F0yylfivvML2nwT+Aa419e+beexMReW+FTH07mrjzBrA2DX+vBeoMtNs9h2HKCt/y252ADe6413MyLwh+/xvE2F/r47/nc2oCrj8gLXH5xKk7X5gmefDdn6bDl1xr95z//ufgao8+P+ZMPHKwNnKwN8cy8mnv+xU8Phl/GmT9+8WttiQUev7B85ZK1xl7hr32+OMQpp3RdyyEseeK3tpp++dFW+Pe8woEfWNZAeLjiYpxvuAoc8bChD9saEZN9pfmF7aCdHzGx8S+VXNOVR3NivaqN486fZxX+/PpKMj4T9ng6RPeMw4Ho58t8ubd///vfrxoXuSH8wCV09fPpml8YfLU+XeNp3L3lFwnWCc7GzDMOPqfmQTt9Ii/88QuTjZj086cQtTzKgTE83Ets5IqdfkInPdj4FRM7/MwDffOn5I8dHfeGPPHrq7M+9rGPHd797ncvfONXkX3QfpVsbd2dgZ2BnYGdgZ2Ba5oBm4mnnnrq8PWvf/3WhrHNjDGF2FjZYNnYEBsLGyObkCn0bXBIto3PjY8+GOz5c03fxtgGyGbJtb7pA4YxOq4v2uCkY5PXRq0+djBtpGz8bPzDU+trE8YmLurJGaf4qomanjH5ahOI4+Tpus1xODOXvSDQM66GrWjLlxo/0gZV3QY4G3VlKR9/hAEPFrsw6eaz+MudvPRSK04bZrpw6LANTz9ca0ZJrw0zLuIkxhSYfFRgKtrsXIfDl/zyR8xdhR4pJm36xr2MJNpebMw5fMJGDhWiX+HLxt9LkJcn6wcmPS96ctE88CcnzQXOiWtYdFrfrsUOE6f4wqdfjDAV/Y3Bav5c46HOho/4TNvpm99yToeo6fCjxgvH03F9YRVjNsZIMePUetDvpcVhiRdANrDpyps6X3TndbHr5zue4la0xWzezG3YYoArX2oSrpoeYUvo4NxzxLg2HH3yBssLmJds60CbPZ0wrTl9+Zw5sKbgEDZK/mvDERfh11yxKU6c+G1+LsoPjviV22KDi7uDDrzY0tHXWipGL+fFmD3fruHw4box+jCNwVXKtxjjL67sXMMs3vrZknDYl6f6wqbn2vjs05/ADRMPUp/+ruMpt+HRb93TbU00d9r648BOMa7PIYDvaPeZ6ys44hG3q9TwHFY8+eST66AdL3NnLsxb8Zs391vPb/dGBzd4lQPzxZ5tccgFKZ7mTb9fklkn8Ei65Ufc+iow2HvuOtwwz9azNhvj5c69q1jz5ZCOcTXecHEl7jM47in6+Ct04KrlAWc138aLC65nETyc4CgdDsoNO/xheHbpg4uPe9J1mDBwlxs+9Dvc9heqfMExxoe6azatpbjRZcO/+ek+Nq7wxZ4eLmoFHyIf+h3iOggmDql79ooDPwKveODKU3H6ZY5rvyTBEY/u+6nHXmkdwTZO2HTYKCbccJdnhU99eBhXxKHdZ7U+GH1+wJRHaxpGUixqfB24ssWLD3a4uc5nus0L3vkTvzZd8y1GY4r1B59/uccVHzV9MbB1H7pn5NGBo3tSG4Y8wHDoR+g6PGxuYbDr2Vx8uMibGPXBSnDEg43nvDEYSnPe/OjDlT92MBXx4F4uit9a5TufsI3RExdc43KDOyzXxvGpWNd80yH8K+UKF/e2tcteG4a1ByO/avkqDlzks19+aOPExtzzB0veCExro19klF86bOGbT1yIe5Eue7kQHxs+FPhs2Mthz2Z+6Flj+HkWGmePqzp/eJZDOPKirfARZ3lhA9fBPd/ypw9Ha9ezx5oTfzHRM+4XI/6q3XjzbUxsdIure1rdtTG8mgfcjOkTj3wVk355sD48fxJx8IuvuuvGYVf0wZGbxJh1JKd8xgkXMZQbdfGITy7MnXuET7p4q2Hk05qy3vT5ReMHPvCBw7ve9a7lns5VZB+0XyVbW3dnYGdgZ2BnYGfgmmbApuEXv/jF4Rvf+Mba+Njs2FDYxLR5aDPXS4k2sSmZevrgkWxd61PaQOkjNjnZG4fXpsZ1No21UbIJ6hpONvQIWzptJMOhx6e2TZSNnw0WLKU+NVvj8+WPnWKMXfj0uq5eRI4/+JMvJc6ubWzl2jgpD3TCMNbLQDGGpS5HvaDAs9GcLx7FriZwSLHwwTcMmNp0yqFNK139Cnx6xHW69JWEDh4dtqXX3NGDqz+f4u4FApZ2c2Kj3guaOBW5mTmUu8nDuNhgEC9IDgj4NGdeZuf3fpZ33L0IqNnKARvc8OBjco8/H+WJPjw1jvRxkRPt5pkOPG2FHmFX0dYPu3WiD04vmq7Fa13JuWsCA28vHtOP+W7dGLeezU0SP/Zy0H1ABxe1fvyn0Jc3NT21gnt5PT2YwaPY6eEuT+ryooZDwqtdbuC09vETU+uXXXxcJzAU3OSn+Zi6rstdPtTFiXOc4NKXm/rkjg4b80fg0ZH7cqhtXeLOVq3AY68WkxI+zOa8HPGRL3Z4OlRzKNXzodq6Ye+ll402G/yKGRcFrmJcG27t1qLY9Gvngw79ZOazPnUxhqsvu3KgrYg1MdY4W+P5aCzd6nC16ZByBVvfKVY5MV/mjU6+zIfx+tgqsOg3t3S80PuOV/8vigP3yWURucIP/hy0f+c731l/LW2tObiB6f5pztxzDjXmIZQYyiMc8bMxb7hrE1iuzakiHutSH1w+Wsf6WnvslHJhjB858Cz2TDJOjPGtuC5vfLmOg1ouHUx5lnd/0xO3dlzg4infnvXuG3qe+Z7vcoGLr0lyHQc2sE4Ph7rPcJBzh1L+Qh1nNu5dz5+eQT6vFH7FjRsMf1VK5E3+yhcuzV++cTKu8Ks2B8bloXE1aR7p9AzVj5tfEPtLafHTdwgnDzO37Ik8tabhWBOktWHMvLSuWhuw+MLPHMMLS03yYV3Qn6KtGGvtqtnwKZdyrV0McjrXZeP4ySk++TQfrTNjDhXNv+cfPBzZl1u4+TZ/xWSNWb9qOPTNnbXWmuRXP4HBr5zHF3ZfYWKMb/GxV+RBfnFTly92rTf4iraCS0WbX7X1b+3wDxeGeMsRjuW7HBiTr+LhH1/r3rqB0Rq2LlyzxUfs8sE/PvJEjGv7LMLF2tIm7HFkE07rzbhr/d3HcqaPDQz95ocO7gSmeXI/61OMlxux+eWTv7qGZT3Ij1+IuS4HMLrn4PJpHj1T5cE99fa3v339Hwtw2Jk39zqe/PGFD325LE5jCjHOv7/el3s4r33ta9e9K6/GFHOnpt/9KQcw08FfEa9DdP+S54UXXlh7ARz4lDNiz9gvkeiT1hsOMAl8hdTnWh//F9n2PDYOS62veyc8OGKEAVve1HiIEWdt9vXJdTzi4B40V8R1v1y0JvmXu0T+2hfph9FcWUuui984vzj6V60PPfTQ+s+rYcUh3DvV+6D9Thna4zsDOwM7AzsDOwOvggzYWDho/+Y3v7k2hjYeNjg2kq5tLupT21C0UWkDMjcZ8JT6XNOrX53AafOUHjslvezapNmEtRmDS+JFJxxjNkl0lXDyrc+4ki828LVhGbMRtUFrAxk3G+9sbaCN59MGzSaZXZszNX1is0Ymp+KGUawzP/U3F/TjVA7VNp50YBgPlz/XxmDZ5KoJPh3OGucXN/ZiYGej68XCdfnir1wVS9xhWkdeENkS8cOTe3qktUZfHuVVcU0PB9c2zPJKj1/rs1jjpFboGO8ltk09371YeAn0ctUcNk/4wFfDMk6XsLWBnznqmi6Jg3zQl2N8GuNHEZf4mlftclIMcYBlnNARhz64+Y+/uNlNn+WwOeJTjNnCnP75oUsPF+NyyK9rY2rjp8KvdYIDvXzw58XTgZZxesb5lYew9bPtxcq4PPJf7qZ/HBTzRNcYztps6jvlOdv0YYc14wpPrcRv5rgxmK4JDLhxUcsF+/zg1nU2+hT6cly+my96+oy7txwIOPSTV3Z4uZflmE0i9w5HrI+w1Pi4j+TbNY4EVnNcfK0x4/yXC/2wOgxKr7UIU5z6FbbacLVdE3jEeDrzutw2VjvcauPGwl2gF/zIPn01DuyyhUm0y4fcWF8JHOvXOg4DDltj7FrjbD1DHLQ/9thjd+Wg3S9Rvv/9769/iu856TC151xzbU1YI3StETzcH/jhTFzjbFytX10RkyIW8csJXcIf+9aBtWD+FetOscZg6iNwYHuuy0k5U9OxLtXa7KyjuPPHxgEiHDn2nE5PrU8+fM3D2dnZ0ve57OAKroM+cfQ5gb+8wO6AEY5Y3D94JHTl0sFVn2/64OLo2ueWIs9yJU54Dudwc8Dj0BKO+WFjHfXc4ot+eXEtVjgOeujKX8+V9PFRzEVrVTz+ylVN+Or/x4CBj1zAbG2Lw3Ok/LDDTU59RsPmwzyReOJoLuQR53IST4ee+MNno18ulD47wmrt4SuHan18O9zUxiF9/ujhUDEH9NnJi5qOYl7NhznWLz6x4UiaS/mRG2suHjCVOKnpKa7p5TOe5lm82jjLrXtDH7tEHMWiz70rToJTeyJzxS5O/GXbtXFrprXIt7jFjD8MNnIDmxQDO/MIX/x0rBu2hC28fGlbY/KkwBGzNS5eOHzJublmZz3RxaV5YCM3dIuPbzHQ7Z7iuwKbbvOOHx/w/WLOuFjiLOfNt8NYscsznw6dxcmGPgzrjX8cjfvqE2uWuLd8jcgDDzxwi7N5pWf9i61cuq7IqWvCrxwp1iBuYuMXh8T9Jj94wJbLvobFmLg8V4zLB3xx2SfYL7Dlg4iPWFvyTfJV7M2/toITwRe2+VboyT1OzR0uPcddE3G5v8Tll38w+DSvMLRhK82tuRGPgisstTUhFrpi9dxRGy+XMODya4yEyw5fxVoUHx361oRamx48PrX9y9YHH3zwcP/99y8841eRfdB+lWxt3Z2BnYGdgZ2BnYFrmgEbDgftTzzxxNp822y0ObK5ca10TT9xPTcY2m3E4JA2LtnMOl8TY47Pa9g2OG2ibczakNn8wDIWP35tYm2U1Prp6yfh6MtG/+TCX/HUb7PFVxthNnzAo28zZ/Nok2ZzTtoI2qTD0e5FdHJayscf+cSLLoHNj3mwuSyeqdM80S8+XOUnDuzh2xjnBycvJHDpwpl+jXtpsHmGizPhOwx+tPFU2MTHRtu4ORN3Lxf0bZx70TTmrxQdjNiI04+r3MFNcGWLJx1jrvE3Jh7fbelliT9zgTsbfvkyT9oKjmwU18Um5+Yafy9KXtjga5Pui9r62MoRW7Ux/Fyrjbd+6eOPW/GWO7ymbZj4wClueP8XgiepxlX+rRMvc8QLjHlRexn0wu2Ay9oQj3k1N9ajHNCdORWjFzDzxYYPfXLVWnQNg545IsZeTSIn1qUi3/Lp5fnFF1883Dz+52++ykI+rRn9Xr7NRWtEXud9PddM/fXBb0711Q9DSZorc4If32ptAlebHh76JwYf+qxl18byxb5+Y633xtUwFX56bjXO/t8R9vyF75pox4FPuZ661p11SH/mQDv9ngfWqYN2/y/K3fjqGIc9P/rRj9YhivvE85MPn0X8y2vPbwctcoWrew+3YnTPaNM3LxX5pVMscKeuvOijD9s66PDSc8Da7L6nY0x/686hxete97pbz0cYDgI9R9TySfDqQESf/Dvg6vMdB7ie4TBw9Ly+cePG+qf+PlPMk4N2PDzH5YEuLmI3bp70i8v95n4SAz+eU/z6i1NcfKcxHBjqclVOcIIFm71r9rj5Lunf/e5366/iPRNxsq5gyaFCVx99155zDqn5x9Oc6J9irvsM65nIzvcK6xcLfr6T2V+64oyn2OhbF3It9w4K/dW+uSA+M/k+Ozu7xal48IdFxImzWKxP9mLUNme+QxoX+vLmYBAXf4HbfC+g8QO+MTbyKR58XTcGH59yjYe4xMfOfkA+5Y4eO4XIpfn3C3gxsoWX8CNvaljWGhvXYtFufYbN3jympw0XB37lpf0PP+KTD4UffMyHe6a8qJsrWPnCg3+FDr/mkfDvl1KeDWJw6Gpe2LaO8Od3Cl3javsOeYXNl2v7XGsiHXNOz72mDz85/8Mf/nArl2xxK0b5tqbFKhdyhJ+vOeG3fOHqcNYeEXal9Qpv3jPikF9rxHOgGKyF5kte2PPtuvmz7j0r2cghX/In7+4L3Nw/3Utnx/vhfe973/orZ7rmrjkQb3mWLxh05M+1sTsJbkRtLYgLDzHLr1/4PfPMM2tO+fvNb36z1rx7zVoj+hXrTkyucewekHv9+PBjLvEzl3IGJ65s6OhvTsw7Hfe5exmWPHfv48qOjfmwFhV+fG655/jLj37XCvFct2bhw4bVWnRNDwfr2LyIz+cO/43TMTfVrvFRi02/uMyPzyW1NaDPuhSPa+t1/0X7mpb9Y2dgZ2BnYGdgZ2Bn4HYZsLnoP0O10SI2KDasNhZtaFwrNizE5sPmpI1bmxRjdBTjFf1T6Ld5Ub+cwMifaxuwNt9htJHKnw2TDZSNkpo9n4lxGLBuJ23G+IAPIxwbc+Mw8xGnXjRsHtnKIaFHtNnbaF/kvxjU+c6PjaUNq3b+myMcXbOJqz5zVD97uDa0ajh0zD3cdJtXfOHZYNrg4gtbH9sp8IzFm09rhk81kZs2r+x74TEuJ710eXlr3vTLraLPy5DNNFw+8usab3GIx2a/F2svA/zarNNx8OCFjS4s613dQTuuYuHbyxFf7DtoLz/qcsuGNDfNNx0vc3Oumx/cFXNpXE3YyE1Y+tiI39xZO3TZ3klgmK9XKqcY4YrfGiJ0vAD2/JDT9BzYOEgxLj7xyIv7pBcsWNYCHJjy7kVZyU85YS8HcmLcnMJj270Yp0Xu+IPtdROcrVPrwdrXliMHgP5punXuZZLIu/zKe4cGxSt/8t5ctfboyXO5MQ6/NTr7p708K2zj5zp8unCaTzzoN4+up/DjHmDPltDRf8olO2PWAL/lprGr1vmfMcLQL1c4lLPu08Z7RpWPcqDNRlw9A6zVe++9964etP/whz9chwvuJc86fNwXeOLieejwweGRXLk/8MGtecBRrOLXV2k+9BsvVjhs5CUMtX4HHNaideFgyH3v2WpcGx/rgP8OAHHV5sdnjUMVa9m8ho+L9cQHv/5637OQ4OIe6dmjLRcdtMuNnDjUh+ce4Y8UY88i+REr/ji4v2bOHMLw43ALFk75hYUbXz4D2Gm7xom+2vPwueeeW59RcgODnvi7n3DQp+DqGSdf86B9BTB+9Fmuq2ei2pqTS3mF17MDX3zEruCpDycHjopnjflx6OaQSZn3AF9sFDzFzoeYzCX75t+c+UWTfBWrX4r7xYM860tcy5c8qM07THNuHn1uGOPXWGtKDPwbc7+ZA+Pw8TZuDD4b2ASeNWN+6fFF5Ade1+xaw3Tk1drTj0sCO85q43AVeu5JeTFG6MPTptPa4YstMWY+O9iUb/zZyalxOK7V4lSLyZ5HHPZF1gE79zMda85c8aOtyEefqXziI1a+zIF9Gh7NN85xY0vfve9rS/gSM3v3Hn+42PPhxU/9nh/WA4kLXWtfHPwpOMRPvHKJA10xiwe/DtqtBXZ880XEjytu+tXzoF3bepkH7X7BreCJnwPthx9+eB2+lgtYnh3mByf9/bIv7j2nW3+wSG3XrY3i6nkkNmPy66D917/+9brP2Hiu0Hef8iUX+HTP0SGtNTjG+cdXv2v87H9hwDNG4OFofsUkN4q8e76bOzruCfc+v+ZdHxzz0XPEvSX/2uWDTrlQK+4BsZs3vmEVD15wrAdroOeV+906N4cwiwFPNtmpYfLjGg/xWFt0jcmJHLnGdR+0r6Wwf+wM7AzsDOwM7AzsDNwuAzYWDtoff/zxtYmhZ1PSxqgXB32kDazNRpsTGx7j2iRd2EQ9i3H2JN3VuM2PactHGyqbPDj867cZVNtMGdNWa7PRVhMbqF4i4i02GzU2+nCDzQcOxQwv0W9Tps91GzjjcbOJVfinA1d9KvSNwcBB0UfwsdnHB1Y4+uFOPTHCIPmip69ciZMeHHNsA2kjSZ9uOQtHH30v4vro0tGfwKrkG14FR1zLFR18WmPGjclnL8fG2bNTXNMLc/rWr7DBz4a7l2GcjYmTrTbuvdjJKR69RMKg4yXCoYa2+HGDkR4bvhQ6STnU5o8toYOHdn1yxldrNT2c6Bsv1+UXPpviYNMYXYUf/Oh4+Z1+9GmnIya5cN/nEya9uMaBjZjoFQ9d/eUdd/rmTFz0HfJ56enQAK51aF27xgcejNYEXGvB/eqljY/iUJdnGOGwgcev8Snliy0Jb2Lh/Z8UHMQtZ9asom1O9BEvmF5gzY9cKvKk30ull24iR+zNJZ3ilAeFr3JWnHwo9ElzwLai37h5IXF2H+hT4zZx9MNSkuzi1vzw0/qiO33Rab2GUw0vTH7gqMNP7041DH6smzDV4eA2S+sVLp/4KYR/tkm4nh3WpPXs0PMrX/nK4c1vfvO/6GZzmZpf4lDoW9/61jrcwEve+XHv8W1OrAf3XesHV7qKuPBtnvSxq5RT46fzzy4seuG1dq1Ra4N/NX3r0zjhA0/3bvHQ4Yct7mp6dOSQHp9qOHi5pmO+lMTzxTPc4Wmf7a7ZuWfYiV/Nzucb/Q4VjeFnzvTn30GLWB1yEbZ4qvGHhyP7uLrG0bhaThy0umezZSdm86SfLd6KMT49C/GABysxTswzW4I3W3Zi4tMzg3/PEznAWb7DjzN7Y2zwYUPU8CZX/XQUY+XQ3IjNnDuUFJtDVetff+PyiJd5gS9uxTU/1rP5x42o+WDPZ1j4Ngfsu9/U4nA4igNMtnTjoOZPvuRYTvChq6/7iW/9Psus6XzHU/wEFnxzAUu/+egA2tzJi3F65RS2fnjNBXv6Cn90xaSNt5o+n4R+fuXB3MefnpzxQ+Dokxd+2cJhpx826fOVPwUHecFRmx0RC/tw9fOldn85uIXJH1257sAeHqzWXIevYfas4JvfCr/yovCNNxttPHq+uBYXLvGFpeBUH//yV/z8FD/e1qp7pxyaU/9SBt/yJg7rIz768YflWg2fT/7ouyf96w4H1fqMmyv3dDrw4ty4X5w8//zzyx62A2ZjcqutiK/1Kl9wiDw1f64J2/LmWcMfoTd14MqLeVXYyY/cEbWY+OZPzObYelTw0w9HbsSII6FL+FT0wzOn/Ey7dJtX/pTWADu84EzhF59yoW0uxSx+woZP/s03Xc+vj3/844f3vOc9S4evq8j+6pirZGvr7gzsDOwM7AzsDFzTDNiwdNBuQ6Rt02BjZ1Nhg9HGyibEhkvb5qPNxWn7olTYnCjwbYbYuFZIWLVn37yGYQNkg2Zjxk7BzYYvjnjOTa22DVQbbpu8XgbjBrfNHxwbMwVX7Tjb1LVpyy/exmHJWxtj+bPJ6wU0HPbGyiPbCq54KgR2fsTaywB7/trg0hFDcbOFqR8m3vS1XeuDDW9yyb8ctwlVy5dDCvZs2tzyczdELmxmce5AQ7xyJy688ORfHJcRWHJtA28e8BYzP16UvFjmU3/5pceHv7zxl3PNAR7mlg0uivnuXokTnFOBqRCxwEqaIzVfeMNundE3Fj+5IuZAYUNwNv+w6cJw7a/G2NM1r9MGJ7nwcubgB/bEM/fuHbgwCBvYaroKO3noZd367S/V6DqY4Md8ssMBN4W9mBU43R/idjjBN1zjdOPvWszaSvzUExvn7Iydrh997PlT/tMiH+LzywgvzeZOrhS8HUQp2vKDP8705FxOiWvrU5sdnRm3tvjkUz3XmTVNF6b8q4k+0tx0TYcf/a75nXbmHNcpMPWFjY9YcDFfsIzli2/jp/MFk1540wf8fMQ9f/Tqc61fuxqPOd76nmuDTs9Fdrgm0zZ83MXWy7u/sHzDG95w+MIXvrD+sndyC+cydb5uHr866POf//z6OgNY7mF8zTEdc9Q8neLilZ5npFjc62KEgXvrTE6trw4tYMddPrTV4swGXnNZzd7aIOzhXiQwiHE85a3PH88w/v7+97+vZzuesJon7daAWMq9cfG5j9rvGG8ddhDIDxttf9lovvzC1f6AuDb+vyHWXJ9XcZfXy0r7DfpyVh7lR9yeM3InP+ZEv3vX3Lo21nplr22+6MqZQ0Y+iHXVX4zqN46zA0c5hMc/fF8dxk7/61//+jVmXLzsPDvMm/XIBofuM/ONi5ybwzjy6ReNcccRV21YPoPMGSwc/vjHPy59vvjlXx7oK/qIfnMgPjj8wuIbN2Oe0+0D6ONqvdDFjy4+8s0HHr4qw0Fzezs+cSH6YMuRe5gtDPmER/jpuWpcYa9uztjQwZ1f+fQ5jGufH/Aq4oMr9mzwiAs7OsW+iBx/ZF++i0W8YjAOV1zmDk9/je5fM4iJnQLbPWld4MlOP/++A9tYEk86xtXXWeTEurT+5dkB+69+9avD008/vdaA3Fjj9gX2Z8Q8y5N8yaO5N2++ysYcXCRw6JpjayKRQ2NJ94Q+95y544+eMRyzL//GYbNR9Gur8RIbHfcHTMU9Yl2aTwKTrn/lQ19M4RuTJyV9NtajtdH+0JqRK77148sXPetenvGHbYzQFWM54NOen701DJMNbtryy+Ztb3vb4atf/erhox/96MKZvFbHHX7sg/Y7JGgP7wzsDOwM7AzsDLwaMmCj2kG7jQhp02NTYaPRxopuG6k2KzYs9dPTfyrZ0GujTE+/TZDrfLS50nc7LDZzowZTn42cWrGxs5FzDbPNl00V8dLj4NiLUT7ZaNuc6bOxa2NZDPr5MyYeuGolYWNT1kata7pwxCWv6vJRno3jLRa1Nh34eLmmq81eXZzwK+Jmm9BT2jjr1yZxaA7YtSnupRGunNngG8t3GAvoFf4QVxvhYoKvTzw44Eru5Bc/a1NhY6OstF7NnxdCxXXCTh4UPqyRDtr5F7sXe5yaC7julXKin7168oxPc2MtKfJdMcYGlnwocTZGnxRXGPmBI3fWMv9wXHu5z5c49OULlnu/g3Y2cIoBnrlvTvJvnC4pZnmQDzmF4cDFS4s44Mu33GkTHHChGwae7GGRDlhw1C9W88AmEZNSfvTDds9MvXJYHyzX5YK9OP/TIh9y0z9Zx6HDQNwcsjvY0SfneCrmrrUtfzP/2q2LGbc8wVfDklNz4jkFk42+iwQmG3zZKGE4fGJHh7g2NsWYdaOQcm8+cYKrsDOm4FMcYRlX4NEJd45337A1Tj8sNtnLTWtdTqavMPQr8qPuBZ7eUm/hAABAAElEQVSdvJXf/M8aHhv3gbVuPd/Ng3Zfu+HQ/s9//vOKaR5s4GV9mBtzVdxiJz4PFHFZf+LB01ywLf/yJxetE3NE1HTkQ5zi6zNGPzzrQM0nDGtUHWZc4LGpNKfGYXoW99ew/OHs60/E15w1D/mGOXNv3Ge8+8hznF7zCsMYHw6xfPbVvnH8nndfeWLuiIN2YxcJ3v+u4CA/5qt1hYc5uax4TrIl+JoTnORR3OZZ3ObOvBD++KUjr2zk2CGWdnPvUN1hVvMu9/qM6++gyz6hueILJ9+7bS34xYWDdr5aAx00ir+1Z148F/ThIha1OdSHY89I3AlMPrRhwxIDXTH2vdryQ5fgLo5sYLPVRw9/fq3B1hcsh59s5IK+cfNElw2f8osjHz5DfR72neZ89wx1LVa5humgHSZ/8pDo46+54wd282atsDGOf7zMBV/mXn7EyBd7wp6NMQKDrfj1i4WNkpQnMWZL31yLIR/mQCHiN/fw8eYPB/eSA84O2uPoQFO+cCH5wpcdHOX/i8z83I5TsdBtnqwR8+Vr4Hy/+m9/+9u1XxKj+8vnv+eVvMiVe8gzSl5bY9a2dXmRmL9y3nqhB986UPBS5JZOzx22xvVZQ/xlKwbrHg/jfFivajZicm/rax24P8TAjoTd/kcu4PKjVsTNt3w19/Dcb93fxuwx8dUnlvaJnku4wNFPl9BV+CDG5JW9NcwXG3llb33Tv++++w5f/vKXDx/5yEdu2a2LS/7YB+2XTNRW2xnYGdgZ2BnYGbjOGbDB+PnPf742DTYjxGbDpqliw6PotymyObMBsVlpI2QsW2NT0mkzY4wOG1j6XetLVzvMaecaBxu5+m22ejm2CdK2WbJxt6lLvw0h//S0FX7xCBOuPhs7Gyybq7ixFbc+/GBP0S6W+MsjG2Ow9beJLH46+ghf2jZ4M/f6bf7wKg/lAKbr4hCLa8UmN56uZ/t0HIZxG1TFdb7KLSy82LouLvzwKD785QnnGZt+8aVnrJjrb6MefnPF5tQvfgqb7OSRnn425tEGvhcRPuURt3xO7OK24Xaokk/4NvM23fTxhlV89PQXU7nDh2iHVS1G15U4l092OOpX8hnf+sM3T/gbz859wI4YEwd/+WpNe9lhp+hT07UWsmksvOYftr5eiGD3EoQHbC/hxme+ykNc+GntwHbA4p7Wlw/ctOMQhho/4jrOYetzPfW0mwN18cBW5vpYwJf44SVw+pgm+vMTHz7cKz1v8BaHQle+xGtc7PS1vYQ7lOnZbQxn/ovTfJNyZcz9ZJ2kAx+2ttL8TN5d48S/ecRBOxw+tEl9+Oub/WGpcSb5lZM5b2vw/AcdPtx/Dh4Ufe5JuWCnzRc915VTDpNPY7hOkQd93VOuFTlU56d55CsJ35g5cA/iZz07aH/00Udf0VfH8MOfQ5jvfve765c0YvYVHbh1z8qV9eHeEw9e7IoDJ2JO3Wf+6tZBiH54hL42G33hdBjRGjOeDjxza530TNBnnTnEcXCt7VpO4scXfPcD7tYYTPH0eU7fwTv88qyGrbBhrybmC3+FP3yM89XcFqN2n32u3SueY2z5wE0OYOIRhpzBDi9/uFsD7OSJ/mWk+wLOZW3ClVfCdgr+5cR180sfP4IrzmzlIaFjPuSOLk449vmuv7kyT/KW6De//MlRh6dx6HOYPr9xwIMfecOl+46efp8pDvJwK8/xxLE5Mie4+1qO5q6c4iCO4odNB6fWNz54weFHv2cPO/7oG+ePDn2c9fML20G7v+iWFxiEbX7ps4s/XtpKXNnor+if12HwO9eP3PFjHtTdj/mGo/AlDgVueWkeJo+u6fEHC3c+1OGxLV7PF/ctP9nQkzN5sW60jRH/Eu+6iP2l4rkiPjnw3JWf8uyA3NovTrmi4xnOzi/afQWMfmIe3C/NhT5zYjyd8OXMNRs5thaSOTeu2fLXPclGP1/mCHdrWRELgW1ucFeMNYfG0oEFg65nsfuk+Jtb+Ar71hx7n+N4kTnOzhrpGaDNDw58GSvG1jYMcXpG+EwUa/cEbJz5tu7U2op3SUW/HMLtWQCbX+8Evjbmne98JzfLbl1c8sc+aL9korbazsDOwM7AzsDOwHXOgA3Lz372s/UXcQ4q5obJdRspmw3tNsxtamw60publZkT4/wk9EgbQ5j6tOubunzYSNGz8bGxsiF0Dduhur+UsSnX54Wmg/ZeFOkVg2svP3wZnz5tzGzGbMTajNpktTELp5cncekjrsWh4Ip3sdLpOt106BE6uPBvQ8cvzvoUfBRcSPiNV+dfrdBT4MdDnggOcju5xUs8MBPt4tVP71RXPx84ikGebJzFQXpJUNMr362n8gy3OMy1gw4b3/ziX/zpiUOpv2vYNvwdNvFL4mm8Pn5t3r1IuHZ4Ym3xQQdv90kvA9kZV8oZnnOetI3jRrrOLts1eP4DVv3stQkO2lMaU+Ot4EZPDac4jeWXfoVeOhM7nHxqk3ye6uIHx7g6kTPFnBM4YRWnfvzkDo5r828+GoNpXXV/8BPOjIU+XGK8a+24p2+svISVXfHMfmNk4jQOy3MFXn0vab/0k02+4iS38jLz1UslK9fWM4EpP+LvoN3LJIFjjblf+FDcK3DZGIcDT39c9Ltf1eVkAV7wg394+DaXMM0Te4WEI8b6XF9U6NOBjbMYsi+H2vn20tzhur6bx69P8Rd9Pdfh6Q+DT+18GL+MsMfl9HmjD+bkOvHyGwf2niv0fT75+oRX+h3t/PFjDfjPUNXannP48ac27/LiGWjN4NS6wEsc5lO/OfQ56llbjM2XNn1CVzH/cmqM8E+6z907dLT51rZW+Tk7O1sYDjUcQMYBBmw2OKuNVfjyXHZg5UBJm414YYufjetiFq848PcssV718UOqravuA/3lib4xRT4dHomb/3zjZG67V7vP8INvDuC5N5Ni1aaj0GGjtG56/smBHPZMEhM/cFrb+CmEvbGkHGrTVwj9cOuLh/G4qQnMfOZ3YrNV8Ct+eWWvz1gYE2+Bn+PXX5+6uWkuzYfDTfzlQbx4mHe1PvOCg3Wo3/5RHwyCP/viLl/s9Zcb43E21ueP6+Jq3ujNuOlY8/3xR/NSPtXwTznoV/LhWhw46btI4t9Yc0CfHSmu6Q9f+VJcJ+UpHtmoYU4edPSrlfIVJ3EXe3r88DfH2JKeYXR7frgmrU92JLz48uk6LvHJrhjxZ0u/dbkAz3/Me00XHTlSE7Z0PG/80kdtzFp1gB4+Xc85zztrgT921iQ78+rZ5V9KeI70DHY475kSP/ie9Wz4bn49i/DSdo1DceHimcgHPuZfPvmWFzlk5zmj6MONfusNf3ruHcXcwKLHjzG48uoZhy9bPtyn4eChzX8xwRJvHPmaeRMXXvJGl53Cl341zmLos05b3D0j+CsfbIm62OkrYpM/MZT3eb/IqzH/MsMvi9lcVfZB+1UztvV3BnYGdgZ2BnYGrmEGbDQctPuOV5s3GxFlbh5q67ORUdsEKbX1wcpOfzLt2ugYp28DY+Oi0DMOl2jbBNlctelx7T8dUmyG6PbPKI3BsSlrkwrDBs8mq7/81Of7Qm1YbaQIHHo2jYp2XNQKwVmxgYunGEgxqxWbv/rYaJOuxZaO65kDemHQT/TRI/q18xFf8TXuOnvXeNOTI5L9jJuetpy1OdUnXrG6Zjf9u9ZfnuKSPl/G5VhNZs7p81Ve5QWmWL10mGtzildzLGdxoC+m8lhbzcZmX+Ej/mLAQTv+YXsZh8W3v/CE4yXAi5ACkw3ecWheylPrwjh9/mDqdw1TTeiEVw4bb0w7rHSW8fiRrprA75pNsTdmXMFdKad8ybcxc+ZlxdwUt5cb+jDlVMzFPefYPSdeeNnTw4ltJY74KUSfwrbCp3E84LKfWMWlnx47/rpewOfYxa7Ojxoufb6sKe0wsq+mnz2fJK7GLhLYShy7FhM/9Xuh5F8bpudbL+DlATd5lXMCyxy6X9jgQJdeceGrTw2bzwodNj0XJ/94slHoNte4ekHV1k/EUxumkm/X+FlHDnbFBp/EqfbqPP5gYwyuNdca4M9XiDz77LOHv/zlL+s+DSef6sk/zDvVOMqnGvdE/vSZn17GJ1+65bdY4eiTpze+8Y3rO15fyX+Gigtsf633gx/8YB3Q8IGbe9ecxJ9fefIMNNdxj5O8miuldWgMjviKpXVCv5zCKgc4yYNnZThszFfF8xOXbKxVfyFoHXRogjs7fNhZ4w5U2fKLj9z77MdTcYjJd8+Z9NX6mwfP9r4eQD/MfkHjO5I9s/iVR7jNsWegInZ5FKPrBCe82ZRfMcLBCa5aTvmlT08utJsD60MsfpHgWl7khw6eDtj8kgkWbnRhdT/gZUz+eobnj44iF821MTmWB9jsCWzFOCw2Yqmfz8boiwMmXXpikwsx0DUPxDhd42HiCZee8VORG7z8xa8cwPUsFKc54Vfu4zvXuX48cbJe2kvyrV8+xK/WxgG3+PFtnH9Fm23ChpSb7LTp4qjG2drz9Si480NgiRk2P9r0CDu8xEhHsY7sXeHmeymPHzD4VyvyK0d8sPG8nWujuHEsj+C0FcKeTzV91+2pjBePa7xxDRcXYn7gN67GTx8+7n9tdvXzLwfuTWvI2iF0rS2FPh2Fj2J3/+ERZ3PDjzWQLzlXGmv++MBBvsXZ80ru3Jtqgg89xbX1KRfyw5b/xsViTBvn4py5g6mtiIMfnOgSMeILHw5M3Nqz0pNXMdOF4ZoNfuUcJltFzuTEOFy++/9i5FwfXDZ01XFWw5BX2PxZ33RcE++W1jAcBRd45oA9TPzlCgYxrpDmlK5x/a75sHb40WescXb6i5G+oq8Y6OTDNYEpn7ixpZ+tfBs35jPEv2g6tX8J5eV/7oP2l8/PHt0Z2BnYGdgZ2Bl4VWTAxsFB+yOPPLI2Q23E2jwYJ21+XBuzIVJsQIjxrrNdA+c/4OhX6NVmZyNj80L4V8Kga9PmZdKG02bwLW95y/rPaPylsU2bF1HjNk/sYCs2mW0wbfJ8/6HNIx1//eiv0toc8klfPTd7cKbgg2sbd+02jflV61eyV9u0pYOrNix9vdykr99mDz/5IWz00S2PfBhnp08+8e9aXTyuvQSIEVZcYPfCVPxeyLzMKTCV8gmHz+LRJtXharMTC57a5a2YtOEaww0PfeWGrRcpa0Au6MHSn045OO0zzg8O5h+2a/kg7Mp3XOnLr02/HNlId9AOo5cunAk8GOwUOHMt0eGnF1w69bGjX77oxYMO3fipiyf+C2j8YJvQhzdz39is6fADW7yKPnWHAe4xL1vWgrVOvGiyMVf6WzfyQr88u9/o4KGe3NNRJ8Uf/+LHiT81oTfjhVGbTnzK9ylebeNhho+ncZzlIX+TZ7yMsVfEhgNMtlNngRx/6KOn4FgOWjP664M5+Xu586zroMgYzjDZVOszPzgk5QM/uHHTL15z5jr+7rV0wogXHdf0Ww/uGc8mOGIg1rwCnz4pNziwcW/3S1N9hH7PVG08KrCNd/+x0ed7yp955pnDL3/5y7Ue6etX01HiHRfYpDHjp2L+5XPmMh19Yvas4IfEJ74wXc+5EvPdPGh3j33ve99b/5EcPj4n+TCHOFo3rWPPMHnBU59SbMYciPTP98XtGQBPDPJuPs17ORRXPmfMrQN6/Gkr5pUPh7raxHr2jJUTh+7WBe44sjfXPhvw8v8U9Iwxzg5PHM7OzlY8bHD0zPIZr46vWMVj72DPoN8znQ6ef/vb39ZhLp5yExc5FLvPEIKDfMEXNxz5aa75wQsGnvAcEntW6uNL7lyza23y4TMHP7HhKC7/AoIOf77r3B8KwBQLPVg4FXfPZGsTF/zoNA94so+z+P31rfyy5cscKIS9OGDIiXw0P3wSWDC1i42uv+DV7g85jNMVO4FjDYiFnnH+FaLmX77957e4hts8wNOnEPNkrPmQb5zf+ta3Ll/88MuXnItZXZ6sJ8Uc6rP+6Jz+FTEMwo88888mv9mWE/fljeP3/ff5WWy4ikv+2Bs31r1jbujAs47kEic6SsIvUcMhOPJr7uUFpnXlXis+GMVgXhR2ciAm12wVOMXlPtanLacwXPNRrR+OPljWpFgUfbCtM8+a9hzxMWds+HzhhRfWM4CdcWtGHHLFl9zRax3REXdzrG2O9PU5iq88KsbY4oOztuubx38tZd75o+/+9JfpHbLySVcM8qlNT81OjK03a6z7Dq9ix4mOWHGwnouTTvk0n7D1EbW54pstDLjWknmBQQcXfsNkw6c1IMfs5ZKd56xx70iKGNjLH6x816YLQyFyAFtOjGnDhA1HbDjqN984uxb3FPhiVWDJAVsYBA92fLi2BozTtd4ITmLsc4V+c6Vmo/CVaPNZPunlxzVf8K0Ha3nahnGneh+03ylDe3xnYGdgZ2BnYGfgVZABG4qf/vSnt/6ivQ2dzQaxqaBDbCgq9BSbJEKfbuPq7Krp6adH2Cgwph+bmTY5NoA2tP4SyabJxsb32/pLQH02Vsb1w4GPlw2lFyPFhtNG2v9o76WajkN3G0h+igUXG0DjSryrceYDP/gEbxs/GPSKw/W0c21DWH8bvvLXhrTcGLeZU+iw0ycHdMs3/Xzig3d57Ro3fdryoA03fsZ6gRKXcZtyfUp4xuRHG6fi0U6Krzj4xFsbLntCTx9Mc0gvf9psFLm2AVdwLlZ1464VnPSplfr584LTBh0PEgfX5YqdNecFwNrwwuAvV/Dwou+vR+G0TsQOJ39wjJUr2Hj0Eh8n+qTcxYV9oi/JB7up03h1Nunz53r6oaufGBObuRSvmg/59uLlWrz9taM54t+LqlybKy9QYlbo6qvtBUubHzmJB9/pqItJrdDHsTZ9PCdvfRcJW3Os4K8dnprULj/8FHt2jdGNR/Mdj/rpiMO4sWwv4keHDzX7uLLvujH2+bL+HSq0NuVDnzqBp+0lUB2/1qN2sbPhs3vQPBF23dur4/iDDU7NVdfm21jrB4YYiGeNNnx9+e0eVXtu++fXnuXuNeLZwxbX8lA+9YWnz/zCdhDlIOapp55az3x2nv34knIRHi6wCIzZr6+xeU/UZ5zwL//mA54SVuNsihsHIs67cdAOlzh4e/LJJ9f3T7tv+2ttzzE+1eLAV17Fiqf8l1c4xnw+Omz1vGILz2cOX62T1gAbOPTU8YFPV+yuzU+2ap+7fLVO4HvWnJ2drfWAV3xhsLHOPGfYkubV/cC/9WcNsc1vB6Oe2wmesD2/HL7g5/C6zznf4e0XF/zBpSt/OOqzNsWJO1wHnnJYzPxo42FtsOVTPv1FrueoMfY4G++zAW/XPXtxdEjtr9n7D7nlQu7MOT7sO/AzJi/ypLj38BYHwcc4OzHAoeNaLPKg4KBP7ApcenBwFB8sdbmGLyZ6+uiKU4z4EZ+ddFoT8uKaL/eQuNnRgaE/0Yev+eGDmHvx4B4OXvzqV8IxLhf33HPPrfXcmqUnZsV1sbtP2cDgX96mr7jRb87Fy38CrwNOOjA976w9seojctyhtbZcFBP8mTv7WJ+rrVn8EjaEDXzCh3XSno6OdWVe6DVn8oG74pr9rIule1e+3GNwCX14pJzFDQc5xMNcN16M3QvyXU74pm8Nyr3/7Nn6zEYu5VEc+vARCxu2fLR+2Wvz4zPH2pFjfPE3jj9bfezLg3cF91P5wr+DdrHySRcef/JE8DFPuMFT8sUmTmx8XucTzswPbBjWCDHWuFyJybpXa/OPr1osCnttha1Y5Vou2MbBmmILy/PKL7A94/A1fwoMeIQ/WOzhwHbd3lGfnMJ07xS/2PFqvvkr7rDh0+FD4RsPeahf3bpj1zziQOCbN/ONB11YxsOkB6ciBnPBlr78K+XXmLz5ZajPWvpXlX3QftWMbf2dgZ2BnYGdgZ2Ba5gBm4uf/OQnh89+9rO3/uJIGDZTxLiNhZrYzNhYtOmyWWnMuLGK/oqxKeHoayPj2sbMxsgGxmbG5ssmVNvmiK4X0A5m+NIXR20bMRtGhwY2ul4GbNC8pNvsES81Xhjwiwtb15NzY8vo+IMfmy8+6NNt80pHu5wYr08/nmoCh55SWx9h55p+G0N2+mz29Ml/vpbR8Yd2PutTF4OxNve9UOiDZQMsJtf0XctZsaXXOF/FY0yJD56uiX56JCz4hA4/ij4vJop2scPCVdGnnW3t8m1MbhTYs8R7GY8f2eKJA0zrzpqTa+vRCx1sa8pLhzjoZsNPc6mfLzHQi6u2frqwpl84dxI62YSZjbFinTr86DfOd3r6xUmXqN1bcixe+RO/Ax7X1oYXJfdT948XdWPWiLyIT3FPFav43XvapP7VOP4wbj3CkLcEzynGlPjOsYviZk9fXQ7ozdzAyDY8OVH0syM4zrUTz7hoG1foNh7mRTVexcgXiW84+vNbDLh1H8i9ok8dDixtz00c+cGrexkm3XJhnO/mwhh/xQeP6EsPRnbmlK57xRpqLo2b26lLDw5+XVtvXsodPnlxJeysORjwcaOv4KdfcV3buvRXvr4+xjOEvcPIDoXo4V/JDk6x8Z0PesbKt3597Ej24u75MPM2+dJV9MH0fHHQ7jva/essff+OxMWByOOPP37461//uu5b/0LAYZC1QXB0jZ/5KWbzILcKUbtffWbKH3xz2nwtpeOPcqhNxxzJOVyldXvaZmfMnMD0jKEjL/xYsziSckUfL3r1dwCiXb/rbOvHybNJLPDKl2sY1h57600M+LVH0KYPU+7ksFzpxwsuH+EWC3z65rl5wMN6tO8oNvFaO9ZuMZofPq07HOnYDzlQ1C9n2nDw1ccGj+43+VX0N3d84qNmR8oN/uJVxFDcbEmHZHzhKXbXBJ7Chq1ijG1rztzC9vnBNhu62sRc9NkTh/TCFg8MsfEhD/iI3Vzog9E9mx0frvHBJaHfOtAHC0/6+Js788MWrjmNrxqfsGHBZ+dajs0HnXIGBzefnWrxdX/Rtw7Mq3i0le4LfUSfddQvh2DLF1HX5gsP4hovGHzgbD2JnX7+xMcffYIff3BhGdf2jGAnttaccT7YVJcbuuaMLZ9880M3yeesw1SbF8+55p6tOWn+YNNR6BsvH/wr2q0P/unpw9P4XB/sFTpyLU73D37FYH1osxdz604brvvLL0hwC6v49FmzcAnMxvjkK37WOXuxZScPCuE77vT4pitGnOAah8feeAXXMODU7xo/975nIj1ce2YU0zI+/xFHsfSvbHDwDGOrwFSsQzXBLz3zwFe5UFfixoavqaPPuDVJshEzbPlUlx869MVBxKvQp2OdyLs1r7/80aXjffQd73jH+pdG+mBdRfZB+1WytXV3BnYGdgZ2BnYGrmkGbEgctH/mM59Zh4g2DPpseNqUtQHR3ybSWNf6bU4I+zYd9bcpaixs/TY/Nt5tWtW+w/I1r3nNeqm0UbTpaePJLz75cg03PnzawDkQ9ULiLx1t6ojNZ5u4bPTFl87krD+u+mcp9mzUSXraMCZmOury0rW6nLMRW3k1Fq56cm5MTYy3YXyp5783gm1EbYZhlzf9xQS76/zroxu//Ex8uvwqca2PvVwm+S2/xueLm9jDsAba8LKny0eb3/TY6FeT+tV4KK4nv3SWwfEHTC/X1iQcpQ26F1IvHbgTPBI4RJ/cVcrXjJdeeVHPsYlJ71Timz/j9YWZjTa8OLgWu1y6p1zTUcTohUgxLn5//Sd+cbuf3EtetPijp/byZNx95L7rYJ0vRZ9cEPOrL77mXh/bybF8qAkbGN2rYYeFP55ws6GvLZYwtLtmS+IShpy0PozD6d6onQ9t1+LAjW7c9MXv1Bc7wnf5r11OcGBXHPTiGq4+67UxGPKgT6GPXy+5sLUnH7ZEP18XSTzZFSc9/WHxK9dzLruOt5joxVc/ntbS2dnZ4d57770Vc1xaH/yd2oajpu8577BdnA4h/PVrBwPWYdfG+Razwn7GwU/j7ovZplc8rsXUZxQ9As+1MrHD9FnmX2XdrYP2m8evNvjkJz95eP7559df7rlv3d9yYg7iqy5O17i5d60PbbEal6fmTluhK1YFbvOjlmsHMq5bX9Xlgx3JvwNjfxXKLw59RrOD0z2nTUcu7Q38UkaNq3nsq6nYePbEFd846IOhpsefOsGtcbhsYcsBPXbxoDelNh3CVh9M67rDGjny/JSn+HRors8cxBfGLLBaSw54/FKKLa44OnxW4OCNMyx1cbLHR53g5L4odvevtWlv4L7EEy+HhT73cAoTPtEHE0f6imtY+rXpmk9550s/fGKcnMYLg0562oq12f1rjbvGEX7Y+t2T+Z8xyhGM1nxzIO70xYiX/Cpw/UVsc4kHHbhxwZ8eYau/P+agb6xc4EafyHVrTn6sYQU2fbHYj6jx49fBr/mgJw6S79YsfLkrr67Nt/sMrnhn/tg3ZzDChU3fOAxxySEerdfG+RJrXOmKTSwdOFuD7mF5lwf67GDQN49wcSgHOOTXmDywy1Zd/MabW3ZyBIsY41OcrsWg8K3AFSMs7Sk4GifdJ60NujiwVfMXD2vNdXjG4cDD05yILU7pWmtx8YsZ4zCMm0NrS2z44wuPjpro85xUSPe1/rjxbS7lnMCCYf4IGzF2b+Hbmi5mdfNmXOxs/DFU+Yx7/OGJAX8c9OcXf21lzisfU8QBny82xU2vHNLhS1x0FX046k9XbUzc5Rwfa1TbWHMbls/YD33oQ4eHHnpo0cL3KrIP2q+Sra27M7AzsDOwM7AzcE0zYOPhq2M+97nP/ctBuw2FYtMyNzJtKNTpCD0deFO0Zx+8NqI2MF5g+t/bbaxsDPV5ofQSwpZ+myI+Xduo2YjDYMc/TmqbWxt7L+FzIzl52TgRG64psNrg8cV3uPRci6Frdfq4plvc2gSv7LT1x5uu8frp1UdnCk750E+PpJe/8rIGz38YEw+b+ZLAn5xmq9anhlubTnow0s+HGOgr8ccjXfqum8N8hBO+8fJBH1cb37jQd21jrM5vm2Lt/Bsn2q4r2iRbbbj8eBl00Jxum3nrzYsGPSWMBXT+ozGxVYrXi7RCJ2z50TYvvRSErT6V4ihG46d92gqd0/XCn/jEFAd5c695oTemLf4bx++Sde1ecz85KPJiBBsOvu41MZk7L1p09cc9/3jqj5eapKftGo5cwHJNxCGXfMFzrVaIOMpjfWzhWSPsSfjs86vfOHv15OdayRcb3GDnRx+8/GkrYiW4GSfw46IdvjqBwwe7sKdu+PpgpacfjoMEMbs2hqf5wSfO6nIw+cBI5nW+ilNdLHFX68O9eMtV3OTYeqJHX9HnnvMXcGdnZ8uWTvccrsq06Tqu4oRFz/rjz/qxZsVt3Vi7vtvaIZX7mNCnyz7O+caL4MYfvfRdK8XMxr2Dc/0w9dOZ+q7p+qWCg/ZX8p+hwiY3jwftn/70p9dBu/v27DyP4na/yoFibU0+Ym6O4LB1/+Mo1lnYKWw6UGHDXpnrSz+9ciEP1mQ51XaQ5MBNbh0S+7qaDnj59ZxVs2GrOHBygAOXHZ/+E9wO5Kxz/Wyycz80L+Kn0y8Mm3PjOBH/Ug4PvuUOtmJdmVPrgagVfvjsvoWpyBXMDhPlrIMl2MReRx7Eygc7ePhMTuWejdjN0QMPPLD2SXLg0NUfFVjv4oNRPOamfOHvOn7NI/6EDWycYYhJDvySFfdyq4ZBcIN7moPyIlYcjFv3dBXj5jSe8CZP4/IrD4QuXuWJX9g4qtmHYYy/dMxdY+zlqV+Yw3egZu2bd2382IpZwcV4B+3FRkfBGwf5xEcxL9a1e7B1ggMd3JLWkb7uI3hxYMOHtY+bNj38+0trWPRJucBRvtXGxMjOfMKQS3NdvHTCELN9s7a844iTddpa5afYxSouffzBNK/aro37VzLafNrbyycOzbFaDppPsfmKHJzZ4axMwY+/WfSZbzY4iwUm0Ve+a8PUT0c87BV9CslGP0yx4Z4ejmzxh1cujMtfc+vehJmua7Zs6BYffDGxU+SweaBnDfdsh4ETW7qwKziyM2YtyD0RK47haMOABYMPNRtr3tqBY9z6KVd0YIsBlrzPMTE0DlNbrYTVL21gKXzJNxxxhwEfZ2vJGAzx4NfnBntxlF+1POGl3ziJLyzXYqIrRrnXlw/9fDXGHj//Eu1Tn/rU4eGHH9a18NfFJX/sg/ZLJmqr7QzsDOwM7AzsDFznDNhI9J+h2gwTfTYabeJO47NhsYGio24TY0PCVrmd0A/XRspftd1///3rL/zawNo4tbGx6bEZs/G2MSI2XDb8Nkh8tmHn18bM5srLtBdENvi1AaODQ1xxmdJmUB/f2eMGg36bsHDZyElxq5U2fuGzbQwH49NWm4TbeLj6m5fs6ChTB4b4lCnxb1ydXXOij17zWtv4zAefU4cefzN/8TdG+KITzku9L/00xkelMRg2tr186McPjnk37tp4awYWHVyaN2262uqJw14fHb7awOtT+IFp3Vlb5oAu0Z+4zne5UStesrz0sY8LfopxOYEPm8DRPyW7YsCNXjxdk9mOJz9EfF6gwhC7vDn00d9Li7avjqHnRcUvrdxTXngIXP3uzV4gxeCedM/EPU70jeOGS7zLgX4ifhj80Cc4spc/6wM2ve5N4+WxuWHLxtwZJ9pyHO7qPP7AhQ4O8S2HcNkp8x4IP1zjiWvcSNzDCz/dWbPDn5/yUR6nXrmbOmz4Mn9KMbGXT3zDoluB+3Kcpt9s8OS7nKUDv7wYl4O5pq0l648dn4r86nP44l8yid/954XbWAKvHGerXdwwCXui3xqia436nt0XX3xxrWP3IK501GzLDY7y57MpfvCMV8pDOWDvhd99FEd9sGBkR5+4z/xF+6OPPnpXDtp9j+6XvvSl9R31sP3Swpw7jBNrZd67cVqEzn/0neB4E3G2Hulr9wxUE+NiZqMWo1KOxC+XcmqeteXJX0sq2g6JfS0E//jz5ZBSna414Rfwis9+fq01/zmmWPPLFz/WDizPMb7xoe+ZJV8dwPEBu/n2zGMDH67csbH/MKf0+PJcwU3c+mHTt+b5kgux0SX6PCeNl0vx82V9mhv98MvN/HzjA4ZnMJz3v//9a+/EL64OJeURX/HjJgfG4eLj2rzBgcfOWBzVbMTkeuYAP31yCRveqYgNNz7ErvDFL7u+iqx1InZY9PjSj5eChziaF3rmCTY9BSf4iVj4wgNexVzr40ds8uQXO/QJbtaV9SL35c6/jpFXNs1J840XOxzhiNs6wQ8H3OynrYnWI67GT0W8cgsHR/PueeKaveL5qL/cuQfsb/mhNzHo8CkmfOXSs5Xwjwf+8t8vGOgRObPWFX1yIu8wbx5/oWf94Vnu1PjJMWw2xQuPb5h05AVW/ypFnunrK+/80PdLUV+FJa/NMSzj2vxqi4M/xTU89xNfdNwP2avZVORNH13cYZsHudSPB53w859fY9ZVc8ofG3PiGh+/uKNPR46Kh+0Ubf7pmme4MLoPYcmRWr9xvNloFy8cBf/WhOt539JVipE9HIK/fn7Nj1/w+Bc0fMdFjaeaLi7ikndYMMRq3Jj7onWBf/cXDj6jYBAcrFNcYVgXcg8ThjU/15k9gs+MfhHAn8KGP9c4KfDKMX/mAzdz1S/d2MmZPuumeWRnThSYagftjzzyyOGDH/zgLe7r4pI/9kH7JRO11XYGdgZ2BnYGdgaucwZsIuZ/hmqz00ZtbsCKsc1MmxX69bFTSHV21frbpNlweYHwV303jn89a5MzN7U2SzjY9Nhk2Zjx1+bNZgmWzZuaqG36vKjbQGUTTzo2XRcJbjgohB57HODCELeCm7axGX+4sPSr0zMGWz9cNVw6JJvVOP5gl75rghOfxBj7yYUe3FO7ZfAyP9gpsLtOXVvMOCt48ltu0sNDP/9s6OGRaJtfMfRyoo+o+TCmrg/WXBP6YcM1711bSzboMxflhw4p33QIP/oq9GB6ufQCSvSFSR/v07jpFSssOWye9CteFKxj9pNP+uWWbTb8NR/5oF+O432aY20Y7Fsf2vzKpfj0h+nFwcuK0r1Ex3dm08PbC7Z7ygszTkov2Oq4ujfFKP7w8y1GeNO3sfim14EFH6Qcua+T1hC/c571ixMP4gVROywvT+nwx964a7zKZdfG8CZ0mqfihRX2Ujr+YDN94M9WmXLaNhZuaw5OApc072p99eNuftniH4a8mZNiVecn7MvU4ixe3PkrX/Ewbgy3uRaM49P6KnY83bc+B7w04+kF20GTWAi/xZidWp84XMNRm5/6+ddnPTlcc8BqHVvPMK2FdNjgzKf7Qc1WfGr6FT6bF+Ni6mU/nmJViL76YTjg8pn3xS9+cX3Ha2NL+Qo/8CLi8tfxf/rTn1buHFY4kPCZKUY5tQaUUy7yJm7ifncIVszFKVZ5hSOX7vfuLzpEvtiFR58OfzOnfPWslmcxmBuHmg51rAU2Prv5lUP3sDUhx3Jn/ohxvzzBp7mj10EO/NZb960c8NczC3/8FL6sQxg4sJE/unJJ6IiRDzb4a7eeus/qL7e48g3TGP3y0OcCLrDkAAfc2dNXs3FoRO/BBx9c+dKHk4NjcZl37eKmq/CPG//FwVYJnw9zGOeZA3OpHzfYxpJw6Fz0fOXbXFiXfOHDBhau5SP/cqC/Ej/9pHhgTKlfjHHiW37nWuyXxnT4sL6sLXyU1o+cKuZZzGIwjic71/rhiDs//Mu1NWzO6bDBr/VR/uY9A0es/Pn8ZUMfBn58sqPT/W28vOVDTuj2Oc+H+1ofH3ISf7jiktvm2xpzn9PBpbzLm5iIWAgbuXWP4EJXvOz4JXwq8mLMs936pktHn+IaLl2/pPDLUbGTicWnwp6firbc4A6Hjmvx6s8mPbh84Y+78fwYI9mUC21Y9BT2ce4anljxso/kT7v7n14CT1tNiok+4QM+/z3P6OazuMTIRts64AuWtUyaD3psK7jqg8kuHDbmqH9FxDdsdnDxwY0+DP48I8OVT1JO6CvZ8ueeYUMHFo5+OWQt8OVZrw+m9e6XP9Ymf7C6b9XabOhXtK1L92UxTk5w8bTW5A6HxvnAj4684CSXruXiTW960zpo9/UxpPlbjUv82Aftl0jSVtkZ2BnYGdgZ2Bm47hmwGek72udftNs4VOgQmwxFfxsqG5jG9Bu3YclmDR5/GNNv8+YvJLyk2Bx5+fISoJ+NDZvNkU1OmzSbIBuiNkva8IwrvRi5hmEcDht9OBE22a2O8YMdfpO/GG242myxLe42dvoIe6VrONqNxyG9uNa/DM9xumZ7Os4uTFg4vxyXsG5XwxJTfOKnTtKR1/Twkhttgkf5m7an1zbBMybX7OiZXz7KtzGFjTlW4xJm13R6QVFrGyOuyeSmD0axhKefHy+oXkAnDk5z8x0+bPbFHxZs9vqJuMSnPyxtOtrGrVfXRL+SPn/TBz/h6zdeqV/bC0IvaHCtFfcaSZ+OlxXFNXt5kAPY7iXPhl5y8PYC66XbC9BcBzBJvJuP+uK9lM5/6CtvulpnYeFgvJziR8rVahx/sMOFeH6wLwb9OHeoVex08wM3HmptY8UXB34VfC5aszCNJa5nu35xTZ/681uM0w4X7fimC0fRry7nMOibP7kxrsRfDeMyAkesCgzYfGUf5uRdjujTs7YUazCBYa35DHDQDl/bGjWWj/zEnx7JX+OtHe3yQNcLfb98tQ58xjhE0xcGX+4V/tmGn8/ikQvX5YDd/Iv2eKsJLgp9du4z/xnq3Tpo99fgTzzxxPoaFbytffemtS4fhF95aB3gZi7kHR8x4dRfHeMLxz1v/XTtL039Ja1nVXH5LHcgIz7X8ifHng3s+DLn6vIQJ890zxaHeOa8z7JyrGbDVmzG+SmXbPng0y8K+gtHujiadwc05UIecJML86qEp8ZHDIprfXTloFzANt+4wIXhGgf4cqyWX+uJfs8fsbA1Xv6KAQ6hX6EjB43xA9NnlDE+/ee3YvJLJHUxlXeYcmRcTNnyAY+eGBW+CGz98BV6RF7EReTGfSS/YlbCYW+cuK6tLhdqeSAwFX7o8I2rWMUjLmvaWGvCuk0fRv7pi43kyxiBa86aN+u/w71w6fBDxxqGJy79Pk9gy4n16ppdcbtWxCXnbMWAJx14YsHLmBzxpcASczmPgzWcDhv41jYM12zkTm08Hf6M442DdSdnJBs+caAHT8xyBYPgqo+Oe0A/fjDjCoPkS7/cOCjFAfee5+nplyNFLO4tceYDptL6gEEPD/hqBQ+18fDwqG3NaMdRzWbmCK51jFOCr7XO1tzxET5bhQ8lLvpgmHf9cYPpGk7+2RD68l3O+dOnVmC2xuuTf/M4c0qv9UbPM8W49c2XcXFaf2r+yj19/KyRcoGbZ7o5pEdHTPi3Ps0DXFjWSJ8L/NEhavcMXfawuie7F+jJNa58Wst02ekn1oavfOpfcfBLh6j5xE2u2Cj6p85SPv5gq4hJvPYA5UUfHHbiInKDvxp/1/6i3b8i+/CHP7x04F1F9kH7VbK1dXcGdgZ2BnYGdgauaQZsKH784x+v75uzibFhsGmZm5Q2EW1mbARtOPSrlcRmRGmDU7/Ni42+r4rxH8m0EbKZstmxUYNnY2/TY+MbdrVNUD5txmDaDNkg8gmHjkLozlj0wzrlRlcfDPrV9NuQwso3jHSyrYaTz2y02yzTI/Tg05ky++jMwmeYbOiSyUV72kw8PGrTIdptKPXRiX86xW3eif76JgfzgUt26arDdd1GHQb9+MNX9NvMwmPX/OpP6HmxIGHDmRzigaP8Gw/DWG192nx6gfFy4TDCONt49RKirxzFNzz9RDv+8GE1Zv3Aknd98Lx8eMmccwGHLh/0FLgVbXEprovDNX/0jMmfnGvrd+8QfuNmPD28FfmAhZfDFPclfvh4Vnj5cd9qk/DZwsW9HCyF4w/9/BL6s16N8/7G9OEcDj6VdGAqcYOPEzt/USYOa+X0hSo7NWFXTrTxh2luXKdPp3Y69PjDbQobOsqUcsWG5Fe7vqk/r+MBgz9zLD8w9JWXeFpr2eTLmFJ7jk9fXcunGIsjnnwVo3E8SGsCP7r6rTvrDN/8sTfu88C9p90vuuiwUfTHGbaYCFxjpIMieq37ycc6psPWta+FUKzhbBxO4IhTHFsD/NLTT8QWf88MdsR6Y5+UAzUMsfrqGC/qd+M72h20P/bYY4ebx692EK/7VJzNgVwo+ceLHh4+k8UsDgfV4mArxg435UfO1A47uufheWa4xxyQiBkWXPeawx4YpJw1j+XU3MLzLDH/eJLumfItlvLPpvkxrsg9/vYTzYN7Hi4eDvLKB2w88CewujaGgxj4mevLoZ14zK/DWRh+QSAWeZA7WDBwogcHnjYf8pOtNYifZ6mcE3pJudInf+zlmr3Y8nt2draez/5VgDjpsiXxp8uP3Li/4ocjHVzosNMWhzFzorCDa+y/2LubVs2O6v3j9/sQ9BgiQWOe1IGCA8WBqIjEh0TFOFCRiLGNSsSBE536kowSFVR8QpKYaBKTHvhCfven7G/+y83pTh//PWmpBXVqV9Va17rWqtr7rl3n7tN4FI98OMC3PvRlJ2a6cTDGh3Gx4slfc5Hf8NVyJV62fLhXmyf41hy71joO8LLlS595a+3g0PzgZj/KBzFGLx/0cFT4kA9/CsS64F9dnuVGmYJ3cbGF59405+WLDT3CL87lzhg9e2F1+O176LKx9uRKETs9cbivcNfnvvBLKPc7Gz6LLT+4uW/LAb6teXHQw40f8Vjb1gb/uMTPtTHrlB82/LNJr/UmLnsLc+tfZMgNHGuUPa58w6GrHQ4sselrrnCvz7U1b9xcqQl8Y2zgalcXA31+tNVKuHTljj2Bq8TTWnFN6MBgKydK/Mtp/uGyNW/mQrz66ONbztyLnjVyX0x84QSLT8+83rfkKXv3a/Ou5ou+OcINHgzFHOBoTbTmcKGHAxv6cKzR1rVYzTdbenh0r+BBF4/ut/TYtJbg+tdFOLj2vJATNsUoV3ipCb9EvLjJnWuFjym1cYcdH7mAo/Ablrj5xZ3tAw88cHrqqadOX/jCFxassavIPmi/Sra27s7AzsDOwM7AzsBdmgGbhssO2m002qDYHNm00LWBaaOjn9icuG5zoq+NDF3XNlsO2H0TwEYNNjsbJ//03Uuits0NHH7U7G2GbDqNh2tDZvNm3LX+NpFxhaWQuK7GLX7MuKnNWLvGY0pxtzEzhkM85mYt/nRwmrzga7Mj5SJccRrL/9F+GR3s6OdDTl1nj4trfTjyrxDtclfc4SyFww865sPG2qa02PkkcqTYGIvDBhpesalxgcOmlzk2Xii8EHjpo8cOjk0vG3GUY/pxVxuzfvJffNr4kjB6ufOCJw46fPFD4OABwxhs6xcXGPzlexmMH3JSPuuOt1xZ3/z00kAH9nzZ4oNuvtXzpUfexDT94KrNP39JGMYVtmKGR1ebDlu8HHR4ae0+dK/pjx9suuxuJWKQ03iVr8ntaE8nvsex2uVSDV8MXkY9d1ybIy+f5s888l8+q9kZ0yZis+aa32yMuyb1sb2ZpGt8xlns5pTfeN0MR37Nrxy7nqItR7jFT30rXuzzTe9Wuo0XS/nGpRzgP0W/3OMsVvV8PsSzF2b5Fod/8aQY9/Lt/i+WaYM7HuLmy3r0LfX88j3zVI5wZmct0H/llVfWHOM3D6z4EpP5t97VsJs344Rd9yEu+W2u+Y2HWD3//NPza9eu3ZGD9jfeeOP0xBNPrD8dY807DLTu+cG1+7rPXbzKhcMLcdFxUNKfcem5Vl3cYvWcpA/HtxA7YG6u5URe5/3W2uZX3tg2D431H5HKkQN9aw4m3nT0l3M+YFkbcp64Xx3c0TWGK87iYCsOWGxaN/JEpzmiJyeKNVYOyxtd2NarfQuebMUTFhuFGNN/zz33rMNObflzgGXu2OM1RZvv1jhsItcdmOpL74UXXlj/Ga745UwRhzUOQ7vPXLkQC6nWhxf8coY/O/bljp6CM1FryxV99g7I1Pixk2fYJM7srB33mxjkAo5rPvXD8csT/q0Ha9MYLL6scXPts0mc5oPIrc9wvmBah60fB7rWRuL5Qh8fMRB2OLOBKUf84vvO8584NP/iMl5ceOuboo+O5xKBo09bf3lV5x9f/OjmFz99fCkOBsVvTeHp/jBnHVROTrCN+9cqctI69wsiBRd+xC5PfmnnOcAfTvD5InHWx4Z/82ScPozyoI9feePTtTEczGnrgA1/7iPF+pVHvBW+iodPY43LC//q9BfRGz/w735wv8KJp3mFg4cxc4sjH7CsK7zY0DF+cXGx8gwebwUOP2KjO3OlT/yTdzmhqx9//vXjg5858ZmEOzx5ty5ai/jxqb9c8FWuXNOxHuSbr4QOTsbdM+KES0fxiyfPYeN42PNZF80te/lQ6E8u+PCNc+P64FsD5kk/HbZ46CPixkfMfPHjeek5Qh8GXW1x5Vv8coEHPZzNm881vuc80SFscZR/hd0UePrNC754Wuvw8FM/+OCDp+9+97unxx57bJkeMSbeZdf7oP2yrOy+nYGdgZ2BnYGdgf+xDNhQ/P8ctLdRseFps2EjU38bIC9FvsXnmwBeCmx02Ni0+E+P/K1Vot+mzMbGNXs6NmI2QFPHBohPm1X+bK7oxYNuXIzHxSauzZl+bTbG+VTYEX1t5ui4VrLpevphR1cJvw1buPrFpST0tdX02OBC9LUpxSn7chKGmi1+bONebMZgZdd4Po3DroZnjB5ucEn2ro0TfNtQs1dwyCbe4qCXT+N0wzRmQ60fFy8hbaDTs/FWmm9+4FoTdPBlq1+tHUe1fnz5wIOOjbUXE99wwyE7PlyrvQzAbywOzaOxYla3fvDSngJDoQPby5QXA22c9MHFHa5+AkeBae2rxaLIgbHmpNjo8JW4hlks2cKTExj65EHMDjkcduAE0wuHfvzCmHj5mbX5jVcx4lE87Bufdvpxwse4kh29sPLfOrWGvNSzxdVhTpxhyGsFBn5sW4fmwouoQ1Z98Pmlm091GJOza3GxsUb4qz31jBPj/PHDx1Gyn2v8qFP8OMEKBz8Co75s6Razcbr60lPHTZ0P/a6tDzYTI2z61l1rUq00j/wQ97YiT/re/va3rwMtPnxuWJPwux/oyFM842rcHMOR6z5DGtdnLSj65MiB8PPPP7+wPWf4imM61kzrBl/9fCvlwLOje4x9PujT4Vs+cOTDL5z9Z6gO3PX/N1JcHbS/+OKL6xCib+mKBw98+IwjX82NZ46iba134CU3+q19dQLL8xG2+B2GmiNzik+x+xMzDmjYN3fdV2r6+LhW5MezV5/1xJ5f/XzRkTu1PJezDpJaf3w6iCS4dJBqfbHBEQ7/rUP4Pe/NlXH63UP0+ExwkgNcHEyqiX784bUW+DQH9jy+aOAQiw86DogdqOGOF3v64u8+pNv6oeOZBkPc3Xvy1EG7g7HWnvtA/glddnzpw6+c8Vmu5auctXaMi1HdejD3OMqRe0MbP7bWRBj6Jv/acurwsvl26AuHD9z0+4WCP2UE230q1+bUuCKn7vfWSs9ZOv0LC5jWdTG8/vrrK1ZtEk/xiYXAxs86gIkzPv7MoT/TI5dyRz8cOvMaDt70cJBLot3aao7Z0tVPN5/0+fIcwwU+XX7hGVPjZj26D8Uu33TTd+87tJQT68468wsHeTOf9GH6fPellw4T+Ycfd7xwpo8HX7DhlStxyCUdvOnRMdf6cZBDtviJmT/PHZzMJx908wWfwJI/dkQ/7PwUM7544Gvu5cl9U5x8wkm6p+SGD37x6Nvw1oO596yWY9JcyRt9XNjioO1aH5+KPj5xs7Z6puCvlA+8YbqfcYDBzv2pH77c6FPgTuG3Yk10H7BhKxd8sfO+JPfmLp7ut365JUbPU3s//tm3HuQENyLPrQ06+vvs1c+WT0XchE5rG196ntsKfeKXWp5zdI2zd7+aA3zlqvVWzA7ZrWPzrk/O3FPN0wI+/2APVyF4Ezblw7qII984WBPGO2h//PHHl132q3EbP/ZB+20kaavsDOwM7AzsDOwM3O0ZsLGYf6PdhqFNiNq4zYx+1/pct3Fsg6G2mbMRaxM2N5U2kzarDlFsWsK1afECZdOvz8aHvQ0OX/zAVfCg02bPNaHPv41hG0pjCgyFxFW7TZo+eI1nF7Zxuni4VitsaruGmQ2siWNscmYXLuykfjUbuYirvqOfuEwMftkoro3lKwz9NumksTCm7eRlvLj1yzN+xamvl4fmPw70+MleHNmqFbp8qNm3UddnLVgnbfZ7yVDP+e4FBh5fBD/9cLqOM190cdNnjXoxsbnnn+TXNV82280DTH298OQTLh1+Z9z6LxM4bIvHtcIX/3zEGW4vLOW7OIzJHV1+iev4uE6M66+E6/BCH1HLvfvK/emFBVfiJc184FYOy4c6/0v5xg/xxcd4xTBf8cu/fjriVWofsflT2CmuYXlxdliDH65eKuMMI7vq8q/NRu6nTfyMizs7c6U949FXrHBmewVy40ecNafe1HENm645N1eu88dP3PAmXizrw21Kdvpc4yaW+rvWr4/A019M+cRFPx/yh5cxdurWqGtrs5K9utzhzqeDOofFxswhG/3ywxeJV37UODqcMMekzxDXsODPoo/u9fOfXAkHhhjKsbZ1Ty/f7LpOt3tS27ND3PTyXV7E6jnj0OZOHbQ7PPzSl760DmccDvic7TCcX3ngs0M2sTbn7mOHbXgp2g5X5FoRv+cQGznpGelwjz5/YqVL6BDz4NCj+40un3Ki4CRP+qwbAkuf8eYQttzKN1082CY9r4zx4VmFc3qwcBNjMYQTBp8w40a/wxl9rVl195dc4u2AmF/2ctI8w9ZfXvD0rzTEKJ/0HSqxhwmbbc98XLUV0npjPw9MjYnHAen18zqG6TCKDt1iZY+P5xkdPsXQc1UsYpULW/n/pgAAQABJREFUxThb/Tg1RzDoscNRruXceOtDrNZJMYXDluCi0JEH19YdPfGyg28NexYQPujkPx191hn/uMSzdYS7tYSzMf/BJmGvDwdrzBhdMYkdD76UciUuc9y4eGGwwV0crqewx52NQvjSr8bZdTmyXsoDXfkRC9z8WJuwjOFuHpViZoe/MRz1z2eCcWtAKWZ+ta1H+dQvNvxcEz5hNq9wW/NyLM6EnnzJCS7mU1xqB6W4NyfuTb90UqxPNnjD4JM9qZ//YmscFnxFn1zhLZZyQAeWMTmPGy64iidbcXfvsuNPjmERYwoceNm5Jvkxx+z5UovdfQmrOPTjrYZD1y9PcYcjt/EJh64xNU7x4h+WucBZTIm2/Kvxlnf3D46Erb2v+y4cfqcOP+zVuPIPSy7gsNO2Rgm+2nIsXnZxh6OwMVdswqGDh/XFBjZ7bXNVfuGzgaFPTNax+GEYkz/48kL0K/gXQ/EYLw6c9fOrwJILPh20+xdp+0/HyNiWnYGdgZ2BnYGdgZ2BSzNgw/Hss8+u/0HdC7YNSxsRNWlD59pmhY7ahsQmSpvYgNhA2gzZQNlQtrG0YdFnw2LTQxeGzaSNEBxCT+GT5IuuPhjG2StEjYviGu90w9HfNSwYhA2x4TJOj89iqqYzufDRWHxnvmAp9am7jq/xNnrwjesj8ViNGz+M88WG8E+vOche3Vh99Mtx4/oaT1+tb4o+0li1TXux42RulGLKT3jZ1VbTVcrXbMchnNZcc93cNR5+ePmB3QsGzPpdlz991q0Xe8XaJTb/vsUCm6jFXJw4KXAU14RPenFTT79L6caPsI3jri02Lwz8u27di8MLiJp+frPltz7wc73czH96vTiHa73g4/6UgzjQbw74oi/uXsrU2kd/dAmOcAk9fsobG36yZePlz3zgITf62ChhwmKjNP9qMemD70WpFy445b3ryQMH2F7c2LpWF3e6bMOOjz5c9fOtnT6e2vHE0XX9xm4m9Cr0cFJmPrM1zr9yxCyW+tkTus0LvsVgXO7EPmNirxhXs+l5AK+11zjurn0GeIltnlw7HFRwc/ilwJvCBwy45ofQh4Ob+8U3I81xeSp+flu/9HFwH3lp50efz6JXX311xZo9LOtZ4asY6Cezjw+fgWr9U9jgI7Z3vetdp+985zt35E/HvPbaa6fPfOYzp5deeunNQ7UOY/mXX88LtRiIfPm8ly/3Nq7uMbk17+Vev4I7DPei52OHaMbkzbceXYuPvbmQs3DKHXzxyz99IsfWF//miQ7+Cj/lMh508FHSV7c+9BeH2HwbugM8fo3j2GFMucEFDj4OVIzj3ZyK3WeEGOXPeM9nXH0TVNxK9nIDT8wdGjtQJN07fbNb2zcx5QIPvPRpK+LvoAkH3NLDg1++rK33v//9p0ceeWTtv2A4QP3jH/+4/sNcPswLPd8ulg86FX7gyJlvGVsn8kXP81Qe/AJTjvHArXWFDz3FNcFNHtSwPVP9IoY/bYW+eBVzBNt65c+YfaTng1/4Wleww+cDBo7yrpifie+aHb/ue/MVT9zFy0Y8dNXh4qLImZyozYNfBuJIFzYMY/mFb8w60Ue3ewx3unKLL9vyEC86cuF5Ig/a/JhLut1H9An+ciAevsRp7RrvMxQev+UZv1lwtY7MEc6eD9YrjPLmnpQP/sVDz/wq9Pg0xifR7x7E2Vpp/roX8bY25MEYPfPtlwOuCR9yBNN9Zi3gLV7FNZzyyEYfTLZyp2bPFn95kouKnMk1n2IUAxs5kYeXX355xQJXnDDg0qcHz3X3LV5yqZ8ebL9g9Qs3HPTxLdeeU9rmGQ/5MAbXmLgS+K0JHOXK3LChx68vL1mr8ikvzRXb/NJjYxzH5kVspOeeXLBRxNyaoqNPzOzhaePrX4nBpQ+vezocfa6JOPGWZ33w1cVPB37z0zNBP+l+x8PcqAkbHHp+ahPY+aeLm/w03zDY4JQNPXMBDz//Mtsvyj//+c8vTGNXkf2N9qtka+vuDOwM7AzsDOwM3KUZsIH4xS9+8R8H7W2AjLlWXNt02IRU23QobUZsNmwAbcxsXtqYq+fmxgaGnbqXvtKXHn8Edv6MtdmyCYNhI9fmXZtMDDhx1+9arcBlUxt/fdnA0m4TpRa/YqOW/txwT/90jhIHm0p+bNrUSfy0w29MzZeS0CnucPQp2vXRd938aePXuLpYpz09oi8J21zjAkcx522SJ66Y2fBdf1j0FWKM7owPJ3b5NG7dKPXTURI45Ym+MVytnRkHfW1riVi3DhAUL9LEi4gXh9ZJ8cINm31c2OSjXOi7HZHDYremvSh5iXDNl/zi5WDGC5M4+RZffPgpH83LMedxSc9495U8hQtbDF6gHAjwiQNf4lVgiNe1Ne1+Njds9cO6zD8M4+zLH70442icnkMRL/S9NOa7ml6Sv3IZX37MoVyymzb5omNMza9a7PoS162/cq8PLnw2inWjxkN/uvkqVvNdLvKh1o8j7Mvy1xgf7Fs34R85z3iNKfWVM1hdG5PvcPAXo5rQVbTZ4JBttbUjfm0Ck55+a0ltzJrzGaHQsRa9TLuGn0+6c15h4geTjkMNB4PmJw44wpm2csWH+4hPY/qscX9+pXudHSx5UGsXp2uijRPJh3sUvrH0lsL5h7bxO/mNdgftn/rUp9afIZFXzy+HLw4OxCWX3bv8K2Lqz3GIW57cZ2zmehVbMZonOg7APCvlnp3DS9+qh2se3DMOj6wXfaQaH7byo0/O6Ct882XMYVp/AocNveZJO170rSN9RL+2fvegQ0lrwp8TwBe24lnl2aqPXzliw4e57rDROGw6DsodkBUjDLzly59l8a/15NLnBfs+O+TanFtrdP1SgvBlXsTZgWV/notPnOSXvVzGAxYOsAhu2vjQs7Y+9KEPnT74wQ+u+YLhoPC55547/f3vf1/8+PatzHvvvXfFTUdpnsQlluvnb8nLoVjklm/ry/zIMxs81ARuNSz98uyw1ZowroaZnT5zYn0prsUK3/Nbca9ae9aZOI2R5ps+zj4zfQbJGd/xoSs3xuGYy9aQOU6fjTbd7K0Lc6HPWtKPpwNT+dCWH7zEJG42ODWmNtcd8jZmvq0V2PjoV8RcbK75V9NziArffQST8Ms/HvzjZ73RI61duTVuvcF0be2olXKIE87Xz/PfQbtnChz5k3/+xcO3NS+3+vkwxj/OxvxpSHjwzT89RYz8y78xtTnjw/1E4mbMfeaXQ/kVLzsYckMnMY/iMEbgsLeW8MIHdzaKXJpP/h3IK3SsX7+A/cMf/rCedfDECEMMctya4QOOuDxHrEUYdGA//PDDp3ee/ySKXOrDWd7cn4SOAg+W2nMalnXBxtzScd/Lc3tWz2FrQCw+E6wt1/jSNedq3Fov7S/5YasWP99ilOfyxa71iQepj515lhPPDbnim35rIv7ZqIuRLi7pw4dZoQdb7OUXT7nt/tEmbCvilDuFbuNxoQdXbuSSH8W84MM/0Ue05cWffvOfme+D9pWW/WNnYGdgZ2BnYGdgZ+CyDNiczIN2Om1Y1DYiNkTEJsMGxKbDpqVNUBsYGyobM5sWmxebQZsXm7vs2dj8sLEBtFHW10bGJqaXCn7ptVmCoQ+2jRMu2nDoqOOM92Uy4ymOGR8uhB4s/ukdSzb685k/beOTg7761eJWy5k6ya92/FxnG258yqPxiZMNvGJgW66nH+PZh1sNhxhno9S24W3Daty1Um7Sq82PMkX8CoFNV8k/fXOrHYfmWyxhNm/0CB5w1XRwtW5cFwM92AqxXntpsW758wLgxZBPtvmhX8z4wsy3Oj90Ev2V7I1Xit+Ytc0v//jBc2/g5SWtnMWHLRx68RD79A/XmL5yQF9bfnqJ0YbLLz9eZL1sy1+YxzjguCdx7sBBH/6wYB5tJod4wNevtG686InZPcMHXjAVdhNXjHzhjS+MfLNj31zqPwos42G6Nhfx0w9Hf/7V9Rkv7mzirE3o8K2UA/3xrL8YjSXZwci/vnJVPz7p5lebaFfCZZeEgTcf2vTFrGRbnf/ug/yIreuw9Zlj80Nf6b5ziMOXebMe2eIg/6Q1kb1xfOJn7c2DdvyMEbrx4dO9ZF0pPm9gOvDoP6Hjly3fCj/hwJrY8PQRPnz+wXcNw1j+2YnXYagX9Xe/+91vclwAV/iRT4dYjz766PolgfvEQTgfcpzO5ODa+nCfOowRN8FZLK07etrikB9z4vDMIZjPdLEY83xwyCLWDkw6tIFLJ/9qzxlzrJ80R/D18SkOzzqcGlfnk12YbMRavPnDwQGv+Mwn22ysFQcp+sx/6824uRYHG1jG8TGv9PDwLOp5RL8DKblQ+HYA5NBJW8ww4OPErzxrz3z2i0r9ckTo8qmv/BgrH67NJz/Wqr+z/NBDD61vtbs2dw7hfMvUQbtnuT5/M/5tb3vb8sEOH7lXxG9tXD8ftKrFUy4cQFpjMIojLtoKrhX5kSvzoA+W9ZJPfeZObtv7NZ9ic82ntecb7eaF73Kjxk2/OZXf5lt/6yKu1pVijMhdn1PiIMWQDl54whYPruZTTUfu9LODoeiDrbjm0/7CNSw6DlFh8p8vGESM7jN29M0LG3kUkzH5yb98WgMEX4U+8WzFFQbhI275owujIh78zBV/1rDnippP+Nq48auEj1fPQfeBXw6ET899rYgx/t2v9NxPclVO9BnX77Bc7PjBah0VT5jiZB+GNu6KeGCK3Xyo2eFN1F3Dd//4cy7d8/r4Fzs7ccsvXmr45tX9Yy3Sk6v777//zT8hpQ8H4+bUNZ/wtPnQx7fYph8xyL8cwrVGPNPKgc8EGDjCoJcNHH3iJq6rcZIvfcUEO9/GFflS6Bgj5kfcar8Qw2XmH+b0FYZaDuQ2P/rY49/8wC5m13zDtwboxi074/yxV6bvRfj8g83MTRzlXj7xSOgax8E8+vz+3Oc+t4bDTvet6v2N9rfK0B7fGdgZ2BnYGdgZ+B/IgM3DPGi3YZgbU9dtWGx6bEASuo3pswn28mHjZ8PUpokPGxYvEzZF7PQppI2UfptzL1Vt0rOzCbOB0rYpU9pEwmCbhFv7WIspDsUHd27q2BiLu3ESb3UbPWPT/9RbRjfs6Jcv/GHI0cTMJ7yJy66Nv342bSBr68t+coib8eKGR9hmP21nPz1jbGxw4RB89GmHoR32Ujr/YKuQueHVnmukNaMufvrNO/38GG/dlAd9xYcTrvGFGQe1Nh3z0Jr2ImLtOfiwlunln28vEF5ecNBPvFj1ckU/3nRcT4mnvniyKYfl1Thd3Ogp1qZ884Un3fBhEO3yo09JL2w6ruXFeG3YXhC9dBjvXpcncXvZo5sPftgbV4oBb4cd5dSLunue7pzH1kl2cOnUjwdcPBwSeK548YELR+GLHTnmm32xiMc4LM8gGGwT43yrCeyJ27PGWP1da8OKi7bCX/1xToctSU99lPjiQujEE1ciHnrEGB0+9LMrHv1sijEb/Yq2OilP5Vi/8bCPccA1b2pzpp7Y4eIz51vbOnSv+Yaswg5G63Pen/mBQYd9eWJnnXXQzqexYmVbPoxZGw7urC01f9a59epQqG8iNnfhwKjIg0LCNyaeufb0ta7xdA/7j8GfeuqpO3LQ7lDjiSeeWH86xn3iG9LuZX7Npbwo5rP5wdc973NV3Prdt9rFFOfyLiafyw5e4BOHDnInLno9I/mSMxxgN+9hs+GfHSw581yDUa5hNP/6aqvZKfrV8OZzkd/mDs8OBOF5BjgEEysRFy5sCLzEmJxaJ3FTd1AfF30zTnl3wNi3q4tRvgjecoUD3uVCG0d5widc2Pp6fuGkr/jnHIvVt639Msefh4HfvPgb5Q7a5cs6xEe87HFuXnDwSwL3glzJJT7mkZ3PSddsK+zpqfGGpcihPrmAIWf80S3X+sVTgZ09LD6tO/GLWZ/SfOprfRSLPMMRY/ow9CXs8ICLI4kD/3Tl3fzJo1hg4V3uzV1zaIw+LvKGSxjmzC8+9LFVfLO/NcI3DrjQgdUzCh59WPjhgR+d8iSH7NX6CBs67lu8xEqsAZ/p1oVY2BC1eNjDwoNNfulow4JLNy5s9bNhK2e4miP3QuPGzIlxtmpjuOCFs346/PKjz72hrR+/5sCYwrcaHj06HcprE3ksR9qwyyc842rPQvc4XrjQ0a/GA0/zxic/5t9z1y+g8KNHx39qWo71+5a+Z4n1DJut4pqUv+vnA3oc8OOP73IBW96VhH0xw/ANeeuIfZKOGoY8WRdw6HluzNzCqcCIY7k2FiY8BU55NOaanhxYN+UfN+vCXMBTG8eFXW01DH3y1FpzTVcbJh9ELV/NHTuc5Ebhiz5fro01B/iT+ODnOgy6xFz70zFPPvnk+gW3PhyvIvug/SrZ2ro7AzsDOwM7AzsDd2kGbCJudtBurGIDY9PR5qSNhReuNiheCmx82LTBYqfYMNm49AJBx8bFZo+0ofEi5KDTNw1t/ODYpHXIZoPUtz3gGg8LnrZyO5Kdmv82da5hwDNG+HJd21gb3/SPPtM/ctIftrH0woNztKFfnvmbQvcymVzZE3XlyMO4vokXN3WbVfbphIVTuvqOos/4MVf6GrPhtR7abPNhTqyZ5pp9+OVB3dzNGORLCT9f2vy0vuLNFgf91iDhl7Dx4uyf/duoK/h5MfHSpOQrf3HWxlFbLY9slcmJH30zLrZw9bOTGyVpTrLjo750YMSJHqEz4zauT/x03KvuOQLTPSh+L0ja4sfLS4ccqMtD96o4/BPmXrJhsOWXr2KLbzxbA9rm1cugUs7zr8ZV6XoRPv/ATSww+EtHXJ4h9JP4aIfNjuSTfXO4Bs4/6OS/OWsMJoHHHxyx6G+MjT51+Nnrw1Uh6bCNG9tpT48/uumHWx7yrZ/EPzt9MPlVG8+Gjr50s4XdHMq5a0IvHe144waHWMvm1gGUQrKDI28KDtr5am6nvvXVQXuc+SLa3Z9wXFuvDr98bmnjZH27x/s2oMOODo5g8F/Bs1wYa9z67XAmzsZcE8+X++67b/2N1zvxjXb/EeY3v/nN9W18n59iUuNAxCWHxznFSWzGcHMw5HDVeiXl2rVxeA7E4YuRvRwShxv05QNetnTKEx4KHtaFuTc/nh+etw7FXCfmwpyWf21+YLAn5b/57NmBb/cdLvJBh29zan5hFQO/xsNr3YrZ+sQPHi6wPdM858QaD9fwiLjwVWDCaX+EP078e6Z6dsoFWxjGjzzCxJ+OePDoXtKnaMOyf3I/+ca6nOA+88YX/jiINVz25U6MffOcjjF28Phv/lov8OEUn3wq7lW1mJPyqw9m/IzrMw5HTIQvfnEwhqP7SJtOul3zB1fJrz5zwD7OanOENyy69BQ+snVtrcurePhjp+6+MI/09Vknvn1vreHNpzXm3iF48dc6woOP4sGHDl/s+ICtdB0OHflRw5glP9ZTvnBxbe11P4kXf/MKJ9HHH6Ejv2zVrVH+2DRuXYnfOBGTnBB9Cr4V+DDE7L5sfsWKv6KPT1jFZDyMxuUxO2N+4eQdxRzo54MO/fzgjoN++SD+FYe1z4atOciX2Dwnza1YsufH+qInHlh+cVuu8DYuxzDphOmaiA8PvxCDzz+eU/hjpzYu7/CsT/0wzEE55xcX89a8sKPbc49/9rjpKz/WuF8olDO++FXijJtrfc1VnOUHBr/ygJOiD6bx5lO/e7r1hh8xbh0q+rQVPpXuQ3G3xmETNVx2uBM89LeWYBlX8JYbfZcJG7n2p2O+/vWvnz796U8vteK9zOayvn3QfllWdt/OwM7AzsDOwM7A/1gGbCj6z1BtLNtoCNOYos+GqDEbkca9zNkAEZu0NlZqmxllbrBct0GDw7ZNjdpmz0utfzbqBZd42bZxhGWj7FtANk/Z0YEVL5uh29n4sA8D3zDZKnN8bsr4s2mb/vQdJXtY7Cv6bSbVcXXdxvGIox2W62IrZmP1N0+r4/xj4rKbG2T24lDiqGYTtlr76BM+XyQd13FxfZSJM8eykRObfEUu+LReeqFhE79pL4fmbo65hiHeBM9eBnpptmmuz9qCo20N4lU+YXnhcKhFDy9+6cLA2UZduzpObOHQh4kHfgrRVkh6ro2Hpw2n+YKjaOsn2cJqTvNHJxu6uCT6E9fG3HPiLY+w3XfmQuxebnBzzyvuVS+Rvq1ljI7yt7/9bb08w/ViD6d49bmGY+5x1i5/cWld6DeOU/nHVYFbPsXCVsywXRM6xxe8yYU9Hdj64Xrm4AVj+oUXrn66bJKjDcxiz876UPTrcw0nX7gq8TJGGo9rdnFOj65r4yS/qzHadGDRy5e49bORx/rp0DWWHb90FHOlbpwdgRNvGPCN0bd2HAgq7IzRgcOXEg++lNZIMcOyZh1QsM8f33FonanZ8d3hgnY2DlF83uDiW5/WLUw6s8Clo8ZRjTNuldZf2Pi4Xxyw36k/HeOZ5D9W9Ustn6eeRZ5ffbMeF/7F4CBCjbfDDwcwxeZg0AGTfrFMzuKG6x532CgGOvrkvb9d3b2q5pdYw3TU5pXPeY/RxdefMrEWmic5jSM7183LAj7/wEEs8i52MeMGw3OaTzh80IEDYx6094sJNsZxU1y7jx3+wORfHHLB3rOQDuEjf2xxqtDHTd7gscWleMQsj/SygecaFlyFiJe0rrTNH2m+fB7Jg5yKja/isa/yCw125swzna/ibm2o4wcbb3yIXJZjdvTghaMWC7/6FfH5bIgjPKU4zAkceHTw1We9sqfX/MB3LZ+4ENzkKP7yzT/d5kMbb7rNG58KHUJHwT/urhXPCrmLR2tLvuGKEXccrHHPIs8OY+zDP+454jzzgTeefIhLrPBx4gN/Oq7xda/BVVzzp4ZJ15pzb+MTBvvip8uH9WFcvzjF656HoS1PMNR4d0+XI/3mzb0hB4lYFD5hledi1jbOb3nSR1c/fLFmr9/cmxOFDi7uT2P08PUN894lYIjNGH3X+nBQs8edeO530G4Ml/TEiKf4iTE6/Cnp6SN4s8ELV/PY3NCnhw9xrfilp1jyG281W/MsftfWl7mDzXe6xQnXZ1p/Bqj1pp8uwZGtZxEctrCtPZ8L5pIun3Ra7/oqcHAXZ3PPl2vxE36M61fXp5YDzyz5gSMmHOSgX1Dwnz/6MKw1PF3Lm3nkR7FWzanYYMWv+YclVj77xR09fppHOrDpqc2ZX5R/9atfPX3yk59cMdC5iuyD9qtka+vuDOwM7AzsDOwM3KUZsBnpG+0dtOsjbVZsShTS5sOYDYlvjNiYEW0bUBsrmxKbqfnyE064Nj02ODZSRL+2l0ObLBs6OjBtOm3W2vjBxyVhSzdpI1X7srrNEVt4ys0EHvx8iJVkA+Mo+hR+2E8fNsphhaHdpv0yvCO++JV08zHjcg2zHPcioJ8de7FMjnhchn3MweQdhyPHq7Rtbr0gK3gS8+1l2waXj/zEn86MW38y49YvrubNi0L/CR2/xBprk94BRdjy4f7ooB2ffJVD2LB6CUoHD7nCvXngjz18fa0FNvqKVR7i3JzQNd48sddmB7MxPugo+W2sF7/yQrdYcZULL2eEf3ZeuLywu6/dk/od6LhPFfesnBqHr/afS3rZIWrxxUkfXDhyJlY8xTlzQt+Y50zrojzhWil2uK5h9NKmLT5x4c7e+PTDjk4vhXBdx8f4zBvuhI1CTx9frvEmR5vZbyzexcQGjrWoGMdljuvTZq/wLxb9rsNwnY/VeeMH/AodWOYrezZh4Eu3fJTv7IyXy55rdCaPMOLjvnbtfuledChSTOxh0lGmD9fWgeKa4O1zx+EWbP0K3o23znDUb4565mjTpwOnXHQ4Yc3QqeCW8D3nAC84sOnFQ01XvA7av/3tb9+RPx0j5mvXrq3/cFBsfDrU9A3LDhDw4dsvz+RHnh1AuB/EKscO4tzzfX7Tr+AO2/3u8M39zsY96fnskF8OtB2K8CcPdPhx7/OVX7owCT3PW3/mBD4/Dj34tv7ZWQ94uzYHR4ElVjHD4r99gzqBqY0zLMJGPNaDcfmgo5bLnundj/rE0y8dYbATk1jLb2tFfD7THCLJh8NtGPBhypdx/gkdeGGaD0WM7MobXTpyqp89n825mODqw01M/nTFO8//GSMf/iyM9S23MPAubvr46YMtn8S1fJgfPOiIGUac1c0RXFjWhb1iOYFnntX05ZJv+nDlxRz1y1564tNPR9vzQnw4EVzxgceffm25w4G9fuPiJ8asA+O4sVGKjS9tY/LqvjKfMMSsXxxw5YXAEo/7Ev/mFhb+1jj9fNCHN3MCh74cKL7Q0kGgfnGpCRycmnc4eIlXPz0HkB20ix0WPTkzf64dSPf5zad4+PW5zh8dts03W/kzb3JB+NKniBU3sRVjaw0/Y2qFlFPXuPMPg8/mhT0sdc8J+dWmi5saD/juLXG1nxMDLJhs+KSnLQ5rQZ99jhwYo2ecqCszBn18qosJL/e8WIzhbT6U5iYuOPOLn7j4lnN6Cg7h0zHX9PgwP35J7RrfhD8FJ3PvX2pZB3Dj29pnw9ZnExy++FD7hZy84senmDwze0azhceXeOD7HNHXGsF/zmGx8Nn8w7H+3BvE2nMtX+YPN2sCD8If/u4xc6fdvzilB1vcxmHoK998wlFw4af7S4xipyv3dMRBjw9Y/hPpr3zlK6dPfOITi0ucVuM2fuyD9ttI0lbZGdgZ2BnYGdgZuNszYMPxy1/+cn27zobE5simoc2P6zYRNi5tPGxGvDAoNh7p2PC0abQpselSjMNWSFhtaNr4wLXh6SWRHhwbHZs1WDZPro0Rtq4r+qYv7SnFFGf26deX/tQNn77NLrH5mmKsUj+M4g6vTRxMsehn12bU9VHo6qdLcDAfsOs3Fk86jdVH33UY8WCPB33j+qcefaV+2IRdvtmm9+/Rf/+EQ+co4cfFOrIebHqtAzbm3UuHNUAuw2KPe3nMD/t84DbtrbG+rcUnsWm3vtgZx4ewFbf7w+EELnE2JqcKHcW82NSXjwVy/mGMHp58KHRwNKZtPcFOFwc29LqmR7LLNk6N0zFGjzSu3UsDLtrGXItN7R72smmMf+IXDV64zIn7XIzuf/eqfHmplVO28gjr1VdfXfOHk5dvfa7hqhX4sMSHb7Gr8aJrzJqICxw5UfBVig8mW5heGl0TMVtL8YDbGFvXbOmF7ZrQJdr5okvSNe8wtIvPeM+u+IU1ecMKl402O4WdAjf/dF3LtVwYh5seDKI9cf/d+//uW+2wzFnt5kkbRnE1r7jki99i6r7FrTyYM+Ni0ge7nBizdhwWeHlnR0+/mg91a785qjYeZ/Pa/Wk8XnHrvoRF+NBnjRB+rJnyBduBgXVv3dQfPzbiKRdxhankhz4+tT3f/P1s30K/E386poN2h938kp6hYjQnnnH8y2886cVfvxgdIMujdkXcxQCrz2b25o04PLY2uufYstPnmeFZ4vmq37MDnnlX4wzTISaeOMNhy4Y+wZv9UfTLr3n0PHIgA8O9wTeM5k68+sVoDZLisU7g0OG7uGHh2TzTYTv3OnDwYFNO04cr94q1L890XYsH3+KGQ1q7MPDlS18+5Eyb4KZfca3fPMFtf8aPmMXqOU1XG7ZrOZIrBa+4sWs+ynFrKTtrRr4IHf3yUC7UbMwvwTFMNel54BoGv/rwEg89/c2LXMLTJ0ckn66tH35g9MthOWu9wie4izn+fMFU5IB9+RUD+8blGC/91rI2+3Lt72T7ZjQcevr5cVBpHuB0v9ERE9765bAcqP3/Fda3/taXa4Kf2PBQ+DJmbo0Rexe+5BNeevhYB3j3GW6cHj4dUuOHGz24hC29MCdnHOUDhnlhw5YYK4facmx9wzNWPOyNwaVvDDd4RJwKXH3sFToKHHl2SOt5SE8O4cYVZtc4iEW750b5U+NA2PBHTzGmwFfHkU/7IRwJG7YK0Q9Tv/zo1ydntWHGDy6d1on5MI8+N60P/tjTkQcY8qftM8xnmWePNkx1c4eH3FgD1lLrEY4vWJQXY54fniv0ywue8PjH03rjA07PWu30ygX7BIe+uGVc7oqpmPmnF474xIYfrn3+m2N6xvzSS1uu4OAxBVZzYYydUmz6yr0YYfk/VnyjfR+0z0zu652BnYGdgZ2BnYGdgf/IgM3Ec889d3r66afX5qgNxdyMtPmwybG507bJssGzIdJWbOxsVm2ubEiMVdLhnM82MW1+bHYas8nhy6ZIP9sEPxs3dfp02izp43v6W4rjhzE6Cpn4x3a6aj7wZhe3MNgVkzphF4a+MNRt5tJhV796ijE+J7YctbGGMe1hw5D/ONKlU4kPXfbpTt/60tM/bdnURyf74tFHP7/axpL84qdo28TaXNvww7Z5tlFWs505gJ0Ysybm+tUHt7H46bN+vUTazDuQgNXLnmvj/Fdw85LipQNevo/5wYeNmMnUhYG/PiWBpbCrLhf66Kr1Kcnsi89luPT1y42arnu0fDSmrxfbXpDY8slXLzNw5MpceeFSzJk8egnrxQq+fHku8Fl+5R/ejFVe5IyvXqb4Li76dNT4wlbDUoqNDTF/1pDnC0y6YnLo0nqCrT/hv7Wan15U88Nvvm9mzzYd+OLXTowrJP9hzTa+rftiwEe/eI3JtTZ+MNR8TTx909f04Zo+PDja9LVxDFN/OulNTHqV5ez8gz3e5TRO8HGPp/k2T9aTvg4Q6Jtz/cfPicmbP2vT3DpMgNFc8l+Za4y9/vDZEH4U9nSsWbgKH7jjRYyXK1j1izv/dPRrwzXmPvHtbf8Zqr/1Sue/kfz5Vzaw/FKLn2LBTcHN/ek+5VvMiusOz3BoPTlkMtfWWusNP/7oweNHLBcXFwvHs5Ff/qwP+ZI7BV6HfOyNuzd9IzksfODlg458KzjQw9VamflyreAjRvc9PTjs2LtHxFY+uh/D4bt44ONB1/hc861D2OZSvA5y1Gzg0CkWtuHA6rlIl40YjeObf3kWKwwlDvgTmIpY6eFCT18xwjUmxw6GcTIubmN8E7kSBwxxKM09XunJiQKzz8v4iMlhslwTOmyN84W/goP1x1fSWDHwMfNg3BhM1/iUWzmUAz6sMTXbSvpixk8t3ne84x0LS5s4EPR5ID+Tm2uY4nANzzw5JOdbPPa/6opc4oonfNh+AaVMPIeiPif1uU96hsPlBxf5dE3kpXnUx44fhY22uJsnbbzNpxi08XGtwC+PuOozZ4Sua4XOvJ+aH3ozzvIfhjFrr0Nm+GLEHV/jzRMbzwbPbWuP4MCXvBavmh9jbOHAFZdYW6vZL6Dzj5657IlD937JwUYp37AUnFq/bPBV+OaX0FHih1PPHc9C3Dxfrbds6YrRM8k4m/ItNlyKHRZf+vjBUXFNB6ZxeeLHWpRzmGzku2cnv7X5ZU+K2zh/MMw3XH0KXtZxeYEvp4r5wWNex5ldPvhW5BQm//QUeKR+e3IctD0v+KCPa/rWJb8KwY8/sfksxFVe6Mu3e8mzQn70kzjAMCZn9PTDmbnWR+C5Fq9flPtG+8c//vE1hu9VZH+j/SrZ2ro7AzsDOwM7AzsDd2kGbBx+/etfn5555pm16bfZaEMkJJuLNlM2QDYZNns2SDZBXlJsTIjNThtUG482osa0Ff7aRLq28YHlWrHhodempjodY3xMPfjxNJ5feJfJ1DFuU0XEyabx1Xnjhz4+GnMdt/TioE0vcV2bD4WumPKZrhqHiV1brrKFN6+12cQhXLkQX/pqeMZJNnSOOc12Yi6jGz/oE+MwCfwp+VIba27o4JAPNRwxWmM2v9p4WZPWGPtyZoxUG7Mupi5MHBX2Sm1r18urwx4vXnBbVzDb4OPYxt6m3Us7KX/48SM+dngoxUs3jmEZY6NMMY4HfUUuYOGcbX7DnfmgO3FhaLOvjptc6MtG2wuKHOhTui42+kTtXpej+e0m8+YZMV/wPB/4hyF/7LRx06eIoRd//V0XY3zSj4OaGG8eanv5NK89a4zj1YGpeKfA5pe+GHAic/25Zlfuso8X7oo5Sqc8lju66ainNB90SP5c40Za3/EwZ67LkTlTYMCryDkdUt9sG1fm+Gqcf9Azls94Gs+va/FMPzi3PhtXhwenfnzDMgcKMY99I9H9UG7iK0f6vGz7Z/HWGJzWVPcUPH3Z57f7qtjp9UIOR0xybh07LMivPvy1cWjNamenjz8Yrt0fauvSPz2/U3865vr166dvfOMbp5dffnn5EAOf8cOHb3l0v8ojHg4yyok8iEn+xNo6E5uY4NGp1L7nnnsWhm8S8leu3Gc9T/R1LR8wHOr4cwfa8bRuy6dc4+KeLb/mRdFmI65q8bhvYeMWLt3uCfqKtrjlgfAJh40+9vXh7pmlyJ0cwnDgSsfBjvuCLQ7Wa88PmAqJD37mQj/suNDRhy/88quPH0W/cdcwYBG1Mbrhans+46kmYpZPuS3WcuBQtgNCvuGIiz+65bU/JQJPn7x0oMuGXzGJrVjYy4s/C+Ga0O2ADI7Pe+vWeLHS08bH+lHEQ48fxRpR+BOnvIizOcehuIw7/C1H8OWCLeGHGMeBrWv8FGvPt+jpyZuY5r0WVzVbfN0HDtqJtnvLQXt7DmsGFhv5xpWNuhjVfNFN2PAtVuMkXq756hcgsMWRiI1ucbk2zr9czJj54Zeufrp81oalGOOHrnvE/V2McuwgnU5c6cLSNi5mNR3Ch/imbwfy2j2fy2d2OOFrnH3+eo5oG/Pc61nBv7hbL2Ih8qDgSaeC87HQ4ZtP9njC48v9Qp9vY+bfPcgnG7bG6BuH4V6wzsRPjxjrflJX8IqP9R2HnpvL+PyDDzbhsdNXmy/z5v6RY5jlsPuLLh75NK5Ym0rrOFzxsekeFSNbevKfLzmgZ9x1pftLuzH+4qeGZR3gpbjX3DtiZef55Hr6w4utIm7PFNJ8l1t4BA4bhcizz+/Pfvazp4985COrT1xXkX3QfpVsbd2dgZ2BnYGdgZ2BuzQDNhG/+c1vTj/84Q/XBtGmxebEZonYjNik2IR1cGXMRs7muA0dHGJzYqNy3Hhos6Nnows3HbUSRhvHarjGtOn1MqDPxovP+NK9qrTZtJHiA5bCV30w46c/0Rf3dLXjVAxt0sLB20bTpo0OyW7i5ZOOTaUSFt54atOjk/4CPP8wbj7UjanlvzbdsPiecbCDm49w1Ta/4RoXkzJ5TB+w22yHM9cLO/a4hcNmStz5I/miZy0q1gfBLXzxuSZ05dF6dtjeS4J+ePw3L8Wl331hzaeHS3lzHSc++JZ3IhYCVyHxgpXwAQOW/u6j2l4K8NIm6vLFNhvY/MNyjaNiXJ9iHozpg2Nc3tThG5/CF1s2coGL54IDKNzkVJ9nCBzCD27EQejxecGXnLCHH5/q+uK6gG78gDu5ipmd2ktuL9w44+slzEtf3Mp3OPhbC1686sPNi5uYzAf+vdhNLq75rj7O3Ro4/8Al7LgbwxkvNTHW3LnODq5+esqcI21cxchGm745mPPNJozl7CY/8BETvnDip69Y4wECx7C1Wy/FOeNmr18fmXar4/wDtrnwLTdz2b3TuLrcWFv+VIP5YQeXPk7dN62lxsvpxHOdHQyHHuzwkwP3iIMdhynlUD8dXOrLPyxj6g4BPXd8o/1b3/rW+mZcuTzyeKt2eX399ddPjz/++Pr/ENyLFxcXK2/8EfhixUEp764d/Lg3rH3PNgdiYtNH9OMvh3JhPvB3nxMHl/4u7s9//vM31xrbciwPCv8VOJ4b9gH0uqeME/l0j1nHsLTxsAbY9gwRlzUpnmJj39rCueeKeSG48AlHoctHnxliNV4fHgo/PiscIBqXB+vghRdeWPeWPlh9puMjHtzi7j97tZZx0C8OuZ5xm48O48SNd2UFMH7A4Ne9bT7s0/jFlS1cfXKAg8M742xwMG/9GT7xEvzZ8Cn/+JVvePg7PPQLarh8Zcuna/r6ywlch+yPPPLI4iRP8P/5z3+uNScOc6GPvbyKSd47RPVcc31xXtue0fBnrsqBPOA5OZtT8fJrntUJXePyIze44AGvPOm35sUuDrrFTR9n9w4+sOGpjRHX/IvB38SHBUPMDzzwwDq0cz8Y9wsrfwrKvPAv/65h4kpwk/s53/gQ8fMlTnzMSTyWwo0fdHBwT5nz4qZPspFrOrhYD+bEmJgUnPiUozjJETs54Ud9/fzLQHllH6/yggc9PuSyfn1y1Jr1ixlc3YOtF/OswJYj/dYmPXmSP79wkFv49PA1lzjiL2Y+CZ/62LHRxhcv9vTw6T6JOwyxKeZCoccHwQUG//nip1zqd21O3af+LwV5188Hm+YGjrkQN3+4+mXXFPqwYIhBbuYc5q+Y2PJPH2c2/euV7kf++K1dLtj0mcAOtvj5FLf5V+sXM3xzaM1bM0RMYrD2xUOPjhhcK/LZfcCPPrmhU3z8+gxT+HMf8C02BQaf1onaWrBeuydxaT2zn3Pluhj8kvhjH/vY6QMf+ACTN/VW4zZ+7IP220jSVtkZ2BnYGdgZ2Bm42zNg8/GrX/3q9IMf/GBtomxUbE7aZNjA2Mi0MbIJseGz+bTxtfnSbiPDTtFukyJHrtvUecG2QdIm7NnYBIWjv82Uego7+ur8qOlNP/reSujHM9+11fWpbez08U34U7TTpUOKLZ24GE/HZl0+G2MHh2142avlR97MCTFX5V4bLh264eAW3+zo5lNNFw6/bOE0rk/RnvZs+CeTI71KWEvp/AMOG7ZJcx8G3675ioOajboc0Jl5N26zrrSx5st1XOnDwEMerUMHJjb+cEk5NDflkg1/sL00xIV+8Rhnm8xYiweeAk/c5ZyNvlm7hlE++LFWvBykC7f1gBN9ddflRy0PJC7aMNkQOjNffMCZYk7w0S8XciR/ng14GRdfL5tsYRI2XqR6XmgrxcC+/OVDfozXXzwL8PADVuN4mFMvU4Q9vx200xMfbMW1IpfsHKg1Lh4v3OzFou75SGcKDvKJd7Hxra8850s/34lx+IprfvFUyrv+47xlz5/iuYwvOz70dV80F2zCdn2MQx+hT894+Dgo+osze/35NEbEoRAYpJy7ZhN24/rrs74cingRhp0vOgldhyn+TJFYYfIhb2rz2v1cLGHVDkttLeLMthf94rW2rQHPAX18l1eYbMTuGg6JQwcCnjv+xuuTTz55Rw7aHVg6aH/ppZfW/ejPFThwFzMeOIoTj+4zbfkRiyJnDjh8pls/1jid5o+dAxW4+HsWEXPjwPbZZ59dNuzg8clfOYFjHtTuS1hq43LqAIdNfM3jPODinz6/8FtfPd/5gi2m5pSuHPBLr/VJx1wUA1848A+DXn36Ff7E6llnvq1LnP/617+uuNkSHPMpFsKfnN13333rENC6wVccfZ4Ut5j1OcziExd18YqN8OfauNjEwjf+8ItV3vQZd6DEjzE5cajl4Je0BsqzPvE5sGoMZzlw0O5b2eKEJT9yYu7lTYl7eaH/vve9b8UN27h16zOBjucuLLb8wXPds0xeFAeQcilGYwqe9M0pTniyhSf3rY1i0p8Ylwv5ab5gKzjiRsdngvyJXz7lHE/j6njA5s/chFcfHc8o88SnmP3ywS/dHDq6/8zJ9fOhtF8cEjY+t3BojfBtnsQLR+wKLuLg31zIlzhI62Y1zj/owHAflrPmjK7C1nMX3+JsbtPBiU8FF5gOuuHizo/17JeB8iBX4owXe3Zq/sspO3kuV/ThiNlc6BczfZyMs8HD+jRuXfpc6F9OiIENXIfZci6v8sm3mPBQu/8UnNXFrc0Gj7iVKzr4yD0Rl8Ifv93Ta/D8A1+FlA9zIT6fD3KIG3uCI+HDmuePL3lpvSyFGz9wtMbKJe7WBDt88D6Ke0uRqw7a+aPPjj3feBH5skYUPMsFrvziZ77Z808fJ8/PvqDBF2zPAr9oMl9w5kG7nMNXuhfgNxf65dCc8ycnfGrj2ryGY+6sVevFfW0tuKanXw0PZ1Ku9MFw0P7Rj350H7Sv7OwfOwM7AzsDOwM7AzsDl2bABuK5899o/973vrc2xjY9ik2MMZsKmz8bExsRGw+bKBsjG0ebmDYj6jYnbGeBaUzdpow+HXiu+dImahzaIEWe3sSio69Nl7GKfqJ9FJspPtowZnPUm21c6MWBT2Xia5P62OhTi881vwoO8chP9mFMffZw4hFneYXXWLbxVDduzPX0Y1weJucw9Bkn/Cf6+SWwFONthuMddhitgYkDCyeFxLV2ccFX5Ax+aw92a9LG3gabGO86v+z5s5Ztrm32vZDwUQy9MOoj8fPC4SXAOBz8+OC7XOir6MNNG1a50W4M9lHqY4uToq+XDPba8dUm5Tg8bXp8TX64yEvcwxNHL4nstNWEjpzhQLzAeC7IoVJOzE2CHx9xcGjjBUge40OnfMMuFrVCT65xLr50asN3ja8aTly16eNr7tT14Vl8fCjsvAiy0RaPF0t5wQX3YsL9KJMHjNZQevrYZct/JVttvtUzfu3mjG52sOBq44mjOPPhumc1HjDNv5IPeAROYpwuHWKs8TDY5Uf+8daOn7ZC6jOeDez66YTv2pi15aXc549cGtc/9XDxrU8HUjjD49P6pMfOGpvrK//8HMWcFwcbuvnlS459/nXt8CE/8SpGXPLfc8bnn0NXf1f9TvxnqG+88cbpa1/72umVV15ZeRJ38eLR/MVDrb+1bX2LpZjELo7uBQc+HSzhDh+G2BR/G94v660zOEr+YfHPHxvt7vfyTN+8dc/Sx6XDJOPswnKARx9H/o0T9njCJ8abj54N2njwnR5f5jSebIuNn+45a9EhlD5+6Hum9JyE2wEOrmLmT60tj9YTPP3sWkuwiBwaF1M5w1WhU67UMPDEXyzmBX56auOEf5yzoYe7XNLjy2ehg2wHbPzh5tDKIZ7n9ozDQSWfuFr/zT0swg/Rli956c9oZOOe9VyiY+5wNcav+NSeZfrDdyiNp3EHcwr/dGGUA+PEnOCixp90f+gvJrHQwRUneRG73Mod7or1Tw8+rrixwS+O4eIDn54aFr5iMvdy7BcQHRyzo2Ne5Ia4BxwWmzs8CFxrSU71wWsOtOHgpI8fvs23gntzQg8WHq7piosOHNf5YSMfMGHTpyNvCmx+2MqROYofOweo8MpTfmGwIa0Lvog6bq7lgB1/fBW3+cJdMR/uUXz4o2NtGCN8ickvTNq3wI67uGDgbA24ZlN+tBXY+hrTNnfyw5bM3BR7sfEndiVsNvDEaE2InS847OS92jVMRYy4ujausBMfHL7kQw6sLRzlmtCjT/CQYwWWX5g47A7X3PGjuGaLv/2SOccTBn34runxV56KrwN99yIxh/aHPsNd4wxTDthYS3Tlhk++YYud8FWfeTDn5QofApNeuY9Lv0DlQ5/CFg+2ysy3OP3rpMcee2x9qx12OXR9O7K/0X47Wdo6OwM7AzsDOwM7A3d5Bmw8vCR///vfXy8BNiE2M72wtBkUpo2NTaQNjdKG21ibGv1JGxq18TY8vTTcbHOCk80OO9cJffg2jK6Nt6HWZkM/mzZJRz/GbULp20wZpxtu/m6nhiVHR67ZGufHhrFNJT9427CxjW+6xX7kHWZ1trjnv7m5lW154695tDF2fSu7/B5rODDF5yWm+cXLptfGHD6doxTrzXizkSeYcogfP+za7Mtnm251LyT6cSDs4OCHrzXuZRBW82dO+Ggzzw4GPDy89HoZ6CUSTocBNvzdD7jBPEr97G4luCrw5IVv3C7L381wspk5SBe2/mKLD1/iYeva3NEldLz4yI1x3JqXXqhxdK30gtQLHV9eohQvezM2uYJbjObMtb74tNar53rBTZudoo23vvzrF48+Ylxfbf7YKc2d2rrLTtzNM/u4LMDxwxi/cZEnthXrgB/jCv23kmzxpa/OvnUFA65ce66lK9dikEs27pFj2xjbKezoJzjwpeCQ//izd228fLJtPBw1XXow8W0epg4796uX8p4pR4508PDNXCVu/Fuv8Ke/o/3013W82BaPOWwew8PZsy2/sOWMb1Jc2j1X9DuYcMDuM/f++++/ND/03kqKxbdgr127tr4hjK9nFN8Ex3IrHmtWLUbPPgeoPtPr80uNi4uLdQ/Lu0MIh6rmQQxs4MFXXnvttdOf//znVayr7pnmjB85KRfFRE8+8eUbNj9yRdf6dK9Zl+zpuaesa88P1+xgtEblVfHc4Hd+JuSXLjzjOBB6PSeO861Nn53nmvj1acuJbzbKh75iV5ub+vjA+1//+tc6QBWTMbHi0cGXPiImMSjWvc8b82CcrdzEl295kgt4+cav+ONPT3/rRq0t3w7U3vve954+/OEPrz9lwidM436B4xvJ9B0A8y92fHB3eIwP3/p7/rNPx2dnebfefLO7dbmCPv/Q5o+N64q2IvcPP/zw+sUbf/x2cNjzS+6spfKQLSx99n3WmfWJHxGXeVDDgelfaSi4svMLCAeP6V9W8yGXfJoLuVA3V/rNiVzyQVdO1Hw4FDXPrt2XciG/OODd/PpFiLY8p+uXIe774mVrntRio9u88Oe5JVZjcAme+JRDfXJuHcLtFy75YGdcra+5gynHfpkIy9xbNzM/4nSvGg+P/z638MDfmH6Y/swOfTmRR7U41OnzJT6+zCdu5Vk85l3++nMh1grM5oqdIla/4ODXvYCrfuI+Mn9qYg74wFe/PY423+7f7iN9rivG2eJprBy6nuu5GPTJMX12uCXliS0dXMXol0P0xCmP4rKe5C+b4oKlryJP5sn888eerRjNE19yZw1YW2LFjX+6rnGmazwc/WzkXOGPjvXrnjaX8x7m2/PJ3MERj1zT9RzpuYY/W/HI8cwRrgl+ePErt/YJPvfcU2zxwx8fNV0+suH/oYceWv8K/Mtf/vKChXUV2QftV8nW1t0Z2BnYGdgZ2Bm4SzNgU/Hb3/729OMf/3htoGyGbDz0kzZNNrBKm982izY2bTLU9bO3IVFseIwpNjJdw8+PvmkD52ZCFy4d/NgpE5ftsV0fO5s2m7k2YGobKXi3kniKqY0cG/1wbdxsPvEjbfr40kevPpzZwFGnb5w0Vj+O+ecHHt3Zz0a/EuYCO/9gm25j7NucGp8Sjr7pJ16TNx365YSO+Ni1KddOL//6lPJSLvXRiYMNtgJPfo1N3vq9cCk2xcVSDc+c+7MKcVTzl09zZOPvpcqLALEmrHv2aptvm35c9HWYwWe5jfsCGD/0k+qGcI9nedOub9qwLe/5KZdwlDDmtVwRfa3z9PlxLQ/VsK0xxbixDtqN6TM35kJJFzdCh/AbTzmSQ+sBntwpvZSFZw7gxA9OMar5ZqNoe2aZDxymsOe/+OjrS/ST6vzly1gY6vwe55k+7sVMT5uNOOOVH7h0K2GzgS0nCezmwJhCpm329fPDL3GtiF0fXfNf0Wc+FH10i0PuwilGtfFw028cPz7EoqS/yNzkBxuYdIsxrtacQxsvwu5J6yL/YpIrug4xHXhbB/mkq9RmpyS448pnuvoIm+ZQ23U61jsudPl3KNbBFd18TCy2ni9ETO95z3vWf0DucDO9NXiFH/lxcOeF34GoteIewxdPtTy19rWzw8kcK8ShjG8M+7aee5Du5CZP7mGxilvuOuzsnnbY4jnLtxzSsWdgh0O+5cJcwS+v8OnjQ58P13T0m2clDPzkkj1//BI49NQzdhjWuMMi/XAnFpyksXyKxcGTw9A4qHGkiyd8h3Jyhw//hJ4cOBTq8CZ8Pj2/2h/EHRYdhW/ziitdpflsjA822mHLD119xssHrrBwwt+Ytlw6nBODuTGXPgvpmF/SPJYrPMoBX2JvneeTH/eItcIPLNd4En04ypkiVu0KPT7w9vndgV6+cBErLrCt//Jnvj0X2NODTRc2v/nXR5oPcbsOB651D1se4XgGxFkNj37zoI+f1nDjsOpL3xh/bNSEH4eaDnzltNrPL0oAAEAASURBVDViLF085AeeuRGvvBOYxnAwN7X10eO7fLjmj8DWT+gag8kHwaO5kTc6xukl/Dm4pGderAG6fJgL17OIm0/6eIYv382dQ1/3X3NTPPlU6ysmfs2956P/v0PM5sz+DU7POJzw57N4xDrz01g+1e4Rzxw1X9aH4rq8w6Nb3ObINWx86Osrd9Z2B/vy3Fx5ZtHFC9cK7HLVXMkDv3A6PBarOTEPSusEV2LO2eNivPmIu1qhg0M89BE1jOZUGy/45o9vuVfTUVfoyQlO1jsbfXjwwycbnBRjRN09ETe6Sv7Zpa9PnmHypebXGsPNXLJtbvoFjnb5pg9zH7SvKdg/dgZ2BnYGdgZ2BnYGbpUBm4/f/e53p5/85Cfr5ceGzAbNhsPmwqbH5ssGyEbPBoW0gWljYjMCS39j1TY69BIbHEKfD+NtgtjYsM3NEV32dLo2rvDLhtgEwUs3DDpEm67SS5I+uDjZEMK4lRSHzXwben38kjaDxw1hXPmKV37w0QcH1/jHlR788kZXKR/GirGXpDa9+VCHP/Vdi9nYFNgKDgQ+3fjnJ+75p5tOHHu5CIetDTK9KfDjNjH48HI1D2Zgp4u7axtja9SL7IwHN3PlRe3ee+9dc8QvnTbz2jjx08sTDrh7yXFtQ+6AoIMIfdZMLyfmB6b+xDWuOBibvNKbccgN/SMOPH3GmhM1fYWE4zoMOvz0QmWuxUw3Lq4VY3gqMHsRDVdu3Dcw9cGlJ2/Wu2t+W0/G5YefOGsr7M2Tgk/xmif5pQ8nKVfa+MEQEz3rwiGRFzf+Sfp0YCvFodZOjy5M/ozV75p98ejXzp6dgoP4JyYeM5dsw3adxJMtm55DMPUp8kovPunSibc6rHmdn2ILgx9Fv3XdCz/scLKBwZeCo/F04qgd5+LuGZhuXKr1s2+OssfL5wwc96JvkjoAtB6tD2LMusFdTP40gYNM+nASfLVbm/FtHI446TRnrhX8jLMJh3/rDBfjeHru+KagtcyOFHO2/LPVj2MH7b6lSee/kXz4W9ePPvro+hvtuMmfe1LhF8eeczMP4g6Df89GfPx9YPeT2MVkfmC65xz6OSz2zBOr/BsPt8NZ+SJ80JUjHPhjJ3/yIHa2+j1n55qkH0dcFOJ+z5+DpGL1yxj2/HWfsnedvRh845ROeYdlbqr5sKYUeGpjFxcX6099wNInN3LhGld59hnjIE8e+DamNs6vzw96ibj9IsmzVV7wCyt7HIqdnpiN6SuX/BRnOcVBjt2HdPXD55/fPitx4ZN4vrOTY77kVOz5Z4sPe6IfF8KWjfngi16x2z869CQ4OHgPUx889taFmk+x5ds6M2eeBfDNl18M9VlMzzg//TKDf3N0/fw3z9V84CVXR+HLuNgdwvb/HPCDp3814k80mT8xyanc4uKeU8OATx+WNsGD5F9Nh67r7hV6+tnB40cs1k0xs2muxKzgwoa+ONXauKt7dulXZg7CwI9voo8dsabipc2XtRGuPnZyeoyJjmLMunENC3886Isfz9adXOrjR/FMoM/WuvendqwBesbZqo13jZ9r68GftfrLX/5y+sc//rHWnX7z1oE9X/TkTV6MyxfM5jSujfGFL4zuXfHh2jqTl+YWLgzr3voUD31r2jf92dGB2y+7PEf4kDvPTuuOrfyZk+aFD3bmLNGHq3vJeiZyp91csMcJXhjmwzOBP/bEuPwYk5dy0BrS39zTT6fcsRdr86vG17giz/yXI7mgTzwj8GxMX7GK1zy7/8WFFxx8iGuSPl75wclcwFbbN8Dr80hecDBGl38iTjY4+5c1/tzqF7/4xTWWzmrcxo/9jfbbSNJW2RnYGdgZ2BnYGbjbM2Dz8fvf//7005/+dG1sbIRsOGxYbDhsLGy0bIBswObGg60NShshtY2NYmNT3aZHrlzDbRy+a8VGpn41XTXBpzZ7kq7+OBhLl3+ibdxmzOYO52y7bvOFw62ELwUWfNdq+Py4NqbATid+/JYztqSajhK3aQtbbPqMd61N8GYbt3zrI9Wu6ZbDcI1PHXrkyK2XGv2ua8NUyjWOCrFhzZ/5lpteqIzntxi0s3XNhxcQG2vtYsMhv+bPOvXy4kUmLvi49sLh5cULNP/5taFmCwsnm3aHBXwRWNY+PrC9+HppgaePPb/04BzF/CjGivOoE1ccmt90bmZjnK7ciIetHMMiuMmTfjmIG53yEzYbxVjzJBdy3hgcbXHDDW9yyF8cjPEFMz7li46XUjm1Pggf9Lw8iSmcNTh+iMc6gsunucINZz4JW+Mz7+Jlq18h/CmtE3UCg32x4udaPyxtwt48xBcnOGFp5zub2vlS64sbPPb8sSmu/POpj058Znviui4X7MPIl3nwbDcPOBA1vfIkBvi4xAcHevlnR4+wo59NuMXPtmt+Yegz7+Y2Lu5F962DdvMMLyw67j22vrHoII8+nCls5DO+zQsdWPEo331GaDfOVhGfcc8JdnKEgwMTNZ2Jz4c+HLpPrVV/MuaZZ55ZB9vFQ/cqEu8O2l988cXFDQaOCr/uue5DHJoj/cYVHC4uLtZ/zupb7fYA5tD92b0mPr9QcOAj93CMy7/nAhz3YNfiNsbOM1TNj377jJ7ncQpL/lzTb/3pg0X4KKf9Uk6svnFOR6w4u2ZvjpoT12KAbVwOywFM66R5bf3jLFaHfNZi4/zAaQ3ICT4+H8QHv2LMZ4c80CfhwpQL/vGGa26KXa2f3/ImnplLfuCq9YuJrrUmv/oUPGDx5VCNL9dq4+GbQ5ysA/bxpTMlvziaF/eFucAvPnLkoFDeidg8b4iYEvZ88o2TGOQdFn6KX2Lgo3gm4MdfMVg3nmfljG9+2eKqv9zxXTzxwMH8OcSfsfsXMw7brX0YfBq3XhR88IWtwNNW00/yg4uSHh7lSyzl0BzJXTkpLvr02E/f5hfOzJ8c0osb2+nfOH1iDG/FNX+TP1+4hUmnEn6+46Zf/rVxay7Y6YNl3YkRtj451WcuxUTXWnavONymp5gvpVyz1YbJzrfZn3/++fUnrvjW7zPCL5D6rLAerRM8cS9GNRE//3wQNd/WovvdmoUNg89yWWxwjRtz/4ufT2vVYbIY4eNmTfUnW+SDb2vALzjpwnH/qhVSvmEksNgr+MKVF3jZ07cOEjzFgF950Md/vspzMRqHoRZveTJ3dPkSa/NrXssfPvJI2OPGPzw4+YXLf1zFZm5gmkMFFk58ZQ+XL8VYnGHRKxf+RBQdOeJXP50KbhXx4Ow/MX766afX32nnh91VZB+0XyVbW3dnYGdgZ2BnYGfgLs2ATcyf/vSn089+9rO1sbEZseloM2hjYYNoM2hzQuaGxwbEJkOfAq+NTRsimyv9Cl0bGMJX9vqn7VI4/9BHGu86nsbbBKkbj6PxNlg2Zzjpq4ZL6OOVn/yqw8jOpk5M4eoPB65+fUTdOH61+Zox0IWBRxzwVeqnr62mhwd/4aqLW7950LZxrD8/2cDOburxoaTPnq6XUBtNcbTBdS0ea6aXDbrs48BHvmCyIfrz65qN3IqTDhux8OtFi45xHPQTOvjxnX9tnGAbtymH4QULp8T49OvFxIsTfdLax8eLkW+XGecfV356mWj9hK0WAz0+8LhMjBF6Yio3+uA37hoGPTrioJ+NsUp+1exxFKviGteJx46ePrjyIN/h6fMNrvKiTReOEnd1zwk5mzlprJch+fTi6dCF7/z6xlq2cmBMOQpu1gKeXr7V7PBy8KkUY/mqzXYK/Prkc8amPw6uK9MGVvbigCHedOEpBBeS/dSpD0bz5ZqE7xo2nGz1afPBLsmXnM81QK+YzFHj7PRru5eaP/7yScd1ccaDX9dK2PjFgZ1rdubJdXxdyxk7OPrZWm/m1T3HJg7V+XEA5iCifBx9po8DnYReXPiVI/z002PXXPJFtHsGlgPr2LOCnbzhn099Cl0Ynpv+ZMyPfvSj04MPPvgffOJ1OzVMcjxo1++zoc8HMSl899wUg9z2HBOrQyyHyZ6RxjzPHQ67P13bA7in3LfWBRGn54Jvwzev+ZZXPuXDoYkaD/PUgZNx8wujfKutP4UfOvpcs1fzC7+DdteeAZ4HdLNRK0RezIlxMYinHC6FGzr8GsPXuBwpfCpy5/moL3y1MfzU2vwcSzniz7VcwYIZLp9ixIM9PGuz9fN/7N3dimVX1cbxfRmCRKuDMSYEDzwTTwLiQUBJaKUjEiIaNBqDChr8iiBGRNRr8sgoxhNB1Gha7UC8j3f/ZvrfDPZbbWprTkrmgFnza4xnPGPMudaea9Xu6vgZJ3HQpkO3Eq646ZU743Dw5c8cHfkzpx2/Pufp+Fvl8gwHN/vC/oBDny1exl0PeMi19ZdTNnDUcOWQnZotLuaItpIYhwHTuDXHMxs4xuTU/m0erjm8cMEVB3bqPuPVdIpDLmDQ45etnLGJM//w6eEHW25IOVTjrIYJj/AFz5x2cZjTVuSl/WGcDzjyq2RnDi9Cx3hx4sevvMCDi6N4888OriI2BU7FfGvFT+P8KPlmX77DLC41f64rMcNIf94z6InZi89yw4c9JA6/zFGbd69Kr30mL/iwsTf9osL9xhhsccDgE461U8zLS7U2fRxhwY23/Mx9Rk/cCn394leLGZfwjMFU+FNgisX/++AXPT7zrJF7bv8axprioMQ1+/jBNsbeNUbixAYGETO+JB6uG7mnny3f7RW25uRNHtsHajLzQ896u3a021d88oGfIiftBZjm9du/cPGGpeAaB3wVfIz32SLfMPIZv2r50cbXusgFLsaU5qsb45+uPx3jRfvTTz+N3rJZjSv+2C/ar5iorbYzsDOwM7AzsDNwnTPgkONF+y9/+ct1IHJYcahxUFF3oHOI03fwUIhDDH2HEEIXXodNBxIHJwdSB6NKhxm24WsT9hX6jeVjDRx/hKU/ObFtjE1YxvDFTW3cPP9Tv8MnHfP5KSZ1JX5qugq7pDw1N7mYY5d+OjMWc3wVk75DpZzSk1fz5S6/sMIRn7XrgNzcjFm78bDilu/G+zYRfS9HHE7pwvcw46HGwZV+8dIN3xhu4dXW14bl0FxsuBnzMkahMx9w5AQm/A7iuMDTFz/7bORPP4mjuvx6CKDHFwzXgjzLo/i06RaT64JPtbGJWdv4/YQfglfxpGuueTHBmfy1lfyo6ccDjrY8GI+r/iknfT7EJwc9aLkmyr85Yox+eMbgy4OHMnPlCSeiL5/yaN4+8WCkTt86+UaXGh5bPpTiLlaY9Lxs688I4CW2N998c/3d7pkLdjNuc+JVwuTDGhijyy9u4Wgn2hXzCoFl/4jXPBwlDON4zj1k3j5Tsw+PfXrapFqbrn6+82WcmBOLONT01LXpzLH6rSO88NNTw1faf/mZ/XIHk9DJpn3eWOP8TZEn94P0w5dDbcKWr+5z2Yux+cZO+/k1Li7+4RpPNz/miT5edPBwP+6eY86LhdPYl+Hxh3HXkhfs3//+99+1F+23bt06/OlPf1q8xNCLDDxb6/jG2Tcy5bZYjctzAkdhj7f96ZuVavFaO+L68wIWDnv56CWqMevCxn2BnW8Y+6wIny4u/MBsHbTls7WPhxdq+IjNiym8a3fd8ctWrbR22mLmX6ETN3Nw+MVV4RumzzmCAxv3HbpwG6PrXgYPv3yry5Xc9EKHviIP5rXNE/bulfAr5vmSz144pztzVZ4mL7Z4w1T0CTv89MXTtRYG3/arF5PafhHjDECX4OGXXO1/eO2Z1rfrEmZx8tNa4WUNsxW7MT7KR9xghUOPXwW39rW1YcfGGD/a7HzeWFf6rQt7Y+W7dcNBwau8sdOn01xr2vrgRSdu/CrxY0voKBOzcbmjJxa5T9c8HHztM7jlhv/w2NuLavr2HCxtYrzrEk928ZMvMeF1em3QiYuaf1jFYN7ayo1xOuUTP2O4zzk2uLHTZouDa7tcwRdPOYHlvkFHfsTSC+ni4Vvb2uWPnXyJj5/4ul/CtnZisq/xNEbPmFzA0WevwNOnBwuO68VYou2XBPgReuzwM6ffmLj7ljwd/Nm6V7nv8Y9LeS+/cPE1josCx5dLpg57xbx8i0Fb3HKIR7mRVxz4hWseD5zwlke22go/E9tYuHGOS3t2YmhbT7zoE/gJLIV/+yFJh415+wRnYo5P+tmIqT0ahv2nxFMc9g3b7OlqWyN/Yu2rX/3q4ebNmwvC+DmyX7Sfk62tuzOwM7AzsDOwM3BNM+Ag8vvf//7w85///N4LAge2Dm0OEA4d88DagcVBqrbwtY05yKgd2Dq063egdMghDjIORB2E5+GKvtJBqcPUMjz+0G9scmgsvXkAModD/sXlYJYO3g7KeNMzjoNxh0BjMPgzRvRrGw9r1saVDpXhFiMcsdOBZ74COz3tHnrNwzMmDn38jMGyXtZQfA7qDsnm+CjP+WQLJ9/4FLdxws5YL9r1fQMSH3756++JevCGDZde9sY6RNMndNKjWz7tmw7DxjxUKXQciNtX+Cm4tZ5qvuwr8eNnTcVPD15SDo0p9OwB+HzJm8IOVg+38BW+ZhELHPrllC9j5i4TfmbsbJPyo18bVjbp5ZOtOdyMTTv2uNoX2ubD0menhiF+a6sv733LPDx5Y2te4U9uehCbOOVBbq0JPb7mAyQsenB9S82LAetG2Ch40as2Zy/Qv3HjxnqwZC9Gf0/XP/UvJrqtlxo/etZUDZP/uDZvTrsCj+ChEHPGwzVuD+Fijg9zccG5+wxdc+LzSxy1MTZqfHAj+QjLmLnG9fFVSNiuNTZzbGIYxzPRNj9jh9E6mCtmNT+K9uTLBrdToUeKjw2hq4iptdeml2Qzx+nqwy1/9Gc7n/SUxLh44p//OJmvmMs/n9pK/tnolyv5g01gsDfnuvI3Xn/wgx+8Ky/a+89Q//KXv6z8u768JHHd2msEr2JXG3f/bo/i5+WSF5Hu3+4R7r9efODLHq45LzLEUV5g2M/5cZ17wWNMTqwDfUVOvGjXxtE+p+9+4yzQtSJv4boXlFs5dI+hZ96cOt35uWBd2ImXX7Y4G3OtiVXbLw9gEvHKDT025rsXmtMOB0ex4cIXDr2gy5a93NEVs764jeXDfRAGSU8fhn55ZpOOzyTjhB5pfbOhj1d5iJ8846Fvjp62dVCM8S8Wpb0k7pkLGPaEXLa+ajzsHfPFgas+MQeHFFtxs2dDx9q29+rjCR8XuccPBzkQh7kp+vyq6VhzuWN/qhvHcgGnteajM/HEN4+nXxSpSetmT7lecCThto5qeWgNZi5a03T1+SpGfXky5jqXJ/vWWKXPYn5dj+KVZ8JePOKizzc9a+0FrZqubzM717FVcFXKHf+wwjVnrQj8hF7rn74xUl7ae2LUFle5oYejPn3++cnGnvYnQPwJMfN8wW/N8kVf4WNyljvYfBiXF/uEXmP2Jhz28u3+hocxOsQe8Et/WPmkY9/hhg9d/NTm4LHTLj73WPs739ZI3mBW9NnIg2Icd2P2lfu7L8MQuMbTEVd5Ny42+8Ve5cv8zC97+ehP2NCnk3/zuMLXtn/MGcOzzwDY8Y8LfvIhD/3yl54xGPxM/uYUmNZJzQeRR9zEwVY+ypt2cdETH1y5spb6dMKVj7gapytnPgf8Hytf/OIXD5/85CeXX3GeI/tF+znZ2ro7AzsDOwM7AzsD1zQDDh6vvfba4ac//el60O1Q1IGow5PDiwNIB0V2l4nDTQckh1eHGDV94w4z+tp8OLg5wDnIKPzR7ZCWD/rnyOTXIWhygC/W4oHvoOfANQ/dxeOQFQeHL+1yQye+HepmDPSJQxphp80mya6xiQ1LwcFB1EEPpj59tmHKt74DaIdQD/IOnvTh0C3f6uIRU/61Zx9Pc/y3ng7yDtT0+LSW/RPX4mlNi0eOzcl7vspPNTx65Vyu+HE4xr89hAcMhQ0fsPNpz/ZAAI8dnSmw8xN2B2849qbCLnx5tXf5gl+s+NOBU+60SfyKcXJoDYy1pqc80zdOn2iHVx74M6+c+jSHq3iI+akfd3Ny5eHcvP3m4XH6LmfFKR/2mW9tlQc41owuHNeWfPUw52GyvWleDHT585BtzYzj695D0uOX2ANetF9cXKy9aT3Ffuf4H+D5DzLLj7r1Mi+W9odxuGzLGWw2SvrG6LJtzxkj6alhiRVefowTffur/QzHnOvB3xiXGzqtHwx4irG539iSfGvjp5BsusdNHFhxWsqX/MCDjRpG10KfDfmlExd1bVwv82EsbLrlPF19cU+hF/85bix9OnzGuT1Dn7980W+MT/GELS/0FGI+XvrT35y3z3FOHyYu6nKNg7XxksY34n74wx+uf4Ju/D8RXIhfKj3zzDOH119/ffF2XdlfriPXh3iLvThdW35p6nqLn5dB9qD/HM4+hOG690s2eu57dFyz5VY8YlQIfPeOXtaxa0+m63MCH/9yReyth3H7LH3XkFyJQ27T459OnwPGzXffNt4Y/3zh2zriypdY2IlXn/hMc98rL2zl0OeeP+mg5tu10GesfvsCtj5fcTBnL3gZaFxew4fhZSx+7ORdDrp2Wpv2CEyc+Gkt6ZD6dLX5sM5i1JYXL4+UOQezefoKfPuIrnVwP8bdOBx5Uscfd7zFwR9960E/fnGXT3NiZJetnBa3eetuH4mFL3nT146LnMoZDH7C4peOXMBUm+uXSObg4gRP0RY73/ibZ0PXnuNLf4o5e1Q+8IXBt+IFtc9D+4zkx/rhQ5cNf9qw4CutOxw5Lh6cEhiKnPTL6daAvrUTu/UwD9c80TanT3fm2MtZmPjcOX6Ouj7ibJ90T4kLrgou5hVt2MVlX9CHoy4+XPBr37El+p0dYCjyx7caRoW+WL1oV9ixx8G64SEW+vaQOf7LKex4a7OzF9nFVb4IHPhyZN3NwykH5h588MF7OYBF7AHc1O1HNvIhJvccUkzOLq6/uNFLcMgf3vaPuOgUJx7uV+7dRMzyjA8dNdtyiZMc2q9qOnzDFieO8uF8T8e1gAMdc+UbLkzxmBMPrK7tcmU/wKuPOwz7Ti3fxtg3N/HM4yCfXZfisS44uGbY0lNwUMJyfcdbfHyGjytcnwnxEyt990KfAQ8//PDh2WefPTzxxBMrv3yeI/tF+znZ2ro7AzsDOwM7AzsD1zQDDiO/+93vDq+88so62DlQzMOJsBxQHDgcxhyQHCqM0WWvJA4rCnF4cVBzQHHA6UCtdiiC0Td+OnwaIzD56QDDPqnd/CmH9E5revHAkb241Pjg6yDloFgMMIqpONNXywGBax7ejMHcKT92chAeHTjGw9FW6FSzcYDtoVefPn/09BUcHBZ7QHMQdailqxBrDJct383B0S5muvSIMYfMHgwdah3o6fPpAO4gbk1hwlbyA8Ne4Jt+eyAuxQnPXDzYeJDILx7trXiJu1zxSewphbSm5tIzzo8Ck6hhwadrv7fn8WErn3DFaA7/pFzRTdjAJGz0E/rGFO18NE83/Wq86NEvVn1FHx+1WLSV4uMHd7rG1May0SdyIud8evjpRXv+2M4C0wOahxPj7OC6nvSJdbQn6dmP2vapHMaHX3tK/rUJXfj6cOGZZ6N2PfiTBq4N68yvlwO+ORtfOMZbr2K2D7Xhwit+uS2/5rXDgJm+sXTLoTmxWnNzfLAJQ3xesHjAS0cePFz3kMuneNs3MGHIAz8EV5jGwzfPH/3m9LXpG2cfVzjGlFOZ43CtA57FgyO/2cZBn79TH+GbS6YP40r7ik5rYiz+6TUHozmcCC44k/ylRzehh2dj+mHlhy7bam181HT4tKbWC5Y6XH35woWeYt29aH/55ZfflRftd44vw5577rnDX//618XJ/dd1gJM6vvZS15Da9dL+w8t9zTXTL3zY+w8nvZAXr7X34sqLTfHAFV9FLuDa+7C79sVfYecb0MRnSevKP2zXp9wpcHAot9aFDzzVp/H02Y0DXfPzvs+ncdhepIjD/cPnlpwRLyS77xWjzx3jzZUrPOLLdu6bci4+XGHxR6y/cTjugXzLLR119zs82U4RG1t+SXuQLsGB5F/85UmNszzDaa41MCYfxuNsbeVD4QNfPnwmwMPXeool7nxbM3krhvjwFZ9F9PiDDvsKXTq42AMEH7b2TPzY8YmT3Onjq909ip15tTnrzg8fcRK3kl+8xcsGDoFhXfggagWWfWdvzOspXz4PvXCHhbd4tNmKhw1f4uWLD7b5sM5iLB7jeBI4pF9I4CF2BS9rDQs2HRiwEhyM0bWm8RN/ee+LE+WHHt44tNfKBT5zjG+6JE76sAh9pbzzr+jTsf5i0oaLF3s2fMZB7dqyDxV6bOnom2vNzfEBw1j+8ZGn5roGjcNJV7v1tm58yyEcRd6ci42HrfbS3HUuJ2JRtONVvsWq7T6Md7mGNyV/xmDhTgc/AsO92y+A6HZdx8sYCQcXe8P5g1/j4sLH3oGn794x79OtJ1xrzD8ucoNX4vqxl8VLYNHnN858OctZA2NxVRsLDzfz1ggX2HDb5/D5YkfMnebaGpYT92PxsecDNzmQC+1sxaqIzYv2L3zhC/sb7SvD+8fOwM7AzsDOwM7AzsClGXAY+e1vf3v40Y9+tA6DDjAOMg4nHYDqO3QoxtUOZh2CA3dQcRhh43DkAONwS09fm086aockhyVY+VGbU7TrqwksggeefHYIM87uMomb+drZ4RPfDlww8m1+Cru4GQ8Hn5m7fKkd2NjQTT9MsdDhpzlj+W/OQdRDrDl5SJ9N7damhzaHTmNh8MmewM9PviaWMfGwlRcPlNaQL21czPF1+qJ9OTjx4YAbpnzLSXsq//AquPDncMtW35zY9bVxgXW6bmHTYQdfrPpEn21lrhv8eLZu8I07hMdZ3OWHD/jldjm5+8OhnpjjD3aFfcXYFLpxr62vEHZETAquCj90Wnu89Y2z0S9fYikeOjjw5dolXgY88MAD9/JmjJ5CT+HHdexhkp0xPMSNF7/WyLyH95lD/vBhEy8+8GTbQ7p9wCfe2q05Hx4G7RFtvjwkebhN4BA8lfJNV0lm/rXLZeNq+urG2BqbOSwWfBvPxoOda0eRK+Py4U+AyE/cwog7H/iYJ3M8bPtRvszRY6Po46JuvWHp82PuVIxlAwsu/OIxBoNvPmbfGD11OKf49+vjVMHNequVxHy4xY6DNtGOm37j4RojxvFWN1fMM2/Gwkh36tmL+mzap3CJnPmckz/z9qoX7e/W32j3J5K+9rWvHW7fvr04eknDd9cUvnLn2ogbrvrllo7rwv5j7/PYvBeb9qvciMM+pScOUm0eBhufUYp2dvDYWRMvO9X2Po504LSvym/3AvXMNR7FZJyo4aVnzJoYU8RvDpZxXPjT9kLS+hCfKXTMGcPNZ5w8wImr+wu71hgfQgcmf3TT5w9v4+6njdsTXsTKjzY9pb1Cj41CcNPGTQ6JuORPKX522nTZFDc7ZY5r45+OPVHbOlp/eRGr9efXPmKHtz1jDG7zcqDgkf/48IWrvLb/7BX6dNnQgSkX2nAVXOgRuvIkr2p6Cp5sywle2sZ9RuEdtwV09wcdc7hYR/pw8dE2X37jphaDzx7XdTHRx9eLXucitnzKm73Fji+/sGAHQy7tqfYlm+IrnuIWp3m1tbFOsPmNKxw6/OAFi48wZq7FhYO6PagdV7rmCRy45mHjgB+/M1fG6Rijb56+PKjTZUvXOJ7GCR25MU7M4SNHOMCOM3xjCn3jcP3S0DmAHVxxKGwVfivsrL0+HDZEH34x2Bt4df4sbvgKXGPsxEDkXV6tt+sfhr69aa4ciJGOOWMED77hEZjlD08YSjzpiCVf9cXWmpev6bv4isc9Dr5Y2YqNDilObX7xpc9W/PFrnp/iMN94MRYbP+WMTnHHm166fLVOxuiIWzse9gGu8x7BR7ngq8+rPhuLU0z844i7vjjYPPLII4fnn3/+8NRTT92LZTWu+GN/o/2KidpqOwM7AzsDOwM7A9c5Aw4Vr7766vp2nQNs0gFn9h04Ohg5cDjAOsjMg5FDFExizoHSAUZbrRA6igORB+9eis3DGFw6uEw+Hbo6BNHjVz/c6uXs7g96cXUYw6nDsnG4xhR4dPKbHagOcnzQM2dMIWzEpRA6Si8I+CFxpF/fXL6MK/mgj68cWgfj9DucmsfB4dOhUB2PfLChR7SJufTYm4drvjljDrG+IWNN9XvRDsNB3wtUpW+Nsc8HfNi4i4+92nj7qvzBS9jz6wHbQwgdBb+wtOnoq2HHm65+8anLbzmMT4d2e/BUYMCWa+vYPpVnmAQOf3CNsSHG5Kx84msMRzXdcqBtLLEX6dOFr48HLHrs1PnCy1jYuOq3p+MDQ4EpBoWePoHPBrYHLf/ZIR5T6NA3zt5LDA9b9ijbOKvFZcw3zb0Y7Ho3NrmIQ4GHOx/WJR70FT56WKKjLcdquuUhPDzp2afFSk8pV7NNF2e6U+AVj/lEu7yzpaPm1xzsbO1lfzbDN87EYU7e3njjjfXSbeKwZ0fowYpvvpszLmcKG7oKKX7j8qnw05w1pMOHQhpjo8hpdnyxL5f81M8n3XDk4ipCLw58tj/Kg3kFN/Nx5Rs/feMkHuHhPCX7uJuzFyc2X/mGQzef5XRiGvPSDe+42HM+W9U4eAHiRft3v/vdVYc3ca7SLk7/EuLb3/72+hMy+L311lvrJR9fdIyJQ2yuZfHFTdu4eTl0XXrxaw+Zc891XdG31srkqx0Gf/azl9LuxXLAtxeOcGHS0YYT/2KFg0elcTbTp3U2NgUWe3qtEf/4u97mZ4UcWCeihhUeHPu2F7v61tPLMTp4w/cCtfMSvub4ht0vGfQVeYUpfpysf/7MexHbi6hyzIYObOvTGogRZ/eL1qK9hhcpf+r67GCwwcNcWHTw0G//yxeefsEqdj7aH/YxwQOWXFiT9rmx1oMfWHzDNx4H3/ztPs6Hok8HhhjtRX7VXppaTxz5hilmeN1r2JZztXlrKZfa1owPOLgZw13RNiZWXI3BLhZ+zdHhDxYdYtzayxl8/tiKwZkIdp9RYmMvBmcoNuzp9kso/PCPg7r9QLcY+carHBe/eTzV6bQHjclduWdDV8HTL9oU/Fw79r85PnDwOR9/vuHhF0cY9EjYatIeY5c/6wNPXPYAXRhw+xcMbOW3fLpe2MNR2MqvNt7mYLoXstEuF+azgYs3f+WkeIwRsSjGjfFlffiDZZw/Akt+1KQ9bw+Thx56aJ2lxOJ68UsqextHOMadC2DDNEYPnjYpZvNyZ63ssWKUPxytl0KPTfuvvW3/2m/2KZ25NuLyp27cq7v+2dsz/VKHvrzwK2bXpzjxLP5F+PjDnjdGHzeFT/pqUr5X5+6Pct8YbKV9hSfRV+gn5vDFU57kkQ/9/PNNxz4TJ3txlv8w5ch9Tq7F8dhjjx1efPHFw6c//enlrrXJ9zvV+0X7O2Voz+8M7AzsDOwM7Az8D2TAQcKLdv8xm8Oeg4cDSgecDhD6DkUKGwcPBzW6HZSkw5y+4nDn8KrMNqx0HNIc5hyCjDnEdEjTJ3GBzZ+azEOXvkNU/mdtjrB1yDLHVtshK90OYB3CipkuW1I+5IHQbY7/5uOsD58OG+P6+RQju8bpKeaNhVe+8JXPckRXPxv65uRVDUN9ypdeNvxX6PMlF83TVYzPb/Zp40OsnwcGLw3sI3jFbZ49sQ/gkMb4pJ+fNXn3Bw5y7HDfwyc94x2GteGaLxflju5s6+PFnxy1DtzRk6fW6ZQHH/LiIY8OLLmNO/3pT5z1PfCQ8mI8MabAVOOBl8KnYk5fLtqfYdMn+uHEr1qOlPRgwIXpIaiYxIe3Ir/mPYD40zHTnh8SbtexB67JsXjowvYw5uHXNc+2/cwfXwQvecVL295yv7G+YVtn7fYprrDU8lDhP47GwpKz1psO3/nXh2uefli4GSetlTkSljZ/5o3BpFN8xry48Oc4/NJqvrzwjXYPc2xhTE5wSVyq6cDEmciZkt+phwORW+vFTz7EJdf0YanLGxu2xtmpi9e+0aav9kALl9Al4cTFmHaCA1HTDUsbrwoOinFrT4qbz2JKzzxO8dPPb3Hr21t02ME1FwZf8StuOM1rJ/RwbR/SgW895EWu5N697MMf/vB60a6OUzhXrePlenrppZfWi3Z58OLdZ3MxlSOx8V3u8HO9WHcCj52XCfa9WOxV1xoMeVIm3zDsYzpi97IIpjljsOZ15+USHPikdWajPSVf1WKCBbf46WuLy7w5NSz3DHzEzR9OvTiEOTHyi5s88EMfBnu41lKO3b+saX7y6cWp+6V8wDdP37rDI/ybg01c83Bh2MN02ejTwVtuYIlRnw1d/PXNKYSNYk4tD+ytDR34bMyXV3bpqfH3Atif5GJH+Ctu3GAY68VivPmAkQ97rDafxej8YI6u/Cp84exaEaPzBF/9SwsvfrNRy5P1Uif8FxdbnM0bl2c+rCk/uMSnNcEVJ/GYo+ca6GxhznjXGDtjcK1t93S+7RF/PoZva4Bz1wIb+8X+5NO5qX8dAMM83n028yN/MLSLGS79+MmDeeNqPNjJEyxjdLMxV6GLryJuayTnbOibb73xmz7M0Zv7AIZC2ruNqeUFJ/mEZw8k9VtvnPnGjY2cmcNBG74+EQ8e7mXWSbtxfunn3xwerd+MAY64FDpyzpYuXzCImo4cW3MYbI2rWysv2v3yyj6xF3Hzslshcu1cwAfhk478wJSTYtWWB9eIc5U48isX8qWkL09xpuu6sOeKCZ41piOW7kvWBB578zN2/sRhXfCAJV7jiba8iEE8rZM6kadySP+04KvgRdLni+CusONDTcTPD/8Ke7Zyko15eVfYik9JjPFtjew9MXrR/sILLxxu3ry51PKXzTvV+0X7O2Voz+8M7AzsDOwM7Az8D2TAQeXXv/714Xvf+946LDmEOIA4XDiUdIBQ6xvv4Ojg4tBhzli21R3sqh3SFHZs+GHvANYBTdu8gw2dWfjoMFXqjeU/DnOuMbXDFS4d8PDUNkdg01GM4VQO6Iq9+POR3eRprL422zDDMKYQusbVczxd4/jgh6+aFBPssIzjXdGH09qJP/tszHeI5YuP1ixd9nQcQIvFg7j1JA7bDu4eChz+6V8m+TSviEHhV0ka51/xYMw3rjCMZaePMx3F4Zrki0368kLss16UnPpeCic/YJXnDuzs4MmLOv54nQr/5sV8qqffGpnXhsGm/dq4MQ9C+agOOz44mTNeftLFTSywiPXy8M9GHunz62GQTS/aW3eYcteDEx384NgDxkkx5xe3Xp7Q9YLBg7w9ZP+Y59cDDxt9fNh4AYGXcTXsajYeBuG1R4zRERcbnPnID76V8g2P6Gtng4cxgk947OkQ9cSxR7IxD4+dMfHiq+BoTD56KQDL+P0EDsmndVPYyL2SDj089Sv6fJ7ya3+bb/+EA5s/uSju9IwTc/aF2lj3ebGXz/yGwY6PqTPHrGOFDklXuxj4xJlPeOXPPC7FoR1f9sUAk82pD2Ns4cQ5vuyTfMghvu5BvdRgh5c1VtyjvGD3ctw32yef8K5SF5MX7d/5zncOd45/q10e/IsR92GcxRNvbXtPTAqO9iCe7Myz869OrKNY3APowWpvhce/WOl0r9CHV57ptj9bI9czLFxgdD3wgxdbNmynGIfhXmAeX/q4hcMGttoYzO4zuNHNRvtU8u0+0V6SBzbGrB+7GRMe7PjzL1W8PO0+hEelF6z0SPGIKS7G6BtT65vTVrv/4GN9zOEVlhq2cbWSvjzgpp8dH4q+GOAq7OTKulhXvrtv+mW6l2qETbmAw4fPCvHb43zF3bycxY19HLUbF0+5tk98UxdGuYfPD99qa91nF5zEPOG3F8P5szZhwC22mQcc2Cqw+HWtEH3j7Njgp2Rvni+18e6D7SN8jPEBEx/6rj2fn/Ikd+bZixG2Qg+OtnXRt1YwFHbGFOuHAzzY9kxczHWOmNzh4qCw7UU7HX7VXQPmjRUXn+b5616njxN/9NjwQac9rU9PbZ5kY53EB7ucyzv94hYHrPAWwN0fbIzDVghb49W4mLMW1rlxdsScNZBDurjgx781wrnY4dLVn3PG4fjCQv+SI87WRL6IeK1j+WHnZXgxwy3vanp42VN4J/gp5RxXfUKPHb/t4fTlkk2xG8dJLDMescBRcG/PsGPjvtFa0uVLXujDd3+Qb3X51HYt0yM45sPe5UPNB5sKP7jBlbvWS+7MVWCay06dFL95509cWh84ihjw4+vRRx89fPnLXz48+eSTC4LdObJftJ+Tra27M7AzsDOwM7AzcE0z4LDhRbsHdQeZDiEOGQ4P/+4A4RDUwafDjAOLAw8cdQc84w5WioMZfEJv+nC4Mt+Bq0PVaXrZJezh92Chj1u4dOPRQfbUbzYOUc2Vg/w4bMUbHht8/53AgomfevqZ7Q6UsKb/OISTHv/yK+8EVhIuXXatB/44KFPoOUTyBU8eHTTVeBOHX2sCW6FnLeWTD/ZyASP+HVDhx88cnQ7RsNs72oROPM3pewBQ4PCJFxzFGH2cO7y33mLnX01PDMQDhgcYcYVjnJ4Cj9+KOVyMF4vaXoU18xdnuOzh8SMfuNxP4FXo8MUWHgnPusA1PveVnPIz1yE9OHzHR60Ug7ywC48Pv0hh48Hj/e9//3qIkVdjfQur6x8OfnC8jJETPuEpbNxfPBDmy0Onb3dZNy+Z2XhA8yDaWsuBb2v961//urdnYCn8mWfvJZJvguEqz/YBv30j0vp4QTfXm/39pHWgUz6N8df6pqMm8klwE4uabvPm9OVFod+eyCYfdMMPtzr/dMTVtQczvunAwF9/luLgt0JXzkj3aGP8xlefD3VzahhiYac2Vg7gwUgHn+I2R3DDybgaDzb2gb2oDgOO9hR2cBXzU+jCj6d5RRxhlQ92dNnQn3HTNXYqxtI3xwZnD/14w6ZjnVwv5rxg/+Y3v7ke2C/DPPVxWb8cuDb8x6pvvvnmyp8X764xfElxahcnjq41xTUtb8RLG9eidaQrBnyJHM/7GP/mvchW4LAh+SxnYjQmB+4d/PUCBwcvuOQKLzb2Dn/ltljZ+Vaheb74hGvefQC/uQdh4ubeQNe83LDPjm348W5N1GzkBW+29geealzZ0jPmzz540SxnuIoBpnltfvFjU1sO7XfxtM/ZKGzsGZ9VhI906evDMtY1w69CGufjxo0ba72KDQ/rEfdiYldMYnffdN8m7sW4yCWhJw+4um9/4AMfWH+/2P1YLHjwI3/i4AsnvnxOwGfLh88HfXHl115kwwe8/swKv2IKWxzG2CqtDf98y6Nxe8Ta4E+/NaDHTxj4tXdhvec971l7FFdiTiHFKD482hPixLkzEl0+xMmGL37wMs5WPGI3F5/08DCGQ9xgikVc8qFdDtpXfPkzIPKgTejzzaccwCtvdOSL3/mind84wYiX+BR4dGDy1QtivuSPj0rXoD5bvNnKIVxj+M9Y5SafcmHevYOunLGFO7m5r7TWxsVGBz88ixUPZ4fOPPHkjy829iI/5ozLV3sZdvnTnuuqL28EX/vPvsgePkxCDyexqhV55D+u9OI123CME9iw4KrxNC9mMcirfkJfHtWEjftY1xtdY/ZFewaOvly2t/gTn/Xmkxijiz/hQ679qz56+l3bzmti5U8NX3Hvdb9Qyw0uYpVn/tSKf4Fjzv2Kv/Y2HfHRMY+THJRTPvSJ/dqeMl+ceOJlDf2N9ueO/wH5pz71qWUD8xzZL9rPydbW3RnYGdgZ2BnYGbimGXBYmX86Zh5s52GuA1sHHOFqO8h04HFYmeKgpTigqD3wegDrJZgDjAcsByf4iYOcg5JxfOCfCkyF4AEfrgObwxTBhw8YxhyelA7eHY7gO1DxW8xq9sXLvsOZ8TiFsRwef+TbeAc3upUOa/w5tOnDK/7ioh+2Ot9s+DCfXb7UxuWCXnb04TYfVzVcOLiaZ+egKZcOp8S4PDr4ahN+OpCyMS9/4konbHtk5qJ5vLQVeAm8HkTyRTd9D38eAhx42ZU762p92cpBD5640cHfSxptfOIr/skDZnzgyIN5+B4QOrTj5uHLw4GHZ7i4E5ik9eTbfuYT1qnwJz7+zLMPI13YOPAPl74+GyImHCaO2D0EeUAhdJVizFfrz9YcXPk1z58XSBcXF+tlAx7W2TcOxe9BkF/FWsuH2jpYAzUbOcDDtY0XzPe+971rH1kXD8q4FR++bPlhZ27mLp4epnHz0t7ekGMi315C4iUHvumLQ3tRXdzLYPzgB2f5ECsMY2rrwk5bCQcfoi8W+jizN2fN9GES40q+tIu/efitSfjmtNnhIl7FWNzg4E8HrnYcrEnXBjtrpW6/0cXVuDH+7Qf2xTtjx4eNUkzsYKiNZVe//BWDOn7dp/XjrU7SayyMfOsnkzPf/JLGy2/8zLX/6IpBuUz4YQdXvgkO8qWw40fuuifRlfuHH354/QemH/rQh9YaXYZ/lTH4voH+k5/8ZL1ox8m1oi4/OImFbpzM40K3605Nt7VWy4VCuseLOYFLzzXIn9hcgz7rrSOf7THY/KrdA3z2szHv/tkeZCN/cga7fNa3L3GBJe/0FViub0VsYsUHN0VfjO5Z/LVuMMwRmPnGX6zuI+5xvTgsr/TkBkdY9Njo4xNPGHz4TPWZyc58uOYV43jC5EOeYMgV30QOxKTQgSvf7qVedPNP1/1UfosHJ7jGvLBiC1sh5pXygI8c4yhn2gQnEkfrb93os7Xufinr//Twkk5exMUfHcKGX1xac+vBV3uEP+vIN31xyx8frTe+cOixkwt6dPT5Zgs3HuV/ETn+kC8yfcGFAw9vQk+/PODAjyIGny/iy5Z/ftOHYS2IOGDpK7DUdMUDrzn4dOUVtjj4Km9scY0vu/LcmtCxh/SLp/WDw2e6/BF5g2UNnXnMi4fo40I3PPNs8LNmcM3p07cf4qaWH4WO2Ohoi62Y5eMPf/jD+lcN8g/DnLWCj4P1VIyLU5GvijhxoE9cG+55/MS3HJi3V/HDBYa+2FobNs2Z1+aTHh5iUfTb42xwFYM2vHzoywMOxvjRhgU/Pbm3hnSNJXTy25q2FnDa+2wUuVBIOdNmAwvn1tk9xl5tvxZrdXmx3t2jipWNPZmOmj+FyIc1d8+Khzx2dsQFD/HC1BaPPqzyIqde1jurwnTvoeceT6/7Cjy6rS8O5URbTPHAwT1SntJR4wcTjn+R9o1vfONw69Yt5ktvNa74Y79ov2KittrOwM7AzsDOwM7Adc6Aw8NvfvOb9Y04B1CHCwebDlNi67DRAUdNHEzomifazbF3qKGjOHQ5tHvR7iWpQ1EHoh6mYLBz2MTF4QomjvnQ7lCkJnzCc8Dlh19zYuFDbd6c4tA1BSafDvDa7NXsYGtnY2weds2RDmJirV/e1sDdH3jFbbbhlCvj4arhyAOOuInFmD4uxDwxr5D868d/Tdz9IZbWLF2+HVodgh3cjRO+HFoTeg7i8qltfh6E4y9/7PgRH5/mZoww9enyp803fX36YqjvcG4f4VhcbOm0ztricCiWI9w8ZPUfk8E1jlc5UOefvXY42mL1UsM+FrtYfFPMt/zsV/a4k2IpD/zb5x5kjMFTaqvZ4q+GRVed4CIevrUV+gp7fAie9HDoYa9/gp++XPKT/2I3TuRV/ggb16yXgvJOhy8PI2L3Irx4XbM9LFnDHrj4YiNP7PDy7aP5on0+ZOOliNG4a1ObGIeniNN6PPjgg+shy97ARb758veq9T0I+hvoPWDDEHNFf4q1EafY8S4+bfumvWNcgaMmanzDwAWWnKrxNgfDdUPfmLr1hRMmGwVHdpV04PBRLMbzAxPnxnCwfzyci42dNVPg4MGWWCO25dk43/FSN1/++Guevvn2MfxKMdA3RsoLfvZemHSnGIetlDd+4KjpZ6vGpznt8PgmYejDlJf2mj7Jhi5M/bDyVex0ZrGmrgXXJR25dy35p+deuIe9HJ35g2/X4M9+9rPDneOfjoEl3wR383IS1+6XxuxR9y/XL91exvWiqL1oPeDYK31G0heLMbliQ9yTvfTt/iwP7nuKvQ6HnWsTb3y13Z9cm+aINeC3vMld7fY6vfKsDZsfHOHgZR/h1i8CfBb55Ruf9oQ4xMkfe3y02VkneWMjR8UAO72uI/l0DRkPp89E+jB9q969yhooeMJV80PHfVbc4hKnteTfZxecrl84RIxeLrn/9ffUvWQXY591YqTH1v1QMYYvHzjLgUIPf3zMiZke30l5hSGHdGAUJx43jt+etwdgiYdvmESurDWesPVhiBUeyX9rae2tCT+K/MBkzxaG/InBXNe78e4/+JZbGMR+FY8c2/+tAz14bOjSIdY0/8YU+OKh6/MOV7ys2dzT7OlYO/uZyA+RO/lmB09fHPTxcO7AyXh7sVzBUuiaVwgcwoe2+eIoT8aLybxCxKi4bsQEU45g4cKf/OPYWuFDz3qIpTXv8xkuXbjWhT57eIo4rTcOxrV/9atfrZemxvxdbLVrF2/6rj/55qs8GBcnXXPllX+5s++sCy7tj/YwHcI/HBhioqfgbixf9IgxeXL+UPjnw1mIXfu3e0Jrp8avfW5ebPLBhqjNd89qbcxZR3tYjtvb+MK1XsUlVsU4e4L7bIsBZzZETsXknqRtXlxKtmJj45dm8lp+XKv0zfPJBgY7PPRh+1a7MXqKs6FrgMiLWIicmCf07UO1+N3/YPHnX9Sw87mGi5zJnbW0ZvzC7LpbgMcfxhWYd46fo+6R5SadanpetH/rW986fO5zn1vD99PN5rTeL9pPM7L7OwM7AzsDOwM7A/+DGXDg8KK9/wzVYcZBpMOMdocdhwltOuwcXkgHuNJjzqEHRsVh0QOvA6RDocOKA5iHEQcrbUJf2yGxgxY8PvkPW610wMHF4c5hrgMTrg6uavNK82xJmHziYbzYxcVWnx3dGWsYC+juj/hUG06vMf3a2XaITbfxajxwFFtc5ERJ2MKBTV8xVj7oTb/wxDNFrA7sDu8d9I3JozXJHq5DLi7aeNBR55edtoO4mi6dYuVfW6GLC3xtvosFPzHow+k/knS47oGRnfnyoxaHeeKg7tDtYaB1Vc82PvD5x1UbJi7wYdm/9rF5mF4WeZiSm9aCjRI2W3P2lz1tzlic8dMm9qh54gEBhvwS4+bx0BZj+9o8XdJDIP44usbE3f4ptzDKO37sjeECW34JHx62/HPZ/qMu6+ihyDeH5JUtOzHyJU48ceHDnDi8zKCPFyzfRrJOvXDiX27ZJLAUEk7c4XsZ4NtuXtrjaU6s/PSNduvT364uT2o5Ui4THOShfcE3G7kqX8YIDHNhT5vyLo9EHhS6XTOtsZy13+jCV/AQV3zzq4ZfMQ/LeLU5scgrDu0PmDhYC+umbYydfLMrN2z4J/Qmj9ZKTpL8w4BFX1u86vgbZ1eu6cqBvVdOwqxuvJzAggFXSeKAb+vFn3FjzatJOZptY+kbb9/F25i8igtm3MLCsXy3/u6tXrQ/d/yn5x/84Afv5QLWucKflwqvvPLK4fbt2wsLF/xwaM8Uf2tYTO4N3bvsA/M+R/HG11q4Pun3sgdHesb4oucaxMWLL/dIfbbGrClsa4MT8Zng/iFn7gnuGd3vYMsZe3V7Vm2uNW6vwuMHH7j2srb5+Lef+OilPu7s8hMGn3JgXN7kx72kNTYmv/DlRkziUNpf/OtPXS/gerHLhxdaclA8xsyLk7A1Jx668PjCy2dQa+ze55cb8m4vWlOfSe6p7MUFE7b7tc8sONbE2hCxsKVL+Mo3HX0iLmuAQ3Gbz44f93V/FsznNExx0RVPGLC9nMPBuPhaOzpig2scNn8K/0ox0YGBH17i4Iu9Yjz+5nsBGA/7FZY17kU7znyJBRYxpo03/9p8wYynNjzxWrPimZzpuL+Hp89/+YaVD/jF6nqCrW/P2Mfp4YkvTPMEJh3ABdJiAABAAElEQVS5NabmC2a5U8NIR3+Kvusmv2KCgYsYYZHWwPVRjmBqWwMYfvlC9PFRtOF5HoAJT84Sa//aa6+tvSxGL1HpFLu2cTVf5UFNjLlOcMGd2HOdP+Jg/5gvn+Lu7EjH+FyXfLWv4RoTp2tQwQl/1xv/OFl3McNTrHnrLnfm1Hy5VuETtvjZo+VvTdydsz6tE7904MqlXBkTBx6Kthhx1lYr5vhgZ55f10vPa3TssfYsW0Wccur6gYG3vJsTj1hbo2zkwprLFcGXwGjfssODGGuNGoNp3/uXjJ2ZLi4uVv7knS/xWF+xKGLgyxwpD+Iyr+/M6B4Zp6V4/JGt+PzSx59+++xnP7umw0v3ner9ov2dMrTndwZ2BnYGdgZ2Bv4HMuBgcfqi/fSAUZgdkvQdthS66evTcdAjDibGqh2KHCB908nBxkHKnIOawx3b9DtQwnZ462EKrjG6HbjYwHMAUvTNwWBLPx2HM3PV5mHRcShMn5/0YNMn5js4wkzowjFf4d94fIyXCxj0FWKc7v0k3bhkl3784Dqoi4fANaYQ43N9jOnnXy2HDu8Or3DZKMWe/bRrLr9wE2P4wpYLB1q4xjoA1y/n9grd4g5L3/5xuFbjCkNNxG4d+SpXxnE17uCthgNfO37G9MNo7WDR8WDgxbBDf3oO5F5s2J8EBjuc2LWmrUvrIF78cCgvjbGJy8xnWObEw7YH7OZgGeOfnocTDy8eMGHxYT6B09rRj1PzbDxs+daQF+1yzi8bmB5o1PqKPLiWtWF7KaCvjaO8KQQP64Yzfb7oVOLAFrf2iDYO+uK0Vz2wecneAx5bXPhnLw+4xg1GJT/V5ZIdXtYsDmxItrOfXvPVdPCVW9jtS20xFzf99oC2cf7ZG1fkKt90tOmkV3vGgJdrWa7xULpu2NvPcgWfT/pKfmDlN758GzMnN4T9qZhrHp629Yc/OcNib752MYSpj7t5oq+UA7gwCZzwtculOfZwLpMwzWmXc+3GtGHyWz60Ezbww1Jbc599vbi4OL4Q+PznP3946KGHFk6259Rx8rfZv/SlL60X7Xy7H+GHg348u/bY2Q9ehOJDRxxxc58rx/ho99LIL6vmvY6dl1JeIpdTa4tDL0zgu07b914KWRvXpnF6XgrDNU4PHo64wiPasOSRDl7zM8q9XXGttz5q9mLHVS7aezDhtFb6MHGK77TPP/18uI7g0lPwD1+fsIOLu3vVfKkoT+JxL6TDpnVT48s+ntXzMx6uHLq3iVMfFl7yAYNfL+P50SeTp9xbYzjGi4le+dAm5unhypc1KIf82g/2El906JvHgW85Mw/XOB147s9+QSAn4mCnFn+fFfKOW/mEUbxyb460P2ATfunJPf/s4Rrn2170OcmnObwq7NnCVLMj1cUIi61iLJ75w52POLOPH1/w6ZrXJvS9xPT5Zlw+jFkv+DDYyE82MOXC2qvplHe6+uWJX3z1yzl7Ooq1ZcOeD9euF6+4lDv8FHmExcZaK/o42K/ahE+f0+bpaqvlxzeJ6Wu7J3RfEJu1a9/gRodP2OWeHix94rxC17oSuRMnHIU+f/Jp37kGxOv+I+dyYW8447BrvcTChwJfbuRFgWufwOv/zZBffgh9djg11r7S56d1oZ8vGNOnOX26OPelBRzhmWstYSj5ZtM6wbFX/Akyv4TEu5jaL7DYy5dYrT8M+OXW3sCRnrZaXuW8dYIrP/LkvgfDGL580YdpnPArHzi5P/iFrPscaT9aJ7bs8mlvFD9O5ohajtsz4rD/7C37kfRLg9UZP9jiwpdvtH/lK185PPXUU0uDr3Nkv2g/J1tbd2dgZ2BnYGdgZ+CaZsAhZ75on4e5QqJD5mHCgUZJn44DCOlgk072+g42DjUd0vQd1Byw4Bt3mFM6bMHLj8MOfbrh8lmbjeLg1qHKwcq8cRyINgxY2eaHHYl/mPTNKR006cWt+XD0CRw+OpDme03e/ZHPy8biF590xMUX6WDNh8NgnNjGOR/xhKcdBl3FuENsD0J0FOOw4aQrFtJDuvlToUM/gZNda928Oblt/el5IMCnNbV/vDTwTb7m7D1xxAMO/fyo5cZDE47iIQ7cxvXpiM18D43GcJNrHDwkOPTT4a8XO+bpwqGff216s9CBhXu6bNnoK3TYGA9XPObyrS1Xjedb7ozPWFxf8Ix7ERI+3uIvB+VdbuJM3zcUP/KRj6xvpsVH7jzQwFZ7GPWw5sGKLZGrfOPNT3PmxTAFL7yLxZy+Qne29XHBuXyqw+ALLzbitKbqiVF++QlfXNYCDnu82RhTp6tP6OWzebWxZMZpvcrz1KNjH4uBtDba5vhTtMOTS3pqc2pxm8+/Gm77pJzhYE58MMzjw17Jnn/tuFYb51OfsD+VuMYXTpzDVzfPvvnLsMrBnItbsde373BTzKn5KYfVsOSEyAPJT7zC1K/QMw5bTcy1ttrNyc180X7j+Kc1nvsvv9EOn/zzn/88PPPMM4c33nhjrYHrD388FPtJwWHule4/MPDXV+wV/Yp514QXHK7nuTdwcH9wT+aTDR9yT4/4HHHfxIEOHr3YkXf9ciVf5QqW68893Tg8exU/dmzcz2CSfNO11nTxUPA3RuJJPxxtwrexMPmoGG8uH+bgho0PHUIHbvb5w5/IEzs571qUF2N4tGYwtfMfB7gw4VhzRcy4w5C77sX2ns9L65DED0YvS+VKX4Ghbh/p42IMrvXARTx84qPGXdHnQ2GXb+PZ0YM3P0vEYCy89NX2gnnCFo7xdI3hw58xHO1bHIx7qWau9S1H4hG7GM2JmZ6abWtEh+BHlw81P4rxBA6fXjriibvPSH3ryZZ/dqScmFP4xR03XIgxenLQnhYzfRzplU+29kYc8WFL8BKbOfr0YOJTXPQmpj3kWobBDhf56CUqDD7Y0BUnwZPe9Ml36wcPVvnBRx8XeAS2Mdj2EVvzbFoTY3AVAgffMIzRhUMHn/YCfHlW4Lif4S8X8sLOOukrMOAT/OHgBtO4/LBx3qRLBy5b8xX2dM0n4eprx5mekm01W/dgvzi1D+KYr3DZlgtc6HZNyuP8IgIbayim4lZbSxjiNBemfOoTY/DxguuXZ/ZitnBdhzC6luVPDLAVtrXlz1r7pYvrpz3KlxyIgz6/MFpT/XKgTtI1j7cvaOSbnj3Al1rM9HARUz4effTRw7PPPnt44oknFiwe58h+0X5OtrbuzsDOwM7AzsDOwDXNgINDL9o9bDkwGDtH2DiIOPCoHVbmwQbeHHPAokcciggMxSHIGCyHoA5FauLQ5VBMN2mscbpsiYOScRymTX3z9OMTj3JQDSsbOh3utB0Wizcf1eyIPl9qvjq0vT37dlww+MiPPv3G8Jx5dHBV0lGLVT6UOHXoNQcDXjkpd+nGxxp4SHEoxpcNnPD15YAeWwdTL2HmIRgWW2uhxk8O6LMncTNH0sdTsVcchH0DxkGeXmNeVnlQwMMYbAd6h3u2E9u8XPlnoWLAQY2v9YMbT3MebggcnMqnuR5gzZcP9vQUos9WjZd4tSsO9vNBxbzCD52ka8GYGGDOB6/ipB9HcSts+FYI7mKUs+JnY749XA7iqcbBQ9zHPvax9bIGNhFr+fFQ4ttof/7zn9fDpbzAgk/4o8NPMRrLz8wPW+OJfoXNLHTKXbnXF9PEgccOX1IbR/G0dmy87DJGx1qXPzrGSPp8kfgWT76bF3Nxs81ntsVgX/SCgt9806MDv5zrp4MXzPzQJ/Fkkw/tU//xpwNj3lfgFI824S+bt0fe5le7mv/Jl005pMOfNTAuFn2+7fHwjSWz3Vh6avuL4Nu9aOYke7rxol8+cDAXb2328NTsm9M2Tyau64UOKW/wXXeuYS9xfJP9+eefX39CJoxlcMaPfPai/fXXX18xiRsHvtT8+YamlxvFIsf2ed9EhWVdFDo4xUttXkzFhaYxcbmP2bf6c8y68m8/40APNn7+JdCdO3dWtHj5VqL1IDC0XXs+U3rh4YVeL/rxzB8bPHxWlXuc6c8XccUjhmKFQZprT+jjShd2uEv5+MMY29YXHltxWmf67Zm4wux6hSM/7f2w+kUwfDm1horPuLiy8ZnIB2yYrpfu4drWts9kOnJz4/h5GS9YxYyLl2xyizN8wq746osNN2sy58zLVflLH4Yx/K0/HXvPuhRPuvz2Wc6HuPuMtBbi7KUuXPrGi1u+eolnjg59f1qJLSx7ER/CvzwpckafTN848MEOd9+opacYh6EWUzwWyPEHfZzsbZhilmPXYvd4ecQRP+vBprj5wKszinzj7ixEH54aBzbWRtHPjg2hp12MONGNe/O4FBc762HPELmVV9iw6IWPlxj5pi/uYoRNV98aENzLGTzXuprAUviae8Z+Ng6HD7hs1PJGXx605VLhNyx9fK2Too8zLLxxsh7sjcEjOGjDIvxNexhsCHw4+deXc/lwb4BRPtjB5TvsYodlnK24+eNDMaawoSNmZ3Vrijef1pFNuGo27NnkW2z6OFkD/mHQtU+tORx9892f+LQO+NOHN/H548u15V6PD17w7Tv54LdcwTCOD6w4asOB5zoIB5a+64lu+v58IN7w2dFjmw6+fMiXNh33UgLPuvlMdM/wr7f4I+WYrc8rf8bo6aefPnz84x9f8+zOkf2i/Zxsbd2dgZ2BnYGdgZ2Ba5oBB5D5ol0Yxu4n5hxOiAMMccgw5rCkvuzQ4RBGX01vHnzCgxWOAw09BzNjHb7Yh5UfhymHQYdFuB1W01PDyJYfog9jxvT2zP//Ga4Y+HLYwklbIfmAGbeQ+MKPdHiESdQdCOsbC0f7Mux8s00XP36MFTd/ckIHDjEHN339KQ6hDqMeDtjQNUavdXSYdQDVdwDvpc3EYsuOf+MermZu4pZvfug27kHPS14PEfjAM+9h038AZ8xewUPcDu5Kh2h4/MHxUNY/TTZG30G6dYEL35yYiLZi3BiMHu7Eo5gnfM1ifM4vpeMP4zj3sJFf87iwScRFt5wYt+50ypU50pqny0948mneHL9xExO89OStnMEUt+tQvj/60Y8eLi4uVq7zDVfxgOqF3x//+Mf1MgJmPNT4eiiSOzzYlxtcSJyaL+e4TY502eKerTF9hT8Y4ejzZ45owzauaCtih+eBUp9PcSX5MhdGc7Omx5bITbyMn2JMO5j2s3sLkSvXS/zSzbdxeSg3+sQY0S8+NtnNsaU4ftCRbw+d6TcWrr4ilsYGxL2meb7aI9nIR7kwJmb9fIq5h15gdK4iuOBOrL1r25gSVzUpp2Gryxd+xYW7thwbz049hR7h1/VCwoBtvvuUe6oX7f7pub/VHqdldMaPuF/2ot19o5eWXjz4u9n84icOOfbSsG8xisecONVxjw7+ro95f+CfD3Gdfqb3Ug0PL1Dcv913rI/ry4sMvGH0oh0OHnzjSM9nimsQX/d1fdeF+eKXP7z4wMeeM9ZnAX1j9I2r2SviUvNpnP/08gEbLl32xstD+804H17aeDkl7nJdLtXyGx85gwOPPSxrouZLvtSwXCOEHht/EkO+wmzdzLt2fPOzP8NiDKcbxxftbMNna470JyOKba5D2PJircRpHQj7cIzjO/NLx1j7BC5+1jTf4YhTzOKir62Q9qY1Lef0u1fgYJ/Z42KVW2P2kM98OYdpnvCNby/axUhwN84+Hjhrs/HSU45g40TUeOBlHAZR429P8I27dfEnPuTRvD4O7NmSfJs3bh6/1gYenzMXbPiyT/DHpXWjq6/E2ZlKnmDKTfzVdMTKv/2iwHRNq60fO3pqY+llI1/4WHt6uDhDtI+dBfB3j1YXC/1yQFdfkRsvbOHj0fUVbxzkQJ4J/gq/uNHHlX42eFlb83yIS661jfOlLRY6SfHAN98cjrBhtA9gaIvF3tNun7BT+IIJr1zyla17Alx98zDEkg8Y9r41lQMx2/fWlR6Br82Xkh/50seJfjmEDc8+hYeba9bnBS5yYv+Inw08GCTecOXCvT4u9OSCPTEPG4YYzJVP3OibxwcPvsXCl71jH5mjw+7ieD71WWeP4JYuTgo/9qW47An4xWgPsnFNumf8/e9/X/zwLN7uMT6/P/OZzxwef/xx08v/alzxx37RfsVEbbWdgZ2BnYGdgZ2B65wBh493etHeIUWddPjRN+7Aokyd7Oikr+6wZ7yDlHHioOMA1OFWvzF2BK5DVwfADmAd9GCyIQ6X+dTPj8OZQibnNXDyI7704CkdUB3klGKFH3a+wGmzowdvzpk3hz/b+GRj3pg5Y9mWc/MEhlw41KrDcgAtz2HQDxP/KfDlT4wOlsUPg71C4NLTdwh3uG9NwmObf3p8qfnmByadYmZXX+1g7AWKQ709wdZh3EOAPx/TPoHTAzwe+vnNj0O6Q7Q8GYNVzvnFIbu5f+gbV/MBJzs2FXwr8BWidog3Z2/ri6uDvnEYxuVHbayHAutA6OAsx7jo08GVfkIHRvrGzRsP13x6YikecbKjF64xefZwIe/4WAMPM/YHDnLiZY2Hk7feemvFC8c4rsS+LH/8J3gkbBS++SUw5p42xr4Y2PMhdwp7YlxfLMbSM6c/Y7UWYqLbSyQ5sa/Z5Ytd+NXwSH26/DYGR788hMHXFONyKdfEOrPFsxjo4ENmDtoP5ukXmz5bukQ7vMbDUdPH1Tplqyb12RE8JpfiM0eXH+vYdTg55ZOumPXFy856828MZkU/iVN9POjJFz19GOr62ReHunZx4AtHv3ltY+zTV9cvLlwaU4chX3BdN2L1YO8/QX3hhRfW/3tA9z8RHIi/A+zb8X/7298Wv170mOPbi3Yv5+xv9yHri5v7pPuhur0gzuaNuS5wV8Sp3xh8MdFjQ3Cy3u4Nxdv9QuzwvSDxwtKLYOIFnHt8fq0hTvMzJV72SC9t2HZt4eZehGdrQ9degjvH5Ttf7OSitfISRnyNiw1v8Sjm6MLDw0sweO3Z8iMHeLCHpbTP+ywwZl5pLcVDzMU5nPzwhQuduItHjvTVYrf/1cTa+w8p6fVCCY5Cur+a5y8+fIapFhe+xidvfXxx4h8e7Ljj67ODjXHri0fXKz0ce1HuHmgt2JFisl/ZxAGWGPnHLX70s/Eyjg4be7G8q+UIDzjiIzDsJS/s7Eti3nVl39JTYKrLPQ4zb/yJw/5uv8iLb92Kk74Xlz5v8MAXHl59BsDmm515c9kaN8anvSVf7PTNiYs9P3JGV9G3Fs5U/ME2z86cMXr4axN+FfPFbU5fbPa9vBF9POBnZ854OtZRPvGEgSce/XKUrrWiHw/xFKt5nNnjw48cKARmXGE0Xj7iAwe+Yi4svrsPuA/hyl/5oC/f9olaHwc6zkF842a/aMuHe7B5cfIVBzEZJ3i29sb5k5Ns6BhjHxc4cSkv9hPM8mActpi0YSt406HrmhQDHdjWD27cYFo3duL2Oca36xZne4YdDGOw5c0vSLxsdx3iXW7hyBHJLzs8cTIffzp8scWfL3mxNnJs3Yz7rFNwK062uMAzJr78GMddjOIzD9OfQPSvX43hgJ98wHXt+Eb7zZs3D48//jj4pbMaV/yxX7RfMVFbbWdgZ2BnYGdgZ+A6Z8Dh47IX7Q4XxHyHlHnw6QCkNu8gMvXY6jemT2DMYh5Gh0YHnQ6E5uDOA1Z8HKwUdg5DSgdLdh2yzE+OxWC8OfOn3PSNK/m8rB9O9uoOnOYStvXhzYNyNsaU/Kj1SbzVtT2EOgg3Rlce5oOjOfmUD3i45WMBH3/Eq766HLJtHWDMHMMzp/YgYD3gJ3yHo+aH7pS4G9MmdLO19uJ0yHXIxt3Dr4dgD7DmCV4OyIoDOHt8i5tvth3s8ZhlgRx/0HcQV2CwUbTp86OIU9/+JPHVrzRGz8OXcXHgwg/uxsRLjCvszHsAUKwBf8bNi0GfbfOw4CjWQsl/2Grz7MwpuMGEl2/j5SEM+B4y+NOW+17gGSPy7qHHi3YPWKSHIG286dijfE3f5vnCrf2Kg357uuudLtvq1kgdLixttol+69aYWk7sLftM28MkfHj4nuLCVuIAQ1tpLh7q9ktj6fB1Ku0L460JPbazNGcsPG269q4HYYKTHJqLL/3pG5YSjrZc6yd4tR7GYU1MevqkPHQdnd5D8EkvHLZx4NteMSf38tca5GP6DiPd+nBqw86W/2JTz/yUa3aTIz1l5s28MXkJO3v+YGRDRz7UriPfZH/xxRfflRftrreXXnrp8I9//GPx8ALb9ecegIMXc/a2dTAuT3ip7W+51lfolyt82bm+y5kxLynURLzhsNV3f3A98cfOmBK+9bQ2anlzP3c/6SWqOfcN9/LuY2xhKfzxxTYc/fCNK8VhTt7NK7joK0QsOJtz3eBOhz2hJwfmutfBx899XRtPuS1WNa5y0P6HS5eeOh7yyT8/uBg33x5Slyuf7fzCphOOGIvXHAzxsCN82wfsvfDiC+eus3Iht/mNn/oUH+d8VPOr8Bk2LGtE3//zQZcP89ZbXQw+G+2FPuvZuFbYlB8vwOAZ82KQPR8Ejrk+Y4zLQXPm9XEULwxc5UChT8ccv/4DcL+cMO6FuBeGfJYLvszpE3iw+RAjKe/afNHtJbc2XOtRHHEUL6FjrHn4znzqKfps7DUiHlzLAd9xxa97grY4+BE3HLqKNt+K2OjAUIi+km/+6dnDrhNFHy5e4bB1DfTZyg4mvn5xRc8YHPziwE6fPzUbeVb0+VLSw01s8UsHrvuaPOJmnPDDBoY9SMecf3njG86uHb7gsZVD+6T1gIuTewKxZtpy2f3DmLjx4psvPtnxBcO+N6Yk/MIxRi/O5uHIFzEvDuvf/tTnXzywW6fi5Zu+61FsOMChp2+e8O88ZRyWHGnPXOGJj/s5juJ1L79z/DNhPpfYl3M+YBK6xt1j2yvFgqd5c3zJN2FbjuUUV8U1p8gtLPEY11dwNs5f+njLgb59KBfus2Iv962hX5j40ok/HfOJT3xiccH1HNkv2s/J1tbdGdgZ2BnYGdgZuKYZcIC57EV7hyvzDieXicMFvXQcUjrQzLZ5xZjDTdKhR22eZK/dAcuYwxJbuso8hDkYOQQ7WGYTXofJMNQOTiT+YtCG6wBGh32HLPpwCB3zU+g1b1w7TDj5iYu+Q2J2+uaUfKVbDUf8HX7ZeNHpwCvuMB1kHTodGtni6tAprvx0QC1HxpVTKdf5huFgizdctTl62srEKVd0jWdnfIo5XGHR7RCcvQO2w61DNu695DUuH+L3sOpwbC+Uj7jBl1fFGMln+dUn+YdLsjMfn2zMF0v21gh/h/L2LAwParBxD4uusYlhDkf+2cMyD8OYtrWVS/Zy4MGDHiy2HhB8S45u2HJSPujBYl8+xDLFnH1DYEx8/dbEHtTG1ThefNsn8mRNWg+8FHtUnMbFcj9u8PCgb12tPcwK7nD0zWkTdfiuBfN4yaF2ok0PjnyIUd9LAHW4bPUJTvRn3uiFbVx+CRu2ypSw5ph2PORyinFxyEHXdbhqnPjMj/3gBRE73MypK8Wmrx13uSbpaadrTuHrMonDnBMHLj304qHkhy7OYmptGzPOt6LdvDa+XQPp4NxcnNmUA3usPTJjuIw3HHgJnWKHN8WcwoaU6zDo58MeM+/lzCOPPHL4+te//l+9aOcPvpePP/7xj9c9RoxeDHlh5TNRLqyDNeDbvPzNvGmTue7aXsp48ekzhi1xjbi3da3Acn0qbOTJXHmB3Xqp8VVwgsOmF1ZexMTPnyLrXs43PPlj1/6Jr5pdn3va8q/wzx8bNSx70p9ecS+mU5uP7nnuXwrO8eeHDhz3CIUOH+ZgwcaTTv74pmPemrgnwjQux+6h7MqtObjdJ2HHw9i8p8GNk/Whyz9sbRzZGuODf/dg3OLNLs505Y/AkO/Wng3B0z0/3+aLFRcSjjisJV15zq95PFzH4cC01/rs1Pa5D9/Lab9c9683yrl9X47gGrdn4KbDthj4yb8aV2PWxf1BrZizLhcXF+vb5+buHF8U+launJLWRE2fn0qY8iivfeaLmb49hhO7Pg/N6bOt6BN9HIg1kf8wxIBze56Nwo/cJvJhjLARX3u1MfyJPaLgjid/OJgPu5pvuDDp07Vu+Bmnhzs8cwrd+NKBbR2dG1wbxF5w3mPXHjHOVg7U5Vtb/viB2xzfcNVsCF6w3YO1cSY4xIV+9yTjt2/fXr/EdMZsTdur7S0+xUbsQWKMyBEctevR9QuHHzL9wrMu5YeOfvzpuz6M4U/owOeXnTYfcqfmFy7O1p1da83evP3hOhUDPRh4mVOIHCtyhoOibb0VmGzw4aP4rAvseb1bU9ysDxu5EiOc8givHNIRQ/cGfunTEScfOFuj+mzoi5ktPvnJXm2fiREf82oFHhs5ldvyAM8vyp87/mfmTz755MoN3XNkv2g/J1tbd2dgZ2BnYGdgZ+CaZsBB4tVXXz28/PLL66ArDGMOVB009LU7TDiMdABKT9+hR+kA5BBjnL3iAOXAA6fDlUOdcXZ06Jvr0EzX2CzTh3kHOAfYDlvslfiKiT3fuNGDQbQ7QJlzQMSHvgOWg6BDqDjjgCddfdLhVptPePwnxtg3bk4/3/DoNB4f4+Fo44+fvNL3p1Mc+jyc4KDgijN8QtehvLwbc8iVL5iED3iXSTpw+HYAxU/s7MyXB/3GGi9nzcl7+mGbC1Pu5xrQF6MXhx606TmMe3jtAC1mL2m8XOrgnr/ikms54VMxry9n2uk1j6OxdIzLgTya0yd08oUbvg73ODrA05dv/7ESOw9wbOl1nYQXVvPG22ewYeGAs75c8dH6woThoUYJFz/xEzrFodaf/tgTfrsOtIt7TR5/wG4demilY+3kDD9Y9ku59qKil/BwzHkosmY4wMQnTsb4Nu9BRx7hlm8YdIgxUl+O2Cl4sIsLPb7CKWY17nIVHl1j5uKnzo95uu0v/daMDrtsG8elOOgn9O1peTVPjCnWs5en8Q7HvJwZx9V+8I0r65vvbOLaHjJffNZPnw6prd+aGFPKBd/E/NwjxsWLi0K/YjxsMbh+rS0/dNRx0IfVGK707YfWKQ6wxBU23Wzh58MYHaKdj9rs+KsvNpzV02ZizDY7GAphFwZf7gHv5ot237T9xS9+ce9v4foPifv24OQbB1zL1RyTH5xxpOOz2UtgfFszc+4L7Oh0jVkL/e4t2nLY+vbygz0se9xLfMKP0ossHHymu16tJxuSrWuEf/hq4/R8c7L7RPmngwuf9HD32eFFyfve975l588APPDAA/d0+HWt4dO9xzdTXYPmiHn7EG/r3b3YZ5Qx/nAoD/j5nLYuvsWMl+sFF59t8sEGVvtbztgbU9jACddcUh6M4SLvPuPtDXjG3JutsZgI/8bZ0C9n2uXaZ1n+8XMtG9NO6PJ/WuBYD599uPis4ksc5ub1yxYXpXXyuSKf9pT/j8Wa+Vcb8iKOO8eX3/AJPuKyb4zxQWCJEz4dbX6VeNMTO07yy5ZP6+LvqdP1yyt7AD/5EIdSboq9OTj48Oka4guOMb7oGdOOKwxj+uzpaLce+nSso/1iLfStr/zKC/30+A6jvQRfEYdcWEuxGhMPjj6j5RE27tYNz84z+cCRbzbG+HNt+uUIXJzgui79STnjePOnwBcbbq6tzgZs+HW+tX/NE2vOBm/28sCPGgf+rD0e5sUu362Tmj4OihzA44+IEQ47sbZffUnCHsbPPGxx8jNtJhY8+9d9xbgY5AEGTuKWMyV+bFqX8srW/YQ/cfMJVy7VuMPAy/1FjuBZv3La/oFtz5Q/2GKhj5N7WusH0/rCFSMdOGGVYxgw2ZVHOmz16fGbwIHp3oqfmi84eLkfqklcrQc8POjq05EXORADX3TsF//Cy32WL3sjHD7ijRM78z1X2D/lonVmE19c6bB77LHH1i/Kb926tbiyO0f2i/ZzsrV1dwZ2BnYGdgZ2Bq5pBhxafKO9F+0dGByWOtTQMV7RdwBRO/wQB50OMg4ztdMz73DkYEPCduA1xgYe4dtB08GJHtvm8u2gxIZ0wHYgos9+Hsqy5R+fDoHi0VaHiwtsPuE5gDq8wqNjnHS406aX8K3AJGqcKs2r2cEN05h+fIxrK9q4iUHcdD0IenBwQIYlFlyV8iYWB001EYN5B364JB+rc58fHUp7SJBHHAhuceU3vuWdbj7KYTX7ciMuMYpJnDDZOsR7YPHQy6d5Y2o29ooceNDQzhfdOMqNdpz4NNYa4JFkr8+mNZLD8o8biTs9bfhi8JDmRZI2H759BxfvYsddgWUsLHrhyzsdHPjGIV/a/PQgwcacBxglDLjs+ZBPmMWhP8sK6vjDWNzSZ6+UH/n3oOMahqevTT+RY6L2Ny/nw6CHz16MFDPOCj8EB/vVA7S1FV/+zf9fe3eTo8lVrHG87k66hRACg2HmHTBgYCG+xIgJIMAIbBghDKgtIbED9sA2kMAwBmSDZdQSG+H95a2/HaSq+1Z1NxcKIqRT5yviiYjnnMz3ZNbb1elrN67Gub2qwGLnJVn2M494x5GiT4/wDwtm3E1bOnTbR/SKSZ1MPluPfKRD33p6sWmOXnj2txd0+GouHPZsxSV+e86LdnVz00as1oMuKWf6/MElbPQJfO3G9HEjL+Nq9tbeHDFvTxg3Lz5zE4vv4oEdXrnDoK9fvvaBvWNfZNOcvMSjlJ85unONjgAvP8RUbMa044Nf/Yo+YSNPPmATbRJeec0xNrCsr5eGL/Ib7b/4xS+O6ws3f/7zn4/rX3v6x6XrVB7ic21oGxe/vnF94l7lHuYaT0d+2vKQOx+tAww5mrcusKzHXC9zYrDPvVSBo2+PuD6zsb7FwycpVnHBIeaM8+Pewk6biE8RFx267pn9ouOmF+10vVDxUlUtBucLL3C8vHEfouP+KlY5wLXPtb20kRsexNG+s/fYuIZdy+Jy3/ZC0Web+6YYYcqBTzUe4c9CD2/GxFKOR9KXH7iJj160iwfPxUS3zw0YxvnWVviAgy9+iL6XW9aKz2KiW0x0+FLgyKOXlLDYVcwTtrDkVLvPNi8UYflliJdb8rEmyuPrF+1w+LV/4g3uOT441slaWBfz/PApdwUPOIfnG/jWh74X7da/z+/wi1ddW35wxMOHHMzBEbc6/srZvLYin3TEoog9n/i3X6wFO358Lsz9Uq7yEAte+KRPzMNpD4izmPtMFot/SeD6F497AZ9wxBhn4iOw8dsv5vBlzL5/7733PvhPYMVkL4oBlrOo60INkw2/zrd+OS8v8eGuvGb8ranrVezm+GADT13e8qXPf+NqIsf2hTwVIrY+e3EE3z4gYsI/4aMiLznYs3y5b+DDy3b64qKjxp+2OOxH6+KeyZc1cD+x3uLWx6996X4jT/bihs8OlvXul4P6ZPIuB0VshJ37Ej/261zfYoXDV7zJVRuGmIk+HbETc+KOczZ4dq/uXkjfuNz5Dgv/7MyJT2ErNrGLFRfWQt+c+4P7DWzSHlfTwQEOYcaHdZJb93ZrKuf05WJv9YsS9p/+9KevfvCDH1x99atfPfyI6S6yL9rvwtbqLgPLwDKwDCwD95QBByMv2n/2s58dB90OZR2upOVQkph3qGDnwKFvXtuYw5IDDDFWodOhy1gYDlLTxngHNXV6+VdPP+YdMh2OHMTYiN2hS5tuRVziKDe24m9e3eFKm55DVvr5NgdHDaNDpT6/kyMxzDzMhRd2fBR7+NMH3/iLWxge6h0gHVqz5d+cuODKhw6OG6PTQ42x/0vE06E0XsXGVilebfkpU8RBJ9E2piRsxehByAFbrunoe+hyIJZn42zZWX+HZCX+zdEVC3+1jZPWoXzKo7nsjOcTl+0P+aerpkf4oiMPDw1q9h58+KIXNk7lEjfNqRVzeIBnTdU4Iub1ewDThmNP2Q8eDPSLUwzafCr09Yu3WOA2Xgx0zRcn/9quXQ85ajr2mYdCD+bijGM42uKy73rQVItTmdfQ5ASu3F3fc63EIM6KeOQIhy+69oV7gjkxGINlnhgrNn32irHi4V/bGA6sB3tjdLXV/GgrdPlUkhlnevmiQ5cv3Hl4pMOHeNniyAsLLxIaZ2+ehM+3dfD3kNXGCV0l39Xm4pU+e3PkjG08/sRrnXBCtNnbC9pEPvaBuvjiBVYxhcnGvBjMqdsLU5e+mIubDk6st7r44eWHrjkFFuFLXOIj/BljM33TMZ7w13VIt2KeLk744DMs413L1td/hvq8L9qLyTf4fvSjHx0vA/nVt0/wQeRnXRRxi4UendZYnMVLB7b1dO91D2ND1PBwUG7lj7P0+I5zteuDL7bwum/gqjU2H29ermUjFrjikgMbxTg//LJlIxZ4/NApHrjEmLz80taLKuNeqHqJSNf+cK+e9ynxw3YPMs8fv3xZ04lbXmKg4x4nD358PuEclj5uxeFadR8nfNFxvdOXFz/0YZ65Mw6/++MBcvkRH7DEHCetBe7wiQ/4ctemZ04hteu3f+Abo882PW066cnffQuneOMr3Nr65mCwh8neWuNFXP4DUddMfODWSzUc4YAtDnCrJO2Ncmy99M3xwxZHuAmLnvOGfWHcN7K9yHTtijEp71nDhScOfuwJ88bhG1NI94R4h519uvrTFh/tM/q4mOtvLB21WLwkhEf45jcMHMCHI+b2Kxx71PWCA59N5WIdxGyN7El+6BO1eLwkh6vts9/LYXjtGXpisje85LXn21e9RGUnHvyJe37G8Ok6F78c4SjG47P7DTvj8uaXvtI6iEOO+ZeXwq89puDHfNyZk5s9TvQJTNjy9aKdb/i4lacYYdFr7cqRT2coc8UCB+/iJ/i2Fl0bxsTuyxx8iENMvWg3bwwn+FAr8WFeHPiHzb91wxM7sSjG1MaUJLz2FztrQviLS2PmYLTmYhY7gel6wxeRszYb/LQ+xQbPvFoM+HLftmfiwTycsOiJM/5xIGcxwYcNp1zShydmtZw+85nPXL3++utX+432Y6n2xzKwDCwDy8AysAzcxIDDzdtvv3316NGj4wHPAUPpEDoPVOwdesw7kJhzEDGm3cGtQxadbIw5cDnwqB1W2DjgwOgQqQ9fzV7RVugr5unDMM/e4chByJxDlIOmmswY80m/ufD186Gdf3UCS4kDtrhKt0OafrHSoa+fXmPGST6yo4vXeMm/MTp84hGvHRDDDouNWD0YKARnbB1GW+OpfyidfogFDtsZt9haexjN4UA7O/UUdvCaD0M+HiC8AGmPyM8Law8bHiz48XDjBYJDtXYcqvOdP/r8qBWiLz75K2zMiYM0J8b4Nh4H7CvmZzEuPwf8XrTX9yDj4ce+pBd2cekT/gl/8p/7XFvJT9cTW/l7IHEd4CUdOIQf7dbNGB2x2h/GYRSXOLMRB9FnU2zG2RnT9qD08OHDD14c0VeIvHqJZM+K0z708Ol65RuOkmiLp7GwzBsXh8JWzoo+fO3WNlwxwFAr7NTm62fDR/7lqODJvHjh85MvurBhGpu4+YdJ0qNLYLf/XQP6fCjy4WvuefjiUOIBFjt7wt6zTxJ65vkVC0x1sarbV3RINT0iHzhqUk7xwq+iT+wHfki62mccfsph4mdn3nj3K1j0jeGB2Pe4ojPxsjWvhBE2HGsqTrp4mPkd4JcfcaCmK8dyi0O6xmDCCEsbNn5x4v72sY997Op73/vec/2N9mLybduvfe1rV++8884Rlzxdu3HhxYnrUpErO/vJdecFUntVvOJ3P1CXS37Kfd4rrLec5Edg8O+67vprPA6Kw/rB5F/Rxh0MLzTgaBvnQx69hGqtejmnDw+3fX74vOglILywzntJfHwQcbsv4U4s1plvnPR5S1fe+JEjaS/yQdS4FZ99yWbuK/Ne2vpWvT+RIS864pzfoKWHG1zw58W8P6Pi89A6iFPMPlfU+mzac+V1BHX5AUcpnvTiresXBj37KB7oikU+5W1OaT3UOMe9+PACS15eVPMbl+ZmESOs9p0a98Zw5WW7X7h7WSsWmEr7rNzESMSiHS9w+IepaBsTX9cLO9ep+O1TfOD0L3/5y/ELA7+U6f4GXxwEVnj6bPoc1qfLTu5qffrwFVwRscQZHfEROcjFmDxxw0ZtTIkv+Io9JU/6/jWZdWu9cShH8ciXT/Ni5tNeJ/SziTf6xqyJf43hP43li1gPL0/9iR9/2xwP4pRj16W88S1X82yc5dTGEjnpq9nAEbf9JcbyFgtu2MtBfOYV+n6R5Rozjhc6YsTp3Dti4Y8vuvKNU33tGYc42cMTy9zLsPyi5lOf+tTBcWvlntu5lT6+/RLEL6Ng+Ox3jVuX8hO/9RCbIg7xFKOcYPllkPuNvPmHyR8bY+wUEj8wCB0cwhIrTq0Zv3IWC9E2Vyxx33oaF7v7Ex84bI9rx6345G2ftAYwrG169pRYiPzYqPlUtBVSjPzLUR7GxALHechekIdzFG74hWP9wmHLfxyWZ7UYxPTyyy/vi/aD+f2xDCwDy8AysAwsA09kwGHkd7/73dVbb711HNIcKBw6HCgcQs7iAMKmw46DWmMd0jqoONSEQc+By2FHrQ+Hrw5GfNGfdrUdAkm+1OzUHTQdWuF5sHB4cnBjTydbtRynzHzoE7Vxolbymf48fBU3/8YnTnrh0Z0xTP385UuOBB694tCWN718Z5t+OTgsK3TZ4MVBkx05+z8Gr3/wF8/s6SpsrXPxzfHwihVUsdAPzziM9pBDtoe3Hsjomevbh3KA4wVGDxE95MgrjvgXq75Su3zFpW2Pz7jFQ8JhR5ec4y63xtVTVy69aDcnLw8W/t5n1xY/M6ZznPr4UYqhPl+4wYmHCbpw7X0PnNYYJ3ybU8cLDPb5DoO+/WtObK65rk869LOhy38+xAfX2vnmoTrdeFGLzcMgbA88HgS9WOphJ99Hwpcf4siPPKbQlZcY+IJtbxiDr7SWavbqCj7Y6cPSlq8yJf9wcW0+X3iuwEnkA69YtPnnJ1/tPX0+8OdB2wsednz04oOPuLPG+vKz5nTZw9O2VjDwkojZvBjFYU4trq4DtmcpZnbs27tTL59id2/Pr5jKVQ2LwBEP36Q588V4TFzP0aOfDb10W2MPzYr4zMEkapjmrMk5frFaU3r8KPSzlXecyRO2mn41XWvCLp34UpcnPhTXhr/R/tprr72QF+1esHz5y1+++uMf/3i8BBCbPBViXbz0cT/qxQUuvPj00sdeik+1/VNu4ifqcsYX3uTVy5DmrZF96v6s1ofVvPx7SRxnXT9xB9d6mWdP+JSHIi9cm/OyTA2fnX/lpdiHePYy0XXV2YCe3PX5FQ8/MM25H5nTliO+8MFvLyaN6+PKPUzc7N17yklM/WKMH0Kfbdz2otJLwF4C4cxLc9/WtjZwYMNl76WbvSNHcdn/uPbiUB1n4qffvR5f+DEvnvYIfGJ/wJRX+eBJoYsn9uKTp/UxrhD+4hD3cHwGsqHDRk705IpLsYhfDEoxi5uNOBR9+s4BD8cvcdnAFaN2+0gcxWVs/nKbD7x1zdPDDRuxEGsufoWuuV60e9EfF+wITAVWsbMRG77omWeHk9Zf7foxZp0I3Yo+PLbODjDxaX8SePZTfvXFrlZgw8Wzf+UyY7FG1oFvunFpz7LBN9w41RavOZyIw2fMRz7ykeMXP7gSp5wfP358/NLPn7DCKT/2l3ji3f6Bbd768WssHsUjbn4JHsSs8C8WMeBEgRNmnNARlz3T30o3hz//qa77X5ywhcM/kSde+OcTT7jVl4OcCDvxsyuOYpKzPzHCp5jh9AsxftnIWxzGiXuWXyjRjwvXPN9w23NyU1pvfPnFhnsGrnDr3qjPzhj9+FQbiytcwtZX4FkvedI1T9iIy3zxWCc8GIMhdtcqXRy2bjgVg5peL9rbBzjBbXr8i4U/wiZu+WrNj8nLD3HCh6EQtT3g3mZPy8N90pmTP3jOo+r4Ea+4rSuf/Ff0cb4v2g9698cysAwsA8vAMrAMPI0BhxMv2h+Nb7Q7xCgOJQ4YdKZ0+HHocCBxoCIOIBU6hI5Cx6Gnw71DDWy10gGOrw417LXF4VClpucgRjpYGXNQcjCi4+Cm7QCoT+DQI3SLT54dsMRJP//wFXbTFwx69OOqOGEb12fTuDopxjCnXzqNi7GY2fClL9701OaUKfmDhfceTtjixWGzvNimD0NbYUunol+sxWiOiK25Y+Dyg44yxX6Jb+MeYHrYc8B1uO6AbR4HvZgJz8OcBwgPTPgm4uBfHPLRL6/Z5rv8zJ9Lecdx2OIobnHArDTHNt/49iKlveqh1MHeQxUdcbenw1PHoTY89oo27qyla4xvfrXN05e7tVW0zRtX6MDWZkP04cJU5McuMSdONubVYjcOuxJX4nN9exnhoSbs5sXQtQkXHx4GPWR64MRHPtVJfurPGg/dg1zzMAn8cmlfqIk84MuFaBtLT78x4/iSg2KPmuPL/ushUc0ffXrWgIidLmyx5puufIuJHsGfB0PCTiF0Pcz2cMi+PQQTB0RseJ4v2o3xo7Q/xSgefeN0igGOuWq69PIZb3TM8W9/WHP7Ho4xAlcpd+NhNR6G/rQ5Opcf4pNr8aczY8ePNTAGD5Y+f+ysBy7pFb85sYrdWOP0SXnDootXYzMXbWWuP1024cCiw5cyX7T7W+3lTe8uwg/xov1LX/rS1Z/+9KcP7g1857/7qvXhn4jXCwbXHW7tH/rlWY7lV4zmYbRm9qvrA3fmYMB2bfTyJSx+2XV/txb2VHGKwTyB1/42bxz/fBuPX36yN4ZbxT5Uu5asb9cg3Pm5wWcxmPPyp3uROPjjF4c+p2AVC337io4YyhcP5lyrsOjM9deGAVOMfb7BwJ0YfD6Ls9jU7Ly88w1itbjYyI1u9wa8Kubic3KJJzHCVEi8WU829OF2PzUGTy5K2GJSCBtFXHCsAV+4CI9e6yjmrkd6SsJf3IsVV3Lu270wjeNc0S8fdXmL1be58WqMXp+ZM3Y2YhGDedeKfWq9xe4a81nllyKtt3EYuNBW68ct3/yW28yHjnjk1edL8YTBrrzsIzHqO/8QeDCy0zam2NdyaH87L7VubNmYU+jDlb949a0dPGMKoStevIjNteWz3ktMObTGvkzw+PKy3S9/2JpjM19WWzO+8qkfn/zi0nyCrxmvdtzgpTUIg508nMGsmV8ywiX2tDMHTvjHRVyr88Ve3361D/g0Jx+5EDGKnZRLefkM/sQnPnHMscEpv65t1xZ8a+I+bAy2NXM/ECvfan0xyFeehK45ccEm/T177fMZmS5/pBzbA2oCk8Qr7lzH9PFqfHIlFmPlrdYXj9zpznsB/oqDLv5dm9avvdMeodfnFUxCB7cKm+zoFhc9/vFC5CwH62/vwsK3a9m6wRCHcTitL7zWFY759hhsv0B544039k/HIGdlGVgGloFlYBlYBm5mwMFivmh38HCoUBywbpIOZOY6fDqYOEz3gOXQwr7DkJqdg0+HeDYOP/Q6QMKkZ059UyzTf/owFHMOcQ7THuQcZI13yITnwDbtjs7lR3GUuxjYKdrGidwclOU0xbxDYLkUv5pNwo8YFDbw1RV6/OHWQTUuiw8+TP6LwdyUfLJV9AlM9g7ibMpRTScfYiEz72IxRuDQy7d+hQ6/8X4YXP9wEFbYOQB7kHB4tX8crh22wxUTDA8ovhEH07ri31yleIopf3BwJB4+7D06pNzEUe7G+aNrjI6+Nt/4Kyd29c0RY8XAJh59S0nOYjGO/1408KEQ+tno0yVwe8jFD3/mKmzaU/SLRxu2OGebvjjhWleFnjE1XHjm050PPvCV4j7Ar3+wUfj0pxHEC89ax2v6Hmasa/9hHn48BLmG2YTTGmSnNsd/RezsjbvulfgxXt+80px2XMBqfWv38IcjL6Tk7Tq3hjDtRS9C8AST3eSmdcmH3Nhkz04M9Ipfftr1a4dR7GpzbAm/eLfXxEFg05m2x8T1nHF2rr/iv4lvcYZj3lrak2zyq21Osb/ZtPfKs5jomoPBXg7GxFM+te0TYzCmyO2MZ8y69HJKzNbL2MSYcU8MsZQ/fXhzTZtXE/jFoV/MxtllC5ONFxgv8k/H+Cbjq6++enyLFD5O+cq3PBUxiq1YcdmamE/ShWHPt37ywUcvOvjqBQbc7ODHjfHm4oY9HOP0FHvJCzu14jOBWHfryMa3zb1MEkdSDjDsebbdy/DshY99Xe5wvFhxTTfeusB07/HLUL745kteuLRP4fPp2nUdx02cdq8Qj/zotOf48fmjwIxLeuyVOJ5j4jLHhj8++kUaP/JQjPPhuhN/34IOV17u4dZMDvzH5eSNP/7nNQSDvnz4hCMeufDNrzMXbtm152Fpu2/6VjF9Oo8vL2KtK0wCszjFpC8mORHx8NG3ffnmVx7WVFzxYx/QbZ38aSXz9kXxw6dPVzvexcBWnM6yYuC7l5i9BI0/c+7lOLdf9OESWNrwElwQ9kpx0BEfXhX+iXjh+wauPBuDm23Xuzl5mIs7/mDbL82rcW8d7GNrQAfXOGUTDl15EPP2Ti/WXQ84Yg/Py2J4ra1fjODDfhC7OMVmDFdy0+bPnJxbb/7yywZX7a3G6RB9XMhBETt9mGLFa+uCS4VvenTkLFb+xQKPvpKELxY29g2BEVfytA8UbTr2S2vA1nWJJ/njr3XGGz0FHt9yyJ8c5KZvvvj5EL/riy1h28t7tT4/dGGyl2N5wNX2ixPx+QWJvmvNPRRfbKyhvGDggw7RtwfoacPjiw972RrQT4zLH0/2DRuFDzGwF7M9az+kT5eNOOgbx4c9KBb29og+3mEYI+LBIY7EqpjDo/skHL7gyFExphC6fMKE40X7D3/4w/3PUA929scysAwsA8vAMrAM3MiAg8STXrTfaHA96MDiQORQo4bjMNeBzryD0DxEOaw4qNA3Thw2HYI6yLJRpsw+Px0o05mHLmP0+XJYcijrQK9tHIY42GmT4qydz+b16XR4c1DTJ1PHfLbmtM0Xc335dtgzR6fDK36U+nEJz4HcAy0/CqFXDMfA6Qf7MPgvPlwQh8swmguieOuXs37xi6McxJGOsQ7jxeqhoG9B0bV/OijbB2zE5VBt3WA5lHs48dBg3jrC6+Fj+paHfiJ+umrjbLThzlos5uOcXmPZmNMuJz6081/exmHjh284HlhcG+mmQ0+hJ29Fnw1/ibF8N1582ecLjx60xVPu2ajtrXzAIOp80pnjMKxF/uUw92i66VkvudPx4MSOjmvd37j1EIQL3LW+1padte2XKh6aug7Yl0v+5CCWOI0HNSwFPn21mKZteavN1+ez9sQ37mHMmFjE2jWgnY06vvnTLkZz7ks9kLfHxWztu2exMxeueTG2R8ItVvPaOJ3+xAkz7mDQJbNmIzfzcaFmR/iDPfe7tn1mjl57N8745UM/0bYf2ktiti/oybW82RIxwMWFuvjoFz+b/Nj7xLp48E+PLcxwjBsTt9zDYCu2eE0nfPHHA5szR+xJcWuzaW3YuAf2ot03HmE/i8Ai/gzCN7/5zSt/qoEfefJvXjEmBmOtCZ8+R8wp8jSGi/Rhz9jY4xWHeMOD69geyAaOef74Lvd0woQF2zzh18sieKT158N68Gc93SeKVd3LZDbwYHhBw5+9wBZ2MbOxz8RrrvzEoe3z1bXJF5+KWMuXHT25GeseY6xc1eZJeep3X1bri4kfGN2bXIOkOLXhtS71XTMw4JcLrsoVrgI3G3UvcsVbbsb50zdeH09iI3DNWxd+u2bFi2/rZs768AuHjVrxGe/PSeAcv176G4/38oUhZuPWUOFPgSfH+NWGUexicW0pzcnBHqGDd3PWWIFpDfhTYBljK157CV/G5CVuOIS+60d/2lsLBVewYcpZzDiCl0+25q0hYSffriljcOQwf/ksHsKW6CtwYPKFC5+zfBN9fltP+eCATbzmGy4cmPhiS88ZRl+cRFxxYIy+z2y/+HNesy9gWVO69sy8bwu+egAALAFJREFU5ugTOuXS2tLljxgjzoTwxY3zKXTKwzg862jP4VCcxrq2tcXcmnjRzh8OzLGRsxj14dNXm7PHYeITV8ZaV/pEPPKFAQsP+WeD186+bOkYlxvb+CkGmNp80VPEw4e9Ld90YZgzloTP3pxc+ZcXfWuEW3EaMy8OseW3OPXpJHKGr4jHuY8PegpsPugpxmZ8cHGJEz7h2APyoj/5hsXW2rU/xYIPe4TIGwafcVWsxaRPh2/2fPFN3zgMfXzxqVb4femll66++93vHn+yDY4Y7yL/czG4k0Xqgq99F4eruwwsA8vAMrAMLAP//wz43H6WF+0OIA4mDtMdhhxWHE7UDkJTOqw4xBGHGecFhymHPYcXdsQhR5kiTqKmV98YLPgJ34pxhyg+O+Tqi5E+H2KApd/hVN94cZjr8MXeoe8mmTE9ab4zEs7gxwM+HWzxoRajHCaX4vDApUy7+Jj++SlH2Iox8asdhmGQfGSvbv1gsCUdxsVNRx8eHfodTOnSMZZfvtj4Z7z+XIL/0I1fhU4+HWg9THnZimd2+tYv7uDnb2LISRHHWTpwF/vkPlyY8GCoxSS28Gqbp0voEXh4yMZ8/Gtnm/58yJJje1RbPOnDmwJTLvkKj392+rBdT/rFoK2Ipb3FB3w+w2NnjJ492rx1Jsb5iGdYxQjH+nlgEqNxcSVsHzx4cPxdVw9ibMVQDvTw4BtVXho+vnzrsbUwB7889Umxwm4N5CmG4tC/rZTL1G+P58sczHKbNsYVY2pxWQ/XdPtGXH07S05T5G/f46V2fqwRfnELuz2CRwV+fBWD2PkKw7i2OhGrAs8cfHblTc+cveH+xEc5WztY4hL3xGWXnnFcsO2eHw5cubGn3x7Knm17Xnx0J2/m2cEXjzob44o+3Phrr+rTn9K+NMaXwl6hG9fGxTN9sGk/Z2feGDviZZt74Iv6z1D98/s333zzuF7g+1aivcM/3/jFNcGxmOVPr1ziV5z2q5o9fuwDNiT+4doTpDXV59fLGlwR+NZbznDxJx7j8QlfPObdc8T43nvvHb6cL/y5EPpsFbESsXmp53oSl5dYdP0rGi9g6MItJm1j/MLQJ2q5ErqNy4duOZeT3MVF3KvixnxYxuiRuJK3+wBuxcEnf17YycW4F37mukfANC7/yYExc7ibL/zyB4Nf8aj5hY3j8jqCu/5hzeLRELvWhd/OeHRwxz+REy6ssXx6UVfOeIAlHr5JHDn3dQ6Sw3wJyd6+6jNIrbiXsSfty9bFi1Ivl8UjPhj5V4v1weXzx7+gcs0QZyl+YeJF4df+wRcsscu5cwl/1q0X+HBwBF+O7MWGC7W4YcDyJYPWG19xUQ7xVvzG6bkmxAAHnnG25VdbLHIQR/+ajJ0iT75bJ7V1K+ZsiwuObyOLm5++yW4N4PmWvW/6i7kvT+Dk3XffPf4vGrESeIq14Quu/RgvOJKf2PDKjq74ib5Czz2r+5uY+J6ij3+1NfGinZ3cceYXDPyY518cOPBNfcWenGuhzQ//cK2LWJ1PFVzAx4cc5QaPLhuilhddNb382zN0W8dwxCH+cuTDPaLY4JrLzvonsFu7/vNeObcf6cG2Fq4ZumLzC1uxulfDlad4+aRjLj7UMxbz8jAmJ37xC8Mv1fBe/HD4do3xL156dPALi9SGKQ72cc2XX4R5ntCGUczdR2Dgmo37lhoW/7DVCnuFX/PmGtPGrfjU5sXuF+V+uf35z3+em2P8aNzyx75ovyVRq7YMLAPLwDKwDNxnBhxQnuVFuwOKQ6rDjgMVcShxgOsQM3lxgHTYUczzC8OBEk5jDjsdmhycSAcifQcdPugkDkAOVGdxsKrQ4duBDQ5/RFyw2NMxlz/zxvNLlz2cuwoffMLihw8iH9JB1SEVnw569KvZy6Vvds/8tWcfXrjq5rXlkH8+yzXez/qTV3NiINbA4ROe8eyPycuPcPmOP/l4aPOfZfpPtPSVGQd8B+75H2T2oh1OAp+tmn0PTeLST8RG1PIWMzsSD9qwFXg4tyfFrg/TmLYxB21t+nzBzj6bfOSfD2OwiHXugax9ZW/hmw2cfB4G1z/4wdHELS42BBcKHfEZb53oiiPs8MpFXHQUOmzxxCc7fbrmlMm1cbquD/6KR0zaMP19Yb9kmS/aw5A7Dry88p/PPb68aGeDs3ijE0cTlx7/zYmhOOKT/rNIe16c0w+s+OVD7vIWg3jLGaf2kzH69qCHQYVN8cGWvwdi3PIrBzXc1gE+mdy0NvkKk63rqfXg35yCrynihWNcjD0Yl6P4w6fHf0KXTX6Na7ONM2MwPGDPFwkw5SRXMeBAYauIR1/+ir4Sv3KjJyZinG+5qxP9uOSvB3f6U8QoZr7yoWZTfnSm6JtjUxwzTvGFa+/3n6G+iL/R7j86/PGPf3xcL2LyGSE38Yrb3rOfiBcu8WifiTnu8Cjv9qo5YzjLBmbrri1X+u5lcNq/dBRj5ueL9omPE/jitS/ct8ToRTt8L7/8yZHix2nrLaZ33nnnsJebfe6Fnz95UDzlAJOtmNjBgE/0tdM1Z4y+sbPg1LnHvM8pfQKD7dnOfDyUu3zoWwNxt997Mabv5Rf/OFbgdG/XVsRJz7WjTV+O5ogxwi8ucYxzcdJNTxyuX/rszWmLQ6z8yqt7avvdZ6HPdPj08Ww94cpZjoo23WKmKxbY2vyz5U9shA9+2ZS3eyY8EtfiIq4rL2jlyR8xRw+GPWF/eNHuBTEc3POtzZ8iJrqwvAiMC3rWG7Y4e+Frnp382GnjgD7fYoePJ3u5e6uxchUfgYV/GNZc37WBGzzx7X4Zj+zjjC4bOnz2op0dPWvHt7Y9Y1y8dKeduFpDMdvrMPszLDjjy0t1n9XaXmj7xYRfXPjsdk8yTuDxZV3446v11I4rOcpV/l338oSjwIDv/iZna2u+os8XfmDAFpd87RsYYueHjXn71r3JC9t+EUBfvjC04wKudcGjfWAfwRMz3wobOcLXpq+mM69T8zjofiBuemq52Xfi4x8G+3l9ii9O6LDTh8GO4ND9hA++xUqXb3vcfs2Pvfr4ct6C67qUc4VN2PBJ+R6dyw/jMOnhyV5RywVXfMdjvDsDKOKRGx1zxS/v8iz/1l1O9qU9h0cYYrK2ijUSC174ZSeP1ogPNsUtdmNs+OS7MRjwyllePr+/8Y1vHH+yDQfs7iL7ov0ubK3uMrAMLAPLwDJwTxlw2PCi/a233joOOg4VDrTz4KBNzwGkQ5C2g4hDh8OK4uBmzBz9DjLmYDosdVDKxuEFhoMTP/AV8+xJWOYV+FNgi5vQpaOvwFc7ZPHtEObQXWzm6Nennx9zsMOvr36SlBc8AosYd3gj8IorLDnjAIc9+LCRq5q+w3CHdfjxDINOOagr/GmXEw60cd44bO2bpPjNaTu0qvnDKQlHHOb0FTrycpi3L5SPfvSjxwNgD2/tCbYO216qe4DrgRBX1qzDPtzJWbHgbHJnfAqu5OnADIPox68+G/H2AFTfg1PzbK3j5Ls5eMbNt9aH4eXH9GOMXhjsZsnGvLxxJBZx4TARizKx6enLQ1spX3baxag2zzdhx0c62mTi0NWXH/2w1Yq59gHb2TbvZYi1Lxf70JiHXfFYb3vcw7S9wIcXGh7W7N3wZkzTd7nAwV37VSxPExik+KduGOJTcKuUP5v2addXc3DbLzD16dJTtNkTtbW2R+HLVQ7q8i5O+ny0DvpsZp8uuzD5yr8x2DAS/uvjUVu++VQrxtX02w/F6h5mjq+JpU9XjNbamtvLjRUnW3wr2vnJnn4+Z93ayEVc7IrTGF35KmHxYQ26vtiZY5tM3MaNldvU0+bHvFpOir51wY385e4F+3e+852j5vdZpHj8/wbf//73j293G5svI/km4lHkVzzdk8VkTC2W9lwxsSNyZpO+3Aj+fDbBgK8vX3riodea6MNwr3ZfNc7OmL6avhzg8G2esFXEAZ8v30y2jvruKb3wg+P+4duUajhs1da8fWCMnVjLc/oy1r6hKxa1Fzza7ktyEJN+n89sSHmbd6/jR376RDu+jdkbbNwD4pQdvuDLk15rLL5ewGmzjUvXmTZ9dvqEP1h402aDE/b0uobNi8HnrzYRFzz3cBi4iJdy0YdjHj4bOfjXBsasG11tWNo+860TXfGQiS1/LwDFSNh46WrtjKvNwZOn9eGTHn9Ev5fBPl/48dnSeYM/9rCcWbwstB72IV8KrtnBFGv4fLPriyPmcaaYU/iHF29HUJcf+jDh4ZstLLG03vaVNaJnTLGXiDFCX5GHOS/Jrb816AwlXoWvYuq+xAZ3uGYHBwYuxDi/xc2n3OAQuYkZP64549nJB4dqvgn8coNtjg17Ioa4ii8Yccq/cTEr5cheHM152SwP84SuudYNDs7Ew05MeKFjnOCOfjyJwfUXp3TMG1fDyJ5vojbGT+uEM2Pysg/Fwjcce1qs8OiJX25qOlPgiY2Nmo5fdPBpPcOBxQcRI46tkTYbL7rtMXrFnR9xNqbm0xg8ayfm7iFytHZwzRc7nWJnj2/XizG54dOYePmQCwyCI/P0+KNDV4FVbPThyYHM+PjXpyN38RebcX3Y4RpT4BkP13p88pOfPP50jP+EPD9H45Y/9kX7LYlatWVgGVgGloFl4D4z4IDy9ttvXz169Og4aDlMKA4YCR0HGwcUhyjiUOKAY5zQcahzSDHXWAcymA41DkwOZISePhuHKj750FebD+swGD/muEPQPER2IJo50HHQcpj30EKHqDuk0Rcj3TDr0wtPXXuEdOCUb5iz7gBZfPmAIV8cKPTkxwd7NV0HTdxpG8+X3ONKbU6ZHBUze3MO5QSWHMlNOR0T13PFERf6+YVD2hPG7RV+fMPQwVaOvs2unb4HSw8tYujFiIdg/WJubYuvmq/aOOtgbpzEg5pvtT2gTozHo5j17T+xyxOueMuZXTlXTzxYMNg3rjYOQ176ahwYm5jlY4ye9bJntb2IEkv7yJgYYGsnxurzAXPqmNOfY2wnlrY8CH0+xdoDjDnjxQuLDaGrb66HK7r5LX4cedDqW3PdA9jmS9uLxL/+9a/HCxG8xWP8FUexHEFcfoi1fWbMfHHUP9fZ0Gsun8bkaH8oYiN80OlBddqaZ8N3RfwKu3IwF446DPbZGcM7PG084pDAm3PH4PUPeB5QWwux2lf6YcGrMJu+irdaPEntbMVgDI+tI3/6YVrz7gcwSblrG4NBP8mPvjYdmOGml428xDLXSL78sGGvjQfc5NNYPLENDz7MyhyvXYz65/jEImfr5eWGf3r+7W9/+6izK4fb1vn1T/69tPdNUvH1sg4OHfy3BnISi3uJl9JqfXpeIBCfM3ggcaAWOx37jsiRrheVCmlt6GeLT/7DpBeWcby4B7imuneIyX3PZ4PClxiV1sCYXGGw9RLVC57y8GLQi3ixdb225mr7gPiMYlPs6vzQEb9zirFy8qJZrJ0l5CNm9wAx0acr1uI2D09e5VAtDm3rQexL3BpzXxSfdvzwIwexlgc/RK6uMfuMnTjoqVsHOOmzkSMd4+yJGPjBn5zox7WX0PKJTzEoMMRpLn9w5ODb5NMnjoh1tMb9kiIMOOnbI9Y2EYe4jFsL+PiCqe3M0Us8OZWbF69s6cF31oBjTegQ4zDaS3R9e9mLdjnFtzZdHNDRxzf+5AQvX9pyoSMu+0W/HGHK3xmIjX1gHpaCHzzCJfiFwV5++grhy7h5/sQHW9sY4YMUr3HFGV6RPxw27RX/qezf/va3Yy/EAT9ErOWLS3b2CFu+xD9/kWKcLT2+1Pag/UaaKy/4cNnRr7b++MG/HMszbs3lC27XRC922cmFbzb8ySOexYV3OvnFp1jYELFmA4M/ODDosRUHXsWL5+JnL2dnHLiEnXWhA49fHIbFVxKOexi+4dN7//33j8818RM4CmHPzh6zx8XDp3F7XDzm2cZ/vMRT+yU88blHyBUf7Ik2wbP8zJcnHXnyjWNFHzZRi0HcYjMvN7V+OZUXX7iadq0Nn+15a+EahC0uOYtLv9jg0zdO8qHP/uWXX756/fXXr77yla8c8/TvIvui/S5sre4ysAwsA8vAMnBPGXCA+O1vf3v105/+9DgIS6PDjbZ5fYcLBxgHLmMORx0I6Wk7vDSfbbWDiENMhyX6DkEdYNQdlDrQ8mtMOUtzxh1+HIrg86MPn4Sr35x5hb7agc8B0iHdAbzDdzrs+EvKRT2Frw6YjbMrx5nHjC87tunAVuhVxFse8MtNXdt4ttpTjMPgx1qxwVsPDHTzebbjFx/y0YZDYBBz1s1BX9H2UOOBt3++Ss8DgQcuD65w7IcO4R6UzTn4OlCLBR/2XX5giP8mrugn9MVKTw0DFp/62nTsa3u2MW267OAVA90KXaW+Gl6FLYx0xMSvPBWCP9wbJ8VzdC4/YLLHqwITrx5Epm4xNMaG6Gvzw15/SrywT+RaPOVkDA5e4oO+PjFG6Cj8dP3C6mGlfGYcMOTjgQ9f+my9MNOHzc512bfpun90rcInfBXLMTDGxAUnHsSgz+Zc4OEsG+2JXR740+aTjmvI/u1aMjbjoXuTz9aXbvshO3EWq5zYNyY+fM11MNcapA9fTHgLXz7iKze68nEt8JGNeW36MLTFRif/2bAXi4dtdmKhyyY7a+u+Y82JeYV+vOvD6hrkSzmLmMKmX18MU1+cMOHjoJyNsTHumtQnxqyj8WyNkWKZ+Nr0yvFQvNbVbpyOvPHlxaBvtPsbr1645zvb29bF4eXX/Ea7e6h1aC+KX+EHP/hyzT148OB4+SM2xZg5ucNur9U2xz7ecelFtvt1fIqdfv6MZwePrbh8ziowvOzppVw+rb+57pnlyj47Y8UiLi9R+YUvBy/36Gq7d4rDPJsZn7zN44A+7uyVdPLBX2XuTznrK70IYmOtrTlcuYjLvP0lT+PwtPlS+3yMY7EUa7ya65ozRiZOuHI1TmDjQE7ZG8e5X3CwMcdf10jce+kmXusgVtJnu3ytrzk+2PBjrLzoZxefYosrNubLGRae6PCDPxyY1xejeWNqsdNVN67flz5qF4fPFmsNj1/rwU6brvitv70jXsKXbxzTtT7t6XDilx4csagVc/CJNh0YcjEvf+NqfvlgT8c8UYuLLd8KG4XgEl77bMZhXh8uTlxrxUWfnf2krsDnD77r27/aSNcYbmY8rUH+rSEM/MDW98uM9jP9OGJDTw54ci8hYhS39bdW8NjTdf+EiyP5yAt/5u1VMcaR/QzL2hK62u6RzhDm6fMlf/j6+DInPrGKoVjmHmnvm/fZJp6eg8TinCs2+RmHJTYx8afGJ57FkD91hQ6f7VPjclDg4cI9zP1Pe+4lbSIXsfLBP1u5ijd+6eHfWhF+xF3esOQEgz1far67TmHTwx8Rt3Xh3zhuFRJ+NnTFVDz80JU/fCIHeMbjwTweFH7EBYeIX4z048KYefbGYGqzE4v88SCe/IiJjj69vtH+xS9+8fDD7i6yL9rvwtbqLgPLwDKwDCwD95QBh5Tf/OY3Vz/5yU+Og6e+g4maqB0yHAo7WBl3QFEcgBxA6DWfbfb6DiIOig5JHcL4MV6h5wDUwU5fge8QFZ62cWLOgayDKCx9pXk6xBwJdx6yxOXbTQ69Dmsd8uh3iMunwxZ/dBoLd3LHX3F3YIsrtuaKzeFPm16+tcWoHxZ/5VFsbKewU+gpxdiYGB2O+ZeHfOmkl7/s608f5vJjnI618/DjYQa+B/mHDx8edQdl+Xgx5FuYbOIRnn3h4cch14HemL1nX4lVn+g3pm8c7uRKLvjsgCw2bf5g4UDBndK6sWkcthjlCa/1CtM8aVxdGyY9ffZiw3N7X18s5fS/SB/+5I+9mg4c3MqDZGeeqMWuaCv5Ln567NKVJx1j8qykw78xmK5/4wobYyR+jMFjY6212x/psJk+tfFkLYvJvvF3bI0lePJg7GEUf12r9op7Cj98iI0UW/b8wKeTHzr67ZnWiC9jYUxceOwr+nzS97AmNvq40IYJR02yY5M/+toK3+nSZ6uUF1ylHHCNP2NJexkuUYvF3hNnvoznGx6seU+I52KaufEnLmvkWmffWlqnHlzjtvjh07c/xNE8H/FOFy6dcoN/lmkvlrNko07XXlHihi9tvunJS9/LRXzp0yl+PuhVmuOfj+a1p44+rD5DvSjyL3u+9a1vvbAX7W+88cbxrz7E1IuC9mDxi8E6K+4l/p8M6yF+c166iLH4jSvlUo0vPFo//xkpf60pHVh0cKltztpbV2NeKPqs7c8l8OvvI1vvfIhR3HzA6r7Bnm3rI1aFPl7dG3yG24PdG+TAf5jHQl3/4MNc91W29rCaX/PxN+204cpJzGLXFi+/bOTt5Zo5Y8UGm4145CUnBV4vEeVk/cQgF/my4QOmmi0bJd6q+RdLhX/3S7nim7+Hl89mf84Fjtjk3fWbz64F+rDptp7xaY6Uu5iJtRcbG/5hySuu5ESXnv1IF4a82cjTOBvCv/jYtSbm+Fe0jcPjA4Yap2yN+1ccfatZv7Wip4jH+cPfcO+lImx73Jx9Gr5rp8/F9hvdfLUuchIXX/Smf5jxZg3o4JUOmXmVM3x6ipztBYU/Y/mjFwbO/FLFy1jxw2ots7eu8hGjPUrnD3/4w3GN48b/r2I9zOWfL37Z0dFv38KXC9+u2cmN2BQ69mTc0+O34ro0J09+6fa31HEkH+trnt98w4YRnjiMyZG013EuZnPW07UBy7ViTm78sxMLrqyZvQzbvYy9cXH5UomY2NlHvqlOn38YdPXFhjNrwY+/dc8vPf7Mi8m8Ojs6fMGiZ44NXlwv2mzxao1wT3Cn5JuefOQbv+z6U0r5NtcawMMLDPm1b1qDYrZ/8Gu9+ec3nsVP4Ctw1GzlKK9yYJsvceJC33VJ5Cg+Yo5YD/a4KMbya//p82PeGN9xKhZ/dqf/w0G8+YGrz/6ll146/kXaF77whcMvjLvIvmi/C1uruwwsA8vAMrAM3FMGHCy8aH/zzTePQ5QDyzz86DtgdJA2RxxQHIwcOozRo+NQAnOKOQcRBzAHLgc2OsZhwHKA0XcAUsIxxn99uNodkPhmC0fRrs8neyXRZhOGw5xYHNA9TDlIGisuGMUahloOYijX9ODCN26MqBXjzbHVlhvBo9huymPmOnOBqQ8jf/nCQe1ibEyMHfL5sy5kYqSr5p+IFya9MOuL32HYQ08v0zzY+efi+ubpejjx8OEgC5v/MHDqoOwhxnoYZ+cQnG9jYjeWwHEAlwc8/bnO2h5Epg0OYIelX17arUsx8mW+NYOpr85XY9nTpROGfSVGOeDU+JT8V4sBJjGGRw892cGpmC8W7WzM1642L0aFTfG1FvrG+a+Nq/aBObkR+HRg0sfxXC9z5UoXDj36MOIKFlz5efnjgb482Hm48u2w7iHzWoUft9rxXu71myt3fTm3Z+whRX/6FlsC81zg2LtiyEfrHL94IPqEHl/GFZjGilmNJ8W4eGZMcHCpyI+++fiVQ37ExRecs7BT4OEFhlxcg+7V7MzLR5z0+Mu/9WLTuHWKP7bm0qeriBGWeBT+FPrEvOtS7q3djBummOIt/2pjRJukZzw/cWM+/+JXzMlBvoR9GMfA5Qc9Mv1rF8c5hua6NtwjfZP9tddeeyF/o90voPyi/PHjx0cM1s710UsgsYoNl4p19hkrDm35mXf/Nl7O+G8dzDeOm/aTX5p6kcKO4E9pr+WrdTcuPi90FFy61r2sgcEPaV9rx6c23z5D7Gm5iK/c2Pv89oKr9aMDyxxfsMSnlg/x2WBe356H0UupQ+GGH3yyETtceeILhhyV4lLzKWb4PtuMsVPsS3ba1qScjLPDtUIHj3xqt56wzoX/7GAo8pKrzxH5+4Wm/wRS7HyZ7+Uh/oyJlS1/hB95yp3/KfTY8Evinr7crQuRpzyMsSFejIlDXHyz5cN43NCzd/gQh+uJLzjGknjhByZf2vaBf2HnBW0cs6ffi0q8idPLtvYR/9p0+xcAcupMwZ6OXNjHlfbsy0vhX0xyiC91fIhzvmiHQegT+HQVc3hS5CoGBY8JfbG7xvpFQdzggZ0cjPFhzd07iD9H5UsRYrJfrIeXqMXNFztrQYdfc8VgTt/1xAdffJSLMVwYxw2ei50tTDpEHr1cF3d7Wc1G3ApO2BpzjxFLGPDgiEeOcSge14Vri53rtH3IV2ca9rh0rbjH+qyAJ37c+kUOnvmXy/lFuzxaT5j8wuj/erCvFL7Lo1zkQczjTFzm+NbvGhKPfGEo+vLhp3zNd33Bk7Pi+pKbebGpy51/OGpz7MzJu+vCOH74Er92vu0DPohaXIQNMWYNYGrDYCNH+RH5yCH/YtAOgz9r1PVQHmKOT/Nxzw9bfYUvzyb+BSX9uGxeDNr7oh0TK8vAMrAMLAPLwDLwVAYcMn7/+99f/fznPz8On/PQwlC/A5VDC1E7gDikNEbPYaiDz6F4/cMccWhySGLHXjHmEKTtkMPeQcjhsX7+wzE+D07FApc4IFXMTREv/HLgH666w7fDnH4FRvqw+DeXv/DhiJsunXyrZ+za4pNXfLEj5RVH6go7uAqBQdjykb9j8PJDny07RZuwZ9MYn+ayD6s6O3llB6fY1V4Q9E/RHXKNOZDaE3D4Eq8HWIdYh3nj+TUvDvvDwdyB2Tx/MCaf7Y/igtsBHAa71oAdbA8lcNTEuBg9pBmLQ7rlSY8PJa7Dpae0l4ovW3jZhiOn9k325rTZK+zrwwhXTsUPl466tZt4MBN25mAlfMi9sfJTJ8WgJnDOHMRFNvDisrjZwC3W9kW5xVf52zN9Q8raELbW1wO+fLXtH/vEftF37RrzoD3zYgs7HHPtH7HBK0Zta6SW7xQ8GIOXvna47MTBtjW8yWaOtcfzFdf5wKUy/WgrcuJHLuUnlpmbPuz86BNroLAn8rEve4BV+w/t5DN90xVjhX0Y5ujyV4HLT/eDYhPv1I07/toXdMpRHTf8NFcc/KXDZ+1iN2/c2shTmzRe3vDY0FOKUc2GPqGn3bwxbcL3WbKLdy+LvGh/3m+08yMW99Nf/vKXxwsC6yFH14prorWPq7iRjxdN3Wthud5cf+KVv7aX78bZsVFgmqfnZYh+ewGe65C+9W6fta7szHuhw1Zc80V78dkz/MPlhw/rBF9ecoQ//8yUHLz8kru9xDcMenDD6QWOXIj7anlbx/y0/8XIPtHGSS8uuwboERjy5Eeu7S/jijgI//KQm3EcedEkd5jG8h0P/Payk71Yqunos+GDvTjUdMQRJ+atLX9sFPl6OdjLbDrFegR8+SFeY+5L5WtOmy/z/MFrv+MWtpeJ5uTHrzG5E7EXN3xtY423l+TAT1zxZx8XF7/m4mLmYJ372+1i44OdtvOL65I9PLF6SatN7Dnxljc9MfFjTE78xjm+2fg8ojv56RdacMsn7tRwXRME3nkNYPdSOT7tC3HQNX+20ZejUuzyFnOxiUW+8oQBu+uUnhyN2yN4y89cKzHD548OgUPXPsifcTpsxcGGX5zRLUa2CjvXupe6uJk4sPCGE/eH9gwc1584YJAZG5tyMCc+hUx9vLLDD2Gn3X2ErhzsHy+cXZ/ykot7c2tqjdon8OTAVsx+wYWP9m37jV4xF6v9YS/DMse3tmvKXPHhw/UFlx9tY60Lu/YwHaVrMg7la/xcxw97+7k1oSd3JaE79xU8MbaHsjHunio3ucavcUVsXS/yFqMcZqzWT0wKfuXMpj0gLuMKKY/GzNvz+DfHL/z2Br+4/vjHP3719a9//erVV189cOjdRfYb7Xdha3WXgWVgGVgGloF7yoCDhW+t/OpXvzoOYdLokOTwMA8m2h08aqs7ADogObAYu0noOWARhxjtxvQ7MDnMwNFXO0wpE5ed0tg86Gg332GpeGA6hPFBT4EhlnmQ03dAU2CIQ02Xrfn6sMOBb7641LXpJ/SflBc984l2Jf/m6E3M9G9TFxNd2PjKR2NnHDa4U9PtAcSYByDFoVteYXS4h48z3xZx6D77gymX9IoFlw62eDVG4pguUVs7pTE65aiGI95eLLAL2yFaG76afrb5hFvbXLps8yV+9vqK3Of6wAiHXr5qZ5f/cPPbNSF2OrD5aN649uynC4sUH6zygJONMTpErPTM9aBiPB3rbD59dfuDHrvy1bb+4qCjpl+pr7ZOHlqtVXGJUQzh9BApf+veyzvj4pv+j871D/EWc/GVf+tTzNOuNt30tAmc4jM3edAn2dFNvznz8dCa4MrewsW0mfcdNvgq39bFeMKWGDOv9NBoHczDdJ/zgEnw6YWl8WRiGstnHKiVGY8+X30uhFE+4fBjba2ltSFxw2ZiloOxOR4W7DDgJWKJO+2EH/nGk/HiLAa1Mu20p03z4jvHlV25eBHjX2187nOfO+qJU1y3rfnzUuDXv/718YKZb368pPACZ3IAk754zPmlpzWXv3G8sSe4snZeoHhBBDMeZq7zWsqvF93G2btHyE/hly3ffGobh+96pysOOGzd9/sssT/Y+ezoXmT/+ka2a0S8MHtJIm/jMMRS7MZh2O/GCJz88C1OPhTxGVMSbbx4KaTgrPzURDxi6WVtGGLhS18McuIvP/JW6OECdmN05CMvL4LFR4cvemxmnPQV+Pmgr5Bi0ueDjn1jP8E0L1bYdGC5v5ozHs4BdvkRx/SKp/jx3reV5WDNjbUHYLIj+ROPeX6skRjLR672DA7aE9myVwj7rm9+rRec5vmFDcvZxXiY4oXNP4z2gxiMKdpw7QfrImZ5Kdbf+uJRvOXjfsgn266D5oyJAeZNYp6uvdMe5hemOqGXiFMMPk/xro8DMRF44pCrnHFCxzid9OTUNahN6JH8iV1uxuNdu3FY0yY7GPzaX8bowcE5X/abb9R7kS12GOZwwA8dtdLeNAYzDD7klE+cwFET7Qr/YibtO/zAtKfgVLOhi3/rVo789sLWmDVy75/cw5CD605csNT9gqDYxFHcsGAo5vmWM2y1nPnFBXx2xcSXuIyXP+yk/NVEnvDo58ecfmPikLv1IvTiQZu+deU3/vGoryTi8YsgtvTYxLe4FX1zMMu93Ix1bU2/uGUXv/zRnTL78lUIG37wKj+4cvX5/dnPfvbqlVde+UDvaNzyx75ovyVRq7YMLAPLwDKwDNxnBhwwPBj7X+o7XJzzmQeyDh7zYNLhyYHHQeRJwlYhanaVcLPNp1rp4HS2pz9j0adzLsYJXXGehb5YHB7Lx+EMJ+bEoCba6Uwc2MVyU80mgSUnWFOM5+em8ekj3amf32l7U/tsc1M+ZzvYcx064BrzAOeA7NBdDLjEnwM/fMXDypP2GX8zLm1Y/Ez+jSnxqe7gn30xwKwtTofk+ubas3NMO5zs+ZhjxkmxaTcvVhhiasw8KWbzrb12/dp0taec52CFR4+vsz/jZ7viM0emzdSFHe/nNaNnrv0Ax5g+CXPGp53djCGf1eZ6eAtnYhrruoSJZw9h9plrFk76dCdG8dJprvn6M+YDaPyYOtnli1052heNV2c7a3PlXW0ejljDoRd+ftM3R/RnfXSux9NVw/XgqM4X3nBI8NkLD/1stc8iJhKOtVOKUfx8GUvPnBIuDD7L2Zw+SUedaMNrrvHqfIXROPzimmP0Gg/bfGPslMR4c42FXUzqZOqKDR/ul/7msZcjcz6b29b8WLtevMJXXB/GZ9xhGvOCw+e+dY6nYlbTsT9ch62fMaV46XX/M6YP13UoBvZKNtVi0ybs4PPDhsBhZ1xNxNiLmfyb8/IwH/JNB/7ce+yNKXRmDHHGrzb8dMur2I5gLj96qebFDrtsmtfHrZc88QFDrAobMYiFLsl/nBpjUx70tNnDZU+MZ6s+i/l00q82TuCSYpJ/vmfuOMZlY/yFzSY888XU+uDBfPmkbwzm2da8ccKmGPVhO2+Yx6HaWD7VBIaYiTisW/wbM994e9AYHtwPYcMqluJhS8oHbvHRUXoxGBdTn8/yht2cmr8Z4zE5fhSLGGHQda3kf6geTXiKF4XpqMXFXoFlfexZ+M3BVeh0famLGS4Jhx1s4zCJtnFxqqdkVx2/6cMwxtYvQlo/GOasT/HEO10iRriNG8tPMfEzc6BDYCj05aO2nrC0p7BX6J/x2nvm8dgaxMN5LeHCb09PP7Xjhr98G4NvDKa1xE+xphsXrV/zsGHN+I2ZZ0PfXPvHuLFs4CuEnjzV4YmFPrtsi0U/u64jY9mww2P99PMdB+o40CbscAkjyb7+uT7P5ycOceDz2y9+/E3+s/4Z76b+vmi/iZUdWwaWgWVgGVgG/gMZ6FDyH5japrQMLAP3lIGnPcDsPeueLuqG/Q8MPG2P/4PiUzp7LTyFnJ1aBpaBZWAZWAb+CQw86+f3vmj/JyzGQi4Dy8AysAwsA/+uDOzD+r/ryty/uDp87p7691271kiE53Vqzvhs35RN8zfN/SvGzrn8K2JYn8vAbRh4kdfO7vvbML46y8AysAwsA8vA8zPwPJ/fz/Wi/flDX4RlYBlYBpaBZWAZWAaWgWVgGVgGloFlYBlYBpaBZWAZWAaWgWXgfjPwzC/a73faG/0ysAwsA8vAMrAMLAPLwDKwDCwDy8AysAwsA8vAMrAMLAPLwDLwYhjYF+0vhsdFWQaWgWVgGVgGloFlYBlYBpaBZWAZWAaWgWVgGVgGloFlYBn4L2XgmV+0z7/n+F/K3aa9DCwDy8AysAwsA8vAMrAMLAPLwDKwDCwDy8AysAwsA8vAMrAMXN35RftytgwsA8vAMrAMLAPLwDKwDCwDy8AysAwsA8vAMrAMLAPLwDKwDCwDHzKwL9o/5GJby8AysAwsA8vAMrAMLAPLwDKwDCwDy8AysAwsA8vAMrAMLAPLwJ0Z2Bftd6ZsDZaBZWAZWAaWgWVgGVgGloFlYBlYBpaBZWAZWAaWgWVgGVgGloEPGdgX7R9ysa1lYBlYBpaBZWAZWAaWgWVgGVgGloFlYBlYBpaBZWAZWAaWgWXgzgzsi/Y7U7YGy8AysAwsA8vAMrAMLAPLwDKwDCwDy8AysAwsA8vAMrAMLAPLwIcM/B2GbiAET+P1xAAAAABJRU5ErkJggg==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![cart_vs_rad_sampling.png](attachment:cart_vs_rad_sampling.png)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "I hope you agree that for a given undersampling factor, radial sampling leads to a much better image quality. \n", + "\n", + "The term radial undersampling is a bit confusing, because as you can see from the small inserts in each image, when we talk about _radial undersampling_ we actually mean a radial sampling scheme with angular undersamling, i.e. we leave larger gaps along the angular direction.\n", + "\n", + "There are lots and lots of different non-Cartesian MR sampling schemes: radial, spiral, koosh-ball, rosette, ring..." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, that we are all convinced that non-Cartesian k-space sampling is great, let's start!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#%% make sure figures appears inline and animations works\n", + "%matplotlib notebook\n", + "\n", + "# Setup the working directory for the notebook\n", + "import notebook_setup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "__version__ = '0.1.0'\n", + "\n", + "# import engine module\n", + "import sirf.Gadgetron as pMR\n", + "from sirf.Utilities import examples_data_path\n", + "from sirf_exercises import exercises_data_path\n", + "\n", + "# import CIL functionality for visualisation and iterative reconstruction\n", + "from cil.utilities.jupyter import islicer\n", + "from cil.optimisation.algorithms import FISTA\n", + "from cil.plugins.ccpi_regularisation.functions import FGP_TV\n", + "from cil.optimisation.functions import LeastSquares, ZeroFunction\n", + "\n", + "# import further modules\n", + "import os\n", + "import numpy as np\n", + "import time\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.animation as animation\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The data we are going to use was acquired with a _Golden Radial Phase Encoding (GRPE) scheme_. This is a 3D MR sampling scheme which combines Cartesian frequency encoding (readout, $k_x$) with non-Cartesian phase encoding ($k_y$ - $k_z$). This means we have one direction which is fully sampled ($k_x$) and the other two directions ($k_y$ - $k_z$) which can be undersampled to speed up data acquisition. If you want to find out more about this trajectory please refer to the following paper:\n", + "\n", + "Boubertakh R et al. 2009 Whole-heart imaging using undersampled radial phase encoding (RPE) and iterative sensitivity encoding (SENSE) reconstruction. Magn. Reson. Med. 62, 1331–1337. (doi:10.1002/mrm.22102)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pname = '/media/sf_CCP/mcir_phantom/SIRF/'\n", + "fname = 'RPE_MotionPhantom_last70rpe.h5'\n", + "fname = 'RPE_MotionPhantom_last40rpe.h5'\n", + "#fname = 'RPE_MotionPhantom_last20rpe.h5'\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Load in the data\n", + "acq_data = pMR.AcquisitionData(pname + fname)\n", + "acq_data.sort_by_time()\n", + "\n", + "# Here we are cheating a little bit for the moment, because we have pre-processed the file already. \n", + "# If we had not done that and would like to load a raw data file directly from the scanner, we would\n", + "# have to do:\n", + "# acq_data = pMR.AcquisitionData(pname + fname))\n", + "# acq_data = pMR.preprocess_acquisition_data(acq_data)\n", + "# acq_data = pMR.set_grpe_trajectory(acq_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Especially the last line is important: `acq_data = pMR.set_grpe_trajectory(acq_data)`\n", + "\n", + "Here we calculate the trajectory, i.e. based on the parameters provided by the scanner (the header information of the raw data file) we calculate the ($k_x$, $k_y$, $k_z$) position of each acquired k-space point. So let's have a look what this looks like. As mentioned above _GRPE_ combines non-Cartesian phase encoding with Cartesian frequency encoding, therefore, we only have to look at the k-space locations of the phase encoding points." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "ktraj = pMR.get_data_trajectory(acq_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If we look at the dimension of the k-space trajectory `ktra`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(ktraj.shape)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "and compare it to the k-space data" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "print(acq_data.dimensions())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can see that we have got a pair of ($k_y$, $k_z$) entries in `ktraj`for each phase encoding point (first dimension in `acq_data`). Because we paid attention when we acquired our MR data, we remember that we obtained 144 phase encoding points along each RPE line. So let's plot the data acquisition over time:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Full trajectory\n", + "plt.figure()\n", + "plt.ion()\n", + "for num_rpe_lines in range(ktraj.shape[0]//144):\n", + " plt.plot(ktraj[num_rpe_lines*144:(num_rpe_lines+1)*144,0], \n", + " ktraj[num_rpe_lines*144:(num_rpe_lines+1)*144,1], '.r')\n", + " plt.axis('equal')\n", + " plt.draw()\n", + " plt.pause(0.1)\n", + " plt.plot(ktraj[num_rpe_lines*144:(num_rpe_lines+1)*144,0], \n", + " ktraj[num_rpe_lines*144:(num_rpe_lines+1)*144,1], '.b')\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We have a fully data acquisition with 144 points along the radial direction of _GRPE_ and undersampling along the angular direction of _GRPE_ because we only have 40 GRPE lines. If we assume that for a fully sampled k-space, we would need 144 _GRPE_ lines we can calculate the undersampling factor as $\\frac{144}{40}$ = $3.6$. (Technically our undersampling factor is higher, because we would need $144 * \\frac{\\pi}{2}$ to full fill the Nyquist sampling theorem everywhere in k-space, but this is a small detail). " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Image reconstruction\n", + "As a first step we calculate the coil sensitivity maps again. We always need them in MRI..." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "csm = pMR.CoilSensitivityData()\n", + "csm.smoothness = 100\n", + "csm.calculate(acq_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because we have got a 3D volume which we imaged, our coil maps are 4D (3D + coil dimension), so we will use some fance __CIL__ tools to visualise them:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Let's get the coil maps as a numpy array \n", + "vis_dat = np.abs(csm.as_array())\n", + "\n", + "# Let's select a central slice\n", + "vis_dat = vis_dat[:,:,64,:]\n", + "\n", + "# Visualise!\n", + "islicer(vis_dat, direction=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create acquisition model\n", + "E = pMR.AcquisitionModel(acqs=acq_data, imgs=csm)\n", + "E.set_coil_sensitivity_maps(csm)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's take a second to discuss what the `AcquisitionModel` for a non-Cartesian sampling scheme looks like. We remember from previous notebooks (`d_undersampled_reconstructions.ipynb`) that `forward` was defined as:\n", + "$$\n", + "E x = y_c = \\mathcal{F}( C_c \\cdot x).\n", + "$$\n", + "describing how the k-space data ($y_c$) for a single coil $c$ is obtained from the image $x$. The `backward` operation was defined as:\n", + "$$\n", + "E^H y = x = \\sum_c C_c^*\\mathcal{F}^{-1}(y) \n", + "$$\n", + "and we have used `forward` and `backward` for iterative image reconstruction. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In addition to `forward` and `backward`, the `AcquisitionModel` has also got the function: `inverse`. For a standard Cartesian sampling scheme, `backward` and `inverse` are identical. For non-Cartesian sampling schemes, this is not the case anymore. `backward` is defined to be the hermitian conjugate of `forward`, where as `inverse` obtains an image by also taking the density of the k-space samples into account. Now, what does that mean?!\n", + "\n", + "If we think of a Cartesian sampling scheme, where all the data points are on a rectilinear grid, then the density of k-space points is the same everywhere. In our case, where we have radial lines, all these lines intersect in the centre, and hence there is much higher density of acquired k-space points there, than in the outer parts of k-space. If we don't take this into consideration, then the central k-space frequencies get weighted higher (simply because there are more of those) in the reconstructed image. To compensate for this, we can apply a so-called _density compensation function_ to the k-space, prior to applying $E^H$. This is all, that the `inverse` does - weight $y$ and then reconstruct an image $x$. Something similar happens in CT, where we can do a _filtered back projection_ where we also compensate for the fact, that more data points have to be acquired from the centre of the FOV compared to the peripherie. \n", + "\n", + "So let's call `inverse` and `backward` and compare the results:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Inverse\n", + "rec_im_inv = E.inverse(acq_data)\n", + "rec_im_inv_arr = rec_im_inv.as_array()\n", + "\n", + "# Backward\n", + "rec_im_bck = E.backward(acq_data)\n", + "rec_im_bck_arr = rec_im_bck.as_array()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, ax = plt.subplots(2,3)\n", + "ax[0,0].imshow(np.abs(rec_im_bck_arr[64, :, :]))\n", + "ax[0,0].set_ylabel('Backward')\n", + "ax[0,1].imshow(np.abs(rec_im_bck_arr[:, 64, :]))\n", + "ax[0,2].imshow(np.abs(rec_im_bck_arr[:, :, 64]))\n", + "\n", + "\n", + "ax[1,0].imshow(np.abs(rec_im_inv_arr[64, :, :]))\n", + "ax[1,0].set_ylabel('Inverse')\n", + "ax[1,1].imshow(np.abs(rec_im_inv_arr[:, 64, :]))\n", + "ax[1,2].imshow(np.abs(rec_im_inv_arr[:, :, 64]))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Didn't we forget anything?\n", + "We mentioned above that we cannot directly apply _FFT_ to non-Cartesian data but it is more complex. Have we taken this into consideration already?\n", + "\n", + "Yes, we have! Well, actually __SIRF__ has. The raw data coming from the scanner includes information about the trajectory which was used for data acquisition. Based on this information, __SIRF__ calculated the trajectory and then also applied to correct `AcquisitionModel` to the data. So far, __SIRF__ can reconstruction _Cartesian_ and _GRPE_ but _2D radial_ and _2D spiral_ will follow soon." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Iterative reconstruction\n", + "Considering that we have an undersampling factor of 4, our images from `inverse` look quite good, but of course we can do better. So we are going to use an iterative reconstruction. We could use the conjugate gradient approach discussed in the notebook `d_undersampled_reconstructions.ipynb`, but we want to do something fancier.\n", + "\n", + "So we are going to use _FISTA_ from __CIL__. " + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# We set up our AcquisitionModel\n", + "E = pMR.AcquisitionModel(acqs=acq_data, imgs=rec_im_inv)\n", + "E.set_coil_sensitivity_maps(csm)\n", + "\n", + "# Define the maximum number of iterations\n", + "num_it_fista = 40\n", + "\n", + "# Use the result of the inverse as our starting point\n", + "x_init = rec_im_inv.clone()\n", + "\n", + "# Define our objective/loss function as least squares between Ex and y\n", + "f = LeastSquares(E, acq_data, c=1)\n", + "\n", + "# Here we are not going to use any further regularisation, but if you want to change this, \n", + "# using e.g. TV-regularisation you could change this to\n", + "# alpha = 0.00001\n", + "# G = alpha * FGP_TV(max_iteration=10, device='cpu')\n", + "# where alpha is the strenght of the regularisation\n", + "G = ZeroFunction()\n", + "\n", + "\n", + "# Set up FISTA\n", + "fista = FISTA(x_init=x_init, f=f, g=G)\n", + "fista.max_iteration = num_it_fista\n", + "fista.update_objective_interval = 1\n", + "\n", + "\n", + "# Run FISTA for least squares\n", + "fista.run(100, verbose=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rec_im_arr = fista.get_output().as_array()\n", + "\n", + "fig, ax = plt.subplots(1,3)\n", + "ax[0].imshow(np.abs(rec_im_arr[64, :, :]))\n", + "ax[1].imshow(np.abs(rec_im_arr[:, 64, :]))\n", + "ax[2].imshow(np.abs(rec_im_arr[:, :, 64]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "vis_dat = np.abs(fista.get_output().as_array())\n", + "islicer(vis_dat, direction=0)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython" + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/MR/mr_mcir_grpe.ipynb b/notebooks/MR/mr_mcir_grpe.ipynb new file mode 100755 index 00000000..bce3334c --- /dev/null +++ b/notebooks/MR/mr_mcir_grpe.ipynb @@ -0,0 +1,606 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Demonstration of MR reconstruction with CCP PET-MR Software\n", + "\n", + "This demonstration shows how to hande undersampled data\n", + "and how to write a simple iterative reconstruction algorithm with\n", + "the acquisition model.\n", + "\n", + "This demo is a 'script', i.e. intended to be run step by step in a\n", + "Python notebook such as Jupyter. It is organised in 'cells'. Jupyter displays these\n", + "cells nicely and allows you to run each cell on its own." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "First version: 27th of March 2019\n", + "Author: Johannes Mayer\n", + "\n", + "CCP PETMR Synergistic Image Reconstruction Framework (SIRF). \n", + "Copyright 2015 - 2017 Rutherford Appleton Laboratory STFC. \n", + "Copyright 2015 - 2017 University College London. \n", + "Copyright 2015 - 2017 Physikalisch-Technische Bundesanstalt.\n", + "\n", + "This is software developed for the Collaborative Computational\n", + "Project in Positron Emission Tomography and Magnetic Resonance imaging\n", + "(http://www.ccppetmr.ac.uk/).\n", + "\n", + "Licensed under the Apache License, Version 2.0 (the \"License\");\n", + "you may not use this file except in compliance with the License.\n", + "You may obtain a copy of the License at\n", + " http://www.apache.org/licenses/LICENSE-2.0\n", + "Unless required by applicable law or agreed to in writing, software\n", + "distributed under the License is distributed on an \"AS IS\" BASIS,\n", + "WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", + "See the License for the specific language governing permissions and\n", + "limitations under the License." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "#%% make sure figures appears inline and animations works\n", + "%matplotlib notebook\n", + "\n", + "# Setup the working directory for the notebook\n", + "import notebook_setup" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "__version__ = '0.1.0'\n", + "\n", + "# import engine module\n", + "import sirf.Gadgetron as pMR\n", + "from sirf.Utilities import examples_data_path\n", + "from sirf_exercises import exercises_data_path\n", + "\n", + "\n", + "from cil.framework import AcquisitionGeometry, BlockDataContainer, BlockGeometry\n", + "from cil.optimisation.functions import Function, OperatorCompositionFunction, SmoothMixedL21Norm, L1Norm, L2NormSquared, BlockFunction, MixedL21Norm, IndicatorBox, TotalVariation, LeastSquares, ZeroFunction\n", + "from cil.optimisation.operators import GradientOperator, BlockOperator, ZeroOperator, CompositionOperator,LinearOperator\n", + "from cil.optimisation.algorithms import PDHG, FISTA, GD\n", + "from cil.plugins.ccpi_regularisation.functions import FGP_TV\n", + "\n", + "# import further modules\n", + "import os\n", + "import numpy as np\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.animation as animation\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pname = '/media/sf_CCP/mcir_phantom/SIRF/'\n", + "fname = 'RPE_MotionPhantom.h5'\n", + "fname_new = 'RPE_MotionPhantom_first70rpe.h5'\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "'''\n", + "Load in data and calculate coil sensitivity maps\n", + "'''\n", + "# %% GO TO MR FOLDER\n", + "pMR.AcquisitionData.set_storage_scheme('memory')\n", + "\n", + "acq_data = pMR.AcquisitionData(pname + fname_new)\n", + "#acq_data = pMR.preprocess_acquisition_data(acq_data)\n", + "#acq_data = pMR.set_grpe_trajectory(acq_data)\n", + "acq_data.sort_by_time()\n", + "\n", + "# Add dcf\n", + "#kdcf = pMR.compute_kspace_density(acq_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "pe_ky = acq_data.get_ISMRMRD_info('kspace_encode_step_1')\n", + "#pe_kz = acq_data.get_ISMRMRD_info('kspace_encode_step_2')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy.signal as sp_signal\n", + "\n", + "# acquisition_time_stamp\n", + "\n", + "ky_idx = np.where(pe_ky == (np.max(pe_ky)+1)//2)\n", + "\n", + "# Get k-space as array\n", + "acq_data_arr = acq_data.as_array()\n", + "\n", + "print(acq_data_arr.shape)\n", + "\n", + "# Keep only points which have been acquired in the k-space centre (i.e. kx == 0 & ky == 0)\n", + "acq_data_arr = acq_data_arr[ky_idx[0], :, :]\n", + "\n", + "self_nav = np.abs(np.squeeze(acq_data_arr[:,3,64]))\n", + "self_nav[0] = self_nav[1]\n", + "self_nav = sp_signal.medfilt(self_nav, 7)\n", + "\n", + "# Interpolate self navigator to all PE numbers\n", + "self_nav = np.interp(np.linspace(0, len(pe_ky)-1, len(pe_ky)), ky_idx[0], self_nav)\n", + "\n", + "# Sort navigator and obtain index\n", + "nav_idx = np.argsort(self_nav)\n", + "\n", + "flag_amp_gating = False\n", + "\n", + "# Bin data into Nms motion states each with the same amount of data\n", + "Nms = 4\n", + "num_pe_per_ms = np.ceil(len(pe_ky) / Nms).astype(np.int)\n", + "acq_idx_ms = []\n", + "\n", + "for nnd in range(Nms):\n", + " if flag_amp_gating:\n", + " ms_begin = nnd * motion_amplitude/Nms + np.min(self_nav)\n", + " ms_end = ms_begin + motion_amplitude/Nms\n", + "\n", + " if nnd < Nms - 2:\n", + " cidx = np.where((self_nav >= ms_begin) & (self_nav < ms_end))\n", + " else:\n", + " cidx = np.where((self_nav >= ms_begin) & (self_nav <= ms_end)) \n", + "\n", + " acq_idx_ms.append(nav_idx[cidx])\n", + " else:\n", + " if nnd < Nms - 1:\n", + " acq_idx_ms.append(nav_idx[nnd*num_pe_per_ms:(nnd+1)*num_pe_per_ms])\n", + " else:\n", + " acq_idx_ms.append(nav_idx[nnd*num_pe_per_ms:])\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure()\n", + "plt.plot(self_nav, '-k')\n", + "for ind in range(Nms):\n", + " print(ind, ' - ', len(acq_idx_ms[ind]))\n", + " plt.plot(acq_idx_ms[ind], self_nav[acq_idx_ms[ind]], 'o')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "csm = pMR.CoilSensitivityData()\n", + "csm.smoothness = 100\n", + "csm.calculate(acq_data)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "csm_arr = csm.as_array()\n", + "fig, ax = plt.subplots(1,3)\n", + "ax[0].imshow(np.abs(csm_arr[2, 102, :, :]))\n", + "ax[1].imshow(np.abs(csm_arr[2, :, 64, :]))\n", + "ax[2].imshow(np.abs(csm_arr[2, :, :, 64]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Go through motion states, create corresponding k-space and reconstruct images\n", + "\n", + "num_ms = Nms\n", + "\n", + "acq_ms = [0] * num_ms\n", + "im_ms = [0] * num_ms\n", + "E_ms = [0] * num_ms\n", + "\n", + "# Apply kdcf\n", + "#acq_data *= kdcf\n", + "\n", + "num_ms = Nms\n", + "acq_idx_sel = acq_idx_ms\n", + "\n", + "#acq_idx_ref = np.load(pname + 'resp_idx_mcir.npy', allow_pickle=True)\n", + "#acq_idx_sel = acq_idx_ref\n", + "num_ms = len(acq_idx_sel)\n", + "\n", + "fig, ax = plt.subplots(3, num_ms)\n", + "plt.setp(ax, xticks=[], yticks=[])\n", + "for ind in range(num_ms):\n", + " \n", + " if True:\n", + " acq_ms[ind] = acq_data.new_acquisition_data(empty=True)\n", + "\n", + " # Add motion resolved data\n", + " for jnd in range(len(acq_idx_sel[ind])):\n", + " cacq = acq_data.acquisition(acq_idx_sel[ind][jnd])\n", + " acq_ms[ind].append_acquisition(cacq)\n", + " else:\n", + " acq_ms[ind] = acq_data.get_subset(acq_idx_sel[ind])\n", + " \n", + " acq_ms[ind].sort_by_time()\n", + " \n", + " # Create acquisition model\n", + " E_tmp = pMR.AcquisitionModel(acqs=acq_ms[ind], imgs=csm)\n", + " E_tmp.set_coil_sensitivity_maps(csm)\n", + "\n", + " #im_ms[ind] = E_tmp.adjoint(acq_ms[ind])\n", + " im_ms[ind] = E_tmp.inverse(acq_ms[ind])\n", + "\n", + " E_ms[ind] = pMR.AcquisitionModel(acqs=acq_ms[ind], imgs=im_ms[ind])\n", + " E_ms[ind].set_coil_sensitivity_maps(csm)\n", + " \n", + " rec_im_arr = im_ms[ind].as_array()\n", + " ax[0, ind].imshow(np.abs(rec_im_arr[102, :, :]))\n", + " ax[0, ind].plot([32, 32], [0, 130], '-w')\n", + " ax[1, ind].imshow(np.abs(rec_im_arr[:, 64, :]))\n", + " ax[1, ind].plot([32, 32], [0, 200], '-w')\n", + " ax[2, ind].imshow(np.abs(rec_im_arr[:, :, 50]))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create acquisition model\n", + "E = pMR.AcquisitionModel(acqs=acq_data, imgs=csm)\n", + "E.set_coil_sensitivity_maps(csm)\n", + "\n", + "# Pseudo-inverse\n", + "rec_im = E.inverse(acq_data)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rec_im_arr = rec_im.as_array()\n", + "\n", + "fig, ax = plt.subplots(1,3)\n", + "ax[0].imshow(np.abs(rec_im_arr[102, :, :]))\n", + "ax[1].imshow(np.abs(rec_im_arr[:, 64, :]))\n", + "ax[2].imshow(np.abs(rec_im_arr[:, :, 64]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import time\n", + "\n", + "E = pMR.AcquisitionModel(acqs=acq_data, imgs=rec_im)\n", + "E.set_coil_sensitivity_maps(csm)\n", + "\n", + "\n", + "num_it_fista = 20\n", + "x_init = rec_im.clone()\n", + "\n", + "t1 = time.time()\n", + "f = LeastSquares(E, acq_data, c=1)\n", + "print('LS {:3.2f}s'.format((time.time() - t1)))\n", + "\n", + "G = ZeroFunction()\n", + "\n", + "# alpha = 0.01\n", + "# G = alpha * FGP_TV(max_iteration=10, device='cpu')\n", + "\n", + "# Run FISTA for least squares\n", + "t1 = time.time()\n", + "fista = FISTA(x_init=x_init, f=f, g=G)\n", + "fista.max_iteration = num_it_fista\n", + "fista.update_objective_interval = 1\n", + "print('SETUP {:3.2f}s'.format((time.time() - t1)))\n", + "\n", + "t1 = time.time()\n", + "fista.run(100, verbose=True)\n", + "print('FISTA {:3.2f}s'.format((time.time() - t1)))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rec_im_arr = fista.get_output().as_array()\n", + "\n", + "fig, ax = plt.subplots(1,3)\n", + "ax[0].imshow(np.abs(rec_im_arr[102, :, :]))\n", + "ax[1].imshow(np.abs(rec_im_arr[:, 64, :]))\n", + "ax[2].imshow(np.abs(rec_im_arr[:, :, 64]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rec_ms_fista = [0] * num_ms\n", + "\n", + "for ind in range(num_ms):\n", + "\n", + " num_it_fista = 10\n", + " x_init = im_ms[ind].clone()\n", + "\n", + " t1 = time.time()\n", + " f = LeastSquares(E_ms[ind], acq_ms[ind], c=1)\n", + " print('LS {:3.2f}s'.format((time.time() - t1)))\n", + "\n", + " G = ZeroFunction()\n", + "\n", + " # alpha = 0.01\n", + " # G = alpha * FGP_TV(max_iteration=10, device='cpu')\n", + "\n", + " # Run FISTA for least squares\n", + " t1 = time.time()\n", + " fista = FISTA(x_init=x_init, f=f, g=G)\n", + " fista.max_iteration = num_it_fista\n", + " fista.update_objective_interval = 1\n", + " print('SETUP {:3.2f}s'.format((time.time() - t1)))\n", + "\n", + " t1 = time.time()\n", + " fista.run(100, verbose=True)\n", + " print('FISTA {:3.2f}s'.format((time.time() - t1)))\n", + " \n", + " rec_ms_fista[ind] = fista.get_output()\n", + " \n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "fig, ax = plt.subplots(3, num_ms)\n", + "plt.setp(ax, xticks=[], yticks=[])\n", + "for ind in range(num_ms):\n", + "\n", + " rec_im_arr = rec_ms_fista[ind].as_array()\n", + " ax[0, ind].imshow(np.abs(rec_im_arr[102, :, :]))\n", + " ax[0, ind].plot([32, 32], [0, 130], '-w')\n", + " ax[1, ind].imshow(np.abs(rec_im_arr[:, 64, :]))\n", + " ax[1, ind].plot([32, 32], [0, 200], '-w')\n", + " ax[2, ind].imshow(np.abs(rec_im_arr[:, :, 50]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "im_ms_rec = []\n", + "for ind in range(num_ms):\n", + " im_ms_rec.append(rec_ms_fista[ind].abs())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "'''\n", + "Register different motion gates\n", + "'''\n", + "\n", + "import sirf.Reg as pReg\n", + "\n", + "\n", + "# Forward motion fields\n", + "mf_resampler = [0] * num_ms\n", + "im_res = [0] * num_ms\n", + "im_corr = [0] * num_ms\n", + "for ind in range(num_ms):\n", + " #algo = pReg.NiftyF3dSym()\n", + " algo = pReg.NiftyAladinSym()\n", + "\n", + " # Set up images\n", + " algo.set_reference_image(pReg.NiftiImageData3D(im_ms_rec[ind])) # remove NiftiImageData3D?????\n", + " algo.set_floating_image(pReg.NiftiImageData3D(im_ms_rec[0]))\n", + "\n", + " algo.process()\n", + " reg_result = algo.get_output()\n", + "\n", + " mf_forward = algo.get_deformation_field_forward()\n", + "\n", + "\n", + " # Create resampler\n", + " mf_resampler[ind] = pReg.NiftyResample()\n", + " mf_resampler[ind].set_reference_image(rec_ms_fista[ind])\n", + " mf_resampler[ind].set_floating_image(rec_ms_fista[ind])\n", + " mf_resampler[ind].add_transformation(mf_forward)\n", + " mf_resampler[ind].set_padding_value(0)\n", + " mf_resampler[ind].set_interpolation_type_to_linear()\n", + "\n", + " im_res[ind] = mf_resampler[ind].forward(rec_ms_fista[0])\n", + " im_corr[ind] = mf_resampler[ind].backward(rec_ms_fista[ind])\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "fig, ax = plt.subplots(3, num_ms)\n", + "plt.setp(ax, xticks=[], yticks=[])\n", + "for ind in range(num_ms): \n", + " rec_im_arr = im_res[ind].as_array()\n", + " rec_im_arr /= rec_im_arr.max()\n", + " ms_im_arr = im_ms_rec[ind].as_array()\n", + " ms_im_arr /= ms_im_arr.max()\n", + " ax[0, ind].imshow(np.abs(rec_im_arr[:, 64, :]), vmin=0, vmax=1)\n", + " ax[1, ind].imshow(np.abs(ms_im_arr[:, 64, :]), vmin=0, vmax=1)\n", + " ax[2, ind].imshow(np.abs(rec_im_arr[:, 64, :]) - np.abs(ms_im_arr[:, 64, :]), vmin=0, vmax=1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# RTA\n", + "im_orig = rec_ms_fista[0]\n", + "im_rta = im_corr[0]\n", + "for ind in range(1,num_ms):\n", + " im_orig += rec_ms_fista[ind]\n", + " im_rta += im_corr[ind]\n", + " \n", + "fig, ax = plt.subplots(2,3)\n", + "ax[0,0].imshow(np.abs(im_orig.as_array()[102, :, :]))\n", + "ax[0,1].imshow(np.abs(im_orig.as_array()[:, 64, :]))\n", + "ax[0,2].imshow(np.abs(im_orig.as_array()[:, :, 64]))\n", + "\n", + "ax[1,0].imshow(np.abs(im_rta.as_array()[102, :, :]))\n", + "ax[1,1].imshow(np.abs(im_rta.as_array()[:, 64, :]))\n", + "ax[1,2].imshow(np.abs(im_rta.as_array()[:, :, 64]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Fix\n", + "\n", + "~/devel/install/python/cil/optimisation/operators/Operator.py in PowerMethod(operator, iterations, x_init)\n", + " 145 x1norm = x1.norm()\n", + " 146 if hasattr(x0, 'squared_norm'):\n", + "--> 147 s[it] =numpy.abs( x1.dot(x0) / x0.squared_norm())\n", + " 148 else:\n", + " 149 x0norm = x0.norm()\n", + "\n", + "TypeError: can't convert complex to float\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Set up reconstruction\n", + "C = [CompositionOperator(am, res) for am, res in zip(*(E_ms, mf_resampler))]\n", + "A = BlockOperator(*C)\n", + "\n", + "# Initial pseudo inverse\n", + "acq_ms_block = BlockDataContainer(*acq_ms)\n", + "im_xinit = A.adjoint(acq_ms_block)\n", + "\n", + "num_it_fista = 1\n", + "f = LeastSquares(A, acq_ms_block, c=1)\n", + "\n", + "reg_mcir_fista = None\n", + "if reg_mcir_fista == 'tv':\n", + " G = cilPluginToSIRFFactory.getInstance(FGP_TV, lambdaReg=1e-8, iterationsTV=10,\n", + " tolerance=1e-7, methodTV=0, nonnegativity=0,\n", + " printing=1, device='cpu')\n", + "\n", + "elif reg_mcir_fista == 'tgv':\n", + " alpha = 1.\n", + " beta = alpha * 2\n", + " lip_const = 12.\n", + " G = cilPluginToSIRFFactory.getInstance(TGV, regularisation_parameter=.01,\n", + " LipshitzConstant=lip_const,\n", + " alpha1=alpha, alpha2=beta,\n", + " iter_TGV=10, torelance=1e-4,\n", + " device='cpu')\n", + "\n", + "elif reg_mcir_fista == None:\n", + " G = ZeroFunction()\n", + "else:\n", + " assert 0, 'reg_mcir_fista should be None, tv or tgv'\n", + "\n", + "# Run FISTA for least squares\n", + "fista = FISTA(x_init=im_xinit, f=f, g=G)\n", + "fista.max_iteration = num_it_fista\n", + "fista.update_objective_interval = 1\n", + "fista.run(10, verbose=True)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rec_im_arr = fista.get_output().as_array()\n", + "\n", + "fig, ax = plt.subplots(1,3)\n", + "ax[0].imshow(np.abs(rec_im_arr[102, :, :]))\n", + "ax[1].imshow(np.abs(rec_im_arr[:, 64, :]))\n", + "ax[2].imshow(np.abs(rec_im_arr[:, :, 64]))" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython" + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 3c6f8fe3a4bfb53481254dcfa6a7f281ac9380d1 Mon Sep 17 00:00:00 2001 From: gfardell Date: Wed, 7 Jul 2021 10:20:22 +0000 Subject: [PATCH 05/11] visualisation improved --- .../MR/g_non_cartesian_reconstruction.ipynb | 111 +++++++++--------- 1 file changed, 58 insertions(+), 53 deletions(-) diff --git a/notebooks/MR/g_non_cartesian_reconstruction.ipynb b/notebooks/MR/g_non_cartesian_reconstruction.ipynb index ab3f1ea5..34385d5a 100644 --- a/notebooks/MR/g_non_cartesian_reconstruction.ipynb +++ b/notebooks/MR/g_non_cartesian_reconstruction.ipynb @@ -17,7 +17,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "First version: 14th of July 2021\n", + "First version: 14th of June 2021\n", "Author: Christoph Kolbitsch\n", "\n", "CCP SyneRBI Synergistic Image Reconstruction Framework (SIRF). \n", @@ -132,6 +132,31 @@ "import matplotlib.animation as animation\n" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Define a function which plots 3D volume(s) in two orthogonal views\n", + "def plot_rpe_3d(dat, sl_idx, lbl):\n", + " fig, ax = plt.subplots(2,len(dat), squeeze=False)\n", + " for ind in range(len(dat)):\n", + " ax[0,ind].imshow(np.rot90(np.abs(dat[ind][:, sl_idx[0], :]), 1))\n", + " ax[0,ind].set_xticks([])\n", + " ax[0,ind].set_yticks([])\n", + " ax[0,ind].set_ylabel('Foot-Head')\n", + " ax[0,ind].set_xlabel('Right-Left')\n", + " ax[0,ind].set_title(lbl[ind])\n", + " \n", + " ax[1,ind].imshow(np.rot90(np.abs(dat[ind][:, :, sl_idx[1]])))\n", + " ax[1,ind].set_xticks([])\n", + " ax[1,ind].set_yticks([])\n", + " ax[1,ind].set_ylabel('Anterior-Posterior')\n", + " ax[1,ind].set_xlabel('Right-Left')\n", + " " + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -147,10 +172,8 @@ "metadata": {}, "outputs": [], "source": [ - "pname = '/media/sf_CCP/mcir_phantom/SIRF/'\n", - "fname = 'RPE_MotionPhantom_last70rpe.h5'\n", - "fname = 'RPE_MotionPhantom_last40rpe.h5'\n", - "#fname = 'RPE_MotionPhantom_last20rpe.h5'\n" + "pname = '/mnt/materials/SIRF/Fully3D/SIRF/'\n", + "fname = 'RPE_MotionPhantom_last40rpe.h5'" ] }, { @@ -166,7 +189,7 @@ "# Here we are cheating a little bit for the moment, because we have pre-processed the file already. \n", "# If we had not done that and would like to load a raw data file directly from the scanner, we would\n", "# have to do:\n", - "# acq_data = pMR.AcquisitionData(pname + fname))\n", + "# acq_data = pMR.AcquisitionData(pname + fname)\n", "# acq_data = pMR.preprocess_acquisition_data(acq_data)\n", "# acq_data = pMR.set_grpe_trajectory(acq_data)" ] @@ -234,18 +257,19 @@ "metadata": {}, "outputs": [], "source": [ - "# Full trajectory\n", - "plt.figure()\n", - "plt.ion()\n", - "for num_rpe_lines in range(ktraj.shape[0]//144):\n", - " plt.plot(ktraj[num_rpe_lines*144:(num_rpe_lines+1)*144,0], \n", - " ktraj[num_rpe_lines*144:(num_rpe_lines+1)*144,1], '.r')\n", - " plt.axis('equal')\n", - " plt.draw()\n", - " plt.pause(0.1)\n", - " plt.plot(ktraj[num_rpe_lines*144:(num_rpe_lines+1)*144,0], \n", - " ktraj[num_rpe_lines*144:(num_rpe_lines+1)*144,1], '.b')\n", - " " + "# Visualise trajectory\n", + "import matplotlib.animation\n", + "\n", + "fig, ax = plt.subplots(figsize=(5,5))\n", + "l, = ax.plot([],[], '.b')\n", + "ax.axis([-0.6, 0.6, -0.6, 0.6])\n", + "\n", + "\n", + "def animate(num_rpe_lines):\n", + " l.set_data(ktraj[:(num_rpe_lines+1)*144,0], \n", + " ktraj[:(num_rpe_lines+1)*144,1])\n", + "\n", + "ani = matplotlib.animation.FuncAnimation(fig, animate, frames=ktraj.shape[0]//144) " ] }, { @@ -355,17 +379,8 @@ "metadata": {}, "outputs": [], "source": [ - "fig, ax = plt.subplots(2,3)\n", - "ax[0,0].imshow(np.abs(rec_im_bck_arr[64, :, :]))\n", - "ax[0,0].set_ylabel('Backward')\n", - "ax[0,1].imshow(np.abs(rec_im_bck_arr[:, 64, :]))\n", - "ax[0,2].imshow(np.abs(rec_im_bck_arr[:, :, 64]))\n", - "\n", - "\n", - "ax[1,0].imshow(np.abs(rec_im_inv_arr[64, :, :]))\n", - "ax[1,0].set_ylabel('Inverse')\n", - "ax[1,1].imshow(np.abs(rec_im_inv_arr[:, 64, :]))\n", - "ax[1,2].imshow(np.abs(rec_im_inv_arr[:, :, 64]))\n" + "# Compare Backward and Inverse\n", + "plot_rpe_3d([rec_im_bck_arr, rec_im_inv_arr], [64, 64], ['Backward', 'Inverse'])" ] }, { @@ -375,7 +390,11 @@ "## Didn't we forget anything?\n", "We mentioned above that we cannot directly apply _FFT_ to non-Cartesian data but it is more complex. Have we taken this into consideration already?\n", "\n", - "Yes, we have! Well, actually __SIRF__ has. The raw data coming from the scanner includes information about the trajectory which was used for data acquisition. Based on this information, __SIRF__ calculated the trajectory and then also applied to correct `AcquisitionModel` to the data. So far, __SIRF__ can reconstruction _Cartesian_ and _GRPE_ but _2D radial_ and _2D spiral_ will follow soon." + "Yes, we have! Well, actually __SIRF__ has. The raw data coming from the scanner includes information about the trajectory which was used for data acquisition. Based on this information, __SIRF__ calculated the trajectory and then also applied to correct `AcquisitionModel` to the data. So far, __SIRF__ can reconstruction _Cartesian_ and _GRPE_ but _2D radial_ and _2D spiral_ will follow soon.\n", + "\n", + "To reconstruct the non-Cartesian data we could of course use the _discrete Fourier transform (DFT)_ because this works for any discrete data points but this would be really slow. Therefore, in our code we use the _Non-uniform fast Fourier transform (NUFFT)_ which tries to leverage the speed-up achieved with _FFT_ also for non-uniform data. If you are interested in the details, here is a link to an implementation which is widely used: \n", + "\n", + "https://math.nyu.edu/~greengar/glee_nufft_sirev.pdf" ] }, { @@ -431,12 +450,10 @@ "metadata": {}, "outputs": [], "source": [ - "rec_im_arr = fista.get_output().as_array()\n", + "# Compare result of FISTA to Inverse and Backward\n", + "rec_fista_arr = fista.get_output().as_array()\n", "\n", - "fig, ax = plt.subplots(1,3)\n", - "ax[0].imshow(np.abs(rec_im_arr[64, :, :]))\n", - "ax[1].imshow(np.abs(rec_im_arr[:, 64, :]))\n", - "ax[2].imshow(np.abs(rec_im_arr[:, :, 64]))" + "plot_rpe_3d([rec_im_bck_arr, rec_im_inv_arr, rec_fista_arr], [64, 64], ['Backward', 'Inverse', 'FISTA'])" ] }, { @@ -444,22 +461,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "\n", - "vis_dat = np.abs(fista.get_output().as_array())\n", - "islicer(vis_dat, direction=0)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "\n", - "\n", - "\n" - ] + "source": [] } ], "metadata": { @@ -470,12 +472,15 @@ }, "language_info": { "codemirror_mode": { - "name": "ipython" + "name": "ipython", + "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", - "nbconvert_exporter": "python" + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" } }, "nbformat": 4, From 0daf2c842886c95e3e31a4581694eddb399186c4 Mon Sep 17 00:00:00 2001 From: gfardell Date: Wed, 7 Jul 2021 19:03:09 +0000 Subject: [PATCH 06/11] mcir comments started --- .../MR/g_non_cartesian_reconstruction.ipynb | 18 +- notebooks/MR/mr_mcir_grpe.ipynb | 8667 ++++++++++++++++- 2 files changed, 8403 insertions(+), 282 deletions(-) diff --git a/notebooks/MR/g_non_cartesian_reconstruction.ipynb b/notebooks/MR/g_non_cartesian_reconstruction.ipynb index 34385d5a..bff67d9f 100644 --- a/notebooks/MR/g_non_cartesian_reconstruction.ipynb +++ b/notebooks/MR/g_non_cartesian_reconstruction.ipynb @@ -64,7 +64,7 @@ { "attachments": { "cart_vs_rad_sampling.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABdoAAAPqCAYAAACE2O2pAAAMaWlDQ1BJQ0MgUHJvZmlsZQAASImVVwdUU8kanluSkJDQAqFICb0J0quUEFoEAelgIySBhBJDQlCxl0UF1y6iWNFVERVXV0DWgojdRbD3xYKKsi7qoigqb0ICuu4r5/3nzJ0v3/zztzuTOwOAZh9XIslDtQDIFxdK4yNCmKlp6UxSJ8AAEVABCuy5PJmEFRcXDaAM9X+XdzcAouivOils/XP8v4oOXyDjAYBMgDiTL+PlQ9wEAL6RJ5EWAkBU8JZTCyUKPBdiXSkMEOI1CpytxLsVOFOJjw7qJMazIW4DQI3K5UqzAdC4B3lmES8b2tH4BLGLmC8SA6A5EuJAnpDLh1gR+8j8/CkKXAGxHdSXQAzjAT6Z39jM/pv9zGH7XG72MFbmNShqoSKZJI87/f8szf+W/Dz5kA8b2KhCaWS8In9Yw1u5U6IUmApxtzgzJlZRa4j7RHxl3QFAKUJ5ZJJSHzXmydiwfoABsQufGxoFsTHE4eK8mGgVn5klCudADFcLOk1UyEmE2ADixQJZWIJKZ6t0SrzKF1qXJWWzVPw5rnTQr8LXA3luEktl/41QwFHZxzSKhYkpEFMgtioSJcdArAGxsyw3IUqlM7pYyI4Z0pHK4xXxW0EcLxBHhCjtY0VZ0vB4lX5pvmwoX2yrUMSJUeGDhcLESGV9sBYedzB+mAvWJhCzkobsCGSp0UO58AWhYcrcsecCcVKCyk6fpDAkXjkXp0jy4lT6uIUgL0LBW0DsIStKUM3Fkwvh4lTax7MkhXGJyjjx4hzumDhlPPgKEA3YIBQwgRy2TDAF5ABRa3d9N/ylHAkHXCAF2UAAnFTM0IyUwRExfCaAYvAHRAIgG54XMjgqAEWQ/zzMKp9OIGtwtGhwRi54CnE+iAJ58Ld8cJZ42FsyeAIZ0T+8c2HjwXjzYFOM/3t+iP3KsCATrWLkQx6ZmkOaxDBiKDGSGE60x43wQNwfj4bPYNjccB/cdyiPr/qEp4R2wiPCdUIH4fZk0Xzpd1GOBR3QfriqFpnf1gK3gTY98RA8AFqHlnEGbgSccA/oh4UHQc+ekGWr4lZUhfmd7b9l8M3bUOmRXcgoWZ8cTLb7fqaGg4bnsBVFrb+tjzLWzOF6s4dHvvfP/qb6fNhHfa+JLcYOYWexk9h57ChWD5jYCawBu4QdU+Dh1fVkcHUNeYsfjCcX2hH9wx9X5VNRSZlLjUuXyyflWKFgWqFi47GnSKZLRdnCQiYLfh0ETI6Y5zyS6ebi5gqA4luj/Pt6yxj8hiCMC1+5giYAfEshmf2V41oCcOQpAPR3XznLN3DbrADgWBtPLi1ScrjiQYD/EppwpxkCU2AJ7GA+bsAL+INgEAbGgFiQCNLAJFhlIVznUjAVzATzQAkoAyvAWrABbAHbwW6wDxwE9eAoOAnOgIugDVwHd+Hq6QQvQQ94B/oRBCEhNISOGCJmiDXiiLghPkggEoZEI/FIGpKBZCNiRI7MRBYgZcgqZAOyDalGfkaOICeR80g7cht5iHQhb5CPKIZSUV3UBLVBR6E+KAuNQhPRiWg2WoAWowvRZWgFWoXuRevQk+hF9Dragb5EezGAqWMMzBxzwnwwNhaLpWNZmBSbjZVi5VgVth9rhO/5KtaBdWMfcCJOx5m4E1zBkXgSzsML8Nn4UnwDvhuvw1vwq/hDvAf/QqARjAmOBD8Ch5BKyCZMJZQQygk7CYcJp+Fe6iS8IxKJDKIt0RvuxTRiDnEGcSlxE7GW2ERsJz4m9pJIJEOSIymAFEvikgpJJaT1pL2kE6QrpE5Sn5q6mpmam1q4WrqaWG2+WrnaHrXjalfUnqn1k7XI1mQ/ciyZT55OXk7eQW4kXyZ3kvsp2hRbSgAlkZJDmUepoOynnKbco7xVV1e3UPdVH6cuUp+rXqF+QP2c+kP1D1QdqgOVTZ1AlVOXUXdRm6i3qW9pNJoNLZiWTiukLaNV007RHtD6NOgazhocDb7GHI1KjTqNKxqvNMma1poszUmaxZrlmoc0L2t2a5G1bLTYWlyt2VqVWke0bmr1atO1XbVjtfO1l2rv0T6v/VyHpGOjE6bD11mos13nlM5jOka3pLPpPPoC+g76aXqnLlHXVpejm6NbprtPt1W3R09Hz0MvWW+aXqXeMb0OBsawYXAYeYzljIOMG4yP+ib6LH2B/hL9/fpX9N8bjDAINhAYlBrUGlw3+GjINAwzzDVcaVhveN8IN3IwGmc01Wiz0Wmj7hG6I/xH8EaUjjg44o4xauxgHG88w3i78SXjXhNTkwgTicl6k1Mm3aYM02DTHNM1psdNu8zoZoFmIrM1ZifMXjD1mCxmHrOC2cLsMTc2jzSXm28zbzXvt7C1SLKYb1Frcd+SYuljmWW5xrLZssfKzGqs1UyrGqs71mRrH2uh9Trrs9bvbWxtUmwW2dTbPLc1sOXYFtvW2N6zo9kF2RXYVdldsyfa+9jn2m+yb3NAHTwdhA6VDpcdUUcvR5HjJsf2kYSRviPFI6tG3nSiOrGcipxqnB46M5yjnec71zu/GmU1Kn3UylFnR31x8XTJc9nhctdVx3WM63zXRtc3bg5uPLdKt2vuNPdw9znuDe6vPRw9BB6bPW550j3Hei7ybPb87OXtJfXa79XlbeWd4b3R+6aPrk+cz1Kfc74E3xDfOb5HfT/4efkV+h30+9PfyT/Xf4//89G2owWjd4x+HGARwA3YFtARyAzMCNwa2BFkHsQNqgp6FGwZzA/eGfyMZc/KYe1lvQpxCZGGHA55z/Zjz2I3hWKhEaGloa1hOmFJYRvCHoRbhGeH14T3RHhGzIhoiiRERkWujLzJMeHwONWcnjHeY2aNaYmiRiVEbYh6FO0QLY1uHIuOHTN29dh7MdYx4pj6WBDLiV0dez/ONq4g7tdxxHFx4yrHPY13jZ8ZfzaBnjA5YU/Cu8SQxOWJd5PskuRJzcmayROSq5Pfp4SmrErpSB2VOiv1YppRmiitIZ2Unpy+M713fNj4teM7J3hOKJlwY6LtxGkTz08ympQ36dhkzcncyYcyCBkpGXsyPnFjuVXc3kxO5sbMHh6bt473kh/MX8PvEgQIVgmeZQVkrcp6nh2QvTq7SxgkLBd2i9iiDaLXOZE5W3Le58bm7sodyEvJq81Xy8/IPyLWEeeKW6aYTpk2pV3iKCmRdBT4Fawt6JFGSXfKENlEWUOhLjzUX5LbyX+QPywKLKos6puaPPXQNO1p4mmXpjtMXzL9WXF48U8z8Bm8Gc0zzWfOm/lwFmvWttnI7MzZzXMs5yyc0zk3Yu7ueZR5ufN+m+8yf9X8vxakLGhcaLJw7sLHP0T8UFOiUSItubnIf9GWxfhi0eLWJe5L1i/5UsovvVDmUlZe9mkpb+mFH11/rPhxYFnWstblXss3ryCuEK+4sTJo5e5V2quKVz1ePXZ13RrmmtI1f62dvPZ8uUf5lnWUdfJ1HRXRFQ3rrdavWP9pg3DD9cqQytqNxhuXbHy/ib/pyubgzfu3mGwp2/Jxq2jrrW0R2+qqbKrKtxO3F21/uiN5x9mffH6q3mm0s2zn513iXR2743e3VHtXV+8x3rO8Bq2R13TtnbC3bV/ovob9Tvu31TJqyw6AA/IDL37O+PnGwaiDzYd8Du3/xfqXjYfph0vrkLrpdT31wvqOhrSG9iNjjjQ3+jce/tX5111HzY9WHtM7tvw45fjC4wMnik/0Nkmauk9mn3zcPLn57qnUU9daxrW0no46fe5M+JlTZ1lnT5wLOHf0vN/5Ixd8LtRf9LpYd8nz0uHfPH873OrVWnfZ+3JDm29bY/vo9uNXgq6cvBp69cw1zrWL12Out99IunHr5oSbHbf4t57fzrv9+k7Rnf67c+8R7pXe17pf/sD4QdXv9r/Xdnh1HHsY+vDSo4RHdx/zHr98InvyqXPhU9rT8mdmz6qfuz0/2hXe1fZi/IvOl5KX/d0lf2j/sfGV3atf/gz+81JPak/na+nrgTdL3xq+3fWXx1/NvXG9D97lv+t/X9pn2Lf7g8+Hsx9TPj7rn/qJ9Knis/3nxi9RX+4N5A8MSLhS7uBRAIMNzcoC4M0uAGhp8OwA722U8cq74KAgyvvrIAL/CSvvi4PiBcCuYACS5gIQDc8om2GzhpgKe8URPjEYoO7uw00lsix3N6UtKrwJEfoGBt6aAEBqBOCzdGCgf9PAwOcdMNjbADQVKO+gCiHCO8NWBwW6PNpwLvhOlPfTb3L8vgeKCDzA9/2/AIvgjjMSFZk4AAAAimVYSWZNTQAqAAAACAAEARoABQAAAAEAAAA+ARsABQAAAAEAAABGASgAAwAAAAEAAgAAh2kABAAAAAEAAABOAAAAAAAAAJAAAAABAAAAkAAAAAEAA5KGAAcAAAASAAAAeKACAAQAAAABAAAF2qADAAQAAAABAAAD6gAAAABBU0NJSQAAAFNjcmVlbnNob3T+77n2AAAACXBIWXMAABYlAAAWJQFJUiTwAAAB2GlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMDAyPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjE0OTg8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K9mnhxgAAABxpRE9UAAAAAgAAAAAAAAH1AAAAKAAAAfUAAAH1AApA81+4YPUAAEAASURBVHgB7N1br2VbVfbxtT2fTxshihhD4gXIVvRKP4GJiWI04SAiKIlRLkAg8QCJXPgpvPJjiHwLg9HEqBuVBEHxfBZ93/qNXf+i0RlzrjlXrSp26WhJn7331lt72tNa72PMOcdateq5//dAbq6QK82vQD5MjwocFTgqcFTgqMBRgaMCRwWOChwVOCpwVOCowFGBowJHBY4KHBU4KnBU4KjAs1eB5+76oP2555579rI9GB8VOCpwVOCowFGBowJHBY4KHBU4KnBU4KjAUYGjAkcFjgocFTgqcFTgqMBRgXuuwGM9aD9+u/2ed+OAOypwVOCowFGBowJHBY4KHBU4KnBU4KjAUYGjAkcFjgocFTgqcFTgqMBRgWeuAseD9mduyw7CRwWOChwVOCpwVOCowFGBowJHBY4KHBU4KnBU4KjAUYGjAkcFjgocFTgq8HKqwPGg/eW0GweXowJHBY4KHBU4KnBU4KjAUYGjAkcFjgocFTgqcFTgqMBRgaMCRwWOChwVeOYqcDxof+a27CB8VOCowFGBowJHBY4KHBU4KnBU4KjAUYGjAkcFjgocFTgqcFTgqMBRgaMCL6cKHA/aX067cXA5KnBU4KjAUYGjAkcFjgocFTgqcFTgqMBRgaMCRwWOChwVOCpwVOCowFGBZ64CVz9of+YyPAgfFTgqcFTgqMBRgWe4Avf5H48/99xzz3AlDupHBY4KHBU4KnBU4NmrwH29jx/v4c/e3h+MjwocFTgqcFTg2a3AXd+/r37Q/rnPfW6rkjf6uwZ9dst8MD8qcFTgqMBRgaMCT68CX/ZlX3Zzn1+svW//z//8z9NL4Ih0VOBlXoFLr6/H+cx7aYxrS/U4nK6NddgfFTgqcH0FXPu1672/2MP793Hdf3FdDs1RgaMCz04F3BOP+9izs1//l5k+zvfwqx+0//7v//72Jd3F0Zf1Z/1C6QtQ/TxMcrskvz5E7WGEN3HO4YaV3zV9Meqnb9zqs6mfto0drilssw+n9alf17I51a/2YWV/aVz2+cI8hZsN+1N2q0226evpL5G46PPV78WHl/20pW9ufKmEtca+1P8udjPWXfyfpE/nWi3vUk/c5Fddze+KteLAukZm3PjU7+GUb/2ezfQ/Z6eOe/HDPOebzZeqr+6T/5eKy15c/L7u677u5lWvetXN888/f+dzOrFh/sM//MPNiy++ePPf//3fX7B30+6ScR88upb4zHOzYlRv+mo+dav9qXk+82FDOj7Gnbv6iZWO3W0ycfdsw6oPMw7p+d6GdQo/jFP+rdeHs16b6ff6fIvRfM92T5c9//aFrjE9oZu2dK0ZJ6vdtMm/Ph820y59vXp8+Zd/+U3nlj6fc37568tn8qNLzwbWV37lVz7iwlZMLTkXr7zO2YTDVuxk5dH61IefT3HoNfN02ehX/Z5NOYqXff2K1Xzlk/62fsa/C8b0L9aK07w+u3r6ck1Xn4++cWv1szZ7fLLTT9upn+NTNrdhx3HlmX7GmOOuJXZiZN98xqUjcZy2E3NvnO/eWroZi86+aEkY9enXfsW5zf6Uf9e8e87Xfu3X3nznd37n9n5+Ld7Ex+0//uM/bv78z//85t///d+3Jb/8FqZ14znPnw6X8lOb7Ng01mejb8xm9aEj2egnzkurn99z8/AnF/r2a+4Z/Z6I09mzDnO2PZ9VB2O+H8SbXdgzL/ps9H1+oifZvjR76VUu85cT4U7hs/qtc/bxKf7EqG4rn2kzMVZ9czFqcQh7xjVuri8HfXqYYRiv+hnHmiZWdnNMB4vPxErfWvHDYGt/86GvwZ+S79Q1Lo747Ej24c1+8sw3n9m3BivccMJg7/xYLz6b9sX6KQl37dkXrzWYpPjG1sy7v2QzfbMPh19iDedaNmvP3tn9r//6r1y3vnxNihOH5vOcsAvbeBVrpL0Pi271C7+1cjAn7Fcd3P/8z//cuLY+cduz4r+E9MWvfEi+4nSfihcMNUvSl1Pxv+IrvmLjyc4av2zoYMSnemcTBv2U+KXL3jyfaVOd6Iot7qxVWPXhNNfzraU3Vxt5kmIZZ1tPl0wdf/HmOW9db8338Fe+8pV3/h5+9YP29773vdsFgZRCzSKXxMu5n5sdzzZ1PVCKLD/tNuHbhsPbk3mojdvMaXuKy7Q5N44v7Cnh6uN3W37sOoRhTXw5h0UPb88nX30+xU6XPttZK7oZV4ziwikuDMKXmOM/Za17WNMOXnZ8s4ljueovEf6T4+QOA27cJ16cigdjjrOdeFPHnuzxDydu+d1XD1dOONQm9jnOe2vTt/Gldtnr+Wiztp2XaXfbOIw4sIejrnTV/jYc63tYl/hlI2Y5XIKFGx9tT2B0HrM9ZaeObIrPr/zptVWsk7211XZvHv7e2jU6XDV1iEv9NThsHzenNR5OHtZ993d/982P/diP3fzIj/zIZnJXfuHj+fGPf/zmt3/7t2/+5V/+5dE5uBYXzld91VdtH3CcAfP2Xr8nbHwgEst50bPNf8+HDb8p89rtw1E4rfGb+zr9iz3jsidrrHCnf+MZY/pXi+JkD0sjbPKhK26cWzfXyOSbfRymH1vr7Kc//Z5kk8+ezTldsbOZnws9DLIe32LhXT1ay1+vdmzJalfOeo3AyG5TjBc2auF68oHZua2W+vllJKzh/miIj/PmC2H80sm5swjzm77pm7Y45SBGD9/jqV+FPWwCZ8/GWrmLGRd63DT10Kx5MEcHO7/G1Y0vW+tiVh/6JN5hN29dL0cYsGCUQz5sjMMvXz57wnZvrdh66+FcghGXMMLXqycpbnXKZsVXV3tfnq3zy3eOW6+vRvDxMd+TOFc3Nnzop5hPjPzWXKcPHPul4Zqkn7rW6tdrh+08RzOuNZjlYNw1E97as9HyXdebl3f1wKFrIf7XYOFNihsuDHJuHpev/uqv3u4tX//1X3/zmte85uZNb3rT9n4exgZ05Qvsv/7rv775nd/5nZu/+qu/2ry9j8uX4N09QRzzuFp373ONEudWjRL28tX48LVXeo24lxQrP302/MKYeYbFNl5++BAXPvh0r2K3J/Cnf3O68t7jt4clN3tjnyaOMb64dS3Vw7aubt7bzMWmy48vnSaff/7nf97G8DR2yawb3cTIhs51Nv2yLca//du/bXzU8ZSIvYcTljW16P0Rtj3RqildOYtl3t6qUeu4muvZa83ZF8cYjr3reoVhLi7/YuBFzLVyhQtPTxc/2F/zNV/ziFO44sDPn11x0m2BHr7wg915yL5YYdWrI2mdfT6NrZdH2HS484PB1vhf//Vft3H7Um3mtct3Ff6wazCN5Rqf5vm2V+bsxfqnf/qnbS/wJeUABz+NrFjsYdiDuPNh17VgXI5+AShhN33iVX34VAdjscLWrxJnen5a+dBVK2NiTSw9jrjgzI7oy6vY7gd/93d/9+iszxzZOM9s9Pzp9qQ6slE/Z1sseHzsu/sKnGqPq5yaw+Dn/sZXTdjzY2MOCx/NHD6/cPfyLvfqUNxZq/JuH9Su65Od+M70Zz/72Y1DdrBxiovcqxM9P/7Fyt77iDz5iSOesXpkzxcGmWvm6iOW99HORr56+fge/qM/+qM3P/zDP8zlEdY2ueDl6gft3/7t375tls257UK/IP7/OhOb3CFck1MvG2+j2/TV5n/LXI6kPMvZxdvF4xATOgd9+qiVi+NpShyfZsxzsaqJOlXHc/bH2tOvwDyz9xX95XYO7yuvA+f6Cnz/93//za/+6q/evP3tb9+cH/c+4Gz97u/+7s3P/uzP3vzt3/7t9YSGh/uTDzbdp9zXjd3P5xmeY/beA7unsdfW90x5dv+3BoPQFw+O9wk66z4QhdWHMv2MD6PPLfO9aI2VT+9N/FYRVx5848APX601Oq14xlOyp5NTArPPDGz4a6uIU6ywsk8vJrxV6MSMP7/GYu35TIzpT2/uS7+4xh4yVNvp97TH8vKQ/Zu/+Zu3vnPizPjMVq7tE+4aqXbq1Bcl+Zlrvrz44tBnFtj+FYovAET+fdloX8RjN0U8eLCJdXbrebGWrZhxESd+bMSy7gsEPWw2WvsDvz0vbtxmXOO46xuzneL6JrDwr7En4dAb44Jjtd6MLngRN+7Mq8PkvAfTut7ew8CBqA+cKfKwvsePrr0Piy9sftVb33hiG/PTxMCluqx21bv1OIllTY+Pnk31hmNMB38vD1i+XMvdGAbBuTzMZww4Wt93jMXJh725mNUYtmYOa9qGPfnRsWentQbXuJhxVsfW8Hbm7Y9x+Hg9LXG/cT1827d9280LL7xw85GPfOTmjW9846M8ruUhB/KJT3zi5ud//udv/viP/3jL18Md+2dd/j0o2cN3T/JgQe3cp9WHnKoPvM4OOz73IeL5YWQPgeyRe6h2qcgFP/svn3N5n8L8xm/8xu0hTWcUDjHHzfkmnS082Thb3tuKWe2rFRu82MycYE4RR5MH0afLDjYe7VGxmru//+M//uNFe+M8Fqtc9XRieGDl3MqXvj2RN5GTsd41qceXbz7dz+PMns5cHO0bvuEbtvryhWNdTZ0vmOpqXo56vPTdC+rFhaf2YeFOz8e4fXPea+VU/fmKvSew7V17Iwe2eNf43yadj5kHTGc5nnBw18T4+7//+y1vNmqI/6XXoThihqc3bx9mz1bd5UMvlj34zGc+c7IuM1/+ciCNYbjGcJcnPQ7m6crxU5/61CM48dWbrTGbuLVP7eMjp4eDYtdTiy1v/OQXz9X31Nx1M68dWOUFC0c/kPjkJz+5cW1P+ciBjevU/eAa4S+Oph5ytyddl+ancmL/rd/6rZuvWjgzOPAxV1Oc9Qne1hMYmvzE4ScfdvzUsnsgv/LOh70c3Ff4ueY071l/+Zd/uYVhA3sKH2enPbPGrzMw7V373mNJ9y884qbnG3/xwjFWW9xcZ2przdnqnMD6gR/4gZsPfvCDNz/zMz+zxZnxN8UtL1c/aH/1q1+9EUFIa1NsBNKKPzfulvj3tix2HBQhXjOAgrGxxqZi0bU27cPZw5p2xjAcCgfEOGxruJG5ccbxsMZe3U5xYUNgTeyXtJ9/hQF37kHc8s+aTfbpsolH89Zha3M9nKlTC3OHtto67HS1mT/76iQ/thqdJoa5Pn+c9mKrLYHpgq8ecI2n0MHr5mGOs1jGYsc/LjDCnFh74/xhFava4I4rGzrrU6qJWNaKGxbb8I1xJvLBmT0xjjvfapYu/M34Hl7EK+bkDLqYOJYTfbnKId/yYbdKeevbq9Vmztl1bvSkWhRn2p8aFzeOengwuqbby+p8CoueP3uCD6z8L92XzhEM/nEy35Pyhl/sajj9rcMm9PzoyORNxx8WO5Ivn0Ttqh/csFq/rX9c/4nveo9r9wtzvHCevKffqbF64McvjFO2l+p90PihH/qhm1/5lV+5ectb3rK5XctrjYXjxz72sZt3vetd25cz+6Yl5X5bHLXyAQXH6qh3BqpttaBTE429vpp3jvCakj0MeNWWDTzzzlh+sLT20Tp/Onh75y2c1uKfXk93StQOtjhsNfH11tLHOZuJx14jsLLhr050p/zhz/crtWIrZ2txoKte9EQc0lyvsePvvbP82E67zXF5ydcH+uL6YgGvWHEo5/QTKhy2BBct29b1dJoawWS3Cjv5y8fDHV/wOlN6jV88rRs3hwffXqh1a+n64lvOYvlnpj7040QvhrOPi1hstFVgsyfWy6fc6Y2rAVs8zHHDUYPD37o98FmdPr984lDcGVMsIl77hU911scLrvG8H/BlA1NPwiouHmLrw9oMH76EK651c43/tC/nqZs4xvHNBle41QUH40Qc3PSEHxuN0Nt7tV3rxq+85nhzfPgCDwffGcStVvRxZGqMZzmLi4O9pe/80lnLLgy47NqDMB/S2HjOewjb8MWAma9crBNr+BP8xSVs2BeXDkZizCbsamdeDnFfbcNkp8kdFrtwjPGxL12vOLOjzz4+sw9f/LhYb05HxCXwSPnO9R6OeNjxute97uZDH/rQ9oUdv7tINfnEgwft7373u2/+9E//dOPhIatzGK464oVLZ6F47oHOG9vqY40dXb5iybHvs+VXrPD0bNW3c6G+s3bVVAxSjdyL4fPn433DAyS89oQdDLbG6gsbb5i4dw/kz8Y6H+v8iDm9dfdoHOJWDeVC3/me1xgc9ca18wU3fnzj5MGWh0pE7T0U4l8N4oLP2vjAgYtHOfDBR0/Xg3b3eTUoB/58NZz4TD++8Wjdg2nvf7Dh2AsN53IqBp1WrdSLsIcrltidqR6Us+lBu5yta/ycAXHUVY3jAQ8vEhc9Ecc+4kHn7MOlVzdj/vEIm51Y1vPljzN9Um3Kx5zPzA3mmndc+GXf3sHAh421apeOT7p+Icb5ocdbrK55PKbgrvHXrItXbDUxJ+VvDQ+Y8LOxH/4FTbUqDluNvxzg2R/86eKpn3ttTSxnQT787I3fZv/0pz8d/MaZrxY3HLre+ODq7BcTH7jEOj+9Nvmyh4NLtcOjmuQvnnUcqn32dF0rcOC7/vywAL519VB/Yza4amKzj9tGeLzgLQ4b++A+Vw35lHefs9lWG7EJDNeE9x49G/ZdX/ngTEfwVYPOAN5iyxMX+0zKSR7tBz0O/KuVMb/OoTl+cOy3WlmPixoR84lhTvg69+Jkqx5+eUae1nFVK9zN5RJHPrDEpIPDjg9u1YJPNWCDv194e9/73nfn7+FXP2j3G+2SlQTiilbSkjBuvlXnDi8VQxHDUgjSZu/BtrHW4qGHQ+DucUyvJ8VsTncurnViA3HIb+JMPuxIum0y5mGUP7x02c6+PSjeistfzBrffIzZzxrFz9rqkx/MGrti6Ak/uA5qdmI0zq75jMnP+WJf3uWkz0ec9HNcLjD5Z1PPdgo7NybrfDW6xuLBoTOmVwf9JcIPdhKOebHgr5Jf11r8Jxaf8HBLJvdT9WLbmr78w19rF/ZtPSycSDWiI2EXr/m0t6bluznuvEyfneVHqvD0U8SuTf25MQx1cV7as2od37h3rZzDa+/Y4GIOO6k+zYtFXz7GM3b6+nzX3vrEwZfQazBbT2ednfmsP7vmbMy1VcKxBn/Fmet8q0/2dGzCnuvxZ3Ob5Mdur3blfhtO6/DW8xDHbK7pxfcG7zfg3v/+99/5DX6NqXa/93u/d/POd75z+wK4l+dtvK3L1wc4HwQ7r3ofXLQw2Gnm+TVuno2e4KRNYYt7saZNZ0b9G1vv+qMLLxt4dHFpPS58rJH4G9Mn+WZnrRzowoAdrn5ihJkuP3p+7v3y2PNny6bGh50ctfz1xZ2c4s0vrGKFwc8afe/J7Fdh473eB1gfUuPUOHvxtXD51bLRT10++lNr28JDv8bs4ZDq0gf46qF3puTLlo85/s35G1eD9oQNXT0//s6/PxXhA3+cq2eY9FpxxCDpG8dbn+THt88GdMTcPohD8DO3D3Ftj9gS6+GIo+W/GTx4ab7Hh015yV2u+LBVE82YlF986VozXsVaPnMtPunCK6f0sw8HpoanXl0IzPZSP3XWNPhaNV7tN6eHWPnAr/at4yK+2lSvalUu03byXdfZWZ/5TZv06co7fPn0kIiOHe44W5PjxLdG6DQy80vf2mawvFQ3+Pg4N+n0xYhH+HEDZyxGfWM+5dS5Z18+YdOtElZx2Grm6aoHX2PSuh4P+fgC7z3cb9u94Q1vuPm1X/u17Tfbz8XfwE68wCb+Pvt73vOe7UG7WH4TzwMcZ3LyUVfvz/zoZ0un7z08fDGMO4/VgN4DEg+Y04nR9b2Xl/Ue1hjj67cocc6Pzpo9c2+aZ1FMwkYTwz4aq2/3Gzb2uv2GDVOb93wx5KsRNSnurI+1YqqFh1B6+Hq2nUn+Gm7lyN88fGN41unM4cSjs2m9usNI6PkU02cv7y/Ol9geljkDascGNhz1MVbX9OZ79/z4WSd6DYYaGpeTMYzqYR0X672/iEf0bK2LQeQDg1hXkynsikdvTAcHfvZ0+MGOk1pYF8O6Fm99WOGzzX6tM5v21pjAYxc+XzZ46bOjF69zys9+tydqZ7/kNIU/G43Y18mvnPR7IiYeJC7G8OwTDnxbw1trzhaGfcFRfGP+rgN963xgqb/rnL68i2mNbt1ntoTenvkhHl08xKnOdO19uYVpboxH30nyo+cnj/ZG/vJwfcAVJyx82NsX9znc2HW+shMrfnwIW35yEAOX7j10OPTDOfZi8xGvh73lUm3Y4epaZ8MHB/vlwTDftTYw2hM+uMPjgx9/62IT/t1zjNlZK8fyzE5ecMVhF1f2XRP2s5qLp7GDkRiHYZ09PPrqQc8mgREWnXn3QuPwrMUNnv3Q04nDNq5i4a6erZmzUS/jHrS/+c1vBr2tbYMLX65+0O6n0IIjbHOQmYlfGPekmWJITBNDq1CcHIJTkl89bvznRp3yPaXvgnWg4RF8SHNjOvNVl10+5gQuUTtrrZvjT3CHZ+6wZ7Mtjhd2/LRzYr+KKx8CE34Y5mzCE9c6HtWAzczTOuzs4gAjn2Ktfnw0mBoplvG5vK3HhU8XWTjWizd19Am9hgN/9ubiGs89UBd28qpe4eiLUcy5NsetF7vaTZvG1bD5qR6vaoWbul/Ch015weYnJrx5fdPdVYrBv5qewmJbfabNJblM+znmKx8iDy28aXfJGE61qT6dkekvxt4ZmTbrWN6w2489jnCdU32yZ9faqV4MzX4TucDUTtW/3K/Na49DnMUqX7hiWIvDjFnc1vXdn/Ce95pizjjpTvVsi18tTtmu+njq89XfVfjKzT9Z+8AHPnDztre9bYOqLnfFleNHP/rRm3e84x3b38iDU40uxcRBnn25ag/0jfFn4wPOlPgX09y488h27rO13r/hsZvrqz97Om19P+DrnLOB0f1+8msczql5+tnjl5/44uk7D2Jr18jMofzF0ODKQ4ypE5ftWgN6jcRJv85xjHt8XVs+e7Evx83x4QsePqT6gN11KH73l3zKQR//OIDKbmKfG7OHRar1xGhsjbCt0eXv3Ga7GS4vrclTTuXIzJp6+cDeHr/2ta/dvhyJ0TUxIelhzf1TB/7sCRtcXUPtG53GtvqZ48APXteLcbWly96Xvb4IsWnPYBS3cfOuFXzishk/eMkWD1/q2BC54K7Phr71xnM9u3ISiw5PYtycTbowynNbOPEifvbFC0ffOc9d3eBWW3vvrFdbdsWNd756flr2YsYhO3unVvrJyXqYamG9+smhPQ3TmvGKUZziwgpXPj08ZZdv+er5hW3Oxl4TOHjAoccr283goU3jen7qyLa81HFeW2ziIYbGRgw+RC7FE58PG99T4cOrTtZuk7DY8ctnnsV0K1a52Mse5vSnY+7rQftf/MVfbL9d5zfa8fC3bj287nu5GqiN92cc8FZDtfDQrO/Q2bBTT3Za+ycXTS01tfAwDIa52PLsQY51DUY1FMOf0fJbh2H7zVU5hEGPA6HDs7XqC49dZyMfscWw3j0Nh5mTB4AexsiLf5zVSS5y6qGVOvEvjvjy5M9eDLHKL05qytfcWiKmeHxhVnvrbPEXT85h02l81nNmzvZbvuVbtv+YL16wXcNaPNRFbCJP+NUVBh+Ch1gEFzZ6oo79xmh5sTWOM07sxBKbv7MoJltzsdRCI+Zsa+zwdV6N5W+sXsULV1xjHPhocPFgbz/h8lvrxwe292p9Pvzwlwdd/HBV0/YtPDUrtnF588MtwaF/RddZYK++1Sh82NnocaWD136Y42jf1YfEqZjtIc74WNdgylue7Tl+7h1qJh4bOn7loofJ128Oiy9f+8AHHj5d4/iKLYYaw3QW6Kxp3Zvh4CaG81kuOKgvfGPCppzo4evhwTHGQ8PRvDrLsevLfviF4WzUER/rMI3Vww8VYcORA27FwieuxgRP+RK9+44Y8iAzb7ziLp66qqMc1dU6fPnyl5OH7eVsDUfrhN9sdGzx1ofFfvK2p7DZVS84bLKTV1g42ud+qCIOqUbF+pu/+ZtHP5SttvJvT/nbg84+jM4ILJzExZc/ga1Z70zgqNbtpZr4Ia5YhJ01teOntmzkK4Y623+49HJvjS9+bJ76g3ZFRhahJyGS0yTu4tHMbZC+g3Uqdr78bUIYp+xXPf82sosXlny7OGyEsSZG9rD4EDjszNngb8wnbvlvDide+LKHBXNP2Gjwir9nBwMWaf9w1075d2FY51OuYmmEDnY4m/LBi/XipFv76l1+5eJCMW7fV791Xu5xWtfnvBzo2IuzJ2rFFhc8m+/Far9b28Pb0+UnzirW7Ge1WNfnnH+14qPuakrM5QivOOVsjrM1+fEzp+fPzly7RsLjr8HTwts7p3y6Tub6yvtaLtfwPmeLf2eAXTnSuS/hRZeYy+Mavvy7lsKZ/V0wp39jnDVnC8dya3+skbl/c8147lG47TOe+bY2e/hsnbe4zPXG1bO8YaqP2Mbdn8zX6wR+/ntci6GPN8y4z/VLxmJVNxjaXYWvDzXe4J/Ug3YfJNsj/aXCVr18gPEhB097olVvfbrbcKub2lX/9jffsNvjfKpxc7zKqbMdF2vEnF9YxWiNHRsc2Bk7Z3D5EDaa9eJtC8vLes7lcY2IJ0b588WnHOKIQ2tscYsvG/aEHqf8YZfDZvDgJds5h+VzH+E//djj6R7oy4prupoYW+fDpnG1iz89ncaufOKw12dvDQ4fOrGaq0Ux2FmbfsW1v5cIbnLSVzd44vRhHo4H7X0ZEVNLxMQ1XnHoXgiLsOHny1A6cdWZLxEbD/NwzashHYHNRrNHvrxk4wuOebabw4OX5nhkW31b0+NWPn1BEk9N3RvkMPmy50cPb2Kxj2e4nTW82PIpb2vi8Jnj4pXL2vOHjwPuU3Cv9jBh0WnqUKw57/5AB5fwrS78zMtb3PJmy25+YaSbUt7i4D45W6sG8WYzJf9q3ho9zn2hbB0OztYIO0JH2Nkr+uzkLS6d1ph9tTBOxHBPYYc/n2pdfvp04hgTsfh0XuAXP+7OdN9VrdeKv9eXPy7sxYsLe1zZ0FvfE+veG13/OPrO7E/H/MZv/Ma9/OkYD6nf+973br/RLr4H7a5huaoRXnj2gEGN6OxxDzPkZ13Dsbxwrwb1MDV18JkBRnVxZt2fiosPPwJT7Oeff36rhf2x5k9R+Pu8MNjQx9F567M0zns1xgMO7uJ3dtpvuNbCVX92YvGl50PUxEO4mRN/HNirE0748cOnWuCgmceZj5ZYj1921tjQwxUPd42eDl+x59nrTNpnP7xRV3b86fjjQXAlfAgc9312xvqubRzjbE2TJ1z4Hkx6EEhnrbzFgknYiQmTnV5tSfWUL1/SeSkOnfXyVoMeJPNnT/DW6OTGRytfnDwwI2LhgXNSfWFrMPioXfHZ8xODyFF8vtVGz75zEcf8iglf/Vwj7Mu/GM4d/PYNnrM7xZrYsNTLuvdZvbh01opZX62aw+Cj4WKObxzo5n7gYF1tYMjBtYRjZxmGeWvmOOHMx35aj4seph4G3mpi7jqMK30cjeMCFz4fsdjDoTPHo9rEBbYfpHV9uS937bBxDtTAeVUb9s6Qph5sNGNNzDnHLR3ORN4+D8rd2WSPI+xqU530k7PzUB2M+csLnlrER71gETWt8Y2POvE3Z8umteLCpYOtV095Ev6aNU0+zkA+YckbXvz8uaN+uKHuGtz2VL72QM3LwZhN+cK2psEleIVhXVNr9VEXMb1HyZMt7vZUPOP2dsaw//mKxY49wUmMZ+pBu2JJwoYQyVUsfZtEb6zo9ObEuAOwKU68hDOxT5huavYa4UPiYCzmjDt5W8/XOP8w4yDv7LJhT+iz0+drTVy6yYd+lem/rsETn80U+nDLUV9+xh1qfl0QYYQXX/0qdPY7W+vZG8cbv1XYxa81urhOTGP6SwUOmRirbzyzmXO69PlVt1Vvna91km92a46b0cMXNmte8WDS2opPv8cnO3082KY3nrwa109uc1wOXdvWip9d8+KKqa05TA7xgsEv2zCfRF8uYpOVT7ydWbbZs5v550s/MejLa82J3psATLJeO9XOWnHp1rjWz0nxJ690+c1YU8eOWF/FmrbnO23jjnc+4U67vTFsvNlXp3TTfuLtcV1t2d/Ge/rMcVzKa+IU+9I9giU/HxD8Rvt9/432fqO9v/0487hkLB95+oDiQ07vEfN6gMNm7o+8nG29BqfzzVejT9Rg3WdzfmHMeuc3e7Z8smstffPZh82mWPynTzYzPxj56KsH23jPOOsYVnjs1UZPzmGtvLp/pIdRfFzE0E+uKxfzbOq9/8Mxx8fnMx9cNXp86fowD6MzX0y6JH7N4WqwLhG2CaxiTNx5prKpxvnCyTfdXs9fk2Pnlh1/NfcFxLVg/l3f9V3bh3/r1qpP9dvjYA1fGESslRsbjcQZl+pcLF8s2cHQh8Nvcje3r74I9fnuVI70fIvPl9AXxxcxwkYefdHclA9f4l3dypeP/KfAZZcYz7l1eO3J3O/VLox6fuyLCWvmxx8n5zn8bOiI3vmn19jDNeaTTk/Esl7s6gPH3plbS7Jtrg/DGC6edOVbLOv86WsT23rCpy/DdObhVB+1kROhs2/zLE1ebIpprC5T+Gn4FIt9dTaOK536aOGolfj5V3d+8PjUrInFn47NKZGDFg7f6pAuvuknFptq48u//fSQ8vWvf/3Nhz/84e0L+57fxDg1jrf/cM9vx7/44oubqQdCHshUHzURt/rIwbXtnqAOCTsNrn7WiA2dOvdgzrpYPZSGK0cPruRcXvDiqm+Nv7mHFx6IwCd0xlp+sNrzzejhCyxxSZ8/cOTrOpSnPQ5b30MqefDvmoOhJvJx9uGy7zpUP3zg4cvOWB5sxNfjSh/f+MGH4TPSKnA1PvD41Ni2jo8WpljsPQjysEt8Qtd9nA292PmpAb7lpFZy7t7FXw7mYquTuNUqjrDjVM507PMRu9w2cg9eJib76gi3urEVj+BpbF0j+E/fGRO+NbZykDcdLsbh6NNXu/KAJy4cPmHENR0ubO1rn3/p4ia+dXN7Yqxm9cZx7bzyx6ua90M6MdsndeIHB/dw9Hirj3FYzqsWL/hqijM72OoRnnW5asbxnbzaH7y1YrENl77PH2FXu3qcZgw1wxU+n4mLK9vEmP88N9XAdYFHZxCu+w1svOj94OMVr3jFVi984Pgu5N4Gp/OgF4cOJ7Z0ehziYc6uXOmN7cmeWC8n9Rdf3nHuXsRXPLbWwgu7uDDkxxY20fOpFnzSGRP+YrWP/I3ptfJmKz8Nns+5zicxh1dd5AIDH7WnT4dnecvXXmWDWw3vHnTj18Nu8fBiR/TVonMpRlymjXX21vpBBi7lZExvPVxrnRkP2n0Pf+tb37rFtnaNXP2nYxRZ8giRkja+LXgJKAZRJIXjp1mXcAVoTeGNm+/FTBcH88ZbsDMvxWUSF2P8zONL9zgCT6wOnDwTccqPXWvqzL78sr+mr6bh840LXK366q01d3HzN8dj1mdyiJ/1hG5iTX1xw9NPDHteDaYeRtz0pPVtsrxMPqvtura43uu0PYhrOdyFA4xqwz8MffjpSiK9OV/zOGTzOH35dV+4DSt7PJyr9pJfXOUQV+Npkx3bNddin9K3vtfDK2brxZ547OY15Lxa38u/Ou/5t1asiTvjTl+20w6GGj6uiFFOxQ5TvD1Zea02+d1mt/qtczj2hdxHriv+487neQ5r5lw9py67tZerPfXB2YP2x/lPWPaw/Y32n/u5n7vxz/vwaY9W23NzPj68+KDlPcK5mW31bf/6sGidrveUfOOinzVr79UlG+udV3pSPvquY2vmq6QLr/X05sZaWMbsi7fyzl4ft3R88itWecYhH3bznE+8iVFdrNPDgUFPR/awij/77NOtcx+YiwG/LzHrB2E2fLXyg4lX+lMxpj2b6rJyyb++/TFXt+lXPbLVW6+ZT/w5bm3ayk9LrInhgZrrARd/LqEHA9a8L2j8rM/PN+GI25oxXH1+2dGz01rvOqJj329jWddcd2Likn/4cPEKo3FfgqzPWPBhJvmZ89VgF09MQlfjb2zNAzBjuKTahJOPfsZtTB9n41kb8ynN69mKR2A44zMfnMw1IqYxO77Gzv+8NtjFJ5/Ji5+5szIfYtLhMrmpT/WDqfFPly1edOZxNaYrXrY4EXp49MYejtjzWddilXfYcJ0pX0SttWdrjJciff46NodRLvzC1qv35JQ9fXtBx09bRfzwwiqWPaKznmTfXL5aeWRrrsGCcUqqF272Vu++8MILL2wP2r2fh3kK45Q+Tn4b3Jd+fzoGvj2zD+Xmfdm9x/kSi95DBL/pR+wd/TyzeNuXcOTJDoaHtHrr/UZ7seToge98Xy8/PRyYcSyHeOjbn1m76ozjFPlagy22Jl++Ysw4bMSzLof2o2sCbg+aOtdw5KJ+enPx/Iemcq8+1uDBEkMsXNdnI2GJxY69HPRw2RfbunH55WPeXtER+6GFVfx+mBI/euLBlXOoF6c9US8x7acY9AS/ieH9JCx9XPnxLze1bj/wDgtPfmHwMWbTnpmLCYu9sXPLFp+4m/PrvIjReTS2xobYR3h05Zi/9ThZF0MjsPPLpt56HKu/eWdFDelhxp8vG/hhh6efwsaf1cAdV+8v9hVWPuzhh6nm6lOd6dlPH3HZsSGdKefY9QFbjTTCrv3ECWZ1ZFONG1sXQ/49aIcTR2u1sKu3M+BawMO+48KPnWYclr5rjQ97Nno1EyORv/p1ztm5X/nTS93TnG3Xd5xn7HLSy11ceYsRJ3M+dPBJa/QkTPlquOrpYWbHVpzm7XF1gxtGMcT3g0C21khcuudVn+bw+cld3rDae2vmMOAVBy7e3UvZwdWrM7H3HrLPnKY/WwIXFrvOm/0oZucRXmeYH//2IJzuheb89+KlkzNMGNXWGcenfaTvTOute9/2f6Xd9U+43ulBu0OL6ExMARC8TSRcsed4+lWU7BRPIxJXlOYVZ88HnzAm/t6Yf5jlsmLu+V2jm3jzAE+ebMoPD/leUtfbeMCFpy9PPsaaGJp6ZmvdxVA9sjPXCNtadtvCw5eJNfXG8KwTsc0JDi7gLmI62PTsik1P+KnZKuUz9dVd3M7Oijft73OMZ61a4XAXwT8s/uWqZsS5mZItv2qIw33mDvs2PDZ73HHSSHvZnG7FXTHYTGHf/k79uXE1qj7ZrrHT45DwJWxX+3WeT/7revrwsl/7S+1Wv3PzMCen6tJa/mzO1Zh9dVlrGsY1ffEnt2v8n6Rt3M7FuIa3evkA0Rv8XX+SvvLB82Mf+9jNu971ru23ONq/a7iFCcuHEDy9T2juP12/2emdA+t8xJRf96rW+NHHia3We/4cw2RL4g6HDYFhnC7MbXF5YZcfrPD0/LQ1Lzrx4VvTjKevOaHbex+PHxtY7OKh773KWvdzmNq040+Kba31dLPfq4UYcYh3MV9C//x7NGyf/3yg9iWGHZ0YMPiHpy70YmajL0YxxaDT4seuM8FuT9iEV3x9tSsHuHTZwHJ2nUnSB2/r+WwLD1/ipifs6ovnQYYvMmxe+cpXbl/6Vry44qIl7GbeUx+3dOVsri741nyJ8OVTg8lWnK5N3Ojy5W+PfEH1BRRO+fgC5rN+3DanhzEntnHNl6L2Wpz0+rWG8OjsQ7Z0+FSbuNJPgVe92E//xnIpZjh6uvBhmhO1UGu1qw76efaMiwvLWI3U3Vpx8EuKWRx6Og9G3DuN8dHX4pieT7XMhs46W7yJtbXWYc34xuomv3J0PcuD/4wrr/Kpt+5MlXd4OLAv1rTHzZp4BIYxW81YPdmsMelrfHHXVoFTHNy0MHGZGOxwoIsn3Z7EkV389+zo1MW+uhcQv0HpQftv/uZvbv+5ebG2xSte4vZnf/Zn22/W/dEf/dH20AM3+x8v15Oz5XrWE/dpf2Kmc0LnWlVn9jCqaTU0L4f2w8Nm9wWx5KF+NZhk1ptN+6lnC1cvDqHHq32g51fbjB6+qAG9Ho783LuM5dNDtRnHflQ72PFLp6fnE1+9+dTJ2XnCFeckfzrYWqK2+CXi4Nw9b/qISeAV173FdTnvq+xg2pvu63RsPTjDk773ImuauHRxpCPlgps6WoeBg99cpfcgz5yUX/XQE+vVGjY7PUwNv2xhatarpzl+8lcfzXmzbg0+rjA08zh1nfMlcMNxLYofp+4LsNjUwsuPj9hxllsc6OFYK5a4fHHVy59d+HqYMMonO+85BJZ1fxqovbL3nQGc2UyBMfHmWmO17HM622qx1rF8J9f4srWH8oIhF9I1wYe0R9vk4QvbOBrjosEmcNXAGVXn6pBdNuxw1Nhr6gRTfHjid0bZa+21dbZ88JFT9wxjMmOzh9te6lvXr/tRDTagBy+dGbGyNe46YUcvD/H52yscCR17c/r48HEurOPBX198fXH4GNPBMSbqwqe5tfD1Gl05hFPeOHgvcDbtB1GfrsWwPTTvByjVGBZcftnjERfrM075iCle+bLxPuc9lm8+9ew1Qie+vOMhP2dBbYk45cAON2uP+ydc7/SgXfA2eGP34EUSSCbm18g5e7gKT8Rtrp9+xhV1rtkA+mkLi422J2zDWP327C/RFS/sYpsXg06uxbbpM6dL4pyziUO92qyxmuM0D3wHmd6YTN75xfc2HhOPr7kmZ3Fbt0a3nrnw861u6fHoBpCOjUaqbTlkc1svnkZuyzVbMeIpL3JJ/Okfz3Szt6Y+YePV2Jpx9RFXC28jc08vYoh9Drs6xIdtnNDAlQ2xdqrG5VSem8PDFz7qMSVO1a05/2I0bm36XzOeMfawqoG1Yk/8crK+5z9tn8R48oePT6141VjPfor5ur+Pk0d8xNir14x9ybj63gfWuXh35Y2XN/getN/1J+krN3w8aP+FX/iF7Yt396Bpd+k+sfMhRbPXfSjTi5Ow06pF9572QM+nudy7dunyhWecHZzi0JNiGLe37I2zsTZl9ckvbHHkB4cOTjmYW2sdbnHyNz/13lUubDQ+dPDsf+twq0n1Dd/apTJra7zmai6m3nsnTuWWrVg+6PblTy0S9viR7PX05VKebIw1Uu7p9GLnvxntvPDT8mMiVvXhbxxW56YvcfTyodeqc6HynZitxQ1GX47ZedDuywXxhQi3+KiP5otGAqczkl18zMtNT7LhY5/6nGNPfPkxx0PDrS9L5gTO5I6r3/KCW/NbXr5sJNnrCaxyoBOzL0DWzOVgzVzDJe4Tw1q5ZZcPOzjZ81/5xw1+4/DYTyxzdlMHuxx88fYdpxgTb2LSqz9buba2EX34IlaNKhuxfUF073QWYMUnfvR050QeWnWGz6eYxtnok2KY8+16lguxHg7MeNPH1d5XJ1zhs7POLj+9dTL3EX7+cWOrphocc2JcjjOn1jejBy/iFtue1PLNPmxxjUl+jfXstXDpsjdehZ37tgeherb22Rf1j3zkI/fyoP1P/uRPbn7iJ37ixoN258d9rHOIj7gekPrBn2tavdwX/As2+4wTnnTGnUE4PbRWF3sWdg8n5m+0lzusKWutrVV3XOA6O9UUh7nnEyu/qTPmiyO+mrHcNGdKDLE09YAjjrkzIR4xL1c9O2ts0k+e3Q/lWJ7W4fAtzgb+4AWPPh+xMbc3OJkT8cIrL3b4esDdfRg20Ze3OrKlk3sP2unsnZ7Ip7MCVzw+4pG4sbHOnnhPwxWHbPkas1FrPSwYaqaHIa/m1jtDcOk1OOysy6W9FBN3f9JDjFkrc/hh8E0HO4ENw3ubvIrFVq3EzSas4oivEdcJ6WGh/OWyPqCFxV9MY3ZqA5teg1ms7PCBJQ/Nep8lYFjDAWdzwm5PxE2KSecBdvyt8+/cZQcbl1kXHK3DsOazjNrLw36xzae44TfnG47c+NkPrdqopxzdK63z0TvDehzkX83VFRdzPnDwEqdzCYMPfqQ842Bdzj4v6c2J2rDFrzMgTxzZta5vLLbxlOLAgAdDI7CJmNZc53gWtxrIha5awOQDh491cfkWn70xO/b5FK885TL3seskO7W0bg/0cOQppvjGrs/5n4+2Lr6Gi7PnQTgc64QePhx49PnEfTN8aCs2wVk8e0/k4n7qL63AtN4eNdazgyten8erk/Mj9+KycW46O2rv/fuDH/zg0/2NdpuKfEXbMn7wgngJWT8lEjolrXUYspuFprMuXsKvlq6eXRsZLlvj2p5vtnwbh3ltDz++xsnEPcVpL/70C+vSnm+tPROjGtFVD3aNJ/7Mxfq8mO19uehXgVlc6+ISumLHL182LoA9CS8OxczHelIMc+ta9tnc1k9u/M9J3Ng1xrO85WQc5solH/patsU1J+ouPyJe4/C7hqxpa6zN8Q4vxdeLAfvc9S9Etu03e36tWbcWzz2u2bhhJ9nxU1sY7MiK3xzneWZXrObn+mJkU+3jn74+7vjGozV9/tbLaa4/6XHxxRE/vqt+7tvkxC7bcnzcPODhcdvZmjxOjbsW7gPrVIz08T51FrKbPVsfbjxo95+hPunfaFdXjVzK0372gVmOrkMfSvBW19nYtv/1xSv2PC/tS2vTJz88G7eOf7rygGtds5Zt4+z5Zqdv37JvHi49X601GHsin3BmPLbmc83c+VRPPWw11Wvzfpf/jBnW1DXGvfccY42UQ+NpJyZpT6z5EOoDqz79ZvTgBWd47HApBr15bebN17yWDb3xbcJvSjj6+KkbrPj0BUJ+PQRgmz08/u3BGsN6OcKYv9Hun377gkF8XmaXf9dJ+xinvjRtTg9e8OAnPslumzx4sYa3PeAL355ovfe1F2Lh2F6GV3644l+u1n2hgc+m2GKWC6y40eGgET7yxsNasemnmLtnTF75x1lsjS27MKZercxhiZf9tKkW4YfHhpSDL+/tRf7txWb44AUPOk2O7PnHbdqlC8scF1/uPFiS51oj69rMN8zZZwO7GtCVE3/46jL1MKzRiS3n8rbGv/o019O1Brcv+MblqdfgxkksQsfW3Lg6s6enU8/OjVgavWbMl339Bvzgpbjm7GDjp2+v6MsZHh+68IyJOTFnR6ZuU+y8sHGv7iENXw8CntSD9mKJU83stbMlrl6d3CM8JO9hEZ7dl2CoPT/3RGNNnTQ+3VPg8FNPUr2qIR0u5q3RkeoHE346dnw6K8ZT8ps6Y3nh3Nm2z+21GPmJVQw+4sTRvMY+Ozbmc42PGmcXjrlG+GsJ/1lLXN1r9db4wY2PeTnB8BCwB+1sitW9I1sx7U0P2uUPX0+s2WeNxD2+bGH1ANC6NQ/I6PEgxdezcTbUPG7iaXzVqvjG7Q2cagKnc0snPp/OpNydt3IJBz57erHnmYRPYIclB3O2MPDW08Fx7tmaE+M49iB23qvFm9cCvzjqzdVHC5cej3DN5QHLvdc4PvaXLb7iFIsNKUZxzYn1WntobZ6X4sLWpr15AnuK/cOV4KaJkU8crKeLrxpY1+Tf9wYYdPZDndt/sa2xtc5fDeZnTj50PWjHhX17gwfO9jmM+uLy8YCfDa7iFtt+s6MXCy67mRs8Z5VOM09aKxbfrhW6KXK3JrYatB53eYlTHXHCO5+wyi8+9DDrG5uzEcvZh1O+8lQXWNboxeZLj5OGg+vTA39rWnGtFZO/8wcrvfzo7Z/Y9Hr4KxZMeRNx3eNwZEfvfqqZw4Gh1/g2bywmkR889zj+0wd+Te6+h/tzbW9+85s3X7bXyGP9RjviFUWPOEGi5FYyJbPq1zm8KRVxJrjaTHvjbPNd180nRvbZtbbqW7+238NLdwrrVOz86k/5n9Lzq7ERp2YfJy69vZ4y1+n5tP8ObzrnYBW+2YfdWQpj9clu6uOfT5zimo+L0Vgj2U3dxL1tnD+7ME/5xJGdMa7xwbPrpDV28YeZv36Pb7hsjasFDON8Jo41+vsS+Ux8Oe3t+xqPz+S4crI2817X4bHpTUle1Y6tMW5sCF0Yrcc7P3btz7SnPyd8Vsm/mOv6zH1di1cY6/qTnos/JT5T1xjHWT/6aX9fOYS5xorHNX1n4j6wbot7F954+WDygz/4g/f+n6H6G+3vfOc7t99oL/95nXRPOnVuy9c6jlrXoWvRh8I+BPfhKSy9eiRznG72075xPmFO+3W8ZxPOanvb/FTc9PXhzNhzbH21zWftq6sPpdr8EB5OZ9ncfoq1xguXno09bu9bg9N9zFrreu/pnQvz9teHUXP5FBdO8zDEoM+mmPXsa+n0l7yPsMtXv0ocnEtSbTqrdPKJW59fYOFcY7cKbH5sfGDvy9D8jfbi5avGXW/WwlDLbMVOD9t82qoLnr6g++KQb/vKl89eC6+8nClfVv32qxoVu4dr4ooFM1y50MdXL3b7lU9+8aeHkdCrGS5hWaOnm+N4b8rxEiYfe2qumeMTbvlmP3mkw1c99WGwK7ewCp9fXxbT1+NQmzp1dj13XtiUX/bmnRO6PcnPGp748Isnf7E041WylbNroLyr28TPd/Lr3MEh+lo1q87l0B4VC9fi5DPXrNMTdub5dF7zLwZ7+WjtDR5aOcNI+NXS1c94bOLS+trLzzVlb/m6L9zng3Z/m/2nfuqnbv7gD/5gO0Pef0n7b59rccNZHexX/NlUr/ZMT1ePf2cjv3xgV5viWFt1c82YTRhsk8b16bNtPntrk+sp3/Qz9sSxXlvj5Vu/+plPn9WuNTyd1675eNezM3Z++kzl/HoIZw/Uv/UenNpDeHztrYderh12euJceCjHDi5bHDsT7Ssssa3XOiPstWz0+TtXYhB6scm81rKpNvN+hKcmJo4ED81DNb4w3S/jDRsGPR7qFIcN4MELPHzinp7djCmO67V7Cbt4wu/9wFgjMDSx2dLD0ceD3piuehrXrFdDe0eqb/bZxNe8Guuz7x4ATxPX+zdc8Tp3OOYPS1NfjVhnSyaWOUytuobDnl/542o/Vh9zvnHpHknH3hmtVtnqCT2O7OSEB374uxZwMYfNxp5ZoyP0bDRj9TLGVZ34GBN54DZx4YnPprrAh9W55GtOrJFi4k8HI97m8oCZXi26P/CPU7xnHxfYnV/r5nAnX1j0Gik2P7XAiS8/+1D9rOFTXtb51tjiAQd2uK23350renZq5n3R/Uosdno8rIuHP13XBhvx7RU7c5zx675BpxG9eGxx5KuteN1L+bCvN8ZBbh60//Iv//L2vtv6Znjhy708aG/zZkwkS3RuzrQ5Na5Q1hvPApzym/bG+Zyzv6vPbZh76+WyrlWnqb+UOx/+p7An5hy3Z+KssaxNPOv28JSwnXhsw3DIk4lp3Pw2fFgrz2Jam+tiF7MY+vz1T0vW+JNzOcerPLohmCeznnTmp/LIj82e4EBmTfbsLtXBcVNsD8StncLgc2l8uGzJXt7W3GyJmtj7akBnvGLAYRfuWsv82xs4t0kcsst3xW5dL052U2+MW23FOOWzYtzXPB7w1C6hL4epb/3/Uq8Wybpf6dc+nz179fRh5I1vfONj/SR9L+ZHP/rR7T9D9c/+xMHD+e3c03XGVm5s2NOzc+37EMVfo+8DYBjliUt4U0cfZmM9yf6l2Uuv+bbWPJv0zde+9fxm7NV2ne/ZhpNtc/Uhez7pN4PlBb8wsjNXex/6PBDVV+/c+Wlr3DVfcx8g2cFdY4VX717pw2nvq/x8ANbgkDCKne9tfX4TA7/JC2Y5nMLLfuJl272+LwthdebNnVm+jfXq3XkPa+3Z8WtvYLoeXv3qVz/6LZmJw57IScONTovDmkM1zZ4P2/lFpGuuWMWJb3PYOGrq4QuK32TXfOEoNvvJrfMCT4zW6dnhRudM4BLX9PzSxYVOvL70Tn1rdOK1V/SEn7V8zGvWW8MtyWfWr5png+P8Igcn3noS9oxXrcKpZ1O9jUm6rmHzcjSejd6cGGtT8qWbtTCfmCsOv+w7S/pyMy6nfOMhH6Ie7PUau2w3gwcvc50OBn96+Mbq3rLXAABAAElEQVRxCaf9aR4GO/jN4bnWillvfb022NLXzBO4s9GvdubwCX5T+BI2xHVlbzVr/lm7L+of/vCHtz67zfiKl+J40P7TP/3TNx//+Me3zwiuH2txnnVQw/TVtTPv84Xrn01SDDbu+Z0DNtbCZp/t9KcvnnGSbfPbehj56M2Tvbm1PftsW2Mnh/YSLv61ibPmEUZcJnZr/JM9/2ln7KxMPsZ0fabCy1nW4HUvcbbsnXn3T7b99jUce5e/B2L+hYMfqIrbej+oZUevlR/sMIxJ7xnm7DonXRP0E6Na6MW01jhbsfnHQS9/DT9r/OQrpnUSlnn1EYOwM3bG+TvL4VtjjzsRRz3zpWObPVvjuV5stsSa2tCzJ+Jo8swXDh0xLm86Nmw1WASeOcw+g9HVrKmLRuDVekgJl30c+ZgTceHCp+vBaryz02s4l4N550H9+Irh/dMPSLKbPmKWX2ecbp4jsWHriTHc8oJH6LS5d7DlPX9JgE3XiDEb8/KRfw/aYVvzWSjcuKlR+6Xv/DhjsEj7NteLKR/4/PRs6DS1YEfwM6YPR0/Y2ev407E1t9YZpBdHLfo8Ay8prhw182LyEU/Dc/rxl2v5suGnXnrzWctsrcnLXK9m7kd+I95e0dsHscq/utMTGBpOGil+dc+muPDg2Lt8yrU49XyJng4GH/V5wxvecPOLv/iL259sY7PWhO6cPNaD9oIhNMUcWesVxTj7abuOJ9YcX+oPL79L4k1740t92F4r8apf/Ytdv66fm8M8hbvn16ESa8aDMdf4rjYr3hqXfbqwYXYm9vCyW7HN49OFAlvrAmHDf94YzPmxMeZ7LgaM+xT8ynnixp0OnzjRk3LoQrfuRpGfPr98N8eHL+HsrWUXlrm67PkUJ59TPbveJGDh2j6d8+ksXGIb31N5dz5aN+dTb0z04qlxN2j6lUP252rIbwqf/OjjMm3WcTXYiwNr5R8u7ns+K/59zsttjXsuh9viw1zxbvN5ua6rg+YsyemSvPJZ97O6+PDiN+He97733fmfrK31gu1B+zve8Y7tQw6edLgUd3KXT3pY6wc5fvM+3PVV3LCbn+qLod+TyWmun7Nvbfo2bq0+zNabrz17jZ22+rOf680nzim/bFbMYunV37nwhdk/d/Sh2/mZ544dme995umNu0/TsSPG2ZRDevYaEavfehGbxDn/Tbm8TExLnTljmIRN464P83Sb0YkX9gkesOjiWD3iGD6fdPry5K8l2UydNXPYmrEvPa997Wu3LxJ409XY4+PLgyZWuHqc2g+2/OPP1pegvjRYo7Ou5S/WKuzi0hcyvbPkhwL+1A0/8eHECY4x33TsjGH6UiUP8dn0N3X5WSfhxjVdfV9UYbINf85nTfjFU0xina5axa91a8bW8Yh7DxiKxa4vppNHOOxqbKfNRmR5se6aVeuZA1/Xrp7oy8FY40vENs5mUz54ocsnXX0YehLn+NC3Z2rRmbLOthoZ02nFN8aJTfiwZn5xjg+casgnPmpjbk2Do80zFX9xi8EWRp8948eWvz3UyouezeRBR8TPf9rElw0/a423wYOX/MKNky/n7s+w/WDU+/iv//qvbz2bu0jx/Y32N73pTTd/+Id/uOXv+iFwNTHVaZ6NaqoexsRvFE5fOjm7x6g/W3tcHcoVvpa0F+blFpc461vLrrVwzs3Dm3HDq+dvfcWBP3XZ0PFVDzmUZ3zKi10tHs3DnvP8s538jMNl1x7xp9fjV5u+2dK5bjQ6Z829hK+HVvIxJmztpQfW/pXVK17xim2NH73fKPVebq/Z2u/qgYOxFg9+3bey70yZ85mSjo/GP105spd7ca2Xn2vYGlm5VEe9Jmf45e7e4AfI1uY9HY46yV8sdt6zCdt6a0RNYFbjTfngpTjmxvLhrx7EWCzY8iHxCLt41vmH49rEy9z+4uuHKDhXB77W5awRuPT69rI6sw2fLTsNnp50pvjj4B6Wji9bOeDBx5q6yLH6OGv9Eg8bWDMGPu2TNaKPi/HkyrbarHo1Kq41fMTvB04w+bKxln+1ta5O814nF5+L9Oxxn2ccPz7tRbjyiKd191H4MOhJedZbw02t9TN3Y3HVW4OJt/OA34wL25rGT83Edm131svROmHj/g+PTnz+uFoTTy3nPQVfa1oYeGj85OyHLPiKDzef7PgWqwft1Yetxi+e5tbztx/W4Ntn6+1V/mGwlYfc2Zdb5xWmdXbGMxaefNh+3/d938273/3umx//8R/f8o7bNrng5c4P2hFDYhVEEdSz0cgs3Opjzn6VqbvNf/W9Zr7G4UsnZmvXFnYvflj1q82aYxwmn9Vnztmfwp52xh3svZhh7O1vONmY31YbtuIVE652qR9/tvmYO2NaYm09k+J1IVlf5ZocVt/b5mJ3Hcw45/xmjnxhyMmNwBqcsMzTwTS+VMIJY+4LjNb3arbGYOvmrGcf19VuztmKKf6lMfiQOE+8sKqBeS2/7MWrtXYJh/zvs7fHYsd7Ylej8miN/XrOW/tS9GvtL+UgP22tfXsCZ68ul+I/bTv3GbVofy7hno8PAdO+mvow9cILLzzRB+3V6VTd8cKHyK0PYuZ4k/iWQ3u7LT5cb3yunxz27MKfa7f5sJ1+xtNnjqct/fQrJn0+e+vZzbXs17VVb31PN/3i7wOyBzg+oNsXrZjZuL8Ya51LWPbLfTqf1W7u94zdh1V+PsD34f8c5/yLGx8+4nR2+pxIDz/BjZRDev2Ma918+hvzD1usiW2drr4YakNP2MfResInse5ajoMvLt/7vd/7BQ/as+Wnjr6Q9AUmP1xh1dPj3nWm98VC3a1NXubnpP0Wvy85ej+w+Z7v+Z7tQbtYMMms0x6ueDBxkYcx/09/+tPbF1A4ciTlZF0jeGjW1MtYTLkbk/jEqRzzM+ejn/dSvvQ9DMgenhrGFXdzMcvXuHW4xYRJ5jxe+b5k8YWvbHBz39QnOM17KTuxtXzY4ALfuLU4sAs3XfjWNH7WtHD4wFIfenXpTLEn6kIfbvH5EryqnTjTLkx2/Fqnx2HO1aSY+cHFZ+YOq3yyp6sm1hL+PVyQQ/uTX/Ps+c4WD3bGpD4ffbnprWcvJ/dn15ax+7Qv6h60ez/fw5q4p8bxn/8Zqv1wHccBtlzoXVd4WFMTD02qKx1+PmOEy5ddf66jnKohO9jVPJ7s9lrr4TfPln5dyyZ9fVzETsLRE7b46fPLtvX6bMItx+wndrZhWpu69PVh6MOZus7JimOezDFcD3u69uwRXWfWPmvOmmvadUOqldxcD36g+qpXvWrTW2Nrr72XG7Nzz4bfNSIOPR1OYoqjN6fX2Jiz18+xWPh5aGvcWjnoNTHjLkYcw8OzdfmxF1cfRjXRq5kfIJM4GssVVu9P6qqJEx67hC8814p+FX4k/zjCMnYNtnddf/nwg1m+9OZ48zPW+4GI/zMFZ/w12BMH1pRZk/bMOh81q37mbFsL0w9m+s9wq49a4KCJz6/PE7jyddY8QLUuBl11Zc8uWzYkPdvi49zeOAt89HOcjTWCi89I/Ua9uLDhzBrAINUAj/Jh67w6P3DbR33C1l7ah1VgW3e/zQeHKXDFxsl1oc7ilTtbY/WG076z71rqvg/HujU6fnIgamE/4soOJxzZOFvFheuMa3RyUEcYxkQe4mhyqLdm7rr67Gc/++h9Jp/iTV884eMWbvvSNScfXPi1h7i0b84Z3/k+JiZp39gbi4djectXvK5Jelhs6DVxxH/9619/89QftCOmEAQp5CTRnE5iSKav34wevtDxXWVPv+e/+t11vsdhYlmXy+PKbXHgzzzZN5/jczzYXRInm/DPYe6t2WPC/zYMttmHpZ57NZ15Gjv8XST56q1NXBzgTdvWpy6M/M3znWu35ZTt7Cd3N4YpuFi/Rtjj7kaxx6cc5L23fi7W5NLeiEXO1W3FzBZeddRfy2fFvXQurhtisctL3zgs8+zUrPWnxTUe9bfFr7btT9dL57l8wnuc/q5YzjlecbuUgz2Tl1ymL11cpv5S3C+VnTrIST7tDy7tsfF6zvhYX6/v8vdBwD859xvtb3nLW0B8EcamvOIFdr/R7gMRqebB4BlX9p0/uvaN7eRtr9jOFt70tz6x59jaJZLParv6Zzdjrj7mq99qE076c/ar7eqzrp/D4jvX803nA6AH7R6YqLE9qGdrrBk7k31m65zSw9Lzzce6sf0lxvx9qci2B1ls4rMZn3hh070CBsGNNGejzXNlzk4/ryt+rRnP88fOmrbKtGtdX858NXMyx9WIfZxwz5+9sS8vr3nNa7YP/3TyTvjJz2doX3pgEnpfKvQaH9hs2Rmrfw/ay4OvcTmbk2r60uzztcbPfcXZ0eP6Hd/xHdtv/vGJq7hTrK2YYjpTfXnDwxcfejn4EtWZg8XfGjtjNn15MibmxmxwsA+t0RE5aJMTO7p4i6PGcS42fRxwM+YbJ/hsza0ZF6+1dPFiN4U9qYevrnG0xleudMazsQ27fMzZkriyC2NbePgiLo7EOKz48DH2pRgm23kW+VUja+XLli/BS/3g0GvtdfHiOTmEBWPWjY98nHFc9Ou6GLDoq0fx9URMPGBoeM6YxnsSDg5EjOJbK5fpmw/MiQvDteW+jLM/HfO6173u5kMf+tC9/Eb7iy++ePP2t7/90W+0i60e+GjVpocU8VfTHrbLwzqurbte3NfLRa8GM3f5wNcSdtkY11qPl55kO9cbzz77+PFrf9jt4cw6hIXPlGkTd1hasuaQT+uTG10x0mdX33q2K7662o/VPz/rmrl9JObs22dzZ78zn43e3vYnwrpnsOtaM7bX7GAYw4ZJ6MRWBzq9evHrWrXOpzPDJp198zCMLz99uYYrTntQDNjWNWPr/LT0+vQwzMX2HucaZBtuOK4DeNbUr9qzk5M+THYEHlyNHym2cXGqnV6DLZ8kH30SJgy2/qxGfnr3au+nuLTHxYERlj5uk6v6V3M2WjnmC4cuDPctPHq/sCam+nRe+HSewsSxe++040/iYmyd4IofjOLD1bKXV419Yl/K2X3XDyXUim7GjGd14G8dB+debmJpag5LnNbjih9beaaLi14c62HS4VJu5gkuvVeImU32cOx3sejZ+dwmDn5yUO94m3dWO+d4wmKnFxcOHxjimtesl4M8+LMh1vjp8dFgmMP3n253v+DTHrDhN+37HhEuG1Jd2ctlxsMrXHtN8I6LnrCrxd0anuzVLzvrYogfP2N6tfanY576g/YuIiRLqnHzipG+ROecLnt6Mu1e0lz/GualWNkXKT/61jos2byc+8n7FM8OtFzL95Ttnr66XOK7x2eNyyZOzg6hczGstjMmn/zY2yc3pfzTbYqHL3S1sMMMb57f6duY/xRzvuJrccom3NWvuNnNni2seZNb15ufw8mmHm48+DUWi7Ru7RRuNuUcTvOwivmk+njUxx+flcOaCx+y2m3KJ/widrVaeQndOhvre/l4w8D9cfmLod125vdKMvntrZ/S4a7JS9xyaE/47dXlFN6XWq8OuM99MpcjKc940vMhM//W1cMHDA/a3//+99+89a1v3ZYetyY4rQ/a+/BT7HIoVrnVZ9fZm3sHXyNrP3VhT53xlPzZNrY+fae98bSba/lYbzzXL/Fd7e9rfopz+K1P3sb2wwdGvw3jwzq7mV/XV/uUfzbm1pw/Qg8zffvq/acv4HTW++AfZlz3erid9/WsW5uNP0x2+nn9mM94/BL65vmVSzb6+M+Y81yLK9+JNccwzPFKn67e9eShRh/+/TBEjOqMQzzoNXj2sC9PxeDjy0R7YOzLSfWhD0v8PYHlgUNfzjzwaG6NXuz2CAbMKeKQcp574Sxkz86a3j8fx9fZiaPelzCNiCln97q+HM4Y+RXPmqZm1jRiTq8uevi+ZLbOhs761IXLPwl32sEk7JN82MmDwKdvjS6+U2dc3noY7OaXvbjBCLM41ujYp5ux4hlva4QPe/E8vLGuqU1nKTs9u7jxE4/Ikz2dBsM5ENdYHMI3rsUKr7j68vDd0r7hUw5xZkeKER/z2fBy5nqoYA1GXDaQnZd4WGI7eaaDlbCvwZdDGK591xTxsMpvtHvQ7v18YoR1SQ+bfPKTn9x+O94Dd+I3XYvb/tBXn/bCnK1rks59RJ2N1aoHKubwqimsYrfX5ZBNtW1ezw9emLCyNZ4yMafeuLXi08FxDlcR0zUVZ74zJn0t37lOV7z6mQNf+tbmOFw64z3Jf8aRl/uf327V5wvHebY/xng2jhNfYzLrwZZYq275zH7GEqNrmx4XtZy49FrcOjfZ4Eu6HuI948QnnDDLYwN48AKrPMKEy64+zsVxX8NFDI1d8eDNex29HHv/E0vr8w1e3UfUYeWH08zLuFhh4ZWd/Q0Hl/Irx2yzb59wrs7TxrqYdHLWm2vlrSdscdvLwTrf8uYTDvtyiSf7KWyJ9TjkY070mvw1PvInxUpvPj8PsZHfxDSmY8cets823j/c4wgb/HuwWv7VgH/nBQa9nh0fvdo7A33OsT55mE9pjg+8YpnnN22Mi8umNX37UK7isKWfuHI2Vz+2auJcZwNLm/HlJye5WRNb6xzFRU9abx62vntWNva1sfqJo2erzX1gJ2YcxYoDXT6TY3xgyimZtuVqrTrGKft62GrHn/A1Zu/zsX+J9ku/9Es3P/mTP7mt018jd/rTMS54Ca6CLDmVTPbTLl1+c36XcdjX4uU3C0iXfm7mXXg9bZ/JfS92B+q2vdrzpasu1Ss8a9WKjQvqkhj8w3SRwcgf5hR4xcgvW2t7ZzP/+BZrzunC60LPz9raVl/zuOdXDzfsdHIII93aW7/ELm7Tn+8e/syzOmaLY+OJtY5h2Ft9N9VyhBnu6nef83IWS+z40Mth3cPJiQ0fwo6Ed0n+m8NjvBRfrMkrSNziYz2bOJfv3nnLNqxzfTz0s17mBL8nIfiXy8zvXKxZj3N2971WXLjXnI2ZY/ush+esJiumub3wxu+L+Qc+8IGbt73tbZu5tccRseeDdnMfQqaIYU9mLHw1uqmfZwbGrFVjfTLHcOY8m/rWirfOs1v77KZ+YjSe68b57fE65bNi3GVe3D3fdW3yiKcHOR7m+kDYemevL07dG2cMtvavLzut0WnOgPjeT+fDXX5ds/pVxGazcmGX3/SJ69R1rpzNfNjtSRxwrV7lu7cWN7bswi2v9fNDGMWefmG1prfelxz4zz///HaNVWvxXNtsfNmRI7v5xRIundi+COrtgQdlvlS1r3RsxYyLcTnhI5Z/Bu5PWPRQvQc67TUfXE5JZ4Sdhk9xjDVCR9j7suthe7+Jx4Yed03sMOJV3nK3Vs34WSNy0+BZJ2pIF6Y99Nv/8WJjTate1YhOvDkvFr9TUq5xNhdP3xrf5lMnlv3X7A8OdOWdT7HNW8/GGp2WZDdj4Vc++aqns8POmnrZE2M69WytGhZfrBWvutYXhy3/cGGwgc3Gd0k6NWCDUw+2+FrT2E/hq1njJ0ZnxLgzFne+xlo+5TBxrRFrrdPlwz99ftbwd/0Yq525xt4PtXxR95+h+lvtq384l/Tq8KlPfermt37rt7YH7mrpwTsRv2uYHS7VTe+suRZ70K5G9l1zX7EX2U+OcDRSLy/Czri65Nd6PPLbnB765Z+ueRjNZ2/Pm7PzvueHmu5n6u78uOfMh2fsnQ21IpNL+er34rK3Vh6N2YZnPPMNS0+sN86fPl3rzot8yiWe4siHnWb/9Goxr1M6wg92+2JMB0N9CB1f56XriI0GR0w23Z/y0VvXrBO1rdGLC9M9XW/eWWOfH9uEDf2MjwN9Yh1fdWKnlwNxhovtjJuzsY5DOdLjCkujh9nD2uLhm537kXEY4vElYhCx8WXTn7Ewh6O33pp4/Ojh4pQNXLb2qfhxFQe/8qoO+YTBLr7ViF++/DV81MdYTM0ZcR/gh5dG8mcTn/qw4BF6OsKemNM3FtccLht8tZmTOqpVdtnIs9rpnbPiGePvM9KM7RwXc+YA0+cEOPHD0bizYw1mtbAGA3fjOBavnCYGzHz0atUch3zYqUEysdkQuHEwp3dG4VUH3OXsXgIDpkbHlw9bdXLW6OTnvMp1xoKb0KvHjMVXPLrisstPfviFK/fOHntS/WFp5REOLK3Y8WFLhztb8/DzhdW5ihO7hC8MXNiyCYudc+g32t/znvds/wk5v3DCuK2/1wftBa8/Fbwk69nxuc3vFF56eGHeBS/f+Ew8hX/WZPK/T+5wuxDaM4eU3oHV1MuBd0iN6S4VmN18LvVhF68u3tUXbtzifZtPGPKVz+xhhMOuLwgwbxN+1WVi3OZ3ah2v9oANzHM1nHmzbd/ckPI9FYs+f3HFMVcf4/vI51zs4otHimmO/56Uo5rv8aPjr4bn6raH/TR06luN1fyUyK96nLKZ+lP7XW3VBeaXWsodD/k9LRG3a17M6ntf8eF33RoT16IPPD4g+WL+JB+0299z56k8nYeu9b3rJ7t6uVS78pprjcO6xCafvT7/Pbx0/LK7DYNPtvr7vgbCnjz2dHP91Jifhw39PdLs5NADhz5gW6se/IydNx82XVddW+nY0FlfRU3Yzdp0rbS2+tx1jsd6ncDCXyyt2MWgw51N/u535c2uc21cLaoBHelD/EuzL/zSKAa/VYqDk3+CXf1hycMXIHp9tnr2CVv1Za/5fPGZz3xme1jWw3ZfksTn9//Zu/dfa7dz/uPzjxClqJ2qNlQTSlDR9OkRRau1W7TUrt1DqukBISIRG01otUJoaSrRRH/wQ1UkFD1Qh0QItYNq9UB3q0rqj/iu172f93YZvedac61n7fqSfSVjjTGuw+c6jHGPec97zTUX/cbODiQ/92C+HsY/wuMP0VMHdnJA/N8KibU3uPxrHuB96lOfuu+Nljdb3SdVu+JuXTz00BAe3N7ossFbyRts8Ts3kTVUG7bliS/v8jW/KsHsNbL9opZ4fE4f6abPZ+tiXZGefbmRa5NHbw8LfyW2dMtXj+Bp4rMO/Irfn3uLm2zP7x5++5a9Zs6PsT5fbGEXQ1jm1iufdOyF9sMxe3nZH/YXe/Gi9hWcWr7ki4fkbCzO6p3esb66k7ObJA+5u8bFUusa9PDUG/VbfdBerB//+Me3r5O75557tnWsFwOfsxebeMtd3Hiar7ei78H9f/7nf27X7qwbf/mc+YZRz0Z9Ya4UxopDFy+b1jDM+uT6xtPHU57ylMPtt99++Nqv/drtIfVf/dVfHd785jcf/vIv/3I7e+aerAbFMv0bx5/4x/jFU0zNp+2x8cS0x5H6aepgH3Weib9mrfjxlX96c7pdJ3p7e+Zh7HrylV6u8V4v+CGD09pNu73YYaPWm3/XIX445HDwvb4Vc9c0v+J03dqXGv/k7VNY5K5nudPHI9dH5W0upmR6jW/3RGSdE9U5nTD0ZO2RfOjFRiZPenpxyQUOG7HlQ95kaq3mbMSil1N40x4+omdN3bfBZEMvf3wZq6/WGm7GZz/M2VlvsdHFY1eN+YLLj/uB4qDvlzhew9nga8aTYGn01cIvEn3Yowfe1SK/dOUlFn6nPVzxqFW/IIFLT35iXO3ow9DTdX9Dr1j511BY5WKuDhoSozH/1s88G7mZT144/KdvvdOBybf7FQ3JRYNLz1hOk8qRXD50+BAbPzDlSy4GsUVw6ZBHzfvLRbW0Pj5swRZu68w3jFk3ftLpXpNOJD44+uqX/2IUJ7mG5GP/Iz7FM+uOxxbuvC9urasHf9UC1uTnW79S2PzC7/pxf+p6ESedbMUjB7r+Iu3FL37x4RnPeMYGO2ux+tmbX+lBu2K1kSco58cCEPwx2cR4YHy5CpxXV7IuSJvxPKJbo2utzI/RlBnzo3cBuBDY27gOwPjHsPb4MMQx/ezp4c195cJwgRwj+3bqF2d1OmbX4VaucmNbrYwdrBP7GBY+PbXau47OszsmE1ex0SnPvXjEXmNDRx7VW67IHKVDT8sXPeNyMF4PW/PsNrCbP8JY7afORWO2CH7rbh3FXRwToxzpr8S+fDrI6eAhNjCLW/3g7WFtBtfwI1/517du+pXoi0n8k+hWKzlkSzd+NWS31u46c+RPTfnIf/HhHfNFp/Wh054La4155n/ZsRhnXdjn37jYj8VK5yLKFq49q4/UxY2Sc+z+/kS7OKbvYqhXB3K9vNc1qk7p1+PXVvxpUx0mL4zZJ1/1m9NNx3jypyx+uvXx6SLzZPr2V7x7te79udpO2anjcOtPtaMnNm90fHLazaN6i0nzmmQ/de3Qde3QiWeu0SsXZ4ibYPG0H9fYYJFVG5j5xoNlbxtr/BVvfjbG2Y/mqw/ycPWrnF345PyFpdc6K8jEEB4s40ny6fwkZz/nfK1ETysOY6T3BtMbMfdBfNHRWycP4MiMWwsxshOzM0A8MPDdd3vQ7uG1tbG23pDDLK9y7R5I782WB+32hzcZ1UWM1UJf3Ph05ry1w9+rARt8MerFy5dPl/oHqeIl0+Z9El31DRO+NzZ9QMNcDdjIrbjwkBj5qm7J6fLZnC4f5lelagQDFt/xqnv1XHXSy7d6ylHcxdhDhYlFnm3+moelDyMe3fT1xVPc9KqHNfGAJX265YG3R+lWd1hs9OInzzY/YZLzoVlXRKYm9sK83op7xmTt1cp1Azufrhc+6cLID3w67RkxI/N4G+OCH+UDf5I5TDFpXYtdM67x637Q/kM/9EOHj370o1uOH/nIR7Zw1MP1Lk7xODfUVXzynPVg8NCHPnTT/eAHP7g9dCHXqkn5zh7WzL8arvxZH/ZhTP4cizOdiZWveFOHvYfsL3zhCw9PeMITtpz/+q//+vC6173u8Md//MfbLw/UgG15hVdM67yYkpvTyW9yvLUlO7WH2R5pH+OJ2dlJZj/1INGaysOZmgwvHGuPX6ziw3MtfOITn7jvrxboqDdq/daYw6CL+MXTypvvuefw4eKL3z1J+48MVnjOnK5Rubt2e71jQ+61rZzYk+sRHVjFIw84xU1PHb3uoV4/6ISBTz8cGDPPsPHYVWsxdZ3jk7MVMywfetB7QOm12pgt6nWbHb48kLnW2vcPKMk1fH7FlH+8SWSauvbLmGzEhz9rbO3cG4hNTfj3sFuMeOKrBvkxh6Uh+B7edo/DjkzuyFh9YImXnJ8wwrfWfilBVr3tITGyozftjFtH+6wc9DNGeub4YjBXB2uVDI54ey0Sdzb62eQbTvcX1tt+gIdnvfiACZt962xcLYyTw22te8hMJk6Y7X22Kxac4m9d6NOzLs4PddTEyhc5G3hiR2JWewTT3D60NvTlV4zkfLWe9PA0cRcnfeP05UMuBvGIgR9yPD1M+1Jc5u0H/sTRvDjNYYgvnr7aFoMennjsGffffP3bv/3b9mEQ44ge/2zUz4N2Xx3zGX3Q3qFVIiVlrh0jhfVb9C6M9LKpj3/ZXnGQ/qJYTsGeeC3iKXb3p0652Vz//u//vrVj/ui2eboAp275xWtD0pUv+cw7fbVtrNe6mOizT6cLLh9rP9cpLLx5MU2b/OLlY/LCIG88fRgn04chzqmX7aZ89kNt5oXaWL41MYef3ezDT0e/ty7T5jJjeNZb7K3Bnv3MZcYiD3Py6gELJUsfrxolw4vIYKDkq217g/y8eMM8r4floNasQ3jTp/Fs4ZWvHjm06ckBLxtxxtPnI5zzevoagjf7bbLzIxt9McQTV/FOU3rrPqQXhhyyEz8+Yreu18S9rjF/+al+xdc+2fPFjt6MXcz2Oxy210X5glfdq0/+1xqf6hu2Fra+/Dfm2Q++4LvBvD+/o90bNr6KJ/+zn7WY+2XWm86Kg1erZuHiR+zQ5CWbffLVT/YrxuSTFUNxhzd9zPH0Qze8OU4/WfOL+nyvdvjJJkZ6ezJ65PaK+ypvepyB8eVr3ewn9nTN556jkx4ZHWegG3yUTL/GsvL4CIMP13o65uybb+BnP8qr+OgYa3RhaPjT/4pnHi9dGOJBMMzT06/EX/rJ1AKxRWFvk7MfYZY3Pmz+rEVvZtN3Zrl5d6OvdUNPTp+d9erNQ1jWw4P2PplIB49fOp2F4rMfkDervsPfJ/vsD/jFL+5iLzc28SdPTCjbbXJznj5ZMZOLxxsw8XqD5A2bB7p47QE9GVs56NVG3K2Dnk715Y8dYqMVa/xs4sNNthle8gec/MCq5R+2hl+tuMj/7I3peD+kRubs7APNuNzDr5/6M4Vimzy42eHDFaN9Uy2M1dZ7umLkW3zTduI2hmc/0YvgZo9nnq/isUfYJi9XubXvyYqHfbZ80eHXHoejlQc9cz7wVj/mckuPzqlUPDDmmL1Y7Fm9GMnTue4H7R/72McOL33pSw8f+tCHtvz8IouvuRZqKZZ4amydWwsxOxfUySfiqxO9qTPzMKY386ebLczG9as9nWjq4NFF+Mlmb5xOMfon8S960YsOTzh70I7uvvvuw2te85rDu9/97u1Bu/zZ0Z+xhsMm3MnDb86uNcVHbLRonccPo7l++iPPNr61czaQGTsT5GFsfZyj9jBe+OIjb2/jp8PGHvFQSy74xTFrgmeusUH2EKzOaDxzse75xNPYiTtKVw+/Z0jGqN5YfPx5bTNmw9/cm3iInWu4eMWWTD285pmT06MPK6pO/JQXGf9h1qejr9bFpYfPl9cvvYeKXuuM2SD+w8OHk9/45q5Lc+POFPb8WHe81iZ+uenVTs8ewQofn2/2ziyxwcW3t6xNe4t9McKhozadmzDc33g4TJcdWXsNrobgaEgssJLzySY5mf0jNrHCplseYZKpN3n1TxcGfXM45am2rS+ZVixiM8YTC/x8sReTnBEMuvzj86V+7Piw9mxhlcNmePaDLkpWrnhqWKx8wIKDB3vGBVdbr6dqYf87S2Cys1ZwYIo1bH7FNOOFYQ9bF/hyZSt/PsnhIjozZnLz4qMDHw6Srz3TfqMXLjs1Fa94+EH8i1dMsNSO3LjY2eaXHOlr5uHno7/iKBc61VvvGvHPzO+8887D0572NOJNvg1O/HGlT7RLXGJ6BZKEuUII7Bh5yP7yl798++2+NxgV8Jj+A/xPr4B6q7XflL7lLW85vPWtb/10pcGZm22wt2FrZ2Ld6NqEk2xs60qXrDU2n/b52Vv/ZBO3MX2YWhcInr2Bt1Lx5ac40mPDlpyui3Vi5WONqbnaah1m4c6+WhQLGb/z0Jr6jcV0ynWS/lX74svXKTjVpVrB6GZPbq2FHJq3Bufhw1XbbNLFU2ONjhcUh3DrkN6pfevtsITROhY3nGJpHeLho3xbR6QG7OmfkutmtPMDTo04PLU+hdgW+6zjfGGYOOWnL6fymHrGMOidGstqf5W5mMqnWl8F5/62KcbqeR3+YGqoPbriWm8+vcD76phXvOIVh2c/+9mbGv6tkNr3He0egMGrnYLbfhH7tDOGXYPVWD6T8FE2jTfmzR/pTJ7x5LM/Rque+eSxm/GHs+rgr7w9u+wv6o/Fkd15vvZs2VVH57Xv4u7cju/a7ka4vcduniV0ncFufHvdWK9NczYIjnUtXvZk7YvOdTZ06IuD3krr+UYvfPaNiyu8/Ic5Y4FRrPzlQ39ZWvMWDyqe/OMZ8+Emnp6YOqfT9wbDJ4u0+UaXPV21i+TAP/Lm2Z+5uvezVnyRTf/0+OxNi1+8PPjBD77vgT5ZcdAV45zDwhNH9aQ3qbzoik+8cjYvLvqtNxxycXvgo3mtz6+86JS3fo5hwW0d6GrFwU/6PWBgs9YF7ypU/Gxh5tu8Pc8/mViQfDVyDYlXw4ehxnO9ycytXbjlkE9+jCeFtfJXnfyqvTerrQ+9YrcmiJ/quzFu8Ud1gD9zki9ZdSMvLvFWrz335buuPQwNbr6qp/4qxJdYkPjEXc3wXceuazHja/j6637Q7hPsz3rWsw7/8A//cN/DKHmVrxjE53XAAw2xk61nhWtF63yRm3hXqs7xzWt4xnJNr/ynfuP09Xu+4ieb/cS1vsiD9he84AWHJz7xiZv/9773vduD9ne+8533ffK7NZ8xb8ZnP8JvPvspm/lNnTmu/nh8WQcNhYVPr1plk5wum/Z0cnPnQntK/mzCZ4fI8fS9ttB1zcenl704yg2eveBewflA3z6iM8919oh+udClhzexzeGLv5zxXEP0UHvVfpVjerAn4bMJv3NMD7P8emjJfr628INXgw1TfPzyn46vkughOWx6cuDDvNjMyx0OKi991xwd9vmgi1cPU3P/5VPl1i6eZ2VwxKNnI0dYxmJTz850PPcfdKsNOT02cy3kK458WWdx08VTFw9n9XLmowevcmWvFYOe316HzcuRvjlqDaoVX0jecqvW4tGmXfHBndgwxZa8tYQtRw2Ra/Thas5oD6Xpil8fdrGqnTNejK0dPLVFMMVKJg7vr8Kf+mpjf8HlQ5zWa9YYJjlMcj619qlYyoFvOlprm/1aI3HIjdx+6i8kxVkscNJTC2tuH/EHX6z855ctuV7+9jB7ujARn+z5pdc9cB8aoSe/1r1a0NfCEY8H43o4enXKBwzxdQaUq7jowe8a2IzOflj3fiFHzgYuv3pYD3/4ww/Pec5zDr6qLF/Zn9Jf+kG7Pz8VdIEoqIQrZEnjRWToYQ972PZnXV/zNV+zvcmQyAN0uQqotw3rO/V+7ud+7vD617/+vwFU92pOiBd/rlc6ePHTY0feRia3Ca1va4znApg27E4lduHpYWn51ZvLt1inL+MuTHINjn2VLbl5Mac/cYqXDV9ah02y+mpV3nDyq1bGx4is2OiwLa5jNqfyi6tamfN3XjywycVR7VtvPIedOhhXF/GGqzcnn8R3NvjG2RgXaz0ev1pyfb7iwYpnPAlWa2IsXrVmi/jHNzcmR/JzkJrDRnMd6d4KFZce5Z+vuRfO8zExWgf61melcqtOM/9V15y8usC+1Xz3fEwef9YJiVHLfzFP/fPGYd1fcVc7MVQX/eSfF9+ejK18O5fErh5w5Y/IkZsGD9r9cvo6H7T/4R/+4eGOO+7Ybvb4z+/m9MiP8p43QKmSJa82+lr5pJ9Ocz37aMrx2SdP1jwbfTJj8jmfY3JEZw+HbOrPcXb6PQovm3Uef9qmg7fKyTT8VRYGuTW0Np/3eZ+37ZtkemvcjfBci4lNxw21m29+4JnnG07nIgxtxkQPhoaSwZnjTXj2ozjCdz3k17mImvfalA89+2zMVxIr33SKyTi/q/5587DowIjyy0/jZL1ZpO86pgNHLN64uo/2nelk8sSX5xpjdnC9QXPf54G1sTrBZN+ZWm28riFvIB/ykIdsvZgQXxps9Zg16TXTXirXYmMLv8av1r0SPXGRi0dsCI65P2f3Z7r+EpOMHn/2GeITL33YxnrY3nfo0ZqvHNh6kyev6yYxRHzN2sihGvI9YxOTxh6/+ylY1qPa0SEv94lHNn3ygVdtYIdrTDYJj72+PdN7uPKwBmrLlp5YNHYr3sTOHu5FJG4+NLjw8fhD+OYavGIh17KZfqoB/d5M5wNOsRvHL798Tjw+ELtskyeDVb2NkTfvrmU6Wj7IPSjz1TE/9mM/dkv/DBUm8qDdn7B70M6nWMqNP/7x7C/NnLw1CscDC9drOWzgOz/ST2QOEzU2j1ft9OTTfo6Tw8mm8donry9m90UetD/pSU/a/PzN3/zN4dWvfvXhXe96133fu5sfvhvDR+aTig9+MryuhWkTXrz0w6smYcYvdvqzJadfLa0bfespBvvdmraeYRVj+9Lcwyw2dF0bbLtenL9sydnwJxb7wT2A+wW65PTYr4QPm23xdR3iR8nLCZ9eOmzF2kNMfNhymDU1J9PwnVk99DUvF/Ux5qP7mXIJWwzi0eiycS15DaLjtYqt2MwRDPrljZf97Mutnh6iI8f5oG/aycFDdn9p2trhGVsPucIUE4yubTr4XvuMyTVrbN3w5MBXD3Tl3J4h18jpa2Ty5MP5JXcYaq71+g2HDOEZ650t+RRL/mDypa+O/OIh9yv0ycLirxjpGBc7nWzZWDM9mrjGdMtr7mc8f/Hngw/qzB4mm/Tx7A/3bmo48WaN5c7GWllHdnKXU3tLjD4wUYz485cZ1hEOWzW0BvaARlccYiDT+AtfX8zVyXwSPjsx9rUpcOVUrMb07Cv1Vxc2aihWMZCzQ+T86OXHXiz0UbnAQN0D+4UDfLr2NLzWNBt98bS38led+BaPGnlormZyYSsH+np6/PAHk9xfdll7c3I8uBobWJ5df9d3fdfhyU9+8hY/X5ehSz9o94kpQdtcLXLBmQtAw4sK6hGPeMThTW960+Gxj31sogf6K1bA5vyJn/iJ7bf3E2Kte/P6NpM1saEQXvyw0p8beT0s6Whsj9ExWfukXizFgdcFyWf7Kn/kKN/x8eC4OFB42U8em5WKRc/vjD0f8c2nvnF+4meTn3TMsy/PdOr5DifeeT19B5T8i+M8fbIZ37FayVeDG3a24sNDxQqHPmwyfGQeGdND5MbWrIPQfNpP/YkZnj6fxtnSDas4yI2LW80c7nzja9UPjhafLcJD+OdR9sWQbnjH1j69evby04t7xp6Onj8yuHp+LoqVPGw1CHviXuc4f/zkq/oU86n+wmq9TrW7qp44o2Jvfpm+uNsH67qSk7mZ6RPtPrmF8G+FYL/jHe84PP/5z99uBE+tXbHOM6Y4Z0x4teJtfdOb8lNyYZ9tmKsdTFQ/9Sd/U7r5g86qlzyc+vj6YzZTZ2+8h7XirTrFWA1Xefb2o7Xx6WU34a7p4iTzOm6t2VdPcnM9uXsKb7QRG/d5kbmGOmvD12tTJ7viTTd++eDTqcEoTrrkdLXmq80mGD/IYSCxNlafcIb6ucNymrkzKIbGfOAhubh2e9OgZ989M5lPmnvY7k2BGMm7+Q8TDr51gK33CSBvZKyTeWsEIztjbybYeJPsQbteHEisxcsHfXWh7zUAiSV9MdBDdGp4Gls9PXuIXK3lS1ZeYu/rDntoII5pky37iY1Plw9EhmcufvOJtSnd1CND9LVboXKtXvwXU7jiyVf+xICvFsVjjfAiOZPj5Sd7c/z84VejsMOFZ1ybWGrkWrc2+vKwBmRw2cEm06LwmuvFy+aUewd64ucHrnzab7DJa3TompOlXw34Lk56cORTfdiHQTfcMOGxpzOpfNOfsjkWB3vExpvx3tzj18TlGvc6/uM//uPbV8HBvgrl78Mf/vD2J+zvf//7t/o7T8jCFZu95WGGBw/ik6ezohrx7xd2zhJ26rJH5ZHvfDTXV8t4dGorZjp6Ovp46eZjztMpTr2cvvM7v/Pwfd/3fYcnnH11DJ0+0e5Bu4el9jG96WcPP1/5mfHjqak8UXFnk259/PbI6nvqzfG0c/Zq5PZQGHo5df22n4txni/sxUwHhniKSU1gk8MrP7rOZnslXXr0ET8rwZi1oQtHQ8UeP7zk/NjD9qo+efHlU9/ZxVYNqgPZzMWcjjyMy68Y6OJPO9ev+rHrk7ZqU5zTZubVmI/84IlNLZFc+HJdWhd65WfMj7lzmM18beBXHl7z6dCFIVYyJEa14YN8Jbj2QLZ8ouyN8fgRNxzEh1jM+VA/OJo5+zDI4Ov7hTcZ3Pai+FsD9mHwZWwP0KfDlh95mUdiKc9qWXzyhGNefcu5esGSI73Ig1b3SNNffuiLAY57a/WAXSs2eMbsWntzebDV2MCyxvmvPvrk7Mjlw8514Tyno+GVA3/tBzJzpOdbH6984dtPfaKdPWJfnczVgx/NGJ78XStiLZ7w6fUegow+ossnDLrW2QNurz9s+MQPj74WkZmrXZ9oJzOfeupkjcKbMmMxwGo91Njrs9riVy89ffHS/eIv/uLDc5/73M/cJ9o9aLf4JVgB2hgzsYoUzz9f8Y9K/IdwbzQk8QBdrgI2gLr5bZlPtL/hDW/4NABrgtS9cT1+a2Y8aep0kbTO9MjbiDZoB8W0W/Fs0lUuLrb2TNQeSXfOy4PvLoDVf7HBm/sKPyyy8I33KB/pZd8BUP4wyyH8+vgrFrkWdnrZFQ85f+qzytJZe77UGrGbtV11zfnIT3Lz6Q/GXg7Z69OnK5/2zZTBhROPHtKzF/eMmT4K23iPhx8lb57tjCd/ZMnZac3ZG+OxTSa++NmEl8+9nu4xmj6P6eCrXXmwya6aTtvkM17y+FPXWO3Dcd20Nqvedc6raZjVqLzin9KvWKfYXEWHn739cBUsNvDUXa/ma93N3czcH9/RPh+0n1pz8dhT1Tu7+nJa+/LEj/A0VJ9s9lMPf/qa44kxx1OH/ZRNvFWPDK3+7+Xe+zOb+rD1eFq8aXfReLUJ6yI762N/9l3cbpyLzbq5tr2WI3p4iD+2bnbd13VDjZf9XPv2bHZkWpRNc+fLqkPGvma+YvCjFScdlH9+ps290v/6WRx8GOvFMn3+l/b+CD7/fOavM2BapAcb0XfjPt8sV3+6MLwZcA+stVa9OQgbHv/WRa9ZQ1jWyZtib1TmPZo44XjTyN6bCL98EY/8yWv8VA99fL0c6IvVXNz6Pf1k8MSI6ImLfXl5A+YTTB62ewhmzraeDWLTWm2Msx/JzI35EU9zOHuvX/LQ2NCZsW7Gl/gRDhM4UXE052vlkclLC8e6G9PVnPf2jHohPshrE5c+fkQ2iaz1S1ZMXevWRx350c/6sc0vXBjm4p80sad9vrLVx9Oz04yLYfqrvtnkW59+MYUhH8RWLOU3MdiQofxvk5s/8FA2N9lHO/rWTZvrKQYYYnANfvmXf/nhJ3/yJw9f8RVfcTL26rTYfKL96U9/+uF973vftl88tOBfbejYP3g+Heq6xxeHhzs92KDnPaRP0BZrOZPNMXsN7ekWFzm7bKe+8SQ22emLPd6eLlnY4tB8AOF7v/d7D4973OM2vL/927/dnjH46hifGlUL+4VdOcwYw5v+5picX/u+2OrTC6/a4NM5lhO9dPb8t37OcBiu17Dp27+9Vk97Y/o18+TTJ9/4M0b58ev8gc9n9uFtQd/8QZYNVtckXrXqOqNL7uFruBNLHHx3/vEnXjb45MUrbw12OcGaMbKL2GoonLDmnNyZp5F7bXXNpDPtxdS1zld5iqE89OL0wH4vTrrFYcwvX5r6lQ9bcRRPcSSvZ8enuTEy18w9nHTtizUd/Dk2Jy+f4sAvVrjG8i4v8vjwyMPAx1OvcmSX/cSdGDDpkdeTR2KD2UPf/MJlE/FpX3kAWy3oqGm4+vYeXPcj9ilMTS7Wkh45TBitCZ1qRAeZ052xxBOH2OnC1mvpsqPLR7+wYOOeEbERH/906IopOzpiMq/RiW/Mlzy9JsChj8JqLi4++KxmYcOgX2xTl0350ClHOObWw/lGjwwvfON8FL/Y4LG3FnSRefbkYtHY519t1A5P3eTMBz061Q4eHXuBPt/86H1I3OvMU5/6VGr3YW+TE35c+hPtPoUzEy2hCrbns4S96H/lV37l9iezklGg6yTF2yN8MRTHMb1s02uuX232dKb+VW1WjHUuDnVzcfzjP/7jwX+MX33N2Iq7fsVb5/SsqR6OdTXW2tDJpp8Vp5jazK01bGQ+7ZNvwps/+Em/cXHs7bd097Am7nnj/Kw6XfDkkfhr8fT8d4G6iI8RvVq1kINmThafX23PH/wZd7bH/KabL3rFsdqUd7rm7BGeOdvWw8FXo5Mv/eojnOItV3bXRXzUYFa/U3yV34xvxnwKBp+r/zmfa0x3j9LP957OyoO70l68ctzDPSWuFf//wrxaq9Var2qFv1ffy+TvukHHsOC7GetBuz9bS38bXPGH/NYH7fLirzXf2w9rnObapGkHsxsW42jqGM95OvXJ6ld/6V3Us9vztYcXL5/100c6k3fRuBjO0zvmy9naTf2xfQffnnJ/5iFLr7v8kbGDY9w8Gb57ut5gtA+KNf32P35r2rmf7trTy+eUTazVHz25eO1Ukxl3GHs2yY710+cxncmfeZeDuLTWShwa8uah1/tu3tOVg9dFOMj6eJOoZSM+LR/02HhzwAcbD+2sL/KGwVfJeDNv/ZB94tzwcB2WNwwPetCDtj4/YtfIUT0fdMQIR09WrubZ6s3ZzD0gdiRufPb5xfNm3wMwn6TyJpKOh336bNkU0wZ288eMgz7/UbE0r2cTHp1pl4/WL13ziT2xGuuLJ/sp2xvTr/GtLubFZP9YW/ww2wv50pfPno946eXDvJzcm3ae4PNlXhwwsq/PZzXLz+zhVjtYKPupt47p2ht05cuH8Up4Gh/FSh+vtWVrLB/XDVxzNvSKvzhXH5eZw+Pf9ebaNEbV2VicrtlHPepRh5/+6Z8+PPrRj/5vcjqnEn/IP0N92ctetr3341tO1pl/vumlK3+56l1vzolqba5OdKddtvHgVzc8DSaiSxZfH81xmPpqHybebOyzrcfLJ17r3yfab9y4sWF40P7a1752u8dxNloXlP9tMn7AqmEb7+kW3zD9NDuybPWw4oU7+WTTd7rW0b2Ts0CN5N06p2MNXW/qkE9YdM1htB/ouhboG1dHeq2BXuu8mH7o8c+OPz1f9PkgL4/Joxcuuf3W3sPPP58zv2RigMEmv3LonCHn3xpr7OjZ0+zCx4OB4ulRNdOLA048GKiaFZe10ei5nrqG6BaPnj05/3QRv2SwEH4xxU9HT1788Njp8Zqn19rR8VqC6KHibJ4PunzAwtNrSDwww00v3+aIfmMYyFyDX131SD215Hj5srbxYe35p49vz8y1F0f3SsWhr7ErrmI2Ny5OvXm+w5FzLZvqAJeenNSZvfjsET1Mcn15ts9goezINfpk7fVsN+WzH2T2HZ/iaA/mK3/06ZrnWx9efujB4U+Pr8mlPI1rxQ2nNcKjqxUXHh0UlnH1KV48/hCe+qifNaZbPHqYsBBfaPLYa3j5r97q5C+52MNFYtUQffXhV49P75GPfOThJS95yeGZz3zmfXrb4MQfl37Q7hM4grUgqEK1GKtfgUd023wVNdlV+/DDa0Hiw21xVt4xn1PPOMypP3Umf46LKYxTbKb9sTEczaGi5edYnsV/in+61gnZjGzmGh+LaY8PywbvAgtbHza7dY6X3y6y9NLtgsaPyNApeWaz14eTDJ6LrgNq8hvPXm6uD/pdzFM+x9VGj9jwL7+ZR2syefTnfMY9+fQmwVpzOVZP66dlI59iNNYcRuXhYY0mfzHkx5jOjEu8WrmLccpnzLcyzk/1KZaLMMuZfjatw5rLMSw+2ejDmLzqXmzHcPDTqYd3jM6TTZuw8OZaiWuuy57NqT6mrXE+s1/nq/5nai6O1lds5V98xWGeLN5le7Xmo7baw/di70/Of/AHf3D7fjg61WzVP3Uudg/a/bm1T5UivHW980PW+Fi/59v3Tz/mMY85fMM3fMMm3qsX7PPoIvl5tlMm7stgXVZ/+jo2viqmPeDBpO/V/8AHPrDdJNo7K8F3FvsTWA9XndkIf/bW2Xk9+c7qeW63VnPtN5CbP/BdJzC09KdO44kx12COV3uYcul1Jx/0anhXofzWh2PeGG5zvHLFN+6cNFfPdHyC1HqZ17LRF7sx/LCKBV/OMMjo99pqbF0/93M/d/urBfXxKTWfDvfQ2hh5wwbjC7/wC7c4veH2y5f2xPTLh3n7yT5gK3Y47i3LLV0+ZrxzP9HR2FQXuunLwS8HnDv2dJ+w8yl3+nxPym7yjOmu+LPeUx/GjEsMdOPTVWMULyz9pBkPWTWZmPRXuxUjP9Uq/9aoTyBnY23ab/k0t/7n+WGfLX8zdutsbfnFF7/rH542dbOdWMW29jCtS/Ugr/bh5GPaikNLt37qNC5e+rDsmepoLk7+vUftfercK3RRceivSrD4c71ajxkHTLHy7ZN7Xsc9aL+OT7T7Xl1Y99xzz+Zf3RH/1cf16xdYrq3WxbVX3egbq5UcEFsY4VSb5pvS2Y9qlw27ycOv5upCXiPjkxwuSqZH+Z2YXDzNpQAAQABJREFU9MPEN0Y+gOA72h//+MdvOL46xl96+0S7c6b9EfZmdPMHXns1X/rioWaMN8mcnYbC1le/dKZt8nj62sSHYU38EpaNZg9VS89Q+HYdW0PySF3Ms8e3/tZesy+qHb3WQBzm8coj3c4bc37LIb1s93q2WvuPjXURoyYfrVjJ6aMezvPrem7/Fic9159asRObs0x9zPXyL+Z8skfyoKMXU6/fm/DmDzXjN1ux0hMTX+ThMeG3Oph3neHBaE/yCUPPhiySFx4i1xCeXMrJPHn6cNyL8Cs+VAxTlx4/YoBXDnSM4clTvvTac/wbpw8bxowlGTv5lg9s9q0HPl29NQxbzOLD49+YbWtl3nqx18Rgj83YjMtPnDBWIkfhhNs6xQ9HjHhR/tSwDw2wde9V7dRGE7dmDCNe+7w5nXzMvMnVirzXN/H0l0nVM1sxFx9Z8YjPL/LMYSLx2y9w2UTGmjjg1fiAyT65Xp3FRI8N+YwHz7xcjDV7rfqIy/2QGuLT1ZIbw9GQPn+TD7e52OTmF7ByhUHu+i1nOiiZXPj3+v3KV75y+wsq8vwan0KXftDuAu7g4aANUZIFeorzB3SupwJtVGhtqolsjWwca3PKBoEXlj78y64tOxe0vcHWXBxhx8Mv7hkf3Q6OzejmD3ZhTv79ORZLTbyTxByvPBw0HQp0yzE9vHRnLtVnrXX86hPOqgf3Imo/TEwxaJP46IXOmD5bazKbXMUlFi8YXuwcXHhs2JKtseInS2+NYcZz1XF+9NW8Oh7DpCsmrdz0YcU7Zh8/jHw7uI1bg+qOh06Jqxiuu1a9aIqjm5K9eMR+av6wVlrtzdF157P6PW+upq1VubVfq7d5esZ7tTnPx5TJ+TwMsl7g748H7X1HuxzkZL0nlRuZcfN6unM8bY19p933f//3bzcnq+yB+eUq4CbaP9J7+9vffvj4xz++vaauCNbC9etBezen1s4+0oyRa8xa4yG989s9neYGNH3XQ3rGbOHU+Ey+gV3wAwaa+2aOp3mvL12TxSmGy/icmI2L3zz/eMbNi5Wvziuy4tGnb+w+pwftxVgPm44eLx/Tf7G55r3J4LfGzthDWP/s1ifU1Wc+aLdHkDVk73vZ6Xj99l2YfVK6+OWkwaaH7APyxt50ibf4y2FTOPshD3HN17R4+CuRwfSVFR60u1ew38z5EfeszWpvHv6sY+uz53PGTs5eK3fjefbNHNMvDlgaIlt18fFWO/wojGzpykVvjfoUK326rRP9eF0bYl+p+PRs8pNfvXXuOi//7tdWvHyGFd6eHlxNLsfs+FvrI39rcIoPuMXMznXHLjKGLz85iYceqgbp6pNN3ilj61K8YrAm+W5d+IPvIel1fHWMuGD65ZqHyf/6r/+6zV1H5UHOv19iedDsl3A9RHA2kNFBrVPXf/noJ9EPt37mGC8bsq4v9W8Pk5PxK95w8RuHq0+XnE2vW+ng+0S7B+1PGN/RPh+095Bmxpgv9tNPuOSoPn66+jDkl+6sn3i1bKfOxGm8gZz9CBeW8zDyut4e8/rOju/O3mLlE6k5PTj0nLteL7w3m7VvreEVL6xymXh4bF1bejZTN6yZAx1xWwf7r+vcHN+102ueuO3V9gtbf63FBs2HqNUiDK9z/NKVazGINb/wYJcbTLzyFoeGxz7KPjs64lYDvsQ89cPlS3z0+KBTvLDynX/68dZzDSZ7dnKUV3XJX7Z82C/idg6s+YRVLK0pPqKP+LIH7SO64uxMDVNM9hcM8ZdL9vkgo8uOvviNyfHl68Eq++pFxr+1NaYfPhs8axGRdRaSIzUSs3XiFwYil58+zE1w9oO/eQ/dOhY7nPDZhMmP/WrORuziEydfePpsYJRD8ZGlO/2qiUamVpoaikWO7qH45a/YzMnY4bGRV/buJ+nzg6qTWNiwn1jmc33YiB+JBU2fdDUY4cw9S18s/JMXmzm+ddDUEU8r//BgNM6f2PnBT2ZOrve6KNfyk69rhby8Wyf1Fcut/mX5lR60C1IAqCIVoGA/01Qxp188hZw056vNlE2bxlN/6k5+uvXFQL8xWTYTJ5ur9OFlu+K2Qa3NKsvm/ujFZZPaG3ybF+uMJb7YNJs8PXHNsTmdaY93Ea0+LtLvQivu5uyKr3j1qDjN5UxPS74pLXp4x3Ip5okbVjy2lyW25ZAtnLD4oNNh56Azz6f95IDVjBEb9g5cN0QOLjVIljwf+MVhLB5UHDNPeubxNsVL/Jixn4qTzfTNNn6xXhTGrDN7+cFYr8n2SfKLcMmr7ym6p+iIqXzFcaze9MoFbjXRI7Laxhg/6PTiLH7z1t6L4DGfA+Lk4Yxrxlutp6+pmwM1iMhbG/bn1WfasKsW068anodB5ibo/vpE+x133LH9Zl9s5SZuY1RtZvyTn3xT3vnxRV/0RYcXvehFhx/5kR/ZkT7AukwFPCzxj8//4A/+YHu44lyu/nO97ClvsLqBpmMfuc6Ms9E7p/GTm3dfRx4uObJ3u17bE/hhGl9EMCbuni15ryv05YT4ds8pHna1Yz7ZouKfenwURzHQD1M/Y2WbbNrii8/rozcJ+nCqa/7DK362e2Rt5d9ZyF+Y3nT4dLoH+njeVHqD5U9hveYidmLxoJ2tse/t18MNT9ww0BxXD/ze/MVbc6cjHy3cudfKnR6i475AzP/xH/+xPfixpj1od96dQtUwX+IX4+ovn+XZGuLjiQcPzqRkeBMzHPz8lXd66RQj+STy8NPRa9bIwwbYdOTV2sDJV7yJa5yddS4O/OkThj3S9W8sf/6rJ5toxp9/sjDT07O3njDT1c9xddNH5Q8z/WT6ePpI/BqClQ6MchHLXk54+TK+Ctmr6ozmOvE9c1ML16tPsl/Xd7R/4hOf2LB8ol0eHqY5u+VSHdQGX1MHtObNRrziz65+M7j5A29S64WXfmtAxp+/qHFe/dM//dNWJ+daNO3xsjWGV/30jcnYyWHy10+099Ux7373u7f7G+u0xj/nE6vxlPOLyIpbDP6y31nsF99qXQ3v1b73J/2VZn6rrLk1heeXbvTtIWdDe9a+E4OG4hejnr2a5w+v92V4Gp3izpYvYyT+sLy28Wtu39Bb84MplvyGVXzqJGZ6sPgmM84GZvHRtX/x6LaPjdnQQ3MuPn7hIj614i3GbOnX4Gjm6SWrFjBh08ODLa7wpgxv7nu2KPxqgDcxpi+ySeUFWxMHYgNDnnjOHK/ffrmSP/rlk20xJAsDHp74rX35VseJaZ3ozzXMnh0f+RGrmnVelY/r1GtfcbDng5wtvhaRweYzDDzxacn56kFq/LDYaRMXfjl3P9e8/GBr7StxwIDv/ibCS9eYL3O5qTPCkx9KV0+//JKxi6au+rsHhOWcYKvRFxM5mXy6D4SDh/InJjlpbFDx6cPFN2ZXLjOf6kEWDl1j8eDDU0+vEdbefL6m0qXHDzxNnejBiszbW3Rn/OVFZ8Zu77XP8e0PPOMZGx/Wk/2XfdmXHV7+8pcfnvWsZ22uZwzFcl5/LQ/aOVCY6XyOzwvgAdmtVcDmOK/WbbCL9G4tin1rPl0EXXDm0Rpz8eldVIgO2z1a7fd04sHUXDDw2F5kX9z0iweeeRfuXnz8pJffjTF+XOQ71fyEw3fxpzOx8r0ni7fqxK8nh6l3o9chKBZEppl3ACYjZ+fQ6kF7Bz0bsXdO0GOn5a9xhzG8ap/fdMn2aMqNI/5QvOaTtymMH3s6e7xh8mnD9PV8a/KceZGZk6nRpOKdvPbAnmzqXXYsrijs+vj6ckpmzjY+nWI0Ts94zT0enfYG3rQxvwoVF5/wqq359BV28es1NntxkIWV7V5PL99wjKvLPF/2bOm59vwm3SfafXIL7cWzZ3+MJyZfQ/K85z1veyNKr1z1k/hKFh/vlBhuu+227Z/H/PAP//Bm6preo3yumPHZrLI9nP+rPG8+/vmf//nwsz/7s4c/+qM/OvjaADeo1aQ62S/OEA/afSewvYOn2evVP33nczfUsMjdfGrpsJ1+9sYX1R3WtHMNoIkdBl1ysXc+6sUvrnDKyzwejOLGY2de3vmon7r51bOFj8Qyr9l80auJ1RqpOaKj8VuO5vSTZxtvE9z8kc98YeMhZ4Y3S3wir7M9PFEfpFbiue3s+kPGn/3Zn73ZhJOPTeHsh7l6dSY1t0fkIZZqnk09WU0+xuVVTM35ELNPFH3yk5/c/tyZjq+34Me+jrKBNwm/xpadeTFMXeNwJn/GiL/6kH927YV8pnvMJz77Y/FMbGuF2PBjXTW2rUf7OFxrFK9YJgZ8e4R+ZMyGDPGldtaiODsjyOjj55NNesYIlliibKxHa0KGH6Uz4yZrPnWnDX6xpyv2fhFENx29HLRiDjde2PVhNr+oh+cBQeeweY0tvHyqhbPBJ9qv66tjfEf7K17xisOHP/zhbV07A5zn+VavYiifuQfE5SEcm7mO6dbP2sAzn/XNh96esn8f9rCHHZ773Oduv+x729vedviTP/mT7S9YeggEG06tOYzwpv/Jbw319uxznvOcw5133nm4cePGZnv33Xcffv7nf357rfQVAeLJJkx45VUM00d6q449h775m7/58KQnPWl72P7GN77x8Hd/93dbHdc9SjcM41PJOonbw3xjdS2H8JqLO7/WNF282cJRM3x717pnC7czwLg5P/SsHQx8fjSy4sBHdJw/yPU5beCnl9/qTq946Wj0vQbxkay4w80/Oawo/HLST//5LZ7qqKc357DoyXnq841HH7ERlxiLqxoXX3HQVSdymPYWHqLjuoSBl08yOPDtDz1/dOiyEQ8df0XjlxQewLLPv3F47GA4y8QCw5ppxqh82CP8ZObFpy/X9PDS4UfDE6N87dVikY84mvNXDfDY1Yql2PJLj0x8xvi9TujjFxM8+uKi37rjs1WT5Pb/fChM396UgziiYtCT8QvXXCt3thF+ryd8VxdjsbXG9OnOPSQ+PGtNV5xR/viEVY3Z4Gmwqku4evoaUovajImdPGaOatYvCPmnUwvfXAx0fShI7uYIPrnXNPuwPcC//PTqQwfxga+xJWODz5++mNnyo57FRiYHNjAQncZiQF/6pV96eOlLX3r49m//9m3O/jJ0yw/aK5DEp/M5LiCJ9ue17FYdSUerLL4+PTqNp7zxxEjvIps923iX7afPaYs/Y5uyU8fq7UbJp5rOo2KoP0/3Illrdix2PrQuAng29bo3zvPDnp9wJtZ5dufJ4K2Yx3IIZ16M2ZKt8cz91LjYyyVM8lo8/cSffOMw9Gw7rI7pTf5adxgRrEn5cY2Woxfr6kCOz3+4eNnp6To06XRAOvg6GPlkG37rYp69mNKfvHyS4+9R+HBRflZd9ulks+rszdlpbLRjBHvqrPGGk7252unFXD3IJ076sxbxrqMX94w13+flyi+b6rkXB/ty2tPLLx2U3+Z7mKfwiiv88sB3k3EMn7xWLPpw+GYb3rFYwiCnax5e19WxGPDdiHiD/gM/8ANX/m64NTYx+GT093zP92wPvMiLZeoey634p+7e2KdoH/e4xx2e9rSnbWJnAt+T5nyO6Uz/q2xi/F8fuzn2ifbf+Z3fOfz93//99lDSGV19qo39Yh170O5GUc1R53H719wNpHPWGFY33vqJeav15ROJD27Ye/uIrhy6ac53bwiKn21xVwf99KVGfMkR5XvPL1m2+YSPV63ndYovzmL1xsIbBjoaH73+wYM1KVx99SCfc9hwpl86zcng1syRWnmzddttt23x9aAdNh3NODIXQ7mYN4ZVPq0B+STzdPDZlpMaxONT86bMg3a/MPJ1N9bHJ9rhs0Xpwg5/E9yU0dPYwkMzho1xCz/4L4fq3bz86aDimzanuM6u2puXVzx7Dy6ZntxrQns7DD2evcCWTvGKhd2Mjz5dtUtPLduz+STLTh3YsNWKB/6qZy3j6+lXx01w4g+4tYkDz5vjzjCy4px62epRe0Q99sab0gU/YM112FOfftXV2eAX5tf1z1D/5V/+ZXuQ/f73v387K9Xb2nWN8u91w7mkiRc5V1sLa+khnBqS4yN94znHg1vdpl75WgOfZP/u7/7u7etc/D+J3//93z/8yq/8yvawPV/0pj0/Yeib6/Pb+pLjiV++z372sw933HHH4caNGxuGB+2/8Au/sD1o9/VUvQ6yifJdP31P/8nZuVacq494xCMOP/qjP3p4xjOesWH/8i//8uE3f/M3Dz5JX2x7vmBM7Mb5mDbWgy/3UN5PydODND2yBhoMdTG2/j0wMsevwWuN+cGH78ygq5Z6jRyuVo3p209rzORasRcPXTzx8IvEHv7GOPsxfRWjvnjYqLu5GMTrbINvPmM3579Ymk+/039ysbDT4IdLF6+6lSv9fMAOH58uDP30ZQ43n3CN8VF54iP4rhV98eTT3J5Wg+rAjrwG13t3X2PitRY/n5uD8UO89oJ9JmbPkzzkDKs49dMPXRSufo7J2MChW8x4aulcrH50yTV8RM+YbvHHLxb5i9ueqJZ6cSBj9q4NbWKFCUsN0mFLTw8fhlb87RH44k/XnE368MWfXzWg2+tW9y308N2nyWPmDZM/DS58jY0GMx5f9MTc2uirMf3ygDtjh0FXrPpqQk9sqLzoqoU5zM6cYpKHXxCiYoSpmcM2hiNfr0/W0BwWf9WpXyDTl1vXvlzDo1NM+vjGcOSJV8z8NxajPPiF2fVUruXHxoN2X4V6++23M9ty2QYn/rjSg3aBSUAygkH1+V3n+P7U6lu+5Vu2F2MXtwL8/0Qzn/+f4pqxtJkciO95z3sOf/EXfzHFnzamj+o/TeFEBnub3bpat3XtyDWb0gbfW/8TXV27mrjFJb4uvMvGl73g5J59OePLm57GTxcsHcSOzqwdWXqb0vgBgx9ymMbsNcS2OMgdIJM6kOLRLxZ2Whj6DrNk3iDghyOe4pdDDT4b9n6RxoaemNh2gOerOpjTMa8GcI7lzQ99bSV2xQPLvDoZR3xOX3TSS+dYz+/M4Zhe/vPLRkNinHw8c3L1Q/LPhowNwst2Y9zkGa/85Jfp53XCjl+1yf+pWOJUg9YpHHw8mDPe1oMclfOqd6r/qVcsfETw1fiivOZ6s6k+xva1/lZo5rviiM1rpAftPr32Hd/xHZvKdficD9rlKK/1GuBHE+P0GX+Nd9WbdS9PNtaheT3+HJtPn3PtyPZo6sOacZqv+HsYV+FNv9P+Kv5WrPKwF2qrTj7xraMH7W52vRaka22dweRw3OT3BpYOuetBu45rrpj0fPKh2Wt6MehXss5dc2T0ikctYIURnx4Z3WzlERY9MjrZmk9KFp8tu3zqI3GLw015b8T03iyUE331Ndd6/YQRpvXRzGvlJ05NPK2LsZhm3vDy2Zhfb0i+4Au+YIvPGxn33QgWHP5Q8RkXA7/igjFpb2+wL0ZjtuVgbs+pZXWC5wGCN/++Z7pP1PrkqRqxhafX0PQLEx6ZGNnIF1Ub45mf+TGaenPMBxJLxDdKz1i+iG8xZScuRDe7OceLT0fLthqar7748JpgbchhtLfUo3jJ4GgwGm9Bnf1gR1cj03vD2n1a2DM2NvK0HivByGe42erx1n27YuzNi13Pb00s1l2bOhf5oJu+mOCI+yK7Ysu2/cd2EjlMPZne+riP9hVwP/VTP3V49KMfvelMu1PH8JBPsn/rt37r9s+x+RFPvsvLHvGwzUMPcnzrpGZiot9XTmW7F8e6dvLTIrbZP/jBDz584zd+4/b98V6HEF33G7/xG79xeOtb37rVRTz44onaQ+HFnz1ZuVozeXzbt33b9mD/xnjQ7hPt73rXu+776pg1B3NtLw9xaHxF9FwbX/3VX3246667Dl/3dV+3vc9J/ku/9EuHV73qVfddi9UjP/RgWKv2xapTPOnZM35RYQ3x/NVP62aOYGieBThL58N4fGdC9VqvW/cIYvEsx5msnvKm77zWi4lPtl0jcMMUBz6qbttk/KBf3rBgTmLHX68RMMNVc7nxAQf12gQTVv6LqZhbwx7EJYdRDjAi+l7DxcG/WPXs1NV1Qz/cdMRYfGIjJ0PFYpxP6+k1Ga66w+6hOn32/PCPjOGHuTFv/qgm6XltEIMcvA+3Z7y2wmUPm199FI8fevZD5yodPuhoxnDohYnHFrXHwhSL2OVirNGFoZFlg69ZLzy40zfMSXTtYfXUyytcY3L2fCLrBFfciC45Eod1aK+09mzpzFiTiafXYTx64ZFp5sXBrxistfqalxP/M2b+UL7pwdHExK819kEFtsZ02MHF02tybo/OnGHDcs6oHz3Xmt51IB727Qf8GdcW4M0f8cVgD1qT/JMlF38P1ZnSFwM+Ha9HaoPiwUH0YGuRuvc/SKq9WqiP+MnlrkXw1Kda6snlJx52s5b48B71qEdt78P9YheVU7gX9Vd+0C7YGdAs6Oq0DXPbbbcd7jp7ofqqr/qq7SCQxAN0uQqoudr7FNDrX//6w6//+q+fC9AGrD9X+Rwhe5uytexCymTiX3YThnF/9V088DuErhKjHNUfZb9eA3Q09eFXzVC81T9+emFuBmc/Otxg5Ic9PXb6DiJyhxE+ImNPvuKS06ulw4+DrBwdMBOH7+Jn0zh/8nCDDYdcc1DPFye6004M/BULeXnDwxcDG0S3+Mgm0dPI+Yaz6qy+4IY9sfbGYfFxHhWzvlinfnHOOhlrZOWfDZx8yyvCY6Nngy6KLdu9Xr1nvK3h9Llnt/LEA0dsiP2s8RpjuU8cOvlf9afeeePiaM2nrnqdkheMqPqIpz2d7Cq9uDS1mTniic311387v86vjulBu5twvpwba63lXSOb8RnPudxnnVbZVWozbSb26st89Ud/xph9/cS+1fHqG95V/OzhwMKH5wZSr03d5HrXkQcr3shZ02T2l5vJ9lo3n+07fW3dB2K4FRIvv8W97qWJnS59sRefMZ78khVn9uVq3ji/6cJPvg1u/sAvvnyxYd9r0NRXW9emJiY61qfXGzw1hoGcFcbll41eyz9cjd9y18OthcMGpbdNzn54oyIuD9rFNR+0s9X4RGw1xCd+8u4Dqgv/qy+1oj/zruYw1YC9OMpTfD1o90aRjjdLcMStVmqp4ZnD50uDA0/D741ZsYixGNjj75G46CE2sybVlm064SSD3ZisHI2LN79405959vC14m5uH8CcumpiXfTJ1Ge1hVG9xcD39I8HtyZeDwDap+TFkW1x0N2j6TNdtpEY5XxZggsHpvjsF2Prbl4dzlvrfJZT9YJrDO8iojtztD7tGbZhr3HA99Crf4aqP8XfXjzV04N2H1jz/ed49gPM9hRbPNe+1wOxJlOz1tAnXj1cCXfGhRcm2+zxVr3WyFrIzyf3H/vYx27Xs1g8wPrzP//zw5vf/Obta+u8dxUbH7NVw2Px4MsFyUEuPlnuE/Q3btzYsHyy3IP2vqO93Gfc1kSbNOMwbm35kPs3fdM3bX8F6GtjPEiKfNDtTW960+G3fuu3tj0Qf9Yu3tw/eMVUffWIb/WZD9qtlViQ3CeWa7cH7e1ncrnri8X6yI2OB17IdaThlTc7jR1fmnE1Ex9c8cZjizcpvGoJpxzpkYvJuc+feXh6cdk7xmTIvtZg4odnTse8eOnDEFdyPD75Ky42dIqjvOO7RtSePj1+6OA5j8RBFib/xdL+oc9v/5gcjtw84PUemS86cOhlRw9/0pw3Zue1gW1++kT7xK7O4ZVTOGLpdTsdudBD9MIzJ6sm1d2cHz1dfPPqE466Vavytpfjsdfysw1u/pCjB8S+lqt7lXKApYmtfNWTv3TERW5uj1hjuePRRfaZOV1NXTTxwe+BNH3x4MHjh11x6BFb+bXedBDs1o1u9uTGSB3IxGSf6vugghzFQre1E4c4xaaZw9OMEQw1rH72IntzmOJSm/XegG14YdWzdT7mp9qxEX8P2stHT5ee/cp/Mpj4evWBrdFH8vO/fsQYT07FTy528ggevvzoqpnGB4xa+ZCpt/fhPvD2v+JB+8Mf/vDDr/3ar20vwiX+QH+1CrhY/YO017zmNecCtAHrz1W+QOgC0GzCGhM8FK9NujGv8cdeDtOXOPZ0ZgiXiRGWtucjX9XDBbwSmRbB6cKOp1/1ktFNLg4+8lOe8RxiDoRJ84DtMJny8gtDHP12mMxh5FBy+GWf7lpHc4fhZ33WZ2358M22F25+i5nuzINfMvzIOH28qR9fr80aZ0+f/3TiZ5uvGUs69cXVnO60I88+3HTriy275uRs4psnE/ckemR6ebEx16w7futTPOlNnMb00fRtng9jRF67l3P6z4lVTFlPWTwxrfGQnZdHtsd6mPkKOz/n4VYfuNNuYp1nfyye7JPnp/ro8awpfNezf8Lyyle+8lq/o70H7d7w8icuvst1xkc+czUv3vT0+FE48erT428SeTr1YWQTP7t1nn785tlnd9399HOrvlasYl1zmnrG5Hr7Zn7CJ3uyzpTOZOdz6+rs0MxR/Ozh52P6Tn5eX1zWvDNq1Q9ff1mCX8ve3LjrLXn55SO/U48Mn+7EyIauhyAennmtROVVTelMX/yj8MjzWQz6bv69jsJKZs201gkWTD7ww8f3psK54UE7H2LsE+30Nfiw2WVPt9d7Y2+IZozimXtkjcEcbjbmsFE8+9P9gF/w9dUxMPvUnbjN9d4EIfnk21zccDT4vYkqH/b8oVmXjXH2o5o2r5/27MzRxIqHP9c3vSmHMXXg1OiT54eduPX5sxZyDAcfz7rozcMIr7qQGcPLh3nY9CMxur+zLmLQ8OhO/XzNnGDQKe96/KnHNlyyqxAM6y3WxjDtOT0e/zU+xICP4uvpF7fxKcSumuhbH7Z8qK9YjLV827vOCp9kv+vsQ2b+KWoxneJ36ogBfeQjH9keMPsqMddKNZg1F2MPUsTK1rzY4PjEq4cr4eKh5uWyxttcT1fjT65ef5761KduD6Uf//jHbw89YHrg4bvafY2Mh+58i4ddFI55MUxZvvT2An/+Od0dd9xx4Avfg/bXve51/+0T7a1xmOazVuFOv+Ky15z1Ps34spe9bPsrAp8ARfy/733v2/LxUN8/Ra3O5Hu1y3/y+nSLyV5ynTu3nd9icc6VB/32Gxm+Woh3YtgbdMvXPmmP8o0vDz09tlrxiNcY8WNOziZcYy07OumyEydePvAQPr1642LIv5zKm1x97ZnqDJOOng+k18ST3Jw9kj8MjW9Et/g3xtmP4mXXOFk9vsaWD3GVL51qZF3UCJbrw4NAY7Fr1ZA+vhg7j/MFd8Xml3121YWeM0dsrjt9RJcdosefeTrlQ4bSlx+iixfle8pgFkv6csIji9hqsK1H9xzk4tDWvUVXq04wZzxhF688tHImN1a3yPq0RtmFP7HFQo8tzLkXzeXIvlqKTSPDZ5cvOrBh4vNHT8OvTvTpsicrLuO5b8RCr9hgaOy08MPFK35Y5vac2jjjyNjz7xdCZLBXKn49W2cOe3jiqe78FgOMYgqPr/YqPfL0jMWovlpy+D4FryeHIW77iJ6zowftbJB4xBqWcXUK1zye3vXaa8D/2D9D3aI/+1FwzesrGLl/kuLPrPzplQOnRUj3gf7iCtgMNpY3Jz/zMz9z+MVf/MVzjap//bnKlxSKpca0PSA+4+ukLrb2TPmY8yUOF5t+JQdEdqvsvHl4Lka4fMIxdqE6RIvjPJxkbNWmmOPP/jw8dhqd4pE7nlgdMGTVvoORbjVIFla+8dm6sYNl7NBy0DqsOpDSX3v26uF7BY0dzPr5wrLaHJtX93UfwVtJbvyuJL9qXb3o4O/hTHv6YqgOybIL2x5onM7aZzP55aemja1P/uZ+y16e2pzPvMWsyZn9ut75Lzdzep9p4l/d5BIVc/P/6V5s4kSn7JdT4t3LW/3ht4+sLT3+8V3Pt/ona2ts8HvQ7hMEfNbyfV7exXrR3oEVtWfN7fGVZr3J2E77VT9Z/Spf5/RmDKt8bz6xL2u7h3dZXj7XOOKvePhq6xM+vWHBm/qw3Hx6uGL9knVONl+xrQ/s9Fb5rczFFL6xfS82/uZeEVvXCz0yexGfjdjaR9nTcw7SQ3RmjvTJtHzTM8+XOWJHR229xn3O53zO9mYWvk8WaWzM+fHaKcZi1YdTvuZsYJePM7148bR0ytO8tuZkfWH4Ggd+vEnwKTr+6bILl7x6i0XMCB8Gm2L1Os4WxqTs9fSzS6e8zWG5L/C1Mffcc8/2p8/k7cfsYYhFHXqzxDeiU8MjN58053I1b93F0DxM/qpNPsLLrvkpfeunJtVFHHzPZq+cis8Orv0HC7HFy585Pfnoq4Nx/tf46aiDN9Psq4O4LyK2fBePfNjNnIzx4K6YrcOenzCyhy3OFSNbWGuOdGvp3Wpffbu+i3OvxnK2Pz146JPe1/HVMf45tn8C6kFvD9rlWY31jcWlidd77vaKOvhLEn9VQh6po4bKLZ75lLUW8djg0XvmM595eOELX3h48pOffN/+wPed7T5s99u//dvU7/OdL7zwxNUYH8kL5dtX6r3gBS84PPGJT9x03/ve9x5e+9rXHt75zndu75HlTRdOWPnSV58NdPwg46t165lFKvy84Q1vOPzu7/7uVkfrUEz5yWf+yLVyCKs+PTG5hl3rcDsLwzMnt9/xrGk6sPDI2MN0dvOZLlvv6fDF0/Xr+sKfn+6lq8EXS2eF3jVpf9PX8yH2eSbwiU8X35xO55j4YGnVTw745p0pYuwBIAzERg58GyM+Zt741ZXc6yF5MYqFH69LzkBY8NmQ8Sv38pgxFgdcRF+t1AmFU33wWie4YjBHc43giEXsMLTWgZ25moq19+Z4qLjl6ZdE7Oiy0xcL/dZDjflH+dHTkW81NIaB8mdeffGM9cWZbvXOTi/PYrAmfjnQGSUe9wU94OW79dDzI275979e8JGYigtPLuqcvHxhikOPis36iQs/nerHdu41umrNVuML0edz7vNigglDLz/3jtWNLQz25O0Dcjy9htpnaiWuYiWjIwfvBzzTaT1hqIO+60Qs7MUH019B6eWDbx3EqNbViA/UdUPGPz9sYRUTnljQWgO8MOvxxC9ONWzt2IrVvPp0vYafPiwxiY9deYch1kn06ej5pse/uevIB97+R/8ZasEKTjuPvEHxX1sf+tCHbsGvyV5kfx72/yaZxZt0mbzZqpvN/453vGP7lMDEWsf5ql/ltzqHG3Z56NvYLjYbVkN002tsbmNfRNOPcRdCfH1jFzfiX+ODvr62+ivm4tHDq6ffGJ9+F+eKtc7lZ93WPR9m+g6MahWvns81Z3OtOOjw4UAS6/RJhsSiJnTi5WPiO4jJ4Wj0yyM+fDL+1dyLzozFYecwpLf64jMeXM2cvTiQsYZg5H9jnP2gT7e6iQWPrnhb+/T12aw8tkgevTiElaw57Fl3fvhEdNKLX1ziR2w1euVYzLDTn3ph0ksOC1/+ydnH19PNJn646bLPL537k8qZT7EVn9oYo+KjGw/fuBqaXxe1FvBXf9flo7zbz/xYF41Ma0zmWro/H7T7RDs//EaNZw2S1ZNNeTbJ9VM++eo8iW1t5ZvvydJbZfnUr7JsZj/18Y/Z4Kc77dfx1JlYkz9t8FfZtKO7p7PapGdfeTPq3O7a6o1KuM4jZ/J6rRXXem3BQfhdI7DQeqbgrfZ4UTGJv3jCal+Ub/Js9fwVh5t5N9X08JxdGp10iy8f1c08f3SLR/3KsTjI6cPW+4st97HejPCvnt4MeQMrjnx4c1O++N4MaWKafsjgdr9irOXXuFjEBrPY42/KN3/wga8+fHnj+vmf//nbWUKlGuWHDh6SD4IvnnTw5Flu5o3p9hqHXw3YilVPRzO39z72sY9tX3vh/FELMWj5o1eeYpv4fCC62d3L+a+fbOEiensk/mKt9ub85ZsdXm3GKB9zxFf1MJ96xsnYtPZ4rQUblIy/ic1u1sY6FXP86UP85MVIB/YaJ59kbMs93+0JcjTx6aB1j4hZI0+fnjgQHtwZz1xbMjpa14ox/WrVfAO8+UNedGatk9O/DMFC7FqDaS8X9e+TxuJXb5R+MYpJLZzJXsev65+h+iWVf8zmn6HCdib1YIRv11gPR8SHxEjHPYWeHhxf49T60DMWNxJ7a70xzn5UYzowkL5xcvX5+q//+u2v8fxTdHPk9eg973nP9pWnb3vb2+7bD5vw5o/8T57x9Fmt9x60+ytv7419ar7rpPhgTPw5Tge2/eaT+Xfeeef2EN9DwEj8b3nLW7Z/UM4H/fZg+NVh1iZ8OuqcTD/jIBO3Bzw9KLMOMMmsoR7prXHXETux0K3RcU8gJ9cVrK4nGHzjkXVvwBZPbPz5SlB7CLaGz6fXPi07Ony5RvgNu33IVozkxuTFyV8+7ROvqcVJD7Y+Ys+HWOhVR3wEFw+mMYJRHrDIybI3po/IZ6ObD37zQ8dY3vjqQS+M7sfM1SF8NmHgsW0NYCI89vDo6MVYnObx6BuzLT74xho+eXphpK8GfHWWpDdt8PKvT9a6i9HaVQP+51qXFxzj5sXbOoTXPip3/jRzuurlIbA5X3gIXoTfGlQHfuHQt8/M+cSjUzwzRr7kpo9ffubVBUbx62HNmMVaPmyKuXjDbl4sxQWzWMNVb5gIHn55t57k9h8ZH+TzWuw5Tb+ggUVfzq5v4+zKSS8HNdGHWXx45cqWPiqW6oPXuZZMHsYw2IrV64i/9LGe5H7JoifX05FvfvT20Hy99tqIxConvZrIEUYx1/P1yEc+8vCSl7xk+0sytvQvQ1f6jnYLIsBJHF/kXAH8SasXDwVe6SJ7cgVdabVbdaZ8lU2s9Og0nvLrGE//00/+pjze9JuNDfHJT35y+236lK/j8OpX+SlztvktpvDMVx5MG5yOC8VG1rKZPtm2ocOZ8jkmLw49H3D1yeLHUycxhK3nb1I2xUjH/taHYzzn7Nl1UJCdR2KYcbCdlL2DokOK7/SS45Hj18zFXl78dPDFY6chubmG6YWBn255OvjKLzu4apodGw222NmUAx0vYg7qMPFWImudyPJJt/WFT686NsdD9NJlJyaY4q3u+OzoGWsRHPNwyoF+PulmA59NeOYILxk7tZ7+k8HxApCNnFExhw1fm37p5G/GbFysxYVXbWGiMOVKPwyxhrspjh90kP6YzlA/dygO+aqxcZhdc+bFr0d4dOWiXTflk49bze9YbDNveZm3R/hHeOXq5uD+fNDuTTZ/s8bFjr9H+FNW3Md0V36+4rMPoz6Znv4en2zams/YVhn5SlOf7JgN/sx5xTEPiy6aWHu28eo3o5s/VttVZ50zw1MrD1Z7U2EfuwF31ofp2nEezzMpGZx17zsjYOO7Zs0jvBoMtNqnq5+25mzW9eUrLDqTYIsfjmujNxB4zg69vFDjmVt1m7ziLRbxaJNg5tf35nqw5R6WHr9q7Oa9XPQegKkXn+zdxKs7nHzxQWZON7/FOWOgI285Ozfprnrm8DWk9wuB22677b43GvzJma5WTen3egR7jsOatcq3uMIJiw+84oRX7Gr10Y9+dPs0rvOHDoKjsaVbPeQQ3qZ4zg8+YeQPDsKbVLzhyjXf7hfElG31LA448OnnT6wRnj2B0klWXPjVij6+ebjiQlOfTTx7wDXONgqDnvjFlH99NZ02c8ynJg58+erZaqi5cZjGER4MtnAisWko/HIznzbm7Od9W3bFMrHJYOVbj2ZuG+PEH2GxX/2AIFdf54+a0pk+5YLw6Jo7K/pnqNfx1TF+UeX7Yn1Hu/PeX6/MhyPOIn9S3z+XE4N47AnnktjNfde7T7W31/GKW/5zXaonnnG6xmuTv7rYo77b3MPqGzdubDGSeU/wp3/6p9tft//Zn/3Zdnbiq9dFxC9/rc3eg/ZXv/rV24N2+XeO0J9xF3/+ysG1K+7HPOYxW9xPf/rTt5rRsy/vvvvuw6/+6q8e3v72t2/vv/Fn/do//KlVcdKL6JfrWk86YnMmWVPntzVzPcCSj/dY1YCu15YeEvWwSqw9OLNf7RNzenKsHvyJhb7XJ2sDu71Nj/2DHvSgrTd2/pDDoW+/wZVL8fX6zJ6ehsTLdr6O4fMpBs0Yrl9iNKeDyCK+xFOsyerp8ScuOM3l2zrRbQ3im4s7mnh46fGP+BCH9UL98sWYrjVUD6ROrWU4+PmzBuoJD77c7EfyzsTi4xfGzAEWwituGNUdrkbWuvBjv8G1Llq2Yelh4Lem9Iuh/Upu7fwSXc3FB4/ceOJtk5s/4MDtr2zF7AMN9r4xX+Wt50evJvNBO351Ld5qWO7mGl3XBJ+oGMXBtjlZ9bd+1ogt4kv96IunfZ5PfXEkp5P9BnL2gw5a+a1Ne6G52OCIi40HzvCRXoMpZ/U3Viv3X5PsLWeGOOXFzpwfxIcaaWEWC3k1gi2OfOLDrG7VRTwIlv1hrobsXD+w2dBXa41vcnG5ltyDe01l75s9Wg928PiGA1furj364oHldYEuHXHkE59fuPiaOQwP2l/84hf/73jQvlX4gR/3ewVsypX2eKvOsbkNatPagF1MXRw2rHYesdf2YoDXpj4PY5XBEkOxwUF4LhwXiLjokRnzk1545GEUHx32yWbedCN62e7hpqeHcUqtxA4TXocQ+1kjfHpyhZkNPTHTdfDxiVorfbmR0ytHeuVpjO8QLgZzNamZh1tdxe2TH8VPpwc94kwf/kp8z3hgsEd6c1SdYdHPBh9PvPT5gyleOgifTlgbc/zAV0tYjemHhR8GfvUKU0+HTzKNba0Y6tWXPj0kduSFA/FVM6cblh61D4zp4sMrJjz5pz9tJg/2qkc3ggMzPPq3QtU3jOKGmy86+TQWX7XN7n9bLw/rrMm5fOZatI/cWNzqP2FZ66O2vjrmec973naTQo5XzzcSz94an8ILD86q33omS1ffmAzFm/z2x5Rvymc/pq9pk3zt6a94UyeMcNf51J1Y6SU3DyOeftrET49NdniNV705t7e8oXZj2B5y/tpj7JGzwc3r3G9hXNR31oQF47wzYw9PjOzzL068i0gNOk/F4ebZ+ckeX46aeBBeY/rIvPpujLMfYoGhkZunn0526uorY+Y/NHPj7o2lNzquaTgwxAcnf15vnet6REcTJx122ed39uTw6FTDKYdVjYpX7/X4IQ95yH1vprJp7djQQ7BRsRjzZT7ra66x1ejo22fw5FU+6XsD1IP2D3zgA/d9TzPddGAY57d1hH8ZgqFe6jKpOpU/mbiQuPlnxz/iv9ae3QQ3f9CbfsRJP13zctPnPz1zGGxmjtWAXIvo2ofFjE+u1uKHMeMhqxb6aGKW9/QvnvDYaeSaGMwnRrhs1lzIioNdcjxxuyZcR+ImM9erYS17fXHlc/Zio8OueKf8VsfiF3NNzOJBZK27uTjsJ2eyB+x33XXX9lUks870TiV4qAftH/zgB7eHE84j5017wvnu4ZOmjsUnZno9WPnQhz60fY2THFD49XJhqxnjV1djrRrPPqz83n777YfnP//5h6c85SnbGpOT+RqZN77xjdvXr2STb/PzqDrvPWifn2i3HzTxZdPezVfrQU72JV/yJYdXvepVB5/E94Am8pDdV7X+3u/93uFTn/rUlku2dCYufnWbOny2R9ms9QzHWvLt/LZmrgm27Tt22fa6wo+1pWffaXT48xDLNabhFVtyPVkP7KobPbH0VxPFriez1zwYFkNYYhCzc6rrmW77TJzyMIeDyGtw2sNyoN9abco3f+CpeXWfsjme1wA+O37ZIf6KHY+/zp//x96duFy/lfUf339FBJE+DjmEkiXilHY6moKGlmZZKB6HBhxyCEeQTiZGKBapKWWglpRmIGqOpSZSkYiaQ5qap7LB/+J3v9bzvJ+u3/rt/UznOcfgdy5Y91rrGj7XsNZ3fb973/ve91LYfuS3WpjLRd5IDWEgsp7JjNXYWuavOMz5VEc68KpROHSqUfhkxhrZ5JNF+HzB7JxQWz75slZorkm24p5UHPktfxjq1z6SJwpfz4b9jJM9O03t2Ivze77ne9YzHgy5scuWLh7dzrniKF49P3TFpsE1J4MlRj7TUSO45L0+L2b16lpji9jJC+GpJ/2Zc3HAJdeMqwH5KRIPLM24uTWEw6fmuaq44RojdvM52XXFrrjVAyaSH6LPDg7dcg6/OMjZi7/rNFzxwUBkyekXH+z8V29zxJdYNWuc3LXkl37ORnk7h50/9MXFvlqxMXcWOf/I2y/p06UnlvYRXHK9uO2bH/zBH/zuvtGusBVGAZHAJ8WfvP8fxupQ7nN8W+Ve3afPfCVr3rrtujbXTmw1Mj1bzZh9m3LapWMD2+Dm7POXrvnOSwaf7U7x80E+4+BnzyM/xQ0D6WuLcfaDrgsMkcHqImZvnP0xP7sOnA6balU8ZAge3Mmfce18uuXC3oHhQClecZGjPUZzcRRLvuk6iNx8+HNIOaD6TSM9/Oz1eHzzlaxci5mefaDHi8rBPF09PL6rMx8aH/kROz96sonROH/68iUL33hSfsSKzNnmWzzxxZE+Xvj0NRh4M69s692MtHDLrfqzLXb9jhWOOKJ0qq2+fPXZiM9aa9WQj0tR+V6pHqzi2XHDmnz5l2f1JcerNsmn3bWMq7ncEfzpX9zXk+TbmhiXDz9yEoc+MvbA4432F77whdf1n6H6s+qbbrpp/dl4+ZdvselR8SWvL876U/zk9XDDxms+eelOebypl22ya+3DnDnEu1ZMdhMvnHDJpnzyp2565FM/ncmzp3qgzM5Z4pxkr1lvc/vLnI0+Ytc+7BoxT3/qzjH5jCU8Pb3OIfPpg2zikKP9esDrmnFmetD2wtaZBk9OHri94MBzvnUGh08PhljKDa/4jLVywXcf8mZHL9S80a7GZL0A8WKAb7zs4RevXFoHMeEXRz7lx6YXKPSKi8xYY6eP5Co2dmGphTf/+fVM4AWrN0p8Okw+8iPTJi5sFE7j1n7WlKw4xGBML345ppPci1pvFH7rW9+6+AIXbnbVfmKRVdeluP0gKwZY6sgfvhzD3GNqXt5057XCDR5MGPTCLT6++M4/m2TZF4P5JHrwqs2UGeO3j4z556c9kn4YrVv57PL0YNgHcMSmsS1PdmLTkrFF9MJZjO1HMWzsNc1u1kes/Fb3xvp8V/cw4RRfdW9efGyKRX85gqnWcLLDC6eY+euNi+R0ijHbYpdXb7S/6lWvui7/DPXb3/724SUvecn6p6jicbYUvzjyPXn4zgnxVSvf9e4T7fRQdaqPV05zvtuQxauvlvaaf1bqU/h69UNq81d/9VeHt73tbYd3v/vdi2cNJs1Y8MOWI3ryk5+8vqP9xhtvXDLfnf7a1752faLdp2r5ljva84AVr1hvuOGGFafepycj/8j17W9/+/q6mD4BO3FhmWs7bnsHf2/w8SZZU2e1r/zSy7Xrg27rF66ejj7/8ObrCHL3Rs/7CI7cu+bJNTaoc4d/91m4eHTc7/iCkT9YzdUcuT/Skw8MfGNULPAQe7ryRHDxYDSnmw+9ucYOJXOusSeTjx7WJLoaKrfOVbrFl860Nc4XWw3py6H6xQ+HvHjw1INf12ayenLNGunDLK9qtZyf/aDDVvzVOVl8OuKko5nzr5l37ha3NSNjQxcVs3jgqnFvisLAp1O8bMIlR3KoDmEXDzlffMMw1siznzaw8cXS3oQRTayZezbqWA3ERJ9fDeHRyc+UG/OLiq+Y8YxnrHQnHvt9rcxh0UPsJ8Zinv3IH4zOVDEifvCznT15+K0LHn3ELzmCQ0crT3rpNiZj096wn43TW2BnP8SB+NDE3XlRzMUWJn041qhnWHUld8a7VsNjW+Or/dseZiMX8TmTjO1ffbGya+2dl8beaPc/R/yFE+LjauhWf3VMAc3FEYCgC6b+agK7Q/fKKtDmUOPGLPf5lJHvF3c21nGSTQerNWwT6qeNDazlh9wYXrpTPn2EM3n8sRNne4w9wsfT+KBL5mJxIJ7KgW12xqh4yw8PFpwZrwvVRSse/suJXQ2vGPdDxsWskRdvY3NxiC0erHDFdIzYpOfg8EBfPdjO+uxY/KhT6xOOG1W543mTwQOn3KuVnp16w/Fivtg9GPUJBzHDoDNvVPgw5tpWA/qwyPJJF19DM3ZxlBv+PDDNNfJkevjdmOCRI36M20PG8Ol3YC/Fsx9iaS+k51Bmi6rNmlz4kR9Tvuwph721I4Oph1Ps/M94Jt6xMXvYYoa3+8kHTGvlt7jG9KI5jnc1ff7ZiEfbx4tx4Qd9cSF5o2KvDsUd1lIaP2Bo0595tNt1faovH8VgvOuGcarPz6Xswrcu6cMr3uLIhzjsC/+MyxvtPrmVfjrX0vPtjXafMOvPO/mKilNfK7aZXzVjN/nhXKoPl07+TulP3XTi6W8t7RjlsvOvxU9Y2e6Yuzw9/HSN93l6+onhGpm/bCXr7KAL01o6m8LEY6dFdJBrBGVjPOMynvMZC12E11neNTz323mt//snGz6Lg5Sfrp3udd7wdoYi91Z/su2NXGd19nr+ig2G1vXPVlx4SG26h/BJzxvVfDmrfZqGf7ge8Pl1z/TGdj7IGuvpwIwPd9acTnV0XwpfPPTIanhh44mv2OK7f3gziE943mT357bu47CLpXWAUf56ccoJHh1NHHq2Wr6KgTwyhqPXit1e9Oe53mjX3HvIey6ih/Ix7cVUvHT4T59e8cPKjg2s7NKjy7YY4SH6YpyUff7yGaa5+qkrvOqi1+jtccBPb/qaY/IZo7H49+fQ6kJWbBOnMVkY4oRjbxSjfq5DuOLXTsXLL6Izx/ndezGEVbytN93Gs+74sNlpxvwhtW/OJrkcLxf7Arjwo9qwDxuvGOM5W5yxiC5518/ULX79bfFG+8tf/vL1Het8uo/3DFc99J0lxWfuma83o/yyyycCy0U+tcU8+wF/5+1zuvTKv3G2auANEp8Q9z23enPktcKnP/3p9Y9FvZndp0uz5QtNbHP7E/38z//84ZlnX01z43ij3T9D9YzTV1O1L8NgO3MIC8bTnva09fUAfZLduv/93//94Y/+6I/WJ9m/853vrFjUdBJsfuy7/LT/2jv4NbbZTB4+bK+7fuAHfmCd7dbM+sIR6x4/m/KhU83KS+9epcEh75rpNUuYejloyL3PWtkz4qTfJz/puB6cfXpxw6XnLKEHz33Tvcf+oydG92r3zPZtudkrCKYzig4ZX7Bg86NnW2NT/fmhD0vO7E8RHI2vXovRF3s5T9tqyyZ/enzxsTXmv1rEh0MWhrlcxNsv75OrX3rG1RqmnK1DOnj5YlO9xBgVA3k5k7GTu0YmZ/hhVpdqzka8akWmxmxct331Brn1njWwDmJuDcVozJ4vxD9cvozJxBrOUrrwIz4ZXQRPDNnhkcGnBzceHTI4YrEv5WOMV/56umoNPxx8NnQnVr74od+cHoIfnjG5uPTi0eCmSwcPhQHXGkX0e++ntcsuG/j0ek6BIafWBVb1cd6wj8RLP17xkIdvXOw9l6sVeTWYOcLT6IorfBjGfLIVEznb9iI5Pc1Xx3SOiK9Yydiwr81Y+dXYuNbtzfYefxoMfPbeaHef+cmf/EmpLtkaXOGP2/SN9gISMJKoYrUAi3nhR0VItz67OZ921zLO17SNx8/lfKVbbBPnWsfTZ2N+GrdJw29T2VgovRkbXvP67K0BzIguTG2STUZmcyM2rV/xsWnzT9vk0zd78/wkMy9efb74t+lRPopBHBF7tXDQVBMy+PRgavCKP3/0ys8YP1/stS6+Yine9NnALS83m1lfF6wmProa3fTh8NNcnFNOP6KHZu+66rClm0wMGqz8sg1bX5xy7oaSbm+0iwemFh59Ta7lzt7Ds5vvxJV3NS321sIcwcZD8NQ6f/kWV7mUA1yk56f1NZ8+jctXvWCi2cNvH8GiD49+8dBhE0a1kruG8kWG0lmTs/mBzPYAAEAASURBVB9qA8+LNjc/cn70MMpNDJqYwgpj78VER29NWjO9m0jrJDY+ekCCzyZ7GJfztfueczitAX54enntpBbtKXL27Z3iKLbsm4eVDXk2MNLLLv32Hv48L7JN71QfLnnrxvZS9mzoahH9fa+Qicu+8CfnL3jBC677G+3PeMYz1gt0vjVxiK/WvNzEo5HP8bF86USn5Onkr3l29cmb6+Odspm6lxvvGMW78y+Hc0we1pSFe0w29RrT09hl05zO5NnvrnO61ojM3ra++cWf+x2f3bxWwiTT2GdzTG/G2nj2zkkNbnttyhvzle/inrLuDa4Lb4R4A8AYOc+84eQFnz1b/mR8miOymW/555uulh5834HsPqi2ejL+vEjRu6/3gj6/5Skf52vzFcTZj/w21+Pxp1UHvHT1+PkwVxP3ELGRyY2/vt8Wln9k5412vXuAWKoHjHIVg3uS2qsjvNr0zbZ8+OsspYvoFpu+PaNWXhj5J4z/+Z//uWpGpn7wsmvtZ1zk2k75gcM/2+Kga16udDS4EztM+PQn5Xdi8tm8/LrfssVjx2/jcMjZFpP5KRJrtS1264Onx+uZsjmsYpvj4ix3vWtSj+RtfRBce0iMYRkfi1ksiL0xfblmt4SX+UG/uuu1/M0Ydhg58Sle/nqOkRPZxNhtj83Z7HHjofjq3BkbRrVPt7XmXy7OjB/5kR85/MZv/MZ1+eqYf//3fz+86EUvWteRXF3rrZ16tLbWt2c+PGNvSjirxAqn/9NSLvIUNyof4/LHM25OhvDTb9ycvPh8YMCb2Y985CPXHiazbt4Yf/Ob33z42Mc+dvE6Z3/MD5v22LE32n2iHc7+Rjs7mGzL0VjN7nGPexz8xcGjH/3oi78EoP+FL3zh8Du/8zvrO9n9UqK9FZYewe0abT+KnZ+ZQzXR1+jHpyse97e73e1u62z3nN51oZ94572f/5k/PsuPRI69oabWiE868MhnTewbMZD7Ja39bt8g501vfsNQD7psNHnApCduGOx7o50uuV8Ei8k4m2Lhx30LXr7oyI8/jW/68tHzQ4fM/TA/7OVGdorIXMOuD35h9Rp22s0xLHP+9GKbceCJURzVls6OwZ5fMSej53rRN6YnRjpy7twXBxlfWkSvhsemOOjli6y148ua0RU30ouvOTs1Ei87ObNRL88M4qZvvVExePOWTAz888W2cyFde4UvcnGg8psxx68m5vDEoGcfVRu4MMSQDpn1JuscN2efX/qtB1448jdPBisbGOWaf/Hkm3+xkKFyJi8OMZjDQuWPZ/0Re/r9YhCuGFB5wGFLz9qQwxB365KcHR5iBwMm/XDIigVPQ3o+uv7KTc+nxo5e9bHe+DNuY40umdroYbfn8u+Z396zV/D0bPkw55t9axZfHdpr9oycvfGOzw/b6mx+n/vc5/DM7+Yb7SXcZlgV335IDknEl8p74Few+Jv6xWlyPoy1/F1UusbBpXDyC/pSesmm/pWEw+5qbSYuWxfaN7/5zfUnuKfipFeM9eGY24RdDNZP2+OyyVD82bMNF7+27wU6LhQtrHCa29TFFA8+/9kVX3p6bZKLrINiz49PPHj6/Ex7YzL7c+qw6YJ3Mbu59CDBppiM3Yh8EqDa4XUzcig44ORS/MUjPtjVAp/eXk94xQODXKz8hmleTOnQ46MeDlk8fC3Cdxh1GMKcfslrbIzVvxyKQT7lTCciV1M0awADqR+dYwSneMuZH77ZZIdHj86kbPi31pPI7CEPgnMtYJLxrRezPuKHrBzNxSMfY5S+3qHewc5m4tOtbq716oc//ZtH4kFw/Gdu5237uOuILVwPoL0ZU33Ugi97Vdy3huRXrnCqSf3ETrcakeFVD+Pi1ld3+hpeGBMfL5p8vK5lY/VIXgzhkR8j8vyLk30Yx/TxyPnVUBhqvdvCdj37RLs32v2JNNr1FvMqfvDpRag/g/NCVO58dc0Fxc+sQeNy1u9EJ2oMZ485Gd1wW2u8qZ982tA5Rumekh3jn+LNGE7p3Nb8aqcv/z2uXcd5Qrf1sbeMu2amfvGHbU43H/HjWaNaOGHU49tTbPk0d/ZoyYrNnF5rbzx16MVLjx9Y3Zecb2Ty9MkU55rrSwyIHGY5zDrY853NdCJ4yAsGn2D3Jox/zMUvXD7yxS+e3j3DOW0OT4Ol8V8M5nIWp3G6YpvnQ7UWizGaOOGzERus1t8nu8QBU608j/RGOx59dtU+bDJ2cuEL8bP3yfgMZyltP8qNHzH913/913qDsDcH8a1BuWzmF6fVDqP6TWxxa2jWSC7ajDf7pbz9IIvKm337hGy3N3dWqwOSE1t2yJj/9ltxL+GFH3jsNATTGtmDsOWW38ZsPE+6Z9Mjj/jin860g1+tGtOxb6duNQyveXWMP2PGq1awThFZeHSM0y/u/OAnm3h4fLf3zNlUg2N20w+s6pIveFOHPLypY100+uTG+nTUoNrjeaPdL8yv11fH+CS6/7HiO9pd73LNnzhak+KLp1adUXje7PSstxM8RGc2/ObTJv1pk+9s1EEz92b2s5/97MMjHvGIVTt24vc1Mu985zsPf/7nf77mnd3k2fKPqrE32n1owFfSkPXVMb3RPvdHsehrcB/0oAcdXvGKVxwe9rCHXXyDkA//qPWtb33rxa+LmbnPMV2EN/Mu5vPS8/LGxTJtjOPL3Xfv21s9+8sZJspPNuVjjtLFR+zco1xfyBngXLF/+EJs2PsFtnsGXfb4zph84/G/Y7KlW7xqTxc+vAgPtgaDjXH3UnrwESy44kXz7MKf8Rmrl/j5hut81NOFSUebhJ+sHPkVEzukh8k/+2JPvuOai8W5PP3xwyY7PV61KpZqyFZd6PFNXr3EgPDI1BmO+eQbey3r2oeXHI7Gzl4gs85w6VSLMMnx5GXf6NmLVTNGxUmXTRTfXE58sasG+MVmHJGHY4z0mtjEUbzFIwc2+GFmKy7+EdnEMRYTe2MNTrnRlwe/amDseZAO3fD4qI50yKqHcTy46lCMcKr3tBGrebFUt7DUAPEBCwaZGIq9uMOdumT2AdtyL7bm5TZr3i/wYE46NhejfUam8Vl8sJ0Rejkislr61c2crhjVQjOnb21hVG/86hHPXGsOl381gA3XvdHakvkK1+c85zmHJzzhCSu2YlyTK/hxqz/Rno9LOU7mO8d+9Vd/df12wG9gFEVSycPCQzs/+fXoj/mFu/OLZfoU186/0lin3SmbdKafdNtcHpI8lLznPe9ZoeFHdKctvF1OFz9fNtxOu5053HSnfbb51kc2tM1a7G3u5OlOf3TZdYjSDZuMLoI18Vwg9hWiwy/KVj/t840X8WuvOkjxPfD4tLgLkcyF7CLU+EMTk10vzMN0mDqU5hvtbMSniVUssGGaGzefNRdDjR598nLFi88/3P4UThwwOyCrnR4O3WoCg5/iE29z41q25h5y+s0gO/PqWCzVhH4x683FYP3EwJcY9pji8ashPHYeJprre2FBjw4qXj2/3aTI6GgdsmoVL3t6Ypr1MoYlZgSbb+utJ8+eLV116kX0MrrwgxzBcANx2MPovFQnfmbc9GHyge+TKF7gVXtY1r4HT/n5TS7d7MTClzdE6LIpZviniI5W3PTiZQ9rysPK7pRMrlp67MSL2Khr4zD0+V/CC7rJyWDAzTa98Mjyk6wejiYnDcVLh4/48cKcftl3XqWnx3fT/6Ef+qH16bXr+Ua7F7T+g3q/aJGzfc5nNSqW8tCLm+4xPfrp7rZ7bZJnE3b29Bvr5zjbY3FO3VPynR/e3ufzSvTTDeOUzc7f7bLXp1ut041vbjwbO9fz3F/WlQ7+bkN/4tKzvtMej46GrxkXF4xJxUOnc6V7Bj1ytsco2x07/8nhOqvCJUed9eSuKTn7ZFWxOG/N3cfTUR9nnfOQX3x26uCXlf58/y53uct6kxqOM9N105tUxap3T63e/BevMbmG4HR+q2cY+LX0zBvDlqMeptZ9IYzuKWRsWzP3AeeJ3Iw1NTTHl7eckbH48KsxPc0cyS18+sW5hBd+0BGf2orHfcV3Qvv6heKmw6826wOinMjYN+dLa57P4pm27NSr3KZuemRzX4dPLj72PTfNvMnZVS9jZE6P7/TF2gvCGUvrQ69xeVgjr5P0MBGccjJuz/UiNdvpK1w9Oax45sXaPuAHT0N0kLjVoljxa/CSp8NmxzDPZ3XAkwvS4zef9sXBV/JyYRt2OM3zxwZvt+cvvj7scoOHwuPTmnQt6MnCKf5q7DnMC/Wbb775unxHuw9Y/fRP//ThS1/60sVfxFSbYs73+cjP/xSjfSE+1DWY7Xmt//mJDyfM8sdD+Hiz4U+b9PT0PF96Nn3IQx5y+JVf+ZXDj/7oj67XCORkf/u3f7u+puXjH//4+lobrx9QawejuTw8F+1vtM9/htoaFeMyvoBn/BM/8ROHpzzlKYef+qmfWq/xkn/qU59a38n+/ve//+LX61j3/NOrbvXZ6o/pHZNX2zDYGTtr5W7c+WVM7vo3bo3nfi1ftbG+ZOKmb4wPA743gbtftKZ03RecBfQ7a/TllT9YYiODGb6zErlG8MUUHr5YEH0Nhn05cfLBvlzFNvcW3PLq/l3d9PCcj+zm2Sbu2grkQiz08ZFeDPzPHPgkK2+65aNvzJZP9Q2HjL14EP70gyc/8vzq1Qbha+xq7QH87uf8iC8sc/VpXcKnk564UPGwaT3owxILUtuev+jD1eOzo68hce44ePyyQWxgN1/Msx/h0SdrfcxR+Yml+ODQ0xBsDdFBsNSULl5rUsxiy34ZnP0oRnM21tb1w8Z7K/TxwxCjlv/syV0XnWtej3suQjPOORZneI3lwF967GHjoWT02LIrhqVw9gNPLD07sMm+fd7awsYj73xg3wdOJqZa5BO/OsBoraytGjrz1Rt2z+XiJIcPizw8Mnb0jWG2nubGGmJrDIc+Mp51SpccLhkc/pyf1kfO7t/Pe97zDv6xdzhrcIU/btc32u95z3se/vAP/3D95vgK47tD7UQFbIKbzx7cfvu3f3tpdIGY2EyaDYPIbKBJbbCpR3/i0LfhEBkM83hLsP2gl99ENjFbvubmT54N39l2IXbYpqunp8nBgTkvRD4iWOkak3Xh5YduesZyc8H7BIoXOS4+3890pzvd6eInDOjwybdx9tVSzA7Scg6XvoNLDejO2GZ81bc/r6MbNswaeySn8jKna86XMb/+VLs/s3G4+RNubxi4AU+bYhMPP8n05cmvsXWVqzl/xurklxTepCD3J+v9l2g20cwdL0w45U9fK/9sw6GnscGTp4OfPpKLN0Z6MVpd8K0fO7zw2GSrLho9REdLzi95GMbydyOhx04sPjXczQROuamNX9640ck9Im8NjOXEXrOedO1JdvkqB36TezETPmznhRu6NznEzAe89jhbDw5i9ieyPaTjX474nDmkXzzmcql2yevJtGMUtr3YGK4GLzt9awEnHTb0yKJiTWfGBQe/a8x4Et3w6Daf43D18WHsmGKaMU8/7KyzN9p9R7tPbqEZ69S/0rGYvNHuRa7zpWvBPps12vHYqRsdsR0jOjvhzZjnON2wzcOox2u9kp/CYJPdKR0YV0Lh0N2xpox8n9PfbfY5O7Tbnuee9xnOKdv41qM1aY+17zu/nE18sWnPmVfbMMgnTzzmteK91D6Yus45c3Y1mOEUT2eeuTYpezGSsYUbnl7e5WAOz3nma1/Ye8FrfO7cufVGT+cuPWerc9oYrvu/url3ecB2lsKSs3uo+6Zz0jVTrPrOTLE7W4un60xc9PiwHnNN0g2P7s5zj3GGdy/oTBcLGX1xOtP18OUOk1y8iEyTp3sIfePWVG18uMAbhPjOITruJ+zKQ6/urc8CHz/4df9VM/dgcZprfGlqromtvcpOK38yuZLjTVm6MMjEUs7mbMn4ojvJHJ+OPMz5KCe6bPkWf2uKL3fNWvbiER/xz/f0WSzWAea0t04onjGe2nuOtB4zPi/+tOKFXQz02IpV3NNX+PpyNGYPyzXC1hjpszGvVvTlCCO5ni9+NRSOMTnCY2sOB+lhI/Lm2dPPhk61oJd/fEQPkU174xr75PTFbT6JbthhJseftSJnD4edXMxdN+rpL0m8hnjlK195Xb465hvf+MbhsY997PpEu1jsk85DscjPPJ64xWNvz1zbHzM/eFH51+PPsXk1hW+M6MDUR3Ns76qNTwd6k/vGs+9Gt8eRveNN9re85S0H39nuemmf8bHvk95oh8GHT7R7TeyraJyV7ZXiLB7+rcnLXvayVcve+ILvFxivf/3rDx/60IfWs7BcqpEYonLSa/moDvTws9355OGFRUfMnblsOxvDUZP08MK13uxgsXHewp/7QH6aencPgNGesV9nXGTlprd/nIUwYOd7GZ39IO8cFws5DLjsa/gaHLFad7b5xicXF2IXRrbygi0ONdHTcW2SwcO3tu5deAi/+0l5dG+BwRd+jY04us7wZ7zViI4xEqNY1Dns6lAc+OHkl296aqfHFyt+awQ7fT7oae4BsMk8IyBztmosb3pwYFR3+dBB+sb06bWnkvGTLzlUe/VJ3/MCPzDkqIkL8UevmPHgiCcferWjQx8OPxo9RCY/sfAFv1qXAz/pqhUqJrgw8NlH+MVanPRQfDWxz9h5noFJpz2f372Xk+cq74/w41nyv//7v1c9ipkPduYzZnmHJxb+spE33/DhIrqNzeGKU89Os2Y905GxgcOvMVzEl1rLlw869OVur4WZj2oIQ5sYsODz7V5gb8CGCV8joyNGWHy1tvaWNYebvDinPzZasZVzfuiShSsGsdXw5cbuvve97/pE+/+KN9orqKIKLorv00FvetOb1m+zbdI76Nor4IXha17zmvVA0AYKrXrjG7exWxO8NiAb/DaXPuqi0ePbiIj93vDDcaHkC59tc5uXb/ZR2Omwd5G5IFzU8ekbhw/LwdshLk5EHtHvgMDj24Wbf/LiY4/vxuyTFj795hDyJ4W+o8kLdRf4jIf+nOf3Un2+T+mE581xB5n42FSX8i/e/VCTo0PZIUGmPh7OHegOdpjf/va315vv3gSI6HYT40PjA19MYpixt0ZqghyO9773vQ9+oaZW6n7Xu951NW9WtH9gsS2v/F9tX2xihumBpN8Ok8nbi3z52iflR7/DVa2MkdzopMfeGLUma3L2A74HWbbsjNVLLeRVLN60JuOzeGHY233inB0MPsTTQyB9zTqWA91ujvoZFwy+YXujxD5Wc3w3NLH4Xk45sdPs8fa0Mzk99eJ74pf77MnFxO+uax4flji0nbomdz778PmY1/GuCx+OHmWn55NMLx4tvcYzLjz+tGNE13pOm/YNfXb5xU8vTDJ0Km8y8VmX3mi/3p9o90a7a0V89rB8jE+RmDVxVbtdt7wmf+cdsw07O3NrEM1xPP2OveOou4Zfv9tMvDne9VpDOns8Uzc9fWM25V0seMbTdsqyZ2c8ZWwjsnTw6HWdkLXve2ilG4+uhuiicgvXvDZ17ZXpdxmf/ch/OJ3z+XINkDWf+w8evn5S+njJsq/vmssOrvPvzne+86qHN7s8f7qP+0Wwh3XPFsj57Fx0HTg7nYNq5B7m+sMTA0z3S2dxbzaoU7WqhnpnuB6m+7i+3NWkxj892HxWA3xzdmSIT78oFYOx5hPingWd23Dguq987/d+78V7LFu/WHe9w+z+4dlGDdyb1YpvzVju/SM855Bxv7yVB1+oe/qabD/UjF/PHeJTE/fU7qt8yQ1f6x4pRs3aJs8ev1rpi0OdyBA7RF79+JrEDo8NHTbG4pBfeYnV/VcjgxmxsTf2+zA5PY0Penr21owfPPVhr7580hEXmXW0NtYoOVz2nuGsJT2kb4+Km764+ZNbOvX5YMO2Glp3vOT051h8rRG79rM8EF98atOOrFiN2c25OlUTcn5g6fMjL2O47NOjM4lOenTRzmtt2Wp8t650J5mXZ3w862KNonD0sPi2Dpo3VXxlqjd1/eKuuLK90r7YPMv7p2xf+9rX1h4SX+eJtZCfvaOVq5isi/j417um7BM2YYtljvc52ZTDqZVHOunVJ6ev5tZYHv5B6qMe9aiLsYrPm9xve9vb1l9slxN+tYWB+uoYX0PDz2c/+9lDn2jvGjlW7/vf//6H3/zN31zvRTgvI//41HfFv/e9713nfHu1nPjd8cjEiL/L8duv5FpYfO76eNbMmWLfWFfXnOdxduw762FriKwzw9hayx9+/o3VT9/Zzx5Pz971zx97OM6Ezjc4zh/3G/smn+zEHJa1FSd9vlA56fHo1MOSHx6M6rRj2M98iheVF7vOJfhyKxa47lv+wpyMPV3nOb9s7cOugzDx6LXf2PIvV3HTJ4fHRqOTfbHjqWW5qS8MhC8+vuBoUecLX2re+sBrDflyvuAh2PT48rpXDGTVgg7fGpn4YfPPD4JJXyzFbP3xy3WeLdUSBj19zw9wzOXpGas68AVL7HTFop5aftjmV75ise979pr1raZw+UHyLofm/MEVs1jgmqsH3Z3I+CEzRnxo8HujnU9YYhdLxA4fBjJn41nUfoRjnf7jP/5j5UdOV82KTcx4xQxHLLPhyce6VE/1gsFHuHiw47FrLY27Btvn5cx++pOj/GHZP9nR0+DzpS93+BEd9vzM/d/ak/WhDvnTbx/BdS6yNdbURp+v4pA/vj7io/zSa0/xK0/7QY7iFx/yRrvXzP6SDOVrTa7gxzV/on0mluPLOf/+7//+9X2zglZIGKdIEaLL4aZ3pf2OPedhXKnPqXcMJ7z6Yzp44dSnv/c2go3jJvonf/Inh3e9611rc0y9MPJlc3W4ptdFaN5FlH46enrwyOCgLqD66a+LJSzYEZk119iicMVHTr+L0KHk4KCDn46eDr8uwPZicebbnJ8Z04xZbg6oXkiZu8C8+Xive91rHfRekN949mkJL9IdkPzSm37Lb/bVBI/PalxfTvA0MSL84ncIi48NPDodcnTham5Q4kFiw2usdxB5sd8n8eTrxa8X6Q4ZxAZGOPkMzzwSi7m4xaOZuzG6xn2q3WEoXp9m11zvrYPeGiL4UXm3bsnw6eeLXzqatXcYGtOXKzJXF/n1gkKO9MuJ3rRJjk+vli/86kBXHemQGxenXh3dgK0hmXkxwpGLvS2vMPHFL2Y9G+vvWrd2cOhWP/WuZvXkbiRu5H2KAxYMa+6mLucw6IiBPTw+PEirqRx3opcvMjgzfuMpN44Hb9Y+bDxtklply16bvshRvlq7Y3az7sWSP/M9pt3XjMsYXutJF02MfIhJm7GGzcbeIT9G+B4ybot/hvrXf/3X66HB3hS3Zo/oi3WPqbWYeR7TiXcKJ/kd/dVXYO7/rNtf1ds6dT/Ba3/hIbzWMJuw9PZnmM3zO/U79/C6BtsjfBlrXjB2f4BTbLDN6fAHL3uY+Zpj8vjizE/715nlzKcH2/ODF9l09X4B7Be/xs5I1xffzmnfHQ7HGdizqfuWN8hgIXL3Evp8mRcPn52jcqk+dJyn5uUv7uogNhjkYhcPLGSskbN1jXYPd1/QXMO98V591Nyn8c2rk/O/+4r1kLumDp5rug/wpQZq5Je15GKl0wcPYKLwixGvmpSTXwyorXrJkS4dtpp5uThTqxsZIlcX9yX9xCcPwxiZ880uCktfK47w+OXfXH7lqObi84Jy+g/bmmvlhm9cTvmBIweNPFJb62F9i5tvmNbBWurpseuZwlqWC1v69XTzLyeULmx+EBt8c/z84MFKln656DVEr1qJT43kmpxO9sVQT4bUXINFl23312KZsRYvWXrnkf4nTzpavsobtnHzfOtR+sbTT3y9+rp29FE4bMLqOvMs7DXvS1/60tXTuRbiG+2faMfnSzxqqHV9G6P2JF25m9uL1gpvb8vo7MceK1u68fW1bPThkbGJ8Ftfa+f11UMf+tD1lbIPf/jD15lN1/XW17f85V/+5dr3chT39OcDCM88+yd18432PtHuXOQPsYl8XcxNN920Psk+32T/5Cc/efjjP/7j9Z3szmxU/dov+Q6XjnFyuWnxycKYMWQf3jK48KP1c96Ws+s5XbUxhhEO/64R+si6ulfZi/CKj5342h/2TFjtHzW2NvSc/3CNYTjH3YPo8M2GXE9OjwzhdV2Yux/T5S98umItP5hwouKWg3q4T/VMkc/w9NVOz7d43bv6pQV8/tSQ75pzC8GEU1z45V6ecDvnqgF/WvHCgKXx1XUGgx7M+caxOaz8Tj2+2Fhb+PwXE15+rZUxDPcJc7WqnnTVz+tOcVkDdW8t5F/94fDD1n0BPxmc/PIlPxhiFhd9rz+R2Mndr/JV/GKwJ9RKfegaI37Fzyd9/Orl3DKnA4OeeOjZm9UazqyTPY/EIZ7yK6/qpJe/NuOBxUbLLx17DEY2evNs+YSpPmpvDcrbOeNDHumwUdNikxu/fKgjyg/MYiZX994vg6GxrRU7H+LTWks8dWHT3pNjjZ9s8g/Putfw4ZjnW7x49WHAo59P/Kg6qZH86cJM13OptcSTm32z7x1xi686wOYDFnzycrKv1M+8fOmwj+8DN/6vyO36He02cotWcRSzgsbbeze1Bz7wgeuNN4VSpFM0C3853FMYp/g7tvnksbvcPOwZ226TTv0un/PqN/HYxQ8jnk33j//4j+vP3NowdGFODHObp4MovHTIbfjsWhOY4eabTRetPoz6sMIz70KZePmCiy8++0GMxuzdVN0cHUr0yVx45dLhyn4SXaQXo306CbYmZheRF4G33HLL4d/+7d+WPh98s2dr7BPtLm42Llx2Lk4HfvWaPuaYDRxxuni1cjbmrwcHdmR8F7+eHhxxG6sBftjdxMj50jt04dIVo4NI7A4n16/YtQ6oDrJih02v/IorOf/8wNeMNevCt54O0jfORl88dMrLGL/Dk3/4crEGzhD4SIyug26a7RGxotaq8wp/NjHBoIeMy9fcuEaGyiW79NUvuR6/murNJ76c7Hl5z9rI2yfPxezG6sHBHnVDNodTPmyjMPhQWw86asWP/eqThX7ZAgsGW3VUM/rs8aqnOOiFO/3Qj+a+4Ju/6s8ewcAzb83pRrMueOY1tnujU1z0jCeG+Vxn+pPS1SPXjHHz7PMxbRuzmXrm5ZvOxIyXjTn9fCavJ7M/bos32v1ptk+ReZOOH7H3EHMqnuI+lmcx19MVuzcqfXp4r4M5nWiO8Zqf6rObuvGyaZ5OeR2Tp3tKhn8l9uHMfLNLNvtku9/4dMlc9x7GvVnquuz6Im/PZUPWNYjHvmuBPp7WOjZPt1z1rnN8vXMCTwunOXxjfWeJubH7p3tc54wzJh1xmutR9sVbnGI1RjMeewypj18aO9ucl/Ddf8hhsfcscbe73W29scNfeM5S90H3EOR5w6e3ndleoHtjXo27TvjSXC9wixVmL2qLVw346d4gLnr6mSu/3avYRnRngyVeujMee4IP/ozhe6McGTvn2aWHnx/41se9Qu4Ir3u4OKs5LM289SUvJrbiIBeftXDPcT/jm035WBtjVGx0xEXGP3048lVv2OZiYGtP2T9sxIFnzr+GBydf5hpcNho9dmIwL78w8Kq1OLLDQ+HZQ+TsxOqNDs+I9M2N+4VIenwWJxyYmvjM5dLzobjUxxmg8Zd/8Wt0NPZ0y4keXrjN6TYm4y97eHhITNWjsd56iFMjx5Nv+ZnXyBHdncJONm2KWWz54QNfa7/BSBd+mMbpzhjwzGGhXX8xz37Qi4zVxdkiljD0xUw3P2LWnD3+kuZ6fqL98Y9//OErX/nKioVP8bR2jc2rmTWxJ4pb3qf2x8x51oUfsilvXM50dspnOhPTteHcfNzjHrf+weuP/diPrTkMz63ebPdX8P4xqX2P+AzLG+3PetazDjde+OqY/RPtfCPrYy38c3n/J853sntTCqnNF7/4xcMb3vCG9Ul6H0jhQ/3yQ6+xnrzcyYqJLL10pl62bFC6xmHo22f69lbYnRsT11i8Gmp92apBZyC9eOqBr69O5PzkE9+YT6RW+SfjT4xh0KWD8GC5RvFcN3hIfHT15JoxTK0YGjvr/fLYPyY/d+7cul/1TCHmzgH64ikPsdpfGj5csaSfHzw2c83pOGfFOSl7/PLPnxw0uHJVXxj5o08Xhv3s3ug+6TpA9rxnkfTxpp/mxQSrnHsDnQy+ZwCNTzp+qaWGziNx0ROrXryong0+O3mUn14dNTI6YtXjoWoCS/3lLye50dXEx7448Lr/w+Kn/SNG5LkLVrViz5d7PN8wvKZx722PhtPzIGxyr4fpwGDHl/3UupmTmdfELwZx8qvREd+cG/NbreiIz73cGsmZT7GI13tPPcvwha9nL261kreG8pUfumKCwQc7MbHTa+VAhvTiCgNPPcRFpqkB/9rUC4sNHVQt+bI++oi+nBCfiDx/5BG/fMll+k5fTu1zPHWVu3UJp7z4pK8vJ37I51zO9PDIavBhy9F9w3e0P+lJT1qh5qu4L9df0yfaBSYILYf6xrtTCUSndJJ/t/pZ+AotFvw22cxj6h/LfeqWUzz6c0xuM2hqOmV0k9Gb9aM3G/mk/NgoNq6NDSuSp9y0/IRPxo7MGN+6t/Yw+N5rZeO7qZGx9+aoi98YhkNRMy92Nr0giu9Pn/skND0XnReD4qFjHm7xF9OMeeYLxyGnFmJxg/vqV796+NznPrcetPBgsv/617++DmRvFPguP3n3ZqebRi94XKCXouqmTh0exnIup/6MnS7fmlgdKOJhV52Tp8O/PBw01ViO/RbfmG0HPL+IvbGeXweKG4m1oy9fByaZuXiM1VOvRWTI3u0XEB283gDR3NzIYRUDnfSsrRhhiYO+Jj95kftzdm8gqxcSg7zh0/NGwfd93/dd3Fvk+Hp+1bH1Nw5DX46NzeOx15BejOHpkRjVhj89vjz501ejcMyLp3qovbp70Icjf2M34h7GyO0/eYeprvjm+OxgabDVsz/h7zvaxeWaK56VxNkPWHxrqP1mnG75mMdLnv7cJ+lUH3vNeCc8OdAXh5YtXbJadc/GXCOPJg+ORh/u9BN/+gqjPn3zfMCXr3m4+Zl2jet3PxM7HXjWyA3+BS94wfqnX2S7bfpX2vP1iU984vDc5z537anqbI/s9weY5Ro+/2K7HLlWvRlw0003XVzPy9lM+e53yhpfTueY/BgP3s6fdd5l+T/WZ1c/deLBazzlx8buEd5k/4M/+IODP2t3Hdt30Y7T9ZeOa7VxNnrrbh3Z14tLo+88cz45V/TOXPuRTOMHH37XgHHnIFzzfjkqD9jkWnHmJwzYdNmizqLyJOfXfZGePLxY8Q8C3bOdl7DI2LhPu4+J3zOFfe4Fi15zXpKLjZ0XoXc5++en8nZ+etOdnrlY6Ju7VuCzkYPa0DfGF2eYZPhywkPVkD2CLQ49e835DFOffvWCxTY/4YpPTdwvydTKfZUdfWtNxz1EHejSoyN3Y76Rnlzu7uvsnN3m/IlBI1MPPDYw6LhveaPd+pjTlQ9fxbQcnf1oLWD06fliKYbOHThq0h5QM3ZyrFbNYfGlDvDUgAwmPDzrU07sjVsHuvxlXyx6uZLr3XPVAFlHNdFgqZs32TU6bDXy1hwOXS0MOmKzl5EaWTeNHSonPYKjiZ99OeKl076Zsmzp0KWD5KbR1YzpGNsLU2dNxg8xVMvBXvjFMvmwZ5xk5sWTTXmJwZhd1PrOeJPpYVjPMPDM+Zg2+SVH5mzbY3zmmwwVv3G64vEawl/GvOIVr7guXx3zL//yL4df+IVfWF8dY28Ut764xWJenvrWa8ZLT0PleGztyy38ZXD2Q547L8xs6KD8GLPhh6zYnvjEJx6e/vSnHx75yEeuNcnmIx/5yPoHqX/xF3+BtSis/Y1239Huq2P8Hxqv16xXdfBXBb/1W7+1PjjVLxWBeXPem+z+8amzik00c8lnMjnsNHX2utANb7dLN/t6emTtUfNke5+ufpI6Oyu7P6m3axOm8w7fGMEsL3Uzp9/9Tm3St3bsur+Zpw+rmPmy99JPL3w9HY0vc2ed85GuufPXX0r70NsDHvCAdV/G44+d85BtsfMfwdDInEfwjOPpxQqvOuhhu0fSLy8+NHM6ctfjyVHcenJ4rs/OePG058Xs2cTzimc6ufKjN+9eQR++GFG+6Wpw+BKHPd3eZedDLp7DjeXrGcjrY2++93xElnzmyBcbrTE5n9nokfj4lS+eveJ+iFobdVQHtWkN5MSGjoav8ROVJx5c9mrAtiZ3cZKpqdfK6simNbLP6fGjtupOH1kzsmpiLB++4fLnHu61s/ca3H9hixWenIuFP8QOHxaePD2LuA7hwtGrk2ck1xSdctfDFAf/aieG+GT0+RGD2qSvh43ffqGHLxZjJD56Glz6cmKD+O584Is+Pb7owfGcKUc1DENdYZJr+DUxGNOxDsYzHnKEzx+/4jAv1vT14qs+6ehR+sZ0NbK9wa8W0469mtgXPtF+a16HX9Mb7YokgBISHCqB87PzP/cEp+y7NRYTmn3jNqMNKZ8W24KTlQ95c3oWu00dNnk1MZ4Ep4VkZ6y3gbNnm071Ti+s4mheny0/ctBgs4/EhF8e+uIsz3p2XYSwEd8uMoeEzWjD6r04JTO+y9mLVjdIFyQMb5Q66B36dOCjGYe5endxm4srfXVyYTvweoETTjHQNXYh9iZBOvAQe5+Cm28EO6T/9V//dR1+8yDOlxp0IO31OI/6//5Ur9ZYDObVsNpPq9aLrnF50zVXFzxzNRWPvvyqFczGaoH4xVMXL0D1kbV0c7ae7TcyuJqbpRuYntzhb+7g5R/hm+vFqkbWyA1QPfOfvljo+bShfYLgWwcNTnUQnyaXYnLzcdOkJxf7rH3Dl7priC92+LXWha2aIj0/4Yg1PXIYZG6cenN+y1UvRg8+9npvKvAJS88He9cKPfjeCPKiTC5Ir5adt9ni068G1sB37svvW9/61sU35Nq/9IrNQ1y28PD1kbWovq5fDwZqI2Z22dLHy54PJLbiI9fgs9NPn9mww2cnh+Zhw6BLpm7i05eXmHc+G/pw1cGeMo7ok9PbY4ZbI0d0y51tRA+lZ8xPvsQ2dfDhIDZkdIyzwTN3HXpx+PznP//wcz/3cxdt1uAaf8Ceb7Tzo6mPeu+xzVzptSaXc+/c96L55S9/+cJX4+8Gzdo3vj3iUCs0fU5e48vF4trzxsqrXvWqgzccnHUTM/vwukbsKURXS77rp9M11HVk77lv2g/GzjFvmjsX6ZD1Rmc+XZfOQ2ttL+cXNp18NabnHqJ1zxAn/c7fcODyx7dmzh8M9xcvgrxJ0osRD/HuH+btab197jyAm397WqxwncF+sY7E4Fzv3kXPc4DzVszFxlZOWjnzZS4XOSWvx9cQmxo7caHs9cn1E6OzUOzVQ22sF3xja6VZR/bq4pN08lJ3tVIn+nJi0z2LLzxNzp679BE+W7Xh3/MdP+a9MOWnNSiX1tEcWRd1xbfP3BvJ4FgvcRZHe5lcM69m1qxaiUce8djTDaf6iBef72IvXjrs3QsnDn9847FRs9bGnrFX48148fjBU0f7SeNHnawN8ss193QyujNP9bYOqP2ipycG+PDYmKtDrVj0aksXiSXd4iPvulQzlL1xPH31x4dDT0wauTm+Br9GH814xCr+iE0++CEzL+f08mGe78nDV5NyTga/WskZnw9xROQ1vquReBrjh8PeWuv7sM71+uoYewOWZz2+uy7FXn3Fbe16PhenMbmY0FwbOaPipxfJS4vIku99OuHNeTw2Ypj1FLvr6CEPech6Q2N+st31/8mzr3V5xzvecfBmuzlbeH1H+43jn6G+9rWvXc84/VIatq+L+cVf/MXVW4/Is5CvYH3f+963zsHWlty4mM2N5xwPzXqkM3l0skvefNqzSY4/iQzpnTnqF2+uTzVNFx7d7tXtfbzOrolHHrb9Ye4s9gYtbOep1yzOw14feP1i7VwvM/7iO8ZbyZz9IEP2sPuQX45YL78490sTfPmJybOQr3/zqXZraB+4j/X/xpyJYtxJfp3FrgF28PA6F+XlvuM+idSr5w1zevyz05qrgRqJ2XOI81ovL3y+WxM2askXO3w1ouv61MtVznBg8hW+uOmx0axP90V6MPX4asEfHl3XgtbroHzSpacWeOrDlg0sDeVPfHStd/WQj/XQyMTID2w6apo9njE99a3eeOIQgzapOd/J6SN9jZxvjR+61bg1wCNXW/qIbnJzY3p0kJrYYz6Q6YOZnmvYqqf3juQqBrUqFvZwrR2+vucE/j2rInXQ7BlryX6SObl11MNkz7/a4hnDs2/4ZaNHe/7iSA4nuXEtW3pity5dQ2T2B19srTkd16448PgoRhj5LHY8uvJFMNnZD/IhZ09fQ3yQaa4DfHqoaxWGZyPrYe3Kgy5/5npzMcHC63rMF1v56TW19xdp/hLqWl+HX9Mb7QUh0ZIVcInVKwK5ApQo3u1NxVi8x+bx2igWAbXAHWLxLFQbSG5tDGMEj211CX/2dG02C6zBaIOkh9+CwzVnAzcfYk6fTj7h45NrcGZ88aeOnCa1lnp+2eebrovdjdZmdzGa96liY9917sbohR9bn1L3YtbmvjXkwvYmucPOhV/cxSQn/r3o8Ukt6zdJDg63XpyLTf09xH75y19euOZyxvMCyL7HY1urnhN7H4ulNWRfDeea47cOei3s1sl+0uTo8DMmQ+KZxJZPRAcef/jsHPrWQCPDc9O7+93vvtZSPOGTIzX3YrCbgoeBDni49LQZNzsHI13rJIZ09HLhxyd+fA8+W4elevfQJbcw2ZSPMczeaLf/5KM2ZHwhtlo4cmsd6GjtX9jigdU1zzZ9Y3J7ywNn54T9LU81Und8NyF73R7sUC9n2GL1iQP7Uwx+0eD6uFoS0z//8z+vuPw5se+09OacWFB5iM/1Uh3Ued608MVJ37qoiT2hR2KsDvJAHkKqCR68rhNzmGzUhL05YmOslsbphJtd+myszYwPDyabrgl9GPTJ7RH7lp/WFw7f8MVWXuHRC4cfY/Z6sknNYc1GJ5zy4IcPNLFgR9XEHvPP09zgf/Znf3aJw0n3ans+5xvt7GGq0Tzfy7V6llfreDm/zpHnPOc560Xz5XTvkF+6As7bF7/4xevNAPc8a7hT+8LemY2etbTn2qfm6bcHnZk1a+5s8sKTrrFzyZuozgZ6zrbu+9Ouvdt+6bqGg/Jr7KyQm2uzh2N8cfLjGkUwu5c7l8VHR4Nv77oPwTBH/heFF0T2K9/5mn7w1YWNsTz8abWHath8uU86R3vmFa97mbOTbfnsPUwY6isGNNel+Hc+O/rsdky6eK0ZPDGrU+cZXDG7HyVzhrsHWUe27qtqo3fNe7FoXB3kTb8XhvwgNVQ/tRCHxqZaWDP/fJYfOuGqWdjqXA4zD/cRdebLPnNPRHA0vtm2ZmpUDPTkYS6G8OVRXfhqrfXm9hG5+xu/xuz5Eq9aqiGe/QcPL8LH09QbHt/u6f0CHS5fcPhRU2N58GHv27v0euEOw19n+GeX3kiSG2rfi0/NEQxzjV0xyyV9YzHyS0dTA7j8mrNnax6PXO35oIPYiR3RM4+XDllrZbxTddfDQHzAwRNn/GzJxFPMYlVXdo2LS19M2RcbXT7YRngago+KMX59eWUDN6x8mLNvv7iWvA66Xl8d4xOQfvHqA0HisBdcl+0B+1IM5vaW3vXi+qLfPlAjrbjlza586suZPKoezfXpG09M4zmnV/2mjdq7zh796Eevr4O54YYbLj57yu/Tn/704Y1vfOPqXTf2iDfa/UL/x3/8x5d/b86+7nWvO/h6PGec680noJ/xjGes79d1NiH1+PznP394y1vecvjgBz+4XkNYs7nv5D3jZocn5skvH/JyxZu54U+83X7qhwEvwqPTvuoawZcL7NaWnrlcilfezgE8cmO1Vp/yzj4de8Medk+8973vvfTc9/0fLntMg+ushnFryZra2/aBr8X1nGrdy0F8fJ87d269LnHP8NrcOXnL2de/ug7KuVjM5aDJ273bmYYvfnXQPMt4xvHMQ09erlt8/tl7k1zdWwPnOQxYXV9et7rO2KQH31i9vR6Ew9ac7SlS/+Ri7j6rDmIkV6v0+CAzl6eenuas8MsLbxh7XnJuauzZyQOxc7+2r8rVGMGTF111USM6ni/UzX3bnE7YdObrZFhitO/UV5OjGP+3kj3o/2I4f5wZ/lJPfs4X9bTeUfVWg0i+7QU9WzVG6qhunuu7p2dXr1b07Blr4DzXq629ZQ09O4gTPxJLe0IM6myuF589Rac9Bsc+jlp3a2qv8sWOH7atPQz3Gfrw7Q848sRz7eCzLUc24evFZy+wJWv/tL+LQRz2rzzZkLPr+cv+tR5qhGDThce/udiKM79qTAeR8yFH+GLygbfb9atjHBKCaEG6SCQjCclMUjTJlKR5jR4bhIear8mt+DF9GMMVh3j1Wjr5bk7HwprTM7bJjJG+DUtHbvKvBnxlS3/PHS87i8sujBabHOHjxTdX+71Oc26swYUjfvGyw0NyrBbmM8984xk3h9lcD9cGddDq1chF5YbVRvbCy83RDVrs9o/Ghg6CW2x0IuPiTU9P18XuxaGLysUgFvG2djDF4iLkrwu4+OHaxw68Llw19gLdby0dfPzgebHjps5Pa8F+xlrMsxeDhuiHZy6O8oYJC09N9HSNq5F+rllzOZ+KJd/1+WWjNg4t64bwzK0VGf9zf9BRc80hJmY18WChLnyUkx7hyYvcAdsNgi8N0eXHL2P4huuAs65hVxt68s6eLVxrxU781htfTTQ2xQHHOJlxMrbyrt72sj2TfWtEH4+sB0y49rc81cccjhujvac3j8+XJk4YdMTkgbYbBln1ka/53qqDGrjpm/uU09/93d+tB1CxIL7V3s3QgywSi30fNh78zjo5irsbvHn+5WnM1jqVFx6Zpk7mSG7qp0fqzEbjL3k1XkpnP8jJ9LDkwbZrOT198nzi0WevDr2RpA6ueX7n2rYXxGAsN3JkfozKEZYxX6d0s6ejoWqandj51fDk6k/WfKL9er7R7kWoN8HtB8SvNXPN81vdi6eayo0O+eXo3Llzh6c97WmHl7zkJasm6nq9qHjq4c7xrfVzuTW8tfiXst99O5+9QHr1q199+NjHPrau81O54ju3NHvS/sdrPc3trbl+5Pj02dmTdJxPziXxGHsh5WwN10O+RsYOBuoaZqfBt2e0new5Z5eH4+7BfBdLmHiuBc8Mrn1yuOXmmoYBi392XgD1C1g8Onxo/Nrn7ItTz84LYb/05VMt+PIGgHsSG/bOk3yxQ/XGcGfPP154Xffp8IsHg276E3MBXvhBt/iM1cYa0MdXI+e22MnsIWulF4d8nId669KbA/zaG+ysq8ZefLDVUN6d78LBVxt29N3D+KfnngQ7G/VD8MQZ8eFZohdr1sCLc8RX61Z8fBlXH33rKQZyeYqDn/xlp6+GZGzaw+b8wTPWyMTIBsHGd3/Eo9t9u7G5/UoX0edHYyN+ZC+5h9JzX9Lk4zm0D3ioO1zETq3oIfywzMvXGhpr4lcLOUR8tI7FmKwetv1BNx1z/sJVS3JEp8aWDMkXnx5eMeKLE58+nWLWmyNyftVKQ+UtBzj08eiGRy+MZPRmPHTEQE9e/Bir2axh+OXEDs+6Vn+4yY3bf65Fn8T11THu5+K7FioXe+PXf/3XD7ecvbkoBvvVNWif8N81K65eH8nLnqEvL8SuPWAefj0eglleZLuczs6bOTamYxyGWOLlxzqhn/mZn1lvjvskuhojsg9/+MPra9R8mIS9r47xRvsNZ2/Kw/Kp09e//vUH//DdGeeXpjfffPOSux4jb+T+3u/93uEDH/jAOqdcl5PE2Z4pxvKop18u+qgcm+vVD/+YjHzam6P2qTE7c7XQ2ptwrXO4amKMT68cnP0aHl/y7R4+zz57Z8bCj9co586dW/X2DOAXiV0f9ri6woOd7/aL2MUk9tYbj4+auX3ofuSeYezNc69jnHVyoAvT/cXrRLE7C7ye8aEi14RrQLyzHmIqVn7a8/Dwy138nne8jhOrOvT6Bx5cuZcHXPWkh0dHrD2HtF7ssqHbL2CNydRPL55InuKEQYbURCNTR8QnPfXBE5PeXG2M2evVxxvE3stwFsDRnBlTTw7VXI3FWT3hajDVRjNWO2ecfQILLhvroUaeHdUgn3Tk3f4zL4b2hNwbz9rEWwW48IPurj9tqE27XZZ/PRJr+wKuc9Pz5Be+8IXDP/3TP61aqqFnG/V0xqoLO/WAb96ZrBYIJh3z7t9qYN95VlX3iF8kJmugxnp8deRD/cntAbb8iYuORoc/OsZ6ewSP3B7Rd42w1yaxE7f1oid2/vhpH9CvBnjiFGOxmMNA4iw22O0JY7WofnTbb3TEDEOzZ4ubD3XoupWTlm96cMQNB+FVCzn1uiIb+sb8aHL3gbfb9Z+hOigqtKAVSOAS0dfIIjpIUi68ikkXJV+T7Uc6+lN6ycinjmJGdNoYFkYsdOlo024fmx/jha23iBZIP2NWFy1KFt7EnrxiPxYfH5oXMDauA7iNBN/YRtGzl69NPDcuvnp0IXaj8QJBHPg2WDcX9fKbN4cmrDaoDZ4OzNaYvRjFNgm2uFwMHUTGPv3ksHHBwhErvoel8p05yrNGjlzQYpZXuRWPCxSuuCJzucjBjYJPNyMPa36DqbbFmw82rRMem9ZUzx8d9a+Jm02tfPTlMGMyxpeDuMPUlwd5MbWuYWTPP9kkMahB9RFrWHTx8cpN7NU9/3SMNXjqVI75Ys9/OeeDb+tkT5YLHWvgwGPnfPHA0hsBMPm0tmyM2YjTDctv68VORodfVB4wtUgsGoxw6SK9vOBo4qWXDXlNzog+3vRDX0xiwafbelR/tt2E6POnLuogLnpyskd7qOPHtdocthu1X1SIU2OHz79ryJ7+zGc+s34j72HBzQPR9Zta1zx9uPDL1Zp0zfPnOsdTc9d1tSk/mGzhir8cqpdevh7IyNjRZXOMiiNMOvThnCLyiJ696eHdw7g95RNP73rXuxaGfPORTXM4xaaOYj1F+WR7iujYJ7A0+dM33u3o4lt7L8xf9KIXXdfvaPeG7TOf+cx1tvIllqi1bK+W25QX75TFS89+ucvZ18f4JBRKnk3z9Hf+Pp/66qg2mjXuOpFHeyN7Pdvm+asnq8ldU/vWO9mpdYKTT+P81ONF6cGMJr4zYvoWAxzXm79UcX90zw8njHp16AWPMwRVK3sdVmdvZxs5GX1rhujxAQ8Vo3ji0+lMs1c057ZYe3NVLvScN+715Y2HyKsrX+TmfIhPrAif3NyYvbUWO13NPBsYXhhp4mlNxcgWBp7eHmKnBvA83/r0qbG42XvDsxcS2bJH+tpiXPjRXuQPll5DZJqcxIqKC36kvtpOYbHPDx229MVDRk8vR7UrDj7p6dmoi/Wxt8yrqbGWP31+jOFp+cLjyxy+mmlw+SouMYuHHnzknHY+m1sDH9YoN/vKJ7bI3Xf4gRUme2tIXy5wNXkUnzEeKq/kepj44jZGfNSTVa/8sotgZycW15I9VRxiw9eqm2uOXMz2mvu4eyMczwFsekZWH8/C/nJN8wYTPTHC9OaT2uOVJ5m55wfnQv569uqapCO/nfDlWIMbNl+eB+CKE8lZLOZsI/bZqa9nEvmqo9yrTThiySccay53HyLQ2H3pS19ab3oUo54Pdqi123H4S6f4ipVfdnDkVz3phWMsB2vIDh4iZxeWvj2uTr6O6np9dYw3zV75yleuv3rguxiM26PiEb/1KE7XIZ59KVe/wHVPMdYQ3XLACy95tWuezTI++4E/W3K10aZMrSfOHPPjU+o+ZOA728WM5OqTzu985zsP733ve9f/gfmlX/qlw0Ou0kQ0AABAAElEQVQf+tAVt33x5je/eb0h79n2l3/5lw8PfvCD13PrAjj74X+dvPvd717/+NRrDH73nO05Tf5oxr0Y4wdb8WrG5aGXYxhk1WHWsTroER3r5Fnb+qG5xotx9qOY7EXkenbv7YycsZB7zofJt/PVmeFNc+dDrzs87/O/rzse6lqFwa/eteyadk537hvzLyf4znQ9ezZ69vruTeIWPwxvYHpm9+wud819GJ6aqI8zkZ4PWnV/rr7lzo4+H3iwNbUTB2qdzMuztUiHLVm47PKlby3k4xxkp4Z8WRc9knM4sOShLj2v0atm1UjtjCM2/Hk2cV9Ua1ReZIgvumzpuP7FgvhQG3NxikVLh62vc7Vn6NG3PnDYzPrIVY2dc3y5Tzuj6Ltu5QbDXIzVmT8k3uT0+Ub61k7N2NXYGuvFJAc66YcBm571r57m4dGzXu5jbOXllznnzp1b38wgHrqIDzlocOWi4ZuXD31rc8vZL0L/4R/+YZ2zPkSQPR90ssW3l+VRHfDoubboGcMXj2vY+3DJ8OUAo/OsNate4ocRLkx5INc+cg1fD1Jn+akJn/ag2uJVOzr4ci4OMWn07CXXRXsdzqyNOFs7Ou0F/NbBuJz5kDsbz1n8m8Nki7oWxC2GcoDv2xae+tSnHh7zmMcsXTpXQ1f91TEeBAUkwKiC6mcAEp5zB4ZP5t31rnddG0Oix6hCTdtjejsvu/hzDkvhFM1F18LQqWW3+93n6c2ezmxk5m1sPsLR57OefmP9nM+LhczmcVH4j+weOtoo4bPNL9kP//APH3znHZ6WfzI1gaku3WzZd6Ha8GQ2pgscuRjg4MEwd5F3wZQHDDdAfDHzy85hTt8+YktPPg4JsnJ0kMwXyublSEfs/Gv4Lmaxmoehd9CLtbz1dOg7sFx4DioxevD0JrsX6eJ2YeIjWOwi/HjFoE9HrtWKDb81tvKuZl3UcsQPl//WKF5YMy4yDenZ8F2M02bqkotXT198kfjxNWOHvD2iqadai8+LILbGsODDwaPTTa64sq1O+atnZ2/YC8VARr96mMNTPzexakbOnowfPRJPOerxNfpibF3oqh3b7MMgEwO+3k0ClnlxlVNrL5bpGx/BnHEs5tkPsVRfccBVP80YFlsyuvL3kOChCNHzcORraPqEgYexW85u+h5c7Wu14hvG/e9//6UPx/rCFjO5a6Ibnhz50/dAIFdyPUy5sRcnPfhktfKBc4zk1trRhXU9yBnigVzc3qTwaSj/LMuDu3pditRBk1u13/XxUfHW42WjBpPkB1MjY0M3LHyxebHojXZ/Io2ST6yrGfPz0Y9+dH0KzHWLrJdGJldroJVzsZMVpzFqvibjB751bq2LGx81zyS+Xpt7Z15f7Npf+HTFh9eeoaOVAx+Nw09HHsaocT3ersc+fXIUZmN9NTNG6eijxvDyObEbk3V9pZdtWPj2iwdCf0XmvsZe3nRdy8h6GFtbMjrVDa97LL45ih9WPGeGJjYyzXw+CxQ7HRQuviY2/q1lNaNjjG+sGcvPOBu89Lo3yU+8fnHv3CsfPI1tDRZ9523POd5o8Ea7eDy7eBHvmUBO4kXZG+OVu1hg8qOfsbJBeOJuv6aXbnpL+YL+HBcDXzMOOnjk+cejg58/Y/5r5MbqoL7k1srzmBfM6kenN0mM4U/KBx4b9ZCP89Z93J7Y8+RHY6t1v4fBlyYuMcnJGS6m9pEY8OEi8dPnO2wyvPzU05+yWS86aoXCn7EbV+Psyj8Ze/EUE6xwO7PwjMXHTl7u456x4dmPnkt7scmnPWgvevPJszJbfDVyzfPHjx4fJmzPufa4vlj1rROc6lys7OPDQ3gaH6438Xq2JudHU5PWho9qoW/cC13xiYEeX+ThFIfe/pGve7hrmo1fmP/N3/zN+utTz4nsxaVFO5bYy5kM8T3HxdjaJNeHLT/+0My1GNJtPaypN9p9/Zf7ef4WwFX8gIt8sMRfpPV1geojtuTG8hBPPLmrN77ckF/W9Fdti7H9qH5hFzesxuEzjbfBrGkxpccuXH3yYrbXvV9www03rL+M8/Uv3cOcAz7t7DvbPef61PvDH/7wlatPqr/97W9fufrHmY997GMv2onPB03+7M/+bD3/uZb405CY6Mivdb1UTsvowo/qUG3Y2WtqDusUhV9Pz/q47v2/LHvHmoWvt69cfxpd8lo13f2Jy7WqhjDgug5dw/Dg6J0DznznMT33wF6XixFOORZT9wq9XLv/q6u9yZc39Z0/rbWxmJvzKwY2/PBvb/plkPsIHJ9yh43Eiufad2+gz7eYYMMxp2NMny9ropUDndn4pleuZKi5XtxqL+bihccOz9oZ41l/8YdTD9NYvGyc9/Q1POd19bVufDZXJyQ3uZejWPiFqy4o3p43P8VCRzOfZ/K5c+fWa0j47PWaWrev+RObfWUvic26eQ+F7txT5urXOosvf3yLqde+9PgUFww9P5oxv3o1ae3Nrb21YQNv6lU/2PzqycUjfnZ0PDs7e/RkMMm11qG8+aGDwlqTsx/id8b45ZFrQ/6uJ6+78MRtfMvZa3My+mIqfvkgvQZffcTmbJCfRobvurUf8OQhrvYoWy1M9ea//Phl3xrxu+u3X6pjOvQQuTGf6gRz1pjvYubLvdx57FmdndqICb7rAY5xawWLvZjpmxeTuTF9Yz09Lb/J1dc1pYctFo3vfMHQ+LPG/iLNX2jfbm+0K4CgBBRJGNUbSzSK71OXb33rW9d/jk52R39tFbApfvd3f3c1m6bNp+4dBpBtFl/g/2u/9mvrQm5jHvPaBrW5vGCy8V3ANloHnIf8XnjaB27CXox6aHMTZOvAQHx14Zt3Ydg7LmhyPsXORzpyoNu+MWcj58mnz96FRAeGMR36HdRuAOIXW/b0ujm44PDJ5eyBXtyIHRyySNzm1bqLmRxPTOyisOGIiw4M+fTgQL96uUnS0SbByXd8OnIRg4aq6W4v5uyNa9WPPh+TktFVJ/uhGw4ZfXtCbvNQD4MuGzcrcRVTuYjHuIcpOslgGuu7EYkjDD7I8ejAStYaqElr0b7To3TXZPtBpsGfJGf7DC4cvvHmdUJfPKh1qVZ4M+bw+YIlbnVkl/909HDdtNWLvP2kvgjPGf3ABz5w3Ry86S5/mOIOE46xTxy7PuxFOvkor+pHn0/7lY5ai9UnY9iZW6Pqri9ufibtczJ5eOgQBzlMNbXnWr8wwm1+qZ7ubHLwCwf/QdwLdX74OxYTXHXQ5HelJPfw2BrjVbPyaf+YV6/86MXmhfkLX/jC2+SNdg/EasO3GMRZvuWsb++KqXH7+0prcjV6fHSWi6szB694Z40nNnmxW2v3KORMVe/s6MlHHzVu7eLrk50as5l2+QkjeTrkUwc/nh7NeXJ8sYTT3Hqok0/2ec7ySzbUC7Gu/dbZfds54npz3brfe/h3/2sPdEaoE52IfzyNLio+a4f0eDBm7cKyFqgc6dfw2eWfPVlnQblXBznJz1lFD7/84JuLk89s6OGxUTf1guGNdmeicS+C1ET+2Yovkg9ccpjI2H4r/nRnX72KDzb7cqMrLy2iAxOllw847PXHCE46cpYfHhxjLyr73zrOePd0L4SM2Tnn3WPkKzexGNs/XVf8ehbs+UUd6FQ3Y/HSN0b8i6P1weOv/JyByenkF47x1VCY+Wi92hfqYo/tNaxurc+MQUxw2cYXr7meLR0tv8Zq43xSB/Zs9fSN2VsTb6Dbm56jyPDLw1js4uovAPhsnao/ebGom/XpPsuXGnsGaE2KmQ2/8MQsXrbweha0d8zhzDOEbzhsYYjVWE73u9/91i/38ycHLYK116pzXO5y8Cf8/jn0n/7pn659KgayasNezHzAwxcPYo/w8pVO+cp9YqU37bIv9mqMb6w2yPOYN9p9jZqvMplYS+EKfxSP5xe/ePfGo7VrLeVXzfmXu/NffMWqr/U6Ptx68RUjHqzWGGY1LWw66eOZ18zJwtEjcXaeG6uV/aE3pycvY29uPO5xjzs86EEPWrGwl5PvTHZG+QRqn2j3l1++XoauWtvXkV9MeBO+D1lY64gfDfHdfMZr3Dy7ejnaV2rTvnMNaO03fGOx04v4yieeGnhz2odn3I+6huhZB6/3vdnWucBWLel6Q9v9bOLvfsQKS0+vmMXlGnbfc+7z1Wt7/OK3b8KH0bmAbw4Hueatof0vLnGSo3mu06dLTw7VGK5fnIhFHe33Xpe3T8qBXEzVQuzmsOnI1z4211qrcg9HT098bDp3yp1+zwvizQ88tuZsjSOxoWpuTN5eYDPXTC1Q8mJczLMfcNiEJ2c29rpezN68zK/YyzssPCRWvvXVig7fvsLNXrOGMMsxefnae/TUg3/XpP8xwr9aasbwxdp1bowPrxy6V4jPniMrXzjwNbz4cNOzL8Sjx0u3+Ony2bkoB7zWXB+2nhxG9wV1R2T84HeOsFVLsfsl1rlz59bZpDb0+fFcpTb+8sa99JazN9n90pCNGsD3HOb6hw9PXfXl5l4Pm1+47Mhg8KFn6xc+WjWzxubipIPYakiuWhS/+eyP6cU7ZRefb/vTL8vf8573rOtajF6PuuaR+K2fvYcnTzlq8paDXOHQM9fDLg568m19yDR7wTljf5s7Xzpj2o8w7HeNT/cS/0zbfQjlY02u4MdVf6LdokteAJM43p1X2Pg+bfX7v//766aokHfQtVfAC0n/GOb/sHevrbpXVePH1xupthHRs1Ii6WCaWVkZESlqJ6gMTIIOFB0e1INA0goqi9LCICioKAJNCsoss7SDShadoPZLua/PdH/3Pfxxrb3X2u0t//tPA+aac47zGHPM+Tusa13rK1/5yjrkFJpNKucdworT+C1vecv6h3rHseYh3AOmzUk3XTaDwnbxdQjaAC7KPhnqT4XaJG0M685PG8DYxqBHcVfQ/KNXMaMBuDaNeNpE9NKRvuIrXnqM2aqRpxs+3XqyDnz1rOcTveLqAdMcH12gPt/opJsNNH6WK7gaWTL2jB6vOGx4MbEN4Hr5QXaCOdnko5M15kd7is9yAa+xlxyd5sUbjQzf9wEd6PQ78PVix0+PfFnP5NHKt0OOjBznC5v0kZUTc3mgg996uUAH8c21z080sdEH0pd/+YLODh30pzs9R+3pSTd9xVKMrT87aNZl1l920IrLWNziAPZc64fW2jVWo24U4OngDxtil2MPsx48PNy5IafLOrRu9MTrpRLfJ5RPuiaozW5+0Nh0wTofIA6/4LIngBzMWps2+H+u4NrlE2H+pNhfBLWW1U+5Nq9m4LT/BKp99qwHqJ7Ns2Vd5EKTX98Nd6E+0T5ftPOPD/nJj3yBAzPvjevR4zM+DOKPt3n8fLCHxN7Yjar6hcMvh+TTkaweXe747kxRT3Bq174nC/Bku34Rdj/26Y2mx1+b+OTyrTmecmsMb77FVYtbHnzhyO6zrZbcVPpkn09fuNFXs27m0dRYdSY3XqqjyY894TqtHlzzyZVDMvjxzDyhx1e8y8ndD3sXrhwXq3lnO9nk9MUnBxo6u9bcGDi/1Eb8/KGbj/M+BV18zshyx7Y8ZJMsvWTVVy/anZe9aHddO7l7EHLm8ZtMtpdDux90oMkjWvXVfY95eSCTP3Slr/zkW7rJznjhydBXM8dHB1/wm8NPgKvNfLEpx64ZPiWFJl4fnFAL9g3wFQPyL1Z09otdXvPLg6RaoVdO8AXG1hQ/2XzEC5obw/FXPGJD08Mb00HX1E/uKEBH+vHTxZY8aOxMMEeXG/2MI/vpw9s6qMn44fBm27yHfbgtiNuaXLT7+i016VpIVzrx80cO2PTQiNbazn2GXh7Fak2djezKJTkP9nzS8hHemrt3g7euycHxadabevE8YO/h56984tWc4faZXx77AEDAJ/5ugW7+qSNnlTj4xI9eqPpUs2eS/Ji55EPrQ7Z45Yxv5saAHXM+8lUejwp8p1+s6aGfDjo9Y5zvF+2+m1wO2JS/Gb8xf8TuBQI6MIePVx7R+LgFcQC0+OHoKK+TB++ciz8cPD3lA54fneezTqzvlF1Kdj/cz/rAmA+Q8AdYO3+hyR9/Jc+Gc9fZ5ZPuroeBrwP9wQ9+sP4CXI2Smf7yRysXfAhHB/ykp1dPj8YfemvqVm3Ak4dvXl2SS2+9NbUfxWSfqEex8Ens6snLNueDfJFD7ysv4I4KfGpN+WsPuw93xgPXQB+skzN86kXd8FtMcJ0nYoPr3BcH/a6v/G1/kBGHhp+c2NyzeMmIHt5Xb/Ss40V7fuHX8LFRjdPJDnz+5itc68RHMnhAeHN6+UxX5w46Gb1zz7pYBzzsW+Pid4bkj5qHL6bpc3g6yNAN+Jlv5PChRS926x4/O2pGb33sAT1d+OjbxhxNPOxnN3vWQh7kn65yVc2wzZ76pEM+5F7NWCs2xaYes0+2awp51xP+aeLiB51s2ctipgOgo7W+5sWG3zi6Hp0sHWJvjYzVbDnWp1sOjDVjsnTxS5xs5Is47Ds9wCcPZFznnvOc56x6rk7YsS7+B2C/QPIXGw899NCSZ4+/finllybyJv/2BTv5YS+5L8BTbuREDsTIfr6RJ4dOH//EYB3KI/5i1QdzHK6eDKgPf7aeTj66T/zDH/5w8J3vfGflgy/uG6yN3POVj+pOjQBxwFereJ1L6rU1k4NqAd9cn2jWwf6VR/6rb+cKfLWtN2eDXS/avTN44xvfuHw5dtw7gafekS81h/+wuByQLEB8tsMlD9aF4/bbbz940YtetIpn6iDXYp9JR3yTZxbEHO/jnXKND0vBYfjk6o/KF/9x+xmTsSJQlHfeeef6r+k2jw1nA6Hr5/iKK65YNykV0rSPf+pHE4/i1WyAdOFz+GmKXxG6kevm2hwPeTJ6FyoAz29QwRvD2ySN5xyfGklXdQdfzqdvdMCjN6ZPbtqI8Ml3cNm8+Mja2GJiNxv4yZdjeI2MBvgRj56MePGhGdMZzli+2IPDD2cu7+nNBh3x4A/yEd1ambMvNuMa2Qnw4eLRs1dPXzHDu9B0kaTfWFMLdOUzXzTQTaIDj66pv5zgE7M5HmO5Sae5OpoXRz7i17Irf3jRQD1f8GQbPtpiPMuPZNMjvxqgB94e5Av74cmJB69x/oqr3KtpYzz8p09u8dMLP3s65FuLPzvmxnxxIfaAXt7hNOuBJ789oOc73eqv3LPNFzHwka/iMyaP3g0AnUDPX804PH5jMnwoLnhAt/VlO73dbJiTtU/Zc+MBl+xScJYf5PHLkfPqrrvuWv+LgZ9uejyso82cZkNexJwOesjpj+IDOY2OcsPdZMOZ49H4IU++o92n7z1YT5k1OYcf/PAd7TfddNPph6fUoPEF8EHc/IAPZ5zf+sbxLMbNDzxbenO9+lJnbMu5ubPHGM66N9+nC66cqSN+a8YaUFdw7OHXjgNb/u18q4udYkQTx5xPemO9mINkooff2kYXm3rxjzzdqLvBlhNxAzT6yFpTe61rjT3tPIHrLMdHvj3QvsgntBr7Ezq/+ASi44fTZgzozScv/mh6NcA+QCNjXr3kG95iM9bwi6GagiOvtjyg+oUhPfImf2Lwiwf/30JO8plMLT/UmDzDZ8/1ik32ko1GDm8xwOfX1C2e4s1fsgAfSKeevnB6POVHPNlov4VzzorZV+bIh/s7cYu/Fw1e4qghsfbyzlhuxM62OD1kV3PmxcgX+UfTjPM3nuZiyf/inGsLhze5xbz7QS4+POxP3NSJLg9yQk95MhdXa0YmGn760Lb3GWSyhU5GfvXZja5nn472FVwxZdODorp0fa7251nIV3r01jB7dNGt5QsevpSX8s8mOfdxaBq+/GePLD4yGv3w/CJrzo51VRvOkamXbnxicP32EtSndb3IAdWEcTaM2aUbTn7N6WDLC1YP6vfcc896OUiHF4LqFV0cfAB0tA7FUYzx4Adi4i9b4RbhDD/4R19rxB7Ify9azueLdi9n3vzmN59+0c4+W8Uo1xqwP6tnecGHhld9oCWHX8yaGMob/UfNBR0BvXTIC5vlAz08Hs3equUPHnad5e75/CXEddddd+BrZMxBZ4l1A9WKNWzuLxd9ctI/SHWmiRm09sZs1cz5OnOan1veKVPu6unf5g2OrolPhx6d737p+cpXvnL9RQvecsIn9aTZS+by0zp2Dph33eKzvNgb8pVtfWurNsjg6T4AzkuoXrTihyMDzPlLJ9nixQP4Buccs17Zg6tGxUWf88RZd+LEidN66H3iiSdWHHJjzztf6KFbM2a7uNSa6xQayEe9Vu6LV6/ZC8WBx32AemTPnA15yFd5tk78ghNTeemMYt+YLNt4+dU648+n8OZAX+Mf/RrgD9/ax+bGfJZHsbh+42ef7nwkb05GT498FQtZjaw1o1cOwsHTVUx04GGHDvq8tOwXYPlJThxiwleOtr844QsZfOzKVXGWv/wvBr7Qj05vrfjQ7AUxtN72DBvljmz64PGJU8++vaaO6UyOHflGJ58ce/jdM7nWyaO48OITV99h71nUXyiRBWInp77wsylfyaI761ob+kD+G7PPt2yKixwcfebFVwzZJ2sf6MVvLG/GbIiVfXoAeTk5DrDlF3o+8Pbggw+uD+6y5xcO6pYtoLe2GtvFwCbgFz1i4YNGjzl+fHJXTS2h3Q80OI0v2SFnrtFDvzph14v29773vQdvetOblho8x4Fz+kR7hc1QgeXgmYz7DYI/eXOTZaEEdq4gqRZdM1Y8QBKDOQ637fFIdK0Ezr7xPlm4w+jxn40e375+G4M45dxm9cLE9+3OYsePR1/zlwSXXHLJKtiKiS30mbtw+VuOy60c2XiKr3wpRjhtFjgZeuAUKl3mfNfyk8349PAgfrYAWvJzDgfI8UXLj/jYVyd8ym885nKnoQN4rbzwVb076GzM8OyxTZ8xvJ6t7JDDA2es0Z1cG5kOduDhzAO6yE97+YgHPlm85nr+wEejO359c2P8dLIN0OBcLMRNF9w8uOBdDDrwl+CpH3wI8NHjZYZDL130tRbFQMZYnviiN3eRdIPsBYA6K65qTn7oM3ejCOimA16jR0x4+WC8BTwAPzA3xjsb+WymV5xuGviYveyQhRMPH+d6VxN4jMWWH+TVZTcm5vTgwasF+WqeXPb1dLgR09jCL4YuQnTaa84VjW5y4rLuZMw1oF7I0KGlE33iFvPuR3mkq1pIpjrAa4xHXakvY0CvuZsQnxRgg87jQnF6SPfJHbV19913Hzz++ONrjJ6vbJrXzMt/Y3k4GxQnPYH8a9GMAf2aPFgbn2j3ot3/Nom+Buf4gx1/Ou0fiNlTrSObIJ+MOxP4CPifn8b5ihbeeAtTdzT88OpbnOqzuoFTd9ktR2TTNW3zRb7Ur9Y5xv/48eTz9KHx2XqyR4HslY9tf5iOyTfH8Yczz8ak8U/e/OLMp2nkE58cyKs5wNe6doaYz5ZevOU+++Ya3ehbX8hGRyOXTfP4t3364+WPsYZmv+UL2ejRxDjpjfmTXT0+ujTgPtQnA+UNTg6dT8Zu4j0QyRM/pl3jYlN7ak4P2O5sxoM3MAfpEgccGa2Y8cBP/omLRiZIJx3AXLyd4cbkxGYsVs0vZL1kf+ELX7j2onPh5O6T/H756HqK1727fcpfOPHZa72EETu7ZOWCnfwhYwxPVsMPp9GFRwvg6cMHP+Okuzm+bOnF05wsvnjDp7v1RkfTgBdNrtMAL3o5M+dvMaZTLvjZPH31dMijlr38aL3KATw5vK5/xkBvLVtP861efOLmT/dH8YjBWE8WH0hP4/jyFz0fjTV5dl+nB+nSy48Y1Mt8cZ2c/eWlqa/3AOqBv2Ty23j6ml04zRp5UPf1IWR88OiRRx55yi966I6fPJ3VVDSxAnh0MTkryZlryeoB3ASy9MiFnG35z/eLdt9/7JN1PtGuFto3+Vd98Kn7TTzWJT/5374jl2x5CCcP1st9I1yxw4Pma3LqBxuzOWP5lAy29GcXbYtLJ7waocM/SPWd7O6L2Dgb+Gvrb37zmwf333//eonDFzGWM/4XQ77Qmf/hzBuj8zfcPt/xxqMmAJvWoxe2U19jPGrQeeyrCvyCRuzuU+0tuqrR9p4z1y+Z+rBIdrzEay+S75PqM+bG5QS/cXN7i122+Bi/cXzo5VCPVk7MrRufxdG56lzT8OGxLv5q6qLdB4TIi4HPfqlERq49X8GhlVuy6P1yjy3PCfiBvljwmpMF9PDdWU7ecw9d7PNXruEAu/KZL84IushrgB1QTPTIW/nJ58W0+8GfWrJoM3/meGYM6S2H/OCrs9aZKx4vLNkTh568Hp0cfs1czvjJDlkNP5zeuokhH+QAT+vAx2LTqxnPwfjzDT4+NtmmB1964PhGhi/lOpy400FfrZotL9ZGTNmm3/ryi0/k9PjpVi/h+EAf3mo/HvnFx7f8YIMeeP7211xyR2//L8k6+BR1Xwsza8ZY4yd9fuGEv3XhExt81tjXyOQLn8m2jsYawMM/tK5tZNW2OT/LCz3WBF3N23POK7EB+9QzuFjodV2wnvmxmM7yAy/9XcPZ0Xxw2HN57x/4Iidi18QjF8VVDPTNHJGBwyfmatxcHuSVrJjonTpznbwa5xcZf4V3yy23rF9w40E/Dhz7RbuHOA6WAL1WAWRcAAGnzDmsGZ/J0WTjiT8dbEmWAnETo1gk61yATgeJYtLTXUtfftTDzzjyb9LhAvoA+sSH06fDGDTX7xvTRa/cx1+fb+bGXcC2azULN9/x40NzwChUOHSFr0Cza9wcXeOrtUmGD9ZmboT48ICZ73RHa7OR2QLe8Hobw+Go5z8QC3/M8dCXTnTxoWsAjxg63NlQ72qsQ0os/MMnfjLpD18c0ejo4hTNHL4csl+OjQG97NEDkiUjtmojOv5w9WSiLyWbH3zGU16M6bG3Zu7kRA4cXJobcBcFuOLfqF55dNHw4tSFSr7p14phKwPfOqE5kH1SrhsdsmK31vjY1uTTyxFgbD+Lu9jlUTzV9GIcP+RBK6/lT6+1tvJAT3xsAxdZN73Zw4/W+vGVT/piMKYHlJeplx351dNHd70Yt4BOHi29fCBvHawpea0aN2Zbnl1knYXkt/nKl+mrcfqM2090yxm9Mx90VDP0k20PVBtqy8sv5zscebxqyI2LT+2GZ/O4IOcndy+SusB/5jOfWb9ZF3++tt6tiZ4PAA+/9fDl+TA/0oVePqwJHWjaFuwBeXCBf//7339eX7T7ZJc/g1Or7cHi5kf1LC5rM9cXvZyQSW5fDHjB5Jl88OrEzZvatKZyrKkTfmTjTD1/2lvWtH2RTDbL/ZNePXmNNY5uTCZojN442mH95Jt68TefPFs98cDLO8AfPtl6dDRz+WrfqB248Obp63zVt5blhi585OC2dRo9m/Hxgxx8uvKNHW0L2YafNdeZqP7wZDNf2KSvfYde3eBBU0udEeblAR+edLkmuaftRTu6hwfgWuLlRWcpexpdAf/g+KwBuuHyPd5oevRiKL5yOfVPGrz5bOWcTnQ6NTzm4un6UczFLz/qQuw+sfPiF7948fYpK3/e60zE70U7PfzuHste6+UHm+J1DTQmY54/fCHn+kdn/PDljm5+6xtHwwfQ6eY7gDfHD5wns37LAz5jDZjjm7rite7OPfPWEJ9Gjk9qwjhdxYl/C+xYBz7rtWzhT48YqqHWFT0eMnRYB+uGP31sFjff5VlPdsZZHHBo5vTyP0DLV/QJaECeu58rT8Whp5uPznV8xUveee+vmq+66qoVO1/VBjljdZVv+dt6h8erTr1c57uXiD505Gst6WIPsFcM+YXfuDin//a+aw8aHhA9nXyYgM86JBeNDrzuY87nJ9q9aL/mmmvW1zOILT+zK+/WB02d8gGPvMDJpblaQ+On2OA0uGKl87Wvfe3B5ZdfvvjM8ZA5DNKn1/jCZjLkwbRxmK6J55cYugf0qe90Tr7GasE/25MvNTXrIB/qyTTmF735p6+le/JE04PmdLCpwXmB5JdDDz/88Donq+l06tWmenEe+79qPpRon7snt17qbO47Mmrf/azmbLXm8gTvDCAPLx/OZ75UE8Wsx8c+enklj2bPlj820eHxa+GSxYsHTT3ymW368Ngr1QQ9zgkv8C7avWgXI1+cBX5RIha6xEU+e/jIwomPDFueE9g31+MRLzAPB4+HvOtY1zK8zgH+0Qv07gXyhR3Ap87shRg/+MxH/rIFzMWvgXzgB4DnH9l44IshPnr4II/Gmhya80md8V8cdJHHYx3JoWnN2eSn+MjjZx/OOrArL3o8rUO68QMy8iFf+MsBW2haPtPRS114PuDTA3Q+x7+Qux901uDmOYbf9VEz1sQw3+91j8AmunqBE4MmfudF1yE0eew61hqQB+KkR176ZZcY5Lb/seK52z1UXydjDci3Bmzyk5z70fY4vYBf7Gjy0stoNHqskZzIlXk55KuGxha6MVt08NF5Qz86Pzo36LRn7QuxAXn1KX3vFPniHRAd5I8L/PIMSg9fbr311vWL89ZKnGhyUEzlgy00dZbveIoXzhz/3CfyIgZryw66nIgdv9zoybNfXj2H+wfk/pIMHDfeY79od1POAcXNmAUTnKCncc4G8Dkf7lx6OlrUCtThYiNUWOllk081+OlT/vBdMi2YYiqOGYvxnJNNV3r28SSzpU1f0hNv/qc3ur5xvIpkxj154tXb4DaH8cwHWW3ymssJnBx3KLFprUHxqIEOCHrJKFQtwAtfy/cKGj6go1oKx2b24IzzOztw5PhSbaIVq0NLrtJTz7b4NPR8JGvzsZNu8w5H+PxvHzTXk2F72uGfVjzN+UyHOVCL6pCsw4ceBwPfyg9+zRw+e82Xot0PMYGJxx/wVQP52n629vY62/EYy6U8aA5oL3Y6pNLLngbQyOAlX07ZE0M1xUa+lZto8uGw7+JCFq2LIX6x0teLdnk0JgsP8PBHTwcobuPW1Th/8gkOmNOhZsia4xWvM4Rd/oSvx8uP6hM/nDiKk30AD8z5yla+ZZO82jGvkTEuf61BPluz1rN1MTcm58FVzsTAJzbRyoUxHdmppz+wT+jUkwvoNxeLi7OaMCYrJ1q+k3Xz080uHXxxs+J7Kz2k80Oc+Zado/Tk3EyI0Zp8//vfX/9czYUX3vfo6eVBDltDPhjzs5jzWQ/0jfOFj/mJRme60hNvPR/l4UK/aGeHT/Xs8xXws73Dz2KH144K5YM83epI/EANVJdqvbzUk82/bIYrd3znp/Og/Z6vbDRODg4kXw+HJ5jjcOlqvq9PburFt53vkz0TT7T0b+Xlr32jdlonOZdndACv9sunXg718o6/nBprgH22tXDwzfMv3c3R6dbCJWeeTTiybM8Gz54Y9GTooheYi62ziiydcPHGVx7S436yT7Snw7lDt2uOc8A5S2c20Wr0oqk/jT26nR351/Wcfn7Bd/aQJZOf5snlc3E0xxvQlzxc+eMDf+VEPOKkBx5OHtSIs/pMn2iXA+ATTOToF5uc2G/oXS/43T0Lv9jHX96MyTnri1Pf+V/+8Gl8RWOHHD1ihed/OavnJx/NA2N+kQWTZj7rxByIJ1/Ith7J8pl/k2YMr8Wn1/jLjn625PONLLsg2XKHF64a1aOJ1/lpzgYd7kPkLR/pyy6efEofOn6QHTrbK/gmJKem2KebHHv5q1dfeDQ8gCz8xRdffHDZZZed9jEb/LBf4m19xIcn/8zF6VPdYvbCxgtMvRpUlx7i1Q5fQH7iTw/94sw/cW9riCyZeJKH5xM8HeSC8Hg9o/pwwPn6Z6heHL/+9a8/8M89+S8+PT/YlZvWpdjhjafvnWvFxXd50eb4ox/96MHNN9+8bNATfTHt+YEH1OdX8z0iR9LJf/VhjTrTzqTT2qsH9YRPjoKjxhC/fmvrKHM8mjVxLfGd47620AtkZ+8232K0Xy7avXC+9tpr14v2zllng1zO/c4v9+3+8qrv5bYPNfvAGrNBrz1hz8z1zj88akODkyu9fJPtfoI9NA3vrKHWWazGdPK5c8Ba0IcWD3302D+uw162p1vcftnLBhkx4eUP3WqcHuP8pMezJn68xaUH7QtzjS763fvLD5vwnk/wuhYA+vHo2bB2bJDVgHwFdPBN7PNcLN+Tjw8aGpv0kwd68nKCBvA1h2OHjBe07PHH2YcmDvxyQYbfnXHoas0cjR3xipEMsH72T3mPB65rFXtk0ABeOL7nK/1iBOyWOzmHh+N7dvEVt9iSTwf5eNnR4PCKhy4yfOErO2LLFj78eOQo/fTgEVu1wLd0solOb7zm5M3Z0gNy3qF4bmXDvbl3cZ5/g3SzRyc9+K2TMR/p1+jVyi8cfzSx4S9uNZE8W8Yzx+xZI77wiy6ydPcLJfHTC8cP8hp+PrLr3tG+pd/8OCAWZxQ555L/N/nHP/5xndknd7809JKfbblnXxMXH4zJi4PvQB8fGt7yYK4FYtfQyfABvTFd6q/97hefXrQ7k8HUlc4z9cd+0e43GYxzUhI4wyltGp9JDx+uPvw+B/EUtLHkKlaHqLlmcWei6Emnnm8aP0E60Yz5LA6bo4Mi+SVw6gfcxGdfD6LXb/Gn1DylO0xHsk9h3k3ih2dny7edJw/vE6S+g7PNUCxocgwam8sLwN+BVGyLcOpHm1UOybRe1QIZud8nizd+trXWyjggm2/hrXmbHh971WL1SK441A1+8uWAbWOHC31o0eHjpx/eXC7ig8/G9DF8cZsHkx+Of7NG0R04Djg0NxkOunkhVKfocp9dffEba+Jr7fK5fLNtLG4tPcZiNxevT4y4ECdvrLkI0N2cvgl8L/f04SVDZz7QKXa1Y4wPDbBPPr/wibtDFV689q1cpAOffAG9mw0X2OozG8nXR+dHPhSzHvCHzXyVqxlLMeOJDy8bGvpc66V09wMu/nTiB9OH/KjHQzb9dDRmK76laPdD7K0vmppysexTEGTVm5vJ8iG+YkQ3pifY2sBjndVFF3w88en5YD9ml9+dI53BZHth2J5jm4xP+PiHj+ywV03l01F6+VEfejr8F3gPAfaese9s/+tf/7oejPjUnisXbJAL0gPXOFrxk9WSM95CecIjL/JwIV60++oYn2j3gJY/7PEd5IcxPJixGSe3iGf4ka7yYL06P4hVl9UmXDnMjj7/sjv1oqmh6qc46JqQ7MQZp8s4m8Zgymz55rzx5Ccf3hhs509i//fnlj71bWn/K/XkSA7d9HoJYd/IQ7kov3SET595+bUe8ObO13iyxZ90th/i0aM7l+Ihl064ZPAZ80tLll20WrrosB+Sx1+DQ88OWbT0p5sv6q9cmDurnDUeGKKpTzLOQntEXc146N83V4OBBwh8wNliXJxidMbiNwbsGWt057MY+CW2Yl8Cux90FjcaCGf95U7vYUpM7OOTR+d/+9D94UW7Fzv+CSwaf70I8ldkcsAneaK7hy++qw9xwrHF53JgLA4y+VUPp6HTTY9Glhxd8MZ0O5etARw5eDkxhqMn+63dpGUrf8wBPfIhLxPowosOjDVANn2N4fFOvPm24Qtay6lDLDN/8eIB9CVnbmx9xaypBfLuecRALr/SQQ4Ut15s2cUHpw60apaewJgt9GqTHB2tEZ1b38iTJecfNnvZbl357sxC43dryQ8NfjZ6+IXPV2awrU58XQIf1KwXj//+97/XS4Ou9e25ckGnONQ2X82Ll434xCIugMdcH5Dt7EgGje/k3O940f6Rj3xkXc8nTzqO0mfTi/Y3vOEN65/ItQ/0Wvkqd/kRXg7kDcw9txC7H3zT2Crmz33uc+vT1fH8X+iL4f8lX+XbX1188pOfXPeZ6kItlXO+Gqsn13Ffj+NsxqO+rYd12Z75zkdntg/JWN/04U+GzjlnqxrRA3Sy4dma9ZIuddZZg86/fKIHHaCRMbfn+QkH7DMywJ5lSz7EzT6deJ1ldMSLD6CLqTMq3+l1ntABp6l3PSCDJ4B3BrmOOSfYlINe7sm7OXz+s+lZpByQB+Wdj8bs4M0POFAMxnBiwcNndp1HchKNfjg2yz3dWnkXs5e65MVLHq94gTlA5xMaeXrhjPnQtbYaoEte0PJTHfMpH9HJyRXAF61c5BM9cPEkwwfrTy/e5MTH12oCjaw5kKPyqZcHjYw531wP1BG/yaIVMz1iz7/iphsOhKsG6dDEUl7YQqcrf8i5rrFlHdiVe3hx8t2YnHFzMvjoYUcuZz7JoNX4qD7pIafX2JQLPpnrq4di8wEKv6BhBy/onpdOduG9d1V/IF388IsD74ncP9N/HBAvG+Xj3nvvXd9X7yzzC3TXc2tHL//4LN9i4EMAx090NE1u5Du+6pUeYz0aPsAXuHJqrNEpp67fT+tXx9jMClaCOFKhVSiczvn6LS083sNAEhSoZAGLbaFtRgszk5v+bS9JNTrIafHxXxx46IMP8jFcPTpazTx9kweeTpCuNRnzrY59vOk8TEcy0ePPlt7Fy3dDKVjxxxuP+RZPD7wiM9bwAHmrV+DFuZC7H+Z4yBhrxslkb9qMl5w1x6O1WTokyKgN8zYKmeylO5vVUbEnB093+vmWbjTAJ/rMa+WguBbj+IGfLx2Mg3R6WNzxTv/JaXD+oYiXxQCvWnXBcPjgAXTh5U91DF984q3hzTac2B1K5M270TEmb6934LOP156ESye+cs1u0Hqbk8WnZz/ZfMaDjhbEq6eLj4G5Rr58GdfIOKPceMpVFzXyciSP4fRusvCTn/bYNIfvHCl/8OKYPhtr6Uk2+dapOPRw2ozfvBijm4Ns6OnPhjxMGfQJ+JI1dp560W4trSvoqwLyf8pP3RNvnC/G9Gp0hp+24dSQWsPTOrDZWYzu4u8FWL7RTcYn2v2TKDaAG0U6/xPgH+CD74T0PXH+5NjDep8W8nCLzzrJRWuUnH6LhyNT/M1b6/jDFwe89bQ2F+pFe/8MlS12xW6cL/m9ELsf6HzSB3jOBnQ7Z/T4rW31QbYcZFte2bDf4KLDoQH5o2vKdPaFW4zjx2H4GSee2hA9bSfcjHuOo9fTlf7sb+fx6vfpSu4wejL4nEfzF1Tz7Kjm6Elnvmz50OXbfpzrTRZEJ59eOHpmH689rKHxkQyoNtRHsnhAZ+s8d7sWoWc7+3TRAYzrqz16Nfz5QIfzw4toDwrJZdtDWg8dZMtXurJBDk2u0PjRA6S5BwdxADRn3ryHxhNUx/wsnnm9zQf85MzFyGf8xs5JD0b8oadz3hg/ffM67v7QB2g8MMG7Zjr7+C0O+55fHqZ7IWEOLxZ1wjbdclEe2Z9zYz7kB//pKRfGxYVGJ9r0oZjx0U9GK9+uG+zwyfp1Xc9W/PmaP8vwIT/ypfVofgj78hvPBPMpxz7bfDUG4pHTwwCfli57ynpbT3VMn/Vwj8jXck+vBpcsPWpm+sQuPDl6NTpBfuoBPjQ+6OnJBro5v7ofmHrg/YWtP6O3Tu2/Ykv31Fte0qPHJ149wANv3d07/+1vf1sP6+6h1YH7G/tZXEAsfOllSHrkaTZxVZtLcPeDDvxoYpTL5OMxJ+e51VfHnK8X7e5R/FO2v/zlL2u/yrV9ay3m+swxn/KHz8bdG0+/6dIAPvDpT396fRqfvsm7iE/zD77lx9l8KZb6ratb+eLe8s35VmbSzjRWl766xf9V+9SnPnVwcveJzeqwfUmeD2rJejrD7Wvrym5x459ARp3ZCxo63vYKWfqqWfRqAA5vkByZ9NpXGjk6q7PwZPmsNabfPqSDjBY/nH2nhYezj5wF2YarBulmN3/5YgxXftjmP1598nLinAF42dUDPrl2uK4ZkwH8YhsernsB5whZZwY7ZOjGy46ebDr4aG2KA41vGoBHp0fc1ptuuuDZNpaXvnKzuMsfP+SuF+1k0NigE9AhZ8VOJjmyYkLvWRgNjn+9byg3+ODr5YYcPjzw7AFj+UGTZ+Nq1Ridj3wQe3+Fznc+iFVfTeCfjR9o6ZE7esjB0+eT0f0SCk5c8ZQj/ru/ySb5dIiJz2yUA7GxXR7g6UqGHWut5R8dYpab1oOclhwdXY/Y4JP8dh9TXsRAb0AH38sVPmvt2oM3fLWZv+57vWwXm/tGdGuVr3r3j16ou7cSb7lgwxnlf0D6fyvWkE90HwfI0OsZ2z2nmI39xZaX7dZG7VhDH/7Az3YxkK2uxFztizm+6MUFLy90pA8u/6sx+xKfD6H4cNrT9s9QPchZdA6XUH1NgjmrNdajc/44YDNYfLIdBpKhSVwFmC/0V/jsmJOdUCIn7v/qWB7kZRvjNh4PUv1J1lyb+Mppa1SO9BWjvNqE5dgcPx54OpKf6wynBa0VfnLJbPXRa8PY5PmhFhxIILmpmz50jQ9sGMPTAfRa9tuMcMVhrL7SsZXhqzgmHU4DfEqeLIifjRof0o2HnJj5bOxQ8Wc8Dh+6HUDGXTTw0KHX0qGnV2xaOTHOXnjrC9yIqROfGHbQiw0t/5Mrb3qAD2TfuDziKW54AMefdE+5bMAZ48NvvtWDXh6N0YG4sjvPKTrk0AXOueHgNneI+5POeTNh7bRuvIzJmbOZn/m3DO9+hM//bMoRW/X4gLlmzm882U42uXTiVSPOxi5sYu9GDb8xIBPwu7y3BvYT/vzxQCovUy75fMU/AS/d1Rbf1BIcWvGVNz2/48nv1g2/2FzY1SO+/OHviRMn1p+c0wHgxHNcKOatnFx6SPcdhx7MfSrut7/97cFPf/rTZafzkN/7cpKvW73soYmz1triFUONXnXA1oV40e5TVe9617vWL/H4tM0fX/Mlv/nKp+nzYTksdnSxWiO9ufU0zmb1rueLVl6NgXk0c7J0wYNozadf6ViMe37g3fJPmX3jfN+j7jSKzmS34+aTniDc9GcffktPn73lgczNtb0+84Env9nY2m4+7XXmlv906KduMubhpi5jZ4L9yj9+dW7SU5sy9HWO0GmvoasbfY0+rbjwxpev6NM3utHyRW3KmYcIOPWt4XEWekhTm+mGD4z5JB49YB/gj5cerWuIcfeu+OMzlnP2Wz80uWjPiLV48WvOCfzk5Nm56aGbrIYmtuwY05fvxS8H9qdropdCfKSTT+45XB/cf7iuiq8484P+/EQjV57N8x0OkKO/szRcfGi1bCzB3Q/4zg6+8I29i059x2/XdS+d8WXHmD02+JGt9Jaj5vXsg3ym7zCgv3VMLtkpw5a11QAZDX4bb3Joc/2MNXi555fY5URs8HA1els7cvBwZEH5aB3Jg+ymcyF3P9ResvTgq6nFPhwFh84mnA/++MWOeD1TetgH+NigEy9frZk9U0zTDhw+/NW5mNwru46rY/d39rFfnvuLNTUO8PdJPWuQ33xiU08XG8YBPjrKX77CB+kiL14P6l60+xN0/p8LpN+L9uuvv/70P0OlzzqIgU9a9vNbDHIoZnxk5MQeTy+f4POPjOZraq688sq1Lmj42TOmr1xMPdv46Jl6+WWePrLZi1cvf+ltXX3S+9JLL10vHtXKYWDdn3jiiYNHH310rWf3jJM/3fmWP5MnWryTNseH0eGtibPTX0red999awyfTDbowyun1ab7Yc9k1k281aV8gInvOQafRq8ml6Cc9uKu2o3fuhoHzjJ7QeOr9Y6HruqLz3Rp+MipN7aL07h191zfC0V4cnBeJuPnw9RHv31UrOnFhx8kx8dw8PzIF/LqQMPHT+el65t42ATk5UgNAb+g8+IPHx5rwyd5wUePa41rPBsBPWjVMbvodKDJB9/sQ9Ba8ykZ8vLimo6uNty3yIe1oItOL03bl/XVCB1yhk/cfJc7/tCjF78Y+IMHHq57oNaJ7nSgywH/+QzMjfGLD00e4VoLY3z0yIMYNHnGzzexzlzlM/7syj0bGlBDxYNfPHR2HwBX7tguJnRrmy/yoT75JId8LYfs0IO3GOHwuO7AyVE55Rua2tCbJ0u3hpctet2/ib3cyz+9rSUe+UEHdJnXFnL3A59akcP46cCPli33f3SpabzWyNw6sCufnsfVIMiesVhc2972trcteTjxHwXomdCZxLZc//3vfz94/PHH10t3a+h67vzkFx52xNPYvNj0+SlOay0HoNrNtrn8twbw7Fsv8dPjL/B8OM0/IQdHjXEx734c+6tjLAYHKuwUMZzxgtQHEkL2JS95yVo0BSBBWyhZCtWGwAcUoURlg31+SMhM9ByTm35ViC0O+j7Ih320cMXYXD9tNY8+dc68RK/f6p06k4NTlG4iNIUULT2z9wDlE0tgH9+0KX/0sWFsHUB51dfg8cqrHpCTX/0+W9aNPP5phwygixya9XcDTpfNYMPr0fFv15EMfx0WaHQZ5wc9wLxayB6cRofeZsav7sDk53+24YG5WkyP9cFnDjpE8lGfTmOA3wFrw7PtxswFygt3um16hy682sdDP7kZW+MOFDHQKTdsoqOZa3Sgy/Vzn/vctU/p1IJ0NicDN3misafhsd5yA8zZR8uXZKLLBX68+MzZqG6M0TQ6xEEnGX3x4IObftNhHbrYo7vA9pUpcgqHz9hFkR5jba5v/unLw7QlHvNo+aPXwuv5XQzZ4kcyeNhJpxjViRsBcvzlW7njN5kJaOScp/luHC9cdcVukN18YWsLdFdr1RW/0mOMhy5jtdbFX5zw5Kp7sblpdG7hC/jrAd1DFjydbkr0+2Cbg8nDbvRi1Ks5NeEXXF7e+M36Aw88cPDDH/5w5YotcvJNR+s0dR82Jkf/rOvpQ3mCsy74PFSe73+G6kX7O9/5zqe8aGdbk4N8Cicece6Ludzti5m8dVWnerydx9lQ7/Yk3eqlmqmnF2/8+tYbz8TnQz5FC7+vxxt/dHJT1hhP+H0yydanc+qZcunCH69xtownhJ+80eHQ5cWDhuum2rFX4awDSBbvhNYdTk7N9Wow3dafrnRM+cb0kksmvH2rkXcGacYT2Jx+4Gnv82N77rAxG1n2NeN8zSf9BDz0uyd1hnjZJ2fqUD3SrXcmsi0uOcgGXXjIFFM+ZMccD52u3e4p6NDXpl9ssDVzXc706WucbPbJO0PF48EInv2gMT0a3+VAzXjYkgsyfPWVHOIvbg867kPmQzd9tWzQm39k59x4y49HfuDJib8xnTPf5mhwctS10px/cD5dJQZnuO8stn7iQFNH1RJbQeOtreizz/a2HicPG2IqFjRyYg2KQ/6tGWjt5ekwX8hZN+cpvnr2xMGGeMkD/HDi14C5Fk9rhIa/eeN6+tEmsF/+4I35R6Z7FOcRYJO864H61PikXj3Ek63howO9awR5dHlC18QN+MEOnLisgZqobtWu73/1KfB41AnbniuMAZt0sqlnn9253nicZ+IE9MFpoLGeHP3+9Nw/tzwfL9r/9a9/Hdxwww3rpQM/xMt/beaPL6253oskPN1n9QInv/GD6kIvdvdc7seiybW1Bez3XLYQp36kwzQ9dAF5tT7N4eSwPMuZMZ/x8s962CveH1x99dXrE5TOra3vdAVeOv/5z38++NGPfrS+v9+Zxu8pwy7g4/Q5Hds+/i3enN50T13VhxisgXPJGO8+fdZQXl2T5JbPxuInIzfyIk/m1tOamNOPRi895bFc6uFcf5JXx3jnuSIeOqwTX+NVP3zD37riNdfIaPidQxP4yr7e9cY5wHdzsbn+eAY1p4stcaWz+0hzUI7ryaGRMQ681HVNw0enfDor2OSPOnGdAGQBPXLk2RB4HlBL+OSJr2zIjedJObefxEwvyIfWik650/hhLk/k+Qf4RTfb1gkPH3vRTpb/coGPv/yhT+6M8Zvr6Qd84A+8Zlw+6FFn+F032S5GsuISJyBrzfjBNh+LQR6BmpFzNtDE1ot2+TFnB1++iBM4p8sFn9D5gl6N4eMrXXwtTvbEorXP2eF/v4DiM73ODvrI0o/P3hEPfDmOpz0gZ3zJJ/zlFk91JD/yJH5x1vCSIV8c5ta9+3+PkQAAQABJREFUWO0NsvCuX/yXT3MxTjlzPvIp2twPalFDFys/ABn2uu+jW97wisNcbuVFLpz/XQP4Tp4dtetF+3ve8551RuVD/TJ26kd+1U+aMZ0T/JK8a7b950Nvjz322HpuFQcf5TN9bG7H4rbm1au5sT5ec/nX8AL61Ze8Ay/a3/3ud6+vbDNP1vgocOwX7QrUQghwAsMZF7BAAJy5RXYTfMcddxy87GUvW0FN+f+Oj5cBB9Ltt99+8NnPfvZ04RymwQHs0yMKU9vCdlPYSB1eCq+ihJtrPNeZztZ8Fj/81M++uU01N1a6suUQcDFxgwHw2hB8w1u9zR4ffx0WDjh89OQzujEbGp14pr5oDhBAH3r+xruIp37Q2aZPr00Kjx/QZ/Oa00lftuA0OtA0sja5w1/fxczcwUtfa8lWB+gpl1bXAStnXXyMgbyga2zr7W114mBl/1yALjbEB6qZYi0/5TUb5OJJphyVX/FGwzvt0JNuuqaMsUZWbcqVnj4XE/nUw1c36F1wGs8csxHQ2xpNfHbZyXf66SOzBfzo7BQnHEhveLG7MMCnW77w0w9fPuHQ5Ny6AzRjvM3djLCdzUU49SMbW7/Zobu1qIdLb3aLoX3MB8AeHvsduMlwZnkIVpeAfTqdB/4M2xi/Pz8nuwU6yWgg28ZwbojsofKQL/TCy4UbPg9nLvZeTvuUuzrBa8/JXfrZ25c39iaQZSN/Zm+MTg/d1udCfaK9F+1844/GNh/KmzE8CLet3/xfTOMHvFqwfs4TY2Ct6KqOxKmZV9v4ymv+wAG5yc/4Z97zZ+KelNz/E38y6Z99Yzx0avHX79M8aclsceG38pMv+/rwerJBc3mxJ5wL8m2tWtvJn5yeLDktgJNbNd660WVMj7VJBm86yBeTXmPfflfL+Ky/Rj45euH06SUbqA9nMR8AnfmSPXOQXHXrPMuOXktGnpwxzhrXPjrw2/f4xO96m145qVarz3xR5+WQ/pkjcs4NMQC9uSYmvGSM04+P7pmvbPHTuFzJrQb4IS7xwOErZnTj5Oi2Nh62evGB37XMCwbnIN81v3TUPHjxsxzSNwE+Pyc+f6cv6MXNJ3GJv9yZG5efqQ8Or0YHn9nwF3licn77+hs+W8fJb8wPcRmz3bw1mrboxweMyVWLk6+xGkLHRzeYOuZcjK1d/oijvNaTMdboxAPI0pHf/JzrgwdO4wPIF7mjJ3vZykZ20NnQFw898aUTrXpF62WFHpRDNare7D0xe4nkZa5YrB0d00exySngg/j0oHsW/ql7eHbI2MfqQnO992l2LRl2+EGuNWCXLfLy05rM9RZneTcWa41PjfV0eLHjOu5FuxfurQPe4wB9wIv2G2+8cX01jtzC7/MHb/7xw30u2+VXXuyN9OIHW/9m7dBnjcREzlj+4EG89XRp5dFYLuU4WvbJoGnGZMo7nuc973nra2x8daB1A3josf4gOXMy4v7xj3988LWvfW39VeJi+g9+0Jm/7DauL9/FxlS0+Oe8vKEFalheXZfk1np5ftMDvJ0x5u0ZsVtTOaO3nJQjeGNAXm7IsIdXI1fjZ3aM2bV3rT1fwum1YmlvtnbL4KkfdKCr2/wmR5/7/uoZjj/qOt3G8Ob7ID/IGbMlXvtdXozR2JFX9sXvOuy6RoYNcuw4A5wbxl54+ioquvjKT3z2T9dxvOboxcmePJcL+jU8aECO24dy61zky4wVzgePyOb/zBV9rvlkilOv8WXaxwvQrAWb7hvNxdf9T/rcA8kF3daffX6QlT+6y0O24jc3pgNPsVoPecmX5LxQRQPWR47YrabY4yeb7k+01h2PdRUPP/FaV40P5uzJW7HxgT42xU0vm60Tv9DbK2yx09pE46+xGNGSJ1dD1+ho7Vtn+ecz3e0LvPLGt/LJDh/lMV35gxbwm24604ufL2jZcY7Kl9zIHb/FgJdN+bXePY8nK0ZAnw9nXnfddauGyLdu7AfkWjvj5tH18evp8aLd9doLdvvv5MmT66+T/P8gOaGPffkwJjd1pJOv1n3WUuuHh7+dB/ICyrEckPPLBM/M/roL8P84cE4v2i0ERyaUPLgCLuiSakG+/OUvH7z0pS9dxT7l/zs+XgYU3m233bb3RfvMO602iRtZRWkDTcCr6DTrFF1vjdOl327oWbz4W2dyxoBczZydNmPFTq/DT6OTfAcmXrh48ydd4bONjh/YfHRpxhPwFY9xvPTQGT9aGzR5cmxkBx6/wy95NLKBA8sFGQ9eNHamLXbkMdt6+vDqydLh4dEFsQu8G2gXk9aOTXodoPnpIu3iIq8O3g4WNukXU+tiHGTf3BjMuBbi1A94OsjHo69h4xeb+ED686MLQXg9GTrFJwfWE05s+gnTLpoc1qrRYiWHnw25ZDscXnbQHLbOPD2AQzenW+9iYI3zBw8avhr9eIphKTuljx/tz2TpmvrC85U/4oCLLzq8vdQFlh364bX2A7lZj/ylYx/Al5PodFbnxkCfLb115YsbCbwADtAH6Haxc07hUbd+e+4mwBwfP+WO7/Tpn/WsZ63fMOMvdvrYNZfPYhV3eOvlT9K8RKffy/vqMX/bJ3Li5g//9773vXXhJ+P8rR7YbK3ZPRuUF30+Tf/o4recXKgX7b46RgxqQDz5Mn0XCzzAZ6z2qpnJaxyvXh75b62MydOnWUf1C8Ktyam5+MGkTd35oi7w4psQ78Q3jhY/XUE8enrxxg8XPX795AkfTr9PBl/4erjkjIF5MPnC6cPrxSLfalc9R5t6puwc4+l8gJfbeR7SNfUYW1d2Wl/yxpr80eEmvXOIjNb6GXctymeyZFzfPGTgVSvqTt0AOLbyyVxjUwuM1Sre/GSzXLke+nNszfmExga7xva362p5IedhjD9iA/g09vmON7v4s42XDJye7s7xzim2jOnDp0+efjE46+wre5Y9+TPGh99Yww/0+WSeTn06nX8e5OnGK/c+dck/vjqLuscQO1lAXuNrkN94Jh49uXi2MubR4g0Hv9UXTc9v63nixIn1UsqDWA9o4rAmYtGM6RKXfMOxJzZxmgfwySWrJzv9Mcar73yMXk9nPHTEBxc+XmtovbXo+VQfnow49MWJtl2fdJMvBmN87DVuTfXyilav3ugO6CmHaPau+iRrrKbsbfN8s8f4Qq88XrT7uh/PhmyoQ+uIbj20eb3obKHPHvLLFOubPjrRgHH7nh11jd8nU43ZQ3dmlmc62dPElc/iZIMMH/ADetv3C3HqRzlClwOfZD9fXx2jrt/xjnesT+fLrVbcfGST360BX+TIL8/a03DFlN9kNbT8pwMOGHvha33kzDw+uWK3umrMj2jGQXbMjcmhZ4te42iXX375wQc+8IGDl7/85atG0uPDD85kL0LI+AAanPum1sg++/nPf37wrW996+C73/3u0pnfxdA8vfXweOILr58y8em1fC8efTzh6KDXXOzFr8bk14ee7Cm5tKfUGX581rG1xKOhl8f8gAPqWj7KyVwn+sCUMW4NyVh3OH71l6Z0w21zA4fGp2DGDCdGuPBkjNVKYz0dePkrBv2UST9eoK/htY/tdTWSbvHIp17snTNsObNANtjGS4e6cl2hX3zk4K0DPV60s4NOnj57Ex/bgE06yc/zibw8ug/xNb+tPfw8R8mXd/qsUb7iDfhgrqHLRXT2gTm8NdXMxVcM9jmfxCj3/OUfXjro1fhAFq6agS9OPXr27Ed2gVjgrZP3Gn0nd3WeDfGQk8v69oDzlR4yfM4e/e7l6LYWmvyJw5rSSZ9rfjGSQQfkioePgA0N5FtrwC799BY7/XIXDz/Z5jM9fJJTz7rG7IhPr4mRneSqaWvEP3N6+JxffGMPFC9a/vIPf9cO/qDBlZPWRxzVR3z04qupVd/RzpY4nvGMZyzdZOkFxSUfcPwznpD/evkpfjVpfVz3fI3rr371q/USnn55kCP7y5xP5DVjUNzlFA6vnKLJgxiLB5/40cXk7HN/8ta3vvXgNa95DfHTca3JEX6c04v2NgqHCsa4gMKx3xjdb6S//vWvr0+0H8G3/7KcIQOK1D+pufXWW9cGrUiJlPPEXRg9TLZu6JpiqyBbu9krNi1eG5FMQLbiJjdrwDw5hdwh4qJhrk+WHnQbWXFX5NGzaXPmb32xZEufbXqKmc/wE9IBx/cuhnyYwD5d7ONjwwbkszjoYcdhgIe8w3Mefh0sDgW8fMk+fcbs5C8dbAF4/Ob04OGr5rD1UOxloJrAQ1aOHXgOPr7KLX/5pMHpi3Xa4gsQ88wZP/N1Mex+mLc+egekJi90O8BaV7zs0OviIxd6eMAW2mzp5xN8a5DN6d9ScuoHvIafHLt0lWexm4dLrzkgW06Mp0/RyBhbB38aZ12Sxy82zRhNvF3UzQEdGjnrF55Mvun5kj/40csJPfKRbfPWFi5/4be66EGPlg6640Wv4U8GjzpKho781JNRA2qh/TDtoIuFDvWq0alO8bvAVUdsGLuRcp7h8zL+kksuWfXFJ+tQjtBbY3byWe/C/dBDD60bZ3mjFy8Zc35kO7/47Z+k2mcu7h7YTu5+wz7rkO3s4D8TsDXzZqzxFdDFrwvxot0/5PKnfm5sQbXDPr+0YrE++QqnRuHyM36y9NTgjfXx6q2RPZEOchPw1MJPHXDlacsX/3H7fKDvP4V01W/1HWZj4pOdfWt0Jn3y1E2xPTV1buXophNYV9Cambc+dMDbx+2R5vYpO2jJ4qGXnL0AD/IFLX6yrg3tcbz55Rzs2mC/afv21swRG9lhUxxavunN88sLZh9A8GDb2cOOlzX8lANnRddNOl1vq1/z7PEjO8b8R6NHm8A+3fYCHj51DaEfDp0+fvViQ27lrBxnL93ymi06NDzw5QIvnmTpkgdN7QD3Ma5n8fFXPFprEI6/8PQDePFrcPkBD+BBNGM4tvTy4OwXN93k5IINNHL4khEHIE/GL2vVkzVyVne/RQ9fAFl66J3+siH2bOQ7u/RlH9181oFzEfBn4unHH42fIPvZmmtER+uj528y+PlV/Ho2+DbjS0exThodNXg+qYOpe/KzTR8f7YXWCr68stM+ybZahbMexsmxZa00Nq2Zr5EhFy/7M3fm+RTNL6Z8X7k1nr7Tw5azRWNbc18Kr7aBve6r4dQBfLj2eDnS42EXH12Afxqc+ANjOI2sevZXeOfrq2Pcd7h++4St/FqXaZ+v6oFvcsFvtT1/kUem/KLXxGBMH1mxThueJ3opgc4W3d0XtA50NEbHZw7Kj17DO+n0wpOTwyuuuGK95PD9uHIJ+O6li2cf94FexJPxHb7+n84LX/jCde/kfhF0z3fnnXce/PKXv1z3PuLKh8U0fpSP6PlUDIN1DfGBeuOZg2jpQzOmN95swvFNXNbJWtoX8MnJjXNGHtqX7Z106jW8XgLbC/YcIJeu7IoNvzWvPuSfL+SMrb2c2sN4ydToAeLKJ+NqJBo5+MCYbHyNza13Z5M42MoOPXxiK3/gxAlP3h7HzwbZ7KZDHujFK26yAB6Y0y3Xnt30dKTfWdFzm3PFPTUe+vHwR+0l5xeJ1klO9e2nciIWufZVv/yx9vTwoXUpFj7yu5yYG+OvFozhy4G5Zo4XOBflma1yAW+tyYpLnOx7LipH2dYXL51ktGLi78x7vrAB8oV9L8b5gN883/HBy7XGH3m1vvyXHyCvPgntXKAjfXjiyz5f6XK/pzcnw2881gzkX3Umf8WOH56f5NGAnh4+l1NzvOlJ1lpV52yVO3rEmV75B+ZyI349yG82AD3G8sJeeDRjeXJf2b5Oplj5YJ3Vq3eH6pRMvtGBlw/0e9kO517aX225n4THk26y/M2GHAK+i8m9VzmftY4H3Rl2cnft+81vfrM+JEfeWH2yrZV3MnTwGY5dLR/4Jj60/FQD6GzNONWNX+S+++n86hgJnA4LTqI4VgIFGaCVyBMnThx84hOfOLj44ovXwgkIxENXANciweGdc7g5NyYzofnk28qZx7ePBnchYdo+mx1xyJFcO/S/8Y1vHNx9992roGbu6KG3Zs1ctFs39ApMj09+Ww90wF6HXgc9fpDfeGZ+J95YsdvQDhJ8es3hQmf8dNKd/g4neCBmG0uceLbxwtlU8G1gMvn/pJan+h2OX2JPf4d2dD09DgE68dqc3XQYu9l3YOMRsz+HbSOLUZN/B5MNzRYcfzsM6cWjh2NLm0CGPTaM6XP4+EcRxvjlwcOLA8/Bhze/6Q7Y7pDJlnm5FfN2bcs920CfL2StNdtuxuDNjVtXMi4ecuUTtQ5XOuSDD43lQeNLssVAB3w+k5l+GqORTy9cuvRTxjjYh8efjPzNHJKjmx19uuROTWj8sOYedHyqyM2YHAB4NUMOrzn9/M9nfNnFpzbkVl7ixSP/6PlCPt/g8KJrwRzDFUM5NyeXrvzQA77Ea85vsYvZWN7Uowt6tYavOsPrQoYO8oecc8KNXeeFXxz5zbLvS+tGEo198bWv+MovNHuQzm648cn/r3/96/WiHa28lD/+ktM7O0+cOLFs4qXbXnvf+9538Mgjjyw7+Ywm7nK1AjqHH2Knw/lyIV60+3SX/6AuD+zkP7tadWVttNZXbOatvdDQ5JqcXpNHeL35rMfO0NKSbXN6+QPqpz/h2htTlkzz+OCOCltZOs6mh0xyc3xUm/jITVvZTF90eS+P+/STk3N7Se3Ke7r28Vub6p3e1lS+mxvD02svqEd6zdsfnUN4NToDstVQ+4IeDR8d+cqmdSWDlw22gGuEvQ0nJjzFVp/NbV/+wtOt8dW1qRftYqOfLX/pwj+62e2soSt5PT8moNNBN3rz7bqJU0OXC/zssOsaThadDx50/OWO8xEfn8gBYz7QD8qXMZ54t3mjB45+6+chyjWaL4APHmqcvej04E8nm/ax65lruLM1H+rxi4GsVg7o0MzpSSdfyNDrwc7auMdVP3B86uxIRzJ8zkdrhc52/Oxkiw3xo2uguPFMn9GshbWhqzXX96DPP6BuyBZDa5hOPOzyWT+Bv+1X/HQkJy7QPP+SoQtPfpiTR88OmeSmbjwAH/vWBB+gM5t6EF8xbOXLIx140dmzx9UvOjteqtt37pHpVmN48PNB7tg3x4+W7upIvO4h/cM061MO6CPHR7Ls69n3MkAzdm/ghcxPfvKT9TKGvKaWrW124MRDr7G4+FttmcNPyH4+s+VB/YMf/OB5+eoYn6y95ZZbVuzi5Gv+8cNYfuRFa+31+Pmvl+etrFjIAzz2E//1oJdV1ZtevspHOWr9zacdOtCsi778tebR+Sp/vhrw4x//+IGvi3FGB3/6058OvvCFL6xz4qqrrjp49atfvdb997///cFXv/rVdd9G5lWvetVaf3JsuPfxsl1vPn1IdznQa9YTHyg30ZLRwwWN57qgTV2N9QE5ttSsvKPJhbyjGaMZpxuPNa2urRuQY3xq2nOHfNID3/rRhT99bLff6KdXi48OtZCMHNI114/tYtCrje6/zdnnMx30mrMltvaduqXX9Y99UJ74CuhC4w+f6dJct+imy3WjvOCnA749zm9zPVn66M8PuGTEwU/+4oPnM7xnN38t40xxLQB4xeFayh45555nCj5ZC+9lXH/RgJjZ7pmZXxrg/4Rypi8n6GJno+s3fXyFlye2Wm9j9rXsZEOMxWX95EJNwoubr/lgTufMlTF6fPTCsSmW8gynrroHiyZ36SRLj1zDy6c8W19yYmNLrP7ptf9dCLxoFxe/NTGY42vt3MOQ3UK+hhc3P6cOvrJPnm8an+HFmS10czrRt7luT6HTzxYd4sSbvDjR6RI/e0Bu8KPnN7544QDbZPnsPksNkgPZoQPIl3p1BvdhFDkjrxl7FpbjzqdnPvOZ68Nv3gHRw16QD823PV3uKcVaDunQyod4/UWaNcN71113rb+C4Gtx68m379W8/IiPz3IqL3KgxwvnfjMe9cEPc2vuL9I881977bXL7RnXNo5982N/ot3B0CHIGYskMAGUIIZmUnOqBdYLUADkJbHDHY2sRl86bXjJSpdeY7cxmegVHV/wpC9+eAA/+3Qt5Kkf8aS7OXI4Y/gpHy1cuTLH2zxZ/WGQDnSy8qI4tOlP9Ho0h66bWzIdMOjlSCEbo8sPyF6bz7pYo3j1IBn8E8zptM4uGjaidXag2ACa9acX0GNML1l2+Vps+dNcT78WjSwd5ujk6Zkw/WYzSAe5bERLV/ryVSxio1N9uvHvguSlYPWNzk+HhIsuXrrg6JYjPHzYxp0PsxejXAIXmpPjRTvf2HWD4kW7dS9m+gN26dHAlgZX7vCWKz4ngyf/650PHpKtL15j9ad2gPqSIwelF338Jzv3pdyYZxMd8BFOw2POhviSweucmHWMP318l2/5I4Of/LxQiZteLXtskcVvTDYw72zKV2ttb1pr+pyZvWh3oKMBeLzk2s/Zh2M/nc35wWfz+tYqn1oj8p3XaPHzmbxcgK08XDkwFq9GH916OZVHfIA+PHRpeNDUo3pgm11Ah2bugqc+yMNll4ybRc3YjcGzn/3sdeGni20P68ZssZmfdJCxR+mtzvCpu1/84hfrJgG9uLLPF41+9XvixIllM92+I86fMfuEOz45FAe6OgB0AfaKeSEO+SFuEG95eTpftLPP79bT+qod0Lp0di3kKbz8k+kc01tTLzV8Z7JYyoM1am+mox7fjB++Wpi0dPEVXl++k0/nUfqpY9pJ9jCd2Zz2kznXPlvpllvnpRdKPqHrjGh9pg1y8K6zaprcPsBHt/XEY6xuOx+TQdesF1Dn9Fbv1tj+qMe7zQNb5O0JvbmzQGM7WT1ZdGsbb/rU3KzDbOUzmaNCe1iuXCNdp316zFkBnNFeePNFw6+WxcofsRTPtIsmptamGLZ+4aOTLF562bHG1pd9snSJ0/2Fhxd5Lx/FTzfZAN2cXjmVn/YafSCf8cCx7yHbGdt6qDH3Mta7tUl3tlyzPOi5jluf7OinT/GH0+PJD7GUKzb45B6CPz34sCU/+MqbnmxxGec/Gt7WKpmZNzjrAOQA5GPrY961E47fdMKJWZ7yg3/w5uSyPfUa87caMQfiBvzT2KIjf9DoZb/8JtP6sEeWbjz6WnJ0bIENcvRk11z+yjcZ9uhDM04GjQ44+0R8+YaGD777fzpcs+0511Y5RHOPiNa6pRfO+lT/fATiVXs+1S3vfCCbb/nKvvOGDS8L3A93Bnkp9sADD6x7g+zRpdFPn9wBerLNH3Qgb9lls/XHX115CeBF+4c+9KHz+qK9f+y6HBk/+MC/4hADHD+tD9+AnOWv8WzlUd75rwfG4ioX7NgL9ig7dMjDrAF28bMFWhu9BuiZdDp9TYyv27n00kvXObgYdz98wMEHzPyTUy/YfQ3eFVdcsWx6yfalL31presLXvCCg5tvvvngFa94xelzgo2f/exn62tkfBUgUA/8DozxacVTzsQoNvgpQ3bOo+uLi9yMmUx6pzwedeUMNJY7PpZTNHpbVzzormFadDqBOvCivbWsfq0LMKcDsOHcp8+aqBdze5g9czXABqCjtS9O+GKgrxqZ+cHDBp/opJuuYqKTnHOhfcTmdl3Qui+hTzOXV3lzLnf+8EWDlxO6jNlxDqWLH2jFYAwXnu58Is9X8l6098vy1h+tF+30OX96H+JMchYWIxn65GCuY3mLXhxyWL7ykQ05dU2XB7kFZPktF3wvdvz8wW8MrwG5tA/FJV/k+EwnP+UD4OcHHDAWd+tFFo4PfOcHW+bw5nTqyejRemar1uS4s4b+7Yv27Lom/OMf/1j+dA+hZqtbfhajtbc3yAZ8DIzzmx9y29qTRZNT8ciHeqM7Ha0nfXhm3GTDW6viLAd00ElHPswcuVfkA9DT3XrzUcNPzzYOPqs7ObHO9M/6Juf8cc30QQ91i3cbg9qwTupHDr2Y91fmru18yW8+Fq9xUJ7QXI+taWvBB42eciO/vsbV/an4fdiYD2o4Hrrpnechna2FGpIbOQfk0NxPqCu8Gp/08uMv0vxy+2l70S6BNo6FnQVVEmdfElc0ux/Rmgu04pjJnElJhj3JaIMkZyGMARpZfXIlLJv/P/VypmDEWrzbnJsrQr9hwlNutvnDN3Wgw8m5ni0FJ9/m5Vw+o8NpfILTjMl1eBhr8K1dtpLPT7ate/b0E7IRLt+sOZpYNZCOcGzU2CWLlk526QH4HNhe0Dns4eXDRaffuMNp5ctBZkM7GOh3YHmAVPP04XWwdcFfhnY/+IAOpg8LsflBBxsOCIcOoNPFgK35G8t0ThXFCld+6IxXb52sHbocmWvm8UWXE/mQFzzAYa7JRyAueXFAdxH28tJNCsgHeQPZ1YNyhN4e4A+8/MuJHp0ueA3A4a3BFUdj/gG80fCzr4fTmtMt73DR2YWjiy/G3RyoITj8+DRy1rCLJ53o+niMNZAsH9DlstjQ5D//+MA+vmDqyka6+ZIuY0B2yqRn2+cXe/j5YL/PG0e46gg/W3D5m/3OCb368eLWL488eMGpOzeq5K2536wXA11k8AF0gI7PV8f480L0fOULIKuu2uP20kW775G1n+h0Y+ZTUT4N5x+T0ZnP6ViKdj/Mw5VLNLjilVu0Grr64Nvzn//89Um466+/Hvq0rjU5hx9s+OqYm266aZ0b5uLMl3zgXzXb+qDZr/Do5KxB+7+aocuNme+zu+GGGxZvtSdX5WOf+1samwGa+ZYn+oXqz2Rv+nch7Lte+KSHFwu/+93v1stYed8CH+XfzbC9Zn/ldz0Z/uKzZvSYq7X2DZyx3nXEupE3V4+dK9a4ukDTzKctY7XS/mK/eiFPP53Gzqhs8cc4n+gx1/hbC49Pg6cL8MWcTGDsnHT+knVd8qLdi2z3tWTQnMF4XaNc99NP98wv/fSg4zcG4RqLf/qBHw95+QB4PJC7RgC20LrHiA+t2LIHF6CR1eeHvvVhE83cWtLrIUnNZNPDjrPRHB8ZLZlqy5rJJ7+7j3ENFwPZcsIeyHb66stvcw9r7iM8TNHLTtewapXuqc8+0QL5TJZM+eYXubkG4slX8o3JGGv4k6NPjLNO2cIH1E3XeDIgXdmFQ0u3OcAXDzp/W8t8wTMBv/zg19DJJYuuZQsdH2icDTi0bOnxVDPqhS489q55stkzxwPgOjfUj9b11N6zTujqnJy8ya2xRr6640f7Q+7Vna9+kXsgB/lafPDk1beX+/Z6L9vdz/t0XL/EFCsddPOfLg3wpVzAGbMBj1fPTvxocmPuzDifL9pP7j5Y8+7dn7F7odR6sF9jWwzueZxlxvlnjzh3+Wyfyx1+furlu966uN8hU2zoeK0boFvOZm7Q57wxH4LsZbuc08s3/3TOd+K+7nWvW/lL7sEHHzz49re/fXDPPfesM8p9kb/Ou+KKK5bfXsJ8/vOfP7j33nuXHi/rvSC57LLLVo3RY3/6i0YvafyTezlyBgB+gdbfmI/5Dh8u3mLYxoQPbvLh3batPnN5lns9m+wb67c6s6sWrFlrBG8sp87l9ll7Vq8WNOuLVx7Y1VsTOI1d6wivnuEA37TWGJ6dGjk15jqBJnYAz659iZc8P9vD9rmxazQ/yalDfbx4yETjG17+i4e8Pc4WG/iM88OcvHrwTFC+xEMXPjkAbLKnh0cH1T9bnsNds5xLdNEtbj05vjnzvIvpGVn84qITsA28s2GDHrr5TT6+ctC+wQcnJnx0slHc5r0HYhM4azU20+t+x7kgf9aHTvtDDPzpnGYXrpzyD9STo1Mvb8Zo+EE92/B6cYojGj6xtBbVEZ/p5YOen/jKlXsXL23RnIF6ecAH+EMX/629dw/Wn3224TVyIJ/Q+Dpj5Dfb02f88NpWhj54vuML2utsph8f0OPND7mkt3rMNj/ECaxfe3r6kO58jEbGmA55wmesVtwfeuneuVBdyZE8mvsAHJ32q784710XnflPJ58m2B+to1+O2D/lhmyNXDWtN7e2znvXhMcee2zZUbvtufJRbfMP8KM8sFWesstf64BfE7f3Dp6ZfX0ZSNeaHOHHsT/RbrNKLqcOgxxEL1FtNDQLKVkSUcDJCJJuRV+hZwdPi1ZBtMnYIdcGIWucHrJ48imd9dmPHm/02eMN8DWvj6ZHrx1Gn/zG+Kb9rVy0evR4Ji69NooXUtHgja1JmzabFaX8OuDiax49HdZv0sytLTlNEc81Jl9hTx148Af8sZ5qjYw26fHVo+WbGgEzL+mnc+aKXP6TM8frAMbLV4eN74FyswLPJ7zy46ajPOnJkrPh+842vBftXtT1Jzgd+Pgcluo0n6bP0fKrmNT2rO8uUPJu7LB1MTfnDyj+NTn1o3zqWxO2NAAnpuJq3sWbr3inDTbzDd0hVf3Jo1yX4/jE708+fUIHTY7h2DMn05lRHbAJX4PPj9aHbBcjvpiXX338xmzprUmtPOCb+umByz988q5Hy445XXot/foAb+CGRqNL/PJDzjgcXjrhxEYeTb3xKf780888kwX4ipM/Gj16sWr7AJ0+dvHQARcYxxOf+ulGgj/m6sSaxsuf/Iej3xwYqzkPyb578+qrr1760OgF4neTSJactcmGsXxly4X44YcfXg9q0dhHF0+xiQ/dHveLMl9b40aCLRd2f37s01V0q1k3gMaAjtkb0z+BfnzyFK2Y6ZGnXrTfeOONSzS+qec4Y/a8aN/+M1T7iO385lP1wc/8kg/7S+PflOObPNJx4sSJAy8DPOT+F/6zDKi3j33sYwf33Xff+jNJOd+C3FsnterGt72Fz9q1fnprqFV/1gyY002XNbS+1UPz9CyB3Q94uFkjcNWCGkp/NrJr72psOnvwqjvnmmaeDBtzn2SDHVD84mJPj6d9zyZc+5QuOXKdtLc1PGx2Drrp9w+YnBdw6O6jyHjwyAbb7ZdihWPfvFiM4QI84gpnTxm3Bs48Z5h5fOi19JjTBfiUXxOfvB6dTs3YGujFLkY5EnsP4XSj8UXcakzu1Ac5LzM89MiRr3Tw0Eq3vImZTr5km1w4uo0Dc2vhRXsPv9ZQfvUaX7SAbvcWXQvM8cu7nFZb8NlNNp/oIwPwaYD/5TZZc7yzkacL8Jvdud7G/OB/eHqKZ+qkI7vZhGMPf/6EKx/h9eT4UxxwWnrJng3wsqkvT9bVHFjH7unKxcwde80bqxt7yLVUowtPvrZe5mKoRrMrh4A+5+I///nPlWu4fEUDdGhk7SUP/150aXxny8sx13L/hI9uOlu7fCqHdBZn8cCVH3aKF548PvvFJ+LO1yfanUlvf/vb16c27Uk+BezLG5/E4aWf+uCb/eFe3PUB3fOM+038YObbvpYj+qOLRf1pbJrTU/zlyXyuBfvp16OFM0+P/LMnVx/+8IcPrrnmmuVrMp4PvvjFL64POHiZBvwi3wuQK6+8cuX+0UcfPbjtttvWPY77QWtw3XXXrX8ei0f9AWfb/ffff3DHHXesf65nDvDvgxkbevMtL7wmpmCO4eLZjs3xovODr9WQ3po0tybN5Ttd8MkbW0P5Vuf0qYF0qwMND13ViDUwzu/Wix289vyMAV/rTY5OPPYcW3LrTDQmB/iGzh9+kVeveOmrzrxv+h/27q3VsqNa4Pj+KKsfgm++iFETxRgUETUmMfHBGx0vIRovqBgvCOmHCBpveZCIRPGSgKIRNPqiIrTiDcEnNeZF6I9y1q+6/31G5lm7s3dnGw7nOKB2VY0a9xpVNedcc63NNnzsUssd43KbXDz0KuyT42TLJzmgLq58MNaDQ33nlDMPnT4daNRkq/Ebp7u48iM78aG1nujEg57c1hD7Otuah+Yw+9TixD705Dpb0ZHDLjh2KNoBuwK8ZJgHMs2J65beqKdDvO13nd1k+VadmIqj89MYv+gik9306POdHLaxqzwqXsWAHuP40eNlkxLApYcd6ORFfHjZY67YRDZ9leIoj/gk7sWJHjaj0e66IP+9yOJZDR56zZsxdOjzh40KHUr5YFxpjpLBTqBPf3RkFgO1OLbWtY2zXY23PlyQTfra6IpXNHBsalxfO9v5S3+AXxFrOhX05qBSDqAjR056rnXzzTcvH+Gds61BOptPcyUfw4mffUmcyfJtJGeSGBRbeCB+ctjLbr6pJJfZTp/7Ih++mjMvwSl8Y3t5UTzJ4Qvf8CvsYVvr1Fh66Wazn45xz+xMAmhOA9f1oF1gBAM0eRyZiTCN4FybBANNFlzGcorDajgledEIGmhcAAXMwhckdiSnAFq4JS5eMpStnelQp6ca30kh2yZ9OuHScxrZx9FuZdWfutPpbS1vg4q7OKGVyGr95lBtXsRRAndDFd4cinsQntxkszd56LKfLvOipsOclQPmI7pklw9ojFUaP1SjySbj5JITNF5Nthziq3qCRSsOYuCf+JLjYJdTaoepA4k/gTbZeG3ebkAteDkoT908movWAp02D3awtRiVn+pyupjCkQcfD53mRUzhtNPBNnLpgkcLioG6+VOzpXH09OJXtCtospc99AJtG52DC46dHk56o0cO2oDFojcVxBWPN4xttHwQOxtwPrOjWOEt1+C0+cAWPrsw40N2i3+bdn7kC/vKgeISjTlUos2W4pYOPpPjUOULOvbi01cAvuysP+cDrguA4pkt7K+gMx4tGvrZmh09rNcH5gCPkj3wxvEDtdyGa97XwJU/+V1c8ycd0eqXm2py8TRn4mYOuxA3nn1s0ydDqU02Pm86vvSlL12HnXXJ3mwWHzGJDz0dXWw2f3S5EPMpuJtrds14swGvPJRf+NTkeEAgx/JLnvvamlg8/fTT63cB5S27yRBHtfHiYiyAB+HUtemg1wHvt13P8kG7r073z1DpY6M4ZCvdxbG4sZU/LqKsKW+M4Mn+bC+/drvd0T333LP+Adwi+s+f646Ai88HH3xwPWCwN8rNoHxRmx956kyRO3DmD70zzhzqt771K+beWLX5ty6ipS+95UY2qJOjxoOm9bylq28fyF487LWGna3t2+SBbKufDH0281c+6rM7OjLZQpezlw9kwdmzjRtzAQ/PZkVb3K1rtsCRSYd9RYztBeSxXQHkKdP3YqEmlxxFv72kPnnNXbLRGU8PGcmpLh5o2KjGE6RHX7yMq7PX+eHcoAser4dZcHxR89ceqDjH3bTbk9382ofJsK+6WWeXGi9dAI5tcpEOQD9/66vF1pygL5bmlA+zGAuKG/kg37Ot2JO5BbRkJZsscuA7U6ZMtIozh9xiiYa/yox3stHDA3bwKfpkoU0v3eizD/3EkZMt6vpkboEMpThvxw/1+UaWGsTPdoUsecB/tk06uPjzkwyxtQ77Xyvs5ruijUeZ9poLOUImmsac4x6+WsfZk061fG1/Md5+0zVi/vTAmZ1+/7wbdTxo1HQDcov1Quz/iBE6NGgnoGeDc/ysH7T7x5/WEr3WnjUoX7KBbvnCXjFsD2SPMWeJexmxLRbolGTAk4lee+YDP+HJb6/CV2mcDWJbLqub72JFBtn+f9vnP//5o5tuumldyzfu21yPPvroepO9t5Tp9ka7B+1+j519f/3rX48efvjhqw/a43/zm9+8fkbGt+xaA/h9K/E73/nO0ZNPPnk1BuQoweyzPdjmwaQzNsvkOU52NMbNqfnSZmd7ptiKtTNonul8Mm/ZgEaew+EX784sfWsDv3F2kksnnLHw/DV3Cj40xtDnhzHy0RpjNxlsQOf8dF2cDH7mI3rFGDrnTHFDRw4ZgI/o5Aka1wnOGPmQPLo9zBYfwK6uJcghnw++3eL84i+/8LNf0SafHrkLsgktO8gA6NHVtg6dOcbJUdzrWmNATPhbHKNLRjzw7KWv/Y0MvHSyR5v95XM+Gzdm/sVDnyyxZIs8ID8wTg/gL1vItL/4ILOHoWSSgReNuSA3PLnZbJwv9iT7NL/Zb5yO8iU7+JNf2niLFfnxiYUYs4+/9rLG84duskB+0YOHnOQbY5+XCjzLYRe9aMpHtECdbnTG7Z3mmlyFf+JNF7xnIHxHSy47zZdx8ppbuulEA89+kC1wc47W4IE/5JOdz2QmF3k61QrAo+i7p9bmp/mBI8+cK+aDbWImBmjlmD37zjvvXPMhDvBsaB7I4Df56PXJFxvrkW9o/a6+uRAvY0pzUvzk2Ln9S6vJca56ucPDdjLdlzrXxDRb+MEncovJcn7/p/jkpxp9+aNtTr3Rfu+9976wb7SXaIwVAMAgpXZJU7JYEBLRJMUjuDklSCXIEnKCPybUYmsBC45gkqvQ9X8ZxJHvxf2Qr2LqAa8bIoulRWCzEiMyJKSEUyt4JNf8VMo4XfjRNK/abYjh8RtX5rzqNyah0YND9ssxeLLpPinQQa7SAsZPlpKNcC0uvioTxIetDqaXvOQlyxeLV051wLsgl2/Zz1dy2e6A6q2wxsXfXNgs5K3ipqM5ob94sZNshR/Fk6xw7ANoyTA/gA3iBp9uGx0cn4ExdArZxtCQky40IBnaxuKhny1ioq3Y0C5durRu0tktjnz2Zq7fa/ZJpA3XAzs6yRav3/3ud+trQGL0r3/9az3kSA+b26jFTJsd5SMZ+sbIJ1efPV1ksUVfzqvzTU1+uvgI2M0XtMbQkanEow3QiIFYsAV9eDiANh3xkaNEzzbznxx8xSd8PogZG/mFXt8Yf1146hvDTy4adTiyA/agw0vGtMlYtsPXj1eNFxijo7KQV/DxinW5bx7h+caXYpXN8OwF5toHNR6033bbbSuHHMQuAtmMDr22Iqb02MMcyvjZZ8xFkN9o96CdDeYuPWywBuDlIshmcsot51l7AV3ebP/j/j+g2xPYTwba6JuDYtk86Af5rWYnG6wbvwd/lj8d40G7r1sf96EA24oH3wGbtP1enzwRO/1sVePhp7abHV/7fuc737n6ycvXav4Xk20syEl+9GdZkz11Jvs4fOMvZC0HXTj20zHOlOI+7WAzvLx0vsg/oCZDLhVndLXVteGT3Vy2bsmabfoqyUADyJC/cmGCvrVCjtqZ6yxgs3UCrClrqDVJDvnxaE+Apw8/X/XZhU8N+EKPnBQbe4ExN0r2eHzGyLb+2wM8aPbhr3xne7rFsjOcrEp2kU0nGxSAH459CijG+SgmZPGFjPxpPF/V2aKNT4mnWKTbGF3G8UXPBjTwfHRjiI5/ZFzan+POEvEQK/Pl4YTiusWbwTfccMPaT82X4ls+5o8OeYvX/GQnn8iGC/iMHqi7HkMLZpy0K+wOyENfzIoRv7Y3WcUuXjVZxYI96e5cMp6N6NGaU3i6lCkDTQDP5s7wZOEXn/zRJ5d9bFbg9OHRds5PH8irn11qeMBu49mvrp2Nh+rs2srna2vOOtAuFulRZwu7Gzf3zlEP2r25DPKVngq8Nl145IQ629Wux91km2N0cHSyW802uqx94/ZB1wTmt3whs+t6fH5Gpp8SQIMv2WwCxSP/8PE3Wu0KGvubG/V/54N2MXRdI9bFiJ3iDvgpDtatml0+VOhBO55iIvfZj59vZOSjOv/JJUffnjHXHllkorcvyFtyyFVbC/hANvq99fPnz6/rBvMWXLx48ejxxx8/euqpp65eszTXhx6090Y73wL588pXvnJdS/k5GXkAxM29h4ftfm5GX36wM2CnuQX8AXDZvxD7P/FUoxWfIJ7GtzU6OEX8uv4kh73F11zKbTEXB7YZg9fGr929EBsUMsjEo0aD1pgaL99ba+xtz5JX+miaWzzRdL9hnF3kk6XvOt3ZEk3xyHZy6JG/HrwBcgFZZOijsx8rbHY2zQftYsD2c/sHcfjwwHUG6Lt3h3Md637CWiAXTh4q7OIvm+gRf7zw+moxAM0xGcbYJof00bDDmivui2n/hww60aAlp0IOnxU48dPmW3ayR3zZbx6BcXSAfGPmPNvQtR/Gg5Y+8kA1fv+DyvWP81ws8OSHOIkR2WyiuzULb9yY2NtfySsf5IFCL//VINu18RorRsbwiK3aGP/c37FrG0d+KPiMKWyo6APzJY/kHh/zR9zZzRdAFt32MjxscP9kjyETn9jY67XlsbgZRwvkgjixlzx+00u/Pj5AZ/1iwp7ihE5BowRw0WeTsWjxk5NsNGxW4NguLvxmM3p9Nssj8wfPJ/PKD3Nw4403rm9YmX8yyeKXWJGBzn5FvvlCQ468RodGvvgZN/c35sGYGIq5cTL5JobWLl3avuHuJ2dcd6JzX+pca53TDU8PHTMe2mzhI99aP9lDpwLv/HbPfMcddywZ8KeB63qjXaK1kJrEjEo5fIUjbTguzgVJ0MjAZ/K11VvIIbJAegRIEMklX79kVCsmcwYXf/YmSw3Sc7l3mW7Shj9Ub3nRhCsGE6edP9rXgklHZn3J6EbGG5V8D58sfUXSOHAlpwUlVuTgN4bXXKhrk9GmYaNLFl599OG052YIL/ZkAblCX/KN1U+OfoBfv9xIv/HGascz+eHIVeDp0wb601a4coi/IJ42GrnqEzsybC7wNiIXDg55fTyKmPITzgW7DRSO3fwhw4ZDl2Lz6s3uZJSvYm3DZb95IiP79BVApk1CaW7R8rM5QGed8LV4Nh9qsuDZRF668BlrztgIkgvfoRONvgcUDhn0NlsP2n3dx4N2b8PZcL1ByGb+ipE34fzelk3t0v4GP34y+IVW7Nrw2cBe+GzS7+0B42TbqMUxP8p7fqIhW1zwagP+2+gdKM0fWsUYXiUgGx192sUvnXw4xEfelMXO5CRbDWcs+eRql6PGOtT42+GOxrzg385TNjanarzq6Sv92Q4P6N/ClEcvm+iGn4W/5rh8FHO0k55s/fzWRy9nHHhulMjgP7+CaTc9eMqZ5ha9w/xPf/rTylP5UwzIoRcv/MwtbRcV5NBjT0XHRjhfPyfz0j53zQWa9hZyxUQRC2NiI45Tt3brSM1+6+asH7S7KPnABz7wrAs8NvGHfdmgzwfARzHnt4sYFzN42Jwf6vwSd18p9M9c0Uw/6ZhADvkTH08yJ//kPW17K2erk7wtDRy6aOd4ODTPF7ay6LEv24vsjfbVcmvakF7zZa+Vp/KVPPza5lFfQSfmlfj10ZNd3OOpRqPdPKMtb/AoyUCDFiQPbfrZJU+csd0QOmPt/e1n1gyd8WSHeuJrR4evPFaLiYfpdMlj/PJYbPHaW4D1j5cP3nTtjVkyAH/lqrWp8KG6cTSzwGcPXQr9xaQYNk/kh+NPPk8f4UDy1AA925X8N0Y/fclS05ENbkRcz+ARH8VNixjZ48TJHImTM9zDAw8qPGg35uywt17cPxRzbcQObxfZo+mnT80uuajOFn6jB2xyFtMvDnjY1PmQvfmWDPLMQ+c4PrLcrPGNHWjpaYy++NNNPr3Zg0/syMKHvrht45mManQBWnL4EZ/xfCO3HIEXSwV9dJ3j+Z7s9FVnr37+qQN+KOwgO5rG1XDZHA083caKt5qsQNyKXXbnt77YWvN+Bs7vuoLWnDbZzZG+dudoctVketDhrUt7BVzj2StfO//ZWH6wGS258swcF1Mvecj7PsBPLrsmzPjMOBZbfNpssfec9U/H+ADb3sR+OW8NKnxJdzYWd/HwoEMNZ33iaf2x1/wooPkXa22ATwFTPhnFFb/YkofX/CjmGU85T4ZxtP6B3v333390++23rzlrzAcpft7FG4v2J/zkFvOT/HQMWejZ5zd2fdPulltuWbEzZu/ysP3rX//6+u1293dsoitfxXT6WxwaNzYLufwsbvrgEP3lkct/yeAf/e6T6CVDHsMVW/Mu5mgVeH01Hr66F9LHT+6cI2vBGHvYCcjB13lmzJ4jp9qHyCkW6IGx1rDxZMhLNM5098JoZjzIYQMaeuSIuQDGlHSkl03F0DzJCecN2WjodM6zAZ042f+dA3LNeUauN9qdZeKK1hqli31qPtt/9fFlE5nGFW1jxVe7eKEn11ojW0zxtM+w1XyYU3gy0qXG2/ywX58v6IujNtnGsqu4kWGcDjh2wYmPwh4l2+jagp9z9bDd9Rh+cvCwna98gSPPdZVrAlDs2CSG5pSNeOkxDpfMYkJWQAf7yw/9ZMkT8sxdD4fxFkdyFfrRKcaAWoEzzhZ7oBwVV2DO0Ig7HLp8oZsd5Mul5gYfe9kE5Kb9FQ16YC6aQ33zgd9ZA/gI0qkfLhsWwZU/+OHRsDcasQgHr21MnKdsdOxVjMkFODaLCx5xYrOiDe/5gpiZGzw9aHe2ALnRw3g2mvcesrs/oYMcMVeyzRvtPVOzXumQJ2QA+uWae1BzRK5fShBn5wTwTNT5jb94tC75CODFpMIec6PAocMTP9+d395odz4lYzVO+Oe6H7QzZjuJ0wHGM9pkcIDhLsp9KiA4Jjdnpq3JmLhrtQvWlqYgnVQeuv9twLctlAgS+YknnlhF8k3aYqLmlxsiP39iLqIzd+ZobmTxGbNpJDceNR7jYNJPvIURjYUdH1uMKc1LsvXxxHfIb2Po4p39FmO62BMtHwH6Fqhx+ZetFjGAswnYSI1ZZB4YiYcxeW8DsBmZA3RwaJNlY/VGe5sIO8TBeDFrXbAn+4wDNGytLOT+DznJMIaP3TY4dhpjC354PgY2JT7AZYM6mdlDBhwgi3/ikf3w+NDB2wjRxWN8bqD4XfC9+MUvPtrtdlcftHsrjk4yyPKQ0kbLTputw0ccyeYr2/mYH3ht8nDG2YRGPPMTr4OxeVM3X/jx2ZvsRX2NkB/wbPAhFl/YB6cAumrr4yk+xooPPhAOT/EPD2cczLxbiCt/+FEhs3ltbRljZ7lrTsROX9F38KPBw1461Xizk36wtREuf9GSgS+7jeVHtol7cxtvspsf/Mayx5wkMz3F1Ty5mHNxvNvnET3kOHTJ0DZuLtEaJ08BxcIFv3+g5oMwOWbcRQB+ID9A/GxTrCeykydf5LX8g/MWnPz1BoiDnxx2kMu+4lys+ZlN5Afw+sbw9xvtbijBpI3nNDX53ub/8Ic/vPYw9iTTmALHf/o7A8TWt1DklYsZBaDlGyAnebXrG09+bTWAp2+OwydDLLIR/qQQD7na9Se/seDQeGPqaCdduElX+1pjU95z0ZMjh5RDMuHZJA/NUXkJDye22unUVoo5XvMEyu+Ji954ctpH2UMOKMfJgM8mspMPX8Fn/Ti/eihgr7L3tp/hS0f2ssF6pEcbTTnIDjj7RnuHMXqKjXWMxp7oRge4SaRHrpFHtv3B7yG3j6HLD232sMMat1aMzfH8TG42hicD5M/ch+DR0TH9ro8HVIt1cuGU5lDdXjPtw2/MmnZjYm9ko/hY7z5ocK2D137uvBVDe645sxd7YCqO5k2c3Jy3r5IJ3zywT7w6w/PLHgNvHK14ws35Jbu54YN2PqNDzz52kWWMLB+quk7jI/nFhgzt4mkMjv/FiAxtNSim+oo+vi2QkZx40WgnT5ud6PjGB2OtK/TG9PnKF3TWBV+MTUAD0pGv6mlDNqfLWHGYvogLGnrTZRwOsLech9fPJ/OXrGSQo02u+bfeFTz6nTN49clubshWihXZck5+ukYrfvjQGecTmQqZ02ays1W+GMcHPLQj04eacp/NxtiCR9kCGrYVp+wuD+XlWf4zVP+A/e1vf/t6A9BaFcfuSeQG/dnMNoXdcK6PxUTf3idv+I+nOVMb50/ztvW5OCSfr+Qr2snEz6b2B3LwZpPa1/+/8IUvrH9Yag8M/N76I488sn4uxhpmVzbiA35S7737/wVz6/iN9i996Uvrp2Pah7K1+XnrW9+6eLxBz29Anp+Reeyxx45++tOfXsWvwf0fdHIqvWRWojGuZON2PLrG9dFvoXlyjencQm/exJUdcHIYnTEFXr9c1rcekq+fPXDo8Jl/PhkLyFbgjVtf9v/40WmTqQB0CpmAreykq30LvnH8bGit0yVXkiFH8Xf/Rg6cc0mOsM9e6FrBtai5tleSaSzb8BjrQb88oqt7hfQ415LLNjlL99yP2cD+CluzGY92Of4UtH0AAEAASURBVKYvBt3fx2ucfn2+089m9OSqQXi4/IIjM518hDPvbBEP9PrzjKDLWWy9002H2Movz4V6sz/dZAD35M5z9zPkAfqNkwPY7uEpWWKYbvszu9Gx0x6oGGencTVAw34lYHPXaWLGNnuIfQ5fvvPDGJvwKOjyFR0cmvzTZwe9bDTP/BNXYD81b9mlJn/SsqncRGtcoU8tz+RlD9rpFjvxUtDAsVN+4lPgxCFbq5PNFrqjMc6f1isf0MKRRxdf0bHfWtTOztYBPn7g60G7WOCXY+0lZJg7dpOB3y8+3HXXXWv9kE0Wn5oD/M5Z141e0hAH9oufucSjeFnNhzpsZAN+bcAHcy0nsp1trtvpk99stx/0og6cfJEP4kOG2PGh2NArXqBajMkExtnv/HbO+Amy8Ktxwj/P60E7YznHGIFjIIDnlFpQTaCAMvbChQtrYkwQnv/A6SIg3pJFIn/ta187+upXv3r1QDMPoIVW4pzbf5XKAxuAhgxJKvnU5ilaNMabP7q28iYteoAHXsGjAHKMgXCNZ+8a3P8pb+Db0CU8mcbIKcfSh7fNBx/abNdPFnoy5J2Foy//yE8mWRa2DQAerw3GJ+TxoJHLNlLFouVPuuiwafs6i1rfGF1kw9GXnfxkrz48eoVMc2Ncv3E0bIc3zi6HnEOMLa2p5LAXPT/gioM2u4ovfDrwaLOVrzaq/DQWXxtlODzsMl5MyXcQu5h2U26zNQdu0tGTjb5/hsonm6PYqvEDcvkgZ8tbctp40YhjY9rksrG4kKUNTx6fxc/m75s2YmgM3qeiHsg6VMwF3BZmzOaBwC88zTM6Rcyb660sPGTMOEfDJqWYkkGeuVbT5VBCU56Ja/6Ko/2iix9y6QNoyMVbrJOPBj5abbrEFE+684s8c4Re3qDLxuQUB/zJgKPT3GkDMvBW6CDbfKfDBZELRWPwcsrB67yBS4a4sod/bs49DHcz3eHcDQ29aOjMXjUgy4U4O4E3YuSMfIYTW2vem1E+ZDMfciufyFHI5jf78k1MAR0KMIbXB1Rn/RvtF/dvnXpLnv900xVkJ/vY3/qyB3oDUdz4aX00h2oQb3Xj+iDfzLF2eHVj6sbxGGOjOnr4k8Bp6U8i8zQ0+bTlmfjj2ngaU4vJjEsyjSl8tXfKS2vARak5VPCB6q08vGLcPEZX3MmwX4J0tafCGcebjPZWY2xqLFvh4fTlWDdqaK1TD7vkZvsRejZZZ3joa5/Xl7/t63whG28FPz3iYr3a58nrhgG9s4Qs/Aodxt0stT7gtRU8+nj4yx79iafDuNpY8dGGq/DLnuZmRJuMeJMfLbuUOZ5eOO0KXsBeZ7m6OV0D+z90iTlfFbziY2/1kNo5gga/vcBeKY5sdW7KNzdFZJgDe6uzW0zsu/ZBY2TkizFzreavXG2fxMM/44p2+ou7fm1+kMNmeWR+mwu22++dfc4iwIbigi8byBQbhR/ZKx6Tr9iKdfMwabQ7Q5I5+Zew/R82NNd8yc949dF0TaA2B9YFv9iYH+nMDjrKFzTwbAHkgvxUoxWH5BlnW3LZNGUbJwdPY+jhWpdkkkcv/9irhjOv8h0t/XLNvBmzTp3f5pP85NAvBl179CKE3GMDWvmpZgc+8pV8yS/5Ri88vXKZXvrF1hl3af/NNLmTbDbnT7HQp4eP6PgH4MhWAF/O+kG7D9591d41iTUpL+S5tdbcpL85YB8/xZ7/8M0ZmwEc/4wrzS9f4dXRVeOhiyy1WIm7Pp1iyi75mxw8wG+r33fffUevfe1r1zws5P6PlwG+973vrYfe9iWAd6v/0IP2L3/5y0d+Hs85whZ2K3QqYvDqV7/66CMf+cjRLbfcsvrkyy//IJXeH//4x4s2fXwRI3JAMuvDGUcXD1wQHZo5PvvJZLN59S10Nfquw8RXPokv3gAN3fIfjbHmpDFrUAHo6Ctvs0+dDPOvj0d+aYtfePLRkm+ew5PPFn6gMUZG9hgnSx7yq7UHB9jOR2dyD8jpQee8UfCZL2vUB0+uR+UZHexgkzYdHrzJBbbLJbaQV56KsZ/W7T4aHVkKWvZP28gGYmdcobO1Qi+gw14DyFTQoOUjf/ipBuRmtz2QfejEkh+KPhkKWjjjYuG8JlvfPsl+tqMzZs90L4hW/FzP+zkl3xK2D27h97///dGf//zntR+SBfhEvng0h2Ln3t71AF/oFm9xoRuOfPMpNt2PyikxIYdNc3+gS2zw8wGdawnz1x5nDYhR48WK/GTjJ19cFMB+tPDiSLdCDjxbnUnoABnw/OEbO5tL+NYoeQo+eetbv/Zk9PB8Z68Ypp9PaIyVN/Sgp5fNajLxwRerZLDRfKJlHzCGXuzpBOwwno3kmhP240VrjO10ADGWY9kM3xzAOTv94oNvCpEjLnTINXMgptaAazP350p+0Ml/OvH5/xrWKjvZgF8s+M4O8tlLfrkFT37rAJ9cN04WO+QL/fxjj75Y5y875IExttRfAdj/QfeiF71ofRPqBXvQLrACwRjGmizGMVStDy+YApRDguZhm4fDvmrwH3h+EZDwDz300Co2ZQsrMAf6auCbBBYDkNDG2qQsQvPUPJpDfTTakq85TUe0S+CVP3AVuREfPYDe8kO7pIYDeOWMfIFTA37SW5n02QFHJ7ls70CKNh+N2bwbtxjJl7v40et3wOqz38ZrMZfTFrrNpkObXrYAdpPhK6jqYksXPrLpQl+c8y1+fTa1KUdHj2KcLcanfXTM8WxC30akTZ6Clp7iWAzRwLG1C2R06IupPn+U9KjZJAbhyBQ/DwwdxjY8c+BQBvjJ9TawB5T8cvPk8LFn0API5EOF3+SYF76A4pJ/cPYqMuSbWuEDGjZaOz6Jn5/qs9mFmws4NhRT8gC+4qg2bq7hkztjWTzVtS9LuixLm03Zh7c4GyO3/tTBJ/LU5io6eaCfPIdZBxda9iroxEebfD6oD9nJDsA2POj4qq9uvZp/dtBvbo2Tl/35D09vuvDjLX50GY+OzLk/GPfAx1e6yHBh5KeJemgOB/jLXrbwz4Mzb0q5mRYX+uRieyh9eNTZTA79Lmayz4NnF5hsgMNDtrdA5LG9oZjEryZXYV/t4k9H8TAmx52ZHoqf5RvtPgz4xCc+cfVCqDUx/bXO+GuN8a814g1f3wYQPzbiia/27PO5vjYfK/pg8hkrxtrG0nOZ+mR/k4k6OSfjfLa98ZARHPLH2HH4+NTkTFnhJk24k9BGQ7f1Yx+Tk/ZFY8WSzHIrHjUoVmq5CB/OOBnWHgjfPqKPHp8C5D1d8Nrw6NOHJlp51kNb9lunPTCaPHjZkExrAz399jFrO5n44BRtIB7iorTWrX/7FD65nn3Fyd7vRl7+GUNHD5npor/4RGMMLigWaMtltGiMiVHnmT6axpKdTfqNkQFPXzrxsk8xhgZOXLfrPHuc8W5O1ejFwg1NN+XoxAne/tpNs7PcvuBswUunvaF9lU4x1GdfPps3xXwqbmT02UtGdMbg6C/u2oAvxVI87P/2cfMrp8jxwN/NFvucAYDs4kIn3ejJyka+kI82HelNxpyDxtBry7vmJP70LiP2f9iQb2i10bJbP9/5XeGDOelsJwstPjTZUW08m8Lluz5deAF9aAP+RZNNjanJkbfilP3Na3OZbjqaL7z4FON454N2542+/CNnyhBXMcDjLUsPMrpGZD8eNdtbU/Xp5Q+7u8FGY++hr/2SbA+JyPZWO514ihs5aADbpn3iBNBmgz6fPGj3gbmHWs2FsdMAXcC9xdve9rZ1zcxnDy/khX1TbtDNbwUPe9nGl66ZzUf2omMzMFfsUyvR5Gc25AMa8umslAf6xrv+ag1G7yHfe97znvWP9Owt6ffA5Zvf/Ob6zXQPSgBZE8hgw7UetHvgwrdsVStscgZ4o90/hZ+/2W6v8jOWfq5GrQ/kSjHSJ4cNtdVsRBNdscpW/e04XHTZ5yyQlx7uqIGcjVes5trARwb9zWVy49E3/+0T6ACcOc5GsoyRBc9vdXs4OvED6BSy4dHhB/jxKnDyTRs+4JN8NBdkkIuWzT1Us3fHy2cvtyjG4a3VS/sPxRT7Nl4+Abrw2CvKo/bP7GS/eHp4bx2Ryw7rSL7OdUJecS2edCn8V/jIH6DtbAFkKsWanej4j4Y9Crn0GMOvzwc0bAVTp1why7zykb340Th/6SNDHI27t+Ybvf5Pxq37b4J4CdPZST8b0SvuEzxoFz+yjLMJ0MNfc+gDIcXZqy9u1l62iC/5Yss2c8CecopctHwgXx/IffRsostejw8/PFq+F1M8cMYVPMZBsdeOV5vero3Q4O8ZBV5FLNiErrzIRvT8Q0OfQr77v95ob80lT40frRjwydySBc+O5GuTTSYa+OYWTl+RL2jFXp8O9OZD/gB82ZJPbFcAOrw91yIDvzJzT2zFAr08crb5wDQ5/EIjVmzq2tu1ozzgJ6CL7+YAnfty19tstJabF7bSxUc6yM0PcuSVM5y9xvCS59pP7tJRHOgklw3WDpA/6I3RpS1W+gpez1D95Nib3vSmxQN/Gjj1G+2S0GQyhrGKwHIcmHxBgec4w9UWibcPH3zwwRO/0Y53C9dycEt/Ldqt3P8t/a0PW7vEUuwlj9+Uc0EgkYs1ejIUOODA9k8DxEMxZp7MUTU686jgU9C2UTfXUw+eCembSWuB1p+8cHRNe9DSA9hIt7yKD+4Q5BeZcs/CQ5uf5GqT04GFRx63aC129lhg8C1kvHLeArcwxQutDdJmUt7nu3F222TJ0jdmcbd5FGNj2Zmt4cjAF782m+NtzLiNQNzYRY4YwAE8aFqTyUNHVjxily9oAJvh0BTjNbD/U6yMRU9mcwgXjwsYH/Tsdru1IYqjGwT0YkS3B3g2RXxip9jw080/eW4e+EaPugsNuooJ2wAc/nINXlz1jdFPRjd65KMxT2zp01W07EKvaNOv0IlnyqQbLh3xwU+Ax69OBjnZO/nxoQuM4QHoyzV9Psthvira8lWdHnNrT+YrGoCGHLIPQfrJB80xH5SJoytZxpKZDLTTP7LQmefiYTwaY9Hktxzy4Y2+Q9yHOR6Am8cAv/Fi4gMU357wUy98p89+YV+YupuDaS+abHBR2Q16tpHnbW+5U+7C0U1OtmS/Oh+3frKfPg/aP/ShDx3dfffdyyV0zwfY4QbygQceWPsX28wTyAZ5LSbi6+IGsEURNw8hXLRn+yLY/8m2iQ8XzYxnMTEWHdws8Oai8eScpI5n6jkJ35aGHDIOwXF4tPJiQn7BTZu2MqKrnn5MebWTZd62D9qTgbY8VcdTLobTD4eHbjlP9sxXY2QcgmQ1Zv7aY8JVO5fkmAt2608uOlfRJ1/NBgVkTzY5o+xn9AC85LT/8IEOF/lyWh6TaY9qbc49o32AHfKc3+jVeMgnk59qY9moj46NtdEpoBiiL05qOvmDR4ETG4Ws6LWVeOEnD9v4lF/oQL6ixaOwBb0x8RMveGeic9YYGsXZIIYerCvGu8Gx1xV/DyfJo8c1qmIPJAOw3Zmt8Le+Nt1BbTVZ2dJ4OaXmo2s088su88sGc+fho3nMt+JHLhvyg33h+IMf4JNf9BtXkpEts2ar2OevesY8WnK2gJY/xooH3dmgFmc4dOnSV9JFv3HlEIiXgj8aPm1tMq4ktzaZxQG/8Wxmt1wu79BOfv2pi8zWvzHnqrPcQxa5D/ArdJkH4INeL0L4MIW/9Frb6cdrfrOFfXSxC15fu1xHr4/ePYEHeHJHXOlU4wHFbHWu/MnG5JKVn9aJe18fmHsxgB3XA+n3oP3OO+9cv0tLtvVojZW3fMh/NoDiJ672WjGzNvkaTXTq5pqv9CrT7myZfsMVQzaQi4cM+sRQG9496UP7F8U86GNP4IWbr3zlK+s32c2B+QTpIy/b6PYTOu/df6X/Na95zaLxsMYb7b/+9a/Xwz5xiIccbdAc+meq58+fX2/UsxmYbz8j841vfGPZAcfmxtmS38YCvlfgshktvfrkqCvxzlp+Wgf+v41rTLamm/zymozs0EZTHtOXj8nWb/2gw2Ne4IzhIc8YWdrij87cNQ5fPNRsaowc9I1nd/hsQdO6776rfQ6NMXuzc4eN6On1QNw1jjF99zAezrnmtgYAOcbYxX73cXKJjWi65y8W4un88AGyXIRH0zlGFj+6bmCLUk6j1+czX8jST7928SFLnzx7D3rxhleaB2Px8YFsfTTmQqHXGD1s8RAdDi05yTLOb7FyFvLNvuFBuw+ZPChlc7KbKy8NWU9iR3720S02dLGzDz/af8WfLvT8NJfkq/lgTtlBjj6gE71YAD6YD3MjdoB/bLHnA34BfGjIoo9//IUrdmjYC0d2+Q+HtjH8css4HMDDf3YrfKcbLflKc0OPNhu69km2MXLEp3jSjY4sdtGVTu18o69x8siAi0acko+fDejbK+CMJw8fOWyX1/kD39wasx7kaLrNE9/oj9d69L/E0iUnyMRDrrb5t6eRl910uZ8UU3L9HyrrWGzIBvBKc0umcbjGzZfcIxeg1ZYn9oZeqsOT7ujUYkIuO80Du/gHL0b8cl6d358Tb3zjG7FcnafVOcGfUz9ol/wmghGCwUlgYQGGSlKGg5ICjyD7RN/hgZdDzwWCFqDf8sxxdLNfUsX/XPWUnZx01k/Gth9+1slDe4j+EA6/ZJhj2jOJ0EgEF1x+3qKEjid6tSLmN91004pdNomNMmHra/LQ0G9et7Yd4iEXnWJcgqunnfpAnb3kywv98oafIFuq4aaM+vLRg102kGWToF+Z/up3+LTR0qlEr+aDQ6kNp4WIzk1PawFd9GqHAlstUmMOFhfCNim8xuDFhB/KjA9/gulzuGo+2XjafMjgM5tBPouFQid56WSrNv4Z63BsJQNPNtcmPx/CiY8Ny1w27uLIBz1+696GCLKFbMX+IZ7kPf3000fPPPPMulFmExv5ZQ7wd2DnE90gG8jhTz6uwSt/yOKTAshlr8OBPHifxvfwIN+bG/bx0bzykU564NCSHy571CB71AA+ucUZ3jhZ6uYrGcYbSw4cmPr4n5/V6OkzJt4eRMjLYuXAh3cBlC/8yadsSe+0n/7sKsZqMPnQgOm3tgKmn/To448GLrnmQJ6z1wP3m2++edXyPxsnn7ywX3rQ7AC2do03l+UTO+hIjz7IDzzyxfxrs1FuwslXxcWDPUCMrXl+t8+Qxb7iRS4gRx6xA5Bn7/aPS91Yg/xanev4Q8cf/vCHo89+9rMrx8uNfKO7C2M+sUcc+OPBgxxRWx9kHQfsrESnP9uzv5WDTkFTnOLd0tZHCw7JPY43nmQcojskL/rqLZ9+BU3t6viqs6NxNajetvXj0RYjc+dbFj0IxVvs0OjL1/LNmAIm3nznsxq9cXj0yem8bg0sQfs/7WV47S3xGc8eMpKLX55lL357skIGv9DESw7a6K3jLv6j6dwglwx7ggt9ud36yjd9e0By47EXOgvoLmb2mmRHT05xCbeEHfjD5gn68c+4o7H+xSAedTHTnnhtclrP7FGiNw/shuMPQA+Ph24FiId4idVc/+xx/a8Y01eKCXmdHebEh5r2WWdMOUE32a7TyGYPfdrZSg5b8GgDtZLPjavxuZFzX6FNlv3KDZZ9it+AbmNqcuSv84M/9e153SCTLa+cG2SgIV/RrizhV/5kO7+2EB8a4/gPgXH5iJ5eMW2OmkO86NjmXEGjj47N8aSLPu1sTjccqJ892Q8vXuiKebTxxqNGW4z00UYPX+zJJw+YE4W8foage0Tj8FtdPuz1obZ5lsPNpVzStm7U2b61gVxgPDr2yU04tpErjuLrpr05KNaXJfx37LKRLrLKNdesbtT9X5SzeNDuGsZX2F0jyxPy2SYX1Oy3LuVya5hN/Gzdir/4+WAMTNv1ixe8tlKbb3McvvyKNxp0za3ctS94+/GjH/3o+k323tjG56cqvv/97z/r52KmHDT8S585OvRG+/Y32vHhyf744dnmZ2v8jAy7xAjQ86tf/Wr9jMyPfvSjhWsvLhatEfIA/LRXG7DTmGJuoomvOrn0OMP9g1hnVmuerOQku3UEz3bzboz98lQOZyd8BS0edMnQRt++zq725mxUK9MPcshVG+OvvtyEU9AD4/XpcQ6o6XZO9BAVrzhYe2wybl+zV/sgrryGR+Nam7902xPg6STHfq7AtZ6d7eSRDdggF9kDxxbrKfvtC8bFA9BDHlrx46+YWoueP+TvIh5/4OWcwjY8cGSITWsEHtAD6FH00Sj69AL87AVwxtKTD+SzGa9zz/24eyY/ISOeZHd2kOFDL99QMyfGrF1xE2sxp1Pc+Nuc4EPbXPDRPtS+mp1s0GYj+4BafMnA5wE+uwDb3Xd4EOuaDG984odHYQ/dYoFHDpGJnu9q9DP/ixs8wAPkEXqxFBc5wW9y2M0ncvQBWn7R2zypGyt+5Ggbo7uzpXlCr01OcdTnHx0V/NrRq/HEq2ZnsTGuDbIvufiM6QN9cZAnYgqPB16twImZOfKSA37xcC0mt+SF9QSnbs1OG/wTU/NKlrbrRW35hEe7XBcL88BnMuiGk1+uF9DiyWbz4oOZnpO6FsQjH8gkC4/CRzLkHeAffnPPfh+Unz//Aj5oZ0yLxETsdrtliItaeMDwkkEN38RwpAk1aRPwTVxBiMZYiQW3HdefgH7Km2OzHU31HNM+Dn8S/fi3dm37aAC82FTgasdTbUwSKGDiiy+c4qtBfpNO7PiimBO8kkkfnSS0MAO4uRGGnzXe5jp9zXW2pycd2Zc98HDpV08e+pKVDrj457j89NANvcVj4fXQ1KJskyNfDGycFpx+fuC1WNVwNlRFvmcjnW2c5KCzabJP2+ZhA7DpiKEDCs4hRZ8YwVv0YljM4OgIjF0L8LUhaOO1xtjKfvxKcVMH4fTZjD/Ak1xjZEWvLg7w015j/BZ3Y4qbJ/8ww+ZrjJ7k0UcXHD34/fRGPyVjfswNHebEhYy5wCN2fE2/mlzxNddbIJuO9FXnt3Ft85ReMuBnoYNuMY6HbvLyQTu67EKbPHU08PgmGJs6G0tG48koj8opOTnXeD6i0xYfFxJylu78dhFjjZh7Y2IpzwFd6LIBrnlMRnT62QgXwCliwtbkkXMc0Jdf+MhGn262+uqiDxNdnMkPgA89oIc/Lhz9/iffsy9ZaMUHHx3kbgFtaxSttuIwpld+y0n6xJEe8ZNPDnw1GcZBscyW5MGT5432s37Q7ob2M5/5zNqTiqX1ar9ku8I3Y+ytlhvyxl7Gr2n/6lz5wxegxsuX/Awfjf4c0w/CkwHqNz7r5FXPMW1zi79xdWVLe5yeQ3gytnj9crOx+uotZNPE46vApwdu0msrYmTOvF3iWx32ymKf3BkD+Vdck58cNT3bPEXfmHyX64o8RW+9yA/nrRpOjSf/6Ur2jAVcdmizPx86d61fdtNjb1PXNwanj59Oa0le62evHBcH40DMynn2wBc354DrWj7iA3Raz4p2UCzJID/IFn3t6TNdjTvjFMBuY+0vcNHFkyw1fcnlP9CvTV7xip+9xptTNRrjeMXctYu5NWa9i5MHPx52FDPj7ATFA397rQei9g2+GTcmlmLKLjY0B/mdr8VDP6idPPxwbuLYVN++5U1GdrC/3EdboRdfD/v47PqiPZu95JR3bMDLB/KKu5hN0A+nTl/8jR3iR2ucbfSwgU9qhd/8MaaYM2vMGDDOfna3HtTFCw95CqAPZNPq7P/kJ3p2gvTDgWSszviTTHQVOKW4IedHYEzftaKzfD7UipaNCjpnqevExqxv+4W4lU/qeMhnS3rwZY+8Y1d9suSCmi7xcx2kFtvymWw85S1afXrIg1fkVA/avT2K73qAbOBBuzfrPCjPV2PJNS/WpQcdfk7PHsgOMeWHwkbf7POtAO2gGJFXaUyfX2jync+V9Ffjw0O3HEV36/4N9ne84x1Ht91229oDku3tWb+N/otf/GLtuXTgSxY5gAy4aj+p9979G+0ekqPxBu4Xv/jF9Ua7ey32gilHu2JMfLwR7zrrVa961erDu37zUoY32/2Mhusee1e2JGPKbkzNfjVbAZ9mfOHyQxuQZR+zx3qj3Zw5a9DFj067nMWjL2eba2u1fSH72I6GXejh5QrZ6LXLHfljXH6hlfsArcIv4xV9JRo1+4xbR+Spyx+1Pl/pIN91gxdTABwaDyGNsc98st86x8cfMkDrk/32PvudMc8DrFlzyRZyuh63r+sD+rqWgXP2m2++A/Y7D+kEbFKKX3FIjhgD+OKin198q6CN3pzxBU+6xbtrjuYILnlzLvHRyWcyxQlO3BQxMS4u3mh3z+ShJhlkihsdwENtbxx7WMlXMdQWG/Yk10NWsUkXfnKUbCA7vPgq7BADuvXpEB99drqOLd745Ye914cmAC2d5kZbsdeSIwfIIZ+dU6c+PGAT+uJDTzr5m81yBV028wsdOeUWWnRo8lcbqM0t2vITDRy/+CRe5MGhV7r24Es5go8/5hgPfwJttOnVVuDDJZu9ZCrkTV408OKbPPTJmbLMlTWJjm367lt9gGMfS06y+Fi8//jHP648Q+Pe3Pwadx8jR8kqN6wLazI70NFpj0SrTQfZcqFYkukXEvCSpbaXiB9/FPSuBdX6/AB0keeFt3vvvXf9Fj18/mufBE79RrtElgiAYR7iqh36JRDjJKUaVGtzoImexuYwmvACB19fXQDQTZ766iC++sfV0alrb2nh6QPRpD989ZZ32z+Ojr+SowTCN9v68aor2WMckAMa97MdLkQkGVrFHNos2zxmkuJFg1+iG9OPtvFq89scozVHzZPExRev8XwqF+iBC+bCt3CM44NX67Mnfnz4jbsRtMDpddHh8HRg2OD46yC30NrMZhySS44LfguMDrLYoaYnm2yCNkh53wJmCx43ed5KIIc8+un2iR398xCKJ1308O9awNb40FaKVXFG09iMFzq+0LWF4sBG82Zuw6kVfPzSpmuCjc8+Aa94o93bGebFnIgVPN5gtm2KPt30j9UcQmwwjpdc+w1f5qZKDnvYZUNmO8j31bnyJ13GzL/54yOZavOTjEP8xIhdBzJ/DgEf2WgNsQ2PMvXTCeAq2342GC+myVCTTQdZtcWMb+rmkZw53/rNrdqBJEcdQsXBha4DqdiQuQVjlezLZrTG9PNPv9yDfy7Ah14sW3v65Ig9W92cv+xlL1vrzYVXPGQb70LVYf6b3/xm4cQKTBvg8ObPIhg0/EOTPfYIffRi68KiG/5yUG2f+Mtf/rJiSwab1OmiRzv52vxws3X//fef6Rvtbh4/9alPrTynjw/ZXXzNszzoDQNxtib4KR/sZwFbJxRPNfrG1XCN42ls8s+28Sljjm3bU66x+mSYo+LeGLnRbGVt7dr2t/T10Sl0KaB+Y9Eeqqc9+PGAYlA/XvSKfLIH+KDJfmufNGfyVAHlNrx9IZnG4OQpOdlLf7LR5g96ue7mSt7QhYdMeeG8dTbSqzbGNjVcc0HO9Fcf0OPC2TlCr3UAZ19mn9yUg2p9NNrZTwY9zgk2plOes2Prh5w3ho48ewUbneEeRLkRdR3BfjqsA2cGneyHB+Qq+tVr4Mqf8OHwoivG5KGhO9BXQHTxsRe/urYxYH7EBeAvNsaTw9foi2s8bHD9kt/mVezE0zWWtmKvE2f65RDAK4a+meZhqD2k+WGLeDvLO4vUcGp2kkWG9vSf7GJRvqrz3bgc5BP9PaSBRwPPPzU5dJj3znE2yDm2kism8qy1ItYAL9+n3jVw4A8Z+OIt3smADxd79Giylxx2sA0ODf0gGnLETG6aLzHQV+MrNmr+ZVN6k1Ns8i86NjQndOlvAS8wro1XnJNhzDw3H/oAveLhij3MPJQfxtlGH7sV95vWZmc9WrloXrTppD+59NXPbjTw2UMP//S7d8hOcox5yHRp/3vQ9jU44+Rokzt9Tq79sQftZ/VGu9+KdS1THuaHOLNNXHa73bomsl7Z4oGYa2sfHur7Zpv1qQ2yfVsXQ3j66DAfoHlBA6KtxiMu+M6dO7e+See30e0Z0f/jH/84euSRR9bPtDg7+NJYNTlKetLvt+rf9773rbfSjft99x60W/8z75bQ/Z9kqKdMD+3f/e53P+vNdmvFm+2PPvro0cWLF5e/ZMaXrGRXoynvo8ETrzaQy43ra4uV/PcWpTy0fvFV8JJt3tT17WVyDU7M5Wuy1daH/dx481aNXpsO+yFZeOhQ2wfVaLIZT4XtIL+iNU6ec4Mv9ljzWxzyyf5kvtx/0MFG4MEufXDGANuMy3F5RGZ7Gjr7H9/R2U+MObPZxi7y2hvRFz+y2Grc2e/6l33pdE3SWcFepbiprTt6yYtPm7/pZne+k6ttvqdctrHLGF5tuPCNmRt8ZPKLDoUN5b7YwIlV80+mPcGe9IpXvGLNC36ANhAzMbdnaIuHuMyHwmJMltjkp1iIjTiSxw9zUnyMK9lsnG9yjC94srH8Q2vc8wA1Gr7zyVoRQ7xs4f+cb7rg2JOf+agvP8hR0JBLPhlijZc/cPwVSzaLLX6xpgNvc6SPNz/RkWOcPngAxyff/hMfPogVWWiyQTz4yAZy2WMeyGMLMKagpa880Qf65KrRAf7wA54ceDbhr2SLPprwS8D+jzkyB9nODw/afZDjGpJ+NMa11fYpe4IPMOWXcT8fLMfQuIcxbi7oY4NYuK7JPnTGy798yr5yQhzlTDlGj2tSsuJRk1cM8pWP5rv78Lvuumu5bfw0cOoH7ZwSSIoEV0BN1kkftGdcwdCfzk4HptPojM0kgQumjNpoJ0zZx+GnXWjIUuLdtpMTXf3janKiVU/gr9KEo5WUcFuId9oVTfLre9B+6/5NAosz/Ra7ImnFiQ6JaS4nWADG8En2ZOOZxRgatGw2Fj0dbSzG+Zf96nB40MGRhY5NAE2L1Xi60QX0uvH3QBc4OOWoizeLlB0eJlp0fG/xGtOmA5A/vwoFxw4lm9CIp43BxkgeuflNj83CQc9Gi9pFQw/96WNvMukIBz/9Mjb75Qf8jC28vto8sgVET4b4FmN4pXgb1wba7CFPrd+4eWhe4PTjY7tNtBt0MRUHOehhqE2LXZMnfWpyvAX397//fd2oi6k4s9mBYD6Trc8OOgFfyLU/5WP+0skWJVvZbt7Qg/oe6MBNvxfB+ENXa0WMyMQfaMOxUWHX1B1dOowH+Oa8sD15jSUrn8WAr8AYnuZP/NhIBnqA1jggU7+3FeQqfrF3EaCPVhEvcpQAHj8bsssYHDnKBLxom7c5dqidj2KER509bGeT3OqnY1zQg3xFaz4VN6d+vxOu8XSStbUJDqDPZ3wOePOPHo2iX+7LS36LAftcFPngyI36Nh7kixu55GSX/csH2d60uuOOO5BdtWF1ruMP+d5o//SnP732LrEULxfK9LWu5YwLSDnBB77zQ5EPSkDmFtArfN2ONwZfgXu+kIzqqdc8iTFfAJpD83DIhilnO95YNbnazWX41kX9rRz97NaOTq1ka300AE++mEvrwNnlpoHOKdM4/tZO80oO+frq8s+egQfgKTfQkWMvdjGsxoPGWdrvdIu5sxGkG11zAZ/95AXsJlNhjzMDX/uQHJw3I+yhFx49WfF5q5M+/NYn2c0FvMIvY8WGHPRy30W5M9yZw1Z7CN1dMxRfvHj06Z4+5pcaXTz62aNNdrHVJ4+cCfiBGq/x2mKM3zyAxuDoVCvsUwA8+vraCt3lEfliL072CXPuTBOzHtxkF3l47R/2Wg9D3ZzPM4hd9hr8aMniS/YYh+/Myr9s1G+creWWcTxwbqqc49oz3kvJ/k8y6LaXA23rBi8+seraLr/iS+diPOZPsW2e2NxckEOGsWkfPP+LBzv4hY9v4riNA9r8VivlKHr5HL6aDHom5DOcseZBn414soU9WyhG/Iw2P9OV3vxLRvJdK3rQLsfkG35AH/vYr/aAePug3Tkmp4orPvx0KdkOP33LV3iy9cmS2/lCL3A9RK/1D7KRbLzqfJZP+F0TeKjl50nO6kH77bfffuQBNf305AN95lxOi6PrbrE0rvZQw0MGff/okC/iBdhdvGqrZ37SVyzxFNNJA1cfv1z0j099uP/yl7987et4gTfZv/Wtbx39/Oc/X9dIW33JQTvH6AB+Y92D9t5oP82D9iVg/4eOZPsA44Mf/OB6cF9c6PrlL3+5ftbmJz/5yaI1Bh/f1k4xMhfqxtDqK4G8zhc4tGJsrnz7QQ6az/ShNXf6ySdP3zkpb+HbL5Ktdp7adydOW8lGsuQTG7LFuDnUV8hWx6sP8m36ZC9ll7OEbfKSfXOtiIs9ytpy32wMDbz7a7qA8xi+6wGyFL4nj03kkMcPHy6xZ57X+mKqZLuYtn/A9cJRPtHpbCCTDrx0zJgkjyz2kIMfrxpf8vgG+NMahrPPJIfs6OgSSzLJBvjI5n+06NE4r7WNAXRyiY9s8BzPg1Dr0f5UjNGm0/1fD9q1e9CuZg/bi7F8TRf9xQYOHf6u0fKBTmNq9MbZBuCTWZ6R4Z5EzcauP3rIj07bmBiKU/I6N9AYh1fTLbfxKWJMt/F4mms4/sq52mzFz/5yEB89gK+KvnHy0cKlQzxdM+c/fqWY4GNr8SWLTfjU5AB2K2jTGZ8aH7nG9IEY8qn5V9OnDoe+Nl36UwZ+OUS3a1g2uW/1bSp5RpdcZX9ta0mx/zuT4H17wn2ytv3CfLAvm7r25gMa8pTuFeBAttJpLbJVzoi9GHcG2if4g0/NfvT6ZChiZu284A/aXShILAFw8eAwd0Hra2gMF2SOlXTTcYZLnv+vUCLw38RW9I1VmnzxCodmArykkGjoAFw89dX+UYGfjmlu4CRQfPraEk1yTmALWnOqHU+69CvoFHLQAoti6kpGtOTwgV5t+ABeksMDvGSzhVxl2oPWjbWfKMFjA4Drq074LDR8YiFfHSQOJXrx0GEjdQg5lPI7nfSxtTiRQ55NwALuMKTTZuEmHdDhQqFP0pJLH73KtGEx7f/AoS3G6MRA0YZXA220+nIDTXxiqQ/QFGf6A7StWzKMpV8/O+D5nzy64LLFAdmBZ8zFjotGXwfqxrz4JdO+II7AvIilmwBxtb+4ALPv0GNOzRE9zRHddJFrTvTZjhefNt02Zfz6+dueFM+stSfoFz/taOHCoydTX4zYVYz053wVZ36h1zdX0ajx1o+GHCUbtPlUCa8vrkr2ZbO5xtfcyV10xoE4ir+i7SLHQxP1jBm5eMhRAHuzQZseAEcvXLRr4Bp/oq3Gp00W3WyRWx6033jjjetMkh/AGHutO3ngA5yf/exnC59NqSYTTvybLzrgpz64LsrRgXidi3D0u5CwDtgrp32A5GvfYhgkW42uQgdZ/sGr33a93k/S01NNj4ubCxcurIsaF0j2TPay29zYI13wuJDTlkPiLDfE00WLWJIFqrftchGeP8Vyto/jjUcNJp0+GYdgKxsfXPPJJgBX+5CccOmZOdcY2YeK8fDaZOiD6tU5wZ+T0vPFebfb7dZ82uvo7TyyL/IBnTkG+qD1m53qcPSLXWui/YIcMuWN0lqSI84+ewbQb02Rpd1csEMhK3487HKBrhizDozLxZmHxuQjvPWVX2RoOx9cINMH6LeP4SEH3jq2BsSLPLkt79F2A+QcNw4nnmgUcvBU2C12xRF9elfjyp9ii54N6OJrLJuxJFcbXizgQDUZ2sbIEne4KRs9W+mYBT1e86ltTJ/f9jDtzl5z7WFN+SDnmjuyiwkZ4ufcNjfsKW5ygx9k4G+PxJPf2cF+ePOm0EW/OcOPjt0AHT3sMP/lPhpAVtCcNdY4X+MnI3no8BvPdnUyt3LIgwuPD+3s52t527xGkx3ZOvto8Kv5rc6WbEYPb07g6EHrWlQRH+PJiJ4cshV258tq7P9EN/nwsD8bos3v5OBV9POfTQp8P3dybv/2szk2t8bYLwez24c4l/Zvllvj9CpyKbvxsSX/Zptt+tlaLsOjJws/vJpcexB6OexlmR6M5EN+8gGQUX7aO9w3f/zjH18vptFxPZC9riPuu+++9XIbva3N/GCvuLgmcn9uzZp7edDbfOxzLeL+B9+MR7Zl54xhtPmpJrt+vGpzhtfP3Pi5GA+xxSL47W9/e/T444+vh+zsAOK51QuffcVATqDbPmj30zGHfqM9Ger80Qbp44Oc86GAf0Cvdj4A8+4bAN/97nfXTw864xozTsaMATvF2PwkH93Wjy0vWjnnhTEPq8yjeYMLzAHZlWKhzyYxbM1kl7UOj5edav3iGR0d8AqcXELPfzU8HF0AzvyXA/xVAH45wAcP3XpwhtbZ4BrTekbDR+e4+zUy881ZwRcy2Wrv56N4dO3Bl+znp/WpJgOdc0OfHLajpYdP4ensbKPHPUP3OejpdT1iHwDtqcUejbZSTOhHr7CRD9GgL1bFW784uEdtDuhjp/ioiw+5bEaHl2/pENd04EfrLHf/yxZz4Sd25Zhcw4d+Aj3m6NJ+n6Xb8wsPQ9v7xImd9pnuIcwtOXxXN1/Tfj6KAztaQ+bZdQJ9nfPmTm40R+areSOb32Swgf2APmPsAOwwxtaK/sTz077EFnx0Voxpw9PXfCabLvYZZ4sYN8Z+42QoyVaHI5vvfIZDr41GnMTE3mi/MQfwCp348AA1n9gAtnnG92xZBPs/+mzEo11MtIG6fCafjPDG9OWf+Kvxl6N+asULr9a+uMnNbBN/hR/uReUUXjLpoRNoFwftIDo1mfQrAL2YkmGuzKlCHxliK250eiYAzBl+MUVTSRbbrZOPfexj67zBQ/dp4NRvtPsknaECe8MNNyxHLUSfjksKyZGh0xg4kyrwDDdJcKAJ3Bo++Rvb8gjgaYDM5FbjP2QDXPQSIbiWTvTJUqONXv9aY4fsmDamXy2RbKY2nmRu+cO72fQQSuKUxGj5pKDL7uknGhCfMfwKn7JNHV/z0+YvH4L06ONBi89i2eYEPjQWS3z68bFJ2xhbyLHJ2vR9ABSvCycLyOKjT8FjwdnAXLR68JU+siw6X9uT4/SQi98mgo6txuQzINMh0Lc69G2Mct1XZ8i0ZuDo6uIiXvTTF/Y1Jtb5upD7P3xVyEUr1mp0gCx8baDks1XBp48WTfT4FTjj2mjJUuiaPGRnQ5ssPsWh6ybduOJQ701LBxpeNoupuSG/zTE99hIXTPDmyUN3X68SO/xi6wMVeswLKB58KAYulvCwy0WGiwobr3EAjx4v4Df5+kp08CC5YqE0Li8U9oLZ1iereCQLrliQg0ctvwK00Rtjr37y2D7tiAa/diW64hy+daoP2Fg+4UGvsK0H1nLY+mGH2GY3fvYVUzU7yVMAPeQaS+dsL6L9n3zM9/B44LIx+3yY4wNFb2jsdrs1x3wRG2uTzfLEW2BPPfXUOquSOWv2ir+Cn21Am176FWsJTX6hmTbbt+So/EQnRoo89vuy5Imhkg4y6FfgyLB3+8dhbihBMVud6/jDRjejvqrtZsf+aE2YE/bZp8ypi2prkB0VsWSvG3uxJEsJtv34ilm2Vx/iI2OO156y4cInozq8GE7bmj82BcfJmXzRxo9njmfX1AeXHfhnO3mH6im38eTr154+REeHPHNx68zp7Cq/7DOgtZcsuOTB8QONog/koTxxLmrL+fJFzmjjU4D86KJ1O1acyJ57UXsuPPnWs/XDNnr5RpYCp/CZf/LV2Sp388VYDyvI01fKXbqtYWcTOmcDXmvCuWO+7Xfaxl0DsI2/9hMlfeSyawJaJb1zDC08HflNt37+FWP45KjZjEcbkAP0xRafmp1zbBFd+UNHe7qaXvnSQzB89PQmP9norP9sTx9d2YyvfEiffUJB4ybavmKuyGKruHoYyCe8arTG6VC0xVpOGffAA4+5YycbXAfbr9CyQyEn0A+0xRWtog3Qt16yAS0bgvymV9waq53sSV971snJBn0yiic5yrQPTTj2oWd79jf3+U0WnnxR47cGxErM9PHPXIbDG+iDbM4O+OyDYw8cPfjTHy8auvBom0uQfcbMrWvF3W631r91D8g1/9adPLm0v+f0Moac5TcgE7Cj+cFHrrHG0cBX0Cv5jC7b2djagGM7O9yoi184MrXpIlebTPRy3De/P/nJT67z3Pj1QPa7DvZ2vAfl9Jg7cfDAQLzs0Yo2HvrEzH4mZvY4fPp8mb5P2/IFLrxYk2nO1Ggq+ZROc+ADBn77TXbX3QDv/LkY12Z42BSkU21MAWi0xdWYn455//vff/WN9uMetMef/Pr5qE+2OInb3XffffSud71rvaBWDoqVnzr49re/feS3hZ078gNv9k55M67pVaOfBW98anPnutHvZzvL+ZosfM2BNjyb7Vvi2vlMZjGCt+ajwSenzY82QIM+XflFPll8NyYW8sx4Y/BsUJNHbjbCux+U/85Rep0l7umcrT6IdT6wTR6LKWietemny/WAPV+us4MO+GjFjqzuT/StUTh2ALajl/uN0Y2GTGuVTPFqnL3w5kJ8QTHns9iRiQ+gZ7MY4WOnNhpxpI9tcHTGJ3bG6eajOALj8Pa+eOGMF2s6xFbNHrFkBz1s4bf4d22ob148w7PnsgXdBPaIi/2GfnN1ab/v2nec42JAp+sEP5FrfsojvtLND3PGbjLYRSY6+wG+4uJM8rNW/OcH3/iAT5zjVbMVHxuLH336aIsvumIQvRqPWjEHrQf+Z2fxYys5aMynHCAzX9MHLwZkK80FuuiLMTvJV5LdHNAfvZj4YMNDYTlLFh4xFIdkWzd4+EPetsx5rZ3/avZUN/5cMvC0HpPFLsUzuN3+DHcdXw6YbzYq5thc+7DVMzixc4+h5pMzyvrjI3+B+BinN7+be7aywVwUU7R0u7aPjxzzKKZyGY85Y5scJYd95Cjmwjy6D/fCm/MGoDsNnPpB++c+97mrjlAkAXyNz0PGNgF4xgJBYZQxXwt8y1vesi6kOCtYxg8BnkNjp3XwkOyT4LZ6trbM/mwnG04SqI8bj3bWW73GJo4sfYnqt3Yd/BIwHVt9+h4a+/1iSQWi1W9TWANjrH51ySeJJSAbSnY0bFDSEd+2xkenTRS9JK4m2+aNxk2ZhVYeqVtA6ZNDCll80rZxu7gjxybgk3T6yFQAG8lycHjo5S0PBwcd6bP4sstFDzvxWHj0teGKAbxDsDewyWC/xWuR0wdnM3QRYPNkHxxe8WwtpJOtjS2jxx/+FGcy2FZfHMgqjtjgZpzh0Cj00I+Gbr5lLzz5Afr66BW2iJXDqvHdfoN1s2RMEQcxbMMjj17xMMf4OuzYSYcxMTQmZv/85z/XT8loAxcJHqqaX/HER6ZNXh0UQzg05R27JvC9GIbn3xbyefKzlx6HQpv1tGHKSKZ6awt+MWcnW8jQ51OHb/mRreSIEf3o4eNnlzGAzri8IBPQP4EMJR41WoXcfJ7r0tpxAZB+8vnBZjhQXmmziX1kpycdxgFb6dr6enn0f/4lx4Hqgk+eyTe+2Q9cUFqrZLHHeu934dhZHKfUmSdiRj67yVDYRhZe/WDaDd88oGeLnBUf8TLmQkMpZ5JDLr0eMPag/XoP+GRWs9FaeuKJJ9aeBS/+Hn5Zc2xpDss5tgAxMK/o1GQpQf1w6Cto4JvzeI6rk2E8/cfRbmm2dhgvpuxJ9pQbTzrq49NWB/Ef1w9fTY8S32xHo2584uSOAtiQH8nkj7baxaQPH+2zeMyjPFPQtB6NaSv4kjt9zAa81pYbNOvLWkKHz/7shlk+k0+useSikSdyShuYf/mW/Xymg+34FevXzZ+1i48/LsKtaX28xYouZy9bnOf2JjKcJ/jJYRMd+OU0e4D1Ra6CFh1ZHgDgd7HvTHcdoV8M+eT6iyy4Q0BXceJv/qPNfna2T/CHL8bSM9vFqf0n/8nTpmvuRfDHgTmQG611fGLcQx2y+Ox63XwDtvJbTJy3bEOnFgvysiE8u4oVnebI/YKcETt6XTvIWftj84JWMWdzvuHMg5s317ReqpAr4mZPcw/CjhlrMtgBlyz+sBtMm8nHz+Y5F2iU5KjFIzuNySX+0OFcUcdXTR+e7JAX9KjLbePk4GGjMZBOvJOPHXzcgliSna7GyVEAX7XRdk2KB56O9JCR/qmrGCY7ffXV+PjCznxqPDuSo5Zv9hvxFBPFnMsPRRufPcd6n2cUe8nI1uJOt5K+9POLzXjQlm/Gs1kbnwLHBmtFzpevzkNzniw8AA+b5Kg3/B544IEzeaPdNYxvuP3tb3+7et1jPbjmpottHiT0ckrXOfxkM5uAflA7Xyfe2BxvDO0WwtHh/zI99NBD64GxPTbw7Xe/ee4fn5pDc5yO6mjVyZxj2eOBuH9SN3865uGHH16/qy5H4p3yykW4crv5jh7eS4X33HPP0a37n13FA+h13+1N/CeffPJq3jSWjeSQqU6mujzM/sboq8gxe9vrXve6VVuPQfT11ea0cy0/1OUjuWSUp2ygQ77bb9ApybH/GEdXrqBFo7Y+1Qo9wBha9lmjnef2Ute9vpnpLJafeODNj/NafspZfWdEcVCzAz1dHhT3YE+fT/wuPmLKn/rkXto/TCMb3nj3qvQbr9j/+MtudPBoyBIXdjh3xIYs4+0B+vD2Lr6zmwzy5LaYKHB48KKxx7nuwEOGGPJHaZ7V6IzFhxd9eumuiBU9gBw8+q7dzu2/JeQtdnNgDsXTnmFtsjW+xbz/QzcZ1ij95soHdb4VbA+CNw/FZrfbrT6d4sk+Y+ICV36RI1fkg2c1ZOSP6ws6xc31B9/ZxWc86MozfOxmJxw+etkKR4Y5pM91Hfz0EQ3+5o0842SZd/QKnejEyd7PJrj8QY+PPPHPHuPmmyz0aMhhl/nCB4+eTLEyjh5OKf+yHQ4Pua5T+UeOPLe+jaHlCx10lo/mtT45ct2Ywia6FH2Ahj35tJDjj3E5JJfwoGMXO/wihFyz9r0U4QMdOcg+xfM255czwDMEc8AGawHYB8wnufwgm08KYJc23+mjN1y+F2d2olOLMZvxeJYEp9BhXTQH6BV5Szd/zp8/v76VRb84ngZO/aDdwQkEwCT7tMsFrkNdYmVANVptYz7luHDhwjqAJS1H/i+CiQPVZ+kjmRLVoeST9ccee2wtGMkQTL1i34P2uWjg9UvOeA/VZJMp6SxE84ZfDigATfIkuHF2biG9FnkLAZ9Et0G00PmnyBuy6dFmh2IxtTm1OMn0oN3PlACHssXe4ckeshR6PFzyaZrc9cCrzcy4DZV9ioVJp3F2kEe3MX2ybOQ2DLX4WBs2Dwcp3+AcAm4ybfx8wUsmu7TRoFXEiVxjdAfaxVkbH3u18ZAB9NNRfMVMGz3Am+5oyFAaJy8d8NoKIIet4iwWxsk5tz/Qba70oREHN/HobGRw5NpMHax4zCEZxhSbrPlhnwPFpuwtGPEDLnq88WFPscnSTSafAf/JKb5w+c4upZip+YFeGx15in509Y2jB9GZK3PO7vDxkguKHR646Tdc66t5gmM/PLl04BOr9JMrRsbQkzn56WQH0C6H4dAGeI2TI4bo4CrR42GPWKO9tD/gzaM2UGdvuthsbos5WfjZzQ/64qev2MQz7TSmsBU/WdpyzEN2a7W1qZZz1rK8Y48PhS9evLjWPTvJAuQklz520Z8eNdz0IR51MvAWf21j+uyzJthsX+Ont+LsO3wnPzn5y+Z/x4N2X7v/wQ9+sPKVPeLfviTP9MWGXWLCVrax0f7mIsV4+HxHg15tDL2irQD954LigC6+5+KZdPgr8SVz6o8nm6NVR2+sEm6OT57ZRpt8de1Js23jmTrwlEtoy6fkqWd87Qs+eHTmRKtmf7TRW3+tQbLzUb0F12puehQX1WRaSy6WXazKZ3a3PuSPvKJLvtQnN73NA1nWWecCGu3OC3Ks4W4G2Vds+cQOOtz0KXITjTMaj/0AwIluYl+cAABAAElEQVQlejYAesQKHb8AWdYCX5w/9jc09pL87mbCWmHDnDN60OWf8cpScOUPHrT0qAGe4macnewFyS0fpk7jyZMD2amGJ1Ot0EGutW1e1GwQYzdFbKVLPPR7MEIvv8XEfo8Ojkx4ssg2l/QGYqTww/x40C5n4NCJvZtt8YUjj31sBmyBo498c8YuNz72U3aS7frAw3b+KHjEYvKSoT+B/Ojo5IfrMzLSjR5f/WxRw4kDGWo2ug4gi3+Na6Mn15h28xtttiVXP1o2kGWMjgpcstXx2J+bk2k/+uTQD9C5DmO3WNKhVujPBnxy5TjgG7u2wC6xwR/QwdZilg55YE7VdBVb5ye8dY3WHMlD65VO8vInH8mvsKH4ZAO+5tkYPjKyCw5kq5p+D+vEDC2cNdGco8cPyBdDdnvQ6M1ub/biuR5Irodc/mdLD9rty+R6mGE9iYn7mmeeeWbd2+jTyR6FHL5pw+tnUzqyL776xrc0s29uwOtf//qj8/sHE294wxuWTfF7g9GH/L5VKOfIZ0t61MoW0pH8xg89aPfPUP2muhw5BDM/6CIbrhzAY25dN/pnkf5Hjm+Ey0lg7v3kwQ9/+MP1szfOP3NcPNGQWSF720YzoblhjxzzoN0/jXX/uvV5G5/22HKZPjRzDeuLh1xgizPNXo2HP0py7GVsKFeynb14nAnqzi72kSNmdONVrF1y5af8l5vwgC72OK+1rR/54IyYetGznVz7vrVHv7ki2z6Hv5iwhR3p8HyKXLR4PNw1j/rOrQo7jNNHP7nzXIN3Rs7xroPR81UOOJ+yhQ1kihX72UWuwk60eIy317Irf/CQS2f2kkEffnqM06EmD0/jeMwLOnPgA+1z+3tzOsVQLHe73bPW53+xd2etll/Vu8f3S1n1DsTEDtRU7AliGzGaKJqISmwQr0QUbI4tMXZI8Mpr4403imhiFBQ1iC3kQryI7+Ssz0x943CetXfVrtTfcw5kwNxzzjHHeEYzm1+zVq1aiRt/+GVO2BOvZxb/asQzBD7f2XWfBcuaMJfOZr4ac3bni9jtF2N0rItyypYxeRcPX60Z8bFvnJ62NYnfGJeN+4CRDD/IwGqdyQVd+VHkiv9ywQc2kfzzN7nyzJdetLNBhqz2nHM28Phjv4lZmz/2VvcKdMiq5QifzI6VDN+M68O1tsUmLs+R1jl/+C0vXT/p4U0/jYs9/lw3ybFFTl60I/7p48sJ3+mTtUbMoXs68+fluvu0fjoYNv/dA/r/NH784x+vfyEBwzzIAZ+sH7EgPPiKmFC+8UUu5EHbPFpz+Z3v5d/e956An3yQA/mDbT02B3zkqzk25n7Tf5TteobmHC3Gdf5c+kX7pz/96WWEIxLqxtlF3aS3qXNi1sa8NHjkkUfWRes6fj0/fJ0MWAB+i+6rX/3qunDMjTDbYLyM9O3f+LO2IJWLyEKjw6YFa+4RntK4GpbNYO4tVNT46lzrk2kz5ANs68RGs3lsBoc2fbw2Hpt0OsTbHPo2kQ1u3CHgxbsNTAdGtvhm/Vq3XpD7pJb91iwdm1BxcbZh6SN2FGPk+WyjuwFWk3O4Ojxc1MTqwHdD7uIktmzRV+jwCWaHCRnFWHLsF7+84JdffBjxzBdd4/wvdnIKOXOpNkamuWUH0VemfDbw+CtX9NlxA+dTcgcsnljwzIuLlIOQPXPpMJUvMuZQDVPe5NQLdrZcPL1k94Geiwk7bnr8VIibh/wUr7wXD7niw1MQG2KNyLGtNqZNtrjVcPjSOBmkT9Y8ian121h5Ty7cfGktke+CXC4nLmzx4clVa49e/mmLoTj0I3piaD3h82knMYpByUcy5YJO65KMl20+QOKbMfvV+lbjtZ5aX+rw4OvD2/MmhnJHhqwSHy6fEL515cbRnu+mSZ6szfYyHWvKNzLUfEyf77Bhsmd+yzGewh9yCpnyrM8HhDcLHYVPHhSMmWe+eKGn1C9GNXtuCtyI3uqfjukb7eLnh7VlX/Vg0T7CN46Kka+dy8VsDBV3fePpF5u40ltKJ/6kb+h6slM9WfphzDof0tE3zu8pV5vcHN/54ZyqyebPtDsxztOb/NYPDGvuFK4xebbevWjvxtcanvbIyX/nd3OBLwfw2ZsE1/ntZtm57gwnY42493OD77qG8tW6yUZrCg47+LXpsGtvOAfZJ2Pf+SDVfibLJh+MlwO6CB4bziHXE2tazPZOD0YwEV0kbjLy5foM2xmB5+yCxS/XJjHS4xOeuNljZ56RM4fkym32jOcHHhlFzpojtXjp4sNXyBlT86U+XrowUWefvBRvbXoIZtcTbbbk2DUbyYvc42lnV+z2vhw1j2Gp+U0eHrL+ypdx9z4ebtTOfLjWqmu4/IsddX3RLlZt+ObVS4Me3OiR99LxqaeeevYaTJ798q5uTpoHuZMjcsh4/uZf9pMt3/lKT7zihgVbbmHRVYwp7MhbuZPHzv5wyMNOV1vJZ3VtOtps8SsdPHGwM2MuBnr4xpFY+WJds0XOfMFQjMOEL9ZysJSPf/SNtwbiVxunO/XiweMLu0ienAXm2Vjzo2+urW/+yLHcKWxnH0bY0yYerOaIfDkgh4/yg238qLY55Ec21e5/nAfyGb+Y5MQZ4zde/WegnoHJ3AyVPz/d0H+GCtvznf3gpaz95Bz0LOJlmHtnOSpWdosXjy9wq0/5VUxquvmhP0nu5MY9i9+Q92GAPpIbe/R73/ve2U9/+tN1/zXngwy8fNLPjnaUL/VP/XSMF+0///nP1/Nd8zqxsgsDnjFxVfQVe8IZeNddd529+93v/o+X7XLqm/nf//73z5588slnn0vKybQXnnrmj328Gbe2Ne4sfuUrX7meX9vHyfM/fPL2gkKu61Tz3Zok7+y2x5Froz1Fn4w9pZhD+48P+PYBHl0Y1n9nmVjo02vvk4dLBsFwXlv3runG4NCRw66jauvW9YE9486e7NOh3wfw8I2Lm22+IHHTR/C9m3J/Qo6MZ3nx6ZtfhW21cfmDARNfQfJhr9Et53TgkJcXe4++mCOYdNX8kv/OWblw7zF1ygt9OuJnE58tGBV2yVgP5V2bf0r50bae/Kxg/+qF7d6PdL/IJmy4CDYM90HF7H7oL3/5y/oQrxeVbHpJ6V/tiIWOvJUXPHNRDM5LOfIM7wWm8eKWU7Js+7CJb+aeX3Rg8gWvuPGK2/MUXfHhw2NPzumnW97Ytpb0I3PPHzbJI/gw+WM+jcNs/tNnMz+1xVLsZNhTzBciy571gycueuwq+ZzfxhH77lP5QF/bM5y853Oy8Fozan6wJ57yilebPKJfyR/98t7alI98d04orkmuR/Zs7+S6v4Tv3ZsvvTmnfdGVP/LCD7EZt470mx92FcSf8tQ+xSOrID4pdMjynQ1nOmxrQ789zld9cuVQbmFYp/fdd9/6ABl249o3Qpd+0f7AAw+sCeGog1FSHWQ2nQQV/HRE25ibgW984xvrpa9Nhvf/C0n+/wtk4dl8NtV3v/vds+985zvPHuT5N33V9o32F73oRWtxzHkhbxzmjdA+txZgG6RNAIuNZOE2Nm2QUcgr/LAeLGx8tQ3gkEJi7lBLr4PPhQiGvgdEG5uMi5iLvAuKDYT4XNtG84LdxdiLtw4atvnMJ7Iu7i6yYoWLZzPri5O8w9wNsIMPweYPPb55uHQR6ABhC7GD4CKHFmx9Mdtnxc1WhW8VGB0o9MjAV+snx4/sNZZdthtXR3T188ccKenD62CTD4epC6QbGnrmwEVYDt1048mX/CgdpuJWjJMXswcF8+8i4sMQH4royz8sB7kPUrpRkPtexPOL72Rh8pffcqptDBlrTWjjN89yKG56/MxXmArKDhnyChv04JFrbsjDT4YffFfIywtdMorxuQbYJwdPmZTv9BBdJaIHqxzonyL84qavH462UqzafDYn5ottN2WuC/YDHpvTF37Sy1+2jJcTY6g4yCH8/NhjN4ZnHSqtcbr4+uGUT37ym93izQ5582YdNA/GtPNLnxx8vHAaVxuvwOrhpvUlP/aAM0EeW2etA7H0n7Dcc889TK48rMZN/uGXDxr8ayj7pXx0w1YccoPHv0nk8Vz3UfGagxlzOvgKUsOf6yG5vYaVXrqnZOIlP3VaY8nsOHSU5OpXp6c/afanvclPfo7j7djnyeHzy1qxhurTn5j1rR1rsZ/hIEN3J7k3h8UcLhvZCtMYedcwZ62bZ+c6WWeRbze5SfYyhxxMduG3p8jxTZn8/CpG13D29eH3ojf7zvvGkyHHnn3k+mofaRsnr8gJGTFpK8b14blGk+sewj1HHxzw2VpX8r17EnsULv8Ubf4osNlQEN2KfmP5QV5JN3+nTjL0a08dfBQ2LG2+mQuxKnTMiTgUNsi6TvsgkG3nlAdyuSKPquHRcT444+VKLvDJyGN68to1mbzrguuzsxex65z1gNNc4ZtDmMbLBUzkWukew4sb137zZ568ZFfYa+1Vw0CtQf7zFb6irYihszed5Ngni/IJPixU3MbgJGNMbHKqwKEn9+49rVl+oWmjeI2Rh4nC1+ePcfPJT2TOp5/k06djPIx8xycj79mRB7l0zsMPu1zB2Kl1sPNhKnSmn8WYvHH+4VsX4ige10JzrSbXGL9h7v7DhKMYDztZfQXlkzo/18DxD/v4+cFu/qmRPMpd9xPmZBbnp/XqS2peQmd3KV/iT356zvCb5z4wt6b8y0771TM1P60r32b3IsMcskeXn9nWnyU3sjH7dCrp1Cen3Rx71vQFMC+JnSmRl3P+X5if/OQn66zm56TsTtw5Xjv7zZP7og984ANnrzr+vIsx37Z96KGHzh577LFlx3rBN28KfPNWWx+Raa6zZUzOrC0fbHjRcueddy5dMnzwM4Q/+MEP1jczrdlJYauVaUM7alxfm8/OxNtvv31dB60tfrDH75530jNuj+rbI2TIotatdtcubXPjXGJrxq0N37NY9ui5xstDxH9969y+18ZzjbEm5SKfPI979+NLANao/LNDR1wKG67hXuTqu070TM4P2Pz1bOn8Fye5zhz2YJYT8ta+PdIZyx77YjbmOsSu/OkXbxidgfjdK7BjXNz01MbF1PMrPhn+0DMfrTfXTGcqX5wLcuXakXy5KM/0yJVvfPbKez7zq7kny5cZl2u7M6LnZePsss/HyJyJG0aUb3w2L66z8upLFmLki+d7//qj/MCEka/ynM/a+NYZv7Tx3GexoU/XGhU/nrwg9hTj5XXyyMFVyJh7xdkMt3nqfoOMYlzRhke2dc0uvpjEx648wbVuYJZDMcoXUsPgUzHBJg8DGWe3nIdNh3547KP8sIb5UG66r4KF6Jt/OS0OePgwzL+518YTV3uh/GaTDX6o+WfddG6Iu9jFyD5Ze9R7HHNo/Wq39+HCkrs///nP62zhG1/pKsb4xRe25Cy/xFfccw8aVxA8bf6W7+LBy288PvOdr/jkK/h4/rWYD1v9K6PwV+MG/1z6RbuvzkuEyTMxageHQ1JiBFjJB31jNpUbhMPhsCZLEMj4KSoxxrV3ucZP6cbbdeLvusnt/OSbQH1tcpVkpq72xKxN1tge+9QNb9bhpSv3v/nNb1axENKvTlffRc5vtPMhu9XJG9t9tCAV8c6xcIzZoOwjcopFCp+c/qQ2knG2K2RsHjpw61tfyPppQ5BD7GSfHYerB3SHPhyHiU+vbHQ+wsWjg+B5+Oshvc3vAOWfQq+H/g5vfHHY5AofFVj5q6arkIe5v3xcThz/8F0eyLHhINPmDx970CefnPHyKw/slGtjCn7YdGuHrYYHR9GXm3Dw5EzBM24eilcf5RMf5N4+d6ji+6DDxV0O+QNT7uDAbK5rq82XG7tf/vKX6yW786Vcw2TH4UvOzQWiJ1dunppvPPMvp2yz2xozNksXDlhyQI48qt3cpmeMPwpZ+SiPeMmJUb/8wUuWrXyDh8giMmQVuGGvwfGHHTlB2vTlNxv4YVXDQmLS5qMxBcHJnhpmMRQruezkJzzz4Hwip2/uuomC5SJqTJsdbQXGJL6QqRjjg3ypo3DaA/meTPWU5xff6U472uRhNG/6OwYsfuQLPQWlnx4svjl7rFdrjWwPJG6SxC9nXlxZ73LoHPCi/ROf+MQt/c9QPfT6kJad4nfTJh/NAX/4oJAxloz5M58zJ2SKu7VUjldSnv9zUxmQS2eEtdD6Dqj1ZS2ZL7KH472V80/bukPk9NVkmyu10lq3lsklmxw8Z7iX+M5x8taFD6i99OmBOPz8oo/YVKyt9jmZxrWnbXGyY3+QNyZ+e4ft5MsHbGeM/aMmQ0feFMQWOTrFWHzFD5c9OMbIIdeU1r51zwY58sWmZhPRtdfpZ9f+6bxJpjOTTD7zLxxybOSH9kWULXLyNeW772Gn87iHGfhya57F4cMUH6rgw6CDtOvTdVZ5MZLv7PM9OT4Yf/r48zvlsPmHrdDtvko+6Mu1s0MuEF4vhWBaFz748fCmT4+d/cs+Yinvapjs4xdHvvK9/KkjbT6WC/3mTQ0L8VEpV+nDdy/kZZMiz3TcD3pZkc8TQ5s9RJadaPrIlnjkK5niMlYRez4bhxEO3BkTe/oIrrVCPz/KH54xuMlPXfrZmHw+6SMxprsYxz/8k8fui8jot37LMf7Uh8OnbKrZSl6/2MlpK/yf5wi5Cp/IsAOrfv7gG7cG6ZQrZ6MzRG3N2Vd+2uVTn/rULXnR7tvqfjLFB+b2ai8wu6/whR4v2+2J4ua/duugWPDFsNMpXnmpTkffnLrXfs1rXrP+1bq9GT3++OPr52L8Hq91zwf44WjzI1/wEczWCpnk1Pjm8V3vetd60e4FOL57m4cffvjsiSeeWM911hHc5hB2trKRvWws48c/+sbYgeMDjY985COrlmtkzn1Ln83W3xo4/qE7S/jV5LI95WDLnw9nvPyxjsRLRhzWmxjSmWeqMTIIjrXNHoLDX2Q/kSUz855v6Rg3X856dsSoz7Y6Hv/gwPUhQdcS8taFNeob1c5u+6f9zQ4s1xP3wewg9dPH64Z9BCPybOmZ0jUD0WUXHix+KNqu1dZD99fke9EO1/0vu7VhlTu1+OSr2Gae+CR2xTh5Pqj1YYmz/NJFbLIH27XA/M75ZI/f5ooN82ePq2EifOcK2XLDLjw1W/OaSse1R/4Px/tDOTBPZJtfccCHC9OYvpjMpVqufLnir3/963rZ7tpFzpjnfh+yiVnui1su8rd1U77467puXMxKfvEZLqKXDnuKPp+7RjUOk+38cN649yCLYLIpp9r51jrgu9wZkwu4eM0lvr459L6Hz3jlqzwuY8c/9JXmjq75UfDYF0P+GTf34dAtfvLGEX5rE1+bHp8RTGutd07lXg3DepKnfKeTfr7hIbb4SVcezJEy/UmO3+Ssa3lkgy3y5a4cqD07mB9YrXlt+SxP1eTTxeOXecNjhw77M3dkFPIROfIKW0hd0Q+T79a/F+333nvvf+8b7X6rzKSW0IJ1MDaZOa5GAiDnQOmQbGE+I/HvC079klq/hNR/rjX8i2iOa/M3nknTb/Liq/Pzoja75SR5vHAan/3ZpmPhy7lirPFqGEjf7yX5tNEc0FWaK+PxktcXn0VmYyE8suHTF79xxTjCs6HCbJ4bd0A5BOiH11j68Nimi4xbb9YdPbEXC3sVG9sB6tCHjW+Dd6GA1+Y3Pg8jhxJMm943qNkpRjcKHvwd0DD4Qd4F3EHrcMvH/EqXD9rkxM53suSSzVd8NlwstMnSmTbgoXS15YtfCqyw7Td5xJtUbGwYU8ebeacTbtjk5E0OiqWDzbyXfwct6p+rucFiKzvaYjUf7BdPc+YbOY8++uh6mcMWbAdjBzY5PtGTIzU/+NYDuPFe+tMrL8VdbK1hPilsiQ0W2ZmffIWFyOOVg/r8a67wpn9yEA4fyNFPhzyiww/85hiPfvbhwDBv6dO1JsmhfEpn2pdbfBhqeOT181ENO5zmXb+1b5x+Jb4c2lPOKW3jLv4ukHDYUYvf2PS3ONlH+SEXbE/Sx+fHKZoY7OjPQke/3OjDVGDycxLZuW6M4aH01Ig+2davueKDl0X2ixs28cuTD5j0rWn714t2Px1zK/8zVL+N51+WOcOKj/05B/Kg3zxaJ84hPL51g7MCPP4Re3GL1/73Aa//EA3NnDeva+A6f8opsfJ5HZX/GN518jG82U8xnWl7H6tPZsrtusZO2Ui/Or297ywyT7754eWJ3FuLE1NuzYs1Zk05a+kh9skby8909enqk2nvaE8b5tKLdmd5H6Dyw7fZfWvSzTIc+sWrrbBbbMacAXzNN7x08oPv7LBr/eHbO64X2nDJKPkJDzZ5452bPcR2xvCna1zr2xgfkDisT3ay4WHN+scXtzad5NPhS8QuWwg2+eyQ187+tEfPtSoqVvUkmHCUSeJHrqt0yinc8iVP1lT3Ffw2RoZf7p/8M/DiUSvwKvLgCwrmnr8Kn9rbzZk14htwzn++lv984Ssen2CaG3mBA5M9tfXgvkjbWuiDmOz2oNw8wtWGa75gKuIrZ7CTI1vhu4Jqq43ThQM3+eRmnpbyNX0vnvz0kr1pTYtN7uzp/o8O8vKg8Ct700aYeBFfzLkanx795ktfzGw2HmY4ajL1YcMQa/kqZnkmx6Y1FHb+zJp+dvH5MuOKBy/b7MqBObYWyom1qb/Ht9vTZ1dBzUn4arGwg8i1FvNjyuZz8vr5B1u/Dx+tCfHaV67lXS89f9hPt+qnY+wpD/32lbO+l0Z8Yd9ziXsI88PvCn/5aO7I4levZBz/FDu+MskY/HK7jzlz3K94Gf3GN75xrXU/q+LnVXyTvRdzcOe6gCOnrVn9bFlf+VIc+nwwj160P3D8V/a9aPcS8Nvf/vazL9qto6kHexI7p+JhIz0ycirP/oPS97znPetlO5/95rz/7+ZnP/vZ/7GH6FWmzeLBa1xd33pky3O788L5xUcyfDKujtr79oc5aF32vEqOTTidW3yHoxiDzUZ5VePbd8haNmfmw/ohX7+55JMz2rdZ2xN8s/6dfb5RLR5+Zrs97ex3nZVndtX+BbN1zCbiv7PUM53Ymp9iocfv1oz17184eJ7nh3HXEWsClpicZ4pnEsQfscFE8lVe8CtsVMqVmOjzi5y2fLDbfInTC0U6/DBfcswennGxOz/kGaaYyUZi4ZcYyNAz5+E0D66NxWFOfFHCB+iej40hvsHiE5/hmU96xvhnLcI2P/6VuT3t+VxexWhOvch3j0hH4S+fYPKvNcImvnGYamPmSoGFRw8O0lboKeKjI1fmTZETubLWyCD6xuSSPD1xOzPllO/iFT8s+WTH+x7zZn75Tm/6C5e8+PlsDI8sPyble/7MWptf7Ldmw842GZhKMnRav3gIj4wamU9xW0tkyfHFOBvl0Rx0D8UPGOJQyJNVx7MuyMtdeMaQPjtsyAkZ8vKnoGTxjcujOUDpkrW/2dFOhwx/6DXH9m7zTlYM4qUjFn349BAf6cKmp89XJF8zh9aA9e/M6EX7G97whiVL7zJ06W+0+wmSksNhBgVrQpt0DkxHBF2g2jNxFzmbzo53kc5lx6aNdPHi1+7g0TehLaCpU8zVjVWHZbwyc5HN9NXpNBaWus2i3Xg1HtJ3k+fT+Jl7czVtJ0seX3xzoeOxF76+tlzgo/y1gGe/trq1Q59uY/XDcwBMHBvAhmkj2MxKNvlgY7goOPT5ZgzfZoFVu4NRDvjjguvA5IPN5gDVho9seodvF3eHmAPcmqfHp/xQK3TFoujbI/TCTEafr+WyC2/2HRp0HRjlKHkYeOm2RmEqLjrFSibqQKOL4MSTJz6HWQxyVywdZsVNlzxb8tRDMR98k+FwOKwLKFt47MFzwVP4AUstBuSG2X825KGCPMwuwvlClm03AHDlSo67kTDeTZ+1Aac8qOE4tDu48RQ5gFvO6UV8ZEuJ8KzNKZeP8PDJw1Ng49Er19pk9ZE2HbKw+CSe7KsjOq1vbWPtE3ayMX0JuxiNTR/o0J1+4qFip2P/kOGjfpR/8mKv2FPmh649hmeumsPmf9ogq8DPdzWdacs4PXz1PpZPanhsoSm3GMc/8s13mIhM2Itx7Y9x9nZfkkkvGzC6uMsVG15cemiQj/LixYtvpDmTnIG+1XSrX7T/8Y9/PPv617++7PJFDHLSHIiBf+Vf21zx03w6j8x7sc2Y5QWm2DwA+zb+8/TcMmDv/K/jf0L/i1/8Yn0QYx1NMj/WrXn0Qq+HSXPRfDgfzCeyFhVjdLXbv7OPj1xHfEFi/jyB9fn08Rtnvl3pm5Moebja/HG2xrdeOgPZQWQnkeVr11tx0YMjbm2+zr2kb5ysNazPDmznvj6+NZwsO2Tw9rM7G/yA6/oSnjNMgVf+2if04Cr8UyN8vpGjo9ZnF27zwpZ7DPcA5BQYrqv8hhOesYmJj8cvct2r0IcrFkWfXfOnsE/emPMGpjPJuUM2H8ylfiRvXoI4q/jXmiwemOT9iwffvCUnBrGZE3hkFG14zhUyMPgB1xi/rIfu48RjTSpd15uD8gCX73CbY2uuYowMwtNXw+FDsarDImO8eVvK4w858nOuDPvgwt45HO+D+Cw2e9q3LU+9aBdz/gz4k01Y/FGKafqQz2pkrBwUl751g4qBHMoP+N0r45N374u/5944yo4arhKFK1e1jbFrfrv/lwvF+sJH5JsjbbRj8yk+WZQdOUseDy4b5Qav8fSM4anzsbZnDhhw6dpXzozyY849g92q/wzVzyh62etfRLSf+IL4YB/1zIDPb0UezFd7fikc/ySjz/+oHFQbk1fzOeXIk8GTR99s/exnP7s+aPdNby+hXSPkiBx9OBODb3TVU0Y84fOzcfrGetF+9erVpee5wc+p/upXv/qPb7QXI5vT7h6LseJlix6y3p37fHznO9+5fkrGvv7c5z63fqudP8mSn3amPWPws5HcrJ3FXlT7VxDOvfYYGTZaq9p4fFPTsx7k2ZhrABIjHf6be2R8xtecyCl7aj52VjtD9cUJI3l9Jd/sW9eP9gTf+OElrGIv8JOPXcP5wjf3l56pkb3jSyfOyXwx7t5G3otTDLDUiF9s8tU+/Nvf/rYw8p8+u+w5z+wTcp5H+OGaI55yCIv94s0GGXy1MfHLMT118yF/cBXEj/JHVr7KAx3++BBWHtjmT8+zYiKDD0MxV+wb63opFzDZlmtj5sTvTDuHvB8hS0/hk3wg8SgwxCHPcqb2Ybn99fvf/359wcIZJwZr1ZzwE/GR/pyTNXD8Iw98mnEbaw6aHxg7waMvHrmXKz7wq1zx03g5Ma/k9Omy650DO+KTv+YEhtiLl065kC+6ajjyZZ6sSTxEnl9858Ok+tXJkDePbBsTI38mjrH2JEw+Wbtix4+HX9ww+KbAh1c82da3TsSFyLClaCOxIjqK+Z5rnCy7fFe0lea/+QqjuIzLv376yRhz7lm/2mT4iuCxj4/kQQzOFWPtC/La5kltrBjomjPrEE/8fLfn5JM/CF/hi73jmvtf+89QfWLN+SaCoybVguagPqqu3UTs/Nlfisc/u6x+NOXxZz8Z9dS5iL/L6e/FJJmcZPWV5MLnS/4Yq914+lOuMbzGJ4+dU5Rs9Xkyxl2w/UuEFixb5qrFO3XJG7cJLEZxk9s3A5nyQkaJ6CIydGGGa9Eji7yLAOzWTrJsa7fw+W5Tw4MbNixy7LcpHPh8IKsYC5dNY3j8h8OGDcuGC7wHyHyiT86mh69NThzWPV198tM/fTbKhQsJG2QQu9nIN9j5ZxyRYYsNviDyZNHMQzxy9Fx04OF3ONLlA8xwYVQ6sMobXSUfyaVPRnwOOjUb9LWN8dmLboUv8hHBw5PX/DVG14HnPz/97W9/u74x58LooHMBlG8XTno+lVa7mPDRw7yHehjNuZfzZPhGpgOWDB/w878Y9cXJfzVqTJ+/SqQtl/Ii74itmXP81kqYeBNXO/xqMtlKVl/b3CKxiquY6KSv5ktF37jY+MsnZFw7eZhhNM4mSkbbXMAKPxk+Zss+sa/kiG19e6x50zc24+Nb+SxetdLcso/yR77DwM8H48gYHh+SU08SS3rJsCe+nfaYje++kQnH/Ch4bLg5Vdrz8mANeyiVH3r9Z6i38hvt/hOvr3zlK+tGjb/yJid8Knb9ePJnbTi/FGeZeedfuRW7PoLpRfv999///Iv2lZHn9sc3Ab/0pS+tF+1ezDmfJpkz69Y8etHuwcd5YG4Ua05/zi99Y+aMnjWojoyZfzV7MGG76TS/9jO/FPs4rHyB03lkrHHraJ4zc1/xRZ8vvXCG17oKg5/iUfOFvDO+vabO9/ab84XP8JLjhzNG7uCEr80mXYUeWZj2qPtfeggevoLSg8FORE4pF9rshktPcU1UEBk88cFS+AMb0ReXmmwkN66Zu056/BdTD6BsmGNzC8uDuHMHH/G58zhb/IbhYVMbwTdejPi+lfj08QMZD4V8cm/mHqFnCHPILltigeHlihKJmX9kFfdhXuS4/sNks1yHywc56dpCBuWbmk2luVOLs7jV/IGdHkyFLF6ER56suoLvvsU9UC84+OJ5yb8GkT822RGn+NTZgN88Zitf1OTgyXX+TD+SjQcr7OSLW58cX9T6ZBU+stF1mo7cdt9Mduaer1O/trocFc+UbX7NsXb5twe0EX/C4Ef5iRceW0pUf+rjwc1OMuWrvjo78IyXK/eY+YsnR66RzkV7zJgPrj75yU+uF12wboZgo160+1YpbL5bM/xD7VV1tprD2Tef+MWylI9/sqM/49Ymr8h746tx7Q9dc+ULNs4xX5SRC/LZgaOvVlD5L8fZUSdjjBwc+sa8aHefcfXq1cWf32j3Ao4v2VWHdc3dVWVr8rSzRSd7MFyb3Lc5t3zQ7Bws98Z32m2ekiVT4bPz7QUveME6L2eu4HdG8A81z/qdk9rWBkzng/Vhvjsn9GEZo1+e1cnxsy834cEkb9+r+aVo00N8c763J4y5NnvR6+y3JsTHT/65VsGF7yyRS1j2jbOxfwklDtcE+u5F1PRh8ZN+/miTtw/dL3me5DMev/jorOr8yq58wIPDZz4ienzC11bLmdj0K2S04ajZgaEvRsRu/hkXQ7bI2SvidL2ELz9yRy5c9o2Jr7hhG1fMrTjoaiM5sye9aHct4pcYKjD5SD5f1XxU+Oi5xL8QUHwIwjYZOYXvWoxgGuMLPxX2YCv8sofEBJucvJhzWHyXP/NqLGKrAtP8WS+upfr04CJ9JJ/kULb5Ih747NJvTtiFwUfzqZCDzVcYSIzmyNppjulW6Cj8VUfiISPf5QdG11Wy2vwnV7z0W19q/rq+qJFaSY9/rTW2Ko2r22vFRIaeseLmDz/0FbJyocYnn5/Nlb5xvhcvXfiwUbL0jdWny6a1JK8wsm2MXNj45pZ8c1CcZGuTI5NdmK1rctp4xY2H1Pwz7l8XPXD84pifPm9sNW7wz6W/0e7TasYFUTAm1IIWUE7uzpTI9G7Qv/8RsXyZ4HgVk9LEmAClsXT3WtyVZOtPO7XLUzj42uw2Fi+ZnU+Wb+fZSc9Dk/+cxkYs/xbVxJttduG2odgxt3SbezJz05HJ/+ym05g+u3BtJBdkdvDCzQ86eA6TcPSNG6M3iS8OR5gebGwOsnQc4OnmG/kucrDkhozDxwHqsBMv2zYzGfjZhRMWmeyUXzVZfvC3m25yqJjUE6u2mh4SB7koGX3tiYWnTyd/+dGNibbY7FexdhEKyw2e+TEniA/5oQ87e2w74DzwyiU5ffl28SJnPsy1C1u5oFdu1OGqYbg5/8c//rFukuTNS7uXv/zly46bEBd5fvppCt+0FINYPXj86Ec/WrmWZ/bZCldc/FG6cWGfz114yRrDl0MEY89DY8bZ4YNiHSHy4uVXa1FOrYvw6CmT9Mmp2dA2X3Dx8sP6NadkaqsRueLWzx5d8uHKEdzGXfD5lw26ZBuvzw4ZdqwjPupPOWPJa7NFTnG9cBPtBpiel8pwwuWDmMmRp88PfDUd9STzpRiLyKcbj57SWtxxpr3igau9Uzw1HLaLIZ56ysGob91Zx/MnBeTCw4EiB/8TPx3zhz/84eyLX/zi2qN8bn3yTRxyNnMXzxzaj85H81Uc5bDcy5eb+g9+8INnDz74INjn6TlkQK4/85nPrG8G+vkYZ0pU7s2XefStMWvKGWZMsSadFYiceWx+zRk8485Ac0fHueA80CYDD3YPU64d/LJHYZFTh69vfejbU8nU5gu/FDYjtpzT/LE/UJj2A1zyfKYrZnJeetDRR2TYt5bVzmYP7dNfWPmZPFltNvkCTx74rbi2wZDD8MkWH50K7Chb+sb14cmzdjx5Ng/p4osTqcXd/NMVV+ckf7rGWQN08cQAL3/Nm+uzuMSqyJ0XwXzyEskDeXbF5qy299nKd/rOK2e5uSGfnXRcr8kYt376+QB8vrPr/BOzueKLF9Cu5cb5g6+UA9dvLwv8x3he3rAlb+Llp7zQU9gNYwEc/5Rb+UD14ZA1t62b8rPLltsFcPxDFyVXDceDu/WpZousPPrZHXOB5M48qdkko8DJBzbpz3yEJ+YoPboVGPmcTmtYv3WYPCx8JXtqfTJsyK1zAA6ypvCi9JsLOunzRZm+aptHebIe5CKfq2HDiGAbK298S5a/MNUoPTWZ5IpZPxny+ggPRnL1jbFrP3pB5GzUJmtvuE5a+/akF+3+dZd9NW3AuFFiH/Wi3c84sCfnbGhbQ/ktdoU9c2R+kpM3c0e3uGBrl4f8bO0Yx4PZnMdTTwpTLlq/4ZELJx6b2VbjK3Pu8GGp8Y37D+re//73n129enXx/SsRPx3j/3dy3nf2hc82fQVNO9nCnzL6Ykb4cgZPvuknW13+9BGZSdfzxRx5pvLrAc5k+sUNU5tta0/fXOZH+4CMvSQm4/qdi3zRF5N1qpDjF3I2tS6cW87b7Jp3ZxZM+gpcdfkj65psT5Djq+uRPr45sccVfT7TZZNtbT45y3uOZNdzH10+OR/giVHs9lq6rhv8wcfjLzxEXuz4eGTZbbwc2MuKucg/PsBUi1kd8RkmLG1y9OjLR7jpGReL61/nHZ49ad12rsqPLziQg0NGKe/NKZvaarZgi1ObvFy59jp/XDfh8lX8xsnzV8xsFYOaLeM+NPdtdv9KwL0AfKUYzDMfYZo3emzIE1xzxq5aX9z5SIYsLLYQ3xWYKHv85DN592OKdUbP2uCzMcQXeZk5aT5gmDNfFiGfPWuEDf6Xz/yEiadkt7kxBqO6+acbsUmXv0jccJo7vmmzjawf/sgtnKlPrzWots7xEBtk+ZMemxVxe5agky0Y2uU73fw1Jia+yDU+X5EcoHJrnKw+m/IbPr+UfIET4fMXHjt8wEPpwSbDH/sWTkR++q/Pj/j00qdDVpFn69JYNq3h7m1dv/0k2tvf/vZlKp+ye7360i/a/c6TwJpIbYtZ2RM2jQtGkC0YY2GUGLzZ1o/iZ6N+49Xn8Y03Vj118JQmRI1MkhKROS/Jp3xrcUx97YmR7eynM/npp6e2cFvo6UzsYvGy5hWveMU6VMwXWYs0LHbyPTstSAtPQTanwiYdi7NNZ5w9eupswM0PbXYtaDcSPgWV2+KA26Yha025UUX6xuHSYZutKH9tUBcVMnjkXbhan/DZ4xM5L+UdZPh8c1DZYGo2lXxog8KFP2PnG73pv3EXFvJuBBQHDp9mfua884HNcqaukIvoI2Pk6aVrjCwfjau7sGmbQxdy/jpoyVbcEPE7THwYKL+zLS757kaADJ5v5XqQRl0o5Lg5yyfj7GSDLvKtdN8U4aeD1AdF/smOh2sXey/irZ/bbrtt/e6cnFtTfhLjkUceWQ+wdPE74OHyQR66UeMH2+K1Ftjnzzxw6ZExln94k+jw05rpgm3ceoGtwOCP3LGrlGPzZhzhWZ/lmg5s69caM3+KdeVGhTw7bobxEV14bKDa2TCeHbaSsRbY2+XLEz1kHvH4LWZ1JEf081972m1OrBH7iry2vcF/fXjFzD/9cqVmO3x28686++nRmWTcnJCfYzDT0SZHpjIx9jZ5cuZCHPkQjj5sfSROtq1HN7+9GDMHboCsc21n98c//vGzu+++e+mlvzo38Ycfv/vd784+//nPrzOAz/zlizHERnnIRP6bpx4E6Cavri82L9Xe/OY3r2+bhTdl4c1YZpvcjVI+X0/+RuUuwpk+3gq8i2w1Zp/7D6j8zq2HHHulfZ6M2vxZe/Lu5aMzDI/P+M5p89L+a1+ZM+ei808hS8f+c30Imxxs5wzcHgTlgT90YDujYGdbuzLXf361X5ah4x94zhf+ix2F62yFwRd6arJiE7NznU7YsFwHyDmn5M6e4iP/8p3/ZCr4bIafPJ4HTLkRE2KLT8UWhjE8dibBNg/lK5x4/Hc2FSd+c8JPcyU3cORjnpNsG5MH9zUIL319/phXLzHosgfXvPrQWozOIh9iw2Jf/L7N5qHDvBcz+84D61Ne2eEXm3DcAxhnRzyeHfzWpXWWDl/x8RBfPMj7/XK5bj2xBZMNOu45rly5sr7txx9rgF1+0lG6ZtK7ESoua4a/YkFyoNTfeXKq0EfqZLXl2LyJjS8KfHNg/sUE33g5DBNO9tWILoxskIWjz55cTT15ga0YJ0+/vQFTvoxNCg9f0YeF+MCmOWoNu57DROnkGxk2G4OjlGfYyDxai/JVLvDh7ISX/sydPMHOdrma8WVfne1iZGfnT/vk2EXZst/ck869ae3bA2T8q2I/AeebcdOPBXKDf/LTi/b77rtvfRlF3PaeNca2Wt6KX+zsWROu2/LqvhHf+nMukkXwFX06in4x5qbYrZco2foTr3Zjs4ZTXqdt7TDVk/iC4vtG+/6i/Vvf+tazv9EuF2yET5dP9bNDJl/IRPnSWH3jE6d+PH2yKF9X5/gn2+opb5wd578PO1/60peu8w2ve246ckCm/THzGB4Z64Ftc22dWAP2IRnj5tD+tQbIwcO3h52dyP2pwl4YdNiEW9GPxw5Ze8I4XBj2trairXQuikuc5NXsz2sHn1wz+G790uub7eRd211nxGE/8IUsW/iN2R9swccrJ/DpGFNcA+GTl3u4ZPNRm6/J05VHmHJMXg7oIr6gzkHj3bu49pkreHLrHIWlz77rnJjZYh+pzV9+sC8mOq0PNtlBcDw/u667dppPMfOXvHyqnWHmasZJhm3P3f1sjHHnNL444Ms14rt7Bb7QVVyzyYtTEbO+HPEze8bglC+1wo7aWHbEL+bixjdncsEmkh99dozD4Rcem3LgS02wxD9zR07+sk2eHj6iY9w6JqNkg6/y0r4xRjYMOPow+NragmuNkINBH355mRh8zxd8+0XJFzHTbw229tT2iPl0TYDDFh+M0YOBJx98TddYe4JtuSfT/Sb/ybCpRnDJqRFfYYodrljZa4zd1pP2JLpyjE/PWoNbPtlU4PGLbL4UD2xEnwxMeRJD5xE8Z4ozxz2vd1A+KPezYYjOZejSL9r9ZwoSxBHBlGyLBS+ajiRns3HYZpAAgSZHRrkeTfnrye7j4e+2Zr+2SWHLROyTvePWz7f66lM8NnZ+dqcuHqpujK7FZaN4IZl/+BWy+PLsJu8lL3nJ2lAW9pQht+PjWax0q/E6mM0/HQs4GeN48mXRmtvWSP6RwbeYLWoHOnxrSDzwYSN+WlM2Ekx6xtTFxbYxdhVYNpGLkhjV1pqLV2vWpoHbuAOfDlxEjk2F/3xz4TPOVvbU4lfY5n8vH/hn3HpX+OlTUw+BHnLhsg9TXd7oweGDdvnLJh5ZemHow0Da/NWnwy4deZFv+cCTWwefGNVk6NB1qBcTG+HCrr0axz/0zKULuAsBguPhQs7oyK0xBS6/6Cnw2STnotu8+aaOb7X1Qs/Nwete97plx7ca/vWvf621g+9TejbF6OdmfKPdRb4DHL58sceXbu6KEV9OrANt8h22/KKrNqZo70TG2lXYJYfU/FLKL1kER/yVxbz2p7zr7tj0+NsF2Dj85nb6p50vE58v9NhR12/N06vs+vrsm0f61s/01zhdmJPI4KnlyPqwF8i7OdCWe30+2aMK2XSNa7Od3zDpKNrT7pSZvmhbC/yEuevQi8KuP+typEZqc2Ft0UNhGcsffHJiMW/+xYYajz/WvW87Wk+ulx/+8IfXb4LSm77qX5b44Wb5C1/4wtr/+gpfJvE13/HJsG2e7K/mzlg+kRG32hy192fcs50uHvvZC884grdTti4aJ6PA69zRDo+9KbPb0J++zHYYu074zX8Yyd8oRnJwtO2z1mpj07ZYrDsPUR4SnWHlU+zOC1h4cCr8cib2IEQ2e+YYmRu6vnnsnNZ3o259wstHbft1nglks2Vs5pueNa/EV+vzn8986bzRnjHxzRj/vWjvhQC+ONjlJ+KTdeuM6z4iW+yRV8oRO/LJDzhk8Zxb7ifg8UcRo0KGPhyy7Ig5nxsjV14a4yM/xCymcqXNBwRXW4FFJhvZlwuF73jkYOYbf/nfS4zsOX+83IHpXsG11Tqyh/GcSR486DXv7lWsER8Myiub5ZBtufIyjz2yXqgr1pAHGDps+QDH/YFc0O8b7V2P8M2BWj7c0x0Oh7MrxxcQ7j3o4MuF+wO2+ci+awjdSc2bnCB9pK8Un3ZzX1x8UJDckgmPXWNkIzJyKM/mlwxMOZU7uvKGjCsoX9SzDy+M+DDwjLHPf+3w5IYNtXF5IiM3fC1OY+WCfraLj73GyYrDPhCLtvtf2Mb4M4txfWPhwGIjW+ruFVuX+ZDeUt7+GCPXOtcWF3v5hlccxrI95wpsuuUFdjFPs/HJK+4frcv2pnitX+sfln8J/rGPfeyWvGj33OdFu99oN8fmUuxsm2N5LFZ+aKutt3lN1jd/5KPiqa/mv1Ie5DXceFO++YQ1ae/DmfrZnnL7eNjx77nnnrP3ve99Z3fccceah346xjfanffykWy+hFHfXDaf8dT5o20c0YU3x9bAtbHJvyiO83TYsVd9k9032l3X5LozAmZnSXNinJ4x/uFbF/YSMiYP1olz2Dg5e8MatWf1rR928MmKk1570lhnfmuAbe1ihUWfDec8DHrarkvt63ycNR/g0GHfeWJ9sqHvhaix4nftsO/oOOvJoM58fP7DcR8gD2Jhk6zC3/D5TQbBdk+Uf2IUu/FiJifP7JQzmMb5aYyvCE5ybBq3F+XFtZccDNdXz89iYNOceMaVO/r5xwZ/2CMHT22cXWeRGg/JLd6Vax9ON5d8kSO+IPlkCw5M+Xf91vfln7///e8r1+S8lOeHMRjuv+hYU3SQeLz7ED8b4ikv5qI+PQVPLsQKG5HXZ8MY38mW89YIOXNGDy8ZNd1wio2c/Dkn5ImPiKx8kVNal+y1Xsi1HsSA6PMNsaXN3+zih6nNL3jmOqzm2Jg2DIVP+ooxOHT4jceGnDvT+cuXYi4usmKgZ468j7Jv9M1N+4RvKBx54iddmOLlU76z75yK2Ctnxdi+wEf85w/b8GFE2uwo+Q6nnOCRgdH6T18ejJcj9sxBWORa6+zHF4+4yNLnk9x4DreWnuu/LL/0i3bfvuMEJyW6ZLXYBY8EigSmmCSb3KcCXvw6YOhOuaXwX/jTpGRq7+NP3mync5m6GHfc8/hhs0tm2teWN5vqhz/84SoWx5Sho1hkFo8PR8ybDW0eGjNewUPVFqwyx813G4Msm8azrU3HhQMPloXcePgWNZkueh0aNroDANlAbLWeFvP4J5vZaqMUE/vwxemfSNkgLhz41ujTx98LdfDLhbzxwbjNFzZbbpBb5w5ivrBBhk9qG1J+tY2bEzmC66H1cDisb4mx7adQ/HNoNwtiy18YxtXIQQmHbVT+V+f4h23zX17yxzgcfFh8kAfj+A5CF0d8MgofUBh8Z7cxtmHlA7na5UL+7WW28MpD8zhzTJYvcMiSUfCuHM8G8yU2DxJetruwu1D7GQo30n6rzgO/B3t5d+MgJsRPh6Jvw5U7cRTDjIO8sYhM65RfYiGvXS7I8rtau/MruebFGL101XyqxGfXmrQeygm7+ZLP1rK8mh+EL6/ynowcwlPTxw+TTjb5Gl+bjppv9kS5aywcGPTK1dSjEz4ZRD/SNp6MesadbWtfjIpxRbu8assDfXYUumo2mo9pV3v60pi4GtvH9YtDnNr5nr7a2MxPuSn/yeIj/plLWHjskLWG4VjT2uyZC/Ie0P0nLDf7v53nQzVsPx3jN797+Cif/CkX5LT5gIrTfvUgoCRjnKy+gtTlTKzJmq85T9lbSrf4z+7P9I3dbFdfZP5GZKb+tIU/9bUbnzp7Ozm5b03Rm1jpyLVzy8twD4nOB3K7bDx169A54gGldYjvTHIdQuaMvJearpVo7k/yxUOWnnWer9lSo2TV1ob4Wl/G8cSrwPbSod8pxQu3ve/a3bWguI1Z314Ow+i6xO/WND6f4MFlt/MT336US2P4ML3Idf/gugQHxqRikz+22JUL8XVGwy4XbKJ4+gpsdsXWPYa++xU8eCjc+mT4JHb+4tPH12aHX8b5mD5Mc0vHOvB/orhvdN8gJjoezFx7XYPJ8dFc46mtPxhsGZtnhfPsyvEa34eKdNzviYe97h/Ebs7kWN74y36+i8UDvvtZ/vkWPhkxu364d2Bb25dQ+MXX5iVZ8uWePL6+Oaovv3ygnx9q4/H0k5troXUUZv6Toa9YG/hyDycdbXyF3/nOjrEwluFrf8Lnl+ukfFbk2P02O8bkRjH/CD5MusVgDstPNo01jqcUizZsmAosuavQI4PUYYl5xprPeNlPZylf+xMW39lQW3vqCh/af3gIZmuND9mAl17zYCw718yuCk/c5QJTbuU5fDbE0FxY9w8cf+PVvjqFOfHPaxeDNe6b3E899dRaM8VfzuBXYGnzVT74Jz7EN7pR+LOPR2eONXczjtkmW4GV7qzzybi2ks6sd9tiTIfcO97xjnV/5KdR9ed/huqc6jzMBl1yUXz1Ttme8tqzT2fXbbzauPYup89GRMa6csa55rn38/ISz5ylb53Lg745Vcig1gB567F9zI59aT8g10my9Ohbr85h1zs8cnS6R+QH/2A4t8lYO3ThWP9sdQbgweKjtphgkINLruc/tvjDPhkEl0x7jIxn584t4+Tdt8Du2QU2m613NTuuX/hda/ITjmJcER85fsBlVy7FKm568oAnZ/xubsgYV8OQDxjkleJiT9+ZzH/zyW85dV/tubczVL48FzfnMMixk79ibA7g0HHO8C9f+M4nc8ImeRiwYLsHhEM+/8Rm/p03/PEexHsRH4y/+MUvXh/Gmw/P3XCccXDJyrm2D9R7OU9G3HLKjvyYD3JyKFetWXHyDxkXl/HeG4kFBlsK7GTik2EPH75aQfh02LB2jIuXTmtCO1k1O2T5L1fF0fw332TlXizmQptd9hS4dFD22YTJL/Ji1s7P5qWY6MKiA5sdbXh0xAIH4WfbOFv6/De/arl1f+fei61iVxu31ujyq5hg4JMxL+WY/XKTj3xA9FGxWSf5vAau/YFVwaLPjhKWNnx55xPMiEw5zef8I4/oy53Y8fgMrzGxuX8k5wtv/kXazf5faZd+0e63ajgjCI6oW9jqmQQOl1Bjbo79E2j/Mefz9NwyYFF87WtfW/+pXTd4EFtsFoe2Q/VwOKxPRR0ScxNN+Ram+YxvEcKJyCh4yuyzRd7m7qKApx9Gvlnw+Eo22OWfNQU3P8labzaLDdHm07c52jz5zBZd+fHPlF/96lc/+008B6WLhotZF0225M/DW/7DdODAgOcwoMtHfXVtsnjGXYTo8NOn0C6QvhUG102xb1y7WSCDx39FHsQjTp+ieYgXAxklYoeMujE5nb6Q5VO5qm8d9EKcDrsOJ3KonJsDB182yjGZ5k9tXNHmSzy+iC8M+h3602dxmAMHPb5ceZmC78LtZsPDxoAq+wAAQABJREFUtnEfWrhxcPOj37eE5Gz6xCZMNmEiuSBXn8/Fqi4ONZlkd/kpp83P1ig70w99Y0prhbzSXJFhy3pXyh+eeVFbF9p84St9RFaMXdzSVcv1nPtiXIrHP3wnh4wVp7a555+2Qq58aJcfttMnV2zxytUS2v4Ymzra5giGm7bWjtq+az2Smzy+KM3FxGSyGLXJkCWjjWZ7yoa7hI5/GuMfnQhOa4uMQrczTRuv/NGzPiv66ahhmzcvtrw01FZ8yPSWt7xlfdBEJ/+1b4bYevLJJ9d1w01EceUD/PzSNl5frW9feuGIyFSMR9pit1bkST7Cs8bCnRjNCbn4ali7DdhwjVWSqW4u9cnsNO2dGk/+PH3jxqLz5GAbm7LpqKftMCavdvrVYeiLRa49BLn+poNfnHIevtwgeXSOeABT6yPr1DUNOcf0PRQ5X5C92F6d/rDVOcKHSvb0m5fquY8W+PFP/vPZddxLVdeHHsTokjHOJgxj9ow+f11LXW+LWxx8rm8dklPDEwecMFwvvfCIyLouuT71QbwxuvI2fbK3nOtdB8yN3JXfdPSLlWxzpe78b50XIxxtRdu8iT1ybvaiuvEwxCgOvsmFPl+Mq+XGPMu5h2kf3PCRnAcxP1shfhj8dWbjs4nwyGZHnhRryT2WwicP7dYJbLlRlz+yCgyELxfy5HoIwzfu3ROYH7lS+OLb8Hxj04f17hfERLfcwtVGcw1py0Nj5KwNMan1Z2kd4ckl4it9MXXtnnNsrMKeXJCDxXb21TDgKVG6+tpsG0+PnwrcirVhjbAjr3LjHrOY4GiHB7v5gJ9NbT4jNbth4BmXezbKmfHacNLXRs1//oebHEy09+VLoa9G9m1y+vhsK+FmD27YZCMxJaOml1xtfZjw45FVjFmrzmD33OZQ2z7yctzLqPCyeaM1W8gzjH/C3ot2OS+3ZJovsvKKxCU/bBvnK710yeRXc0NHmWPFS1bJpymzFI5/5pj2LLv89D+55mLv0yXPvt/M9e1+P41Kbr5od/6bC3Lki2v6TucU4c/484FsOnBQePXxpnx9NZl819/JmOuO58fD4bDWjrWWHp/sZfj2VvvLWqSbXfNrv5Nt3uf12rqUG+sDtrOCXfee+u2ZnsGcIfjtb7baA+z0YhrPtYWf1j+/6PFBPO4zjMHxHO5aYp74A0NB+Y/PR7h8cT33bM4Gu3ye9zuw6cgDHdfheGrP48adf4qzSg5di1zDOsd7AeysJA+LvHE4bCt802dPTpoPMdMj05zgkZET8YnVtUzdPLAnJ91D4cuZ/JsvtmDI37yGs2Wuycu1fzlGtuuoHMOEASsc8uZJvHz34ZSc8dm1lb73Fp6re1544QtfuL744z/rhetf1sjNleMH6daRXHVtN1/0xYXPBiy+y4H11nzzm39iQeajXJHlt/lWywHf2IGrX561FfmmJ9ZyD5ccIsMfuWTbOiLHLv/ITf3WvjVAjwweGXr85h89bX6afznBa87oFmP26SNy9OQBGefPXJvsKcUoPjZgaqPWptywC6e8GKffXBmnaz+aT7JI7uXXfZX7qGIlq/CZjKJdvujSK0/Fhp9/akUO+Uh3kj4b1idfUbaKhYwiVvMXsZdvYk4GTnw89vXpalvDYkzHGFvy5EW7f5Hmg11k7DJ0Uy/aJbBNw7FKC346UDKMuTn2H5W87GUvW4fClHu+feMZMMk2xMMPP3z20EMPrYXSYoQi58ji8S20Xvha1G02c6i0sMyPcRsavkXdhoMF08KHqU0GVosfz6Yg0wUhXhuRj/QVbYVM+I3zCRYcNd9sJi+hyHQo2gD5ESbdXth5SXX16tX10OhiwlY5ULtwu2iz4wbYOHyYvnHlsGDfwScG2Gr+OORhlMPw8Pnn5bD8GEce0L2ccmDxVZ7KVXkl72JmDsicR+Q7WPljntTlUgxk6qvJi7Mc89FFwUXeuJgVsfEjXX4oeOWaLSVea4gcG/nEf/lDcDsg9eni0cXvYGZXDuQxX/Mlu+p4sKLi1p/j/Nbnn7zwSX/6Q2fXJ4OHZuzm1HzPXGVjCR//tC7KET68MOHSae7SM84/xZo3R4r5yhcy5To9tXE61it9tuWquNX64ZR/fPLmIH/U2SGf3+WP7+auHOQH/JlX2OHD4FPrBQZ9+OwbR/Fd+BR7Jnva3QzQUdhUEDyysBRtVOzJTR+XwPEP+fYIXrLa/KYTHh6/Z2602UGwTsVtXSvGpz5c8ubZme2bml6aHg6Hs9e//vXrp7/gTvv6lyV2vWj/8pe/vPZZ+mITL/zmQlvc/NQ27hxxZvr5JoQ/S3jslIP9LIIzcytushMvX/D4wEZEvlynp979wJvj6avJwlVQsrt8Mo1PWe18y3b6xqbP+ufRKR08cV5E2cxH8+bBTd8eg6FG+z7Rh692XnjQ8qAmr/TyXdtZ5mzA04ePZ83oz/VhzHzHY1ubndrGO0fst+RhRbA7Wzw0+oKHmo+9xHLtIuPh0EMCnB6W6LsPcM3lNzsKv+lU7EWxdZ7LCTlxwHcdh931qW90k+dva7GY9LPdHGTf2Vy8M2Y66bFLnn/NBTw8MvZf1345hWfuejFA3xnpRTYM54l7H/r2FCylc0h7kj5536b0H5B74cMGvn0vn/Ihfna0Xa/Zkts//elP63zmO17xsNH85oex+GKRE8TXSa0x8TfHPnRxRronhGMN89FLSL55mO/DBnjK9KV8qPnKp/zhd+cP2/j6Cmo9Gwu7uRYHP9TmKVk5VLILUyzmp/wWJzvG8Om3PtimR671Au8UZRdOhY7Y3F+2funiWd/G6cEXA1vwtZExMeWPPhz6dKJ08LTlZpfLP+Nypc+OvnIRGbd+4coRf9B5evxQ2EDsaNefvhvX5xPcfcw4O62RU+NwzauXes4QL5P8pNfb3va2tZ/O8xP2RZSt/UW7XMBk11xbP+YOma/Wor1Czhie87FnJbLGWudsKXJAXolHTonyq/4cTy6sZOunoz/H8FtntVsn5PhjHuX03nvvPZvfaJ//GWp7sBhgaedXmK0h4yjbbCX7zMi//xZn9b9H/n0/AQeGmhzbchymfkROTK45/iX2leOLS9cMe9OeNd65QD8ctfXYmjRmLdgb1p7znB3YCiKLwpMHhU4+wvUhqvtt7Z3IseXsZcO1N1/ylR02PcOYo8PhsPYGW87np4//wrwPw+GThWHfON9hksV3ppN3De78ym950kadd/nfOxCxacPygax95PmCj7Bdv/hNzn0Gcm8hl7Bc75w55ZYs3XIpF3Kir80fvuzUWDG6lskPPGNs9dIPD8Hp/gGPjDgUOtZX9pK1bvhsXL74BsOeIEOe3V7ki819gzOBDfcA5OUKjlyovSvxZVn/3wSeF+3mBB7scsVvmPKaXb5Yy2TwrE/t7suKlX3rbs4Jeecq35sz9x4wyYuvawI/8BQ5YhMWW+SqjcmNdWbOYc0PAspTWPwjw37rgS0868Y+MBfWiHzgwTDOB7ktflgRGXqK/ZQOGwodNlt7cPkuliibfGWbTbG5PpBrXA3fPSOSMzrk1cYUuu75nAH8Jtc6g4Hywwcp8ovYbj7LM9+V6e8SvuBP+ZNfdvk3cfjKvrGIX0q84iFXPlozYoz4KU9qcsg4HOvCr7D8V/8z1PmNdo4pTbiJ0RZcpK1IkJv2j370o+ub7TY4WTTl06tu8gs+2foX6U+Z5JqA+tnZ6+yolemHdiW58JLVz351Mmo0+c9wrv+X/xaDxeL3qB999NF1YO1xwbbgHJZu8hxQdOgi82G+bB6y+B0E9c2PxW5zKBZeCzsZehWxk3FQJFc+yJcrvrYhJo8uPlvJ4Ok7ZB1i/IHvkMAzxj4cOtajixSeb2X5psPheHHvm+XiFZeLkAu9CwtfybAFx7gHSjLs2Wjs0FXkzkHSIYan7UCiyz/20uFL3wQjh8TJbocqHnlzwC4dOZtUDumJvdzwp7j4q8BHcqJPh3zj+vagi72YYSuw+BFPjfLFmBiVdOLxOXvlke4cD4d+uSTrouoC51Dtpoe/2Zg1THbgTptiw89ncoguXjlIl37rUNzk6qtP4dBp/tXlCzZ9cSHrQ3z8Q7AUuNNH8jD5roahjawNN0HmCD6C0RzCkiOU//a5eSVDFma2yZULbWNz3NpUiin8cgHTuoMHR2zk7Tk4fKErbjLFWTuc5p1+8cImj/DguHgr1gMeO/aHPgwEU0HwZs7hhck/bThyDh/RpVce+CEOfLxKesnpkyFLJx+KlS08fcQGm/JlbdCBYby1Q87698FoxTXzta997fp2qXE6z4XY6xvtcplfasTvfMNTiglfcXPtxtp8GJ8+zTYsRY7UCFa4xY9XwZPj9hEd/XDV8qpMTPrG0m8sm/Xn/GkrUT5Uh6fGi2Z7yhjXR8nUX8wTf5JrKHn8SmPq5KddbXzryHlhD1hn5sqak2/xt0b1yx8ZDxnOmM6NmRe41qu1AoMtc6PAIVtujeHxA35+abODjFnj1oSir0aw6OB1faXrA3M3ul60u+7z072AWnzWo2s5G12rrU33O84P+TDmbCQPW2FP7UGmeyNy/DHGhgdz2OKHad33bWy5EXs65YEuWXZnTOJOtribT7XYZ5HLciw/clHuyqlrhLkTNyLv/sH1lG3j8qRdMXdkFDx+sy83xsTtSzFetB+u3Rfhe+gS/3zRLhfOY+Ni9v8/sM1P8ZcD/harGNktPn63FrQR2eTV9PlJzno1Lz6I7OUhHh/++c9/rjjMqRc4YmSPfrl9xsIz12g6cI2j8p1v/ET5W77MXwRX7hqD1/ziyYV5cO0Mly4564Gsdv5pk6WHYMgBvnrKGYOJF5UvMSnlVpuf1rLzgZwSL3/gyAtcFDb9GTd5+4ccnEn5rCbDprVADl5xqxEePPJKNidmbWOt1ZkTPhdT9vX5TU5BdOMb055EDl85j8RS3Pk+seTcSyTPAdaotfrWt771lrxo95NI8xvt1jiSSz40b/rOPDz++BAWz7hiv9q7npeQOPDlDpXb5kOeyCjRnrs5lqy6nNJLp/mYWMbmeDJiKD7j/DSPp77R7kX7448/vq4L9hFdMbQm6PIJTpjZmb7Qwy8fjamLc8Y4x2HTDbeY8iO9iU3GurpyfMH+qle9aq0fmObJHmrdigmFJR5rvzXJZnFZg+4JyLZn6Gqjzinrg46aH/DY9dMfzvj8X0rHP+WUbWvMNcMZnC/kYIkTlvPvzjvvXLE1J64nXnb70kZnAzt0XOd9o9q1jS2+eNnnC2vOdeeXmIyxw4d8V4tFjHy397wDwdNG9pBrhXsH2K7/arZhioc8fQSra0l5mjmlI85yLB5+uPbKCWot6ZM3L/xxLRNvscPtviWeeXI9YDseHIXPsGGq2eW/a2Av7MVGz30CnGT1+cE+MidyAqcX7XIFSy7U7sO8V7FOzYOfxDUv5Y5P2ZMHa5f/5oj/dPD46XzEI+caIXa2Yc2Xu2StIWuM//SNu9eI6Mh/ORAvbJjmrj1Ejo/4aratSfjGktWGIVflS58eO3JRHHyAYb2yT57P4uYDLPGZj+K0XoqXHB34MOjyTa7EaX1mix3j6bMNhx18VE2fPVh45oB/7Jh7drXlAJ42fHy67n37VyfNqfwbR2TlwroRI2zEV5jsGteHv1PyOx8WG/DZ04elwFHTtR6aYxj8VyIyxmFp86nzLN/5B9MYOwqip9jD/9dftHPSJHPOhHJ2UkELxIa+7bbb1gVf4PSi5OqrC3hvJ2tcu5Ju4xJb29guFy+96uvpsHvK96lHJv+rw9efsvGrG5tyYRjTlmefJPYf4qQDIxkb1yfjbvRskg5vvps3GOYleTLmELGh2JzkLWxyFp68Nl5tHBkzt8nh0Zs6yc350eavguBmT58fNkb42uyQa9yGwGsN+kTcB0MuZg6v6RcZh7R4HT5k2FDkxD/LdMDxh16HRTlzcDiIHMqNuUDJA98c2trG4DmI2NNHxUtWnK0nsukUG/nyQa8DQJsNOvTDZLsbFLz45VcfhgPMQdX8GGcnu+SMRWHhTbn840t+kG3dqKe8Nl6Hr5y7kJgLPrmAWYthpB8+e3wwFwq8fMsOHYVchYw2goXKib5iPLlk018Kxz9wyZonJb365OYc8ilc9lC+0TVuPvAQ+3hy4WJoPtODYz1as10o6bBHH057o5xkWx3BR3Dx9eU8HH1j8NSw1OYqYs9cWX/I+MwB3rSprbTGycajmx22yXgIbF3gWS/2Gx7dcOjB4Y98llP2+Y2MlVdrhj6iC7sCJ1+M01OMw9VGU64845NrDF87Pl0xsD3n23wisubcea14MPaS8U1vetO6sQ1nCd/kHzZOvWjnW37zTRx4irZY8MnIv/PM9aQ8nucbveaHDP1w6+NVwmFTQeRR/fJKB0+Nl068pXTtj3EUhnaxaUf5EUaY6SdX3fjENQYHxc/X+saS0d4pP/DTOa8Whxzbm85zc2KNmy97pPy1d/EQG/ScJa4XHracHewYsy7V7Ttj5Onb985rY+Ev0OMfMs0HWW2+ID4o2a6/Bo9/6PKlNajvOu5Dcw9+xlzn1c4/sfainR1nZfPKRx9+O9eQcXnRVyP6ruPOGnGzy6Z2Z6zrdg9fbJEVtxgQXEWfXmfQzL19DQ++mKcdGHTnPOIhePgKG+aEfjbhmjfzToZt8XUfJx8euicW342LG8FC+S238u1ba4fDYeUDtodEubD/5cP+9+IdTz7pe2liTDzJybGcRrCKi44+yg/tYiEHqzE41qFnCS+RrAUy8gDLQyFdMfJLLvTpwYClTBv05JScnKgrxlA6bKGw9BUx0sFXml/62nzmI9nk+IRnjujAsGbIN8/L2PEP+8WQb+QQzOIK3xhMpC0++vCzA4cenri10+F3dmAiYzD0s0OmcTUZJX+MWxvmg50w1Ihf/DFPEzvMJXTtD0xkjH/wausr4eIXT7xykA4suQlXH+V7bfJRY2zF3+3gs2VfWp/WqQ/MvRy/FT8d40s7fi7FMwo7ctycFptaPq2jct65Wu7U86wQ45xPccGJV58cPsI7j8gkR6Z5oKPop38RL11z1Xy1ju++++71G+1e/CG/B/3Nb37z7LHHHvuPF+3GxMGOuBVtOcovMiif8ZXiN5a/Uy756uTIFqN24+oK7InFL1+y8J6kvdHeMcfknRn8hqngyYdCP/tsmHNFe8YBC48NBZ4adtd9+9aLNue4cSQecs0D+65r1rma/YltHA591xM/oeS8szesPR/a9qU2/a4dznfXfS9i+SMHruXkPZdnoxxUFyc/ybhP9cLey2w810JY9tDTx2/Hw+Kz3CE48iQWPrvWF5M44OOLPz11eq1LNb/lBbGtpKNtzD2+GLOHD8u9SzGqYZkb48XIT3j6+M2RWn5d481dPpFhBw6iT5YfCrvm24tIsr5pz64cyplc8Qvfz0AfjvcG+uaPTPnhk7mcfuUfG8bEJIedSfr4rW0+s8fH1qh1o7iWsmVu3JOwh9iDAbdc4ZPlpzG45U1NRyFfXrrX4zNSy4PcqfWLER49WMasLzHKK7/J6rPBD4WscRjaxiPteZ/dHPKfrtjaf/mef+pJckpPPGzxT/7YRvwuHrJkYIiTDXPuHsp9Hj/YJ5NdNXLvQI7v/Cs2sooYK+nqz/EFtP2BxT91+myEqW2cvXzhv2IsW2DzC08sdJq39occGKdbjtkl50X7gw8+uD7YhZc97Ruh5/TTMRzjlMIhAZgc7elIzqslKZoyeHAQ/j62Bq79SU63pMZTx5sLHR/m7lt6sIzrTx7+eZSPuw5+ZdfF50M+7uP62Sc721MWH4ayEz1kcfltU4vRAepQsunMWxsrWXja2YRLv766Qyp72VdPfXNMHqnhKGhihE3fwocRjholUx9vziG+eXaA+NTaRVWbngOrl1Ydki5sLirsyQUi72KHp41+/etfr4sHnngc0tY2/2E7dOiXTzLa6vLhAKKDyjd/ixWOIh56jdHH36k80UdTT6ziwnPxckMjZgQbH5VHWOZE7soheTx9RTtbdMk6dJRiwEf6MDu02KOvFkt2yRabHJInp1bIlbfkYJCVS3nUV8xJF8/48PNBXc7wYWRT/xSxSQ8+X4or2fDU2STvpoB/co3yPT1YCr38b2zWp/T4kB8w7Gc3UtY6Ph3FWHPdBUpuzVv98PPHGBl8/sMjq89PNO3na7bc7NC3/timp65kL36YcidvqNr6K05y5tae4lf2rA0vu4zDcKbBrsAzVh6m/cboWQdk4MoBSkcbf1I4yYi5uQyHDrliLG/4Ch2yxRu+MbLG+SIPai8SvVx873vfe3bXXXct8fxI97I1W/OnY+DhRdpzjRdLOTUud/LuBtsc4cGZvs122OrdFh57+EptNQqHfe1s1SeTrjZKp/oZ7jN/yUanxudYstnNt2mb/MRJZ/LjkZuy2TpV01GmLW1lYmvj8a290zj9aS886y9f8FprzhQFjjO+hy/7T9G3z+l7odk3nKxpJR/Yz7Z7QmRt48Unzwe22Fcrrr8e5FynrX8yfHI983Dn2ualsjJftHsIlwdYyLizot/sZq/zpL1PDr6xU3sSD0YPac6N/KaLmpNiUXe+iFXcyJ7mk/zFS5ec2GGLv7jNAdmucXDE53wmj+jSUbLNPoKPL5flX0zO1B6czBm7cOBq89O91O23375e+pRT+Aqibw34T97lXp74BIcMnz18uy7KNx5shQ98Q9kng0/fmD4/6cXDr59u9qrpkdMPO73yhq90vRELebrONWsdiSdd8vTVxaJGajmHIc/aeI2ToQevHIVnPSutGTmIyMBT6OmzgWBrm5uKfr4kWy6MNU4e3lwnYg8zfP3mbB+DO31dTh3/wLZusx8/fXa7V7BmyJln9xEwI/IXEdv8V/N9+jJtwUd4/GKbD+TFhuRlEj+MnfIBnvmYVD8dePLAltr55VugD9yi/wz16eMLwvvvv3+9aO9c8UJNkQt+iKF8NvfWb7GKLX/L0YxJe8qUi/TD3nUaj69PN318vPKo1o83fZk69MybfJJt/vwrAT8dc8cdd6xxP13lG+1PPPHEuk+ca5Eeott6wctOflYbS0e8+NO/BXb8M/XjVZPndzhhG68dttpaMqeuAYif1rlSzumJq/OMHJ75bE+UH2e5EvaptZp/2e46Rcd6gsl/fXb5RtZc8ME1hs94fGBb3GTp2ed4ftPbz+K4jzgcDuvcM27/W7uuJz6oxXMPYM94frd/6PtmdS++mwc+Oa/ZKHZYMPjiG/n04dAh7/nBN+nZE18xiVs8xUwflUs51kbwkX5zI4/xyg9suWndwlToG8sm38g4MxS2+ApbfpobctMme/myjF/r47kGy03z2zgsBIeMPpvseU/kpSk7CuILkhd5hi0m805HPPiu9a3D5ty1zf0HuTlP5LILjy9kzJO88MsLXj6UP3OjyBObOx5992piscbo8sN64BtMdvJRTaZ1XF7Ik4VjXP60rSNFO6IjD+ZJ2wdEdNJrLfEtWfuHTvNmjJ9iQrDykd/uT/AQHQU+PG3+ecEPh9901fZK9190y5146ZDLB208Y43LlRy3XsnCdY8kR3T4xo66GM0f/8IOU7/8q+lY28XNR5Qe/Pp45XSOw2E3ao2QNSZvM3fNJR/zi1zzxBcYnXHiRZ49PvShD61/laafb9o3Qpd+0e7BX/I5L0COK0i/myb9EjITUfs8R+NXw5kUpkSWeDUyNksyeOGpK8nW3zEW6PYnnI29uvvYeX18tlEy1Xj7GF5Erhzmv376akXsFpKDHFkwFhHZvaQLr7n837zd+YpmV9nG4ToQhajgCCoogij4h4jRRBQTJ4zE4EDieBoOCHoSnoxGQQ3GMRFRT+N7r93169xuqjrdnfZ7YL1rrWe4n2GtvfZ+d1VXG1fXfLMLI14xNF//ZPRXB8bOV59vPvE6RFwE5mz0UTmYs3HhOLwcgnTju2jw4cEnxzNPB795vRu+mpnzhfLP39rwd64NntzLv7zZhYUXJh5f8mVjXB5kfDa3rnKQs97h3wsI9nxY9/WVPR4bcnUxRmFuTMbsstWzj3cYXn/gIfmIX7+8YseHK071dcDRw9cQHnl+smEHu54uXA0v+9WvnuTOLDc0fvHpafh7QwmfTL56ftmYd0DTQ2QeTsRNVzx68dO1llsLdhoe3xqb4oATNh32/GooXA8g9Phnj7KzN9pD6ReHuevAzQRm8fJfzrCqdbkUgx4GfS/b+LL/ULGGybYY6cNE+BrKr72oXsVkTbTqThdWOZJ5GINDp3tPD3kbP9t8sqej52v5xSd+Oep3TJednm4+4JdzY9hyghMvm4Nx+qCnqafe9el+++1vf/uhb/AnF0eM+6K9uPgrV3FrSLybKz5d15B/etsLknKnGzXWk6P00slvPbkxP6ur5hpeNQ8/LDKUP/MwzrrpHQanD7o3YaSWbOdrE1+PfxOlv/J46a8MT12qkzl5dalm+BF5Z4DrA9E3zlc1sufsN2dCflyL5O3ZzjJzD9r7BSCf+vYIH3wVI9l5PfKv59e55DdA3dPExJffbHvL5Z8p68nDhecM8GXCOcSPfPlka+58oIPgw3PekIkTnrz1YmBL31jfl65s+K4+elTs8WH7IZS5c1EvruqXHl7ng1i6J4vFXKzOKeca//TpkGtydA9A4kZ8a2ISK5/lR59veflCChvxRS8sczZ+C5A/MfqyvF8y+bP+6u7LuTF//Ukp/p0N7ov7ZY+/1o+OmODyKW5x7DkuXiR/PtWEvXnPCeTsEFs4iF71MIfVWqmfL/Vy8wMBpC69aGdLt5atOPFQsTROt+ca8vTJjK1h9ny0hsVZ7GGz0dZ/PDrit0ZeLMDDg6E2aoSXrTjN2YuBnnjU1VqpYfGxMdbos6PXM465lj947SG1LV88MUbxYak3P+1xOq0rWTXAP9cn32xhkevxI77LCU8u5mLgF7Eph4Nx+Si39PSRWsBYG74RvXThd71ZG/8yzW/E+ZNMG2O499OH7YWj3+T+wx/+cKy966caWh9Elx+x6c3FZC3UAZU7mXxQPoyzj28OQ79rk43+ppZ9tnTEYL629Jb4iRqrP8r/xz/+8asnn3zy+A1w964XX3zx6pe//OXRu5at1daA7c4b4xeLMTIXY2M9/Z3TKbZDcP0Rj30xs62lKw+tvdt+zUavVvnVW+uNjY9q6fpJFw8eDHxrr7FtD/Btz+DRde3qzcXETqNXLGHkk658F8M93MtyPATTeese47owdn9xX3GvkZNz2J+FgeuXiN5yued7Me98c67/7ne/O+4vPXNWN/G3l/Xdi4z9Bjw8PosTlpftvSyUMx9qUrxkYhJ3ecpDnq0tXbU219NTG77M2br2PQN0FoSvp9860zempx7iYY/kAVecdOSdP/phHMrzwY4eX1pxbvzGxaFXF9eNsfzV1rj9Yi84m8NmLx666l4e9OlUW/dEOlrxC1Xs1SQ/8oZjP9CVOzzyGjl8rfzimdPT89cvStBF+dHzpdbykBsb+cuFrHpXB/XWkJislZfrfIvTC289gmevsYWvFvYCHT75KubD4PoDD8ldHHpxwBWzMd96cwTfusgXseGfb3jk/Gls8FxH9BBdOubqVAx8iFtTD3g9+4fFr+c8NnDErEfiZFe8fOTfnug+fyhfPsg0euIQTzZwxNGexxeDnm+xNtaLtX1XPjBckxoseupgj9DnD451dVaJW+//I3juueeunnjiiSNUdg9CD/yi3T8p7ULjrAIqjrGFtlEVqWD0jRUmitdcH68+mXkLi8efgmjGZGE33j687dNf3mLlk790zmPzaHXwbpvnl44NcNbDR/SSZ0O3zWes0UmPHR596xEGeXO87MJiVz2NUT7vzO580l+blRnDRbDY043yq6/RX5ti1ON3ANBfIoMtL0Tf2qEOVGN2ZCvHE5+LbuPMB1wXHmxyuFpjWB0+e9GLCYa26yEOhN/+opvO8ru2xIaP6GaH58Dl32GgeSjxYIMfpliNNVT+ejYO+15mkMNlU+34VPti4z89vBo9bek8T8aGTH07BOWLV37i7eyIlx29cspGPt341o8xHTc6efAJ1/nkRuAAhkWHnB45X6i9ZV5M5GpU/Q/Fywe+B5TqFV/8dK1lufAXNp46aPyISWxiLBb+2Ld+YdPXYGlwI3x+18YYTvvKjd6/4qArPxh8hrPY5GIVSzjm8vUwpP72HxtjvunSQbDlCN+4upOxwccLX6/Bz8acrmYM297xEkfM8Hvh1k2zvMjZIWNtH2DoodUv3/zJO2IvtuKjGy4dYzw2ez6QyUcrHryl/LF3nfpJ+gsvvHD8p1/0YL8Rgr8v2sMTa3WtJ2u99Fp7UQ79k1H1rgbnGMPffPE0PHbbNxbP2rQ2eO2Je9UhnHTWZzEWWzr1qwtHS7eeLj5Kf2WH4Pojefp6+bTvFiNeNmT0NeuiLtVsaxJ2WNnQRdYOsbFvz/pw3VO8rCDjX9+6stu5M8o1Bzcf5e/6x8unfvf85nYEdf3Bhm0vdOXL72OPPXb8yQXnlf0n/q5x57YHZQ/6cOXBlx45U/PNNt9yge8c7MsP/84UuZGz9aJeL4fyY9daVBNzBEPM/mYpni9hqOuGHOmdDZ0P5PJzzafL734JwFcbD/70NF8Y1MN5VgziFJeeH3Z0rW/1oa928mJHBis7vb1A35r40xf9a0Hxw2YLx2+069XZn27wRYyd/eG+2A+hqxV7umKTi5cu/JOLVc6+Q1iL4ums5VOD3R4Uv6bueGLT+MAzhoOM6Vr3fnDjtx7xYfaDGXbi2xYOnvyKBX/JuhVbOfPJRmPPthrIGW2s5HDpsy1+tvQ1cmsjF2tHBkOztudnq+LfWGGLw/VkL8KFg28MP1/W4LwmxUmfvXXUi5eteWtbncjECA+veomr60/9yOEj+sb68iSXJwztvN7FrobI3BiGeOGwWbtipC9OjZ7WWD2KDc8Y0YGL8OmZWxu/nes/U3sUL9r9gPszn/nM8beR+XAm2LtqJxc+i2NzE5PrzfrIU9zk1a645YGnTvryPhK7fOC17tnQabz1OvPYis06sFk7Mg01Ps/TD/exy73BDzG81FULZ5E/p+qHf/YV/XI8gE8f5xzD17fmxvFXf/nFGXzxw2j/qVl7OH2xafiIbvWHb62sWUTP+Zo+vnpWc3zY+YVhjg/LNYDXNalGriFEru3esafaVzDJNBgobHvJGK77qT9/Y12KBb97m3VyTfhXU/6lmvPf/vVDW98n2HjB7s8s9SLe/cVzqx8yuafQ38ZGU0v5WCfjXgBWBz07eM4YJGexVXc9H3Twd69u3vxFxmSw5Kbe8lQLzwDWEC4dzVhDdNXP3Prw6fsULESfvab2rbG4qmn7sjjIjLX1014rhs2Nnvuu+y+571PWnk56fKtb9xfxiZ0ePrkYrbeY2KlD9aYnJrJi5ktjh8RB5loWL/vdc3TJ+dInw0fh8sOvWNufdIup3hrx41rg29qrAV3NfjGHwaZrSG+t7V++za21nm/6+RdT37mtrXVDcuAbbuvEthzVK2w1pSMmNckGdmsih60vH+zx+NIQn9aafvWqBuplzBefcvQsKC85eVbgD66cYForROaHW2rGZzVma8xG45MPesZ4SG78wuSLDnmx8Oc6kD8b+uT0jfVstM42a2BOn513X9YcDlvPfFsLOK49Ocvf/dV9+9lnn7361Kc+dcQptwehh37RLiHUwutbCDcCi5WOoM6BSRqvAq/8Jn2+6PKDFEMzx99GvnPj2zDprm/zMONnT4bi35nd+YxXf7ZZO7Lm9LO5g/TaJz0bQUM7z05PXv+a9R19mzvZuV7Wh60edjVdjPOYrgbzXrQ50jNXV3bZbp3x+BdvF6TYXGy30cYCK3wXVVReMOHD1PBddBpiQy4O4w4AmGzDp8PGXncRuiDxImO6xVAdkuvJ44sl7PyKYW+ydGvwyTQxOLA9ZDq8iwOeMRwNlYOeTS/a5aCO1eRQvnxUB37LqZj15UDvJvtwzj19vtTX2urZ8wEXjxyZ59Mcn72Gr2fnwExv5fQdsmHy0+GrV2/6+G6k5uEYr9yYnrzVvfURF3wH9drjw1Lvam/OXlywEBv2ZGJyA+uBhVx+9lsYeFH1gAUHVZvs9HjFbb3N7QEPCPjZ40fiwdfw4dDVxKPn00OJuZsRntpo9DUkztYZFrt88dOYrnm21UkM+Fo6fKmbGzt7Y/cdD+vWPH98VafD+PJh3sPE+odTvvC3qX+UPz7pk+GtH7adE/IhDz8f4Z17tuLyUPHe9773eNHun0gjGG+E4Pai3Z4Xi7jbY2It7+IlT0+udKqhf37ry5F5dL8xiuWmxj8fZEgPPx/WVDz3omqYzjkm8zMvXf3KiiP5WRbW8tMNK1lYcom39o2zS1+v9prcksOxdvpq0vq1Tq0dG3rqd8ag62xwLpx9iqlrtnVxRnVt0S8fuHDwyOuN2cKiW/x6Ohq5c9W+F4dcxf7YY3detPsSQ+7a9iXQNaw5Azwsw60W8Mzp8onEhpevYnV2wTanLzfkS05fNosZn55Yq4VerHDJxOw3u/E90Juridjp5N85KV56xr1oD9f5IhbXqVjoum+rjaZOvgTRcfaR8x/Jmy98+mIglws89xv50nEPhWWcHZ5Y2Pdn+Xz5SA6Hb1+srIN4X3rppeNeyM6ae9GhkSH46qHR4UNOerFp1lM+YuSLn2yM4Yq7e7j48Plgg+ib4y/B40M9PDdZE79FSQ/m+qUnRs0YsUfWm43GF6p2xSEW8nDYiLUadE2IAZnDoteYrcYGhQVHXPrWzh4K23qoDzw2S+VAV+OLLqzu3fjiqLGhp/Err2qdLlu56Nnp7Tk9HQSnVu3soda6dTVXR/7Sk0v1LObsYKcHX87VqPyLhS0SU7GEbb7EVpMzfeNdH7rhpYtHl3+6zhe/oOYH5v6F2tkH/fuhauhFu9/i/tOf/nTg28tiUK/2D7/08cuNj84hMZCpWXrG+PLQ75yOFj9Z/Ho+qgMe0uOpIWq8Nofg8gFfQztef2Rh4pefMWy55yt5mGyXyFF4yZrDY6tHfKGN3Rjlo7j1ZOJBxaJPB17x022f0TfvGmpOt5d+MKpl8eEhc/svfLhdl3DtA+Ta0/LVNWMuTudC5whsONr648NeImfvnteL9nJ1LjinyDX3Lj/odF/xMt3edQ/3fQKe77Newvei3T3Bv1bwL83pOSdc+3q+xYuMxcuvse9l4iofOnx1PpKpi9j08sLre4T7HR57rTGdGszkcFzvqDzd39Q7W311ZFf98Ni4nvulAnnQYa/Rqabh21+tMxl8cRhrbMSaHzy0MRyMy4f7n+9PfNpn6qsu5jDUVN3VuLNXPelpxvx3T+ODrT3Ghj0qXj2io7FFcPqNdnmGIwYkhzDY7DVfruRysdb8wqcHL325WS+xdx3YX+z4pCdPdaGDxwbp7Q97FXZYxco/3/mnaz/3HAujHMoRL6re8iOHb6wZ4/GrFnyIWY3LXy+WjUcdwnVNyRlPnvIr3l1Hz4WuVz7x88M3vhz6Dkjm2qEnLjrFX7z8k+npsafXmpRT+4luOfPXtVpe4g8jbHO5yacc4YrBOsipPdrzZucGXLHw5Zpznrlve9H+sH/C9YFftHuzb+NJRECKUNEUo0VsY5pHO5a0Fu04veUZ86chc/70q7d48eHtOPt09XTSo1suKyuu7O41z1+64ejJqtmZ3zzs6ouP8JM13v6O1n8/zFSn7DY/69gmjQ8jm40z3XDyde6t0ebPjg1etvBr7JOfefzfRhsP7PaGC6/42Yap56cYitO8GtDnc2PugCBD+epLRbmuXofGxnHH+r9vKnzTQeUDx8UtDjhuvGLVzMNu7kaxBwe+AwKvw1mfHX/k4uerwzfs6qGno+W/XHddHJZ0byJ2bOjTqZnXyOUuDrxqX+3IjZsvBlmNncNZC6Pcqm+HN7nGn/i9LOhGy8ahS5dc78yjh/hD+RBPN7hk5MVV3ObVgxyVL5/p42lw8TZ3NuZ8i5fOjs3Zrh0esr72AbKmvbSBx6a9whbBrX50ouJh4yaFYKP2Sfp818qPDiouuu1NfHO68PnXjOkXmx5f3ZFYrZGaWCcyc/G52bZHw8VjIxay8Os3NvHQS5a/5jCLjV76xmqaT/qR+CJx5A+PPXKj9585+yfnn//85w/e6h2MB/wQSy/aPRTxLa7iJkfrp/jKM7m6wegLEptip7NYxjU6yeih9bfybO5o3dHb/ZBdfXrZrR86tdvkrenipRv2WRbmTfJ0b9JZ3o7D0VcL8s7wYmx/WZ/2MJ4HUde3uLsOOp/gZJ9PPT+uwezC1tPvTC22bHduzCcceEhs7R+87Orp88GvexFbD8L+WbkfBIrbf1TuC3lfUFzjfoPGl2jXsevc86ZcYfFT3uJG/JWHHtErTzUTy9aSnlb82ejDY2Nd2LtPy8Na+NvwdHwJQ+Ra55xc2ZWzOLon00F4fLvG5AEbnvu6GvWlww8DvKAIu9rDEB8f9Nm3BmTig4/YkqOtS+vDp/tFOIfi5aMzQHxq5T5qPZAv6s6GvgtYyxrf/KiBuvHPl2Z9+xJY7VsH823h6PlVi3T5Mo42XzWxHmIQp/0iFxj5VH9xdd3RhUePPoKJJ+7IGL+WHj6MdPXqqbYIJt/8nr/80dXINDhhqZ9rpPWFZc/sfa9YNl41MJeP9QsfLjLPz9rnV682xVNN1dUYvz0JC0bXZfWTb3nnk554khnLJV4xW6vWYteZr7Dq8dRHXIj+2pTfIbx8lHe5mSM45cImXnh44fKlPq4bL9qff/75R/Ki3W/1+sG739xWa6SGWjEV/yG8fOCrlXw0VE3sH+R6Uedoc1lePvCqR3Vqzr/xWedgzAes1UuUj/ozv3k9DHVfPDLzXRs8sRYn+U0+zrzysSdRMe84rGzTbe/QPeuc53BdM/ZOMnbFLBfXwebatUavPQAH35q37l2L9IzFJUaNfvuieoVXHubVwZhNMeoRuevM91cvi/Hh0c2WHzru53R8f+XDmeUspi92ZyO5a6h7vvPdPi1uPuXSOWTOFwx5012esRrB6/7Al2tAg8PWy0JnsDjhwwxH/NWv/MvbWe65BWbkvm5OpzEMcziN9a5n9ejeJE95VMMww/IMAENO3XeLtxqJvfjh7FolKw/3ausAf2XGbO293X94ncP8iYN/tcwmfnvBPBw9yp95+v1rhF3b4ueHrr6aVs/OMbo9HxontxZhilUNPUt6VqEDU+ytvfzsS3sGn72ebTjlgAdDruUBD4nTdWGPhEEPVjjm7PEQ23j4Gh/sNXO5WTNN7mGS20dhw7THkNjkFT6eerLXyMNhr/FLXx3YhoenPp017NsTZHDJYJZbfWsIS334CJc+uYbYiN+6VD98evwgtvSQuuAnO5iXD3nBgaE3p6vfxk9r5k/H+L/S/t9+o93/virxNq5xRZSIRAWr0BUbHy8yriD6WnJztPyK3EZJvrh4zcOI13zleM3r6fOl4dXkG8VbG7Lw8tWCZwcjnDCS6cNLdu7TTa95mM3519SqXiw2JF28YsvH2hqTZ5NO8Z/9048H28WyPH7JyaJiiLfyeIthjL+y8sm2vYFf/OsvW3lkkw/zyLiawoGrGSeD1YFnjO8wCs+4gxov34fC9Zx9B1jY5HhutjDx3bSKQU/eHAa5w1uPyBywvpQ7KLKhW6x6fIcNP9nBLke+4YRhzq59cBhdPlz/KGzjMPLJpn1AjuhrcDukzR2M7LNNx5wuag3zE4+tMylf5Plh01mVvbmbsZt6Bzpe5xfc5uTwYOM1TwdPg73EPzsNyaFaijcb61HO6evZo/KoBmJE/BUL/Y2DjI+tKftuwh4y+GXHN36xVSM++KanFQ8bN1V68eji450bGWx7rGuDLl6+zznCUG/NOGx6yfBq6enV5PwAwkZ98NWEb3P6YeObI37ooHwYwykecmOkfnJRJ3zzYmVvjFoPdvk+BJePdFx7vWh/6qmnDjGMN0Kwf/WrX1396Ec/Or5I3OQ/H3S1cqtW5YFvbA+4fvrtX3pa9vXiPsvYbys3NlH2errqxXf+s6dvnO3ZbvXoimWJPMz4YTXX09u+cfEVw/o7jw+Ay8dNWGT53Ri7NsVof7XXnAP2E3Jt7b0Ar/NtfZ3rxw/Mzh/YrlF818eeLzCLz3iJDzbF3d7GZ5Odnj97vHjFzq8XU/5UiZftfNPRwm2/9QJX7h7+qwE9Y3Wha86/HMzJ5L+xnHMQNzvxROZiRuzpwKjmXgo4T/H9lrS6k6fTmQeDjfvq3luruR4GHeuhBmKm24sJfsLzBdGLAbh47HcdYLDFL6fFLj82SLz0tMZh8AurvNJjV4316uNFRS/Mxe/LmFh9qbUWiD3sxSFrT5/3Kezw1UVD+XYGJYdDDmPtjIufLB01N1bH5NXTnFwe9pC1hZNvMnN51Iez/unDogfbn0jwJ3nY7BdYe7szVR7k7OqNI2vieoGHr4kPXrbsikOff3w508PLHjZZZFyj1/517Rqj9ohrVe70EH81GNZWvfK1svaomOhoxtWma9cadM2nCzuf7ODi8SMe2GKlsz7JizMM+tvCpZc+XY0evOIwRvlznvnTMV60v+Md7/ivuh6K9/mRX/+R41e+8pXjT8dYc37FJw59uRcHeGNrjMJh62Wmxg6O56JempTfYXT9gYdghLO+l9f42vSufvPFD29tznJ2yysWfHa3yfDln754tXzFX/zVx6cfjjnKZz15jTyM/KyNMSLr/KNvXiPH07q2m+uLm721R9YePwxrat3N7Ue6xuyRvBAewm//NCfLDs88H5tv8YjFPcLZQNc1u+c5nlicW91P+BWn63pj8GISnjxq5SgWMlhaa2qM6PGNX55kxQSPTvG6DpxdeO5RrgXnBX321QCG/KwJEi8dPPF60c5OPfgvNvbOAt/TixGP/2KH4bv/nlPOObFWX7rkcLTqQ48OTKSe/IuNzvqhV53zLW/3DWvARn5k5ih9Yz40Nq0tfLhsk4sBJj0EQy5sqj9+sbl/49PzrCD+YodRTmGQWzP1rD595zOnTxfJBRZduYkxnvXm2zy5nn45wDFvbdjzoT75FqP89fT1ckHhZp/NYrJtf5Cz1+PTK17jSA3UUxxipS82OZbn5squdYAL05ydvpZfGNWYL/uMH7Z8auIsVvZ48k/fHsiGnQbfc47YxaAlUysEE07xsXGNyB8P6elFYZkb04UHm644wqym6kOHfrnImy/XrPv2M888c/X4448fbsTxIPTAv9Hui7/ilbiCKlSJVig9PUnpySuMAMm3sI2TLQ5eBcFf2oSNm9NrTD+7M2/n6eXbnFzsq2dc/nTQ2jSX01ILyL6WbvNzT453L1p5eRaPGKqdzUV340rvjB9/1+ycczb46bHrAMIzzy6/xUt2v0SXfRjs4NTIw8Pb+dlH8W4c2YZb7PyRORzlhbInw8tWnYsH3+HkYk1+GF8+6LCF6ebewUoOwwXvAi++fOQPpkaPDIbDQM8XPfb9BqB5hwgfrQfd+HTSw+cbdr7I4rNH5si+MqbTtcLeWD5kxuuXHZnGrnOCT+dF/tnWyMIjr8GlE5nniw4iN96ziI6zy8uAfRgQa/GwNWfX9WPs3HNDhyH+cPDI8ZfM4VSr8u78LEdYGiq/Yk9HHbTm6er54cOXJTHJQ9/DGuzqDsMeNK9O8YohH3To2ldRvtimF6/6VW8xkdGD0cu1bOG3F+mYVws6aleDU7x0zRH9+OnIXY17CBWXNbLmYkJiZKfh0UkGH5HBNzduT/AjVnNjNZJH8dfDyLbYbsonPTrq5Afb/rbro3zR/utf//rqxz/+8VGDYjjv2WovHrGIHU9tkLzw24fq6++iejiGidjQ08o9XPOo2m+fTE+3RgfxLWaEZ65F6Zsbk2VrHl8fv3HzxYhHJ6x49WRo5431je9ovfZ55p/ja16t+XcumyN7HE9t7Rlf9txT0rP//SkTc1h6bWPC37WCzQe+NYeRP3bhFLs5au3FgtaH+a6/L9l+GOxloy+X3Wv881r/bLwXkHz7EmRvuS6te2cbf3LBaw/zgS9u+9JcHHsOFne2e723t/ViKmZ9e7nc9K5355nfupdHvv12d39zlq36heGcsEYavvrx5ZmBTDzVg0y81taLdutbXPjqookNHj1881o++Kej9vyoEV0xq3OEp/HNBsHglx2+OV9yV4MzwdZgwxKjf4mgdZ9kQ1ZdzOlbF/hkxlHx4MHQkDlf7uOIHhx11Mhhachcy9fqy0ndkFqRwbCX7CE+eqFPBrPasaOLL3555TffcMmsgRfkb7n8p3/i8KXTfYme+7d/paDxaW/jy1Hc8JEejj/VYG3iiVVMYsmvviau9GHDFXtrDYduddI3p9O624/tN3vA3tCLS2MHu7jZhkWuDkj+8NnToV/O+PJQh/KxBr0Qbg31+aSXLp6YtsGkr/GXndjMxaUe9cZskDEqD/pwyhEfyYW969WLdv+p+aN40f7qq68e/4z95ZdfPnLit2tajuqmVu0b8WjV8wju8mHfOK/YykkO9o0f2vU8XC7ZqIFayRk1Zl8d01mbahfv3MNBeo1+Lf6hcPmIL957UT7hycM8fHbGUWM66a49PfPbfJJtSz/87fmiq17Wy/Vjn/CrWSctDHp02BVbuuHQ0cyzo9N1gGc/anDaq2x2P8svjAPo8kEuzmoUv35jiSdeewu+c2h/4EoHnvNHg89neRt3rXce4KkRqgbsND4iMcKuFjDN2ZL1Mj0cWIjcfcw1gedsETdbc37cm/Vids2Y5weGWGE4E+mh4i4uzzS+q8Mg25ryw58Yqov1EEf7Lhy+08OTZ9dsNamGYpQfbI2cb3uATnIYeHqY8hGTe2z+6eL3nAJHfPSqB137jk+yfrBOlx6f7b/qRBe2s4cNXT9opisWzdj5pBUrnK4ffsnECwPxp7FH/KlBNnjVjg09eZCLx5w8mXXJVsxkPQuUG0yxsBGzsXzCIy8u42rKl7HnXzEgeghf7JoxPDXmX+OjnswaybO89dUaXvbVgz0bLXw2MOxpTd58qrG6k1sj9V5f8OVdbK0bG36RvNSnPzsIq1rlt3jZ0C8/tSEzR+ThNoYhj9Y6G3nC6p1PPqyl68k8X2w079H8fxN+uP3JT37yrs9jcJ8fD/2ivYArugQlJ1AJonoFTY9OlFyvkdXO8+zqw6jA5hU52fbZrX42ybZvXJ7N2eOtL7JtcM3Lrzi6MPK7sYS3fXav1/O1WOb5EIM1wbMx6aWvT/56Pm6Tw7Mxqwk9/uK3cc1bU+PabbhnfnHq3ygVr74auNAiscknGb4Ddm9+ydvvbOgjY+RgcqEW8+bMjtxN1wOJMbmDYWPpoocHn6wDgI25lxX9plsxi9VDRVj4xRdWNRULPQ0vXbGQaXjFb0xXLz772pitumj49MOLl2992MYw2OCxC499ZFyM8erZkbNNxzjc9MTRDYDc2eTQxc8v3Q717MjEl8x55gbLjm9zNx0PFdmmz8bYjcbNJD/i9XDEVszs6OHL/0x42vnmQT8b2Px4qdHDLXw3Q77DqPb5YadW4rCvqidc4/geMPFQvszJYakHP/KCVy3EYEzH3nTzsu+rEQw3+eJrLldjeotnzr/YovybG7Ojw691ZqO3Rv0knTz95HT4WhkdOW4sdOSLp2ff9Vt9t47p0UXi0m4iOur0v3rR/tOf/vT4MsGPGMpFzuLcusuretI1ru50y9Ee82LIy0V7AMHR2MDWRzsmq956PiN6tXjkYs+uefLVT2dljdfnxkPeXL8Y+aWz/ObbG6Oz3h3uaz6a1+e7ud7+U+tk9XKHby1cu64r9whxGjsP/G3T4k5/sWGx7zrmp3Xr3GpPsKve9gPfG8vi7jgf7RkvoMMLMmUAAEAASURBVHzx9GcvnAd9ecXz2+x4dJ2r/nNROThX+Ns6FE8xkSOxOXeQ3MujmOPb+52NcLV8yDlf4m8N4qXnXvuWywtTOYnDFxO/1e7vKPNLrxrJyVknXw/3fblp7roXI1/WUwzIuPs8Hj+wnWfOejwY9Pgql9a0GPrixI+zTm3UQG0RPTwNwRFz6xZuOfSylS7bpebicU9SE2vp3sknuVxhihPh8SUPfHO5ourPBoZGB5ZaaK0TDHOy1rw1CBNu/quna0ct2aunOqhvL1+M5QKLDrnasRcLn/CTH4FfPszj07MO/qTI29/+9iNGmD1TwLOuXjzYw+VgzB8sGPyL1zXT/VMc1tWeNs6nOIwR2/TlL2a1ba/QYUvGHztzYz7tHWcLv2pErmZrH4ZYNPb5gIHEUV1gZ9+6pQMfT05srYX6tIfIi1PM7Qc+kdjELGdjRJ8ePDEg+sZ4xaoXJx9k5vTMs+FTQ/Grhzp50f7Nb37zWOvkh/IDfBTjq5cX7d/4xjfu/o12OTh3fJdwzZjbJ+7H+uLamLm1/5xbxcmu50T7j611K17+jauPvtZehJu+fhtZlN3Oz+Ns44drbiyv5e06Lp+vcjde2drc5Gd5MLRocYzzkfy2XgxIzTqv25OtndrDw7dv9WLFa6/xufm0Z/Ha2/CMkb0Bi9x1RIbEgYrfXDOn29z4TOXNB31Ez33Nb3aTy8X16tzkU5yuQ7F0vYej1+iJkW94xZFcn4xvZ0PxwidDcPKF5xqx7/mFUc7wux7w7P/ORPVWf9cxO3FbN+euecQvnu/jxUze2rHzrNP9kh+x73qKUbxw4CUvJ3LrqL7dH/mi59rVm/MLV/7N+a/m9Fzb8oTNZ/FUW3M64abXnmWD1IkPZ4n4rJv1Nrb2nt/44RMmfbGxkQMqv160kzdmo8HqTIMFR3ziYM/GPYEeOZ5cUH05qK/4Nh46mvxgZgNXU9Ndd+vKXn5yMRafMf/ikLd6kBUHLOsSPn2x6PnwfxeoZfHjG9PRjOHBVwO+NHqasdiM+eGPL3O9xp6MnsbGnuJXDHT4kq/93PM5G37lJA7f9ay1fVUOYcNsXA2rgbg963gedC6IDQ7cfItLLHDhwNB33RnzsWROD54GQw5aeeH5/m+vyEFOdF3/7WkY/LBzZnjR/uUvf/nqE5/4xOFOjA9CD/WivcXdIpbYOm9TSF4B23DmGvvsJKyZo8bJFzcdvE24cf1NNmdZ8/WzYzEWZ/7Ezi5bfDbFvHPj6LzZ1p4OP/Hqs92++OrPtjYUEieqtvwvbjGT3y+xWYJXjcJeHbEkZ5eMbvqLtzrLL1a9lm14dONlt7rJ8IoHz7z6LMbq47s4XYRd9OTsOgjonOvoQu1AJ0fFBMfh5GDTusDDE2OxdhDAp0ffodiB4yBwGDooiivf8PDKp1z1YuBDLz8tIjcnM14yh4vE2b6CxU/XR7nGWww6xYAvRzjFRJa9HpEVD8yNS6z5r4Zswi1/8fLNl7GzrIcqOmHQIV9aDHYOa3ps4Jm7WYS/GNVJPPiInQcF56K8igl/4yiH4qFrH7S30teXk1jkBV+s+eEj3/kwlxs/agpbr1Vzvf3Kp56MjUam5vDkJh8PHOVTTGTFbg+7iS2GOYziyzdfMNjXYLMtznKoRsVOh64aFIc1cpMXJyIP10OEWqlFJCZNPHqY8MqvHOgXc3uwPoz8mIeRn+1hq7N/QeY32p9++ulDzNcbIX79RvtPfvKTY69W12oAvxzoJjeWS7k274xgIx8PTVo1VMfGbNktNQ+XbMfp0ktXT0fM6YpTi1afzpnCyj55/J3nLxx+Gp/t2cUL6ybdZPm5qafT/lbfrrueo9iQo3x0f/AFRn18ObTn/v3vfx/rU2yH0Xzkq3sAf52pcKxjOvr2BdnWfSCPIX/ZlYM8xOm+5UWdLxbGzhZxu5e5v/EvPz+8+ec//3k0ewnhw43KSy/f5l1vevtTHuLV2CfHhylGDZnb89UBprGGzx6Pnrj955rixvdl2hfFVy8vxfJbreDLvy825en8UwMy8enNNT7UzRceduZw7YXuX3DYaOSaOM2RXFEvFPDVk6+uU3Lz6mIOR8x6uTXnT0zWTq8W6kB+Ezl3/asX/7rCS2W+2Thz4cKLzMVXncVEFx/PGJ6zxlwd4KgxmRg0echNK3Y+wqMbrh7fOvAtHrXC657hvmbsyzXig9xa8MWHHlYU7rmm1tW/gvBb7eLu7DSWi3u4+1R54cszP+1TsXqpZQ34p6e2e05sLMZs21fih6mO+DAQPqzywa/x5eWua7W1T5a9vtq0z/iwR/RR+6W81Mt68Y2qsTk+ah3M6WvFitc1BxPJS51aV7Gxyad5+yV9MVaTak3HmC/25Vi85PhhmPei/VH9Rvsrr7xy/Ea7v9Fuj4rFWmhqKxZnghpVd3FurmJ0jtjr5cjOXlM769a+YFdN+So3PVwNhh5ujbyxnhzVH5N7zLNNzxzlR1zx4pMlP5RHf3XJzK1P8ZzldMIi09QkWv3ky0vv3POJ9NZLs458qbM1sw58qavri252rU8YB9jlg33rwBZWNTKHY//TczaQI/t5czPX2NDlV4/Oc3Z8aPTTcbbYj+R82Y+dY3S6DosXj27NPtPKG391jMVITlZNxKeWxQ+DL7nz5VrsHs2u2NmRdd7HzydMdnDhuW523djDw/MbycWnDq0tO886nZl8dF3p5UIXBjuY1ZVM/Bq5Bm/rogb02aHw6bBTg+IhsybuZag9xpYvecJr3axtudOtnrCTqQ+CHa697D5mDxTrri0c/GTud2zUwz02O3L7p+8W5nDEqGZizsa5JwY8sdHTs8Gjzy8iY5cOnrqqVzZ6rbXJNh0xq5sGB58vsYlFDuIh13c98EUPT201Pnr+hYPEvA2OePZ6MmdfTHRgn3MrF7346MuXnr3ftcFeLOaui95RiZUdfdR62Y/8F1v1LD9ztvLAUwMvunvRDmv3CaxyLhd2KBk+XHxjVH7N5eBa1diRy9n+7EU7Hl+ujWqOZ53VRl38MsTXvva1/7+/0e6LvyIrWkmdEyWLJznB47ErKYlVDAVKf3k7pmO+De9McJB+x2HFy6756pOtvphXr01ED5/ueVOQbX3otdmMV0YXrY87nJs/q0E1DE9Ppt56NUfGqxNqOPqHJbi1xage+nyLZ33ho+JozuYmIl/7m3SWRxdWdVjZg47hVFe25i5iFyN+8+Kz77sZk2ldC/rGLmQ45mz1dJG5nKsLPzA9wDj8HAz08RwGevuKHZnDjw3CR2R4fOrzaZzuoXj5oKOJh15UPuZig12M9NrbYmu8a4BnrqcPz+Ht+shXPXk61cYcbRzJ8HfszDlfr/ziiZlfNywPFPgbc/HBROWoFz9bOqgcejCAr5UnnezYZJeenJZvTuahw8OFGPlD9MhbL7jFxp8YtGpKH1b89OlqqNjMw5KTemj5s9/dfNs79u/Wmy81rzbrK4zdV3yzwXMz5/NeFH5x8r2UP760c17sxaamejpuumojbvvAWL1QtdgxXvcyfJjpif+cpxiT09Xo8K+RmefDmH+1dr/9/ve/f/WFL3zhrvwYPOQHbC/a+432Yi8usZSDcXw8a80+G2eMGDsjykfs6qOOfWkkY7fru3mXDl5+kxdPOmIga+/C5ZMPPPOI3pmWVy504GpLzdtvZMWl5xdGPtOnZ0zn3JKtLp48y5WsfcPeWJ2NnQX8pc82H/Ssi7USs3sAXQ+VxXr2yz5/Xdew+UOwYbFHZHhwty6H8PQBVwzuTWJz33L/EqMXtF4Qeiltzjcd+p17fHnR3p8lKoby1ZdPvF0LeMVpT4o3uVCzMeZLDOVdTdr3dMnMqxOs9HoWIPdl2370QhlZMznxL6bOUWcpTL7lzZacLzVxJrq349FTRzrk8F1jxuQanG3FS4dvBJcvOXSOyUNt5UIPNptyg21c46OxeMzp+EGA3NgiOumK1T70W1DqoiZ8+oIlDrpLYerhVetqr56aHGE50+HkG5Zc+NDDKZb2AJ/iRuzIrYn6wLU36fjC7EslH+4X9mTxsKOzMTaGy7/cxaiu+ebL9eA6wCPTxEq/lxzx6JBp61M9XFPtCzXIF90ldprc7C1xV4Pqk345wCBjoxnzxd5aqx/dah8mHHz2aoDYqy97JKfqUV7msNiwT8+4Vj3zyVad2OCR62GJB6mTJoZ4rb25vIrBOH06bFC5FRs9Y219pSvevqi/8MILj+w/Q/3Sl7509dJLLx115Ne50FkiFteFGpSPeOjJqTzt8c4BeW0N5WyNqhVZNaULp7WADVPDi5Lrq+/Kq+Hqsa3GYeKlIwdEBw+G2PDN1zY9scqn+OyLbA6wy0f45sbw1tfiZ5NOtvpox2KKjMURr71VjK2BWsOgW62zE384eBEePL3Y6JFr6mQtu+5aSz6KpZj5C/dcJ/iu+eT5SQ9WcdBDZPx3PeLB2YaHqnN4YuZLbNkXJ1lyMnyxF1/rkx5/rhPyaiQuzdx16jxGbOiT8W8MO5nrpnsxGXv+3Vv9KTyk1vBaP73nHTwxVJPOLThwXcfk5jCLgb0GVy+u6sW/htion5pUM1gwxcceZvc0GHh0yOnBdv+hIz6Y8PNPP/98qpd64NFnu+vOngxGa2vMjv9q0XcxOnzjI7bONDz3NsQ+TGO6Xs67RxsXS/WFieRJJib1Ia9OcFB7h04kd7Z0YGlsi0fd7CF6xeM6o5NvcamNZx4++GVv3dVCXMatB998FrM5u3zrydjyr0fi5ksrF7o7Fxtb8eK7n1vDchaDvWhP0MPX4MA0Fj+iAwfl75hcz/MLB/GtBn4ZxZrC6ju5sTqwae3YsI1vbiwW+mfCswZiEpu2+u3tdOiRm0d45mzf+c53Hn/67bOf/ewhvslndjf1D/wb7e973/vuFlqRBVJwbQAF0vAFawPoIw+WmkVkQ7cFWyzJlFCFayPRq/DphJ9dm0GP4qdXXwxtIHxFp0/WBuXT3CbR51ccLdTaWEy61SMsvXzxwyiW2/rqQs7GvBYvrGLBl0f+kuPfRrfp5D9585twyFobcjblfrYvh+Ikb6+kG8ZtF9U5hmLTw83OHGb8XWPx3UbhkbMxF2M3xW463WjI8boRr34Hqvrgn/3CreXPXNz2voPclz83a1iI3DWmdd0Zi4HN1rZYkucLH1WT/IVBjqchPZ5WTQ7B5UNO6ap99c+OvP1Pphbd7MqVLlytvVRPlm88DSbdzgc6SD342Dobd+3x26Er5vwXM2y+ELvyN6ebrDqb02Ffy7f4kuHR1WtkjdmRqVE/edV70KCDrxnTNXbOhG2MT47CljMMesadTeYaHDd99SiG6ksuJnN7UL7m9mH4/OHVDueXD7aIXnUqdnxytXQ/gE8vPj1yPDIkbnw8dnJB5HSz0Udh6jV5yhF5adJZrVej9ge8amyvhElePcjXL0yxdE3yVz3paXjwygUWIjOmz96fjvnhD3949cUvfvGu/Bg85AfsF1988epnP/vZsbeKRx8Zy7PGxrp1FuDT8WDmIaQ1tX/UrpzCbq/kQ+4wkxtr+Ehtqz8ev4i+uqqNGNggutbTg5peHHTw08s3/ezxjJMVF9zs6BtbK7ooPXb8kfG1eZQPHbJs8fHSrbeP1cma6+WJJycPovTghGVeHEdQl49w2WoIT/zsonye52sHm/8IhnWVB3sEO4rXXA/D2vlNb7+5TscXTS+h7R3PgHr3MWumiVPvt57/85//HDH4O469sIYrll03uGI5xyMf2OKgb53SKV59edNT+/2yQaYOZFrrhL8+jfuCx96XbdcGfJhqZ6/Ir7joiS/8YpUjPOeh81WN0oEnDjjtO3p0sjsGl4/y4R+pG1x8MejxULh4cJ2DeOWLr0VwWquud37KOz/WX4MDj033tK5V56/1bZ/n46ZeDLC0/BuLty/pfCO5dRbgybm80zHvfGED30vr1sV+bf3gi7n4YfMhL/p6+wzmkvr4UulFfXuA//Z7a6DXyPTy0+LBR+WNjyc+54bYyZzBew5vLLA1Nu7j7MUrfkSGB0uvITXmw542ZqOvvnSswZ4P4cDS6Ku1+sISP331sedQeVcbcjEhPuGgakCO6PeFvRqEyQZu9RIHgieOcsSjg8qdrZhbX7HQ0RdXNWh+AFx/iMW1+a53vevqe9/73tHfpLc2t42L869//evVk08+efzpmOKUkzU1V5PqJkdUXl2L5Nnow9aLD09t7JH9HgMHJhwY5c5OrVqf8GBlIz76eFrXAjl+McJobdSdbjl01qQDw76z1mGQsZMDHGP7Vsx8uA7tFfFbH7x88xWfr+qkJ4MJP73yZy/n8g5P3PGS15Pxbw4TNsr/Mbl8lH9zvVrKh13x0zNHxUevusM3Ruql8bXEXs00Y/VVBzHC5NN+1pvDqE75pwtXbRYLPyI3JxdT+OqBysm60TF3prHjB4nBHtVXb1jWu7qwbc34INfisWvf2OsaWznCKQc+04PTteHeWy3wzfuNdrH7wXPxw4CbjVzkq5Gx51MMYoQrzupvrNHTELtyr1bVnp2Y6cgJZvXi033MtcA+XGcz//Dds3qmoYMnF3FpMFtH9mKnA9ta6c3J+OWfzeZbbcTKl3jEzC5iQ89ec932nCBftQxPLJ4jYFUTY7GwpUeHrIZHJwx+zZdX7dRRbBo8vzQgZny4ntX830L08dLPp3zgshEnDGeXOqt5+6jYz/lXK3YaPT7U12/Bh0GvGOWF6OLxLx52MBB9c7W0hsZ0rFd7sTrRJ9fUqtq4R9DHY6tPTrdY+ULwnC3WspiqOV0Y6qTGdJA82Ys7H1tr/lDxG7fn7T+65bEYcqYHk29U7PSty3ve857jX5Y/7C+8PfCL9g9+8IN3ExVURREQahEELTEJWkAPrBaNfslLQEItxAFw/RGuHoXfYuKxVXxEz9xCtJhbODrmcPhD9DX8Gpx8kxWbTZp+GOnJM10LSO4C8ltYNg+qLsb0i61Y8G8j2PLU57NYsjdH5HT5QOqFJ/57UXnSPROsakqu8VfeZ/1i08Otthsr27VPN6zqY54s+3Ru6ouVjTjhsDMnM74J5yZevotTryG9vd1DqLmxOvFlz5O3P90UNLxiYWOsFSM714kbMr5rBA/BNu9QKxZ6yeTMZ3EVD3t6bPA0ehp+ZL+IBU6Y7aGtpzE7MjEVCxx7Taum9fkwty6uja4rPV4xVpti3bjpwNDIHZSuOfYbB3/5Ei/Kli6e69WB72Zszl5NjOmgfOvj62FpSM9OPGIhR2w0hEeWnG61UsfOjmz474YgjzD0MMSMnDV+S7B49W5SPezwm33xmuNreHo3NQ8AHsBg0Cn21W/PlDPb8ujhJ53sim3xyCJY6oHYWtOuHzJ25Hr+IrJwjFFzPsuveLJTV3owqxN9efQwh29un6qnfUJnfRYXP2TWBcG1plpx4fFJF59ua05ncWGpgRv8D37wg0f6ov03v/nN1c9//vO7+chRTOe6VTtxWwtnkodJtRRfeZqrQ/nDM1Y3exNutZaT88w+QdXmPDavVtVYHCg/x+T6A896dS0b28/8qzW5fCJzrdjEwQ+i1zrKwYPw2sq3tZQr3eQ35VMebKoTjHDEpx59ueu5CK5nCL/1wa66FqdYG/O/MeDzV550xRE/O/FqdDVUDslg8K2WfNAjM4aJ4GVnji8vL17f//73H/tYvvLUGtN1bclTr95evDqDXBsw+TVmU576cqHDnzjxEV3+yTTxw0Ybq7FGX8/GvZO+uVj12e3awCPDYydOawbLdVKedFw/nWfmxWessXffx6+mxmLf/aX29PERO/tGw5e/OiA6eHC05PDyEV568Mj7chMGvXSz5cu6WDc2bMk0durilwI8+6sFHpn46LdertW//OUvx4tDPujdRmTFEo7YxSFm+0Zc9PDpFE/xw6ajJcOjLwfNGIYcjFGx8yVmOcBAsKN99oMlLvdVLxHYINhaWHzYT+1ROnSdZ3h809H4DEd89hUsfLrdq+zh4oOH2NPVR+bih8lP9YVr3fiwf/DlA7Prib98wGFvrkds7WvXQ8+tcOmUq1492bSm5IsDG9WLVRMTu+blBUdtw2jedR1W9TjAr/E3D3I5qAMqvmqEt3GXNz6iL/93v/vdV9/5znceyW+0e9H+xBNPXP35z38+fIh3m5zNxajWcoiHb05mTbsfm7eX2JSfsTVvbq3kBAdt3enADl+vHlrxtSfFY30imK3Vxl7di6EXcbDFa6+7vsTRvofjBSc5LD0eH3J2Lbqni8W+K5/zGSlXuDBa13ITNztEjsgas1tc9tVQ3mRbm2y3VjDphWOO6DhjNHWRR+dENbyj+do5w6b1FSMbTZzFUU1bc3znKWwy2GTuNdZFXO55+1zQOUHGDq3falkNzNnwBV/bWqhZNuLd/OQOW6PDDpYY03PmwICP7PfOI/WjH7Ejh6MhdsbqJJ/qxc4e670WPfHAxEfmfLFf//yUs7jFR7dayEf92i/2KBk7MrbmCG7Y8eNVz0Px8sGm3ODb364d4/Llw9qKx3OYZ2hyWMWppupkrh4abHZwrJM9kT96ZLDx5EOHLj57saiv/yidrVzsM/rk/LNhS7dai6XnD3mzhXl+HrLfzvunOsGCL0/U3hQf/4gcdk0cPZvTJ5cfv3DJ5WOM4NAROxkcxJYe2/ZEeOTsxFVTC/qaupKLvz9JJHc+5QpHb85+56131w+dxnDpm8tHbGJfLHM28hBT142YEVs4CBZ9PvHFzBbPODJH9K2pX7BR485q/HxVK7mXH54c1Vis/ImhXOmtX/rhiKOYxcGeDL5r2H9i/txzzx0/4BYjnAehB37R/qEPfehuIgKSfC3HglAQCVp4D1n9JxBsNIlJRH9u7GG2sHAUEL/NlS8YiIyeOR1zfvTwEUw4YsOjry/+9Mm1cIoFBv3sYYevF69F5sNG8Z8+pcsXHdQ424N5+UjeXI8nDnmxE0uYqy+uWnmxZ4vY3URskNyrw1kPXo2ehuKFsXbFQFdd1j998tZ/84BhLkc2N2Gvn/O4WrFjby2M8wlbTOvzNh/ZwAyjXvwOIPu7PefQryYdUOaoByMXM+J/a4AH27Xip5N+smzuAMMTA328jac88Dp09PyJjz6d7BcDT+xLYePRhRVua6KuMGGT8UMX4am564AePI1+sdIj61pha4/AN6YfXvNqXHywrCO5mhYTuTEio2fenq0e5vhidePT8PjRjMUTDh68+MkOhcsHP8VabGTqIybEhj89HPrGmrjUw5hNscNiX/70NHoeguk5a/wN5jDl5cuEh6jWIRnsMODiIzZuar3kMuebLqKHxy9+ZNx603FT0sTLllxjh/AWWwzkxUfG1v51DVlbOWrVId+v18PU+GQbFbP+zKevrr7QVT8PNeb64tSzD7scNje13rVcX+xg0M9GfPhIvVxX/4s/HfPb3/726he/+MXd/da+41ce4hGbVn7OOWeSF2dyEt/WoP0aj1z9PKjbH8haWlc4+urBJ6qefMJDxcGnfUEHtibOdPXy0HqQ9cMn68YWlRtd9uLixzwcenCdR3y7tlxLiA6CV+xwipG8XA7F64/s+KpOahGOdbbXnfPOe3ki8fnNbtclf8VUbYq9vPTFYBxOMYmTHD8Mc2P4WrrXoR/66qGuHqq35nTKPYxyJZOL574Pf/jDV35BQ875pi9/uB6o+w8yrZ3fZJdr69Zai4+/KCxzcYldo8NWMyeDAROJsTj15U7GxlqwEaN9nz49cvjWRqxk1k+uePyw8yzANn173hfw7pVh8km/a0NvHonZeVTs8MRBR/58iLdnj9aDvdzTo8sOwRInObxk1QG/XOCJNR14xV4d+iJE5pqvBmriP7X1JbD4YLNfgvP73//++JNW/CSvX108fsTKrv0oXteqWFo7elF2eGKgw15rTtZ649XY8ic2xFaO1RAvXXquY/laazZq4p+0i40ePxqZtXBfMdbLIR0yc9eIONlUEzp44lVnsZjTZeNaVRM8xK484LAn10f85ce+cEa7l8PPXpx07H37kt9qSYbI4bJha9+7b9infMNmJ0Y6YpY7wtfY1/A3d2Oxa3zCoFvs5igsfGMx85X8ULp8FOv6IAtPvPJAcNSpswwP3vrCi9RG3r1o95vt/D0MFff5N9pvwqrO4jaOYNRaY2eTsf1q32r2MTv1rS7ilrsa6vcahE8PD1Z25aqWmrmasF9KFg+WeOxvmMZ69+I9d11b9rv6u9cbw/IClA2yVmzsF7H5wTVdcfSiiL/iZkNWnuZI3ehp8uBHnuJqbaptOZqLw5yeZq+Xf/p6mBp8uNVKbqsHy3XpnJGbONVBI2NHvzjxkL0gFvz2qz652OBZf7XAd2aJNyxy+xkWWz7J1YK9uNmKQW3xwywmsbBhT49dudLniy5qTJ6+MeILtgaDjV6O6YgVP1xx+5d0ziM1zLbYYfIpdzaIzHq1t8jwYPjXevDoyps/64LM7d9qpxcbn/ywEZu5mhvTgW1NkTnfenjZ0sGTJxwND0a043j08eWgnvxsXaup3nfB7qfw+RO/+4I60gkDpnrCh+l6Q/ji6j4Fw57pGoYFW454/i8ecn6cS8h1K146sM3VoX3oTMAvL+vhHUr1gM9GrMb0kF48sBAfeHTlod7VmG+1cM9rz/vO7dm8XOjCZ2vv0zUujnMOfJGLi22+ypeMTjUWA5lrB774YKtVL9rbR1ur1hqOBpcv60ffWhZnmPxWY31xyA+eZqwm8oeFR89YTHxU1/VJR9x80TVG+Boc57P6+i5gbH1r9kVrBiMbvdp0Hm1NxdrawBefPYnUhO2ee3zBpuP5xX9a/9WvfvXq8ccfP2zk8yD0UC/aLXZN8GcSRHwJ2fgOJAWK30K3GBJtQ7K3URQAWQxjBVo627AP4yZdGG3iFgEGXf704qvxa1ws4tJg5Lv429g2HbnF9tM5YzFZtPBhIBjZ41WbzdGYjljo0wln9cKi9zBUzrBvo+pRnNVQz/8SXXx1qbbJi/UmOzpqcVOO2d+rh1kNxNkeupfNbTJY7afNz9h6OqBciOVqTJ+dm4DDwBy5iDvU8geHDn05Z+d6cbM2J3cD60Bhmw89OzjG4jCn6wbm2kPqgEenPOhqeEvswwo32+pZTZOL0Zgt6jrTkxXXrqmxa8Pe4M/BRn/zhFU8cJKVAznKLxw5w0X85rM9ewguH+XS/nTjQnwgsbC1Blo++cJndyYyejDgm7MV19qFXc3I4ImbHf18kiG6WrWk68EPOWs8FKUD3w1QTnBhagg2veIi54Pci8n+xp0c42evhx1W/jrzxNZD2OHs8pEvWOWUT3O1gkneerFxLWnk9NKlQ/4wxAfSbx6LJW8PUmqrrmLVqye+3NXQfqV7jsUcH4ndGRGP3/JpXfLNBrY8kfjsZb8N7J+cP/XUUwe/HI7JQ3yIpRft8uLHXtKjYj2vsbVw/9bESN81SU9MxW2s4atXL9rJ5aMe9oiz0FqifB2T6w/6mnj4UnP6sNVKzGpIhwz1IJasL9Th8MMGJp0epsiX6JFrriF5LIkjm9ZNXBF8bam64LHvXIRjrCbOeTXCoy9WzxCubTx1aJ2qBz9iyL+5+PGM+aKbPZmxFhmnE2/76tF+gZs9mYYHQy7lZo39U9oPfOADx59Awo/oslFbX1Y8ULvmrIl8Wyf6xuVtXl67H+QrJjK65S02sq1RGHo2q+v67N6bTG0b6835EBdib934qBbd7+VMty/g5jDEqdfUgt/iwEN6vvasodda6XsG4f8mggE3P3oxikkPL8yzvfzkhPLJvsbeNWIN9UjPho5cvfDyT+l7NipvvVYt/XauvznNT/GJkTwyhlss9MpBDM5oe3Rt2DbPDm+xycUN27qJKzJm19rgy6+zxjj94useqK4wnSFis7/ppA9THLDUSuzykBMd2Gz12eUPrvWx7poxHXL3Y7702WbPJ+Ijm+KJT1c8aiEXNnjIWGPrRQJbWPJA9MzTtz89z/qyCk/cXStyY6/2YkXi1WDUYPHJFhmzUbfmZOV6MC8f2YfXmuGjjbU1JsMXV42s66v4WtsD6PKBXz3j6fFd+/7Gq/9r5VG9aP/c5z53XC9qIU4x1/jFE2PnDV55tH5k1rc1NrdecqVDv7MBtvzgWmt7Nd/Vlyyb1grPmL3a8gGHPV1UTTd+NnyLRa8hL126xsnsG/vIfrAfk9lzfCFxilkTj+cCuvzTZ8s3H3TbS/ZLOcNhW87tLT7KI3x6Gly9msKBy55Punyao/DowwsTv/rikZt3bYq5esIlg0uPLHs89RJvGNWEDYJP7qzW41dTNjDw7ef1q0780JGjfJF1YUMXr/zpbd35pVesh/H1B3/syMVLxxipHbm86JAhtYGJ55mq2PHo4tkffb8ghyXOfMGhH59vMfOt0fMy17/Y80xsDejz3Yt2tt334PHDv1qQqa+Y09s4ypUdKp/VwWsN4agFefrFao5fMycTsz2qZ08OU0N9BzLmB/EhR3mIGx+GejjjYXXdkPGjrurAhg91dN2SqQUeXfvFcyAZXfuMDnxUvOTicG7pPS/yCQft9xRz2OR6RA+umOUqd/Oo60F+7Qe+XQtqIk54zhEv+eHSRXKDT04fNipHsZPJic9irqfLlxjI2dOvVQP2cldbtbIX1csYv5zpa+awtLDFrP70+YKlHsUFy1qTi49tMTUWF2x2YqKXvlwifLXUa+2J5PVk4vO85HuB7z/OfNiaXKw7e7HwBVc8m/P6K+Z6OPK2J+GxhYEHl//2GJ597T9DfeaZZ/7//jPUj3zkI3eTtuEEFUmkxbPoxprCWDBJIItirFX4xZC4RobaGMZ8KKgejkbPPH16ZyJTVFhiY9fiuDjkoidXdA2Zn/1bKP4QXHMXoJcKen6K6VC61ssmnnm5JmMnNv7x5IqqlXG6xmdij6pNGyn+WX/n4erlLLalc05keGJtHdLPXznAomN+xs1m+2JZ3v2O803/jFNt06n+55jUm606IHN7ufiN7SM3bAcS6oBRDzIXKT/WkI7GDo+u68JNAb94ul5c3MVKtzFsOhoeOz0SK75Y2bjmzMOmF068+gPg8iE/vNa0HiZbcvnwZY4fhho6eNngh5WcDzpsXTMaLK36r24x6WEWi/4mYquJC8HU8LKJRy6+Wnr4rplyNBcvOYJjXOzlqM7GdM/EfzK4+aRX7urlcOf7TPkvhmzkaczmNr/5oJcdXjGxLR5r50W7hwe+ennhpofkzk//nNAeQ+zpw5QHvXjG9FwLiD1Z+5f/8mIfsZNfenr7uT2d3oP0xaQOsNsnxUAuvmKsRuqiBv2zRj49ZNETFzy6Yi538+KPx64c88UWZVst9HL1G+3f/e53/ycv2t2rug7FI4ZyNraWPXwYO6fwW5PNGV/MNbWxn/lwX8Wno8EMy97Q2jf5r07N1SiemrVG+sZy0IrBunVt9MDGP2JDBjMf5mLW1CUc/VJxZGudw9Dv3mInJjEXCx35ylst1cJDn/WuRvRdh61R+LCQuXYei7U6kMHhw5dL2OZyy5Z+WHryJTy1qh7Fxwd++nKWh/vh2972tqP3hfNjH/vY8ZDa/cxvr/uBnj3hS9U//vGP47eY1ByeeNRGb47yLQ98JI6t++rTY6ve4qOH8ORDruHrrYPak8Ftz7MpPzItqsYw6J+fKdVCHtmIj405/Z6J+ecTkTtzfUGTc88X+mKGqfFbDbI9QC4ffKxvc/HAQNXZmEyDtzblR8c4m3LIBmbxqJUvRV1XbMjzrZe3fNiIPz+uVXsAz/7wLxx80ers4K98xdp6s7d+6qWZL+G1huy0chYfWbmxIxc/HLGb73qZs3Fdik8vriWx4bHXFyu79iSf4kDFrG+f4BcnjHTZbbzqqLGjo5ezPaSe/Plu08uBxakuePLyZd0awTfHF1MNH3Z8vtSm9cXnp/0rB3Jngt/+tPblAsfastmcqwXbxvXlzUZ8sFB5iCP8Q3D5KHZz9nzao3yqjfv6GY8NHqz8mCM868onDEQGGy9/eO0f56Av6o/qP0N95ZVXrp599tmrP/7xj0ft+ZKX9S6ucmgP2iPi8EMv61Fe4i8P47UrfnL5Jcdvn6gH7GR0rW3nuWvTdxzXvDF9Mbre9dWVvhzYioG/akpHw6fHhwYDD5FbT/b6cPOFBw+fbTbk8dVk69LzQ1jZrE41olPMYtLKT958ht860WGPyql6qi8yh22fwjPX1i9cOuRqKA4865JM/uEdg8sHn3T1YoEB13XquiWDpw5kMMitpTm5emvG4bNFzoJwxREunvscXHawluhWj573zeWnsal25VgObHuOEqv9zq+xuqmrZy3NutBH7BHc9o/r5U1vetPd+MKo/uSuJf7YVGM+6MKmqx7Z6sWMj+RS7Obi8qxGr5zxERutuNWi6ww/LPjiEo8a57MYdu2yx2MXhrn146Prlg85yae68wEDqQc7PHuCbjXAZ6++YiI3Vzs8vnyvdO9gL1Z4atD1wkc45WTei3Z4+OKzBmTy4QsGXL6Kixw+fjHhWQMY8Baj7zL0ydpLrgeYrhXfC8XAn3E/OBeH3DzT06MDWzyoepprZGrvXuWZWWMvXn7tafuks0WOqJjDNdfKsxrQzYYv1Po7a9KTl3pYJzWhyz/dyFwsdKu3WNWA39ZEzHBg1MKox2ej1upX3mqBry9HNvKX6+7b5PySyROenPDYRK2DeXb0rBE9uXt28adj3HM//elPH6bVN5zX6x/4N9o/+tGPHsnamDaRxDmtQAK38VzoAlX8FqmFoEtmgfAifKRoki1x+IqMjPlE5KtzMC8fcDS6WgQTjhu/jWKM15cbFzseTHEZi0UrNngWjiwytzld8L2EUgc+1q5xdouPR55v/s3Vmd5iZX/GM9fo66ttmzC72/rwqrE6x2ODv/NwxLwbNn69eNjSK2fz1yO+NLr3o38vvLDURBzlUTxqtESPz/i7nnjtcxehAwhZI3ZkeK0ZHHxzjX97343El5sOdRhsXS/2KD0Nr3E4eMblxVZc9FxbDjWHBL1ypUPOTo+/dTXHx1MXsa6f7LYu8diycT3lJ9/h5c++cpDRFTN57TC+/sCLjIt9cVeHrrn8iwe+sba5rR1ZhM9GbJqcauGQu+aLH671xJdbfmBp7GCQa0thqLUxezr5YocXPx9w2ZjT4TNiS6YZs11s+uG7GRYTnhftXnTQd5P3YOBMg6/B6oyDj9hFdMz5KK72I9nGa87PmeSGrHP7T+++ovFr3yHxwEH8ZVt+5vH01Y/NYqQHjy0Zn8gZ7Hz38sc9Av3rX/86Yk+HTZjGSE+OXwyH4PqDr/xtDtk7B/xnqP+rF+192bEHkBiKVW9Pi0EO1lBrTdWnGpUjmfrW1E299PJsfeDuQ5tzCg+e3Mtfzdjs3Li6kW27LuvRLZ/+3/72t+P+3Hq1F7Ixd02rSXXBU4f8p6snw68GWze8rg16YcMXi3n1FI9a9IyUL9dFD+Vs4m8MjYuRTv7kj9RePO4zfMF19tJDbGp41W3l/IudHl/lCkujS9ZDqR8O8ece9vTTTx//7LL1dQ3558Gup7///e/H3+V+9dVXj1j6UI9iETsfYljCLxZ8+vTsPXnqO6NXT5xsa9ZB7ftyi8+ejVrAqRbrvzHd7GHRZWOMYPCJV3zq5N6vsUfs+PTlwgtcc3K/Ee4ZQ/3sKQ12+Ye99YFDhwyO3nzzwo/Iy1ucyDz79kS1CBNee1dcYnDPsOfYmKcLU53kZF/IR5zFwVfk/uMlor3SXiXX2IgNiYefc6xkxe5ssw/4oafB0NiLUVvM8qQjL+tlf/TChr4vkv6sk31Mh03x9QWzWPGRWNvLxvGKrfkhuHywb83CSKfcyfmPYPEhPrWTuy+Z4jSH2drIo/p17VojvjTy4oVLt9z445t+17Y9xpdzi1+EZ737W8bqDMce6b5zKL7OBxutvKuNuPCQvSimaqWnVz70nO1dX/LzvBPW2q0teQ2+HNrj5VOtxIPw5a6Xv396/vzzzx9f2NM5FB/go/icl9/61reuXn755SNnPqy3e604tOokXrGLxZn85je/+VgLMZDpW9Ns8GCWa5j8WwP7zbVAzxg2IqNrn/Viw5rwq3l2Q3TsKw0GO7GLw74x15urc4TPBomVDzGJVY+nlX9jenh8lZu42cQPJyxzvvNnjtoHejw10ozzK06N//yRd4bbg/IjY4uM2fCvnuqWLzjOVbGQw8lG3/VHD7Y46MlRM8YrrsP48sEnm/jlY2011LkhTrqwnBV6czGpk3G5Fl/PyviwXQfyQr2IY7dET97ImK/Wyn7gTy4Iv/rFM2ejV0cv2p3dYoKrFwMZHXmgcoFvTNcvB7z1rW+9uw7lTcZ393CY/ItPX81hG/OnZ4enV5Nt1sAcFlzx0WttyBAeHThitbfFa06nsd+0t8esARsxZKeu4uwaY8d+MeCw5b+804FTPuHAaM+wtSfS1/OJ4LWO4rI2bOXhLN79a7/Qd57wEx47zfrp90W7uFpbMnb8wVAvvsQCi9xcHcjpkYnJWQUfsSMXm7zY8GGdOtvM7Wl/7gQufXG5ftiLQ35eHMOBzVextDaHw8sHORvPg56X4cKiLzZ70ztWdvDJ6JMjMYoDjlwRPblan9aBTZRP3+/Vgh4867rPP60/ubyLR+35UAfx2D904MJQLzjVPb984IlJ3Pr2gxoaw4VVTPQ0+1ovDz1fNXnTtxZikjuZZxY+YJrzXwziwLdGcqPr2cUPyr/+9a8f/zeKuPl6EHrgF+37G+0SkAinAkWCq6gKL1kXKp6kJCtJY3yJZduGgGlD08PTFNKc7r2SJKcPd23EZg7b4vCPzG0IzeaK8pNNMfJdDuJBdNj3Ugpm+OGd+/DphiNmsZNpxt3E1BIVx+JVf/ZamHTZkds890v0xQQHrU+yM/Ep39VL56xfbGd++tvDgyuWarTy+8FIv9roEWz22jnXm3DFoZZ6cr2L0IHn4EHkNfJ84hnrXR9kbLK3H4vL2LXStYG/WPYEnHiH4+sPOckFhkOND/po12Yxz7mKD8+e5sMcRvU3bt5a0oHJjp8ORXHSxd/9x87ZgUfGD3/axrlx4/MBUzOHo62NcTGyh0mHH/bFiXemcIp3b0p4SA9T7Pr4atA+kg++eXVrzG88OuaLE744xUO3eoZBXyve4joCvP5QA3HQoZvffFKj49yCT49PZ5iHAeeOm6UbFB0Ew7p17rOBFxnDxC9WY+tlP++6VQNyxLZxeOLXYIoNhmsGDxaemMrTGE61g8NPMerpqMdtRBYGHGQfqIPfilYXcfanLoz5R/TFivJZPfDO+fElPvbVi116cv1fvmi3jnJz38tvtRO3Pe0sEc+Oy80aiL31KQe93OC2v9rD6gATHlxjzVnF9zY41gtVE2M8cWvFu7p0mtd7KWZvpy8+9uTy0cTY/jYuz3NfLHp47T9+l2eO2PMHU4/kr6md3KsB3fTV7v+Iu7cVTa/q7cN1FAqipqNxEQJG3HFbBLdi0GgWGHVDhBiNwUNxxw1RMQqejtEYFVfYCp7H/72er37N7UNVp7tt/QbMmnOOOcY97jHmfBb1VnV1e1RMvjuOW3HxUZ/ykiN+Xsr1OOxLdHsHF1b10hO48LYex8LlS1zNxfUS7U8E+nvEvknyHHvuuefu/VaYWK6brh3fQPgBiA9UxSuveph8SPWjqx0Lly/ZdybSw4w3HPnzZa8Zq73rzDcLzrPGVrytQTHCrofpviR3vtnZW/URn67awhVTbcTEwRqh7wed/GHaN7U0F2s5Vgc87VFx6JcL7Hz1ceHDlk7O9GpIxLPGBmdjsrH44Sx/Y7bOq3ukvM9SneQVvpjVjL2xD0L9EMYPM2EVEw+CCzt6jYhP336HKR86dtbz5ZM/XPUi5R8v9j13XKPm5el50Ddk7TMearDxDuDLFzq+eiKG2ObiN9cTOcAj6Zrz4Wvf4s6OXg6+Oe3eq+9Dgs52ceHSybF7ELz2Pbvqyd6auT3ka6zxk7tnJR7ZeBf1nuw6Uz8Y9pUtodNW+K7wqeHUODv+uIRj3Xx1OKmDH+SwM/ehAoGzWItDLzctfeeEDp9aeYurPnydd9+ov/baa4/lP0O9e/mg/Vvf+ta9D9pxsN9y63zV44GD69SHQk888cTRq3/n2Zh9NVUPedbkZJ3Aoq8e1YQNf3aeL/ZWTazL3z3M/Y6/a0Uj/Iz5qCkfGMbp2MXNOmEjBjzNejzZwGSjOf/50+PfdWTdGozOinXCtnjZ8Cvm+rAvfrXgmx/Mrq+uS2ti6vlo7Jwb+yWWNTzaW/ZwiDX2aowLu+oeDgw+BJ/Nt5h0CXvPpq5V70z4ikGKZx63PT/WcSdd3/G0/3HvfoQDwZ+wNYaDt1p0HTkPxWKDq0bg8DXHnY9Ynp/i4sSn2uqLIY419dOM6dy3/B8zxnDhGVcD57rvs9XWmcWj2vBxXxW7GHTwcVX3YsGEYR1fPZz01UmuuFvnb2/4sUvHxrVObw/EwiH+YvLFVz3jwI+tWJ0l4/iLIQ+8qh8ctgR+2HD54pStNTqcrMNSPzGdB2et89sa+7DEJ3QED3bu4Wys4yqmRtjKM1xzPDT2+nKFYd75h4EbPX7Vmo049patcyB3MXwgHmf35D4kFsP30/0woVz01VMuREyx1db34n3QDotNcZ0TvvYZP/0KW+vVoj1np5nLRUvwlKecrcOoHuKGx4etOthD93dr/Dz/u3eLE2d8Ycm5PRTXuiYesYaDfVUvePbQurXygY0HvbG6VU82reFkb/Cl23PKh/DDQc8Of+fWvWR/o91/Qk7yOyYP8OWhP2j/7Gc/e28jkF5RRDc2zQYgTSokewQriPUKbq31DoECsqXvJiZ5ki2b7IqjT/I3NxZPIRuLZa6Py/rGha6YdA6CzSg2nQ2lC8fabSL36oMLCZ9/vBuzpdPLL9viZx+uuTV2xPxBpTg38YNZfuGxc7D1G8dYXfTLY23COPds4HVhm5crW3Ot+pz9b5rj0NnInx19/G7yY+sm4YbKP15uPC7aLnwY1jQ6a/jzMa7ROcfmcLuBie3CNo8nHbz6YsPPJk5s6GtiWFte5alvfIBfvsiTLjy1FS8MdvlVP3Nx2OXfnliTq9610VlgZ6x1lqy7xtkWR1y5VC9xNDoY7GHwMWfPtnOPExvXd7oD/IYvMMuBrYYb/K5rWOIQPXs2WrytGYfFPyw+bPHR4m3dPClGcz7p2Ia564shNuGjxSeOceYjN701zQPJgw0f+VZjdl4UPPjZ8IHdevNimGu42JOuBXV2vnGQh7X4dO7Kq5xhwgnbGDbM97///fe4d1ashxlG9eAn7saiY7821U1Ma+7rakCv+Q0jv23QN+rFY6+xSQeXTq76pJjp+eBSL7//1gftP/zhD4+XwDiKSdRFXM9yz/D4qqn6Wo+ftfbFOAy98+PFUH06L/BhaPzYuadq1QCOGBoJMx7p7CHc+OvZwg072/h0HcPyYmr/7OM+xzeeMVy5ZBO/4uDZeOPxlWe8ywce2TqwYd/ZjEP3mzD4wXEPJLDUIUy6coehWROrZ5cYcPNhD9+8a741eCQc64QPG88qL9ntod+W/NSnPnX81iY98RtlXpb9oIOP96beneh9qOqDr96bcO3dUVzcnMdyrhbxxUlORF6aOZx0+LZP7j09Q+idO7atwy8/8Y2zt5aOXouvWsCiI3zYVjOcamLVykfPp7zg+OZlP6AsJlv+YvMx57dCVw2sVUMYaoQXPRu2GgmHHZ0cNGNr5WBefLkbW28/GrMLC4feb9JZ79oX39x16rr020zwnBdnxPOnejr3eCXFURfjOFcnOj6aHPCrDmzxoXdPCZcPKU88CQy+7iHOLXt47DU4SePypWevwSE4GuffmF4j1mBoYsGFgdva0OOkVuqmXvC0fHAnrtv4WuenJ/p4spF7zwVzcc37TVtz8fLD0bXWvQHvhI06V+verctRPpsX3tUXDl7y0nd2jNmQrY853KQ1PQwc1Cou2S/fdO2HXg1hsKv+OBB6Y2tiq4EP2h/nb7R/85vfPD5ol794+Ns/tcKn2OY42Av/MfGTTz55/IaePXDvYKcOcT4SuP4ih80Djj2HH66evz57WM3ht5f8Nfbi732+HOShtvz1nUn2bMSHKRab8MWA3dn3oV3nnF3+/OIhzTgb08OTXzWkJ3DF77yx02Br1sji7ZgtfDzVXU/4qUc1oWNXfPGM3RPFScpBHyfrnQHx6IvLTw3YVIPlF65YaowjezWsdmw2Lmwih8UVl/AVg/Cz3+UNk8AoV3NY5vDYeF6YG9PB1NhVy/IvZ9ebNXqfRXkX6V02PmIRNvLl03nkq7lm+MNtri+OdU2t8NHaD9jFYpNfew+D1PMlOHj3hmMNhnxJdaK3bk1d9GvPVhz10ggf/uw08Tp39PjB8b2f+zhdnNTIvHj804nvmiVqGDZf9njI31jDR1w9TvIlMHy/ED86MapBvuUEX+zOgnUc7bU11wEdf8K2WlWLMPCBoxe/WsDI1/VnvThixa9c4Ksfm7CtNefPhvDNxro6VWN6TUzvx96d9d43Erjwsu3+vxzVXT1cQ3JeH3O1947Jjp8ayFmcPXPWXSPVBQd1wpu+5zf+8oMBTzxSreQcBjsxzK3DqwadATx8/+gdo7q1P7Do/JKO7yPiaz2Ro0bYhmEuJy0OdOKxwRuO61DzDu757U/H/M8+aPcb7Q4AQpLYxBTcxrngKp7N0EpYEvnxbb2+gyNxuubisbcZ2bbehloXF741en42feP30IJN6o0Xu7F1OMTYQXKww1k765rY+ptk87fOH3eN5CsXGNZJfsZs6Yux/ptr6/nri9c4fPNE7OKHzS5u2emtL7fWsm++fT5sNj49zq3r8SD0m0++678xdgynlp/1eFez9dlx/4Tb+XNzcKG7UYW5tnTWe2Exd024PujkA8eF7kZIFw+YfFeKwabYMPKBxYcd3bZ0YcBtrE/CNs/fXq//1q2asxVbT2d/+BkvpmulhwBMdq4pjZ1rio28wu4mDF+O6kTHvnOQbbytpxMHl5vOLHt2cNhVT7oeEuXiZlwrbnVhX52KFRdr/OQYB9h0+uz0bGCHRyeGRlejT+Ki12CwWzEPh74xPU76/K3BiDN963S+IfXhhwcb/ta9ALgXsusMlCMsYk/aS3V27jvnYuJB7HP7QA8zMRePLVwNhp82i6uZa50Rvvw0Ui5wOrPwyuUwurYrdjyKS685q14MPZzN8aFTC2P22epJWM1xlm8cw8EPhvP+3/ig/Te/+c3Vj370o+Ol8CB2+SKm+Ph4MeuDdrpt1Y2OD9l1Y6Km6uPMbD22BmydBfHkak1NxDDHRYzqoabZ0LVvrRdb/DhZ4+P+oecjhm8mfNDuPPcBkbXOvtjhwKDXEzgEjtbZpmNTbGsJvLXbubzg94LKhy+c7OjUkcDBgV/n7Fi44UsYrgs+5nCWJ705LGtsEuNy7NpSS9+AfuADHzh+g93YHvotKr8B5jmHNyz3Cr/BrtZi0BXfteMluh/GiAm790dzsbtfxIu/Wtm39sVa9dC3R/E3hwUbXvea6lsNqovYfM3Lm7/Gtz1oDhN3cwI3f3Ocwo5LeNbpYOZP511aE886gUnYxT0u8OnjZ71YPTvN1ay68T1LvONbPD3dxlGbaknvmq/+riccqoseD41P+dNXr7jwtb8w3VP7zUp6zX3F+XHPlRM7vKtTOPale0l563HkC4vwo6su1TkcXNnQO3/8Ost01gmMcrFu3nr7wY7OGky+bO2FWtAn8tKS7PnQw9Sy4SuvvZfA1bLDXZ56OOz7J+3Vg14Tj/C1Z9XSnPhgAXdzMfHvG3tnw1iPX7UQQ0xNHewRO7HgVIeNL1Zr1Q4mW3bGcK3V+JzFGtt6dZBhAhACAABAAElEQVSDnsQT1+zC2NrjziZO1WkxiuGe42+8fve7330sv9Hub7S/+uqrx3+Gaj/UAP/lZK/sRfvOzg89/UmJPow61w33cqyecNPp7RVM6/nbf7la16xVO3p1il/1sR53OFr39M4Fm64hGBp8ApfwswfpxbGfninOgzWNL6zs2psDZL5Y1/jEiy1cfIrFxnq84jNQ9/zZVg8+amh/6PnjCV9Pis2HvXqHUby1s1Y+cmytGIfi8qVamsentXrx+Gkw8zHWxLpNrC338mFvDSZ8Ij4xr6Z08qMrT7XKBwY+7UX3Gu+qxuGUt7nnZ+txh1dN9WJ4h3Gddn+jh+nexR5ma3A0NtrGNWdvfXPIDt76sZWTs0/EcC/c/XE9iNH1fBhef7EnSTVtjrNY9HFmbx5+eeBhzXPAtZNvubHLF6Y82Nhjz2eifuGYy4sNW2Ot2PGBT6dW8DUYi1PsvU5gOQfqtlj2kc77AYl/3BdfXJjL7XC6fCkv9sUKT074icvO/SYO8hBTb9/KFw69WmjZdN2ba+z5lau98O7jvYoOjt67jxyNxfKezbbvR3F0rp0l5wbfBEZ8OvdwvG/ZS5zKg68zCU+O+CXmri1x4BE6sfKRUzpjwtYeycnYuub7huKY48IGL3bWqp8xzn/961/v/ULGAX79pbrLw/5VJ7h4+PBc7uysi6F+3VvYyEE89xD/Svfb3/721fPPP39EKN+Neb/xQ/9G++c+97mDmEC7eRJQ8ApvzkaTCFtNwpKo6HTZKEobyV8j/On5KDC7sOtLMjz2YtksRXRzKE7F5MN+Y7GJB308O8DWXFguBmMSn2Ny+RJG8+1hiknYbb5xodO6SWYTl+b8Cb8aXXWLB/tyKWYcrIVzgF1/EUtT+zizvc1+fRsvj3R6+viYh1v+6tnY2sqZ63me7Tm2+Tln81r2+W/Pxm/Oat24nMP2ZzkYw+qmwIZ0YbtwiRuYGwu9cfHFMg7T3D7Q6dnCzo7ODYGeTr3Yitv5pCfVkk/+x8LlS3zN+S8HY8L/fNatxd+689L1KgYecunhYRwf16fGxo3Xdbm8cYKPb/ziDYdt+PixtR5+NYw/G0Kv4VtN2Gj08ZJrNuVW/ovJxxx/eTbnQ1dNjMsTDp7tBZ/s9GGUbzzEaf/jcs6Jnl2NL7wwi8nPmD4sY/bNYbSOuw/G9p/0+1u67of2ARY/NXDfVUe+7Ud88PeQ8w1fZ4Wvc7w1KXcYfPGCCduYj7OnF9+15RnUNZK++NUJFnsiPky8E+s3if3LbmvKFoZnhBcevTnBvV4s/poYeOIBq/yqB3/5/Df+M9R33nnn6sc//vHxEnOQu3zBCVc1U0PNPtFpOLKhwzm+u8ZGI/h77qqF+rOT27ne1tTBfVVs+PL20i5O9s6U+hN2YZqLGTaO5uI1xhU+XH7msLyo9kG7Ob7Ot/OVnV4LU7zFxVHDiYhLtj7GRJ44kPz0atV7CmwiZvVgA8P1xzY8sYp3ON3yhT08kk855J9+58HhoX5+2CwH73hPPfXU8aHRhz/84eM6jiMf3xi0X/6OsLn64WGfGldzL9PsiXPnA3vngIitZvBxrg72yX1HPZLNga05/3Lnu99408ONO16dI5gwzHEJR/4aHTyNv/rQwRS3vnrCa8wHHj+9OdHz0+PiGtCyiV+27DRxNXz1Xb/WxKh+cZITW41updj2pr2yXv7Wy0+s7tn08PxAhZ+4MNQKH3PNXK3S8cMP/tbHGJ5e3rD03Vf6lxDOAQwxy2vzcVbbG2dMgwG7ZzF/UqzNm17cWrxgGCdq0Zo84VdDenWWY3tJl7/48NVBPYk1MfCNT/bs1FGM9kUsAseYLVxc1KDvy8JVN/8knb97tD/VIxZ/fnjIqTNzgF++WOMDp/tRsfSe6a5f/MTmHwbs4uMoPwJPC1tcvnR8V1+d4RSXDWx4elJcvgn79t066dyEZa4Om1v++vA8K2BVo3iyoa/B857/yU9+8uqNN964evrppw/e7B5Wim2vXnnlleOD9vZWnPKXi/pbsx/GeBrTmVeL9avOcsFfHTyXqg2+fDU29oiPZl4N+NqHGgz3eOcMVniuy86I3plgq/ZhipkPXBg4Wyf1bMSzxp+dOVzXizH/hL152Onr4day0SfntfT11p1f8fViafTqR28M0751PVRX6+zlQ7ovmLOt3vrqrCdh2HMxEr4wiZ795kTP9ybe1s6y/sXUi2lNjGpHVy3gFN84jnSaeX7VCq584MpDrybOtO8lnKXq3HXA3nlnJ3YcnQeNTjP2XqDBEV9c/gSuMTsYuOGZ0Gl8xSofPDXPOv5srBuLq2frOvMuaiwGezlUA/uNzz4zra2YVxd6c7nzoZeD+OpWfczFs0bk5M+heV/DD1drfAhMPjC7j8ByvVnzrlLu7K2ZwzDW2l86a/zgtw/rUz5hdl/WW2uOE4HpPLjX9F5gTRMnCY8On+K0jo+awze2jhcc9dIIf/cr3/MR+4mDvWLv/ZSvJqa6qZFzQooDg8Cn288Xcdi6Wafrexc85eBZ3r/6wwsHDR8ivrE6Wy8nzyac4PahNls28sFZvvwIfYIvX2t8YfBxNvwCnDVzUs2N2Xl+qhse+MOyd84coXeuNPnjbg0mTnDl/o9//OPYaxhwEzzVyXMAN7bWcYXjB86+n4Grlt5b94N2fKyVo3+p6wflL7zwwhFi61DM+/UP/UH75z//+SNxoDaSCNpBksQexA6ydaSJvnGbWsE3AWvaFjBfdvRrf4BfvtDDa7MUm7DFx8YZw4qXnvCtKXQHxYVLz9/YxhW7TW4Ox5i/nh8pnjHd2pcrm+Ibs8nOPN9jcP2FvkOx+o1N31xfvunXzxieplaEPV5iNY7XYXDDF3YwyseYT37mSdjwjfkWR32JNb7W30vCzhcWKbYxHcwa3QrbbPyzS39/1o3JuXcuxFh8vPLh5zroGvHNhxcCNwk2LnhY9OziJz4cZxc+O826Hp4WLzziQ8dXPmxhlG+8ypWtlrB37baefnu5alt/GOLzo3dd7IMBLsGFnk1x2WrytK4RMeDhg7exPDVjAsMcfjkeC5cv9NbL2biYdDjEw7w9zB/PHnCLzcc8jOz18Mtn86Ard2MPmOqAu3zKiZ5tdYbb+sYsb+tszxxh0JV3vNkTmGLbt7MvPPbEWs0crofW3bt3jwcg27fffvt4MYDV9aB2fSMafjhx8iD2Q6a44uMB3TosrdroxYPtxaT9w4uPmjgvXmJcT9UIrz0jbOEmeMHEY4XdWdhUH35wNbb2Vm08sL0oeUGo7uXOFwY9Dnz15uXZGdDL47/xQfvvfve7q5/85CcH33KMIx7iquXWDcd4ti/y5ievmjk7/O2TZy/M8nQu1Ip9Io549kpse9gLnHrZH/XkB1vcMPViisdOn02c2PdNR/sFFzcftOv52jffZJiXo15LigVb7M6ZGCRuxrgQ/uLJz/2fDR6aNXnJT73gWi8um2LgxQaH/1RwWxzjm+Zia3j7QbOxWjqXXj6fvPwpAs8xtYCJo5f+Xm79UIfOvpL2xJh9eVcr58ALsF4dcFKD9lnPx0u6F2R1ZbfCp/zwzZedb6bxxce8fQij8wYPVzjFh9M5tT/i6OnUxPhBBE5x9cXma80cDzxdB3TEuabXr8jR2eLXGXMNwd61fPCW2xnHOh9656zrFG7nERf+5SAeH3Pc3P9cS+z5dz2zY6PHTb1wg82GPdzbxFp1cZ36VxL+HqrrN714OIRDr4biiYVXNuXoLLFbgaE+ZLH5wNbYrMiLLRu5dLbFo6cr33M8ODCdI02dxOdrH2AVmy+czi9bIre4sWdnzd70YZSzROTsNxf9/wh8XKvGYpC4yKl9Cds6bDHcy4uPr7Fnut+cLg9+K2LIi78abi34i6fhrafT5KzR3yTiwG5fwoFfLaop3oSeTzGMNfVREz2xviIWDLGKUx+GXjx5Out+I85/au4D93NNFvt+42rlg/aXX375+A+DO99iaURstbLmPctZUTf7Tx8Obpr9IPKUB5Fb1ws8nOE7Exo89vrOSXWKCx/N9aqpmTV44uCnx0ePi5qLG5e4xsmHIezoWysObLzlA6M4+MErB1j51JejtcchuKmNvMQ2F0OzB+no2wM9fTVmKw961xOsdMYafznLXS78iwnHepIdG2MNXsI2XzYaXXWzRvjQ6fO3pm0843jxk3cYcYFDwtKLq7fmvcOcqAHpDFnzPHfP6SyplXsmkb+zr28vjOHwxUdj4x7ZB31iu2bp4YXlOYIL7p0va/Kkx4GfWDD4si2W3GEWV8/XmfeZknX86PnKXxOLn/jWz5JdPtbp2IuNC8zqmh2ecOnVVBzPBe9V4rQmB3i44ihPjQ0s/K27v7BJ2ifxYWh0hF224hcvH3jG+uzxs7fiFZdOboStPXTv9h5P8IUvVj09TuzbJ+P4iOseotGbi8ff2VGXMPDxLsoOD01d+brn6fnDVh/n1Z7QVRf5mIcJb2PDjjs79rDtVXb+lZN3InsnVlyM+YShznT2wnu5M4KX9e7RahaG9e49bBJ82FlnKy5RG2fD9wpyrVZ85VvzLLBHuHW+qg0c+yrP6ieWa8v+6uXHxp/Vsd/wy9MYJzHw6gN0en7y9Y7Sv4Zno5bVHUf+ciRy9L3Om2++efXiiy8eOlgPIw/9QfsXvvCFI0FBHBiEiL7NddDMNaQdUmPFqghtFN9sKnhrfNhbJ/RhmyusZr2+i5kuXBsWBj+YsLRiFGex8DW32TazGC6uuMJjw79GR+CvzpzQJTuOT3jZ1Md153zw1FqHCUNbwX/j7dp5DFc7+4hBvzjGOw+LLV5hGGerh8OG4Bp2/vXlYZ1f89Zv6sUiYq/A2BYHPYEthrMcHxeaG0ffQFjbevNj65zzh8XGDadrxE3ETcKNBz5/NzD6bn7VJE4w2cXF2Pk3Z9OcLv4w+NGd60SvZbtj9njApL9J4G1jA4sfUWvXhetFLYh1PubWSPjs6eOsZ2tdjtWKD37lmT+u5cKGmNey02vwSTnki0fjuLqJt5/Zx9O8XODB5s9e7tZhGnevYK/B1Ye1cTcO/8VmX2vf9XQrxU6/eWdHx1dbKS99fsVkh7eHlwe6PNj5p1s+XJGrXNi433qIt7d85bOcXAseeDCIM+QBihMczX7vHAZMscPiiytbZ8Y1pTd3fppXT7gw+RcD3/YkPP0Kexi19WcnDzieE/a88wPXmqZGzas9Paw4hS9P/P3pmP/kJ+mbg7Fa7Qft1YO+9eqiT1rHde1ap5db/MtXHeRWvs6P3KwT9tWSTdd9901rYrPPlh8dexzZwNz6psOJrfMFm0947J3T9sq+2T/7GCcxzeNLvzycs8Qa7Dixa46H+HjQ8cvXWrWDhWOtvWDrRRhfcQgczRw/rXj6lXzSicc+/eYkpmee3/rwA2bXJd4f/OAHj+eZa8rfY/dnYnyTi5v6e6H1G1H9OSkx7l5+KKfnA1eNnQG6Gh7W5CxOz8Tygi8f+0Vnv7wcw8Kb7wobfPTiEv7q757jbBmfa2WOU/sfZvnj55rMN97m4sQXzk1CX8zy1WevF4NOXnjuMxCmGBpbdRFbM87XnO+us9dga2F1BqwRPnRqqw7qQWBnU/zybm9xZm+dGLORQ/568/jBZINTfofz6Uux4+abNB+yuyb4OROuXeeCjYYP7PDxoWOvyZFf2PXZwaDj4zzpCV821o3ZyKkc9Gy7H1mXdzXY1KwVw9lXS3O4YuIIJy584din2uKKTQ8jMcdPHeC6h/im0nOciOG6xVmc9i0e6fXacsNXfCKG57omF3YEJ7HZ0cGQU9ez9ZqYxmy35V9e2cM78yxmtnpNbmpqz+NGJ062fPGq7mGx19jjr4Z6vtngRNZOPPcPH7T7G+2P44N2PxR56aWXrv7whz8c2PaguHq5qL/vP/pFHtxcc/rN/XC8fKmere8eyZlPZ56NM0Xsi1jm+bLdplaausPVYHbW4YRnTZz2g11jes8YNvDVVp+wZUOvt8YXdnscLz6N+WlhFa8+/OybW5fz2S7sXTMmbDvL5nLBVzO2rp6uJfHcg51HteJHzOGVE+7VpJhw5N2auZqY58enBpeNtcVozM86TsZE35hfuFunbBabb3yNk/yKo1cLHIj86WCy9Y7ifPvBvLMuvjp6v2Ajf/78jGtq6VpozdwvwXnvMOZrnV/3Crbi4YL7nq9yc53jocfPPmnF5QunWtHTsXF9GItZntVBTnzyrV7W+RCc2enTO0N8cCHxxp2N+NYJnea54JlKjwd8mOHioQ4afHo1Yue+D5dOTiTf9tYcDz1hD7O82bUeVnP51XAVV8OjOqi9H1p4P4AFw1rtCHr5ArNYMPClY5++uPrWqgsbOfD13mEuDzXVu257NxGTzpnqXIlXDazLB4bmLJgncWKvlXv3QnPfh/vt7n7AEA955xc+XPl4xqmdvSRyoecrpj3pOokDu2rZvomv5kR9vGO7JvXw+fIh5WwfxROLiFssPNW0ZwYf/rBdn/CIuL7X0OPKDyeNPXy8nGlYYuDTZw/isbXGTsMLTvnr1ac/4fo/+6DdH4OXADKISggZzfg8ryCt86sgikMUsgvIGoxd66C0sbDoFDi/8xgOO33+5m2CcS1fPVsbolmXq03XW4tvmMU5Fq5zOevMCTxiLsek9eY39TfZwHBQuzD4sYs/jhvzJoyNtevVppyzS19fTHbrn716t7ZcWl+dsZzgnPXFsXZTnDPe+udLp+GkGYuXnl0168Ft3QPYT79coM4lXX7F1as7f9hu+D6E0MN3sbpeXOiEvxsH/e5fenbVQcy4Woe/vbH17MsnvXnSmt66RmAuj+zr2cOXX+erePyM6fWulR60/F1X5nqyceFVMxxgyFf+4cbVvJzCOQCvv4Qbr7VdO+NsYBefrnsBvu4t5dq9gS/7cgkHd/blbexB1odKcPiFx08jenpcaq1Zp2uuN1cL50fcs7DJvrXzPD0sYh0/vOV2tjen9wKxD6S+YdfDsvc9uIzlRRaTnf3tWjCXi2tFb986j/I0ZhNHPONH374bOzv5wnd90cUje5xgW2ufw7R2lo29+y92fnp5iqWHG7a5s6B+1nHsOuGHFykOG/w94H2D/qj/ZO2chzg+aP/pT396PNfwr2ZxuMmHnXW8ytd8ay/H8i8X9l23/OTMppyrUdfNYsIw93KlXnGg29Z+VGsxNbHokuVKV63r+XSfgikGDM//OPPbcXO++dAZJ3D46OVBtiZ8reHXeTdmW97meDhDpPrxM4ahkXyMs+Pf/Bhcf7FO+DgHrj8c/GDZnzn42Mc+drwwi9OH7rDY8pWXmuHlpdfLvrH8NfcKvl3XcvANiLpahyWes16+npOkmloXCy6deJ0jduVmnFRvWNUWB/POe7Z6XKpl+wvX2fPNPD/z6sO2euOnxRdedTUm5hq/s9Bp4YhjHs/iZGPdWvc3dSP05VG96azzNc5XLFKuxvixFc99SnP9pGcDv30Tw/3VfZsfu96RjPMrvjkxLzfzeBm/l8DA2f7j5yzQedb6xtMPfa3jiHtjc3m1R3xaVxtzLT9rbHFLb944X/P2im11lkexjG/L0T6oBzxjNYVRPeVpTRwYpBjVkY9G6JwLseW+vdw015HrUM3gsvPMFqfGT+zis9HUPBw23pPFw8k14jx0v4ZNcKPrzLEVBxZMeueB5CMP+eqri7nYhF5L+OFDqg8dez1d8+zMxbeWj54PG2vh5UunuYfpcdPzCYft2rs+fMD+OD9o/8pXvnL17rvvHtde30OoDw7qot4+6PABotrS41pe5jjysT984q/Pzj4ldM6DfAl/fp2/9oO+dWP7rPE15++6Fdtc635Aly878a3HSd3xoINJrBF7wL79OJSXL9bhasa1fPjV6LI1FofwMWYXH3ZqGi59NuzozfE1Vh/25Wqtei5uNq2rVdcPHvDKAS5hWzNvXS000rq1zkTr1vIpn53jzmbrZNxeWNf4nG2O4Jcv4cVFX12MrRNxSGv56cWIn3uP78v9AlzPIPvvvlaN2Duf8uWnjt2j1Fmj87267/Ot4U8vntqbw7BWjvjFN15wcHLN0dnb7rHZxKPc9Lg6y2za+65JccRvf4obHj7EPvYshFluxqRrMBt+2YjfdeYH1Z4P1Y0N2T3BTa56wp+d+w0/eXueiI0n3x3jyoew19iR7OVMzxZ39tUBnrFcxOrdsZq4R3gXqGbVAH6+8oUBF76c4RFxCdvs2cKRp/V88YNFxK/BsvfZ67cGfMQO01gLR1wilnH7S8eHTo35wOqDdt+HJ8s9O/UyDtN51MzhiqfJg94+6wmbasw2HjC9T8C1F64B74HeB8obRuNqJE7PLr7mYdrD9oQ9PVF3eauHcfmKxc6Z7NqBCcP3IM41Hzyy5S+m/Ydpv9gQ8eSCs3uL74Vef/31K89dohYPIw/9G+0COURIIo2QVvEi0aZYa7xrEuTPz7oEKx47CRJxFExjS5+uC81By78xTLHZhxXXOLEhDopi6+mKZ2yjHCIxy1FPrGvmMPXp9Hxuk9uw+IWV721Y7DrA2YqpFnIwZkOM1WHncBPjWrpzzzcbY62cxQvvbJfPGe88ryZn3sWhLwZf9gl9dulu6vl0JpzBYoZF50LtN/VgeoD0DUUx9DVx+JvjYU88bGHwg2lNXNh6Or2L2Vo8jPm7GciXsMvGvPH6LH829gNOOdIl/DVrCX/zc41bZy83Z6trjK3Gd8euI9cmH8Le9cWXLX01MOZbXfCWu7okbHDTwrRmnH9jehiErrrsfHWH4fWX8sNdwxs3eOXMplz15mF3P4Iv35q814d9sRpb71rmX7NubcUa2x5S5kl+qyu2mJo1Ojl1BszlWQ67V+zj2zpbOhj9vVx2HpAefj7w8OCynq8YxvZl95LO/vcT8M57Z4QtbM1Y7mG1Vv6dAz3MXgjFWOGnsTsL2+yLyyad2D0r+KtF3IrPll1N3bz8eZY4F+w83D1f1DpscWCZ4/7MM88cD/jH+UG7b9B/9rOfHVzEUs94i0/Er1ljd5OUt14dNDnns+v06rC5Oh/qoQ7G1aua2CP3g+4PzoQxfTZi8s3fXBy4epKtXAl+xp21dOc88QmvejjXdOZwxSk2HGsaYRMGW/pqY90aG/nIS4sDu/JmVz7sV8zhhrX41uTofmrMBn41FFcd+mGyb1zV2390+uyzz17duXPnmMvP/YafWK5vf7rDte9Mu+7980s6mDiQ8qUT1z631+WMW2eQD9/eyfiww1scNTTWiDXtJoEpFxgwzW+zVZtiydGcvW8Y+pdsxdszszqc+FVnuRuL3flsTR4aKa46tN901aR8xbUH7DS5eb+AqV6k+hyTyxdr8YiLGPzVonNrLT7idf1YtyY2TtbaUxi+CXHfriZ+QIMXiT8/ki+8dMfC5Ysa3bY32dzWw5N/zx78xMLdPbbrU07s9NZXYLBn63yygVMObPlo6gRnay0frTz07yXyVUMxYPGvzj23YOBGrFe7jcdHwy1b96g4ykWTH9HLLeFjzt6a5lrzvPIN6tYPrjjyE9N7bteYc1VrL9mlKze9fOGKa67BNcen+sFRH3Wis8aOnk+SfvcgPH1iPW5iyZXv+oljvgJDa+/VRk1xqG7W84NJxHCN+D8t/OmYx/E32n2o8qUvfenef4bqB4HuA+okvl5Me0OPIz6as42vGuBPV23LuzrjLif+7M35OAP2zhq9eM6Ani890WtqzF4j1TB8On78NZjZdEbY4LrPXv78NMIHPz1btdDiwwa286hnQ6zDyg9e6+t7GM8XdmEVB0Y4dASGWDDLjy+d2ljfmHFvnU1x2BFr2aWDE99yL6/D6dqPjT3vXLQP8Iz54hpHY/cjeusa23Jd/myWh7h0sMI2508HW27lwJ5/ua0/HR4aP88dvzmrdQ/CyfkWKyy5isHf9+SuC7piWPP+Q+/5Gn99udq3vt8y5r/1wIfe9eYdytxZdZ/AidDFvZpU4+5D5uHr2cUHX42NvbOev3Mvb7bWNL5E7z7u+SiOOV82/PM17tpmg6s88TYvfrkWXwxjewDDNSte+s6uOYxqCscaocONv1gkLM9wHM1x5ifPeMcDtlqz18zLsbNa330lHPdFOrGLwT8u+NAXCw6+/AlOpHPHl8iPj3U+PSvYVQd2xtaJd06xxF4//NSgeuLMRx38got3cXtM6Oxl7zK40pkbkzgfk8sXuJq4Gt5dO+ISPsbVpZxgG+PtGuic84mz85GenbnnlDjVK9z2Jx56+Pj7l4zqyMc5swftSzngyWf3lz+dWnu/cUZwE0uTQzzoccXTfca/SHvttdeuvvzlL0vpnt0xeYAvD/1B+9e+9rUjSaRLBnnENCK5JUwvOfp8ss+HfTbGi2HscIhpTTzzCkSfPQyNnSI5KDY0v3yLxc+mdYNJX6wOqLxw5b9YjcvHnMCFscKXZGPOT03o+Gjm1YX9TVj0/OVYTcOoBmwWu4NDX57GpNj0K8s5rPhvPfjTx8kcFn5hL+5N4/DYlz8MmBp9Yp69uJp5ftnd1MujFo65sRq50Xkgu2jhyqEGn21z4+LybZ0/HA/nOOlhuinUmmcTn50XY3Nhl23creNFnD0xmh/Kyxc+cTc+17dzb03upDjmrgfXSzdW/nzsjXW2XavxZsOeng19+RsTdcCLrTqaw9LWnm28Ft+YLf/WzVfUVAz92Qa3cui+QhdmORWfbbWCJS4beRpvjdjSsV9+YcWxh5qYOOphxys7+s5p9ds1vmd/sdun8jeHRfASx4NMa60a40FXHeLkvulh58FFfMjen4/ooc6Wb7mHeThcvsC0L64ZeRnjlZ1xc+eGTfE7M63LLeG/NW3Pqw0f0pnIDzauhG086q3LTW892zhkx99YXOdi/9wBWxi9RMJKYPJx7+hPxzzqT9LDrBf397///dXPf/7zI3Zxy9O6luBhjRhvbtmc7dmt8Gcjljro81E715tz1NnqOoJhb7TuZbB6EeUHy9lyvZnDo4MRplji8vUuYG4MUz7m6YqX3h44l/Dgas64uTzh2kPxOwf68oxfHOnF4rsNn2Jb50fwdYY3/rFw+cJfLH3CzxwGMXcv9bJI4tjLMGxj/6mp317/yEc+csT0zaKx/GGprbzxl6u/jehvBftg3bXfHjrTrk+1LXcx47lc2Ymv1uoTbz1MWGJXj2oaBn3n0XhFzvC1MPR4VKPs1b79Vm/7TXAzVh/rxZXbnkdjccKAL449k5d9dRadEzp5aJszG7XWxCVy0IjY7SMbPKuf/VArArO45sbdY6ypAb5i6KuFNTji4G4cDl37ZMxHzcT3jRIusDQfetATPOkIvxr89qF9y5/Ng0h+2W7Nw6DrHKm3sd9u6ptROWjs2TrDfbgsf6Lm9sbeErxhsdXzI9W2M4DfmeNheP3FGmy1kjsO+cBQV9esGopvrVjxBkVnn/DBzTlznXomG9PB0/iRxmLW4MhZLxc/SPOfq3XNy7W8YeCMe//ag59YcnIecDZmJ15SbPbwxMdLfsYwtMQaLLG2DnAWN3s9H2vhiZVYw4uIEwfxrZ1b9dETWGrth4quOXHUX4N3jkVnD91bv//97z+2D9q/+MUvXvmPptXFn/BqH+QhP+fHh4fO0NbCO4j7gX1xHTgj5Jz3obzWd307F+ycEzidefcGcdojenXQ1I29mK4//KxXr+KwhY2XfWaDmxpXVz2/bPd8iWMvxdLMxSqeOMb0aoNzOHRw+dGxw0U8LT86tTQPD9fOJQwccCf0fOATfrVDcfkiHsxyKUdY/GDRFZst4UfPJkzj5uw1a+n1/IqJHzx2dGLhT+g1Puy6l7NrDzbf4hZPz4/AN4ZPXzzj7iN0y08c+a3g41ms8fMe6Nxr5uHax8QZ6hkF07XiGYVPNTZ2xrvf4lHdceQHX1y2zrl6EPcC8cTW6MN35n0oCAsGXxg9S/nDF0/d2cBgp29v1KG66a07L5q5dRzEg4UrG+PEc8/1xxYuG43IQZ3ExKMzoG4aOz74xcVcjPjE1Zx/seQKAzY+MPTsrWkEfxzkxJadJifNXuWDj5qy1/AgbMJpb3sWsWuv8INZLno6PuUTB/NyxVVsa+Kz1+cTh/ZA7K7r6oJH9ZWfuWc1Dhrf7uXiaOzjHxd67yo48POs7l4plvzcoz2njNUFVzUQlz8sY/5EHekTuTrrWmeAjyYGrrjxN9db6zkABz47dXBtdA2xo1PT9i/semtqCA8v/OXomqqGPc/UYfNiD1+Db01j57kHgy+pttZwJfLhi4v7gv+Tyr9I+5990P6Nb3zj2CykJIPQuSG6hJFVJBvBR+J8iDnJXjHYsV8RT3G18CoQ2/z5wCDsbJQLHWbi4OXD1uGzgR1CthpM6+GVZ7Ga66uFGPmFUdxs4pKfeuQjFt5acejimw9d8dkahwG/dTHD6WGJj3qySYy1OOcTD2uLJV7CNnv6DjYs/nxbz0cPL7FePqsrLp0xya686fJfjvRnYcevxt7YRQXXefGTbY2OvbjWspWfG083CXqtBwo8/l4E3CT4Freb9WJ0E8sme9yN4elXzLVi6wnbOItx9uUjnjVj5ypfY43QtW/w2Oqtu+66cdN13bDR7LsGQ3zCz7XbfqqthgufuMJbPQxrdOXChjQPs9jH4g1f4qNPGssBZ4KnuV6s8qk2dGJ2YzY3rlnjq/HJHk7XHa4rcjnnjRs7/mHwoXeufCNlbC19uPQaKS4uWno8iZ6N3n3Q/bG1cLLhX97ZOw/l1W+1+rAdDj1sfnoCM57mbOTvmnH9GRM2xdd3zcldbHmzDXfPkHVrrjcNVj5nO/M4sYOnwaeHo4lvDmfP/9Y/nPz4EGfBi5EHvJdeGM6YGqlfGIfx5Yu5+3V/G+6rX/3qsXS2y/5Be/n5oP0Xv/jFsdftSzWxLkZ5nHHVgY1GbuNDX73zMe+ayi+dWuBSU1+Ch6aOmrjOPb7qxp8Pf2e3c0hnLp749HDUFAbd7ntx6PY6dA/3n2CXi94LGty49+7QOUzPhs4cPw2PrY0czXHCoVpl46zjIx82GtHDDb81fvnSGfP3sgjfnN615qVXPeT40Y9+9PitDR8IuV6s+U1uIrb98Fszzqs8/IenPmj3d57p2MTFNayOWwd5s4EtJ+v6rg81ZC9/vZfhPpgp12pXDvTtW3XDl744cjcn/OJpTKzhgges8rbeu0Dnrrgw4fMT17xcqnG5d+6cVTmqYw2XMGHZC/HF5Q9TnDDxsI/eM1rjB9seEHsgprMnN30fqFW/8tUTHHDpTO+4PRVbrtkb44BvtWDjm0RzgqfaEJjtVfFgE7lWw0PxHl+q2Zq1x6szVhtNzX1D69pVDyJ/fuLDZGfdfZp9Z2PPFs7qtNcyX7UlbMuTv3FirsVf/eSdT+t6++w+Vw3p2ovw4KgrLp4pRA6uSbnSV1t7Yn9IMflq8ZGzOR+/HecZ3gft9HJkIydYMP1ADp41NvTOsb782LfXam4uRjqc4gBj9fJWn/hXIxhaQm8Oh7QmjpbAwq162ktyxts5f7jhq2sftMMpd7y1cmFvTT0+/vGPHx+0+824OMbpQXuxiN9of+65567+9Kc/HTV+4okn7n04Iz/74dx0ftS8Gnj/cP7pnJE+EIPLl14vliYH9yOYcrOuZn3Iw089uydZbw+L6b4njp7QZ1NO5iQOYqmz88xeHcVVO41d5yy+XZf82gOYfOUhFlz5OJvmfOHzdbaN48RWM4cHo7MDl8S3ve4aMlcLPd+V8xym+urFh4GPsYYDnBqs9Hr84lzeeLGvLxc9aa395leNW2dD2NhfPTt7JW41ax4HPtWFvXG5xZUP/HI3ZguXxNc6vSa++6JnDr33Fj8I16zBZoeXnjg/7J0VOv/PjPcanOQrHl/3l332lhO7bKqB86MRZ9p5I3Jg454I0zPZ80Sc+Pe8hFst5Bpner7sWxcftrWa/DV6/s6M69q4NZyqpzV8zIshDuk6o8dVI3LB17ViDba64MVXM3Z28bBG9OouJ3W1T63DMKavyZW9WooXDznhrMGUFx/xYLPX4MFgIxfNGDf7Dq99grm1ihf7alVe7YG5mJoxH7Y4qJU4dHrCD0+54Cw+YYubPgz3RT/UVhcNxn7Qzq/90fPDgfR9iLHntByKBdeH734RpncB6zgTdrB2T8XeHMSx9866PMo932quFtYJm8b0Gju1sxd97yZ2uejzhQ2DrfppaskGf/voXccYV88zudrTzi09HH64548HO3XzbsOXOHsaf3wJDHmI6zrwn6H+J/9X2kP/RvvXv/71fzvIiCAlCX2t4h2sL19saEm0UebsCf96evZh0psrksPGv7mDs9hsw7RhiuywhGmD3HTaKDE6yLDYZWuteZjwEzp5lms5WA8jWz3exFq58aUvlr4DnV1r5mtPTzZ+tnr81sbh7SKQa2swYBdva48bPV1S3vxru5YPv9skjDN39vnbo+bs42fMJt/D6D5flke+6gBDcxNwQVozdnF7oLPZGolnb/hYc7bY0/N1QYbp4eKm0tljw8c8jGK331KI16YTPp04NXNrhK5xewI/XT764hvbVzZ81FutzPka02lhGrteXIvWYey4eNb4mLMJSzxzdVMLPTs6trgtPzyaWw+vnPm9l8BPqsnGhOFhHjd9ORrXyqlc3JjDVhdzPY6uL3Xp5i8+v+4x8dGLv3njSFfuxuLwz75zKlYcYLBlV57s8Y+fcVINWtfLW7MWLntjGIsjjvzy4e/htX9SQr705Y0f0TeuZq45Z0JO5SqP6mDNPayX3Phlyy9fuq4316lYePChr1Z08cCretIvbvvDlt569aCLJwwx6PiIZSx/zx0vPV4W+Hq4e0mgK5d6+PbYT9L9Jtzj/KDdf6L2y1/+8t4LLC5iyYFUE7zVo7l8zoJvnNk316uTHm51rWatVUvnSJzm7MJt//ViOAPGri9zfs5gL1zFcE2zwZsOB2eB7N7Qlyu9Wtg3IpZv5MzZ4Qczrnhr8MvJmrn9pSP2nh+9dfG06sXGvBzNiZgau+X5/1b//bldDmJq4fUOBBuGuT/x0Qcxrju/6XXnzp2jZ6MGnmFqWH7//Oc/j7PrLPsg7l//+tfxTYK8Nnc1hCFPNag2cMQSd2tM3/2Xr1zNtc3JHrO1Tl9+7WX5qY1x17l5dcYTL3PSfqsJn75Rtu5+owbiEOvZd73IM50+2/LHV0w109Rix+UCWzzx3d/ocRIHpjl8Npq14nX/FZNd549fta12nYswj8QuX/hVGxy1dPSEj0bi2z3bXPx+QcG46xQOHvYDbz2O8XQ/pFdrtmLwL9YR8PqL9dptNmvv/Dmf4ovjOqTjqxE8CBv3EB8i2iPx5V49tj7WzXEhbAhM+9LZUxc4m1M+craeXzU0VzsNDl8+eOIoH/EJDuZ482eDv/3GyTo9Tno45V1d4Iiz17oPkn0AAAsO3OLzh6XZb77xoevabq/Z41Gczu2huHzBybo8ixVHNvSw+BWbbsXcOhx4rYcdDn7WNLbtc9hyzHY5wOHLR93URQ/HebIv1vBnS/Tw7aO/0f7mm28+tt9o3w/afXjo2qlG6u8+4trsGsQH/z5cx9uZcU6qkXV7qcmdDUnHjk6Oe1+XN9/2tT3Mnq3WGYFRbeCbd76MxbbeWadTa1zzZeM+KKbY5jDYafwJbvRrw6fGj41Y7NaPvjksseHoE/7lzr7crVcPuCvsEvjs1FhvjkvniO/yzy9u7HHQjNnGky1M/Nirv/Xs68snf/0Kbn1/bE2Dh2eYdOHAbUwv/p4pOn5s8NOMa2KzIc41f3O4zjMudL5Pd/9hUy582ktjPNk7K2z80oQPMvmrMXG9WHfN6MWq/u0JX9eXno1GnOvOJUwY8NnJ0TNHD9N690a4bEi1NK8ex8LlS1xay6dawWTjzPe5Fh2uBLZ19/audb5wwuKLo9jyri7qK5/y3rNYHmJYFxM+YRemNfchHNoXZ0H9wrXGV+t5Ytw7oBrD5MdHD19t2chDTnKVR/caenH08ORl3dh9ECY/c74EF/ZhmquLfHfP2PKDh092XSd0zuriVFuxxOUjBx/8GhP26iUewVE+7OTc3lnbD5xhsO08uLf7oN2/PPWsglH+fLPDpdzpxbdGZ4yHmstdbM26lrCTLxu9ds4VjrPk3d86kXOY5nDM4agde332zo88tPZODeiJmGHCiE97Z81+qYdfRvCOIw/7qL56uCQexjj4PvyNN9743/2Ndh+0lxBSFafNQpBE+JicvrBhD8dYUwQ6fdK4dYVwgRD4689mRQEdEHq2is3fT34cQr6JscYuHmHHwaYVoz5/Nvmm0+ebLr/05lu/Pdz4O0DxNBeDGBM455qlh8suf4fVTaBD66K1xh8PWLUD/PqLmGzOks/qyy9deTav37xx7IJgX4768mefj7zIOVbYGzObzUE858J5UAs3Yg8UN4BwsykWffW0RvQwugnJwQ1SzxamZp3QGbt58AuHvvzY4QSjPIq7+edrX6oXHT921a7882VjXBMDRs2cTZzgual5mLFxXpwbLX44G2tw4w+D8Gu9nh1s9eg8mpeX9fKOC5315WetOEew6y9sk2KWY/rtrZUjHvJ0Q+76UM8aW+fSvURvLp447NnhSG+sJ9bDMI6jPn99dZGX2nROs4m3dWv0K/TVKH2c8RO7muGTsLHX8sqObhu9usi73PHdM+LB56fFPmz34ledPMg2XjzFx4ngLZ9yYpOdXH3g6bdRvMhWT+t4afDpF4+fc6Yn1sKvTs5z3NKxpZM/H3Hkalx9wtPz06zzE8P+ic2XrjPFhnjgexnyw4muKX5iqpt4HvC+QX/ppZcOn3yPySN8gf/HP/7x6le/+tXxctF+0uOpnWM0Z0PqjXGVG7/mdAnf1ujMu4c01xcbdlz0sNSbNN76qpG5ermGnUVnU159kFBOy6W9oYuv/YNnTa/Rmfd3utnbU/p4WtfocBFfjjix4eOacA0YFwcvsTV6wn6l9WLFiW+6bPRnf9+EeuaIiZd3AH9/3Qc//nNTzyzPQL21aoWrd6W7d+8e71x8fbhObz/01RrfaiZ+15NawMDL9af3gb4PhsSzbs/cM/omsfhqB4fIma1vJuiN2e213ZgtsS4ee2KMt16t8VQTuatPz2418BtphA08PTxjrfuJnK0R6431Ww98nUe9NRyMO9f86WH3zS2OxbOexL85DHtD3xksd5jFVge25ura/nXu+KgHodPiG54YCZ14vgnx7qSOfMSEY40uX1hq7BtpPTu87b9/HaHuzqMY8i4XditilIc4bFesJ3zNa7BrbMJeHzydx86wc+k+7fsOfK0TOHLT+JvDwxsn+Wh08bSW0OdPB9e6s0X40LmH4eL8aLh5XuhhaMXPz7UQduuw4ginZ306vnItb9etGOyqj75xe6wvRmvxsoYHKY7adMbLFTd7yn95Ho7XX6pr8aiLZ1xMutVbI9bzFYvgZE/xwEvs/MPTy4Hv+qyt82Gfug6t1cRyf3ncH7Q///zzx3PcXns2iaFG+MrFdek605eDuf11L6BzPzVvH+QIb88pnfzZE726yctaZ9JZ2XtMtSi2vtp2r84GHhxc0h3Brr/Ih757eTzoa/FihxvM8zlggzO9dfMk23PfejHzyS69GqmbZgy/Xl4J/Zkbu+rMDnaNrbN0Fjz4aUm2fOMJFyd1UmP1IfzYsOVnHv/2ohh87Zk5W235GRPrGns29ssa7DDwsSaGvPKhjyssPu6f3hfcL8wJHhpxbj1j8O7chBMuG/b0dO973/uO55U5DnQwek+CVW5iWM+XHnd4fEjP0XJ0vcEqPr3z2B7S08XzALl8oVcjzVoipvNTHcPDXYOtyb8awNraGmswykUe8eJnHAcxiPcg9wx+Nfr2Uh3Yth/nZ8XWCld50O2+wRXfGg79vX32vjfyfhC3aiYmH7XX6Olgm8Oq3riWj1hwYfa+yc5cDnhVQ3kSPvCtwTIXp/j87bfeefVunb0zgouY1vFQY40NLDXz7FBnHOhq4riG+uEoLGsEnlzVhljDD09rMH2Y/Je//OV4b5cjPS5wcSjOAXD5gl8c07FLZ5wYa5478sefXfcQfDT8xKN3He8PudQQJ4JLY7ZqKZfqzgaWerALFwe4XXPWwilPeK5LNcfJs0ptnK90nYk48cVJz/fTn/70/58P2hHQSBthTFchOhSKISF2CTubvrJ4bJvzVeAurDZFHGthF49vOoXja+Mcar+loW8zxBdH44+r/qxbzDhnC0srfusP0sOFQ/hrcQ/XGt1Zsr8pLkzYxJi/A5eug5qvvhrwiZf60cfR2lnCz6da5FMt86PXxHQz8gGaG5QbDV/non+2uljhh3Pu4W0e5ZyOvwvXhdOFLGYNTzbqtDdoOOVi3dw67nCyd8Fb09x4zMUrXz5i6dNlXz1gtU/ZlHdzPsYEZ2JOT+Srbublbh3ObdJ1glv+fFw7rpf2MLzFiQtd+dwUi51W7fRxZq/BJ+zCaBy2ObHemJ9xeOm7cR4Oly/xr26uA+dNs6al6+yZG2v8YLphn6+N7OINKwnbHEe5k84OLJzp0xlXo/KBEy9xYG08Y23t+bR/YrZWDczZ4CCH5dpYvu6/XlDC0vOtHnh5iJ0/aOfrQcauOPzijRN9fWv6RB1cT16U/T3pfF1/BLa2OW0ts4+7uSZuD2/zcz3bc37ZG8Pma8zn7IcTG/eI/MrRGj/XlW92fYCJgzOoVo3dK/qN9hdffJHbvTodk0f4oqY+aPcb7fZTfhqxVs3LDc8Vea6ddbZ0xjU5a/T69OZ7vRV3cdmoXXVjr1Zqg2vXavdJGPR4aM6wGvYBCDxng57A3Xt+fvS1sPGG7exZM7en/NtzzxMvnJ1FNmJ1LZl78dUvPn8C35qW4FxN0ulxJXDY8KmecOhaY+t68QGmZyzRP/nkk8eH3f1muVyI8+C3PNRK7fob7K5dcax3jZnDj6caqJFerrho/syBPHzThpcPWnHwXITF1j3FfsFr3/Mvx66V9h6mPcK9vSpvudDzdWYIvuJVv65Nz2kNb/b8vLQTNr3oiwef6K1pfGBqeJiHYz1O4hNrnedypmPrDGliZmutWutr4jVmK45Gp3Z6YiweHPzkUd3tcd9wii9ufuZs6+nFhFNO1l0L9h02GznpzX1TJZ/qwlad9eXFvh800olhD/iFS59Yd13JgR6HpDU9PRz9+md7vx5+58+5c+7xTN/+OVtiwe/Mq5e5HNUzjvSdSTpNHdsfvTplYy6uD7x7dtLhg8vuKb8ErnnnQY933PHlDxuGObEOW13FkU9zmOzoNePwjcuF78ahr4lhbD/srXuAewHhU1z4nTVr+Yt33kt27K2xWz++K+HgK5ae0Fev/OnCLK7YrfMzzsYHIZqa0qurVq2c4/5G++P40zF/+9vfjt+se+edd45aun85a/iIj2v3464/5899Td7qLUd77Awb0/PVjLVqs3V3PtWLTi9nH1j4xQrvfvDwINWxa4E9MdfE78w4k84b//jh3N7QWYsfbC1uxgTvemNcqos5e1jtTTZiWSPVoVh0MKzrxeIPh8Rl+VonYe14OYdnHZdtdEl8zY35xTk+9JqYyXKKZ2tsq781Z8i+4ND12F60d+zwh0tgsKfHSbNO72wYWzd3Jvnh1zUC3zp9ZzYuzrX3BmduxfryMIavh+PM44Ezf3nhoXnnEYfIkc7c/cj7W3x338qLjzhisNXjD6ca8BfPXHz17F4Ak781mPw1Y9zrrSfG2u6p68C1or7iw4xvGHTVFtY5Hnvr2YhPcNbYuz+rvXg4xFGO3Qc2Hjtz60k5qlF14quxpYs/fPco8WF5F1U7eHSkPPm5f7jvsok/HYHNNj56Nmy987hXGRN2fljpDFRba3JWH1ydRXsZhvuV2Lh7z6F3juCUP1zPbljGclAPwg++Xi4wnKnmej744CsvMTsLfOCyE1sLnx8f/+LUnxfz/WXv8PLho8Fmy5fo1Wll970awuAnF/vlhyO+zyDl5HziGz/XhBq6/sTh39rGs6Z+e12EK+cw+cKAi4OGHz1+JHx18QyGSQfH3qlRXPB1Jqzx16t5Ns8+++zxC2+P+n34I/3pmA6OopKKYxxJfZtE77BKNB9Fkox5OnaKVWOTThEclopozZitjcEhW2N6+G24DXGwFLgDdjhcvrRpeMDia5wenvnGKh6M7OIb7vZh0O3YHK5GYImlbQxr6keyOSbv8aUDezY7Y+NeHmz5aWoVF/1Z4HRhtA/nvTdv39ZfTBefD86eeeaZ4yKks2e//e1vr/7+978fsdfnfmP85FAezpybX7mqsYewmHpngk5MZxrHfKobXzo2Gntrbrow+maQ3o1Srw5unNbEKH71q57sYLsR8COw6aplvtsXgw0J95hcf2EPi8S9uNcmR8cOTtcGW/Vz7WhqUk3ZaXD5bdz4rU4AXGvm1U5tYGVfzyYpBn9+7G8T/tVFn6+zhL95/ubykqu8vbBYN6eXt/Ogrx76xlufePPPd3X0SRycCXts7hwZi4Wfll11C0N82O2HsbOTjzhsi9+8+Onr19a4ln3xzdXRh8J+UEnY4tOzgA4vNucP2j0c1ViObHZP+J2luHhWd2NnwHXlt8N6qfDgpmen/psbPTtcWxPfmJ4Y9wLDXuwVeNU7PRv+YlrLj95e8BHT3P6my5+fWlgXW72cQ883HzpVK9dIf6P9cf9nqG+99dYRp3rhhnNSbvJbkbd8bhI+GmEjP40PHGeFnOt5KC9flgs/GDjx86Gg+tB1jrJnQ+/+2/3WS5Kz6nlvnS+ccHGKl/hs4Gls7ClxPuwNX639th4/zwEvep4r9LA0Uq6ucU1Ma3w1sdRMnGrHjz4fmHixwaGzQ9e5cY6s89MIPD/A9iGPvxEMz5+M8ffYnUuCH05wfGPjw3VYzqEPydWNDc7hltsBcPlC76z6plZT+3L69a9/fcTyjC+P6oyvWBp79cDFHhon7hdeeL0Dstv6VUeY6gKTdBaM8YuPnuBiz3xzpRcXBlu1MYZhXd3E4asWYVSPA/DyBW+4xNj6cm3uTPZDoGKy902a9xV29EQvL326Y+H6C3zc8bNuv7q/5qu+9sf57B2FnevDB2TOFN7ylh8/OfPBq/3eXBqz44sz364zev9ywTdgcKyfJVz19BtG/jQRHR72RD3iW+56cexzOrjGcNRKryauS9yKc45/2/x+9uJ0b3GNqJ3cXDvqnm/n0ppmvrUSGzd70z3KnB0MuM6856maypeejT1RF6LXqkU1aB/Nt8FxrWvVkK145mxhWaczJ9nQF4veuFzlH25+bFpXBzmog2/O/RkH/uLat/aOrzEpZz3Z2NlV4+VPdxa++RjDdE70Nfr2K1y9upcTH3mSxvbKPuLQPU3NiOvuqaeeemz/Gap79CuvvHL17rvvHvcL+6/GuItp7Brqmjd2ZlwPWxe2uHa/tt/ePejkCkd+mjFxf4LbtcXXtev/7+h6sL/i5Ycfn85pfPqlNzVTT7GdIXM84bAlzkNnVJ7JjnGstQ6HTj7yZQ+/vTG3Lha+zgHbYrGjs//ZwMRHnYi5RuDVxOEbrrmmDtVGbCJmTcx8xS2eddhixwkOyUfPJoEPg6ilxpedmsuhaw0WbvIkauDeY52uXNo/NtbwwlEcNmLCh03Hxr66DuCwh21dk6vz4p7v/YG/c+bdPqzqoYddHHGNxdHg86M3/tCHPnTvrFqHK081gmPsLPtQGQdY1di6+ObFwB2OOqlD6/Ty5EP4iM+uGrOJPxuxYcCzFic4ibh4WYfNBp596VrJVo8PPPlbZ2suFj5682LBzYd/tnpxi6fHJVvrmjh42U+8w2dLrGviaPRs4JjjR4prjTib3pGIGuHOvjh691v3nN4LYboPw1B3Dx+kqwAAQABJREFUvMSLg54fm+5V4rK9c+fO8a5svXcz/nIS37l0PmHgpraezdatialesGDKCz92bPCwXt70akrovGeKI0dnxJpm7L5ov2FaxwsHa+b81Qc3IpbY/mzMn//853vvJtY6f9XBnP39BK4Y8mIrH35y7j3N9xnVxjNBw1EO7Fxjrn89DLz16gWbwDem51eu8hUPXt8b5y9vddPEZ2vNGAYs8T1/9ERvjS1hKyc1Kzf74/nk2abufuHtBz/4wSP/y/KH/qD91VdfPRJBVPJIapKr0WtsiGS7wdlgwlZSfElFYUusV/QKvIe24vNnF4/wxIchHj96Popms5YfuzZI/PAOIpcvuOGqh+NA6NnSrX8+27OzucWAn5+esNHgwtPuJ9XmQWzjDP82waOasXFTcIhd4NbEw7+842eeLvzNCRZc7SZxofrnYT4M6EYG++233z6+0b/J5zaduDi2t/i7kPGzpu+C7zzibE1MY3sr991jexcGG2MXtotXY0tgqpO5bzCbn+vClo4t7PDpjcOLc1zE5aPnHy6/2yR7+YVHZ6xWWuOuDTrizPPT2j+x41dM/nHsmmbXPpSrnl21M+ZL6sMsjtjEHO8HyRkuW9I9Aw49//Kls+7Buzmog3uO1nVfXPOa/GC0pm7uN9XgzFcO7beziQ9d+nDq6csFv+LRs4mbOPDykzf7sI01XLX2Ehd8+Z39YZAwxPJC4wOF/GGWr9zheUnx4Y2fpqurWmq9sLMz18e3OqVrjitd/NXCS83TTz99j6/rGcds+BJzYq61Di/+rfXwZi8Hkj+Oxri0X4fB9Rdr5YFHsSwbO+vpFkvd2Dt/Pczx8PLW80luHvDf+973Hvlvwy1XYxz8Z6hvvfXWcX7UozPQXpdv9cefqJtzwu4s5bZ1o2OrpsXpzOafffN6fuLCcB06e2rl3uz84EyqP1vcOsdsvSjxg+H84WBdHuztTTnGo7g408VbPH6wOiN8zb1A+kbNfsENI8x6fhqfrmu2cGCLldCXD1uidnjoxYGrNr3UwqEPC4bnkA/W/XDKmrkP3fvNEjHZwXXt+jMeauW3FP2zU9jw2IhXfmKZl5tnXb/ZwgdH3PzA3Jr/sI+v3DVjNvaJfbnLVR3lLubabJ7s1JKdMVs82ye6nuPika0znfcN9xPf5Oy+8JOX86FOYrDHEYbxYrI1h4GHsZxxIOb08XRf9FKvzuHw9cEyTuzUrtpuH4d0xVVPOvcO1wdRD/XT8NHKk10ftMsp7nGEax/UIo56ebSPerXJF7euM+9d/iWFMyGuGKQ6HJPrL/zcA31jKAZfdVB7HHBiU+7c2MXDnstdk3P5dD2yrV4b90HH/BP4zqHnoN82r9bu2/YsW9yqC50cnKc9S9b5Ow/pxWFvz+h9IKCm4tJXc1hErbTNT/5q1d5Xezb0eGowCTvnYe1cl/R04vJT5z2Xh/Pli3XY7Nm0T3TWOjN6Ta7Oug/aSTzjB4MOTuelazLOh+PlSz5sjVtXW420BgsfOWxu9qazBIOdOWFvrN7GSXmms0fun+plT9VPD8uzwTvLd77znatPfOIT/7ZX4T1IXyy/0X7+oJ1/3MVUL+e/+5eaG1tjR9TFvrsXVTuc5WYub/bqWD1g+p7HNa0mrgXPDL8U1QdPYufDj63r2XMStvMKp18wUDM8YOntobg4i2F/+KmpGljHnVQTYzHZ8oWp19jjwbazln8Y/OIsd/GKw886Pmz0cOx5daI3FrdWDGvxhil/eDjFiy/RsxE/GzrzbIzh8ZVffuKJba289fgu/7jAab/p8MQtTrC8P+HTnpY/G+ti4hVXOMZx5tv1Zs/tJ072Wf2swYHrXHkWd3adGXjlp2cLW7OmwROTH/78rNN7BsFVA3Mc2IVL35mWU7HsL4EnR61YxQlHLLz4ZEcH29nfe6l6sCFy7nzTWYOzIiYceGys2zO1U8Ow8mEnDzl1TVkrFs5qRYpX/fiyax13a/gXxxo++s4JG+vswqhu1ax9Y8s/H/tPzMUOGzfPWKJGYtFpYjm77luej+4b4RvjJn57DAO+uT3quSo2WzXxSwF9WOw+rnXNqYN7Z/UQy1rPfO/UOOHo/MKELY49YC9+50UO1Spu/UY7Wxxxja+cYMWHv/13DghcdWs/+LluvU/5jXY1YmtvYPCvDnizv5/gDlsPg385yVf+nuf2KVx7owbs1cM16DnoGSAmO2t0/OCR8o4PvYa3mqknXxj4yHvb5sKGWHc9OF8EH5jyIHyqKc6aenm/832QsV8E9idcX3755cMH94eRR/qgXRBNwiWWTl9xlogkbVYbW7HZ5LP2FcmaIiiwAsDOx1qHK1986PkXg5+xzarBYbdins4mEj3MtW8t++3zYUOfH54E1q6VT3Gs45r+cLrhS/aWbopPD4NdNTrbsblJcOCjqReh24MJK721xHjzo68O2dTTuwB8M+Ynzy64ON69/G1YL2JyqOV3v15sDVf8u0nzMRdPcyN2wcVdLzYbZxUG0S8GLmz47zeC6fnAdQNyYy6Gi92YLxHPmF4vDoxuGriQemN22S5vvuz4683ZNW4dBjEn7PNxLbtO9GpHb+9hhB2uPNLjUS7F0RdDHGM1LX/91jibfGCHiQcxb/1QXH+J2202cikf/nC6F8B2E/VQoitGPnRakm+16n5ET+DlQ2cPytk8HR7tY2P1SOK59ta25sZiVStxinFbDwPHaspHrsXZtWyLIWcPfC8g1TMbdXBW5OTlwwftHvJeDtSXr4ekHh6dXlyil3MS/83RGhvXnfuFsRcMLyjsjT3Me5nhSxY7PPxJdcZL7mxJ9YmTOb7m6XbcHrSnB8jlC5ubdOKUf3U19/Lk5VKNPe/k4jfaX3/99asXXnjhgC2vYjxsL3YftNuHcoNbHmyqRTp26lZO8iLWreWfLr/qVRx5tsZWHDYbL6zWzJ09Z8h10jOcP2HXPUVP2PTOwN9Z5C8HjQ8sNdab47b8+LHt3Jqzk7uxnMy7ZxdbfPryaszPmN+eC1jaCjs2a2edHY7VNX5xkYuGCxvPKB+0f+Yznzl0nku+qWDDR26al8p+QOZcqJVzqBevHGCWe5z1npG+wfXizL898pLP5/+Iu5cVXa+q7eN1GnZ0hVexpXEDakRsuI/bJIjiJkaTRkCUqBC1kYbY9QTsKHgmbrBnQxTcgErcgYfx1e9O/fNe3G/VWlVJ8Bswa8455hjXuMaY8948z6q1lmcuDFhxNY5/ubPdZyK9+4vGnvARQw9TrlsvNnDo21u6alkuOLtn4MaOiOM6lJNcfFD3HOdLp8E2h2NO4mHNGK741vGMj96HEM8ccdonejx8EBGPX7XaGEewG34Ui198xdbM5aiJycY1ZX/sB1+5x18I99rqx9++mIfNli4fOM6Lnt4fYvQ3+9SE6PmvsFcP540fHs6kWvTuxSYRLz5ykR97sV3ncqNvf/Xmr4XggZ97i/o5h10/znxx2jsx44uz+hE+9h+OMeHLRo34wxNLfp0BWDDUKZ9imrPj27gz0TnQ463BJ+x73sSPn9zou9b48mHfPraX1nCNL9x4ZkMXf3sih7DoCVtt88iHrlrZBw0PvTV2xiR+dMaJdTH12aqftnbwCB0MbUUd2MTV2dPYq1fnmc69wB+Yf/e73z2e52Ev3m3G8fOl9pNPPnk8x90z4JPFxVd93Uv0eHYdbC7ycBaqh300FuumusDrnmk/XLf+0A4Of75xMe4c6KsZvu6D4ovX+el8xR9nY3uWbVzlZGwNLju6zU8cQocLW7H0K9Zr9HBhasbVQ+7GdHJvrZj5hb2YsMLBMxw+GqErpjl/umK1Rg/DHhnT19iTuGWTvrWthTX7457rvu1Zzp+NffVeCp/d9taXO2x8iqHW7HE9N1h82eDoHHs/YefcmrufW4epOQ+eS2zgEmPcYej7gh6+seY9TyyYxnxx5yOW88yezpqzZs1njXjSx8NaDQd+9faKrXV8xTUnO4bFRm9d4+semoitdWaNs3Of6XqhJ9bgqREfNrg5t5p4bOLBVs000vswHurCvhjWs6dX97iLhTdccfiKQ8rhmFz9gA8XP8IHBxj4wvHs4WtNnGrTMyYMduKL1z24fPjDqn7FdO8Rx/54R/FlsbPH3juRexo8c7k4QzDDwhmmOviSuZqa44qjs1tNqlv1wj0Rw37xhaMm4hB24jS3Tsem91T1sS43jaiJe7LP4Z5F8dDnbx22fSQw4J8F5/aajbqxo1Mb9fM3ZbvGisFWbuzU2TXGnuDATs5s4DW2jld5Wyuu2NWYPl/rBNd0bAl73PS4uAew41Ne7MTjg5fz4Z/c8Qsgaupz+HPPPfff+412/xlqha6X8Ir56iS1Yk2SEjOGo1Ustq0Xw8GxOUQhE4UiYabnz77DB8fh1NjW2OMXR37WEvg26CxxXts2mE+82MmTtNHGbMUqP/ZtPr32IIFx5r25iLtczM+4+MPR1jZ9+enbr/vxEl+emzfs6wSmC8AHWjcr8dtjX9i5UZnHOy5nPPpycDN04xGfmGt4we9iF9ecXzXjY8y+WOZ94IRXTeHgrZevusbTnF7DhbjBaM3pYJuzx0N8NyS64uvhxq09qgb68lArPMzDFCfbxmGbN3aduMZIubjhdF7YqQtc+Olh0xejWsereqp3a0eQ0w9rcJN4NdcXIx2buNKJBUOtrNXMtfyNuw/oexBdF7NY9WzUWW081KtDvtvjclPeuGhbz/i3d/Hdno2YxY1XvXX++sRY2/q2Vl9e8aeXp3Ph/Bk7H734bny1UEc8vaT4bfb9jXb+bDrHbHc/xOKLX7jxvy5Xa/SuL1+EmXsR8hsJrlXzzQM+oRMXj9arLR9j+cKOD7t4ZwvLNcqH0Bvjb6yFfxhc/aC3N9oKW/5enDzYPeC96LHzJ+nPPvvsxeOPP364XIe7WA8a49AX7V3vMNVFI/IoF/NdVxtrnbH86Imerpzk5ezEu/4wvvwBB161tL4Y1cyZ0djZo7jCyWbvIbvHML04+TJZD59OXF9Ee/HCA64Yiw/HvDj6cw7wlnNzfHDTuvfxhSkPerbEvBociqsfbAi/8kt3ZfKyr3ycy/4AmI9njn+24JFHHnl5zYdH12PXtw/S/tkOvynpxRy/9sVYrcWET8qv+HrcPLvEg6uxo1e/PgCJW33xg6tt/lsH/sUrP/7uM+5FuLGH0TOXXZj8w5ZTz1c24bGxJo7rzr0LNx++1K4PWTAJPL58EmvmcVEHczjttzk7zxvvN6733kPgWPNFh3hw8OmcV6t4xyUbMejM+XZ/4m+N3joOaqC31v1cTbs24gJDvPDcW/maJ+UEG8fu8/zk4UNY9cvn3PMT35kRw28R+RDoumz/2IirwabHRf3k5rpVV18IwcGHjfdKH6DZ3kbEeZCIp3WWcXfPNq9m+Djz8HDRCO50bP3BlmvPGs588TQvX/Za/vp0uw+w+eDVNWFv2OKHT/c2ddJ6f+HjjPQHG3DVzrp7pmuiMwSrs8YGZ0LveSKGXGDYS9cBOzE2JzbZWi/vfDqf/Ag8/mITfftsri5w2FWDakVvnJ59Qi8WP3K2MyfFPSaXP+RLYKt3dVFvdXN9OxPuU3J7+9vffvHDH/7w6OXxSiQuL17+EtLTTz99/F8r7nl7v5CjVgz70zmQYzWybk2PrxyM85MHW20x3bOIs9Ke8G0v7YmmHvQJDDWsXuy7fqzJTey4w8bP9U3iBpuNdXl1DuIPx1p4/MSsdrD4LDe6s7BXAz37jZmv9eJWt3BwsK5PjHEhxnzONRAvH9jGcOS9McLq7G5+xTvr5KGtLCZu7pX+YN7fMmfr7DrLv/3tbw+udDgn/MNtH62Fq4cLRz6afDwX3BuMnRV5OFM+U/Nh37PAWWHHhp/mXCyes6ImmvcftkTs7mv4icnWWFw1EoveuPrIUQx1aM/wYsNXaw9ww6U190HrOPAVjw2pLmzJ9vDk6pmcnj1s+49bMa2bixXnA/AKU2w2ePCPAzxY8aWXf9eZMc5qo/7GbPnV2gsx8LGOgyYen+oZJz5sraut+wju7YH4/Dz33Y+yLZY5W37Wq691ODgQ2Naq39aJv9w1PsQ7hl88cabkK0f3be9C+IhL7wyJBV+TO717r/dpa/DDZWMfxYKJBx92cUvfHB86GPzkoab8qk86672vxctcfdjgIr7nN505LLzi2bu+M0CsV8dDcfVDDcTQW4ePJ16aa9Znb/WiJ+zzkZ81ceRBL5Y8cZPL1gdGda5+cRBPzWHhUr2qGRy2pFzWV3x7zb8cjPEj/MVWN39Ty2cB9XrrW9/63/+ivUOgYMhWeGNE00nU3MVLV+JbvA6Owhsn6fkYu7jaEHEJPdyVja9AblyaQnb4FT6O+fJrg3bNxhYvWz1eGtv1pWvOz1xudOaaMeEbTj56eWl3kfzLgf85rjlhK3atg5jvdXHZVv/8s4szGxhqVl7Z3NS7WXkwOvxq0znwQcCNw97dphY4VN/yodPw0VxQ4mnG7AmbfPTmm0s3B7a4sOkm24dI+VYfZ42PNT0f9l6Kuxbgi4MHbjDpuuiNE/7w6XDOnr81Ov7G6hf22sEqN2O2xdC7Ntys+GfnmguPT7H1xTCWozlM/PkT/KoFG3zozsKXnXXju4i64JjAj19retyS9HRydM7cK9aG7XVc2YinXnzi2z2tGPR4qMfWpPVqs/uWLT+y8eGZa8UMq54enjqqJ6HDmR9ca2cpp82fvfzkpV6ah6IP3eUKm14t1ERML0oeUL4wVlf1haOxYe+a1otBcK4OcTXffVxufMxdU/4kXVz3j/5WTOv6lfjirxE171zi155WR3Ho9Z1Pc37tEz17+ZTTxt0xW3xxWYGlvr588Td5+qLdf57mr5y/1l+0/+xnPzv2DQd7oR5yrO6bB641uRtvffixr1awzOXELuzFLHc22aWDDwuvsGGIDcMe0fNjQ8LRs9HYEBycRWfTCxS9GGw9e7xE2xP4zqbzLB6/dAfQDT9wqC6w4w0TBukeUB3pzvU4z9l2tvAx1s52YmjWxJGTDzp8PIP8s2zvete7jhx9kPaHU3KseSH3Rbt/k921i3+x8CS40IutVUN6IlfPNk0N485WHDr11rsnwMqXf7jlQUfoy88YLxj20Z62T+LL1TPWXohFVwsDv65dNvCykZP3DtcgjP2inY/4cTrXJ27iEM+7xsXhI2cxfHnheUtnnbCXg/2TV7nrqxcb9nHBGdf2w5jYf3b0sMTV+KmBnIlaup56DrYn7NiUp7Gc1IGu+DCywa0PTmK7rpw3+fDnEz6/neOAJzsfdNVnv2hnz1cMNu798hBbjvKors6berH1z5P4DU22t5Hld5M9G3UWs3o7M3LHBz+5xANO9dLHty/azTUctWzba7U0TqzTnfdBTDj55UOPqz3GyXXjmnf+et7Bcu10bu2zdV8Us5envOGIEQe5Ejjs4VsncrFPsKorTtbZs6UXW1w5Obf8jNnZR2IuJnuNr5YOLi566/gaw+ZL2JJysW5N49OZMRa7PIpxOF/+sF6tW+ML11ydnV9/YOQ+pQbvfOc7L37wgx9cvO1tbzv8w7pLH/8XL79of+aZZ278oh0XHEn567eu+Lu+1MAf9mRfX+30hF5jS/iqW3nL3RiufbG/5oRfduXAHha76nwYX/0Q17lxLhJ21d1619lNGPzEY1dcurga3yTs5SdO/MWnN6cvf3MtaU2fWLcHWtjWnJVqxV5jK5Y+DvLmZ90anK699BvPmC9btWcDQ+7XSbHcr/0zc/6pN9e6M+Ms+79W8IRBD1MMuO2tWHTmxgSufXQNVHe8vK/3ZSx7Ns6UZwZp791/nCe4cvZMdj+3Hh9r5tb1sOnEM++e0np1qxb0e22IL0dnr7/9R0dwlxPf9oG/OpirD17VU3zx2BB+1vCDdRa5uo/yYQePwNTECM8Yz+ItVv5scDMXU63DER8/uXedLbY9M+eDCywNTnawrdXkZ13N9Qm7aoez54/nJWx6eMT9Us7qFZZ1rdrwJ3Rw1YuIFyY90cPpvUQ8+OZyceZ8SezLcpyJz1/eJdo7es9GWDiIjx+9L5n5iq2ucSnH9q8c2MVNzcytVWM6Mfjhfa43fmzFUkN2MMpJfH4wrPeeaZ6er/xf6RftcZWHGrln7B9I4UgvL8LO/jpjmhxx0fo+oXPGtlri3FmlV3P+3pHhqw295wicatW5MM+Gjo8zbc9g4UHsLX229s595//rF+3+jXabiqQkFWKLISFNsUpEgsYSIQpMKog5jHCtsW0zzK2Z08Mm4RnDdwDyMe5AKhyu5nCM8+FXows7vubpDqerH2IXH16Yq+NnLm42YWW/mOkWO/tw1944XD1bNXWI8mPDV954ELblV+7tGb/W9fsA6mIN5wC7/BFW2DBWl911vQtMDDct8XDla880vG8r5d+56sKCbdyFKubWB77Y1W7X6c23pnzhuUlr1jpbsMz5uCG4gOWj9xKBS7FhsxVXY7djWHSwNWO++fBPR2+uftmWBz3RN+anET2fvY7Zqb/rKbvqo7cuZs2cXfgH8OUPHNRKn8/27GC07/ltnz3d2omnrY5tedM7P3r5NaeTK1+9h46zbb0YxuEfyqsfYXU9ZQNfHvaG4GG8uaevjuZx5Z9P9bVO4KYrD3EJH5w0duaEPckuDD3Ra+UDl4RPv/dSYw9xLyDWwq2W/MT0YO+3sj0AfZBwjviyheMFgP1yxaVa6q3FFa+Nac5GbX2Jw9b15YWnF3i155OERSd2Z139dw9wZFP88gxnezH4rojDV7tO7qfHyQuD38r0wim2L9r9Rvtjjz12wN2Pz3Xxzjrx/SdqP/3pT4+9MYdZ3uzlUOs8s8lOb687kzDYq1t7TKcROj7Xyble7OA4J/ZpG30N9tY+DhuXL3sx4LnOnV/iXDqfzpCXN1hiF1/Pr7PCnw6+msRbT9Y37mwJG884c3g3SbGtqy1ufOnLxRqdFr51cz64eSZ5zhAfSv37wO9+97uPPPFwrThf8ndtuveZ95vEatbZtr6cxSH2VLNWfDXU6GFUK+da4yuWFibOYZYPndbculrICT6sPkCIXVzr9hI2Hy0MnM2zaa1Yen7Oh/uXHNxLfOHgvqJmfMRabvDPerrdb+t89Pj64lIcZzA8eq0v2jtvfPKD274Ys2fXPsjRnL0zICYbeWnFUH81NFdXe2WOD10xO+dx12ti8wm3HOjh6bXe69QcljW9NZzFarxnRn08L3wAYh8PtriJZz+KhYv7pg9H/JabeqoF2xWx2cGEby43nJ2h8qQn7Fb4lgMb147Y7NRXLdW0GHyNuzfo18b61tc8bnHhL5a2a2rCxrpGOhP2KD6uZXr3QbFhhNXewCEw2Tin7Dtn1RcOvOzF6dzoiX1SWxIfMdnC1giMzhAezst+6V/Oh/HVj3LFi8CFU070xho+7DuvxuV9BXfM6dkWz3wx1lY+1gkbY42vNfdW59F91Xl6rb9o/+pXv3rxhz/84aiT+5S6tRd4lGu54GkvslGf/XxSnnoCg42zoxnDsv/G9ostHYFbndmfnxvsqhF/1wYbY1J8Y7bm+MpLgy2ncMXDgU69F8daePy6vsWnx4+fsVg1sQk9P33Clx3RwxS/eWvsSNjGsOpxYxs+7lp8rO8+wdHUq7Fcjcuz2HRJMfRx0hdH/DiUm7nPqA899NDxh/Fiune6H/s/09QtPDjGzRvDMFYb9+jimeOt4e3LOes4y5/OddJzU6+5jqzDVRfvM33RvuesusHwZTxbeYnrXgILhrNkzThudD0j4u/eBNPfiKru5vmpTfsATxNL7s6onm16vith6tm2B3KVFyxrYsDrnm0epnX2fAkfIpac5WednRzp2cIg7NVFzWDiy5aw5bMxyomfxic8mOJpfGHq+bPRjGHstc+mmsvbL8PgDJttjV116DkbD3gEvn3DhV+CU/tF1x4ad17UgT9b75bsPYfEYKMWcqCPnxqzKc/iwMVBPgQum2pGx5bgQk+qjxz4whCPXj3aj3j4HG2dGDsj/GDzVSfPINcQTPUzZqNZg+s6JGzg4dR+4V3Dgx62nq/aqF3XMhv5eCZ5vlTX9W1v9HiEJW61VGNcxCL08i+WOT+ce87KG4YmHgyNPn/75X3e9Y6/dZjG6sWWzj3P5wANj4cffvj4z1D93yikHI7JLX7c+d9of+qpp44EBULKBvfwlZxi1CTMTpL6yDVuDY6CS0jxiJ5ez655hS83a+LqYeDiQLHPZ3HZJnxI+GHhTfjfJPm2Hu7q6dr4sOm0+PHPNyx5h6N2hO4sYcXXnL2D47DT01WXMIsXBz1dXMVha+7B6xCKr45qu3vArnbmd5t5nMszjnFrHqcHYcLBl58boQelHNwQrGnlv9hwramb8wuDsDGm25qmU2t1wrc9MoflS0AcYLjAXdzmcaA3ronHF7/l2I3NevVip8FIF2c8+MANj28SdnM9nGpuXesmZY3Es/XFbix29vngxZfwZUu3OM6WeNZWNj/6OBrzJxvPHDYcerg48VMT14IzTG89ndjhsDe3lg4uKb7eWjmYd99jV4507UN650jjj6u2eHzLTW8dhjFO5QOP8KWrxuZJ/GCGG2/28NbevFoUq3q4t3pQVxM9W7WEAd+6lyVfPBirtYdhLwVsffjkV45bH7zhFiP+5tmXGz/XtTWxXYseoq47ejp1rsaLLb68YHZdw6kexSs+rHTG8oArjtxbw0njR7diLqYWnvVi0KuXL43UyNwX7c9c/vbapz71qQPqjLn4txmL5Yv2n/zkJ8eLGe7iqMfmUe2cXz4JO1KO7DQ2cGps6GCq6U281z8MMVynfK9rxY9D/PRasXDhT+yVufoSZ7NzaI4HCaOc6OCFab1nSbZsSHbVoPiw3P+t0xG+ZylXa85kL6/5OHPG1uWjh7l+asKvl0d/48N/furfCMabDwy5uybV2VxdXN9e1tlUW3Nx5UCnEXtE37mh40fipMcTP3bW9/4Cszqz1dhsLDq18Nx0XTuPMLwI441P17o18cLR49g1jZvfZoEFc/Xi4qkm7l2w2fmNaM0YtrqKCZsNP/ryhGG9D2Ds5EOMNTGqfdz5WcNPM49f/nq84ceXDR5hxwdPY6LPTu/+Ir4YYsENg725fPhp5vXWxYLj7GjW6PTet+QEm589wdkYp85gZ5neuPxhOIv4OMdyrVnTzGHBNWfrPPuA7JzBxAcuW7nQxb1eTOv2isDzrgg7H/ik+jYWM87W/OGo55yxD35ik/jq1UxuenzEDp8tvDDXlx2B3T7lZ02DR8dGDfrQLJa5Zgy/tXLkb8zXerHYuU9mLyf3CBzsu2tw+dov+w0PVpzYbHxzdYBLygF/Ps6ID+ldp/Tlxt6YwJGTWAn/9PrEOA504cklgRN2OnOYWsKuWoZjLR5iVR9nUj5+k/2FF144PrBnF95t+7j5N9q/8pWvHP8EnM8UvtTQi4MnfBzkhqfeXIMRZ/V19ruOytM6n/bbPqkd3M4DrMT+iR0OWw3GcjHXcNr15RRP2PjAdK6cT2vOjd6auMbwNLHS6+Hq82VL7A17a4TfSn7srdWyMYfprC8G+xpbY1jsVuKWTfzZy4m9xpfoy09sYwKnGlRbtmxgLTf29An+u26Nr33sHRqGM2L///a3vx17xp+fNU3cdOHR4+8atg7bGt7mOHvu9IwsH3q88LDnYjuDfOisw3SPhu8M2Ut96+7dvmi3jgcfOXVt6NlYJ9aNu++b83PO8BbPHP8w8O2eWAzntC/v3COrpxjW+OOoJcbVrDrC1nCyJjfXnNbZx7H9E7/6Fsc6LjB7DuHOhz182GJ0/ZtrsEj4YeweiNM6PBy1chA/G1j0YrLVzMODow78vWt6dtrTcuQnBzb0aqv28ZdDccXqPPBrD9hWd2PctOpv7+MAS51J+7n+5YCfc6Rvvw+nqx9wcJAfG80e4ItXMejZVAf49lrO/NWFWI8zG+ueLfKFt2PzYngv8a6ntnh69xMbtue3+PJg35mWrxhqEr/qh4s19nHK3hqh97nDc2mf4TjLjfA592rDl6ifOKQ46tc1SC8HvwjQZxmc8IyreBqs8pCrd1TXtXrCIOqoNnpx+cD1WYCuL9r/a/8Zqv+YLbExNliyElI8xZKMgkiO6JGvcAohET6E3tihMlYwfQVr3sGroOI1Zu8gOTx40bdZ1sIL8wh89YMtqWfTQaDj+0oEjhtZBxkGXPVw2DvwxbVuvHMY2k0cWudLYPfC25raqgmhwyHMalTMerbs9iWnPbMPa7djfveTOPG5n5/YWsJWDe7nw1b+Lkxc/an561//+uNi3/MYJi6JMd9q4xw31ttHNw3Yyz2M8lo8Xwy4ifNXx86COOXDDyadMVvj5tlt3vEqtpgwnDM6uXctxWd7/mGsXgy+8TjXm15jpzUPy/x8TumKVyw6fOkTfJ0reusJPsUqrrXrcPOJA3vXWLVoTtcDio795mrsmun+tLjLoX3S06u/hjOdXNzMy7+886tu4Zc3rIRNtbIOW53KkV3c2Rq3h9aqk16znq+52oiHk/neY+HU2LmHeGAncPYexl/NPA/89X8PeD5q3RdLxtb0Cb9qpMdH3OXZOtuV9NWsF2bXu+vVNdgLU35sYZdb8a3Th5V9MbLT469v7xvb72q5OcCCq4707MTS2Je3dTX2HGPvS1Ifqh999NGDzplbHG/b4+nfaPcb7eLIwx7ZR7zg44ITju6DfMoPX5LOmK5aGp85XqfjR7pGuu6dP3w0mLhYg6FVJzGKExdrCR1hU73lFM+eieqsBvTw62GVs7PkusYDhr5Y7HHWxycO9tIagQFPDBJ+POnyt1btjdOHxyd/a12z1ceedQ79MzH++rMPn7gXR85qEHfY4cMm5tVGTJiadbH4s5E70Wv542asPzd6mMvfmK46t+6a9ix3HYsvhvMKQ65qy1d+5QhDbt5P2eOJsy/NfZFgPzv38hDLOlz3L2O4vhDwoUFs2HTFgMsvnq4nWGL3viAOzrhYg9sHHzrvBfKABbff2JOP2mt8ErESNoR/GOKpCWzruIgPRw1wkJ8PPNZ9GBIXbnUPD3b6dMWHpX7lYg7HWZOTOeEHlx8ejeNn/Sx85VxtrONaHfjA0sSE1T2DXRzV1Jo+/zDYGNtPNTfHrZhiwBaDhMPHWB3D1Xum4WDdmK9zC9N+6Nn5jMLfutj0YokP0z6t0LPVywGGMR84xkTNYInfOWRLwoADQwznnE9Y4eXDTz7OSc8J9p1HXOl7bsCRpxgkbnHHC7b4mnV4JA7G5ac28NRf377AwXW58IPZmj58ekKnmauTmGLBgRdvttY0OmvG4Vg3rplXs7WFq35qJBf/18rzzz//mv9nqO5L3nH64jLucZEzfuVqnqhttaBbX/5EnnLhz9eXET0zq4k6tVfF5cvePjgzzr16rLDNvjjFYmcNPzw18+XPBy8x4he+XMJvb+Pr7PKx3h4bJ+zE0deas6Hjh5PevPjZZ8fGswCfbNTKPFs546TRyxnu5mCMQxjmcaeXj7Y8wyiv7fkTvRYX464967hY695mTNiJpRm3/+bts/fvrWv2eDmvzq3rmoTLHh69uvFprThiwaC3TtpL3D3T2KiV2lqTh971sl/Ww7EmVmcMrjOr9zwVg01fGlpzX+zeJz5fccXvy0R+OPBtL+Kspy9medJrcIgz4dqRRzawwkvHVn1a01tzJog8xMOHrlqqM1tS7evx6Gzy42NNI9brxSKwxCnnMODAMD9zppOnurm3GIthD8ufjzEc/MVRO3HC01uzL2zhspN7exd/9ZUPHxiEPV171vk1z05MmOZsxcPbnB4uHGdE67rgh4eeLR/+fHDS85Nfz2/zOFnX4idH/8SNnqgbnM4NnbW+aO/+693P9YmbP9TIn708tUQsbWU541Y99URummtb/fBxxuLVvSFcfo3tw87VSv3UTa+13+quVuooF7zXFxc2Gp6wrKshbjCzV29fqvsFQfWgxxdXemfJf4b6jW984+Kzn/0s6APzGNzyx51/o/1b3/rWEUQxkULOhxlkFEwxkKwoElOcDqskJK5I/I2tVZTs4PPNftfZWOvQwrDuMDlIelKR8YJ3W2EvLuEH/5UIHJvan4rCgKvZXM0hebUxlpuYXdDimKu1/SHlpn7iauopx8bhsbWP1aK9Yk+qS31+N/XwxCXFW19jNloXXVi4tZ/prutx5QvLB+qHLv8aXBeqNTjwjXEpXjnCpLOm0Ws+NNlH9YhLZzXe4vI119hr9Dh0w4FXrdk7x2Lx0Ztr1gj9WVqjz8d1B1ud7LdenBV+bPgsBhtxnBXSOpu1Y1Pe2WVrfhNXMXet/Q1bXHxXjzsfbfPIR1ztLJ0Tfl1jnXF1cc3pl08YxYrPcrBWk489LT5O5j1QqnH5mGvN2Zvri9kcl/ItR2vZXbev1mDxs84+PPowNx/jrmVx2JlXP2ONnXp58KhnQu9eG0b+vnzxEuDhb50vP717vi8i6PknfKuNXIpbXtarBV25sWsMCwY7148v53zB6AV46yFu+7v+cLWV4vOHqa8erbFvnU213H2yzt7ZExvPRG7WCR917hnmi/YvfvGLFx/5yEeO9TO/Q3mHH2L1n6G2n/bJWC3g44Kfe51G6ORVfDgEX/nkS6c+2tnW2gpM+K6Z9h6e3J0XGPRaeDgYi8dWjOpX3YsB39ra0MVV793Fy5qzaV6fn/3sw1n3V3Hg4GE/21Nx6DXSGaOXQzWzBiOc9OwIf/Z7lujli2P2dDjgHO9ww/bvT/ZbxvxgWwuDP1z+7SObcMUzZo8PXuXHj4/1uLAPv7pbK7fD8PJHGNXcfQEOX3FaZ+/69WWo+2tnQVxje+IMweerGdOx6bfTy88fvKuJDwH23b1KbPnxY+f8la9ntntIX7TjJYa+GpaDs+Qs4M/PlwmaOS7W1Exc15t85QSr3O2VeLjgxY6vucaupjbVq7r4wsCYH/uur86pvndk/NW1fKo7f2P+xLzWvuDkGpWzhisf/1YnDmqiseebHzxxd44jnXj09kCdtjbm8mbDdvMWpxqJRbLFy1p80sPQcPWHL/HhX95i4EBgaJ35cNnS+fdO6WD668bOpb10Djq3bJ0t9tVTzeIsb/vT/rLHq3VzTQx6dgSevaCTp/PFjtCJEQ8+nXF2sAiMahMuLv1BinE1yF7MnhtxEheWRleefOJkTKzj21jf3lvT4u492jhu4mrNYcOqLnDwbf0IcvkDZueNPbs4WoOjt/f0ekIfFp0xnSZXQl98OtjOhNr7d6+fe+6542+o8XklghfxG+1PPvnky/9Ge59NuvZxWO7yrOGFO6zytVZufMtdvdWKsOHr3qHZ+/hYLx7f/OntgXPWF/Tw4dbYEtjOWPsGOxzjclJL8zizL6d05Qc3HP7GhL1G8DjvP3/r7ZMetgbDnA9f0tra04vp2ves4QeTbe87bMRyRmp0bOOqV4dixaV66GHC7ryz4deeFCdsPZ/4tgd01S4ObOB0Ly5WMdjhICc41t0z8HEerYVVXHaeO57rnqtskvCcu+69dPmyrdHDav/ojb3306uHM7VcPY99LyC2GO1/+YnD3rnSO29yYuc642Ota0CeeMhfXL3zjotair/7AEsjMKubWCSu4sCFD2P3Bbb8iHUtPz4a4aMR+eEhtrqwF19+8AhM4+Z8ix9na/Tmej4b03p7R188McMQazFwUVN108TkqzauC/caumIWt323RgdHHM8FNYPBxjn0/JCrOX28+fDFOx1+7NSMTlwx5AVDb67hjR8b9ewc4SCX9pi+PcDR/VDMctjcXD+dP/E1tgR3ccX0GbvPieLB73qSkzXfz7K1rpZ91rPGHw/6aiIGLuaJGhG6OOvFoJODvaLDTe3ljbceJ9cOm87e1h1GMY2Lo9bunfYPTg1G9ccdltjVKQz8NNIau/aIH+5q4HOCWqkLW5xxcp3bC39Q7v9Ke+KJJw68anJMbvHjzl+0+1N5BDRJ9kW74krCIdQURRJI6xWHjzGSyFckeoULtwLla15x+bKrsPnpHaY+OMmdHXu2MG5TnDZJz752i1r+HxMYbui+bIfTptM7/JoapP8/AA9QxLW89HJVY82YTfUFZ17t4qRng4d+ZXHos8uGr/YgKa7YxW1PrK3sRcHWOlt7/KBYfJ09Pn3R3sOMjn81YkunxQsPYy29GvQHJs52XJxJY43EO869AOPTjZZ/sfJrv8xhmJcDXDxuEmv5wDa3R7jFL9/yKTdzLcF7b/B4WD/XvJwXD8barZ+xls36VQucNWvlbr/N4YpprIWDH/+zyKHauh+4N8GiUxNz/XUiVlz05Vpu5sbiegiovTku3festSdxXF05bD7lzo6+eMawEvHLJV0927jDCct6eegJfLYbh791eiKOZq5e7lUeRPmwdQ+zHmdrdL5M74t29abrnu9P2b2EwORH9NUqbvFoXR3kRIz54FeeYbXupdqXKL1Uh88OF75iVV/5mGtJmHrnki07OZV38ayLsXhsSbz5aezCFq8cYFr3LLP+xje+8eILX/jCxYc//OEDZ7kdijv+gNlvtIthX3rZqh7l6r6pETp5VR9zzR5q5cnWGJaePT+2CZ25nKuZsVb+zhn/6lne1Z+dFhb9OU41FSs7eMbW9HLvbMJzLtQ//uy96PVFrxzo8mfLp7MsVvHoYRK6FVxhaPHOj50Y7ifWkvItNv5a8a0vFjtf9nl2Fd+6mneW6eUKo5zp1B5eMenWB3Y27XP2bDWC31ms8dfzFVcdjenlnj++rl8fYotfXGvOJ32Y/Am9PXGvwctYHP9h8n7R3j2KP67s3OfgwLX33iP0YeO3HOPvC2d1tG/WccbdOBu98+Z849UHXTnh4Et29yxc+uAJc+u4Yxw1MWB4z1AXOcBrXX1rPRP5ONd6tno5dkbUAkdzuMVRX3nIwfWjweaPv1q1R3D5w6XDvVh60j3GOlvYmnhs6OOyuYvHfmPBykZMdcCts6lnT2B7hvtbH7AIH7HYGLfvdF0jxnLPDqYPreLg48zh4dzAb0/Y4aOv1vpiw4MhdzbyyA43nOjKb2sDlxQDD42NOuKAk3V5uPf7EGmd0MmXVB82rg/nsNz1RN9nLXzD4VuDFw8+8da3hk95sZF/NTLH3R70RYk4fNRKMw4XjnW9Nbxag0Wsd66qhRpXq2zM6dlrBC6xBru5WEROmpjW2MjFNe6L9m9+85uv2RftX/7yl48v2n3GcH/3xYA97rzE3xyX6mzf8C2nalku7Qs/5wV3WHLi58xo9j4Ma+W+/tbVgL17hHNE5/4Ie59v4uPW+VdPcaunOU59kdS+s+fHv4aPlogJSyM48ScwtY0Fp3W+sPJpzt45yjb7A/TqB1z1w5kfnho/a2E5I641a8sbDBs1qFbmYulxCINuzzy9GHvWty7szWGzI3TylFPCRmxnTDzrap5N/myMrTsbernjUXM+CRzPRe/nru3ysAZjG27WSXlbLz9x4ZanNfdc69VbDubW+qLds5kvfM15JOVVLNjG8PuyEG73RTWHyw42TM8GnPnZ281BXegJTPbldygvf+BqjbAVo70Si72eXXjxZmfMRs+fXbnShYcX3rBIuMfk6gd8+x0OLOPiwuCvxVEtewdgJ14xw4ahjun16qbxwQWO2H1WLDc9HmKrE3t50cNRc9jZOA/OL07V1RoJUzzNXN/e6KuZeN23xBRj7z/8qjMOrgNzNXYtGIvLx/kh8DU6cax7P5QHERNue4SfuLD7D9it0XWvMccPTr8EAb9nvhob8/cb2+biiqO3N4l4STbxiS+OcqMXVyy2Gi7q7/nddXnGM+cnVvH4yUdT8+qgVxsc2xf+9HzqjYuPV5zT58/es8kX7Xp1KTZO3cv8E66+aH/88ceFe5nnMbnFj1f0RTsCFdRfP/AgVVykFbyil5QkHQQFYqMA/OkUtoJJvgLQVSA2xaRvQ9g60NaMu8j02ehJfg+qSQdEf1ufmzBhuKE7ZHjgBZPehuKeDkZcb8I76+O6vmpO9NVfzOLmk111ykYdV9wEsqVvf7LJv/lNvbjx4SPedfmys+9nuZ9PtvDxdWMjPkT6DTZzuDA6U53D6tF68WHhSPZG4WzD6bxVD7rFwMO+ezgbu2HgIW755WNO3zwOYhtXN/OztA4jO7zx0mAm1tnFkz4uxmy7Julbqw78auyNV/iLSb/1M9ZWmi+GOJoaW8eFZEPXmJ15OIvtumpfPGzcm6oHzOZ84twYbnWzZq5PzDU8vEBXI/vbWO/h0AMi3vS7/+KUQzHhZl/McjYX2/1Of52UTxh841wMfuV2xmBrTRPH/el8fzXPX33hihO+e5vngodUD3UvFuqu/h7uzctNrzZ4w4YVFxyta9ZJ+RV71/hb92LVl129ZDlbrsPw+bVv6aptMcWD6Tpma12OxbaGe+3sx5+Onfw1OJtrPrDVHD6dL9r9Byyv5W+0/+53v7v48Y9/fLyIuVa8yPYcxVFcuXaGzbfeONJVC+fBnK+16ljPly0b68VQlyRMc35qxI4vyf+YXP6AlRhrbOO5a3zbK/ufvZjyFqszbezMqon4ce23wuGoC0zCDw4Rm705PazWrBtbJ/GFw6/+WLxad06t8ROXmDtnhF5bDnDjzbYvqIyJ3t52VsUNvxodhpc/4NDp4cqbf/PqmJ1zK+ckfXN9PnDE1uiqfzb19suHJM9RPmzhauUiH/rEWO3k5YNG+fHxpaovQN2v7bHmWgtzrz02YruHwCtGtROfqBH+sIzlpMfZFwrsstGz68MUXPbFd878UzXm7pPxN2fXPQimhgt9XMyLt3r3XrlpPR/Z4lf92JNq3LOTrnNkP4g8YMqlewe9Wjkn+Ko7iVs5xjt9Pfs4GLMnxp3x9K1ZN8aH4GcuN/uHY88dvuw0NhqbvmgXm5981Il496PnS8dX7x6hj4/PQDiyVRM1tf/2t3uOddh82ie5lzM8XMVgS6x17vhp1jS+2bKTT3zga/myzd416szbX8IPXucgDDnKix0fNvHn73zqcUjEKx/xkuUGh531YsOggw8zG5zUUC09w9USPzE0fjA0AsM6vT5dNmc7eVUbvvGCbZwYry+/8hanWOzL27p88PcfUvvb4D6whxP2bfv4+Pey/S23P/7xj8d12R9uqRXe8HGw/2LzwyU+zlhYeHeO6fjVw+sdgF7O3umcCWeciFXu/LZZt+b87L0EFmx7WZ35sbXvWhJ+OTkD/M0JTu0FDGKtZg6364EefnsnPjyNv/XysVY91Sgf6+xhGtPzW4ElR/cX9xD2zoI6WCsuH9jlcMYxZ28f4MGJR/HiTR9OMfKrrvnq2dgDuIQN/zjIrdiuP5zZOD/66gRDYysX9w1rzl4ihmcNPnDgqQ09P3nR1/ATA+7ex1rnAx9GZ6JY7OUQx/DF8Dz3hbjPbp0JmNWgusSHXi5s7SM+bDrTYsCXF2zr6sPemlqUA350/Em5iJUYazDlwNaelIM+Pz0b/NjV0+FDp/HBJ3s6Qodb8a3D0EjzzlTcrNtnubDRxCB6mPYFD7XQwrRuDNP10Fq67v1iqbd19xrx2FQTOPZGrF1jY16ObJwP7y96OZOwjGFVc358nK2unbixlSsMdrjt9RIWGxzkAkdcWOKoGT9rcNsDtTDnC9uY4EUXP3q+3gv//e9/H+fQOr1aFEd8Z8/92lhMc3568/2Ndv5iEBzVmeC8wqaWng0Oejhac7btQdcPHa7m8m9P+RUXdrjsjfUEP7akfbamidUei9E+bg3bOzhs1ciX7K5ptSLiqZE1nDy3n3322f/eF+1f//rXj0SR1FwECEZaopqkEax4DiQb0iZIuCJLkG2HjH6LS88GDn99N7twYO8YXs3aXURsHF6NwPBAcaBg2Tj88Dfei9Q6rsld47OvwbqO+x62s03xz/r2Ei9r+ONpfFfBb6VzUK7tVfO1PccLK725C8tNTc3pPfj89lo3H7rOZxfjdTFgsesswfFg7kZt3VpnOt71zr4990DvBcWDBw9x+de6QZirRxjmhC4fcznUwsjWurF1Un9MLn9YE2/tzVfO1yg+G2/58rMehrFrNBtzUg7H5OpHPMPuLIjffqkvDLbW4RrnGx6MdPw9iPBorIejeaDBtX+Ejm3j9OfaHQZX9tZw6cGBm/2lKx9nxbpzFGfr9rJcO19xL0b49GS54MtPv5JN8YvJhn2Nn5b9YhjvmrqpjZafsfrCI8ZbX3bq64t0tbbuYeVDefc/D3sPNg98ggu+6rM1XC7V4nA4/eBDyt04PPvi2vWipfbGvmjzAC5W2PyrE4z2yRgX9myN5Sbv1tja691fa+zh8jlj01XfA+jqB1y14vumN73p+I32j370o8cqrFcjMH/zm99c/OhHPzqe3WLZL/HwIXKRq3y6FsudLQ7mcl2BpcmzOhmzDVOMrQe8fOj5bQtfLK21xaQjenptpTkOMKphWNvj453GeSW4Oad9MMMfBkx+zengm9eckWrB3hheQheWMX81JzhaI/y2juzEJmJt3ejMNZieiezT8UsvljWSvpjZ11vfa4YP2868vOTrnQzXhD6OdGLX+OKnwS8WezbwtT6U0yfscbdefp0lvrjSd175iedZDs/Yvcne6mFruHctuH/74jt7GBtXnHjnq5eH+597j3cAduWmd77cE8XBoz2A75cDxCT+CRK/HV0ctn1wyI8vDol5urjJSR12X6ypnRyrIT+x2OLfH5ay9eW/XOREytf9y7q5Zh3OxmJf/sbsl6c1om/NHI9wnSPrzeFr5hu/sTqpJQznsj3NXw/T2fNFpRq413luO8POBOkcbezOutzjLk78+dkfTT3bPzH56FfP3hxP59E6rMVjQ+QsF40PWzm7PyW7n/ngXL2qif5cR1hEbDWoFnizx8/Y+fVbYHu9x0X8xSlueRVXnM5KtSw3PkSO9qj3KT1xbuWMJxsSvrH4mrXqBFMdxCd8zz6dSz0/NvEvJ/P40sGAq7Hnqwb09tQZ8kH929/+9vFX0Nm8Ein+X//614vPfe5zF7///e+Pa9L/i6AW4pJ4OH/ud3HB256qcbzLDadzg8XXNe3aYGu/NXmZa+Itjry3rq3DF5etsX1VY7xxtUZvnYTNHx5bdp0v61qx4ITR/oRjrfqU5xHk8of5WcTCTyzragazumV/xkrPTjy1szfwXDvuq8VjQ6w13tqFbd0ZKm/6zb37DN/2BZ7meuHLp2urGPjZV3kSdXZtVM94wofD3lrXb7XHq71UI41dteOnBvfu3TvOq3n5imvMdrmIgS89e816czXBCa4eRnWpBrAJ3/y6b/Chg1N7yfolPvZNTmoCt/idUzl2JqzDwqVaw5SDPafjx65rQSw25zqIQ18u7MWhg2E9XzHpSHb2hK2Y7UWY1Wj9q0E8xMLb3BpfXOwnXHPjzWPtGrPV7IX3nWLChd+zxb0EXtyqqbn3Ljnw1+NRgy138eDJuxj01nF0ZtpzY3rx2MMiYtHHgZ36Zc9WfHhsNBji0pUzO/yJdc0509TNmvOgF3s5lxdssWHG5wC8/GHOB4Z3M++Hxmw7B+WEr9qrMx9c+1xDZ+7d0h+aZiMOf764k62LNRzSWafL1pxY735gzga/6qoWrhXvlHJlnx18Ui3jAkOj13bOvz2AHT/Y4th/Oj64wqwG7IulXmyKb+588vUH5U8//fTFJz/5yWM9u2Nyix93/o12gWwSaXORF7gE9YROqzDsjCWnJXQd2rDq+be5CuSwwFeoDglb0ibpNfpwivXf7h04daoO+ODvAt3c8KpO5VFet+W8efOBn1jrMNKJdcbfuPni3n7i/GrrCRdeNwd9+M5AZyt+cSoPfXkawwvTheVPzX1wovOw7Des8nGxy2nPXzj69oCNXPyDl/sAAEAASURBVDU3fG0fzuzia0zYqpF8vODun6Ligl/1jE+586crH/Otk7G1YujZ0+uJ9SRdcz3dtuzr14ZOu85+MdnYQ3Y4uUYXp3E2Z99itx8wjOG1F3zkuS0c9uz46N0YPXzwgO2h1rlla26NbTU1XxuxSb1xtdDzc107E3p24ne2YPdQ2f2GUw5hlr85nPJpzv7Mg8/6rQ99ufHTzOW3ObJbXPEIW3jW9etnrFbuvcb89dW0WK6LbDys3Kf9E2PsYJr7sr2XrGLKNYGFg0bO8+xa02dbT2df7IH9sFe+LPLBVE+/MYzlgyMunUP6apI9O63asoe/17j4JB/5s3MtELXsZQhWYkzP1gP+tf7PUH/9619fvPDCC8eXJeoqDo7GtXiqEZ38NXvLtvs2O+vE2vna4qOO7LKla8+dE3VJir/3CzrzYuLUePeoHDYOXDb5wxI7fdyKQd8ZhycnH459scSPnfViyQUfey+G9eLxzccaW3vLl+DJL7768somH731bMUh9MTcGtHjoPXMwpnggwPO5Z49nSY23Lgfjpc/4hYO255rfOTr3OrjFQ4sNsvfGIYa6Al7uYRrLAc2eJcn7nz0dM6QPXLvp+/+yy8ferjWxFaT+LYvOOKKB9t+m704/NRBo0uKoYflfmfdM4LOOHv3Pe+xYtNZJ3rxvMMY++e3/IGPHMTDv8avWsYhjGLBaC/1hA8x18IRQ77m6uivFfsi1b0azkOX/9eNf9LGhxb1CUOd+ISHJ9mzY62awmIvnt6c6BvDVEP1MQ57e/rW+MPX+OmdGX+gunvMn+TLFl/vauri3m2/+Fgj9PE/FJc/zK2zg0X2WucDN1+9XDdfGPGXN3vnoi/i4hjnI8jlD/pyhOc8qGVnuhqyz5d9PtbxxlfPxtie73WLs1jtm75rjJ1z4Tfq2iPxrMNkK07+YcQpPtbFSZ8dPYFR7cpTT+/5rVlXO7rlrzbWNGvVm02cw8bHevWEZ6wnePEjsOJpzE7OMOUfDr086FxXvmj/zne+85p80f6Xv/zl4rHHHjv+CThfJHif2XdRMeWEg7PtfFQHnHAkcmInj/KSCxtr1cp14XwRmKSasfEMd3bD469GhH37YC4OX3GsmVu3r3rc4geHXZzYq6V8rIlLt/cScdlbY1Nu5Y+DfW1v40yfDR+4OLGDIz91DU9PrGnXCTzc1I89f8+n8uMDX23bI7XBqZzZ8rXe2RePXXuAq8aWnxrEz2dQZ4OoiXOaLxvxw+VnTV9cvTzkUC3wK2+92NbYVQt+mjlfn8n9f0P+8JNd5yV/+dlb55mIgSsMAt+aHm/NPV7jZw6Ln3uZPOjyzU89XBOwOnPxz17PxrrntHrgzE6vEfqtd1yyab+rnVzaVzHiVJ3gn2PIw75lb11cuYrj7NCxE696ek6rX75s2cEpRuPmeMg3H/nX2MLQa3HW89eIvnX54WA/2PEndOJ41jkHuFvTxJYHUU/1oms/41pMsfq8z9858lyQv1qYq397Hbc943iGh+dea+Zia+VQHosFA6ZcxbUGU2x45nLtvc+cXdhyhUvneuVnLn9nOr569fD81fjDdw7Yds3Qq6M5H2PcfEFPB9M7ar/wJjciPls+BE889HHOtnW9eAl7fDrf6fO3bn980e5+wNaaXi7l3VnAhY7gJ36tsyLWrhvDqv7sq7U6GcOq3mKLF35rejh+4c0fbn/wgx884mwNDsUDftz5i/aHH3742CSJ+1DgJrcFRSCyikckxV4z7lBb1+gUTAHy1SswPH5idBO15tA6aHRsiiVeuPTaXSScu/rdFON+ONVEbuzKmZ502G/CXv1teIsTdgctjLjAiYe1blD42Z/75RPW/Xr+9r+LyiHGi7hhOuzkzO9QXv3AsTxwhWnuZuXifcMb3nBYwu3FzPrGzX9x4Yirxck6rm5+PZzFtzfOXjel6s8Xtge1mwlfWLhp3UjY5CPu5pEeX758jNntTaK8F2vzuW6crRjFFVsjYllLxx4HPZ289XwJ2/XZdZwT/sWm4x8G/Ur4a29dLDq4ev7itV9q457QyxH7rRdce0ZnHH57CQcmv21ix5VePZyrXsbia797wMeTLb78biPi4IETH74P8mcrJ4JLZzC/1sNlV37s48bOXDPGZeed9x5I/Kz3QJQrP9dE92UPdXvSF+3WPdzpXO/82eJGqn/7eygvfzRnn0322dzUsyfuZR7s9+7dO76EcW3iIw82xhpRO/nQt1YtzPng3HOLvevAueiah8O2ni1MdvTmnmNeOO1ftsbWYPpPWL72ta+94j9JP4LPD7x//vOfH3+NXdw4q03nhTk7XKuBXO2TZo1t10/weGvVlB2BQeQnjjpm41qVa9eLnsBPjGFY0+/LU/awNTHTtZdianytd9bKNx/r2cKAh5uz+uKLLx57xQdnGPzEYKuOmnX8nAP+cbBG+MmfsM3nUFz+gKXB5q+excpGb510PRjnC7M8fOhwHuXBx/65XrMtVvZqQMQsblyqrzle4nimuefBKV/41gnbsKyno8ddXx2MNRzw9sxVP/zxq5bZ0xnDcS/pN7Dp7QFePliXa/urFwcebp3Z8sPRGA4MecIg59h05WCNHUxfksPgHxYctu6Jrnv9xrQmb434w0hnrfMeb3Y3iTUc2JLmcTNXLzlv3mJ4nrET9+9///uRg7MPz78x7T869Q7ELw74r7ClW72xWotL1MGeikWWG1x1sZ/Oaj7FOxyu+QEfL7585OPzCZ2zH+dw2PAR2x6Z2281qM7CdHbZEvmR/PWa/WRb/nrYcjeG3bsoDmdcNfFBWL2JeDXzeFdXmHjiDhcH8djJVaPb2seFvns5HNerP1QRnx/BVxNDj4va9qxyRv7xj3+8bA/bnjmv8Iorz2p3AF/+EL/c8I03fXWjN94Gk9C5rvtDMLWzJm6x1o8PPPj49N4hN77VCg/nprytw6leYcMj7DXna6/nYrNXZ/fI1/I32n3R7hfe/vznPx/8feZRD+cAn/YWR+ej9xG9/OTVfsm9PPHtWrHX9tK7Gkx1UkP3Jvnwp2fnzDoP3ffVSyNq2bXOB4Y96JwdRpc/YBE2mhrqcWp/8BS/PRNXPu5JYrRP9lcTRzwc9ETPh72xHNUrOzyMteoC17mXX3vbmhib7xFkfrBnC08u7Ek54mHfcBJbrmqKP/vqCEMe8MLRhxPndGLQuUbc09jhDxsHObNlU058xAsDH2PSHprzPQvbcHAVTy7sPcf93yi+rPKHn2L2z06JJy97ah/tr3Ux4goLpjMuDh82fKqd2PJyfvc+hid8fnDg46Au/Ok1YxhwiXV+zjVcvkTPvhzxlCc/10X7WA72Ue3Y481eL5aY9ARGXOg0c7buLeLyoSsmXfHUGU/2bNRKbLUgdItbnulh83XOxaPXcCwGH3Y1uOXCNkx6Ip79gMnOOs7OIV2x8A7b9Wjfidjtqfzg0bWfbKzzqX72wB/q+JwHkz1u4otN6JvLhc3ukThsYHeGN8/qyI+osxjs3ZPYxpVeE5vd5kenPurRfY2v68W5xk0tum7bY/tPJx6e6sGeDj5ctmsHR737ol1ePpNr7bd4/PCsPvLDXz7WxWSjiV2t4K2oJ16t44RPZ9mZco35Q2JnlfQM4yOO2vDBJQ5iaoQe17iY46GJh69mnL6+fYHf/+OmftbhEPuLi2fovXv3jmfu+973vmMN5l3kzl+0v+UtbznIILF/GnEOGhG9ohEFMq/46axLuE2UqOIRhToXXjFsmIPDD2bFL+7hfMcfuzHFvyPEncxxLibHzfsuQDCqbYfkOv+tOztNveJQDZcLH+vs1OR++NfFPOvgOOQd4i5GMRx0DQ9n4RyrHOMbT3Z0Ll4vnQ9d/vYVge0i0efTDcD8LOXofBE8+YbjJm6Mh5js3MC60JdfX8zLk74PRHHpxoEHf1h69dYIPsY96Mz3GsGhesJbictZV978CD+xw8U3jnRw2OiJmDUY9NUkTHlohG+1D4MeRjZy3DVxyyu+fAg7uvKFgT+93oPGzdcYhj4R081b4xcWPPuYHh866+UOiz9de+LBIPfytk8eePnDiCs/Um+cnz59umpDHxc+JNuXZv/7mxXmOKpfsdnSqUN7zC5e7bG5a09843zwiBMMtWVH1MZY7ayJ1X7AhaGmXvZ6oJt7GaEz5sPffRyeWPyKKQ6bmrkY7Ys4txF4fDzcH7q8P7hPOOviytc6LH210RPxcKou1YxvNXMOug7Ege1eY8y3OsqDzhnhqxaeZcUWX1NPNj6cvNZftP/iF784/hq7DxE47h8gVks8xceV4IeTtjVil6zN5gmDT3Xb/e38WFe/rh02GhzXVBhiubfiraaEL2Fjj/hUb3pzuJp9SehJ+52/vnjOpj3y1yx7qbPv8ZMT/+6b8MTZezYunQ1+5mKf4/Ld2pqz1VbKh0788Kqd2uDDzj3KHGdi/1x3xWYjJl8c5U0HVwuTrznbmhj2Rq7hyE+s5RUWDMJWHMKetPf0uLlOfUGAK3yx5MmeTfVmS2effHi3V9adkXIXj51c+Fmn44ebmpxrLEe2fYmDIxs81VMPs1yMNQKzf/KFPz9r4uIgJ9e8lsRRznIXv9826izxLw776wS+lrAz12tw5a1VTzr59IWMuH6jXQ6ep/z9XxHumX3JFpZcV9QMHr2eXdK8OlQv69XHWH3cF7rO6MgZ6yXt//6UT9eomvnw6lxo8m3feVQDuTkr+OLgPa0zwo4ebtz15unY0NlLmPD44Lr7Re/c6K1Vn7DEVms4xsWByb7cNy4dvvaEXVyc553zMU9nrrZqTIw9C8TmC1cNnIlyoFdbHHFn74t2vgRfeGzsHwzx+IUpL3r7gYOxGOxgiqWtsOFHbyyOuZxdJxqu/MWvPmzzbcw3OzFh5kvPDu7uv1havtUwTFz57jmj40Pkbo/8QdVzzz13fOEO65WImMQX7Z/+9KePf6PdmfJPTbnPdJ/AUWNvvbrKjY2a42Cv8MOVLR/7KR97aN17mrX2pS9D+KsTO2fBPaP6w2kf9tzzgQVf3ISuei339lwMPrB65+aPm3y6ZuHTs8fFmC4cceSONyzizMuZ3Z53fNjocRLLHsMg1tjjZT0xhpXwL7616sLGGi72KE70+ONF8olL8eFoZOsXfnr3dDWDqybl2j6zw2MxxNQIPOue83Ty1eBppBzLU12IGPzdX32h5hnS39by3c3el9XAGXY9w7Om5sVXH+vW8BCbrvcPsenseXuaHWycYKmFL9rP312pLwzCDk/Y3ifkAUuNxGArNh2eYtI5h2IRtvzU3Jr4uNOxJ85u9nAIXHr+RAwY4uIHQ/3DgEuPMx178dQcplrwgccuDDqtebmpuXhw6djEfX2yxzE7cVfoO8vVT4+TOJ4l1uVGrPWdnljqICd5lL/6xEfO/K2riVzc4+yv/WOXLX/4xYpn+XXftz9wcBebvTh8iTWY5UrfXuCgdnTW8YdP6HB1T8UXJmzx6MXvnDp3YpDyZ2PMr3MlHlycnD02akqsmePTWM29I9PT+cN1vxBCr65yjqd1/OjKt5pYY0fkSU+XmMPTyt86/mITuXo/88sb7lHs2oN82Gt8YcqzeOY4tG6Mb3HM4bBLr3aa+tPDYuesuC/w1dgQ6/G6d+/exWc+85mL97///ccazLvInb9of8c73nEQVXwv3pFFrsQQKHGENGtawl5SrZs31vNXjJrD5UC4ECumIpNww9TzSw/rNlKs4udDfz9hnzzINrv6YpqXf2u37Tfmcjn73xRr9XzM279qSG9cbe4Xh+39BL5z48LRzEkXlvHWQtzl2DgOejYuVA/0N7/5zcfFIoaLuBj8jDcnsYoPp7MVJntn3U3TjcOcrK1awWxNL67mpgnfjaUbT/zLC1b1xrnaiAOLLxvnWo06z/FmZ8yWHX+xXDN8kuz5a+Zsm/PlR2eNL52WNE/HLlz9devVZuu+dtWtGPhYrz7p64vHrv2icxP3YtSDBIZ6WdPYu8mmiw+9XMuX7XKORzjV197GXW/unBizJfmEGVa54C/+Sj7pqlUY4sNpb/VyIsYwSTnwr075FMMaMVcbXIzzYR8/vdr2MsGuh76eDxt94/bEn6T3IbwvxODgqOcfJ3yKWb3CrKdfu2PygB/wnW/XpRdtY3G83PdSBD8e+uJVVz2de0K1sN/Lxxh2L0xwNh/7x8dL0X7gsIcwXe8+VOB47/IB/8QTT1x84AMfOLIT+9UILr/85S8vnn/++eNakbeXtM0VvjmO2p4ZeViTozOlVRN++LEp32qzevvtrNGtP0wtLvD4u6+rtzWitvT5i2UuF7VTX5zibS0bWPDLr70IG37rxvzg2Bf7Y961Zl0enWtrhD882MbVR8/GWg03Yz1746Tnjl6uhJ384dKlD4/eOizCt/zNy0fdz74w+GvsavzowpSHRmBrK/xIeOpVzejyiYs+/tbE6cMSP+fTvpE4ZxcnZ8oXw+4t1lzjfLLXa+zjVa6tHQGufuDE373BmeKzeYnBP/zyMse58y1edsWz5sOmtpji4O2lH4YzZ929wD6ecVC1Hq49YSdmvFrTk+tyxZ2f+xVxnn15pqbOiTUfRuyDsTjhszfHA46zp+98iKtWK9bjRX/mJG8cPBO2PltzPsWFAY8OXz5s1bO5dXWhF7+YxnKKv3uIeZy7TvizJWw3Nn17ZWzvwg2Hn5jxhNGcDp6c1dycHx5y6HrnoxH47Y0xP3jWy5leg62l99zpi9F82uvwxda6XuTHxx+Yy8971r/+9a8jLmxSDP3mGSYu6Q+Hyx/w7bNrwlrr+Zjza54fnS+THrr8Q3N7JiaOhA97urNf+moPxzjuaq2pP70eR/uQpIuXuJ0TNrD48tNcz/cun+Nf+tKXLv7nf/7nWAvrLr28iP8M9fOf//zxT8fgStyrXL9x7/zYQ36ate6L3V/U3VhdcN5+beQXTudS/s5s79zVGo7GHg99Ymy/1QyOdVL98qWzXn70RAwYevzsi7zVuTjqbw1mObDHV+MDm8i/3GAk7Mz1YrPDGY45Pe7N+Ym//NOlh8dH/mEUg75YOLMh4cHIJjyxCX06fvTmRP00OOqiEX3+bPFQR88aeOzpu0+oFx2f/PR07K3D4KO+cokLXH8Y9PrXv/44f9biEhYfz1rPfTr3I+/Gzhfbzq4Y8RDXte8+gLfY9qh7GT/7xic/599vPOPjmqnmMPFVewITvvzLkS3BRVySD3w56Il6OFee8XA0/p1LmHCypw9f/vTyYVd8uvju/oknllzpxfYlJj+48Pjly57Ap4sbHXuN764tF2sJPYERZ/HwIOqDF4HX3noG2Vu84dEb2z8Ci46v/TSWl7p3nnevW7evzpB7Lk5JOcaXfvPoHRNv+uppnE/1wI2w1eJOZ40Prhr+eMJjW88n3/ziWB2rRxjFo+/a4ktwo9fwFbP3Cbp87a25NX9r0R+W+2yOa3nCw4/ERU7xNdaIuMbs8S9ve1T92yd9uNbspS/a7RXho3VO6HBiq9FrOGl01jV64qzIrTw7f2LHnw5P1yvu4tt/dSFhsmcrlu8UPXM/9KEPHTblf0xu8ePOX7S/5z3vOZKRmC8CJKt4WoUQF0lkIl2x6CS0F/TyZM8mu8a9HHqo0yUV3DzM5cIWlweJuIS9cRtX/I0ZVj712bZ+7rNLfx1ma7ftw3wtsG6KCVsctTbuYmH/SuLC0qoxHJhhlxO9cReZ+TleOLh5uPhnY/xbcPbcxeTBeo4D5yzh8jufFzhxgCUmey1bejZ0uLjZ49PDvHO6ueHAPl25dLOKY3V33dSyFVftzHsA6d3E3KC7eYhTvGrNJ87x4EtP9GxhWM/mWJwfrbXOLwz+RBwtfe7neRjWrZmfBaa649U1z9ZN1hctdHGKOww6a/zbL/pqZJwsX/XvDIhjTZ20zoNxH3TOnM35FbO86HGpp28tXGu11sXCobOnl5d1ePKhMw+nWunDKVe9GOeHd3UuDjtj58oaMe6BHs96Nh5wXph9ccNWDF+Iebi7p+NHp/GLrzHZObziHou3+CFXEl59XxrB9xzzot4ettf5iVne1c9DWs3lZy+y4SMmDHhh0XWO6Ij8tTCdXy/2uPhDbB9M/JXbj33sYxePPPLI4RP/Y/IKfuDxq1/96uL73//+sS/lDAp2+OzURsNPL2eSHl/5WyfqYI2veqkJvNaN7bMPH3zbS/YrcYAF071MzboPhssHNnt27rWanOjCsWavCKz4w2Mbb31jtuzYaDjGU8zm8vdO4ozLjYgr//Do+LCll4scNDGIGOrrHsK/GL0E0rGHKUdSffStL+fD6OqHdYK3sWtRTYxhXifW2ke4Pcvo+O4+8GeviQGzc85ucazBW33xy8/z0wdveK6HYm+cYtGpvXu/6wdG17M82eUn7rkdi5c/woube4QP5fbF/hB5ZCdP+yQPY/lao4PBVuOrp7fuHLhnuvbj5xx6X/C+4gxUX75yqZbdJ8XTSGM+7ONxLF6ti0v0Gs4ET/XiZwwL185ya7vOd/2rAX956KsJfy1sMeMQJ7YwNPHVp/O5OItBj6d+pVroE2MccFMb42JnZ07v/iBXY4ITCfeYXP0Qn7DHI0y1Y9+9xRqdnPTm8dl69Vt+cOjtu+vf+YMnnhYXY7Z62NXCXA3N2erl4XxYc69ynbAh+cPS+BD1rvVu9Z///OfIwfn1G3H6aiSnfMPSr1hfO2tqEpf44prQ4Vh+9HipjXd99wb2OIoH3zp7fhoMjSyn7PXs+PG3p3Tmzox7AX1r3RPYqEExrMtF42cP/SHV6173uotHH330+EUgPq9E4v/i5T9j9tRTT1386U9/OnKyl+4ZODo3uOtx1G/9+qJdzcu5c1G9qlFzZ0s+7NmqCWw5q7nnuRj0GjGvhd+auTPTcx0ufHjG/IhaspEDX+vObrVmJ1fNmD07Yzj4i+U+yyepLuZ4sOObX/irY1M9YNf4EPObJFznQauWcc2PXXGuw2O/nNjwkb81vtURZnHpm9ORYsOwjpfryDVlzE7zTHVfYp+0Flecdh/sF13rcL3PugacUbZikO5L9sTzz7s4nTycK3+w54zB9E7gnOOyvF1jfMV0VrsXis9XLPjE+Xc99ss18RSTrbjwfdEuT59T9OJrjXuPdFb48qlGdGLiCK8zLH7XAm6w2JSLusDCvxqywRFe+5wfW7GqM/50bOXHz7qYiVgJHBL31vRw+IuZFCc7emN6GPHjK2/4Yrcf4bj3uGfSsw2jusHha//ZVDN76Czp+ckXjtjs5e2LW2dBzUn3OT7VlL69EluD62zJBXdx9dmqBR89YYcv3/K0Dsc8fNdO+8KWWCcwjPGqDumt4c63GsQ1HDbEHFcYBKZ7nthqxw4fdVUHvD0zPD/++c9/Hp9frNOHWd/+w9biHgd+Gn34Ypiz4YO/vZRP/njyc71Xd/72UI3ZGdtHeOno1cuaZk0fB+dB3u2huHTVgX/njC+O7h840JeP/NUeFumfcP3EJz5xzMv/mNzix52/aPdv1CgcIhLu8EZQT6xLqoNJZ04UX1I3kaW3KR6qYsHwgufwKCoc+GGwp6uPi3V2DxL2cWPbgYEHwybhbJ4UQ98hYIt3uWdbz656xG0xs7ttj7P4RMxXg3XbmOw2rpi3qfFd8LMVx34TcdRMX57VXk1dkG6yvpjyby51EXbjWwzj9nvrBhdWN5fiZJsfm3TtNd0+EPxmvZcKPLoxrB+sm4Qdv64TsfLtPFaLasBeI2zlgE/zzps5H01+4ejFw9WamPDYnM/+ATo/soGRf8vlwAYv2ETdjPG0dpbW4p2Nnq/ctuHrhupLXD7mbMVn3z6FI151xau9K66+5obcDT0/temllE7eWlgbx/pZ8MEtXPcNtcDpXO94wLDGhq79li/++VcXMeKRTXGuq7uHE58k351bhy9PPNS732hib12MnhH4Gncvt8anfxMWBuF3zru4+nMNdu2mcT54yZ/QVSex42zd/t27d+/4cs21i5NW7fAzX4l3ethiwC43c9he3t2nqp3zqjY4WPdS4DkHwwuIe5n28Y9//OK9733vEZbtqxGcfNH+ve9973jZws050uJ1HT5OnTfreNjL6mqdP7xETZwVLyvtrWc4YXsb2TqyN4dZ3OpBr4a1ai4Oe9Je0Wl82i+9F66+iGAv382H7izinxtu8g2/XOnSq4la4MZfLM8q9xQxnQsvw3h5CSTqTczl2UuovNi7ftm7p1gncPHgK46xvjMtPv/W+DSOv16DVS5s8Kx+YbbP+dCz4VcsMawXp72gN+43kro3yqU82PATx/XSBwx4W18+dOVdXWAWr/OQX/HFsuYe4Dek1Fmu8Pgaa4SdWpYnvfFKPHBly8fYfbM/GHb2vDP4gNzeVa/qzs8+08Ok18SLw+pwwAdnvjX+6iJvOMRaGHzUq71trt+2cWHAwp1ejLN/dRdH7PgYL5/247o6ikPOay9pX/oprjroy8uKfXTt0ONH5MOW0PfOhivBVYurXp7lwsacLywil+zM+du3rnlr4vjiyXnERe9LJfd/9nj2AXC5sFUf+eMt9vIxJv5ge5/LfPiKjSc7GMY+UHoeO5PWCQ7y6PrSu1+5J7XW9Veu+MRVrLiGCVfM+JuT9lIN+bMXT3xr1VZcDfe+vPYFnn0tB89UZ9CXLWrIlo88l9tLkV/6Cb/zUm2qj54fTDatu1eb4wq/+691deo553niWe4zid+G8xmlfJfDbca4kBcvv2h/5plnXv6i3blSA+fFOcKH4EeHk3qyw9dcb60zBptNe9o1aA/hqMH/4+3eXi07qj2Orz9DRGW3RGLE27uInRNF1AiJGi8oeZMQRFGDCr4pvim++eY/IyIoqAiaaLwlXts/46xPub7NOMXaO726O2dAraoal9+4VM2ac829e7f1UAe26iwPvtpXfBajMao2rSMe/2oOyxjxR5cejHry9MjVVZ8fY/HQR/TJxBsOeXp02mfGu144ejGxhcOmFn/qTny4UbmaF0d2U4eeWHZZOrMXT/7YtT5su+aMxZtP9vDpo+5pcFo/NjU+UPVZk+NHcZJr9NPV86exc/2plXvoY489tq4B1w2ZmMlct/YdXHuXTWS/+Vcz9hqZa911DYN+ZwS/zlP5yoU+bDr8sOnFOVtYxSp+VN7G7FyvauRPa8CCXc06C+iqn8YPEpPvOogPfHHzD7f7N0yxaux3YqepFV1YYoCBxMtOrcnwW0c2/JnzR1dc5SF/2GzIikVvHuW/OT+tnT5cPsTRdWrdrIF4YbpmnT3GUbGJK58wnZfs8GGUH9/itn7WAZa9w7c5W81ZS6+8uofYV/Rgz1qyaU/yRV+scNWnnBvTmeuFr04RfU18MPTlx1ZD/NJTM60fIIpPXuz4gSGmaUeHTzr48NVKo4vmD8jar2JlC5f8xRdfXLmWm3USh766iRF+eYmbTxh4aqre1ZXcWNxae5J+OYivWPA0WBPD96C+L+c7u/YuDNc9uVogvdjn/uIbdvu59aBvzJc9QM8chlq2b/nxov25555b/wl5dvp7pYtftL/vfe9bF4HiCH4uooBqc3EE0wLgu4gUQ0KKtNvQIfdQ58ZP7uWM5Pk0VxT2dDUEq954Liw+u8k3nvbpyMkGIpsLN+3FISeUX/7E3cZZwtMHLDYaEn8Le1I52+WDbjTzLQcy4+bpZPMgPSy48jduHuaD+roubv5cHORzvfkl05AaOUh70e7GRmYNu8HRE2d7xjzKv3XLJ124+Z454uc7PPPWXSy+RHWA03cY2VfZ5VsPmx96MIoDjyzcdPnEQ8ViX6lVPHOHTdjluBSOH+zJauGJEal3saazBKePYiMTDyqH6YusGqWzlI8fYu96gMPOvNgmTn7ERa7BlaNG11nhCyNdcrr4zfU7kbd2bIzFoCdD9lE3FHN8tfZQUM317Mg0vmYLi/2MZ9Zgl5lnV48nttbdvHrMsXOofNlWKz17DaWTrZppU5bv8uEPqbvf+HBzdqYjOvjWorUh6+Zt3It2drDhFYc+fLJ84zVPvhze8KFG2cupvMt9xkvuGvVPuz1k+wJaTPJw7/HggNeeZVNchUHOZ77wzV1X87do8MMUp6ZG5160+432h/2i/Zvf/OZ6GSNOsdm/c0+JLxI/WWcDGzwPhOVLt5zpkqsPHXm1Zu7piD/6k6o3252S4VsP+3gn66d1TVonsfAtlmLV810MxnLzwGWNnNvpVJPp3ximvrNCLPHExl/7hMz5gd91Mn8LHg7/Hhp70a5uri0YcpIzah307jNs2NPX6IufDX9yVE/nQUS/Goq5uPGRehjLoRrBECO/xnTKPV36iE64dOink4+lePoIrzVxrqqD/Mhci/KZcXZNynmedeEWGxtxwRE/TD1f6gNHo4Mnds2c3160lzdcY7pymQ2PHzTzxLPuzo/qYuxacBby7znl6upqvUAUH/u5j/hkK9fytTbqgsj4EYMW4WnFMzHg48u1uPgpP7UqT3386UPsk8SO4NHLv35fk3zCEEvzvqDxx+5eqJjg5Ms1Zxxu9dLjpesa4gufjV6sqNjoaogvebKpfs3Ju9b4Jjd3P3S/0yM+/RCVP3uDT3vhzp07az1cw3Ssb3WAJQbrhfCReNjrEbkX7fwVvxj4gcFOfu1l9yG+u5b4KG42MPRit2fVDo+dnj+5qkF1wyPjVx9Vd/hsJpmXa7Zh4xtr/Lgu3/jGN67rRY3E7v8V0Jt7Ed/5MTH4g82/esGtHq0hGRtUnaqVXq1h65F62bN8Iy9q1Aq+l3xe/oj3f45//s33Avj3Q9Xr1eOL9i9+8YvrP0PFcy+xj5xXcmj9xNf3H/HRKy/+nbFae95a2TPtA3XS4Ghs6VpD93R5tJ561B5MxgYeOQx8PRx1T1/MdPbayE9O9GCprR5fY1e+K4BTDGHTMZabZm4N4RnX8zt9l1e+xJwdG7pkWrazn7GwLVb1NI7YwBOjFhWbOR+TwopfbJNfLNWULB/ycI3wKx51gVXObOkjPT02qHE50UX0jK0FTL56jrLnvajyvbx7Cjw+7UuNLUz7It/ich5aczI487om50tM4Zo7l8SBD4+NfQ63Wq2gR9xyR3S0YnWO8jN9qJ2GikG+cjDPPxx71/cJ16E5ubw1Y7mLlSwyFmfrZc6/ZqyJNxx28cTAjj/4nUl6+uIWk/rTRWqmwRCLRtf60aWXf9jFxpYPZx379lS88NSjmsDS6LindE+iKyb3PL0Y2MizvK0lubjw+XUOWXs2Yus3+dnzAx+xY5+eHPiEjd9c3l5Cw6abDmxU3Y2TZYuH8Ks9fa28yWZTM/7dV8UMi+/WoLMYBhKHuOiFScZG4xd+38tnfsb8yZH8t7/97Trvy42ta82eV7d8wqPDHrHX8MUhfmuQHl2xwKAHJ5sFcPygo9k3YcWD6b7Zcz+/sOWr508Pt+sKBvv2lTn/Gh8wyWHpq52x2NUFz5y++6D7pTzY9qL96aefXinQvYQuftF++/btuwW04DWJaxJpQQSChyZf8gpSgcmypytRF5lF7yZt7FAKW6I24yVUDBaoWCt4OPhtZHoaP2LKXtyKr7Ev/hZXv1P+ij/s11owPhD/KPs1OX1Uu3r+9xjI8mWMmp9g7q7VlKWrtwnFzS7b+jAu7eFq8qomYeRzyuikrzZi0jt8e9HuwRa5SThgZ83UpRzo5N8Yn671R7DNrf/ME4+M7Y5F5sLtn7nBwhOjZozYRuVTfcuxOOY+F8f0CU9jm35zeukWRzEnM5+YYmxOJ6KnIXIN0VFTMj7iL+Hxo3o314dDX9zxyiVM/MlzDagFTH6cITW6zgc3CfJavujv+cw5P8WuBq0vXPvImurh0XUwO+TpIn2+2MISw075wKcfnlrQn2tNh3649dWEPCJjLyc2E8ccf9Yuu/IuLhjq3Dy9enyNnnPcDalzGr84nN+tjXXpxovnS73Gjn/+4LUXygFWOccrjtfq2cGO2JvPdU2mLuTW1MO888NNnj4ceYlRHshaITzNPF90o2LX04HZPqKjFuzTUzMPebDsLQ/7/hTWk08+eXj/+9+/YCd+fi7p+frZz352+Pa3v70e7tiKrUbOx2x01K09Xq7WH5mrH1tjWOxb95mj/YLooPJhq8VrvePBbdx6pasnt36aOOHq8fnvejC319IXh9z07iHuF67z8sGHo8+/MQw6+eCvmOvpGyNrL4b2kOtBswcQnPyLzXOPvSA2OdHDF5s5bA+ccPmGxQaOHOjIW4/4pcdOT1c8xrPxofHbmptPgpGOsVpo4asPwjNWA+N8k9GN8PMlJ1+KvWw3pqcu8qiusORm/8nLGC85XHjFTQYHD05rRl8NppwOwlNHZ4Ga4xdnuOaRcfN6eo2tn1iLkV9fEvuCJUdfyOXefaZ9Wy5yYNe6wac7/fBHT9tpxtLZI57yp98+Z++sKlf84oATn22EV23jzZ5cK4/8yrO64NmbeHSr+0358FHc8qIrDvGzh63Fs69QftWQjK4Gi28EK3s9Kq5iw68+9IuhtbDurk/rbYzE1p8lsp4wfbHz/AJDjFq4rZ36FAccumTi15PLy77i01jjV1x0anwa4/elkl77ix2ZuR6e8zsf7lfWylwt4NXExg6GPhK7+cyjePTZyysdfHXAY+8a9vJM/Zx/ZOJzXvKnFu6f6gePnZ6enk51EzfMfOjN+c6u3MiQubOBn3TVTS3M9eZ8WWcvDXw38Z+p+XNwcO+H8v/KK68cnn322fUb7WLhTzxyVhuxI/Hhi8NZaY3nWnS/USe67Ohprb26ygnx71qBYR/Io/yrFV+otSOHgdjW81kd6LQn4tHjT6v+MNWVPn7+zbNLXz7FAks+rTs8eyEMtsaR+d7SF4MxMtbyjZedMf8abE2cu36yqZetOKsNXsQGTnmLR0s/mT4SF7m6aMZ4dKa+8cxHXHQ11Lx6TF3jamyt7Uexuq/5jXYvQfnG0yPrbr+xhZmcDp7vCc5N/t2LXUv2DrKv+KPbWQ/P9cAWH2UndvjVylyjp5bVE68X+r6j8IMnJ71rTKPf9YKP8MRQXGIVs/jowCKnp9aNl/HxQ9wIPn16YS/B8aO88qXHi6933cOvtnp6cphrR1es4ogfrvNBvcjC11sLfHGRWR/48eC5V9CVb/eJcpUjPhs94rvY4IsBBl0yvtREPcVF3pkrVzZ0rJtx+5hPxBY+2dwb5tam3Om6d9pDrTdcjR2/WoRPb1I1FZ84tGyqn17jV3M2q5uxPpu5X/jIvnjwYIvXXlVrBM+6WJOuDZgIvhz96Rg9gmc92BSLfBGf5PmEkwy+2rZf05O72MujtV+Axw96ciUvLljWQ9+9ydqGzZbf6t2YvZxg8isPMvz8wuQvv/kyt6fI1JH/6uN5Qk3JvGh//vnn1/+XVhz6e6WLX7T7O3MtfpulPqfmkXHBS8C8TSdJBWlOT2FcYP4ZpYJVLGOyic32UmLP72x4E1c8Wv7oip0/enqLbbHIWjSx2qjpFhubFpJtLflNPTv2MPkyV6dqRmauR7DFTT+dchUfPa0Y9BE9WIgu+/zjZWeMyLWJ8V/JvX8WD9/hTWtypJ865i5CD9r1Xkr5LRcXKSqfMPDK2zjKL5n85Yyy2/ODS6e1CKfe3ui3V+0NDfGD2GsINjksNS9mc2Ny69l4j8VczHMPwBU7Hjm/Uwdv4hjbL66x7PgTj4aKhzx+GPXVi7/s8GDNHh6bYpr4ciXbMc1htrfF6+bixuJwReQd8GJgQx/xH26xlIe5NSjubrzVtGu9eM3tMU1dEPtihAcbXr7yrY+nhxmGWNnRQXoY6kdPT6fcltLxAw6MaWdcCzO8PW/86kSmtnjniO9ioKv+vnQ597LRd5PVWyc69pe5s91P1HsYw+ezOuSXr0l73lM2x+pRE0sNTw2v80Pmpu5M0aypuuNZ6/yHLW77beLCrkbVtNjgw/UFREzmSE0QfbVSV+Rc8xv2n/70pw9PPPHE4rF7EBLrL37xi8N3v/vduy9NYLa3yWf8xTJz5L89IAe25DVyOdkT1t31Qocf+WUDmy92+adjL7BPRm4N4JDX+EHk6t452lj9yLy8gsWOT70Y6PeQFQ59RF9MdPi2ZnDJjdlXm2Vw+iAPQw58seOHfmttrIazjvw4e9irU7/RjpcvNZCX2GCSwVBr15N47TEyvsmRh+fqiU/X/g2Xjpw0xIffwhQTX/S6htnPPM21CAYbvdjY0lcHeubpx5eX5jrzwy45pA+XHjx21a1zAx6e2to7xaZHbLQwyrEYzLXsspG7F99k5RMWneyypROG2Gt4Yq3e9DTrIWbxm/NXHawjGRsEA7WP1+T4wY4fMURiVIedYNDjb8ZTHeiT80Gn+PXFlp/iybY4xE8n/oyBDX5rxYe5WPmM5jrCLSa64cJKxi6f8jIWb9cSP8ie9gMcPcLnm0354DWmYx3kVI35rz708IvDnLz4Z37uE65pMjrsxAE/f+3rMOGSJRdPvvXFooeTb35cq65xfuWoiUdtNGPyMOiZiy8f2Znj03HOsCWj71wxF3N1nHsAvhbBkics+mTyFH850IVXrMYT09x1qbGNYCP1omMPwDTWnInmYi8usYhDj8pdTho+Hkx9degHYuZIPp6Fpn22zjL/mdqXvvSlw9vf/vb/U49lfI8f7YO//OUvB79Z97vf/W7lKDcvmLzQk7Pc1E6uXQPis1bibT3oqIl9WK3by/JQl9Zczz+5/eUlBJ3qyJ6sOlUHqdGp/nox6qs7XXFVLzZwYIaHh8w1mPSbxxND1z57OvZpZO3p8M/GGsMyxhcLG7yuezaw6KoDyh/9c0Rf/VF7hA0+m+z4jPDSwTduD6ZTL74IpnzKCU550alW8lEbuNXamB0deYq1ONjaG+zoR2yK3xjlMzzXh182g+sHYm9729vWXqOHZ98Vr1jZTVxysXp2U3M52sueD8jMXW/Wln1xikUO5MiLMi/aPcvgZZ9vPGO9HFtr9wn+nXf4YqPT3tHji02fjJ785AmXP70aktG378UcFtsIn6186IuHvpzIYMNja9x6Tf+wyNNhly09uBEM8ZOTWTcxm/MjFjG3bnq48rG/za2BtSg2ts4IeOJz7qijPOjkk0yDZ001sWlw3cOMrQNf4qkPh1zMetQzqxjkhchq+HzKCQZs5yZ/+PSSWQM+5YHosNdHZGoxCQbf8Kotm+xgZlMt7HP1qbZ0EBs65wh2mHz5vtAP6q0JubWUBwzXgrWwNtbLf4Ta/VsdvHTXWqfdp7zQjKfrNJles2+18p82MNStHNVUg9WepeMadO3q08WHi+jKu+8+rS05f/mQG2w1h2MP2TPuy3TViExd1BOmuvizUd5V4L373e8+fPnLXz4888wzy/eez2Le8HHxi/YPf/jDq3g5qsB8VGSy5PgSVgRF18w1hI8UTbPIFtufgJBwZPPTpXPT5kv/pl6x86cvFjbiFmObBK/4jaMWTG8h9eKz6OKG00WgLjAmL5ybepjTDg7eXoNyIOdT7GLhTw+DHRkdlLwY8ejV2GrmbLKjF8EIJ96lfdj8iGXGQxZ/xkIH3wHipYcLxth/jOQ3R+SK6FSriTtjxC8P/Oo7dWbuYcKlq5GLDxm7aLthdaDyUwx0wtR380hu7mDgC262xvmZ8c04whDfJPN80oFjzgeyZ1x7aoGyzzfdco1HD7/6waRj7hpC8PHg5YuesVZMzdmwn3lm13Xp+hJvD1oOSPjsusFkXz3gGoddPeKZs9E6ePGQ3pq0Th3c9OTGZtobi1WTXzj5lk889hqa1y07scEOIx49Mjj19kv4sMorezxEp0ZHHHBRNskX88xH+4S+NZg3unDkTm6t6HhoEre5G5jznZ0c0jUuFjjigCEHVC/myV/C08eOkR1bstq0MeY332ppbfXW3Nj1jOBo/Iu7NbOGdMVW/Yp/xgrHg0O+yGCY01dbuJp99sgjjxw+97nPHT70oQ/d9b8G9/nBjxft3/ve99aX5VkXkObFLwZjNUs260tW3kthfLhfe1jRuk7kKj/U/sdrDot/e0QjEy9da+Esrb7ZiQdPX/3N1c69gb3fihIrbDnhZQeTnXl5hy0uMvcXXxqNydxr2MExT79Yq6F1RfKiDz+eMTu62cPvxYhzzHXCjn96WvFUE7HA8hDteuILT83p68Xl+pN7OHStUfVYgR4/1IG+fepeyjdf4vZc5qxlMwlmVA30+OVIDide+vzJ0fqKXc+vHMgQrPD0MMVjL+nlLyZz++YmCkuPxMMP3/nAF6u4Wo/sypVNjSx9Y/Gx1cIVm8YeT0Pips8OnvXVjMtTfshcQ+nzSx8eLLoavWJdBicbY3J1U6u5ljARO/Zw8TR1cE3hIfGhYqMjBusnpij7Ysk3/8WoLuXFzrgczGGwDyNedRQLmVxaf7Hau2yL0XngFyD09Pmh71prLq6ILZya+YxNntVBLMXRPhQPXJh4XTt4bNWqGvOJj/iBR8dYi+hUmzluXfhyFvjCrecXTyxiFyNcGH3JhkPHfVo9yjG7KXcGIPbOEHM2MJ0n7YFqwXYS7HDFxGe1SI+tawdfk1v7Ch65e6gXJEgs+K0BHp3WLSxnIZ54i8+alDeM6gRT7fbvnebqag+JST7s7CH1YIfwYfHlLPMbcS+88MLhne985911XooXfLQP/vznP69/5fbyyy/frZ37k5ftYkJ0q5uxXKy3Xox44lYb8SFj9mokfrm6b2jGbKyHXD2/RXBaKzrwNRjmGkzXo7qLi37XA1346gUL0dPotSfhtMb07CNyPMSfuRy6f8hX/NnylY9s9OzERSYO2J155hosbRL98PhAerHLmUyeeHzgVxu6xR5Oeno8unzvRB5VJ1j40zZcOOKxxuTygCsmfCRnsc518xygnnSLWz+Jfn5gq6Nz1g/MYdqbXrRXX7YwzcXOPox662e/+IFO16vYWxNxu95ci+JxPVZv8+rM3stX/zqUP2cAjGrVutPnJ1/OF/66pquxXkNyq454MJPJgz1/0yYf6klfzOJC4iYnkz8+nhjim7MTd+vIFx/08VCxmFsbmPR2wmttybzYtHbVkMyeaC/io+Jm7/zsWhYXXbVB+M4d6ySHYoDT9cTGmnS/ZkfPdSsvvugYy6s9zA9e54pc/euJ6ganevBXXPyK2Zxfe5xczPA76+yB6ky3WpUD/OIzjvgMT87GbPRk4uM3Hr7vKOIim9cGv7Xwm4sXnhjE7EyGQ951rDb2El+eCVwPdDX/Ear7tzWWN3nPBPl6rd7+th58ouotF/HJLT6daqeufNLHI2uenvu7H9LZj2TyZOf+I2ZzfsRsr8Dhs/3MRi3FqBcnnv0E07rzpUb49ijbMP3ZKjWF+973vne9aP/Upz618mF3Cd3Xi3bF2x0pWC1ZfcWUhCYpvHDo1WwQCfvpzL6R6LPN7pJEpy4MC9ZFJJZIHPDF2QYgK5f0WnRYHQTsOnDomUd87BhkO69Y9DO++PmdseHV8Pmdja04+TLWk+c7bH34ZLDwprx8ktPRZi7ph5/NdT2fbOBMGzw1mLHSpaN3c3UY6l1MXkr5jXYy1BpP+z0GWLOxcdhFZOUoHtjh1uOVs74brAvY3tjzCjub9iM9PPNuJnSLj3yn9MOQKxJb+nSKcWLh08Nj1/VpHq7xxMGPFy479vT40c84+BBftsVXTCvg44c53bD40dJz03J9OQjp6LvJZ9eDETtUb1xcYcI1htWYnkO5a9octvXAa22M3cDIYJSbcbFUg7Dzb04HwdNQdVyT8UG/Br+bCTs++BYzGR96fM142uIVB39ILHTg0s+eDDYKV1/96RmruQYv27D01siZbqz5O+T9k1B+i4ktmj5nDkt4/BCvOIopfXJ4KKw1Oc2rQ7x69mR6/lz/1teaa84XD6DqTYffctHLu3Uk51trTL8cPWC1b+RBjxzpe6CGybcvKJ/97Gcf6ov2X//614cf/vCH68FKXEisaMZaXGpjLFd61UqMctDwp619Yc3tCzm3ZtWGLzho8mCoAXtjOmyrr3E105vTmQ3PGvYA7mESlibmdOmpMV08staptePXevXQTd6DG3tzcVSXsFdipw969lM1Egcyz0/29JBzzkOx+HpQ5iusYlfb9D08F2/8zgUPovKrdtaGD5iTikm+7qX2Pl/WRDw95E6bOWZPH8Gu7ublKgbU+slZTbvufEGXs1qyZ4cas7MX7RE54eu7FtOvX8bHj/ziJ8Pjh+/IXA54mjEeCsNcC8u4Na6m1oI9G/UTH8KzruSTsgvXvEYPjnk+6+HBIqNTjOWYHgxj9RKLZpyNMcpe3tl2T+QHT4z0skmvax0OXrVLV4z8qkd+7NvyYgdTKx+8iE2+WiM9fXugPa6+rn+64djTvmDhw9HE4YwyDiNfbK2p3OGZFxt9fhGeupjjl2N+9fxo4kPtl30PkPFTD09DxWffw0L5sAdgwndt+/LZtVpd2MPW8JwJ7MNRB7j08K1TcvrWCS57fPi+p4kHj6187AGxILGTTSoOPGcQG3UuT7ZqqdfIrUH1Zed8cGaUG1t6+eXDnE18cVlHsYfl2aS8qwss9vKpHumrAX3xwuKPnRpU7/KohvabF+3+X5R3vetdd/OUxyVUHb1of+qpp9Z/Ztf+9JLd/janJ17xaUh81k69InGmh0dXTbt3yN1e8gJGneCqizXDl3u1Yl/t5U2PrFqETc96aF33dM/ZiA2m2MmN2+ds7M/WGC4eHTWQR7ZiRXTpoOIyllc1w1cj2Pacxkas6kFGB7b4NLaIXnngtxawzNNpT5nDYV88xRIv/jIeH3yRFcuMxxhNHXrFS1YM1kWcbPCsbXtEDPYuebmRGZOhYliT4wcc+8cLMv/CXO5emBmTsUUwrSWcapYPcte3Zw97T1xsxd+aWEvXoX3J3kuz9nq6fDufXBviIe8MYM+3XmNjn2nGfIsx/HTJjOUNX5t7c67z3PNykt+0kb94qr/aqr+9Jn+58mP/tl7m4uXHmC478+opPnFqUTVmM0lM7DUyPxRxj8QvXjGRaXhw5cYfO+fe3Dfw+aOvfu4zclBbPPZ6tWBnrg6uWfiIXG750mty53vOe1bEs9ZqwX9rZg4XpnjFIS6kxnzjiwe+WrN1npqzg1czR9VZj/CTmVe/fLNH6tba8qt1H5Vb14Z8wuNj+ikPePTk47evXS9s2i+wNPq+B+XH3C/yuCd0fXm+77sSXJTP/87++1lMZmonn3j0jdvncm+tkrEzLr9s8ZE5O9e0/dg6qI26WT/xw+BHzPJA5vJRa2sn964xc83c9W2/IXN7xD5mB8PZ0i8E4nnR/pWvfOX/7zfa/ekYgcziSLi2Ij9+mEcVTsDGCtwmNFa0DhhFdIFJtGLSqXjZhn1pLy5FhbNTOennWKznCBYci2fMRszZXmc3sWad8M1rcMRaS14N8mOeTdhq3cWWTI+K03him6dLB8YkuvjXNfmSpXc/+bOfJLf84YsvHy7AHjBdgP7+oZ9eu/AR2w6BHXcpnHToiVm+2SRn197D47+a0c1WP+UucBezixgGebEvxRNWMnL1Cm+PN/tsk8Mk6xCp5uEVE72IrYYX35ytlkztyNNnnzws8mmXnA2atcpGX576CFZxWwsNDp7eGdFNnY1rrfOCLX1nh/NJHJOKR98433TVDx+GtetBAoY64Nlj8qFrbG2zo1cdihcvf3pyMaN8ww4jHXJjOhqfjfFhiBMPptxhmJOTpZOvKUunc5wMxpzTwYuK3bXQ9UAH30OUxm++WwN962bM1k+JPRDg53di4hUvfH7UIJqy6oCH6NbSjw935pQcNn52sKqnfeA6dq740oFfLew1OZgXM0z27ZN8iLMHR2tOx/6Bn1841Q3PHvPDw4f9p2P8k/Mf//jHa83401A1qOZi7Axl8ujpAABAAElEQVSgI36Ej+wxuoiteXjGXZvVl4582WhwNGO6bMPgK53i4icb9VFTRF5Mjfl0zVovmIg+H+d08Mj5ROZ8hFOcZPZBZwEdRL+mZuRyZYdvrcVjLp72R3I6eBqiowaw2Im7fOWUfmNxi4V+vuCUvy87xQrH9Qo/TLqIjpjk2D/DhUHPg6fzlw7/1xF7xGa2/GcrZmO1co2pl8avuVqoA70abDj4ahKfn/D5plcc5mR0zhE9dUPikW/2YhBT68Lf9JMNfXrs+XEu4MFiI97805Ozxi895Ayc62yswdQQrEgcGnvxFTvM4iWrTRyxaGEY81Vu6erZdy3lpxj05Ehs9PKtTz8/dOSplYtrvzF/YjHXslsOTh/FBru1opeNXg18kQqPqT3lpY+9Ha51aU/TYYvI2crHes11IhMjOWJTnubVIx/pl1c60wZvkrhq7Plg34sLMfNPhoqPjr3XeZodvobw1N93LONwOhOymXs2G9hhGPvirocBUxz2dbnhVw92xtYsOZ6xRlau/EUwphy/mOVZXnjxy1dfjtaxazRf7NXS3o9XTYuFP/7N6VWD4pIvmfzJ+TOHx79914v2h/Eb7f50zGc+85n1op1vOdnTPY+qL17XbLG5ByByPPFPsnbtd/mK3T3CCxh7A8ndvui6k6t5OcNFeg1fTfiCj2CHTz5lbPjV42vqiqee7fP8pgM3m/KnLzYx00f0+Ub06eKVAz18jS/NuOtp2qmVmpcXHfVqL1kD+DNf8vYsXL4nzbmxHGDkN7l4qxNZunyxMa8t4+NHNubVUw72EF3y4ifHI68G4s0nWZSfYrXf3/SmN61fEqFvb3rRPf3DbB2qOV06cJzdamvf4fFBr5qrSbUUR+vAtvPHOngJ13sCPrXWBKYYzNnBs1eMvbzlCwb/KL01OX6IR0Owprz908vjcoOlkdsfvVAXBx3nu8aOf3rOaTI+xFbt4HQ9zjzYFNcK7viBp+1EDw585P7oBSe+3O1VLVsx8C82Pl2b1sgZCgeFaaymzh05hCNveRQ/nNYFb/oqr3JX4xoc665W9Oi0l8WgmRereOCLuVj41eSqwaHTHiCDM892OOTi4DMscRd/crqITI31bLKlz759jl8t6NEPS2wIjnjUvH1hz6ixPl9kYkdyI3eWF6+5tWnP96K+HPjX+I9gwyyPYk2uTyc9cdfgTZ1qgle87JF1tRf1/FhrZ4t40qFXHrDVRYPFJ7tiJMezJ/AQHDyY1UoPQ628q1APL9q/+tWvru/i2S2Ae/y4+DfaP/axjy3HgtEErwlUL/BZhBlHfEWQiIsQWXjF0mwIcn36dPDmHO9eqPjSLVZzeOaNw9fLrQWNvxS3j+xjv5Zu+i1uc73GJ5oxOFBsjmTk4tt9Za+vxjtWtuQI5syzda1fSqcPuCi/+uLELya5TT7ZTrDC22XmYV8n48NLdl/K/QRWffzzML95aiwW+C4o+eVrjmGbw3LAqQk980gcLjR4iP7EyJ5N+cOYN1F28OmmgxexJeOnMb+T4uOFkU4xd3iQa8VZ7hPPGJ9Otc4mWT7ppaNXp2IgS77b3+SfzfSzJscPfDiu/3kG8NkZ0blBzzni/OALqSGeOGHNWJfC8QM//3jG1qfc7B83Z2tIpq7N+TGn094Kl32UD7yaeIsnPRjqTDbtk+vJxVfMMMIRT7nTQ9WPDkxytsb5IVPfSWpHL7z8TUy1ZheOWluXvviT4RWfeQ8B+Job2HxI6EEtzGKY8c4cioucH/P2ahhktZnjuXG1nfr5IHOD9wDqnLEP+LBu9mEPNuGyYyOeMMhgz4dRPF8APDiQIbjyyZZff6PdP1d7/PHHl066a3IfH2LqRbsHLP6sO1JjjY/ysM+RdaffnqdjbfGtKQoLXmM6dDXY4ck1f3Rh02VbgykOuvGM2+d45unx0Ry2tepapkPGB3/pVevk+uJqbD3lyR999x1rQ8+c3+ITr3PDw6EvmMXa+WHOtz5ZtWFHD9EJX08HqT9sPDq1MGB2puCZy9c+FVtY9q5asEd0jemi7l/s5Y/8KxTrlC94GmKHj/hA5vjVZjGPH+TsyPRy9kDdmaq+cuS3/Ior7Pj5nL3x7mPXLz66YmgtGuvJtOrJpv2TDC7ij152rol45GpQDvRaa32+2YTPxphdueDxN303pgNHLTU+krWG6jmx4JnTg1t8csCfuYkTL6KD2Ba/uTGZZhy2Hk8vL/tIbii/4Zhr/E8/bFHY8mlvzvrSw3eN5lPs9lQvNvDLhy0bjc+auTpWN76zSae+2M2nDT944WffXJ7VgW4UX08XGbvX+u0t90z6NTLYdO2j+Prsw67+MMRGB7k/kSEY7cdy5IMcXrhicTaa06/u1aD9UAz08GYd5K/hwe+szW9yPR49vpxhcMMWd3EVKzxjxE5cnbHl4Wyk114KD9be+J91mfnyUcww+DN3tr3jHe9Yv9H+sF60++H7Sy+9tPa4a7NzRLzya6/LVxxqJ0/x0EHWoX1rTqZW6eithTXu/qHm8ODLMRtjrXq17vDYqBldxF5L33ieL/hRMejpuUdkSw9++4IN/+SacTrsjdt7xnjqQ8/6w0F0xJM9PfG3j9had3We54la9RyzgI4f6cGC036szng1NvTE3rroYdCJyJE4avCKjyw7tmFZw65VdnDkWQ2KY9aCff7g0smnWPOjb+xZ2S+9+VOudNXI93L7QINRXGzgIH7Fh2ednd9yyp81EEt7unj1iAxueyS5668XdHSKtRoUd+snHhhqEwZdemiuEZ45PTrIGE+ccORgb7VGyeHLUZ9dMeCzp9t1W370+YVHX19d8Plyn2BbzPCLm66GxExf7cnVqh9E28vwyemRw2vt2LPzS1Pdj/CKy9iaua/IIR/ygiG+zhPYfNTM6Wgo//FgqJF1VWN8ObGDKwY9nfYDDHz5lBObakk/X3jhFqf4qzV/PaPKvbg7J8idD8UFN9/FJlZxqI86w+C39SWnq8fX6IhD3dSUfTnzTYbSoVe+rUV5sO+HqOpgHf1gipyf/OrNq4++cfWr9lNvBXL8ILNeGixET276aD4T4ncfs4bqqC54cPLnbBGL+qFqgMeGrt48X2LgS/54Gh1YeqRm7nt+kcD4Pe95z+FrX/va+gE3eVjG90IXv2h/8sknl2OBK5SEaxLALynB4NXooRbcBqMraZvVXFIIf9KliWXLpw06qTjwxIbgF7dem7KldMPHdfFNjFknm8aiiq361BdLNbC5HIDs6ZB3seYXf8rLQch01bU6ZK/Pnj4dbdom1xdPftKLzxc9sUTZN9cXazh4u175ke1EVy6+kPtJuZu4i9GLdjwXl5j46ULLF7vG4RZPc/IZT/noa3TpmIdZzHj8Oqitc3N99WVvrrG3F/LJP95O6ecnfXr0+aRDrhUX+dQNJz9kYYoDH9Ez1rJPt8M4DPUms1fDnzlkv4CPH+0dcz7ZRGJxRnTzYatuzggPEPHpiUMrThhs2cBkV25k9IoP37g6FWMHvPUj08SoGZN382afnTH8/KzB8SO5vrz1KN9i2Sn9aqzH08opezz+kXF5T36y7NUtwtNQNTKOJ16Y3cjCsB7Ob1j8W5seps3x6fjJebZu5sbkmp+ku6kZo/jViq9kxWNu3FwdNBRPjabOEp75aM9np+dbrxbkzpd+iMe3m7J6uGflA784ZrzJe9gsLi/ufSlBM5/i8SD31re+9fDJT37ycPv27aUH60GIn9/85jeHH/3oR2vdzGvtM3N5OLvkzWfr2jXRfrD2WvuxNUtu/dUJwYcZ8cEX2x4IjRGfZKh913WNRw5bP1vrxlasHsQ1BIcNH/paNnTKvdj04pY/e2ese466VCN88asD+85+92xj8YUDyxwVN//k4u3lPFnnOcxwyd3j7JHqpi4w6IQfNj386poO/+VNl7z6kNHTxKXRcY3ylZwvOggWe3r5DF+dyfIdNp8wWifnqpxdE8ZkGoKbXTz8eOnA5Bfpy5u9FhlPXThR+OTibu3gyR8v2/DZt16w1cBczz4sPujyQeZ6qL7p8ENH39h8xlwu9eHCUzvYZNlXW3y+NX7LDX5UfOVWrMWQnh4+OVnNHOmtfddtfHPXijoicZKJrTnc/MejV2yztviuT76KUV6uUbjZ2GfVAU+tWjM++Gxt9eZw6CaHVx500sMThyaP4mMLR0Nk8cQr7q4p8nKko5mjxurWbwjiwaPjHpuemPhvb9ETX7nwS98Xa3GRqbU4mjvP3K/09MnJWhN+4Xdu8y0XPPdGff5nbeiVk54Pz3Xyoud+KjY+EX984OVLHtVNnux2KtZ6vjRx9yJJXewHMahZOMVHXoNvjMSm0WufwZl5Zsc/f36j/Rvf+MZD+dMxfqO9Px1TrcURicU9z/2HXI3EKmZ1ts5i3ddITe2t6kzfejQPXw35gGl99OULt71hrK7qm18Y6Tamp8mBbbnAZc8/P9V66otZoxde69QcJizEFlZxk9E3bw84J5wd1k4NkBiM6Zavulpb+nDJ1RZOtvTVKqKHYNChqxUPuZhgI/Ow6Rurg7Urdvb8tk6w6dERW1iuoa4zWGKDRddYrxUPHtKXM7sZa3tILDW/QPLmN795/WtMtmrkT0DMa5gfcZUHfDlYSzZq5vmXnC6/Mz86YteL1x6jA1McbMj5dh1YT7pasnKip7WX6PAPi44WkSH6aqsZW3v2evXho9pUTzhi1JPD54c9Pgpn8uWG6GXHViz5M8Yjx/MCFaZaRNPWuFzodyY4N9SMrb0ip2KjLwYkh64ZvqytfBG8YjaGo6cPo/WBgY/HhzGZeXrJspVjzZqKl99yp19c8K0POXx8PX49fbXQJs1a0bX31AIGGUzPqfB70U7W9U8n32pWHnKko0d69nhI/q29ub2DijMf4tFmPOVIX/2tSe9UybT2In+e5/0rVc8BYjQvF7p84lcvvsqDPJJrjW565GG0ZuYozPYCvFkHcjW2xtrcd/li27+6pY+vnho89moZX1z41tGelTfCo9d7RDw64ukZyYt2v9HuX5Ih/i6hh/KiXREkgyqgBTWu0BWHjg0iCQsreRdiNwFJs7k0EbjnSGwWZJJY+NgXvdjFIK77oTCzzQ9MsWh4FlZro9Ev5+Kgx84F6+bFNj3xqXH1IpNXtvpioWfzzTVo0+nDotMFzxYGWT7J8PNVnfQ70dN2GZ44wjBHU4/fcttxzcnZ96Jd76bsb8oa51fvAnfB5U+v5RcW32HGz695a2Rco6+h9pNxeXSwsM0nuRpX0+zodKPI3t6YsWSDR8ecf/N6Nih5601n2udXzzd7cq04FtDxgy09lK/2Ex6Z/IrboTjx6cDX0sErRvww8gPfGeFcyEbd3DR68GeHN/cJew2fXLzkWnM8DcnXWPz51quj/aSpDx18euauR22nqZePXUcccqrBpSsWsggvHbz0kiebscNA4dEJs57cmK46XUf8IboarGyqr7kblptS1AMAfRhq72x31veg4kU7fjnNm31+4cG/Lof81cvZ2oRZjjCMb6JpR69cswu7fzlD30MWPXuUD0TPemjG4ZDBUpv2LJ4zXRMzG0QPvmb/3bp16/CJT3zicPv27bvyNbjPD3H96le/OvzgBz9Y68KP87G6lUPnZvvc2S/2ru+uKQ90amA+16rcZ77tVT7yo6dLr7USi4bUA7/apc9fMbDPtz5SP1+yrBUcOdiDjcWu8Y3yK0514QvPvPzUxQ901YVMz14NnE3ps58v2oupfsYvP3Zqaz9Yj/ZB+uTy8TDoPwuly68XIz1MixfBI4NRLuzVho7Yyo8OvnjYzJrCYR+mNSBH1UYfBn2t/WRMrmcnhlo28OXSFyZxqYG++Omwm37DgR+fHznIRzPXriMxJYfDhs8ovHyQdx2EPW3kna4XXO4j9otc6M/a8kOXrNxg1co5PDHlX4+yo6Phw5v38PDEouUPfrEZ18KFzVacxuTIPP+NyYuFXjHrXW8aGzps1NBeqvZwxaWRw9C3h/OLB5O82M3x4fFDxpfetannl95cj+b2Hixz8YjNOmlw8POPZw4PbnuheizF4wfZXAdy2OLEn77ErSF65WgvFRdZftWk5yA8Ouz85lW25vt6z3hguCezifDKT/xi4sf5WE3gakh8aled8NiIp73PJywktuz5itc/V+dLPs4zjY45G2erZwY6+OqvnmRi4AM+aq3N4+HTZUPXiyTYxs5U+OHSnbb0EHvYCE7rSS4G9Z5x4NNXH/4e5p+O8Tfa/cvyP/7xj6ve7XM+NWvAp+eV7ifilpfaWlNr0x6hL3Z8e8J38/Yl/Zk7O61akMGNBwde9ZC/+sJun4slEi+CwXbuezx1Zq/ns1zThUnOD5p45ukVL55zIn1yNvmShz2hfnTsfbb2Hl8TH59eMdFvn4mXH716IL6qNVs+7bviMcefNcgf37DMxegas+/ow1BfDVbrBUcu1gLNHGDxF8GBK8ZqYdz60uObnTzpkPMhf7aa/Dz3+C7ul0Tgms8X7TBQtuLjR62Ln0yOGkxy66wO8jVnx6e57xd6MfEpVnHx27MFfjVmR6dGxrdWXnTOERs66q+JT+zVV2x05KC1L/jGLwZ2Gp7YxUDXGJ+P8s6neKqznlwLkx6MXhDOHOCLJ2xz+mLXjM+9aK8G9DXrJ0YtX9ZGvZE1shfFRK6mrTk5Pxoqdnqa+OSN+EJ02JtXM73a29/G8mSnhUXfHtEXa2sAM2LDPn/44sPT6LY3YZPJtfdO7qVwxUgvndYfPptZD3pIP18w89e+ZiPuamQOWz27DmCyUQtj+vR6v2od9trDs17+LMq///3vtVfkLg/6xQrPmH4Nr7YSOH7Q0eRJxl88fXVMPu06O8TtXiO38NWhawxO9RULUl//n5M92x5QHzWlA7v17/zEVxvvHNzr4PJH1y9Q2U+IvnrQpeP/VvE32v1LMsTmErqvF+0tPkeCqJkLoEVJrsCTLLKiOhzbOBZYgdjDm5tj2l465ttCo4qDx0e8Ge8e/1K6xw+YfOnLwwbgT830NjS5DWCj0O8CF0cx0qnRdUMPl4761NiHm/0MGa4669M1zl5PLkYtHfzWBK4xKq4w9DuFQTbl8WfPli96/MBvvuOa01E3B52faHmR4oL0AgKPXONDzV1ErXn1rpbh8U0nvfzSw4NlHBlr8Y1h8wurtWVrD9CrnnpULGTGdMnKb+LHx0N0kLm1Q/ZJRD518slXMev5pFftzTW4eKg4jOG0lyafrDzwkb4xu3JYwuNHMeo7KI3tQWdEN4nii+cwFtvENEZiFx8bRK/cZjzx6Ii7A9nc2nXAWxd2dDRx2k/aTvnMpvmuV0xiLqbi33WbF4P5jkuGwjDPxxIcP6aNMV11nsQGlatxOPps8qP3ot1NCabmjNDI4Og9gPZb7OZucHTEab36m+3GbHa/5vhimHksxdNHWPRmPfg7Z0MnvWkDLj96RM+auqHbF/aAL7HInuz6C5Nu8fKPyOSs5vHmFwmYxVMd3PRvvQ4v2n/5y18evv/97697cLnlWx9PTK4Fc7XQ5KaenQFy6kE6nb3ecoYhr66N6ccYXmtlrn5wWoMeLNnj0YdrnF5+67tvWjd61speFAdf5j2A5ZPfWjG2ltZRTdxjWi/1QcUTDrn140s8MMIz5382euLti0O6evri9wzgC6w/J+TLq9jv3Lmzri1Y7Tvj1keffz0SC39h04evGaeXHB9Oe52cL0SG8MJwjVQzesnwtObsqlN503c/p8cnKlbxIH0NVs1+aK8txdNHMU57NnJF+Pyal38xmosFJdeXa3owuoeQdf+QXzr4YeDlN3z5avTEw5bMHOmTm5OpjR4WubmG6tUEnpa+Ph969pq44BU3nnnER/nngz3CL2Zzds4HDS5iby4P+oiseIzDEHe+2JGJhy4dY3zkDKKPj8e3e/SM3frg0YHVfT5/fMEQG/mk/OMVQz7x2CC14BMm/PzD1uDC0sw7P2FWk/KDgeghOsauQ89G+cFzH2ZPB1+u7Fvb6kvGt7PDPdmcDUy5I7qwis14zz8/dJLBRHy2J8iqaXps1EETg++CbPmVlzOajtjoqLMvvGSw8BB596d4MMTGlxaRqxOZa5Oe+jh35jri09XoakgNdoLHBzz1lnM+xaaxc277kzF+o/1h/OkYL9r9y/KXX355+ZRD+5pPOeD10swcyUUN5StWfPpIbw/4Tu4FAx2NPpoY5uqDV62M4evVVT2M1cjawm5/ZK+Psi2u6g6fnbpOnfTao61tdq2DGLoOYe17Wd5s6JPRt549M8DFUwc5wKBf7z7cfqKrwdJ3bbBHe/x4fKrz1KXfusjTmH+YCI711chcE2KjEw6+vOlYC5QfY3618sgnOzwNj8/G1Wn6aK07a/hy//ac4j9AFb/nXDz+xao+MNnYt2zMxQNbLw589aXHhr29QEdc09b5AFuM1Zm953TrIw58fvRq0x5Sj/Bh45PzS58MiSl8Y3I+9GJ2bomRDoLBdznBitQ2H3hix4MDA645G/YwWxt8MWpIfK1T8aqTMRsNwWAbljEZ3/lwVomZrT2Fbzyx+GqtyDu/xUzGt73Ixry2gjh+hDfncoBZfMVajMVc3tXeHlDH8qTPHzzj6ihOPL5RY3b5KB4yfD74NYepTmKEwae9qe9FO35yWDDI4cNJLhYt7FlnNmJubSde9vM64Eec/NBVe2Qvdo6Lna2G5EPPn4L8z3/+c/c5wJpp5LOxYRvPvHz0iFzsWjy9uVz0qFiSdXaqrXhbJ7rq0PqGyQ9dJGc/SNacMfyogfrww54O3/LFkwM/3jl4D1Fc9JwVbBAfGiz1dd9+/vnn1y+9kVdL43uh+37RniN9rWJwnLwgBC1ROjaBG7rDUWG05NnVZ3+/fQvNryKLoeLOeNtEeOVziU8XUxe/MQxYbRT4KJ8WlL5YypWM7dyYNoCG10ah33hihgOzHMnx+VdnRNZ81h0mnWpgbOOz12xW+uUS35xthA+jRp5NPHmKwxyVDz28sMPce7Xz231+Yu0mrp5+09A4gsOHNaim+vDpFQN/xuLSIro7b+q2hvSsU4RfjnCR3NS0WiXPprjCx6cD61w94oVHD0Y01zueno6YatetDT4f2RjzpRnDmf7mPB/lbB/tdq0JvrEG1+HWjUIOMOjYezVz/GT5jtdcjwdXK5f4en49kKo1spe04sOvqZl1tqcmwSnW1iu/9MiLQeyaOdxsJ94c80lPP3NIBw9GrRrgG6Nkxnj8tz/wkNrS4wdlr9foV/dicbNy42IbL2xYbDrv7QF6foutBwK1csPvn6+xQfnht9iLYymc+aBXnXaMXT29MPVRvOZ6uYmVnf4Nb3jD6qtZ8dK1b+ipc3uCvfhgtyZ0Ydl7ejrs2nceQm69Di/af/7znx++853vrAesmbd4omq+11Ts7R85y1/Dm3WTR9cROZm88MqVr3I1zj7f5vnnS1MjxF+1pYeyzw52vvDsuX5DIXv4KJ/NwzTns/XTu/blR5YPPR65sTZx8YulvVL99LDY0ykGGMbF6sv/1dXV+o95/IDZF5w//elP67cz1CJbsbPR+k3QGUv1WQEeP/KdL3ZIzK0tXg/CZHTzU63CnfdbX9zkxR4eopeus9T+16qbB175eOgvJnbGkXF1hA3P+jpjyFw7sPFhIf418mIw51ft8GDB1cyLPR8zBnKEB8fepp+dOuAVZz0slH1jc40cZnWc985leLKlI/byKrdiNIfFHi5+jUys2c8Y1M0Xl+IkqyZqaYyyh5HPfXzufIBb7sYwxcMW6cNJDofezINMLHzL0Vy99WKzB8jMkbw6f+BYczXW+IcFh605W3rlbjz5PQ/DLi5yfvhu/eDAoO8a8nwTll58dOSnGRcDbLb0EF0x0lMjemrjPqwvb7kVKzuY5uTVlj4+4sP1BhuPPd3kS+n4wb9Y6Dl/3NvFgnpmkyeCD9N3Pb05e/mzKRd8/vnCm/nyZc4m++TyESe76oOHzIvVPGx8NvW+L8DTpi25uWZMvhN+zb7S1Azxx5adc9tvxL3wwgvrN9vZ3A/BRF60f/zjHz/84Q9/WHvM2SkPZ629x6849BFb6x4Vt3W0Nq2LsRc/rQ8+O42NNWgdYO6NT7riEAMbGPzYF/TNYUxiN+M1Zq/RVUe26YWDr+01bR4O/WIRH9zw8GHIGc869uJGjDDIxSEPczYaPde6PYXyoaev5wvBkDv96llt2t/08DREjz9+8eAZ86fG4fClvumxIXMGyWfGFYZ8xSTnSWw1xKdxZyQbfrLLjxz5k5vv4f4zVC/bycWpTsatA3s52LuwkRw0Mn7E6Tu++Mt9/kCBL7jsy4WeGiB2rguxweKbnr66zLXhmxxPbNUWD7WnjasLHXhsxSZ22Hj8i7EXqWwQGR/k/IjN+iP22twjS3D6gMFeLWtE+LMG6fBTjOmIFeHzj4/HRo6amNpP1Y6NcfrqrDn3yz0ZW2MxisGYrSa/5jBRuOmwUwO1rO5hwdPEntxY/GHDNCeXp9po8PHzYwwXJaOHzy9qTfR0UHU1l7988NiEjycu/hFc9bLWGj1yrTWBkQ+9BqcGg231hSt+GM5u329QPso5nOpD7nu3xgaGGGB4RilXfotjAR8/xK3REW9jeuJQ8/hsyOEUO719LemJSQx02ahlWGxQvujAMPcO0PdxdVbfzqf2Nx24mhisl/cNnl/INPHSN4Zr7GwSg/vqo48+enj22WcPH/3oR1ccxbMm9/Bx8Yv2j3zkIyvYFqCFm8UTaEQuQckppESMLa6CzI1wafD5uKmviHTg18wrqrF8WmDz8pn6+OfIIjk0u2mYs4PfYcEOL7KALWy64disxoiesTrOWhsjPlDrYQzXGsx1wJ+bmP68GMMJ17rUqoH16mIoZnawio2fxnTEQF58eAhfXtlPnaVwwwcbdfVPPbxw6CeLbsoeastFz081NFYbVE7m1bqYzI1RGMWaHbl10ozppWPMZxjlDM+4WoQdX4/wNXowYZmjiTVrRk4XD/HdWhpPO3K6Ghkb9o3152xaV/rkO/FRg6e29pDDr71XHMnp5B8eOZtuGh2OMPDp0pmxGMsFJh0kvnIyZ5MtPn08eq5dTSxkjekga0yWnI1xPuHkm4+w87dATh94Ymxt6MKTJ4JTO5kseXrx9MVPHxUfbLIaGR1z/sk140niohPNcXGnIx7khuVlnrNBHhoqP3l187aGmn+2hScmte1Fe3kXpz7eAj1+4E2+uOggfP6zIdtzXIrHj+rJpnol04cxeemxde44g/hTd7JZGzowsjGWq76YnaX8O7PaT3R6uNDfeh1etP/0pz89fOtb31prJxYxaJEYUbURmzzNPVDLE5Wz+V7n8pBDNYChZmTtH7zaAj1+8F+jB6PzFJaxmGbcMCJ88/KwB431HiLLS9zFQl4Oen7w+M+fOVs4dMz58WWv3wRqHdmpFT3jcPSwkb7awYWHjJFziD4MPtXOF9jHHnts/Va9XP7617+u384glwvd7I29gPOshbfXOZ98zDUOg7yHbrbG/Mw46WiocVh6e1tcEWwNwVTb6led3c9dG/zxpU6wxckGTwsr/2ycL3RgqJf6Vm82MLKnJzZNrBE8dvTENNebPcqnuca+vMVl7eFbQ7r5NM6GXGz0ye1zffHyIw5n64wBP7x8mhsXHx3EHzytmPH5DsN81lLM1o3vbNRVDPHY58+4BiuCT7/Y+UBiVPPkasVPuejnmsDouRPGzMmc77CtOTle9SyeHbc42BjDEKvneDVA+eZfDeGKm557WPuNPj4MY79l1XOpeKyh67Df/oM962cOv3zMI/ZRPsoRhtj+9a9/rV7OnoPx6WSrZytP+WnljE9fPuKkC4eczLza0DGWxz/+8Y+7L/jpeRbwm/VkdNTGd735ol2Ocx8VV/nxqcaIrN54NvioGNfk+JFN83qYZNmJg601CkM/dVrrMK7r1Z+tmqojO/N88uE34vxnav6EzHUxXocfX42Rv9Hu/2158cUX19lpv1lzLxWtG2rfdg9iW4x0qoP18dt9XV/qokXsuhbn2hmXX/nQxavl0xmK7If2q7M9OzI29OOZ02XLl3iLhQwPnjzZkCFjskjOXZvx4OIjY7bw2bGHz686yR05I/DVSU+fb3pa5xl7DYWVzLWl3p03/IqjXFwXjekiOlqY/LoGy5F9uRSTvrH8+C8WsSO+tIlrzBf94qJrrBZs2dhTs1Zs0nMN+PvsV1dX64V7/mCQqRV9OMZ46oFghit/tbav+WYDg+/eHeG7ttyrwrUm5HCsOxnb8rdnEFtymGTqxUYvZnx9dYRBXz0RXYSP4LZm/VBBHcWFX63hIfjh8U+HLLm486XHLz76GhKjZi73rgfYycqFPT/5Kj44ZHIpH/5g6fGqhTw1+ejpwLMnu6bpi4ct3/wYz8Yfnd0nvsbOPdT+kEsxiKMxvlqnA69rI9z2bXHTqR7GzcVmXC2M1V1fTDDZavhs4FbP9nPrQWfqp9sa8GXvy5Nu6yWH9guf/Kuzns/msJPDcp/1XRyxT98cPgz84va9u1+Uo4PEhkeXTa160jFGZMbiRvypgb1bbPmt/vps9GzY0y83WObqr9ErDjJjuuXhJXv/ekb8zgjxR/SrWfuWnnHY5DX7VQ69W7Q+/gzWM888c3jiiScWLMxL6OIX7R/84AdXgIJs0XIqwA6PEqDj5uK3GB2AiipJh2h2lwT8ILotqNhQ/VxgOuLCs9jGFuAmcrFYGF+22xjpk7nYy1XPbxtJzYz51WzUeOnyr46wkXl4+Znz8OFE5DAQubENqcWfujZqF1t1oqfhq08xsxMTHj9dVBMj7Ikpb1T9Zw7p7z0ddVBvPzF3kXnAlKveoQsPwccvfrxqAkejo9GBW0z05BeVazGap5uOnpzMOurTJwuDr+qFN/2mx79aoWJck9MH3DCS47WW/EfxWx/68LWZQ3p6MZKJL2I/aztldMjm3mA/beCai1tDdDRz+0b86mHeA5Ozws1Hn/9wmi+waz7E2R6gLw48ftVArcjx+DaOX3z4eHTKY1/jfJBfR/yrUfnvevmeMe86cy4uDeXfuBzhID67fvXX1U1cGrtigIun/tYogmFdfLH2kLVjsuOXXTc/47///e+Lp7Z8+KLnC/o5+3RgVXex4IdvjNjvGMV6SQ93+g1bLnNtnTXOfPoa32KjY03cC7sOyfD0cOhbB7pw+NPoe3i01/BvvQ4v2n/yk5+sL/1ejCCxRMbWRKyT3/qzsQfozPUw1qZNmPVk4Rqf08XLf706+K0FdfHsoObO/64/NmqnZq0bnxPfWA5iN7Yf7VnEj2Zd6LSH6Ll/+zJHbk7HXrXv5YvvQcxvYffSBiYM55deXGzlXv50IjIN5Vse7Qt+ovaInq58NHGZa3LQ2JEZi9Oc/55H8qlnlx89G7V2bcJQaz2qxsVdL4aeJ+jCdA3Qh0mPTvteTGKxlmqo1u17OrDYsIVBrq/RlY85Kn42dMnEkVw8fGp47MWnzxa/a5YeDDEjc3pii0e36xyPD/0///nPtUfgwegHMWKzrnLWqzOCYQ/Rh8+XH0j6p719KcDXqgffsOlG1cScHnn5mGv0xYH4F7NmHPaetzryXQ3zW77w8NKBnY16wK1mYlQPudLxBZGduMjKqxiznbGGmQ1deGpKXxNP9aCn0dFHxvzRQ3Ctg7MGZvc317J7F4It3l6aw/TnpPhrvzmv+pufMHwBLk/2qJjZR3jV1hjFEyddc7UQK5794bebnWfOoKurq5VPa7Njd3669mCogboZsxEffHHLu7PS2X/n+Keq6MjHv6bxsl1dxGy/ylEN6ETi1cLFl4emjtUj/fTCEF/2eHzpxXgTseNDj+Cyk2cEt+vXeCc89u2PXW4uX3riqoepvsi17oejX//61x/Ki/ZXXnnl8IUvfOHw+9//fq0/n85PfsSpLtbM+tkb5uXuO5ImJ2ek7+aex3pJJgcYMNnJja65upGrKTLG4wd+a2rcHrA/+eMLX11cN+4rre8CO37wo8HhLzxjtmQ9G4mt/OCQIWO+ydnx52WtnPInZnLU2ueTzJ4kd01oyPWsvuHSUVs++NaT8ZEffHug5wfXkvcg5GRq0z2NDznCkFc/rAqvupPPtSUng9W64YmtPyfFF+xZz3D5ReTVS03oynESeXlXB9gIHrl6eenlz9v5fg6LjTPCuaMe9PgTN7kGR+OXjL5mvcnlJke1UUdrjEfevdRcXM4gGPSnLX/tS2P6xc9ODsVVjGLHo5dNMnnPfSNeGPyeIzj8VDv+YaL2LB2Yrmc45oiNvTkx+DpH4mObr3TYwqgG/IgB5RemnDU5k2t08ZwX3feKB789y2d7HmY1pUOGN2muOTxEB991096YNsbqZj+572ry5aN7bLjihis+1w1suhoyl9+sr/pVh+LHoycetuw0cvU05ouMbv71+RHfvHbx6dvDejnBc29tL8FqHfXm9MTR/YUuXNe7/Plsndmg8hGDMbkX7c5hNuZw6bvPT/8zF7ZhVlvynh9gyEeciK6zqPtQe4lMLPzCjMqvOlbj6sCGX3zY+N4BOmv4Vgd7FG5+9TupnRoicvnmi8xL9n6ZTm63HvB7+MUv2r3RVxjNBmvhFLvNYowUgZ6D0aK6QMkk1uZciifdxud6xUUt8jmdczz+NIVHxrD0kRjhKnRkLP54c3Hjpetm6VBw4MMl12wqi6Quu41NQa6xKS66czOyE5t6FXNY5mJEdMrBBoKRjJyNtdI3hmmD4WebLplWfGqkhvnR4+UjXDx2Nrxe3fA0OjD0cw3IWp/wxHGO2KqdWvub7P4zBA9yeL4guUjyK3YNVV89jPKIz95Ya22MEX1xJdeb77GWB7kbJcKrBnBQ9ubk/GmT6FSjc77CKrZikRdb+8hYXVs3+DD50tfyC8teSA8OXj704kUw8rkYxw9ytU8/uTliW93N+aeDP1s4bo70YTo8nRv5p0OmhxM2PDyxz/j5m0SG5NHDLl4x2zf2kjrCDy8Mc3b0qxks/PZ4uvXi0uZ6JNMXN998RtWJXM5R+uStR3GSaZH68Nu1PtchHX18tjNvc7bOi2KA6Tr3Jc1atfbhqQ2fbOgZW0NfFOl2o/MTdDd38hkznPLRI3INttY4mdjaI2zooGJek3v4mH5hVL+w+e3cLzawMz5r0v6BMWPDVws5u0eotYbfAyb8t7zlLYenn3768Pjjj6+o4T8IicOLdv+Del+uYcqLrL3ER7ngkYvXw5y1Q7OmYSzB6eNcrPlobdLB1/Crhb7r0MO0B2v1qu7uAeTsUJiN55weX+3fvjDgpQe7nPDk3HrwicdeDdjT5dv9x5d59x9rDhNWD/18s+8aXcGOj+LHYmvOr/wQLLxk1SeZ9ei6FrO4zNmJV9z2GL6xcy2Cierjs3VNuzZh8AkTPgy56LViI7dHNGN8fvXlgF/d2MrTg7k9Ly61ap35D5s/euVuTlfDK/5ig2vM3yS605betDfGQ+mKvdrrzTW1aG3Fjic3/d/+9rd15lUn69+zoPysLR5dOToLvcwpZr2Xmn5T2fMzX5p8qm156MWKxG4ewYlnzFdYevloYbOjB0Mu+IhOueHR4ROeeOJNfXx7U47VDZZ41IAPe8sXy3KCZ53br/nl2xjp6cNFYlE/uMVVbHxo5dQYHqJnDfnN1trwT+Y6dx2L0b7mW+Pb95mujc5sGOTOA39CAY57nzPj3D2ODzFF4mhPG0d05Ni1W035c46/9NJLKz5x+I1SesVZzGG3/6oXf/StnUZfX+7d4+XgP09Te2P/Gad97joVR9/xxDZjh0euodbSnGwnvqfOtCODjadvD0yMMNVWyx5fEz9q3nWJt8dt3hpNGV24mn2B1BFm9XR9i1e9H/aLdv+MXf3tCTVwD7L29om5NbMu1rAaiZ9e9xU9vVdffXWdMcUOg67Y2epRtayeerWEwTa5sfVjh9cPAew3MteBvRJudYVHX0P4xnJkh9RSfeHLT+3FmP98uy6RNXCuyikMZxL7sOHxzR+szhb7QsP30kW9ipkO33DZwsYrbzYae/nz5RzpBwz02crHtUfOVmyuZ42vmhjVwVz91Lw85Km2cPTVhl51oMOHJi7+YVUTOYiHn3TIJ7Erbz4iGBoM+fjtT80PGmFWE+e6+OCos3ysj7gRPn1Y4paf+uFpdOXt3CUTK3/2PVk1tC7iFA8+P60xPvzqmb/WvTxgofRh4WnGNTEj9mJWs/Z5NuWfHh0yenpytnzDE5u9po9Hhw+2xhqiT8e8WMKgy4YcmasbXjryIScLy7g5ebVjZ196HrEO5kiNnDPWRRzq3XUKmx4dsmLhqxrmL5k5v+6haoToo3TFZN1dl840cz7seT2q/mzEp4mBrn1RXvT4JhOrMRu1yh//7dfWNxt6xmIm02twkTESV9d29wz6agXbXhSDZw2YKP/1ePQ6M8QlZrk5X1oDODW2xvzbZ407h/lD4q2G7cdqyI8Wlp4Mlvxc26jaGlcfuWpsWs9i4w9/Etye9cnooPDwxEIPrz9VJQ73BI0On+ptHpWH9Xe2IPLuYeLCd3Zp9LRbxxftvoffvn172fB7CV38ot1vtAumpBXBXNKKqLfwbSQJuzBtAslI1CZig8wLuv5cAjYXgh2xRTfZKT5bdi0Qnjgj/HLCC3fG1s2AnG2NjoXoywG+eGDyqybFPuPEsymLBY4xHtke38xbDLCyMSeXA14+84dn3GanLz42NXONnmZdXWziyD48PV9TP7uwbV728pnY7Kp1eOThGaNka7J9qI96e8nup1lecPDjwGqdqq9e/PKo1uCKKT4Zag1m/dmHga+Zo/TSUU/jHmb5gZk/eYXBPnk6+aEn9uKi+1pUzcpdTdsXZGHDLN7iD7v402mtZhxizj67ejK+isU8wmud8WDg8akP0/ngrNDYm9tL9i/7KB9yCLd8wiqebKq9fMjUqsMUDyYd+6lmni845nTdHJH4ER5Z8/JjWxOnNvGW8fGDPoxuRvj08MhQtjM/4/b55M/c4bCt1mTFuYBPH/jZwZKPhtg7F6xHOq5zN/nWpvjoszdv7djS9ecuYMiTjhu9+wPeXpdisBbzXINVLnyhYi82cbNH4riE8ps9W7iROHvwomNe7PxaD3LnkTGZ/MRBXz7mcrD/rLFGvwcv/Kurq8NTTz11+MAHPrBc56M4Lu357jfaPYTAK6/iFoc4W2tzOq5H69e+KRd2cO4lNjpzXcRTix8ev2pn3T38qCf75urTvmdjrNeqJZtw1JxOuckvmRjaN9WUHuIv3/ayuunJ+bJmYtGbIzVSLz7wxM9XlC9+ybXqQEec9gEeP9WXnjxgJeOLnzDpa3h6xI6cDWwEE282fDr0+XBtyhWv/ZsOXhj8iINOZwF7NUHFka98qK17uS9LrZU5XH71SMzyLi7Ysw7w8GpwUQ/ZcMSQXbbmMNmHQUafjN+uUzy6ek0u5OKWJ3x8vRdJ+uIIC7Z17VmFPqLXD+fbM37I4Tcg1SGCmR/x8q/BF4/4kLUoJz7INTz2dPFnPvnAo9t6090JDj2Nr3TKR99+kI95ccNWLz2Z/aJHcF1LagqzVqz5hAVfj6eu6sDeWIMfPx09YguTPr3w6YvNeuDno/z0YnUGWB+xsylmNshLAC8KYNH1YlovRvpIXzzFYk6n/OiR4cFybdARR7naH/4FhVidM11L5PTYl5/4OquKQS+PzjU2rhvXfi/1nGV47tPyJ3v1+ILWb7F3ndKFIQ6+I74R31oyfFjJ6RjzL38k16lfPvgaX5PS1WvpwQ27Pnxrrb4oPWP2rVdrNuWw5dP1SUd8emulmbvWH/aL9s9//vPrP0O1lnz0Mlu8ncH66ltd5Co+edC17v2fOXhyqnbZqEW5WheNLuK7tUq/GqUjRvvW3qSrXvxau3SNYbVesOGJUR2N2ZrToQtjns3WovjDk2svYslgwDIOKxt8uNk6gzT8XujlQw6uieLUs4MPo9zZ88+H68eLsHLGsx6dNWzlRC9s+fFVvPy4xujCyRe5XFtb9r1zERfd1h6GPBB7TY6zHmGHb474tafw+YRT3czt9UceeWQ138/JZj3Fh2CIx56wP+DThWHc3iXD04zZyU3f3oABi4741Iscicfesw6oWoh7t5ETEkf1EQd++lPOXgzlyC/8SDzJ8eQlrnL9X97udNfOo1jj+LoIJD4QwEcICJOE+AgBEj6BSAgkgBFCWMxhiBhE7g0kEFyEGUWYBILLOPvX3v+cos+7tvdyTErq3d3VVU89Vd3vsJa37WKY58enuli3pskLDy0dTLHTFwOGa6azw0YrDvu48RG7+OYkH3Z4aPB8l+c+3+eAcOXeucRf3fVi8tPkLjYJU08nP616idvfErMen+V89cM58h2LZ539h8MfB7ZwxIbDHz/nRp7W1GeexVlfMfYa08FNjMWEz5YYwy6HMOIuNh7znODgXCe4qjE++RmrXWdaXfEPn497Bj/7Ys5WzcUst3Di4V7kPdWzvHqpUe/8OJWj8YxXzvR853VaTdjEZXKn09hp1dWYVFs2uMrDuHrAZYubdfdXZ8W8c8ZWndVFi28Y6q7FMUy92vpO0TOVjbm/ofPFL37xjf2nY9pARSkBYwVXEIl5sexA9acsbJKKqWAwOgytP6znp4nHf/KYvoqvHQkOBIb4hC1ca4ocLzdrB1xzqNy4rcuZzlhvTmA6XHgVZy1c/2CntaYXe+qYnsvLASP5Z7f7Z4NPF2E25ZYNjHCt2ecOuZrIUZ+IXe348S8HLwzazq+6dNMz5yee8yIemdyKp4evOfxefjzM+01Ce2Kf+pI7znHgL3f+1rTG1kjr9g63aTNxjK1VS3P1yab+Aer5n+zCENMYTvt53vN4pT1wFmGXp1yq9W25FYF9dYI/sbLRs8Pd3mnEuZh1pLNmn+WbHX0yXzbDgsPHHIc48dnPHh0btmJnWy3kos7E2FnqpkonB3rCF0Y8q0Nry+jgR3bVKoy4HrgsTt1L4i6PI5ELnvA0PIk45vrpa0yn5o8q1dS12z64p2iuXTUtz2IXs2vby4Av2mGoEd50XpDsb344zv1SF3vk+hY7H7mS4vKBodE9isCY9YRl3nU6MaddNbEvXjTdl9yL4MkN184wjHC7Vvl5aZSjWJ4zPrQ8//zzp49+9KMrLJ/XI/j2RbsXZnj4idd+sMHVHvXMcG5cl3t8vvndlpc6aSR/PYFv39pX2LjNdXUyh8GWjXu/2rmWrWvOi6aOcO1J/0GX9Z4VfGHALI74fMRo7+jUoWsoe+tq1XUhDzWE2bmERacRWLBhxFdvnQ9756KzIWa5qocxqTbs81sL1z/44+fLlHITlz3RW9fEiLeXV78J6MN6z3E2fAn+NX75G2vhl+9yuvqR3tya/fJhyZeS9oGoA974um+ooxYuv3le+Vjnw5cYq0cfInB1lqs3e1K+8IytG5Pi8uvsW6ux1djRzdzaq/ioW7XrPcX541/cOMuTznu0sRoR+PE1br9hEDmyVzOcy9F87jnbYvKFoxeHXoPvPMOzzh8eG/zZ7MIne+P46OMLBx4pFtxiVANzNc22ms8+/GnnHiAXOmNc7YEY4sGrTS7lwoZv9nzdx/12k3sJX59n/G0Dv91tj9xf2JUPf3WiN3af1Yh31r54cz9SF2eLiMkezvzQHCeYfYHBlnTPk0vSeTCHfyTsXbNsPXv9Znp/e8Ie+ieLNPcNZyl89jDp5he01aUzy4YtnvEpD89E+2z/XJ/iWSPiaDtv6+1J5+kor+KFx8a4PdercTHat7BmfGvtY2eeP75T4iqOMT/2fIl8H+cX7d6f7t69u/6NdjHEcy56b3Ce7C1xPtREXni7pq3hat/Z2p+4syNz74ohd/582JmXq7zN9a2ZE9j2u+sBT7y6L9lP5yZc9hre8DV84Dp34cpHPI2wiY8+LvT2QHwxii8GTHblu4C2H9Y8nzwPXbt44e4ahYcPLGJc/npnTTzr1uJaiGzp42t/NHHk67uUcoUDU7Nunh98XOnguk+1x/zxsJfW1F+NjK3p4UwM+tp+zbGFBRMXdnzV2Tvrk08+uf4JGRydGS3ecmdvDqNri37mg1N7X97yI+LTET29Ri8WX/jy7HMDO3otMbaX8cMFBpGPfdDj4fwQPrBgy99aexZW/Ng5M7PW8LR4qJF1OvZ4u17o6dQ+W/Hb97jE19zYuvuB8+kMVPfpx5bAxR1vsafkR685686iL2dh20OYaka6Nu2pmltjw6/6yIXAlrNmTN+1aU7U155Wr91HjcSavNnaE75yUw8642oIU1xreKmR2Ob0JBsxxBVDfvLurDgP4ug7e3zZitk1UXxrsGrs+KnT/HKbH67W1NZYTPHZiqepGWzN/dO6fZSD614zn8KWH71c/EG5dxN1VAs+6oEDwYFUxzUZP/ART53Yhq1P+Jar3Em5OSddc3DgyRe3ee/CGwYbjX/7p2/OXzOXg5zKpbg48MFR77x0HYthHSc9Lnr3s3v37r1x/xmq32iPPBIVUG9uwxWpzVKgDjGbKebp2CWKRE+nEIkxvUImu016dhMn/eyzgRtO+DZTsc21NkLRHXIHi415PniZE7VwccC1LoaLko+1LmA+M6/m8WFL4HZ45UXPhpSnMSxCB6vDRN942rPFj+QbNnz7ac6GX7zMNfNww4ATFl14cz3ueudJrcQyJp2xuBXfmrEbgw8tfQCSqz3yJ1teiMQk1ZuPVi7qaY2fsR6X6mYsh+I2n3mx5avX4LEn2U08+nhkp5/x4zRvDvweJsVhB7O5vMzbg3idw2PPpjplB6OWrp6teNbxdh6M5WWsdnA1wt7+asaEjUZ8ueMsmFvX4LCfZ03M2nK8+mGeyKN88bGGkxrrCU6u865vuvbAmOw4sBJr5Tpj7zZhlGP+crOGTzZ6MjGyr7cmXnXLlu+M0VycqYdjberVAmZY7CcXcw9oD0B6tsbto/V8nYPw7Znrm53eFxR6wt5+a9aLZ01NZnPNu2+K00M4ezpxcNKItZr1SwSvicPfnL6YxaJTx2rp/LjXe4nwwquu1vjBmVz45s/PS3kv5vL1V3Cfe+65/8oX7Z7T1Uedyw1X++wa9PJWvvryYJuoQ9d2ObbGztrElj+76TPtG2dXnfWkvvViyAFmfJwV17ZePM9tX5qxV2vXfC96bKyb+7DIL4FpH+GLWZxidW+a51c8drjQ+4DSexA/OGpJ8GGnp69ZK1a21uyNmHTm5V9d+CXl4Xpjx4c/vwSWNTVRAzjiqokPAHzZ6PnhHy9+RG7e+dizlX8iZvzT6btOnHf1NRcbBzrXECyidxbjLa6GS/uwDK9/wKGHSfiHZS3/8pRrOj1p7jpQMznRsXVtqi2d3MLOz7o45R2WPs5is8nHGmlPYVbv1qzz2eNaZ9vzN670mpiNYVhn21mwhs8uMOVgPeGb4KIe8OnZEz7OvHm41uk1enO45WPeGEZ+sLv3FweGM6ex6yy5fsuVvhZusasFP+etOXtjGHzsgTEbDUfXs+dPH45haOyJswxDjvpqzN+7qXU4fPQ4EbZh2Jueoemt8Sk/PuVnPMXzFEexnV9jvVju+/am/cHTte36jWv3fno8+GnqgTO7nh/81cT1aT/Y4FzDO8581QFveHFiS6zDI/zSs6W3rt0kxWMT3vSzrrU+8RpbV2vXeNc6LnioR8I+juG5HuTY/cF+P84v2v/0pz+tv8Z+//79de2J53NPf5NBnewBrriZ2y9fqEzu9NU07uVffvzlIUY4nUtzevXhF55efH170Xp4MKubNfbOEGx+1mBrxhq989U6nT1yltpTuJ7fnh/OHDy41SKfziPu9qozaT2u5TDvCfiI1Tlgw55fYl6LT/Vl78xXQ37ygWcNtnjizGtE8vux8gAAQABJREFU3mwmjnlx4sCnxpafa9i6OmjiefeRe/nSu37d03Aj7NRX71pnm31r85zz8cz225/+nXbnsfysuTeLSZxHnOxDe2ye8LMml+KmS89eDTS6GrzW4HVGjNV34skVFw13jQ4WW2LcvYBOTe2hGPLRjNUkPtWQn3V5EDYae62cqnN7ZK6JB4tP0v7yFc+aMTxirAY4aqQc9Nnm69xp2ZW39fhYl7czAjN7tnH0jOHjzLvnGRPrxjV86XCctake9dZhdQbUg05jA2fWhU6twj2yETccdZAf3mzbc9cLvXUNBzyJc6IObOMCb4o8s4sfHKLHYc/JH16IS9QYhhjidg7iWE08r+PJvr0RozNNT/i2lziZi+ezuNhiqB0dHPvLN/44a+atwcWFLz17sfGevmKFYy0bfu5DdGKzq5nHtxzEZ0uM4eSXnn8ipjk79cbV/cofmrKvdtaNe58zr8YwjP1n5t/+9rdPn/nMZxb8jFO8m/pH+qdjkKoQEpaE3ua6IXvJa7MQtTElvJOR1BTzdBXKejo4FXWuT4zscSJtVNgw4gPLGJbGRj4OuALD0Nw49Nb7IF7eYmQXN/VxQ4KZwIArnkOmsY+XMZwOKbsOkljxmzbFhsG+Zp4dnTF/42TGrkbs2JiL7cIrB30YfNmZ298Zny8cjZRPOK2VkxidGTFh0TlPxkQvJgxjF4wv2vsNIWv2xdyHmWKpcZjiGhP24uvZ2Ouw6WadxJODRsxrMNnr4SXmYViPT/b8iZ5fvnq6eIb3sL48+IobrnjG9giHOJ3DUwvSnvFNwi0Hejpci+PM891tzDWCR/eQatrNWzx/JdvDr9jsxXAeupcsoKsfMD3w2M7cjLViWtfkp1Xn/J2d9t2a8Y5ZTH14xeleMW1uGsdVXvJr/+WnNgQ3rVh0ccq//GDskq0at/90CYziw5HzjMev/aEXw3XpAW/M3ksHG3MxihmuNWN28uLvN+H04rP3gd9Dznp54agmNbHss72DyT97GHTi41mDpeFm/VKpFmHs/jhpxReDLZ37kzPlni8HHKwR9pq5nqiR3Hw48YHE2Jm6c+fOerg/9dRTyy6MNXmEH+L1G+2e1Uk82kf75Vr2HCflime8Jxfr5lMXtlzgh82mPZp1yZ7t5MO+c3CEn9/ew8BLfH76XuyM7ZEP5D3r7Zd/788zxBjH9tIzxX4Qfvi0bt/VRYu7eHzZOKf+08Be6NnIe8+9+rTmPMMQi/ATA47e/RA2kY+WsK3G8bDGvms222rjQ6azx7ecfDnDHifnJU7qqA5ismfjvu23YNkkYdHBSOjVE45aG5crnZdhe4MbLvDdd7rG4MDgU2Nb7SZ+ej7GmnV1xb/9p5vr6mfuOlDv1nBVK/mLV03hE36ue3jW5j7QJXOcTi8OXOv5Fjs7czVVjyQu1nrPhCHP6guP8HUPdZaKRd86DHXVW6fXF5MeNpvOAR2hZ+e3vvETm791czjGteU0ftDD6DzjX73hwHYecJcDUW9/iKZ1vdDjx0cTW4NP4M8zz6bzbIwD/K7rcPnTWcNFDGvs+bmG2FiXK/Hscp7dR9QrDtYa80/SNddbr0390dh123uUZ6u5Xt38O9E+YPfvReMuh/YW51o10zvL7jm4yd+zob20bg4fzpTqqifVii/Mo1zp2GtyhlmbdZpxGvORD4zysJYfvXWCdzVlm8BwFuyb/dIIezxg5GesJfm4BmG6n733ve9d/wH5+973vv+wzec2ffx90f7ss8+ufzpGHrj6hSPPLeeZHZ72yj5p7mF+exHPznE1wHHyx2XqXL9qwcZ+wU7kat0aH60aGeMmHp2zgZu4dPO+QI9nz7Tqn02c2MBlD6N7d3WwT64/1xnO8Dy35G/f+HSNw7Q37F2bchG3HPjmUy3FtU6MNbLXj84afvOZCqd3XTbVpn2Shz10Pysn8VxbaigOTu4tsHYuctPkAsd+sZWXuD5nw4Ev92phb9wj3LONxcGfDeFXrvHAr/23Zs7+f67+PeP+I1RxiTjOZ9fRPEf8wl7GVz/o+Oz7D689lHvXIh0fvb0k6iMOgS8nfNkknTm2uKsLnThs7V8xceHrLKkln2yKoRdHjQh7eew5znzhs5GPvfJcg6tZ68wvwKsfbDVr4hRLDNLe2UccCdvqsxRXP8SrhjBwys6Yr1w1dTSHmW3xYFjr/UydnD128MzZmNfo1Va9SXHLtTkbTSw5w1IXOHGqlnTOQ7708Ojtg1YN2lcY8uNTve1tn3vUUkw8rcPvfIRZ/JXI1Q821Y4tmTZi8S0mLq67eLhf4WXd9eJcsmnf8+2frmMHH2e+OOMgb3W3Zm7veiehM/dM8EU7iXc25njAE1N8ePzoYdhnNaVjzw5nPhp7elzC4Vfu1VydYLLPt/00J+VpDoOwoReXzrxY7IpjD9XQZw3/t6NcxOQjrnufv9FnDwh7NkQ+H/jAB04vvfTS+mdc6eJkfBt5LF+0KzTCDpeNdlNGWIERKvEjQnxJxCtgBc9HIQnMbPLJZu93O0XXJp9wYWl8bL5N0ZvzsUE4mfsyxDo9ySZ8OHh2YK0TG8ZPTLZd9Pnp2eJX/h1SevbZVFt6rVoY840rPT8tn2zDw62axMUhxF8PixiTbOj5aQlsDQ92xJyt+PnqxbcmjoPeywS9h42LF84U9nzVsi/VPVj59EHGb3cQdi6Wbgps9jzh22c3jGSPSc+vmlqfDa4mHrFmj6uPeTXJlm7adg7D5XuJwJUHKVbnjE7tb4OpXvFtX5vDrf6w6WHCJtbsmZ5Yxyv/dNbtifNUjMZsffHqPkL4s7fezZxercun65Q+sQa7GsAl5nKMPxw3VS/DYsnFOn0+Yc7eGgxxNBza/2l305ifeHiGJ9d538AJbnz0xYRdHl2bezx48DXjKdWVLpyZc3504prjZm/Ei0s5wMMtv8b2uua50Bft1mGc+6Jd7uWPn2ve3oi9nx9YeMCryWvmb36pVI+9dnDix6b47Ohx9czwkoR7NcHNfBfrzpB7mMbGubxz58EX7f+NfzrGCyXuYuE/988+2ys9KVe17zzw0Qgdf33NXOuewrZzow75h5d9OGys2Vfxj+q2go8f7KfAEJ/wbz/o1LsvedXay7RnikbfXvHxTGEDv3PYujzsH57WcbWmmTur/g3lnmdsq1tc5dwZsWY+864mbOwLTHjeuYh8ytM8buzjDIM9P3pzoucrT2cvzp7Hnsvx8EGKv/zUxzNTDYlz4sXfi7s9DhuWsXhw2nM+1RxW70Ww7YN6uyfni7P3Shh0mhzZz3rDjS9u7Rk9yb/6yJuN+CSezgpcceQ2c4Irdz7yURONLYHdB0h+k+MyeMgPOF0n+OFC156pqbjmevHo+DgXxF5a48cfZ/20VdP9i/bOEKwp8MWLQ2v06gebiCeGOvtDFzjlEGd2/MrJfBcYMMVTP/XsQx1s3J1PewPXuXXdejfnB5vM2u/88YLZmRez84wfgS8egRVvOnsutnjZw3Bu6aevs0LvXBvHbwFf8INfjVvj8OLnWnTt2l/3+Zp7h33xRbvnLlGH+KtR+bZfejp7KWe2xu4HenPNe4F9oSNxUjc10tSnWNbZwk+3HMcPej5s4zCW/9+QbS3+fMPRl5+xNfwIe/OE3tl2v3c9EfUpP+saHV/C3xnio9Hzfdy/0d4X7Z11X7RrrhP5y9Fe9Z5k332ZQ7rG5U9mzktxraseasCH3dwvcehbY18t9OzZqBE+roeuFXr1aQ/ijC/ehC3sfOAXv9iupe4/sGC6nv1BLV/n0TnV48SGPU7wuv75wIKLN1s8xOODV+dGzyZ+uJrDmzL50IfpOQZXrGoTPkw54MW/3F3H/AlfteQjbpI9TLl7rrKVu1juB+4DdM6k5qxak6s19wbYcoEXD/HF0spfHP5iwSim32b3f6fNfZGHP/zo3icXrZrBgpGErRZ8i4uTNS3/8uav9Zv03YviDXueZXO1UEcNN/nGSW5qSODm61pSKz5yZicGTkR94oIbG2vG7Fpjax5/Y7VXa3nzIzjGiU0x4VjrXOBHii9/+1pscfjo48K2/VzOVz/YqDl/z1j5igGrmsaZD27WnGtj9VBHXMWe+xdfOjbqy47QWYcdZznZF2vyruGj/uytiSsPPf/yxJctHHZwrZnr+bNJZ73vouj4itm1Aj+O9Ozjv5K4/oGburHlM6XawVcrzb2ZPY7OgHrCdQ7E7jxY14jnN7vydW408TTcYVhXm/bTmODoszic8oKHB+Fvbk2ueBrjBwuuPZRHZ4Rd99E4tC8wcY8vW41/uPr4Tj+++bGXF37EHmjW6TQ4pBqrH15q6T+LF1f+RD7el+xBecmVDeHrN9p90e4/RCVHe74Wzvy4+Iv2p59+ehVfESTURsJH2MuWVpGsl3TjCsZHIQib7MxLZNrSk+ysscv2wer5n+x3HxvkoutCtE6n0F2MONoga0Th21jzcMuFLl7W6M3hwc23tXD5yS1ffXNr4dNVe7oZ39h62PmZz4ueHx75syseWxeY/YRVY0PYkXjEJf+ZnzGZa2LypeMrlhuEg08vvgu3+DDYdubgqaPfXvLBxc3aBWzuZdMDHS4cdjCJOQx9udMbuwin0LFL4GmEXg5aNw76fKx3kRbbOpm+jR+sPPjpjNC74KcUz9qR0Is/BQd6HHBXw4S+Vs35i0NP6tunfPXTzhzGbHQkTuoOR2Nnr+17+sZ8+sBWfDp2fMrDWvkUgx1pbr26PVh5wDsdDOfDte2B0QNsz41dPuEUJ45iiVtsOXZeps8cV4vyEMNYLciMSa/BL2Y29K7teLcPC+TqR776ZPIrDlw21Tg/PtbsQQ9r/rjYEzo9nHD1YWWDo9x8Ged6hwe3F4TixtEaTHHszZ4ff5hErDjNGsXhYXtRzEt6cYpVfD2dc9XDvXOFq2vSNd5+yQk33K35wKfxMb9z587r+t/O93zUtN9o9wHUnKgl7pqxe699bY/YaXgSvNm2Z62HV89m7hs8MrGar4WrH3ymbmJks/diqLmaqX9iTEf0rvO45qPW7Zl1DRY7NvbLsyWdL8zowmbvC45eMPmIxd5YjZx7Y7GqjblG1LVapqeLKxtjOjVkW68+uITFdmKYVwM+zp5r0rj9xEtOcoDn+esFvD/8hldM6+zkJy6B6b7thdX13Pm2Jk6x4LFTD/F8KPa87osOPGB7pvelEQz2ziu+Gi44yYsPTtWq3ppr0Nx6/MsZbnWCQaoNX7nxq2b82BWTLx0fbYraWOMrPqwav3NijX35ZQtLI+lwo8NJ42NfSXkbVw894a+xt89hlBfO+/sHv+LV8ytm3Myta86BOREvP/O4WNfMO0vxY2eNXj7Oizyt01nrnPVvKLsWrSf2ob3EMW7WYVhjU43ikD98PiSbMNTJeMZj0zVkHUeCN/74GYe5Fh/yAyYc10BffNgfOnNfcLg2Omvgun+zYVuTD/u+TIhftRELN/r4m1s3d77Y6F3H4lSDrvvs8WDbfhmHz0YjR/bZ8jWODw43SX5HcehIccPJR6y5Rm+vnA97Z15Nulb4qI2Go759dg7MvV/6jfaf/vSn6wP7jBGH2/Txn7/Rjp/mPuqeias5XuXTXvnDFbHZPIyD9fIqVzo5wu2ailP28nANxYFezTp/caKHkUy8sMTSuj7pzfViuJbUVr3hEvrqj5sc2jc8jPlrxvYIjr5axp+9xtZ90vWXP1tx9OzZsHV96fGJS+cAF2tw9IQ/kZd1PvKtNtXLdc5HfLbiaNWjePyJubjx4jffs/nlI1a48uy6poOHl/2Dxc95iqsaVAe8PbP9xqjP4eLDgK/G8w8Z5QJHDxcXdurBp/rSWSu2sTU93+qNT7G8q+GNK2FXHPr81+LVj/IsPj/2YuCtLy5/tVBL/M35EWOCUzl0dtfC9Q9re4MvR5jOh3MNV14zRxDxhNFa8WAQccMyLx6OYhG+7at1Yr3WeWGDR88fuKS94kvnuaJ2+LX31soNhvX227nxXLe+NxzgWIclFuGrwdJIsewZjmxhi91eZktX41u9+IiHh2tNzuys6+M3fengqmN21ZdOTeBq/HCZTXwY1lxz7MOPr33kz45YF0uuOOrprHsH6A87zHEJL/vuI7Bw9L7uPZ8tvPYcTxzEgoUDm86MOsN2feRrjS3OhG8SD+vEnJ+5JpZ3CXGJvpqyZcPeHpkTPnTmxcJBrgSGNT54dt580U6vFjD0/uBM7fjnI2e4/PxG+3e/+93TCy+8sLCLtya3+HHxF+1+s86BkIxgbYYxwg6MPiL1uBhLXtEkU0sPK8mPTRthzXiuGU+//G/q+RQbnk3wgOjDiTUbaN5Gzg996cRgO/mYJzbKJrNnY7xfNBNDbTpgYYSdnVyrfTZyEEOfGItF4mTf+FubzXp5VEu2vUTHKxucNDy0fNLLM6lW+bbGD65eLA94cwLHvBs8rmLE31huvvDwUPWCKY4HeX/1HwapBmty9aMLiZ4PqVb5NI+7eLjps5GPdfkYE/PqusdlUw3YGrPlA1czd1ET+U8fY7aa8ZTJCQaBF4fw6fONp15u4bfONiz4xaAn2dGzK4Z+rltjo+7hiGdvNXtKjNmwd/8wnzHgdmbgWAtPTRrz16xrc8yGtGas3r7k0cNhv9c4vbUpEx92dvRxNS4u3+bp6luTpzoQ8TQ29PoZY/qIZ410Vtfk4AccNnzmdYBb+skrCPb2xdkkfI219q7Y/MNzH9HY2G9ftHtOlCd/uHz2uDCqg5jTRqww8lMDjV/27LTHLeJ0jRVLj6/7gheOzhU+uNLT4UOnGePP3ll0Pwvjf67+Gu6LL754euaZZxb98lyTR/gh3tEX7bg5Y11n9qtr8ygMHDJrqx54k9bxbTzPNt3MxTzd1C+wW/wQ23PcM1sdi0uv3mLbKy/l4Rdz9uxr2Zl7zrSXfWCkF8uXfD5Y9gFPDeh7f0DfHL8+FIjJDgYRq3NAN8+VdfaEnVyIPo7m2cyxa5ZMPHFcbz1Ps2eDJ1wv7X67zQu1GO1r8XDU0ovjOp6/NWeNvThwiJd6f1XVC716+JK9/9Bcbbo+fNCsfuI4nzjhjp8GH18+1aK6WqMXg791HHGpzvngWO2sO/tqwS99celhlxtfuN2HVpJXP6zzgccGFj5a/rCt1dgUF7diG9fg829NHy4bPOCpXRzpCT0pjnH7CyMfGJ7B+CfFi4e+/OyL80ToiyN3tdnjh5U9G1zlzrcaV3N8XXs42m/NvDqw997nGmQz8Z2prlvx4mbMToOTTF869tquv2ktvHzZ0slDe1SxJ30w9vxUn34Tyz8D0xkUd+5DdUznOnX92TNrmj2oHvjBmnvHNzv49hYGTtbkZ86HsCEw5Rw2PRw9H41/fmzT8zHW84mT+ZTmMBu3Ho/m53p+xTKu0eHkjNHFw7XSWROjHIydN+vOHnv3Mv9kzCuvvLI+sN+W085VfOKL9k9/+tOnP/7xj4ubOH3hjGfXR9eI2voS4e9///uqM96kHMNdyusf7bceZufWnL94RC5ypDdWL3G75sR2j3FPdd6qIT3bfHCe1ypM9pp42VY7nLwn4cHP+uTQfolnncA0h+ks8eHfXrKRp3h84JWb+vVcgCE/vuLETU5hs4HDTh8OTLE1Evfq2FnTVxs+7rF6sWCJVYPDXosLnZriEY5r1bUPx7WKAx8c2cqF+NJJPFjxdb0Tse2nvjqoHwzN89YX7f52kTnRe6/1ftRetLc4xK9za85OfY3F0cq/PKt3NRcLhvcxufBVe3x7zsHh3/loLF4+cosXffHUw7h7Hxu66hYmXria8zfGhYif8K3Rs2lP5Y47Xc9RvMoprtbai7D19gE/eYetLx4fa2pHykHMsJ0RjR1h67nTnB08uHj0TFIje94azlpibI2//YoTv1lvGF2fbNVGTvqkXK1bwwHG/L6OvWvXur3Y6yFu5x83+c0YfPiS6lN8duzVs5zgmfOxD/KgM9fUio9YsLPV0+HCPrzsxIoLnOzbV9et9+sw4LTG1v65B8Chh+Vd3G+1s1Uj9esLZznigIv6EnHhyAFG79d04bKFjQcx1+DwoY/XMrj6QefeBMN42kwOeJonXSPyI9WYf1ji4ulc6J944onFT55Er7WPuJUzHPvn+f29731vfRbnQ3+JXPxF+0c+8pFV5BKTjLHC2kQXpg1DdgpiNWs1NnxhWM+PLlHYfI2zSae/Sdhnk68eluZi9iCwCa0rtAdI8Vy4dGRiWcc1vh1Idg6Fxo9Ph83aLtWgusZj2tFZV/NdxIifNWOHkI/YmkOox9m6tVp407abeHtjbY7x0HCHQ/TVIL1Y1dEanHzLx5mphtZddA4+Xfb4mGswfdHuNznaG1+A+LDlQVt+xcULjhoQ6+rTOh3c+OOpWY+jdQKHnTU2M5ZxczYaKQ7fcLKFTwerG4cbFx8y7eNMD4uNdWMCg6hv/tZq1ujF1uPHv3ysJ9bDLY/W6vkWRx6aedjs2OATBzb2txs2fWP5uY+Yi1l8PQy+xvDhErnQN9aXz+yXwfWP/N18naP2kb7aMDWvwdKmhJ+NnsTVejnQN4/vjjdrFSZ/en1nJj+61tkbw85ezF2ywVG9YSZ8tXDpi8XedaoRNbNX5q4r8fPnA5ePve7F3jXcF21dz/xd6+ek+JMT22o1/dq79oGNhtfjlvYCbhyNxVZXD+h5/1cLPvT7XvGn78MjO77+M1R/iv7f+KLdy4W4mr3AT63spf0wn3nJbRd15WNv5FTb7do7mMZT4kCX3VxvHJf8m+vVy3PcM1wds3FGm7NT09ZwjXs6sdi1Jj9jzxk48OaX7vB8qPRXpT13yp8eF7zgeUZ5x/BOIRb9bGzo8YEhzrzXV4P4zX6u7WP1JvCmuL/2PkAvtrhi4uCDti/anQvccK1G7Ohq9OrkOubnhd9czPTi8fOFIFz3A/XxvPbvuapvH7L06qQncfIhoDMa3+rErr0UB9/2wNyafLvnmGvh8YfJBlcCA/6+N+ZT5Ai3+lhjk16M+MjFGCeNT1zorc+9muvsEvjlmU/82agfyV+vkeLwL38xe99Vgz6Q5cO2OsiL4OM+4cte9mynHRy2Wtytawk9O5zKu5rjRuIrT82+Ohvs8usXLMzjqWfnup0xi/1G9mojV62a6ms3ccFdLVwzrh8fjF1nfD1L/f8P/vCaDZ0YfOSfmGvWnW/Xqr794ZsPm/bOGA47Nlp7Zs+14uFnnfAjfIttTp9N+8w/HVt7qCf8NX444LVLvK1P+zjs9ufm8QwPVlziKoYz797lHIrBrvrApnctOXdyc+/vi3Z/Bf1SXvEVh/ii3X/K9rvf/W5dD51xcfHVi01vjpvz4ov2rjUcrNXMy0WM9kTfdWbdHLac8qETwxyeuMV2X1Qv74DO3F4rPuqNs5ryc407D+w18/YENxh0vSt1feOhkez1cPm01mdLOhjW5Shm2N4l+Jaza45fXPDkWxx2aiDfzijMaic2bI1N5905UTP+xYepEWvEMxUGPHE09vokH1jisC2msVraC+vweibP8yo/a70b4hpfWGI2hwNXDlr77nnuncgcZ713pp7x/HARH565PMXOB573JetEbnLVs20un5kXDN8D6AkcccpbLL7WwzJ2Bsyt4yxHfdeU3K1r9ldMfRjW4VSjuPKnS+BPCbMzwE9cvOGxF0ejJ/TZ4znPQPm5PvlYF7+41c5aezC520+c1N393JlnS9SRTk+yNQ6PH7zqZi3e9DV6XGDEWV6uO3p2amCuZyeGfSzfsNi07otme+msVVt+nlN8ceFHrJdDdcF/51tcPHF0vzHWWuucypsNjnS4xN8ch86jOOw6a8XNHieNXhx2MBrLoVyM5e5djLiO8CRsYPC3n2Lm533CO4Q6OA/zi3b50WvZ7/l23fANl714Gj/1UJdw6In686mWMKqjdb7VwJi/nPStw20f9Py1xnpx1JSt3i/2qIX7HPy+aIc5uZWHmP5G2ve///3T5z//+RUb7iVy8RftH/7wh9dhkQxSDo3iK5hDpJlPQUoridbavLmWLltzhSLZNc8mvKOebYfVenO9ppgOSxe0eBq9A1J8GwQnDvqwjDW2fOjnunmxG+POZuYwccLgFwc9e82YdFDZ52MNfwckH3bZ0mnyyUdsEge27Wv6MOIcl3zZhVtcNuLgQ4wJrInjPHUjsd4F3cVnHp8w5xft8N1cfdnRbxYWt3xnXHnz0YzLJR8649Y67zBImGxq5W6uJubEmM7cWCzjYlQLNp0f8fJlH4Z1dq3Fzzopzppc/7AGTxzCJjtrcbHW3HiKOFNmLrD4hZ8dG4J/OZob21fNnpPG9qMxzCnlQF/e1sU/kvJi27g+zm6+Xpj18bWmZTux6TTr4VpvbmxdjtUD3xof4+oRnhqR1qxbmzGs73M6wo99/rNWdJ0hNsRc67yJF7fJhW/i+vOg1tiwt39dl7DDNVYTPLzkeIB3fXuwNxfXfntukOLxr9HV4mKNjv+U6mOd5FdO0/Zh4z3+bi+WlohF5O3e65ni2eJM4ynH1uhwoteLZS/Ye0nupeAd73jH6fnnnz89zn+j/de//vXphz/84XrBiH/P7c5NvMrtqMd7r281m312Ycz5tAurOmavVzc1s9aeq1f+1rxcavTsrMlPLYk5nMbFi0/7yUajL5a97FqxR8bZ2a8+sBfTes9f8djAwI9Yr+GnlR8Ma3xg4IUHPZuZjzU6XKxr8sLdmFiHN8U1a6/ZEbZh8fde58sZdtVl2oYdpjXXt2uZLwx+9HQanz4MsJGHZ7gP5Z7ZOPLDV97m8mYHqw8JMNnFW+7WSWvVCUY85NK9Klv21RameXXhxz/MFWD8sJ4P3GmHk7WuJ7Y46WvtWRzYtyaMMaGvsVXHGhu4sIh4RP34xCl/a3JSUz7WewZ7x4WrHnTTZ8YzJtbdN/wtBntDYJc7HC0O9DW24YtFz5fOWAx+mrEcrZdrOPK37hz5YsZYS/KZutb+2315650PNfIsrLZqR+da2KVzUA/DNdSHQn5yUnvPU/p5jvkRfkS96NpbWOKrd/ymD521xLnCOx9jucBhxxcndtMv/9lnjxMRCy/S/s39Smc9Wz0R1zpMumzNH8ZjAVz/yE9P9LCdH9eSRuSnBu7j+IvJTqyuPWeUPRtrzuXj/DfaX3311dPdu3dP9+/ff41H57x9XmSvfsgDN/vkS5j46tl2PVWv8rfenrDTSNeqewWRn7Vqbe7ego+xc68uzoZ3viR7czHxyA9e55S/efmFq/ccVud0YbFv/4x75sKcuDh4Jre3ciPs7Vn7pxa+aHfe8YQtJr6kWHpSHL0Y9Hr2OBtbgwunedeOuUb4iOkLzvaMPv/py58NmZyM42qdT1+YmltXA3uq2SfPfmLf1MVesrMf7lf8iieHzrveLx34A3S1xROmZ3zvTXA7F/GBDUfN8YPDX+w4wuq81bNlY2/wUSvvTfZd81yg774ltlj8iV5c3OjFIsWFxyb7bMrdPDw4xr3/wOEnf1zaK71W7mzm/tCLyweeWmVr3pmAj4e61NgVM505Pd9wrdlbdcOlPNmwheuZwsZ6PMy75+MH2zq89hSv4hhbJ2w1WFoSt/acL1E3+9J1KEb58oeFAz8+1t3jzF2/ceNjP60TPhofOOU7sa3bTz19e8qnvaJ3rqwZi4crm2qCS/zEYa+pFZswcDPHR84w4OHABv9y4KvhFn8cfHHsuhUHR74wa2KIXb3pvTtocLru7bGY1nHQrJvPWqmlPbLeOWJXXa0Tc1zYxSWs8mbXNWc8Y8uTb3siN3E08XFtf8KHQfKrx8V9hb188TLuTFebYsIWzx+Qv/zyy6cvfOELC1ecS+TiL9o/9KEPrYK02QjaPAXTEEVCERJzeo0ckUyX35xLOj8xjmyyX4bjh0IqlIIptnGHuLmDrbWBbYo+qfDFwcG6ls4YRnyrxY7BFx+5kPLJLtzm1mFmVzz9rGvr/OToAifZzZ6+OmQzcfHTYNLX5h7zI+E+mD34KQe+7MXRSPrw2BSjs8TGeheDsfPWDQAv4iLzBYcLxw3On2T7ot3DFYaY9sO41p6IqaZsii8Ou/aaPuE398tamMYaLLr84CXZ0KUvVnsobuczXXzhZN9ZKI61MOl2XjDcxNSNXThsrYXXmj482DPOuVjxVQO+5om62T86a+b2uv2Gb2/dR3Bhy2ZygFWMiU1fztnIj6/WnsAtbzqN6J0j94ny1LPXjoQ+3HzoJt/ix7m1uNF3fcEwZ1PfGWevJcU7mhcDhhrCqI7h5qdnL4/iizPx+dbYwrRnXtLp2evDDice5jh4CPelHVtfDniJg0Vc5/Y+Pzq+NfNiGE/ZfebaHE+7qb9pvMfPlj48413Uxf2oL2DVGH+1MO6eBINeDY2dofzq/Ub7c889d3rqqadWmOLuMW87x/dXv/rV6Qc/+MHaA3ia+u/nBeaeX/H1eCfhmHeO8m3vzK2xnbrsJka41ujVzDVq3NmjUzOYes87NmpM2PLPZmIa40DYkWz5wyTx7P4QlzDzMdcIXZzYa94veuG2hrsmlr2uWdPE82xzb4IrZ7j0dMWxBiPOfHHW4sZHLPOkl/aZu3U4dOI5DxMnX3az0U+f/Vw4Wxpx7/CCKz4fvOTpD8nF7hpRK7mZt6+9iMe5Hhe2ciedDzrNOltYYdCRamVcTtnCsy/Thh3J9sHsAY64fK0Vly+BpRVXn846O/fX/OnUgx1cvbXwrIc1cdgQ8Y1rM4fOgx52e6HOpBhxLK75rGmc3dvdy63bz2LjVdzpS59Yx4EPPvFv3Rrhw0YPS2tsXa2ql/kUtrukq7c+axUP69OGXTp9drhlp+/5W37Ov2eeD8Nq5Sx6Lpq7JvKFT8q3nMXhA8fzEj4f701dT2LRVRc+dCS9uf2usQk7DtNvOV/9EFtc8WA0x8ecD0z6BF748YibtRmPj3lYcw2GebVwJjS29jy+2cEyvkTg40byNXee3W99xqBvX51V6zjgZQ0nvbl1fvj50ufJJ588/ehHP1q/2R7+JfzYVpO//OUvp3v37q3faMdP3M6/3j7YFy0fNvRixxVPjQ1dNcgnnjDL1RkoHjtrcjWu7bi483NOSfiNzeHP3lpc6WHK1T4Yi9tn9ulrzbx82LmHmzubmj2rtUedZ3HZ27P+oFu+rlXXbWeOnbNgLp4adO+zBo89GyI+vn02Lb7emhjpjPnLu2ef+PQz18ZiiKXG/OAl1bTziCOds8Be428dP/WtFnB8cemaVxN+xbLWvQhv/nH1Rbu/YaSGOMPsn/XCmcTduBq0x3T2DVdcWhd/5lY8684WbmHAh+E7AT7W9NYJH9jsxHEOjOmJ3Oa6tfYobHbstfjSqRcb8ax5v8HVuHyM4Wnyal8mJj2+bBM6sWphwsXZXGzxqpd5GPD4imvvccWTjl3nSLz23hq/fPiFJ0a5qnF6Omu15vVxY6/Bx9k+GFt35rRqgycOxcDLmrNnbN3z1NhZFov99IFLz0cfprzVz7wazbzn+eFLXENd42LMuHDwpNPiIsZ+H26+c4snbH5aucC2zoeu94hs5KDhQdjXytk++pLd53Hi/cS7XBh0xTAm+cbD/rBRhzjJt/pOf77OaTjVdCmusWGQ+OvlSPTm1dNcfJgzfjHDYAdX/LDkLs9srbUPdMXgJ4Z/o91vtPtnXAn7S+TiL9q9MEisQ4asgil8iVSQSaR1upKe6+fGsCoGP82cGFvXxD5Kvpuo+ArvQu4QmHdxp5/xilHc8msD48WOH33YdGJq/Ik1G0jUMD0//snEpds5ZYcPjKO8YRYrDD3b9qI84NOHo8ePHYx82M1axGPqspUDfHN5G5dX/eQFo5udmObOmAcBX2M3E2etM4ePi8CD3P55uGs+tBN+9hfejF/cOOrxnJKO3pgYa+0HzFm7HggTZx+HES6MdMYwZs3VQQyi19gVe8fPDmc47O2jutnTyb8cw+cbH3GPhH9rbMUgnSn1JmzKqz2j09jaVy+Pbnji6xvnt4C2H63BaV+McSGwy4Ft1xxdfNOJW52sVYf82B1JWNmzoeMnPrFmXs50Yk3O6sImqTb19HBq2dWLmRTL3Lj9bl/oZqz8Zt50YuHItvt8PPX2aL7048qWH4l7ehj2ui/a2Zp7qMMRy7Wt4RrOArv6Mecwz0m8i3vO7hL9jF3tbhOHjbPTF+1dE3J1vXR9s4PbHuXXF6z879y5s75of5y/0f7LX/5y/ccu9kDszgouWnUu12oW1+Z8SefFOpl+4U0dm6k3J/k/mP3f2adXTy0b51Zd9dU1m66LbMXWzJ3HuU6fwLGmpa/nqy6a/QuDb3Fm37jz6L4erji4mhv3juIZBrt8zOVo3rVhvfMktrW9xdU6/uLwKxd6eO1zXOe6sWYNPoz40+86dlq4YYqh5np+rv0+nDh39Lg56/CJZ3q1gCdfNsUovj7Bhw2MOFiPc9yKyY9PmHpzjeBsj3xgy2YtXP2Y8Y2by4Vt87mGR9jhWW9f9jqJVT44E37FME5XHP2uz0dNWsOl81dcWHThF7saqQcx50/Y4mZP3b9JuMbsis8vntZ24Sfm5MlGDC3/6UenEfz47kKvlXvruOyYbGDIaeabnXVjeeGawJp5m6uH99T4m/syyHNQvcRo7nrYpTjFti6+BlNP4GrNZ15H9nRi12DQhcmfxHtNrn6oB56e2a3BEFvNqps1gjcJmz5ua2H8SK/PXk/0jWFWd3zEtBewsxmwFw3jMJ3o7Kt7kc8YYoipn/syr4fW8HQfs+bL1b5o91fQH5UrPuSvf/3r6Zvf/ObpD3/4w6qHfRCnzw7Olz+8sV+TJ391Y69mfKxXP3P5asUSj96c3bzW5ZGP9XzqYWtqwdf1QPgVM375tJ4fX/bF8tlOTM0XuXLOl44fWznq2we4nZliWLev/Jxj9cKrPYfv/s8Prr1nZx2+67cz6BmlWWPLBx47/OA6D97tzMWmY0fKga5G37PPuxqshB6e/HByXdqb7jnscINbXZxDz1n8NLZywJNd57ya4uE/0BVbLD44+AxA+PXFnDW58/VFuyaePMX0G+3lqIfHlp8aVAdcrdPLbV5v7MXHmz2+Glv5WzPWCH9ftJNqp27W1QyOWHDpxSY4y5GN9c4Ie3w6H9bY4NI5o+Nrrn7WnSP5wsWj/YVVfmKXOzt++vQ4m/M1ho8HgYFDdeEjXnjs2fCFYW6MSzWDhbsv1+03G2N73BnkIwZu8BJcCKz0YhO9ddhEXzOHSdjYy3iwMbc3YZW/GNbZylOvEdcAe35s2KoNX0JH5Efo2dgz/An/7MzZaHR4auZqox6t4+CsVF+5lR8b+O0RXHj0bPiIq8eHnsA0VnO+4eXLRn7+xk1c+JMwjWFMXHj21z8d4xpmq9fwFEeMvRaw4Ghs1IJv59WYrn0xZ4cjG31SvdmIpZWf+257SKfJQcs2frjAstb+WAu3+NaJeTnQFcd+WuOr7vTw3LP902/f+ta31t8uhxGW8W3k4i/a79y5s0gqmk1BOEGSIIqg/kgUe/od2dyks/lEssUwnvErhGK5YM2N28AOtYLSdVHPuHzaxA4SPzcefjYywcNa3NowuWrWHT4cSFxhqJV+5hDu3rPR4JX7bjPnbGDXzPl34OnjnF/rcscX1+zZhEHPRh8v4w49XLmpVeehGolLiuUm4WYnDlu4GsHBReDGYB88VL1IZquu9u9tb3vbav4aOo5aF0z5z/jlzo7gUlwc5KIZs81uGV/9CJMfKcc1OfMjzJbxCXuOWz/q2cXpaD1dfIoZT+tyif9cVy/Svq7J+AGDPYFvb+wDe5jmcBNr7S0b/nT2zwO9ByMbba9xOPrqxAZOtvAa07PTa93wq5f8Oo8T23hiyKOXMvpiw8zWeNaiebpleP0jjPYEZ2dZTQh8fq4da8UJK/9ruMW1vWKrtWd8GofDLztYWiK2MxWX1toTfGDqXaMaLH6TKzxzeaWXjz32rKBPvOC7jsWlF0v8ya3c+Ygl5tSF1Tos69rMe9q93jEeGq7nYtDj4ux5SOvtu+cM/Tk/3Nh5WePD3j3ts5/97OnjH//4on6T721yU19ftH/nO99Zv8mg9u2LvKy3d8b4EHHVtbytneMSTj5s08E21tqnIxw+NTHxUDuid31qza13bVuHD1czhuEsamzjwFYcMnnOeVzjKw5dfsZw4BZTvGq1wLcffNmy4S8Xez65hz9d6fJtP/RHQm9v1RwumZgTh21tYuHIt9riqs16l3fXsRrzg2+cvbl7gYaTa966uNVPDTy/+3CKC/z4mxv34Q82gc1ucsFBXa1p5uKWZ/rWYGUD0zsFHuWSPTsc9DVxjyRb62oIw57jYBwOX3ESfnz0atR54seuln3c6LOhMy+eMd2UbOKpPkRsa/SEHg4MUhzc7Hv7GOdldG1XXLx2LvDVxT4Ztz/564uZDi9N7cSzzk+jF4MY46ZNXTh8YZCZj+cbH3yzwY0Ne3yd04TOWdGzYcu/Z1r4OKhTNfP8w/lhUr6ww8qnvJvr2WdrLq4mH41PPKYd24QNH+vwzL2D45yPXo7W4M46V1d41kh5mIdBr17sW7cGcwqf1tmbp5tY0+dRxnjA14jefttf8YtlnF22dETv3PR8cg/xBfuPf/zj1YexjC/4Ef5fr75o/8Y3vvEfX7SL1edS91f7ZG96hxVTm1+s4kg6G+XpbJfTTg9214Y9uimX6gAPP/Ho8HKNEfPqaKwROtw1+9w5628+4eo5AXs/a842fH5wurfEld7YGjzrfMToDLOxb97F1Md7nJjW5cHW5xdr4sPQ2MiBvjNcncuv6yU+1mtyZ1dO9Ob+DwbXHx/+eOGnPuZdm+UNB9ew9POLdn44ei/3WUy++KsnO/hq8o9//GN97lYrwocenrPQb9Jay9+/0e6LdjXj54t2e0Xwl1PvuNbxrO5wifzZETp1hSfPPjfKwXVprZqyFUODIbYxzsS8faxW1Z6eD3u52WN46mGNvTjFVTM63Pn13RJ/ebG1lh4WHmrIhsCo8dGmnTF/PbzyEE+jhwXDOmw6ebaup5ePxpYPO63rk40/WPFbzmqizuzlK/8wcMhfDvAJffzYEz1/ccozX37imDs7zkRiDS/rfIn4Ghw6a2zUx5jA4quxYd8+lLe+HPiwYVscPZ/2mw38eX23zpdeXLnKga0Y1bu6OAt0fIk4ePLjo7f/rke2ZM8jruyMy8VvpYtTDnzZ4AaDWOeDq9z+9re/rfuKeGJ7ZmhiV0f+cMy1cMphKcYPtuK5Lu27ObyuE/Gn4Mum3rq5+7K9pedPHw6dRicn9upHJ3Y1w5FPXK2zxY19OdHBcs2zLXfXvXusfyXjXe961+krX/nK6VOf+tSiXy1mLjeNL/6i3b8ZKzmF89A2JshGXEIlfkRIMg7Iowr8ilbM4tCT8G22C9G6Q+NC6PDEU+E1G0vC0tuANkyONlEP1zjb1szF1qtBh0Esh1kz1vjUVuDr2GHSsZsCG2Z++3q2YeBAzONu3uELh26KdXHw5WsehpjGuMSHbboOf/FwiIc+vXj5z5sSTrA0wt4D1r/vCtvNwNnDCZ69sHdvf/vbX/uinR+e9lorpr5xuc948amuOIjBJh1sYq5NnAcrD37GP505fJJfmPXFymYZbz/wn3bb8mvTYuDX/uCgWdNg6Wfe1Uet9xyA58/O+eBrL/Tz2mI797UY7aEHub3Ejx09LqR+TcaPah1nmKQ88DAm1pwNHMvJWFO/KXIKW606U5OHdXO22ZdTvtZnrfPXsykunu6hhD4ffXUPO99yFJuElR0df41uCh86fTitw9fCTe8h1UPOGl7zgRle9nr27aU5Hw8wL/T0xfdwp7cXMLU4zzoXAz+yc1zKqx985MU+n9YeZ/8wHmKVo3uSDwfOkr3qJewoBzrY7Dyv+LC/c+fO+lP0j33sYyuNI99L8hPjF7/4xemll15aL9LtV/GtdxaN1ZSoaXq11qr1UXy+CVvSvljT6MVNn319GGzUpfOuVx+NwKHrOk9XnPBdcxqRF594zH4ZXNvQ8+9sqYE45cS2+PDYauKc26upZ5t/zykxs6mPE1tc6MsHxm7Hnt5zk125hgOjONa7Z+w45tUqnrDo8LUH6iGWsyRe97XqMWvrmu+Flr0mfnhdM30pQC8ujHDgijlzsmau4dw9FMcp1nAt3zDFoNfK2Tuha5EtiUt7YM4//YxjXL2y6dwUm02+YrKrz5aNXNqjbMrDOokT/tnSkeLxSeBobMrZ3JiENzHCsQ5LE8t9XW8eLhuSDxzr8OkSentUvmys66dP9vXW1G7ud7hxsa52mrjlCwN+tQ+TDd/OJTxxxGAbJ3ydU3Ni3Rw+f3O9uhB2Gh4wNTE8A9mJcZNM3jjCotPzL28Y2RazvrqzNcbFdWp9Cn8SV7akfLyv8WFnzfUOUw7yNW595hUOrKOY8NoP6/HM3roGE1Z47b/5jsv3UomDOPD0zqb7XPnoxa0G5q2J1zo/4l7mN+L8vyiP6zfav/a1r51+//vfL272RiznEn/7YF/s4byu8PW5yf3XmK1erTW2fQ4un2qavTMDW4z2IBu5smsOA6badY1bx8v5n/uYLU5Ezw+fzh57XyBWX1/G9CWbtWLDl6Oc4FSXBXz1o2vGHvoCWJw44WXMxvuXBtd7HBxr4quDWrI3twZHvuzLrTNUb6348cGDnx4Wmxod8eVnOclLHeJk3r7gk9gnPMJULz7m7lf85KCxa/99uaTu1v/1r3+tL9rbUzoNL3x8Juefjp//bLAv2uWBqy+rxCB86XDARU01GIl9K/d8XEfy9FlCbvHV863G6itWcYzhWxeXvTppdGIVjw+d3MTCX934mMOy17gb08HhL3drfMxxsu4MpWcbv3IVD5bGVyy67Jxxa9UpfDESOj7VQUzrdIS/2Ps9Wr6dW77//Oc/129H49BnNrmys84fL7jF7HzFl56O4CB38/jhYg5TM2djb9i0ll9x2NXo4q4++BIcxZxzvORO4MPoPNDZo2IWH44zwJeUx9xHmOzoCD5yMKeHC6M9F5NOj0M82eMb5/3L7vKv7ivY1Q8Y4sDvX3tgm1QjvIz5FxsP/zl2/8mzvF1T+LIh/HAqvljs4BjPWOo3WznRwXNuqheMfNXAWC7iETrXnHPJNs788YO58+DLzxo8rXz15nysOy/4ZcPPmrqzxYXd0Rftn/zkJxdH9pfIxV+0v/Od71wFs1H9yUvEBEZAAm2uNbpJLN0lRHdbMSo4PEKnFc9YURWMODTmNnBuiLmbieLnuxyuf9A5WPkYy6/4xTXHJT7hsSfzILCdrbj5XodePvCTuNDxn2vThh0sMdmYFz+7m3oHTpv+8MSki6/csrVeLNhx6yIw5zt5xJMvHHjGRO8iY++8dTNx7jwEXHjW7J3Wb7S7SPni2n4XU6/holVDPHaJR77lM+3CqC5zjX8Y6bM/wmqPihfPfPX5x3uu7WN48cJj1jZ9OGyrQfHVd+dfjMmDLuyu++xg9HBno9G5qXlB68Zpf9vPvTbms8W5+lqrVnIwr3cNsq+Zuw+Y78IvvTzyza512GKL2Vhf3YzT56uPp7GzLud4mRP1oa9WcAg7+KS86WDOOfuwrLUeTjp9ko7NbK49DZdw7WU6+okDzxr+Htp4NO8hxgbW/KK9h7A1eOUFv9ysHUm2rU3+6W7T7zW4jc85GxzslXPWc8Uzxl9jNReLTTJz5Me2Z5V/o/1zn/vcY/2Ndl+0+41291D747prj3GKG5744Nd651B/tD98dgy2MOEQNuFM7LV48IO9mvQ8NW5uLTzX7BTc45keD42P9Zkr2yRM6/K0H435WU/KRfxsws3mYX18wuavNvHIPztzvNqX1mcPw966DvlpCc7lC4PNOc7FLM/qKl91MSdwnCeN0Mth4rrWex64T2jmsLtefND3DPehpVjxNRdXr5Hw0ze3NnM2J9bx6j4Jmy/+1Ry285aeH101iA99teWbtN4aHI1e/Jr5ztGcrR6mNrnRl4N4xcIve+vZ5VtM+uJmk1/89eVrzBeOmlW3dPYwHZtii2GuiROO9Sly3WNZ54NXeOY12PlYn/zjwMZaLZ9wzY2TcOIcTjHZ8cHX2SDiEl+ysFMH6/quA7iwuhataepGPzkssO1H8fXi6cstLDpx9OpSzvXVsTrhJv5crx7F6VrGsXz4JLA8163LmX384pJtcZrHp5j0xmTaNi7nuPEn3ZfNw1wLj/ijOHExV09x6Ix7ppuLyWYXa2pizf2s32j3hbucHkWK499o//KXv7z+jXa87E3c4mRPisOP3pl1r7WHYeHf/rKRm2ercbUvR7kbO8fe7wib1mFq5vQw1GB/XuOLR+8dcOThGhKfj1j54QeTxBs2n+7R9Hz07OXIB9b8DIiX2NWsL8bKwxnGi3/4YvniEk57CsPnF335s487HrVF/OpHMfDTzHHmk291L99y6guwfONmnW2tGpn3BTgdPzmosRhy4dteWE86A+Z9kY5rnKu9GlnX8CP2401vetP6N9n1auD7F/9Ge/kXv3MGF1+25Q8LP1Kd/CGB/XHPUXd1g6EWfBM2hF6+sNOxL2+5wxaTjr2eTm7OAVxxxaLDlc3kHja9/K2xr7ZxhMtWm3FxxZG9eHxh0bHjz6dzy6bGpv0QOyzj4rW3ehjysiZGOcOz3m+0W2Nb/PJRAzyJuOIT/uaN+RP+taW4/iEujvFk79wRWHEzPvIvZzjGxcZPvXoe88VXzpMrXELnPJE48yfONN8aH3XQ1Ko64CCOvj/gsNYX18biVH91NS5Hfq7H9o+f/WZTXvDNwzGeuHJoX3HPjx3hx74zxNY/GzPvYeIWmw9+cp17EAd4BC92apZt+no2xZcXgYkj39btGQw6dbTOj0+9/TWuOTOwzMOCV6OPMx1MPmrNT02M+Xbe8TPvPuj6f/e733366le/+sb+RrtNQsqmdGiQI8hriJISXZM38EccuskL7UBX5Pixo9fa2A6nNRtvzSYR+bTxS3Hwgx+sefCY0U8xx4MdfHG1YlkXm0266X9uHJZDZFyM4uvFJPLRpvDhi0sc5ENHjOnZqYUW72KZZ0/HRzOuzZitwYVH9G4gauDM+Q1oOl8Q+asy1ti7yF2Yb33rW09PPPHE+i0F9vzsv3Ux2cq7sRh0UyY3OagNXTlP28Ywwp54swZqJXYXtbn1IxEL9/Z+Yh7ZP2w9n/Ixh42PWPYJRjd667c55+yORG4aEdNe2DeYzfui1Zr6mruJdgOcuLi1LzPXOWYvFzl17qqhNXxg9ECIn7Vdqgs8jZ9Ye7zdz5wNf/iz3taKqZ/1NQ9fPdRCvdLzJWyqoX7nIy5pDXc2eBDrajJ5iUGvtUd07ZNaZq83z26Bbj/E9lzwh2I9/PnxwQUnzwzXcNfvhKjWOPARz/hI4OGtry7nbI/8p669hgPjUXEmpjEcNfdh2/1JjzN9vOU446oB8eLhb5D5n84/8YlPLN3r5SWmL9r9e3M+IFW3yUEgdtXE/ml0ctEn+eOVvTX257jKrxzDDu+oZ+tlpw9NetcxsYZP9YzbzoctfvhPkXdc853rDxvzgYuH/lFEfHUknWc63ODSkVnPS7jChjX99/qwicMKdvAjbmIXf/bW45q7a33i4hEXH2Tc69wv4uP9zAd0v2nowwe9GngudPbUWZzqDT9/tsZsrbuHTLFG9HPfy23aHo3bZ9hyh1OTFy70+BqL0R7GuZrFZcZpbep2u2z0GnyNiImb+GJrdHFhk1/2fOnaF+NE7GKopWe0PY0THzo98fwSi489YFedwwq7Pqzmc+/KJ53ctPYr3/q417OVX36NxWKTXf5xqJdXzyG24ViHJTfnty/h4LChr57GzcMyP4oZn+LvNmKWg7Wwsz/q2ajj5IaHRl14BmAAAEAASURBVKzhGnYc7KVr1P6GoU/geYbDyad6x01/JPHumsimONWaPu50OBJ86TsXxnzFOxdzOd7ix4wdVjV3f+q37Yod56Cbx9Uz3wf1V155Zf2namFmf9u+Gr/66qunF1544XT//v2Vf/HgslFTTfz22P3AM5QNe3b6zoG9JvzkZZ1t9upL15r6E/rW7H26OOHgWe2ZrXYwxHSuXDfsxLSmTj6vuZbEKQ+YxvD78phfzw0x5KcZlxu/8vb5ECauznP5sqevwbXuXHfG6PDHzS9L8OHv2aV3Pwyv+uFaDviUN1sSNnv1wZMPfuJpCV9Y1Vf9+IfBzjocdWSHjxzC875N4qLWmrrgIB777PChV4vOkHhEHGti+Bz+73//e71L2g96++ffZPeLb2rlWe633K3Fp9pYJ9bEpN/zdwblZA9wEBeOXPjzxan64UtfjGKuQOMHXGv64vMzr75iyAe2WrR/uOJTTmJq5uoKRx7VTNiJa16+Ykw7c9zFbCyua6a9iDv+YuHSHwhY0/jYk3iJad510x7PmvonivztCdytO09ywgUOX/ZizlpVJzHYxh8H58qe0cPS4Kqr88cX36Sx+EQ8efIXMwwxzNWl+hn7wzPXavzwxqPawVWvcupaLz5f2O41cO27ax1G+4GDMRGH8JHXXntzseSgDpr6Enp+9k49YGaDb7XQ88endbnS48JWsw6DzhrenVt+1YqdvZxc5Nf1LhYcueFYrjBxt07M4z/txIHF1np7IR4fc3o+BL7rxt6Ew1dO+Zgbw8Vfjj4rsKcnbDT86ONrnY5PZ1pM686L2pPy5SuGmtD5g/Kvf/3rp2effXbZ8btELv6Ndn8FCAFNEZAvaAWSwNS3fgmx29qKWdzpozgKavO8GLWp2bPFk95NWjOOu83Khg8pb7lNCTM7GETPB5ZxDyjz6YOrdXViP4VeI9b5dRjMJ082za1pBF96h4x/eNbCpw8vX2sdQP70DqyxNfOwYZUTXbjVLB828wYeTvbN4TlfboKEv0Mvphugf69dT+Cprb+u5t+H82Bnp049DKuxGlQ/sfYxPLFI+cRtKbcf1rLjJ26Sng3RO2NislObzhJb3JJw802/99bb131tn+/c+PHHQ6+OzSe3czhsd6FzI3RO4MvPPnbTNbaP9tU4TuzN+Z/DnXpjddQSNVRfMRvv63Kc9WLbfofTevGKAzOxVv3kgLt1tp2DsPUau8bq60HHj47A5KtWxeZjDLv4dNou065Y4caNze5Lp8XDOh72ScOVLszJ2ZieP+EnL1+0e9haJ7uNdX9wVuxldPUjHHNxq2Xr9erM1noixsOkOvAr33zg3QYj+9v08HD1Qune1G+1pxdTnsU2Jni69/qNdh+qn3nmmaV/vfzE+fnPf366d+/eqn/nEW7YYtfYs6leri8yeWZDn1+4e43ZsJ9S3HQw2NDrPcc9w93L3Se6h3Y22Kix61HrbPCf8en54p6+MYzixkNPB7Mzz47o6eEZFyvOy+jqR3N2xtUNl3jKY/IIL99iZiMuXXqx2JJ857gc6OQNZ9rTtb9szkk2YnQfjYMY1ZfOXFO33hngdp8X033CPYIuf7ie31r7DbecYRizoydyqZZLcfUjDru+GvKpBjt+GK03109cnNl0Ds2rJX5srVdv67jrSbbFYY+Lllib91i+cz1MuPCK5Zoh82wVh14sQjfHS3nwgw3sngdMYPcMM8ehvWYfrrU446jtEg91M26f+MHtOsuPLnz2nc3djs2sGVuNTiz2hK76me/Y8ZlrxvbGGS6OHmZYetik2LO3rs189tjW6aoDrO5HYtGru1rJqzPAjuzXIB1M0tnKt9jq6T3Ee5o+++V09UMcrX/H15jw15rz233ZVZPi0RFxtSPBkX17bVytxRCTToNf7GIdYZ7TwSD5htuzqC9jOhdiazNmNfAlynve857TT37yk9P73//+1zDPxT6nj5Mv2u/evXv6zW9+s/KPQ7HZVQu1koPa+YxErKsbnXXXdDVlW87xKDf6fGE5O3Aah8GvcXhxsmasda+AD8OXs37z2Wf2bLou9MR7I2w5+1KYnTUNhv3Rk840DmqTn3E58ufj/YwfLrBxc/bVhq1zLsZb3vKWhbsCXMeAER5/Yxj8xfIeR4ePew4cdtbYWTO3blwrRrXQk9br2z8YfXHOtj227svTPnPBYOdc9hv9uLBzPzfGkX8xiquG3TPUyGdwX876pQ2+OKin74n8YglxrXj3jRtMOHo8xfKs1+yBOuAgTrHYwWZbnWBo6fXxrVbqWwy+cIsrP2t07MIJo5xxYocLaR/pYRL+7QMdbHiwCR/iXqpuRL5sxeOrZ8c3f3GN597QaUk+ejHVxF7gVL5iwaGTB72Gj7PdH7DwoyPw2LAXD241sMcw6YvDnkx+/Pnp6fFjp3YwNPpqbsxeC7+41lw/fOVS7XGHT0ecM+fa3JqGY/UV09mHJ9+eceXGH0drYvPtXgVDDnyJNXvDfu53PvR46PnUyrf6wGqNrnU9Pezw8bRHrj1j2PnAqQ54uS677tnwqxZykqNeDFhasScnYzK5PND852cK6/jAqHb5WdPwwNEedA2w6Xqybs/kh+/Mzbg5LGdg7nfraiUX+Wn08cDPM8YZwdEfAnr2ELzZ+wNEv/GvF+eDH/zg6eWXXz69+OKLr9mtwS1/XPxFO4IdusgXCyEJEoT39eweZ69omthEXBxsgE20mTizodMrLjHuwu2lm+/kbkzgO6BaeVmjh6PlS6dZ77DxcYGLQ9iyqTcmYa/J1Y9isCP6Glt80rNtThdmHMzThVHPHl7xYVnrpgPDwXXw9buwDR9Gcfi54PGCqU7dZO1H8fUkX7bi9CGG3rkjLkD/tpSeXXvoJc2X7R7ycWktPuJ3DsRs3+Caw8O5eevhhcNOmxjxYwNDnHJkS198+Gy01nANH257QcfmSMKL+5HNkQ5mfMoDV4JT53yPa17jL+4UOmekhw9bdekG3xly8xeHvTyLN/NuHAc9++LWqwFprpdL9YRDp1Uva/DKdebQnpUbH615sWDEsetODPnA1jcWp1jl25+Sm4ednXn84l2ecZ3ruMAh7KzV4g8HT9jGU9jyp9fwsIda55p93PV84LE1FsfYNesDkfzsNzxr5cjHC0AfXsLVFz9scbSEnnhQs8Ut3NayrZ+YdPGEa61a899tzenPYRfjXM8PvmfRm9/85vUn8B7w9J0z9RAHH2PCx723fzrm6aefXvpH5bGcr36I87Of/Wz9xy726Aiv8zLr0rm0xmfWDvacZ5NPsR/Ww8VPXI3oPTd9WNPb7/a+5xAftaR3HYhPcNISdnErBxh7XHYkHub2hV0yY2Y/14trTUzc1KNrCd/2nx6+/ibBFS6s6sNejMmhMVt24s9YOMRV3z7FOezmceJHVz4wjcWbceJDx55f57p7irheaD0XrIclN3vdfvOj0wiucM2LLR5/Pdx6ds5DfKxVw3LSh5ffXNvHMMStmctR40+mjXF7a8wm3nza82LLQ0uqn/n0ba4O7OVQLH26/OMXx/DNrfE5kuz1amevcC6WPaQnYsp1x+KLH7Em3jmRT+eRD0z10scFRpjhdja9W2ZXjGz15WrsbGgwzHGXS/j86eMz8yoP59nzDka6uDYXU4NVLNjWw5ajNY2w5YNTvnDVh1/nGP9qFof2ZwFd/VAbDRbceNWzi3M+bO1t7yhs425MzL3HqUG6/Kct/rcR3MSd/OkS4/iLp6lb+HIoLp9q23o4l/TFbw88g/yhr/uTulfT9o9d3OLqM+jj/Kdj/vznP5++9KUvnX77298uDmLiUe2qUzXAR13aY+v/y9udreh2Ve8fr3vwSFDYsccWPBdjUFGiRsQuYhTFBsQDwebe9DbELnYBQQQPvIX/+1mpb/6P6/dW7V07Ow6YNdcczTOeMeZc6212pYKv9xeuey9ev+p/OOL4E7nU3ZfHzl+vy+XPDw7/zmp9gWfkjxsc7498ftNfuek77+X3vlEcTNd8+oLGeyw1meNu7jVHDE4JPux9T2DGi55v72Hl9lvbavFfTOPEr3uP3SgnPzl9SYMrTjD598V2ebz+4SS2GvGzpo+vOo1r4vkjn5jwYbmWRw5fGqnHPU3sn3OZP52aYckpFwzx5YWvHhhmzxRnx5f4fvHNtRh19kW7Xvj+xT9QyOeswMMXBkz+eo9Tdv1iN1wbeOk9fxhrlzeeZnnZ1WQtho98hK7a+PJjC0csvTVObOolONB17tj46p1ehxO+mLjxCUfNnW/94CNf5wtO3OGKlSc/c7nEJbh7busXO3EGca6P9cYXmr5L6bMAfEOcwU9ecdnUhXt7BZ+ts2pN8Ctf67jDsCftC/vmsIZP4qrGvjtyDYP4HMkHFrtzpl4+zmXPDPXwgcvHWt/Vp196LKa6nAk1wTZvfWLVbC/Fthd8s/GXz37CpcfZsBYvBw5wrAm/hI4vHHEw+boH3W+u9Y0Pcc0PH/XYW3ucnxlHuLDgVDcubAke8FboqofeWpwewJS3/Ox0BuHLDlM9XkPtAzwirhr3ecV/ecAh6T3DPG9gZpPHvuqRGun5t4d+4U0Mnf/yxpftbLj6XtH/m+If//jH8dyU6+Mf//jxPzP3ukuWz6F4zI8Hf9GuOQ6G5t4lijS2yXf5vhm95jlg5YOVzuZpvBvOg15jrN1E3Qw2NT/Xe1jj1caJd60mtVvX7DiIYbc2NsYBp8NBLlgNcWG5pt+1+ophJ3FxOBZnb5TXPV//CQ9v/PjjUs3WcDZnOfh0gN2Q9l6OfMXiZ6aDL8Zcn+WNV3lhVlc5xHcjwBPnZhEDT34+boR+o926PeyLdjcRge/B6wXcNYxyinEtj3GXsMmfr2tSrexshhrNfNpvtYUfFrtrGEa9xyk81/UZRj7wyx+eeeW8Xtv5Gh78cLPj1XlJZ47v9lI++kScQfDWC3unHte9uLEVWy7nYuuWp9rh4dmgJ2ISePqrf+0xf7o4unYuCIxwrIsXs9fWK9btF1y+eOOrn/GGzWZmrzZrL4D6QmDRGfE084/H1kDHrp+unXE5DXocwhFnkM7luR629owvHu0bfVjwq1MMiXfn1IuuDxnu0/jZI3ZC1/1rH8TDJHJvbduPw+Hyo36YcYPrOt+48qc31Ft/wmmuV+z1CYYhlsB+WoGhTi/sPkz6IAlPXryqnc6gM7x2Pffcc8dvtD///PNH+q3tafjg4ov2V1555dgDGNUYnh60D3Ryxi0fszObzRxvsXopxvwkshzgwAhPHudbD+XpvtO3fPjTn3t6LTc/It7AkyyWNSzSfXEsTj/KV6y5nnBlD6d87OnVXW8f1yvxfMoZlXKHZe0ab7XqDckeDl1ccXDNJ77nuluXD26DznWxsEk85CT73tGzz+u7ORzPCe8xvXluv71ncw0r7vnHRV72FbbtlfrEm9mIa3It/jBc+VGtYXCxL7DLWRhOcnQv8ONTrDUfa/HnHorV93z4iaHn24fC6iivWQxf8eURQ/K37vwdhnt+wGn/4Imja0/uCX2wSZ3tnToInUHkx716qtF5z+dwnB/0YdU//j0P1KOWs2x/xIulM3st80HOuW1txh03PGEaYs811Ec5q2c51tti+cQhnjDlv8YfF72pP3z5tW/x5FdeuPL2Yd6eE7Hy14/qDetwepM/Flu+OOlTHHHevknJD7eNWaynoRUW7PbPc2i/IMCpc1qOuFqz+zKh32h/Fn+j3W+0+8DvN9p7LjqH9kHN8ZbfGgc6PNViTXwupvNlhPr41td86qveJmG5b3pfJ25HvaeDDa/c4uSNLz0c74/8ZiFe+dCL79z7Ug2mWF+gFctfLzwPjbN0RvkTGDgS/n0RiRdh9x5Wb+j6cxo+Y8ojn6EXBn5xjJ/3wbirgfD3PsYMk5/Xvt2f+gRTrH3FUwzu8d9r9yk/seGL9xqKk9r1rXr4qZnd8KUpPPnUi1d58ISVsPGDKSd/X4r5Qk+98umPvfSPEnLZT7/RLpe8fKpLHv3BoS9v1StHveDjms41TvoRF/4w8WRn4y+HZxebmGL5bU1qK1e+9RQ3vPnbK7lg4arOcGH0XoYvPFi4lAvfcPnrhUHwhJWvOPHVww5f3/nwzW425CTy9MWneOJ8q6Xe6qX++AzqXJjpSPxd0+EsDi48OAaO1nIT3OIQbzHyEJzrhxzi4NRDsTAIv/h2Vqz1i41Ud58zrfu+z4yzc682uHGCYe9wqA8w7C9sg68Y9uZqE2fAty/6k+0gdvuDrj3l3/pcG3zjjGGtdhg9c/jhaRSnxzDNdEQM7v0jCp7w6BrWcNj0Vi7XcK6Jnhj1PZ84iVNn+8kuh5iktXyeVfYJdxKuvvb9QXxgi70mni8+U8sNQz7+9sXAL51rNs8nz3L6/kvzcrnP9K3/X4GcfqPdf5H2P/2iHVnNMO4qXgF32c7N4qtJZqIRxn3CV1N72LVJNrDD3YF2Y+HSITA3OsR741Wb/GE5hOU4c4OdDm6bLZ4tO9vWWg3ZzWeBJQ7+2S4+vOoR377wd1OJzc9M0oW/2K6r1eGzhq+f8Ox/Aqd+8Su2WjvY9Ek9j7Nc+o8bP7M9g+1fWonrsDwcPDw9HPEj9t1/bu5Ldm+EiTxeEM3V43rX8czfOq71Ru509Y//6qolPD0RL1cx+VQnDD5wDNeEPZ9zbhhnkYsUf8579mdf/PLJ1V7SXeMLix/JR43F0tkf94ua7I8Hlzdk9q+HvGu+xVrLLWf9KL9cqxNnXf5inE8PbvXRsSet6dKHGX5xq89353iZV+KEh3o85NWurvaRD6Fj7+EOf/PyoTOWOz2h0zt9huXagGFNypUNFh5mtRrEmi/OcYCBmyFHIp6fmSw/Or5q9gbHnsOJa/3i50OSe7saYLLHSZyzUg1ysfHnRw/HqB765SaGncRTHOzNwy52cTcv+9MIvMS155IXdX9Xzj3imeWs4LN7gJvhLPvXdv8z1Gf5p2P6ol3/5TX0Sc1G+etHPcNzzxjubPVYXDXT8c9WH86z3JtPvBGWa3m8HshNxBC5Sf6dDbpsrs+y8WKrwRyW/PzU4BwSdrp6oLb82IwVfuzEuRRrwCuPuV7xs+ZzTfjFkY/rzo44I3trMUaY7OULj85I+BrsK8Wa2eVQn9G1effBtWeC5wjRh+5reveBEUf3hPukLwzqoRyuy52+upZHtVSHvK7ps9GthJMOvlrukrDN/Mxqg38tLh94y0OcdXsRLr/6Wm+yVcP2pHOQjS8J23U61wkdHzM8OGHRyW29rwXt3xmj+yRMa9dbezHnuf2j7/rcR1gr1uWqTnzF0+Ndbvr6yE5vuPZ8qSa6fGEa9rW9LU+1xkdMNr7yO0OdWVzKz0bCd50fn4SfURyu/KzlcB0W3osHw1pevvjWD/EGu7gwymvee3N7w1cMrD7IusbNGVnMzRO2eL7m+JmTuNA18l2fYuqHXPyK51t8cU8y149rOeufZ5N/MPfZQm/J5o5be/JWfNHuP2H3N9r7wk/9+NUHHKztYzp8EnZ19LmLnp+9VpMhnp/7w5651u981ex53Wtz+MWbYToXbN7PWJv1hL6zBR+OesxyijHkNdPjHBdY+/phzdcg+OErn2v1pM9PDCkXfz2RpxgcvV/VS7w7v2L4W7vmb8CWS1z10fHjXz/l7st4cXrJ3oAJR438XMPATy/MYvDyXtvnYflIr6OwiDhfXvUPFbDw8CWy/sSJf7WY5Yaf4JmdDWZfSHnfL68eeY/rH03ULYf7BV956hGurvXaaz4eeOqLWnzGF4sTP7Hxw4FfZ801HXsxzpd6YfY9QHXwxU2c2Rr3+OmneLEG3HIXhxOb2GqC37WZTd1mXPUMLpt67SM8+Yie8PPlIT5sBr2Bb7g7i+1e5+PZLG/nGE97bo+67+BZ63X59cmQ05ljjxNcOHDby/qXjzi1bl/wrLf0fAi/emoNS+3s/PAgsEl7AI+Y+YnLx3dAdGqFoy59EYtz/uxx7wyls9Y/9YuVp3rLLX/+8tDDo1uh34GHPW/f61tcxNKVB49qczb5xVdPy7t6HMTYO/enHtDJDYPAcA6cR9f6IsZaHH8DLpshnlSPuvnz0584m4vl397Ty0nae32gx0GvxdVP19VKR/ji0uwLdvc7HLWpofMdplkdiTx+g92ftqIXD88v/7Gpyd57/vT8+NjHPnZ80f7yyy8fMPEJ83HzU/1GO+IKQnITIpusPt1ds7gGH7HbmHMcezeOB4mN7CBotmtCb+wBYWuj5LThYoqTV20GP3YSP2vXW7vr+MpVzMa53pjFYyPnnsWvfA4esW7OR864dcjrY3nZq71cxS+ea7583OhmcWrTF/ufj3j5Og/0/OOSvnz0em1fxDbqvzVx4xIPCbFqgEXcDG4ENlzYcfPC5QXbixTBuTzVLk85s5fburrFu941HZFv66GDKT4bPuFVUz6t+eYjzzXho79i4pNfuazZqs2af3msV+iLDTt/vWUr1xmDfnWu1WB/DGv70r71guXh3QMvX1j1rDO7PF2zE5xIuWGI735jt9fe5OVXb8XEs/jq5guLVHNn9lBefhRv7Tq/7M3VJa+HvZqN8NjlxdU1fXVX5zlXNcgZd/ms2cKi0wsCk9SzMNLFnx6P/OJm7RyooRetA/DyoxriqYZ6wke93rgZYvnLgxs/OWCzOxt0Zr7VKL8hloRfzeZ6dzhcfpSjM1ZNYcEwCNzNZV2OcvLLPwy6xwnccocpxrU3A75o96ED/16b9KRcrnt2eG3zRfuXv/zlm09+8pNH6rAfx+Muuzx90e5NmLUBt9qt6084bIY+59u1dTjmJL+1lyMfedSrF/CMdPGgq1ewlls+5Q/3vlk8wWWx4gZLTmI/8jsUlx9i8CB8q7N1XGBkb4+t4ZnLXQ7x3cPVSbdCL5a4XtzqYluf5cdGNme+9Hyb68ehuP1Bx0euawOW16G42Df3uzevbPIaxL3qvmcn7Hrmddzrv150L8Bjq3eu2eLemq4a2MRVhzVb9iPp/Igzf3hGutxgNOi65ivOqD+bz/Vi8SkWTj1xnWx+vmcpHla55aAPb33EV3t+dF2bF6u9sk/2z16dn6/i9Zx4pokvRzMOsBN6OuKabWuF197Gv9jWxdPjGb6z5Jqdfv30yJo9H2u540q/Nbpu8KnPaiXhtO98jHDrDTuhN8qXDk6xXR8BE7O55Mcb1l0Cjx/+5jjwXx7LJSz77bW813B6+Rsw2fll8zouB+x6ag/KSy8+3vLC2fzZxNCv7Uh0+UEXj9WVJ525Ol3fhbc+iwsvHvSu+Xo2+aDuA3rnIJ7N1WrtPemz/I32v/zlL8d7Ar/R7j2Fzzu44aLf9d7a/nV/4LQ98GzudXd7pVZ+4o2tyXsSYu/p+Xred79unLzWhjz6had++IUo2NZGvvUNrjq6f8xy+yKtXHycOWdQvNG96prwlc+e1Rd8yhkHvuXE1Zd88qkNls8zPVv4Ehj4GmepL2w4Eblc4yIHG+71GD9D7GLKL7eZTSxe+dLD3eczP0OtsLym1hu67lU48XGW7FE9F2ef8eNT38LEyZdRftvfe0m14MS3PcZNbn8SCH7YMKq7fZVbPH2fIXyRhiOJA8x6HycxdO23mU6d9YyOP1Gb0Vpe/OSA07OND8HBmdB7+ds3NrH82ORqv+EQdZ1x2dQtp1h4BGf4+idnNbDJA18s3oa14VrebK5h48zubDjD9qtnghh72D2Eh70SJy9ffYCJUxzUolZ86Pka8PJhh2fwq1bXfMXxZyc4spWLDQbJL99d21N9Kpc88NVF130Du/2n04N61X2DU/XkY42bHEa9phcvB1yztb7jt/XQk3zVpYcEjhgYYePP18ANF7rEtZj4wLCHdK7DFJd+exZXZ64a6Oy1+845kYNt7fg1+MPMx/XWjQMbUW9cq2P9XcebP+zFZ78m9tRrnzNe//RA3fXALJ4vzPTuL88WNuddXWrHj49Z7/RC3Ec/+tGbn/3sZ8f/GwWXuzhd40n3VF+023xEzskQQpho8tl+GO74IXblvlg2G+eh0ENMIxthOcxGNxhu4tjz6XoPEO6aLa46bCaRm75Dna5DFf7hfPkRJ2s9yy/75u/6bLMWJ550aOKWTg0wcOyw8G3NxoeOWDefbeWz12zhqNuoD3rBLl982OkMOjaD6E+DHY4ZL1jliWM1x4efG8kN4EYg1W2vnYm+aIcbjmtDjoTNvrrRemFg45eEIUdSrdbV75pv90UvcNew5KVX+7luOCQ7n+1R9eiHwY+unoqt567PEt7WwAcPOPaOuIaTP10+caDb+lr7TVn/EijWw7u9kpOONIvfWg/j6cc5R/H01Q7PHtp/e4Cr86AvfPjSGYRPdcSrPGxqT86x1vmuTy+KbK7VboZvwHV2w8bZ4N85qsflaL3c5Vy769W5Lkd6s1z0YdJdq5WPF2Fj+YZhjg8ftVmrwYuVN93+IQw2btnEwes3BeRh73zgl+w1H3sFx7XhnMrrmi+7/PV648PkS9jCgYlH/tnoYVrD5PM4gSmOhAejXK59QDfonFf++rR5nVl6z6VHjx7dfOlLX7r5xCc+8V+4x+IpfsjbF+1+S0teueK7kHzjlT0dv/P1xmbn0/mo1vWj0we12j89otu+weDDjkc+9K4JfRwX/9p1Me0pnHrQWaAjYcqdT+eOD3sx7A22xeDXOk6t93yVg7+c+RRznvmFvb44wa3Wnut8iglLzvTVYnYuyeKKJXCNbOaG89u1Z7DcXqv5wzXY6T0P5KlW+GLab7nYyhU/nOnizkdeM4GTz8ZUO10SV/5E3wj88lrz49OgS8oFv77zty4/381VPnp+1yT/s21x+RB549Z+xwuHas5HbaQa400n3rPdTN9rgWtSfph6DtO1vTTjBJefUR2t+RO+/OJCB88Ig41/OPHnS1fd/HuWshG24uLQ/LrH/38ty1/NeBlev+sBOx3M7g06eHJ0Hd9redjo7xO1w5OLqLcYumz1cLGWCz9cu8fCC1MediMp3mty71+Kw90gesKejc5aX2Dkx54PvvTxxg+OOWEzxNCvLR9zOPLxl1Md6x9WeMvlGhYMUg/gxSMdLM8m/1juwzoJv/x8yy3eZ9Rn/UX7F7/4xZs//vGPBxdfWsvdPnfvyG1P2PDRMzprHPnlS8fuiyrDdZjugfrsywniPX77A5NYuy4Hnbye5z4PwWXTD//pPhuRx+tDeeDET69dm/tshzOhL+ZQXH44T3R6AUcdcov1HoNOPvUY/HEqH/96hSfObOL44mktxhqGa/aEHV+fQ70m4UPnnvLlJdze78QHpzDgWRvi1AuvfpnZ2m8+ePNji1tfqrKrXx/sRVw80+W0hq9Wv6gGJy5x76zLSceudtfyeE+/eniw9Ei9vmg3996g3uuZXvgHFHa5xegVfvSw5FOjHPTiqxl/vPRE/WplqzbX9U6+9HQNPvVH/9w38rBb460/+idP55WNj3g2wkb4Ge5PteHZLwjS8+8cwFle9NXls7QcdHjUOzHVJtY6seard3Dskff7nQl2gkfn2Bqn9gDXzkjc2GDCxkm8PcGJjh+f7huYODo/dGz2ypBXPH5i5RZPZ8CPJx/1GcXExb5VJ3/YnY/8xRAzvvaofrluP/nIJbfhejnQEfjircsNW038cVMTXb7hZuPHbnQOynUkufyQA2Y1FUMXf7Pncbn5NBYHDzhsuPCv7/ycD0MvcCJ8xVm7xr3Bbs/Y5Dez0eEUhv2Xx5CXsIWbnz4aemqPYPAvrprEVUO9lKOcZnb1wWZz9uDS6UE+/Nj2vMpp8HMPuP7IRz5y89Of/vTmq1/96sFf3EPkqb5od/MpAHEJGwglDyVS3F2zZhF5YWuw5vQvGm0GTgaxafvgELMHGk418G+dzlo+dbmZcXDNbrPbcJtmkHgci9u1vLA6WOEXA9OAX53Fi+Xn4BGxBn96/MjGstGLcZ2/azzI6sKsvrjiK4e14bqc8MVt3uwOaJhhZOOvRwafBDe11isznRuDlN/s/Hkhhl0eepjOhBc1Eqbr/FwTazmcB8NZwZHQ41nOM1ec5CbOV775y0u/9fGlr1+uCR+66qaLtx7HKT8zXTa++Ilns67XsBL+STzNYrLhIZ7eSF8c33rDzyjetXi5/Sc4vmwlHtr2ygyT8OXX+lA+4Y/ymovXa9ftv2u8enBXl5me3f6FhcuK/V0dP7HGNWEn7jdn09obNTX3wqaXPeTj1xkSixd8/VUHDLr05vLwT/IT2zVf2PWYTU4cjHDXb/HEqWP5rz0u/OQx4Ou3N4VerO05e7nioEfe7InB19CrPhBaE3hGIj4sut2j9Gb1VXex5nK5ZodH5BBnLo4ve5zDjBu/u6Q8Zrit+cPzG+3+x1Ck50rPE769Zol1/ejRoxsfqt+KL9q7R3HZXls/qVRjPVEDgWdYN7vOL3znvZrN9Z1vWHx7xrm+y+dJa4gzfHt7lms48stLuqc3DhZc4jrf9bnruvOlN8vtPoz8cD33VB66+m52xsLLFp/tM18DJ8O1XGJbi9vXm3DMsOyj2fBsdq+77+GEy9c1Gz750+t1r8nsRH4541f94lyL2TPCL0x2ki6M+sZ+9sFNPMwzTjmLOcAvP8Jh3x7Tt87HzO8hgnecxVnjScLb2uj0zbx9VhO9/Py77n0bPVzPf+fGtdcD9vKbG50FWPxJefNhuyb0y5MPPPHy4uo8mcPAj90afnWIhSWOnqjbmogx+CeLFZ6YnslqXjy41p3LcMxbh2uyufcsHcY7fhRbb6pP7npwLVQc32qPqxra/43TCzEwq6dcPmD2+l8NfO0Ngek1mxTTe/J0h/H2Bx+DtAfy6vPWlM/qbiGOiX37o8awXa+NvhrrhfksfOLEJjc/Ix5wrWF6pvmzGH15JpZf56S8eiXGF3/vf//7j//0/Fn8jXa/0f7iiy/evPrqq8d94Utr4hlrX6pHbvuIFx0+ccxHHD9DXWryWTfu9se9b1aXL0/N/SKNOGfH0IMGPdE3n8l80aYPcOD7AtUznl1s7wHVIFYOHAxcxeAGo9cXtXS2j2SXH+noSRg4wMAPfgMfMfTy4GN2r4rREzozv770dI2z+GqVr72vRjj8YHjf6z2XXsCTh389ixtsPQlXDeo2J/YErjrp4emnazjsPoeZ5WHXPz5yurfZ5OCvp+r1Dylh0OMink2cfGLpxarffY9LeGb1qpMf7r5o910NHnA6M+rBybniL7cYv7Dj7PY38XGJd33n2zPVuRFHp/c4E3Y6fNjhJHT8DD544KcuNalVPK584OoTHDXKCQ+OeD5i6Yk4vp4VaiPOAP70sMJkE6tGOdng6q8vMenbXzrcYFSDePnighdOhtg+l8EqVj4DTv2Vuzrsgb1mq0423OInng9OdDjIaa/5Emv1Owd0+qN/eIgn8qrPOi6us/NxjatcRAxM51qO6mDHQ92E3uhabrWlw6fzKwZH2NsLePKz6zGJm7pd54O/WGcJl3gdQZcf7ZmY+oq/kS18dhjtmTU8NVQjnb8pro5qLpdaDD7sRrzF67kzKK7/1wKfegNH7vLjqC41wxWLn1gx1e0avrxi+BuuCTvM+qNuXPjgoj485aBnty4OBlu1sOdDJy/8MJw/3HCC7cyqk3SG2PGDa7B7BhF/OuYnP/nJ8WdcreE/RN70F+0VVVJNMhB5KJkwrs0aAFejic328NdA15pcg1zzbXPpO5TpYODON7EWRyefdflsQrhmtbGZtwdywUjiZL2HKntzeZcPnbxyOBj5lCN+7OKKjZ98RJxB+OYPp7jF5Ke2bpRirOVs8BMvluTHTi9nh52uvHrbgY5b/s2Ld4BffuTrBujFlk4M0aseAtb08sibXzysnQUPCjeyWLb0cKz1Ib5shj6091uHnOXqvNCRsOs5HIIjHRxCn648rc2GHPAMIlfxh+Lyg88KvkQ8sY5TePTnvWQLC7flD4sOVtf2xhs8L+xs+1CDQ2euf3KS4l9fXf8p1sDBvPXD1AfPBMLH/rYP/DdH/eAbjms4nXv+iWuDvcEGt7XaDXjmXgzZ5YPrnqwG6xWcDXsZ39Zxp0+Kz0ceftby1eONjWv4MKp/Z/zdu9nFEbNYM3851OQab28kvZlzfxZTHB++3sSKw4vII1+9CX/j45ut2sTDCUsOcefY4unF6hHhv9fFhRmWGQbJpzlOh/HyQyxdOdNb+8Dhy3bifOoZPvrMTufZQ9gePXp089JLL71lfzqmGo6E8wMXcq3ucXujxvXT05Vs+uLaSNTbGyz3qr2Qu/xd60X71N5ka15c+Oldn/O2R3E9x4pZkT/+9mr9y9Mcv42/79r+d56Ljd9dcdnxqIazLz7s4de/8z0tDl4SpjgChz2OdNYNdpKfuWFP8ZOTwDYIXdzyh6nXzgW+1cae5Gvtmp88nZ/1g1VsceZqzFfetVe7eFKtcedLl7TGxXXxrlesG2f94q2t6zNn+vLEr362jk/PaLnrEx+YzfaDnY6/95x01r2WtR9xsa7HxeElL1x2g+2a0PPLnw88azbX7e1ixBk23/Ksnn96uOWoRnbX8bQ2et3Ty67piZke7ko4sFw3+LqWWy3Ziy1nazN/+uJal9PaaF2sHCR+MPh0n539y2EuRrx1Xzw4B2x0KzC9ZpP4WeebrhhrAgfP7Pnnd98spgFHPa3Drr/Vyt7+0p3rYN9zEU79KN5cvPPoN9p9QOfnWUXYjTDttzW/Z/lFu/8Zqr/R/tvf/vZ4v+v1U132yr50v6jbnsQJr3ziVp34q8P7Z3idJbH73oyNrvd37QMdkYPUZzjez/icZZbf7ItVX5Cxi43XGQdW9w3fuKmtUU6+6sHXwEGMoTZ94bv+Ykh891qMwR9/ou7OE87y1QPXBjuefbmDC533vd4fw8KFjsTHHNb2Af++6GbnB7PnMww9wlVv+Xhe+wyGI3+59Ftu6+5ffp5xcjinvmjnW37XcOu7vL58Es/HgBGO3HzkwJldrN/q9o8rm7/eyc3HkIvgLXZ/o11ONcvFpof8xauBDl+9IDjAtHZdPhz5iTO61jt4cOTBISx+5YKjRnzKFw5sccTMxz8W9KzwBa8zBKM9g6sWeQnMhJ8Ydv0UI3f9lpdtedLBwoWovX/kcSb0ql7U5/KJNYh9lgsfGA25+NDL0TnEA67ZWWM31Kd+e2GtJw084eq9syEnjGooJz704uov3H1eZa+PYl2LUTOuXXeG4cJzb6ojLvioE18CJ650YbPxg81uNvQAP/nSi0lc48u3HGzqlpuufHE2E7U4Q/ZGPCy/3MYelhkWW7nEda7Fyb9+MHx270yIY+e7NcANW41wnC+zXqgdl+pLBwsmgWfwq87ufz7lk6d9oAszHDXVF/jlYKfPpqewYLh31BiWvM6ns4R7+WHzld9vtP/4xz8+/mQb/nryEHnqL9oVULElta5QujboIYTu8tUA2Lsp+69kcmskvw6BawehBuPDr2aWK86wSTiu6Qw+1aTxK+xspJ50bW2w61k54JX3CLyNPcfjSmw4G27FwoK5ucu3OOzldW3AaYSXn1jXDmIHFQcHD07jWi66rcuB3huXXV77Ul7YdAl9vaLHRZy+W/fAMLOFA7O9oXdtdEPBCFeMm68HNb+w0uPDX86wYPCDqQ/VAy+J6+r4hk/Ph+QrR1hdL9d0GwfPwI39PolruWFvX6opuzxGe82ebmc5+YgzewHzsPbCxc+59YLgDJA4yx8mPf4wVsQTfoQ9P7bVu3aveGCy8eve35oOoMsP/kb1pTfjGsbqyylme1eM8yiWzWxUJ12jOuCswF+urjt3W3c8uh/5qR3e8paPrnywXNOpnW9nzJp/PYl7uvRh5i/eoIfXhwkv6OVhy8e1MxFXMdnlJHQGkYfsmi59trP9CLr9Uf185MWFjljXl2oKm3+45vTi0rsmbNVkXaw8xfLx2y3+dAzpjcXG2sf20p4/evTo5itf+cpb8j9D9cZK7nMtcY93dvt0lvVlg2eQ4sqR72G8/eEe1QfP3PYhe/7pw0vPz7Uet58b2z0jP+72Jwlj+Wa7Nu8+Lk6+8Wg+88nv2gwPP1ziDOc+Wbu4s7DrW/cWH5zMzr97rTr4ynvGzA7b9a7pxBQn1ihHnOqDdRzKg0fPBX4Gm/Ofz2LibN3AwTUO3TdqLhe9c2XNj21j88u+HOjCL8ZcTLrDaXjUjzD5qdFcfWLCdx1WsXTXpNxsYs7rctlz/dh89VmsPrDLF4bZ/obR63b3jd53DaM41/IQOn5muvD33LCR5Y/PchUXf9fG5hCblMuMnzns6snf3GAz1t+14f2KfrlWj+tqyCfseOBYXjp849xanesHKx4bGybdtdqrQb2kWPlgxn25Vmv+1u1VMflYe2/hDJjra35mvvLInawfXX6u40hXX1wbTyLVvDji9GelHuBnkDie89HX33z4F2uGVw7x6fyDuc8Oeuj1i19xrouj8570Ax/4wDP7jfa//e1vN6+88srNH/7wh+Nebo/kIu6dXlOtq9t+2VOzmsThv3Gel71vFqsOPp01OvFi27vqNetjvTR3b2eDA98Xcb7UxZUfe/cHbrD5LlfvKfmz8dd/vcW5GFzdv+oUD5stTq5hmAku8hK41QaDT7ben+gVrDjjUVzPTD5wfXEoPr4wfUFGVz+yyZUurmb6Blz+1vGkaw/p7TuxP96LsxO90HM9izu+viDzmU1udt+puK53nSVxeNuDvsA/gC8/5DKKwYfomfwwYPsfpJYffzZDnBl+/MWKsb/07H25KFYf+OixXtcD+vD0oz3Ap1yu2fYcqLmzAKPXAH7yG0Tv4Mvnmh6OeINOHsIHjrrxENdviW+8OtQtbxzFWRt6Lr5/uLG2t/ZPfrHViS+Ry57oFU78fS436MPGg681qQ7X8rBVHx0/eA18y1P9/O0ziR+OZxz28PA3/GZ2dbGrx4CtFnzrnf3Su/LC0jdreXHEnw6meGvxzpI1odMfOoJ7/TwUlx+wSLlcb8+yN3cuYOsR32Jd0zWscbFWq9ztoznO+ajHOdr72zWc4vQah3KI1QM12i96/rCscfMcgBNnOjjdF2qLKx/X1RueGEOP6Uh7USydOH7xs7aXfNXQWQlfTL58xKpJPeXii6tR3/iwy03MauYLh/CVuz/1JQ8fceLth/8S7Uc/+tHxZ1zFhOf6SeSpvmiPxCZAHGENcF1TzA8ltbhd1/jWHsD+VVwT5CRtUBsrxqihDofGtVF4EnO8rV3ng7saSAdQno2pvnzN7DBcFwejvsCoX/SJOIPwxd+6mwG3Brt64lesnHyK7bCFacbNwIFszsX3sM0ejpnUB9fVXF3VyYa7QwtXHry6GdhJPMIR45ofLHGucZZ/HxhssN0scPQ7zPzFwIGZnb8X8x5scMTTO1/WfOslLNcETqP8h+Hyw3p96ct9l2/1d17jaZazvLBcw2mc7XyuSf5s6uoBFV45+eFfL+tXmPz4mA1iDa83bp4RaraPhv7nD8+Ij/lcQzqzOFh8zn1dTs6H/eSPe2es+vJt5heXdGZcxbQna8OjGH7VoMaei3DZGtabS8xddZSr+nHoTFRHPZGvPsa1OL5y4ktgGPzo4hTH1cGkN/MjZrrODP/WaucL233Zm0k6QwyfuMQbx3jmJ48aGkfy+cEezqjvvKwf+l0s3vISWJ11a7YzfjzZSOsw6PAvTh4iN2wzm+FNt9+GI5473oCyE7MeGvDEPvfcc8dvr33qU586fMI+Fk/xQ47+Rrv/8gTe1hGHOLG7xh2ns7A1+MYv3dm/3tHzdY/qgWeu8ykum+v6kf4wzg/6MM91wKOTxxnEPxyzsZwH9rgMT+17ffazjkdz/td8zzr49U0cjKcRcUZYegfbSFw7x3s/ysn3rrz61tkPx9zemOUUX93nvPzZNpc9aV9gsMGwb3Ia3ZvwPTfKE1ezWOeo573c/MQ6V9awsxeLE7/G8mNL6El+6XfmI1++YYlRYzzNi2PdUIfrp5VymdW6WHqgn2Z5ei3gW7/kFYOvD1zOSM9DfuLNxjWhFwsPjhx01mT5LA6/tbWfZ458Gtfyy4Oz3ofXPrQujm+1pcNJjb0+0VvzMyf5bR6cCT96a6O8ZmtnxLX84Yhhs65XsIrZPHSNcrF3f8LovMEIM1x5iFi9MovdGuGzee/vwzkfErZ1/PnKf0348BXHz2zw7/pa3DVdNbPBLe/2OB7ljaOYc/4wOmPhmnGrRnFyxLleeA33hYxem7OLjxsdf58lnuXfaH/ttdduvv/979/4EzJyeR3Hg+Da5xd51Ufsr3PdFxP8XPdMVTMd/3pS3fWTj2u5nA9rNTrTxeBT/cXLH4Z+0OuZ90K4WvdlYV/I4SsHfvA8j/qvZGHI64t6v/HsPb/8cohxZp1dGHERU27vu/jj79qzEh4R7wsnn2OqSxx/XOnIeS0ORz2Vl5+6+HWtb+xylS9OOPCNb3Y6NrHtMV39VINa20d9lbdcB9nLD/z0yZCDjz75ZQt9lS87TLzwNvTIl1Cu8RcDvzr4WuMEW/0Eb9f8nMW+aLeml8eMhyHW/tPbV//lp1r5y2FP1CEPUStc+8JOH55rsexwiykvbgYbMfNXo/zywNQnfuYw6LMVA4OPeHzh2RN745ziCrcvSOFbi+nsW8PVS2dQPjh6ow44arUHeuG84WbffAnPxj9+csuDD9/9or1a9IN/a3UkbPCqnz5fesIHX3o6ufirF2bnp3un3uRrrQfOGJ9//vOfR33i6qdrQy49rSa9lyvuZr2i11PYfPWrXuAZjms9N/THgKHXBhzCji8+hmt+xaaXr4Gv6/oFZ2NxEB8fPGGK215Z09dn12p0zzoDek/E88UZJgzXxeqbPjh/fIk6YDhrYtlhb13tpf3hg0d+sIk65VIfod/nAT1MsXK7psORr4GLNb3h/MCkV8/2sVzw9h+O4Nj39k4e+dRkZid6oS41tUdqc3/RV6OcMOB5/f7BD37wv/2iHXFkVjpgZs0hSBp8zU8jYWmuZtgEDbMRHsYaS8dPbtdxENOm7IblHzZe8V8bHWmDqse8/tZ81g4bX/o9dPBs4MYvD9flzU+MHtJvffLxOUtxDg3Bga5ZXL0pFz96Ug+sHcr01dJ+xoWdLX5qsDb4OOQ9ENjk7qYqlt4g4raGsNXDBxZeBhud3OzyVatrufgb9EROMfbHOXLD8aMzW3cT8oXNt17xM8h5ThdX8aS52I2Da/CRX65i8j8Ulx+tzcWxpXcNp57Rr7Sux93HYbW31p3f9iJsMxx5+LN37cHd80HP2eu/nDvgyNMcNzO9/SuPuPTFtDaz67l/fMOHrl7ytzYIrglfY2XtxWRn468u5490xr2Yq1W+6g67ODwJn/b5UJx+sDeqQ54EnhzbT/71bHm7louNT/WZ26N4wqs+8/pmo3Ndje03/F7M6cQb7v/uVfzZxOOyZwxe+XBupKt2sY+T6g9DLoKP+HppXV+yy1c8nWvx8XNdfPZwreNbfeLl5OM/ofVb7dbeIHsRjxs/uAZf+/7c7Rftzz//POg3sI/FU/yQ49e//vXNd77zneO3R3Dd/HEwV4c0+BhnEZsvf8PaSNbuHi2G3dpruNlZiEu88l285QWDrT3MLx09/zN/dtidpXg3Z4fPJ1z2YtgI2/rTVYdrIo6Ecywe8+OMkfvmL3dzNZWvWSwffei+ZaMTY74mxXhO5BOm/TLo07mGZ30+L/Sdb7n22UMv1nDu49m+5g+3XGb+fLyfMPApr2s6/ZIbbnnaU3oixnWDLj5iSLnLy564FptOLtdwNxefcNjjA6fYMK/NYpOzP1v5Fjd/PAw2A5d6tZw8r33o3P05Y7Q2F7szvf7TyUnwjTMdm3W94kNn7Xlgrl9hWKfjv8LH2SZw8y3n+qq7kd1azUZ9gdkovjzwi9XPaq23bNn56odBzvhiznn4heU6CdMMz2zP5Dfwz8daT2ATeCR9s9fn7R08r9O9bvOrbtzDhFeuA/j2B131iLU2ug5vYx53vRjtbTFs1VbeZj785eyajejfxsWr/QlXPKHn43Xc65Zrr+HtKx8x+esT+wc/+MGbn//858dvxsWD70MELnnt8kW7D/2+aJfH38eVxzUe7h2fX/qyQj729lQN/Lxf7T0rXPF6sUPOcx+tOxf1B55463St4bmOh9lz2RevuLL3BYkZlhzOMc7E88gXQmINePraf9XuWUGqUxwMXMrLZq0v8rL3nMGBiPMe1ug5JI7dGjfiOq7wce0LqPzrgxzi+Oh3/YBDZ83HEGOoj+gTvS/I+K7tcLj8gOlexUNt9Y+OP+GDLzzYfNTqCzt9rZ/iid5Uq/z9zW2YPuM5Q2IM12o2iqWXjw4v131RzIfOkAcP58laX82+2/H/MrLWHzh6IFc9gmngFxY/tba3/cOCNdFDAtfAk4jffZGHTg/gs1kbchh0+lm/YdEZOMqlXzi4H+k6W2omYuMSPq590Q6Lr3h7YIbhC0b9EOse6B9CxOIGS26xeImx1+LqNT67d9biVuTf+vnXG36t5eVL9ETNsGCK397stfrFtRf//ve/D97W9Oz5qEs91VTfcJDf3P0kRh61Og9m8XzCKU5suHT477mqjnib6Yz6o05ilrtewnMtpjg6I1z58TOrKe7F4asuI19774zQlUucAbt+Fucs8HfvwhNj0Hm28q9PeBKzvdOP9lAsrM5QfvLCIPHFtRrordkIbDGkPug5vVH/xatHnPh8+RD/6MdmbcZTLC58xepB/RaDPzs/+HCt+z5ZHB8xhmeiP/3mH7e/8IUvgDiwj4sn/PHMfqO9Bm1j6ZDeTXlCXodbmBY1RnMUb/bgNneDy71DfIcPBi6aSs8viTOcsNjiLy5xLX/YZpjGSjxsvlG+OPAVe86Znr88cIuhyz88s8EnP3FEz1ZgZasvOJDywKgH4bF3rZYw4lBsXPiTePEvhr6bUh64bObi82V349DX7/x7MMpN8uVXz+n0wPnjny88wreHajedfN7AeUETT8xdw4jP6g/Hyw/84Ip3XU726msuhj/hqzdwxZqzsZeXLgxzOcQSaz3kl+9huP0Bm+RXPN/2gr2a+ctTHFt5PcQ8lOq5F3S97pzA41P/YRhyLp7c5YPt2ihvHK0bnSN7LJ+1NxxwzxjFmOOws5pW5DPwOvvRq8e5IjDrgxlvfFzH+4whrnpdnwVmPVGXYU3Cgs1Pj3FhL4aeNGcLgw0OjrjCMmDt7JrfWeiq0Z47A3Lh4YW7Fyo+etUaTmeBvx7AKv/mivvmpuN7Fnqj+NZmkr5c9QFWvuu3WPVOLaTYY3H7I9zV8bNvhF1vvQF1RuX1Yd1rWOdATtfi+HsWPXf5ot2fjnn++effwDkunvKHHL/5zW9uvvvd7x6/CSfP1uOaz0rc8T8LX4OPQc7x2c2es51la89fI135YS0OvUHf/ocrJ5veFWNusCfVkO3MubzlEsc3vXX3CD0Jq/WhnB9ixbDDPfutbmvrXAzUwQNWfMQWvzzKubGu4TvHneVizn67lo8/PnDL3VmFsXp8SDWHRb8x8cBpa3AW4skffmuzXGaDjc++wZYXXrr8OmPFxyf+ccCXj3U+5mo0i6FL0jX33qvcZ//WixHWXTNseKR4upV8znr+iWsj32rzWkDMnuH6aMjJ9zz4hhEvWOVq5kNau07Hf/eFzb55JrAZ5NzH8h3G2x9xMcu1XNbPtXjnzxwX116b9nVb/dnFleOc3xkk/Duz1vyrw5nYethXYC6uGnbwXS7ylKv3IuK7t/NvH8WGx+aa8Pf6vK/LdNuLcOnDM597XA64ruO7edngZbNeWd/FqI986yMOfMTEpZjNsZjlKqa1WUwje7jsYfuM4JySfps0TnRiiX71RfsvfvGLmw9/+MN31n0E3PMjzNcrrJiOAABAAElEQVQuX7R/73vfu/nzn/981NyfgHMW3EvOGW4GHc54ONfbK73z5Yr3b2qu3vI0VzNqMOl7VrARtdennV27l3HCpbNDr2/d+3x8ZjJ3pg/gyw/cnEVn1DWJ62LDNMj6ucZXD4ga+NULHMqJX/c/zmzFyVlP6HsvA6f+msstlzzVzqaO8hUHU376cohzXQ57LDbeZjHmviCD56zJ5zoeavJ8aI2XvhE9NeDIZRDxdGLMcM1qgMWOH51r3AzXRI99QSW+vLDz58N3Bx2hczb8bXMx6oQRz/oJi83ARZxaOyf88GYnfLoH6MJhgx8XfsTMT68693xgGPLjt/1mpxcLE5/OKH2x9ISOlFs+OnsaVhhqgeV+9YWpL1v50/tcIV85xdin6nXtNV1c+ycPf/vGr7oPQpcf7GqTUx58OufirBOxekRn7ot29nphhsMOt/sgH7FqwoWtIc5Qk/xm3NjN/OnjxB63ziU7XfU6I/yWGx50OMLOFj96+eJTLc7A8uMjl5yEn1F+HAwx8uiF/Za7mtj40+HK3l6ms49yyOfZKQYuEcvfWeEnvnMjBh++bPysXcO2PyR+8KuJXbw5jnzZcS8vbNd8GvyIdSLO2iyvuWucyOaEW25xzou1GPnE6Kc1KXez+H2OiCH65xfgPLPEltP5gfe+973v+OW0z3/+84d/ccfiCX48+It23/oj2qaXo0KQdG1WNEL8FUj/pMJXvOHaJvQvd5rg5reuqfLIkdRo8Q7AfcKXD98Verg11Sy3PPzDTVfd5eZXn/B0QI2E39ZYLjiGtXj4YRbDXm1mufh1E8hRPeHVH2s4+LsmcoVxKG5/8DOqJYyNoROfzrXc4vAnceg6XOv65zoJoxcy/ol89VIsUUtnQU5DDF3/8gcznmHhKYcbjM258kWYF4py9gBgr35xsLeHMPmwuXFJ/vQGzHq+PQm7nNbydsZgscE2woCvB9b8xdVPsZsPBhHDj5SXrnEYLj/Osflmt9Zn/fVAsic9G1yz4+KaH/zEdTzp1FQv5S23uuAYpJ6x27fenMvBZh9hbfwRePmRDhZ/Et6xuP0RbxzFLFf+1r054WvdC5ZrUowaV8STcz3rEwZftXSuN7a8bPz7sISvmHoANw6rK759su6FNi7VYF3uZjp2Md68eRMHA57e4OO6tRf6clUfjKeVeMhJqtvaYFeva/mMYs75w7iLS+emOLh6+iRxxcJWvzNuwPKfxvpP0Dv3+PE3YHsWvetd73rmf6PdF+0+qPvwRurLsbjjh3ofV/Pi1Bu69Op0f3pOdRZdO8PtVf5mGNtzfSHp6hM//jCS4luXr3tBzHIMO511vu0XLPp9lslDzGwGDBzDMtv77HyLY8PNoCtnvgf47Y9wwy5nsfkW237Fg10sLtmKWT7pmsurD13L8SQCd4e4+OKCh7E+9Zu9nHruuVJ+Mezi6p/7hT+h8/rgPSJfEpY4OHHhW8/45Z89m1xiiWv6BF6Djo0PiSMdn2LlTYplKy5bM59zr+LDp1h+epXOmlSntTgjLq49o63F9jw/Ai8/nBk+YdGHsfpeq7Kb4+VafBj0OHkGbG/sIx37inU935zr47q48pzt1mzdB+03TLq9v61JmOXFo2v29jIsuoSvkU96czZxRpzla+Rvfc5JVy38ug6HTkyD3pDXXhE1eh3f9zB8xNQjs9E9yI6v/Aldkn51cp5ryL+ZvZ7QxZu+85svm70i7HKVwzV7NnM2dSyWdfZzHD/YZ9E7esN/Rel1ja56s+HnizC/0f7LX/7y+J+q5XPGfNw6Hn//+99vvv3tbx9/ox0/77XUJr91tZlJNdk7z0T3Fx1//P7zn/8ce1t++1rfzfHdHHyt85PL87UeN9PLachHOut8drAbcAw8jXKY7VV9wD2uOHpmVB+fsNn4tu9d4wKTn7xmYoZFxBr85ILhGj+56jHf9px/Z4qOLwlDrmqg4082v2sj3/48UHEw2eR333Zf+txaPjac1Ws4J30X40xWYz0NE5c4mashftms5bDu+aEeer3x2isWPnt7Vc1mog5cxPGBZ9/FV085fd5zr+EKV11s1sXTwcat81BPsvGVN317aybsBpHT4AsXhtzwO6P8en62R2Y+4fAJNx/c7Z1Yog8w4dcLOdPjYA+9Pnffx6EzAJMPTLpqoxNDR6qHn7Hc5LQurzoIXuK373D46RHha61GXIxqYeOHs2t6uRrw+bN19tnSw4ynXHzVxF6/vY8xCL1BxMlX/8TiTt9ZoLOWU53mcHFyTVw7W4ZaxeiJ70KIOOvqMMeFjT8s8c54n4/pcGhWW7+93r6xGYQvbL+0pTb+1vZTnM94dGqu7nrVHpZLPF44JdZy4GyQzb96Nuv6jYf4RBxdArf+8zPYDXr+OMEz4xtnGOKt4yVenHi28tmfziMsvRETvtkevOMd7zi++3MWCOzeE7/3ve+9efnll28+85nPHDb4D5EHf9HuW39EbTrSFbQNRUDBpMY/mNjtpmgabI3wBWhfpGlcN6tGwcenBrZRbdpB5o4fu0FcYMEx2GCQNtzakNcorzh6s1EPxPKzcXwTOj4Gf4dJzvDp9NmsXlLO8B0K/vGlN8ISwyavPOqBUQ7XibhkcehgdKjzC6t8xcgVLl25wm5en3TN4vD1hkD8Ci7qM/id94+9vGz7d5zos8OErYfOEj1/Of3Pjujl8MKAK7uZTzXVU7gJH/vFh2+x+tK+LI7r1uz5eeDhwEZglY/unJOvWMIv3EMxP+SIR7Wobe/pMOIPa+PY5ZevFzoYruE4K+sfr2iwia8G+NUHh9Q/PvwJv3rvmWCoVYx4+6gPhC58a7FhhRcWe4JrHOjCMBvs6jOs+daDMMz0i4WfQW9sLcWFv/Z40xFroz2m90wWm835YyftRXZze+PaIHvd2owzEQMrUZsv2b258CKe2P9+c6L68avn+b2Z2b6pFT7e7SMdad4cW4eYfOK4vudrvvVpr89+53V7LiauxXvGGPYqbmxdu//f/e5333zta1+7eeGFFw7oOJzzPOkavi/a/Wdw/SYc3eNEXufMHt7FAU7jfH7tj/vS/epaje1ZMw7liVO5WvOpp+bs9OU2s+FgrE0u9nMti38EXH6Ezda9pH7nO9xqKT5u1RFG8/q5pocB3wyf3pCjOJw6p9UQVhz4dI/hQV8MG392Ovdx+HzDKj5/+dnKSU/oxDde1/7fn+pqlKNZrHxy8Elvru50OHvG5B8H9nxwNBKvBb4Eq77NsfHsvc6Wt7phiyP1K9uhvP3BD47BHs/i48Dm+sy1XmRb7L0Wn8hhrFSjM9qe8QkXn3KZEz5iiLPh9Wxz6f/mWoxyhiUHEUPwkJ9sb+g8+zzn4grrjHcE3v4IO27N6bmFhW/2xehaDWp1rvIzV6trY7HFGPTlqRf8cD9L8WZxiXU2Onl7fYVt6FF+Zj7xSx/PcDcHXWtz/OlxtbbvvX/Rs/ZZHraeFfR0Cbx4umaHR3a/y0+P867pVtp/On7rK5aEIRdu9cj67F9MvIpND6+YbHTJ+qUz41len0v74jJ/s6EnbP7G67P6ov2vf/3rzUsvvXTzu9/97r/e7+KlFrzwszdE7e0lrr7ApDOTPh/xoTfay/aeH1z49Qu+Gum9rvePDfR9/smfrvfl6eqRfPLISejF4+e/+GuPYYiVz8DXuTWcU8/7eOQXl+rBYX8xJGyf8eRkF2N4LnjfKpd+8hWLL3uvGa7l9hwz85fPwKM6cfTFjTz0cPiK7zylN9MTdYqDR9dnYrGw4Rque39l3T1NL049faGn3j5fyrVSr+jUg28Y5uqKNz+9Mdjkxs3+8YdPz14ufe31HA++5nxh6q/9N8NzvtSHu9xqMeDiqYeEL5Ebd4PNus8h4uGmr65q6x6gDwe/ek4nFg7BGw97xWYNH6/0/HChFwdLHvvkS1Ex1ci3nrHFQU45YBrLwxpGmN0X1dKZ4EfwEN9ewMYPr3zYy2GGJb/ZWh1q1BuxdMTc4GPP5GvgiY9/MEhgwogDHzz4yQmneNhx0Z/OHC7qhts5qCfywHHufGYVz9/9RKyJHGL48Sd6A8+Q2yyWrzhrHODmI45drBh2A3Y6tdrz9k6N9r36PG/8yR/10IcpTn65xPiiHUZnhb/Pd/4Uj2t52asJZ9dEvDphGfgZCa58jPK5rkew8SU4GmLUzo/IJ0f97J4Xy8bfbMihJ2Kt+YjrnKq9/GriIz+dvYRd/+Smh48vHPzqBz1cMX6pzeujvorhaz/5v+c97/nfftHuP+dBTIEIKFIBCtvRhrHXXEU/qcDSBEPRHrgexm2eZhvy8MUBn3IVF8Z9eTs8fOHgDAtuNvHpXdOXu7z1wUy6EVrrWfzoxMfTGo4R53Sw6Eg5cXG9h4h/vZDHECevPcPHurrMxl1S/uqOnzWRGwdrOcrvmg42n/w2jzj+jTMPely9sPJNyrc9L0e1sRG+cD2o3Fgws7kmcXSuWrvp3vnOdx7nSw/1LclfTvnKmV3O8saLTb72RG/yqzfVz4aj2fkOf/35Nuj5EtfN4q5JPZDDtfykvPTZNic8+mqof9a9eWN33YPRenHFNOJ85ohPNnuCg5h0/NWOjy9RPBP4yEXnAc0uhu4sy4dNvvY+X3HiCf+urcNVt3sq330B40f48oOB07kWuQ22FZjhsmWPC5xixfF1zxE5+Xd2+LIZ/JL6ECZ9efKxFm/mB8PektbeCHgxos9XX3x461zw14etie7NSLmqCUf7T39NqoVtY/RLXeo5ixiDj/FQKWecOgtw2LyW+o323uiVh414DvlP1r7+9a/fvPCMv2j3G+32KLmvvnjpkd5VV9fWG2/NV93dX3Su3bNmkr2ZDxG7eIfy8iOdfYaRf/ZmeHEoho0uG33noLj75vKJc75xhJfe9ePwyy2WtDZXE70c1/h1Tnsu8iXlhVOcGaZc5ePrumeB+vkV79oZJbCMeqTOdIfD5QcsdqP6zfTh4uBZdH7GwhAXN37xD78ZJl8foMyELz2Ri9DhSeDK67/ATC9HIjYM8zV+6yNOnmoLpzqtOwvZcGWHLTe8/PnGlT9cAxfjPoHD9/w8oZMHbn0KZ3HZDP4EJ+vOF1zPczo2Uq7WYsPRZznjhF8cXBvVJJ6fmU5vvL/q9UquasiPjpQbXuvwxBh4bq1hFHsE3v6gU3MfyuGqCYbh+owV3tZUn/jiQOLoenPHl74zB1O/cPFsgWNtwGmIWW7sYo3Nx+8s7OWG4bra7LXXcfnjaqbHJ395+MTHWg14hK0X9LAJfZhnTtYbW//oyLVYufmx4XXmcwTe/ojn1i7O+iGSf3ys7TMervsFsD7vhc2mHz7DPMsv2v1t9hdffPHm1VdfPfL7EovEDy893D7qlfeonodeg+1Rr8X23j7bb35sBu766xo26ay7rn5nAK733j3rvXehh2foReddLIkfe58bwu/Z7e+4yy+XeHZY1vTu3b5o0/++iM2n50L8rf0Gf1+0qQ+WHho9y3CDjVd7rUd6JS87vWu8vIfzWQQHNjzrpVrx0X+vYfUBJ7njKI4OpkFai3WNnzxiCL8+e8jR5yE67+/Y+bLZXwM3+4MrLjgkOLPHgY++hMEvTuJwJmKqWc+IvVi7XoslfAx5cHEPmfEksIgvEOPY5z1+cPXSgNu+iXdtNvC2jn+9soZrro74ywvTWh4zH+ebP12zHGoq1jXfYvVOT/WdzVpPxYvlpwbfUbiWo/tTb/DozOEbH77sMOjM8sTF+VZrdYQll3NMwuNHjxN+9J0DeQh8dZnlgEfoxBR3KC8/+ODFDrf7Enb9qW4x4bqP9Mdajs4sPvDsJYzs6tM7NdHpn3Olfus4wzLgqNe9jaNcYki1hg8TvrjqqCb+7SOO9O0Vm5o7d2xyVQu8cvCrXnGEvfrsvfr0Cnc84Oq3+8AavvsEvmehXOr3X8H4/3eolU28mtTpWp/aJ3nrVTXTEVxxlFcuI34w6j1f2Ia6xJnh0uHAlzgPb3vb2w5u8oXJj9gTOvxwFWvfjD0D9ISvPHCdIeu4sFdbeHjDwhEnvfRZW3y8xeuj/H7h7Zvf/ObNZz/7WXAHr+PiCX88+Dfa94t2pB0KhFwrphGZCls+Non+LukGsUltmBdyDbQWa+6gy0nw0JS4aJih6feJeD7G1iPHOVYOB6OYDhy92IRdbvZEHL+ETzlwZjPoDSLeqF/0OLVmsy5PvtUBX08cpvqVL/xwXJ8lP5xwJ7CsxZVXLgeeP3582a3PPYBRDa7j6fosYj1Q+IcnZzG4uC6v+tjxS8S5oXDiWx3sbMXrkxFn/yMWeLDwwIGtXPnXA3jVZSZ8iTzNXfMJMwz1rMiRT9et42GNo0GHK7zyhLdc+FY3Xz0pnr/ruMCXG64Y+vZXDmsPLftPr9d0fIlrA2Z52eCu4GcUV970fOnY5cW7N1708uPpDVt5xGy8OCM7m1iDsNEl+Ra3ejV5AYMlxto9Vm/oincdLj8ip56mp+OfxJGOb371Tq3585U34as/nQX29odPWOLxqefWYfKDUW5+YfAP0xuAXshxIvy8yaevXrjVdDg94x/VbK6+J0lxHy+1G/k8Cd76iNVDomeNuPoQ6b8Qc2bp9Kf+8/Xi73/C8o1vfOPmhWf8RbvfaPcGjsgpXxKHXbPjR6rLun6zi9vY6vQcTd9vKLHROTOdM7j0pLMS/qG8/VHM6sKnC2Ptd12LK7a45nNMPN3nYpavmNZsu5fhdz/uMyLMemqu1zCLxaV7VQxbPOMitvjuu62BP+xw2jM+YbXH1vLsPsQ133jGMV7FVJP9Morjb2z+sJdL3MXB9NpitoYdBhxS/a7ZnDvnbXmsbznNcReXpNevcopf3nzZDCLetQ8D/MSqvb2nCwuvjTkWlx+LFV66fOi3z7DkqlZ+nbN6D6O4YsOz5g8jm3W1mruG0doMX17XcShn+Oe52nHSG886PfPaYbZ3sOQi1d+azrWBL385xdPBt8apesKpD/zU6DUMB3rx8taL+sm2OPzLzV/+aqK/S+obu5hw4cnt2dK5ZDMSuNVDpz6c5F/hF4czRvH1Vl7XfdkKR35+8XFdbn2Jk9xxLX/45U9/11wfxcE68y0uPPb2FW987pPw7I0cxkPkWjzdcvX63RdEnYFy4OjD+4c+9KGbX/3qV8/kb7T7ot3/lO1Pf/rTcebcL+0DbmfRO3tlP30Ri48+uBbn/bs+Gvzaaz7417eu4VenfPJ7L949aH98bmufYOYnFn5rM9w+o/E1nAuf+b0/4mOQuLjGAXfvM3HvudF9pTYcSP2Rm784WOLiEv/icNIzuHzcm754ESe3gTuueqqfrunDrlbxsGDCtzYIf9fmRLw+4A+zL1txrLdi+KgFD/F9yYSrL92IfOwGfwLTYGvQy5sfXznU74uv1uLUlbhmi7Oe4tKXVmxqZydmz9zeR+2+qTe+/HyBSIeHMwaz7wRgGvDF8DHw22vrzoGc+dPhabiujmZcxYohes+XznDNd+uiU48esOFl1lN+uHutE09wsX/2ig+7c1S8GOcVRnxdizPUKae5HovRX2s4BoHv/DqDMHCAac0fhvz4k3pLT+TZmmGoz9lQEyxCb1izm+3b1o1jdfOVg68em8Phh7chN6x6x6Y2NcEizr96uk/DCsMsRm1ywpITB/0kdHIVs/pqkpsffHiu+flMxba1yBM+TAKHvrr55yOeHp59sf9qosfL/uhltZm9BvHpOaF+n8H9Vrvzq165O/+wXYeJP6E36NsXXPVIXrmqh13fYeOVXvzWVW3ll8c5894cZ/3jLw+BKwZmaz58DX5xgbmx+uI88lFDtcCJu7oNmMTs3PgyHa/yipcPH7ZvfetbN5/73OeOGLqHyFN/0d7GKZK0Ma7TuSaRqiFmOgWa2yS+bBpiY8Nh7zfa6WtEeG1KecLRbLbHCbw4dEisXYvvENrUOMct7M2dDgYOZv3aHoULG1aHQk6HQC7Cznfx+dMZsEk6+Qh/o8PEb/MfTvOjejbPmI9YWGcMcWLKv7XShRtWnMtTfDdE/g682utD8esnV/7srnsIhVsecfh7MMAMh67rcsjrTzq4+fQzLrjDLefOuLTX4Vjzka8e8QsnzsXFNb11/vXNvPHlKjZO6cMqRq2dRb5q3bPHPyy8CDtJbzbUBcvDqP56uO+epa/PcOrVcu1F2NkvD7vr/HF1XU96gY8Pf3Vau8bf2Nrb6zD44muocznhSvgk7PzU480RPDnEe1HswSxneTd2ucJSU32GWe+KlcuopuYwzfXYdXUVv/bdA/oVuOzlYoOBG0w57E01WhutxZLOk954g+B8VDO7msXRPWu5tnd0hhrURtSFQ+u3gku1LafyNHtN80HSBwjPLcJm4Ef3Zv82XDya8elvtPvNLrmWI796E086/TOcz2L00bXBBueM1Zqvs6Emz9Ne388x1vDsTbnEiC1fmHgRvu1lPF+3/PdPNjhw+cvTNU92OcxsKzjkf7ZtzuXCr172HIJJX57lzUdt+fLbe9aaP0zXfOGQ8lYDXfek6xWx9Tbu9ZSNyGF0/9Pl4zrJvzWf1RUjDyx5e86wnfPT2aPiwoUZrrkehNdzRhw7DOfMazid3L13DFvvqi+dfOVJt+uu48Wn2tKZ6fjmL498/Nt7fuqwd+XiZxC17R7kw9Y5MMMz5CqGb7n5byzM8rLxsxbrnNufPjCyE/hEvs4kzLgWr+dqh3UWeepVewzP6zgsGHxgspNqi39c+ZI4pDcnbPWDXu7w4qsWZ4fw57cx6c1n7HT0+rZ7oK5EXthGejrXdK7xsTbkp49refgY/I3uo/KEL748YfBP2LyWe43GvTVfGHLQm2G132GGw6dc4ggdgUXCPxaXH9UVPn0cw8jXTBeG/HGIK27s6qNzbYTFP3s9wHl9Nt9d1/CcSxhiYbQXvhjzRYdzXN3h4OdLprfqi3b54HvOeQ+Nn/ddvnDx3qw+xIc9nXvMgKE2wzW7oU41Oitmtt7zds/yE+fZWn8Wqz7LS0/orGHQwbBP9VQuenXpq2uf29Sjzs6Avnu/7Usl97C49htmOT2T5MJRbj587Y248loT+fSSxPXtb3/7of/Xv/71Bld9EZu/PD3X4BukZxk+Bs7iiJ5We/lxT9RoeK8mjm/vh+TlWw1i8MaZrs8icopZXNxhwcBvMfVTr+lhqIOdmPGpP/LUB3j1XL/tndg+I9hPPcLPn7SQZ2PtrV8+0Zu+wPNbrzBhw5Mbxp5TdqI+o764xpdvIjdO8Aw+7GoVB4uP63DcS/gk8uNB+hLU2aJXtwFXb9RuqJPwqdedCz2WQ26x+iA2jvoEr3tMXDXxU099NuPvLMGV11o8Hb7VgocaYfDl08CVnthrfvjQ2R9+dDB8fsG784sDPMKuVz7nqEtcvODA3H6LpSPwsvNRc8OaL596AJsdvp4Tfta+l6CDh5Oa9FsN/WY1n86SuR5XK9/sci/XI9nlR9zVhhd/8eb61T6KwR8ve1KN+LomXdtzceWHec7vGeE32OW1z5256qA34igHTuzw+Hde8Cfy7nnjR8QauONh/3FrsMFgI+mt6a17hvBN6OVQN57W9qt+4t95FINbMdZiW1cXvbzldj/BxLleiXNGYbuWT377w9d/kfbDH/7w+JNt8Jaz9ePkTX3RjjhShsSItYnXEvPThBogXlwYxdTcDgF/N6nRDbJY7GIIvDDPuaxhxtGab35w2OgIfkQuYh3nQ3H5ka05/c5scOUxrMtpJvGG77DbYH7VVk1xK569eHNrdsOB6cHSg4YffVjW9aSc5hW+3YRnfTjFWqfjiwebHOGyd82nNZ0eeEGyV3iKZ3ddX9iMYs386NRL9MJarCHWG0U3Fyx5XBuu48PXTegmhuWFon9NpyN8msXJ1dlUJzy56VvzS+caBnv9OQDnB18j+87j9oZdnnziZpZr9bgZRH48rPWH8KWPu17BJrCItb55gTCsDQ8xOPVH7Dkefnz4wdRvvRZbfrXHPd3G9gIQRjXkgz9MfnDYccmfH6GLMx07X/WEdTje/ihP9xPs7lk2g9RDdpjwth46QkfYi8+v2MPhjh/4yx9fecOUY+vhYx1ua9DxKU2x+crhBdyoRi+I3U/109p9xj+/Zlhyvlkp111Y1SJfI51YcQbbXVIcO99zzuxnDou5PYTDBofeGycfPjxfOsv2jt7sGejvxvmN9k9/+tPC/88eHcoH/JC/L9r7G+3VFb69Ovcn3u1jZzs/sXAMvvXatdqyqU1d+6Yx3y0jXLaemfEsRzn55M/W+ac7Y8etGLNB34BbHF351jeu2fgVF5f6KE4PCBvpuX4tTzWU7wi4/FAXnftq47JXb5zk5xe3/Mw9k6t5fcLmB8t4FoI/Tj2D4ba3cZfHMzteYhI6fuJ7zYbn2W1drXC7ru8wvX909jqP8PhWO+w4lQt+52l5dG0Ww6e81bI61w3Y5Yxn62a47Z+41ctD5DHKU16YxYqLF322fNld62mvva77ABW/MOAahE7ucOnc1zD5ZDcnbNsHse3R4sZb7A44/HA2CDzX9OJW1MRG32CvD2GZ6Yj6rUnct8bDcPsjnpau+ckXVno2Qh+P+MsRj43dGPr8D6DLDzzF8ivuWl52+mxy6YvXbnO1b758em2/hl89cPmT+MDavHGnc88TMfR0xcXxcLj8CMM6mzh7Dqe87HxJfsVu7nwOx9sf1ZaOT36Lddaz0Tnz3vsbPdfp1UR8Qeh/hvosf6Pd32j//e9/f+T2m9/+0d7zTV+8P/MPZd6L42jok712jVf3jNqtjV6b1cEuxv73Po7OF4L0nqPW7l3+Yq3rETzX8A02MQmbWHq++sYPdv6e2QYf3A251EDg4eccizvXCqc8Pr/pD4zysruHGmzhxL1+9SWMnhIx/GEQHHENG073Jx08Yq6frvWN8FULPLGGvthbv9XtvVqfs+hhdtbUDxMGPYl313GJR71qDat+wzP+H3F3umLrVbV9vI5CxQYU/aCQ2B6CDWLfxL5DokiMTSKI4CdFEA9J0cOIBsUWFRU9iLd+d+qf53rvd9XeVcl+fAfMmnOO5hrXGHOue61ae2eHDg+c1GdN53c154BHvM0wCT27z7Vi8IbnC02vBVjup/cYNj31+wLuvmgXw6Ymn4/5wxRrr2f2uNQHedVi0ImxhsV3bdbOrvNbLHEEf/1Qe/3ofqjffeLLhqeceBnW5e6s6021yEnw6zXGJl7e7oI4PvCqQ93x1Hd2Axd8xchbD+0N/NPxgxdmcfUUNxzkxUk+OWDAsufL3mcqNsKmB8SsX85OXcSZw4aTHxz79DDqwRF0/WN7gK/a5eRbvH33TVz3k86aXz0O115f3MPORW30+MHHrR6Jg6MfdCv0/PHwHCYw4Rj1LKz4Oi+xfLwW6O0JHn12tWfjryY4/MT4kv0///nPodM74mzcZcIfJ33AyYwrTgRmcdXFbsihB+Z0fHAx403gGvzojWLM27PzHo/64y7zLTYceTwDzOn4JGoyOi8+K2zqxFEdcvC11+d6QcfGl+7xxx+/+va3v338/9Lgsd9HXvIX7RWzCRXVuI0Ef8QVSWrS4tRcF6TizS6N0WE2w7Im8sOCYaZnx1demNbsbPzNDs4QQ8eHmF0mEmY2uNWx/A/n6x90fOHJ7UEjRzjms/CVzyGTSz7FVFucxYaNl57R6ZnL6UES9/NDTD6+MPd84iCHS8dnpdzhFr+84dnz4X9J2HE247Ic9IyuF1+9lKv85TUTev1We7WZvcH30FULzHohv7j6z07ng46/4e5DgJ7iyG9nnLyhyC+PWuPErzukFpiJ/VlgE9y7LzAuiRzhybH4xYTH1yD1pBrizLa89eDSudU7b1CGPXFH6p+8YtnkgRsnc2v6PtiI0Ut9prPO70gwP1Zv7Rxx0Q8DLhz3wFqN1T0wL545DHF8qiGccqmFXS4++NL1ARzf8shhT/gYeMSPXn8MAquemeMjpvyH4+kHHuoWcx/h392XA9dyscHt/ODaq1MuNeJE58zt3T1rb+Y9a6pD7Wd+4s+6u/LvXsj/vyX1Aj7+cuKrVnN3o3210Fdbdbdn606E4blBx+a++qWZzjP79a9//dUnP/nJq3e/+91HmeV4qTXj0Rftt/2N9s78tlz6Uo3qq37Y9Aa9wVcdZnt19bquBnFnKffZRq9XBltnVD448aPDLbFW23LnGwa/cIoLS1z10ZHyW+Nlb8DgXx/pvDb41Ktww4KR8E+6F/YwiPev+nMorn8UE3762+a4nXHy1yO5s4ef/eXMYXZX9KC+s6lTPsOaH2FTn2eW9+19PlU3LLx7X4+n9wC/+Pfa2trgGjjI5Y7KrUdy4AD3QT1gC1McPFjVsrXGySwuW/WJz8ZOv4KLQdj4GOJgsekRsabb/uqVfRzrqVqNerl+sNpbl8eaVMMLuxfqUruhL/Flv1RTenP18ksffrF88DEeJJ1FWPWhGDiGutlIazHxrl/FNdcHefiUJ/tdZ3HOTD3do7jSxZNfemu+Zpz5pMPbmo5/vbLfNd7hwyBirT1n+swNi+Tb3vnChEPEGnKS/Oz5sdUzus7ncH7AD3Fh4QBD7Uk15kMvX/vNX8+KrQftxci3Qre1w1gfazr96K565lh75jzKL9r9z1A/9rGPXT333HPHe6vfS/yO4n1WPp/BfEbzOQxnw93yJbk6fMbA09n2HOXjfdkz0oBD5w50L/Wjz37V5lnJ3+8q9bW+dy/wkc+Xk2fhIxdOJL50Br75wD8L/+6eHM6BDs/ultkX1r7sw0UuAzYJozvk7vf+QcdPnf0+Fge8iudXHXhWBzteMMojrpp8gZa/PuNqxhOeczV8VqMnsOqPetXq8zbO6WHibC9OPLEXo/56xQ7TmdKrBQ86OGLwpSN0aqKvLrWJM6z5qI29e+afHfZaECsnP/fLHyL4gtDeGZFi+MLCq/duPOGy0bMTHKstndcAXXucyq/HcsIy6o213sGGSdSOq7nXifuwvRJ3SfbeyAdTnB6os76KxxO/uOFuX//js3nCg9N670S6nun1nt6Ab4j3WtYjPMPDCY/Otn7qV9zjI07v/MFU/RTfXZFPbeLg6A0Rhx9bfeAj54p4Ej8+MODT6aczd1Z8w6iP1SJHdr5xotMLZw/XzDdu8AgceuMs4vl7TcLDjU5M5y4fW3Vbx81zWh2w3TXPdefSfcTXF+v8xKnN6+df//rX8Tf36zU8Z6kOecX4W/u4wa7X/Ina8FmBvzXyxcNrECabGSbfhJ+BW4NNjjDFqcV95IOnPuWHC59w9cJ7SH9ow7541aQuNj20hgG3OuHRs5PtEV84eqcmd4m8/e1vv3r22WePf6fdPk7Wd5F7f9HuBdSBKGYT1hhkbxP+CtHYDuKSL1sHyt8haLALJ1YOIxw+JGxz/KzLZTZIfO01Nn01mdVqJHRdVDFdjPjkZy5eHhxclF647HHNN4z6S3+b4CqewCfVac/ugYcrjtYutD18ufALw7pRvPpIfXEx2fgl1rDSOw9x4fJrzTfei8EunnSe5uKscd6+e6ETOOHCNvLHQ91i+Zj7k3S9wLueyB8PfnDS+aDz6le/+vgT+WrjK09SrnphX4+t60/8zPTdn2rgJ46wGcWUy1x+Nmsx+kPoxMEnbHwMeeLFlk7NRjp68fyXEz2h87DqTS29/saDH8xq52NUj7Ue4uo86eWrbrrqDx/mJWF3lj5gkHC95uDYV7v6cUrocTaXpx7ZFxeu2O5NNm+q9GowxIdRHhyMhB98fvIb1vSErVHMeWavbtj29fvse97jLpY46+LtOzd8iLnz1mOxePYhRU65xXlOeFOHnR5G+HTWBn9Y7esn/9uEj3sh3961/OnhEbz5v1yBqUdmePLKgYe9muSqDn721U+vVj3rdSnO2ntbenfVhwk6H7D8jfYnnnjikX/R3r/RjkOjHuFs0J8FX3q1tc5Xzeow2A3SLzf0vadb60f9Mos3E7Gbnz/79rA+bq4j+PpHuPbdMX7WcMpV3uLkrP50fONijcs57uxbLrOY7qs9/MUp1kwfd1zVWJ/dDTy85mAQXMjyk8N4kMAOQ06DwJG/fj8I4z626hUjrzz1kS7+1U5HxHmG03ue2OOuB0avf3a46rY28zPs3Tv30GvLZ4LuTnnNBn2f0WDQyWk8TPhU0z7L4Tl/PC7J4seDX2egrmLZ8RJDZ9DV03jSqcU+Gx2xN7ZX9r0X4O5ZL7Z85uIPkOsf7EY1WxN+1mp2Z/GIaz719gh4yI9ylCdO1QC/9Rkq3muHhw+dWt2RrY3OXr54rn1z8DHExHNzrW/resGvGBxghMO3nGYDFzHW4uqrvbODW4/YEzFxCks+ZyyGzns6/OKyey/HiSzvfPmf9eU9z/y6k2xn3nLCM9jkIOHTVT8cI2HD07wSP3N4PYvzlRfuWTavWP50ehzPYqqt2b3vueX3Vv90zPe///1H9m+0f/zjH7/69a9/fTzP/H7ii2S/G3cXnafP5p2d2ZcxeuazBXG2nqHqV5/nVF+0waET557UW7h6pT7imeoLUJh06id6xa97pOeevZ3t4XT9Y/tVPrnkF2PA4Wd9ls5OPnZ+cLrP/NXZ3/rn3zOpM4yjPHDs9cVryp6f+vpChp8cCX9Dbn5xzo+ewDJaq1FPnEk5zfLqOZ5663Ogz9NsiVhxsJ3z+Yt2dnz5wOovVeBm0BOYBhx6d0BtuBM69fMx8zOs5TDUxL96zeLce3b8jFe+8pUv6uDJg5v/aaN/SkacfsBzZgacuPkb8XqRDlej/sHjy8esjz0X7dndb311x/Z85Sb8CD+fE8RUf5835FSbs672I+jmB3/SWcPZPhYjvxr1goiD7bnRl7TF4ccvzCPg5ged0WsUZ/ffF7Hm7OLlg8XHsNY/PWH3OtG/fc07QzyIHOLS4Vzv4KgJ//2iXSx/vmJhm/nrjfg4uSfWzgFvc2eXH/2unQMsOvz0zrCmI+w4hGdP2HHWp56FXjdGd4sfLH56VP1hshP1lUONnaGc9PVATudAby1vtZrFyQUPD3fNmTgjufk7W0O8GK9vr6Fe57jpi/6a+fH3h1phw5IDD7L9OhQ3P+AnanC+uNA7Wzj6F45c1Vvt2fYOi3fe8rL3OpGLH72ZqEfe3p/KexhvfvDRVwOn1nCcJU5yGs6HneitHsUtzuLw06N3vOMdV88888zxX5eLgXEfufcX7b5w7MIhpqmKIuYKicQeZOv88jnPCnWQLpjmi9NEzXLx7Im5A7WOB1sHa03s+ZgdUv74pocVN3q+HTgfQq/mjeFX3XHInr9YNZWDvcGnvObWYs4Srrmc5urL314uwlf/4hl+eYsJT30bX7+8mLqM4cZXjHi58g9/ubVmW4ETJt74wiLxdvHLwYe9wSdfa3z44GJN5PCBxQsMlr3ZiL/ZCA++F6E/jfdGDy9+nWd5u6vla14OnQN8g60e2tczmD3QqpEu4YuHmSxGurXDSI+XcyxGfOfBxleswYeO3VyMGYYHlnsRhi/a6WGkC1sMwWPP11qPvb6Jvb4Y9Ss8dngNmNnixCYH/j1g+bBvHCxC192yr15rwr7cy9MdYu+ZyF/eYsxEfgMvOoOfXHBIeflUE/2u7Un41uLkD3tfo+xJXOoDfTprfGAQGAZsgqPXjTeeeiGWbmsXQ9eHlnLxrQcH4PUPuuzyyk/iZG4chusf20Ox8dsebZ5zfDgvZd5zkTcu5uqoh3R8lh8fdnfa2oDpdW523z1D/LJB573uTW9609WnP/3pR/5F+1e/+tXjbzfEe/u0a7xIfji2z7b+h/H6Bx1Rrw9HXod6Uv3Fmg02g5jlW8kHrjUco9zlO8fwZYPXneZTvnLSbY5z/mLKuXFxyCf+9Szs/OirwbyyvNyd/MS6N8TrzX5tiyFu+cPcPGzrUy0wN6eYS7UsXjWZ6XcsJ+t6V0z4bDiJ5UPPh86+up1fvnpg4Jsvf2uy9dHB8ZrqM2X3WK7ziEe4YR7A1z+WN93Z354PMbv77eng8cnPnGyu8tSbYtbHulrVSOjEiC9vvWErpjg2a0MOffWeXr74hStH3KzZ2+trOTu73sPTi4mHNcHBIPzW9zYdPRxSvBrOEu982Xedv1h3LFtxsK3TV6+41r2H423N17re5VeMffeZnxzlL1+8zGcuYva8xdJtzuLZjO2R3PbE3Jcf1cm+rzF8jezN4ssZXn5s1oS/db7FF3M43fzIZibizjhqh5Xw7Qz4XorN1xyedb7WK+Vl76zoNm+5uuv27rvXvOeNvWfOY489dvWDH/zg+E/Qb8u3uS+tYZE//elPV1/+8peP/xlqX3j4/NwXFX1Wc35EnD73mu55yo+Ps7emxxmWesRs3WHQyUt6pprp6g3fBn/PBX0g+MTJXi79Ir0Guif89KtxOF3/oN9nDX/7eO/nT3V3HnD4hs9fXAMuDmL6ojLsvvSKSxjqM8TqASx7fYVFz1cus77EA6a+2zsD/mYjbmJ6fcKib9j3edtZ8jVg+gLJTO/3Xmvc2MVtLn2FyYfgSNwpvWtvrl448IpRA3t3yedYPvIbPgfyJ3zj4HdGX7arsftcjPh4uZf6hQ8dboa7h5N66PmIwyNMeeUUiy9fI6m+9noHmz6eOIkRLycstqT6w8VBPfytzwKbb73Y2f1lq876am7AC5uuOy9O7c7c72vh8udnn48Y3PSHzWtU7dZ6x1ffe23TEzG41Rt6Onn5+74Et14HsKzhiZNP/8rb+bEn5ZKDnk9+a6vHdH3JXv/4E3mqwR6eoQ9eP+W1x6uzVROds4fFDx96s5z05u4FG3+4al1fWIY+ibHWG/nE07HBhE+PN5z4hu1sy+0LdHtYMORUswFXHs80rzU+CUz+K/VCfkP81kGXiOXfkJd/NfMrB654hL+2OIsjcljLW36zoSfqInoMkz9ftaWTr14uJ2v6+tD9rpdwq5GffG9961v/u/90zGtf+9qDYBfvUvOWaA0wt9aYLYp/wkcjPCz7U3oN7yA84BxUWBquwfZ8OngxBn1ibYhh2wPPthhw7c+XA14crMtPx5fAUwcpj5yki8GHLc5s+VqvpIchX3F84IQNy5pOnjjwOz9o6Modfjrx8ZMPZg/y9c3/XLdY2M5ZbJz4s+1sHSYbX7zNRH4Cq/tmzx63xWeTG1ax9cuL0IsHX8OLzV22zsc6HnHpP+HrRW52F92l6rHnv1i4qAWf1jgVY80W3/rA1xu9M6NbvRyNcPjzCTv//Jr5y6Xm6habXW/4hKMWPYe3/bfPpqcw6bzR8UvghpUP/M7Xmo/Xu/7xYdPXXqd8zsKvkS3eu9/zKX92fBvVyKau23zlqHa9sibFtw+3PZ+tI333Ec+E3/rS529d3XgSNrq44WK/Eh599bE7G0Jn3R6G+9Frxez1783c+RRD7zVkJmZxccDNgI9D9yHdEXT9gx5uNVRTtebHjmPcqqs862dN/yAp34N81vYwf9zUwq8+41Bc9mz03VGzX0b8guL54gOA/xmq/9v5+973voPGw+pZrpfW8vVPx/jPCOOhz2HzIXtWbHzwz86nmNaLI97zSz09x+pN2O3FJ/AXd/Xl57M88jnP5XEfDfWuLIY1/7Pkw2bAiB/buWa67LDY14ctXmE335abPh/x1mFsDFuvPT759prFozPPVrx9/VnsYvIzOwciptrkM3odHw7zIz5iEroVuAZMA9bm4BvP8po9g+KenS8senncQa8v7zNw1Wj2ujNXU3nF6+UKbHFGYg1DHoOP1y+9vGwkvhsn57kH533+9Osvj+ctjtZq4CMPnXWDbvNb48rPsE9getbDFK8Oee3zs68H5TBXN6zi8s2PDVZijcsZmz/ZuGLM9bf6xVsnxcMvH5/24sMw46Bua8J3Rxjsakro40AXh3Pd4fIRszWnk4++XM3sZ9n6xN3WJ3gGXvy8VqzxK19zufOvrnJlxyXd8qrm5W0N36wH2ZrLnS3fxd185dj8sNzbehB2GPb1/4wPr7j8m8UZ6ib87MttTWCE43XodWDw88zxb7z+8Ic/vHrb2972Yv1H4D1+lPMvf/nL1VNPPXX1+9///oj2JSWb55vc+mDg1nONvf7SG/rAr9+B8ve84m+vbrgG/z7r87E392WndT0+l8XmuQtTn/ASb8SdnvChyw7TPcST0NPpb/XZV79Y/ob6vKa7t2xGIh5/Z2TGAb5c/naoLyth08HnF4ZYsjzjI59e4cCfXg/g04mhp0tvX8/5EDg+6/InuBhxoOPD30xP5NnfR/WhXLDkMdOLi0+1slvrSX2h449PZ6EufZFP7jDpfe4j8ZO/GmFZs+mT3xv3nMqDAywzX5+JDVi+EHYe9mww+fYHDHS4Vjcu8eRrkHq2a71T1/pl549PWMU31996Y2+QagmjmPLgrHa9wF0e/1WDuTNm735058W5q86lXPb6Wp1y64WZjxzZ6Un9VRss/Hz5Lg8OZ950BB5eeLgv/jkreeTwe4bfG9Ujnt3v+3KKERtnOpg4w4q7OL4NOfl1BnLx9SyUE569PpnZPS/4w8WlvNbqY6erpvKb6z1beenx6Zkoh/6xZ6MLTz/5x0mu6nGPu29xV7OBf3hixcDqi3Z2X6AT/bMncOJdvC/bxZeD3lqeaisvDDqYht6FCZeExQ6Lj9dOvPkb1Wm9omYiVkyib3D0Mx+x/Ejnvt83iZens9WHesGmFvP2GSbu8lnzl0N9dIaz8U+/feMb3zj+yTb5w7W+i9z7b7T7v2+7WIrpEM9JtygkNCVRbHEKW184fF14L24PGC9IwrdDryFiaxKb+Eb78prpjA5pbbsOP395cI6DeGuDsCfbi6177eLEGPHNfmnm3wXDyeEn4sOiW2zrrUGv+KevD/aL055O3USOLmBc6OATvkl1w3Hxlx+f4oo967KbCT9Y3Rv57atNPmv1ieFn0HlRmauF3hqGO+xh1QcifnDZ6o3ZC94f+vjgYO1+mo1y4tmLFca513QkrnIRXHCu1kN580MemNtbpvybw8KbToxhL7ac1YSL2g0+i0lHYLLVSzHnwRaGPOz10ppOH5yB3HRh0+Moj7lzgtk++xF0+gHbWAlre2lNb46TGDp7NRpxY1vfcpiLNxvdbVjqLr8azphwk7C2f+qX1+ic8i9fce3NxCyfOAI3mz1eBuww4kdH6K35ERg+sPSsV6s3d2/U6+f8+bCRcOERc6P+OHsSR7yN5QinPvKVk3885WWPPxuOYYp5mFRHuA/zv4sdZpyqe+OyL8/83QFv6oZ+eP2/+c1vvvrKV75y9cEPfvCAgflyRC5ftPdPx+Ch150bbD7OAoe4mY3lvTHFNfOtBvV4LeNuDnPxxd1Fup8wrNvfFsvPwNs490/8w+x4ks5zcbKVv3ztzfzdVSKffXkP5fUPcQ+rJd9m/vIvVrnMeu2M8M7nfNawstUHumrdtVyrZ0vEEvbbntvilx//+hUHOn6LJ4bwgW+fjl5Nnj+G9RmTr1ivJ7+E914jj7WBc/XlD1u+5bZ52Yl83ev6sz2IN9tKPNPZ88XjNuFTf+B55vXcE5vE09zd428fR7N+sVuLzz+9mdQf+QnfuOKzudn51ef1L54uHnHNZm6UJ1sx8WWvfpiLxcYvndkoFqa1ePVZey9Lb0/MDXv26oWnR+Vgt2evL3FnK394fOsxOwmbD38DBjyDbD5+nfFhPP1g657I5XViL098hPBjj1v5g+O7d0XPVqoXLr5G3KrxnFN8efnLEYfF3jWMcqWXR023CXuctnf80z8oNj+z+M5h68Irbj7jeN7I6/3PPx3zox/96PhP0OleiuBJfNH+rW996/iiHRf/Ezw9ZJd/+9nr1tzv0jg39KzP8LAucVOLka1+ySOf17kvRPjoiyEfG1/7uONv37NBToN/8eHzbY2ne8tX3mL4EH7i9/cyfIvzWVac3HitFNfvW/H2LOh54HNv8XJVoxxGfVAHO109tmevD91TeiJGboOoLdz404fd+xwfsjWJNUg48hj5ZU/PNyzreMsnpv6widWHfMRtbXzgOl/3jb/7ZcAx2NXVZ3g+Bp1+W6vRmTlP+PKx2cOF773coGOHq4f+y3M63OR4kNSDarUn6WHA1ofuOHuczQRHteHVOR2G6x998ZtP5yBH+HpK+ND1N49h9UU3Oy76xF9uWHDsfbGuXvFwYPivMuIKS796Duine83On+BvxENN/M3LW4w8MPXc2pee9HqPM5va8cCZDwx4nRlb/e3+H0Suf/CHpz5xasTZ3aCDT0/w5dv/DLR7RmcQ/vUKL/jViY+68eQvV2sxjQPo+kf5+OATVjniXm57Z8NfvfyIPPTOpT7SkbjZizGs9cBZ+4NAePXG/dRbe3nV6PzN/HBYnHT88RGjzs4aBzF0fMx8xMUxH7iEH95ErCHGCOsw3vyoD2xxZ4KjH86FD7s+qUX9caULe/PAwBcX8Wb79M5andVRD/jA9Lrg4w+FPE/8hbcvfelLVx/4wAcODHzuI/f+ot2/s6VQze7QzkkrrsIiZK8ghYgndPwNoima60tNw+WBb+RXY2E1io8L3OLg4spX88yXZGPZzzlhwHVAOHS5wiq+vRkvMfxJPme+h/HmB3/Sxdlc4vQoH37W7ctDT/jXIz7y87GGw5aO/+Kor3OCY+9iloOOv5nAKd6en3g6ozjrMye6XhD8YIZrputFhYf94sjnhckXR8PaefMj+BVr9oD0gvJluzX/elGP8fQQ7L+u6MXvXhr8wuaLFwx5zUa41gSfHexxTA8HBvzijuDrH+XgK2dcOxs6PEkc+NCLUbte1qfD8eZH/REnj/Or7/Ewh6FvCf9e2+xyqaEHtzi6ziVOW4M4drbOTkyxZkMuesNazOJk40vax9Uslx6YST5wYDY2p3VxYYtVd7zZDfHrw2+x9NaI/7mGYpeHdecMj8Sn882fTU1wG+UvJh96vgkMb2peG2Y5nbW1WAIzP+8JYbPF3bq+mp2ru2mdT/fAHqY5fmb7HTD1DaewrXsD5ktPmunOUqwayIN8z7EvZ1/eagrLffcB1Zs7H6+bt7zlLVdPPvnk1Yc//OHD7VIdxd9lhrt/o10MTP3bc3WXnEVcuz/6HofW7fMprtdwH9Tpu6Pywr6viJHPDB/mw6QYfnEtJs703bnuw/Jlp88mHm71WN8mYj0f+Bgw4s1WnnRhb64zNpyNs4+jsxSLG6E3iBo753RwGnwWJ05xLk+x/POxJvXkhd3//KQvvxkGPMNZmpPlky9d+esNDPaeTWrnJ1e8+Nj3i4jXWfjWnkebH7YhV+9dcZOr/uJKH9ZiyEfqm3U9q4b2bMnyDjtbs3zx6TkYXz7h8qk37NnY7Zv5xJPOvjrNdPpgwCwXrnpHjxM/fMTUb/705h38CSwxbOlam+FsT/g3wrOXwyDli1M2vPItl738cvDrcyActiRse3mb+Xhtr/CFH2/+yyEssT13l2txMOPM7n6xkeVmrYZwD4f5wdbnMvmszfxxqxdqT194PnLEVwwuzp3Q86Mz4FVzMfnQWyf2chrizNWcT3Nc6k+82dku9QD+Cr9Lws/IXq72YsqH/7lGsXjFrV7w9Z7uPz3/8Y9//Mi+aH/66aevfve73x18/bMBzq6+1j+c8MDJWeFBp8dEv8S5D2J3VH8YcOjMdHzzge/Z6llaLut86QheYu0N9kQ/7Y16m489jj574gtH7uULhz8e/mDD72zi1CrW51gzH/oGrGLlZtcr/OUoV19Y8aUTz68eiO1LIbb48W9dTjyKU4NceBv6k7Dh75yKpetvcYaBR33jb+AojhQLuyGWvrjy0ouXhw2GnugpoedD2Ax7PgYcs16oB4/uGDxc+dD5vC5XcXzpiN/LfZkIA0956OD2paTPlQYdHLj8X/WqVx2fofGqD2aCeCm2OgAAQABJREFUP4HJ37Cuh/aEP1+27o3XD3xS7fJWPx74xBlGd4+f+nuNlD9+1d1nEV8Yu+946T29PhFYcOMnv71+4VVdvoj1RTahl993aj0H5NTT+PPjYxD55PX7CB3Ocege4KduGPITNRYjBz1OYvOHx+ZvoOuBPHqnDlj8y1GsGtwbIx08/oRdvfHmQ9j1jMC01lt68UZ9ZyuPGbd4q58sv/zTyZmfWFzN8pr5862f9mpWe88cunCKE2OweZZ55vufn8IXh3/PPdji+LlHPS/ivj2Qh78a6e2dp56QuFuzxYcenzjLkY+ZLbGuHnms186Pzl+shkf0sHMxy+u+qMmzWB9g9ToQEyas8qlNfHnj7zXqjtob8umhWU/dWVz01P9v4I1vfOPxP0J973vfK9WLuY7NHX68rC/aI2neIpE1FJuw0ylcIRpFakgx7Jqg6T1gztjyidO84jZXa3EGfxcDdi+obGdfnOIupr1c1Qmni8YOozxHwM0P+rCqlx/p4NvfhBw4YogYOcvLl626i9l9vMJlK9fytKZXCylHnO3ld5FX18MnXfWVL05h4pNP/WQr3twaF778tqb67d7gxW6uF3zl7wXFbsAVWw5z8dXmgevNxos4P7jFWbuH3qDMcngQGe6p3NUaD/seDtYwiNyJXPRmcWaSL/5e6HiIy67O6ufPHtfqhuGex0cMXdjwnKMeiEn4hV8OPXcH1o+/PQy2BC7M7oj8+mDIrYbqrTY+bPUARnt1xbkc+PGpJnhyiudvJuHmW24zoTfUUW1xM28e9nDqj5wJWxzw5V/8YvNPL2bfJOzFqkG/8tu5Nd9ywLTXcwIjDvZqSVft9OK3BjoiB2H3puYN1GvEXg73wcyvPnntGAl9uVp3vvZ7N8V0P+oBXfzo5Kr21rgb8cAJz/zLG4/0sNO1DoO+PGz/m6If51xeE36J8Fwh9r5o//rXv371kY985NCJeTmiRl+0P3n95b0Pa4n+6TlxX/a82pv51Uv9t066Z8W6yz0n1SI3H7PxIDnbz3WzywNvZePOMfzW3j6M7pz5jK/OxsZtPZfy8aXvtQY3v7ioo1rY6A088oWzwi53vc6GY3Fxg0FH2HEpN11Y/Pka4dAR+/zM9nGzt86O01nYyGJvvLuSDz/r8OTa/Oz2zWrzLPUMUtv2E4Y8dO5iv9Coy/DscTfrY5xgsrPly0bfayV+7NY9x/CCl39re37EupoOxY2OPR9xYedjzm6Nj5rN6c3lYuvzNl1SfjMfs1ykGukaaotPuez1tNe2eno+wOoPDDsr2LgZ1cUmP6GTrzz8rA1rwi5/mOHZp+OX3poUJ9a6WsvPnx5/+cgZ81Be/wjbDG8/A+UDv0EHOzxrsfZi1e/+5yOumuPLnw+bNd+ED96ry1aO3rf5ymdmi6PY7kmxzXGNvxhc3Ils8OiM+geTvlzxa4ZvHR+41rfVwl++OFsn4ZgXvxi+l2zFs9/Fhz8cHMqvPuvOzNzQM787vP3tb3+kX7T7TPD8888f9D33et3hVs+Xp9doX7B17s7b/eNP6DsrawKjWuz7nUds9etFz4HuhXzuBxEPp9eWfWdYH+tf98c+LD7uhZwGwe9cNz+fLf2eplbx/MTyVSuf6jHjVO/igLtnV89zPfEFns/D8PgT+CSu9UAOfvRE7TiEb01nz08esUb+7Aa7udeaWL+v9txgq9f44MoHRzWz0y/X5QdXfDqxMMTRwdEnPaVLjztf52G252/AU4uzgOVzOT89pSP9zs0OX7w1P2u/d/iiWAzucug/3N7DfVY2+Igl7qe/DMovvmLrIz96mMu530kOkOsf+isGN33k7zspuQi70V1Qt9y49fldLj79/gRLb8oNBzc+3ev65r9SEce3esV3JmLg06lHfF+0dw7+yRb31p6dr9eFQacuQx/YiHy71pd6Ey4/OcV1f/TK+aSjN/CkV/cOGPS+CIalr+4YXXV1Vnzl1iv9hhlnfMVnUw/+cucjvn7BhKG34vjpb/50MNi7N3LgDled9AR+e3HEzC+bey4fvwY/eHzwgad+HMTHTc1k42Dpkd/d9M65inOmMOCKg+s15A8ycJAjTnLYq1Ntzpct7u4vHKJv9Y69gZN1d92X3yScYzM/+LJ1t6zxzN/a68v9J/D5dh/Vo1a1u+f2YnCDHVa4Yhv6A4cNrtrl0S+66uuM7eWx93zxRbu/0f6Zz3zm6j3vec/BT877yL2/aPdPxyjYgSu2USMRNy4JvYIVaiSaVEM1RRM0XZGKrSjx54a2h2V9li4pDI2vmfbhNm+sXMVad6HUS9jExSkdfaImwq84az64LF84hC29HpXnMF7/4Lc56eUxxBUjrjxhh9HcRWTHa+uxhuXSlQ9eDw0Y8oXNdpvkx6c85mLYtwY42x93gq8Hw943cfnhYV0tiw1v+6OucNxluOoicnnwwCZmZ+9NoAcyH/eoNyB+6im/vXX1Wp8FT6MarJN6s3d168K9+mCXVxwbXxzVvLjww64H4ZQ7bHO96UGUz+KI57u6MNSGAy442uNDV+/o0sc1XfPmLY+ZXT3Orj7QZZOH3SDwy9HZ4Bp/tuKLM+cTjlj9S/IRCyM8en7FsVmLN/CmM/iJr478Nnc42bqz9vnBUncc7KsJX2v+YVSDuRjcnL03asPrI8585LUn+VYLnRw4VNvu5a1GduJ+8IFtpodrbxZDrA2iX4a87NY9H9jhJOxhnfuRT1zLUc7sj3rWg60Nvj548++Dj9l/cu6X6o9+9KMHhZfLS52//OUvD0wfwuKgf63rRb3Sy4Y+4mAUU2/yUZtYzy/PTjXRxT0/PpekvNnKV/zZnl96M9/quWRPZ+Zv8G88CEsPsquFxPHY3OOHeL0xwyRmo7t9Ca78xZx9tlfWOBP1ObfizI3s5vpXfeL4dba9nujz59trOXy2aotD2MsxnwPs5kf5OhPquIptwFVTz6X6CdMg5u5j7z30fD2rzOG1FmO9teBS7fHjE1a+YfBvDZ/dXE1yFJPeXO61y2FP+DTU3plmh09w9SzvPVyuzQejenpmw+IPK7z6EH8znZ4683Idi+sf7D7H5y/PCn1ytpWXj7U5/2quPhh4bA/oNtaeqNOAUV3WYZnZ4ZH22Q/l9Y/42fN3784SZ77lgGNN2O07m3qfvbrbi0lX/nCri88KfOdYDj0qhs1YUQeslfoorqE/Bh5menHt45m/PLsOn46ts4Nl3es4P3P9bF6bdVjWm8++mDjQnWV92PieJR/41chH7dnM9aHe+F32He94xyP7ot3/DPULX/jC1XPPPffi8zY+8uufczdwpfMa9V7cPcO7PtOJV7P+i+lO8akmPv7LXv6+iLAn4jwHDDZ1y2cuFiZsMWcbHxhs4o3iYGye/PDDwd22pjfEqtN3B2KJ+Gpqz2b4zNjvf3z4qkN8X3DC90WSfGqw55vgCsv7SrXFs9rEEH5y0BN6e3rcxdHJw8eg7wsoNsOXcXjzY5fXgAXD2eOMp3pwY0vCZ9MvNmcNU0y5y88vfTXIs3fNHhef9/CFKQZXX/b5d7vl4uf3is4uP5zgEV+m+TLRF4hyq7kvv7rHbP2X5vIQvl5v9ZJODXLIC4evfXq+9YcP0T981GrNxx+Y9Z5GZ8Aj8GCEs3o1lbP7sTXDqe4w+rfG5aczdyb1XA56opd6ijNsev0yiBjx7vSed/7qI+Yw9RLf+lTP4sHPEIOLcy53Nvi4yWnAZOOPmz8M0HOvN9+x9IcFfMRuHzs/ujiZ7fkafOiIubr0OB/+7qMzwcc9IvTysvU6gAeDH7x6n1695aWDCYPeumcLbHbCDo/wMfRGr/l53eIrH192ennk12d90ld7uarBnojXX1j8YMCLoxme16o7YV+/3Df8xOCvH/BwOEuvc5zEGyvli7890dPutb04d4COqEP+RDwO+KgHjrrrEzy9gkOvl3SGPRuJD7tc7HqpV3z4yis/H+fi/8/on3D94he/ePX+97//RZxjcccf9/6i/TWvec1RqAL34spXkdYKqqlmtoZC1qZAB6tos+I81PpiM1/xfMykWXOsmw/jzY9ydQgbB9cBmsUa1sXAtDd3ofgXU35z643F1Z5/Ev6Za/Hl429tnGV92eqbGuUzOhu+4RTXjMO5L9nE4A3HOr09fEKXfmtkKwa3JF24xeBxfmF0zmLqoxeZGDpS/uowGwRPYs+vWXw9MrcPq/t3BF//oKdz/l6YeMLSNyOe/O2JGH6wDZI/20pYZhIfa9j01Ws2+KSLN//sYuQn1uVkr/by0LGb6XqIWXtIe8j28C5XXM1GmPLFwZqoQf/wqQfm9uLtNy6/eMNpvRysxeEHpz1duPnDSNiJuTuQjX82dkMvjHOc2PBxsMadLzH3+gkrDHbP0GpdLGtiFl/+s4/XAzx5zd15mGFsPfGDvTzsiRrC8aGtN6BwX/B64bXFL37icJRXDmfem6i94by7K2I7H5jd8+orj308YdgbhF5eb/AER3dXT4uhr3fm8PEk63cobnTlWF3r+8w4k/Ls3jo9n/qhT14v7J45jz322PE/Yfn4xz/O7f+KORT3/AH3V7/61fFFu19k9E299ec2uPixV4f+b6/4GM5Tj90BH+S8n5PuERufcw8Op+sf9N2ldHpVv+Qgcp/1cWDLzpcf3PLSJdWzWGzprcttXa/iWdz2gh97cbflrZb824urBjZSHriNFywv/ExX7/h3//ODSZfUL/vqsoZVPdaEb2u27o41fee6ftZqN/OvBvNKuHTndTHr3zpbs1i5GvWCP53XlkEvJj9z9WYXk86aiElgLP6Zd/70xVnDNOg23j4bPU6LCW91nVcze7m8Nq3ZvId7NlrLASP8cvJNx6/3pvKdZ76GOOcLR1w6/p5l7Cv8SHN505396dM1izV2X9/ClT/OMAh+9SCenUMzv8Uthp2EKc/mFLNxcRRzyTe9PjsbsfWUjdBVT9j0/PAg+PW6OhQ3P/jTe380elbT410f4hlH4eUynzmxbw/q4zkufmf+9dFcbtxwJfTW5nwOw80PnHA3xzM7PDpxfMz3EbHxPcepx2CHW33yJHEys7v//H3x52+0/+QnP3kk/3TMH/7wh+MP3n/9618f77F+T/Y+6/1WXvfJFwf72Z2evc9l9dizrt+z1VHf3EufL+GQztlftPN+Tg9TfWKsd+gBqSfWfA05YfBnp9NT6+5bvuKIXuLe7+HujHtdHXxaw6kXcojpmb64/Hp97PMRB/x88WfGrdepHOWi647BwtEQT6qFTV4SNzZrePUclkFn4I53ZwajeGfrM7o+EM9gvvVHPf/+978P3vS+iOND5HC2pLtjLUY/8JFHfvcKV7XKD6Ma+YSFDx82X5jpG7vR7xLuDhscOvnE81GvWgx2v3sYr3jFK46acJIDFzlw87ryJZg5YVcvTGK2F0PgyCWHsT1mx4fwqQ906taLcLLnD6f+6oM67PUXB7nM/AxrsXJUt7xx9bs3PV811Z/4mw0STv2My+JWMyy84mBt0BMzG3GG5bbH2cinmT8uzqc62fgW1/NJ//jg0/NFvD4ZvnhXR7FqM+zjfIBe/8hWT+zdf9jd13joxfq753jot+8a44KfWBj6QmBYi8et1w5fts7BLJbElb8Bj6+Ynkf8YOJBXw6v23pJzwf/eJkN/vpSvNeU/vFnx7MYPvLHS27YXjuec2KSet0Z6ZUa8gkDnv7Zqz29XPaGGDjLXx490Pf408FSk3i8xYhdDPvyiCXqEBuWuR7jCA+GucGn/nmt6V2SDztsz07/M9SX8xfe7v1Fe3+jvUZoJmIE+UZks2mOQRRtEHYFaVQN86J0AfbBxhd2GPakfXntrZNiNLwDyya3gyPi8umChGXG0SxG7fmH1Vxd8oaXLh+2+pLupcwwYMuDn5nAV4OLSvjY42zUE3Nc0oXBv3GA3Pwop60YQseX0MlHJ5cztTfWno6fGPyrAQf3wQw3zH2xH2A3P6qLvwEHvtjwYRiEriGWP57xsF7JHj4b32LN9uxmA3/5u1/F8k2KKZ4eb9xIvtVBJybuuxeXrVx0JHxxdOfBTufB7KFqLWd/qm5N4OqFEfd6FfbhOD/YfVA0xG2PwoPVEBrfYLKlt7c25NVjWKR+W7PTF1fdYpJ4w0zoDHUb57js5ri5myQexXsNWodhLoatnshTPZ4vxaiHzZ4Ub5aTPu78iH3+2drXC37prAk+cOH0QdedoON7HvRi4icXfHffG52ztyf6Ehf++dLXs/gfATc/8jPLL2c6a/zipVfeMPUvTvjZs/ETq+diw6InbOVJd0Pj8G1917naw7K3ljcpZ32wrx8+6Pqi/Zvf/ObVJz7xiSMkrOLvO8P3N9q/9rWvHX9jSF/wgduAuX2gt8cft+rqvsQh7vrbHegDNp/OV3xjcy4OrEa+5e3sim2OI7905s3tTvJLwsw//YPm+sVH/PKBHdZi60n7sKvPPp7rwx42n+40n/VjI+k7I5i9Fqo5bubym+3hG2FXpz1MPiSMuC1WHPjB7blvzb8c7JeEn1zmRIzY24SvvD1L48/fmj3uzr/+sJcnHzPOYVzKy6d81sXCu4vUP77FFycfe7zTN5fbnl+9qT6v55536vQa7Zf2xYZfH+o3DD00w6gH1cpvY6wJuxj4YeEJi7DZr6zfOR6OkdSj+GS3Z9ODhI0uzPTm7h4+xcYtzPW3Zi/OHjbdPjfp64t1/ma+O9hX+MAiOBkPk+rjh7f4chTLh97nOcM94EPix4fQ05E4wLV2hvvMFKPWYvjQLVY4B+DND/Z8qeQrh/Xyo+8OW+8oFhYeZ5GHf/jVfPY776uB/zkm7ucYfnKR4vEiy8/vsm9729uOL9rf+c53/j/4R8AdfshBfv/73x//c3T/Rrse9JfSfOay95nI5yBfhu+5Okvvy7jRw/MZQ3xnXD0wfAb0xQ1Mcer1xacvS/nRh+Wz6N7D+i8HP7kNPnj6cse+muDVd7N4vmHyxVVuMfwX2xoHw90h2eXzOUQNBGb5+Lt76crJ7n2gmNbVLIf+xk8uvWjIY83fYCfm3hPtxZe/ntWHfPn74o2vPuiBmHpOT5yhLyvl85r3z4/wUYMvi+CwwXe28vUFp3hnbtATudwNs/eQdPbVa8ZFL8TC75zM9rjLFwc4eMlTrWrQU4Ou2vx763D4wpcPJnGH/I12ry96cWaD5Kv+7nd5cHbGzojdHbFnD6MZlpzVbS8XTt2jzl189wImfmJhiWnAIPZxsucLCz/41aCHzkAPSPnF4hA+m3V3z0xg8c2f3n1wl8z5LT93Q29woYerB9UDl47A7Y7SiSP8rauLDV98DMKGgzPyzwU5e372nQm/rSl996UeuGN65L7FWSw7obNWE5HDs0Fv/TM7+MqDs3uHh0HE4CYn6U7FQQ/kjgsf+/pSv/VcLNED/nIa1v5JGDHW+MCVu3OoBn0z7Pn7vqYv2sUa+colpzvZWeiVoU6iNnyN7ouce056gWd9qgd86OXTD88feMWrgY8BQw/8T0b58iFs4knc7Q3xBj2+8hM97X7Zh8GOG07icMlmDl9M+Of+du7uh9/Dv/Od71x96lOfEvIiz2Nzhx/3/qLdG22XLWLyIIWwuWGvIKJwo6IUS+zpNcuscV7gHlAK7CAP59MPeTpcpvZ0Sdj2+Hao9nGxFuMC4ttBwBMfnj1xOegNOjHVeTjc/IibPAn/Xhxi1pbPXefywpQrnnoGt1rV47Lh24ssX35w4sWHFHOpruVXPP94LC9c2IzbBIZYvvXGHbDvxWVufcYpr5rEuEN0cjqrZHtUTvfOw0dMufGvP2KLM8MVm377CYvdsN66zxh86MRb3ya4qDu+Yoi9sZzjBY9eHLEvR3Fw8atWd8XD2oeEbP5k1QMzXL1VV/2VozOTR5yxwt+DUY97vcTB3rA3wypXGHE31/96We24i+Wz5w0DLj829dZLNjoiZ9j21c/XEBfnZn6dBX95zTDlLF96NgMeW3a+cNLz6c06/+VH170qBhY94Wu99RyG+cGfhBUffaQz3AP3YfnXi6Dkqt9xkLczN9vzI+XdvbPZc1xssWx6tAKHnuBE6OD6oIE7XvqkJv30nkXKJ06dxbGVD04jO9+7CP/Eunh48Akse1LO7syhvP7B7v3v8ccfP75o/+QnP3mYisvvvjM+/c9QfajVo3MfYMb7XLfXGc541MM4iNFfPobXfc/xYtY3HazqgkHsreuPu9Q9cKade77qyD/cA+gGiz/M+BfHt5x7LsXeZRZXLKzqgZ1Y7z79pRmGoZedD7/63TNjYzemmvAQY7A/SKrBHE+5YeAhZ/lvw6kH5RfnDpgTmHDgXhKxnREfvPe8qyObffzckWLjzs63fHyNcM4c2GCoJexy8bXGMZxz/G378sXjNr+76GE11JnA9sz2nt05eu75BXL7wb8anKv3c3vPTHvY/GHky0df6h1/Ix7mfPEw+Lbma03onZWZiHUn5JSfX3WFzzc8NiMOnRXf1nD5lLM9Xb2hExM3+ka2MOmrBdd936PHu3q6r9XEDudRS9yqKX7loe+9Ly7qyL/+8WevF+GyO/N9H2erTjF3lbC7X/HotaZnfMrtDtdHfFt3DnCMS6IP1Wh9F4kf/EuiF9nUD79zNbPTmxN7Nl9W9jfaH9UX7R/60Ieufvvb3x496MuSfofRO5+BnD2ptjNHe89n8Z1L/mI9N3x54/x9fleLLzcNcc6uM+Arxjnpk+eO+yEHP/4w6PCUk16P8CN62lnD6XuG+szfFzT8DRg+X8CVh3+fW+XpXOST30wHW55y4hsHGJ6h/qBi9b4U8ren5cdZrb7MgxU/81nw0iMzkUc/6eKCKz7dr2L493vTP//5zyOnWP3vbsHABQYdm3h3wNn1TNcnPRCPg8/JbPDZ6Ow7N7lxVLO+8+cD24yvfHyscRCLD52z8W8b84cbx3pEn9DByC8b/P5GOx92uQ29Uo881czHKJ4fLvib7cthlpOve9HdLAedXoUV153Fd89whe8++NIWD331hwBscOg6azh0Yuj0LuEnxmzUf+fpbhJxeoCvWX3VyC5OTcb6uhdyye0u+55NH+OHPz5Eb/VBnXGqJ/b0xFpcz2xY5eUPg50/rovHD28xbN1LOry2Rj4NGGrvvOKnHs8AOGLp1b9Cl16f5fK7kBh759azxV4uPSmfPUw2OeSDR68HdA3nxS4eLn77+hWjN0RtcPDwerEmYusfn+oRW4z/Mar/QtlzS1x1seNi1mtn7j6x95eZrYlYuT3L5ZNXbGfhHOH0epLHGp/OQUz9N++95hc3PfBM9VrJR6/krbflwa8+4eNseo7pKb/tFQ729QY32OnlqD5146I3et658ZXTHr4/KP/e97539bnPfU7Ii/mOzR1+3PuLdg9PjUE+4hpTUQqs6M2vWR2oOAXUeAepcc2+YHAJFF+zF6t85YQlJ3w6I6GDIUZeDU7E0BExfOlqMD5nLDgOxMyfD8FBHL1B5KUzSPpjc/PjUq/uapfTiAd8+zhVq/zqpMeJPz8SJzzqQfnpnPOZ4+6tYVVjGHRxYSsff2Pztu/NDVcPWXu2zk09xccdzuZUY28cxfHNR3yxdPrh7vXALx8cdiKvPPrGPww2ujiwWRu4Vzes6g8HdpzoLok89dHML07ZVtcZhMUnu3WDHR5/g97sXns4ZvMnq71xiFGfuszdObWVA7fOiD/h7zwMMeXiG5aY8F6IeuFnuGZxJD8zPa7OGScCa4VfvluvWPr4qKM9vIYYOS6NaochL18StnX68tjDInR4w1m719w5H389M7rXfHAm1U1XP/gSOvh4xc1ejFz8cLCuR96YnH2v//jAJnDCCFOs9fmelHv504XT+cCOc3a8DHo6g388w4iPN27c66HZvTYIHPHVERabNbta4ZeP7S6Cg/i4wEmqRw72as2/WHuDv9eMN/innnrq6lH+0zF90a5X6nQP7lrrnkU9UqP4uHdm+Ptg5/laTfXj0qwHDb0TU79gWhO9kzvpbrIb4vjU82LMcHpWxD/e/GFtXDkeNJf/HKuWOF2KP+epdnysL9UgpjM4Y4qpZ2a+MAy25JyXng7/7Wv+YbLxyd8cbj3go7/qxtMzXnzCvjjFZ+dbfWzVIMYa7sbErTixhC8//nErPgz7JEw2Q8/M7rDcRI7qL2/x5jBW1xpW8TA2N5/zvrhL8+Ypzmx4Zvf5VB57Xwiph+DQwMlZGTB7DtDrY+8p1nzM5TY36GESfnh05+J3GK9/FMNPjL18uOqzPSmOD3tx9Pnyq5bOCJfsYTTTG8XBzLccvSfyoauuYtnlss9mXw/kss9HH8p5JL7Hj3hfCsFdTu9vhn6Wtzh7v6sZeOPBFh/xxchhX0+qz7MbNn241uS2/WE8/RDT2F7R6ZFBH6few+lxxL+1vPyczyVhF1O9Zx8543622bN3tvzybS6eDw5ykfiwhyHGF+3+jXb/dMyj+qLd/7PlN7/5zfHe6j22Lwvk0zvDueNYLfrnPA1+hudzf2tZDXT8xfp84Msb+34/8ru5Lzc8F9Xobqi7fHL0GtIXsXzEywXfvr9EJxZOuZ2ZAcNzzPMrH35ys1v70qrPF+LlLsZrQi6xfY9gTdfdEAOHrrzi5PSlE5sY/n1JJqe7Jw8fPMXfJjDqQbn0AQaRr7ttLx9/voazovNFOz+xaq4WMb1WxPkSik0NvjwUI5fz0nN4avWeILc9vZj6V010vmjXP7Wu8GF3lvDkc2dwpsfRF2n27HqoZ2aCExuhM2CGS8/u33VXMwz8ttd4yeNs5GQzcBJr0Ktx+42n2mHqGXxYcveaEbNxfM9SXfRykl43cGHixmaPW7XyxQ1HdYmrBvvw6pfzcp7OWt5qZYehPjms2Qj+aiN0nW+5cPPax1MsgceP6K34cuC0vOLG19r51tPOlz8MvYVbTGfDbl3+/lJAcfDE4s/PIPTO0JCrfvjeUI/COZxPP+qfnPVNb/W4c/eaUD8e1aZv9SbObPLJD5e9gbee4MjuNej1CVs8nXh+xPnj5Mturyd2fuHysybFW8PwlyK7H+LUVW1iYMvvfUKN8thbsxF16IHRWcFm7y7JW4/EyEE6B/7i+9IfZ7niG7f6qz/1VH7x+ctr2KuBTbxzwYFY40Bv8KlH7LCdW2fHhw4vvsTroNd/PNkb7sB//Yt2D17NQaLikNUMe9J8bG5+KMAgZv7bUM3SVEUpugvpRcq/w+AXlnk5dDD0iXV5HMAegthw+Ygn+dCdRQx7uHzsq7lDp4Nnzl9t7ETe86U452ovvkuRzlzO6o5LvMXlFwe++amh/eF480MuPmzW5VnO6YTAsW+IjQOd3PlXs/3Zr5zwnLt+FV8PzOHppVEu6x4CMORyT8M10xtq4y+HsX0Qt9JefLmywyJhWvPxECP4w8aZWBvxCPOMy1de8eWgs99BF1Y58os3u5h8+TlLIyx98ro26Nj8CboHfrj6VH/V4Iy8VsNVQ5wP5fUPPg0xZPFgisGxHtSTdPyLqX98Fq9YfvTVEAY7W33AY2Os+RJ++uHNo5j6ZKZLz1+cIUbfYJUvjPw3Vt3dwfA7B35h72wNU6zeETnFkfi1bqavPjN8MXCqvT+BhkffbE2q89jMj+oNn8kZhGtfrHnx8qk/YeBLwjav4Eb0rxh7vakuedxfb+B9GOILi4+c1uViM+x3xA3+g0RsdRfPvzWccuyaz9ZpjbvXljf4p59++uqJJ57g9iLXY/MSfsj/i1/84uorX/nK8cEMt7vWJx1uSfWaq4ddDwzPCh+o1GEv14METsI3/DCzn/nWX358DP0zykmXHRdSjnDtYd9Xyt8cv/oQ/uLyyS9ezfxhuaPmhN7Ib/V0Bsku1uvEiAPd9iUMM9vmy1be7OblLl+69GLU732wfsPrXPhVS7zZ07k74vIvN1+DzRw3zwGjXOLksBfbvlhxcZW3OL7E7Pnq7qYTs+v2cYBhfRYxl7iFxR8XHNPBqT42g25zFFNtYj3/9j3H2rOv52X142NteH+GW/708Il9/Kt168yWbz72OMGpLjr2cshrzW7A4l8M2+KJJ5tfHO507o29eLrGC1H/E8eHFNseRu8f5Q4vzHzDtF+O9uU1n/2Le9C8PVg/WA38yqOP9M55z5+9emDiyVefreniB6+a09uHHad8YHd+OO4dg8mfdD/kE1Oew3j9Y3HjBYsvm1lNflk228OCc0nqz85xKW75hcOn2hZXDAmv/PQGPcnPDEdv+Ppd1hftP/3pT6/e9a53veh/BN3jR/h//OMfrz7/+c8fX7T32vUFivdaOfvM49w7O33z+Q4vPSZ6bA/D3Od7s17A8aWJWDWK8zyXx+tMjFk8/0Z9kqN8uLOz4SQHPPZ82vPBXV6DXSy+YfPVV3xgha/f5ZHfGlY68WJxEIP7Oa97tnWH7UudV7/61Uc+mH5Xki+xjh9deeSyxh92XPjALr867etJdnH+xqpYfH05ikvn5lydFT/vVzDwM/AhuOlVz0dY2eUXk1910PclVDzhiauGrbd4fVEznux4yu2LQDwJHtW9WNXvTMXxgwUHr3qpRwkc/unk4gfXgGHA1qPqFi9GPH89ibvvudwvMXR4iysmfLxI+O6rL3nFVXc8DsebH+ww4iQ3LmrE0bp65PCX3nyZ2mu4evmXy+syDGk2L3/5Fh8/94gtPptTTfb4EH5i4OLba5OOjR4OvtYbw1cMrHLBFxsnNn5iu3t8y8+PzSwHX2cTfzp4/OnNdGeB2YCHV39BS14YBn72zt0fNPEjdOLrtWcFnHRyyl3+9Hh2T2BVgzN1NnBhqkuN4vAg1YSLWJ/p1FhP4ocHqQYYdLC9R/jDL88IAstdxb9zPwzXP4qDLxZvA2d10BF7OLjAkMtrxR8W4MiWH1+Dn3g46jbo+Mu3/tZs+PBTV79P0rWGq0d8CT76SAcTD9zi29peXZ4ZBk6kmvQV5lvf+tarZ5999r/3N9o9PB10l+hgdc8fiHdw20RrzWTzAOhP22pUTdHgS9Kh3WY/x3Q49OU+++xezV1a/gl+sOTvoNLFhd2lcFHougjwHiaw5L5N4r6cbvNdfXEuPU44lotNLfHH08V1AastLL5G8WaYdL3Q8lVHd0e/8oPfi6G7wZbADJ8vXvgt914s4tnh4cxPLjr+3RN652EPm90cF+uEjawuW3M2eL3ZiyvWXO50ekRnPgv+MOuRtd4bCV15YVqb4fXAzpfe6CzDEdPDu/NyRt7c3dPtt97Wd/fZBzGYt4n+itm6+cuJY2dcDXA6o/hWs72YepWfmDjAwa8a2YrZHPSXJBy9q/b1g2HAX15q7L7Jx4edzry5w9BjvuqQl56/vGLouhvVLAY3vu6Y/eagx43ObE+qy5o+/tnk86bblzLyiVk/XPSWvoF7vtbl39xyXBIYYjbHJT86vtsDuviklzte1nrgQ4wPEuqqF2Y9lJc/yXZs5ge93hgPE1idV7hmGHI5K+t0i6eGBr18Xjv+6Zjvfve7V5/5zGcO99t4LtaD1nL//Oc/v/rSl750vL751r/b4qql3NXg7Hptqy8seGLYPSP8AtA5b45i+JZj7eG5c7fJxsWPL+w9N/mdDdkYOnuxYhbjcD79yHdxNgZGA2+9yF5e+7hZd+7xo4PhviR01RBONvHZ6Pg292woBi7dS5W49XqA252HSd+zh76zL9/WXWx152N2b3qmyhl/a/56q+bEvrvIB4f6J1Zee70ST9frEYb4ra0cMPmyGcTeSKw7A3N+ZztM9nrgLJLOxVwunMTEU54w+BSzZ8zXe7nnW7n84iMn/3jqXVy9j6gzTJzONcpbbnHZxSyW2Hz5VCu/FTY4fMMydw7iimkWzyd8ejXVH3jqMNcbfWAn9AY54/Mj4refdNUAc0X+uIWbXQyc7OnxJw/T47wci7/EBSY8HMR5z+OXbIze9ZksLvmZYThPtTZgG3Dg97pj7yzE1kMY/OuXMzXkEx9fMWeBvXciHNjusQGDnpirI12Y5al+ejr8qs1ePsKPjcTdPj70YZWrHGyJmOJw9QWHv8n+s5/97JF80f7nP//5+H+s9E/HeL3LYThbe31y/3DH2ecfX35Yxxk3I/Ec8Ht3X9ix+Szq85NZTXzkcE7Gvr+z11+2cx/cy3LL6U7kAxN29wR3+fF1FtbqwkXv+eMpf7lgqteAww9vX/DuZ2px4nHx+4t9eeVz13zB4vOwnGy44/eGN7zheEbkJwccsnzjIDbs+DuLXit44ABbDIHXujPwN9qdKSxfAvub3r4fiRu+7PqJk1FeGHLa6xd8/PXYsCadhX6L19fOpZ6xqYOIbZ1dn90z9akLji+scfaHBb7QhAHXqM5qjjM8cfDxg8MnPuLUa6iPXiy9vLjLg49nOrv6+MLiZ8AkfGHJR/+6173u+Gdr+ONssBcrV3FmOeTUE75xUoc4+mrEQw4z4atfsDsX+jjS/+Mf/7j629/+dtxDtcCVs7Oz9iUqDvCqR/2Ev7OXE55ZDeKscWtv5kPgh8cXBp3XA2y+nhl6bg2nGnAIk6/e6gPB053Hi7/7aYiPn7+d3jnSidUn/rDh6a0cehVns4F363DNfMWwwXBfvX46AzXWF73h40zZiw0HF88JfHA1xNAbzgqWOPpywmPXF+tqgGvNF5ZnurXa1YoDf///BXntCbsccsnRMwWePDD91zj+nwdsdOL/9Kc/Xf31r389cqjbWRr1p9heX7C3Fj1Wg/vApg84eU7jyw6Dnh0fc2t3QF6Y+txdE1Oc+tj56oca4Rj1Fp68eBO1uU/w9jzwoCv/4Xz9wz30z1TJQWCpqbP1e7gv2j/72c8edvH3kXv/0zEe7g51Cd8nIV8kNciBJpqhmQabhnrQ9sLOz6zBlyQM810ED00nxT4ojr/RIee7FwJ3LxACuxeeS2TtIojXww48nNtm+GHxsccjqW9qWH322+Zqxgun6jvXyNYLqLMvF182PnTmM7/Nrw7+fBvsdLDF0rvwhn6JcfHrV7nUbU3MHgYeIj2c9NyLTX35WncOnVW86dUjV3WGH1c8jSQu7GLMcOjLFYZ5z6q9mEtSvWL44KY/RtK+fHHQOw86MWL5WRtEDXTlULNemQmbP0H3EBWDg/4a1sTZdEbVeBjmhx6L0QvCb3vUujr48K1me1zxzJeNf3747etKzNYqLs7n8+Ob8IEpVx8M5Fmpb2a+Zj2v/uzlN1cbG6FrFievPnVfO8N8zHzUAQM/mOUMj16sUS6xl2RjrA0fODpvMdViZu/s9Lre87PGrTOKZ3F8bpNqYI/T+pYzzM5j8+sdP3WHYcbHByjD3YaRn3turZYH9UsN9WF5XVrD65ysV2DIkx23uOZXPB91et30RfunP/3pw+0cU+xdZzn6ot1/sQJPX26TOLHjvOIMugtbb2s2z4eexxsvrzOQu55Yx0W/yh3e5m6NA3vnVH86s32dwM6/ePM5r9hLgqd45yinuNvy4qH+uNuLhaEPxXWf6wF/vux7X1rzCzOO1cVW/dn0eHsQLns1WNOfY+nPAgt/OUkxaqNjx9Xa61IP8uXPboiTH2fjLN2r8PnSFVscbLZy4SFG3XiyEfXFWyw9LHprcaR8ZjqvQXaxhlg5m62rr1wH0M2PsONJXQ/kTqz1zSy394J+4Ys3DPZ8xFqzm/XA89uzDpZ+0Xv+2cNd3rjB9BoVy1ffiP3W0/nyh2OGteeEhzh2a2K9Us5w9EJMe75ywSb1qpzltc/GL3tYalGzeqzFJfme49nxE0dwEKuW6mEvt5kejs+dcojlQ1/PYW3dMMUkbHiXi76ccqwUaz5LeZ1/Ir4e0HX+nZ2YcjjLMOo/G67lrQ/svWbEkPLYbzybvcEmDm59tqaXv3OSh84gXg/utkHoxckJV5wYurOsrjo2Z/WtXxjywK7WfOKOs7ydR1zizub971F/0f7kk08e/0a7fM7b78r9xbQ+R5pxN/D1eZ6I0Tfcuofq8qzD1V3mI8bvED0/1Oqemg3SlzP6Y5Sv+s30YYnrDORhlxtuzzsYfPATZ/Cx96W5PRw17+8fODfgwtCD/Vwrrt9H+ODQ8089YuD7kkUutcdHb3wBC0P/9AaGnOb6aV0vzPzpcIEr1lrvq1vt/GDJR/au+ZIaF+KcfdHuizO1wOwPQ+STK6mH9Tgu6dWqZiKvWHvc7PW4L97Cza4GA2dfVNUXXwTC1Vc2GHrn82Y2vNXOjhts6/jDE4NnvYKvTwbfnge4dqb0ztSe6A1MMXLAI/VabvEGPLxhOGdfXDtjry+zc1M7HJjE3rBXDxxfzuFsr/b411/4DbFywqbDDw85DCLOH7T8/e9/P+qBqz9qwh8GH19M6zmduyLvcsMxDtZ6YJTHDFPvOhP14MTWmdnrCXz+ctb/sMSry15d6rOv/3TVgYua3Q1xBnt/kKQGIy7NYpzLnqV8cpQH1kp85CRq6PkQx3qDHx5497oVU43ywhfPL0x2HA0Y/Nj0nsjp9WpWg17mw56v2WvPrH784ut5gJN990cu56B2Z9Kdx9Ha88I//e3u4KbfvmT3hzhi+HjtGHKK44c3bHZ1dofY1YpDX0jjaQ/b2cCFka9Y++qEK1fCJmbP3Fqc2nA38CB0reUI3/2XvzvIBrc7GJ9iYHqm9voRq789//2N9meeeebqpf4efu8v2j04IqsBL0UUp7mKM2vUDs2voR14DbHvostt3cFbN+7CC6bmExgd2KVYefmouZj86GARGPziRMd25inGpTIbpBj+6ei7fNW2Nvb05mQ5xC2bObt1/OIeHh+52Y0eRHT5iCe7dz/KuZzo4k5/rnftXkAGHzFyGjiWazH4OSMPAy8WNv7OqrPLx2zwyRZWHOzlXb5nHza69PoQ9vaEH94epkY11KONEbcSNh84ajIXa717dr7qUjs/GPmbw3FO4TlbD/xi6D086fnD8LqMvxw9fM32m6Ma4q9mgx/d6ulW5KCLSzY6dcHByT5MPnTpw5Tn7FPN4Z65yNsbGLyEn706DTnM8Ay9EmvNxj+7OPvVWfPl03kVL6cYozr5s/f6UlcYchN47GIMEk655DPo1Wm296ay5x0WPHng4ek15ozSWdPDoSNicIX7MIkXfPFhmDs763jC48vWKK5YeeXvw1h1qs8b6PZwcc9c2QwcHyTy4tTgW2w9sM8vvPZ8jPZ8Pcf+f3zRjoNRDWpqfSxufvBx9l7/3cX4m90JNsNeffmFU2/Yz6Oe5Htphpfwx7Vcehi+ftN3b+nZCYxqfFBO8fyKKw+M8lhfkl4fxZob/GEZK+Wj45vPJb9sG2991sPp7rMv73DrAV+9sbdef750xdtb12e+dD0btr9h5ZPNnohzZ8T2DOFjn/Ch6+ysDXqDxKe1vNnN8bcWuyI2zI13juVcrI3dNZ/uv/Viyb+crPVPzWa5jHMcjGL5WRN8/YLgmUeHJ7v3dTOcc4/sfc7C0ZofEUvE6IVxjufPL45y0uVvTejTwSgmXz509movD32Sjp91dcNdgcFePne9XvCLC5/W9NXAXw/hx4+fQcQ17On5Li/7Bp9EXH748TGnt++1SV/O4s1x4UvM+Zn1z0jgdJ+s1UTwqOby2xM4dHEIb3X8wqIny4XNYDPa87MOuz0+25tqEmvtfbvPZGIu1QmThC0u3WG4+bHYuNgbcuEQb+7xt15c+tVZb43l1RNfGD3qL9r902/PP//8i89IX0oaXsd6tc8B3PDwucdnN79b49eXZdWIf89rdjh8eg3B8azoSxyY7kyfB607R+v6gVP508lZj8z6v/mt+ZjZwvMZFR95cCHiDf70fA06eQ3PxOI2d9zLEwec5XXP4Pive+19+SqHtbF5xVa/HPL22rPvDuMWb/2u52JhNMTwpd/P5urAzwgXtnybPzwc8Vif+MFiI/zjwk5g4uBu0S1+X0Tx84Wge1VfYMLOJr47GSbcapV3a7J2Nr13wRHn7vW9EbzuZ7zhuRf2/H0Jyl9+tmTX+mPwx5/tla985fHFtZ71t3Pz0wc+xZj1RV5r/mrHAV8c4Yjjozb+ctUnuWHSec71uzcdHH/o039hrm8w6Akfe8+ZOMjvzsPCCQ9foHbf5ReH0/9h7m5zLDuKrY/3KABz4SvixWBgIGBkWYCQjMy1QQKMECMADIOCeWBeBAgjxIuYxK3fdv+t9aROVXebvtdPSHkyMzJixYrI3Pucs6u6uj0zXlzYfK3jJx58nO09fHN777mgxl6unbV8+Wsk/jgQcWHaTzHSs+MPSw+7Zt7ZZV8ebGFZJ3JsnU35WNfY2p/s9ezy4yuOfPE3x4sfYe/a5ENfTcuXrpzY4idPeDA0tt278SPwCDw+OKq3MV9nLA5s48xeHPtiz+0niZ95NvBwx4cPvXVnRJ7mmhxqsOIdrjPmOmt/6dsnvfrhrZUfPLGWt7zY4kKKn4064iYv/GBZE79zzhc/sWCxWRz2fK3zIXTq5V/dwOdjXX3UBlffw996660P/Cdcn/lBu5+aISiJpOI1f5oeeUkptgJ2GBXFWDHTwatA/IzTVUR9hb8Wn+KFfYcjnFtu1oqbjw0tnv6UfOCzlUu82RrTt27OR5/OPJu9qG7FSxenbgjx2th01unYi2dMhyedsSYuDpo93zl+GjvCT2Pb+Fp4/FI+2VDHq57Oentv3Focs7Emdjz4uGDKIV97xy7/8ODkb5xY51Pt0+vL1Rh+ko8+PV7GaoaTs67BoK+u8adbbjiEUbx8suOj2UNx0i8PY35hZLt76cbiZt5Nl70bDdt4xVMvB7lU7+Jaaywef1h0amA9HjA0a+VqjR3pRli87fngRcdeLmItVvbFgFmtcCqv9aGDpR568/waX4rHL3SwxFYvnM3FFN+6NWK+OnrXVLzZFIMOjoZf+ZYnWzUjdPatPPMRi5iLIye4YvDBtRzp8G/Oz5gP32pkv/uJNxsx8YgLXXnxE/tJIg6BIQ7BB3/4mnlrrZvbez2bxq3jAVsfJ2e83ziJG+ykcbHYaPzvE7btLRtzOPmd3Bcn7tnrOyO+IPhJ+o9+9KMP/JP0jRW3J/1Ge/mwfyhv62ruTKj/7lcY9rR86NwzzMtbjeS8Yk2rJsZPI2FuPH5wzjPW3rCNTzFu8WntST0O4YkJy1wdXA+aeXmfsZrDUduV6lB/ay1/a+zal2yt4yV+jR1OGmFTfbquqx8b9tmwI3o6jY3e2bHf8sjvMn78wua+XHw2dK7cf8Isl+LD1Ojp0oMvZu8hMDSSrfF9HKwRtomxWPFIrw/bOJ90XQOnnXV1KwdzdVY3GOa7xnbrzW6vT/beB9zH4wBPDcw1eCt0+NXyY7Pj9p+u/FtvzgcHenFglpOe5G9/rJuXLxzjcgwnfJh0Wnwu0Me4jeuLDY8POfHp2OHDxnk73wez0bPBIy58Nde1ntz3vmd9/eVQrvxw07KjW6Fnv3Z7T0m/Psbp+YatpuWMk3Fr5sUq3vIODza7pJqk59PeZVNvTYPf2bMGg4QbD7WqXnycaXvFNz70+dI1Fye8y+DGCxvS+1P26eHFxVhcghMbrfzFZUun9535i1/84nP70zH+uf9rr732/oN28Xxf7gEETmqjFz/edD5TeDCGq3sFXXvEjo/8wuhzJXv6HnQ4L9WXv3roNWvqSMcPL+K6EiNbc0InjpiEPxwY3gPUUa9tTmzx13AjcRGjfRHfdcIOH+Nw2LPjr5mrkT3Tw6Hvz57wJ3zY4k7o40ivNmKI1f3XHAc1ZMNHrnp4sOjF1Ih19tbZ4eI/GvQ5FvaetTDZxg9OfHpgHFc2+MAptnjqpfawfVYW00Nc9vQ+/7PzYKwHbHzUi406wPNbrXzp+cvfPJxyL0/YGsFZk2dzZ0QcTQ7qqsGthrDh8qX3gBpfDzKJNTb4xYWtuOnZ4azu7HooGifrasNfDDbixx0nuvZR3TvrcNWHvbqrPyxzPjjA7M/EiFmtz4fv8NnrYaoxW3gEdu9lcnHdt3fiETHZa7DKMS50bKtx+HDlKTZcsTU49sm+xQNWsWDhWq3gWFdLTX3EoBNTDuJYCydcWPgRPRu1Lhf25ZMdG5jVna+xPMQl/Gr87JOc6NiwpcNLn+BjnQ8O+MeFDdvqVj5scVRDvvTly5e9nLp2YWqw1BAXzf7yh0XorJvjHV/YcOmM2XW94iKHfPThlhN+5UAnJmzXGVz+MF2jnfNyql7FwLP9p5OjvagmsMtxucGPj1o4a67R9gyuMcmPT3hyEpdPOOJ39vjBxQVnHF588cVHP/zhDx+9+uqrlt/HvyZP8fLMD9r90wMkFZcoogI/i0gKeZthM40VgV5ro9IphuKwFY/QmbM3/qDShoR54ohRXHkWt8MqPjE/6xAvMRqHL8f89NY1G8y+OnRR6fHIZ3nTmbcXsLO1Bst8ORhv7eJYrsXnvxyyK9ew2RG4YfAz58POftI5wBq+xTnrYa7xJcUxP2ttTXOeeiODrYm/56i88zHXTklX/F3PFz/jOImDmxyJG005q0ltscPX45sNf3b08Nau+HrxypUPoW8Pmqs3nPYNnhZf17M3E/+8z81FbLhhFYu9Zi43NSgfMfsQtHwvUo95NeZTrsZh8QtPHHMx3CPETOJjbo0U0xg2P804zGzq2RafnZi9kVR3urPG/EhrfNmos1rCxzHO7LR01tVbrY3lf8YIG541driG2TmjZ0vwsL57TQ9DLA2W3k+z1Yd9GHrChk+x6XB0H/ah1Tg+OFXfONefPOCcgrMWDtxya+30ac6HzZ4fsWGUCxs50ttbXw68OYthbTkWl311Ofel2PXis4XVPm387O7r+cWVDSziQ7Ev6N7gn+d/hvqkB+1X8Kd4qe5qX712v+TlfDkz8lPbPnyBL299/tVNHbOB8ZDwsbekvVj7MOnEKi598+zDKv7mk83T9HBgwIehN+98Wb8lXTfW1JVfch8XtSsGfw2+ujUPQx83fIzz17deX/z4Nucbdjg4nDH3vp3vFeSBF3bOjCZGQn9imBdXT9S4M+k+R+Dgyb6zdi088MJOPhszf7G2XtXUej54FFOYbIz5stXCYr/5siPFNO6e3H7UWzP2nqKJS/Rww4jztfj4JR56Ut6Pl6+uOGzwjbPF/LLPn/5W3VuHQcJOj7OmjnRwzhjFqo9Tc5jy7v3LPC6w4RafTTHYZLtY7Ut2MBL23vezMT8lzPDh0J225zyc/Dcna97PxL71GSjf6hk/erX1Wa266mETdTl57pxN3PlUT/f2PfvZFINf0n6pvb1wvRJ6c/GKmQ8cjU+fs8QWR+9az48PW1j34YUrZthsqzWshC4xZk+M+Tc2bz1cD6D8wPx5/o32119//frTMfj6LKPu1dCe4GfuHspGzdwX6NkSYxzN9dWQv8ZHb181een5qTVcok78zfXidhbMnbPOJ3v+mnh6/h567HMFfnx6/4AHh54PLrg5B/pqjkOYelx8XjUm5rhrfMTGA0Z82IjVg5fOAY5+q5gdgVktzeOMA5vqESdc7YE50VfPeIhd3mGUu5544Ophu8/v/PhYwwUnefEVz5jeORBbjdnIDd+upXJkb03+dHKGA8Oaz6T95ic9DnoCN2w9Xxjw/LZzNRa3P3OiBvyrqTh8+DcW15yeTr7G9BoMfbpqSOdhv7kmhr5c5A5Xrs4InM4STtZJ+6qG+bJjE3c4/DXj/Njj4LwR+2R/2XTe+cDGL98etIepzuHgA6dru1g9aIeDH+G/dcKHf3q9mNsux7sXtrV0YTXnLx92MKyrib3HA88eIhdDfM26M8nH3pk7X7DoiDzsQ+vGdOK2r+xg0/tuFyd4BJaxFl5rbPGVg3pmy07bOR/2uONhP/j6kyzix2nrYN/kyJ6/PPi3d3JVo3ix88C5s6EPg0354KVWsIydXzz2XseeP46aM2iOBx97BC/YfzsAAEAASURBVKN/iaAG5cZeHt1z8S6HMK0Xz4P2aqAOcOVoj8w1Uk3L09+a756IE6mOXStqJD5fvPCv8amuxu0jDHyInGr4yIlPOe77AXs4YuFoDWZ/Oub/7G+0+4PxCo0I0SsCkRiS2kOiCIroBqyI3fzoNbrdJLjm9LAViZ3i6dtgMXG5FX99H+J2rvETx6bALZZeI2LeFzc8GNkYL5/FLT9+7MSQr5onZ34bnz2/almtxCPpF2NryB+ent7+stVw0Fvbxm6xja2z5V9Meoe3hhvB1xnIh325XwZ3L3TlgF++fBJnxJnSh6UPT18u9GKcccJ6qOeDS3vYvpoXV95y0qpZPBabjr+asOtaMKbXSDHYi1GzphbW8aouO2YL31pc8uFnbN0HdjfM9pltucaz80Cv0bcmjjdVer4PCR83MDUTX1+t8oMHh611fWJsPYmLeT7V/1zLpx5ObzLq4cbvBrs3dXrtFLrqpIb8zjNfHtk27z5KXy6wiqOHVUsvH/b4NWbTGEdzWIQfbuLhp97G3tDVld8p/PloxVVP15Y3ZvUKn2/8YWt8auZs2Wg73/jsFweufdbyj2vz1unxgxGv4unZWbO3Poz5kCFHa+XIj664MOnK6VqYl3DjsP5xqB+3Jw7Fhe1e1j9Z+6A/ST+Dwe1BuzrEr/60f2jeNavXqoM+kYv3ej2xZqxvr3BKx4ZezUlY+sbXwryw1wgbWB8kH/78dr+Xm/HTCj6dpXJb3BNH3PIwLg++4vI1br7+1tk/iR+M6oKbePny14g+Phtnx/nHOT/8wo2rGMtt5+LEafF9GNas4Q1z888HFn38ywFWvnHqg3W2bOKiF4Owlx8797nW4tA9K19xNPeR/JcfHV9NLoRvXJcPG75xNidsinHqzPNzf9M6e/R48a9OcbuAH7/gY71z5j5fHGt8ds42vMURhz2Jczmzd49WvzCzy0e9xan+xbBe4xMXYxJutdN7r9OyxaNzixthV87wq9u1+PiFPxu2hJ1xGHz6rGDtlOyLnS/cME+fneePg73UjIm9Frtzun6NxSk2HTx74P1l+cJlu3u4/IytJ+ZxgeM+DzexXqNjAzsMe7v6eKWX49adrwZTzj7DiE/YqUV1KRYsYzGtFftyevyS7eJvXGanH9v0xjCa40eqhYeKX/rSlx798pe/fG7/Gep/3/2N9j/84Q9XXA98iiffamA/fFajUy8PbMqVDb3rxtnR01VT56XmM72zIi85qbnPT6Tc+cPW2IhNZ51v6+b5VCdxcfP9o8+nbGB4YAMThnG8rctJw5OUm54OvrgeDONkLmcx+BF9Z9i6Vmy1cx+EBUfO/k42G6IXi+irp9554aO2GlvnU47w85UjkRcefOi89xG2uMudnh8MD/x9V+ODI3vreLCBh69c+auBvdXY8KmGMDrf1mDhLO/qa50dHi+88MK1H9bbN/EI/mxg48kGVt8L4YjhmmC3+2GNn3XNmOg1MdLrk+zlrcHUqpVx+69vTT5w5euBIX38XFP2i3174gzKRTx16bzKkY6/Fjdj/j0gF4s/PNzsBRz6ri9j4m9n2z9zOL6r9S9xze1f+11sNW3f7Dtf8a3juLWJY/gwNTVWA4Jn9bLGHw4xt0Y2Bl85yQ2WvPwAQI3FgqEnsNjxqbGvPnRs9MXuPMJgJ19j+Yin1mzjRKeF01gfrjF+akpwKs/iOivG1Y2N/WDnmSg9Hl1XsO2Ba7TrEAZhoyZEHe2jNVh6P0Trfd0Zs/fm1ovDD45eXOfXL0F72G5efNenmuGCszkcueCFh3sD6TzRs4WjLmoJDw5+ejWjt1/scKQzti/0fO0POzxxFxcWfLVxP8XJermw54dP/vzkwJavWHTlChO+mHGWU/WCyVYM3PjKhQ6m+hI4mhpVNxxeeuml6z9D/eY3v3nZ8X8WeebfaHeoJIwkkTBiCQJPIiE5ReyiaiO2l5wNY0squHnx2hg6BSX3xYdtrQ26j2M49TiII+f1KSYdPq3ld5G5ezFnC6NaxZtNuvz08DRjvI0drqRYzcMwZ89PE8eBEZ9eH+84s0sfHnx60mE0d/DyC4e+lg6fxvmb87WGU+NixVvMuBoTNvzT89UIvcbGupuPC03uJG7VnF8x6TQ2hJ7sPNt01sVZLusXnjzZOD+LgSuJlznbrqew+VQntuWb3wXyGKecYDVeTmzh06VvH/R8nC9vUr0p0Ikln3Jlq8FIb824uH14il/9xobLzzXNF2Z5Zy8Xa/zYm2tJ3MzZ7Hr2cdTTsUvMSbzYFE8tnHX116pRXPitfzhq3JtQfNQl4V+djPd6EoMPXDGzZW+tswCrfLq26KynZ68lMNjKy33M3BtLD9rVPqlO5VJcenauLW/O9g5OsnxXbxwfGFrc5Lt1p89mMejg6/kkxq6v9LDCZmNdax2G/OXtzVWOpH0Qs9rzg8cn/pfxvGQDX2ObvznZPMb1waE6w/b++J/+k7UzEF7ng/Zqy9b4aUV91F/D2Rw+7qSxdWvb2Khrsc2rGZ26mWvG+Z78Wg8LzsZ/KJewisu22HuO6NuTbPI1z79+MYzjLo/FDYNfPuVdPerpy419scQnO2cHTyxj8Ukx9HtdL6617Ksp38UPW1/Lhh1dcc3Xd+2M2Z7C3vu4Zh2PPQPlF7a58eaxtZaPues9Oz1ZjLjAqXb2nQ1/63uW86fXqmn6eJnHJ9t4WCPxyE5cYy1bYznAWF0+cHwx07q3sS2X6sNuJSwx5cDOfZ4fMRcj7nR8OtfWExiEfecoX/PuF7DS84EB07q4xS6GtW35Fjc7uMXtewpbvnJrj8SLAww+bMQN25ywW0501sJQ6/Ylez6nwNUI352fts3DiWux5EHnPZ3O+zHMBL98Nifr1tTc+0s50MOs7otljYT33uy9eT4w+zy3tdkcYWpiwGKn7nTGOxcjX7YkG/ZyLndrMH2mWezi8YNlTX+KdbadAfHCyfb064yxI8XaGmXj4Ye/0f6LX/zi6ssn7Kft8ST+dMz+RrvPMvjhYF9xYuta8oCTzj75nFO9zY27HvV0asjOuAbD53q82YnFrjzEpU+aiyuGe0nnk64axQVen03FtrfEOj+59L2OvlrzY9te0RP46fFS//jB4hf3cuVnDZZ1WK4P8enkD/Mfd/9xIOFP39hc4weHyBUGX5hiaaT48YJlrT3pWmIHr33kC8svSWh8xFEfz1SM2du7HkrR+Y/+1Ni+WWePa3sMk4gnNl7WzK3Fjx8sPX37xpbwizsfenP8YZmL32/f4uY+Dac1NaiJgad5PNJV69bFF8NcX7xdF6918YzlYo9wNyf+ZbfvCbhrbDRj4izEuXNAL7cwxILZdw16c3rc7AUMY9hEnub+VJE1ePBh4CMufzxgJXQeturVh511djDMy1cMOnH05myLzZ/EFW+Nvj0Km135Oou4itX3TOffg9we4opJis+Wjh98dvEQK1v28OHqT97mMDy/gAdDg8FeD19jZ64PX1yNFCP7bIupZ2M/2PT/NoRrHQd+nqnYx+pvzf3QD0XY8CfOQnE8wO9siePzXHO28lJ/OO2Rse/l/WAVFr+wxMdPX15iOvf84mUv1ZAdXecJXvtrTKy1X+VHB9O+W8OvepSrvOXjBwp///vfr3ji8i2fxu0jH/FdB2qCA9yuR9hszTVjmGzC1tPjRq8eepgaDHGqk5zElIffaP/JT37y6P/0N9oligRBSltB9iGRMPISVtCKqsgV1lhjSxQku/DpKmjx6E7JPj2+p641/mIWV0wxFJyPxp+dZt4Bym85lI81h2N9xQzj5BQuP2O+xuw7EHFubo1NuNnSVdvwxCNhinFL4ptfsdjD10h9XJuz50s2Bn3NWjwa39pXmPaD8DV3UaWjN3au4geHXS0O4rGNG7xyDc+cfjHYxzVMcRO6bOCE1XrxzPOvDvnqiWusPON9LcwL2/zZwNc7L9WQTVjWNHOtHN1o+s9W+BL+YRSyWPQ+HHTTgknoNkc6a/nhwtd5rP7Wt1b8s+FfPerTsStW8a3FufX8cMiOzfLaNfnHV1+N2MMKVyxCz4ZfPbv0MAhdcfTFsWYez9XThctGbDpNrM3BGpv4wiVsYLiHeYNj403WB4Wt+3vW79mz7XzwF4+tN3Rv5vaPnhRTDBI/Yzb4xNUa+/boHFtPrBUjrNbo41M8/eauHuLU+FaHfsuETk3i2HUCix8OmvVTwo0zTvDv43z63zfvfc+XE7/R/v3vf//RK6+8cpkv9n3+D+lx7UG73ygIT60S+T6NwHL/7VpWDziaNW11xn0ws7Zx8IiLtRXzMFffmN/uO/t8Nq/s9e1rdvoEXtyyc9bwJxvLPAyx8s3PWjWwphHrzdkUn665OI3Dth7eBXS8hKkXgz/7fNJ3zrlbK34+9Mb3SXHuW6fHubinXfHojXefzJ0TZyu+ejbZbm/cnA3eGh8S18W4Fh6/8L1VA1jFZNp8bcOBLWZnI5s4LB8+cdbna8zfPYR/Ps6e2Ox23+AU05rmfbwvSuYwy6GY/Fbg1+CxM29sHv76wcXT9c+G/Y43rjXz4sCjI+FYg6MGWno9sZbwT+KWLvtwsqu25cUephzyNffelw0sY77xDY8tXe+T6W/ZtlYOxdazvyXW4BfXvPcvHImezrVS3mHxsxZ+sfVq7bMbH7iE/XJnF+byCD9+era9b1kP98RjVz7szNVfM9YIzHiluxbuXmDDUHeNnTg9jMg3vOyXS1h66zU+4S3PuOQXp/Trz49eTsSDJr/R/vbbbz+XB+1//vOfH33rW9969Lvf/e7aR9/HxSzfOJl3LvAz1vBSCzrjrju13Ic6zg6dz3w+18NzZtybiZhwSPVoDJsOvpjdz42dWZxhis2W4A1T3GK3v2ycr3iw5ZuPXjw9TvD14nvwI24ccYFF4s9ODHHjByvxMI2PB1c41qwb49m1mJ946mX/0xXDvPoY4yF2Yk2rFj4L8tXsh31yn+cnPtuuaWN8fMbX03uwbc7HujrKR2ytfOSgFhpddWldfLXUw9EWI/6w1Rk/NfAwT+3whum3b+lws1e4yRWedXoY1UQ8eraamNZr8RHfmrh6XNPpYWhETvxgqIe6isvXn7TA11rn3xg/fmxINaBTO3oY8VODvl+whSE+ezmrR3sUHl/fzeTOzns6O3mbw9BwZ8MephzKDRbe3eNx4E+y4QfPHOft2dFpeLOVW/mpq0ZfTeSRXXvU3sNuDe/i8SVw5ULfnK790auvOsiF8KXXa/DV1BiONZi4tDfy1egJXuXNnljnIxa/clRzObPHTSxrfR+2Zx4cV1N4amLOTuPrTLgnmcOwv/3QTHyx4Vvnq+FLV01g+MGKvjoY42cuLlzf8eQBw7ozojbmYsdHXJzkKD4RX1z+bNWiWHLTYIkZJnw/RHD2YBF+9ix/OjF8B/cDJfh4wOFjLI6Gw1kHuVWH8mHLT17s8THX4qk3xy1sXNoDHItVDPmL0Z+O+frXv87lsrsGT/nyH/9Gu8RKrqI8KbYiIO8ilLB5h6TiKLimOEmF4pPsesXedXYVT2/tFk86Am/92ygFzyb/nfPR5LL+cYbtcKhVwi7+rcHMP1s642yNs4EVn9WF3YFUSweZLR1ho4XfXC+GJv/wxc/2Anj80no9P2M4pw+8YnbziMvmp44461f4k7g5R/Ii8rLuLFkv/rV492Kejl3xrJcX3eKFmZ9+JczWrRnDx19vXk3WN1vr1U58zZzUX5PHL9masoWNZzWhV9vNsfVs3fS6mVjzJuGn+D6I8YWLv1h8cFyesH348yZD2Fmn37itwQin651duPmZi73zK8C8sCHFqQbVKn99tuyrW1xWpxb0qzNfH2vxuwznRQ235VfdM42j3psNPI0doe9eE/dwq99i5SfXfPnnWzw68byp8DG258UP05zP4qoz0e+bddhsO0t4xGXrx7a2+0J37vXinnuSvZi44kOKW0w6uN1DrBP+bHrQbqwm6gPTdaFnVy3yuQDm5Rbv4vMh9efY/Kw9HekDhw9SfqP9e9/73qOXX375Wlu8S/GML2KeD9p3P8CJUXsI3nVcUwvj7nn84NKJ2f5YNydnLmpHsjfOJh+6W8Ku2reO00N+t7CrRWswNVjWSOcjm2LU02v86Pgm+ZhnZ8wu/9b4t1Zs84fyClMPr3j87QWB2/1u4+Z7Gd29mBc3Lq1tby1feHyaO8vmG4fv2ljbc9E8vuzhhcH3FqZ1dvhkyzcJo/n24dHxN2/Pwwp/5+zLtfXuTdZI+sY7F4fE231IfLlX13iwgb323Xfj4MuV1ntLvvmwK75e/P3sfYHPSza4kHyN+dq39g6382zKg11xT7zy5xdXONUwHb8EVrVJ1/3bfDm2Xn34lUu2YlRX494D4IR1xgtXXHuwQkfKe9fiEa618jnt4mqdPRGrL63w7TO+9jDM8ttY1sKAY198dl4f9mT5tD8w1ShsdmGy0cKvDyfcxWYTdv5h5te8M1AMvp2ROKlLn234h/EQF/hkcbOv9tbp4O0a/Uo54MqXvTEfDx78XyvP80G736x75513rs8K4omDAzGvLubWcHFGPGSw92c+5s5tZ9+4xrfr2JnxQMZnf7j8VszT1ePjfYAPHDE0c/cOvMXQykFsD2A0ONUUf0LHlw8eBLax3DsL8OgTfjDwMd7YfMVxloqNJ70H7fLu3MErLh0fzTi+csCxh2piqh87NvzL15zUNxbf9c43+2ovFhGncXZi8KOXv8+SaqLBcRa6b5uLC8f9JA7tG9vqDI+dNdxhVHc6awQPz3foxPag3y9yqSs/3xut85UjP3p7I36tvMSHyVYO+s4zvTh8qlFzeMbhWBezZl6rJrj0Jz/YdU7ptbDlzoeNeuNl3ZyEKzYfgmvr5cKX4M/WHti7ePf/prGBKa56ELbsYMq1PaXzgwz3Hra+7/huT9iIhat41daaPXFGq6V4JP7ilIM1/nCIWpDyMGYvHv9qR1etww/HGj7s1QAWnVa95JxYPwWm5jzB0MqVvdY6G2PYmrFY+Ph+zJfIQV3kzgc/9rCcbz5+Q/uPf/zj5Ss/+5HAhaGxNceph81iVUdrRL+NDi8xcXBfqeanb/zwVy84+PAR33pnpxpUG1hxYNd9g17+cIpbLTuPauTcsYPBBwcY7RsfevcCZ7K6VxtYbMRmp4+bvljltH5ilK882Wps2Fc/OISue2X1oC+mNTn50zE//vGPH31oD9orQOQiaH6ftFkdRAVp8xTFxiuMVlHFURTN+haqONbyT6ePY9zC0RN6jaTbeHS7bm49vPzw6iI6/dmsvTnZePFcHRt+DsjqxSL5XJN5YcuGr7FaqjuBtZIN+3CLqZ7lCseY1LMz3gMczzjkz68Y/FxE+bXGx5q4+Lqg48SmdZhq7Y2BTXyt8zMPM67W4D50Rqx1UfLT+Gmk/paeb+s4w8GRyBOneNGtLXs2ejjwjdnU+NAvDpvmccouP31x9d1Y3ODi5YbnDd1P8a3joI7W7RMRK5GXD0tuqkRsIhbfrQV98VuHrT5h0hufLUz9ytpXr+UAhz78fNnIrzdJOBodjsbEWGMfLn32q6M3V6feGFaXLd/G+t4Q6KuxmI1hELr2iV8Y/KwRuebLNslWfuLZZ3bGHsgsXrZ8Ydsf15aeVNP2jX3cq1/7Lod4sCHF2j2xZh52NvW4Gus1Uq70/BajWOycUVz1G5OfOqgBnsb40+u1uNOR+mvy+AWPru/07LbhjJMWpjGbcs63Xs1dH66vz372s4/efPPNR1/5yleu5Vs88nuaXux90G5ePfNf/nFtrbkeR/m35+bp2Muvs8O+vQpr+3DpjGGS3Xfz8mezkn/crdGlX/v2RIzTvlzCbj0s+nTG4cOk3zj2+/Rrvf7Eok+nT9Su+ukfks0Ph3jlb925D/++mGJUIz73iRibvzjmmvPQ/aKc4bApT/N9n6fno8WdTWO+NXpiLQ76YtKzzcb8PolfPnIvTmt7DVsrTz6uBXbpxGFjjT4serr0i803W+vN+RC6MHHpHpatLy/u677YwOnet5zCab3P3vG4At29mGvibd7ZqY/97ZqJa+twrFUXHIleY5cvvTjmcIqXjq1WntbDyz4fWNkaJ8VtXl89zfm5//cebJ4Ur55eTPYr1QFuUuyuuzMmHy0pp7DiIZYvrj6/qFVfYO0Dm9Ov+3N1xoOdOR/CZ/MNZ/MMtxqzCQeWVo7lcM6LBYMvbiSsjde4/YdfLtZg4IyXph7qUn3ThyOO8c7FNdcTfXtGD6M189boFyff6mBu3Zzsg3a/2X76XkZP8RIXv9HuC/9vfvOb6765tQGjBuqhxRV398S+L8XBOrvqFg36znb7VRwPHj14bj9g4xY/9loYzihb3xXYtuahjzNIF78w8eGn4Wqu7ZnFx5wPf+8hxuzdA+MtJ9dN1+nasVcXPf7FcpZ8F/LZ0JqHafLmKy+2YrI314yJXmx11bMjfNWf7Yr1Gt9qaez+Xg3M5RyP3uPEkJv6EHbmvTfg77OkubwIXQ0mH/754Ag3zt4j2MH1HsMWZxzaQxh88KfjA0ft/FZ/f3tafLh82cZbbVwrMOLKnw2uHnipqXpYN+88d9ZxYosLvzjgTUfC4s9GPBzkh5OxHGGyVTt2zlR7as4fvlzh46WHQ3CPV3nIu3qJy148Y/zsTw94za39+9//vnpcauLDZK+H2fVUTmruz/zIyQ85PNS1hgNRQ/FhprNXcPCBW82M4ciXrTqzkZ+84YpX7vp4sCmWuPzVTlz4WvGsiUPwxa89NQ4HNj+8iDE7uISejT2zl9nRaWKwJ2LvDyKqBT/1ZQ9Xk1d8+cFwBuXifPt/M/BUJ+emerDb2nVW+PiPb8UpBz7s42qcrjqxlUO14u+sJNnDCJctDtbUw75YS5w79apWxYUrJ3o1cB93DwrDGoGldtb4Wm/P8LN3dOzkYb7xi6en77rIJ1s5qDcRz9k319TVvrGFk17udGLKEXb1hV8sNumN6eH3N9o/tD8dc2X7+KVDgPgpkibWFKcbpKQkYt5BplMgxXEoJLyyWGwT+lq6enaKpsFmly9OuFdkvcZGb52tRtdBzUcMa22qOZ/sYOzY+rOIOHjHJ24wjLVT4krfWN2NccvPmOCniUHE1Nhr7HFYoeOvZW89LH5JtuGtn7F1a8XXOxedifRs8WC/50h8OiL+KWHD0Zbb2tJ3Poq56ztmqxXXeQ03fnRbH+MkW3FwlsPuQVzpsg0rnOLHIex669nU9+bo5icmLGM/xdesi63+at2NNCzY8vKm3IP24unxVUP2p9DB5q+xI/i3Vr7mq89Oz4ZUu2vy+IUPffsYD71c5eOGLHc6WJ2fbM21+yRe1osHV+0S+s4qHU50JB7Ni0W/15l1a/TG9TDgmZNyMM+GfQ2mnH1xoMPTFwmSj9ytVRNvaO7LzkF1YS/uzvGLczmqRTnR3ZLi6LV845wPfvD1pL1nJ0Z8YLTn2Zk7Z8sBjlqoAX8fMDrj4tCbw092nA4PTdxT2IsDv/x2bI1v53/93dc0H9Q+85nPPPrvu//47H/rQbu64NH+xaN8cTdu3h6x6wNP9XdOtHLa/LJRgyQs2K1bE5MvvTrhVg3Nk/zz0S/X7PRsSXjmuBbDmpjLg+5Jwh6mvDRzjVRT3E/edMlypt95NjDjl+6hHg57cTd2PriJQzZmuuzK5RYGG/bFMC6vdOeZWFz2xXPe8Q3TNcv3vGbgV2Pj4lV/cenCow/XWvHicV+/MXCBWQw+xaaDS7rPiEHPBo6xfu9N5a5fLOPlG3bcrWn87KEvDu2lOO5rvkjowxKbTVi4FleN+yxOt1IN6GCTcrKGRznR35K1gY+DtjiwrGnsrZ126cWQCz757JgfPGL8tMJHXNjhw42nnpSDcTx776BL1i87uL2vyAcWCbuc6cQuL/Ny8t5kz/V0fYGFZw5DnOrgTHYttC4ee42Ig9dypodRjfXsYJNswwmrHOKbfzma426O20PCRisGe+cNBr5a8fDqWsAzvZ7AiYt5/FqnI2Jl21pzfePF4gePb7hh6XvQ/vOf//z6EzJ8P4iITfZBu+9HrmF7rD5s1Nf1Xz02nvdstnRst26wq7Vx54INe2vEgzh/+kO82unHt/PSAz51ILDUCZc447JYxe56CYsff3uj3/cXeOawfM7F25hd9RAfRvvkPPHpXMVPPH/Owb00Xu6TvvN0LmAYi2Hc/osnNu6uz857+yRWcdjyEyNO4VkLA55YbOx5z0tg0VsXR18Tmz8bv1FunY6IQS9u+8qPvSZ/uNbtt7zZWau2cMLACyZh177A5O8hrFriAJdkzwaO75IeDFv3mVwj1VbebO0lnOoglrxwLjZsjU11LK6cnBVrsOXkWmFnrofVvO+4Hoqyg8POddSZw6vrDWex4eJaLfPhJ1/4sKzzN1YjceQTDw/ajfOTo/nup1zwZEOsqWXXKQzf93Bgix++Gi50xHcOZwufOFVL2H1WYFvOOMP96Ec/+v556jzLwz56+Kke7Dq7xnTVuv2yn8SzCPzo5cyOvbhJe6oe8JxTko2c8SMw5LpnJEyx2FZnNmoYZ7nHCza/zoHaweX/7rvvXn5ydL+DA1MOzgoc864Fe+0/voWHP3u9lqy+86IvZ9jOGZ1xOeClwaSHgydhK7f05v5ckl+2DJstvuXATw79/wrs7KvYsMTNZ2NYq5byZKfXnJM4bT6w1VmjD8/YHrcXfI01Y1xwgi033Ok1vtZdC5s77GIYVxM9Oxx70P6h/WeoiBGFqS1paxHPzuZ3g1IIm+lmTO8wZK84xnCTDh29OOakmPRa0lzfxsEtDjv4Nmbj0POhgx1O8en46LU2tAPAj202YnaBhg3zlpw8zOHE+VyPg/7ExivuuMFgByOcbKxpiXUXSPp8itNcX5582bd39MVnR/Jb3tnxw4fonY2w6IplLJ+9eRXH2inW8CpX8/vE2sY87RbLWnmETccGPxdp+erZWtMIHT/NWvXPLs56uvIPk47E6ZrMS3HC1rt5dIPsRuYN0Qdib4p04XWTFI+kl1cfwHCjL1acmw+d/8e/eoWZfWfAPN67H9nHyRphW2OTT7itdR/Qw0gfT/bV9xYuHRuNL1u5wHO9JNaca42w333kZ41dMc3hJNaWpzj8CCz25uGyJ3Tb8PImoxH77YtEfmLsfqida0uz1/GDz8c8iYN5ds5NXIphrXWx2rdwwswvvV6MjZOvvGAR+brmNo/iLGf46gDP2JmPL7zzAzMbtqfALPa5xgcfvZbw0ap3/tmpgfdBefSg/Y033nj01a9+9YJYrDCfpYffb7T7UGWulp2VsOjjWp3SlReezkZ1MMa7vaFvHG59WPKBR9LptWoivjrBM2afbTbh6m/VqDrbZ7WHhSucpLj16c8+/OzMq0k68/ISa+e4xJt9Qsc2vPRs4h/++mVXn415ceKQTXtqPaw40hE+D0nY5bk44eLtDGit1xeHTeeoNXOtvaIXJ1zc6LKnLye67gP8i7O5rO/qG3duYfoMIt6ePf5wq5k5n2pmnjhz1SBd/nGmh8VOPU7e5qR1fnC16sLGfd29zX2MjTg4Zbe8jNW4+0110remX47mGswavnT86IyJsTWNxNP61so6X3FI/uybLy492/DKk58aZNt6eYUVvrk1DR+ibuGHC49kW59+eVvjT8RZLvaALZvWshe/uHwbh0XHVn7en2ARvRamvia22jq/XV/ZiW9MxIDLNn09G+v17KyxrWYw6MRjp5W38dbRHH+y/pdiXuCFCatcwoUpb3wIjvaOzlpNvLDYaAR/wo6wIen5ZUsfzsanS5Zf+rA8ZPSb7D/72c+uPyHTer5P28fxfNC+35/Z9BmmepS3XHff8LCmhpq5PDSyPIttzWdCD/VghWcvNXO2i+17hbnfdEzYOJPsSXMYYuC18Xdsrb1nmw9e3fedMXZw2VQLc3WAF389GzrrzX0udC+Fz0cvB+Ow+fCVi8afzromLgw2tZ5zsNPgVou4qYk1c20Fjjz5GG88tvayM6BO8M8H7bdyx7d4MMtFLA+34MDrs7PYdHrC3lzDjR8uzqe6GcOPr76Gjxj+pQRRew8u2wt9eHKDpY69N8dJ7OqLTzWCWR3ZVD96WHte6ORUXs46nj34VSdrsLu3Wq/2erH1cPV86NiLjUM+1rORsweeOBF6D2NJsYzj7P2eeLCrdmys+X5v/pGPfOSqoe96fkCijupDcNPwce0Qa+b2Oc7y5IezVm3wLxadB/t85anRwfdQWQ8PTg/r2eAvR8KePxu6nkWYazi192ITGMScv3MmDltrYsubDvfNhR+9HM4H7WytafGCxxa2ePVqhp847Z1nI/1gUS7s5QbLvB9W2e9//vOflw4+nHLCj+CSHh/+epga0fODT9iL5zy0Z7suD7VnpybwPIB21sLkJzc9oYfnOrWHfFx3cOBZF18zjiu+amW+gg88HEhx9fa5vebXGp/lxNfZbQ+cM5zwIfHhR2D63qu3xj++1ZVOznzwVp8P/U/HIL9F3YJYI4jTaxWqB+vmDsQWi46Pnuwm7qGxrkj6OBT/crx7qZhs4GiLwa4CdxDiuhuMT6LwZNfFoZeLWCemdbHpibnGNrkV11q5ZatvvD7xwRU2qTfGrzk/Aied8ebJxoHUtx9iaKTY5UoHg16vsdUn1th3k6IXn17fAac37gKyHlbxW28/Nm/+K/HJJk5wE7rmuDTPNjsYYutx4aNlp7eulVvr5mHDS58vTAL3tE1vrbNszJeteCv08NfGutq70bshtb90bpi7L2J4w96fEMYJT3vjOt56bD7lJCY9oWNfntm7buyjud56/MUshjF9azDpiDydrY3FLrGuWW/Mfn3Yhr228Sy+eTh6+jDNE2P4YcXdOp01Yu/U235key3cvSzH4lsrvrH6bB5x0cO0t/bbGxG/PgBlR9ebnhjG9rfrj108tqbx4E+qnVz4lG8+7OC3x5fTU7zwCzMMvdwWu+uuuGKpjT7JDz/SuYdvDNM4XHbmpxTj1DcXR1vJByZeu29srau568EHGn865rvf/e5z/xvtr7322vXPSXGrNssVj2q3eRhXN+/Z9rH7nDHe5vnr75PWimueLp9iw1QrsTvnbNeXT/brbywXa52Xal/ubKzHwfotYSM+Wd+1ZYNnuZizjXt+xVvfxtZW8oFp3Dyb7M/1aqV+4mtss69PH0e4fO6TMMLcuHTm7RecsPC2xp8daS/otT1TYZ0+2eqTOJkXhz999tmeNQx/1435477rp+/ix0dOjWHkk62e3v7E0ZifeHRkMZrTWfde7TznD9N93b1KPHjhu691D+MfLjv3ejXnv0Jn/dTnH0ZzvnzSuxfwJzA0a3LMDne61rOl1/iHFw99OWefbn34hcPOfPHyVSN6tmq6nLOBz47A0eKT/bV496LOsEhryy9OYVjLzlp6YzGta8b4aenF2jmcamvctac3hx1u5wHP4mZTzHo2xtm1h+m3D2PzMG7emWV3S9iFYb25MQ5yiUt81KOzX2301vPbeXysi7Xxylkf58Y7pyPrv+t4mnvI6W+0/2/9Rrvr18PAPovj1bnobJj7HG9eLupRTdShfHDW7HGfAas5ffmWH50z173Ldc+PnXh9f2CTiFVsY/H582XH11yD3z3KZ1h+8mm/22N82MHgF0/z4sHKz5jw12DC8LmmB3Z07Dyo5Ac/n+olFs7WisvHurOOszEs3OHjFD8x88ODTdhwrFcT69UTD3ZsYLHTs1F33/Gsw8YNbtjZhsGuBgMmwZ94sEafDV15G8vNGp7lRx+ONWfCOmGv4ZqfmjvH4njIqub5nLFhyAG+nDoX8OFYo7dnuONExCPW8TeXo/dH43LnI3bcYOGkJ+yy1cOCyV7dibEcq4Eev3iLBy9MvZz/8Y9/XL5w6TyMJXzFgYmz3Owzce1/8pOfvHJVCw9N/aKOh99wnBl+zkF59V3HvPMeJz2+zmn1pIOBkzVc9PRyEm9rag0/PLNn1/XJD1e9WpFqKA5+BGZ5w5M7++pu3Fwu2VivRtbDwcW8Xj4eMPeDHbVUJ7xIcXCCp1nrftq1QcdGT6cenS09HLH4+wGAsRz9IJLgw1dL+KiJtuvZlYd1uastgU3k4dzA4cNej4+4auLasO7s4SUO4beY/NiJYQ2WGsghn/LrnLAh/PjwNcZXXPjG7PjoYdgL1xGeBL7GVyuetWoNR21x4ldsfQ12tQ9DjdTBWcTBGC+9OdzPf/7zj956661Hr776qpDvY1+Tp3j5j/8z1IJKoI2sGK0hbF0rCRevBwkkXclVUH2F17dBfIrBJjvxtdbr4bNRtAppnsCOe+Ods3VIwndY1h+OuTjsjOG44OPDhk4j8W+eTzHo2eycjp2NF8u89XrY1vgS9vXFXN21+PiFnu+KesG2FqZ5Egd7m01noTkbjehhqk0+8dVrxVNnFxEpv/iZ49NFzyb/8qQ7hY113OKeDR2J6+rXR/01uurDFie+Yrh4rYcVN+eDPimmnj+7uLUWbj7q5kaihsXrTGSj78xW5+LydRPrjQK+Jhcx4+2m5WbMNgzr2cB3zepvxcetmMYa3/bAvJzh2EtSfdkmfMSpPum3D6/+rFtz6zW6Gh0Rd3XG5Vx8OvXKZ21g5G9MzNWQvZrA27mc7Yu2uHyXq3EcsgtPjAR2MXvz2f3m6w1Szw7G7qXz255YY+e8FZNPuSzHuJWbtXTlIdf2Ml/9LVEnfkTMGp2xeq3gWmvPmmfHd/l1L9L35m6dFKc6hbG9OCSeu/bQWB34VlP+5n1R8f7oT8f4z1C/9rWvXVDPGuOMD/9Xv/rVo29/+9vXg3Z46nMKu/vqpu7WnBFNHubtq+v4FubGEDcctuIl1jZP686QRtqv7Pnmv76N9db19hVOMeOZrXnxwq9ng3NnY+OyKcZi5aM2/Ox1fvonSbbsxDav3vkWT29981Mr4nqLu56EHcfW8SzOaceWsN1WXNxIdZQvncY3fTGzxTnszhTMU8RkF/dbNmGztW6+e5ovHWnOTlvJJrtw8L0VO9/yNW8cNj/c1Mb+lJMerkbYibf82pv8u4dfDncvnU01FA++e6QvEfpisI8P284H3Rm3+PXFqs8H7732YfIpDnv5qEc54qOtsE9f/ub02+KZvdyNyemXjn6lOOGas8nOHG52i0NH5NKYX3W+Fo+X5ZpPJtW33nrvDTgYw07Hz/5qcVRb7x/VGDctTPz4+0wQTnUUr3H1EIMuaQwnXGvlZX315bj17MyHefYwitMa/2LIbdeN5e9a0MfduIaHcXzC1W+NrOcfD3O+5WBcfGvxMSZ66/R8/GbjF77whef6n6H2N9p9RhPH92kPiLr+4ocPvn2W11cD+9/52bzxVxP3BQ8+YRuz0fg4h+1z9mLR4cHPORSDjx4Pwt7c59Fd54u/WHIyr/keKNd92AnXnrfv5uzZecgFSx3gVQ89e/wJTvKh04vrc5ffBsYfHo4eXIodLzmwF9Meu9fFmw2dtWplrPbi4qXx0bLHBy5bDVd2cmcXFw+hup9XUxjy1vjhzIbgkt2luHuBReg1cTW+8aHvvMAl/HApZ2N+6icmvvaePX9zax5u2ZP4yc96ecJRv7DFxb/PwmL7bC5+dabjL248cbd/4tL52+SuP/vJl449/ub87YlGx18NnGFc5dY6vmxq5tZg4M2HeGDJrxhh0olJb+xs4JItHHvrrOGgpROLL52YalPN4blGP/WpT125q/Vf//rXi7+94COOXj01uPxh4a1mYjjj6gxTnelhyIFt349gyVmd1YktoZcXO3mVm5js5UAnVtfG5Xj3ghM9rnpYGi6a9fWBBZNeg2uOp33mE0Y4YsFmw56e2DO5y0fO8mEHN1+Yaqantwe4qh8uWnWAY6wO9oMfH/z50ce5vakubMXGX93hxvMie/diXmPHBg+NXgyx+KsJHUxNPOvOmTX5wihfY8JXDnrCD2cCj5SbfPmpqzqKDY/QOyO4uZdVJ/cD2MXzfsCHrx98wDZmz0avJeqFk7Pl/FuzN3DwIGxwrtbtOf7VW47mnW04uKpN8V988cVHP/jBDx698sor7+Neg6d8eS4P2oulSMgrisIbKwSxZiwhidncCi2hDmabqjAVt00tDtzkXDO/5Ucvfnzyh7UYbYp+D0H29cXQnxJe+XfgOii7Xs3SZRu+uUNjw0m1Yg8fTzmVhxhhsd8cVm+tXPnyu5ULO8IGFxjswrrF4T2P9y5G8fmJRXDd+WkLlw0+Lk4XJvs40sOiw8O56czwta5G2vIszvYw4sIXjjjil99iFpuu9fz52SPc2HXh0xNnHldrK+HTiUvwxgUWzN4UrsW7F3M3FPbs1Em+YsGrdwOCBUezpufrZuhmiz97+uLjyM+am50bl3XCNnyxNbGrB7/s9GHxD4MuPT8Yu4/hhqmvJsbiJ9nQZYO3XLRiZl9PX77itXfhw9BgavTFCkNfPfhbh0XM0/EnYS5/+mIa8+mNNrtqZR5ntkm5VFf6xYDpTWT3uxoVg0/XTX17Ape9c9dZxIOOTfFh5GMMW+78V6pTtdq1W+PluLyL27r+3KP2775YfDon8PrgQAeLTkw1pCvW8oRNz/bW+trumJ8Yi0vXFytv9p/+9Kev32h/ng/af/3rXz96/fXX3/9ngp3P5fbQWI54d07Kwz4b0+tv4bY/aqWm2fO1Vh3V3Ljzs1jqZf1JEhZ7cTqHYosVl3DOWPGBQzoLza0vpvX7hG1nKC7iafC2wTDno5bFkIcYZ23VQtu8yqU65mPeeYt/HFqj1xLxtfzEacyGLb5wxDnFPUFbjvD4JPyKqTeXe3XJrrj8xcun9ezZiZfA8x5MsjHmH468tKR8iqHf+1u29JtL9nHw/pwNH2O98+C9GM9i6Qk8nKtLPjAXvy9U8OIAA898xMmu3LJXR7Z8YBM6ceNPZ05fbLoVa90PjHGp/vmJsfnB0sRhb1ze8Ylnca3TaWxgJ+LBKo55uBuX7y0RQ578igHPGM59Yk2N4/M0PjDLG67Y+W+u2eAkRl/Y40JnjeChHj73yQPeuW/i8vE+Dpuws3fmYaU/OV0ON16qXXuNS3Vkjgeb4uvL84TjGzc2YZ52zcPtswns6gXHPJ3+FPjFYC8+TJzLY+vC3xqh50uKk2/XlQdVfiPOb7R/+ctffvAsXUD3vMAl/emYd9555/19w6Hrr/103/E9mzg3Psezi7tz4L7gu0B7356x8znEQ0o45vJjx09TG3rxjNP53NLf8cWJP1/x26seiLQ/OOKlZhp7+wkTBl37Yc3cn+QJR+8zLntr/jZ1caubGKRc22c+fNVILq4fefdgWE18LuTX97h86MJRi+qBIz+N4MCuOtGz7YGO9WzZEFzsge+S4qVXF/vWewcO/NUJHtxsw+WT0JE46nfMn42Y9PGkM7YPnTEx8ba37NW8vWerWfMgky0/jR0c6+b4ykde4thDNnzYwfbQ3Fw9rJcHf2MY+j4/w/LA2Tnx98PjIg6fzlN7wc/ew6GTO/HLZubW4iMOnL4v4MOf3sNy9vg7Q+JWX3GJdedNXiQuMNWLsLW38rZ/sOn4uWZ7oAlfzf3rV/uPkz9HIg98+Rmzc37xohNbPHnxw8kDTvla99vwfkBRvdla44cHHHhi4+9PcoiDs+upmrn/seOjDvLrWuVHcNP8CRf5GeOlh4kPPNjFV3P5mWvWy4sdP3tSvmGUBxv4OITLRlxc4wiHsBFDs85PXp23bC7juxec5CNfvrCLo4crPiw5l6c9wJEePj17Z4CusyauMRHDHqo1gadVExidQViujX/9619X/ZxRa3x76I5rkh8sY42wkR+snnfJuWtYTIKzmmrykbN9M8cbnlqGFT+9GGz5tFf82OMjXnzM5ax2xRU7HmHJkT8//tUWF3Nraite15337//vHrRLyAHQS7KC6IkkJFvCEmOvSY5fYmw9gacwJNvs9QqrZ9d6vuLna6zQbNeOn0YWK4x6a/z0K8tBLBtX3vIoFjvx2XRQTpzygKGJ1aGLI5/1v8UnnvBW+FWHM5/w89m60K0ezubZxU8Pd33lq4UfH3jVp3zguHlkC4uddRj58DO2rj4aX/OHBK78NWMYxDhMc/pqCDNcPNpbPt0sxXYzyE7vBoNXOrikmMYw4sHOWJ5qW37s3Mi8CVgTqxs9ezHy25gw8NXcPLwZn28k/Egc4Xfjqk7W41JN1Aouf3nr2VvXyNY4Pz0s9rhqxnJoje/Gy/7U44oDP008eRKYxHpCF2c9e3nnq14wCZ216hJGPaxi4aeVL5s408WBzjjcrh824prDtc52ZbHpy4Ude3P7Vk1gOTPegOIgtnW2SXW3n32IoiP85KjxKSbb+Bqz3/PAt/ptHtltfLa3pBrhLBeNNG+MI1sSrtj4aKfgww5eYx9ee8NNV37Vc/OAWc2LuXHY1vBdG5ystQ/G+LqG1MeHl8997nPXg/bn+Z+hetD+ne985/pgjKu4zyp8qmt7uftsXFtsPmpgr9qv7Koj/daKPmxY6sXmaUQsWDDKs/1272w/qr2+JiZhLyaBU+x4wY9vMcz5lyt9OMZqphmzqfGDb55NZ5e/dXOxCbtwjcVsfbHLn3/njT+b5QnLPHxjjfDjX8zGMMKJ6+Vw95J/mHz5xY2dWPzoks6UeXHjUawwYJKw1S8svuEvt9bzNQ+vvMRbXtbxKhcxt67lZV1cDT6MuLMhOKp192Q47bc47QPdyc0cTv7VRy9WnNmJ757t/t+9+yJw92Idr+UWV2vZ48aGTlupftn0JYi+XPnEiW/nOyy28GHIiewcTnPj/NmHwaeapIOrma+OLckfHsmOD13NGlsihvUVc3pSDqdd8dmw19o3a/LTTjscYOntR+clO/Wy5pzo6e1BeLuf8eQDS3x27U1Y7IhcWr8U97ywg6HX+OMC35iuc0wvjpzKYWHprJ21gXHLPl9x5FR8MdQKjphxgn1K3OHH2Zh+/ei06hwnfXvEXlM3Oes96POnY376058+l/8M9U9/+tOjb3zjG488aMcR5+KJiY/eOfD9yZp6+Gxj3PseP591PDwz1sqDHX8PX/QwYciNjcZePVqzbux7PT+x8fA5hvi+ga/6ibvfP+CwxU3PpvMO03cDa+zENvb3p+2x7zJ6+fHh/7GPfez6DMs2wZ0/3vCJOR9cfGYWy/cpD5/KHYZ1PnIi4skBVrh81U1fffRiyJtUY7Ui8ORC4MMiMPjgoolHBwtPsfV8YBJ5s8VBXHP2xvz1cRSHX3yswdLEhWHcntpDWPzhssFbz8b7C6zODHt2bOyPh7D2EAbB05o4dGLJpzPC1ncQ+Jo98idV6PwQpJqdtY8XXJz+8pe/XA+LnQdruIhD8JMPDPbVWi3khBPhQye3+OAMx5kTBx85w+scygFXOgJDEw+2PRHHnL9envHjp6b+7jeddXHZ2P/OPU7uMX6jHQdr6t3eyS1fcfAi1tszuePWb3aL4yG75ozywcG9Am8x1YNfOeIpDkzc5GgdN3HxoLOmyYNeLHjyLVfxxKWDqfGFrcHiq5lbw19O5cUHRvevuLVv4TgHYasLTHHliWN7xr5x54CtHM3hW5dPsfyQxHnAqX2AA5eEIxYOWj9sgAObsMebzjUgLw13Ma2xdc+Cae5cWiP66qS35nrC3/3aun2yl2KUA994sdGas5Eb7mosP3nCDkOPo3W8jfET19g5wCcsvOXqDIvFlp11e1K96ayz1Yytiw1D/c21xJhf51VcnPHn136zU8vWxP7QH7RLaJukEENSM5aQphikh+xtjuQ1ReRTgWwoUexiWINFsr0mdy9thjnf1vla08dhDwtM688icVwfGGJqxl3wxYxPsfDBo9zCMifssimfdPoa2zD0cbPeAdwaLrb1jYdjUizrxiurMy5XNi4o9uW2MYybF5cPe2cAT2LNuJtYujCLX67WO0fhtK/LfcdxgXlychb5k3z0OIXLh282LlQ23iT459eZ6Fyk14cVxgV29yI/a2I478YavZtbNzixNLzgyV2Pl3jm/NyMyhOeG1wYYpYLfI2w0/jp2ZC41Ntva/zc/MU3b51Pvtaqg54N7PKAQS+f1vksFhu6sKzhqFmTs96ZTMzjQGeulSOM4lUreKRY+lP4kXxgJuKdMa3xgSV2OYiFr7588l0cazsvlh5WOM5iuenN0+VP33nm39kRw3Xn/mxdTnDlqImjkWponW37Zk0c6/Do87FGt/NTVww9Ww3f6swefntsbJ2dmOYkTuHRsVmBYZ2fD5Le5MUh5Qc7TLaNF4f+lohnTY0SuLhZE9+cDV3Xsw/N/sn5m2+++eh5P2jf32jHSXxSDvrG18KNF+dFc6/Td/2EY64l5aeWahF+9Wlf1DY+fM0Xy/y0KcZ9fbHgdk7UOrEeD2NNTPadOet07aMxO1zSmRN+5dOauJq1aseWf2Kt3Nh0RqzDsSZu2ObVk6+1XV8+MNiHb249LPhy3ZjGbGB3Tu/DKbb1RA7wNVhiiwOPwM4vrvTp+J15h8eOlNP2/OHxNeYTfvOtdbWDFz925U9P8oVVTnoiPj2b9pk+bHZxFEOt3ZONw2vP+YcFI6EjcPhr7b+eZGMsNn1xzJPw8dLwLj82eJHW2S/2zuGy876h3zjm1bH8ra9/McSsHnzkx8c4XOvrb1xja1ycYixvOZnD01c3esI3HnFRF2Ju/RRYxNriwY/b+hQjrOqTTevFg6mpB12Sv3uwOKRrDqaGe/mzdx1rcFrfmrExl5P1coMdzuaUnfUERtw6V3zF1OLKfrGayzV/+LXiF6eerZzYwVMnX7jprNHV51O/9YmLOMWiI+bG8ReLrx724rOtdh5WPe//DPVb3/rWo9/+9rdXDNe2eHHBxxnw+a2HMTj7vE+sEz58/QZu50EObGH5XO+7Ohw+e67Z8WHn7OUP0z2Ab58LfI4plprw7b5VzcQsh2xw66GJz0R4sNdgqysJq89tuHrgpAZw8YZp3v51LuCIa87OOn+6+NOFAdccN804Tsb8CB1MIm5nwRyn4quTdX70RE21/Kx5ENSaOGw1Y9zEYxeWeTHjpyf0fPmVszU6fbHDVg97Cl8LVyyNj1ro2yd9OPbHA3S6altubOjEste+l5qrPXtNPPXyG7jq1d6Khz9OfE5MnDxM9EMTZ0UsunzKo7p2bnFxltjCxh++8wdDI9bxxRsWzsRe4Yurh3p4woSV0LGBbY1/NRA7wdV1y679oRNbXD1urtOPf/zj1z5Zx0sMXGHnG0+x2Gl4yp2Nfeqs+Y12tYaPe3yN7Utnt+vSb2LDIGzEZ2e93K3LpXxgk2L0AwK1rJ7V7zK8e8Gdvdz0cqAj8PFMF0fr5Sy2GrNVDxyJOERcY7VQX3b5y6MzEAf29OXGtnztHRwxxeIDGy47ojePt/uxvYVhX5xrYznxl1P3dXNx7Rm9e6048OjE0tjA15qLgTs/HJyh/OHSiVnjR6eF0dmEExcxzPFuj6oZbpo5HPsAn6hRHJ1fnNnBIfDjm78cOkt0fPIzV7c4G/N3P2DDD7aYcPJln2/79qE/aF9yClGTVII4qZeoDW0zJKuZSxDGKRImbFY2zupvjeHa5AQf/PVxa+2D9OHH6T7M1sU4bRxgjeDaIc/HGp1YW6sOvr56WneI+IYVNnwYi7tc+Oa/en4Jf43gBBte8ayJb++6mPCwzlYLmw5vMYne3E3QnluH4QaSrXXSHsIud3rxzdknGx9WvtZxEYNOXH4aH1jh4LZ5l4Oebec6e9jF4VcrRxzDY5vElW+1Uk8/de5mXH6w2JNw448XPxiwjN3g3Mz0YqtF/yyMPd/ygrljc8JPfNdzsc3lb00c/dbrPc/33oj5WCPGfMXRzL1B62FoxJo8VicndkTMpxE+7bV7HlvVAABAAElEQVRc7TdsZ7V7DUxr1U1/Chs58BEbLpzqHJ+tQ9ytlYua4WNezjDsCzuYTxJc2Xvz08OLC37eTOjF0OD7IFXuOLDX1H4/pLAtR/lq7MohbnKzjxphQ9jjR+jgaYk1PvpqdfqIJadw5HDWJtziZlscmJ2VdGHw9aGoD1jVqVqx56/lE0aciyd+/nFZf7U8sWDYA/th7EOW32j3N9pffvnlK9RiFftZevz2T8fEUZ/Eq1zSn739wlXrOsg32xPDXO5qzV+epw1fOlj6znGY7R+Mp60HH1j27T5/8fDREjHE57P61mF2PvTmYfA1hyvu1pj+lmS/sbLdXOnMxSDZ4Lqyea/eeGPBwi//8NbHvpHqtGuNTz97rG3N27fq1D6HUQ/L9bCYO86fPW6dE/GM5eNsJnzjHk55V8ds9fCr3+p3DIcNnk+yzQ8v58G9WKsedGLCkgO71vKtx1uOYfCl8+WKrvzWfusFW6MTy71e2xouhtx2n6yZ0yd0sPCIN/xqXs/eurX88aezX9Unu3iyJ8sdJin/6uY8VM+Nexk/4aX7EzP1KJeH3OxZe6IvNzXBF4Y+YUPotRU+7WvxFyOf9kDOWteK9faCXv7mBI66wKVLb40tCb+9o8OXbfvFBs4tYSfmxi1Oea/ficUGv4Qv3tU0/fZ8uj/BUz+fdzoXa/vQOM7w4Igtbhx2D8OpJnHMBxYcD9teeuml5/Y32v9y91u6/kXa73//+4ubz3tyVTPxNGfBgxO/pWhfrXVNtPce1uDsNyit0Zvzl5P7QQ961IDITV3Ys4Xh8z8f/tboNT7dV+CxIfT4hc3WZ64edlRre+h+Bpe9e4P9FMNcbmKLAdNan3HFgoun7zlq4bMuXfzZ2xsYsMXl7/uVP73Rwx7Ynld4WOvho32FgZexnp/vUvErhrzFxcdnajh9Pqez3pmrNrhoRA3wwEku9rK84fEVs/MubnW+AO5e5AUPT42wW9vqooeJFzEWU73hJGKygWtNTHhk7eit40ofdrbmrdlrZxE2H2dLE4e9M2IvxKRjJx8x0pW7WNbUDpYzQsdPPnrCnp6/vWEnlof6ai4e2/aOL506dT715p09vORl3/1ZFbzTwcGH4MdXPBxwcYZ8Dyf0bMRvf+BozoK+/HHCHbbY7M3lBTt7uGzS0bNhmw1M8olPfOKqv4ff6khcR3JqX+IjD9ztoRw99MdbTmz4W8Or8xRP8ejZ4qAnYVtv33Hlz6b68OHPRm7GfNnI07w9ojO3V3p43UPwITBwfffddy87cdJXU3P5wRdLbD5+I5+9OZ7FP3XljJdnOc5Iuu7nxcRP636JgzFMOehdN2KqPRwNtjy3jnRqYP/+67/+69p3cw1f9YBhDAMv+9q+yEfeBJbf2LfOz5rG133V9cQ2HvCsiYWTelmTQ1K9rLWH9qUWvlzlLTaMaqE24mqdc2tiE/HVko86w7PGBle45sWnV+sP7W+0R1xfoZBUEL0EFLQ1SZoTF6tmQ9lLUKuY9WwlqpGwKzK9cfEuo3lhH4cw8SLxwz9e9MY7pyP4yeVWPuKHvzHf83y2V/jy0sPVL5/44V8TIb1+a8I/ux0vJvvFkEM6hz2/y2heNk51FKsaxKkLoRqBkKN19kSMPeh7wceFfXueLV/6uIjhYmo939bZi8kHZ/nBTIdHvGDBsaaFQW/Oli+xBo+I72wXm84ae770YcuzGOKScFujp4PhxunG7CbhZoAHf7ZuMmzousmERQcHXzcnN1CtvYFrvvvNfnON30Xy8YvYbmris60Vrzy7wYZBrw7sSHtmvbhy0KyxJ/jLiV++7JvrrRennu/a01cbmCf+Ypx+sHBn09hcLTX29qGzxYaOTWM9DnRiw8qmHgY8PVv6fPTe/KpjevvYP++rVniwDQueNXjuw85NHPDCaWtvzh4GLHtOJ+at8wIrXuzKBzaRKw5aa9k375pgLw59+VgzFluznr95+bWHfONkXK1wI3wIvdr5UKhW5jCKy4a/Rr8CKw7F4KcR68brv+NycB1p7N1D/N3F5/2foe6D9nLDhVSbcjG/T+yDs9P56VzAUh850MEyr2Z6uOzYGG+d6MjJybwaWo9r8cI0T1dM55nYa2uEPTEXs3Yp717i5TztPWh92Ox5a634+sbxO/HNN3ZjdeMbz/zqi73rxvyJ3NUfhrw75+0tG2vFYc9GjenUzDj83aNyqr6L0R51T9drpFrFk1++xWGXXi5iaHTlU1y2RMyw2bXuWsJVq67N+YnJt9yy2xzobgl9PPGSoxjlYb3x+uOmzu4x3ZPp8Ien7usbJizNnLD3Xt79Cofu0fzlUB2KT89fb00zVydfKOBbq87WNLzotWyyi281yw62MV94cG6J9XIzlpdGVw5xoFvecOnYs42vsdoWv9jFKe9i8yfVkD+xT8WDtRJmeZqz4asvZ+vw9Svlwj4e+XY+uh7jYN1YrxH19z4ufnb04ttX5xKf4lWrOLKlM8cDjjn7pDWYxLqzdp/AgFUzh1d+/MzjsrHSVy++2/ItNm5w8WFn7HOQZgwH5sa4lWc56reO4tCFYawO5vDbZ3NrJL50Hrj50zFvv/32c/kb7X+5e9D+xhtvvP+g3WcW94H2EHd77nO5v1WOn3Pk+0LC1sMW/PqbwHJJ1MfZ6aGLfBJ2ai2OGD1IptszUZ166CFW50HvfuPswunhszGBg68mNjs5wZALfw++PXSGQ+z3PniRo3sAHQ4esPAn4miuG2s+w6gTDA8W//a3v13fhzo/cvSnavpb33D463EVw/cnMek0Ojw9mJSDeuPqAS5e/NVIXlo1lqu6w5C//W2P7Ik/g+JBVt8x1aP4uMAUl+hr3UvMG4tBqocxf3q57BlQC3o89Th3f+Hf+bHW3ovDRu3hnYKLPPRyUHtSXDUTB7b6im2tHGCKVS3wsIaDGvOxpsXPPsPQE/72v2dS/Dww9fASnv1wRnBpj/h1RtnD7p7TGXA2X3jhhev7un0UB4ZYcNSGr766wrDfbOnaF5jxNxb79MVT7rA1OYsFS235yJld/GGtLkw6D8vVyZ6oI5193LOHE/54+xwihhzlbd/wp+OvBmxxtKbhyQYOLhobc2t8NbXAxfWjJ9lah8HeGn86c5z5ik1XDdnwwcH1qVbZwsDX3/dXN7Ywui7Zqmm1tm7Oxw9oSGti8CVi0f8Pcfe6YttVtHG870IRUTwfEb0JD4gYjFEST1FBROMB9IOaL+JVqbehkQg5GYmC3sTbv5n+h8fJ6k7vnZ28BWONMWpUPfVUjTHnWmt2797m+eDknKmdfKx1fzBmr+Y46mGIrw5yYaP3wNu4s0VnT3BqT8U0VhdnvR+k4GZN/mGLg4/7Mgzr8Pl2Ns39QNLzKHFJe+De7JoxL357xE/ecaMncIl18dovc3XAyR7AbK+cTXmyocdDXE0udPLAgQ1/9/KuM3NrYhmLo3adFzzU2g/Kf/KTn1w97P+V9sD/Gaqf6FY4RVEkTZEkVW8sMWt6es3YJjs0EpAYW73i6WvwJa1QrfHfxpfAJnEwhsM2/+Jnywb+StirMxa/XFuDE1aci3nGzeeuXuxiNC4ffbp6WMvhzbBh1GDgqC+GsSYHuMZqd5eUPxv25vzlAd8chjl9edBlH0Y8rLlgNBdX+niwD6c6h613wdivxTXnk73Yxs5yPOHzyY9POOlhpGuvrIVNZ9zZFoeIYWyNPZ5w3NTpEmvs1GDzgOuidwPYB+1sNVhuLPwI3zhtztZheAPpOrbeTdk6vM03TjgUr/Xi2ifNnllL5ElfzfgT3KqFeTbhW6PjX6Mj2RSneT54nuud3wFwg2HMTl35hkMPo3yLQ7/Cj/DF0c1aI3DzDxcOO0JnvZzYq1HrbOngtaf5teaNyrjawrKn3rTtcXsJg148+HqNrzNjz+jFI/Ccn/aEHazyoxcLBh+5sNHTa+Z6uOlg0xN+/Em262dMYBLzeMPER/214tKbw67FbWvLd+dsi6d2Ply4PtgVk01Srs31/MUvP3HzpdPMy2d9G7NRW/cEWD6w/n88aMdDPvqzpNM7I85OfHHOT67G1VneW0O47c2uXaqjWLVqmq+YZGsbB3p2hI6c/cO91PPNvtwOkOuXYsRdbsY1djCbqwMxrw/bnG25xCXOh8O8tA4rjHBbY44TTDpnWSNxpyf5wHD9wORnX8vrMLx+YZM9u/a0OOnYdP/Qa3Tsw8QjLvAXu3NDvzHo4bAVS9+YHV0C2xmNL44bjx37cMzZstuYfIg4SXaLGbds6otvDgN29+Q+f+BAx7ZaFU8MslzZmfdebt/E12vWu38dzvOyNcClOrmWxTS398Q4+/LQJ/nqt2Y4x8NYTokYYcihzyrp4XRWyzkeMNhlGw4ftkQ86z7TWDdPF976G4vHVg23bnLgwyZhF26+ehz5x8OcnXn8FidfMfgRuvR4xGV17ODCpFdbXywJHaGXs320vvmLt/myN+dTDmHTpbcGh1THY3LLS/ZyK364XOCKu7r0dFvH4vIh7cExuX6hZy+msb13bcg1LHp+bDQiPrGm4RoGv8Rakp2eDW7xoStGOXsw9Sh/o/3ll18+/jPz559//uDq84p7h9i4iy8P17OHCniog3oQ62rl8wUf3yf4y8W8OroufY/p/Z0vLOvF8/nRd3mYatk5quZ82HRPq756Zxa2mPtAy9x9kU7jq8lN7PaMvwc6coTHR472ng2OGh1bLV5wSHocYaiTenqAww8OHzyzlWstPuw0c/zLAWd+7PushCdbNsTailyrS/uGk7G1friAL4w4WNeIuHjbL3ZilDtdfNlag9F6vOjUxRmAYd0a7Bos/vnQ716pv7xdA8ViW3y+1uGz9ZAZhrnW92ix5caeno05vTGMzqa5GPB8ni+HOPLHkX1i7rmUePbHw06+1aAzbJ7ESRz59L2LDW5y9lvDcvJdTfxiiM3P+RavPJw5D17NV+CJQeBY5683l7NG1AjfHuqbi8Nfnq5rPvGmUz/+uIilRs4ZnmqBF5uuNz7xcL3xk3f18mAYhpjWtfiKY03DjYhpPQw9u/I0F9N1oZnz0bYG1uCIVxw88Y8jPalu9nw/gxiz7e/Fw+dDDx+PBA+28hDDA29jNp3H4siXqAmOpP22P7DYwhOT8HF/dZbcR+DiofEtf+POBx9jOHqYGkxzuTgb+/9YhGPN2QkDL7XkKy85wSJsvXeIrS7tpR5n58W4/RfbnL949HI+y3Jlx0YsuVf7cLpWqre64C82Tvz4i03wpy8+e+vyi4ux/eFjrFb+dMxb+ZflD/yg3QWkQIiSim4s+XpjSVqXgATNiQOzD9qtaRWLXbb8NXjhi23sMOgrkjEM+nhVxHwPAvOS3aguDvmvbRzTx1Ee6S4C3aLkj6sWV3nBk49m3uarAR882NxH2LEPv9rEHcaOm9+GHV/r5W18zh9muNb4lYd5OegT+XZDMd4cw4fRTcl6e8+eTa2bo3lnBQc17IKKNxz+WrXaMYzlu3nRw6XDffM51wBOcYyTYi1u6/J1U/PbDd3gxPMGb02e+YmflCubmrzlbw2+OvowtzxxIWEas8+nmpcre9f1+hmzq2blAoNeI137xuKxpzvzCYt/9ZUTO2t8SPscrnU6fRyM4fDH0zws2Jp1fho/LR+25uIWzxqBlRQXnj06Y1gnOFQ7c1j2SJxw83UP9gFOHLj89Oy9OfbByjqdxrcPzcaavSumPOj0eFozFtv50OCoabXZPHHmf+5hhG1dPD1ffTUvhzAOoOuX7PS4ZK9u+Gw8a9WbvUbwXRELJ6K3zlaO6qqpMSwx2yN27OMQJn0Y8WxNX76ruzRmV+19KH+nHrRXp+V03gdr7Z1cfZjROg/VRn3g8a/xvRQjfWvVsb2xTtpT8dsT+jjmT0fCab39O+/dxrHP7MsDDlwtnHprxq2vLRx62I19+KMrj/owwotPtvQr7NngSDZ+82Jai69xPtbPYp0er/LX018SHPLhJ0650De3X91jdh3mzl1PRMzO2KG4fhGrnMONlx5nbfOi5yM2H6JfnPWhT+KVT+8p8MuVfVjr13h7+VR7MeXq/df9RTOHa6yHy6d4sPJ3v9t7TzlUDxiwyyH98qke6cSSo1rBF8uXi+zq6Wv5WqvRba6wrFWncPLV03X/wNVcH+/6fMRnk50akbWzRq8O7IuvVhqhby/02YR7GF2/yAFW+NbDNA4jezo1YJ+fcfN07Om839izMya7tTW27/jg2pk01sQM8xhcv8Ck7308vn32Y0dHcEnodp5en33Yu3ZpXF56vvJQM30iL21l19NXAzjykndCZy4O7urk4VYPI8on3jhoiXVzdYXTvPX6+FcHdo2ziUt78qgftL/00ktXTz311PGfoeLq/BSzGui3RnKz73qcrXeNqxG9PWCjVyfnxvtWD17kZ2yNHZxs9OVrDaazzaZ41vHkr84e5MGjYxs3cexfn2Oz18s1Oz0MD/98rrWOOxsNRnO5sqGzJh7xfcXnrPKiw5cfG/bmenO+5mJpRF7y75p0RrRyZYerOTuf7/Klq156entDT/Qaf5jWNw5e7Ok03DS2y7W9CVN+7Ah/9rDaV3H4qNnuf/5xglOu8fB8h7/vpXjzdw34rCh/vr5rOiN8Ozv4wLNOr/GhhyM/uCQdGwKjurFlxwYH9S4HOS0GG01MZ4Qdf3uNC0x6vbk19iRfOnXzvVxehL86+FcQdM6yGM4bPTz7g5+16u6e5Yc8dOWhBsb2R75wtGR5sJGf60IsvoSenTqpI5zOtz3GieDRHqgFwR9XdehfU4jPFi7O+NljosadcTbWi4+bdfkTfnhZF4O+PcKxxkZM/nr64vOh0+RHD4uwE4NOXgQ+O/Zws9HTWScw+IqpjmdeMLvPsTdXKzjyV1f4GoEdF3742H/nhg87sTqr8hLX/UntO+Ns2PYvDYzFs59wiTHM8/WLA4Hll6b5sqX3nZd/1xl/+6IXszoba3zar2rDHoZ1Ovj2X13o+dCpA1u8q/dB7OaFjbjsNBJ3fnTxq9bFxH+5xhNGceGzJ+rNHsewN6Zrw/fwt/J/pT3wg3Y/PUbGIZEowiTSzRE3rkleM+9m4xDxY2tNwdsI+hqfLn624hJj9uZaBY3LYXTzonDWrVXEXb9tzL4YeJB4ndfCD4t9XNka020O69M6HWFrzD5/3NWiHOKQ/eF4eilGtuEXr7xObm865Y+HFlfYly6cBWObr57IsTzNca3Rw9ToiJguXE09nB83I+vepMRg70bjRtWNFT/NunPsJqO5SRI+bHuTwQ823Pz0OLGzZs5OT2BbX7EGoxybl0+2xTFny669Lmc/ae1/sxbLGwL+bIstD+Na1yuexuzlT4pBJyYfseJmzqZ2ON28sGlf+Kq3G58xUZ9qdONydLDo1RA+HK0x/3Qc2JunDyuu2RRXntbM+RJzLaFnp+Un72opXvXSJ+nCNedXLGNrmnjWja1ns76LzT5/8YydT3sVjh5Hb9Llo4fZmuuCT3pY1turzrn6y5O0Zt7Zrgawuu+0v7j1YaR8DqDrF350tebWq4OelIPxGYcuYVd+xs1b13ct4HYWvkSefXhm1/ksH3X14QAWH/rwyqPaFoNeYx+31h60V1/19z75//mgHW/7Ia9q7T27fYun+pW/2rb+oHlXYzHhdBa2ntU4bvpdT8/uLsmH3cYx1vK3n52b8OSXT/ttfps+PPm5hsj6Wa9tXPZ45s+vsd5a3NKn05PW4YZtrXU2xmLFaW3hWtPo5dj+su+eUPzW4JJ89OJkpyfFdj8z5u9ciecaY+csuB70cavPv/vTxoDFLgmL3pitxiZdtvqwxF57a8U3vk3WJiy2cnNv8cXGh3u5E7VkR8724ifq3p60v/m0H9nep8fTNay+8MTqvbka0i0HuNVta0eXHY75pWuejzzLOa7hNj/3YcHnC6t6tEZfLvzN2aRjR6demjmcGh+2bMKis46ftmtqZy4G4auR/Bcv285tudDjEr/VW9OI+ERce4UXn4QdG+tavOmLmT2dGtwm8bEebvkXN6xLGPnr+auDvKpVunzNreVHb97Zlo/4teb5h+97QJ8Hip1NfRzMNx4OWtIa3V21ipNebYjvzI/yT8e8+OKLV0888cTVX//61+NBjDh9XjMuf7mVh3EPVNjg1/t2NvLaerkPe7+XO+HjexE9DPbW4NDjUHxrmrj40FuPB53vZbBgOJPw2Wh8fYbFxzqdOObtgc9p4VqHlX+c9WxgG4vrsx1sOPRdH+bh9flQ3vT4ieeeHU754SV2uViHS2/s/t6e6HuwY40NXd9DxVIjPq3bg56VWI8PGxzKYa8Deucf9vJhY05P5Kul49f3Devituds2MpTDwMHtTHGKxtxNDo9nPYHrhjVpb2hZ0/UABdx6OAb46LBpGOjJ3DYaMb8cBNXfPpys4Yru/xgGi+W/XGmCL78cNPKO65++c1vf/dgWUzXvn3gK55zhY84/K05i3jBZkcHAy6fbXIt3/TVAR4MnMV1feGQnfzkIjaf7NUTL3aur645PGHBVGdj3++rI86w4NL7vmJNDl1ffEkcqi89nXn4/My3VVs9znqNTxh4wWouL1jmfLSkmHgaV4f2KK7qpC7sqhtceWn8xOj86YuPHz8Y2cRbbcXS0lVbcTR7sWP7gCv7+OPpt7nh0KkBTrDCxcFDYg2etepiDW4+MOIqjxV5aHys6TUCAzY9Du6R/nyOWsHU1AtP58WcrXUNN9jEvlvXt6fxw13tLp0r9YLDF69wwmoOC4Z7OB3uOIjPtj1ht1jOtu/hP/rRj66++tWvHlzPNTqUd7w81IN2G2IzESog4qQ5ooQNccFLyHoP2s35daj0JB/FVjhzhSbZGBejmOmWCxtzGI1hmfMLoz4MvXW+1uRLzGvrE4fVsS+WPNamHM9Yy6nxYuIRJn382NbEXWGjbnrCbvvGxanP7jC+8NK+OKx48ZOnWMZ3+fPls5zjSFdecDRnwXlhY11MF4ZmbN25It7sYLuQvOH0N7jgkLixcfF3I7AGn5+bLA54xss6EV+e7JxrdrBWikVnzKbaGK/+mNy8rB970lkRA1d/F8vNzBs7kUM30GqHM3vzGltY6sXHOSpeNvyyS2e+ORjDiZd9yUY91M5+yLM9sw4vaU0N08PV8mVb3Hp+2fGLQ7jWHkQ2Nj94aqxvn4yrpXFxi2WulvZLy9e6MYFlLR868+KbF0es7OC2v/TZdf7j1Vrr3lA6E/a02GIYq7G90rfWOTdfHxzhF8v+WsfNGdxzJD7uMNqrdPQaPOdCbJjpcTMmbGrm7QV78dhaT4zp5N3ZthaetWKJ7UOoHOjK39je+7CgV7/8rIUnlvpv/HKNx2H8kC+uCRzfzgft/jM1v0lxqZZLW/3kJi+tD9ps7B+u+uzUsnpufRbztrEa8xFvMRYnLjCMz+eAPi7GfMM0Z8+PpG9+KK9fOjPmOLX35tZwy0f9iHnXT/5iEfM9R8vZGl/NeH3bG7pirg3+cQtDvHI2jl/cWtcTtnEzJmKEAdc6HBwWh07DgY81LQknTPN4li/f3o/E5O9Mwd37F52zF0b14BMPvTmb1o01Er41urUVN91hfP2S72K1Vh9GMdLr6fgSNSR0xu4vPqdo7lf5V2t9tTLW8tdnp344JNmZwyxe6+feenHUICy67vNstmZrw2drF1bxs924Z7zOcFwXc/12DNd+y7caVws41rcW5q2Hky497hvbetK4/MQg6asBLOc5zGxwSWdco+v8poMtDrFOL0464+Zyj3Prh+P1i7VtWxe45WCM822yfIobB+9TYuB4lxSLHxFTI5tfuK01Z9N+twfiii//cOrZ+iygGSdwYOOjFac5u2IaL29x8ykPNivZ4BYv30Ee5Z+O8aDd34r9y1/+ctwTPWhwrbpHit/91H1Ffrjq3XO8V6tZ+eJZPdXJ9yk1o+uzPD1MPuKIZw2mesJwb+6zAF8xqzU7vuph3INuPnGBbwwfNl/3/94DrGmdU73f6JQjWzH5+syk3sZdF3ixKQcPWuSJo9w0vDT1kZ/f9uyzDju+Phe6X8vFXD35iIMzfnhYN+YvLj86ueAbbjW2hoM1uHrY4sLxEMlvCxuXR2e7nDpvnTl6OeIHn+CoFuawxeenpaMXu/jw+Kgne2P1UafqwhZnORAccbUX1ePMDy92MDRzfTzal+YH8PULTLXYPW3/2Iojz+qg5ubxb+/Fxo1dOcZdD18OrZerXrzOZnnQqbfP1H4RDr64auW8sxfP3vd5mY99rH7Fp+9BO515XM3F1Ej1YSMGfrj3oF0O6fARm+Cn8afHy7jrf31gkPYSX2cad7E8X9HkCsO66yTeYoqhlnCdzdboiXm6Q3H9Yi/lKS9c+RmzEwcfNjgYs7GWjVgayVZP+FljLw+/8KCHC8d5cQ/oHLC3J/JyhoqljydctaKDkw8+uMsFhljqxw4fPj1wNm+sbj1A5q+ucNWR+O7tukusxR82XOcABi7y61yZVxv+cTZWk9bEcjbsEzw58NVIteeDL07//Oc/37h/4IOjJgcC25jO9dwZEIs97O6Ra6tu6q9Gu4++y8MpJz7VIq7muHeN4oE7nTX5q4884mDdGJd+4e2xxx7j+kZ9jsk9Xh76QTtCyCUIXZI2zMG1UeaKYvNtjEIocAUJg11642Ip8G2x+Fqr8eGbTz3u8Web/pJ/Oljsandx4EPEPsd5feX1m6Vxeb8ZHiw2eMA0J/E3pqtO5gnOaqne2eSfTT08nKw7hHdJXLqJ5Lv1vOTPb7HF0sTla60xffydn7ipgYvGzUd8+m5KLnY69t4A+qeF+K3AZgfDDYjA4eciM66+eo3PJbv0x+K85C8HeN1Msi/GuLwx5EvUy1hd5OxBe/8JBVw3CHlkoxeHfedBPHpzN/7ejOhW4GmEfzzTxxdO2GpFzF3n5mqIw+7ZYXTzIm51jhsdfOdUvPCLrWdT4xe/xTZmE8ZtNmcfc7Zq7HyFQYdL1114+rhYI3Gsz5ZdtQvPfCW9WOz19tUbEvz2kx19PNOHZb0zYazOGk5wqnEffuwTnXXNuHmYuIhD7LE9wsFP1Tt72ZYrDGOi1+DDiRM+rZW3Od6bF44k/a6tvjf19mOx+IovdjnkqyfuBT4EdV8p73JnQwcfXiJOsvp0D9LbF/X1Ptkb/MP+JyznuHhe+s9Q7+K8ufnQ0V7g2LUuDjv1bf0c+83mOGhwnJ3m+YWv/sT8bJMej9btnTEJv3X62mEwL2z5tvfs+NWsd87oumbq8dTYNdaHJ1RY+uWYHd+77MIK5zC+eYmf3l6FvzbG5VgsfXzlQsyLEQ4/+eutiaGZVytjeM3ZwTTXrLtmvR+R7kXiwdbYuyZ8oM7vXOP4Fis7mJtDsemJeTH5JHDiGmYx2dCJuWv51scBTrbW5Oz+7HOKLw7GbOHLVy3Ym2ti8KELEw5b9970dCt8ycbedby0MI1X+rJDZ19bx4WPudqlL4fwrMV9cVvXV0dc4bTffK3fJnJiiwu/OOQPV21IOHS1alL8ciofePE7Y9BX29ZWZz/xSIohZvtoTNi133Txgqdlz7Yahddcv9d3vvQ1OhL+Mbl5EaPrb/WN+VYPuuIbex+1BuO+wn8xynHPSzyrSX1+YvY+jl/rOBir6/mzQL7WqgcdMdfMzzrrMLcG5tlZT2Cwk0t74mGHv/H6hz/84ZH8Z6getH/ta1/7nwftHnL1ncVeOoPyx5Oosc81bLTyxBdXzfXiMyU/Odhb94Dw+NCJRU/Cd3/uswCsamm9s+EsEjw8NGGfrdjtpxikc6FnZx0H2Oz9q15Y+NHjoNb+bIb3Cvb2gB4GH74elPl8x4euWhmz5+s/kfV9Ulx2zgw73xPlJKZaWev6K7/OJhzrPRwKQ95dl7gVQ3y1Fwe2OOzU2ndYfnTZsTUWQ0y2YclXjuzlTPhrzfV8mrOBE4d8qz1bfOWlTmyLI5aawNKrvX3gm1grVnzN2xv1IfKh0xI6zUN2uHhUC375Vi/xiVqy7SGw91xnhi9umlzUhcCx5gxWK5gEHxzYqJE842kfxPLDn9dee+2w7/pxZtjLlU484/aRn3VCL0YPRI3FUS85WS9fa/R0OMPR4+25h3MjP/Zds+bFKB7csPHQ5KVuMODlh7NrV2MnH38ex/mEIb6z0DMYscKxTpxtOakrXqQ60skLTrl2xvX8WusMxY0fGw1eAgeuZlyDwxbf3SP68sLdfhE5+0GK3IgYYpY3XFzoEvca+yIOXLlXP3awu76N2bjvqDlca3Q48pVz+XbvE8seyw8G3Hi5H1ZjOfLBGw7czg8dXHNja4QOh84B3OoXf3byE1++/iNpXLO1ZxpcvvTmzg9+akxXfBxwNs9WDWF73kAvFpGvevmuTC+GWhA2sGrW1LE/1cMXH7nivxzVXrPuLPge/uMf//id+89QFSZCklGImjlpI4ytEaQrXA/a01WICsOfpDeGQ8+mdfqV4ubXgeFLl6/C7lp++nyNs7vkv3Gt1/jzNRfDnMDacf5s1SUffsQ8XTwu+a+tMduzwJG7g0XierYzZysOHIcv3TE4vbCpyfWSrbjiLa9qU4560v50oawep+zZwnMOu4lZU0fiAu7G44L1puNiht+ZM4aJC1s4BE6x6uNxGNzYhKWmxiT7Y3L9ElZ6/W17zQeXeJnLkU7jK183aQ/Z//vf/x5jdvTlW53Z579YdPbK3uphr5QrfXsKCy9ru25M3wcSOPJTE71WvWEkxeRbPbKzVg2Mi8m/sX7xwt0+22LVr01ja9VNrzZbO1hsFsOYXXGqpTlZn/zKwRy+ubEmZ9Kacfu0e8UvvTcz+96cT+vOBD/SG6VrAC9x7ZGaG4tdfPN0h/P1Sxz1+bKH781PLGtJMfQ19sZJ54Pf6uET+vYgDGvp5ayxSay59rv+zWthwRC7D1Cw1TAx9mHEhxL3BH6aWAlMc77Lt1jZPUwPDzd7433yE5/4xPFP1h72J+lnDjj/6U9/unr66aePLwXV5Wy3cz5Eft1H6XDsQ7h1uktnydqDCJzqeubXOV286q4n8dCT9vC8Lsb6Ni5+c/4kXON46bOPs77xYhiTPUvs+GvJ+tCFv+Psw2weht5aube+8ejY4KOtfbhwymfrQB92NvaGrWuIf3tlrFnLJj4w3D9csyQfYz6w2Dpr3suN4fQeEw4d+zjqzYk1dnT6fKyL536gT89n18LM5ozBno6PXrzbhI183bvdO72fmxdbrOUeDr/a2vItr2zPfbzO+rjqta29sZoXq/u13KqHMTv4xLham/OxVj7FY6OVTzjpWi8vftnCJdacDec23sWJU+cQXnnEh22STp+dvjE9CZ8eJmlszVhs74vml2LgtHq2nX1xuhbZNDeG7cyf77fty0Fm+MSrPYEVpjWNTo8TDtarlTWNhJVPOLDF5xM++zCMbxMYciXGWvvWWhzYtZfZs3U+fQkm1TUfGN1X8i2OfkVeNfowjOkJn83LnB3JV0/Hrr0y9p3505/+9NXvf//740/I5Hc4P8BLXPyN9ieffPLqueeeO86DWD7jeW8W75yneM6ZzzRsNTX10IGtOqqnsXOgbnCcNfXl232mWOKxaW86C9adCfP4sqPvfoKH+551a/HjI4e+T1hrXQ8XDjtxfU5zD5WHef7eJ/CLSw+82RCf6+RD9ObljZOcewAEsz0tH+dJTfR01aBzhqvYeBD50pH2hh9sja3GBhZOmrjm+h76rz+MbOjZZm9NS8SBn449X3NjEm/61sOlI3iqj72wnxoRV/56+8JeDdmRcKyLaU/kBI+unLsX8lkezflpzoh1vnE1hx0/Pvap7z/WnTsx5Ip7da/27MMoBj9Cr4nZeWGv4W+ffS/3oJ2PuHK0pjZEHA0O3tacX42ufXKu46LHtetC/M5a15p47GDCUCM+8cXFeaQrvjXC17gatI/tkbjiwHat+OzSPrlePV+RZ3tRTvgQMYstljrxF5NeD1urPuyqm3HtALx+MWcvpjj6cmBj3bwGNww9yd9czuaEj3OhZvI2t2ZP/NBM/u2TNdhJ8djj3w92jMXBVe5bv354JCYeYtbUFxZ7tSflQidvXOKs1oQPO/5wxebvnHV22LHhC4edxpe9Zs3+u6YWm41mnZ38jO2tHzaZJ3iWPwz24mnOmJjGuITZueCHsx5/DUY546XhSCe3rgN4BCZ8axqORFw21tgkdLA0a+z8oNyDdj/gJnJ4EHno32iPmF7QDRxRREoSWcTJPminy16v2bB6YwKfLZxLwi6/fMWu8Qk//9bivv5s6LOJJz2dtfyyscYODp1N7YKxYcRafs3pNMLPOK4dEP1yOIxPL2HHTR82PFz0G38h4kAnXpyzb725Xiv/5vGAI2Y25sb1y61xtmHiUFxj6zt3Uakzfb7sqqPz0g0TF28IfZgz7wI9SN3wC4dOLFgr9kGDXU2rL7s4srEeXzbt4cbIR8+ejXV59SZizQ3Ljd6fjenvc9FvXfgRMY1r1dO8MfzNLdts9HDw0ZLyocNXPeVG+GRPp75ujNVhY1jPrz2xTujFKVZjvbXlczjcvISX3+aXLg7r15mpNvHQ51fPj536Jeb5NDZvb7Krh6Wx0eTTnA/R239vMosjbm+8YlkzhxOvOKiH8+8NzZtX+yCefdmcGuvZkfgZ776yEdeHjvid7c3ZtZfmxHxbcddO3KR1vSau/MqdbTbqoHW21wYeO3k4l72XbG1hyckHcm/wxbEPK8WERdjRaW9F1MA+uR58UfGg/Yc//OHVV77ylQP2reLL34P27373u8cHorvwqilO7OTozLRPffhSA+v0mvmOH6QexdQ3Fnel+HRs4pYdXfvCpnU9iZuej5aN8SX/w/HmxXp+i0efGNfoOmN08ci2fv3ZxIm+GjfW1/JfXGv5h6Wn3/rx7XrK3pxUHz7iy5mYNzYPr5iuvWLxg1f+5uxbh8Pe9WVsjVivmfNzvYrh3tT7Cn1r4bKHpRUnHX8SVz7wYCTZ0FkLI72e3/qwkePq6XConvDN3Z88jOgeI3+Y1oixlr+e1B+T6xe41Tqdnl2+5jiFZx6+vnm57pwuG3WoTuFbg20eZrHgGCdyMy8O+3DotOyLySdcONnrre2ZUgdt4xdbH6ZxOMbJYqbLRyxt/eJV3x4Xn2384Jnjl44fTOe+9xZzNnp2+nzh9lm2ezDMPoNmC5etNb26Euta6/FmI2bvdeZa9nBgsA+Hzpy+uPmEb27M9pLIT1tMPs2rU/PuD/DipA59hsFjfdj0WYCv+eZ0BLp5iWs5Zrs2xtY1OGwS/nHPzrXi/VHvQZQH7c8+++zxJ2TWN4z79PF75ZVXrvzpt7///e/HHvj85X6o2RPNudDwwpeN+w2dmqmV7xL2vfxxwM2aWGxhptOz5e8zJRtnp73hX2w2cidwfJ5RDz4elviMhReB2zXAnx87scqBnfn5u0YPX3Bu//nCYa/3nU+/woaIq6mPXAg/HPDSiDn+PpuJkw4uf3XU4hB3ds4hqfZiETZqAEOd5RYv68Zs5WistZe733S4i8MWZ3zZiEGKVc2rl54ONhv7Vq3KnQ1sdmyss2erJnjTWcfXd1O9M8IeDozOCp3fgvb5tjOBozo6F0nxd96ZjKM1ePgkbMzLCT86HKp99Y63NfH1dHzkh4Oayo2PNTq54Nq+l7cH7f3GLHs14Fsu8I3jKyb8rkP7JoZrVQy58cdfM4dBZ9x1BhNW+vZETejaK3yKUb3EKRbMxFm3P+LixMY5EB8Gvb599gBTLIJPY75hWIMBi6gRqT7tGR08sXBKX91gW1N3dvDE2T3KBxZbNnqxarDzYUeqAezs+LbfxvLR2JoTnOwBEceeusfiR49PjZ+mdv6Fhlrjz4+tuGzF0MOuwbdOrPFrv83J5po/XDnFl1/28NSheDDKnV35liMsXGth0jvPhB8xt+cET1Iuncf4hsOuGqq7cXzKVf3UTW9dLnoYbM31dJ3batH5xbG1rqVs8pP7Zz7zmauf/vSn7/yD9hKrYEf1bl4kLpFNXEJ0EvcTnP2JW/Z6PnpthR9/RTbWCPttYeS7/Pic8W0Km11jE35rl3CzCUPM8ubn0NkkG6heK2JcEpjlr4cNJ37q2AG+5E8nloYD2+qD2zmPMLLRr7/51gCP8qZvja6xmM3jCodkE4+Nmw87HOTtZkX4mevzyZ6tsfX2gg0daU9w8UMeF7dz5MayP7XNJ1y9Bj9hgzvMWrnY63zFMmeT8DVnH3ZjeRF+mnU3APm7UZl34+4/Qu2NAO5twq/6VPti06tXki398olzducaqKU8+Git0zn73cDNiTiEncYHRtd2a+ytJ8ZqQx9Wa/lYb6wv93zEjudhePNCV97xa3050FkPp3lxzBuHuXjG8PBZfTr+9iR8Z9o52HOdjp6I15tbuTl7nSX194ak0RNr9obEk05czbi8zfF1DvK3Ro9Lb97muGgwk/bKOjEPW5x0G5OOTXZ8G4ddruHyURN84oBf4zDLo3zpE1iuMw/C1JSv2l+61vDZ3PgulzAfpIfXD0V8Qf/4xz9+9b3vfe/qy1/+8gHzVvFx/uMf/3j1ne985/hCdBseu/LTd0a6F+DpQ7gz1B5mb16rPrfVoDiXeLSWLxs8ikMffvzo8mOvsWmcD53W2eC/+OXEPilGa8ulmNkWl60155DEN7vimoeh54+bZhwOf3uQlAcbjRQDNqHfOOZiJLve2DocZ9+4nPMJO7vVbyzr3SPozTWiL97e36y1L9lmby7/3r+Nm3cWYRI9HCJ28eUVrl5udPnBW71xjU1r7JLFr1Z08pK/MV+9+4r7i9ZaHMMujr4ciqWnh31pTQx6DV48+Why3RoYu6/vvb0ciglDSw+HVJfswqUvVmM9fzjslg+9Fq5eHuGHkb5eXH7qqB5JsfT3FfWCc5bqGTfrxuUaF7141ZufRh+2nrAzxjne2VjnR2CxbY968GHeuvzZs9NI8+ziwZaunr34fcYsFi7a5gmXjsDQvC/Chpdva+b8tbPwCctY40ea8wvDvsSHDb3aOLP82PKjJ2zl1Gen1sM+jG5e+OenZ3OJczbWV9Y/PW72ymcvf+vXb8T95je/OfpL2Pnd1Rf/1VdfvXrmmWeuXnjhhYOn3yBUf/c/cd0bPVzuIQS+auG3K635/mPP+XkQpEZs5LHnwhx/mMYEdzb01RRW1x+O1jqn2YtLZ93e8KkOYtNpxpq15SM2XznqcZAHm+ydRZ/dPJgpp+qy7w19/4NTvDDExYO/B2TqVjzfHe0lG+dOjfVyEVOrDuHBSid/GHQJzgSOGumrn9zwgNvnT75+s5adPPTs4ix/seUrXvWxXr3FM8d790Ge7NWs2uBkDJe/Vs3YisMGZ3P18qCdvXMTDh8x1QK+B+37XVwuhL8Y8dt9oys227iKA9OclKd5Zy5MdviKhzN+OIkL25yNuuqJelur3vS4eBhuTW9//G32fptXPPE1mLWtN2xze6zB1djGx7y8wig/ectPjx8MvNjLke+KnHy3aK+sscVhz6Ga03e2xCXVH7Z7i9gEH7H7kyqdX37WcNPHm0+Yxknr8VZXuvaXHSyNWMO9B+34do6ygYW381h9iq3n4xyWM0y5q78fmKhLeZdHteELAy4/ts6DsTOFl894reMijrqpn7la+oETHI0vv/ajWPzUwTo++vaYjXsRfngT8cXtHOVHz04s/nwTMTRr9Hyqo7nWeYWLBzyNrcamvNSHsI1H+HxhOSvtUbXmAwd/9z6+hN2eeTzVkp06x4GttVo86XESU9+5qt7qgR9xXjoz7P0fK95zH3/88WNdrAeRh/qNdokprkQuBaSXhN5GKWhJsfcTHIerorc5CsnnkvBTHMUgcOn48NfeTNrcuLDfQ2Je/Et5WY+r+HGAa0zKwRy2WHif8eCIRb9rdOVEr3bw6fX84OV/BL15CYuP2DiExR+XS37WtNb4iVU8c826vjjZ0K2Iw8a63lwTA7ewqhVfunIVh7jAfBCE0fo5FrvW5QxDE6u1Y3D9QtfF5OJxs/MwS3OzrQa4JrCrJV31xLG8qlv7LG9r5mGVs3n5iWcuRrWy1rqbjDcbzboL343cG5qxPBNYcPTEmIjLl9BpdOlba31zpcNlOadTB3pNLclimbNxjXdjwy1+572H07muxuUT77hYJ+HJxXhr15oahVNdyz2b/PGvwQ+vmlnL1ho9geOe2PxQXr+Y7x7R0xUXXjHYlbdxHI273xafzpuSvYJH3xieWnoDUvcw1XbPI333X/7Fx1HseOFKzPnzMU5vTWz+BK/eMM/1OAxueYHX/oddz2Wx6M3xTK/HAZfqZN08HT95i7OiXnIifN13XHvqbi4f15sY5Q77UQt8HL03ar7UffSjH7369re/ffWlL33pCFe+Dxsbfg/au7fCOuOyk6vaWFMHTe1ac8acBzbp+HTmqhX/Wrr4n+fpqy9ceIQOB0IPszXjfKybZ4vfWeLIR2O/Yp6uWNnmS79yzoUdG37OoPVqxQ9+mObWNZJPZzdfmFoCf+dnjM0jXNdJ+nIMzxzG5myNrjj55nNbXw7dv8zbE1jFoINpTtjhSC9u8bLn697Wvci8Ly/e39lbI65lfsWuPnpijb8WN2fcnI11Lb980je3Lq44+ubdf9Sgund/cU/Jvj5c8+XVunhEDHxhro81tu5Z8XDm6DQSbn7mcu59/DA6vcDQ5EVgExirq27H4vWLNTZJ83zSxwlHeWnxK4ZeXDbFz19PX43hn7ms7aXxxt51+mKWi/mO116dSD44aV3Lcbe+e5gdX/ztSfdXc828OogTB2vGGsxErPR6dtU6nuxxy5YvLviVQ3j82WmtZ9N1U5x8Ws8vrq2XN15k7bOhixMdLDhi6pMw5NN7eLnxkSus+8jy3JrexxcPD33clzxU9Bvtj+pBu/9s7te//vXVyy+/fOzbK9e/4S4nZ0Pz0KVfZrMX8nb/8Qs61ny2kI8HSX4D1+cA9wv58q+mfN0Teigpb1j08oPRXvPvnuMezAcWG629gtHY+Wu/6HF0T9TLp1YO+dLz9b1NLmoM0/nwwEVemjk9XvLQ8K821uIghkb4+Y7VLzSxE1Pt3vWudx02YsLpninHaqCHoZePc+gMqolnH3zCzBa++NbkJDfCT2NnXf/vf//74IO7vSoHubEl6kpP6PAwtydwqm17aI6zRmBpeODtPau9woEfXPbw4kHvwVXvbQfYvMCUu+/euMBWR591jfmTvvtWr+Lh4XyYl2OxzXGxJh9ze4YnP7E9aNbsn3qwlY918/YTB1jEWZAnLOviwXLd+KFC38f9SVff1atxdYch5/iFi6PYWnzZVlM++WVnnT8scVxrePMXW0z81FSf0MOSg9z5E71c1EEvv9b5qHXXI1vxYHteYsymvXLtEWv+jwO85BIGW9zF4EuckwQH63jiApfIQ2z+9klvnl5tsoNtXUwCy7raiAWXH27W1ND1Zp5US/spnrl12Bp/POniaS5/16Y8xBfPmBTLGVcfMfnIA2Y1pnP9NOfHx765Zgg+Gl0crPFzJq3xxz0cPHFRGyJvPPIXVyx86ukI32LaT/sC27rawjRmBxevzgd/deDDlp3GB1+11PjiSsS3zq8axglf9Yg3vb11v4eRHcxyWZ1a42eNwHH92jtjfurkORvOeKitB+0/+9nPrr7+9a8ffmI9iDzUg3ZFRkYCAtqEs5SkdbbmmvltD9olepvws65Q4YhbEW3eXWLdIYkLP2KuETp2t+VkTWx9By9bc+Nw9DapzWvtMLh+gZHsmF21gombng08fTUwPuOyLU/4bDSCSzmap18dPHOxtPKlh60VM27mcbHOXyO4wBCbjfnaxIGuNbawHfQeBu36AXz9kq+5dXxdzHBgEDj4aTipnTUXlAvWWfQm780DnjU3i4QfXPiEDRw5wWCfzpxUD2vsSP7rQ1+d8NRW5+J3wbsh8XfduanQdw2WFz82xVMDYp2+Zk7MN2Y69bNWbctVn05f/mpVDvmtnTdUTS2KbV0d9HwIHDqcjNlbg62nz88aiZM1fMKrJvkW43C6fokHH2P+xHhjwSN0NfP0cRKnM9IaO3j2Qa+dhS57+PIy51OD21i8+NF5EyJ05vBwUUcfltRRjrXOHh866yR+cVle6fT4tTfp+YuN547Nwz0W7niJN3y8wtY3liMxb1/FPe9d+wCTz9YPdjVeOsWlg+kNX231/PWuN5gwxBfX/M0k/vexZcPehzDNF/SPfOQjx4P2L37xi0eo++DcxQl+D9r7cBLH9aOTp3yJfLWuW2udMWNSffX8tfzV1X6odfZ8stOfpT0X07iah2m+flsb45p4a2deK6/1xcM8fPHwJ/kdk+uXxTXWsmkNd/708l+JI13+xnycve7HndFsNkZx0pULPRyNmMsJFzbntezlC4sNDvTi65NiNNefdeb4u5b0/OniI0Z+9NY1/DR24uKcDzv8ug8Za95jfIH2ns7GOiyfIYoDpxqVnz4MfmRtjOOlb82YvUbnjMKv0RFz94/uJfKoJupSXvCMiyH/eNHDyRauuOnyac7OvsVNDenMs40frPj7bJSeLWFPYGg40cGLD5/FzYefcWvmST7Ns4GPe/nnzy4f3MqHPq7GcTJeX/NLwubsXx3ZW2++2HyskfU3Vyc6fnq5lJO5Fn821omxJs/2Hlbv2+KlrxZ06cOFlZ6ueX2Y2YiJX8KHbjnSneO0R9njGa9i6a1noxcfVgJHo+NPis2+efU5FNcvbGHlQ2/MRz6uOdeaMTwxwg3jrn45xuMue2vs+OHlXuQ90n8U6EH7b3/72+OfoN8X6xwrPv6zOQ/aX7l+wC4/D9zVRv3d9zxI8PnB/TBO7HyXsqapibnPAB40WCd71tQyPHmYdy5wUUt5avw1ubkXyx0W+86WuXX27jWwnWcCz2cs92s97Fr7y9e4c+c7m+9vHoTErYdNfoCAD9zsxYXh4bEa8JEXXuysEZx9x9oH7XRy8pkML/w9TJIDHLpy1Wvl4z5vri58xIwXbtmLDc/e4YiPdfUz5iMnDwDp1E5OemsaLD0dLH58cMEze7GsaYQfTNcMCU+N8abnzz6+cOMGV1MHe1DO7GGFWY8be7Wwhx7MOq9isHcO7IE1tnDFg4sLDuVo//LjW150MPOj77qAaR1uedPhw44+cX2IZ//jzYbe9eM6Ul9/0hVndrDx7PPH8msMEzfNeLmrDcFDfnE0Z0eHi71RB/5isbPm/IQBh15c+WnVzJpcCBx6TYz4yYMNPPHU0Dl2Dchbzpoxfmr+7ne/+43zwL99E8f1qkbEWRGLHzsx8BBPPsXFXZ3E0LPrHuIaYccGd7myoYNtXZzyYMM/+84dDoSffOyneOadDT1/wl+NygHfrk1+chafnXia3F1TXd/WYbIVny0c/rDVgg+O9o09PTHny0fv2ZAf/FRL+aqDuRz4GcOQg32ET3DLDt62fKsrbmrKhq76VydnA7azQic3NcJFbI2fZ1vtBTs4cTAWpzrg2Pl0dvDlgwOc8majFtXFPD8+9Phtvq5jNWdHL3Y/mMFZPH865he/+MXVE088gcoR+xjc8+VtedCukG0UHorXXHEcNMkqMn0JSpLvSlgOCVuFYk8qtPnZL4z8cdDy47uNHj779NkfTjfrbMjiNebHPy4Ok5y0u2R9whDHGLbeXA3YwovrGZd9F9R5bf3yh2dM+Dpk7GA4ZGrbujkuiXFzODvPB16xyiX/en7xpmPvAnOz62aLD6zihbkY3QjYdkaMCT8cnTlrmrPkhuBBuzd6627ebmzW46UvLix21rtJmKdrXJ+9/HBWW77WF7PauznKw7qb076Byd8euHHpzUl4mzeMzd1cDIJHubERS1/92NFVY2OiT2+toMkziQAAQABJREFUGpRH69UYjpttHwbYaezY6BN1Vxsc2FsnbKpN9Yu/vjFf0hnZtXItfhzwN5Z7deDXWGzrYcLnQ3BiF9ahPL1ko0/Ya4S+ubEcxLS3sMVVj1rx+FhzjYQFzxh/tes+aQ43XXWSB5v7yuLEUzy88cOHxNt8874rjpzh1zc210hY2ZiLoVbZxUUft/jQyVkLk014YhKYrkG17VrUazDYw4BLNnZ4x8LNWrh8tbskf/ckzT3Jg3Z/5uXteNDun7mKGcczt2pDzw7/rls++0HPmnNRqy5qRdRLs77xyjld88Pp5oXP1s+cXWeOmfklyQ9+MRrr46VnG2+9OZFDa2GYxzUftsbsy5uOHfzW6O4S9vC7hszjDIOYi6G3TuJhrsW7PNiEy5ZNa+W1OMaubdIenGMci9cvYYUXPv++OFSTbMOCQWdOXNNwWjcOlx2unaPq4Cz6TOlDMRvvJ+KpIRtYYTYXqxrGjY6sTbzSi00nTrzZx1Mvh9bdS8zVIhtjOueCiM8ejpY+jM6nOUkPLx9j+e65wXNz21wOoJsXNq5tfTZwjTU5a60vH+v0Wj5hW6OzRnDEnX6lHMRgA79Y+enDhxHW1mJx6W8TdtnCWclPzyY+53j5Z29dU0e9fSCN25fsrMmza8ycVKvqVt3Ndx+qER0u5rhUI7q4wW2Mn2Z+W344Wtcaw4C9unDiAq+2MfOBFd/VGRO+ZGvUXAyN4KHtGTkWrl9gqbXrS6vu6mxcjOwv9ZvDrsOO6+obhy1H3yN8lvWw8JOf/OTV7373u0fyN9o9aP/Vr371P7/RLi8x7Yd7ofug1lmw7rtEa+rovuw7Rt8n6Lbuaot/ecjNenbqYB0mnRh0Plf2+ZPeHtB3rvF0f+a7+8euz13sa2zkQcTAAZe95++6vDw86brqDOBCPGQXmw+M3iushcNXbfARi2/1KH689OquJ3gTGH2WNIcThjE78fTwNbXBzd6RuOMshrmHSnDzPwxvXuDB1tsDYzw8OIonHWGj0cup+uPBBhf1YWONbrnC1aoNO+u939OvwGND2BE5yc010g9A6KtxD8VgieWsljs8OeoJ7Bp/Y9jlJaZnT9V2zxJ/ddfYWes8i2msThpcfDxgtxce9OHkBzN6nNkYq8XmLU71L6dqKC7eej56NuzpjemIdbVzdlsPx1oc+BE2OPHR2JSLPjy2YpRjMc3ZFVOdzMXs8w0b8az5/mJeDp0Jc3tiD3BSWwJHvfiKAQeuHg7b9pEdvjC698STnXWtWsUBlvXygEv09rdaF8s1Iyb7eJUTLPY4uq8Sts6DXOCxcT7tEb5w5eZ+6hzipcHnGz+4mjmRp5rJNZ9zHuLh4Z7FFx4e2euJWHKofubWqkE+a4sHfJjViY6vRqzBKT+cxaCzx123eG99w4gfXPyLV8w4su9+TScGbNeguTWx1V1OWntgLLa5vrycTXHoqgNdnO2932j3oP0b3/jGkW98j8k9Xh74QbsD4nDZkEuCrKYg+rMg6Cbg4FQMxTK2SWcfidMrPF/jpDi3xWodfoVk6yIMD1YbYKz4/Ohs+H0Kyk4j5WAupnh0cMqt/nC4xwsucli/5UXfWodHfxYY5YrX1o19Lb+NYaxmixsWe3pzmIStlvB3ZopZrGqnL541F44bRxjZsZErHPGS+InB9i5Z3m5efuPkPe95z4HnXPbP2MK0f+sDGwe69ptt3OjVGo/qFd/2KX58qoW+f8rJ3nXmrHbzg0vPh05tiqVP4Fh3/oyzt17t6LaxdZPOh13ntr0RIw7lEQZsa3x6UxLbXOvssePDn04+O7ZO736gh1Grhmzkzo8O/m0iVgKHn36FjXrBg6Un+RafDifr1jR46tO9jE3Cr7MYZvGtta9w1B02cYMvBn03fL7FjZO5unuDIcZw9ImcrPcGRa9uON8lOMS7Oq+P2J2zzoi+HBc7nNUZ08PW88W7Bp/o1785++pmXVx84pKvuXqxqT4H8IUXGK47DTZfmObVPze8NVIM8/gVy/zMK4zt8/Me2w8A+9Mxj/JBu/8M1cN7XwzExPO+0vnn4wNNZyru8u96b8/UnpizW8mmfteMq+F5HY79oNe6HtafDT07vNurcGGHw8YeknI4Jtcv8NvXbPQajBp7tuYbK5zWd35pjFO8YMHED+bixgtGuV7CW5164B1PPWkunvX2zNryyc46fVKd8STsrHv/6v5lXq3CXAx+4fCXK7yzDbsVdt5z+lzJ3rzzCYvoG5u3T/qzOMNwymfX14+NemXX/ri23DPEs+b6Lxc22fGFwW7fe8QLl++53nxIPX+Y6q1tnmys0RnDuk32vQOfeHb9LE7n5Oyz9TTedfH5lXc82GhEjMZxVjs+5jC1zgqf1o3vI2GwVd8VscubPs7ibYNhLX/88PAeaez9g6xd7ynHwvULO5hwyru909PFVQ8bP2vFojOGwYaPsRaWsTiLicOu46Lla92YZAeDDdnPAodiXtq/6jVLb2DCVg/YzhqJQzVZP2vp4RdjbYzhqse+h4thn4p39tk52+q4erib/641rvb83X88VPF94mMf+9gje9DuT8f88pe/vHrppZeOPM3lJrY6iq02xvaIHm/3YTr3RuvyrFbq5eFCv8lHz1cOviOxpyP5wPR9yUNSMVs3zs6edeaLB8vnBti4JWzx0K/ww4WfB1nilBN9OWYjPhyCo++Rvk/2uZovTA0P9dDD1+Cok3Gc4aiPB/jE2epBHH+f1/zWadj8+fKzN8Z8cIFvDj8fNtblVkxjOrm8//3vP+pl7P5Or67w6fT89vMYnniop++VePawjo862QN6Ak+O8OHxJcXEN07tFR/c6RNzPu0jLOviwAyjc4GHc+QXS3wPZ++68Wd66K3D1HDT06l19TbHD75WTPmxVy/iYb76Owv2jx1e9oFt/MTRcCQwfD8mfKx50O5cqZl1e0tcD3jxFQc3jchdXTQ4RK9e1nbcOcC98wKXHSlnfbr06kcHt3MhNyKGNfVyXtg6F7DFkgtbPVEfa5pY7T3sYqup7y1ilZ8Y1unUQc3EFkutxa/GsKzh0jlTv/KCUT35sHE2tPKEodmn9soa3l3f5dE12D62h+LA1tjy54uvsfqwlWP3FefIGv446vnL02dSZ0s89dTEwFsfZ7H4mauBmqsdvLDiYE+ssSe49MM3OvN4tOfs4VR3fmIS9uLmZ6+qGz9reOsJnYa/Z2dyc18sb/UyrvFVN5zEoKdTRxhEvPaEzXKytjq8+Wl8wtOrt0bPD0+1VFP29lvccmGjxRWXuDlDePP/7Gc/e7znvmMP2n1o6OKQPJJnqQj01s0b612QFUMhHACFcSjaQH3JZ8NXgWCmy97aCr3WpsCKF/7EnH7lEt9dvzTGKRw5wFUbGxYeHS7xOeOwI+x2fMnHunj66qCGRFz54QSLVAc+2plLWGLhD7eDfQBcv9DJh6/GZ8V6a8aETTVoziZhx6ZaGde8gbmBWQuvnv/ihBcWH7kQ40sS185eNwcfmN773vdeve997ztulDCzUcf4wTRvv+nVfHX41vCx1py/sfq4oF385nJ2o8MPJh0/c31c9OlvqwWczmZ98c3d+MQXx3h5wC9XPomYWvW1Fja965gvTnF3o3KDt1ZesGGwJWzUEh+66mWt+JunMbww2V0S3Ei+8DWYYuidkXLSE7r0dPzZhmMMu/NFjz/b6gGHXSLncPX2h45vPXt7QehwbZ/40GniyL16uZ+GsbWDY46bnsTVB4HbBA/7UE7mYprjAcMcN606x9U6H42cOYUnRjlly5fQl7NYMKzJuXXxilXdi5v+ML5+iUP46bcXz3XQdYgDPPrws++cxpE+jmLU6PMvR7pLwt89qAft/jPUp5566urzn//8Yf5m/pcwV4fTn//856unn376+I+byk99SXNjOvZ02uZjrQ+Q1VXfOasOcLwf8aWzX3Iw19NpxW+NH6FXZ/ZniWs9mzjDUXM9Xfow6PNbHX0+9PzwY7v22bG5xJ9fPuVOd5uwiT+/uIchXnHoss0Pbrr8zS/JYu56WHiKhwPp7Ipf3sUqBkzXh2uTPQxrPoDb89bhnX3DgH22owvLmnnSmH/3Kr34Plj7Uq3lb804kU81Dau1cs83fb2Y8Y5zebLpiwd8dVk8mMVdnOUGo9hqWu5wcDUv7n7eY6uFmw08ujDjrseFrB+9a5nA4Of9pi+s1vHQjDXCpzlcrbl19nLQ6OEa64u39vmzwaN44dDZ12oMg611vvmY5yuWZm5dy6czgsNK/nq2GlEzX8Zap6sGix2/5QNDPPbOTjUQu7zDpWOr/oSejVY+cS8um2qZTXmVMx86eRQLPj507BZDPHYE5lnYnvXsy9u6eTXUn33Yqtf6FC/sOJ3jm8Pnb1/22oBX3Et+q4PfHtDzK+/67NkR+MQ6nj7zar4z+432Z5999pH86Rh/KsZ/kP78888ftfNdCQdno2tIfOPOS+fPnsrFentfrfXqpcnBep/bd993v3yG9FnFvUE8uOGIkx+fuFl3vs51FC+co5DzEo5c+Wfb9Vcs+fouoWeDD98Vn+2cDWtyxYV/e87XZxvvHd5H8KQT1wMteD6798PU6iQuzHJVG7bwE2dEfHGtebjMjk92uMirOD6P2gfzsMXRCNtyYIMPkWOCe7Vho458qiNcceVqHTZcPOUKC0bXENyNy5/P7mk4/Duj6diKXd6wnQ/fY+hcMx/4wAeOOd50sPntOcOBL1zN+fEQ0xjX+PIVDxadmmrsxPRMSv64EvrmYrP1p0Q6L2ontrW4lTtfQk/4xKV7EmxctWrNFgZbOdETPyQxdgbiz59NNbFePD276gvD2RQLNz4aO37s4iyvzpLz79pW72zZy9vzCrkUSw09dCX2Gmf8xLUfYhO85de4OtLBcr2JZ95emONHxz/udHzUtzrAC18MfNnJ0ZjgxUYvB/+yl4hD2Md7Y/szQfLy2Q6WWO0nPDmqF04wytkcP/HwN7em56fvHiq+Oto/PmqtDnLMl434OOIH173I2H0LHtviwak+eJH2EDa76pNvsTpDeMLAq3MIx77T+9v0BD5f5wPnOIjXuYJlrnbw5BKHzqL61GDy9YMNtWdLqoGce5DOFh/YeBjLSa+J7f4rB9xxVHv3YPiw6fB3zasPHv50jB9uv2MP2v2UERGJa8jfJhIkJWmsOLc9aJfQbnibpHj84NggQudg0ZNiKaTWJrBT8DbAWMsnbnxuE9i7WWc7PPPHia25+hBzMa3FI8xs8TBunT9dN0zjchVPI+zVrbj0Dpk6wePHhi8OGyc8sdjC6AKHU63jGKY5gVU7FDcvdDA1OMVcm8bWioVffj7QuCCs31eKC0/OpL2+hMFG41dtXLQetPubii5Aa85k57IY+mpWfWCoKVvrxJomjr441tg4I34yLle+XdzG+eVrDttNQbNfxYGXsKN3s2gP9eoiviauc6KpubnYmrmY+vBhJrjV6GCzO3O2BqebszcGOOFak4+5Nee4GoZfXDYJnQZXy6Z1PR1OccsGfmdSDLhs4LRvbOLIBk89PM1aLZ2enbZrcbK+uDi4sdPhFj++u0/xzVefjzMAF+/eYMWrdsU2Z4MbyUfNrW18a8351MKyhh+Bh4v6aaT3hmNy/VJeG3tjhiFvtvDioDe3RnBh46zCoHd+2RnHgU1xrSVi8dNuE/F6Q/cmmz/88oZtro9HdjgWI51Y+a/uEgf+3h/de3zg8ptwb8eD9h/84Adv/IdhuKmNfPArt/iZk/LO3gcV12z5uoZ6D2dfne0REcMeqTGBJ99iw60+YbLpva01vsbang8+1R+W/WIDvxjFtbbnJa7LgW2+bK3hE38+5lpjPoSu+PGiI+blUp/eGhGDv54NPS7G9MWkb1zPH1ctPGPCJozyoEuKZZ6/3F3XW8Pi5qeHx1YL0/ua69Xaxsu/nr/YcRM7DHHZVU+2pPXXZ6/P6fi6t7l+/K1QZzIMfcI2vbhJHFrfODvOXi8377c4in9+H2XDtyYf51ozrtbVgM5ZZq/26cVhqxn3Ps4mXeti8mOnEbjlHBdz4/z5mG+t+Lm+1bXr8QCcFzaL37VIF//4iEXEoWPD3niFPpswrPOv1ni2FoZ5ObVmrsEk9NWma+q23A6Hkw+duttruEl5n/FxjovedSKeulqTR/zLGyaO8K2xNWbPl5gbb9xiWYMF+5y3+PRs5B8Wbt77rBsnbLc+rfHXzHecnx6fziAb4+K3nr8eHzbFwF1+WtJa8/r8ve/YH3HiZ6286ODShUWX7Bj/5mzXrxrSV3c6X+a7D/k+8agetL/44otX3/zmN6+ee+65ox7y3GsT/+rl3kfUks5nG3srF7XEE+ds3E80udjrvmfwJWz5ycsYvs+e7Dqb6ouTPYRfHDHN4eOh70zAhqlmGttqqTfHyfvJcoCjdX7x4Y9T14TPUrDLwcMyDwNh5t89Fj958PHe4bOYePDE97CNjWsejjzhwhcbJpFzDxj5E3YwPBTzXoGfv/nOjr1asNWrDbFXciZ8xfZQSTz+5tVbDuLHATdYbOyPng+eHi5234o3WxzlT6em6iM+W5zKRQzr7SE/OeBoTSwY9Pz/85//HGNza/jjZC5H+LDFtq72/mxiDx3Ly3q5yE8dceAjvvzsmTl+XevFpZcnP3HN7bWHyurnXJBqUo3o/ckmc3HFxKlaGYuvF1cusPERBw9NPcW2Lg9nlR+fFfg4s/MQE06ft/HHlY31YrNRfw1/DTZR72przoavXhwtXPnh418XeN7Hj4ijiasO8uInh76zWPfs5tVXXz3snFV7qMdFzM6rOMbxEIMd3nRiwG8vYMeVLRs84Rhbg6cOOGdvH4w1OeJf/eTgbIohtnU8jZ2JcMT417/+dfXaa68d1065iK/x4+PcilfbWDgSPKwnxvycB/vhh0yN+Xs+5AEzriR/50GucrYufv+aAh96/uLCTYzl7z7kPLKVPyxcrGvVXs+GDi/Xi3uWuV6cf/zjHwc8burhesG32lQnXGBVl85k+yc+Lt3D5cSGvXPlh13lhBc+6qWZw5Gbe44et3MdXH/q5Iec9lUvjx7i8+t9QQ74eND+85///J37G+3eGBCRrAQU+5J0GCp8hXRAHRCJSUBx6IzdDIwrWJvbYTKHR/LT25z0bSi9GNbwhI9rnPGJE7zmxit8YOPABoez0KVnx95crPJRs9ZwxCve5uKY4ymO+sJwkOLemsNhTZx8Ftu62NVk+W69Wi9HXOGYV8d80+FG2NJp6bI1519N0l/qw8WXD1/NBwEXC773lbjAuY/sHvBVD/V2xj/1qU+98dM6Nalu8ibsSfvbnG7rym99cMtW71y4wF384rjAXdwwlh/csHB08wnXWpjGfM17Qzd3nsSuxuZia+pt3oeA874tNnwSP5xg6jU4zqlrORt50VXH1xFe/wkynb3vHMuJH6zs8eu8WyPmbMMNc3u8y7cc6rODIz4cHIgc4q4vprW46PHT80/YpoddPD1bjVjzZqQ/4+Pc9cCPTY2/MSl38RqrG1nMalk94Vs/+xyON76dPb6N+eBTTbOPr3nnCke+9khfHviLu/zC0Ydd3OoGDw9+nTFrzmw2fI3Z8Cfi0SUw9rpJXy8OTPce99FETPjxsj+Ly05c+Gw2P3Za/MK81OPmQ4APM/oPfehDV9/61rce6d9o9xvt3//+948vjfJVI5yXN7571joD8qY39+WzD6LsXfOac2bePuRjrpmLyy4btWjvjVuz3pg+weFcz/ZGH3c9UVeck0v+rW1f3nGTF/54WRMraW6NHR/jPW/sza2rgX6FfZi9z5tXg+W9HIxJOj2eYvF3flc2H7zZx2ntxMXTe4l1tjDZ41J9m4upsdXElYf3GXNctPyMYZJ8zvtaXc/6sPjCa46Lsc+Zvix6v2wP4i4WCfuY3Ly0lg7eynndXI36YmHeOF9xjK1peHStwMa/WsNyj5RDuMXny1azVr3rWzdPsmVvHS4+WkKHU+ciPc54Wev9olyy0edfbuyJnn2c9SSe5mz4P4hsTmc/eHjLt3hsxCgOvbHe+dTjme8Zszm7Gn/n2nuFGhF1b9x5lWv5xsncOp7VlR8O7YE188S4L6b8rRN9vHEyxpGNeS2cuMQvfb317j2r2zjp9fBxK7dda1zN2MRPfPlY2/MqfjUwJtWC75tJ/t13YBF6scobZ3g4aYROLLbp6ItvzL89jnc1hk/geEhgbz1o8n3iUT1o9ydjPGj/29/+dsSRpzq6z8UL3/alsVydVfdyOnM2xkRe7lvwCO7uUXp2RF3M5ebeLp5x91hY6qYu1R0Gf3O+1jxE08PTiDUPWNgT+varXPBf7j34ZM+WHX/f/eVnH9S/urDrl7jYu37l2/sj+/Lj53MYOzni46EXUSdj/mKqvxjVEk7f04zp4ciZn3jieEDZw9bOYXmz7QzTabDkJx5/MbNr3/ArVj7446nxUYMeZFZvOPaosySW7yhsfUeFScqRrTzwhss+KQ6dz9N+QMFPo8NdHKKGGsGFrwe8H/zgB4/v4vYRN7zVlA2M9s6aucbW+z6hj+uhuH6xToe3PTTuQbE8XBv88CO4s9F70MpH3M4Lu2zjoOYwCM5w1Ypf3yvUsjrL1zppn/On9wMdtj1YFdteZ4OfvNSFP5944UT4a+bsxa+xrcbyx5ONB5D9i4sD5PqFXlx1wKO4auiMmfdDCXbVVmy1KLY4MNjEUZ3sLz64dT7N5UX2nNGxg6FVQ3UQT6yzsMdb46OOHrSzx1/ueLp/qLfYhL3/6NQPPfYsFx93uaqXfPDUxICpJ9bK91Bcv6iZz6l4iyMuLuzUSD01OOLBxZGdMb0mvu9k/PApT+Otn7pY66E1DOt4GKsjG7nbD1J96fZBO57W/BAqP1iuF7WlE79mjS482PiKLaZ1c7j2QE72hr/7UP/ZLDtc8fM92Q9FzAl8Z6drVSz+aqdXK/YeztOJIy/XJmGPv+ac2pfPfe5zV88888zV448/ftiI/yDywH+jHcEu8oIpUEnSIU/oSXbGdN5cOsT8FLZi6+nCywfG4qS3QfnQiZ2tWNYdSvpiKLTNCK947OnYWj/bbByxzpJf8fUwy9G4GHyb81s7c60aWBObxFkfrvyydUjsD3+53yb82YQXlt5hJOIaZ6NXk/ULPxs+xvHF5y4J05508+brjd3Bt65Vg/KEiUfNnE2tC8v8Njmvmauli9v5VD/x3Fi6+Vl34XUzj08c9WSx2cjNxS9PnNXRWI70bnx8XF9isSHiuZmoSbHdeGCy19gWlw+d+e5dN5v2Vo8DPdtu6DiF240mzsVhX22Mw8BJwzV+8cbdzYyewOrazFZfY6/FRW8NXvnhT+DSnQW3bWJqbMVuja64MKoR3SVcOi08OPnxzSe9NWP21o1xV1+1oyf8rFdvOmts2BuzUZfqgKO5MxLf4vMn9PJtX8xr6V+3/N9Xa2oLnz0pD2N8cHV22wtcq1881sc4LL0YcNaHnm9++rDEtU4nlntdmGxgmdeqt7VwiwUrsabxdy3Ym+6jdO0B3Ljlq89fz4aPRtjXVt9acdmotQ8O7gH6D3/4w1dPPvnk1Re+8IUDC/ZbETH2QXt4eBk3L0ZzfiQbZwnHvfbozNOVaz7lp/7qac6nc5ldsaufmrCNizNDnLl05uoYFt/2nq788oMXzjkumyR+5vDE5CtWnOLJhr61+LFrTczmcc+ezfIsBz2fcsvvAL15YaPFl715uTVen3DiYy1ddtZal0/XznJmWzw2rpt03t/cI8LVx5VPfA+H65ddZ0fYsBU7LvRsNToNJ7bEXK27Lxp73+yDO1uNXtt8YJ4FHr1zu/cCHM3l7D5oDsuH996nrYvhuihusfVw+ZULXTjiVvM4sNPo45O9e1f3xHy7R7Nnl1ivXvSaeZzWjs6aPPR802Vn3jqdeGz3/YOeHX8iZvkcigd4iQMXsTS6sOGeReyateqY3daHzhzuGau52voyVo7s4eu7/o3POPw1Z6IvkmqlkfDLsbWt3WF488Ium81//fmSYhdD37WNp3mc9STM1tOdr532oRrnV8wD7PqFnZjszmtsitPamUc49eLIPzzYrsc+m7SHcIrLduPAggGruOGzo+fTujVja+d1OO499tf7uN9of1T/GeoLL7xw9dhjjx2/0Q7fHux36ji5N3RPotO6FxjLsToZq5E89ESuzrXzKQYf98/yqn7sre81IDYsdei7E67iuD+5TxULh/YERmcKfjHizy5u7OSjhQWfbXyNfVfrvt96+eKCK8EVznKnYxs/D4CImhjjx949oPcA9vTy1VdXdfBd0i+R+XwpVu8RxcUb1/9j7u53tbumN47vw1BVHiSoaLwcgP8aSlJUKlJKhXjpP/4kRJwWDkPQqqA0XsJJ/PZndX/rsnLv54Wnj99I5p5zjjnGNa4x5lzrXvd6dnd9fsBRDxz89qm9JLiUE3v4dHr5FtMLfXr+7NkaW9/vnPTlKBf7qxEYXvR6uQifv7z0bKufuHSJMe7EGnw5l4O1crNWjdjS4+uloX/swA9nYy/gfUdmwwcHOfLTCFutuLho5mzFS5ctPy8ze9kmR7b2ip/9kateDuLi0MtAOHGCERex1FIOfJ0T5xV3OgLP9cDWWmMY7LxgtFbd8aIX0/kh6Yzjq4+HWGydrWrBNl7w8LNGp/cLh/YBZ/h0OBD2Gh0/Ps42e2fLC2li3rMQW3moXc1cHsWsxvRwcHbdqK045dnYvBz5iMGHfXVQX1hqm39+xcWzGOzZ4hhfvJyPrhuc5WVv2W9smITemYdlXe3dM8TCTf3YOude0OONl7jyYyMfcxja6vnBgm2t/eUHx765fvXlwj+hk4dG5G/Ml529FoNeDLrqxZ6/HMTufkbP39w5DosehkbEgVtMnIleDLnI3ZyPWrquXAvZ8XVG1ZWdZp/skV5svnDCwpeej9yIPPKzTmAZiyuO/xnqI/2NdhcTUsghk7RZW8zW6iuyGyUcG8mvpsDGiqKveMY2Of/w6PMxJsXX86EXR3EVzBj3DoAYbGr8rNWKGZZ42grf/GDnoz/jl9P6n+3KFa4xHzGNCX241So8Ng6HQ3LmmY141rVidxDhFlMc+bCjY6Mu5mfhB4vw08zZ3ybFYuNidUPAXRwv2l2sYm2uxsXCSVs+1vjTiR+PuF3iYo0fYc/fWcnfv3y5EXqY7Wbmhukmy37FHFacwpWPG7Uc4aqrG4IHGL0aiPvEE08cNw/+cnNee6Eldh8Ixdz8qoe19OLHp70TXxODjh9eOOKVr5t0nKtnvuUpFgx6/LVistHUUnMeW2dvLR/r/HBhl8/ahKfn78zgpS758jdmc5ZysA6fLRySv7lxDY4xYU/o8O46C8N68dPV8xPful7N1LwcikffgxYf9nRbY2cCfxys653HMPit4Fvty6cc0q+9MSwximUul/Ixl4ezKwf86PT0xoQ9jpeEjfikusRLfykeOz7VUF88PqSYrZmL1Tp9dvStFdO+aD7n+LIvR/HZn4WvfSBstOJmG761xmzaR3bOsi/mPh99TvrPZ7/85S8/9L/R7k/H9ACPjxz15YbXbWIN/32AZktnbzRjAlMj8nSmOs9isaUvbn18xGJDHycY5l0TB/j1DzFh6cuJD114bPnFNd+wzeNgnB0dDG35hsufjcZHL041NY+b8Qp7jcBLYLofw8gm7Gz08WJvvTjmcaCHQ0fOHOhrG4Nd8+KUU/oD8PoHvXjui2H1mVK8MPjw31qGo4dTLcqnuNbhm690lqyRYppb83Dts1RvLr6zpImRH71GNgY+9sO9QF8u5u4X6eD1m2BwYNC5l5YLbuVuzAZenI2ta5cEVzbqpJnz7QtOfji5j/XMnl957bUFr9zLH6bGj6660TVvXV+O7PHCo/rKg015GeOBI/tLwqbGJjux4ejpql95LRb/FXN58DeWN4nL2sqBvrit8aNz1tU2Lq3D1Ng0Lk42evVyzxcDZpz4mWty1Fpf/8bs+ebPluSTfu0bl3e5po933Ogbi6e1361Zz2Z5Z6/HCXbngz09e5Jt43jky2596IlzZs0ctr3pGS1exWUXj8P55kf61RnD3LyMibrCXG4w6H0/UB8vCJ966qmrH/7whw/lb7R70f7Zz3726rXXXjvyFcf9xnNDz8Jd957P8MNJ694l92q0zzZyslY+8ug7B73nEp/7aq2pr3sf7Oq/+0XHR/OMSnDqhWZ7hQOpduLGWVwt4VO89lguxW2fsmfrpQre1tQIL9J9Gz4767h0v4RpDV+c/IkHc3he+qo9W89Svst5dq/eYrC1F/jZI7+56jdofa+ihymmsVycF7XynZNvL+b8aYa+F+DsM0w+7mP81YTIwRgWPnoxyrm8y499HNjiLqaGEwx8veg35y9nvfnWD057Y9xnS/cINSoHa92DsxMbJl+NnzNtXbzHH3/8+H+nebkmn+zVtvz15mq3+O2tHNk40/KIs3rI1fMKX/hw/Nbv1lWt6cWG4XnCPsAxx58PDDGJs2KNyL86s4FF14tKY2cjf+s4iScGTGMiPznQwZQDfuEeRjc/2OCAa/vBDgZfZ94cXpjOq3V1sW4PnDu9OHioJX86ewXbmfAPFEQd+RQzez4w8BLXOltnRA3p1IEvXJzEw6P6G2s4wiFwNHzUSwz3G7h62DhUT7iuNz0fIi57eyIWrvaFvzF/XN3X1VPd6XDGAx/47aV1a85B/wWLOHzEFB8WDuKJLy8iDokH3Orm7PGBLS95q5f45nCcRXlUbzjL1ZngB7eaGbMz73lZXvRitfdsYHcPgKuJ7czSs+GjJcawcZWffSJ8xTHHiYgFTz3cg72Tiqc8vS+DIT+4bMRmHx774pSburnHwZcDH/trXXw+uIgtjj8d8/3vf//R/Y12h0ISCDyoSJxcetEuOQlpEmxzKrwNU5SEPltjDf65wWmtArIJL1896RApeHzXHkY3Tfr1g9lhFNecPZvG5tbOsvnioNEVQ67EPH+48Fbo7A0ecdt1YxjWxQif7dneGt7hOXxxY2u91tw6u3z1dxP2YjhTbkwuGOKC6eDD3rpVF3bx0Set6/ll0/q9evHscZhu9B58uiFbc6Hqlxdcc03N+LdXbnqaHNXEuhuRDzE9nZuL/7u8Bwk1IXRu0G4UWjeAcPX4kvaKbq8Nc1yst+/mxs1xwK+41s3tA87Z4dkYriYXPW7J7pl6xMfYmpa/sVqysf96WJpxvuzzFceZwUVdSPm1B+xXcC8mGzlqhJ6/do7HlrANgw7XYlq3RvhXp3TNqx2/PrjPHKo3n/yygS222qgZHDXxoaW/JNnzlWecqvHZjw1d6/zpziIXObQP1qtHMeh2bH6WePElYl+KGXY5hEtfffhaxy371sqBX2PxxNIIP9eC5lyzheNhSV/Mw3h+iKtZF08fl3Tx1suZnXjp2TvL7jcecPT9RvvTTz99RLst/lC561CsfqPdwwUO1clarRwugZWbe2D3JH7VsVqUP3zj3Wf47LPh31hMdWFD6Ff4sWez9WAXJr24MNiuXWP6SxKXfF0HhJ9mPcxiWBd/c7BWLLmXxzluPvSdBzr+fY7gkF+9mIRPtbBWLLHjoC7yqaZvev7rJ1sY1vO3akzCZ6fFoZ4fG/H0jT3EGmdnzNZ88z6C3PyIC1vSnhrzsw5Dvzp4bJPW9fJwv+yLgzmsvccVj6685UPEKzd7oplrPgfcH7pf8O0ljNg4FQdHUv7WyomtOOVmLR5sVtjiWz3j1zMUPzqc8KM3puODt7EY7UNr4nTerGnWcIDLR3xzdiueV6yT8PkUg96Yjj8bXOBdErbwsmVPljdfLawzDl84hA1b8XGlF5+oixqtnLkVh42xdfUVQ0vaGzaNi80m2+WBy+IYV8twq1vzc7/1Mt452+KuX3l3fvmUm/ysr2+crO1+r79cxSp+daCXA0z+zg9d+uz0pDl742qSD//WjJe75xJ7Y51fMcUldMU5FDc6eu0sYsYhvzD0xdbj4plMfXrR/oMf/OB44Z7vGf9e8zh50f7ss89evfLKK0ccn8Fi+F5tLL5c5e85xphO3d2nOq/2y1jbfY5fOe1nvO9AfR9xDuB5BoQtZzrxNELP3gsp9WDD3rMHW7zUFc7ytIZH54LdCm6w8ZYHX7bFLod8ik9vT+QkRvdFdsWEp3ZxosdXTN/N9PCM9ey9mPNdjg8e+IbX87HvkF60ewmpBrizw7m94OMzyn6K42UQrv40Axz8+faiiD1/+mJWz77PsWlvjAmsakuHS9eKnOCzkZeX7H6rXRw1x0ePs/rBgSF+uRu3R2yN8SkH6/GNG1/rbK3ZJ2eav+ZFu/9/mjriIGc+ej7EHC86nJw5vXk5svMsoFmTlzz2RbvY7L3Y25zYagS2s22P4OAktn+YEK/81NMacT7UGSaphq5TOjzUiciJzpxddcEr/HIoN33YbBJccMCVj3rSabCre8/0/JxBdmpg3T7JhT/hp6mHevm+QuTgjIrPJ45qRPh01uCTrkmx4LGVN1/3HP3mCBsGXnzlQeBtUwtc4KoxjM5KNXG9LUbXcntSfeQlJrH3zqY+O3h4a+LYa7Grrdp50W4PEnHN+yVOuePKl9gPuPSdG7mLEW9zecJSJz1bOF604ycHdu0XTE1s54K9usFVH3bGOMsxDuJss0dypCPtC716tZcwrWnEuRC7a/9QXv+wLpYcCP/2Haa9wbc9dj9li68Yvm94Z1W+sNjykU943T/N4cZXHuzwqg78H/mLdhefQyARpCqchMgW81DMj2xdkC4eBZKMxCRT0ek0mJo4CkLHjuz62i2nNi1uen7hWRdboyet6W8TOOXJ74xZHJwbw2NnnuSrT9hVJ7pyaOPN4aZf7uGdMcLOrzmMGl7VQs+2Czs8HAgfsfTsXAjhWD9fJHQrbGGS4vRi3U2JiN3FUl5bp8Po+kdx9WfJL5vz+qU5n2qKo7mL1IXpJub8yc+4C355td/y0sKQl+tGr170+mrHD67fYHXzoDcXQy9uvPDmH3bxm8MKr3NTHLVoz7KnU+8+SPLvptUN036w0+A11+PAj8THXAyy16085FQ+ejzZ49aczpgepvHWgS3usKo129pyYheXsPBavfUaPYG1HNLDWDzx1YGOD1ksY+saW/Xrg/8wvrGn18IzFnN5VB9nI70xTiv86DpH6hknduHEl864edjs4Oxa+TjTOJqLV27mJE6tH8rTjzO25bgXk39xOkt04vFvnV/+7DU29OVl3p6y7UwZO9seHJz5fO2ZPMNmd5bliQuhE4eImd7cGt5auHTuKx7gPMB7+Ho7XrT//Oc/v/r6179+PLTgJL6Gy0q8VmdMH1fnzrlSw+poLRs6MWDTE3NNbYqff/WoXnHia0yfbvlZr4XReTmCXv+gbz/4Frv17cPQx3vXjcNYfTythSFO3Iq/Puyyzc+cX2eQP9+4tM6mBpNeLdnBqgbm1jSijtYTYzh6cbIrnjU+GskmP+tdJ2yyd90Yh1c8/nxr6fXp9CTeYdCH2dpheMsP9vJQF9dXnyt801sr7tZZHGKt/NW0+7j1WjWG9e53v/v4gsLPXGs9mtaSxuVIb4yLxt+cnSYmPrjka9565yY797U46/sMh2nOnrAncbWuWdfHpZjxi5PPGr5hdG9IRx+mvvkxuPDjbJt98dclDqtrXKz88aZbXu1jdWRLB7dmrXoVTy0Xn19rxnxq5oQ9Dp1F9vbYfLF2jKt1PfskLDHI+axZDyfbxbC3Xadh6uFZ21jqwVeD1Zh9LxTklWTTXA8PrrY4/M4x2abTm+cTtl5rT8OXU+dc3HCs3yZhW2/vjeHzK05crBF6wgYPn4teUrgefI77G+0P6zfa//jHP169+OKLx4t2e63u7mteiIindU6c1XjLrfsArn0nsQ9ylRP7zY0PLHHgyMsLEs8n8vSc5DmWvntr/uz5861VX/ViTy92L4PwEo/gcr62xGkvystcw4eOn73Hg6yduTqJnT0O5urGVl16QQYDZ/yMxWdjb73w9b0wH1xX2PPzcsjYOfBbwp19fmKb46vJo1o2NofTeZRfOYvXGaeTB77iwSf07ZXc6OnEVmtrsOHuNWkM23dz/zgAs3MCoxgw2ks+9LDiaV0zLwd2MHC1hgvhGx+2zhphp95qaP/YiNlzMjs6MdRRz8d7JrnC0uSjrybGauJFW7/Vag2/7PC0B535+HQd4MF2Gxtz+TgjzhZpr+irLztcxbHPeOCEB71cnEdrfMyXH7sEhqam2VqDgwMu1du8M88WTjHVUp2JuGLSyVlTD5jxMKbbGuDBR5NvazCtEX7Gxd0xbBIvHNRPz6/z61o0FqO9N2YjZn50sMobL3O+zrj3HXzUXxMLn1o8+PGBQ3rRnL6cylfPV+3Pv+gBp7rBwtE/+MDk48w5X7Crjf2jg8efnp84cXV+5ORcG7fGjsATl7841aYciiUXOjYw2NkXjY2X+fDxrN6ts2UjBjF3lojaOV90cJN4msOxdxo7+2F/8RFLc33Dt074LwbemwM+bOn46bu2+LEPn62Y7Pqfofp/oxBrDyIP/DfafVAoLAIVW0CECQJ3I2HNpmgdFIloDhAcyW7js/PGbBWlg7CbxiY/2MuNXlFJvtnTWWvjzEn5vTn79zz5knD1JH2x0m2OxmHnfzjPDzjxZIObPpz82Wm7zu5Sy7Y14cRQK3gwHPC4sy9O1Pha7xyYs4NhTH+uY3pnyBobYzc5D21ikrCLpYd9SdjeJnzuts6PjSYXvTz55KcuNevyq7UvxbdO+MovzHKtr67OvOvAjRPmBz7wgeNf7tUlHbxwjVfiSNf+sY0nHdk9Kjd9e9o+2IM474cWW3vDTpOHfWOvT8o5XrAa1+O2NZY3nunM3YjVJv58jNOxTUcvLnxjeo1kV+x46tnQyycxj7N1/mHkcwlfbbperMOoVjDbd/dNY80Nfn2KnV89PHmri7HeXI1w0zsr/MnyNc5WbcqtXKpXfubwYZUnjDCtW4urve+zAHYtf7jZpoNrrCV0xcknnV69YBN2xJzeurFamodLp4bpF7+8+Rpb4ycXZ1rjC48/ffGP4Kcf/GERdrDo1DLdcmOrrZ+xhx8PYx5mPUS4H7zwwgsP9W+0/+xnP7v62te+dnwBrFb1B9l7/Cg3Zw7fzqZct5bVNuxypafT2r98rVU/NJrnm1+Y1mvZR59NWGzCsE6v3Y/wvZesTdy6jopT/NbDXG67Fkc9PTwY2ei3wbNes6a+G7+YZz/61S2n1lwDbFqD3T1KDGP3A32cjfkkcYNBn511OhKPYzI/dp3avJZZvmubjd757IyGEacwsjdf7rhq8tbizw6Gz3HY9smLdtdwa/qw4pauuXU4MBqbW6+n16pbPGARdtb6HM82e3P3s/aIT/dwWKQY+p0fk9OPalUcuaeTh8+mdLm2Xl44lx+e9ATm2ja2xi6Jrzmb5mufbTp99vgRmNrWdHWtWe/zwFg9i3kAXf9orufXfONvbeC4j7qfxg2WupB0nd3mx+L1j86MebUsVhg4kDDM2eAnH3kYh22srTg31mGqW5hs5GANvl4rhnVzwk4Ln317AF8j+bPdM0vPZ+NsznBhlBN/PBb7CHDhR5iW+Gx+mYsvxqU1Ohj2cV+0f/jDHz7+Rrsv7Jf8wr5bX/1ef/31K3/67be//e2xD16oWFNDsd2HeiFWXcTUqoU46uHFh5cx1ca6cTWWh3PqbBL3CnE8m4jlOwKMnjH1YlbH9pgvzHji6EULe7zgiEv40pnjw8deis3enIhjXszWnBXfJ/nDwpevGHDFlVc85YcPnXWxlo9Y8sBFMxYr/tb5ibW1oveM78WZdT5iJPGXD8zuI9at8dGs88vOenW1Lreu3WrBVt5warj4XOBTXfRsw5Q7G/kTuBq9mK2rLRwxcOtelg27aiUGXtb4aPzNxbbGBk+it8Yfbj7qvd+JrXlW9sufziMcPmK3966D4sE2ZlO92KlfL1bFFZ9Obv7LNHNxxZBrtTOOj5i9RPSPAYROYweLVAN9tVUDNkRc+6ThKha+sOnaC3adUXbtoXHCRnyiNp0HeHBxVx96/pp6WKdjs7jmat61wqZ4en7yyi5MvbXW8VFTej1fjW8crcGRrzzXvxj4x4Ut7v1msjFszZpWXGNxCHx19V9tOAPW+u6XDbvyXM54qK8607NXn7h3PtS+fOGbs0tgw9DzxQeusfMtT37WxejeCZPQs++6VStzTR2y2b4a8GVP4khH5KcRXIh5e6HHlfR5QKem7MMTq1qxh18d8GNPV4ww8LfG1/o2MdmrIyxiXX3Ut7m+XKuXHqbGHgexxC1GMcW3j/70m/8Z6vPPP/9v2MfkPn488It2/7lUF3AFEqciIXovQbwHAYVSGE1BtDYpLIVREHrFIOno81GwClUxs8uXv/Hama+0CauDk6w/HPMw4LdhuDVvXQ9rGzsi7m1SjHhnl76evn0RowPDz3z986Ej5rjkp57Vi45k2zi8uIdpzj/94Xz9w9z58SCkx9Uh90FinD2cRyHx1Rdb3M3T+SLZqkX80h0Gpx/wwmls3pivm6jfYHWjgus3WP1Gu7q7TtioS2fKnN3ukzW6bsgnGgeH3Ys464kehn3oX0DjudckXb7Zu7lr5dSeWifhtLfmGj7i6eUijhysnT+gDqDrH2zYlrt7hzFO/EgYx+Rm3jju5viZ441D/nQk2/aejg19XLOh3z1iW37pi0Mvtt6Z72GJD+7s8mFnLsfuk+x2joM1X+rw0KoTvBodW+srdETPxn0YPju6WjZrb4yr/ZcLruvHx1yzFgZ8887IsXD9A9dsYC/nteVrPVy9dU1d4wGLzjnT4IutVZeNB0c+9qR9CbM9YXNJ8Kmx0czF0uOE2/pnX544qb+99DDlIeuDH/zg8dtrzzzzzBF2/S/xuJdOTC/a/Uac37RKHgSXLa7uN67Vzow8NGvhiUc219bVNqxqEJ/1UbvzPHxYxUgXRnr+2YXF9myf36U+2zCzgRs2HfxitPf56q01h2Wsh6EGyeLQqVW1NU7iU8xswi4mH7rsdz0+ei1b/Ffc262Xr2vKdaIXn58zvuc87HCqV7HiHTf95pffpX59WocLUxzSuDkfUt9454fBLT/OvOOvVq5X92J74DPcdQyXj5w0Yzo2xdRr1uldT6Q6q2dSfHM+zfVhuld5vmot3NbpE2P49tD+knT05Ves8lh/NmvHlsije0P2+vLCx7ieHxy9JpaeTT78szMm+MYBVlzye9PqXz/5J8b2jPDr7FajdGpqXKw+D9gb5xcuWy1cPT7dE8R172wuV2Nc4qcvB2OxNTp5GtNnT0+yMW89G5xWxzbxOS4P6/StFYuvdUJnb80Xc/mGuz1MuYZtzEfuxvD0ONBnr8btATz2GimfxvgsVvMw2N8m8qpucczWvAbzNuFvH33H1Xu+96L9xz/+8UP5G+2vX79o/8Y3vnG8aMfXi3Z1i68XkmJqPqPxwZfN1pWv+8Qbb7zx1jO8nNha49svxHWNeCEFpxcr7hvOTbidYb7GbHffYDs3ff83JuyqKSy56Gt4+u3JhF4Mz0m4VXM9LDVxBuCz8XxKJ0bPLDDYs6Erx85OscW0hhMcPRuNDYGDj7z08ZE73uzUKn9z9RF3+eCHP+zi+Yz129z2xBo/azUxYGv8YYvPjo9e67mWHz2bMMoDlt9e99KRrs8EZ4rAUEd25ah+xuw1HDVSHuLhJt7qjeMJg9Qbxyu/4phbUzufu5oxaV/EtG/LB1c87IN6VTtz2DD4WfP5/eSTT751PlwL9hZmnNnioi6ep2H48zaETv3Y48qOvUbwwpVPNuZ8nPf2sr3FtXV8vbTsng2PPRHHuvh8iWugvKyl2+sbR7H54ETwsvfypWNjXP50Gl7i6dUQbhgH0PUP/DT88ttaqIf9EYOIjc++eGbPV3x7oZW32P5RS02KYV3u+mKx08Rj+/e///140S6O2Fo58IGv9u2XOf/qa84HX7Hyd490D1Y/nNlr7OHjCLe68RNPT4ydQTVhKyY/9xiY9gmWNXl4d+PclFuc2rsD9OaHNX5y0kj1UXMYi9N+FU+v8YWPJxvzzk9nRCx6uM4ev40vDh1/enP5wDGmq7EpNh2hw51tZ6J6WVe/9p+tfWKLU/U2tw903RNgiKXe/ou0l19++eq5554DedTuGNznj4f2ov0+4x1mEncgJeDgSJxO0ppiaBIl6Y0VpHUbed5MPppN0LNlY66IGh3Jrg07lNc/FNfaCg70BB5pw43DwC9/ccSjy4ctsVZe+vzfXH2wn3zh6cV2oPVxLpfb8m6d//KEgT/hKw82Gp/8LrFlWzuvu4g8fLjoXExi7M3mbP92zstnc5KXfMtRTapvfbnX81ev1o1bw18t6EixjJ1//5VIf5Pvzp07x5d0vuLq7aeL3xg+vWtGX43ttZvvYqtrPPgbW9/zFqY1e+Ahy76kd4PCsbiuU3HZt2/2s/x8WHWj5kPETsePLR/x7D88nLJ3b9DEwpforbNjr+GlJ/iehU/+rRWDfVz0Gh37uLBdfzYkHuz4tAf5s5Fv+9Z6cczVpAclNbAWXnN4RB26R+IjZ3ONn7kHTWsafu1T+R5A8yO7zSk/PEg29LjEZ9foPHj3YNga36QY5sVQg+4t9MVia4yDZkyXnq36wLF2rm3nPEwx2gs+1c5YO0tntQ9d+YkBI7788DnXAx8tMWarZ89/fbKLi96+eWhx/u2pPyXlz7z4n5+RS/7h3E+Py75oh0f3ILhsce3e0FmzX+V75kLfnvKvfvRnn+oWBvv4sc3XujlpnW9z4+bp+PJZTGvZhUOX0DkDpDNpzOecM3y2fNQlXPb0nSF6rXjGeMEjcLItx/rV01UPWGHcK26x+dTgaCQc42xdA8XQm7tONLlpi8GX8NesNS7mmxb/sjHPDgeYt0lY1uGZE/58zfnryyebw/Ah/BBLbPu2L7b8Qkqfx2yqjz4unaU4saNzblqjU+fiZFtOephx0Ls/uh8b83NeYHadFp+vdb37ns9kY35iatUvfXjx2TmblY0J07om/jb3ZPP4Zre1sn43kSN7dcOJwK2OsLWzwPU5SvirA8GBfTr45UzfXK9O588dfhop7u4tfZ/p9Gz0+IhN9JuD+Bo9O/itG1cjNp2hA+gGy/rmIJ45sdbzGC7p2YhhLkeNLZ0YPatkF4dyj2uY4R5BTz+s8dOvH5247TE38bWziF+s9sjcGFctbL5nPvLQ2Jxlcc9rzfnxV5ueYf2pVF/UH9aL9v50jN9od4Zct3sGfa/2fcLLWWN85KkG6oOjmnrO8Oz26quvHj0dWzb4u3+5p/USk7+XUuLBZUNnrjYabHn33b66wybm/KxXH/Hw45/Qdcas+b7oJb8xLHFg4Oh7AN7s+cHBSSw6dr7TuCeScoRBirX+MNhpBAb7MNTbGJdscVFTPb98POeLodb9QwUf8TxDlYe9hIe3xkbe/PofU1qPF0yc6Jxr1y9earS5wRUDpnX21jUxzElY/q4znubqJo4zjK8Y/RcQeMC2LqZmHJYxbHH1G0fcBA5b8cjmlw179wB9MeCZd56cAxjWw9BXT1hsiD3pfgcHtjV14g/XNeS/QKEvhnw18+zgO29e8op3586dI0b7oW54weTbOVMvOsIvwWfPFmy66oMr/vZBbw4LDzbGfY/nR+QlLnv/iMLG2XNtW6t23SOt56cO8iXp5V6d9fRdc3Cdl+ojR7H17LT2CS69HMRWH0JnrIblCIOuGvKlE5e95tzCgq/JzUt/1yRbsZ3pMI3//Oc/H9eZ+EQt1MW9Lx/XDVux4KsrbsbyJHiJJa54ew9m4zq2Z+WJLwx7LY4zwI4vDvDUklQf8/LBhx4ODPjycmgOFnYAAEAASURBVA7kCVP+fPZ84cene4FctPYCFtyuG5zihwtfTQy4uMYTpsbHmsYWVmv8NDHEDS97a3EQj56Eya85f/lYg+MzRd3CZ4ebOtCzNWfLl5+Gn72BbX/sMwxr6u3z+zvf+c7VF77whSM2/weR/+mLdh9KNlABbLImMcVogyRTMegJH2PNuLnCtXHZrq/iKF5Fqg/LvHYEuvlhPT78jenYLh7zs/8e+nzaYLxhhWc9gZOcMdPr+WgwSBcHn+IdC9c/Fl9dyGLThdMaPGINb7K4+etXzNWGfzbWjd0getHexeYiZL8cF+/tHItZi6u9aW/bnzi0b3yysSbXcLZu1jqbxmzqnX0PUR6K6d/73vcefzrmMLj+wc+FXx3F5qNvT4rrBgJDDiQfc+Pq2x6b08PRu7l5WHDzh8POTVRj0wcbPUz++BXH3D66SeHMJx707TW7bmh8w4u3OOWIB4G1HOS/+3AYXf/IvjmbahK+uRZ/vTWtteKZk3pjazjr+aiBfOQCi5ivrljsjdXHB6NaVz9+1prHRw7VHg+18YFiv9nj0cO9ddyyjyPscw7WxCLG1vMTmw6WJo5G2C2WPDy8JbsOZ8WafGCpW0IvTvZiayQdG2O1Y2tereAZq3n2enP2+mJ0bsKnDxsnZ3X3Ba65GOz4FXf5W0vCTIcL7LhlVw8TL3vqg9015+HAn4552C/a/Y12fzrGw/htfOJ1Wy8v5xDPrlV7Io/qmi/b9HuWVn/JBzfNWuMw9XTVN725lv3OO7/FOtuESd84XPtN7FH45vIpb3O+7XO2q4cTp3D4pIO19sfk+kf1Y7vnkJ+5Zo0dDPrEWpyKw7bGLly2MNY/HNdQwm7v9fIqzvrGiQ6H81p4emtaHPCI99rtePHSi7lYxtUv+3jREzEJvbYS1uoa82Ov5r5cun5h+kx3TyZyYJctPPbtdZys83Vulpf71/Jibz0/+BqBYV88Y+VD577evZ3v4huztb9xEtPnePc5sdjA0ha7/Ipvnb08Nk/rYtEVn849hH24xnHS19iKe0niEE82/KplfNefLS5dpzDUQJ+dsRpUB7h4mhPrffmmJ3Dpq8OhvNFXj7h1/xSPjq9Gskkfp2Px+ocY7Wmfb3zFpRfLnJ/enMQTrjWN7vyMZj2+1qsDLDUTwzmxZl4dxdj84ZDimPPRlhMfNtnWb2w2pLyzP5TXP2BXAzXBuVg9B7AtLjz2BBb/MOhaax1WHOjOwlcdfCZ2L/CnJPyn5160f/SjH30rx7PvveZx8aLd5/fvfve7ow6udc8n8pWD+46Y7keeIeS6daqeXibx9T9X7eUp/u05/mzgwFQ/3w+ckz7zYdHDry7W2OtJ15QxG3sHuz0Uk8CCo8fBtaHZQ8+YWtz59FKlvVR3Y3USky07NZCn7zd7RsXcuvDjz0eLHzv5WHOtEzkbywcGX/lq+YlrjIt1L8E8c3UmxYApj3KBHSf85Yy3fcBdPI2vuR42H7h4WefbvrDzTEnXXlQHtuys5WOP+412nGE7T3z49zJPbvaHhIuLJi/rBL7zWZ1wLkfr5lrSPF35OXd05V0t+OFRTnrCz35kJ2Z87V3P+PJmY8255AfDn4352Mc+dujMrcnLWM+OX3W3T/SPPfbYwVPemjpkfxC74cZfwwsH4+zsO1xrzq441sU2xl28zaFzxqcX7Z015wu2vPnBKCd5F5e+hpNz75cG2ks6+HHl1z6JxRde/4V+WGLxITAIX7jwcG9/rfErV/rmsO0pLI2vGiRyo4NN7Fn7hqc43QuM7c/f/va3oy78CE7q5frFAV8x9szgw9ca2/xcZ0Td+kdK8QluGj85iGcMmw1+dK51c7GrDzvNvH/Mc43SEb066dtzeNWrPdIXZ89O9ZVPHMNpr8Wu7nqCY/c8vuLDtS6OHjYs9dbY6dtXOIurBtb0MOylscYXFmmPi8W2s4yHRtRSzfBnYw6rnOHA9BnYvrrHGbN3lv0XaY/8RbtCtqEIP6jYHIezF+0KYLM0iZF64wqpIHwrvKLzpWtD6eLEjt5cM9cUMB37lXzTmRdfT9KtTXjp6oslrpzEo4NFhzu9RqfBile4zcPdPmy+Dkw+a3MeV99si33Wixu3sGHxq2ejpYPVmly11l1gDrGbhHPU2mIfzo/4x+bfuNrIv7G1vXnhvbkZE304+uoAx5yE5SW7f/0096dj/Kdn7NQKfr54dK20T9bclMSzthJnvfW4xcc1zJcYu9H0Ac9GjG6ixp0zPWEj5n5IiGV/fSglOHa/wGH5xLFcYcazHOMirnjxWE7xiVvzri/zYulbry6wxMmmmPpzy/YAuf4Bw1n2AS5PEq5e/vXwje2rD7T2Tozs4nAAXf+QU01sH+Lunc4h4asu1YPt1ukwurFjQ8qh6y69evGFWUx9+eBmTuLpWnZ2qtOxeMsPNmLB45+k15PzWtj0zkr81cwaPHr1D1vfuQuPbXkVy7z8+dgT5zcsNeo6Ka5YYeK7/HZuTNjCvpuouwc1zdhn5Nv1ov2ll1566zfEcCp/43vxZEOcFWewh5vqSp9U7+Zs1EIzJmIbtx/ib72yS9cetPf8rJH2wTgc9tbXxjqhWx/z/PTW+BcrLtY089rGgWNejOyXQ7zPuvR6fmGZE/22bNjRF/cwvv5BX6NrXH+2Kw85J2zFIWI4//vFwxp7PX82pLqZW9Nr59hsW8uuPMzZ3yb5Leb6Gi8neKR7JP+u582zePk33z5uzoAvVl0L/UY7W9jFNN/zYk6Ku7kY0/M3zu4Y3PyA6/6kqbXefcvnEV/CV659FhbDGhv5tY6bdbh9noVDt3nkT5fNfp7FWW9dL1Yx8vH8YK3zlg18+m10K2HoG7duLhY8cl6nr1mXh1qrHy5hVtv8tw7s5Nwe40ryNY6/MRGzz1nnxTMW+7hkH3f6cN9E+Fcu7WlnhB1+9Jp52Oe6W4PNXg7lUe7W4wAjfTk4M31GihU+P7ZwSXGqiZjW1TUfa+z1pFjpzGvWy894pVrBwU0Txzx/mNnRGRN6XGuL2ziezc89X3Wxr8418eLEi/af/OQnx4u7cjz73msOm7z++utvvWhXB8/s9h8uG7E9H2qeIdpDvNSCrbw9R6pPv6WeXgw4/OTguwks6+z5kmpoXH31/Jzpzl97GH/rWnzDCQM+X3lo5nhrsNo/a8at8ek+xicuvWh3P7O+wqaahMsGf/h4ksZsiL4YMMzrrctJ7eDAkLvrC4f1E5utmFq1KW5nWG50fH2/gkeXrzXjeNkr3y/gW3MO8ONP5BOnnnXFws+cP3tjPtnDb018+RE6sUjcuq+Hix8u1mHX6BP45mw0Y42tzzQ16kzjpVnLrvjtR/zMifjsccKZXhwCI36uDf+flY9//OPHPsblMLz+EXf+NTo1wY99enXAm8hBbLa4sZcDPZ90vk9l1x5Yx4+UezH0feazc9aKxVZuBKZW3fDgq6+G2fLHzz+04Q+XXRIfnDS2xFgecJwJsTrbYeit84FpL+IVt2zyYQtnfeSJP5t4GK/AY4eLJo6a8rPmOiH8CT0xLwf28cNXg4WL577iOzfGeBqrAxyY/ONrnYhvzT0qO37WxYZlXX00Ns6T69Evq9ojOnEIWw1u2PRw4NXowpSHdY0PTGtwEn7iaO2BNfnTFZefPKtRdaKPj14d3GvEPEtcwhYbfvWDySY+5aTnQ+yXPIha9Y+e/KoVHBjmxj5HxcHNPVZdrP9PXrR7KSgBSSOF4IOKZB0WLxQURqKK0c0cnqIRthWSrU2mE9uGnTcDHy0/GGw1cbR46xUzH7Yr6cMTCxdxyaUY679jtnBWYNnI8mNjDh8vwgdPOuuk/phc/1j/dJf68rbGh5SjMV08Vx9He36pXnBr4ax/FzSdm5oPET093f8HqR5ytc/yWSkfdt3ojMutPdPzrZbqqdG1BhceG2feg6ybtbk/FfHEE08c9t3w4oEXez2Bp3U9ns9Ffnrx4mAP3UzcjHrwg3FpT1xvXXNwxMAz7m5C/uVfTeDjBkczr25iNo8PLOvx0dPhhV++7MWzN1p56tNls1zp8GHDn1QDdUsvDj828WFrrm084+b2vrl8vXBWz3z1cmqfxNaIOHLsPopndofBzQ/4cTBmp+b9hks55FM93OfOa5fyERMXUh3yDUtvLf444GKOf9cz/LDis321qga7Zhw/42IZk+pgLGY1MSfs9xyd684fNz3+/BN7L8dsXAv9Y1E4eusa2bqF03o1KJ71dNmee/xd235zyOciPvbB32h/6aWXHuqfjvnFL35xYPqtF3kQ8ZJLubW2vZxc95p6wlBLvBN6OrZqyKa9q5b6vf7Ej4M1vnw0dYrr7gkba+zZEXP6s9ATtrVswmGjwXJekvjg1zo+bOLFll05mO/4Ukw2YltL1ISfVlz9mc/6wKiFs/05v12DI99s1JeEV77s3KO7RqzTZYefOfvNGxb81tgndJp1fpq5mjbP9tyvH0wY7YV7dHN2YRk7p2pM3Itxbb0Y7OQD45KwF1M892XXMFufiR7uCQ6wCSyNPbtqpmfX3Dgb+8A2/suTnfthnyP6chGPD5xyMK9Zh2vdlzv8rdGxt7/wcJJncfPXl78x6XkCBnvc9TDCzpa9sX1gz4bgo62wq60+btZgZEPf+U2/fnQr/OQiX2e7vWBT7uVBl701be1b1+NR/Hzoq3m5W9s94sNmfcOrTt0z48dWM28M1/hSTeHBgNe1XB4w8mVHzOGoA8G3c1c86+xgwogrnZbACKc82y9+xvmHZZ5OPPEXd8d8uhbkxI/QFzcu4pNsjGGx1XZ+TO7yg709dR/wuWju89yfoPjpT3/6UF609xvtr7zyyrG39g5feykXDQfx9eZq5QVgNalW6tz9wlrfJdQId3aeNb1oLzd41tULrjjEej78SHE6H3o6vuK253AIPWx28tHY6+Vi3Vo5uVY9e+Nd3mzZ5SdvceRHlxjj63zAsU7snfuhHiYbEqfGOLcOHwc5wYNd/D4TDpAbHFg42js+YsArhlwJfPnAh6c2vmforbHnJ0Z7DUsunsvzgyWeNX5qYqx27tk1L+/EqdZygSGenojHpvh0sMMvl144w1AbefDhm70+4VcMecWDDzscYTqL6fAibAkM8ejjwxZnQlcubKufPh9j38l9F//EJz5xnAW8nJGtxcYWI17qjo9G7znA/oinvvYcD3p1hmlPSfvovyroPKpdsdjgp5bZiiPnPrfkiguBAR+GMRw8xOejpvhY46e+Pc/jRO9asCbu1hmOOT2f3ufBFpNUb1xxhsMnHD0cvMrBOL36dK7F0dSUjXzxh0kH339JKKZ86eSm5v5+Plt+5SEuiT+OxP61R3ioAV85FSdftfGsJzYcXIj1c4MVf/ZhwFQ7edKVe/7VRnxr7UX/wArLP4bkL0b1YaNOalKdYCRyU/d8+bHV4rv5wOiMtI5X9cKZL1xYWjHocWOPk3uPuPHVh+n8WlMbAsce8JFv+vyrJX9x4LuvEjbOJ+7hF4uf69Ba90t+YlkTx3Ox32j/9re/ffX5z3/+wCzeMbmPHw/8p2O8COjDBP6DBoyT5BVTgg64zdNXDAkqikan0Mb8ErGz0S8Xc6LfjbRJiQ2x6fpLAq91frs5xjX+tUs4OMgnm7jy76DEl05Mja7DCrd42dZb27H5JSkXth3U5UQnhrzFtUbYa+YwrLHRWtOnK9f2rJu8dTc8N3C6xb/E91Hptq64O2/yxDfJRm+9HN1E2JLyN3ZezNUgqX7ZqZkz34tT2L1o5+MGyEcsApM9P7jW9WppfEnaF3aw2LmJ+PBxY+GLjzU2cQureuC2ogauX//wdufOnbceRuC4P6hL+Rebf7rOEXuit0bwg0FXi1c28sJteRm7nqwleNJnBw8fjU5NuwbzKYY5rLjpCV/81TJbdfRho4fLj5355krHp7qaa3yyO4Jc/4BBH545rp2Xc/7N2cureXh6GOFax6UcrNOtr7lGsuNP1EPOPtTUgr58sj0Mr38UM5tL68WBW835F8+YXqzlZR0efR+wuzf5VUu+nQtrXc9xk5MHFOcwHmdOZ/5hx4U9Oc8P5YUf8OytB67+EcW1/na8aN8/HYMnjltPe1jeF6j+m6p7En9jTR6JujSH2Vlnn4jPTr/1ah6XaqxXL9cLaS/CocvHOMkuPxw2Ln/8rPPfdRjZWgu/mGzP9t3D+BY7e1jEPLxDcfODvVp2PTmjxsS4+HDEhcOHnl3xbuCOLhtr5ciehAOLhM8HnuupuvF3X3Otuc+HwZaEcYlHNrfxO9c4zgfwXX6Eq28f8MKbDm7YwbDTcJEHvuXChp9a67VLsnVy3TrrMP1Gey+gihtO/MyLCac9Eaf6sDEuvnG2zpd7lYZ/ubBZ/+LGv/jVBE+fKb6s0RE+9rg9rD7WsrEWZ/b07Ii5cet0eNey4eOcs092TMcmzrtWLfAIJzt+xdIn/MPATUvgOC/lCp8tf3qtuooXrvGuweNHH0bzYuHZCww654w9O42Ys9PSlRNcdSvGOQ49KW44h3J+sINpr+WgHrDUgt6YsNPwTAdbrcy7JxWPLjv+xvDKY9fpNOtEX3zj5tlZ4x8fvbWuVRjycH3IS7/xjFf4kjDDK05xrcdx/XfMBg+f3a4rc9fWw3zR/vvf//7q+eefv/r1r399nAGc+twVuzEO5u2979hyss9yUhd1Kl976blHzejZGufPp+/pxmzEcN9zlt376PlVu/avveKDk+aliZhEjLjCaM/hmMP3fQNOjR9+WjmxVXN+JFvc1MUaYVdMc7w063ys6ePiHmu9HK11/VUfOv5xx0uNcWHDVx5+qaqzoQaw2VazMOB4CeT8GMcHpnzpSNctrvZDLKKnS3qBaI47CUt8PHw/h2sv+IqJV/zMrZUrrlq226dXNxzlXFyY5YuHmBodKY58jK3hKjaMctOzcS7ZOU9qSsR3nsXddTjsYOYPl06exo8//vjxP0L1t5ntGb3ayCPefHHpbHk3Zu1Pf/rTwaUaObfi4+N7dy/xXDe4i+uXXvBRP/Xyol0sYp0ONh1cfnjJzZwerl6s917/CVpnB5648Ow/jHjBhN1zHL3vH/iSfOIFp8aWWCN4eH6wDldP6tt7tVU3ggtbGOVnPey4wzCuxZ+fhq962AfPXfbJ/2eAGPu77epuD8Vm75oSC7Y+EcN/4cNeHGu4OTNs7Xdn2Bqs/uwvLvz17POBzda+iMsHBjuCN/7pvB9r79mIX53gaPJQP8IXB2I/rentt9xdA/zzrX7s5SQGnca3lj2bOLDBVzOmd+76rkynBuLLAUdjzbj6mDt3zoV4pLG4zm51FgOW/dPUUM5440a38XGgJ8bwq5n4eKRjB0vvrFgrFl8cXNdetH/rW9+6evbZZw/c8I/Jffx44BftkpSY5EvoQYPiJTk3CgWwad00zOHqFUUzJ8YKpBh0bdCxePrB1kbkg2NYekIHS7sk1jss+MaD7XIMozrA18Qnxe1g8GUbhjyM2W1MOnXmV65h6bM/gtzHj3KB2yGGjT+seOBAJzY5c6M/x+ZLl8DQ4HcjN/eB4kbiJsQ+H2v/K5FfrTzaqzjRVx89USN5sCXlonemt4bW5dh+Gmfnw03DoRft1uGycS2Y651DOnvpZkWPg7mxRtjAI3Dae7ZuvPbBjdicsNca62Ft3sfi9Q92zg/O/gX5zp1/vWgvZz2Rb2PzuHQPoRNjuTsv1vnR8wnXOB/5xTmueKVj1/3kcLr5ER5/9dQIjARG8+z1WrXv+uDjRo+3Nbia9c5++14t5FxcmORcKxzYlWd83YPV3tpKcenVId+1aWyte2x5Wktf3cLMb3u59GXJGF/5y2Mx+VgrD/NqaUx23Ro8GPQaMaeHD6v8rFvrw7uztX75qEsPCfGBo5Fy6ktJeejLi5/5ri3GrsGUDx2/5vqdW++a6kW7B4+340X7+X+Gikv81ay9ibf1S4I/zs4Kf3XV6JJs9HJsH8zVml9r7Vf7qU8Xl3iGVZz6tU9XD6NzJSasjWG8NssNhnV+cQmXnm3XDD0b99b23TyBUTvHNOejh4dvdSouXzbEuDzM2bDXZ2cMzzybPg9ag1G+bOBbo9P3GWPcvOssLgf49Q+xCLsHkeXILw73i1EtznnCLbe4FUuP534R4K+GenuQzyUefPFk4wuU8y9Wf6OdXoOl7Rie60Frz8I6x+KbPRs+6u8+1ec4rnsGF4MPgVMtGnv29vKnF+1sNXsuP5yrTxhxcI6yYYcXMeZvztacnTw1uuLrrZ9lbZYzvUbChCF39x5Y4YnPJvuNYS3+9HjtdcEPLr38rS1OcdhYI8b8SOt6+jjp5aPueph6LR86PnJKD5O+fFZvnD4/PSkem7Pk5zlFPdqfsMoFVvGqAZ26xD/O9PnRae158auFuXE+5/j50mdHF78+y63ZezjW5SKnnr/EyW9j0xNr9HKEQeJMn08Y1uniTZ/AwMvnNxtf1P1tdn865mH8jXZ/U93/lO1Xv/rV8QyJg3ieJ9XAuFY++vPzpmdWdeqMuV7dS9TMea6G6pA4s3DK28sj+XlmMabnp9kjDZY64FY8MXt2hI2fdc1YTHzc4/i6t/ZcxJcONhut82AfxOBPx47Oixv8zvtEJ15+ej7hdwZ6USd3a/LE1VhP34siGDjJTzNmJ5Zn9/2vnbzcZmMvqrlew99zfi8wxdRgZSMWXw1X+6M+7NRMbokXp/KAm75auY5x6YWvdQ0OXPvAzzx88+qDEz0fPV4wCRtN/tWs/NiRsPQEDls1FRNPPq3Rac65vVUnccX0wiwcYzVRC/b2onsCG3Fg8LUmT2N/NsbLtQ996EMHbz5eWuLBr3zte3vvOhDf/zshnnqx5SFX373V2Rhnej7//Oc/D1zYYuFNv3sttkaHs7y2Pl3P4uHtrMlPLNy9d7EPdMRYTeVdLD78+TgLzot1vOj0BAcCw1gN+LJJZ91c3a3jbE87H3KBzV5jy846n3LHzZp5etjGbMXlB9uLdi/Z/Q9OiRzUVu5w4um/WDAmcLa2f/nLXw4/2DDFVifx0xl39uw7DLWRh15e9jHebO23uPiasyXVxb7Q4cyfLyzcqjsbHDQcNHm84x3vOHydLTq5yrl9xx9H+ehhE7bEHA9NDI2tOcEBJik+HLjydK4JP3r8rfHTmxuLJxada6194+c8iwnfNU3HVlwtTDV0L1ErmO6f/WNCHMLBRYtXeTdnLx4c90e9hh+9/O3vk08+efXNb37z0b9olySyDkCHAOn7EX4K3E1CMt00rNkMSSpQB4ENnViKYK1DIGZ2CmlsHUfNXOGzqWcLj00bsPzpFJ0Nf5gJnnENQ19sPd+z0PODrZnLq3xxkZ+eDgY7YzrCf7mcY1ya41YTU+30MMWAB5eIR3+Oh5cGp/iLWT3YxNEF0kME3P6VlF78cIp1ifuj0OESZ+OzVJ/srFe75d6eOi9qc14zp187N+AeBLxY86djOjvi2ns+Yhvr1bizoV9c3OIpjvVuUm5u3ZjclO1DwnbFvLz1NXVy7boBeaHgJm+OI8El/vHiS+jFdHM2Lif8NHMcW+dXDuyNxb+0V2zpYZCw9XEz1vDqZsxnpf1JZ14exmqPq3F5+VDDu7ztE67lFXc4JG7507FpPRvcYLHT3Dedlf0XX7YJG3l1vypf68ZJuKuzxl88/lvL/NjLi8jfGZIj3u1T43zq4wK3mrZWLzZRYzh82BP4+RnTx5G+c6U3jysctTWXl8+ahE5MODDF7fqwn3DoteXTfobT/rAncEn+xTGHQ+JuTo+bh7C+NLimetH+mc985vDB478RPHrR7syWG305wKdfrueY7PGvdp07nyv7uUzfZw1MfuGrtZzb87hsLP7iVCNrWzfrMHHV7iYwxIxzXO7mcz9r1UIucelaxk9b/jDLK/vlT9c6P23FOsmObbI457pVZzWIn5oXK5z2no2ciGuKX2vuz657unhYO3ON1716GOGIG6dz3W7DyVfOiVrAolt962JoYshva8GPqBns26Qzx6Z7slg+E13H8KsRvXl44u1eiGGtdXM2Gh56PKsJjr5gaO5VsDvbfFf4wmUTj+zx9KLdiyy6YsI0putclS9sPPBPx7bPAuvW2JByWpzlYp3/WXBdvotztre2+yXWxmdffGOtHMQ1V9P8rOGo7/xv/HjlZ42OPQyyOR6K6x/Z+bLYvsIwXv6bj3ENDntCJwY/MTu37rl0CRst4UfYwPI5zrfzyJa+OOVabfLlI1/iXrEx+Fpr/TC68AN2dRP/fKaKCQ9+udIb08mnMT0M96ieydjQa3cTPGDFPVs6a0TO1pd3uPTqoP72V1zXlt9o9z9D1bP5T6Q98xvt+6KdXjzPhnrx1aL9wEEzx9kYB9/LXK+tO+O99JVjddSzF0dOYlQPc8+jmviwOv98NFgEpwSm2K3hFW9j6/hoYnkW8txmTXw9X+txhS1evvqEv2adtNbLHbrOabUzh82nF45yJDjJtTrQa3zZ46W+nT/x8O5eiwtRg+ognnNrrifq63MFpiYmHHjlII7rlw97tSFixBEv/4jis4If3nLDz5wvHHmKw74aW8Ot+J0rftVIPPbVzrwc2GnVR+zFZEuyKz57uRJcxdq6G+NiD9XVGK6X1J0J+aoDm+J2ruCWp5j0/Om8aPdyzfM3f3XaF/iw5CsmjrjiwN+fdsK1eojdnrknaXLtWoL9j3/846gvPR72ARbRw7NGxMaxuPbYmpyJa/E973nPwYctvb13RqohOz6wxRcTjrOGr3rIlx8btnQr5vA6k9WYPnvxrauP1tlhgxfseKtXuRkT3FwPBE427IzhqWNrXsKq5V//+tcDy/6rpdxxYo+nGnW24oATXC/q+cBkT8c3bnRE/PZdz18dibrIK55iqa0zoucLk3TNiEen5nI+1xFWefInbPB55zvfedSy61dOzpnveO7peOUPIzGmJzjiYq6VHxu5wKgOi0EvBh0fnDpT/PKtHtbVhx/uxdXz19pTtvmz13xHdk1WP7Hcu9h1Hu0HPppc5EXgWaNjS8Tjq3bw6WHjptmzfqP9c5/73OED50Hkv/qNdmTvJyAbibYJCBorLJG4w78fDK1XIDZEIazRK2LxcdnCsrWmaJr1/KwlbBZDgWtsds08HLGa6/Np847F6x/82eKbjbVwjWHWzNmbEweAn3lY8sieLtvD4cKPaqC+bKuHHnZzuBrMfMAV28VLv9zP4ayxy4a9m1w3jn2QC1uf/RnvUc7luTW4VNdqoW44t1fVsTzybV4e57l49kVzRjyIv+997ztqGBdYmrOvfpoai5mw7QZSDDVvH33guBml23PVGFZjGOUanpsfnuJ4ye5/3Oo/resajUv25sYaHlsTXPrwZ/e36//zt399Vc8484sD3dacHR6a3NmxURdC1z0ijGNhftBXY3nH1Y3bPGlv9fQ+wPCHz4dO7D5cirtru1fhbny6cIz54uYeWY70xD74sO56huMDITHfplaw9IlxHySrt27OX6/hQqqpM1R9jNXc3Plsjw6H+RGeXp308M5CT8Qsbrr0etzpxdaLD7cvHGzCP2PJiX/rje2hD1vnEhaRT235GMOBIT4b/mvDv7kxu/OcvprZa7+95EECJ/vuf4b64osvXj3zzDNM/83/UDzgDxx60e4fPfGhS3a8XFvfsy1f9mpQTeWAO2nNeYXF3rpe41f92MMofrzML9WfPhu+hC5/PuF1Vtnnk11+bEl7cUxOP9jEF//FCntd2NPDVDc9P2NSLFzimv/yS1cezgXJX9+YXsykWHxhsuuayZbukpRfdvzo5OA6c40Yk/hu7GPhLj825+WfS/W2VpzWLvVxaG25nNfYdG6tsdXE0qyR+4mL514Xzrjr1nUMMwxxNHvhXtlnsTjpy5mO5N/6PkvREfvSntKlPxZvfoiJBzzXJ754+sLpH/b9g/nZTx1W+CbxkkPnAL7fHhMLPj279hleGBtrv1SFX59dffr66mU9TnoNj2Jax0+j0/DrTMOz51qfaXG1tjjm1pZTtvFYG7Wo5vRs8O5eaew86NlZ72zGNR9YxvS4uxd0P8BheYQRFz58YYhF1AOO+Pnrt07s2Fef1tnga975Y5vw0bLXF9/Y/qSjhwVH/S89S4QnbnzE4ltvbL1zCU/e+bITd2XrFBZe1b668bFuLTHnv/by8H3WF3Rx/QOWl3Y/+tGPHspvtHvR7m/F9hvtuHgW3LNjj/FSC2LeSzR2pGcdNSJbe3mxc0a7V6mDOPtdHa7zR8dWzGpSrapNdcfJWG0StvxhicuHTT644cEuPzZycv8oZn77gtBZgI27dfHh6WHRwxBXfGN7Fpa81cozP3uxcDFnE6diwGDXfU18IhfjjY2/ezBbtbPm+x3+sM01MczVu5d14hH3MT6+48HHV3zr5ej+TmeN+K1ZLyT1vs8Q2Ofay1Pc9pWNeunlowZibh3C4UOsadXOmA//uLItBl3nTE5ywAsuDKIe6gJLnr6P6mH2uWPsGRdeXIrBDwaxzhZetu9///uPl+xeYC4uO1zsV3WAo+EGw8tNYoyLa0Nc2CR7Y/XzvdeLYevW9Pz0eNoD/njoterAxhgXfz6EjTr5zW5jAiMucOVAqqc1+yE2W6KnEzv7amRNDeDHlc5ZrgaeU6yxw801gTc7zRo8+ASWOu1LVFztv7PNlj8ceDU59D4ErrOsll6Wi8HO9eWa4StH56nY6u+ZpTOGCww1Ea88ywFPObLHnZ25Jl7XAjv3EC/+xRcb12ogN3w7C/D403VtGLMX23mDaR4vePmL76w7S7DMiTxrxaC3zh8ubmLJpTpbE0/+dDipi7HenPAhMPDqDNn/6mhdbhu/vM7XLXxcqoWxxle9tY3lvMQJJim3+BQXN3k5C3T4sXUGNDjyES8MvXP5kY985Op73/ve1Re/+MUjBpsHkf/oRbsiV+CCIUQqTPoOQn1JsK8p3B4kth3wimWd3gF1ABRsBZZ1cu7bNHrtXCS6/K3ZBO02iVM+2YlTrHTFYmtsnSyXdPTs5CZGePXFK4cw6M+SLd8Or7rxoYtLY3o+2rkG1kiHsJz0Nev5OR98zDvE+do/63erL6z/lWwdtq7VSU6NcbRPJD1/LRvju4l1GO25D/jHHnvsqI8btJtsoobq52YDP182mv0l9JqHQ/b8fJj0INY+6cW2F8akG6jcnRs3GR+grkc3NTdGPW7+E0gPIrcJXDi4rIiFk7PhZmfuX8/xY+/hzxwXecLR5N1ZVi85x08MOOy1leJbN66xg6Nu1ZRObHPCp/j1uFtXu9bh4KvtmShmfMwTY/mGQ0+Hg55e3TVjvNnL2/1Qn44NYaeR6sCGDkeNpHPvNZZbe2Ve/NXBMPdgk30vfuzLxjuC3PwoFl+49pzgUhw25X3jdrELK47iGtsPXJx33Ai+1jSxiXhE3nRs6Rrbe/nBywevMMMyr6Z02dwtB3hixaG4zp81nPoSBdse+42ar3zlK1ef+tSnDt75HpP/4AeuvWh3nZHqZLz8zNkXE8e1VXtCz84ZlIvevDXnlKiNHNVOY5evdT7Ni0nPtjXz22rMprj8G7NP6Bab/uyXbv3SyZ/EoRgws0/HNv1tY+vW5K2FIcaumbvv0Llu4mxePdnQ0zWGmQ0dfPZb5+6p+ZxzMxdby999zry94XubxDVu+GjlTF/MMLLZurWm50uyOyY3P8IuLnX4dIlxtTfmJx/1oCed8fWjN6+VB38614DPxc59z644VD+4YfOPR/doWHTs3dfw6h7n/rm++MTdeCVO4cLEp88PHH0Z9KXwLOecYVVHtsXsnmveZ4Nxzx98YOnxlot1jT4uOFqnq6Z8sr/Ej62cwmdL4PRsYS6WNQ2m1vm1Jp74eme7+vJNxFhhWx7GBH58zK2b1+jgaN0vxcUHhmatMXtrcezeSieWs+ae2jpfayQcY+v0xYVv33Y/4LHT1secnxzEJ/zUr8+ucKyxDcNYi1O1aR+as8cJpnNuD9iEx67a0MNsv/iGz9663HYf+SbhNg83runhlgddc3144uLBN1s1cqY9m9I/7Bftf/jDH66+9KUvHS/aXb+42Idqiau49OmMnRPc6IgXgv1SgTzURTNmwx6+PVFL+ZUXfTnTh6sWWvMj0PUPNhpc+Jr6sKPv/BjDJdkZx6GYdKQX7fIrJoxenBh3Tq0Xp1xh4Kt+1rdZ66zgQsTBoTMKn0245c9Ojbq38WWnjn23YWNdDmzjx6Z7l7iwxePPRwx7o0+sydO554OjRo8jbPbtvfp4MeeFpO9dBKY68C8eDD7tW3M82MEvhjh0bK1rdPnLw1zDlR8RU2z2bGB09pxRdvizEz8MPake/Nnins1yM+avLT96DSfxrfkO/t7rv3P+rne968AX317JpTqKIVbx+GvxOsjd8DOWV2vG9kp+mv3Ai+DS+TXnU9y444AnMfZfzTz11FPHd3P+6hceG7ZiOlfOlzVnjh0ePrfFsS4fmOw8ezgf6qLBzrezgivsniGqA1u848KGjtC3B/DEY6c3xwUPHDS+7KuD2OZiebFe/fA3bk98n+olO1+48ujzgb3rES94xF5XG2N8xOfLxpy9GMS7EDpinZ2zYk9c23IiYVi/NIaRP3tzvrDcKzt/xaqHJw/f5/qHJWut18NM+NDLTyOdObm3D3iqsVz15sZqSPQ4yzPubNSXXftdvewlsX987DmBY03PX9/YOl11E0eznzDaV3attc5HbFhEXmppLp4a4KmJobHXVzf76xdgX3755avnnnvuwIH7IPJQXrQjJDFSMSJRwshrbBVGy0+xHSIbnr2NUBRzdpI1Vhz6DoI44Ri3IeHocWKzBWebWIvTFrr1S/3it36p+HtYstOXf3zzxaW8z7zzkYe1SxyKwRaO+NnDPktx6Vun46MRWGLBWvtssrPGxkVW3d3EzLOxfy7Y5keA/4c/OotRK9fNv7Xtb6vV2tw2Vn9fen0wOBdeZPvwMtY6G/a1/XWdePnthoOb1rr/qUcvQn0YtRds9ma5+05fHGP/Mu6lAU644eRfzsUvnlqFUW7W7LNzgI+WvVyIeWIMQ3v11Vev/B1KX9Q7v3q5+ECxF2K6b7gv4CVOsdh2xsQqTvh6ttbw8sHCnh1sdROH0C1efM89LurlrJ9FLDHJ8lk7cXBhK545n84TvbH9dq/EWQ2ItcZ6a/y1ap0NnsbhwyPy5yuGuNaLqa/R+3IGl86ZUiv6uJYr3HKQG+FXrQ/F9Q9x2ck7vq1tz0ZMWGy7h9C5r/RbTLgQ9hvfuLVi4mLf6OF54OxBLQx9seSo8YOHi57AaO+Kcyxc/8hWfmGx4e/asmf2QsNNTvbZf7L2wgsvXD399NMH1Bk3/Pvt8dgX7fESzxg+fsWhxzk7emOSjXHrzhf+6fhXIzbW2zv6ztvhcPODT3E7D9kyyX99HtYYR7H1Yhf/YeFfwilfa2pfvXHovFkrb3VPzzcfNtWNjZpZ02Al7Rud8frDzYc9G9eHe2/XST7swgr7Uh9XWGHzM7eGM4mPcXbGZ2GXD5xLe9R5KQ4b9Vu/cFaXXX7LKR50y5uejtA7/855+D4vxWj/2FlbHHx9AeAHQ3z3AnXw5Unt3ePcmzTjagQbFnx+K+XRP46L4X6jGbce7/U9j9WmmOVWXtbouvZ9Jvgc7ZkDFhv3TZ+RceUvT885nmHkRace5ZTtmc9tc37q5V4uphy1+KcTh8hJ/hrBkc3dRIz2ib+8xQgLNpvqG1bzcuSnqQF7sr0Y4VirLuGYa+at4cAnv2zDbY88X7Wmlzff4ujVQeOLixiEHXu8q4Oak+Zs4JL85V19jfnri28NTjZ8rVcH84ReLvgVSxznxTna7x1syyX/S31x8NH4aXDNYcCvDo2zodfaVzFce34j7mH96Rh/msJ/5eZ/htpzg/i466uF8b6IwN+aHIhr1H3d/SSfY+H6B6zOpTVNDdwzimlun3rmjQM/9zF1EJMsHjvNNd+zKh5e6OECM6nuzc893PKOr56InT8dO2eLPl7WOz/Zmnd/pYur7xrtezysw8RbDp1bGGLw8dKWnfh6L8TgL8dqt7ysq6NrxH0UtnWx9p7Ipu8EYbLLXiy/aEXwx4F9+l5mt1+w22924sOjr8lPPtbC5GPdmmZO2OC49316mDDE0MzdswnM9gsWzvaQDVy9uaZ2dMV0rvGw5rsxLGt09sq4esOFRace1ulcN/bNf5nG3+elOb11tupmX+w7f/np4+lsu/bpNBz54aF33nuJ7boSBxcc4LLBk57AsF4t1FQsvr6nf/KTnzy+m/O399Wfr/rCgqk+xvxgqLl4sH2Hso67c+bc+MeY7qXFto5XudD3rgKONfHpteVkjb/41bP88GCLH5zN37w6GsvFZ5j/+aw9cF40e+W6E1ccvVzYVxM9DL148kjnzPgvi/FTX354qQ0beO0F/v6LwGKLS8S1Bls9ta7H8ocjLr04mjXXCzy56+0RvPZQ7DhXE/k5j84THVx2ixM2fvzjY16N+MpBbOv2XQ+LjRYmP8IWZ2vqIzYcjfBVQxy7vtnLSV1w4btSXeBppLOgb0xfffi0FlccwjDOL5781YWeP5EvrmzgONf+3yrf/e53jz/ZxqbcjO9H/qMX7V10Cq6Igt4WeBNDvKQqLD8Fd3EoWPoOHn86my+e2ObG5w2XsDU+1sKqEOIrYjbs8Cf54KPg6fPFmw4GuS1+9vrFyn9x48GWnj1dNaInYnYI3tS8yRdn7Zzn2hT37J/NpR4PMTX+BL/lThcvehzK1x6F4ebkQmJLXHA7P5SP+MfWrLqfKTh/7Ijc1E8O8jpLeNbZaudanX0uzfmdX7S7LsS0RvTidf7sjy/yPtCrcWt/u/5zLG4Yzrz/wYf/rMi8vTlzpLc39GKYe7HuAcP1ty/aW9e7fknxj8n1j/Bxjn9r577zqe6//OUvr1577bW3bspwuvmVjxx9kPlQ1Ny4CRy8NX44xQPXeFg3h6Nn01l/4403jg+sdDDE1y4JTPHVztknMMONzyXf1eECSzx9GOnTyVvDFyfrPeTAU0O2CRw2NX6t420dR35sjJcDHRs+auKabr98sFcX6+GKvXGLUS34wBK/eOa3Cdx44GZM4OCt9j2kwYlHftVELNK6OXsNlgcBD23uU9keDjc/+GnscejMpNvzd/bDgV+1g8/fNW5NLXwG9jnowarfaP/0pz99wF3itHHuNcZzX7TDk0e1ta6+mrX2kF67m5SDPNiuLz86ucFWa/NqeBs2vRrBMsZJ/WCcxXo47JqzFYfs2F5kB5+kM9esX4p1GD/ADzmcsfArjnFngx09n3IQ6px3vuzj/QCU3jINt7hqZUwvvmvLdaEndNY0cVes5a9ucOShkc3RPPvNhT5O/Pho4W5M/hp/ejHNiym+OT3M5sXLX0xr7OLNRszisyF86LWztObz2Jivz6dLOOHX+2LnszRcelzU3v3IlxL3Xp8x1b49YZs9n3jgZ+7zAb57yn6RtFZ8/d1ELtUwWzUzrnbimuPl+cM92Wc2XzZ61758jNm6J+DnGYOOwNHY4sj3bhKP7rFqJC4e+cLBX6s+Z+5qz057EClveHG/mz+b7pfOanzEN16hg1vbNbWD0/00m2q99VwcNVAf9mzVS87m7NY/TLzo8xFT7K7t9pQdXRj48iH4hMEGhnjZO+NxYRcGfzbhHGDXP6qbeXsmN1y6TmDcr+BSnrgai0lPxOj8mMPGS2OTrbnakLfjRftXv/rVq9/85jfH9ezzViyx8akOOHQ/odf+j7m727Hsqs4+XjcREQUJNeZDEAgGFCEhcQVggYiUswiHOLKVE4iSM3KAgVxUyA3k6wBykpggbCty7uOt36L/1sPK3tVV5e7OO6S555xjjvGMZ4w511p776quxr0zodbuLXo+1uVLYMGEzd66te4hxXN98d86WXMuxU/aY3bW3Ye874EvLh5a7+/jggfOzcOrh1vdi6uPj94ZI9nKpRrRl58Yxhof8+ogH5w1ugS+GnjP2Hth2DD4u6/5RSV28exzGBvSWbFOF3c46qP5YWuc1MlaNbHHPTvglQd7zf7wxxsWfHm4RnyR6ot/eOqGS37Z0dPxx6/rHF941dsaHOtdI2uDBxxSDcVQWw1vNgQPvmpbTcRhIwZdsWGlE7frnr1nXbz1Z250YfITj87nK/vmi3Y4nk19Dg7Hs01d+zwkN/nYD2P8xKfDl04MvTjOi4a7/YuLHGDjSpfAURM9vRqJEbdvfOMbx3cB/MTQxOXjWmOvvhp/Z8Ca8+RLWqLvS2s48vMDc3zVSWw49ktsMdhZE4MYE9jlFKf4qJEax4uPGOLJX4z6876zVTN5sPcfn5aTeH6TvB9wwMFZ/Gofv3DElQdMYs9814GfHPm5RuwVTkQe/Nn4e/jth7l45Ve9xYCvsbXfBJ41OVYv+4K3uQZLwwW2uJ0nvSaOHzrgaB2uHq54/DQY5vno6QkM/HAT11rniD5b3GAkxnFjI3a2cVV/9/b4dT+lg91+w8SnuGGxoWe3sZrDw0MrH1ji860e1vnEk405PTtiP1wDBJYz6k8kv/Q/HePgIYUcwpK5JNZr7DUbSCRgjTgMNlexrNMbd0jYOHzmMMQkbDVYW9xistk4/PjH19qO+TXXlxu9zUgHtxgbl34lez2eHZp86OHsnH85FZ+ObUK/8Y2vSbzlfRZxN3Yx9OzxtS6ehpc1jV7PxkWRjXGH1LoLq5uM+Ox3D8+cXsb8Wt5it1a/fOQjz5Vq0R5Yp1Orxmt/11jMPhDD8CW3i9yYWLefHqz0rglxzY3F6+yosTcAenvy/vvvHz+Z7k1BD534bAw6uG7u/lMYrYeiuOKx18RzrRLx+bVGh3N9NbKOV2Jerdh48/fBBx8c/ySsB7SHgLOkd4bYuR/0QOtmWSw93PyrDb6kOT86trji5W8XegBkE9/lfIDMC5xqTY0fvPIa04tD9nGTH6FLD8tYHHvd3uNGZ0+qNTvj5tbVKny9FmaE1gYuCScs+fRhSL696Q+j2Py1YtAnq8dNvuWczbWeb/sP2xiGe4zzgR+x1ljszZd9Aq/7k3zcu+RHR6xrZGvQvJqas7trv9lmkz0urim1N+5Ms7XH/Y32F/lFu/q0b9Wt2pm3hvPKWY+zJg9+cumNXX6tLX4x4K2k16/wzT89m1q6ejUP4zw2J/maX9Kd44W9PZvwz7mc9z6/aih+cVvjE2+6zfscx/wSR/ozblhh8HP29cUz75rUd9/ly8Z6Pmd8vAl9mOVpTr8+8Fo/HG9f2Gmw9MTZyffsfxjcvtCzZwsz3+z1xbO+cfOVr3Hr5uEUx9ruz65b634Mx4c+fEjx+bo2PL+M+bjeXTPtAduts/uSD5buUd2zPMfZwdDjoV9+1vphvBhi9n6bvXgau7uEbXkuR7Hiqifs3I99+PPhHV86+fRMNobD33sIvPjjoVnjo/7ns2atWMb5wOIjnjNb3LCsaYRt3FdnHPZheOUlX7ZhMc1XTKKvHYrbF/b7Gce8HPQwwknPhsBq7FxparRrxQ4nLLbW1NN5giPf3rObW88eZjpjtub5da7pa3zziUe+bAi9Zt6Y3tnQ0tOtj1oQfbHN2agBLLnZdzjG5VLPxrg5/wRvsuvlu/rzOi4969ov1zJ53l+0ey///e9///iXn2LKUaxqoxbGrif3IdzwlUdfYOBl7P7hOoGhda1Zh1EO/NUNppjWttbWCZ01MfVJ9zpzenPnP2642DPxtfjiLB/r9CvtVTpzfGHrzdPB0MSTpzGxLlY6fVyslws8jb8cV/iHn94cDnt7QGBp3jNbg1OzHi48Yxjq7Z5tj+LM1751vuUgTtz4ljcsdr647bO4dTWC5x6gqW3x4Wu4tkfWzdVn41YX8Yh47SNbmNnQV+fqbl0Mja+8CH18GsPBGQbbzTlcPGHorfvS1Jp8xOTPl5gXg06zrtH7wtafcjX2Ht1vLvdctx/20X1TPfiyE9OeiWffPHfDpGvvcbQnPuuqP59qok7W8YYZ73jB9T2B37rGx2dzXP3rV/r82ZcrfNxwaK/NrctFI9aLi6v3G34wxMcaXpsvffbOFEx8O+tdM3zDFoedPZeLHHGFpRbw+MNhZ2y9mrMxlyedc40Te/nbK9hhituZhU2vj4faZEvXedXD5L/7TEf06u8HMMbyEBffMPDbc9856bzDkaM9hIGH92b84eFJXz3aT7rGbLzPUhdc6dUSFmw4hE/1ZINXGGziKjY7/uqmLyd2xhpfa+mMNXzwiAO79sD5CQ+GurKPFx083PjHWw9H29jm1YdegxUev3jFs9xwSgens4dPHOmdUdeWL9r/T/50DJKIXBNJKwI75LV8Ko65xDuYehes5PTsxHAwrZlXCHErKJwkTnQVvrUOQjb11sPQa2xbF7v1sM7zxciv3hre5nJo8+nNw7JurK29POiWPz/N2jWxTvidZeOW68boYolTB7Qc9C4GF2M3Ez5ufIkLqTU6Ptr/r6KWWjcJ9cC3+i/39kguxupZHdVqz+l98oXRB2Bx9ot2c+uuC/9MzJo38PRdA8bOKQ5uaARve+I3xP35GB96rdkjN1a2cMPvgc/PQ+szn/nM8Z+eehC4Hum18jQWk8DpjKifuZpsY8e3+pqLrdGrmWvdmxC/seMHA86Qh74x7mxg6wn7YuNvrMFz83Q+xcMj/uWLOx81gqcXy5nlD4fE8ZicXop3l00ubNmt0OGFnzVc9Vu3uOPrDJRz9d83OfERw9ietJ6OH337AL9zxMeclFOc1UQ91UmzNzD4kPJgVx7hZaPHRzOGw/YugWd/2GXLtzrZL+e5OsHiE2+2WvtdLOuuhbjCcMaKASOcatK5C0MPmxTvmMzLpXW2at4X7WqnOY94uhf4ot1vr72I/wzVb2ngIK9L/Ib+h+t0fNi31/nqazDtr1zkuDblCUst4d2Fpf4J2wRmXIq7a/nh0h6KY5y9cfPqABMvNnRa5yN8ffGN+SyWnFfW9qw3j08c0q3t5r76a2P2eJdfdunN48WmvdDz6xow7364PvTlHLa+HGCHaUwemkP89HuODrCneDjAZaOJ2Xna/NPxZYfn6mDw5RMe2zCMk/z1+bUGt3ubsedoczZ8zH1I01rT40NgFjee7k0+mPcc7J7Hll/7Ab9a0bsGP/7xjx8f+j07yJl/PsfilRdxNLaXxD7E2brYPgD6oI67+zzOPcPbN7yz16tDzzdzmJ457MS/JOzlHJZY3cfXZ8dwyuWsvxRjddWPTh7tW/HPttbtI8nXXuw+WdfoCE7Z0htrZyy65b92xvjVisFeffTq6zme38ZNFx99GPWwYeDFtxrEmQ8bayQbunyMSe8F2ORv3Do+pDPSmvh8rdM5Z3T56RuLaRzPA/DpS/6ra1wt8OIrTuJ57Qy2N3o68ry/aPenEt58882bX//610eN7B1O4unxMnZv8QVcPHBSF41UJ9emeqifsXVz+fKpsVf3zmwYbLfW9Lt3cNyDvM8h1RFukr25OFp2emfVe3lja+z52we844ubfRAv3uqPHwx+xdB3rfHXYLnXqINY1vlU2/O+hyGm92vqw56deH32YIcPPGvneTnQl78xTHWDWT2MvWf1HAg/XsXAw5fM4tlP92G/+es9H6k2evHaw/KHxxdONuJXR+vm1tSm+oQlJm4EThj8xCJsYaidRronsbHePrKDQ7e5qgUJN3569j63Gnfm4fDJj2869vTs7T9OfskMF8/wV1555dgLc9ec/IzzVys+cOjt2+///u8fZwo/zT7wc5Y9y+0JnfqpERvreMAl1srBumval/6fvP0b8r5s7/OgL3yN7aHPsAROHOMZLj089vAJ7hrxXYEv2vGzjrO5pj58NXi419Sg9xn2zxnmLw57cQm4cC5JAABAAElEQVRu1Sq9NXtsrb031/rBhDMcBpzqxke9xc/HPvV5ni2x1nnAkw8M/OQiT/nFhT1+RAy27PCzx/aDvnU5mfMRR+7L11p562F0rbLFyVkS1/UAo/rQic2vOHh7j8UONwInzuZ8xO06pSs/Y9L9ii0cGHTm9tC11Jp1XMSGU77xVEPnOA763X8+dPaHXi59x4RL15Y49hM+n/IS2xw/PV4aHPuihnKlS2DRsQnLGmwcnC9x+YjJlp3eF+0v/U/HIIPYswRhyUlEgZCWZMU3rjiSYUsnSW8SFMw6P+MKVNHp+RQDHzrNRrCvLde4h23NmPA1roWFn7jXJHs2HQKx5QqDhMUmPdtis9m5MVv5hQ9DLbMrf76XBAe21XxtNi69uXjwNXVy8dIXB1ax9Wy6QLPvJoyrNXrjrc3yeNaYHw7V71n2j1kv986hHOQnb7VoHxY7TniVH53G9zF89ybrAeAmDIvgYL0/5+LmHEdr2dhr16i9d8O2h7/61a+OPx/joSm3vsDmz1evudnJmQ6+P13x6U9/+uBBzyaRZ+eCzlz9xFczczjhmRMYbLTiNlczb2rw8ydkPNS9qeyBKa9snSv+ciRieyCIo1mTqzOoBgQXdSkXPu4t7HAW30PCmP/zlOoBVxyiPpo5TqTY2ePIxpyNHDXj6iunxnrzatA5gFNOfM3Vhe7sjwd/glt+evXhZx+8idFnGyc+5REvvsVyj2/fYLG9S8Kz52dbsentoVgaXa0ccBOzuNbh7m9cOl/llh8bOcJNdwzmpZhsq5XlOBRr16qFa9xe4Kf1rPMM9IMuf4/1Rf9G+6RycYg/buogR/POjPGKWliTU29Y1saaRtezodzXrrE6VV/xiTU6a1tTa+Zn3+z44K8Xc/fLnNCtDV08w41P/uEX2/p9pVz4PMTvWfi4db+s3vh1/RSXHZ1WHsZ82RjL/yz8Og+tham3rpUXW/j3FRidOT5yONcH3jmOOd84dGb23PELP0w6tvJdae/psjXeXHZszdkP3/PMdcCXnd49yHVvzTOdTmuf8NDKjd5++EDlfuVeZ+65yEadxCvX7nH08PeL9uUqJr/i4/5YgatWPVPk5v2GfyGGp+dwjW2Nj3H16h4t5zD5yS279hhvevXW6Ik9VCNrcDVSzGPywBexSBjVTU8ntl7NzzbVuZBsPMPlWg56Oeuzry8HfunCutRnb804qR7maoSz/XKW4s8+DvnVW8NBz77zaswHfjGKa07C7X5CXy7hOQtnf7W0rhlbdz1pYYsvB+vGYlgzJ3TZdq5Wdxjd42V5hK3HxXVG5KRGziN5EV+0+9Dv/zHCx3tlvbNUbmJ7/+BPINDjyKb3Wsbq0d7jqX7nL0jkIjd4agrLuL2Gq53rDW/FWVcHEhc1yt+4c7V+jV3/uCXiy1VcOdhLgpv3Txo8Nr4IY+N+IO8V63T8NeevOtBbJ3DhsRGT4GDORn7ud8WFIx7OuMuTPxwCm796tg84EraETXUTQ4NBPAM0XDXx4iKGs+hLWGO47sO/+c1vjj8DAl9sa50ZmPLCmT1O8ROXDz7lJRaxBkfDjQ1fnOQNIz0fONvYdy3Dq1a4sPd5VAx2YtDBhwEXvnH6cmBj3X7Q4Z3Qw4KZ0G19u6Z8oU18Fvbb7fjA8zxTJxh8tfIIl48vv9nF0Zd5zoTPTf72uR+a0fGXC2z2+Jlrxvirjbz8lrwv/f0SjrEccXet48AWvpqEYUzMxSKwxNNb18TS8PW5Gzdnhw1MPxzwHkT+4rAjcMWGgY9rjo+x9zni1NhYI3g3p4PXXsMztk58we6XBXGgKzcx2ge/hNg1BU8OeLf/4RWr90ZyLo587X82R/Dbl2rXXvF1zbuvwY2DdXmIaS/lvWK9PZC/M6Ve8iX69qB7CJz4xUOexuLYE3Hg4lGt2x86tnyKDc+6Xq75GLOH6zrG0bNEK0dYfDuTbMKCo+58YYcPlxRLTq4F9vJVh2rQfQBu5wA+X7zi7hzGFzYc5wFW9eFHcLYeHr98cdkfVrDhL47+c5/73M1bb731cv9Gezf2g/0zXtoYyWqSRZ4YExvfAVDYLk59G6pA+XaY4MHfBq9Y7OBpbMStmZO4HJPblzDjlt58dcWwno94bFozL152erFt8KXYYcVPr8HVW3cwk2I2P/fWiXjXBCYpR7YOcxcePRzxcS4/PTs3gx48fMzLuxsN283hnPs1bvHSX/PBKymX5pd69mcffnKsns44wbmLMf6Lya+aZL91Wttnjfm5ebvI4XqIeqMFHwfXiIe3D82+bHfjs4aX1h7Zg26Qrht74It2fzPVQ8T+9GF9OYvvBgXLNSOONxf+53U86Le+7NMZiy8eG3z11dP6Sjb4W3OO+MBTA+fJT/vdiHH2Yd2NsBsze3nxF5PgjGe89OqgqUmx4sTHWHNjZ0Pg4vK8JV5yx4XIl168vU+xIdbimL99bz9a7/4ID45+/elWbx1uPKyRYh2Tpy9isMOxuquVZj/orOOMBwySTqz40MOLD5/qkT2bs7AppjFZ37jRw69vzBYv/Lq+8vemSg7mro3OFQy6cm+uX5FbcS7lYI3N+UzB7prWV6dq6Drwgy5ftL+I32j3Q6z7ihz2vPAzp5dHUq72V05q3dnMrr2Xrz1VM8KXVM/mq2s/imNeW/ti5as/izjt1xmP3no52rt4wmavFRt2MXdtY6ZfXePWxFuJH1112XXj5WAeFn33svYOXuv1dF3Xenr5uicS6+UPM7/iWl+xbi29+dZ6bY3DS5+fOd6wSPnrCT+2xaLX4pUfG7awNOPWwoSX3/k67d7Ar9gwlyf/FWecrd79Wk/EcD14znqW+6BmTuB3bbgu2IphjLf98CHT89AYLz0bsTRjfq49vevPhzg/tPeBML01rbh8y09/ltXll681TWycqpf7l/up+6tnsA+83nf4EBZPvTMKEwd5qodWzTqL1YTdCl+29GITPsbwyTX+x+I9X8pTXw3CLR9Q8aOzbr6+xvL0+cZ+GOPLTh7m+UQtHOvG4mtstfisfWN9nNiJpeGnV9fuE9bZxmExjONhzJ8dHdHTlTcdvLhZ1+yLuK3RxQ8PfEj27Brr+XZGwhbTGdNb14x3vZg4E2t0D5W48A/fdeY9WfVg0/l1jf/RH/3RzY9+9KObL33pSx/6PCYuH++L//qv//r44lR89wQ1FVMd6dTHfceXrc4YvfNmrbro1bq6wTC2B8b1PcPVCgbs4ogJE87i0pHqUH3orLVuTtRK6xzQGVdPsffcWJMXXfp88uOLq3ttubLBSUuWD7tiWYdlXU+sseFPZ4y3uqi3Xtww3J81wlYrJxhbSzWMS/WRY/smnsYv3HKPFz/r8Yuj+7AvKt172bAn2RnT2f8w6AibBH922chlebFlgxes1vQkrPjSqYEG05lb7OrDDoY1LWmeTi8+iZta4UJg2C91xSV7Y/bWjPmY++LW3N56hrrG7ZN60tsbzzm41tp/a75g9uztM5JYeMgdvs/j77777vHZFmcNtgZTfKKHZx0GTp+8/W12vwDnPYQakWKHU678YYoLRyPFPCZP52yrgc/gzguuxBhnf9bVF/Dp4RB+YuDjnkcvD3XAW7Nuj9XPGcGFXs/ftVo+nSHc2XgfIa6e2EP3Fa2zQddYfDnA2byKp6cXk1Qf71PwKy48nLoP4kn4imffqyvb6svGfHXWVsdffBhi7Bp+uDs/nSHrcVFbXPBUF3UtdvduNUiHT/HT1cNgqwbiGtPBEUMsjcSRnTOAYzp+fNTQWTevsYelh83PGg70aqDG1vnDMVbnxDjOfNnBosO9PYFjrOFWb+w6UUM+cZOH99VhhaPHy+fwN9544+bb3/72QQWvh8ij/jNUBVSk+4rkKg6COzZXZAdOUsaK5OLUm7PX2swd8y/pXaeDp9GTihpevvmXz6433hwWK9/lZL34xQi7Pn3++ZgXM51eHvTrl53+muC9PmuXn7qwqX7mDq1DZ0yKRa8RPs5BN2QXBntza6SLyRhGe3GNE7uzxDPMXW9NH+auXxqzrVkvf7r2WY7wwl37M+bGZUcucT37ned8nXs3NP7GrotuSm4Qv/d7v3f8czYPWzeA9qJrBwZd16d87Mt777334d9o9xDxsHLzZl/Oeg9IOteen+L5p3P9ZkR8cWObqB8f16q2Qq9dkupurbPW9d7NWiw3QP9BaT/97/7Tw1CN2KkB3iQu6qDBX1leePRQoG/v1/55jLcO+JLVqanWWj0b+u5lHsw99GDI1Vlgx0YLd3X5Fzc7Npp4HkBaQi+2mqiRM6Ne5mpK137wwYU/nyT8enHOY7Z31b2YWxM+OGjp90wVgx0xLz/2NQ/rYjtTzp45YQOzdihPL+pIwtOviEsu6e2jN+M9/9h1BroGX3/99ZtvfvOblv4XxqF8wAsu/jPU733ve8d1Faf6cwz21vS1wsXTejZ06qGptRzkli3frs2w+e6+hWE9oSt+e9E6f5KNcXhs6JN81ibu1owXj6+2+s7G2R4mXTFwSMd/sY6FeclvufLZXNnseu7Z6dl0XVvHtbPdPXDX+Wjuka5jbzjDcx2Q5uGceZTnYfzUPly2Cd0lCU9frGzlGwbd2oZVfGvZxpVN+uqfX30+5mIUu3n3l/VvX9Z28bqenXXPbTHi5JrwnPVc9Yy3H/Dgs29e/PbB3vRliTE8e8a3HKuRGPS+IPBbde4xnhHV0xpbGOnEE9ucbF0Wn19x2HWeYKpVeZZz9fOeww/35BD/coAXjvuGOuChwe0Zzi6+8di5WqUvx83D2mOlGiwerOKE27pYjfMtR5ydkc4JDGvlnl+5sLeeP3tNnfic89qaxIuOnf1Qp/bFHqivnogtThj569PFq7yspTNO4rX5iEvoOivhWotX2Ho4+nLQ12Dxae/VxTxs69VLzy8xf4yoD07hucY9y+0HniTefdH+d3/3dzevvvrq4feYmOF6L/y3f/u3x5d0cvTll/dlxtk4E653sTtT7gWdFbZywL97iJp1DnoW+CwnJ02+/LVq33ksrrxgw2XPLp9srWnsCBtrmnF162ynZ8uns7C5wCPW2GiwYOgT2ObFkXO+2bGJg7XGYcMKoxzF6VoOhx1/MWD0jK1++ZYfPzotTjBIZ3u5ZUtHiiWe/fNDTTbW2+PD8PYFXvfUdPzVrb0Ij47AwjG+xY3Hcg6LDZ/6xjD5kdXhRNTS9bSY8WCvmS+OGMXZHDxrqh+9vdITHMJtDYa49slzk97z1OcuPXs1NvbDa9cYPp7lrjHcYejZ9KWjeOzgytNvZ/cnXfELV+9+EkdYYmu4+wU8v/ymwbcuD33CV3xNTHzFPNs1ZyNnGMbi+CzUuaGXh/8Y9f3b/yPCb+P3Qxvc4fPDXS8uwa/3HTiJB9N9xb4U05qc/eCAD67eL7Bjz4+ucysGOz644geLffzFj7+ztNddteKjhUsv1jY6vuLJC9f8rJWrsdh82ZS73jzJji1c3PikN06McZOH/NnEpeeNmlcn+0A688biEHYaTDpN7fTysabPvjPDF//qjAOBg1O82NCJ3ZmHt4I7/+rX/ompTtZh+M7HM03uydrEmU0540/w0NjoYXYdwG4uH3MxcNbMqxM+mjPpX4/4HP6tb33riMHuIfKRv2hXNE3gu4JLmp0kjIli85GwQiiAwpg7RNoWiN7G8INl3obBMy9O68XRi8We3bM4Z8uuDTNO2ozm+mzDlst9RbxaOZg7RHq12fj3xV27rVUxYNKLEX8+dGJrxsl57gbghqupCRw3SL0YdCsbg81ir91DxjA1eFqSXozGu44fsb76/F92j2MfvnHqBt5DwEXvIet/ufbh2UPdfhC57HmTjxsHHDdCD0Y3LzdkD1BvwozZiRuGf37WdfbVr371iOM6JGxrnR9zewxDfM1abf3aAzq8EhjtAX945uydezdtP0Xvz984X/LuZl6d2ItL+GnsFo8Ngc/WmjOs/7+U3bt4VGuct7bugXKubj0Mqv1iydG8e2OY9HQr1uDCD0NsTX081NRe7czVVnPOnDGYGw9G9Q4nrI1rXC76s9Cd9yd+rg0c4MoHN43gchZ2+RrD7kOqsbOgwSR0YYZ7xiwO25Xz/Lym1q5hD3JjOMVTT+f385///M1f/MVf3Lz22muH+12Yi39tLOef//znx5sG94Pw6vltnuVGx8YcRkJXs6a17/bD2ZQbXTHoO3vhWStuOMXZ/bLmLJzPA9vi4mY9Xmd/tmLZ4ziVz/bxyL81e8MPzjX/Yujj3Dic+vT6FdjleubAjr3Gbvdn68DOGs6w2Funq7Gx7jru7O/a4rMlckrYJtk2F+uss3bOdfHY18o7jHI++xevHic+pH3UP8svf30xO0v842O9GHGlI+xc1864eM4/DDXmY+5DuWetnh19+HrCl589EUPvmdcPA7v3dq/iww6eD7fGvgTww3J83E8Sa2JqiXjyq0Z4NK7nd5Zdg8dGky/BB677rC/avRfpN+LYy4d9ebPXSBzYtQ/0YhYHtrH1/WCWXbhxo3+MiFnLX1y49xE8cC0n+yFPczjOhUZXTcMtbr7sibl2FnE0fmd+9sVZan86mzDKZ/3Dvhar9d2fdOc+fHp47atezNb15axvvrnS8+HrGpBPts3PnMI/8yqWdVJ/tmseD7Hto/dMnnWdW/7Fcg1+8YtfvPnxj3988+Uvf/mZ2MU49zgSX7T/8Ic/PH6jXX6+aPdeHpf2CA98tPayz9Tm6uOssVc3OBoMPZ3nAVyy+eIhZzh6MeRvzC4M+bOlizus6lI8Ouvb6OSAY3Hgs+Hfej7m4liTm/NNrLvv0FvfBlee1c28dWN6DQY9wdk42/iUi9jFwh/neIulVSd25gQe/Uq5uKdpxcAJtrY8+LJha9/cZ83h+HwO3z7hnJ34xom1cPl1nxDT3Fp7XTwY8i7W1idcfbXdcfWDgTccOmfVM4u+2LhYkwce4rFvj6zVioWz9XKkJ3ThmvOLtzF7Z88zuv1Sa40fcV37vO7LdnyMvZevxsVwHcnN3LUiN/i+aH/nnXeOf6HCBtdygocHEdPn/T/4gz84vmz35b9Y4rOPz2F8+8IPZ7HkYN7+sDWvDmLuHEbzzpy5pv6e3+/fftH+P//zP8dY/N6T4Ax/OfGjx6f7jXVY1QSXYvZ+yHpftDsDeKoDrGrTftHzl6P3FeI4O3SdHzp2BEd4mjG/3vta997JHoWbrTWYhJ9GYJNyYC9fHJwHWDgneJdzPu5RuDZnywZOvNUtsVYdxFPLzhmbfkjCBgZcNrun1nDXYFRn5wa+/OjyYUNPjPHRjHGEZy62+489hMFH/HIz1/j44VH1Sw+j76fETti7ttjDinP3APP2pLrhpPGDb509LDYEV7VjR+Rsrg720Hdu/oTrR/m/0h79RTuyEqt4CEqCLrFGsjOvEBXKWkkrYBtg3E8QYdBLXMFsRHZtNDw49DWFhG+z4gBLQeNmvsIOR7hrwwduYn1t+JG1wWcx8r2rX57G1bmL5S7fYsXlbNuBpK9WfNY+DDbycwNQj+zomusdSDdah9UaLHPjawJLndjWrtneVx+/7OHKUcOTsDEupnlC938lxVYTv6nu5tzNoBrrrXsQ+btx/aa5Osuj/PWdQfvgpgGrnxDaL3tqbr3atHf+XIyz5lr72te+dvBx9tlpy1W9mseBTs356K3XstGfz8fidObDcf16wPvpv78z2BtIN2P5dG3ATfIVpxzp1IZd8dTHg+GxUszwHoMDA7etL5wwcY67sXzV1zofD3IPg2yswayZp6secNxj+bf3dO6v3miIkcBRJ9e4Nz8eoOHYK2vm7Ig+jjBXrJVX+rDO+vJr/8IST67xYmetmphb0xLr4YnHFgbpTY448nHe9OZ8rvELW1+s4vDT7hJ1dj17mHeG2w8c6HzR/sZH+Cdr5/h4/uM//uPN97///eOawjHu2ZY3ffnEiw0dOedIr1XXxvKky77z2Hr2B+jTlzjpO7uWzO2NPVmBoeUXX7045QnLnL9zlOTHjpizq2Wnz48NfGK88+Lxpxcv3eEwL3FnG17L5Yq3NQ0eiRtcej2sYoZhba9R653v/Ky7rntznD7u7KsvnVbcbMWjW1neq48j+7OPtTDFJM2Ny9+YxOW3s9++LqZ1mLW1uzbmY8/kvbL1jTu75cfGB2HXrzU1gKPG7PBwTfSB2X0YFjtx4ysuH88nfjC697ZfPeP582MnrvcQxP3FM917aby2LvE/DG9f+JN6fHA1l0drdCR/a+Hq2etxZYuPHn/PD78V15eDcHqPyQZ/cXGNh74xezakmMY4LA86AjMs63zzC7M5e7qd0yXLY212nO2lHpdqal1dcCMwPHs9y4lY1vjEM/1hcPtirdjxNs+3OrKXd7nbB88X+8Nea706FlsMotfieyhPL85kfE5Lv6PPprzw0YpB3xocYz7p829Nj7f4+ZUjndzo4ev3nJiHbd24Bvea5Gfdvnm/7DpWH/GKYewa9CdjfvKTn9x85StfOfCv4d6lF5Psf4Zq7k8q2ksivnOl7VkrJ+cLV7zwZhNXvWZNU8Nwq1ufGdxPiJy9f/Flo3saPLHCMA4fhtba9sU9QG9f2MmlHPRywpnATdeZNDe25nyXgy/fyiNMvSZHcr4WxYeTqBsbmHHj78zA8DnE+2P3anN6tek9Hhx+ncHOmnsfruVDr8GuPvCcYzUylov19hhuLT+4/Ukh+D4zwe1ZY0xgaoSuesMjYlVLfKzLSWyCl/Wus0N5+2LdXsGJtzXzeHS9yEnd1NCYVDdzcWHIKd/iV6PD6faFXfVsf7o21Zh9NSwWO3kRNmLIGz/PTj1dNc7Gde0Z3p9k8xnMXN7s1aTPlvHEG57Yvqz2RbsfnMmdD2xr+vaFvT8T48s+z3XXmxh4VzP82SWwzMUzLr518/aXfmVzVMdqxIateJ7duPc3rfuTrq4RvOXNrn2nwyU+eGtxwIeP64ftxhI/jvZR3t2/7FHXAgzx3J/6AYgYcmBTHnHqvLLBC18NJ/57P+OLmx9WwYqPmOrrrFa3zhFM5wNWe8WPnZidX9ji+j5GHx84xrA1OYunPnzKKy5qVg5sjNnhIb64fDQ1iG/15G+NiIcfHDrXXXg48LWmhgRP/PSw2WtqZc5HI/xIdeMnV3p89Xy21sWEz0+Pg9zzK47eWs859vzzs45b9mzFkp+8cSnn9tB3cn3R/tj/K+1RX7QrsKK0ychqkq4pZsVlt2NrK3wlWDGMJdlPO2BasylaeApeseGZi6PB5MNX4fT02Vg/S9xtQjHYGMMqB7psjEm+xdav/W+t/vcrv5XlZU2diZrs2voYW6ttTdaumwu7a3WIDxs4blx0cjHfvI0dUDZuROakNxthLYfG8JO77LJ5SA8bphzVrXrQL3/zbJ83h4fw3TPjonZztlf44+784o2jG6OfbPuy3U/b6TpnbNtXY/uSb3vvPLmxeDj6orrr2DqsT97+7TfXmOvvj//4jz/8Arf4bNSMGIvT2TQn1R0vuvTlyYZfevMVnKzB0cT2Ad1//vTrX//6+E0ANv3wQHx28YIlllYca+myE0N9PBCuCdszz9WFi+NHEfzjesbB27pePGONiOsB4dxk03rcuq+yF0OD1bXRGTCH1QOHf+J8eEDZhx5U1uhxWO6wxYRnfK5fmPXiwzjbhUlf7nRiNs9PzuIt58WrXnw155s9G/tfHrg4E82tiynOXSLuOfbGX99sPd+8aa7ebMTR4uiL9r/8y7989N+G27jGYvui3W/J+xMO6Y7B7QvONbbtX7ys0WntT77sO4Phmpdf9aDrTGbP95KI077mj4vYfOjiyTYdfXZiZB+Wub3Ov/jmq4PJf8XeJGwJ/41Nv3zEW1n7YohTfLbGXZvlsPH4aXTw9enKB065qkc25Z6va8CzXG506ddf7eAn2RQ7/fbZX8sfz7N/OcExrq5hNBefmJ91x8LTFxjhsLuPsFMvdeJLxLMP4Zlr7LSw2fRFe/7W1VYO7DzHfZhj13va6mu9s8Cn++3mC9f7LPdj+waXDz0cH/qJ+4vfhnMNhhlP6zsOn54sH/wJ+2pZ7mKW12F0+2INdzHh8IPhPUlftBvT662xrTdebsWFLxZ8jV6PA9/1YQsnLOsae1IedKQY4R/K00v4YZyW75yKh0tx3QPjD8/zwD6JT9jtHhQzDtbpNLj8NOv84LMh2VlXK88454o+PPvVXsYzrvp0B+CFF5jh6RP45ZRue/UXe2PEae3isntona14MBI2+xynz984PnTG/I31y53tXSJ2X1a0n/DiqPd+3m+yP68v2t+//Y1Sz2/vhXH2Syhyx8W+9zl5zwRO7vFxlaOzhrM9J7jG2zqfrSk777mt+RKJrfdR8vMFo/MrfhIGP+PWjDdWcTp7/OWCP5/2zRx/a0Se1RymMT7s8RZD37+eYWONHSzChg6WWHHTJ+KpFeww+NTwdg/2ucrnYOfOGnt+6kPEjJ91WO59e/8OU49bUj509rG9hhnXasaHjb3CxXPCPZewV2+5sudr3lp7ZI5D15C5PK37Equ4dNnAgknYtVftg3WYfK2pBfs44lzOYnh2meMnjjz481ueG5dd9zW28HuPHY54YnW2YcG0Lh4f686Efz3uvBB6TTw5wPXFt/2Vjz/r2hftMMVxJuIRT77W7IlfHPOlNc5hyyEu4sL2Z1z/8A//8MDf+qsJWxzxJeawcKiJTeJiTCff1uhw40uPoxrBI3zpfXeAux/kiO+Ld98lxIuf60Ae5aK+OGrGzcUjcDqv8ckXH01+nRtraqbFmR++9sQ+VGc2nS38+ZpXN/vIz3XIxzXr/kaPp3y8z8IPTxj4sMWHbRw7K7guhtpVR3vSXokL0z1cfHYwYbPbz4i4lCMfZ4u/2NWQnpQfLI2NPLT4s2vd2Bo7MeUhFp36wW2dTWvGeMW5fRGffTmzy48vn+pmXnz2mphys6YWfKuJnl4e6kWKk84eOo9qSMKw3vvNOKmj2vORNxvn19gZcF370zEf5f9Ke/AX7Q6wAiCjSVDSEt5CSq5E2LVufEmsV0iboEglLgadw6kvniKKsRwqqBjGxOa3YfkcC09frLVRxrU2kdnimrMvLnuiL4/1PRYvvBQnfybVrFpWr3P8hVsfYz6LmW11YINfftYvcaFzAPXs+Ze3GObWHUrNuSCdj2p6KF/Si5y6uMozzvJoz9CpBulfEsXfCYOrM63h20NbDTur6myOJztfsPsg7UZF2HXe8mHv5qiH61rSjD0wPNw9KN3Q7GV2Hujs4PgPnHwRAFvd+GqkmurdkNjgR4y1bPOjI9npa8fC05fOL3vn3tyDzpsSX7Z7sOPrDbRzx6Z2jokficM5XrV9Gvp3uks+mwMscy3OvwPwnCbVQY9TMcHLz73SmVADa+1HNbGXxtXmTAt3zdnqwVusamDdte6h5FyVr4dp9wV98eNwLeZygBWGmhJ+u1f4m2cbL/nTWy9P/vTtffVi59xo+C0mWxzkI099OfILC/YlqV5nO74reMfHdeZNjedaXKqD2PbiRX3Rvr/Rjg/eZ654t3/WcSLxrz6H8valPbFO9OrcGx74dPapvTLP73CaF3p1YcM3fvWrZ7tzNu0FDFIcvfX4p88nfD58cV3hFzY9e61cmvNll604RM+WtGYeT3oY+erjmE+x6Nnmo1/b9Dg79/E0T4xd0/u8YJeNcX75bI9fNqu/NMaNsF+e1SEfa+VYreKTfz7ZwkwXjl5di7v6Z41hae0L/LDC25jOSVxc12z50+nxb+5e6028Z7hrxBr7vS7Y2rM+NKlD74GteXZ7lvfeiz9bGP7jNtzw6It2ejp8zk0tYJ4lO35J+1Hu7lm7nh09W/lZN/f88B+ba84bvQ/pYuOnDmLy06/EhY4dXzq+tbU3hlNjs37qReLPji6bY/H0EqdL+Z5M/9e0nGAYyzf+8JwHbXNhgxP7JJzmMNiUn7ma803oiiVf58QHThJ2z3Jc6GBq/IqZbbjb829Pqs/GTbc+xurdWSkev5VwxGfLh8QLNn1iHR/Xz+4nHDHiYr7r+T+rrw78Xcuuy93P+On9QM0X7W+//fZz+Y32959+0e79sFy8D5ZnufUervtK58n7Ghy7Hnuf33Nhz4/64K6GpPq65xh7pqu33N3D5EiHD8FFq870ncew+bMhOLRXh+L2Ja5syqEaw+t9E3tcreGjh10cnPkTfRh8NHsJS11I+nLQwxUz/86dnk6d3M/UWB707DsbcOMcFn49c435kHjHjb5ry3rnnF5jR6fnq5mHjZMv8uirZbkVrzmO7AgdnHKGT6dOevqNzQefsOrhsTW3rv4wjKtde89Wsx/OZ/jlB4N/e1HM3VP7TdjA9Qx0NsUyh1XLDh+69k5cfv4OOp44iZ3Axq97tvHHPvax4/Oy/dXsmeddefMVA5Y1z25/Psa/NvAMF1N8+1VMPnj4XO6zgC+R1aZ19kT+Gmw4enN56Um1q+64qInGnrQv1QJPeHyrOd7Ok+YZ8v7t/ah/McGfPT1MjS/OeMAQ37g5G3u2taKTW9z4aXz4Vyv8zBOx1Etjr5aug82VLz8x4LEl9LA0ecSZL34aP5yqh3utMxAHeMT+uy86F7DYrx9sggN89SoXvNnDDB8OTHo85WUfPMfp1EqeWpj6ngVs4Gv8zTU82LCFQSeW2PjSiaHxZUesmRO88pELDmKwIXp+xTSuPvIQg/Cxxl689swaPu2/GrPR1Fazzp9PdZObMcwam2pkDSf7Kh5cvNiyMXff8B2Y/wz1z//8z1/e32j37b7iSIhUUOQiTr/FtUYk1fhQnF6sw2jjHGBFFEvCLgi9mEQhNAK3jTQX3xp9XG1Uh5hNwhYm2/jBIjD4pM+nPp/yZSuH+wjfrV/8F6O48bmEuzmVxyW7sKyd8axVB+vmNZgaUUvNXO9Aukk4rNVZD+tli7o7L24cpJy6aM3Pog6X9Ge7FzG3b25Qfnjlphzfaufs4afWdBobOr7tu5xdM1pnj60bmOaG40bhp/Pi+U1W/9u5N+r9pkP765+2urHAevLkyXHNiQevuGLgwUePZzp1YpdYxxNHjcDK17hzsz7GcIrtfL1/+0DH25sTN3kf1j2ccWWHAy4Erla90lXLw+j2xbp2lvBghpVOz6cczMklnDPuY+Y41PKPg7nz7oMO3da6M6ImalRtwqiPN382WvH0cNSgh65r3p7x681HdWXL317zvSRnPV/YMI3LA1bSHrSnYrDrYQ+zmNmGYy0/cXCuNnLQiuXZZr1nXLWJx316cWvFza/6mrsWe4PCXqyuBWPPuhf5Rbv7gDhiV7PypSN69aO3N0l8m2+fr5o6d+XIxlyzBg+2MZ8zJr11erY4ktXHl74c9IsFozdd1Zf9+p79zWHwtWcrd/nxOUv2eGskrtb40OdLp2VD33mn79qDY02rTvnpyfbGmlpqzeE5756Tro/W8oeN3+oP8KcvxVjdtfHyLP7ZVj7iuZ716lDsaqJf4XONh7WzZNuaeeO1TW8t7mc7elydcz1udPG2d3DKAX547XtxnFMY9qQcrRm7H/iXS94vwPe+y2+XuY59UCfuza6vJ0+eHHPPBj7eO8MlfMXV1/BZfmI6E5sL33hXA+vLlU1STmyNCX44e3bjzNcXhWLjl134YW0vppbN8l67xuUIm1+86GHgkIQZj/T67I3DMeaT/V3+2eqXE/7E+elDvzksZ6czYq6Zayv0y+FsUzw+npmu9T5c0tmXzYkuH9jJxl29dfcOrb3Jv3rHL6x6+bcHfMTQn6V4cNjzO9+b+VovPzb4VGOYcMqD/hqvc/ydO6txxMFcL1Z1tA7fL8/4pZWf/exnz/WLdv9nkZjer8hBPDzcQ1z3xsSaffFeOTt9z2XXeXUqR+tqvM8DOlI99e41Prv4rG6Mg/pqxhou1khr1d8crjjtqbnGRg707Sd7Uq56wt6aetSKbz0OYYlXXOviVK/yW39j9vyJuThiGpPWO2twatbY41Gt+MBjQ2DFz56ko9cSWLvG1rNAUyfrOKkfP7m611qDb12ztnbp8Y+XdXXBm701eMbViW6x2Fs7n0t84IXDT8xy2TU27OWGizVniJ6Y0xN2aqqn4yM+bGN88rUubgKHn9YZs0/sYfYnOctVjwMbuNm6b/tS3vdj1uGqk/tqZw8fP1RWF2uwxDS3P+7LnoWej7BxwsPz3m+z+wzvi/Zyr3ZyiZMerrzZ4UfXOi50BAcxqwkbMfWw9WrFBma1Stf7j3//938//v80MQk/9gSe+5E8+BNrmhh0xtXBvYQ9XdwOp9sX9nGli49aiUn08hOXqD/sYtHhD4fAwE1ctakmYmv8tOWcH57ek2kbn33nB7fyzg+3OPMzx3lr0Rm15hz6fO+MscfReXFOqrl7u/0wF5/A7Ozlxxe2uSYHjY+a6PlZkzNdPubW23+1VSO5+s6Inzm9Mb08+fEpJ9j0uPllT7y3RnErfntVnawTPmrjOSYWvRj8rOGA7+4lP/zYWifW5chHK0fxqv8XvvCF41+Wf+c73zl82DxEHvwb7X5zElHJI1ERBa4AevqHCowKZBMcLAVUPBeCpqglKQ4O+mIvD1gEl7DTLbc2Rw+HTXbiO4jyhVOcS/6tX7JhH651tuIVu5zkw24xjMuTn5Z9uPEph+b37eHV4ubwxZWO9DASx7qz0AOeDfsujPvGfh526mOfnBs9Hvj1ULu0f1vDOFT7c41bf169c+Um4XrSd0PCV03x6GaMe3sjfuP4y91NoxsHG/kTeYjlb815E6A2btJ+Au03w92ssxPP32VnB9NP6Hsz3t7iZY3EQ6zi0bPRCD8CGz92dJ37+nBhWs+PrzV76W9T9k/tPFDw95vuOMKtHnyM6eJSXLWEpWXD/izsa+zCPuvSq4nx8j5jPnZeTH3xwpKf/VUDosZdB9U7m85TOPX8jK3Lg7251piNvVI/57N9c149qPDS2GvGYfBVFzr4+GazuJ3z4maz5yF8NjiITQdXo49LOOnEYu9NyXn/YbBzf2MDm8Qb5kqx0i1HOERPv+L+1Hm1P3CS5U3Hzm+yPO8/HdN/hrpftJ/z27nakHMuh/KOF37OlDei1ddYDeStxnqtGNVALLoaffHZV+MND09b7uzYd/atxwXe2m6McPnHLd321jfuXfa7trHotXR6c1Jfzjg7u62xbZyt+WIZ47jinMOpXsbOvbZ1tg5XDc71WrxrY7zjwgZWjb6Wvzj2yj2CL8HNvYGEFe9DeeGlPd68+ZLirxtd+Rkv77DWPizXsDPdMzwccbufhXXO9TyH3z0hX7Grg/u6D9pi0bv3+q0m9zP3ZGL/3DdeeeWVw8a15ot2PR8x4dXwLUZx2IjvGdv+V+/s2XROqttBYF7yoRJDw897Ds9uvMWRg774A3F1WHyx43HV+HYBb8IvodPO/nimzz4dfbr8rO14fY1JPuGYa+vn3GvEOTBWExgaX/N6Y/7qnFjjpydiGNfgqLV9cA/IzhxOfBYvm3KwRrf7VT5dq3GuZ7/5hq+nL4fy1CfG51jx74zlp27wrMszyc5886HfWNk/q3c9iUXip68O6eH7kuTVV199rn865vXXX7/5z//8z2OvxSDtCV7un+4Xxnixsd+7v84Jvu4j1mt07DonYcOBSfiw6b1nZy5fa8b07lfdf/b8do+HS+oXg97cvUhL2FZ/67Xs1UIT3/3QDzvcp+XYGWWrJnTxKm+6MPT0dHpCJ371xScOevPOrDqa8zfefQmrWGxwcn7jBI9f+GzC5ycfn8F9ids9G+7ud/xhkPDwF4eeTb2xtnkal4P4YcLbWhhbwwWePbD/dOHLD+/W1YQdYYef9d0f+xdXftbZ4tVavtaLVdw468XS4JmzxRcv/H1x6AtuvMobF3bm2uLJr8/yakT0muvfGSSuG3H4OpO+48LPb4fD9wNon3PjJr4/FetvRPtFOd+B4aA+pGuoWIfy9sVcbnIRy5zsPsHREuNqwEdOMPiurbF19cf3n//5n2982e4MshUDL6KHw8ea1t62d9bozP1gQ63Y+WxvP+gJO+PmamTf4ePDVn2NcYBBxw+POIlV/dha7/zRx7GzJ7Y6tOfNxYdZjelhadZgdr6sxWu5pJMzH7l1ruGYs9888bNPrnf5EXP1lz+e5YdDPNiJt7I5lXs1wSP8zhJfvKyJpcfbuWQTD+e698QwvD+1JgZ8OeHli3bfR+EBp3rp5RkHPnFg27j87AHho610ZvCGU21gENzEwYkuLjD5OF++aPfn2l577bXDh/4h8uAv2t00FEwyiGwSDwl8l61kFd3hkrziiNvDUiFWrKerAHv42bIhrR+T2xf6NqcN4is+aSNtxCVfuvWHl92OYcGETWy2tvVj3+azyV9u6qAXKy7FYZvks3PjS7bZnHu2bjIOILyE3sVFjzsexl1w1nGU00Pihf/YHkd17cGFg4aXD3H4qJuenlzjqP5aNb4vp3Pdn+XnRuQLbV+Ai9dDvJ94w+vsd07Ks7OtxjXx5LZ1ZwebXzVhpxbtr/0Lw83+61//+vGGgZ03DnjCUS8CB+ZK/uk652zVkS+f/Kq9HhcSV2P5pjfnJ4b/NMbfpdTj7TfbPYxxlCO8aiU2TDXUmxPrfN3cYfL7qNK+bD4fFfM+/u2rene/0rtv9uAuPzWo0cn9LPz4W88vm3yqnx6GOtqr7PXtQ7569iR+7Skd//DMw4JfTfV8z/dBD3FYcuOXL5wknZ69ewLeYrbGVrx4wowjfnse2eLSmYJxzoHNWdh78+FNifElXD7h2o8X8Rvt//AP/3D8vbm+aC+ePBqr96Uzcs7prjk8++KNClxz+Xum0sPXq3Pr4rbn1YLNfaR6Lm+44YcRXjmufTYP6c98xXuo4BCOMQw81Wz5sXFG2ydrtWLy5ace1vT7hpmvZ+O+8c3mbLfXZfgP6V0ncdAn1YhOTmTPy17nOHmOJOHxW8zW9dVu/aqlfuvH3hxeXPJXF2vFZLuCp/emPpSrFXvSe2S+4t1XyicfvRrGub1lJzdx9OKywd819uTJk6MGxt5ndOb5wcBLS8TwzAgDXh80+ew5yKZahVFvnY99y0ZMMeh8uPrggw+OZ7c43vPsmQ7nUg+7msobR7rnKdUKd62YYsiL4LC54U86N9bYxs1Y2/VqCmv3lU+fO+hJHPI3V0/1q3Zisu+Lh2KGryf0atd7P1jpOkfZ6fmxIdZJ+3lMbl+si6+xKTY9f42utfye1fMXSwsDjnPvGa6V99osT37LSw2t08GH9xDh4z2n+sO4S+yNH4599atfvXn77bePPyHz0Hjhi0vee++9mz/7sz87vmh3TtKvHW7OgaYuYp7t2OPnHKiHsevTWOv6co8TB0bvtT0/2KilGNaqMQzXpTke/YKcMXv7gZP7jbkG37o1Unwc6GDa80Qu7AnbYrPX6HDCXf19cYo7HeFvLHf2SXHhWWeHq7mWFD8OrfPZ/MS3RrefR8ORO5tyZ2sf9HTtXT+UhK8W9NWOTm180SYf/nLyr5X1cS2OOXu5xhUf82siRsKflDOMsM925vbWGYmbOOJXd+v2BgZ7zbp6VQsxvB+WN4FhTWOvFvGybsxWDZ1FeGHTibfXBpw48fN/oHlu0hM9/gQXrb2qjvKgl1exYPXlsTW8rIntT7r5ITidz7L8/ADaZ1wcCcxP3v6/aZ/4xCcOW9cMf7HhyYMtfvZfLyY/emP45caXjq9ezTVjmD4TeB5bd92qOX9Nns6eGOoNyxft//RP/3Tzi1/84sPnOTy8+OBhrnY48JenJh6O7GDB9Cfv+LKDzY9dHKqh2sBVj963sFU/Ii6e4cIslziEae6MsKfDSZz86dRHMybpls+xcPsiJn0+6c1xtvf4wWCr9z5NXHPSWmcJXrHY2Av56tla8yx0BsSxxhdm8dRXXOvFYSNPAstYvbWuG/ZqpxGxrLc31jX4ODg/7rm+j5Mvne9pcIMpNl7w6J0L/j0P5AMfl+XHBp44/M1X+PHRyq/a8MH7LNb7gU570LnSx9XncH+j/aX+Z6gKY1OQR8S4xM6JPGYuedguDofE3KZpXVTXcPFgH0bFdcBsno1LsqF3scmrwnYh2EybepfIXyPiwYApB3obL1aHw/h8iOj46sNhjy+8+IRXXtbo+OFKDztdh2XzPgLcvvBdgZFOLVwU+asPTA8/emOY7NLlu5gveiymnPF0cTsfdHJxI/ClGu724z6ihlp1f5aPOOJX97tqkK3aucn4Its/N7PPcXTRuzGVEy4w7Smhp4MlJw0ePUxjzXo3F2uuo7DsmdrYt848bP6+aPfGQEw9XX5wis9+cy2umPZCjwPe7OjgsFNbvGGx6Wwan3HN2cH57//+7+NPx/j78vh7c2J/5ZadGItvTX03lpzVGK9iHgAf4QXO1uMjQH3oChNvErZ5Z1mN1YVd90W5yrm8zdlpfDU1IurU9d2YvXWYGslH3M6OfTR3hjpvh/HTl2rLRsMTrnhihM28M+EaEKuzQ8+PP/ty4QPfOh+SX7mloyds+Tg33gh0DzsW50U8wm99+a/g0jq99WLQV7905nLvQ2dndDEbh+va809G33jjjef6n6Fe+6K9+M+jl6+9sJftt3nPdDmqtfXuDeLao84Mm2r5LE75Ve+1x6X72J4XfIrF/zHCTxO3cwpXe4jEfzHyx9+63rq6mSfVKR70dGrLVs7OW/tA57oNB6brgZ1x3KvlYll/qMCDUbxL/p0XHOPJx9lwz8GvnDdPWHzjGnb3EHmzb0/w18LKvvjmeBLx+bW3dPzo2RNcvUH3RQ4/euv9ORT8sz0cbl+sa+WxXIzZ57e+fORF5CAebu0dPX/PAu8rvGf0ntmH+eoBT06Ly8+6mEQcNntGitV6/NWXwCuPsDtP5SQGHB/mfdHeF+zVSi2fJbDFJmKLUbxn+VpnG0Zn4ZJfNcim3LKFoUZkzx59tc42DHM+sOn4hSMX486/Phw++bE5C529U1u4fMU4t/zkIp5nYbjqqJF0cdSfhQ1+RK/Bk1P5WYtv9eMXT+t3Sfz5kMVy5r2H0+jZ6LV4G8PQi4/b5kKvVvQaCSe+60tnrvnhGt9qdjhfeJGrZ74/yfjTn/70+MI97Avmd6rEJX3R/h//8R/HNS7HFXPcXP/eB5oXM4zsOwfVBl+tewq9+4nzxVavRvRyhy0Gqe7sqos1/r0fZYeb5zF+/OHF03p11sMi+Dhfm0dcsmOLO250+MhX/X2WsWe7/2x6tvBZsUaXfWcdvjWcNfwTekLHXtzOCJ37qXseP7aaHNjQkWooDu5w+PYlVfHpW4Oz14Paa/7lEHv+YhTLWC358D1j8SlvnNicBTc2Gvyw148PbPusFzNsdW9vrXfGilU+bIrBRlw2evsDT7+1qG50pD3mp8nf+1B4bOg6X+I5i74E90wvH3HgiGWvYIjDTzOGSd/Zj6cv7GGat8/OvxjWiC+Ixdb/13/914FDrzZPnjw5fpu9f2EOp5qIycbc2RJbTt6TFAsOjtbwtF/W9lyYw/Bs9kMd+1k+5Swujs3ZX/uiXXwYGj7u0+qHAww9PPWKJ27et4jrWlELvPEsZ7mwhwlb7sXBy3cE9gouKYa9VnNY7DqH1nHR6Alfdmyql3k1Y9NaXOhW2OPIn+jZxhnvhN53V+LKN8FNHAJPg6PuuHY90Wl86eRizF+cGj7LKfxygdne4FQMY+dX/cQWi6890ifi2GPn0P7LiQ9Ovtfqh4XiwbRGjyvfrkdx2w9jMQnu7MQn6qFmzY1h803ix5e9efZsjPHCAWcYWvmyMfcvSr73ve/dfPOb36T6nbwPxTNePtJvtCOJeMk8I9aDlhXGRlRYF19fUlQsm4WDpoikg8C/4tKzJTZuhZ7OBnXg6PiScKxtnmImYrZ25sTP4SXWlie/DtLm0TgsvvCLYd1a+jNGB/Ns0+Hlh4e2eRyAT1+2HmzE8KWmi6abbRclXPZs4rhYL3osDxeDs2K/8CD6uOIlj+pYjdhVi+UehvW7BGY17BzAU3vz4rChc6MlLmQ3Ig9PejzFd/Ny0bOvnvDiz7abAT27+BuLx6/YcRGzdbHE0LODzQe2/7QJL34eevvmJix2+cGlh71c0mVnX4pfXnyTdGHTwyDtqX9S5z9D9TB1Q/cbGz6kW8/OGeDnPDqX8WBjDT5ffrjhROgbm1vT7ivtz33t72OHjwY72bnc2jf3R2vy7I2HnDRz91LnhpRruDDkap1/dWdnrhkTNfWmiQ/pIXUtf3rYerjFLg/7RMxh6tuz8x7wtRZvPR8Y5R4+TLYwrNtzts59v/nBPx7sCXtCrxF2xTwUty9xbJ5NmGdfc9w8zO1VefMPmw1czbp980/W3nzzzZvH/m24+NWLsV+00+O1HOjKo3Hr5pcEZ8IuWzrYzk/5y929j16t6TtfYZz3VB3YhXuOTw+r2PXhWevah23dWpjmjxV4xYYBt/YQTBzgwMMrDDqNxLd5+PQaac28GrvPu27b5+7/1UJPp1WL+MCEhQ/s1unvI2LGjT2MOJ79xWDvPsRHLP36NK/uMNbWeGtovXjZlYO5lk1j69X/Ut7x1Du7npG+0I4vHB8gxJVPdT4C3b7kf64NPeHfGkw4cT4Mnr7QuU9oYhBj93r/zByG682HeWMCW1tMc7HVnb+en3tl3IuxOcKjDyscWOx6/optTk/nn8n7EK1GzpwP93q1zK5amMNP6OFpfNzXrdOLH9+48Ft/c2sabC3JJ/ts8tGvTxzZ47P2YZ77jcevmOyM4cC1B2GWs/rU2BL5wqFPl338itE6DnzUjxjbF83a+h0Gty/5xD9M68a4wmk9vTW6zqf52Y7tJSkGbMLPeYPnbHqvLIfs6IsXD/MknfzicOZd7tnmH7Z1Otc8381rccU0x9fnVn+j/e///u+fyxft79/+X0XeE/gb7WJ4D2bv5ISbZ533Gb5Ydh3jib/W9YGf5zB7n+noYRhr1ZldNWAjHj/4xq2Fj0Nnib3Y7DzD8UrnvBJ+1tXTfYudObG3sBJ6NuUDKzHGmY/eXMOH8MNbPL04BH+tmOxhhGMOp+vReKX86WCb46fJSZxyVNeeC2GsfzpcNGv8td3jYsHVXAvug3rSHvTFq7maxA12eZQXPzp2K9V6z1fr8bSX7MKFQ9c1Yt/lgE/3a1yLhYN1/NSd4KzBgUvkSqcnrZVfa3pY1uESOiKP+OEVRrno8fHMdO34rFOdiw9bgwkPZ/Pw4LNVEzo44rCXM3tzP/zxWZvOZ1l+zocfkPAL81Of+tTxPMfJOQ4fT/7OM0xnRF8u7Ym8464n2VT7+Nkj91Vz72msd65gO8PyEBOGf532L//yLze//OUvPzzb9MWAYy5HjS8O9HJxH5GnvL0PcM+Su7r6vkkOzlH1gMseBjzc4MOjw988e/FIteAbB70mr7ixhSVvjV++bMvDHpgT8eJ0KG5fYKiRZmxdcx7l40wsF3UQj8ijNfXGr1i4xEuN8GGLg1p0726t2mweR5DbF2vyCKPcxGdfbdiVS3XHSTw2y6l7nPrbX1zZbo35xMv3MO4J7MofP5hsSOfdWK47p1NT8dTZmsaXba09wN86Dpp13wfgZ09woGsP2ML3C29vvfXWzXe/+10hj/VjcM+XR33RrsCIXZOIXlq/a23tFUqCJW7TFMKGS95GVFxjjVS8fOkV7S6p6GzY45jYIFwcQjhh1bPLXs8Whh4urtrmzTcf/uzSlUfzDp8Lh1jHiYRZHH06dpp9Cr+LkC8M6/HYfKwTfuKyM/Z3vd2E1cL8fPHQaS9T8C9XOYjfXtmDaoXT5rpc2zM29op/tnT3FT7tm7hxoRfDDdY/MXeOnd1uEOzUkq/45nz2RmYuT7id7faw6wBGHOybOeEHC3Y1CrRP5gAAQABJREFUsiaONdL6Zz/72ePhB/uTt/9krQdhebGXSzj6eOnFT3acrl5sjT+8xtUtXBjp3r/9gPHOO+/c6OXnPPYwZu9aqbby6wtVecOQi1rx9QZBzDhaLy86PlqSnblYZ7F+SX+2e+x844chnoa7+yIbOZh33zSXs9zZxNFesela5utctYfh0lWb9qk3n3z64VtnK2736cXo/rJxyzWu9dcw95zjSPKx5r6ntace7JekuOu/dtbD3fHa3DXGzfnU4IQld2OY8cdb3X3R/lEe8Gc+YuwX7ebiuBaIOYkbPpf2ll027NmlCyt9e8umN810Cb2zmI6/c0lw8+xns/HiyYa+azUOdHGCBTt8PnfJYrPbuGe/zhS9eLWz3bPmYsh788B3dZcwllu86VYPo2sEfs8G+vDpjfk1Du9S3Pvq7Gtx5BP+2b9YenbN8TZX1wRGmOXJvv3Gn57O+Smf/Ot3r9is8LO++K27JzqT7qe4aezZ1py5fLvH5g+XvdrEAdfm7Mpfnu2dcbitn7E9x3Hz7BYfx35rzhwGX3389HiIL5beh+ytmzjVtTz0fPlYC0OfvjyLhZ8P1L5Y8OEarrkzyQ+36mluvRxhtAZXXPdysen5Viu+8eAnX1Ld4pPO3Brczbt1WGTrZr5+OJjH1zqBu/6/1f72NX81Z2dOYJWTOX829tb5Cw9X8QjuGpx8Fy8ftun5q5l9gWPeGnutvOReLBiJeERsvjDytWaunfcg/2s9LP7xjid7fDsz8b2Gs/pqE89du2ucHy7G9mJrvHWSK2En575of16/0e4XTX74wx8e/7pTLP/C03syeyOma94XVn4j13VsXwiO3fvZ4eUstadq6su63t+1764xtecjnveTsPXkvK/wNHp1NhYbL+P2Cxd4cJ1r7w3Y4Mt3ufYe1ucntefX51m2MPT02sbuHlFc77/E4QNLDfTl19mSGx9Y+GthFIsu4a9m6Yzl0jmRe9hstXLEmdDhI1/j+PnczSY/OWkwramFPereYEwXPlvc+RcHtjj4wsaNnznOhA2Btbkbs6l25QxHTHk7I+yK40tQMaqdNS1fsfHEMWzngj/c9vsgdPuCu/gwWjNm257ZZ3b4wIUfh43jOtHEo3dG8PJD4c5vtS0GvVjmfPAsDp1x5wxnnFxbuBLXn3gwxLFebeDRi+kzuS/b/a12eOoktjWc9XTlBdtcDdvHeBWDjTV6vI2t4QZHfPysm8tH7eKuPvx8jv63f/u342+02192uMkTHv/OGEzrRB5+SNAZ8YP3d99998Masiv/rlccYRD5ieEzPl16a+qh0cGoXvjA1azptx6dQ73c4m2uVWPne32NV8z5qp8m1+qrHu5z9PFTr/bCuljW2g9xjZcX/M6f2GLi1XXOx1z+mzc72LDEsq4ReGzlbt3YGnv1FJPA1djDKydr7kWeIcXQa/ILkx0/2N4Dwso+fmqEBz27uBhXDzh81dcZYUvEKgcxq601/nzC4ONMm/ORCw7OPFsNvh+U/+AHP7j50z/9UzCHzTG458ujvmi3mYpMJIIscol5m5tOT9/mWn+WsA/fDUnCNlwsRUlnrJhxKA77CndXrPzY8D0LDnCssbUp62NdwyGx3sHlh2Mblw09H33Y1tiRarXz7OnEyM9Ys25Nfa0Rc1wcHhLX1unY16qZPLvp8veTVje38odbLLFftuAvX/lUBzl0NvHZHM3Zyk9fXfhUE2P6h0pcqmFxqwt8/4Tbf27o7605D24yHrBuTNW5fPg56507fIz5xV0sOufcTZCvdb7wrMfDXF7W9N0oYWWvbn4Tzk0OFp4e5NngYKzBLVd6c/pqS3eW/OhxyF+/uPgQmOHi5kHsP4Dym+34+4Cuhnz5qAG+uLPvTYNYcNTJmvPLjw99sY7BvCyP+NHFe0yPvK2J9bylGuCQ4FCs1lsztw+dB3Vxr9TD4GfNPpuz1zpv1tLVs0uv9vR0fiKtzuqtVTNc8tXju2txhUF/aQ1PLd96ucHMp7447DR8nHute5a41mDwqxZxlWN6dsWhi+vZv1zu6vk6f1rPMPzg9yZh87XG7kV/0V5ed3E/r8lFndqb8/rO5eeepGaaXNs/drDM2XS++DRm0xjX5nQrra2usTWY2rOETfmxbU+u+cEu9n1jPAsrPLFx0ci53upJF2d2dM6OfqUauHY9w/XFCUefbn2rxzn+2lwbV/NLuPmUI1t2eKQzTy9+c7rFPtchrvnqnZnw9eUVTvcE9SP0rcWH3pdYnuU+JOLq/ucZ7n1xPJzn9W3Mf+PyJ2L3fGLbNQIPPh3O7mPtL1/r9Il7nfu8Zzcf9308CT/25/hx6L2DOsFYybdYsDUipnXzrmN6uGsnLlsfzn056IM5G73zaJ1/9wNjNa2uMOGx09RCwxeOhp85O3N2dMs7nXXCXl3M+WV7LN7zhR8c2GpBjOMUL7r4bUz+2srO+amHfelsLGZ+sK2zT4q5Omvlia8PyLji1BkRn03cjMst7I1VPuHGHy4//WOkuJ19uGGJX1xjevblGhdzaxp/dSLnfO7ixw+OOPZCgyM+MS5OnPS+UPKnY95++/n8jXb/R9Hf/M3fHP+yU37eD7v/iIUjHW6etb7QwUtz33Ivcf/H0/uLPkM7V/xca67RaqU+fNSeWLcGX7xw3LvozDVjDZ/2Hof2Q++ah5XQ1eiqtzF+flmkL9r58ccHt2yLGxd2eLJjz25FPDb07V852GfNnE3nL/+4WmennuUsVvfF7Ko3HD6kelcjttbgEHHpcCN4imW/fYYRo1Y9i9c+rl844VorP3VqT7MTy5jemJ/zgG9cqnk41on9Ki8Y/Mtbr+EKG9f2iK9a2XN+4lR/tiS8XYNlHo9iw9GIdQKnHFwDfrvcD6RdL2JZl4dfJMJLPJ+X+IdxAN2+FNM10OcsOnxgxQOmaw8ePU498+0dqSa+a7HHavvpT3/6uH/4wt01rVbu13DZE7HULG74Wmsen+pnXm2zgeNsdj3BJNbzx3trgee//uu/Hn+j3WdBPnJxNvFTT38i197DoMMfD7Wyxsd7An9OTj2qCR9cqldc9HhofNWxOux1Ix4umnjlwz+hY9d9sDnseOan16zx0Ug1DdM6PPdb+Ts3comD+lnnTydHvca3/MOXHww+7ak1fuxx6po0Tw+v/OvVn6864cE+nbG1rlO4rYmrZcOuesBpD+yVvRebwLKmJ2oaRz8kSYqrD7sxGz6EDqfw5YqXs0/EUT/1kuPWq3zUKn8+MNSnupUXLM19zOfwv/qrv7r5kz/5Ey4Xz9KxcOXlUV+0d3AlXyLwFYEgKhF9wq6mUBWu9bt6uF0IXUh6OgVVZJstHltxrJ/1Yiynu2JmCwu2Zsxf/su/Nev0OGhqUB3ilx/bsLMX03ob3uEUEw47OljhxLM4cSjPeMBkk1+crRNrNRiEbT5ydlPtBm/dPu6hp3uZgmf1EDc+5b5c5Ml+++oqR2KdTtsaLM6lcbj56tsj48TfZPvSl750PDidTQ9xv9nly3YXv1zC4tOZp7cXMPmxKVdjD1+2cmOjF1decXIDbC/1bngw2MJu7gM6LDH96RgPCuOzFIMeBxhixe9sz0Yjnav4wdp1NulgGjt/vmj3z2X9Ro/z7OHsQ3rx3Qt8qWAuX29qeljSxU3ebvJhi0eKiV/zbPi3p/HPht66fKrpAXCPF36kmNdc2Gk44sT+Lh97hpdeXbpPVnO1sLdhlnv3zfT4WCtHc7VP1Lg6x0u//un5FAf37PRa68Z4aptj90UP0vXJT6/+5Whs/zXnZ2X5yRkvsehhG4dTrPWBVQ6Le22sfvZg33TEyYMcB3hyxFvP9kV+0d4b4zirQSLnS9I5YIsnzkRtSLUy3nplJ1cYhK2x3OVqDFdzbtuLw/j2hZ6ulv5SH4619ik/ceNz9uWHh/jsnAF53iXsiqcndPG/FusaZvzEjQtbc3yIOHDDFitd+1J8ePm4FnyAc77Sw+yss+NHYBu3L+Eei7cv5WoeVmuX+sW1zl+j37XNG+7m1fzsg39Y/4+3e1219SjWOD7vQwJJREQUjEZFPIAE0Ug8n4JEJUSN5xBR8YQfxKsSFUERFaMRo0FjQvJFvY09fr3mf+3avcc8rpkU9Ozu6qqnnqru9x1jvHOsuWDPuhjz4xPPbOmMSZhswpP79GfjQ7nXch8S2Xkt8TqkN+/em1/X/B5HzHi6BrTOvThi42LP+LI1tnfiWGsfrWveR8DpT8e4V3o4xZePHm55p8eFH7EeF3N++95XR737GBvx+fE/JmJ6Xe5Bex/I9PLgz6b3PcbymR+MstHzEZsdHnGyRsxxaU5nrFmb9chePXYca7uEQ8+H0OEy58WKS2djORx+sM0+3bEertp2n2QjN6386bIrb3FxyLbc2BJr6ug1fN9jawk/DVcxiHH7bQ3Ongu9OmsEJht6Ek/juWbdPH/Yx/BxiSes4udbrObixB+29eb5sjlL7J894KMVE37XLhy1jLsHLm984xtPfvKTn6wHZvTXkfL0oP073/nOesAOywOq7ulw1Rov174vnnTmjF0vricc6X12wE9OdO4vnQM45uzVXiyf/+jKoTje24jXfQO2hjOc7MvbPL0xfNyqW7XVw/B+1XuHuMLh436iZ8OWnVxwwQ22vOTAll35wbCGh57w6TqDVQ6To3ESTz7TXgyvB2KWpxp5z22NwLE+61secAle7PCIo/xcr15zysueqF/5iFmesPi3N3BhxsuYX62c2OUThlrLSywCV97s1A4mTrDsATEWw32dXfjs5QtLPvyM6fg6m/DYEznGmc3cG3oSpnjyV1/84E2fzhts+9KDdueLnVjq68tcbPHuM7Z1fppxca3jDA83nMSHpQbmnQncYNrLahcu7v7/MfGteS2///7717dq/dIOnutdzaptecif8IubuXEc9MXS48ofJw1PennjEpaxhrMc+fhX5U899dR60O7vtVu3h55twHHe/Qen9oB950dd4PjCAh/PluQMl6081JOdXPEqvnwSmO4LennB1LMnalX9+ctrF/n3DCUbPN3r5CKPYxKWeFNg4O59l/NkLB921nDFUw+76x/ncugclx8cHM1hsMNRrzkL7Zd1uOb46zW1FMu6PVVnvtUqbtbUhPBjQ8SWsz4eeGrmejF6X5ePa08sYh1ednRhiGtM5n4Xt3rHCV/5Wedbr97OnZh82NXDVSv1CY8OjnNi3H5XI9fcG97whvXn2j760Y8ufjCvItd60C5RhBQMWQmSiNNrkwwbRWQjkX39ItIuQBsGA64i0Glzg+CzcVC6YGGLR/CI51Ic+THXw2JGD6eNzhVmuLg1N551MtcI3Hzgaq1XH3bysAbHOh++U3DiE/ZcM7YWj+oOs/j8wtATvTzj5CB60elCYQNTg3+RiEfO4niR/74OT1Of6tG5nLZsxNTLt7OSvtrIg46wh6mvHhNzH8PV2JYff/Nq4+x6cO3BmYfZeHsx6s+fuMhxa7/FcH7p8IKlb16udG7AbtzEHJfi46PNMwur88DHuvhs/PM0WPy9wHtzXsyw4sKX4GxNrmzFnxKndPyzNxaLDaEn5WBuDT//G3vfaBerfw1gnV0vbsbOqRuqPM3h4amn6wVnBTv8gKFZL79w2cw16xqJp/HUm4t7kfCH3Tk5y55NHOCKdR4+XE3O3SedJ3HgOI/OjTHRw2PT/qe3Zo/gzdg4uC+os3paj1e47HeesMIp7rQzxhNWHPTtJe7Wmoevp+MbhjONo0YXr3BxcWaJdY3Ar6Xjq8mzGMv4gh98xHE+52sSrtbSg+m61tuHO/3bcDs18frTMe4/5aa3phHz1ibGvD9Vfz5qMv340lmrjubOYvvP3lieWhj0XavG6WGxj+PeT77Z8rdXhA5uZ2vaL4NTGzE0gvtl9hp2fMIN45h/NivI9sOaxk/uE2diZce92JMvv66HbFwHPuw5X3Fof8zhVG+xYMx5PuHpyeRyS/P/f5aHeMUKf/LHmT778On5srWPGsFTC6MamcMoXjh6OdXyS89HLCJGcdm79/jmm/9bxYcfa+rpw4UPZvLiA6Oa9JrY3NqsaTzpyysca/aKyMO4fJqzLZfuwz7cwnNv8QsB6/nBLD5dubo3EWs4d18sjj4RM7zqY43PrOccw/U67j2PX5Z7kACj12m2mnuEOoshHz7Fth53cZ3nGQOHOVcD85p1Ajve8NgR9c2fTTLHdGzycd6mZAs3LOvm9peOTf3uP7Ea59trc3MY4RTDHojDpjjG2jFRB2e3cwaverMPv7zMCZvOuvk8m+aEDzuNn9b1Gafw2bNrna9mDjs9uykTZ+qLu/O2b62xbx+Ll/3Eaixf15SYk7c5nHTwidr60O+fnv/0pz+9kb/R7kH7t7/97ZOXXnpp1ccDqh5GFRMPZ8VDqPYIDzV0PemJXDxIYCPvrgljObi+vJfubJjzNxeDn+be0T1DXHN6NrXqaq5ezcWBN+OoZTXGEzau7gu9V8C1Bos9OzYaDHoNZ01sPp0la8YaHmGIAWueDevVrRzYyzO+5oSd+5qcioG//QijvPHCifAPw3zGZAMLN/dFe663J+qnwa4mev64tjftSZzYszGvLxfx2dfwap/48YHNXjOGgQ/pDMTJnsAqx3zwVKf2H44c2VtjT2e9fMyrU7nQwQ9XXPc1Oni7DywcXRcetHs999oD1554ferLKDDYEuvFiZseX/72Wb2LLwccNXxgW8OTXxiw4941jbfnBn5R97rXvW59kcweeM/hfMmBwMBPT4zDMi++uMaJmrCVD564wSfm1uWjLxZ7uRJfFPSnY/yNdg/LYcePf7WFT+hwF0du3kfx8VkeFmy1k4cY7GaeeGhEzy5+1VSvEVy0uC/l+MFfnWCITeDyb6/O8j1WX/7ygSV317s82xfYnSX+4riGxShO9nHzOR2WevCHz1bfGFfXh/qGq3bp1MB1WSz8nFX+1kj15N9+8YHJDp/yMC8XtvTmYtrf6k/XvYdP13D7Kq54xQyfP3sSL2t05W4NN+sTQ/3khpe1uPBlj0M663TaPCtiqbfm9dFzuy984QsnH/rQh4S9zW1NLvHjWg/aK34HA1ktkVBFSmcdeQWpWLNg2R3r+boQFJDwt3l0mnH49eK0xr7DxNZaG3osXjxhhccOXxvSJk1fPlr2xuWpJ/z2mrHfhY4P+/hWK/rw8mut+exhwbFner7hh8N/8jJ2QfYBSC58vfC4QHa/5jPuHFcbuhlr2lx2DCuRR3uJQxcMPSku7uK68NywupHR83HhyTc/tnxhXpSbOPy0yQ0GXz3xDbh77713NReu2F5cfLtLfNKZxY8vG+dWzfEkYqSnE9fNwDmJL5x588uPrzUtzgv08EMMZ8RvYbPzT9X6p5rs5FI+/IsnNjHnay2Z8+lr3VwubPStW6OTQ2M1evbZZ9cL+gsvvLBi0Wn82Hvx6B5R3fiXKxuCp3V+xkRNyMxh5khfy04f9j4OO3zrxyT/mfsxu3ST53k+4bJXk+6falpr38LGtRoWx5q6wWvcvqhh14/zkw2cPX8Y6cPLnq39h1W94i8mXXq+uJm3x63DidPUwaXfpRj6OE3eYUy/fNhdVvjgbA+qHd/09ic9ntWD3p+aern+RnsfIsoDn0Tux0SdEjz5TJ01vtXHenVkJyd9+M4gnX7GN9Y6v63tscw162JqsM3V1NrkQm+9+0088A4rPLYaYT9tl3L7YT2biXXMHyeY5wmMiWnMb14nu3/2etzdH52pcjH2pnzmU47hZytWY3Hw2SUf/UUSlj5smPNeEx6bPV41s9Z9ylg9NOuzwYKhhRtPfnuLk7M47bom6f2LKR/KvYY7t9Z8sPDQg3/xrHVN03ttDUe+5dYZMGdvDS8SP1ziE741uvzzEYe+D1He7/S3XdnMfRfDPAw1JWLIVR+f3oPApifFl19izXzWIm7ycx49RPBLc+9/2FcXduLhoYdvrb0tRnjFSV/PN45sG7eu59t1VN3pxMveHIeaeQKXn37qrcPd4zbfsYsR7uzzmb2Y6rPfL/nhKff2TqzZJnZj2PjaF+fAPF15wUhfLfin1xP2MI7lxD8b63za485g2NbtQ1jTb4FsP+K2qVc96OBOEbtY9PzLgV78swRn13YPPdSOTA5z7Hr0sMWDspt80P7kk0+evHT6oN032nsYJba6yaOz0plwL6Dveuuse5DDRg00GIlxnw2MYcKfn5fCpOcvX7G83+Ezr2e2ziedNa393u8xcem8mBM+xs2tFxtun4fYJdY1ggMfe0dnXLOuFtUjDD7VMZuuwWkTF9jyiZe52jk7sKaYp4M18cKZtbGu/przZc5fLNdxeXUNiSU2vnr25Z8tG/pqbjx11ZrOGA4MMWAYT7FuH9TMOl4Tu3E++Fe7qYtHfOHBjk96ubOVo3PHjk7d6M0JLub2wVlxVr2me43kax222vbwkn18G+PAn0/Y6ehn/MkXPl7tt/qpjXj07ZGH1q5pNfTFvNe+9rUnd99997qu2PV+Ah/S/utxhdN7kBmPvcauxhZnc+9jvJ+Boba4q1E5hm+Ou1+a/+53v1ufy9WLD9Fbx8G9oLzjrrdP/f8xvvTjWQh82Fp7GyYu1bt9wBM24dv5NybtGwy69Gvx8KN6zD0yZmdP5LD78MVPbvhYl088J7b1sMWq1nzbB770ce26MbcvnTNzscThm101tW84h4s7nWvAmF+1guk9LLFG5JSvWOydM01ca4S9mOWFu3yyn3vAJ95i48KOv7mY1ou7Ahx+mBdvjtkWl23Y+BnPZn3ujbEmrvh4EL2WrXjy8SVT76P1noV9/vOfP3nooYeWD9uryI08aC/gLExJzLVZVOsSvixhh6rDyMfYhdphbzPqxXKBO1DFwsUmtVHxjaOeji8bIpbWhuLcpiyD0x/82OBlzEZr45k5sDY4LLo4VAdrdOZs4Wmtd0D5kuLwCevWyq2fdHy6YGjDh1mbXI19Q8uDGGP2ejf+Ltgw6C8S9dT4nFW/izCs81efpDkdHmHv63K0joOLxhtLNVUXF7683JDgaZfJqRj1ODgz+celffOQ3cX6qle9al284vagHQ++bD3Y7oXJDQuvvq0SFmz7qSfOuNysw8JlXi/m3azlbSxePjDw8ULpRVUObPoNeucPdrVhI565dTHM6aeIYY1d/LOlC08u8NmnCxemF5Bnnnlm/fb8ueeeu11nPnxhlhN7uvTWNBLnYujpqkVj9uXCptzThWXONu5w6My1cs6v+SJzjR9wwiqH82DwUUfnoftldbJG4Gjm9l0rD+szprl1umrinDqP6iA/WGpvrLGt/tbo4ONB4LivwCBss2dbHen4aYSPM0vYdY/LPr05PrvEC6dyhFPb7a8yh0dgEbn2AYBODuVjf8zp8cRHs2e+0f7444+ffOQjH1k44a3JNX7g1Tfa/QslEtdqQCfOZWLxkUf2YTSfGNbKtRjqQqe159aImlhXB2vVpZh0NTr73N6b862utxBv/cx2PxNh8SHmbOUANx0eU6zHLZsdw/qsxeTKRxwtbGP8zdnCK0ZnBB67xBzn+NC7PlwX4btm3Esnn9bYF994Chscqom1+EyfmeP0N4bBn/BpXq3WwuHHnld6PnJn70xoMOjkNeuiZuzZsoHZHsKLR3yz0TuLU9SPr/ueb2B50O59hP0R1/sHr9HVBob3GOwJf6+vGo7sih8nPDV8tIkVF+u4iSsGiX89PjDZyh9P/zLNvYeIz7Z82WjmfIjY3ePjUQ1a1xdTH44+PTy4Ndy9VvhGrl+ae/9Dh2+c+NTEwDfO5rsUa+pxLnb853p84RIccMRd/apvOeEXx4nDDv7OAQaB2ZpxvKzBhqmvPun12cffnIhpb3zu2bHDKh++xQxngZz+4E+vdzbLUSw5hMdmSn5qvAuMfb/KT8934tI5W+KJY42/uT5bcfhqu4SfbXGO2e6+zcOYMeiSsHBUX9eTvRBTztOfT3M5eD/vQbv/DNXfag8r7Mv28ek/Q33p8KBdfHP3dLj4zX3EUcPZQwNineTjPjrtjONvj50N+0EXhnueuZjWfU5xbdP5ZrB/ReOzBD6zVuyd394LscfHGdA6O/y6huVYwwMGv2zkUu7y1OSQv3X2pP3S85nnLB3bfNm0v64593U6+ObEPH741+RDjyeb+MalOPQaoWOrGdsjry1qC4vAN9eM5cvfutd7ORmL317jy05eGj922cKFwY6In8TXnK+87WExcJw4bOyvc0/w7KyZTzxjjY++3OHhX13KXdzyoCsPebK1bo/k0bmqlvBx0bPB0Vn1sNdrJL36wVHzPlvQ1+KPQ+9BjK2TOJjHjR1edOWnx18MsXyJEV9YmrmaqfVdd921/jNU32zv/MFmX93M5QZT7niIC4sdEZ+9Vnx9MY0983Etw4Cpdx3jz4+wI657/4npb3/72/Wfodozwk58cfnLoXtINWEnF++liOdNfrnAp1p2/cS7cweTiGOsTvzkrpZiJHhnP3NuvX5yNmaLM1zjOLE3VjP3QvjWs7M+zyVbTT06G/KwN/RsCSw86Yzh4zH5s63Bcn3Biqsa2rvEfjhH3RPo2fLl1790VGcivjW5EHVs3+Jpjb21zgQ/+RD2zmH3g/LPzzoONb7yJDDp89HjoyfNqxVO6kTgx9G8OumtaQmdWFNnLU74iOFZnDPqPfRrXvOak0ceeeTk/e9//4JhexW51oN2RTxGtAIhMJM2V7CKxq4CXJawDZmHToFtrgPTARGHiKNYimRdLE1ctm2ueRKPbODTtYHw4t2ByLde3Lnx/MubTVh01rTJgU0xqh88sbOlF58dnXG5wSX0U/JxgVhrvbG+ePm7YfkgRG8dd/723jzexknj1sLCHzf6apBtvmf1Yem1/Jq3Tg+79fCsiy8PHPwWb96g3BTcoPxGNdkx0p/Xi+Nc6cVSp3nW/Ebaf2rihQUfcb2o+S0ue/uMfw/a1doLiH3oxSNe9lwr386z9c6Gc9+NUN7GmjizxdkN0Jvn5q4tnN2MYcmrmOowz1o+9HFkT+RaTczTs5sNtjrA0hPjzo0XEP88zX+84ttwcAnbcs5WDNjqQ5ee/Yw55/lYL5+4ilGt+cAj9GzMreOUb7WCx2ZiLec7+BEW7IuELU720J5qdDjT41x+nZn0YVc/fppzRMdPc3ac14nVfWLmz9ecD1uNqJ16wSCwNVIMfnR89LDEcGbN2fF3XcGqNnpNjF1g5Gstfsb5G58n0ye7+JnjBUtN+3BJXx70Gp944qrZq/423Ic//GFul+a1jI/8wNeDdr+d96BdTDqib0w/14ynsDu2fgxj+s18Owfdj6YvHzWy1v2HvbrQ19RNI9aqt3l1Nd4lrPK1bhxeYz1brTVxZj2MJx47/KpPGMXQwwjHukbgEHP8swsvn844u7joxc7H3GuI6yRMfq6R4qQvPp/wpo4dDvDTw9DYTx3bXazny56feW23j0N6c01u6uKNsOuJv5zk6Po3Jvpi5BtmXCY2nXV48iyf6eu+55tvvgEnPuke5PWpXPi6dp1d4v6oscXLevg4GhezeHLMBkY2OGSbXlzrfNVHHLhieZDgg3rfSqNnR4oVTvGqQXp99TQmfNmzJXDFZkfmWclOTj70+c8b//GPf6z3P2rErzpku+PGeYEf+RF3dnw1uvS5NBdPI+1TtcOTP6xy0pczH2N28px6a2pAR/Sti11edDPvcOKUbXnAomPX6zQdSQ+PdHbow2k/lsHhR2v0xJnp3Ji33+xI+RiHWS50Cf4zf/pi1cfTXHzXrQbPWtfJ5MCWVM81Of1RDnyLcZbt9Jvj/CZ+Onbti1jOi+uwOhcXf/7Z8jf2Qd3/zXRTf6Pd9fPNb35z/Z9F8P0LkeqHQ3XDG0cNZ/dL0l5678S2ewobZ0s/9xa2PZGPz9TEdVy+1n1G8VoD2+crn7PY8hE3TOtipIMlBzWMN5tqb6xl4z5qbN1e4BBX8xpd6/yL3/kqhpgzLmzC37i4sNzz7SVf6+pmXCuHMOPKt3xgF8PYmv2JK9xs9fbI50T15icWfLWGL6bc+FtnZ52dNbrJFaZ5HK2ziwssvvREb0701u0dzubORa9tE4eNc8DG+w18ifgkXHPcO4PsNZj8cCV0pPNMH3e5iA3L2XLuYNLhly9/mDCcT6+JXh99JvcaydaDSetez3GQB1wY8MKCL1bXC+zW1YhPvDrrOGvWNPzVRSzPIGCrg4aH+Mb+DJxfBHjvgfPkgmux5GYNN8K3/TQXm33r+Grm7PDFA6f8rMXJWKxqgJ8H7b/5zW/WZ3NYYmQnP2M6ta0eejg9zMRtf97Elx2J8+RBD4PgwZZP18laOPyY+2Ndi382+vZFDoSdMdvs69mqD/44hbscT33xcV+0RnDV+Hlv2Lmik595dbNezuzpCT7xx8FZYIuXvXdmnCVzuGzdP+wnXzprfPH2rIngScS01jVTDtWEPx08NjBwKye+sOyBPSl32DD4aPSw2JcfXsW1RvY++97LwuTPDqY5HOPiGNfYZYunXKYUTx3srfuX+ornX5Z/7nOfO3nwwQeXizhXkSs/aPchQxJIapJIIloy6fWK1Lp5BTG+jPBtQ9k37kKa2GIploPAzpyw6WDEpzV8tGkTRznyY0vXwWSr7b5izbqYswnD/Cxh1yHpYmMLL66N9WwdsPLhT6/hRujY0NVnV2/NfsLj52Jy0w2LX3vOp9xXgNMfbK3Js7pMbnFhdxkphj7Jt7X04tbS1asjUSPn15slFxAMNygP2fv7YmdhhHVeP/dA3mJ5QXcG/Uas/2jUWvX1oF1d+crNBe5M07lZuWnhyAc3ojevFuqtEX7E3PmHq5l3nuTd9dObEn7dQOGqjxd3/1mJGw5/+niYh70CHn7EC7619khvTZ/E3dyauR4uCQOOmH7p8/TTT5/8+c9/PnnxxRdv2/GrfhN/gVzyR/Ezj3tz67Vi6MWOJ464a3Tm1Wr3CfeV6uVjv50HjeDkPHQdyKV7aTnEjz8dezga/2rfixYbe6GV+0V1E4MNH/ceArua5a+nw6WxGK4NejrXizkcc6KvLcX4Ed5QrWH2Yezrzflr6pCYVz/+1UHtvJnS51dN9eUFi48c7Ie/7XrT32j/2c9+dvLoo4+uB+1iJfEyx33O8aoe6WfeYehbZ59P651FOfPXd6asTak+1aw1dnTpxSNixZOOXWv51mcrRjZx5VdjX43SFSN7fQ1WeHt9Jh+YGj/6ZOLQZ1e9rJN8zeMThrPTteR6cG3FiZ81fRJnffGtxasYk7/1aRv+njM7a3zlkI8+fb5sSfH0u9A5L978dj2JKScfKuQrTnXjP+uDR23Hbj55sfWaLKbr0Tfae6Ovrn2wEJtfueDAV+zscDKfdnsdis0/LLx2fWtidP1UN7VQB/Fw9UHdhyr3evbsanBq5V+PK7Ee92Lo6cuTnTzZTX3Y7Ph4T+lBof/Y3JieX7GKp09mzHR7L694GmsELv8ku+ZxNcdd7aY/bpMfewLT/ac4+UyuxrMtx1Nf45lz9UknTph6c03MPtfAJvT8+WrG6esnhjGbejb8nGU1aB53a43jpT8m03Zfz5eNZi4fNRcbH7WOBy7laI2Y801mDnzJtI139mf1uGjTPh2fYqpb19GMbcye4J29sYd5N/mfobp+vvrVr64vnODrvTFpT9WzfXRW1Fhz/4oje/cstc4vGz7sYLQ3akvX+0d+Ype3+433X3zEKa519ydzzVyvhvTxCcdc7dqH6ogvXXHZTR/jmrXZ+Ikpnjw0Onnjaxy+cY1ddVSbHr5kL0bj/PHlw7d7sDgasd75NodhrT2SgzGuxB75fNqXrejCnvhwYNPpzWERvddKcbV4syP18UgnN7FaN8er808v1/pqUQ6dN2fI2Zh1qLZs7Q1+sGFo8vB5lEy+xVgLhx/mxWcXllj04rKxRsS1j14T+9Kd5wE+q/ewV/2rkzVYcqjecAk9znKg46PnT8TVcGKjsednjBM+/PA0VwfNL1fEY++127+Ex9lncRKHGR9H8RJxcIGriUmnkWKnNxcTDr94izUxxOCDt7+r/utf//r/PGhn23UjjjmpHtbo4Ht/Qjrn9OJp8apecacn+GqdwWoya6A+cqELdzlvPyZHmGyr0/Q1ZgvX+YYt/oxp3TxexrXq6gyGYyyWuSY/zZh9+ZsXx1h8PEjPk/pFQz7lrI9TuK5jHDt7sKx1jq1p2cNUG3vlnBSDHyz7ad3DfuvG5R0PeHQw2fOVK1321szjbEyK4/rgAysOy+Dwgw5OWBOnmtLJWUvEtE5g9hpGL54vvH3xi1985f5GuwsewW4OFS7C5/UV8Dybs9b4KoDNIQ6gAnhQ2GbRs9MUrUOqr4jW2Gc319pQcTQydeY2X84EptYhouPX5raWPe7iWY8P34SebTVli2cxYZuTqY8jfbbh6q3XzLUOo5tqMe2pCwS3XljCzie86hefYluPN19xCLuwlmL7cWydrv0p/nkYG+TtaXsJq3/23ZsFOXsj42+NlVv7dRvgioN4+9Mrr371q9eZcN14w60eboY1D/jdJMVOypFte2Mdrkbiaq/k13nia02Tb2cm39bp3eBxmhjebKiJa8QbES/uaqZehH/5wdfaY+uN40lHin9r9r8/p13YcZaDMU4+XHjI7ptw/nfzma8asSPtnXXYMDUSh3r46fllt5TX+CFmcduDMPc8i6vPZg+Zz1nru/15c7zUyH4ldN642ev9vLARv5z4evGZbwr4uF/o2eHpvuEMxFlfK259+2Bd/flm2xpbOjFaY1u8XiytObea+OwvkmLIDZ45gb+fB/i75MM2odMIn9aqnxoa03s9MC8ue7ytqYW1l+M/Q/35z39+8thjj91+0D55lke1KRe8qqk1+nLjUw7Tv5rVt1a9zZ09ddCKRc8HJltn1lpxrZt3lun3xmaK9WMSF+vyiWvx+KQzZjfndLtY19Rr2sIUj4jV+uQ27a1Pu7kGo/XOu3XNNeD8ED2M8slHn1jTCH1xdp9s8tNnO+sydWzkrGVjfeY8x2HirLGNX3bOivd97kXOD1ED3+jxIcC5qG5r8fCjmLAmF+vWtDlmA1sc/2Tb66TXQB8M1ch9z2u4+hqLGwac7oF05VLN5VFty4mPsZjlZD7X2STFguM+oSZ05e4htrj0Xsf9wlwO5iTsWdsw4ywHwgb38rCuwbBWPdmGYS29Mb16eb/jT8f4gG7OXw3zgyGWFj6d2NnQk+aTQ35sjDv/bNnR5z/9rGviTIFR3unzlx8MYs8at853tnDiHV59fubG8O2XPa2WxppY4YlBR2Dz1dM3p+MTLr5hstHg8Ukm92xag0PqixNOdmf1xeHvnInduD3LpjjWtXjJp1rscdnFeeLEJ6xszOGZZ0+X0BM167NDPjgYs9G3L+bGHtbdd99960/HvPnNb1524V6lj4/3wn753p9Q7BdW9rT4csDVvaF9n3subg9E4m6dvR53ryPube0HOw22PdOqB7zytT5rwMc57ks9xmrIl+BnrnWOpz8btuxgazDjWd3ZGU+Jk5iaeTYwiB6+3hp8ffel9peNmOzKMaxqnL91/mTGpfd5rzNvXvwwxNDUgK198vrClohBb2/YEGvGcAmuk7fa89HCYVfOcaj+Ymjw2Fd/HI3pihlO/GHwlb8xO2P7Ky/ifTsbc6+pmrOHB+mhN5s49r4GHqHPnp2Gm+dCevVQI4IbPxx8pr3nnnvWa2Jnko1nAD5bVjd8etCOL04wa+LB1cuPjTU5iYVbWHHGzXnAj/BP2Ivn9dovz3Bnx96ft/Eaji98frC1iSFOsaqNno1mXGx2fX6CY965ZNdnvXnO6LPh6/XcN9r/+te/rjrIRT3iYKzBF5e/NQ0fuRFYvXdbisMPe8WHrbqS8jDHw5mAmajNnBfT/uBB5npjMazDZ0vslXnxy9sav2qfLz0ppnFrsHHmhyNsYzn2XIhtElfx2WviEWvF1yfeT3WfYNu9HB8++MutOHTqVw3Zs+0cs9Ng4WmvYLgOxCEwrHcuzbvPiCVnurD4GIvT+/f40RM5GfOv0eEnjpokfK1pxvxw1Iqr17LjL2fnOj1fNSZhWVML+XnQ7l+RfepTn1o21q4iV/5Gu78zLbjmBQDhLoKrBL6qreLMAkveYe0DUGuKRPQdTkWcm8A3cXjYWU/akLDo+ShuhyHbcNOHfeyAWWMPVw+PXb4wjdvEciruzou+Fh/+Dlk48Gtsy8n+uTD17Nk41PZTXDpztTHn2+E1Tmb8xuzFMZ+55bP35ZV/6/RqBq+82FxVylnN/ea6F/XydOPwZxTE0NTiusIfZy+W73jHO9Y3WTpf6umacSPqGvKbaw/66fCMQzXRV8/GuLFTi3T6pLq3d61VX/kZW3cDhe8G5kXem3bc+KiXb/D5j1x70aWTnzbzEtsaXp0nusmxPOgJe7op5QNHvaz7UO6F3Dfa//3vf68b5J5TOPyIdU38OZ8cqmF1yXY5XONHMbmGOWGK3Zq5cZx32+bH1lu7Si+efUvw9aCdzpnY+dO7P+r5GvfmAwZezoo1Z8EcjjY5l69+F2eAvvvNMb9wO1fm+TkjhM66NjH2eHMuX9w1eFqxukayP4ZZveZaOn7lbVwMbxY0a+qp5SOmfODJw7XpQftXvvKVk4997GNglt8aXPOHWL/4xS9OvvSlL60382JWt31/4lXc1tPPvKvjTouPGLuE4Wyph3PlDNFXe+P2hZ05vJ3HtDuLBxxru9Dx1+RT2+3Om+cfRhxnffhbj0M25bLj81WH+NijbOEQa/Res/XFaz/ZpD9WP3hxZ2suZvjF02tq2Br7KfTZ4WHOnk5sjZTPjtM+sI8zW3zyD985cV568w/LdeN1vIe3bOk7U3EVR7POR6zqnE/cvE/wkN016EMuLPc7D/T75/x8NW/aNXgENj1RBzJzx0Fe+kRcuupmLV82+MHQN6Znk10fRHBkC8M9Bn/vSdRMjO491ss3vrCN+RM2cU+3Fg4/ds5hxTE7ft5j+Y8bNe8z1Aq2nn3C1lxO8IzTmcc5XTWjT/KxX+FPbuzYi6EPK5tw9Pw1NjO+cS0O5jCLz58f/85bONaS8i0HOPbIGWzP2Fq3RmA6765/10N6azMWnxobXLVi4dPeW5841nArH/MpnTv+xtbFZn9M0s/zFba4crIWn4kRtzjhP69v+t0GdvgTq3rQFYtv9vRhGZc3P7WzN8Zs4hBO/IvrM6oH7Tf1n6F60P61r33t5Pnnn0dtvY6Lpf7tRxy9tpK40bNh72FJ79/YWGOvl681zX6Wv3zNnTt7Bcv51KoDfX7Vgl3vHfU+T8DEQx3TiW+etAd6GGLw0YyJMSxxNWP22bEpb+PWjNtPffbW2etrctbg08nLnA+hwy/7pTz8wFFO1Y++2sAK0zpMfc28PQgbT5g+L7YH7MPiM7ngJxevC2x6XsMu7jjxqRbmcSieHKp9GJN7/njaW+L1uLqKbY9dN+LCgOfzh9cl/Jwh68RDb+e8fPjAMMeNVGsxCBtjceTM3usMXTx8nvWvy/1ZVGPxcMHV50yvUWzFITiay1W9qxkOjePm9Z90tvHDAxYu7MSjU6fyMNbEUQsP1T0n6HzB9dwCX9iaHNUrKZY5XPP2Jxv4pLqllyNO+KkFPza46qt7furg3qG2fiHgP0P9+9//vnLY8fmIC18vBnwNz2qhRnRyy85YbPFcB3zjYKwRGPStL+Xpj/Sws6dLjIsXJl5q4rW3feKPS3umr/En4er3Bjt/9u2dGjv78NVg+sFk69pjh5OYsOjp9Dg6N2o03/e1r2z4WO89qliNw8RDLGeArn2H37VJ3/5nJw7fzlD3LDmxn1hywoUtH77widyN8RW7B/bw4uDcx6saWONrrhevehZfn7DBQQ3ocam+bFoTp9j+ZfkTTzxx8vDDDy8YNleRKz9o97fmFNgm2VTFQOiqgS8iqRgk3DZRLGvmNt8/q3FBtlnhsulwGFtXfNzNw1XgXkR2jA4oW/Hik968cRvp4MDvxkFvnm9cyqcDQZ/dMr7gx7QtFy7idRAbm2vm5Wjf3MxdNK3hrMEOw8HmI4a1PRYd3OtKeasjHK2xNWPx6ff4V4mJNywv7M6LfYcPVy280BZfnOsKDOfJN9gfeOCBk7e85S3rZuIFyZ+Jcc20586iFyv63hCIG1d5Oyc1/HG2rol1lrCTY3sXbjnOHq7ryIdx5yF+zoBvs/sGQDWb10s3SfbiiaV3b5jXWWut40JXXnJJh4s5TPvC7qXDf/r0hz/8Yf2HKx5wzDosx3N+8K/lZ07Esdfa1J0Dd+2lyUFcDZ/2obzpSVzNz9vnyxISH6aaJ3TukfZFjL0O9rp7aL50CR/75Bw48/O66Z7CVhy25ZY/fbHZw5q5tjf1zlRnjS8pph7GRcIvPsWvx6VYk8ed7gH8RD1dS0Qte71gg78XdhzE90bk5fhG+y9/+cuTL3/5y+thYXXfax9fffz3/Zs2zkfXd/bW5SHGWb58nB25qg3f9qAz130C3sSCDXfawTPXpqgznGM84msNZvU/Zhvm9DEWTx+n83zDOKuPh1wnF9hasY3ZdL9li0d28Lte1BjuWbzoi1XtzKeoX3lO/RwXG0d7Qdo/unIyLg99uPznWWTf3sWvM+P6iRM7r11qAUs+7HxYKp/itO5aY981x8eaePD8/yT+VZqHZP4+Kn+v1f4uqd7rE6Fn77UdHqkOMPFkQ1dN8RYHR2vs9I1hsGk9f3HgsIdlrjcnPUz33o4uvdd3v0jvA7rrzVi+xYRF+IhhTSPmhG265vEs1jI8/LCPuGn8Pcjw8MQ32tWcwJr8l/LwQxy5k/jo0+thasVnD48uH3HkZZ7OOoERXjr+Wmvs5OG1B0/6bMIwL3ZjeJq5uGHozY8JDLkQfu6H9tMZdlbgzTzw8SUN597e8sGPjby1OMDWrFcvcdjCwWueR2tTsuuMtBZf6+JbVytxxZrCpsZOwykdW1w0uoukXMRNGocRDj6kWOJWL7ZzPSz4bPi03prXcPUi9cVkW5342kN/OuamHrT3n6G+8MILi5eHkr3fth+a+73ru/drnT9cNRzdq+jVgvDrnmodZtdP+asHP+eOzpyPM6omMNSheMZwiLhqys79R43CsOa8a7jjBCtu6iiWODDM55o4nXlja2y09nH29GIXBzY/enHVLh70rrE+L8Oh65yv5A4/worXzKk8xens69UJttcSeObq2/2bTixnCB5/9WPPBob1We/yrL7y4cMXDzmybz3+1uMOk6062Cv+9pmPuOWPHx1M/mL5jA2nz9Rs2cCSAxEfrtdYr03WiiWuM+4/zDZO5jidXGfDwRkSR0zfuG5f+Ph/0jw087rusy17D43Z+Ta713D2dPal3MQ2Fss6vynWnT/r7sXqkW01YsMv32rMTm319tnn7e7dbDw7SK9m8NXYOAycOh/xckZ6j4LPlLiplbq3t85eeWSPb/tLp0bq5T2Qz+NPPfXU+jNW5YBLNdp5qSFO4uCOszOTyMtcPNefPRADp5kD/uzELC48+OqssSHG1QlGer3ccCRsNPPOojF/59VaHMTBSY9H+wqTfWINBn3nwFrXgTXj+LEzz0cvv+5FxRcPx2rgeRMu7suTZ/nS4aue8XDGrcOy7hfCrnM45t1T8J11Dsc+ssOXHy7VSgxr8PUwq2H58+Erfnk3Z+s+g6N4sHttEBee2nStwygX+PzLQ/y4WCN8NfrqKzaRA/7lr/av+Dfa3aQQkGwfLCQkyZsQBdcUTsKaOSmGNYVXAC+8Hbjis7dOz4Z9xa5no9DsFFqRi6MvRgcnTD7yzX/yFB+eNXHY8Sd08Q/LXC3ZwtGmZJ+OX4JHmPzZZg+zll7fPuHk8NpDjS1dDTadw9bBL24xzLPXX1fkoFVH+Goop3DL1bx8rhqPnxjOhGbPzcVx0++mw47uqlIe/F38/r75u9/97tvfaJ8P2rsJ2YN+Kyy+vMu5ix4ufftw2Rrwk2d15TdrKr90bNxkvfFgE7/03gh1M+pmh49ri95ZkbeYxDmDY9/KB1b7yIatuZawqQbOZW/ovOn605/+tH5r7p7Dly3s8MPY+/DxI/w0QlcNxDW/zt4vsEv+iLterOomvvlF+VwyzDITY8rM3ZrW2VIn+0jHDi86+2zP2WnVkx0bPtnRte4MzPsf23JlpyX0coc1629cTdonmCR9GNatwTpP5CaPuMU53nAnBtw5Pw/7rDUx4cPy5kKTq2tHg4+H2K49c43d61//+hv/G+2+0e5b8u494rn/nVU7vPAn+J0n1ZK9MZn7QrfX0l44X+5V8x4nFnvr3cemr3Gci6vGmvhxZmcddns8c7BOz2Zy5Y8D3S5si2G9GPSaOV892Xs6drNfk/GDvzNif8TAn05L4KpBH46MSdjWYeCqhnB2XtO29fBnz67aGp+X0+RgzM8+8isH/nhV+/BwaF+LPzmG57qBGSf+1UGtYMD3obQY7LvmrLHxGtz5x02s/D0E8Isu16BfQlvzjTcPjHvQDocelgcLXrfkIBZO8Shv/PmIofFlxyeebOjKz5gdjO4P7ZV4YoTvtdp9gz48tj0Ic61pbHpvHA8YYtWqcRzh1XAkcqHT8yPZx1eNcfDh3LfZ/as0uuytFXMBHH60BpvAkiehE6MaGMe1844Pe3PNuDgL5PRHcdSAsCuf8uCPr56unI3Z2idirMUrbHZ04ciFjoRnPX96Y/vkfZkHKp2n6qDHwz3ch2f7ax4uvhq7cK3X6LKNmxrQs4k7LsS82Lc0/3ufYY/frHd5hcVfHI2whScmnXE2xtkVSx9fdsaauOmn7bExP61Y+TePq9jsyI5dbNdPZ6b9hwNDr4UzH7S/6U1vuo19jON5urj4RZVv13nQjo8HhJ1N+4cPbppxeTkPXgdc9+rvXlLucPjmYw7TvVEvF/E1uh6084HnjDqv/GHC1/h1z7LGvnuQdXj46a27jsOJezVhN9f4wC8HccqpPWk9fDGM41i94iCWsZw0OPJ3jfmMJnfrcLu+OhP04ejLR19cftWlGsOeD8Dg+uxjnS2u6osr7vYQD3zaGza16iUWDFx6/TeHAzce7OHGHw5fogZ8NX7i4Vce5uwJDM21wbb6lEN7x5YfO69XWnHcx9j7zOdfbMQrn3iZT2Enpv2q3my95sir1wd/ytXruW+1uy75qD07v7Dy+ZJ/+y03NdNmnvwIPRFfvubdr8U17z0BH40tkad1OjGJ+71vrldjMV1ruNKroRp5IK3nr5WjntDJwTkxFrO4y+DwQ9zqLn57q2erfuHCIPh4luGeo3kI/pe//GX9v2ldL3EoXz0dDDmrR7WyL0Q8e1fLVw7eV3UPKYfs8RYXdvvTeStv+HKxno4/TnHjo9Hj1HnRx1tdjAksnOjgTN5iaaQYxmzFgJG9dVJfXnjFka0845reNSl3HF1DsLsnxLMeH/HjrLcPxTZ3xpxde8O2XrziwMvX3qgDbq7lasWPjZjs9dW3PZITTL7lbkxP2OMnhvG07+ywx01cjZ14Gv5iia3X6NlrRD9rSzfjy0EsPP2i/Bvf+MbJJz/5SWYLaw0u+ePK32j3oB0BF7CbkmJI8CalYrQBsCtaaw6dorjxKLKi06WncxDbSFgdNBgVnT7/GY+NOTubFTadtWTO2c45u3hnXx/usQMwbVqX64wbv2LYA7bNHRAv1uYdNtwat4f2UV3wqbGDx8ZY7uGwSehIuaS/ag9HC7vxnNPhQoqnz1cvt3zO4tD5KC/26ibXfOvPwiimdTHN7Y+bFPFi6c/G9M/TxPrPf/6zPmR6keomIKY9cjOhY9fNBiZe4bcH1cA60dPpu9GY49ONqD0Pb847M24mePsPW11T9GK6cfswB9sLuyzD/JMAAEAASURBVBu6hxdurL3Yw6tm+sY4NcYnnov44cc+LxfrXsT9czSxPdTwAd03CXtxCDv8MPee3ZR9Hl9ciFxebsFBq27G4sflTuKHpd9l4lu3v3T52HM82itjNppxzTx8Ps6Le6319HDlp7Fxvo3ZwNfYdt/Ss8kuf74aiX89vOIZd/73vNlo/PRiZ1su4UzsxjveVefFFNc9Qq3Er67GRA5a9XG9+d/OH3300ZOHHnpo2eB0J4KLB+2+0e4NvNjuQ3qxj4k9u2wt4JeXcX7xtpeNxeo89Pptzj8Mc/emOMQPtkYaTx86seRkzD9s88kh/7ia2wO+2U2s+BzjQsfPOS5XGOqrh03iU+z0bPiH4X4Ha/IJh40YvbEtRtjs+MLGOezJq7j1uLWeTq+2+nRxhJm0ni19e5JfNtbSlaue1BvDDyNe8lOP/PVs4mRdLVxnvulj3XXnm2J+Ae4BunsWDJhe43zQFqvXX/7svd/1C2ivd/BdMx62e11S2zjC0fjRVxdj75NdY0TMYhgTtnFfitMf9OFS2WdY3i/A894NH1yssZezXPHtnMJ2juLQPYgtLl7PjcWC4f2wD11e69VJbc173VdPmHo5qPcU+gQ3H8bFNsZXDsXSywP/zips+oQ+/umrF75aPvHCgZ6vPSlemHrr9GKXA3/jcuCr3r1H45OvmqlVwofv5GMcF3F6v02n2SNNHEJH7At8rwHW1RmWOnrP6MyKZc6XLV86nMSaNZ05sbOnmjFcdbDXfMVSB3qNZBNPePwJDM2a/HBin34ZDTvz8GGIbZ8IP2tzv+BMruzMcWA7pTzDmWvGccKVDXux4Fij07INbylOf7BzDdmjMOLMJIx8XTv+JfiPf/zj9a9jwp+YlxmLSzxo/9a3vrX+Q2Fz15czofZ42ENNjdovY3x7mEKPH3v7pQYJftXEmG3r7F2LrmFjnJwXZwd++zLvC/EWr5rAbQxHDL6TO7/pa831UBzXBRz+mjNULuLzxZveWDwx6MoPVjGtwyPsux5wg9t9yho7GNnrs8NFHP5du+Z4qF0intj8whbHvaZvg/NxHeMpblLOxYLfup5eLBzT46iJOxtdNvCrT7Fgy6OY7AmfMLPVp5u4xnKFReTknuU8+tyJjxzVjK3Pei8d/iWzeT7it29skjnGyd7zYe+6EMNrGb0/fexb7f0pODa4eF3qOsLFa7wzTuDzVQMiBptZM3p7Ba/4/OwtHVucqoF5ufCFVxyv3Rqc+FUbftbk5H2MsTX+6ikGXOfJOdLDZWPNuMYHHxh8ce11VhxzNq65cL2G+wXfiy++ePvzuH+lpl6eB4QtJ2P89c07W3DtLWw2aldjL56Gg/3hR/jNFq89jjlpL1qXFzGHoy5yd91p5uKLq8/euDkd/7nfsOjjtvuF2Z5PO7btI25xNuYXd3P5Wlc79bZ/sPT22vsCAjNfuZQvX2t0tfJwHaoFnHmG4Dj71viyF8c1M3FxS4y1eMSFPezJKb5ywo/YC/set/K2PwQuHV56+BpsPvyL0Rq/apUt3yRMNmHigJPPAa/o32jvQTsCiu1iNkb8pkWykq4o+jZOb00RNLYOm2YzuoA6iDbRBriRtFk2BY55GDMPYzGKw5awt9Y63+zo2Gk4daim3lqH3MFLwqdLXy+G9eLygU8nhj2ASfjI04WAV4ePPWnOx4E0j5/1YsAxLrfs2BD6yfmW9pZ/Y3026WBeVWCUL/+40GvleVnsfPDgU53jZb21dPXVg42a673x9vdcnQ0v6u973/vWiyFczZtjzQtSNwG+9qBc4DunzixO7Q188+JWd3pjZ4OwZ6dO6dbC4YcYcTF2LegJHyK239zhTyenHnK7zvHqQ7oXBnY9hMCD4KQlxvi0d+aw94aPZl1NvJj//ve/Xw9AevHXqxnfcIpzrL+MDb/L2LFJxL8pCfemMOFV68mxettzNp2h6smWvrXuaeZxM4btjPOnh+csOBdh7nHFsLfO347Bv3X7nl3Y1vntAmdK9nFtLU7sw6GDS47VqusEVnHmmN8eh+4sEU891UlzHREY5W9c84bGtejBlm/efPaznz158MEHb/uswTV/yMefjvGNdr/0E1/rXnOVvM6iIIa6yptMzHneWmOvVSfnqzdQ9Go39wletsWAZcyXrT0sNxj5hENH6hvHG9Zcg9X5sTfWzNnlA4NOjvMs0zvXSVyKUW+dv8YGTu+vrNFpjYuFG9t848OWjqhhnMtlYlnTcCl+8fiqK2FDDyP/fPOvxrDcF+ylMXH2u3/kRx9/dtnCN54xcaOb+6y26u39qA8J7HHwIc6HUeJvnPqllW+0GfOXlzx8GPdtNn6uT9ef2L5BxsdYY+sBiDji0VVfvuUpF43w8QEeR5zELXa5ZdcHHFikfTDXxCw+W83DAB9+vTay4aPGHiTgI0dxcOibYdbbUzZex33IMpaT/NWNvpyMeyBfPcSDE8/q0Tq+fmGutr12s80PL3WypqblUF3Kp73Vq2einpp46muND9HDmVjp8sdF/IkLL47s3Bddg1p5ikPfezV689Zh2hv5sNXEUH84uFYr9YWTTkyc1ZXeGbZfdHDVyV72EIgeZzbEGKZ4Gtxjwi8f6+b8NLHbQz3Rl4uxWorFz1zu1UXcatFatedjPCXcdPnAIGLgpCfFNq7uYYbPN392CQw2rc9YxlOKE7a1dK6R6kQPTx4wNHHUVywPxfzT8x/+8Ifrgfseh/9lJB6+dPLd7353PewSx1nwPl3vjHSPYW8vxMPVWcLFPRlfOeDXfrUP5QEbljlcYtz1CqN84RMxy53OHIZzpTd3Ju2b9eoGv3j0cNmGB5vePShc9bUeD9wIXbHgtL4WDz/E7rqQP1tY4scHFp01GNUAz8nLGAZfmGqjT4+rNa1r1xrhZy/g45Sv/TAm+IhZ/c3jDhOWGBquxWLnXlNN+NBphK1WLXGoVmyMSXp9WMXFv/zY4sIOd/nEjT2Jp7F19ZW/Vk3Cdo/zuuGMsiPxj1+5WsNNEx+vBK4H63fffffKV++1ja364KG23gO4P7tvw/DemK5zUX3jqS++Pm58CQ5iwDfOFh4sMjlb52vv+fglf+8zXbfW6Pmw9T7Fa3IP22G6tvXysQdyse98e60Sd3KVhxrDY8cPB3p2uOerXv6lgW+w/+tf/1qv7Wy8/+CDp9h0/HE1jzPexYcrrofF7DvznVn+ahWP5Xj6g46/fq8LnZY442zFYJuYE+vxVisx1U3DnY8GE39YWro4ZKe3B2zYi1Ozphb5ih8vHMQmfMvDOh/N2Jp7ae9TxYBHnA85xJNeDmprzE+98Qu39138nR+4cIiz4DWFvzo5B+LDtE/2HU414GOcrX7ysz45wU34OQ982HTWjWEQvcaGPcHXGCc9e7WqFvm3H2zKoTzVjE989WolFo56/7LVg/ZPf/rTKy7cq8i1vtEueIfQzckNCdmXWyTcjcQGE/PEQVUgOoVwMNzEu1nzwbOCtikKz0ffgQ6TrbYXto1r48Vml4hVjdp4MbQOCX2NDpbeAdCM2dMT83DFJ3jJqYMVngvIi0UXrz1jB0Mz1qrjAjv9YV1MMdjsuVsvPn8tnb68w2SbPX7sd8xsX+4eD/sUH/nFlw4vHNtza7uoTY0tPy96999//7qROW8eWJM+3PrGXL8ldwODWx1mLdRPI9UevnjV2pp5Z0lPunGsyRk/ym/uGVN5EC/wriH533P4n9mN8bCOvzc/evHdmP1Hqd7IuM5g8rNGxHINVsvytWYMUzP2QcEvhuTqt+VeyH2gUCvrJFvjvR50U6zD4qvNGk87Nlq1nmuNYdVm/Vq/k749FP+VkK5Tsfaz3TmqZpNPfvayPWbnzKlN9z/jzu/0r/58qjVbWOqPS2+ysm2/+VxH5p7BEIfseR/DlkO54JM/HSmHY75TV91cR94UzNcnPORYvmKYu2bcQ1xfPWj/wAc+sGCznTGuMsbnV7/61cnXv/719cBGPM11Jqfr1nrnUP3US56X4c3WGexMVH9z58vaWTjiWe/edVEeXff8NEIHoz0uJ+s4wDx2dtjz1aula6IPOTsP/C9bD7696cdhnhdx7Fd8rE/e5SSfzn354NC+i1Gj55d9PNXemQyzPWBX3tUgX7HUzN8298tYrw9kfkDAzdyHjPacztnHCUdxvb90b4BNx5aPxs7r0T//+c+Tv/3tb+uDoHUxYXldsR/+gzHXkpp5b6TBhO3sEzn4IOIBOwwPn+H0fldsY3jG1SPOfcMIFp11TQ5d9+0RvXF2ML1XwC9cdYfpFwPVOhw29gFGY3MffmB5IEVfrcQh8OXb9c4fpvcvviggjn3vrOnlDFe9zElxxeis06ur2ojjm27+TIz9MY9LD+3lZ//w7pwbq7t7nxiks1Bsfs6T/XdWcJCDcfUsdw8i1MK63KzrYeIkHjw5EnbqR/AVU2MXtrk884flnMmBnffdvU+C5cOq93/+5BA/Ohjtd3nyNRaX4KUWcpWPs6qW8DqzOLHjw4bo5zldyu2HOPwIe+Pp33lLxw4/ueIu965FevPEnGQ317LRh539XJtjXKs9H7l2xsS4yH9iNQ4PN2MC8yIssV3P7Vl4ex9PdXSWPWj/0Y9+dGMP2j2098UdPPozDj34kINmr5L2G3+cSL84w1Urd7bsXAvOhbqoM2Fn3jWyn4dsrRsTeM5xf36rc6HPxh5occNFLPHp7ZPry5yNdf7ix9ta94X2SGz+sBI4+PF1ncTBOsxa9vXFURsNrt59x+uYMRtcNZ9nXKc44Ox6d58Qs73BCxd2eFV7uViDKyfXPl4kfLzFq2cvjl7b8+6eUB7x0tPhpMGgI2KTvrRnXDx2nRG5tyYPrRzXwuFH9eLXmjFfPQ7liKua8BEDnzCN5WePOw9zH63Bguu1821ve9v6Rmq1dA/22uS6EQMX9bU/5vzp+Du3/NpP+rjjgRu7WdM4yxuv1uDGTZ4wYbGXCzscXMd94x6+b+FbZ++sWMeTyM8eWe+LfmxwKhY767DUmV583NR0xu9ssXGu2bMx95rmPdbTTz+9/oU+Djjzgde5UBeYfDRjWJ1pce2BnojBRy2qiTnO4bCrZuJYF7v6FasYs+Zs1IS/8RQ4s1Zw2Gm7sMW15lzQeT2Gq+VHjztsY5KNsTUiX/UlYu8iFlutuDDN+akFka9zoOHAlshbg23/vWeyJq73c7jbC+I9stcqPNnbX7/w6t6z86vGy/n0Bxvc5GzMBkeY075xttzLyxi/WUM6ONV3cqlGbOb1WG2cid4b0rl+5OT8wamOfNlquODc/cAXzP3pmE984hPC/J9cluKCH9d60C5ZJJC2Ub1hVLxZgAtiX7jcZlUw2FqbNA8wMAVSLJtHurF2w8g/XDY2lPBRXAJffjaweMZ06dnTwWpz9AnOsNkTc7bFrobWxKuZ87HOBydxCC5087DxM88+7g6TF5JyhumCK860Z5NYNxdTK4d0+WevpyMzVrmKQ28ODw855MOvmlibems3LeWlx0s8HLuwZw7GBK9dH2e+zoIP5G9/+9vXjcyeedBuzT6I4QOS/XDjcoGXq1qcJTjxjTMfmIROXLz0JPs1Ofyg518senMx6eQwfa17yNB59qdvXDtwxfVC64OzD438vAnxIMV/LOOBANyuIbzgm+uJ2In47OMC2wdUeXnI/txzz93+p2n84GXbPDw+cw039mTmXuzZs9NghTfXjfEXQ88m3rtdczbFT3dWX3w871Qm//PitzbtxU7f2Ho25a+27SnOzjKd+25+bOkIf3ZhG2vtl5pqdM5Yen7VOQ4L8Ao/8Cgu7MaTT3DW4lG87LORU2fANXEMh23++fFxTflg680jXqTrKrtqwEbzQMqbbN9ov+kH7d40uBepsdp4Q9HrQ3zupK+ecod/Vq2ss7WubmrjfKlXa807U3ixzb45ezbZ5W8dPqGTc3FgtEYnLv84zTX+8TROissftjp687bfj+MM25gYk31eHDgaO3WcZ6a944uDtot88Jr4xrD4i6PXpk0crfP3OlAca/TEWrGrQxzEvvfee9cbeP789F0Dxq6J+SAUng8L5QvLm2IfCoi4cL328DP3uuoD4B//+Mf1L6G87/MLYOemvwfug6tfCKslvDDryw2uD6xy8aHEg1q1qvb8q131cu/DxWugmERfXeDI2bmi4yc/4+zdR71XsL/0nWOYvSbTyV1jk7QHcHu4IyYRt4fWauVs9gsGuYjPVn3uuuuuFZeN+wG7zob3L/hZwz3+YsDBGz4bPub+VZqHge4zaladvFfqXxWwxb99kYP7nkYPsyYWHRyc7ZUetprYd2tqgx+dc2BvblrmGTD2pQAfWPF3Hp0772nsq/zp/PnAHjDQ++zUfuNXTfEvH9y7Hvj2hQT1Ym//2Grmif2DjY+mhvpiqGNNPOvm1rXOX+csDHYENg7W+ZFirMnhBxvnJR5w4VxVxJAnTmHoxZPnWZhsjgn78oLROBx+xaFLL0/Xk3Nm3dm19/Qw0lUje0LvLPeNdp8LwjvG7TwdfOKseWjv26XEmXC+XHv4hF/PBg81dM9VR3uCl+uHXX7s5IO7a0m+3QPg4CA/+0q61uFl52xr5rDguwf1Z7zYWs8HJk74sS9P4/yzrc4wcShHepxdK92LYZJ81uTww31NfL6978mufGC3j61VG3qx1JJOr45qBVMt+bvuxaLj4zkJXbH50ruO2OnlW93VAa7XgPYWF9hae6aHw76axSs+8mJXHemrOx/CBo55eyFPevETNkQMdq4HufODLw9NnqRYbNjzg0n42KdqBFsrR7Vlw56OHXtNnfCzLrfqAJedWF5n3vnOd64/2WQOz33Ug3b3Y6//sNXf/uAMGxb8Hng7J/ZOfrBJHPQ4Vw9z4xpb6+Jo5SqGOXu86L0miOMLb3LDwb1Dj5v4XuPxJh6OOiNy81ncXhTL/uKgV3sY7MzFlrO81M86vzjBhoubuHz8oviZZ55Z/1+a1ze+9Dix4SuH9hSGsZiuS/HZOxv482ev4ckWVrWMM33cnIH2IF91Kk/jclRbgtfkR8eX4JP9Uhx+wM83nR6P8hHHnhH7JT7McqKnq+blwEZMa5p81CI+/IytsSNilRe9PdHsH67s+OBjz9iIRydvMYh6upfAUhNxez8Bz5lzn7YGg6/cXPvixAmuVtwFfvojfnrCTi01e1hOp+YrD/Wvtq3HwRq+cOg0Al/Diy/+RI7sxeoc2QO1YYOH679fMMBQR3pntDq3X9bYeNDuy2mv6N9or2iSRtiGSVgxbkoUXIL6igvbvE22bqygRCFtjF6hFF2BtYpujZ9G6MNrLUzzpM2TO30NjnEbxJ5/GOGHUw+HdLCmnbHGpkOYvX7Wg50LiS4bYxeHB6LwNXb0eJHGzemyNa5G2Vmjg5NPPXvChtCrP/vOhXGH13q+xQwb/sspc9/EJHJ0U8GJTqPDLc4zt8mPnT3yYfhd73rXupGJ4Z+auEj7JoCHyN4M6+2XWDBnLSaucbXDQWPbHsczjuwnrnU+ZN8zGHR8cZ+43nzTaf6ZvRs3O/bOUw/E4buBuXH7u+6uMThuVnzjzI4/sV6vbvLT06uLM8veN9p9SO/bH/nhMHOBxV6T054P213C2vXnzeEWh388jvlkm90xm5vUiaeJhyMxrh2LxT67uR4OXVjZmjd2vs3VwR669zkL7YH1zmt12Pmw1Xaha4+rM9/ryOQ848sD9hQ69tnp6Ypt7FyXd+cWRjbGxWSfv15NXEtqxYaU35qMea9bHiT5Fu4jjzxyo386xjfae9COg1y8+XX/mHuCN6mvNkt5wQ8+1WLPM9dszGGz4+PsVGs2xr1hjUO+6kr4Wsufnp8+DHXV5CiGsfV4hqkn7NLB3iU7+nhVS2/mun9bZ9sHUDHZzTMUlh6W2Na9cffaRE8HU8t+1lYeSThidS22Fn41q7fODw4/ZxUHdewNevuSTfjNrVcLY2/ePfiARfT0OBnb19aKbV/CEV/+chcLNnuvMxruXjv8ctb/6eEhlNcia2x7vcXfa7QzrqbV1Wu0fYEvBw/W7zn8Sy4Cpwftap5v1wpuOMvBtY23vIjeGqHHmU4M+nItp/Y6zOrpg7P6VTMYtQV++AFDk0Mf9OQrhtg9tGYP3wMF70vkDgs3/D2UIOrGV74JH+/z7YWal4OxeqgPMcfd3INAH8jtQftnX+aDMPY44CKG2Hj4wEf44RwntnKNsz3qelAj82ps7kGEeHxwTtpvtjiw1czlLSbhQ1ej4zv9jX0gVRtiD3wukg+cPtjR4aqxrZ78SWtyLef2Bw/r4ar5zs1cC0tezZfy8CMfvTjVRTw5imetno0Gq8bOeF43cGDQs4chL5zpjgmbYxI3a8biwdcTuM1xOIaPw1myxzUvZtz3/K3TOSOuKSKuhlcYuKVjy8dZ9rDsBz/4wY19o/173/veep8srmu5X4Sp98y9mrEzdq/CiZ3rwv0FZ42Ui/qy7R5rHQZs+WVvbt/h0bWmr5bW1UwdJjf2zcVVL3HxM2+cHVu4eOg7W+XGXhyc3c/ghc9GI649vubxZicmXHzdA+jY6M2N1cR6seg6E9YmhvuAa797puu9+wQ/trCd4V6PwoNp7H6muT9Wc72GK2lsDlNTQ3wIvmzgEXb5lreeTfNqz4deDtYIfGLN2L243NVTvFo+bOWEF7HOtzjZWTdWbw02X/Y4GPOBlS+8cuLLxhwnv9zx/6W5/sTjZx/8Arh/YQRb/dVYTDbygO+1CJ51fmzFCItt8XCPF05xZYsPX7jlqq507HCl78y4VsSXvy8ruFbhsMXDawuuzgYbcb2/6fUvHYzw44qbuPzxYSs+jvPacC2xc2ateX7hC3DPPvvs+mzOn/BpzE4dYIpLqov4hL0zLzbhw5YdnblccYJDT6qfvn22xjaBI2c69SXwwjXnu5/1iWFdmwKDsIMvF9zY2Q86Y3lNX3Yav/TlSqdu/K1VL701Dc/qV03p6dSxHHFTL/dz8WDg3B6bW3dvtC4ef3tqf+m817WuVmLonTP3sHjA4dsemWukHHYdW2tzfTkcfsij/aILyx6XJ26kPWPTvrPjrzZEz09u+JPOEX01aR1WdXTtwK3hq37m7h/+3OrHP/7xhWntKnKtb7QLLkHikLhBdZAr6lVInGVb0Uuqwiu4OLuwbxMUX4EUXgHjR+cGomfLjhzjbZ2/jerwdlj4d0DwKl6cwlYnzXxK8cvNOhzz6SM+nRuwXu5ah0ZevUDwk4eL3cVBj1d+1vhpHVprCT1eCU5zvbrHlV11o0sf9u6/z/lPP1jayyViqafWvuOqhtox3nzURB3KdfKjcz58c+qBBx5Y32xn7wGDN78eFvP1AckNzcNk1w8du1nviWuMU3b2ZtbPeAoe015+8W3P2cOb+9hNjC1pzt9v8zUv+vRy8LBdHmI5k5qbO8FJ3j2UqXbxFqPm5sZXrwbOqjmuvQmiwzXB/ZjAZ+dFwrfl3JNglX8+xT4LJ7uz+vI4a73rR626hsV8OUXtxCX2rFp0L9hztZ79rG3+7Ksb24lPz4c+YS+u1hh+8dlNzOlHv8vUzfFud9l5+ZZzfvidhc+nNmshRzj8pm9YfOy9+4vePDGetaSHpWUXpuvJa5bryJvsz3zmM+v/fOCTjfF1RKwetHsAVi6uQ617CGzccJ5SrlN31lgsDY46agk9bPFnjatHtmzUXT3cZ+Orvj5MF6OevcbW/UBvzZtI9wb3MnOY6tzDBj5y2+sgDgxrcZo5wHE/d7/xumvs/uM+X63Ek5d6u3fKgS2fXgvYVAtxXGfW+6A+1ycuPZk1rAbwWo/z7Ftnw0cumpzVW33hGs9vIbO1pnkv1Tnp3ONerWBb14h5TR7yd59XD37Zqjm8cMz94qn1eFpXI6+zmg8G8NXf6xXc9o6teLM579aJvLx++RdaMMR3htoDdrjCpjPHp3qXFyx6+ZTTtGmsT/JlDxcvtcXB3Hq568352ys26sFH71x3zq2pmzzsI3EGvY57QAdbzZw1mGrDp9d8sYja7Wc2vZoU24Ntcczth1/M934hzvHWw3cO1RMPYxh+OYBLNRRfs16rHubyIF3vYnWO5VPN2LAPS73Uxrox7rDCo+cPVzMvPr0cxJqfKdTbHojPXiw28PkQuYnhXiFvds6rPSF+QeEbl9byp1dX9VYvmNbgqBOhw6nawsVDbM16/MtxOZ7+sE70MMVjl8+p2erEtm4tXDqtOhnHLVzccNLvQgeLH4FDZ46HuhXP+sQ2J9bZh3FLe+tneFNXXWBVk/ixr4UZbzzjVqz486nuriVfvPFw3Dfj8LuOiEe8P37yySdPnn/++bWnauIac1bkEE+2zlv1PLYmd1Jd2LIz5+vaoItz+13N+IqnbvzYWZM7DDr3ja5lvWvM6+7EhcNHzHzV0riaFkcMrbPAl2TffRN+Un7mcKzhObHpCezG5sZeu+XuNY/wh1kO5T0x6dxXXdP0rnUPtjpj8YMrFy1sa8WojvDS4T25w9TinV15s8UhfrCKO88Ffz7a5GlOwtPDYN++W6fTxOteR0/YTh8Y+LTfxvmIjR9sWMT5lld5GMNjw5a0Jpb3z/fdd9/JW9/61vWlMTje33ld8ktge2rO1j1V/WGVGzzcCD6txwEeW4JHehzSxd8aaY+qm3W+4bApLzawPOz3CwMP0r0GwXCWPF/wOi4H15T3uDjx8SU5+cOFV435xiG+rhe44qmxWvAzF8OX3ujE8kUGfXmpSTWEYR/4ev2beZQnTA0HeeNb7eTO33qcq3F2cIrtrIgpfvjG4VVXWFPgZ09fHdoDtdLoNbZ4Vbew4madnXiwp1R/utb4dc7Vzz1iSrgwqxOc9PEsD701Z8BeWm+tPGE5F/Jia07sd9dVa/IgMMo73Vo4/IgPn/jEl0+SnzUtv+nDJp7H/LLVy0FLh6MzIO/wYbk+nFn1K1/r1UWtnFGxa9YIOz7iENj+r6bHHnvs5IMf/ODSldeaXOLHlR+033P4tk8Xg2QdlG5AkpKkdpFIRivJi+ytX9aHHW76CmaskG2MdWsOfLYVOi58HKRs5gbz1YrRPF95WesAWedPl2RTfGt06lsN1dTNoxtIOfDJ1oGy3kW570O4MI2b859CD3eKebGKHW92xuGEvddx4u3jfMQIf7e5qblY9qAbinjV6lhs9vYtbu2lfOmdCxehN1/+2dZ73vOe9SGxffBi7sMSbDfT9sm8GsIWJ6Gng991Vo302eeTDib7+MLpDOVTjPRsu5mUf3M+3mR7wOJDL70cuoEZe+CgsSW4uHm58cE2jw/86sc2fvTsfHCEaeyF3AcH9xV2x4RdDS4cH2j8eQB6c/49fHF90BOY1m9a5KqRYtTfdKzw1H62cncG5Sh+deJDN+sQjh4Oe804u2zCa65vn/kQ54Rf10B6fTzCMS8m3Z1I2OIUM51+SjbZWcvWeOaOV3z3XNmSbKy7Hzj/6pA9bLHYwdbUh9542pl7EwDDG2Xn+eGHHz5573vfu2JNzktxxR9i+s9QH3/88fVBg7uYuLmO8NJrra3B4Uc5NOdH6M/jxS4buYYz9ROTjbX2xLh7Nl918aHDh4/uvz5k+EDinqX2mvtz59F9yX1abau7Ndia/N1/POzyxtPDgTioifue+wnhj4c+/M6A3n2YrXH4/KYevnsSG7buf2J7jWAnZg90rYvFdu4NzDha18w7g+bZqAXBt/OZvbXOXHx735MPTK29gcGW4AVLLyd54C+WXDS81Yy0/2xa46tVV/jiNYdlrsdBX0x+ndew//vf/66HGvbUmljqqC+OftZAzs6VB+1iWMfPwxH7Yg6jvYPLv5zW4PQHf1w0dTLPFvd5nrnMWoozsXHmW2uPYGrVohrYT2cdDttek+nN7ZHzJg8+aiS/6gOPT3zjBw8XLR284srJOdKz8YCpB4DmsxZixJseH9edsfccmjEOeLn+2kt6MfXa5GJeXXDDpVqzsy4PuNZxsE7SWc8mHVu4BIb4fOlJ1xSdGrgP6a1rYji/7MKxH9VfnBo8OctXXbqG7JFfXHhP6QEIezzhebivp5u8zOMjPi6dAzHkwqZe7ISuxkbjrxdDLpo5Hs5MuZmHWQ3g0rV3xQkTDn8tXzaw7L/3cpq5GnjoQya+OV828DQi5lnCJg7Oqbn9qo6t8w+7Wje3BiO9MQy9vXFP+f73v38j32j3ueKJJ55YD9rtpVydB/dde4pD/MufTddgOnb848lGnaoV7uXB1rp7Bxwi92zopp/aiVN9rP8Pb/faY1lR/XG8X4k2j4xRUYlRjEYRgmBM1BBN8BINipFo1CjqK/MR6hNNiBcUBC+ABie+kv/51Mx3/svynJ7unsaVVFfVuvzWpWrX3mf3mZ50YJGHQc9cLBo54o+9OT/6ZOTsNDK9POzH7hNs+QyHDcKnDyt/eOKPX3xsYXT+2+Nk+Onru15dq2RwNLauY+S8DWcxDj/ChxFeeZIhse241Z2PdIpp5reEhx/01WfWL/380IVHF+GLH152ZPJPR8x0NONo+oNZTOTG9GFaL2tApxrQaUzGHxv1Q/lnI0a1J6ND3/ojnwf9K3N/ftH9REzOU/dzzweer9jy1bOYmOjN2syawOWHXK+Ra9U3HlzrJt7qZ568GoafvtqwyYfzw/sFzyZykyMc91a/dHPfhA8Xhjg8G3cek3VfpgMX4fNTPcXjnu0coceH8/att95adVM7TXxisHZ0ejbGK2bY8GCLx1iecNVa3emywUdkPZMsxuEHWVjp0MPjH75rSt50YZPP2mY//dAp1vYiPaRvzIYufHp6c63a0UmPDuJfSzcMMtjtUfUTM9yo9YCZv9asesJgmz+66kyOwiDX2NNB+lr+my+Fw4/qV1zmdMyLpRzTTWf6Ck+fD3rVGN7EpFfNph/69srcS3SnPXxUrcOFY4yP6PkM6Ze98eioRXMxumbsMc/SPof7E65PPvnkwkhvTS7x48ov2n1z10WCurBaSD2ZHs3EF2P8IFM8AWsVdajcHdK9cmJ3il4M05dNmH+FbPGO+ZBjeSo+2zaJeZumsaDLSR2M89VGMW/hsytOdWBXDR1iPWzP+Oi3OdzIXaxs8NNLRy/mMIvxboHHgG5UbHoEt82bTr6aX7XnT+NDPhftg6tiH9Nv7fic+RzLgw59fbHR0+wDF6CboOa6+OQnP7letFsPNyv/zMqNUM26LuCEARfVG5OpBb/5xEfx9dPGHNFnB6P9hT91zcnx6MoD0bc/uhbIyTysaMYdym6GcvSg4sZcTnDYacVUrDNnPK3asvOwAJMtXPPOGbaIbFI+2pO+CecbQz0Ms/etHw9VrqH8VZ+Jdd1xMcGELybxTL76vF3ET36NNbFYy9ZFTMUTr3m13eObNnRqux7fyWBWY/4ntnGYxQCL/pzv+Jed8w0fVoSnFV/8GVe87GEUJz147S+69HYKXy5uzh6iXEfmYcFx/YRvrsGjm/8w8JwvPiT4n85v8kX7L37xi7Nvfetb6xda/PEVyVWcmvjEW73q02Vb7vH0ePJJv5qZZwP7GPHnrNHyHU76vnXsGztq44WWf3XzwOELAJqzqnryBQPhwcRDxeTMkauzwr3WL/l80wk//8Y+cDj34i2Qww+Y3dcndvnTL5d6+cDi19gHBX6dUz48uZeTOVv7EAPPNbVfV/jlyZexh0h1KUe5OxNRD472aXbGbPSInQYPibFmjq+pWbGSG4tZrcQvXzy56ue5aNwZBYsusi9guYb6MIJPR7wa3fSTiV2O8oPrJZxvBasfTLzqzaYc4bBhq072km+v4IvZfdyLrV4CwxK7Vk305WaM2OejuM3J+Wk/skPyIyt/fb70iD2iO+uRH/btDzmZa2LJn1jyUw5srJF7JF/VmDzfePlnb7zjiqn42Kqde3kfhNnRYSc+mAjfOlVj93HrUMxic33As+f4hl98MOnCEy+5scaXli/y4sjGvAZzJ7Ls9PnmR0OtB1/Og/Yvv2R49lj3BjzXKHnYPvg5v2CSsbEH5WxtvEz1TNn/XwODrVr6+/r02YqhfMzdR2Dr+RMHXbj0EL1pY4zHR828fOQBUysHz8H4xQXXuPqzt9ecp/IyRtZBQ/Th5Vsc4nSm+LvKt27dWvV/9dVXz7T09Ww0NOM3V6fZ8Cblz9rCUp/qSW9iwxEjos/XsTjkhK9GvtF+0y/a/bksay8214f94VqxBq3xzFm9xd166eXYmpGrtZzYyUujIxdj+5APOtUMTjbsqlU9OSJD/OxnMXy58GW/wKOjwSlW53xrTY9d+GzlnQ5/7PnTYCJ49XKHg8oJHj49GMVrjs8PvjrgkTvjul8X87SnD5/uJHMyrX1UXvHYwTeHGTWuHvgzR3KY2cEtpmzS0ePJ3RixlUt1IU8nPTJ7pn2zDA8/Jl6++DeGK29z9dTgOBOcDchcc+1Ubz7ghpMeu+5ddJ1z9HxBzHOz/3PFnsBzP3KtOE/YwBQLDLF1zaoZvobPZ37Lmaza0umeRs4XOXy1YounnnOdwyVjZ53F1f6j617gmbcX7eb8uR86Dz0ziqP7oxx86QQGfP4937k22MFEyYzZ04MFx9xaqJV3GO7Pxd51Bl+O7tviho3kUV3odC/jL1zY4mhdjMngwAxHD1dTowhW1z7/fNIRo14ukTn9MMqfnJ1YyOCR8VOjkz7d1hyfD7XQELlW7uTG8eKLRV1QeyRcfvdYJ0a2fHYOiz1sY9Taq0fXpjzEUo70jJs3xp+1MpaLXpwz1mN6xQ9nUuvHphYW35OqWbFZGzlpYsGXs9Y1EwY/dMSBx4caVCNYzhXXRDZkdMw18TlHXDOea/zL8qeffvra/7L8yi/aPQB3gxGEoEpYQg4sAaMWQdF2akPhw2gDHNODwwe9yxJ8dsXXXF8j70Jp8SY+veRyg0XPgdpmgoGnDzefbaL4Ngk88/JJpp921cOh5+CFheiVFx0XUjWnQx7R40cv3omR/3T3Hs7MKzmfxRbvfnp+yklM2ttJ01/11h+jdMnopKd3sboAfZNS7yboRbvfnLsp+a35G2+8sT7wt073qvmMwZq1zuyqUWtChmCnS0dsl6kjG1jzMLI/7E98pHfYOJDseXJ7rWZfyjXitwOtWhVnOjMPvvlg1wdy8g5OfiJ4ZFE1MS9na/Ce97xnxexaE6818KAAv2uWvrrdBFX78MQoNlS81eIm/O0YrSNf+aMjd3FUtykvPrbp7Ljp62HUdj0YyaylOaoe6fMDKzkbvGmf7nX7Yr1s7Lsfsbiui1F8tT2f3VY+9lcf9MKZWM5qhCdG2OzoVhsY9q7eA6qXyW7wN/mi/YUXXjh75pln1gdzflzbkZh6ODMWa3GmU0/W2pcnGZ58GqcXXjZLYfxgYw+ph3MoTD1Zct/u8bfre9HuQ4ixbx34cJUdP3wWh/kkMg/pnmecNcY+WHjR7gwqB3IvwfXqxS7c6qeG3dvLIV/m1lRe9MWnxq5RMTlDffDzLc1etJN172/f4GkRWzHCq8H3EOncFiO52OwlZExun4qLXGz09TBnncj5dK6LIxm+eqgTmevDXPxe+OCVpw8yGhx2+HDY6M2775iLW5wawmMnXrr6xvhylp/7lBzE6SW7Zk3DzP8CPfxgy68Pe/K3Pp5v/SfgMMUsFy/4rAUcbZJY5aEvLzrs4WtwyYzJzDU5dK4ky4dYYe7+8j3rgMcezz6Wf/UhgyMeDV9PF7UG/Fm//OlbV3rFyw/Sw1E/6wSvWpDDVXtNHcuFHjvrJJby7VnC3DOVdbAu8Nn3J2jExHe+9OWkJ4OhF3M5m0fkxcEGBhKzOuChYsOv0dXokU/iA66Ya+aaWOSjVUt1o0cOU95989K4a5gv9XFG+Pu4r7/++jor5CYutfRBUC+G+DBhuy5c864RMtc+v2o5awGLTcS22sItPzwYnns1mHD4EAM7lD65nPHtTftMs1fZqQm7fNPLN3nrf+vwUkmD8dJLL5397ne/W/nzlX5x5n/O1ZEtzGNEl0x+rY0xntoUV7binTHLkw6C1Tqr0U3+6Zi+0e5Fu7qJ0d5w71Ir9bQ+cmhNxSl/PHHis5v7FE996GnlJg9NTu5VfR5lr+Gz1fbaqsdeF+suTkQ/HbHM+OxPuvCL1R7Op5jkr0f6rjE24i+n8sJHxckfOzHQL57ioFvtjKsXXuelWrkPetHucwZ+forBHLZ4kpmzLRb4qFyzEbuaZxv/tvbtvd++4w+lAzv86Zc+P9mRGVurqddewEs/Wzz+rNG8V0x74/TVGQaCy5f1s2bV0L6gn1+/eFRzfvhgDwdu9eNffejQdQ6Re9nsG6g+F+a35xNrZc3Yqu+ODatW/O1jsdFnJwa+4NszenxkveglJ8NrHeXRPqOD5CG29jXfcnJf8AtofOc5LLrOAvp8uv7lI07XibryIQ91ZEfWfigv8cjJ3HOOezZSH8/C/pa9655OecIWF1txWDd+5IFXDZxDfOv5JoMFmz6ccjeHxQ8eDLzixEtXHK2HeIuNfjK6c33wsw+reMzhoWkDD5Eb88MGtTZyY0NWT86GroavseHHOiI28izX4qBnjPiFoWdrz7Cv5vJKzoYtOX77tNim3gI//GBDF74W5R8euZ59GPTw6cHXi8++iB9WPZ1y46u6THk15MeYjX0sp85/tvl05s7nc/hi0NiqgQYvmWvB8xV8BM8aFA8769r+9cWu+/kTrld+0e5iFzSSuIAEV6AlVYHIyXbCl3RUgtlNPr3k8WcPS0NTjx0+HjLfsWyMNtFS2n6QW2R28oDXgRq+Pj399GEzsMOLYOBpxYanITZtsh5K8aZu9um2+dPJVzHCnrLpO93Z068uxZXPe9lOnFPj6hE2vR2XrCZ28pugMPVwaxN7rmH65MXhInYDcQP0IO2D4Sc+8Yk1d9H7JnX/oWd1Y4vKfU22H9YR0bGXEPtiwG9MBpMeHr32DdkpomttW1967R88BAuug01zDdDp+m7ficeLrg5+N+ZemovNgcZ27mP+yfjiA64PCh6C8Bx4+aGLql1z8U0itw6+vSAWPul4QeZliRt7tWO320+sq4zDhFeMV7G/qm75s+OPf20n8cwc2WVbnOz2uNNLZ87xjvH5Lgb6dKZv8uzoWWNy6944Od2rELxjPuPD2rH32PIHRzzlMmszx+nXw7eP7Ts35h40yGGi8jXG46M47NV4cLq/wHq7X7TLl38kDzFprm998ScTt7E2Kb145jsvjHT0O5baOW+cG+rgQbx/NosH05nrXxA5d+i77o09m9BHzpvOFHO/+PRALtdq74zxYK935viQ0ocA80gd+jCjXvbtrI8YNGsHm05j8eKJa+fha/x6aNb45U9dxGU8CZ//6ms+62ysbnyx7RqzN5E4+3BDFhaZsVhaE/bw8MWiT6ZXA/FqZObs54clemzDLTf+5njWhs/qSA+GubyqmT49ayq/aiwWL2b74MmeL/FFbBFb15k9pDbu477Rju8+5kNmHzRh7BQu7GLjT030/NgP+WNvrtGng+YYTw7lR26MX83KP9x0yYuTD2Suvhqe3PLPDywy+cMRey/UjPH6RYQY8BA7LT/49jBMevaB6xB/j51NscOgx5YeX16WtJ5q65kKXr75qBZhwTOefHP4+YJvrLXnYEUzH7pIv7fpnw4/6aivWrZf8xd/6hYbPOdbL4mM7Um1gCUna+JMc5apB1x25O985zvvnm384mtIHbsvFUu2cMVFrs7ZyKU9AQ+R0xczTLGykw/CJ7dGej7C4KPmuZmuNecHnx6biBwuHj3nb78EFcfLL7989utf/3p9kcK+oQ9HH7Ue5vjVBP8U8amempjkgIrNHBaMeHDZ8Y/oaDDoyteL9p/+9Kc3/jfa+UCeu9XIOcun2MXT2ojVujgn2YhZX83ES6caGWvVqryd5d2X+EF02jvpL8HhBzsxzHrlJx90tOIRe5hwo9YmTHvQ9dF1Vt7sjcOfPaxiNc5n+njG1Y4vpC5wkDjMuyfimzufNGuAl7x48fg2D7f8Jq88+FIH2DNm+e2UHl0kRjiIDD7/xs3JikNPn108evyySxYmPVRs9Ojjdx20F+nBmDGxo2cN7Uly13mf08xhOl/ka84GRjjFp85skb3gl5Ti9KLd31R2/bHVnJ+a85ONayJZscu/vPHM+RID0jeuLnTKu/OPDjs61W3iyIsNWXrlYl+2j2GrQ2etPa9mbHxmVjN2nlPklL8wxDE/x8uBba18zJ2lMKqB/exsmbWCX13UrhrOHPGR2ns273mers/jns9gl2Mx86P2/IdhzB8q1nh6+4yusXrC1MxhJcvHtCUXh9zzYZwOf43xxV988Phr/9KN6JrzHV4yfuY9tfrRpztrwjceHI0tn/rOGeNypF+8+uxgh188rRc9Yz0d+dFBeLX0i488XjnQTW6849AXL+Irv4tx5wcbMZBH9OxndSOv0bF+rSF9+GLQECzx5Q+Oc0crPnri5UfNXE9wNM85Pod/6/CvwD/3uc9R/Q+7xbjHjyu/aPfbQUEIUFAVylyAJaWfNBOK3wLW00mvhM3Jo+TN9dkb7xjTtlgVfOJkP31lx6aFY6dZKHyUrc1vE0wZHXVQF2N1My/G4shvmPhskL52zA4vMmaL4osd4YcfTjpL4cgP+uyzm3EcUb80q5pVY4bVYoKQ860nL7epc91x2OyrG141kXd1MiZD1cBau5F74eNmYuw/XfGNSje/V155ZX3ryMudMPNZPeEl23s65Z6MfnHM3oFi3mFCbydyOHptHoZ0qz+fxvKUt5uIA4k+fvuZ3F73UPORj3xk5e3h5V//+tf6BrmbKR318YDgQ4C6uJHDcENFYoHrIcEHKf7FWQzkUfGbz5okF4+HENdieXgIcUNSm0nH7KfcePe9y6fOZfCO2V+VJ6aaGl1Ee0zlE78aTYyw8dLLDi+feOytcWP62dSzmcTGvmp9G5/Sn7bGfKUbFj6efRXRq9GL8tt87+myQ/kJR67xsiPDs8c9TOrzx1f69bN+MOjar41dZ91DYPnm9k3/jXZ/OsZ/7OIaze8aHH6IsyZWrRyNxYf2WlSzJTz8mHWcOTemx0buzph+mad3lnrOMHY9+6b6O97xjnXOii2+Otk/YtJc4651Z4zmm8jOFXTr8E1IHxjYIPHbLz2ki0vrfGu9lvLhRw+1Ys5Wj8SglfOMqbrw27kE21xjwy89OaQDtzk8RBeJMdzFGD9aOz3czr0+mMHiw/mreSaRh/ycleoWBj4/1QXfXE+Gn5/GQklmLGbxFvPEIs9XtYNvHK4eqYV6ib/cyeiSuR/P2rkXeTFZXMUUfnnAtMfsOWO9bwcbu1/5EzSwWn+xFBMMuGqsjhNbLcnwNDT7xrCMy58enrjxWns68emgeI3DXMI7cjxNbWC1/mpWLe0NefuFFr66+SAsb/tBHH65pSbiwqueXS+tKxu1QGpGPtegvSCXmXvXLjuxamLhm177dGLR3UlOYZNV1702+DW5pMsv4gfNGOkjMjbVIB9keNW7muMj/GoOV875URf69jE9vfuJdbE/2eVTX13Z0/VLxuoFB3Y65ho5v+GwNSdzpuIXj3jxYWvFC1N89oy4yORPbo3sjV6W4JPThWX/8OOXAvYTGeKzWIqBj4lrL8EvL19iefHFF9f/N2LP8d81Z6yFyQc8hM9HFL+5WMUlXpScXXO8WSc1sT5syGqth1+Y+JeWXrS/973vXTEssCv+KBb/QvP555+/+5+hqolrVu3FopVjMYkXX35dx3oxltexcNh17bUe6YlHXeCKgU/z2jG96YtdurDFoqklIqvO7Qt6SO/5qD3Ihr6YjMOgK89iNZcP33ga0ufLnD0fyWGLgS2esZyzwTNvj+JXEzJ4fJLD1WZ+dGrJYYSP11w+iH041Sd9WO0/uvjpsEOzh1Pd2BYbG+O9HumECS+M4nMOFJ/cJ4nH3nStaeZq4zqvDtOvMV9kMDVjduqs4Tlf/H1y2D6Lf/rTn1518EtzMfiM2Yv21qe45FjNkjXPjzgQ32T8sIuKs7qJiZx+MlgIf8rw6IVNxkYsfJkjn8ftfbz2m9zkpeb47h1w8Iu5eMUcbvfydDpn2cqB3NkCRxxa8Yul9Zdn1xm5BtPZ5x2AeJw9xelfG3onICak1+TTOrMXx1xrMhiTP2OQmzj0qHyM2WTHlzFb9w2++KknM24enrzYRGxgpYuPh6qDcTx6sHe8cPXtCXqtOf6et3nYYkp/xmI8ac7FxAbpZ4x4dOFmQ0dT33JmQ25fiMc4nLBhyQO/3OiVa/r0sgkLLyLjt7zN4ZjbNxF+/vCqXbHxJwcND9G3Jnp4PUuwdab4P1a++93vnn3xi19c+tmtySV+XPlFu4fxitriSqwmMPwuGAEJHv9YcOwkrhlPHTjsUHK8nfKNzz6MbOLnZ8bSOJvi0aOJke7kLaXDDxugxSOHp2ejwVMTLV/6MMtBH78Y8mEu/zZhNuqbLtsabDGgOU4e7kW9zRcG3xr7+6Hi1hfLMUzyfF+kd9VYTvnnKz/G6TXmRx3tfw8HXgadn5+vF0AuRr/18tsvH9D/8Ic/rBdZdBEs6zTXCr/11yPycl6Me/yAa++hfB0zmZjZxCtna8s/ap3taTdIfHrFa+wh1z+p8Vs+54KHmNdee23902bfJIfhQ5WbrG9haR543LzdZLsW6JF5ERaJ8TrErvWqpnDwi/0yuDtONbqM7dupI64aP1fJ6TJxha2fOR+bq7O1y2bW+5gveu254ravGh+zmbzpB85s4uhcnDZdT3Tbv/TuRXyhfLLnY+aYjJ5ftnmwd60gurs+PvswYIrPNYbgdR8x9kDtJfNN/432X/7yl2fPPvvsOp+O1Z5vVE2b03U/MC83NUXprMnhR2tjXr3xJrFRN2eHF+keys19q/j8cK72cO7vD3sx48OFGNozzg/k3POy5dbhZboHeL9A8IDtT7E4k5AXps5ltmIv7no65aCv4bdv5njmv+uaW0f3CGO6/Kodvhz0mprQIbPeGl089xR7g54Y8JF6wojoVlt8cj6RGpHDjWfuGyDOYXL18wHNXM9XjS4yR+YarHj4xvjFjofM6WqNxbfj39b+/5/0yzNcNaoG5HLdZe07ebEv1qk7Y7RG9p09B989zTew1LwX7erCXsz1RSoO9ePPOP9s8p+uvnWCRb+64Ysrvri19CdGY3L6FxF7edlH8M3be/jGzq0HDv+/gf/fRD3k7ZdUriP7hI1nHWebmPHkJmdjewZfbbr2xGReE6c6uS6rDVnEHmZENuuDLw45R9Vo6qXDH4x0ph17c7paNVQf9RCjWOLTwSdH/GnyoYNfnsnhV+9851PPjg84M1f25dDedA5YK3w862DOFpZxL17oIGsy96RYNH7zpy9+mOYo/3Dn+VPefOIXV/n7cGptqx975w49OmoozvPD2e5fjfiFFmIjXrhirq7mmrjEVA7qZp/9/e9/P/v5z3++zn6+vXzvzwjIS4vCwmuf4VUveuZiVQv8HSPd6hS2uohNvvqosfPFN9p/9rOf3ciLdveyn/zkJytfPmbNxaz+6qmOxYwvbuumofKH0dgaaezw2M316TpILnd+NGM+NDXWpxev2ujpw0f0xBH+Yt75QQceH+HTn9eCeVgw5Bim54jmdOwxeOTtN9hk8OvJtUi86pq8HKsdPTINrzk7ufGhlhOTLkqfzFirPsZyKjbjiP70Sbc5Gb9ork+2epgo3bBh8D/lxaVH5Gpgnr2xWuv5RLDg0DVG5mJzzWjm9FsXccCM2JHr8Wvk4tDYeH705RTXsM/i/jNUL4p94QK2z5ha5wT7YhdPuHRh4smFX3Nkzpc8i1P8Wvmly15D5UhGDw5/eg2phdjZ0BGHPZNPOva9xjes/DoD7Wf2Xgyql8/ZcOTAYcHXAABAAElEQVRLJmZnHKLvXo+PxGJ/Oz/447fnRD74yl/x4iOx8ItPByaZ897zReeqWPj0eV9M8kXyhSHmMPHhVSO1aF3w2ZDRn/UUh/qgzi4xsQmPL+NipWsOKxlf5vy01nT4wk9efDCQOaJXXNOOLB/GqLqWS3b0kDkdfQQz3+pmLFYY6aaDb1wccOglzwc99eMXRveRdOmR0YuKjY42Y6RDl40mxvThxxMHKkYyWPHCNiejB1erBmTpJdeXKzmiU0xk1c1eFI91te/VVPMM4xfl3//+98++9KUvLYw9x8W84MeVX7T70Osi0gTBoWQEK1BjhbDBZ0GMtQpdoOZaGMWqGPT1SGEQ3mUoPH3F50ch8ZAYuljCJKPDn3F+HUrFQjeMaYdXfnTLjQ4/5HxqZGhiLsb4kb6+uOnDgpG/Ys2UrHrTQXjXIWtarOzDDe8UPr52UX73iicMvvJ3L5vLyMOlG7Yc8c2LGa/akkX2vcPIb869XHcjsT796QIvff785z+vl8qwYMLRZi3htZ56Ptwg1Nw8W3rFXLx4UbGRnSK+UbozX7zi4JsuLDdcNxi5zrjz4wOED0wOH+eCl1r+Sa+/IepFuzp5geblhW/IubmqjUOsfzpGx57Cd+NFYrlJqnYwj9XvmK/WXi8eMR6LK+xjsmO4N8Xjt3XiuzXZ8emhU/Jdv3n7w/wY/mXyzneY0+aieHa77ItJPHSaG+N1LqavT8/1yWd6U2cfZ6MvTr52fLzWwL/s0FwviJ/9rMTHC4e9601D/Bk7A8hgPXB4AeYb7Y8//vjSKZ41ucYPPrxo/853vrM+cByLsbOCrIdurvgWn9iM5SFPhAc7Mm4+8w2bvbGX7A8++ODZhz/84XWeOkO9VPcLPOcGfNg9c8B3Zpj3odezhvPG2fOXv/xlvVSnRyff8uiZhT3f1XnGLi5tkjlbvZxO6bTm5PCdm/TFoLcHNVTd80MujuT4vXRPRw9b/OU1cdmTTxITTFjGGoIRTvzygonKY9bHOD/pT5/ZLoDDD3OxalF2zelo+OoiLjE1J8uvnmzWL7maV+PwwuCLzDVFL7k95rr1ch3f/sbjxz3JvrL2kTyqFwxjvGrJX/xs6vHhInZs5IGKKezFPPxgo8FF7M2j7JKLJUy81l5edNlXI71rQO4+SHz0ox9de9ZLTP8yzf3cvZqNX0TYz+JzvamJ669fnFeXPrjzRVcsZGJxDXqOhpk+vvGsBR47+OVSHcRSHsYoHfNaNaqvXrA1BCesqScnvqPpE0+88tcjGPTlS3dfQzy1bg3ol081MocnF3IkzhmXMZk108zhpl9fnfXFlB4dYzHxp4dTXSYm3SknM0euIy9Puh/gqUlrAc+Z41rysoUdHkw8//rzkUceYbb2hD01x+Lmj77GT3HzQ+6F2W9/+9u1Hz1b+lMy/fmEBXb4wS97xD87eRuTweQH6eVUbelOKvdyTFZexRheci/8bvpPx3jR/tZbb60c7D01EQffriU819q8rsQjRo0uGX35VmPj8pCvBsdeoluu1t9cjfjOj9oYtxdaM3bVnY5xlB9+W+9k+mzhhoHPf80cwZKDPQdPnL3oEwsqNr7k5kWsXi7FRgdWe4dduTXeYymPaikGZG/zDZMvJKed5DJp6pA13/XM4ctVzkhs6iUm1PlkTF+MYcI1h6GZy1W/XwNswqxWMMs9/Hywz4a+udb6s+M7n2TmMxeY+OpIL1/lQA6PjXu5fzXiOnb+PPTQQ+tMuHX4Egb/PmNqsIqhWOHB5kND5nwX5/Q9/dMPrzXAgx2Zu46sC0yUb3VH9q648cXbnsHvvIWf3L6l19oZ+2XDZz/72WXriyd8+dKJ5xk4PrfLQx2cmzDEJh9je8Xc/b9ngOJlly/65Wis/uKSYy8qw+VXSy4v1DOyMd1ZG7xJYpCfXhz8aWzws1e/ee2Jhxzxr8lBD4u9+GG2j4zFyM5Y7PlLT46w8SfBReKZVOx4+dOLpbzZiEFccMgRfjmYl0N5iAPRJ8uXWPFqxcaHa4Dcfqp2xj6DWRcxda3kuzj0Ox3jFaca5Sdf9pn4yxEefTHRUQM9nrEYzMuFnjitTXWwZuLOLx3ErqZWM2942eOrjdiqob3k/v3cc8+dPfXUU3fx1uCSP678ot2LM4GWED+SQh0AimIR9QInb/NIqgKyIUtHHylKiaanx78swa7xacz/9FNc4ZIpermwIXNRhVEcZGHRSR4WX8bJ8k0vSt4cJgo7XfHwpSbVhQ5MbRLM9JLBwb8qVQd2/IULqxjJitOYTKya+l6Xwr9u7Bf5hY1mHsY1MjqaGjbGdyE7zP09cC+aPciR6130Pqj99a9/XQ9V8NSsdaI3SW7VFL/DnB5+dW0d4R2rx447fZDVWhfycPCMrRX/fPHjGjd3mNEJgy25G7bfnM8X7X/605/O3nzzzfVww94/G1MrN2w3db9hd3jPF+38eghwky8W+JPKr74Ydr1pM8fZndKfuVWjbNRmrsXErS7Vcsre7nFxykl8O4mfDnlt1zk1rx76bPVRvvmd/OT6MIynzhyTTaqeu07z5OqNujbJ7aP0wqwGznSy9nnyY302fEVsZ67mzkYNebh1/bteUPq7Df9a6yWueX2ZwxCDs8QLZ9fXTf5nqL/61a/uvmhXs2JagR9+dNaI0TWsDtVOfJ0Pe71bG7qo9aeH2Gry6r7il5VetD/88MPrPPWnEtTSL+6cG2w199+eKXr+qLY+vPqWn7PHi3YfLvgujtYCjnzkK9bOutaZXm0FfPgRBjuYcucXhvkkutXSuHU0ZqfNmrQHJob6hFuNphx+/uEWE+zyyJ4ckdljiD0+DK0xPoKh4auX8Y4NPx162qR9Pn2xJd/9xafr/so3HX7SVZv8Ji8W/BpeuvAQmTzUVE8H+bajX+y4T6XjRSByT3LPsu/EzEYs1Y2OuSZmDcE3Lu56+BGeHGCVA54260cGD68Y0p89XPIw8yNfHxTUA46Gp9mfrjHfVvei3TVon3iB6UW73F1b/HjR7roVn3q4HvSeddy3Ww81kxN/enwNuW7pssMTLzxYWrXQm/dhh60YUGsEH9FF+Bo8ORpnw0+UT311oDd1PZ+IFcFB6bATe3s0mTi0ff3IYVT31gFvxgI/XOP87pj41kGbWMXHv7q1RuZkdNOvPvzjIfVG+a42dCflh7wXP+UyY6Vn3/XCy5w/vT33oQ996Oyxxx5bPLXu2rE/NFhwi5s/Y7x0rZPznr0X7L1obz/S47P4qndx4sPVI72Y8cQ5SR0RfuMpZ9N5nx48us4TL/9u8k/HzG+0W281kJf49F0/XVdy16ynOhpXR9d8dZaDXOjBkkPrU03opscXeX7M4ZrLvTVTEzI88rk2fGh8asaROFG4+nhzHbLRi791FKfnic5AWK4zOPJRu7nnyDTxVxP+tGIw5nvGArf42wv2OV344oLLH79h1rOvvsYzN3OUnE1kDHuuiTl76xJ+YxjkrW84+NWeDXs8/fRHPwyyagBTyx+9ePmjm41apCP2+HTgWzfNuDjUEf7EzSc8dfeS8AMf+MC65uxr9zW/LHc/s+d6jmx/8lsc7XtY+VETMSFy/sq/GpZzOdGbNHOwDuHjI70a6OXcsxpcus45mPYwuTFdMjWRQ/WC53nm85///Npr/syU+PsTeO4brgf27t3u8fDVBm9ey2Q+t7uXVCc68uZPzGJEeLCRPQ6bTXZkbOiJO3/ZsKNLlg1fkTF+e6gYYIoZXyxw8dSKDpl44CI41lDsKJ9024fkCBZcc3HWykHdYLce/Fcf9rCrj77YjWHkU89Xec8akCE2ycshDHLYqNjDMK/RT05f7Ob5cE3IxTUkVzHJsfrONcjfcnr4QbaTmPFhatUcHzb/M4cw6iceGz71cDS24mwvsmv/his/fC0MeeKLKbxqQE/tOh/I7SUv2r/97W+ffeELX1hh4V+F7utFe8XOqeQlYEO4OPGbp9s8m4pQL3hjxKbNtRjX+AGLz+nPPF4bMmj6LWQ8MSh8GPEnNtmUT5k8wp35p58tHS1+MeK1cciKGb9ciklPh0+NXZjyCJte9smTzZpnTx+RJc939rc1bj/IJBPrRcRWC3Pq4sMhK7Ypv8o4P3A080nmySbfWA3EEYacPET1or0bl2+uuHjdzP/xj3+svnVgG8bE53OvafuPbXURA6I/+XjHcI/xi6GaVlf8YnBokedj3lzwa+KQ97ve9a51U1cLN2XfKpW7m7Rrxosz+fj7ceRetLsJm/sQ3142dmbQLS45VPP86ouXrTivQuGxmestT9hIrauzXjzVYymMH8VDfgp7qC8f0++UXWfc9dl1NmMwFt/M5V4+spdzY30x62Hm1w0T7xhlT5b9Mb141TJ/8dkWDx3UHimOdPZYYLGxr9KpVuHvfXFP7H39YbkB+xBN3wsFLRvxadnlO19kSFwerNmJUzNGzpj+dMyjjz66eHt+i3mFH2KdL9rFB7MeVPkXv3nj8qPHLt3iMk+mN1dvcmeLM9Kfk/JyD0/vTwg4R3xAkDMfasJWXB6eOh/E0Z6rTs4THyj8KQEfqLwoLI4VzOEHG626k1drvVjKsVzMNbr69FtT2Hjk+QtHP2XWOZ3pr/jCcv9Ib8ouGheXflKx4He+xZMDat4aqSn96i6WcOmiY7z4ZGEt5Ts/8hOvuqpLPunwy95aGZPTJZNDaz5jwau+8fHSLd54ejnhu4b3F+1eviP7yj3Lh1mx0Ed8FFNjcjHT0TwD4JG7ryExIjwyeYbLxjhcenjiFK8xu8lvXcqFLJ949NXMGVXtYBm7vmo+WPmXeV5Q4PWnY7ygUAO+3cftTfd0+dSTq09rTiYHuYqlJjY6rS2dmg9crvHqRwcvXHpIP2tiTrf1TKc5XaQONTaN5TOvt2osN7go3ozBWKvW6eFNu9almPUzNnGw0SN4aoCyTWcxDz9gqG0fLuGZWzfEvnrCQzDg1WCgbMnlXBzk9ogGO/1ldOeHuvHZ8yK2XPjPL7nzXM830uN58exfMbERBzxkH4g/Pv/VTK/BJ7c/vEDi05nvpbtf9NiT5q5d1yG53GpsjeUFTw75qK4zZ7qt6wpy+xGGHOiisMXai3Yvx2/qb7T/6Ec/Wn86Rn3UzHWn508McixPPb41Rq2FnIxbw2qgL//68uLPvnBuyhcuv7CN+VJvzRi+BicMutaYfvGQa+nTLQ86zcUWn4/s2SEYxdje8VxmTIayF58awCn+ciCTZ2taXupcLHjGCLbY6Gv8VZ9+WVluy+DwIxwxTCz8apMurOLHS59uuHoxaAgGOV1rpIdBT3x6RCciNw93l4fHNl06fDbnp8aPRj7zJMerVub7vsmWL37tGT0/2oyfLSy/EPYt9j6Le372bW5/Cq11FkfrXD7wuvbpiQdPDK1FOcp39w8Hrp5eFK5Yy7F1qYbh5Y9PYwTPOUe3+PTk8NQEdU3Scz/3QtDZ53mYP18+8dLUteBejpyR/alF+xrBkz+/fV6XV/5g8dHaiAGPvLi6vuHhJyNXm7kO1YA/tNcmez2i19rAYt+5R0es9oF7jBjFouEjOsVv3JqUTzr8dCbQg6nG7mXl4LpWL7Jimjh84kdy05AY4JRDe44sHX61qBqx5RPhaXhTH97MORl/UTE3Z0Pu+Rc+e/tCn+/8sY2XvT4/6eHBVBcxIjI55q8c6SSvLtOmWoZVHcoJjr0QLn4tbH75Z5tdeMn4qXbicc34Qu0zzzyz/nPlYtRflq79ol0ySHAtmMWRAF4HO1kJHAuKvgJJPhy8cPBughSzBTZWZHMFvYyPYrxuLOxb9B1j1oeeeIqJTTXq4pr6O5Z5edJD7OGYh4uvDjWycOeFRe8UiTVsvcb3vCGan6JsyPN9Svd++fkqf7Ej84tizC/71oKNg9y3Mf09ODcucjcSvb3vGzb9NjCMm+pbK3HwN/fz9NH1iFe+cmWnIfbwmruZ0LEH2htwjOUXj51v8HpB9sQTT6x/fu6fnPei3Yt0mOrkrPCwQ+5DkBtU/9mamxnMchLnXI/yE0ONDkwPEmpdbiuhC37AqvFR3ni+nS8/fHjigp1O/TH4Yu76Ni+fcsHT+Jr1P4Z3FR5MNP20T5MVe2t8EX71oQtTw4PV3HrhmVsH/f0SfHEXY7HDxjMvjnkTvJff7MQcVvZkp2LPLh01nCQm/0y1b8J2rVU3vTZrX63kIZ72c7Z8ReLyUOf68jfaH30bXrS7HqN9v8bXiyX55MtBs27VdtbTWFNv9vJ54PCncPwHVf4DZfk6Q/zCzjmhDq47L/q8QPEBg51fzjlPnKdsql3nEfmtwz8N9rK9b9SKid7cp7AmwaKnIevDv3iL2xrms/1Xjjt/Yh8b0582cIpJDPIXMz6/7VNY+SwvOFE5iG8SGznhq69+7kkY8co5/+rgIVtM9MxhGWtwEHv+9cnc/+GZo+RyxaNbay3plHN1KX9zcjm0ptMvWfzqpMfzQojf5u0ZceDZk/afX/jQzwam+1T3MRgav4htNWjc9Y1vD4ufDQzk3gq/faYvtqVw+JEfmGLQqlnzdPVkMMnYIGM8czVzjfmwYC3J8Lz862WZXzS4Lj3LiNE15FpyDbrmEBuxuSbVxX6wznTtE7Kdiqdat2ZiQ+Rq5D4+7+X58SLAPZhOPSw5oGoFzxie9aWD6q1HusWUXEzt8WTmKEy9GFrvJbzgBxwxavDLf8ZQLYotf/bEZajcrJe17MserQlcPrT8zvjx1Qrht3fNYcPV6FRvsghPnaZc3vZFz03WBUbXLVx+8fzLaL/cUdf+dBPsrgl67PNdPu0dWHjyzc59AM997W9/+9vZq6++evbvf/977VH8ncQLR/3EyKf5JDqt/+TTI0Ns1eKYPVsv/bxg9x+Y+oZtdhPvMuNik9MPfvCD9aKdXzVzTWrqAV+dyDQ1FIdr1fqoRfHr6Yq9XGet8K1x+cnVixg5waXLv2asWdN48grfGJb94XOAfvoij8ISN+KLrXNMzGydRchcnHOcz/JrX9Ihw4c9/bcuZPy1L8qJPzVMbzk8/EhfjWCzjcevXMVX3dSGHA82Heumbq1BeZvTc1YXN7900y8OunARm9aMnvOVr+RqCQ/h1/hlS8+YjnlEL790yGv02JDLsRz40uTIXn3YuPdq4sS3pr3Yaz91j5LbxCwe/GJyrvgzaH6BZ3+Kz0tnL9ldM8XLPzsN4RdXMjmInywdMedv2sejDyfc7HpxmV71qw58VCs2MPDyjYfM2WjZwDJ2XfYM437+jW98Yz2DOAfp9DztWaAvufhMTt5LeD7sVeuklu6/8xlQjNYAicF6w7ZuxRGfrLH4rPGMm40Gb9Yr7HT1cwxL44+tZhyGXuza3I/4Glt41tK4nNrD/LfO6kCeHUx1JifrmcVcDPzZr/r2pD4qTn7ZRPDJpm71a1+w0fBdS64b50Z2Xethdt5NzGRw1EAufLemfNEn4wfNmM3pTxneJDK5hUX/siQesSE5zpzgJINvLlY6xuJE9pTcEb1qpV7tI3xxhmmO9vXGZ+Oe4xd2X/7yl9dnV7psr0L3/aK9hCUteE1BJK7Y+opwLLCKV9ItsnmLdczuqrzppwLycVFsciouNsU0fSefvH3Md3kVx9SBgepn3vTVNPupt4yO/IAj9nKDobVGjeVko2rp59tcKyY2Ygg7Pl44Qunwoy/uYphhkoWn54ffMKfuZcbZhctvePmBQy/dcPd5/L2fawDbgervC/tw6kOOOngw488B7MN1D5OX9bH7ND9m21rp+XWIVOv0xeGQQfTIG8/a4NNlh88Gj021s754ZJr9wq+btg9LTz755HrAcWPuT8f0gkKdHHzzRbsP777xPutT3Hzxbc6nNvcY3+Kyz9TZ4Wh+WQpTn0/jXkTgwetGpSbiqd/9hGefFycd+hq8MNM1J7sJ4lO88zrLj56MPznUTvktTjZsEZ42yRqQw7MOejY7TZzL5FuscKatOR/RHk/8Y3049hW71uVY3bLPphrwvcePZ/970e6aYDOJr+z0mlrR4xseO9du1xQZPcTeg4fzxZ+OuckX7fNvtPPDb3Uxz7+eDI+8PaYu1c+4Rk8rB/bsevCxb/wpHOfFxz72sZWfGvbtI5ge7J0dXvT5YKtmXqA4L3zI5UtdPPTSR+S9GPSygf/OrKVw+AFHLPJB4jSmF07XfHmWDz1+J5Uz21029RrDoldc1XXy26PiF8PMQ/zTnmzmEG7+9OTskHqh4mYfRmPyYlAL9acvVrWDl6653K0pm7Doin3GD7dYw6um7MOgA1fLj/jx+XIv0dfKedaFL5SNayvf/Jizq/6uP/dv34SDA7uXSPaSb3WpRfndRr99XcDQyMQpZ3Nkv5oj3wyXkzXgn34fNOmIb1I1wBMPGyQ+Oeirz8xdDPRnPV0rXmR2fyNXR88q8Xww969MnDX47sv+/rNrSg34UCd1cO/GE7d7r2vSPin38peTPPhrT5EZzxxguo/DVBM67PDUHq7mXCBH7OHis2fTesuNvXl+1QqvmukjualvGPiwEYzyCJM+Mr+Iyjv9icMXfvGQIZhdrxM7fbxsjPHtKWvmZY482HsOg8WHZsyOn5ln+wqfnJ5Gx3pr1Zq/qHjYa3KF0XqIAY76i2/iiIe9/eafY9tDvqjiPsoXDPbFDpu+hvihBxvZF4idfcvOi3Yv2X//+9+vfWzP4iP2k8zVrrOl+KpXdYE/qb0lTzUoJj2Cy5YdfC/ab+ob7V4a/vCHP1y5qa9rwC/2XIuukWpE5vpHdLrGyMUv9sbiNlZ7MRsj9SCrqZPzUQsjG3hyNufP2PpVe3jm5M4Mazd9kUf8hxcGf/a6OTtnBB17Ay8ybh2SF5c5EpPGD1n5ksHjq31Bnr9+mUMvyr99wA5uGOrQy3n3GS9+rVFxwKCj4YmDL/MInrPaeoYNQx2R+Gr80tHEY17sdCJYrXm2/BdXfsLKji686UfOrRG5uDRY+MnkRF5s9qYmTrr2g30Bmz19eTs/8NovYoGBioc+HC+R/V8j/eLRi3ff6vYfJdMtb7Zq3brDL04yOVYLc/7kGbGDR4euMYzWj54xnj0rNnP64c7a0DcncyYWC/udkuHzLTY+7C0+3M+/973vrXPQ/xWnNr1o75ea9PC8aHefd3YiZ6U1kKu9ruZd+2ysiZ5PjX/x6tmIX3zWVU0QfhjZzOt/Kd35QZe9vNmrm4b4xYdRLPme9e/eRVc8Ypsxhw+Tnfrg8cM/XTwtwiPrXgZTrZxBbOGQOx/FFy47pMfTUOeTcf6SwYNR/HTMteJkL3c2eHQ1pHc+aOTFsIR35Oydb60fG3paOMbqV1xh5099dn01UMfqrj9F+Syv8tbbP7CmTvHMWhjLQUNq0tlJJk9r1rMuPLhkyJg/Odrr4i0nMo2tZ+P7+b/S7vtFu2AFti+GhPBayIKnf4zoS16PwtQj/DAX44o/Jm4bBYTCJpuQ+cq/giM5aeTZ0UlvYjSml89TenTCgT/12E578ntRce561Rh+ccnNnE0XRvYzR5u2GMMlhxmGi8+a42ldAOnr2WRnni/j+yH+qpU84IoXX19u1/FRvMXukPLnUvymy7eh4fcg5Cbit8T6fBbL9B3m5M1xvuKZV//w5GZd9PPGwMaaZFO/1xp/7u1qqCfTN+anxsZN2wHkwcbN3Qe8V155ZX2DwE26WN3E+ydqPex3QxdzNbJ2cO0ZtsXPv3F5yo2Og9HN5LIkn9myg+2DnpskXOvmBtqNTHya2u1Ufdi198ROX4/4nD3+MayldMUfnQv8T8IXGyqOfe3Jqocxas62PNiVAx2y5nsebPJHZ8aw68KaFOYx+2mbfNqeGheDNWYHR5v5TVv62cTPJr/krnX738OtfaneyDq0V9g1ZksmDs3DADsPAfHENGPjw59V8Y32m/wb7V60+3tzfaM9v+3ZalD+erL5YNW+Y1uT46wxHA9d1UiufjH3wQ9+cH1T35y+WvRQqHdeeNlurGbODOeJni/XKdzWBd/ZozkTYPIdzZji1av9XLvOIzYRP5Ngs6kGU2acbxgTp3UmLyb6Yclt7hcyPPpiSA/fHAZZOZBPIoeHwtHTy7449Onp1d267HsifXxY+YY3McuDXIwav+mbsy8ePSrmcm096FvzbGafbvbmiA5/MPOfrjmyl/yyxx6lj++6o+ce4BpRh5kbnfyHU9wL9PCDbTZegrmX0GGnNuaacQSLTnbVWIyIvHsgPWtUjuI1VyP62cjFSwc9e82YvA8zXnT6PxHOz88X34sh3wL0ywLXYHF1HfZcw59x+yS96kguLjHnu3j18mTrmlULax3hOwfaR+adP9aUvXl11fPhTNbzzaYzBI6Gr0cwNPFF5WBujMSpoeRwTtHUnTr41g2GJg7+5YNganQm0aWHJjZ+691asq9u00++4RhrYYYvnvDtEdhiC4f/bPRkdKxx+zFsczJxOefbt3ThnR/2Wi/aPT/7RRcdMbQ+dPmBpeHr+S0u+WZjP7CxT71ce+211+4+i5K5P7iPsEXiEKNneTHyxR7BDFtOxpPKh4yNBre9VMzsvASTq7/R/r73vW/lMLEuOxYvunX411vPPvvs2T//+c91LfPhOrTXxS0muYjFOiIydaFbnq2rHg+Rsxc/mnnJj55azRferrPs2GozDlh8VHdzOsXbnL90J05rQt4+z55fNsVPx5gvfHEg/s3TL6/inDqN5Wl/hCPPzpvy0Wv5rEbZ0Lc25l7YuNfkE08TU3HxXe7FTKd49XzRL7f0zYsHjljM8dWanYbklax4luDwg48a2YyNjnjYwqpvLJbyYVvc5MXM3t5UX82YrlppbOiqt/UuVvcJ/ujTQdMfvs+h/qNlZwqfzhUvkv1yit8ZJ58ID54+cl4kx5t5pqPnH27YeNklcw3OvU8Xwaw31tiwbx+R42kRmVw1MevVyX2envu5P3PhPu5Fujq6l6sfPb8kU1//6v71119fX4JzNqBeHovFWtDLh7jsIzxyNSuX+vTlTB+fbjU23nHwauVoXo6tNbsw6fElt53YtWfoZANnrrPYyKw1f2TVXR3DpqeRzTNBzVzbKLn6yhUuezhkk+Z85o1vLna+0MQgq45iJcvvji9vLV97D995RMc6Fwf8iI34NZR/PR7b7MoTrvrLX8Ov7nRh7rh8sgvfuOueLD4sa6UhfpA6VAtz+mpI3praj8ZIXxx0jFsvfVQtxOJfln/9618/+8xnPrPEbK5CN/KiXWKCr/iClSiexXDx4tE7RhWSrEXY9VqIirzL7zWvoOK5LslH8WHo2wTyrl0X+5SdvFtwdarGV13oU/gX8flTN2unGeNp4kLiaW1bO/P/RXytR+sgPmO+xSiOLkxx3gTBdtj6YP7A4Z9bax463YDcyMTEp9+g2yfVzHjWRXxibV8fi40tvPshPmCIe/qfmGKhU+zmfO/+09GrgYcY+fuFg0PbBzzfJPJNtK5TfyLGQ47fnvuQ40As9/aOWMI27hrFo6tGYtFnIx8+6KbP9iIKb6+Fg9TDmZftbpy+zefBpJcl+bzXHioHcfFRXa0BCofs7aY911P+1LT46JSDWGdt6VS3iWVd5BntOZJpp+yzo9P6wthrxL44L7vesPMNG4ULg5+d0iM7JmcvZ3vFt2X65gwemWvAOdCN3zUXjliqL7985Y8sogPLPfT8/Pzs6aefvvY/WQuznp8XXnjh7Jvf/OZ6iWhe7J0PxThjIrOvNfmQiZ0t/epVfc2dEWr0qU99an0Aou9v3Tkv6cHwQsT/6eDDkLq151x7XUf5bd29JOSTvrhqcizmdMv7VC8mWOzEpMHLfo7DkHN7MX/JzNurMKoHOT/80QmXHD88fGN6qHpPn/jhtLdgaFehYmUDZ8aKZ24fi6k880Mff8ZvvOeMZx9oMDzw9tBrTh42n8icPr0wd9zbmv/5Ibl4XDdIHdUNP9n0ReYlmw+m/TKInnsAPfurXxjLVwz61rcY4IgV0YHhfgjDHHkGdjaopw82sLWd8iEHY/m7P1lvfqs/vlj4oKsZi8NLBvnQZaeWSFwwqwsb8vT7J+U+oPtFl/j4YeclZX+z1bNOvvf4zfObjL/iF6OGyqGzMn26MNr79LLJTkzsxELeL0T8SRJrKna/3O+XHPTh9aJg1jK/F/V85Lu9cEqfH7G1fqf08K2X9UX0tYtIHdoDxmrV+rPlu7qFI3dN3Ki60zOGZw/PGrde6oTyix/h8Z1OWPDInNPO+q4Fcrr2o/unb7WLq+uvPZW9HsnL/UA/Y4QlbnngW3c8flxjnj29TNLbH77d+cYbb6ya0RG7+7f4jGFo/Fg/uNUNb1J13+u2xycn+O57N/Wi3WeLp556av1N+s6d9oCaFXP1VBNj17X4WsPOFfpdg3SrO11j6yVPNbMO9KuXuvRCjjx8vTlc+ny2z2EWg5rSgyNG43jsqrvx9LuUDj/iZxf/op5/TYzw2Za3cZgTA7+4jdVDPuzgoOTGcJ35ziF4iG77hi6cPW9YZPA1NXFmuSfBKc7pd4EffsDT6LGbhG8dWzd+6LXPyfklTw+P33JIhx778p5++J3+2YSZP7345ace8LIjY6PX6NDFcz06U1xP2eAjPV2/yPCvR3rG9FLZfcv9iw0M9ZS32hcHWxjiyBf5sRzLF1450KvmcjIXP4xJbFo7cjbTJ1s5igGGvj1izp6O656epr7ikCts/aOHPzXpuvS5u/1jHdtHevd4Z4mzkS7yjOIa5wsmf8hc7WDokTiKlx674l4Khx9yE78mX3JU3eVRXmHAh+uXJnjmdKyZXMRazeC5DumFvRwcfrCpdvxVd3xEHw58TXzIfURN+Wmf4Hev1k87trDEwI4fPPbljFe96MqjeMVjHdk3bj/CoAuPz3sRTLpwwsuGffGQ82Fe3vR3mxmjHMjp86G2coJlTjcMvszZqJczhe5et2LTqx2saYMHE5Vbz9H06M894WxwBrivdz6Lt31AH828ycS/Ex3rL25/8u2555773/5nqG2guSglsC+m4PFcoIKukIqEzBVQoxcP3xw/nn7OYWQbfykf+VF89MSd3eRfhMGmmC3MpPgTE66FwiNn37y6kc0cw8xXtsWYPb1ss6GjsU2ux+OD7SmCRU+cerr6LiJyhFdvjE837ORw8hlvGd75gaflD452rBbTbo7F5kB0U3FTdUG6oF10HqyRferhsvim/XXG1cEHU3+f3bfZ/fkYhwhfHqzo2Oe3Dt864bfDw57R8OQpfwdd8mPxkMsTsWWH1K1WHfFP5UkHFb8xXg0uvPZOOPLCZ0e3fWvsxuAlmg9LXrjTdQD6RrsPN91I+jaBBx11CQvGsXjw4tMpVr7zj5dee4aucbEvw+1HeNnrYVrPRx55ZH2rzxq+9NJL68WfcfjFtEH+xzR8uuo259nXZ9g6mtMnl8Oul/69ehhhhieH8tjt6WiIT/Voz+024bQnxFmexZt/OMlgFwub9gE+Kl4YfKBwssMj1+gXC/69aOaULgxYris+TuHRQ3ScM84YzS+XfHuymzkcD69ezDkLul7ly1YMxV5O6qwl14tDj/jxp1Z8o/2xxx5bPBj3Q7C9aPeNFw/Y8nPO4Nf4aB2KO54HkmT02esjYzbOZbH7DxbPz29/UxaGc+PW4WzU1MiZ4ZshfZjDsz+aw+WzWsGAzY8zpXOGT7xj68gGLmpvi5vN7Nnzxb+ejK3xJHpIH8bOw2cbPozmdNsfxtlOOXux4snJPsrn7Bfz8GPHyQaGGE5RvsmNp89inLb5KVb6+eBHM6dHR3NvcJ3gVQ9j5P5nT/ThGY+ua8gHN/rtBzyEF3541VvefCI66el3O9ezF9LuXx7Mye0n5z7iz/UMmz1sPGtpHLGTMz1Elr98ykE9xcbe/nZe4GnkzWGwowtHjcz1aqOe1RxPM0fG5M6OfOsbL6XDD3M29FxPfTjBd036czfise/E56xQC7xyDyPMejHXTvFgyE9z/ujb48WafGIYxw9DHuonlwcOv/i3l5wptw5njDOis6Ra54e9sSZeGHIvv/zyhzcbrGNE1/qSGx8jfD7DED9erX2kDj0Dii+qPubVWWzsy5EsvWzJ08s/X+3vbMzpsjcWX739FR79YjZG7T82ri/P6NaDHp/8u8bI8fE8Q7pXwPUsxgapI92uFbYzNuvlJRodsXYvribFpiYw7GnfAn/zzTeX384lcdg7+XSNd50Xc2sFW+zy5LOYqvUCGT/I5ePl349//OPVi+s6VN39cvprX/va+s+/xbKfR/T44Lu4zekhNdTEnB5dc3g9D9BRI/GrT2dUtWHLRmNvrvHPtjjEQI7mWA3psRHbnkd47LIXG39ROvqIHC5iZw01OvjkYtNmPOYoWWM22bM1phNOemIrPn5h08MzZoc/Y46Hn1/+NHr4E8v6aCic/LNJxqaYjbtGiplePqYfunS0fMARPz18tuU/dekXK37XVDpz39DFL2fYqJz0ZN3rxNALYPtGTSN5dO64j3spZs+yoed9gHMCZvHJR0PVjW41oZdML+eueXPY7dd08eg4w+QGv2tGj6q73MoZn755ebjPwqeHnFFyIqcHDz6fbJ21fslMT3vwwQfX/dovm+HQ9y7EGaj3jNN93hgOXPuELr9wNTVB8ayr1hqwdb72i7xqyEZtyOWtwate1Z08//aIsbPcv36lLz4xkdVmPGGLz32ffVSNq2M58F2cYqeXjlqS2W+tsTjyUw7FLZ/syeDgxSfD734DWz7k8OVkXeHTrU7G5NaZbrHngw0sMrG2n/NHRjd9fDrJrZ8cpp26ZUMPthZfDOWX3dSH6Xkesc9XtWOL13rCKDe29MoJP4wFePiB15rkIzu52PvOAGtoj7JXX/uCL7r2ll4sqBqvyeEHvpyKU0y+0f4//89QBS4pwcxNITCF2AtEz2bWkEJqJcquTZucDR6sY0S+L8gxPT60cNhpxThjEMcxojPztDDpksELR8zx+NDMxUrGrvzLu9jopVt96ITDHvGHkq3J4Qd+dnAidmKevGT6/NbzF9bU28f0YOvFkr0YUHHvdlOvXCbWrj/n/CCHjN94+qDswjJ3kbmgPEzz4fDxARH2ZanYjtnk2zdwfDjwZ1N8C4xv10Q3LPv81uFDHn0ymC7yLmg1w3OxOwzsLfPdZ/tEjdhoMPHZ6M2rYbg7lvkxwk+39YaXHwdScj1/9DSHqW8lnZ+fr28kycON299o9/fYPSjA8k/Q/VadDMHZCY8ugm1cm/pk5sWw44jbAY6m3RzvNtbAC9PHH3/87PyQi4eF3/zmN3f/tmdx1e/2p+ZqxS+76lkcE8v+sJatPdk8X07hH+Oz5bd1ooMHuxiO2cWjW22rdTHDqCVrzr5cyeSjrtVg4ovD9aEPe+KJAR9v2s8c8C+TD79wwjKHrcGYtYE3Y6KL0peTfeKMsWZ+0ebllH0P3/Vv78wX7fDDZE8PVWcx4BWPHunp8OMFhL/RfpN/OqYX7b7tyb/Y+CyWai2WZOT4HsTLiVyc9dnLy8vLhx566OzjH//4Op/hsHN9+kWWX8j1kMU+Wzp8qCc5fNeDs8iDqrnzXjy+kdOLP/Ya+YypOb9srFckTnG1DnT54pt+Mc19zpZe9crWHOnDNTfW5BUOHblVx2krnnIx5is7vfm9KBv44V1kQ59PcbpukfiqWbbTtzFdzT6d9vmsfmpu7coTnrFG1oteYzz3FteSe7e5NXYvty784oWdX7GTyVmbpG70OpPIzH0g7l+miAHx5Rom5899C7ac4LjH7+dX8cBnR0/tEDv26ejtMRhyomeudz2qO4xqTR+GXn182O4M4s91of58IDz6k+AVA36x4MF0PTnL+oApZ/dsubZPvajAV5Npz99OydXhFJGVY+tu3eK3zuzhnSIyMchFDp7J7DX7xwtJcas1XE0+Gnx1bw7fejhT5v6Bz27GZsx2Er0aWfpTpzHf/KplvlpzMrlo1lEu8kseBl+IvviKpzF7NsXUmLx82ORr6uWLjO/qa5+JJ7kcxC8GBNd+tD/p2Ku9OCejb59bGz0dvTXzJ1X4c9/wfE1ffVyP1s9zPZ5YkHjJPV+Sw2ofkdFzjnR9iJNf/1rxxRdfXPeYZH0oZ+feYx/AnOsodvLqVRz4xl2j1WIFefhB7mzpP0PV7zrp3qvnH906fLbwod+388WjDuLmC+HRNcdXN/Ps9XTwteLBs8adJ+ZqZA316uFM0MKlq+4waiuIww9roqk9W3HSMRZbexsPHn6xhkEWiVutYV5E5K0PvPzB6mysFuKoDjDx2beexurAVh702/Nk+MVY7djiwTKWJ7LX5amv7vkPI/96fhA/1QVe9S5utnTk3PVZzeHQs2Z6hFescsuXOrWu6VUHMn7oZ6PnN53ioUvm+oMduabkW67xzacefr6cJfJi5/rlAzaf2ZHbn5p7mWusF+1w+1ct1RPGrDsdeGqnLsVXbuJJzjeCoVbtWzYwrY0zjC1/5H0moAOHTOO3cXP24vAswBafT589vO8gw3cvtqZqCsc16mWgs4aOf0Hjl8y+6CYuawLTedm93Jlq7IytlvToR/yrCTIWn9p2ZsqxZyb+xCJevUauicn6yF/t8BBdc9eE8yEZ/fe///1LX9zy1Oho+YEXDp66yAGZo9azHOVhz+jx1BNOsXX/giUuJM7yMi/O8oAVfw3u/BADH+SuB3VTTzHiy8X+4Bs+YlPs1oKPGTs9+vDk0drSLSc9Pb0WprhhaTD05cCeHD8csukfTnG2T8w1MuumfgiWlm86sJG62jedhXTIWhd8TW4wIvFOMlcHPsWpvq6B9hqe+7mzA5b9O+Ww5FEu8KpdMnG5tvxy+4knnlju9zgW84If1/rTMTaHwBTHphEIx3gSQ2QV2lySNjT5XBiy9MjYtTnMZ5HpRhUj21OJp1e85mzon7LJR32bgC0buehnrOUrZjK6+eKPPH/GbUyyPe9s6ZDxF66Ysjcuf2PE1nroizGM2xr//ZMuTDRjj/ffFrc5cHf/JDO+NvAxDPmVa3XQX4ZcMF6yu/m4cPh0sTmMPUwjF/JVX7SLR1zibr2Kp7kPAufn5+s3rr7V7XDg1wVtrfTF4OARW2sAtxz5kYdr6JRPfOsJoxqJEY8MLiIXHz6q7vj0i90cwcJrPvMmw3eAoXzAzq+DzEuKBw7fIHOTl4MbUy/anRHo1uFDgZu9m/r0t4SHH/xqxQO/fUVHjohtcRVrsSdPR69Fcxyv3tpZT3/ewjcC5OCDmLjFnI/iy+5e/cyLbRRec+svBjcVRPfY3kv/Xv2sDV/VRE0vqsPEZafusIpXXBocvPITa/NkbOUUBr90src30uU3H8UXHvtk9IshXvoz9jkuRjhR9YGHyNyXqnm6sPnTs3Ede4DuBt6L9q5v17+buYem8MpXvHBdI+GqT3noa8XH1rXg+rqf/4SlvOv56U/HiLcaFUt61bZ49GJyps61o59tZ4PeuezlycMPP3z3Rbsaq9Mf//jH9c/eq0W9Ghk7Q/lpTfhTZ9cKufMG9W1VeqhYxSPWWpjk1q+9RA9ma04flmvRGpKz0YplORq+yMqfzBieGjTHM+dXQ/ow86FnW2OXzW6/QC74IWcNhnYvojPj5tc6TNpxxNT5VQ549PSdAfp9v6fvmnDf7mVOMbiHOovF4QOleesjr2oVDrtqNWM2loeYxCouxI5P9zDNMwRy5ntmoMdODLDFz38fmvnCR7C18qVnD+n5gaXRFzuZ68Ae54Oe3n5u3y3gww/2alTvQ677Mh5M+zk5GzHg84PExW++i8mcHn0f4t0DXWN4zgXfhFPzaqomvWCDicJdkzs/+I3f/i6WXa+53Njo1QHxkV19+nvPrjx8C049rFMvFXoWqc7FpZcffH0vHuhF4iCji+gaW6fiKtbykAOdbMKqz1+fo9ipO7/5lo88Wudqns+w9Hj78wN7NUUw2fNTPsVIXv3yodfaH60nzO5/ajJrAEcc5D03uq69+LJnkXrwq85iguc68P+Q+Bvm/Himd13SlZPGDxs+2SDxsfVsaZ+a279iMFY3cRQvf/T8AskvetVefnKn52xA+K5L2GJlx69WHeBrrUW1xttJHvL3LVt/OuamXrT7G+2+mS8m8aoRX/LBQ+JXPzmg4jWe8ZsjdurWOQnLXPzqiFxXzkTY8NJfwvGDT3IYfInDGqq5OMVrvdSOXtdCsQ6ou0M4rdld5jagw2f7BN6sAbkWtbbVJnu1SK+awhKnnowOO3M9n+ohRvN04snbvhIPuYbH/hiR55tec3VD+TXmi39rx4aMTTE60+UaiYm+WBF9a9o1Xe7VofU2j1dszcOBBdf1D0fceK6/cJbTC36UKwxxysX9B7+Y5SMG9XANa86OXrSz4d8Xv3yrXQwIxlx3OuGoSzp4fCUnw9Pw5GI/6BF/dDz70uFDPdWeHoKnXuHUk8Fkbw1dZ/ZJvp2LGrk9BFM9+IYhby/X1Yu9F4Pu2f5sKxyxeWFt3ot260Gn2MRFN79iwuMzEr+Xmc4EdYdbPPDVmA29aqAO5WUtq79efvTVSTzs6Ot9UUcPtzOZr+Il0ybBEX97UM+PhvjT2ImPXA3FJza2chOTc86cLV08toidOPUIHpl6TMo3e/uz/cyWvlysNWwtoh8ezPwUh1jhsSGHQcc8bGP6CFaYYkqnutDJT7VJD256MMKknw/4xvaEewX92fLf+qu5NW2tyPmFYQybTjGJD5FNEps6WDP+9FrnIHt+rKUxvmtFzxfiRz3KkY9kbMT87ne/++wrX/nKtf+E67VftAtMwQVUE6jEyQRYoSWjoJNHtheNXpSt/hjlO/nUj8eOj5r51DO/LPFXvPKLwk6G38Zkkz98c60xWfXCq45h0p1Y6pctHbLkS3D4waYLBY8eO5sJFU/xHpuTiSX/fOCZa8YzdvKd6KFjsnThhJsufb71fETpwXUouqB9OHZwmafbjY2+Q8wNaY+BrLyThc9fueW7PhvfYvfhwDdxfEhVb758ULY37HV/+wyJU8wzH75qZB0w9OkVk3lx0YOt4bVXpi59emjypy/j6cNcXnpxkDUX+6xFcdJ1mHrx6E9oOOjIPEi//PLL68aY/1t3XrS7icJC9WKVBzx7lE3x0GsPGpN13dGpkSEyB6gXoA5VN2Q8++HYQcoeJh8eHDyY+FAoTjF7AGE7acaNX7wwmuMh+IiNJldNnfTHsMSrhbEATvyAD0cf1hwfM6MXdvbm2bOJDxuRTXkY6S2lO3qw8JOFkY6ejhwnZnnMWMLINr/m7Rn62imCO/cQvXCzo2OdxZRcX3x6GPa7B13XhDV07fsGZfj2nAfCHs5mLsUBN3454CE6GhIjvx4G/Hkq32h/9PA3F1Fxrck1fsDuP0MVL8pvY3Nxth/ZFNOsFR116eHR9eOFnR7P+eAlZjE7F/3TVQ/7vjmKr+WH//zyQ6bWznd8zUOPWNi4xruviRkfhTt7+nTYwyFD8Kdd/mdM1YOMrrWLyMxbT3K8+PzAIjeGgerpa8n05uKy/uYaPGdkzwD5P9WzQbAmhV+MZGIpHnxET9yoXKxDduJzLXQ90CtuvUYXTo2OOlgD9sbdy+WKh+hbVw2GD5QelmGKSax0yPKln34W0J0fbMj5Q+zZun796Te/LHcPoOMe5v/nEBc79wOxiRmR25tzHYqBTjnb6+hYjGzlpk+/54c+PLMVr3urD+7FMGvHVs30SF7ms47pJC932PTgdc0a48vZ9WnMno36l7d81ca8a5AOsgbk2bUmyZfS4Yc5WZSN3lrIt3u4OqmnmrGjk36565051lJe4nUP12eXPz0cuMby1FsDuc9YjdnL1Vje5nDFFCYscnNjOpq5WKulfPHCSi7+8pr7lR1+dmTZ4CUvlrDbB2yzyU4/eTCsvZiQWMhRMelhdgaYpx8umQYL6d0f7OFpZ9zLGrXyDO2Zml/nCfmsJ198RMXvXus521qg9PR8w9JrYhcHmRdNMFzLvhAjD3IEy75rvfMlHrb0Zn3UDs346OFrsOXqRfvzzz9/Iy/a/XLBS3u5i0Ue9u28PvkmE4vYyHoRho9HpjVvvawZvtjpqZtaxnOd8FndOrtnLbItBv7FaE5mf9Gv7jA110xUbM31bPBPEXyY9hA9fmC6Pqwhkmc47bN86eUsRg3RrUb0ybVJ5mzDDS87PZp2dKoTmbkmZn5gVSv8CFa68fTx9HSsizE89deMEXltMQ4/ykH9+EbiUL/yZtM1UC50a2rrvuqeYt/gu6Zcc152d77mW3wI1qxFsdh3MMjEQZ9/fTVyffHpBZt3Al6KGVtze8rzpudOudsX7POHV43xxV9efIjTHF8sM27++YCBL074XSvkzhIxGMNzbdGha14c7Xt8ba4VvXITR3mFCc9nX7+spIc8M/hFs/NNfGzcD28dPtu6t1sHPsWHqim96iwOeVWHpXj4wV/PI2KQHxx28mEnzvLjH1U741ljczqwqrE6+X/TYHgec9447zVj9tW8GPFaj+TstciYvvjEae3Fn744+jxjDdobejqRMR5Su2IxRuSw1ETPbzWjG1745cAWr8YWFnvx1sy1SO2KSV+jE/YcT7vWu5jCnvj0m+vht//ExAeSvzybl1950EXm7OPnM6zyLw82MOHTKQb7ruufjjOnc8ccDj/WEpb95fMpvnVPRxx4UfGwtd+9H/rqV7/6v/9Gu8DarApQE6yFs+ELXIL0NTTHLUiJ0WWnGZ8idi0KW/pwdzuyYiuOiZtffvCnbPqmF+06yepP4cw40i1X2DOnfJHTtcGqHz2ULX90atYlnfRsmF2f7FisxUluLRFeMddPvKW0/aC312qqFG/Y8Ohb19Yyfbr4mgvJDeX/eLu3Xs2ysY3j63uIpDpiE92RljhFH+DAJjQtCKIRQsc2gkgc8qkkQoIER7RtSPRHeZ/f7PqXy/Ss6lXV9bqT8Ywx7s11b8YYc85nrlWr9Ph05WfPacZI7A7ibTHg84ngiCNesR3C+cD3Zc4LML89tS/a3cDgOdT+N29jNwxrB1fLT/jVurmY5VMsXDeuPubVYkJ7kCcsVG+8fsq5eFbOd3wXTGM8xGc4ar9fkMjdAF9++eXjhxvskN8m8E/3dh3CLwdzMRWXXux8lcPK8bR88CNGL/b8Fq0HCjdk+8BDngtqdV3fMK2NC7VcnBtrx7YvLtWDj6i48t8cXrWiW5yN5ctHsbMTY/uVLYy7EIz8Fke4Zwz8KFn25msPM1w25OmwyQdZuOxr+CjdV2evfuanPln+ii3+9vnCU0dz+tUOH84SnXTj57seH8bO09XDdA66mRtrzr4z4HrDjxdkfqvAXisPmNrmVy2Llbw449W7dvjTMS+88MLNc889d4R1W5yH8A4ffPWi3TlBasTnNnvRmdHYaHyrlRzMPbT4QuVLjpp42Df2ZQcWHeRMhecaqU6uB8j5Y9uzBB9q6tyygSO+zjE9fHHoq9/GKL5iLIbqBq8x/43pGW9rreihsM57qhiLQU9Hg7d7NAx8Y7aIL/kUN1sPeHTSJasdRrd8sMnPNRU+1b08+NVQMe84fetEvnMxhsOn8ZLc2zPysH7Z6Ft7stquLTx7xR4yTkcdUHPjzbv8kzeH05n1wO0Hs16227vyct13LsRJz17FZ1/ezcMujuXLIZvNP93il5MxX+479rkzh8TgOacf8FVbuNvoti+sq4bEJ6bsitc8PT7UgR98+mrgxUjrBHv3Bz1ztRRvX9rp+cWGrhn8RfSrBx/FklxfTu7jriFqry7wWje1ZEu3eM2NXY98STZm43mEXfUPX1+9+FWDcky32PHx4MlBMxdX2HTNw0zGBo+/9oZ52PrmxSYePsjWDp8u39knN+czPl01sMZ04K0feubIWGx06SFz4+ziwVQrBNdcM9baVEa4OAAAQABJREFUU8YoXOvCjtyeco/wA1jP0fJxn7P/6Bdb8YWbX/pIb3/4j7R7USJe9mzKvxjcq50jL6DEIxYvnv/85z8fLwDtYz67z1QLPA0ugge/OKpbftPJP77cvPzzot0L97AOwEf4qK5etH/3u9998KK9a0Y1A8m/mslVzK6h7r3OhNhhlSM5kgt9rRzp4sPCU0fkzPOHR+46rjffmsnV3FkRAznStzbmZNaxfUwuBw2Zh6VfnEPh8hG/3OHLUYMrFzx7sHw2VjgwNDbhFSef8fO5ca0Mn102+njxFyO5vhiMxdd6pc/P6sdnR1+vBq19cVWD9OvpI3GxUx9rie8aphlr6Wyc1ZudfeB+4rnQMzOZPec7oJfdxgg+LAS3dRArYlcM+SLLv96864kf1PWLd76bO3P2nHu5F85e1tJ3rakufOLV+MvnEcTlg2+U32Ny+diYqos9VSNXN/va+vElJ/7FbMyO72qcHzGwIUew1FXc7IobX4PXDxjUnJ37oD+h6/pobu39IqBaqIm48g9T3IieeOCKQ3/ef/TJimX3FczFa0/AkGu1ME6XX2MNrlrL1TWTf9dp8do7fTdXA0RX7Hr2+JoxYr+9cfHzheRbfOzETGbMXt8a5Tdc9nxrbMRCRg+mFk4xssGjg1f8+Hhqo6/BE7NGPyKHg4qzusZPRq6x14xRua8eWy2dQ/H+RzxyvsLUi0eM1k4t8OipAT/0Eb2lfIlrc8RH+UxuHs8Zd0/3DE+e7/W5deysuNfssz0dWBubsbitj7344osv3nzoQx86Yiq2Y3KHj8f+jXZBOPwKU+ISxXfwCppMUDUxKUJFZ5MOGT2y5HjXiJ3FbEErCrstAuzV4XsJjoZgbJyrd5cxX2j9rx15OquXPplYqim+ePFtkNUzFq+GyoOufGGgbKpPOR7CKx/FQKSW1asahUduvHO8RyGY+dOHZcxvucHcuripuJE7VPaZhz76HjjNI3jFH2/7c/z8Ivz2TPOtry8JfqPVT7k8vNN1I/DlVMzi+MMf/nDUzw2PvLrnQ7858YPnAiBmNu1la7mxkmlbP/admbD1WrR8vDDhh+XCgk/XnhN3uNWAvgcGL6c1552OG6EvLi5g2bipu1FaF7gR/HIojmRs+eUPZVdfHtWUjrF1ede73vXgRbu4xNQDvLoWV+dDHl6yiAUuuRpYQ2sKA/ZS/pcHj234ZPS68Rpr/JSv/OBrqPyOyR0+qs+qhr08fqN8FM/mBq+9QJ8ueY0NnWyTX/PJPj3j9WO+lB6dxouJ13oZlzd9a4XiZx9+us3ZdE2gi26LTQzWz0O7642z7EzYM/3nbR78kH2mwRIrbOPFNuYbLh3zxtWdXXuRH/9y5uMf//jNc889d/ih/3oI/s9+9rObL3/5y8c5yR+fG4N93N5Uw+pYTvT7jfV+49bzgPpo1kVtelkGT+7OotZ1Rm1dQ7x88SUevrPHzjWDnd4LPHx+8ehFcoiKT5027uT1bOi0F/Dx2OOHaYzXmtALNww8VI301RKfDzHTxw9b33jjDmt1xWEenvk1ykexnHWS29fhV0828oRtbB2Lz9z6Vgdz9prxtnzKyTrL3xjxC4Od+3cPxtY4vbWBW3xiqcFrbcirD31UbjDJ2On77Xj2rvtetL/xjW88HtbZuObTMXaevRxwDuCI215nJ+4w+c8PHwg+OeqenqwckuOzP+upt2sOf+omtzDgnsd8tq7J+WCXT2O50at5nnL20pW/3z6shmF17Wtf8Get+hNO6uCLPHt+zPMr1nyro/Ft5F/Jud56nrIv+OhaZAwXwYAvDuvheomn0bGWWmuTjI14NGN1WMz0+YCdbmO9JibxGIuTHnKdspbkZHwgY9j6iF+8YiLTwrIG4kbpJsMzxufLOF/ssiXXyGEtPoxswi2W9cfOumn5sQ+6JmQLL4KTnVjY0nffcP986vJn0eSOv9cBtUTss8svfaR3T/AySa2RGrDRltg6R54P/XlAZ56/7P/4xz8evxBiLXe/wJCX1hoYq5/a5Mu8WOOVN/1etPvPUJ/Ei/ZXLr+V+pWvfOXB32hXrz2bxYvHt/zVxjn1wtF9WXx45cFGrZ0FduTy2n0lN/dqa9h+Z6epJ1t21oatRkbXGqlvfsTEn4bUvTNDh69iORQuH2GFi89fsZLHCxevWPT47Vk+shVbZ/kAuf8RPhu2ciu+ZGrItnpmDx/xi8zzmQwfTjK92mjZ0Wmsr47ZkCMysRQfjLCTh7Pz6gaPvvXPf3jhrM/1oz7ZWTfnzX1FzVwPfQ+096wxjPYYjHzoNQRPYxtPzxamxta+c092z+i+7H5u39t3/lSUZu/L3T3CvS57mPhwxS3v6nEEcv+j2u76s1li255VL7ryzYZP8ZY73+07fTHAyGbzZW++Taz8ytc7CS/akTy9ZO9FOzzP1NXCXhUje7gwUGewWMg763hs6Neqi7660ZGDuTWxPvKDrcHT2KgFXERfnPHdJ/ihi9/9HMb6U1M+EX2y9gxM84ivYtez09RDI2eTXnmQiSNctoiutphs+RRzOPrWu3iy69oCjw65ttjFGY9uOsbxw8bjE5GhMOrx80cXXx9umNkfIPc/ksk7G1j2UXu8GqmD9ddrxZgtLBhdP8IrZvMaHizEF77z7nuyOQzk2d21w7oVK771dG3yjOq9FHt2dHqPmL587DVy9+2vfvWrNx/72MfAPKjpMbnDx2O9aLfhBCMpxWqBBC24NqWC4p1Joeghcq3k9GRashZmcfhUgPyTtaCrT04PVgsdDt4udjGRky1ONq+3Lyd5ovpw5VVOZGLW2yBsI2PxFmN2+FuX5PjWBd5rEf98wm9Tw981Idcel+CVj7EWwRVn/vDLS+8n5i7e9p/D5FDJTW9vInhwNn+255h3ng2eem9Mxpra9Bvt/iaaMV1x7Iv23//+94dvh5qdOOCe/cHTis3Bljtea2892dGBdY7NnL56VbPiZaOhxmTFot8Yqh8ev2GyX0w3cmug9eXExetPf/rT8VDVvvFlBr85HCQW+DDP1Nqf+c3Loxzw1dda+OdmHij4lIs9oab819jl24OJL/XtE/HQY6/ZV8nyX18dza1Btdp633aN5EON9XxkE/br7RdPvkvJrvHVRVyIvJzM2e0eIBf/GYcuvfVzWw3T1dNho8EMN7/iCjN9/lF2G1+8dOHxYX9lQx8vX4fg8tHcQ5DrjYc+DxDqo3/q8pJAbXyB4KcbuxjtBbxz7fhtb9OrJp1fvBr7/DzpF+39Z6i+fPBjj7ZPzZHY7UtNjdoX+HJQF/8htOYaIIfqq3c97Is9/eqph9kzhB9UevHhJYgvC2riRUC/dUPPA5EzDbP4jiAvH+ZavtlreGp51mfX3qQnH33xkRtrYevZhBd+/LWnQzcfYW0diyn89Wkc5Q+GOLtmqSef0RmHnhaxR8ULtz2HVw3EbB/gsbf/ULVojxzMywc9pN+8jYtZnPA1BDddX3jdR8zdQ9SIvjOt7VmhQ8aXBl8LXy8n+HwZ04OTb/r2lus6nv1m79nD9h8fYnC/YGv/enHccwVM+u4zvkDSR3zYp3qED78Y7VtzmOVwKM4HPgxrIAe2zpj69EWM/TVig/ioBuwjdnQ0sdGxlnpNHfhhQ+6e7W+0n2MVh+cZuuzosuk3ZdXOF/te5Kkjopd/uWWLt3HSFasvTu7JcGHaB3r1aU9kpxenHMRmDkMt+PfliR2d4tg6GuO3PmLLh3jiF3+2+PTg8slX9eKz/bxx2h/yCJMMhpYv42yKTc0QGVtysuxhwo5PV07s6LE52+VDXumwW5IPu/KC2fWBnXH3RHgbA8yo2mXvt0/9izBNTvj2ltr3MoW9+MlqYsmHmJxjfz7F+iJ1WBKTxr9rjTP+1OW+7Uu5uK2Tf3Hp/+Sxb2FbR34Qu0gMsIohfj1d8erLPRt702/EPakX7f4cxGc+85mbv/zlL4dPeftBtSavcrY+fKuruF3HvGhzrsQm162ZuPHLo3ytkXrLzf3aOatGejK+NPbqiKfB4Ne60jUXT9c0vvDIi8ecL3j0jNmKQ7zhqD0ZYqNFrUE8evHgisG82vDddQJGtZCPcS9n+Ye1TVxs2zv5LBZ9vGJYGV58uOKzjuqnPmJUU3lrxcmmvOCTVXP4xsVpnp98sWltjZPzKe+NWUzZwYqK1zqx4xMmfc/N5OJ1VvuFKzz3ED391lMvT77lD8O9BB4iEwN5+waOPeke7p7Mxv3ZHuXXfcwZ51s+1hE2+/zCVGMNX1x0y1+MfFt7PT4bekt47MWgZyeGaizu6sSWf5jkxohcfOz4KVfYtfyS82HunLuu6c3l34t2OnStgXqoBb+wy4MNHeeQb3z1wLOv9enKrTqJmUz88jCGy5Zfa+OHIOSeg1xza+TWI0qnPSAHfvhFYq5e/LDX7AE+kdrjtWeqLX0Eq/iMNTb0YJvzj/DpwsNrLcnw6cJlq35a/OoBQyPb+NmmX4+H2BavOX7NXDwrN25fkqP0ydLlx7royRcnHl18ZCyW1TsE85FdMcvfHraurR178WlqED5dxI94eq40bv2Mq2nxdC9RV+9v/AsWP2TiT35sfV903+GPXXh0nK+uR/Dbq3j0ik+8fPH/jne84+all166ef755x/EfAzu+PFYL9pbVEUWuF5DbbB08M4LRacFJJesYqCKyQZfW/t09QqwvultoeAVo3F+w8BrM+SXrFzgaa+H4EV8hG98DZu8vIqJ/cYZDntjVB3Y09XgyDmfNk0b7jA6fdBD+nyzXwqLvPiLYfUah9lcjxc/23Imz/fit476fkrqYNpnLuAOlC/GDguix0cYxnj5O5QuH+ZaMRmzqd74eC4emsPtAcKXQQdc7+CKwYt2ZNyLdhecfOTnULp85FPu+ZFPa6YXi7iRnu7qw3ShKF42+cHLlj0fzc8xVX/+6TWHp7HTilMt/MaCpubs3Ij6ibm9hjwoueCRLxULP8WbvDNM50x0UXEkVye/beMLjRt5e6IeZg1G+Vkf+6kYqo+YvXDoQp2f23p4xQujfWcNWpvk4qjOamue7Db8u/I3j3IRS/Hwk694i128eOStvzm82spbEzwEn56eDM5ZJz381oLexke2duHGK77D6clv/vX0iyEbvHJJFg5+MdnnvWjvPDlvvrRbNw+t9PuiZkwuVrWDjcyt+fLEgN/5LZ72i+vKU5cXA0/6RbvfaP/Sl7704IcE/LuutYfF1b5sn4qJnpiQsd8O7J/syqN9zcb597DjmtwZkh8983gexF1D+40kvp07djCcX79di9cXgCOA+x9htq7Vu1pSg6mh5csxWT2dHYu3urT+7BAZCtt48VeuJmQwlmAjGMVunl9yMrVd/6sPl76GzyY7vGLS4xdHdvk170sBPf7CFFMyPpau+SBXp1o2fOTXFynNGbMf1Ki9Y62NxWaviceYLxSevrH4xEyPPmpPmpM7p/aVuMzdM5xljS2fYkHu535j1v1NPOR+4GbPuiawFw9//GiIL2NxkfGpR8Xa2Lyc+FYb+eKri/PGb/mwo5+NvprKia6WnD6q5uGLvbrmg3926uMHXXvfhk3PF3lt106dqlH/oo1P9vIunvUdjx6f21xT1NeZ51ctrYk1MIdZbaureHrWgkXOTgyttxpq5Evp68nDpNM6JsuWzsrEhidH1yzz5GLR2uNyiEdHy5c1QLDowGvt08WP4unj69mwFW9Y9eUAwzqgYjgml4/sqrc5PPr19k97h53Yi5m+MZ8RO/vOGfKvQf2iSvJi3fuoHPjTOhPVB6Y95z8EZYO2BnBhwijO7jXuN86WNXKP8p9zv3L5LXFzz6v2C3u28ih3PtRjY8ArZ37oIj17MuflSb5o98MF/0G6s6aeyHM4P8VQrXsJJQ718Sc83FvFJk857xrja6j1W3n/8oxcjmRw+bVObM1bV3o9g+Np9MQtRmPkbFhHPczit7+M1VysYYhNu43IWgs6MMzZ851fcdOFnW969GvsxSE3ceAbJ5fv2tOHQUe/cTaPJx7j5uRiEqNxteK3WhuT8V8eyeBFYZrjZ6PX1i+d9MvLnJ48tDORidW11z4Ti9g6P2pGR32sre9laox2X4od6cn5YuuMun6zR7BRecN2zXe/8KLdPYONPyMhJj59H+3/BFIDfttTm696a/KBz6dGp9qaF2s1OgK6/0FX7Lu/wqn+4ssHLDnJmZ582IrPHJUrXGM6sNjq8+mFo38l5DqA+HBt9PxCR1NL/0LPdxZ+FxMunfZxseC1nnhsNPj6sMUjD3N8ewHPDz38AECscMSg9c5AvnAjcbGT664HHfjiUxt+6Bm392AUE3+IXKtWcMTWGphbEzrwzfmgX2x8hcOneWthnC88/mEUH1/xipc+HXw2UZjFS0eLb4zY08m2+IqDTrZkWrxzPPhwtm7hsDNufoBcPoojXPz8wFJba6Kny1681nZzKy/29JzZak6XHT69YlHDZPDdj+yve/fuHetKl9yzY/edbPXy7Lri3g+/vWpP2gMIjljtWTZetH/961//371od5gl0oYThEAFLBF8BTLWkIDTN6dLB87qkS0GPQ3RRwrQuHk6bPN9KF8+yNig5DsXP53iMK7B2rgPkEf8WP/Fxn/+znD51tNpziaemJbwk+PLqXXhMwybxlqEG4Y5glFs7LLduM/1ShZGmPX0byM22eV7/SfjA9/BQm4qviC7seKRy81NxBdE+yo8+nCqgfnSxoBfPuzZIDpuYF7IugnyybcXTU9dXoS52fPvIR0Z+09BrRP9fJzXiS4eOUpPDKhY4ovJWYvIw8QXF9347YPy0DfOByw25ZvtzsnXlk3+jLtxh+0CphbsHvai/YwJC4lhY3qV++/6kJ2JjX3hy5T11+x1F049eY1t+amZm4ILPB5SNxfpHgau+SvXw+DywVZjq++6Qc88fTGQ6eHWwnkSPV/FYZw/Ps03lrO/cqBTvfRo8zAXezLziC3/KB390mIZN98xG7EX/xkj7MUtv2s42RdzuvjJ2NkLzq1e8wXW2ZcTPTp49pV9Aqc4jcn1i2tuL+KlH5aztOtlDsO+dH150i/ar/2NdudADGI7r7v6isl1znW3s2IsRrGy8YBak6va+HKFJ9fw1ap7v+uol5x+U9gYeRDvxTp7v4WDx058S9Waf/Lqi4/MERlKH58NPK25vjF9MnHX2OeHnG4xhRU/X+bFXlx49JvnFx+tX2P27ZPiywZGtS0ePGN8dq0v/urn6+zPXIuMYejzu7LV31isc3VeX/TtHefIddtcjvaKe4a9wxZfvItvHMUvz/XdnnBOPVzbX+Tx+ZOTe7svhGR0Nbh+wOPLqr0Xz5cB+mKG2VmlX57iLW9xNm5t8KphvHISg4bvnPFhXp67dnj0yPH5N5aT+VL+2NARt4boys9ZKx5zL+Xkjuc8uyaqYb896/z71yzu//S82PDS0os8pFfjYtGLDU4xF09zvtS366s5DNhikmMNnxwuzDMumb0kL7b5KJ4jyCsfYkpnfS4fNhmia40b28O75nTFTH/x8OWAB1uNNXjp0iHLnpxNFEa8fLGprS4c+GSoPPGX8gmXbLHaP9ayM8CWLr3wiwW/+Oj71wr9H0fFn39504Wh2aOdAz7II2vr/0LyvM0vrHp47FxjNDj2lP1q35rTh+dFnB8WWTNnvh/ylrNezgiutr6Kl058Np0vfp/ki3a/0d6LdrlZB7m2v3d9ikE86tl5MHamNHtKHcqTTB7yKtfycv1zzujQp1P+8bJRr3TwUH3xiNUYX/01scCSl2bsTIkV0RfP+jkEp4/iER+b/PCpoepDh1+Y6S5ccZxzDZOtVp3gWxMxsEHG+MVNNzs62aYHu1jZpAMLX+z6cLrm5Is9YktmDhsZ1+Lhi2f1yMz5WDLn23n2bKwZW6ee++wrtuLGL1e2dNmj6qGnwye5Zs2TywEVnzXp3u3lurH9ee/evWPM1v9n4B7ut9ph27twYUTi6BqjJxO7mMWuFYPYxaexWxw65vgaHcRGQ/CtGz08MfHDH33yYqBPT56LR7e1xofnOnDvkrfnEvGSu07Inx+xuUf78z2+n5MvJl+oNeJXnZDrK3tUfsWER8anuPiSBz1Ynqv6M5u7N1yH4KIwxQPXHBnLLTz2bPR8FmvXd761CI646OmT5UevyVM9xM8GPhu+0eLyG05+0ikP83I467Alk1N50eEP4RlX72JMl33rSwYLj34NDn4y87NfPPp08mEOW38bhaunBxexQ+JUtzDNw6Wzeumwg9czNUxroQ7FzS5f8OnD9izq7Pf8TsdaeuYLA74Yit2+chbsQTxxwO9FO1w6bHq2eOaZZ26+9rWv/e9etHuzL4GSEJRAkWAFh+JVZJuXnL5CVUxyzbyenoa2EMZss9E/DsFAfIqnBYiHr6F8HZPH+ICvITmFyydqfkwuH+k2V8fliadDCYOsWrMpdvzyjN8amJ8x48GC2xqEDTfZxl59WguycjIWw/oiyyY9vhG9sM2NNbGExdaNyBc+B8yDswulg+OB2Q3VgUH55idfxdIcrvFtMcGh4wWu38Txskkd8Tyw+2maC4Tz0J71oOHmjicGuuEUU3N9tTZGxStWcXXhhVP86eHRwXfDWV/WK319ssPJfOSvmiRaGz7QxiA/Fyv/FNVDjdrcu9zs1R+PjXXpoheuvrjiFUPz/GzM8FYvGZ6x1jgc86XznI39ZA3VS6311thFtrMGI1ux71mIX73NxVq82TZPH7+401kZ3l1JTGzFYI9F8Pl189HflXZ9HsUOPp/s9Yj9YuCLs3qR0XeOxY6PnIsegDoj1Sfs5ofBfBQDFvzO5qj815CNG6wvxpqHcvHYH8bk+dPbG3CNxb81wzvHQJ+O/MS0OnQj/vjtPD3pF+0///nPj5/Oe0EmDr41cemrVbmLWf6+yHgp7jpT7M5I59s1wFyr5tZPQ/BhIvZ04LqWu76qOR3XFVjq5Vrqy0LX3MP4Dh/wNSQnMZjDb83IzFs3fE1cS+ytCb1w6+mRh4HPXr82i5duPPa1ePX2oxjhNU6Gh8g1GGdqDdu/fG/O9PG2ib8a6OHCYYeS558tHfzd4/jWDaVzTC4f9J13113r7wsyHevth+X9kJPfYjFmRy88ffnDJjcXR2suTn7cv/thOV6/9cLG/oPVHuDLl1Iv8uxFfMSOzNp2TvVygVOzh+nCROKBYa7RIy83MTtX1pgcH681p8uG73gH8P2P/LKho18faiEGtP7FROYM92LcWqiTL+quEXScadcjz1tqpffDMc8/ngGsmzr9+te/Pu79fHh5af3LE0/s9mJ5irG5sbzFj6ceSNzVk1xrbcnlqv70xcieL3F7qWAvwYAfGdPRIrhs4MWPh98asNXMNaRnp4mNPluk1+jseOf05KheMMoZD5YGV503d3ZwtMZsm8ujeJPDRzBRcn1kLNawzIuXDgxraO8b80Our9HDE6884Fkb13l7x2+WF2e6sOhofJrzwVcxwYFpb/qNTXuTTzbpyc1+4Mt+ZkvePjGn67ogx9bFvcZvwbZ3xVWuxahfOtcIdvHAdd98+9vf/kT/dIwX7f50jP3urIih9ZRn1yaxVGM8epqcrEn37K7T+GIXd5gwamrGHyy4Nb4b16tRdYBbLMUQJh1yPuGQkxULvM6GMX1t/fB1ntOBA4/sGvFRbO2B9MyzgxNecj3++k2vvcYm/2qnhalX9844f2jxDsZ8wG9tYSP66tYa4NGrfnDFgLI5Jvfn5ZVetnSM4TtvxsgcsbMX3Au0zpJrlHuJH9SyEZd9Jh62/BTbYpLV2mf8RuqEsrH3/dDOb7S7X3Xf8kMtL+DU1i/fvfzyyzf/+te/jhrAVT8Y5SEWPNcLvXj5qqVX7dgan3OQV40OOX/2QrZ42cuFPj9d99MXB7/krlnszauluuCpPxtNLdh1bexfmrHjw/MOnu/k9gN7sSzR1cj4RWz5FQsZGzlp6ZPBJMOjr3lH4l+rwjOXp7bvBcjELxd7yDgiq36u855T7K/w9daNTvjZwCg/sWnFn05+W2s26rf7DobGJjz5Vg/8M+Fd49ODYR9EYuIPHpJHcVZnWHjVmQ5e8bArJuOzDC9744ietrT+ydqz6fB59it+vPTDyIZvDaWj9mGzdZ7x6LlewAxHj+xJ93R62fj+4B5rrgZ0rbVxPg/j+x949p/nQjbtY3uLTzHZi3Dw6P/PX7S/+93vPoLpsAhCsKiiGMcj1xwSSUiqTaYQ9BSFTA+jYsFBFgZPzx6Z038cggErKlZzsRZDcrzHJdhaGPX8x5cLwoufv40Tr7zZXtMnbx2u2eYfVv6NkXm49OA03/5V7X8fbD7pF3tzNh2ItSm+fOrZ0F+C116BHy4dh9JvlPdPxhwaD8gelH1RzxZm61kO66PxxhSPz3Lw5VJzUe9AOoy9eGLvIiBeZ8NDhj29awCr/WvcXF7szZG5vV3ucPBQdsbi09gi8SA+d4+zwdPycSje/6i24STjn01y/DDE1zXAl1ljtfHF21z+YnbuXTTJ4YQBWyzx+C7HQ+nycVus5OVkzHZrZdy8nMLiL59s1cm6qR2bYu7hohizM7enPdC0t8nwrVN2sFF29a9yX/3E439jLd7Ve60x33DglYv10eDVzvW9Cy4duHclsbRn1jaMYm0fiVt85h6U1YKOpp72jSb2xUhPjvj082ccPrvq8LAcYMAUg5u2m7k1Dkcf5au5PrlcqjNeceKLwxxuMfJLVm6w7EV7yzXO9c1/wPLcc88R/YfewXjED35/8Ytf3Hz7298+XlRU12Imrxb2knqIpRdr6YvZg3svK83b/60XXQ0frrVWE/m37tXBfFtny3lyPd/rx11S5ldMSM3VHq/8wjCPR19LLx29eOCozWIVJ53WUA+TrH2RHB9OfPP2STy6CA4MdTGuPmzEoFdLDaa5tnGQbRzriy6SLxst++bWDrY9yTY5/2qVLzjVTpzp6unwsVQc9rgvyfYXP+6tvqT3oj17ttWaXnmJJ7/Fg9dexDO3j30R9cXPlzm47lMeuMUmhnyJVw7i8Dfa5VqecGGicqArpnj4rY9x8+xWj104Xg7ISzzsy1OffzXQ8OSlkWnGEcxksHr+Tk8s1Yjcl1f1wHftUye/3eslOp5zqG69ZBerFxy+RLNjT8e/5DNXE7XV3P/5EJPYu74VY1+cqou42dNDbGGXp/qY68O0j3zhssbs6MrZD/y9kDXOHj47teYngkeHPzmnr0fZGeMVvzki19R198nihME2Cj87fHLxiFuuZK6BzoVaixHBo9ccL38w8pMP+wa1ptVQHWBF5mT8nrHpwEmHXfZ6dW1/Fls1FY894Dxq5Nbf+UPWDt96wioH8cNo3Z1NL9H8MAwvTD0bMcFyD8NDeMaeU5E47Rn7Go+dveJ7hHPvvqNO4mBXXQ/j+cCnJxc+itkYz/OEL+pP6m+0+9Mxn/70p48fAsqRDw3xjVoH+SO1o6MXLzlSO3ssvpiLW06atdyaWhv1IqNLbgxDXzz8sOOLXljk9tXGDANtjdnEgy3W4oTbHksPXv7jwcvmADt9hKNHxa5nG/Elj82lvUgn+9VvXE72kPWCAQ+/81Ut8OSg3UbZrk264pB7DR+va10141f8/BQfXXbibL/zQVfLNhv68nGvcF9wjtnLz3XfL76xcf33gndJTGTVrXj18Ku/2MoJjjF8vXPr/Lp2sJOj+9Kzzz578NozfiDlzJjLi1/4+YCFb187L3IVg8aGXnnRDVdsYmGL6KhpvymLLyZnhR65li4s8/zQqSbsyMsfrvzTZaf2ai5mMZLrxefeDc+1FI77hjVwvfSMBYcvrZj4woexsZBr+O0ZORRf+bDRYBSLGogvH3ThtP/ESlb95SSmiA+Yevc/sVcHOGKuvvyShwcDHmx+NDps2NLjS63JxIRXDdib1zc+GJcPGLV0YEdhy98YbvVbLDZ8w0KLIe/VTV78h8F8nG3Z8w2DjTzzw+yMjRcGWfZ6fLZ689ZVXnDTZVc+dM0XUzydDTJt/dK1xjBgIzr89axgzTaOYsnP7l+8YoAH2xm1VxBb+vmTh7m1cm7k/D//0zHvf//7j6K6OfuSrcCoRFqIg3n/Q6I9MHZoJMNGD0PybUIYW2B6eHoLxKbFrbBkqPl911e7YshmlfKtvwstxl18h9nmZ1Ou8tp2xuOrvI3T3RjEfT5M+Vy9eHp8jT8NLoJlnF3+DuHlQyx0qlVyGPGq9dqwo5NfsvTTK45dbwchXXwv2v0TVF/S3dj9iQEv2n25gs23fuuRTz3ip7Z5J8NzqPnQXLi72IvBQwYejC744vTAzm9+4BkXU3P7ALGPjNmSGffiihyGmPRk6pYfcahtMdOp4WWXn3o47at47IqVD4198TqrmnPrOiBG+VsTuXvRjsid/c0BRth8IzmI4S4kNrGgalBcMGA3h3ttb+XH2noYyYauFwVyQ+uHL3PrLlfNnI2YfAG2D8sDj0055nN7fjXUhX7l18bFlF+5avzYA/JRbzlUVzGd63AN+2E8+VzLafnsr+mEK3Y3NiSe1knvQTcsemKXhz1EV37k6p8POmciY69nR6drR7JqEQ5s69CN3EM8P61dWNnzyUfxJ+cLtjlZcjwxwCx/9gi/ePDI6anHvXv3jhft73nPew7d4jkmj/Ehrl/+8pfHl34PG/zaG+IOm45a2N/q4Yz4geJTlz9j42xbEzb+9ZCzYo7wtPJp3hq118uPDZl9yqY1kLf6qx2+M5VPsb0WwSkvYzU1L79r9mTFS97aZGc9xENPvOGqTTEtPns2+uXTxYOVD2O10Z9p+Y1hiJW9WmrhhcknHfGJg41cEJ2aeXmzoadlb334dV3BR8la53j4fJQ3vtjw4ISLnx+4vix7acvOWttj+q7B9MUrDnb68iajZ3+0VvIRW42OPdWLdntavdy33MvZ2W98VAOxkHumIEdk7VU+UHWEl96uo3jpkCWHg+jxU+9Zwnq1Hvjmeraw6O8+WGzybIuLnTq4N7Ve9KyH62rnytj1AKmPFxa+ZKhPZ9QLQ/8qQB293BCvdfNCsjr6FwBw+Fcr4+6JxW/t5EVHbrD0YtfHp4PwxaCvjnIxh6keYuuXIewpemLyMlZ88lf31peNWtbowyOvJnjZiKPY8MhaB/PIuHrpxbfy1kXPHsFqTcpLjeh4dmqd9O1ZtWWTvfnZD3n+8wETyZVNNVTr8MjFBk88u2/IkFrQgVEtzFtb8nyrQxhsxUCu8e+52r7Cd07tB+vZHhEHPfmrh7HnSy/y7FHYdNl1nmCLRUzFoTfnA9G1z+3n7jd8uK95MceH2NnAE8fW+AC5fMClp6Fyy69cnn766f+XF+3ytl/54les1kMtyeSKr0ZqtzHSUctqurlV89YWBoKnVp4N8kNW/vBqMFprYzGEszpw6WlRtTMvFvbtN7rWT08XhamP4sG4RuJZ3/TkFQbsaqCefOKJxV6hZ17sdGGYG2vkeNbGnnR9goPO8dGLB6N4zrHTUXNyVAx8GCMyGHjWTfzyJbdnxC+PxSEXH1325HTpwNIQ/+T03Ae07qvOIRu/Rc6367/rsFog/vmp9niLDdc6w0D0kDk8tdPz52zJTZwwnOV3vvOdB1+MdP3rcue5Ob3q1/rQ871J7rDwy1EvZj7FIg73k/CsKYKrpv1QQW3gwYVPfl4bPARra1KO9NWev3yqj1jgqjX/YuKXrtg9t3iu8ic1YHlOtwaa+2IYcMRgjuQuFvzWqX2Dzw+d9PnSigeWGFxTEBtzRFa+5tXYmA/XFLG2L8irOzu+4erhFgM7/vHstWzgqpH6wBKHRi97unzG48eYvjH5bcR/uPQ0c3xj9vwXH9/2h71Np/j1ZGyv+UsvH+KJd1ts8dVFE0uxlns6YV3zzS578upnLDfyrZc5Si/sfLGjY707N8nUJaz2WTWxJ/izp535bOnDFKOeP7pdw4yLQS8u+7/nKDaw7AHy4tM7b31H7j9D9a/LUZjF/lr9I/9nqF60O2g2jMNrjCSEKlSBCBjRVzxFppu+ArFpA7bh9Cj95goC0wLkq+LQx8+3+TXiG26xrQ7bsJd/bbx+s7umd40nBvbZFXP56iN6NTlXo/xvLsWuvyux18QAP8KzPmG2mZPj1/CKUW7xzzatWfph8V0N4sHLvhjoGNsH/nSM3/h0k3d4PBj3xYqeOLT1CftcL7p80TXeGuA7iD1MGDuA9r2LhS8ILqRIrLDJ/MaNdWIflQ8/xnxpS/jZ6GH1gGxeTulUF3xxnM+JeGrZnP2Zy7mzbE5XfuJrv8mvGnUhdHHs5ZuLm99wc3Hy5ZZf6+Lm53yLFS5+NeCrmm/d8a8R+zDgaWeCzQe91v5cZzbkYvbAZj+xoS8f8V6zYacuHu5c9Plioza+9HVhxtNuw8h/sZpXZ+PbqNzLrT1Hny/70w2p9SkGa2v8uHT2u3mVQ77I6GvIPB5dMZqLiQ6e+ndtb3/AoyMXtTEns2bmWj6u5QUX2SMwEJ7GVgzqV1349yXSw6uebOOmV7zFTqcY6MJF5WCMr4mDD/tHPOKgVyxh0yGzx/wg8aMf/eiNf0kW1jF4zA8+vGj/3ve+d5xNMcmlGIq7Pe6hBnkh4XrrLNPVXGvtd/YIlhppxnTImvMtJz6M5Umu0Vcj9XQdU3+kTq4hPYSxexjBQNUb7l2pGvDR2pePuTVB5dv6nWMy1+SXLJ7c0dpW8+pCTj8+Xfm0L8qRXFzFVs+2+rNlp7UOZ//4MNnRR9nj5wPfnExbPLYIv7zx2FZD2NkeypcPZ9l11Ms2e869zr3TmrMLN6x6upp47I2u1+TWEa+9Z27feSnsi3h70F52L4dhv7E1VlfXKHvbD+6LQ+z8wEP0UTUuT3w1gEW3MXvYiExjm7060KWHjDU2xaWe5nzUL5bzIu/0YIlB3NWDrVjN6Rvr3b9gqoVzby3YVV/XRTXspYpaev7pt+Tg+nMzvhdUKzW0lmIkF5d1U1+5mfPHr3jKC78c2BavHnZ56dm4PvVDAHb0+HWNcj+XAz0NVXdx8A+H/8XlF0/98Nlkb77xlR/sbMQgL0SOzI01vuG1n4pBrH05V/9dB2vU8ydbOOytXz7g8ENuLI4zlQdbdtYiHl25hl3+i1H9yOCzdZblVF3ohyGn6tG6wxCffW8vibkf8thr9kkxwZGj3Nl41nc2+w5Kt+c4uGIQDz7caoCvtnCN7XO+4lk7v6jjJb5nWPmx1z+MxFSd6IuhmorLn7P47ne/e7xwl8vjULVwxvxG+1//+tcjP7nBbE3oaeaudeIQ3/mayka+9lj1KS6ymjppSE1h6vODDweGxld9a0FHfWBGxunBUjd9lP/0qq85veqb/vrHy55duPGyEV9+6SSXQzZwy0Md8GF2ztlrbNnpsy0OPZ6Y1a56lj+bdMPgE9E5E/21ha2VS/qtXT1Mes6j+PMVFpkzI05UnvQQfBjlauz8OkO+d/Dj/sDOPoXnPutMlWMYZNrGTAem2Fz3yFH5ikt8dJwrfu1H/pC5l2Ku6XISjzicZ3PXJ7b01UBe/MN1DbA2fFUf/tkhWGzJxMYWTzyIrmuUl3hsYKpJZ5AfDb6Wjb51gM8OrhZm9292dOmJ1/WLHrn7XNj+VY5aeNEuJzIv3/G7H1eLrbG6iB2PD9jiMcbvWkGu0dfoiYVOtTsSvP+Rvmkx0mWLqr9atr5kdLO1J9RXU4NIfhsfvjojtYdHv1iN+Q6brTESR/Hn9xDc8hGW/JEYYe2e2nzCZpdPvXjwHkYwxUT/tXTh0GWTHd5dfdFFMNREM5Zfa9Y981XN//ykszn+p/Tf632tBuzUqfVna434c61xtltzewFV/+Klq+5yr17lbg97jnIO0pcfOT/ZOOO9z/Ev0l566aXj/0vjr7iN70KP/KL9gx/84FEAQXgQadMLDilSm0Yw+IpggfAlREdDEjVOTsdYKxk6FSAbfb7Sw9ux+W0EUytudsXE5owjBzzxIXbs8dIN03yxDoPTR/mwQYthvny+bSw+bb42Fx81ss0lvDZ8eLCvEfli0MHTwjLmTw3i1WefTnP+l+jzIyd7wRhv151ttON8heHAubg7VPx4CO/Ls/qy3VhhxochlzDJ8oUnPqT3EoAvNybxOqh08NzI8O1X9uTGr/WiHbbYzvHxl2868nLW+INf/GRROZCxFQMqn+zwl2ceHj/ijsjUVY3st2TNxYQnfnL2LmwespA58oDVb5Rdi4OO+KuF+ZnYlRNdMeCV9zX9eOyyZZctHntf0P1wIB9y8lDWBVZ90Pp1Ftn5G6P2gJq7AcjVb0PR9WDjgUttzMOv3niomIzjGT+MwpKDsYbY24u9aO9mxYf66l8PrZ8zTnUWg+Zst4/bW+zlTxdPPHTw8boewC5eOmHqEV1jsvbZIbh8bH3LN3s65Fr+863n3/XEA7y9Ty8bceafLmy9tpQO3sqMwyu37M82fGnW0Z9iev7552/e+973Hm5Wd/3edcynv6P8ox/96Njj9mfXFxj8yt81z8sP+1u96djTvdiAw1YuxaRvjG//afJWLzxjtkhPv3WKJ4a+BFgnZ/G8zgfA/Y/FKR48cWt3pWKnX4zlZH7mwZZPftYeb/dzObl2GCN5l78efvXR9zBJl7wHx/YuH7DYhVOcYW096LLJF50ID515+Ow0WF3zzfeMdx6qByy2bMTLrjWsXnSM5bXPN+6vcOwBfqJyY5Nv+D0468XB1phP9vYgfC9inW+4sIqHDl7rIR4Ynif8lli10YdrvHlkmy6ZsbY1LZf6syx7cjGJW670YIpVbNnp16YzVzzFiC/fdMnN6xvT49f9jJ98OYOuiV60e+bxBdZc7z7n+oCM8+Vl6P7QhBwefNe2zod6l4cxap8Vr75GXtx6tn6b3fqyhytef/7D9cp1CrVnWhu19TJCTuqqsXed66WkPSA3OfFfPevh4otXHDCMxYUfkbEpT/vWHKWn19iKTa3st/Yc/l5z6YrNl0Z9tunzEWZx1POtHuRIXEtskRjompdXeuXSnB59NSg3srCLjxyv+OwHjdy/nPJc5flKfOtD/ho7fxrB+vZb5+plT/FvDc01vlB5ioscrkaf72KGQde6t/a+U9jH/G5eB/D9Dzb5wKIHE75rztve9rabb33rW8ffal+9xXitsXiR3xT+7Gc/e/P3v//9yJkf+9PeUB96aid/928xWDv5tI/hGNsrenZnkoPaOOOtD16NPmxzGK4halST59aXj/aQGBvTY4PCpgsPLqLDRhx0yhGfbhhwNhd8rfXlEy6e2PQIXr6NNTiLnd5hcPmgvzy+w2vt2Xf9Sbf4D+PLRzbNk7OFY7+mIy48PZ5cznWHUy7GcMpJH09PD1489UH4SE7G9tJi4PFPjt+Zc366nvo+RM812Etee7L9Ajt7PQy65Ki9yUb85dB9B9+54o9dL7c9uz51+ZeX5OoiLvve9RzZP3xYEzy4xQ7HHHXNFxd9NdLowO2skWns2ntsxC8G91E+q/Gek3Imo7v2xtvEWOz4iJ16wHGN8kPl4vLDb99rfX9gay18r/WinS4ba8ovgtl+kkt8+RrLUd7qYo+w51/PVi8+RI8OPEQmBjjG8MnVQkPw2XumSI89uWsUTLFoCAYsMcTDN2ZXjYp914dMw6OrqQXfMMWmjnynA3uJnpjzR0Z34yS3P62RONVO7eVjzm9x0d2419eO+aV3V6J/jcIoBzrVxJhcjNZEDcsTv+cLa1o89eRqEH49uQZHzsZw12d+9ekYZyuWnt+rl7Xijz5f1pCO57pdT2tJXgzWwnUBuUfCTkdM7U/7QJzu31/60pduPvKRjxw25XVM7vDxyC/aP/zhDx9JCbS/jydJxLnxFk9BtAoh0ZWzI1MsVJIWE58+skBwKrqev4p8KF0+bisAewRzN43NFJ9vlM/4epsK0eEjvPyxKT4+aofR/Y9iJ6su4axemHjGFtqBZWMDqD1+PvRwNu5sq/Viri/j4iqmbM965vCqwcrD0JOLR9tDR5+cHzmpvTliY6PLD9FBchN7enjmsPfCzI/WAaFPD+4SO0SmnQmPrfiQvi+WxeTw0XFAyRzorQm5hwvxLLGRc3uOTfnSk2t1IROr3nq3xmKAs2Su0a9vvLJ4bI1habCrc3ng23Ny6MKqNuJ1gdKM8ejo5eXBwlmBr3nx7MuQHIqtfnOAoZGdqRzw+dFuo2TZlCN9uckz/3ovFD2MIHN70D8z9GW7NSBbv9bbF/u3vvWtx0WdDw+X8vTljw/XRi9p5B3Bt7764pRzftZHNnr62WSntrD4xmv9PDBYN3tQs0blne1iP8q4OLaGsOOLiQ/zfbASQ9dz8dKTN5zmevmEwaacwq/nE+npoWTsEdulcudHq+7szOvtXw/r6ggrvtjuSsVCv3qE1VrwSVYNNle1I7eOvWh/kn865je/+c3Nj3/84wc/lPRSqvrwrQYe0r30cI1DHtT9ZlAv0vDKyRhtDsbWxh6svnit3asW//2pdnBdS/T0xYea/7fVqxy6mlz41Nig8ntV89X90vi2nq2Y7RXjXdfizIc5yo95+xlfXV03euhON3w9kjdMtu3B8hGDcTUsBrb4Gt5iVZPFLi88Y/42/sZwyFsL6+n6iC8fjSzfdPHWPhu9RkZPK17+NdT6ubfLv9iKg28Y/Gr0XWPtS/ckc3xjsbJn0zXbmWpd8MmrtXiQOR+uWXDpIf1eU4uNHb9nKld2YZ91zMnsMf7KzdxeEa98wjLmt/otHj/VW+5h0Rc3TDwkXnO+t7Gzhn7Ixle1cAbF04t29STTvOjNn5cX8OC/8sorx33Ql0s8vulbV1j8tBe2Lw8xG5d7sYcv/uSew9yTW0/3b38ygG96qHzKSQx+MYBtcbneuY/LSQ76vhzzJU4+NFTtqi2+NaC7JPbywCfXqgvc+Hr7H08N7O8w6UfG1sWzpv0OT8z0e2ZLt9oVA+z2FZ1wyY1bz2qGJwYtrHOOdMLV08tfNnyRiRMWqp7w/AvVpy4vyuw/a7JEDw47z5VeOHu5ZG5PdVbsK+OuH+UGi+/WH59POcIm45ed+NTe2ttL/NClt3gbX7mSG8PVfPF/y1vecvPNb37z+M322+wX69q4Gsr785///PE32u1XZ9F690wuD/tHDexxdtYzuTw0udkrxmHzW/zqBIMPePgbu3G1Uyvr4ByonZYchpjIw+BTTHo8dnp6MKs/3EjtxdI+EB/7fOVXf6bWgh+YdPgqnvzSM0bhGYt9cdPXqx2c9M3h2IfiU3fy9ODdRnQ0uGxhWEPzYpW3OeJTbGqpmdNDYcA5Ex/tebEWm9rQDwNfDPZYPmGxpVdd6Nkjnp09O9L3wyk2ei95yTt7MHavsG+N+BaHPY0X0bGXtHzxI2c+4PHvX17yY65HdFB5wN4X7fiofJwLMbTXWk89rPau/OjgaWJvLkYv/NSPHVm4rQl7ctecfIuD7+Z09/rW2vCDj9yn1Jgdue+frqO+o6qBH0y+crkf+1dAzj2SM3v6alXPn3jVmw/25nTUjA8yfD27nVef3S9qocGD0z3KmG11tNf5Qvitk1qwrZZkGl7+w4Cp4cPCN9bEJr96Y7r2jUbHvOtpa3oENB98w9bCDl9M5Py2X+mpu/u1+smDHL65WjYXE6xrBBfdJr9mc9YPA59P8eZb7umL2R4RK53qZu3s/13/sOiQFV++4DcmM9bCTP9wfv+juNhq4lDPakXNOqlfcbs/+CG9ZsyOnB5fYdIXJ+p6gqfZa/T15vat+/eLL7544xfN0bV4D8EtH4/1op0TgTjMgpEAXkXTa5KUWESn5OJtsfHS6SK4iwNPkVF8hWDTvFgOpflgR49+h4Nu8ZHZ9Gfiszz4oFfO6aajj2CfDym/CP9sszmEoccXezdb8as9DD6i8m+uD5Muu9to87uGs3awNNiPQ+otny6YfMujvNofaiUWtT4T3+zURIPHjq4GqzV6rXzO2OZs8g/bl7H8kBWjg+yLpz4/auNC5Le4jeMvrtzxyWEZy0fM/Brj8y3X1htG8sXFZ0MGA+UDX6NfI4+vVy+y7K0Hvpzh8Y9Hx9yDYw/t4sOTC3sPFuI21veivYdNvhE5vPYRe+31Upjit9fMNQS/PMg0F2QPhoieXHyRcUOsLodwPlx4fSHzU041guvhzot1vzHAh7GHPxd5VJ7lHY8PMrUqvnQPw8tHeZjTIZcfG03c9gu+2MRk3g3oNtzw79LzwadWXeSiXmRiXL642oPtGXJ67MRULuYaG/jyoKuOUT708BA5verBFs98ecZ8ITp8LX5+8X0p9sDlAZRueZMZw0I7PhjzIUe2SDxhiNucTG1aF9j4ycQDwzr+f/zpGL/R7kW7M+la5QFQXuIUlxp4ye7FlQctcdvLXkCxsbdaOzZR+TRn59pBR45yYltN0tu+WtFHMMTINvvWIDs2rTFs1HqtTnrxzjjx9cVsn8ih+NMpHnramVrj5OraFxu67Ols3OnyRb8c8Nsv4kHJtubw4KpBesWm54sOW3bIvP1PzhYGgrGy9i8ZDI19cVcTODXrDUfDQ8VkXDzyI6dHzq+Gx0/z3Xflan/0sre88MQLX/Mw7ZrtTPGF6PJlTk6vGI3tdS/ZED0yewFufg7hLR/Vo9zDXvVw6YhZnq7h6iZWcdFBYgoz3mLBh1PN06XTvcCYLT1NHvRQZ9O1z30cv5p4Hvec47fGtb6AiZUsHC99xaG5j7r/u5eaw1Nr+Nnjiaf9JM7s1dkY0dMQX2Sa/SpG1yo/NDeGxacfeout9eKnGMQhBnmyI5OLa58fKva8Yl9pXcfY83EbiVdduw6d9fhhr8mDHp54jNnCEAsd9eiae8ak15d3e4ccprF4w6qGepibA9/4+sg8W7r2JDl8ewQGUtczLb6xlq3e2iBx8oH4wIfvt9nv3bt3nFU8NsUdlpp4qWR/ec4Sh/pZSzatrX0Gmz2CBaMYDublQ37VpOdX8clV7f2wzZ5AMPDDjHcILx9w4sHly55yH//GN77xxH6j3Yt2/8mj64PrRPtETfns2qEGxSyXSM3sazx1L25jjY34nRHNGJV3PTsNHt+a2ml02PX9yL5sn6thdaTXXrA+8Ko/nfySdZ0uPrHmq7H+TGrSujsb+aYHC3brZS6m8qAjvsVtH9HV1jdbvuRqLO/Hpfay2PJhzH9xqr1WTvQ21vUtHqTGYZjDQtnKHdHjT0vnEFw+ige/+llr/0+XPeP9EL57qO9FclEXPFR94cDgi9xcPtZJvPgasq/5gG8ME47rPTsy1xDycqg+7LuuqlXrAqNzwobMubDm9NubdMRHx3nTy0Vs4pRDsdOjX4zpyEk8bKsb//zgabDEAMuYf/WnFw5bPD6Q+5x/NQAbue/2f9jRc530kt06uJ7BZZt9fvkqXzlo+aajLnIo9sPZ5aP1x6cnDrZIHuWIRybe8/rCsH78IVj8dQ/HKyZ1aB+1BmTG/IkBpWMe37h5PNcVTV3IrK/9YXyNxCYGPtmg+vTpwLQX6cpDs7ZyZMs/P8atrfrjL8HS5FOMK3/cMSyYxVK++OLZdROT2NXGuHXiW2zm+J2N6gGHHJGbty7x2nPpsS1fusWilmLS8O2P/NFRb/db93FjPDGrcb7tP2PEj7jpIfmXY2eBLz+wevHFF28+9KEPHXrldkzu8PFYL9oFIBibpoOHpzACEGyF24JWOHJ6kstGrMaKoCgeAhQDbyl9xdEqRoVb3R1nF09cGn4+xKTBEqP4fKnwEN9PTMnk3eKGF0ZzPSxEBit8fhuncyiObnUjZ9sNwrz6iuVsH04932qkrucY17YYHbjbKKzW7za9M59d+Rg7BG94wxuOF9jW0AXXFzS/NeKmbGOLV4vCELMGT6waWTUpts2tcRhsjdVva1cfRdgAAEAASURBVLi4aq65EXkZ24WIvnqK0Rc0N3U30/a7eJ0Jv/1Jlx5fsOGZV+P8lyMdusWmr250kqVfX87Z4ZejMT4Kf2snJvww9sZrz1kD60OebhcuObP1Za/9Ze5C57di6bv5u+nTkS/iPyy45VmucNM9DB7ywUaDo++BRRyo3I1hLp/M2om3/PUeRJxvusVknK09y84PYIzl4qFGnfyAhZ7rhb3cwwT/iE/6GpKrFl9fLMbrn352ZCuvXvS1cOMXO4xHpTBhnGsYrliM6drf9pG1QLuHilt88ow2l3RgLeFHfNXwxVVsxUQ3mzMPH4+PfpCmtmLWnFNzemHUh2uPOAv04JAbNz/Hqg5ipEd/488XeVgeKnxB/8QnPnHz3HPPHXCbR/iP0vP9q1/96uaHP/zhgwdu6+WHC30pkD+eePuBkzy71/MnRmuIyrd88Kytva/ZC/y2r/WN4ZQ7O1QdyVBnEX99HMLLR3y1g1sNyenD6QWKZws8sbce5jDOhLdt5ctnH+HbO9ZO3nxramvuenHNVszFT64m3SvYywvfGOn5xbc21ZMdH+RybI5nzgcclE/jsOiw1dhWT3L6+uJz3ew3R/DYWit7xrqzNUewUNh6xE4zhx3PFy4NT93sR5h8WDe4evP8VAcY+Gzch2Db0/D60nM4unyoS/tdHNVEvK7lvpjKkx3iVxz6as4uYqdVp2Tm5ZeuvnoYb/zh6GGEQ+88plM9xY/kXi78qodmXHzi5xOPrnoaw7f3+sEEnmde69AL7a6RvswYs4HHh1jg+hvSnoO8cMmPuNTS9caYjd46aGLDEw+ccpCTebHSaf3xnS9x8M/Gtcr6WSfzrRksfuTIzvoi+dnPvnuIl51ngb6kiZMvBG/rfjDvf7B7GLGFs1jFJz9ta1GecjNGYqEnv82R3PnzvCWH6mTPmiN2KJ/H5PSxMRpr7OC1PieTIya8zZ+dWLUwjFdv8X0v8Czlep0e3WKGLcdXLr+dqamJeNSra3z+8GAjfetFH576063WxWFuL9gf/Kmv/cTOOfDboa0DbPooXDhwYfAprif5G+3y9s/Y//GPfzy4LtmjXXPtaWe38yse8dJx9rRysdflZC5XrX2mVyf5aWT07KP2HP7ep+iTa/TJnS8xqTe5WtqfYahd50Ev3vVDjvD5UlM48PW1bOlFxtYifHx14BtlYwxnbcNdGSx1Yed6oxeH+mpsxFfNzDt3sM2rNdxrRCeCDy9bfdfe8hJPLTt67IovOd+onpy/9Hed8dnp6V0jfDb6xu4R1sl3ejxr7Vos3mLSw91aiIF+8fDXtRef3P1c4zM8eq2nveZfxdhvYmfPv37zaC/DoOvZQCztSWeCvrMbFTss50aP8LXdm+UCf+NsHfhnQ+Y6ocmRvBjyi59vMdpPej6yw3Pd12t+MOj8e3/Flq46+C5uLVwr4CK9Jt/uE/RRMerJ80uumaPmerlpjem0Z+GQOSvFyrf19Czhl970dPDtIT8kEBcbWGSIvPXTq797R88W/KuJ7+Fw+Kv+xrDkhMc/++Z88WMOR9z8LZlrZOUKC7HV7C3XWzrW1Z5pr7I5N7b5Ns5HvluDrTu9h1EYfCEY4WS3suWpK/ts9BuzudzkWIzyVl95qgd9snzo1bvntXKxl/lDaw+PfXvEmWSLYBWbubVPLi7Y9o69Xyzw8PMLG899qdoXI5m43vzmN9984Qtf+N++aBeMoPWCk4hA8eJLeokclbxEbGyJRHjsbcYuGop4JnpwNPIt2jVd+qgFMeeXvXH89ZUPv6nqn5Y67OXm4IqxhTr7PM/zVw1a2PTIo3TPdSlWeuKEFV6226cTrxyb6/k41yHMs3125Newkp97+A5hB4PcYfCb4L7UODwOpAuhL7XqjOeg2V/Vpjj5Rvg1c3zrsfFtLcPJPpty0VcP/t2kOvhiF4s1tweQG7N90Yt28cKwTs7E3/72twOPHt/i0pPzQ7dYD8DLBx4qVvkYu/jE06d3KF8+zjjxt2enlaM44MoV8QVXrvTMyeUrNz0bOuZyLD7rV0z0rKuXl3z54Unrunp8iLu6FNfGcgT2Gh/lFI5rSrhM4dJpXN56fDlq1pedPFyUzY3ZR/nAq3bGaihn8nKE4WEtnOLkN0z4G2txqmtEN76ePSrW9OrpaDDCzj6dR+3DZAcTxWt+MC8f1cY6qBFSA639gldsxkvVHE5rRI5fS998czOHq7+N4FovN2MxImvXAytea7T4Yerjl1drpG+8esblaxzRRWTZNcYXkz8d88lPfvLmfe97H9ZDczsUXuNDvfrTMV4i8eGLi2uy3MXhDNu/rslascuXDAY966m3znrUetD1XOA8tGerQzhsqvWuNX8ozPZN8+I5lOYDny4/dDXxaK5Hrm2uW+TFR/82yh95+8K4NYQr7nJobn/xxSb/5hpd9mHAQ/E2/q4xbNS9nOjDZVPO+vyzM961Sj+/2dazN24eFgwkp3DpiMkXIvumlygwrLd7eF9Ui5s9YqfJJV96/jRE5kxq6sEPG3vS3Nrx0zOCvmttdYDpS7f7s7jZF0M1NvdsAl/P1p6FxcYXUr8V7Qfq8hRXcvuIX35qxU7vriRn+npxqRe86oS/+NWuWunLj31Ya4MHl3zrY979avHosPF84zpp7Hmcb3XAaz9Y+66dfGjIGvkhu9YLb7XDF1tnAbZnJHMxmJMjc7GIU62NW8f06bLBN6aXvnUsnvKjo5lr4eHJSS5i1OBYZ2Okznxp1TxcugjebZRPvlD7UV4ILp3qbwy3GhjLp/j1ZNnDMLammrjp75yNuWdZcj5ROR6Ty8fmGk+fv3zC05DcxVxceOawNMQOr1zx0ifzL6nu3bt37L3OPXl5WA9jP8BxNp3bfNiLrUs9fJQ/WK0VOzHvtR02Hlx7AQ5bPPF5wdYvBNlryck0RFezvnw4M/4z1O985ztP5D9D9Zv8n/vc546/0S5Gfq2fJj/58Ok7jLMqFnkVr7joIXznUk00GHh6+vZK9WKTLzJz+fMHs71Eh01y66LRw7P3XMv5qWZiUSsNsSfX02EHPz/mxULPnC2dGpxs0qdTrcjNybTm+njLDx+vvOGLo1zM6dWK8QC//1Ftlpf+9uTsEVxE3n6NR0dbXHrWXS9eMg0VszEdcnV13txzk+P7oZL3HXDOhEe3OMKDoz72FR17xZojc21j42dbODDaf3w4k/a051Uy+ah7+wSme/6b3vSmI5f2sF96cv/iI/96BLf9Ww3x+KXDX/llQ+beoofJbzh05IvKSW3FS1bMejbuY85G17pqRc6eTvU0x6cjN3iw9WrtWR2fjrFrg+uA+NSOnWtXL9qLUWya/F1fWzd2+HykKwb+mhdnfDJ2Wjpw8Wtk8sJXQz1SCy/aPQ/gwbZu/eJb69xZgyc++jDZ37t379jDxnyw9zzav1KrPvX88iVHTR41fM0c1hLf5dwaiFds5WYuDutAh0+11cNFdKtV+Cvnh0610yO+i808POMzhaFW5SG2/IR5mx05fC0sOGHpnaHFUQf4/ODLUTMWu7G6kIfLfxjVNjuy/LinqSvd9MnZOEtwjdsv8NdP61xs5Pahe1Jnt/zI6PtB+Re/+MUbfzo9X8fgjh+P9RvtghGkZGwcc2PBmuu3qGSbqOAtusMvoS0WPfYeaPoys3J5wUZwkxnDPRN8vhBsrQ2XLbsansLaOGz7DR4Hlo5c3XzcOGCFcfZ7np/1ir0FTR6/eTjmyfCMH0Zis9HQ2Ud26iBPDcnN+sGWa/ZkxfNafuku8eHG6GIoDqS+bh7W31qK1Sb3pwncFOl1SMobr3XHK57k4ipueCgb/vItR9h0F0e+4TvEfpO0Cz5d+9EecPEoJz+E0eTRRQWG/eu3ueDInR8xFVcx84kHH8U3xqv+7Vf8a5Q9WWNYS/JXh3Ikh+uihNhp1Slb8YlDrGz09ogHDbJqDNeYvJckeNbUP/P1hbsvvvzQK9Z8FfOZn/y2nh0bfePmYsATW/nKuRtDNt10xGWdrWEY6zeevnE+wtLDC5M9Hv8aupa/el7ji70Gh1969CM8RE885New0n+cPt/rp7MUXv6ribjEWW4wUPFmtz2dcNIvXz2Kn1025R1/ezrq72bsgc5DuTicU/HyaW/Qg3POjW74O95YYKSj3zx3LK58qg1Zcnxje/Spy99Z/NSnPnXzgQ984Eglnc3rUcZi/e1vf3vzk5/85HiAdVb7G8Vw7NkeTl2Lux+IkexMYlVTeWvwNbrOkOaai8jVlEyfHYya/Nor+cKjqxmzpbOEX93x04crHtdh6yweJIbu4WzpnIktTLr2ivWgG7HB01xb+SwPsupB3zx56x2OPtx6PPblga9tnOnS45euMX57j6/qRaahrV/6+ORk7CO4zoVzE74ev3sK/9n6DWbPbmKFXQ7m1Ydue4Ev/HIj83LbD0fI3F9htF7ZidPecl/xMsA6haFn7wWXdTcXi+cMexouvi+i9oaG50ud+K0pTD8k9gzYCysxeBbQ7CU22tazGKrfuRdHRHf1k1W3asoHPTGreTb6aq8uxkiOZNW+GPWw6VZH+vSqEx1+XRdcH2CqC7662Af08c3pIjXgV8+HWvnCr1bWxnUFjjVA7O0ra61nVw7lDaezaq35dRa9AOn7A91yomMsVuNiqV78kmv5a57dysRjjmDwpf7yrtbk7T3xra/D8P4H22JlQ3dt4ZGLC8mBf30xkNX4wdfyqW+cvdjgsMOzHtbFOpSDtVqs1jes+yk8iKN4YJ/9y4GfYikvevjioMMHMi9Pv4Dj2dvLMmtsT7KxlvaOuOn7be5XLr/Z7YzD56u9CLcxfH7p5BtvqWs3njjE1hrDsc9cJ/hwXfPSxjOt607xweaHbfnSx/c94u1vf/vN97///ZtnnnnmQQ03hruM4SH/h9ALL7xw/OkY/vk9N3znpN8utk57HuD4DiY/tkjudOi2Js6zPPH5p1uubOR63iv01KHGR40MVtdOGDDx4EbFRL+9YSwvPbkmvr3mkIlJM24t5aNllx+88sk2/PSbszHW2h/wEVx8c2O2e+6Sp3sY3f/IrnrpxY/gaPzlWw9P3NUsn+XCNn0yLVzrlc/8uKY7S56L29NsfI/1A60IL4KB8KoVH2KFe46NDh67YjhjZMOejrlm7B4tRmfRvL3ZtQvPfdpLMXvbvkFetHqWhVMN8nsoXD7kQF5s5vLo/pceeedETw+mxr8c3eeQsT3g+tH67Z6g07Wl64tz0Pdk9uoghs6pGPE1RG7MxnMLfLG4tuutJR3XIPHui3Zy1NmEzU495YnPXuzyrEb0imN7Nnyxs5/MER1xaTDc6zvH8sXXy8MzR2vnGiGWPd/FQNeYP7706u8HtfYJH/yzdc9wzZYbP+zUQlwR/WoMhy0fYtOjfBqTw9Fa2/IUC765PKvh7hsYdOBoS3xubGR02mPwzdt/5NXW+Ez8sBWnHNnKRW3OftY2n3j04ETV25xezZzetuJWV2NY9MWDjPHsYXmYi9OZ0KwNosPe/lDTsPAjmPhy6x4DS8PXnIXWiF1nzr2d/8i47zG+R3z5y1/+3/5nqDa/RRa8hFowARsLUEJIESyqvoXSK7qLTJsajw7cDlgHg87aWwjEpnHzQzAfbQh6sLUWPNuNUdwWy+Iau7BrYuFPjv2tWnmFMS5vHYoFlQtbPvAfBedWB/cF4hRbmwa2xk/rQlWeNqx1FFPrlz2M10t8emDuiypsvC5sxnzb0H6A4YYoVuuUbnG0bsUkF7obb7WFS0ZHfub07E/Y9BB5NYnnwu3vbzvQasjOQ74vKGzVrBdULuxywafLJx/+Iy77uxs1WTmtPzXnl121kC/d4qdfPmIpx+pAD5GxQ52rY3L5YK/lW2/9xfgwKhbYyFx+PQzwox56JDY595sAvWj3wsIZqp5wwjwMH/Ihv83xrnYgs5W7fWCt5NyeJzeGKXbr4casv80PvlatYZhXY/Otm3lrWP2vYcMTA53WmF628BEeOX2y/JGlSx4G/l2pWF/Llp5Gbyn/xSVWtXiU9YYHu/2aHxj5qxZ4fNXSOdcXBh371Pr7TVcPZPH0MLvu87N7gLz1IdPM+YNp3lrxVd74+aa7ccWHnT2eBhuulw6f/vSnn+iL9t/97nc3P/3pT48Xib6I++eWchefs23/O7e9vCwXZ3eJTU0O2sbffdzzgvzIYXUtpMtenrV8iYWcTbVwvSI3187EphrD67oEx1o753zzaW1dw9I/Y5mzE7fmpQU7+nCSG3cPJRevXhNrPHbZwMMPn552JvLqQta1ky0MxJ8YNGP8sPTV2hgeHWSeHpvqQB4OHv/86btuwmFbbPTx4ruHu5/nh56104dPV2waP9WJDVm/4CA29WVvzVp7dmT2mPsyn2TwEUwvcJ999tkHX/rI7e3uXc665xL3Kvcsfsn9UFg87vm+mPryZ/3J7WX+NL75Ece1/ViudKq12Oibk/ODzI35MIZnTEcPw7g1YAMH5SdbumtPjuBqydsb7PZZgA5eebO3nuzE2HrYc51JsWj0qgV89/zqrbbWSV0R217wGLem7ZMzjmsTmbPc/40jtvLiHwZqrCePqhE+/GqwdaHbXM5h8MW/pg76xWNHB+8a4Wt00mstYCF+wyQTXzw2eJ0DMYhNQ7t/8sE2fflq9q5ruxdCYeOXK/+b3wF+5SPsfLNH5ahvfAguH9Ud35rrWwdj6+olu5dlrgHOKFxnzb4Rt3l/lsifRmCH7MvitjeNxcgnHWPtTNXKGpCbs9Vg+h5gz8GwB8Xwz3/+8+i77hYDe+Mw5eaL/dNPP33zgx/84Im9aH/++eePGqiP/DY39ZGLa5Z60rGPnEXxiE9u4iIz18jkp9YwNXb2Cz4bewnfGOn5km9kjFdrrlb8wGxfs4HHZ7xqRzd5e8v1D5lrrsddh7f2fJeXfYb4keNSONmy4V9PVq56OpFcXLtQcbKjE2Y5ZXNbz14dtcbiN1cTNW+fhZGPfDfXb5zp6/Mhzsb8mNvjztJTl1/s4EudYL388svHi3b6eOqQT5h84eWXrHXPpnjkQq8c+dUQjFrx5Qcfpvt0L9rJ1Ne9xd4UG3/u5/6esr2dLy9Z/RY3HDrwiwmORlYO+bfX+v5+BHn5IKPHN59w2OO7VpDxhcjlLBY15UOs64eNl4niRuTuoXDZ/x9v9/Lr/zX9cfz8KZ/vzARRpbRVRBsS1P3SVpAiLkGCEUYiYmJiYiCCxEyJGBgJkVaCULdoMeH7p/w+j93z/P6Wnc8533PaLyvZZ9/W5bXWXnu/L5/POQc5e/BF5ujKB/rsA/ctcMFCj1rc4KODjD8d44W8+WJBt2LeNYEucjDbO/HRg/ik5D/7SvPixh6CUWFPHms7czp34DWmxtMXF/XxG9Oe/uKvz0fxZVtx3skTexMfX9x3zG+0G4efjjCHyRzf6eVfvuElo48nOXXni7nWbDl//CEWYiuGzavp24muia1540rrED54UOtNL75TlLw1pYcdcW0Ndxk604W3Ep/5rt/mEL2otVmd4w+85sKvX5k2rJM1Nydu9oVrWLnCDh3WNtvZoic7+Ky73DGPlw5xU+SmGh85vK6N894VdvLGUS/aH3744dXP59W5wo9rf6P9TW96063E54DFLgEBzkFOI4CUkjZMZB3uBaeFkCwcnA8z5sgLWguTntk/5Tz9Cr4SnL4pN3Hihc3mwNNiCzj9fPWwIElP2aOLnALvpImjcWPwqE9RiXRqrrHsqVE6SyabS6LlP50SGn++mpNo+cm3HX/2rlKTZ9+FyqfkHnrLF3ZcIIshXmtuoxmHCx7El+K8x0gfb1jJTF7zChxibK58zbd0sGVMrGA+HA4rZuIk91yAYIvHZnWodyObbXj4989//nP566BIN1kY8EQTL4z0zFzPB/WkxskrdCeLb/rFXjmWbfPlRXqNhccYXjqnb9odQHAWL3Uy9rWLn7iLm2//+ODBBylk6Z12luBtfkx/8vkqOvI3nNbLA5zDWszkXLiKXwfuZfrN8Z9+2OSVtjgjuhUUTz6E31xj2q17OoylszE68cGqnXz29MW9/u6D+VP2jZFhT5k8cEzKZmPkspOvE29Y4r9qnZ3wTDvmkLHJF8/Ekz2YrLsbMTnQDZrxdMgTbfLWdOpJt7pzgW7xxmd8krHk1dYNhZ1fbCtTPl56/W24Rx555Oyhhx5asulbnefxg80//elPZ9/85jdX7rvB9/DCH3vT9du118OCvTt9Lj8zG34484NvSueEvaTAjd94hR68yarRHkf88ZjfcdCtkEsWv2u4aw7qPHLNYZMO7fjxwKfUzhe6yhX85Uj+6yu7LD3pKJfw0NF4uJfRc/7a6h4AtHcZcaELPvatA78Uc6h2NtnPprHaaoUN+pItjvaNXIHHGFm6+aVGZJF7iGLbHJn0soPCpm2dyMOnbX/ap+ywza52uRN2eVu+yjN4EFvuOXxQ5aadbrKw4SMvP/jEjhqPnPchE/JCzYNpZ4Ux9uhQ7JdwFG/4W2M1nfGQR/rInDWLv/iYV9JpvLUpp8k0nx36UPGtNj/HybV2xUt8+7CBHFy9aGcfH98V2IyVc8boI4dPreBzz6SwKZ4eePtQxDrbV+4P6ep+kB8wlztks43PepFRiwebXsJau+wXPzii4lAs6FXwInW+aJM1ryarwKbwvzHz4mX8lEx82VDjZSM7s093vOHLNv72Db6pY+aS8Sj+eOWtPWNd4FWMiT97KP+anz6k11xrhF+bjbAmU58cGTaMZUO/Mdcif6fd+rrHtr54yVkb1ye8N4/fZndfKX/CmP9qeSKm2ZztNXiOBV5zsMQTXmN02RvuaY3jl2Neasm36Te95hFdCqww+kb7nXzR/va3v319o93ZhsIKY/tI7MTTPoOrtcLDLzIKMiaO+Cr46bK3xJ1MOugkkyw9/DWm5L/xObYEzn/Ewx475U/j6YdLzMXS85T5sJGTF3iQuexVh6EY5N/09xzSkp/8eOhkmxyd6vIiOeP4kHn8nSXm0I6xfrLkFbGVc4h/CnvpN85/NshW8kudbrzaYaYHv/2h6CN55Dz1xTHj+NnwgVYfPLNHVzjoSfeMD53FsHl1RC67E3O46U9emyx+12FnQrHpflWc0+k63ot2+I37sNzLZfr5Jr70mqtmQ46RmTZ7R2UeP1z0xNs4GbjMeaY0ruh7h1RM7SOyiE9k3N+wg/jCL/GEhQ453zmIJ71qmNgg48ts5Ok1ln+wiYsxz7ru7d0DZUM8wmecLjrYVBdH+hR2ZzFPlzk1Xc48xKYxPivk6FXE0pwxOhTnlZhoJ6OmZ9pMrzHxowuJoz4M5sRDzN2vTT300wEz4qdCRo3w6MOIVz+8xYJdtmZcyOJXzOExr58u9UWUjebJWsP0ZJs+pO+M0Ne+iNJRrKY/6ckWXkRncVgD5z/whadxMsbFrHZ8cmzyz1jgnyT+1tC+sZ5yBZFR5Ec+TDvaxunruoDfGJ3xJmsO8U+eFMPW3F5wjUc+KP/kJz959s53vnP1d8xr8JIfz+tFexsGYGBLHsB6kAFEEWiFDIe0yQi8IOprO+gFF9noHHQzKAB46BaIKEcFD2Wv+VmTj8JUX22+Qp9FgcmYRbVZ+JWfNi5fTlF61G0m7Wk37NO2WOaL8XiyScdFZI6sog27g86DExJnh7UYwk2nGM91FGcx9xAUhaH+dWprbE0Ph8O6yexvpbLrQdbfWHTot6YlejnCtpJv2Z7jxaQxNWpcPMR16uD7jGm82RInD5huOsQRHnEr//glP/C58PsWgBwh3xrg9eud7OAlg8xPYhu+in7rEy78+WBMoQc243TnU37NeMRPJnk69eW1UtyyY76xvc2GNbQfYLXGHozEgP72NDn65JiXFb4Z4b+ee7hDcGeDXO01ef6jcTWaPpCfOs5FFgZt+sglC59v7jowvbx0w0beN5P8zWp5LwfJwXxKdzbCqg6TPM7m5Mu+Ot6wGxMj40g86TCG5I4zUYy1EYw9JNOTXjqsTTrN6Yc1PnX26cs+PvwIT3LVa+L8Byx4kPmpz5i5fDB3Sge+aM5P2+azs/MaV+ivPfUkC4eCR23fephwPtpD8aWjNaKrEk99tWuAOn48xcF4MvTqi628wl9saqtR8mq5AF8v2u/kn47529/+dvad73xn5ZG1ZMfZ79yyt/kmx/Rh2bHNMb7QoaZH0ccjV9MpBmJBt1iYb8z4jGNrYT4+GIwj48nW3/no6yYXjz2E2KcHv6INO/5ZjBcbetzsGWNXH2+ET0mvce1qbbFQk2N3zuWPMfPJajun5CoZZ6v4dtbIka7heBV2+KhGdJMV8/JOe67BYjz+YLdYGAsnu651PqSEBQ/5vmEqV9hJP3zpl0+da/SHJVzsiF1rxQdntZfkfKfHnmWXfLHSVvjvWuTh0Ytc+YYHv/ufPuCnF+GHBw523MwXY/pcn/yquXkPzB7S6cKbPB5FjPGFyXzxgxvRiQfhqzYOU3ljTh+voh1WPMiY9WeDfPrMpa+aDD0TRzLG6Fb4QA8f3fckry926tZVXvG7PRReMadLn7wSpmIl5tbHCw8v2/HTa21vHL9FaX/CQjbc6ghG/XLDt57hdX0kd/P44tX9RXsDf2Xq0DY+6/yjn67yN/l84h/Sz3c8+nDRox+G+DsX9cVeYcve0M7naS9M8WYXD1mFXH3tijHxTjaedBiHUUF4raF1tS74Eb72Ct35syaPP/DFa54sXCgs2uSmbDKNTT32o33rxZCccC7I5a4r9LJhvyuoeGjTRS8ZMQyHMe141OT4aC5eY1PGuMK+8bA488TPmNjJm3Dknznxs4f8yRh/OubFL37xrZgtMNf4QR/ybOGB/5lnnll5B7/8U+CTV9YCiWG+mSuedOGDG17Y8TVPFnY54Rzko3l8xZeOfG19zBmrhDkb6uIJT/zwWgvzZCpwGBNr884L8rB1bYEpvdkzhuhvDI/CVnm9mMYP/MngReTx68MMB4JjEj6yiP3dhnky1oQelN/ayfcikh0+WoP0xmcuHOboVcPIdv7rK3jlh/VlRxxd18mZU5ub55hxH2a5HpqnM4zhyR5e7bDgw68fHjmib47/xvmvhFNtnj08vWTT9qwtdumUE+072PE6P7xo5xtMbHgB7TquXWzpC6sahYV9bdS+Dx9e7fzFa0wRO3PdD5E37hoFH/tzb+Yfn/KT3Xxig37yxY5+erIfHnq9VyELBxkxNK9mg4znXPf6vadzTaYTFjV5GNilR023OYU+BT+9xmaea5PhL4I1vGpElm5rBBdqvYs7HdZXP1/ZokNtrDmxI0+mQmf8YdCf46tz4kcxnX7Flo76eMsRY3Cg8JmHqbGJaQ0ef5ifems3TodSvM0r6S2+6buojp8ulJ5pr3XIlhgU/+STVYdRO1/Dak7beosRna0fveW5MXyu+fICv7yQw+0d+q23IrfwoOp8YAOVx8UpX/nSHmQX5RdM+Iyz45pnL6OXvOQlZ5/5zGfW/0vTz572VejaL9rf9ra3LScAbjFyggM2cDchxjmBr00hMNrGBUwtmB52BNo8h+nqxo/jbs5d8MlmrwXiaGNXcXrngaFSksABt9ocn+BCfJ9kHqnzWT98xncZ85F5hW2FDrLXpbBLVhelw+Gw9LnRE19rU/zYE18PQhJKcePqsJ4+XBdD/PA7SL3YfPWrX71+FVQ8HZ5uFP35At9yFtfik11+kNdHxUb7VFzi23mTI6OtTL3soOSttRcKXhzLTXitG4ziRlafnJz1Mh6/eNNBxpxNXr6Kr7wpl9ST9nF22DA+cdGbD3AqxvBMn+jWn+uc7LRrjA6Y8SM2s9tYfHjhal+qkTX2X94djHh8oCLP+sCGjFhYazc7Yik+xYVPbE4f8lON+KjEO/2mvziZNzfJmHnr5dd/HnjggbO777577Q/r8oc//OHsJz/5yXpI5xN+4/ROTOmka8YGdkTWOHmkrqyB8zFtfAqs5MPMLv2tgX3r5Za9DD8SNy8UxFIc2RB3F7Ls00dXOTvt0D99MxfmZWD8wKugePS7sdBmMx56I3obTz4d8VSnIyzkKvHsNV6Uz9pk2Kjgkd9y0x4VV/lqz7ZX00HPKUqXOpz4nGOIzsbVtc2RySfj1gORQebyQx/+dOAVZy/aH3vssbM3vvGNWP4jpmvgmj9gevbZZ8++//3v39qD8sjNd9dbtrVdE/JzmoHRWivwyz+1G95ijd88Xe0r/rmxZy8dU2/tYl4OFBd1NGNrbPLqtyeKb+ec/ZN+fD14dSNYTc46pUdNDplTwmUcrzoci/H8hzGxSB/fjaHw7XLGYbP/vXgSRw+RxsSTPjJ02etiaq0UL8DzM/3ZJ4OfXBR+PuZHc+Q8lDvX/WNe9xF00uEM8iDuA3P6yCJz+QcHTNmkb/e/PRpWZ51vNrkfxK/me2sw8Zpnw/XG/YvrC+plXTJ0F//FcPzBrjOWbucDHrq8WEDyn1422ERib1ydn61dNtT5T2b6bJwuPJV0441gtaZs4MNT0d/XKTlzfJbHbGUbv4LkkjXhgza9YuC+B4m/l9jOys5Jesl0JtBLvg/o4KS/c5ZOuSqeeMyLpXsB8Y2fDbllHRDsYZuxolsfP2y+Iexbz/ri5KWjb186t+Z6lWvFongsY8cf9IoVvOboEhPtyBw+MVD06cNLP8z8Vhsnr8aHnIn8UyO+i518hTds+OlHdOnjVfAg9Sz5B582Igs/ufxNvjjiTS8eOMrp5vSVciRsy8iJH8XjxNR/DPFr+jonYe9M1lasj/h2bSELE3sK32DWjvDMNWvdjLe2ZBRz+aZffBsng+iDBT5z+ubkePsincUfJnvLg/oXv/jFO/ai3f9tkfNd15zRckyfbXbLQ9jh7bwTRz7KP9cKeYDXPKz2v7jzxbhrtj2Mih3fUXEWE7ExjqeCh55sGG+N1XC1fsWdzCTj5Okp9mEzh+Z6GIO78dU4/oAVnznxgaU1bI3jpQOvcW28+nysH6Zk8FbwVMxrw+5a5v5TjPnQC89ylzxMYkO/3OoZmR7zcJCFiV79ZLSR8eZrdx3F4090uEaSY9s+Z8sZzS47bPTbDPpIrZBD4dAOR7L0GGNfW3615vHseUoPol+8wqjveZs+68c3NfvGnA/45a97ZtcFPOy6R3Gvgtf6laf5AVN4ilm1OZSffFGQuUp48VmveOjNHhl4lHDDrNDDjzBrI/JdU7OdDrzsGnfNtE/FhO+u5XLMvEKPOdjwyjvX4ZvHD6itO3v05Cf+dLs2GM+nfFY3Zj7ZxsJPN32oObnoC0+Hw2HZgdna/eUvf1l+sA2rvORn8nSwIwb8kT/5yI7SHFsKWcVc1Jh6+ma+MfrJk+Nr62TeeOtAPrli3To2Z363kwz9c25imzzhwjvXPhvJ6dcuBvTcjsjAX75lhxyMM375V3zxzFhlXy129JovpvFX0+1clAd4nRVd78UdkRVz+MxnozwwRw878kKfD/rwahuTV2ryqDXLX7wKHa7r5l/60peeffrTnz5717vetWTovA5d+0W7X2O38QAFIAcYNgYYR2xkc5zhPCeQQ8dGz1HzNpiXSQ7VgopXABV6HJZeAtPPVkEjf12n6T5FdCkSw0LyD176veTPn91ecur8jIfvCn8vo/jSkS0YzF1GeLMHrwPWw4uHEfr03Yh100yfg04sPfj4lpE188DsJR4idxk1n92dVxxsGhhe//rXrxtM2KynP6vy5JNPrhtFcYUnH4oD+anbuFjs8cWz81m/CE6xx6MdrzadkT58XmyInb7CXrmMN3mb3UsH3/oqZ8nTSYZNv3Inpnwrl/Bo05OPxmBOrljgoc+cuqJPR/jCah6RV+hD5ncyRg/baNrSLmbm+ad28Nj78oZ+9qyxF+3iofhgRT65gOPpBsCNjpt1sVTLO3N0zHjAom88v+ChS21OQcaU4kiGT9Nfbb7A6bD0zeB77713Pazzxwc+TzzxxPpmO9/ogEvJ5jJ2/EEXW5XWBS66jIeZnnxIXp0vePMlvHAapxef8/DG8dt+h+PNSDeZ9osXCv4ZWGehs0pBxc5ezwf6ikvY1fxDYcYzKV5YwqgtF/hmHmZk3pyx+qtxPgdXOhqvbg2LmfFpO75Zzxwgh8KZHvZcrJ193bDzsYs5PjzZD/u0E4965gNe9pTiWF8d0U8WJd/Y5Is/v52TsPpbtR/4wAfO/Mk2dEom2avUbPtG+3e/+92VP3JEHnVNZx9OfXvVdYFNcggmfTzFqznXGbFVI+MKX9RkuoZrK3Sd8gn/HJdn+BsXU3moH4VLLT+6hpvXJu+hggx5vsDajVv7qPzGE2821MYUdsp/vOXkxJ1cmOhG+srUVUzMl6cemLx0dr7ACqN4Kuw5m805Uz0UW0svUPTzUZ0ta0Z2+qYNF5sKTIgMfvdnfhvIB5WwsMumewW/EeQbY3NttCPxlmPipNBHL1K3TvZpOPnpvLNvsw9D6wIfOX068tnZqE2Pa7NcJI/iFy9tOsjj8YKqazi8rk10lC9iWf7ZE/YG/xH9+URvutX5Q1bM6ctnc/EuRccfMBlXtItZ8TKG4tnl1+Txh3G+4WdT0VfIujaIUw+xxsTXC2y2xO7G8bpjHGU3X41ZU/G2n7XN4bN2cggG6yeefbim9nCvLg7i7gGLfW2y4ksODwx0qdnA5/7Mi0sv2uUN+840Lx6tDz6kLuZ0WQPrZgzBS3c5b9w8XiViG4+iTc48u2SMwy6+yLqh4ibHXH/EFS8Z/tk/YhF/dsjiIw+zkk/skq9fjrBtnIzzLD7zeBVjYdI3ZwyR5Xtj8gNGpbFkq5fg8Yc+PeTD1Zx64k02X7Mfv3lz1mUW8bXWinH+qtlE7MrnqS8b+JA+4k8UXnbzwxjMKCzm6NFnW57DZByGYkWOfmPyw9rJWf8r4ktf+tLK24kxHFep2UL//ve/zx599NF1HyhP+G2vyS9rj48PbJvTNqbIQ89+xubfa4aZP3S0F4uXl6/2Ot/owysW/FCTKx76xUDNzoyHMTyuY+mnpxLOU/HAQ1dEN10KOfrU+MQeNadtTn/iE78dB71Td9jwWXt64Gj/mzcWaSvJVYurM8u1tGub81B8nXnxZV/feea6HtELszl+qBFsyvSHnghe53vPET4096xLxpqy4RnN9Vwu54M8JovPGFKLI9vm2DFvLPvGyOIt3uZaD+N4yOeHsfzBJ5f7H2j0u07jLwfJIXqdC/JQjP22kzNX/uN3znoOTzeZ2vRa09Z1jocXFrayiwdW9rp3xKPPJ7HMJzXeSj6r2bYP2M4W3eboNU8ODzJunl+ti35jcsicvehezV6nm57ixgd63Nfb/54lux6naxk7t5ctMlG48kkfsTF1aPML/tYdn3F56DcPXv7yl6+4war40pvzDb/7MPlPb7bUSFzFQEHG4bDu5tr/cE/syecDWfz6bEYwsmuOD9aDbrW+8e5T2rthpKM4qCftfXbpYwtOOsrFKRduPGwruz346Ztzu/+ndE5MdOQjXnPwwRQuOuWFGGsjWPCyj8+4vkKnmoz8wysnsqPPRtcvOozN6wp5Oo23DviMyRH5zG986vZqONg2rh+GcKlRewoPossYrH4T7eMf//iZP9nW3Gpc8ce1X7R76M+JFnU6KOk4PjdIwPErwHOcI4qLjotAf58Jj8WitwD5z9ce6Bxi9JmTnHeaLGRJZQEkgDGHEbuwhTvb5ivNqRF+c/BeRObxpTv/jLNfIpySZ4fuYoxfInr52X+47wIkXgoeDzdupl1cvRDuRbsPNBDbl9Gcz9f4zcEEh8P0wQcfXDea4sq+F+2/+tWv1p8TcQPH7xmf4jD1Fgs2jO8l22KlTHzlmrF0sjF509+LdnzhkMt0oPQWUxcMbWRDmk+XWIqttTE28wq/WJgzbk3EoGI8DOZhqeRfMcgPdXL0ayunKF3sIrpg5IN2/vLNgQiDfe8mrAsLWRd1N4/4tO+66651U+NFMP/EzhrbPw5mfTeW9rL+7gss+QNPPokLX5rDR78CL+JT/pBtnCxsDku5eM8999z6Rru/V/3Tn/503WDyj7xacU7RodCXTvrYFRNjcIVDv9gms8Cd/8CbL/j4o0bpyAcf4njRqshLvF6i/fGPf1x7x/6lCw5rNG3DL7500qeElT9hPoe1dOePeZjorsSnpsv81KE/9WtPyv4cqw0jXWT4iMKoVnYqZuRqh7uYGncGuYDbp8bZ4Ke5Ch2V3Q7++CZO4zM2+qcwG6+wgUcfFn069NGUNy5mvp1zp1+0//Wvfz379re/vXJcjtjTcj18avnjmuAlo35UDPVhhBmp7bG+uZmPYk1eX/xcb1zD596a+pey7QfdZNkrbvR17mLXx4dHsWbmxRCFg1/IuLOumzbzChk1Oyj/Vmf7ES7D+bux/EeXTQUvn5VyCyPc/KQXBrH0zTP3Rc5jeI2Tw6ffi0ZnbA/sHlDEmJ3pi/6MT7b5Cle8+FD8Hl69HPChuTMJv7xxfXPOq+HDD3sFTnzm4A23+XjVbDu/4NGXR73wIWONxIK/5tlX4KXLmvJfrrJHD8x0squfj+VEY+LHHl3ImSqO5hF9dOeHPeH6Ry8s8FX4kRysbMLHf/ku9giPQt48mn6RQ/SSwROfcbzxZ884wmeOfXN0wMpvxZx42fNq8/jE2D0he1136Mo+3fhgU8RJnnlYpx/RXXzFwhpaEx+8syUn3QeIIR304fPiz/qSNS6+3WPo41GjXlb5QN/eIGNt3FMq/OITgh02fb5YA6VcpVOBe/JrN6Y9McxxuvJdHpWfUz+7MIup+MILlxh4qeVFGz2Inwob4cpGPqnJq8XPvILfuDFY6NCvFAN2YEqPdj7Bjd+Y9XWvpjZurJKOWWvjo3cSmTAYh8+YGuaLqDXHp4ib/VyO8LG1T2f5HM7WjS7ET3PWjEwxCk964MXTeFjSoe+ZlX3+0sO2NSUrHxVjYmL9fcnjy1/+8h150X7z+CWWD37wg2f/+Mc/Vgytkf0DkxjBBxNs9lFrqnYfZF+a8yGZvWnP8JcsHXSVz3Q5/xTxsJ/bm/rm8TpDyZeH9CnsqMtTfXEmp9BhLIzFWD2p9WqNm0sPfxVEp/ir4VGa05726FWSM1dJdk0ef4RbzSc2Ju742MJDDwzxOwPcz7mWWgOy4u9MtIZ400s3klPu+cOv5jMKJ7lsmoO7ebbNyUMfUPpCo77nci+xzYspG96xuDfs3oGe/EvnUnz8QQe75uEoVq2HuXzAwy9z4TFPLvmpVxufnOq3lvTb7/KvswYOejsb5K4X7WTZxOee0znLpjGF7eyQ7+w2RidbXUPNk7FGycLDJjt49d1D8Ef84mMzO/QWC/aTIaet4FHTzS4yX6ymD/YUfRU2+Ws/Om+63tBpjbvm0+Fs927Ch9NiQ0dYl9Hjj/TNOTzxqemGU42/sXSYKz78Qnhg837q/vvvXzG0N9znfu9737t1rrm3cN7wCRUbemAyLgb0KXLQ+SVWxhG+cOnTkR59vMkWb+PGkqXXOtPtLOcPOfHsbNSnlxzKzupc8CMc/OFLOuifuoinN1zhJosX1vZgeshpxzt1Zps+80ibjpl7+FrDcOGHt2sLWXJhsG/EXB9v62VNnAl0ylHxxEuWDfegct08OXOwqPNf2xqQL27WwJ6Lh235rqbHeHi0w8mucbbZbH/joRuZZ9Ozz8c+9rEzf9EFZWt1rvDj2i/a3//+9y/jGQJayYG5oQt0myE8jZPhiMD1aWuLzDlzFhS/mwIHg5t7wTNmPhzpfqG1AFsAC44sgjEbnq0SKjvTvsXCawzGqxI5etXJJk+fchmRCQcdktA34bygK1FcgBC9fHKhl1ji6dNeB6+LrTjTRc9lFKZpG3++WB84YPCNdodqsfNw7hvtvoVkgxjP34ts0stmuNglk9/Znjx4FXzpTx6fHHN4tNHUDvtuQPQRjA4VsSRPlpyDQe7SY9xY9uWPC7zYhhMPXxW42wd4FbmeX8ngDV+21dOneOjITzLpX06MH+RnaSq/9LNvPyp0yxd50o02u+bsXTEQj1e+8pXr4uPlC/tuIl3I1eJHXt+8s6JYzHU0psDYPF14YDSGnCt0IrzFfg2MH2Tlon+MB59ctM70ycWnnnpq4aGvdYDNRYH+sLGBxMZ4GM2Hb+KIPyj4yMarz5610s6X8snNyIte9KJVxJg9+/V3v/vd2Z///Oe1DnKG3/ybtvlijj3ze2zCoSZHNyxhxm+ODgXNudr5gp8Ofig7xa9WJh87CgqrNh7jp/SZP0V8gIMebedeL3LSLb4IjngvshVe9cwF8uGmI5/E4yLM+Yj31P6EgXy6nCceGvwW2Z380zF+PfNb3/rWrfwp19lGcMh9+93NZLjyn79KviYjB92QOhOK/4w1eXvfdYZePMWKjVNkvDibL25iZH13uckrfvGQI5M9fXiVcoZP8JrTRvGThXcS28XEOJ7qbK2B87n0mit25aSxfCXDvlg6A1yr7UE4lezQB6/180DuHkXbWatNNz1KMtOGseyHLb+bg9MNsYd013LnJhl2fFPMn4FTw0emIm75WM0vfGI2icxcA2vCZ9cTeuSTWPA1n/DDjOgsV7uRJ4OfPD5y7Gjv/XSJTbq00y1X6XWmdv3jA330V+g1RlbuFUu89IqD+XjIGUPwhS25NXHBDzoQuai1Ncb/7BjXL3dcv8WLTzDgK+b61tiLGDjyDY9+2MTEXvaiCE84zOeL9bPX+yIHm2yziyd98x7KeOdRPHBbSzWdXhbdOH7jXs0vsfWSSB5aI/4qM+76+MyLOd2V4sePU7kJZ2tbPMhM/XBZc8QG3WTYdf2xj31YDi8d7il9MOB6jh+1/sXaGBvw0oPUYYCLrHgZV4yJVWtPViEzSd94pM+Wmp70WqswxBOe+vjRbsc4nnTCJC7x6+8UDx/4gl8tbp3nZOSrvnwio8CcTXWy4kpHc/zRJ6ONrwJrfkwd5s2RYVfO0kseVjKw6FsPbbWcw+ue05+O8ZsY9D4fYhvdPL5of/zxx1f+8IMt8emMzF/8cMGkVpzl7on44pohD51p+VEep0+c7XWFvl4ssUkH+/xvffTZ4TedCF9lxpRc8/HjKz7q2uLPPr7Gsm9ukvn4zIlHscOX3vRM2ebpJpPd2tkyzz/1JHwVcdAuT9zD+6axc6A1EE/nYrGy37qWk3Utd8YifSTGCP5p/5Sv4aXfC362kRdH3hHAJk+d5b5J7ItHbIabD+zgQ9NmbTV+uJTOQb4kQw8dE7sxJR+ySQZu+QyjnNR3/tPZPiMbb9cIe821gSy9eFyDxBnxtXOCvcrEpS2f5Sff9Olhd9rkp/1RHtMlzvYTG2Emr23eeHljXEwU8wiPcbrVyDxfyMGD1HKcvnK9Mdh9qUy+iQOdcsq6qumSc971+JOu4kOHcTqyUX8ZPP7Qb6w6H9WwIPYqxvNjTZ7Pu3Y7E++7776F0fXRy/Yf/OAHCxM59w3uY+kVdzqNKzCKh9KasGM9mlObC2uY0tN8fXqj5ug3LqbuixQ5huSSL2XAGb6wkMlv+ulD6onDGJn8ICef1Hin3Oy3FvgU64emTXbyfU0ef0wdeNNj3pwxuUdnuI21v8IFr72Yv+mSq+TLczrDQUbRF0/3RfSSST892WXLuLH0kHMNs86IHTliz5ELXzmTv3DWThd+cWNDmw7x0Eb4rDH73sP4Rvs73vGOW3OrccUf137R/u53v3uBOaWfM4AXZKC1XczVgO8k8ILmk/YC6HCQzOY6AATBJ1w3jzcZJaY5PHsysSFYp+zt9k/1yVowJMjakqoFUhvLBvvRXKTGrlKnjzx96UzfZTrIJg8bzGLpMCsGkklcJbV5MZdEDt++CefwFefbUZjYRPqNqdmwLjaFT/C93PSS05w1c0H3stCDBnvpuardaau1LwZ0tPmN8VUMlLAZh1EMxKm4iJEbIA/5sOeHi7TNLD50k3eY4OkgYIceNTva5MS3fBUTbfPwaMPPjqJdPtOD1ErraMxesnZ4zYWHL/r0KxcRfvPsWw/EvgOeX9r0ID6KkzFr1cXaHB4y4qXN/mtf+1pTy3f+ePj17XXxY9MNuw8gfJuLPnJ8w6sgY0o+5Hu4w54MP+LX3ok8nH41zQsj34RzyBuHy02mM0o8s9leEJ/WKXz0k403fMaNNa6PzFfomvxwi23z+tYAuVHyYOamyQ0yHrHzz1v9bXmY810eRuynb45pT9vafFaLbVhmLM2zkc4Zg/SZSyY+MkgfhUefv/TEMzHhTSY59VUIhvakeMhb1xF7sdxR77HSnzazFWZ9bZgnVjJKY/HXn3ryt7ns1Y9XHVZ54EX7e9/73rM3vOENi+UU/5S9XZvdp59++uwb3/jGuunGz17XUvoVa2NM0Xf9syd2+7Nvj4m/0lmizSb/6aLHyyXXHLKKuT22cDUHC4zlWDaNaasVlB42rWt7y7x4ygVkPJzayZOrTPtsx7MUHH+Yh63CNp5wGjcWFnPaKB9W5/jDnBJe42LY9cmZT9a88eyoxdS52vXJA6GxbMFTjrMbbnU21QqZij78HnSdmf2NdvPsOddvHu/HfJjc2Wku/+nXRtrm4NrvBbOnZtO62LfszvhZPzytHZ+ypYZBjk17YtUc29oKO9aHjJIMnGyq6Sfv4RRmfK5ZPejDglehq7XT75pJj1KOzD6dijmYyJPr/McLZz7MOJnLrjr8dJFxH6NW6BbT8MEvV9TFi00xJ++B14sYWBD9CvsRWfc3rp3G2YjiN9ZvPbhWwcJOuagPk7HOBnPlsjm6zfMHHn6oPfC6nhtH1sjaRMWZn9bd2sFVXSzjVxdTNcovONPXOsJLX/3u/fTTTU7xbOPLG0o57fzzD+LtHTL08z2f6UDZXZ3xI4z8kUOtYyxir9BDf2vSvNpYdRjSS07buJKdcsYYm/rm8O42kjeuPeMS/wJw/sMYzPK9fBWPcsS4eLJnTLzgQOHVnrrxZ9ccLOSNIbzyi91wGlOSja8xdsmYR+4l4YEFj5i4r+zckKN+A+NO/TNUHyp94hOfWF8SgbuzXrsCnwIX4rNnBtgVOMVYDWf5wydjZOWte1Cx4pvafvdiyUs6Y/nMjkLeWPuDDEz02bf64ozi1zYmj2FU61fgSQb2MPJpYqAHL4ofL/vqaOptLLn6ew0r7Gwi7crkbSwb5JwN5Lw09nLR85JcRvDDl1/OMC/W3efT4Xxwhk785PQVPGFnmy51Y9XG/Ja75wg8/pTRjeMLaXbFnB0vXX/961+vF69skDHPh/qtrTmUn9r04i1W5iYZx4PogU2Jz7w8Qfjki/sONTJfjohnstVknK+e8dQIzu452HRtsT+1pw/6CmLH+qjDpm5e3NnCE585dhS5r88X929iyBYdzYXZeLrYJmdOzrCPks3ncgVv93x49BXx8mLQ+nqBDa98cr/WB7twun57PreXnQHswcdOuNgqV+E3V9HHx89kYS8+C/zxB0zpNc9f6+rZ9lWvetXytQ+if/SjH60vb9ALb++mioNxOiIY+IJghSWcxtgOJ1y7fLqaw6udXvKIXvtHTF3H6VHE05+flZf6sJAVDzLxsWNcbcy8OIhl9yjm4y+GYYFjYoUpfdrim259crPQi+Y6NJZe82Eji9hA+jCr8Rjnq3Z9tVzht3iwBbfxsNTG04v2dFazB5OSj9rm5bZ7P7U5e1lhC8GoTFk2K4vp+IOs2OOLv71kXYy1R+h2brvm+ifkiNx16Nov2hkCEAFUcNTAC2xJAQxeF49eVOIpGJzXd6h006ytuDkh52DERxcdLgj6guDmXdFmk64omVMBgRXhxxfFaywebSWftfGZj2e3bRyf8etQtugPC3ltc6eIrdYhXn4ZcyNFLj89SIm9MXI2Q4nKP3wKUrNLD8p+WMhnpUq0AABAAElEQVTT5XCr4KOnxDfuZb+bTIcUXZLZ4e7XHh3+LvJ0TX/puR3lAz7tin5xjydf9MWkC6TN6qbHhpdv/FHLRXNwwefm0gtm+ShmyFxxV5Od8ZXD8lV+sg/TPOQaUycvBh1OxvKp2Ojjl+9wiXUYOoDgiGBMR2PVdMJEBx54+4DButGrpi89YiAWLtBhNu+mhg7y/ga6NQ+/dXYD54LEptzQ9qLdDaV8yK/8JJv8vpbw45sln6rJ5Hd8fOCjlwgulG448bSObjasL1mYtNXiY0wR+4sovHOebTJhqJ48+RpmMXcRwuuC4lukXnDJUTzi7wHdh1Tw0c+PiBziV+s25yYG8/wzpq22nvPGKn1saMPQRY1MuLWzqzaOv3UwVvz4aL7cM/dCiB067T/FXmiPq/mU7WknfPKCfD7gbd3x6CvTF3r0k9HGk9/ZMUZHlK5T+ZK+dMoDa+8fsPitIDR1pfM6NRs+5Pza1752ax+L0fRTmx9h17fmzh3nn/FTRI/zVYHdOmiT61wT1x52pl7nQrk4dRcvMREzMqhYaZvTn8VYa48HHueUEn55QWfxxpf+2uKgZMM8O+GKz7hCn1xSz1xgi1z8tWffWFjoYgPu9ot5evZcFVul+LV26SbT9cwcPrrzRZzYUWcfD534jHtgdA1Xk/Ng5iHItaBzKMzLyfFjjncDbrrYz1iwz57rMMxk8wcfPOTklTgosNv3ajxkkDZ9ivyClV/NFQt1hLe1o1u+uI53j0mPa2/3AfCQV8iyrcCnn+7Gw0aODnphyi6/2cSXLL9gUsTGeiLrA4s6Xj6Lm5dk+OnFnzy79l/34+zgIeO+hx4Pve7Z+ECOTPfiMJNh05gcoA9P/mrzSax8OcaLOTz0enHHR/bxOHtd59ihW+0BW4ElfNbCXLnsOu4+A2Y+i4saJnrJwgEDvemiT0HV2mTx40vWGHv8QuaT10b6+GHDHxnXN+7a3QcDcMJn//htEHHARwdb1jp74Uuv2pzx7Kvp42Nz1kZ7Yg9XNblkazenzp9sFdNyLZvWtfiKtfFolzWeb9rN80uBg/9yQj5ac/yte7L4kqEH6Yf5uZH/149/UvLpYyf78ZlTwqhG+BrXFuP2LNzWV4ysb19KsY88qH/uc59b+ypd2bpqzR7yRaUPf/jD6+8rswePunMijPyCT19+wZUO/fAWH7haV5jtscPhsM4jNsjY7/az/Umf/eYZh2zxp8NccYbB+Tz3uXOv/KQbVvzk5JM2nWxq18/feOf5hz++PaZswUcfe/kzde8yzYlZcYQNFePiWZ8NxE4xsS76/BdPcWcfmSt/2LCfPBf1QYZvG2vTrxQT8tmix7gy2/DTWX73ol3f+e7PspgXQ+9VPFP0oj175pWpm17zUX1jcMU7efDSU47MdSCjtPfTIwed8caNuS7KD/cbajoU+abGQ8Z1Rq3PJt3aSL4qzqpiRrYzDB9+eaYtT/MvPXwQQ4V+fDDQK5aIDLyuw+TYMjaJjDH6+IjHmLKff/jyES8ZMXD9ULOBRzHfhzq+qGPOu5abxy9F2LtwskGfvdvLdjrFVuETPQo/UfHKF7a08SL6djJvPGzm2REXv2HhC5hi7TruvPGb2p5x6XS/Bqs1QOlIHx+sW/PWQkHs8jteY/ooPatz/sMcm/hb05kT9qzfRvGltxvHl+348bm/+dnPfrbWnawzn20+noqbOWRe0eeHvIErzOp4jOdHOM9hr4oOOYCvtQif2IYjO3gvI7IKKlb0znE2FWO7TXEhZz55bcQn/PLKuacfpav5eNNFLznvmewPOsWNX+knW9y0yRa78FhXcmrkrCCjjyc/XcO9q8LrQ6HPfvazZ+95z3uWTPZW5wo/rv2i3UN/gCwgZwArYAXWODA55+JhA3GaY10w8Qm4i1Df3hJM82Rc2AVYwSuo5G1Ah4ZEFxCY6C4AMM3+jAXc4cKH9PGz0UIlw6cOM3P4Wgz8czHn+EyAdN3Jmm32YNJGsLCrjvhmXtzwm9uLeXrEuVjwU6zITIrXOjmAXFDoRm4UHOoOP/rI+la7i7w1dRBZMzcPeIu5+rpE//T9Inlr15rBapPCDnMPQfIPVge+h0FxQDYZvPJQztGVPnEKA9/oSk7fRaybULrm2sDTGqSDPms3Y4FHX8wVfbk+15h8ewgPPQgWPhmbRF/2zeGB3QvoDj9jYoWvveXQcUNmDfknN9iWA/SInT9x4YLkomnOS2G/juhbGXJCsV99K+df//rXf9xEhrF46LPPn3zIN/jEQp+f4oFgIoPi0ScPJx9dKL3A5IMckAv+NiH/6JG/bmA658i3Vkvx9oMdmNURXEqyje81OdjYJQ8/XGSthRtNNyXG6HITJB+djTAh4/mf/mI44zYxGRc3uayNnw41DMYUmBRt9tjqJrW40xvFawx/OpI33hrRdSeIHbkqVvLOQx0bYShObPGRz2GGy4VbDoTVvDxV57OaTvFJNuzF2ricwRsPe9riIl7mFO1ilR72G8+eXPXh9ute97rFlt5krluz8Zvf/ObsK1/5yjqbYOBXWOi3LhX8EUzyj09zvHkxdLa2p+w3Yx4WxROJ6cwx+pyRbqqdteye0p0NNYzpgLsxbfFrPdi2b+izxnLEXL7x5zKascgGGXboqK1PLztiWSFfMV+brnw0NnVP/+0zcuWNWiGr4C1Hl5Khtz798OQ7fnqROXrEyflv39Bv3LXZmsRn3IM5Hn47w+lCyehX8NCj3/VKf8YNLrJKBI81kzvdU6SDnvIIDznY+Wbf80H+sW2cLvzWx7Xbmdk1fNorxvhaS7boh4GMPuxyVNFnR7Ef5rrRzbfm9GGJyhVy6TXHtjOfPzNWcJBvHYsL3+wf60kPeXNy3cuG7JCHhQ61tesFeXFk17fM2BVL1/DWx5hrovi5LurTIw5yxEs3+UKXtULmXU/xw6jvoVqRQ+4H4HBt82dq1Mn501YeuHuJIE58VfhknT2ku6d05sPj/o19Lw3EY+aMtcEz12AZ237gE0eyyYgdmwqio752MSWnjZ8sf9m0JnJZEU9zYXMfxTfjxuC3fmTIhjk77GaPnogt8ubJiFO26TKeH2TMhWP6mr69zhfj9CDyfLY32OOHc1xO4EdhZUMxDg/eGav8My9OPQeyZQ7BPEm/YpyP4kh/PucjezvhV1A24tGnQw1T/jTPLn9QNt37ykX7iKwcdN2zB/jhBY0Hdb8psvuS3tvV4fQBjX/K5k9vOu/EzP6xL+QQv/kMN1vJZdc4HuP4nTfOS8Qv66rvDDkcDus84YN17hz17I3PM702OfHkuzZeNpAxZ5J7b/acB/Z266uGwRxM5Has9ZfC4w99dsQ5W+Qq8dWnu31mj2mLAx3Figz7dCuNG4MR4d8JLx468fGX3Zk3eNiV27AkI1+69hoXU2eq8xmPWDknERth1i7ejecrHkW/64m+M9OzLXw3jveV1heJnzz1ZzR9O9c+xhOFVW2cXTa11ZF5dopb4+rwJotXvPjc2ohP+4du4871Yuq6RLdrjTjNwgYZOsWYDJvq7Ki7r+n+pZi1rmRgYxvJdz6lO53hNp7PdDr/jBV7mLNBFgYxYMO4Gj+c2vxT7D9jirY5dugQJzqsmzxh07iCyDgT/CUBLwjpdxa5Nnru7mUwPTDcPL6Ad6aQN2dvajtb+KkdTrrYViPyXW+zD6e1iYyTSU6fbRjZoMv+tw/I8R8ZL3bst97WSmlvxE8v39W1i5saqadOfMbCRq94W6d44ZBTfgvEP291D5M/YvfDH/5wrYF1cBaiGR/xyP6aHD/EVyy6R4KfP3DRwQ55mJFxRF++asM9beCjuzU0Bx876V+KLvjBbrHJNjyN0Uc/Mi5e6jDApiDr1hlNXjEHW/rw0dGc64WzgA06jcNkbeSNcfb40jwd4iBedCna8pPveM3LcXsVLnrZgYWfdCra9pZ7Xtj9z4MvfOEL68+4spOf2leha79o99CfESCViwgfRwG10R3g+AWgRSDLUQdSwS05vFAiJ7j0FFB9B6Ck9gBQ0MwLUHzqU8R2uKvxKuwYm/iMlcgWIflk2cSDZoKS0Sej/XwoHJLkFMFAf3bhwBueZPIJr3axyWd1PNp8UqwVmSg5vCV9iYrHhcxLdEkMk+KhzUMRkgOSF48DHV86F8NtfuCFZ/qciDm4Jhlr7cTSodYm1O6TVBd0WPXdENKDTyxdoGCWZ/p0im+5Rq+c7UUF+2LDVwU/mmtTfM0Vp4mV7ckDTzbFDA7zZPFaAxcqfNmDa643Xn1yYkKfPn4XOt/y5j999BiLV9/NmP1mTzro8NHp4GNLDB944IH1a2s96HvJrngYh5ldMelFu7gi+hVEpzbbsGkb01bg3sk4Hpi0Izrwm7PefHTD6UYTr3Uz7h+MemhADli56YAmq6QnvdX0KmFvPH6yrYE52PAq4hFN/HAh+eTGWFxhpAsmLymcjfqIrfJSv3hNXPTjU1C4ydFDBg+s5mAof/Djqbho0UPmIkpXvuM3RoZu/fy/TM/UT37S7FtHa+s6Im9hR5NHm137J2LbdSd+ec1PPJ1NycDNn1NUrItRNVk2zPOXvGIfGGM3/+Nr/dVy1UP1nfxGey/andUwtEb8KkYzn/KXT2Tyo/FiLEetgyKO3RDZV+4Bih0/K2787LXn86KdPfGDqzizYYxfzmA4kDWGB9bWmoxSDPDp0wdfsTDWnHUrD8zji7R3u2JF3vmsLQ7sw5l+8tnDwz5iKx+SKzfw05t+uqKJyTiZ9oScdobkJxzi6KxR2CPjWuech5W8OHqRRA+iAz687MEMC/1q44o+PkUbL5v4xSrd6THHVucyW2T5r9CB8MAGL0z2vesfX+gyT1c25a1rjftG+CaFAxay+dV4D0HmyOvj4Qtd2grMxprTJoPU8NBpnP/WoKIPM3/gQPFrkysuaiQe/IKHn/itoZduruN0stWakoHXfnMNJkcX3eTc92i7dvtyhDadZHzAbh+zh+iWA71oly/4jYffPZ55duiYL9rdDxh3bfOtO/szvT707kV7uSpO4gqPveR+0jXcmc93a88um2zhJ2tOX/zFItKGV02vedi11a1La1As9BH+uY/ZIWfeeDrU8hNm60AvPNbO/lLTTcZa8AGmad+ccbrZTUf+sME+MqbPhpoMWTrYiczlN33aO7G1UzbJsGl9+YBXbnRvwG5+mFdgSp7ePVbwOaPlYteQMLO348lveoodX8mwwyc2yeLBrx2G7OvT3Xg+m1fMZT/eePTx2G/2TWcAf3tQN+8b7Z///OfvyDfavRTzt2L//ve/r9ySV/aPuIkDP/MbPvGAQTwU8/IB4e/+nZ/kFOeoM9U+oxe/cWtuj/mNVDHx0sIzgfFikR38jTmTfMsWFmeoM4hOuNT2R7lPDsbWq1irWyc1m0r21GThiooFG4o+O/zWJ0MHGVgU1Bg7+IyTxX8R8S074cueWpy9sMsOHPJFfI2bp19MPWvhs6fkERJLevGYK8/NGedDsdPXFlf68fqg3Hlrzlns7KRHrro2etHutx3tabaUU9Saws9f+vhXCcMuizfMZFoHdbEoD8jid8+RDWc8gtc5o1ZaE75YV7GUv/qIPP1wu+a4VvUsDyt5620eL6IHRrm6xxpP1+n8EXvXVNccsnBZW2dC+UhPvhijn7wSwaO4ZsCDrzNFW4zZpkefH2zShehin/9eDDt3+O5aM1+048VDx83tRTudbLNLlzZiQ5sN9sNnLYofPhjFNL/0+T4L3eUmvfrOML7TVY6XU3iMN6fmd+tYbNm/iOClpziSMcZmvqn5JmZq9pE99LKXvezsrrvuWnsnWbH78Y9/fCsf3dfQn68Tf/bpy15rxZd8Nkde/JIJs3661ekiy5Z5ZK49xQad1ql7sfgW8/hhnF3yZNhVdjIvPkibDfYQfnPhb93gS8Zc/GTY1VfjsdfFXI7CQZYd/a5X5HaylvGmr1zJF2er64+Y4bHX4DfPFlI7B9332sv20v/0RbtvtJeYOSk4LUxA6wfehrDIeGdSFOA2tc3ncPJ3tiwGeeRi7oJD1jgMgiXRBc4FiS5BnhQ2Y805iAUWRmQhBFONpow+n8Khv5P56bd5/Racvsvkd32zD+Pt5PFITnzZDU/xN4dn6otHrYirok1OiT9M9FTE0c2Yi7fDn5x1dqCLJz7r5dvDbrKQi5H1Uk499GZn1juGObe32eQD0iaLYIPRt7Z66WKT2dBuAo3hxye3bDL+G+MTrA5Da2ocj6IvrvLWjUtxMEYHf/EVTzUbCtnaC+TxhzHEBzEUv53yCTakZo8/yLy2UiyM4zPHprZ5B5e2/WAP5h/+DrTs2X/WzY2gsWzyXd/B6G+u9Tf5zeP3K4kenu3hHsYcYF4Yu8Fj37j4alsL2PSLFzzaxSxMxi8j/Ar/vLR2sbz77rvXN4uMiYU4//a3v103I2z4YMCLbOcVyi49k2AQX4UeffjxtebF2rhyGZmnK9/kkti2DmTlg3WQk/jTb27Gylx4zOErFmFlK5z4zbvo2Nfir62w72yUy162lNPkp25ta1482FEQbGGCiy1z+MOwGM9/7Njx0ou/+GjDRpe1lDfiJW4TWxjUCixImy5nQLlgXD7IPT7jgRvhCfsaGD+MN5edZJO3dtqwwYySi0fNLzU/POj6T+f97wM6XwjR62Hqq1/96tpzEyu9sz9twUm2m+rmxNL66cMNszipO1vjxedMpEMbiYNYy+muB+xE2tlOjzr9bIknPrrgURtztplH3UyZg5MOGMLOBjKfnTVw/iPd9M/cmjzadCs7j/2UvdYcf7mYn+zMAn+y+NGOceJNjxqZY2/GSB6mw5zYdGPLHhlr4ZzXT5f7MvsLWbPWkS48aj46y7tuGVNmniwFxx8wFS/yFePWl9/02NfwGW+d6ICTPPyu4fMBmz3nt7OKfXj504NGGNikk630G6MbBtc0fXN0zhfOePLNnFjFJzbGkJjUNo/IKtmiJyzwmKOvOJDT7j4ZD51hoJM8HnLmFGP6xRm/9XH9cM7RQ7dz1L0cHOLtRYwX7/xH7rVdy12vtenml7bruHxhu0KPh/vuF9ii00t1Ot0jkpFP7LIPC/Ih/M3jfX0xLE500o/ft+AVGJ3TZNmABTY++iIOP+FEe6yyh99c1JoYb86YgoylszHYWmfxVJoTf8VYOvHyn5w5flmjZNjRVqY+OMlmHx/CR1f6W28+yhnxZYecPdAepY9Mzz7PaXvuHJtYih0b2ubU6SHXdVOdXvb01cmq8wsfjBVnttJ+5HuU/OzDThd/p8y0z7Y+eYSXvelfOptrPp5TtulEeJxBzh946TAGm/iIuz8B6J+pydnksnnVOixecvvw/Zlnnllry6Y9y7480g8/W8k5S82Jk/n2F3z6fMQjF9pnh8Nh7Tf+0eUM9TJJQfj52L1SPjsX6GdbIQ8jYseaKK0fDMU+vPEtoeMP4/iQOZjpgCF9xdYc0sfbeGP6YsG+kr5sG0P6xQaPchHFi3/aN549+FufamNyXszxiZs9qt2eCosxvqrpzabYlf/m8sk8O4r4Wwdj7itdM/G6Nrov6wMUfTx0mFd2Si8/tSO8s9/4XuPjN5/VytxDxrs28A2/M4zvYqJ0jsk/WGGhp/v51iH9cPHNNYEMnfTJXePJwype5o2rI21zxdq4nKAHHrkILzzweydQ/NX4FPOT6MgOnHygR9v1kj3t7JPng/tmds3BHzax8lLYb9K0362xa6trsvixSd5vlrtuInP46CJnHaZt2GEwz2a+q3fCg/Djra22Jq5LYsRPH6i4N2it4fOs6X7DmSOufKZL0cZjr8CEsgcv/WJRzPDAWCFfzMjqmzPWuDq/YPXlA3/73rtJZM45+Mtf/vJWPOXW1E1HmMnAWD6kW7+zGD9SV9bA+Q/yYqSISTrU7LIV4ekZyHh5Hr74qvGUPzN2E3/+wCE3EF7xYQ/BZW3UZI1bEzU5OvIDbsUYHmSu+3k2Wpvm8OEht8ct3/gNEz5Y7JH2nfw2xmb+0p0umBEeewz5TbRPfepTZ/5HKYpnda7w49rfaPeifU96zgCMACiQAqFvjhMW2lwXYeNk8QgQvQ6VG8dvqngZdjhe5G1Esl7UORA6IAVb4PwNaIeEBKcbzTpsxuhHbs4d6uaQG14PZPPAwq/ApqD6JdAavORH/OS1/1uUj8WSnWx3wBgr0bXnuD5+66G0HtZkknHz8bqIOHS8RKebTmtrnVygrL/Yinefnjs0HeYOeIncJpt2ZjtbfNNGZJSJrxjDJzf0yWg7dPVtPn+bDuYuZPLNDYgaOdzhL9emPvbokcewlwd8J+9C4QIHG+Krgh+v+JCPtBXjdOdf82LIDsLHH7a6KdMmR37q528PVq1XOtX0OMDsAbjFiG16XNg6XNihR82+teWPOj1s2aPmHWz27UMPPbR+xYpetuj8xS9+ceZXwq07W/abl9leXOh3QdX2zQvY8Ihd8dEutvmFPxILcUBznAwf/GbFW97yllXghE18rfmTTz65Xgw4a/xDFh8OiD879CrZplsxR0ekr8BbEReEH6+aHuPWL114Jq8+Moantj4sqLymt1xobspN2eTpDKsxBJcPzXwgIT/sCy/XjImFmwrfevGBiTizT0++0lHe0YUHHvr1s6k2Brccsa5KOMybm/Gimz3ryFe88s0NGt14zbUm+sgc3mxmw1zjzgK68PDTmaXIDTzsiQf99PJ3Ep7ssqcgvK2xOJDD23ixwWMsWW36xPLG8Vr41re+9ew1r3nN0kn+hRAf/Xrw17/+9bW/YFDCvOsubvDAaU2VfGnt9MONVzzljm/ku2kSP9dX38ZzBpBD1lTbNaH9zqaC6Ox8yndYnQ99sEk3bPzoPkPfOFnEDlwR3nzRvojYp4t/+MKlrZhHxY+NaUcbD/l4spWucgKfMf0wkWcf0TExhw0PuYq+guhil9xO5vC5BvhGZi+KjNsHznnxI2svOBe6TrpGWE/j9Gdb2wtW61Bs6EN4+BV//sLAR/ORvnF65jeh7UEEk7whY584q+xjbXphk1NetrKJ1z0iv8RxYmJHIcdfOsyrnS+ub+yy6b7AS2I+0rNTelwni7lYTV664WYPv7aYTFx42IRBruOTw/rGxYd855I5RJeYuZ7Shwev/UhOXwwUaxcOeqytMfbE3Ld4fDGBbTF0veZ/MYXROSkeYgubvc4OfmNkXC/weVBV5Fm/wg63Iu6wKR6EFDFhWzEOq7Vwf+ADc/dychIOPltv/w+Gbdd0f7audSBrnE4FkUPmtNmARR+l1zqKZXza8mmuF3768dJPjzjAjugyjiccanziVr4v5uOP/GYzPObSER5j5sWPDbgUcaLXuPVsb4iT2CjtXTrhJp++cszYxKttDD6Y85ccTHLdWhcjWKbu8MNMh3kx6PpbHKbfrT275CN9fMbwlEPNwxoObcQmPoXsxKYPizl8k8xF7OZ39snYQ+bETswV2PR92eixxx5bzwh4ng+FwYt297HuUSPntzOQrfY6THC2ZmJh78kNY67DzkmxU8zLidbEfd+N4/2H56V+Q8Zedx/YfXzxIpe8OeeP/U8van2KDznzbLWmeFofbbytm7Yx2LXTY376KEZ0yCNtfAi2dNkD7DannrzaCh3hIB/OpfCCH+mCQT6Qh4++sKY3XGp8s8Qfxszph6U5+qy587t9xCbiq7OevmIrL/oQFZ95eWDfWjt6w23+Ir+zT69Chp25f+KBha7WwLj4lKvywdo6p+jRdv/oetJa4uEPrHTB27VCn208dJBBsLDBlnm+OqPoQfDIXbrI2D9hNidPdtzw8Td58wpeMuYVe8b1k064jLFfzsNDrtxkl1787WVy2s5ybTL4ur/pC2Gw89U8O/a5L7z1ot19DLp5/ADb9di9tjj4fw/OE2OIPtcGemBpjeiXB50PMIRFPYkc/jmOn7wiRubg5Rd/3W+84hWvWLiNWx+/sfPss8+uewX+kqGXfvrErfiVo8adu/JHvMJNH/72Dgx4w9pcmOmLl28wue/wPCMvzVtHH075Yh5ecaeTjmr66xujR0xhK7/Km3yIn10y9Cp0KXTwK5/wkYGBTpRctoyxky38O5Gh335RZxOfOZSPanwIFjEng48N54jznU/OJTmMxzzb5MlNzPrmzYmxHOZr60CX9UZ08JUd9sggPGScAXLAeHsen/lyCR+ii17PO+rdVzF03/qRj3zk7OGHH14y8azOFX5c+0V7fzqGoQmKLYFugfTxcEyg8JYEHXQcVOLFY1Fc3O+55551gbcJ8ft7dA4JbcFjp83o4i94UTotHD5UMLXdnFuE5jqwJQa+5MzzAX7jSot9u0Cnh8/5zfYkfswEuZ3OKbu305VP5tMXBn5lj08IToQ3zNrJrMkTP9jxgv1wOKyLCb3WT7J6GJPcYiW2vWgn48HHTZgN4tDGE4bdTHjUk4eMkn/k9JHNY2PknwNNDuHV9s0SuG1EfQeAi7maDz2szRft4oaya8Mq5b95+eRFu8Ok9XbB4qf+zP9iraZzj3W+ymkxys/iwR8+skue7vTzgV/mlZkP5M3H46DsMOIfHPDaV3jop4M+fWvrxsY+QeazBSPfXSwffPDB9Wl6ctbbi3YXJOtPFx0etl3YrZlYmYPRBQ2uXrzlm5jDyBYdfFOKj7nWfQE8/yFGYubX6ByUHlI8qCMy7PpU2trz/YknnlgPMdqwFeN0Z7d1OjezsBsz35qQLe5hZbNxY+KYD+m6qCZHnv/WT7v+1L/r04833XBNPrrdHHqB6QbIg1Y3u3LRA5YXGW4uxAZuhRx/kTiLWfbMhdk8jHKq+TDgEd+Jh48VfPQqxYv/biDjKd/wRtoKHv7DyVa4te1/uYuPX64xXaPMk4WZ7WKcfnjppC+/ySByxuk1hi+s+oo5PMb1YWRDgelwPF//my/a4VfEHhYFwYLgaF3MxQ+ns8nczKt8tjbyyDennK36YuvmuZeUdIuZcWeEfWiP0xEObetaHyb2xMZDTGeceeNirKaXHBtoticve3xKP7/1I+NKfjde31zrxm7+W9MoeX1yMBrDW9GPaottMTKnTxbmcJLnK3t46VfnN7niop1ubTrwueeyB9T0GHf9dv7iZ1cRbzzIdd26TSzGyVpf43RlW62/24eXD9ZRHfEJNna9pHJP6JpgnEyxIOPMkWOKvEDm4bh5vGes75pjX4fZOHmFXtjkibOPDbVvT/OZXj74oIhO1yv9CD+iQ5st8+IhjsZaE22F3WKCD2bjSC0m7Cr4YIRJKZ/pxNc+0HdWu67S17wYkYHP2ir2bxjM0UHGA457GX+X8tSLduc/3/DyTd+9AVvureE1Fw735/jce/mw2zp5wLff2XU28A/B5x7DXHHKB/N0u3/zQblvlzljyPDFGeL6JJbWx5dz4IKFLuPpVLd+bONBxah1lONi1Z41To8+mXTqI1i16RTP/Mq+OSXb1lJeG7O+rYF1oUs9ib3yiu5wGsNrHmYxpdu6W085TLc1sS/m/Tf98MGgDnv6Jl72sm8ev4KMi7e1hkN8yNpvUfx4tengt7ir85mdqxA++tXiqE6WfbGQG8bo3vWHPVt8r+A9RWT4hfCyQ39ycCh8YlttP33oQx9aL5R2m6dsnBrLLy/G3vzmN69cj68X7a27WjzZh49NNT65YFweyAd6rYM1EUt8csX9nxdL7sftWT47V3zQ1nNN9uihU7zlgL3oDKQXtc5iRLfYtjfNy5dwzLjPWNEBu9q4GtZyyRgd5NkpXvmO11j7mTy75pVJ+OjIljl2lKsQDPwkL27Wgqz4mMtHc3j0w0O/tgJXNmGCl4y2Yh6ffe5slGv6iE7r4pqXP9lxhjoX6IMJX+tGlp7msmcczVjRyx69Snbay2JOD+ocwGOMjc4osdaWZ+btH/f27kvwoc4v9x70wuysgVuM4ILBsz37iF5thd5yFD8MMNEjBvSLI90oG+RQNvhbjOnAJ0birM2WcXvtcDjcur7Bhy/bavyKOTLwi4M8h11xD9J5wi5etuwxL8jhz086ERl/T9yH0fC4TpJ1LbaHe46/ebyXcU/jGs62ec/BiM5iQgfd4sUHWIsLXpgQmfLAvGIuH/GQnb5aX/d3PhgQM2tgPTwrKL5Ia8+i9JOnE5apG4/4iRd/4Ubh5oNC3nxY6VCi9MOuwOgDRzg9E9MHk/i7z8ifqYPv9LNTrPRh4iO96dGmAzY8SNs4+Ury4sDWXAv8+sWcjPVr/7Cl4AtP/qrZolfszCvZNQ9ffvIhvWScPbDRYY+5Ptin+J0z9qR1QfjoDQM8fMkmveV8eUdP/qrD1bNGuoyTZ5M949bJHuE7PfAhvMWXTudI8VwMxx+wiaF7zY9+9KP/2xftjAM8FyzAbYTpyL7AHOV8jtNFnrOcksgc84Dl4LXpugj4BixedtQOG4etg2cGVIDNK/Qr7CGb2Q2CBVfSLzHIlQTm0kOWrijM9U/VydOBYFaQBS2Oa2D7Ee5t+NJuuMMcc7htbpiQWOeDeSXftWHDE/Z0qc2z5QW6Fyku2m0IMXQwWmM6rJuk76Ju3pj6FIbssBseY7XVrWc42jD1bTS2jfO5i7U197Dn4REe1Jqo6e7hXF7B1zh9Chvsm+Oj3CHncBIL9vTlrQuWgl9u4ic3KX14kNoYKl/tCetW6fDUxy+XOiCMsU+Hdjmhrm1ejBxE4qBPD3seUPlE1hz/w2iPWTs1GTzTnsP03nvvXf8Q1UWeDXwOXX+uwm+feIAWR7UYm2Pbw4MbeNTF1uFYjhifa6CfP8XLGCqGbOPRty4eGu6///71Zzi8aJez9LPz1FNPrbUSg5///OfrRUBxoJ/t9BbLfH/O6nM/p80pY7xC38RsXP+UPlrNZTtZMvAbV/SLx8Qz2/jCFJb0xif2zl97xc2eHJDb8tdNhRckzlv5xh7M4aMDJjkTrvSrERlroY4nTGq6wpY/9el2QYfRHDvdFOjv8UtOjei33rCXmzDQoY/4ad3lQdjZaQ+mCy+sYWZfQZOnPl6Exzy5aMriSw+bbuz86Rj/+wClJ9nr1mz3jXZnMB/FREHms8+W/m7TGDnnmTiJ54yDdbBWzkA3+G6anDX4nC9u8sWZXrxk7cH0wWINjIeHvfrWQ17SW77BHCbyeMzRj+SzMXP0wMIemSh/s2kcLxn6jTenxm9eDPDo4ysPpz58KBk8xTnd5vHRbb5inpxSHPY2GWS+Yoy+fFSTQ+lkQyx70W4Oj/hYI6TNR+eBnERzrdIZJmvHFt1hIcNma4I3P+09vGEyV8HjPtA3SuSSdWzNrSf9xd4+dj4Yg9k1xjVFnx41n/hSXMjibX3odj7hFRcvjlsTcs4/D6p045l+wZ8de4scP7SNTz/j5TfCR5+6Ph4+dlbBxn/4jDfH5x4qyNpL7pP5RlZc2AkbP4oDe+yYV2B2HXef5ENzL9nYpcv5f/P4YE43HXJAHHphB3/3dXCIq2tF+911xcsT+J0DcPKBfgUOBJscgk2Bix+I//P5oA9a+caW37jiA1y+8ds60A1fha7Wh6x2a8TX1kK7YgwVx3hgFI+w4uHPqfUmw1a6xEJhIz/paX2NTXt0R/jMqfOFXsU+rcgNBR5xdQ8nVuJfzK0VOfrYbJxeBTWHj03UnL5Cv/Wrz6/OCrzhJavNDlzi1diss7Mmxw/j9OUvzOJIZ2SeXzCEnT0lfNpTRnuPffrU4Wm9yRc3cuTFXbztS37Zf54NHnnkkXWWpWPqvUo7nL4E9Oijj65ve4od+/ZFa2xMLNT5WW3v2N/w2yPWC0bxE6fOBX7Rh9/56+wVS2tp//uSDP70aiO1Zx4v7Ow9esQDdvLsFCe2ix0MeNNHV7zGrKWSrHnU+uNB7ChkI/1yxRgc+uyZy2Y6kjMfpsbUbMZLPmpMn5z4q8MtNuJnjJzCH3zw7ljwFXM2ERvFLNtqMXZ9dh0v3nLA2eyszSYd+Lsng806wOU8kBMIJnzyAQb97MKcr8VCX2HHfPEvL4ybp7MiD32Yo4bZfnHPiJcv2vBlS8569oTXGGw+zHGewQgLWfsNabs+2Bvh4aPCXzJ0arPDRziyCXvPuuwZzwYfkT4+8/QhuWyMLj6U2+Zgyn/tcKWfTPEwj/BUkoXbddVe5I95c/SQEz/PuD7Y1r8xXhDbl5677dGnn356vWinC59rvHyhT3zVckoM+UfWuFiwh8gpbBsTE7xhiU+ND1lrOejdkTz1J7X8eczOMD79/ve/X8/l/l9LeVlupZMNsYAHqcWwawG+eKwJbEpYw9M4HdYL0YsP4fPc2X0yO+bFw3sMJFb42GyefDqM012eGS8H1WTySx22/OGTthhpW0NrwS/Xc3gQ2eRrs0W/ot18/GyJAR/c96rxIONsKJH54mQsXuPWqBjT27UJP/vGFDjSazwSH9cbOUyX2LQ+xQkvefuTLjL5RUbJRjHO9+yEWdycI+LpbDEOq0In3fbR//RFu79Rk7NACCyHBAJAbQVVC2bBwqPPIZvJuL4gtAiSyCb0YkxtXnKR6Zs6AllwyRUsCddBQD8Z8vDh0bbwggg7HcbIKNH0x1iHMfzkWngxmGQ+0m5zwGiTsIvYgo3/JUjx0k9/uma925xztXcc7PJb3BA8/FYr6SQ37cOxk3l8Dh0vrT2M2RTGxMmhnX4HpBjz3ZiLomJt9OmnT3tSdsMjNuVa/OaMKZE2W3i0HRpucl28XIDlVBdfa2CDdfFmU9uGg49+8RKn8hQPLGpj+LXlp8OBr2TYcMHqRTu+8j2s6vyDl57WxLg+X2CnN1+tJRvhIINXXwkXnQoq3+lF9LnYiQ+iQzxgVpvv22ztGxcVa6emly6FTetH13333bc+9fO32ukwh79fT5MP8sOHMW4CzcHrodhLjPTRL5f4lR1j+vkULxtzrLzilzl84gWfbxb5e1su7MbI8d1vzJS32taN/VNEZ4VuRE8YktE3P+fITX7+KMj6hncNnP+IZ9c/deFJtnrq0CafLv38n3rtEXGydor8U4uFtXNTYb3o2X2jMx+yQ3d85rXLX+3yHX9kvFzPF2PtBQ9/Ycc3CZ+CkoUh3+UGm+TNR2TwlOvJ44HXOZ7eZMqzXU98MwZ4KslXx6+uTTe7HnL947M7+Tfae9HuTCoeYoLCqC5m2uEKs5qMvFDowY/yw3rJJ9dwOVTOOAc7//GWM2p66GueTnYUc8haOG+dX7BZS7HCS9Ya0jvXGD/9cjcbeNHETV94sk0f/cbpLR7mzSn0oni02YlfG38lPn1EJxIjY+bFz3g86nIKL53Z1m7OmHixrU5fPPXV9FujHiDIKOaQNn2uCeKpmHPvopiLT20uHfpsssEfJI50IHXnTP6TNR4Gcq7ZXvzaC84m665YU/6553PNpsuYODTuwVGbHgVeBS6FD3xTw46nXC0urgvlFX1s2TvFKJlws9/eKn7m5C3/Zy6ZR2py4qDUN6Ydts7j/NEvJvTwiT9dy9j0gJg+sWg9+UQ/Kv7k3W+4PrqGi714kHO99mCvFi/3TvquC3ThcQ13TUfGihv8YqAg8mzBpeSPOeNK8W3enNhZl35Lkm9IHPjVC0Dx9y095wgf6S8GU685uI2ZFweY7Wdje2ELn5IeNdvq1m+uMZ/18z05OsQW9jlGx5TJVrmQjWJkHs1+9vmtzQadeOSHuPDTPNvG6KE7wstm2PA2b0yJJ5nGk1GLjfUW52yoK3RqZyvZdO61eXbps05k+aaO0lGdrXzIlv6UI198w5XO+Ohkm44IL13G8Im3l2xyVY7aR+973/vObhxfeIUp2avW2b95/LDr8ccfX19csbZsyqNyDBb9ij5SuxbDQ8a5KQeS45M8sF7aiB8w94GjF6PW0j6nw163/8Ogdo/otx+NW5f/4+1OViyrmjaO56WcmjkQX8SB/UARex1YoGKHKDZFKd6F/cCL0YFQImKLLSiKw7yUd/+W+S/CTdb3mb6pAStXF80TEavZZ+epLIU+e5IPcKjxInGDtTG5xdO6FS842SWjj1eJiukcm3Pm42lcXf7pTfecn22YFPjoqh/u5MNGNx68xlqz6TTnHhPjyYcfL7K++Z5NY9PH5MTPenMu9lxk7clF31amq7yaE19j4qqWd/lnP+zZdo/AwDZbeBCf6VSMwSPfCL/58mvcvD7b1pRvCXuep1+Bi43Oqz6H0e2zJ4zFBjZryho0zlb24WGjZwaYkTvL3ajO7/yCjwyCQUzYROzTiRcPrPiNs4tfydd8b16N4CBXDOjRjl/u7DE6kXEYyLOLl4/G+e1ZRM4QfDCk379I81kX+Wa7ZyjPCuTd4f7112effXb1z+SSNS4+7Ljbxdi6grN49GxODwoTjEprSnviic9YZyJMntm8yLz77ruv+sinr7/++ujjjz8++vLLL6++R8k3tiswFi/rAI9YsWNcrGDSDpM5pF9dW47opgvFm141XiWd2sbFiSx78yw1z3889MMXNnVnGx5446XLezv7Qpxqq70Ltf7Jey6Flxy8akTXxAgHwgNLpJ1daxA+tvHTq1hfjZGPh/72hn3r+XHqgCVceCO624PG6DQmPs4Ga5Vc+RVTOOKDFz+b4k63MSU86c2mutg0Zz1b8+4rePhIXzFR20f/6ot2v5Uv6IACEfASany2S45xvAIheJwSEG06kxFIfH2AEEwvco0JChk8AmzBtakkokK3C0YAjZFlx8KER5+cpNKfnHYJ067kkzm21UqED9FtvrZFZ4Pwj03z/IcPHnbTOfXSh3dPxvFnbz9fny72ED38VOQrOy1I8dzrzAcYw5fuaovRpeC3kr28JieuCt9clHJk48HsAcy3zCxq8/nBRmTMHHwtdnPafDGvaPMxrGyKtXVjXh8+F07fhjPn0EIwOKxcKC4tcSCH2E6vXMkfTHim3Xxgi95iLDZeWrsI6UwHPyvs8Amxp7QPjJMTO5eStd76KQ7w4VHMsa22R9hlEz72OjhgR3jlRDEvz+R6+MbvIYVdPivm8gnOaTcb/q7rk08+eXTvvfcuWfZg6CEJLt/I8bLPh2JxJysXePjksu/QW2BPfuBjE+ETc/j4Yo6d/NVXIjjETY48OCjlFw9cxb4Y7O2Vd3bZZKv4y50YTZthLOZhqmY3ee3wVBtD9eMNR2ufXdiN4y1Gf0j/+Wdz+PKDnHH+NK5W2BA3/lkjSnNk9ueDOZSdP1v/o8dexYh4kJNLctphYx9vuZM/fNlJPx0wGk/35AlPsa+vtu6TNZ89GNhX2w97wksef/rYVPTDNOfoUyK8+ntc+mz6xZD/+Oyf+EZ7D/BhhYUv8OSDufCHuRqPdWcNiF/xqMZHV7Ez7nxWW7PkFbl1zuHTnni0PbDSH45q+rXJ2I+ww6MYTz8+OdSfeca3xzplsmmMPDv8aZ+zQd6+aQwGhYxxVEzz21h28kUfHwoTe9phhpfOcKn1sz/HydFpDNEd3saM4xE7z1fdjXj5Kyfm5VcO9PGSdz4rnd/hJ6utwNB5wZfGsyuWxpV8Z9ed7bmpdaPvLvJhzLgzAF41390X7nDUGQInbF4I4eE73N3D8oXM7dcMXChM7gZ+0EEnHeTLnTrf1Pp40qEPV/HjbzaSZQs+uO0RPObEMFt0i49Cvr44kMGfP2r6jHu5li945NKLBjWiq3ky9Il3f76xnLcO1J6jPdsdby/9vMzJX3rNs2994CvWbNOvr0Z8aI2bR/XxaSNzCn6xEUtFXJExOt3daiUcdJDLT22FX+riQEY7fPpTtpizFy5tuKwhhCec+viMsSVv7JkXb+Py4xlMm11xQ83zSyk/5ujA35h+/HTTYz5b8TeWX3TFL1YILzIO++TNjvn9nDHEBrzkUfrKpXlxMM9X82LHPh/oVZJfSnY/zMFFnmw2jKGwhSW/6a+QUfDuif69fbxkszV50m+MPjxiYB9Zo541L2wvq5977rlz+dMx8xvt1j9b1hFbsCB1Z4758MPiDOVLZ0AxgV9M+SCu9rRCxt1Apxd2zmPnIDmfB3wz1r4pNvT63N3edw541qCLDXJ0KbDpt87Mh9+e4YMxsu1N+MhYR+rsLsHxgxxePqXXdDLlSW1+YiC3J3zKtM8HRLY1jocNOqfd2dfGI2/lhw6yaG9fP134py5zYiWvXlo7T/Doy4MciaOcyQlZfbbERmzV8MOghE+b/vyGjc/FMKz48Zib+5ssW/YCjHCZh9Evnw6Hw3qpRi4daueBNeMFYmdTNZuoc0MdZvbyhT0v8r2b6IuA1qL7yjND75Lo4g8M8IWR3p4r8BQf+0xs6cQLb0RH+xC/NSvmdCGYip04KOLWPL32F5ly4flDDNnrmYiP8Hff4tVHMJn33sN+Zc9/jOpPp4oFez0b+da4L8GJNTn3Z3vbs5P4002GP3JANzJW0TfPlniUD+PG+Em/tjl+WKv9FQD/YtGX9PDgFQ9fePviiy+Ofvzxx/X5nBx5NieFzxw589mDSbEuEJ7yDGfjdNSeuuna2yQ3ZdkiT6/9jF9fnIoX/mzjS0c1fsQeHNOuWCntH2tBsZY7U3vuoZudKL3187EY6StkqulmC89p8TPOTjHWVtiC0/ptnaefnwjfHBMfNtKJh95+YWhcTvHYS9Y73elhTxsfG/aN0hqlCz+f8CG8YdDXZsP+IVeejNkLyP918K++aH/mmWeuXngAF+zAC3ZOqNF0sDaHBA4/hzrsW3hkbToFOWQEq3ljbPcwE184BNuLPJcMG8Yl1Tgd+mTo1MajmFNLbG39cGffGIxkG1PTaQypPaTAjjcZfHyGR60f4VGMSbgy9c35ZE6rySSvFiuFH+YUuvgpF+xVsqkvL/m5t4PPxeCbzy40uWDDASquZH0YMy4OyG9RHewuu+ymNz/hagOyoW9ObPWj/Agv211UePDb9D4w9k+Uyjmd1obLxMt2G9iYeRsT0c93G9BalSvxEkO28IpR2BqDR+m3w+bJ5i+dCmpd6dONDw666HZp+7aheLJHbzlcCk5+4HfIm3M4iK+6g5g8v+hA2h525Ia9Lm1+ir15l5/5sLnwPXgoeBB9xcGh5zfUzz///PoWbnHkBxviICYu0CtXrqy1IO7IPD7++UWMC95eZZscMh/h45P48B0PTGToIqdE6SAHb3FvPhl97YhNsgoZsvxiu1zhkVuFLBv5Alv45LeSX9OnbO5r+sJgLhz5QKf8xZPf9cns7ZjjR/EjI/d04Q0f2+wYSwd/jPOVXTV9Z6GwqekSV3qRMW0xVld6ERi+8OCHQfzDq44vG+HTL3fGrEF+G0dhYbd8W9tTZzE5zXd62DanhJNuMadzxhe/Pt7GybDphdc/8aL9zTffXH5PbPDxsZIfMCl4i4E2P8Tcvgt/PiSjj/DT5zxB5ukSR3l2dvG3+Ih9cSlXYWVPaa2WI/rYg4n+SJuu/MmHsIYt/njNNwcfTIjt5vS1w8If+hHcdBmDEY/SfP5kw/icgzsZeuxPhX9k2FX08eVzemGoTR4l07gx2NwFfqGrwCAP9pt2dvXliF++xOBu796kP/zZgsd5jMonu0r8YqPoK84jzxP901E6PD/5QOaDoucIa8iYwnd3ivsCL9yIP84m/1Kq+LgL4Wm9skdG7IyFyzgyZ9xzghoVZ3OIjLa48r9+8+niF0zWunhnm5x2svj4Z6yYtf6NtZaKNV3WpsImXhgR3Wz6cE0O4REHeRMfRBc9eMSKzOFwWH8z1cuQZOnLL88W7mnPc54HrBH4kJoe4z7AwyQu5I0r9OBj23w+hkG88wMvWTrSnyz5CN/Mo3EyFbr5WezE2lhxgAHe8JGjs/iQTafxCB9ZVKyyCTesZLMddmvVGravjBUHbZTcHrc5+tPXfLbFzTyiI6za+V5bjb+4kSFLZpapr/nyQwYZt2atcUS3gsQBmXeG0G3NwGNPKnjpqCyB8SNd5tkWrzAYkzc1W0pxESeybCtsFwf8+mqET598Y8a1Wwf04kHGJq7G2bG+1D6T+IW5b6F7Pp56l5K/+CM7/qayf1nuOZoNxTpyBvCVfhitr8byt5fmeKx7Z0H+Tn86I7zAkU825M2fk7qw/dIAGbfH/bkm5wmdSvcFHWx4Ee+MLj+wlYty034Pe/jZ5Lf5eXbzxxw92tlewLYfZIxZH/lY/NTFg3y8ci4WMx7pm3UYxZe8Plm2yOrTWXvK1sYDg7iWs9ZyPGHMP+P0sjkxasNinfmlqrjQKdfOM5/bzGuXp3DbQ2LbelcXB/bgzJY2mvGDLTLOLlvadKvhsT7ZxG/emefZ1n+C6a5H7Wf2rDt3uucM+OgxXkz0xatC3rw1Zv2prc++Ne89AOpZwbp1h/GVLnrhU6w9suz2p+fIFhd7Spz7XG5ObBSyxR+/9e+XHcWCfsQmXnbhtkaNef7y/iQZc16oupP5YL3g4x/dfcYXB338iD1fevOCUE68aNcu1mLkS4/+LIv3MWzgowMWuPx9dL/Us2bo54/Cz/IQfuN49OFTUG26FX28fLcG5EesnY+33nrr1T3NP89u33///fpPzcWDXHph4Gtj2SWnXR7N4wtzONSoeJFTEJlySVd5Mjb1xUdX/HKPX188xFKNjMNvLkxrYvthDDW/Oic/6Ldn1HTwTVvuw9wZB69Cn0JfJbtsGwtnffNk2VL06d/jDwMc+OXP+qSH//aFcSRG5BX6yOJTkHWKBx76qq2LnoP51vnvDGOPHrzOFVQcrJO5Vvhhz9ClHYWJDrFEbKQHfnvEOYTXZ4+XXnpp/X9pePlyFjrzf4bqf07nOEAFHFDAAl8QA2OOQ0hNDm8HgzYnBZ2Mko5kBEsizNGRHoee5AoiHNrmXMoOEh+S4CUncBanNoKLnBplV+LbRLWzhw/eFotxcuksacbplWCLUJuPZM2p+SuOyabbnDEyxVafHDzN4/+/iLwiJjDwVezpyn6Y0sOveNgqJ82r4Yjo7TLThtdhbjOIt0veZnDpk/NQ5kHRi2AYInOwqsNWbGCa89pojsHMpocNFxUfrRkv2D0c+vBu/dDNDr9gcMl0mZOBf25Itq0fvhSrbLFHpz6d5CPY+e6SMsduawqfAj9ZpG++w9O6MSZ3YscWPZViQFYbZnvBvH3FN5enNmqfwIuHn3SSy0d7RlwU8xe2B2rxhBE2/oiVhxQxYZc+OuiE1W8iH3/88aMHHnhg9eXAPD7EhgvcP1lTw0iP+GaXfg9Z5loDeGaBSYzyWV9+kuGTsqdivx+ffXb4E9Vngy/ZdQjDjIobm/jU5MSR79pi2DqY2MzBdS2iDx58SF+pT6d8ROkyH09z+ubVcHUuwEOHGIo5rHiyNeX5BA8ZeYs3u5O3dnU81WxYh9YOW4hu2Kyd1qi+uBsLXzGkSxsOshVj2YF5El/FDVmTdMJSXORZgYlt+Oigjx3jtafe2hOTNr2ITnrYDqfx+GE2jtj0gtGL9vP+0zFetHtoQfldm33+GQ8Xn2ErBrX5Ye3ra8enry2u2ohO+5VOc+yUZ+Plmt/67KevnBtzRjrX2KObXnGlLxz5oqaDTWX6ijds+OLRTpcx7e42uuwRdbqm3zNuxvGImTo+POyGK9vZxYv4PONXPzm1MfGffEv45Ee6GmMXLyoe+eee8UGPjLy4t83x137xwUiO2HMP+NBq7xRDcviRtnF5YkcMkLbxeIuXObL2dy/a7Xe87iAvfH2jHSY8ijUCS/cSXrjpli9nk2cNcVf04SlWbIfXPIKvuODDTz//G1+M2w92jMkD23TVJ2s+v1vT4pfPeMkhsrDDzTf9ZNlmI33GFXroU/TpCgud2nR5KTD3hzjIW7mhl20YxYE+OfCNOM92nVls4EUwWQPi676mjz/kYYfFL2J86DEXLjUeNT4+4G0MjvDhoTO9aqQ217wxuNJjXr+SjH5x5Yu1xF7n4Hx+SAcbF013UQAAQABJREFUMBbvdJlX6su3Pv2oXJCfdunCY4xtGBSy7WPz6cY/7cOR/nyRHzmjs7nwGKOrQiYMtcVezFE64J59/ijpyb/6yU0ssLJhrji0zvTZNGd9eE5G9JlL7xo8+WEMxcNHJWz8qK1mv0JOjODLt4kNf5SO7MFoDD99dLCFxDLZ+NTG7Se1c9MLRR/U/Umm9Gbvr9b0InvOM4EX7WzY42z0LJd9/jojYY6c8c5V+CvFES68MNsLcuIZlz4+s+Xl3YXtc4E23X2GcicXE+tYjNXOGJ/D8XXeFMdswdadqs0+ntaSPozWC53lgn/WE15j8FfoMQaTs0q7+KnJ0EteH148ldYIPZPIITLwF1v8Cvt0TBzZTU9z7Isjncb4GJExr2ibR9ow64dZ25g14P5unfscLF5yQ498asMHN3k56X4Jg5iZi4yXW2PkEdzFUT/M5YQO89Zn9zYc5r2Msye8YPWLYPq7k+h3b/gCnLuXD8UIFoUt+ivmUevEuPXj7nOHiQvy+dB91Z2VX/Thh00bZmvSL4noMqawbZ/R68W3WBsv5/yTUzVeOvigTseMHz59PpqHk144W+vuJ/Fjs+di+tqfcsgP+0PNrtrfaPdynU/+83B7txft5O3JX3/9df2y3F0OC530iacvISp90aBYi2NrP9/ZM0+uYg6W+Ok3hlctxvyFz58f9rxhTB+PPy/722+/Xf1FnjiVZ22Ffnmb8aa7PE4+snCbU4ePDrFWENvk8NCrkMXHx3TWNkcX/nKPJ53kzGfPHNnI+KR4G1ezERY1ksP0hClb6UtWbQ6fGjWm3xg7xRNPscg+mWKIT1/dM4z9oI3CVJyMwZ4ttf2Kjx42jMmPtW4t6PNTcU4pbMCA35mHxzgd9oozDpnHh9+dR2/68ktfzvjABjzhdR7Zh3i9aH/llVfW/5dGN7mz0JlftPuzEAAJTo7kNJA5YI7jUX1OCLbawQCwNjlFf8olL1hsFlA8SotCEB1CkqwNo4cEHwYddGQlwJh2dmCHJ5vGm6+tj1rg+Ri202r+wlEhCxNZc3TnN/3Zn3EgM7Gxg7c4nWa3MfrYQS61/lMrY+TFwaJ0qMKByFTYkU+luXDGY9widVi6zLSRHIgrOw5uG6YLwgtUl1x5WALbj/CqxSbb2Y9PnX2x4Y9anMNik/JJ7W8r+YCuTQ4euPjtcvEbW+uDDkQfPr7Cgehqk2vjse74dNoGpt8m5SM7+URfOo2xOdcfm+JjX3hhjcyzwR4ZpA5nff7Dg2D1oMI/OPB6WWHePsLLdn6RYVtfvF0Q5uWUnLiyab24dLt4jdHnwaN1Lvf+93CXJuw+sCv08AE2uLxk90sOawH51yfG8bDjQ7o58RNPxI8Ke9ad2MCuT7eHB/uML2jmEV6lcTU/FTbwnkbZxMdX+8kB79sOcmUeTrGTX301W8lqG2MjO2rz5sK7t2+O3fia3+sln252KuT3Jfvyww8xN0YHf8RRm41ss4uHXhQea6Wx6QObePaEN/vm9OVQXOFBbLaurD346FLjEefyFW56wpTtcNWnGz9ZPrau+KCdDmtp7pP64aODTrWSHfojY+bEJPtqOvjHB3hnjMgo5vHy3QtG/xnqeb9of+utt9b5BG/4apdz4/nHD0UskHFkrNjFo+ZHfXz8pLe1RoZ+ffdDD9j6/HaOkKFDLV/2NRlnuHMtu+lWhxefWKcjTLCg8vNH74+fZJNvnLxiPdDJZvtc31xjZI0p+a/N72JRfulQwjVtk0HmjUdiozTPrriIhdhM3mTgw88OwlPcJk8xF3f85Ixp55++/NPlAVQe2J+UrJqv83yYfNqTtz4b7mpnuza8PogfDof1SyfrBDak5rd71n2Bt/UpTmy7D+A1V8zzv/WI11qBB695pPbMyE92+IP2uI0ba9/Q4ZnCWM89bHSmJA8/mWSdg/jxGkcwt9aNtU/oUpybKB+LTX7Q1d3PR1g74/mEzxg+9vXxeSHn7FGngy1tJLbiLr5KGLXNwSFu1gk+frCjtAb5LV+tM3rZdpeSLU/xk0XqcgkvEhvj1qNaIRfpR8XRGuOP5xkkHp6bWrPwIfwKn4ylq9jhme3wGgsDeb4p9NBBl3wreCc/OTx4s60tXmpkXp986yB74iBGbOQHmX0fHnblj159POELtz6+cqLPVjjphkU8lbBq0xlf+uiCkS3rkf1pA3Y8xlD21BVY6FDTH38y8LDNJjvtv3TRCyd5slH69We8tOnjU+s5ebzsZNs4e/g9Y3mp6IP6ebxo99zsRbuXZMXcuW3/ZhNG+8ragIV/Cj5j8JPlk/U+13z8Ymsv8skYX/zLZZ8L6HAW2af9reC5NsSDHDvznDCO9vGWP1iQmj3xhFHbvBI2uuHRj4zhKZ/a7ORbfHv9xvG1jvTJ7oktNslnS3v2jaPks3WaLv7JE8p+eo2ZZ1MptmGIjx1tuJwB8kun/PRnOeiGQ67aZ/jFxXnnjtPGN/cT3dlngw48eM3pw6hE+TuxWyfuEfd6e9Ia8o12d4z7ydnrrvC+hm7rTt/ZoI/U+uVTHx51a0G7YszeE4vizH96090+LobtCZjZ6UU7XQr/xNlnwO7GsKWDPYQXFj7BbV4e2TTOlv0qVvr47WE59Bk4bDAb8wLenpYTefKM0d1Lvs+gbOO54YYb1rsPuH1b3Mt27xXM0c2GF+nOkePtT8DB4TM4vNpipK/Ij3iEnU74Edt8a63wI5IfBT+dxcA8ebEy7i72pUhx1xcn9n3GZr/4mUu/ml4xo4sMn8oDG9lXGyePV4EXGeebQic9fAozGbz46DGn1G6ezvIpTmGmU0lOTde1qNiqUfzFd+JIT7hhR9lUX4vIVuLBz27yxtnlo4LUfLUW69cma6/Rm790kTGnDlM8aiRmYmpeTvHry4sakbdGwogPkUXx4oM7W+WbHvcRbHjEq/PBnqJH0XZeOh/h86L98uXLRxcvXlx2wrw6f+HHmV+0+7YqIIByYgYPaI6Y42SEp745hNfmBXgWOmfJITrIOHQic/SxScZh1IvBEiNYPoSx34UviOGgg6z5MKqNIXzxNEa3JJVMfMbgk2j85jrczZM1T9+0Rc5YurXx0dFiIo+Mxa99LaKfLPt0uXD9ZpPf5MXdS0wHtXgaY7+DIqx8Mc8WnfiQecU4GQvfhaaN+M4+Yis8ZOhT6Ebp0d7HBXYFsTVzwYZDjY9sse3ic5H4pQI5tW+z+y2uDWnMi2zrQLEuHOTw8CEsxWj67RJzcBYD9mxQfrNvT9DTRvXwot8a51t+qPWLnYubL2T9cyl5kbP42Cm2YWKzGIuLeDjs4Au/3wg7KMyJAaxsKcbsDd82IS+ObMBA3ryYKV2GciYG+SVebHroIAsbP1ya9qL5w+Gw/rms2hjM8iA+LtBekPz+++9Hx9tlDwf/4fKQwxab4t+aoQOfBzc+scsWPg8JrXPjxSOecsxnVBzpNtb8mjz5IVfioRYPdq01eOEzxx/yeNgyRrd+OmHhu3lUnPEYn0RGSV4b5Yc4O+vMo2rrrfxMW+ZhCgs9xrzEsvaLB1nrwjoIA/348aQzfcnhaY5c8TKOJv5s06FtXcgjHMVNfq07fhrDV/xgm3jYpQuv8exlcw1sP8yRtU7Kt7n0adNjLbMvf2zX16Yz2/i1s6mfzclTrJpPh/6kZFqT/D9s++aRRx45uuOOOxbrtDVl/2qbbX+X8e233776wGEMRlRbny2xRdpKfNry0bjaWlBPfv3iRre4qit8NRaPvjOlM4ou8benFfadadZo6y17s6bPeiALlxy3VifW7JI1T6e1oYaRvBKliw5Y8LQui1W8xQcP+7PPhrF8SAe94WOrtaBtrzp3tBEdzh0fLsTGOFtk+IXUxs2nl610LKbtR3HvHsx38+TIoPLvnGG/8TV5Ml9M8+U0e/GzQ6dCzlpwrrlTrAHx8QHMfeiDpnm287n7yJrgEx3sIrLmw6E2Bo82m9aIfeZcL0/8ilfc8tMYngob4bZGYFPTf7zdDUi+8LNjHj8q3saNKZ2BdPCDHvadydZKsYG3AjeePmDiIctPMtpy6oxlKx/n2uMXPOI98emHxbcj3etzX9LRCxEY2HRvG2NH7N3lciOGxZ5fCqKf38WGHHn7e8YdP5yKNtvWAZ1k+Cn/5NT48NROVs1HseAPOS/a8dFlP5GLz3yFHFvm8kUbqc0h8uazbYxseuJTO+vkhzz+SvtLH18ydIiZfLGhllv5wRO/2JeTKR8Pe3ShYjnx4avPhn5xT596kpjypzUNp3a5zbf0wE9H9ukyJu/lHq9iXNGmB379fIyPjvIEv3YFHkU/LNmkL9KGKz3Jm9cWj3AYw3+afPacAf4M46uvvnpuL9offfTR9WUVNmC1h5wFYm1MHpwR7Wmxsq9gx0Om5y3xz5/8MK9Nrljp08cOWXrkyZ6jWxsvGxU5gMfnLWeD+M3zm37EnhLVnzVd7CNyMCM89CJjcPAp3LUXw/ajfJKjE5FT8r/aHD59cq1tvHu98aqTn9iMi4Vc0ZNteO3X4sc3JXz4mjMmtij/wlZu5UWO/HKn53s87gh3CTk46HQ+G+8shSO/yJTHYmYOT7FqHC4FhZGPdFgrcPj2emvUZ/M+k5KByzuJ/lQLjMWAPnrYts7s+ebViM+wilU5IkMWv6JNpzY99OmXezFJVs3P4+0ex2c/OWfptwY9o7S3yCNYYGiNig2bPpPyDx+dCl58zgY1vshc+daGV9zwwsWGefeq9xl0k1fDGka/yBBnc16yK4fDYfkCGzz2pX8hw09yfolnn7Zn6feLNBiskWpY6UD045dnNYLbOJxijfTlRMzLDZuILn6R1zY/46VN3hyZbDrjfB5nmy3vFMQgbMYUY9lkx3rJDvv0Kyh87ODJpjk8fFNq0xce6wSxx65xBWUjHGtw/GicT/LMvjF46Jt26couHu1sUjntmm+suNQ31/xiOvlR/oqVeM1c6cOJyNObn/rwFUfj8kpGCVtx1SfTnqSTXRjoUNgWE3uFXfrI0VEhZ2xSOsoVXZ7x6JcrMQtTe1TetN1rCp3en77xxhvrrzXQf1rMpt19+8wv2n2jHZCCKABAI05NALUFCOkDjY+DNm48zRX8kto4G9psqxUYOngFsoeLAqfPFh7yDiYHeQ/+5sJc0tR4JZKNeIyZQ2rJtrmNs+3wlJySlR94lTCTN0cOkTU3+WZszaGJBaZrET1iBxuM4nXdddetF86+NWzhOCy94HTIatMNj0XsIUA/n3wIgQfmYpFtfPki5nToa4sfkmO6kDltha58NkeXPh7tbGk3byy+8PKxy8eHDX8D0bep2fDS3T+X4hdMsPRPna0BsfBbU+Pwss2GvjWTLbkVKxs0X1r3rTUxwqemQ02Pmp78ap6v1qd498IYv//4wwvm+Y12+IsnXdryyzayl4yLCdvZcmnKM6y+OdA3sV3YbHvI8s1yPumLI3kFPvqMs0OHkm4yeMz1wpccrLDAhNg6bJe7/5SFTx5WyNBr7ckBfpe5tcaGPy/kn4z5RQEeOXLhwyt+cNFBN31wsG2ty4HcFXc1rGzsC3z8YRNffbrwRubZxNthL/7wyhn77JovB/xTWlcw4LWGwsZGus1PooteZWLRptNLAg+u7BlT02WdWj89PPMF0WOeXlT+vMCyBvGZI+/BUCyLg7qSHH3pCmP8+vBMYjvSlj9+wG4PwyCfxs2Tr9BnPTlbrQd9RBYedsmId+PmwqUdfn7RIwfGkBovf/BmX63AKe/5SyYM2vuY0JF9PpBLt3GUPNthSU4MFA/X8vPQQw+t/yiIXPLaf4fY9XcP33nnnbVGYA9r9vEo+nNf8CF+tsVy8horZtrmyKiRtvNBvsUUiQ878qvgNcf/ZOWV3bBYo9Z3d1e5VecLHOToSX/Y46NfXsPCvn2s0G1+rsH84HdE92n2zbeHzGvDjx/lrzm40pE+NfvThwvbP9l3hvcyEEbt7nQyfOlO1FfYxsdGY9lcYLYffOMr+dpip00O9vDDRc9pVMzMkauuvQbGD/rZlIdibd33n5g5M90bXrZ3d9i/7gP3grOef+3pcLVezLFh3Fh5gGf6Kc76yanJGMtfMrOdju4EuOlhw98uN+9Mo0NO3Bnk9cXWGH5r1Rg9xsUhu3RYj3Ti9awgDmy1l8TBPZ8O8vCHj86wmdtTfmY7H6vxk+eLc7pYGWfDOrQ2tHu2ptMeha27iB/yhT9sfOcH24gP+KxXdXnAT6eibf+waZ4MEiNnQ77PPZZcetgV73CSTy95xH9rUxE3MvjZsS7TtZhP+MkYR+EiozRmXCkvYovI5a+YiWUxWAzbD/phUdJpPRy2Zyw4ER5xbm/gC6t2NvJfHMUqvOnQp0vRpkMRhzCw2Tx/WufFCy8e8myzA5c6/Oll15jSesIn1mTUsFfMyUW8xsOcHjqNhTdcxrOrRvxIThv2Ch0o/WTw6iv6cBhrTjwU+6YX7T6L4fk7FIa+0e4Z2ZmCrCGxzz+57ZwQf7GypsQo3/Dwz1iYikV+lls28tdYOvDbzz2b6RczvtvbXrIa9+1bWOztnuflFOVb8dMPg3nj9PqswUf+WBN4yq02O+YUbUVeyk228NZW059/+uQQvmKkLWZqMctGcsZnvMinN13i4QV4v+TrzHJOikt6xZRs+6tzgH7+smU+H9NvHF7rwWe+vmSGt8+82s5wsp4d5A4OfbUCB11y2P5lWxxhMz9jZE5B+MmJFR62fIPdN6zdX/peAJvPfzi8JD3eXvjCZ07JV3rYLebswAIHu3jZVey31oiY+jxDfz7Rn2w1ffaP/NBH3l3iC2Bib877BXbw2FtskYdJrBRyxuvTK7d04FUr5q0BcYGXTT6y2Wf2xvgtZtmERY6N+wzaPqCXj2LvOdEXE/Aa81mxb7ibc24UW+eCz9aIvz53s+dLfwo8rQu2et7kTz6LCXt0IuPw47fu5n25XzfyIYZ4ZtzIm1OQvsJ3fDCKnX8xb73DCDt8bJCjU4FVnxx5OOmKph285PFNm3iNV8RVOx55tz7oak4bsYu3Phljk8iY55McapPJB/5NHWylVw23OKJ0Zy872TWvXSybx09P8cIjzgpMiIy2tYUmJm2ysO5jkBzb2vDTKxfkOlfoxJP/arFlT561W7v8nXrDby/AYB6OYkevQo8Cq3m27VP8+a9ND1veX73++uv/3ov2/jPUAjkXbE7MIGkLJmcUQRJUi4dzAlMR4II2F1pjakRnOhxMLgpByT4+xWHSAmHXhvcSyoHuAGCXHri0kYWFt0UVbn36zfPZIenSx8sXOPpQERY68SoRHbDRg9jHl25jEm0cj1pBtcO6BsePdLDn4POhSJ78+ZSbbrpp/ccXfmss7g5XMWALHoveBncII36bFy/+wcJuC3OYXdiLuXiIi3jBW27I4kHa5sKrNlbN9iTjCA/Sp9/Fw0cbkF2Xlhfr/swC/XxxwWRXLHwA9ssW+eKLWLQJ+WjM5lLYg0VeXWg9qIantaFmj6yanta8sXzDJ5bG6MBjHXno8AACy7fffrteNDsEUH7yj0xy8ttDNp18iPDy2SUp3/CIgwcFuWGLvMv1559/Xj6yo0yCu7yyy55Yq8uF+S4XsvzhH0wILnlwyfsNu3Z+wxnN2H311VcrDn6zbtx+lTeXaAcfWTgU611sw2Td2oP6ajnRLl/x8QnVFycFvxLxcb+PzZX37BRDstZmD0bk+WEvWEede3SkNwzGEBzwGZ9YyoMXT/a02MNhXFusfADzcMTO9IVOcaOTDPLQLyfGYLEm6JC/4lUM6cLHn2K3lOx+mAt/U2Qag9M6sg7og8k+7kEWn3EFqeHxACX/+3WKh37jyeb3vrYe5/ogO/EWS3qU9Fpnk2AmR/9eJtzJqhsrhnQj6wKm1j+d4iJGzgAflh588MGj2267bfGnZ3X+xg/6vWh/7733rn74gJ/efEltsSsO/JAH4whu+vJPbQ2VB3L6iH5t54N7pjMED9/LLSzFhhyd4kG2eON1FvsQFWZy+REmcq13a9h8PuGh0zko1sh+odM+1cYDi0JPfna28Km8LQXbDzJITUfz4iZexW7iDVdy9CriaJ+Ez14VO/uzO8paVuhGfHbG84stWM2LGSz0onCtzskPfvIR9mxr46W/c8CY2OHXnqRPByrWc37fLr/WejHW9kLKfSFu1kx3Fv/44rnEixu+sVN8xRIGtbHyyG8+FCvzqHhUh4/PsFmnYkEnO+kWCzz6eMTcB01tdt1XePiCp/ugGNPZ2iteMIirAp/c4+ODPt+9tHJW0te8OHhxJX4K+YhtY62jeNTZxZv/ZI2TU/jMtnl4W1v8iPCdRu46z072k1h55nK/2Lv0ZYPNqU/85ElhG4bwsaNPXzrU+OyJnuv0W7PhV1fSQQ++sKRTHybxV4oXfnb4RMf0vdzyp2J+2ixOeOXEurZu2KVbQWJnn/fhb+IKGx0wyIv9Yu2ZY7v4iSWdrVdYwo0fhQ+fuUnsTkq/mHRHiQ2ybmCxNmHAO+W14ZB/MYd/T3SRxRs/X+RV3MNIPt/yCT+byFi8+vSmG8/k04ZFzX96+FIOtc0bR8W9tnm24CGvjdgTI2e2LwD50zHn8aLdl4X8E3Yvxcp5+zvfnBXy4KyAAyZxD2O+4edXsdOP+ElWrmc+6WrPiLO2e7P8kKePHPuHw2GtC3tGPHwO9yxvfcttcRW7csn2jHsxFUt69a0JPHyFsxzRkR664bPu9ms7P6v5TgciX7/8GmcbmYch7MbwTczmWg/adLvLbr755vVyEC//xaFfHNMLq1iS4Re+7m9tY+WtmOGtsCMmzpaeteDr/QQ++1RO2XK/0EMnn9pX5q0v9ooHPjJ0GFMQXBUy5QS/vl+W+0a1z+jWql8A0ONzCt/l0mdVXwYkY+3Czg5c7IiJNlxswWqcv+GEld9q/M5Rxdpnj7xSrMizR5+7TaFPn9xPP/20Yi9efIBdW8EnVgqdbBpD1fTzzRpkR6wV+t3lffYnj9e7CV8044+9Aic/Zi7sKc8VdFgX7Wk28Iu9+FqrfDbeuxCfw9kUX/rpohvB52zxpTdzn3zyyfocDj9s9NjDfnFhjB/5LW4+k/K7MficC55P1LBEeMyzDTPd9Gmb25MxumcRI/uJP/yg37niGSNdYkM33xA9Crun2cFjXeGftmBF8JlTx2ccr3iL29QLE/7s4tWmT01PY/Tpex4wT9YYH6yBfEqeLXblBp86P5fSa/xIng2Yrdvk1HRV4MEj1tYVWbFjO1/JKGERbwUe8tr04WGzWNFpH7GP+Is/HrYqYSCTLXrEBB7Y9MXKnrAGnK3Fn3266HGu2A/2EF3WtLOxdyaw0AkHH7T9+elLly79e386xot2geOAwjkFYFSQtAWNcwLZItBHHBckckrz5AWzgJojr7ATlcA2PHm6s4lX8OkRXEUCvLxTJAHhJwuPNhJY9mAJG3lErzkb3OGChx90wyJp4pOu4qE/8RtXEBvx46kPB1ziDGPyzS/hkx98N59efltIZPuW93wB52HH5qWXHZuGPzY5godfx9tvmPmDp5yzHxZ8bJtnW2wceuzTbQGrET48amP0hFutr+xpL6NPfzmwWeXHRehF++23377i5jLxoootOG1CB7ELXa741UEcRvE2rmibd0nzQ47FAFb6yOCBWV9bLTbiaR4/yj99fAiPDe+C8nDAVv8LOB/p4leXKr30WNd8ViN5yk4y5P39eYcHufmi3UHDtsOob7Szo9A/ST7llo8eMmAR+/zGzxZip8MrH9Xy5DeCvqXINtwddHTDDD8b9PlWvwccL1PkQb780sDfk7NvySiwhS/MdIkjfdp0lh+1nDQW7rBO38lG+chWMulIN73m+YbHHpAjsnTxowNdvoylN517m8nC0ZwxeRBL/5O8PMKfPrHykqdLA/+UhxEvvOjC9i1Ze17u5N+a8OArznjwzrhNHOnNxr6ms2JO4WvrF3a61faqdQIDmewWZ1icV3Jrni481cbmWsBfKUf45aELOHmyKFvhNG6dwQSz8YgtVIzowl9JB3lj5uNnh7yavFoOtRFbYmL9+Ea7/1j4n3zR3vrZYyw+ctYaFT94kT2Wn/mtxqtuj2oj4+6YHvKNmWN/f2+KhblyKgfk2cTr/HYuw1Ici2WYxJA8P9ggqw4f/XjoRtYW3fYnvjDwozzGtwS2H3Rm1xjblWzisXbVUTKwhb/4p6d1ByPM1oLz1QcXGCvWM1vsOpvFt/uXbn71QVO/eIRl1vkpbnTQSbe8q5G4KeYm5vQYj4cMm8b2ZIyP3Sva7Ds73Vf8xWMftGbgkiNnlA/CfIdBPMMoVmyKD159POKAX40/Mjf9YFOfHEz5ojZOll9qY/YrzH5RKD9w+LDMvhiSMc4P/OnVL7ewmGu9w2iebm3+iJPnBHuIPnN0OfMVWIth8U4n2XwR4/YGvVFtOuFAsCuIL+zSRS8bCv7sLcbtB13uEs9NYo6sQR/SjRd/elpzeOjhb2c9PrrU04Z+a4ucPjn5Ni4H4h8PH+gpb9r0kcMHAyIXHjLFyRj+9rIXB+bDpF1fXtKRDfaQfrzi6WWLlyLG2O6MECf7XPwaE+digV+O1NaJZ3x26cfXi0/+KXQr2mTwWA90GBPvMC6gux9kkFrOyLJrX7ZW+GxtGNeOkqVf/HvpUuziU4s32fIGm7z6vGId6bNvTB8fv+jmE1valWybg1PRNl8s2IMlmWKIb8qZp48ONpG2cX15Mk9vc+LkuaZvtJ/H32j3Msy/LPe3lTs/rCW2wmwt2KuKeMEmXmp4+dg6LdbGZiz4oo8vO8W7NYmH73LafisG7LLvM5g1YR4+54Dz25kFU3EVN22Ej3zELnL28VPf5zGYyyusiI580oY1vxfD9oNcBO+ezLOvaJPXFud0spFs/HBP3XyKDz6ff7xw9nIQbnETCy9YOxfpJ6eIu9L9DQM97OKrFDvjeOSsX8qKF7KHxMy8fQqr3Cn0IFjtLWPmu3fr44sfL7sIL1wK3a1H89aAu9znFWedeXclPe5w/vPPeefzOb1kxKr4sgsXfY1pK/krTvwmB4+15fzsRXs+Fju4tZV85a8+jOL1zTffrHULj7uXX9rWM7t8UORcPukxro3MeVZtv4i/Owq//NgbYkGOL71olzP+ZENc+RZO9rX5WFyc4WGnmzyf2bZv5MAv+vyyg5989NmPXsR+X0TV94U3n8Wty9aF9SpPvT9q3dPvPQZMMxb4xV8NB3xIzTd+IXP8mBSvMbx0q+vD7bnLex/xaD2FjXz5SRd5+NjVNi5G1ebEobHssj0JP8z40iPe4pANc3yKj26lefroUWqb826EPTGnQ17lufymhw+KvrMV7r9CbBRLmK1VcYrCVAysRbHGi7Krpod9trXJ0MVnY3Sp84VtcmzSZz/p44unGOFF5vBbr/LMhjLjYB6/GDlL7DOxpzMMdOGzf93JdLXuyHhngp9eviDz8Pmysl+U+79REJ1noTP/6Zinn376ahAFECjEcI431nhBEYj4jJFHFomN2Icih4DFJrAcJkP2NL0dMvQJkiSr8QuQRAooHexZsMfby2O2BFG/wwpPtshnk11tpKZPsVD0YWgjsM0OPUidr5LMn+JWvMzjy07jdMNIZ3rMpXfKGMNPv42hsMeWC8Jh5EKzAFtc6SXHF4eEuLMhbmr/s315kSey2TXPnjizV9tC1qffBwb8eMyTKVfG88UYMo+yoQ2f8WTp58+F7SWhC8V6gddF4oHWeLrpdXl32fGhw09sim8507dZ26T6/O9Fu/UFD/3864AzFhXP9OMt99qKOWSNe+jiD33sumxdcGwXN7z0iqtcOfjM0bU/2NjC06WOz4sLDzkuJn26XYBeXosR/g69ciBf+QWvBxgHFMz8Ztc4zIhelI+rs/2wV/oncnAr/JUrl3PxUCNrRs58u6F4+Oa90mEIV/zaYSaffWP5EE85k1PUmtJOX2Ppia/1a96cWonsnX4bbc/x07kmD51v1hGfkgsXHWJJb2PxyI9iTozl4XA4rP9Vng36Pfzgod8vErNDJqK3HOHlj3UBNzJHjq72OkzZ1xa/PdGrIDW9M1bFyZh1xp49a51ah9aTkh6Y2YIhHHSQhzF94Sgu9gasMCrhVhdb9uxvfXrCTUeyjecHveKcbXbx6ONJd+NTPv10T/mwq8NJj9Ied855EL/vvvvWf2aEd+ZT/6wE2/4b7TNe9OGZNZvlBtYwaBsXA7U+/Gq+ymkP9ObpdcYo3U3J2RNyk7w2frqRdSMuzcuhteoMUjqP2CZHL3444KVP0W6eXvr1je/XjDF6YKUXGXN24NVWYApXPPjNqc3hhzM5NpX406UOH7utMTjse2PdZXRlmxwe/M54MTavZtfdH6aJNQxwaJOvFnNtcRPfYrVAbz/YnLoaV8NCNpvaYWzO+nCf+KBpnbTu9a179xV5+DtHy6P8w8Q+vfj4q9CPksu2/lxn4aODXkSWn3SqywFeZCzCYxyPveouE3v6Wp8+9LGbLvxsiC3/2wvGjemLAz+KBzvInPul5x16zNkHCh3OKSU/qmHUVuhhm35+ix3McGonY0w/zPjpThefYHa/mwsnrNpiPc9v69a3N31jTj7ppgNvNsmyqzRnPt2wKGQ9c3eP68PPHsJPBwxiaX7qwWMMT+PadPCJj+zzF7UHzLPrgxl5WJD2XH/F2nz68dU3LwfW+eFwWDh6TsCv7QWHMtc5G+aRmj7x94t3OUDGrD++55+6Nh728fMRdvzaxiPjCjvV2njEyJrvRY1xMaNTDUO+Fhf2UTiaz56aPP3iPfMm7opxtuTdGtKnL3x06huPlz7nGlzVdOBTyOBR04PEAq+irZDBYyzdxsnA2pg+PvYUn6v8a6SXX375XP5Guy/QeNHus5k1JP9yYa2GE8b2OX9g46txvsIrh/jNhdm8Aj8y35lkDG95WAzbD3o7V+m1XuUHL/9h64ygA29ngb1EJp1iDJ/CttoYHnXPjWyyU05gKb/a+Ru2yWceDrr5jSf/zUV4FIQHv5gheMI0sZqbtrTpVuDzucD/G+YzH/88a/uc40x0V+BLH138de+LGV1sOnva23hgM54fxuyjGXdjciLebJRT4+ToRvSUS3jxWQ/yIxb48McrzvCy1953pytkzfPVt/h92Yr/9Fq39q/Pc2Kg7Q5zP9BvLZPPb2Odj43BSn+xpRcWeBE+McWD4Mc75YwXb/YU5L2CM9HLZjXfzNEBe89Y9NEvl9YGHtizBTffyo9fLvULFZ+J+zvqdOL1otuXyuhhs9iqi3+xUSNy8mNPwUOXc9meg0vOyMIXbjX7XrzzlS6yYsxfMsfbezJf2rI+jZmTL+8M+uXIArD9YJM+dmAtF3JgvXYewCpe4sEGfPmlj+rzCabGOpvoR2pj/OQbeXamHHvZYUtJjg7zMPKvNc5+c2oye9vGyZHnO1n71Def5Y1N55N3LOLWHc5vPtGHp3hoK8b7UzjsIvL2xv6Zgx8KvPTTG/YluP1oXj8b2sXBPIKDrDg6N8pfY8bzK9x8MT9xZL+abnxynn/46W+f4DHXmkiWP+TClowY4VHk3nh955tckqUzSsY4O0gMyLEhf2qEVzEm9ux70f7CCy+s/y8Nz9St///RmV+0P/vsswsA40BHAEdz3BjeFusESEbQO3AdQMgh4MOWw8IiFhh8+KfubJozLsCKgBlTHFguK2MF0KUmIW0EdgW0QC8QJz/CrQu7Pn3qxvgHY9jChb858xaWBWusQgYfGSV7sBu3mVsY1XimnIXGNzJ0sKGdP/j1xYaOaW85sf2go0sdrzY9v/zyy4oNvRYe3EgfH91twuzIWfYdDqjYw11M6IDFGKz6dER02NzmbSiXtHlrw0taF7cP4+bE1gEFt5jhczj5ZplvbTvw+E4fX7PDfrlgH08xD5+14hLrsmgcZnPk6eOjOYUNuIu3GBkzh4yLpz6/FO0L2y8J2P/oo49WTOiwP+Klgw/s4Q8/ffDgFwsP9+IihmTEpg9F1oHYdHjTQSc5vGRm7Nmm10XiJak9Ze8YZ9PeoYOMNhILFF7+h9mYvMmfPJKl2wHPDzlUu8zp9yDmX2N8/fXX6yFELsWcLb6Iw6TswJNPrT+28l8b0aWtpMsYDPyO4sfDhpixgdQ+7HqorM0f2D08dsZ40JJfPPSoFVT+6htjE4Yw8kNu5VPsxNXa9DCER15aq+WNnmzBjeiVh/4cRfqtNfKwwJkO/HiM06UgdbHVz5/smNdmS7F2PJBZm+bo44O2/cUGf8Xe3lJgEGt+uxvYw19s1GywjV8M6MGDip82e+bJ4CeX78bMq8mmk224W8P0mLe2lNZJcuaSVxuHoRiwy47aPPl4jONj0/qxprxov+WWW5hdfKvxN3+w14v2HtyKd3Hgt4K32GmLe6SPxxi82rDbW9aNcfh94JI3PMlo853fapQdY/TQgcyLjdiLiTZ5fPDLpZxbO53PeLIFlz6d/NtTdtX5mEw6+AJP8WGnfUEOFqV59owj7YiMYowNhY1IuzWh5ifecBvThiX9xtJDXhH31qX9ApsPcNkiO3Gxn550ZZ9M+RB//eRhUcKSH9XZED969T0b2Et8c5c4x7ygdh4Yk2d3IR/I0e0ecL6p5ZoevDDmk7GJJZx8p8PcPk+Th4+ITbpRMeA3okfbPL5sq437wNqzj2cU9yvc5b01KBb85LNCF1va5Onij1oexSsZd2N9/ux100sGP73V9MGfneySN06XvYuKpZhp8y9d9OkrYbLG2EVs40V4Jsmd+88vgv0y3TqmP7vJkaGbnygMavjDYP+7q4zxgz5+mFfwG8vHcOPXxst32PkqP8bEmB/G+WYuW5017nOy4WOLbDrCyg6+1l8xhY9+a9/LdrJs9CwFd3ex+LR2+BIZ44s42Uvix67iXMTL3j4P5Nm31sJHhjx9qHG4wmxOCXvnOz/IJ7caQwec/KGHDXjLdXaKJf10wU5OO5vadBh3BotPPMbZoE9bzLrn2VLgtncVfPSxmw08/EVsts/J4VeMK/jIpmfGiT7j9OG1njxn+UbceXyj3Yv2J554Yr1ot4/dr0rnAv/ZlRfzSJzgbX+Kr3lnDKxRPtZX04GXvFioxZqfSF1hW27sS3ulvlj6/IHYMO45Xo5gk0v82vGUL/bws8FHviF9cSdjXrzZIVd+jLcujIcTBn3z5c6YgtjcE7ts4DFPjr5wpj9Zc9OOec9D/mM9z8DmfanKeehzgrgZY0O82XMXuiO1yYuX/Dsr2I/YVMgrYe0cw2dPiDE5460Fc8mZ69ywNlof+YovEjs25cT669zkm3MNdrG/sH2m9edcfeZz5iBY5N+LW2uFTWPFAH6kn29emrs3nJFsy3vnBH6xhpMeMnisK/icVXimf3whoyDzYqyGWQ78q5Fs0EW3/NgT9JKlx5i+cYUdBQ448aj567lAX5x80clnRnGBtxft+nTC4w5KHg+bcife5vCIszvJPNz8haf8iaMCA0ww+mzhLwD4gqL80Usf3Ygu6/J4e+Fu3Yi/L8D5wlv//xsfy5HP8HCKH7vq/Bc3tuksNuzxER85c4q20vm9wGw/+IlfMZ8ebTrMazsD2Ed4i1V7io2wqLt39+dE+aOXzs6WpXj7AR8f7Glt69u/PJY7a6bnPzkv9mywDxdi3xiCnS1rz1kJLz77o3Ujnqg4sV8s1JFxMSGvjcjwCZ8xc+wpiH/WVLabw6eUT74qfKQzOXrxiL1Cxhg+/GwbQ+atQb4bR/jCZiw7YoTIikl7gw/WLZtThxi19vlAJ4yITrG0l8kYLxbppc8YHmcUjN5Vvfjii0cPP/zw0kPnWejML9q91QdQUGweBJiCOKlIACcLuPnTwBm3CDlkI9NNTkBtXIkXYEkx3qJcxk5+CArd5iSlwLJtkwkgoltpseJ1OLnsvAxzgJujD6nZlIyww6ufn8bjw4viXZ3Rl3yFP2Ln8IJZrNILb/bpwdMiTW/z5JDYiJOY8Y9++XGAIFhbrOlYE+NHMc8+HezIC1n4GtOevuIzZ1xb3NVsKTCFdZi82sQDYzx0GRMrl7Vxh8+dd9651oQLyuXgooAXL3v4PLT88MMPC59L4bvvvlvj5uDgC1tRdtXyWunBFZ91IU94wpoudfbTCQsyXk0vYl8xp2jLr3zx22/OXLz2BN/k0G+QbXoY2IND/JVpQ9ucS9aDjgc0bXzljD0HjQcWvA7V8C6A2w/88LaeWqONm4MV0QE7UntQMNeDjb2nkJl2yBU768Wf+7n++uuXn7CHi0/k7AO59A2D/pWFX6L4pVlYFojtBx/pR2KY//yxpsSCT8atiy7BZMjRwR/zk2AhB3N7ubi7aK1NPHzRdtl6WFHE3UOy9YQnHXAh8WCzuBSjcLGTrXCQ067o4y8G+K9F/LDWnB38zGc1OVgU/UlyKYZImx9yAEN68sGcteABTht/D3V4kNx6mFDCywft/BQja8J5IKfswyV3CE57RLGfyPKvgkcbPvbSbTwyBhPbSjHlG5v5gN+ahql1XcyKBVun2aBzEh7Y1WyyT5ZNNryE+af+Rnv3A0zsTwoPTPCIt7Fyxk/rv/0tFvaU+IsvIsMP95N5bXKtnWzqK+ywJx50mSfTni12M0faeNn0/GBvyX+81XS1NssZWXkzHt7pK1l9hX78xsJNzvozF15+0K+EEz87rSn9cC3D2w99MuLEnj7fxSJ/2NOnq5jhm7qMk1OyQw6+a1GxV6cLBniifDCPjy+VeE6rycm/QtaZ6Hx3Bng5aD/b1+GFlW0vqBXry53inG+P0Zlt7dPIuLVmz+IVt5mPZPKHfcRnNo3ToTY2c4LXWOMwy5G1wBZf+SiX5uCwLt0F8kCXNe3cZat4kgsH2+bFR2ldwIhfLDxDsutswlssYEbFwPkLB2yIjXKdTDVZsbKm8eSndoSHLjpb1/p4Paexl75kqunuhYnzhx13o7hMG/inH3KH2OgsYZucMeeOGMOE2CdjHja6xH1vQyzkIp/UvRDC71/e4aHfMxO8cLvLW4/swTB1w6HAAYO1wW/yycmdeXaQtoJgx5eONTjGxTEiL+ZqvpKzNvAUD37RbV4RQ/sOZnLzjMVXPPKDf61Z8+0t8/QZExe46VSyaSw/2LXvrVky9IaXP3TBDb92pE2nXGjTia840ME+O8bEWQ0D/9SIDtjR3m9j9MCFz7wCI7zpMI9PHx5Yk6NjEjxy4wW7/0zNNx7J/x3Kfi/affmEL7A6O+Qn38SZXZ+hzVtr9ofY0QODOblwFpMT0+KmVvhmneDho88U7NBFB//KeXEu3+Jv3ftMxr6zmAxb8LXnjdkb9pTP42wisVUQHlQM+AQHXjj5FQ8cxcWYAhMeBLOC6CkeU8eaHD/goDfCSyfd5Fsn+PTNs2EcTrz8xS/mxrTFUYzEJ3xs0AGbs+hwOCx+PvHVt4zFiT7Ehniazz55fcX6RfYHW+zibzys8qWEgw448RrLr2JJj33hroPR2nCf+UxhvSvWDB3WkBzTz9fj7eVt3+Knh254FP3WVfvKmLYzmO/0wIEPNvPx8BOv+KWzuLCNYIIdiaNxsdEmY5+6y8qr9yD2m88ocoAPBjbpzg5+viDz1qf44WktaLPvXu8zOj7+9GKbvnTJITvm1fw1JqbuJ7rYgqt1HW9Y+GcuLMXGS2JfClAbu/HGG9e37NlBbJEz5w7snYovYGpbvz6H+xIEzMUdJjIKP+iBCYm780rRNk+39VDu4IahuGpXlpKTH+lVF19rkJ/IueULEOLkvIPBOeOdn3yLmzUFd7Hir77CpnG6lXjYU+CTR2358Es0vouLc88zLP2tuxPYf6rYQHRYG/YP3NqKvNInRnj5UD7DBit5fTzt/TCbw8Nf/uGTG7Fxxmg7n+WEDMpX9sgVEzliX5yNq72PQ2zDzL5aH/7OnjDKO3vm6EXabMGn3X4sLu4zZyd76ZZnWMQmPvN0ywMfwq6mV17YpMOYZ2dro71hTrydM84s8fjPf/5z9Nprrx099thjCyu/zkJnftH+4vZWXzCA4SCDnFEEiLPG2mQFvaQBHQ+g+ATJ4vdBhG48nLZwBUzfAsDrQNJnAwZ6jesLmkK/DSDQgl7A6XZAhpk8mwLvoLAYwqRmR6Ef5ZdF0mZkyzw/lfhWY/uRDrJ8sgCNiZ2kq+miwxzd+UPGYmsBkkP4zfFHTcbG5CsSE35aLAifuJSDWc+2mNGF2DJHRzEzhoef5sojvObUxttk8YhzPsJbMY/06YJTTZcx8eq3hb69e//9968P6g6iw8nFvhSMH8fbBf75558vHV5Qf/HFF0tn2Log2UITQzm0Xhw+7OOTo3zQh638i6s+zEg7Kk/FzXjrUxuv9WzdybHY+s9KfPvFHPs2u4vMHoE9HOT5FOFX8Dg0/M1Ov4hwiLDfOmXft8r8YsmYFx/0kEX5IS4OtvznS36ozZMpHvriJObWEAzmrUmFb6h4k+MTGfN33XXX+ht+8MFtPe/JfxT76aefrl+kkPWfQbmcW/fxF2M42298lFdFm11Y+KVNRt+cdkWMJuGhl4/sWjP8pEcsFTz+o1IvST2gOVvEW9w9JHtYS4/8ONvoyGYxZVu+w4BnPwYbzO1JehE8yiTyET6x6UGtPc42uT2e5IyTYxNpK+WXLMytU7i6IMUMX7nFA4f17xx21mSbn2yZp8Ne8EDowaC7QLycj0gOewg2Tk+y8oX0jecrH8xlkz3+Z5uMNjnYe0FgHAZjsNFTnhojQ5857WtR+UweH51wWav/1Iv2d999d5057MG5J7jEJf/zo1jJYw9m+Syu8uFMm7lr//NJu3jQmW1zir4czByKgzn8aMYKP7vWkIcia8haCHe2yMFONj14Wu/mjWeHXG18bJBH5pLlq7PbvDEy8qdMPnPFcynZfuS7mm0yYkkHWTEWh86q4sIHRKaCH6lbP/rshlU/IofCQC5/a7en0w0Lfv3G9Om/FsEsf/YLcrZ3vveQ7zmPProU2Jzt/gm1eHjR3n1FBx6xVLSjMOnD5FyyRo0XezXKnjZ7fDWmhlU7vzrv8ImRs2ieeXyUI2tPbvjLx55dyTnffOCyTuiwD9o/+ohevOzyqw/SvWhvDjZ6ejaEt/t2Hw844Sle7OzXJ70IT2vOWQqXvjqMUz9+ONqPbHm5wrc9kYNbrHqp1v0vv+JXDrKRjLqYwC5OeOlin157UDzKL364zDeWH/lLjh54jWXXHe7OYsezJpuwusvlGH4vROwHOvZ6+Q4b+/TC4HySf/JhIl/sZnzpxGNu6tfml1gpdOsja4AOPhQX+rXjwVfbvmrf8Y+/9FXwka3gYcOa1Sbv2SVf2PWsKtbmYc2eMYVO8XaPt8fwwEkPwlc/7GHmH91s4Su/xvV7YUKXtUAPHGQivNapGhZ+8BnRS6faGJ747KF8mnzG5IL908i42PoCzeXLl8/lP0P1or2/0c4XeKxhMe0MMc6uz098cE9ZtxOn5xlnCx5x4Lt13p2mbV/hwctXLwbZoEuM6COnLZ5stWbkgQ6fCeixdpB80IGXHH77w/OxPUaGLfr4EQ8+cuWHPrxk5do4Ofr5Q7+1A6NiHoVPGw8Zc3jTbax1x3586aePTTzGzMOr4J9xKSeta/sGPrZ6Xgo/TBGdns8vbC98yy1+d6O9Jr7sF09rtByEWfxa/8508TJnnP58FpPw5RMc1hW98cbHP3z0OCP9CRQv3PH7/OoboD6D4iHPZ3cgzNaXb0Q7960jcYARHz9RfOWFXfsMPz3a1l048OFpzWnDLPblhQ3rkEy2xILf4io2sBnzOdxdRl6ufIbz/4ZZa3jpgYFddqwBvGzwmQ5Y8JKHwZw44OOnc1DMtPHB7AWwz/tk8NOj3XpS46PDOwovOMm3Z4sHfXDJjzFY4KLTGL3myboHFP1bb7316HA4rBzsf4iTF8e+7Ob/krOv2fEXA+AWg3LJT+32hjb7+mLvM2B3rDGx94znXi134W1N06FE2nj5p+QPn4ofO+JsHznnrBl2/JKATX33Bj1igozxVc0GfObEThvBpsgD/fjE0Lrhn3UiVs5qZ5r4J6vOj8bSyYb95HlOnpDcwtoagYs+PiM6YIFR2zhZJczG+KRoZ5ctaxAeNuUkXeKJjwwM1rviHFG3LsXbGSVPMChkFQQ3GXVY8bI1/eAjbOxre1ZiF4mzNeUeYq81TB9e+pFxZ5C8q8MPL1swyIu+2CDrgu9s4MdHnzNWzR//8uONN944evzxx5dM+Vudv/Djb71ol2gLUy0oUUHSL8GCzfnIOBm8wHJMMHvRIqmInGAJKmpTkpUk8gJSYgtoC8m4Bd9FQUeY20B0CbwL3ot+CYMJHz0w0EO3cUVfQsjigyMMLSy2ELl06Lfw6aFfstV00WGebmQMHx/xsEVXWBbT9kM8+eihQ00PWRvdBkcw8pksohfp42+c/nJFr74Lhf3yBZ/4I3YQPiVd5st/+MnjYVtJNiyNGYeHLw5HL9jJavvbdh76fBByyVgf5Iphm8hvW9lyOfpnTnwPo3bxDHu46dLmow3NB7x8EP8KObx0yaE2n4ujee3kige+xsyzRT/c9gB7/ikZX9nC0/pkRxyKGxsRPfmAz17xgs6a4As9Cv10OEA8sBjzsgOlF1ZthbwaZnUxVJM1Fk59vnjxzWYHtj2otK7YSraHFfO+Ac53OuVWjh2A5PjGjn/G54L3AsZe9cDpocRaJ0cvkhcEJ5/Ja7sYigef5EM8tBXy+LT5Yg7PpGJNL334ET4XbR9IfCOCD841+9BlLu4eLmFnS3G+WevZMVYu+SH/5T47fFUQ+2EgG7VW0tt4NRn44RVjtugkl99inp5008f3+tqtb7rJ0MMHlB17VeyNyze9bNJj7bcHkjdPlu7y5jJUyil5uYdpxkr+yNNNh4JHMS63c85Y8WTfHJzkjJODo8uYX3zgDx786Wi94kFhzb6xYqNNP5vw4zFXfOn3IO0b7f7FB8LzvxCs/nTM+++/v+JOHwz5n279fCIz80zGmD0uDmIDt7hbq2ryYcVjPhkx2sfFXHFhV0zUdNCvkNGfc+TEroet7qtiSkcEk3FEj5KPxuQSBsWcmgx/yGmzp6SLbfPWFJn8INu6w2M8v9Ixa76Jy1xT5O0LPuGdPrE1Ma/O9gMfOSWCFYYoHjU9+ZWccfhhivB0JpovF+SLsfFJ8bmzFX1nuzvHmefsccZbR86A9Kh9EHJWsuPDl/MznGzgiV+fbliUcJB1dpRP8uW/sfitL3Jq2JA5MaEHfzFp/caTXT7QT4ez3wcD8sbkUIE5XM5+eyP9nY/pc2aKkfjEwyYcdNprckKPu5pcmNRst2/0+b/3yRg+vmuzY604V/PZnPHiSlf87Ctk2fIiDh52kjNOl366PX/Azw8ffPXtI3Lx5g97KOz5RJYM6g4xlpxYs9cYPxX64+GXuKP0W5Od7z5E44G1D4s+ALrL6c7HpWD7oa9E7CVLxn4uXnhghI9P4TU+40pfMTHHZwUumM1bs2o6zMFGB91yE+Gni8/yhGDkLzJHLxm8CsKTjHl47YN8wce31tBeNvz0uEfZwwMfHfCiYmBc0aeTb2TpSY6MeXjU1pAxpRjgJYOKQ+snP8zRj5ee+uQUfjpH4qFHwR8Wctp7Mu4c8OLx0qVL5/Ki3X+G6k/HzP8MVf4VOYITZn1nCB+sQXdk/sEpD55Z8YiJeOMTP2eVM8Cad/7gxeOziXWDT/yS4fvMj/ikx/7GDw+Cj6yC8MHWM7J2sYy39SAPzcEFJ35ryDhf6S0O4WCHLmSsfPGJTGPm8cWrnn6Ro58ta4wcwkOXmox5BS/MahjhFT/4zPfcKwYoOTVcvYwVO/qdc17eyQ2Z+MzJuZqtcGgriG2YzeFV86cY0UQEaBQAAEAASURBVGcesU135yCf8CrIHFvOSi/WvWh35/HLL5kvbC/e9OlRyPs8LlfWgrZ73VlKp3mYOofESimWsOn3PETHPB/4oA9/9zC7MPJT0TbPXraKARnxoRf5/OzZ296QP2vTZ834+IG//BcPemFWiiefjMtDuTcmdu53uMqnz4veR+EzTk9rnn/s0EuXPWk/0gW3+MDDP3EiKwb4kyUHS4WsZwd7Ca9fCMolGWtOwStObNjL/kW5X5TIofz5BYSX7WIDnzUAPyx0FuMw0GeezXwjO+9VMjAgOlrD9CO+adOJL1v8gbk9J3/WoRfKzjr8vWgXczETb+PsILqm3uIIE5vm1YocyaM2W95hsG19sON9iDO0tbwMnPIjf9iQ085kesV9nhOwhc98svAr8g+XOO99ao0YxyMu7JERN3FuDyTLFjnF/lHEAD/ir+f6eebClbx90r5nky1+ktdW8lOt4FeKG1/wWzN0wFkJH53GWn9kxMb6gFnNN/mmFy8Za0ahF5ljW96sEX74lwp+UX7x4sXFA+NZ6H960Q7QNDjbHFQ40mYSUGOoxUzGeIunDWfTIcHgqMVsozgU6Ew+G2o6Spw+ObYVc2SUuYHZYEtALWaJ8MDWBzs62COTf8aQvpJPa3D7ke1wsongkExY6AuvOTrNzfnG6WMHv3jQQ7eF56D2IVZcLCx8fPAbRoeffj6Tra9GYWW/OeN4T+NvnFyysGhHdOnLhXwqrZV4y0U4klGz4aK+5557jp566ql1KPPN4WzORsLng4vD3i9J+OyDOb9tEHFkU17ZTH8+Trthgtd4GNRiToe5fOYnPmPTLzaLgzq/8dMl59aag8e8zS2XsDfWGkkvufRqwyoGYUkPXebgUsSXLQeMfjEwzic6HeYe5PgBWz7ip9ehhvCTM6+mC0449CNtfqCw4FPkD4WNPbwKv/CQMe6DiYNN/l0CZNON3z51EPqFypUrV44+/PDDFWs+oTAVI2Ns0KOEGxZxlid6p//pIBvRoeSDdjZgZ7/c9BBBp/ixo0w79IaHTmdcH0Lp4qfL2llkjaDsadON4MjuGth+0KecRnTQb82QU+hgo1yT45Nirj651sHEUlv+8DuPnE/46eCn8Zl38UgvrPrqMFgHznxxseetEWR/w0yXX2IUB7WY9SDAJtvInLZaDopX4/nIvjmxUYwbU2BIX7r5jcyj4qAmmx3riV/GxCR+MulXJ4+fjcPhsP4DljvuuAPrn+TWwBl/0O8/Wv7ggw/WHuK/Mtd7Y+HhQw8v8sqH8myOP8bIGW+9t6/4QRcbznD5tD/0850bsKHG1Mg4G2wZy04YzNPFniL/MNg3PSgtRduPdOLf+y23dE0b9DlHkzMPB3+NwZAeffNR7WSN1+aPwqb4WGti0zmID8ZeMhdzY2TUeIyn1xjKbliNtbfwk1dPvv0YmXiKt1iwYVzRzne6jNGDYOOfB3DfBvGiyZy8t6/Mo845Z7p4ylttetnt/Asn23KcXbZhUYzJUXnSx9tdmAzbteOFCb7WVljxKfaB2ryYsit/CpzswGifkKUXVnlV9M2ra9PBrvMu/rCpyZfr/A8PfjFVigH+KFv0kylu9OmTUejhm3FxUiJ85hX6ED6xFgP50zZPv0KnmDi/PZ/y3Zg5vOKkTY+4eYnhF+fm4CCLx/wkWGBQ8GYXBvcC3PTGZ56OfFWHIb3G2FLLWbEiB0f95OTeelSne+oiYy+3dpwfPlPAxw5iiw/6dIkN7K1zes2JjRjzgwyCQyEjVoo2HvL2TvjwTcpuuTBnTEmvtlzC7w7nTzE3zk7rf2KjE2561Iisde1Zky7yxvDk6/Sbbn6r07EUnfyADbGPL13aSv7mzxxnhxyc5isnqlfVXH7os2H94g9f8SCE17iS/XSyb2/6TwfP60/HeNHun7B7/rXO6C9P8IZZ/szDLU/tjbA5ozxvksXDD4W8defZyr/2NmYPKIfDH38ihF65pNPeo7/9ULzEyLiyzw0MrRNzdNgj7mvrgl7r2N6Bh232WjN0I7JzrfADP95r5StZcp3JsISxOPCDHqRtHh4UT7bZpJdNpC/+rX36+Ug+jMY8i4ob4qMxfQWf3NDBPv0w+NwrDnjZyaYaXmNK7aV8+6HfmDMjfXSWJ3Fny7xxmOi1HvhqvLvGC0zf4PUnXa1v5zwiL65q9nw+93LWl6R8nulM4yOd7Kj5I64oX8jXpw9P/DMHxhE9YoyHDiXd5sWF360n8/Tgb93pi4f94bmFL/rWIztqObBejYdDTTf+SJ8eceOLtpzWZ5ce7zHgNOfOtL/IonJJ3pi4kUP8MIZHO+x4vLR358BMN3m5sy5hhEExx4//8nY3LZpVVxvH66PcTQgkA4k2omlRUXwJUdMqKCqCE5WIL0HiJxEyCOhAwaEDRcSBIL6gqEggCA7UQX+UnN/u+jfrOVT7VHXaLNi1z957rWtda+2Xc+5Td1fD4L88m1tfgPMMx4ZYH9YsfbWXlj6DK74AR/jBAx58vMy5gpcxPnBxX2hOq8Wm0C9O81QcatgKLPMmBjp8lV993m94+e2Lb71Q9o7IGSrv9qRrvHAi5Z1v/aSYtOUg0S9Gwk5e8Yo/XTzw/CWBQ9h6pxemmGDJNyw4Ckxxu2ZLx3V5Ml8wZs6y0ydPzn7fZrdv9Sn2jjktp/rYEdhEnpxJcouvfn2u4yVP2eJdHoqzeYKHOzv2tVtjfOtnp/DVuoDROxNrSRuP9gMsHGDHR9s1PaXcqmGzpcO/fc4XPb+AeuaZZ9Zf1YBbTlyfRq7pRTviyDQZHEnGdF4beYtPnbAVmEK0YbKH6XDoBQocxWLwTSiHUMlgAzds7bjpo9cE8RE/iW4cdjdAteTy7YZAx+TRsVCyiWvx7Gt+6fLHL9EHS01snLhq0+cH3/Kj1tZPl5h0B4k+i11eHCAOcPhs5PDS9idU3Nji0EHKj0Iacw1vco4vHSXBx1hca0+98HGWzzaN/uLHc+JqEzow/bOzRx555Ohvf/vbipMu28a1/bZQnG5SHZgO0eYKR3pq5WpiDDbdeOFArBWHj/xNLNfWL1+kTY6fMbGzpQNTP11r2+bl083UgQhbjtgRtT52DkvzrC53agVHOMa7MfMTZy9p+EqKTZu+teOwZMMffuUBB+ustnjoqPm1p9VxLr/88ZPQU+QnXWOw5NX64B+uXKnlxJ9e8c90DodDUKuGIT559MLw/fffP3r77bdX/tjxdZLwgYM8NrewxGztKHiLQ//kOq/hkH0f3/XDaG7Cgl2M9MoXTuXYXDjj7GX7XIy+2dnDKZsKXHlgW5/rOOA5Oa6B7Yc+evyWK7rKPM/ppycW12qlNU2n+NQwzCtdDws9YOrnjxgXl3zP9SQG+YETvgcBOYElH/gadz7DFL/rRNs+UtPjE26YbMyDOPUT7eLTpmsu25tsiFpcFfauJ++leKzbOB3S/OtXxFg+G1Mb4wsPMft2if+A5Xp+o903UF5//fU1B3IuX3zzqejTVogY5MR8mgt5xZ9u8ahb3+yM29s+OBMx0TGHHo6cWexJNR2FwMhGu7zEK47pwLCXza0zSO388zCNv1zTZUfimG999OgYgyUG66kYcKCjVtjSmVzgkIl7uef/4suh+YXnTLLe5ESe2yvmxf3Mgy89bb7KRbGXEz715ZvN5MLWuFyEYdx1fctg/KDPzl6VC/HqC5vv/IaZH3E5z/xHvufPn19+xGcN8Cd+eD60+iW5c8G89aDPT/7Lc33FWHtQXpiwyyM+cgeDTBvXeIsHJhvzwEY/vrjmL0x41gh7vhRtedLnA2S2sH0QgCsncMsVPsbZWwPqmVt41jP/2bnmg17rxr1anzFzkrDBn65rY/IQRvHEgV25lgP6cGGEQyc/+NkfahhyUO7Ms5cxnk/xS9gqRC2XXsT4v3WIHOCVzuo8/lHcxcKXPn6dN54p8l8+mJY7fQodJR9ixt+c0dVf7OWufnbizR4eYePaXM/7B15eesgTzLjIp9jtK32dXeEYc58sp7Abcw1Ljq0pXLTxYsMnO/r5Y1Ms+lsHi/z2gz84xBzs1yz71guu5RpOcbGFTejj5j7uzJcT/mHzc1Lc+uPlunjFAK8iTkUO9dGj3zj/cMRUoa8PFqGbuN73i0m/mK0LEubcp3T0K3gUP32c5PF6/umYXrT717qw3Zc7O/jkHz97zpmDnxzMZ3N5s3ayL79qxRry3Omf2YvLvLHxL4z7pq+2NWYd0O+c4rdnWH7LzZxPHFuf+q0F92p7xNpS3A8UIv/WEl+ttX2utZvH1gVsHMyhPqIWI/3O6PTmHPInR3TFb/3gmLBnh0/CP12FrTxY++VUPPFka5/yabx90dqGiTccOcVbLDDUhD94SjxnfPUZL4f6iqu54VPOzQkerXc54MvLcnHiIR7im+u33HLL0f3337++GNULO7FPwffrr78++vLLL9fnGX5giX8WfRUcxY6LawUn8bIRD1Frs+u6s884e/wV43D0iR/PbOShvOszz2L1r+j5hd/asEY9WzrTW8PlET474rrzjz/xeC7oOYCOfQPL8w8fxt0vvecyj2KLM3tSPMbkQ0lHTPrlII7iUXDhGz/XFTHYf2xhlUv/seett9665lnOEuP02PlF3Icffnj0wQcfrL8ewDee8XIuKfg0L3TEpt+9geAnBnNgXD7tdXVYzYGarkKsJ3ra8tyagSOXfgnklwbWKz9y7ZcC5g8nf3ufLls4uPFZnl3LDb9ixpHo57N5qS9deuW+ehme8COf8OwjmDixKx+4hePaeWssf/gQOuVBH92wspcja6wX7frF5lncnFqX+QsXN9f2gzNAbvMtN61XvJrHcGsXp/jce+DRYR83fq1HNeGDXrrG4OkXg18E+VwK25pu/cEUt3ksFnj8tPZhznuXGNmJQbG24FlDTz/99NGf/vQnEAtjXZzyx5lftPvPUBEVABJqZBEkxoh21xJQsoyVgGzpSYR+CbTBHOwmnsAysRZgNy19MNX8E3gwFH3G88uHYgyua2O48alPPCbRYusFjkmS8DDhuv4lwUmhl24LLM7FCy/+anpsGtcmOBIbyEEJx6EpJxaaRauPncPDCzrfEBInkRuSP3U5UWuXS7qu+Y4vHbzo6VNbgHToxpeP6VM+5c84PcU4H+nBgiMexbWD8cEHH1z/RFLMdOkpeDgk/RM6h6a5Mn8OCOvGnPFDl2S3Gsft+utTs4GtxBOWGNQ4iF0hYhAXwXlucPrGKzjg6CYtH/DNo0OLrrXHLx8wa8Ok42Dgg+/yXtu4azYEjmv7CDbhL8m3m7oHQZh80i02PBzGcAlMa7DcxMeY2Nip514xxj6ee135UPjCN/6w/H08D3A+qMuTmMsXHIejf7Hx2WefrRs97vh5uLD+ixun/MIQE3w+FXo4K9rGzFlzkS0ceQuPLlHrlw/XbGHoE/fMoTH+xCzf+YuPs82Nwx7AVRx+iWR9yw3fdNVscZy8wtE/9ehMG2PlojE1bjNuMSj0m0Pt9Njoh6Voi4uOhyjrMk7GcDZH1qVc5DPb1g4MPOSjX67mx1gP/a7tp+Zh5lYf37gQ/sqZ6ymtiTg6b9pz9PTD2l+Xk7Abp1/eXCtTxMZG3DDEgTt++VJbU160Owc99BI6/43A7UW7c41vc4KPMfgznuKQE2eFgrcY6Cszx/oJXHu0D4X02MkjjB6ysp81+5mLYlbDr2gr/LNv/u0Va8k9wlozJqYKfBg4JnQIPDitRXtVHAT3uQ70lSt2JJzq1bn94C+e/MpFZ6jafrHv64MnDi87fMObLTs4RLuij77Cbzq4stFnjcdVm23i2jpUh9MYXXbWCD6us6cbZlyKSy0mL2Z8WPWiiR0b4hpP+1eMXq7Ls9yLVx1Hevyoiy0OdCYubLrNVbbZ55sNYY+rglu8w5cXxRis5h8ejvTk1v6oj671rY8tG+eJ0v0g3PzwawwffmAUf36KyRjR7py1buo3li18evy5JtZE+MVdHGpjyknrzXg4dHDtHIFt37Arr+5nflnavUA/PhOHvpeH7ufGta03BX6STRjG8qXm2z3TPMSxXMIof8Zwb00UB1xzQPQRuuzkSSHxsx+amzWw/aA/51obL+eQ9b3HDYs9POcNYYdf+cyu2rjYzDtecIxl03Nm+tXsssVdv7YYXSvyALM4jCXWETE3ck2X8OtajQtucPFzH/dB2Fotx3TERqezJRwYeFTrx4EugcEGf9cKiXttPmahX7tY+SDwZw7ypRazOAh9RV9+6IQr7kQ/P+53vlF5Pf90jC8h+eWUOerlnfOG4IKbtnuKa31y5trcqq315lhb/MbEZq16zvL5yv4Wh35/GsoLK89l2uLtHmk+tfl1/sHXLjfqBJ71rpYnGPy0p2B52eleQIeo55oo1+yVxDVuJJvG1GJN37yKG1Zzy0ZbLhpnY/30PAGHjhK/9MXNv9z2mcUYW59PygNbMU9frs2TgiO/bMPky9yEgUc5EUd69etTSNdw6cFmy6fYzAG/uBsPj61+evaxX7QY95LOvzz2bOqLceIl+CnmEJaY//3vf69/geGar+ZFHHHQV8GNrYIvLvBdp88XThNDm198iXVYbLDhyKcCiz5dOq6J2jsgOr7RbQ3QTZx7xs1nuVcr+PZsS1/bGigW14r8EXny+c7zD37OSnvMC2hcxdYaiLM+fONcXHimYx/Zv56BG7cvncFqegoe5Yc/dop4fZvf/Jrv1nHnxSK//TCfn3/++dHHH3+8/iSlHMCTH9c4sTUncOVaP1/6e9EOTx894zj77CBWXOTAvGir9VWsWzZ0is0YDM8fh8NhPYd6l0Bw9gtE82f/efaIq7rchAEXt845c5Y0N+nqpxtX/Yk+nEj92jDMg1pxZhsvVzgp+7ibf3jyQgeeAk/BJVt6BLYY3TfsZ+uVDTw5986heYinWoHnfua9Y/cAPOWxuM1zc4IzXBzYm59w8NMf78vsLu8/fQSmQoqt9Q8Hh/lskb480ud/4rOZxb60nxVijI2YxCEPMN2/faP9z3/+89KDfRY584v2Z4//M1TkJbPJn8nQJ1CkCVIFp911euo2kEkxaW6wFrR+WDa4BWhREG0T3gItqcZKAju81PjyA19S1fotOMl2zY4//um4til9EKRDwsnH6tz9gKUQPotTW+yNuY6fPtf88IsfH/r4NOHEweWw1C8XDmZFHuhbIA5XvB3g+iYfbXxI87C/bhwXPtQ4wGafvn489LWxXNMlcPQXy/Q3ccTkw5ibtb+NBtNvyv021SGfD/Z8issvETxoupnwQdoYeNLjQy73on9ywZeePqJNR3EdPh6KfKbbXNI1RsQtZpjstenrs67Mpba4lfRhkPTYkriYY3PvBiU+GAoOMN2s2VjTDrQONRj2C5vWAix6xQKHhDexi6t4jMHS77qcsOe/OLTFNtv8idm6wg8OHR8M7Tt4/Njr5h5vum6Y1oabpRy0zt0U/FIJjhum36z3Nwzzq45nnOPJt2s+Sf71JzjLVfmClz396cc1fX5wtzfbr3w40+xPHyL4YB+GfLBR85V+51XY8cxOmz8CU2muw8eJwNRnnA+1wp6duIqtuNixgaGmZ6wYPSw5i43pbzw8PmFquzZ31oBY9fOvlhNjrmG5gfbbam221oj9nw/6+cyHsT1n7WxgTcEDh/rFVdGnlB92U4/d1fxlV+7DoB8u7vZ73PWbF7p42QO/1ot2a5Fv5xseccIPZ7E5J6qtS+0ZjzHtcltemysPs85l+GLiQ1zOsGJtHcLRl8SndvPMV2sq3nHQLybFmVhsHvzto/Dlmy57otZnPfWgmD9YZM9H39U4izUJG++KPJbb9oKclCNc8LcnzBPfM8fTbzHxlw6fdHBXO0PpiXnGzYZPOoRfthNTHxw1oVtu8kff+vDw7gO4M0+5884710Oq85uOeDzMy7M58Y1957cYYRFzxlccXBvj13WxaSvpiSs9OnSVpDH62Vl7nbvyoLQe6WUDT8kXTNj02YvVWHrmtrzmK7/Nt32QjjFF7HIhFuuh+yQ9e639RldffopRbYyemvDfmaK9zyHOdGBNEbtCiqtx2GxwyA9d+701p91ex2fGPfnRsyasDXjuj5651fZiHPjmiw7f4jAGS76sqf3a1q4vvmrxsFVaI7CV8pOfeMsPW3h4Wb/uR/qmwMCpGOnjJi/5pO86iWdc6sdzSrzV/PKhDkttDZkH5wc8fvXlHx698iJOsVkjrf1i56fCTmxs4bLPzhge8tL6pWtveD6YH4bpyQd+BJ5Cpi992nCUOc63cfEn6cFXwlLTxbnc6NPubJ024dUnFwrJR9jpwp/5pVcOnYm+EffCCy+sL5CwvRYpB/4+8sMPP7y+iSn/nr34cF7gLLdio9+zJ5/anSfGrWvzTcql+dIvFvvRZwq1vMGm77OaZ3G5558+n/ktX8VfblpveOBDn8BNjCnWhv3fsx4O2sUDkz3b/LAjYczaPoWpb84d2/Rmv+uw+BBrnLX5l0M1e3kwB9Y6jnTU7PCUN/z94kIu2RUDne5BfMi9Ei81KVY6csk/UevjozVQH1t2ZD7X6FPCxgVmfnEyLi4v1Q6Hw+LrJbA/BedzjX6fx/rPG9l4xvIS03+U6bMZfJ/t3Oc7F3BVykF51Ec/zmo6+nERm+tiN8ZWW0lXn2JuzYeYxE6a73yyMz/GW8twrDe1F3nZVNO3ntjiJW66xs2jPabfON/xKi56xrWNw+ocklffFIZJ2Cra+NVfTHgbN/fWmxo+3e6pcsYON4UO/3Hnp9xbo+aQPV173S/WXJtv+77nO37tKV9w9K9rvvnmm4Xj3ZN/nSZP5RdfPpo/HD0bOLv0wSLyEBfrxjyVN/3NrT6FsFW04YpP0XY28SGvPQPLGT/4KfLUnpQTNtZa+7ecsvFe0n0fF0JfrqbomzHFNZ50zUcxw29eih0vnOSvtUo/f/RhwNaPm7jkmeCkyEdc6bJX64fhunE4fM73DQvs+AddNtaEfeEdDQ7WQO8aYZRXvMtD/swFDsZwNcd86oNFb8YohjjHJc76vR+QP3nSzzfscOgotekocqXwKV75a4wfcbRO9Pui0HPPPbf+jKvxcub6NHJNL9olSDCCy2EBcYqkfgQJPYEqibF01E0KbIFbzD2005UQCbUJtE2yjW9D6Oc/f3FSl2ScFFwkNe5sWpR8xCV9PBwchK6J1La46ORTnS/XFYuITXrh8KWwIdnKUb71a+OELxGrA4p++Yh38ckffnKqpJuv9MqTftf7AtcBpTYvYiE4FQ8s8RlrDvWFFQft/NisboDmzjy6WfsGuxftNjE91+bXITjx+HYD95Ldfwbk4DNuDssLPjDw1p/gQDc8Nd023V5Pm07rV775J+LnQyHFGfZsG5++5JL95Gc8Me4Ayre5xIG+GOUvv2zE5WbdDcBh5iCU3/TY4A9DDGpj+XW9b8Nub+CLl8JmHz/d+sqzPvpy0RjfMHHsoRSePSlOeq11e52orcP+mZMbJow+vFl7YvNw99FHH63frPugbm49MMF2DRsX+Grx6sNXrRBj8aRTvuSMrpj4dF2BWS7DkXMP392w4ZonnKxrkj0frvkTmzaJ78SmR6aN+Oko/Bdb13Rdw1Nri4cvtb7ikis+YOULHh/mwp51TbRd5y8O/GSbP/rGm1/9hC6f5gkHfOTNyzm+Wgf2qX3hYRBGMcQTh3jAzb9r/cnsx0EO1Pob045fuNmr+ST5o9t1Y/rkJpzmIB9qsSvZwKQHy/rxov3X+tMxPVDxn/Ar/3IuL/jjUykWdX1sJn9Y5tF8mi/7Wqz01TAV4jxzTvEFh8B2na/VOX7w1VrVDVOZHLTLKxx7Trzp2L/afWDSTx9u50PY2gpMWLOICVfFeFJfbdjGK/vcyjksPOJiT+DT/LCFS4+kG5/61HHBG/Z8wBU724Q9fX7iqS+JTzxwIObQOlGsVfv13PZ/q/jP0TojfCvKuDzzYT2YC2vCL8l9AFfsbVIeZoz6lHjCqbBxLU5xyRddgq82u+ZD3o3PdmudT7rKxEh/gW4/2NIhxsTeGV8/PwQvUg7VxspbWPnFVy7YmbPucbhV2HRtDtjKgX74ruNvjG5xa8tLeovc9kM/m7Dqh9WacK2QOPAvfrbGemanw0d6cMXcM1+86eCn5oe+NeIZuy9RmFdnSeuWzowhexhw1cqUeOsvDhjynG795kAfP4rciVEtDjbmqHUctjHC1rUSZjpq40prA/+pN+2NhVU8xnGXc/zyq9bv3OgzQGdItXGFv7lGYOuDAXPyNKYPF/mtrQ9WNuKRO/OkH7590Uvgff6cAUR/Y7DCU5NyU6yw+dI/86OdZFs7DPysJW04rSvX054df/mME3/65JO+NmlO9bkm6Yrf55m//vWv64X73s9SPsWPYvKFkkcffXR9Q9j9U3FWeC42P52DIO23ciTH5kMtf+r2Lc7iYq9P2/x4TvW5wvld3Px4GagNz3O8vY1f8c8YWxdqhZ4Cn5/a+Lom9IzP+4bnvuaJHR1ccS7X6q4X0PaDDRx5Cb8xtXEFJhGXkq6aDzU9wnfrvDzMF1B08Mg3W/x9dsUlHP3mQeFD3mAbd12JEx35Tw/nePPnnKLL3lqHZZwffuWU7T5PdNjQ5wMfOj5zebF+4cKF1XY/8jev9+vNOuk8vLT9OVe/UNAHU56cl+YKJv+4qXHVR7TxjL891lrWby2TYo4zH64JPQUWf3LFF/9wSZzEqhjnxxq2l/Q1t3JB4OuvhoG3fLODrVb0K84WLyBdG9+XYo2v8fYTTsXEl7HWumvxyY/5NG6s+zDOcgWjcTZ40HM9SzkTZ37Nf8/L5pqtfe5F++FwWNetWX6tLb8AJN7J+HMs+Psc7kuR/syvfOgrLvbi5V+f/FpDavzER/imk7RO9Iu1Mf3ZirO46DVHrmsbpy9mZ5z1yk7BrbPTtT5rgo7nE3z5wxOHYtLWXxvneMx+eHTot4bw0odThY351TYGiz8FL/b65VYchA3uCj/as7DhSx8b2Nr6CTyi377hP78wva/zfomws078soU+KV41gYurvehzAb/WpWdFZ2J7097DF6b5YuOaqJXmQh9c91bzYt3AxZWUIzZ40I0PPTadhWyKmW04eFnX7HyOef7559cvuNNRn1b+qxftCE1povQhblwxARIoeJJdtT76ArK5LGQHlAm0EGaiXCsSbMLVJgU+MUbghclvXCS1xWM8bjAUAqMJMiGSrdbv2j9x7UDIn9jn5BabDWBC09PvugXjuj7XLYj0W2D66YmTbbkWg5y1YeiUM3zEO7m5ZiMesedbTVfJN10fnnHgg40+HMLRLz5jcEm16/jogwPfge0FkhfpfkPu2x533333lb8Fxj+/MOVaPPEz5lsW/saW4oCEaZN6CFCzI920cGUXF3HDVKwxxTzRoUtg0s+u9ds4HWONw+SXHWGbuDYuV4pcsJMPcxRG+nRwIjDnPqBfPOnDy7/rXnhYz2Hjr/BZLK4TekROSD7cBOSULl72jrrc0HNdmx4OCsFLTorXuBgcunjav2zhNm9sw2TPBw50u4FYQw4/v9FM7E3/RPHTTz9d36rQ9vLdh3bzm5/4w8WnUiz8ixvHcoa/cbF0AONG4OLOrjzSgwsDlmt9rTnc4JWnxmFNn+GHqy4/7LXZmmu2ydQPb+9PPzs1WzlSOh/1hUlH7uXdnnVdvGxar2Ksnz9zLX57EUbc3WTZ0ZELZ0hrxc24/yXeWacfD3o90MMJW8ziha9PPgid/BnnixRXsaUf9/qX8vYjW3qujc99Qg+2MZJPfTjlNxw1nXTTXx3bD/p8mJvD4bBetF/P/wzVn47xn6HOB8Z8i9Fea91OznRmbvAstuKhr9hj5th90ryxkwuSHT3rgq/uaY2pjbNTZhuG/FunxtpXrvFvPunBYNvZxUbb2nMueNCz9pqD4qBDYFt/9nf7XRxwFb7mHMc3LnQI3Lhos9mvVfgKn63FaROmXOmfejAJnSl0+LGnxKQtd8WbTb6LcWK4pm8MfjGZN78A9UFMcU//wx/+sF4q9UDtzHa/9q11vuW65wX3bnNgXB9sXK2/cszGWaOP8E0PH8U4Xp3JYqNjXui1T8s3HPlrndSv3Zyzc61WOiPrUyvNvXEccedb0YefdUfwUOBlB4MuUeNC6IhLbt0jcU531vy1FtiwLy9wYNJX6NHnW77gK3thMzmVY3p8aBOY8JRyqt++ag3RZRMeDvJkz7MjxvXDS9g7O3xglzP3FmvEeVU+6cCPLxwY7jUk33Ki0GPDXk1/zgkbfelM7OKEk47zQKzw9O1LvOKhjZ+arty3HvQ3hoex9OufOs2dPvOpJPzZC3JmTxUvG7HlF749qm6seGDhpj8eYremzR1/cmLezAldenLCpvjMtf2fH7jpuSfgia9x58f0Bb+4YDYfYnZdX3mB3RwY71oNNzEmJ/pc90zR+ROO8eyqyzWfzbs+7fyxz38YYrveL9off/zx9WWjni3Ls7w15/ybAxxdmz/j8XVtXrWLURyJebUmPHPJDz01G5+12Jg7L5j5x0Vfa0ceFOtCwcu85c8etyYJv64VNvEx5lo//b5Ao5+eNSguMeIlptrp5Dtf/McBH7ysRbwJDLjNLf+wCX3CxtphY0wevI/wecQ1buG2tvD3y8POSLhyxl9zxI4PRU601fjQV8u366mnreDSGL9iF7c+MWqHV0zasOipcbJujPu/Ve67776je+65Z/UbM9dybJy+b7D7LO5lm3z0r5HChC++1puY5CAeMM0HqcbTGTbPpO6D9OLMB7zmU5z8qPWJA5aiTbd5YavgrI8dLvrg03VNjLdeW0dy4Dxsj6lh0BWvZ0u/cNBfvozjYVz++FNcx50OTvHApXjY0lUbN6fq+o2xL1fFEJZY6CowZ9s1OwWO5zPne7kWh7XnZbt3N841z4CHw+UX7+Il1p33d3h4f+PPyvhc7lnPPOAEkw+xy0Xzwk7+8CPlqfir9cMvr/TFaE9mp+aHGM+n+Kxhe4lfxTz5JVh9bODzh2f9+HffYkeM802KpbHVuf0o1zgoxcdWXrXpGAtLW7HeWg/hqfHjj76cw9BHzI0CHyY+cFq78YRrLFv24YrTnLZ35A1Xn/89l5onYl84A5o3c9K8NE/mmS0M/joL3VvaL8b5xgVvNaEPB6b9Zi7KJzwcPR+KUz8M/fRh6J+lfJZTeGz4yR9O4raecPGNdi/aL168uHTgnUX+qxftHJWMgsy5NuKKwASjRFDdgspGkgQn+b0cS0eiSQvFInJj64OIZBB6cNgpJX4NHv+Q4PhZoESiTQx9McFR4+zagW/MAvGfjHZo6BMjXRw6OOAr9LM9dr8qvvhMb47xB8sY3BZOfuIkPvzdkORNbvBR2OACQxtmdvpsIosJJlGXM7ra7DxQ4UKXTXzU9PnFQZ3NjAUGvcbYmTd/g9uGPWyHtA/n/pMBfKd4KPHN9Xg2924A/fM0H8b021h9ixsX4jD14IM/v+LGVRwKPTcS680c0aGLM59En3yoFWPKFLg4wBBr4+nrs+Zg0ptzkj94+uWJLn7xsIZgGE9n+ndNF096boK+VQibwCR0FP3WgpL/sPkmxSyvCj1jDh45LE4xEvYEvrF8hhs/+tamA9NLW3NkTG5aQ3TKHRwY2avtHXPtP0z1N6wbl1sv9j755JP152PsC//qwQNgvxib/PkQFz75gw/PA0QPlPWJrxyYE/6MKXJSzPSMETmGHwYdGNnSiX91XIwRtrMPhpJvPrqp5IddeOayop/Aw0v8xujaB+Ky9opl+vABQt49aJm/4rBPFaKP4BMvul4a6QvXjdEZyjef5sU1caabV2cPMYafOo764XdmsBWLPjWxDhW2hE75waN1Khdkr786j3+ULzXbzpg4T13+FL5aW3Fgr5+veT3tXfMhlnPbN4R9o/16v2j3n6H2YCyGOMudte/+2v0j7nuOtY3jqxaTYj87W53V7Q1+ipmttrWhiFW7kl7z1DrVJvLXeWHNueafnhJnuYapj4015Bo354J1qM9Ya4Nv8wZDP3x7Qp0POpU44wUDR/tbv3YSj8kJF/r48yFv2vE3rmgrMNrr+eEr/XxV6xdLD/PZqIlxMcIQn+urSX7ib3/2DGZ/27POZGu288E98ccff1yFPXy+1c5n68M9vHsnrmzViXNHH658xxmGInfsrTP5My5n5kdbLW8wrW3runH9CqFHYJL8uf+xbTy8MKzdPiQ033yIk38itwqhk97qOO7jo33At/wq+tPXT3DQby3EX02PX4VOvuCGbR6aiwW2/Zg2xWls9vMtN2q+4gtXLvgyF+WveuYLX2XGVAzFBoete7ba/cEHYeuke9N+rcZJ3vnTxh22Pnytj/aY2HA1P/wR+s3T5A5PoQdX7tjNWPWzgdE8wNRnrByEkW41m9aTPnoKvOwbzxd8fYo++mydZ/aWWHE1RrJrT3j+YqPNxl5U86mPfrzMsX3gvtC8y637Phs48kvwgWHfOhfs3daccbzYqPnwnEUPBn/wmzP65Yhuc9H6LdfFRp9v4+UOLlEr+uEQnL3ccX4QOMa7XhfbD3bNoVp+6Ik1Dtr0wlATefCi3Z+O8aWi+tfgGX7AJv404pNPPrmebc0LkcPmZubGuRQ/uuUy3s0lHbzKG0y68tLnSzrNMVx8nKdevvnMYZ7h5p+9wkaxXwgd4lnOfpM3Nq0J1/HqbNGWc9+OpYcLbP2Ktrr97prAap1psyl2/LWNi1NN+LT+1HDNN108m2OxyAv+fMm9z5ryIDdwjeOKN3HdFw/wgk23fLCBr1bmOrL3cMCpz7TpL/DjH3QI/O6JrvWrFSJP+S3/8MhcS3fdddf6cwl33HHHyolxvBR5kTMvU//1r3+tdanfs5W8yCFMenjj4Jo/c6+mY93oJ2oYuNNRl7/OhHTKlVpfhZ5r/szNPOfFD08fP/jp024N4eHauDE41q/7D1t9fMqh9d8ctv5xZu9c8Z7C2Uav9dn6kxP97IzxA5ffGVt5aZxuc4dP8xbvxvPDjp4CW3uW8qbPZy/PHPTcd82BdSxmemL1zGfP03O2OdN8Meok8a9v3n333aMvvvhifdkirPDaY2zNgfuJOu5qBTc5VbTFyFbRxk0e4ONeex8vO/nusz2/uPT//cHrGYCtwmc8tc3NnB++pm5zCPuXREz42Nt7KVY1PnKCZ/5ds+WbP20cW/vu7eaGPRvjcFoD7FoDfNOBZ02r5dR5ZQ03H/KGq/PHmu5ctd99kUabP2uELiyc4tWZg6915RcbbDojcC+m8lme4fItJnjEmGv70i/3xIM3HByM6RO7wk+5UBN9dNnQaVzMuCkw/Y12fzrmf/ai3Vt9ExapJqzEqAWXaAsGWUW7Go5kJewEaBJ6kW2cjUTDceBpm0g3NcUEGDdJEgafLo4lnw3R7hq2RKYHw7iYFHrw4BevxXdp+6dR+NnUYYiFvsUExzUs+ji7ngIX330/u/zTh0/PgVwe8SlG+Bb6jAPmzAUMtnjFrTk0Rvh1rfCv1jcf3viY/OjAMWf7uYSJB57x1edFnQ/kXgQ71B3arv3mXE5gwfUSyEb0z8rLrTkg1od/iuTDFz2xdQOQJ4eJGFy7GeBQTB50zJs5oeemWJtOuvNA0t88VePh2pic4GYucCH6qo0p5byx7Cd+WPyTcMOSm3ywV9gocOg7ZH27UD6NN5fV9BxCHXzL0fEP8SvWSXpw9PFrDchdHOjQjV8x8kXiSMc1fX7NDZ5q/eZh5o8en9MeZ334OOj9ssZasr7o4wTn22+/XesGnhu9tWLejTmU5wdKvODupQ9/uJJyJz44HkL0xc988d/cusYpzvTmmHH2dOKuJs1n+jgqxtkoBCax161/4/lpzcHQPzHo6JNL49owxSQO1/pxl2s1H/IsL2522mKwHuxBezI+cNvznUPm2XX8veD0UIWH9YSvGPB05jgX+CHtRb7sVSX+c43MOIupHMIxng7u5lIdBh3tbIpHv+vaxp1TBN/pq7Yx/fxlp4+EH5/p87LGZR7yfm57afmXv/zlur5o94vif/zjH2vecMFZ3bV7q9yb+9ZavE6q2RWDWBVz1oN6eWZrjD7h1/6aa8waUcROFy4suvLV2lQbU6wdPvSxIflwrY8PtXmDbw+7v7iPd+7kS21NEDhw20/GmlN4eFW0jWUzOcCCyXd2rvXBtLbxEAcpVuNxoQdz9uFV/zLc/UhfnsOkXx7jqg+WfqJfIcXFLwy87VF/PsAvy53F1os96zzWNn/mrQ+bcs1HvvkRr3PZ+eFaX/eGYubPejR/8aEHuzlRs6/PODu8+TM/xeAccs6IoXlLV02ag9XYfuAURjazPddwGPjjyz+BqcQje22ibl5hsPXsIpd0E7GR9IsjnNYUveaLfmc4vdZMWHxVyoUxRT9hl45+enyZF3WcO8vZiFd/vvGhK1/6ykH5nb7kzTmvNrfWkXuMfdJ8u+YjXnzC5AdfPPFT9OHGxjohzgLX5Y4+fzCbt3IfN3bG2Cls6BjXr2QTHht9Snmix4aOeIicKKSx4sMx+8Zh1QeHwJ1nCRyxK/SN4x1PuPLSPVxO2Cj0K+zl0V5ko19fnz34Fgc+YjBO134zv605enzgmK/uN8XYGoFFcJnCr3gVOsbFoxDt8jHtcCL8wuDP2rKu9Gmzw1XZYxQ3n3JYvGHxSyc+akUOPKu++OKL1+1F+xNPPHHlb7Tz2YsVucdbH149h2kbEyfuciwOOvpdx72cic893BltjdBVy3N73lnqnPK5rufC4oaDC3/lq3Wjdg/mA571YL93H+DLulFc80fv0vbZGxbBJVztYhEPfcLGHhIbn9pTcDUOS24IW0VOKuzowlHwpq+fP/dDZ7W5xsM4THG55pu+GNXyUox8wKanhuma0FP44Bcv7zzYxIkNHTU/Yc28sxVnuMXHB/2wzaUv0niZxsfNN9+8nj39p6A48GOOwnHtF+nff//9eqkMy5rBzdqAixOs5pGOPMDS51zRN+OxNpwtYqAXP/qwCH3FeDrG+jxIRxuG2An98pJtffnAVyHi1G/O7AM4rtWwu7/Qd47hB98YfS8A7Q3ro/jLhzmQI3xdE3lIxISbkq1xugpefOFIVw2brrH84IKvQo8YV4wpdBVry2c8Pq1dhY948WtcPPa7mL2/ORwOK5a4V/tFg2+0e9HuX5d3v7A38M03fH5aO/yIwziepBwYi69xog2jtelaDOpyQYetnNunrgm/3jP5LKBPjsq9mh0/+SqH6fEx/dRWx798V/PbtbjmMxAbtvDp4GfNqRP91l74MDr3ulbDkYe4ynm8xKrA0j8lv+YJTjnjw73GvHeOmVNfWsKPHR3j1jWO8xznm5gn7wBwY0PYlWP9CRtzAMe8keLAy1lhr815whmWuE9a+8byVe7Fwy996x5HBVZ/o93/jUKKYzVO8ePM32j3P6dLKEIzGXy1MCRO0GqElAJ3XQKaqEjT12ezefCDR/ihY8wBTSwQk2jTq7VNrgNAu4XFF98tJG3cFDowxSO5J8VjscA0GfjBMbFe1nUjwFcxKeHjG2c+2Cb64eGFxxRjJH2c6DnUjInT4tKHM59880GXHQ7w07NocA4zf/DKU37zDcuY+OG5lid14lo+WvTw8bIZxMXOppwvzdyw/ckP/8EGjuaqTQzHxubbP0XzIj3OxsRIxGxjWSP0CYz80GUH25qAR+TLBza2+dEnLjbiYZdPOVHYdw3HNZ3Wkb64lx+4runOPJXXcMKC5xqmulizTZ998dBlR0dJxOyXGPJLp/Hi0OdQM249hQ3LfOl3bf7oKeY1LuWKHb0K3nKJu/gJX2z5gRemNWLvmjdiPqxTGGzV8Q/DfOpTrEsvevxCwd8RpJOtQ9/ehOMFj5frPkyp/ebVuP1rXCw4811exYObh87OEnrG2Vh/7Sc+K/ITBj7F6xomiSdddvJSbukUQ3Oljw0dNckf/DDMeX5g41dME8NcarPle+5pscHQTwemc6f9zBdsNvi5Nm/NNxv43WBx5if/uLNj3wd7/uCaU2uWPf+tObbGSXPV3igf6dBTtE8quMwcNQfhLCfHP9jPfrrFzIcY1Om4JnzMuONhjA4MpX51ttV06cA5HA7rt+j+U0kydVbHGX/w5z8u+uc//7n2CHOc4Squm0PzcDV/8a6mJ0fl1FqyNuyVsItdTa+5ECdf1e1vXOjBYgOHTT74Jsban9NHfunZx8UD1/w5E5wD9gkfavvG+trPaz7VXcOlVxy1Jy+62rjIq9hc44CPGmc+269i0g93rqX2mfHJLz76Sf4vty634cWjGKrLkzppLujg6RnI/pRHxdnrA7l7rnMinngVh5z6oOV+K99EnwJXPNaInJs/Ij/OXj7pwGvu6ODIng1buaNX7ZqOmrBXxK52nrnnmIvG1IQOO/gwtJXmiR5+YtVPR15h4aifjv5q1wRunNhU8qFmo4Qt587edGCFoS+M+MlBa0wfLDqucVPiUr5Wx/Zj+jAm182TsXjRx0MfXPkol7jZ7+yJOU9HjQsOrSHXcNgbK1dsXTcPuLRH9bl2/7CufB6AQYc/tTbBI1/wjbeH4He9lLcf+hQYbF2L27VS7vXjQS8d+KQ2XToKPsblIJlY+rTlUqGvDR/HycUYTor8wdWXDv+u2cIwJgdw+dcnf/aP88+4OfNMpN84gRs2zPzqo8MHcV2hY2/ZY3wpOCoEDl3czIVCjNPNh+vWVOuO3+JObxlvP2bMcaWjJF3z79zgU5+Y8dCvLS5zpq+cwgg3vM6ecHBL2JUT1/awF+0vvfTS+mYcrGuRYvDtSy/a/WtNcytfPaeVN7yMmQ/X+FkD9ov5Lpds9demK9c4yoPPlj4zqfXLizVpDvFhLz73A58d+ISlX13e6LqWFxzpwYLDj/XomR03ffH3LAkHR/6t2XLr2pc1ur/kq1jkWB88tjDZapsXgld9+gn7cq2djms41enhhqcaFmzF2pq+9ckdToT9zFNx0YtL1/SIGLon0C8+eq7jNLGMkfrEU367F5oPvyiwTv1/aYftuZP4nG5ujeNgfqyH1oD2pe2XH77Q5KUyX9aYPHk24Kd4PSfIETH3zb9xdu07bbjWXLbigjXvFdmxFRvhlw/6jc/5ptsa5s9YPuSl/MEJQz8bnNh3frqmhxfhFz/Chr41LYf2Bj2YYXctrwobYpzgJS5+YLe3XNNnLwaFjjOJPhw1nIo46ZUnOvjAiZc+L9o9d4gXJtGv4KPUZmv9+Da7L1io467Gz33aOfX111+vF+3a9nrvYXAi1tOcb/awYZSDzg1+CX4KrqR8wIo/rvqLEW44rrM3T3iR1pic8d36WIPHP8LVLE/8wGSj0Cm/rom6a+3w7enWDq74d49xreDDBz3nDZvicv4bw0VNXx6a87jhFwfcYMHAw3qVg84tNtac537vQvhgT5/Qlxs2vTTXT8de70zkoz3ZfOPnnIBFPyk36eFA9OOr8MfemLWqlhs44mer7Vpd7uDwN3nlm4546LN3bT123/PO0v+x4v9GISetiTVwlR9nftHuYQGRFpNgclotKQXAr0RolzR97CwENhV2sE20QLPRR19fh7i2/haK2kJws7BBiaQ2yXHGgR81v/olWUlHshViUnzwa5GxhYuLQs/E26hKedGPa4uWHeGTjnZ9a+D4R7lQJxYXHuWRf9d84C2PMNnot6jpy4Mc4uUlIwmXHpFHJT6zHybfs49P+nC6hsOPXLuh+GcW3QwcwD6Q2xDEgv3tb397ZY7geFDyG0UPTuLh1+HsN4z+iVL59lKET/OkZosfX4rDQMzGxWOs+LOByZ+clf9i5xsu4VO/WM1hMZdnOtm5Ts81gSVv/NNjB1sJY/axp8dGP59qop+U82JPvzFtvMXdvGWbjtqYPFkjrgn/RA7NI4HVPIpDWx3HpbT9wIcfRdy4t7fp8wHHdW03CWvCgUyM59cNBmbrTtywjVdg4urmfjgcrujC4p+N/Lmxd2BaP/0tttaacR8yPSTyy49cyI09j9d+nsTY+jFW7vhUCH6KGOIPu/FqNzI+EnidQ9MOjhKGMfNB5BRfbeNyZ42XRzpsm086rtmwbVwbF2Pwmzd92s47uM4TOYCDL32FwFDiq088caHvuhiNy0G/2OBTPuWX4Be2Nh4z3/CIWtxqOrixLWd0amcfx2zopM9eIfDo4JwtX/qn0C8X6vD101VglLt87P1o8wfD2emfq13PF+2+ffTmm2+u+xOO/MRBPPrkava51i/+rnF0XTEmL4rrinFCX+xznqYOPVysAWvCdZKNPjhk7i/jYedfrUzc4jIXxlqLrp0bPWg2X/rh8qmP4BwH2Okaa8710ctGbR85v9iWY7X2Pg/66eLbuvU8YQ/mj2+FxEmbbf1rcPsRD/2up890jPElx85mH7rE7/rc9i8rFNfmxre0PID3od9+9YzhLHWP1WbrvOWvMwF/OTamlEc++TanfGgXp2vSPRG2M93ciVu8+5hhEzkUlwIHX1z4qV+NB3/w7NGEjXtUc8EWT0K3fMGbAovAdh0/flyzU4ynN+Ng03oJaykeY06/uOFZLtiZI9j620sTH1ZrwHWcYMidHDeHjce1tpj5khN+yqFxnGHpL3fZxc8YaS5WY/yY/kb34uU+pFgH9KwN1/rwUPAvT+IrXrwa7yye+HNtwqY/z36xtXZd09nHCB82O+PxyA87BS954KN80jfGtjmAR4xlw06BrY+oy2c+8m2MH/tGnvoXZXLXvxxdINsPNuzFyUZxjdPMj7WVrmt7V8Fh+i8/zUEY/NEjYpvxwa1kn55YFLZsyre2/tbWAj7GNoZ/c87OdVh04RSnmLXZ5ScMZ7FxcdIh8SlfdF07P/zpmF/jRbu950zreV6e8MBLnzG5ECtdZ699ghudijY99vroy4O10mem8txeW0FvP+j7BrRnOD5gqPXDnZjWs3WCV3niBy857d5g3jsn+NWGo+Ap53Tdb/rzb7AV/GA3L/Gs5s84kSv4BFelNvs9Dn0iBvNazvCC2z2aDi6w2iPh8kG02YstXP7gKISuPjr0lfKq37g1HU9jsPTDEEP+jPFnHCdz5vN537j2ecqLdl+G87mKLT1r4Kefflpt1+7z5ViMPjv5V8M+X+HhHi83vunMJxy8+0WMa9ysQ5/DmnO29iO+8OuXB5zlYMZHr/iq6Vg39PXhB7N88tG5akw/PuWXL6KtwDGenbG4wcmWL0JfjvXDV3rRHma4bOIlLvGwlXM4iX77SU7ptZ/osFfKO070w4JH4q/GjS0suVLH2R7mpzUFZwp7/nCHg6vnRF94814HluIeIE667jX+5JN14rOjOb+0/XLGl958/obV53CY8cMDBp8Krs40NRscza09py0GfPUp+ggMnMpp+MboFE/XziZx8Ulg0lHq46uzSB+d/MDRnjphZB9utmKFR/C0z+wPMYaHNx3vJXrXxSfRz8ae4WueQ3SMi0n+tMPEsdzYv34Bwpbf5tYXGc0x2+JoD/AtL91Tmr/uA/DLi7jEy7fCjm/jcLOFOduulWziJybve60HtnCcPZ0p7W92xDhda7P7E35iwb/zBi+21qq1S2644Yajl19++eixxx5bbXzOItf8op0jxEuadkl0LalqpYl0TSSlpLlOT9/UkYRwBN8GgtFEq43Rk7w2IlsL0uFuEePWxlTnsxqPFkIfBvFucZrUdGDPQo/gZ7E3Sb55YNLxIzNuevTxagwXOSiP+luwrvGDJWY68PDATcFDuwev2g4x3+xlT9hOX2GZT/bEOHwY7FwTscW72rg8ybcb91NPPXVlA/zxj39cCxsegU8/LjaNf1LkzxnY6AQP2HTMn9gcAG72Fr/5g2Pz+625zUb0yZ8/TkYZAABAAElEQVTcwsBdbB7GzKkx9jZUGGzo8iW3+psvYwSevuZm5k5fhY48wZKnfhOorR8XczfXnzjb5HRg0InvIrD9MMaPcfbNoX5xOkDMAV/GisM1HftCPHStD7lz4NAneIiTboW+9Qdbjsyvog0fHyJWNnT0w1ITfeVXmz/z2d5UG/dPc6wd8Sm4mKt4acPkhz1ebgD+dIH9rZ+YGzZEnzUFp3MCZxzEwI+199VXXx35DyLtE2P2LAz24S7AY8z6mwO1NUXkzDj88qaNV3OnxkO/+LuBsdfXnLDRVujzQ/ST9NTmVV7o4m5NqZsj/fJMh73azdoDkvVgvG8kiMWceqC27+RDW78bT/Opto5aE3goeNIvXmu5ueTHPFp7Cl08cIgvO/2tP+ua4F3s2mKjm5QjOnFJDx6+JBttRZtNOcqm3OWzml6ir34+w1Rrtx7ClBdrMV/0XCuTP31xe9H+4IMPHt12223LZb5W4xp+8ONF+xtvvLEeqKybzg1jJB7q+vAUS/tCW05JsdKXy7n34etLpzlehtsPbXtbCU+MMOTPOrU/1DDwMa6GTWf6hWFcCZcv/fSS5kpMcWNDT8GZvrXvgzw+xvdSvGxI/Nju9flR6Bqji8fkMs8MMRujh6e91wMt++zg4YdLffz8krDHkW15YSunztZz20v1m266ae1jZ6z150O4exo9uXVeKs4F5+yl7cPTDz/8sOY03/DFBJOdM8ULPvb8isv8OgvE27yWRzj07BuxF6caNhEr3myI2MovTMIPDta6a1zSm3lwDZvQwd25iB8ffMWNPR3tOMZpAYwf9BR68TSsTfThxYe6Pj7wyZd40hPLPHvpWAPq8sEn/WknJuPEWUS/mNRisC+d2/nWj2vxyQNMOW3u+PLFCH3FVRxqtkr8yqWxswp8OIprz5H2qQ/v+vC2Nrvv68OPT1KM8rUXfeJXT31+FLbwFW248qluHl0Tfon+RJ/Clp088sdX80aXHxzKWfZqeHyYS/dOL0j0aXseLj64ctNzLzz71dxOod9848WOnmLviVUutY0T/jx78WmN9aK12GGSuU7LR/xg6FOLHbY2DAVu6xcW/nRJNvIWZ33aCh8Tz3Wc2LsWV/phqpPmiV98YMiTnMaldZBNNS7snW+/+c1vruvfaPeNdv9/lbl3JpuH1qC4+C7v4iP2pbGezZo7MRULDPOpiFd/z4DNibPbfbF8wMSDP2uZbXxgm79yIVd80I1nfno2igverQlrD5aXlvJpjC883BebE/cXvxiw3uHD5t+4MtdH8zTr/TgMhW8lzp17sMWLD/742CMk/2KFS1eRP3nQV67Fgisbe0+hK35lCjs5omt9qRUSjnH3ZONwiM/S7hd0nNP+PxX/N5pvsBuDIQ76uBC+/BLuvffeW/u//nC15do93XmrX2zw/HKJfXHqkzciR168ei+RHb/8w8Bfnqw913IApzmgoxB1fti3PvSbE/zMvbYY8ZNfWGGwD2tdbD/EJldT6JVv4+avNcoHf3SMuRbDPBfTpxMP8RG4uNvPckFHcW0/tafm/LARR/awxIQ3XvKBi37+FOP64NCBa16mnWtnXM+c8sXGWo6LWGC4/1tP/uWDtvvPue350TXBr1zzb6148e5v+7tfy5MvZHgHxB+uk58Y2OdbjuRFH17md2/DvtzQhaHWh0N50o+nMSJufuRDbhTCT/MLo7zRZUP4bL3ANKaP8Cmf1j2sYjJOL650cXPeWTuu5VnO6YndL8a8+yiv8Oa/1Iel4GLPmZ/m2DmNGz7iYdu8OzudGXyWb3Pp87l84KqfLbtyWKzaxSMOuOWmOSifdM07LJjs+ICliFNtjC8FX58B6MKRF3sFltzSd170Cx3YdOWh+xM71/JP8HJmO4PwiYt+/sqH/0fy73//+/q/UdgVl+vTyJlftPs7c8gQzlyX0BZL43QQFpx6yrSdGNlIkMRJCF1Jq/BjEVq0am16FqLCH1uLzCFn0oybrPT5CZf/Js81HRPHBla4dMTRIWYsv2o8cLJJTJ6/XWYCLYQZPx/w6Rkr5vIoTlgtEv7gaxcDXW1xWnA4qum2KfHTxqFvlhUDDnxUh8eGzDabxGJU2OIST/7dxP1W85lnnrnyT8q9aMf9amLj+Gdn33333foQzi99BaZNYf4czr7l7lCVH3F34DgI4iueNgwM/WI3L8b4aw3kx9yUF9js4RPxaTcn8GYxrphH/XyUU/zcgGArdMy5vNEhrns445MvXBV4pLXDBkZcjIkBtrmXJ9fFwD5ecmkt0LMvHFByW+xsOnj1WQf4WEtw9ZlfBVZzr78c8IePMXFoh18O1HjA6SbA5sYbb1wPZsVmfzjkYJuv9pWYW+NegPTPGvnJX3MgdhjigqttTGz8w/7555+PPvvss/V33eni57AWA9FO+JilOVRbV8Zgq+VZaR3R4Q9uMcLuJoh7ol+BM/vDgEPkjdCVk9rG8bHW2Bg3Fi4bc2p9Hg6HtQ6MuabH1vz5wOKbKr0YMwf2nxjpiQ2GebQmyo0881285tJNXNzsjLNR+LFHnNNyY0yt8NP6k4cK3PIiPjy04Wsn+BBj5aw2HsbpK671yUP6av1qvGAYb06zN0b0l5tyrS9MOPIi5jizm37D0i+nXrQ/8MADv8qLdvsKX+u0WPl1Xb5wL266uMtXnOmTYqRbDHTSM07M6/Rlbypw2Srw1fLLp3MKx3JrjMzc8tm+Ys8HzHD5DdMYPvDsm3CaT3rw4HjwtwfYa9NRCBx6ChtthdDRl019+vkOo3EczHdnhnH8ypvafcJein9j8Y2DnM/1tQhtP/TFq/iMTd50cPBLz1tvvXWNWYMXLlxY57NfrMEwZ85JxXnhjOhvtRYTPUVcPajTc650D+4s90BPr5hgiCeRf+eP2jyXc/hs5Cp/4jfv4uJXv3HXM7/5UCv0y2VrF6f5oj0/6aqTuMHaS9zS13Zdm7448FPqV7eucYq/vOHm/qGPbbrqePJjTlvnrtlpG5OnuMkpYT/zrQ++uMp7XJ3Pk4P7MT4nidzOWHBR+DuL4LsXa9AHLL845wf/Pjy11vkp1hnLHiuOdOirFbjVdBQiBnOT1D6JZzq4xIc+XTlt3Rmb+dKeQpedeXY+ug/T0fZsx7bzzz3bOdazs31k/8W5nPTMwFbO6Dlv4Mine5e2HPClmHvrCVYfyOEZg0Psu/T004WPw8yRNVmuxTdjNBYm+/Tm2scxfHlwzY8CS1tJym/x64edbzUpl675nXmg37NOseRHm7758dLR/2/ml5WTA8zTSvj96ZhetHt+8jzXni/v2vIud3iqm0trp3mTH5zosJFTunSMOeOtHfnAQbzWE2Enxs5WdnBr0y8PeMGYOXZN2k/tPbh0cYDvfqM+bM+ofc5R90xq3P3RvcUv3HphBx+GdUtHfHCVkwTXbIzjocgD/jioxeiZVbwKG3nBwbqG33qUT+NqxT5rTWavxpMvc4QrDH7Y7IW9Qj9euIuPyKPzz3gxe962FnHxos4vz/3/P36hru9q4kW7/9BSDssd3DibA2tEznFRnAV+uSRfeLlPuMdbF2zZeK5S8CTib17wp9M81g+7uGHDIsbFoFgXcmasdQFLmz1sc+M6W/bwlEQfHHps8Wst05NX86MfJl/mLkzX1oK45Yotbq5Je1E8cTFOHzZ9HFzLn+JajPpJdnThwTJGt3zSL2Y6uNPHw3yUL3jl0LV1am4UfuCK12dn64hd3My3fyEB1/3HOVcMsKZYK76Q4X3Ope3LGfaNF8XeAfkMjitfsMQAR5s/ceFsTBx07Tn80qNbjugoRL957F6mj0122sSc8yE/cAg/5rL80SlvrY18arOVK9cKe+vDHhIv0c+GLo7pmkO+6LmGI27+nDm+XOqZlI1xa9s7NF8oLX/ywc69wT0gruzFKwfsikdu5FHBlb0Yzeu8r7NjoybsmqPmoD2Onz6l9YYHgWF9GRO3cTHyKR/05MZ4/vCVP7rlzTmGb+9unP+9aJcbevJgvYZtf8EwrnbGWOP8aIuJ8NXa96L9tddeW18iNobzWeTML9r9z+ktipKNnMK5xBhPkJa4xvU3rs+1wi7Rz06SFLiSQqeiLTEWI/smXM2enclS+Nfu4GFL2FnQ2nwYV4urzQDPwuwGBduE6YPZ+OQJF6aHE4sJHjuY5cwktuno86uIz8Jhz0afujK56eMXF5xaSBaW6zaABepF14wpn7OGV/74dd2BHb+pw69xN3AbWI488Psfym1OuXezxSXhDw+xi8XG9lttLzwdROIp1nyxl0c3fLa4iNEBotjYBF95M6dyWCx9sOdbLozBbr7hEb5xYt/h19rQr9A1R+WtvLDHiRjjW17clOLR3PLPDgd1Bwk98eEoF/kyDpNdPLTZ44xrc84/HHNDp3VkbuTJnMgZXsWrxi3fMOSGGINn3FyzhYUbfMU1P0qYeCbxUcPFl38FH/1uzIftIZofcbG3f2CL25woxulbE176KHjpm3xcs5NHvLTV8PgvBi9+rD3FGuPb2nT4arPBpTliT0dxTXCizx/RX675wo3Qk2N6xWlcCasY5DEf6jCKRR8dYqy1bN75Nj6x6Cp01daL/NNtrl3jZv3xo5aD9qo8GOcjHGvcHOoj4qLXPqVvDuxzmHE2b2549PAwh3LQPKnxMs+dH8abD9cVevTNEdFPypsar9lXvuDNfnGFq6495yx/xhRjzUc51q5PHafWUf7zkY444mOOfo0X7T6g+9Mxco9vc5Lf4sep+ItVvuRS25zTxZkuqb0a2w/9YiXs2NNJv30th8bCb77YWpftE3USN7rsrTv2+Cj6wjXGL7zicq3A0VeBXxzscOwMNgYzH/rzUR8dkt7l1uX7Atz8ucY9XsVoPnCJG33FPsKFn3TYh8GPseKDq9A1V/CmT5iNdbb3IO5b7H0A97DuPt55Dd8DqPtqL9q1Pehf2j44hRuf8szOeeIskFdtMZvf5pgtjtYmHUJPXPpaI2p6RAwKoeta7olzPj58lVNjzRccdiRdenLmbPNMgx+dGQv7bPQTc9EajB+71ggdds2bNgmbH/uerTj0x1Mbn85Eet0/6bAJ+zLq5Z/64Cjiyx4erjPnLOjLvfVWHuf5ng0c+VWMw/EhUAzx18dvuDMP/Mtb3NJbymf4wZd94R5sTTYH+Lc/+RWT9n5+uIKhn07rTH/8y63cpAdTv9j1EzGIi91e6JLipKPMNZU9DCVddvlojB17besg0e7MwlE8SmeYGPVPbLb2Jh35Y9/nF33lRb/xeLr/W4fEGeJaPsLGxb6b/XjzD6uclAcxKuzzAQ+GNn32anrTF17Z1m+ulCRcNV1xhQuz3Kpxmnr0Ffmw1uDy03qhS+jAUnBybv7ud79bf+P1erxo91LFP2H3f63A9ixlD84c4SEGeddfDsWLd3NCRxv3SnPBxrXnP3NlnD4Ma4MU57RxLvCrpk+H0KmYw8blyF71vMlPc0IHB/nsLHIv0gfXesPdfCh03Ftwc82OqD3nmzNxx1mNz17Kg5qo+Unf2sXdZyFc8KSDgxjUcMUVT217VF68FLJm2BgPo3VtDA5//DhPiTYbMcDGSWz4uFaME/3a7uNeRhG/BPUSlM9ehvpW++FwWH7oyL0cmnOCi8/dnhld4ygGGHzoc+9XcBanebEm+Sb09IuFPe7OGr8QcV7zZbw8sMGjtUCfiE0O4BWfMdfGFDitdzYwWg9s+cfddfkMVx4VAjNseaSb6Ffg8KXOdnLRJw7rhF7cmmcY4eIAp+ew2W/M2lHYwpLLMOHyK6cw6cglO0UbF+tSnV/9MPmER7StN3jG1fZSueJLgd980beefFahB8O/PGGf5FMurZVL23OiX4p794OT/en/5bMm8CTmzfqCmU8xw9UWG6HvWv7ga6vpEHU5o1cujImB8CFWYn2LQU5g6mdjLlsLOLCFrU+bLoGlXU7rY2+PKPCaGzjtKbqu4fILi2jDh4kbHX7hyJF9JK/mSj8xL70fwYc/eVDjYr2wz0fXrat48RkfuK7hzZjZtvb4hamNC1/a8HAn+rqn4KOIiY4SX3byACcs9vrlw/OH+J2p9OS29xX8F/PExkEMjdMvF/ob0weXX//q59VXX13/N0r+1aeVM79of/bZZ9fkFHRJlxxBCVYAifHG6mtCJdN4NgUugcauJsYUyTZZ7F03eWpcpsB2k3bTaSPqc22icAqnSc0eRw80atwsJHU86xenCTWRFsBhu4ERi5+OQ8Rm4FefG5oy+eAeHzHRs3jESfB0Xa7koYUZpxYVfRh0+Hdw8aXv/5Ps/JYSXrlxoCpidOP2Dfb+ppu80Ju577oad4erPwMjHxa5mPDixwOjOLTxlR+x2vxuCIRv80FPfmDC51uubA78xazuYDNubvXLGUzj+vgw3hqKr5ouPnzRdY0zm9aA2H3IxFG+O6xOyjOfcPFwiImbDd/NP190cHeI6nctX9ZHGPxba+UDJy9LPOTEExdzRa+bKn/y5hcwYYmtF8b6jFuv9eEJo1+iiA0vuaAvf/jhUP7Kjxx2DQdfseuja53Zn3JifvFrTviJj7zwyZc+WG4m7PA3pjYGI7/G+aEP3zrTZ97kKx9qnHxryG/dxe5lkgcB66pxOsWtNkfGzRFu+YDfWhAP/vTpKOZSKV/64q8Px3LEtz5x6dsLfHl1xinmmn3zwQYX9vLDr4donPgVs1hbX7jDkDPCTlxyCpfAg4UzgdUabf5mTOzMO37mvLHsG+cTX+MK4UfurMv6tYl2eV0d2w/2OMdVvz7894KrQpdO87HX08bD3hK7HKVbHnBxvZfG+SFxw3vq4wBTDn6NF+2+SfLWW29dOc/wbS/i1Vy4xqU9NDkaO60U98TNVi7sWXNqXC4U+cWr+cJBvtWtwfTpsrdu4bFTa8Mmalhs5dZ1+Teur1jlonXtnLBO+YKrOBM6Z+x3Jb75FgMbsesrLjVbfVMmJ9cJjrgo8MKkAyNe9Fu3cdDHv3icca7lha1zwtpVfBD0It2f7/IiiE99h+35ha7Czn9sam/LtX8l5oOS80P8YipmmOapuI2x57/9pba+W3fyFzd2HnLh8l0c8GEkE6u+xvmHb77lJZGvuOiDD6e14LxzPyFyLm/dW8s17NYIbHp86YdV3Ory51lGTPrkozXLDx04fFtvsMTBh2Jcmx9cFHEZw9t8zFzhqU344rf9Bas1hS+BLbd0iPzg17zFj51rIk7+cTbf5c8vJfCnhyPOdBPx4zfnki4udJu/9M9aZw/TdbGXB88z5sKYnCuuxeze1fNO90Ax4kWP0IMlV2IQD3vXxXEaznICV+6a7+zgmWO/iFbTI3zzh4t8E7nEBW/9uNmTnkX00y+3ahzZZr9Ajn/MZxPP5ornQ5jiU1sX+OGEm+dB/Pkxpt8azic/eBlX8g8DnmKcPhGjmIyTcsoHvfr3MaTHB53WXDlbYNuP8k6/uSwv/BrnJ/vs1HDZWBue9+SLHjtxqNkSPIpFPrxof+WVV67Lf4bqSyEPPfTQejGFu89jzutyhFP8ccCbnr2qvxyysb7Twd8ctpatzdZfdvTF5j4As3ywY0+sAVzoyjN91/zRM3e4KPLFn33qm4jyChsG/+zw1UcHnjYMZzOd5m85337AVOiaF7b+tZV7Fjv+8Cb0xIbjLOUEBuGTHl9ELUZ4xmBWygNu9rDPS3TKiTh9rsUNZnzp8CtH1hic8mBMKW7X/NFR02fHHiZf9ubDDz98dO+9966zwOf0/o52cc1a/Pa7X+D4fE78Usd56fMkXXPmjFd7DvJM0J9mFYf1cm77syH0cVDE6TzqcyS+/CjmVFtc8mWvEH1iET9erunwIXZxK7DpuqbXmJrgbJ92bzMfCv7NHdtyDo/IZ+8f4NLRh8f0SxcnWETucSY48G/Meok7DKLPPVLcrQ3x4+b+zQ8pP/YCDDbWvnVFXx/+875mzfPT/MYbJ9eKuHC1L80bXXMrP8b9jX3ziL8xfeUFP7kqPp/dnXFhi8eYwqf80xeTeNibe3Xza548U6rp+fMy7mW9A4IhzvKBOz/yJwd807Gu3A/50y82z3TiFAv75kZ++WvvaMM0B/JsjuDOcTHh17pgD29KZwV/eOJBn6648dQH37z2no2dX1LIZ2vUXNo77NiLT17Mt1jY8A9Pwa+9ZH2Ih2+5ZiMWuYGjHwf24jX/9m+fF/imZw7ELJfeJfWcx3fzCZdv/ujyYb0orglfdBTX5WbmzjXMqcOPwiYxL/JirvEUi7ibt/TUbOWGyD1sc0Pg4EtaF2r59t4Hf5+N/DWX/9nfaPc/ryIlERFughfTY7Jdl9TaakEUkPHZ5zobNb361sX2o6TxK0nphCvh+vEz+bUtOhvOImIrDkm0ANts9F3rMw6TPxOoxql41fpMfhvewqnNlxdK/FloJraFAhtH3GCq+Ta5Fg1efFvgCk77OMtTvIpfm8Q/nnwQ7RaZPoVNONod5uLiR1xi6YWtONJx4DssriZerFuwcOXVxuiDgByQ8hp34+JmY635pzLnz59fNxfc5aoXoHLGXvzmvBt68Tgo6BP+8iUmOvlgzxddpXzLo/wrzZkcWhMOb3mQJw+8anbmuznmVx9f8lbu9dcHDw/c1PzTg9NNw5pQOoTYwhUHHvwTc6Edlrp1WR/cGSdeCuyKcf7U5UhMBB7O/ONZHlu7MAh/xtJR49cDRetGDZM+7q75heOG042ST5ysDy+G8fHbRvyMebhsjmAR/l3jqm7tFjMufklCLynv5aA8GIcRHszmyxo3V3hYk9ahAqt1Tp+fcqe/nMpBNwp6pNzxV5utNtvG9ZHyK29wFTHYAz7EqPXBZy8u/OWCwIGh6OvaWFzpkzi2XnAy//yZPyUM13FU2zOKa/bFUjz0iTF4fPKnpuu6Qi9urmGUn7iKoxxW0yXaEwsnGPoSbT7g0VeKz1i81BOLfW32pDwUd3xmDQf+4XBYH6pvv/32ZTs5rY4z/uDD30Z855131kNXa1N+8DK+91E+T3KFp0KHsNWeoq9xOeBT7Pt+dnvf4YUJx5qKKz+wnPvuLeryqm3tiIlftTgJjM4ebWMwFTrG+abjTPHhw3zoo0vipo0XWzz5dK8QpzF6vZjBQ+FDYcem2OlPfH4ag99+Sid8PuLWNVt7TAz04IjBWepDlId7D850PNh7eHb2Ehzp8+nh3IfpPnSLr4dv5wfhM55i4g8GW7W2fDhnfXhz5tbnzFDMmz5Y3W+1FWfWvP8Wi9jERNTNEd7ZrcHjH7jDIvJP35nrHsOmew1bcRjXr2jX5z6v5AdeemoxJ7DkSRGbsUo6cM2tvOAjF/DFJ1YYcHFWxwWOmFpr8S2XYrUnlGKnq58tXJymzLmcPMuJGle+cMQ3v9qtUdd08VesM+uNPh9x80LXmLVBrzyy3Uvc6MkB3eQkffz5oS8ncqCGw56Na4WuOep5C641516uZgenwjafbAk+4hej+OdcpatuvicHc8uWlE+4/KnNW58HnG0Eb/HhHT5dfcb0xSF94+UiHWPibG30xQJ++J96dAls84YrHRz4smbVrVV6xon45IWNcVxgK4ReRZ/80AtLm8B0nd2+vZSOf6RTH26EH/GGHzb9vY2x/FlD9lPc5/qAy9aYYh6cKb1o94F9j83mNCJG4kW7/7fFy2O5bl+ptcsVfb7EK+8K7ooxeuaCTfHpK5f6nUfGmj/+rR15C1+c+lpz5VMdbjUcemz7vOQahrXmPmCvEbwVMeBsffGjzcYair/Y9BG+Zls/TPb6iwU2LubSHBpvrP0hTtI4G5IvXOgobMRB6DnrPDso9GHT8ZlAPER/+TNG8E/fdfkMG65+eIr15V7uSxlq68D5c257YeYX5z6zixMPugnuzhPxi12MXuD5Mx4+X+HQPM8zWx+8avzMg+JajsuTtlhh46rNrxx4NuBXWzxs2JKZE3barRu82MhXeZ8YjfPl3Ut4dMqNtcOnPqVcLuXtR/HBh2M8rvrEI0fWLF06+Cvh6rN/cJC/+mG5xsW7E/NSfos1XNysXW3zZFx8+IctZ/QIXCLnbNR44JgtjjAUtvgp+q0PvOC4H9ujfME3BzBmkQtryFz07CgWccEjfOPBPp/G4LAn1g7fcPhS5hph532P9el5AZ68OC+cU/DYwKSn8KsY6zm3ueSTvnFzGT/99OkpdIzJvWv5Kt/lOh/p4mBM3uRBXK4rxsRNX1z8yVn+4BlXYJlHcarlp8KOvcJWG3Zt13LOT5hyBjcMeeebH1x9DrAWxAiHPV32rmE2V+zoEP5dG1fkS96aJ3uHsEmHj2LAMV58acubvWHuGofbWcIWLn386dCd9yxjCh7pxAUPwo5MLmz48Szo+ve///3Rs9uXzC9evLh0s1mNU/w48zfa/c/pHEuKSeOwCf4lf/SaCNe11SfJ1frTlSSTq4ar4KEQ/BzkOLbYLHSHgRuPw4QP4z28ujaR7PRlB89mJmz2vo1ZFEqc1Po9YB0Oh7Ug+m1hE4xrm88i4H8eLvz38s7iaKFboMUdJ/ZKnNVy8B/e7mRFk6IL43hdSrUrURtUHBGnjcPCWXshgsOnoiJOG0EE8RJcuHJG8EJciAOioiLu+lK+/IX1l2NSrV1l44GojOEMzxkiMt+st6sj8WELLq0i5w85lE5zChxeubbRFK8Xml62V8jpnld29uS34z6k0+Ow4Is+YjO74Xftt/4w2yQeGO6555712z42xMVv0/vNHh3k6O7grx686GeXXxqyNmNQ3Kpt/M3Ji7HaYIN9uXUgeWkhHg4fB5XY8q1ayk82qwl2UbEvBubKLZ/xw+CQDRd9MCSjr6lrD1rFkh7ysNKRnD4/4FMf6RFnPqQPn3VXOOlx8KhPsaBbE0d7SR9Ga9o82MjmF3v6DkSYHbxs0IOPffGkjw4YvOTy0Ni+Ne9v+/mbbmz5U0Vk4fcSh75w87ucz3jLX/jJ+ZvE9m+UTON/urLfL374oub8IsBDq7jBYV5jW0PkIn7zVVzKY/nBE6b0iBV5ftCHF4/4tH/sB/n2oswHMx/SzOHT5D1M9rYHK3EwT3c22aI3X8xblx+Nf8at84E/8gtbOU0fXo1tuUL84IM5ffPhT861RkafDHz4Z7xgKv/04WWzOJE3zr4+mjrM1fCxg2AUo+pa7WvW2UHJ6ZO1bg4WxDexo4M+a/mG17y6dHNX4yjda3CKH2z4psgXX3yx7nPsw2ae365/R8UwrHAm35xxZE5LtzV+qyWxssb3/I9XjPTxhxF/jb5qF0/3bWcl3eb02aJnkrHYapE5NjW6w+PqfPAtEzXM/3mft66+qwX42HcuwUSvufn/hBgnwxas2sxtffFVw65swJLfYeRDcZm+WrcP8cNED+x88Wdh/EfI7vN0tueLh9j5IAmfXxKoGd828mxED/9gKg/JwWHdlU908AUWefTNeX+v2L2SvHt1L+3JwY9f7ModWWt46SBHP9zuPT28u2rk6QlnsSRTbViXa/zy2ocL+pyB4eCXvgaHWJJhWw7NofInHvQ2z7Y5mOEJ2xI6+mEujLBoeKsRuumAobia0/AVDzrClh38eIqn+Mlt92g6w2w/kCOjoTnWR2T4WD3CC6t5je90WScDn6sYi62aIw+XnLovWVMbfNrvzWX0yC5c9OGjI8yTRz+szV/MFXZyPlypE3339PnNbnP5yTYM2cp3sfB80zmBpxaOeMnyxbh868tJ8bEP9F3tRc+8cOFDXcUFJrEUe3mgB7EjdmzRI/+eAREea3LR/qDfXjdGYeIHwq8Zs0M/jPiM5zV+c3xUL2JjDyG4NevFg26UHhjpzf5a3H6YJ6P9HdGjoXS72g9iVrzEx3w8+NnIPjtkmscnVj33hJ8ejV/89fnllVdeuWTfaO9FO9zFtH3IH23mIf/glHdrsONTq+lxfpgTZ1djVFz4w3+5jvhsjAeR1cqNK7IuB84i/F7kwYwXHrrVWzW4hI5+kCXDdrl25TuM8BuXt+y7qjV8+UVlOYVF3dvz9kR+siVO9gq9Pm+KXXL4ikOY4Y/4wzdnnXswv9Pp/CVPFz564HBFsPInIlu+zPHXGC5rfZv4uuuuW3XmM4T7mJdD9hi+PZGD270XHr7pu8e7Z1vD4z7NnljQI1Y+25CBwVnjMzA/8Yk/X/KHDn6LIyyaueqQz8bIVaMjGXaN0wtDOcBDXtzJwaMVO1c1pgaKVTVAh7nmjatDtsIiT2TwlR+xUS8+Y3WvSJYeRAdf5cJ7FLVQzqzp23fWijE/xE0dii8+dsVcbnz2hiEc4q222GGXPnrbR2JMX77CNf3ES1YONWvFhz9ySmf+T3nrSH7UA3zFjFzfhJ/7JL/tx94ZyCE5dtSxa7rpt04HrD7D+vzac6hzl234rCM+wGKNHP9dxYqvUzd+sRRX9QkfKu5w6dMhH8jepAexSR8+13jX4vYDLvUnHvztPIAFJk1+Edz0mVNX3m/Yh/DBBkN7kF46us/Todbp0C8P1RN5eozF0zVfYRJzcuLfOyyY6IGpZi4d1sgivuuXB2tqOLv68LOBj75qzVWDJz42kLj1ztS6HIiJxg8+00kf2+zaD+oLf1jtV7Ku+M274s82e9UHWXg9/2h4vcd98skn1y+48Zo7CZ3qRTsnNYlHBevvDAOGT0AqMGPzHDspcLISnG3XEkgffB3mBVZiFFUvR/ELqMPSYcafAmzzWW9D2GD0avptMMkytpE0NshpeLwo8QIU+ZChEKzx1zpZjZ1sV6R8sOlgsW6z8BM/HWwXP+uwNWdMftLcCOSN6UPJN7bh/Ha8NcXrPwRwcPCTnQsRHAgPfT6ke+mo0DV+hA0OPPyQJzg0H27kT/Hj9Q08/wTON9uRg9RLTAetzZAOm9sYhnLUy3h6Ed7s5kf1hwc+OdA3ry6M26jk5UAtiVMPcg4Feslr8jllxHvmIJthgK2ckDcvJuzzRxzogwsGrVirKy9QzJHLdzqLrStZMaKTPvx4w5Zd8/jw08cv+bBXXK2b09QDHbAWJ7qN4cNjX9ATtg54ccRnnQ5y9MFjHmYPK/1zKmt4PPh60Q7PDTfcsOTlQQ7Y1PK7vlgg2MPDDiz2qCteGE9C8bvBw4XUr/r0cCAmfGEXsck+glFDcujm6SaKpxzSjye/ypf5aoEM/fjUiH3h3JBnOXWO2IMeVIwRWXbI0Wlv9aLdXH7FS6+a5os1eaW/OsHnhkavvSGe8sVXuWErf9kjL5f8CgO9+WetPYTXGt7qor61MIa7WLkWX33rnbdkyMLfWrpay64xPXzT9OlxPtFpDl7Y9Pfy9FsnV1zjLwfNk6fHvHPPP/+9lN9o70W7XIW3GIVhOXCBH2Kikc2H5Pci9Mmn9eJCRg2SFxe61Ig4RmTIFld8dCRrTc2TtaZOut+rU7r5J7d7n+hma9rDI95wZJtuPOb9EkoNw9D5lA4yePITRnZhgg0W54E5ZJwdYzzacYRXQ8UpnOyTEyO4pp/hhpkt62Ju7Cz1S3NnnvNGHU8+Op1ZzlZyXu75+5l+sS3G8PCNXTaLp77GTzzWnYl0wGB8ZvuFqWciD9Hi5F7twdnVmDx+OuQR8Zc+eJw3+vyz99QA/Hj02Ynw8UPc6Kwu9JF5Ms4qceCHsefDcLiW1/yQf7bZpAOPVh5gw4PMkYeFf9HMOb01WNwHrNOvhZcNRCddmj5ePGzApSVjDZ98JSOG9oZr/lWP6aaLDr5o4U2vOdj4KZf6ZKqFYkt/Mu4HePlXPci7L2JYOzw8/IvfbOwJDhg1Nti9VBTWPnizoTY9a6q9YsIeHHyFARUreDR1JA9h5K/5ckgme/rxxWNNvnwukTu1q8HiXg4XnqnP/qbH85I9IX7Fng3EJ/rk3hU/PrJssUmGHblhkw3+psuYDP9RGFpvDk9r5BH/5F+diw8S1/KpD8Oe2CILb0S3ObLa3xHeZMsjTGzBQT/8ez3k8lXfeviM6XDGOReLHZ58clXbl/pFe386Bm74xdQZLh6ziQmc8TkP5V49wiYm8NHROTrl8eERG/7Nlm5rnfliRQ+54uWK8Omzr958cQZm2NiAR71Zw4ffXFfzxXgp3H44f+w1mOWiOqMTFno7r/WRNY0Ne8BZKH98oD8cxmzSaT/gqxbw8KN44AsrvWzBJS+aOet0ktOPr3m+0y92YjgJb7b5Gn5X9yt/EsY93dVnUvvLsyM94rcn+vhe7fLNmdK32eHkt3cA/HAm0uNMcP5Yp5stnxnUENxqnx/WXRH/9KsrethjvzjkHx/FlLz18g2LuLniiU/c2TRG9MBrzJ73FebwiBXM5s3BUWzkq1pnE2826MVnHvHFWemZrjOTPH56EZz2VC/a5YNOesIrZmLXM5g1frdHl6LtBxty48p2ceULHfxhny1XOmrVJVxaGPXhsTfIqVG46NRgMQ83nflHXr8Yysm8H/GbLs/L+SvHYudKns3OKvOw8EMds0c3Mp+svpfPPsP60oo6VLtykP/JqFXxoru9ll+wx0cnHnrEi8/InH4+ird65ZsakVfr5IsFv2DFm9/Wvbwujnxun7BBn5iTI6MZwy6mcFmTQ/j4Yh1fZ36xcoUhYhsvPGRd6WEXWWcfJjEnay/3LGeMJ15jjYx96apuzYkBv+qTgzWb6pkMyhYemDXy9HUG6yN1ZH+IH1/kQG7nnsNXDsQFDrGho9qBg27XdJc/9sXFfDWpDzM76gyvF+1PPfXUf/ei/fnnn1/JygkBqwm0PgJWA1KQrGnGqODo48OT83TgjRrv5elA6RRoc/grMgnXEHkbpRszfg3BoAgFWJF7OZueNkI4bFr9iE16zbuGkz6JV1zImsRm15oicqUDZjLswYMUl0Kg0zq+itO6OU0MNHzWXRGc5ao4uWaLbn00dSjwM9uHYv/U0cHIrpeYFeMS2H7MOJiD10HIJgxi7+BQsNkML1l68eHHQx4ODzbi1N+Ug8c38Gw+vHR6AWAz8AFvebGh6BZLG6yX8fjIRuyyNetvxqY1NVFezKkfh4zcVUv86BDJP7bIFV/28O1jFh7X6kMfX3VpXCz5ZJ4u/OzCIjZk2DGf7fyDQ7/GFzRx4QkfvzvQ1W45Es8etqz3YLPXRT9dcGrs1MLuGi781r3wddPVJ8+2PeJGIO58EwPfhPPyR17J4lGj+OBK3tU6/JqxdcS+uqFXDRm7OfIpIvtPBKebiRzhd4VRq3bgVK9qvEPfjUPdw8Q2X+HpjOCrOWM2NH3EBn+ac5Vb8+JiD+mLL2zsyimi0752LU7G2eGDRl/X6oadYsqffMFnTWzVo7OCfn7xIzvmmoeNvMYXNvCFwzq9xhpdeNgpnvwxVx0YR/jCr6+FAw85dsNufVK8+KpTfQRLOM3RYS6aflhXB/THw2eYw5XtruLoW54+VN98881LLRv/huj2p2M+//zzVQ/FnE54NTY0mPM1m3uf4zkOV36QqT/zTJactWLCjjEcCI+497CIXxzNi31402Udv3r3cky901dtkMHLnhq0ZqzRlX+u6abTeYBXv/shfHisqXX5ioe+6kofDrL0GsNhTyDj6nxNbD/oCUNz5GvJioWYutIxiQ370JnoTKPT+Mx2X/eNI/eL+cxCh/OIPvdXz0DsOcOc991rp290avQ4f+kUe/GWMx+MxNn9G1/3TfzsiQv9ZOjlM9+ywR/98jnzSC9eTR7oR67WzLW/6NAXI/3yBo9WTsn1vCZ+cko/nWLhWu7oaE4fdmNEHzlkjk1EHg7+aMnTqYY09UQXXnJhXgq2H+kr3/jYN7amIePqwzo87Jh3L7A/NFQs8bGpNUd/OvVReYJVjIzDo+7xuYeriXLhqsl9sVIjMLiGvVqSh2JIZ4SPX4ieyDzcruaza93cP1F+wsIXuvTlKXzm7Q/xM9ce18fPrhjmq76Ya+ExxxZeMtW0MT5r7FTz9gie8LTf8ZVTvhlr6c9fvheb8NNNJ970mrOO1zOJcbnEo1/cyWmT8JDXojB15aMadw5piE4yePQb0wdLcXFl0xzqSg6F3Xz2WosXX/HWty7m6U02/7pWh9bzUV+Te/WgiVFxio+/XrRfqr/R7l8HP/LIIwc///zzOmfssc4NvsCE9LsniZ39xHf1Y1xN28N4zWnFo9jxQy40svzTR3jIoOyyaQ+Lmfg5C62pJ+NehHlOZxufKxm2EZzuC84Gttx73JOyQQ87fOJ7tsIcvrDRbf+Rdy55oTR9ZdOaxl+x8eycv7BrahOPqzFeNO1ap3v6xC+67OUZX34geMWVHjj5hujCI8fmyJrrvsWGNfdXL8XtKXN06Of/UjZ+8M1LSp/lxBm2fMpnmOSOj+7/rho+WMXRL809S7Bnnn/0yjFe/sileTLmXOf5iQdOOaQHwSC+1vhPDuZyAFu1rE9ObOgRG336PPuQpW/aKQd0z8Y2ffHi04eZfbGnT33wkR/8pgOfpk+HfMmBZy91ChtZa9VIOJrjkwa7NcS281jTx0sPu3j12WSPfcQePjzhjXcxbD/wkvHMhh+f2Kkn+NrD8cNvzr5Vb/ZdcVBHvmnOhvUz2zMmTPQa0we7a3sVPvzInFqbL3rLY7ERazFXr+TUgpwUe3r4JNdwkXN+ODfKEwzFztXY2cI3NWRMHz/FwRVmcXTFV02Ua9j18bDTfDmZ+xY2POFh2y8QwssHcog9ZMxulH5XDZ94wMUHc8icfdc5Zb2c0gdXZ4VYqQNzsIgDHuvyQg4Oa/3SET9b9MqzOGSXX+1VcUb41AwZ+tuT4c1HdtiDpdjh54vc6/MZn/XqyRiVV1d8+waHOetshzVbYgE7W/YcHv866Nlnn/3v/nTM/7a/UwOgBpAWAVTLOeslTSBzjrMawpuu5AVNH7kKZonAr1/AspVMcuYlU4L0rZNJj7FCEuAOeBtXIXmJS6aA02NMHpYKlo4wsmuMr0Lil3nNPAqHAnaYuIZpr6tx6/TAkN1yQXf24Ste5hwA8EcTn3k66BcDjW43CC+577zzznVD5cfUGS5+2nziVqx70c52Nwc2s0tX8uyGsUPUmC6b0o1crIs7fv7IqcMKH72wzY2SDvYdtvKIV58sHXjCse8ba3Tzb/LJl0MGPrHijxg62Fxh7SEnn10vRNmyXu7onZj4LT5efvjWNDt45YstN75ukORg6MBkG8aJId3m6rNZ/umXUz5280sn+3270VwHHz3lgR5k3Rzd0ydrzcEgP/DyU841D0lyTy9e/om7OdjUmQ8dvoUBb/p8U8bBTxccMFiDky510k2CnHlNH68HVg8H7CUL7z9RdYBPP538o1v9uek7XxzueNxkPZjCVx7Kk7lyXAzJdANV2/Tys3VjsaGzBxL60skf/GI4/bPOPnk2jMNvrBnbNwgvnh4s2Ed0qhfXMJnHzx+27R9r+dsNVP7ZgbE9TwaRCzsesvj91j+ss97J4MkGmXTxsb75fE+m65TPRvzJ0JMNVzijKU9O/JKzJpYaPJPwmFO7/syG/4DFOYys/Rti13/y+9lnn606mfkOrys7+Trt8i++OV+f3MSIFxWncrwmj35MfaaSbx4OdeaMMCdm5iJz1YcaQezYH2oLdX/CKw/wiK+mz2Z5SF9z1TybWmeSdbLGniOaXwa3H/QgfPHCqe9aLNObT9bJ2iPxpQMPnOYRbM4D1+TaJ7C5NxweHq4HRfPuE77J3jMHGSROziUfmJxTzo6egegX/2oFhuSW8PbDmepZhj15CpezmR/m+QRTfssD3Zo+siYniA1j6/Iph/tY0aeh+uTkgp6JkywM6ZUz9wH3CvwoflcxEi++FW86suNqjKzzE5F132wsbnjFn/0e4MW8mOB1Zmrs4afnuJiTyY4rXnOwiFX10Vg+xaKY4MfnHuRe3n6gKz/14Wh/tEYWj8YfuPOLPbrkHh7fJpR3cYwnf/MhjLBo9PIbv/tIe4pPaMqFBT897Ko9ffLwk4cR78USeTprbNe3phbLoTgiz5XiDH8+ZjOccLROp0ZG04cZD3ljdnrGNUZwWKeHXvkhY94cgim+dMlLTd3ZS8bWXTtbw0wH+2ErvsYRWQ21LgfFzxpM+YyPfnmp1s3BSqa+8ZwjE67FdPSDTD6wJUbhwaKvkZ06yRhbm/iaS5Zc8nKD2JwtveIpV9bEqPNK31lw5ZVXHrz++uvrSuY0BAvyzOuZwH9aKY7tMbXOn/zTt/fywzp8xQkOPPJBd/q75ptxMWTfPD0oubkuVu07fecrPnXHns8x7jV4rGtw4nNVz+JmT/VZx4tez/uwa/SIKxnnuDE9rrDgKc6dRzCY8+LT2YIPhvYQ2eStFaviJa7yaqzvivKBbnPk6Mm/eOAgzz8y8KR7Kdp+0ME2eRRG9yF+wuqe5WztC0H0mZfHYkA3Hfa12jQuZ/SKrfu7zwnyAkd28SL8MDvr5EGfDfd5utn35TfYyNPDntyyCROdckmHOTqcLfaKsXiwE16+6OOhSwzZwkMPGfPiTxe7fFYL7On3eZUeMUP4IpjYoVdfzPGygc8V0UcvPrbCag1f9yyYyGvss0mHq9jA0z4Mc/XDT3P44QhLuWSLXvEqT+WYDrGgQx8PXdblCP78gl388i294gCnhhfO8BvTYSwGGlx80pw98NKpln744YeFBb99aQ0OtSqPYp1dMsUUHztsFye22FDr9JFNRuyzqw/npNbM+QzgM6J6FwNx0oqZmPTN8WKVTr6KD9vWXMW2Zk0ztka/s439ZGAwplP+2PIOoFzaF94BVBf4xUwc6J526UxXftBbXMiKGxnrdPLPlSydPVPh6+yEXzzKM0zGZMSAnCsZ+sTUFU48qFiwyze1iAc2DZGnB9EvXuTM8wsOfTrVg/7MCRkNmUf8J2usGcOQTXPpTIb+4kO2947mNbLhs7fJnz179uCFF144ePDBB5ddciehE//pmGeeeWYBYYhTtYxyJsDmrEt0QeTE5NGnq0bGXM0YKQJJyUHO04mS7WqOPB4BlVCEnw744MLfBlcA5mHFr8Fqg/rw6YZkLbsKtsOMLomxTmc+02EeBnjo0/AYh4dO1Dwc5lx7EMAftW5MX77g0cLIV2O4tHJgjkytOPDHC0brNqFvU957771rLtt4I3x8FBsvXm0upDgRbPVhxi8W7CJjDZkn78aB1+bW5B1u69bI5nO66OBruaUvW2T4Tkb//Pnzf76ExCdWYswOGbbZ62DBw445teKKP1vwyDE/HZiubkBekLkitmszfmtx+1GujfOjuFgzx7YHGN8QFG92wyNXbkq+YZAdfjjoZqzppzfdsOAPE1v0sCdmcltsrIkJWT66sXYgu3mIAZt04Ws/wUifuE27sODPd4c3feZ8o/2qq65af6qIb3jopQsePLDZl+rO1boHHznwgp4cPnklwz4yVuN44HFT6MFfvNhSd76l4Z+/udHDf7GUj8fxiykf3Wi7IcPvz8vAx7ZaE19XPhUf68b89tAr/vaL/IlLD4Tk5KKbHBmYNPGoZqqp1uCdtWAeXq09B5cYh41ua2Lt7DAWVzUEtzWNrnCwW27Yg0nuNb7hky/+VEPFEi+iE/FRLOmpXmfN42EbZR8v/HMe1sZ42Snu5lsjRx6lAx+K3zpbSB/WZPThTDYe+ZpyxuqSXR/Q/Sb9vvvuWzrTvQan+EHnr7/+evDpp5+u+NEHVzit8z+fpz39mnU+NyaTHlfrtTnmO5n0k9vbsy4e2dBXe90bqkl8iLz9USNHRi1o+DpfZn3gd0ZXZ+JOd7bhNm7OPF3lXJ+tfHBF4cJnPT/muPn4k8mGeXtlxqZ++PDoJ2OdjfYOG/aaf0J+/fXXr/h4bnG2WZMLPourFxnnt3tjv7SkU6wmX35nj/3IuSKW7NEndsh5h1+s6RLL6j09rvmGJ9765cBYI9+9Z8rKIxzmOt+KOf30FlNjvO4H5MzLAezOZrHxAsuLBH5ZRzPndJc3+vCE0T3EOixiYY09RH8ftszjIw+H+MkfOS179fFp7CDrs1XvdKFyzIYmBuEQR/vCVXP+ht/VOQwfmWQbTxzW8MNBj3yZ8yKmX1hPngVs/CDXhzM23WPsd3E3JosHscN2uYQnu3R4XhdvPGTVOz18Tscw/Y9d9ibRIabqRA3ylS37B2b98MIhb4ie4mhOrNUBGTrM8UXe8BqT1yZua/TTlT42kSteNYDwmaNfXszrsyvvdKNqxF4QJzbI8RFf+xl/9UUuLOnAR396+UMfnPlAb7jJIXMawk+ObkRu9uk2Ni9G7KHm6KlvXgw0hF8jm1688CSHL936CI+Gyks2wlN88cituNnjrs6Cq6+++uCtt95af96D/tNQGLxo94H/l19+WbrtM2eG2PEjH/ktp67mZqzYty/aY/mTbFf6up+QoU+81AziixjEX1zZLM9sGIsRfT1z00HOHOz90pMNWJ0DapV+9yV/8k6NpaeXcNXLtAkb3Ro79lnnm3w4G/hMZsrBYd3zLL/ppsO+hLO9QH+4ydABZ/VPt/mwlbtqy1izn6oh+tJBj3U43RN8+YcusfGvI9yXnK3myKUfLlRexM2Xs+Ar3tbEQ21q4mKuOMAtd/x2nvp8JxcwdU8sRs5Xcp3fxRsuMYSNjz6raHIHB346m+N3mPmCDy52YGlN/MsBGWvyBEe1Ll7lgx48fELw5Sse/eLCv/IHt5znHzlrybra3z6Li1E5gIGMdbh8HjJXnsQCJrr0+aJf/uCs1ppjW77ym157Cl+43Iu8GxBXfrGHj208YuVqjd7wik3N2iT8dHhRXh6KN71qU7MP5fH7779fdvjlXYW4Fg+1qk9ebOgux9nxubE1+MRx/kKpeEyM/9SHQdzET786qy9ePn/Loz586lI88SJYzOevqzz1rBYPO/YKOTKIj5o1Z5nP7uqFff7gVefyFYmDWEV4NHEiV93MebzqiC3kWl3BArOaoVvdyLWx/PKNzvYI39lhD5nXYDQHN31ySneY9Nl1prjKpQaHRrYay5/er+QLfsRGtRAOc2yYdzXvbBNba8nps8MvfJo5jQxb/C1W8g2z+eyHB26++rPZ/n/Shx9+eNmJbw0u4seJX7T/7+gb7QwBUwCnLY5xlGPxcFpD1hEdFwOYHhtdsuOno8PLnABqrbuy5yqg8c+ChqF5wQxz+qz3cvP89iFUQumkwwHab5Tpt5ElbyaoZJqjW0FWwHxix1q4k61IXG2K/MSHYE6eDm1P4TSfDbrKgTl6aja2jeNgo9sGdDO/++671+akJzvWI36LjYc+xcqGPNHLhhiQSyYfpy598w4cseR3BwL9dJl3ALgiPOSKnbGGF7laU59sG9PlYc3Dh81FXmz52otCfB1K1Q8+PpnHb55OuaSfj3z3t0bppcuLDTeKC/m9QG4/rNMXbvrLt5jwSUzZVosesr1Y5htM5Mudb3IbWyPrqiHzNeNih68xHP1NPvP8git/85+sXIinG6zDTp9+8YALJtjzJ6xkEb0zZ+KnwWtv+WBy++23rzpgnxwZTd9eFAfNDcy8D7u+5eNhUE7NuRmKH1vwyY04+TvF9MgXOS/o+cuWvFrv7x3ye8ZuObD7kV+76TUki/jGRge7ufPb3nGjFx+xYtuNGB9+sq58cfUwQMa3e/AgsXbDQp0v/KDPNaKLHnPisSc+mG+dLvtNTvXl3IMEDNWmeTXj3IDPSzy/8LEuR2TDzj4/w4qHLfnT+AODfMlTNTRjq08nwu9h1xwc7DlD6I2sTXlreCOYqsPmYCoG5opb+PhDDzkxrm+ebnHQzIufPnI1pscafkTGOKziq0bwu8G//PLL6xtseKcvxiclvvSiXawQO+HOV9j0J+Er9tbFCG7zSL8mNtM/PPTt8Rf7eK2nE38YxEzsjKtHvOTSYc14yuFhW51ozitj8+TUmQdOeWRDTOjHo01bMxazjw/mbIW/Mw8e+vPR+EIUNjziYw3KmgAAQABJREFUi8zlYzqmvDkNT/vL+UfO1Yv2m2666c81+1W+xZO/6s154v9vcLaQg5c+GPCKDRthD2c48NuvWvWNV2NHI8+eVrzI47FWf++ruOIxj88+L5f0hJOv7Jdb2PMDj9ho5rNhvTk+uQf50AWjc8xLDecVHhjohiGbC/SRD/Raw6em9Nvb1ugg53wPv3uLOeSqHtkTQ3o0xC7KdvMwi4GGxBl1/7OuhosheTj4jfjJlpjyPT5reODW4NT04WQ/X43rd+bj8/zjXuwenL38CD875qoR2PwSWXw884cBHxsae/h61uQjP+Dvl/7mYPAs4bkW78VSGC/Eb11MPfO48gVm+wjBJh/iCgd+PBrs5sTJM4fzyDp+cuq32MRfbOk2Vwz4h5KnO2x4yhWMsJRr9ed+ax6WmpqRY7Kw8E8e3Iu6P8gTrPGwDxO7ng/YsG5OzPkjh9a1MHb+kIczrPjDABeiS6NXo8MVftd4YNIQWTLpNsc+sqZvHT99WmSd3mm/PrlsTn5Y+ESnGIhxdSwO11577cG77767nmvDkfzFXulGzmm/ePdZRp58Du05Nx5XPrHtCl/7uzi1N+jAM/3OX7mzh51ncDuf6OxcE4tyqT99o1P88bvSaU58qpVqECY2nBnqkM4+X5DzEtGzvVokTw/eakVcZi75r8FDl3ywCccka3joI0+f89fzrPPfGWRdfPHQgfTFZu6ZzrB0skUf/6sZmPhMp2Zfxs++NWeDxob9IOY+s1hnz2dLn835jyc/5xVGNv3rRXUCK93Zcu3cb468hldDatjLQbngn1rrntjLV/Py4vyDh7+wiR/M1sk7c/Tlk39yQk5/X0ew4a12xIqc3KcDVvFlyxkfHjLW8Dlf1bc52OjQ8pXeYlF8rCOxL8bGeFE1JC6em1z5qcEgRvSrGXts7i/4s6MvZuzjQWySMwcHm/jFD7859Sm29iUs1sXSn5ISY7bx0aNe6NCqR9fwlmfr4hM2WMzx/8z2Z2DoIkd3Nedqz9or8HrRjtwz1Jz44+GTmHR2hEeO+WXMF19sI2Mewe5zuH+Byf5pKFvl1DhSc/azs8WZKo/yoOa16lKs+C63fKmpuXCJC3466CVjTn7Na3LjHY5zGIlNtclXY3LVHD1wy7s4iYs4G6tr66ic4GEvLHIpv2xUV71XYyd/8LDDR0QP3WyVi/SQk3O+q0GY8djHCDYxFediEH5X8/BZg4uv9jBbYuQKC/vwFwPYipU58q4+y4orHAgffXhhxjeJbnjZUmuwwK6xHb7qhA36vI/yp9/8SzLU+tT9d/0Tv2h/+umn/xIMQAKXIeA57GpdwIw1jhaAZMnh1SbRm26FInjNCSx9rubo1fSRq3UkgPhq5ioC1+ZdjWdyJNEDsZezEkSvJCkQhwNc/LPmiuDgmznJNKa7eTzGdFVY+mRKvnX43SD4XSzxweeq5bN+hBdP/sejYMxZN+fKjsYP/rgxGPPPB/Q77rhjzaefnIbYsKncbPy9bJscXnas8Y0/yZIx1vga0WfcxiILCz30G5NxQOEJN3m6NTyaNcRPevHr88kB4mW4F6sOKrxqsQe8/DJHhj5EPyxiVO2mm355Vif+9rGr2PkPOh1qxZt/NbJ0sh+2bMn1zDfc1YAPkW4K8NOBD7my6Zvg9LEjXogdNO2QlRsNb8Q3N0QHMOIXKq7J8bm+mMITL53wwDxt8oO/5IpD/tOfPmt88TB33XXX/VkH6YKHDYd2D4FySb+bnBy4ofOBXrmFpZy6QXho9UKYTTc+L7pd+UWGbg8PHjDoYtu8hmbu+KDRn4+LafcDDzl5gVddmzt/9KKdPN/FUw3hK3flylWcvQjiqzEdapO//NHIVTMwNeeK35w2fQpuvlmvttnUhw3uco0HqRk3Xfr78IZfHF3ZzDY/YWPHnNg6T+nmvzn+yJsr4ieiS1yKjbEzJzljLVvsZoe8+cb68RUL/Mi4OWMyGt2u+PRd8dEjlsawTjvGZKzDKXZatukPf3Ji0cOYG/wrr7xy8Nhjj2FdulbnlD9g9HDyySefrLinc8atusinTPFD7JE8WodZQ/zIF3Fhq7hNfxfz0Y/iTBfCR0dxo8OcsXlUP5zpWIvbDzKzkbfn7KteNtChecC1d9ShsTi4koE9Pv1oxiV8+R1+12KARy27Tj3p62qtdTbI0KuJd2v0RuaKAx/w+SDGJ2v6/nXVjTfeuPYdf304UGP2nT3q6gx3H/dLU9id4RpbYoIvO2yLSz4b44OXTDHkr72u3tnDo08XeVQs8SJXfHzRZ8OYX3R3Xvhgae/Dmt/uz+xNnfrka/NcbI1u63R54Pa8JybONL9sdR/nW3qTcw0zrHCY07r/0KmZs84OG/NFu/ly637j/ieGk6YO/OyZ2+eBnDXnZz5VQ2FNbzbp4K94miO/90fcilPr6THmH3vVhL5aU3+u+Y4PsZP9/ICDXC93xXBv07q5ak2fzfZ3H5jMIfd78YR/UrbNhWnv8+Tf9+mfdezZTI3zBclD53yy2cTjHHUPp4NdvvNFjRuj8JTv5Iu1dc08PGJjzLY5fWTMDjzsOgM1MlNnOSbHppqwz/DSkc+uCA59/Pps4OOfOfrkCS5zbOHja+cAPWzx3Zo93HN2+M3r06EZs5stOsLAVvEwZ0x/9l3JFh/r0bQzeazjJ1vfOiLDH806m2KsDuVXXYhDL9qvueaapWsJn/AH3chLof4zVPXinHKmizWe4sxvsYRRrOyR1vB5brM/4CtG5Tlfzds/9jDqZZl1rTwkRz+iv9jDWH7pEx9YyIgbHRr87HTvsq7R6RndyzvP/GqHT/hdESztHzbIFAv8zhTPrtbYyj/69WHV6IBhf26IL1l7Ir+Mq1UY6K0O9BGM/DGGR+M/mzCyb02/WrIOM/1kfRb2eYQsHL6A5EW7Ppn8pKNGh+cdn3e9u4A5m3DBiUcLa3rEQDMWbzWMX4Ml2/JKp3NPPu3/MMPm7KeDfnY6R2DkH729eMQTnysesuILe35VE+XMuvrsfYF4aPjhgV8+8eQT/8kjfPyS1+yao8O+4Af7sER8RD6H+RfJbODR5MvzAnmyPg9ll0122NMXExjZJZtNePHAgVzFC695cbXn+UROTJw33sGIMX73cvkRH2N8jeFhC+ULPHyEiQ1Ejg35hokujY/kyw8fyXjRj+w1v+CptvGKCV3J0m2dT9btNy/ajbXw0O2zOvtw8wNmtrX8WIYv8APfhUicnC29F2JDPrWeL2FF1tSEZl97xhJTOWXDle8zn+bKnb782C90wk6POqGHb5oY0ycG+MQjPXSnR/wQPZp5TV8+XOkWu3Abl/9yOc9ROu1l8hp7+PHQQSd9apD/xu1tWPlKnhwyBxOfrRnzTQ7phIF+885nuvidrHmt+oUBLoRPzZODA186xbM6qZaSgUdu4YFFTugI81K+/aDPHJv+o2mfw8+dO7eWrZ2ETvyi/cknn1wbpCQwCCxHI32BMQ+o5HHaHDnBENwKKfmpg17rBYmzdOQgXcYFOF7r8cxAhwdGMrXmYQiHK6JH4iXFQxNfFL3DFTk0+JLNdFqDh98auezg0W+Mlz068El+hSRGbCia/HPNv+ySa37vQ1jwFMP8swaPMT88RDnwYHO4KS4vjG3OCD4xYZucDeRm6aZjDeZ08kNRw5ZN/ObwTvx48SG8NrP84aWvA4Af1tMXf3PN84E+emEyZtPLBA8gzRdjBwd+DS55zpZxh5JcGJdb/OLRb5Td8Nz0vSDzzUExh4kMmzN+MIm7a/iNs0EmHjg9mPgPR9Qiwss+Hjcxv/0Vs+wspu0H3XBoeGHnHyx8ZEeM6YOdr4gea2Hjo1zbD3jYosshhRcfgl9ji95878puNxs89Kg9Ocej5n0I8Jtsdhzo3YzgLYbwaHyhxwHvJYlY8JVtOospXR5Q3Lz5KXbqVkzhoRvRRwe+9JjPl2JCN7taH0D0jyOxISdebImhsYdgN3py6lKOu9HRQ6542QtIrLXqU/w0+viExL+9iJfdck2ntZknshpbmn51Ih769NDPVn6LrfyIrTVxMNa3L7IZ1uJjnY30iG0xop9eY3bhwS9uYuNqjIoFXrroRMYzX/G3FjbjbOsjssmTK3769GswmMcXmc+O/tSDRwzY1ZJLJt2u1umHq9+kX8oX7f710UcffbTOVrhgEOew53t1hQfhC7v6yb8/Vv+45/GRHtiRPt1kj6NspSt+MrN26qfTVb7Z2efPWva60mv/qB9k/zmr6eALXydNObanX9X/xI5fYwev2ojwOdOQteMoWVf8bJBJl7F9YGxvRPgRGb4kZz+Ki3PUf+Tjl5bmOhN68UCnWHvYdPY4g/hATznGox7NtcfUATl+4mfLmmYOTtj4gM8Zgoec1t5JLn+KKT2IHjjoca7owyN3dOI3B5u4aHQiuNgxbk4MnOn4ETut46fXv5Jiwz3g8PBwveRgP1thK1fFvngZd6/VL0fsseV+Kc5qMD487HsOcW9CfNcidjuz6eUbnMU6GXxixVZ68SJjudTI8cucHMmLPrniwo7GN/PTH3jJxUOme6I5WIs3WbkxZ40ceQSbBo81e5RfsOGnd9owR1fxpsdzgPpVE8YanfBU98vY0Y/iEk5jNcEm3frWLkTphzn72ZZXZw371viO8PLbFeFpPd/jtc4+3/MfL5zm43OdfXLstsfqwyamxnJvTC8iL6au+ewKn3OBP+1bcnTwgz6YEF17LPJjHmYy8ZKFgX4k1u1H+0HOykMYw4W/3NFXLIuJa/bwhglvuPXxIPzmjdlKfq6bQ+Gnkw946reGN//UpHOWT16wv/POO5fsG+29aFfbXmKJWTULCxxyap1ffJRD8zDj8azWc7dcmatuxNUYr7NEPpA+f/hOFx7+xl9M2KzRTUYrXuoIr0ZWLemTwY9PMzbvXPZs7/NbvK5sV1uzbszDRrfzhLyaCzOdCB+qBrMpdnAUU3E0h+ZegY9O5Fq/eNDHb5RPbLIfPtfWXcNGt3j7TO4+Trd7w1133XVwuN2XrEXpc6Wfv7085Hd+udKDp/hlz7w+//LVZ01nACxwisP8jKhe6KfLOv2dzdmisxzj0Yy9zPSLfTbkELVOh8981W9+kiu28qMu3TPxwmit/ezc8kspn/m8xK0O4UpH/NWjNSTv8kZ/fhQfdpDPjue3L0rxA7+YwSsveGHyDiB5vokTm2JSXMJCb7HPFlk4+NTZC1P7Fg5rcmB/4KEPJlc66eI7bJo+Yj9s+khdkEOu9pTYwcCmX/jwiR56yePhl39tj9SeLwSSd8bD5FlKnjqnyOU/jGqK7mqJrH2bXfXAb/IaGY0vxWoZP8EP9tWvZzF59GUTOp3ZniXUD55iD1N5Lm58805Ebtt3+OjBq1+jCw+b5lA1Y614ptsYsZ8MOTHtPGOXLfP4XMnTK95i2vsQuujMjtiqUfVKBxtiLh76MPGBHk38EV4N0VX9GZPr+YevmhhVl/RlXx/+/OUTPgR/z2HGZLLLHmyaPUiGDmM+qU3y5hAb1urD1zOmNTWnRXiTYQsO70JfffXV/+5F+xNPPLGCVxA5IwACUSsggEs8XkHFKxGCAXz8BdG6PuIoJ13pK3D0xV/SBEazVpDoCEcBN0eWLle8YZ9y4WDbRmZHYswrhq+++mrdfOhonT/8yk+2yPOdH2TxsE2GXbyu1tjHJz4Kh5x5hxs5B9nUyXY+kJuxmvrwhKFD1rpmLZ0w2XA2JVy+yeWfm/uQ3gbDq0gVJd80eCvUcoOPfmPxwpc9N21zDgvzeODLX/FA8ITd2DoZcUKudBa/NXn0Y59LMecTW21Mcm1IeeN7ORB/N3++sWG+Q14uxBqP9TA6bP1nID5EezC64oor1i8rHFD5Tk4ddYDDRW8+44PFGFZXuDXxcPif324IbgTWYMGH1Mnh9vCFiqf4Irxw8JEu2OEsj/wzT58bHlzmEB36/HTz1BzEHvzoaz0eODU2+aPxm89wqWN26TCfb7C7oSMydMCD+OZb6GIl5mJIV7GEgR5zdKvhHgTo4I+48s1Dgg8m5sTOSxUPpPp8gAlG/G7osJjPP7Y0/tGTr7C7acHRvlrgtx9zTL/4a2z2LVK8foE3H5bYJit24sVf9sRD7KOpH0748PGRDjFjj1/W8MBJh5jiNQcPG/ZnMhMrO7NG6BZTsRB7Ooo3bMWKXi2i0xp9Gn+08OY3DJ039MNlD7jmA9vVUQ9x6e2KN3vpFoswh8uVTDEyhhuvsyd97NmDnUcw5CtbGjtiLB7Wm6dLM4cH7WWzKS/+dMyl/ka7b5588MEHqyayLxbhMAcf+/YBv8MvJ4hveFw1PHCLDT2RfnHm71yLx7XYWq/26GPX2HVS8U3W1Vw4XenS9J0HyPnAlpcgfsFFt3F+8Dl/lsD2g7yc0cVnMcHDnrFGB8IDN5/FQsPnbEDGiM6IrDE5DdkLZMyTwdO5xxc6EXuTwgcjHf1/F75RSY5+e8q5Jwb5JQ76bLGZb3SrczLVMpudJ+ToJKNZq5F1vpjPDv34w1388ocM4q+Gj13ng7OGD2LrDKCLvHW8fNZPNz7YEQzIGUGH/DVHFsHl+cQHLrqdjz6o+AW2PozJ4qcf0SXWsw7mmBxM2XPvZUcMYSbHNpv8dF+BSczYUJPG+UrG2Jp6JpcP7MADL37ELh5rrp5tnKP6XkLgwxM+eLO5FGw/8qFcu8p95yI+PO6DYlwOYNHgM68e8E3c/KQvH+glL9biSD5fXGGzFm68Xiz0zNa8+NDJnhbxk4xmni5XtdNzUjWVzN9dYXc/CLf6sV/Mo7DPfJnjF19al4/iACPs1lq3lk5reKzRofHBHDtqTG70u4d33xVvfPkNh5qiW0ysubbvXclo8oaPf3wuZ/wUOzrDEkZxKcf0hs8egJl9jV6yzj11SZ9xmPBq5OnWF7NJYU/GGl66+SEGYmZdI08foi9Kf/PW8CPy5Brrs2seH1vsyIFzSmz9wvztt99e93O8pyGYkJeH999///rXm/a5WJVLmNjHa+/Yb3CxGUZrMMMl1j17kZUn8bBe68xkW5/edJljL/10syefYmEsh3DKJ6KXzIyXeqpe6SIPe2cJbNZ9/hBbGH2WE2OYrc97BB51p3l2bj/QjRfBVu5hzC9z5OHMr/DwAR9ZPtToo0OrVtjJFl/JWZ969VFxwxcWc+z5rOXeh/T9ff7LLrts5Rw+5EoXe+Lk/v7ll18uP8QeyTcM8PGvuK3Fox/W1BI+vvlcS588wAYTEg+xFVdnAvsz33CYN2eNLjLkwwyjfPqyEezJW/cZrs984kHO+oypMxou/vGNHL/YRc6Xb7/9dn1hy7+Qpkc8ybEHv1xrYkE/jAiPOHQfmPbD0Yt29x18NbGDRT3yoRzTy1ZjeMQULyz0GtfM69vfiG/k6S9H4iG2dKpzMnh807f4k8UvVq7s4COLsmdMj8ZfeWfLM5Crz87+daTGNzxsk2NLPOjynOpzrfk+s7Et9q5iLFb814eHPl9s44NYkKVPXthB9gAe71fIFYe1OH7w7WIJLx98FuhFOwzubc4kOMSBH3zEz0cyxnKvhssBmXjgg7PayV/jaoDveNgh59oaO/meP3LLBjz2nljhMU+ePmOx8kVFuRIzWNob9OODx7OmeJKl13OhZym87Ntb8u7ckT/42LLOPiJrnF/hEx/5E79wzvrLJp3w+DxChh62qhdrCF/2yeKjW+z1Nfo1vhnjs56sK9waWeswho8MHjLlVK3+5y/aH3/88RXogi0IbRYgjWeBAC2x8XAIcImPn0xNQDmfnDFZ/Hg4nw129ON3RY2tkcXXPJvsF9AwNCarGbtKmAY3PQr8u+++WxtRDPCZp7MEGyfPd77kQ3FoE05evhXXdCs2vIoBVQD6ybKhwctnrfjBYY2cmxFfImsofB5sHHgw2qBetPsPUc3jYc8mshmy52qTzYKHAy+bDixEJ3tuflpFns/Fl1z8ruKA2BEDumv05e9i2n7kUxunOLvywSFiDR6HvniICx8Re/xzyHd4wNiDojzjgUVjz5if/oagDewh4fLLL18v2j3IwsgvPhQ/PsCk6cMGC1yaPpn802fDDUwN4gkLWXk7PDxceNiB2ZVuvPB3yMENB/+so/Spt2qEb9bpcvWA77fW7Lv54mUbRrwaf8LtqsEhpuKebTez4kfenynyQoMtMvBo+eZmIUd0wI6PTjoQ2+xYz1fycuvKJzFy03BjgZMO9dCNkh726MRPll5z/IdTX4ORLnqQByp22ULFJH7ymloRd419D5lertMnvh4+s0mHxk/x8gDDHj+qK7z0sqNPpz785SKbYhMve+JZfMwXW/HVFweNvPXimZ+wiSUqD2xWP9mCSTPW6AsvHOoonXwwRzcMfHdWyK29ZQ+IBT548p9M9V3crLHDNjKP6ApTuMyHj4w+wss3GMJmzQcQ8+boxZdP5MzBZI+6Tn38wouHfGROowsP2f5G+yOPPLLY0pPMSa/sedH+4YcfrtiyJwbFJP0wyyUMYbSWn7Dnmz4KuyveGhk8mn42yBS/1smKa3s8m1OGHH4Y8SN6jFH29cnxr71MN1k1ZN+pL0R238znO9z6aq59FWbzGlsa+2pcI4fsWdR4DbYf6Q9n/thD9jjKNqx0WuucwT/95YO8tA8Pt3uC/1DXL37Ni4XYur85x8WDPBthm3uCHWdVZw/9sMKhRrVZP/rx0AsHH7Phqk0bxZGvxYMOfZjcp91TNT6Yg8cVX/mw//XNk4XRmUF/eXHW9GEPBlisIX387gnZdd/x8tj5xJY6Ev+wkTM/zzxrcGjil+1swc6O2NMHXzFxnvrwA5t1OMo1O/yf9stfPsCDv7MQlmLBhnzxzzlKN//CiI+e/DFGrubIk4HNlS7nIrKGzz1cfPEgcuE3D5c5cuQRXeGnQ96Muzelw5pYGacHn+YDIp/SSS8MrZPVR81Zh617j3zBaKxPRouSS0fz9LBfLtzDO1fgZYMefrWH+dA+1UfioFUP5qwZI3aKM3361tQDvubYUWPdN+ESF/Pl0JWP5OCjg23z/GTLvndWwEyH1nOLefFmHz85e0te6AuzNXbZL8/G6t/nAPbDj5ec5xIvl5x/1ug2XwunmFibZKzRFa6u8LPNpjl9TR+JH79d8bCnj4wnhaGYW8OP2GdLjPgpz1ddddUle9E+/zNUteq8YAOWYiwH9o9YhiufiofYqnd5K87iUZ3RZSyndJFzxYuKzcyBOfayZQyLXDq/ixv56oS8GtPUibE1duFjlz6yvoyCR7PP7DtxJuMeywaf4cYjD9Wafnrww4lP3zy/2CKnzsPaOjxswMYv82JFxpj8XOOjNTzIftOKrzUERzEjr9FFp7j5nOGcRnLtlyxntj9rKecoG+VOHL009KKdD+4p+Rc+/uUjeY09ODqX4BRf8eD3jA9e8WSLnnxxxSc2zh/2zOHNNzbIw+hfE3vJCSeMGn416TOmXIoZGTzFLpzqQ2MTseNcoUPev/7667+8aPcCUg3Twy86xY0PdLKFYG3/wDoJH3nPUD6/+SwgZhoc1hFbvuhQXszVpxN/8YEFkS0OsOHzktMcWXNshJMcLPxtH5gTV/EPuziKE5/M4ZcjVy2i3zzSx6/+2ITD53S/tFCHsLMNl1jLpzl2+xOEcuE+0V52pct15la+1SleOYRB7akvODTxVBNwiBM98OUDv2b88j3f8vO4edi9NBdnGOTU8zEcMPT5mw488Ii3Z6nz25cfjfGqI1dxkCNX9jRjmPXLd1jMI7Fkw3x1ZD7s1tmFTczZRWySYY+cc1Dt+cKseLENG1/oiMRcXOm3lu/tV/u+88dZxJ78yqsX42HsDLBOD2x0sGWNv3jVIJzswcwXNWSOTrz66sG9TZ2IN8JHDxt4zLNhTJdx+zBc2bGOjNmEjx9kXNnVJ4eHzq5q7OzZs+tvtJ/2X5af+E/H+G1qm8vDHIdLbs4DrJ9jnMRjngOKKofw6SfDOY2NgkO2oqUzGXqyTaY1V2NrrTdnni1Ej5Ztc9nUR7Bp9SXEy06bskLPdn4kQ299OOYY9uxOmxWTAoVNodGhwKzle7jpYL/CyB688Ycvm/EXY2P4FFQHod+Y+xaGTUqOPUUcvmTbSOKSPVjg4JcDgW6ydChqrYOGDB02TL4Va9f4YMyP+vTXx4vYpYecK5/EiA/4HZjwwcRXV7UVPjpg8UBnQyJ4HUhiQYbuNif79KmF/gSJA+nw8PDPb5rkF/sdPuTgMudgoq/8sDFvZMXTweblEFzw8g0WOhysfinCfzY0ctbMdcjzR7w1a/yHrxzRWwzJ0BFmMXEDhdWLZX4ifGRQtaJf3OmnR67p6kCXC7rwqTcvNKyXE7qQeLAVHj6LH330osb8wp+//KEfPvNuKmIldvx3uLtZliO66EXmEN2aMRkNNnjpwQ9fePGaZ5M/Gpyw8V0zZ+ws8YGBz+pHTNSaMX2u9pb6ImfODchDSnliny6kr0351mesyFZ/6VFX1VP+FoPiQ2/xIFcNsI8nzPF0FbN0zj4d5QhOa3DJHypu1sQBRnFIlysKJ/mwmievNU+P2IeB/OzzPxz06JM3X8zMy4c1WI2zgWc28TJGrunDnw/kkXG2xVNc3OBfeOGFg4ceeuhPntU55Q+2+tMxYsmOuOZ3mKofeSCjhb9YliNj5Aq/Rs9sM07ZIGNeK05k5cezhT6bbNOdXXLIPB6UHnPZrY9HXdJV3J079j477Z3s7PFV0+EMK7t4w6bfnL6YsofsV4QXsVVbE0c/0gHrfCi1nD5yMISXDT7SDSO8+evva57ZPpT7U3Bk6Mcv92JQ3tNhnR76zNHjqkbkm348rVvD71ojg/Dg50vj/MsOWa15PuHPP7npw4AzlW784c5f/PBZzy5Z5ymd5jT3cOe/vaXONLiLpbPFfRavnHnh5yWHXLDFDhswwoHIamJEFz5YOqfxmIeHn2quuuMTfvboYA9G/sHmap6cK97iWdzMa8ha8TPGr9EDgyv/nF90es6wjtLrysdplz/m2YSVLvi6Zxjj71uIYRMvjS06OutnPMK+QGw/6MePt7WwhRM+esMonrCQy7Y1dtLXmnWUDfVAnzhMjOSzkd+u2tRr7BlC/uuzWb2m2xqMZNniX3FmS27USHGGD1++5wdec9b184tPbMy6NrYeGRd7V3qyYRw/Gf703FEtuuJpTR8u1/yFCblq8YTflR46rGefDF6Y7J30GctLucAHq5Ztc/jIH9eKkWv4yIq3MVmU/TAVu8Z4yGmtdU2vMb3OV/mWZ7/ofPPNN9f9PH66TkLp96L94YcfXl/sEadelNMLFz7xcn5psGuef1E8+PGZF1vEf/N0uGrVr/V0iVfrrpPIhtU8XjjglLN0ZpdNta8eXI3ZaS/SFYbOZvH1otPnIS+HyNEnHvlJD3vW1Bu/6WGnvLviwZvPxtrMMR/ksfsAv8ho/IG3/YyXbGvFx7xmbB2Je7U9Y4sPHva8XPTFN7z8u+222/787MFGPhY/VzHxd7Lp6HzDm13xUJ/ud9N//HAUC89I5Po8irdY6osfnRq/NNiRObrMyYF5Y364wih/3qWwIQ6dh+qlz2nm6YAFZnbhK994jemAx71A39V/0Ome5PMlu54lxNQ6PfkgZmzTyRZiF285M6/Bzjf15/MbP5xVGl7xwec+7jP5jI84hD9/2UqGH3RoMNJj3+A1h/hhrc+uZKcuNnrPkT61yTdXc/TCQdYZ5Zp+upGXrOIlD2Tg8Bx5ePjHuw3+psN7Hp9jxUYOxIQNut1D4GO7M50u+n1+JAObPIqpHCOy+u1XvJ6PfIYvRnIGuxi3P/DRB/OkxnBF+vyFX73Awg95dU8XSxissYPw8Bs+cSbLZ0QfLPDBg+hnG1ayxnSGxxheMmTxlAvy5tjrSlZMYUs3W+IrzuTFWd7UvjhbhzE95MjjE3e487UzAV55Usdijg8Pn+1Zv4xA/ICJDjbkC9aITWtwwYjYR2JqjQ598vpwFT98eOhhn27xoc8828Wz2NGvWY/IFFcY2/Nyy+dih5+N8iM3vqz0bz6Hn/hFu/+IA3gO20xIQHLA1bg5vOYkzVyOCwJnXDk0+VtbyrcfZNqorgVaMrQClG76BFyA6EXm6JUsDVkjC19B3V/xmZt8fPEbsA4FsZAoG0+hhM9N0UGtuIoDm+SLl/liYM6Yjgou3BUheQXvqvEzHrLG5qf+5vINH8yKk172ycCFl6zfhrk5iVXrNh1f8CJr5Pcby5gM4ge8HXxiwz6Cx5gOWJJp3Zi8MZtyPf1l37orHvx04jHvSia/reM1zl++asau8f/000/rAIXTweJhx0sLhxasvaSBP5w9lPDXwdThSceeYCCnbtSS396yLwdkzxx9Y0FsHATswOHwN6eu1Jc80uNByGFAbweh+fCV1+yyJZewmmPXWHzI4acfPvrYcbi6qeB3gKsH/W6WfCRHRzmhX6MfmafT3vFNBmcIu/6Zk5uo2ikO5WQJ7n6wU73SGeULHfp04NXX7GN5mfXIX+P41MCMu9qqvsRTH+bD7YFDjIox7Jp1sYFPTfRhld/8dU7QL6YeNOUUXnVA1m+hyYsbvMWMbjrlHkbEJ7WuRsKIn74aPms1furDAIu+OVjpo5t/fNOyVT2pAbL0WyNvrXwZF5Mw0ovfFS+eyFgsOj9h4buc0Jl+ftGL9LX0iAF5MaIv3/Fb08y72r9kYWErPHitwZKdMLIT/uZmbdGh0dk8/qh5POmGAR6UH/g0a3LvA/pzzz138MADD/yFbw1O8YNuL9o//vjj5Wv725VNJCZ8UGvanNMPK//Eig/0ms+/4uFKn/XjKBvWtfIFD1k41Fh605EtV3Llm63yFAZj8xoKLzk1zxY/8Luqbc06fGrRuW9PIHN0so1fE7uJBR87/KEnwqOFyZrWGMZws8d/a4iu9KWTLnZgaK0YkPOQDHu+u9LZ80zy8OcDHrrsJXbwuHZGlgvzrbkWuzC3nu9d89WVLvjFm83Wwmvdvcb9rXU8NXwafF31xY4/7lnkyoXnGvqcoc5lzZ7PT3zGsNPhw4oPm2pw2sSvoXx3nxQzOMTXfRxuff7RC0sP9vpqi15Y2XMP1JDzDK81cTgunuWSDXiKAT/wt15Ny5F6t46Xf8m01+khB59m3L0ILzLPHz7bQ/Ra42/3BHzFDH6EZ9aH+faTdZhRvhjzH94ZA+t0hyd/4YzPmny0N/KndTrUgXqgC7la16yreXNk08MW343j7bMAHe7xYqBu5FSfj3whxx8xMA+jeTZg1YzZQ/tYWavRiU9uYTEPjzHsxUhthME6XjWg9vOTLbqMI1h7duEzOfjw8UG/ezZbKAyufKq1Zh6Z5/vMKx2w0xsO2OVUnsSSjJbf5NsfxSofrbFXLMJY/GFgL53W9feY4bVGPyrWa7D9oG/6ixcG8+Is9v4Epz8B535eDJK/2Gv4vWj3i3f3cbGh3xq9+Stualfc1ImxerQuLvj5Dqd1lN/lhr/W8Ih3Npqf9WJNQ/i18OiTgRPRr9+5Sg4PPGJL78wJGX72TE2eD/bZ+e3bpD5HVMthK490mytO7MhJ+4wedtX6rBfY4XCd8RFHupH8lns2xNrzMn666GSPDKJPg6nYiIM8uaaXjHVkzfl06623Lt18961i9/Rwwd9+ZrM42ptsVwPuJeborjY9y5OZuMLJvjjxrW/UZ4s8ggflD+zkEbmIzxoiAxfd7h1w4S0O/Krhs6Yu+qUKH9hRD+5fcpvPbJdbMfHLBnXm87v4urf6vIrkiF5X/oiTNn2Ql3wkkx/4PVv44pl7oLNJ7lH/CqD/546+qPyIFxn+0Ql/MXTlM7vWjPkId/xs+hfQ/nWqHPbOAF4+4eOvRpdWTKszcYLVi2W/wLKePTadVd55mBdXeMRHLbR32eITDHTxlQ6UX9bDARe/4e2b0vnKpn8hoB7yHUby4g1HNdI6e92D6O75bj7zhiW/+UIfWTaNtficKf7jZecsLHzEyyYM9JhrDSb6+KufPjL16S6+ePPRvPpr/9OBD5HX2KoZkycDB/7s8lkNwhkeesUXDyzWNH6Lm7rLdzbplB/r5OiTK7UHl1z0iwjvK8jipQexC2t5qg7pzK9iAhNiU5s4+Cn3ndXJ8Js9xA/4nCH2Ihl8eOBxjY8tNsRD7eoXo87AmQM24M2Gv1DxzDPPrP+EnM4wLAMX8ePEL9q9zAOQI25uCGiA6guug8E8B9vkrqgA4BOcQOPV1woMfvbwsoHf1TqiU8u+uWQlu0Sbx6PR75ocnPlA1poxijf7rcMxsYuFwnNQ6JPjp4NJLPDqh6lDFoZsKxKFpXAUNFuSTda89bBZg4kezTj+CmQ5sP1oLX8a0yu2Uy8sxnDC2yEGp7HN7EpH/pOBoZiRzyebDh5YyYhL/Aqb/Q7p6sKcln4ydODnP1ttZGP22IG1mywbYbSeTrryvysd1YJcweqQpcu82PPbh0h25aYHBBiRq3m24POCgx722M5WvK7W4Hbowo7YIu834WyRZYt+D5ZqjB2xsC5m8LPnMCDr5u8h3Bo5sXBY8k0cjcnDV5xcrcGkIZjhUs9w8k08POCIBVv0lxd9fD50enmM38OGGyoexJ+ZK2P26FRXZDRz7EcTE381hAf2+nzIx+St44cve8m48smVDbIeZGHw4CDW5JA5MaWDTP9MnpxceFjxW158nX/ix1/npdxaby/Ta76bAj1i6uERDjb4wCYedvkhbzN31uwh+ooTvHjzkw713P6gi5wbFV14+cA+28Zsp49ufpHjj6s1fk4ZdulVM2yRg4E+/XJPnn7NPMJn7Mr3ZPBqcsEP+NjOJzL2kJprD5Lll7rDjwexVTPGp9FnHp9x/Ob5DTfdcFivZuJLDx1kUHaM8Wn6jeGnD3Ut9sb67rcvvvji+gYbvnTrn4Zg+PHHHw/ef//9lSc5kivxgweJP9vyqib4zz9zeIqTGKAwmcer5bt+McI7+8b8LA5zjTwyx3Y1ZK74VS/JzTGe5OCEA/EheXL6Nev2pg8x9mnrsNiTYsFGe4+cNVe22CHDlrjOs4NuvNaOkyNbw0tP+7IxefPFgp704UFTN17+0mselUe+pJ/eaK+7eLGDny46JhY88ih2aoldjU3z8RrTnw36NPJ4NHbsteb13Wvcf6evMGh0kc9etvhnzr0zObx9O0dth9eVHHxqUe7odrax697ZPa4Y5gMb4SaXLX0fTmAXM3rbO+03sYGTLX062fJBgE9qsF8UsEEPTLBk31WzVm5gxI/4pImjBgOMeNmGsVia4w+Cx/3P/cuc+u9eYZ0OPM56+hE+OmCnE080efBpcy7s8IWnnNBT7MxpbLfORrrEwrwYwQyfXLiap2s2MfCMEnbPIPJj7yJj/tCfnDiqmTDho986Pex0dvILJvIwVyPmpl71Ti+7ePOnWLGRjnyyRie77LFV/OkXR1Sc8p88O7BkB99exj3BM033Bv6Sy3/npFjBAAtdYUgvDMUk+8XNWj7RgegXW2NrMPFNnWp99pBf83zPFjv4kXn2Zi2xq6HwznHydOgjuunRmtPPh8W0/TAXlmySFWs15kX7a6+9tu7n4U32Yq/Z70X7b7/9tnTTV9yLd7jzz7qYwVi++KnuzKNiRnbGwryG30s2Z5TYo3jVMht4tM6AeJrDb00exYVMFLZwtB/grQbKPx4Y1aCmbtSpvs9JxngQPi/gfA6RDzGCB+FzxvWcbi4f9PNPnx6t/NMfL5+czT7HwMoOPHiKFTnUmUIXLOb5KFf4Xcub/Ij5LbfcsurfunsKHWIXJvL2TTbTCz8ytlf5ieC2BifZ+GYd4xMfebAefvMINjmkG158KF5XzTp71UR+8yX71sUpfWSKKTtw/P777+vzLz9gERe/hBBzftNFN72u8LiHum+5j9OZfmv48cKI2GHTnHPPs0O+yG0vl2El697spaPPXvS2LsZyAZu/7ayPH+ZyXN5gksf2gSsciB1jGOASH3PwqXH/AtrfYuc72/6ki7qQT3r5rZEpd3Tb7+nhp/cFfIHJPd8e0vcOwr/axovY1cpN+VyL24/iaEweVdfl1pWceMHaXqCTbp/h3JdglDP86RI7a67lJb+M8fpyKN3mxQ4voo8tJF78TJcYqCk1wVfx8EsM/4JfLMRMLn0ZsGczOVUfyLkCIwzli93qCxbrdFvnK15zfMbLtjkNPpjYZgeR0/ih3sVGbMm7qgc4raU/G+yaY0/T18yXn/CZQ43ZU0NiJ77siVs1zgYdcNKJjLNt3Lw48NXVOqqGzNPZOhviq+nTgZePMBRTc+IlVul1LZ75HD8f/LKtc8C62mfHmhgjNtiEUwz80umll146OO2fcD3xi3abjxOcd/ghgAJVMUhMCeaUgBiXGA4KWgFfirYfAqIhusgY0+8qEftgZIcMfXTjqTiMBS5sxmHWh82aq3n97KYPVmuIjOCXGPw2qo3p73TbJOxJniJV/LDbHB4W8Tu44Ss29NqYZBwCiic7ZBWhMTyaOZjogCV/+AAX/HvCQxZZpw/RlZ94jLU2kD7M7HjI4gM7ZPCzx8/m6Nas01E88SK4+a+pJf76bTX/YWJPn2wYs08HObEUV7riF3dxCxdb8sCGpq9ZR/HBTQ+SD376p0MwsEuGf2zilQt56oZPjq4wi4ffoJPlA3l+aPimfbjUND7zDkw+2mf87ADiozVx4iO8sKbb4eEwMKcOv/nmm+VzuXMzEC++afyhoxjDWv6KeQcqf+HEI/e9+MDPvivM+s4E9n3LhIybU/+ZHCzs5S875MyJmYbImUP7uCWTnJhV6678p0c/WbyI3XRbgwcf/vTxxd/Ftt4+hIUd/pGnhxy/5AipDQe2/OBLpxgmJ47d4MmwH+lXe3TDAwNZdRVu8+UKVjxirjZgTI7e+njoYF/tpNOcBwg+4FFD6oJ+utictvMdL3Il2zlmzA83XXjYY4s+WMTRmhjo89M6ObXY2Zj/1sqZvv3GV7x8p6OHQvtRzdGfTXUOG4zFagHffrDBR81alG7rEQx8YV88ED4+Idf6/K/BoRnzkS2kj+Cn2zo+OtJrXtz8bdeXX3754NFHH10y6ViDU/xg23/a/N57761YyqmY8U2ffnbVb2dF+MUJj7H44CtO+eBay3c62dWsoWJgf7AvrviKZXrxmmdbS5f1mjl6yc45+DQk1ohf2XalE0925dk+9gtzevkAmwdsdUS/fYo/LNmhi06545O9xm72zIsf2WJkjby8V3sL6MC652Un+/AhuMwZs6kVEzb0zYWfL9UaeTzW6I7CVhzgtI4PxW+OX2rIh87iwmY1hR+2dMAqjnBoE6M9nm46nEkaotucKx3FXr91a/jpcC6IO/3qeT6/sCNHnRn04jVPH1zyrpE1l126NXrNacVcXxzIO1Px8F2zJk7sqit66cknL4fdX8XUvcQHeWua2nUPp1e/uslv4zCtYGw/2OOTfSYXMBQLMXLmGiM2w4qfbfEzBxPb7CJ66eJzds2zXy5gxuNKR/P4UHatW9Pog4NOeK1pfKhPpzVz+lMXXPj45pkHX+cL3ho75PnjRTvcciEe7k9yhOhpn4RD3uhkK3vkEZ/ax3zIZ3bJafr4+Jl8/lo3dxxlX31q6cTbsynb6sM1TNkt/2TlVwyicMOhT7ca7hmoeDsfxU1dqI/2Dhm4xVBD5dQ8GfboZV+fDIx0a/jptzfwk8MjTmrP3uUncl+XG+vF2Ly+uYg/bLBXHKzRDUs4mgtzOmfN4aGbHLzW8NFFj4bSYR6ffHg2f+ONNy75i3axZle+9dvD4ifO6hiOcMEciQ1s5GDmV3nCw1exM09O34ssn22SoZtsNUcnDGGZtq3hteeSN2ZHY6OciJvaUg/m2Ha/kPew2at8xCO3Pv95Sebe7fmTL+Rg8KdXDg8Pl056NDbFRy2rOTYRGT5MbHSEDx68ruKu8UkMOi+s0ys3fEXFyhlvLp9hb0+Sq07Zh8PZe+ONN65fHNLBTvGmIx/taXsWzuqAPhjwWOMnHeyb44MW1cejDwsZDcmhxoYY9sweZnjIsYmHHvziEyZzYcar8VUc6cwOGWPzasG7FV80g4V+57ZfoLg/izUMM2d45FeswpnP4q2xjchZC7868tK3ODh/2JJffGx5iQ8PG3D6Jb76hNU6fP70o7hXxzDRyU4kLnwtBvCicmsejzggOXUun9++ee3/F2PP2ehfQjsf6Rd7c2oN3uzSI/dygg92vjrLxcJnKF+Uw+fzrV9m4IWhM4Vv9IcLdjpdYS5m1vFp4sYvPPDwhQ26jTUkVvyjj21xx0uXfMmzWMICL1vZdfUlOXNqhAy/XdlXA9acE/Imbmx5zjJnjMTCLzG8AzIvp2LrDJdT2PCKHd39MgIerXjDy3c2y2V5dEXwwQBvvOrOGQYXX8VIfWnioc76pSF5sfDOBfETpohd432DkV+wkcdXnulEeMRe3OjlN/70k0P4xaN5MZj5wWPsfBKT4uFa/unwuQsPeX77bF894FM/Gl48MCO8ciF+UT7EY40/Yug8paeYqAV55h8eRJ4MO+b7G+3nzp1b67CfhE78ol3BKQybTXAZBA7oAqfgOVKSJSoHgAtkQXBtvSQVGIkW5II7nSNXokqy9eYVByzswVyy9nYVfZs+e/QpDjj02+zpxp/f+pLtwPJPlRQIP2weSRILesRBoulzNVbs9FiHUUzJu7IFv7V9IfMJJrrx5D9dbP6ft3tZtbNa2jg+L8TG3HY9a0MEGyqe8ISgURMU0hBtxAMqJGrDjh2xpRdhz6vwgAgiNoyCUYmt7za++Rt7/bNrv0R31jJYMNY4VT31VI3D+86ZlQQndgksY6RNxGbmHaYxedIWP07ZspfTeeiaEwc7Qk/8bXbjCl3+8MYRb/jitdkdMjp0tfONi7HinLkzTvibecM9LIdbH06xa5svXjjyhZfikmNn3rgHVh9mrGsvZ/zCosOHvvi8jMI3tpWZc3FmB8eB59MLrXjNdTmZ68Nvaw9bTC4PX8rJjUvav00Hrzg9dK2beXtG2zrFrzXRxxtH3Pi295x34+xd9nLBhsChj0fnQP7Y+6JdYVOO+FDkyhiBK158mzPe+tJT4qae9uzw6DzgQ4d9unDzF18+xMF3+9VvH5m3n8RjH+aLDhxr5MWLPyI+Lz/2MR8w6cgfe/nT9uBgX5y9tPCPP75qpb1HJw7FlC4dHPsNXLy3woZPOHTx04fpoV0M84FKR8zFyzYe8PnBVbF2zgwRl3UXJ319uq2BvSRHsMVARwzix4OuvkInDvh4mLJvvcz5QAXbnLPRWYHdWYbdPsCHmNcWXz7Lbf14yJUzz3frwL64tPFTwg8bx8aW46MffPENT53vePKp7UyfO3fuxH+SPn1q8/P999/vPvnkkxUT/9agfY5ruZM3OWAjVnzo6nf2ta8Wa/kQP2GviIs+O2KvKHiwIXyWB/04GZttc3DY8cMOd8V4GLDZ8Y93vtnTaZ3Ni89ZcodaF3aw531nn+Y3rnyyJ2zEaU+q6SrihB8/Y/EyJt/4GRNTXPkXQ/zjHDc+i6Fc8Is/rrBbZxi9h5Qf9riUP/0p/JiHQ0cbjr6iDd8e8lykT9R44FSbT3GpxdvdUS7EyoZ+PsTgLPNlnA7BhY7CvmJejHy4w+XdHF8+lLurzRnvXOOo8G0chncaX5R7drKFsfW7Bg4/2Mp3scoD3vzhB888kSd++SmHYqHDlzuZuM986BWzgnO5aK/gRWDjR0eZwnaeb3rWAJY8JbiYkwN71wcfdrjJg7zxWx74tJ/hG1PkLAw1HXG1VmpiTluhAyPho/WRz3JXu37Y2VXTE5sP6vh5JqinPQxx8uUPm+VDWz69Z4mbiGeeQzZhFosxUh5wb4/TESvfzohSPuiZI2q49gScmY/si5u/CjxiHfmy15wV/lvP/LKBkR/9/Kjpsyf42gO9U9Nl1/lWuyONsY1jeYSjGOcTh9ZLjNrm6JuDw79nLL/G4IrJuPjcwe1XMVpjc61DseAPu3yoxcNneaPb2OSZDXuFjiKGcgMDP8J/uMU08ejh6Z3yen/R7m+tdh7lsXXHG0e5tI/jjqu2QuhnY47M/JQLcbGxX73L+5KHP/OEv7kW4jcPszUxpt94/vJhvjzj0B4tz/NM8cfeXhCf/ULfO6d3S5/DneHiVu/3+/WFmLtAzsqbHPUM4Jfg0tmMnxzwQYd/mIp4FHl0V/S5Cm+82PFF2s/uUfrEfDlXs8sPDgp9/19azxKx8yPnuOCIi3PlXMJhR8+4vOIgP51fnMVpHgc6sAiejbcO8kZfIcWFB6zigBF/bVjme07FxxjRFzNdHOVFG/f2FF3rdPHixfVM0haj+90Xnz6btwfYJnTsA/tE7mAWc3HhjSM7OSuX9pDnn77ciJMva2yMvc8ens9yijs+PT9gOiv+Rmp/WMlX8eMIB6dKcZcrGMS8vPBhjG+Yvgi+fPiyXT7cjf86/HOz6jhr2zv6ckHkEo48iIut9wznxjr4ktedT88XyJ77dHHDnw6s9os53BQ8+WovyCe+dK0Bv8bYaNfHy5g5Z1F82r7TyA4u3847zpMHXfzg+QVFuvYrkW/Y1k1e9cUnf/yIpe9UYOKu74tr+bWv7EN/6OA7GXcfHLZ48Ot9bcYtD2LuOScH9IoRXzrG8YHV+wYcnz/4tib4tP5ybB/2XZQ5ftTWjeAGg798GudLwcG8WlzZ0ymPOCn0+OSPX/k1DheWHLNX5NFYbbnUJ/TNi7NxY4QOv/iIF6Yxuu6r7lA54N++bP+xx9E60Mufutw0RheGmN0FcAgecseXMVzYlAM1G/evX3j7x36jfX7RbnMg1eIhLnCELZC2+YhbhBbJXHbpsK+thiO5bLJtM9A1TkcCw6o2r80+jB6EbSIc4PJF4LHhQzFHR5sPbTrEGF19bRg2gI2itqFcxF5GLSRd40r+5Mhl6HCYzxf8cONo4yXsjc/NFy9zce+yyW7q2IgETnGo5VPdYbaJYbLFobUtH3S169ODyUae8zN958e60KVX3so5fW2XlZzpl3P22nyqYRA4FbaJGCYP9go7+NbJ5aZvj1gT3MQav3KgD8v6dmnwY55Pc3Q8oHCRs3JBrxiKzxjJ3mXDxoc/ujAV+s4bnl0q5uNlvfxpLt79gU9/cidWuZp50yflVl+85U0McYwDX6T8hSdnbD0kvfz7K6040L/rrrvWJYWLvvy0Rgvs8EOff4VOZwQHkj5//CiELh15IPjqGy+OxoznI316sOmq9eXPv0vHTjz2ZXPmcWtPyjkudL0Q2A/2GtFm275mmz9zcPiFpR9vtuIsrtYF53TC0lfaF/DiqK1cTfB15/hSR7z8TYFBh4SZL+PW0LjaSwv+2bRGeBdHtvIop/1th2Ky3+UpnLDht1/MKfrtk/KAUzbGCJ/WpvjMk+azNd56mqfPDnc6OMcj//RaF3p06pvLLs584CjeeKanrxA65Urf88FvUbz88su7p556ytAV/qtzgh98fP3117v3339/rUU+1Ym2ePAVHymm7jM86aibt6cV+Wgs/OIqB3SU1j2cZXj4ATtOfE8u9q412trQp6uYm76NiaXzqk/yoTavxsva0RGP82Wf42ovEHOtHUxrpSZ840uXzuzD08+Xee3yzT7eavpw+NOv0Eua088WJj/uKHvauvEltnymEz+cFZKuPnx2OBJtRbx9gDGOa/eZeRKOvnb8qvNZPhq3xnKq33qXc7i4iCt+4vNc5N+YudaEnRjx9dJsTh9fdgp+4eOp0O2OpE/wnJyNx9l8ueqdz3Oh+XRx9JxQN0aHLX8+CBAf9O07/uipxa3oK/gQfAmcOIa5Jo5+GKPLl0JXaQ/zIY8+6Lmntc15t/AhU05aW/b5zUd8wq+eXPCGSXe5RKIAAEAASURBVNe4vpqo4Xd3ti7hqEkxrM7hhzNiPekrePoADKc7hm44dNjg4IzEyX6mU1zxyk6dDzU9xVrCI7DaI9mr+bJ25Qg3tvSNu2d84As/7AV6+BEvNTxFHsslDGPzvmBbrGrzhI5nMSx5s86dA/Otifl05JENXvS94+GsT+QARv7ZmStPYU0++cGreNODaVy+nNniZOMLJGfFGWfHp6KdDTtthfArVnHQM69o86nduqn1iXmFvVJc5nDhV+wKPWNs6cmH+8sXbu+88876g3PjJ5Hi8E/H+M9Q/fvM3Y3dCbAVnNr7fDkPzi8M42q5M64uD+ITg/nid1eJQ058LvH5iNBRirPzJ34Cxxxu7kFrBt+8tVTDNN+dTD87uvzq+6IHhn1H2LYWbAi9YrYW+NifvjRjl/5cW7H3rBFvMalhwCN9Wco2HRzY4g9HfO5uOcVl7kkYxUsXDhEfH3ErlnyUC7HLmb71yJe8wGLX3taWT/caO/zYwSR8EXYw1XQUOvjgpd2XXezZyREbc+z4af/AjK/YYeBC1zh+pH5+1HIDFwc2/Mhjn8VheSZZB/HDF5/CzhfqnWu68YBt3/v8SWCzxSVurQvfYtK3X3zW7vONPPf8Y2feF7J9SSsH1l4+3JHwfVHtn3O9dOnS+g7ImNiLj434rKV9ZI5vBW8xaONF5F+BI0ZFLOxg+c5BTfIhj3D6gycc3ZtyBssel8+ZO/j84oYXrLjAM2eMyJex9pCx9NnAwpGNQlc8Stzoi0HBp5hgWrd+Gcyc3OJKB29/yFGu5N5ndzbl0/qx4VvM7Kxddvj5/gcG/zjBN89OjmHJm3XCW1zGnQ21vQHfuFi05RY/nPlorpoOXfM4uqfo8W8NcRV/a9s9Xd7kGb94i8u7i/NO2lN40BFTcdGF07sOHaI2p2ingw++CZ7ihisGIi5cjcmLd1d5pkvEI0/2nhjpii9f/LX2fJkjcONnnJ1ciYVva1Mu9bODhQv/ij4cvsOPB57WyvhW+OfDF+3+j5VTp04tleLe6v9Z/8S/0V4QAq9wri0AiS0BJUug2ol5+uyy1Sf0zM/gteFOff2Sx1aiS6CN0oOArY2l4A6fvkJPYZv//Oq3SYxlZ6xFNc6nvjZ+NpDF9TLqwjbvYBgjNqoNUNxh4BG2MaVNOHWN81eMamN04lIs6rAaax30FVgOlE1FXLIOBc4dhg4NrHKcL/Zw5hrjQqq1i5m+AosdnYq+ePQdKpiJOaLOtjFciPUl+ZBrMZC409XugellzJiYPbBcCtYBB5xhwuDLGGmP5t84rvrypx+X9lx+zSk4lDv49opDb5/mi562y8UDE2e6xY8nf14E7Hc6vrDXd+GWl9acnULiS0fO6eQvrnSNzbVla5yNXKmtlf9ExAd0Dw82fpPHH855AOjDr8AoxsnJvPHJm299sbYu2ReLvvbkyUaRYxwVOnzQi5M9oi1/vZTJN524qeWdrnMME7ZxuGHhkU7rbqxYYSgETnvEPqPTwwNue1jbHGGLl76CpxfQxnCC0b4SK/vyoO2sWxM+2RG1Ig66rZOaFHvnia29hn/c5M9+gM2HcfNs1Pa2v+2gHx9tMcDjGwe6cTFmDg944oqbOWJcXKQxeo2xJ9k7F/jx4czxT6wjgZ9PeOzioz33krzYk2Lnjy0bNRsiVvPGGwu3daIXXzp8+ILr9OnTu4ceesj0ldhW5wQ/cP/iiy/Wh34vk3zIAw44JvRaH2P4iFMh8SxWY8VLt9jgKIm2tZVbetaeHV8wzWebjdziGT99fOkp7OI6McyRsNnAIfzQTd9YOOnTEa+94T5zVmHGWbs4wgxnm0/Y9OEVb/GoK+y12SdsCXuczDeWTrVxtuWse6B1U+MMi8ALk1241oaeMfP0+VW3F8zZ03xlJzZ5KkY++FTyZYzEQRu2eTjw3MGeaTj4kMEPTDbF2J4w7l7xgcmzsT0t9s4kH9nNmNgq7Vl6eBhj732gPZNvXFuDOBe/vlh92KAvlnSysZ88K3FO6PDjXlLY0rHXxB9neuWKjpJMDunQz7+asBGvIs7WMT/uhZ7h1hIvf3vLmnRn5nNyyP+cy7cxvujTk5fJsXk6Yua3swUj3elv2xaPuwUGzuLRth7m+K3wxx42Xe1s1PTMsYWR0EvC1ceXD0JfThU4hJ027GIpPnPy4V1b7qfQTZ+eUk7V7PjBJV/yhwtdgk/FOF18+TOu79wY0w4ftvPDvzk6nvfp+5LJHtUncs93awAbh/KylI5+GDc/xViccUjEhQMxb87a+pLNFyDm+JgxZz8xtengpw1X7qwDLnCsj9LalQu6xaOt5AOeEs7kzY/3Ie/A/lNz/46ysZNI/vz7wU8//fT6DV/n0WcFnAmO5cK64ETo9SVHeWdjfc3BxkvRrs/e2ltXY/LduYJrjMz4Z+6K1V1qvXAyxnf3czzUrXO4sMVjzn6034j8N54dW8UcH3zZ4z6De+d0J5tz/4qHjvgVGOYUGPwXNz3viLDERujgIwa2iry4u421V9gmbOiVnziKI31+6U0/2jDVdD03cOZPjfMUGLhZb+/h7KwPXIUvff7NKXjBYmfNzcPx3iNf5vk2Rl+twGOjxgOmthoOHXba2ZuTf6VxtnBwoCf35uSTb5z1KzDkhA1xNxUTHfNx8EWtz/S40BGPEp/WRFy4K8RdfPnwG+N4yjUMPuGwtyf6vI5Hn9ntE9j+Vvt+v1//jrovHsXgrPGnaPe8h0voKPauQuiRzk6xGcNFgZd/4/jIiRjg+T4AJ8/x/ia2PMkH3HLBFr4+PDjNm2uNYdIrFnoKLgk7erDSN2+NxSTfxhN4xWgMP2vX3ySQc7m1N+i5C+xPMfCBi/vJOnl3JM68HNAnavawit95ssa44NQ4XWP2A77zrPEHh+9ibl30YcDFkU7xpyOPxhpPhy97rb0NS1ydTf0w2sNs6OAOl053A54KPmLESZ8e/XLBJuzyuRJ2+KHPHld28tLZxYWYY29cvu09bb7o2Bueg94hYRijzy6O4oi/Olzz9JJyql9u1PXjgXNxlytz+Kvzoa8Q4wQ/fPSdg7/7T7ie6Iv2ElhSkEFMMtTG56JrEwkTUHotQkGHF5YFLikFDot9idffJkeCjFtYG7ZFsFn1JR02TGMOpQuvC227sOwdePzMwWYX7uQfd2PNx9Um5xc/bR8M/eaTy6OFZg9fIXBsFvpwig2X8uxQKfzlVzx9YUjPHExtOnAIf2JyEGwoOeOHLht+rXe+cYkre3iw6MJqc2s3x59CuiQbo6fEiQ3Bh0+HKl19ulP0jSvlDAd96+lFA9+518JTuxA8hPxpOd8uaQ9IuGzYtt+nb7b0y6m5inzII53GuqzCUONI5I4N3vaC/dmcunxbCw8WnI3lny/rrZY3vuTZnjUGO39iIsYan324cTRefHiUQ37Z5t/eo8evPV3+6c+XPRgzrtqwWpO4wDbWHF19fiZv4+XHuPn405eP8qtPsmGXj/Y4v+4IGM3DUMIWH33xEuNx0C/X/MSlMTmZ47AUPOCJoQ9ExugaV/jAD4ZiXrHWPgAb6z7z1xhbexik/LDBh76HoliMEfj01PzFj46954WxhxZcbfHzS+SO375oz4cXUjzF4a9bqvlQyge/eOjzjWM65VHfehI6/JsrHmPh0TGuj4c2exx98HXWxeVLJeeO8G/MWcORsMGNwKDTnmpMDhS66TSmZu+cmMcnMe6eUudHDPzD2e/367fZ77333mVi7O8I7l9++eXu/Pnza89YN+tlXCHqYhCndn7VeCryo7RWYdARo37xNmYPzGeKcYWuHOTbesFg314yHz81v/TY4GldFW227QXz1qC7gC1ceq0NHbKt42cufvZcou0M2T/tl+bgw8Ol/aftTMHKNy76lXixtWfEFA867Ze45k9tjL1Y4RK21eGUX3wIuwqdeGrHdeKZDyt78zDknYivPn9w8mEeRsU4gWFPegZ3Pr2XyEM66YUFw77y7PHBih/PQzhxyY85PuJavZyPH/Tl3V08z61xku/aa3D8aG+Wv6b4s//bM+Zh4cWfs8ifcTmjb6y9ZGzmAR+69OSbbLnBJunSJ9X07Rd5puudyx/cztyYs+/wyE6tiBVG6908H+U7zua0YZvTFpMCx9noXtHGmY61ZEPo5rd8FDvb/Ocrf3Tm2Sq+8PDhh05zOE2c1t+8ufrVdDvf852h+NLDiT/98mcPu0+Mx8WeKHa6SvEUu3o+B2cO5AsnhR/PNnvPOekZw54NbHqEf3kQgzZu9oR3ZfF5B/Xlpb0Sf7ZhhFO9QI9+xL8ct978wFK2QhdWvszbk36DsfNpjI5SvtU4Jc3r40HEQ09/7hFzxuTAOmgr8qLgC08e2RcPjvp0nBmfL/3TA34Lfb/fLxvYxxW+iS/an3zyyfVLLXx4PuJoHh/xxkF/ivjwTrRh4J4Ul7yIDRZMRc75CpcdfYV/fftVvtKzd8xZJwIHD1+KyY+20v0CA74xGPRhKNOPuc6rcXZiMc6WnRjsee+f9j09e9izovn2nzjDyN4YLp7vcsEmbvjGH67Ct5qePaBNh432zLUx/sqJfjnkX1u+fY73PIQDN2yxtTZ0i50f9vJtDG57nC0Ri7xkH0/PGvrGibi1O2P5pkP4VWabT/7FZk4e+OeD6LuvjMWHnvjEa973Iu4X+wgOW3nAAzaZeGHBKXd4u5+cP3sNL3G7+xTxi4P+5AuDXxz9B6xqfud+ZWc/wm9fwuDTPiPeX3xJ7LsFn53g+sMmWPYJPtp8sSViL/dqffN0xQujvJpvDc3RKZ/eW3yu8S8qsNHG2S/uKO4M+17e8rMIDA72gvMVJ7ps+NSGx6c1o2v9+DJO1K0djLi1zupiWQZHNtnLqzX3t2jkgF/70Tj/1lI/XFhK34UYZ0PfGoqzWGfsdDzP6LFXG8Ojgp9cWK/ibM1gpwefqO0NhS9cYFsnRZuNuMQIqzmxVdjNNa9NH4a+glv5MM4Ofpj5VNM3z4dnuu8OjPWeKX62anN0YBsrZuspLmJcGwZM+ehu5o8uYYsnoccmPsbmOZA//hW6Sb7UYduDbPk3Jn4+K+xbT/NsxW+eTXnkA0fz5rRh20/+Zsqrr766nuH06BxHTvxFu0QgWeE454JBUilwpARXgOwVUrAFXKAl2byxqZdO/rPVz78EORjxsMjacCWernkXcS8r+OBIYPKjdhjaJPoWQOELDokTezr0HUp6xGZtc/Lv4e8CdOkbt7hq+mxhG6PLFq4xmxh+7S5rdriwddF6OBO6bFoTNT18YarZwFHmHN/WiQ5/+oo+PWMVfXzltzl9/vkkDqEYy9EaPPyARwdWfNQuUjUMmOxIbYeID3329PSNi9nlQWBMoa/A95s5HobsfTntN8HFIG5YOE+/2ZZXNZEXc/x6+MDTZ9uei4c6TDGnZ52VLhc6eJh3abv4PBTwYmfN+4Milw1pL/my1Rwd/tjkE970KwZ82RJ9umqFPns4cwwGH2rx40iP0JWHHkzwjCX68YEJQ8kfn5V8NhcGX3KVbfrmte1r62Geb4WNnPKdPu5EDuimYwyG3KrZs6XfmcQJVhzjNMfghFnMxmApRO759jLGVzzsP77M48te0Sa49HIn1+ytfV820cWbvr1AcIHnAwds8/Jkvn0rr3TUdDxwnRVt9mz4lhv3Bj/8u0v51habPesLemcAlg867OSLxI1fUnzm5UAh+GvDpYObwgc+xaQfBuyKeRi4+idZ5Ii9l1H5Y2O+tcWXtCfMxVWe9JN4FpM5OtYxe2eBHgwydbJX49Sa7Pf73WOPPba75557lk22q3OCH3z6ov3ChQvruSOXeJWj8OmJBXd5I62Ptnn5kit8k6vhmDPemrm/ii87NcyELhs+7Sc8yx09c605G3u355e8m7MP6LGDZxyWNtHvboBZietSOvphj8OBK+b4OZt9cBMTKQ74ckjXvm+fmoelmFfqt1f0ccN3ro/57vl8scdZ0ZYrtrgaS2Y+yt2cT09tHO9pAxN+uS0H9I2Li121cXzTn3Frx0GdwHFmPIOdTz7EL2Y2yhT6xB50x7hr5M77DxvPIxKH1gQOruwVNlP4ZQ+Hf3HQh6MmYWizlytj2vRac2P5oYuTMzDfbcTMn6JNH4baXSr3pPXQhktaB35nMa7kG2/FWJzUxsQnTvb2tPswHWP8y502/exgidOYOTj5ZaPP/9UERjjiUtg6X0prxpZvWFt9OiQf7Ak+CjGHm7y2h+nlXzv+caZPcCJ080FXP75L4eiHOdxx5U9N+Cge9fRv3pg82sfm+LcXeo7yzR+9uKjZ8OdZxbdibOrkN3z3lXPSlxRsipNvBXel8+Ju6/lP1/713Ox9jz84U+AYM9faxb+9Qj9e9M0r2oQt0W9Mn4773n9yqaanZMuvXMLGl7+w2E/Jp7p9Rp8/eXef+hyhDYNOevzIAV02rROf9hJu3sf8MxL++Tf/bvM2T5PLX7Xj74v2J554Yn0JKK/dD3zDxkUs+VHjo9DH3ZjCxlix8a/N3p4qNr6NywV9tsWrNqZW7Btxq3GxP9nrE2P03e/w4MqVeTVdJVy+8FCaN9ddKZ74w6XTGFt7wHuuO42dz3r9hrF97b6zV+SHFANM9nLBN93yyk/+tekq2uwJTH17B7aY8FJPHHbE2Ixb250sT/7tablqDftMILfyCQM2TuLnV22ueeuJE12xKOzD5MteLWf0nHPzPRtwlM84wyb6+LKd64gHe37khR6MuJiDYQ53uTLvbyH4DyntI3Ni84Xr3Ov8tj5stHFojxiTJ5js+Nbv/sOh3OCp0DEm13SdNXq49R1QesUhNsJWbnypbs53Cc67/Wb/Ee8TnQ15qs1WKfd08VD4oysHcqEQvnBUizvu5nG9fPhtfP/MFAzfMxF/w9ydaZ3thfY9HZyth1pfzvgVnzF+tJ0FdrjK0/y81x5QE9zxDjsbayKn5rcShtjky7rbf3x6ZhnXVutvBa68kvSsIf7K5CJe8djndOTQudBOyo1Y8YZNT27U7MVFr7VQwzGHJz/tY/lgp8CzVjCNE77ZwJgCX27Kaf7p4OZ+81wnbHHqLmTDHz21eT58B2lvygke8ow3UfsDL5/X5Yf/fJtnLyZ+6E5c8Sj8w457MbYu8GCIy7pp02Vjr/Gh5oOouzPaJ3zwxTYsOumKNQzzeLYH6hvTxod//PRhOyu+L3jllVfW3ySLxyJ0jT+O/UW7Pw1DooUUrDJFP+LIFkw6bGey0lWTEiQ59IyHmS49yaI754ynY+HajC2o+Q4dOzouChteUsnE1CbmYcC2WejqK9o2MF8wSXp0xU9m3LjbvF5eHcbmxBwmO/7blDDkQ99m4INP3OIPV7HxPKDxgQFLrLhqszPOLzzjDplcwIXPl3ltAgu/1sUYXcVcvhwOY/GH3QGDqfBNh2jzwT4b+satldocfW2Sr+JNRw1LkUfrEn925rMx7oJw0bhQ6PtTaxeOS0vs9PHFy3z8wjRW/PTxKpdiiLMcK7CmwGFTKb+wCH1jeMhFLwkeMK2zP1DxULemhK3igrAPcOSHPhycxKHwa84YPRxJvNUKgQmj2I2Zs/dg4drawyLtOX743hZYxtiziVP5qN6OsyH44GxeiW921kIpBv4UdgldfTph6KdjHdvD/LaW5Spu+Cvs5EINO8mvMb5gTT/axq1Z57M1d1fYB3g0D4++veALcH359nJiP/SiBJcvfjuHdK2nu6f9xadxcVXz357kp5dIeIrzA7NzJn44xuRFHnB3xuDAtYfZ0q2mXx9f3OjirNAj4o1nOS4+8/FtbtrBY+s3TbxwypFY/bNRXlCygVFe8ievBAbBNc76YjWmrm/eehkXA9/tFTqwlYSOPh5ype1F/YEHHtjdeeedS614sjluzUe/0e6Ow09sxkn4ccGhfUl3inH5s1aE7hZHvszD1RbX9uVpYk57bfmyt+QQPglLjQMxLw5F3vmascgpLM+41pCeYlwRn6KdfRysnTZ/xQMfrjPgbNg3+VTDKR61XNEvp9rp489He8S4gq+i3To4/wR+eTEXtnyJozjpsjdP+DfHRjE3pX450GcDN9vm2IlNoRdHbQVHos2GXnnRnzj04IvXM9jzi753EusKg4QddxjWxH5218D3h79y4Bynr5ZfOSP5jr8x7WKUZ+8DavvEHJtk24dvjH/c5FttjJhn3/2Cq7NgXnzubc9SvnDINv8wYLaO/Cgwi6U9nT2fhB6hV970+Y63fOmb7/5hB6tzoh3mFo8tjOLMxvgs7OiEg5P1Ky6+FRJXftvr7IwrbIl5PspD/sxpm7f2+MHJ1pwYYRq3x+PNtjU0D4OEbSx/+TfmnOvDUdOBY1zhG4Z15TMc94j9ShdP58B+wJsUszZcJVxzBJYx+YybfnrG+VHKsTn7MHw1//DhEXvWs9/fRqPP3peV8Y2PuBJ6sGCIk8SJXmN0pm4x0E2MZWtMbp1xX0DKI/v2DWz8SfuqfWxs4uoXJx9w8YJBzxwsPrThzD3CRm74IWx7vmm7u9whvix69NFH1z/bwOYkUm63/3RMn9m2OeKjOOTH3tMXB1HjWG7MwVCsiZjktHzRU+gpsw2rMfkqR7Dy2z42Rqff0mbHXo6V7mi1e5F/d6XCLn1zdDpnan0lbmytT89nfnzm1if2ryJOOVLEPc8qjM6MOX2+cMUBp3Ijn3wQerh4D5dPc840XXPlgX45Fxs9xZjz7z3Vb0bziZ9xnHFq32XHX/ba8TBfDrSLUR038dhLfMgHnnyYxxtPvM0nsPBRzBF+cSXFCkOuisuazLvQODv7hq4vhn///fcrny3heD7KNeFv5g0W/8b4xkvfuPwr5vTFJBfZwOYftpqdthw7a/RgykFrzb8cwRJLwracOvf+Jos702cenLzXyLE4+YJbjmZ+zZVb+aAnP3Sasw7uGnXjeMDzGccXpPKIj7uajv/Q098Csq/wV4g5fsTSmHjxTMzD4rPcyQcdugrO+DSPqyIv7Rv7oBzQJ+bhy2txw8DTurMpXhzp6uNDH/9w5EoJk57CJjtz6Yu3/ch/8WlPESce5WTmLLz442VvwNY2L1fW0PrgIS+wnLu5r+xNtuxIsWnDr5gXFxEv3mzlAz4/YbcO/MHDy550F6rpy7N59ywfcuKZb95alOf2K3+w4scHTsb5hUV35hZPgjdMNmHYE60bfnAUesUsj+WanTZe/FTgi0cxr+YPBhu5jjObGZdxemzM4WcP+r7g7Nmzu8cffxz80lmNa/xx7C/a/WmYwBVkCHIRR1Jw6m0CECdtvBmgORhsFYkJh00bJT1jfOQHVmPaChv60wZni6imY2FtCmVeZG0IXBWLk690w9XvMm8RxaKNQ2IMRnlTy6NYtevjRVdhLw82q3GXf19awbWZbVD++RObw8HWRc8mfz64ikthQ2xkh1MsxuiwJbjyyx4O0WcjJ+XDuHklW22Y5WCOsyPGtMUXx8bSlxuS/9U5+tFY9jCUiY9D+8i4eTkShxi05VQO+JQDB8uHdmvDh9JLADwYrRmbdOJpzTx0mlPTzyY9NW71YeNIDze4avzoGZd7l6Oijasv47y0yjUMNuZwxgVOOYJvzB5ozhiO2eqzMVYMxuRDvjr76bXG+vJarthqK7AJnbisgcMP/TjxS9Rs8r8GNz+Kq1zRhzPt9BU4U/CYMuOlb946E/1yi2t54Ld5+OWUDoGRn1nTVeYY/ez4EwN8+7CHIb/uGr/t6Zyah0Pn8uG3F/S9CHhgKvYgLLj5gkv089e8OVjuF3vNWnrg20vpqPmUL/mhD4ufhA5743Tg0IuvMfryRccd1kMZbr7bZ3DzT791N0b0cVc622wJrsbpKO5JL7/7/f5KDv0VVXcmGxzF2/2Ap5zKZfHwi3vrzQ8f5YUf7eb1CXvjCjEOi6/yZc6YPnsvxffff/91/aL9q6++2r377rvrBYq/9rY2Tngm9dNrnA6O1rJ1kKswjJmTT/Hps5HbYg2reuaJrj48pTWkO33GlU53jbyxxYcd3zjQNRe2ebGH72xZZ2N85H+uY7Hml454xKkYp6OYI3Ezb3/qy0O5oNM+wwFne9G9LyZjcNmztR/VeGqT9j1bY+bYwCXwJqfWZrsWcVYr/FSXV7jNqxOYChs66eFkLF/ZmCf5MI6vu8uXaMXmGaeNPxs1P51XuPrW2Bg8+vy27vzoy6fc8BXfcI3FwZi8+2DMRuzsE3qkONX8KnN8dQ4/+LJ++cTLO4d7MV9+McL7B35w6JvTlxc+xFoe8TFH4NI11pobZ0OKTR9uOTNuLL2lfPQDloILTKW405u25sotLuUjG7UxNuYVbVzKDZ25jtMP27DyqyZ4mis3uOKSHh3raF90B6RbDmF4DrXWbHEstzAIHvnTN1+e9O1BtvQIP85nX8qY49PeUpsn9oKij4f91z42P3mIVSmP+dJn7+6Qx/KqnuteXDCM+3CdvrlyKRZ+6divfgMOvnHx8GOO/0rc6JljP/kVB70pU4+tfnlkP2N1J/gC0hfY1hUfuXOnWgvzrWu4rVm4fIffXLVx/vhtL+Fr3trANkdPjNYXZ2PyotB3nn0O80Wpv5nm3YPNSaR8+S1V/ynbjz/+uPaIZ5aY8MCB4FFprduX+e5M0yPhp6/GtXzRM0avM6KtFBOdcOXKOL905C1h78tAY9nb79atZ7BaH0bPy+zZwIgHv9mzwYGOfLRH4y5P2mzs+c6lODun3oE7E3CmHlux9SzhCxYu2uaI+WKALVbv7c3DpRPX+BlXxC0W9wQcduIpF+KgoyRxocsGDlw64mFrDN/ph13xiFWhwx89c/pw4MXVmLY1pqsvD42riRof5wYG/PiXM5zj60tif2PG+7p5ouaj9dNX4IlLjtknxhXnr+816OBqnfPPLxwx4s4GX/sGB3pwjZnXxsN9SIfvcmDOmunj7nO5e8keY28tjfMVv2q27NoreJnDlW1rYJzgJY+4GJNbGGLxDoWbL0njSsc7hnuTLlyFvj7fxQOHP3s2v3zSmWtAL27uOj5wEjNd88bEUd85tRfgGjMHExfCppzg5Rmolhc63Sdw+c6GHRxjCux8pgcXDj1toqZnTN1eXpOHH8UgTwqsuFiDhF6+8ewLa/i4ikM+6fBhDB6ZXOZ9NMdxizt8a2vv0YGJixIHOZNrddy18WTX9wrtX/zo2QP8KHiqCVy2jZsjMO15Z4N/eMY6S86JmPC35mHo05MHY84pDsbps4PVuoiTbzV9fMw1b6z1SRdWxVjrwO/UFQf7KfAJTv6p2TNnzuwefvjhNQbrOHLsL9pvueWWK5tdgBy2sBwbk2wJKRnGJV2QpIXr0jJesltEOOYlw1gLV/ATW7vE0pVYYhxGiwuzUqLomFccAsVFqNDxBYyHLh5w6beptI3hNi8PsdCHQRc2LHU44mBfwZdO/PKFDzwHi67D62XXBiQw+VBg26D+BFUe+qIdJtv5odFLTnji03ZR9kAq337T03qax49/B6BDhoM58eCJj4u8+ODhjheBYU7RVnBVh6O9FWOt63ZO39zcd8bCjDs/eOOi9LA3pk3wF7v8GofRHjKON5x8FQf/7WFjDieJg/n440PUFTbs1YQP68mPnOs35yFmX+KMr7X0YMUPhvUWX37yDQMfOnSLJ738xpm/fBorT11+xgh7emq+xd5LHn72MF/5wYNefoybl+cw42jOGBtl5lB++J1xwVCMT/z4wa3gTifMYnGWCY7m8BePmrSHeomBhwOu2uRq+TVfPHC1xcBGHy6cxPp2/1hzfHDz4dLZtjfE5cHob2SYl2/nmF754YfwUa7ErdCnZ866ujsUXPQ7K/wUE93yJgfxKA9slXTMw+E7HLradODKbVzouTOU+PKpwGr/iau1VrNPR22svccXn+5kH3rlzxx856u7QA6N5Te+6bYnypk+EQcbcfNNZoz0xEMPbzpq8VhbdWNqWPLib5D5t13vu+++hcn+7wif33zzze6DDz5YL2p8ibF9GLc4xKn8ialYcTSuELb1WydrBYPQ1yfZaE+7sOWrXNGxljg2ryZw2Cvm09PuzPIrx/nOn1jkuHVqv7DF2bh2+zPO9oL25KcdJ7b482OMrvPYHsAbF3uOLh2+7F+c6ZvvvaNnCXtznvWw8YDL3h3gjImBPiw6auKZTS9OfNur1ikxB18JpxzIA/8KzumGBwN+edOWd8JWaY+bS9ib449fue4/8TYOQzzG+c6HdvcM3LjRh4k30WfT2PSFq3l1Eh9j/Hp/YaPgZ76STfGUc7blEQ/6uHaf6dMxZl1wYOsPF6xne7L1CaPYi6l1ihc+cOMTv+p4y1e5M0dfgZvQjYcx/MpDOPFR4zBz25xx/PUTHNtHxuQFJzqw48a22MxNDHbNabfebAnunZvi0nd21Py0Z5bB4YcxOApsYmz6WYNHP4w3VxvH9mN+9Z1nZ1Ss4sevLzzw4Mf57Y4yr8ipObjsyFzjxugRWHLguWxvlVtczMEJDy9tNW6KNkyFrXuiPGn3vIdn3rOTjZyxkYfyp89WnWjTV2Dgg/u0h0Ho4te+akzf+67PM+5AtvzIHVz2zpF1pgtDaQ/LD78KDvHLL6z4sSse/rMLq77c8K8vLwpca+hc7/f73Ysvvrh+A5/OSQQX4jd9fei/ePHiilOsYsIBb0K3vPFnXFzGi1PbXOtgPB9x1BdHfRju6r5U40MxT7eSD7ZyYXw+N3GUQ7k1V9+Ywoe4FBj5sUf14U9eMDw7fRZyrpxz2GKb680PW3OKeOZ605dH7wuKNmz5E4czyq8CV589wRlPuGr7U57Yy49Y+l6hGHDuPaU82kdw2bG312HH17nOPm6tb3mn27sEfvTxx5nIsfPRGpRfc3LMP6xiKmfhy1MCv71nHlb+9HFUwpIL+uy0i1sfR+Je8f5jHXGkJy/ZlE85hSsuOWj91HyztQ6e4zgY5yO+cIzTnfyM0+vdXJ/QI3jIE070FN/LEL8cww9uvtimgx/bPptZH2NwCN94xMfa0CmP5noe0BerNbIXYMCmT9TyZow9W/r5b649I/+w82WcGC8nMOFMwZWNWOmJjY/ylu+w2BeHu6B9AodPazL9aNOptHbwzeFsfeUxX9pTn2+69IwTvmC0l4wXi3ltMuPV5p+twk/fy9hffLCjJwf2hv1LzMlPZ50/9vTosysG+tOvuOTFWttH+goOfIgj7sbExJ6P8sM/X6QcwPRFO1xxJfEvn2yJfnp8so+L3DpfYsTBHOGTTufEmDNBYCn2DDu63ds4sJFf/Fon+vKkpqOYU4zJA/ze7+KspqMWT/deuUgPRtzSN2av+hz+/PPP7x588MGlw9dx5NhftN92220rWEQkFUkBC0BbIixE4xKIlKDoaCvaEsyWTnULBaekwcq+4NJnmw+2SgnjQ5JscIIz3Clxh4+PB6E/hfRlDBz/Vpi/fmM+3i4qYl7Bj4QBh19f5vhSzCakNx8a9PmecWjTs1HFEX813uK0AfvtSxj5EiM9F+//Hf4ZCTg2bpjm+g0CB8OHWfF4cfYlHWz8vBTWln+/7Wk9jcmfL97ZlEfjsNXlz5/+9KCA5wHkUMsTXvwWu7ZCwqpPJ8m2XBvXTlcfP3181BW45UFu5VARlziUeTnQhQ1PDa/9B8t4c3T5oWcukQvjxWuebjj09MPOlp0x+nT56TI07vI01sO7MfuNLRvxiA++Aisu8aBrH8AjxnFVJ2wTbXuSXwUHmMnMMS7Wn6jtI2O4En6yh8vWPC4wFbr4mcNpnu1iMC8OYozN9LONhS8+FLYED6XY+XMHED7N9bJr3Lxx58y/vScXcO2feLF1HjvveNEh6hl/MRiDYe2063vYOO/W05j4nGPnSp+o7WV5k49ywJdiT6jxiycbfesjH9rOqfvOF+30FPGpyy1dfXlhIw/yQdqv+ubm2rHh0xgMko423vIFwziMOJoXmz4+3X84tc+Ku/3AjzxYu+5GOeDDvUiPTvtNTfiGq5gn6s4VXnRhOZfiJ/Khb72s4YyNPrte2umLBYZx8ajZkOKXp5tuumn923D+fVcSz9U5wQ8+v/32292HH3647nK+jIlR0Y4vTvE0rsgLYWdOXlrPScd+FK98zHMsN8UAL4ELK9/l0DxeMPhhwzc97XirW7c4OSPWm76/OivP2eUPpjas+NBhY9y8PdYLoTH3mZqeQrJXG5Ob5o3ZizDFpS8/9gyhF3/Y5u0lz0yx8B+WfWs/05ETbXP2odI8f6TzYS1wIvR7/sXB+MwlHj5AwFPEC7+zTx+HKXCNwSGtE1tFv5IdffhiKVbvXtaNDc7mYeJaHrTlsD2qL7f6kxf9BEb84tjctNFWyi8ezTfH3nj4+vTVxszhLSY2uLXm5hTSPmdH335T2NFvv8Sz+OtfzY8cxCs9ddzlND6tkfls1MbxwIudfRSvxtJTT/44GePHeLHyAbe10obdntIm5pVwYcTTWHHIUb7YmcvOWnSW8DDnDHsXd2aIcbni37xiLB7q9qZan05cYBjDA0fFvNwqceHDWjrTxvmA14dTeMS4AqfYtKfQrRjPBzwCnx93nbu33NLLj5xp9+zSdh+wC08NC3ec9D173SP06/fsgilGtX3SuuQTt3JXPuibx52N9jb2+u6zciE37nYlXNhJa8LGPoCPjz4/4qLDHw7lyJhYjYkVT2NsCf3yaw/BNUZgyF/5ai3Nu8v8Z2qvv/76+rdeJ9dlfI0/cCH+7Wpf2v/0009rj+MyOfNNV57ErN16il8hbFpjPItVnvO1FMcP2DC9g5ZTd0Nrkyp7cfLLD7EWbMojrHLBvhIP/BU6zor19kwsvtYtHHnwxaa/4evzLX9s+cRDga3EVzuJC3504cuPcWPiMEbUuPis7UzQtx/ay3Li3+XHiS57Y+4kOPTxsjd8kS4+c/z5jA3bvDtL3Gxhi9W5NSc+ccC39+Dqlz94uLeP2fKLC78+z6jtB3lmaw4+PH0+zPOnH74c0IXJbzGZp8unvGjjQ48+wQlnOtps8OKTb31zcoEj/2zdZ7DKc3eA3NCHkV813+LzHjM/u7nrev/BCweFvkJgKcbpEL4rxsVQ7PD89jsbZ51N+1FcYhFXuWTPlp7c40noiG97VswZpysXMH0PI8ewyzE9MdCVl84/P8aNKdrG8OBT0YatwONr4mrTU7NvrhjEa17u3Z8EJj182JhXt9/MK/ImDnr5KN706cg5bGNyqdgXOLAzb0zcCV35hEf4kb+Z/+KGkV+8CX7w2Sj88+PZR9+XsOLBjx476+IzB9v8O4/OMy78maMLQ87KuzzSgUmss8/m/NGhz06BobDHSWyEbTnWT08bBj14ajgEBmxnxRh7eRSXuO1xOOKXO3HBki9nUR+eeeN05YNu2PY5bHqKs2k/GvPeLz+EL3eButzgETYdPswRvPnrTsA9/3RaaxzFZL64cYStEPp8szGGnzV+4YUX/rkv2u++++4rpBBqYyGtbUwCJcGYImCJKBn6bb7m1eYFZsMoNlwPC4uZvWSEXQ2T35JjvI0Ch8RPm34+4WrjZJN5QHpY4+KLJxdoC0NH4sUHT82vuLU7/BbTF+02jwepOZsAF76VJN+wSXh8OnD4lWdzbXgY5vjs8jTni3P+5hft9GxqeLh5IWHfIebbIVDoygOuvkzk05jaC4ADKs+EHZ5qayRW/3FAfwqPm5cRfxUMJzkVC4Ep9kRfKTfV5rNVJ9oKvYq58miOr3D17ateJMqzWIxvJfzw2i8wK8byTW/aGKdnTNx05Z9escuZfnloDhc6bPGD035Wh5nv9OGJy8OnMdjxUhN+rA0+BA4xXztOxnGZZxOf9NR08wMTD+POrz3V/oQFJz9scLEn8WGjGCtX+q1VtnDoK3TxUXfW2eSDLjGPF18KgdedFYaXXrzy6dz6YOE8E3ry6zeLevlz7oyz49sDozPEr/wR8/mkhz9OuFpnhV99NVz71f40Rh9u9yIMmAoffCnFbtx+oSdOD0z+caUjXzCN+YLdWfVQ72EaH9h4wsIJN1KOYLVHYMUlv92P4ZQDeNo4y7M+if/qHP3AWR56QcAH/3zbY+0HePrWgU641t3dBItf+YFDXxtfbWO46lfkgk3crL0XKnbyoO8+pUfHOCkHPkCZ029eXmCojRPc4Inljjvu2L355pu75557bs2lszon+IHTd999t/voo4/+64t2uOYUbXzmmhkrz8WFZ7lSm69Ypz4IlH9zcNipy68wtOuLvf1uDLZctLbhmCP40JmFrv3k7iGeib2o0rcflPa0Mbi4zbjdQT0XYbJx9vgSwxQYMw7zxck2fDr86LNJjHcvib/faG+MHr72NTvccIHTB4D4ZdM90R6DgZM7xRnvDBif/J0bv3DAF59s8Ome05+yjaM+fCJfxnBV2Ctilpv84NsXFOzYhGVdtNnBtU/Ucql0V7Ej2f27959nXHOtFT3tqR8vOdZO+E6/mMxpi0NN6LS/9PHEX924ulzQKR/G+RQfm78SetanNSofE7e41Ep7PD7h80/U7MUCX7EuPY/DoZsfOvTtO/zDyJ4uyXd3pDFxGo8nTEUs+dKfAlfMfLHlL590zbl32Gfruenu704wLgfOAtu4aRO2YrY3rS2fbKYveuJuzcy1bq2dOMSrGIPBRk7ZEXbFyk9t9ZQ4wiRqePgRvsXj7lXHJT3YfOu7D+Gz7/4wjou6Up9Ozztz8D3T+IDrzoItX2pSXLXDYiMf4rFW+OMBp3WNq357D46cWVv5YwOD0Jt+s4PNpjvGGtArbneasbjh5W5s/fAg9MUoB/YQfL7lUDzy0/rSNwcL15tvvnn9B+T+Rjg/J5H2gi/aX3rppfUb7eWBH9z4tzakmPE3Rsf5VHCgr5gr9/Ki8BXPapj0+PTZkp6cyoU2STd72HJpvDOkLV/5Ztc5gB8XGMXsi3OfWb2jFh9cOPow7RHv6T67e4bgxl68dOjqF9/ce/E3L19qNu0teZU/GObtfe/Klw//ZKPnonH7QeFPTm644YbVdhbxM45Tz10+6cml4n4y511FnOaN+dwh5/IHx/4zJ17+7F/vnvafcfzUfNGXz21+zXnGK3Dpi5mu2GDB4WOevbDp0xW3dZQbuTKuGBc3/XDpsMlunhX6fPZ5ig7u+ImRLl7auMul9zv50W/fWzN++cKDvfypcTHODyzt9g5fxYYvPubkTV8xXzz2LJ8KHHjOJTv/vDLpnMzPS+yJXNEVp/zjR8y3rtp48aFdbtnCdH/bC/wTeIQevvaWO5LwA6PctR/o8aEQ/USu9flvfvLQhotP2PT15S4xJkY+42ZMIbDZKHzCMqddYSc+58N+g2UPmJeDONg/5uQQDmy27WP+xANH3rIz1nrTxZfgIUa+YStyz9Y+48v3XfRh0OOTns/R5d28tbAn8Cbm4qedrn1NB28xeMb6/swX93T4FLe1pGOMX/tabvSNK/Ar+UwfR/G3DmJi47zwKw98GLfXxEv4EKuY4iMuYry8mlPaC/TtSf7wpefekxdj84t2schzdyWe2fAjJrjGcJUTY/2BbLHHBxYMenhom2t99eHBgilWHIzh1z8d88gjj3C/fK3GNf449m+0+8fgOUeshObLmCLgpGSrEzoCasOlX3IEajElxGJLhmBtrnRhaUsWPJzwsTDGSn4HtYTGHR9jEk9Xm/DjYe2hDtcG64XUPF2cEn2YCj4dUtxtPhtLm8DtQtWfsYh9xhs3/MzFr3zqs1fE2MGUN3yJA0NPPvDzUKLLjzliAzpwxnHFmY08iMXLBFsc5NdLBXx++C7P5mHwYVM6QOXJ3whwUdCPf7bsiX6Snvy3b4xt++bSTQ8G/vJG315S50cMDpB9YlxsdBQ65TVseGKLH518sk/yyW76M68fD7zkCQ7cuf+KceLmyxrS7aKePOmLg461VbsocOFHSeApJM7m2XUe4dHBzxw9ZfqBXY74JnTZia/8u6jjHI9ylA0//LNhz5cxOMr0HTd68NjQaY/at3FbpI5+wKBPly8FRrpyBpvO9ot2Z9YfUjVO14uVP4BTw7avYGnDdZbY4SMW46R5vugXJxtjsO0VIibnrDvNGN4w1eWdrQKLwIVhLMEP1x44dMzjCIt+v0njfOvjUoET9x5+xRRvtZLf5vUbk1/+xKXMtfMliLnsqotBDb9cs7W3xEL07Qd2Cix7Ws0vDu4kayOG8ixv5omcwis/aj6N86ttTB+GGNjD0u/hDCv+/NL3QkivXJg3zkaeG1fr43r77bfv3njjjfVvssJMR/skwucPP/yw+/TTT9c93nqJyZzCR3HKi6Ifd/EqOLIzL/flpVy133o24dt6w4NB8lfNT7nOVzzYx9kcn+XE2qdPz95w/9DBpbURI932hTZ8AlspLjrOW9hq8WQDK8GDf3Nz3hgcAtdcwq8xot0zUw48l6ctX3TYa4uRvnbnlL6YccRHDR8WHWJcPuxXYzMG8/qe475od1Zg4uNFXw7LN11CXzHeHJ7s+JDPeJsvv3jRwbE7TdsLt5qUKzb2FRyCN05hqY2pSZxW5/BjcmuMDv+KNlHHne9Kflsrusbyo2096GvbvyT+7OJKz34wlz1d8+XPuPhaH/2t0DUORwzyU5s/xTw+cc0P3fiUm3KXH7ZKa4SzNjFOykd+rBsdmOkuxcMPOvTF1fk2h4vxYlfrG28sjGrY5XvmLTzxOv98huFZ1xftxhRc7GmiL9+11c6XmDq/YcHnV+EDl+KOezGp536FSxcmnKtJ/KrpwMHXmZI/c/kIS8484z1rPJv0FTzpEnzxcSfwb1wOFONwpx0b9vy6N7Jh7/MALjDV8uD+ad/DupoYjxNdxRgcuSkvanNwzRG1eK0N7riqp12xsjfOno3aHEy1eMpTnIrd/MThW4zya0/AEIOajbm4ZKvvDvU3086fP7++cP+znMD/Kyl+v+DhN9r7p2Pkm+/iwImIvX2Bj70jfqVYi49+uZcv7WKwJ2Aag+mu9mWQvjWY6x2OOSL+ngHyRMwpOMfVXDa4tZbGtD2LfNnuGSQOooYPA1fc5Nq7us/auBnDD06xtnb65hR5SsoN3LiIQeEPlrPiC3Gfbb03G5dXcfDr7sFZ3y+n5Qu/iUtPXHR9vgjXF+24u698FyHn7ff8webTHvbObl/ql7vurcaqcREXe3HTT4x3F/AfhpjxNoYHLDjzPjIfJ3Py1frBtz/phKVdaZ/wjYO+fcc/fW148ONUTszPvQCDvnFr2y9c6MO17xQ6fIlJDmCrw4OpbaxCl8QRf3py72//a3t/kZ/OydYX23Knhi0mAh8PRTvdxujwKZfuX2vPJynmYhA7XPriNo6TMXhiU/NBBxdjCjHXnlkDhx/lqjywgU3sJbbGFKLPL5ywjPF5NTFXYQfTfjMmj/aAOMXgLInHehOY7gd69BubceONW/GyUeRTHunyV17C4FO+FWtNV5ue33bGs1yoceoPAHAROx28tflsXegXM35i0jev77sccfXFPZ8KLHzZ44+X/OizM8cPLH2FmLdm9NV0SPvIexJdfO0h4ziI1zgbGMVhrLbxeMMszrB6Jyv/7mpx4Og7Q/NEPNYxX2qFHV2iT4cUa3d5uuatBe5s5Y2uc2MMFo7lwBy93gusO0x/S+Xs2X/wP0N97733VuILAKlISrK2YGxWbQnrMjBPJMGcxZmboGSZVxK6HjY2QP7YwfMQg2+DKZKHm8WnE35YbOjBIbimq48D7hafjn6byHx4xmye5nBsw9Eh5i0yf/zYSB6mMOOmZmveAfMFuA+5/BNj+LAh2i4Y2Oxw5FdfLW82B142rbHyEoYabtzZpA+bsCMe6nzg6cB5sTbGB//FARMG+/3+3//RYP7++OOP9UU7vPRrw7AmrYe+Mg8aXWKcpK9urHopHH7gj6P8i8+8om1/iIXPxtXthfTg42vcWP5gV/KnpkuPsJmxtkfNywt7NT1504fvQnMBsp1izhrbG14crB9749aXnbMAS9z65uKQT5jG6Yhf25x96YWPvTFz9lo5wS9O5sWhyKfY6MPJD33zMBS47I2R6jDFxpao6benYZWffNdnT8+4dhjww1bXZlfO42BMHGLQ7kOEfWLcnvbCK/dwjIvZH0LJfVwW+aMfLmd26rkX2PNbHOYUMsdhktaIndjoqtk7I4Sd9SwOnPCzx/E359z6YOCBTR+GYt1h0mWniI/wzV6pn44x/sQHr/MU3+LD21qWBzbWywcD94g+Xfddf7rdXsCPwMiOHjyi7sENQ5nChhjHFw6RD2dFLMYq4jDmBUn+Wn957osLOnCLV5+o4xAPerDNlUvtbMzRhaVuHB6+zo1/qu2tt95af20tP+qTCp8///zz7rPPPlv3jBjFzHd8cdWXfxxIetrlVR6VbHEWy8yb3MEI271Fv/Xggz/3NF32MGHISWvTvoLDnpRbffP68BR69pG9bd4cHdjpqM0rxUQ3/PTM4cPeWH84ZVyJB06w+LVPxRoHOcgPfX06xuba65s3Vkx84GRMIcUUpjF2nQnYhK2cOm/w4us9Sc7lg8wY6Li7nEf4YubX/eHZFIdlePhBX8GJDxJez9/G1OnRhc+XuxV3xZckPd/o2ytKMavnmD6ZvODEu3yGsZSPfpijhwcRB1t1fWtljC7OcPjSL3btmSvPX7k1bw5HRR+e+1Bpf5izx5wBdmycS2Nww1mkDj/o41K+zRP3Ye99eMKZ/Nnhrp6FLt9T5IXAED+uxvQVwr82/+bimU286BrjuzuCbRyKhY52a2V+Sv3WTG6KJx90+BU3PH21c+t5Z78RdnJtjxaXPv0wrVH5Y5P/cOvPuLVn3HRmgcO+or8VPLoPcYmr55LnpudRHNQ48kmvPVQMcll++dG2r5xlvNjTdSewNcY/PePNwzGeH/q+ELRPjVlX6+HusVeMsU20jTVfzu2tuY7886uQcNibI+ZwkQ88p9DBVYyKNgx+FH4V4/PLBnZh5TNc/CZu3OA4b+b4UitETc/ddr2/aPfX2H3Rbn+KSS7kH//8xz0euMy4xGTfKOIwZ0ybTTl0PmDLv7XrTLQe6tYwHDVpjdo3cPlQ8NFnrz+5aStwlP1+v/7ta7+wJc9s2ItX0cZXba67Cq5niTMvTvPuAXHQ84zzbq9PzCvxxYHYJz3L2Nnzvviy/9uDxc4nPM8x3HwZDxMHvnCDQd+Y33z3W/j04cL02SJ+fjufnhxbB89hegQ/94H3WeextWSLgy+yfJ7hf36G2f7CXHtE3PJb/HInHrGLBfdyyQYPc/T5oNuexE+MrYU80TOGJ3vxKPl1/5R/2Ob0FW3x8gGDsGODMx2YrYd88Y2PmhSnmsAyJ0750idw7Sd5JOnxGz8Yxung6rMVLp4xxsTY3UA338XDR/HBba/FjV845Us8+p1LPvlr38NjC2eeR2P8sC1OMVfCs758KURN3/0Fs1KO4LJhz7e4smNrnq48KNow6LFLHy9zOBtjl1gT68fOGouZP7ycF98LhiPGX3/9dZ0f55XgBdsZsBZixo0vBS5/zg5sY8WPozkFjmcuPdj69On6D67xTMSDK724GVPyV/xw8IaTX3xhs6fHb+cVF/PikFM2dOjSy+f0xycbuuz02XTOtYm9pF1e2PAh3/gUr3EYYpv++cymO8C8MXeGfdS7KX/8zLu3c8om4UchxSQHCU44myO4yoH3b/G4m6yZ+1G89PD2HFHKBVu5wdW8NYGlyIG/iXbu3LndM888Q/W/9uga+B8/jv0b7R9//PEijHSXb4EjiDiykiYoiRCkoM0TiWFDl042EmycngDV2fi3zh0WtubYmJMsScVFsdn4agNkz29Jjne+40GHNI6Lh7INwmdxqiXf4bJZ0ucTFqGj3xfTcuJPrX2Rnh67dOHYjC4OF0gXtFous9GY+6XOAABAAElEQVR3kfMvtjYZezpx1GeHT4eQv/JhHobaOFv68BPYHlpiJ+oOfBc32woM+fKfgYRj7vLhr9d5cSgn9BTCh4KXQkfNr3XSV+Ak5nFht51Lhz6OYleHzcbl1nqGCydexuxvEk9tOnDMW885Zz4xL+/m21tdgvybb05tDeCZc1bs5/bRxLTf7EV7SJ6tHxu58pDv4hCby4UfnJXJtxzIi7Y5L2T+JN4eyAa+uWIIAy47emp8wzFGPxuxVeJTTNXxg0/khO8eXuyak38FfmvhgtTOtzaJA3uFqI237/X5YyNvxD1DehB15hqXNzn3ou2uITD4hwMf915qzMWFLj2FiEupT2/qxhdGOOxwdT7o8tl+jRt+xvRx9HLun8HqHPagFhP/vTio4fGltq5qYq5zyT/fcoO7OULfnBKOXPRBgY09Zp/jVNxw3PFyZu176LVuOHY/qcsbbJj8ipXPMPHBQx7Kj3l3gg8z5Y8ePzCM+eCieHbBpO+LytaaP3Nq+4hdGMam1McpXsVEDx8cm8tWH7Yv2t9+++3d6dOn19RWL/1rrfn+5Zdfdp9//vmKRxziI3EtHv67D+hZ+/YgHtZcfvAn+vKsbj30O2vw7QPCRl/R7gVWjvVhFGu+YNIXg7HWujZcc+l0ZszbU+bgpmMet2Jin6QDi33PEbrODLzs6Cb02+9iTc+YXPInDvtc0YdfiTu82vDZyIuaVNPBo+LcOEv8wmQrp/YvoW9cvq1p+TBnnNCB0d960yfOq/Mh71PKFfs5p803H9pxpp+uc8yX51pn3rOo+0LMc4/xG5YaDrwp+vINmz2h254qzmzkzjoQbTxI2NbNGFwYMOERuTGu8Kdv3nsS3vrlb+KJr3Xi05xcya8zA692uMYS+vJZTPn3XgBXPDgatxdg8EPYVsxrw+FPX8lWG394k0d2bM1np+anUuz8moMrL2JsbcRhPJ/lmM2UOBuDj5PaeHsrLsatmb55IufOrjosHMRNL66wFDqtvdiLEVb+jBG67PklaqX56jW5+RE/w+nNvcBXeXOOvXeo0+W3s5NeuYRZPI3JvbMvbvHjKZcwjZPOXNzYKvr0YbpDvE/AkR+45txr+GiXV1wV/e4+OvDYll8+cLIHtAkbepMDfu5k79XmYKuLVS0WBa/8lCf+6MDgzzzhg7/21ho8/DBGzLd/ten1xRo/xoqVPh/uNh/Ur9dvtP/222/rD9590d7zRQwK/4k2/+qZo2J1R7orrEdroLZubMRjbXv2yQF9dq1tfuW13NIzT+Sqd9HWSM7w5qM9EV65g1HB6cYbb1zFZxyY9MWRf218W+9s+XKGe6bYV+4AMfPlM7k5OqScweWXPRGDPMgnO37c8d5j57g53MQHF1e/aIZfn93krxy5i3xRt9/v15f+zr3nbF+0+y7AF/H2GD78duZwIfFwHsM2joMv6f1hAh74eKbzDYMfNnDwU9NTxC8W/Oh3zuAba/3wsUfkFQaOciuf2mzbG3xZI2Mw4PPVO4I5xRoYl1d5L+fV7BQ++W9/scPBGF3rgK+CS/Nsido4rvZEz832VPp0iwOm8fIjD8bEYB3wh1MuWo98sgs3/mrzcFoHPolxexCOPOIhNn74bK3YwYHNJl4wjJkj1qac0IGJk5zBgI8HDIW+PWi8OTkzR58tDgofdPCFiydd/vjSJsVYHrIxb6wY6LHDwRx8PPky5uz6zJiY90tE/qa57yRwpAvfF7rejXCBZc21y7n9bR+ZM0ZaK3y07V+l56b808VBzOVHHVe2RCyVcmYOPzHxGwY9fsRgvrbaHJ90O2PyjL/ntzMDl1586G9tzNtDxQij3LKTO5zkHx5dXOAY459NOd7eD90R6bv7nDFrAF+Rf2NqOMrkzIcCIxvt4hODPIshLtamdyS5UHBzT4uPLRt/+OlvoMBlT9ob2uVFbfzWW29d/4Sr/xCV8H0cOfYX7RcuXFgkEJB8AXIqSWqJkByLoW1x+tDxZwQFOze4ZBQoTPN9+cyfRPFHYDsgNj0+EstnCaSbfhzbjHSMhQVPe256G8TmgF+s8NKhD6fNMPt0LHKH3gPTw648qYuVvQtanB6GXdYOk0uLLjyL3sXDVmEr3wr/5aw+vnJi89M1T7SVONOHrU/o2bhtYrV4HHh4ROwED20+vDjAasym9sUWezri4De78kqfT3VrGhe6tenYH+zoJsYrdMVt3eg2rp0tHQUGXYKf0h7Ck366fJL6agJ/1jDNFac91wVtnI8wukxg2CtdvOHBom8f2BddWOVYrlwkCsFR3GxgxkWfFG95gbt9CaTXOhXjvPhglFOxEbHKm5ptY90Hk8+aHD/YKDDZis1e1yds8dCfa0AX/9aPr/YmvHKshpEfbbbG4anLhz1Merg4g1505Yi0r5wFOjjBZW8uTmLALe7L+PCDfmvCzjzBQZ+9+TlmLomr/USfWG+4Yu+BKS6ccHRP+pDiHMLGzVmXL/6NOdflcfqLHyw+7Td6xtuDfMEyjoNiDL/uLPP67lO+fGEAU7xy629UyDU9eVPwEBdf+vxps4FlXuHPPuQz0TYufkWMxrR9ka7OPj/yKL7uHzpihi02XJRyjw/M/LYefClw40mHrbGEjhwYn2JcvB7w1/uL9n6jXQxiEmO8ygMu1sF6FK+c4NT+xLu1xheWMW3FXPdQebDn4JkvV+xwsW9xgTFzRZ8OG75haTc280aX0Gm/aVsnNRvY2vwr9pN+ol2/+XLFv7vAns6ObjFpm7PHxZq9tlzqi49Oezm+8MI0pk0fZrEaw4E/xVx2dM3BVYdhHdxV6fE/c70UDz/klMDE1XNGm5hzh3TPrMGr/IiTKW25xh0Hfidf8zjLheca3vaXdyR3sPVj25rljh0+ivZWxAlHzS+dbGpPO3ozX/ySdPBqrHUoV/kWFwxYYnZW1MYU+uJXF6+Y4bI1Dlt+1aSz0B6Ie/ps+CCtvXXDN5tiUxtTSLHB0obDH67G4qptDM8ws4VjPszipcuGxFmbLs7WpNjM89W8Gk5ja+LoB1sFTveQuGDANGdcHye5wEPfnL7nTO/W8cHFPBuF7/yXy/KnJubhJuz5UszR004/XT5JfXa1w1LbA3gVFz24npvOYZ8p4Cn5g5UNnGLMBz24nmcKXTHLW+8z7Iwrxcm/dSlOtTvR+4Q9a83dKWp3HbzyaQwPHBQ5La/iNEaXHn/5xqP88U03fTrdYXSUdNQww2JjLB+48UVwby/qxyXuk3e5jF+YvsShD8cYvXjz7VngD8yv1xft/umYM2fOrN9ol0f++LUm+M/SGJ3OQhzlwF3kXBSvsXIpzpkf486O9aVXPuCVUzr5VLdn5YY+wYO9OcJGwZsOLvqJvt/4VnyJAtcYffmFY6x10ecjP7j5XN3neLW8sfes8ZyrXx7hlRtc7DX4BEd5wUVx17cvzeMGr8/6zggMuXP/4EWMyaUv6nwhTp8P57vPcrj55TvfCbBz5uYfeIsBBzbm2g/4a/ss7r0af757pvvFrPk8py92xVrhIU781O4KNcz2izzLg1L8YpI3BV/81Iq7iy4cGOow2FfY8C8e+jjRVeDXjqvY2IpBganAwb/9aiydYoWFa88F+xJWGPTg8CsG+qS4uufwdX+q5YiwgZewiVfteWekx0e+tOHBMTb3feuEIym+uNIn5s3BkndFzDDhmW+98SJs5Up83nfpsYddzPTYTR7tfZzjRT9fMLYCU9kKXXa4whODtbYnrKl97ezE2filS5fW51x7BxdrCaf1hSM2mHjxy94Zbo/zaRx/c4p2z8z2pJqe8xl/tcJva9ueC0fOxAETT/sGL6U8Nw5Hm282sIgYrCOu8uJ9oPNFhy9xw8NHTTcb8/AIPX7kAGd9RX7cWeXRHCw4Ch2++BeLwqb71TzBtbvPXJyKobjlBQbhx7yineDNH75888HGGIEhV/Ihb2JUFxs9cbhffQfA3hiseORDDVvO/EH5a6+9tnv22WeXH3PHkWN/0X7q1KkVDGISUDI51UdWMkuohAi8xRHklqTEdxjhwRYgXfZwffCCbS6BI4n06NMzRkeBZRP7gsmC8WO8C5EunRlHMTjI9P1psIPUw9TCeUjxCYvfMOhrixVXhxl/B5L4oh0eHwosDzt84JQ7Oi4G+DBh0EmMEzUcuh7EfUFoLC50upT82+n0jNlo1oVffMsP/gp747CIsTZ9Y3jJgzjU8snu/4m7m1bLjiqM4/d7OLBDxLepKIrOVBLECIpGUAfRqDGIQoiOdOQnUxFx5DuajGzwi3h+u/sfHjan0/e2fXVB3apatV6etWpV7X1O3+7eC4yeguaLHhk+y1v7pdjZ15bHByqmfIvBGj2Njj7e6hwGLj/IWNdnzxo9BzRbsJknp8fjc/0ab57JkMVXl3wZIwdfDbGLVyuv7CDxqwN7BiNM1Xfr1lxcnQfrakzfHsGymBcb3+aID81lwm5y1mCzl+2neiDHt9revSKPipcuEhe54sOTozMlj5/85og+//pk9XhwL8l78ZFJDna4xcs2HOU3THr+6WdH/PTkGyXLbnjkXo3rkTV+9GEp12qgvdq94EM8dKJ8lD+Y6DtzHqyITPGUJ/z8WefPHdIHFTFq+4Uzm3jypBe3mDV2xc23L8jJ4pELL39iVYs96OiIK5vG/sYLWWfEuv3zQchLk/X8so2KzV7JcR9C5MKYf3H4zSG+wyNe9yssdMnLgybPMCB+jOnx1Z7AJp5qhD5ejS695OhFeFF48ORMQ2xryZILE1/ycB9ftP/xj388/o329hAevsMJg/zYCw2Vu60FPPnW1IU8bQ6M0zNmf8+QudyLnz5ZY23zwj/bZOKzZ7z+zOOJCfbOk2ekfOZHrw74zGY5aI/M5QLG9Njzgq9m8cXDhrpUz+WOLz7JIFiqwbUPPz4em+5WNvCdGWQdseGDsrOSPX5hkzN4i98cFT8+YltD5bpc8rNyMEVk8oVXXNnIt1zQ46O17OLHI4/IyaFc6eEVo/yRMUf0IvyNAz97xmTbW3P5yY81sdTKV/rbW4MdT6NbHdDHy45eTvjBh9seicladZat8JPT8JPh17g183CH1zySV/rWYKCH8OrhkFPr+HTImaefTXNN7LAjssnhhSP74sl2funX2KaP5NDdI8Yon835OOd+sYgle2y7g9gTJ2wwyH8y7NLB01cP4mrPiqt9oMMO+2zqzdu78oNPR2+Nj81FdtmLj0enu9PaUn7yb82YT899zzZz9vg1Lz/mYmzPwqtHbLirPBvjwYFPFzk/9gi/tezzyzYfreHRwfM5pDxvvGyXC7ZhQI3Z8I4sPjWCyBvjk48vd9b4KQbyfBRDPTnNHB6fTc35oy8G2JesqR29Zv+rJRiSlwc2yjUb5CM5lQ//Gerz+qL94eVvCL/22ms377zzzpHvsIaPz+pVvMiaPxCo5ujIAYK9HJazjcGaud6Xwew4ZyvDjnV+e8/0vDC3n/KVD/jM5bF94VcjA6sx3fbJ88Fzz7MhklfxsEWeHn3jYhO/muwLdTbpVOtqwTo+XrkTm/dRn8URX3zr+WBDParLzgAbYmJDTn1vADfC8zynT48+jHQ898nBwna5pgM/vWKj5103G2LtzMh3e6Kn8+KLLx7v2/TUKV+w+U6EHT7IkYelBhud8lmO6fZegsdn8RcPHfVBjo3Oi88eZNsra90xcsS2huDa+oDPGrsazOxo1spbvPj2tvhag0FNyhs/dJMjK+f4ckxOTsjg54fcfg4We5jYhwl+PoqDjLG4jdnS8iluGPlRrzCxozbwwh8Ga/HKgTU8mMWgN8dv79g1R2vDnA5s+O2VuoGxRh+e5KsBc7HZH/jZYEuDwVwLCzmYYMRnUx/xZz28sKk5PtQWH85nMVrzGVBN0c0fffLhzq4ewWZfNDp8tmY9O+Lgq/zAQxduMZnzjYfIqh882Ng393lUb+63qv0NY3eFs0nHH2ywJ/8aLOWKb37IqU9jxD6/9PTW9XThh1Fc9hKFnV2NrO81+36AvrrznaV7ly689GBgV071zgH8dNhyT3q3YAtG/tuD7s/iUDth6f+8s8ZWfPr2nGyf58WLDxeCH4kfsWEd6VvXy6l8yEVzseEhfvkz19zLH/vYx26+973v3bzyyiuHTPaOyS1+3PmLdv85myCBEYBEoxy3mTZB0CWtIjcHPj26xvQ0co0lO3kbVJGUTD61koq/a+zaaJvDpjUJVOR6elp64tHgUzD0xWHel+viZpPe+m68eTlvsC+5bVp5E59cwgIDn2IMq9wgNhUHoqMo+DNmC0aHtAMjh/jkEL/+Mf/Pfvazx0OXPX/t0J+MiwOm9oNdzQNCY7Ocshs+dou5PPJJFi4+NGN2XDbW6IgXts0hew6sxo5DzhdZlG29xk4+9Gzx4TDaH+souXyZh6/eHtAxh9F+p6unay0bja2VGxj4J6OxFy5y7bM1lC361bu47IUm7/LNhvyRN5YPMcCo4ePp2bKP9DQ+8dmlCzddLdlipWdMLhn6dK0lz65a65IlW72SsX/FdwwuP8jAERb20kkm+3o++IVXj6fRgZE+m9bMYUnOnJ+ovJOXUzZQ9ae3b2yygfg95xomtsmQzS97bNujcsdGeLLXXK9GNXYiNvhwz3nQbg7UktZ+wuw+MKeHirk84vOVX+vpWYObfw9696Gx/DhzenMyGixafB+k+JYD+51tvujBgJcf9SIu8tacbbmCB48P/Ch7/MiTWNU4nB7e+GzjGSP5cc+zaU3Do6O3p+Q1xK+Gn3/4l9iIjIsp+7tOLpnG2Vu53R/2tOTolQf5kfP7+KL9D3/4w82vfvWro2bDAwOcek1O5Md+whi28JGVS3WgGeNlg1w5tieomqpG8Pjhr7NjTDefZNgsV43bTz1ecs3zzRebahepJ76qBfL54lcjryE9G4gf675oqGayyw67ZPNt/7JnzA851Ng8HpnuVTJ8tM6u54IXX//erw8ZYnl4+dLFH3yR4xcGY1g1tS9W+vjiIVd8mzs+o/TXljuu88UeG+TEUm8sBnEb74s1nezmH4+82MRvToecWOQgHT0qp/kvZj2fyFo+8NEZM1ky7FlDfJQn68aacTjyQT6+cfjZFJPmPkXVGxtrN//6tUWndy26u9Y4Xfg1FO+YXH6QpW/PxVjuqlH5LS904LMGe5jYaK1cxCObf2M6WlTc9MIYJrzyAQN9PJg0umHA331sv/CRO8h654yvYuADsWmdH/rObs878myp7/zg5R/mYi7GlaVj3Rq/bPO1NsiLKcx0yk9+WqMHox5+LRmxemcxL97+dhh58fEv3vxnj016fLs/8FHvE2KIxyc8YToELz/Cw4aYrOPBJB5jNvTm7qDW2IffXZJ/c40OHFo+yfPBBpnyDAt5cYrnTHjh1Ed05AxPfrxrtY/prGxx8GuMYDMnL59ssWnf5d68WjB2t/mg/vOf//z4zTi8Z6Hi9GXSD3/4w5t333338Ac/m7VyBAtM4lTn/oCYjbDTg1MMZJH9Kla5pU+3uPjILnk50fDKhb1uv+TKPttTuvxbt//GGgztuTlb9PZswOK56z8eNLZOjh/2ywFM6erZszd9SQ4DfvvjXdQ6X+qr+Mn4Es9zFvmyydj7rnzCu1/6yBks3jfZgdGXT5oaY6/cdQbhFxObeHzLZbXU3pgbR2JaEjs8emv8kNezz79x+0wGdnsAFxx49OUSjvxZ06r9bFsXZ2cSH7GXTXVDDja+yJYHsnLGpx428uqNrfajOLKthwXefJGPZ32pfCxP/YnfXvFdfGQ1WBDfcLBPBjZ+ipVcOvjwqw06SK8myLMFL998mq8u+3jW2FJ7PjcZLx62wkjHmAy/alnPjibvco7Ssc5eds3ZQfClaw4/WfVJPl/qkZ45vHwkq7eu7vRsViPZZ9uafLbfbMEhX+TCSFbMGtsan/TE61zDXI7lN394bCH2avzwL6Zsy5UGh7NbHq3TM08+e835IwOXL9H5tKaFxZpah08Ps1j8E07+wNQ7Lx90xUSXHBl41IL6yi6cxU1HPSMyZyo3YSCPJw/dD3Rgd/7FwjZM/jlhtcguPTasIfpk9RpM7JLxB3neSexn1JpeHvxBX+eBjl+aky/rYWRTzHzaH2eWXmQdBjL1ePRR+arH40Ns7kX89qia5ou+GsEj+5GPfOTm29/+9s3LL7/MxIHxGNzyx52/aJd0wLogBaUBp0nSkkAKAN/YwVU89MjvZjlAXkwkAZ+MgBWEgOPlYzc5np5fsm0av8ZwK6YKRo+fPN1ioq8QFIx//sSYv4q+uMjbGIXQg8qc/NoNKx9si1VM+myKVTH1IkKWDXx+5DjMfBSHcfmXWzEpcjoe9r6w+dKXvnQUjP377W9/e3zJxr6XCHJ0EFv+dMm/BcgW/9bhhwN2vsQPt2Zs3RoSuwZfX5hlH6/iNkZ0/YFAxe+vvHmx4SdKP6zWilsvZw5hB9ElZT/w7TuCk288a8b6vrBTmy46eMTNZzk25hu/Zg4HX2zoUTrH5PJDXjZH9DR8OZZXNtW+RhaPHfVAdnGXF305JA+jehKDerTOrl6OrPNJlo/2Cz8qJhcvn63p2aKnkUP84bOp1tgsD3waa3DSIUdHTw8Vb7blnyxbZBpvjW0s4mPP/iWrtyfyJ44IJrVJX13IE12+yic+zOYw2SM9GY28ujeu9qyLC8FZDZmHiSw8cOHRIQeLuXvuhRdeOGqAbbg9jDV1jddekkfm5bsx/HyZI/bNNXrwa/7ddljgcA/Ab12jg/gUa7VZXuB2RmFkg5wHstoTB3n3m777nK6z5wtzeyCv6sKLgjsHT378IeDDy5eIHtjq0B6R4Uc9hK0c8A2PeGuwb9zx5YAs4tu4OsRbHXy2tci6OMKAT07jA3/X0rtLz479uY8v2n//+9/f/OIXvzj2oJoIc/mEFQ8OOVIf9ta4GOVAwzvHK6dqyf5bkz82Okflv9yzyXd5LFfhYcMaebL5Vufm1sKs54+uZl2c7vl+Y6O1/JuzQY8v9iNr9iIfxmTYFZOzIVZj9qwbsxE2c3z25au8hQ0+Y77IhKN8s+tceeH73Oc+d3zh7sX0T3/6082//vWvw153DxuITX+Q5t6AvZjYyl95hS/8xQ1Pe2ssd/s8IFce2ENsOO/8WfPvaKob+mcqr/Ln3qZLTxz21V1gDgP77EX5tUYWLvJiZFeu2CRnTp8sewhfsyfw6VfOGsJjs/jkzt6sHTL47FhDYmGzxjeMxRLua3Gxlx57ZLc2Fpt18vAUA/9k8On24TU969bowr1Ehh3nVgzkYJTjWljokm3fyKbTON2N0xriC1+DHx4+1IOWjhjkzj5UR3TxNWQt7OawsZGP1uC1xh+s7iP1Zs5fdsoNrOFl1zibW2/WkHW25E/jix+43T/OYnX9SOORDj2+i8caP4jutuKmIx5r7gJ8vsTDb1jZMBZT8Ruzj59c55suG5r80CEvLrLF4hntWS5vyHMbDs9psag7Nsn1LkkX3/M8Pbrs8suPcbxyLTa6zWFZ2UPh9IN9jR758LPFh/rwnpJd9oxR8sZs0InaFzaM1awcuW/kiw067CFfCPlFJ1+0+8329LN32768+KL9zTffPP6ZBDzvRGoKDjj5ht99BJM43cm+NDG2BkO1rmY01BknQxb27gK2fQ62z2oDkaNLdutE7NZggc1+08dzDtjo3oVlP6PRpQcLPSSv3jW9D8EEO7tqTY2pqfy4K+iywTZ87Y057LDC4jMn7PaM3jZy1pDvPTxTYINFzv/9738f3w3kDw54YObP+7TfivcHHAg+uHsm2hP/JAE5uekX3+CVG3sLZ7mG0Rp59q2RwdfEBp9x+8ifPFQ7xuWODFl5oAs3/PYCHvb5sf/yQE6s9s66tn7zjY9gTcf+NA8Ln8i8vIo7LOoEVgS3nLMDN4K3u+RgzA822YE3P5bh2Tjx+Nz7cvHYIyQXvdfAwi47evHCb5/YEueSekFigZc+THKH1x6ww565e0nuYVE31jaOMIqn+7q/EUw/PRjppU/eWjr2VmwomWNy+SEm+67u6SD64qNvzJd4ED5f1mDvLoRfXGIlS4dtuSLHTrj6hdZqm045tu/ZYBt2+ohfNtwN6tdzlh81xH/rsGl8k4/UlroWp30UC6xatUmveNcGH+ZknR8ybOOJQ4+s4/Otlsh5XrpH2nf+6diL6jw7MFmDj759kQd77D+BpdN9RYcvPvDlwP3EH7vZ9E9WuZ9gk1v+2dDDKZ8aP+zJI9Kzgyd+MRirb5857KOcJgODfcHnx/sAHTj4sh7mw8HlR/GKme38Z9e+FMfmmU850Ys/glkTqxjlkA++EV54zK3xocb8ayD+A/IvfvGLlt7LwzG5xY87f9HuizRFIQgJA1yiJAEJrODwO1DkBIQnwB7eFZ8AyUqYdQ9Vc6T3oLPh/LARpZf/8OQblgqIDn9d4K3h0WNDY1OS8StQX/jQQ4quSzUdsdncHlJsV2TsIbJiMTdeO8YKW69YNTGES16Km23+NLGZk9MQOdjtk94F/MlPfvL4ot1vBND7zW9+c7w0kZdbVB6MvVD59674bR/w4cNb/HLBp4YvPr7lDjngDkf4ylUx4LNpzz1g2Ol/YYfpTHyQ2Tyw1QXrkrUuNy5PfHsR4cNWs6/k+HLYXGD2nx/YyjF9PPlgX0PJ8FPO8dnTyNFjs8NrvrzW5NLZgAGpKfjE2hhuc8R3+w+XsRjkUU6SCwsd+2Mf+VxiC8FLfj8c4Rd7WMsBW9bYtYf6bOnZgl0eUf7Vu31HbOIjfA2PvsaX9eT4ywcb9hcO/tMRuz1xlvhmA88YHmN6xuzKH93W7SViP0z8skN2L2r1w79LWd5h1bZW6PJZTfLJVmRs3/0hEzv8wuPh5Dx6EWdjyXox8RttHeKJSase2db6jXZYfOhQf2cfYujBpDazIz4v/Xw543BYtwd9gOk84bETLrVlb/Bgcj/Aotat+Xct/VukfdFOz0sCP3SWzDX5kwM5Ka9s48WHcfPEjjjaV3My9BD+ruFVI3xYI4v331AxtZ8w2J/7+qL9l7/85ZFL2K/h5788wAaLPMldcXemyW385mSrmXLPjrp2Ttovco3LX3tnbpxfOFszdnZ3L/HCEmZ9cu6B6pRteyeu9Y8nluwWF7nqYMd0xdNdBqsxnpplh173C/xhZFvrbOKTRfhsi8k68pz22+yf/vSnjzvCc84/A7RftLOfDXruDC//sGSfXWO2EXm422M8a+UgzHLHZnPr5LT8siH+7Lkf8Moj2cUhT+pEXcgRLPT5UV/s5ocNYz0+W+Tw2LS/no3W2GMXDnNE5kxywS+faG2a0+ejGM3pZFNf/sRS7sVsXkwwaogtNdlznA2t2MiYu4vZMKYDf3nMZ7m1jkcHRvYRm+5U6+nisymO8lNO8fiUDzJs6tlTQ3q28Ojyrxk3Z4sMPv/p8BuJhYyeTw2Zy1k22ZJ/udJb51vPtoaK176zi9ggW9zmGvv47bs6MWeLDzHDg2eMjFH5YLP3veSTteY56P0AT17gVZ/OrD5/rbNdnfHNhjhgCn8y5QF+tsl4NurFxze79DRjrRjKQXbxjZ1veUa9h7JFnozGJ1mx+wUkPWKfvneVvuQQp7vHLwn04ZguXmf7UL78CFu1EF7y4qqZW9Nr4k83W/XyV42dZeiK0Z1qb6qZ7IeDrXxn99w7F+Vdj9hBbPvc6gv2t99++7i/WzsE7vCjGB5efgHh+9///vGLUPbD+5J9cwb408has3/OMgz+Q1ExizVZcVqXU/xqS17dA84GXTLWfDliL7sf+Cn2vavwxQkLX9U2WTWjRvg257tnJXlzOcerTsh5lvi37uGxLubqjQ/yas77tXG26LoXxI6nz69fAOn8w8imRl/uuk/Uic9UsMkNH+qa/+TlRVww8+G7En+4oS/n8tK7ML/e78zF4zwheSyX7UH5tKfk4UqG7Rp8ZM3hYTfM4mvfYWzMp70yp6NZtz/ikAd3mbjJiLd42tfOCzvVd1jkkg59eSdrHzRETlzisU7fMwsO441H7RQTjOS0fB4GLz/4oqce+DFGfNFzX2ZfjBpihy6CxZ7Tp0cGdjLVitjkAt9+ksl3mIqZHPx0i78x+8bs0VMz8iFWsnS1bIqHDr/8OY9qTU8esSdWfX7I05PvzjZeMeaHPlvi0ZMnxy9/2QkbeTLIOttk2KtmioWMNXbVMTwa252nYmJfTrJhLBY5VZPuAnrk2FSrYra31bPaC3fY6fMZFneoRk7MYgkvu8nzo1lPjj96/Dn/YqZDJj37xh7/9MRtrg597mWDXXbadzy26OBlT27dW74rYJ+cf36GPWuILFtyhU9GfPwZZ7Mv2qtjfDbkxv7woRmLCbFbPPw7fz6rw2/sM7um1ssFHPbE/sqTdwXPEjb53LrOvhjErZFjn64zzR6M4SVjPVxiFHdkbZsY1Qpf+GzhsVdd8K+R+/CHP3zz6quv3nz+858/TIY3+0/r7/xFu0u+wpdEDoGtmS8ICZIEsgVu0zZ5dMnVW+sACgBfsBKRHJ6EmOvTba5X0Bp/MEmawliM5JbYkmzNBthYxeMhaHPFYRPzpxeXnFQA9K7h6wWAD3bE4wHusigf9BQhWXL4HVY48TQxbE5bow87gouMC8kX1x7q/jQd35+AuRTYkWt98nRhEPPiYjc88lYh5o9euZWLLjj5M7dGFsawr8/sia+8lEs9WT07ZxutO9wuE/Zr6cCXfzz7aX9r7Mq1fCA+8Pg1rrbYMN7aIaflk/zGJqaInLlc7gWG3wNCTWQzP/pyzY91eMnq1SASlzzIu7FYxWiM5JnfbOGxjY8HGx32NndisqYZo3iwGPeby+bZ4ZetMOPzU2OHf3x6iyU7sDkvzrNY4eoyNZdrMbmf+LGuqUGxVzuwaOYoOTb45Y9+OuZ8W9fEiKeHRQxssNlDyTr78HXmydBhu/NAF2Z1kE0vdv5dRXuK7KMXes2DstyzBS/KH9v45d2aOT9kjclqzfsnpMTiD+HsX/sAM5vkrcutc9k6u14I2ZVncu3RYivHcqIOfND2cuF+IYcnTvHJo7w5B74kdA+xDYc7RDNegocdvbVyvfGGQQ9HMcAsDnPyiExx41lbomO9NfJ4dyF4V++af/V2H1+0/+53v7vxn5rLbXEudnFtLsoPvGpXD++eafHT0TdW11o+6Kgj56mc6rX85btenpwRzdjebT3jpSuGcorHj3U1ha+u1Bl8eJr1/Kdr3RhZ7+yTS1dMrXteeMaqfdj41Xf/0hM3W/TPxFfNGhn45U5vTdx8+ENzX5i4J5wFv93o5VUsfEZs0PGMhwMGcxjgs86uHq/GX7r2VzPX5I6Nc77oRNnEk7eeB/iIvmadT/sqb97vxCsGcbp/4SZX/cDNTrrshc24Z1x2u6+tIXrbxMFm+/VI6pFNPslag5cfczpRWGCGvTV8e4Po09v8GpNlc/3Ai+LxK6bOGbt4+sV+KF1+8COf7IS5/NApBvKN2aFnHomHjWSswwSLFj5ymnV2xGVOL5liCDfZ9PhTt2ENhxjkM0xsycHaKBfWEF3+2/MwhUufX3Irv+eMPecZD/Hp3mgPFpM9lg+2u5/Kmbr3h83wsNm7QO8DbO8+No8HXzx98cTjRxwIDn8zDUZnyReS6o4Me3S3kdHo5w/O3pXo0bcuNjLywL44xONZ7Q//+1xEznNdc0+kw6ZnOT17jb/3yBHA4x/8sqMh83Ojj/TW2suDefph/Rrh06frrslG8vxvvuNfs4UnN2yoGT19vcaPdzlftPtPzf1B6dPsPckPTKh/OsZnOPumBsstGfvDBxwwqXu9mtx1tsJqLI7smNNTB2qFH7HYRzacET19a/KoL27ngX51ow7UD3vGfb41R2rCfS8WduEXhzm/7Hnm+fwKTzVYbRWvns/0zI3hggfBzh4/cmJMDj66/JknZ1wu9GyJwfuTs0eenjPR85aM3LDhcwG8mn1QA31W+NSnPnXUhzjsKyIDU2O2nDO551+u9z0KPo2/8NHlD67ww8wGvHKydy85a91P2YPTb7x677BX5NgpHrYQ3xq9JTx76x0lm3jspNt+48GF6MinXIifLLz8Ijz7peFVe+S0dNhI5lC8/BBnnytgoqvJHSw1eyB+9qypOzmgw2b5yyccdPNtTD5s/MtdZyw9tu0n/eq2Z4eckK/xTQ9lu14t81Wei4k82zU27YH16iyda/bJwKjRExe5ZPXImjG73atygQ9D8uGgQ5a97PruRo7oyQmdcqLX4IfF2dLKIx05sL/OU3Hr2a+1R2zQ4cNzS00Y22d1F14Yuwvowg+D+6p3AHw8c3rGsG7O7CE5PDbZEaszB2MEJ1xka4vdfsuNz+L2hh+/mEbHe7QehWPH6haff/epz/R0+O+csM8f30gs1R9f3XPyzBc9n9XZJSee7hExssMGeecarz2iU4z6/LZn1TY+WXw+smuf2kdY2SBnvXm81Rez5zJcqD0hy0f61tSDv5Hmn4556aWXsA4fx+CWP+78RXuFLNjbEOCCWPBbNNkgh/TWKzTJQXjsaCi7q2fNxtDVJFMxaezYlA5MMgq1zcp3m3s4evzDAWqzHUjxk9cUjXWtAmC/S6QYPGw6zPRtoMMip3zSxXfZKNRigFH+wqePjMmJXQ8jv8b5JWNdHhxQc5j5yi5ZRVfhwaKxQ15jV2Mrnv5MeL04GTucfPEhzvT55s+aw6oZ07F3Gzcs7NA5N2tss0uml3+8zYdxe1t+2ELWEBvWyg0bbOKV12Igi+C1ro6M6aDiNsZH5Zi8vVADfJcHf8rn0u8hw5dc8KVXK2qYD9jpexHSe7iwS98/++NCLGflFgY2YSUbVvbbWzL45SSZYuAXLz65eD34qp3iMk9fT0czZkffOllUfuGETfwa7PZHjYnLGhv4Xoz4DM/2+PLROh9hYaN48ZfwYdHYg08vj+mw4+XIg8u4ByiMsNLh18PZvujF5bKXs4gNf3oqDjZ8Id3fphEjHT7DRK/8GcOlwaCRVxvypscjH+4///nPx5f41nwY5N8aG/DCrncWxeaDTnVOjl32yOnpuVt6kXUnyoEPIJ1xH9AfXn4rqy/ae2FhI3x8it9+be0Ys8PXEixitd4aW/jZDB+ZasuYHplaOdQv0SeD8rHr7zcOAxlj/vleH/jwIrlQk/fxRbt/NsyH/p5F/BVXGMIRPr28ey61T/YIP112ULlhQzPXjJ2ZlTc+z9PDlyd3ofOgVw9sqEfNuP3T042sdWbZgkHOjcWgTsmnJxbrWsSGeteTtda9yh5d59c50JPJl9rnB8/5IksH1RuTJ4PKd3HrUbhhYUtt4PEhDnuBipEdY2fLGj09X2JJlkyY8Yodn7xnipzTs//hEEsU9nIKD/+wd7elx6aG6MHlQ5l7sP2013zCXi6T1Wtst29kNKS3Jj/G7ERiSkdPTi7KB/lslxcy4jLPB3vmYsSjrzbNNbG628SZbXFqSJz2UJ8NeOWAPf70cu/edOb409hMp1jKCZ3yQob8xmNORjMmE8Vv/+E2zk7y8cjnPxm28BEerGLRjOlaL1+wWXPPW0f8qBm52b1jb/2QPduUw+INm3zUylN+YMGjF0+v/uwPUvPqWc9fceH1/sEXzOKCn03v2r7wFof43Bn2kT5KbjEdC5cfeBGMZPkQhxqyjleunRPPVJjg9j5Y3fGXDT0bZLT2mC98+vaDbbHCLUZ8jR/vltY8O/wWmw/41ti2pmblio2ofbP/GoqXzPZ0rWuI7XISf+NfX2QjOumujDEcenHbf/0SvXTlXovWFh5MyZqztefd/ebfaH9eX7Q/vLw7/eAHPzj+jXb1FTbxauW5+GAz7rwYp2MMfz3dlWNv8+M553yo92JWR3CIW3MXilkO2HOO1YTaohM+euTN1Y36IssnfOGGj/3eNenh+TxdrdEhwyebYtCsu0PZFSPqfmG//LEHHztsiEHcfOGpd7bwUXmCkwxyvsXhmcx378DFwb8YPvOZzxxn1Lu2v2kOg1h8ZiNjzje98mNNfsw3TtiSowN7e0u2vSUHHxso/HDyKfbOePb0Pm/6TWm/qMdecuwiMtqZ4tHxLPS37s73OZ3wyy1s7hu6fW5Qa+Jq71ZHDEjM9pQvvGI2Zo+tfLfP/KXPn5y5E9mSEzzYNDr2uDvTnIw1PvXlDl+NVEvG/MBPDw4yeBo/9tN5IdOaOqnO2WYvvGQQ33SrUdjZY0c8bHROydMTd2cB7mrFOqKrsYPyoSertyYWjSw7CEZzOMRDVvwwJCMG/ntvZYM9smR6tzbGYy+ZxmzA0jkoN3ieu+aeXYj/6mcxG7Ovkffscl7Zljd65dK+++yrx7Mf8Pts7gtmtqKwWmfPHC7xwE/fWB+Z20NyZNg3h6N7AF+rBqz7/5rkFk+Tdzpi4td+02G3WPnS2HW2rIufPXh714SPvvMjN/hi0vyhvtjLMV8wF1e+6cMVdvFaQ/HCiBc24+LEg7+8GSP68Zq3Zm6t9eLH588ZsJdqVOx8yA/5sHc/wKEWPL9ff/31/91/hmpzgAAQbXIFf40EgHa9JLSWXvxNGj0BW1MQbZ756jeOr5gkVGODTTwFaaw5rF1I+OyT70OPJBv34kDHZtgYsnq5qAgrHBjIKkD5MneJKFxYtomdTReQ4iXPjtzyz455vsnJgTnM8IrLPL9wNWebv+Kz1r7xbY0Mm/ywITYy8OIjPZ7WHI8uwofXb7mKw8HFE4+GwlT89MufuPhnjx0xVWeH8uMf6da3BjN9ed54+Awznd07utboIrGTcbGExcsTHXkuL+X5ULr8YEN+82Nd7trvfFpnX18tWsOTC37lDmZEzrrepepB0ssHH9bwydMjB6/LEH52s53f7Jm3d3yT1+TcnC1zY75Q9o7J4x/2iqw1+YFDo0MX8WlND2s9vTPxzxYZNmr05RifXXLw5xsflsXcw7h8WlNnWjXC1u5r+4IHB/98sEGHLt/hgp8N94QXU3z1zo7fBPGBm67z4N8h94cp/jDNOrwwWufLXdQD1AeEh5cPVe4QfHtPrnMMi3j4w7PmHqJnDYkBLi8KejLZ4NsLfi/wfTFwKF5+lB+93MLpDLQvfHvR0Jw5+H3whlmMar+9ZEMzlwcY+ZXX7odi4Z8tDYlve3JnSp6P9iW97NBJzhrfejoo3jG5/Djr2WMy8me862tr+eRrdMhpZPg9y7KN1Jj6uI8v2v2zYW+99dZ7L1UwFPvGYa/UnnU5N+7cwAh/8vRvQxs7+fVrfi0fZNSqfJRDYw2xqc7Vp159yqNaxUP4zpAzEOZqujsFn/0aPb5hCpeYezaEXY+SST47dPhnP2qNLKwaPIg98vAbl2d9484gfbx807dv7LOZH/tHzlzPbrjxrOsRvrx5rniW2HeU3Xyl09y6+6caYUccKJ9hpZMfe+Ju4xNmvXX2UPkxlkNzfS0+X+VFbbDhDiInNveMMTnNGAY9m43bBzxjMdGF3VyzhuiY549PTQ70bCdHFk98vXPiaeypcSRuvN4fdl8OgcsP66i88pPvzmrxkVkb+SQfn3/nAA+REXN1k5/iz4beGspeOMShZYOvtQOfOflqiR35kU88RI5fxB+C17pmjE+ObvI9J3evD+XLD37DTR7BwY59SAefHWeBbTGoBx8+PcM9w+j0TlZ85H1mEIdno2cerOTY4UuPqnM4xCJWZ04LIx4c+w5Kl33+u5PgJrMxkYvKDT/Z5sfz2BdiYhNjc3Faby+NrYvHM548O+LpmS5OmCLj5vyLm453xDPhb52sLh81djS+lvBWpzk9tsNqTk4eNHLIeny5rN7J4IdvfYYhX/TEqI7oOOv+b43n9UW7L12/+c1v3vz9738/9lqtwcnXYhRjfDl1JyE4NXN8RA+VI3yNDbGIydw9LZ7yUczl1VydauVVjbKhqSNzNjpndLub6eHT5VPLpnE1I+fq1RwuNnavrIvP+fROSo4MYqe8uGPJ8aHB5tx6FyaDYPHLLmpdrvnD6/0CZrr4nRM2nR3vxu4JvsnQ8e/9+pwgB/52Glues/7Wqn1gT67kXmOTDTmCqbtIHORhpqOxhfiDwZwccmbF214fzMsPc37kjC/z4qHPn31HMMgl+ezwJXa8iH77IXf+aQsyyFqYYTPnW0vGmN0+k+DnW29OV63IY7HTKRY9P2zJRZjFBFu5wmfL3cwW25p72x1Hv3jIouTto71iX+PPL0/mi574u5/lDn6y7MphcZRH9tmEDy//5uwlx8fG0Rp5a2FmD+Ht2uahGoCLfXbzC0t7CWu5Zp8Nc7blC4+MxqZ6936X786HOtzvOtiQu/zDS5YeO+xqxojfaogcPdQzl544+t6u2iFbLZFB7TX8CGZ1JWYy6sIfXvNn/8ix50w6t7Ag+Ojo3TvW4WK/PHV2xaGR568alvPuAX7LS3atIzrujnLLLllyfIldQ+ETCyz47NiDh5fP6vzR1bsr5QiRK7fk6Xr+i8tdEhVLe6QXt0aPXxjUhBxaZ5s96+HcPpx0yfORDTGak3cnJ1N8Z93qBN7ioQ8P0ofZnL7GHpLbj3/84zc/+tGPbr72ta8dvNaOyS1+3Pk32m2+ZEsQKsn5OgNoLhAkOXjmEhc/ffbwSiZZTYL0WzTmkTHb2WeHLDsllCzbbbZ1BSYmzYWiuTy7LB2A/upULwD08c3Zhs0BVLgOYLj0DmJfKFnvIWWNrDX5NNasiwF+xD6c5GHnq5dhax3SLmY65NMzDw/cHcTG/FjnU3HZVzx5YaMHvHUHR59NWLRqgW0H3z9BIRYv3jCLyRyxzcY2+mJa+/yLg306Wvo7Dw8/5MXAFmI3v+SKs5oQH1vliw47ZH0ByZaxFzoy9lye6bBVXs3pscd26+J3KZMTTzlNnmw8+uRg5hdlp7m99sLjNyGMYcoWXfljR03BbKxlh80zj2268kyvF4KwtL/mmnzkk63ykg91pc7VffLi7GyVIzyNPrklPvGs88FnftM588yRdVTO2jO4+ELVGx05U5/w8cWvi1V+6UTljV015cyGWw8zPfVP1txe+TclnQf77IXr3XffPV46jeHhh28kh+b2191iD/3WGPt+k9wX8GyTkcfu4ezgqTe2xYjwYNq/OSNHsMIHp5j4JsuWMao3Ln7jCK5//vOfB0ZY5dP/6/C3v/3t5uHlAa4G8NgVI9vlr/OOZw/kNMzZ559fMkvlPR45fui3ttjxzOORZbc5O3iIr9ayhW8cPuvljI3s4Ruf9fJtzfiaHB/JGfOl/u7zi3b7g8IEV9j4V18a3Pao8aF0+SHO8kXvNsQX2/KXv3StsVkOzZGen60DOubkjZ0v56L7VI33YZaM+nOunCPyckveObBGPv+waWGpPuO5L4zDJR71Sw52rfVs8Knlg44WfmcEdjGR0dwBiAx+/q1lL/nk9ORgsIacceeNnbCykW7xWUP47gx/OOd5YN/pFp8xH2LWwqUnyx//xXEYnR/0I7m3T3wZI7kQX37sDUzsF7t5+cQjY0/1yJi8DwTWxWbf6LGvReykZ72x3rz3Nvbo5Sf/5Baz2BG/9FE1YSzOnjH5CAMfsNK1Z/JLxnwbO/JTM7cu9/bAs9zcun1DxlG24vFRvSUjX3TJwCQW2NUpvOmSN9b4R+zT1aorsdXyn6yefjmGB1VHcs7/Nr60cgwTfOb0jem1N+UjrHBpfNDVEHn68dSnXx7xvCTbM9YHU3couz4/8MU2/3z3+cA7tHdBa+z48G+sBsoTu/yGlV11Bx8ZfDa9z3RPwNqdR45NsvzrNbR9fLJyZ86PXwDwW/G9/4mtf96te58OnBp83jPab2vOmpqFJWJfHuUTLg1mMmyYIzZR9cEeosuGeW355Dem1tKzhtgny0b28Nvn5MRD115q4TZGbGx8eJ0vsdC1V/bI/pvbs+f5Rbt/MuYrX/nK8e4Fl7u6uhFfscKGLzY8uOHRkPO9vM1LcerVnXjYdhb2nkhH3sgiOcPnx1i904MTDvvvLOnDx7Y5WY2etfZAL7/qkyx/vsRWu+5IdvnUkHV862rZfUiPDbKIrLOpZo35cCZh7Z9KoWPNLy7xDRt9OXHmi6GYyVpXE75op+dcsSMf8ug3xHvv8F6OD587gj7bGh37I5bOFT/80ocX6dMRHz06bJrzieDpvmpvrPMZhV8M9rParpbNyyWdxUjHHEaND3voHvE5wRr7fLInBtjMIzqILL77Uo7lwV66e/k3F7OasidyQJee2Ktre4nM4WOTHv8wRvS9g8htcasbn2XkHtG1xg9M9s4fBDjf7FsTk/9jS5waPD4Tyb16hJ09dyodBAdM8MGuN+9smO9Z4Ecrn2w0xzPubFvbnLKF+BSzlh+69GCwTlYvV+2b/RK7np6ciJ+u70wQvkafrJyyqXY0Y2epZxx87Qk7SL/n2pwvDSY9H/CTEzOM/LFFhg7fZPjTiq/8wEhXbbXP4mWHXjbcB2ySs5di0NtPuWBHHNUVfndLtShP6lGNIPJ08eGkKz/+IBW5I61r7ROs9NR8f/MdRp9txG0NVX/mGpn2QC9Wz3x/o913DHz7p6v8wVLP+7Uh3+Z0nUH6MCH225P8i8O+kIeZPh9ws4NnTZM71BjWzqsxosNHeeCHDXcmWfYRG9UZu/jyorFhTXx0ETvyS05N0OFTw6Njf/xt/x//+Mc3X//61w+9cB2TW/x4pi/aJVBwOQMWIBSvcXMyJQePvEDwluIXZGsSVDFbY0Oyst+8RLGTz7Bly4a17rAqcsm0GZKuwF2g7DsUvmjvP5pgk5wDo2jYQvzKSXkhx4dNla/GCgFWzca6bBzK5PRoY2SbPh15qCBgdyEoYOPIuBjjwbM89mts81GjI0Z2HKousr2cNl76bDsEcvLgwYMjHhcNvz1Y4DdH5YAdMcnB7rGY4OO7XKbDl4bk2z6ZkyODB5Ncw8zuHmKymyN6fKFs+NBQPjxArKsFuNhGfEXWs8kGTOLPjrqiK69k2dCMw86WOf2oPOvperFQe2zRg8Eaf+Kmq4bUlfV8ZY/P7NOlR1+e7YGHER6Z9t26li+9xpaYe3DgqUcPI/6TgwF2OQiTWtHMI/YQv3TZpst358o83mIII9xaa861XPFFL/vw0RGr2mhf8VYnTPSMyVdP7OHxlQ25wDN3j/ii1G+wiN0HAx+SPEh9SCUnX9bY1e959iD3ko7v5c1f3xSbXMqb2qZnTE8vLn7w4cKDyYPYPVdO8cyvUblmQzNvDzqj9Pj3Bwce0GqdjJdKL9VwqwMY5J4/WMggdtjFM7bn5qictpd6xNY1Ih++1vEQnfSyQ7ZaMI5PLp9hyB45uUD5I2uMnx65pXyno0fxV9a4dTbl7T6/aHe381cdlwe+7Yn9dZeIyd7YozMVd7q7XizLM2aLD37pneX4k59yZP2aHD4Za3K151xduSedZTLOjA9Svmjn15my5nnVecJfTPRgcZbF3t7Cb41/8udckdPKSTbIa2JnIzvknMu9o9g33xjx8qtHZ7x4yZUzfjyD8cWy7xjk4ceHU940eXF/eR5UA3IAOzvFRBdPMyZbXGyjsD6aPfpZLuTePvWhwqpc2B842BIjYp8tuhu3OM3p0SFjDCP8iB3Yii+5bJE3ZssaYlNzp5YDa/YlX+TSIcu3XJAzt4bw4EFiU6vFSHblyMJSLsmZ19jg59zYkKN93+JT7NlPV4+sswODvUgOz/mnSwYm8cASHjJh0puro3hwwEMfjw329GQjPvNrzbjcmdPlU841a3jqUUveWmfZuH1Kh0+tmNkOS3vALnvtH4yek77wcX/QVQ9+88sXMZ5x5D3f+EGw8p1N74B04Hb/eIeDwzObbjkhTw+R33cxa+zyo2cLsZHOwXj84xwn3BrqPlNf4vXe5wO2LwXFY907hHeUviBiMDscjQAAQABJREFUL2KHjmc+WWQdZnsunnjswyo35VTt0xNfcdgHxHZ7Yi4/bGw8+HgIP5niy6d+dbPLZ7IwZYs92NlrD8lq6gqxUcwH4/KDDhzk2BIrec3cc8a/8fq8fqPdO+Qrr7xy88477xx7rz7VANxwwCi+cgOncfPitVdikYNySNY6G+LS2M6+WM71xpdzXh6yz5ZceJb0edmamoVZjq2Xt95JyeNbVyvl39ydJA6+1Nv5c2M5sC42MTqr5OiJ1Z1hHRb1TaY9F5/z6axbLyZnwdmAB18PJ0x0NbbhNqanvul5P+YbWZMLevIoD/RgFRvb+OwgdsLQ/slT9xye/LCn0cej43yzJd+oeyg7sJR7681h0ewrTMbshFMu1Qdii5x5PNjJsqeXf7/Rbh4Ppu4uGHbtMHz5wY59kGvxeF/1xZp9N8e3V/asvNNVi7Cw671CTx6PH7JyBVskPrLsiUfMcPuiXbyIHmIDdt8L+bJdHRS7/fQLUXzKDSw+I7krjdWQejPmx37BAQ95ftmqBqyTZY9/suW7fTQXX/Zg7GyHNx1zxB6fcshmdWO/80euXBmTMacDHxt0xW+tL9rxNHG0R+JiVw+L2pRXjS573bF8ic05LaZiZReG9hEGmPmyxk57aw02PPmQexgQeWM+jJ1VMmGpPvlVE/bZWP3Zy/DRdR7hRLDxKz71ymfPWXZ8DoeJjAaruTtBruTn4eWX1NjvXmdTDHr84nrhhRcObPyqXRQO9bDxmYu12tN75vtbUfzx7Yt37wD0ynt55l9+2aHb3cInGWtwGcMoDo28Xl7tb7Uib9b05LX8GluDoXjosy8HGj9k5Fifb/LZhQ2/mmCDD3tCBuHZA/aqt/j80He/+H813njjjZuvfvWrhx6Md6Fn+qIdWAnSAK2t45IXIIGQQ5KBv7x0s1XizMnaLHr4NtWYf32U3ebZ4GcJH7FtrAA6nGwrOsnl19zYhW/D2NIcDAfHZtAno4jaHHoOK1t4bC0+8wpf0VaUcgsXH2QUkssofXL0zCsgsnKheOjyjRcZa7tvFb/4NfbyS49trRyzDQe9eOKhK0axy6FY5cWF1G+C03MZLmZ6MLHn4IqzuOBgTxzWigUGPvngC9HBL2aybLPBtkPlwSx2/pF18uwgNjVEP39siNULCp59lhO6bGiR9dboseclji58fHV5k0P4Gh9hqxazEV/PhvVqik98vtoTemKVtzBma7Gmly6dcsmuVo0YI3b4yT7d9iKcYrSupuPRY0OvwSUH4rCP5KzjG8POtljlOowwJIeXfbzmGzO+OuKnnMPmoao+6W9Oi699tsZGFI7wOvNkzDU+NHbEb82fhHtIG6tFLyM+xPKP8qUO3Cke2og98rDie3lji2050dsfcmIOqz2kE8FP3r6UT2tw8sUOG8i43MDDv3OJJx5jLxnOcrlQ42JxxpH4fAGh7jvP8MFQLvlRR5o1cdgXc2vb6Ji3v2E9nD3hR/qWybOrj89WWIzLZzKZtRZZM2eDblh3bI0cytdZv/m1Ph022LdH/4sv2stFmPi2d/a5e7v45aAYyYdZfyZ213Y22o/W6Vpbu8315NTJ2lpf9O2hM0DOnKya7zlhrRdda9X/PrfwnOn02MlWdvkNizXj8lW9pxdGZ8kzqPoh371P5uxDzMnCaj2y5rzQJ4PSX7nk4UPOF6LXWcsPPHTlqDtCLsydbXEh9zLfaM8zHPg9a/lgO7KuLS8bcm1f7AOf4oXBPri36Wjs91ygW17aC3PjctB6OdLDhV8jS0ecWjr69SEuOYPDGpy964SvNT1fZNg2X6K/tbr4sxVmeO1N2LKTj+2N2YZTExtdttrbcsMOeTmtZosLHkTXuj6ir5GNikfPJvnGagcWc3at1dghr6HsWjcmr8FPX03IeXe13LibPJdaV0ueaeWLPnnNOHzll1+67VU4t+fHunrs2cyv8+zZ13M+n3TJhp1P8nIpBu8C2UknXHTCyW57U27EAUs5gN+cnc2jseex8yL/bGVPfmH3fFbXZGHruU+OTGdZXx3Km7GeXTpiM2eHrDl9FCYxwagXC8xkyMoXak+yRbe49fh0kjuUHv+wnkw62WXn3ODIj/GZ6MJb3RjbO7bFrz2J+CLv7qJjrh6e57/R7hc1vvGNbxxfArLtSxY5FUuxypU9srd410h9WRdveauXH3Fax2NbE9vWIDkyGp9nX3Sc284vX/TNja3rkZw5wxo/zonnAv/i9B6cbDirCXN2NbrmsMiBunQWxGNPnQ2xkzGGHT+M9JNTo8i7Lxv8ry9r1VJx6fE0d4QvtBA/8MgHO/z4Mk288kAeWStO8/zhiamY9RpdeK2HhR4++56v9MSq0ZEL/RI/mtzAadx57u6l446gzyaf/CBzOvHwNTnwBV55hdVe68mjdMxr1tWAfPLXveXeMce3Ln/GbNAt9+b84MGtVad41iM42enMWpMrvzAkXuthtiYWv4y5X7TDK9d45PmC1R+0qB+Yyy2MMNBhC34UduNiKV48vttjY35Q8eFpZ7Kf/Eds81vt2TuNjFZ+1hZefLKovOnlK/+ty6c9go9dvZg1ccB1jejLFcqmnh8tHNad7+xay75xe0qOf2vwaPbVc5CuGrVH+bDX9pI8G+TF5w9fyNovd5M7SY/EwiYqNnvXeys5dzUd+mw7V2zj8wmLz9jIvHjDhS92+r6TlF/EBj/8IXHB6m+T9FyGzRmCkx/x9F0EP/zSY1/+q0W+yyk9+mq7PW4vyGmoGtXLu54P8ZK/Ruymx4+WD/KLgw3rWyNkOkvll096erbglgO6eMg6e/mOJ7fsyK2/kfad73zn5uWXXz50FtfBeMqPO3/RriDaqJzpGwPcfHnhENQGtEk3rhV89mwWe5IT77wRfORz/ZXQ5bGB9OvLnLzCYgtW65It6dZhcfg0PAdI0bt48ejacHyXroMFq42r0PggQ5Z9xB/7bFqjo/AdngobnnKxxd8FTr+WTb74cLDYoe8BWj7ZQWQahw8OfDq9rOz+Fb8HOlk2NZcR7HT5gg9f/OWBD3bh8qGMffiQ3LFnTTz0uyTYsK6HRZ6KGX58ftmSO1/+dQGSLTbYYcIjmw3rXbL4fFcH1rYdYB//SN+UvAuunNMRdzXDL0zWO0/0XK7kEFxIHtgWUy1f7NTwED15TeZgPv5BFtUbFz8dvmDlRwzVGFvG9OD2UIKbvDySR+nRRfSM+SgeMvTY4wuVU/LqBRb7SAaxYY2uHg68jcMaO9Y1Y3Xi7PJHFmY5V0tk7LPfVuMru/xtXPH50/gh71xnl6+wkZcj8a4dc7XUeSBXDthlz/7DqO405E/BYXT3ioEeOseOx055Drc5m9klI78wOh/4sGvOoT8g49v57QXE2cT34il/+aBDlr3G7LLJz2I1zk9Y8djSiic5vZas9WQO5uVH68my3zg9tmFB6ZNpXM1Yxyd79pWsdT6SWTv0o+T0iH45S+bck01ePp2r+/yi3RmIik9c1YZ9VK8obLtPq9t6PPPda/xs5wuv/cJbvrWdd77wrxE7nSVjlH9YrLl7fWBvbe9j59TcfeDOMKbPr7Pe84Bu94l1emznky868czlzFkSPzlxGUdkNPytkeSzTd66PbFHxhpdMvyeqTV84/ag+4U+v8UvR+Sqgb4sZVs94CM5KXZz5109eVknFy5rdPhjlxz81tmQa/eafWn/5Nf7hLUws+l5Cj+8mjW4itscWUPFtDlfXTJ0yWnIej7osQkv/NbwnEsNXrxyeRi4/KAjNlR+2x99dusPwcuP836H1XqyYatPtx4Wa+o3fbpbj+Zk7IW7nJw8kCkmMeOTQ9bNxRMPH6+8m1sz16sdePKPRx+RyV42yDW2nk+YxFPOsw+jRs/59JxUO/TyUY1mG4Yw4ln3zGXTnC/jCH5Ufozp43uOi4eNdPRqWRw9A8nTd7bUtdrYONncuTEdffx4zpLWPhh3pshEnuvOi/x4dmvOENzOqA/Yzmv22bPGHt/6nVvPFx1j8fcuIO78kd18GItfr7UXyRVb2FeXrHmY+L1GT9Jhu5YeWTxknC4efxq8evVgfzvPcIQ7fXII37o6VVOauXrwb7w+r99o9x9Lvvbaa8ffHGRbTfFZHPDAYu/tj5wVJzzFaf0ci7g1MvS2Btggz37PR/bIaNYi482xPHa22Cm/YWYn33rx9LzmT5zej/HMyXg+ZBPPHrkHPE+s2Tf8zjc8/DkLYjeHG/FHn13Y1bbPOPJHhxyeGi9O+nDLkz7M1QpbfPn8yQZ97wF4zixedUKnWOCxpnU/9VmDb/psiYHfyFrnAxa58J2E3hrsdMnQFxMfcMoTW3hk2Ebm4mSPjDF9PQqjdXaQdf7IWxcrf8Z4K5dsa3pERovPH0z2oxjkS97kUD2SZ799p1N+2DGn23tMtvN1OH78oz2UMzbYVHt8ZnNrEq/9x2dTzH0P0l6JN30y7Glwo3JWjORh0KPyo0/f2Hpx4cPAFl9azyKya6NcHcYvP2ChL1d6umoApYtXHHjFQD6f1U37kx3yntHOp3wVF3z2tjrKB3t45SjsB6DLD3Umz9WbeMjryeo3RrXiPUGj5zMt3fYp/Gy4R8jTlw9n13PTs1V+X3zxxZsHDx4c8fDFnjWyYcDTxMmWs6hVr+LCLx90y7d8sis39lbPjlpSH+TkCYUPRiQen9X9lnp3Dhvw0WNXo6exU43CjuSl/WlvydJD7TFe4+xuz0561Zc8l2u2yPOVrHFz64g8fbkjTxYuZKzZK+dUjak963xr1ZQcIHG2lu1ybp4+e/b61VdfvfnCF75w6NK7C935i3ZfKHdoOQJegG14zgMiISUUz7jgktXjJ1uPnyz7jZdvjOhoK/No5ZHtxnq+tCV6KDt6pIDEJ+k2GYmfvk3ROkC9RGefjr9e5MDC3wuAdcXiIeifpPEQten4bDnE1unw5QBU8HCWaxjpwAdnMjAWjzEZsg4aWY1dMvhiQI31Gr0uKT750NNLt8KHmx224eiBxk7Y6JChI149e3B56fdiQw91mKzB4bJwaTgkfPkDjP5Ejw92+Cabrjl9v2HrEucfNjL82x+6YcY3h9FeiZ28Jl/krBe/eWRsn+Lp04WNHnuauK27gD1E5YdNctb5Lx5j8YSNHKpnV7PObvjoayuXHj45tvkzD2v7wh7Sk9OTpQdvuPmUR2t8ybeeXMS+ePURGXY0suHhCxby1zDQp6uR0ZMLJzx4fOE5Sy7K8oqXrrEHrn+WRdxhhslcnbEX0csfe63Ho2+Myicc8bJvjm9eo2Of2eW/fPHvoaEtFvK3JXXWb9I7R7A5a87Tw8tfG3Om5EIj66zA5yxqeGqbrheN4jn731haK+b2Iz/lgFzjZPGypbdes4bMs5We+eqR43cbvTNd07kmRy9ZNp9EyehRtt5PJ1vp2H81eN9ftIdNDx+/PXP0aqV45JdMOjCba8lc64uNnNpeKl42G1tfH+bZNb5GsLmHur/IZIOus+N8afHpdC90FzrTZMhb19h0T+jZ8mzgiwx9L86e/e4ZdjSyGn3+5DH5YtEjMkh+5B+fDXrJHgKPZeSwvJNHYT0mj3/Qb2/gZCueezo76cMrfjLud1/I6flgP5/kyYoHTnbZco94wfcsNy+u6omse8cXsPzzJa+e5XLIJhl3trk7r/jZ6ItBOOSTfXHBAXNUzPaIrXJJR7OO0tncWXfXIXy6+dObVzPW8cQKH3vhJdNZYgtGjQ6ZemuIHY2MPGRLX02QM9citmBiDx8WJLd40fokj8TqbqeXX2vLzx++MSzhKXZ7SQdZI2eNbfMoW+Uoe2SLg+zmhgxse7bNNXrsk1dD/jDa2S0XbKUXj70Ir7jxylHriy9ectb4R9lurf2zF8VWDPDw8ywkz86Pc+a5LHZnwjl1pjbXalhN1uyPBpPneGe7mK2Fq7yKsYaXfmN49n7w3sBvMbNXkyPj7IkfD+XPGC9Z8o3JwA7Dk6i65gOtryfp4C8ONrTF7SxriE1YksOjjweb3v57FjiD5u4g/8br8/qi3W/Ivvnmm8c/0+eOZF99wYzKg71XK50RfDw4yTeGX1z64jKnJ+f2tLz3buic5Y9ssfNv3l4Za+zKC2pfYUDljg0+zcnLeedFL6c9E2A1zwY7MPlM7X3+Ax/4wHvvzf7TwD7PsQ2b2I3Dxk57DEfvvmIPr7Pmyyu62Sg+MuKDk5345Q9eZ8U/JdPn0WLNPgzi1jdWQ74fcL+xTce5Y9cYGWvtQbnxz1TRTa/fXhW3u1lvrWcFffsrTvEjMuyRi8Jb/sRrX8QPExswGstDeVkeGQ0Ofsnxo7Gvodbkgx3zjR0PfmcADvnrPJCTc/zwhw12Pti1xg759hvPGn/k2Mg+nhrAJ4eP2DDG18TrvuYrottcrEjsiA78+O5oWKzB1XkgY705f2T48u4ln9a8P5HNHxlzMdE3tz+wmNfkzrnCJ0suHPllx7pmXSNLD5UffPjkiC9x0IWtuiRLzr54hvUeiFeM8mpMd4nNGnn41CEcdBAeGful4XtX1+RKzsSh5tUKHzDB7d20mMha16zT97eUfAFLFrFf/cBBBi7yMMiRXLin6PAFn3E2DkOnH3w7u7A6l/5wwDPAb6tb4yP8/CNyeBqZ4rcuXkQPlvYHHhi7263DHcGK5JCc/cRjmx+ydDR89mr2j0572X7CBo95tWAeXj7YQ2Rg6w9RycFOVrz8Z6u46OCxoeeDLD7dbMu/PdMXZ7ow2+dvfetbNy+99NKBJb1jcosfd/6i3cuswAQliYBrgoiAsBYFmIwgrC9Qsvjk2qDk6Gjk9bvx2W8zzbONtz6S1bNdW5xnHPTFxqdkh0n88WGiF/b8h9WF4vJgwz/9YE5esTx48OB4AfPPQthkhUjWS4E5WwoG//1oY3g/uf/3mnjkQV++YJIrB64P6eWZrIOm+L2g+PekyHiwepH64Ac/eOTK3pDzsGHLHLHDBt1eOO0bPhkHzRjRC1P7I++wsg1flxgbfJlbp6smXDZdDPyyrbGL2CWvZ4O+Q08fr9wUN1kYehEig8JsjEdGjoobH/GhsROG8LIhfvWVLL/skdWMYQszPxo+u9bMPYz4p+/FIjvsrj6fdNmTP/myL3hIzx7fZOSSvnl7Ff5yRE8MYaZvrbhh69KVH+fOy0Q6zprzZy0c/PLXxcvH/5PEjOrP42Pxyg/5lgcvMB7MDy9fqnvJV3f+Wtlf/vKXm7/+9a/Hg5usVh6by4lmH9S4fXsSkVuMZzm22SVnjzRzOu+nd7bTnB11p38awV97Fl9Ps986LDV++HwWoqcm7/OLdmcVwctfZ8o+qxG187Tc0inGrZlrMZPrXF5bL2/WsnlN7hrPuXdenXdnF8k/m9W0fLbG/pN80NOqTbb6YMCPF3D3h7H66z9L9yG/GucLFnMY3Dnunu5yuuyj4tbDhM9u64fQM/4o3+wteZ71rMIvV+RgUBuem/TNrRfb4s2mOmDTne6+UUPk6bkzNDHvX2eVH18geC/anMpR+8gXTOx7VsBiDJf82E+55geRN7a2e0BPvHDRJ6PXrCE86+JA8GrtC9n2LV52yiV+xJaGJwZ4EGxywxZio7jIVKOthZMcYk9jpzjZsh6Onm/k6VvT6PHdXiZPX87Zg9kH33JDDz8bza3LlXeycsZe+eTL2F6FIdxwIet0Nh/lOGzW5AW//MAqp+zh+1LJZxOyeJE8bC7i/z96eUP1t8UgHjn0Id8Hbn9o3nuWsT8w91yXr+zLCb18yYvWnnnv1MiRsX/k01ED7Rmb1Scc5KsRdWJNfbCHb47Ywq/hWevshtFcS749DE+YyIjRHBWbcbp4+ce/DcGH6BrzHy+7am1tV4/Zlyv4+HZ+1ae6M3fv+6L97bffPvrFnf5t+uK23z/96U+P/+vHM48feFvvXPBtT2ATE759tkfG+vLOP31yGozle+X6ApA+Wnk65YiOveIbke/ZB6u9l0NEhnzPCX7POTKHr7uxdT19zZp74EMf+tDRPLO933/iE584Pit6BmdbbuhszJtD66icitM959/b9m6kySW+WLbR4cc6H2Jn2/n1T6j4GwmeZWJ2fuwRe6g8qR82YfYLZd4xrMFV/qyjzVt41IX/00mOi/nh4/d/OnzT932D+qSH5/ktTviQWPhlpz2gR55de2zOhjpkg64mfjp9p8EurGT8QZ9aEn/42gvxta/sG/PvHYEvc00uzOWq9zO4fMEJM1++lLQOA7swdYeQVTPqUr7sATyIP/KwkYOt3NNnh/2tE1hQ8YiTjLzAg/igE362tOywwZd3KLJ846kDzTwe7NWE2nIv6OHu7tkaZ0dcev7g09pjdp0XubJOrhyYW6dfboqBD2vybCx+LRsw4vOFxKFe2BEjO+pFTXiG2w+Y2BMjHBE+THTY1NjHJ6cOqkU8cs4X256ZMBVD+x02+MjbDzJyIY9iYQOfTWt8+PLV91B02A2DXFjfXwQNfz2dqHF9fPY07+EPL2fXH/KJwWd5n939vwfyRs97NQzVGQzVdjxxIvLGYrIm33h0zMVnfCZY5J5dMoicPPIvP+zKF1mkJyOPzhhf5q33WYHfxefcOGP2ZHOrJsorzLCoeXeLuZjowckmX/j8scOHdfiLmyx87g38sJEVm3X/8ezrr79+/N8o4mLzLvRMX7R3MQDSOHABAM6YjLWC7ZALOlnr5K1lRxCShPjo4B6Mp/xgS+NDO1P+dsPJ0MHTo/CLwaYVh7m29vNJp0bGgdPIeli6CJDLxp+8+48S8W26+PFddOaooi4v+nDns7k1jR1r5Zcd85XD+18SLPYx/PBE+IrfJeKgFIf82Xe4PTC95Hg4OxReqFxyPVTJdWlXR+yw4cOIB2j2+O5CgaE85de6PSNj39h28NlvDrPGJp6xS48MghmfbWM22Y/ouUTETTcM1lvDg6FaMGejfcyWuZi1iBz/bGlLYXKpqC+UXLWDxwY+O8awtB6/XOnFY/+Sz27+yoM5WS91LklE3zrihz95YQsfVjJ0i4sNc5cvgk1t4NNF1vA6R3LZA5xd9aOWumDZ08zpbU4Pg/f8g+8lsRaPOkRyb3yum/TkrlyTda684Pu3Ij0Q2dP7gyv/eamHHUqnvTBnCyb+6GnxFms+8TS4z0SGbQ0ucvJLVlt7Z92ds4PC2fyafmvpl7vmz7MvPjaflIPb+pMPNXifX7Q7f3IIt/vNHldXasv4nL/FX4ztJdlqaOUak2fz2j4l86Q+HOmax6sOnGvnW96QdWtqrHF3mPUzlnJhjR9zvb1wT3Qf9EJmnT1fsPuA4MUcT4MBls6Ql0zPFBjbW7r5go8sf8bdZWEgh18ch+Lw8JG+HB2Mx7x043nuOMv2Dlnnn1/6nmWem8UvV1GyxUqGHTWkpjRz8ek9E6yR94HHl4Xsy4/cuX+9F5Wv7l75pgMXO30oN9bg4MPdblzcdFpj01zO1XQxF9fawiPjGS4P2Slu6+xqKJ9yw27r1uiyI274e/6kax0/G/AhftuDg3H5sViN6S42OZAza/CzKe70sm2OyPKBYMRno1yJRX205/nKXnb09O0peXLymT84jNlZW+e4YcaDgU1jtoqlNZjJaPJZrsz9gY3zl+0juMuP8l688Z/UF1vr7Vfz2/TZ2N5YDuTHuFb9XbPLd42u+ncm5dt7kzVzH8C9H5NhV853z8iZtz9qsjMZDnuOkuuchItt+5EP6/CwIwaEZ/1cA9mEAzbNuD0pB7t3i5ltMmzTpafPr3VERzz/DcFaXWUTLnXEZzlwN6m7ZIpB73z13gmPz3T+M7Wf/exnz+2L9p/85CfHu1vPvM1dY77ttV5c8Jo7s2QQvGJC13JOvnU67na89Nk1lptt7FYrxnLa85MfDY8ufN2V1R0emYhtczasmdNlW8Oz5nniF7D88ozP0Z4r/pDDl872gZ90itl+dZ+EDY998SG589nTv4+P5ETtI3LWNTGxIXZ50puz4450Xr2HO79s4HUWxUTfnnpfoKP3xZK4zMslX/zSEVN5w8uGvy0vL9bE457wB3Js0GOjL7/o4MHiSyufGcjBTq76L15+2jNj7zaeH8XU3UDfPmhqh47mM4d8ip9fJD62NLjljr2w+qIdFsQufO27u1+MyD6Tk3+/9Suf3tnoiE8++BKzuDS1Awvc5Niyzr45DPDApmdDH1kPu7EGuwaLNUSn/CeDxw/iEza5kSdjWMQkDoTXnlhjB26f8cRnnT+4s5sO+9boFAc5fDb5sY/WzemV57VhjMhVJ/TYErPcrzwZOYOHnHrpLJN3HrwTeo7js6M27U25wzOGC7EpBvPW7HN6ePzZV/XMBx3yGr/WyMAr39Y1fnvPN7dOHsk5H+4Z391Zhyuc7Fl3bsvJoXj5YY18e65nG8+axo8efjl0Z9hbX7g7Q2r6H//4x3EXiQmRYaPclCe5LD/5IM8+XfvePhhX9+1vOGAJDxnNnG376v1DD7umLtiAg1156FlljV3r9kX8bCE8Y3uBzybCC587nX/Ertp3XthU/3T5JaMvBr0csGuNbmvi6N4IC5z88+vfaP/ud7978+Uvf/nwS+8u9ExftHMOMCAKxThwJcocmDOgAqejIbL46RZAcz7OfuhYb9PSyV665jCQQ/iIv7CEMZuHwOMf9NJd/tpMT49aE58irpBtpDEMDrL5fsDEVwDWbC5SAHQUBTKmBzuesUYOj76HjjU5gwU/f/TZhjW8h+F7/gFHdXJtbxxOBwRmBFs65HsBIAO/i0zc4hKfPWKfDvm14SB2eZFjm0x6eOWptbVL1+HsAuGnekwXj0wxsmPcOsz8oeLKbjGHx9wZY8O+wmJMjz3YtXjk8SN8ttiHAaWTTPPqLJxhJBeebKgtjX37wD47XqLIwqHlnw1zpB7LqTjo2pdetOwlGWvFFqbs6VF8uMjLEaJnzKc18ublHkbj5uRh4juf7KFk2cjvsfAcf+Qrk/yIDf5yr+69HHvIephY94D0YRufLOyIPXpilkt7hdSSBxp9D2o6xl74femlbotRXy6Ma+zwXe715dgaWhywJP9o9dE6e9ayC2+y5LJvHVnTIj6qwfSyWZ3iZ588H2ETu9q9L+LnjPeM7za+5UGc9/FF+69//evjN+LUQHnpfpMf+Dtb74d1ZeCNyn39tT1Nnn9yzbOxOcRT0/YxfNU5fc3cWdac73wXXzWAb8w+W+b5as26MV0xal4S4+8zFM9c45tedszZMLfORjL6xvbZeSWD2MTrD3vpI7bkgdz6KTf5Eo98krHGVtjxrDsD7oXyTpcMeWTN3YOyV57wyGuRNXc6Pc3cup4d9zzf7h91p96se457X9HkI4JDow8X6nmGF258dpIxR/HYMLaH9LV02cFv/kjz0R1kDC9d62Qj/Jq17O46POpLLtQjHHj02NLjo8VBJp/rIwzpWovYzpZ4rOGlQ85YQ/KsJpB9YJN+9Viu2IFFTwaZl2v2xNdvKvKpFQ+5xnq61jcP2cALU7FtHVmDkY0wbO9sdS4OoI9/0Mnf8u9zDL8cauIWozz7IkH9G+M5E+ae58UcLnO4i5m8M0tWMybjuS7/3qXae3x+kbEmV6h809fMte5VcuTDTsdcjZMPuzmfzfljIzv5p99YH57FhA8D38YrRz9qjVz5laP0k/tv+nBVN3o1635G4hNz63hhsCYOa84SHWPvxx/96Edv3nrrreMLd3ifhWBDfqPxjTfeeO+fjnGHygnfiE8NDyZUXGGE2bozVu2U33o5tp5d8tUM+5F1svpia47HJz59fiNzzVry1vDqG7celuLRs1lzT8h7z1p3gi9ofc42Ln526Non+9PncHrm/e1z64hNWJzZMDsDsIcBXzMv7sVLnr57oLzCg6fhySsMPpOwU+3hIfbaO+v8s6sha+2/uujOkRf77O7gky45/DDTZz88bNpvfXGSQfyw7XMIe/B6X2FXzuh4ziM45JcN9sXZF5/G+P8h7+56bNuqco/Xl0AvkQQJKgjcIQnGcKNGAlEIsKMSQAwIJkKIxoAfTIjGO664hGgIwa14wet3OPUb1H+fh3HmrJe1a2052pI+e++tt/a0p7Xex5hzjqpVC55cqzdOdO07rjD0xDpfjY39yb7ccP/+979/2KofvdxwM2avwcILJ/djc3hqgxuxzi/hjy8+xjgYwyPp1KY49Ow0Ig472OwITE1t8eerfvjQE5z4muMIQ14eduqtOet8reWjL2Z7gYv47KwZ05nLp/zMW4NTTnHX89f4V+NqQmev2OHmIbbzYr/p2Ov7bWXxnCnrYhFjdeiMyIGdOpSXtT3TbMRWy84aW5j01V2v4cAH72LTtYYHfzHk4Fyxp9OMNZysVT9+BAfXoB80ydl7t3/h4lophl+C8x4jNzxx75rk72x4sK5ZEw+mfHDgR5d/unJrHRZ+nXNjTUz+8PiYp5dDPuHijR+B6T7DPz+1sOd7Tcmdn+8GfMRaaV6sOG+O4jtDOKoXPPVgUzz+BBdiTTxcXFd48qUrH7GMreEJw58J+sxnPvPGPmgvqYgjjxRyEtLfJxJRHEnwK7H8zLWETYeQfmPB0ehW2CkQPtb5p2MnVvHCWP8dW49rfuLFgw62RuiLKX6bHEe82IZb/fI9QO5eYDsQvojycbD81M/hdaH7TTrNRe2CYes35a3FmS09P/7sHrNPy+N/8rj6q0l7uPmqowvRGbKH7DX7l7TfnY/OKz1be9A54GMdrmuJDT/ngi29Rsev/SoG//YPjpvcXpOdezcxeGxh0MNckU85dz6t04ldvmK7ecEhbvZqAtMHU33+/MxJebBxBq2VB84aP7+xAf9/u9gvdbVnxt6A/eb5d77znePBOJ032O9973uHXn3ZqqGmvu4F6r1v9GrOtjdmvQ+W1d+5gG3fNfakM2g/xbEmDtuuh2t7BoOdPlw9HazO1/pbgy+unm9c+PLxJhmOWhE2Zz5s8OajEfauF9jWNeOXIXIQX4xL/O6Lyd619q53vev4gv7KK68c5q+XKy7/8i//cvPFL37xtX/JANg5cD7Un7BLGm9sY/bW5IkvXTbprbUv1UOM4tBp+RUzPHPr7g320P5Zc36cb3241jun+enFssa2OHEoN3ak86Jnyw7/ncPR+LKxrhbL2ZqYuBF7qdFp3UuNvSf7EqnnJ1bv+c56GNXBtW2MA8y+XJjT46ERNdLYbK7q2L7Q8xNXe24Rp4f2+t6XOj/4uf/LhS49XsbVTK3p9Joc7Y++HPR01UdNsg3bOruw+LPhk18cxDbORm2y4y83DeYKP5jW2hf2iXGxYMctPZ31YsC6JNbhayvsrSX4afSdPfiue7H445yP3lkIVx50nbdw+XuPcp6cMXsJVyy+4ml08MQwXpE727MeL3HJclvfX6bx1hxvNaEz9nnJD8v9cNzDHDpftn2p9oCkGsnHuP2Qd3tQPfhqRP29n1nTqjMMjdBV2zA6b9bpzK+JfbcuVg9lzV3H3Y/57ticHw64imEcP2vEfLk6N2xXrDs7bMPMTm3Yh79+LzoWQzyt8+5cm4vbQ4VyoMcxTvT2zT3cNeG7m9+I81vovrCzfREp3qu3f0bAl35/OsB7hvcDmNUZ567xjVNcdVQ3vO2phz32jr8cyqMxv2LD4y8GHZvOkj3Irv2wDpeNfiU+6dQMrrYcYfLF1QMlgj+9PHuAI1ZntM+5bM5xiqdXP9+fPVhXR3vlt+H9Frzv0db5+z7tIaD1lyG9L9qTvic9JY7c5apuK/2pKbruJfam+vLhS0eqq7mau0f1PYEtYQ/Lfcsv67gnqJPa2DvPGeCLzda1Y01e8oPbDxyN4dLbR7Ziwzcn6o+XPYBrrrfHYvdgL85qad2Z9q/g9fxJ5zwMOhzdn+XjvYwvrs4WzGrkDLONa9d3nMSofmzEkJ8xGzjmMIzl5/5A3FPYmKuhnMTj61x2TbDlj5dY7GHJyz6pCb1aqWHCJ790ejj0eOELQy1wEVvczg3sPrvRaeHiigPBBxaBg481NuLJ2+ddPwDrsywfuTg7ev7WjGFo/TCnc0EXvyPY/wcv6uf7u39dYuyHpt/85jeP3r1LPf/1X//1tR/4tMfqUC2qrzNj30j7oL47N24v+J3FHmtELDVlB8d+dX6LLw6b/Do//J0H++zahgGPHb1rSaMj7NzLnamuibCK4V5gz11nYvJxXagbbrCcIWeALxx6sd2P+Hfd4FFe8J0h2MQ132fY6hnP8ve+/dnPfvbmQx/60OFTTY/JI15e6DfaHYgSQkRQSbRJD8Ut4XzXPpwSNYcvHrFpFUM8a4p8Tpyf4mazMRpbKw5/LXuY/Om6SVjTrGlJOHoSVocBTmItbnRxpyPVpDlfB82NiThA/TMyN1P/dMU/vXaoXAwOD11vSnzwcsj5sZOzOpY7m/+NsvuoFmrfXm497KMzYD2fbmzZ0e/e2Wdzdp3D9pQPPVzXEl/Semv0fN0U9DCtETw1czeebtLssnUj7rqx//Y8Pz0RQ+7xPZS3L7iwT88ODzcuMb0Z6+k6U2xJZ0tsNubeNJ1j3GCpDd59wPAhthvfAfK/9EUNnTW92nnT8sb7b//2b8c/H6P35dyDdg/fze2fWttTtXYfcJ/o3CilevdBiZ0Y++Yi1lmcAdjs9TV24mri2k/S+T0mdy9sYLMxTmB1TunyXRs+NTbs5ecMsocrD8Ku6+9Q3L3gzl4j+Dpz4pRP/O5cntyFJdbyrW56NtpjY8HB2YN2/4naJz7xiYMXjNcj6uZB+1//9V8f13Cculfgl7DV2ie1W1FvPBN55kNvTMcuHL35OQ47gs8Zs31fHnCc7/ZQ72xoYcVLz5dNIsb5vPArVrZ4siOtG4cHR13CwovQx4XOXroH92G5D65698U+UIoL2z3V+7h1QlfPvuugs80PPy3uOHV/7vwfILcv1jQ8YWt8X4a4Rt3rid6H5eKL617VLw+4R+G0dZcD/nw6r8akerO31h5ZN4a9+9NnVzGqWWeOPTy+raszf/OEPbu1lyO8+OFrHGdrWnzzb1/ZuQbFgSsuG/NyMYeZtM4ezq5lU29Ng9eZ4S8mwU1MsvGLuXk4k+KpuXraUzXiBxsOPD786eNGn41Y+ORbfPoERjWpVq39Mvdq07kx9nnJ+7Z/9t1nJ++/Hu54mNX5qW7tqZzp1DFMNWk/1F+zXq34VHM+BEY6vMTTk85Ye3Qo5wU2W3FcuzD5uFa7lpmLby0cfsbpzPEgxpo9Lz492+zNE35s5YYLXE1MecG65Jf/Q33c9qzBLa77s7l44uNinpQDTuXlPu1a8d3Nb7Q/94N2fz7A52rf6+RuT/HofcZ1hkv1wR0/Eke5OH+XHnjAsh5GtecPm5S32JfqHwYc8Qk8Epdjcvuipt0bcBaPzh7w92DGvUac1u2L9weYbDRcxBJ7z0hnr9h8vD94n/VnSGGpp4fuPnd54E4Hw/cTzfty/OP9evuuI/diOfd54LG4clUTsueSzg9RNHWRhxqI0ZkoRnuhbx/Z+o119yk6GLvm3uVPWqi35w0epsN1HtXI/Y69fHog1pn0QLf3DRzEcq2oL2HnHMOxj9ZdR/r2FR/3pN436dUCrjzw8nfL1decPRuc9LDDdx/rQbsYeOBTXeCKZY6bM4df55WP3DuX4YpZveUltma965QeR3ZiwnLW+RrvA+cw8BCLPSz+9hk2XDW3vsLHOuFDxJCbZt33TbWwjo/89Hiop9qqnTl9udBZo+MLFx67fPnT4ec8uJ7saXvC1zVnHa68xYfHz57QuWaLA1sNzrkeyb2kF1yq31ND2CfXlM8B9tj5/Na3vnX8GRj1k7fv+vah2rmm5agW8tRwYKPOcVFf+OpJ2JDWjdOlV0f4mtjWxRXDHKbxnlU2MDV+BI9616O1uOLNXxOPP1z5O2v40ru+Ooc49N3FvvOxxk/rfLnnsM0Plrn7dvHwgK+HQ/DubKkjLnzhVAd25ux+8zd/84190O7iUMjd4IoqCa2NRtRayRknZ7v0eoXS4IS1vqsr5vo3Vtj1W70xHDbkzNG8jVF4trC04ueXvj4sfja0w3UEunsp7uqMi7XxXGQOmzWb7iYqloPkpuNm1aESyyHjU23E4keHD98OZpzFFrPcdmwtgRV3+OzKNxv92p3HOG5d5OU8wcKH2H9ja+VxLNy+wIt38dlkm9321vnExXh1xdLjp2UjhhuYC5wUiz6hM9dw740OhpiE3h7ow9CTYul3vj6w27fNg85avvzh4py9tXNjd66ZeVhiF9P+OEP2jfSho72EXS5s+IbFxk2TvlrQVQO+zq/GzzwxhiOPuNJpbGFq5riyWUmXv3k82bV+9nGP04q563IoXljmaqLmdGzw09qr+OrZa86DuvIxF683EZy9+frA6s3ZGwKdD4R+M85Pxgm8eBjD7H5QveXJVyPOsi/81UN/lnjjtTnlwx5f6+KeJT825zpagx/vbPWEvhZufMopPZ/yO/ub4+aMZIMLDHrranIp//Cv9XzhFDN+eMMLc3Oka34Nl56dfXzPe95z86Uvfenm4x//+GH+GN/7cHH953/+55svfOELxxeoeDpz7dFydJ3Ki46NMWFLtwK7mtDjqrFbfT4wknzzWb2YeNgv68277pt3LZmLqSeN+drrMDqzzdnT6fEh1vh3Vuiyo7PGJj2/fNLXd/+Ut3zw13e9dv+Db817iBj8teytx1Ff7HQ4lXN1X/6w4h23eB9gdy9062e88cx3XV5dS4tLpxH3sx7OdZ+Tl88ssIj3it4v+FW3OLPBY/mIl47efZioYX5s6Dt37OniWnz3RuP2JZ7qUT351sQpvvHWvrrCs9fN2Run41Pt6NlrxuLnhzvbJBzrl8R6+RqT5W2NfnUbn976mVt6teoLEj96vPWw6TQY7YO1WpydAY1sjny0sLNvDifs4mWjV7u4r/7sH0cYnRG45WKd6OniKr49bK+KIe7iqJMvc1r18gDLPLtqUh7Ni715Vku4nY907KtLPvqaevDhS9JnW72Liw97vF2/1gk9/sXXx+EwuHuBm8TLvFoWhy4OsPMrn+pBr7FZrvGC8yICv1jtJ5299v3LmhgbM3vx4pVP93MPIT1o9z7uC3t5PZWjWMRvQX7+858//nSMGPjYS/saBzrj+OG0Yu18tunKL18+i9FZr1adDfHbj3D0RM+eLzEWm33XZrlZL3Yx6PBiby0892d7w5cOFh6uJ2eRPbHmPaTP2d5bjPnZ195rxMDRe4bfcrdvYrDzPdvDwR4m4w+DLx9cze0HH3PYnpfAe0j6gVvxvR/CKP5D/vettzfqIJfOtnEt//bfXHzXvMa3/c3H96O+Q+AZVzVg417Bzx5ZE7czsPskJuEjJuG3fOn3zFjrntT9NO7OAdG7x7Yv8bZWTDi4ePDPFmdx1N/eWscZlnudGrQvcpIbezq2cPfc5c+GmGvs8dL4yIGw09RWTHbde7b+/Oj73MTe90S5qH8P5+XMT0w9TGMCO2GHx/5Gu3Pbg2158u0smGvlAkdsmLDYkuawNfbqiaP6qiGdNbbiWTeXo1rAYyMe++V9BHkDX/Bwf1FvD8v9KzVzHNXGdYy7s6kealie+OOuNs6Sdd/r/b8PHrh3vdDJ2z2n+vDpXFUP/nTmxcehGHyMYenZbD23bGqOk7yM2RM+OMihsyo32O0ZvXXz2mLTdQbjoY5anyfwgkkXXzxga8S6WrOBSbq34kTURAu/2oirwca1veDDlz2dddh08XZW/Yu0T37ykzd/+Id/yOWwPwaPfHnyb7R78+mNTIwSkBBiGtIr1jbxXTuPtzDh0Sk6UWxyjnEoH3jhA0sxifklvmeYOJ315/ly4kM6NGfba3MYDiVeJM4OwfmwVhcH0bo5P3vCz2Ghw0FTO2vEBdXhzB6+RuqPyemFPVwx4nkyOabtWRcuH774unhxJnh0cZiz46OPY3oxi08nPq7bxy0fPQk3f/2l/WFXPfPrzIctntYcr2xxd5N0gcK3psH05lhudDvmTwdTjfQam3Dsobgk/myM2bVO1xhme2u80lpx7MPmZQzHPhQPF/qw4gODWNcSflr21tRGjqs3ru7ZlgdeOMSNrXxhuHGyk+Oel3LDvxzYhI1f+rjqxfCm40MkPPblpsdffL7xofcAqTeO+GWrl9vmzcYbhTMRTvHFhO/cacblhxd+fAgczbq+usb5MJqXxd7cxuQY8oenZ5ftuYZy04qXPRA+eGrGZ1nbS2tnXRhx6TqBr0Z4kOIai0GPt2Z+7Zpi/1hRm+LBLA7/+JxrdQmb31n4OSs9aP/Yxz52mJT/2f6xc7H+6Z/+6fgbr36TrXOFL6lu1VedjNmxcYaJObnEZ89MuIfxnT1MNtXmEkb29eLGxfXSvm/d6Tr74sYjrnRdz7C8ByXhnPeiOohvjLM9h52Yw+sssBNL3Mbi5kcvDow48g/DGj8t4SM3NrBr+GjhsReLDmdjLUz9jtnHVX8WGOXa2Fwu5nHmKyae5Q1rcxDX5w6NTfe2agPTnniY0Z+5Y0MvDn+SXXzEsBYXNjDp6eKfXk9nHWfcYWoEN36uPw0WCStbGOJWj82VPTs+RK+xF09jzzecw3BeiodPPvEds2NYbc56fvmIx255rt/q4RTfeHGMCXtjX+5wTFecQ3FnZxwGPkRsue85ooMVnnkc45ff8ssn2yPA7cv5c0Nx2dkf8RP49rrPxubZhBvf7j/m3XfY8KET19mVa7zbB7043sfxDjtu2YcXv9br2Z3zXizrmrqz05sXH0fzhG97VF3YsqvZ64RvPzSjE+OMt3M2zcvNvOtkdeKubXnR2Xfr4sUzWzFeVMSAp8UFN+ez95W1ESc++dAZl5O57wIesPuXaf5T1BflWg08lPHQ/tXbPyGDW59TxSLOnX1qf8Xjq25hsLPXeHo/1Zd7uZR7tnr3QzjloLcXGrzOT3PrGh/3dmP4u4fxgG9Pl7c1OlzsAQw5aD73W3MtFc9Y/jD4JvyKzy8cPPj4PN1nd7Fq1UKd7aP3JbHpYdBZYw/Xg0Kf6c2N/Yek/iNWPnLXr5j7BRq/jewhpxw9Y/FQ3xpM+4MjfwJ7ceSpnfGzr9+4xvltnbKBf81vbZbH6o3Xv3G9dXHtmz2kN9ZI58B5UxNx7I99XRt7rW3+xaCzZh/8MuJew/C0bNzHwqHvAal1fmKKbx+IPWjf2XdOrLMjePB3xtgTc40Pf2vmfSbq2oCTXfE70509D9mdP9j8+/+24PbLl+LgrifG1U9sZxi+Mb7q4N7BXt18FtPDtCfVKO7lWM31fGutH8HnZe1TZ9tanFuvdvpsrG2snTdWr71m+NbYNA5TH6Z1/kT91dn+ul/4V+X+vro5e7XzJ2H4qyG92vVDG3XuPMNjp57u365/Yzjy49MP+tS9+zk/fNjxjys9fs6NvWGvEblXg8b8CHsNnh80ycFZIGydD/cfvbmzA7fzipuc/CuWRKz2qjPDRxwYYuHo3lYOfI3jqV+dsdjw4kKnpvzoiRp2L+96ORZuX2CK2w+ncCQ4wel9If7H4u0L/Vve8pabD3/4wze/+7u/e6irXzYP9S/0oF3BkJRcAdt4vRZZ6zZOkTYxNnT5XyMKhz97wl5rIx/yvw93OT6EsxwuYS4vuBqJ5yWfS7pqV75qpJl3AcCMb/bFNLfOhzhYxPySTVjxP4xvX8Jvvn3c6O6zEw/nahFGnPM3x1MfXjHMw1idfKpt+bIVy4XThbf7xr8asq0m7LsB0LemT4zFgVFca+bWxAsfFmyx4rJrOIYdLnuip6se/Eg1MGaDA7vW6Y3Tte/mGqk/JncvuNTONl3nYWwsPs3d3IiYbNPTyZ/E2Rrd+luvVtbZaolc1Zduc2AbjvHy5MOenujpyGKw6awci7cvZ85ixDmb4jXXF3PHdBp7GH2oMaYzr2501QHHuKmvNzZvHOmtJen0uMIwLl9x6Ak/a+nkbn5NstOz27hnHzblJTb72tnWnD2uMNkb0z1G2rOuE/508tTgbK54xb9YdKRz/pi4l2zEKq51cRIcWo9Pa3pr1Sw9f3vtbLyMPx3jQbvfiPMFTxwfgpab+HGWl7XyqN64slNLbXMuj+3hyLMPW9U+7LU9j3HxYa8PZn0g2toVP134sFprj9jQacbZZHcoTi9rZ6m5MVxnV0/kpCbta7GsrV/z6mcNDqGDA0OD0R74oEnOtQu7eObqzS5pHzamNXPtLGHSG8fHGNfly6YaGOPRPcs8Pq5TnHyo9yXD+QvXh3a/BehBgy+77MRw7jp72dLDFCd8c8KG8LeePlv95gwLd/rszRe/2sHO1no28oJpjisbYs4nvnQbP1z6lUvYbNOzDTs+699YLHXAzZjw27jWuqfmt3Hwt+69qD0Nty9R/LqX8lWDbPS18OuLoydrd66bdbzbL3PC55IsdvlWq9byK66+Wu04futnDE+uRI1wq57hqL/a1Nidz2Y87uvFqya4wdt9qzbFt2ZM4r1cyo8dXC1b2PZWi+/GguthAjvYsDTSWWcj3iVhC2/rx5ZPXPmFW+507LTisDEvPpunSNjFCge3aqr3nuyLuvcj8+rBfyX+cvGwxd/8fq4H7R7m/P3f//3xm5B44NO9EQcxq3vnbeulZvLrc2XXLwz3XPdgNuUOq3NmXG307IotZ7pii6k+zohY4bCB3VkzlofawuCjxVlObLzv4QdHY8/O/UhPiq9vDAcuDLKfpfltjeQj/x5gwiDs5GkvxRaTHwkbH756Ip7Y6guHvxzoYJD01jRx/ekaf0KjWqif31aGw0YN9JtPOdGlh63u8TwC3r7AjZeHUnCrkTX7AoP/cs2/vrzZGhPj8i9va5ew6DRSv/Hl6LOAmuLh8yo7e4SjsTrq46K3V3R8fMbg73zlo4cNh73WvtsfvvLQiPVzrPwOg9sXeD6X8lFT62rv883ytU/0uK2+91Tc1G/zwp3Ii56vZgwDN3ssVzY4yBkWHuYw8KNjQ3B23qwZE3hhwqCvljjaU7349LC6vqtT9TW33rXPPjEuF2O25vDLAQ6hZ6N2YrFJZ92esaVTB5zbRzm4XuRJR+LENhwc5RVnvX0ol2LImz8+WnsBN5349LjCJHBgZkNnXjMnYYpRjfniAlcz1jpHMIhcCBtr7Ut6a8WLx+Zd7ePPVpxyjxu79kF++Klv51kctQ1bLmE5a86jGMb8jGFX182neuv54eKHP3o+fOnLJ454yVsrZ3a40olVXeiWO2y8vK+Wvx+Yvve97z3ex+UnzlPkhR60SyKiJVHw5pt4hShpSRHFq6hn4s2tV6Bw+Fas7OguSXzYsw2vuOkv+aZji7P4iTE9/3Ojt3ls5Ki1wTiUxzXu1mtsFkN88awT6+GIq60uOz7lwIbAjXsYx8IzvYgjfrU4wxbTugsmXme7xTDmh7sz2DnkIxdSznptcdOxW3vxSbXrQi0Ha9m3H2zDr46LzydJv1yK1T6w6ebpAl/b/NWK5AMjOxysX6t3XLYvv3zCglsN1n7HbLXesIzhhIGzMwcrG/709eytlx+9PDa/5nSkuPwIXzbN2Rlnt9j02enZOkNJPuVhzl8emjk/8e4TuHIubz7h2NvOG8zeLFpvjQ9u3tT2g/TmioO5OOzx1uiyK6e4syPiZXMo5sUayZZv88Z8V/iITdoD4+LqNWsJn2JU3/CzyY9dMev5WzdXqzgUh954eYnvAxjb9im8Yj6lD5tPOHEOZ7mvDofNOzv76Zy8+93vPv4z1Of+0zGf+9znjt+gcr/R4i2+RuSAH7FO31k9lLcv6qdZY0/04R2KO131Vi85k/U/FFde/HaHD8zq4gOaD0Pw4hdn7nRxj5N1cfGnKy57c41NedKTsM569tbojWFrMHpP2lrFj+1ZcKlenQU6OOda8Wdzxos7bDatdw+HU4kWjeQAAEAASURBVIxyYpvd5nfmyIaOHxw9WZzm7Ws27lv8iy8njc6XUF+efUEsT/vqtwY9aLfP7FwHWrWJB5/NFQdzeo2v/OOppiudAT5ht86frE924WWrF0sN2evZ2H+NDp4Y9Ek1h7v61rdfW/Ya0W++q8uHrrqXj3j8woq/PrFmrmfv2uvLUzZ09rgcvVeJK1f4xmLrE1hhp6fT4MSpNTjqqGdD4t6YbfaHwd1LNefHp7Z5rv2O2WzdzBfHXMMXPz0Ozqo81MbcGI65Vj3KFSdSLDjlGZ9qwtaaOf84GNPvWjXJDhY/PmK5NuCxs4ftWbGs92U9zvqEn3U58VmJf/yqUzbmpBqceZcLm/Kg21rxVetywoM0L8ahfOClnC/5iNs5cn/yXuShFR17/PQaTgQerurlS/s73/nOm6985SvHF/VLMR6g9xqmgb+L/Q//8A/Hg3bviR5G9n4YDh7q0f3f3AMSnNUMB/PuwXjS4yq3zrPcFwceLPlZ46MZa/TqAY+f1j3evYNUr2Lg5AG2z2T8+YoRBq6w5ciuGPz6/MI+Yc9GM97PN+ycdbkb68uJLUz5iyMvQi8PYi3M7nvm+MlHDvnB9dDVb6rLma/3NHzE5kfoPNSxl+J6yP7Wt771WBPDb5r6T0dda7D9trJaOF9y3B9Y4199AMhPPLbiiasRetg40smBXfvIvr2ASfRa3NlrrRnjRvAi+XYW6cQgcMJiF55aqoe/ny9nXKujNS2e/IzDtFd0as6HrdrHgx1MevHa884+PtniWH6dW7oVeBvDnhGcXV9hqbH90NRVXNjisSV0sKwTY/WkJzCsqaU8qx29fbQWHz7GmtycM/HY6p1V541ePdjRiUn0dDDjLob86MTGQ4508mRfXOs47r4fwLcvaglDI/jw75d/woEhtjXnqXsJ/5q9xZ9t10j3Emvu166ZzgA++MZLLNh0crY/xPmzRleN4oOvfbFGx64c5I8bnN4f4XUOrPFhX6tm7NQEF03uchE/DsXFv9rAI2LALHYYrWfTnJ2zx0dvv+RCcJJfZ4MPbuzUy7UlPhscy4W/vNlZl681vN3njGEbe2huX9iIrScwigVHbHHygUWHG7yVeFZna9UFrrrBto5ffNhoctkzI5bf2Pevy9/2trcdocR4irzQg3aJI0raFKQjqq9gkVliEmPTIWFjPX9za/mIkY81Aj8OP9dcfs138WDBhlGMy97/V7sXAi1cDQZsbXPeuPT841B8sS/FV4f8q6Vcs20dD7ryoL8m1sSFm13cl3drxbqG9xT9OS7f8MXDSX2Kvdh0bPXhWI97dbe+dWB7DY9eTLLYh+LupXpnCzv8YvKFU03b33T5NI9PvVBswsPZzUbsS/XgVw3E3niwzM/ndGOxOYt1DUe+cIkeF7319PmHS6+JTaq79bjSl6NxeLtOl55NtTPmW8tO337gvfbxru5xCrdc9NXf2grf/Bpvbcs3n+VOZ90+xkUsNrC8OWhEDLgbyxsKOz4wvGl5QzSmL+8D4PbF3BoRA9bWY2Nv3Q6HKy/iEL75Z9rauQbitib+irnYWn7Nw19/OgJPizff1qyHUQ3Mq+XGoSN0bPvwYH/MtXiw2xjm9wls9jW2eCxv+OmPwd1LfLOFgaMPA97g+9Mxz/mg3W+0/+Vf/uXxn6DJXyPlXE9XHvHaa8B6tdNnq0/P5izqdd6PjXnJ3gdlH3ydc3Xp+hErqYZ08My1xDj++MEqbjjm6fjxwXVt01tjy9e4eWfMdRxufdjNYWVvLJa1+G2t6Ig4hF1juK0fi7cvdLCJvItDz49/NvqHhE9+9fmY4yoOad0H/ebi9+UAV1/afHFik6+99aC9L0bs6LRqtrHoyqMxDsZ8xaym5Y+PfK1rbO3VSnl0X22t/SgWPaxamObOKFxxca4mfBP2ZPF23VpcjcMwJmxxxYuwZUNXvmIY19gtDgx+9wl794k++/OBa27/+OPQuPrRi6vX+GnwWhOXL516WzfPj14tYRqTxcmWffrD6PYl3GLu/GzLB6ckfjhVO/Fh4JKefe/ZMKu9s17t2WYPN3289OrLRoy4sdWyqwb8s2W/uVvTSDlUSzh08ZGLuc8XWxu+9rbPHmHCSeh6kAB3pTnsa7Jr2cOHa95em7Ot9sb401cPuq2BeX7X4t+nLzabuNC5D7k3+TK+scWLl56PeuLk4YA/GfO3f/u3z/Kg3UNXvx3/3e9+98D2EKAHHWLHXf7tF7093ho6nx6YeFCmnq4xD3PCqj7s+oyghwmv/Ds3sOUtbmcZrvu8OHRs47X+3ttdQ3DjnB1ctta7znBjGze2CQ7tGRvnWK/hY64Z89dbI/ipg4c/YsGxhjseakOH49aCDsfuU7DUu/rC4CtPfvgWU8098HROxPVDZg+YYbJVP38P2r1VDDZ4amzkYo1tnOUkBg5y5Cce3po5+x5csocnRy0Jp7l41uOefXMYrhEiNrFWvsYwEvN8w9aro3o423KC1YO96swuLDwayw8PuHxgqX021mBWK1zYdPbjhDNM9nq4rZkb6+HCwis7vbrb/2z5q2f7X+3aJzzEam/4hRs2WzgwYOFA9J2B9asOzox9EZPAo3Me1cZ88xDnnHf52ItqgUPXEn84xbRWvtmLXT3KJZ1+H7S3P+xhi6ue8iTthbzsHzvvR/y6Trvm5MmOj9rBqn5hd53o2YUhn7jgXG2qqbhsyt2YDZzeH+HRi2VN7GrOH39zdtbk6bo3xtvZFG99Okf8Nb4JP/GzoT/bsbd37HDjoxE86WrmxDof/FxbRG2qf/Zsih0vdnKAJQ974gdAfMtbbYj1zjkcog7uCf0QlE814yc/wg/Pzlx5l1N6/sZxzg4f3MRyBjT34/e9733HvzAXo5yMHyMv9KDdxiBYYpLUJFITPOJtXoTSI1thrfENE35rCsF2kzvPwz73FXHt4e787HNpjtvK5hCWfoVPazvmu/P1aw3vamEdZzUhcQl7/Td+Yzjw+IVpLczqbD1suvThvGgv5sY941gTd3MuVzpjOcbt7G8OY+vA1jycs08x88s3HnprRB32wmWrhZHt1otObI3dNmsJHNh8V79Y2eqLabw8zMNg8xgRT1tuuMAli2ecPh/z5QmHLlzjsOHtmN/OrZ+lOGyrJZvitLdu4GJppBs8uz1TmwO77OvpVpZfOaXTnwW+RmDuPFs43hziFR49MTduXY69aXWWYC/n8xzGrhc7/GtrZ7ud48RPTo3POHEvl/zZ4a6PG5uznXnr1XHtih+WterEft9n4GwrFrvlsfkY80nMHyNxZlsO6eIczuazuo0rP++x3vD7jfZPfOIThzm81yPifOMb37j51Kc+dfw2k1jVJFw22+jZsE2/tq1bKz/2tWzrF0M+55zCoTf2AavfyDF3/ZD4FFPfeciX/Qqb/LvvLgf269N8bcILS0ySTb31sNyjqiHbeKbjQ/gQc2v807VX+cbtcLjzaVzPNx4wYVQ3NunEikO+5z4beGqolR8dXtU2bmosXvn04Z/OFyYf2N3f8rXXvlzb7+7rei2BLQ5dtdg1XBJjjU+1Lo/ytb74fOmsZxMeHGvi6hOY4a7eevPwzOGQfI7J7QtcLeHTe3Kx159OLdYnO9jtt54U95xX8e7r8djP/ub2kE4svOiIOGLSaeWut6aly54Ojj6/1s71ZpPOWFzx7KN50li/Db77q9pVi+rVHAad+aU151ZcuPDw0dhX9/UtN/bp6RI6AutsUwx8d81YzNUtJjyfh/Ckh61vLmZxi8GHTQ829GFmm00PEviu4ETY57vr18bVzXqYxcQ9/jDpzZPWzYubXTaP7bcW4dH50u2Lvi/inbXlULy4mfvC7m+0P9dvtH//+9+/+fM///Obb3/72we232j3IKazp3e2NWP88LHnes2ZkI/eHnatuv92xnDXOj/VgS0suHrr1R6m9Xz1XSf88clfHH58tHyqHVs2ai4XNh4+EePuO+xXYJY3THbs6cyd5/W1tvzD14eNMy7el8LqPYNNnK1p7DW5a9bZy6W8w++Bp3NC1FMrfzo/DIEHpweq5sXDH26c+Mux2lfn8mRXLeAZw7K+Qi9mUrzyZW/c/cQcdjXQl8+erez5silGffuuJuoAw4M96+WJWzj4xU1fHvIXt4eU1VSvqaE6aeGKYQ57MenjVz02bpjlD0Nt4cYHXmIMT26dEXb0ciPmcDeutfZl+dHJR9+1D4MOTthh4slOT8dPT851pcMBVs2cvfzgaMb0+bOVn7kxkU+8yyM79WIL175p+PHZ/Ipbzc1h8m0fxTJmk4SBE5586o2tEzrjdO1RfjBdy5oxO7HiC6NzlU97Atcan5r799bO9e6HDnzhV1u+cqQPFwYbnKtxOnWxptcIu2zbF7jsNMI2m+oAE777p31yZunw1gj/xsUphjlcPvbUNZkNX3HM476810et+OeLj8a+c6S+xuHBFxs3e1Qt9HESgxS/60K8t9z+jfaPfOQjNx/4wAcOG7hPkdf1oF1iFUdQBLWSaC7htSsxuvTZnslXKHbFqMBn20vza3y2UDu+hEGHc3HLL7/6ctBn29q1WmVXXL4OQ/Gqj3W25bO1y3f77Oga65P8w88GT3Ho7RuxptG9DAlf7OK7OMUzJ9VJn8S585Qd3taybQyvWNuHzR+WJu76dYaLsf7GhA2sMMrBPC7s8jUudn50xDxcvPNP93OrX3xdn19c+X9nOC1WczdvYm3rtfGtmdeyz6d9XH9rWra7ZnyW7POxzm5jLifrbOWxb0D5r+9i8HuMhMO2OGe/YqSPX/N6HNVIz4Zf+HrNPUBvrTeq7J7Cv33N5xqnuG0fFxiEb/eE7Fpjm+SXDu/86MojX370y7Vrydra4cBfvz502or12uqN+dfCjxef1s5+zfNhu1I8/tc45bt+57E99+Hqt3/7t48/HfPKK68cJnBfj+D3j//4j8f/oO4/Q03KN/6dT+vW7IcWd7kZl3+1o+Nrzl5/nxQvLPMw+Jn7YOTDjnrgEjfj4uvpXTf68tGfpfXllh0cDYdrGK3B7b2aD/utw8Zlpx72Na76asS3uHqSLhy2dPizMdaIeX7N2Z2F/cY0x3lrcfZpvu9n1blatGd9OI2Pfr8UGMMR1wd1H9g1djDstd8Y9QXbfuMK0zhhK34czAl/LQmz9XLVa8Ta2jVWDzbw8r+E25q+vKp7NcUTllw2Znh66+w3h3KJC7vWxdMu8WMXL76dm+ytF8+YWMM7jsbtd9z74lheejp2JH/2xF7TlT9da8Yr5WV99xWvcllf9rD15ajPFna+1cg6DPp46ZPws6MPW47VkZ2Wjg2JT3UTR2y2YS6Xw+n2pfX40rMjxYxz/nyS1sSIi/Vw8VlO6beHW0y49s516SGsPSbxYydONnpYnR3r1ZWu3PkT68U+FLcvrdHXrK3evNhsmu/4UN69hNP6rl0bl+PGzV9s9yLvRf35mOyzKSb8uHow/xu/8RvP9jfaPWj3g/cetPsN6K1pPN0z8cURL3thL+2XsTV7Y5/N2Z2vvfysJ8Yw2Ovdx/MTm+itEzH4OIOdC/p+WGEMpwfgxeJfLuWBfzF60MOuWPlk0zkNU6zOo7H82HbtNjYvz/jD9v5E5Ku+eno4pHHXXPW2BpNPsfhodB46OVdi2Q8/gGYHT+7+bruHejhZ99DZDx3UzTpeWnmLrz5d9+IT69Wy/NjEX0+PBzEm/MqtNfP0bMqHz2LAx7MfMrCNV3Fh1azDlX81gOdeRK/m+uLAaB9wg03iq7Zi8yFhwObL3j7Bi4/a4dycH7z40G+zpv5qmy1/nNtzerE3Txg4i31J2MabrTm+Gp+wsmND0hvH03hz3/rGI3vYaoLb2lmHXW8sZzmqsfnG46+tWIevGYelb02vnnDh4x0P421iisGHvpjmcTWutW4t343dmB08PJ2H6tE63zjRGePLR6xyLE9ntLPLnpjzkSt/fuLub7TDs1Zui8uWT+fOGjHvPBqXp3NT/sbEGoFfE+/sIw5Rh64PNnE2lk/x0rsOigufHRt57+cL3HEjbKxrMM35GmvG8OHiIwbOMOg06xpfPWHjPqtvbq06Hsrbl2Lxdf94+9vffvOZz3zm5oMf/OBhEl72D/Uv9KBdkRGLbMkUDLkaHdsKbc7PuqJcIyzRpCLw4dv8mm9+9fwITP7FpYcB7yGxudm2yWe/8GGxbbPptXgXK16bRzniWTx8SWt6ujNeuPrlwl5biVs5hF1c+MWFVczFeM4x/PMFJH6xxYqrupSPno1GrJ15s6mWxjX2rRmT1ur5bfu51c9fszHDTVy29HLpzFfT+FtPjMPPzlp5Wws3n9fbi1m94lQN3bBaF9c4juI254fbijV6uZcLHdneuDrlwya81uJozZi+lk6/OYgrhzCs51PPPh/r8TF+SMItn+zDgHtey6beunxwVWMtsUavhbk26fB4SNrTfM55P9a/2vNfrvztNfykGhebnk/1ZhvG+hmHBSOf6h2+fnNfjNVnv+vprmHkz6fx+uw4rqtrzPe+WsOPF9tzPHP5+6Dkb7t++ctfvnnuB+1+I87/dC+Ws7Z8O3/tO474aNbKb88of1h8Fo/PfZI9n86MvvrCVIc+iMah2LDxIXx8gNv4rR0Gdy8wNWutp2NiDMOavMTM3ro1ki++1le3/OjZeD/QNr/eI7IJ2/ws8Y2refWFqSXGm0P7Ux7FDbNc8r/U730V9uZYPPVv72CY+yDsIQqpBnjAo98HPez91qAH7b64sfdhm74aiyWG+Mb0+trmSkfytXbO1do2PuLSbS4H0N3L2d68+uBFigWjObuNHw5de5mu/Kxp6fXlaixOOYsTvrV8DwK3L3RJmPXiwSHw7RtO1ttDfXnRxzk+2VtTD/rNo9jnnk11steaOPzLo7jmxTMWszU9EV/LTp+NdfGWF5xww2NnLI+tRfpisCFiELZkc4pXNs2LuxjxthbnzeMAP71Yj48leBpdY1gws6tnHw9jIgfXpS/CrgVSvcSC6drVrMNWJ2Kd7cY+Fm5fxNk1c8KWxGPrQ7/zbOnDWh19ck3funhrU53pxSwu+/JyP/Jb5B4U5x9G8+zp3c/8Rrv3cX9CJts4PLaHTf793//95s/+7M9uvvOd7xzYfjCp9r6X2xd2uLqeum/S2yd7am9xsKZvD8tv95muOsDVYHXGxdV6IMK3uMZEz0bssNn393lx6Kw5b2zjq4dXTj4HmPPBIT2eiTE9G/7w1KZzLO8wrYeBm7U+b7BXmzD0MNdeHsUT37i4YuIIhy78zlR2YnqYo9Hx4SsOX3x+53d+5zhz5vLxn6P++Mc/Pvjh0MPkzRtOsXDDn+BBD6uc6OMDX4Olp8fRnN/60MFTT7lbs4fqVuw49xlucbLhGw4ubAhf8Yl82O3e0fNTAz5snCU8wlQbsQk8dp0BNkQMNcebwJE7HMJHnHMd8OcLpx8cVbu44MsXRu0AvcNdXbnuevnSsYXb2Uqnx6F8qmvYzWHJAR+21sUsT+Na94Uzf77p2MIwbw9wCT8s61r8YctDXDr7Y59w4oNve1TtikFPwjaGw4eN2jgDhE0ijrZ+rdmzzlpYbPExtw7fXGMbfzGLE/9i1IsDrxzka65mPuvSE/b06uNhu7gwrevXBh+Nj3V+CXyfn+GHjW97ygd2exlv/uy19lCumjoQMfmqszE97M0vu2rHnnRGYNtH/0cEnHIWJ7Euj3zSl7M53HiVQzWvZ5cPG9ep+NbN+ZcjXXl0zpxL79t/9Vd/dfPHf/zH4F7b72PyiJfX/aB9N3fj0dcqtp5Okvrm/LYo1hSAVCDr/BwAY77WniIw+fMTg8DZ2Jfw2PIjxbzkk50ebtjmYpfLpRjp2GafD784qwF9+eNxSarVpbVr9eOjtS4GEa+cLuE9hw6+GoslvoNfra2Ra7lWL+s1ODXr9NXQPMzn4F7MOIvrIu0MlNM5h3jkr/blzN+6OVw2zyXiwIbZHpvjaX4eZyu+sUZwu8QLftfLYXj3sr78zLc2zJaP9fDXNp04/NWHsKFrH/LPng3O2saBcS0XPtck7vDF1cO5T3AqF/54xIWfNbXLjs56/OjF2ZzYnGVjxPMc6+yzcz41WOJrl7iyS+KaL/36hZV9Pf1e/+E8lGf+b3Tv+ty8ix9vOd8nzgsb+cEpT71awPFB6WU+aPcb7WLFJT7mu3844aOVM9vOqbEGy3p41aL8yrG6FIM9LH2x62H6oKWxd20XI1x47MKgL5dzTLbW2RN2JO76xuUtJj7m7O/zLx6btRMDjprA7/yks745mz8kuMAjYvFPxDDXs/FBOE5sfEDlb53gHfdDceGFD5vFNtaKbw/KDYR96wM+X1zirO9LUR/E+fpg68uHng/M9hamWM2LX+2st0fsiJ4dsXYpz3Cyw40fPukOgHmh37j2EnZxjeMShp6+Frds9STc1ifsa/UvTjXlcy2/9W8cNh/Cn8TRl7LwjH15tV9xjHN7YY6LXlMPIk7Yh+LCCwy15ufMGIuNS3ysEfNyNxeTWG/MN//yzEZPJ6aej17Dc8+5sZy1sIuDx2I23i+d8OJv3bj58oPdWvrm+cVP/Gph7ZLgEF94xnxg6Onuk65L+64GxVYzQmdNa587G9kWd2PJSU1wwKlxNnw183Lk0/qZM3/ymJzOvnDPseDRkfIyTsdHDX7lV37leMhtbblmh4+x3oP25/yN9ldfffXmL/7iL177G+3ulR5u9mAGJxJXvVrbM3b2ic41RuyhdXy7JqybZ9NesA+rsXnXLH8+zeGoqdh+A9ucjc82/kSY3y6kc2/Bv4e07PHsfUt8dh7OwzdXd7oaPo1xt24PYcCXp3XvKz3oEgcWezzpcdL4Vhu9RteZgy+XagZDE0NN2JeDGNkWk86YXly84r8YavUHf/AHx5kTUwx/s33/bjsbdeHHRnxNjEQsOv7Ge77Z5YezdXka87GfYfNjy4cOf+t6tvbZPobJvrpVH5yKx06szkx8reNhncSdrbjFl7faETXv/xwQC6dqY91Z4Kfe/KzXuobY4ds9lD2schQbFzZ66zBchzBxYIM7THw3b/gr1vldkurLJoErhjMt9gp7sfAyrqmlsRzKgx1pH8448DsHW3Ncw+CrDoSOwGWznIuLA+7OiD6erjf/8md94Gxc43DkLa5mjEf74D6iiVV97E9YOGZvnV6uzjq7zrwccChHeOWlLnJwRujgyEULm32yPJxHD3thG/vXUTiw4YuD2jg74lTP+FQXsfiIQ1e87GGrF2y28oJpTHC3Bpdv+mpFX254aOzEVPewjLuu+IpZLjCtseHrOsVPY9uDdjzsWTj40bXf7GHCw6MaG2fLRgzNmLDT+PGHiYPenOBWfnR8i2tdHd/xjnccD9r/5E/+hOo132PyiJcXetCuGIiXzLU41jWJSqZi0ykGqZdgia+Ob0KvQPoKmE829/X5F5+vPGA9hONQ8M9Hb64ldMsPdpJv84d69osVx62peNpZ8uV/SfiEl78+v9bZvFEithrLT/zH7ss1fnKHtVKOYmkJvfaikr96aeKKv/NsNq545q2VO317b00t9M8lm/9De5ztxu9c0fHfNfbV3nglLDp+zXefYGmtnWOs3nhrBpeueoVFn4S38fmc88j+Wr+x+Tq7eu0+ya+c84mDvr0Ph83mYvyQwC8W2817fdloix+HMNZ/72nWlys/9/hqsDku/sZvzJe9xrY9bP2Xrd8zjrsmb7zbrzNnNkR+e15gnesDxxt8fzrmOf9Guz8d4zfae9Cu5ji3b7sX8d31I4nbl917/MnWojqwI82Pye1L/mpR6wyYG8Mz7gOjOPGDU7x0ehKfYzIvl+yq/XmNG872wgdO0v7GzXqSrnn5NeerEXjsXS/p1j8u+V7q8V5f/mdRO3Y+ZJPqw4++mMa7P+ZaYrw+5RbPenjlRucLrQ+xvjiQPgcaw7OGW3Vsr30Y5lscuHsm6DV6LbtwV2dc3uJsnvTbqgMcmGKeJfviLzbb5tVQvOUQnvVs6cwJHezEfO1a16th+9Jel194YsclfLrqyR4GqY72yZ6F4YtoX7wPw9sXfuxcm/CM6ZIdWyc4h5kdHS7lbOwM0Wsr5rC0eGezuK3xLXc+i1lMtuGy78sbne86zmdfANlqcr0masm385FdMfQEDm7mevz4GFsjdOaNq1Hrx8KFFznEke3GanzB7TUu9t5+6zcf+2IOX03YwMOzcXmWh/XEWjnCsQfWs4GjmfMv9/zrq6F19ub5ZKPPzviMZY3vxsEtLHjGYeTvvHvQ7sFaEgY8sj7P/aD9P/7jP24+97nP3Xzve987HgiL2UNqe7K1VN840Xs4ZJ/ww6v7s72Qw/IuD7r07LK1DrM6iaOJ2bXVnA1uYaqzB0w+48DufcB5Y2feGWbLHz+c2yNnsTHc9kdMeoIrnHDF2oco5UwfV7j4WytX9XUfYLdtcxdTg0PP3sMo9YZlrdjGdHixzTd/GGLD4PPe9773+JNqfNTNA6qf/vSnr92j6eFsSwcHZ/cDusZsjcWir1bqZa1r3Robtmw6Y2GVl5qxwTmM+PDr/YGNxp/oYXRm0uWbHT0/XNjTa+ZqRDo7+eityYUdXnTFgmNNsxf2OZy9f/Llo+ePGyx5mcPxmQWONTz5qwXZnNlr6cudTWMYbPLTZw9XbLkah3UY3L6wbS+s4ajRl2v501Xn/OvLj802vnD0YfNxL8lOHmq1czp81ESt4RM6vh4+V7vqXCw2sOjD4b8Y1uHAdt2xDY8eFptzvtnRG7encmyOs1rHQVz3Unp2hD+eifG54c4eH9juf3542IN3MejhysEem/PRxNfI8hE73msv5+rFHu9qudcxX8K3xi/f3Wf+5vD01TPurrfytr77ZA1/vIzlaF3MzkSY5aFGxuKIoYWvTuXDJs5i0FcXvbl1eGrJnpRLNvT4aXT26r/tQbtkHxKEOxjskSbp9CVb4cJsrl/Jly68XX9oLF4NtiIXa33FIcWPJ93GzY6eNL+E+XOLx71unmFuXChxOyPuYeN7yY4OXjyzKVb6M/bLmouLtzoXG79zzo+ND+dS7unPeb5onPjEufnmIa/wN2621T47c3Zrm00+r7df7MU663duLC88STnLLX7Wa4trHJZx9nTpG+utwzXWd/PNBsY1Wf/iZNtcv3m0P9k91McDjrb7/VhfdnCS6hh2+p1nUx7ZnPv1sZZ9ffbtFb0a86NTG+PEei1d6/X07ZNx+rOftUsiLp/s9S9LirP4l3S7vmP1iW957jldW2M27Mttx/lbM9bU0Rv8u971rpsvfelLNx//+McPyNdbE9j7oD1u8TqC3PGNF915nU4OSbbx255d+XZ+2Wv0PvT0Zai67vkzZuODD1w+xVu7uGyfHT9j9sbxax0v0jyMbPtgxq7PPmwXxzz/cg5Hz7Y4eJDz5yI24TyUW9zg5GO8ggcpTvHrrcUlfuE6gyt8xKn+9Rubzj4V177C8aGedH/gg1MfwhdLrWvhsIdbLHoN9/M4ntY2N77lpid0/PWEr7Vwi3cs3r3kwya/tVts+uqYTf3aXcLnx6b8suFPrFVP8/ikX9/ySqeWGp/sYYlF7I0vPnEw3i+bfGBq7XdnzBqBZdy8vK2lp6vW2cPreo8PH8KeTg8DP/5xycYaHWmcb3H0i8WOOJP5ytnZrQ7FbH443L7AJtbDDftYuH1hU67ZFsd8+dHDoqtv3Vy7Jtb4x/G8L2f/nRevB4T7RXbjd92qDX9rnZdyCVefsNszp0bZsal2+G9t8q+vttnEu/U40WuE7XKhCyeb+Kxt2GG6p/WgPXxryyVcOg/kn/M32v/zP//z5m/+5m9u/K12XOyR/dLbF/uOV9dRXPT+gz0PiIz9+RsPrnHn0/24c4O71pk1FoNdeVdXa9XHGvzi8ifWSfgeTOLI3lrxz+cVDmHjvlBu6rr+y4GeH514zqna8C0fmMZ0WpIPf+vidrbhWg8H1/LZe1b58OtBOzz75U/9yJ3N7pv4bGrWccbhLbf/GR9fa/5eu5g9pBLDb3H7u+32B79i4Sd3fOlhWmsMWyNs+cNmz85nUOvlvDZ82PRerTfXxAmn2B5i87dG4mBePH1rxUynz64YbLSVeNCLp250iyumtvzZdj9TU3P5b4y46+WnGeOlTuJ0JnddbHZh5UOPA9+4eBAYrvXy49O83Ni1fizevsCJtxyssyPWiicmriTsY3L7Ip/46rVy5KeZh11MuuysFSssOpzKz3p2amctoafr3JtvY+v6IGLCcl3Bdo7pxMWVHg6pZnGjs9a1bW4sNl9xXMPdA2CK6/qjK2d4Gt/NF2dzkm1je+03+f3wTLy4lZueD0yNwGNnjVg3dnbp1944m8Y44sOWT/cMuVoLg331PkBuX8rLHB826dgSOIReKxfr1YiNM5qvnpRb9ywx2MU5O7bG5WyMC/tyEBeetfys2WtNvXcNJxhxDIet9+/PfvazNx/60IeEfg3vmDzi5cm/0e4/XnG4HDRJIEZK5Bwz4tbZJ+nNwzAOpwLRnSV7tjs+212bK2B+y4l9mGya08XrUD7DS/EXl65W7GrsELC9ry58+Dts2ZdHeRaXLV145bh82LxRUt744mCud9E/VsqN3znvMOizS8e++qR7rl6sciov2MZaws6etSfp3+i++lSTamWOXy3+5dA5sp7Pcl9dPunCMhe/ernHNHYOOgvsNH7nfaPHgWS/PBoX6yG77F9WX77xqDYbj011lVO1XpvHjuVNihMunTemYukfkuofFuxL3Fp/CG/35BLOQ/5PWS8/ccStPTZub+hi8q0W9udSvpsbHzZ0SfN42Qsfwjxo96X6Yx/72GF6CTuMx/Ri9qDd32gv7tk3brt+jr028WZz9rHGVlsMY3X0QUau+s5j2Hr+W2/z4u14seVjLRz7SuB0DZlnwzcb+rPgFbc++2QjRjzpllM2l3ox+zCYX3bwipfuKX189jzLu9zpteLgTKqBHrdqys44XLbVjo60tnP15ne+Lviqow/KYrHjx9YH4MWmD/MIdBerPcmWX/HYt15OW09xymfx6QgccuZGl724iXE5lKt49M3ZZgMDtj7+YdXn1zrbBE/+WpytxY2e8I3D6vDQrBEY9puwszc9bDC3T3tWi6+vrsb89HDp1y5uYtBrxL6VGx1efRGCsRKGPgw2aqXhKnbr9cXaNbbW8zcnm2tj2GGxyzZucJcPzGKtTTWPD5zGejHYGFszr4Wjz2d16ePGRrNvnaXswzdn37Vejh4ieLjQfuYXX/2uwTMvDpxs+ZonasOe7VnUjFjXVsKgZ7c1b61ebGKejt9yar09ORxuX9is3fqzYf+rv/qrrz2kNify4cdejp0rv634nA/a/+u//uvm7/7u725evf0TMmJ3nbbPuIjtGtKqKb1/xeZhOz/f5T2sxhdvD1z6bl/t6au18f5md7hsa2IQa3DVRF/trcEx7/0+Hf6adT441swJP8LXwylxii2WZs6vNefSdbxcDpDbF3UqDzo2bNXCmnsTyQY2jqT95YOzmHRa63rrhA0cde9P5qi366yHXfLclo+HccSaH/KI1X7bk5/97Gc3P/nJT46H7Tj2AI8NbH7VFr+tcTlar04wiPPRQ1vz8OQkF77W7Ycx7M4c22oinjzjIE5nrfrAT8TXqgU9LPPEOlz+cM1x8FAVj9bxo6+WejXJB27YfDQ/jLLeD6KcobiLH49i6KuJ2ltvLXvzMIzT16un2m29reGr8dmWXh8f9nBg4KPOJH9jtpoayZt9fFqnI/Rw9PnwM44L7LjzMYZbPYyrX1jsYLCNm7H6sAmTb/Ho4WjWzTXrNfWzBieB4Uw4A8Qa7vTsYbhHuyarFzw11Fun19o/fdeucfmLARd+cYwJm+q2cXBwncVdfnyy5YfH4vLHi7BdbuZ48KlOdOba4uIoHp01dvIi8K3pcdCsw2TrnOsJHYETvjn7Ghx21mHJR8u+erOJgzzUZWvAx5ywlUO1oDPm7xqPe7ys84Wr7Vx82NWID392b33rW2/+9E//9Ob3f//3Dx85PUWe/KD9TW9605FAG1vRJKy9XqkginENcze3greZTy0AvsXU89crOAm3i+ZQPsNLmwm/QyKXPXjCiFtdN+9reca9ujgkbOEQeg1mudGb41EsupVqs7pfpjF+1Ueu7V95/3dyfUrt2JJr+/sy8lh+3Wj2zLTe+VRn50SzZs6+c3zmyIavPj82/OjtUf4w6Nnu3r2R9TjzvzTH7xKna/pLGI/VVTv26ifuU+Ow12Cp8WLQEzrr7cuhvHtZm/Ts+1BAxyZcOCS+x+SeF77OXtdtb/DwXoYURy3KGQdn7hLncqtGPrjRVUs+xvr7RG2LnV05wiNw5O+N/z3vec/xG+0v40G7f35c7Hrx1WP3z9g6XivyoD/Xi325WDfPhk9rsHyIkqdmrD6kuvKlz0e/XNmyOZ9ZdmLRs1dPHC75w7gmxYVRjGv7vDzyu4ZLD7N7X770l3wfyztfvfxx3X1TA7WoHuVVbuYJ2+7BYbWPbPjkJ54ctPYunO3zYY+Dz5EwF0csOs3nF7bVqnqVX3ssbuPlVmxrfZCGdYlj3PjAF188fvDNtz5hs9VwZZcNXeMwrYcNz7i4xk8R2Nr64bt1a23rhkM8Nl5Y9qXftCxnuks1O/uzI+0n//Kkrx54xb89tk74uubpjR8r4ojPBz6+5apfYVut4mIdJ1/S4Bizyc569SwPOtjOV/Z6HOg2Lp1Glz+O57oWA3b2fOj11dR6tuHp24N07IzPc9cekZ+HYNbh6fuiWu44Vgs+5uKUY37WEja4ktZhy0lv/bHCX5M/P/7GsFqj233Al47kq6cn+evpCfvqKw59e2A9zn6ruAczPdjLb3HZv4wH7V/96ldvXr190A5bfHkn7le4pS9nDw/9uRG964vg11nHX23KcfOAYd19oYft7aOaeejSWaBvDNs54yMuERs3zTjc7jnwxJNH+RWLP178NHzFwFmDpecPR2w/WOihC/1KZ6Rc+fCHyTZ7v/2Pg4fZYtS6R/En/DW2/iREfxYCDg5yZBt24+3jwIZenv32Pr4wNNeoOYHtt9r98gRu7P0NfBhd5+yN4RMc8e/s0PN1L2DL15r43aOtq42ezh7aIzZsYZZLccSCZT/58FVHzWfQ+LFLYGj2Ag5/Z4yvnPV0Glk7Oj64+AFF1wEdjvp+uMEvvtaMYaslXnJLt3Fha2Kxh8PeuFrR8SlvtmGwI7gYa/CIcVz4xLkc9fnwPwsfbdeM6cQo37Nfc+tiysdeh8O/tWy3LyZf9x+2ibzjTQdTDuWEl7rRs9Wrvd7Zzj8MesLP/qox2X3FJ87H4u2LOeFfLsYwNGN7L2+YbPByvs+1w2uvwWz1eGrtY2twcOAnf3nhrI+X2EQ8/sXXE7b2phrAMWfbD3lw549j9SteNcfFv65xjVjDS2z3SzGMO9PW4IlpLB9zfkRs+rWzxr57gzW49BoeBBb/7iN0YsOXh30xhrPva/zkC0c9id77jH/dY2wtfPHNqzV9/OAWX53xKT92b37zm4/fZn//+99/xKn2x+QRL09+0O6nqTauixAJjVRAY0kh8xChfLPjt77pYSbWk41fPD0uj5XFM4apyAksm3OJSzZP7eGXp80vrg1OxBO39Wz01ZqNeWIMo7rWVw/rGr/Nx7o4GgmTDa5wrK1PMZ/axyE/mJc4tf5Q337BaK/OeT+E8bLWccJFju3BfbE6F90M7rN9jrUzPzcZHPB1s9v9rs7OV7WWE71Gd+06KU5+7bm5JpYGL/zOW7bPke9zYJRr10qY6eWwdWv9RXv1SeAWp/rsenb6amscH7rG9rkcYOJtvTMYbvH4sUmM7ff6sQl/4+ZzqWcvZh9s4DkL5XfJ5zG6zX9583XOrdPLT3x9HyzKQR8OW80c1+7VeLZ2H2dYfMQO/1IeMPDwweLd7373zZe//OWb5/4b7Z/85CeP34IqP738a3Ik8dSf70lsW88+H2t01rfJ3Vp26ujDkt4edPasqylRh/DVr1pbo49zuPTGbOGx7zyFw+Y+YReXzR1u+fAvJh3Jj+9DEi5+9/lZK29n45Kw0fCpPjjEt72zZtw5L27+i42fuunDEV9jb1/O+8nOmjjLtTjWqw3s9kV++RoXJ3v+2eITHlscypV9fI01NjV+Gsm2epnDiR8ca+n4ZWstCXNrIR6brQF7tuIQ6+FsjGPxgZd88Yk3nX3V7zUDil0+7PErn/i0rzA8GOuM8HNmrBtfE2t7XuREd67B2V/dcEn4dbaMHytyxJnIqdb+LA7bckpPh2t643R6Es9yEqM8W+fPTo1bM5dndc8GbjGOAHcv6saHv2Zcaw/C4g+PNGYTBr2xtdVVK3vmwZ01+YhjzRdV3/X4hUtv3dxa154YZ2GjTnCTjb/61u/rxSXx3P3NrxrFt/jp17+6qiMswl5Tz+JkZx6e78G+nJv3IKB8lhccDz2f+zfav/a1rx1/OsbDAQ9KXC/l4P2UHr/uSfbYQ00PYl3bRE3om+Ovqd3Wq3NM5yGG5hzInYjr/RuHzqueHpYHSR7eeIBFz07N4icmTDycKXOx2LFRP3nEDy4cMdVXDvrOW7zYw5N35/ggPC982YVpiX81MDf2oJ2NH1TgRse3vOlw4GtM7yG73163P3xdT3LkW47V1jo/zRrpXOrVwJq6u1a3XmrBBzZ+nTn/6kLd8MSLX/Vlz896HMTEzX5pxoSN/cKRrjztj3OmsYEXJlt25YK7vXQ26X/0ox/d/PCHPzz+hYWcsjsC3r6wh6Hhbl08Pf+4sdPoF8NYXh4kdn7g0JVjD+LEFKc6WO+HM/jSE/7WxMu22DipLRs8s6dXG7rNxTpf9mz0YeG++6Km1jVrjavBEWxe4PCxzt5YT3AwT9I31/Nn13WVTbjWjLMNTx5sce9MsMG36+xwun3BjV6vqadrphrCdF6sOR9adaIjOIhlf/nSu8eEkY2+HNLxFVPDwz4746SHtLDl2v3UHvIrvpziVV2tazDxLQYsHPWk6wuGaxnncPkRNSh+vvIIm725Hg/85CB+5w3W1q8awsfNL067t+FB2Dr75uUnHkx89O2/uM3TmWvVmx4XsehhloNxZ0ds90l5ZsdH7bsGrfW+BpOveuKHN3GPcwbkoMZxh0Xkr9ak2OGKz45er/HX/9qv/drNH/3RH928733vO3zL75g84uWFH7QrUklUXIVv8yu2+X0iqWyz6/A017Mh1tbeRrbJh8Hty/JI99gedpj5iNnhT/ci/eYQ5+oFr7hrp8a7qeqlVaPqW11gWNcT+tYOxZUXNmKFly8u4anBrl+BuqqGFZflx6G1p+LziyMc/vL4ZRHcNteH8lNrPufzRndJ1POa5POQTedJ3dxU+HUewjaXh7Y28rHWGelGWmz+xhrf9O1Ra/y0YtDDDT8eb2QfVzFxIfHTn6+H1l4mb5zE0VdDvOJnnGRrfq5jXMOwf8b56JPilVd6cz7FhkHWLpxs8k3fXAxvmvQwa60/tr+EG2YcxOq8hls9el9Lr+evtd/GrgGNHz3s8i4OX2P2jcXld5/IvQ9OL+NB+9e//vUbD9p9KcNPDqQaNI+3s/PQfvBhXw2Ma3yJ3O3x2vqQ44NUHwzjEFZ+5tZgLJfswzwC3b6wb4/jdL4G2BDrK8UK07qY+rOtGGTX4hmmNbHDTb9+4RbTmjHh1wdKPMoj/uGy16zXulf3fkJv3JnN9wh0esHpfD8PN07tJz17+mpSzGC7XthosNnwLe9w2+MzXnHE4gMTBzF3v/lZ6wN5+HHJlx2s9jd9+DDjZ634cPgmxtaJsbjhptPTxZOduIQv/QpbjZ22Qo9L3PKtns3z4Z9P8cUUP97uOezsi4c27T0/uNUoTPoa3Y7NxaHDMf7mK/T2b9fN3Rc6L2t/31gcHIu3uGc/NtUq3nzlTBbLWEvYVzc5VjM9zmzZqCudZoyPdbK1DE9/Fn7hWGMTJjxrdH15DCvO8aav8SetqYMvpfqwjXvQnh+dOGLib9xZOgBPL3HgD1f/WIljPs35G1eX1tPv3BgHffp44K2RzUFe8tQTcaznV836jzzZ9MCYzTZrzpMHQR60f+UrXzn+U7W4WH+KwCY/+MEPjn/l9t3vfvd4sNIDAmuw3Xu8p3ro0v0Pb9e0h0ge7MjP+SH2PmzzHbNzZjtrHmR0VuTG1no1NC8/Y60HzHzZ1lzj/NjDdJ7Ey2/z4NN5sm5f6NjXWofHhlgTH358j4W7l7ia8jHPv32HoZ5iwqIn4sWFD/yuIbnZ9x4u89nrJ3784OhXxFJzfppaEBjiqJVm3MMn9ZAnvsZ8iql3f9eTamYMn70el+qVjTUxcLJOr6ffz25yWN7Vk648jPn3Qx8PxfDa/PnVNiaM6oV3NsUJo179XBs9iM1XzeQobrWHsTVwrViXH308YLBtzr+mttbZs5GnWGzp0ptrhA8bLd7tR/sPh11c2WW74wPw9uXMr7pZLzYbjdQfk7sXuGKKTczDhbH+zdmyE8/Zw5/Qh3Mobl/KxdyYD3v3CHPj8heLLj7lnI/7nNqKcb6PlK84/Ag82Pxcp3D507Fxf+weaU7vHFTH8iwvvTUNdjHEbt/DpxMPTzmVF50xce5IdcVRg5GPvvsljnysd5+odmd88+pg3G+0by7G1taXLk7lKaYxnmGyMdbUohpkE0484it/+9EetCebO1v3Uzp2MNVga2eutq5v15Q4eMRZ/GoFxzosuP5MFNt4ywWGuv76r//6zUc/+tGb3/u936P+hXwPxQMvL/SgXRII78ZXaD3y1tM9wOEXEsv/7KMYpMSNL8WoSDbBOi6/LLKb/djaLHf1lheRJ4FTHeiKoWevXtazP5weeIHZ4e1A08F6Ed7CiX/pvDxA5X/McvviPL7Imcy/+qunsb29JupNOh/X7O7TO28aznuGxKanc1bidcbCO4xdy17fWWPnvMWXb/XKfjFe5hiXuONQndOJjRN9a3Sd89ZeFm/82l/81PA5pL3CG+5T+auPGvAlxlp7Gkd2WiKOHMTPP4xsHtMXH56YsMqpfeq95BJeZ5E/v8VrDSaMOJ9xyqE84uD+Ca99O/s1x5OtDwIv40/HfOMb37j59Kc/ffx2W3kWuz7OcpF37yOtP7WXt5rVqut+kLpUNzzE37qZt5d4sLGuXZP2vPew7J2xPeebtxidQR/y1Ir/JVm/87nIT3679+byx0UsHwDjYg1nuImxdRz05uWRnV4MfV/E+YfFr3Mc7rU+3mFmV6zmT+njK79LXGDjWu3V3VjO7V1+bOGEqZbtEwxfjnyAlq9c1IVvjR87ejjFlA97WD78n+tVTD0ObLXOJR1f64lY5mKTMNi2Vn75hIfjYrV+ra9e53UY4VSDbPiIR/DwRVNOSTVYnbX8ykve8iHZyrFzX9zW8JEfm3zsmxbXY+GZX/DYnOQsF3LW4xq/+OMmJ2t8E3byoYejZ3c+D/xbz/epvViXzo6YnQHc2hsxNXM2OBFz9x4POdjHHYYxCc89pRrg/xgpbrwe8ikv9sWXJ72W4NFeidF+xLu47NnmX91h8mFvvVjh6/mEvXp7HCcP3XvYAyc/vurqHvRbv/Vbx99Vf8c73nExzmJfG5e7/wT1lVdeufn2t799YMMnmwPO9rcHRNbx9WDTQ0RYcpdH1x8fNppawFMbdnRJZ4FN9tnK14MOPTtxWnO2yiEsczjWqjPeOOG+99+1YyuOGPQJvHDKB4ac3dPO8f8Pd/e6Y+tWlXu8bgKNIGqUD2qCp1vQb5p4QMBjRDwgYEBNSIzGxGi8KQ9XYQQRiGBMVFCvYdfvXfO/9kPfY8xZNddciLslvXrv7fC0p7Xex6hR76xVy/cMfmdN9aVeqIefB84wssPtYU8Y5jjg5r6pSZzhvOz5+c3LXncnNzXhpw/lh6tuMw5w3ve+911/Q9jDIL+dSg/3S1/60sPXvva167fG48NGYOBudj7Z1UtnEHnx8rCaD6nf9J0Jv16L1nj5bX4+cqqhh+ry8eVXnF7Ayl+MfHrDl/4U97K7KR5u2GL1znkZ7gDMHqLKS+QsVu3w6LL3DwzwuuvVrEd7dmLrEb5w3WtSXfGARfi4P56pVSeeBh+55GGzJtUtVzVvf+pB/lfQ4xc+MMU12uezc3n5lAem2OLo1UBwrm58V/izhcNGZySwxfHhK0/nF3Y1sdeHje9O4cTu3rmLBC6B6zXofdvDVXrnJAauO+L/ZeH/e+B8Yca7/BfQfKkveFo7Z/9Fi1mN4unlcdZ9vsKNj7yEn5xmcfV6exVOv3kuDi49HDNcXEjnA0tPiD47XzqvE754ifcnp/SNLyx6nNzT+PArJ67WK3KWd/Wt4yJvdwAnOOKqXx0GHzOuchv8v/71r7/NK2ycCR9xcqjFPn3/CFpN5cFLPA7q9h5J5/v3Jz7xiYef+7mfuzDKcW2e8OW1H7QrEgGDaIzkhnXjqYRqAixrIww6jZBLAxaTDyk+DnyzXQ7v8IuDgie/XPDjuHxupeHXZaqm+hbfM64c/MNPB8vaYMPJIF0ss9j6kP3Mc2u/mC5pXKv/HudbWHTiG3hUD9tzscScsnh68u0oy2v5voqruPpfr+olmzMhbOcZ8yvmVXnChAEzvs1wdh1eHDaeL8m/O2kfH3P3ycwHhnU+9mGkL++7PcuNk6En9WX11WDGM584079K4PP3fvpUKR8ufTM8v9HBgrtc7vHhA0uPV+75r8+tNawz74lVTvXL29i4W9iv0olvyGnY1yfx8VtOfOz1sbtGxzd/Z8RG7/uRNX/7JH8z2Rx81ds3/mpeHzHukQ93cnjQ7k/HfPSjH2X6JrxL8cwvuHrQ/vGPf/z6ICk8/uZ440a2dh9KniLhqMsIk74Pvs7D2A847AYR1xqX/Nn0UY8IH/iNMOzFwdFzc/5nLFv2uNrDMvO37rVqvzEX8Asu5aeTv70PqrDVEa69u2DQwXXHyi3fCh+Y6ucjPk7W7MWwEx+m4fYBVXz3eLF3HT8Y5YIrR3nC37hXreMbBi641U95Df1IX06+7l9nH0c5rd0jP7CYcYPRXSufeWsvHz1/s1g+6qUzy82X3dpsOEsixuiHc3p2MQSGNZ/N2boZNp+kPTu8W8JWTGtxuIiRm9Rj67DExYldf2GI7QfBMPdewhAnj+FMiLqr1T49XfpyVhs/dzOeZnvnKPfK9nTj16e1WFj8SHWUv/tlZuNn3f1o332DEUcYfOujtbtCL377Dicu3Zf4sPE1xKU3w0rEG0QMCTMOeFZbNeBVHcWVrxkWm3g/VMbfHQhHLlh8/PDJ32CPZ3ziEF/4+Zxr+1sSVhgn92LirRa+5Wa3L95+fdRh7zz5qM0QvzHW9Wnj6XuN0/fb7fDCKE4fPdTxG+2f+9znHj74wQ9+Uz9we6rE7Stf+cr1p+Q8aPeeB1/ezsUaF68hNnF0OHldO0P3laiDn1h2entST/jQs5ejnsnDpk7vH+bW3Ulx/Pv8YF+v4C1WfGCqzege8oWdwKNb6czgV4+Hde622ju38uoP33jD4tOIp1zw/IY0vvHz8LiHcXoc12qEx18+Or31/tb3Y/F4wRe/ohZ+elDv2J1fOHi+//3vvx4EuVv+XIw8HhJ+8YtffPBfPXgYBUcfzLj4Lxvkdkb4yVXN6jEIGzwc+BCzvhB2nzHw00PY1r73+v8YsPO1dwa465Eht5mPOKN72tl74Mmv3NsjZ2DgVyxO8tvrkdem39pVO/FwEg85iRlvPGCJkaN71j8wqEF/sqsZllksfuK7L2HjTmCy9V6BM5EfhrOor/zkMavDWcCpdmeYXW4+8Kz5GPlv3/jAVIeZjW/6i9B80Sc4/Ik8RjzFiacjYapJHDsppnxiwgifNIV6AABAAElEQVQ7v2qgN9wDr1G9FdNgKx88OY04lsO9Exs+vTiYHoR7PdPhK5avO+fPGvnzRt0N9nqNAxF3Sufi3sB3Vvz5lsd56y08/t0xfjiwmfE0Oh9zPvi4fzDova7Un8BVi5ywCCx9gyHevbLnyweGvT8ngxM98Xriy07gwNAb+PK2vhwev3Qe7HxPgYGfYU3kqcfi89FDa3zqJ3++//Zv/3bN9rdEb+QQZ03w8Q8sBgw1G+wGzvTOodflj/zIjzx88pOffPj5n//5C4PPc+S1HrRriIMikXNQkjef66eS0oRGWPY1gk4T6DQ/H/h08p5NOPdx4U/u2fMzdxldAP7qLh8O9yRf/MXmW/zyX4ztazFhqTvuYsKgY5PLWp96sXkh0G3c5tu1PL1QxOOSpOfzVMEpzjgVi0vcn4q1ftXSHG7z+r6b6zP/m8oFt3ugpnrV3SmvfGzO5nWle+OewIK9+K/CFY+X9wVcxZoNeq8f89Yhj0HEE/eDFF+t/MS+W1Kt5bCXO87xps92cun1zR7O6XPut2+nzR7WPWGrb70fr+/yfFn/ts6X+S32y9bw8NID49695OP9pfeU7sJz+nerP1u3/O3XN25nHdXPTjbW3WSn8x57q7Z6ubngiFNnNVf33nd+BK7XodeMb/Bv+m+03/uN9mrFoT7Q4Yyn7/tPkXDqsV7BIz7cqB0mvRrN+kbqW/2/lI9f+Bv0cbOmE1ucufzl5FOf4xIGWwIvHPZsYsOUy2st7PKFERd6521v+HBNYBZjtsfJLL+Y5RGumV5eQ2zY4ZWbnS/cfrDVc35s6sln8cuxOnz4ks4JDpFj52tzfFlu4tubYTdWrxdyshFxRA/7/qRW+Q2x7pEP0+qs9tXV32oRT/hadyfp9Kda7eHzMeLUnp3ACbtc4qzbl+uMLZ69PlygL76kX10xq8vPrE/l5oNb/MrBrxg2/bV3v90bOnuiJ63Fs+mF2VCTntGFL4bgwb5SHF8/TPMhzsHormwM33DEx4dPOenbw9w9fXFmXBvi6fr8Yo2/UYzc/OQVV3767l3fh+mM9anGi+CLL3zo4cljEHma+ZQ3H3tx6es1u3V5zcWY+cctfLm9tzv/fNRh2MOAad/rL0x4BqleNuskjPY7FxtftviFUQ18t4dwceLHpo6kWHvx9UoMP/t86n2xzTD55Jfe3PsFn314Zr9x+HnI94M/+INv9EH7hz/84Ye///u/vx4Y9aBGnfXR68f7oQdNBA9n6Pyq3/ujoZbOSK16A0eMe6EeePQw+NJZ07Hxg03HxscgMOXseyB7cfKwEfr6DRN3NfQ9jE88i5PPqG646unBCkx7D008LLIOR94e4omPrxgCy8iGG1z56q8eqdvcGm59FE/EwIctVt/5qK3va5fjfFlf2HgYsNyp/pHAg2QP2z/wgQ9cD9rl9BDOg0L/KONhVOcMEz8PkOSGR2cQs7M0CKzO5FK8+KIGoibcqq+9fH6jXS5rd7Q7kn99E2PwhYNDZ+8fIeonrnGpv+1xEcen9zHcnVcPDeGoWV75SDnl5e9+wCCwxcM17LOrxZ2CBYOIr1/2cNjMBptz6+xh4hEWO6Gzrh72ctB1lvjoJeEfb/HL63J4/FKvwqaPV7nhGwQ2rHR84xEWnTWf8vORn57AMLKHJ+fGsleP+8XuHhjLWXz5w3d+8i4PeGL1iz6B7TOHe2EW13sMX/8I5c9qmmHgDh+3rQGnrQG+PHRw3B1z3ONWf8z5hg3f/a2W8HA+X3Pez/jrhXUxeLinRjnp+IWhHmfEp/c0e6IvdGxi+Pba3fsgH8FBHtIMS1znzsfIhx8u+iMHyccM28ymR/WJf358/AkqvStv+OLoipcrH7P3TiN/M64JbHdCX+X2J1w/9alPPfzCL/zC5YLDc+QdP2g/kyGA8B6Ihr+u1CgzTFh7AOWi0xBNrKFysnchlgO8MMUa9wSeg8o/Dvf8b+lhvCzHc2O2Rry6jHFUN+Gnfpz5sG/srbx4ijF6seWX/jm1xC0uMJ4TX+5zVstZz73zPmPf1F5NBh5vqq643TovfVOjuR42F/c6c2fkTQu+msr/Kjy+BA/xxfU6CYueD/xy6Bux1z/Cj9C9idousFd88fqWKw65427sPYt/Ps3iqzXur+LPn9zyK+/a680V9PiFj1h9fycSb1hxfx08fcJx66pfWyOfvtHqOf7ui7hqEvcy4QfjlpQ/2+7x6G5mb17udMWdMasvtjlbe3O1w/eeSnBQYzmL673Ehwr/qflnPvOZN/4b7a/60zEXwfnijPB9rqipM1KnHwqrPxt7ry8zOe9gvWGrX9bpm+lOYav/1uKJmtKfMfZh8olz97S7CQvn5c+/95Ewdk/Hv9h8bnFY3a37Elb5916z1Ufr9uGwVQcbiWd5cayePSd2sa/qoZhGHMIWGz954tDc2djz6weQ9OGY1S8PnMTrZ/9+MX0953/vDODHwQyX4GAk+dhbwyP1JD70Ycq/tfJnM5wL3/Kx3RP+8REjv/iw+6EpjnzyE1vvw7fvh6Ns7nr1dmfEknKb6yk9DDm9XvK1jwcfwkYntgft+YvVgzPmrcjbX/N/6vdBuQx1+WEqSaeufNisO1d7vbQn+MaVH6k/2/d8Lof5Qo8/7n6ghaEv29fc4cprLF55+e169/RG3NhgyKsHYWeXQ38MPq0Xv77DKi579y1bevtEPH29FKNuvKpv49KJlw+ntYd7zsXl255fujPGfv3W7sxxJd5j/NC+Dw3oxeLn4dqb/NMxX/7ylx9+9md/9uHzn//8lVN+D0bqW3en+6NPzs9DS7rumj8zIra4ztlZeB17v/XAVqweqad1r+/6092w14cecHUHwtSX7kmcO3M2edhx7HXV/8yUH31954uj14z85dbv3vfx9cDEQ1F+YnGRQ914ev8xdxfFGOwGYYMvT/cFFo71wmuoPHyNMKz3wU01wMOFPd2V8MWXelVOan4+R/mNWb3Glc4vMfgtcrVUo99mN8R7uI4fTHY6/KqNHlY2nPQm7suBrj0MPcCBroErP2eBa5zM6pbLbG/YG/gQfGDay8G3uyUf+3KQC447QezdeXH5xXv3dLDCs++BuFjCH7aZvRj24tjw1X9iHW9762LN9qTc1up3T8qV3UzEGLBJfPRIb9jEuotew7AJfzmJGIPEQ9yu2RbPHhZsEpa1sxCPO73ZGZSDj7j6VF+qgZ3wF2sOH4feJ97y+r/94md0Btmb2dxfQ3/Kax1nvnJ6beDMR9+WB5zlX5/geijtvMVVdz3wfoO/XOU3G3uG+Huf7bMTHKN7EV84cTlrFsuWwC9XfcarvvI1wjbj251RL196c2cfp2LNeHnvkceQ2+uueywG3+5OHOGKjV/vwez89QAfcXz4GnjGL6yd4XZv8C+/OQnLXh6YZ0/5szln/2W5n8P9AzdR93Pk2Q/a/SulBiJVY0uIGAKGYg1rvs+RjRXX4VnXrC20tbgOrUNlyy6eLB6/Wz5veb7lW53Vo/knZrhxL/7eXN579vQuLeEfD3v525vlTa9Hhpg428fNHC791p9/OtgJW/7pnjJv3vBfB+dWrrCzxbv9uzFvzvpan95UXXhvnt1Xo7l+Wp/S/WDD65a4B8XmZ4a7b7L5nBjl4C+H1wZMo15UB99yuJskm5mtOxtefWW7x+Hk9Dr78tzr0/KEXx3VvzmXZ35rf8paPj00J7DkWx2bnj33PTZMOcIId/nnZ2Y32G/5wIrfYp3+7fmIsdf3zv7Mac+n/Pzs5fINs1wb17pce67pzGT7HBabmHLKZU+fj/3ilvPWHE6x4aSHn7Cp0QdMv9H+2c9+9uEjH/nIZWZ7JyLfvd9oD3fr5N+evd7T4xzvfNJXH3vvI9YeSKhrdfTiiNk4+8rHWJ9i5KovxV+Oxxe27ht/ORrhLpcN3/w+/JHlU1x9iE/7eMXZLMb9DUeMtdnAdfntmj2MYsoVXnt+i+UM2c6z5FduM5/OqXx8DLK+l+LGF774GOHH69QL57OvR/n5e3+Ld9zo0pfHTGC4Z34QKg8sIy58GjDhi/chXU4j3GoVS9pbh59NHCnWOp/yxZMvLELHnq3zKZZf2Pzbs4vjn771pXj8slxg6JuZHg5/OkLvBw/fy+PAx0j4sJn1lNjX3/zOuRqrE/fOhQ0GWzrx9Ek85F2BU/zq+Rni2LeXchnqVHv1dacWp3U+8aCvBvj05SuG3iAbZ3/ykdsI00yKwzfhdwo/PtVaXn5hlKPeeD/zMx17/tb6wsbfnn/r8tIn1u3xXqy15W+uvnyLa5+vePmJ+0HsceRb3GV4/FI+c1jp8nnVLG5jywGHhO1BYr8F2L0OW7/Y3uSDdr+l7PPAF77whev7qdeKhxQ9kMJTb7yGPVjFYbmzuSN9L65GnKtZbfzE9voQ0z3pcxcdHzN/8d4/8THb93qOA149DGWjr2/LBQfY5eRDx9+QU+30xFxuvYAlXj5jH9rwheEhiloIbJjq5c8nbPoG3Nby1Pf6Wu+2b1eCxy/5mEkcnAUu9PUHjrX6E/74+q8o3CtrfjhZw4kz395H2b/xjW9c/1+ecsCsX3zVJBfefMQY1p2BfUIvtxxyGwSWvvcPmPqjtvovRi7xYbQ2i6/3MK3lFZe/PPnEMVx5kpM3H/5yGMXiu9j6oi7CJxFfT+nEGeXm292Dp05Cb5S/tX26+oa/2uxJdw2eOLb6jUt+7GzEg053R2y5m9lbF5vOOeEfL3rCH1Z3Q5xRz9jrF52xsn7i8BRzyvrhwC9fcfGOixq7V+Ht+Xgf6r1IPEw5OjczrK2XPR70RCxcfTfjpE8Gndywum/i8apfixcWjLiqg698+PLp7OK8GGz2Bl88zHyLwxsHvPjVH3prvPmy12N+xcBKb22cwl4dbNW2/tZxbS2vQejiUw10+VRjufBjx1+v2PUuLBhscWc/hU9c6w9/Ul452OTwc/inP/3phw996EOXD9tz5NkP2v1LqsuEgEuCbIJgBCId2fT53po1e0eHU0PY4JhrhvVKe/Z7srzVAfMeP7k7sPJ3qPCLYzNg53cvPz1+6is+X7EkfXhyLhc+fOmMpJ6Fv5csbL7FyFMu+l3bk+Ju2d7yuP/1jJWXDtZyu4/w7WHZOqwb6jDs3RNrvTe/SSmf/pWzvO3PfHvPb70eYHYP2A06AtOblfm8p3RErNFrnZ97ai93fnwXl189Sg/H2utxJX081vaUdfinL7xsy/P0O/diilOHda9RvtUWb3v4T8kRLl/xDfri81leenn2be0vW3dO59mXZ/PS4dTZnbjOvbqLzyec9jCMXjPsRnGtdx9279n27mg+Ye9e/43tjzi6xL4hthizPY6LKc4ephqeIvz1GqYY+825+Hy8jnx48p+sedD+pv9G+73faNf36q9OOlLf2En3nj2f6rocHr9sjdb9QNkP4fy29tbxyC5XdzVdM189NZeP7RTYe9/U4QzNYtlunTWccGF05tZizQ04DX7sBu4wEv72+pA+/nyswxefWHeXy5l/MenriX11x6e6xcpf3TCIWAPvYulhreS/unMNXxxf+esL3PoSTlzjxOd8nYXRD1nsy8tavNdPD9rh2MvHbpTbur7wcyb1bmsJl44/oRMj3ylshtqqZ2f+5aE/sbwHsHuPY69/Zr4k7Oxnr/jka01gGtUAw16sWqx9xvcDzfq8Ff1WzvolVky4eixfcfT2/Axr9ey9F2+w4aAW9uq+wF98ievi09U/3Ffg5cunPHT1qtrhkPSLY43f1lI94ZrpxGdrLlaudGYxBj1OzenNYtnibE+fDk786PpZIYzL+OJLdj7Vae4BQfnk4NPPeuXAL6HbemAn4fBZPTtswlYt+We7HOZLuWD1uq0WMZ3rxsdNLHxzIz/7e8Jn/WAYRM/kl9dv83mf8b2t95fy8HvTD9r9z1B/7dd+7fob3D1o6Ptqn4e8dv2WpIerztHriQ8+bKR61IivWvipwZrduhj99Juf9j0Mgu19WC9gwMLB+0Bc2nuIx+4BbL8pj4dcjc5WLjx7D4prOeDgofdGceWCxzfuYdnjpk4YOMFmV8vO1a+23g/FkHBhVavc8WAX4x8U9AcXdnnLAYeu305Xhzg91h8xeuWhqbz2OOHcfVOnnGY2wo8/nf+xocHmT8i4D+rxDzD83Am/vc1Xblz7vgqjOvWGf8IGxzmJVZda6PFRoz+9EQ+xerGvSbrFbC0Gnjtmri654faeVD/lp4eNE85hmeHBMPMhYvEk1S02KSYf8fLQi61Wfak3cIj7wI8e12LN5cCr/okpHz2Ozlhue7iw4k5ff3odsslF5NHr+gSblIO9QVdOa3fQfaArXt2GHPqMd1jp+OOSvr5diR+/sJO145DOnE/zZXz8IobwXy7uqXvcveInVm86A/Peo/jWn85OjCEeTmdTrc7bmSyWGg3+9UfP4i9Xvykvj3M02IvFz2uQb/fHP6LhUt30+m4k/OMOq/+CBzYbYfc+olYY4bHhqx58vb/orb25c68X/Ff4wJLH2tAn/tZ6hb9ZHr7xqq/VVA3iSL7WYhrlKS+9ur0PWuOc8Fl/env6Fbr4wXK2BDe8OhNn5L8s/73f+71v3d9odwkUhQRyyFcAnUaSbJG9lK/4AqfCuYYH62yUPBpyTzT/noTHDqPDvOVffXjhwNchpO+CiWWv7ltYq5N3Y9lgwlh9eOVkN8rfXLxZvN7h2kyvhnu1wmQTe0r5YD1HcJMTZrh0iXz/W6QeVAfedKSedlb69NxeXUAv+aJv8hn1U176e33snvNZ3qWhLz7OYuDZW5ONrVZ6XHpd5Oee0hmwTxEPD375d725xC7GvTrPHLvvjFZnDYstPqf9Vfv6xg/O9k0NdIb1WdM9bP5w87fe/t6L07+XvRfei6Ovv/ogl9lIzwcf+2rqPZNtJZ97Z58vfJwNfdsenT0oJmz78vPtA29+Zr4Ggc1fLkKPnz0eSX2GKSa7/b16+Dy17/JWq7jyLde4sPtQ5cOKB+3fqr/RLn9nowfdg/qkF/WHXe/ZsquF3bxCR9Tsg7wPdK86Nz0wYOtbH9oWN0w+zgGnOJ5+7bOLgV+cfWcS32LMOBB+1WctZxK2fWdoJvgvLgz5wg3TzM9c/fIQOvm8x7Y3LweY6x9G3OIMQxxMMWaD8BFn4Mf+TqTc8hlhpw9ffjr53X25i9ma6Jybz6FeJ/DE0fMTF3efV+HSuXdmvnKa2cphTc8HTjnVHjfrbOnEWK/wKUf82q+/3KS640bX3cQn/OXEh7AZbGKM/M1hx7v+l5ueThxfa711R9joTt/2bAbhW22n3Z4dH6+FXg90/VDJx4CxPtVSjvhXG97ltV6x58+XD67W1ctuxFdsMYtjffJIt7h09c26/ok1ynOu+ZU3jnzqrbjq5ltOujDls4YjrkGfsOPndeOM4+GHcbikODj0+16RDz9rNoIPLtnhJunsq4kOl+qg35him/lWK37iCI4kzouz/WIPn168ffEXyPElf2p8y2EWh5N72sNKs704/ga/N/2g/Z//+Z8ffv3Xf/3hH//xH6/XjjPwcKw/d4Gfh1D9rWH2eKrdPo7VRO99xkMFvvpjeG3yN0j/c0q1iqWXS7x64YbT+5bZe28xHo75czDuoB6KgSUvX2t47LBJPmyEXayH1AbefHCGYeCDXzjl24dl1uLkMaqVbz2Qx+uAjq9hbcijR/Ib1tsXcV5nMNj1IU50/P1ZFX/Gxz1h60F7ee3lVA9sGM4aXme0fRPHn+973/vea4j1J2ScHztMPVQ/LDj1PM5bJ14JPX847re9szOy6Y2HfPzoxPtHg3290d8Tfdnv1/k6o86CT/2WD7Y6uxti9MXcKD+uYrsjcK3Lg5d1NVmrRU9h0hN4atMLeYvhh5OaxTX4kXiKsSZirA1nIo81/HLwo8fd2Rni8JCLPw5wu890hF81WPMzL/d90K7P8i53++qEKa86YbiPuNUf+LdETj5mAh9HuLcknOLE8ve66kH29rW+iMMpXvb1xXuQfuFO3DVxCTy18ZdXv50Jv+4EHnGP054BDO/B5dlzhGHI6X1RHv5wnAHO8qoTR2eJD6Gzhqcm3MTEgR2WGO+z8vOvj2a85dZDD9qJ9x8Y1RBOcZfT45fOLUx2+fh3RvqkBjXSsasRZ2Itd3t86sHl8Phl88IIO178nAlsPaJPxPLfOVszf3b9w1U/xKgLXj1m++Ef/uFv7YP2/dMxCFcMwjWqhtNpgrEihpx6/gZ7zTQ7BKMcxZ7xF+gTvsCPA85yvExOXmLSiS0+7uZXCe7i8l2MxVQ3kZOUw1oN9ueAXW/OM1lsGKR46+Ksk+y3bPmcsxjcccQh/qfft9O+O3GrznpgXrt9Pe2OshvFrP/r1gsrfuWDtflP7L0fp+3cwyRqsI7/1lJMvvCN7ihfb06k3MU0h22/90NsuPnem+sr/425padbySfd8kn33Bmmbyjd8639OXWJI2Jg2jfidIsvXa+v6qMzniNyFReOOZw4dcb2cbUm8Q3nVn62+rI5+ZajuDO3vfxmvr3m8g+Dzdhc2eT0DZ7Nuhp8yGivn9npjITe4CN2RU7Cfsq+tuB1//NbXDX6APCjP/qj14P2X/7lX77cbuEW/5QZv3t/OqZ+yd35nJg4J9b88q2mesDPuv7prw9GPtBYi2M/hxrDheG1lc9iWsNef/t8zQTWCn2cm8+YzoI+zPLgQ275pIfrw5o7AqMYenu9M6xXyidnWNn5y7k/FPKvBn72fAiMtYVJ1xnnd/JYjOIu0Nf4Ij4MuY36kk0+HBruh8FP3fx63dN5/fqgrsfw+KzQw/KB36z//aDkdVXvxW6t9CcWXBg48G2Uj15MdpiETg2ELQxzg2/6y/HFFzWS4l6oXznBKz/n8ljHOx9zunrKX5/11kyqK9/i7dnUmM8V8OILnb7rA19C13jh9vZrY2sWY8RfjDXZ/GGwyRFG+r3nYbHxhcO/EUd3i+1lEla1rD+8sGDEe/HoxJhhWMuLb7UWF1c+1g39IfZbt328ylNMvl4fHqSUo/cqeGJJPuZEfBIWjPKwhdm63O27Dzh3xmwvk/Ka9UGcsXWL39zF1Lf6yq8123le7CQsMyxzI2wc3HHf03qwUBwb8duG/nTM5z73ues344q9jM/4Eq7faP/VX/3V62+0y+37QQ8L7L0ey602NaqXztogvTat01UfXTEwDPvuSf1zX+VfXHl6j1Wr/T7I8JBr/0eDsPd1Krc4mOXGq5zl4qO3hnz2Df78wvXaMuj1p/dlvLYv5eVrzd8cD5h07N4jrcXXd7h08hZjTepn/On4e9Bm4MJXP/se394sTi6+8sELA479YuPxfd/3fQ/f+73f+/b3Sf7qcQaGGog4Oex7kE2vhnonTh53Xb/Z8BQnN1tSf1bv7tDj1WdA/nAJfTXYW8Nmz2bfHdz7C1cNfJvF8KErBxt9/Vp/vTVI54kDf7XKK56On7l4ej50feaon/TlLw4mHZsRLp24ff1kv4g9fpEDfwMeLPHxs+dD4mdd7rWx82/kw5+OwLY242ZYh23P7v7GqRxmg28j3Pb5qvMUtjg5Ezn0hnTHxMEiZv3vDHpd4ctPj9zv//7v/377z+uIg23EtZ6Lo1NXua3p8DDUY4+P15QYOlx6fdQ3M333CxaM9uXiA8cotv7Q9RqQR6yH5Nbhi7futSwGdr1czvzoDXHysJP6QN+AQ2CGw0bs4dR39bHJoT9mPsbG2LPBLI+69AaG4T1DneuDX++XF4HHL+L5ELjW1UHHjoseEnnKtT0Qww8Hv9HuT8f84i/+4hUT92vzhC/P/tMx/jMkh4eAAjS9xtkbSNAlJ6liFLISDp2Y4ug1gGxM9svwjC/LTdhTcDaG/7mHszr7p0gxy2HXt+x055Ar3eaFpWfGy7DE8N3ci1Nsfms713w7Y2u53Ytvd+lFtlzx1xNzdd3q09k3+3qQ/+lzqx9ykNO33Gy3+J3+/MKyfpXgaiTw5CnXYpWrmGz03ixJuvBu6bY/7ki4G3NrDdvgvzF0MHFe/WIUu/Gnb7aN2zX7KXt36iPc+nf639qHK866/oYnpjMxr3810Bn26cTla/1UKWZna2dF6jVdHPPtDJZDeZdb/vnZn6M4M7/yp7+Hwb62xe2eVgNfZ9i++yiGLhx+OFSffRK+fT7ZzOzVCTNcM6k22PL7Bu9vw/3RH/3Rw7vxoN1vN8WnGQ/5q6+6s5+84yqOb7Xsfj+AW/tQo9diF68YuRowfcgi6Tqn8qU3E/ps5q2Hvdqsk2LsFy9+dOL4yW8+86Ur3mcka/r6Um4Y4cShOf9i0veh1QfExbWGm5Q/PvTWBuHrfhWzfoub/xV0fFmbmIR+bfTp1BNXuemrMQy6PV9694Vf/cTd2kOBPoeWwwxbj8xiYeidB+1+86cf8ssJ24iPGGv2elQddGzE2hDbedrjR+TsrhdD33pnazjFy1sf4pA/jCQO9tn506cLN99ydAfsxfRDkJ76jJ9/OBfg45f8zXKqE1dSH63p6sFps09ghEkHY3HY7csRr+biqwcGnaGmziO9OFK82u+Ny/GFb+uw8bEmmzv8/M35NdPJaa82a303tk5+sOPKn6/99igd//RmErd87OXpfYRP+cPl4wdYr7G+V/KLhzWxJ3hZmxuX4fFLMdnVZy0HX5Lt2rzYtzYvpjgY7tZiq+GWiM1mXX/4iq8vZ+zm5NPeOox0Xue91tlw8/2b3X9V099o/+AHP3jlPHM9ZQ+LeND+K7/yKw//8A//cOXARz+McnuP87DDTLd9sia9z+lnPTC3lq+zEgPHYHcv2Ld/xfERxw6bT1hs3ls8kLIm7ld3n38Stj3f/NObe6jWXRC/9bRPF4/41TP6c8Sj/PLhSXDue8ylOL7UC5i4Ebp42LOpae8Nn2LzMcslpxifocz4EBjqSOjp3L/v//7vf3j/+99/vZbpDLGwOgevc3WZ+9veOBC48Pib1eJO4UwnBjcSp2rkTycGTt+v6ZwbfvjIRZeIa/SsKRy+8hKY9HzLSQ+TsOHJZpSDvVh+4gl9sfj12qFT5/65Izp4YeIlh3weBsLHU83llwOmutmrBbYBk6417PpQLvvWcYVLxGbHwz2RR/6VMPPn44zs+ZoJrvTdc3HrUy58+Ml3ctpc5YNdHrpi1g7THq5a+Jj1ziDsG08nTv978KwGOveoPlv7TW93vddzPZAnzjvD4NOwxwMnOqJP/Ta4PR8CJ7Gml8fccN/USvj0erSuTnN2/QtHfr1333AoH39+7beXcMSxwWHTH/G4GQQGXDhGIoasb3ng7utbHIxwljffMOSCsZzqL34w/aMqgcHPGeo57qRY6ziefZBTncXIH6fiisXZOfv+/clPfvJb96dj/EZ7B6IAhBo1CtmXyR7i+oVDB2vlXsz6/G9bV2+X6zn86wcM8Ym9i2QmZhe9N5T8srHDgvGq8ytnfMUa7cOWf+VVuOv7P7muvu5e9dnXJz5nzdVfXDUUY5+P+WUSvjNbPrew4JxcXob9MpszM+SN49YjT8Ju31j9xqRvzv8Wlrjy5n9vDof/xtDr2auwir/HdfuOw/Jtn4/9crAncbtle8vj5V+rRZ7NhbM3f7j05Qmt2lYf1llHMWb+zn7js8uT3oxD+9bLEVa93TW84sM2FxtW2OZyh2OmJ9bLuZyX8cWX4tOFWS724spr3+sgnVyk3OW9hc9nMcq9875HWouRw9mKNXyDfzcftPutsuVZjXha46Q+a35me3zN+bG13pmPD0o+9KolvI3nY7Ddk7Xru/h6xlbO5Q+vfPEXW71iFre9mYgxwhDX+i2Pb/565i5nWOuNh9zbh7WXl32lvTtCYJz1l/fkUyx9fVgfa0Od4ZrtDaJ+PtuH4tLzk4vPKfSnf36bw53hRyemH0B8huFP74Oy0etl86uPb/H1uw/qZjlI+Pb81eyuEnuxsFfqT7XghOPWwgbTD3rVDW+x+LMVB5edH8mGQ8Inf77VT5ct3mLKUW4xBkyxxur4650fXpaPdfhwizGrPZveWRMzmz4sPzZxhB4Xo7rFhXc5PX5JZybVc21e7MOAXb7V8c1W3M583Smx/Mqxa/5xcT6Evfsm9hS6+OQfZnq5YDgP+Nn5x8Oaf7Ziz56k50/U1YC1504Pj2wNfPycZ4hJ+OYvzwp9ueOUfxjsRnrxbMYZs9jWxfLV+94X6Onwz285shM+9PLEIVvz5Thf8tOnfOKajTs+vV7x8ro3iIcDfiPuj//4j6/v53G7jM/4Uv4etH/+85+/Hj70gCtcPOT2D4uGPc7VH47UdO58tvzY+Kklf7PXtz576Ji9usXgEA8zXw8byyGGzr73BX7dz72PcZHz5FEMfTa6YqzzkZ++OorBO7/qdTfY9c/cncSBr4d0BJ7XSLx7TaXjwx+Gf/CAo2avJz4kbLziJsaazSweTz0Tl91s5HcBvvgiDl9/Uud7vud7Hr7jO77jiu2BlDj1hYuXHrF7AKmmcPk5JzoCu/Omq5746As8exwIf8Of+WAj6mIPi66zs07vH2TkIGLg8iNxtK434vDNZq13xvYzOx1RCwyDroe1chp681//9V9v11b8Ffz4BS8Y8vmHtfLu91Ex/qHffWCXy31SoyEvns4CXtzksDbobwnshJ9z62FnfZUPPp71UEw10men997Bpv9s5Y6XWb+9/xh86WDzJ/DEm8sZH3OYl/Pjl+LC2fO0NqqVj6GXu3bvvefm587tn3Cx77WgJwTG4sAj+PExrGGGa44fG1y1WouPazHlsC9vvWLjL5YOTljxYCOwYfT6sWZzb4wVtrjAF0Nn7Y6s3etTX+ItDq6zU1ucw+dn8CPOzto96D7Qd6fURfgYcscFTveHzZ7ID5cf7l475WWLsxz2Bl/5lxsdga1ufuqxx8vasKbDRTw/eX/oh37o4WMf+9jDT//0T1849M+RZ/9GuzeRmr6NO5M+l4j4mmEdtvUpGkFeJ8eJ9e281w81VufWXa9OOz0/o3WX6KyVT5dWv419o2OnC89cPjP8eIiLZxf0ZWd4cnkTe/xIPJ6DWW3VWt3q64WurupdbPnO3lU7PDF8Ght7rnuzkbM+diZwDNhGdZ51bw0n/r1996A3m9NPXrhbw+aJyxm3e/7VwL861uep67g81f+pfvHjf6vH9HI7p4SfvtUP52Wd3OuNXNvP/JvZzztXLnFscbyHhUc1me8JPDWQuC+3eGS7h3PqYeBYT8SHa7aHba6HMNaGdxhs+xoRwy6+XvC5J3Lt2YW9/uWKAxsdkadcYuNyGeeL2MUZ07UUF19rWGLUQ2/4Bv9uPWj/+Mc/fn34dC7ljGN1V589PwNXPbwl1Vtd/Hyo8cFXLXCI/sFmN9uvtM+fje/2vbhmvvKeIkZsdaqV0IslYg37xmWYL9lhybO52ucTp8LZy1vO8ptfJXyMePKPZ7myy6VWc7nM27/zvOFVQ3Hhri8dDgQesRez0g8sq7MuPozTbq8O8Xvf8hNXnT5YG/jFwdxgw8t9pSPWfoDuQTs+cvlQbq6O7mp3Rk4Sjjj1w7snfOHKJb56ykEHB0b4ixU2/42Rt96rXZ2w5aOvx/R0cYVh32D3Od5cfj7WdH7wh8efvrzh0/MtFnfrfji356OOvQ9nDD/85TSzi5Hn9N09bMIPvwYM62z8zpHtcnr8AsPQTz+olhuOWJjh4sDe+cDgg7+ZFJdv+J1bfLq7Yvjai7U2y3lPyhW2OZ7iV9LDlKOf3/Z82dRghs3PvrrKt7jnmk81xyE8/AifE0suHONzy2dzweIbZri4ErkNuRO+cFeXDZYR5/RmMfVvcfNlt4ZvWHv/8Lr3vY94uOY34v7kT/7kjTxo9zfa/c9Q/UY7bL/85j5u3/BQk/cgom4jrnQe5Ljv7kM2MaR4tVgnahTjwRXpPc5rnI10nvrmTDyU77dHlyPO8RHfGfDBp3uqRnZSHj7dzcvw4sviwVCj/LhUB87ORj56fBtqYPegrgeicvVwxoOdBH5xuPRwjI6Y1Yi/XOrxIIuv2ETOBo7yxVUcDP70+MIhbEYx7Aad92G/ye4hu+95xL3513/91wvL34Q3enBVn/xXjkSf4fb9kg5HNTl/PHAyrMtt3z9G4ADDoPfnOnxfyR+ePNWnLwb++u0c1GqI50+sqzMdXnTwxHa37PFVH1+YdNZxE8fHPenBuLq7A7DU1IN2cTiKwyU+6oLtGZnXjZzuvT7Ys8GEbZ3da0luOOqvf/Kccurs1VIf+FvLqdb6oIdwDTlwrw4+Ww+boY+wxKqN8D2HXL0+YPIth3xeM2pVXwL/FLpeO/LCiSN+9TocNqMaxXjffc973nP9fw/gy6u3zs7dw0tMGPHA3yDOZvuh/u58+cThZ+ZPtm5c4iXGXp+83qz1pXpwMgjf+gAvnpfxhR23vsf0/oyf+tRLYMDiK59hbeDlbvi+wUfP6fXJfRVLisOt1xD/bHLzxTHOsJ0BPL5sWwc7oTMIP/peJ/La67vXo8G3muCzw+ZjdG/gsXmN9VrHxdoM22tw92LV50zCgeFc+bsXP/ADP/DwkY985OEnf/InpXi7R9fmCV+e/aAdSY2veTW+XO1rfvsOL79bc75sL/PXMNJBXZv/z77ohUOuj8qrbrqVLuDGWPM361MXaOPgN2B0pnzoi23Np7E++bERe9L+2nwLvtSf594LfNWor7uOv5m9fm4p/NnF6nG9igN7PuFt/K75yREXs5jOjj3drXuxOcN4Vc7y85dbrvqQzVwdt2p5ag448hhEHuO5Ehd5n5P7VXnitpi3+OmTQeJwfqOMI59bGOzyib9n7y7wTfg6I3H0zbDY7JNywLHOP7u5eHO49J0RPVz7+LA/RcrnXt66m3AXk0/8zZuTbxh9sKHTd3lIsS/jJp9vogS+ARdWYm0sXmu5ilmsYvOzh7E15QOj3tDhA1Nsrz+xPsi8Ww/af/M3f/Pt317aWnEw8FOfQeqRPa5ka+VfvWaiLh+K+g0fen7iw7FfsU8XF/b0ZvG7L375pDNvbzuP4s9awt741sWcvLZu8dVWHH/31Bx+M8xXCR+YnUE8NhcdfFx6HYsJv5i181+pDr7xKyc/eGKqg+7EoHPu5bVPipfnjMvfLP4Wl3DY9NPoPOEVw4/eUMcOH8B9cO5DtNnrTE4iP12vQ7jZysVHLWd/L4D5AtcHev7x2bpPjEL5k/Bv5YVDrwdx7T6I3fsGR2+MRIwfyvyQIl8czWL9cJPUg+XDZq9XcPnI3w9Z7LD0jk9Cx4+IiddZAz+jnHyNRFxYZvv6ZM6+MelhdKZirfnjoB9icGSzphdrlPPkFX/++fGBHZZYwie+5iQ9nXUjuzmMdHLArzYxp8TdjKdzd8bF8rc3+MDIl/8KfXJyoceleqsjPf/qlqN4OQxxZHtyKeaLmHgXzwwP/3BhWTd2P3DXEp5xSnzxMezTLVdr+nTuu/cYrwXiQav/mdqf/umfXv/PFZxeR+Qg/c9Q/Ua79zP/kI1/uPWPzoMdcfrr7OIKx4MFQ9/E8HdfzfwMaxI2nYcSfvNZjPc3HLzX5dtdMsvbbx3GARZOm0fecsfXaxFn/WMjeouD3J133Nhh8sGLD67y773VE+fDlw9ecvVeWE38ymvNV934GXGoLq8rw54dnhweIJnpt9/44l6fyxU+O1v1mokcxaWzN3Cik/O7v/u7r4fp3cOvfvWr14N2vfAngL/ru77rsusFrh60edDOjgPRCwN/uHregy+5DP7lN7Ob3QsSlt6xwShHZ86fLv4441WO5vLwxQk2Hf5m91Bc9yRbZ8vGJ07FuyceeHtYSec5l8+tfT/L7gyrCYeGPERedeOmTuft7sipVpjs1uzuprwGDHjVEuYF/OJLvG2t4TiX6hAjt/PHpR65M7jUf35i2MPoLnWm4vmomS5/tbCJM/SILr7mMPStf2RTW7ybYSbi8BQbF3M1hAmnXOw4wLHWaw+QvWfw0WP5u3u9NstfHvzd88UrT+coNrv4Xuti5ZevGJzjzRdHZ6JXMJxD9cB35oQtHPmsDWKWBxau7rI16XzDKYYdD7hi44Wz/wmzPR789h986PLFA37Yy6Ea1G3Awat+4FFPcJCXwIQnnsjlddEZuF/64vVowOALr9ekPRx+ZiKvWPcAlnywm/Hz2u49wl6s10b3FI6Y7r98HrT/0i/90sNP/dRPMb99JtfmCV+e/aDdG0WFKVRhiXX7GtgB16h8783Fd1Fu+WkCqfG3fP636/RB77bG6lbb2Z96b3Zx2F0iAqPzuBSPX9bfmn+5OjO+zq199lsY4hv8W+f7bs9qkJfg/BwRF+dw6ll15HMLNx8x/GDgYDZIPrfi6fJ1xtawiLjte37h2ctJqjvdxrEXa128NbkX85b1ra8bH7+1P2VdHr4nv6fE8wnjZfFxPeu8l4O/3utlrx868Svh8q0HfPa86TsTsfkVGyYf6+ybh60hLuEr18aw86WDZ03Sd6fYys1+5m5vhlFe+7DCFv8UCRPnxUkfN1h0DXs5O5Ot2fsaG52zWp7iTmHfAZOoxfD9bPsZN/MpcMTIbY4Lv+KKqZZm+njIF1Y8+KmHzfDh4N36n6H6jXY/VMkT73iacar3eNMleBM9WMmneL3xgaYfLOhhNja2df0x88dvRWz5cSTt12/Xy6t6sy8ev3yzx0fcrtduHVc+nWc+YjvX7GG1z/fWzAdPOAYprlz2pFz4iDll7WsrvjNtz6faTjx6g2+DP04bT2dPL78c4laK4VcePr3O2JMwfFBnt+erx/HnWw54hg/OftjxAdzdpDPTW8dRrjgWC6+81tVXDL8VGLCrS6yxUmxYbNXJN47W1RIe32reuqtj+8C3+2ctH7v+ee+zT8eezSw3W7Ww01VfPzjRE378W+st3/izxRGOHGwNdv7VGV72emGfr5neIOFem/lSPVSdVxhsO/jEOzwz/2LiZF6f8OUw4BA+L4uBy44HsSfiCJx48yPt/SBMV8xlfPxC5+y7I7D5Ond4cWOnYxdz1hM3fuUpVi728Mz21ZtdnFGO9PETJ2bj+KzArafWCVz8zYTNKGe+2Yszx3t1rYs3w+Dbmk942ejw87rwvY/4wd6fjvmzP/uzN/Kg/auPD0x/4zd+4+ELX/jC2w8M6hse+oun/H5ex6dzqx5+HmB4EFa/vdbw7jWLOxs8M+Hj/nhwRe+91HsqfecnFx+zOO8zre3DwgsPg4gPB7bz5CsHX9z5EGs+9Z+ODXf+Bpvc1ciH7AMv+/h2f+qDnOXz4EY+dROccYujNZzq5GPNDxc44vGJs9lgk0te/u3LsT7p5DMWK53ccnqQ5rNX99Bv9fb/5WF773vfez2Mdz/hePjnYZsHTvVMDSRu9vuQ0L6+8YOjRlJesc6l+yYmXH5bcz3HX7xY/YArjx6KNZP0OFn3ujPbu4fr2/2Wh8hN+KkbR/m8bvRFfiK3nsDU584SFzoirvvXOfGjJ3LCdZf4seHtHzgMONVfj+jE71nDNnBTj5h45d/DyCvx45deB2qo93DFhhcOXssbpkH44G4UazbglZ8dZ33tLokvF9/G6p0BrmxqU6MYEg/cYBN+coVbDD1/er4wuz/i2OJcrBg6NjHyELN4umrl4+zo3dM4wiD21uZy8XOv6TzYpYcdL3sxhlzdrbiY2fbcw4fBP8582fhuneHTdUfC7B7CKNetftDpuVr4ySs//nLCi1c16gku9UpMdzGuvS7Ew8bD/ek1DMtgw0GcvM6guqsFP/m2/mzyqN1doTPk8N5nlgM+vRzy+dMxfjntZ37mZ5Ry+VyLJ3559oN2b9A1qMLLVZMRJO0VqxlGB7AxcIg4dlLjrs0b/HLmf4PQ3xIoPXIJ6lO9K7m93p367M3OhLhIRgIXPlmce32j79zkNGCL7QzvcS3nt8Nc3d3d7Z83BXajGtd+j39nxa4X2+czJl85+Mn5pqVzgivHU2p4Lod6dCuOrf6+W/nLK49RnlfV6s7y57f3Hh7eRtI+P3txvTk7O/vNyWc54UVOn3KYy7Ovd3FGr638+RYTj2zllas4/nBwNdufr/t09PFsDpuPcUp+5jin41tMunKZ6VafDg6pH/HffXGX4+MXsdVvJqePb9ZhXw5P/AKvnhXSnbCX+xZ3cXKe8XjVK7MPAh60+5+h+td0cnK/lM/4gs9f//VfP/zWb/3W279FIxc+3Q28jPib1Wnww8Ho7pS+OH7WXlNq8MGmPvkAxEbg3pPTdtZdrrDCKS7/uKY3t94YOPqgJiMfetzTtebLxz7Mcoa7s/hTxFVH+Zr5vgxPXrHrXwxuxgosvs4Yl8VerPTi+fY5If75ds/5F8PG/+SEBx2/cIthq8cbB8vovvEjdPzg4MS+M1x2PPgm1j7ku4vupL3Bz5203vxw6NiWa72T3yD8YK8UV9/Wtnibk0/3QRxcY2X94Rh8nYdYkp4vjnrks3fc6fmIMcji2tffauxcxRH7etdrulxmXPwwYxYTjli66ooHnYGrGSZ865WwylHM4ldLc/Fbr/xiqj8fMw5schm3JN6bF5Yeuwv1q9j1D9Msl4Hr8lWXwacc9Ztf/OBbO9+V7GacOn97+ejg40xH6G71Q754ZN+7GXe6eHe+/BswDNIsVl5DfWZc43Q5zxf+RJ5y2MMTuzno42Zmu4fL9ylSXrlg4lBP2OjyUY98fuP8x3/8xx/+/M///OHHfuzH3q79KfnWBzb56uOD9t/5nd95+Kd/+qcrl9+K9eDGuVa/14+HrH670/sdoeu+2YvzYKFzY/dQwZALd/58qheWtYcS6hZDV146dmdoDZtPOeQ9RawYs7y9dsrPP3x8CD860izOa8/7jhqcQ7b1YzfwYocZXzmrgd4aTnX3QPRK/PiF3SA4xStd9ecHX15ciboJPzq52DsDvIzeS/nyg4ef+HLCtjcTtd3qO3+/8es33v2m5nd+53de+GI9aP7GN75x/ZkX+P25l2rj4z6U37Mg/Fb4VjcOanEXt8fWcc2/78/qM/Sh/5qhc3TPe/6kTjg4OxecxPR5E747jovzk4fUYzp5ugP9QwC7vHCymcWzwV0ebPTqlN+edKY9kBUPt7u3/PEk/hGIjxr1mQ9MObuPcOi66/LwYzfHBQ89IfrEvj71uVh+/IupX9VeXXKLlSdOYqvd7LzrldzlMsM1423NLzz3TW/Z9h865OZHrHEWW4/Z6PWp+8vuDPuHNbyIWL5yplOHWDH6jvMpcshn5u/M+MlB2LpncEhc5ZSr+p1vNnmJvtM51+qhZ5fHTA/DqPdixMrJbshHqpEuTvTlrn907r+7Ks/ZX37hq0Od6fjiEg/9s06qT4y7DYf/vobowsTV2hymHPUnP7rOqhxiqrV6d2bTE2fmdQhfv4l/iHQucIl8+q5e/2X5H/7hHz589KMfvWxb36V4xZdnP2j3nxwpykCkUR5FVRidwhBFfgtAtKZYsy35XYf9TufydWDvFO9bHe9iq0F/69fZJ/tTtzzFwoDVmfDvzOjqkzjn3P7sW1j8wojf3otekGe8uNcReeMrXm5568nrYIqBWY+XK9zNl6+Z7Z4sTxyNe/Ic33sYT9HLo1cEn+Vvf9b5FMx8xHoTg6l/pyz2y3pxxr3O/lYuOrWfdcPPPx9z/TDHN7sYOnhG9RZn371hpzeS8PKzd/eMhC6/8rDB3R7DLc6a78rmpc/XaxtOkt9ixwmP8vK35++8ze2zqYvOSHctXnyBKw6HYu0N0rwY9PbVl624+sxvhX3711nl04cEPjC3J/mcM7/yLld+bEk2ezWHv/H5FpePD+5+QPcN3t+HI/kU89wZn7/92799+N3f/d23/zNh/ehDW3hbG971Vv7G3h86Pnz7QGk2+gEEpt7mt70pr5m++5G+14n9cmkNV1x7fMTgaLinxokLb3nAEZuwGeHTd2flMkhxxYrZ9fLafOE3xw8e/mFcSeZL/qN6exmvYs04E7jWy4H+rINOXH7WuFVH5wGvwe68qwEGKU5evvF6y/pW/8tz6vivVDeMzjcu8e09SV5rIs7eh+u1+9DefvNYF98PRdXOVi666qNP6PkYp9QverHVzrf+iC8fe/n4E/vuR/VXB4zOm60f2q1hxY0fHcxwYdN7Pzg5iC0+m7kzX070/bAUXzOpRuvFs2Yj4st3KeaLPPWDjxoa3PSh+Al720ds9uUMi4Rv1sf2bHESz1ZPN27PlF5NDViJtR8UnY8elr8c5s0tpwHfTHCIY7jmPfN86i27tR8i469n/NZH/vKJiUv18bU2CP/lxi6GntjLR8z26nbX8JXrFlf+cTGLhVsP2Ak8wmbdvvzZLqfjS/jVaE7kYYdHb529tTmpZ3rKrwftf/EXf3F9Py82/6fO5fja17728Pu///sPX/rSl65++y1QD308uKi/fJ1FrwVrDxQ6Kzk9WNFvr9Neq3GrZvvyivG9XA75svHtPPnQwzXL76Gbh13OmuBg5JO/++gu1GeYdF4j6dirDRZ9NrnUaJyvJ74JTLmrEV6DDz7yyItDPUwfTr70u8YnwaO+y+uM9EK/CR5y1T885GPvrPiQfPCWs9o3Rpy9mN4Diu9zmHhn0sNkHOkIXPFmcX6D31lXUzn5WuNExBti8YZpEPXInR1255w/G39+RE4PXemJuX9sWA7Vqa/VGSd+dOWon/I4A+fS2Zpx0jNiHR6+MOmsq5vOnsgBFw6dIZ/zaM+H3WCD0/t/d60YmMWpXS58xGw9bPWIXUxcYFkbxJz/6t1Lg8Aw2MUTOcsRvhr4xItf520dPn/xbPDgsKWXC5ZzN7wn6TPfXifs4npt1z+9pYPP3/zv//7vD94fv/71r195YPIpP27lNhN8+HVWnWt886kmXMS6c7jCZxPXHalGOrwMMUY9sw5zc8YF53KFgYs4eeoVHzF89BPv6mWTw2xsLXxg+P4Rf/HxpINlTvTe61DNYVW3/DDZ48vmNdX3JnZ41c7Ol857Entc+SxO3PwDjHrtvU+oofsbp/ia4amj84TpQbt81rDk7z2EDi/4uOPkQftnPvOZhw9/+MMXNG7PkWc/aO//YI2I4cDN9xIroOZFrMvYC6jCzMk9PHaY5GU+l8PjF74G7JqtgZsr3zc1P4VfPnI+pQ5+XRixeq6GM5bt1IlN2PfChdGLsH29claEPdtiVQfbyU+f2enNfFZexnP9znWYcMOg605av47Agml0p29hlZ9/43Xy3YopX3Xd8nkdXbhiOw851EnYjfOMLuMTv4h3b2B0H950f55I5W23rZtS7UTd2XDcda8Puu5C92Ft2fm4650Z/b7HsBvlaObPLy69H2bXw85HvNxEHH05s4mzfpXIQ8ST8sFtdA/gGXFNby/u7Acdn+rP70o0X8KNQ6b82WHZN/IxL2dr/rhYZ1t/az6knl6bxy+9x4krlzkJs9rpYeWb3zmfPHwfFNO5nf67l8sHAA/a/+AP/uC1/yV9Ma1x+ru/+7uHT3ziE9cPMt0jPZATv+Vt3xnXPzjVUU/EdAb81doHYfsw+Oe3eWCScNzR7OXqrvTByIer9bEujxg1GWqMj9zFvJXx6V/FhWuGZVirywibLn8Zztf22tjtca9unDuTMPndknLxw6dc9EZnLBZHfeQbbnO+u981XBwJjHDNRG5n3uc9eOnF2ctvznY53PiSvfw3XP6f/HIYeJjjuxjuTv2hx9WeyEkXV2tYPegJOy7lMZfDbKjznrBlD7OedF/jCJuUoz1/GJ2DdfWyeW3wdTZ+EPEDgzVuchIxdPzKxw5Tzc6Snq7e8G3QG/nAg7369lfCxy9w4mwdZzG3JD1fEo/1patvcWsunr9aDf7sbNb1xV4NJFtnn65ZXeL452tOlmd5w16ffgit//HK55zlkJs/vB183NvVWAAAQABJREFU4+LM+8Fx89cXcXLHk97aiCedXOcZtudrzY/YFxOWGad8YOPjDhhef84OF9LdsK4Wa/H2RDyxj+ulGB2fteHxMonj8uZP34DHjkvY1mcMnb6ojfhzEX6T/S//8i8ffuInfuLyvwzP/IIH+Zd/+ZeHz372sw9f/vKXr3vgnP2GuTPXP3741WMx+Hiw4DVtTfjz89DE+yLZGHW4Z71HqtMDCr3d3+ymF2cm5bcW64GuhyPys9Hh4D2qnop3Bwz3ARa737Dce9o9wcsQhw9/e3UY8OsXHgldvUpXnLnzhOu1b4ZFL/bETC9/70H1Ab5+65kZdw+19ELPxcpBb6gDPj0uhl7Zi4PfvYu7mV3NHkwa9db5GvpIOmc5nAV8tt7j6Ok6K3x60K4P7MaK3PKJq+c4dw74iqHzAM6sP+UUU43WhrwelLrnPaCD7x+sOlsYcOGrwcDRcGc6Az754mrg0cM6uZ2NvomVj78/saPnxeg93Fv9l6M+mAmMaovzcsmn/nd3cBC7/eQrb/e8fObV8alW8eoy8zNXazq+8rl7eBA86MTwN7dntzfUaZaTncinZvv6mL+cbMXgLad89M6kM2CD777Sh9vD0e6RmQ4H+OK8J37lK195+I//+I+LkxqMzuVSPn7hi6cZJ+/R3qf0xOjs+LNXb/Fm/OV2vnzcaXeGVKf6+BhyVbM9gYsfLuXtPqqtnsEj4mDor4fMcsKoD2xEb+IlRjys6tAvMf/5n/95jSvo8Qu/cpnzh2GUC35+9OrE3xnqpbV66fUEV/eMwMAFB8IXljhnHq54A77+lMP/xFl+tXsvh2+dwEtgydVrgR4Ont4DYHfPw1/ucNn96bdPfepTDx/60Icu6M1RrpfNr/WgXXKkSM24l1hTNbTmidlLxV5hbPnxuScdkNz38haryQa+sMXC1uB3QzpYc3XeyoMTH/xxeVUdYXRJi4FBxFuzdzmLOWd+8hM4RrHF59PlOzHu7cW5mN2L0+91616cuFUDmxpeVfdifLuue630+npTPHvNdM/00FrPiF4azz3ve/zgy9n9Ku89/3dLv/etWuXqDll7nbqzOPa+0+vMvHeruL17ME7p/sNcrPUrn7k3+9MeZxgG4Y9TXIvRbz44vq5Ua/nC6hzjs/jdnXyrS8w7kTjAkBdusq+TM38+T53d+Xtc1RQP/eZHd96XW7mK67w6Yxiwtp4zno8PB+/G32j3oL3faMdDb/Wgs731mqHrPQTXPWP9YFdvd4CvD0N+oKtONjXxe5mwd77lwi1+PozJ54ObPoUvLh7LD4bevyrvyzitrftS3WzyGXKY8cLFOt7228PFhLV1i3nVHTnj4Rudgdyda7q9e/FfnvGGLf/ec9xxFMcGu/tDx86/e37yo4evNtzeqdSj+lRu+x4qnHn88OEOqpnUA3XBo/cDyNm3e1yL71zFW/uB58x9DyM9//pJF1a9NesfsSZ4Guk7I/n1Q01+yPGDWX2C2z2lI3T6ApeuePpyXY4vfMVnkxN3POqtmLhsPD+c8IXB52USV/7GvZ7WA/mrs/zhl9e+86bDrzvbD6p85PIeYz55sD9V8N7cxYXvbAi+xvYr32Y2XAxcq3F/0OTrARudHPph1POTi73+lTu7XHRynUKnZ7ckjuZq1++GXLjLQ8z4EbM930QN9mHRVzcs9hX7sHEg9qffxjx1jYfc8W2NW1L99ccDQt/H3+SDdr9d56GSc3B/PPjuP/vHQ63bL68LDzLwZ8OxB+3eE+tnvauebN0B38/Z+v+7wClGj4vDoT74HNDDdnhxcAf4i9fPHvils/fexSa/OJzt8YVrbchFp+eGNd0pdDB7GCt3cXokh/xq6TmHGJg48E/o6cz83cW9Z8XhCVc9MPtNcjpnh0u9CDNc/ZJbv6uz/M34+37n+1YPqnCBa8gJF1Y1Oke41VrP1YefIZ9eeZBlXU87Z75w1YFvnOPT+fCTFz+zfZhi4yQOBi7q9dvJe94ejOWrdrnru/7haK+nMG6JmvHCxRqevQdvMLoXXk9y4yePfjo/a6KGcvDBfYVdLXIY9WZ9rPGVt/dqe4OICVcu9cGVz6hXbMWIw1GcvGb7sE4u4uQ2SD20LpaPHOHWEz7xstZLd4zO+eJKyl8P4Onn5nIG7lyvITncZQNn+87J3YUlHzvBFe5XH/+sluFBOx5iceK/wsbfIHL3s0o9FsuOfxz40p114+cc3ZnqVB8d38ZZN9/6zN9QU3zkJmZDPEyj1zbs+OHOp96JYacvF67W+um/GvGwne4UsfmyhaOfnQu9fsgJkx4u4c+mJ+6D1w889Z755PL6Fp9NbL2ub+roz6H13gkf9i0pH87WOOmx13vnrXcEHqlncnpd4PvBD37w4dOf/vS39kF7F8JhWyv+ZVLj+CmiYd8441+GKZ68zCe8Lhdfh2bGB0Y6e34dRBeqGVYvBnF8xbLn08yXDyxjpV6JJ2Gsz611eHEWZ51eHmsiR5fzFtb6Zg/L3jpe5tO/Hpa7vGEVm331Ylf43hM9gqGeFXwa7AachnM482z8U9aw4P5PSHlx6J6op3PYe/YqfsWLqZ9iwpAL7urY3pRsLW8K87k4vanrp9oMvOqHvTu2XNnqN313y0yyxYUeBn09LyafcPb1s1hi2bb/5VuM1uHH1V6ORn7N9PGuD2x4b0/g2JdbHGnffClf6DendT7N5bY3cF4OYd2aN3/89Wn1rTf+lo59zyh/31Cr+VYcXbnjnV81hrUzn2LpN4cenOddbHfIhw7/ku631173b8OF2YzP3/zN3zz89m//9vU36XCIR7VUm5jV1Tsz/dm37F5zPrz4wOUHGvWEWR/jc2/m3xC/GGL0Eu/W9vz5xQ/H/NjiZ/1OpHOEAas8caCnK2d87Bt8TllbscvfaxUuPCOxLpZ9e+CM9ImdsBvJmef07QM8Hls3jPbhxatc9n4YwofQV4/5lvDps1a43U/+6azL04yrWD71gB+h48dnbfQNfNl9KCdxhNmeDs7Wah+H1sVegS/5ws/AoTzxCcssH2FbybfZeRv5+UHBw5Jeq8XKpVaDxMNarH055ecnRu/O/tHzEbecW8NM6MIoxl5sr+d8zWHg0ppvHOtd59FdYX9ZzMbJX/3ivM5ImHRwDetG+2oyE3oY2fM3nyIvP1J94aQzi01vxtksj5/DypFPD/XClyM+Yox8N7aeibPu3K3jU24+t2rKL3xza/5hFYtLd5YNrh96987S8TMTvDq3SzFf4Ko1fnKXa9y+aclH7vw2hi5eratBDoN/fQFs3+vZA+43+aC9Px3jQTsePRR05rioXX7vYz2c1C+fJ/TUqD7xePfato+7925xBC7Z17peVHP3DXb3i70e8IMF24MRnPnxIcXJk87aKE5dYYvx+YJvZy2HoQZ6uez1IT86D328L/KrnnLBrSfyWpM+x3it8RXHbg/LTMIRp/dy063NOegtLmL1o4dm/OjjYFZfZ3sBPX4RDxsPNdrrB5199cP3WtK3cGF40NTDZv7w9cXw54H95QIY/n67B1L44cLPb7mrCaZzqyf8Cb7lFyMvHWwzgSOeqIGfgUvCLhd8en2rRr6dgVkOIqYHZnzi2JnZ6wneOC6O3ukj3x4OVpsc9dvaIDD4V2Pnudi4y0Oqv7Mo3kzS79o9wxsX8XLTxaGz2LrY1GKWm48hz3LrjpffzI+0zl8d+IXFh66+4CYXH4Jzvtbs9tb7eueLJxy5DMIXvkH8/yHf8573XA9a7WG4l/7rB7XD4Ov8nR+ccoaJ2/a4fHh3RjDqGV/7+mgfVrUW1xnxkRenfOkWS98JuzrZiDivDfpwizXTh+k+yEmKb10v7PNXhxGOXNmKo+vO0/F3LvgWC9s+Xvy9n8Ny57yvbP764lyM4sy+N8K39gDd67u69c/5iqlH8np/8l4gL5vzN6pHPL844I2XHHx67dtXI3+DL5EPtvcsft/yPx2jyF4keyAXuztfHEDNU4AG2HdJ2Cs6iL0A6ZrzfZkPXzn4rr8YzWSzxse64SDoDOsEZ8KvNZ8wiomTnOUpv3r5lXt9YdunsyfhyGktHo41nJ3Fshknzlto//eNHE6xXS4+xandKG/xdHzEijMXR2/wwY093/Tmp0jYaknOeunD21n+exLfjV1fdkN//iel/uGwd8a6WqvFPt1y7lzZqot9feWxh6tvYS7O/+Z1d0ZdW3d1qtvY/mxMfmcPYBnZvReK82ZNshdnX66Nc0Z7BnzYSdiLsXpxxdOHG144xVejc5aHtGbrvmRjPzHoVuQi+TXnA3d92OWpF/ndm+O8OL7/2BN4rRfj5NEel97TijvfL/Nthsu39309y9a8uXctrlFcWLd6kA2GDxMetPvttTf5N9r9z1A/9rGPvf2g/Sk14MNv75t6qo3dWn/7kOMDlBrM9W7vlpgV8YlcxuJ1j7qz6xsXPnCKN9dnetzMDfZTbulOn92HX042azn0q9dVuPT3pLj4wa62eqfGegGnvRg+nRGsPg+Uky4ezWzW1bHcFguP4je2+NW19gO9s28PIxx5xMatPf/Oka6Y7MXU23zPD8rqCVt+oxh6ez5rk5tPOcKWm18c6vmlePySf/nSm/meUs56bh9Gvu3zpT/5bDy7H9L6AU/frP3QaU3ip06vSz/Y0LHvZy266pVzf2g/a++OhF+Oepsenlj+nTGdvRkHdmtjpZzmhH8x9NXBHsbOpx4/MbjAsSf9XIOXO0Xf6+hyePxSbvgwtgd8+xlp69g1nPoUZlj21o3szfnJiasRFhtudHjgHtfqCz88s3hj+2ivN4Z1fOQl8PO3D399wyyGz/ZKXPz46rc8fsjtHOz1s56KCdf6FP7yGNZ8ibVB6Aw+YbUvJp/8F1NP+OGevV4UZ8/HwwR/Ouav/uqv3sifjvnq429s+ofyL37xi1cvvebxqF458fOAdB9k4KWH+soHvzju+RTvLOBUtzrl4ethCjxrA2ZnxKe7x8d7EBtcWP7hz4MZNroG/HzM7Ph577GHG18271/2xeHRXk65+InHx7CnJ3y727ANAkdM30/svU/yDYPN8N7qrqqPhB0/Onb84cSxOvjDFG8mbAZfcfXVOlE7juHhZm8strthxJuNqMfos5l+ORd/isH3bP8VBt8PfOADD+973/uuvsnlwZf/aaBeifEgylla0+GoJsMeLzocYNenfKsTtn76vKh31mqBDyvebMU0i0344pJfXNj5sTkPM175yVc/6PF0p3sPKlfc6htctRhq7H2LHn9+bHjAdQ6bl9+KPHIk8YOBk7nemNnhwce1OyQvrKR4PtakOwNne1gMrPBg8TfLB8MsTi5zOn7OkT1ucHAkq4sLXBhsK3SGOp2P9zTvPbD02t3r8w0Medn2nlVH+ctV78z60r0pHwy+9VtdxeDIj43eGj4MImd37FI8flksPSP85DHqlzj6epG+PRw86re1QR8X2PzpSTZ56eTTN6KGfGGydS58z/rV2oDLf1+n2xfx+hJudYmD6x9PnBnpHybZ/g95d7Zja3JVezzPM2DAljBGQggkkOieAsEFmM5gGwxXYHok5Asu6JtHMjwBd9zZGLAxMmC6hzj5+yr/xXB4rdy5y7tcPpwpxYqI2Yw55oxYK1d+e9eucL2n9AOGgSd/dYbpv37xB3KJ/N57nVd6s3gcSL3BQ1/67Owc+2zj50G7v/D2Tn8Pf+1/OkZjFN/FuBi/4EXxCCtSA4hGaSjRAFLxHfSlPF5gkRp/mK8tnPzC6gDZytMFC8OefzHp87fHP97ZuwgnJ75GB7y4MOMER+za6dTgIpSTvcu6nPiSMMyvEvHw61P+24MzB1siLrt8Z85s+W9suntzscXYyyeHdXb7fMI69+nN1crn5MvuPPjUY7qvt6jNeVdj+eNsxjO7O3GrFnHdr+1TseEtfuv/bbNe3apbD0jvL3v9zF/MLdHP9fN56N7AIdnDb76F1Tk+53PG4SXfyc/egLVn3n51MDcnHu17n5z+J4/tm/juIhz7xuJsnhNv9/yqx5rA8d7Ej86aT3zp+BikOLwSOv7F4FrdGx9GOL0nqw3m4ob/klmecuZPVy1y++HvP1n7Wn7Ah90sx6c//emHX/iFX7h+YaqW7OccJ/pqpSO4+tmkj9ZJMX2B8QW5LzHPfa4WB0f9uMHtjoV/9o0+XdzEh4Ff3DtDuEZxYRfT/qUznEYY9SVOL8XiBwPn5Rce+2KqIxt/NsNav438b+HC2zz2SXH2+YRLV264DVz42Pe3W/gSNVUX7Hi/ZX3rld45GXAarN2F8hZ/xpy/LFR3cfzxoA+XjpjlhO0O8yNijST/bN2t7M1xbg+73NYEj94b5ZfbevXVKwZG5xtHdTdgW/u+3h2oBpy8J/3SUr64wE7ql5mfQcJZPvQ4s8GSs/6yJeGINcpvrt/VU0xzefnCNtTSup7Zy69+62or98aH3dzDiHzF4xMGv5Mf35Vyb8zaX7WGf+YUU53mpBw4yOsBhDl9WGL0z7nr0yndX/7h1wNY4WycGGdI9JrYL0bn3L04ewWbLj9r+enL60zcYzNZ/EtxvIgjzdYbI5c8+tRazurmj282e1jscIj4xU9XLeLhe4Dg32b/i7/4i4cf/uEf/qqYC+wFL3DJF77whYef//mff/jMZz7z9kMuZ4orcSbe1x6Y+g6BB87dCTV0VltPnxU92BBXTrhq1X93R031R76Ezw55PcB1J+ubPHDwrX8w4OGDpznbcuDX6B7HEy+YYj1EUoechpxwYfmZ1OeevQFjx3KDW65ym8X1YHU5Vz+b2nHBCYbzsDaInGHLaW824BO++lUMHb/s8RfT+1q95dYHnORmF4v/5tUjfh4udU/gfdu3fdvDd3zHdzy8//3vv/y9Bz0w5++huwdc/ukJcXLG3yynmf78TGKLb1yci3ulnmxqDlNuOc2EDTbe9Uds/S8OPjy2zomtoSe+o7LXY/7ssIgc+mnmj2vvLTHys5vdLfF8/BMgzj9+5Rcj3yn0epvIT9egVw8Ozi+BhS+R23tfLnlhwLTWu85XjFF/qjVeeitv+vLKszzXbl1/wi0PXnRGGLgk5YVhrY/dWfvOWoyhFjX5W+582d1DZxSunPD4sRO506vD2r1yTnEVA8MeB2ep3/SdDxw2Z2zuPcEHrnwGPV2566M9G77+wABHXPTPLDfBA041XcrjBWb9EldOHKu3OuzlklPd9UUcnnHt7OnDkNZePu8Zen4GqZ71x5uerpjie6+Ixa+62fnXS/HO23sszss3TnpXbHb51QsjnfP0HsG7vrET/ZDH55we4fR1f9DuT8hdjA7nYvb0ogiD1Pgn06XProEV3LyHdcbUgNVbdyHSn3Nc+GlWedOf/vbxOHOKh2PsQcIk/Bvhw+JrED2jE2Mm1rBJ8dfm6UWsy2Pw5ePiFL++1vThxGN96Ax1mDd/fmxhpLs1izUIf3GnqA2nW7bT91V7uWDFmz9cI9ur8ogt7lrMi9iw7/V33N/VpXq6sxLhtWfLbtDr/T2+7MUuYTpSv+zrIX3r7HT/L4o6iDoMe8Naz6qv9xffPtu2//REn4r1PgwTFv/e671/wi+2+NVfwI8veLEvr2znzFcu/iv2t3LIF6f1v7cO9xbPjdm+0ZejuJfiLOauxeurQeDrO6lOa/3ovOQuP5t+GnwIDL0L81LOC18+K/CKsZYbj7isL1vc8rWHe8r6ZsOLry8l79aD9o9//ONvP2ivL+U/ZxzJ9tReP5y/OYzqze5LjC80fAi7nqmv87oMTy9yhVW/fMGlP/ML4Zstf3prZ1gePrdGuWDvgHEKXwNuWGdMeenPvlSveIMPnK2hnHDqE59iy5ufWbxcfGCu7BdM+nDLDY/Yn7GXYV58Lsa3e98ernhcwsHHl2e6ZGunN/idIs65ywlPnvzKqeZ6TNcaN3sSz+ouHzsu9MQ9XpETHg75iAmXLyz7c67+8PjgbljXg3D5WVdrcdVT3zc3H3lgsZuJep25IZ7eL5B8CAx69eqxQQfLqF98ylfPqpN+17Do5OqM5OKjLnoDPp1BxNSXauVf3mIu5yd/seUItzzinFd7NevDYloTPnHmEw8c7eNqlkdfihVPf0/g8pd//cpJt1hw9JBOruJhbDy/fIqHaYgjZr+Ibiwdf1j6bFSvGPnqKT9jucYXjsFGrPGGx6e+weNDZ8DujsC2pxe/Eg/2cuTnd06/aJvpOg+5YcISf0/yMZN8Ye1682bDZznHWxx/mHyJfYMdTw8P/U/N//Iv//KNPWj3T8l99rOfffuB356p94Cfu74/7PtB/+KJM2473Ff9dY70STFmNmfZ33iW11Dz9tGav175G4cegMnJFzYu9U8snvbxMhswDD7dC35wekBiTVetcnpAoh4YcuHduXkw5kELzMUOnx5mYq9mn5V6SuK+/YIfZ7Oa8fDQRh4YRjXBkVMdW4t8BAbhY91ZyVN+MzHzg0/w8hAcB7Wz4y+P2vga1gZMMX5WmDt/f5v9O7/zOx8+9KEPXbF66QGUGvh6yO7fUlenmHoFu5rlx6P+XwQfX/jGWV+di3uFK07OE0b9gNODNlgGXX/YoUdi62849R2mOyEOpj1bPwfp1YATXTXAUbd/z1pvxLk/fODIi0d/AOEZmRg+3vs4i+sM5cHxFLo4WFfL/hyRD2ccDD7ETG/m45y7L/bWauhnAy7FwVHrKcWn59N7LK7NfORv7v1FJ0YOPOIPC1c5CJwd/NwJdcDgr4f4mzt38R/84Aevv+muvv/6r/+6bOITPn0W1B8z0Qc9d5fFy5VOnLVzdjfxEcef3ho//+SJfHLgJq5z7L6pjfCrj+Zy+4xU09kvMTDYDBL3Zjr9rV9yxF3v5QmXDzss97LPZlj8jKQ+2IsxCF94fq+jqzZ6uPpozWauBzj6LxLEGp1tuN0t++6keDxgOHufM95n8pS7+vjCNMLsHLozsPD1OeMvjcNRhzO2ZsNfDkM+XHrQ/k7/CdfX/hvtPkQQcZCnKLRR882t2TTAfEoNWL0G8u1ir+1112GJu5WfzuhymVfEq4M+LLV0oPR6Uq301jDzUUe6sNngkXJnM7MZ/JZfedbXmh6OuVziCL21kQ2uYZ9Y8zVWwil2sW75suP+tZwfbmT5bd70dNbtl/er1uHVBxhnPa/CeDfsnXvY8Yobvrjbv5O6wzXDgbfYbwJ3c9xbd3bsewb3/G/pO8PTRk/0px6dOjnrJd96cA8zvPyKgeHM2rv3STmyiV0eZ/64Ft9cjNkPq1uyvLLDo79ly+fWXL74tOdLd97Rcpz+7cWFsTr6U/g19Ie/IUf9subTHkZ+u6YLa9d0p8Dks2Kv1vXn1xmHLaZ1vs19+Vlctr0zcTP7svpePWiPMx7b++WOd1+atv9iDV9QfHnyxceaDl4/D+pnuW71bnWbuz7JS+yTMw89vzhmp4+D+Ab9LQkDfxjhbFxrc/lg7dq92buwNr6LYS1PPK1PWftp27vMD/fNfeKV+8Sx767jC3elODb4pPOPO524OMnN3zjFF193J392eIkYe9jWiyWGDqe4WHdu+dvTi4VzCr+48yPFiimnmTRfm6c9fxKWdTXBbNSTbGa51Wgddv7NajCKV2+/mIln80ukmcCh977V33pKj2P9oi+neUc9CQ8Ouxz5VS9eMOPHLp7dIPmyVSud9Uox2djXR3y89ade8BFDiuFLx0+/2vPxS5laslsbfPkZ9Z9/fKyJHBvzlvYtv5NHNuchBmfYYWRvTm+OD1t78fEvBm52+Q1nUK/srctbL+w31t5IrMXyJ3G3Th9WufBgI7AJnzDYuh9s/DtHvwj3yzCdeP7xaha3693XB7pb0t3Ghy+xpg+zntDLH6a1US1mPD1s8zfa39SD9s9//vMPH/nIR64H7T04KTeeft7SG/pOh6MHkj0IqnY1EfY+N/S4s6ketfBVD7yww2nmZ/Axw/WQtb/RTE86Pz5xp6/HZrF4hMcvu/V+hvHpjonxmSc+/tYNP1vEitn8uMXFOv986PqZVKxcjTg3qxkPg058edUaLt70nRU9f7jVGebJiW9iLQfRXw+m5HbmbJunOusPu2Evh3jiec83fdM3XTNsnNj4lcMDKbncH4IrCY+evfPJBq+e6Kt762xIPbXmA8u9hKOvOBIc+lyg41ce6+5pveWLT+dRT9RDD48ufXFy+idz9JLOA0MP6JwbgasP7GqAb/Yd3vOycuKotnpkxjPJrmac2Os5G138xNHxSR8WXvTssKxx6P1vT28Q+1PCzl5euZYTvwSO3HqDSznM9mLZt29inX9nlV8PcuPhLns4bFaLnuPhb7SLtffgmOh9veDD30ynDjys8TU6I7ys9am8dO5mnOnDkteDdhInd4jU22vz+CKPODNhh7X56vFyExOXMOSypificMFTbfTZYMnFR1/Ye+/qpfx8iNngQ2DYi60eedfncnx8oeMPuxrZqhkmjnD00pmby2WGQazbh+lMvA/NMAl/eIac4dqzbY/giDP8wYmfy7jipC+dm97K464ZePgnXD/5yU8+fPjDH77ybn2X4hUv7+hBu0KRuSU1p4YhVFP4s58S6WLY6TSLv/V5eCfGq/awa/zpK0ejwzCvxAOXeIaZn5hqCc8+rGzF5RMeez5hsp36xdvYcIvhVw4YzsGc3Zydb7jZTy5d5jDW7/SF22XvclfTS2f4YcSPziB05Y3LS7HXD1cfJGbirtWr9ft6r6u1Gsu/+6+l7vDM5dLTXa/Pu7Xee2XdWb9OPnGd38bBSvStUd/M5WSzDydf8dZJ/Wlm60O62M0bZrbulr1Yvu5f68115hQTdj/48zGzhW8vN4F5C/cy3nmJNzNc8ems6eyNbGaDVK91+jOe7Z6EHT6/4p2Ztb63xqcRh/IWW3z6/O5xSM9PrNE6DD5qNdh3nw4vPzPPn2P8nb2Zj7Mrx3v1oF1+g6hRDWb8VvicX2z4dh5mdvP5Ra0elufErW/08vJPiolbenO52Qz9FC9mudXres++ORazNR8jvGLOuPziIF4eXAxSTcWKOWV7EObpY19sM8z8F4OvvOc9zEeMWBzjJSbJfu5hJuLgm52FL9NqLwf9Ysez+GZxBnt83CX7pDsFm7BZG3LgFbczJ/+43OMQJnt43efqyce8wl/93cdyLI/yx5OPtc+IPtfkqz62Yszdp1PnF05DHJweTMCPN16di3h6v2yElV81dW/pxSUw41iv8zFXD3/YcXC27HR86A17Yl3vLsXjC3+DbC8uxdPL4sDqLm5cPPMVWl6zfoljz5YdTno9scZzP9fFdmcvgKcXvmd8uGGEE8eNt6aHXf3m1vTiz9z2q4tH7yecrHGpHrkWz57NiLN1udnTry9stZnzEdfanD38Zthxj0vnYnbHSXjViMf2JXszv3uCy74vYBnFhh0GvVzm6ihGDn7+9ty79TfavY/0gtRrD1t8d/AAoVpw9JDSgwP3G1+283O23+35w+OzGGojxavPOZjrkz7ANRM2uIY4d43NXp76ZU34EHo6vmH1/sieTUx3LE589MLD4u43W+8R9npmDqM1v3orLn7bg7jCItn4ivEQS7/pcdVLXOJaTLUu3sbwix8c64ZccSterCG/scIHRhzwxMnDYw8NnR2ByVcf3B17ft0ra0Oe3o98u0Mw2Oq3Oykv6V6ZqydfeTwA9OA6X1zlgA2PdE782dRBJ48ZrodpcqiDTvzyq19iw4ijPuiJvTP0EFcv1QzX+7pc3gP91wvneasraY2zkVQLu+He4p1//RVTz9jiXPyJR2+IIeqsT51fZ1YvTozdx0m9Bg7iOgMzXH1JT2cdF/ZwnAWbB5/+B7zm7oP3rRw+s8zugzPwX2qoAW69EmPvfPr8Kx+9PnVv5He27OKLtaZzju47wa3BDqu89HK5BwR+56E+PfCdSj6+OPd+VHcCb/1wgKVmNrHw4NjD8IeX5cKL3fvS4E/CqG51xgXOnl/+3Q14eJBym4l8cnuPxu8yPL6IkQeOwZfEid06LvhYE1j8DWtSvH2Df3hxKtbM1vnKx0d/xcHTj3RysBnVSwenPtt/z/d8z8Mv//IvP/zYj/2Y7du8rs0LXt74g3ZFGgoxa3YHHZ8KUkzrGlq8mc1cc/i/GyKP4SDkMPB+qeBIzMsRJu7VtnhylXf1t9b1kH85YFqXuzz2YeNiL454cxQXpzCKN+e/tfBzpnT5Llf21fM16OKf/5kz/Tnz2w8G96hYvpvvzH9i7f7EUC+u+0aUq/5t7DfSujq2D99I/F7KRd9XumOru7fWA+cHw3qlu7f3mG6lHnbWYdkXV0wzn4Z4fu5L9sW3LocY6/zsvTcM/OFkOzHYN57f2TfYvdfYywvL/h72mctebDXa1w8Y8Uh/C/f04buY1U1/T/ivwFSz9yqbvM3WcYRtf4tXHOAWszl2zXfx13auw8UNT0IXV9x8sXFP8MteTeVhJ7j5ovZe/I12PY4PrtWjhhU+Pp99qel+mos3q59UJx0RS9cZNa/tcnx6kTufkw+s8NisCX9xekond/b09vF9SvWiaXEElNM6zO44HnLg4WcwX4O+msKwZwuD/qVSXL3S+7M2NhwM62KqR376bOY48rGOY7yym/nDJr0X3JHuQTGvmt0pg/R+gRNP+npkTtRTzeK854phe6dSH3CqLnhhqr08cjhrPHB+TuqZuTXe8omvb/Jkh8fOTx56Yq5mdYth94s/wa9esVnLQcx+aSzPpXx8ae9M4YvBKb25c4kHHTwjnosHQ0x2PnQGsYcV7sbCJuzly35rVj+85IyDJ6+ZTf/8kq1/JE7liif/cOk2j1g4t0Rcozr50cEwykW/+enFwC62GPH0axNPVm/PV+/dZZj2em025Nxc4uPExofkk42u+Hpj312wXl/+2RaXnsCoThz63BLTA4v6k684OeqDvbzs5tb0t0Qfut/s8TXHv883OrgED7zMy8Xaf6Lu32b/8z//8zfyP0Ptb7T/3d/93cXV+1seuXHvQZOHLr2H9MMDKw+qPCDh6+GC7xg9OOXjAZD7qzZY7kgPIdjrq3zqdf+KodMjOcWIlYcOJp7l5SNO/OLKaxQntr7qs3OXhzgHfmsXGx6bvxXrAV4PoMSqv4ehaixeLjEGwRlHMfL2GXgZH1+Wm/UpuFQ3W/56Lic76V53ry7l0wt+Bl/x1uLjyK16wyueL0w18KnX7NWsNjbn5W+u+6diPOyEz1/d7syXv/zly08f+4MLveXrvm2P3DNx8YFvXZw6+jmKh734emUt53/+539ets4EjnrMpPeqNa7i1OzhuBjY/uCATg6iF85eLv5GuPUnPjh6iCqPGJzE2atFv9TfXe795Z/TgQvHqNfWnZt+qMVMj2Nir7fpxPPtDoYnB139KL5ZPF/ifMMTZ02HOww/8+Ql5nJYG3jSiZNPP8Sphz0dbH1zT+qruTOEISec+IvXZ/8/AH87Pdv73ve+i1f/JYF/usedsBdbL+OMo+H94Q7AkY/OuekhkV/t2arLTJyzB9nVJt7d6O6VB2847gJfPvKw0/vDGOdozS5en90Tn0H8SPX3GUXvnhow8fUeM/RSrD9scAbVpFa51C5ef8Q6I5w6A1i4sNOr2XmZ5YPX+dDhBlsN9ESs3M4DLh9D3nzlNtjDKZYvDgZMgy6ecMTKY70CSx/MpHsmlqhBTjUZsM36Yg2vEQ92mGqka+DgvPD4ru/6roePfexjDz/yIz9y5Tl5XcpnXt74g3a5NLBGIITwSo2n50siXpHNxfHNJ907nWEvVodu1tTGS/HFwSR7Oc48i1fO4tZ2rmH2RmHD3RBb/OrCrsZ8Oof25Qmnuqun+HJ5E8UlW7Fi6KrfvjuAO/3m3TXbLeEjJwnbuli65bF7fvdE/NYYV/ry7H0rxz2890pfHdX9jcrzVf2pDn7dn1fFZBfb5wmds1zp7tHVp7WLN8jy4IsLvOLM+TeLy9fc3swnXfetuGb3DMf1vUDmJd8wwqQ/JS7pw6UvLtvO5UhnL59BwsWV5N/+Us7LxonNvxr2XCbsK5ZhpIThrI0+M/KptuVpXW4Y+YgXZ49H+vI0x9m+fNl2zs/s88pMzNVbrr6sscfDmvCJi9mXiHfzQbsvSvLE9y0Wb72H6Niqu30+Zvz7oqROg86odv2gJ3T864lZDiPhQ8rHdvrBJ7ix8zXCDSMf7zEx2dM7e7rVx6WZb3jNdMXgsPr85euOV4Ozx4W/eFJ/r83TPnt1ZqM/c2Uzs4mRr5zlyY8eB1ziLmaxixfDJ78wduZbDcWpG17vBfjl2Njn1n3xrYfVVt/FWsOtRj6J3Pj4RaPc9sn6prs18zOKhVvO5aIH7fnWs3zpwtg86bKLM+zFGmHRZc9HfxbDufqlw0yctR6oAVZ1Vxcdwd0vHCQbXGsznGzhsIlrZG/uDM4zFN/d4At/MdRG8pGH7JzPZXiyZaeDGe987a0Nvg36+lC/6h9eiyeGzizOTHo/nTkv49MLWwIDj9Xpk5HEr1z1Ecf8Omv8YVXfLVw2Ao+/ny9x8LmcLLdi8osTXzo85Eov1qCLQ/nMiTW/02afXznD0mO1i3Onu9fsy6W9XItV7ni1z8fc+5tt/azZ5cEDBxJHNjqDb/5mD5H80zFv6kG7/xnqRz/60YfPfe5z189TD27k6X2lBufp/WyNE54e0PD1kARfdnfA4Adj7xY8OGz8nfU+DNl+iKvm8pcbTn2zlhcuXUN8gy6RwxBHPEiRx3AO5TSfom4PTzwI62EXPw9P3B3rzqxZnnizq7m6exAlDx2eajHiJ6bBXnxY5h6iVhu/7jY7CYMPbok8fjaS8M3F8bUWl19nmo9YdkKHo/Pw0NjDzc6GXs0e6vm3r+VxVzxAxIO/h809jJaHvzvmQaW7Uh6zMxC3uovE4wtssT3YguGBZ7WI6R4Wg2d9lwuGfWetFz10r3Z97jOzvpnpO1P4cPSvPxzAzd90ViNcZ65++Hiwe1/xwZt0brg3qh8fWHJvbXGSu9rMuMXbvnN2j+HcwqCLg57oX+dtnQ4G7ok4OXof2IujU6t8YvDhQ4+3zxez3rgn7EY1xqdzo2end4++/du//e27xQbDfajv3Qn3sd7pS2cbf70Tu3n41yd6PrjLfYqc+oEDqWdhlK974CFuPepc5MBBHmt2d6xeq3tx3CW+/GC4T/opprNyXuqF4f3FXk16jgef5QsHRmfQmfLBwV6snHDh23fH6PGn4xs2X+dSjzqH8OzTwag/dPb84LY2lx+musIWS8x4qdFs7/1XLXzU252SozzF8OEvXxhhdo5wDRz0mf93f/d3P3ziE594+NEf/VEQl+5avPDlXXnQHtE41LD2FajppxSruBX7U7f2l67hazKseNmXl+51cu2Bie1yvYpP+V7llx22XCR+i3FLx06fwCjGTJqt+fZGyI8+kf9WjfVAPHt56ONlXv7hr708zfnYL8/sxWbffT63ZjwaxbqTeIdhTexv3dPL+B6/6Mn2NM7vMa13lL6zft0a6oFzsu6zJRKdqb31iV+MeL20L8baSPgQc2v79aMXny7f9vy7e2zu1qvu18aKJ3TL4S3t8++TW/5hdY/al3Nnde0PbTH3uLNVe9zo4n3a8tn8yynu4stL5wcpCdsaT7w6R7ryWrsj/MXzWT/2pNqf48q33Pmb78meNx4G3dYnHidfvPqfsPzMz/zMBZnfPfxX6WF/+tOffvA/Q+0XmTNm+T+Xry8xZj0wqgmmfT71sC9s5UifP326Zpj552fO3pqPIW/CRy/pFiN9MdnSi0nCXNzi+BVrFp9Yt2fzxc1Zx2XtYuzZCR91r9AVu/rWcrA/J3Lg3BfZYm7h5mvmdwqcBh8Cp57gbx/2LYwT056fX1J8OcYTdhjmxLoc1cGmh/1y48t7fex9FlY492Z+6ytHeWAa9tsnWHSknvCzblzG46UYHOsfXfi5s1fHmdfeLxr9cpXdZzac6gkrXXnYiX09yxenbOvPb3tUrfydAYkzW58HYVwOjy/lxJnYh2udrnV8LsPjS775wZFX7WGKicviu2O40RUTPtz6SMfHCFM+634u2vOjyyd/+8XITww593Riidi442uQzlpf8w2n/OLoDMKPv18s+RjqLK6asy1/uvLEh47oodFZ0C9mcXz5GLuGVzx9+VvD4iNO3d7b2ej9gl2+eJaHPdsVNC98cDPkD5M/oQ8vDnTxD7f9YrF5WOefjvmzP/uzN/I/Q/3iF794/Wfs//AP/3CdYw8DqnX7Vm3qcGc8QOpBhFp9xvqstY73WYfYMPW9u0efdG5h0Ld21+Jh5ps/P9gw8fI+6j2rdwYJiy8x83OuYvcMwi/G5xAO9KQ81+bphS/hw1dfegAVtjgPt8otv/dQD9PEs8W7uwqP3n01+MdRHrnFbN1iu7Nw+cAww+Ovbj702bbPuJUbhpzZizHDoq9PeDjncuDs4SNffP1BAX8PuTyY97eQ04l1x/TJKC/e+gcz3M6ND2x2sdZxyAd39chvDa9a+OCoF+lh1it4BjHH4Z5OnLP3vlCjfNVVrFzdE32LLx7qqNfluJI/vsTZPqx40qkFFky+xZsNeWEb4p1TOnzFwKhvMEl3ji9bNcLBF29C38CB3V5u6+6eGDj6ZBDnjZMzclYw1VINbLC6Z9b44Oy/PPBfU9jzI2LrZ3v3w6jf6oeTyIXjcmeDWX72eKtJDBw1hYXHcl+M6uGLOzxidgZh7CwGZvVlEwdDzzpz3NTtDxbihCc/Ejc+zqB4cfyIWtkMa/n5GXLbw+Yvzl69sOPBll1t4mDxE2suV2v4YuARc7VaG/E9ewUTXz54mAn/lbjI039NUH4Y3btixYeBi6FGdRN5Ojt+7HSw/Gwl3/u93/vwK7/yKw8//uM/fu3jdm1e8PKuPGh/Vd6K6QLkXzPs2VZqUDqFvqpYMSS/MDSVbi/9+rLZF1fOc8bXYccb5zBP369lH+9bGMubHef4s+FUfD217wwWkz0f9kY5spu3N+z6UH49uJdT3OYof7r2G9+6uTwnj2LvzcWbq41v67jBXT7e/ETc1n0pX/giljRbwwrvxMZp7fxvibh8l/Mt3/9Nuu2X+gmde2g+RS97b9ZzPvwNvRNn7P0NO7zuBh9SDIzOYeM3F9/OyJqw063fZZiXfPMv57h8xTI7zPC/wuHY8Md/pbrFL57atr7q2djn1rDOWsMvzl7+ONDLI6+5PsOx7gyt2XeUKxvsPv+zwW0dBzPf5JY9m/z5rp91o5rs8SM40dsXR2fg5MvX93//9z/81m/91sM7/b+dx7FZvh60+5sh5W3O7yUznr6wGN3/zkK8XHqtDiKHff6dJ31151eP7MOGd0vEd4Z8znEvRly++dB1f+jsDbzxWB09CcNMijfTVZu9GPvW9nzMxv6skS9s/uGYy3UlPF6KqSfM553vCzjb5okPvZwr8pK4mvn05VjeesSPv31xdMnJf/fW7owvwvDtGxuvpu2FtVGv8PNlOU71dmPCM8dBHB9xRvp80/NJ5PRlf2PpnEG9t2c/BT4sAwaecuRb7fbscIj9Ytp7IGLEJb9yVEuznOFfoI8v9t13mMYpfMTmx87Pe5uou97R42nf58XlNC/LIey45bY+8Ald867l47N3sz1dOcz25Qr3An16gbV9pua3uvKwrd4+2V7KW1/M9wQWyVceZ9v5ekBA571S/fzF4bg5y8PPuXkYou703S06Uiz/sLc/7HLLxe58xZq78/XpApwXfga7mT8sc7Hln7BryZ+v9zbOxN4v2JtvOdWP+nkFPb3ExSxG3sXhRndKcXzZxRqETR3E3wD2B+b+Rrt/QuYW1uX4ipewv/SlLz38xm/8xsM//uM/Xr324EldcM360oMje3HxSd9Z+Zz1wKMz6/3JP6zumnqs9Vougx8MNfagTz9w4Ec6UzkIXEN8NRVTHLtchjXh657HrTtQDDw5+BikWBw2P9/scsPqHPl6b3h43HcXeHx8Z4qbvB7E8isfjrD58qP3t1Xp+xu51oZes8nHF15ceogWL9zVnfA35DLHnY8B03mY7cXLVw+KE5tYy4unh6Y4ws1HDAy9gQPf32b3oN356xUf+Zybh1Ti7Yl/8sPPpmrkE292azpSve62HqjDQzW5ccBNLv44w+VHwuTTXg31wRwnGAbhn14+Z6cmujjzc07eR3R48o27PPYGPHtzXDaPvPW2cwm7eD7VFQ4bTmzxoHOX6PWEXlz5+8MgeznE1uP8caOLN8x40ME2CGw1731wBvDlch/g8qsG/kQMH/2tFv7u0r/8y79cdw+PPdP6Z4bXuTv7ONLXT+tirqSPL3SJGGeLAz9/O9t9pa9X1ciOz/YGlnqMcsLrD5zonIGBq70Y/ZMjzrCt8YCfXe04OaticY8Lv3DpqkMOOKQ49h3ZxMMx8hXPl8QrbnR6oia82Em9KLZc9g1+1cauV86c1MPqEUPCMdPxkx9X4h75LyHwYCPug88uM99kMfl39uxqEa9OHOWTg9456Kffw3/zN3/z4ad/+qcvyPDCf9X8njxoVwg5yaa/ZdMcTUg0YhuZvhlW/h2CfZeZHww2POIirsGePtxmWI14hwNT7JsS+F3qxZR/c8e3etW66ziJieviWVcvH2P71SXPZ2PjEUa9qb/0+Wz8PZ28RM7qPOPsG5fzMy/xka+c55qPHp1veDmWQ318Jt1XmcpvJjDhGPHorOydN1u6rwIcRfXA/N8u9aqzUnPvjWxnD+j56eXeR37umdFnSffuHlZnYoZZ/Po/dw7iipW/+/DcOZ/YYuQ98/ALHzb76UN/S8rB3zpeJ0b7fLaWW7irgynurLUexjUuYq3p5ens4NgTsfbx5ROn8MxwiNl9yc8+rMthXuJb/jF9xXKxW9+KWRuAcx8oPX6+DPgB/zu/8zsPH/nIRy5zNeX7ujPsHrTf+6djXgfTlx08O4fOUp7WnU8+YqzV0jmUs56Y2c3wb/VTDHt3o3Onk1MO61Po5DXitn5yGSR+7gw80s/Ba/P4EoZZXDFhiCtWTPnxtRZnLm8ze9gw6e1hmW9JPdg8sP3ykA1ONZz5yylezoSfvGL5kHg204UXb3tjJR9xpH1+ZndEz/0svtU/+HzqA06LY6/GPtfXZm2UH4f40qm78853ed7qf/nCsq8vMMjmuxRPL+WWV71mtZnhxEU8ezjt+RCzhyQ94LCHHd+t2bq+rv2J0ttx/PAoZ3YzG279khfv8pjlNy8X+RI2EhdrvgZs8Um42e3Dqlf5mnHeIY6fQcptvThbK5+wxRN2695D6Zrpw2iG00intjjFJVtY5bYnsPtFl2/3pV8S3/L6n7+1C78zqJdy6e2tB+3ysecrx8mpHOa1F9dZsm2PNs6aP364GPzjSl9efkYxfNn9IqwXBG8P5eoXO8EFpn22yzAvyztOm59reBN2LfnjGYZc9ka5PUDyc/xP//RP38i/0e5h1Kc+9akH/4RMnxMeLOiHfpv1Qm/UTPDStx5CWPuZ4A70QBZfepjE3YJL2KpRbZ2rn80emLz//e+/HoS6h91P8fpmxAsPDy/8jw1xxJV9+24vB+5GucR2z+PAxsfeqE5+OKtFjXiqbXGvwh5fcNCX7k/1FicGjpmPOY4etPdgTg1yyMtO8OhBvAdn/o1pNrxx1Tv+nRl9D4vyMzujzgCmgVOxYvSb4GHEQ7xcZtzrtXXCbrDhYrA7S5zo7eVVs1mt3ZfW9P52sp7oFQ7Ox88l//yMPsOhLx9sY/fZe9ho3x9K4AyjXrlP6ldfNnZ4zp3AD7O5msRlZxOLu37aEz7yJbDZ1G2txnqVrRhn56zoiVyGmO5uXOSUp/ckLp0FH9K5i+3OwhZjFq8n8aVzZt0hmLgZMOQ07GGrib74+gXHmh9/PvbOWgyedN43HoBWk3z50/F37/3BSZxh8/nbv/3bh//4j/+4ePjcTA9XXlgkbHMY8cqnuVrM4VRrsfqll+r3fk3PXw767rz8uPqeJYYdT8PakFtsn7fy9R5hF2+mqx9mOjH9YZczqA55w9B3tnrCR2wcOjNza3Z+ccOhMxOnRnM9EodTn53i5awmdlhmvWEvF+xGPrD6w6Cww4DLX24Cj42IZ/ced0785ILn5w7ObMSZ6B0fwo/diJ84e70zO0PvXXaj/uBi8PcH5b/+67/+8FM/9VMXLp/XkffkQfvrEMy3D4AaofHGvYJrWv41FU5SQ7us9B1IPtno+ZfPvkuVr5ldTGNt72SNf3msV+yXV7n1hbDh0fpaPL1U1+paL2ZvPtgub/XnuzM+BmwY4TyXa+Otq6k3oJxwSLnLY9+4HO68xMUsNgnHHg67N5acOGe37gz42Rsr+d7jU/zWAkO+YlvzqX66M9fm/f9tXR/VrS/6ve/pe/3o3PTTOoFndLfD70zya5azc6PjV0z7fG/NxeJBxMJofyvm5CLG2DqKg9/7P50ZBmG/J+4dTMN6Y9KnM/OBtzzojfw3V5hqzU98n+23YsSn7+zKyyYWFuHHpxrjwdba7MtK5w0rfH4rfA0C857v6q3JPczLeOOlXMXJ5wuOf6P9d3/3dx9+7ud+7opi/1pEnh6090/HbO4T+7l8bL4Q9QVU7e6l/nZHYfNL77ysy+m8ug/lYkus9YEtv2zNemWwEzG4NPLbubz5mG8JP++nauLTzwfrM1c8zLfsl/LxBS6f8m/NfNjkya7+MHG5x5dP2Posjm9fhNkNNZnjL2c9Dpvdmj6cuMWXvtj8tldh5X85P76kt2erJhjt8ceTr3W+9unC2VpgVKN4e35yGAmfMMPnq3/2hjh8DOuGfSKmnGY2eYuLm32+xZrLIcaZy4+nmb+z42PNh4TTXZTD8Dcu/bIhl3iz91zx1ay2+nHWCpvQiydxuTZPLzBhwCewy/Xk8nZtMGFVq711+/jw2R5kD0+cPBtvLaae52uGxx5/a6M+LKfi8m3Pl66Y4uWjh7GyD0b4Ej75NasNJhz1hxuWPdtiqBO+XwzprWF0R4r1i2c8YNfruDg3D0TiQt9diqtZDkMO8/qXa2d5YG9t9W39dr1nT1++4uIeL/7WeuOX/mJ66CTOuZBi04V5GZ9eYOUXb354JPblv4Uhrj6zG+n8z1A9aP+TP/mTN/ag/fd///ffftCOZw8b9cS5O/8e/KkBF+fSwyFcPVDy4MM9iLuZH/7uA5x0cLy/9aG75Wez+vyzDx6wuofyljscZ4MjHjh46OqzCr6zoq+/8hCxbN1LPn2+dEfY95z44MtPHfj14Jeerx51P+TE1QPdHuLIy8/Dtr57wCW9H8XB0zu5rONnnV0/YJg9APKgXT0G0X9ir0fNfHGoPmdVDjkN/Ojw7/wvsKeXasWZwIaHW7j0cVWHh0rZ+eDkrOn0hd1DUr6Ej8Gmfrw+8IEPXD7yOQOzs3bm8GDpB5sYe7O9YV8P/YGM+tj1gHR+cN0fnwHdx8vh6UWMB8ww4YXJXF5r3El+9vLCxYXQ1Ud+ztTQBz5suOAUfzrc8da3agtT3/g4Jzo51EHnXugRG0y+BO/NqZ/805v54g4PrgFPL4rtbsA2YPBnx5P03rSHq3/W8KuVrtroYan3W7/1W6+8cORii4874j3pc8OayK/nf/M3f3P9j3fV/sEPfvDKWS4+cODFxRmoy17u7mp9kFOccxBr3VBrD9Tl4KO+7VWc+eJkhs3XndZnOlJPrfXcnt0ZwSne2vuVDx0O+qEXbH4v83lUXHj88Wuol7881tnN9Qe3ONOT+qAGOcTy10vY+gOXztkaMMSL9dkUf7nF7PuMX/0MS7z6nLn+8REnhz0cZ2cQOdmInDjK6WeHNX998z/QhYUTMesd/nBhGHK1F1fP6OEadLDE4p3g/X3f930Pv/Zrv/bwkz/5k5ea7+vIN/fKlaYAAEAASURBVPSDdkUnGtKo8ZrxqoJrrhjS4VmL1VSD8JWT3uCbj9z8wgnXnBRnb91hVQfd60oXRdw9nMW1xtFcLeVUA706NiZ7OeSsL2LCCXf9W/Mx9IOfeGvx7fN9bq6vfHCsh8Wwx0eOW8K+op7iVk9nyFNtMK1JcThUn7ne1MNs9U18HPIJq/z05U23OdPlE076Ez/9S+fi1//MsbZ3Y70cNnf61cnvrOpjZ0DvjhH+Z8xleHophk85zDD3jpZjY3e9dyR975P2ZtjlsZe32Fs815f/ytqWXzjN1ahXp5T/1LeHS2DwhVHedPma2cqbvhj6Rrad5RLvveXLxqs+J2BVWzjiO/t08Yy3OGu82Ih172k89uzDOWcYfOH1+ZAPDvEzvxPZvomXw5cNP+D9jfZ340G7L4qJ/LjHX73VlM858+nLo94YekEHz1hh74ttedRpna91NrGd3doX07oYWPwNuZ4TMe5DuMWZV2Aa6srX3ekuyVNsPMKGI6a4E5cfW/FrZ5M3jvJb08t5C1P8xtkvb2sC15fVxaMXW132pBg1r9TfYuJq7wu7mmCJr6e36oSplr7Il8PegLfCtxEuu3U9UVuCg8GOc3ng4lyc2GqgY6dzl/PprONEn6STCw6J5+bhxyf/4pv1mX92OXAmGxtG+cyG/0rFLyN4h9MZ5gOHrveuHJsnLnTVICY8djYYe7709mISfkn9s8eFX/7lyca+/nDCwsVIrPXNyCfb4lln7z7HwR6OXltvrfT1Llx2fvSnuH/ywGYvZzj2aiNw+MhrbST07cOA7ZdRM5tflvHoPSdWHj7s8cAlodN3n8XW/I1yxZuuvMslHHN2syHWsA5T7HPCf89anBjDmq17Uk46Ng9nEr8sF1ctcXqOCywcwi5/GOmri57PSjWY4xDuu/Gg/fd+7/eufzpGX5x/DzZws3f+7kY14OKOpNcXDxA8FKOPf31WgzsGQ6xBmuuBewvD32D1gEq8HN0/MfjAMuTxcMd3DwO+Xho4nedVbHb5+BBzd6TzwM/nWp/b9h4M45VPMwx88PJATA/ly+77l97Y8zNnlxsmPmxG3NuLxYMfm/vpIVrvWTo5SOdmxsNnuHz1ue9NsK1h14vOSc/FwDXU3l20Z7eHIaZa7PniCdcaDp96wkesepyzPR+DmOnEuwt6Hg9xcvvZZKYvhk0snXiDmOn0TL+s5eULA3cjjmZYSXx6yK0mQl/OctDrs3216797mo84+fDQJ33Q/3Bh4hkOO07ulbW+dA/EwBHDn9DB732sf+LyyQ8feQl/OfnAg8Fur2+EnuiDe8NHLfUBBmwxpPpwracwyyuevnPh5w7H1dnYf8u3fMvbOeCKJ+J97vjb6jjFD6YHpJ/5zGeu9wg894h0B+NsJrD0wkNeODAMnOjVlA4vdTbY+DgXePrIx9rftHfX2ONXX9LBdUfE0W0PcSuuPrGrCTdrNfGhw8F5m52HPoSNZ/3nr2YYRjXJBzO7vZj1tTb48BVbzXISdfCR05DDnYm3WPoetPPVL3HOst7wgR0n2HzdC364wYJP3yzGKLc4GHqNI8794YO84vwBL9GvZj2HUQ/MfMurHnbDGqZB8IItL+GjB/9rH7QruEYpvP1V/eOLRmg+26ukQ90GbkwY/MjucTDk0/QkbmYipsMr3uwidSFh0IkxN8K8N4eBnxxwYLRfXmGwidMjdnuDyPuc8MunmJfGnX7Fh/dc3mzFnFjZn5v1xZuqfGE1h9nenO85s2U/zz9fdjmN9dkPX+dQ3uLaX4Z5gXfKxrDxgXlyuxUb1nKgi3PY3av8vx4zTngQvTOI81OLffzyzT89/+pWQz806O9JtbOLMeDDjEOYdK35Wzf4im3PnpQjGxy+W1O+1YKDIWYFVrqTHz+4W3d4G1f+xX1ufcbKH4Y5rrc+g+Maj1t51sd697f86W7hFbcx/Oib1YIvOc8gv42/ty7XyWMxNs/pdw/3lh5PXwL6p2PejQft/s1M3Pu8xFfee3XGs776YuhzTn+JvYE3n+179wX+2Zf2/I3yw2Rz58Wz3btvxcB/ifCHB79RfnMSN/ty5J/OXt5yh8O+evsk3DDT75wPXXxhW78qrtj1LYatPq4u/sth7ae+HPRiYTorHJ1Xn+PscOjM9Wd7496wh+leib8lxdeLYsKzLz8MvKpNfqOYuJWHTYwv99buMqGTj16NbPG1h59P2OmXrxgSHzbrxYQtDxxro/Mqh5h+Aak+/n6x75c02PKJhx8f+eHouV96+RF+K3zo5Mpm3R62/pQjjHzxYTPkWH2+9PLwxY+Ed+aKJz1fMcRcL8pxGeYl3+ztudC1t95+smezJvZGd+Et7Ve/wqoWfPMXy2bUl+opVzWaCV+Cm19GYYn1S6VfEp2lPX8+JGxzZ3AZHl/snR1cMfCWazWWNz6dUTj7+e8cCd/i86vm9juXI509zvWCvs8DHAkeRmfVL+Ht4wkn/8W7lPMSh/Djnx5evMz24ZnFGcs7LA9ufuAHfuCN/Y32Lz79z1A/97nPXX1xdoYeqB+3PQN8PeTwwN+DDnelfuIuTgy+2cR7GORuib/3HtVCvvzCgdU5dPfgemBB+lzxQEmMeDHW6rAmnR0dnngYJE7ucHeQzlqthnri5jOxh1s+89gJLvzClWf5X06PL/x7j7HzM7z/4MYx7nA9AJSrevnUJ/2xN4j8Br6d4WV4fJEHx2aY/PSLb9zro72+eJgZZ1jltvYZUu/tiX6Lc07i4Bnw1KC2aq9n5X4L4S2udHJ/6EMfutR650GifMWr2x+S+YMHZ6OOeiIIhnrZxOCln3zUUd+6I3yNpL7gIb97QcQaMImY8nZX6eLa2V3OT/6w9EgP4Bj4Fi+GTR5/uGBdv+DUs/UXo9fukoGzGIJPeez1wvnAcY74Ez58DVj5XcbHF7rujDWBEXczXHHErFZ6/PAV50GrPyRTH7v7yBcPdv709U6cv7Hd+8FDbHm8d/71X//1ivO9xe8jcMRVs3PunsIJVx42NdPLSWfgIxdfPnrUz0x22GR7Kp6oQZzzxRMXfuL5xK+e0xnOCo+kvbh6zhZvvMKTq5r56os4eYm7wEfuzeX9467IK74+iKkX3YV8urf0dPJUm/PES/1sarCWM5z428Micus3XfU6g+5FveDLh1RHd4FO7YRP98H7x5ouTj2s717oE17EOl/+xeBInJs6+eCFhxizO5mOvVr1wH9Z/g37N9qRNwjixj1Zv3xqlL01qSldpEv5ghcNlL/4F4S8fUi4uYByxtMcJ+sO5qyxg+YjNww6fo3nuPDh34UX77LAMwjdmVe9Bpu8p73YcoeXn9lYrrsu7p3Ot/LfwsKfxC+f+LU342dUO53aV+oVvOopB7/0+RVrn1/czXhsTBh0xXT3zni+4ldu4eGZ5E9XfjZ6+PmWq7j159s+e1zb35rlS+LR/p3MOBhhNesXwSmd3OVf3eZ9aQ1w5C2HuN5f53ulPpV78/V+jo857OLWZm2wbY3yE/riygOvQee9X1/iBDPe6fhuXDzods1vhc3AI9m9tfxx7QtHvq876wM8Y7m/Lg5/3MJopreuns2VjzgjX/rVXYYbL/zCyLx7GPK9SuKWnzjn6YuVfxvu3fynY+SU/xZXtWSLW/X44uKLSe8bdnxXJ7Z7bg3PfZFr+yQ2+6mvF3CMfc8tN2tyq47LMC/9/OzLV6blEF62nfVAHhLfzUuXvvsW1/pXrnDCP/erx1cPws62c7nzWa7rp4+EXxzv5d64XYctrtjWeOJr31qsuqu9s8TB3aEn7d2teF6GeQmDbzmb5SNs2e3F5GNmC4ed2Ivvc806HHP3l194nWl4YozqWwxrEg9r8XDNata38rCX1zpsvv1SI094dH75MseRb7/s8QtHz/2CRPicwi43W3HrU6/iZE/4irt1X7dH+YoXU8/5kM6+/aV8eomTuNZmIx7WK+UOT2zxdPzlbG2fLxy+Sevm9GZx9GJxMcP1O8TWxI/dqPZw4rL41s7R2fLXN780GtUsl7FnYs3eDNvIt1xxkYfuzJ0fjvk6YzikWVyx6S6Hx5ew258zu5jw2e23Hjp9rAaznugDfTb6xHr36c3w4ykviWdcxFYTn93ng6M1P6O9B9w/+IM/+PBHf/RH1xzOleg1XuL4T//0Tw8f/ehHr7/92cOB7oU75kx8jhhEHC752vNRh3ukd/GlN+zrZTpY9RaGoQ9ye2DqAdF5j8XI47PEgxm4eHgI0+/UfGBtDfb1T47yOWPCBhcW7HzNO/jK46GUh7Zw8BBH7OGosbW99fl+hcsPn3qDD972amuIV6OHZIvHd/trL4ZPg10c6Z4trnP1GV/uaueLs9ziPcRiE0ucDZ6k3lezmeDQzyBx1YUTgYHzxi3HeqN2/3wIDA/G3ve+933Fz3hY7os/bPEgDZ/Ftlefu0lwgsNH7ew4OUe2+lMP+KnFzzdzPeghJkzx+VcTHV96vVNH8XRsamcrtlxi3UWDH57dufobj/oH25regKXnMODJY03f5345xOpDZyQ+PPXoiwEfVwPOithy8tt+ql0uPgQX+PbwxdG5a2L1Vo44u3/i7Xsv1F+98cDeEGP2Tws5YzFqkYMNtkGPHww290ZOvoSPtTPv7seVv3W+1t05sfqEZz72cORSJ77VVg1mOdPrDXw41uZ86M/Bh72essvv4XKfyWzVjRMfIi8fufngyFYP6ORvX0zc2OWWz+B33iW6jYcvjsDBi53EHSc4+u/MnVeDr3MgZu8NPe68w1eTs/WHOf1hghg59cAdsVYzUQe9Waz8ZkNONneUnaiXTl6Ci/ONuzhSTfh/w/6NdgfSYSOtKQq8JZrRASquQtdXY4gmfj0k7mZ8usjvJHeH3aV+XQwcXBI4y2X7Rq93ycbI26VkF+eiEjGGPX0SV32HbW/d+dC9U1neca6+9nzkcN7xi2MccEqqqbpu3Rdx9aHzpatWWOLZ+Mm/PSkXu0HEwuCnBvp453/Ot+LXhx1W2Gfd8OUk1W2Ns7jW1+INvsRb7uXwJlLgrc7qglnv5TL2vN9EzsVwX9R35u9M2Qi7Phv1YXl1HmGx1atsPuD74RIWW7mre/m1Lj/M1xGYnV98uivh8MHXiMvaiscZxnM8i3tuFq/v5XzO93Vs1SqmWs/4vW/Vw6eeqB+v58R95c9Xzs5GjL1xq5eLyQdG/jBw9sPfHXk3H7T7EiNf4+TlvNVI8OPn89jauTXiXz/o6cS/ROD13q/+My5s9npK1/nCIPfiF09v+cURzsZbs92Tvsixi1XnxuN03h09WX3vJTqxxVcbbBzTl2u50p3SmfEjuJ5cioFP4tU++6tmuI0zb7xh+qLqLvOl5yunQey7Q/Z8fDEW089/+pdIWN7TztmsF7DkKC9ecTavsMV/9a35G3zqmb1cdOp13oubXxjmehcnteIq9pTi4yWWf7+Q8eej5vrMFzadhxb4JWzy+GVInJjEnl2/um9i6dXU3crfHG9x+XmgZQ+bLr2zMEi4/IhZXQbpfWhfXeWHpz76ePJrXd4L6PEl7p1L8fWFv17V/3DFl0cMjjDqD90KDP4rfJaP+Gpfv12XU77i/UIYPh0MNafDSd/1YMfWXp3iYNR7ufOT22BPWvOHXZ/Y2eARHBbzUj69wHxV3fnHxXwPL181dcfr2/YbP3u2U/CVI+EbBl08bsXXi+LtxRp0sP0TCD/0Qz/08Ad/8AfX32yvj+V76VwPPGj/+Mc/fj1o9/714MG9qH46f4PYTHDRcw+z/vu///t6wHHmrAflMNP5LHOf9qzhuW9ET5y73N2n+gVDrXKLIfZ97sDO1zpc2O5XPRWHCzwPoWC0N68vW5z4+5zxXxR4cKP+MOPGd/nB87Onz8Xuag9oxRnijPjHIXw2OgMnMT6rDQ+h1BtWfTHTszs/In/vK/6w6PQbljXRO356x6+fd+6FQfS9vsHBTT6+eNPBqSdi9E0e9mLZ+RrEPl39oO+OwPc3y/2Bk3zy6rGZiJW3AUPe/otLPnQeyvGFq25Y3c3l7az4wZe7HuCrFrNYHMj2TY2Ej1h/ExsOvO633HB6v8lNcNRjuHzEOIt7Ike48BI47p/8hvsgt56Y2Q0iHk5nzt+aLw7W7Ooy2LsH9Hrl9wDvDb75seEgj/7BYvNZ427WdzF88PJgFB/169s3f/M3X2fGp17B8v8p8FAdpj+AgYtvn031jR6W0VniLh88nP1BDZGDxBv3etPduBweX+z121wcfCORo1wwcXXv4sZXrD0bH0KHt5mPe49L/vU/PzFwDTnp/c+uPYQmcQrf3H2D6x4TvYchno/zcVZmfOjY1V0N4tiy88dBX51nefhVj55sX/jD9Aet/A346sSdr/ti0HXPnduXvvSly6ca2fEUX51h4pDgK6/ZH+b5fHdH9AI+/vrnruGtBz47zPx8DvUZDBOXf/u3f3v453/+5+u9oE9ErKHP78mD9t54F5sbL5qgeebEZTQQJ2Z2DTVI/unaa7wDIy7AOxHxDm053MKJF/5xxUfeeIrDjZ0O7i1hcxm6SOrga29mX8xbGHRydblg7Bv7XowcYnCs92HBM+SOUzpx6dmq0Rxe9nt13+O0+sWVW166Ffj1fespP35J/OJvH279Etc6W1idCzy49M9J+ObOsg8g+96sYeBF4LLfE375ro88RGz57OkXM79X8Rf7OlK/qrd7U757WOJOjqvDU73pwhFDX23lq654tC/udWb3WTzszu6Ml6fazfzdIfeyu3TG2PdeiXc+avIDwQ8V4p44T/nzfa4mNkMM/3uCKwmrHqdTl3EKTCPbGW+vbvn59LkqpvPiU9yJf+5hvNT3jN09nM7nJfmdD77EWaqH0MGyT3cZjhfx9Zh/Ikb+jecXJpu1PPl09+jZ9dK9oPdPx7xbf6PdLzJk+VdHerbuMm71Cn/32Ig/P/faCFON7osesL9TEdt5df9g1c/Owl7OlXjT4UqK67zpirvHtfOpB2IIfzhx6FydY3nEsht9bqSDwa9hD0Oe+mlNzlyX8ukFnlGv4MWVDh+Caxz50Bt09vjBOXsFg50fEcOXVL84srWywTITGPzMCexi6dRdvnzMfOSXt17ArbZ8YDfENModP3M2OLB9v7VmS/KPs5jq2ZzWfPEPu5iwxMpj1Hezs4IpVoz6CT4kDtUvpng6MTA6P/H0fon1eZK/OY77i1hneSV7fBEfB9hGvcpnZ5jFmM/6xdNVo5muX4i6b9VQ7njfyl/dZiORx0iHdzo+9vBgV7dZnzq7/PjUvzDM3Wk5cKZTk7WYU+Qz+LNbPyfsOBUnxi+S8GFkxy2dnnWmsNXZewk3GOUXs8LOP+yTnz074dt5hdEv0Xv22cziYavJHNbpQx+X4mDe8menh9kDturbM0hnTsrj3Ej4eIrd+Gxm/tnitXY2eboffrH3n57/8R//8Rv5n6F60P6xj33s7QftHiLofQ+znL8HGx6cEPW4Ix4+eJjVQ7XL+PRSXWoz7J2BBxMeNKil81effHzcIe9fe2eQsIXZeWfTM5hGuXyPgF8d5ceB2LOrUU5rOHiZw+mcOx+4HsR4mOKBovcCrAQ3vvDCrGZY7PR9hoo1xLD1Ptj7Cjs+1uLFqE2vnA1efNZuT+88DVKeuIUTn/XpM6p87oGc3hdErwwYpPOlk1tc/bOm8wBNrvpGJw4vvvmby8tOnBN//VRzDx3l48N/R7WKxdmZ8Q1bvJ7rIR1cw/nbG+z4wpJDH2G5+3K5P2Zx+kP0TZ9whWXAkdsfklWveqzZ4MhDJ6+eFmstR73iT2dvsNEZ4lvXE3h4w6NTt3rUUU87Q/py1Vc1weCbHQ67ATceeqnPPditBpg9eOVj7w54QIlb97e69LCHrWw4ewjKXy79xcXcg3b8fDbCUFv/TIh+iIGDg5nQGWqB43PMwK1+8OteWNOz64dRr830K3zVr0452vPBVc7iygcjnPyzwfDZUw30e0b21aT+OPrndNwtdhgrnSdbnyM46R2O9EQN8vKxhu2M+FjjLE69ONn3eew+yEPo84fN33mIIXTuh/zxF8tuyO0uGNa9N+VQp/rqNX/9kBMGfkZcysevOHfMexR3+dWnl+4FXsT73J11L3D3hzv1jh0Xf7jx+c9//m1+OBCzPr4nD9odmAYgESGkNH0HXbJ+GkIcGumArIu31nSi0fnKTfIzJ/HZXNk6TLnyy3bOXf70/Pew6Td/9eRvFgMnP7owqosuPtb3BAb+ZLkstnVS7mp2Vi4gqTYzv3pfDjHlwDc/uvDg2O+gW4FXna+qEa7zFQOTxAsHunhX5+YuZvmVXxwMeKQzyC42W7W2vwKeeYFhlN8HAJGjPIXD5pss/3Tm6gwznsXCXRu988U5n2Lo8t0crfkZxcqdnPziX47s/NMVu3nLsTzW33rPLQx6OcXBu1V3fV684pvZGidn+vBPDmz1o/Xyqefi2Ul116vVXQ6PL3zddXdFbHXJL95I+Ia93NmLzfeciy2evXV1ybVccain+YdT7ex99vMvhs6anDXQ4bsSLt/Wp8+5zy8ce4ITfnpqDVNs/uE0p994NhjVEE65zpkff+MUWDhUWz7dGXnFn3wWx+e1LyZ+QX/TD9r/6q/+6uEXf/EXr1+65awfm3+54cqHrr6oyZcWHPWd3dzdXszOp97KU4/qYf7l1bsVuAbRG5gr9Vh8GNnt9Z7A6Fw6w2LMcNIXbxYTrrl9vJuLyTe/9Od88j6x9Rcf9VazPhcHT0yDXo1mOr0yw4kLrtbtizWXh0841sScj9h82XDcvsnPnw+9/HTlDDNcuVbXXWJPYOUDx7qc9it888F5fa3DMcfVWozvmHRhw2Wzb52dHv7mz9d8S4pxJ51PsXDgGqRz7jtvNv7qK95sT8xwcBVv7xcPGL1vxLPrefdLbO8R/OSKv3kH31PYy3nem3zDCLt58/LdGuqtmZhbh5ePugz7epV/vuaVjbGWWx0GEV9/rUkYfOTJh56uPudfTPvymFfEw1t/ucXhZd0DCzpDrvLB03u/dHZ3YNHhBR9OQxyM8lYLe/psF6nHF3rCF+5KMWxhVaM9sZc3PZ0cp6wuDqtbf3qc/WJthl2N1nilO/PiVW9g5lud6XYWE461gYOYhr0zgO0hg/8yzYN2/4TMYsN9qVT/Fx//jfZPfOITD5/97GevhwdyePBnuCMeLLgD3tv1Gl+fAT2AgNVYztXCZu2M4ZhP3nz02Z3Ue7mJODHdwXqFJx82D+Cyi+EDi90Mg91IqoEPLvD4GYlYNccl/h4keshjvzH5Lkf89DB+cvX5Wa/4yxGX+tWMW/zlpC+Xhz5h4w2T3ZC7B0Jq0Ve54YUjp3NUT7yr3x6e+exP+atBPjzqSRjwOwN9kx8vondw4Yu3hldMunI3i9NTOHKq0QMss/zw5DTgqc+DW3H2cMXzw8cMJy7uvvrEW5vheh/gxganGroDcNjMvW/k6rOEji88OGzW7nyY7PThmw21ll9ePoQtPHmJOtjtDT729Hokdw966yG7XsDCQT/EiWdrhN85r56vWo38YBEzvHKI1w8DB3bDmi1f5/qBD3zg7c8g/P793//9ehjru4haDP7iCL2HtfTxV3f3g49c/A29F+M9QK8meOLt9SLRQxzNpBx4lStsPrDZYNrz0YP6Lw9hF0fCkZe+vfe6fi0fdgLH2ogTnbsvX/bL+cm/3NVoxlUv4sxfj/x+Jnc9ri7cSFjyW+u1er1/suXLh00+vTT40MsLm6jDmq8ht/uAC/FQG6Ze+lv49PUmfLjqJ/LRyxNPd1UO2PrrQbs/0KjnOLgX6qCLixlvP4/3Qbt++8OfL3/5y1deMTjUA/z9Hv7JT37y4cMf/vDFK9u1ecHL/3kMeOvWvMCZi4I6MA3e8JphjmywNdFeI4hG5cvfsNdcw5rIYW3uQO07gMvp8SWM5ZRtcfHme0o5zCu38NjDtI5jGPb4xYnPSvXds/MNq7V5uZQf1ilsjX0jpBMDy8CBHl+DTozhjNrzsTZvPN0p7LDIvX6zhcU3/PLtGbGRzW/PZ/PnF57ca991+eC8RMJejOLY9AofOW8JH33Z3p2+5SjevlrkrScw2OjO/tb7Ux9mc1zigP+K9+lZq5xG+de/dT2IX/pi6Mk9nHIWD++sWzx+6e1vSTXC4hs2fft05YPDXt/DZU/EFJdOH+nEmcPP3gwnrBNj93EXd2KtX7jnLAcMUjwdfgRfaz70+16HX/4w+Ou5kT8c2N0h+7iFy7fesJN6Cys/OHwNGA37YuJiX54w/BC1hkPW1z6OcvMxwpCDv0GXXdw9gWPcksVlh7c9KJ95efCl4+uLjx/wv/3bv/3wJv9nqH/913/98Eu/9EvXf5qLp3y3hJ69PlZTMfrtS5J7w8esH/WxdTVtDhh9WYKxOepH+cSFbd0Zr53+OVnf7ktf8NgMHJZzeOfZ8dkYfnEuRu/g8evemfnVn1t9ZzfYfAmtL3Dxhle/6eyLCbsa2MSQas2XzSBydNbnHZUrnvEXZ90ehpwNexKme2Js7rc8/udnwOZhw9eIo9jOLb784madrzVf/BIx8MrDF6b4hj19OGLyh8Ov3rI12MTekziGm7/73y+xYZkJX3zlKy6cjfdLRxjF8cMbFl7sPRjQk81lHa5ZLjrxYqurs81XLtJeTGdGl76Zb3mtw2WHbb/nVc3N4djHq7PIJ4z28pwSzurz35mffe85/nTlLv7EK4bfKWzhLtf0+qOmhE/59cZ9cY7bp/Oei/dzw2dHdwBePMOEJZaUdznxNzqz4q+Ap5dT13ulWHhqI3jR08ltLp5PfnTW1WhfT/J/Sv/2RF9/xJZDHnr7HW8HPi22T/ziovYkXPY4si2/YunEej+Y/a1ND9j/8A//8I380zH+E3e/9P/93//9dcbuhIcKZhw8XHH+ePh80AP8uz/OPY5qyM6H3lhZHR/9csdIPeo+sfus7w6yl8s5+izCzQMSednFeDACg/S5Jw+sFfH8ExhGvbfu3PkZvUfYcIEPm+znIl92POXtAVk4csCyry7x4Ysli1Ef6MP38FX+/NmIPVw2HNThQbeHaN0lGKQ/OJB7Y+JaH/TZoPdACVZ1wJHHgGGQemLPFy/9iC8sepz6jnL2QKwYM5tzE2/I50GXf1rEPzGiR/Euh/vgv0AoToyaymMdP3fcAzy+BDd47DgmsJ0prDiZ+fP1bMsfANnX9zjTOQ+4chtszkoOa3Z48eqexzlu8YElTrwehFt+dvjljCvc+u59T88vX3sxcDu3zpgePqEzVle97PoZlhh+/OUJTw5n6eGle6YHeuxvGotXk9nfFvbPczjX/oBFDndNzs6w/PVFHmu55ZXPwAuuQa/ncvWQ2J4UV06+BCau4q17n1o7ezgwxMPla1jT8asHeoMPgc/Gj845OQO+dPWRDxx7Qy66pLzlymauNnzEEn4Nez5hFhtmdpzowsCdrn028WzVxqdYPtb6J5+anWX5m2HS+wwi4vB3d/SHPb5sYegf7Lix+S+xOx9Y7p33Lukzx73az2a5iLvjPe6O8iXuJF4w8TDUIZcB3x+U/+qv/urDT/zET1wx9K8j7+hBewXcSraHukS6IJE30xnp2ptJh8ReA8zJ+odhviUuA/9w1mdxyp39lj9blyK/1cXXHPb6Wcd361kfcTjfy5/viV+cOYlPe3M6MymuN5APBSOc/C7nJ//Wp41enB6xNfLfmV+5+an39MeJZLOOlzWRq15WQ3js8VmMznD9+J6SXznLw4+u+Oz294TP+uVLh7eek2pmXx82vnHKjlOxi88/oV+bWPvmbOm2zjCa5Y/D9pRdfFj2y19MH9rFs+MOR1xrsYR9MZbf6sWfnJdLvvJ2R85cb2X8yhrKZyZh3qs7ffnC3BkGDrc4n367xz381d9axzdbfOjh1H/2arJev8Wg39ziSbF62Q+ocmTbOLrFsid0+aejb7186WHKuTFxNy+e2Gz8rTv7fa/BLdb6OSnvcz7ZTkw5qydbs7oMXwb80zEetP/sz/7sBcXnaxGce9Def+5XXrjVFLfncvnS0hdJ/mry3i7W3JBDTSv28uXTefBJx04frnUi/lY/wsyOF529QezTtd6cm0POfIrlS0fY40VXrdb55ROHcplPKS7e2U/u5aG3rhfF21uvFEPHZshD4FTHpXh8ycfel1XxcbY2CL9qvRRPL3S+0LorpD5YFyN/mPSEvwG/zxR3QAzJPw7msMM1x4+/+Hq6cfDOfTk2Jx3MHeHyI+W7No8vfNnoOyezmvyS57t0PefD16ArT1g784XhF5K+j7PTLV5508EkYZv56IvPG9yI3tPZG9b1jl2c2jsH++zWST5s+WaT1+huWBNc1SFvuvDt4wQP7qljLx5eHKxfIvUQj/pWnFwGPmZi3RmXl07e/LYWMcuZTR3pxXivGfLna+3ObI7yiK/HdN5zRrgX+OOLXHBhwMUbT9hxpA/LOqnf9nzP3my9fOKET1It5vRqwmlzxi8/2I2wdq4umGK8J/ziDNe+sTGtxTTSmcWsxLe67eMsv0Hi2Z3wEMqD9jf1N9r9Z+6f+tSnHr7whS9cuTwYwrW8fiYbfX7i63PCPxvjoYLe4m6u97gXbyZ0fKpLrfKoC761h8bq66GFONiLJY4ODi7i6ZxROmcll7j9PBDH35y0FivOUAc+bAYce5geLntY0kNUnD284SdWb/jxj4+ZrrPeuvj5rFQ3HLXwg6W/7pz8MAj+sIja5DdXx2V4eol/Ntw9BFpuXO2N1vE1Z8MJP4POvnrqFx6GGkh1sOOtDmetd3zUpk712Dv3/OKsn0b8cILLn09n7CEbXPxwMDsnPnzhqr2aPEzXD9zg0Ru41F8xHqqa5WcXg4+8cpjtw5GPL5uzIf42PR8ccYHfz2q+RrXAs5bLrF8kfZyL4VNsPdRHNekvXgZ/dYRXvXSw+ePE7/8yd2c5tiZX2cdzFAiMkbmkEchcMQLuEBKdMQLEBQgQjY1vEMKWkWAGXDMPYAYMAGGZRhRGNIZJkL+3zt/f42DvzDx5zqn6lhQZEat51rNWxN658z1ZWeKrDQa9HPBJOa35k3qczd46UbM8cOnF1Ws5iNeB3173jyZ4GWzOzVAH3t0Zazj0+tu5hV8PceFXzdZ88DGy6YF98TDF9vpi51tt9Hqlpzg4G7HunXvDj8iLW/HhwyL2fPnBMMepHngv4LOYfIqFA18eOoMslj08nKuJDg7+hJ3AMpL28Ba//M5VbHlPH3F7PvpM+LF1tuqDhZ+cnQHszqp7zcanPnpArjb2esWmp/zo4HZu8sgbhnuOY3j8q4kOT758cHFf5bSmJ3K3pufba5beveg32n/+53/+iinftXnBl1c9aN8XyObowOhuEWFXiOKz21sbHXQzmzWb4sWdwp6E2X6xHQD7PQx2/qfwb8TLvvXOxZfHIbFXh3UCg/3knL04fk/5hJlPdaQPz5yPWe6wy1Vsdj73ZGsN9/SNwy17tmLg8TPYWrOXC99bwt9gN/OvtvzzWdxbuvybYTXSwV4ui5nPU7O8RByBT6f/vWnsmwVdfvnGnd45dZ6X450vG3OPc9xAxO8WXHeFDb+w8WAzksXEn82baxjy9GbH17qzXJ7Wi9UeJpG7bz7lNhez/vprX+/y47tnu7H5yGeIhWEd3+LpnxJ+xT3nW95m/i+JeSp/Z1R9T/k+Z1NHOHuOcqQPw16vtu/ZzOwGTGN11ls3nL17ncEV9MY3LFxI8XGwj7/1DrEvlXiHf8axy5l096uRPk5mw4cKD9q/8pWvfJAH7X6Y0D+5tlbr+D1VDx8cDesd4ZnVCEeelXpNx2/3YuARcZ2Re7Pr8vCLK1145t5Lxe59OfPBDTs8ucXAYEvyhcHee0F5+a2/PazuPb8w2FbY6uXirY+13OGdthM/jvzYdsQTP69fe/ZEHjaDvnPJ3lw/N17fvNd3BvHgy686w2hOb1YjgZHErx7UW/v48YlLudrzI+aNLYaOb7zL21x+dsMPAid2WObymA198EOCH0D1nI7AgadmccWW13xi+DweBlxrs1iiFjHhpW/mI28PGezrPx+xamuEZX/6ia0P9ZCPmlbiQscOk7+12n0fVwMd3/Lw33rkIvm2D6PY9PIYhI2+3HT2+mfAKBdbwn/581EfnbWxee3DCsMMJ3086MW6G/tzVr7qNMTFw9n5AXL76EGC1111xxeXapMr3jD5ED7iipWH2HeO8sOJw+VwfOFrhJO5Wsw4O2ujnPSdZzH1k/8pbPGxxh+e15Y5jmZjpZrT2xvt87WvDviEH119L6Y6zHR+sP/85z//8Od//ufv5W+0+9u2X//61x8+evwTMjj4zV99dubugnP3Pbk7ga+HXt/61reu3/x1buL2jukfnVqqs56a1cFO+Mhhr7bv+Z7vuR5UyU3ky59PfUjf3oMo2PQ9iOOvFvHlDZfOexQfMe5Iv9mtFnbY+Inhp1b98SDQb9ny8eDE4IuDIR5muPb9ZmvnCw8uDA/m4PUb2eI8CPbnEDykIe4ejoSdwPJwuf5dyjdf+MCWBzez9wBnV3/ywcOAp09y4SxfGOWrF3wXl587467UczjqllccnnrlnO2zm0k+Zti46CeMfOQxei9Ql+F+wu4zpL7oJz/nzLZ/TsQ/FOkxbvIY9UNu9eHrT0mY9UJP9A8nHOSSWz8786uQN7Wog905iodFZy2mnMVUS/u44yKfHHG2jyc7XwO+PSy19eAWJr27Fl4Y6tZf/sQ58oPnzocBk5jFErM9zM6tPX6JHOxw9VPtcI3ysv3gD/7g9bAdnvzq9f+R8LrrvUa8AV8f+TgTmIRNDfwJP/kNPgaOBlFD9cSZj37jDIveuRls/PFzt9w9/VMLnTro1cAmFpY4Ys9G4hG+WuKKPz/Y3Tl+xmLhSOJnzQe22PjS8+01Uv3yiSX4h59OvDWsPW/xfHGsD9b8q6u+lqN9dnq4ztFafv2GI2dngHfY+kJfbbDYvOb5wQlfPudSLfD59H4hjojh573GTNTGv57Q1Qtx3lN8vyqWvf4Uh6v3DJjW7sYn/jfa/SuuFxkCp9QoeoWcUnPZsmsMOQ+Tnn+i6cWke2oWG/bGlWdj+Rkd4Nr4i5c/TAdH2u9cbIdrHzY/AyY73Ft8whDHfs8nvPzNahB3Cgz+yfaTXoyx/KqzmJ03x/Z3fe6t412u6mtWg3W4ctlnP3HhnHLLN79s7cWmW5x6Ul+y4aU3G7Pr/F4y42B098L1xiKvfW848Smm2WuxuOdyiiGv5Ss2vmGdrw08qyd/ukScb6ze2KxxgaEGe/XoMQwz+z2+5RIHw5v5Pd+4wDX4wa+/MODhcU/yMecHqzX95t/1iSkX+z0fWCT7uT/xdn/PN73c+r9y5skmJhvdru3Z4Rl6WT/T8c/HnI/en5JfsfYN/oY90XNY7csTJv3ipDeLK3/4Zrqt78QMY/XW8oi3DpfvLWw6IsbdIeVWk3jDhxc/oPuN9i9+8YuXH/x3EXn6jfanHrRXz5kr7vTeo/oA2Guqmb0eFXOLu3pPP7HlF3srLnx+rfMrH71191xPnXsxnVP+9I0w8TN6P6YnYgw598w+tn78tTx8rPM1G2FsjDU9/+7GLTsdDDXIn9ARGOLhVLfa2dPnF0843nvXzqcc8cqfLYkL343Xe+/1+kfkMPhXoznefOoLvXi2crMTexI3mNb0YqxJecMK+zI+foFdbJz40oVVzC2OapXPbPBN4NCJwydO7M6iH6r7niWWvzi+ZjrrcONAB8MPLuKdG5uZrnsuTi0r4bKJsdenfliip9tB1wjLHl/na1191mLrIR+DPv6Lna/4zk4d1RQeDBIGfaLe+sRPbn3hYy8H4WNUN721eCK/dXhw+J8SrtjqhEXfvrziw4k7vGLlige9OHfDEEfiGE6YbM7OD6ww2Pk6S7XgY8RNnHzh0hN6eflak2LhGXxhEvFw7gl/ePzNJB7FmnGH485uPjYYSXiwrPmu0Lkv9K17mAYLd3pjBd7misP6WOtJtvpDD9c4+aTn42dm/2D+Ph+0/+mf/umDPyEjrwcNvX7NajJ7XVrjy+ff/u3frgcI+i2u/rDrAeFvELrOuL6F61zV6Dd+PRz10IaOn5h6yodODnN9sne/6QzreMlPB4NfezoPSmD2/uBhiDrsCVt3Lj8PwvwP8DxggbEPmDwMM7xXyEXM8DxswUvN1VONHr54eO/PAvkMJEYeDxfhhaEma3XLTdTgbPBL2PiZ+arZLB43mNbJngOufLaGxRMDTwz+cPnywcMDrOryOtRTdvzE4OtBOx+5souH672merKvj3ywGviIhS22z5DuUg+2vZ8Z+qn3hofu/aODXqWPB3547IN2fSuGPztxrvUrXmqxJmLkcL5w9V4MDKImQ27SXL/MfMuvr0QOeM3lbq7/8KpLH/inkxc3vga9uvjFVV75+RI+cbZvXb3s1nBg2Mth766b7fWsvDC8lj772c9ePXf2dM7Me43XAx1cfs7ZGjc2M0wC313gHxe2eOg/7ISe0OkNXz6dMSy57OlxNvN133GRy5mqN34w1SterfWQDzwSP1gw3ZV48ucH2/sSO9lYnNvHL59iqx0uLnEWSydu76/7Vg9ghSs//3KaW8NUt1h81SO/2OoRb0+Ks+evp9b1j4+9GOcJF2b++MY5LLXxs5eTqKPe0cGQA193vHsE1x3yj2K+v/HFH578YgiuBpv3Mv9AKlaMvMRcHP7up/cwazGf+IN2b2IupyZryAqyET9tFaNYtprKn45sTLrL8OaLmPVZ264XM73GprdekctwoLdETg0nMJaD/Y4w5DBwLu+JzdY4bcXIxScp1+rqVXXk2wzDOO2bO1wx9PEP45zzN/Pfnpy+7eXnf8oZXw/TV9+ZYzmEWUz7p+aNP+Pq1S3OeOzZijVeK+WIA169+cjl7sW1HPbEjMvZm/zOOZyTMz0ecJ6rJV/+pNdG+3s504v3JmhO5K0G9RB48bzFSXxczOLrxVP+7ldcyysuvHjErTm7GT4/67Dy6/7GJy7F2xv8wim2OV/z8rEvPt+dN2715xrnk7c8sGGwhWUdTz75hcmvnuqj+xAOGwnL/NwZxS0O5Sn39tc30JXNEyc6scQarrjOfPXs1Wp+SuIJJ4wzNh/2fZ2Um32l3pp9CPGg/UP9RrsfXDqL+rZcbq3xrYc+zPjQY67Xzfjz66xuYdFVb/nPubj84LVmq3/63nnFr9jmzmZj+JJi2Rr0chmro18J17xDTHvv56T9zmFt7enOudrizV4/FtO63lvzcdbWZy1h5XPa6Q36OFZbmPTlZyP27nAfuunCsg4rPX86vLNVg/0tXt1fuGHysxcjdzbfc+Cxs8nHZk7Kk55/HPjFMS5sYki4YbHJKaY+xcV7gR8mDJ+l+ZQzbuGxrfCD1/BeBo/e2rAWT8INI9ydrfE149znD1yqv96EY2/wFZeEi0fxxbKpx7Aup7166lf1hFm8mZjD2ZkNrpr1lV856M5eiE1Xjvaw6iW/BL5B0osh9OqA1ShHuMWY4eOpbnYDX/rtAV97o5rkoefv4QAptzOBGYftgXydzRX05svWFVfxRB7r6n4T8uSUf7mLrQ45cMQZn0QuNnLmt+e/XItrrld+UPazqnz86Q18tnfW8sFmM/NbiQ996+yw45nOXm3Ew7r3/aD9a1/72sNHj7/Rjq/6zL0O9dIDjX1fse83TNWAX+891WtWC9586kHf3+3V0oM/Ofma9RAPs/xyW4cdVv0xi6t3Yvjwpyf2eg33jKffhzH8YYXZGZndAZ9TPFSy77Uhpj7hKod4gw+dYS/O2mz4vgZPb+Rlw6c7ByvO1cRHLbBh0q/kD88g+ts9Wl+xfMy9nvHiSyePh1Ddf/kWl33x44NDNeJrD9NDLvF0zqozoVNPNbHj090TD5sdrr0hHk/YbPXTw3Y6D7esibjy7nnBaPALr3MR0wMznAm+8OoZnfzdcRj4eXgqZuuWGyZ++ccNjnXc5RG/z8r0gd1grw/i5GWnk8Owpnd3w6enE5/OLFYPzXzcxXDZYYmRmw/ROxwNMez6ruZ40NWDzgkfOHFmF//tb3/7wirWa6F7UF42fdQXee0Ta5xJ9aWDn17elfom1rngGT9+YruT9nHZu6N34uj0wF7u+gLXvhgYBqkOPOhwF1edYgh8Ys8Gr/ro6yc/6+xy67G+06tTPd7PnTNd2Gzi6Ej9vDbHHl/YOPODQVevzWqLv7riBY8/HzG9Vun56V+9wAeOM+9eykfHV3zY4vnzUyO/fNTvc47XN2y5vU49aO8fbXCqV/notbsIC6+4wlcPHLNeGPb81S3GffiRH/mRh9/7vd97+MT+dIx/xUUcSUQ05ZQ9jFu2dF0I/sXQpc/PrGn0cvIl9qeEZdak9prXgVmzJfTZ0u0sj0tBwl17+jDy2f7QJfBcLmK9XPhVFx+29vzZw0off/MtUa8Bby+1+MbG0RWzuZabdXnzN9+T/Bdv/c8e1B89lEdcPuLsDX5hys0H97DZWp/c2KqBTVw5epNY7OI3R3Y54sXvXBd7b4ZjwDZ7w2ivB7dkY6pRPXE5Y/Knz781m1j513Zi2OfLn3TP6fUNRnUsVvnNJJu9tWEtlqS/Nk98Cc+M057jhrF1/1cvXzXUg7W3hl+u5SjGIOzdXTzg5suHXZ10/MzVbU74hZvP+q1vMebyxycbPSmufXYzvmRz1y9x7N4H6y8/ej7O3Z5t7RfgfCkmVXzasxvlzb/8/OQi+tL78qV4/CJOjPoXYznRx5MvKWbzLTfrfFuHv+cTz/WBz0dOcuawX2yx/H0o+KQetMvZ/cRR/mS5dc58ffAxvFfZ1/PqM9PBah1ms7yniClPtl5Heg5v48qXrz2/9PreWhwbiZd1eMXikLDRPyXFw2yUU5yztGcjZryKY5PTyC+7vRGP7l2+9PCaN+5K9viFzSDV1n5t6TYnXXtzPKvBvFzkoDN86O1DNz3ZHNbhWMNx9nGsbnt1n+eqVmOlGDOs+FuHzVafxHYnrItvnQ1PEpc4Vs9yg2Ff7PKE433LDxM+S1vTWZejPOb4W7N7LcSdzUjvc/m+J+KRxNOeHn/9sM7P7IeNfqjbmOqupnDDqv7w8CTijPzM1Wm9n3Xko7sni1HddNZxtYevD9Z4yd8Z8LOvZ/Th0hN7wtZ7jz27wd4ZwG9dXLOYuMnHL7F35n4AdQ6ELv/mcqkHF77OKDs+zmuFT3WzW8ezhz/Lsdjqi0d6uYiY6m8dD/tGcfnEBe72k93eKIfY1uzty2OOJ1s50rHrlR+We9jDFiYui+VM8OLTXWSnS/Kn2zPMHs/dOwOY7/tBu7/R7kG7v9Hee2u1y+/hov9h3P7ZjfqudrzU4/1Hn+gIjOyX4vEL3x48qdFvr/oNdn78nZse97Cju2U+z5Q/HnJb95uj1nTEWk65DP5+89BsL5e14eEKf68FMc4OL349pIGJRzF7jun4iCm3nsYtLuL0at+jxYTtTsjZ+znM8Pp8xBdGHKqZbyKmQef7pwdDHi51TvLGPV6w6Z0VPzz8qRUP45xFseUptxijnPzqI8zOsfiTu9iNga8X/GAS56OnPTPCHb9eR+L7nqNOcWb/JYhzsOeLl7mem+EYMMvJz7nR9bfWrXHlA8M5iJcbt/Ky8/Ma8vqARcorBld9ZoPLZmYT68zMctR7ebqjYeqH+8yP5GOGl8CCzU8u/YBh8GU36M189v6Hwxd3g+DmQSUO8MXrufsmv3z6EV896r8M6bfn5dKn//zP/3z4+7//+yuvM/MeAb9zhgPzHPREfv72eOBaH+QwyNZavfTF4a4+fnR6bsYRfmeEhzVc683ne6k7AV8smz0/9ehtZ2nOT161x5uf9y4xcMKkdy/hxbMaxPp+oefs4uD2OZodb2fmfy7r/GDEw5rgdPYHXph84BCY4rpT1gY7ru5BXK+Axy84+a9c8JPbWgys+kdPR2Dpv/dsPdcTvSHl4y9erv1HQna1wHXv5JK/Pva9px47g16f8srj9awO+OUpLz1xPnoAB3YCz4N2/zPUT+xBu//8qsvWCzFCL501jSioYtvTGadoLNGA4h3ILYFJwuHP16zJmr+x/B1AuCcmHDFx7UW/ftngE/j84nD6yieGPS5h2NPjs/Yw6PkSduvw8mlmw93ogvElYZtX7PcNaPkUBzce7Pkszrnmb5Bb/ssDVzncMbOxdnuy58ZuwMafj3y3conNHq/iYJSfX1LO9aMzyhsmn2zWhM9TopZ8veDF2zs7Up5wwrdP19k+dUdh5V9/wi+//T2Rt57B6a7Q9w2CrnrKFV+zPOlhWRtnzD0Oq18c+eOTnm+c4Vuvjb03W1zu9Y5fUjwsmOKsG/zgOLv1rdb6w2akr/9wwoRVv+iLoW9vTcScdzccceF/7P3/7oF9tmoIqzNRiz7V33L3vhIGu1xPSZz4rsBky54Nt3ydMaHrtZEfrnse1vkWD3t7yF7N1RR/++LFtd4cYZmXZ3WIqSfs/NisDVJ+a3b+vvF/yAft+6dj5KzWOJjJ9kvv7fn68OfDj/Ov1voSHj+1mDuLj1H/79d6Aas8vGA5Z3YYZrp7Ild8irUn8bq3Lg7GyuY7baefenGEVZw+EbZm6/iUN57i+3xV7+hIr7d8YTT4lP9yfvMlzmYjf7MYM2Erj17H17rYuPLrXNjiAydMd9hnt+LZCH/CTw44OPBz9uxx4gebPhw2cVvr+hcjLm5iu6vsYouhjxNbUqw93/bbA3oj3mqSKx8xcW3tM7Qflvzwkc0Pg9Z8SNzprIm1e1F/L+XjF/np4LLDWL5xzN8ME+cVOufVD4XhwlNTo5jNky3++BD7HdUCm3Qm9tUPK5zLab6IZ8ufr3WDq9z6wJfd7I7B52efD/36wbY38ykuPRuhJ/nBJez5iDfYdi1GvPM3qje/C2i+iFWPGP1yPolc9TAdvHTZ6dQvn3uCQ5yLo0t/2viwVR+7HHGuhrDyF5NNHTiYs6tJbfcEfjnMJA7WsI10fOD5Yd1rqp8Z5WRbP1wMgue+hvPPFgf+8bgC5wuM/OPkodP7/I32/meo//zP//ydhxpD4Xq46iGrh+31Or44OTPS+w3dnqv+kPrhQYPvX/Sf+9znrj8TwW6vtx5k9PezYTrP3ofkNfjKEx97D018hqDf+4BfnGB5mMSOj/dMGIbzdV4wzF4TYvnhVQxfd773A7Ox54uPIV6tHtj1Dwz0MGCqq/zVaYYVLnv97L3Unl95+cRPL0kx8lkbHm7uf0VAp1axDbxgi+sBqHo9/HQHen9xDmJIOboX9oa+46wPbHrce8UV+OZLcXHuzJhhGOmauxs4wMQZzuaVG6Yz8NDXX1CIi16wiRcnXm2LGx/59bjPuHiJMejFmuV2bxabzp2GK7d8nZc4/edvDo8PG1EDDHtnY893+yIOvuFOsImRz0j4wYbT3eELc+87vx1x0Q8Co1r7LKp3HlL2oJ1vd616YOLO5n3An90w3DM8cHLHPnr8r2u+8Y1vXDU7N7+QqzbnDMvQQ3iwlqu9+ty17LiqMR7mFT2qZ+HT4W+GQ3CHBb87h4eBe+eaPy7ywhBHrOMCo/NKzybeeciPlz0/D3jVJY++s8HQM7zlI/VEzv70UZzUIEe8xDkz3wd60A5DrAELt+4cm5jqtid40MkjDj81xIVNDYb4hC8/52wtl/dKazm9H+Oq1sR9dN96/3YeXmNw5Y+zmOqLHxtsmPJ4b5aHvT8nBRsOXvlYy6tH7rmcsODLgzfptdL3ETjp2L3W/emY3/3d3334uZ/7Oaor17V44Ze3/p+hvvZBuwIN0twB21vvYZ78NYWPQ9d0Ym+8VMQZXa7i5KePV/qdcctnD2FjrNvjJc+t/9bbAAA+30lEQVQpcTCT+BdnFlc+duv8wnNRiqGLG798yyEeppji6kG+4ZrDEKfvZkMskbfcfLNfxie+iMEp/M0d12zy8nfeK/mlWy7pzPUe52qlj7e1XHHqRcdXPSduezN7fnBwoqezNvi0rqb6xDepB3S4tu+cxLhv7AY7HQnfvhydES6nbF62MIs//e/txcm9fOLd61RsfQi/OLZ01hvTed3iz/cpkQ9W2HFqhh3vE98+ftZi7I2ELqx08BqnbzzMhB0HGHTiwksv9/ovh3zLvXMxMKszOx0R33tXuMXlu3NY8PjhJt56ufArR7a1L2brYuKz+rilM8MLu9cqHU4r1Q4fDmkWHwbdcm6fHfZi0O8Z4RBu+ePIl8TFOp16ce7OF7O5+PPxQeHHf/zHP9jfaN8/HYPHLakv8cQprn0wUwudoebOB544tWS/lSNdvZfTB6ntL5sBB+Y9vmHxEx9vvOzD4We/OeKYrjxnrrBhwEviZi8GTrN6+Pb9zDrc8pqLZdc3M313j92+HrMb1dI+bLMRNr/W+cqTPzs9kbPXp3zlEJ+fWIPQh30pHr/AaNCFYSbyyqEv1nx9oE7PB6b89OXY/PjybxTDl18xsFvzKc5667MnJ1c6GHG335z4selHeHxIftn9YOAHDT+E1WO61vzKVX/h4Mwn7uZEDn004mhWM9v6iqGXI7E2cG9mE5dNzInNpzz8+Dwl7OHAFhvm5rqHkb++5M/XWp2ETZ/KZaYz+MDgz8ew3xqL41MeuPHmX0/5rORDV2xz/MQ7J2fuB0AxSXh8d8SFrzMirc/71vmxG9UGww+o/dAJozqsnxKcYZmJuHjALdeJsXFi6kV1VtcZt7UXZw6vfDhYJ/n6od7Dns5381QHLvwTfYIfRvqd4bBvXPZ4mMPy8OV9Pmj394+//OUvP/zTP/3Td94T6yXu7lQPufBg0wNnvpx7z60XamCvPlh663t+773f933fdz3o0Dd2vnB7MOlu0RmdM1w4Bl15eyAjPx1bvnpH8FYLPH74heF8fV/Fz+zzCJ5ixREcYeMIg589Oyxrg81eLDwPazxgCU9Pe/ATh3iYxRtwzeWuf3iwGdYw+Kmp/tOxGcXrkYeaONHj54FnvRCjNoPgLCe+fuPVg2Y2ujjyK2eY5YyDPHzUjLM1HXv1WhP6/Olw7Sz0mw5Or8XFEC+3IQd/ou/q9I9UdGz21nHFI9zO9wp+/MKH3UM2+cSr39rcOfHTGyNe1vCqu75lFxOnbPJak/CsYdQb+4SvHO4ePD3D8ZbI251lD98MWzw89fJNOhf2+oO3s5ELpjOpVnHde3iw5HAHYblbfpu4+6c2w88R/myMuVrk8fpkpzsFfjnY+fU6l9dwB0i+YbDhjxN+vX6tPYRlqxf6Wm/h0De2p/UARmfLDzd5YBZvJvQ4xlOeHj6L4+f1129T86OXt4fM9uWoPmcAm7DhZNDFTb/846ae6Yd9/vbOrHOjx4WPmvKj8/pRO3Gu7gY9P/7W8Br1vXsUL3pCv3npyi2PEZYc9vW5XrDTiysfmzV8fbbH3evbex0McfjI7z3TfSV67QxgEr4EBilO3+Hbq72hJ34O96djPrEH7S/50zEX++NLl5W6w9O4ij3c/4+enziXtBgNeVsRey8u3BOTHldDbBdj+dPjZyRnHv764DKwGWGXm65LwxfevkDC3n7SFb8c5CHx4FNefukvpxtf2MNltjbqRbleglVc+Td3eHxgqR93e+d9Cv3bSrWINezlInppJGydQbpbHLeGMPmvLz3sMJ0lHTHXu3Ril0v9uAIev2xOOv7Fdi/pTz86fvmyG/a3fPk/JeHw2fhy1AOcqpEvOxtJn2+xesT2UokLnPPOn3k6i950y1ENsKyXEx86I87FxRluPNjWL2z6/PjKwc8o1vre3eO/WPBIMdZwNke4cYdN+MCr1/ldxscv9kZ9EH+eZb7m4m/xW7/WT/lny7c57LWny6e6+NRbNvvi6KuLbft94hVDf2st/pQw5Ogs6IzOClYc6DbGHabzgcK/pH/pS196+MIXvnClye/M+dK9vP3PUPuNt7jdwxBTXh9ieo31IbO9Whv1So2t1fSUlIOPuBU2OPVme7Z+fMqZT7HZ4lGO+J044vjmn707Zt/dgdFZWxvi0lt7rRkkTjjE9zK8+cI/bCo4+eafD3s2a9jNYcSNfvnBWH/rxgXy5osY+mKpy2+OnzzJ+qaLZzaxvsf3wVq8e4+3D9Lhums+8LIb3TmcqkHMcuHDNzsO9vUvTqtnI3DLg0Nivf0J6+xNMfRk/dwBPyD5z/oNe3Z9sC43nXU6mOGqlf/WJg//ctqTOH+8++6v4cnlh4z2Zv2uz+Zs4YvRI/pd5/fdmT7eZeNv2G8N8qS/FZ+uvuhDudnqFcz6Wi6+9YfOno+5ewGjmpYXntVt3d2iE0/CFmck7OnyYXPnDXZ4uDjT6hdTLP84xgWW14pxCjyDrwGTLA97NjnOz0NsK2HAqTZ8CN3q6fiv7L661Eu/PSmGLq7mfMz4yl2N8WAjZtjePww9TV9u+3Jfxjdf4hnW2qzZ1YrD+oRlNnDyeiIevvgv0/7sz/7s4Sd+4ie+K+5yeOEXuOSjx98e/c3f/M2Hb37zmxcXDxLwSdwHDxk8OOgO6EEPXfWA4KgWArue9V5cvma+alFXD3jY6PMJyz6dubNi71zEGfpIFy++hJ4ufXzhqdeDPDrfG3Dy2cRQfzEw+IqJp312vTM8rOk+yu+9DxZsvnLFMRx6MfDk2XrxL2f+/Pb1TR/3WzWLVwsuRA5+Hj6LE096H8GlO6ee//7v/74eRNHzxdeIKx28YuKXT/hmPobYXlP5bd183TsPPPvter3zEFacHMS5EXjLy5rAlM9v95r5+wcrD3qdi71Y/YTrPqqTTj/CZeNbf+HjYPAh5nTscuu5WvQxTnzZ8pdbTvZ6VF188XZ++ORnvpVLr+IMD++4hBlfHOjM8pr54hMX96PB3n+ZIA4v/bAORxxe9vVKvPcRZ7lxuHnAaVj328K939D1uaYa9CHc7RtupJ5ub+jVJ7c5H5jW9Ebnbu3c2OXg467orYfI6iFyFGPPTy16hA+u8tVPeA3+fMQYauqBLny9Yqc3/8///M/1vut+dlbicAgLb7H86cOWk9QDft2p7hWOYtxT96x4PAz+hN7gT2DhqGYPoeX23q5/3g/rn9zx5hMHM55x7r7Gjw1/OfXasBcnRr3OxnsD3iTu4aoRH3N2vHqv5hdPmEnn4Fxwx02eOLQWT/QBlx60VxNefGF40P4Hf/AHD7/wC79wxRR7bV7w5a1/o92bPOIK1LiXJuywXsDpOogOJPyKlxcWYcv+EtznfORowFWfffk2ni59vvyLEWe9QqcucXE/8cMSl58LeAtLrJGIJfnKtbJ88137uYadn/WJF1f5ynli2MsbT35h5su23Pi0v4W7XMLLfzHZwhJjyL2D/+aPq3tGTly6M54uWax03WVcejOJTz4w2b3o5eRHnspVbByrld76FDkTuO8q1XDm2h6wba76W104xD8+Z0z6W7NYb6xk8+YLq7F8b71BFxPH9s1xrp7z9ZCf+M2ZPztbY/VPnTd/ucxitj9qKtfmLxc7yUd8eGy9j1vTmxvi+J8Dl3jwSejEfpoSd3N9ilf1nfxOv7WLJfBurfMNO7/1pSPxsHbe+tgHsjiks/cBw4P23//933/1N3i5VnD5m7/5m4df//Vf/85/vrj2W2u14W70Awid152hBgKbXg3WZoNOPUa9uJUnHR9DPjEEhnHK6VdsfmGIZUus40WXXxzxJvZspDku9unYy1EetvKw94Ez+8ZYr4itdnp86OTowzO7ewSvsRjW7MsxPnGoPj7lbBbb2YZT7cXJEVYc2KzroVi67Q+7vVw+0PpMyY9OTv76RdK5a2o3Wi/m5okfDtbt+RtJPPiFxYYXnVx8EnpSXDH08tPfqpsfn+ryAd4PqH4g9R4sRnzCF1Yx7ekMOOLEsCVsK9lOPZ+w+ODXD6mw2bz/9P5k5pMUa18P6NRhTg+7kZ1/Mfzo+WQPIxy2zu8CfvxSH9WfP796WAz/colJYNvXPz7FWJP1Z2uwybl5wxMTjpm033z0vR9Ug/P0WpCfb3ZrOnfeD4SdiThnRL+5cKHDj5TfbMCqRr7yehCwkr14e75h0cNfPDzJ4l+K44uYaotjNXJVV+fC15q/dSKHPnh9WudnNuDppaG+1bPZEzUZMJJ8s5uL4Ytzezax9EncnA29Bxh+UP/6179+PXAvd/4vncvx0eOD9t/6rd96+Id/+IerDg9UvX+G6wFDv3lajB54r8Fdz/i6I7iqhfQ+bA5L38Xmo6Z8+cBzDuf7Qz2pF9nxgedhSTkuwMcvHnR4IOaOy9cdMROx1mZ3wsMxuL0GeihDxy98/njgSid/90tPPFhScznE640+muMhzoAVjn38+r4kvpzVYc/XOVkb+KjV6HMVDmLqt1ykHHETywaH8FdTa/7911L5yN3Zii3erB4x1WO/drXJnZ9chrx0hjxi6p2zpHPWesynuvbuhVV+NYTnIWm1Og/Pn9xtfOirTWxc1CC+XpTT3vddfaAL17oY/Enc/dYwfvTltNdHOePJ3rnXF2eKfw+55THENHDQi+589viw1/di5JWDsMlt1FP65QVD3TDL13l67Vjro9wwwtFvvKoLhteLeuLpbOl8/4BVLv+ot9jxFKf/ewb40hN1EHt1wgvHvjvMB082vvgbakzs1aYGtfAlcAy52MXjrxZ9dfbOLuHLBpuv3vKjIz1chyeHvERc/RIbRzMMtemLOujE0/MVK0c8+fHHVw782PEhYvBxL+nY+Ykh8DuD5eF1aRB1iIHT/eErjz3BcePp5RQjr3zqSaonm7MQn9DDN0h56yX/6qgWZ6UvfK1hFKs/1W5dfvemPM5EfDz0hW/9qc/s4ux/9Ed/9Pob7Z/Yb7R7k9NURF8jyNewPcDFYlf0KRrqQrHDsa/Jp+9r9g43bAfUYdDhKpe8HUg5ssUFjnGvvuJ27oKtzlo+wv6uEu8w3wZPjMuoxuqiw8s+3S3MevqUz624Wzr51GHI74xwal8Mm3zuCxsOJP9b/RSzZ9fevHWX49bcHZK7+8CPHg6hl58ON+vw69VrX1/wyGvjr+AXftle1c9qbL9Q9ZNue9DrS8+K37in1u6kb6LiNmd751+u8tbre7jdFXzuCXy59QBeeejFd6a34rsL8OvhU+fFB2a5xNUr+cjWXk42MaQehFWcvGG5O+z5VNdyE7d37Fbe8v//OFebmtX3viRc/YHbOPHzq+d9g6+P7Aa7DxgetL/L/+38zI/fX//1Xz/82q/92vWgnb27cPpmw4fgtHdkPwQt/+6qmT9bA9Zz+dj5bQ9h0buLbO3pYOMWBzqxfIiY/M94ceUJQ3x3/AJ48wU+X/bymkl7PtnfhF17+cuT/qUzPHxwt/ZBcvPJWe2LWQ/FVRtdZ5gvW/awiumHAO9vbOIN/kRd8PCpPr727rY5rM4DDr29NbvPlDDp6Yg1Ka88Bk7uXvev/PwMuD6A+wEgjAvoxpd44HoKHOPEUD+9vETd8sa/uvVBbXzz40vfg3YPi+pXXMx0xBr2KeXr3NbO1hDfWJ90uOFkdq/wta9GM1+18jHoSDnsrcU5m/bbnzDp9CefMwauHMXKzQev8vFJZ+bbnv/bihjYelnfFwM2mznhL04dRjz5bG3rD6M68renJ61h90AhW+fjwY17r2a2+rncYDmHegjXiFvnWA1q9vAkoeeD4wp9fOjZ6Vqb1S6v+Z6IiROe9rjJmc1rl9gb/aC8+NZ7l8TwTewN9dHjfvaJb/1QT+fCV0y69mHvLB6XfOPo9aQXHrT7Pv4nf/In1wP35bg4z63hk29961vXn47xP0PFy9/qdX7WfOTt/OkM/dbDfitYH/jw786b9Ys/wdPeezMb37i33t6Jg1uP+eiFzzH6YG/gUk54MDxk92dpPvOZz1wcYcm7D8Dg9pAPhod5avD5X83dBX5izZ2FHHH23qsuuf1jp76sH194OMGXC394Ygn+cWMXL6YHenLBYcPZXp7W1c3fa7rfprzA33zhow+4GnIYOMAl9jiqndCLk8+gx53OAzX5renE8leXPIa6zPmUp97KwdZc3KWYL3LLQeLSXjzO+mMtvzzVOTDf4UnHz/MnD9u74+6WdfUUW074zknvrf1XnL7nWhcXNow4Og+c/JkmvNTP36xmeGR7D7Me4up92sNLfXcf2cV3Fy+Axy/0t4RfdcHFh2/3jk79OBj+2oSZn3OWkw8c5yqWf98/nD8+hjx6hq/7yNYMC46/+f/R4z/yqd3/FLW/buF12P+jQQ655HZO+giLrnNmi5vcYuCzez2k03fc8VWXPS7uPz3f8OWAg0sx6dRlrUY5cNEjmPpBJ9agd8e8Z7Phwl9e52iNKy79SRi+coqHJZ8euWd86en4mPPDR23q6D7RiZEnnmLwMNgN9eAAC649DH0l6jDYiVj/gGCIZ4O/rw1c1Lxc1QNXLryIOHr+7eNSrN7GUy562PITvfFfufQa5MNfLYk9HNzFOmt3Um4DH+etBmu6alQ3zOrErxh52eHiZV3P+dB7HcjHjsMP//APP/zGb/zGw8/8zM9c9OprXJ+b3/o32t/lQTvSmqcYA9kaa01H6PglbGI1Q+OIi2UUw05qABv/9pfxBV/C5Vr88qbrgMpJV02lYLuVm1591X/LJwyzPohxufMtb372eBNcTmGTk9/Gwtv9GZfdDEPd1bn5nAl9+PbF3sIUWzw/Yh/2GbN7/moxNiZ9uLjgYeghfz76U4/4Vr/c+VjvPd11fJfTuYYLC4785TDHLxz7eIXDL3u618w4EDxeg6ducU/Fx5WfdXekHp+8+RjqhmuEcfq+ZC+fb1T3MPQfF3lI9dzjx2ex6mFx1Ym//vCF3evT/m2lfHJZ47b3hM4+v60HB6LOuOKz8TgT8XzEt64/9rDKY1+eaoZhvXWL7wzp2U//7GGL+TSlWvE8+0b3GlGbsfHyVHv9rDf1UC4259L52+Plw8WP/diPfbAH7f5lH5/GS+rue59afdCyt8a9Hpj3LsFXj/vkQwt7NZfbntjXs/xu3Re2+lWMOGsSvtlrM1324sUUx2aIyW6PN6mG7rm4/Nj58WfXF/t4iGW7J/wam5M/fWINW47ql6fc+eHFxwdvHzLFwU2/udQhvl7gak2clzxxp88OQw7Duvg+iIsTD7szoMOBr7lafZjnl8BbKZcY9fdD1smvGDXjuTjVwCe9Gadq4LO5wuNj1Jf6GH/6fMJX89bNrkZn4gcNww+NfODgYMab8JfHnn6lvPBOGy5hig+nmvm3Pu1sdHrMJz/c6GARfvUiXnz7Xrx1w8u3fOGK7T2hOuQyCD+x1VkcfH2hpxNrZA+r/QX2zBdY8V5X+Y3Ft1cL/LhVmz37itjV88V/76m9QfaHWzn03g+l/TDcOdDpHxy6+MCvj/LCxam7EDf+avYgYeOrDw6xN+oBX/i9t+BH4Bm3pFgzPvLyhVM/yldf5CTmahAjv5yGGJjhsfPXQ6M4fTBOfuVPL7azooMfZnzO+vjUP+vOi64H7V/96lff64N2/zNUPP/93//9egiEm1q6E3hs7d53cPEzPF8c1cUHT1h8jOpM5zzg6fMKnZz8DXa6emnPLpeZwOx1lr+HGv7/bx62e0BHPEDxHsk3fPdUDD4e7nm/8XCl7wPlVoM87fUEB3Hec81w+rMXuMUP915rcPl1/u4TwamHVLjpn5iGPSmf+OrxuY7QeT17eKQO/BI2edUAI77s1vXaHkdDjLMUR+xh4hKGGff6xd9ens7FDJ/A6ozPHHzW9wp486WYdLiQ9GGFAQe3+ss3/mLwMNxf/1ikzzD00nB25RCrbnFqc97h9qA9n86JLzw4uDgPvfGgHQY8Z8VOjysRwxY/sezq4u+15oGs/HzE8zfb1z/c7cnWUQ/yNXfvxMrf8Gd29EJ+rxM5rWGowYxTd03NBi6GdQ/H1WeNa78B7L+c+dd//derdrk8bPc687BTX9WJn1z0zqkH4Xjga7D1+qx39SFucHBwPp0vjGKrpQfH/NXr/QKmOvnUTzhG/OSDy08enJ2ZWBzwNvPh6yE7bL725t6b3ElnQOoznj2Yj0P9tleLvTzuiDMVS4ejHA26vTf2pNeOWX6c5OULP67w6NQjlxqzy2nw1Uv9gCeGxCU/cQa9nJ2f15g4ou/dST3nn857nVi98cAbL778+HRmfNj032u92TrRH3cPd/444t/Z1x/6Xgu4eG2wyYm/dfXBxAdPZxPvH/qhH7r+XNsn+qAdacTeVpDukmiMAndPl48mJ/maiTjCN5012b11+8v4wi+wDHnEWzuU9g6HhL/zcynCNpMwN05P8iu/frgE1b5x+Ya3WOLh1eds4WaDQUda28uZrx5kN9Mvj8t440vxp4neIJvz9Nt9fM1iSByylQ9393R9+Z950y2eWvnBFk+sn5Nyb/zGlCOdvVGu9K+dt9bOC+/GS3CrAZa18ZScOV9aC07PYT+XV42dD98Tb3PUezp3I0nfHgYd3M6xmugb1c22eIvDZpDiVpevuTrY+RLr8tB1jmFmk/9efHjs6tmeXEnefAmr3PVp47nCOLnYi48fv3Ba2xu45me/+O3pjA8lnSse3s/l3XrfNu/2pHpgrqg7G/9E37y/mxMfCHy48KDd34b7xV/8xcv0rj3Bqd9o9yGF3MLk1+CjN/zqFa4+0PQhiY+aqkMsH0NctbOHm409HRx7+cKgI+nzF18fO7uPPT/+yk7YVugN+GzGYvOFy4fN9xD7fFovD1j2JPzWbD4MmsvZuhj7aimPntU3Nj6wzx7KIyasfOn7sC024Xfu6wFbOeMkJ7Hnt/atlQ97WOVwl/VQHKGPq305xRVTnvb84qF+PzS4f14j9mo258M/jNbhw+Qnb/zFxymcbPw3pjW/FfrEWs1+8IFrb8aBzg8mftiw1h82HIi1XlUXHLoVe3GdRTZ56Prho77wD4OP2tjM9tZ9rm0fphmX+NiHx9dI5wch+z1rOVbOvsptiFOT+YzRN1Iu+HTLw1p8fmGKqfbLeOcLzHpdHq7ysMFIv+vlFm/2chbfecGEQy9fnM322XfWe++1+msdD2emTvzoyn+BPH7ZvXz50Ncfed3DfONrviUwDPF+FuTX3QijuT6Y+ZnZdg/Lvhrsret5HPCsVzDkVP/iiSVi1bQ/q8rfCNMsvjh7XBr2bMbq6FfyCQe3vj96YNVvtPufosJ5jYTtN9p9JvA/Q1WPvwPs3rB3N+TQg/pF7z3TQyGzODp270P2/L1v6Fm9h1nddPLw7e6og52encBlr6+9VzsrvvTscIyNKZYOHn7i+cfjCnjzpYcweOKtFg/AvL/GR45w4fGtLneEX5zC5t9nGzHVTS8WJl3fX8X3MGjvJHx8ErEe4PAhMOjURwe3utVL2Dy0NPP3oGgfHrtnHpLpEx7EvDzU4GGeAR+WIUe14AqbVKf62PWiumF1Fs1X0JsvcvMl7LCql56dvrrjEZZZDrnLxRcHPa4uaw/EvL78Bip9ftuHHkzD9Vrxjyv6WI1ixLpLcugPm178y7/8y3Wv2HpIqR94lWtrcwd9ruaDnzPpIap+OCtYapanGtlIvaLHVx385BJjrk/87fmI66Gz2jwc56+eztfMrxz4iekfeuC5m/TqU79aDJhqc0eqDTa9+vDFw+jOw+FDqhOuAQM//SBh65d+ssMRv68XekMPTqH3WitGb/KtT/Y4m+WGjQ/hozdsuOGiBns1em/Bk7/8+cHZXLCcWTWZ7cV0z9wBvZJHTrXCjQN/PM2En0HkhYUbnTU/7wlw4MpjFJMOV/nqhxzOJn7lLcc5yyWW8IV71s4mR5zN6jVwguFueS1uzb0u6oFz5A9LHlz0svMrL1v2+MA14i8nMS9G2PT6wF9Orwt86Pn40zG//du//fCzP/uz38G5Fi/88qrfaI/oC3N8lxviCtEkjbBfodcsxSV8NJfQO2AN+dCCywoeHap1h7g+uxZffbvm0wsgnOL4dUHZuoheIPI1emHwKQeMkzPd2u0JP6N6PtZ+99fyF2/GTYx1Z2APi85wRrd4hM7nPEO6JKz2O5efrhzFts8fP/1L2Ot7fcz2Puen+MuzPK31jyzXS/GKL3ofXuH121yvsp3zcjttt2L5lzP7iZE+vPNc0jcXX9y550fXWfbeQJcvH/G715d64/7ls/OlfPzCD774vSuLEfYtnmz0e8/pxC9e+Z6axZQr3k/537KVu57BMZxduuooPp7m4pdL/nGzN4qjhy0m3xO7/fqK377l86HmOMKP+8n3udz1pR7wr2dhnhh8xcnP10jU74OUv+365S9/+b3+z1B70O63UOJQ3ua440c6k7530/uehKM7xK6OfS/gY0/qp/ms9XJ4/MK/fOrPt5xy9B4ZHn949uzPCd897+5Z9Zn5yAlTPj724pK4NdPHn84oj7X3qOzw6gFbsXQJvQ9+4qx96GSHAbdawxQXZjyLXVxxaipv+fI59fbhnjax2VvnI8ZaDQ155c+n3Obyh1PfT1979bl3fRA3G34wMhN2vZGbyFvfxZfPbM+XnYRRr/O9jI9f0rvbbAZd9fHD0+dkP/jUc/j0/Nj6ATVe4mDigzdMo3NkT+CIizM9HunFkLjiUO/p5Im/GDo/WJgJXbXZxys7XcJWXq+T0weOmgg/smdgHx914ynmpbJ1dwY4wDy5LGb1yUfM4k+h12dz/E8fegNm7x38i4WrNvNiwHVW4jpP9u60Gog64LrX9fLkkB97uWGJhU/s2Xs/o+db3/jEBa/6cZ5XWOx4i+nsrfOPRzPf/GAQGOWpN82wiHix+dGfZyyGPl+vPT3v9cNuhHEBP/Gl3KdL3E59e3bcvB8ZfvOzB+2+nz8XH845x8dvlfqh399ol8cDILM7476o1/uLoVZxeHzv937v9VBN/+PIx4O07ib/zp0PvL7H8/Ugiw8dXD72zkbf6eCzm8V7kOe9JcHTXh4xMMz7kJzOHeLrAac5nRm2vsLvvP1Grd9yN5x9nJrF4Rc3ayNpnV5+gqcHQ/LoY3Y2tdMTnKpZLno9U5e9z0tq8XDPmk7vYeMonxj5nIc83aPPfe5zF291OQO1erBGcPKg2dBXOOLkILBh9SBOjh1s8ewBbTj0fPUfDm57bleC+QKrvumNGvUEHpsBD641XOchxnCeYuRQK85w1MMPB70x2/sHCP8VhLugXn5yyQFHv4ux91u0aoTPl9ATPLtnYvj1G+2w+81l/jjh35nDMnxP95vf8lcTX3jszgo/a3UYfO2J/IY7Q2DAZJfLnI9ewcWHnq9ZPnV6WKh++HHAmcDCxW+m89FLOJ0tP3+SSv3uqPMSow/y8MOd4IATHPnx1Tv6hK+Y+gBLThzk7azhs9F5XcD1ejHLq2azmnASp7ZqF6O/3nNwkc+AR6zxECMPX2Jd3u5c58QuX+cFQz52Ayd4Bj+if3LqhSFWnBzOxT8OxU+cWti7U9bp4Cx//vZq1C8xcuiFPDjoa/9AwZePfPKbDbH8xbG7c/oXhjhYxarTcG7q1yf2cPklxZZnH1yzie2/LnEe/Lx/hW2OqxxqVqP3PnzLq//dDfnp8de7+gQ77tb0+ouHQUfE2m+NfO39wtu7/L/SPvEH7QpCnFTstXnzZQ81veIVrBGJ5hg1h8/7FDzwNIfdWs7y3svJtzeEDq966ekWg38xHXx5861mOU+bffFrp5PXKC9fl5Pg0IW8FG++xEdOa8KvHOnK+ybsmrKZvVjKvz7xp7M26oe+i7F/SsqzWPxv6evd5nkK+7W28ujVKXhlt966n6v1xHpq75y7e/p49uep2O78+tTPzmTx2JxxPuLkVmf3ir9Ykt9TvMTz41O/xHY/rOnt65scuHuDzlY8/ziHnY4PnmZY8sbf2qA/7XxeIvLGM64viXvfPurQFz3qPNRkv7VUK5/qx4W+Htqz7Z6O1N/8b/nEpbzlEh9u/b4Vz+9DiNw4yRn/1+TRZ1jkNTjicfBhyTf4T+NB+726e63j2Idia33r7MXWS/6JXvShat9n+MJI1G5f78q5d4HNHVld8fdmeeQVV044je4cW7zjUKwa87uVJ9ztxUs5iiX85e37rV7ICdOa367jKJbenv8tWdzs8oV3co0De+s9m/zNcpbX3hDjA7IPvuLocLAm1u3T+SBN7MWzJ/HMzsdwrn7Q82Gd+D7QD0r6Je9KuuLhJmx9PpL/FDH85YS7dfO17wcC8T741xdxxbBZLzf3Dq6axfDxmlmf+BSLryGuH7b42NPDMpNw1EAnB501nfxmOvH5WW/v2YstD/zirQlccQYRh49hTfjAMOjXP7tZvmrBKxw53S99gsHPKBZ+udLJ0Rm7n+zxyCddeOUzs1WTvEbc4LJ3vuI7R2t+hE82ezWFiYu9eszZ1ArfnvDnC781fHb4Rvnyh1Gf8mGLLxwxca1/dEYc63e5zHxviTzEHPf8loOcRv75xCcb/gY5c4pVi9ddZ2NvwHlO4OFYPfC2BzjcE73J3/uPhx3+JIoH7H/0R390fT8/a7uHdeqr099m/5Vf+ZXrQbv3OXXKZXRf6oHXhTW9zxP8rdPpR/dff/j3IEM+9cB1Z9g9HGGHw56POwmXH38PVvJhw9HDNz5i5HU2pD539mx8uic40ckPw14eDz7FwGYz9n7AUKcRtnz28Ij6Omt66+pgp4Pj/Vze7j4bsWc3SLXAj0s89MN96Az4eLiln7iHY4aLR9x6zZ+4m7fex0msOHp1mGESD7o8rDd6jehjdyEMn/GMzo1v32Osq/ECffwSd3s1JfXVXkz9r2b2auajR+5RZ48/znIWi5M77YGjvtp3XtXr74jziX+xchk4erjoYXL3Xn7xeOoJjvUOTzHdOTbYBps4I4x8y8vHIGzinZHXi3x04uPCjmc2OPydiR4R/vxIdTrXesMmjk2f9FUsHENfva74/Nd//df1m8Zy4kTY1IsDqUb+Br0cMK35Orf6sDH89JJv95JfWHGSHy949cxMb8QBtn3181cj7vyXA1958HPmhj4TXOLjNeAc9Iu/uZ7JEyZ8tmLV7B7RE1ySajSLUT+sztJ54UVniMVBfrPh7ovPx/nKHU7rXpdmnMx85DTqC3+16kM55ZPDIHw7K1xx7wH/ecbxEqcWeeHRizOcFVGPvP5BCAd6uHJZ880PFn8CKwzYMLoj7PHmh3u+WxOb+2HA1nu1OGM94SsfXDXg5Pu3/4rsC1/4gjTfyXNtXvDlU3/QrmiyDdKcLms1dGj0HZ7YbWC+72OG3cVdvA4Bh6dEvMvCz4F14MXQV3M6PoZYo1odukFXb6wJDPjx6XJlN2evp2JwK5Y9oeNnNvSgfS/YOBRzb5ZbrBnWrZqLrU9m+FvPxsEKD+ZK9RXLxqeYe3GL8TbrcOPRHsb2NEx2tRlxwbXzye9dZlz0wdi+PYeJT3Gd7xkPO521IW7fvNUSjpx86Nwda8JuDSvJZu9uxj9e5nIXJ6Y4s7jeqOHkVxzM+s8uxusKt/hVO18iL/4Gf/rG5XB8Wb78N9Y+TkfYB9/GS49I30js1Zzgx2YWYxDc29fPbMWa6eqdmEY2dvHyGuyn0OlbeU77h9jLiVv9kdt4jWxfbtUHU8+3vo2xFueD1Kf5oB0PA0+zc+2umPvhRj3Z82k+451rvuZk1+FlcyanHSf3NF/9qtd8jdVZ42Qsh844PDMf3/dImNbF84HBVq7mfMyvlbj7EEjs5dRzw37z4BEfer7LOx7i+OkbP3ujHHFu5mfASsffXg5SHnu+21s2Pyz1A3I5r8DHL8szfDofegldePKy5Vdefmx+CPBbQh62i3E39wdsfoRNrJj4bF8/9vr49Zl/umZxYnqvgLm48P1WpYcovq/gLV9ib5w1xKMa9bMflPiTxQmPrtEPJd0TOcqfjzj6bOGY5Xb3+9wXJ3P9Kq66+bIXX3/MO9jFitt6rMXXT3OveTajnGZSvmvz+KU+0auzPPKT4qzZiTtj7Qe9eNLvmh1fZxGX5vzs9zMEXPl67RTPJ508+dCpN7z4m+nVlK3epOucnDt/A5/W5ZGLTtz2Fi49jn0Gsq9fO1vDFkPExIPNno1uJbxbWGc8n/Ksv7zwywHTEG9eEaen3Qnrzsj69N9Y63DDjgeb/DBW6sf6ifX+44d3v23rB/U//uM/fi8P2v1t9l/6pV96+MY3vnHdYXw8NPCe5z4QNeDjTOuZh3P44EbnHvDxsMkMx2tB3zpnPuLcaXa/rev9PBxYRj7yq9s/eNIRdg9EvCdaE1i4EVy7h+17T8Gjv6Mu5tvf/vb1cAQv7/fuPc7dXfhi8a2+zl7NBI5Byi3OWox4P0cQsXqj5h5+XobHL/kXGxZ/uQw6djqcOiM56DzkgY2PHhg48CX24V+Kxy/iVm9fHrjWdHA6c3s1OTd2eT3kMnqd6KF1ePycowdgOMjJRx/MDdyLwZEvqd/X5vELPBikvoojbOLwJ/okb3xg9UCsGPWph2/3MZs86u03ttmzlUeP1eBBsnvt+3X3AgecCCxDnJx8ep3ApM9mFmew4d3ryT5MuHDscVOrNT7udHXLB5M+HHU51+4orGrDEw5fPnpjr9966/MRHVuvEXfA6wrGR4//s1P/zwc5/ZcC/Oo7XnjAgmmor3OGB2P540aWX/zlqN/s8NTbHXbPYBfL3+CjzvT86engdXf4ke5aMfh5IG74BzR5YYTjvUr/xNe33l/lKS9se+93Zq9j73GJWHqD2KtHPr2id/bbYzbCr/thxseoT2oRB0MMfmGK56sOQ7385TLqg5ndvS+vWLJ5nJcB33CH1Ax3/ayrkQ1veyKX/ornx+Yu+R/s4iA/XDXxs+fjDpQHhjOBYc3e9wZ7AzbpPOnixJaP/xLG0Ode+/WQv7zwDT3zX6R96Utf+uQetHvj7Y32qugVXxRLOgRN1QQzW/aaZtYQwlbcpfiAX84XNH5ya/5zwlc83vGlI9V1YhRjrg/ie3Pjnz4sus1hLy/7rTzpstsbu5cjffns5eFn0BPrW8KfsPdGI75cG0OnR/VpbWLFrcAM/9Tb37Kt3/tcL5dd38tRP7PjetaX7ZOeOydzfcdv+9k6vZq9CavL+e0Zw+BH5zVjzb+7wz+8rVVcPvRiSDnLcSmPL+5+3zCZ+OYPM+zFwo0P4SNfOen2brLnc4s7fzkMcfvaZbsXw/ahRU144VDv60m56etFup3583lO6t9ZLz1dXODkGyZ7Z5buk5rjcvJ+3/m7H5un3pTLN3g/oH/lK195+OIXv3ip1z+/t5nl+Ku/+qvrN+J80HxO9rxxTqz9cOD1Fie+vf72e5DXl7x0e3fojFNWZ90Hr/WDEy49DgZ/PAifuC0mW3prYu/OieEbfzb703995TPK3TrccjfT35Mw5PM5y0xn1vPFtu5M8I77yXVz8dG3cJZT6zD57YdcMbBhnEKnJ2LiCs8PaT0IsS8v/3jSGXGDsyLOuJU3P3fEbzj6IQsHH5rdT9+bijfDlte6fspdzeE9NcdXTLziLo7OD1xq9/5fHjbcqgNOYu3OrY6f+M6gfjWLtQ7Pnr8ae62xGTjBNhNxDfvVi/XeU0y8xMcvXBjZ4RD1Gs5kY9j44xdnOaz5wyFiwmTLP75i4sZfT6tbLCwilh85Y+3zEytuubQXuxysje55PJZDP0zGm78cfOjkDpctLpuTHTaO1WTWFzo2a8O6+i7gN1/ojcS6WDoxxccPHxKva/PEl80Bw965J+VfPHn1wZBfXXT6s/5nTHs1WBt9bxAHw0wPy8OGfuCnx0/Olwh/eVbgx2H1fAl7ItbDCO8/Hvb5B/Ovfe1rD+/jb7R/9Pgw7Hd+53cevvnNb171q8nrdT+H15/zXPnoGX319QCnM9G7rdN9FsPeg1m67o76w+WHi/dhOuJ8fS/zQJPI23l0Znu3rePm/HxOMeNkjbvc3u/p9/sLPW7iDVh41wd56w0u9g37eKgDt3pi3p50F4rdGQ5/kt4aN73Bz4DhQR/+sKtbboNOvDrgba/yEROvfONWL6rFffQgi5+czqOHqM6810x4ODtHcTDw0O/+YaCYauUPW16i56fgy2dz8KEz2Amecodt1qvFxEcf66m92g04MLz2PFDjkw0/d5NODXrg+7UHfvZJ/vZx61y8ZnCJn3zyxz8Mc3fXWt3N1vH0XG37C1tOXPnA6HUad7XzSayNeKuv84bB3+cienUQ9boHHlji8x//8R/Xg0f+/oGQr/Muv1mMPHzE6IGc+IfJ757gj4t4WGIJTPruD9z6lV0OozrZ1WLAk1fN6qSDHQa7ODndJXV7yEzk5G/2XhX/6tIHvGHE17o4ul5T2eViN6zVY6QvH7u715njk68c1vjs3RejznrutRI3NncFprMTz697w69zw5nvPXEefR/D19BbuXFSa/XA1Fs82azp8sEBN7qGv9OOA1s95iMv3s4CPznwLpc1fGdYv6vfHoZRrXForwavOeK/0nIPep/jK6/8cuDl+/cf/uEfvvrn8Lf+jfbzQbvCDY17qWiqGEUQaw1oplNsh9He/C4SvgaeUn56fiQdLoQeJ7zTXYb5Um1irV06/tZiGoXEydx689YDcWHXa/7xoLMOx7o64Rn5yL057MWRMKzzT7c+dOGWs3iz3HxwTg+Pb7mt+dAbhI0Un8+lfMsvcntjcAb14i0h3pt7das3OWtN/9q5Xhcv5/aWno4sj0vx+AUf+riaO59i6LIX173k28ivfWfPt7q9LpwLX3qDPzudNWldLc23zpSvN0bnTsoBi41Yw9j15qLPN5+1xw/GiSuuUZ5iYX0aEp9y4xOnvhmx8XuKc7Zwbs0wukeb55ZvfnsnxOurs+2MbsXe0oVXbbd86OTr3ok571F9uBf/LnrY1etuPlWjO/z5z3/+etD+y7/8y1fa52p7jpv8HrT/6q/+6vVDa3j6QJ46s/Wx9lkAR5j2fbihszfYvP/CtVZzOeXTC4PtltCXY+36BouEx7e89N0hvE4RA6NY9vbh0Fl3X9bXuj0fg5TfPjz6ztz6nhQLV20+rNZDtYQBF37+4cVj82ZrjvdTPnCJnH3I1UMxxeFS/WGz9XmnfvgQbWwtcRAnFyxCL2fneikfv7DDO/XZ2dyRfkiD40Oz++lhTH2qf/z5pDfHN8yn5nzNYdUrPSB+APBhXR4+clgbxL733nCaL4c3PtZ6Wu/lCYdOT/p8A9N52Xc+/I2zxjNXHONfz/Oz1+Ne29WlhmrCtR7Lly+MhG+cwjDDMUgcfB8Xy67O9HzoDLoGXxj2bDjkZybVE26xZiLm7BX94uDiPhviytPZuIf8+Zn5WGdPV2w9xEn/EnsSJ379sJ8eBj/3PVwY9Al7GGGy42Nv2Bdj7k6lWwxxxPmuhCdXUj42WDiyW+tJ+fnT2fNZ/7C2Bj5G8eXhS4+/10KvB7Ewww3z3hxec7iwSTXWn0s5enb31wMJD6z8RtxXv/rVd3rQLgc+fgPvL/7iL66/odxrbGtVo733H8M99R4sDi8xeFurp767X2y9hsR6UJOdL2yzWPqGGPfOwJHdIGY6cYY7rC/OPzsfrxsDB+cntwdi/abxnkX+MNSHV/z3NcTP4Fe+apS71wqbnHFUlz09nbP0GjPbd7/KzZ++GVe1wKdP6GGkh19MXNlwFFff6gGb3vWwS82dNSx2Eubi+41RcTDrCf75mNvrpz1fXOSE7U70D8hyrPDFhy/uzi5hE28WB5vQieEvp5G+u4CrGHeYnz2cpL7RhcOGx/d///dfnwE6Nz5wPZhMB1dNait/HOMJt3rLF182uO2XGx5h8qu/sPh5LTgTZ2OPi75lr1Y83Dl6/MX1vUCcoY9mIpf6DLruLh+YavVw3Z+KgeuMYXvNsS2e3Gxx4A/fIGxqpG9Pt1IdcJ25vXiYZnrDmeGSDx0xw8zXLKdZTfyJ/opXdznoz/z8vW7UC5s9Hza5ug9y2Bub0zmI7T2yHvCDBQcPfPixF89GFzYubHSE3shn92LldqbWRA86HzHwDFz4GHziwhfv+i93grs4OXx+7h+q2GHTw9LrOIqxhuMe6B1s+3T01sXgJA9MazF8YMtr5k8vhm8DF+veE/jCWfueJ7s9gSVf9s0bp+WuXv9A7hfeXvtz+Fs/aPcH4WsY0kteAS+RCtSUmp6u+Br7UszinprlMDrsfB3QmT/bzvzwOePzWZzWHZgDFNsQw2dHOlxI/bk2j1/SL0a2cz4vnNjFe0m98hRTPeU2pzOfUlx1t5e3OoopT3j093pczHMzTC8uozN4LuZD2rdmvVBro968S35Yen1Kve28+BF7457wwzm/fOO89YQZ7nOY+TvjegFvMW9h4FCvdn36+mbi3En3iL+85mKLs3+pVL85Lmds9dG/DfaJ8772cYaH84o7s3zXtutbfVt7681VTLZ78569eHGd272YU1/e53KWCz5R/9vmOnO/zb78YpzFeR5h0bvHP/ADP/DwUz/1Uw8/+ZM/eZnU9y6iT3/3d3/38Jd/+ZfXB63w6Mlz/Ss3/374slaXXhrWdI16LdZ6ay6OjX982tPBPIUfnOXLt/5mF0d3ytqtb0n8xe8dOXlubBzolpsa2J6SYsXJZ6Rrbc9ubsBsba4v93LFa8/hnq/vnQT/7UE9jQuf5W1NxPu8aN6Y7HSnXp4V9qfqYuveibP3/u8HkX7TZ32s421tvEaKg2Wos5768L51lLM8aopzOM31pjtT3+nhl8PMVl6Y+myUr5iwy2+frrX4cmXjb83W56ls1YCHPPmZjfjnD4tfnMxJWPb1zfsfDH7xyn8xwilnfGCyNcTGzRwGfTnle0qK6V53FmLY4mAf5/KXI1+x8hnWYnG+JfWnH5TzKX8Pt+TauvlV82KLKzasZhjqwzefuJnT9RlLnJhT+Cbs5exMu6f5NPPNP9zNn1/z5qErtvcddfBJH//iXzN3T/ZM4WyPnZXhv6z5zGc+8/DTP/3T1/fzanpNXnV46Pq3f/u318NBPOT0fuPBip52N+3rAbvfRpfbuZnrW2tce4iiRx6keJChxjjLVRyfbHTZ+Oavxmz1TB4PoOpdcfS48VOD3EYPjODwKb+45SCufnTG5c4Pn/Ksrb7xwx03ujj2jwNmwqY/Rj0Qt3nlwZFerrBXf4G9+cKnUa+YxHsoJg/9coHvjPHAqfhqYKuGHrby6bUb52a+O3Dm30Pd7oRcRP6En3096iEYezYzzDh1ZvENN//tVTFsRpzDN4djdpf9Rru61SuGWPcA1F7OXjudXxzLWS6zGvFOV4/qG8xbwl8ufmLgqA8X799Ef71WV/COjxn/Boz6gVM1iucDn/QA+9o8fpHDLwP0noDDWU97c2N50JH83LUkW/vliePiWVcDvnh3L7ae8hTbDNuw11vrekEHg45Ys7kbalnO5ZKf9NquZmdnDRNGve1Bu5g4lad67MUWX644dydgnMK3wSZ3Z7t14WeQ7pk4PoZ1fWHvntHLn/DFE3ffu/xDkHW1LUYxzdWjr3JUs3U6vnGpFjm9X/Bh2/9a2jmUuz7ZE7gEDqGvx/bVrl9wk/zo8rc22ORpVvu7/hz+1g/afYOPGNKRR+qlciumImGE1fxS3Of8ygF3sePT/BROcc3rW/zO9cqBn3nF8s0/rPZi89m53OZ8izVvnnzO/MU1b/yu488v3/LzW/0ZZ3/mpduYsOK5ObKJeY3Akr8aXoPxvmK2rsWkf9c64cEpx+LDXvx8Vrf+1myLd8v3nj38cMyrKw7m4qbfOOtTNm7j18+ZlzOfZn6LYZ+v9Usk/8XcuPT5re3TWsclbvGgz5bu1lxc8y0furCe8zvjl4fYt41/ae7y9N566/3p5PY+9+WH+VSdbHw9KPRbOf6nTq/pyckdpv/8+h//8R+vDylh0sfpjDn3cesDVzWdc3HlsK/v6fa1mv/OYa7Ouvjm7Pmvnu6W8Fm/Wz7hxfuWz6kr32Kr8yUiNl7mzR/u4py64tfn1roct2yrqwa4fR+1PvMWw3971Z6umDDFpDOnbw4zv1v6bOtrrd/upx+oCPwddPDKb/8uAqv+wNkfXG7hyvvSuw+72ncNV87ywmy/OYtd3dbd2nziF8MW3/UvJr+95/ll2/kWp2LVQOxP3cbFdfPwLz79xsTh5F1M+fK7NcOrz8XxK1/z5o3r4tHxjbN1sevXmt/Jrxw9HAhTTDbrxU7fzH5K9eVzxu/+jL23h2VUY/v8V09X7rXnk+7eLPasId8TN/3bzPE4sdLDsnZeflD3sO+zn/3s9dDijHnbvB4u9CdUytFDDDXD9/6zDyXE9OBzOcbT7P3SwDkMcXvH2cSz71icU88mDjZbeazjUh3hyym3ujZ/D0zEkmZrGOGlT2efrhqLoZfDyG/3MMTI3euMvf4WB68cYqqFzj4/WPnG71I8frEnzdbi9SKc/2XXblfbiIEwjN7/Vbt9fzwgjB38gSHBR2C0O5JGs8dunKqtlvXlrZbWbm7PsH7trH+17VXb/LXWre968WpermpZ/Fb9zd28s/VM5W796miv9Wv1PWOxcqwvT3Ob0/3y7gC5z8zGq3d5N16erLa22K6z23V5N17NxZZ7c8/7xa5b+yxentXS56o/t9frdl8NrVvfa+Or6Ww932LLv33Ksfdm/7iwnwnL0UHqme/W87S+vv123/zluG7F6lu/fq34aq7u6+fZvOt159rGyrWxWrH1yzuLtfY/rxvbe7Hxnut876pz4/sZtb49lmvX7XU+x+btVeu+vvjZl6v8t/Ju/lnfrtdurV1843u+tdXX/N1vzeqZwz4Xe23OWffmXd8XW3z56hfv51P7VNf2yHufyWra7+25FVu+M2f7lav7zel6Y8uzvrbr6jtjrWtt/ea/+/fwpw/aK0xPgAABAgQIfF7g/CXg3d3OXzrezWU9AQIECBAg8LOA7/CffYwSIECAAIHfKvDqd7iD9t/6jqqLAAECBAj8F3j1C/4WnoP2WypiBAgQIEDgMwK+wz/jKisBAgQIEPi0wKvf4U8ftLeRv6x/+i2VnwABAgQIECBAgAABAgQIECBAgAABAgT+gsDLB+1/4eHUSIAAAQIECBAgQIAAAQIECBAgQIAAAQIEPi3w9EF7BfU/2+uL6wkQIECAAAECBAgQIECAAAECBAgQIECAwDcJvHzQ/k1InpUAAQIECBAgQIAAAQIECBAgQIAAAQIECNwTcNB+T0acAAECBAgQIECAAAECBAgQIECAAAECBAg8IOCg/QEkUwgQIECAAAECBAgQIECAAAECBAgQIECAwD0BB+33ZMQJECBAgAABAgQIECBAgAABAgQIECBAgMADAg7aH0AyhQABAgQIECBAgAABAgQIECBAgAABAgQI3BN4+qD9crncyyVOgAABAgQIECBAgAABAgQIECBAgAABAgS+TuAfAAAA//8/HoCNAABAAElEQVTs3VePZVfV7vFNzjkHYxtsDAabexBC4op8AYgkkixLBoPBBAl8CUggggR8FT4FCG4QItkYNyaYnHM89VvH/9bofaraVW2/QL1nDmnWTGM84xljzrX2XKt2V9/rXweyO4GcUP0EyEt1ZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGXg9GXgXhfyov1e97rX6Yt0MV4ZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGfgfyMAFvWjHw8v29e32/4EVWZArAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDpyoD60X7qVquRXZlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGXgvy0D60X7f9uKLD4rAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDpyoD60X7qVquRXZlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGVgZWBlYGXgvy0D60X7f9uKLD4rAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDKwMrAysDpyoD60X7qVquRXZlYGVgZWBlYGXg7mXAf2a+ZGXgJBn417/+dY762kPnpGN1DjKwv0f+nUlZ+/Hfme3l66QZuCevjbXXT5r9pb8ysDKwMrAysDJw4Rm40M/w9aL9wnO+LFcGVgZWBlYGVgZOXQYu9MBw6gJdhO+RDNzVi53/H/ZTObjQWLM/akHg3hM6R+Hf3fEZ913xvLu+/lP2M8bJQbxHzU29/1T7JOvx3xzHfyp//w6/J1mju+Kz1vCuMrTmVwZWBlYGVgZWBu6ZDNydz+/1ov2eWYOFsjKwMrAysDKwMvBfnQGHhb/97W+7P/3pT3f7xdFRB4+jxs+XmP0XB/XDqj4JxtSFp+zj7PenjTabf/7zn/vDZ/uHYZ6dPEHjrniA4uvfIbgo9773vTd32ve97323vnY81LPI036u0o13/WrjMGe9dQ5+TJ2jxtIJI7392rxSTOazmRi1s88u3cb39epXZ5e+eh9jzs32cfTSqc6e/zg0dlid3fl0zzcHMwz1Ue3jYGR7FE8Y4aj39fXbe+rmp91h2IeN5ee4c/nIZ3b1J95sN5+++rCxOX9Um93c1xMrftnWn1yaq24u3cbVzc2x2vscGr/QuPjKthrm5DDH81c99fbtjtI5H9602cdubtawKve5z312D3jAA7b76HFsJ85++x//+Mfut7/97U59GF9jh/k4SneOs5v2zVW7vo7CTqd6n/e007Zf0tWvNJZ94/raSfst/aP00k9v1tMmvWp66aY3/TeX/oynMfrWKdm3mePNHeZjjs129tWHYZibNulk05xxZcZhTpmf6+lnf5x6YtJ3PUwe8OVpH3u/v48DK97aZHL9vyPnxr+Pmb3x/bnsj1OzLX9Tf8Y5x2tnp5//6sb2457zE6c2n3TkYvqvvV9Pu+bYhzH9mZ862c46/anbfLb66akbr24uu1mba756zodRvZ+/dNnK0f6eyS69w+p9zLDU7MOoNq4kxuunY262m298YtDb1536089h7cayCUsuGktn+krP3OSTrrGpb3za6NMp5/tz+/qTyz7uxAonncO40U+mvrH4NK/Ot+efBz3oQdtneGNT767a60X7XWVoza8MrAysDKwMrAz8L8iAw8Wtt966+8IXvrC9bD8qpA4hh807aJj34mA+MDXuALp/CD0Mx5jDjQcsRVuB08MpP/e73/1297///bf6sEOOsWxh6u+P/eUvf9kwHZhmbHGtbi4+f/7zn3e/+93vwJ5jp8+HX1r8/e9/39rGzidypSTs+SlGcc759KqP8hVXeLBgiOd8Mm3osWOT7cMe9rDd4x//+C2vj3jEI3ZPfepTd4997GO3dYi3X9YocitPv/71r3c/+9nPzq4dH7///e83bHuFD3ps5Izw2foWuzofdNhZX37aH2oYahj2Bz3CNr2wzD/0oQ/dPfjBD978zXizYxsujLjJBXv9dMIXIx7WRpsd4ddeKya22or29LkZ3PkjnXDmXJzZh7cf91//+teNS/h4Tl7w8Iqb+cq0EVP5ZWMu/3HD9YEPfOCWm+J69KMfvd0X2BgrP3xMCau1DyfsdNnhIS518+zzScc1+qtf/Wp7AWnOmH2mzibMo2q6h/Flby6s2cbJvpRPa0K0ydRvDWDhF391IhdKY9Mvnda9+cbsgYc85CFn5/Xlhn/7Ej/1LHhPHFgzx9mxxR2W2vgUfuAo89oq58blQ1z4Nx5GHMrLzG1j7fV8xSfsMMKsjq8a1rSjw5c8TGlPwZxc62dTXtju+2eHs5jFbm2e+MQn7l784hfvnvzkJ5+DO30fp83XHXfcsfvkJz+5u/3228/ul5krvkm51GYntvZpsem79nA1lo26OKyr+7f8/fznP9/u6fmAW4x04ORHDUOxt9z76bfPHvOYx2wvL/Drs8T+4pvQzV6+//jHP25zxmC7n+eTPls+FOsKJwz68XJ94JkNO/r52o8JDt844k5P/ApduHj4nOgagC1fv/nNb3Y//vGPNy5x2ByPH/jMlzj4KMSc/IoJD6X7Gt9KXFpbdvRwVePbNRBfusR414CcyKl7uFjY4uHe2ud6WJvxMX7QF7c9BpMPhY+HP/zh29wf/vCHbV/ZW521gm5d8GYnv7Bg4kfkHm8x4Ss/4iJqeVDqG1PYswnTGvPP18wlu+JmM9cxLDqTozYbtbXFXZut9TJnT+NlXEykfQ6XDhGTe4h82Q/m5GXq6Bc3fDGJR27hiKfc86ffvtOHpW4f8itW+fjJT35yds/hzw5WazB5ZGeMPTxroy0OXKaPrmnzijhhp8+mPQA7ab611ccfPnvxFafcyh2/OCdsXFftO75I9ubhKVPgyoFzcbHJuVy71uHk0ziBpchLuYHbuD2MW2sA35z8iL9YtO0RdbmCLzaxtN6tiTzArcCNkxoWO2LP8OMcZZz//LJT9OWnNcKPrnGFX/Gnw397DYfitVc9L+AQH/ZyopY/4/piJezh4qFtjg4O9qm+uXJZrlpXGLBJOGzy5ZfX3Sfg4spW++KLL9694hWv2L3gBS/Y7NmdRNaL9pNka+muDKwMrAysDKwMnNIMOGh86Utf2n3sYx/bXkoJowONdgcRB4nzHSbYOJg5sGhP0VcchsJTKw4vUxzMHG4caDqEGetw1SGNL4eofU4w02+uMZiKcQdQeg5h5o2p4U++2uZwys5BPN5siNqYAyOuzRdbPqZuh8501DjxKTaHZTr5mHp0HCg7FM85/uNAT97VcRCHvkL05SUbY3SVDrNesl922WVbXE94whN2V1999XbY9GCRvcOtw6ncqn/4wx/uzpw5czZ3YvvFL36x+bV+/Hvx4IDdgVa8Drpw7aU4yCd+cdMWP8zmWiOcOyzjFj91mPx7uPdwVJ7xaf35oc8PXDzM2y+Pe9zjNn76dHAod2oPGrg1xraDPHyCo7bxuT50iRo2nWz0p9BhW2nP6NNVrIU9giuRK2tNzMdNXLgUi9qcoi2m4mELB2Y6xvj3sCe3OOPxtKc9bcsVX8ZgyCdMY1PMWzcvYKy/djr8kPIrph7+jJvPJ25eBvzgBz/YavP82Z/Tb5jmDxO6coUvzMR4uTA++3TxioscaIuDTTWbiQlb/ugTc9bE3mztsjWnbRz2jEOfjb0dh+6V7Nyf5MH+1BYfvmqYsBS6dIpdvqdNeYFBlw0+9pBaHK4tMeibD5+OtVUn5orLWDZyVt4azw8fcM03B9PYYSIWpVjV2dLn33z2OMHLD53m4mod2bjO4OFG2CbaxsWsPOpRj9o985nP3F1//fW7Zz/72efoZnOcOi7f/va3dy960YvO7vXj2E6duefsQeumxltMYhVnceDv+hT3bbfdduhnkF/C0um+Im77sbzZS17gwLS34Ht58chHPnKj1i/J7C9zpHhhyDf/U/jIp3G4frFrf59PXC9s4dNtT08bc+J2b7JnfGbhcJS45nxOsIGNMzu/FFHOJ/aKF4Hupey61+Egn4q45M68XB4m1rBrTK6s5UlFvNbF5z/+uPz0pz/dnTn4XL87Ikb5kXvFL+6dK8TmfGVf8eEccT6RZ7myt/CTI2N9CQBfGOaIus/E+nIjjwk814A9KM+J60TOydTX77o/bNyexoutWl/M8JSuC77sPTo40Ddmr1k7fUVM7u/yZY+Ys2+LEQd9ZyuxwReP/ozHvpRv3O2VcqkPC7f2oWsQL2vzzW9+85w9BwOWvUYPn65ZWNr44A7PL9TiaA43+8z8L3/5y23OOA7i7PrBXezFKe9sCH25M3+U4IIjDnJnHfRxUeDyYd/5jDyJyPGTnvSks7HJnbOuX34mfSbr84ezXFkjvsVSPHgpOLdf2MiPXBqXd7Y4s+vMBF9OjeNgji/CrvuCWm5xt7Y4d4bPL5sf/ehHqnOELtt4wCL2mPuRcX5xTsTTXrH/9cVNxx7H9yhhxyddMRP2OLgGxMAfv7DwIGzMs5c313652BTu/FE88N2z4blPW5/D5IorrtjddNNNu7e97W3bNN8nkfWi/STZWrorAysDKwMrAysDpzQDDlhf+cpXdp/+9Ke3BxIHFQeYDiPmiQOIcph0wHFQZwvDwYVk11jjDjLaDk3zkNLhswOOORj0YMxDYoerfU70489G0XcIVzrcwoZXjHBg6pvDT9HucIuHBzAYxkn2/MJXmzOurYbjUFkbjjH+YJUf89rG5TI+m6M7f9Ax1wMjfX6IObF2gOUjPmz40nfw1Cd0jbMLZ5s4+AHPYdaDyaWXXrrpeOi+8sort29jOsTSgeGA7bCsdth1QPegIVYCvwcYecebnnyaKy7cemFCh8CnQ6Y/fBVzdMyVP21iLczR41dO7FUPI/w49DeezWZ48IOd3MgVXEUuPBhqNx8+HuL10NcYTP6sZYKDAqO2Ov5hG5t22be/zIWBo1j0CR1rYU82Jgd4zTj5ED+s5tWEXjHBS4rNWBz5t1dwgGXcCxR7JDz2+WAbZjjW3oN4+WqeHS78Wg85VvTpmMsnfN+4tP/UdMRgTdRhzhzA3xe6fHVtNB9/Naw45YeecXzkpBzGFS5bYo6uvjVon4lNv4fZTfngR7rZy3FrS0df/j2cty76cNh2bbp39PJjxogzTsbo4sEXXftIbc64vqLPpj0EQ7vPAzwUgkMc6TQuJzBhiUceiPHyZlxhw98UY/yS/bn0wodJRyzG0jfOfzj69mMcJ3ac6MCQT3nC21zrw0bMeFsDeNbGLy2vvfba7YW7+QuReH/nO9/ZvfzlL9/dfPPNG4xxnMuXPh844UaM4aq0bmLXxk8O6BtjO4v7pmta3O7v7t8zR2LsRXvYYqcjX3i5Fr0EgtEauFfAJj4XfFbYXzOX5nAxLuf2KExxeJHlfq5tzPqaV7ThlDN8cIPV9WGOHuz0zeNbXuDLoRc5XuDGj46clVd6vWiXDzaKXwBaJ7ryAZ9N64U3buzVbOTHOGGn4Je9l2/WCQ4exuWAX7zFTX/e/+inG2f4xltz9nJ60UUXbeuJg3i9bP3e97636cHGURxHyZzDPW72iBgV/7LDucKceOyr73//+5uvcpQvNe74eSnmxamY20fuOz5DYIm7F+1wxGDf0GUjVjr64oAJz+e7NRar/LSPi2VyKd/ihwGT4Cg2eNpsYOm7fvBrzeIlv/BcB7Ccp/BoTfjHV9z2l1jptUf4gWWtxc1OzvnUd13REQ//Sn3XQecaXM11PcEXi7X5+te/vmHhIl/G1fyUFxxI+0/O+YHv/kLEQQ83fuC5JxDjxQlfv+vNPF+ETUXu5Ers5TqO+PHPDgd7TQ7xm/mDYe/hoW1esU44wJ0CH67cORe6XugYc1+85ZZbtrURn/3OPyxCT4z8wIalVvrspGsvyAF962ct4OOlLbdw+BYnkVN7p3tz+4N/Oor1hWEMHnHPhWdOnvh0juo+iw/b7pls6CpwutfSK6/q8ph/9mzESqytL0bgYZyUW335gElfLASWvJjTTt8esE9h4WpeXa7ENwVuexiGPPIpbnk15prk21ppX3XVVbv3ve99uze+8Y0bFJ2TyHrRfpJsLd2VgZWBlYGVgZWBU5oBh4z5ol3fQcIBa1+OOkwYd6hxoNk/uIUBs8Nc2PodtNJzKDOmwKWrbTz/7PiBaayDloMUfWMKG/2KeQ8e8DqswSEOag5X4g8DvjH+4KnNa6fDNr9wHcx6KDJnrMImDHpEf2Jtg3eO44QDn/tinN0s6Ux+4Zub7fIH2zg8tWLOg4EHIsUh1UPJU57ylC02h2R9cZYvDwAeTtRic5htTPwJm+Jl25qYbw1wIbjQEQ+91swYzPJuvpIdLHpJuSxGNT9im7lgo6TXIR++cfoeQNT67Vd+9OkR9u0tYw7v9fnFv1zMNYShsFfHDwYuSvj1iw2usbDZE36sBwwF57lP80UXF/PFBUPbwyvbxHj4ar7xwNf+0IbrgdZDDBH/9JX93A9h9HAUj6mT7+JRG2Mrfj7oeyjy4KgvJx48e3ln78iBmg9Ch4gFV3mzhz08phN/PvmgU2FLb2KWF7rwi6NchlcO+VXoike7ObHpZ8OfNh/q8mGcsDfWvSa++OVfHSd+SGPiFpt5ufMwrC4+sZoncZxr33rgHEc8G49z9vz2koQ+iYs2Hvlp3hhpHKa2umJePnHFXTtc9vWNKezDqK2eUp+t/MoNfD7lJV7Z4Os6sIZenFx++eW76667buebcXxeiMTBC4oPfvCD2wtc/vmWR/sfF7USPzp4uMZaw+ysFX7WCH75MK+viJkPxT3fPjFPwmav1FfLAb9egmq7FuG7xrwYsXfa77DTN8Zn62eOTzGJQR9+L/DoKdZFHtTFwb/PNphsjHvpCYfgZC3dL4uTDl3rx07fPuKDqOH28tQYndZcHrJx/SgED5+jbOmW29ZLLTZijsBRjFfjAsvLNfdfXHE3LnZt68yvNoHXGumHxxYXkg5MHPkzB9cLvGyq6ZvvMwt+GGq+zYtLjuWL7rThXz6tmzWgS2DNNaMnZuvWOB70rJNc0BGzb6bCwR8m/rjgVL7aL7jgBYOtvUkPlpq0B2DKKxt7V5Eneq0NOz6M8amwxzPM5nCzXvDsZRgKH35hzF+6fOEJR9ytAX7a/Ex8PtsP5gnbOOMYZvlnz2f3ZPow5MS4Pg744qgYcz6yNnKob1xsYrFeitwaM6cvb/x6SUrw5wsvGDiXbzjyYJwdnjjoK3IIC3af3dNGLnBjC59/+yVb9zS/YMGvteVPHmASPpWEHjwlX3jIlVj4k5PWnp34xIQrfIW9dWicD7yar80H3Pwah2OMhGkexvRLZ+6XsNT02q/s5M+/YMGVzeQoJvitqbmwxK7PBhe5g8E33HjR0W//uf+yNZY0z1ZeFH7CETvhC3/j4fINzxx769cahk+3GOCKS+0zqTjm2uL6nOc8Z/sXaa9+9as3GPonkfWi/STZWrorAysDKwMrAysDpzQDDhnzRbswjB1XHGo6ZDisOIQ4lHTYgdOBCC5dhx+i7wBUW91BqMPgPCAZYw/P4cphDYaDPZ8OYOGp+VFgdsgyDqPDloOZPizcSRjG4PKl8EXfQSyh22GeDxw6lNIxhoMxfoh69o3BKT59vvgvxmzFTvTLsXZxpbcpHfLDPExx8EH0He6LU9u3c3zD0D+HpSvHxtjnzwHcQVQutf09SofTciAvHqgSdny2xvrFoOanPJdD+mKDqcSZrXwVdz7MwwonH7BnzMbZ0p05rp+9XMxvKdnjPWDAEEs+2PIPj46HUGOkF850YctbD27tDzUpBnuP/w7+anu0efGYL2/5hwOf8CVPXmyUL3PWRT7xgacul+wr5rTpsifGxJi/xvjCDydt8/NbVnLXvWHa8qsQ4wSGYrw9Zpxf2NN/WMbgK3KvlmPjcDzEe4juW2/2p1Kuiq84jHvBQcd+zD88AtP60zMvL/o9VMopXXjpsjNeXS7Ts5ZySIedQsprOWRHxJ5ea4iL9TUnJvFaQ9z02bKRn7jQ1aejGBcX/TBc214cNC4mc2wVMeDXdWZe277lz7zCD30+4qNP5JpdfTpxpKttDgYxlohLnsyXV202YpIXRS6M0TFfHOrw46pP6GpnZ16bf5jyooYHHxZJX/xdF17qeNH+jne8Y/esZz1r09mUL+AHXu67n/3sZ3dnDv7kgT7/XhR5Geq69fJC0ZYfubMu7uleJvVCSSzGveRTi1E86tZP373EOvHVfcS4WLOB1doYIzBcl74h7aUTPubw9w3pcgYLR3ny0t+esn58tj/4tQ99JtEn4jEmHjV8RT6KwV70oh8XfAkueBE5s8/FyE4MeClslPr8yhNucPFVs8MTBzkqN/rhwHVv9Bnb9cG/cfco9x1ccMyvNl+KdtzE5m/+y4U4zLkHue7FYV/yaw+wiTdc/BTciP2BD+FHLOy12VkLtbwm/BE41o2O0rWoNgeLT3H55VB7ka254qIDhw3e/OnjFaYx621M/DjQZ9tnB1zx9+eN6MgtP4n9BdOYnMGAaV3lSw6NVdi1V+zBYrKH2qu44g1TzZZvuVeIsSnG7Vt5FYNrUIxdh64P/rJrP9MhrQF/5QwnWOaapxs3c3IofkXccicP8kbah+V4Gzz4gS999jjhZs9bd3tR4R8/+0dsOPDDr3XoGjMGg56c04PfOpkzVj7xJ3LTWsm5dbEG9BR47svd+9iIo1j44Nv9oOvQdSCW+OEvpmKcnMwZJzh1ncwxvBX85Lb42ciz9cbDPDs61t49SD6NFbe8zW/hsxW/mK2De373R/sWlnsSnmp9+5VfcWp33fGBh3uSb94TOtYIF3rlHQ9YCt6wrbV5fRJ3bdjlEyY9ORGbtWDD5yWXXLI9R/DZGrHHnw5b+0iBUZ5hhWmt5MJegCEPnVnokeqtc/ADDv5KvHBmK25ir8HGg54/+eZfpL3qVa/a5vcxt8Hz/Fgv2s+TnDW1MrAysDKwMrAy8L8lAw4Zd+dFu4OHQ47iIOIgaaxDlFohtR1etB3YOsCl44BTcXhRYDvEqumF7wAGw2FTO1w2MPTVDpDa+cIFVoc8OmGZI/yYh8+f2pgDVw9a+nAcKvPj8Lvvxxz+eBRPOjCIueaN4aNop8MWJ+Mw6xvDQzF2PjEvFofkbOA5PIqtfHrB7u9r+yfdxqxt//QVT4dd/wy+eB3yvWx3KHeQF685ucGPX3YEd4WUYxzKs3GHajbG5aqHg3JBB3+Y6sQ8vrBI8fJToWNcIfqNxUcuzNvPHm4a15c7vKbvMNR07Uk506brJYix/IlPfmDIldKa0mHT4Z4dLmr++SCtSw88bOjBab/RlR/+GpdLD5PGZu60FXpyrmavzp5ffsQVD2MEn/KjbV7ujJHuD2zxNB+GPDRWrPT54hufcmmMnXpyMc+v2sOWvLClC9+e9eLAA5QcyH/7Cj9+SZjmvRSiUz5hk3RbPzrG9ONLDx94xuW2eOmWe2P0Wl9tUjzaYpEPOmHCYEtv8pIrMcLn1zWoNq6wcX0oxYGjfnuEfpyNeVj1sAxXfM0VQ1zjCI9dcdnL8TSnEDhxb5+Vj+b5wLNiPvv4q+G0Z9jSU8zBtp64axszxyaucoOP/Wo8HfN08VCyowtL3UO5ePlJT02M4ybH9uYznvGM3Tvf+c575EW7+/DnP//5s//0Hicvr62XeF3rXe/tMevhc8y4/YGXPSzu+aK9WI2XKy+u0u0lFj2SnpyUT3NyKAd8etEuB/JkDH8vQ9nIOV38vEDq5aWY+HQN0ykeL/Rw50N+xULH9QpfwYMfmK4j8em3Nj778ILh80vpJWCc+ORHfLjAxBOeOXvGCyc+zOGBA4FrTNGGA9dLLbmAYQwevu5RcuKaI7gq/ORbjT8bvv0i12eMWIzLQS8Zux/JH79i4LP15IMOO1gKnuWwex9f1g0X8ekTdvT1zdlj3QeMw+NL/Nrye+bgl0I40GfPh3ltOcxGn61CF2797vH69Ej+WxfraG/Bx8UZpXWgb83wlU+5p8O/9WDrui4utTXAgbTP6OLSXi0mucardeNDm+AML97m5BQH9vNFu74Y7Hk2RB3GNnDnj/yZE1t7Tcx8t07tA/tFrsu5XODguoYlXz4DzesrMNTywIc+ffyN+ZePrktYeMq9XGmLhbg3scELtjlterDxk5OkHJpL2PGhiNOau47LMXvXgDXEzbi8xN88W3+Cp+vQdYCD86z1pysmtfzjlRjDWzHedTbntfnFFQ6eOIhDnrvuzNOzFnLauaO8mGPrnqGWK9cz/vZKNriLS8zmWh+1/PDHTk0PDi7wrRN8+cBRzspfenStIWx4uNj33XfEQeDLCVx16y1mGIr8wRJzv+yQd/tC3ERNB5/2JV7Zq+Gr6boOi5UN/kr88VGm4GHfiMGcPv32J10czIuZD//HyjXXXLNetM9ErvbKwMrAysDKwMrAysC5GXCouJAX7Q42ioOVAw4chy4HEm3FQcec0gGmdizoOdQ49E2BPaUDUjj5yHe6ONCB6UDZA5y+w18PXPTxo++gBgf3/Jg3th+TvsOWkj4uCftEWxwdaHForEN7/WlXbNXw4MRTvzY+SvbqiVl+1AQm3mKHadwDgAcjB1SHXsXh3eHXWLbsFHl1IPYywMFeXtUO9x5OHIjxE6985xcvtuYS+PnFzRyb9BrTh0vKe2sLt1zhat6+VLcH81fNhi91AkMue4gwru9BAm77xRjd/OajPOnz7/BujK5fWMC1F/DCvTzhYS0mF204DvUO+OxgKvDoxw+ffLfXYNIzTtdaGJvXAQ70K+YJ33HSNy//SXGrYSt8lXf7B3djuONHetDEie2+vjH87CW58pIeRsIu2+IzX4HXvDzxZw1wgS0OD2nyzk9xqxOxhE3HnvZiiI05dXux2OmVn/jK7YwxfPzKTbpq3OUJbzVbesbNy2nj/JpX2keuwcR88dFJsoEHWymG9PTlgz3McOShlynmw8ouTOuGc+N84K2mo7SO9c2T4oqv2loo+TPGjjRmns9y1zwdbXrlpHiyVeNjHo4an8bwbg3EbR6msbiprb85+r0Ehh0H4/ixcz/xoH5PfqP9c5/73PY3rePeZx1uxYiDeQUPpXyYs8+tszHSfb37VLG0fuKlIy/l2TXnfn7YvmRnf/hcKU/G7CufJ+XXmP1OV870Wy8+tV3HfPfiiX/6XZ9iwKH4YBQ/PRhyQ3zWuc/CcO+xfuriwoGNfNEx3j3BOcBY2Goc2wvdC/GYueJbHrzga18Y84LNi/bw8cOdD5zDVhszZz172cYfX/IgR3KAL+zym50X8zjA8LltHdjpEzY4w9M27p7Mn5dXxBi8RFue5EExLz55kkN9ts4OcPTFgptCjDcnZjrhwdI27zriq7Xk2xwd88bloP/U0Lx1FYs5Qt84Dsa0+WvMeL7pszWmxlduzIvPZ0386MKBaQ3o09Wm276gxxe9sMXkOoqDNfD3onFP6JSj2ngQfuW6X+7zaT+xx4GvGSt9WDjhFmdx2ovWiw9l5gZH+86YPMOHYU/JhTEiT+6P4sERvn1mXJuoa+uX4/TY0sdTjvXx0eYTh9Zk4sASs0JgKOVavPJ06cH/PyQenMXrFwyuiXID030Br3zHRUzG4TbPV/Fql19+K12bfIhh8sYDZxhs+VDjy15e5NuYM5b7F/8wzFs3Yh9U0y0X9No3/OPd3oTHn/uBHFg7mGwUnNjQkX/XIf8w8DPODxtjalhw4ohT+YEFR5n3INxxbu+J2by42Rrnq/uqNh7szNERU/N8V7akHPzgOxzt8pIt7sZhwsbR3vYv0t7+9rdv/zcKLHYnkfWN9pNka+muDKwMrAysDKwMnNIMOFD0ot1B8nwHBnMVByjtDkIOI7AcdhRtYxW6tdX6MLQPO/ywVxJ6hE0lLh0C+e2ABdPBzIFPW+3w6tAFtwMU/nFjG6aaHky+46LtsOVASZ84JJtXjMEsB+bxLUZtvnFRN8+2GLfBO3/gkdSmC4f+jDnucBU6dIsBjgOjIgb6uHt49g12B2bjYjA+8yFv9gefuHsx4qWAHHeYNa7IdfGo9Ql/HmLU/BA+Pazxhy8/DuRK/PnMBzylHMKGh2s+xQvfOrDNhh5Mog1DrdChLzfWFh+2xvTNh6vWJ43PHBvDx8E8Xr7lBdM+gLu/H+IVLk70YHjwwVVfibOazDG4c+21jZUn/daDLb/60y7duJuzLsn0z16/PMhXeY8vO21xWBe5YkNPTjzgyjuxzvYVPHknbOjlw1gctIk5PtRiJOzsbXEo8TIXb+0p5QOOuO1nfMTPp4c8D3uuBXlSujbCVIsjHri3Z9S4qBvDO47lrPzgrG2e8AU7Xz1wq4sfd4UOYduYfm017PYH/excf2Lly7x291M2Cv1swpRzbbGr81dtLJ7FnQ1MuVKzNx83Y1P0lTiIUa7KKV1zCb9hqYn51ig8dfy0Wydj9I3B4k+bPbxw4Nob1ik/xtjDUrvn+ZMx119//d36Rnv59SLx4x//+Paf+OGFS77ouLa8HOhFQXbiwVFtzMsZ3zzs3isGe901QI8OXNerNTPWvaPcmHOds7VfykPXgzXquoZL8KUHS5uf1tJ8/Pgu7/RhwjLOptjDiZOa0FGsW8U4vnhbG7bZmzOGS9ewMRzlyjobJ3xrqwk/8dXej1HfvcnngvVhJ59e8MH2gqucm8MhwR1HuPiprUfXETuFj3JQvHS1zftzGX7BDoM/v2SxJumyn7lg65vzct7nOE75ULPJrznYeLGRY9jWTTGXsJkSBn0ifjh84KFvT6v1E224Sr7EFr59Y651kgeYxDh7xbx1ad2NwYPTy8f6avOtAU6w1IRP4npwPckFXDpTYMQtfvLverTX5AxXnNtb9PEME4Y5ufbNZH749xnGNw5iYAcLNlx24eTbvHVmZ954BW/Yrh1x4oQr0WcrT2r5mYWOPg5wtekR3IkxPOe9h64155MeHaLNXpz04RI1fXNxo6PNRjHvFwO+CCEe+XAP7BcTfCq4lP+w53rjEme62vzHJX/ypNBRcKPTXgkHD3rmrAtf2rjgYR0V69G6NU8Hbvj4woXHVl3sfikKwxif9MzBkCslTtX5UdO1HvJovjicF3DIBg7f+mLBma5+/KxL6w2bHnztOBZ382r3LeN0XQd08VfCVsMXp7ywU9jwM/cIDPyMKfkypq32i/K3vvWtu5e+9KXn+Ng6x/ixXrQfI0lLZWVgZWBlYGVgZeC0Z8BhpBft8yGrA1Dx6Xfw0K44LDnYOIAY0zamD7sajnYHp/DCUdPnQx1G82yJvoOSQ5uDk7ZC9v3F17wDlocVh0l6Hfr4IXgpCT9T2Ewu8zDngG6edIg0VgzGJ5c4w8tOfDNG+pODOT6nNG8ufsUqN+XSXDpetnjA97LHuAOyBzLfDOyQSheOw6uHLLlT+3MEbByaPUSZ54OuMblVGxM/PMW+MqZ4kQCfX1jmPRSKjR/2cNXi6yCszQ+Jm8O8OOGwh1upX77g0MOBwJttczh5aMAJDhs4CtF3yNanH1665uHGuxdb9P0ig60Y04EJo72MTzzzV370CR0Yib4SZv3GrIkiT0TuFFzsVdz16avpuU70PYQVI5/GSGOzX97teTHo07OWbI35hYp4yh8dHKy/Qse6e7jvJS9/1qX9wlZhS8SNB18K0W9fsKMvXvFYE3uT0I/nNnDwA548EG049m9j1sq10P7vGvFgbk6sxuRcHxf+xTZLcRSLue5FMPjuHlJ8OJQX7fjlB0a+iqu8VG+B3RkbeyLGMNjzJ0b7oOtZPfcAHX2Fr9YDB2Kc4BnX8p0OG/6sDcGnPYcTPThxi++mfPADB4XEoZouv+Ybiy9skv3kZzw/5Sz72cdbH2Z4+my7DxrnI7ziFqMX7e9+97u3v/XaPN8nEf6Iv3d90003bX/nHFd7k6+uRfc093cvlOSaPzm1por4YfXP+2Hq4y6G1hJe93X47CYOO+M4GGerdv20l5qny54YU9pjjalbI5hy7n6Bf9h4lgc6U/SVYjHH1vqEpw9XyV4tVmXaTizXu7jYwXBf85kqP+G0d3El7RV9cdkHPhfco9iZ9/nol9jWUB8+bGtIwu4zFT95rOCiEHPKFHkmct3nPn05cd9qTfCzdjjwmV8v58Xp/kDEwhYGXbj6bGHxJzbrJhY62u7Dk5s2H3Bg2C/44GGsz8Fe4MGF53OjzxS6fKoTfT5hGIcZFp/m6BSjMdh0xCnvxujAINbIZ1RjYsWZXXzYiBOuHKmtmWtMmy6BoRDjYjLHnj/82NuL5vXhmKOj2D94qsNxnePPJn5ix5M/fuDax/aa3HRt440DH9ayvQabHWzzin7riwtf1qjPKT7osWl98m8cP4U0z++MnT4dfpwhxCUfsMXTGmqLsbzDd43REwN+5mHL1Sww6ZuXE/tPLGzCnxxxpY8TLgQuX3Jmnq0xok30Z6FHzCuw8M+/uOXOuHmc+IgTDvQVWArdSy65ZMPtOrUe2vLAnr6YfSZoy50X1rjDJrDbj3jgDd8YHwpp/YuVD/vcusFgC5NfMVhDn0fyTydc83jS5cNc+dFnSzdc2OY9l7DjJz289BV6bOkq2mKma14bphzA93xk32grpJq9eL1of8tb3rJ7yUtecs781jnGj/Wi/RhJWiorAysDKwMrAysDpz0DDh29aHdYIfOAUXzGHEY6hDXusOUgk+g7uHTAUXdAoudwkzi0OFyR9IwROOka66BjTh9Xh+LEfLb8dYjKN94dNNk4UIoHV4KbEo/iDdN4Y+zgxoudOWPwPKQpDmRh8kF/4tFXYM8CXwmTDhwHbu1ETPQS+sYcxpujH46cOED6Vppv8JjzwOuBuxedsIzDkC8HZmvkwdILHTz5LPf6YpJPhR1/uDrI89fhHacf/vCH29o6bNMrbn7hsleKyz6ARS/h2/or9MyJDe/w1OVb7lqH8sG3QuKBK15yAXffBhfrGh7buZ7Gw+Xfg0QPIV6osKXfA0f44lGMt2/Zs+Uzf7jjVe7jXhzxiQNf1s2DtDF9a6DtwVyc8LM3D9uDJj0PYXgQvrtWtek2rk8Pd5y1FTp8s3NdeICREz7DFZv1Nc7e2lvXvl1Lr5cI/MAvL/q4y4k6Hvp8q+MoVv/HgJi0869mN6V8GNOu6NP1ICkuteLbgvY17vLnuvHQqk9waQ350xarPLTe5aH1pWd+ro888tfLhQ384Ee6uMmzgnOxTf7xMYaXmk/rrY+PNv4e9vlMp7zC0BafUkz5K/fhqgl+4kxPX7GetT2Aa/NLD5a2El/zJD8wjeHJhsRZO3/ighMf9sVN/yhhz0d++GrdYLTOceDDGhnniw6Jm/vMFVdcsbvhhhvukRftt99+++7GG2/cnTn4u9fEi0Bx8Yene7x9331erO7JrjP7CV+xdd3jZw+xbY+q3b9ci3BhiBeG/W6v6ItX7K2X2rXiPuTamLZ8Er7sAfN4H7YW5bzrAW75TZ8O/NYq7satAT38cDbnvmOsuezxcY/ofo2XfIWLo5jFKUfEZ135pcePnLiO5Bg2KT9qefZnK3zm4IKHz9v+tZj45KXPJRjhiAGP8HAs53TiujkdP4ybZyvG/LKVC3lRwhWjfCjk4osv3vZSMZkXIzx88RC3cfHIDx98tl7FzQ/ht73KRm77BjZctvadfdwepY+jvLtn8BEHsUyBT+jDLp9yQZrX5kus6fCLE+x4+hck1kg8pGsJJ3ZsiPiMseNLXnyuwYKptG7pyBcOcVLr2yN4iaF8p2Md5cZnKOGTb3uHlEO2CjtY1si9opzSl0e27Wv8FCJe2OILWwywGrMv5AbH4oCFoz4uCpz2qHl94/Y1zLga12crt9bamsdfTuXfmrNn11kiG5w6A4mFX/fDznr8t0fN4y43sGC0b7Xlji9j+nKFC8GTHV/adHGaUtxsCT2FL3PyJD4cuufw0V7FL0z6uFfEyT+MF77whZuN+wke7r/WGTfc2Yjf/Qd/vvqXNMUGRy6tNV9w8KRvTs5IMZlny48/dYRn+ZEzhS6fnj/4z5f42Iubnr69YJ7o8wsPhvyVb88lrutyuhkc/NCPW/nTh+HerqbTnNhwxs8+0zZvXN6LQT7Wi/ayvOqVgZWBlYGVgZWBlYEjM+Ag0Yt2h1biwLMvHbIcOqZ08DFGp0NfBxqHGG1zavOJg5LDCzFH6OFEj602mX7pOIR1EKXTYTV7tvlmb75DuX6H8/zGLTs6HbzYpmfMYba+OT7z2yGuBxZ6+Cls1cXVHF/5TY8uTDqVHm6MEzr51zeuL6fZG89eTh2QHSQvueSSzacHJA8d82GBjUO7w7mHJngOsh7K8ORDDorLgVQ+jWnjgauHPw8NxvEx5yFVjjw0FUe8zSv8GYNPF5Y2UcPDz+G3MfrhiRfPxrTbT9r7uYHBRi7w7QULXzBmTHTCYgMre/1E20OKvNL3YCH3rY95XBRxiMdDReNqcXd94WIMH3pz3fNpDh+leQ9WrhViTCxq3ObDRti4WHdr4EHIeL7Lmz6ZdTnGVyF82TdqsfQSwrVBnxSn3BjjF197zd6TO7btT7YzLzDEo9DluxzAUsyx8/DkZXtriH8FjjY+cSs+c1PkX15bNy+FPOwZVzwsesDVhsc/0a6UL7UxvsSIO9z9+fZhPugRdmIWOx25UbTjr60k9fGCY33KEx1990o8tLNNNztcug/El715dhV9XMRJT5ncxK2v2CP0+NLnmz1+8LTNE3P0yl+65rJtzlgYxTP5mU/YkjDU8U4HbjzghGmen9YpTura7ou+0e7l+JVXXnmObfjHqeP5ve99b3fdddftbr311o2z/chXa+La6l4s13Jo3bqP4m//2LfmepHV9QTHnoJjrrjVrlXXuPuX/sSGKxfmXS/8waKntm/xbM/u7zdYCp0p+sUOX1/hjxQ3/tp04ZD4yYOSbfM4xYe9/VWu6Jvnp+sDtmLfurd0bytu91KfjbDgip09v7DKKTtj8sQGPj3jfkGpEHxg01PXp1sMYlZaD3awCa7aYsJJ0WdvDqfyYj3sY7x9VpD+xBzfBA4u7Xd98eoTeGKADQ9fe6g/1UGHf1zLNzwv/frsMOfzSq7ss2KRI+Nyw4f48RJLkq6+cdzYuB74S/ggavHiaE21YbQ3zftc6jOSjZjb/zjKlXhbg+Lj20tIOTCmZouzfuvBNp04zV8mlG/xKvz5TBMXfvwWG1w6MyfwzfPtcwoef629OTgKO3Pa+MMTY3vEvLZ8WgM68gMTD77M4whXrOGIjQ6/8PkxNwV348SaOJPwxaa8yz1cevzRM0/kxT3Kvc28fcmnPWN925u4ic08fdj5xQFuPNtH5vHOlh47+1Ib3n7e6cOq0FPiLrdiFBMu9PBlB6/clbdq83Ju3j54/vOfv+XdZwFRWxd5sJdxFr9fDtrjeJvnFxe+4Fi3OMdTHoyXOxyJeesgftcHocuXPJjDl0/PIPwbh08Hjv0oBm3rMO8jYZnji2286RqHM/Vg82kuP+LFXV+cirbCn+ch3OTCXL7M8ceHX5Svb7RvS7x+rAysDKwMrAysDKwMHJUBB5D5ot3BIqlNR7tDR/PqDiiNdaDpAOhQQucw3fDyQyd79SwdetN1WHRwS8d4B8Qw+NUm5h2SFGPstR3WzGXjoSDO8Mznm46+A9eM20FMMS9uGA572mHjwJadOeNhwKerwNCHl07csjNvzPxhEh9z+WPLxiHTIdd/5iNOB3sPJgRuxWHZQ6GDL95y3UMQfDlQ0zcvn43BEovDOHzzcXIAx6NDeuNh5R8GPRyLmw5cOvjoi0/dITgdduW0HMx1LXfp0cEJ3x6u6fDjwA3XnAc082GFgyuMyduDSvheLMgHffzp4qe2D/mQQ/NhiRsndTbmyhFO+goxDgtnbaIvN+mwsR7tUfzM4aJuLenx3Xy8NtCDH3jTD7e+Gl+Ch5hgwZE/D8nyQie/2vjo42rveTD0ooUdgYFDD0ls8mmcNCcGcRe7Pl0P3daP//zNGOQALpzGWyN9ohYTjuF7wPWf+8m5uR5qxYK/cRxnDvGZ2MVAV5nz9LKvLh/00mUnLvxJmNr0k8aNyU3XDvvGxGYuO3GX1/ZXtvDiQS8M8zBJHKvpsaMrPn2ldY0rfRKmml6in8Djc3LRpk8v3vSM0TWmryTZ16erGE9XnR5sJYzyomZnXB7yZ/95wf7BD35w99znPvesXf6OW8Mmt9122/b3Yr/97W9v+bOe7QP7T07V8hzX1sV+xct8LxZcp/riI/jrux+4fu0vff59Jijw2s/0vfiA3XWopsOOPX7aBD8FbzrsYWvjplbap+ZgKMbTdU3Wx6V9xYe46SlEbLWnHh76OLDJv751kwPjYpMvccEx7v7CXp8dHbnRNi53PgMIHbbm5Vs+SDljQ+i7Zyk40He/8dksH3DEwl7R5ktN3/7Gt3jUsN1b2baOxkl5YwNfgSs+Igf4smVjXh74gSv/XWd0cGGLD13zXmL52/DFzFdxmMfNuaP1xMlaw8EXJj0v4+GWPxhJ8cLGS19hBw+GmtSHla/Wij8Y7Wc+8LJOxmEWd1gw6LGFWXzlypwSH5y0828ubDXp3EE3/+VTbqyLUizia+1hzBeR8PjAu7jyj4M2gSUGRVvMbBqjp89Xa2BP25/2RPE3r8bZPG75hK2QuT707QWY5l1fin2gz7c5mNrw2HhR3d7CC4ZzJ2y5EOPcT+wUYh43/OESmJ1l4TbPN/3WCwdzcYFpXk2n3OZLPQud1pLf7LSJvjWgJ7e4tBbG5NU8rpdddtk2735B5MC5xIt2vHGh5+wPR27ErOZHbV7srZVYxJZ/c3D0pxjDyxqZyw6mMdeWe4C1Kcbi8AUL+7tY2RAc2RJ4xnGxRuLBkS/5s0dg67PBh6hxDqs42eZfmy07udJnp89f+fSLcn+j/WUve9mGDesksv50zEmytXRXBlYGVgZWBlYGTmkGHEZ60e7Q7cDgIKPMwwM9Bw71+SQ9B5MOOeym7cQwzo+SrboxvmpXG4uj+iiZfqattoOaQ5NDHQx94w5qCu7GKtnrd9gsPnOTx4y3uWnnUIdb9uZIOcoGpjbdDq5xLTY2cIgxfcKOOFg6OHaYdnj20tc3MsRpXO2Q7cDaobWH+R5Q+KcndnzxkL/aDvhs9XGIL05s6MeZjkJH7TBrPok7fUV85hU24YvNHHzrqGgbw1WhT2rDnvjGO3iXy/LJn2vCQ7+2B4S+icMmfvCLrTa/Hnxx1GbXywo6fCjs5A53vuQjDHM9QMsR3sbwLB/G9AkdGK0DnfTV5YIeMVbRL357RHzs8SetF50w86ufDt/p4DbXHlYPWdrlRh744oO+GOwtPGHLjz4d6yWP6ulfbHgbh+PBsv0AU8FHPl0PfMcT92Ji7yGQ4MUXXPh0jHm4w0nNl5o//NT+Zuh8EVZcahwILEVfYSteNV7G+FLoZWNdcJ+2zdPBs9jCNg5XIa2JPh3XvvwSY3gqCXxFnHTFDqO48hM+O2PiUZfn4tHPt/nEWPunvZqNmuQrm+r44JlNeYGrFFexNdbeSJ99nMOv5j87Y/Tot3bG8ldsaj7p2Nv209VXX7378Ic/vNXpsT2JxNc32V/zmtfsvvGNb5y957jOuv/g057tHoOzvW5czmHhIR77x7x+eW3Ourh+2BL2pHtbtr1sMw+zwn5eg2zbs3RbG/7LMw44up5dX7B66Ya3QqeXSOwax1t/8ufPWrAp3j4D2OEhT/Y5PnTYeCklr3Twc834bIizWEi+2WlP+9aEvW+Qfv/739/yDZ8urPKBk7zy60WrOMToZZRf7OHZ/co3nt235J8dn+KTs67DWfNNhz6/xS9POMBW2NBTzNWXh/rGyrH4jZcDcYpBDZeetcOXDt2KPs7uMfZP93zjcuK66V8N4CYH6cAXg3jo8qWEx68YzBUbrvr4KWwr3fOLxznInoBRHOa08eNfHPwZ07c28PkOZ+rTSdimx0d4cstmvmjHX34UbX5ck8UgD0q5YU8XF7r4GuOPX31t3MtNPPltrY1lVzzsCb7lxrVKTy7N42LN6eA0r1M2xYsfHXauE2vgX4rZD3gbU9OHm+/a4jBfrvCSk74w0jqp5TU7XHEmOPDvulGI68p+7aW0PJmzH+RL7mDUFi8JP794t570zbOd83Rw6IwSRjUf9OOpVtjFRw7lQU2X8Cv36fBrXmGr4K3PF335l4vian+0vvTYhaPGW678Io2te6i9V77xyVe88dO2Vu6nOLYfyw8stvpyp67wGy4c+7X7dD5wpaevZisevMQXJ1zg23OuebEWFxvrzs4vyq+99trdK1/5SiZbzrbGMX+sF+3HTNRSWxlYGVgZWBlYGTjNGXBA6UW7g4XDhEOJw4ZCOkx1SGFD5zCh06Goww97wqYDjzlCN59TL1v6HYo6YLFz2DHuEEToh7kN7I3RJZO3Q5YDFTsHQgc8bZiHcWHPr1Iu6CmH+Q4j/h02jWfPDqcZ28Rim75ckWJwQNTu4cMc/bl2/DjA0iEeQi666KLdpZdeuh2kYePVgyRM9g6YDub1cYLFXzmQM2LMAZS+ueI2DkutwBCDMXrFjrN5MmPfBu4cCwM2DA8BDvU4wfICBh965sXrwSHO7RO601cPp83zHwe8xOWlBPGg5yHCPy1lh8vcK5vSwQ/2xnHABQ9/F599+Gxr23cePsWAmzlFnth40CuPfGjv54yd2OTAepqHYZwfeZg+zRN1D2DsPRD3d3hhsWVXnPpEDTseOHU9NUaPzuRQTmBqK9r2WXsND2Kc6MNWy7u1l1McKuUZT3rlU5t/9j000aU3+eNM17gckNp+MWUN5DA7umHDET/xrbEzZ85sD/d8kvlwS1dc5bF1LQ74Cmls69zZxx0Pc/u2YoAtN3KkH684lge5xp+o04sbfbpqvtTyJxb7ovjhlDvjCRs823fsxQU/7OnfGBz4RAwEDjv91s2YQtjNmj9jSnnkB3c1H+bEK75i3EDuxION51ESfvP0Ye/n0Dx/BJ62zxt7+Kqrrtp96EMf2mp4FyLlwDfa3/zmN++++c1vbvfE7o2urXJOl/+uMX05dc+R87DwnOumb06e6PmcEKdxRdz4syHp81U++BFza0oHN2NsjSutEX/WWhx0xIC3eUUfvsIv/UprzEd6bO1N+kQs1sE4e58j3Yfc770YEmt7Iz5e3nQP99KN9EtYvLKBSa8/QSA2WHTcaztz6ONFH1eCE+HTmDzIATyxseUHjvzC7jOpF+1s5BW+9YUpdjZqc/h4GebFNT9wzOFToS8XfLbOfMstO3VctenwpS7/avzVrQF+Cv501Qr/ijZ+6vDFL872gxj4EiNdArM8hmtODuCajwc7GNbeurrny4F5pTXRpgcDf+sCq7XLN7+KeTZ8haudHX0FBjEOX6ytEx540eGTvm9p41RuXYf2XpzM8aOwd+0oOMG2luaM8Vl+cAjX3vevBKw3TgQPOcfFGoQJQyGw2eLCH/9En50xvklrW4751lbgqekb1/dLJfiuT2coXMpVuPEvN70Q54+dF+3OcGKKP0z8YPFjDg58e8G+l2N84LUeMPmxVtalPInTOCw+2ME2hqeSHzb0u1aMw+efxMm4InfNZde+b55OPuiYV2Dx19rRj2vXj3n24pYTsdOx51zn/eJCvM5VzjjuA2JjB1vB0Rq5TrXlwH767ne/e/YFtTEccKWj3Zjaepnjv/F06NtbajphiJOIw/+VYy9qZ5eu2hhssZcbNVy+E/bN12bTHvf5/a53vWv7BXe+sz1OvV60HydLS2dlYGVgZWBlYGXglGfAwcOLgAXzmQAAQABJREFU9k996lPbAarDhbq2A48DleKQc5Q4kDiwKB1yqs054BDzxBg8tdIhSLvDET0HOoep7M3rd9DDbx7K4JBqbTbsK2Ix5uCEg4OjA7nDJJl4uNAnfMqLvnEy2/r8KjAIn+yyNc6meTowzZNpWx9HB0E2eBOc2Xk4aF3w7xDJLz+tCR1/H9GLdsUDAR0PHR7aHFB7eDAOW12JC558KLjiw9YDWvljU7wb2YMfdHFpTp8Uz9a5ix90xetg7+EEHj9yYU/IjzG5muvCTjzFxw3/9OiXP3pKccH1sKcvXz189MDGbj+O9ou51tpLDQ8y+gqb7DzEe6jzgGMsO3Gx6UU7znInBjWBhW85NcfOGB5ihilnxohxbcU8v/a+a8HLIf/awcvl9hEf8yFkAzn4wVbhW03fPlAbKz71jJt9nPAyxzc7nMzJQdeXMXgKfcXa0gs7fX1cPBCKSy6I2v4k2dAzrla6x9hbhH8vS/wzbNcNHwr7OGnXZyOPHixdTzDNeTAVH/4Erpj1249w7Sl70dy+HJYX3GFMDmzlxrVh3Hw50Majlwx8E3oJbsXYPdacWNjKoXViq9DBTds+1iZ4yGP3LL6N8VWu419Nx/4hrS88dnJj3eMWFpuw4w7fWHnGLd7GSfGIBSd4hK5+ZRu8ix84woWpjSM8bWPxgin3YvGg/oEPfOAe+dMxZw5+sePbdf50jHWXJ3kvfrm0r9Q4KQQfe9N1El81/myzY2ud7WnfMLVG4qWnnpilKt90cGkv0Jdz4+5t+vAV+6v8s/GCy71PvuhNX+7LCjuc+YNH6ImND9xwp2ufWQ/7VDEeDz6IGOXEOsFJ6JVb2F4o8U2XwNeGibuXTU95ylO2+6m+eS+dfAubD7zk11y5ims84bYOdHE3pxD6eLln8yd+fQV3+bS28s3WNcBWvnD35w/8UlUfftcwPfGrcfbZBIuetRe/f6GFW/zU/IhTTRcPtf1I2OLMHh+5Kla+jU2hR9Q+d+VcGwZcMbDnzxgOYcNSzPksKFd0xMK3Mfd32Gp40yfdcikXbIzB1YeLd/uNvfVUy6c18ZLS3oKDq/zAKV4cFHPlA4Z9T+Kqn2/YPmesjfn2aTk3b6/2r+hg84eXtaBnTBzlhW/7t2+Qb84PfvCpyIt4eoktHuPs7Q9c7DX4cskHvHJDLzHXPQonfSXRxg0n16kY6dmrcmNNjeEQjniMqeWKPp/m5aoX7fLCzvpZC370FTbWSpzWlp24xSxW8dGvwDfOVptv+u51xujhJJ5yaF5fXsTXtdK1G4459nThWVNt9njj0mclX/ICQwzsrIl5607E1L8G0TfuGqdDvz1XrrLpSzlyysY6Ow+39/lz/cgRHvS18cPXf4r61a9+ddsL7I0pdNWkfSR2e9b+0RazOaKPo1xYI+0KLu3nr33ta9u/EhIbKd9w4OnjIb9TzNkr/IipfYWjNZJza8nOnH+R9t73vnf3+te/foNhdxJZL9pPkq2luzKwMrAysDKwMnBKM+Dg0TfaHWodWBQHBwewDvEORvPgI1y2+9IhKt2po908XH5IOvlNR42Hg5HDDsHDmEOPMbbGOsiyUYzz0QHIvHhg8ePATccBysHKwcyDAVw2E4etQmAobBrjvxjoGGdPyiFMfnEyl41xtvRIOJN34zizzQZndg6cceFDjOHhyZf10Hbg9h+aeQmgD0seHVblgj1hX97jkl9zbBRjYtJuTfQVevHYQA9+4MHG+GzTP46wddB14J4PNB2EYYjLYRx+66DmA0cCh9CDx4bEmb4C18sReeHPC9e+4SPnckuKmQ2/MM0XlxfX1o9YL3qJhx0PJq4/4+0fth5a+HPA18dPrrXtlXAab+3zyweO4sw+v+yN5Z8tXx5oPfDANiZX8tPeZJ9tfujgKA788KGj8C+msOAq5Z3Ovk22fMk9PBhyq8AMR13OGsPDnmYXhusFz7DNKeUFB9I6wfTweskll2zXTf7psIHFn1psxvj05yC8TNNno92DHd9xNN+6yq8HTLHBO0zYFncc8I+HufD5tc+IlwrG4ylOfMur8Qr9/MCmky6urp/6akU8MMUejrEeiHERK1wCNwz6fJhXcCXFYh6WNZGbMGqb55sPNvpTjMG19oo2wYGdAr+8868Pj+Rv69zFD9hiyRYXYziEL39i8aL9/e9//+45z3nO/8P5LtycnY7bmYMX7ddcc83ulltuOedlKx50+Fb08VHH0WdeL0XMlQs13valIk9e3rgXikFssOkR/caMw6pvH7YXjFl72K4t64CLvv0lf4RP91s6834Jl721xMkcfzDkFX77yRh+rbU59u6zvcDjiw/8zHcfhk+METjuV11TPgdwlBP+7Ru5xI2e+6gXW67pYqPrRRYfeLCnix8/Cu5KfsVg7fg1RpcPsWub85nuZZf4yyVdeu7t6YqJDb6KX6h6MUYXR3593omlaz2+sPgyz1Zs5beaTbYw4yJGYi4xbx/JAzwcWzc65ok5uZdHv1CQM2MkzrjBoaewNQZPba3V+ODCF65srL2XiHIHL3t1ccGDwcY6yKFciocPfSI/s9gDPr/t4/y29mziWDzx4nuebYzHb3N08MO6+FyBUa7MlXM826P5krv2L5tpZy3sTy+k2/vwikduuk6MwcKTf3a4yAd8+aTv8yCRa8KneOnBoKevLt9quHIOU5uuvUoPV2P04MgtfHlS5BxHws51KV/4us7VrgvYclPO1LDkzTqxwU3c5ux9/Plip208XzgZs3b80mOjhkOXb216uNo/k5dxxV7jozlxZ2t98IdNzMlD91hjXojT41txvbpP4KrPLx9w+BO3vFnLvlii7wsinhXkgI2cyGdxwXNtihk/51x9uHJgX/gFMJtiFX+x4FrM2q4ZcZBi3joHP+CZU7RxFnd7RD6/853vbH+6Dz8+ph9crYH42eATF1gwcQmbvr51tecq5nvR/rrXvW6jR+8ksl60nyRbS3dlYGVgZWBlYGXglGbAQcOL9s985jNnH0gcwBwuHEQ6QDiwOKQoHU4chPalgx2d9NUOjQ5CDivqfNBPtMPugMQ/W4UYJ/mpT48tUStxb0yfnbo48gm/mI1NCW+OZR92vqeONl/xqM6meTXZ95O+GDtMO9A69DrMkvKydQ5+sLFuxrVhlkuce1HssKiYE6/Ys9GHUT7SsXakXKnNKdrWVWGvGFNPic/MX3EeZTPt6cqB+B2O4RjjS4EvVw7JeOmbdziH7+CfH/q9pIAlZvuyGPil2xhMDx/yX+7474GAnwpbODDx8CLEQ4FiDfBqvgM8Pj0MsIFL10OSOevhAcFDINz4qvEk5YA9LjBwNF7O+VbKT1jlSU488OBaPOnykS28xmGIxwOOhyxt8z0U4Ye3XOKSwC827Wyyo9c+zK8xeIoxMbYG5gg+cOWTTrnz8KmdPZ348G9d7a3yh08vOYzZJ/DKGZxiNw9bnB5WxUpXPxx8eqijXz7MGzdvPGE/Zb9vjr74zSniwMm42KxJMZrnQ+GTroJ3D89iwqscmadrTe0/OQyPDszWvtzixYaEg48Sx3yriXE29OHrwxOLNilWuWrN06erwCh2duzF5jqjm2jnm762sXzRsx/gNWeMrrGphy8/4ZVjePQVIq/2tr/x+p73vGers9kUTvAj/2cOXrT7j9m+9a1vbdcsHvgUH9/4dP+Jj/uol1muV1jW1lwvqrqu1DC7T+Evfnb8yLn1z58xfbXY8sdHnONkvpK+FNDDOQ7ZsqOn8Edn6htrjg2erZW+ebFYB7xJ/LSz1U6Kqz4cOSgv+l0b7I3bnwrfBIbrhu/4eInl5aE84gPDy0l5hkMPN/hKYs5+xl/87ld05ZGfcmvv4mIMtkIHBz77bIE78fXZ8MOGvj4se0MRv/1kzh4i4utlLX7m2KRbLujGozY+fPFTLOJgr+8luxd+Sfbibw/QY28f+5yXR3rdy8zb8wQ3pb0sl+mxgZOO3BgjOOGphsU3Wz7VkzNsvL18FId80imnMOPPDl+fFb3U51eOff6oi09u+cMX5uQGRyH8mNcvR3SVvvUdFj34JB3+7a1yhh9MYk6O9K17XOy5fsFknF/Y1pd+fI2Lqfsr3+UCvn3kl3rm8Ze/pz71qZtfnPkrrnJbXsUGq7zg0V6AZ1yeccKHLgx4eLhu55rDZc9nuaFrXVob4zBgZZudNS9udgp9mF0jOLMj8oQfe7rGK8WKi2K83GmHLWbt4vWvQZxBYdo7an5wY++avvzyy7fr5vbbb9/G6OHd+QdnNs6//RLJ2OTW2uBJrDF9el1PfLZn4Cns/JKHDglTTejILbz2jb3p+uq8hq9fMPgWveufT7HJA/vWWEz8q411f4qzOflha4ytvoKfnD7vec/bflH+hje8YePH10lkvWg/SbaW7srAysDKwMrAysApzYCDzJe//OXdJz7xie1w5xDkANchsIOUQ0cHj9odYNLpkOdgougTBxSHlw5XsDt8mmffQaUDlvFkzhubOtr78+lkP2v6hM3EMRYW7gk9fXUirn1bcxM7To2ZD6OxdNThNRdecw588u5Q6ODq4Udb2X8wKP/FEX/2bB1UHTLF0VrCb706EGePizHrR4etPcKWHc50jav18bbG1r6x9PILd4r5bMuNftKYhxJx8J9N3OmGny09Dwv4Ocyrw3JQ7yU4rj1QTZ1iESscOS9uh3+FD3pirXQN4VN+2XphQF8O5bUcGbOuYTnQz5chHsC9iFHzxXY+cJe7/OmXF/HArdgDeJtX0tXGQX75p0/Y46umYy4MXIy33l3f7MTLDx0PUx5u7SM5op+NPoHdnma3L/nChS1hk5jXF4+Cv5rgKF+tC5/GFEJXTB7cygcO0xdu8Iu3awWX/BrzDS7raoy9fMkpvPLGBztY9OwRemoilvKiT79Y6qv3pRzBrA2HrRhxaD/mQ07sK3r4WyOST3bisIY9gGerFqu1FQ+M/NVW41MJm+0s4qcLj/CJC1x67Om0R8RRTsznRzsb8bQnjZPq2mFYi9pqueKTwCb68pEY56N52DhaZ204FZzcQ/zZjhtuuGH37Gc/+xwuYR6njqe/0f6mN71p9/Wvf337LOCbX7EouKnjxU4McigvcmyMjnjntT95WxM67OTdXoCtlGs5oKNo80nUSr75D5tu9ueLe+Y9PGMJPD7zq99+FxeJT7wbaxze9GM+vHTVsGdNRxxwwlDHUy1GY/aF2gtJ/7rMGiSuLaX9XwztN35wt2ba5mHBNmYuH9bRvVwfnjk81D5H8LCWMGDRkye+FGvsbNE1Rs8LNvsXHh21fVB82j5j4eMD037EIy7s+DGuzRYODvGTAzEVP1uf03Ghp+Cn8EPguA95USmvMI2Jma9ewsItV2r+6MMMC3+2dLtnm4cJK/7s3aNaEzpszPss8YvrhB0scfBTYcNXn/HyaE6uraN5wjeurbU9R8qnOv7iaR5H+dQ3jxddOsWtj1c1X/oK//SM5QMWzuHiITZnKuuFI106XnzSZ59eOcWnfBqj45vTd9xxx1lfdKw/Hn0eZKdmo8i7fIUjj/yXB+P0xVIO8THfmtkjRM7wsiZ9thmnZ1wOxWmd2cMtX2yLF2c54pPQg0GH4MRncbDr+smXmvBrHp4Cm51xuQ6XL/3yAN9eYtM+NY+7Whx+6cfO2QUmDuLOB7+K/NrTXs7ryzsdvr3o9kuSeNDxiyY8jNG3HtaQL7bGtPlz3eJHl4SLo9yKk6hd9+JSzLGDyz8sAgeGIlZ6fIpL/t3/nLG7Hujbd+5hfCp8TZ7G/Iu0G2+8cf3pmC3L68fKwMrAysDKwMrAysChGXCw+OIXv7j7yEc+cvZbFA4sSgdBhy6Hiw4qHXgcXhyaHELgdDCh7/Bk3kOBQ7ODj0MevQpCdDsIGdcmjWlPfeP6+zJ19uf0p80+xrTNfxj64isXjeMd5rQ3v4+RDZx8Z6t/mP7EZz/19dk4HDokelh3kHUgDGvWuOtbnw7GMKwHPw6bra3xqQOTvXVW01M70PaQ3lrjaG/ww5/DcwdafmD1cMDPvojB4Zk9H/J1mIjbQ8P0O2PHQ1/NL84KPHzUxvkJi74YlTjioF0fBr94sldm3uHm0xy7YtDGF4b1UsuRedeatth7mcA3LC82FOIhpgfW4sNXnqevOFgLOK29caW4rV/XMr7miIcuc9mZw7FvCbLxsNVa0VPEp7QWfBN9NvDlv29r4VzO2SfxrM+PPBuXLzY9bPNnDFb+8tV4ceC8n6/s8yU34id8elDEmT+CS/Fly0++6fAnXwQemTmQT8K+9TFG177An5ibuOKHQ1cp5+XQvDE1rPBwLidw5apCXxtfMYqlvLGJqzHzvbjInp047EHrGidj+cTnMKGb/xkrW4X4/FD4o1ue2qPyBV/f+ooZ13ICA1Z5jIs+PLra5ZwvPuSZpL91DvkRV1iJduttTLtCH1d/tsM32u+JF+3+TwB/K9bfp7Vf/SKv60Vs1szLB0VfTEo5iLv7TNc9vnTkR7HOcmOd9Um5UbdPtomDH/qNma+YL79q43JivfCBXf7U+adXDmE0F/fG9BtjY12V/XjyFwe6SfZhmaMXlnG8Jt901LXZJPTtYXXj+bGH7V2fRdYNt3LNpzWxZ+hbB2tgn8ORu+5PXSP8w8lO7PRabxz4gEeXmNOGW+2zzktT9w++ihu3PguMwSfl2Lw9hycsBRcvxOjAtU/7BbcxOVBwc1b88Y9/vJ0bxcs3vvDY4EhgarOnIwb6dPkUc/s2HPbs2BC65ugWCx5iDg82G+N01GzkQG2MDu76+aeHB950tOH602xeVLKRKzbtDbYKLGtvHdXySQcGcS9mi2P8Osvwy6b7If/+k0h+6MpZfOjRFz9MumK1Rnh46Wp/8Wtc/nDHi+DEhi6hw6/84leM/oUXH/kvn/wT43jAxc1niZedMNgROVHMK2xae/yKBXf4dJ2Z5E6bruvIfH7ljw8v04l9+fSnP327V+JsveRNbsTKJ19qXFsfc3DwkiNCT67pmJdH/gj/ijl88KIv1nTVxsy358WBj5ybp88nrK4NXK2bcXZ8Fn97Q22d3PO1zdPnS9FWjLOHzydcaxM3OsVCzz4QZ+fU1lUe+dEnE58PPOXAtc9PQs+6WRd+xGueTdyMaZNw1cWOl77rAw+64hCDe9Kll166PUeJG7+bb755+/N/+nziDYud2PjzL9Kuv/763Wtf+9qzfrfGMX+sb7QfM1FLbWVgZWBlYGVgZeA0Z8BBzov2j370o2dfgDnIKA4opMOSw4aDh34HXAcrh5g5zsZhxEHZw/08EPKnJLVhJNqzb3zfLl3j6R6lM3X322zPZ+dwpYhn8hI/O3I++/yxhTO5mqufXrUcH4Y79XGwJh4qfBvFQ7E+HSXeYRZLGPrE2s2DsFgVwod9UPxs6rPDEd7cE9r07KEeEGGlS7+28cSBFg8PH+ZhxCPOfHpAoGeMjhIHvmfu4IhBjoiDMn06ctXDKR17GWd1uPy3x/HrQaT9Difhq37c1IprQN5g9IuR5jw48SNuDz49DODgAcMYbP+U2jUVfzVu7LWn0FeMq/lVE9zF7cFGDsSu4K7IFS75Cce1bD3xxos9LH0iPnzow1MbM68vLvYecnCmq8gNKR9ygQcbY/go8FoPD5Ns9RvjK8540WcPv7XmV+mexJZOXPnsG1Jyxi/ObIgYipkdgWE+nHziAk9hgwM/8cI3/3TCNk+aNwdTCW/q8C0X5vhUcJdDdQ+M0y9sJa4w5DR7czgrBE8vEspF9uzk0lwP4PTjwufE4Y8Pol3ujOELt7Wh07cJ6cJSYLd/u1asmT3JFlZ+4BcTvMS4UhxwiT7B5a4k/tmEYbz9W9268em6uSe/0T5ftHvZ4kWevODDn3Xpb+viagzHijjx80tbe6W9bFzuOg+0Luym8LOfL2tufL+wKydzb7WPcGPT/uG/MfrGzbeman2iPWPKT/e4aed6kQtjlQ3kzh9w4BHzsODgYA6nytRJl364ceJz8jVOisu16rNNHzfXFJ/2i3Wh7xq1Hu7PcoGDl1N0rQ8dvrvuw6NnPl7yrfDDBi9zcPlnz6+Xqu6B5ujBcU36LIJHzJHWBkefs3gSecAfFoFrr9mr/LDjV+HDXvXnH3zWwTDWHoTBJszyABef9pE+O2OdQdn1sk2MMMIVF33jMMUsN+zZ4W8t9PFl14t2voyZM66Go8irtUlg+yWb+OVNLtnwRRf/PtfM881GPungTOTYvTg++LoHFh+urT18/2+Imj1cNc70+OC7dWvPyYcX1b2Ebg39SwxrCAdX8cGG4b6DB0yc1Xh60Y8/G/iwcNYm+GiLlV8+vehma22IWPkwT2BVsucfN375my/r6ciPYp4tTD7sEfP21zOe8YxtbXHGCU77iu+Zt30cvOQHT/i4EPbyG3++4MgDPnJmzDx/rmk2MOjwQ+Q7LunSx8v11L7t+uQDBl0CR0zyxC+uxswr+No32uzgyhFu1liefJ5omysfk7t1dw3jSlwHeFlbfAg766rwg4844bdPN8WDH/j+H/bu9VW3qvz/+P1fBGaxO2jREaKiCEqtJ0ZgGFZG9SA1LCQry8ie+KAI8tDpHwkiKMvUDkQQFh5SLMsTHf6L33oN13t3fWdr217lk/1jXjDWGOM6fK7DGHPeY8619r19trMVS3UUo9zpt0fEgeAXvzFdefFh7tqFpe7+s3tf46Ue7B977LHD008/vWohdvXR+Gg/etF+4403Hq6++uqz/tbgPH/sL9rPs1C72l6BvQJ7BfYK7BW4kCvgYPHrX//6cNttt63DncOEg4gDTGM6DjkOHXpzhxiNXnI9csBy2HJocgjHr5GzOxfxrZ1EEyM5XvonydOrp4Pq2TauT1dfPA5qjbNJv/m0M04eP4wp29o2Z1vLftvT1dTTy1jfw+hBwcEU8YesWWtljDqYrsnRDzbWl164ZGJoL9QXoz5i1/4w5ttBdj4UwNr6zV4vtg61xvDTn/gO5Q7tiJ+ZZ7myLV48+jDwyIzl7OANj4547V19e1/Phg+x0YclV/mwa51gGqPiNuYPJhw+/UKk+ItTD7+HwHA8CHjIMPfQ6CU14pcPDx1qnD841UM8iC1sxL+HKX7EUPzFrqcrP0QOkx8Pf65rZK/BoDd9y5E/OJp6socDF46HFfXwgGSuj8ROBgM2WzG3fuQw2fDFN56+MSy+ERk9WPKGrV54sLX02LOTF5/i1bcn6MGhk5048zFxwq8W7Ko1XsQWwZz7io5YxcSu3MIrP3HwpYVPJm5Ef64zfVj09eZzLZLLOXu9OOnhZ8u+69ua2ptkfBY/PPGILWx25CgMMjrsy5vd3B/h4rtmPby3r10nGnuUr2I1R/ltzfiik3wpHf/I3+yJ6J6rZc9GnHp5aeb82YdetN98880vyne096L9kUceWS8TfAbYb8XaNWeNtvUQV3vTfca+sabqY23od73gaZPUoVwnv9zxtvUjq5HxU2sdxFUM+ayGMPFaA3OU7fOz539mUzzZyEs7Kfaw+Cj26gQHRrWZOuWUf7ZRNuUSf/o3dq1q9jWf+dXDsH+sRwSvl+xiooOsKRzXibjI2Bq33l1bbPjGt/7psO1lLR0NDjsv2/jOn569pq503CvCdK3CQuKan3N8yxcfwe4rKNznYefLtaMW2TSmk54YNTb6YoXfHmevqQkdZC5esejJNDXR+IJJT379wpjtrDGd8sGHgWfs/OC7xvtM95kKqzisrSYm+mLmu2uX7zC7F5vz1/2weNVKHvD84kIM5jA0ep1/zK0bTHnyi9e/RpUjHzCtnb0BT+z2Hzv1TweGmMUmF2NyczFodJJXH/b0YPayufWhMwlGubLREAy49J1Xio1MvurEN4Kt9mqEZ4/2dU72jRqQ0YEPk576qAH/+SpO+PTo0zWuTuWNz449Hip+vfytRzr08YtDXOyyoSd2ceGJXdzGbBGdGlu67ZHkxQdf3bR86sVVbGzowdQXH7n1Vo/k5Ul3kjmf1sW+ck2xD3PK2bVHw+VTjPmqZjDpkLV+8m1vWA8kf/8CjP8w/VLKLyro51/8fLkf0fOfmPuL9g996EMLh+w0tL9oP021dt29AnsF9grsFdgrcIFWwKHhgQceWN8351DtYNFhREoOEA6KqEOHMTvUAcNccxjrLxocfthMSi/7KTOGF2ayqXvS+CRetif19PnQT9ut7lZWbOpRTdgYhxfGxA5nm9fUbTxxJsaUN66np+4Oqh4S+iek+A6cHZ5hewjAd9C0NsYdUo1no0+mh++QKdf2gUMtmcaOH3unQyld9myrV2P6EXsEN2wPB3SSOfRqKB/GyenX2PHrwC7m8i8+crrNxcsvLDmx1cSslSc9B3J2CI5Y8htPX1yN5Q2TH+sEi32EjydH+GR6Lw/po150pys211oPPjN+43CKE0/8XpLPByz8Gl34mrzk52HFvcEvznp49i8o2mdyQ2xnw2OLB4sPtayesDwQ6iM5waMrBpR9GOQ9XNFDeraRsXrTM1YLe59v9nq4+Wi9+bAG1kLu7GCf1PgqXzh0YPeAWyxTL5/0YevD4LuGV63Yi0/jIzy2GsI3FnPxy1sLX4/gli95MbsnwCGzp3pAZZOv/NGBQ0dvDfvn4vTJ4Wp8oPIhk6d4yFqj4mNDp9pnv0COftATBww6mmtEww+32GBp2dEpb77EJe/889Ocbj6M8dnCQ2Ga45tnO+XFJVfXoK+M+cIXvrAe2On/N1S8vWj/4x//uNYfXg2ucTHL1RixF4vrAtnzqPXQt5eLsRyX4tEPfDjFkh55vMbN1eIkqkbpw2rt0oeBn5/6KU9n8sKMJ49s6Rcbefh6fHHZA8WN3x4Nj6xGXo2N0cRPtrU1p8+Xl2Z+IWuPWzP+khu73vDR3IvTt3jYIz7b5+4P7t29/GNj7fkVpznb9j27bFsPOkifzL3HXuKz+ngZaY/p4dGvFnTaa2zFQGbP+Ytmn23GeOQw8osnxhkbe77p5N8Yhrjl7S946ZgXy8xVjGGwg0Nejck0tfN5SCcc9RCXJhZ5a8bihO0ehScfa+Iz3b1WHeg4r8Ak40fM7NSCHLa5mIzbS+aoOR1roZeDX9Ib880OwfbC31lAPDDKLzx+NbhqwJaOXpw+v/vcyF6+atIebb9lS09MrZHc2wfZkqkFHA3ld02OftgPYteLTR35rAbsWjc++YcPBz+ZuuDXh0kPtQ+LDV9tW1vY2fLROdl6iala2NNsNDVhJ4Y+O8XNHtUb41cHY7b8t77iMsYXB2KvptYIlTd7jV+YxkhO7LNhL17ray3oVc9sy5tPY/K5f2Hg68lQPX7XNHvXhV8QO2eqd9jiYk+HrZryLx/x6s3DVm88awjD9eXlfXsJHiy+NRh8k9NlYz3gVBv+2ZHxz853tPs/Vq655pqzvtfgPH/sL9rPs1C72l6BvQJ7BfYK7BW4kCvgEHHfffcdbrrppnXI6cDlMGKMHGQcOswdMjp0lbc5HVgOSQ4sHX7S0ZPXJn87dqDS6EZzjDdxkk1eB7rsT+odnLIlP8kmTH1xydeBK33zLU07sumnefbN9Vve1q4Y6KLk+MYOjr46wAta64VnzYzF6VBpba1TtsVvriZz3R288edDQ3XbxgKXf/6QPcAufD28Yl1KRz/MI9gaLH0yB2cPEx10HabJYNITM145ezjoJS6+JjYPZXTyk405glfc8I216ig3NmSaOM2LtzxmT0/ecPiZD1pksIu/eODhWS8vXeTtwceDkzzI5IjnQZccPp4xgtWaVju9X8aoZ3nIWROL+IzZlZeHEC9RPQR5ABFb3zNLh0/6GhKbcXmHq6/x4YGmNco/OTxzscBKZk5uno75lvKhDmpDX5xy39aouLMxp8uvXq35jfidPo3J6Rpb5148VI9s6+nPfcOXhtiQ68WvFZvYNfmkxy45THvLHg8DZvUzRjDhsENitsZya25drDU+XXXQ7P9iY9e+dj/xV6h0I3tVKwf46YtVjPTJxRgV78wh2ezlno77nZeH8WBaB/g1tuQaH+LR6J6L6LZWxmoWnjpo8YzpkFdbuGLEJ+fPPvT1EbfccsuL/qJdrOVdDPwj81lnPPeXXkqQiV09rJtY0w9LX9765MaIPN3FOPox9fHSZdu4GrWe+MWjD3OLP2Vst3L+yj9f+vCKJ1n29Ww16xcOWfuYXS1dcnFpUTrmk2/OLv/myDXsRbvrGZ7rUAyIby+PrM+0M4ZlDavLjLnrzDX8kpe8ZO0T1y1813b3MPaw2rP2Ap+oa2V7/cIQc58r5Q/X55c9Dw8fhtjtU9h4fGv88tXLrvyqAxx2SF7VJQx5dX9iBxfelMtbHHIsz3zLSWMDGwZ/9GE0pk/WGvCD6NVgiNn1pacDW306g8Drl9f5ss58qREsdaPvTE1H3jPe5fjoh3jZ0DFWB7WHwY/Pb/OudTpwvdz0st1YfHTaM3rnC2uBxAVf3dhbP58TelTt9GJhy7ca+MU8gikmny3hlTNMtmrFXkP46lls5HjVt/ORWOTJLhu6/M3YYIpLgyt3dUlH7Xye4MFRezGSV3++Nbqth/iQvNnJj62xGlprtdCsKyw69pGvqWk/igmmuNmKUx7InN/ioyN+Nag+9IxhixueOMVf3mpkTKca0TEXKz9iV9P2VP7haXzLAW6x2gtwm6fLhwZXYyNGcfOrJn4J5hdC7kns1SCf9JEaiZ1MDTU+YMIXO7yef+wH5xL7jR3d/KobP/StmXWAw0e1MUblSc6nv2j3f6z4v1EQ/mlof9F+mmrtunsF9grsFdgrsFfgAq2Ag4cX7X4770Wag0cHEGPksOEg0SGzA9M8RDnEOMw4sDjcRXQQGzgdXJL/t32+2eejfov5QvxzySaGvCN1kIuGmieP1xz+ST7idUBrnv20O0nmcGh9kunFpO8/SHVwRQ6pmtp7eGBnrVoLNjMO+cKypj3cGfdABTMbPaIPt4cOPDYaCt+Y7vQdBhkyr+aNHcTFzs5BWT5w4NIpx/asg7IHhQ7t9vTc1/A1dvpigDfja54PddfMydjyCUeffjL5wEPx2NOPp4eDX27F5kFE3vJxXck//3jysy7qzA+eMV/50MNhqwZeNnhYS45fLflF8rOW5h6+PHB5iBEDHoz+GX5rzI5fdag+xdJcr/EHS/zuGT3Al4OY6PGFV3x8IHK+tGjOjem0z+UqdxSecfEYh1X8euuhR+eyI6PDXv3VC814ph850ReTXptyY8SfHBAeOwS3OV5+ylE/60de/diVRzw1sg7F3b6yPq2LOnjAtPf4tK7k9oQxDA+1MPijQ95+FDc9cfFLXix42dBLxxjRO4lgaPDmy4fyd12QwePbGMHjD79mjuAZN299WqOldPwj/+XRHCbC3zYxuJ4vueSS9cvtF+M/Q33yyScPH/7whw+PPvroWp+tb/ve2rme+a/JUd20yHpZUy88ut9Xj/qZE6xqFcZ/6tUpghVVv/CLs3qmpy+Wejx2vmv3oosuWl+lZh840zzzzDOr77OMH7rFbVxM4W1l1j8i67pgi/TtEfLqMnHSDad+y2cjdmvmhZH1oyNGfq2P+7G64Gv0a/jt9/Iydz2Kyz5wRrDWePzhubbLIVwxsqXL1p6AzxcdtuUoTnsbFp184bl/xIPnPuGeAZe9OIsVr/ryz0/xdY/CC48OW/Wyl6d/Oj5fYOI7R+j5FJ88zFtfOOXFRqx4/LZ/+DN3z4QPiw09OHpN3j4jrWH+2OaPbZ+pfGlw8wkTnhitE30k7mR6DfFBh28+1IM9PLF2jyTnB872vl78MOnxSxfBhiVOvoo3n2wRXDLrS18dnBcicjL1DIMeap/ga2JA4rE/EX8w2m/yMrc31XPWmg4MPCRGWObxyOMbi6G/9KcTZi+Ft/bVCr7Y5IXkJE8YaqiW4tHmHqDjPiUHWEgcjeGQwYFvXTsPt172CLnGTg7sxNKcjprikcEKmz/ybMjsGa17xArsODZ+6euti3z4ptu6lQ89+EgsWvuz6xWGmL3sto706ejh6otXD5OcXXnz51ons+f4sXadL+VWLawvf9mWq3lUzc35lyseu/4z1P2rY6rW3u8V2CuwV2CvwF6BvQL/VgEHj/vvv//sV8c4TDgI4muow4h5h43GATq8+c+LHJIcRial6/DjoeNcNA85dJqz16LG9fjG6TefvfGW2EwM8jmH17x++qBvXjNHzfXZPS/510988klb3eb1dI0dNB0eHd6NHQJR/hw0z5w5s/6Tnw6kHVgdThFbB09EZs1qeB1q6cA17wGCPLIfxBSWOZ9s8NiVJz2H1LDw+dZmjvjZkMGzbzxcIIdrPPHSY8tvOHh8q5GDNr4DPTu+6eOxKX64+PltDxcXPp+ujfynrw+LHR96eshc3elpxV78+QpfT48v14zYqyXdYsazjh5s8mmNmstR3Hz7a19j9feXkrD5Kb5iqYZ8FAc/vWDhB464PPDBNs/eGAYyrpnLiay4xOkh00sjDzrmcDys8YOyN9eqIf4kdjU6yLz68ClnffJiMYdHH+HXq8GsU/716dEtnhknvPLIF92JMeetKx4qH2N11uwpWGGQRfjFKu9i1MMqRr24is91Yg2sBSIztu4a/XzrxYlPx1/pWTdr5hdb3f/F0gP99GvMLxLXnJcXbJj/iaoBPHHZk/Z217kakJVn+ZizRfyXI/8aeTHLFS9ihxdfz3ex6MMPr1qb03cve+UrX3n41Kc+tV645ysf59uXw1NPPXW47rrrDo8//vi/3Z/oqIuXRPa/WKqDGquV+MXs3qBmf//739d31Lp3IrJZk22uW5k8Z07GdKLqYl4OU44XBr6Y8xlGPvVk+XvnO995uOKKK9aLEHn75cMPf/jDw8MPP3z2swB2fosh/HDq8Yt35qF2xRVGeubiKsbk9fQm5eskns+8XvqRWxPX3Nyz1rV1hN0az9q4FrvHWm+4dPNtjG8PwKqm5UCPT/cJ17r7DJ79TJ89W59VZGJgSy4+5N7ARizuHfM+vxSOfpBr8OBorRU8dS8mPZ99DvFjjAcjfS/vxF5O1YoOm+IVMx7Klj+x6MMQv+tET789sgyPf6ila87nbv+ZuZytn5poCCa/rZk5Kodk1YA/OPgRWU2srYm1MGajWfPWXRz2gxwQezlrCI7GLl4xqwV+eupHN4zqIxe26u1aROZit/ZwjOth0KWDp5WXnp8w+DdXp/bf1K0+8oVnvYpZHmyrTfHSw1c38bYG8jD2yyn7Bbb6dS2IE/FhDLda0M0vnepETq8534iuBmfykol1xsieD3z7Qqx4dODAMLcf9eRhiyF/xuT5YScfrXVcwqMfsDXxa2piDWDRFwuCkTz/5d29Rl35lYM9UQ706PBTnOIuFrx88FMe7jHZksc35oOMT/sCPkw++a52bKoZfWN5IPpi8gvyG2644XDVVVctPpvT0P4X7aep1q67V2CvwF6BvQJ7BS7QCjhI+I523xfrryocIhxE8NG5DhDkDh8OIQ46Djj/+Mc/1iGLbNrR8QLkXe961+H973//wnXo+V+Ij/zUw+N3K5ty4xeik+Qn8V4IQwy1bKtHc328sOY8PbI5dqD1TyF/9KMfHXwnr5db1iw9ug6Mvh7EX036q3YPn9YAWSu119NDZMYdZMk1PI2uNuPLrj2QHn6HUvpaay02ewvRj89/8WXDH325yXk+JDogb30s0KMfxQrb4dnBH7aHATbmCHaxk5vXyOEgPHJ4/HoAg2VMlh4dsZpXix502ZLRkR+7al19iltM5Ppy5o8eneojtnzSxedXzh4C9XwWt30AV/09/KtpvvKtp5P/5DDEy19kTJ5OccE4F2Wj5wOu+4YXR/axmOGIvxrSKT7j4tNPYpcePnk1ya6c828NG7Olzw4vDPmxQ2Ka/tPNtz5ih8ojXTx6YkqGx6f9oiezdmpe3cVqH7iWxQMPjjaxw4cNJ+z08dp7dDRroOZ6FE+vLmwjY7nBYeMlVnGy95CdHZvWpJqKt1qTw6OP0jHXyPJdrkvxhB/qpX5ehqiP+OwnviKY5S4H/uBW4/ynr+cfX0/XmC8NwbEufIaHP2Pv5QO59fPizVcv+WfnXrjD/W+JHy/G77rrrvX1A+JqDdQAtr1TvK0RWS9Eys0vALx0eOKJJ1bt6GhzvcRZPYo5OV+wZh3okKdTXWZPNv2Qdf1kBwcf8RPmYhzz8H1nrl9gXH755ete99vf/vZw5513Hu699961V8MNi32xGMNA8dLT5zP/+imfe2rqLsBjzHTi6fMZb+Jbt17Y4ns56hdj7uOw9Pa8NebTXm7d6uOzwxOzNWrfwoGtt4/7jIbVHqEPx73adUWPDQy/COA/264F+VQf14B7vLk95qyJJx7EN+KHfS866fOj8U/fGOld8+rDf4SfHX1+slW/7qN0+oyWJz33CLrm8lQDlE9jPI2eZo00Ovh8ige2z9q+roZv/1JErvTlaqxHsGAkx4MnLjyNjrn4xJpOcafHvxo2F4c5Pn9yE497OB/sNbjiVxtEHwbS45OXd3uIHF+DDSdiI19krOWPfn5hik0NtOphjMSiVbtZP3z3Vq04+LGX3fPkGi47GBof5OrAzt6zn4p3OT76YS2tIzx68Oxn15R8YbcnYPBNTx2Mpz98ftUTnhrCR2RweuGMJ97qQgaPD3bx7Qkv/vOnpvD5pYPEmG9zOKj6tr6LefSj9VBTuhqs9JqLBQ9O1wwZezE6xzbHQ+Zs2LKzBuo55fyS84nfnqFvLtf2GTwEs5qY2xdhsKOHp+7G6uZepC747FtHOrDUkIyOOJG/aN9ftK9S7D/2CuwV2CuwV2CvwF6Bc1XAYaMX7R6iHCwcKvC1F6J0HVYckvpLq2nncEPPdzRee+216ytq8Bya/lfa+pl4ZB2s8Od46p3POCy60+cL2fL339B/itOB/Kmjv2D87ne/e/jFL36xfrlhvZDYNAdCL01e+tKXrhc5xh2E1Z2cnxmjA6sDJlkHWrzG8GFMcgDFqz7hFYce5c/cXtCQw3I2i3H8o9hgy82BVw4egFB+jWFofDTWl4sxvx227VX4xRiWmIoX7jZmODC8VPAAwK442YlVo8cW9VczxYZHl5341NaYjVqLTcuXl+Py5hfBCZuOuvQADZetB0bXoV489Nl7GWNuLC79zBmeBqfGpzEM8Rq3fumEYR4GuwgfybMaZUO/BywxG/MldvWoNnjVClaYxltiMykMPu0lMWTf2ptnRw8fNe5+KA6UbjiTZ4zPhr0c1W7awGm95YXoewErPjwxeGhVE3jWqwdyYzw48PlhN4mcjF+N3Nwe6UUIP2EUEwzx9tDOBunpF69ebPTI2MMOD08M+a8W5GGQI7WgTwcZszOPFy5+dnTNkWvSteJ6UEs+elkBAw8uvtY+YC9fc3p0ksHlS0teTObJXYf881F8cMSMxKFWbFx7vhf54osvPlx99dWHM2fOnM1hKZ/yh9h89v785z9fL3/U0lel9E/w5YpnnbxQ6AUnN8UoZrGpHZ4X99VV35iv8jdG+nSmXmM6xnD16etrYtxeI2TRFgufjfqKB8HXnDE+/elPHy677LLFf+ihhw7f/OY3Dz/5yU9WTegXx4xlKR/9yFd5xi/+5GHkX98eIWu/skN8JZ+5hV9PVi7tH/vLS1LUiyyfQ+4RPhP9Qh156ecFIDtNTTVj9eqzBb796CzRy9fygiMXOvYNPbLy7Jpii28/+8+1+0x0DZC5V4mPb357MQnHfn3uuefO3i/w6KsPeznZi+b8IXx44lIjNnr3wj7LfG7Y53whchhi06sFuTkf5Maw1FVTJw2WJnbEPp/mcm+d+LdGclUvNvTF657u7Ct+cXnRXm3gsaNnjLY+imcJj3/Qlws/4lAjeYm32vBvHeCJrxjgiZuc7dwfxu2v6ixuDckPn52GL37E1n6ho+dn5sQfai/DoUuPvtqoHR6SoybHsOThHt+5Cmb1IrOWaqsexc/e2QI+XtRYD79awoGPj6eechU333OtyPlSM3GQFZM5vvtw+7AaVD86cK2T2JFawNTE1XqWJ1tjWPxZg2Ky/mzouMbw+2WLWGHLqxjLPUy4xviIb9eJP9oRJ7tysE4afaTXrKEY1BEO/64B/K6N9gp9uEit3L/kw2++rWdx5QMujHLiq3q4L+abfrXSV8vwxS8mf7hELla9OuJnU53lZV3gvuENbzh89rOfXZ/h4sc7De1/0X6aau26ewX2CuwV2CuwV+ACrYBDRy/aHdaRA0aNfNI8UJA51DjE+n5ehyWHoGz0zV/96levB2DfBb/T/1YBh+jbb7/98OMf//jw7LPPnj2sqrdmjRw8HXDf9KY3rX9N4LBoLcgcMB0aUfoOrQ6vHaAdyvHotYYwInbm+exQ2v6Yc/ZhFBs5SpYdHkwkB/vLQ4gDdA/3+OzZovIJy1z8MMsPjrGcJuHLo3jYaGHR5Q/PQ0Ev2umHb0wnX/h4HtjgwyoeeubqquWL3CHewwa+Bwwvx3twEEfrA1uO6XgAxPNw4FrswZINfHpe2tMRTw+q5tWanobwkTjr+Y7IW4MtRjbpVjvYdGvVynq473gBKH9+5KAGiB1e83BP2/NrnVsn9satffnHEx8bD37FzEZ+6ZZDNSQnM29fmVtb65VMLnjul+0Le6uvPSGHQd49FZ7rQBMTgimecsPLhzzwyekZ6+0RdeaXTIvI+bUm9pAeD6aeDR4bMRr3cgevWOmjepgaG2tJN164+knkYpYHyufMLz6ZPe1+pz5qBc8+4g9GD/T4GmwN0cmfOX7xTX/d79LR08P3kM5v+uVqrt49uIvTOnvR7vtdz5w5c7ZO8E5L/MN+7LHH1nrI2b908rLcWK7WyMsE/+Ger3ezjnIUG7m+HIzZzXoUU7zqgx+ONYhgTDKv4afLFqmVmOBHc4wXZj0bbe4PuXz0ox89XHf0NTrvfe97F96DDz54+Na3vnW45557/u1Fe75O6sVWfHzCRsbFVj3w6bY/6MiRjd6cvGuSfjSx4uWvtWn/0q129jq+F2H+upKue2ifH+0/fM1cj/T2hM9T9sUN27WQf2tCjy2SAx5ii+xnL+Jcd3DE5FroemDb55r7PLmXj34Z1L0kG/auIZ9nPvfkKx9+fYbxKXZ8NvjGeuSeZZ/Dr+bulV7aw5WbGOD0Ug0ujO7F4tVcA3zjk8MRXz7VqrWADadcXY+ILt/+9QpbtRQj3/Dgui+FS19eCJZc8yOf/LEnsxb4fX7CLm841oQPsTl/44mNLRnf9M35U58+G/DKu1itV/tDjPDETledyI3piJUMPr18iV1N8DV+2cpBa3/R14pHbczZ2vvGs25ixNN33xOjs7L9gMcfyu+srbgRe3taDq09Pl/qKI58sa8m5PZBOaudWvvFCn/samTInE254MGzT1qn9LJVy1r24oLBpj3ieUwscqFHpiHxi0Ht+RMfXXrqgE9u7jp8+ctfvq4ZOnwj9Wmd6bODY73Mu1bdX3zeuZY0ualr+Yk7PHz7kl9YfFdzcw3JkW97ha/qrucrjLm+7OCGXZ7yt0ZqIlZkr4izWsobtrm41cZ/hnrjjTfuL9pXxfYfewX2CuwV2CuwV2CvwIkVcGjwov2WW25ZByFKDjT4DlX6yEGjw44DC5nmgOyw0sEkGz2evu+k5Wen/60CvqLnG9/4xuGnP/3pennSYVWdq70DqIead7zjHesvzjog6zswtpaicch1eO0A6hDbQZrcejtwIj7CWYyjH8ma04HPV/uCDA6aGB3Sl+DoR3tL7wDs4coDgwM0zDDkOPPNF74DdH7zpZfTJPgazOyri7iQ3PActsVBv2ujHnax6Nl42GDDVj3xq5sYNTKNL2vggI/Ph7985S8MfDHCrvdSwgMC7Ox7mIEpL3XzcGoMi43ePP96BAcflT/ZtjZiEKMekae/GMc/ij0Z7GpGRV08DHtJJG5z9xP6s1bmfCAxTjIvj8lvzI6OWMScvnEPuWqLyLTG8oMt7uq1hMe6jWfPHrb4kZxm/OKxD+3R9in9XiAkZ6OJTZz2kwfPcOmJjb9iM0d00uMLH04P3Mbp5gMPFn1rYD+R0Sum4sWXVw+e5L0U4V88cOC1R8z5SA53+oaB2NTgGKNilpe1xIfJzr2uX0q157qWYKivnq7GVlywwsCjV858pkvGPmqu1/jP1ry82KujuuFbP+t85syZw8c//vHDq171qrPrEPZpepjy/N3vfnf2RcZf/vKX9ULderTudFxjXsbJF5UnDKS+bOjixV/C4x/xk6lJ6xjPXIvUIF59Mj15+yJ+WOZh5RtP7Fp6zb1ov/766w9XHH1PO5kX7b46xmdlL1QmHqwwjCM8e6N44UdkYcRTB/rJ5MQme3w6+m0Lo35ra5+6/u2vcNzTEf4rXvGK5atr1l5TTzhimnhsxCQ2GJq4NHqu6fSNvXTSl0d7xz7Gc0/yOSUOvjQyTdxh2le9NIfphXi45cdWjjBdT/j84RcrPH6RWhjr6cC1vzV6CAY8vZzVqHspO3Gy5af10rsGxNx1Ky73FTji1uihZHy6H7rei8nnt/+gF+GTywVOe6Z90Zxu+HzApa/XxEG3OqirnOWGyOjL21iOl1566bKTJww8ccPHk6cGi286iI5WjYqrussTBtvs6tnR04sFyV1NxIX4oc+v9avecrRO7T+6cOwL5x0yOYqrVk3VuLpZRxjdC+GgaqcXQ/ef6oavLvLjlz8xmdPBYydeemIw55ctve6n+PKlozenYw4nWzz29olmDAfRqfGvmYtJgyNvGHzImdw6w2h9YFX71h0vPPbiQ+ysl+sbDh22xURPk2d582vMDt+6s7fG1kITi0avWIw1a8uPsXNq8YsVniZGxDc982rBrz3CDj+bclqGxz+Si0kcbJBYxUcuV7Ul44M/vevpE5/4xOHKK69cNnRPQ/tftJ+mWrvuXoG9AnsF9grsFbhAK+Ag8atf/erwla98Zb3w6nBROuR4WgcrY4cNhxMHQi/KHJRRB7Fw9MjL0re85S2Hd7/73Wt+0sGnA9xS+A8/trr52fInTLHh5T87PLbTfsrIIzqwIvOTdCdWuts+na29ebJsxOxQ7S90/HLkySefXA9XDqZ0a/QdFh1yvWi/6KKLlh1+B1APZbMG5g7qDrR8kyXPzgEWOXiKw5pb/2Kd9V2KRz/E1OHY2L7RI4fWfMDQYMinhwcPOP6yuwdvdmxgijXCg6d1KA9/1iV/2Z0rZnGKBxVvcbEh3+rEE7sDP308+taD72yLNx4+f2IXt3l1hoGqkXiM9XzQM1YTa6gvT3rW3MMOTPV0LerDoUM/m+Xs2J8xPTGQi615vuEmS55dsfERsQ9Dvl4A/vOf/1wPYfTcTzzooHKHLy++2BaruVYO/G+JHZselsjNtw9lMOjOhyx6eGTG4pktX+SReORdXOxrxWkud/ui9W6PpzNzs6esmZqLA+m1ao9XXeSK8gOTP/vDSwd8JBcycXhIRuJxXdNjg+jgs8sfG3oIz5h+OuRyEDs/7DVYiEz89NWcPqK7zTNd+mTtX37hdb+ATwcZVw/21kSDj7KhU8z0ygMu2TZutsnKxdrBlX9rEqZey8bLhNe85jWHL37xi+sv48KAe1riy+fBD37wg9WL17XkGmpt7IX2TjHJiZy+nJHPE/9CCh9uddSLsfjpTpk5vPJIF9+4deArMp7z+PXFRAcGf9a9taOHH0Zr5Hvv+452Nn/4wx8Od9999/pqnV60ZzN95S8e23KkP23w8926st/GVt50I7b50jdOni822dmzPss1LymtZ9cLHXNx4OldR3DE0z2FX/tdjw+na8E8e/sXpt71794MFx5bfGNrgfBq1WDmREZXLbq/wDcvPzpi0LOlLyete4fxzIWtPDVYbLwyi0UAAEAASURBVOXg/ubFWTWorjDZuC74kDuC73MAPh048pOzXGHiuX6658CXS/eJ8IpBPBFMdjO/zgb0+rzOB30+4Yu3eojJXEPitR/gWidnMXHBwYPTC226/vNG+ogcT98+EoczYL8A4RfBoQeXb7Gp7Ry378QoJzrkbPV8df5Qd3M1gBuOWqunhro3d8YMt/zER0dtYcKhE44x0tfooNZLfIi8mMnEBbv4nZfsvagY2PGnHuzVz7rh8wXDGtCv0dPUih9kbu2Kj6xGvl0D+RYfWXVoL+GpMZ9wkH76Lmdrx282enaovVHsakOu5vmfuHDkz44emXX2i2XEp1qR27P5Jqvm86/Y1ZwfuOpjL7CThxqIgx97Bk981sPnq/1Gp/sBOd9ikE+2xnyzLe/y45e+WvpLebFVe3/l/773ve/wtre9Tfhn125NzuPH/qL9PIq0q+wV2CuwV2CvwF6BC70CDhf+w7Cvf/3r66DocOSAoUdzbE7f4QMf9TDmL2rIakt49IOe5jDjLxQ6dJGnq28e7mIc/WheP3W3Os3P1bN1oELh1eMVjzEiy9/znOd/ppd8zqeecbJw6pNN/XThhp2euTURv0OjlysdOrOb2HQ8WHnRfubMmXX4xOvg6kBsDlfvEOtQ6qCaf/40uLA8cCCHW+vpobUYinMeWJfy0Y8Ot3Dmvpr7iG75iZG/DrXb/9BVvFpYbGFN/pSRywlVo+oZfwmP5XKQ49TtME6miQ2vesVjJ/4eJPGRBwXxwaQz/cNyuNfo0yFPp1zM5Tnrhkc/G/GQIzyklv4jL9geGlyDfJKHTS+f4oSRPTs50aWDyOQvF3Ky4jLX6FY3NsVKxp6thx//zNlXXfSiwN7Gp1MM7GdM01cx4GkRf+mJQ33hlbO6eBDW49Pl14MbnfKYNVUHLZ980Q0TDl/ajD0dMRnrt2NrEp6eD42+WFB2xuF7YNWa68tVTu3R8pNj8cI1lrN7Als+zOeeZVsjN7ZPWicY7h/iqF5k1V0eYdOFYU5ujOrFVP3SNddaE2MycbAzLp5w8PhA9PLHlo6YWsvsxT7vg2zpsg8PjoaXf9eV2Mxbx2zYpQvfiwDf8fq1r31tfbVX8fJ1Gio3Xwlz++23r3/dJB9rIIfW2b2ITy8uqhsZPYQnvr/+9a/rJb0xCl8vRq0aLIWjH2zTK4/6dLLLNrz80MNTv8ZhmrNPPnWmrPr6Op5PfvKTh/e85z3Lxov273znO4f77rvv//xFu1i2lJ8tPz9bfuvKTlxqgcSqlbcehV9u6TVfSsd6sOlr9pP7lJdH7uPOUf5VW/cpa823tde37vZ3/3qJD/J8pueaEbtrvf3AH77Pdp/xxtmJhz4dPLLuL+bkrYUc6Np/+LAi8zDpdB3GEx8f5URHPvaxHrb8u9eww5ODXNREbKiYjdlM37Bcu73UC0cOxvwivZg0Z6V5XqKXzDh8/uGYk8uFLz5RfHniaXhyEify2WQNJ5GzcY+HK9/+kt/aI3I5iVvzPfr2UP7ZIn7UzFq7/8MRB79ij8SFqoNevcXCFgbfbFoXsdHh05nDHI4a4YnRuPrp81ncapgfNW9vh0NvYogdL2JLV4+MW4t0ydLLTmwarGqWjK64xCJ/Y7116EUzXTV0ZhYfX/D4r4kDwVM/vuhpMDW6rh97hx4f8enDsJZibM/js2lt8qefeRo3Z8OHWPEQfeuRTnnwqaUrntat9ZErnrjUAH7+6bRnYCByNvY6m+ZqwU5ubOwt/sSqvt1bitUvihAZvNakuOCqV9c7XXowNXLxeqkuR7mTm3fvMfd/Hlxx9K+m3vrWt4JYMa7Bef7YX7SfZ6F2tb0CewX2CuwV2CtwIVfAQef3v//94Xvf+97Zg5pDSQenDjB6hx6HFAe4moOP73314NehqXqw6ZCG19yYrtaBLR4dpN+2JTj64TA0Kb3J247DzW99/PTxo8b18fXqw5ZMDjOmGQ85WS0M/BrelG9jymb2bKOtPizxOUy+/e1vP7z2ta9df5FhrehaE2vsYNk6OsS27uTJ9Hw50Dps5peOQyxMvswRebnwxR7ZO2Q9KISzhMc/8uWg7aEwG37x1BmJmT9zjf/ywYetsRfLScRG29aOHRu2kxyuwzJ20OebXxj008Enby6vXh7D2Prs4N9DBns6mvp6yBAXHLnns/jokevlX254sOD6TmjjHnzEm76YyPRsPfTxEyYZffNJ5mz01dKYLj7a2uAnN+bLi3Z/hWsPislfUcJTv5NypTNzbD3wi5tvc/bip6Nlq1cL14i9LRaY9GGQZ6fuZHKxVnDIzKt3e/ekWs18xYXYTl3+ig0Wyo7v1l1vnr65umkw2cBF4sSDRx+ZTxI/jPZZNXKdanzBa0/QR8WaXO8lw7y+q72alWv7gj4sfNeKteihufjESk9jR1fPt5zEpJm7RjS5INh00i9HMZUDfPn2QoqOHOjwidi3DuZs8NgheuzMxUcuD2Nx8VUO9e5nb37zmw+33nrr4Y1vfOPSW2Cn/MEX+vOf/3y46qqr1nez9zJNTOVBTw7tjWKmEy/9WZvCyU9z+ccLV4/kjNKhl+7sG9Plkx2MqT8xqmXxsUPZkMvrAx/4wPoPUf3LOVhetH/7298++6LdXtti2SdsI/IaDHG0nvH1ydilE49+RBeRRcZy0do32dJvrxjL0T3cd6GfOXNmvbR84okn1t7n11/S2lP+6tJetpYamXlrk3/XjPut+6z7hhi8YGVj77Kha/9o5SZ2+7xrFZ+tWBurJRy8agQT330ewXSfIGdnTfrsK9ZZA/WByc5LMPcTfvHoITp8yEcu3YfwxVzuS3n8IOez6ze/VPjZ+qILWxMPat1gyce8+onRGC4fXgDiafL2/e1+eYJvXdyH5RGmF9T+RSJb2HDY8q1HfoHhDO4Xbq2jONUd0VUXtYMHh1wN3TO7j8LD8wsdzZyseMisvX0m9uqqFvZgL8LFg1e8fMnPPMxZdzhipQMf8ckfHl/2k3+RIl589RGbvNSMjph9TY+9BJMNf/JvP8Jmy79mfBKps3jh+EzgNxuY2z0QRnuQrZg0WPbR3OPk4dPhpzqogbw0tu7p6iMH163riH91aJ3hq4PY2IijXwiJzRw/P+z4ryfT5AkH8auJT+7FrJ50NDGIS0Pl0H2IrXsTbLp69taODTkSt+ZlNh7dk6j1EoucxQffGKavTbNPjMtHHWHDhe860MtJDF0fevVo/9PhD049HL59Far/zPzyyy9fYdI5De0v2k9TrV13r8Begb0CewX2ClygFXCA8KL9+9///jpQOpBpHYocIBxGzOk6SMXrgOKQ7y8JOowohTFi16GJXQcS8g5u6S6D4x/TfzjZOiBtKWz9SXjpk9Xwpr6xmLYUXj294sMTT7Js6SD8mWd6+mTZ0EuOF0by+q3OVo/cmnlI8XU9/tmwhzlkbR2QHT7FLQ9zD0cO2ewQfuveYd7BE8En76HOPB6+NnPukF9c5rC3cePR6QDNr7mDsYeP1t1hFwaZxt/EjM8+mxX48Y+pWz568bAVe77jkcOaDyr5Llc6xuL3oGGM5OXwr2cv/nKHKTf6mgcqPHJ5WRONL3G75jTYeOHwQx82St/Dhfp5AM2Xh+0ecGBOjPyKVTPnq3os8PGDH3KNLhs8hNfDPj+tB3l2Hog8OPpFnQda9vaiPMSb39a42rGfscmHzL5G6sw//ObqXJx4bPD0xcN/1wbfqJqKp1YuYmg/kcERq2vPmK0+O/5R/sSZDRy2k+jzZc3lQkfjt3p7oFY7WOzxjflE5pPmnH7Y9hkSjzrAdW+gX47G4dKpvuTsvQAwRnDpdu0alz+//Ki9Jsdk9MyLgy7ZtM83/2Liuwdqc629IhYYdMVUfPjq5LqDTSZn2PT1cMRSPc3FZY7o8EOn+LqGYYRDL10vB/wn1bfddtuL8hftXrR/8IMfPDz66KNr33nxICZrp5+1M66uaia+6j1rQwfVr8nxD7xwsq0e6oOmzsQwrh3DrRjEASPZtqdbLbPTt2/4ta5etPue9hd60c7OWsBD7MyLHc+4uRy1yUsmTqQeYmlMnyy9JRg/klX/iUMNv3xh++z1cueSSy5ZL0uttWsNufbd4/ur5daevb2orjBch+Kh737rvmu/W/fuvXTYiAcfFmKPYPl8a73LG64aqqXGdzJ1geW8gIzFzkYjFz+/1bCe/9ZHTF5Wul/AJ+MzwnONy8mLX3Ix0G9vwcLTjGGWEx48duISjwa3/Mjhu3am764DeHT15Jq51rnGdanxa01f+tKXrheGYncP0yPx+No8X1NhPImOBt/npfV87rnnzv5CXzzlLX6/6Pe5b4/gk8vfOogFlnWB50Ujv8bJysu9EobYYSAY1lbNW+c+h8npsZOD2vLF3hrrNZ+Xmhqh1jaeWD1nsC0WsfGNx4e4/TLKXoIpb3ZiMuavtRQLG1iTWqt45HKBQV/jzx7gW40mRjWFo86uWzri6UW7Mf+a600r7/YIfPnBVgNY1cAvyFyvcoFlj8IQJ5tiogNHzNXTmE25GM9rLQz596JdTOmLRy3sf77EwF8+xSnenhWqwdRj35qQq5U5PP96VS7JybYkBrUTl5ra18bWxYt2z6LG8rJGaiB/uYrL/ugXCOIm5y9f8PwyCWa14q+9ZPyKo/8Xw4v2yy67bIWX7TbWc833F+3nqszO3yuwV2CvwF6BvQL/H1XAocV/pHbHHXesg3IHUXwN4SGHLQcjhxM8Bw8HLod8f2kRzUOHcfP69Dow5Qe/cXGkq8/eQadxcvMtL1l92PnFnzaNyRvTMc/WHBUfvrqIaRJ7LVs9neZTlh0Z0uc/3laneX162VkjB15/OfnqV796PTjRad2snXjoOZT2MFFe+A6n9BxYO3ROPz3M4tX41+Cg6hLPHK6DbbIw+cTjy0GYX/MOxennA35+jNGUFdPzkn/95Ce78k3Khp8ePuKzQfhzvfEdxqtP+nQiPuSsh82HOJExe9eVBwx9tmTqzzbib87J8crbnJ2GD0v9PMDwXW35ojPjMI/i6+XcAxF5dumUExn/8ixXe3DGQocM4Xu48sLHQ7SHIpj2FRyx02kfsLNXy58uHbFp9pT7kXgQuaYO5a7WMLXs8BAs+nyXE5/s9Wzwk5nTj9jTE1/1hYWy1c9xeHDYtZZh6osLNj19ZK6Grt+w9cVVT58vWFo5kIuxe0C58jHvCWpbfPmmi08332IpZ/rWTi34bB3pZoNvDoudOSpu+Jq5mBFcsVlrcSO2MLRs65fCsQ6s4uNXTF5UFJO4NDiNyYozLDyUj+T4rjG46YRDl2/Xo79k9/+ivBh/0e671T30P/LII6vWfItfnfg0F1P3l2KrVuLU/DLQy5nWAK+al/fsy08fJn/VhC7Z1MPbypvzy99JGOxOovZxa6YO/pO6+dUx/qL95z//+crPtb7Fb63hF8vUyUf+Zz7Fq68GM+fw8KqrWPPFd5TPeny6bN2r/LLUfVwO/nrZ/keuAS+Q/IKlvRwGnzUvO9N3r53XDAx69iYsPuSk0euasYfmPhJf15RrH66XrsZkcNRFnuKVCyz+ihFP3PTyKd906cOiX09Gv9zY2e/89xfVfNIjo2dMJxu1EJ+69AKfDh+aGOWGxFMtXEtiqYYzvvzp8+dFHjx14ycf+uopFzrFXP2thxd/YiEvz2ouDnV13faiG0+O4tRgevnIh1z1xUBXo6PBt480/uRoLcuF3P6Ab4wvf/FoMPoM4AfRSVf92xvJitVZofMCXrUxFqMawK9OC3zgy5U9X4iuuvBnLI7siynd4hMzv6g65re9LE+1hm1MT0xygw8DTzxe6pLZP9aydSVXt2zyRy6H6suWDz0y1tjCEDd/7PguPzp9PsLip5jEUhx69nD4UCu2qBf41aia0Zu+GsNXK7GxyZ/90h6Z+cKrVsVrr4uPPruuO3j0YfJnTKZWMMxhPPXUU2tt6Mm7a4Nf+tZAs8bsYNnj5Igf14hGv9rAyz9b/4n5Nddcc3jve9+77MhPQ/uL9tNUa9fdK7BXYK/AXoG9AhdoBRwefvOb3xxuv/329YDSgaIDhrToOIA4lDl8OAR18HOw8qLddyx3ECHr4IEXxavH7wCVrb5xdvpz8cOqnzaNk4WB7xBm7qCF6NQW4/gHHVR/zD6ri9+hOFl9NaKjlSv5lKW/7bPTi00/KcwOmnSqvTVyUPai3T9P9uBEXr4dMh0wtezgG+M5uGry0ybBcoide0F+GmKfLwdTsdL18EFm31S38oKJR99Bt4eB+fCUTvHkQz4aeTGRaXj50JtHUwdP/LBhoXSr0WIe/QhHrdTZ4d2DATwPK14ERnTlg+hXD7rmiA6/WvtEDPhR8+z04irfYkq/uWvWAz5cNVVP68DX1m+2xWLORo780YdTDNUnO/Nk2ZaPOZl4s1MrL9q9CDBGXkyQy9f+E381M6fXetCRix4uvrH9Zcy2eOTRnhITmUY/qkby7DogM4ZD3ry1U6swioH9JPN4MDQ5wsA3F6/Gz5bIW69k8ehn17p6eAw7ffbkcq4OZOIQtz2rLwc1hE3evYAfuLVilT9senhyMhYjf3oNv7zDaE35o8uHNaand5/BYwtbnL1MEyuSG/yIbjxjxFbjN2KjFoi+6zS9dIq3uX76zZ4eX2qBp8FEZIhv16IX7P/rf4ZaXv6K72Mf+9j66hg+1QqRy08M6uoa1sSnGVcz+Xhh71qEwXbbYFaLasgOD45mnI4eFYc+Wfx6MZIjOnOd4pfLUjrWK470/TX7ddddt/5JP7u+Oubee+9dL9rlTZes3PkrVniN86OnP23KFw8VW/OJk2058s8HneIuhjkPK3zrZW3YuWb0kfXt2pdjucFD7ObnqFjsdZj88G/sRb79aQzPfbfrkx4+X4jc9ekXNHS8eLR/nAf7V0ligcFm1lV81QVW8eKJjZ0xYmefuQ/A57P4w6aP7wWoNmsstuprPH2ogbORF6Kw1Am22vLlr4fFJn4+4PgqF7n3dXD8dq+c2Gzw1UM8rYGXidaCDzI+yomNGmuwzNnRoS82dVYPcrFVVzL6eg2GmOU8/xp8FfXoB1nrSb885QaHP7X0WcKXXDS+6dbgVDc8Y7jtN/cjGMjYOsoXDh+If36z0feX6TD5J1dH+bC1XtaPLsITH1/GmnMFf+z4VitY1awaykEM8rY+5Ozlwha1P8x9BvFTHnh8wxM3gtW5S+zOh/mGbR2tq19MsW0N9P46Xw3p+SMmOagDDFjiLYftOvANc34OwOGbvXrJK7vqC9N6sKNbTfBaJ3wtG3lr8Om4F8gJhnlras3UTA8XXz2NEX7XQPj+qlys6kFXj/hqHcUBlz/tb3/728JSezjxxaie5Q8Hhqb2xasu5Sg2+HTkYq7B8J+Z+4XulVdeCWrprMF5/thftJ9noXa1vQJ7BfYK7BXYK3AhV8Ch4pe//OXhy1/+8jqcOVA4WEzqAEi3w4kxvgOKQ502DyXZ05sUBl4Y6cA2hrOldLLbyos5jOTxzbe4ZNt8p58w9PgTa+rNMR/N0zff+k4nH+maGzefenNMz9zB0KHSWsjFejiIag6p/tO9XrSz8XDogJ8PB1wHzeoAs/WmAy8efgdqWOwcYOnRgWEeVj4ccNmiXvizZePgqg9DLuJ2EK9m7OnwnZ+w9fTYwUJidmjX5CcmOmolDhjRxMEjp6eVCz69enEgOvPw7mGAHr8O/3xq/HkgrAZiba3yUc3yUcxsNLgd9ItlBbH5wRf9maOxJhYx+qVAOsUHUwzm+SwW8Yo/gtU+K/7wxTgx1Qpea0Mfrxysj3uHh0n7Ugz2Bgw2asn/3AN8s6OL4CO48MWiR2wRHrz8smmds6dHR434h8HXzKc65Tts+CibNTn+wcZ+1hA8JN6uIXN6eFpzusXHJ/x8k4mXb7b0NPJejpDj0dGyic8PHhnsfKmv9VD/iR1W8ZFpfKqVfZ++GOTXXilfLw3Km256xmKhx7+5mDQ8PmrhmhezMSpG8zDhonjVjLxrnY57TzL62eMh9vkx54v9luw7663Ok+Th+nNf/tKXvrR6Pv4bKqZnn3328LnPfe7ge7tdp170VBPY6u2XV9bTWiCxiUPs7QX/GaoXJduYZ3zlj6fBwxNL8ZRL+wq/cXbm/JiTi9cYpdMcL3x2iKx9YSwGtT3pRfvdd9996EW7fOkVU7b5gtM4P+lWJ3y8aOrjh5mdvrqFn006M6904dMjE7fPTi95NbmTZU/efrPe84Vze5ScvkZfg20ut/aOawCfD7Gg4tPbS88888zyz1cvnF2TffZ1f4brxaUXjvyJ2bXhZZVWTcWmFRM/NetVTvkSE39Ifpq92H6Ei8ThpT8M+YjdWF7m7vX8lh8b4+IyFnMvVdWKPoKN8IrB3JhOL2y9/GtNYfkqGC8RkX+Z4IW++yaC1XroXaNqJ2+54Ym/tRdnuejFG4Y48MTp2perNSbvjEUHwbEu5vQ1WGLrbM9OzdQdrjl9ja4ehtz8wsb6qgMsayBm+8Na8qfBgEWm1ybRsSfoWTvrAI9eMZMjGDVzdfLSVy8+NuKhbywXRFYszcnaJ3yTd46lr6HilvvEbo3UoxzUHxaCrw7WxdqLhyzcfNBzT25/wAuzuPjtzBI+fbbN7R2Y1sQeEJMYizPfdIzlVdz8TT4sa5C9NdWQ9eHX/mKvLvHFxIbMLxJcH+1HfBjWuOs6H+KRIzt5wuSDXpjsxcUetSfYaWysn2au3u0B68AWpjzLLx288hCTvHx+f+Yzn1n/kow/9ToN7S/aT1OtXXevwF6BvQJ7BfYKXKAVcIh54IEH1l/XOVA7sDhgbIkeSubg4TDT4caBMZ0Ou83DMndo6VDSHA/h482W7eyTT16YL8TLD50OUSfZwd9SvPSb16dvXpu8bd7J6sOd88mbfuLDtAYOjw5/HT6toYbvLyc92HlYY+cvfDy0kSN9D06tLawO1+T4+eKj2nU4LWa66fNVnA7I9gsMLwuKFY688BGdDtT6cjaGxTfig2+Ez64HEHP5OPD3UEaPj/IKFx8Vp7484aFyJWMXPr7ae2BQ2x4s8Pn30MCf2PQemGGzZycHenLSqh25ll/29LODVfx6cu0knvgnHh17QiyTsuUTiRNm8aqFBzR6eKiHEb3YycRmrcRLD57cyIqxPGHQ8eDiYb4X7fjqgtjA4L/9AC/fZPKDny9yFJ9tcYsvOd/iLNb0za0lG7o9WIkFiX/6xaNbDOUHLzJWdy1dMnn0kIdPL3vxmWt86/llo6ePT88YmcuXrgdOevLpIZxOdtniqYs5WVji8HLEPsaj0zoYp6fnr1zkU8xi8MKvh+GuS3y4fKhxL4DDrAZhywNPDxufP7Z4s1b5DoscNTemwybKjxr0IJ8+XWSeXnHgs1FjRA5XXCfVnZzMtfRivmj33cxf/epX13+K6l7k/+PoelE393t/0aqpu5zI3YvlK1Z5PHX0z+5di9YX0as1l3sNz/VRjc3liNpP7c96Mpjm/DamP+tKb0uww6erlvKD0bgX7ZdddtnS9RftvWj32ccn3YllDgOVW3M8umpSnfAQHY1cXx0mvzqQtWez1ZPXwglLj/Bde15MXXrppeuvKbc+xKaJ03UrV2upPmrNvvtAeHNN7Acvvewf9yn49oprFmb3FXnYR74jHrbr3ctM+8BcjjWxi8n3ffuc5AMuLH7wxATfPZdfOtVDj9j4LJfP/GtZPDJ6crGO4jOGK0/xVQe6zrjuN/IS71xTcxhITGJ0reLBUFcEp2YOgz+x88m/sbzF5l970lcjtfGf0/saIDy/JIPtHil2MeirgV+aeWlNhz1+MfKl0cfTYE4y59Naysc1z2auM59wWwv1cd+Wh89lvsmtG1t4+cKnh6+3hn4R5Hvn+4t0a6B25Mbw6WnqDEsM1kSc8mlsT6oluT3ts4NMXvDa8/zjaTDJ2MwX7XSsJzw+5EFfDnDI47dWakmHvDMefLXQ+GGndrDJ5CcnBI8OXfmmjy/X9iJdOIi/YqMnb3UrN7FosMQOtxfW9PlufcKEZ9yeZqeO8mQDm434YedLrcqbPT478ejV2HVojvSw+4orNvCtW3Vx/vQ9/z6n3NPkIT7XgP2mLuz8goENEgc7zZg+meu5XPnJthzoy5mNOlkna0FXEz+/7GCKxRjPXL7yYcMPPvJ/rPjltq+PQfROQ/uL9tNUa9fdK7BXYK/AXoG9AhdoBRxovGj//Oc/vx7IHSYcQPCRA8RJhwiHD81BbR60spl9WPo5ptPB0xilU/889//+TBZW0pPiTKbPzriD1rlswiZvrJ/64Z3EOymv9MITx6Tk8eY8G7z4fDhQOjxaC2tnPfQOkA6Wr3/96w8XX3zxOmzi9cBIB6begbJ68A0Lrh6fDnII5zub7IoNnw829PTIIReWeD0QOLTme+YCn658yoleh1z+zPkoJvjZ0UNq4EDcQxnfsxUvXeNac7rlX75kUTXh1wODg3y+yfjX4NDR5IPIYcuBjnl4cjIWj1rxXdzG7akZP/nkkxV78bKFqxeHeNlF7FF6+Rc3Hjx7Kb7eWvSgJhd65Um/+PFRtq2dueahxoOklzce0vD04oWhqS1sMny+23vhq131Ww6PfrAtFmM5V4dkcKsFfPNetItVm/XkNz98s9Hg4ZOziS8WeuoHN190rb9c2dCnF7Y4mpdPc3356NkivetH3wsGtfOwSQ+lX09XfvTEBrsaedkiRrqamGqw0qVPz4Ov9cze3AsWnw949ovrEp9+tcKbNTNWh+KprvyVKx49uPGS17MvFvEiMjTzh2VOv71mjNhrKBsY8eipX3LzYrcWSHxsNTLr4UX7Lbfc8qL8RbsX7bfeeuvhT3/607q2veiy35Aa2wu+oqJrTPxi6wWEmMXoL2+tV3N61QtWcznEh2/OvnVoXL3MG4djbi8hcj5bq7DTnbjL4OgHHX7tAWO2xh/5yEcO142vjvEfvXvR/rOf/Wy9uLFWrd3EymdYzenw377XTxks8mlnrOGXd/GJGU05zPSShWEOx3r5S2H/34r/QBMOzOooL42u69bnvF+w0EsHhjFqz/KD7Hv3Jy8LfUbgu1418dHHYw/78ccfX3vL9e5ll+u5mMSVLp9eOHuhZozPlxe+XsbZp/D1+PzYC3gIFnIP8eLNizi+4Ph8797ZGky/eOJTh3DUxv2nz5j88SH+9pNY1NvLYjzXEFsEC7Za6GGomRzEXr3ZGotZXGopHt/vLHf+uubw+anvGnSN+oWEmOmrS306xd39tPj41Mxhi6/PNutsLn4yWNVfDPwhefeSXC6IvsYvYtseab2di9znEDz3eHUytpZ8qxkegmVdrYtxeuKFTSYWtvJsnfMtDzwEU6xi7LPHXOtFezVj01qyVSu++OeHDZ4Y2MLW1AovkotY6duXMKstHTbV25zf8rUvtlSOfHd90YFfDMby59u5Gs21qR7xxSPG4uRfax3ptS5s8wWfH/b4amOd9PxZW3Oy1tl/Sss+mtecOronaF0j4rBW1lju/LnPwIMrZ3H3ixcx07c36SPx8aO3Puzot+b2pgaLTGuvtd5s5cJvuO1t864LL9pvvvnm9XnDN6zT0P6i/TTV2nX3CuwV2CuwV2CvwAVaAQeL+++/f/12vgczqeBHHSIcnObhySHQwaMD11Y/u7Dq09PjTT785vXp1Wez7cmjZOeKAb/GJr3sT+q38TSfB9X8bmsFT72i9JrXnyuOfKVXz4+DoB6+WPQOwA7I/fWUAyeeh0UHSQdZxB/9/BbX9JecDr4DJwyHY9SaTSw2mngmZodWPT65uBCeA7LDsNgdiPHM+eIzPfHnt0M4veoA0wOPAzPdZPjiLJfioTPjnPj4KBsPkOSah2APJ0hdyse4+NRB7HpY7BA8RE8cejx9OcWj5zrzUEan+uqjcHpgxoeL2NJVVw839sP2YTHM6pDvGTMs/tVRjuWMT7+6ZYuPwuBDjZDew5IXKO49cmNn3eAbs2sfGPPNjl9Y1QKvOb1ikaN5jX5EprUedIztFePqYY5vLi57UaxiQGEnpzNx+fSQaN/Ihdx+0OCIHQa9sKrfjDdfevG0d/XsEDv4fnkhPrF7qcVvOrNna0/Yw3SqIaxiKxZxwqYDm9z64bnOPBj3wErXZwM5PTZ47NTPXGObnE+xJeM3HbZqUT30eOStDZ58pv3MFT972Mgcnx6epg4wk9PBjxdfj0cfwajhiyXM8OXbi/YX66tjnn766cMNN9xweOyxx9Za+2tS6y5u9bYGri8vMayJfO1P9wBkjsisRXmKGdU3Lhf4rUEyffU0RrMGz3Oerzv7sPTmNRi1/Ou3evSRONTWX7Rff/31hyuuuGLpPvjgg4c777xzvWh3Tcg7H9mGO/3MOJO3nuyKo9ptMdlPnjFdvXok14drnMw4e+vh/uGvoHth7TqTM5m1lhcc5FrUXGfk21iX0tGP1o4fBMN9QM+m+pNVAy9+8b081s97ABz+elnXZ7gX1u5B4qMjl/nyHXY+1uDoBz3r2b1CPvavrzfCY2M9fVZ0/8CrfsWuDwOm60GvITHKl131MPZyTr3FLg7nJjh91stFHtnK21hrHfTWqRft7F1j6YTrc6D74rxfihGG9a2W5Sg+jVyO/LCFD6uariSPfpjzJ0e47lkwYctXy5feHMGuVmrd+bG10cNwT1MPxBeb6mmcD3j4fGjqJhaNDjw61lQufZ7AKH7y/PA1W7HjIbUWHz4M8+7XxQKXv+JVP3N8MeGzs4ezh0fPvqQrDw3R559tcSzBsaz4yY1bezrTbtqKHbGpbuR8Wkf7cubTGSoMsrkOxuLk21hNrKH9rk+uBsYaYmNN5FzNOseQG4vP9V1+bItNPGLlw/5tLVwbammusdVQsRhXZzj44rNP9MgZhJ29WM74eNmGiw9Hkxd9Y9eRlpy+JkZ1peP/vvLHaT5vUPVZk/P4sb9oP48i7Sp7BfYK7BXYK7BX4EKvgEPDfffdd7jpppvWX06c68BAz2HDIQo5lDh4OHg7eLGjg8Koj7+EJ/wgT6dxc+rxMu3go0f6qdNYXwz0zKP49fjGc57u7Cd2+A5p7MLXi6mDd/bz4DdxkutfyH82UyeeHj8fYvKA4Z+aO/Q63OI5KDpck4VTHfkPr1jg1ehrDtg9yJuXK9sw8Pmjy94Y2T89KKgPvkMyHfYO2WLVPNTQNebPgZoNHTKNb7k4tNMjL0767JCHEbIeDvDYzgcn85Nyac/DhTH/ybuX1uKRh+ugfHqA4Ud+Xgq4XmDlI39iEJ8eqYMxbPow8fz1jla98qV2SGxhqQl89uTqoOcHrjYfdMiqG6zW0piMr3SMkTg0c7ZsNH4RnnG44kNwUA8uXqDIy5y9dVO/SA5a+DNvWJo4iqG68tdDW1gwovaRni2qhvTi2VfV0Rp7mFRPeymd9MWmsYEbeanpJZX1Yec67FoMI/98ock352Obm/XkR9z01UJ8/eUnuf3Kb+sSNjy29oH4ZrzwWlf6cMvdOhlbJ39tp/Zy8deZeOR4xvRaG/EVYzHw0bUiPn7KW3zk7PVaREZXYxe2uMPAp1eLTxevGIyzN26/FQ+eMex0iwNvWze6Nfp0mstBvV/Mr47xn6F+/OMfPzzyyCPrZdDLXvaytd7yVVv7zee0tdKLwX4QR2spztapPMtbj5qrDx01q6bpTF41yk4NyBG71hOfTmugJxMPvbDZzTG95vTp+ot2v3S4Yrxov+OOOw733HPPelEr9unHWC4amrmTTWoN45GXA164xVSO+uT6bb5iYrNt4XWN+pdp7uteArWObPvsKAfr3Vr2OWDuWiw2666JH6/7LX2tOoiXjljw/KWye5trG7Fzv4ElLy+43G+8lHRPEZ+5e58xsu/g4PMFu5jVSmtfus/yL3afE/7VBn90fL+5X9K699CBL0Z43Xf4kx8eoqOeYkViEbM5THrkfqGh3uLE6y9nxQxPDXyGqj1iyw7ftcVGTNbJfRHJ0TUIy5i8NShHMutrvZCezNdswOabT/H1Sxe+2HjJqMGs1vTlpi50Jnb3gPYIPdheglo7uGqjGftXMZoY20/yEJcXtNbYfrAe817DN1/6mviKjX/+6CC+4MLxOWYPlENrnJ66I/LWFi4MvsQ1sfNPRxOvvWI/y4ldvPY0H+oCS4ztHzblKYb2T7Xniy4/sOXUeuPJm671hcU+m/KUl/rii828WsCgB0d85DD48q+X5EEXr/jI+JuNDIa97rOjf23hOtPUhz4cfXy54MmLL2QsZ7USM30ycdbUkL9yEjcsfuxz6wV3Xl/2QLUrf3jG9mOxOGeriz0LA2bx42uonr3aVSd8+44/8eFrYoRDhrxo9y/Srr322jUnPw3tL9pPU61dd6/AXoG9AnsF9gpcoBVwsOhFu4cCB4baTImeA0eHIwcohxsHD4erDhodYJpPjHON2WTXuDmb7bjDjz65cXonYYgnPpviyybeSXwytMVgi+dAN+3yM2N6Ib3n0U/+GS5p+Z6s+a+c2FgfB9petDvYitMhmcwh1VysxpOqCbmDuR7xb2y9PbBZf77wyzVbPVuHUwftcMTBH3l4MMWEHNJ7uBO//eZBQ9x8mrOn12Fd7+GQXrmIi40Ds3G6YtGKG442YyofcRmTIzE7lHsQESO+B3WkFtWWnXw1fuTmAVXdip8/4zDhwTbX5O5lBR324ughvVri18RAV0xwypcfOj0gwBWzFwZqZn4SiUHsevbyy5f8kL6WLn2xIvpiqgZkyFyzNzwkeTngQbN1wa929KoV2+KCTZZ/vTk5n2KoHvnVN4ZFLn/4ETtzevBQa82HNRSfesx1yL+48LOBAdPDo7rzx9691prQR8XF94wnGXw6ZOIuN3sepjmCZ8/3wsU+6IWWOKpRuPDEOq8dfjQ5lpe1gWud1MBeN+5rGeTiK0zklV2fDWGUY77Fos0aGONF5upZrYtfLoh84pYjvXTKB0+rlsZI7fC05tV46uBNX3T5cM3hG9fyGZ8tGR+uO1/p9WL9RfuTTz65viv24YcfPvui3brz1f3OelmP9px1p2MtNXHO/Iu/fFZhjn7Igy0+YqNG5tVWX6MTBkxEZt2yzRd+NNc8XvbbOX775lwv2rdfHZMvfdcU3NbJOB1jVJyNxV/N6NbSE1N5sglPPeikX33ozHE24nP/6OsYfA64Fvkmc7/X57e6wmpvdv3SQfOFq5zdk8TqXmJfsGOPwsPrsw8eYtP9kL57ifuNl67G4uqXuuT8uw/65b/Pt/ZpGNXMXI72Lf/4Yn7q6P8RwLM/vGT38r1cxMdfunTKF4axWlUTc3XFE1s6aiBm9ZYvct2Qm9N1v+y+iq8e6ohfTnjWyot2ay0ecy9BxcwOT18dfR7Kmz4/XZ/+lQps1Oe3GPlCbNRCTdioA1w5iktzb4YvLv7UYZ6b6MKDa/3EoKcDyxlGLnIQNz/u9eLxkpYdns8eOfbZwE+fUeKQlwYfqT8f9gs+EqMa8aeXD71w2MpBHMZw6fCF8IztM2tMJr980jFnD9/6GvOvl5cY6MhdXaw3HI0em/5IoHjoizF8ceVn7nE866kZ29PyQbDZlRMdYz7oTjl+9S03ONZAT1f8SC8n+WnkGjsx96LdS3J6XYN6euz1XZd9zofHB554/BJInejDMsbXjMWN2PLPzt7xyy37Cb+1o+es0XVvzt6awLOn2fJlPVB1FasmBqR+1dBcfdofyV0nbPjQ6BejvWK+f3WMau20V2CvwF6BvQJ7BfYKvGAFHBq8aPd9cw4YDlO1DOkghw2HGX1jBxKHJHOU7pr8hx9s6E+bxlt+UPgOR8nryY2jqTd56WRXT+ekeLLd9uWbXfPw8efYXF1R/Hq87I0j8smX938i+pp1chD1ot0B2kNKB+UO2eZ8OExmF755+nqHY3jIoXauO4xibX+YG9O1Pxx0YToAOxwnn/6MyTxwefDiE/ELCwY7pPdwUM+mB5KlcPSDX038cOUJpyYeGMno4aH8sBEHvji8HPDA5XDOjkw9PQR4IKHHFla+jT0MmFtDNh3g+YIrdo1cI8cPSw+/hx5+NNhaVLzlZC5fDyowkstDzaqhmNpferoRP9Vfj6bPqcuWb0SXjK5xPTzUg6qXAz1oklnniQ9Tw4M3/cFhM5sc6evLjw3etI2HH2Vnzp9mXcLpgQ22POVlj1sXuuTGbNo3+taXHXkPjsVQX+z8x9PzI0dxwKu5rsVR3HTEA9++tIe8AKEPpxpWi+nDGPFlr8KABbOY8ci0eOTWz18f5hcv+2Jf4JsffOZXbHQ1Y6SXhwYTFbMx3swJD6VDruWjeT2+2sDAi/CtRdjVO5ypl4x+RE+rznp6yL3tda973Yv6ov3qq68+PPTQQ+v+5KWcfcG/usmhfWnNWo9ZU3FZa7Jinz052vKqI1n1q8dD1YAtIhfTrHmy+mKb+Mt4/Eh3Ym6/OsZ3tN91112He++9d72EdP3ARtnP+PDMUXngpbsExz9mbI2zoSK/uZenLDy8/OHZQ8nyZe4a9/KKrmsvvWTZ6O2z5NVZHD6zyfl01jNWD7qtPVv3DD25xmeY9hX9agjf2P6CS8ZevGw0+x2vveVFmly6R8qTPbkGRzyaXMUQnpe38eiyMxcHHf7xvRArRnJ65csffURfI0N6Mft87+UvHnt18OIZyaczCj98IPXU5MDGZ5yXzvmTk7NA16G++PR9DsqFP7mw7SUv3F5++/wWa/Gx7f4slmKCw45f6y5emOXZOsDh1/rARn1usWer/nISl4bEM1+0exHvhSc9BFODz6+4xKDBVS+1VHNjRE/9YNG3RuR6NnyT683lSKZHePITGz4ig5V/8YjBGrg2+AyDvYb4YGvN2dDR2NlnXVd08V0jiB1fYZnzoVVrde6aoicnuOnAozsJTz3Vqny3OvIi06oRjBkLX+Irb/V1LrTm7Is3e7Z07eH2LRld/OIXn+v7/7F3Zz+3FdXex9ffYXKUDSp2oGgUo0LUC6M0UQygoigoIioQQY3x3iuDMbGJ0cR4b6I3XNkGRTSooIANECTYRC78J876TPjudzjf9ezG7HPed5M5klpVNWqM32iq5lw1a61nPWrUGB/5g6/oN8YXhZ648PMFBnvskkH0ySk9i/DFGmVDTs0/ebrGkDH87OvP64hP1q15FY/xir580X/pS1+6u/nmm3dXXXXVgmvsdGj7RvvpZGuT3TKwZWDLwJaBLQNnaQZsLPwz1DvvvHPZ1M6NUyGRaZNh0xLZDLVRmxsN8iei8A7JGEu/9ho7/tRPJ14yh2oybZ7W4/hhNUY+Xr6olfjqxsjP9on6U652mPQmxU9ujmnHV5tHDwb+eZpvZtlM4ttgGrM5FSvSN5dtesmFlU0b+x4IbF7pWwvkyhkcY2p8tfVhg2wzDsvGGBYdvOzoK8Zs9OdDVRtqvrepXxzfv9Bv0z030MUpJqSv5Cs9xQMee+zytxjEQTbbcOTQt2w6JBAPeXnwkCvWbNHVLx/kskmvNnk2+GC++Gi80rwswPsXesWkLR+w8dT1ycMIjx+Tisu42NlWI76npw+nvOnnO/7MebJ4xsjlW205aQ49FPnmlYd3PDLiqA1DySa+Pt/yZ44Xf/4XYzj02MjPcCcvWTU8RW5gwdVvjVoP/DX3Hs60xefaaC7ZoCsn9BXrRSFf3tkrl2T4xE5zYv7wXIP5Q944XWPlHa5rLgx+yl255xMyLh7+87m8s+XAxvzAIWMcT92aDhMObDlQ6yseVmHn+zNW/8+9lN9i5Tf55NiDjbTFo0yiqyAycNbz23h6+uwgeLWzrz8LOX248lx+p20ybHdv5AsdMvjJwrAO9B3+nH/++Wf0oP2aa67Z+Ua7+5lDL/cT9vmyJj6aF9eemPiOzB9+lO9qFJa6trHZn7qzHRZeuQ8j/eyQaUwbzb72xDPeGvGn/B9Z/TPUL3/5y8uXCXygJ17xo+yFpZ52Jj/ZRfHAC710a+eTeo09IeY6qd04LLquee891qFrwxrCF0vrnh3UPQWW65FMc27cdeYglJ65h+M6J4vyAZ+M+wdMxHZ29MlUw4WjkON7+jDbLzjIdXCczAKwfyl/MMlH+h0Csm3MPM5rkiyesWJV080f/bX/+ko26VfwZv7lAI8PbLdvEHf3RbpiRuTE7IA7HRjynF33SDLxig8+W0htDhB/fHDa/QbPOLvIOGx4sOEh1/U8QJSL5kYc2snKo4Jmjo2LFXb2yLnn2BOZI+PseO9gk1zvf3wzF72PaOPBEB99+QmbfbGwyz9xk5cvfES2QkYu4NLRxhMrv/TlpA8jYCH1lOeD/Iq9mNmkN+XghVGcYrC+9fkhF+yj/NTOJh5b9OCJS97UYfMdRn3+yVdrojmBCyNM8uHElw/j4uBftho3t/iIHTmIsg+TP+pZyOGbT4fk7GjD4WNx4FkTzRe9sPkRsU0G4ZPht4IPQ+6KB745Kn52+INPJxvwtGHCkUc+ksfrA6lynr/8waPjuer666/fXXbZZeD+DXthnORlO2g/SYK24S0DWwa2DGwZ2DLwXMiAjcW99967PPTbYNhotSGa8eHZgNlw0kE2L21Gkm2s/qE6mbnxWcuRSW6OHcU/JJP+uiZrM1YJUx2PjL5NFV4Y+Gs6NC624queeuXt0Bg59tZj+mse2XjqNpRqm8djx44tB+0ezPFsGtXmUZuOeW3zrK+wb2MJQ1uM+nTa0Nqki8MYPoKNp1hLZNT4YZLVxmMLwcjG3EAb0+e/B0JYdMIPAx6CYc7Y0I6vDqc44PmHZx4KihNe8dHBt5lnk3wPlDDw5I28wqeILqweRMgjcvHo85Gv+aQfGVfgRPrskIMjv+YPrtz0EKvPBwU23yc2DKUYjYsV4cmhgvjnYcQDZLzp98Slq69GbPBZXxzWXQ93Did6+DdWrOUIj221WNVwwq5Nj448yAG+mJu7/MEni7ThKfmHR7YY80e/9ZQf5NjItphgiZcPxrIrt8mxDYMcXHm1LtlWK2yR125d0oEHqwfD/BS7Ypwuktvi0fdhhsMP+ecf+Wr3fd8cNMYvtowVq7p7v5pMeTNWbPTxkdpa7PonE/Gz3PCxeGEh+PxD2Vk6qxeYChm5UOjiwdVXH6J0jfEFwVFQuGr+mU91Oa2dLfPE3vTXGIJP332EnnuZvzS64447lp+QSW4RPo2XYvMPIm+88cbdn/70p+XAZh7EJaPmHz/kyNz0Txr5zkdrBB8VF70wpmv5XO7m2KH2xKCbPj5/FBR/jYs/MbSV8l197bXX7j784Q/v3vrsb7T3jXZ/teeDBTlonYWnZm/i8UW/YjwZY5HxfNaO8GbBb7w6WT7BTqZxtbjMmZ8sueiii5a1Y46sI/hi6RoMLz/DwZdf1y4ddf/DIR2YStcwOfpsu++77/DFdalmH7Wm9N0zYDjMZIOccbp8CruDdnJd5/lKjrxrxH2OvjH41qk62+5xbKD0l87+pfUETwyIT+5zYoOLtBVyFVh4rUs2uk93X3RvdsDsmsbzPia+sGGQ0RcnrOJiB9+88SlMMnMuybCtZgfB9SFFMRnPbzFp48E1F8UgbvdifcQmLHEp9PDEoE6OjDHYbCryrzam1CfDf/OiwKHbOL/w+MG/bIRNjvwkffGr5Vs7/+QEj//Z4I/rHD7Z3n/YRvlmHI+eeYFTTHCtUfPHRxjujf38Hxyy5BRy+vaRrlPzI6ZilZPsl099vrRuxGfMGm8+9MlZP7C0xeTaYIM9/sHhI5vlj27XND1j+SlmPHPd2hQTXofM9OWEP/nPNpo1Hddw17Fx+ewnluj3AYwYYPGDjMIXtuRPXyxhiUlbTN2DxME+Hbrw7cnV8MXDBh1FGwY/tWGy0b2I3a4BfsH1gaw1VJz4fRBCH5aDdv8X5e1vf7uQj8sunVN42Q7aTyFJm8iWgS0DWwa2DGwZONszYGPhoP1zn/vcssmyWbEJaRNss2FjYWOqtPERN5k2I9XwUH1tvPrayRiDHZ1ILp21frrVU27ysh9P3WZs6uBlQ9tmbm5g6RlPTt/4xMCb9rRn37hN34wd7xBN3SmPn8346uZE2+bz+c9//s5PCTh8YTPiP7/JmW9zazzcNr5tMPODTWugB2ptPA8cdGAifJteh3v5RI7MzB1Z2IiufIdDTmkz7QEDLp/bNKvhK/jFBae5g21cLH4DEr6Nu0P2F7zgBctDgU0+O3yA6cEKnk22jThqw710jngRSz6xX5+utjz3ACwf7JUPNZlK/EyJXYFP17XqwQieOVTmgSp9MYhLrDOv5sZDg7yYOzGSYxvxi7x++feNSrKoB0w2TofYZJvvxSIefrKlNuZhSM0HvGJmi5x+vhonD1d++STf/J4PrcnnLz0F0VGKW34jeo3zvwdY/iOyYafXvNKz1vjLR/bCyz8xIj73AErGuDxPTGu4ucLnQ3MJozVnXSA41sXf//735ScMum7V5dghjKJfTHxip/zze15ncPHIV7MTidchgnwlY6w8yk9xpVPNDv2IrTVln6w2PMWaQc0lG0fZWWNmN9/EpcCSB3xtOTY3cPOtcZj4sMolva4xuu5jL3nJS3a33Xbb8ifoYaz9OVm/uP72t78tP/3mH0Vmx1riU76woc1vvpnr5lyMfPQtZ+si3GLRV5q7OR5PjdiBN2nGp50v4Zrr1gjdbIWxlsfPh+afnrZv9s+D9gcffHDnn6H+9Kc/XQ5Q5J+t6VPzChNOPmRDTYauetoPR/zkKodkjCW3gOxf8ODGn7GS4Yv7x7nnnru7+uqrl38W2D+kLGeuf1QcrsOug65huXFvhG/86aefXvJhHeCZe4dL3q/LD59guue4L5FT8K0vvltj1pSaHl/gd/2mL0Y+0XeAZz9ircULG46DM+9XanoIJl/Lob5/Auw+xy6+GOWLf3DYpu99i4/0/QNVsvpIrZALW82fCCY8fBjsyQdc+RUDP9zr6GXXdU5PTmDQEbfcIf5G9ODCV8RHB7a2OQjXISuMcsavSfRgw1HD9fM15IuDrwiuImd47R+0y4NafuSJrPkrBv6RtbbYYa++NUCX30r+8o+9ijFEvrjJpG+MbmtOH1kf/nrHb4rPefTBo7VFx6Epv9jiC//g5itM+Xze8563zA9cOTJXxsi7Jnww5Zoxl3DZkwf5SNaatdfmU/HCaw5a63wRn/uv/2tiTco7XGvKIS5cftC1trp26fHXPw11mC0OPsk5f2GLD3bXOB1Y7dnMJV5rjY18Eqv3bX3rFyZ8mHT4iORSQeLihz49HwDIAzv0xUIvDLmD7b7GJzpyaD7ZL0/WrHmUy+4H5FB+iMszDpt8EBN/rSMkb0rxygtcNXn6/OAjX8Tg/wKQ4Ve+mWs47pFy7S/SfLh9+eWXL3byZ+mcwst20H4KSdpEtgxsGdgysGVgy8DZngEbi3nQbjNho2NTZPOg2KTgNTZjboNR3eZryqzbUwZ2NPnx1PhzzOZnUmPTh3jpq42v+bDiqZV4aps8ZW0TL73Zjpc9Ncq3Z3rPbL7nxjX+up56tdVKtrTDqrZ5tqE977zzlo2oBzxzaFwsNsDaNpvKnHPjdG1qFXLw1GzODS2++OHZWJcneDa8HhLymy458lGx6OPb+LIdFt7cmOcL/AofEHz2Fe2KMXZspj1QGbe59jDQhxAdXhoTnw2/a4A/xlAPDWRQcS2dZ1/yj272ydXGh43EiI9ghiseOmKPR4augoy7HuXXw4VceLjQ96CkD5+82oOZPJb7Hs7Y8oBhnsUXsSt2duh5kPEgFEYPbdO//KKjTNKXGz7yt3uJXPOxPJDhew/r5W2NRScbajrF1JyJSRtGshNHO7/Ybf3RWVMY/OY//+Quv5uz+unLT988oyNeMmzIpdI6wOMzHr/UPfzp889aJKNdrvjTgyUpAg4UAABAAElEQVS75VmOFLnx8OjQQY7IV/PHmvHgCUMciI/WQ9crzPDKZXb04YgP5Rcb+PozP3Iy81QbjjY75OUFj76S3GJk/9IYWZgKe+rW+Von3UP19DM8PKRvfvhUCVttLJvki4EeeXls3uZBu99qF8d/Qtl30H777bfvHn/88X+7lvlDpvyxwU/2zHWHDfKnWAfmMFzy2pVygh+xgZ/MtBUOe4dibJzt1klyMCO88NNR49NVZ/c/OWhna52rtT3j5rFY83P6M9tr/8ViHL+x4pq4xRyWuFzzPhC+8sorl/t417GcKeYsLNh41h+y5uDLk/eFcg3D4R5dNqwFfQdb+uHxg333Ibz4MCvWlMKuewsMdvjSutd275RH770OrsjRQWGT7wDVdVKu6PKVHT5pO0hkj7/k1LWbL/dQB598dT9yYIrgyJG4yOij5kgtBnja5LT7pquc2FPhu7/Kbb7AwhcnP+LTEVsxwYu05UJOlOa0uO1dxEDX+4k88QvhacthPsNrbsXJb3JiRXzWl2NzAds9wQcu7gPa4ZPX5n+HkhNHfPzkP/vavZfAlQPEDz6i/FXzA984veLQpysWRU7JayO5dNgsH+zwibwPlcu5D6X4xYbCP7gVOnAc5MJHsMyhHGvLiYNXOYQLA1/eujbI+4lG+0kH4cXEX8SevIgtP6wZ/lnHrj++i+e//uu/Fl+KnRx9JHZ22eC3vnmGzSfYZOlY63wmUzzFJAbXg7VmnC7f+GF/Ss5cy4/8kaFTIYuaK3zEvjUlFzDZhVHM5PFghy9OMuKSX/6Tkxs+krd/7Xqba4eeMdcHH/gKo3VknSvlydr+17/+dXx/X5zmURt2H1A0d13LcKwF+fYb7Q7ar7jiiiXu8rF0TuFlO2g/hSRtIlsGtgxsGdgysGXgbM+AzcTPf/7z5adjbLDarNhU2PC0wWojbUPRRsdYNDcabVAaW/fjqyfGlAsv3qy160+s2W7cBq+28drVxifhV/CNrzHwbQ4nRjrV6ZFdx1Lf2FEEJzl1tsjrT179WZtHm8/Xvva1y7cnbeCbU77ZWJJvfm1OjbdhZq+NMpvm36aXDmqd6BernNS2dmx2ezBpnm2ubWjJIRtj2MYdCnSgyz/2YWrTM47Chk8fJauNx9cODmDYLMtHG3K1h6sOIujxQQ74oxYbPQ8ObGrb7M8c4euXF3VtDwhs1xezvMLXbhyvvKnJw1Ti8w9f38NFuLDygbycNI9kwiifbMGhI0/acjfzR0bJhppNhZwxvk/f8g+u3MMmpy+v+u4vHuQ6YGEbNizY8JIln4/yzn94xhVEnn4YC3P/wkc6MOmciPiAYJKFBVe7MeP15ZNv6nTSn/J4iB4/jImHXnbYKp947MoFHnl14+mSady15QDAoZkHa2TuPQg2B3xkU+7l3Tj/K8bg0NFG6bDTGs1/fmgr5OCp4c1rHZa1iW986tRmq7jx6OgnL1ZkDDUvS2f1Qoe+OsyVyCl3p3224SnNR2sOD6mtN+OouUq39UlG2z3Og/qnPvWp5Z+iFt+ifBov2f/rX/+6+/jHP74ctJsvJIbimJDZoqttjhS5634arlrOK3DSC0fMxuuTqR1O/fSbx/hrX6cNYxF+mOkUY3O//meovtH+xS9+8fg/Q5WfdLNffLCzFy9fp0/8oavkD15t9dRrDF/JLj45PqnRHNPmj3GHaq961auW96sOe4vdmprXc37hmx82Xaeuf3kyrt+1qz/XbL6E7/2aD+TY6X29ePitTd44LBjZp8+u+wM514ECh+zEYaf3+3n/JgdbPMXnOvJFAh9CeF+ma7yYy633em33OIds5Lzv8xef/XWdvemf964nnnjiuM/0ERm5TJZ9NsQodkS2A8hky1e1+XE46p7uQFDO3Ncd7tn/wEXyAp/PcoHU4ajlPhnjZO13fGNaW47tCR0MW1v8lF85ak8hLxF8MmzzA75xPjbn7CryoORHfsIw5+IUV3bwYbQm9elPX/DYZo8e7PIMH/FJIROmD5j7QAkPzbhgmCdrRBsufbljD8m/91N26MJRss8mIg9HIUdezsoTbHnHo8MGkpMOxNkWN5/gI7VSHuWmGGHDMoZnjG9syJNrTp9cpE3OWPcEGOTw2Ne3VuZ+lw5f5aI5IFehbx7F5a8M8LPLt3zG558YFTL8x0f6sFojxuS0DzbKG1k6PVMUp3UkhnKRD63v/KfPfteEcbZc564/8wUTTxF7/Je//OXLe+72z1BlcaMtA1sGtgxsGdgysGXgYAZsQvwzVL8Xa2Ojb0Nkw9UDgQ2LTQi+DYdNnw0IfpuRg+B7Jrw2Oodk6J8KhRFeNV2+oGRq67dJasOUTGP1jWvXXwCPeJly2mykp7b5U/AR7Gk/W1NvbSo8sig7+uUsmcaNJW9uPIi+7W1vW37b1UOW+TOP9GxO+agNz+bTRrI5JYuKw1qwAYVvk+yhovjI4esXuz4MeAq7eB42bW6zzaZNsXGbaRt031Dhuw01zB5gpj3ybaZh8cm6ZBPfg4tvNnmwxodNphxo84Wstc4PtWtAW17g2tz7Rhx7/PBQSkfOyPRwWL7kAp+vHeKLW4HXtaMtvmLUp2OcPjz+IDxEht9w+UIXjzxSZztefpKLGqtf3bpqDeAnq66NX0xqZIy+3PWtn/hk5Mw3lBwkWEdkxeLBU47NjzibH+P0PNB52PMNLpRv5UoO5MJ6hiM3CL9cLozxMuOIfYjX2P9WLd6uF225UCNrwUOx/CZnrTpk9efnDhOQ67gHxdZkcxOWviKH8lxOF4D9C571brx1E0ayZJoruK4DPqqNkScLRw0nW3h08sGYPjw2tcPgEzkyxrQn4SkwrRXj9E+X6MCxbvjBfjj42a9NLmLTPS0eX+ijcK3F7gfWs5+OcdDugT074Z1qXS789MDnP//5nZ9MwLNOFPkQC9v8RuaHPb7yx5y5No23vsphsYo9W3TFVnyNrWNIPqxigqnEn7W2guDPeWhsjrcWp7x/hnrTTTft3vKWtyxYDtrvuuuu4wft7jl8DRte/mizqy5nc6y1nL11zPHpl5epj4/YjqYtPPbDVZdn/njvMaeudfc8uubRvVEuuv7okTem1qfX+xaf8FuzcLTdgxV6ZJBaXzx8geMe44O7fM3fKS/PMwdyZ33RwQ8vDH22FP4ocOVK3X2te4r3jQsuuGDZ31xyySXLX6qJAZEnp67g48ld7zls8UshJycKvn5+hOkDzT//+c/H3/PF0/VENn2xIDWeuRKn697BdvMkNraNqd23Xcv9lEj++oYtjHDZKl90KzC8P+iTt4dqHux1/PyQb0vT5Ys9IX/aa9ETd/NQ3PiofJCZlLw63/KPHHkYxtsf2J/JA58VeRQvgqFNthzjmV+y1nHj2uRaJ/LtehA/TPsN+w7zToZfZFrT7PGvQgaecbmD0XORvWn7C747dOUfH8jp44sTHjvWWv3yDkNxwGtvyY61BYOvjz322PH3CnH7QIR8+bVO7Gvts9jouuW3Qge2fGkXmzmQN/3WHnl8csg4P8j4VjrbyLgxsbZ+yfBd4Qcc4+ripuOeARMfqed8wcZTrEV+a8PKX7UctFdkG6b1MO9X5p09c6bmGzz+0YEbmQ+Y/soVvnsaX+jJCx5qTYhbgXXhhRfubr311uWnysjAPh3avtF+OtnaZLcMbBnYMrBlYMvAWZoBG4sO2m1G9W0a5sGr0PDaTNjwtZG28WhDQjdKtv6JxpJRn0zOuNKmc+rGS2bW5PKZb9qVMMjjqVExF0t4cwwvu4vSsy82dPRmTS4Ke/ZrH4WZ/tws5mu+VdscOnx805vetDyQ9pMpdOG0QSZv/mxa1fyykbRhtUElRx6vDbWNvQe3/Mnv6nwqb9XGjdFLpvwYywe2+G4DzSeb3vzRNkdkyiGs8ODAtAG3YaYPx3pW2uDj28h7UIKJT0+tGGfHw5VvzMHXh0UHNnly/K4vNn7hF2fx5yPfwiMTrpi08WD3IMEf8o3rwyQ3HzLCNE/4ZGDQ61s72h4u2CGfTLbE4T4gRjJKuW8tyDEfxCFOOGHRd0+QW9Sf9ZL1gBh2/vNHKY4Ztzb71pr1wFYFdnbpF7M2iqfOt/jFvgg++yKXZPmh0PnfIrkQl/Xp4dkhhHzpy6VxPMW8yH1k3sjhI3nXx6eniKV1Vpxdy8bZai7ToR+VC/ORbXJk+Iefv3j6CE+bbKTd+oXbXKibMxiuSX3+Zj+MWcOTu+yQhZ+fU/ZEbThsmXuUz3DKGX9aI64Jtsip8zFe+rDCdfhAzyHXi170ot0nP/nJ5cB9ypI/HWLPAY/fIDfvsHwjtnuUvpj4jeTVNap2Pcpd/v/hD39YDvn4m0/G9CN5Lt94M951O1xy4alhTFz4FbKIzCzGy79xfRjmhxxcfd8w9E/qLr300qX/0EMP7b761a/u7rnnnuX6kYvWJRxk7SkIXlj5n2/5swjuX2Ys2uk2rsZH+atNrlou5xj5dNjXVvPb+665c4jk+kVqh6XGkNjak9Gx1tTsGAtf33rsQMy61IYjz/p9yNx7MV2+dzglZ+zTo1MetcW0Jvk7EYkzKg5rVPuPf/zjzj+0dRApB2yJy+Hxsf0/fHdAJy8Oqf2UkoNLckis5ZT/9jUKe2T4JQ54+OL2viWvDhrx7QO8DzUn8lNe8BRy+OKHWQwO8OQDtnG+GI8nf3T55t7H3+y4pr1nuq8bpyP/xmHAYk+fPdc9jMaNIe8rrQtjDmodQuOTp6vIBx/ZgN39gg6+PGlH2njFJg5zIVfk+QuX/2TlzHhjcMJg0/pbz4VxOaFnLBJ/OYintjbYNUZP3pQIHlIrrQ08baWxiQ9XPsXim/K/+c1vdu4vTz311JI3H4jIqXgnBh264avlSS7Ks3ljk5/mXH4Q/+WEPkxx4Zknc4PwjCsw4rGRvLxZZ+trlQw9cubQNeT9BA6+8dYXGTjm1lx0z2mNGKenrhgTD4zmXP5c14o1SdYY3/zeeh8ouo7lxRyQI5NtGNYuX+kZkx8+2yeZC3mSYyXf8k+OtMUnDrpdN3zWTsdY68jcyoG/SPO/QLafjlmW2/ayZWDLwJaBLQNbBrYMHMqAzYaD9jvvvHP5RJ+MjY3Nkc2MjYU+svGwkdFvw2LDZxOSzCJ44IV8ZOMS4c8+frKH+I21CQonPeMVMvHVbShrzw1wOlOGnLj4kV087elbuvHU9NYluYmrjeikT47v6xjxD1G46anbZHbQ7tspyCaxjbMa2dyb5x5G8G26bUBtYvlBz4YVtgdRG97/CZIzftgAR/rm5T8hOeWzDbsiL/rWrQdgxaaaXfzss6nv21H+PF0O5IVfHhDok4XnOlHCbv6zPf3GI9c6Swa2HOPnBzmFL2oySnbp6qfDjra5g5UtbQcHxhQPJTO/8ORATB5oPKjIC+ILvB6c6SM+zTUTrwcreOz6gMe64b+8wWWDTdjF1FqHS5c8/xW2rTlt+OzSpYO0xaPwjxzc4jQeTXvx1GHwecpPmf/pttx4gPeQKA4PkXImTgdM+B6E5a71yCc5sf7ErXbvliP9qHUCV57KDSyycp5O64E+O4q2OWle0mNP29pxfcHRR7OdH3CmX/jw5/y1BoyZC+Mnm5OJqQ2DH+lNu3hKOvDzmR9zXLz6+SeP2g5I5JKeOGEoh4i+deV+Ku8dtN9yyy1n5KDd9eSbttaBebBWrBNtxDa/xUvWPJs360lbHHx84IEHlm/F65PFQ9Xa4pUT+Y2PVy7VSph0UHxtuogMkjftmT/y5JpHY/IuFpR865E8f975znfurrvuup1vOes//PDDu6997WvLHsd9TR7MV/JkwtLO3mJk/8Ju/tFpnRifcWvTJRPN8XAmBt/ln10l3Wo8pG7NdZ01n9ahw2Zriw0+dB2S6Zut2cq+teKe2iGUe7z3enj0tB14df/GQ2JyyHZsf7gtb+TJsX2mSawdBFubd9999+6p/aEm3+VErPY1/sE5n8j6aZdHH310uQbEfIj42n3edYDEgScPsDrA7x9bOnRX5EwOyLqO1XIjF65tfW2+8d893bpDxpVyRc57m7kzv2JqbFHYv/DPe4B1Ujzki58vMPlAxnuG/Jhn65yctg8e+kka2P4Syj9PdpjJR3b4y4a5F6d29xR28NnShhvNtSMO68G+iZ9i5BdsJGetKbLiVWCQlw/85qEPithj+/8Xkj8f/Pzyl79cfrJLnvxFkRyfKolRTObHNStG8ygf5Vfd2oBrfTW3cqqNyLX29Juj1pP17VpX4FX40PrV9qGO68h497Psk4PjnqJ0LbR28oHN1qq5lxvYdI2JtfVobdMzZt34ANqHWmL7y1/+svhjHdvT8MO1SQ4mDB8YWTPwxWy9ef/zgZu+NVXM7LBPRrs+GbJs4sFms7kwJhfV5uzFL37x7kMf+tDusssuk+7j87B0TuFl+0b7KSRpE9kysGVgy8CWgS0DZ3sGbCzu2X/by5+xezhHPSTYeNgoKTZ0NihtwNqE4WsrR1GbGuPk2xzqG0OTtzBWL8nNet22icJTV/Qr8UBri0dBYeEnzyebKzXeyXxcgPYv5NYFTjbIrbGSDyMf9E+kN8fTUZsPG8jXve51y+8Ae2Dkgw2pDXmUjjEFyQm5HrzJmHebYTJwPUiVq7BmLZ4w59qIX/wzbptba408ewobNu3aa7+NRXxE1drsw8KztjuA1GfHhh+P3Wj6g+dB79j+UIEOH2yyPYjYjCO6rhOFn/SnD4vQgZcebsqDnOMp9PkeHhn+irf1aoyM/pwHfXlS6JVLccAly4ZY1PqwyIlFXB5+5AaPDTF7qII57Ruf8cKBka415KFJbaxvs3dfyRe4fINV3GpF3B6k+E+ef/TXVO74B2fGOOfDuAJrEpl0pj+wlBPRehxW5Si9xtX05UfePDh6gJRzh6J45kru8K3jaU8+8MjhtxblDmWnmMXdOhYnOfPY3MHA09dujuLhTx32GtNOj27tclCs5JXw2Whe8PKZvrZxZZJ1Ya0pdNmWi+TysT5cBYWZD+a9taxtPMoHuZI3ttTuhemxq23sEMGj474Jx1r2oO531f2ETH4d0j0ZD7b5939WHOjJi758iAnxDenzVdzyZq1p8w397ne/O/7zMwtj/1Iu1Pwsr7DwJn/mWC7SLb7G65cvcuYpPLbJsFUxzs9imdjh4r373e/evf/97/+3g3bfaPdlgpMdtLObvXzMJ/azk39qFL+cPMP99/f41iH81hR5pbFshleMxsXt/Zi8+4J1hNQOLo3DpmsNsEHPmjOWrWT0rWH3GXYcRrnHJ997vINsdmHBtm7cz/HpaTv84gc75Jr74iin5YUeOaUY04nHf+/NDo7Z9EHSPft9qgNOB3v0yPgA2c+h8IHsU/uDeIft3qPlgVxrftrKHhk25cL6kg+xi89Pq/S+OX9mRTxiLVfa4u8gunzz27XIFzpsdq3JDbv8ZtMYGT4q5kd8vQfUV7NFFwaiz6ZYvHeL1xj95qAD+94nHAj3D7LZoEOfD+ZU0Xcf6V4iF2Jmm7+IP/p8UvDJWEvWlFjgwCeL34c/ZMPivzjkkI75kBt+wJU3bXIz9sWJ/QsdpA5XLGyqI/kgU0mnupyykR1+KcVnXuXv97///c5fAfmwQozy6RvtYcDUZl+tWNPyidd6IWd+jBcHGdRaIm+MD+T4QGbqiDt9dWP4/JdTNruPlnM1GWMw+UJG7mAYQ+FYB+YGnrhbP2zK2bTd3OPDVFsLPtyxVl0fbLDtmaIPs6xd+STHJzpit37Yh9ueyLqAjeC7z5sffhS32pgySUz2l+yxQUcN35h+pC0n/PCBgIP27RvtZWertwxsGdgysGVgy8CWgf8rAzYP/uzcQ7+NS5szG7uKTYi2MRsVtQ1HGzH99DKgP2luWPAbP4p/lG7y1eRsiGwWbYD4V9/ma26W6KRXXTxw8PJLrYhR7CjerMNZBMbLUfwhstibNo2FXe71o0O8xtY1WRtQ38Y+tj8oduApFvHKlYLkxyZU31jjeG1O+aiQTaeNrf4c4y/bbNmw2kh7uNBH1pKNs4JsaBU6c52xpTSvHtpsxuHH5wPb+V2bTg9oxWXzrbCbj+yxrS7PsOB6iNC2Cbf5hx2+B3oPF/k9dZegTvACg/9s8E2bnbDVkZygdNjhq1wq+samTv7DNs5HNXvNQXbTU9ND8M2bUl6Mlcd0wjWm4CtseQjkO741JEa2PeT3UAY7u7DT5QNf8wOOBysFnr45hMMO3Gyr0ezTmdTY5GmT42fzgccW/PU8GzsRsWH9wJKPNWVL3ApiRzzZwnM/kwvy2nB7CCQrBx7sFWsbBqLjsIN9Omzki5iMuz6UxunBy1+1YlxB8dTlpes4TLbYMH/8VqLiDi9sGOTpwRarEiVfn5z7iodphY6HckWcET6iz7Z+JUx97SmbvhofZnOhDUtfHY66MvW18eXHmpAfhxTnn3/+8huv/gQ922u9k/WzLe4vfOELuyeffHKZU4cR7pV8JGNNWS/yXI7Nn7VkDVgrfHBw5FuZZFpL2ciXxtTG5AAVw5TP1uSFQ6/8Tbkpq11fnQ5b1otSjNm/9tprlwOQ+Y32r3/968tBuw+q5L81C5NefhSH2PmE1BX9fKqeunNc29gk/poLBYVRjVcutCPj/PYe2P3UeoLPf/5279DvvQ9WB1Ww8kcNhz/06PiJFB/GW5tsWRMOvnxbHF45cGgsf9YYu2F13cFSkFqsrlVrTRx45ow+XHoKe/ltnA9kHfqx7VuqvoHtrzBax96HvS/wm759hvugeWaPf/mgFq/DPT7B5A9bFTbFozQmz9rsOCC2jyKPr+5+oG+voLjOmxM+sQmD3+aDfeNIzHQR/8g0l3zkt1oO81tO2M2+Njl63mPV7OGhMMLDy76Y6SPjrQm1Pv/ZI+cDHR9AyIX1Y9x7BpnmBA7b5PnHNt/NCUyx9t5ITimH+QmDjFyyEdEvpnhqGM0bm9awWr6sB2sBDjn6ZPnBbrbLQT6wr9DzcyYOVrsWzJlS/PKTff7g67PretGWb+vAB0bu13K2Xm/h0bFOxIusc1h8K4b81I/X+tAXjxolI+bWW7E3/+WtewDb9PjOr3JPvsIHsXsPFht864CeexUb4vSBbtejMXy4KDtybV1Zu63NrpPitubIlXvY5aac840P/ELiopfPeGxat3RgWWds0uGftjFttsXl/VTNJ777gPwjH/nI7sorrwR5cF0uA0e8bN9oPyIxG3vLwJaBLQNbBrYMPJcyYDPxk5/8ZPexj33s+DdvxGeDoSCbDiXCtxlR2oy0MSFjHP8Qrcfqh5N+uviKzU11myYbNlRfnYyx2mTYmXG0cSQTkTmqhJEsLLKTJpb27JM71J+82tOH8I3Fn7za6umPubGJdJBzbH/Q7qEZz0YR2YAieZI3usXEVrlKftquXb7JtnGGqZ8tG2wYeEhb7o0r86GyNr5NLT/g9i0WD9P0+WxcDK0LPO3iaUNOjr8eXDogzxf+GIuKw8bcgwJdm3DfZoPLtg16BwetoeyqERylPKnrGycHu/zpK+JV0PSrPPABlc9k0jGWLLzG48srmrayHW8R2L+wpcCb86SNx/ds4BWfdv6R8+BvjKy14CFI3pLnI7lJsI3DMW4uFXJwjMGZdtInHzZeOvTWhGc8meKlj+KzI66jKJz0+G9+D9kMAzZS53Px6CPXbwcaPWT20EjG9SK/1raHTvbhuS48tM71Bc+4wq/WHz4SXw/J8kAmP/JVPx4c9jtkyD+yxuCRVWfXWOsKvjZfXdf8IYfIZXNhjBeY1k/XYQdQvlX4+OOPL38yzi+Ur2wVT34NyBM26TWf5WXGwW8x4GUPIL14ycsRvnuKB/XbbrttuT9PvRM6sxqEi3zL1++9+yd61oziYCB75V/Nlrq54zu5cByKkKngn8i/xvJFrUx9GOKOzAEZ+UTJds0YK+fqcpm+unXVGi+2d73rXctPx7zhDW9YbPjG6Te/+c3dvffeuxy6sUkXTT+Lo9rYoXG8dPMrXvxFYP8Cq9xru77kfb0G8z09dX5os2OezGkH0uVKPHLQvULfWPfM1iYccoiMcf4obLlfKN732CPbNW28e7afZHB4SaZ5zBd98bmPofTc9+nTEas47Ef4wJf8EQMsfX63luE4yPPPzf0sjHsdPNe83POZLGy2u1/TQ8033xzY8wexQwaGNv8q4lfqO2TnM//w6TRvfDUv8te9DD6ZcqLNvvs13/Nt1vCMFUO+ZQtW4/wqV/hikpfw6SBycM0ZPHGi9fowBodtNrTx3F/hitk+yEGs+dMn033Y+wA9dlurDrz1YfRN7+ZWnY+wFPbYR2y4T7a2xCBG4+U9LPa0YZDXF3d45NnSbz6nfeNiUYtBTOUXz4cLDtvFDtt1Me+tdNnms/FigNV7qnE+mAfv12Lhj1rf4br1IU/WuHbUfPBJTtgRJ7zsuga0YSpThn9dy11zsOhX0zXmZ1nst9lsrPyUv/zC52f7Dxhizz598RtX8yOfyZoDsnDszV3PPiwmP+eHPTJicH0p+tac9S6H+nTkZ85hc2UM8c/8KmybL3jWuHsMv9JR68u10vXL1ste9rLdzTffvPxUGVxYp0PbQfvpZGuT3TKwZWDLwJaBLQNnaQZsfBy02zT4RrtNSpsfIRnXnxsJbZsmxWbKxkMhi4zXXhjjZT1WPzuJ4iN8Nmx4tG2Yeqi0+UHGFHJo2oaj8M8mS3yojV86yRjLdjXemubYbJPLfnW6s6+tsE+//pShl3/x6xuLVxtOvpgbG+fXvOY1uxe+8IXLQ6LYbU6N2UQieHDwbSTJyJXNq82oDag+XGNk6WvD0J92F9D9Cx49JZ/x2FCnp29eyPFBgW1u6Sk2zx4APDyQtwZskJX8x9NWWwt8s0604cEVT5vy/OQHPdR6puthQ+1h0YMWXPoeiDrcK+7sksErP2p9ZL2JMXut13JRHIvw/oXcJH05KZ5sJ5MdcrPwKaxk0sHPd3U+iFuuFfo9LInfXNHrwa7cqsVr3ByJlT3fdtLnt5qMMaSun4/4tZPLR3z+6MPOBp1iU/Nl9unMPJBHYRV3c0IftnG50J62ntF+xk8+Vcjk4yF76YVX7PXLT7E13/p89EDoG5XWZvc+fDgzZmMOhcSD+DRt5W95ZNccq/HoK+Qm5Seetrl2XdGRJ6Xc8TlMcgqSF9jV1lg//UCHzeT1o3zJLuxi4rdDuEceeWT361//erk+yZNV80/Jf/UkMtPWHCsXcpkPxrXx3GPEMMeKg81wxet+Rc78+Ua7g3YP7MlMu6fSzuZT+5/L8I/ZHLTzV166P7I7C1vmqGuaHXHg90HktC1X0z824RVb6w4PGa+kV1+NZ37VrU9tY92vYfO/9/mwp190FLJ0WwuXX3757uqrr95dfPHFC/9Pf/rT7tvf/vbuvvvuWw652Gxd0ENioB/BLGeTl3w8dTw1fyJtuBU2vfd0jZObMuUZTphh8cW8ej93D1CLg5+uOde6n1Dp29b0yTgY9C1cOqj3y/Kbb8a637dG+Wae+Kxoy5G/ePCNXP3yyDeYeO4H1la5UJdbcnT4wzfzS684jIuVDj+89/qmPfKe6xq///77lwMxtswte/TkQ9GmG8FS5IRfMNRsstWcGI9H3/sbrHj+qq3fhiYrJjhyKNdyb7z80dMOgz9iL2/6/LIeYJTL5OCzU4FDPj7f2VDkwOGk/bv9Gjx6SE7YdI9Q0zPWgS19tuEa50/5UnfQTs6HDeZEGwYdth12qtmFL3fmzb6JfRj95ZE4KjM261ifD2o59cFF73V8tP+QczL6dKwla3fOfeP8hGMe+IXKm9iQGMTcGofv2/f5QU7MfQjFTvGLl5y6NaPmJz22yItHTlynxcmuYj/pgNlfa9Bzff3qV786Hg8fxQcLtg875BYe3K5//OZGbsxv1xf/5BFPPvi/JrxsmB8Y8KPyNft45MoBDDHhF7c++/Hpk6vo0xf/D37wg+UfzPqwl/6cK/MiHjEq7MqX9Q5bn9/WqL411zoSMzx26Bgz3+nIrw9AfMgBA75rWV0OYbrGzBecl7/85cuX03ywi9b5WZgneNkO2k+QnG1oy8CWgS0DWwa2DDxXMmAzMr/RblNkA6IYa7NlI9FmQm3joRjXT/5keSEbJtn68fTjq/FtuGyA2pzZOLWBJm8TpSSvxlf4xU+1DbVNErJxm/7jpaN9IipmMtqwJxXL5GnzPyJTwas9dYs33ro/sWqLAZlHDyEOHPwesE0+XhtTm/Zs8t/DUg8x8tLDm01p+aMvz2qyMPThkMk2P/HKZ3On34NcscAyJ3zgmwKbjgLfQ4WHBA8V7FgP2jbBiC14bczVfFPw6cBU2MsvNssBHH3ycNmk7wHLQzZMOfIQoIZDNwzjCuxiUiOYNvj8oJOsNnk1yq9kFuZ4kQuF3CQ+xGOLfhhshT91ahuTZ3J0kWtLvj1o4FsLHjDMjfmjIy/G9MuH+PQVbfHLl7wny9eIjDJ5jR1Vw1H4mr9in7mGifC1+Us2vbDrl5/Wc37h96AFqzzjhxmW8XC0w2581uHzGaa+tutATV897eCZFwdqcq/NBv/UxpHaGvGgqI7gsZMcfv566LQ+zROSh+JeGM++8DX/4GjTRXT4pJ8d6wamuKwJ+nxy7aoVD7nuTw6qipcO3emr+TMOG56ij6/9j3/8Y/npE79V7oHYGD6M5l6bD8ok+cOb9hrna9dHvGp6YnaIgfInLP3Jh4PXQfvtt99+Rr7R/tT+EO0j+z9jd1jBhutRzNpyrK5dDuTYNS2f+SnncpbPZJNfmPsXuDBbc+aVjD6cWfARnfhy0xqig8iRkcvWRff31soieIIXuGJ5xzvesbvqqquW/03Cpp9q+M53vrP7xS9+sRymyAN7+QOSPwoqlmLM93xdhE7yAoM/cik/sPXlvOsARDLktNd+8RHxwfXlnuw9vfuUcdepn/TwjVuHTPryIJfet/zkhfs4mvcKmPkJR57LtT6frAff8nRv0IfrINC1JhY+wylXZHr/Npb/bMuf3ONb/+5j+mSUYiLLDl/sWRwgIvsQh+SubwfK8uiDNfZgK/wQYwevxUefDT7nO78V14p7FlkY/KDffgOPnA8D3VPdW8iWHzV5uXdf5kNYfFHEeYjIzTVRLsgaYzce3PjwyrlxMbiWHRCbM/nDR/yXK98UFic9uPY3fDMfijUqlu7n5MKGr20+rD/yMOiQL4f69Kw38yZnfDV39gH09Nktr2pzLe9h8tv6lW85NU6396iuKTLmSSzswobDJ7HwGUb3Fbhk2JEjmGpzELbagSteOWQfRj7CSa97JvtyA9+aNK6NB0dOfPAgh7DEzb4PIPxPAWtZHv0DUPcqNhW+igGWvg/O5NY1BFcuHbzLtfdQctaOcWP02WFfLvHokfl/TeVXrsX/3e9+d/mQQU7kE5Fp7vnempBfc6UUi9jdV4x1ncq1OYDHjhx30E4O3/qxPt0b9M1RH1zKOXy6Poh2IG/9+YDcX4F7r0H5sHRO4WU7aD+FJG0iWwa2DGwZ2DKwZeBsz4CNzI9//OPdRz/60WUTYVNj09DGoc1QcTZmk6IYx6M3ZfFmP/1ZTxvJqm0Oldo2pTZR8W14FXwUf2Lzh3895Opr4yEbcbwoX6rj51d8faU+Oe36yac/a35G4cy+9tTXXuvoT5n017U4bUwvvPDC3TnnnLNstPE8hIi7DTc9fBvWHmCM21iSbSMrPnI9IJDVtjHlTznI5+mjudOnHw4b9M1Dc9TGmW3zC5uujXAPJ/Tp4Yshyq78GE9fn1121AjGJLpK2Gx5MGHfJt2DDEybdBvtcpgOLHYUGOIpLmPkxMR+/iVvnI4iJ0oyxiZNncmni9gho0Z8rg0XJZMNfXLJ6st330jTNy8ONzxoeLCk62GEjrg8WBav3FgbYpUHBzX6cOYc8KU8GS8G/DXxvfFyUJxwy512ceDxoZzPeMOfGHjWzHqtwoNVKY/pZie+vjZflENkvJIMP8uhseyps+Whz8GC9dn6xitmtshbt+TyPWz4xvMt2/jmwFzi0Z+YcPnAr3IKR7+5449rxVoxr+StBW06athwyarJuIYdEjosdBAAkx5fUPpkFURGQTC1HTI5aP7tb3+7+CAmh0+w+Fou0i32xvC1s6Gt8I+/+PrZrDbmUKN4koNfIYsvr4i8DxfO5DfaP/jBDy4/ncMfuWMvn6xptvkjn8icuJbFXS7c31oDeOItX3QmpjaSZ1RsS2f/Uq70+aFkp34YZI1Zy9mAJxa+4+VP+Gp64shHsV122WW7a665Zvf6179+0fHTMd/61rd29+z/kaZ7N7x8y5/WdJj45S7b1enoR/mv3zgev/KvfvnWV7KNH4WhJsNnh2gXXXTRcgCEJz90+OmQ1/3aNU/WHJJxH3dgJK/sRPRct+7N7t1kyVjrathyaX04lGrN0HMI5lDKdQ5THsoVTNebUjxiMI7wFPcJ7x/sKojNckqmw2v3BTJ8cT37h7385pOfsVHTZcN6EcPcK8AWk3H+8V0dyZV+fsIgDwOxzS+Hm/y2hhA9h3l05Vyu1c2nNvnpCx/w+agtTnmEIQ621PoKGbbLceuBnpj5aoys/DTv5PDZUpsPh8eIbXz51TaO2K7Qr4jRGiAnHrkhh8QK232DfX0+w5WP9lDWmLyLzTi/UTjFKS4xIDLsKfw1Jk73Gzhs8YUdsfCvQkYRAx+Mw8gefG3jcNg0D2Gr2VfI0VXSY6f1yi8lHhm5KFb+G7MOHBL7Sw7XaWuSrNz4+S9+eB9z8M634hGDHPHBOtTXzk/vJ66n1uDi6P4lfTEYI1fuyTTH2mT4TIctpMbnlzwpZMSbf/IgNvHga+OdDsEVv2/y+/k36w05+NYWp/kpj+aTre412eKvGPlmraBiVIcDq5jw+W5/K/f6cmUvohYLHnvWcfeeV7ziFbtPfOITyz/fZkeeToe2g/bTydYmu2Vgy8CWgS0DWwbO0gzYRPzoRz9avhHnIcKGAU9tc4HasOHbFBlr42WsvnGkj+ovndVLMsklC8/mxobQxqliY2mMXLx0gg5TzXebLRtDBeW7djK11UcRO2FrK+UmnTkeb12nu+bXN76myUtfnb21fH3+2UCee+65yzdpbBrLCX2bVTWe/Nh4qpvX6uJkT1nPt34ET795wsczXwimNjs2vUhbYcfG2YOHMfNtHZC3eW7++QCzNaIdZZ8OeTVeMUw5/Er+wobr4chDkTYcfW0bdA/7+U6fDgqLLXGSmXJ4+U6WzekfPSU845Om7rQ7bdOZerXzKVl815eY0sknfQ9yDjisHT56wOhBpAceBz/0XWPG1daQ9lxH86BGPuQh0jff5r38NKYuZmPpledZk+V3MfCrmNXGxJEMeUS+Wttcyws5thV2xQYHVac3Zcgax6uGqz+pvrH8Mt51AScfsqcvLoVOZc4jDNjGPPBmG665KY7y0Dg9doznU1jqeGSaW3YUfeRew6b1wX8+ZI8+YhdfDPkg5w4Jj+3/j8Q555yz4FkP+aLN93ygT1eJ+GEd+f1lPydB1zr07UAHRXykl89qeM0RLDxErjHjYpLjeGS005n3h3wzrh3WGtu9uIP2M/HPUH3L+Lrrrlu+ve2Qiz3+8UMp3/hyg4wrETmHCF3f+uTNpaIvHliNqeUI4SM65VU/vfKh9t5jvWSfDrl8mm08/Wi22THvaj66n1xxxRW79773vbs3vvGNi97DDz+8+8pXvrL81Z6DFPOVz2HlLz8q+VAM/Gg+8WZOp29hqg9hpEeHrUM1Xvriki/34ve9733Lz8B1PXTtWU9kunf1rU1zjYfo4Jcrc/3U/i8hXDNskIPhvc7ckJNbRdzG8VyP7umuK33UHPHHuJJvxsQcnpitUdcV/8jhldvyLyaHij6Eoxu2tV4cYoJtTtXdg9QIFn4HkzDo0oNpvDo/ySv61hMfte0H1A5FkbxYT2KFY77gun7o8cGBqpwiMvwUF3/KsVzCoMMX9y08JZ/kJp/IsIEnj/hsq4ufHeNsw+CX+ZLz9lLrNZOt1tDi9P7F+z5d4+GWN+sGNp+Lm11EBtEz7gMa+ddXtBUYYhI/LHlFxVzc2SRb4auYxC0H8cNlx3ru2sgOm/AVuMVAD6ZDVu9JckWnmFqvfJK/rpVw6JMRizaf+MYPMny1r+pQXF9O2ZBjvvDNeoCDD4McDHbpquF3r25e2FDoWD+w6MGBkb0lwfuX/NKHJw+w+cwX64uuL1jwp/kRH112yfDJmmZPW17on4z4idjgr3sRW3DYc/Dur1jko/UFt3zzg9y0xS9z2Dqmp8BsfuBp47Gtbg3zh2455aOcsCn+5skXmPxFmg910fRhYZzkZTtoP0mCtuEtA1sGtgxsGdgy8FzIgI3ED3/4w92NN964HCLqtzmzGbERsdGw8TCGZ1Nhc6KQ1Se33myQR9XaZA7JJWNDY6NnA9dmB48P2VJPCnPW/LQxmpvexrNVf2I1NnnrNhnxHkUTgw2EN/lH6eKno31I5xBv6oRhw2hj71DUwwaf5UUubYaRObRZba7J4KnZIXsqxL55qqQDo3mDaU7ZYpMdbTV9G2Bzlo/04Hmoaf3BJWss3swHPp/zw1i+GUNqfCVZ7fxjz4MWDHx2yHkI9OBJ7ihiSzytu3xNJzt8gK82Vs4P4RpX6Oa7Pux4YRmPtMnIp5Isfg/p2kpj4vSg+YIXvGD5WQuxewjxIZxvxWmT74HPPMqL2gONByaxs8tHPLYRPl5kro3TL3566arFlf/08Cbl91wLdNjJVjHikz9EZHrAMk6WLT72YIaPV9FHfCejaMMqB+yt5elMv9miw196Sr7ShUleIYOHyIhb0UbGikWbPP3mCA9OsupssUtXIUcP6ZPJv+bTGF725E8O4iVHNwxta6x49N2L/MSFb4nR6b4Nv/WhTU+hw1Z+GkPWpm8D8ttB4kMPPXT8g7GZO7EhfuZrvNaRvjHXCVvJ47OrIL6Q8Z6ljfITFjk4fNLmhwM4B+3+gemZOGj3gYLDZR8yOExhP//4k198kFsxkJH3OQ8OER1Ekp9+mxNydMREX8GrpqNfrPgIjrGZE/cX70fkD1G6R42lJx7+qovtne985+7973//7pJLLlnwfQP6S1/60vJlAvGZSz6ubejPMm2zVxzZlgcxwULx1cmTKZf0rRH26aWT/MLYv0y/jMm9A78LLrhg9+lPf3p33nnnHc+xMfa7Ftigb+072HQQ3Hu76x+v+XEvt16e2h+2k+Gr9TAPh13L9KwpY7D5ZA2xIecR2/rp8A0VtzGHaPTFj+/a7j5J1hhix3uwvcux/Qdw+goMMfEJue66PuWZn9aVPIer7Rv/ckQfn/9iRmy2PudcsScWhQw79OVQn+/9Y1VY5OREjGyQd/jIH0SXD9a+/Zh8mgvy4qGj7yDPe619Rr7xq/UGh53ihcmWfHlPhi8PxtlQmws2rKO+QKBNh675gC9X3T/Y5o8vFvDRfE2CWT7lwr1XXsmJBc+1CceYXMmpcXVzQFb+wuCncXrqE1F+850sn+C19oyLrzVBhh325EXukLnjq3F5sffxUyzyKQd8Fqs46NIzt+bR9aLfOHw604dyySZc65Ge/JsvNdvk+GosW2x3vajJssWOvRY9hV9ij+YXQsjz0fzKFWKLPzDpmw82yxceX9TWvHE2rU92+GXcGvMtfblCPhwTE72T0ZThjxLJ4fe///3j//yYbf7xA9FtvrXr4/HLPIrNdSQX8iMP6WhXzL1xNiN4xpGcKXRbJ/666I477ti95z3vWWTInw5tB+2nk61NdsvAloEtA1sGtgycpRmwuekb7R5ibKDanNtQ2UC0ISNr84FnU1L7ZJuMuYEiO+WNwWe3tk2h0gbTuHKIYNGbuPnW5rMNE/1p+1B/7Ws24x+y11iy1fk1+7VnfUg/P48am/zaU0fb5tDDqkNjm8/yIq9tom0eFTkyXplYfNWPN9vFgQd3PVd8U9I1z9rZzTacHr7wyLUWPfxZD60B+sbwwldnO91qfOMozPqtMWNih+lBx0MUWXIeUMh5COygvXjoTcKHM+Mybi3CgtkDEb/0D8lPzMbJ8gNO1x5eONqzJNfc6tOvlC99betF20Ok3/d1GOjBy0OOhy2HM9pkPcggD6nyIj7zNx9a5MJ41x+Z8sYXeaDTfUacZFsb+vwp/nJbjV9MfNIOvxpfOzk+N6Ydkeuewwe5oMNnhU/psauEq01GbujyWR/BxUsXJlLnkznTVsuFnGnTRVNfP7vGm7tw8ZpHcnT5Ls8zhsbore20hugi43j6/IODps38ME7OWPNKV19NTp4nz/V9bH+g5tBZLukrfJQLuSQ/Cxz9iI9k/Qk6uw4E/JSMuvuKdWqsucsGLG0kd7CKzbW/zo+xSvF0QMVn8nBaQ+wpkfuLWB20v+QlLzm+Nho/1TofHbT7trPfI3fwMfNLpjyJfa5Rcsbz99BB+/SdnCJGRFc7DDzycomHwu6QR9+9Qz+/FsEDL9lRK3DLY33xZNM68Zu5H/jAB3aXXnrp4sP6oN2ckA97mo2nrm1cLMVYXHD4nz/ajan1xaquyHd6ZJJLjy12w9QXs/dq/9D8+uuvX+oOnIzBhpktOta8vZxCBqa51y8uh6e+Leq+Lm/0rWFzwx6fXDeuKX4bo8sensMr2BF9fsMynm+uj3S9N5QLst2TJka5oOMAzzfa8dxz4DqEpofHZrHzjY717z2LPB/Yd/BHLgw4/KQzcbTzTy1nSjLwHG7C5IO9ABzFvUXeu77kTB6tc/rlg4+ufzV+B6ryodBnQ66M85EP8MSbD/oOXeGwwZa5wzPGR0XcCJ68dPhOp0NV8gpZNTvsKg71mzd48sJPfhhX85mMHPBZnrWLQdu8IRhkxNQcwSADR15R80CWPbbwIjx9vuYvnPwyJh75aR7osqGQo4fYxINJ1mFx//wWT57g8ZHfYpDrDsnljJy5VMSVf+WfPbE4ZO8DGHPR/Rouao7KDx0xFCd5ueAzf7SRmk2FrQ7h6fGHH7C774pHEQsd1wTf2bI+8cirvS9kT57YgmOtqeWCX2z4Hfq5d16cO/ACt3sFvHyBAZOd733ve8t7Gr/Ewwd6fKbTdSdeRZzyZT5giJ2eUv7VYoVFPhy85oC7dPmi5htc4/zS377RfmBSN9aWgS0DWwa2DGwZ2DLw7xmwgfAb7TfddNPy8GTURsImxKbExkZfQTYm1cbIqeFEtcnWbix9fWM2TTZGamRjU2HzkD6MCh0ySthqfhXD5JM/RGSyVZ1e8vWr4ydfPbGSOcQzlk5y1Ufx4YSVTDVdY9Xyuj5olxN5tRFF5q551kbZmFjJsVW78UVp/2IOFfPXmHZEV5+95mbajI+nJD83zrBgwxFDa1ONp2jnR+P0wounXwnXw4UHB9/QIWe8XNmczwcpOhG5iH/8VyvispHXRj0w5AfZ9XoNLx0yqBiXzugXh7oc0Jl6xjw8zAc3sj3cyLO2+P22r292iV3MDmQUDxpw5NeDhzE8/uv3ECNmhB95MELltfyoYarLFaxiN4bEgq/A1TcGTxzpV9Mxn/rlAb522GRQeVCT6SFLm72pn/0wsoevzSdtpJ2f+boMPDtWLpItj/KL4B3yNyz+Rng9TGsXiwdyuS8GdXkgpyC28p9fySdDZ533xsijxuFo0wmXP62x4qbPZwcbx5799io58RvLT/LpLIbGCzk6/HX4JffWocMdbfHjW78dvJM1xke4fET8U7JvHcA3zheUrJqua6QDrnj0lOTLpdr11UH7mfhGu5/TcLjcQTt/+C8niI/sdv9qTvCMkVM7fJU3bUUslQVo/yIXUXlRz/VKRz9s89thF9murbDWNsKPz08+dzBjHM/cmUNyxvX9Kf8NN9ywe/Ob37z46qD9rrvuWv5qz0Ez2+GqET/yRf+o8eSMy5k+P5BYG9evrUbG55w0Hs4itH+BV2FH23r0YfmrX/3q5X3JPHY9wxVT+YbrfmwurfXWLBz8fCcPIxxyeN4bzBccvCmvzV7XFkxULPkbX2x8c7AI23tFMuZKW6EPtwLTGu43rY3z08Gta1obL332FId9HfrxXZnY+nxwP5BDNH1lP3n+omxUGxcXLBj4armFK64oLDW5fBJb8x7eWia/YJrLrhl8+RervHa/hzmve7GwoSA+0o1fbsy30j2vuI3zWVzdE9zj+NGa4bPCR3klp18+9BGs5gy+Ik/Z4Jdx1zKCQYZPiBwZ8fFfG29i8BVfLWZyrb0OgfH4KZ8OX9mjU0lXTu3/OnCWZ7HTJ6PmH3/KG74Y5IsN/rEvt8bylTz/0leTtbbJ6dNjA8lFeU/HGJ9hGiefDj4/+EBeLHCNa7sPa5ejsOTCPLIlXjjk1PJl3LzChuNDBnKTyHve8F5urLU3ZbRbI+5PrudyJZ/8kzO+3H333ctvtjdnbPNXDvljDnu/h1H++KyP5EhB8oHEwTYMPvK7NWycjdYAn/gLg7w1Td4/Q7355pt3/oIKsX06tH2j/XSytcluGdgysGVgy8CWgbM0AzYR/TNU31KyYcBr43JoA2Ec2dDYfLSpiV99KCXGbGSqbVpsZtQo3eyq2VEO8ejYLKWn30YrHWPpGkfJH+LPsTmuXT+ZZ9CeeT0RL72TyTcOa4037ZObMslmR+w2pDa+vmFiA4tnw0jGppOOdnnSDgd+WGpz3IY1nPTyxRxOXFhttrXNu3F61g3c1oK2EqYaGReHAj85fJvhiYtXyRf9iC/5g6+dvXBgelj3kI+H+Cx+Ptuky0P+GSdX0Uf1+ZtevtvUl0ty5daDRPODn/zE0uZPcc6YnrH8TM6Mw1XLRQ8M8uhhih4s43jGlcY9aPr2FVsedHyryf2B72Lna98WiofPf2Ns5zcbyFg2q43lC56YPazST6cYsxs+2Wyo4cs16iG/h0E65g6fXDRzzE6+lmNyfEkOjtL6xeeXQlfRTif9xsLHz3ftiC5iP5zG1I3ThaXmA9LvQBPPvJM3f3xOl29K/UX5JC/w6JQ7tpo3qo2r4SrTjnbr0BqL4Fh3vr3q23D09cXRvJcnsoiMeBCefnNnXtjGa9z69NcYvsFrHcsHOeu3b12ShcG2B32+lmNjxQS3tpjI0HHw4N5hHM/8wUD5gk9HbL7Jfuutt56Rn47xLX4flD/22GPHbc7c8YHd1q224nrIXzJdGzNu4xUyyZOpz1axmg+xm2N1ORVz8978wEL6/Km/MPcv+WncujOP5q48Tp3mxE/oyMVb3/rWRe7QQTv8GROfYRZT4zAR/tq3eFNmYoSfnrHsLKDP4uKt+eIqHrJyaG15T7LWJsGdc61vbZtLRbs8ySFcc2W9znXunmvcnDVv2WWPHmzxWEeuG7hr/4sTv3XAlrk3d3SsO/b4Uexs1YZBvkM/9sVBp0M/MojPCnIwKkfqxvlLl/+1HbLxpb6xGQddvvOPX+TYUOsbh9n7XvHgReTlSbzkFTxzwh4+cghsHtjDhy/27iUdRhqHEdHrAJafdNR8JCceGGqExzaf2Ojad12So1/MMPinJs9vON5L2ej9GY6+cbEr7MgLmWyQa92yoZ8vdNNnjxwMuPLSuBjMK31y+DDYYJe/+cDXMKwHeRIju+bdPkZpPcLMLgy48oHHTnuh1jH75IyVJ/bw+WPOjMFl17zqK+mRNU4Pjw45fWXOGwyyeM2zWJKTK74ah2vOxIYndvxinOuNPqKTj/a+5lmfLbpiQvxUjPdzMWJiDx+ePeOx/QfmfuKK/iEiJ8f+WsL7shySFWdzxeb999+//MPj7vver60rtrR9cO4fIuuLAa5c0CWHJ0/lauabPt/LUfMWhjyI0fWBJ0YyChv+2vOG/Qe6/vk2Yut0aDtoP51sbbJbBrYMbBnYMrBl4CzNXtyvmAAAQABJREFUgE2E32j/8Ic/vGw+bRjasB0KibyNC7LBsQGxKYuMo+r41XTb9LYBVEdt+Gy+EH8qydTPxtRvTD2J7Jo3x2uTCzesxtJXT7nG1/W0GWYy5TjM+KdTh1k9deXRhtCfwXpQ8NCyjode+V5j8K+80jMfNqYRnvlv7m1i29Amow4XFhmUbG1jcOA177DywSac/+p8UcOhF3brEq7Ys50d8vQi4/W14VibPWzoi5lPxnuASScccmxP++TzIXnj+B4yFNjGuo5s4ssnTHaN0ylW49rGK8WVPH488Xi46oEBXy4R7PD4ZozP4lfo4PPVg6mHk+bIN4mUHiqLcdblgD/x2cWftO6TnfL5Ri4+zPIJS+w9DOl3COJBW0xiyF9yEbxyHi9/qpNpnsozeW18hT9KPoZn7JCNYlBHxVo/LL7AYC8qH/TNnTJzko54lfxWK/CKMcxZs50N8tarWLTznU1kTJFreuTU/CFLx5j1qISr9rDrAd1fUaTjWm89qskpfIatoOxrN1Y+2GOfbQ/ezb9DQsUB9T//+c/jcwbLmudPecwmDPiKtoLYIu/wQVyIbvr6ZJR8cT16UP/4xz9+Rn46xgcId9555843281B/0AuX/gqr8XHD3HguS6sDXHSxdNG2sWtjy+OxtVk5FnekFy4d5i/KaddP1xziKfu3seviG1j/MLXViI4a7r22muXbxrOg3a/0e7LBD5k4ReausU0fSw/E59OemTJ5C/+IZ2pf6gNp7WiLZcoW2o+O2Q855xzlsOf7uf0IrabZ/Hom1v3bPMrbx0uGVeaWzZ827/DPuvEPHqfMJfIHPAPDuz85IN1Xw7zR00+LDrw8Vx73k/oTj3teGJ26Oa6okO/nGiTa0+gzR8Hoe4jvv3PJxj4xhFfyPi98KeffnqJvzXPdjGxwwYMNvSNu4fQpeOQz1+QiMnalUu1EqYaTlQuzIsxhMc/McJgx7VkvhFZdiPj3WfCh5GvxazvfqqP5JIv5k885hfPWiIDIxx9dsh5H6UjN3LBpgNScfKbr/h06SBx8LsPY8jBFGNxymM/S0OuvQU8MnQUscMTjy+MsJWd1jX/2PMhjGscFt/ZVMy5fYA2PHIOosUCSy7kQVtcxsk1l8asK9/ULo98Tq77J5uKPLce+DXXAB/YEaOYYLOfjDHFN73pkmMrG+WbDrnmlCyb+vGMs2fu4KjTN198jWq73sWo79qzDsPgg9zy2SG0nCC+wJZPdvzck39GzRYKe+k8+4KXr/Hp8lltnD2YCN9PwT344IPLdef6e2r//yVcg8asFZQu7PrV1okcwW690+saZw+JTw7MT/NFz7VgLtD555+/u+GGG3aXX3750j8U4zJwxMt20H5EYjb2loEtA1sGtgxsGXguZcDGZP4zVBsGG5cTkXFyNjM2J21q0oGpHCIbGxswNRkbGTU8tY2VDZG6zUt1eOs+PQUZOzS+5oU16zCq11hhqGeOyDc28bTDOsQ/Smcte6J++NXJmhObXw9bDtptHvncZjw5/TazMJTmJkx+wjMvk8y9MfKwy8mhuGAZJ8svBbXh1YbHBls9uNGxRnogyQd42QkXr0JfG6ltmtler6tkyBm3Nm2yPXAYI6/wl38dFpBnX2F/+kuvnGgr+SPfcGzaPcjpK+JSmgv69ORCYSOs2San8AOOmi3+6ovbw5KSr3hoytPJZ7ErHqAUD3EOYjwYl7++FSYf+Zxf/C1mvHwrJmNIbRzlS2ML89mX6RtW2PkbPj/lFHlQ5sc8aPfw6uGYDJ2InH5+y0/+sG2+xIhnjtSRtnElPxurNjZ14vOfTjkqrq6N5Kr5yD4/Eb11mTmBQ9ahAj36bPBFPM1b+Grj5ab5Il+c4bDLd/IIljE6qHiNk1W3nrrnkzOG73DMh4Jsw+V7Y+XDmHjyXZ9MZCwf2FCM45tzhwSKh2Xr9/HHH18OpdnnH7vuM+wp+mxkT0z6FXbTcyjh3sGegh/py4sCgw0H7bfccssZOWj/xz/+sfvsZz+7HLSL32+2W//8zCZf5MO9rbiMy0vrs/j4rhjHkz8UH4ZYi1GuxIRcO8bxwoCDqrVbL2T4zA92Dsnkg5oeyvbS2b8YU/x0zAc/+MHdm970pkXmkUce2X3jG9/Y/exnP1vmnF+HKLzmrpiTXffx8dgszvwvhnVNJztq8mJ339I2V+aGD3TxkHlzH/MtUe/n8uvwkCyiVz75o4/gumer2dFWh2/e6bHl4Mo4fbjm0Rx7H+AHOXw6yFg+k2Wz2IzD1MfnP334bLv+HIhqp0e+vto1Kc4O2mHCM0aWnjG2y5kcyY/i8Mxcs93apG8v5JDdB2xiLcfwYZOBr8BW8s2948knn1xkHBT7awnvKb2fyI0ix7DX+Pzkl/mQDyQOdhF5bbk1v4hs72XGmpvWTfMCl55azGoHw/xHvf+TZ1N+5QVfG7ZCj47ciZttMTVG3weWeHyBwS4MuIiecfPMTzntfmBcvnyT2Xog4z05TFj5Ar/3LvjeH4y3DvgCny15ck83t3CNsUnPnFsb8DosVcs3n8VrnRvnm70Of8iUK+9PfkqPHD1rgUwx8rnrRK3PLzKtMX7zhx2+icUab40ZZ09tfck9YoMvKB3zxIY4+Sx+Nd8QvvHmxZywa77oauMhdcV6cF3RtQa7xvgL33zQd8iuwOG/Ncdv8+GvaN/ylrcsthcDZ+jFB+P33Xff7oEHHliuX9ei+zt/xFk8fFfkvbj4Zj5aj3T4LN8KSl4OzLOYmw84cmzeyfmLtBtu2L7RfoamdoPZMrBlYMvAloEtA8/NDNiAHDpox5/UJiZ+GxgblzYo5Buvnhg2P21+tcnow4Khb6Nok6iPspu9iUceH1Y05fHyI35yh2qyyRtP51A9ZbWTWeNOvPXYmepnoxqu/Mmth04PGTboNo1yK8fJlm/+482NZzLG4NmoInw8WNrN5Wwnl2xjfFJs0BF72jDgWU+wyRjDt4luI08Gj0z+JAfP2MTEQ/TZES9dxCelNps22DbaPZyzp9Bnz0MhG/TkxFj6+NM+Plt49LXFRweWggcHX98YXn4ZU/TDXwzuX8RZLo1nS5xKfovFA1048pn/dMjOfJOVhx5GPOR5MHaoULweIHtQllPEH6X1BRPRwTNWXPkaj294hyhcukp5qE9PKbcwPBQiD9n88JDEfw9KxthD6erzE6YHR/4WRw/75PHIpq/PrsJPvq3JWHYaY2fGBY8MffNxFJEhWx7IauOHmQ/GyHpQLzY28WauwsxmWGHTVdLJdvGSbzyM6mRhyau1Zz7ooHy23jzUI22FzHyIbk743zwsCs++4DucgMkGW3IBx7VlHVsHiuv4qf034hxSh0XH2u9+Iz5jdDvEgAV/Ejm+87WckEmOD/j68NyLHbSfqX+GKobPfOYzxw/afbNdrHxlt7l3D3IvwDPGr+bN3Iox2fJGTl4j/de97nW7V77ylUs8YjK3cobKOxuI/CFqDo1pz2ukvMlVc5Mf+oeo8Ysvvnj5R6i+cQjHt/vtb3zz0bXP1xORuNHa73U/mXVukqtewA68sGOt+ukDB7Y+sDQ/5W3mp3XZbx+Tc32QFaPx5OUHT9+6ZUNu9a2JxvnHh+J1b3SfMA6XDderQh8WO9YHHddJsmTyZYbKD7Ktja5NtfcOOsbJKfrx2HI9Wa/G2GJbLRZ6fET6imuwb9ryCYbi/Zw8Gdee9zIfLMBC04fpsxjJyxW+/DkAtYYc6j766KNLHK4bOer+IlfdM9gkD4NPMMXfe9CMmS9k2TS/bBabPIhXPHDgyYeajjFFGyY5B6XqckWen2TwswMPyQdZ86WwXUz4fELWanHRZQ/hVYuvOOmaS/EgPvReTAZeB9v8QuLij/deWGw47G7OYSZDDiZZOO7t8i9OPtOTCzpk3Ae8B8gHGb5ZO9ps9aUCMvxpHI54ywsc+WGbf/gwwxWvMX4qxstRds2BXPNNwRejnPCFnhzxRZzG2s+RLW5xdejPbrKw9ZVsZo8v+VUO5UsuxOO6sV7lQJ8tPsmHvy6wt+Jz+ORguk/5Z9RiM0aX7WSb3/KiRjM/+vDo0GfTvdI198QTTyzXsG+4O3RvPbIl9/TkCZ64FDasCePackAGNhvZNsYW3xuHm7650Pcb7f4K/Morr+TqMr40TvFl+0b7KSZqE9sysGVgy8CWgS0DZ3MGbBoOHbTbgPw3e3e6a1tR/X183YaJkH0M+EJABUPsFdvYYgAbMGqIkUYCKpBoor4wRl9gg80N6C1oIioEUAERUSIKKmIi8Uqe/Zn/8z0Zzqx9zj56ksdj5khqV9WoMX6jqZpz1azVbAW1CSFrw4TamNmA2LzoG1f2kc2MjUsb8+To28C1IaXbWDhk+BBlJznYiAxZ1Njs114EjviT3nqYbvrVyeRP/XXd+D7sibvWM5ZOGFMmP6obI4tnw+mg3eZZ7tGUJWfezJ8cpkdO3/wn33wb20fkrA125ga5NaTGZ4Nc6whfYY8NZMxGl7wxa8aDhocaPGvFhldp3dGBUSGXPRts/k0fik+N+GWD7eHBQ4ScwW5zblzbA01YdPkwZcJla1IPN3QrMMlZtx5gwjKOenAiI76uw7DF14OaNpnsZBufvJyF0xyoYar5TZ+8hysPWT1UeqB0MOFwAQ7Szr+JQz/CR8WjzV4PO/rTNh+mrHHEb4Vs81wukjeWHB1zJxfWvzVp/Xi4N3+tBxjkwuKX+PTh0fHQ3kMuXDR1wqBHR1lTPk5+/ooZBn1ln2x6ZMVUDvCzqcaHJQ59db6GMWu2lOJWT4KBkplYfJFv823c2D7/+cRnstaTayw/+Zq/1j99uB7UX/ziFy9j1uG8Fps7vrKbj2pjDtHg8Iut1o04yLCNR9e69slWD+7s89PaV8ix0X2nAxX+ZhNmc9KBBJ442U+OjIL46Jr1ibg77rjjnPxGewftLxy+cQD/qIN28XXoyBf5EWO5dEjl+shvMrMtdnn76le/urv77ruXmMSFN2nqTP7p2muM08keNQbD3CrlG098fP9vIuvD2nvooYeWfPoWgnWBuiZcU5F4rCuEX3xyLV54av05p/hkjdHXhm+deJ3zJjye9Y2XTTwFeV0yDls+3U8dxhl3nayvs0Xp8A95hTzb6vxzjdKFgVcMkwfHGGLfvdj6LD8+Fd/rkJjlj18OVflkvbPZITVbdHvTuFjZJlsO6ciL+5DDVTrizk/ycuL1xH1D4Rd/XEO9LjoAZINPMFx7Xo/oiUUO2BIz24p7HX+bKzH5JLd/mkyfD2oyfG4O5Iit7lPafEL5q+9+Jha47lnyxL780SVDnn0+i7N7ozj4q4/oKWTEShe2uPDcX+HCar3AFkN5ItfrLAx9dmHJk1y2Llsri/HDP/oKzGrYcNjlm/mzzrvveYOHbTbZEY+cm2+67JMxLg7FuBi06YhRYSMZ/fzQJkfP65h5bW6sV7HRLc/mUtE3L3yhIyY41oqcw5AL8w5bwffGgNcA2Mbpib01JV9dC/ji5CPf6fMFtpjlw5pgV874o803RM64a8z6gdEcZvfg4GD3xje+cckZu12TsNgPJ/vli+945YZ9thSfnpcjNoybY/+T5MEHH9z99Kc/3f3zn/9c4pUrcc+1yj864YtBPAp/zK3x7nHG5YjvxpoHMvzDv+yyy3a33Xbb7rrrrlviEcPZ0HbQfjbZ2mS3DGwZ2DKwZWDLwHmaARsKv1/qH4jZ2Now2FgoxpQ1kbEZselQK200yNNF4aiN27DZrISpr2x09hmw2bOhlEu5nfmHpm8TaYNq496DgrHyT6Y2/lEUvnmO6LFvs6ptjvVt1CdP2xiZfGxdwDKejL4xfsNKzrgHAg8CxtqgtymfuDDYogODPIKVncb1xWQNGreR91Dm4cxDDFybbw+M5SBbMBS6MKzreR3AVshkn41JYcCkq6D6HhrYZ4MsPPPeoZ5+OVKLtXi7rsojbBjksque8RgjD99DEWLDg6GDdjGSQXgeXNgho9bnr3nJ50V4/MFnMxx9JSpONTJmLsyNGJIvR/XJw1TClyu6rRk+W0NwyNCdtfgU/GyTFxN+slOOLLzuhWSQXGjLjTaZScVZHoot/Slbm45YYKL8L+5ih1WZePT1K/TjaYsLBh591xxZ/a41clFjc/75Rx7B0o9HzvpStMkp8d07UG92wU+WXT7hFa92/uCZqxcOD5v5DZNd/EgfvzH3RPYdvMAxT14DERn2YMIzRiab+THxitXBAL/LQ3GqYRr3iXYH7T4ZB+vfofB9pd7P0PgpHCQG82Vc/HzsAKWY8VxTrnPXCR8cXPjpBWOT4Bi3PuDee++9uzvvvHOK/Fe2+VyO/hsddF9xSORnf/wMgjkq162JYrC23JfVXQdiIm++zKFivo3jw5s6+Mia9slsB1n2BnSs79b61LdeWg/l0vqlh4/HJxiuD2sEllo/P+go+sbYSC8M49akGnZrl7wDV/dv61Vc1mE/8YEPr/u9Q8Dk2KhNxmuq4vBNbsWswDNevtlwH4KF132IL80Bn+jSE6v7RPcKcvnFvnjUXo8c9DsoRA4E5Zg9NsyXHLCB5EA+Lr744mUMrzzNaxlfDPYqfOCPGNWw5FhbQXKVXeP5y2e+8AFPbHT5T54+39nCI0vGWmaXrHxZA/Kjz19xkUcwms/uq2zRhxNGtuloV+izQV6M6sbgGENw5NR8O4TOL/LkFDJiMDfa4gqPHbjy0/qOh09eQfgKSham/Td8cmI1P+0nkuWj3NKjY80h+aInV/wqR8b4ZA7FZAwmbH7Rw4MHG0Y5UevHW/vMD4UcG2o5hisOvvWPUK0R+sZdB4iPZHyjiH1vLDmU9qYVeTwEly75+mwoyJhPsIsJsc0vNb/KizcY/CwYWTq+HcSfed+Ti/IiHwriQ/b4BRd1TXcfks/mgg1598bXjTduPx2zJGz7s2Vgy8CWgS0DWwa2DOzPgA2LTwXcfPPN/3LQTroNmU1IGzMbkzYoNjA2j/pITbZNSRsUtU2ST+b4hAc5xaZFWeuzFd7SOImdP5M32+HEC2fdJ9fYur2W1Z+4s52sOrx46/6UgRHO6eToTDmy8msj6HDFJ2/kP7mJJa82jjbFHoptGs0dfkQ+zPhhrOclnWkLpk1rm9Q2seY7aj2Io7XTGFtzjWiTV/KDLF/yHV/M1h6yUd+Hm105UGyO1eW+8fThegh2yN5BO3wPOb0BNX0lDwtOscGaeWRvxjHbsCP6xmDRQWL0gMi+Bz/jHjI8QPDP9YSXTW3+qfNHDa+44RqPjE9inw0PROYSttpDnEMNOdTPbnNCT9sDTp8W019TttV0ELkehPTLQbJ8FK8DCeteXrJbTaZY6Cly0XqEaV66X9FLnk3t1pgx+mHisysXyPjESa81qa/IhVrue3DLppqNYlU3thg5/GMcnY5f/K3L/M6ndNW1YTauzg98eK0h8Zr38lF89eHRD0OfjvUjHrhiDw8+MmZeuh6NW8vuUQo89xUF6bNZDOWMHWQMseeQyIFl1wvepHxR07euvLGG8KzdP//5z8saS7c1J7Z8qCZDj0+o2Lp+wlgGT46Lx7iD9ttvv/2cfKLdJ9j9Lrmv1fPH2kPs80l+2XSIk79q9xLxu7b49dvf/nb5NLx5mwTHuLxaB1/5yleWg/bil49i1Y4mP966nvLrsbPtw+qaFx+yPlyvzR8/z6XNs/UxeevPJ9p9yME3BBwYmSuFj9V81Xa9WK9qczHJfJljRdx08Dq00zZ3Xk+Q6+TZZ59dxvv5B+P41o58sekatDa8LrKLYFlL+OWYPT7LsesFRvdMOHRgtf7gs9c9oHgd/Duk681ReuYTrtdBuH7/GQ4MvA4uzbOc0oXRNVgccOh4IwlO9w369lHzU8zGuk7hiI//sOSIX8bdH8XBf7bxtcnz2Tg5unIlXn54k4NdPHPqOqRvTGzlCY7rDZbfB8eHB8dc00H02CVrjvlEV7zq8k+uOVPrxyMrL3zmrzzKAzmFXTVs+yG1Pl8aJyNHfOGzXOnzG158fs41wj9y9K0beHyQF/kv33ykyy9xdYBezDCV8g2Pn342yr2RT+wo2ko+z7lbkjr+kGOPXyhd/eadT615OUUwm1uyMPjTnLKtyAsdfplX1xYbYYhJPxvykB4brQVy+amNwmWTbePlgF2lOMRirtT5JiZvrNA3F57frEXPFa3HYoLtmuST65TPBwcHu6uuump34sSJ5Y099ibRmZT/7D3++OPLT3+FTw42/8Rs7ZF/+umnl2+T8PW+++5b1qe8ixORYde6EIMaj3/s0Gu9kS/fbCA2javNgdobCddff/3ubW972yID72xo+0T72WRrk90ysGVgy8CWgS0D52kGbEActN9yyy2nDhTboLQJq2/zZXNiU2HD0ca3TYaarI3I1NW3Qbv22muXA/3001unju6akj3d2Fpn9umtMeqrjU+ZqfvvtPf5GU529U8nl/ysbfgcsn//+9/fPfroo6d+M3TKwFdssm2IPXjaNLJl3swjMi+oTfXSOeYfWG0+bdTbrMPUnkQWT936adx64WcPBPrkUHFYZ/iN2RjbIBuHJyZtRDd7yat7gCAHDxU/fWRzLl+KDTny4OCQmSxcsjb4MMujOh+ySTdftM9EZOnmk/g8QHog5y++HPHL4VgPAeWzmNVi5I+SXvk5nR/mCK6iXd49fDuIELeHHH5OG+WUHH89GDUva3t002/d8VO7GIxH/BCvB3UP7sUFn05x1aZLJzv8LSfikVcY6WWHPkxEnwx5NR3jMNX6xZgeWUVfyVe29fM7u/jwWlf5UW2u04s3azgwyYTTuLHsqFsjje/zxRhZftUWI1nkmiu+hXH4h3w+qhG/5a823yamPhlrSa3v2nTgp8A0poSNF8GiZ15R/qldq75Cbn6ymZ6aLUXO4XfQzl/Fpx4dQIo1fe0e9PmDX6nPn8iYA0P4bK2JjrXsp2PO1W+0O2j/+Mc/vhwoia1DFjHxwfUsx0o8cu4lPnHp9YFfTzzxxPKPVGc8+W+8dX/TTTftPvKRjyzYzWFrh5yi37yVr7Aaqza+pjDw1+PhzjE8Ot7M9+nJ3kBxSPTC4bcc5qf8069e2z6qfzo/0klmjR0/Ofn3uvK73/1u98Mf/vDUPwdtjZJX4Jgzc+h1ybrvPjWxjFtzcOmozbe51baOvZ7Atz588rPrDr65xVe0yXl9p289w0dq60YhE/GVX+zAUOuTsUboscdH15PXiQ4hy02fsHd90MOnq3ZtKz4hyy/XOz/x2GNLbug6qITd2mSXffcvb2i4N1sryPrwBpvXt65zWMZhiJMem/JEV37ZFyM5fLbU/Majwy+y4iJvHvjhoJ1dcbkHlV/j7CjyRLc8njg8qMTPl+yx2b2Q/3DVdMmyYRyemg28fC6/zT9dduYchEWWnPukHGW7uSIXsd0bDXLY9QgfXx7JIH7BgCle/pkz80iXXdhs0yGHzBlfepMEpkKXTnPkzVOH7fkMf+KIA0+ZMbCRLCxE1vzC4rP55L9+144+HD7whRw9BQ7b2ddng6xa7q2H6Ufrm135oZtea4of8pqf8jxx5U5BzZdxpOazOWefn2yUc2tK3/XQQbvXDTbFXSywXI98cg9m78ILL1x+RsY/cnYvYftMxB+4jzzyyHK9whEbf2DztQLPmyjWARnfEPLtS74VH3vkrCXzQVcu5Yodeq15svpskkPmpvsJebi+YXLDDTfs3vGOdywyc74Wxhn+bAftZ0jQNrxlYMvAloEtA1sG/hcyYNMwD9rF1AZFrdh4IRsTGzhkY6HfhkVtM9OGUjscbQ8KPnV31113LfrkNzr7DMilr0l+7WtfW35b34Njm/SJJr82ih5MPbDYSDafzRksJTKnxtRz45ieucWnY8Pbg/2cZ/zWS7hqOuTCb4xsOtXk8sEaa9Ofnfyvbh2mQ651WC1HCj/ygZwNtYJspj1AONDwsGO8B0M42h46kDFYPWgZj2+ML9lZBk7q4PM3X43BUWCojYnZQ0sbezz+e1BQ5IqdaLbx9NmZmMmqy4U2bHZhWjNioscHOB48HEagaUdboavmq4dCfsuV+B2o4CP+pMPm1K3PrsIXBYb58JDmgRqWYs7U9FB1mOKgzzcFjnj4pdaP8h9PgcFXRZ+OdqSdbXYVmPj15YxueVz7Cyufw2U3H/I5TDLFpkbGlPh49OPrs4G3lsnPWZMnR7/rgi5f8MRY7vI9X+gi60rMk6YsrDkvZF1rDkgV9syde4t2eYVXDK0NuPwqV9adf37Z9Wws2/mTffgO9jvogknf/RSGQ8nwW3PsV8JNRhyNud/2oG8c3zjb+h74fSLOQbuvoIeVj8et4SKf4vfQ70BJHOKfsZsT8aoRPX2HXycOX5e9RtDpE+3NHzl4xUZXDA5bXJON43c9sJt984fUijiVZI3pwyw/xZROGMmWq7DwEbtw3/Oe9yy/m+ufosJywPaDH/xg9+tf/3q5h1lbYfyf5v/9JRtm49UkjOebfjma/uFPHf100q9vjL/WnJ8ScY+RB+PVZMIzd77xYcxhm3jZ1u96WM8TvnhhsuWeFHWAC4ONrlttsrDsGTpot16yCdMaZpterxfFBmP67fr22kqOT2x36F8eYXtd65Ccn3hw4NJRXLN8wXdvEJPCZzxj7Lmu+cimtYpPTq7lPHltvnTwa+2aC7J0+cQPeRBrb9iQI1Oc8tj9EbZxuGTETC6+PQS+2PnWNw7FyU95ZxfBgeveiN+cG8s2PT7yW460YfPXmHmSfzHICeoNCTU5uMVNt+ukfBjHh833/Ig379PwWxvk2HSPISsH+ZhcazRsfLLyxjdY4lDwFTz7gX6nn+/m0H5DDsnIj9qcK/D5oyavTUY//7U7MOcrm+K1TuAbp0N3+omnkOcz4qPY6KCuRz4h/PD007Xuihkm2+aBP/ymUy7UtbMrFj7TZcs4XSUf4WdTTa5rVJssO7DKlbxaQ0rXMhzrUh82gmO90ldfccUVp346xni54y9M/iFYCh7dxx57bPnWT3E3R2T5yCZbzbd15dDdvd4bieTZgg+XDpv5iy8216n2xKFbPs0bnfyC4xtp2z9DNRMbbRnYMrBlYMvAloEtA0dmwAZjHrTbLNmURNpk8G1+bHoiPBtJmxIbOxsT8lPfRkf/JS95yfJpdocLG/1nGfAw8eUvf3n3k5/8ZDkUkndzNMnc2CDa6PYgZ9wmkax5bK7UeOaqTfDE0k6GHIwegrSRtWGMXLxlYPwxzq9JyRuzlsQCm5wCtwezdMmi/FWTm76HC0uhwy/4cGpbu61p9j2ky5dCB65CXt49sNGBAdcDsQ2/TXg21fmuhqNWEHuTP/WMF4+4jfELT93DAMxiIpMeXH0lG8kuQif/8F1M+aamg88Ock0j8Yrdg6YHPrj8oc8fhU7rkKwHGHH6eQQPrvB7YNNG9NlT2MZX9GHCg+FA0AFMD7p4PXg253yKYEx/smcexcQPbZRdvsBovsOCnzwcfXJKuHjx6RmTM+PwO6zAm8RWuvGzT1e7tQYTwVOQ8daSPhl4YaSDV5xw41fnQ3361l5zLTeILf5Mm/hhq82bOj/CnHLaxpF5Mrc+AaeQ5yObavYUbbiKsXwirw3PgcS+g/Z8SLf15ZDJde7wDo8da9c/pvRpY3rmvrWWD+qIXXr5pnawJA/F0Jg+TIcD5/KgvZ+OcajsmuFPMfOTXQWZW0RO/C960YuWHIjRIYVP28oFoqOthBF+a0Ns5YBOa6T5xeOLfnU+GJs08zr9nzJnal999dXLP6l75zvfuayZJ598cudN6Z/97GfLPJ5J///HuJzKY9Q60y8Pxq0b/Q7RtPFdQ4o5opu+salvHo2pHZbBcU8l02G4MfND1+uaNcIufOvK9YCMwbLOO6zNPjwYanod8BqH697isHmuEevGYVb26HftsafPPpl8NM5/ePTFo5ZPrxnF5FO1/Myu+wRd/ntt0uYrXD5Z2wrfu5/B4r/7QmscHnmFb/r5TIYd+NoIJn/JiAdeuWEL4WmLE5VHeckX/OyKodywI47muDkib5/iXlcc8Nz32C+nMNOnA7f86rs3dug75cRV3Gyb4+zR4zc74ioH9MkpiC3+G89/8uYk4ics80vGQbs3PtT0y4m45ZGMtrmxNoyTY0PJZuuafXH4dLR5I4/IOox1qG88Pv3skiv2bOtrZxd+MavLoRpOZIzfrXPXSv6q04MdaZtTNZnWJiz2xajke37wEdHrOk8HP9/VZOQ/38jxkV5vDBnzzOEbW8bNu+vPOFtwwjKfdOHKDf/IsCEf3vj1U0+Nyb1SrshZw15LrW1xw37ggQd2P/rRj5YcmMfuC7CtHb6UK3jyy1e+z/yxCy8961GbnPj8X7MPfOAD0rTMydI45p/tE+3HTNQmtmVgy8CWgS0DWwbO5wzYOBx10G5MQTY3ir7NiM0espGyqbPZnZtiY3MD6Xf9fL397rvvXvg2Maej7O6Tyfa+sf91nk2iTzDec889u4ceemg5yLR5XJMNIr5PTHnopCdveDaV5tJ8mUt9+TauaFcmrjGydKYeGfbQPr1l4Ig/U75NvI0sPns23x72rBd9lL/ZVIun8UzxUYzk07NZRmw44DOeLRh05MoGHs0171PdDvJ62IILL7/lVimvrXFy+cdH/s4YtGffODk68PJZrR/RKcbk6cYjhy8+Pk0q7+ooWbjy7uESHhmx9GlAfhnni0PFiny6H3R4QcY/aPSADkMNR7t4+SV/YsPjQzHjkQ8/X7OvVujwc1I5UCPYyFry4EUvH/IHDj6bjdWnS04/W/p0KmRQfobhAdCambGTCxtetrUVGOkZi08PbvJyPH1KzjhKd+kc/sm3+mo6MBSkng+0dBT87IVLlz/yrHh4VouV/+TKgxoZg2PMdejwx2+6+qQ0nnG44ejTreBbN/X5Rt4hkE+k8z2f8WEqrSs1/R70rVuYiJxvDFn7yOuadRvmtMkGeXlhRx8O/Na0Ph2kJuMh/1wetPspsdtuu2251sQlX90r2Ms+vjj4jPQb579DK9cu3WKBV66nLHmkLv76eMWtTs84WeuCbXL5ps2vCp38pBefXP2lMcb0/aSNAxC/nQvjqaee2n3jG99YfgtdfGIJwziadhbGETxjdJS1342pw0tWnf9TThsZn7TWMyaPXpfkz/2rOeIHvuJaIidGtSJWeMZ6Q8m4g6nWA3yfAHfvNsYG0raOYbOHb69Hj13YvY5a8+yQcY/tQBbf/Tt9MjDITKJHzr2APTasxSnHXr4Zd126Tsnhz5+AgQXHteZDHq519xwYfOODGFwPavcAtvmLxK6taIvTHLKnhmMdq/NLf65tPsaDSY4P+Ijdir5x2Hj5gW8e2eeH/FUbIwsPLpJnuhMjTLlQ6JtXh5zWgVzBb65bN3I6c/X3v/992f90aM0ebDHKJx/4x758uqfzI5/ZNVfmKVkYdPGLgQ7f7Fv5heSG7+Izzm7zz0fYxWMey5GYasNQxNW8sNmc4YvNhwNaF2zzn60+NAADFTfZ5gCG/CF62uyLUdzWc3E2Rg6mmOgbdy2KlQ3x4eU7uSgb4pRzuQ8jOX32xQYPySG/+ABDW37ppwfTuNhgIHKuJWNks4+vbcxrm/tv1z1Z86uwzzae+TJXbPDNa604s/n73/9+eeMXjw/yTJ8vCpvuaVdeeeXyTVQ8h/q/+c1vdj/+8Y8XWXPmzWM5hOuewK6aH3DZxpNzPHbMd+u02Lu25NlB+4033rh773vfu+SlnC2dY/zZDtqPkaRNZMvAloEtA1sGtgyc7xmwOfIPufxGu09y2DDYbCBjCp7NhtpmpXFtm2EbFZ/20CfTRlRd28bKJx1shBA5BD/Shq3AUlCYasXmSD11w/hPapiTTmfjbG2HHebp9I8aw5cb+e6foc4HgmyIQd5tRP0USl+jxrNZbJ5gkVGi/GsO1IiuNZAP+Ef5GdbZ1taIDbDCJ77YWPvEiTnPXnW+8q3CZnmA0RrC5zMbyMba15l7GKDTw54HCOu6mMnDsfF+4fD3fnuwMo4P0wOh3LKpr7RO2SWbXzN3ePW15ZgswocPU8z8UorJeDFO3XRghN9DERwlO42rK+x7MHM/EEP2fbrIQYM5MS7eHt7l0zrzCVkPRmSUZ555Zpk/Nh10wePfjKH8sYOM8VefT2oyHuLiweFncajJTpIf8xJf34Mu3+mXX76RKS/mlw/6yWkrYsqWPr3w2caDq2gjGHJCD+GnWxxiqZ0MPxWyPWzmpxoevkKfzfxJLlz9KL/ygYwCh5y2OI0now4rP/X5YKw5bY7w5RGesfKhz05j5tXDtk+zO5ihxzYb9LKVDTj462uBnrn1YF3O8p1NpTWkNmb9Wh/uAXAV68t17h6LvLnkOgizWIqHzMxdvrEBv+uOHB1+iNdPxjgcPxc/HePNP29g+yQ++/InJoX97Mq7uJpfn87t05vyIdflBU6lWMsjOfmur45qi18uZ4HT/HYd4ZU/tRIGXyK8Oaav5BtcdNRBuzel7VHkI9mw1eFls3rK1J5j+YRXgRVNXrLG4ic368bUSG0uzKfce51yvxU7fodExnsNEqfc01WTcX0ZR9Z942T6rX48+SlH+nDJs921KRZ9eNazWtx8c5+3tjoA7RogT8a1T47vzR+f2IFVnPQdeEV8ose2trVrTu0P9NnVd2DHJp/E7aBdzTabMFzPbIvHPUtu5MDeIz0Y5Vge2KWLYJUj/fKBZ6y5i48X1tSTi3Lq+myMn3Sbvw4G4bi2+EZGSa+54j89svlGpntd4/oOKuVbDthw8A6bH8UrV7D+8Ic/LN96MS/mMuJ/cZCDD9den09kFb6aK/fU5hHfHMPkY77RPzg4WPYX8saX9oXs8s+9zD1fTc+HSi644IJlHvWRmg9s862aDp/ZzD828P2fD/h06cg3vjdx+W0MH6+1BEcceM09v9mGw0/7J+tTm748K2T0FblUxN81Rx4+IsPP5ocN+HLj2uFrcsmqYfCvvMsDvdaR2gEyPNjGXTPwWp9w+Ypv32fNkG28WC+77LLlp8zgyYX89joq5+SsufaObPJNfvhJB66D9j7RDoMdeRC/Qg+Gn6Zx7Yrzla985e65555bnmnpeE18/vnnl3uCWORIES875dLe1fMpDD66h9hLmM9syhcM14g3Ez72sY/t3vWud53K99I45p/toP2YidrEtgxsGdgysGVgy8D5nAGbDZ9ov/XWW5cDBhsPPFSNZwOibwOm2CzZCNp02ST5BzQ2PmQVREdJv3oZPPmHTnaw9LOhRuGEZeOjPfW08f4TWuuvbUzsbB9lN3512NXruOOzQUdB04ew8OlXklHXlmubSQ8fHbTTM2/ympw+OTT12Qp/jqW39n8BGBj1Zyzx1DOW+DayNu824T0w2PTOg/bsp1ON3/qqFic/Z1zFaoPuUNim20MKfzzs9QBuM03Phh/JkwO4PtFuE88OagNebouDLplizXdy8eiXyxmDcTjGkqGXDePG4pFhT8EvzmkzO3RdQ8WgrxQvvgcyh+rk5JEd17i5MCceQOaDi/uANyccWPRARM7PWbg/wOhr9/zQLy5xupfwmR/ZSwaPzHzQzvdyrI+KQzud1oMxcSni4kelPKn5jV8+tOnCYYdNY/uILL/VEZ38bT3AQ/kPLxljirWowCPXnJHNlx5y9fNZG+UzvfwNW43IVmCFXX7I4U0sY3Tw+cVuRc6tFQQPlY+JIccwzLlr0Zte7lXllx5MMghGOPj06vODnuvXA72cIX4Yi6xX60zNF/raXf94+vSL0ZrvMLo8ZBcuntI85ps8TB/x6SHXik/E3X777efsoP1zn/vczidO2WRLHM2FvjyaD3lvLTlMKDYyYpYDOSpGfWPFCadY4y1BnfyDVx67N6n5ApO+/PLDnKEwwz0JteDUhktOjbJdThvbd9D+zW9+czl4cf/hS7L8DC9MPFS9dFZ/jDWeH0TkKQoXj6w+u0o0cSZPe47BMJ/ur3Dce10zYle8hjnU8rrZnDcmXmvCmGvMOIy5NtlKn62uQXLGXB/WBH6lNcTOvC+b23nQbpwPcMuBuRdDPrKBOnxzfcB3n3bwhsLwWmJM8VqkwIJtLfv0qsNM/Xxz+No1DgemQoa/cuHe06GzWL3+q5s/WOS7LzSXxlFj/ELxxcZm/pR/MmTlAmZ5JUeXjnH6/DPf+OzC4Bu+8XzioxziwxFb6821b9w6Mt61Li94amvAt4qsJ7bCoMsXnxT+4x//uOyD6CP2jeU/HixrzRscbIqRL2TNn/mhD5+efUb7inzni3njS7m3N8wvcZl393xzKSf2ufxXl+dyXy7Fyg/+FBc/kBqmA9byjEeHrNcCengwWp9qcYitdQ2vfPNFfA7qYcw1zb/ig1sezbc5xoNbvvlFRjzG5KP1ID98xYNJjp4+v/kmDsR/MopxfrCJ2MDzCW94/G2+2DIninnGh2uOzZ3yile8YjmEps9Htn1LzH2BLBm2XGMKH8yj3IiVb3yYn2jnN5z8gEuOf/7Ramv2kksuWfYA1ikM3/510G7vLkY+y5N2sZKzXu1dtcXitdE65W822Sp+v9H+0Y9+dOcnyhB/zoa2g/azydYmu2Vgy8CWgS0DWwbO0wzYrDz88MPLP2azGbHRQG0c1HjkbL5skmyMbOhtbmz4+iRRelNXe5YF/PAPPBTu0jnZx2NDraRPRtsGUm0smu14p6vp76Oj+Ptkp3/r8enPxKydrjrexJj6+MknW38tZxxPbVPoMNmDh4dX/PIKk4y+OdVWotmmZ+7VPbDUT15Nx1qZWGub5PCUKYdv8+vhgq82xGRsem2+zTlin21lTdknkx9k4MTTRmzYXNvoa7PtgcJmHvXQAZMtefKw5BM2Nv353jj9ciKfNuV86NqBOWWLX12ZMWl7IDAGg/38yE599rTJyVP8eNnNjr6HB4UOMoavL+ceHj38kIHDhgfiHrqMmysPxO4D7gcerHyyqAc6vnjQocP/+cCYzdaftSqH9Ys3OWNyio9g87V5VaPyxV9riF+IrPjEpPTAKbbyokZh0RE/KjfGtPfRzPsch0Gvwk52wyUfdn7wUREzOTHrq8nCnQ+f9PisRPSKwfgs2SQPr5yEnY/k6OFbG+SyAd8YWTRzQMbYvDbwigMeefNk7VhHxsyd9ZCv4p/rI/7MHb9cn16LtMlYL2qkhqHA12db33WWjDWdDl+seQ/dHQSxWYx0yt0CcPiHLvxiTrYYyLm3XHzxxbs77rhj97KXvezI9RTmUXV+vnD4LRvfSPOmlnuZe1pzqEb1rQUxIHVrE1ZvrJkP/idTLdapGx9PgdG4vIpZkY+uXRjuD90j0lVP/MX44Z9i3DeOJ7+oOI86aPe7vdYGf9g5W+JHvtCFM/sTj1/IeHJ4fCxGtXH+F0M6+BPbXJhXB4/WpznTb22Zb/c5Y63tsPXLv3t1/uDxxxpH5gsev/Cmr+ZOwVPYV8ixA7M46Lu/umbMsTG67IXv/uEa1S9O+bHu3APEhsgpZMSH3xo1zgckP4r9q9fnPhkL07XtDQrxweEHufa68NiQO/ar6bhO+Q6nvJUDsSvFIG44xskXF7vyrk+WfW0yYWkjfHGQUVojfJIXPuDBxOMbai608djBEyMb9LJFxrg58hqOD1N+7RXdj6wzsePDUZP71a9+tfxutgNR81de4JcHtfXo0+zuccbYcf8UX/sKfDHCMAd8tU/QZ098XhPUZOmaS/jGEXl69PHlyJslfJdHWNkMG4b8icf8IX6QJ2sOZ96MwybP9+acvNfe9hPGrXfjfEZk5NWc8NEn5Xt9Ml5c2mLiL2KPLr/45FqCa1zea5MzrpRPetpskuUjubCLlR02za+x9GEl6xqA4w3K9sX68qzIJX15YSu7PtF+/fXXL+ueDePevPBGGBxyrgl7RWuOz3Dk0jzlm39o6o1zc4KvaBczOW35Lm5vmLHZgT27PhzT67cxVG7LAT2+iN08ssVv9sjIoXXDjjm96KKLlm9Pvf3tb1/wytnSOcaf7aD9GEnaRLYMbBnYMrBlYMvA+Z4BG5Vf/vKXO5+Ia0NnY9HGQW0TqbY5aaNqM+0A1ybMZkadXrpyo73us4naMM0N45RPjiyZaNoJo7Hj1tPOcXRmDOSnb1M/fvVaL9nG66/rOV67OtnyNm0kg2dT7LfxzZPNIfl0wlCnM3lyrNjUG28jO2Xwp+10mp9krZs5f/lBd8ri2zR7UOrB0sa8A1ryNuQ9LOjnu3YFpg0y37Xh6is9WMiHzbVi028TzZZNNh1+wKab/x4EfMrF9YBvXDs7+ooHCflCfIoaN1a7MXj4bDUmD9ps5EPyyfSApGarfBqHR1dJ3jh/5QJfv1L+PGD0IE6WbfnpwYOePFlfHoYV+eSvtvnqQdy9gaz41rbzsQcYMooDD/EgPpErP2o8fhVvuOQbd5+yhsphsh6i50MXXcQe3QqbbPB95mkR3vOHfHPE1iRrTsnnbKgj+pP008Nvfq1Rcye/Sg+f4mC3Epb+nP9pk0y54xtcRJ5tlK/aeNlfx8hfZfJbz2o4xrMHK79aX+Tom3+HauSNmUs86yT/6YqfzzCtTYcZXsPwYMGQNzj0YOWLePCNw89vdtwPrG02xGvNeH2DzW86sJC8KXCzhQ87u2wbg0kPvkOoc/WJdm9m3XDDDbs//elPy6GiQwDrgs+uYz5XxMkfvnRAK6/4PnVI3jXTXIhNHuS4IpbmgV5F3FF5Jgvf/VQblmuKHT4iWHIVPl75046mHe2ILFzkoP2mm27avfWtb10w/Ea7T7T//Oc/X+aR7FoXL5o24qnJzLi1FXxl+h6+8fKAVy7V+vRaG+FUT9vy5wDRIajDLzLubekas26bs/w1jped+Zpm/psDvlsf5kXhH56c4tMvdnzXnesNpSueri/6vVbQc32xnS/Gu9fALjfkXBtiw1fKn7i9Vjus6/pmz2GdIn73dYdqvtnRG+LilL/IPcEni42z6xPwrhNxsweTTHsD10JzBUMbiYFOVB7wk5F/sTi4hq0PXxtNXHGKn211a4u811YlXvk0BtMcmRPzBZsv8u96Nlb8zTcZh+XG+xkXcfqU7pve9Kbd5ZdffurQkZ/5e9999y3ffpVjsfOfD3LPP3Ms3z4ZDMu3dsRlXvqWAX/4KS/dn923+eEQOlxxKYgd7daFHCP3Y7jmD7HdOtOXB4WMeNnmJ7tyApd//O+eR949X13c2aPDD3YUeHwXX9eKObKG6cqNtvni6wuHb4h6LVmvfbboz3zC1jfGhj4/3DPJ5odxfHVkTIzWhL2YMf7Kn3uFMQSL78Wn5rei3TdgzLe1wx+xdI1qi4UNWPTk0ifar7vuumUvaJz/9oFywCf+wfBzcb71YM7w5M665a8YfSrd3NFx3fNVmx3yaviuZfbp6/tWg0+5yz+b1odxtTUmFvkgz475dg/pE+3WYH6yoZBt/vnL72uvvXZ31VVXLbmUm7Oh7aD9bLK1yW4Z2DKwZWDLwJaB8zQDNhEO2u+6665Tn+Sw+ZgbtzZ2Nho2UjY5DtRsTmyQbaJsYOikNzces12a2sDM2tiUNRYlZ1zJTjLVye+r6SWXPrnJ36eXzBwLZ/K08RuDu48a3zeGN8dP1zbW+IwBT3w2kwcHB6ceRGHbMJq/NeXrxDPvNtx00jOeLJ72UaUc90CYHgyFH2QUY/BsYj30eBgw3kZeTY5P4rIW9cnQnWtW30bZwwkZuPodErLtgcvDu4cJDyDw2CBHR58cXf6rbdBt1o0XA1tyxL52OvtyjOfBLt05B41ll4w8INjlEJ8d8nxSV8LlXz6S1UbGteWlB7fGy5++PHkwUeSET/LV4QkMDyPmwX2gAzv+yuV8IHKQQZZtNpTyxSf5gC++/PcAJza+oGJtHB+OWikmdbJ8448HS3psisWDrgfD1hMdGOnxRzt/yeU3WQXRmcRfcdBla47rl2+4ZNVo+jzxtNODVT74UzFP5sSa5WM+16ZXgZdNbdQY+dYEvv6MQUwKGba6RiaeNh/pliNzWjGusJktcvJdzvOpwxDy5tFrTocj/IDBDj+aR9emB/rmlhwc9vmln50w8rl5I9eadh9iQ4HroMZrnLyElR942cFDZJSIbZjkXDMOofxGuzqdZI9b8x/5HdoPf/jDu6effnp5U9XvvsuHQwq+y1Hrjy1xusbc/xx48Avf//2QP7kmgye28qCvLZbG8dC6LtfkxCyvePDm/UUMldYNvGLTnpQdvNmmq++TlA7a3/KWtywYPhXZQbvDmuYk3WlHG7+xabf5TF5cCj4e+/mQvrGZK7lrHmDTS0Z7FuPhyJ258klRNbvuuXSRdvfM/MAn1zzA1q92TZlr64SOa8l92v2En3h8NVdhLY3DP+aQLLx0+WqeFe3uE+zxXzGmT984Kn/WqBi8fiiwFXpkxG2/2TUoLlh+V9knUV3rXq/sRV0PHQa7tssBPHFb5w6Zkdcne1ivWcVAhr3ehMenm+/05EhujFXEpcgJYtfrz4kTJ07NlRzAQvSaQ7ziZz97/Bdb80ve9Sov5cA8dS+Eyzfz2JsN5OCZazmCIWY5IiN2r5XuG/6J5ate9apTB+3TRwft/p+TT2abf3HKCX8rfHOA6qBd0bfO2EN0FHPcfYZ99ypzy2/EX6V8alvn7Fkr/PJa7r7cnkyc8itnxtMlo+jzs9cFWOT1xS+nfAu/udEnaw7wyClyzncFweeneyp5fvBZ7cBX3tTwEB/Zo9c1xx85I1Ou4BdL1ys7fKBH1niYfJRb/sk9HL573enbrWRhwbZ++Nt61qZjb8wfb0xZN4hvcqVo02WjdcXupZdeunvf+963yPDPmPklx0/49F23DsTFYe7UyZB79tlnlzUhvvZtYqIvfvnj8z/+8Y9Fj6/0fZvCm5L6YvQaSM8asA5hmRM2xWnNuU7Fq29ts0+GneyRR/x00P7BD35weZ3B48vZ0HbQfjbZ2mS3DGwZ2DKwZWDLwHmaAZsIXwn1z9Q8iNo42Wwokc2GTYfNmmLMZsOm1SbXBsYGMp31pmPdZ1NB6zqb8ff12Qlzys12eupkj+I1fpR+GI2Tr22sdvzZnzZrN66u3di6nuNTfvL36TRHB4cH7TbX5ip9tc34xNiXUzwbZbLWgHpS+uWvMXy8+NmCp90YzGyo22zz1fqCYz3aaPODHjljNtGIDJ6NcbhkbZZby+zAsCk3RocND0Ee3m362Tam8BG+erY9MPSGEgyFTTp80Ed0GjOO9Nkoj/m6DJ4cN0aGrCJOBLsxNWIjHlmUHmz5oIf0a+try00yjeOLxZhcyaG88cnDqHY6xvjXQbt8kvEA7WGHLH/ky0MO8kCTPjtIDO4tipj4UnsROPxTrPXJKBG/2YPJJn/55qGPf3ji6cEyP+iHQ4bd1pZ+dmbc2WGzcbLisGa0izH88qoWixI+Xvrh0cMzDwpq3uNVt87pwpXrHkZhK8aq123Y8lbRJ6ufDlyEJ34FDiKDiotMY63P1nQ48lNcxsiJF9E1Dx7iUWtK3bpgs5LfHqa9fplb/sHzWgVfMTfs5APsfM4H40q2kpFjD+cdePCx/KjF0/2inMGBq8+O8fyxJh1q+b8o5+qg3UO/f1boXt9Bu9fmfM5Pvhejw0T3QPHy0wGl69U1wOcZp3Y5p18e8SfpK2Ivv+VCHwZfzJFrEpmrNU7rYWInO2tYKN98sv+Tn/zkvxy033vvvbv7779/OeyxhlB+7rO9CJzhj1jWeQiTL9qwySiIr4px1LhcaSuoXFSbD/PaQTs5r1lqWK6V8k3HekRzzZFj2zhZazF/0jEn7h3J6lv77IiXvFj0w1F3LbNXfvHoz1hbD2x0MDevG68hDinFVs7Scc0oDuxg4/PNAZkDcbritg91eHpBlXoAAEAASURBVK6wAz8bamu9A2ZxuGfYv87XqeRcH/wRA3vk0YxJ/IrcsK8YJ2ve+NZPqMSX//RmnNltPmE0V12T7DfXfELy7L4nH2woeO5Zajbo803u9N0v3R/E7R7htdK96KqrrloOSsU+55Yvfn7p0UcfPXWAD1uO4fKF/3x30H5wcLAceFpnrnO+RGTNgzG49gvmTS2P5c6cllsxOwjlO7vk+O6NAmtCHy65XjvwyLOtyIs8WKMz/+yIn/9IPGRay10TxpsTtsTF59Yy3eZLmy1rlqwc94YO//liLswZHG28/God6ZtbsSBySFxs4cNT+FbhOx5sGHLturKetcO1J4JJj03EX4UsG/Kc3eKDwQb78sMWHfE6hPapdvPATyW/1Ii+e5pPn8sTXPntW1Vy4Zsprk9+KWwpYeDxv29NsmNde02Dy5904FljrnXrHh/Jg9hau3jlrDUBh75Clq/+GeonPvGJ3bvf/W4qC87SOOaf7aD9mInaxLYMbBnYMrBlYMvA+ZwBm5ZHHnlk9/nPf37ZgNhI2ITYgCCbF5siB2g2xzYkxmxGbB5tXtQ2g+mcKR82Lm2W6NSeenhrfv02SVO+djL6p/PnuHLhnq6eWEfJrWX0y8N6bPo9x5Jf29iXQ5tCG2E/HeNhz9zZIJpf8sbC1seno93GmJ1yzTb+pDbm+Pk248JTYMJR+MBOuPHJkDWupEfWmrMZx+Mne3gTixzik42/B6AekOKzxT+24HmQ8KDuAaR1DVtujBdL/ljj1juK5wEDbnlbBg//6POFX3DgTzxy6aWjJsMHdfqNe3DhV5SvanbKAdva9LWV5p2swm88PkTk9OUt+caKgS6SC/54sJLHfFPDZhtph+sBZz404pvT5ldO8dha0+Rp84OsUuzly7iHJGu+eD3QeiBnv9jYVsio+U5PyQbfWkty46F65id/y0s+keVX4+IphrDZRFNHOxJPc2je2ch2+GKB17XgwZOPeGToN9flB7+Svepsq8sTu9qKmGDPnNPFU1BYarpdK+JNJv36i+LqD33Xpwdy1ygcxHekb368FplbD9Hm2bixDmr4IH+ua1QM+Er+L4OHf+gq5K0JfjcXcslGh0Js4ZEXS/NFJx4fYfEHz2upT3ueq0+0O5C45pprds8888xyLTow85rserMWxCfmOR988VV5nwjmj3GfiPdpX3KzlJdZN2/q2sbTw5vrO118+TDWPObbxEo3THXjYZNpjbILzyf7b7zxxt1VhweG5Lz58N3vfnf30EMPLfkwD/moRuwrEdxskDEGOz+TS6Z+eOngk6nWrg+LHeuvfJBjh35YeNagN4Rf/vKXL4eNM2447gkK3cbSc+10jVgT1icZ69CBlOtKH8Fq/cqrde3a6jrRJ2s/OPXyt+sFNl7XjDXomoEv/l5HXZN8KwdeR/jk/kuWbYWONcqmQzU8sbrmrWM6fIJHlu9ihRF+uZFH14V7hXF50/dp496oKwde22DTJYe8puiLtYPIxuWHLlx54psDP5/wlRPj4cgPX8lVa/NXIY9fbpKjJz6FXf3uR2Jmg32FjBqG/PUaIg48vpoLrxly7p70hje8YTkoFSdd2HDY989Q3SMcWrNtXuXOAbIDTrzuK+4t8kNv+iM2tpp7Y3DaF5hHOuzLfdcrvROH3wxQyyHfrYUXDn+ORY3KEeza1oz1Ika5Ercar7lwfbVXgCP37Wv4R7a8Gqevj89vbbhi579xhe9i1W6OxCqf/OeT/LXuzDdMB9vsZqu5Ns5X/jU2feFD+aZjLJIT/qVfXPzhP4LLZ0W7HE5fyLUu2atNVnF9WWts05MPrzFek7wB0/VDV27cn/jEJiz/ANWbJ7DU1hosb/y0huG2du3HrT3x4ssdefEia9Bc6pfb3pwxJ0is7JgLdmHh8VvO+EXXaz5byBsJfm7VT5WhmeuFcYY/20H7GRK0DW8Z2DKwZWDLwJaB/4UM2ET0iXYbdRsGPBsNmyG1TYqNkDGbE7XNmbbSRnluNmAcRTYzZyL6+zDY2GcHL/nqtWw2jefDWmZiJ6+emOt+Y9VTb8o2rl4XcmvbyYe37sevbhyOTac5Ozg4OHWYYj7Nm3FzSl7bpjU+Xny48qQPz4OUTai+dZG/+qgHljandFondMn1cNPaCtdYOOHCxBNHD9L8YVvd5pr/2mxos9EDEB5ih57NPR5MG3APYnLBHwW/9a5PDzZ7HoxsyD0s8Idvxacmi8imuzAO/xTb9H/GmVy1seKjy3clP40rxvDU7Cvx2RKrMuXxm3M1Sp9NsnRaE+H1gEzWmFzJnwcg7VnmHMFnxwO5hxl51IfLFw/PzUHxTH1tMsWWv2oYyFiYycPygKQvLg9lzZMxpK7IIzvWMaJnnltLbGjDQnyPYJQ3uaObTzCnrLZCp5joFkuY+sYRPDrNJ374+a1v7YtZLsjD6CHRmL4x7XIhHryIX6jx/MTTZg8OX9Jjq3WYj/HU6YY9+8WyCJ38A1/p8K2DEPqNsQeb//0EhDE8ObceUfmRw+znU1gnzZ6Sp1Ohp+iTF3PFenBQgozDF79anx01f7rnul58Is6D+rn6Z6if+tSndn/961+Xe5P7mpyYd3Wv2XLo6/rdSx0C8tM8i+fxxx/fPf/884u/4pkxaFeMReXUHBpXi1/cycsZqk8HxafDvnqScTxltsMJY4756Ri5eOvJ32j30zHf/va3l9+Wdu+xJviX7YmhHbY6Cr/x+mSKP9nq8MNpTVoLERmldRNu42o88+XNcj/p4cDJmrPnap2Rkz995NpG7tfm27prnVoPfCJrHbp/6yts4ZdzGOKDwwc24OSTmKaOOJpbsorx2YaJ6MJ0XaTHTwWGGBxqddDWIabXDj5as37Sgq8d1HWQCJtc9zvyCjk/VSF3rlm6bMuJvS++dv45BPRGH//hGZMvMcFyEMymcYdwCpnssW+99ZMUckeGXflWuzbJabdG5IAeGcRHc2CcLbLsaONpw+g6p4eP+IrIyqtiXBzurXDhW1c+eX/llVcuh5+L0kk9GHR84+Vvf/vbknf3FvkyR2o+mUv5cKAqd829uSpGPLJygcd3fsND7lFsyW8x0+G3tSy3Hay6njs0FS9dc2LOyp8+fbZQeYODTw82+cbNtbXJfv6W47DErC3m1p8cymvXiDiLW/7Xr6diFrsxc0BeX3wKeUSOjHF+wyx3coXwyajDEZu1hPDKq3j14YZtjKwcmkMkJ10fYi0Hav1J+jDkQ97MAV3+qH3gxyE8bLJsabPHjnlyj3O/NqewvKa7XsRh3Jxo54c8mwdYYjLGNtx811f4RYauw3j3DvMsZ9aRb7l48w1Wc8Y3esWuljd+XHLJJbtPf/rTy++0y4Oxs6HtoP1ssrXJbhnYMrBlYMvAloHzNAM2NL/4xS92d95556lNjQ2JzYTNirbNBjmbQIdVNhuKTYvShmduNshH2nPMhuhMRGdiJA9nYq1lZj+56jDI2PypbQSjNXZ8dbhhzb52/alTu/Fk9vWThd94vOPUYZOFYX7M34nDTwF5QPFQTQZfbV7rN4/Fpq4tT2jOd/rJGMezofXwli24NvIeGtpwW0Ooja82HPrZZQvhsd96tCb1Pdgg646szXIPDGx6QGFHOx/J2UTzT1tuHEi1mbYm+QS7jTtb/LbxRjb9NukeIujRYddmP3vlhm4xqWvzh53GF+DVHzJ8zH+ybIUjHyg57cbpFTO5ZNTphw1ffPioWPW1xdQYfbkzB3h05dCDZQ8y4vKQo8ghn8xN8h6gPDw55Cg2MvTKOdl4/KfPjlJs6jXxVzFGL5vWCDx880Sm/Kwx8MmWNzbF0toiLyfFxO9J9OEbN2eIXZj68YrReP7g7fMLP3k1PHJqugpcvkz7/Mwe/x0kqcnLvXZ9tTWeLX4hcmKJyg3cbOV/McLIP3L48cJR4zVWTPq107G23E+69vEr7ORHB+35IR+u5WzwZfoDgy0FVZv75PJH3/pUtNlEYpdX6xqPbjrG2UD4/LGekGvGAbvXXA/s4S2DZ/EnfJ/GheWQvOuoPMLmo777nQN++ZQbB+1ezx00GPe/Wp577rlTfoqV38XFnvjyV78xudBX1y73hZR+GGymY63Rw4vCwlPqN76v9hM6t9xyy/Jb07D7Z6h+W3oetE87EyefxVicjc+x7gHyHbGnrAmPrpzLF1w8PoSjP23qJ0PPa/hrXvOaZe2Io3tZc0S3PHn9Y8/92qEnH8n7BLg8k3PNu7asRbKo/JYbc0/GulEbd/BN11qmhwezmPgsJj6owy4n5OjCm6+9rSPyZNy/vNZ6cxaJQenw0f3KulfLAX147hMwHKJ1f2ufYN273mDYk6DuK3DKDTw5d/Dn8FQc5MnIlxjpOfwTh3F58boGW07I4okDFuKTmOQXBjnXHz7beHJDHr6+XIiHLfNBp2KMr/D4AAORL58wjLkHaOOr7WGsKUXeHIJ6E8KbOWzDRmQjc+Gw3TdorCd5VcjyuTm15uRaXK019vklP9ryAEOezJMCp7jloTYMcfKRPbpw5FdbLTdy1G/286e8iYE8kiP5QDDJlC92zJfrxJjXfjzjcm6sWmxyKU65ZM96kQP7RCSm5hsOXbj0EJ/E3HWmTYe+1xT5wcsuv9k1Lg/6+Q8Pjw1kvRaDGq7Y5VVBcq+UX365Z1jj7IpJ7uiS4S+f8mcBOfwDl3wknv7JKVk+u45gNy9yK1euaXa9GeUbFf4BqtjFVQ74T1ctZv7wRc1/2OEeHBwsffj8sIbES7c9u9z4Xfeuaf9MXN+884cNMYldERte9yD3Q5/Q9xNl73//+5ewZ/zl4XT1dtB+uuxsY1sGtgxsGdgysGXgfyQDNhIesD2o27Da4NhQ2LjYoNgE2bAgmxqbE5suxWakzVcb7pkW2KjNSmNsIJuT2W5cTSf9yaez3tQkV538PtmwbbzIi2PiTZ2JN2XCD2vKzbHaxivx2J+0D+N0PP40Pn2LZ8Nt/k4cHrR7+GjzbD7LOVnx20Sq6Sja+2jaMW7+EUxYbZ7VbMAh48GqjevEoCMPyZJvvLHGrUeFjM0zmzbx+vy3NtXWo7bNvVjgILg90OBpy8nc7MNko80/OXpsKNa+h+kO6Plts2/t5wveem7ZNxf5yja5fDM+iU1FzsjxS0xwy3V5yTf6ZBU8sSO22JGXdOWJv2oEiw575NLX5zfC91DZw68xeSqHMMjqq/kRsc9Wh6EOF/KPDF1Y9JKlr5//+vwvXvmZlM/hwsHjNypmvLXuxGGHTTJqa7m5hakN03j5TD9cNZl8liuy4kkGljL7fK8fJpnm2lgyM17j8NMl44G4WNnnd9eI2rpVyOorbE2iZzwSD1tKvrSGklEXdzHOsaPa/Idbbsmx4fr0kG0ejMOuGGefj60tY/jmznotJnz69acf5Nk15mFcTZ5PsLXhuTfAQPhsO/RwABU2Hr1kzIF+r6mwxePA7zOf+cw5+US7A0dYDtr5yFd2K3zUlg+HaR0Q+nkHhwsObvnvJ+R8YtU6ReWA/9rlRb6QfmPw8dVykyw9lI5+PLIoHblLTg1HSa7+onT4J9n66g996EO7m2+++V8O2r/1rW8t/8RRnOWG7j59fitoPd4YfjGWK/LFvNbFl1+y8hVucYerLtbwyFo7XsNf//rXL9eB9ebaJCuXxcQn8t1vvE45SKXv9ZCedU7P/cF6INN9Sf6VYoPreui+j9/hFB22YdEpRjUbfOALGXrFhUcXrmuaDTLyo1aQe5P9qE+ZIjEo3dfgO4hjW04VmNY/H6x5Y+y1Z+2ADLY9CZu9nsH1Og4XH46DU4eoxS0u9yNEr+uIHa9pChnyanbZgsV39+B+sqa5JpNduOKALTdkyuGMjTziZzh8yHY65daY+ScLXy0XHUrzTZz2iq9+9atP7RUXI4d/yCP5dtCueL3ghzzLGVty4/W//Sab+Mblhm0+mlf5h8G3cm+NiJM9evKA8MXqoF0+HV7LJRz7MVjWlHXqk/Tsi8laMkfmg568KJNac3xDcOFnnzx/+GmML2o+03Evl8tyaN7EjcTX2qMHgz2xILmIRw8eHTG5L7Mhdwp9BbbCB3HlvzYewutZrmsMrsJ2uYFLR4z49JpDvuCxSY6M2pyXS/Jygy8O8trWuzdxzZ++OKwveSpONVtk6LnWfKPCT8f4nXbYvaHIBl08MRR7ds2x+eKrN3n0+dAcipcNNpH14ifSzA08n273GuraZGOuEbbhyi88xTrzf1B8c+rqq69eMKfOwjjDn+2g/QwJ2oa3DGwZ2DKwZWDLwP9CBmwkHnvssd0Xv/jFZYNng2Ij0cbTBsMmygbLBk9tU2FDgmy6bKTUEcxIu/5xNiPJ0p/t8NYYyajXY+t+GGT5XwzkKmTSCzsefrzqMNXx1JWwsrWWTye5+snNfjLTlvaaT8e82WD6ZIkDFXNqw0h2ys+NdGNqGJX0pk82rtYImfD024yK1xjdHhj0kTH6tcMgy+/8wCcH0wOYTbmxHvI9qGRD28ZbsRatVbww5cIG3MFDDxFqeGTgkGGnBwA8G/HWPEwPQXB6IGTLuM2/6wSFWX6Kc8YFW0HsK6i8TFn5khfyxpNJvlxPHWP8kTvj5YoMn8sNTLzyRKc40g3XGnJ/oCPP4tM3L9rmpXEy7LIFO7sezK0HPD7Ir5osDAWePp1iDQ+vexIf8M0bu3Qj+gg2neKjm75xctnCJ5uucTRzxV92k2N/zgk+XlQfT+EH0mZHTUaZPqavJldsbCtkw0yfbHhkIrJiMK/a1qpSbrq3FxcMlB1tPijFSmadR2Ns8Eebz3TWZBw/O/lBB5/deA5uHJ4o1oU1mV7Xppg8LDsI6rqEQzZ/s0eXfVRbHwaig4zRwVeLRTGutuboyaN7gnXNZ8QmoktGnx4duK4jB+3+Afm5+kS7g3afNGXLfar4+coPufPJPwcgclRMDhy8SUHuL3/5y9J2HRf/EsjhH/1J5VBcsOqz1f1jrZM+vkKnWtt6ivSVcngUVjLprQ/a/RSBg/YHH3xwObwS2z7K3r6x/DWWH2q5LldTJox8U8sReXUY5UofP8oX44ocmzu/C+xgz5ozX4iucdeCIvdqenxzwGWcjsPO5kbt4Ekh5/7Jh65p+uEbt3aNz/sGP/FbT+GwF5UXsrDhkhdP93m+uAcp+Y7XayssmIq1TSYs9tllx72iN+XIuI/AcX1qs+ew1gGbw1Qkfj7JDezicy17necnW3SMF4c9ggNdtXG+8xfxBWb26Zh7cvDlUcGn171OfMVjfo3zH45+vHLEDhwyleYNX2xq8jNvfDQmPuvD3Lu/XnTRRbvXvva1uwsuuGDxg302In46/HQQWrv7Bx/5Lh8OO+WZbXEjWPpqsuJWw2nexc8fNuWK3w6cjcOxblrHxSQu+wnY4mAfBl8QXjkkw6YctZ7U8kqeXbju5XhypMZjI5/V7PKxNZ88e2JE7MGHi6c0P8a165OFZx26H1urMPHIwOC7fHidMw+tJT6QNc6GXOnLhZzRdbhMvrjZt17bn7GP8h2GWGDHy188/pVjdvkJg61yQU7exOQ6UlyfcKc+HX359izq0Juf5s1YuOyYi+LEZ8shPHk+8Ck58eDzI7+Ms4UnRjHR89Mx/X8SNromYaCZA/77fxl33HHH8sbuHF+Ej/FnO2g/RpI2kS0DWwa2DGwZ2DJwvmfABuSJJ57Yff3rXz/1yRAbkTanNi02YzafNpf6bX7EblNi4zkfMoxHbeDitWFR49VPPrmj+lM+2X049KdseGrySr7hkT1K3vik9NX76EzjdNhKrr56jTn7+Tf1pu7Ut4G0qfTw5HDZprtNpTqCaa7b0OOXl2xn1xg5m1sbeA+22uHCCYsuHLU1Qi88tZIf8fXjpWvMZtnhlBj4os+uNjm1dckG++xZr9akPkxruk870Y/okUE232yIS3yotc+OhwYPOOsDZzIKLLb4o+ZjscHSVooRD+krbNj8Tx1YSnLGir128TSHMGCJKzwPDuT56Holi/I1H7IH04MPHTw4Hmg8ZKRnjJ1qfimw8pldfTKKuZEr9vlhnuQVsWHNeiCDw1c6E4892GIzTsecebg2Z/rG2YDPPoKD6CkwUX7RKX/LwOGfeHwuBjLJGafPpwqe0sMdWTJ4M47sshVmMvqT6MkHHWP5P22mk/3ypI/kofWpXd9YuVInD0/cbCF5nbHmf/b0ydArV3zAXxM+2XzkFz1Y1h2bbOu7Fq2H1l56cOnxmT2fRnMIYf1kU52teGtf8Ctw+FGsyRrPrpqPrgN8OnLpE4QOMvD4Xx7DpmcO8Tto/8IXvrC77LLLTslm77g1bNQn2h20i9f1JG/lLF/4ID9qccqdnDmEwfNPBbX5CQfRFeM+MkYv2eRhH0X5ku/kZjs9cpV47Kxlk8lH/wz1pptuOu0n2mFUwq4Or/HszRjJilueui7TV6erza98w4dTHHOMLCLDh8bU1ptrwOGO13K284uOvjWnkHff657ldY+sa8U6hY1ao8bE4B7qnmXujJGHoRi3btIzRoYsPa+rfKTvulAjvojVGDvkFQe8F1544an7NTxr1tpTh69W6JazfBOz9e2eD19cbOur2aFrjTtUF3u5d2jOFh2+4DuMdw17PZI/h4Nidh3B4leHuvridpgsv3DyWZu//DMmd3yOygc+YqsYyXvNpcsG4j+7cCP4+q0RMgocuhX3GfbEbh7ZIkfXGP99kphNr59+R/vyyy9fDsrlkBzMfFHLXd8ksBfykxsvvPDCwuefGPwMiA93WLN84Wf+8wdPTvDhyzkf5ZQPZIy7n7q3yb055iceH8RRXGqYbLd3y4YxWOzLuVzKAyKjyOdco3RaS8bJ84FNOZBLbWStWyfwmw98fWNiivDyB45+a5t9uRCbtSiHYgmXnHE5d8+2VptLMsZ6PuMz/9mWM2RM7uS2tccXsfAbH8VjD4bY8hGumGAa0xeHAgMZF4u+cXZdS97gde+yJqw1684apIvIy7F/Wu3Am11j/BKfNQKrvPMJPlsO79mFgU9OHhH9YjPWnLAtBrmQJ9/2sdbYKp704uHLMwxvenpz2+sNInM2tB20n022NtktA1sGtgxsGdgycJ5mwObD1/XuvffeUxtQGwqbFZswGy+lTXobKOGSM2bz0wYIH2a1zUr9hXn4x6YkHrxkJz/ZxmZ/tuG0yame47Wzt68fRvprWTrx1EqbsPBmPWXjh73uJxtff8pmB89Y8rOdrjpdebWRdNBuU+shBK/xqYNvrs0nsvkklzwfFDzzbRPs4dqmGW58G+UeVOnSgRVONvU9/PSwFR+OuOjYzBa72gOxDTVdY22S86uHKeN89CDtwcLGGCZ5m2sY4bJLXiFj0+4hwsO6mj/yIi42XRM25GLWp1Ps5NjSR8VCJmK3hxM2o3SMi72YjJuT5qV88ROuQl5JFm528gGvPMiNOcqmGn59OPB6aM1/8XpAksdk6MAV+7SLBxMvP/OVffMilh6I1GTlRt49kLFHlh5ZRVts5Yf9HrToOHihx7ZPhSnuS+TLUTkUAzx24cz4jcVT8xcmnHTKWfp0jCM8+ROPNtns0q/MsfD2+UEXdvhTBhaKlx15gckGcv9unsiSM04//+TbmL680WlN5/MCdviHL2wUY/YbD4f96SM9OnS18yF5+toV68GDsHlFsOiZTziIDWvINZ+/y8DJP2vf51hx4MmJuPkGP9/JKCj78ci6H7pHyB9yfc05K361eB2gXHrppcu3yByeivXfoXDnQTt/4DnY8MlS9zLr1wGNAzKHjnwjI2cw6CBj5lxs+PlVTSab2tHkJYu3j288Gfra7JnL7OLLfSX5OU4GNSavaN9B+z333LN74IEHlsOp1sz0L1w8NlE+FUM1e9r5Sw7hV9JV48FUo8ZghFmcxvHCSdf6cvDmN9r77WPrtGuHnvWqwLcWFTLhsZFNesbIuCcg68Q1Rq7rwLi1jO++37qhb62rXZv2F8ato/JL1rg+//kmHnwHvP5XgNd0Y2zCY699Zq8r/AyTHF/02bO+3R/EzFY5Lm8w4XXQTl88YiaPYLhXd4DZYb8+X5vD/Ou1k33XsZjlFTafu/8Yt0ciky1Y5NlT87N4+SKXCjl8uK5dB6/l3pi5Qnxij0/FJT+KvNrryDv7/IMln+yag4ODg92Jw5+LsS9S8Px8Bz1Exz2CHl/Mj7x4XeUPm9ruP/jyyp55ddAOW5xswmG3HJhDBU7zYz/pvjjn25t/7Mun13dtB7cwywlc8RrvcB+PDGx+sSsv+nyVX3mpkFfEyb55K8/ljWxzLTfWnlypzQW/5muQXLS+yStdc3zX5xcZ9hCf+dtBNHvsIrU8kjHvSM2mfalciQsmbLmHzQ+Y9MQoPjIz9uIWBzn9ePTpzDVPl6yaLTVsOWOTX/S7pv2muW9KuI+p/Y8Sb7aVdzkWw/3337+sJ7bKJTveSHcdkMv//JM7c4tcW2ToihFlQ5uOPoJDz3olzwZiWzFWnsq5eTNmnfpnqNddd92iE+bSOcaf7aD9GEnaRLYMbBnYMrBlYMvA+Z4BGw9fr/7e9763bIraQNlE21zY5Ng0adusGbf5UGwu8NqIzlzAVcipJ7Upwdde98mmr208jNr1G5+19pomnrH0s40XtvakZPGKffKOkp182NmiO9vkZr82PnsRvQrebOunpzZPNp0enGxutduck43ypbnFb25toGHZkCYHA5aHSMVDhjF8nyLxSZs+TWKDbrMfDmyyNqsKH3vgMMYW23RsZtlFcDzQeBiExaYy/coGPGvV+rXJ5xd9PnsIUNgoHvjs6rML18OuGoUFA6ZPE8EgSw+x0XUSbxlY/WEj2/lbrokaZ0dtXJGjMNnBYzsc8uXJWDjGIxh04ZpncUzc5NQw4InRAwgdhU0H7eWdjFy79j3c8RGP3R7A0q02zr6cIn5YLx5QYRmXew9gHtbI0jWmoImlT84DtgMT/umT9fDv68DZyrfi5i+scluNR5ZcBV56xsjqy5VSm674FX4kK/czBuPZjh+WmKKw66vDp7+P2OIP29nAM0/mBeb0H0Z9coicB086sNgko8BU4Lf2skM2IguPvUnptoaNlw9yMMjgyY08uhewBROxTT8MfL46hOiAij6sdOjBVRA+GVhqfrDH52IjSy5/0tMno3gY56O1CsOYNS2HcBU8pM0na9xBg59r88m46eMieMw/4Vrrn/3sZ5ffTuYL/sHBwfLpUNeGvLgW/IZ71wQZ14bcujfygd/yaEzJr+r4uZeMcbElZ3zGjT/H5Gn2yTaXMJE8KWSjtf2JQRatD9p9iMBBuwMcr0sTI/+tLT6g5rB1kXyybGpPHXr4xdXaKCczhmINR9+6048XXjxz6o3EN7/5zctv7FtzXZv51XUCz+ue61edbXLZsjbZ7BBM233dHJDXh+/+7N4sVutEjsXGL+udnEOu9hf0jZMzrqbLX3zk+vKTK9a/Q1G4CJZrV7Eu+ajueua/0uuPNXtwuMa9TqH8pqewzRYMB3T8wdc2JhfIJ6hhOIDt2x2uF4ducoDIlg9jbMm367h1i8ceOwimOO1Zmkc49MQgJwiuQh8ePXGyQ88Yn2Hrs9f1iicWc21ty5Vx2GTkVz+58grHevL/GuwPvc7bX5GXDz4iPrWO+M6Gw9AO2suTe4rDa76abzF7PYbNF+uMLl+tg9YE38w7XXPjcNkn6ltjam8OiotP/JRfWGr+tS7Ea9weAOGL20+KiZv/8MyzubWuywsf2IdHjs/um+ajOWhe4eKpxckeOTZgd+8nk01t2Oy4pmBp579rgD2Y+PIkF3CzJybyckwGiQcWuz4F7tsF8NkVW7GQ0xdjesb4VdE3L2TEwi6aGHIsZjx2zQsqj/h8lj84MMjAc71bW64J6+KKK65YajLiNafW0cMPP7zEwhe5hK2YR9cnPPHQY88aYlON11zIAyr3auNyyJ4c4rEj93DZQzAUa844+9awmOi6RsVz66237q655ppFB9bZ0HbQfjbZ2mS3DGwZ2DKwZWDLwHmaAZuPp556aved73xn2UzYgNgY2UTbWOgrNlb4NhqozQ6ezZ86golshLTVR5ENSiU9fe3ZX+uvx4+z0Zk64a311r7mA/n01zJhJTP72tkorjkefjKN1Z+2yOqnkz/Jpqs2TzaKL33pS5dNuzaejeb0Q1tp40k3/OSmHRg9xHkYsOnkE30bVZthDzF0bVKtk2zCRmRtXslMn7LXgyJdZBNtg2/zC4vNHrjzLZ/htX5tjtnhB58VeZg5rU2fPbjsqBEsm3bj1rkHAv7Qy3/XCTtsR8bCxkt+tpNRK4ivbImzvDUWr1jzedppjE5tenKuz1fXNl+nzJTVFn8PrXxyoNLDhzzhwXBfUMJT90DCr+LRpidPcsq2vFoz64N2n4YzVxOT/+JAYWl7SPWA7VNSDgrML9kXDr/O7uGTL8UpLpgzr9kwpoSNn2xzC8c4yhc87YoxMvwXO2p9ZFceWkN47PBZXtQR7GzWVuerGjWmna/FYox9cwRbP5vqSNs4PbVrhw6+ePAUvoatrg3XGFlFP1+yUW1cDpILQ5+OMQWeHCrGpj19OTTGFt/kzwNzeHgzRjrh0EmOX+Sah+wbT18bpcc2ufybeXE4JXfJpqvmk+vIJ+K+9KUvLT8HQu7foXCt89tuu235jXbXreLNKodd7pWuMTL+iaH7c9eE+5nrx1rlg+uR33IUrX1jc/Jq09GuTy7/4oVZTuuTk8vmBp+OnJLVDivf8CafLFr/Rru9TQft7jPZUIeVbfrN4+Rl2xibiC4ZZBy/cfz085Nc/hqrDSeZeMmqxe+e5jD7da973TKv9M2hMbatRXNuHo2ZR69TrmFEphisP4Utc63w2zqxFsoJfOvD9WSN84GOtjGHv3DoOKTlg9fteT2Sx+MbPnk+++S0b9p5o57PCJ+97jtsaLuW+E4Xjzwf2e2QfPosHnJsw9QWA334PvWrXT76CRvxOLCUO/IdHMOAD5c+PDzxiK15FoMx9yDj8un1U+zuaeVOHunCJCdG9ozb43gtg8sWHkwyrUt5dv9gF8HooJ0cPnx27M/Idx+GpU3HQfvBwcHyuum1XWEbX27ZI+easV9oXelbW8bEqu+NPnnFl1c22XYYWSwwxKOInQw/s8EeHf+zwnhrxZzIPXk+anefEj9Zhc/GrcX4MOmzSZ9v7oXmuj0QWeP8yDexyh8dPHGyq60gMubLnsNcmy/3VtiwUGtMmy/N5ZwPcbIzD9rpi0NM2mw3H3Thyh09+mJhu1yxx5YxxFd9PoZVHPmoTo6sPhk8fqjlRKz4cgJP7qNk6Ronxx48h+tej1z7rluvfydOfuOhGLyB4zfaHarDLR7j2tYXXPgKGXnIPzz3B/KuBbkrT3wzXj7ljJxx66aYxAKjexYbcs+u3CvsbQftzfpWbxnYMrBlYMvAloEtA0dmwObjySefXB5GeyCxqVDa3LVJbLNhU0JPaQNnDOFVa9uoKPFmDcfGR62sKax9Y2ucte5R/TCrJ3b+qud47WzO/trOHJvYa7mw1vy1zsTTXucTL50pa85sxB20exjwwIOa02TlH6/+rLVtUCeRt9H0EOmhzMabTzatHjJ84snDzP9j7956dCuq/Y8/b8MLkwbP0XjWmBgFMagoCFEMCKIcRBNBvXGLUUOMd0Yj6MtRBBINQoICETlFEePF/238+1NrfdljT7sXvQz7Yu3MkVRX1ahx+I1RNeesWf300+Sa9+aYHTbJKnBXjIUDbj7Sh91muE2+sTbCYbRhhpUva9Jatib5QXSyWYz49PjBU/hiuwMALwo27Qi+XhzCzRceP9kwBgc8xcAPfjEug8c/6JAtR70QZJ8cGX22skG+sfwWhzF+JuGR86LQS7w+nXwnz4eXql5a5d1LcLmiox0uvuRBvtmWi/yxEy65bW7U8uqQwEsPeTbl3Qu/mn22FePZZK91yT55X5VhTerz79NR/mmbtniQWvzsaRtT9NnMbnHxZwxWdfzypK9M2+zhyZl1PH2ypw+jNWY9ks2H66e5YTP7cCH6M57WO76CxEcGNQ7/1OOvMvFnA0ZttrQRffPLljH85LKBzye8xuhncxk5/6O44tWnxw8bXS94CpnZpktOicTkWgxP+IshbOzEo0svnfzXL9b65OnPa0E/vja/M+d8Vdh3L/Pd7K/XQfsrx79UuvPOO9c/M3X441r1yUHXhTXoEMbhhXsz/+KFz4GVa9I6hM89E/biEdPM0wry+Ec5qU+m/BRnfTIn2Ui3mnw6tenxpZw0Nu2SQScdtP/85z8/PPTQQ+vwVD6av+0aoy837JLJJz4y1rg+mUpY1fSstfTxFDTbJ8ktofM/kjVHnuG+Zsi88hkOftxrembpm1f3VfcSuuTZCk8+ikefDcV9lw1k3HqRJwXJn3Xi/mqMTYV9Y/wly6+15b6sbo/oueKXqQ7d+Aufaxdma1PxXLCXQJ4V7o+wkeeHvkNnbRjgsX7hbm7xWq9svPzyy8sHmzDDIW75Yp8MDB3qlWeycx3WV8PDP9/tOdzjOxBnk5z89HzSZ5tf40ie/EKFHluomFbn+AcbPR/Ls/lWzAscckTOLzLkphzwxy7f7hEOPtXmQHFfgoFucXfQjjf3PmJmC3459Wlq9xe2+YPRPY4eOfMJG7vG6cNJXr61+faLD3KtBbmhI1axsIPHJhv4dBsXB2JD4UvO6fIFr1yFhx6MCnvpGlcQG/yVE3bpudc6IOdT7t1nrRtjEVlEV0ytD3064bAGyfKjwCMucjDTax0XLz8wk6ETkZPTfJHhR9zms/zxZyyM2sWaLb7kz5gcipX9YjEOa1i0jbeng4tN15n16Np3L7Nfcy/r2RO+J598cq0jdh2ui8O8GWdLrPoo/GSLAQ7+8+u+6HoKI3023VfEQF7uxcYOmrL5Updn4w7av/nNbx5uuOGGpZPc6pzhx/6J9jMkaRfZM7BnYM/AnoE9A5d6BmxQHn/88cNPf/rTVzdHNkaKDQtStwGz4bGpqG/Mhk5pszNrG7Q2c/gVdtu8qCv4/1sULvZnO3/hrI5/1nraLJ7Jy46xk/iNn1bTaUObja2d+jaaNoQ+SeJlwEZSXIhupG0DGdFXyCptPhs33zbbNss2yjax5K0LnwLroD2b7Cv01DCR1ycTPzl++ExOH3YvNTbE5OTA5r8XAPLa6bQhbh2zUd60+c8fPv0wGdfnE7EhtnJBz4sKPuzWvVxr00NkYKDDrgKbPjllElmF3qR06RkLa7J4lXzpZ48tvvAiY7CTz958geGTvDEvKfrWj5fyxthKnxy+PHiR86JpDLHjRUpfW07JeMnxklnuYCIjf+zRKZfFEqb8ymfzZA32EseHmK3FDmnKARterpqvcqEWgxKxTb4XPDaKHz+CJ36y+tZjNuhGdOVVThVx8C8fDkPlL/tsK4hNdvjIXn716SjGFWMIT7xqPMX8N+f6xZB8vGXgvA0Ye7ne5i/f1dlJbmsvu9uaHBvFLX+1jWUnvPr5ahzOePJQW50M/fhyB2d+pv8ltPmRDTVZNHFqW8PGyrFakXf43Mtez4N2B1033XTT4S9/+cs6rPKJQYdW7tNwOLBQrDH3UKTtYMj6S859Tc5mfopx1tqn9dluTDuaPLmLam/H5RHht97TmbLbse1Bu6/F+8UvfrG+ksA9wf2BT3E3T62nfHU98Rc+bXOXP3OJuv+tzvGPiS3deNM+eeOtHW3jU5aMPqwOqPp/K2JonfNvTt0z8dkzjz2jjJFBxtkqt8XJtzXgvqSQk5PwWLtk2SHnvu1TzDBYL+7p8mE8HPT5IW+fAD8ZfDLufQ6V+SNH13jXibY16n7It3u5T027B8HFjljExwb95oY9MYiLvXIlJ88///yyuxJy/CMMxjr0dhDHrzjp8scmfwrf7JbjYoVZPtTweAbQZVdNF48MrIrciZMNeyoH355n+WVLzAoeGzA3r+zCyQZZONni32G3PJQXMdf2SwrPdB+WkL/mrXsBjEiMfJdf/vkWB7++2uXZZ589vPTSS+srZZbS8Q/za++ZHkxIDOUIdmSe2HPQTw+JR27gNS4utX5rpHw21+wZlwfUHJBLt4N2MvkVj3syOTb4Mv8K3OzjTSx48HaIKxfdY/GKjR4StzwWuxj01ai1gidu+nzTay3mX62QEYOiLd7iNG/NIQzaYncPVDfGNx0y4mcXpmmfXWTcWoEr/PjG820cwZwtvtq/W2fNtXuC3LMHg1itJXnky2G9fCD95PTFyz4dupOnTZaM9ayEkY7rWw7EgM+2OYOdra4ZMtYJW2QUNo37zvm77rrrcN11173qezXO+GM/aD9jonaxPQN7BvYM7BnYM3ApZ8DG4rHHHjvcf//9a/NRLDYkSmRDo9h44NtY2gjRt2GxedFWIu02R7X1UXJssqc+C9nopEt+29/aIEsGaU9dvPA0PvHipat9IZp26ZxV7zSb014yeDbEMGYfL9lqY+bJhtD3cDp00canryD97Mh/7eknm2FQ25A62OylEM968N2X/vzTS7E5pcumtoJstG1YjeHBme9kjDUv6jbmNuVhZMMG2ri2+JRi44tdpXylayxM5YNPWHrJ0EfhJ8ePjXkvtWyLmx4yhvKrzY4ysRmfWPTLA1xzjN/sqhXxsEkuW+HNVnb0lXAUNzziYV/MXoZgyA4/ZJAX9j5pRh+RKydqefBi4hNT5os+WT5QbS96PmlOFq/4iousNsww8QMf8jJkjE1zD199a8O65Jtdc+QljX19udJ2n8IXK54xviK8ZNXimuPw0KmUL314p66x5GfbC7qDDgcm4qArH77aw0umPjLPSsR26xOPTbwKPXjFN/3R0Re/ejvf+I2xhfjFy3++2Q+DvPClNs6/fvjlA007i3GBH/BF9MyvWjFWTvARX3N+8GDBm3w8BU0f9MVjbMasnb+ldP4HnkK+OGGJD6e1qOafjLWotD4cMPiKBN/R/nr8M9S//e1vh+uvv/7w3HPPrQPNy47/JN8127Xg0MPBC8z4YnOY414Nu+vGmE/0wlmO8U4r5USMycSrLk/V5E6icmeMjH7zjVee1VsbjZFD2+9of/rpp9c/en/00UfXIZN7BvutK+1IuzkrLmP4cjLjbJ1nLzl1clus+vCGObuttambDB33OwdV7sEdsjYuTzCQUdgy165TbWstvnXZoRNf7oHskJMP66V7Kmx8i7MDL2Ps4ffpZb6sG2ubjQ7S2FT482lWh8jG2YXHPdABvBofL59yDxub7tf67ot+Een50v0HNmuXjeZBPsQBB3tsWNMI1meeeWbZhM14HxbgxzUh1mLCk5/mgA+FLt/u2bCwIwZycMPbvODxzw4Z+trF2v2aTYfMXbfsI+OuX3GLhT7M8orYh4FfNo3zo7CXP7J8FLfnj1/IuVfYH8pZ43zzi+YaMS7fMFpLML3wwguHJ554Yv0Cw7PdPHpO2x86xM9f8ys34mC/+y6M4mHbvJUz+aUnl3gKe/rIGPlyAbdcs002u2IwhmdvCre51afv2oJXDsphOedPHsVULHLLZ4ez+ny2NuUzgpWeuMnA0XxZB4pxsWhbg/KIV9xiEgO87Ohbo10bxSev2WSHPpxqPq3t7vHlnnzr15zywQ4/2tnTlk8xh3XKGYfZ2jBu7rIFJx59uSrHXbv08OF88cUXXz1oD0P5YYOcPlxigIEfpMbLXjW7ERl2ix8WcrCIX1vNvuejOWtc7GIw7i+Fb7vttsM111yzTIchP69V7wftr5WhfXzPwJ6BPQN7BvYM/B/IgI2G78XzZ+w2R208bDRsHhS8Nlw2Kdo2T8nbtOiTQ7O2SdFXtJUIr41Pm6rGTqvD0/i2H18djngn9cPTWHjTYf+slA06F6N3mv3sNa5fDvMRj4x2fPm0Kbz88svXS4QXChtym1UlWXOJ1M0tHzan2w0qOXo2ml6cvZzYoOKZfy/fNqdeUhA7rRu1vo1/m2UyfMK1nf/yBwPsXqbpFh++PpvseUlSz8KmQjYcfCJ96xZ242o4bNzbhJ+TPPeTH/lUbL7JsqHNR3bgy9fkyzkbyHjx6ZNjrzLHxNN8wanAMG2xh+jBzg6bKJza6ZCTL3bZE7MXwF5a8MojPS+OXsrFGDZ1MZOl735g7ptjuPgkq5DzCTjfF+2llB/rp3nkC8EFizVFhm3x9Kkz8dNpzvnAs07w+CKvNgZHWNlszpIrf3zjhVvNN56CimfmOB25RzAbrw0L/4isOPySyoGJ+PHkzYGpl+x0+VLoKvCwpY7Hpr7Cjvhgzh8+e+zAhS+3Cr6+sea7WNjFS4cc+fTYhaVcahvv2qBPFrHDx5b4QmHVJoev4FsL5lZtDC8++fJRbWzmg0z28KPs4Jk3+nh8FTPZ2WYnDPlIJrtiNb/s5NehiIMPuUEdtP/gBz943Q7aP/e5z61PlVpPDmQ7sOOvg1LY8cWE5xPCrhf3c/H7RWkHNHKBxFkc1Y3plwftSclM3pSZtuBSJm+bd2P5YpP95NWRT/Z//etfP3zyk59cMg7aH3zwwcOjm4N2/vhAYVXLQyX74UsO31zCY56zQQ4ZL2/pxM/mEjz+YZzelJtxkrf2rSnz2uF0+mrjXav6DuJce3jmG0Y+eoaSR637bXxh4dv9xL3aGmbHc59+z3h8fxkhH/Jp/VlTxeWeDLODXfdsRM6hlYNYmNhTmnN+3UvgC6MDUr+gdeDu/mbcWmWzg3bxssN/GOQB1mJx0B5WGMMgzg7ZPcfch8nRQ9mVAziNdbAqf8ZRczd5PUPoFadx1P3UmDgUbXjgg8meSo7ZkU+/bBFfa8x61aYHHx/dh7SLAU/h297tsuNDdp/M7eCeHDt8W0P8N4/hNb/WlPmDyf9A8P7gHy3LM3zWiPl2n6PHBhxq9s2p/Kn5FAu75jK8/Jtf9sQlRnMuPjx26Wkr7LBJhy4/bLHb/Ve+raO+Iog9Nhykywc7MKrby/AtFjLsITlk132TLBlzQwdO8eMhOMnjwye3/EbGFbbJyGG/AKUnLvJqRc7ESM7aKJd4/FtP5IzJlfXEPrny0PUjR2FJFi42jCkw0dWWqw6bw9I4O/zIo3mEhwxf/MqreOQFXy138DUmB/46S2x4ZNhUK8YVbX7hZD8KE518NVYs6myrEb3WEp65Vns+ws6eucY37+7F/lrjlltuOXzqU5961cZqnPHHftB+xkTtYnsG9gzsGdgzsGfgUs6ADYWNsk/X2ZxFNiRKZDPSZgXPJscmxIbHBlJp46Ku2KRs22xNmr4aq55yr9XO/1Zu8mc7bMmHMxkYwhEv2QvV6ZBJb/Km7knj8aZctozN8W2fHF/mxeb56OhovZjZINoMt2FVN59qOoo2mza0Nqv5SlbObKRtNr1QsIusBy/BXr5sssNFj1999tjNFwwoGfWW6PDHTy9C5OAQn1oJrxqfLD/5JoPygW+Trg+bcW1F7uhO0s+2tU6GLBvaqFwVX7bL+YVsswHT9D1zVq7iwaut8Me2woYXIzUKCzk21Ehem19zJ6ZeWsh58VDgMc/+MoIuH2zS0c5u9wNzn10YjOcTZod5XmC8FJpXL1pqsuzRNdfabMo5m+415tR4+dQ2rrDhZUhdzOrmZgV9/MOLbthnzmFT0MydNrli5TO707ZxssaQPnuwpo9v3MuqnPoFhpjIis8vIBwEZDd9eoguWSSnxsOSb3OolPNwka2QnWuEbHPOtnF6eHSQGi566vzKZ7jktesBTx9NO8mqFcR/hWwyxuS7tWisuMKVPsz8pasmIw5tBVXnD4+ugteawhdnPumxxeb0TW4S+Q4jyLEpJ+bXNcaPAyhfHfP9739//VO4ME07Z2mXC7+gufbaa9enAeXKV0I4FLC2UL75cb2J0bz5xajrBV643LvtAcJNd2LTrp9vfXlRIjzjycRXp1+NV06njYkhPTrZ3vIau/nmm9dB+1VXXbX8bw/a3StQPulNX8Vi7rXnODmEZ06Ny2WxVoeFbLxqY8WJh6Z//fSrYbZmfHVMv5zDC5951g9fB+369IyxZa6V+h2g6SNrwDXUtUBfHtyrWxfds6wp+NXWjZp892Bt47C51zmcba9gTNsvG61Hz2uy+AqsMMhx9xAYHEB6FhhT8Kz3rjdxmI95zYqx/QhbDoTnXrW/EOBLjOJQd6AvLzCJQ+74Y9/146C9ewTfYmhOikWfbTHRE2vxigEmNuCWC7FoG2PDoaOv6XE4LBY4OmhvffDBhn555AtedTHAyDeedeGX575ruu+pzw68yrQFE/8wwWj+zLtfXPzpT39a39kvJ/LDttJ8szNzA2eEDxNZsWkbZ8tc6PPZnIuhNcyX8XTk0tpvfyZO65Eda4VdtfUgPjljTzzul+whevJOzri1a7+rLUfwkIVZLQa+rRs5Mo9k8VF6YhLHnCcy/ImBbX7dl/H5Qc0tPfabHz711WzT1Ub6iG1ETl5gpF8+ybNrfsXDLxyo9RBmGOUTrsbIG4dRWx7FK8947PMLB76aLhvZK1Y8v0yDER7UmD5dBQ9mfsWljdRKcvxos4sPDx7CY6c4YGsdmWtte7HuFdamdWLtGX/b2962DtqvvvrqZS8Mq3OGH/tB+xmStIvsGdgzsGdgz8CegUs9AzYbf/jDHw4+XWejpm9zMjd3YpwbFePIJsqmyEZ2bsyNsbMtNjeKzU0bEzKTjM3xxpKvf1Kdv7OMtdGik+0tlpPsJDvH0rvQ2JTXTmfyT9KfPDpTb9vPFh3zZ7PoZcqLmU0iag7oNhfmsbzj29R6gejFh575Nc/IptSYFxA1Mm5zb2PaxpzN1hGZfPOnTN7qHP/YxksHFhvcXhwnVvZRm2vYyPXiRB+JSZtfMcLrZQDebISvzflSHD/KGRvFZaMfHti1iyHfeHRRY8Ps4uGzmV3ycIhH0TfGVv1keikxLp7mgI/yUvzFWE3Gy6m5FVfy5ZA/ubzs+NNvxsLhkIGeucYjJ6fTVvj4Ep/1Qc99hp5Pijls8YLnpZZ/fh3MWFflygGLQgeVKz7FRR9Gh0BecpG1Dy88yWvzwU65ZMM4rArSn0Vc+S6PyS2F8z+mDnm22cSPtHtJ79ohB5cXO74mhSk72dJX6IqFP2PWY1jZMa7ffDcX+Nkix1Zzj9+L+hzDL2/49av5bk3gWYf8sMvvxMoOmWmfDD4s2kiOrInmM/x0lXDzDXOx4htnD8GAYCj22vj5rMZD9PC2sudG/+dP2PIDs7VovdA1v4r8GHPA9b9x0M6fgwDXRDmTG77lwjiSJ/c/BydwitHhoue5NlJXFmPwZl985Vm7eUm3mo6xLTXX6TZOz5g6yra6trH6vjrmjjvuOHziE59Yeg7aH3jggcOj5z/R7t4JK/mIj+mneMKTn+ToyalxPDSxZttY9wvj2mp6Mybt+tVssgMrzO6J73vf+9Y/ETSvPQPI1W9u3UOab3LFRi4M9IoBjx9z36d94XDtWc/uzcbY6ZCVjuJe7nCMjH5rjx55/t3vWmf8IrLu2dZp18yMHR5rtDjcS1zfZMmJsU/+wsSH+PikB2+6nm1yjvBq67sWYcFnkx/y20+rw6rICXmyHSbqi7M4Wi9qOWZT23j5gBPPGN/65QgmfXG6Jv2jUYfaZPn3izQykXj4cW+BS/xILY9skVfkCA61f0j5/ve/f/0Cx7yxodCDDZVXWMTLhzE45N//hfCVZ/y2vvjhA14EQ3GyQ9d6Nm/a9KwDvoyzz17zhicGcZKXJ3ks79pk+KEnhuJm11z6C4XsGmcPxgoM04Z1bQ0Zlxs+tdkIjz47xWh9mku4yCgoGX1Y9bMhZhjFJe/8mmtxiDe5bKn55SO75Oi6dvkngydue4rGW+NyIwfmRIx02WJzxpR98mwYhxNfX9EOo1jFx17XjzZIcfonAABAAElEQVT91hH5ucbI84nIwcQuPipuenJvrDlYAsc/wkcGPvbIFJc+O3gKqk/GmmY3Pb67XsRsTO6aK/tMn2j/8pe/fNgP2lc69x97BvYM7BnYM7BnYM/ASRmw4fj9739/uO+++9amzGbFRsPmpU0JPZuNSps8MjZUHZKxVaGjzR5SK3jsZHsr36aJzKTkJ2/b3tqaOhMLvYmH3JTd2q1/mgzbp43R3eLKnpre1N/amX1yk6bdyacjj14eHLT3Xerk23SSb2NpE2nzK+fy0otPLwBkvUSYZxtTdmw6O2inZ4NsLLx4in41O4g/8jDy13o6N/rv+bJ5VuCCGbHJH9yIDbisXS9F/oRVjY/oInHw6UWmQwU2yg15hR284lnKxz/KbfHBoIhlxqpdrpPNFrtbSjc7ZODsBcU4nOpiKXewIuPy2stmsuWNPExq9hXYvNAq5qU8mnu/oDHu02lHR0drjK54vbh6KeQrwvfSIq9wsJU/dtwrvNgZg82LvmKe+gShtk9tqsPoE32vvPLKqy9EbPHLH/tkzXd/4g2Pl3h54ZMvscGrLsf4SlSb38b4gpev8qaupFtdTvmhQ3/KsgtXuTFOTulgwdhpxH4UXrrywVZlylgXYVBHJ9nKt5jLEx15RtmnW6zx4XCPCIscwDhlyTQHbBkLW3amP+tQaQ2TQezSR+Rb+2xPe2LgY+LHowuL2lgY6aJ00kunMXrlfxsDWZjdH12/xvHkxWGVWBy0/9d//df6ZHt2luOL+MEump9oh7d7pXWmX6zijeBxL4TTQbu4HcpYg9rNW7nkaxZ26mefjqLfGP3aapScdmPa5bRxY/CzsSUyqLH6/hnq1772tcOVV165bHfQ/sgjj6x7jPXdvKczffCJD4sc1eaLnIKMKcmry1V2+aoYNx9kGl+Gjn8YQ+qKPjk+6Lm/feQjHzm88Y1vfPX+wXY+rTNyyDXg+nVNoGwazxe+8eaKH/dHh6fumey6r7JrTbiu8axd91bPBP6tmX/9619rXevjG9fOr9rBlTH5a56tO2t1YqoND3xhNGdK9wLxeS7A1IEtrMiYZ5D1zZdnEl2YyCJ8RB/lzzUqXrmgA6+82UOZA3jZgWseUsrLzK84yLCnmMtskWUDD1bjSGxyJO/Gkeesg2x/CSYOMfoKIbLlih1zbo5g0haffvfDDovp0xO3A/sPf/jD6+tj+CWrIONsmDcx8+EZ3TNUrL4GzkG7v1DTZ4Nt8cmntYHYhEs+EOx8t0eDqXnlp3iaN/0wk5Mf/uSznMJLzpy1ZvDIyqFPiSPj5GBU0mMfZnNRHs0NXnNCD51UyxW/YqWjIPgQPzC3fsIuHmsSTjryC6s1qJ8cfIp1wYZ5gd84Pv8dtOPpmx9zoy3uSnniw7UONx3+2IcT3mzTYwPPXJUzdsgo9ODAM29yXq7FT698y5E8G2cr/HxkK990yzd8YaFDNyx08VqDYqKXnFqZRIecZ7J6khy3D+WTjBjNk32mvy7aD9pnxvb2noE9A3sG9gzsGdgz8G8ZsPnwifYO2vVtKGxCUJsT/TY8GWljaBNt49SmqXG68WrrZyvbyav5MF7ZjumfpIc3Czm2wjzHaoctGbWxKH796il3mkyy1ezyN4lutl7LTuMTX+3qbJOVPxvbDtptzPHNrU3sJLJz40vWC8B8+bE5toFuQ8p2nzym35g1oeAVM936/LZhZiuZcnNSH565wdcWQy81dOGhKz64YaNXrF4ebJi9RJHh20sG3LCx0eZem0zELlInI5fseRlTygtdY2JE2TKOZ+wkwldgUSJxiRfxB4OXAMR2L5x05IOMwpdCXyzasGuzUaEnB80fGTjkzkG7tpcXL/e9JLLlpc7LR4cZ8PDLTi98fMOo8ENe/vPlkN3BkRdNL/Ed/HmRKWY+/RM8hyrWKDsVONg233Q6aIe5TxN74SNP13yHV/woW6uz+WFMTOaOTbnB00ZyWXuq4pmL1ic5OPk0Zs7kplzzAZ8X38anvdr06SByCh4/4mIHvih/8DcP4TAWZat+NXvG6IRVzlG2yUR8m9+w4E/bdBV4wpptusZaz+Ez/+a3NV98zUV4sisXZNhlS7s+LOTiqfHMT7HSQezjb+Nml07yZGE1n/j804HZuu5exa+8eFaKxT9D/d73vve6fXXMddddt/4xYb75FQu84uQfPljjuQ7JudaRgzG8cq9Ons6k+Hjstw740E83OXVERplkfPK10xXTSZRMumQctN9+++2HK664Yun31TEO2t0L5KQ1EAaxsVFhRwyV5OAgq98YWZRuedLXppOe9YSfvXOa53Rrp6+fH3o+RfmhD31oHVCyZ72JJZvaCh3rrGvQeDZrw4C2eXD/kSP3aTIdAFoT1i077Fsv7rX61oz7swNCfQdR7r1hkSd+2fKLJ7j5VeZBu/4k60nBF697hnuka0cx5gAadX/AJ+sahKuDUrnIDuzarVc46YgLn45YxcOnPCjiNQfkxUlfXtg2Li6FLeMIDpjZkQdjU46McXJIPuRIDtmg47n4yvEvmR2+8ifGDtrpwM0/H3C7/8KGpy8etubX9NBDeO9973vX18KZHzjokle03R8UJCfs8yUWB7nPP//8wmgO5AfRlUu5QeRhR/kg2180yCkfrWUx8S034mi+jPOjaFdgieRs5tvexX5E/uBqjG5zT5cfPmEWJ5z8qudBO/vwodr16bOvpof4YJvv8Oa7uMUj/+zIb79U0SdDF2UHT2FH7PiwwA0zPhyuZZ+ON6aUR7aK1Z5Imx3jbGWfjjgUbTjCQw7p0y0+cu4j1m0y7JKBi1w5yqbx2q4PMmKnr5Tf8KsROQUG+op1Zdw85m8Jjx/sKeRhmddMmF1nvd/Ij5jE4P7hF0T+Geqtt956+PSnP70sh3G4uWBz/+qYC6ZnH9wzsGdgz8CegT0D/zcyYGPRP0O16WoTMzc5NiQnbSTwbVIUG/o2KWUmG9Vzs0WmzQ47k/ThMH6S3+zNMRsu9lE4pn46+SGfHB5ZfpObusa3sngXooktuWkjHrl84qV3Idl0k0823fg2rQ4zfTLDS5z4iju/8mwjqW68l2UvAAjfZtvmtRzjeTmw8WTTS1EvjcbCwi49PsJpHNkIJ8tGmLS9eMXjsw09GS+jXtKSYYttY2Rh8nLUizw+/F5EvACwy6+XP+s2v2FhS+70ybJHBo9N+bERR15kFIcTYiSvIP1sa/OlRMYiPosTv5cR49lTw2BetOWvF1Ry+cMvt3heEhw8mAt82Okr+TKmDUPx+xQcHn/WkBd8eaUnn2yKXV7LnbnG49Oc9TLNpny7xyjy4FNtHbSnIz75hiM8/PBhDE9hD+HxwY61bm3Akr8+0eXQwScv4RKrcXLaykkkTjjkkCwiq1+us9E4Gfjkh6w2Wf6aFzXCT06fv2T0TyJ22Iz47bqjq23tyH0x5l8sfMiZNaCGEQZ65NggwwbbFbL4fMdT08HjC+njx2OH7XSMt7aTUzcH9Dp4YE8cMBULWQRLhU522c53mPTZN6aevtgiJzfImHa5qk0mu8nxiQ9jdskg+bKOGyfDFgz4/gnhvffee3jHO96x7C6li/zBNvKJ9htuuOHw17/+dd0P3Je7R7UOyFboaFsDHcbB6+DMtTZJjvOTXuPZE/NJJfmpn25jzac+X1G5bh7YaL6nvXTYwf/iF794uO222/7toP3R46+Oce+XD0S+ucqnuninj2ILC7l42SA/dbTDSx7pp3eOcw7HVtdYcsVlTv0VhHuytWZ+u1bNo3XlOqanbW0izwe42VHEr5Cjb0y7ZymZ1qiDJvd9PPdrsj7xru2Qlh33bd977r6aT3LG2Ker777sl/7a7CvzHuT+bh/p+SE+61Gs7u1sdK3x6/qxbh20e5awxRcfns98sAen2OSFDcUziA86xuSxfQyfZIx7nifDtzG4HNoitnuO6Rt33xITLGzDoWYPBnz+yBpDxtmVL7F5hsk7gsWhq+tb3mFnXx5hZsOaom8MtvLBhzwV4wc+8IFllx/rzbzBxJdfIsBmDuWVTjGwQwePL37Sda8wZ0dHR+uvLfzykH9Y5c4zGUb5a079s8snnnhifd2QvLDr+SCfZPiFz3psja9kHP8IS7kjo8BHN4xqhS1rgv3iYhufTjHmH2bt7oH8mANyfKvps02WTTnTJmsM5V+dPL78saFoG2O3552+OMyLdjKtKTb4Mq4mS45vNvlD2g6cyZgf/Pwaz4ectx8KPx3zpe954JdorSl8+ZC75gLGnjf8wEYOX+GLH+tGbumzbUwdwWe94kfJsavQV2AkB8PMjVy4Z8DQLwvJKeWJf+vO/YEt+GBDrQnxWFf8kOebvhqP33e9612He+65Zz1v6Bq7GNoP2i8mW7vsnoE9A3sG9gzsGbhEM2AD8dhjjx1+/OMfrw1Vmyl8tN1A2JjYfLR5sYmyqbGhw4vanGRHbbwNnzaZ7OWHnHYbnDA0rp/N6Yu9Nm6Np6PGi08vrFOmdnarp95pMsmqT5OJz17t9MI3+dNvdpOrn/62L382jj6V3J/o4s28sqVvzvMlLza8vXyya4yMuZ7zJt/mE88GtE12MaizT1+frJIu2/XTY9MGmkw8bXLsick/8PISZdNrLHtk6LDLhqLf5ttLYjFZe/hqMmxrKxG7fBiXE7lkG0byXkbYtP71EQzG6VTEb4Mvh8mQY0vhpxcY4+Rhy2Y6vQwUL2x4iC+2vCSImy5/XpRgZJPsfKGhg58fuCcefPJveMMb1kGP3Bebgyvxq8kpYvSiyi+Mcpk9frzY9XLqEEWBV/7okGW/eRSXFyK6YjWePWN4Xq4c2sPoFwFi4pcfL/1weSn20ojHFsInV94Wc/zIF/nk6NTXppud+vlXI/JsNXflmM3mWLzGk6HHnoKMK4itqOtObVzNXz7o48mT+SAj3w4xrBFjXjRbl2zTgQuFoTnRLxfiK36y7JczfW32lezApq/Go6+vho0OfIp2vPSzi8+fYoy9bCY7ceLxg6edXX5R+SIzbecDFnrJ189WvvEV9sxlcYnH/QPPer388ssPd9999/pkXDYXkIv4wQ9yeOWfgD733HNrnvHKIX/kxAQTfvG59uA213gOLvvkZ7a32E7jk0t224YHTX6Yzo2c+4k37cOkxN/2p43mpoP2j3/840tv+4l28ZtTNPHWb77VYTGWr3jpGoviFad6ytdWK8Zbo9kojmzow2LN+KWMNeQeK47GPJNQ15E51Va3rvnRZ0ehK59sz7xqI/atjw7UySO/rHR/h4NtB1a+o939w326+xl9Bakd5h4dHa24YeHX/drBOHJ/tvYUNq1bY7CSly99/4RQTR4W93fyYoPJoaUYjONpl0sYPQfZ7hkod/TKjxg8IzzTpj7/YhM72eTkGXW9s51PbXnzbGOLHpIP8uSMK+7Pnq0Opztoh5s/+XWIDj85c+I55/4tjzBYE2JW0+ObjHGxWjv8woHKGzn5JCcmPrSbu3JHx1zwBQ8/5d2n4q+55po1N3LnPiR/fmkgb+IsZn+Z5prkny85gVuO2BYfUpuXDtvhgK88ypn4e47hGzdH7JQDsfFf3NriU8PGTrpqenhkFASnsXj0WgN85k+dDXp8yC89OvH0w8SXdvkmp93c0rGm5QM2z2q5kmf+0iVjTeXD3hjBR48943TEo0b8KTDxgU8H2TeaYzklY8xcNW94/JsD/sXSupYfY+quJ7rdH9T8GEd8w0gHsS0PcKFwNRfk6Fjban3FmjEHfIqbPkxqc1Ec8hgWaxmfHXLiYcu1B6O4jMPKP3v+mblflN94440LH18XQ/tB+8Vka5fdM7BnYM/AnoE9A5doBmwgHLT/6Ec/enXjbGMxNw5tYvBsTmxk8GxctG3GbMraFJFT2EazptdmDJ8cf8qUXZ3zP7I36znOzrYYT147DLXhyHdjyauTy65+/MbUW8oGvna266vxpi28s9LEc5IOu+VTnnuRNFf45ku9xWDummeyNr1tzvXZtem04Q27Nlv6NqGK/iR+4EiGLYU/Yza3c0Pdupo8uuHV9kLq09Ve1G20ydro2yAbt4m2HrX5juDHh5N/xXoWBx4f2jbTStjpG3fwwLf1bpw9nzjziyZ2yItfDOLiO9zyni+4ipssHGTlJR12Zq6LgS5bYZu5JMOWfChswOnFrLjJG0NsiWviMs52ZFxeHQC85z3vWTmHEd/LtIORbON5wellnw2fdpQfcZYLfL718wUrfTUM5JNR127e0oPFOvUJLsWLVrLi8rJUHuC1NuSPzGsRPOag9TF18lEs+uzSmXHmY+I294oY6cBXLsSjIGNhNWfyEiUvxuYv2WTUbON3nfDJTn265kyNT7aYZ7zZao702RIXHXgmPuNRdsLCPh19pE9fTtgol+lva37lSI3IN0f6c97yEb8+3FPf+CTj+YANzdibo3xNXWNKenzqO/xwWGWd+lSq7xL3Xa/lZ9o4Szv7r7zyyuHOO+88vPjii8unNY/CIddidZ3w3/pzEOeehm/+n3322Ve/b5k8XOILH3+KfnlUzz6/ydduXF1hf84B2Un8zPnJdzVdRR/BYQ346pivfvWrh4997GNr7Jlnnjk8+OCDh9/+9rfrqxSse3nJ9vQJm7Hm3lg4pi/84scvpnJlTFveJ7FFvuuEXnLa6akV8viufQfV7r/mzPXKtns7W0dHR2teYafnueQ+5z7MPl6+PL8UfXOupkeWvTDLj3Xi3i9n/LDlgNShLz0k53wZo68ga4qeeK05+Pktn+Lwjzg9w/nB94vQl1566fDPf/5zYYYBdsQWfToOosXo0BweNQxRmGCc9xR5+3/Hvxh2AGz/AJvnGhnPMWNi83z3l1Bi6r5Lhjw8cmSMfQV2hKeE2Ricnn+If88gNuWHPVgV+RWXGOVL7OnTa87p0HXdkstG86ZPV13+9e2PxKWwqzbn5t4cNwf16YrDfIoBmUMkT/juM3D55cdVV121Dh/th5566qn1KfzWL7ywFo91xz4+meIr32LhG5buT3jmWi7hYYsNB+lik0Nj5s9+x7icNv9sNU/Gmidt+WmMjvuzGgZ8cbJNVl7LMRmFjPVnH8R3+M1zHwbJBxthkcMOruUVJrbFYx9DDumLwzgc5o4eP/yTlV842Ef8GZcXBItx+jCKjV16re3mPJ3GXavWCL6vo3FtyAn8/MBZTN43YHI9GYOZP3owW3MwWCd4+uWEHjvlin88xJcCA5tiISsuuPMPpzGxs0u/+LTJK/KcnLnTzhf/1qgYrTU+1fyWN7+4+vrXv374/Oc/v/CV99U5w4/9oP0MSdpF9gzsGdgzsGdgz8ClngEbjO1Buw0FMmbTgWwwbCaqjSk2JDZOShskcm08kmMje22m8BCbCiKzpfzGT7Z+Prb1xDFltWdcjW39ZM/4xEVu9qc+fn7VUfz6/2k9c8zGxDH9ypE8e3GzEbeJNG6zahNqbOa9OWGfrM2rkl6bTDa02TD3YbAZnfNCTh8+hd2ws6kgm14bYZRvL2DG9WdMtcXkoMqn2mFss21jzqeNc+uRHVgRjH2qBiYxi8F4WMnY/Ct4NuTsk5NHnyZj38abjJd8L1jyOuOkV07hLl/s64u5DT9ZBY8OO3xvcyqG+GykU66M48kfW2Rg9KLTYTj7xo0p7JUD+ully5iXl8suu+zw7ne/+9WDdnwvSl6ovJCIT+FPLhD7vsOVfxj5wjuJwmOsdYInF6j5Sp9M8YvHy6AXZC/e6cHYoZD5csjRCyp9BcFlTWebr+aJDzEZJ18MydLXxhc/kmNtvPDTbT3Mec6PMcSfNj6f9OOFlxx+eMQpPjjo8Btps2WtKXybCzW7zRn9/LBhjU/87OErqLj4hKOyBk/5QZc/eMoPfW32Wsds6ZM3Hmnjh3NiyC4duMmq9fObLXqKPJeDfKjxjZMvLrX+tEE2v9oRXXYVGJB8O3SxTh2ouZ6+8pWvrO9Hzmb6Z635Qa8cH7Tfcccd65BS35o3Jp9iKb+uEwdXrQU43NP0xffnP/95/S8E/eKfc4CnFBNfM9/GUPkvLnU84/r8wVY/24tx/GPbx6eTj/Jbv3n2CcPXOmhvneVLDZMCk8J+GPjVV09Z7TCJr1xpy3m5IZctdvjXJ6e4HtT8p6ddbObDc8cnh81fB1auWc8/fx3RgR6f7leu3+5b+WGPHc9PuOm7dyCy+vSRcWvWM1XRRg7BHZIVNx33d3i7D/HjmQGbeLUd0jpUR3Th9XUmnuH6yAGu54W/0IBjzgEbZH19jnVr3P3c4Tw8cLADh+eP+MnINexqfH+1IV9vetOblryDdvl1iMu/Z5rnmU9tmwu67HquaLPbvIQRdjkmr2jH49PBKB3zZr/ATnbTKye+qkduikVOO4gmS08s8HTtwsGv2OWsImfabJEVl/jItWcRu/m15mFkm157Kfjl1pi1w1afaHefEZNDx6uvvnr9dY5Yn3zyyXUvokOeD2sBwcq/vvsRmeIzRlYsrct50M4f3NYqYkNcatcQ39aE9ciGmOTLuJovJZJPBR5kDKYOi43hZTM9dXHJFxnrgn++u47kkC3jirmAiS7bdORPjhEeGXjFTVZOPDPglxM5MI+tb3xrgQwqFm05UNiE0xh/MPIFn4N2OYeJXzLlzjjbsBjD59tBu5yYN3pwFpfrHCbrHPbWrz7f5cm15rptLuHjQ57Y1DcX7CJyrcViNAa79apN13pAsJJjQwknbHSaN+tGHHSNIbL4Ys0n/2zKG3/7QftK1f5jz8CegT0Dewb2DOwZuFAGbDDmQXsbYZuUNj3alWzZjBi3AbH5tcm0oYvSr08WqcnNPlkbmMa3db7TgXESvpLP2SeHH025eI1v6+wkl66+9qR842lX9JPNfn1jUWP1T6rppbu1n378Nu02+n1qBa+XenOg33xn27waszm10W7zzW4y6anJG7OBtim1GUXG0smmmr/65Gxu2/Syb8OMp07OxliBi00bfy/d/VOwsKrZt3HuoJ0tmOj2ouJFKJKPcoJHn5xYio8NfnsZsObpkLPu+eMDXiQO7Tb/5ZiMwtaMCbZKNsoxW8ZQY+HVh6n8lW94FTbEam5ghgPfvGa/eOFCxcoW+3yRdyDxwQ9+cH0aUFzkxe2lje3uAw4svFCxD7uDeHliCxb22Fa2FK+aPjsKnr66NptyA4916gWo9UqHLxiRNlzqsNFnM7vkjMGrjspdsvGrwySXZMpbfpJLH97t2tAXi/ybT/lt3eCzGeUDL7ziwqfTXJIPG/vszppd8nTp0DfOpjVDN9LGV6J4W3xzvJjVdPmrTPt0yETGyJ0kQ47P5MMhBrEgPP0K33hKeuHGm4SP6LRG6tNV8OkVk/H4tfXzZ17dh61RvxDySfbbb7/9dflEu69j+Pa3v70+RcqfwzT3L/lDeGLq2jfHCizuQ/jG//GPfyxdY2Evb8W0DI4ffJDZUjy+UXVy8lcOjSkz19tc0pvj8CrkUPOw/eqYPtH+0EMPrdjcH1wHbEV0Fbbym91q8vmHtbWZTjaM1VbrR2Tllv9J2SJfPumRV5N3kPaWt7xl1e5Pnm/up8YczppLbfL47lldC9l1LbDTQa6+MXHNezO/eLDKl8MrzwBkbfGNyLFBF8HOp3nxLFa06TqwU4oJz/PE4Ts5fhxs+ToYB7nWrxg8X5Bnvue9T0+7fviCxYGdw0c4YMan57kMCx4Si7z5RYFf0l92/IsuY3JBl08HiPay4nH/g931gVwj5OFSyzM98SjlWK0UJwx09MMlFnbxEHm+5MdhtvtEPmDxDINHbPiKOTGXckefH3jgQmyzqSbPn5yIjzy7ZOVdIRNuc4OnT95zkx05wAuLudH2FwJ+CS+n5tAvM/wCBCYEh/zThVec5VNM7LMFv3G4yMJkfcDDFl/47Bkja90bpyu+PvjQ3MgdefHT4Y8t8VsP5NhUkGvImmCbPOKXrBzAVi7Mk3kQC3viUMw3e/hzzePRVbThyB6/jclV6w5efWPkzUd7LrrGykNyZLX5oC9+smEUj745bi7IyCN5serLrXF1Mbrm5Ng9AB4Ubm35oCvvcsueuvtRbXPFhlzBElZt9thA2gg/W2SR+SGnhEEuUDLyCrtxbePiLldkjZHPt7jgUuQiW9k1Nw7a/XL72muvxV66q3HGH/sn2s+YqF1sz8CegT0Dewb2DFzKGbDJ6KDdJs5mA+FH2vHjtbmxaeuTJjY+Uy/ZbU0mueppHy9bjVeTm7Js16/Gm/L6F6Kpt5XLzoX46ZPVrr/ViX+SzcamzuRtdYzN8fTi2xzKoZc6m2WbQ2NzQ0nH5lXJVn5sTm28bZybC5tTlI82ufRtnL1k9AI37dngsoHmy4U+m3PTSy67arpimC+VcPnkjBdmbbHZQMPMPhw28WKhL2Y1bA5+58sV+V4I4KFDvpzoK8VO3ktE4zbj2mRgL25tOvrZ1yaHYIW7eNXGyGRDn5yC1zUHA4zGxVX+mtvyR4ds8vpsyRnZcBkvJ+xF7JOjI9/+bN8vOPT5CDs5OXHo4R+3eRmTa+Ns86uQka/w5GfWydJV5Jb8xEieT7LFHBY1oicmJZva9NIlJw75q6bnRVafnhdEmPlJng82InJIHX8bI322ybCtsJOuNhzWRNdqMYQ5H2TDMPNCn44SDnXy6RQvDHCVQ/bJ6Is5bPh4KCxTL96UT7Y4w4M/5cKHF24x9YI7sdGN4IzoKmTpIW1rsHXduBpNfRhPI/jSZRPR3eqQISu3arIKWQXfC765dZDz1re+9fCNb3xjHRyG6TQMp/H5QQ61fvjDHx5eOf5kO1sOQhx4uQ+KH4VZnV54xaJtrcsfGxNT7anHJr4YG1eTUbTjx6OztYGXjXKFF86tbn31XFtsiPULX/jC+kR739HuoP1Xv/rV4Xe/+926L3lOFC8/yLqjz2aYJ/5zUv+NaepMeTZQvPqLefwjzNYC0hdnRI+Okn81GWvHL809j5HnrfXNhph6DpCVB/MoLn028OzVrD/3fxQe+cgfnoLosutAkQ4Z2NhtXS3B4x90jCP2Jp4Ot/hG9I37hL6DZbF1+C8mz273YM9qB+/Ip9g971039gLi80tdz5rWOQxwec7Yy7IFkxoZ84zq0/WtH74ctLMnR/jlqWcvG8UsL/KgX97YL35tpA8TeeS+pjg8bh75ImNNyLG9mny1Bsi7F/OVP7bkwL4o2WyToavIkZp9+WanQ1Z+xdbaKU908GAxT+bA/l4M1hz7xujzSd78wYKvL5/m0DyEuZyRk//wwUSOPF15Z1uB4+joaB30GlP4sB7lK/zk4LcOfNIaTvbx4BcHWXkwj/CRcb8LX3nj19ywqY3YQfS1xWJcLIqDaP7YVvhLjl9Y2edvjpkTvsTDBn/02CIrv9rmjL4iX/mARykXfLGBZ074kjN9OvLMFh4SA7/0xUQnH3SMybcxMjB1yA4XXj5gpaPEK298hct4MdLhjy1x9f7JHzLOFp3WBV06+SKXjXjZV7OFj+RbzGKCHSa1OPkSH1k1PNpskJEb+sXtF37+cuqzn/3ssk3uYmg/aL+YbO2yewb2DOwZ2DOwZ+ASzYDNxDxoF0Ybk0LStylBNhRtfvBt2mzEFf2pO9vZ2tbJtFHRb3OkvS3pk0/H5qd+vOwmrz6Jl/yUe602O6fpbfnbfrZP4k+e9uzTC398faWNaTryYY7MmRcBm3mbcONzU8omWWVLdG1ubUybDxtNlA6+om8Tb3PKfvjIGqfHHjm4JhlH6eiTLTa4vYgosLCh7WVNgTEb7FiPsHiZQm2OtW2mjW3zlG8+bar5VMKrDr8YFTxEtzlQIzX5cPHrRbJNvRzkI52leP4HXji8FIiRjWR70WLfGFszZ+ZAQenol1uyEfzJi4kMHTLNN54XDYfsXvD5dCDQi2YvaF6UfCrQJ2zLv7hhR2ovevK3XQfhKXa+5UBfvL0gwljO1frws80mHqKnzVe8WWuTERs//LlOxO1lHZ/d8KdbfrIf7lmTVeBRyMLXSy8b2Ukv+3CYT1SsjcVbg+fHizl71eKo4GVLGz85/MbYhZVNWKffaYsuKsaT2uy4XlubZNmQa/UkY2GgZ7697CJ5a27JnEYwtw7I6LOTXbXCfrHzqy/njZ9kn1zFeDa0yyffZKZtNvWVrmexu258Iu6ee+5ZNb3/hOBADtr9M3PXHfvWrDWs7l4BHzyT4Jq+9ZF8T35+0tWPR26WxqrpaGc7G9uaDOzJVYfD+JbSUYvNnPtE+/arY379618fHn744XUoaz2SzS6b2uVmO5ZftTkMFz2yyW/t6c9Cng364jRWvzG1GCphIu+e6z7bvcH9kFz48BV9esbMebbUrmm2rHd9WIrJtYqPikubve5JMJNjo/tDMSZL3nhFnx/PDZ985hfPM/yy409A9zxx0K508Oc57eDbmuaDnANqOmTE73B8HrTDDRdd94/uG54BfBp75fiXUfLoGoSLbbbYcfhKB3a5VJNh1/6WHTjidc0bZ6fY57g2vMbEjjxHxc+HeZVf89BcsNs+BQbj5NhA9OCHRZt/ttX85V8OxEyPv/gzPnqwi1t8DqvhkCNjvt7DL+3oqmEzT/wi/Qr/Srb4L+Zis59hmy33J3HO5zs/8Fpn4vPLJW1xwAZ71wG5SjGQi8qLfnbZ4FchW97UbMm1vY2Yyp02W5E2f3IAC3x0+cCzj2BPzGzhy0n5oCsOc+KvUfyyyRrh25h8WI/k9eXK3PDLDx+tG7YVvpTyQcYerMNr+gpc+eePHB08+nyIF+kj2PloDvDEbS7xmkcy4go/OfZ6BukjcohPhX8+XYfwsIFHjj6S4/pkjZMTA34xlGc+s89GbTrlT3x05ZI8/2TlKL6aHBkF0fcLP1/95p8AI/YvhvaD9ovJ1i67Z2DPwJ6BPQN7Bi7RDNignHbQbkyx2VDQ3LTYXOh7qfdJBzLk0bZezPM/6DWO1SYIr5KtbT876ejbGIWr8Wl/y5v+tS+W2L6Q3hyb7ekHfzs2+yeNp5+cTeOcG+NtFOXEeC+vbeJtRBtjh/yW8Nm1wWwjXl/s9JXmSNtGdftCQhYGJT06+U0/3Gpy+LVh8BLi5cVGF15/Ot6fWOOx10tTG2abf3z6+YYv7OzDRSZf+uL1AqHQo8M2TNpeVvJlvPiKJV4xsC3nXljNgRdkBJcShUM/HGKGg1zrGwYvYGpyxuWAbX3+4YOzPpvNV7jIhdkYe2pkjL1eIPHI8tVLihdgBx/9DwAyfDqQ8Kl2L4diclgCLyz6XmYU/vT5UmqT8xInJm2FvhdycZFD1fKCb95b28by18vqVodevsmK1acmxWeuEJteVMvLYh7/oDcpO2HSL5949GGET9+4fJZ/tvDpGJP7SelkK3kxpCMGuq0r/Qo/dMkj/eTx4GvMuP4WK0xs06Mf0QsXnXwZ75qlg9Tyyxas9CrZwW+NaIvPPChwkUfGIjxySjLq+mwXH73w09OHR3vKTdv5xMuvOlvspZvNqWNc7sSu7R7gu6Z93YsD9ymb37PUYXHQ7p+ZO5QUizXvOnTQYk7kzrWpoLBr851/15wx8uUL3vyQR+mr6ZLNDh4dZcq23pJfg+d/0DEuR/nb2iYaztmmQzYMfXXM/GeoDtofeeSRtU8hLyfFdx7Cq/hbP8WhRnB1DcChr7bGtrbIG1PChYeK71zvf+YSr3U87bZ2+Jcndrs+6cBs7tzDjCP63XOKybyKh4zxco7n0I8+YpsO7Eq5MNbzKFuwJKstPngV7eL3S/F3vvOdC7vrwL3W86MDxg4dPU9cH9awZ4dPtLPrXsJGf8XmeeBrYMh41sPQWqdbDOJ0P0Ew++fc4hYHfMh14Vohx454FQQ/nk9GswuD2PD5UPMBY/PEvjF2tcXDHhl9h6viNWfikndzS4aew2DXLzLmsJZ8MnJmXxcPBkU8csuHfnkIg+cqjPra/HXQLTfk5ZId2Nhw4OsZiAcTnv2X8fzIG8z0kXyIo/yQg4s//uWhr/yhx7dckY/EaI8BJ9/G2lOwJRfI3JR//RmbfjFr8y8+v1Dhl554FG1+5FteiwkPNhizQVaf72ITV7ryg2A0T4isGNQKedeAr0PqOig3bPslEgwwe7cyT/Im79aDYg3zT6bc8kWOb3Nn3YpPDO4HyaWnTodehZw2zHBoi5sNObWm5Ynd/opArvglb375Je/aEpN+WJfT81jDYkwO62vjodaP3LHJl1zIgVofPmvQ3JYvPDp8i0Uc7NNrDdGll05zGRbyZGFA+L7G67bbbtsP2ldG9h97BvYM7BnYM7BnYM/AiRmwkTnpoN2GxJhNiKKN12apNqM24DaDqI2RuvYa2PyYY2xF6W3rMCRHJ702r42pp/348ejNduOvVx0u9mY7+3hb/uw3PnnpztoGsE2peMibn/LRZt5LS5t4m1Qy8tkGtFxM23hk6Gm32SRj82rTiofaxKonZvphNKawV9sYmWzQzRdebZviXkjpegHrU0A22eKwubeZt/G3aba5J5uPNtxsaiOb54kXtjbvfCYrZ4g9cSvaiI4YlPDmMx55n/Qm68WrnKjpTAxs0rOp94kueMjgkWNLfGJgD04vPuSzKxeKcQSrkp3qcBorP+SNy005mPPSmPz7ZJ5DAy99fJkHLyu+67mXYoeA5oQvPuAio10O2VfEyI657sWKXi9B5oEcqmZDTsx9NotVzTdZbeORfjb4kEMvyPx7QTXGphdzsluSh0hbSY49umzgw8131xs9/NaHNqLT3IdtDRz/0GdD0VaKiX5zzbfc9ZLIHh4ir5CvZCN+duVUm1w2+dhiDkuxkc2G+w4c9LLTCys75OiFTZtc65cMXPInNzDpo/zWnrlhJzzk69Mp7mXk+Ee41OFRR/mDRYnI66dXDceWjMmBa1l+XNcO2L/zne+8bgft991337ruzL08ORzrMEnuXAetr+IQWwVm1wByvc244Z+kX2kekscXY+PV5a8cs2esmk7rJJ2t7fp0tBE9toujg/btV8c8+uij67omP9fRMnL8I3vWijYMxUGGD/iU+uquE+3iCacaruyR2VKxqsnxbw21fsnz2XWkX66Lmay1Rcb1hdgw366d5GFFYqHTnPBtTdJH5IxXZgyeCXyQkR+Y57XHFn55Mkamg3ZjsHoOut9ac2TVDtk9UxxAwm5P6cAR8Uve84asNeoQ3i9FrXNYxdq9Qr984sHlGnDQjtjAkwMY3XP4pIdPF4ldrPzQt/eANz75Ypz3XT5hJEsnm/py4d5IXt7Fpk2GL8+c/qoKTgea5OjCS1ffc9JcFKtxcyjHMPWcZdvBaH7Y0Eb2SeRaK/JgnA67nuNk8ORZ3PCYQzwy9BXxylvzIBZ9GPPHp3EHwGyzqS+36mLhwx6jvBkjz6Y4FVjwYecn3PKiTVfcrdPilV/+6NNT80tO/uSWDH9skOUDNUfi5RuFR4zNFf9yxBbKj3nJl3XhoN2aN890yInRQTW/ePYj5sWYeREfP+3rYSLXGiqHcsyOPpviNBfkxEoPdjXb6cGLV37NvzEF2e+5FmGAsYN2OuxbB65bsRr3iw349aNyT0eBA67WFZ742NMWHx1xKPDLGSzk9PHNC38wF1O+yj1bdFtD4oJZ4cs8sgkLu+TVYbFGfKL91ltvPXzmM59ZIfF1MbR/ov1isrXL7hnYM7BnYM/AnoFLNAM2FicdtNt8tMGx0UA2LPj6xtpc2Ng4bLfRQcYqizF+bPn60WxP3laHf77zD5PyWpSd9JKv3/jkN4YXvi1v9slt+/Emv3Y1GaQfr/rcyH/7D2ebwMbbUMoFXRvDXupsKlG5sulUtj6ypZbn5pq+jSff5tmLR2Nk28ROe8ZhVPD5bnMLK36xsIGmjjZ5m9429mx4Sfcy3maY7z6lZGPvBcimmSz77BSvPj48/GuXN3JyZsOvDnN5Mj71wztjCDMbNuTwy5cDZ2Ow4/Gtr0ZsID7DJj6yyZGFVe5hMuZFw0vDfHnykuhFwzj5YmQnW8YUNvNJFsFirPmmIx9hVfPrRdjLohc/8vTY6MWQLW3xGwuXly6Y8CvTrxedfLFrLnuxZX/i1cabBU9+sm1Mvxfyba71xaogONmAke/8kVPkIxtL4fhHONSIPyQOOOJnS52N7NIxj+IvHjaMwyFv1ne2iss4TPra1p3rPpxs0hFPa4FsWPjVL+faClky+OafvSjMs09OoUNfPmFpHTXOFv0wkYVBwTdP8/5iXA6Nw6Suz3/+Zmy185F9/UliKk/ZKu76xsMOH1KXD/LGkTYKk5qsmLsfOKDwHa+v10G7A8fvfve76y9J+JEva9g1I08znjmP7pONwwwfXXpqtM0NnnjKg74Yyyt+uUp3K882+fLHBtrKp5f96nPS536WdzbN8Y033ri+OuaKK65YGJ9++unDgw8++Op3tItfPsIwbfEXH5aJL7zx+CU/c6tPDoW1cWORMf3Jm2MwpEfW9eN+y2dxwmFMzObRfdJ1Lj526buGjJELd36Lk1889xz6KN+1WyPkPGtax/CwbVytRNrsZAt+B4p0FL4cQooNNjyHop7rrg+45wc46BsvRnYdhFqr3dfnfSEs2Va7d/qrD20xiEe+UPccNvDhMabGg4U+HPRnfHKZLfjMBR1FfJ6R6bBnD0AOT5vNcsouP65f4/SNlaf8mAeFPf4RvOTIiKc9Of18kjdODnmmKM1h9tli10G4cfzihD2//Hg2tUbI9KxS6/PfgbO+uRNfzzPxhoM9vsh7hpFX2LfHM474x+MDj4x84ZcrbXsTRJZd8YSLPF5rRVts1p/c2bsgtqeMtdkvCIyb7+aq+edbDsVujD47YrcujNvT+jS79UGP/2Ssa7JIm09jCn9izHZ+rAe+yMqng3a/rGKn2MjwRSc7sKAw8kFekTexqo3TMTeuRbbw23vTY9d8OuAXZ/r2ozMGmNjjW43Y5hOpzV3rlDxbCj/iFH+/dOCXP34mHnJ8FI8aLz9swWUNqY2JzxqQp2TVfLAl7je96U2Hm2+++XD11VcvvMWwOmf4sR+0nyFJu8iegT0Dewb2DOwZuNQzYMPhoN13vPZ9fmJqI9TGBM9mwsYExcezqaNrA6tvU5LMapz/kY46iqcfn43K5KeT/fowVeJN/Wywv/WRfPVpMuxlJ9lZN44328ls8dRXhyndk/SNhS35NqZiT0etL0c2ol5cbUZtGvPV5rc5Tjess84nX23s6duY0uOHTPlXR+kmgx9PXb+aDzh7GbCpxfMi6tNuXkzYh8PBgDEyNshtruESl0138bGvrUThTU5/iy2Z8hO+sJdPNuNp25DD5+XWi4J8+dQP//pk5USBXx2xOf0Vo3G50S8WfbmRLz7Zgdm1qGSXPTr545M8W5MHVzHhk2GPfHMPBzk8vr2U+IUA2ebOGBm6vdSy2yef8OBx3/AStz3YY4c+Ytec0pFHes2LcTjD3Vzi9fJEh7wxL4D0yZOBKVv5M04ONd4YXjkzRnYW4+zhGQ8bnraSTH4X4/gHHzOn8IbdmPVtTuXKWH60jc91Ye35igU8OOQznORrhwGPnFxH+vHhhg3RmbHhGadrjfCJ8mu980+/HMw8wCLO5pZuuMRFVh3m5FsPZFHj5Yx/Y+laD0oxLaXjH3CVJzz+2JpxkqmwVyHPT/nIJxv080WeD7lQd9Duq2N8hQy9/4TYRb5C46677jq88MILK9d8l09t2M2PUu7F6LqCkQyCrXspTNlfg8c/wjnj346xnz/trQ3y+Ztj8fKbHbYQfmUxzvNqty6+9KUvHW6//fbDlVdeuXw/9dRTh1/+8peHhx56aB2cWYvs8KeOiilefePJa4cZLhiTN4b0K3xUstcY2cnTR9mf+XBduc8aM6/mrGtK3O4J7IaJnD5ZpbF0+AlXeOimj4eyY50o+my431vD1hNZeFD5mPfe7FtbPUPIw9Xhfn7YxiNn3LOhA2fPGvsY90ExwyoGuq2zYip3+DDS4999vU+K84X4IzOvB/zwGmPP/Qbunt/5JcsPeWPkYUNix7MHIx9e+aNDrq/KCQc+LPyh5Fbn/A88z/zut/ywD0Nxebb6VDE7ZP0lAD0x8EuenjybLz6Nw6tkx7wbz36x6dPtHgIaXtj5l28xt37zT6f7NzzkrGE6+uTMt/0TOTbZaY8HDzLW/qF1pi4+MmKhmw2+teXKXKnJV/MtX3w5bKdrTGEbscFvOOiInT1tuBC7lXItvhmj69rcZ9uYvMLNFv9ss0NGjvCM5Y+sNZ4OfH5J4K8wXD/0jFl3rTO65lis7GdTLT+ID+3mCgY2+uUQfXiNN9d86bvOkL54+sWKNh12+eWfjD5+88MXjMVNjwx8EXzici+yxozJj8P27onmDc7y1TxnK9/h0pfLDtphRPRgZUsOLr/88vX/QK48fs4gehdD+0H7xWRrl90zsGdgz8CegT0Dl2gGbCT++Mc/Hu6///61ubRZUWx62tS02SjE+DZBxsja2NiY2sDgb4mczY4y7dXHs1mp1p6bl9kmM23wZZzv2jCepJNe4/WX4vkf8dKvNtzYlDdemXztdKsbP01+6mhv/enHK3fFki7bNp42izaNNoY2pPg2jF4QfBosvfJG/zSy6WXD3JK3IZ4xwcReNrOTDKxtmmFQGismmNvk2tSS59fLiBfFDtr5aFOuFo+Nfpt04zCqI/384Rlrc51s42rjijZ88MMMjxo1Fn48bTJy7hPf4mBf8RLQC0C6zSHdk2jmyia/lwb62vLFR/mUCy+JXmxgkUO1WOrDF59/dswtG/KJyCpwkzE3+pPoeHFrXZDxSSdzhYfgRPx7Oe1lmR8YrUMFbrJ8KRGcdMmrK8aLJxnzr+i3JoqHHp540uWvucHTJm9dRHzIV7HLFT0y1hyb2gqZxvhD8YqrvnH+kivHXmKtc2OtaXa8PDpolzM+4cy3eGHMpvXgoD0en8bosAtjpA+7cbFNwiML27SBp68g/rt22Uief8W6ikeePtvZh0uZuNievsOtJmue4dZH2uWDXiXcrQ0y+TUG+2lxs0sGdnK162eHHKpPVhtONcqP2v3s7W9/++v2He2+qumWW245PP/88yvfcuG67FBFfOYBbmtKzhQHIvB07yAjTz4FyUY5LIYVyPEPeYjIoHh8sMcW21Fy+uUpHTzjk1+O2dAOy9aOOPDU5lYe7r777sNHP/pRZg/PPffc4Wc/+9nhN7/5zYrLfYk9vuhEE0u8C9VsKJPCj1c8fOBnf+Inhz95W5vGzZ+5JNeaco3j43mmzGth+moezQkdVNxym//kyvcSPP4Be9cVHnyebT5tbI7pF5822x28sYnw4Gw9WGPWYesyDGzDSY4Omdao55x7jE/pToKh5w87CB76+nw4tGUTHs9gfhRyxtiFT5zdh+iyDY92OtXG5FOf//ZZyYeDnH0YGzDxyV/23/jGN65cwlHsMMAJE3n9iB5/7iHsso+nwMIGHc9av4CzNqydo6OjxddPPpvkFURfzhT2+FboTBn98NHLJhl5TocMm3JlDsypZ5lSvptn+REPv9aYnDiwJYfn+Wf/IDdkxeh5yBa/eHxrV/DChxcuc8CXItbwiQNectYp/dZXtvGtSzLiE5dCDsHIF2pcTV+s4tGHgS9tMSFj5sgvZ9jjXy5aM/xms1yFH1/hx/8usK+CFYlPoSNGeLX5R/DSrcYjg9c88WPd9eEduuT5U2A1J92PzBkf7OCLkS2FnrF5bciN+WSLbvIw6Ffgl3uFHeu73MPAjoLo8N+88tnazp5xmOiwpy82stmQf7G7ztVHx9fT9ddff/C/QBCMF0P7QfvFZGuX3TOwZ2DPwJ6BPQOXaAZsQB5//PHDT37yk7XJsVGxgbHZmZsHbbI2JzYjCmojZaPizwVt7MgpW2rTo46mbD6MaW/9p1Odrpos7OlNjBNLOsazP8fj5WPWyamL33g+a0+d7FWfNDZ523Y+t3z9ORaeeDaDDuxsGG1CbS6NmS9z26d16JW3k3zgNW9sKWJhgz36Chn87GWrfjbowAKHMZtaY/heKBw02sh7KWizi+fPa7148WHTDr+XsF662kwbF4/CpoLwlYhv65ycdmXKJKtmPx9wsUu2dr7I4MHvoN1LAPJC4cXHV8hM38a2PsuVMXlSENvazSU/7PNFx5x4WZAfNR6ZMPLLRi8l+fUSwQ451zEyNvOYjTV4/EM/bPwguKw5/yjKgXv21+DxDznyUuxFlB8vVX3yyssZfNlKhw2+tv6NkxWPAisbCr5cuBep9RW2+AhX8eE1n3jWRTL48sMHEiMZ606evfjyI99kyNPvpY1f8uwZU5B+/vXFZx7lTyHHvnwh+RKb3PGnP/3SZVMsMPqkpPnRh0fNnxomMnzisUWmdbYcnv8xc0dGPtmI4Az79rCJPfrFTKe4w9SYWjGuTNJPvrHiKbfmQamfPnmyXRvFapw/cwZ/sfNzIRIPHfnLNvva9Vsr5ds4X3zw5dpw0H7vvfe+Lt/R/vLLLx9uuummddDOtzz4ZZfintn1bk06RJcDmMg1Z7C7/4rfYaZDLXLFRD5qrvTjywtSi1Fp7tmIsqeOzx5ZtuKJAy8bU1+bHKyKduvYJ9rvuOOOw5VXXrnm6Mknnzw88MADh4cffng9L7qW+aKTLTbyvZjnfWjDJx51NHOAF4Zs1J8x4SnTTvaqt3bLY3rV5sq8kjdP7kfznpOPrgd2xN51oO+e3zq2FozJe+u3HLWOYcRzr+n+0hwZI2c+3JcUbVTdOmxcv/jY0eYbdn7EJSZjYbU28fHkwjWVnXTDwAaeuNmET4nIuT66d4ofL7lyzZfrBAakT8cei33PdnsW+xQx8BsGfulN/+GRe19B4etD2GALyU+HtTDps8sGGc8HOvYX2VqK53/A71nhK6U8Q/j3ndJssWucPbnLZ/kut7Dxh68gumzIBV0y2ZCr8kUWn9yWrDP3IJ+2hlFs5phd8yiHMIkLbjEYx7N/cl/qAFZsMHlGNm+tGX3FHoNua0/s4tLHh1Pb9VSO1fyLD+mLrWsEVoWtxsmzwXZzJ2/k+MGHB+b2rOyygWcfxId8wGy/a43Ra42SZxNmY4q1qKCJz/5Yftk33jyVJ76QcW125S6+MTp0y6U8WXvWevki3zhbDvjFAzOSF+tAXOwrcoLY65phh4w9vRr5iwy5RF1/MCEy8qjISzkwZ2FSw1SM+ubCunK9yR9dtuWOLzJsdt/RT8Y9D145ODo6Olx33XX7Qfuajf3HnoE9A3sG9gzsGdgzcGIGbOROO2hvg03RhoOsYlOjbwNj42Mjom2DaLPSxpgsOZQe3TZF8ZfABX6wkZ2tTpjCY7x2+MlMmriym0z9KV87X/rkFDx+0qtO57R+/Nfye5JPtrd8PDbxbSBtdG0g5dqGVrHJVMyPDW24w8JGlC366bGt38Yaf84le21ss6POPllrRWELH65eaOB2CGUjq21tGdO3MbZpRzbyXiQUG25+s5d//YkP5uSMadvwTz48+MW+nB3/II/Yg0k/+/Bpp6tNxouIFxKY8cTlJdE/Rc03rOmyjx/hI/bliH15088nP14ajMuteMytFwUvNOTxyzt/qBiKkw2FPD1krOuYPgqTNhtKPvDgEqc/q/VCIrdyRk/R9vLnPsGPebQOHZ64b5Bnb85BcfO1JTaLTZtthQ3rwssTm6g8sL0txunjk+9FMD1xsanItTzmS44UfdSaMwdhh4NtGPhB+nOtsm1c3qwbcvLDLpvi0ZcnuVPwFONwIT7h9aIuZ/qKuPjTJl+BQ7xqvC3BodAjkx1yjcFtnTt4so6aq3xMm9MOe9kQP/mwTJ3plz5Slz/t5mHqJcOmPJGRt/zmMwzZnTZqk0FqONPFY791ZowMH/BVkzMvivuZf4b6rW99ax24FxOZi6Ew/f3vf1/fF/vSSy+tVt8K9gAAQABJREFU3FsnPnHsIK4DCnatJQdc8NK1Lrv2YXDPhU+OfBrWdVos4ohax/HIhMXYzA/+Nj566RpLXztZdvKTbf4bV8uvvKenL26HkO5D1qHrxS83PSvEjQdfunxMPMU4fU0sjYc5bNkIi3rypr10yJxE2ebXdaU2J3Bnv4Mu+vx0OGScPBv5J0PXPUK+XAvG2cazlq0FfCRHxtmSM7nKL5vWiV/iIHLkjRsjD2t6sHRt8McWP3MuyMBXYZMcO0o+6TuQpEuWDOzWLAzaCN+1To9c4zDKE/t8InmUg7DDqq0gcmyLmX8+6Gvbk+jba7mmrTl9uuFngy4dxB5/sJD1rOygnQxd2PuUdraMpcOX/FvrcKDyT45v8+nQkx0yb37zm9c89PwQkyI/6chruTUmF8bKFV3j3ePhV7KRbDjde7YEl3uQ5742e+Llyzx5/pUjebNfIsc2//ZQ7m/kex66T/Gp4Jc7Oq57fLabm/CFV6xdT3zza47EhejJqfun+cgP7NrkyMsLgpEcMp4ffetPPOzxq4bfXGlb72TkobmVR/bZQfh4cMKLzw98XVva5ZcOX+IIO1/aFXjpqvNDnn2yCgxwKWI1juZ1am7NSwftdOSWjHwp5gjB75rhj318v0wpP61fsq41tv4/e/e2atlVhHF8PYdR6RjFeIzgG8QLLyJiiILtAU1MTGIreLgTREUQxfdSUC/EJCbaKG0Un8P1G+l/KCarzd6xbzaMgrHHqeqrr2qMOdeYc6/eLdc40qfHVzzpWediVKer1qfLL7z2MVw41kGe4Cr0cWMjBucyfF1/t27dOj399NMn/xcIoXsd2d9ov062tu7OwM7AzsDOwM7ADc2Ag8SlF+0OMg4PxwMEfYcv4vDiYFLfgcRBySHagSrpwKJPN31YyjvJkcfRRn/qaOPW4eqIP/loJ0ec6We26U+72uraYR772TYebv3sqstVfXpKduE17yDqEOkw2do4mGsT8w69HgYI/IllrLwZb14Nw5y9ocCK3xwvFnPZwyX69glbgqvigOww64CupNMhtwcQ9h6kHIo9GOCR4BAPNSk2nNjyozZvj6ZHt3Yc2Sq4slezJ43LiXH9GbfxfJn3UIxrD4UO8r0MyA97HMLhpzxoeyDwcGA9YSr80CHi6UErvsbh4wI73sbzAxcmnPzjCk8uFFKc4dFvrnlYHkbU9DyUaRMPh3y2bvB7yPSyXU7gWV8PXewJP8W4BsYP+uUCrpzqz4cl6vyKTVzFGP6cLyfqsPGXZ8VeJfx4OOOTr9aVjcIPfG26+mFr28/sxGmcrnHr1AM7u+KhX58N3eIJFy/+8HQNyQOBzSZfxunl07i2PaBWsmUfv/zxzd6a4Etf7fptP5rv+spXWPBaA3Ns20sztvSNybOaXRIGPHNK/HFkQwcPufMCI07FWC7CVBc7DEIXz+JQx9c8PSVMbX6V2jDtI3auDy/a79y581BetPvTMV//+tdPXrTD95LFHrIH8omLPdRLKDHgNvdONvaBFyZeUsmbuEi65QJm7XTUOJSfxhfA+Yd+689+ivFK4/nUP2Kxt+bpmLe+4mwMP3tS/s3r45YfY/KgkMarjeW3Or3w0p01neIzTnfaax/12SR4ui6sH11xGgtDPMXEj72uHH3RZ6eYy0a88sKHMddG9vr0j/ktT/Jnb+mzd09kg2P3XWtA+BADPPNs1NYJTnziqMaZ79ZSmy5fveyMnzqM1pnf9gA7+5otHPsfh/LonNQcXnTKmXEFhpdr4oxzfPinA0cxzr5c4ca/3Luu5gtUc4888sj6pSgd/q2DzxIvlcn0o8/GLzR76SdmdtaunPNlTKzG6bz3ve9dnPpshYN7gm/5xt+8XLhX8aftzIgfu3KUbuvQHJ8+D8xPHXzEZ5/AVNxj8BWrMwIMbcXzhDlj1p6tGl+fvziJKR/iwZHIg3sYe/Eo/PMtV8aJcb7iah2N6RMc5YZt1xA+xmHgom9OLNbOuDV17jPnGmgf0GdrnL7nJb8MzIe4XF/2Vf7oa+NpTay/XJHWrfWmR79CRyz8iSsxb5w+vuW1uI1rZyMGvOxjUuzyohDc8ZFDtgq/ZOKWEzEYhwVDLvrMgWWdzPNN9JU4a8tJPnAVFw6XhF7Xqxq2InYFlkJg8AOTrrjZW0f/Iu2b3/zm6XOf+9zSpXcd2S/ar5OtrbszsDOwM7AzsDNwQzPgkDFftDvwzAPa/wqrw5LaYcQB0OHINxF88wiWA0gFVgcbNWGbNFa/+rqHGHbFoD7aH/v5UR+5Gotzcw+yb57NO8k76eZz5kR7xnPkYQ0cSHsgNN8hUe3gqDbuMNu6TV/mPAiEnU+6DprmFIILySa78PjywJUOPWMO1x2wPcD69q2HMmM95Dh0w8+/P0uksLfH8IeNV/6Wo/t8xKqEwc5h2SFZG9fywY6eAq+DOFz9YgjDGBFPB3NzcSkfOLoGzPkGmhgJXA+DCg6Tf9ffHIOn4D5zFJZaPGzz18MCO1gzBnPGxds8jnTUsMobbDpEXorRPstHOPTYevjBA9773//+xRuHXlb0wAJL/O4V/pmwB0X21rk2O37wuiTm4Sh4sMfDw3QPbHTw0W8eFkx2xDwxVlzmtPFVK2IQF94ezOxTuPjOnJWrcsJveWJjD3tpoB2nHiJhE5xqZw8jP/FPL75xFTf/9Nnnh545At+8mDxEG1fKN3sSlr5iXl7s6XKoNse/eTmBbzy88NWN29ds8DPORi4IPH3XijFcp8TLmDaBKyf8s4crzxPDuEKX73DUcqGGMXMtBvrZLGeHH/ljp8CgD1O+4Mrzhz/84fU32h/Gf4Z6796903PPPbf+dIxYxIoHX0prj2oxqF3DcmQv6lsHnx1erLHzEsufeTjmXDzmSe36alj5aZxubTXM1tucfmuibp5OsfClTDEfPz7DoKNdPX1bi4ljf8VFnc/s2U5cmPk013y+1Mn0W66aU8Pl7yjWcd4n8xOGNTYmZnssftX4mRdreXGfssaKa4kPhbg2YGZnTFvJJz9ylY7a9e/zG1eY7mld9/zbY86F/PTymB2suPFFjjHSwSkRWzracGa8fLjvqo0T/fzDE6d8Z2teKUfw2YvHWQR/8fv8Fqd5vNXlIl/TP98w6cLiEw//d0brat6Ld5/pbK1PX1QpV+bomA/T2DwHsHMNi01cBD+8CT984zDvDfXVclO+9dmzu3Xr1vrGPVwvQfHjj05xFyeO7NRiVOJRzuCw1Zd38/DsHW17U03gm9OH6TPdZ25rqG2vqXFovcTBli95VLeH6YrhGAdOxYRb/tU4WOt44YJ7/PBii0u/CMDBWcGf7MFNLnp5jgtbNtbNLzV9c58PvnDGgR29zjL0xejlvX+tBI8f+YAjNv3Wo3yIwTh73JX2hjk++MafTnPapGtADVM++eIzzmoiR+z50Lau9px1ZSuu5tsD+PIFry9pyS89GOVKbn0m0TNmjq2iTbTFym/95uGljx+hi58cd234/HNfMydWAl+M4tb+1Kc+dfrBD36w/iWZeXyuI/tF+3WytXV3BnYGdgZ2BnYGbmgGHBrezYt2h5YeojqY6jvAOAjdvXt3HZoceBxuHEQqM1Udgjoozbk51kHG2Byn31y1MToOSYpxfYc5fe2pS58cx479dDp8LaPDj0s2B5XVLYb065uU2w6Z07YYxJFd8/LocOiQWE6bCwtvh0e21kmbaNNJ0qeXL77TYefQqZQLuubTMa4N2xwbGB4S/DNm/wkYnvZMDxX69Dpwe+jQ72Gqw3M+2WWbL/188pvAYVdutCd/eubYhlvM+oQPDwAeGLSLcU2ef+hnA0s/vx60uj7ow9GnJ8c9kNAvl7jAS7QV8/liT/ThsMFPoSdG4/iSmafGpk4Px/yIW42TgjOBp02XTnyM0/PQooYfRni+Wefley8X6LDPh4cdv6jzd6c9fMrR1KE7Ba55pRzQwSEe9OM4bbXZk3D1G6sWF2lv0DUmb+HyTbJRm1PLk3xZK337uodycdOrmFOIXCittVqfXwJPftUKH/XNywndHkwnV22ixil7Nq1h+4KecXHYV+1Ldu0JuniHxwbf+mxg5AdOXLXpsocpxrDow/AygQ96JNxi1Nduv9GxRrO4xpRwarObEi+Y2U9/YrEv44KjnOmXS3bwSfsmbg/7Rbtr5fbt2+s//uweg0sFF7zk2Qs3OtbNCzx7w8sDY3SssZftXoxYBy+B4FsPNnIFr1jLkX45KgfqKbNPN9FmDzeM5qvp8t1aqeGxSfQnjrZCrJF5JQxz+tYu3/lLN2zjzRkzT8Jfnfs/pq12dulmm83ENocfvkp7zdoRe9d9rZeNdBV7yj3VHjPn/kKvWFsz89YatjZ8IgfW254tL2y1FRzZqNnER7v7Dlt7iV/+Zh74iEv5gGEsTHymDgy8jhJnL92azxeOMKph9qKdH3POSfY5W3b2umvB+MwN//Id9qzlRLwwtfmzBr0414fHf/cb8/7OM31Y5vju2oNn7eRPG4bznJeq9PlSyzc7MdAh5YqvckKHjb5ch1EerHcvLrWLiX46/qyNXzDA9+1wL6hxpF/+8OjFfxzxaj3hhhlu+5WeF6h9RhnHszXErzWQF/uaLrxihS++MOUj/7Dk13xrwd7LbPe0MOQbDr/0xKeQxsRp79HDBW+5gEHgwaHDb3Gwx9u9lJ0ckPYX+zDMia0Xzri0H9jYU/M+DINP9o3Tw8G+V/inIx51/ukRfUVc8sZWv3jLA/yuWX4VMZarYoap3Rrp9/IaBml94gwLjppvnIm6fPh7/b75b0/giicc862d60+M1rg4msPdNaFuTt7af8XJpz0j1/TY0+MHPxhPPPHE6cUXX1z/ISqeOF9H9ov262Rr6+4M7AzsDOwM7Azc0Aw4EF3nRXsHCgccBzH/hNGhxLgxbeKg6JupDpcOPQk9PieOg808pNFtPrvqo17j9KdNPhpXOyQpYUx9OOmaT9KZtYPXw5Z88iMfcqkcxWFPIenKucOfUv6zwzW+8BxC9bXLRQ9EcTCHA3y+tAk7OsYcSmGFcWkNjSnlXdtDoz+b4D/M5Cff6cL0MOdPifQQ07ePWgMc6LPtsK0tdgd3Y1PY4e6wDJ9fY/pJ2HGCYwyWvIqBT4d0c/TwUOgVo745hc9wjeOoEId4D6ew8PCQ5oFKbtnwZU7NluRn5t0cnfzEEc8ED/zCFRMedEnc9eWwGPjXbr3FRODApwsn33Bwa93Y8p3Av3Xr1tv/WWrxxYOePLhvvP766+sFXznjmx94x7yag2G8/MllPPJfjReJt3Zj2kfpAUze6IkzP/waU+BNTG3j8tS1iStuHu48fIdDD5Y5L6v44lcMdIrNmP0Cm44ctu/zZSzf1sODKc6kPJlXCLv8q/njly92OPNlzZXyAEubWDe881sNj30+tOXC/oelj7+Y+ITZtRAnsRsrD7DxCrs+Hu0pY+2T2nJRYQ9TP27siT2HV/ZqheDXPFxCVzs/5ul3fzEvT+XNi+z+dIw6nAV2jR94E3+j3X8C+uqrr67PZDkgcZI3HOTcLzp9bsu5F2hy7vM5zua8rDCPr/y4Hv3Sy4s2Ul60+YCvTOHvmNc5X8x0yq810S6u6uzkXiHwtadf+jDCCZd+uc+Wf/MEBhtiHI6SL2MVOpNXGMZJc2G8NfoWLt3w0w1XTcRV0bcurhOfFXTsWevlWsOZH/rWTKHv3uKap2M+H+VPzcZa2yt0YLneu86MyRld+9g8G302+NAJ05y9wiccsZpXt0btS3GZ4z8feCtwEnbd6+gXBxttMfJJzFdwogMLZv/Cz7x93Uvh/LgfOcd6UYsTG1z5lg/SfTcb+eBbfAqf8u+a8nKTb37hwKCv70X7vK/2ucAeXn7ER2C+5z3veTuH5QvP8jc5hS1W83DwExMfU8TnnO6lMzu6xvDAly/3C7khdP0LF/uLnvVhY396kdoepctWrsOkj5O+Wo76Uoh1hFmO5I49Pfec1vj4uUlfgSmPcuVb5PpEzLj1WaNPv89Y61LOteWpPaNPr3y3b2CI22c33q5FGHwahxF3Mbu/6jvD3jv/y6OuW/zKnzitDVsFR//KDwdz7Qk6cgaPDr8w1Ioc4IcLHbmwdsZg8C2meMImcNsbdNnCkDvteJprjB2u9Pie61sM5QRXXOz/9gR/sPXx4EPRVtiq6cH2POAXvv7vEHvCPHvrZV4fP3sAjv1EjOND5Mc1jgddc7jDs57afOILW65dv+y7PszD+PjHP3761re+tf5DVNiwriP7Rft1srV1dwZ2BnYGdgZ2Bm5oBhwcrvqina5CHHAcQhyYHVqIvrbioOJg7gG9v7/sQOQQlITnMFU7fDoOL8ocq62eh5t0w65uXO3A1KGr+eqwqvMz7enWz+469cS8ZFdM8qHIMZl28ucgWM7k3OG3w2PxhaVPn1gXh8nsjeVHnYStzx4PcXcQZu/gqQ47ruVPH074sPj3ov2xxx5b32pOx1x8PVx4KHH49VBgzzg0d9Clywdce4wdHAd2D5byYW5K+vj3Mo/dzAOdYoWhGMPZwRoPuHKtVuLPrhIfc/D18YSlNk7w7aEFL+siRjh02fFNjJHiok8niY++8fjrl6MeRuKNBx+Jtrn0zcMxLo7s4dProU6bqPEsjvYK/bjC9Ddp/WsGORWfwo85etbfw7y/O+3bS3CNlxe42uUk3mp6uIYDC+/rCvspxY5jfOhM38XOPzGXsGt/auPVy7LWkr5izgOxvJjTl1PtSrHDkjvY2ubbV8WAey8D8Ik/nuHEs9p4vozBti9w0oZRMc4XP7iWl7DoiwumOfo98Lb/6WRP13WgGGeDi/k4w2qd8aDXmHwYq6+df/zgwmOvLbd8ELUiTjZ02Denzp/5KWziWk7iy2bmzwO8F+wvv/zyQ/0b7X45hUd+5YAUh/ujz2t7ROkFmtwmxl2bOLeX5OvNN99c1+Tcj+WrXIehZi9HxzylM8fhhBHnS7ZzzJrzgRt7Yr7YwwwvfXrsjGfHRmHfWL7UxPicq9/YUjr/SF9/tvXjcmkODv14ahuzb6yba4bYr70obF3p+Pz3QlFs7h+u+a5Hdsa7fuPuWlH4wq17t/1gDK6ib64xNvNzUB9vej5fXVfwwsWTwCLlLPzqYseVrbWFlRgzR+CLjw4xF642THi4efmmb1yOjOWTjbyUv84QdMTDxxGbP3biyidfrmu+un66v8kdXfP+BA3OsMViXemxp6eYFx8beF600yd4k67h4qIrV/aGNjxx8aG0XviKRxFbLxnjA1sbhhy4XyjwvPztRTscHNXdM+TWmIIXn9rFBYNfIm4FN+c7e9acePkleDgLtgfUXogqccyfdWPrha78lQM+/ALAPDGOT/sUZvzEgo+8yY05bbxwF6eab9eX0hkVj/ToEHp9lovRLyxh0uVLm462fMXNOP/tBeNs4MpxtnS020/tN77FYd3kQz5h4gqTDcFXoRtmMZgXO5/TP6z2FU58t1/DhCUuMaVj71sHOSRw28N8FkMYajjN+cKWl+y+1W5PlA/z+Klxkx/91kVsfMEyL0f2RGOtpXWSGzikPc2GL3gwCB/+5Nvzzz9/+vznP7/GmludK/zYL9qvkKStsjOwM7AzsDOwM3DTM+BgcZUX7Q4sDk4OHsRBxYFLIeY7SGnDVRxSHAg9qHvp7lsgHYw61LBPv9rYg2TapeOgc+mwcxxPp8Nj9sc6PfxrH3Uu9ele4kd3jodZPePWLof5oIeLYl7ePdA5OBLrwSa7fMUn/A6MPQzKQ4f9fF2q+aXHb+0OqzAuiXkPOB4u8bR3HFC9bNc272HFIRe2veFhzi9oPBh0iJ8HeX70if1YfPD4cEDGsbwuxfOP9qn4L+VG3trf8wEAR9jh6YclD/oTr3lxw2RHDzbRJu2/cNfg4Qdc146HQiI+JSzz/LXmmetP33xMntkdx9jAbl7cRN8czkrz6uZgEb7o1m4NywH+PejIo3uGbwH2gE3fA08PwnA9XHnx7mG1vQavXOKQv9U4/zAHy75Kr7n/VePf/koPxoxbXuyR1gE+zvh1feFdHuIXXtzY8BU/Pux742xxMVeB0/po8yGHrQ18/fbrxBZD/tS143SsYYtRzT9/8VFX4s4+ztpxpVf+6OLvQdX9xzVCj+CKkz59fbGwkRcFFlHP8ekXZ3N02LdG7K2N/Gqz4afri75x+46NuI3hQzee/GuHq0+azwYHMeTLmtj7OHkB4m/3PqwX7X4h9eMf//h07/yNSX7dQ91LxcI/TnEUiyJPXrT7U05extArpvJfLGKTD+NeeHhh1LcKy3Xxq2dZjs8/6E0O8PBI+IprfJsL2/jEMZ4NXfPZmqOrPIgPW3PZhDH159pP/HRhTJm26U/85o1pt9fygy9MRds4nXkvZusz0/4y53qST1LMavPWjL59R8+682tciT8/9PTZ0WmNul/El8/0XcNeUuPH1vVEn3/6MBV988bilm9j8BL9bOmyJ3TcN8wdOZqLJ33xds358yfFLQfxh1MeXZvmxGNe7OacT/LrZaHPLrzLu1rhy1z2OOColA+fdb7RTgemgpfCX3mRQwUGG9cnXX068as2x0ffsrau4mcLV1sO2NMzJgb3B/HxJRd4saGvD1ebH2349NtTYYudXjzKKSzCJ18EFt32nzr/8usX8XCN+aa9exk8cRvX9jnrPk74jKc1VGCmb03b92K2Hmzh+DwwJlZSzDjyTy9seGIXCzvxaBO8FHvTvV0cM4Zyjbc1gAmvL5TAkStzfJYPGHTlFyfzfPvikj+v5x5svr3buYqeHMDEpb74jNEPzxgu4vH/5MAvH/TMOY/jJA5i/eyVrin49Mx3DYSLHz0xaBvXtia40DcmB3zgRQ+mXMC1Zj7PfO4o9gX9ri/6FTljiwtb+K2/Pkyx8kWPvnjoy5kx+vKGH67G+zzVlpePfexjp29/+9unL3zhCysn7K4j+0X7dbK1dXcGdgZ2BnYGdgZuaAYccrxo//nPf74OMA4cDjDz4KDtIOPQ4YBFHFD0zcFwQHLQNNahp0OTA47DkYOmw6p2Bze+CAxYcBUYVxX48WCjrdRWp9OYAyXf+VXzmS397LTlZQr9S2J8zs02fH0+YMYpm+bVijw0xxe+zelbi9ZAn27z6nw1zq8HDLWHY/jicmgtXjhTJlfjbOg6cMaPDm5h5BcHB91bt26tQ6sD96c//en1z5HNsfOw0beWfFvKA4S63OAXBzWfHbJh0DMmFx2o7TtCHxfzir6D9pRyA4tdDxF4G1OMqekmsOIDu5i16TuMT5v8t9/xEAeM/KiT8F0v1sycGPFSZ9M1ps8miU/5i2Mx6CvZGdfHXdu49SL1wzJmfgpbXCaueXHaK9aJjfk42LseaPwiRtEndBUC0zd1X3nllfXA1zUb72KGWc6W4fkHDDk2l09j2dBrTm0OvgLfWNcHG2MKntZXftJxP7GPe6GQ7uQCK5m+jOvLVTqTZ3z54nvmWJvEr/1gDFbjsN1z1ZX2It0k/WK0Hwgs+mHSw1FfIbi0Z8zBMMcfW2N0epC1j+Eo9OKjtmdag+lLO8lGXoyrxa8dl/ow8eheR5cP15aHaMLOOrZ2dIh6lsb4SGcp3v9hjL/i0ZdH166c+KWS/wzV33hVz5gmzlXasL18+OUvf7m+8Sc+v9D2csS9A4fw5T9Ocu8XXP6El5dwcomjeS/U9Cvsratc2t9etnvJY54PeWRLT+60WzsxGKfLv3E54F9J6Fgfeumboy/PjRWPuI11D4XdtZ5vY3TozrXKLn3zCmGTPptZ+C5/dHANgy1cvvOvX9zmYTXHXh7kik+Sfn4mXnZd3/Yp38a9EILHDlaxarvm1Xz1QpwN7OMLp2LCWTucrhsc8e2aomNPu4cbKx94wJ9irtxp2zNKseNE2GVbbZwvPsSKF2FjrP0m1uK1t4yr/Quq7tXsjcPj25lUHumJhV5xm3Mt0He29cJbwcuYuNUKOxjyDFuM1kju+BErfC/accCbH3ZsiomeGKyN+HzOzJiL2xw/arbs8PVimj1c/MzB95+wEpyKXdzuf2p67sv2iDjgknxo0xWPMTkIGz59ccIqp+I1zsZ9gp1cGQuLfv794u/RRx9d8+L3eerexpY/Oet+LV44OKjN4aGYw6WY8OCXWBf5sa5yoc8+LDaw6OBN5NLe9TlhnB1+eLNrD7ivW1/FOK7uw2zZ6RP6+LmPemluTt7lB3e45R0Xc3GQE9/sVmA3b1+2T8KwjsZgiZMujsbkieCJn2cyX2ZQs2djP+Dp86R49dnKqb1JTyHWiE1nX7h0jfFjXh0v1xRdOedTXnFU6PLJH+69aPd8EEd5YiOfbPKxyNznI1bXgfzxYd1hWQvYxukQ8zDkW57wxp8fubavrRUbL9pfeuml09NPP71s8b2O7Bft18nW1t0Z2BnYGdgZ2Bm4oRlwSPrd7353+tnPfrYOMA4fyvHg4CDj0OGQwcaBpEOuvsOOg4na3CywFLgOrx7SHaIcxDpUwjCfD9iJuaPMsSPn+mzSayweDlp84zn54eRgRz9dbWP6U459viZvuvDj0Fy4YdIplzNvxthmH199PM2HmY46n43hoc2vvBOHXHo4OGAeY6lf7GziyDebxmDjxoaOvWLMXnDIvXXrrRft1tbfNnSwZc+3Q6/C3kOiB49etMeZn9YDNv8Kyad96dDe/jPHvtyyo8tPYt54fOPsQaCHRGPFBIvgohBz5aU+Dj2sxkE9ebsOepCDG/YCPf+gz4cHCYWPYoSdz+ppz7b1UyvGlETM2aYLwxg9bXFkZ7w1gJFeuUgfR3OKsa7z/IbHJ3wPNf6Fg78Fa/0an1zvnb+p+5e//GXtCzmLb9cPbPqTnzH9Hp7waYx9GMbY4tq+VhdfY/Qbw7v7FDs8rJGHYLWx8IujPOmb028/aMMQm3Zc4qYmbFu3amMVY2z1CT/xsA4eEu3/Cv8JG7ZEG1bFOJuu2fCzxZkf+nKjLR5tPoqLvjGfEz3EZlsuYBtTCN8KTP7nOB/FECc1fWvFl5otvWKYPuXF/YedElc2YeKh3frrw9Dn65LELf507W/XRy/afSPu/3nRHj8vQvyi3N+wFaf7p5cRYpMzeuLBWXwEDy+2etHOzp6mw46Igb28icP6isOLL8V8Lz3glRN6xc1vuWje/Usu1Ik5ftRKa13eG0vHuKJfbN0nrTv//CrmZ4HlWigXxQWv/dRehqXIDV/Z4I2jXLEj6rD046U2B4ewk0eY9M0TdfmOR3lUk/YcLumUR7GKjR968PAzbn185hsPx1xrbby5+OCszQ8Mgi8uxs1bR/dwtnTwUjevDiO+5sWpjy9hD2+KfhyM8ytn4tM2p86Wb4U/egp+/vPtciQHxtnhYf9aU5hyZE6Miv2kGHMe8G1l1248nGPYZcsHXbxgwxUnPuquuTjgTZ+9dnmyN62LMX75KRfFqk/UxvhzTTpD8cuXdSkW/3KFjnj4IXLlxSN9GPw4r/GJE7E+rRFOdMtdeeCLH3owvZCkJ/d0xC4mXOkZ6/xtDyjG5dZa0cPTfVk87VE67OCzoVeBiTOd9pUxnzP4ia884dJLUzmhx868Gg4dHOIsLvdVcSnm2bJpDeWuf53HTm7Z4MOeDV/0iZe3rZc9QdKbfOw7e8scfS/E+1vl/IuRvXzzy1/7zRwdY2ov5Hvx3D6ga+/4HJn7g09zftlhDbThG7dH5LW9sciff9hD5ok5seLGjqjZ4TrXBjbfOIodt7hoWy8v2T0fyKvcs5FT+gpsfbGyUfguXvr2j32lpmetcSbtheN1IO/uE/ho4+5f5r7wwgv7G+0rc/vHzsDOwM7AzsDOwM7AxQw4nPz2t789/eQnP1mHCUoOgx2M9B1+HJgckDqAd5BxqKJPHEDMZw8jnA7hDisOqoSew45agekAp3RwogcDh0SfvjE2HbpgEX2FhM2/Em8HMoemdBzCeoFgnH3Y7IqD/qVxY3Tw5jN99bEdh2zoz8MifXMk3mocxahdXGp5yAebbKuNJTDYzAO4eOMCB75+Rd84OzUO2Rgj8mWP2APWT9uDnr8v6huTxtk66DvkegBh4wBvLbQdoP0SRmltWne2ceAzLvGuX5xqY+wVfNT8EFj6uLZnYVkH+5w+nXIQlnr6ihOs5tj2sGFekcMe0vi3Dkr806kfHr70zM9rIw7hV7PTfiehJ241bvyo4RIYten0UEXPnDGFdN3pi1v88kha2zgZz05tX/SQiA9bLwC1y4UX2B4CfQOsh3176PhQ1Votx+cf+u1d/ivmtcVCh6jFIdfqdMsNnZlz3JVw3NfcP+xbYzDCZhueMYVvOuU9//xptxb5hEHgGONbLtu75hpXJ3Bwwk9s+a1NDya89jybcoELsXfZ6OeHb/uCGNPnp/wZzx87uu3hOPJFp7zTw0M55kBfScKOf5hx1jenj5M8qGEYU4vLnqKnGCtXdBQ4YeX7nerwYRL5dW3IgRdK/nTM//uN9rC9dPnOd75zunv37toTciku8cpRsWkbI/LrM8CLLb/oModbewDf9Oc1LA/GFVJt7eNT3sxrz7UtD/YuWzZyrm0OPpvWyrjSfjROn91cE2P84N+ZxBj9rs3Wvr0cNn0Fpjl2+CnhuU+VV3Fp2zfuQwQXOaAvjpkDfVjyy879rFyp+wyCI9dz/8FlC5vgBlvNNpzGjNNVjOEoTrzcZ43hgFN7xJh+/LOVLyX+/NNVCFwxwaWj37qlow5HnZ027sUjThz5Fq++AhdGuWdjzBxhzy+dsNKJm29zWz/iJZrxcK1FazjXW0z6hC77Xgy2Hu0znGFax4nNFq+4heNcRE8MsBRt/OXPutgHxvBwZiLiykadZGvf9BJaLsVaruB0LcSJfi8dYdPvRaxY8KGDj3ltxdrJOb/8yIN46NB1juOrnMcbXrmiZ03hmGfPv5fKRPw+T9nkj63x9rQ59u0lfMRrXIxwcZNf7dYBN9iwjMEVB3sFF3H2uUBHXv1pFTb8FUux86sNCydiXzmz6MNQ6NHBBxYuYZnHy570clj+cLfv8KPrpbc/w6nuhTNfMOQTBmyCj3XkUyzmnK2ssbnyLx7FmvBlHeiSYpAPuPDMt3/Z4QVL7szhzV5pXcXRGJxy3jiMfMAhsONh3l71bCBHYanhKfT98qL9Jyf4yKX8ETzFZD3b1619mLjhrbSfYOOFr2vJL8ifffbZ01NPPbVw47k6V/ixv9F+hSRtlZ2BnYGdgZ2BnYGbngEHFN9o/+lPf7oOH/oOFOoOMQ4eDmYOJI07xBAHj2wcsDpEGku06TssOVx2EDXv4EPC7YATTgfT+nTjlQ94FXN8ORip6YTdYSi7dMXg0OUg5xCnDQ83nLXxmHkxXg7CV8Oimw917cmbLb2ZP30l/sXATsEjDHlIpj9jdKpr46Ct0JdP8cAUS3rTrrHqGQc9ODAUB3AvkDwoaXfANmbf0OXLIdhLdgdmcRpTK/aGQ7A1iJP84DpjhGc8XmytlXyFF7/yy6a9ZQ5nuD08t078sFEIH/Gjwy4utfW1m4fLH9vJ0b5SGq9mm4QRjzioXV9KXLPPVt1cY3TCbF5s8ItDfO01utmYz0Z75rYcTe505Lj1gtP1A5d9uSl39dnCZO/b7V5GyCGBYU/YM/LngcyDkr1iDndjPbgWA1uxxVE73nT0i6kctI/YJuIg4dY3ps0/HjjA488Ymb75oK+u0A9PPYvcKNNvGHCblzt29IyJEW4xliO2xDh7NZlcjMtxv+yKm7zQy5ZPJX7s9HsJok9fjY/a2vYyIp/8w64Y71o1x47PuNaOVzU9/snMKX06xvLR2hjXtm/yQ0++ijd8uLjVp0/0jdfWj+savK9DX1yKe6QHdf/0/PHHH38bM/2r1vnxTfavfOUr608syS9fOJUHesWHX1zc+7x08TKCfvcXGNbMmPzIhVqffbhhVpeL5utnV20cprwbo0+6F4fH51wLesYIjEp9c+3/xvhxXbpXmJcLxThs/q0JO2IcLg7tb/vWZxr/5tnDs9dhEPow5BCePv1iM2ccB5+B/JaP8s1v8dKLRzHRN67GTeGHGFf4M279iGuZ8C2/bI2x44u+eEjxlgu64Zkj+vFqTn7gGY8DW2Ksog+HHd/Z0KWDc7HiZF4hrdfqnH8Yp88fLLW+XIq1WOxtv+hvTVx7+eWjF835F4s8+WZyL8T5ZF8Ju7jNwzTf+jdmfPrTpoOrdvGmI07XhT3LDw69aIeJMxtz2RjDn609KRfm+SiPuLae4cibz1GfrUTczmt9A9g6eVEsR3zqtw58wIbbeQ8fmLjjI/d40CPlGJY2DJzwlDu6iXlzjWnTh2//Fkuc6CvFW+2lKMGbrgLDNRhPvuda4mcNFDhs5MCLdvnlm458KfYcPXHgAJuw9+LXGO440BNTBU52cNn61rrcySv94oWBR3tWv5yIhS2u2fBrTfTpqfGFyy8OfBN2/IjFPFvzcuUsIBY29gYMc3TKJz2++gUBf+Kx1+1f+c0PO4WEgb+9iCMcop1o40evdcGnOMzLr3zLj3WC3drimw6MnvP4ws0+ERcx1+eFGEh6cKyN/8zcN9r3f4a60rN/7AzsDOwM7AzsDOwMXMqAw4e/0f6LX/zi7QO3Q0WHIW2HGYcRNXG4ImwTB5AOcMY7SGkrDiwd0rXNqx2aOszAyl8HqHw7AE5ebLKLa311h9Dm4lndww5d3B3ieuhwaMTVgcyBTduBlB4OhA7bY6xTj+/iLwdsYchhsU0dPuCWq/ir49rBvMNs9rATY2ymsOe7GOKEizkl0c4+LH1t9nHH12HW39j27fX+BAiOlQ6tYvr73/++XrTLLTxY8ShmayE28/AdgGElPZTFlx28aZcte8IeTg/axWDP2tvmjSnZxKv8zPjNKdO2eNjLTzHQg1F8+Bjji0y/tdXipEdg83Ucm9zolJNldP8HDHxIuDiGzQYO+4ReOubaa+nIF8zyRlcbP7ZhW5M4uWbMu5bpsqE72zA97HvR4aGN8Ml/+8g9w0OlaxO+vofBHkBhslFwx0XBg38++DZXodv68HUU9uGxgTUL22KFba4cwjKvGIeTrTl9Es98WW8l7vy2DvRnvmHQE5/xYohz+DjB7IWQebxcP+5/RJ69VAhjDZ5/xE8fzuynwwameXyttetOzss73fRglBtjClsxmGuPsDE+/dafc3wr8ps01n2dD9jGtXtwN3ZcWxjGcGyOXgWG8XyoJ0f2rbmY5MA9yAt230J/GC/a3VP9rdjXXnttraucFR//xFj7pboXaviS1sp60SftU7VcyYN9LmY46Yk7Xe1k5qU8um4Ve86Ygq+8tC9xYcuXQmZMfE0udPFL9Onkk64x+feihG/7PIFN2NBrb9HHRQnLHFsx0FXYy4cXNj5TtO03ewsvfVhk7qX8rYnzD1iNxUOOFePZ4gMznnzJE1+4zHjouC+IWwx0CV2Y5o1r8xMmHe1irDZOr37+1MbgwNM2BgNX9x01v60pLPrG6Oc7/vrp0EuMwwtLXuwdL6atAX759HmiLf8+V7KB0Z+E4K+1huHvbPv2r2uBX7rN1y4evuWUTxwUAtNY616+cIFhHob5+rjZm1720cMFf8Ke0M+mHKvlXF7LPSzccTj6sR/Y9FIRrn3bi1J82N47/9k235623/jEee4zOJ2h2PCp4A6LTdzYVvgzrtChzw4fYgzn8hLXGR9+YmWnVghOYlasoXHXarry2/kBBl/iw40fdtZTMQbfZ6M/XdI9o73mmsKTnRjUdNX2hf1F3Acah8mHvWWvsi8G+F4Ww8ILP35x1oZJ2NMRk5ywc/4xz7dvxculGPTlBB7fcNjj3rWBH654JNZV/uXKPAxrajwcWHGHab/KZWNi9C+m5Ks91Trghq8+rr6AU1zFyA874yR/+jDhy0PYcqy0TmJnQ/jhUy7tBxzZWgO/jMOTP/968l//+tfKR/luPeDx609g3rlz5/TFL35xYRu/juxvtF8nW1t3Z2BnYGdgZ2Bn4IZmwMHi97///frP1DrkdogSknaHDDXp4OKw4/BCzDmAdZgz7vCjwNB3sFHYO5gYc4DrcAiHLlw4+XVwg228g1NY9Kfky4EKfr6qs3e4gqvPBgcHMAe0DoAOYx0yO+zhQJ8O2w54OGjjbF4hauMKzkQbNwfXDvhr4v4c3PIVXzV7eWGnH89sq/MfB+Ph8E1aw9U5/xD/HKOvTIEnvtbFQR0fB89Hz/+JlX+i7UW7BwdYMOWwv0PpgcDLIA8E5SSufImPjVr8BL614jM+5bh8yoO9C59fmOp8wNHG12GaPbGW9pU1kFP91jd7PnEi2nPcmNjZws93OHgZ01fjq+BHP1/a5VStT0fs2sVNv9jjAw92e12dfjrsxEgP3vEB1vi0ocMmfuKwjnSUuOGHDz1tRS4IHcX1HT4cOnKmNp/tjNs6edFhL8VLzV5tPVyn1ruHTH+707fvPCzCoic3bMonXvHkV65mvujCY/cg4Tu7bMXHRqzG+CiH+Y4rXvTLiRwYU3BS2OhbJ7miQ59vHLUJvfKoXy7V+LDLtvyas+ddU7Bh4ebhVA75dS35cyTmwsien/zX1he3Ov7NWcv5Qnfq8iUGtmLDWTssc/CUeBhrXOzmiDE6bGd7TZ5/8Ct3+Sgv/Fo3XMi01zdO57gv4q6ObxhxZE/4VozLYy/aPaj7Zlx2b2lf/acYSC/aX3311bVnylV1vu0nLyZco9peQvEtJ/Jo3J6wP/AMn4/i7DNSTugQ+HJAp9jhaZPyw481cI3aYzDYsCe9pMHNnoFBn09YYcbFmsCCw4e+Nrxww8aVfXH7XPcyCm57YpE4/xB3/uSkzwdc4JvDiT9+iNq4te3zqlzR4z9MPLLhm56aX3Ot21I6/2Cn8IGDWK1juq6D8lROs1UXN17ygQ8f2uWHXbb8sMEZdutmPI74hGE+G+Phpm/MvrK+2vyUuzBcg3DEZuwo8TFuHjfrAitb8fn2bC8P6bHjO32f/62Lefug9bE36Np7Xrx5KS/P4hATDPez6d/+4B8Ooe/6YUP4p8MGhvjkIKFrnl46+NnXxsSEzxRrgguc/MRRPspj+woOXriLsfVQ01GI2OkYxxWmP0flpSM764erfPFBD5euD37YEfp40zfGhj5MOUjEDIPIo2uSjrzg0n4wZo6Odhxh41Ixxw4XxXqb69kGD2cZ+VWz5x9fErY8uqbww4G9F8FyxTd+4mv94LTOnZVgOKfAsD+cg+kR62dNYLSPzYkPt3zj3n9SihsffLK1Xsb44bO9rO+XI17Y4w3X2tHHHycxuFYeeeSRFTu9bNoP5tnAljf5lFt826srmPMPfTGVD7zkjb6zHBx5No4PvIox5w8vuGG0H/hrn2vjzA/9fMGXE/PmWmuc6cujgovauPjbR9bd/eIDH/jA+jNqbHyevvHGG+s82ToY51cfvyeeeOL0wx/+8HT79u2VAnPXkf2i/TrZ2ro7AzsDOwM7AzsDNzQDDidetP/qV79aBzX9DhVCqj9rbYV0wGDjkOUQYs7BZh6O9GehTxy2Ogjps2WXrRqmA5E2f2wd1vLNLsm3wyZ/yfTN1sHPAY2wcUDDxQGMbn0HM/ymsO8AhlN+4ChJ/WKdejD4d2idMu3FV5za7GHJB78dVKe99sxLvufYJX35mjr5DQ9XD31eJPBP1wEVf8U32j3UONDjBs/h3Uv1vmljzCHWA4E4HZblWSHiU/TNF6uHCm2cCDtiDfCA6/DcOrVPZi7pW3Mvl8ybExNs+9b+6lBvjq9qeZ55pKtvXi7Yac/86bMzxh88semzreBlHgY+cTM++eizMU/iBleBO/0vpfMPPumKPb34Gq9M2/zGVX5dB/lQi7t9CAO39jOOijE+E+tanGwIvbDCsSb2krWKM5/s1da59e6a9RBunxnnw7i2h0Y2xRk3/bDjJ07Y7UfjbI8xmG+v0jFvjC/jfOBQDuiYhx/e9I2L8amvb5+5tspjGHwQ460VjOzVFTrpVlsn2PKOh5hdk/5VAL/i8EsLfM3DhmNuxg3PvDF1+PRrW0v3Db6KE06ibbzY9MOkU0wTs7jbf/TTK//0teGFKZ7JVbv15j/duJU7euWCDjGWzPl4NKfGj117wj3Un47xjfaH9aL9y1/+8volprUVi/gVMZQfa+7FhLzR8yKF4I9b+00tjnKuxh9u15W8GW+tYOSPz2nPzny6rkv3E2P01HTsdX3cvIDCM5/8xyMuPqthWRt6OJVrOnAJPu0Vtc8o+90LrdaYvsK/Mb4U+vIhP2JXjJPJTZ9OL6L006dXPsoNXf5w7swBN734NBYv+kq5Mg9TrPKgsCXmmheHa5Ee+yQ/xhX5U9jhyG/Yxo0p5okx8enTVRqPB/vW1Bj/eJJwGoOXnTmx6bMXs7axuLlXdd+1Z7wcdy6hEz5b+ux9rsi39Sf2IS6tsxy5Pr2AdKZx7ypG+rAIfXjqrgmxs3eeIPr80hEL7rC05US/s0d5k0vxtDftp2M88NKHQeCKQx7DLi84wMANf/7Zs6HTnnZG4I+0pvfO32j/97//vfTlxbUgf2xhwDOmlnPYRN91Zgyf456jg/uRi7iJ3MpNsdD1MrZ9IyYc8DRGL93OqLDtB76dRYlYtRXjcHGNP0wiL+KMP30vyvniWy7Fh2Nc0m1v5ZcPeMblTGHDpzj14dITD7/FKSYvwPnHjY18K/YBG7psikmMPr/xNQbDPmaDhzHienHGgmnci3n30/LCBj/YxuSTbvsZhphbf3GYExvB157qhf0cn+tGV278Kzr4SgJfgVVpz9DjG64xuVDjq7Ajxok8ud75UpdP+8X/VeKXa3LlSwb3zvveXtSHSeLMnxftP/rRj/aL9pWZ/WNnYGdgZ2BnYGdgZ+BiBhwi/vCHP5x+/etfr0NWhwrKtR1UOqwYd6BqTt+cQ41D5/EQRi/bagcc4x2EHIAcYsKid7RLV92BTp3uMr7PxZgDkpJPNT+KtsJHsein3zyexjrgqdk7xBkn+DTPLpvm+CDp0DcmXge2eaikN3nhloQdZ3MdgKed+Xyp8xeP8GYfdrGbN6eUa2MeKhxGPYA6fMN2gO5BwYGXPoGFmxd3HhI61Br3rSCHdrqKhwKHfHh4EL47sMuRtvmZc7psjcslTPOTc3gwtWF5QIJfuxcjfMjp3A/02Fnz8gG/BxDthJ6CT4WdNky6fGrTg6eQ5uY8ncaz0VdIturw6MGgY0zBQV6M45JubVjx0zavD7drkn0PX8XGBz0lTDmcLw7MyZXxdOKtT4qJrjaeMOwtD4LlkG6ccbFnzOHY+s894GHSy/ce3PkrF7BIeG/13tq3YjVO2MBmF9/G0tOnHyfjxaJWxGwcVj6z48e8km6+XVOur3LGNr90Jj6dcimHHnDNt05sK2wJDvBwd726nhpzzcoxzo2ZV9jEf+Z0xqCNOx7iwIWkg6M2HBz5gZ3Oapx/mE/oZ1/sbPFpXG1MLV4SV3r8tA71y2u+9LUn1nFOX6ELT67gFWf68VC717sW7Gv/Gaq/0e6Fe7rFedUaJvGNx2984xvrW3jwy2N5yLe16MUQPddmseONn2Jt2M7CT2tkb9gzeKvtgXLGBna+2ZlTCJvWQJteuO0lXHopaD5svoqNrj2rZn/0od++EE97EJ6+GLxUKjd8sulzLHv6cqLmW2Ejl/h7aaNmL241yR4H80TNN7z8iQl/egQGfPbG+TXGxjh9cZdjNnAVNmp6Clui5s8YP/kyZ4zQ0WZvHhYxVizm6IlBaQ5P0ly+jMFybRBrWlxs2LMh+VAXA5zy5F7SS+C4ht2154WZF+lqOEo+1NbMy3NraO35iYf8KnS8lHbWed/73rew6LBpv8GV/64l8/ZhY8b5w9l+kqvEON5s+Kcz9wMce9O+Eics1ykctoR+eYNBYOJXLozZK8bpe4kIq9zR5UeNC47dH8TXPvevnJzZ+JF/PGDqi7d7fPvBOJ7NaYsJr/IGI6Gv4EpHIezpsWVHzOEKUxzG9fGpmPPymD1ca2mtnQPMwdAXOxtj+WqvwXR+kBtxtSbs2ODlPKyIv7UQAzu+isk64qlP6CtwjU3++gof2ehbCxwIO/7SU8Nof2rj4SW74pcTsOwBgl9xGIs/n3zAVuC0z+TBPF+JttzJhc8ze8NY+4A9v83Dkl9inPBjDA5O9pl7BJviyicOcy+wN6fAK2fafOvDLd/80JUna6LQs/a42ydqdv2SQpvAIfo4sPnkJz95+v73v3/yC24Sz9W5wo/9jfYrJGmr7AzsDOwM7AzsDNz0DDhE/PGPfzz95je/WYdP8XQQMjcPM8b1HVockhJj+g7yDiHmFZJ9NvQag+9Q1eHIuMNPByV9hxsHxw6a4fCVbYdPOHHMlr02mTgO2nQ7gOICB7420Z/YcGA4rLMlxrTjbV7buFiVDmjG4u/AR+ATc2GxkUdFOz5L8fxDXykebbakdjnUz6d5esbgTjFWoe+hy6FXno37ZpC/J+zvsJuDYx5H8TnA+0aMhwyHYvl10PdtqNaATXHnn26HaH7gWRNFboyxs/7i1Sdyzk6tzLjCLr7m2DYH3wOsWGaexa7kh74+0WbnUC4vxlv3OKjFq4TBtlyyZ5P+1IGvj6/5/OFH9NOhx3/ca7smzJVzeZPzrh/YcTZGT57ZZxcH83gUU+3JDx9iDI445TRMD/j6pAcouPT5IdoElng8HHnokeM40jGvxj9u4cBiyy+x/3zD3cv24vJwZdw+KhZYcpDESW3Ota60njhoKzDi0z42JpdqGOVBH142/LGdevTZKubkSyH8VvTp1q9dLuRB7hJ43StwqJTDcgwPlgJLrprTlj8PxMWhlpv8su+61baO+OMDk6RDrzjN8WOfahuXN7h8tD7m2Cu11XTo5rO4zSmk/PMjF63fcT3gzBIXNWludc4/4ODt/gebP5hKYixu3T8+9KEPnZ5//vn1wh3mu5Fiu3f+9t1zzz13+utf/7ryzXf7jl/5tw72hFosinb7Wx8PmGzZGWs9jYtV7sRbzu0LfXPG2Fh3PrXZVYqx/FSzc/347ICFR75xxIEurvJM2MQhXHWYrS/fuOAkJth0rJWibU7M2u5VfLeucWHbNaTt5RJs9xg6OOKKE1z2JH/62vxYB7bG6FfTz38c+WKjkPI/c0o3MY6/Urzpxot+c+zo4t51aj5exRG+cbbu8+ziqc5PfPX5dM9QGzdGF276aphqIk/axUHfGvm8ppdO6wEbLy/Y/bkxa2MuH3CIGPvWqv3Gh5jb47C12fszeIqXtrDE4KWlPcoXvc4/8TaGp5rPPvO1xUS07XGcSfp8i9McX64rYzjTUfOjyCPe6nLFtns0bLbtK3z84gBG+v2fJnTLQ1zE61ojvZSEFQ8xsIFrL/d5D7ucmyfq8oejnDg/wSDG5LPPT202FX2iX96M8aWwV9oD4u5Fu3H85jlAjtxDYJmHK49iURNY6chzfuMkXjF40S6nfOLCRl77l2FwrCU/8J1p2MgBX2I2ryb0xCZf2jBhs2OvjY8cs7FG9BS+isk8Dl5cd38yJnbjeNKHbzw/ctWeNi9e83DjZ1wxjo9cyLdrxri42MVNfvDH2zhfhB7b7oViFlM5hS8XYouDOntt+mLiK06tGzsCTyl/MNm4lrXxwLEciqk1ycZeVejSM/7Rj3709PLLL5+eeeaZ5Sdeq3OFH/tF+xWStFV2BnYGdgZ2BnYGbnoGHH560e5QnTiEEPMdijtMGJti3AHFocmhxaFKP9HuAEa3AxQchxaHl/ypHZrUdBXzDmKEjUOWQxpb4x1EHQjN0VeHo51fbcLOGAzSgUubjiJu8SjlgL44w+TLQQ9fYw5/sI3jmt+46JP8l0v6xS5fctjhdBmMH2zw5Y8dbmolfFL/J5gAAEAASURBVOq18xFE66GmY15MYlM8UHmx7qW6b4Dx5QDuby2GxZeXmMXtWyD+0yYv28VmLRxY7al8xCcbfCaeePnnb+aQL3gd+NkYgzNjFo9cqI8iJviEvUKvdvrGFBzUPVSlj18PSvJvXYsvPBzSM0bkk5259ol4ikO84iFxwpd/3PmwD+Gaz4c5Y3TzD6f9lr++ZcW3/cp3PmErcakNQzHeHH75KTZjRM7wwbn8+WY63jg3Xi6zD5/f5uAUd/sFpvl04sG3djmhx5cxsRJxe8Dy8GlPwpwPakvp/CN8fTnyQObhjX0+8NUvb3IEs1yxrc0GH8KGLbuj0LOGM27xtGebc5221nDCp6svrvLFHx5yIPauqXCzwSVOsOWAHZuw5MFDun0Ep1jMk/i3X2HTsTdxbj/Qbf3oaMPgT00vXvmQs+xmvQbv/ygXrjFtBQ5e2rCttzXVNs430Sf84NH9Pkx6R8xlcP7BFqYXGtr454MNaY3gyq+XNL7J/sILLzyUF+3+HJf/lO31119fLxvdaxQvGPCZRSwKTopfhPqFKG7u3fZK9zdr136kWzytm749osit/PFlD4gRTvvJOL/yay/Jl72kz07xeSGH1t0e4xMveObN0Y9/cdEzj0P3Nv2kmNW4w9TmJ3/pm5/xidGcwo/CVmxq9wZj4pQvnPTZiQEnPujG3fWgHzYdc+x60WQevziWp8bKJxttPviDWV7EP8fw04dFR0zw+MJJnuUGpjm6cNmJz5h7ABsvtMOAl6/2Pkx5LEa1sUQfNkzjfPDNT/njxzxdY/D4pB++vjl9a+IsKA7YBKa9SI+9zyM1UXtBSEes1gEODOceL+XNw3J/t1/tUbzYePHv+sA5XnDxhY2HeW0Y8qQ2X0zWG286ONi/7WFYcJXs8NNn031V7uSAPY7WgB4f7LS7F8AkxUKnvMdTrOIUV9cUjOKJE7/iY9+a5RMHtsSYAkM+/asDdtnQkVNc1eXCtUUvXX1nTvcPuQyXDX/yZpwP3OAZFytb+sXjnhUGXhW++WNb7uTVvJzDVfNhX7UGOMDs3ja5acsRm/aM2HGLA1xt/4LA/ZxPe1+u/cKnmOgZb6/kR1+MOBvTdj93nyV4OaP78yzG6ItVXASffpEFgzQfJr/aeIqX4NP+4deeYdd1ax7uvK7pGZdH+5K+Iu/GtOHTaY4P88YIHvJnn/bZC/cf//jH+le09rCY6LOFQ2YM9MO3R9zb5MO4Upu9+0ZnWX1/0/2rX/3q6bOf/ezCpX8d2S/ar5OtrbszsDOwM7AzsDNwQzPgMNGLdocxYqyDlLYDyyUx5yDo8KI4dDoMOVSZI2rFgQaOdocdtfEONmp+HaLU4U59bXoOUPzQ7UW7wyMx7zCohKVW2BO6+Hh44KtDmbl84MaPIk464nNwTIevDrhwHORhaxPz/MYnO33t8kTfWFx6mFkg4wcOSsKeD1hKEq6++SnFyke2cig2h0g58aDZn4oRvzEHzfyI0UOBePH2AtOfiXG4Lwc91MRXbHiVD5w66Grz3d5xiOaLLX0PMcZmXHEpblitk7joKvzCFgcdY+ZnXmrzB4OuMTnxjR2CmzypCb+wCUy2avPsPDTAMuaXFK4PbcVDoZjEVj7aN+bxhCHvk4uxMIy3bvwkcMqfcRw9SOCnbb96QLE+fJNiMV9e26PquNEtR+oEJ77aP8Vtz+BJ5KP1LUZ1/ujUZyN2OGLhny2f+W8t2Rlr/dn4diMu7KwjH+L1yyAP6+1NebAWdBT+2aXfCxY45vBSy1O5Mien5Qsf9nKrLuZ8GIsTrLirxayYL578Gu9eRze78sCGT/mytwhOHkTFiSfBR4zxglNM2nDoKrgSOfNCFpbcFbua4CA31hg2PFxaR76sy+TKjh7BE+/mjYWRj3iaI3gSetrmXR9hpF9eeoEFjw4Rn4KbWt5wxpcOjHTY6RvP3ph8yI98GTdW4dsYTHnR9nLBi/YXX3zxofzpmF60+89Q7Xu/IHW/8XKmvBePXJUX6+M/OnTvxs/92z6xx+Sj+4+aDWEfltjk1N6XN31zPh/dM+0FuGzhsZUjufLSh9/WDpfuh+WUnZzZ99bAeGvFj0JHae1wsR768cUrwcN9mNDh376z/1qrMM3RUfhma/2Mw6DHHzs8jcULPh7xiaOaLixS3PyztTfMp883nPLbvpqxy3HXj3lz8PGSb2IMrj48cZiHT3C3XnJtzjhduOzsAVytm9pLaD7404fVfYedHMFJ9KfQh82+nPBR7ObhKoQOjGptMbEpF9rigMGOjjG/FKCDj+tDOyyfT3Rwt1bE/vcyWLEeODobK+1RPnr5yV4fJl25kxvrojZevOVGPz44a+NgbbpP4WIcBjvYsPT57iUl3/TM+5xnj4M+kTMc1UmxwMOznFgTn3lyQV9foTf3hz4bvhXt8NsH7dl8qr2ctnfEnH7zcoK3wta9KJ/m9N07xMhH8dGXHzbG2eBjD/TZZ1xfbuCo9dmKBb5abtnrmyewjbd3XCPy7x5nr/BFHyZuOMIi8YSZfnvFXLk1hosX4X/+85+XHf/W5oMf/OA6e2vT44stfySu1qyYtPu8Ni8Pzj5+sarNHseK+Ownuu1RY9aofYdfnLWJeXoKac9r08G3M4s9yh8fcmbcfjDGXt8+1TbGlo1izp6BHyfXin0s5/KI59/+9rf1mWYNCP1s+MWpfRN3enLl2YUYV+gWg3tB/6krjl60f+lLXzp95jOfWTawryP7Rft1srV1dwZ2BnYGdgZ2Bm5oBhxoLr1o/1/hOFQoHYY6wDiAOEB1UDJP1EqHJmMOOw4xpANN7fCNTz1tB8kjloMUbHZ8qx28HArpKw6PSocsY2wcmhvTjzMu+vAUbYcv8fVgpM8X3GLInz4s8/A7oOorDsnGtYmaDemgpyZTJx7ii9fEmfrL+PxjxqQNt7i0YTpky4XDrfh8I9LBsm+uybGHBX7LpxclHm7E78DrsOqAKzZ6xh2Gi4Mdrupi5a/DNU74lS9xs4XVQ5SYwqOnwKKLYznRL1f8sWmudSmv5Unf+sLBqb4HLD6My9Mxn/qNqfmhK5/afPvFBUw4fNgPYioXxrUVwk5uYNDHRV8hcfMAYp5fGKTcxwumNZEPOh40PYjhIH+wjM9carODUf7DNwZLTdiL0Vgci7uXffTsH+Ps4q/Pboo9I399E4p/XOjxw746u/yHxZfCTzxheJiyV+XD/pQDNT0xwxGDNh7y5MHUWokfvhonhZ6arnrmSDsbuEoy9WAWW/nDx1j5ssbNGRdTecRBIXDxsMb04IhBjOInMBWYBC967NQwij+ecuAbX3JHzzzd/MKA172RHX7GrGWx6GubT8e8trUgcNniyJdC+DD+IDFfXHwk8YQfd7q4t8fLhbyFg5d29vT5b75xmPIix+bFApe+Ni6wXP/ENetPx9y5c2f9OS4470bKhW/x3b59+/TKK6+sa8Y92z3LvWP6Lp5y4xrw4tSLCjG5nxtrDe03bbzZ8Nfe0Rebfc9GvPrm6Sva2eWTnv1oL/msaD8Ytz4w5A2mvLR/5MccmRzo4JUNPnExp2THVpy4tTZyYv2sHcGTTjIxzBWH3Gizg4Wn+006OMEVh7haK7jlkR/c3FtgiKv7fRzMsy8f0x6OQlfMxV1O6bIlxuDjK0fZrsnzD/HwLR9iKG51utrWDlf3Zn6N6atbQ7U5JVs1HaJNxNba0G2/hDvnceoa0ib12cGuLxac4FhrLzjFr+/aS5+NF33ilpeufdeOX1Z5uSZOWNZI7HT04bETC7/a8MXePD/lnZ547Iniou88gaOYzFXajzAUuEpir4kFRvkw7yW59Z0+2BO6eCji4INtPuTDmHsZHAJHPERe5IMNXbX48JdzbeP2avj6/NGFJV73Jzkjxqboy4EYcLE+Xa/yj5dijm7xsOGXndzAN+Zzyzh9+cELjutCH4ZSjHiy1S/fcOQIFzk0L455jxWDPYIbfDgKW/j2h1/quJ8WO/x8yB3x5RV/Aqy4+PX/InUW0ocpTnGlJ89iKhZxu7+K15x7vF+k3jv/mbG+DGO89eHffoJXLsRKYBqnW86MNyaeYmLTPqMP13o0xgae3Bj3nEHMy0327Un6dLtOyhMbeZBzpVz+5z//WXGXCzhs1K0pXbhxouvZRck/7unb2+4hCo7KY489tl60P/nkk6is3KzGFX/sF+1XTNRW2xnYGdgZ2BnYGbjJGXDgeDcv2h1CFIcYhyyHoQ4u5UP/0rj5DlLaDo2Kww39bPQJHPrEIc0Bi+BOOqzS6cDn8OSQCZd+hzLj4cWXn8Y6qMKdXPT548PBy6E7Xw7RcTZGB174fDsUqzvA9UI67pd88UnY4OVhQRsPdbnPX+PFoI4zfJIfbfO4e/BxmPdS1EON4hDcwZeuvHkAc5Dt8O7A3kMLbg68xQkbR/FplwsHfvsGZ/MeZr2E5oseew8rfHQgNt4ewUWO2fJNR1tcMOVk5sW4eXmAYw2IdtzWwPkHHWsr9h4O5EJesuObXpJPdeNixWG+jPAfq7ENRw608ZiCK4EFx8OPQo8P8bAtn3TZmDdePowTOOasH6HLL704mOvBlY/myhs983HHASa9YsDHePmPn3zWtsbwE305Ep9xmNbZCz95ty9xaD3Fohjjm742yb/55qyhFybsm6c/7fTDUJdDmPLiOvXQaj/q27+uA32x0z/mAgciH+LS57928dgPxhPXojmCC32FNC4/+eR/8qNHHyau9NjJgzpe9GrzI1+tZbmgA7uHWNeatn3wIIFpvWHgxqcczBjpNEZPsQ+OuTDeOsqvWNK/5F/ccAkfxZcuWxiV8PWzUfNVHwZcdeNiUbLHkehX2x/yP3nDsb5srYdvKX73u99df+s12wVwjR/F6D9D/drXvnZ67bXXVi5dU+bC5dc1pk5ws5btbbyscevG3prg6lrUVuCowxentjWEwd7922eDWt98glN5KafxY09XTuXQfrM+xruW5NEYnHDVxlyTdNt3fOPXtRCH7OrPmh/z8SyHdNpjxsqTF0DtIfNiUujgERdjbFy/PuPkvriPn5nFKhbY7Npn8mwNErjs+cNbsT4wzJVDfVz4l4+5hrDKfbjmrT1/1sJ9D4bPQj68lMJN27g6ab2q3RPoiBnPuMTBuLUrL3jDyx6uNi5+QYUXURuHyYZkw4fCtxdkfIVLjw1pP+MgV/SdR/xnxT5/up/Rtw50tK1Heys/8MqvMT5di16wioedQoc/Y64txdrgTtLTtqfgkHzKk3Y5p4+b61exLmzYwqTrOo9nfvjk2z6EhZfrtmvXWBj8O6vJSde6eYUveaKLh7WEReTcnOuELp/0ylNxiIGugp/amG8OWyMx4dVnEmw45W367V8pwMalz2t4/MqfteOjNe1eBdeYwiexVnJnLflTyq95enS6f9LDzf6099iKXVxs9bUVbQU3nKyTX0I6L8oZjrDo0skPX/Thym97JD4wxJ8vuD4n/vSnP61vfLNniztc+HDiB4e9Yj6s7glxnmsaP5zhmKOn3bVdbuHbR/IjPsVetD5KcdMz54W8fQBPDoiYuxfwnX/rb6/CwFstPrHyL2/F5Hp2L/MLDvc4nOHjkC2frhH3Ppzx8KLdn2t7cr9oX2uxf+wM7AzsDOwM7AzsDFzIgINFL9p7iOjQMtWNObAoRG3MIaqDYAer2Tc2iwOPfjUcB6BwYZqDQY8Yc9ip3YHJQYh0KGZHT83GfNjqXuCa189XfPgkxpWk+Wz0O/Th7YBoTHH40+8gzlcxxteYgyfeccBbgUFfmRxwad44PaKGVx9HfhQYc17bQ4ADI/5w1L657nDqMMlHecDPgwosufONGAf4Drpi4I+f4wOM+HsAiAtd36CE74DMTo2DfWQ+nA7b+JijC4fg7bDsYaGx9OZ+TLcc6MNpXBuWIofWrQcJHGEWB250xGRcO9E2pkw8D0rtg174yt3UgyHP5QhWa0nPmuBFcDLXg4Ix/lqD4qk2R5dPY/T4UfdQBc8YPTkPm2+5VAgbODDZ5MOcMYJfuPpdl3Th2Xdi0YYBW3weXtgRHDzw4JEP8/atXJYfPpV04FVwNceP9TQOv32Pg7EHiXyYh4OP0hppuxYUbTztQ9eFfvktdjjtDzWRp/ZV8dATJ95dX+mwMQ+b39aTLp8Kf3DzpY0/KefmZs60CbzWVs7kFKZ1cI3X50ObsIWvwFXI9KFvvjVqPp7lxj4Qu71A6Idde9Z02OJQDHFob8VvzsOQQ8V4mHw9SMLlL775ZhOOduNyJn/llI45cavd77zI+973vvdQXrTfO39L0X+s+sYbb7x9/YmRf7HJreug+wiuBK9eiuElH2SuYfFZIxg+J3yT0/VkTrFPzanF7qWFb9l7gYFDccO1PvGBgSc73ORM3z7rGnMmEQMMOkrrlq5+POG3B1o7MaWTnlrMxDXMJ8m2OWPZyIGiPwU/vsShFO/U4Z8fAkOfTzGIiQ1c+TIOUz9f+ODGVj3nteOGR1j8ySMf5Z7/sHBQiHm+YCl8tE76sOjSg+eep8+vtedT31x6xuCIj53YSP7VfLKxD/ngiy5b2PJJD0bfNHefyBc8+oqxClxjdL10C0dMPpfVcOPNt71L35828YswOviQcmCPEmtkb7KLG1t64ixGMdjn+nFT01PzX55wplc8+hXYxtmp6ZH89Rnkcwi3uR/0XZPi7sUvTkr7lQ4M57PWlo908Ojs2IvkeNBTxAPHi215Kre489t6Gu/+aO3FwE4u1XDp0O8b7fQ6F+BiX+VXHviWd3rs2MO1Rl7Osy2X1fywo+NFNP/G2E/s7kH2A1w5seZqevzYO+534vLLCPzMyznMYqKvrcZDvBXctYlfKLnX6lsPNa58uVZc13iR8JqnIxb+XZvikQMv2v15MV+WgVke1Gxwh0UfF22FmNeGKQeEP2NiVdPR9vnmxThdOLjyj7c4xG7OvpBHNvYhruUAJ37omqeLl3E6fGvHQ5suPM8zCrEnFPM4wuCbnj4svOwPOTEmdzh3poODAwxY2h/5yEdOzz777Ompp54y/TaX1bnCj/2N9iskaavsDOwM7AzsDOwM3PQMOJz0ot1h0WFiHmKKr0Ocg0nC1sHFwYOwdWBykDFmXnF4qU6XPswOXumH3wPAkY8+ccjsYMgmO/OwKnwTh0APAA5TuHR45mdyiyscNjgSePr5cgiMmzmiD88hzsFQ21yY7PnqoEq/fhzU9PKtr8CBCSs7uaNXH1f8euCI+yJ3/sGvh1WHUA+TcB2KPYjCLg7jMOSrlyUOov6+o5zDxUPNhr69I6cOqcY9lHix6aEMFq5svayXHw9QeCsEhljowRCHMfuruJfi+Qcch2OFDT2xKfTLEQzz+s3nb/rWFgeu/XNgdsbYJtYTl7nn+SD06MMSP07wxOp68C05dvTpKnQU8cifORiKcXbtIZhiME5Xv1hw1Y+HdvMeINvz9ORX8QDYyzF2cm69PRDxIU57g89yUD7zWxz1Wys2hB++1eY8OOaTLTuxdr0Ys1dw8a12BRc8rIu63MQJRrEvp+cf8TEuZoUPa+CBv7jS5yNhm/0cq03XPpcrtT3oGvnnP//5dqz8ibt1mmsKR1+OWluxGJNzOWbHT+uvLRa54c9+4SM79WzDFi+hdxRj5Uys7Ql6OJm3D8TAZzpstPHBk535GV+5U9Mxr9afHOPctWRfuF5IfOiwVXBSwjen3RhOYapxnX6N0Q27nBpLbzm/8INt1wG7fImbiJEYL25rZB/rl2vzRJyPP/74etHugb2Y1uQ1foRn77300kvr79PaM8bzLz57wf3YHDGPu7joKcaKER8Ff/vNfqTrntFLDDGIq70Gnx/6Pie89PdyDwa/rbP95T6gsLEesBUvNugbg9PLD2P8uD7YEGsm7/TEyP64D/llU05aC/jlXNzHl1blBiahyx/u4iDaxnBU44db91UY+OGulis1Ll5C0Reve5wXc+5J/Ml1OYdL6FbiIob2lTlxyn/cy6H7lHaxpMdW3pTWMWw85UWMYsKZPRzx2i/8tLfcm/k2756YP7zYsadvfIo+n/yLG15++WanGLPf5E0NS26sG+HHGCyYinm+8bdn4dGTa7/0tv/M822NKuKg7/+noS9WIq44lid9ubJ2bJx3YIoj0W4d+dKGW9xiS4ofRjp4iUeOxWBODsoLGzzcr/0Nbi/K9eWDvhpHc855/uUibPdbGPBwEaezgv0Iky2+8icndGDpi9N1wJaYw5EftT2CAwxzfMk7G1iKPLRO7OjjYIxftnzJjwLHdUHMlR+6FTq469e2bq4zsZkrtzDix3cv2nG0njjyQVxD1qF8uYZc550j4OLWv/aUZ34UPqbPGY+4fcayhU/kGL7/w8NZhY7zBY7iYi8me59dsdNTyp847BM8cZCDe+dfyN69e3ftERhsiZp/Oto4WB92xUxPThU6YtYWG328jHW9+Q9c5YcfebEv5ZGO3NoT6vKhjSs8uET+wzbOFq9q+0UexB1ve1P+u77FpZgvJ+a6Z/FP2n/6cuh6evPNNxd//oi18q8qzH/iE59Yf/rtmWeeWXNxXp0r/Ngv2q+QpK2yM7AzsDOwM7AzcNMz4GDRi/YeXC7F5CDRAWfOO7w4DCUOR0qHS/MdWDtUpevw49ACuwNPbTZh51tN2OHqoOUw6PClJB3+8NKmjzsbBz/iYNVhku9pYz6f7LTNK/r8Hvnq84ezQ6PikFouwsxXsRjPNh/xpVMM5jq0syFyFz8Y7MTk4KnWT7J3EPbQ40HSmMOwvsO9PuEThgcmD2gdaB2WHe7xEle+9XGhp/ANz8t0B1o2PQTAkyPjahwVvtX0YMCOc4d9fsRp7WAqhJ6Cd/mGBUPNj2IOhnElMcbeQR9nOWJHzImHLR7mrANfxFz2xrSJNt18e7jX55dNfMUjXjHJIT9sFTnMlzkCX47Ytea4xtdYesY8PFlHbZj8e/Cw7j1s/5e9u2vVtar+OH6/jojau+fUJIKIToIO6qCE3BJGRkFCWpZabCxFoUPBF2UPIkEdBSFomobZ6/ivz2x9N+N/sbatFftkwRww13wa4zd+Y8x5Xfe8rnXvtekb8yDkQYKYs0bFgxcpd/k3D1s8uPbwxBfxAIu7cXhw5YQ+W3ryalybrlx4SeehH6Y8WBuFDjsFRvHiYIyoW5cw+fAAZq9bh+k/zGX8X37wh59cqd1P8PQNXnmWHzryaD5+fCj8KvIpD3NcnOzZNZc9Ws1ZK3kSJ3s5gicH7LpezGVXbvS1FXhsFG05g6U9X7Sz4c94ot21iiP/ira5+MHUN17sxZSduK2/dSFs2cFTi5cvnGGwU/Rxp1MetY0TtfF0wzVuTB/ufxO64RfDMdaJEW7+xB8Xel6A3MsX7e+df6P97bffXjnE1z1F3uTHfpBjhYihvNhr3U8aw5ewt7/psMHbL6u8VNSGbb+5tq2dnLgne7HiP6XzS1W25u0rukovOvBpLWC5V+BiDeG4nrzcwAM3PhQ2OMZPu5jga8etuOVEYYuT+cZcy50LwlEfBTYeRDx44gzLOF9e9HSPs/584Ymj2KyFe5CcuEfIkb57m/zhIWY1fGK8/aYPCza/eJqDB1vbmHkYYuO3eNz38cweBj/FZVwh4qXb/UW+3BfgGqOn7lvH+tZNHS825Y2vKfSMKfarGo/8qcUFw36TJ7nVFxMbImZ27GEqYjIuXi/ocdCH4WWzPcimdYFnneSQ/kc/+tFlYxxu500Y+YmDPcnG51vzeNlr6erXpiOGxozTJcbLnTGcFDmWD3P8tdb05cHnvP9I0/nK+qTHF3v7zOefuIzJY7nlB4a97KUu4Use+aJHByY7XGAQ3BV5lHM5gWPf4yjH1k5+YMCFmT4f+HWdhAWfHoEhTnuZwMg/zLDU7NsLuMgFPmz5Ms+2fa1vz1pf9vZJMefDfUh+zBHzXoKLiw5c16wcw+pFO85xpSd/xcKvuOnjiGvzbC7zol3OxC/v2jjiAkd8Xet82x9eHPcvjbIVs4KL+xEs9nBxtYbWn9AzrzZPxFhs+nSt9Y0bNxYHsdmTihyJm44ctj9gGOsXOMUk37iUF77xVMMRr3WTO318YbjGu77pKwRPfu3f7ll8w09PXw7ly38ULk+wcbIPXB/8P/DAA+tPv+0X7Su1+8fOwM7AzsDOwM7AzsBFGXCw6EW7Qx9xsDiKg4bx45zDjYNKAs+Y4mDTfAeaqQvToe0oE0P76Jedg5EDlnkSv/DikD/zDmYdurJ3qErYzAeYebCkw5cxtnSJPmx+Kg6IHbCX0vkPcdCFQxdG8cU3H8UcpvEO+sU4sWc723xZB4W9g6YXJTdv3lz+HcYdSglc+WBnLzh4e7nuYGncWIda+vkpJ3To6vPnoczDCBtzijWAb15sMOiLzzh7ZXKXS3268hSfaceH/pRiNlY7n/AU4zCNezjpAaB5uB4QiHg8YHkoYNdamdOGwU7bvNyqFf+CAH45o5tf+8kDidxMLOvFV/GXI3HGD94ch9Ua0GnPlztj5mEq7Tt+W2Pt9go7MvXyGX/+E+2pK3f4hueFkjzKiRwocWGLg4cnDzoejunhTE8+YdNTjKmJmi4/9Hvw1C72XhJYY7ps4MWlvnuAdvy0E205FVc+PIB5yeElFP50PJDRg3GUsGf+8CRyZX3KYTrFoa4tLvj402NbLmHlGx4bfpXs6efPvum+Bte1LhZtwg5O1zI78/qELxzosaFrnh5/zaezjM7trJl5ts2zyc44HLiNG6s9x+nBKHZ6CokPfWM4KvpT4tIYXWNh8huuNilO7e5Fca7mx5x9fN99951u3769HtjDYHsVKS7faH/iiSfWy233GPEfZfI1b5+4t7Sm9F0f9n58zNkTOBuzz3qBk56cGLeGcOm6bv2izPXQC50w6br++IKVyI17YGti/ynsW1N8s6FvPemYv2iNilOs7TE84sJGu3sk3/rlNW7V7QHz8Ih4cZEPMZnTh9N+iav4xO/zln33OZ+RYsNXLDBxOcY153GGyx9Mxfzkbh7GjAlPusatrRwSY2z5neuNmxeHXkyVKy8ueyknDmvCnj+28zqDXd7KBz/a/POnD0cpBrV1w5cuHj57jePBzt7g2xxbeK1lMVkTvxwKx8tw5x9rAJd+n7240xOrz2vzxvCzl7XZlafiFHt7U5tdRU7wItpKa2BMLHONxCFuOAQ/nzXhlqtyQ18u7CVr4nOTDaGr8O8lsLh70S5veJRvOq5bn1tsxINXfsSjbbzPzyN3OmzwxQFnWPTlXezsrQk9pXXEv3sF7mzx6/qGLd9qMcNl237DxZyiTczbq9YOJ312cHESD4GrEPziSh8POWWfX7b2CBwxiJV9XJ1x6DYXrrhxU+Qi/vRI3M1Zq/IkButTjNnFWY2fc0j7FW9r2xrIgT3gvkyXHj9sw6OjHw+c5KgX4PTxoF+O6RB5JeKWG1/kkUs5safsrbgZb/+xU9jJK2wc+MID//iYU8zl3xyO9BS4hB6BpcgxP3T5kVvrxy8+BC5hi7e8s9O3xvLjGqPnRftTTz11euSRR5ZNfFbnEj/2N9ovkaStsjOwM7AzsDOwM3DdM+Dw0Yt2DxwODJVjbBeNd1CausYc8irp1J+6Fx1QHJ6UpIMVHMLGAUjRNt5YByz2/KmzM5eNA6N4lQ5YdDuAsaXrkJYd34051NXPvjjzHS/cFDjxZR8/Y2ziCo8fdZh8ORQag2M8e3Ppzdo4HQdKB0xzDqIeIv0NSBzE6yAtTjnpwcWhsm8Vx68Y4oZLYx6SYBgjYuHXIZZ+OcShPr3G4RD1xICDpzGlvNMrfn49PDgMlxt+HKjzL3dywCY/6g7bxmEfdewPD1p8ewDz0A6XLh/x1k60zXsBAE8M7HChL37+cDIn7w72x704c6g9BZ9yZU5bHsLRbpxd/LIpd3RwjYv80TFOZ8ZIz1iibUwJt9jMGbMmjfHhIczLivJCT4mr/eehzIM3W/7lRTzyl251ceFgb5dj+wEGvIQPe92en/6LHab9QIfApncU69V+a+/5Vrt9Yo54INPmk7R/5SSBH3/z7V86xstt+WWnjaf5sPgIx1zz6VhTOunFpevQtavE3bi8ZcOvtljTpZN9fPnLJx/t53DUkx9cwgZH+OZbD/jyr89HPvOnVvhqDlZ+1PoJH+1vY9MOTiLHR1tzxsqdmuSP/8b4mH1tY3Iqf/apf3r+/PPPnx588ME767gAr/Cj2Lxo/9nPfnbnT8fIl7wVh3XlW37ja5+7FnHuGtF3bdBRzLEpt9WtYeuQvtoYG9ee9edbsbeNtzauU/dRki96fMoVW7liY4xPNniT9OjgRcJpLfXbT+y0idyYq5Sf1kkdxjIYP9gQOS6/dOXNL1DcF9yD8eYzv3LsRRiRZ1zESJ9OWOHTg1tfzQY3ueRD21hx0Y+3sfaBdnPyr5DuYfr5n2tuDFf/IaVvgZvDw4sz//GudYKdLUw6YpVTOYhPPuiw0S/v2u659oM5GMaskzXX9lmKC58w6eDvM9k3aOXQXjAGl434YeIOB3c4vvHKHx37VGmvwYHplwv8yDVO7ufy3Z9e0caFFCO9uS/wNwc7Hfo40cNHHLDM44On+wMexuyRXlLSNcbOPF0+iJjFLhZtutXWw78y8fLWf7LJN1sYfCp02IoTPg58WVs+xJaNMRjmWw/9xviFx4aOcXnXhqst5nIoRi818aeDDxt++hyFhZcxhXQd8Df5GSdywN7nsutFn604XK/afMFVwrD2MPDBw36XG3mgZ/3EQJ+e9U3gtS5yIC7XgXuDc8+Mu/WEYy0IXfF0RpFfPLqW6PIhTwpp7fDEB0fYbPnT7yWxvQTLnMK2Gldt+kRbzK4XMfEHnz38/GgrBD/Xln0mJmtrDfihU6xyWMxwjMu1WPkgxsWqlDcYeJjDzS81XK/4wTDmPus8RlcMxcsOlnXniy479tpJ+VCzYY+XHNpLxu6///7159pu3bq1zIxdRfaL9qtka+vuDOwM7AzsDOwMXNMMOLD0ot1h4qoHhruF3YHG4UebNHY3m3RwmoKTYlzpgN4YXYeqSuP5ZmOMqNk7zDl8F7Nx/BxwHb4cxug5ZCna2TqA0S2u5paDsx+Tf3479KnNO+jhpw1n1vCKxRwMxWGQb/PHh4QwcAjLGD2HWrYwHW79GRN/ugAHDz4eAuTDYbji0O6fezqw8s2Ovnn5MFbc2g7UPdjxKza+yyNdYlxbHPjA6kC7FMaPcNR0+dEuPnzg8+shAQfYdBSxWcvilgO2SmLeOBw27Rnz7OwRueDbg74Hbbj0Jw79uGnD8TAG27iHN3ZwxMu+Ofz5UfAvPjUduc/XrGHNAtd+hmOdcCD8wxAPfKV4zdPjRz7Dh0voETbm6dIxr21e0afDR3kwhocxNvR9K9GLEf706arp4k9fDPOBTl+O8p8Nu/ias88V/jwYe6hsTxpTPATa7/yzxT0e2q5/HOmScp8fNW7tdzFr96LdnFg8lPFNXxGbYm5KuPyJk05jeMXPmL44jcnBxGreWG21vmts4rRO6vaelwU4xFMtdj6N82dt7C0xmk9/xlObX7p0ym/rhsuUOJYvMSpsrVP6+RQXLPNiqMCkWw7YEn2FfbE3DqP7GVwyc7UGxg/6Cqz8xCW1eKnpqPko1+4DXrS/+OKL9+xFe3+j3f2s0h63tvZo9wR8ra0XP8S42PXds8zrl9fioWft9e8m7MRs7cWssOkaLse4udYSNvBhKzi3z8zZQ2zwJnTC1g639WVDjNtL3bPhwBAjMYertSFxhvlhwg4fewWWWNxXvIjpxSifCl37xRx+Xuzgxac4wzCGn37xTA784CVPfMDK1ri+uMMRp/sh/+bF1pzaPdK+0BYL3+y7TmDj6j/u9Q1V+PaWe91f/vKXxZ+N0p7hR1zWLn/G+MAjfX1xpOOzVQ7N8w8PJ/7oeqFGh40+kQP38z5bxSIm/vnCn30v/cKZ+xyGF3PWgV/6/Hi5KF7j7KydOOShfNIn9LRxN4c3/rCI/ZXAsk/oyTVbRZuN/WJeLmCyxU9MckWX8GF9xcgvbri6zuSInnwYZ9c32ssFbjjgo8Bn63NLHw+c4NMrHnb8GYeNY2uFU/7U9PBQ24fhis04W9zwPr5oh8WHf1EpDhh4qPlT2LWH5ULe8O5zFH/rphjTh4FLew2OsfzB8QsJeccJB+c/fXP0WyPrgIOCl0IflrZ1gCG3/Dn3iHvu+/zDJHTh6cOQH/Gr8c+PWj4JPPvYF2PYGpdbbXj69pDiusQBHjvz2opcsqOvmJebri++2BvHhbQHYLIRj2vSM4Y84GBP0SN4G7dW8hlOccURFokL+1n4sY6uZec1+aIL2/3JvzDESRETW+38zbyLr2uVT/oKYSde+0eOracx/7fKk08+edov2lea9o+dgZ2BnYGdgZ2BnYGLMuBw0ot2By2HCKKuTcfBpBJOh5b66g5MbGqzo9vY1NeeOHTpVczj0UHOuIOPg6Hx9Okl+QpDTeibU+A5BPYQ1GHT4a+DMp1pk51DWLlQT6Ezx/IHpwOfeX7wMi9PJN3aa/DsR3H0cENPO37aYUy+7HqwcJBk53DqZbGHZ3GyVeShh+MO3Q7IDpcw4cPqoA6LXlzlMnt+y492PLXhsDWmlpPaxaumG07j9BvDXQ5x97CAJ/8Ez3KszU5NVyxT5KX1DputNjsHbA972h4gfDO9F+h0ZoEbBl/zodQ/2fYwwL94+Yin3Ln2+IpfHNhkBx8POvnV11bD9VCmuEZwILDESI+OnFsHfdJ+xrdvahmPgzZ8eMa0SfNquIo90bwatpovel6YyCMsRQ5woaewt47aBKb8GG+d6FfChSVPdNjaD4p2MWvb/+Kkz7YSR3sKR3186euz0Vfg2HNybC20XSse8Lqf6BuHT4+N0trB4WOWridzRN06wdEuX/rtlWJYRmc/9Ftv+OmZ18aj9dKW77imH09YjdGzFnTDaL3DjYOaD/bFgX+xmYuXthzN61echH57ZQ2c/4BF4oEjX8ZrW0tt+PTS5XeOm9cn8eVXm4RXmz0bQk+BXTz62sbCVcuV/WGfetH+wgsv3JMX7e++++7pRz/60emNN95Y2F7qeEHaCz1+5RdnucRPbW/jVSxscNMvFjlQxGLtu8/qN7cScfYDVmvctUHPurq3tb7wrS9fhC8cZ760GzOPsz1tTdvbdLrG+RVT8ajZ4ciXWNV0YMCLv3uv2Mj0uQbOftCjP23iYSzf2l4Uuf/ihmc+YbUG+aVjLGHfPQwmKY5yq2Yj7vISr3CM0zOOg5iJ2IhxYj3y7/6GKzu8rBEO9pLPLi8f4fp8kK+//vWv6z4Aa/pny49S/mGJubzzo81Xc734ZIMTTLzpsnUP7pu1YiLyLF/dn/HqRR38/PgXfOIj9Ls24NqXrsn4Ni9e/sWDpxds2l7Cy4ux8oyvOT5dc/YabD7VeNHXLi41YacQuGzkAoZx3MTEl1wp7r/wynt7BQ/6avN0iTYs+fNSsevHXHzosu1FotwROVDoWXu88ssGrvn2j759ZQ4G3/i1ZmrjfPVZIvc4ixGWPOXT2YseDMVcsXdfMV/urZ984wFPPDCKi39r1BlOn62c48Wv/WRfyDtfuMIrRvraYsTBerDLPu5igqPmpzWljxscxVxx8UM/X/TC0JZ7NV6EHRsc/UJALozJqTZ+dLXlJSzjjbX3+W0/wDZPnNfEFkd4OFT4V9jSE6ccWy+YfMmvtSnf6ubhyZnS2TUsYwRHPuQ8fT68aLde8pieXzj4khB+OLdv2mdqGMbl2TWt5pOw40fRxl/u5Bg/nHxR6Sc/+cnp4YcfXjbwriL7G+1XydbW3RnYGdgZ2BnYGbimGXAQmS/aO2B0+HKAcABxKHHA6DDCTkk6aNBRzNFVpl722anDcqjJRs0nXJwcTsPELX7h5yOs8Ge/g1M+YDhM0nEgdIjiLxvt2YfZIcyBsgNcHI4+s2ej7aBYjA6dxnDij6Sff2P09eWUT0LPGM7acTHXYRQu6TDpIKrtUOplsW82dcDnwyFSjuUEhsOlwof5xFh9ugQHtuaM6TeunT7OckWM6asVetkthbMf5hXjaqKNt/z1MMKntVOLUT74aS+yM862nIUZDl1jR7E/PMDIpwcI30ryoN7BvL0UT/b5LlZ8/HJD7o1NP+zk3kFeDNkbV9h4KGzvyFU5Lnf51rcOYsSXL3Nq8cdnzuHSNSA+e0MuCN4wycRaA2c/YBMY+OHVHsouHXrGrJ0CDz5f2mxhwIqfcf3isYeNVYpNH5YiTjgeKOWVT8WY/Wm+XMA2V82vOQ+FMLXlxAsKY/rlpHjZ5q9vvhnzoh1vggedBI5CjONAjMlHc+Kb+dNuXrvYyoe+8XC0cRGXUqz5nH3514dFsmFP2Fhbe1Rc+nS0y4H8ps+mtcWjfKrZZR8//mHhwE4h5tm0Z2Ap1qH42ChE7NrpsD/uS2N0cDCnT5/Url8+mltKQ888XdzFpY1DPtT6xe1ac8/xN16fe+65e/I32t95553T97///dPf/va3tV/dL+xZLxBcMzgpOMSluGbu2uM4ygtpv4nN+nr55NrSJsbFSIq9tdM312dDOdI3bg1J6wBrStzowoJrH+Cppu++qS427Qp743TlvPtDL2XCF0/3QLaNxyVstUJgzD3JRnx9DunL9Sxs4fNFxEUvTPXENV+hn561cU8xZyyM1pYPOW2cjvxVwoRDT9/nmfxqlwN2YvSizecQ8XJLnP5jRbYJbP6MNW6MwINlDcLkD984iZtvnOwPMnlbc5+9XoDDIeHiiLu90It2+Mbh+sarNnz+xCIObfsYjr0Bg13XDz90xAXbutEhuHcPgmGOL9i4svPZoWbLt3jYiY9PYlwhsPlU8OXXfvJLFTnXb0wNW8EDtrzby11f5Y9P8cpfv+Rmn89yb0/1uTVt2euzFVO+W+vyhgffOItPHOyUMPC1xr5lLi/iIubFLP/FxY9fXsstDGIs/2zlXs1W3tnLAW705M5L185wOFkj90ax0Be/dnmEBaNfZlkf/OjRMS9mMYpFjZ8xekQMOMgFHgSONn3z1sReY0evfUA3H8bkSV7Z6vM5/RqTg34pgYv5cgMPF+vr+uBLTud6w6CDPz6kawMX8+bKES70iTlFTOVInxR715x8w4NDH2+67RGY8sNXunDmnsaPvTWzJ8sVPb9Qsdbi5DtdeO0XsZvjE1/rwBddXMylq823NZA3OeHb/7Hi/0XZL9plfcvOwM7AzsDOwM7AzsCFGXDYmS/aHdAcMhQHnnkIchBRCDuHF9KhSrsDk/lZzOkTOrXrG5sHVn7gw8bJ4SgubOKWjgNR/o74+XKIgzGxxQmDDwdPB6n0YNJnPzH1HcyK35xylOxh1FbTdTjU5pfkQztf7HAxR9+h0Jxx8eOubZwOPONslHy1bg6I/ekOB98Ou3Rb82yzh0HyR2+O8auIw4FUbV6JC3u8lSmtnRgIG+36U7e2OQfseThmx685sYqLwOezdaLTg0++egBgE181LHGJ1wOXfNBxsO8FFtwK3WxmTmCx8+JL7j1YmS/nePTQw1d45cs3dpTWhU57VDzlm2+lPPBBwrlbmw3/9HHz7T851Lev8CfGig/H8M2JAT/rD0vRpzMfgozH1xwc/OLNlzH5mnaw+DCWXzZEHwYbtsScHOFDzPPr4Xn6568CXxueB3ZYihzIvz0HZ15r5ZotXx7uxKjv75Kah2ccJxzbn9rmrGd+3VPgF8cif/4DJsHBPFtjcOMKx7yS0JE/c2E0pw4HVzFkq8+uPLM17/pRhxmuOMzps4HberHVxxN+nNR01ezCohuPxuStuNWwy6E44ts+jUNzuOHIF5kc9PPXvDESZ+1yET91RU5whWOMNBd39vS87PGi/dlnn10P7OEuoyv8yM8//vGP02OPPbZetNu77mm+udo39eTKvmrviol0H8k/PTG43+FpnG76cmx/99JBrsqruCvi5UttDGb7RQ2f7/yah13u2ZDiq28MpvhcKwReetYXb1gw44+LnIuDLgx27QdctIl5hW389LNdSmc/2n/lhr1cFEc4fCn0xGGeHgkXP/P8GUvkI5xqc/QmXzGbz4958Sszp93DzBtnB0d/2uonOLvOFBzFbd5ZiU9tfghMeTVGVyHmtbuv8lX+4CvtTfbtPXhxoe+z9+bZf+IOJx/p4GJfKmLqXsoXOzUesH3OKfwag+1aMZadPWbPsONDvErri28v+aynPY0TG3kWrzOKGqf44unzoDXrHmYcD7GVC7mzN+nDKLfGcKcPH+d44tFnUOvDh5fsPsdaA9jZ4iwPfPjcgs+WD3Vt8eLW3mu96bU/zMmHeOUTL/NKa4CjF+hq+WQrBnkrdtiw4oOv+BVciboCg71Y5ot27V60wzQvD/LReuNVLou59WZjDj81XXkrL3hoJ+Ke/ForvK1Ltvj6wobCXpz5kgM4uKjbL+Zhy0vXLjx68P0dfrk3Jq/G2OjD4d8vOOhoi9EvVnCkZ1wNj2iXb37h4KZuTlss8kK0xdM1rE2n/JnXVtjgVYFJjjb6YmZr/yqtiTXHkcDxkt0+Fr8+360ZTuIWrzlxwmzfaJdfuYCjD4udvSRnMH1++39R9n+GulK/f+wM7AzsDOwM7AzsDFyUAYeY44t2BxEHG4cMhx86HX4cWhxQlA5XEzebDjIOJQoxBseBhr0+Ma/PlzklP3Rw6RBoPL9hxVc/bmr9RBtWPtVTnx4/DlPwOmDilE36DnkOZ3iSsPI3bZfCBT/o0lO0i6tcwJRLxTxfHXLN5QM0W2NxzU5N2Cuwe8CoP/NFl02HdD7gNu6w2b5gby57vrPTVuKRL7UxNrjoT0mf7UUSl74JZB3gkLjoNwZfkR9juHu440ds/MhH31DH39o7kNNhS6e44PCtWI/igE1XX034ki9+zNsvXmL3jXFz9jQ//PHBlzWGzUaNnxf04qPXAyD8+uqZM7ZKgpMCQ22u3OmzFZsHGA/TxsSCc6KfvTZ9ekl5EpNrCD9+YHioYuuhDn+x6rNpLeSJwPUA7IFY/IQ+PX122agJPubUcTdHF57x1r41YUdHwYMuW3mRAzaNicOcIhY1O5hscdduDc35dlk58KAMV1x4WmN9PopN25iCM8m/djzpKTgQNX5s6BM1XMLOnjbGjl6FXTq4erCkx8Y65kOMbGFaPzmkk7Bhz0adfthx50+BxYbwoV0cbBVj9OxtRb8xObQO5cp41215CIMPvHGDg0tYfBYjXtrWUk2H8NWcMXN4NUbHuLjV/PNNj04lTBxcZ/4ztZ///Ofrn6DnC9ZVBCZ577331t+LffPNN9d1Y5+5p/UZ5Vris+u5/MsZ3sVsXN890lzXJB/FLB65bA/0rziax0mxPop86Jcv+F4q8SEXiRxYp+xnDuea0vcStOu9ewWuuMQ9+/bK/Ozkyz4WB95zr9hTuJLG6WvXZ2MMLzFq8y8eOkQczcPMp/jN0YODl5e8dLru5JZeOu3B+nC14ymW1gqm+fLNb1zlCl/++ZIrtrAUeuZgqJPGits4fH7YWLf8qMmRA3170HjY8YfbS1xz3S/USiJX/iVe+1he8KbDr7wpcmHPx6EX3sbd4+yf7vH86fvzOH4Zzs5YOeebD7j2Cwz+YPosV5vz4rgXc/ziygccn4f4iROWzwM2/MgJHTb2ADxrRNi4Dq2TP4fBf+PFwA8MNWwvUq2pNeEDV3mWMy+Y7YH63RP4pe/bwPzYx7jSg6ngCsOY+dZZ3by2/Ni74nFugVM++TEnfvcAPPEzjr+aLhzjYu8b9sbEj+dFwhY/62cd8GAj93z1p2PEPF+0T5/0+S9G/glM/MRC0jGmiBVfeWGjDUte8IWHj/WwttabneveHqHnlwFs+LIH2LEx18tw80QOK7Dx0n/v7HNAvPiwN97eYlc+1bgq3YeNWfvuJXzJTdhiKm41Xgode0ru2ZgjcdXXhtt+tAY+n+zh9jq+5gmf4hKHOky58gtk68eveQW2+PkRD67Z4RgX8dJrPh/x4NecHNqjCl4wjPdteWP+E/Nnnnnm9Oijjy7O+VidS/zYfzrmEknaKjsDOwM7AzsDOwPXPQMOMV60v/LKK+uA6iDi0KXusEpHcTBxcFM7lChHcSBhl366+g4jSofbbOHko4Nh+A45DjY4kQ5f2nToO6DR4asDT/YTO/9qHM058BJjfDlk8dUhVy0mc4QP/Hu40Tcffzi4ZL+M7vKDHlsYFfHhRfILu7ib7/Cnps9vHNjFwRhR8+Fw71Ac56PfcoO/Ul60O5zzGW75pQczzvHTTyc7fSUJa9o2N2s+FAdjh3trHw4M7eJhR7e46cJ3EJ+5cWh36LcPjFt7cdJlC6M+DA9BHobynT+6ceBbvjwAwMTLnvGi3QO9NbRnzcuJa40e6UEMrraHVWtG2HiI7IGeTfs1vvTipE3KAR3Cfw+I5U884rKvy6N+ccEUE77FY8w8kSdx4CMuuvTkS+zsPLiYk2P6dCrmjcHEwR5lR+iYw5teNuLRx8FcXPidxXi56l4Bj32FH3pybj9o01HzkR/zxtjBrLZHEvy89DOGh5zIZS9e5Bpfc3Rhi9t4c3xP0Y8P/0lxsk/gtZ+0rQtJl2+5ZQMTB2tibfTZeqnBT/GzNS5/irjpEjUf7KcvvlsrbRh8KnD11WE1p6/giVcvWPhhg7t8tofjnG+YhO9qGF3H9CefcOk2rm28dQoTRxyUdPIfTrGlV52eve0/U/OiXW38f5E4/fOf/1xYvWh3/bhH8oN/17U+G4VP+bGW8hKWHLq/qFs7ayEGebc/zbXfvSByT21N4dB1nbQ++uXRHnJteGkRxuSDV1xgslPjYG2I+MJzrYoPV7juMWJqHXEwP69bWGKkJx66YdM3hnPjsLVbp/jgQlffvNjoFIM5ftUwXB90cC+nuFkruTWGk2Lfw8QDfny04clRfsOdficvuvq9xIVF1xrIAz/4ZQ+3NRAj0VdwVIuLHpvyU47Mt27adPTtPzbhGStGn8PmcePDeLzow2Dbf0ZuzFoZp6+WM3uT3dx7XQdy717s7OBezBd+2l7ge4lnPfKVX317FT4M/mD4Dx/l1Hp50S6f5uUajr0pRtcHjJl3NoR9e46dvV1u+aHH3i9u3cPEJg84d24Jg37fWKZnba0Nv3jIMTsx8yMGNf/y5oWu61ms9OMLi+BlzLwxOPpEn3+lPe5LAnSU9iM/1iCe9O19HMSVL7z56UU7H+KhH6YxggMM/NSuh3DY9Is9Y2LGyy9V5A0va2Nu1mJQiP1jPfkl/OGKsyJXeHXd4k6M2TP0teHBiqv1w8Gc/6yWf/PWCJZxY+5pcLRJuZFL2HiZ9zkgXmN0+VHq0wlLbhX6xvnDwdrA51tu2OJdPsUNOy7id/+yjxpXlyt82fIbNl17sWueLh/FqM+vvGrnyzl4vmino8CNY9eIcRInbTriglls9LoGtOnDs+9wnmtpzHUu7/tFu4xu2RnYGdgZ2BnYGdgZ+NAMOHT8+c9/Pr388svr0OUQ0SGsgx4dByyHkw4oxpQOqNoOKrPPxpg50oGpQ7wx8yS8qR8+Hg48+h2+2NDlwxy/2tO/+Vnyr2ZjzuGcDVGLvQNZesbkJXscHJB78DAef+34ph923Jazsx/0jOHNvnjqZ18M+uYUop+Ofhj5L0bjBI5DpcN3tvlsTeiyr7ALT+0wrGZHN+zw4iMu/uWSjnF2c/1gX1XgONjLPyySz2IpP2HrF3MvA9kY72HHvsb1uNZi8BBCH4b8eegqXzAUvsnMB7vWwLyHBA/n9PnpwcLeKk8etHCh4yEGPw9e/HsA8NDtYYLIJx+tCd/yztfkE0f6BL69m585xj9bNuIl9fnFVb8HRnq4KWKio+bLnFxn57OsAABAAElEQVSp5aF5fPVnCYM/fsWOn3jExaeiD1thX0zsYBB6rU/z7UccxGA8LHX++e1lBBxcuh/A7poPrxhgJrA9pLWmfLKzZ+WiWMQVD3z5ijesOIVLX7mM4JeUP32Y+vGgh6c1aT+KSZvkj93UK/f4mxNjD9L6YlSbV8IyHp+w5Q6eOWtOX18u8JgvEunIk3y2h8OGx2c1vqR41K21Ov/acNMtN2HRq5jLzrzCvjzAoDP1wmOHk2vHf6b29NNP35M/HXN80Q5fsZf5VrtvKXKKR7G5n8hvY62xee3uL+LquiyHbLwAtO7yV075tI7tZXrm1fLk2ug+DHfmUJ8eewUWKb9wjIUpTnow3HtwsWfo82+PlAs29oC9mn86dBWin+9iat+YN3YcxydOdJI46sMPxzi+bOSUP34JHXlXyifdI798FrdriD4xB08xj6+2PKj5V7xkk4fw1XFWE7bpq/Ez5l6mxotvfLVxOPo3boz/RN9+VCteulkrAgsXUl38/ka7/YwLPBzo8EsHP31xhg1X27y9gbtSjNpwvciDTYp5dc5+wK3wxbeXtWqYXhzLpzlr6nNPTHh4AY8TDqSXzNrs6bcP9NnaE/zZ065RGK7F8ouzl8bs5FEtPnr2N7G2xoqTPjtctBX+cLSGbF3P8g9v5oCNPMo3Xbja9NR44atmbwx+GGKHYa6Y5I2+WMsNDDbGzXu5KR5j/MKAra9NtMWgaMtTc3JnXfiEaU184cHayRsssSjm+WdfjPDneTPf+PKnNsZWbOyU+MqpOX265dw+6xwpTnnHGSfnj3LDRvzlFh9tvlpn3MX3r3/9a8WKj3VRcCR0YMoFfmztD/ntHo9DfmdO8C+fsBMxWbtiopedOcIOX/zCto+ca60FWzESNvnJHiZ74/LVS/3Wml5rRUdcclO+8FXCKzfyrw0fVmtJr/3ps8Q8gadvPfnxL9J++tOfnm7durXm4706l/ixv9F+iSRtlZ2BnYGdgZ2BnYHrngEHiz/96U+n3/72t3d+g+/g0mHFAaLDSYc3hynicOIAog9Hn26i7RAFg05YDmfm2Gir05mHpnDMJ+z4MdY4H0r9dKuNx0XNV/ZqtvHpYMXWHD4OWF4OiMG84oEFd1hHPvkNQ83WQbNcTZ3akws+Sth0+Jpi7hg3nTjSzd6YtSruI5aDZw9NOBYrfbrh9sACl5R7+Me+3DnEd+hdCh/yA6acxnmq4pHIfQ9J7T/82LWWcZZDmArBR2yNw3KAZ9eDEkz2amOKvvz0YMwepzi3DrDpkll7APAA5WU723JMR57kD0c6HkRgG/NgYYy+b2bZhxOXbdcqnSkw8MIx4dtae8Dhh096avGZ0yfqilx4QSB/8PAqF3TK1YzfOFx8zbNj73rCWU56MJox5VtNz/ooYauza6wcsOGHb/kzTkds9ox8ZcsnHYWOGl+5mXnqIZG+/MgpmbbiM18c/OCAi7HWoX2TbvzpwY47fJgKoQ+PfcU4Du0B/XTEQfi1zvPahlm87FuLHoTNwTz6kTfrZw4Gu2yMe6lRTszzjc+U8tMYXzDo01WMKXTNyb95Yl5s7QltY9bWnpS/Ymrt9cMrJtjFoGZH+KLTGsMm6trFoA57KY0fYbCpreYLV99kv5cv2p966qnTW2+9ta5J+LiJXy1H7nNebpjDA28x9mcVtHGTJ/PyYb37Zh99e0jeYWjTdS3TI+zpKfwqpLbxhC5+xLg+PfnqWm0PmyN40Wk/tCa4KuZxUXBzPblHKeIzb9w9NB0Y8I1rw29/dS8sHhzoVMPo5aq82H+488UGz/JjLDxx42sMHt+4KQQHYg7OvL7p4CcmeIQP1185pAObnnZ5xVGbP1Lcxopx+oahwAiTH9x9jsHXt0e6J7CnKw/m9enA73ONf7j+dZc9iZfPOGM40Rc7e75guA8o9jE9476ZXE7FE0/tJBxzcPT5m3btt/ZJenQV0nqVJza4GLeeXlraD2yN8eFlLr1etobhhaZ9Q7fPYLFqw1SLkbTHYPATn/Y1O7HwA8+esxba9PEl2qR19JKz+yVduXX/dj+gA1/Nn3kSr9a6OHEg1pU/a6hmn8AxJh4c1em07t3r9eNkbxk3Jqd8JnRgxE+b737BQI8vgot5/yLi4x//+Nq/YjQGPxv2/mWMMfHAto7+ZWHxtwblJv9q9vJjznX5/vvvr9zLkXz7hY49rz/XVu6Je6tf+MDpOnEeoQ9fMW6evRpX+8OLdteOPPFRXuHiZI5ufTYffPDB4mne2qsT/OmXu/zrK2LkA2dFLvnAq/n4lcuw5V5O/dLD3sW5f7kZvvt064AXLByImj8FBzbxw8G62/P2i9yZ7/qyDq4ZY3gppHXFn18+zRlvDgd4n/nMZ9b/i/LNb35z2cZrdS7xY79ov0SStsrOwM7AzsDOwM7Adc+AA8Qf/vCH0+3bt9cDk36HWYeYDkgOMw4YDkV0OtTQ6ZDh4NKBRF60p64xOB1Y9dkksBxyeihga15hF7YaR2N8a8c5TDbxMpYuH9mHke6MhQ4bc8YdutS4OYTh2QHN4WvasosTHBjqclm84XeAzKc6O/km2ar56uBtji/64k3PeDh06ZhzwCTzMGwcR3wUdnxU4OLIhuibI/HU54MvhcCVLyX9Yl0Khx+TQzxSgYl7eW0eF4VtceLETw90dOPFnqQP05w+jjgfS5zpeUAoh/SPuPHhAw9CT+48THhoKmfmyqUxWHTg42zOg7cHA20PRh7Q445nD0NxjDtsGHQVcavx95DNT3HDJvFS17b/rB/fHsTsfWMePsXS/qQfzgI7/4FPeObxhKft4VY81inbdOQsDnhPfHM9BGkTfsKga5yfrls8PQw2hkf46Rvjy/1JvqyDdg97U782n3GGjQcxls4aOPuhT/hQ2sON82msPYqPAgtuOaE/sZs3Jk5FuzVPV00XT7jlTFue7FFt8/NBE2e2hD1hS4+NtrW0P9jjeSxxbL41ZdtaTh/s09VO6Chis3/VMLyo86BuzHwxmGOvJuW9PJSLfPOZj6nftcSu2LQrC3z8uAgjXq5BL9p/+ctfrm/GwfhfJM7+M9Tvfe976z9DdU32JxuOeZMb+zk7+0T8cmPOmsuP+42+deklLj148tO+0obBRlvNxl7oRYfYYCnlkA19eubZ4YSHPnz3J2J/4UXijQc9/TDNszfGXk1PzbdrP35e4PCfwJq5Yu/aV8yJHY/8pQ9DvGzxtf+6r9Lx8sx904sfPMVN4MXLGH58ErrioM8/bPqTr7nuUfzgxi4usOGVc30CjxSrfCiEvTznh425cqmvsLV/vWjH3Tr3gs4cPko+tfESEyw6uLP/7Gc/e+dltJj47r7DNz3rBsvnhF/0tn/F5qVpayQGevmD036ICx/wFHbGcdIWk3jKR/kvZ/TiyFciHjjmSNcJfq5FdnJrnNDtG+24to5849UvHujCtLb2kSI/+BnHlz58hYi3fVAuywE7/ggOzhVdY8bly/XoehezebbZsPOZjy8ueBG6YoVJl42cEH0FX3p4srOW9oQ5dor84I4DwR8XL72Ns3VfUocrJn01v2LAzfWtbw4XL7dx13aNesFrbfAmxiv48Rk/vNjINU5w8bVe8tf1zj4O3ddg9Es9+r3glQ9Yrh25oK9PcJYrMeWnvBtT6OKpiJkPnPXx4MsZj5/yL4f5okOXnT+F0rUCQ/7w5kcbxyk4yRvsOOKcr+77rYv8weez9WYnRntYYSuP/Ukfe0wuW2f+2eOltA5qpWtIu/sE7rhOv3jzq2jj0by2QtjxnR/j1t++cc5wjfol4Te+8Y3TV77ylWVD/yqyX7RfJVtbd2dgZ2BnYGdgZ+CaZsCh4tVXX11/49UDkwNIh0chOYg49BAHonmoaryDyVI6/zEPOYb0HVg6VMGZBynzxAHQYUqfbgegDm7Z4Knom5vz+VqA5z+M4SueMNl3qDXXwxDM/Jt3cGVD8HOY62BLbx6U48OGbTh8aSf0xKfgpBA6FT7FRfAz3kETXjblSd/hMKHPj/XEhXiAgisGdgR2MZtr3Bg8uOJ2iOaXlKvVOf+BKz/Fyp6EoQ8nX+bS0U74h4U/UXcoP/Izb4xPpXzx40HCw1o2DuQOyvAUftioGxNreawtP4QuDDXBPZ8TY02OH3CsG27WIj58mlObm1j6MD0QKkQ89pq9pcirb3xZlzi2P3CjU1yw+fWw51tE4oBP4LDHJSmn1tNDmm/h9Y12uH0bUZttMbHXLjZ8iHj4ae3NexjC315MzNtb5QVvY5Of/txTsEh1GHyHBUfu2RUv/biyyaeY5Abn4ku3GNhlyzd+HijNG4dHqlfnvB82TkrrQEdb4S+uMODr46gfHxwTdq4TcTZvLs7p6c98ypHrpb2jts9cO60fbLlQcGZvjp02XQ/tsIq5+fzrK/TxlifxtEY4T2FnjG+6RzEWRi/a6Spsuy740CfN55dvfOIch5lj8cbXfLba6cNmE0598/E0J35r5J+e/+pXv7onL9rffvvt07e+9a3T3//+98XTiyXXdzkTuyLOuKi7l4lNcZ2LtW8r07e+bPGWT9eqvhwQL6HsCXps1V4uu1e5Hoj9KOY+D/mVdzryk//2Bm50+eHTXmw96POjVuhZU3zsQVy8FKHDFiY8L0f4wcl9R2zsk/D4yT8suPLS5wgMOjOf+uKzB/lmZ6z7G/4wFX5g8k/P53E2xt0P5QZ/mNNXXNXm4ZmnLy65h2FcTujgm99pE0Zj1gxf+YKJJzv22saIvs+Q+aLd50J2dMqNGOOPF9GXp09+8pOnBx54YL0AxRV3eVaz40f8coOHveL+Yu/gg7fPIDmkH75ctGfwIOWcn/5chX0DVw2TL1gzVz53WwN8CHx4fOKq4EIPvjwo2nG1NuxwZCfP7AgdfvGwF/CD1TrSoy83xcOfvNDTLj5+6anLAxvzfOBErAF/bLUVNvap3LlexQ4jwaf/iNZzAl7sYFbo0jM+he/2uFzYa/wR3Aie5nAot+L2N+ON42rfqflQrIm+woat68fZHJ4Y+f7EJz6xvsXOj5wpxvm23vjDIHw56xQ7HOtCx73PODs5ck/pFyP4lH+88VHoK+WAjtzx0z7Vh09aD/rGxNB/uqsvZnjsFTFbD5zp0hGTfSSm1p5e13i5dk9rLYzB6ZdAMMTBrvWENXNOJ86rcfaDPn64mNe2J9sX8TEPi1/iOvALhRs3bqx8y528ty50YMmVHLKrbj315cF/6tpnCxtFDHzjVB7jD5sfOee33MPD25x1/tjHPrbOzu59PmO/+tWvrr/Vzr4caV9G9ov2y2Rp6+wM7AzsDOwM7Axc8ww4fPzud787/eIXv1iHLIcPBw2HCwcS81OO/Tl3bDu0OKgQWBWHVO3j4QS2w6ODkTYuFYey6VtfCTvO/PELmw/22h3o9MXGh3YPcuzoGCNx46ODlzGHLwdUB3pt4sDMHj86+WBnDI+4LoPxwzw+kzd7hV0x68PokB5uOvrFoMbDGDv5xoWI1/g8QA86q3nMW3GL88PkmCu6/MtrnDq84nCRxBlWOuoeesXfw2m4fLT+uMfXYRvnYne4d2Cmnxz3OVv7B7Z2OYWbjziWJ3Ul3FnDwZsv+VeTfOAjXuNq/WLycNmLdg9C9p4HEHpy6eGvh3Bc7Wu4BB6uCu548O8hIR7mxNs1swzPfvDPXu2atN8V+4Zv//y6h7m5pvSLgb85F7aaX9w96KnpGisG/SQ8sZHWRD310lfT5VtNB4brQJtdRdzaCT0PbnKIT9dL88anX/HSI9bYnLzxC7u57NVs5n7iUz9ho/BVzOZgt1b6bGAZV6wxvuLEgW57gX5SDPr89MCulh/z1tm1I4eEH9ePwg9s+nS07UsvwtjTVduXdIoBVvuhNWVrHv9jrmAkx7nG5UCsrhGlPSsG3GbO4NFXjNPhW303KcetGR4K3s1la+yIlb9sxI+nl4zPPPPMPfnPUL1of+ihh07+M1Tx+2agPSzHOIlVIfE3Z5+IK8GNvZfn1pmUn9batUoPjn3QS6jG6Ns7XtKwodeelAsCmx4d/oxbG2P44uQeL5f2EDwyc0k/DngQ3MTFFm57j52Xu2pjvQhjn2iXL/5hwiFsenFDh2/ccGVHX76ta5+1dPhxf8O/PBeDfPGBl3zkmx/Y+t2v8jW5ig9mecMRJjGu8AVHG082M2bzOBjnV4FDiot9Nnzpi9NLMXbW5/iiXV4qbGqH6TPNS6v77rvvzot2fouBXvmXGxi4yaX9Jh6+/cIYH/lR5jUtF/YTW7rmib0NozOEOT7qywl8Y/Kf//IAUxsuvvrlEW99vuDa9wRvgh9e9kNr1V7lBy/87CW6fKQPU1su+YdNjx98jeNjPXDIV216ckoXVvHykR/3y65JXEhx+2xzbpATOuUTnrgVeVDjwn/2fOHKT5/5dNhmD48P/MUpFrpenBqHIeb4TP/8FoPPIS9a4YjXXvULAnuFL3tPbObibbzc8OU/BZULmMYVghO/9PFxloQnJ+IxR4etGGBpp08PL3rpitEYHcInXtZLLV7cxaEtVmvKT75cfz57m4fV2Qwm/vaca8jasccPN3tTDUu7Pgzc2OFE8OEft/bdmjj7QZ9/+LDsZ2NxlR84xrq2YNgninzaX15iWx9YavrZwpJTtfxVyyssfXlwTsa964VfGGTy50NMsPjHC3dtc9aFrfzJv3Xw2dqfvPna1752+tKXvrRwy9HqXOLHftF+iSRtlZ2BnYGdgZ2BnYHrngEHjd///venZ599dj0wOWA4aBhXjmLM4UdxuHBIacyBqQNnBxt6MNXpdQgL2wHJoYjApKdo158YHZaMme/Qh0t+zTkgmaNPzNHX18bJIS1/1Uv57Ee+6Sn67Pipj7vDWQ8W5sVi3Bib7CdubT7D0i4WbRJ3fTHpa4erz97YLGzjZD3lIhsccc6WLr7Gw2BrTDGmzwYGMYYPYWcej/jSM6ZoK2ysvfzJkbFyYy4xTrKREwddD1psrRkc8+nwi0+c4Hto8KBgjv7MLX/Glek7v3jXjg/7DuH5yv+Mna2cZK9uL9Ij7VW+w6DjgRQnwpe4e0jtIYMeO2vTQ3u5TgdmvnCFYwyWh4Xi4AeX4i0fbNmp+fEwRk8hfZPLfLEahxNGnPhN6Dcffw+A4tBnY5/VlnP4iphbK3oTN19qomYz9xm//IejrZBiiB97enLATiF85mPa58+8cX7DZJcuzNrV4R77sIoRD7k47mF46eHYmvHfHB5hG4trtYdj10ovAegr1tw6hGvftY/tA/MeaLW94PBSpJhxwqF1LI64ipno44FfOWajZPMfzf/8xJ80p89OcV+wt3HEw7UAW8ERZvxmbszBCysbfsLGzzid1sJ8NnGnAys7tX5+4Xg542+8Pv7446suFnhXEb6JF+3f/va3199o56+XP3jC5lMt/nIiR/T6Mwp4lx8Y9hkxjrs516X1ttb69HBQ+OCvvBcvHeNh8uteJOe+eWoOLkxz+vDwtX+6n8F3z3L/ogcPhl/+tS7041HMavd+tgSe/V5e8ORTMaZMzuwJvYo+30pxylf31GmTjpjaG+yJ/Sqerjvz9AkMnMq/8Znn7gN0s8MlHfbG5URMsPBTWlvXr3ywKY5iN6boV+BYd1y0szPGV2LuWIrDuBdo/uzLpz/96fVCEH76MPJrnXFla53dX4wRa+qbyuLhXxx40RV7ewS2dmvCD1tj2vJvP/bylT4x1/6TGzyyg4VjejjAwaGXfNbWy064sGDgqVhvPGGUF204rkmFLzYwXR/uz2zxs5ZeyMNnI27XjxzZ23iz5YcNfS8w6eazfPCPH4x80Yu3GOPom9Xi8nkNl93MRbrG5xzO7bl44oFX+eYfX+cA3MWsT0+hV47FyD/f1hE2f/azHFgD9ubc327evLlekuJHjLfebBV7gA92/WtVujjClhvc8OQXF78kY2et5Eje6XjxrW+cHn051e+sQ5fA01bzU67VCsEXRoUuPtnJhTb+dMoX7mIz7r6Nl33EFna5ba+Y93fevazORj5g5Ns4XH0Cpzk1Lu0j8cQlHmzwJ8bKjz5dL7Pt//pxVMuDwq5xejiKX7F2YsVBXHFQmzcmBvsYDjFmDnfc+gUKm+Kkl2/PIe49jzzyyOnrX/+6qeVnNS75Y79ov2SittrOwM7AzsDOwM7Adc6AA4u/0e6fsTtoOYQ4EBq/SIzTUTuIdGAz5pAyi0NKh72Jlb0xOA44Cjxz7MI3lp5xxQGpwx7/2vQ6SKXTwWzqxpd+evC1p29j9c1N0XdQIx1a4+nQ5uDXQ052zYsrPFwa1ya40klPrPTpyZGYjg9MHTzpFSv9YjWvEPyskVyJT6GrbzxOfIlNHV9tQh8/XNQw46+fDj1zagWOvBmDXYzq7NjCCg8/fhy+HXDh2J/G4mUs/bBw9eDVwxq/ciPOuLS+2fAdDzpKfXN8wlHLZ7mjg4uCR/kIny3O6cMt32zShxOudi8ArDcb2OqjwDBu/cRs/2nDgI2vh3J6eHhIN4YPgRu2MXZKexGGfE7+eM69Rp/QxWXyDI8PGPmgg6uHTw/I2nTEID/payvZwWObT37pVvKtloeEfv7lYsYQb7oTNz12E5defIzz3by5+s3BuUg/zmzsLXrG1Gzx0sfVQ6miXQ7YTb7a9O37fE4fMMOVG+vq5YAXIGyMtd7to3Dwr2092HmopU+3h3j4eMDWJtVx1cdrjsM233rrJ/TSbWzWdOXGt+LsbZzg5IMtPoq5fBlvjxhT8qUu5vJq3r53TRLj1oPPbBvP1r0OF/PW2IO8fxHy2GOPrQd2fv4XKZdetN+6dWv9jXa8cMGp/VYtF+WkOHwzGR9z4ZUfnIwr5dO1KZ5yZtx8eMbnvT3fannDy32cjb3DJ072D9505MNeNNYeKuds5RAeu16KlcNiwB0n/vq8yJcYEnzNwydw2cETGxtzCn+KeXV7ia6xYtSePGobL4/a9qtYejEkJ3TNhVHu1fyY5wdnOlPM0TGvjV8vB+XB3pix9lnBRu7N0RMr+1nyI26YCk58scknPXhJ/BsTv88fL6p8q93nev7otJ/Yw1RgeLnqfEpHXyx+WdUL4fadGm95FRN7ecqHfWUPyT0cdf0ZgzitS3vUZ3EvVcu7GgZ7PGD7NjWe/PvMFR89vMRGtI3hKY/2uTl5xKfPfdh0zXt5bD2Lw3XbN8xdbz5D3X9bb3kSA1x58AJTfDAIzHgYJ+WevgJj3ru8tDYuJ7DFYB3wzh5GOPjDIGr6+OFaP9+48IUXOzyN9S8+0m8f8M93a8cGthz0OYaXe5tfvsopHdzsc7FYs/YuLPz4ZZ8/tXhdK+wVObBO2dAxzlYM7Il562+drZtiXsGDv+zyCcuc2JPyTXfmSRu2GPjCCSb7Cjw5tieV4qAnDvsUhnG/yPKft7qnmi9u8wSOGOLNR+Pm+FKsDTz8jOPWfce8WNnCsr5qNsatlTUNR20ez64LeHDjMdfcHoDFTr7UCpF3c8bDMAfLHM769gYe8im31tW+g21/iuVzn/vc6cc//vH6l2Sw86F9Gdkv2i+Tpa2zM7AzsDOwM7AzcM0z4BDVi3Yvu4iDR6VD1gxzjnXgMe9g5QDl0OEw4yDkkESnMePTnp1+Y7Nmr8+2g0yYamN8JrAT8/zmH44xZUo4zbPRVncQddjKv3F9dmJ1COODjULPGF7lYPKcfMoXPg6A7BTCjwOdA6Y2XQdKfju0GuPToZEPc7gZy7++AoPQw5s/wobkm50SH+2E7RT54esiMV7hr7XBA44iF7Undm26uIu3QzYcYzPnrQPO+YJRGw9cxepAnRiHY7xijLCdggseDt+w9LOppo9fsXpgwBUXY2r4bOUb33jq46YY48sLCQ9q/BGcFPPpeJDkh3gI8MJU0SZwcfCNtmKQy2KY8eIolqQ54/aBPr9E3srdHNemy6ZxenwbL1fFIF4PMe49HrTY9ZBGR1+e8h+3i+ow51x8cWnNZl3bPF8EX2JM21poz9wvhXMd7fw0Xm6MWwM1DEUsYiouNtbIWuJD3/qorSN9eO4F7T95xFeByS7hq1jomWtvwTKvhl9M6vajcWvCxjhho50+HevlYTx/xqwd3/jyUczG2KrpGw9THQZfccebHpm2a2D8EKN7oH3dgzvfPdCbx4cPHBXYxgndfPFjvDnzxWCM3ixwrVXXEx9EDMUhJ7iww9ELOH9f+rvf/e7pxo0bi9cyuuKPcuM/Q/XS/o033lg88ts83vFUE2ttje1tBW/c7K/sjJV3dbmzV8VrXpE/e4WdWrzZ8ZW++I2Tcsi+/MEh6l7ytFb0cYfVyyFzXUNwYU3RFzsbcWnLDd346ZtX+IBNXHfWDIZxtnzxiYd57SniZw9LWxwKX+ztUf7cn+Hi5GUf3Pioy0182Sjh5Ydeom2cHn7a+MmjGpY8k/KUDV17oL1h3lj+2fOdrb515gumzx/26RtPl12fRfTYfuQjHzl98Ytf/H9/JoJP+fYyK2x4eJgzZr4cyKW/8+6eiQPdad96spVTUk68pPYiTZ9t6zV549nnKB2cvYCDV5xw6eFiHXHzMtOLZDbWt73SupRn47Do4g3LGC7wsjUudtcq/GLA3zfM6do/rjl55gc/a6vmA648mW/v4QnXmvDFL2EHg181ffyKh3++itsZBYZx/OLLl8K/EndY9iTfxnEk7PKpzzdMvMVojl+2OMGT836ZQZ8/+OwU2GLDlS0dcfqMkDvYciN/SnzoKOz5+fe//732JTvjrnExm8PH2rDFUf7cR/lSEvMKO/Hwax43nOPHZ3Ndn75hbh5Hvvhkw54OPtbB/sSPHqFrf8HzEt2aa9uDClvrihd8fw/fS3ZtPNg6l+njaSx9fQVeuYJjXVvrajqKNaHDTm3M+hina1xu4BFxyCk962y96OPd2rSn2bbu5U1+4Cr5jd9ycPaDjX0UB3r8uEfwKbdy7c8JWQd7Tw782asnnnji9PDDDy8odleR/aL9KtnaujsDOwM7AzsDOwPXNAMOGL1od7DS76DiMKP/YeJQRN9Bw4FEzaYCwzxx8FHoGFccpKbO0Z+5xthq86nNVn03YeuQVjzquFxkA9t8dg59DsYdLtmY1ydxiGM88XK4m9xq04WBV4dAfYfZ+W0M8/k3T9fBGY74cegA2cE0G9wcPBVjDtV05J0NftpTHGrNwWen31h6bJTyBFu7uGd7xqs97bRxEFeY+VAbI3KFtzx4yLEW5vhlmw91ORdDcYSDFxx4PeDBbxyeufTNzbY+wcNDVA/LbIhagYeLok3XOunDw1GbLo7y3Lhctwfo8OVhuhftdGGS1s9DgIcrfmC6/nq4speSsOjg48FCPuTwKHzgVPz6/PGfGJOz1v+oX7zp86uQ2ulYDw8vfRuPnx6k+aFPR36IMYXAuIzgByfOcQm/PixjXd/GteVJ21xrWH6mf/NK+uHij6s5AkM8HhKLix9riaMxGOysKTFuHT1o0oXdPtc2n8ShfWKeL3jGKtm3FnGkZz3Sh8vG2mSjjZu1yt6cQpcUr1xpz3l9hS0sdVJuzcuDGma+G6dvnK1rwMuGrjnjXkjAFr9rFm4cWqP801FgV2uTxuR4zmkbsx6uxdaAfn7YuxZd23y6j1lnfzrDQ7pvthcv3atI/N59993TD3/4w/U32nERs/jDpWdcDuwhffvBixeCN93yJy7FGKwKTONiLZ+w7FfxhSvvxuLQPVwt3+HA0Len3ZPibd85i8Ck21rBx5U+HvT5Kc78zT4bfn12qElrrp7YMHvpMu/FfMLBa16b1njKzA1cuuUBhtzj6B6Nozjc38WBi7Ew6SuNpWPemHjME338Ko3j270Ut/DKqXwYY4cbzvDNE+P5N4ajoo2POWsohuybT5eeXBJ7X9/fzP7yl7+8XmbZS/zSp9dLRPr8G8cdL/Nqhb+bZ38SxLUEg67rTLz2duvKnk/zijnf7vailY744eeLfvHBo+/awdk3yOmKOx3YcmA98LJvcWBjfeH1BZb08JV7+ub4gYdL16n5eNFrHfHUF7eXgbBwwLNrgR17WPT1rREM/PD30tD92343hxs9HODD0sfPmhgXo7HWQR8P9sbZ4SIeBQYpX3KBZ2tE3xxbtXnFukzeuMkPHq6d/PPrjOTFaNjwxZ49jmz8iwAYsLxAdf/FnS82MGGIU07lzhxe7q8w+LLvYFpbdu6hchR/vt1HiVyIkfCtdI8tJtdo+YLB3hwuYjDmJTkd68UXLnzH12eeWBT8jLPz0lzcxL+08Jlu3pqr5V2cdGHTga9tzl6BoRaLfNAXB/+4t8/U/LIVsz5cMcipdoW9drnGr73Dzjihxy8ucm/d5B4mX+b4y6fx1q3c0VPg46uw45/Alg81PeP2U38vnj+5901/v4iwB62P/2PFi/bvfOc7Cye81bnEj/2i/RJJ2io7AzsDOwM7AzsD1z0DDiRetN++fXsd4PQdqBL9xGFiHigcTkh1Bxj22anNs3NwcuDRT6dDmQPWUdhWpu8Obh2M4pTPcPKjVhyQ+OXzImFvPjuc2HRoZNMYHcK3Ntt4qOO2lM5/GC+eGQOfDvpKD0vm+Xboh4+zAzYMHMzLJ9GH65DZQXsehI2Zi1PrcE5rYTqsWj9zinZ92DjwqS7e8MJJT42nQtKLo754xN1cGOrw1Xh7oFLkAqZx0joaO/IONx5yxE5MCT6Nx1l9kcCxHg7ebJT404etT2DIVbq4sY+TeWP4G1Pw8hBgHfTF7cAfRrbwtQk+8kIHJnsPsfYJHGN4WX8PKdrls7jh4EboK9OXcfPFoE2n+GEaq9BPmqNP1MYUbTY44+sBzwNN/faHnLomFDaVOMYnPP2LhM840yWwjVmrKfFW08ln4+mGU19Np+skTl1HrZtctt5d7603W7GLQ60QPOm4BrRhtyZ8KoQPc3Rg6Cv2g3sCPH226mz084VbD/P5aD57OvB6QRFf4+ngoRB5nBjGmpODbIyLpbliC99866YdP9eAa0GO5LCY4cKQDzUcBYY+oWOMGE8HBzhqhX686DRmvOs0HLzkQr/c0/OCxnXtBfsPfvCD9a3cbBaBK/yIixdBvtHuP0MVv3weebd37B928zrLZS+BZm7gKDBbJ/ltf4lJnPaBOOi4jo3JAaHfuujDY2eMjZx4WZQNDC937C+68Snf7X9z4jCuwCqX+vmnD1/NBi4f2rgp+Cjywx8usOnAbD3VR1/FZI4tP7Dsq/z02UHXyxqY5YUPYqw2e/Mk3+ZhKu7pfOFSftg0Bgd/e49+eGHREyteMPIlbvp8sSH67JTGygt7L6rUJL1yBM/e4M+LQFi+Hf7ggw/euV7pyhldfPFO+GHLrjlt/m7cuLFeNvf514tk/vCEyz4MmHT8axIc6LRW5nAvLj7sY1hyQ9/Lt/JFl47avGJf2bds7G37Wh7dS/nCU67M6YvX5579AMuamqeXjnFxw+QLnvzQcx+hh3NzrRs+7eXWWux80eUXDo7du3Cii5eiLyZ6cukaMgYHBr5+ecIPYWO/8zH5mmNP4Jnvs7614Rc20Sbm+LBG/MkjOz7EKQfONe77+nKVDQw+xYaveM3h2i872ROYsNm3bmo5JB988MGKpxftcoaXWOB6gc0/jmzcR8VSHs0pxJrJI3zzMNrX5tk3hy87PuiUO/FYE/PiFKOY+vyDIxYv2XvRrhZne4wPfCvwvdC3f1tvcflFQmvJl8KGTnsEljUicIyXO3lQil/NnhhnS4wr8I0nYiRiE6M1g01XjHjgx6f1Ft/RH4ziZKPEARbsadfnkXVyvYvJN9rlx941tl+0t0K73hnYGdgZ2BnYGdgZuGsGHE7++Mc/np577rl12KQ4DzoZdkByQGFDR3HoJQ5IxisTwxg7ug5GDiodxIw7bPUAkz91WNodjIzlW5s4OBHj06a2cf4cSNUOnA5f2bPV7pCX3azpEAdKBzF86ROY8gNTTeKyOuOHebjNaxO5UcRCBzZfCh0HSYdg7XJFD46+mq62XDl8OiAa64HauD6e5uOqdoDskIwP3eLh0xrNuMPAKxx6FXyMK3SVuGuLU4zN8UmXnXE5VcTjAacXJWHi1+HaWH1j5dCYoi/u/OWHLyXfan08LxJ8OpDHDz6Jt1quyjmsdMoN/biJn5STuOMqdgVeOBOLjjmFX7FbQw9kcIoD5x7+4HnYkw825TMebBpbxM5+xJtvc6T4cchmrmX5WMrnP9jSNcde2/3Aw5ziAVIM2q0ZXW3jfJH4xZmOoo8j3Cn0zbcHzNGRi9apuNjzVT9f9JV84RKffNGlY7z4jMW//OHJh+s9X/RdX2o2dPNFH/fWOr9ximN2+BSrMX7k1t7ABTZMc3yk455AzNPVp29eMV4xbu3ozXk2/DUGv3wUNwyCPyk/5YK+0rw6nmo5as/zY0xfzCTfxZi9+fJiDA4/9HBQ64tLn+AKj0zcNXD2wzy77k/ZGROP+e7rfCp0P/WpT52efvrp0+c///k7+GFetoZF3nnnndOjjz66/nSMPc1feapur3f/ws19Io5w3Bfmi4xs5YmezwgvX7TlohyK0WeqMfHzL/7yBUde1SQ7a0HP5zK/2cHw4kuf0GPDXj3XBBdibuLz11rYG17SiMPa9hIfPzZy0n5qH01feNjXuPKvtI/41ocrB/k0Vj7o8NF9F5Z53K2BNlFXZjxwipkNPuKjS889DJ+5n9NTsyWtI3t29qF7Dhyx4U6/GOiQxvGY+dHnV2yw+ZEH43Fha4ydP1/GjxfuN8++jW6sGOa+w2EKHThyJXfm7Wd/4x2mOOTDnvFS0j7FgcTRPN/mfDvdy3a4ODQHl7641e6ZinkvdDuH6IddLaf821vuiXCtizzgzgZPn8P6csWf64mdthzwIT/WBQ/+vSQVO/7FAFfe4dJTx0tc5ue+0Idhj/KlxgFPuSxm8cQPXvtKPvCnJ4d0YLJtfayzPPRZw4awoQuPjhyJW57EwwccXOjBww0WDH01O9z1iRzJmfsHHwqs9hI9OWAjdhhsFHr0zcm/HPOHg3l8cCG44mldjMu7Wixs5cM8ezF21pIj+AQXPrvmygVe7NKhh5fcsCd9purTz4ZPuq1h16E4cXMtyBm9rpviY2fMPDz6fWObHzzYi681YEPMWx+FnlgU83HTNkdqZ88OJ8KuWn6yCdectjnrYq3FObHsN36J9aYfvpo/wkYxZl3EZR3dlxX4xZodLNj2QPcWXLxof/LJJ/c32ldm94+dgZ2BnYGdgZ2BnYELM+Ag8dprr51+/etf3zlUpWgucfDogNWBxaGkw3CHrQ5cbKc9PQc7h5YOwrDpOOw4AE795ozxw7c63w47HdI6NDkYmz8KDPg9bDswiWf6Y5d9PjsQdvhSw+lw30EcFzIPZ7g1z+4i4UfJjr90jceJrfw57MF00CR0+ZE/uniYkyu5dlg37gBpnL6aP1iEH34duB1Y+TFGJhcHWN/8gIUDG3l0QE+mPr9wGuNTW/4Ie/ONh2EMPj3x8OufeTtgt97is+bqMLRxb7ycGueLrYIDm8nP2Bw3p0wxzx6naa89+7jjbI/Ely0++ubp46Xkl6/08kuPP4VtscTdPMkPH3IgXlhEbX94SCTy6kHQGDs25UqdFJOxeMhtOuJQ4hZGvnGEH1e45ogxtubxtY98W8j+48NDL11c+W5N6euXJzWsfLDBQz+d9I3h2pzaXrZOPWCx4cu1ox1GMcHCAQ5u2oTeUcpLmOK0fsSYvnshf/ryAVMdx3IkJnPWzBjBhV66caQLD7f49UJAXPQqdOnAwkP+22P6vTgsh+zMs1PjryTG+BAbHfrwy0V2agJXocefwjYbc+nFs7n2r3lj8kIfBh5yUH7CYeP+h495OVX4x8mYIg/d18wZI9qw1TCN8ycHPlvgm08XRvrFrG+/ecH+m9/85vSFL3zhDv4yvMKP4vKi3X+G6m+04yCH8tF+kh/j/CryMvONE6y+MUhfjDDcyxT6fgHW3ysuB3DFJmfyUY7iVi2s8gjXGihs3du9gOrFGz7dC3AVR2sJJz1j5ZUfuMa0lcnRPU9c9rQ/h2DNsu0eEAZ/7RMYbLxMI3wQnMXOhuDrvmXN2UwpBi9R5ZJvY2zkVHsWPPWPIn/wFTr4848LXHzYyR+drkN2Cpvs6VnvXp7Sxcs8XPrFBq89Um74owOnPLC1NsbN02Vn7+h7KW6OX3++RVuu5NT62Js4zvzhQA8OjtZCzaeX5b5lDg9GL0ydbfhkhx/fcGHQ8aLdS3pj7S0xw81G7vmyRjCcffr2tH1rDDcYfNG1lnzLAz784kmHLp7OMnTpdE3hJGY+5EVM2mx8Nrrm4oYnP/RxUPCxX/ki8eLfHP8KDGssD+3/5tjBFL9C4mx/8asmcgIj/+KAp2ib1yZ0+JAPRdxy5FqRB7g4dqYWA/9h0qdjrDOrNcONrhhbX+M4yjNMMtdX3x4zBl8MPq+cff3ZFL7CkE98+RWLOJyhWlNzMNoj8eWDHn54l1P6MPFTmy9ndPAt72q4+BHrRgceP/pqenCIGne5picWe0fO9MMqZ8bEPf8sjW9t8xuufWYt4eJXTLDYxzf/chQ3unGj1z6jEx91tnxYmzDbN2HQw52Ogg9M4t7svkPokLBxlTtijh+YeNLRd127LtXGzInbdcl+9o1bS3+j3Yt2n7sk3qtziR/7T8dcIklbZWdgZ2BnYGdgZ+C6Z8Ch4/XXXz+99NJL68DiwOCwoTbXQacDi3GHIDIPXI11QKoflsOKw5DDpUO1wwpx+HFo0s9XhxZ1pYMmHQesbMx36DSe3wV+9sM8Gweq/DqYGSfV8YYRDz6bNyYWPB30HJbZGBcDO/Md6oyHRS9dPsM3n115ojd9midixFu/gzpfsHBip8aFvYO2nMfPuDZb6+aQTYzBdiB3yNYmcVDT8YDhYVge5R7fXrTTmYX+LOHRwbM+DIUUN7vi4AtfD55yni2O7T22MPSNi1mbL+PVbGGT2s3TSei0Lo1VsxM7nTCObfM4e6CaOtaDZG/t8CT0xMzv5GJu4rPB2Rg99RRz6YSjtnZechA5bR35/T/27rVVr6tq4/j9OazUtmq1ioei30JjpRpPLzwUqhCqtrZVX4mIvvIrSbX2RVEQBEvTeAipVUT8Eu7ffPIPw+VOs1PCA5E5YO55GuMa1xhzrnXPtfadHcKmsgbOfsDGB0d6eGvzQczhrJjnJ9/m2StzPs70m7Nm9pEHXfubj14ksCXhZm9Mm8AKL7344Dr5lnu2dKyRe4L8GFO6T7HDkeAEO86uJQXG9LGUb/6QZ/Nk7tdsjLkXwiVilVPz/KgrzU/+6ajxg0fKCzxz+uY8INqD+nwWU/706ZhT5MFLCONwxJlNbTpiSModf+GICW91vuMIN+zyyBan+IfNvvzAU+ixKwa4YjSmbVwhxmBaF7V5bTjpqsVQrtgZUwgMOVDjTejz6YWlPWGOT3rmyoNxRXz23Ic//OHTD3/4w/UnNMJfgHfxIw5etF++fPl09erVFRO/4sJHLW9itc8Vdnjh2Jpy6+Uem+bY9mLDWC9mvIDgA05Y4iLwajdvXOzFKf9Ke4IP1yI7OnTtK1iELqzWn29ibL50xzdcc9mLqRfK9rSXfPD5IXyXF2snV+7hanHzYU/g1n6iT6cYfHb6DKVPj3/4+gQ39102xuDg0stDOsbo5SN+8BQidnlKx5j48FEbF7eSPS7s+bVX2RuTE7nXhlvJF2zt8OjJb59v5vjjl8DufoBP+eOXn77Rbp/5TI8TTHPWQT7xwL0SHzg+I/jgc75olzdrZG19fsAgsOGaFwcdL9UUY+W7ONXli64iRrnyIk6BSQdXbb7w4ts1Ig/G29flB4ZftsCkg4/11+fXC2J58LfXtYlYvGinS+TA5yWfcYDffpWz1ok/8RH49lsvUuEVq/i0jc1xOPas9YIrj8bg5Ae266OzPXs+xCc/FXraxsUsV+KGY5/w0f3HGD1+FDEbk2NcxapmJ3a1OOXbN5PFLf/EOL94EzGwgS+H8N3PvHDWpw8/ezZywwa2OXjGXEdsFHF3z4LBH51pj5frArY5+l2Lxo3BgSdWc0TsiXb5KKbs5MSYedj2jv1oXiG4KXTas9bL+h2/0S4vcGY+8MOLfRIPfXN8iVGeCM509HHUnxjmrKH1g8ueHp7FxEa/NYevrcZdzuDQz6eaH4XIsfUXDz8w2dt3rmvrQ+wJeRM/29bEfi2fvtF+5cqV05NPPrlsyu/qXODHftF+gSRtlZ2BnYGdgZ2BnYH7PQMOJ7/5zW9OP/3pT9fBtwNIhyPzDhEdgDrMdFjSJ+loO+w4VNFxSGHbYcXBxaG1Q5eDj8MOnLBgsI1LdYcZBy726cOOL9vGtdno88GvGl5ztfXj3WHNGFvFGB9q/uNizgHRoY/QUZrHswPi5BxOscfTeLbw9AmeDpP6fKnLbbjGJh4exJjSPCyHSX7odLDvQcE4HSUuDqkeNGDwRxxEPbAUszH5INnRJ8bD1a+tnvnVxlVO5U3pm0T80i9uOIR/XI13MDYOSznKxIE3JS44HEUs+JQDNd/14Sp05h6H6WGGrnn9csY//R4gYE1Jz1htdbzpazcnD3OeL9eYb8qRHhiLwxj78qfNRoFtXBs/7ebZiYWOeeOVYsCDH3rmiLnmjdt7Xhx4yPMgw0cPOHBJ+NY2/3MuHvzZA+nTjTMdsSc42GP2deP02dvT2nGd+621VfPDJx/qxPiM25xiHGa84Go3zl6f4Gv82J5Y5unjq6TPB//m6OMnz+psZkz09Oc9Yb44aZ4OPH1Y+nDzo42HdTKviKNc5Ju+oo/rFOPl3Xj+GisvbM3hkB5/8TGfwEwvn8YmN9c7vGPcYajZKCTecMVrH4mTlPv2a7lQ0/dA70Hdi/Z78Y3269evr7/R/sYbb6zrlN/uJ2qx4aStxl2sCk5q4nowZw2Ny4+XEsVlvJcN8kSmrtzybQymvlLe1I3xA98YXvJnLolftunjYk7fnHuHnB5jhFP+6YoDvv3hZYm5pByZpxuWmsAXExt5oYeHko55n59iMkanXLAx1r2GD/PG8VGXr3JtLP7lABfj+IQBR2lt+U/oVOD7DGIbnvve9Dd5hBEPdvliY6/Agc+3OToKDrCNh0nfy3U87H9tevrwvPj2OQXT3hJ79xNc5I++/Weejb+b7qU0PH3x2Q8K+/LiF1u4EJheYithlku+SbH4HOKPXxjOIXjSJ9nD9NLSi021vWCODW5qNnJiD+BZXujbN4SuM5aX22zwEMs/zr5pTGCw40ee9fmxtxVt44QvWOI2xke/CIBbgaGIHTbuan06XkD2oh0nPmCVK+vnc0PJVhsGTnJHt/WgI69imHp8iB9vmNaYXjow5A1esVpz8eGktqb2g7aYCH3z6vaeNcBHEUv7Rp8eXPxnLu1fBT9z7OiTfDXuFwl8Gc8vW+uBC6HLXlz82fsE7nzJGwYcbWuirujDsgfh8avYt3iIjS4dhb/6ckyPT+3+89RsYMIqx+ytX+sMi38xhclGW7ziIuwIXQWm3DZuDkZrb55efs0bg5uv1sleKG7zxgluxFxxyLFryz6hmw4/RB+++LuOccSFGHMNwfN/TPjTb5///OfXXFirc4Ef+0X7BZK0VXYGdgZ2BnYGdgbu9ww4RPzud787/fznP18HCQeLDkAdMBwiOug4POnTcVhyYOnQ4lBjjK4Dj3YHHTazwHaocbhW65vPZzzU8CYn+nSTeWijm4Slr42nQ5VDICkGWPkoHjWbecBdRmc/6Dqc8ouLhwS4+TAfJ/MOkA6EPXjAgS+X2U0/xRaX/KrjBFduxZCteb7jQUf7KPCLHYbioI0z+/g7UBqDgbuDangwHEg7dPNRzrTNFwe8YqGvH4dpg5O+fLUv9HsA0yZxVIudsFWag29ODuKxFM9+iIGe2I5zfFTomVe0jZdruPpyp7aOcpSNOh2+5EptjExc+0DMHgDhpEMfPp581DcW7/yZo1dMxonaA7IX7TD46SWDvnmFvSKHjbHnBx+8zBPzJA6rc/NHtuZgseMnMZ9fY/aDh24v2j1Us2tf8UdXftjZozCJPl3z+NExJzfsmo+HdZNfYkxfLhS2iblyCFuBq8BsfSY+fwrbBCZbY2r6FTraxvHQZs/vEcccnebn2sPBqwdlfZjyobAJL3/mFYJb8cKQf76Mabf38LJOav6mrT4f1d1H6Lh/4CHHcJV80+fHGG5httbmSPcgbbqErXG+8CK4xZctTEWbvvn445vgZ1/gRQ8eGzr040bfOL1iMVZ+4eRz3ufpwFXC9HnhBfu9etHuP0P96le/ur7RLn/84ND9xNhxP4oD37jhSYfIIykP2uXBXC87jXv5IE/FbN66lBc62uUGpqIvj+ZwmRyNu87omMexvNMLi18vIs3Lv8Iu3GJTxwEfe53Qy0ec+Ck3dPJLj51Cd+rFxxh+3fPsJdeRvWqcv+KEQc8ayRl+cdBn017Egw8i5vZlPGf80wdfhC0duSLypE/M8asQ9jMvfOGjxKE46RuLhzZb17v9wI+4YDg7+AY6P9q+uR0/tc8nuaDf/d8+87KVOLP5HCsvfHpp5mzAjl/5ot8vUujgQad90T0ftxmPPn04RLxeVMIyh7Nvo4uBjjjUMHCKK+7ihdXLVXYw5Jyuwp4tzq0nbmwUvGG4vv71r3/d2j90vexjL284FJMYW1f2fjFgzJ5l89Zbb62aX+N0youx+NHHyxjuXhBbFzmgj0PrWuz2OTvjxsRrfcRgXBzFq22djBPrB1vc7Ih84tw1IF648MRLr1oOYPSLEGsnFv4UnOXKmHsvP3i2r+HiIi6Sr3KAm8KnQte+YAcXHi7y6d73xz/+cfmiiy9fdJy7yls5pMMOfuvtLCQ/dMzjTEdb4au1x5deORYTH/Zu92H5Md8aiU+hK8Zq5zD/ekJd3uRO0afXvb9ctf/KLx90rb05fvBRH8W4krBT4seveI3lT47gGtPmNwzj8mjMHB1rJEY68u++0/XID1zz/kWl64xPuTLGN0xjMMVOzzXuRfuzzz67/m8U/M+Lr7jOq/eL9vOyssd2BnYGdgZ2BnYG/scy4DDy29/+9vSzn/1sHe4cSDrEdFhxiNB28HDocGBVjHeo0e7A5nCjr8BLV9vBRk3gOSDD4NN4hxtt9kehR+Kgnx/Yin4xpM8mfw6u8GFUzwMZm+zEXewwCBuHMX5w9yCndihTm5cLmGwb96DYPN98mCNqujAVgq9DdePp040fHYf4cPnkn2RXnGzKDQy5wjOu7NIpH+bg8MNHAqeXCNp0jsIvH8UGW2ncHFwFhnE4HirKFf0ecrRJdXHqV8zDak47fW2ib55/deN8KzO/OCk4Evrsi1d+XBM44gzLIV2JU/jyRzf/EwseH+bVdPhl2xz/xvg0zl67GIxlQzeRTw8XcHDAdfoxrvBJZhsmG3sMdvPT5xq8+cN4xRBb+UyOdh4GPVB7yNHGwYO4/afNFleczOMQPm7ljB9zXXPyos9ODasXMrjow1XYkrnu+vmJczpzThvWHNOvGA8X3wpexltrPnC3J/FNwskH+wQGEav9BkMsMOe+oMOXwsZ8BR5/7OWdwNEPo3ljXTN0ZoEtl3TiLx5+7L/pPx9qfHCAq/A5c2DNW3e6sN17vYjwwMvHlPIjX3wTY7iyrWSDl3ts+TUep3KjnvN06tOtGCftKf7psa/w34v2F154YX2z3dw7kTj4Rrv/DPW11167lWt7Xd7tB3xwKS51e6GXL7DYuM7ZKdbSC6VeHloX+mKIs1rfHNFv/eRcHzZ/5YK+ftescfzCwE+/l1ddn/my5rDZzcIO5/ZpfLKLC1s5gY9H1x37fBWTeboKXHuRvXFCb3Iwpk/C4Beu3PJh/8JwbuilDxv6cGUGxAAAQABJREFUXubIN1/6JK5wzNGRHwLHuFiU8tZ8OGHzg0ucF8jZD/NwxDVjsybdB+jSaX3U+jgofNpDPl/U+sZx8Nn48Nl/gEpf3L4ZHh5/XoKxgclf13i/HIDp5R0c+nBJvMsfX/JjnxK5Y8tG3F60dT9iM+Ohwz+B42UlLBjWjn/rBYceezzwpW8fdf8ybl6svr2vLZcKPX7zw0a/dcaDsIErFj7lU7xehBL6dLMr58bo8q1tz3pB6Jvx2RoXE53uE8bERZ9PnKwLHfHII1yciple9wjjrQddfwsfpjX8+9//vrDFLqd8wOAPD0UcfIobrm9Ym1eMs9Fu/9rvYu5+5b6qWDd++FZwZicGfujXN6ZYF9y1+cpOnuf6wKKLCx/EGB6+/Y+7X2gQGDCNJbDY88NODO0nfuXGWsGng6tfQrWH8WanhMuH3PtMhE9w0zbHRk6sg7xOO3r4sHcGw92f0WHjWuPXuvAHDz+FPn705FT8xF4wx84cHRxaC2Ph4cG/uJMZGxxz6cHgCzYxj0v3U7l0rVkHeuzEhjcefmHklzH9woNveXb+9Bkq9vIKi664tPl2PpIj/vyi3J+O+dznPre4zBjWwB1+7Bftd0jQnt4Z2BnYGdgZ2Bn4X8iAw8irr756+vGPf7wOSQ4MDkMOHA4X5om2A6FCx8FF7RBCx2HKmIOLA5B+Yt7cPPSY44d9B006HcI6uLDlm6524w5P8IyFb0yhk745oubHAcyDA8ERBn2cPcQaywcddrDYJuaLV54c3MzTxb9YO0QaFwO/9JrPVz7gKubz6aDNlphjr6/Nt4Ng/0SYnfyXAzbFaC6Jj5qu2OWB8AvbuAOlOWN80idqOg7trQEdPown5hRr3DzOdIzjBtcYzOKmb52Ms+shg52+QvTZsJUX43EzzkeY6slNm38lyX76KIbWQD+BIU+tgYc8eNbAXsonTnQ6tOsXv3aizU/+4WuLrXWHySeBYY34LDa1Aqs2W3sEthKP8mtMW03U5QK2PW3v8nfE1p9Cn56Cg7UMl17z5QZ/DzoequWNeKBhXx66Bsyzr8DA27wYjduv/MmRoh0XemKBS9jqsyV0lebhwVAXpzl+G4ujWPkxdxQ65gk7op8/fXbuF/kzlvDd+rAh055ftkQs/Nl/cTYuTrbsYHXfNUdP3jy0wipumMVj3loZM18Oiodf+TWeDV2+7LeZJz7T0c4nLA/qrbM59xixyAvudPW9MFLrJ3zhUdzlgp0yOevTU6cnPzCMJfyGJwbtYtTPhn54xuR37rUwxOha8qD+/PPPr7/V3lw+L1rH889//vP6T9l60c6v+6f1KCdqhbQW6n5hAQsv9wnFPdc6eOniJY11sP6uTfGV59bcePHzUa6NlSc+GjcmR83r89F+0veixz1VLPSstT3VCyVxmi8ufu0f8/T4g0PYK8Q4TPtSuz1tDqYx625crGJUjMmBGOjEKczs8EzHHA5wnRPoeOElTnn2509gyyc790Ex8EP4xxNfmObYi5n/8pUOHHnl05xrpPhgwitGOkq84RNjhL2CV7kzTp8fWGzgq+HaN9YNHzrs+bW33ve+9y0scftmOFyFP/ryAIO439h3vRgWvxdfXqTRhet+JT66cYfHn3Fj5QOmvHj523lCHIo45FOtzw6GXMOBgb/1ExuO5QhuceDUmtgrCq79UgGu+fjqa8ufcbjtZbZx0cbBHB94TX28xYabPIUBzxwfviXtBa5rg99y7pcHXQv04bju5ZZ/uRIDG/js+pyQI9e9NTLWPpATuXrkkUdWTF5O+n8kcJYr13l7Ej/4OGib55eO9S8nbI0ResR+wUnBG1d1L0PljC489gRe11v5NdfaqBV84JlzvckJnuUWz9aYjjl/tkYtH7AVejiItxxZQ3PlW07p8UuHvT4Rjz1r/xULffYJPFysbf5w0lboyokiDn2FnXl1e+TNN99c93xxurfKrbZc0sXPmlt7djjJlQKzzwo2+aBXzo2LWxEHv7gS+uI1Z4wvPgl/5uwre1au8HC/pCd+Pt7znveseyo9wndrmi2u/MJ0ffsWv3+FoCZ4uUfJu/jFjltrw5c//fbNb37z9MQTTyybYlidC/zYL9ovkKStsjOwM7AzsDOwM3C/Z8ABwov2H/3oR7cO8A4aDlBK0piDktJBrkORwwdxoHSIcbiZhw/tDjz0HKCMOch0gITrUMNX+nT1zeGaOEApjWmHmc70Tw+2w5iCN/0epPDX7mAXrjr/4Vbnzzco4BG6RKzm1eJzSORXGy+4xSA2evpq8/SMswuTjfH62h4GHDxhsxdDh1f6k0c5zUeHZ4dvY/QT3OEohC8lgeXBhx0+R2zjCvHwARtm3I2zIebESszjxYY/cz1kmDdXnszH23g8mm990jNOYCr8p6NPjGnDI2zoTIm3Mf4d3D2U9GAmZ3IaD/7pWMtwYeYb70rY+nKijs/kzDd811s4xpIZD5/4wdKWW/sVPj38FO0KXWOuCzYeUnDjUx3P6vymgxNdvlpbOsYmXw87Hiz7J7l07Ct6uMALQ16Ny3n4eMqreMzJR5IejGLvGqSDl9iU4hBz1zI88fMFi5gn6cNV6MZtKRx+sFOyExs7Ygw+Xwqco9Blz47o429MzPKIt3lYxqYvOWod2BzjFqM9W7zq8s0fPMV4fPnBVT9+dIkx+nzJeRKn1k8fZvnwEqn1Z4NTvOjwZ95LBeOtDS582SvainjZGMePrWJOX81/uaBHf0o29Oa8cf1yOm2Mi7m42SoEX595/jPU73//+/fkG+1eYvlP2XrRjpPr3T1HnIoYy0djOMmlvSNuuXOv7YWV9feSqTWhJ+fsxUjsOXk0V5z6RK20Bmp9OSBxgsUWhr1AcMVDruQxbHl3v6Bn3Dxd88TLl168rIGzH8c11YfN3h4l8YIlPn74aC3lBm/67OWmONizYdt+URO86MuTNSH2rnn9vmEtFzh4UdXLKrbs8HT9mmdrHqZCjNNRcICFt3HrKw5t+YUHq9jowYl3fNVK4+wTsfIRZ7mgqy9P1kQNO3ufH1680tX2QgwHOeTfXmWDG3x64rTWsMXGrhft7Jx1xGRNWke6cI0T+cCDiP2BBx5YvopbTWfq4cy+F+34ePHWS+lyr4bJJ744yFPFmJx4Aaumb854OvyUA1j4wDOmnT57HHGzv2EZKw5z9rTrVztMbRg+X72UdH0Q9nJqD5Z3/mG6xjsXd26BIQfsrEu84PlFOU7ix53YA15Usqfvl4E4WRvxi0OfWHMccDUPQ15gGisGY+b0rQkbfsStLXb+5n9siiebeOVL7K0HLuZhGsNPLugS/I2xKd/0cW3N6XoOoCMn/MIisOi5duHkqzj06eMh9/QS/twjxAYHpjFcsyuv1gwOXFjyxS8ba2+djMWLTrHj5UXzX//613XN2Qflkx82/LifzLXGScz0+cY/n2yMsbdGdMqxuTCLVd860oHRXoCBNz/uAdZ8cilOdg8++OB60W5fiy3/fBhT4IhXYStu+1ONAxyx27/tS2N07QW+/aL86aefPl26dGnRF+PdyH7RfjfZ2ro7AzsDOwM7AzsD92kGHCxeeeWV04svvnjrm1YODQ5zUxw0iINLh5EOfI134HNAojeFrsOogxk9xYHQ4V1N4NLTD9tYc9qK+Q42Dm8dGOehik3jdPHnH65DnD6eDqeEDnvjxWr86N8YwcEcOxwU2MbC0Ffoxrn80c9ejSs+8qJNwlIrMNgrxIHRg+f73//+9RAoFv/80cMpHbkuB2pcPTw6KM/xfIbLD970zRUHn/rGFXnMRl8brrqCt8MqDOKgKz8TZ8ZnjeiLjY05cYTPtjzBM06PDoHb/uswjQu71iF/YbIzlqSrT2fW2nwo/Dr4Kx7w9Pnitz0GC7aHAzG17unMfMWnMXatxWzHx1jFGNHnExcC0xi/RJ489MQre3rp5pM+Lmysm3E6xsqB2hjhc9oa50ch01abvrWyX/3TcvvXmIc50ry84dC6ynEc6OUDFzqJ2GAQNW6kmOVk8jWn38NeePSLgW/cFeOJPn28jOsn2nzZ2/DjYY94eGPHBra2Qj9MOGHCp6cvJoWeIkd40pFDeuZhKemr6cEg+trsihM3LwzsU9gE77DWwM0f8WQDIz5srWkv+8RFx5i4rRV9bTUOdIyriXFFXzyVdMzlr5wUG11zxis3Kd/CMS6mcuUBWztcuSFwjCfhmm89m1Nbi+5h+unDdS35Rty9+ka7F+2XL19eL9rtMTH5Exf9AlZ8cfQiRBx0cLHXFfy6J8m1uPS99JkvVrJlT9TtC3m3vtYbBkxinA5d9q1lHMzh3f5hY0z+cJNLAo+Ol0a4Ge/8YE484lO04YtD/HNP8M9WmWsaN7Zxp+PezY+xciMnXR/s4isO/oo1LPOwiP0OCzfxWSd1+YDrhY46HfP88GtN4o7P0ZdYSTkpRn05Veikx96c2hifeHetutbCgFus6XX9xtU15DMGR2PaXjb79j4/xl0DMPWJnMmxb62bs74+F7w0pSdOul7QWw/c+iWQ+4m+HJnzWUw3O1jisTa+Xa5OxCvupD57mDM2cfishysuccolbHve2tDHlQ6/sMWjxo99Ouy0+SHm5ca4mNjIi2JcX+Gz3LLjJwyc6OvLnWuBtK7Fx0f46tYUB3j8t5582QO405V3MYrZedL1SL+9CMs6WEv+7GWf72zlFZaCgz4/RB9vfW250c4Ovthh42SdW2+85Vmfv/LhGurzhy9raJ+JBRauinFc2bHn2xoa868BxEcHH375ggffuhvHgX+FrRK+a9YvO+DZf8blwLh8woFn3DwsmIQ/8bKVF6JtvpzBYi9X5uwBuNbGePcTc+JmK0ZxsbXm+LGRr2Jnaw+pjVmDOPAFhy+44RQ3nuKZ60QfvrjVcAmsJF/N1YclL/P6nf5xk0f/WubRRx9dnOCGjScRj186qNnIjTyp6ba3XEt8EjGFg8Njjz12+sY3vnH61Kc+tebjujoX+LFftF8gSVtlZ2BnYGdgZ2Bn4H7PgMPDr371q9N3vvOdWy9oHRo6VBRffQcOoq84mHYIUXcQg9Hhg54DkQOSQoeuMYdXByA69B1sHHTU5o1Pf8bmAbmDED2HPaJW4DkUhjsPWvTMOWCqiytb8+dJfsSBC2wYan32/BQrfnF0sOWrsemr3JUbeESdT7j0YBA4vkXj4dPB38HRtzI8oOaHPcxwzXkwII1p08unOBR+Wydt+sWQfVzME/qzwMTTPEwPIWp24s8mvtbWwVz+xEtX7RDPdwIvn+Z7MOEPluIg70FCGy69YgwHt2I1hlNj4iDmST7paNunXmgVE458qRU4BA79cI3Rk8/4hF3u6OA7beizY6NkUx7zwa5Ym8MHtrx6yJzXWHzCFC87ff5wsCbw8w3Pta+OEzu42cOlT9jCPMZtTT3c+WfN1otee0ybfnsBf3hq4+UqnvXzhzc+cPIfBi7lqfVlx8Zeok9Xzvk3Tlzr4m7t6OW/9TFGX03M23/udbCIvNmbPexNXfPsw9XXJsWI/zHf+nB6WYCP+N0b4sNuinGcFHP6an7cJ7q3wW1dzbeO5umKo4d0c/haz36xh4uCm3F2+myttzbJN4ykmFtzXBQ+zKkbowMjjjDMVU+7bNT8s3EtkzDbG3GgSy/RlmMSnjY7+8u8kh1+HuDv5Z+OuXHjxvpn7NeuXVvrx4drvJdJfBuTZ3uuvNuDXoB60WvMnPXyEoR+MWvLB1F3zdcXZ/df68sPW8L3FPaz0JMr+y5/2cirfVl+8eBbyc56ZWtP8Y1D/sv/XAN8zYuZL+3iK1bjbIrNNYQHrgpbfhS2xnCd17hrwl6nM3nIhz6uSth8WTN8rIUXP7BxiSd9uGI2hkc4c13MwcM5W7rsjKkVPEi2dI3xS19OzcVDfszbw+r848wWZmvGj33hW6aKF6/yhK+8xIOdcZ+lXsb7Bi/cPhf4lAt786GHHlq+cYLjxVp72j22fQ8bZ7nnSxsv8+YIzgrhv9jFIHc4sKejLV77DR8YrhuY5twrW2vzSvfGuMgFG3P5nvmlh4d5a0zYyDVu5clnMY76hF/67Ow/c/q+nYyXvvHOVexaz9piE7N4cJJTc2yMG+tzxP1B/uXeC0trI08kTuJghxNdxVzz9I3JAy5yqK9uLczRg4GfOORfgS03+Cna1hZH+Si/XqDaN/aKMbmkw4YfOde352CyFZPziNzxq8aNDxz6LMdbnmHDapwezqS1lz+ldTDnLP63v/1t/RICR/zE5jpoHcsNfSI/RB75bF7NP35E7Rct/i4/XOuJp3isMRErv3IM1/VmLeniLx9sjYmf8KnAaS35VuiyM44LgdF6yQWB35qYT9i2jxtTw1PEVNHHgT1fOLEXg3vIBz7wgZV7vOVdfPjBt3+LG+905GH6gZ8Yt6582Wde5H/ta1/bL9pL0K53BnYGdgZ2BnYGdgb+OwMOEL/85S9PzzzzzDr40TB2FGMOHh3kHGocYDqwNOfgYk59lHCPczAdlIhDoFJ/+s1Hh+sObh2AHLroq83B4Etp7sjJnENYh02HsbcTmLBwxFusHRphGYtfceBkrm+tsCewyufb+TQn9mMMDohwxWpe25jDZHN8d8iH45BrDjdzRI0LDEVMysyFPhz2HfbVxok42IaJizm+OuTSy5dYFHrm6RE4uFlTtdi0PRTIH3uHXWPlg14PT8YI7g7UPSxZE/zwLy5YHmhm/viHUR5ghWmMroc1eHjwaxx/DzLlRE34kjcPAHTKz8w3nAobOnw60OMjR8Y88PRQC1eR49YAplzAwpOo2bdu5rzw8K0usfNjnlTHUb91oSc+vsRrToyuGzrG473AzvkRF7rs7VPXjpisb9egmi+1+NmJbfLi+5gDmHQU+jgr2R0pmZMvNVvSGmuHZ6+VT3m0p/CduZADBScY9ke4cOS6lzz2g72sZBNH8SrnSXHBL764tSb84+bbafKHh5cIYbZn1PDY28/zwR62eFtXuoo1ET/+1k4evJSwFmLxrcX2J/6uPzZsp5RrtXLMwdSVY/j0tOMtXvyzx1mBZSwpV3TZtvf0w4A/pTVQs1Fg0jemTloH/eZhK0njdPny4uFe/ukYefen326cvXDny9rg2XWjby1aDzlQrE0v2q2p3FlT9yp9+xdXewOueTZ01MbkRVz8zZiNKcbYdW03zpbg2BqWL338YHZf1IdD/HLZdUtwhGVenPYnX/wak2928bTfXQ/03Hvo0WkP4FPeloOzH3SMdc807r4vL8VoDA988YbnRZoXffIFIxwc2LlW+pYre7ZeSMMmrmProHZ9iaF4zHd/8UKNXvuUnvxYO/ccvsxbfznBgw4e5RF+uYMtlvZQuHDkmL1c6LcnjBG65RMGvY997GPrxRQuOIvZXjVXLuS3b72rCT72Is5sfImgP+fAH1tz1ru4xOOe1/3MOI64tLZqfXPyAkvujYtZXHDscQVnuuKiK3d0rZMavjVSmw9brhoTz+SgTWDKmcKHok3oiMX9GU/99hYdPPgTf37wNoaPb2IbLzb2bAi94tWPt3m2rXOfY/yLl11xuX7mC+nyJGcw1OKxFq5ZnOWWHjwFP+PlIS70lO5F2p278MYXF3tAfGr7yy8yYJZf+wZPvsSGC3s5E4e2/ea6g4E3n/5lqNjguI7MaeOOLzyx4QVD4d/6uK7paCv4yGP/USe+/PPxpz/9af1ChF94fPnPT+HBNua6nXtv5khMePHDPzs2Cv5KfMu5Pk58uu7pEvcp+fKZLr/OieJ1D5MrIufGcOObLVz8+Ca4iBcGvXLAJz2xlx/rgX/jcgfP2BQ4/MLSZl+c6Rm3R/2iAnd5tpbx73pWJzjCVIuHTFxjxWP/idEaedH+9a9/fb9oL5G73hnYGdgZ2BnYGdgZ+O8MOGC89NJL60W7A52DRQeOqd2hyWGHOBg5EPXQ7eDjcJRt9cS4Xft4iNJX4FUcdrTVDmeKgxQ9hz/FIcg8jvHESwlTHIkDlcOfOfH0YPB23Onywx9fsB3mHB5h4+hQjl8PKfzBd+BXw4inOk7q2/mGKyZ1UmzGsoWPi7oDowO1teLLepnDMb/wtCs4TB7abOTHw682kTtz4sEhHnE0z6863daML3piwBOOMRzp4Nd6yiO/HgqMsVMb17YWDthyzh4WTHF7QOAjrLjgT7d1jI8xBW6FLtG3Bj1wwvRgZwyu/MiNos8vXFy8JJCL9mV7IP5iETfujfUNQHjG7B97TVz0FH7Ma+ONk9wpfCj8W3ciXg9kHi7Fwab8L4WbP+CR9pjavqIrJqI9/RvLJ3u88KktBhK2fFhTL6R6ycMPrnzRa0+0JuzpwI4bHsXABw7s1F0z+TRG9MsXjgl7Nuzzb23SsZ/cJ/HugY3u5ATDXmytzXs486Am/2HAkb+44YBTdnPcXLFV0+s6EVf69oeXr/iZt4/4ZUcHVzVexu0D/PILy16UY3klarytE9xi8FAOTyy+Qanu/pMunNsJWzkgYifG+MOPbSUuxovXWLEYF+O0h2dMIfTN01WIPjx989pKNuVVf+5DtvTKm3464U+s8OX7Xv7pGGv9k5/85OQ/suNf3tX2LP/Wy7q4f1g3McqpPezlj3uBMdcjPWtqTdjbs/YGvObtr9Zs5kB8rYU8tZ72Q3ui/KjLF5tybEwbP/b2r+vPWBj4dq+UezytofsGbvQIjvnGjS4s9+xy0n5QK66H8hYnOew6YU/cQ+XGHOziwtkY/u5rXnTJs3l6sGHQk+d/nH3jtFyI1b9O8wKarnWUc7V1wQdH2Nr86PMjHu04xxcWX+Y7f8QVl/auOTxbVzrlFmbXDBx+5RAufXvKPD0FD+Pp9aLdvofps9ALxv41mDGx+wWIP+3SS1lx4yReL419+9cLUfmTHzVf1liNs5jcezsLxMWa8YMDPTzV8os7u9aeXnPmxTFzQJ9u93Ox4opHewFntuaMkfjJmzbBD96xXpNnP8SBs7zTw4U9/LDV+kQe2zv2Fg7tuXzSw18Ra/yMa7PpPmGevfH2u1jlw560v70cJXgZx4U9PYKTGOJebvEWkzJjYMOnAjt/4XQN4m/MvYCuvW7vyGXr1Tfa8TEmn3StlZzCcA+cL9r5vHH2iyAvnXEVdz7lAd/yLSYY5rtPsmen4EJg2NuuG7rs7efXX399/X1wuaTvvuI6gAmbL3j0+RYDoSvfxLh1Er/Y+KTvF3AKG2sqXvfH+MuJ617uiXn3JPcTGL2sNmYNjPFTKT65hMEP/9YDf4KjYp4eXmpYxu0LtXHc+DZ/FLmAzXd5gZFfvuFYf3l2b6ELTw5gi1eMciFnSVzlhcBViDG4XYdis87+Y+f9jfaVov1jZ2BnYGdgZ2BnYGfgdhlw4PCNdn86xmHPwULpQMeOjmKscToOOQ4v6mzoOYDdScKiqzg81Xaw6UAFj8SBnsO10mGUfsX8efaw6TsoaSdw6RMxmMtXsVZnQ8cYPbUcOCgS/uMAV5s4uKUXF3MwCN+KfhzWxNmP+DhoEnokXvHQVzooqvHi1+EVH2tljF6+w1mgZz/gh9WY2lgx6HfIxVcphrD5d6jlmy6Rf2tL8qEm+Jiztr34M2bd2Dskl7PW2Ly80PcAwz4e/Cp4tJ/Erhjj1/hcJzzi1Tqq0/Vg4BDfPlKbw01pbdR8m9P2sMJnh3q8FQIDd3XjOHno0oejht+LpGxhKsQYO/lQ8FbMe2FBmvdAMnPcGoa7lG/+wF/O8NAuJrWSsFXklLDhP/tpZ97DmwchD8Niw5OOF2ZsyntxmItfftWz5H9yERtRZ19/Ys8xesXavjImpsb1cZaX1t88P/awXBM+YCjGXEPWw1qS+MGLj3F9hbTG7Nuz2vzoh6HGQV5dM/abB3B1OuGqjbGfGOITE34w9F3H1svaaCvmxSH/5rwMywYHccoLjNZrBXP4UYxqevTZE3FrK2HE2/xcC7HInzElOU8fVnjZ0ecbRrlKB4ZxOVcnxo0p2vyGRy8sc827h/SiXZ2PMC9awyO+Gen/WLl+/friIWfW2/0EL2vjs93atY/k09q5xyh4W3M6XuzIgz3hBYN9Kw421tTah6PGv3ypaxtX6LBV4zzzVQziaM3YaNNzHxOLMRjG8TU38djjNfcb3Qp7vPqs4DdOdGApYuYPvpjpTTvXG/HCzMszenTYyhmpL79y2XXOTzml032geHHzbVa4fBZPa0JPfMbxoGPN+gWKeIpTDNbNPZ4vdvjgWVz2Bz044YoBTzbGFWOwjanZ46g2x5YN4b9cmpenxx9/fP0Ljl5+eQHsPx/ELf9i9wuUXkYWq9zB8xnhxSedbNgT860hvq2xXJuTI3js8M6GrlyyNaewLT/mFHGzV+iqYcvv9AGXvT0hL7iHv5ye/TBn/8o9wa18ya1C4oCTa7A+33TgshNDMtegfUGPDgxxlCvcjeFLig22+wXuxsrJxGgf2Zc+Z+jDFhsOij1hXxJ71T1PruIAH8c440WKk67i+oFP5K2c62tbz8bkVGnP4I+HmMpxMcuLOf5g9IujePsFAv74euHsMxQf+jizt8Z8GOMXNrFXCVvzBHcv9PmSU5zo+eW0z033AjhikSv5Vvhy7+YLHjHWOurTw608xK97Ph18+ZBLWOXDWG1z4u6sKifisgbyIhZ++CP8GIMnHmLeeuNC6MQnv2pi74lV3Dh0vWiLNV98zLKMz37QKXY1HbbuC9YLrj0qD+JvzfCBbR6G9WBnP+qra8Oka23hFp8/TbP/RnsrseudgZ2BnYGdgZ2BnYFzM+Bg8fLLL5+effbZdaBy4OhwlEGHGAckB7OE3jwsG+/w02Es3WPNj0OMw0748BzWHWbmA49x+oS+OYUuf8cCz5xD4sRx+HNYMkY6QMEMl41xGHBJ+NpxcWjTbq6DIBxc5+GTnXn6ajZ8hKUvjw6reCvlhC3JBna5+L+Z/8SefuArcYGJHz89HMGFx46o9SdXOjjJm7jTh0uPhGOseVjiYsMnHRjll54xkn/zHWpxNW6MfwLHOLs46lu31o4eO7p8kHIaX3NKduazEQPO8oUrHTj2j4clLwO0YcFwTSgeRvCCpYZRPtTGJnf2Cnx4vTwpFx4AzLMl6c+9aYx+c2rCV1zMd91qK3z2EC3G2vFbIIcfYs2+tROrkuCmr8aFXhzZlw84HuB6sJvY8kbCFQd9OuUQz5kH4+XAftFXatNlA4eYI/rHnBkPD/9yk4218sBsvcTjxYOHcg91+nzxyx+RX301jPYLXesgTuPljT1e7JtzHRnDRYFlTjv9iSGH4qLnnkdHXzzaCtG3b+lrw9D3sC0mfo27X3hgVTeGvwLXmHm1vuLBGVY6y+H4wZcYyws/7RE2xJgCbwpbMajZaMsHaY3TpzPFvBImDnSM8asPrziMm4dvHfMTJt2uXfZ0jYWjr+jD8tLFn4554YUX1gt3Y+9EYJIbZ9++fOqpp05Xr15d+wlHL0l6uWXN7FFrUax4Wi99+cdBHun0okoM7f3s4hlne7m9Zkxu4LWOamJOwdk8vfLYHF1tQs88DgoxFyd9MYRvnI391x7EOT/5oCMmnzFq4zAU603feCXfsLpHw+gFn3lz8uB6gWFekRf5jI/aOBzCVqHHv7Y1s5dgwmJjPdxbcFXrzxeD1pF/uuVIHPLc2vLBjn/Yril+xMkvfSKn85rLv5pO9vYYO/pinNL1Sh/PT37yk+vPx/glAj7uLX45BAvfrjPXhW/zsjEHWzHfHpY7fsVgDeIEp1yzbe+zLbd8i7f4cI67XLgXwy2HYlYS48VGDx4ufJhj716rZmet8ObDvIKvP38jVv3WDW77EH/5VZPyCFc+5A9+69YamrPG6mzh8gOvXPAjd+WvmMzj43MZd/G1R/DQp+tewj9f4jOGo3kY+nC8hNe2Zl5W0zEvH92PcCFiEQdd3Okqrin62n5RI+/tCbm2V4pDnObwx48uO7hqvuDjSY8OfuzwUozxaTyxJ/lmWx7FrtBnx5dckdZHHOIi7jfzX5bhIi75g0HoVszjpdApT/xoy69rmohNIXxOG21jfPDHTuyNs9Eubv/axDfA2biGxGut+MStPPLNhm05xI1O14G57jt8z5jott5sYOBlbfT5lzP+Wpd86ps3xxc9PPHxrwT4sRZ04OqzyT/fraU2W77hs+maNUf46ToQE95+Qf7000+fLl26tHSM343s/wz1brK1dXcGdgZ2BnYGdgbu0ww4WPz6179e34jzZykcOBQHk6TDlIOIA5ODEHGIoTcPGfBI9erc/GGsYujoQx+2g43ioBNOtXkHI3U8pg9tug5sFTh0O1SxJ+Y7pJvT7wE8Dg5ySjbspm++zMcFjjgc6jrY6csVoS9f8qjINVs6xvNLl3051jev0C0f2jDoqa2Rmh6d9Orzpd2hUpttvvgh9MSCDwxtBWcHWjZxwyE9to3T64GADkw5hgOTnjESP/PlvDkHW+tkHCas4mZHJt+JT69+OLjy47Dt4ccDmznjhA8PmjCNW3tjDtu+UYcL+3JnrjVYAGc/xGdeXs3Rp+fhzHh88TOXH3MKCYNO+aptHq78ws1PD3/m0oUvd62RcfrNm+tBQq5wU+LBbs7jQs+4QtcYUddnb43DUbfvjePqIa6HdfM4FY82/HDYwJ++arPJLv7itsbZpLuInv2AD1uJMx2xkfjMOOUtfTYwXEutgz6M7hd0cYBpTgzxNNYDH39slGLWti9IsdOfa2Gu2POrtn/Z8KF4eSDX3R/sj4oXdc2Jj505usUjPuvVWLGUD/rmjRNxwzRmzrgx3BSc5I+0h7TpigcH+kq25qc0ry7O7PiYazrttLPVjgc//E/bfMfZnlJwTsxZJxz4T/gg8NnQ0fYC47HHHjs999xz64V7etldtOaX/OUvfzldvnx5/RkC1zIf7373u9e3o+2X4pJX64ej69CfnDFXLO2NcNWzXRz2n70Jx0st1y8cpTjrtx76rZM80CPG5VxJN7/8ta7aFfZ00ocRN/sNH7HygWuf6XTYwTRmDqejb7HJW7nEkx2/Cvs42//yx59rpGu2nLLjA9c+O/XNw9GG0XWEM5tEH2b54kcxJh484PZyiB9jckL4IOWKXyVbukSsdNnR5UMunQnFZcx8uaSHZ3r1pz9tn69etPvFkn9Fxa991j2fndjdr8L3+QrbnEJwlgP2RG39jLGj3/3GvBewYjJervIlZvEQvgmd1pueebYK4S8/+uloywFMfHyT1nlCX8HJL5Ph4Sp/vWhna976mefDfihmtVwpXvbCh+lFLl171H4sPjzgqc23V/lhB7uY2Mpp+ObYtBbW3nw+zIfv84JeMcqL3PEHXyzW0ze1xWA9vag2b85+wpNvOAo7uXG+woNvmObKjXk+Yavlw71UvtnzRb95OER+ylHY7SX6YlXEh5P8wrVfYdLFXcELBn/0u6b124v4slPDL+/yxJ6uMTqwGlfHpz2Bv1jp5oMtPYUNv+aK27zrSyzswiiPkwNdhQ9r4kW7/YqX/Krlhq/isn7FDTsMXOQZPl2c2NFVx4WNucndHJzs6Zgv1+YIOyUuxu0vdmLwr2XU+gRu2Gp4+LWWfNjjBEfY8ihmcxV2fMG2Lz/60Y+erly5cnryySeXbfxW5wI/9ov2CyRpq+wM7AzsDOwM7Azc7xlwsHjllVdOP/jBD9ZDs8OZA6SDTOKA0iHUvEMHmTrpwktmu4OIsQ56cB1uzE3ddPhR6sPV72B59JMPOnx0SJrY5hyyCByHd7rZ6DtIOaipHbgVbTj519c21kOLPp94iKvDoLpc0TfnxZfDsIMbO2KOPT4w5FopP2HCioscdpClGyab+JULuuyIeQUWXDy088VGjB222bHvgYRNfOB1QKYHA54DuYeyiSvnxcuOxEnNL53WmC7s+QAbXz74wqvY2MGYmHJqXix9q86aefjzQsoDlVg7fMO3PrD5Ns6X2gP8jAFuHMSiL9741GdrbbyYot+a1I53eGGKo3wVd3PWe36b0T7Q96BgLiy+xSqWsKxjOmKXD3X+5IwuDPa+gSd2GHSMadMr163l7OM6x+0JvuWTf5yVuKq716jlydjcQzD1SbmAq7DhHy8cXc/axHh89PNpzJx46bZ/0m1OHedyl39rA4/AgJW9B0GCGz2FyB9+6vr2KN5s1a2JPlwvFayVOXz4LIf6rY8XZGyM8ecB2j9Vtwdbg/JlT/ZCzbqQciAOGLibgwW3NalvDg9zxPrYi8botF6wyg9sYiw/9PJjHF5lKd/8EQc8lK6n+MPjB8ZFBU72cSqe+q5TOS7PzevzV18tFpjGrZd10/Z58sEPfnD9ubYPfehDt2wuyjO9YvNnOD7zmc+sb7Tjx/d73/ve08MPP7yu28asoTVRu0f4O9k4tt/sh/ryB6f8ahuj614gFrmyp2C2D/iyZ1vP8mC+dbLHu67F4lpyT6CrFBcMha5a7uCz14aXpIuLAtOauF58dvQ5D5vtvN91XfJN2JnPT5yM80/48BnBD9/ypvDXNY03G7X4xej64w8HBXbXh3j0q7VxcN91/9aXc37KEV1j+MA2B7+YcKOr4GH9xKDvxRpOxJqZ50Nx3YqvP2tBB1+5xAk+bDUcHMzDVovJvM/WT3ziE+sXS71Ah8UH7vH3cpMNe/nDLy5wrIfcarMxj0f51ccXF3Ze2KbfOsLvs1GbHjuYYlf0W0tcFGJu+irPateNfMmteF3fYeDk3ouzHLt2HnjggVXDtW7WgD58XLTtK7V46Di3yIs8+6Z416HY4siGvjXBl7/m8CPwrQ87Qh9/uUhXHye6fNKVF58T1kktf2IiuHQ9sTGOs28Xa4vZvwSEz088cRIPvvDpvetd77q1j2AaJ2r29njXHb9db/mFB1fuSHuq3OIjN8VVjmGyU3yjG1/rRB8/Nf94wJITY/Tli39zcmteGxexirm2cYW+Qtc6qQn99gTuhD1f9PlV65tnJw/GvCDHhdjn2vzmX82ePzz1FQJLDryotsY4wlXbC+aLoTOEPgkDh9bMvmoO19YDXuNqfSUM8eBGsoHb9WfeOvAtPvlyX8HVmM+j8gIXhlKsE4sfxR5S48kGdzEb45fALOdy+JGPfOT07W9/e/2C23z8tS8i+0X7RbK0dXYGdgZ2BnYGdgbu8ww4WPSi3UHLodLhxcGCOEA4qDTeobi5pTR+wFPYqZPjQcdcB5cOOA42U8+hqOLAw0bfYWtiGyNsiT6sSr74yZ4uTAdDY4q+QxR8xZyHXA8AHTqzdziLEz2HP3N8qgkffHbYi7PcelhxUDTXePbloYM/HHNq+e+Ay78xODDpdyjmPx64wezAaZxt+WfbmsMjbBzIPZDEh06Hd7b65ZR+OWCPowO5hwZ+iTjllf9i5i+f/JR7/Ogpcm8NHKj5g823Wl8pj+zgGAsXhrZYPLCat37avl3WC2S+2cOKt5jsCXjm58uCFdThBz35hMEv4RtuD4lij6d5fCr6MJQw6BK4xQxTDvC07tpq13AvE+jAsY6+Edf64GWftP/Mi1Ge2ZiPj764vWDx7US6hK7xYlyDN3/wmbBPtPlV7OP2sjgTtsZxEw8eU+Su3KhhqsXfnqAvZ7i6NsOICwztY6HHTp6O0n7lwzqKYfIOq9zVh2mv4Vi+zcGTv+4d/OnjrNCRYwWmPizrpOBpDJ/WEqZxvjwsJ3R8e9mDeNyr7Sf3IvsmfuHgUe7EClfhV799bgwOe1KfD76zZScWhQ8lqU8n3OKGd54Yr4SLByy8jd2NwMIVBxLPMPTtDWui5oeuWr9c0TcOSzHOxlpbH/cyf+PVg/q9etH+6U9/+nTt2rXFmW8v2fuPNe0XHOTVOlsT94033nhj8bPviPWTA1zbX60FTPHTdS8Qizkv/dxvzCvs6Mz8w6RrvlzImetcvz1Mb0rrCJNvuvJcPPCIcYWOuBTYdN2v8Z2f1+JT8GRDVyE4sBOf/W+ewKePizUVd7lcCmc/8LW2PmfKYbkQv/x2/6OrEHu2WPivGBOre7cXkMb5VsNLuoatg/k+D8oB7nyJS0y40ZMn16g5cdHjU9+aiM9L4q5r9r1oN0+fj/ItVzNHcOTj4x//+OnRRx9da4EzOzzEwR8M9ya8YYi5vKtxk1MvsNmyIzBwoqO4j7UXe9HOFh49ORNT9yW+zcc5n8aV9gl//MLIn/zJgbr7rzlnCTzZl2M5jK855w55Ib3Uw23ulT5f1HS8wBdHMdifPo+7p/BlnejSiav4rIMxtTjEKTZxtQfKhXnrYS2IHPNr3EtM68SGrcIOb3oKbH6sgxfteInVS2sYbODjia+2PLKjZ5/jDEuu4g+TsOOfjRhxoxu2OPkganHgR6814Utf7ozhal/gQ99nZ2dD/NsvuBC5sx9xwqN9y58x83zgUh7FaS35w1WBh9vcZ/TFSLc1K/Z4z1jZip+OfSYWbZwVeDNuvFtPfOMsTn79Ys29ja/8wDHvPgOPD7UxEj9tOSWuRdhwzONA0tVvbE3c/CEnbEhryaY1FKt1x0WOrJmYjNFvb7ZvcMQjX7Dgmxcfu3lfMV/+zdFjb/3UfODgT8f4f82++MUvLq7hr84FfuwX7RdI0lbZGdgZ2BnYGdgZuN8z4GDhT8f4e7EOGA4mDhUdLDpcONgoHVw6sMxDjFwYVxw80lHTa77DV9jqdDuw6FfoVzocdZBaoONHOB2mHNAcmKYPfXHAcDDMD2z6asWByoN6B1N6BLbDGRxjPewYN9bhF754+FLMEYe1DpFr4OYPWPlmJ98O8sQ4PAdchW7+6YiPvoMnX7iwKW4YcTE3HzxwgWnN2RI6/MmHdth0WyN+tfMVd/ZwzDsMq/XNyxXebAjcciHfXoh44JJD/unhKt9s+aMPcx72jbc+2uY9EMiHcRjs1TCtqxcYcMVI2OGJE2y5M0eXTfuBjjn6Sm1+ahuPv7Y5uIp2uYKr1DdH+LAe5uCQcOrLAx11pXznJx7ihAVfLT90mhdnuHzRUZqXN3lIR40zHQJX7HjLHT7EmKKPm3uMB7e51+C0J2b+cSR82w9wyo820Wevbs44PDEpcTR+FPHBUrcGb6cvDtzLXXjxYavQixvuxcWP0hx+8VfLK+50atNlzwcd80SefRNd6QGbTuMwCC4enntBgX/r37pYk2JiB8d+56/Y1OYUfNiyMa62vtrmFDyazxafMMRVMU6HmCfmjCnpqY8SHj1+5f88vaPd7fpwYIYTvly0p7T5MKfufgUTB+O14bCzj62p+5tvtH/3u9+9Zy/an3jiifWnY+wNXHrhZw2775mz7tbfXvAnZ7TFQlp/HMtfuShOc15swDXn/mpOPxtYxW+sPM55POzZ5uQMF3ViDmc+04Mxi/H0xGlP4lRccu4zRZ0uvble7VN+5YCeeKxZvugbw4eO/PXZItbJYWLDNC8u3PjqOpm5pQejWLOB5SWr/xckMSd37NnIpReFnd9cy7jx2UsoNmKBJy5zfVbkKx0ccIXj3kJP37jPAHnQh8c3v/JNWq+4yb297l9Y2Pf8svfCnj+FrW8Rl0/z9iQsfNVw2IiXDXz+SXVxm/N5Z82zFbNxeeteqA+fXrrwlXyXC/HS1+dP25h45MCeMGdvKTCI3Hk5Tczz4yUufnDM2xPlEx4smCQ+/BU3G/ZetFtfOnIoNmsBK57m5LJ171pX80O/9cWn2Pgj+nTh2AteoLIzzo81U8uXHNNV8Bc3XevmCw3ZiNd+5ZeeYs4aO5Phbp/Z8+0FsfNjjdnhx6b8aMeXDQz6/MDCgY38KsWn5l/uWgd9v6jBxXw8+SLFqg+LH/5rL6WzH/pdF83JDW5K3OEpccGDHRu45orVOpYLuc3WmP9YVRx0YWjjbo5ftvZm9zW8YRA22tasF+34wOm+UjzlCS4pDm1xGW9fNK/mw1x2+vTfTtKnJ1ZxEOP44AhH0S5v2eFmbkp9mPaK+ytha65zUtdxvuRH7Oy8aPf/mu0X7TOzu70zsDOwM7AzsDOwM/AfGXCw8KL9+eefXwcqhxUHsA5T2koHGPodAB1i6DuIGFcT7Wo6DkfNNa7OV3PnYaQfDqwOlw48bPFR01GI2sHSQUoNOwx2bPQ9+JibJXt+enhonh/FQ6M54kDWIVBtzsHeQ9DkhwfhW5s9DrCJWnzli57cw8CZjYcAa0PXmJoOUZuXVxjFabx4q4ubHX2Hcrb5K07zxJyHlnJonh3BQTFXMR8fh31tuelBHT82DuQKXvLln8j7Z7seJPGnZ9xDmLVk48DLRh7YEXr46NurHsj8M1jfwuLXerDHg8D3MMUGXnnFFa5xvuScLnzrbG3p81OhK94p9NmKYc613urio1vbOMETD338YcRHPtiQxrWLX60kMNKHQeLM3rzSnHnt+mrzOM6xdIoPptx4UMHduLUwrvYQ59tivQxg7xoQj9zimC4cRV/+7Rv5jkt82cBgr8g5kTOF3p0k/vSK6TwbehW8poSRffP8K+Ybyy7dOM7Y6GdLX/4UOTFuf8izh2v73AsQ4rqQX335IrCshz1+3LM4hV0MdLperXlC1xw9Rbs1guHaqW8+vvQI+zDCVFtD+ubU5UVbIeXCXJKeml8lmXqNXaTmBw+ifeQgH/bVzAtf7qf2If1yAEMfDn06avcQf6Pdg7q/XV2M9O9GitEL889+9rOn1157bflwrZiTd8W9s3+ZZby9c+PGjbVf+DRerPhOmfzMzfuateslqDZ/rTs/cOm795o3Zi/an17cwZYXOj6DZu7kSk6V9gh7+9gawaajht9LOhzaCxMDdzjuNzD14wuXdN9i1/2DHo7uL8bo+nxh22cSfTrZiIueXKjLob449bX5Y4OXkg9c4ONpv3ipal6e1L69KkZt+XAvgMuXz2ltwo4NLIUvhX923RPcN9jCax4+frDU5sodLCIGuYADsxxrp//II4+sf13hPs6H2kvUrjN+/vnPfy4cdq25fNrLcHx+W19Ch//OFfr2wIxHzOJQ2/vlQJy+tetcwD9f9q8cW0t9dsUJF79i1Ff4NA5DTGo8424/6NPx4pKwM96Ldrkq7zDoiqlc0pcrseNsjg1dMckHnriYaw/AiaMap86jYjNW/uwVsVlHOARvPIuRP2OuWX6KE89+yUsXtjm51ofNVgz+RB/u/MDIzr4qXuvtpSe+6gcffHCti778yhX94itn+vHOFge+7CvXgJwXt3hxg8cWDg7hiIN/OeMXX/OJOBR4FfHC4bNcyrE2HTh0xGif8dGYefkmcZlz9NtPrT9cfOOi/eabb649AE/fOaB7Db/2ufuLHBExyQGecPiwxoq+XMOQK3j08FMTa82XWiHm0hODQuAlxopZbIkxcTXPRs4U3MzDLm45NN6egMOmdWBHR8l/eHwYkw/PG8S+MCZeuXFPyC87uTLH1t9o/973vnf60pe+tGzN343sb7TfTba27s7AzsDOwM7AzsB9mgGHl77R7qDuEOEw41Dh0OPQ4mCjdDhRE4cSujC0G9d38GjcnPaUDjzw73RImTgOdA5ODotqtripHYrypXbYdsBUdxikww5XYw56dKfE1XhzxU6PLw+AcOjyoR22A7oHIQdbunKkpkf0PSB1gIZhXh3Pxvg1Z5y9NXEITFcND0+1XBBc2Bhjo9YvjuLOTw/T5ZJehY7DrAN4cZYXdRhqfX5wZg/PAZZ/ayZvM24PMebtAznx8OifDzvk8gVPHsux2GDbnzjxwa94YSjy4wHhrbfeWg9a1t/DHv/8sYfpYSr/8PBgp11c/FpLPvDTlk9xlW81Hon48WnfxdmYQtLhp5ya0yfiwKPY2gNy196DocSVHf17IfzdTuacttjVCt4eosuztWjcny/xzUX3GXrilV9rYz30y6l5uGrXk2IOVjlTi7/1hePBicipuftR2kvlVAz2gpyqjdt/rscbZy9L7fNeWtrDxu3jrmV5KJ8zH+0Vekr91oCdYlwx3hrAwZOdMeuMn2sj/uHyba2yVyetZ77ZTn/arXPj2Tann6/m3kkdXvz5rd2cfNinijH81b3AaG1mjHDou3btS3vZn4y5V99o96Ldf8r2hz/8YV1HrgPr4Z6udm152eTehYeY7BPXY/tJvnA/SvFVF4s8wOn+6Bekxqx1Lz60ibi7vvFx/fuFmxeQ8mQO515wlHNc3bMV2OUWd3ZxkX88vMzji555OHTYdj/QpqtPcFTos8NPHybdbK0vnriYL2/80XUPosMfHDquhT57jRH4rk168gQHH7EqfMQNf2M+d9zztdV8+QUbe/zCdP25DnqJyZ/PUxy7PujD4T9+xaM2bp4ekRd85dwcLPO4iRtG1305N67Qw92fMPKnQ7TZ2YfWij7BzX6wX42JX4xy4Vrh12e1l/M4ErX7nNgJf2yLU18McOxNmHxbB7+k8AK2/PKDk/WjL0b7kU1rac+Kkw0+arGHiYN4FXbVONnXcOji1Yt2/GDkQ47p2hPmFOsn7qtXr6452DDE5IsCcsoHbjh2zcPMp5j4FCdM9vzSLS55w4/woejDlWN28s3OfpUjPK2bcetBR9zm+IBvXC570c0PzPYoDPh84WkdXGNie+ihh271zctP+eKLnWtAzV++5QxHc+5x9o79Zl6u8PJLf7HDI8b5gMvWdaaWwzjyYe0J3XyGKza6eJpvXWFqE3sMrvzyKT/mxN6+Kh74Cv3ugXDNK/yZJ2J1DhBTftsP5ruHhEUHhrXAAQ4OrnV7EBd5sk7lqRzRFZMy22zwwAu+OXzZmdNvTF9M5Zh+9mxgE+OKHBu3Xni31ji3R+nbe+0xdnyUu7DgKLjQtzeJtTMmXj7sAbZ8GZcP+x2+P4flRfuXv/zlZQv7bmS/aL+bbG3dnYGdgZ2BnYGdgfs0Aw4Q/kb7iy++uA7MDkWKw4tDTX1thxOHIYcKdop5tfEOL41LifF01YRe4pB3JwkfluKQ6oClxiUMh6KjDj0HJePm9R3ijGn3UIADnXS1SYczbTzYhqU21uE1XJjG4MsPfmrjRPwd4NjkQx2HDnf0jefHIa+HA7bGm1e3RvE0xrea0IfNf31zPUxMXVzCEUMP2+LKvvnWFD67/LJzaCXWSw7U5c6cwi9Mh1sPRj3osiu/5UwO2Kj5yScOcIyLx8OUh0Dx8kmPHT0xeOjpQU1Ote17dZgeTr2k4gcPvwCgKy6FL0V7cuHzuD7lip55hRgXWxyNiQMPunJF0kuXfXlcCmc/9Btjmz0bMSnxyEY+ZhEf/3TZq4snm7DVdEltD2q4E7hszXnBYU08zBnHwzp4CJRbeq2fmo68yrlirDy3h8SqbZ3gdI3BmvlcZM5+lJv61eWm/DX+/1UXq9wr8iVWhdiX8mZf07XnXI9+caHY52zSM5etPJdPWGItD9quiXyaD79c0Gk8HL7izA+MPjOMk66LeBhvznwY8NuTc14bB2sZB3ZEvzF6fOA2ZWLN8fPaE2/Oh4EHju0reythax+bI7hkp2+evj2u9jLJi/ZnnnlmfbNdHt6JFL8X7V/4whfWi3Y+FLm3pni4Jlwb7nds+LNeXqK0Nvy3XnTSm9yMyYF7SXtKzK49L0SN0bcO6nJAv+vbfcH9wX71QoN/9u779nf3Z3xaez7ai3DtM9j8Kebg+2aidSD5Ni/nSvr4TH5zT+OjtJf4Ln8+k9iaF4e6PBmX4/r8lwe+SNesFzY404FhXfjBTxxqNuwnfzbug3LlPipXBBc5iZPc8gHDZylufNOHIReEb4XgEk8xxMccrDjrm4dDxx6zbvCV7iPm+RWbF+39GRC2OHm5Vd5x6OUWHmytY/tKX9xeLosxO37zJ0/EnLHiwsHexBWO3LlfetFO17ic88WntdanZ05OFPzcU7XFwFY++YHbHlOzq9CTO0JX8UUCe6l1hmfcdeFFnrXE27y80f/973LRP/QAAEAASURBVH+/rlcc+XAPkUf5lTN5wc/ng7a1aH/Rf/js/2xgi48Y+KPXPds4HkrCHneY4nG/gGuf4yd+e806ZI+zuXIGQy6tHYkTO3xhKOzZ9aJdbP7cDF98m8eXPR94tt/MGaNn/eyV+DlzyJEX9/JA4Mi12OXB+hF1a9n6GRc/vTnGJ93WQ1889glsPCcWvnICAzd1+xT34iw/5tkTPtjQwwMfhX06cijW1kKM2vTotK9hlT+c49C+ti74s2HfvUSu6RhX5j7RDhMeXWKM8HO0ZSNGfMyJW52tucZhwIJjXsFBTtjLiUL0zYs7n3GLs3FY+jDsNTrsjMmdOIzh0TVtv3QNPP7446fnnntuf6N9ZX3/2BnYGdgZ2BnYGdgZODcDDhYvv/zyOjQ4VDmEKA6NDh4OQA4lHZYcOowRB5EOv3D0s0/HOFF3QAvLOP2LCPuKw5GDozp7bQdqHHA0r98hyYHJA5SDGB49THnAIsbSgaUvfgVffTHhwIeDnb5xftTEnPFs6Tm0KfDDoVOu1Hw0xn+8i4+dmOjBwoMY51MpP2wbi2P8OjjSIeHg2bqwlSeFHtv8sBGvh9f8qfEMi44+30q44ZhP5rw2wbG1bAwPeckX/HLDpnHt5qyBXImtBzpjcTPXPm+sdYPDnzj7NhYOcuJhKhzYroEeFtnhUi7wV1p78/LROqSvr7SOdPiAP3Mgh/r5oG8sHG08FTHBgCsOc61tdnT4KG61By0xsTNH14MgzHzhV4FhHC859XAOR/68UJAzOH37zQMLYcMHXLU+TLqKtjEYHtbF3EMQn/rm8eNLgUPCNUcv/eIuf0v55o9s1NmYYnu3wv52MufyI1Z5kXtF38OieIk95yHPfpVnJR1zHooJfTjZHePlT3zlSmxwrJs1I8Zq68c3v+bT4Yc9fW01vXCzgZM0ryZxrJ0/uNpzPt9szafDr2sw2/yrLyLTR/ps4x8P9+A+e+y9RHv6nn7N2ePuafLuWvSfoV65cmX9/eqpG95F6vxdv3799JWvfOXW32h37fBpnRX4XVNw2Sldz8VhD1lDc8aKP37G5QmmOlw4XZ/Ns1eyKb/y6f5gj6vNy4uc2u94Tr9x4VObzH0TD3n1Mg9O8eDl3mOMHntFW5z2S3EWIz/2lGuo/YSfl3fdy/h3vYRBnx1/pLa6HBh37YoZtjhxhgl/6ravq/GIC32/+A0Xjlx23eFmHftcc86h22dd+cRdXppX48CeX7EYkz/rgjNxRoTVi0G83H/wKD5jsOArPj+96IQH38tUL4/Z8JXP1gBffvloX7WOuLChKwZxwyF88Ttzoi/PBJ6/Fy8/Xraz5Uus9OSGLp84GsNN8admxElXXw7EyZe46FtHgp89xh4+rmr5gXH803hiY4OTl6X0nEv58rLZLypeffXVW/86z17kC1d+psCxVvZZ+ZEX/xkt3mIvJnZdE+oERvtJ3D0X4M5WrDiLvf1cjGr2fIuD4No64tv1x4c84quWL7HJldq+gcenmk77km5zfMBsj5QX+v6sGntzdFoTY+0bmOabg2efKbhYZ76sc+svRjbWyTgdueLPL8HEZr/5dn24sMpr64SD9aGHn3XgQ77EgWdrhAN7eVX4hGm+WI2zcU/oPiMePvClD0cJ1zwe1swvoMSBi/WGww++4hCrufIXln6lGPgibI3px1c/0abDPx9K+urixpFeAkuu5IkNXtpyZO0IGwU3unHny5i89Awoh6QYXSuwYNvD9O13tW+0+89QL1++vGxwvBvZ32i/m2xt3Z2BnYGdgZ2BnYH7NAMOMi+99NL6dp1DFXFocLhyoFAcbhxWSAdNOmw7/Oh3sGIzhV6Fnvn6U5e9eWVKuup5uHJoouug5FsJHrTxc8D1MNA3fowpDmFqonag6gAF14FKHQ+HsR4C4qUWcw98OMEl5jrIOaA5uBkT44wzjOKRX4WOOePpwDHeGEylvppPRZvUVxP8FJjGxFkeZtzsFbodzOnmw0Edlx4w2Ca1+VDEg7t9hK8+adxcfWNsjBUvDrgah22tcKo/16q46cW1mGHw72HRg4M2aQ2tcXvbOHs48GF4KeafvYdrzoMIO1zkg72in9Q2r+ART7X8GyNhF5OxsOVm2hs3lj+2xc1OG2/4dNsrHtzS44dvfRLH1sYDhvhg80O3h49pEzcYjdNnCxMHftV04Sr2BG7FnS2cxu0D3Pn2ckmhZ5x960bfuAKP8C1Gfue4uambvhpONq2LMVgzThh3Enj5Pk/XfDzyJW/uKe43PSDzna5ciFns+NA3Jp9ewNvbxLh5uMdSnPZH1zcb43zBF3Nxq6c0Z4w+/zgbjyff2RUbXZJOPMKTC222RO7YFj/9Cr1y5aFX/Mb8Esd12XobY68m7JPG6qtbj+biaC7+OLkOFBztl3Czo38U2PSzc0/x4suLdn+r/e1sj1izn28v2v2t2Ndff31xsi7Wlz/3autqnVw71l4cOGmT4pv3apzgK3T16VmjxtlaC/M+R9XHEke2YbFL6ONhrpe45rKrTa/9hEt7RYywzXmZi0frIucK2+lfTryQcp3RLTZ6vRBsnh/j9Jwz5JXktxcvcVLToescwr9YjHdty7O1gOGFIu4Kjl3j5vmWX/oKHPdBccLGybxrH3756T4CCyacrlXc44KjeOHYk/JClx0sc8bp8w/Li2DnRNzlBa646MiFPwfkmiTw6Hlh6uUyPHq4O6ux11fkCQ9+9c1pGyNq+0S8zbMRK7/y1T2NLU7GSDZy51+SsHG/aE+01/T56DzJf7ZensqzeX5wsEfyC9s4DDb44id+exJW+dGna4xvtbzb/3jBtC9geAHrlxLXrl1b93mY+NHhn11+5Jv/coKjYtzLejbWzhi9BAc544+uebp0/G14a0rH/VVeceezvLGVF/Zi5+O4D8RM7AFn8/LU/lHLg3l49OVAjOaIWI3T4Y9e3NnirrRmfLCXD/EQdtZkxkAPNoEnfj5bx+xbL3p828e48EnHteFP1Vhn9uL0/xPIC1s25roPpMfe9VEscO0n47i1l7WV7gd8lAP85dycthfm2uZJ+1Afhhjzp++a94sef37GHrS+/IqLLhFD6y43CskHv9oK7ObEr98YvQrfxsu59eEnftmo2fCpbh6260Guis1a09PPhh99YkxuCDtrSF+89Oyx4ofFt/1inD+59Au7p5566nTp0qWFU45W5wI/9ov2CyRpq+wM7AzsDOwM7Azc7xlwiPjFL35x+ta3vnXrgc2hoYOD2mFD0XbQUDus/Ju9u9mx7CjWMFzXwaiMbcAGy4yQmAETJNPgPyzjIfIfxlhiyhzJ92TjSwAJRAOmLbtBcB9nP9n9WnHW2eWuOjSDtjKkrMyVGfHFF5G51s6VtbtasSFx3abrmA/4bbyyq6+NUJstGyxtekpCj191bRjp+ee1l5eX62XCJsgBu7/J6NtAffsGNhvCziZVjT/ucbIxtwkzbpPppbHNfnxdK9nFU82PzSJc7XlNv1j5tnmz0ZNH/Ul+vbDY/LFTbMzjR3fGo92cwM63Oj/6iTjwI2rjSjnWJwbXJLt1cf/H7OM7XXEo1guuHXC7Jmox2djDKNfim3mIi9pG2kuXFxA2YoqjNv/q1oYxm2JFHGy8JHoRmS8O+Myc0SsffPFtE2595UPtJcZcNGf88h8XuOcEPl1rFDascON/zo6OOHCVJziT97ShCxsevdZOOjjry+/krm0ctnlSYFxH4IUVR3bsjcGVe3NvzunQr9BL1z1hvDVi7pV03ZsOPbo34OeLH7zFby6/iD+7Cr05B67D4k9OriswrR/+z0l56h6jz1c5MX/8W3teuFvP7lEiPrl0b/3rX/9axcsxHHZwPQNbY+zFxoc49FuD8HChr5ZP9l8kfBA48qIQWM0RP/Tcf3BdK9p846PNF5x4Nef44Jev5eD0wzVdPsXuEEixnu7cuXPhwJnOOTv+CJ8wrivs4LGTQ9x6VhbH0d8RGwZd61r85tQ32t9777118PegnB/xus6vPx3z4osvrv8MlQ9i/XUwYK1YM3w7OMVFruWtzxNYYsPFfWdcvPD0myf99OUv3/ThmS9xGuNr5lgbHt04OGi1Rgksc+qQBz7hky5MdmqFLixrlR+f78RYh7ls6SmtU7HCMSb/7PlyjZ8iXrz0ibUif543ctGadvgpxx0q408PN7kQm1zHhW98lZkLPvUZ129d4wUPp2KXC/Hg7hvtuIiZDntj5cs1Lj6j1LBg54eNPhjWsvmDiTc9MeVLTsUQP3Pk8w8GUbOBwZ/DOp+z8PGRL4e8/mPL5kq/3Cn8KPRwkQ945kv+1cQYfbaEP4fQ9kj4yBlbesUEF5Yx/O0jfJbjaT5bT3GgA5cfeSZyRvhhx8YvDvjQ17rim8AgeNKBY00ZNxfmV1wEljzxoeAqnzh49uNlTjoILOfsPPd8e5p/fNsfweMHXvc6fesRPt84dl/QhUEHTmuWL0VucbZWzD2fYYgPN9jitE74Z+PA2WcSn2xhw/NLosvTXp0/HPlW2MmROYIjB3T8Etm4XDSHYqUjx3TYKfW1L9DHt2trmn+4fOCLO8zWkLjgEXnHmQ/rx3pRi0efMfbWLT/GfBbbZ7qmJy+e83zqE4N4+MNHkX/9YiL0YMIXj3nySx56+PNNX1vRxlmNf/NqruQXBsFVzPJBtzUAg574fIb6vx/wyzdbPvGiKy5zxQ8Mvq0D+q6r3St0+ON7+sRTPHBIMcjTFLxg8GFdqtmaT1xcs4GvpssvjsbirU34U4zjKiZ8PZf0ixtGeWWfLY7WruKZeHlawy+//PLFD37wg4UN7yayD9pvkq2tuzOwM7AzsDOwM/CIZsAGooN2m0AbBn2JaxsexQbEhkafDYlCt02GjYk2PbWxNir167PB6ZoNfVhXyXHTlG02XmQeO/0Nyscff3xtkLv2cmcD24YL93zbbLWh0hd3G7U2/jZ1bYrbFPJpk9ime+YKfzj82MCpXeM/80RPDMbSg4uPYiPJr/lo8yz/uLnGxTV7uG0cYZSTmTMvDW2A+RYvbkRtY+/lIzy6Ns/Gwj7Gib9S7vhrHnFgJ0e9WOAMQ11+W1fVbOIPV8HFHNpMiyOO/OGnVuKhj40Nfi/v/Hr588Iif3hO4VOfeNjzI36Y/Ho5hwkH1158XLNTx2Hi6p8Sx3TFwp/+o+60o88/nvInT+nzH3c2dOHCFA++9KfMuaN39A+PH+uQLl/5mzizXUzq5hCPfMOB1wuWfn4I/+wUfuQEb7oweiluHLf54hs3Pkic6bPHRx8/x3wtg9MPutYMHb4JXW3rtTjWwJkf+eKHPy/K4nCt4EFnxmxO6ehPb3LtsE6fHFiX8ZEbL+oONP7xj3+sAy55gAPTwVl5da0Y518/34q2uHHoBfaYz8Kt3zVOcdHvfukABAf5mj7oE/4q8RELXjh4xsmV/E1/y/j+D9ieK/2SgZ5vfN49/cewxDUsfsprWK7T0W4+VucVP+ixl0O5ap3woeBrPOxg9BUrHXYwzKXPqv/GQbuc8yt/nn/8yq+50ram1K49C815B1m4Ef1iodcaMX/6PdPLWfE1z67pmR+13NTnnmXHh3XiM9oaZUvfvHtGq9nqpyt/BBaBoQ8PRS7pWX8OXjuoo8s3fXji5QeO+6hYXBc3XYcojbu/6MmPHOJkjD7ufOon5VNNx8GQQocP2MZwkVv5UBcXrq1rcdElxiswzKk5lEN5gKOwN1904cDoGckn6T7jlw5u3ftyZ83waw7g+ewrTtfG/FLHIS9fCTxc+DOHHbDSgXl5OpTypQf5IPrlqPtBXs0bPkTOce25y7e48dHmzxzMg/aeG8VULuQML9z5cN+5diBqjB7ucBX2/Cj8yC0dMdmTya+Ddvz5LKdhsIFLcHaI10G7e81zC2Zzwid9fbD0i41/mMUtF8bo44C/XMOUY37o0mv9uDeKDwf2fOConU81X3CsK/7T4cMvTvRpK+GbP/rWSPch/3KVHX84iEec5swvXsSAg3lhEy9zhIs1oTjkNy5unIzzaQwunGLEUVtOiGtYsM0VXzjjKl/mWp85wVmbfveGOSbwxKw2Vjxw8OHHuM9h9wYMsfHhm8/xEoNcdl+q8RKXeyM9HOGKEY65hk+P79aMfLYe1OIsp7iIB6ZazvgQk5zBYq+ICZe///3v6zO1A2c6YmEDn561ovDDFh95xJXwp19cdMRi7vOpD0+5xIsUA4x8wqXHF1u5pNf6LhdsrHt+YfOLJxtiPG5xN04XHn6w+bLW4DReruFou4cctHsfeOKJJ9Yvt7/3ve8ZXrxX45o/9kH7NRO11XYGdgZ2BnYGdgYe5QzYbHz00UfrG+02gTYgNjFT9NVv42W8vjZQbZDgadtska7DdJ0NHXgJHQX2FBslG0+bIps6G3sbHhs4YgNk86PPRkl/L6NtwGzqbMJsqPiwebXZM67oo+MlT42DDVcv2tp0CN761WJpY2bMtU0ZTLVrMTcWhjiMi79Cl9gQ2lC2ydTHFz+wFG362UwdPsqzGj69YlS3+YwrPf381OZDvo7zQYdu8cVBf2Ns8Jcndf3acF0Tua4Us7E4y6OXBMWGml/84s131/oq4rNe1Ma9PNhIm/O48G+MwCX8svNyAcvLlD8dow93LyQKruUrO7YEfmV1nH40d3TK3Vwj6Z2rcZzYclvOYVXY0jWm6L9K0lNXyiVf054/8YpBm758qJvnfPNJL99eEJv/5p6N/Kjpwcl3bRgKMRfuF2O4sZ1rZSkdfpR/c0jC1R83ffXzb62oYR8lvGwbn/baifzASoqPfWXq65OPnj30HXyIncCz/tWtBfnxTLO2rUl4cKwrzz96+tTlQRz64E9++t2r6cc3/up4T67m1LX56XksjubYWDmffuHjJOfiVNNt7cSNzZR0HIK6n4v7s88+W9/odviOU3HQJ+G5VozXnvjHNrtKecRbn2u5FjvJ18RIr1jZeKZ4UX9YB+2ffPLJxQsvvHBx+/btlUe5tE5w43/eS/XhgbdcWe/yoVh/npHmjw4c3MVGt89PMZpXePQSevqL21i5VsPyWW6tmHfX+mH7NnQHJey67/mYYgxPNsZgKOLpGibBJV3c5MZnibjSoWdMzHjBgu3ZJV73hVpM7I2bQ/cjDP3GrUd2+nDnBx5e2eLOF4FrHeOHp5IvOPRmHo3D5Vvu+Gmeut/qm3OuD5bcwjBmrwdbLMbtnRzEFTt+cinGdNiyE6c14xpGBb59lV9EW0N8it0vLxy0+1cA+nC3Z0vg88MfLvjBL/fwxdyBmHzRhctn/vAxr3Lu+adNt89rc4cDbvJO+CoOmGwUuubAfJgzfLpP/GtJ8+C5iyMfhB4M8ZgPbXHhLi5++MOnOYcPlz4dfuUMB7mCqT3zA8fBcHHTFzMdWN2/eLrXiBziqhD+y4M+fqxXe2u8W09ilCtczK1D6fg2b9ZN97J4rBG64oTDN0y86TpsLx/GCR1xisMYbJx8gx5PfUQuYdAleCn09fGDX7krz675L5fmD745xnNyxYkfhQ3fciQu+vrwZc9fOObEeoRtnuXEl31wo088U/CDIy64dM07Hb7g4ckOF3Mgr2LgT81GbOmzbV7YeJbSg0NXLHJLsqXPvxqX/hUCX+nBwI2fYjbGBxzjFTpix7ExbetTvAo78dGVx/KpzaZ88gGXPt3WMW64ku4V+DDpym9zTifOMOKsDpc/uZED61zO4YrD/cROoYeDfnn0C7uf/vSnF9///ve5WVxX45o/9kH7NRO11XYGdgZ2BnYGdgYe5QzYRPSNdhtJmx2bnjZPYqMzpQ2QzYoNiGt2xMZGOWJM+9lma3NjozQFBr82ijZCXgRtfLwM+OeYvinicJ2eFzCboMmTf5tIxcbMBsw/p/RyQhzMeGmwSWOHfxvVGfvkpI0nvjaI7Fzb/LFnl45+3BJtuZIzejjDyZc4FXb61G34tPnqGk4CF45xdvDFnmjXZ1wuXPPFhuiXH3HYpIpF3rw0tHGlk7CnY9PJv+s5Hhf62vjWx44+0c+fog83xXU28L1YKebKHOmTCzralXKuNta6wk0e2qRPrniwZ6NfDdt6Ym/tOWjX30ECDuJQ4GYfhlisD+MwlV4o+JOLuLElR06rc/yIG7ujwDsn+eFj4tc/7bTxV7rP5Ny1teBeEX/5b0xOrRExF3drSM2OfbmYPOnrV0/BFR+1vJXfyXFyZzuv2YWrv1xPH/rDFWNtOmyJPrblHM95b9EJh25xpG88Kf/0YfARR2P6WjNwpj48dta/gxAver1cqvlOX23tNz/868sv7ImvbU5b03LBXmEzBc7kzLZ71z2Dl7nWR7QV2LDKM74KH2weO/1rJIcS7Dzf5YIdf0pSDPTkKkw8HCw4aPYfezs0YWdtNl/8ZV9fuNXGST5d95zBfQo88+I5inu2U0cfLLrsm0cx+wzzn6k9jL/R7qDd34r929/+tnx4ZvEnTkUbF3PnHibucZ+p+MlnXOWsw1994m89w4LBRs4Vc0jq12YnL+z4phOOa2vWGHvimo459Pznhw95EotnsWu4caEPy9oqTmuG6JdzhQ86nlHszZVDWLHDL6a4sCk+MVlncNm7JsXn80/BybiDtu4jOLj7nOeHjmv6RH7Y+OZv+V4Dpx+t7+YFlpgIOxg44g6XD/xxrR9HOedTrnA3t0SO/Zml8kUXRl9O4Ku80DeuEP75MVcwcWsu4MmBw1GHg3IBy/w59H3yyScXrkN29zzOYsR5zln+4bmX4+fZ1yE/n67FRAcnbbaefb41ba5xgFNu5IvffLofjOnvmSp2vMwPWzGKQezsxKLdfLOHiROfcOSm9WIeYLrnzIc5h8vGflSu4OItN3yJGQeFf78gYEvE6SCbf23c8VH4wYeNv0cvR65907p1xhdu4pNPOaAP3xrQZkNaB3h4P+hA2hiOfONrjYtzcpN740SbXxzp8wGbsPPcF78aLl0+fTMbP/Mqvz0TtMUAl55r94Uc64etsNXPDi6/6sbNAX2ldQHP/aDQY2vc32A3b+4fuPJnPL7sywd9nMWTT3pKwpYNfxV5F9PE5RMegd/8sSHwFdfZ0ZdXa5FP65KO+cZbEYNrc0bf3PIFgy0eCoEhjz1P8MZVzYaeeOWKXnHiq+STvpy0xvnnGxYd8wdHX9z5N7/ipocvfGuJDnyx4S2m8sdOn2K8axwIDL7gaOun2xe3xGKcX8UYbLoO2l977bWLH/7whwvL+E1kH7TfJFtbd2dgZ2BnYGdgZ+ARzYBNw4cffnjx+uuvr427zYQ+om0DYZNiw9FmRJ9NiaLP+BwrFfWHp78Ny9yYwFaIDZhvKvkmiI23jZ0Nj2/B2MDZAHp50LbBgq1PbROGsw2nDZcXPi8YXmRs3GzkbAqJOn1jBB774l6d4wcfeNJjKwZ9R/3yxbQxffFlZ+PINjnmKl/q/LSBhUngsXOt0J045Th9Ns1ZOTMmfhvINurs6OlXh8OeuGbXnN3rvbdx5V9J4tS1uOWOP3p8KPBsoJsXscGnbw206S6WxuAfS2NxiSdb8bieHHFzDYcfLyVtsvl3zcYLloPjciIPyvTvWjxyWVzw+U63eWOnv5jonRPj8IqL3Tkp3vjwE584GwunHBe7MX3y7ZcLXib0uW/E7cVeW5+XEbrda2pzarz7is/jyz0+CT1zrsSvsWqxGytHfFfSwV9M+hP6rs2fNr906E4JS794lPLBhm9xwdDvmmTnunmmo+hTtB8kOClEDic+XNd80Zn8cNHnPo5zvvRbx2oxwC0WbXknMBQ8+VLq53MKH+nFyTU8goeXZNdw+GsdGC8GnPILE8/uNRjPPPPMevF1r8GQezjsZ5yuK/SsIQdY/kPQ1qE/c9HBEJ8EZ4VN9uKJl/7G9XkJx0u7fjiu6eLk+aDWp9bPn2s+XNendn89zL/R7qD91q1b68/nWO8Oy4h5wFmOxcC3+1Gfa9yIa2L+8PYMlhNz2XzSFY/x+tno16dmQ+jh0XxlW78xc2pu4oejOY8zHOtCLA68ym85xdXceCZl49kDWz99dXw9v/h0TYwpchJX/fKiGNNPH0c5sadQk55z8Sp+eDj6rMbf2oAHwxh9sdJX9MGUUzpyqKSvjbc1Tcp1Nvz4trh9E7/wumfo6y+OYsLdFw36RjQ9a9J+a/KFo+DLjzyLiQ/3muvmVC0/+n0z1tyKSbww7ekcfovHZ4d/0dF+Bo541HKCJzu6fTbAwK880Wtu8FHkSd7YO8wTNwxY2sasA3ZdtybEaE3RkR8HgNYje7H5PLTvdI03f+LFh8Cr4CaW1gh7dnIsDw6s2Yqtb4kbt9YdqFvvrQ22uM15gTvtxEOPjYKHebeHVvPll3Dlhi86RN7xwNe4eMStD65Y5bPcyQsbGHLAL97iMj/yiZsY6cDQh4Nr9wJMNa6Ejtybs2Lnn43Cnh/juBC+rU16OMuRtSnH8GDz53nHDkc2YpM/tuysDb75xUm/+8IYDDZs6YkLJvv2Qnixo6ckXcOgI9+499yCh6c6ruKUN/dPz2nj+uHRV8PTD9O1uaOjwJJf8ciHvDTX7sm7pz+vxocY2DUv7Myr/IidL7nINz9wYPNvPchF8eGjGNcvP2q5ETO8hB6B790MFhxClw19fvTz3ThdpXFYOBI64cHIhj1hp63Arg/P1p62L3B53+RDzPDNvXdJuYP7rW99a/0rcP+SjORjXVzjxz5ov0aStsrOwM7AzsDOwM7Ao54Bm4YPPvhg/Q/qXkLaMNiU2HS4tpmx4aBrc6bPmEL0t5FqM1Ne9Ff0sQ3DdZsmGMQG8fLycn0bx+bdtU1Q/wEVHZsxG6V4qG0Obdy01V4IbCp9i93mKL9885WtTZQ49ImzMePEtULi2ubLdfpL4f4PfWJuLD12+mGHyaQ+/dr0tdNTk7mhp5dd/GFO39PHAjj9gCV3sNR8yZf85Rde7TCz/6IaH5hKdmpYRD8dvtrAa7cevDT14iRX6XthaP3lH2592kRdXiaHeKXnWltpzrXlphc2L41hyBU93PqlTXOiDhcH1+IRl0LCVitxNEZffsqRvqMYa47jdNRxDXfG4xr+zLE+eaOnhBcn12J3KOLbtnS8lLmHfIvRixkdhw7GYHs5M59e1DpYL6Ze6PCjO+OUT7bs5MwYvqS88GVMSWa+y6eYxEDYhFVbP750pr1+og+GYr4JDvz2sp/drM0LHfHrd90aZp9/bSWhiwtOimvj4XWtTyyuZ5827DjDyAdcL/XhlYu4lctyEa750UfY1IYDX19rKT5hG/dchs0PG7oET1jqiuv63HP6vaR/97vfXThyDqP1AYcPhe6c7+J0bzp05t/z/49//ONat3iwmfHgTdhql086xaSNm1xqw51jbOF2mKmtwIprePkw1kH7u++++9C+0f6jH/1o/Y1dfn1m4hFfeRUH3w5bzJF2saxEnH4Uh88DYk27f61nUkxzDZQDY+GJ2fyUC76U+um65x3GsJdf/OCGwZ/nkEPZnjXdm2wcPLJxsIuvmHDtMMs93KGQODpoZ0uP4IcTPfo4Zt+BD58EN2uKLb2+IYwDHEVcxtiwx19O9bPvGcEfHnzy1+GW2Juz5fS+X7nilw2+dHomwXrs9O3wvnzAzjMYJn1rjR/8arP1jXa5owvPmCKv+OuTV0WM/ODn0BEH8YuHuIYP12eEb/62zvTD9C8I/EJAfrR9ux2m8eIRJ8784axt7bGRT/z0VeTUGP8KPtaBNp/NhxyLCf8Oyvgt3/To84EL7g5b40P3q1/96jqAMw6fb3Pi2jh8JZ/G5SMMnK0Hh3gO7eRdbPzgBKccWfMw2cDDS67yix8bdTmQh3JB1zPAN+/FRe8Pf/jDiheWuPXjK2fmuNozlD7e/Nl7scHF+ncfiVue4eCJr19EWBv40IMDEydx6oPBp/k1J2wTnDvs1G/98tW9IQ/yw16uYME1jit7/hX2/OIoz3DZigevGQMe5sXBqjZMa5gd/mL0HoJzh8fG5kE7O3yU1lRtGPzSkXNc5FMcFXzZyZ314G+lm1/8xa1ufuGyE6/CzvzJA19Ev/2bZwJf5QJnv3wuPv7kDkYcymfzFia/dPgWD9GnPeeTP3z8p6rmib77FqfuDdh8W0fmg39jdNn3vGoeiz2f+eVbG5aayBsp7nVx/wc/CX9s5NacW8PuTdfWsjk3joMceab51xWemfq//e1vrz/95s/HkPyH/6B6H7Q/KEN7fGdgZ2BnYGdgZ+BLkAGbmA7abXqIDYkNh40SaRNEV79NBZ02vHSM2ZQ0pk9bvw1RmyZ2c2Ok3ybMRpR4QbBJ/NrXvrY2vzZpXlZthGzE2OPTJiueMLWJjZMNl82eb4fY5BN82ePUNRt9BCZsgnv8p35xTrvGl+Hph+vKxML/nG554w8HfCquk2KGkQ297Ca28WkbRro2s+XTxlg8xhTt5rZ8FMfEqV3NH32+cXGtwHNtrLzBV8xbvvCIS7liNzff8YBLR13c2nwfY893vCZfeWBH5NK1NTdf2PhRvHS4R3Cme070i0ecCoHPBg9t47XV2VyF2bzAol9xnYQ3Y2dH1PyrzYEXI/W0YdfcefF0KOIedG96+fIC6CVDm64csZcTLyLw1V5Cyw9/9MVL6MaJrbl2r6rFPovcsZN3tcL2WODEXVuR47C02egv5kXm8IOe8ea6YbZiwpGEp5+ocRMbHtry4JrUlz4e2vE0rnQt7ulLf7HDmzi44Nu8GQ/HOpYDtgqBjVfXdOnA0TZvcaGrTeho801HIek2bq0YC/+oV47xzSe/nv2u3eff+c531uGOHBLrxxoh2fObjX7+cfPi3gu+w6I///nP69kvZjqtqfTVShI+TkTtXukZIS4YzQEdseCNjzbBT9vcwMyPNkz3jnvLQbs/gTbxFsA1f8TTLxeef/759W1+fDvc5RdffQp9OTIvfM7YuTR/OOvHlW3518de0T9t6YqZGNeGo3ZNN315kU9rvMM33PgON27y1C/aYbGjZx4cWonT89j8KtYJfHh0FVj6rQf4rnsm4U2/zxfXbFzXV1z4dwCpz8GL5wK9YoalHQf88aSPn7wbt1bwUOPaPcMHvfIgn9ruBZwTes0jewdDDhLlA76cGCcOSsWEQ7+whuX/MnDgJib+y6d48OdDP/9yrhDzIU8Oi82hOFwr8uEzQm5wYAsLLweZDn7pOQC8vLxc8VsnMNjixS8O/NGFISZ64tBW2MiVuPhQ01UIXf3s5Mi4ePBiC4Oo6RYjezo+76wbumwvT3wdxFl7+ujxz964oq00zp7PxCGrfSxs8yN/2g5+4ZrDDqzFLhe4yR9+sNnIvXtHvuBPDnjIn3mSc225/f3vf7/wzDPRLzfwKtYZLvSLzV7AuhGTMcUvEMSPnxzj7YswfLKj0/3Glz7XhE/rnn+2cMUuTn7su/TzIU62fOmTf/GJmR3eOCvmmH/2ckfgyrP8GeMbD7ljY5ydGHu/gBl/OnzHCR++5V2O6OIFAx8iJ2wIfPz1iRkPa8Bc4sJWjS97enzcuXNnvb/wJd6wYdKZ69U1HtYaf3T5sn9zn+FGBw/vRP4li/u+OeTDOA7WkXyJTxsmbONEH85x4osdHzgZt77oW9fNm3Gc2NEhM4/0jcFmLyckfT601Yk2/3zET+3epSvX+Sp/xitw9LuWNwfr1jA8940514YhJ36x6Etbcqfv2WefXX/67ZVXXlmU8hG/B9X7oP1BGdrjOwM7AzsDOwM7A1+CDNg0+NMxb7755ucvvjYNNh9t3Gxq2uQYm4WOzQocGyU1mRsPfdnTb3NkQ2Tj6WC9TbSXU5veXhxhJvnlz8bRZg3u9Klto2jD6qXPxstmMZ5hqeHBiitbnBQST21+0p12xRaHdIs3zuoj13xNW/Zdh61vSpj6YMa3fnZhH+3aPNoYZ6evWGHMOItDHx1CRz6n6DNXvTjgoOhjS2Cxay70a7Ml5lPRV65gtJHHN13tuXkvD/zFg20SF3FPPvlJz7gXvl7MjIdtzXlBiXNcsq2Gbyw9tZeW/FqPRAyw9R/nIKxjLQ526rhrV+LKrjzq0+ZHfF5C5Ei/ok8u1ebPPeh+vDwdLsi9Fw33kpcMbb7o97LkfsNffryc9tJHj45cKLXzi0+FLnENI93Vef+HMT6U1is7+VDK+cTE37UxfhtTJzCMiV1e4qIPbi/l+tnhxn9xqfUb1zaO4/SZD5hJfV0bK4/6jCuTa7rZ4kvyL14FlmLe40/nWHCcfuJHb7bp5KfY9fEfhra4+STpZQePjjzLq2tFm+D9zW9+838dlsBoHceBLhx2+ujAoeeQRG0Nejl2r1mfDhm8/DtowbE84E7iop7rwD3BV/h8sY1L+u4puuUCNzjG9dXP1vPFAfvD+ka7byn+7Gc/u/jrX/+6DrD4lgPrUI0/brg0J/jIjTqhYw7c2/Eu/2p4raVs5KH42EwM8RszFz0j9JUneMYdrnjmxDfu4ui5BHva2jfYI8DCgQ2OihwTdfPfMyne/IYpZthw1K47iNQHR4kfO58DsHEk8JLmXt7LTxjliH6+8i8GuJ6xzU25sGYTtnGB4VBIPuSRP7Gy51P+6PDbvMoRHc9zh458EHodArrmRyw+C61ZdnT4gM9OuzmA5TDKNz/dhzgaY99BFkzx6jPn2sTBJU7wxCIm9xTe/Bh379LHqXx2QE6PrcJH+cs/G2vXt3rZdk+bZxhds+OnQ17cYDuEwwmX4saFXfPM1joXR8I/H3zy41C3g175wYc/mMb6lwlyTdjqjx9sOZYP9mI1xk/3irzJId7ixsmfjtGunw2f8VVbe+ZNHIR9h474G8M333T4dR/aL1gjMPzJRjHKj/lgKx7+rB8xWatsifVuTH5gsZETz2t9zas5EC//OMJVyoH4FXGyIcZcdw/IH1v9dOjjIi9yIqdygb9Y6OGGo9iLg99iaQ3H0xhRw1NwoCcecbtufrQJP+K212pNdL8Zq7DTD4cPnNSwxYBH+aVrTMzmzy/YxOZ5YkwpRnpiV2DgLV8K33Tlyxifij5c+CU4WH8KPX7dd+0L+Mone2P86ldbQ/CKST8c+OKt6KfTXC7npx84i92zJT/h48CfedWGwZdnkV8CWsN09fEpD67NveeBYu3h4KDd5/dLL720XMO6ieyD9ptka+vuDOwM7AzsDOwMPKIZsKHwn6G+8cYb6zCijY2NlXbXM7w2MHTaEMGxYVQbP4r+dGyEbGZsWGysffvCht5miq26jSj/bfji1LWaLqw2q/zaGDpgb0NeHG24jtxcF+fEEpvSmBoGHmJJirvrcpAOu2T2FWN9U0dfpf7qeBiHIQdEv6JfHs/NQzks1/TrKz9hwAnXmHzrKwfp09EPc+LGY4Hc/4FTPKcf7WO+6cKwTmzwzQ3B11ibfm1+y6e6MbgkfrDizS4xrrDzkuDlNn8w4NucW1MTc7bDqoZnXFxsE5v91hUO5ZZO3NhqT9FXjPq7xm0KHYV9uWlexO9FVz97pfyqxexlxwu/e9K1Fw4vvV403Vtw8dcvH72ImRdrpDjiyAdhQ1yX+zikI1/h0YVZzPzCV/ST7LX1ldfy3Quffn1ezNJhW47xKW/a9euD6xq3/IehTzGeDdzG8dKvr5zrI3FXJ2E1rtaX1A6v/q69zFvDpDjMEz5xVBfTtA+7vmN9tIOvELaV/PARprZcWmNKts0tDP3+RINftBaDfrHRI2FrhwE7Hu4tPvWZb2191q4DIIcN8mEerV3tcseH+4Rv6372a8OUR3Vx8cvGQQ07/fGasbEPw+ffwz5of/XVV9c32jtgsc4VceIhHjzxq8iPWJJiFweu2bGVd/pyyaZ50O5a3OaQPSzX9NzP7LSNe/6o+cDFmtWHLx19rdfyBqv50ecgxTNKrT8+MIoLL/G7VsNlKx42MMtJOYCjr/uIHlE7RBJb1zg6hCH8Wk/8EPp8FY82XKV+/Fw7hBaHfngO2VqjdPgJd4GPH2LAKX+G4MgvvvJqDI45gMVGDhw48YOjMT7oxlEbBm5qesS4/MBRiNx2SNifjpF3umzdHz5T6enzXHZwjR/BxTqBR09OOnTG3S8F3L/FCkex3hVcjbEXh/ucf31w+ISvn27rj69iY9daNZfipSuf+NLLL/sOBenoZ+MQ0xzyp1988gdLH65zfbLh0zh8fIn54Jet5yEssZkvf1rEeOsYF3bVeOGLh9yVP/7xgcOnnPNv7bqGzUYssPiEhTN+5te+mo5cwcHZHh5Ha0L8vjWttn+AocDDQ5te+RQjTFy0rQn++cAHhtisWzZ4wsaZvhyIS7u5oc+PazXuCr7p0HetsIejD0fYPi/Eaxw3fHAg9BRxKNmGI1Z+6MPiOzv9U+DjGF/6/MkvgUknbq0V18YITNfmQp8Y8FXrj4t8yp3a2MTlr3W5QE8/8KcrD3jRl1u1mIxr86mIwfoyT2q+YVpjcLTZ6aerJvHDQT6LwTWeJN/GW0vwFPrGE+vVutWHo8Kv3LWu9PEvHmtOYdf8GG/u8MBfgcG/v9H+zjvvXLz44ovLbXZxeFC9D9oflKE9vjOwM7AzsDOwM/AlyIDNxvzPUG0YbFDU5zYP9Bu3CbIJafPUmHFlCqw2Yg7WbcZsWHxLxSbdNXsvEDaa6jZJfLTB5Mu10kbSps5myxgxxt4mrHj0G4+r6yn0+MepTSB8HNrs0amPP/pErLXDdF3/cWzqGDs3flU/WzwUgkdc6tN/zl6f+Ok1P+WETbj04l5/cXfNTm7ySR+P7OqHlWink3+5VuA1p/Gjo5gTG2ybYsIv8YJDF642nPy7zgfd/ORLH7t4uqbPj7XoBTxdseONn5cGXNnSr921Oiz2hL1iTLGWFXG4Ngbbxj49drDjR4+/SnHjpYSjf/bRlwsx6ZfL8hi28VmK38sKGy8YvhHshdg9haM8eGnzEqYP1zgbn/xwaEyN67mylE4/5CJucOURDwI7X3DhEH14sNXn/qfbPBrD1YuWdsIuX+z4at6LQU1v+tAman4qMHBlE273iTElyd/sa37pZN+4a36IPkWfmh2/5rFc6cOvZynbMCbfBXjFj3zAEUcY+eQDZuNy57qYtYlx3LqP2Svlm461Of/Ju77G1YR/2Arf+VuDpx/mn5QP4/qsXb8sctDm88WadiDoW2p0woqfHMZxAZ5+FCPf2mJjJy7rjC2BV37CoKfg74X+Yf7pGN9o95+y+VM5HbJ5lph3sePT5xrOSrHgo91czPXjOeFZgK9xcbt3yj9bz7FyXuww8jHnyzhMh64w8aIn10qf8fSyV5Py2Vz5zJdzOGzp4SVuHPnVV2m+2OOAY1jyxI6o2fSZUz74c6CIu3F5hukAmFhf1pN1pd9cJ+W2fUrrh662v1cOWxz8e7Yq3bd05JhfAo9uPvT3mSJuB24OjmD2/PPc6194iM284llePMvdF3wRuUnPuuaPX8W1b4HKI9/yDQdfOD4r+Gtd0IHHjr2cmjf81Mbpszcux/5TUN8wddAsJtx9U55tcePJvjUgbn7kgr46rvjjyQ/ecZEnbbrmQ/7lgC4s/vDjs/j182UNGNfPRuyeL3zwp5hzuUr0FQPc/BmHK4+4wIDL1i8djLnW7z7nT9y4myeYitjMLb99XrMzF2IIx0GyZ5/PRGMVceMIly6b8i0/7c3NCT0c/CLDOnNt7v0iAK5/qRonuUr0zedKa4bv7it88L68vFyxyIncwBWXazjmQcz4sGcH2xiBIVdK8ZcD4zDZstM2J3DkBy82ck6ndQZT4UPMdLqW92I1t9Y0TIKDHMKHR9jhAwtOXOCGbVyBgwt7bX2kuNI37l898E+HDxI2HtoV12xwk0sxwJcT8y0X8g3HeH7p6OMXf8W9SwcWkVM8its1YdMz1jUO9AhMpedffuBal/ykj6M1AK+c0FFgGC/f8BTXYoi3+Sr3i8DpByyFwCG4s2X39NNP7/8MdWVl/9gZ2BnYGdgZ2BnYGbgyAzYR/kb7z3/+88+/0W7TcU70t+mwCWnj1oaETZu+IwYdGxQbcn8ewIbMtRcqGyViI2NT50DEi2YbQv18qRWbJzwU1zbANl82QfFKP73wJ9fl9PDD5g+vsHFQ2E1sOm04izUdkOzLlzqdg7v/+JIfsT8IPz7yNXPgWnxJenHXX9xTT3/5ZiMX08b4lHDp4auQNrx8mFdFW37hKebEGrF5NoazQqrhNW/62cWJDQzX1sVVwoYPG2/r1DV9RVu8XnTkoXj4L3742o11nT8YxtjD8fJC4Ivbi4Z2GHhXYJGw81vcxtjSlwf9dNkVkxwoxthPfTYKfS+qctALDJ7uy2LH37WXai++rYt4x0288NTxUxeDuuviXB2HHzDm3BZX2GzFIn/mSD+ucuogRbxiiC89NiS/OGvDliOib+bJOHzx6k+HH/36xMrflMZmXzmYcRlvHqZubf75jieMSrkuJ2y0ceqFVTsM+SqG8I9180aPX6X7M39qmPCM8Ulck/jRkRdrqud94/rpqR20u/e8VOuDV0yu4caFfRy18ZRrevJo3ZcD82+tOjhQHKI4oPZP6ZsvNj5LzL8222KDrfBfMcYXPz7PxBXnyatcwWPrIMNBu2/EPay/0X7r1q2Ljz/+eHG35uXB4YY56b7Hg39x4K42rg9veShmY+Jx0OdZIB/lAnbrUC5dl2fzAAtu2PXRwcXBnGdMOaLPnzkqp42xJeUVhrb1gR/OdNnxh0vx6K/cQ7m3XsqHmIiDO/cIkTOxGeODrvmVB38/G3dcXasdrhN7FuupZySO+YallMeeP9ag/PkzBA5T+cIdB2u1Z1j3HX/lh278xUzfnkkO5NYhdf9SEA++7t69u/Ijrg4jjRHPRjp88wNb3O6Hck5XP1vfNMYBN7ljw7c5xEOMxvS3RtjC4N/90kE7/3T4Fp88+QKGvWF59uc0HB6yx4fQtQbcT9aB2jgc337HQQz48i23csVGIeZTHGxwEAOBzcaYGMTCvjU8/dKFax0psMoVvfa6cBR84BKY+ggcnNmbe2tI/OaSX5g4/ulPf1q6xsRcXuNrzvi1JvCKM18K8YsIOaKjj2881LiZI/7Zix0GXoocpScWz2s1fevI3xjH079OwskceCbBYCcOHBU21p39hHVEN9F+7PQf/cI2BpOuHOOApzhxbe3h6pcz4YjJmBj5ootTsWYnrtarmPHhB1+28KyV8pJ9XNXWIK7mRazdC/wSvmCKha/61WKRFwLbvNYHC2diXVgjdLJvvHk07rNAHHjToxM+HLr0cMRLcd+69/AXt3HrQy7oETEq+MBVtCueC/runp41fOjnFxY+5a37Vb4IXTnhhw4becILF5itS5j6424dGaMXP/Zw+KSrDS8O1k35hWf+rS9+5ApO47XxFIdxB+1vvfXW+r9R9PN9E9nfaL9JtrbuzsDOwM7AzsDOwCOaARuLqw7ajZE2OjYvbWBsXJQ2p/Top6Oe4tqmykbsiSee+Hxj7tvs7GyAbLZ8I6jN6PTBDx762sDZ8OiHa7Nk42UsuzjB18f+izZEOMKExYauTRofxDX8/NNR6JN81L86Tz/ghllf9Tk++pSJow2nMfbp4GwsoUvUdBJ6x9yIpdzmA5Z2ODDSC0stN4R+ZdrNtvFyYONaztT1l2v+6OCreFmgo20sPvS1+TFGhx+iLwzx2TQbF0cy+Wkb94LjRc3LsT765cwatdEu7sbzh4O+GevRl3Fi0w8Lf/gwW7/G0+Nfwa31pW2cv2J0XS6Mp6/2UiEuuumXQ7W+bHB3P3nhkjO5x8tBRwc58uk+9dLr5aT7gy1O+MbvGEvXxivsxHaVNLe40s1P9mr25kcxjjPxgu/l2HV/Y1PeyyWd2t0H5UI/O5jltjVqLFt9zWVc1+DpBzu46dePM11ctekp0951ks7EKRdqMvG6NhfWWnbx0T/78r+A7v+Axy9dMRQ7XT6NK67pGCdx1S+X6Vhn1pNCjNPNj9phhmL9GWvNpo9zfLJfYKcf+r0wZ2fe820OjZknc+oAwTdkHbTPeffSzq77pLjEps0/v4o2X+6TedAuZv0KKVdqvvhw0P7LX/7yoRy0f/rppxevvfbaxe3bt9e9Lr/m3KEMzuLRJxf8E9y0W9/FQac42ZgHzwP9SeuAjftfTsVWPrRJOSpf+uQVphxoT+GXLtyrSjzUSnrsiLp8mwdtOo1rZxtP68L6IPIhL3TMqxpPnwkOPDuEck08A2E6YHQQDEt+5ELhQ8GlORBnttahQxv7IH7o8Q+n+aNfKQ6Y9PluPfd8Nt/uIYfVfVPePHmGw2k9wGBP8PBMh8F/fDvIpafotx7wlZ+4ihW263Koz/X8lrc+eZBHe0FYRKxihuHzCm8+HOKywQtO+ZQHcyaWDs3U+PHvXxqojYuBHRtYdOTO3MoTPnT5x5fgYZxucajh9HnKznhc5Fge3Xvliq61wh97uK7xYudafz7igQtf5Ykege3/YjAmP+6jYjMOVx9u8iVHOPKpDZ9fh+zWA86uiRpvtgrhz3qWC3PkGpcZH39yrM/e3XMV/8dOh+R84+T5CCMf5r15YeM+8hyRLzhiYmeN6MOdf/nF2TzJKR01jnTkUazWJtFfjvmmC78+4/x2r7GXI3z4oicGMYYrDhhH0S9vYuUfNtx0XcNtnc9544MUu9yIjU4Ff1xxKo/VbOXFmNz4ZYe6eYFf3GzEKV/NLztt/Lsn+XLfmR+6eBiXC9yaT3gK8WzX7lkTd1jNhT75wQ0WKabmEIa2GHDF3dwpYtEPkw5O+tio02GXvTH6Cl/808VljsVXbOnQK1b2rp955pn1/5r5T8gJjJvIPmi/Sba27s7AzsDOwM7AzsAjmgEbmHMH7W04hGXDQujaZLi2WWlzVG08O23SBsRm2YuqzXff3jJmw2bz6aUAjo2MDRmBwZfNlL54qNtgs7FZsxGyqZ0bKxj4JOziU1913OGwiT88PrLVVsKlJyfqsLMNG6bNnzo9dbjpVefLdflUw+CDHaGnTL76YWdHPzx9tekR12Kkl92s6eST3pR45F/dpjQMfUQt/nJBj6RvvLlja700ZkPOl7VhTNt68GJA9MGFMUs5p5tv48Wqjy3Rtqa8KHi5VxOc4gUHB9fsFGsTnzkPsIoPBj1+s1GHa5wtHC94fMSvONUwmztxwVPjzJfr/Kpd09f2wkCvfv4JPyS78u1FS4HvJUaefXPTfYon7l7AvIh6aeQHJhwlXH24q/HRXwz86m9MfZWECyuO4YXBtpzST9eBjRjk1rdOvYyKAY+41GbPjsAoTrb1pztt6cEkeClT2JaT+vHmI106cMpHerNuLB9d06mtzpcarjWVNAfx109HmX368SNxSy9fkz/u0w87vqwh64+N2lyo46Gf30RsPh8cEhrrwIEOH/Gszo4u/z5H6M57g04x5Nd8WQ/WtUM52Hj5LMGRPUx65l9NZ+bIuGJNel64x/BnKzfGiL5yiaOYHubfaHfA++tf//rik08+Wb7cm+7VDo860BCXPBDcxEOXXhzV5UhcnsPyom1MXe7peTZ0f7gWp/jZlUP64pY7funIFV5x0QffuDL51J+u2nOYX7j80gmz+XONb7E2d8UXXvEYl5PiYKutiMUv7Ry2uS4+tnx7Djpst05wU+LGf1JcruXe88h/xAcXbzW/eIgv/3Fkpw92ueLTYRg8bT7k1iGtw1h5gIcTW/iKeBViHj3P3T/8wsAHTvOYrXukX2Di0b7LuHmMl2s+3V/4ETzwYW8/6L6hL390jeebnw79cGAHkz49a1wczTd9a9VY38LFxzhMAqe49fl84ION3ImndcAPe2Pln//2B3zR0cdODHIhDv18WSd9lsKhJ3b92YXNjr01oc23OaQPmx57v1gTk+ek/OGLO3w5kge155t5pSvXMOSMXwef0rJOAABAAElEQVTt/TJizpl8mvPuTVzYiafPTnlzrWjLQzmm65AVF/+iQg5gipc+32zwxpNvuOIWBz3CRgx0FQJbPGKFwzbuzal+uOzlK12+iXH98ls+tWG7hhMfvuJkDuUErlJcExe+MbGp84UjHHjug3zpT+gSeLD5ktdir5ZXbfjs2emTv/40lL5///vfawxO+vDFSr/Y3euuiT7+82UMVzX+fMpDvwAzV/JLp5jo8kE/0dZHlw/xWS+4qfFV+C6f9PSxrcQNP33uBZjyoI8+P90D+rLBhT5+bPKVjXG8YOUbjj6ij0+50u9vtL/99tv7G+0rO/vHzsDOwM7AzsDOwM7A2QzYcJw7aG8jZ9wmQ9G28bA5cd0GzQbEdRubNjEc0nXt5cQ32X17ywarDY2NjxeHf/7zn2sjo98G0yYOB9h0lLDUxm14tOERG2SbqfRW5+kH/23E4BmfEl86lcbpFmvtchEOnsWeXTVsMclbG2d2+uUP36PAx5NO2PDblBon7JuDiUGXTwUOHbV+vuPNpnG+Em26CqE/c6CfzhELVzEq+Q8jTDpyoehLT7u42PfSzF7bi4SDAPpy5qXF5h4HOvqJtgJfH1wxFn85pIOLcaLNjxdbxQsFbBt3a4++POYzbDzoNA/0jMUHdr7UU/iOn80/P7D4JbD1405Pv7p1pBaPWrxicD39lJ/ynX84SZzZK14Uu0fdY3LvxdzhRXw6oIvvuRj5lhe+ylfriG/9lcbjNOvyyTaOxuGXE/61ibbiGeEgRY1nB+3dc/AqbPUr+gibDp7qxze/5kWbfvO/DO//KDbj9LpOJ57G2JdbekehIw+9/GnrS9joI8UEU/scXnZioFeZmHRc04GjJvGupmO8vC6l0w/91ibOcW+9wlLosOvauvInI/zZAbx9O9BapCM/eLJRsyk2tfvHYQNd692885sOvt0n2vQdCvmGKGw82Sj04LsHFbp8ipN/AluBhaNY+WJvnU6/dAg/dJ966qmLX/3qV6sObync8Acf7s33339/fTsfvs9Ta10u8fUsk0f3db7U4nM47PAnftM97OJTy4n5I2ybc7lRCD06PUPZuI/wap5dy49DZTh8y738Hf2x1zd5azsw7CDRvNATn/vdXsO1eYDLV/PHHy4K/nwXu2vimg2/OMcffp8L4fNBL1wY1otnplo/wbEcsRGDzxI68qDP548DUTUObJJwXGvb68RXLR/msTyzh+NQrGd5nw3lEr4CDwZMz3jrhsRJLgg9bbjWEzz58bksR/LAl3H5KUa/zIKbP/NsjtznYrfOmh94FTHwAVdeLi8vP+fLX3+2B0+8zE25ta7lFjYurWVzyLa5kB+xsJeD1gYObBT9SvwdcOOPV3kxxl9xwOMX//IPm28+8YBNP3xtcyj/8GDgJkfmN//i1u9PGcGBa73Btt7549uzUL+c2HvD9rwzL54Z/oUXTLp8iYe9PJpD/OSRbwKLPh262uXJnMLAAX9zZ357JpZLvo3hzw8cccNpvunAkjv+4yi/2rDY0auEr84nXXz0tQbkyn2nxJ+O2JoH/PW5JvKPa7hqOcYP5ziUC7p8GuNX4QuuORAHbDFkb5zoaw7lIKGnuAfhmVP++cbds9CfrnIPw7BvoU/PtcKWb7HhqmjrpwvXtfmgL0fa5Vbc5s0vBs2tdr75E9Pd05+M8TzwL0XyyQ+/co9v8eEmRvhErQ8XWMWPHww50iZwtPVpEzaeMzD4x1cRF0y64hMXXQWueWHTPd06ix8/8kBf29z786cO2vd/hrpSv3/sDOwM7AzsDOwM7Aycy4DNjYP2119/fW1SbCTamKmNt8HQtvmxsWmTEiY7hQ47G5uKPpsy/zmSfzJvo2KMvo2ODaKDdgK/zZENEmmjxi87tc0aPW0bTtJBexz08ZEdW4K7vmRu6CZn4/RgtKFjq5QHY8XL71H00VXEM3VgwjpK/HApB3iIl33cs+86HHZxMhaePm2cE+36YGc3eYbBH4EvHrYTS595UbRhhANXyYe46JRvuHgYZ99LGN/m1+bXBlkO2iy3YWaTv/DCbgx3Y9Zefspn115abdAdEtlk48uXFwd49PAgcIm1qRjDtRgbdx23ZTB+0MFJDlvjXkbKK9+uYcOAz0YMBHb3Qfl0DZNu4vq49uKZHh0+FHnoHqUnz7791ss+XC+M7jf86LDHDV6Y9GobU1qz9LOhN4Vewt48zfvAOFtSrurTL1/0xeG505rx0i4WuYZLL3s1bsbU8ORfzOrmd9rAyJ5Nol8pRvZdz9jirDZOL99hzRpe95Y2mwSGYi6IdYrrOZl22nymW3zsjJUXNclP7fzBkLv6V+P0wzy0JtXu5eYyndY4f3Lg2+y+DcmnQ47u2XjS48s4PkTN1iGUfj66v9PBtdI6cUDg79mKmz5hq9Dxgu0woWfNUjj9KF/w6DqYYu9aPe95OArBm65fOP+nfzoGntgcmv32t79dB+3wHbS7X92feLoPHCKoXcsfO3lyT3i+xQ9mok881WISK3tFv7lT+FXgmuMO2tk0zjef5lG/ZywbOGzkDX65K484sOOTaLsvHRTCds3GZ4ZDTGvGNUw+4PBZYWNeXRdPeSlWtULHusLTvCl4wI4zfBzoiV8t9+Uf53DYFqc1Rac/X4KrXxTwAYfNlHKuNmfG6bmWj55V/MsZHPnAUyyehcUEV8zigqPGBYb1TtjJqRwRevLqfuy5Ko+4wGpMHNmI0eFuB+34ih83h+cdSjYffCjw6OIgFofb9o9iVeD6lxzGYMBUe8aYC2uDjnGF4OceEGtzZZ1aL+zgWhuencYJW/1sFOLPmYgfP8KfMTGwKxdy0DMPP2Nyy55P9sXNRtsc4C0H5kqecG4t6ZdP9g47jYWLO3/yz7ZngD6/uDRPDmT57aCdX+O4smkOzbG4zBs7/HHnQ5t+eVG7litccNX2i4ByX02XH/kTG39s5K/5llP9/PBvDD49nNgrsFzXx0ZxDUsxl2r9ahjyq5+e+LXFKDZ94pRnwoccywcMcZRjtb70YNNvbfBXXsUgL/zwx68Y4LFxHU9r3hw2Bp8uwU9e6Chs8ZUnf7KHDzjuYzWcOOIgdnFqi7GY+aInBn14w3Wtnx+1deeg3b0rLw6p2xvC8B5nb9ihNb58wVHDgY2Xoo2nfrXYxMpOreiPr35CvyIO/XLIt7z4VyBs4Stw6eEhB/QVuPOgHbb7EFb86LHTp8B30P6LX/xiH7RL2JadgZ2BnYGdgZ2BnYHzGbCJ+d3vfnfxxhtvrJfuNjxtcIwfhY4Nh02K2jXRbhNqU2ajYjPdpspLjQ0QvfRterwU2YASdgr/Nm6Evs0fP20I42dcm04vLdmq4zb12YirzdlxzPgUenAUfpRpo60ksJV0tPFOJxz6xq6SqU/HZnHqxz9+xioTMxt+6Sr6XDemj5yzp5dtOuKZMWm3qVUXO31j+XNtTMl+6mq3Mc6GnvlXrK82y+a7GIpDDcMa0lbYt67UxR+vXqqsVQcTirZxPry0lDdzj58xwrY1UQ71x4MePleJsYlNzzVcLzpeytxn9GDZ5HuRm/EZU4oRBk5HDq4T+kk51Cc2BxZeLIkxL299YwmGgpv5wJUdf67lC1+Cr34YCX3XbOJT/PFgZ8y14oVOYcMH/Mbgsydh6nOv9NyBJ5+eNT0j2MclLNds4fOvZmO95YMuLGP5VithGsfTNU6up6/iVuNGh9Bjc5Uc9ekq+sOAp8+60a/kO9yus6823ph2canFO8eyybcxOs1d/dZkMeLYva2vfrrwjJszB48+J/R1r5VfvIo1DvpgmFuHDfI4sY2T+tRw+YLlsJm9OfMtULGkC1MuFf3Fpd11n3nxgnt8VhtTxOHZ4hfO77777n/0jXZciL8z/5vf/ObzfxXmsMMzK86eGX0O02dXHA4Z3MtxN56kd6wbV5fDDiLkhHh+8NtzSh8cc0aHP2Py0f3BxrwYk3/j2nGthmFeOjCBTYzLe2tGzA58PC/1k55RfbOUD3yOaym/+nFU4lQMMB088QfHtbXgPvDMlFv+2PKhrYajhOvZBkOBJ2/88yMmJYHP1oGpnBuDab7FpK95p9shPm4Ox8o5O890NvjyDWeudbowjOGDrz78zBVM8+D+ERs9/c0jzubW+qI3BZ75gUHY9/zDzbjCn9rzwC/g6BuHZ93jZ47V/NIXjz2lWOiGix+c5kJ+fdb1SyjjeNiLymfPs+YdD2IfKwet2+ax+Yq7Wh89GPzS9csUc45ba4KeMblSrG3jYrImcGGvWFv6zK1xudBn7vlkp+0wXQ7E+OSTT66YPN/4El/3vVjiZ8y1QhzqWydyIw74Pd+M64tbsYqJjl+MpDNrvnDKbzkwt+VFnLDxFZ95xYHwYxyOIt7WpXWAL0766NEn9Mptc6J2nzqoljO6ankVg2s1P3jAwxN/XMXAj7ljRzxv5Imwg8GvnPMFh1/9xaAWH19w2fOl6A+HXbj5tVbELAbY4qTXvMDCz1rooD//+vFgkw8+SfGIFUb8XJcTOuKy/tjzz088i4EPbThyxh7/9JbD04844EXXtRo/Ek41veLUp23uWkfGFfbGs+uaf9xxwcs4Eas41YSeWMWGjz8d4xflL7300hrPbl1c48f+G+3XSNJW2RnYGdgZ2BnYGXjUM2DD8dFHH61/BueFyYahTY3YtG121DZKNjLE5sXmQ93GzGbFC4Big2Kz4yWmjRq7NjbZ2uSwz6eNssLehgYfPttM4WKjy35y0Y5LnNm3SWNnnOBZPNnQS0cfv/mfmyhcFX30YR0lLDXJns/84m/8nD1cemRykZP61+D9cVh8GMsWR7ZxMVasbPXTiUMxVYdfTU/hR9G2WW6eXGvzryT8ipFNPBvTR9c4+9rq/Khxav7NvbZNr5odoSM+oi9M1zBsvttIu8arnODFno6X4PmNNS8O1qiXQXp84IBjvqvjAF8fHT5cT6FH5lj6rQexeSnyEsU3XfeFe6mDBX1xhwdDH/x8NCdHDvSUKa7pOwDhq3jE72Wq+xKWPNAvRhy9hHihVIwbw795YafkO//xVYuh/BrX5xcf5gUebHzMf3bhz1jEocgnHH7lqnlkm8TDNT25V9PRnjmmwx8cY0cOxnAr7nzTDReGfqX8lRe1Ig9xoD8lTL74b+1kqw8/2MbSCyNcekeZGPiy1Ve8XYfhujULT875JPmfPnBvboyzdd+pFd+CdFBBhy4O8s9fmPSsEWKM8Cnn/nWU/JNs1sXpR7lWW8utq55jDiv8GRn3XXMFq9jh4cSXWrz6wtPGx+efZw2dRJseHfeXP+XgT8f4Zru+/4+Ef/f0z/X9M3bfZOfD53iHHTjKl3gV44mxc2vj2MdPvnCd8fcs8pwk8iZnzad55Fc+tEn2MLXd0w6g5CV+1eWGrTmHW1/2MHDGYT4vzYM57nnO1vzg16FXts2ludaGjcPk0ToQA850HLoSex2++oyhyw9/5bP7CT6Jfz5wEaMi3nKoPz7uFfl0iCpe/fDE00E7bvwbMz/WNxvP0OaAT4eoDqTxS6884i3PzXcc4ODHXqzWmW+04oKvOcSRDhuiNsY3rs0TbBzV3Wf0+ZgYdMTguSDPsOXSISwOcWdHV+zuYZiELr840OUPBzHCNYcOrX22lksxySNduNYSTsS1/p7xbPjFpfkxno4DUDpyxl8H5Gzkm8iRcdzNo2cRoS9m3OnAFA9f+MoFG1zExI85sR78nW5j8uYXezD18QmHP/bmxbV8wXYNH7/+NQL/runP+xSWPFbgEJz9qyQ2cHGD7Vr+YOTDODvXfhFCxOBz3rOMLa7NT3NHv3zj3Jq5e3oestWHL+zy7DkjV0RMOMmV+wAP/OjjYV3IJz/scaHDTnzWkpof43JNxNZcsYc3Y6FHn29STtXt74zRYy8uPojYcZBvY3D0Waty5lqucODTnPPPRuxiFT97sRLj1fywb9xctf7EXc7g4SjO5h6GGFzzi18+6BHYzZlrHNOjq4hB4YudPjzKqbHJWXtei4E+wVN+2LAvBjyIfnFkry+O5lc8rnGQN3GJz3+Gug/aZWvLzsDOwM7AzsDOwM7AlRmwgeig3QsB0UdsTGwylDYkNi5zU9ImU58XOS8RHbTDsIkiNo02KjaE8GxWjHmRIK5h2OB6MYZjg0uHjU2iDZFrG0pYuOAan2p4xaBNpl7tNl5d45CPYocpdn61y8c91P/rR3+22tnqk6sjLzqJMfgkv3PMpm/a4wu/uLOHoT37i7VNZRti9nRtQEl881tN31z1MuFaiS87MmPPdvJiHy81+zbU8qPoi4e8s8E7rsWnj9AxpsDMn802XXp8uIbvmo5ra8taYuslp4N2a1gszbu2NejFEx/6sG3G6VqrdIoNvjZ785Toy3/4xrSLyzX8/MAqN+VHn5JdvviDo5/QOSf40iNstSuNxVOOfIOSFE9+rIE45dPLXC8380BIPOxw4otdc48DMdZaMz/0OxBl4wAFvrmQo2y0w9BnrbJPjInHs6O8NsZnnPTRIzBrFzec9LX114dffsQvH+LrRVjNVr96YvLHlk/9csA3G/0kW34I3eI2Rqw18c01pz+OfLOnr4+vMOgRtj1fjRFx0MVJidMaPP2A2xqNHz02iX56pH42HVaI2YGQAw788oUDu7hX40CHriJXvs0tfmPiyA+fxU0Xhs8a3/L1eYOHteHAxX8q6qCNPfzyEwf2+uCp+W0dGzs+D+JLHx/xOmB/55131n+KeswlrtcRvgi+L7zwwsXt27fXuneQgVfcPddw0s+/uIrVgQw+OMDzmer+Koc4y417yT3l2UBX0U9f4YvwC99cygkdfvlgy0f3pnG4uDhcJMZhw5zzhwdM+saNqfE3Rlx7LijG+fF8Ns/0ypd+ugQ/vjvw8awzn40Zx5O+ewJXOPKDo1rM8Fu34hQv39rmv7zDDkO7X+rMdYqfOZO3cqgPF0W8bNngos8hoP0b7HInBhjGcRSneYKpHzdYMBzGujbefGrDax7E0TqSD3MhJz4bJq5cGIPLL3/mDg/9fY4a109wlwv6YsdHPuWRlGefz3LBn0OvYoEjFqV8s+MTHj1xiI0fvOXPuHnyHFDTo2PcmtDGU77KZePlhk9juDZPbBSx+hM34sKxdaLNP670+C1n/PbN83LWWhK3sfDYsYejiJF96wFXvuTN2tbPr3vCXOIOs3WpjktrPox5b/APh72YrR1+uq/CEBNO3d/0+LW/ly+c4co3W+P05dacWwP6+FLkE5YxOZcXOPIESyyehzDnXFgLRCxibD25ptszA4Y4xCWvBF/4OOFIR3z0xGcMN7z5lxt6+lzTZeNaP1wFDyUfdPiFSeiS4tCmj4caNp3pi2/+5Nf90Z9SE591L9bmrhovxTUO4oHhHlSzk6+40xOra1ybA30+P+mzg6PAlOdyLkZ9JBx9bGDGYSmcfpSvOPJPX17MTfMP370hRjgKTPOkwGErb7AIHOtLHNp08Dfes4YtHDnvs9Hn95tvvnnxk5/8ZOHwdRPZ32i/Sba27s7AzsDOwM7AzsAjmgEbi3nQ3kZHOMZsemxA9NvI2DDpU/TZkCg2VP6OpkMxGzTXc0PG1gbZRqUNjdpmib0NF0wvAHBscryUGPPiwK7NpY3UfAmCo5zjddW04M6mDRg/NmB4aovdOHEtFvj5UsPQfxS2lezVfJU3duU3+2zoEH750J9f7QRfeSP04mdTOPUmhn7XRLvYtPNr/KgD04a0PIhFKQ9tmOOwHIwf+vMXNlv9jcFrY86Pgp85qa3GhW0vGnTyzyV8fTbPOLvmGzYfxgi/NtXWElzr1tqb34CkR58/69eLCz58s7fevQxaq3T44Q8fmMWqTVy7hwhdpfjVCZ98GIfLzr2CP6zs2DTOZ1zliOQ/3Gq5kY84w1HY8aN2v+lzv3mBKabyxx4OTtmrvcyz5dshgxxr48xWm18+lGyNK3DNW3PlWaCw8UJuHnrZnrjFpvYS3ty7Lp/sWzf8sq/gwn/j+uVa3MWuD484uy4mtvlq7o3LhdK8syUTUx8bvvXjom2twSB05MaYPuP5WQqnH9nAoIMTu4lRnGzYK2KIP4wOHrIzBnP6TL98qM2Zml3c6U2ceY2LF/Xi+sY3vrHuJxh4da+xyY94tAlOuBP5td7yq46j8Tiw59d964DNn6Tgn73Dib/85S/rm5+wyyN7WGwnf/kwt+zj5znivki3ftdicvDnP0N9WH86xsHSc889d3Hnzp3FzcEDjuWFPwcS7mvxiNM97ZcJci8PdPFzfzj0FBeJu3sJjkJXHMY69IFL9CvWgZzIg2cjTu5JeYelX1uJD5/mCH4HbcXAF0y2eNLlEy4MImbPGsWYeM1Fz2fjRAwwCFx7C+udL3XPLrh8qunLmfyQ5j2e4mnfA98+xmdDnwuwrUf6cHCBZb3pN17sbDpAioNYygFOODYHrh1wKT1nxM9H/vk1rh/X5rN8tmaN4yM+tc/G+MlBucS3+e95j6vY+cSpHIvLmBisCfPj88S4a+MwPNP5Zy937SWNyxUe/sULztYMbjBcw8mfuLXV/JoLfMQk9/zLB1x6cu0Z4HCSHg7ySM96oGPt4q+NBz6KPPBtXA7VxWSMvT9xwwa29YoPHePwFDybCzb2GfixkQ/YxuF4xomFjWIe4GnrZ+8e7j423+5zsVvr/Po8NZdsYYq3mOCwoQdPPuQSrrxZd2xaf+a8+9u9oZ++fOFPN7/ywy//8s6/ecSNL3EQfhTPZza4EDjWCkx+O+Rl19x4Dpo7fd03bPnio1hhWEfixqH5wB3v9PGVexzFxo/xCj228qTQqTaHCh15Jez1FaM+ueCXHtykPJoPdmxwVYuF5FsbLj/yK0/WHgz3ltwVAxs8FW0FHlt5g+P+49dzQ67okOy0caVnHuTVfY1fa5m9OWht8SFGnPiARcTGb2PGYavjJ6fsXePZvWR++DGX/nScWOHCz3/Y+RQPHf6sIxzpEHnjx7uAfhi4iM/zmh+f3/7c6o9//ONlA/cmsg/ab5KtrbszsDOwM7AzsDPwiGbARsbfaPdPz20wbBhsehLjCrExaaPUZtGYts2IFxUbRpssGyH6bXhskmzAbPbY2ODY2NjAtJGCw97GzWGnjRQ+2dno2OT0ogST8FWB3WaqjeFSOvODP3Zs6IqtDTJ148ZIedFH8Cb0jZ0Tuopx+GLuWl4az0cYs5+da7ZH4XvGCCfbdMOulnNtsc7Yccx+xsNvPugb0yd+1/FqLmDUF4eravb4JjDD5VORJ3POr9L646e1pX+22eEDqxetYtNXG0/YCnu6Nu3WsRcHuQqLrg28F2DYxesFuJdM+sUDLx222ngSbeOTh7ZSnDNW9uL2wo0j2+ZZnZ1+fOnLbWJ8imt26YWhn10vSe474r7zbPCyhAdu/JRf9z47RQ7cn15k6H322Wefv2TDZ6c//zhoszWuwCuX9B1MKHTF2Itx8zZjqy0G/Eh+5X2+oPJL8FHokWJcF6cf/DSX9Ajb7HHEi8xxfbAU+QhjKZ5+GM9ObHTo1kdfmfzExK8+uo3nO5/1xxPHhK9ijXvj4cqTvqlXLPqLEya8MM2bNqFPXOM149AP27y719S4fv3rX1+HSsZdy4nSNSz9c32IleDsYMF88aWfLj+u8XbNlzz6rHGvO5SAx4+1O7/RDkscxQsLRjE1B/Ey7nnQZ6D+bNTy4D4W53vvvfdQ/nQMvrdu3Vr/qavYHBzgGGfPDD7dV3KCswMX97R+eaDLRryec60HnI3JDxyxFYecw5K3ck43fTnmk53DMm35KP+uCV/yonQNE9fWDTs5VbQ9kxS45Rgvh4GeWzDhy4WibVwRQ/cRPfqwtOVFLPw2z/CnTxhxLp/GcZOnctpeyFj65Qq255g54LvY9R/zBRO2MbHAxbP1LRYHQEpzGyYu+Lo3xDnnBlb5nAftrWm1fJYPONmYJ9c4iIM/cfKHv7ZxnNXlRb97zLfg8dYvN/Jgbyg/+vocVuOMA18O2tnxxy88c9t80uWvAqsDQ9h8y4M2YS8mzwHrgj4MvuRY3mDlIy78y49rNuKG0zoTkzF64qJL8DR/+ZEfxT3BFh8+HW6GLZ8KG7z8qzo1G7ZsavODtzitB+vKHLMXd/e2Z545J2zkF1e2zRf//ChwjMmbcfEpBLbY3YsEHk7iVMPlFw4uPsvt7xu3xhR2rUd8+JtzIv7WMT785Vf8+e6wFU865UZdfswJLNewigtf12q5Ne7zSYz0xaAfF3MZtlyxK1fVcgTDOF0FtuvWtD5x4Nt8rmBOP/TxY20Yw0Fe2MJQ+JJjNX/wrGfzb7/KTv6LmQ47fLUVohYnXzhb07Csm3Tz55rIg3WEPw5+ueO+xJnAMqd4x1FMCqx8ywkbJR+w0xNDYty18daetjl038iPXBD9Cv2K/uYHPn50cHAtXrzkEH+cjMt569hBu2+0P//88+AW59W45o990H7NRG21nYGdgZ2BnYGdgUc5AzYWVx20G7M5seloo1WfzY6NyVe+8pW12aFn40y3DZXNmtKmpmubtzZYNnNs4REbYxsc3zCCp9/Gx+aJPWzfmtDmP4GBWxJe1+fq9NX4tFGdtsWbTmM2X+LQX26u8sEGvqKNq80dYauvTZ42zPzS0T4ncBRCh214Ewe2oq8NZfl3LRYSP+38i5GEJ0fG2M2cG0+u4tt49VHPptbGWYEN0zyb//zmh21ttVKO5cA47njmByYfdFtnvUzA9zJA+LcGiX768ufFxbfJbLj5IHzIH1y+yqc+tjhNrmxgxTXs5rF+eo3xoR+v1o1xNsaa27jWz6+xsMPTR7e1Un5gatN3nzn8YKOPfy9RXoi90MiVWL0IVxyKeIk21r3u28FsYLLnl/94a8NxTUcRp37Cv5jny5B++OW3nNFNih1u8RkXVy+46fBVjPEORw0/XePyVp/x6dc1yS89POVMXYzwXCvZh30P4d4Bfy/U+TTGlk32an6I/krXxhrXxz5JN55hTn26cqSv/GgreJUbMVv3YiRh5C9f+dBP3z3YOvCf9rmXzJM++Ep5U6fbmoHLl8+Ivj2q7yjWGWwFjppvnzNxZtc6x9M94PkjbnyNq/km/OprforJ82U+x+jyTxxK+Bvt/42DdjH5FihpzfFbwY9YVx3mmYNyKR5xF6e6GOmIiQ9zYIyugxX3OD398MKcc8Uvfbl0P3eISle+9NHHUZFTumz4LqeuzYlCn9AXo2cPPnRaM8bhEL4cDDloNA/lqBjpyU3PCDaTDz241o08dI0rGzWuxvia/GYutPF34OzwxnqH61lqDA5uRD9MeL5laW+Ur+JmL3ZxO1Czbh22wqKDpzHFvMHqm6ja5gJn8ZcTujA72MPFOHu5xqnaWPHFXwy4u7+UnuPi9a8p+DQH9Ny31mP3GgzzJFb8cVH3C3DXeOFgTcajmq4x8yRnfFsXPr/54JMYt67okuzkApZrIn+JOZNveSOwxUG/9SPuuQbg4GsPwVfzop7zy0Zf86SGmR4e5gd/86A0pk2XDT0c9RE2/JtPY32RRb+8tJ6Mh88OVr7Yw7NG8cQbFv9iV4wr2nJrDI8OKM2VeeffXBqXE89c3HsW88k3W235gyvXMNjl1zzgwR5HWOzwO86DWPnzywr3BzF3/BYTvH7xIw7j1og2PLzkqNjxSPTDxRdv7fJHT+7wtwbo8OVaXK7FAIMUs7i1+RMX/67LNxtrGmfjsOXWc8B9xl7+6bAz3tzBIrjhgJ94XXumyxddGM1J6yMO7HAxzke5/x/27qfF1qPa4/h+H0rsGIPEYBJHTkVHEgQxckwURdFBTMx/kxBF1IFOdCK+H1ETIYjgQCV/JHoQfR93fyr97bvuvp3c7nAmfakF1VVP1Vq/9Vur6nl2PdX79ClGPpTyII4K33Dknm9tYpxvscHxLFDMA2448CVG3AhbXPjBQX/FOEzX7OMWj2p65kShN4sYis1/hupPv+3/DFXGtuwM7AzsDOwM7AzsDFyaAZuT3/zmN+s/ZrNRs+EgNiTGFBsX/do2IDYpNjQ2ZDbTbfjo2bC3abcxsVFSsw+Hvc2b0qZZuw0Q7Da+uISBkw2WjTLMMPBK9JG5wWqs2hg+asL+tC9ddVjlYPLnT79CxDD5TFvj6YlxXrOBpa4UC73Gw5dLm9M2uHD5yrZ62sLLXj/R1/zFVT/7ajoKH/wag9P4ahx/xAFOQpdtePq7Tj9debUerCk1G/PtZUVN4j99ZK8vjuopMzZjfDiQcqCujZONPT/8WtukeOUID98Qsh7zD4st7rhp03WfGEsPljZs413rY1dc8YZjfuGysd57AXBN1OzgabNVwos7LDKxu6fqM45L96wXbvEaLzYvNV5k2RrHx33qpc5LkrqDdnmE5T9oZIODWj/MuMPGX12BK4Zyx7aY6LoWm3FFe86JWGB4KVPS4ReH5lk/HnEpT3jDpK9MMaaP7WUCo/k1To9N+dAnlnyFRS9/+BA2Sr6MizM97V5G61uG40e4YYyh1WwcR3jiLvbJUbs8xyFbQOVQbOW0PrbFxCZfONO3zsuJAxjPRvrsFGPm0/oIS51/tTw5GOjbnmzCzMa8hBM3vt3/uOhzTVzj2cu8gwqfa3zFSVuRlynG+VFg5su1MfeMv0V/J/90TN9olzv/CaH7Ub6IOBwQKK2nYpOj8q9PLGIixanWZ9zcd7/qE1v45RCm+w7unDPj/LsH9XtWwPCsd/gmL93fxunzx4aUS219uHYopI++eWqu9MVb7MaL10E7nzDmmhBr8ZhvNjCUKdnQJ3O8+W79uQ6jvQ1cMbh/7We06csFTvqV5kSf3PjMMr+Eb3kqV3QUz22H1grcYoBFcNHvXvP5B1c+Ouiip8SvZwy7xmCKyxyLCXdFXz7ou5YrcSl03Kc+S3xJwxzQcXjdwZ7afUcXL3VY1lXx9hkEVwx4KNrywE5MZ2dnqx+ubztbf8aJwzv3P+n5F2f9sMUqbjbG5NV6Ejte9Hz2uZYzY8T84FLc/JrrONLhEzYcfGHQp9O4OFuL4eWnuVUXE458tzb1y6f7Agfj7a/hwMaBNL9qmMboaLPF6+yYT/NGrI3uLbhkxq0Nw5rEw/xZcwoOxNzLC7G+5YE/HPwChl991pFnBls85G7mBj6u+soFHDljiwse3nP4o2ct4REmfXNhrZQra8Q6woE+H43zo1+BjzMfcmFM3ut33V4Jfzq4mXOFXthyWgz4VFaSjj/o8kkHT/Hw5RpHuHjoF5Nc8ScOz0xtduLA2TUdvKxn/ubcw41DbTY48MVn/I3r1weTHzUebPQr2vqIdrlgW19xmj86OLDho0LHWDZ84W5cbEq6dOLMbmLRI3JkncIh9PCFYb3z5T9Dffrppw+3bt1aOnhdR/Y32q+Tra27M7AzsDOwM7AzcEMzYNPw29/+9vDMM8+slx+bCZsPpY2NPhsJm41eamw+vQTZjLT5sZG3ea2vzU01TLo2VDY7io1dGzX4xvk11gbKdW1YNm5tiugZr9AjcbpsWoyxxyfd9ODMvnD4JfBPudFR2M6xcNjyxTZdMdN3TSZ/ekp9YZcn+vjbENuA9iKUfxzayLItznxe5hfmlOzYwlPiSi9u2vXTLVb9hB4u4kmKj262xvjwwmGj24tNL2m9vNIJC3YSThysweI25lpp3r1szL/HLjd89IJjXRK2/MmzdecbQq0F4/DSKSf0W8t0pjSWbrbFVT97HNXFREdJR+2ajprQ5cMYbkSbNDd8GisXxvQZ1+ceFquXCnjw5ceLXC8wdMyVF0fPAly9sLru5RuW/wyVLk6urVU1X+Wida1WeinGiRSvNi7s5txqdw/QMe45ZQ3hVi7Mv2dUccAPhw3f8qhPac3ArC99ffHTZu8aP3kRX+PFDY/wQb950aedvmsiJsUYXONyCQ+WufCiTMcYbqcYcC7r00/Y4FqsxckHnnwXMx2+1PW9i/LuT7pK0rqZ8bKLP7/FJh/05M5zzYtuc6Kvzx06JM7lx5pzeOdgwVjrqPUCS1sJg29tvvByrW3dsG/eHMy47x1c0AuznJcrPggc7a7V8DxTtK1Jf4veQbv6/eZnAb7HD37I/NMx8nR2draebe5H8cmNGHzTs8MYcVg/ct3BimefuSU4scVb/ulbex0iyQEpF3JePvTLoVymhysM82WeXHtWsOG/g2++5Igd/dacHOPL3rhCl52af/zNkzhxJWGwhZE4sOOfyFPrrVj7LGCDI/wpcMUgR9r4ml/XzQuOXdOBBZ/vcGF6JhWXfPPdQZ5+3PXBchB51113LV98Kmz4IriydXjpl07muznlM77mwEG7/LGHi5e2WOnyzZ5v1+Iy1pyIiX7zXNx41G5N8EuPDUzzc3Zcp75VL4aeY3x1v/HjXmFbLosVDn5ybv3AsPYVnx9scTC3/vUI33w4aOdfPMQBq7WKZ+sLNp9sfa65hid2PPDDHxdCBw4fdOCUJzjw2XX/4Is3n6f5hQlP3MbxlBNrBAfxyZnY69NPj0+xywW/1pq2Mc/F7n95aa2yVUhrSLxslD7L44qXb/PaO9GDay2JmQ5sPvHoc7x1RF9sfZu99eCehSF2axt3WOzefPPNlW+YfLdnk0N7FHMhD/Thy4E2UYsBXusGXzbiMoajeTZ/2nIhFkUbpjG+CR7mo7hxLGY+6JtTtWKcfzW7sMwjO2MwlfTEY63iQIpHG0d65oo9jvTd79ph0vWsLjf05Uz+eu7JAzu8cHUN29pwjRPf5UobTuuED+3JXx8OcqEfduvD3MDvPqVjDuAakyP3inVL5Lw8GZNXMcHk11j6cGFYE+4zuQiTLT+ucWPLtzbf+Y+LXyLJVXbFwx4H+g888MDhueeeOzz66KOLq77ryD5ov062tu7OwM7AzsDOwM7ADc2ATcTvfve7tWmwIbLZaJMopDYhbTZsQLRtRryc2dhkw75NDlsbEyU8NTwbKRiKzbbNo02ZDVD6jetrY6Rmb6NlEwSvcRsthdCprI6TH8bibEibhBXf1Xn8QR8v+HgZj286amN04GgTujOmxqqX0vjBzhj8/PFPbA6LEW65kwvCzjjb+NErPnm+qhQzW5ziM+0nF/rKjJcu23gXhz6F7hR4Nvk2z4prc+2lo5ceGPor+Q0bJt1ywo8xOIox4oXPC6uXPht6HI17uYEx12j5tNZ9m804XPluQ89Hc1o9Y9Nufi4bF085hu3aCyBd6yd/6trGTgs/5eQ0v64VeJO362y0xdkBgP64dW/D0JYjL22eBdZiBwTG5NIceInWLg741lTrCnbro/i9QOnnmxQj29o4xFkNrz44uOGDH3xjeHhBnuspG36a53zCZBM23SnlDad8aLvP4kZfrpViLoZ0mu+JrY9v65G+eIiXXnlVjItFGxYbHE95TtzTNl284mhcXK5bZ+Hq6wCCv/9L5FNeFDFMHFh8lwvzrRDz5v6nL5fWVs+61gXO5YGe9eqgQK2fb59V4dNpfvUl8ORWX21rxnNIHmDBdWjp800fnHi4xkWM+pL8ipFv4x1ued74G+3f+9731n+qdpVchjtruGQetIv5Ix/5yMW3hfmVkw5erRd8ibXkcNVzprkVr5jwFqf8y49rzwU5KJcw4NMrhmxhdh/TKzfWj3uQyDM7nOdBO12FT7wq+Cpyi5d1Yg8ir2Iy5s/KeUbzQ8JwTcc1n+aAPfH8st7gwiLuLX6LR16KUW0MFhsiR+KQi+bFmGs1HDbyJTfZGpdX/PSJm29zJh5+PU+LW54cRvbZwDfOcMuZOW6+HUw13/l07dC1g3Z2vl3uEBAOrnQUfvHRR08MOBnT1meeT+MWszyxo+9aflx3jzoA59NY8yNW8+d+0+e+5wO+OdeGGz9zqOiXB8VcGCfG+JEveb59+/Y6fGw+HTxaCzCbc3ki7UPmfPMjd/IiV+aajw7n2MmLOOGJDb5abOZGTDjCdU0vvq1reHjAkgfPILVcf/jDH754LrFVxIOLHMPQ5kMbjpxaEw5eSbksj/rkWHy488vO+sFbv3nD61Of+tS6X8PtF1uu6eW3/MCSeyKn1rD5MFd84cUPu3nQLt6//e1vaw8B137NOrVu5UHu+PZMkkv+4dEVv2u+tXExB549Cmzj5ds61JZHc1v8dPA1h9qw5AMGv/SIfvZErPpx4pOYIz758dzDn43x+LrmX57lI47sw5Ij+gk/dOe+NF356aDd3IrBn2LyzKcj756XxQuDFIe1hFNc2PA9+XYtjmLhS77hyJU5KhY61n/r1PorbnnD0brQJ1f0iLHmrnvPWhJLzwhY5qTnC1/8Ks0HLP048pHM+8D8uKfZKIS+tQVbHjpof+yxx9a4vuvIPmi/Tra27s7AzsDOwM7AzsANzYDNxu9///vD97///bVZs+GwobBxaPNgY2KDZ0Njg0i6tvFgQ9emqk2NTakSTm1YbTL12VTZxOjHZerVpz8deL2YaKejVkg+1ZeJ/mKEjT8JAweFGCeuw9eem03jMOnqT+8yHvlQF1M+4JBw8lEcNq6zr013L1kwjVfg4Co+NX/h051++aDTuNq1PL0Xn+zjx+Y0Zjr8pptOvvKrxtt6aJ2xsdG1pvDIduauPvb06dG3FvnQZ0yfdVM81qBNei99XgzkUa7Y4MGPYgw3m30vvGHELz/pL6LHH/rj1Rgc7XhX62ve0jW/BI4+eZxzSB83PBJt/BQ2/LOPCz19YqWjPXXoeZFRui9gwmod0ZFfOfTi3Yujay8/xuTa3HnR62VFv3Z8cIErhnLs2jqPezqnMeovJvyLWZu93MVHOy74FNvEZIcDXUVuCTu8i13NVzGwg5N+beNkctNnXGzTN73ipU+MW7NKOZl95m9yY0ePfs+DydF4RX9tvoqn9WC8PuNxEzv8cmEMTkIvbH2um9vipg8bd23rmZ5xRZ/8u/+IF20v3158YdEprmo2XrAdFHTIAdNzhL654ac1Bjd/9IzRqc0XDkkv+T7r4i0H/OKgDZt98ecTRm0xaYvnTv7pmHfeeWf9rdi//vWv6wDLgZTiXhQb3h1SWBuJecDJ/VIcxs2xMVzlwbgY3dPuHbmD2/zRK5/0FHbl29jMDx+u8Wu+tctP88AHW9zknZ3iWj9enuFqOOzc3w6G6ONB3/3buqXH1tpofeDKF/HM0I8LjgSWHFoHcAhcOcqOLrvm2nU5wIsuDP7p6cNbkdcZV7z18cfOoRnBz/pxCMUXkTu+XMMXb4ds5gt/ApfAdfjl2S1/7Bw4O/xkz2c5lqsEZ1jw4dIh6RiHVVz66cubNt5s+HftT+DwmZ4cwXYA6F9CsStG8yFOPmCIRZHLng10FP6LmY2DdjW8//znP+sznB847hMc+AlXjYtnj+Iax+KzB2BvjvXLPQ7mpvuCfRz0lzu5ZUcPrvUKS97x5g+fcoVz9y5b8X30ox9dtvrNgyKnYmCLD150+cHF89GfvfOMlDd88FAn7F3PPHRwGY518tBDD631Asdc9UsAPmGYE7EY16cWo7ZciJFeY60l/Q6Cy5V175eI8HHlW7FuxWiNi0cOCTwStrhhqI0pbPTFDQ6/7gM+9Cvmg6itHfHIsWt8cfKcCUc/ezUf+l3DFo9rPOyV4PFLdxb8rBn2nglsiPmYgoe1oIapTd8c8VW8cm798MGfNdUvDejInftMPHy5Zm+O2ODPNz58ERzpKNp80lOzgUvMQX3lzTjRr9CBD4cY7x5yLedhzHiN8W+MThJXOYQJX1yu8VLoTJ/TtnHr173jujngi51c8f3ggw8enn/++f2N9hK4652BnYGdgZ2BnYGdgf+dARuSV199dR20e/myKbHhaVNkU2EzY/OhtPGx6bARaZMG2TV7m5PsZ61t89OLBxvXfBDjiuv68ZuFXxu3Nkt080EvLOP1L/DzH/WFSS/d+uhMvbhN7HTVU/DWF8bUq11s8tpG8RSHr/zBN25Dy1Yhjcs7oZNdY2Izrs6OnnY+caUTDltj+tlN3OXo/MfMW37TVYdBvXxq8+PaePxc49TmWazk1AcbekqY6oq1Z1PuBWOuQ2vGNXtiI+2lxwuWFx9+8TLOt/HywJe2te7llrgmMMsb2wo+uCv6wmDXPRTnBXT8kZ46fDpEn7WCm7Z+mF3TSRcffo1rV8JhLx/646COrxc0L26us1EXA1067uMO2r3I9Zwo1/TkLD5e2tk1L8bFKQa28kL0KcV5ep2dGsfq/MDCR4Gt4GTuvGRbH+zywQ/hX0wOTcSqnw4bzzU28tKLG78KoTtLMa7B4490w8x3/fRmmx7OfNFtnuHW39qb8yS/cs5ev5zExbV2/F3zqa7tOi70XMMiYaVfbYyOnIUz+2Yu6cHEg8w1xbY+/fQcDrhHzYn5Ka54yQ0shwT96wnX7M1leK3P/OtnW9FfSdcYn+LuRV9OlO4PvozRo08XN20cKq1Jeg7DfKP9iSeeuCPfaPf/IHzta187+I+HxWytOODR5s+z0Bq2NvCZ3PBX4m5tiUccdPFWu27dFdNK7vGH69P1KZcwK8Zx0a/t+aq4Zm9M3qyBqWMujBtLcMFZH35hwIt/cc3r1iZ7HGCzda1owzM/DrL7XIAld54fcknUsHGDiz888cKQe6X8wegArpiMKcb4Fw8OFX74YMc3P67pd9DOv2cwX3zDUOCFy841W2Nq3xjn256Onc9C+aNrbRM8O0CmS6x9sTtkJPT18YW3vJZbuMasPWN48k/gOTS1TkkY8mwf6lDY50V5ER+O7GDxRxdnGPrpuDYX1jA9zw8H7XQ8Fx0MwxcD7ua6g1T6M3fiV0hxabPFi0/5FydbfrumR/TFGbaCe37mmsLDs06c+OLnENlhqINd8yI+/2E0PuKRA3yK13zxhxPu5cqc+7M5/jPY1gE98w+LHn8knmr+zZ+4+PZten86xi8o4PRnX8wfHVjiUONFWiN84EWab2Nxxd18NS4+6wAOru01+ixwX5jL1mL550cxR/KLZyJfruNSDvjFmTSfdBJz1rybBznBjw9SHK6NyZ3cuk/LLzxr1LzIFV1cWg/GXYuHvWtFruCXR375MOf66BLY4eqHD5vwaU3JnXmEaU35Rrt4YPArh3TZkxm3PnxI3PijX+5gwS6H8Iwp+vgJ23V9+Z3j2gqBSQd3hZS/Pq/o8o9bOS4PxsoHLNfFoq2ky4+4jOtPXMPg3zfa/em3L3/5y2t46qX/fvX+Rvv7ZWeP7QzsDOwM7AzsDPw/yYDNg2+0v/jii2tTaiNB2gS1uWkT16bQ5sbG06aljVMbFZsOuMqU+m1U2nw2bizffCo4TAw6fMQhjvqMdc0m3bjlpxoH+uIg6Td+WU2fhFmMceyaDjzCxqZNiV99NoNKdurs6lsgxx+u2wBmj0dc0mNPNzEeJjtifG4k5X3OI70wTvG6VrPrGjdz2qYbPqHTRhhmc6fNTzGEk+9TrrCL38vRxILBjwK/temlRV882LDly/x7uVKs7dZbMdATA134+FjvXtyKER4fcscPXaJfKffa7IuND9L4ujj/ka0adraw2Slw8tW6ohfXxvKBW77igLNc6SfZ0/Wywnc2jcuTvBA5lkOHAr2kyqE+Mv3gA9dLuRf3XlD104NZTtnyKy6FnRp2Y2p8yYyZrkI3PDHSFY8XSbHpS4zFlR/8vYzqdw2n5xxf2rD4YUf0K2wUkk446XadXrbq5mIBHH+4zo95Z+N6zh072Iq2gwT51Sb0zRWs7o0OG4zVrx2nZXj80bruOkx6cWNH9OEwMSa3qaMdVjbhGUv0WV8OK8yJ+SBsFdcKng4OFTE2Zr3iQ8ca674zrr8S5gI//qA3nwe1jYvX3FpH+KmtqzkH4cDX33q0tly7X/ob7ffdd99FLrK7ag2f3D7+OYxvf/vbh7feemvFan756R6wHvTh2yGVnBh3WGVNi1nuxKamG3e64tavLj/y6Fp8DpUIndZNeTYOQ9E2L3JRvzjoyiVbQtfBkELXtTnUpstPz3lcjTe/rvFKmme1frmAwYb0TCiffPrmp4O95kwuOnRk6xc7cqcfZrmCh6cYe17ygxM/dI3nH+f8xrM41eLsQFHbwSLf3Q/s+1MaOBB5nRhwyxcdeXPo2ppg03xo08VZHhyouv/MrxjMj/XSmqdb/sRUDOz5YmP9acsnocMf3nDZhYHb/PY1jvTlch6K80tP/HiKt3XFd3Z8Omg3hoc59BneM1I/Du4FfnDBWcEZVnzl1fwZ468DejmBhztho4gRNz4IPAUHuuzEYH75lWe/fHDYjg8/uPoWvs9OPmA6aOebyIP+PqPwkhP+1cWD+9///vf1DfHucbry0+cdTvAInmxhmxs5oOvPUsmnZ5h+v7gQDzs+8DambY2IgS1Ri9ncsNXWJ0fiKU9L+fhDruUHX7HAFj/e+Mmb/KgJnwqBi5Px/OjXhxM8OvRh9ssBeYuH+IlD7eYpexjarYeu+VLYWq8f+tCHFu/WxAI8/jAuLvlVE3zkRd7wiyOd/Joj+VP4Kb/yYR2LJy6tAdhyZoxfBY6YzB//jcFR8qemC1PJHiah25rDHy942vTFYH7lOB/6y71xmLiaX3PJH1w6ChGrcWsVHil/5ac+mOYQBux4q8Wj6CfxLK502eKLlzlm4xoH94HP7W9961uHhx9+eOGEty6u8GMftF8hSVtlZ2BnYGdgZ2Bn4KZnwEajv9Fug+e6DYVasZGy4bDZsRFqw2Kj0wZD3cZPTujPzRKbNjE2K2Gya7NjM8OGrc2S9hS6+a6fjj4Y02e6NknaU+jaBNO3SZu6sBJ6U/hKV38+1ae6xukr/CjFrI/Ig0LCgK+d7Ro8/5EPNTxcFe3GXMNQpmSjT1vhg755k3tt/dOeTtfGFZKt/BLrxAbYRtgmF07YXlT4YONFQm1+iwE+fZIv1wodxUZdrvRp67Op5wN3a1Fduw1//ODiiJ82LId4rpsX483J5Gfjz684fAvI2vFSo88YX+LKV5z5ScSc8OOa/dQxXp9+MdGD11jYrukobCoTb679cBfQ8Yf56H7N1hgbfsXVmoCJh5dRuadPR67kT78cKs1T9285geXbUx228x0uXVjqeMqRa/a18WsN0kvg6KerlCP94mhMG2/XxhRS/Gq24iD8W8vmtzg8L3AndOPrujmmK95s4DTf6trxxmfiwJpCv9xMbG0FDzkiuDV/7GYOjOFvHXfQwV5ejOEwRZ9xAifu/Lk2Js6k/OXXdSUddX4aKw9TR1u/teU+NQ9iZKOfhIOHteWgvXG61mZzpD/7dBbI+Q9zQOiwUcRBtOW/dUFX4Vcuren0YIePp8Le+u7ecRB1//33H5566qnDJz7xiYt4Fsg1fvBDHJo+/vjjh7fffntdO1wi3VPWrzmmz3drCS/8rQmxmm/zGW99dOREvI3LAwx61ppxz0RSXuTGeBjG+HfNHq7r8q2N41xP8uUzRRFLny8wYNP3bV827MWpP5k22uzwnYdveCrEeJ9P1o6ST4cr4udDjHLuwHsKDqScibP4YBs3puBZjuTSOKHvs4Vva56OOXIoJk5r3MErDCKuDqzDhYG3OWmfAwd/vsTolzKw2v/EzTgc3GE4+IUPB4b453qSCzkVD37mxLX+5oIdTu5l/cTc+jMhfNDroJht95RDQP1yI0558QsQeRGL8fJVDRd/dmJyaH3PPfcsP3j7/DYWZ/rZ4FFZJI8/YPAPn4hRjtxH/YJDPnHpUJiN/PVLQhz0KeKXdzGKYf7yxi815MRaE4O82ZN7tvXNbrHffffd61Aeb9x6posL/8kXZ9fy/MYbb6wiBthyiptYcJMfsWiLF9fmES5+Do79nXQ8yieOYmED01rRFiMRi4IHfP38w6TXvcavMXrNi/cN2PpwoQOL0OU7P8YUoi5/rs2ZPj7V8MoVzvJDR7FO5cgaoec+WlUkbwAAQABJREFUN7/84EKn/Z/r1pLYGudbHvxiwlqIV8844/TNHfu4yamY5Zcdjv1iprkQD15s4PCJr1zmR10O6Sp0YOdXPO4H9nIgbv5c80XUrvVrK3xOgd388qEkxuRLLOmocROjmuSne14s7gM6YpEXNSw22njwFV8c5RI+f8XcOBtCj7imw7e++tVxhANTrvjFyT3qzzf5NvtnP/vZhZXturjCj33QfoUkbZWdgZ2BnYGdgZ2Bm54Bmw0H7f7enA2dDYZNl02FzY6iz0bCBo1OG665oTLu2hixgVHYtpmxMaIH34apjQ99/WzpV+Y4HUKHH/r50EeXnVoJL5/vWr/703gHDmKiA0Ndmyb8sOAltfOfHt1EWzGGl3jF7Trucmwjl+ifdrWN5zPdcMKqnw3RX15cx0WblCs6NqLFnZ162rimQ1e/dcFWf3heVjqcwI++TaqXIXPGpxcLtnJBYBCYsCr1saHvxUa+4Krp23yzh+0FBjdtdS8wOITNzkaZD/PhxQKuNlw1HYVPfeWHjTh8oxCGOOHy6wUXF77ZKMaURBww4OWvscvq4jIGrzp89Wmu8lk/DKKff9cV84Iv3fC15Ut/xTUbGF4ce/ExLg75M+/mU3Gtlj825Z++A0mHDJ4hruOHm/sgG3y0FWJc0R9/XBN+4q6mq6ZrLVQXc37V4bAhsPjVLz7xekbgq6823fhml99yVt18w1bEoSZ0iOvJZ3We9xvLF/1wq8sXGxxxtR4TcdfvvvCybdza5bN2+nGTu/gZ40eMM845nk729Ni8l9BTLosbX8U96lk979Npx7/iMErhk8gXG+uKPqz4q/lMyo1r977xCj1tONZ1+HT5lUtrGkZ+1Al7NuxhE/eRg/Znn3121Ww/iOSng/Y333xz8XDgZ831HGt+6XtuGeNTsR6saWPdk9qKuHFXxNrzVR7Ew16fcblW66NbfsOa8dHTT7fcwrNO2elXep70fOnzBRY7fM25mpgLvhOc5Nr6gcUnHw7arX0+4sFGWz70N998sneoijdffPzzn/+8mHe2bPSrcbP+5FnRLpdqfuIvf3zAJq3bYubP54tnJmzPUAftMBRxOQA1167DMM8OehUccONLW+z+9jUcn2ns+FEbF7uCg7gdtssjDGtFgYWP+SpuGMasN23jMOnAhVe/56oDKzwJG3PT56nDzQ7F2csPG//5rXnln448it04LDpyaB6J+OdBu8/vnnt4y5/CZq49uAns4lTz54A6Lribl7DZwrRufEvd/DQ3cmLNWqtikH9cjcOUa5z5xI8e7H//+99LT+wOu/tXBvTE4yCw9Q9LP3xtcyk3ng+KOSgOexlzS6+5Y8uG3hRxiFltnF/PGn7pNhd8me/igqfw0fyKjdDzjLc25AYeXRhKvxTT1/Oh+ODzrWZbibMYxZS+Gsfmlr42Dq0bbX5bi6493xX3oZyaf3NrzdAz/3yJTVzmSD7E5KAdBuGvdQ6HPu4wcDNen/XDDp57Xz8fxVJO+YkrPuKhUzzp8S8X8stnpbkzn2Jij1vzg5M2TP75M66dTB90G2NrTBzwteGr5VARJ2x2cOdBu/tBDo3LGx22sOAQPibfckmn+ZE7wlbflPIFWyFqPvmGA1OezCtOftF09/GXXV/84hcPn/nMZ5YNHteRfdB+nWxt3Z2BnYGdgZ2BnYEbmgEbitdee+3w8ssvrxcbmyIbCnWbGaHZzNjs2NC3kVIrbTLaqMAkNjYVOtm1IcxuKZ//aDMUxhzTZjP90A/n1CZujU8sm3ubPDrwbCCr49kmjJ0xOPkwVtFXvxqnaevahk2BAV9fm2k24WcXpmuSXeOrc/yIc7nNZqj8jzyFz69SHtTFSYfEoU22a7GEodZnzbSBdg3HJrU1I2abfRzZ54semXW+9dO16bUuYfBjvJcP/PnBT9H2UsSXMTYEhhdFgh+usLXjz4ein7DvxcJLsZd/L8K9APRi1ItAOREbzOIQs/jiUz8fxa1dv77yk444FDphpz9rdqf+6fNdjubLiTH6xhW+FZjq+ryQyxl9OGLyQlce1a7ZKekVixdGL86tBxzgGG/dsoPTnOkvLzOHOOFMX7+SX7bFUi6sCXNVLDCN8U3Y1M4n/tZaa4ttGGyMT5+uCT39+W7Ows9GTfRrxzm9NXj8kR/XdOJNL9uw1Mat/cbZaOvHX/69aGun2/rNp3quEbh4iEUdHntiPN+up67+y6T++GUHszituQ6D3JP5Z0unGHzj0wEWHWP893yNb5xgsE3EYh0Sa4+9Qg8Xbesg/3GAIY8O2MqVPnj5Yq9tTXWo4LPHPz33H5D7e8f0P4jgRW4f/3TMN7/5zfVtVb7kxDPMMwpvc2s9iFEMdPByrR93WK7VeBZjcRiDG7b7vDjZFGO5hH+Z6KdTTQcWvtmUD9xxUcofXTk2pnjO01es69YDXHZyIN/mlYh16nWvh8G+PIhJvtg7XFTzyb+DN4dC8heutjF2p9z1ETHCN66tOLzhh+TTuDnw7LHGHPQQz9AOmOWdnftDHHzDYytun1PG6BiDBV8bhnsGnj4+5EabvSLXDnQdtjuEwxs+PWsq/mr5m2N0XMPDs/njW3HtwFhOjcs7GzUueCnmil828uGQy1rRV07KVYez5h0OTvr8p6tszI/Pb1gEP7lRYBdDfOOuhid/xuDL6/xGO1x8Zw6tOc8v8wCbD3HLvRjxsH7DxbW9hZjwi3N/6kcc5sR8wIcnF/AUbb4IW23x0fX32f/1r38t3Pr5NM8ED/zTxw+H8PqlgZjo0LcnEgO/4uuew8sakTtteVOa43CNiQkHfeZUHx9i9EyXe32n9xf/Pdtwraxgzn80r8bEgY+iv7Y6fsXAF3xx+kWHOXMtTlzNvzkST3NpDE7rU8794qT4caAbNjxtdjgQePrY6CsndEl6YjHGlo22ucQXB/eVvJkbNvTkynX+jSts+fPMMH/NE3/8KProZQOvfj5br+mr6evvc0huiX7jeBWntmI98aEtz/HBXf70w4TVHMqpHOAoTzDlHi9Y+ti5NhYPHIhrOgqM7qPyKVY5w0Ve/asav7y7devW4XOf+9zCCGtdXOHHPmi/QpK2ys7AzsDOwM7AzsBNz4CNxeuvv3746U9/ur7tYHNjM9GmtY2fDVAvqGJuk2MTYuNE1PptZuDWVid05ibtdIOSDXvldByO/inh40wus0k/WxsxG6e4itOmLIxT/a7Vbfba8LEpB7jANUYPFz75ORX98Tkdcw1LoQOfH9ewws0+Dnwap5f/8pHunAN2Cp3axac2V1PowRajDbQ2PNjGwmar6LdJhpMOG2VKtmrClsCzQfbiZeNrXHzG8U2nddg8Wq+9ALHnz0usb6KYG4IPfQVuG2m+vCwRG2wvf/ypHarBMc7emhFfMeKrxJNOUrsYuxYHGyK2+l2nW9vYnH9t8ehv/ujiK2Y1bDESNa5xhK+4joc2WzHCNm7Mc8HzAaa+fNClp2i3ZnDjiy1hI19yqs/8ePHTR8TA3gs2LDz0sWtcrd9LkVjod6jknsaJ4GBcYc9Gn3Z4S/H8h77WUBhsTu1d4z4xcBDrFLzLz5yb7BpX8xOmuvzBM958N6Ym8I3DhJHko1p/OvjLu3nRJtrWtnnIRm08LsVSbpbh+Y9ikQc2cZ46p226YfHLDzvzrm2NiMm96MXWIY+1Z5wdfuxayw4NHX5as7DjUDyu64+LMf2K9tStT81fxVx4TuBiTLzWsIM2XPTNueCLLd+eQ0RM/mTMSy+9dPjkJz954XcNXuMHX+Sdd945fOlLX1oH7eLH0UGQ55R7Qj7NeZ/frbfWQHzpiUuuxYg34UeuxQkHf0W++OBPP4HRfJ7m1LXx7nnXfODs2YLrnKNpv8DPf9Ch74C6z3G6Djph93zBu88p+uzcO+bM8wMXOjiUS2MzV3BhyOfdx88OB2cw9Ltn/OkabX59NvANy1zLJVv5SfgtV/h4dvkPJn224WEucMCtYp7YdM0/2/jjpo9efXKq3y8I8IDbPYWPvDlAtG6N+aWB/MExjot7Td4cKJtnvOCS7LTFW/7ygy99WB20GSPGFN/2xVEs1gx9OmFYrz7HXavl+6677lp4ch5e/vnx2YEzaR5c4yE3/LLjU2nNGeugzZzJmXHS/Da3xvmZ3+zGtfzyGz85NLdiy46ua3r84jNjwdX6UeOAl7+vzg5Ga8tcuOaLjvlXm0P4cqYm+vLFr/lVSP7hGJNHhW/27Ij7zX2PF1vxFjdb/eLFS228fpzLCyzYris48IU/bLn1pQi/HDDv9PgKL+6uFRy7Txrj0y9zrC3f5OYjexzNMVw8+YBhHI+eI7DYwhYfMZ+ekTDk1ZpSEzrmBC5bHOSCiK0vGvSMZEeXTnEYY6voww8nevDw7B5qbvS7n3ou4+ZfQfhs4EPuxBBPWIm5YO9eYId/6zEdPFpjcOKPY7mkIw59/MCA6dnRfOOLi2eNGPBQYFhfMJon/hI+5cC4HMcXV/ODDxw25lUe8GhO6Sv41YbVOC584Ok5jqN5pg8XJ2OKfv/Hyje+8Y3D5z//+UUR1nVkH7RfJ1tbd2dgZ2BnYGdgZ+CGZsAm4k9/+tPhl7/85dpc2pzos/GwebFxUdt46rOBatNk86GQNi3sbYRg2NDYCLVBpacfplppgwSz8TisjnMbum1m8t81vclltmEphF1tddfaNlzxaoxNPvKpFpPYipO/9LKlp4Qhb4rx/Ikp3KV4/oMeoccP4cM1n+XTJlCbPiw6tfPv2gbVmL501G0yp63+yct1senXxsnLawcd+mBZI15Y2kCXI3mNFwx86OPONh/5wZOtePW59mKr0DWm6I9TOLB7AcQjP/Rtvr3AlT82eCnadLxg2kjPlzCbbmPqDvOsAb7xER+ffBWLOTOukOIQU/70hUFHG7fidk0XJsku/qfrwbiiX27UJI7a8iMOvmcx5pouOy9IHVAY0yd/HUxYe/TFruSTrmtjdMqJWIqn+XcQ4CXJmuEXZy9cDrPkm142xmEm2krz6qXc+uCTrm+gKZ4vruHgGI52GNXGiPzKI/9xpQNDTa+5cJ3AJMbnc8+1PLAhcBSiz5iij+7E1J7XbLoOxzU7Ei8x6KtfzYd4eq7ThTH7wjKHXjzVJF/VYlVcdx9Of8bg53+BnOPQn+ucz/JQ7nElHZ617uCerm0+vLh3mMIunqe5MqbPOFHHhU/3sTXEB06n/rrOplisZbbweu7QjYe2AtN95Zvsr7zyyuGBBx64mM9F6Bo/isGfAfnCF76w/iyE+0GRN8+w7lOx8c1G/Iq+5syYuWbruS6+9NgY83xXPB/h6/cNY/rlzJrp273yAXcKTD71a8sJX+y1pxSfOht1vtiJUW0e3HN49Wy2rvOfDT14Yle0rZ2eibAmj3lvODDyjCEOn+XBOH32Dq7FjCPc4sqnPvlx2FbsuMLCGw5bY8S1tqJf4Y8PnGGJy59gEad15942TvAzP7DF2l7LHMubPnjw/RkZvzToWYwrPWvVoSIs/rXF43OQaItz5o1/+VCLwb2Lg2c7fT4cZvWM5Ks4jfMrLvysN37Fqvj8ZkefHXyFHfz84KPPGL2EXfiN81Pu6PGNMwxifGKwr+g33nMyf/KqmBf86fj8NB908aCrn45avpq7nndqfPypIrnAiU+YSjHoKyfw5Mq3weEZw4Vva6XcWA/uVc8unGDx1zqHV97lwS88rX94Cvvy5hquAoPgiwv+7af4cE2KYeYKjryYS/lyr7Ru6ZdP3Ah9AoM/fK1VPPg5OztbHP0iiT0xd/CtI3m3Vt1PcgBfTNanvMBnJ6Z+AcnONZzG4fLpGo42jtrigcuPOZFz84Jfa1abjlgVPvTJF8EBHiz8fNbhXK76pVr3qfF//OMf618wtLbkCD82cBUx4MqfuWUvNr4UPN2vbLXlFx5hB8s9xw5eucGdLxhsxSx+sYlTn9yoCXv3Nv3myZhrQpdf1/Hu802suOnHqZzyr08pf+oKPGViFxNbPImajpo+vz6/n3zyycMjjzyydOK5Lq7wYx+0XyFJW2VnYGdgZ2BnYGfgpmfAhuLPf/7z4de//vXawNlM2Ez1ImezY3NhI2OzYZNi40LotsFQG29zYwNmw9aG1LgxBV5tvrTpq0ljs60PhjI3Q3RwxCV9HPkgbbS02bmOiz66sNtE4UFPyae6axtTG8u5yY47PQKf1M9HeYyPfBoPp9jY0VfmuGubWAWGaxtK9rDp6tNW56e50y8GcRon+oh+enNMLDOe+Kn59dJhYywX9GygbaZ7cdNns40f3HKiX+wKv7jwHX4xWzfG9bPxIuEFkL6NLg7G6RN6YeHSi34xZgOXDcwpruHBVegTWF7gxNGLUms6DD7o5Wvizja/5qW12VgxGsMBrlj0y51CmqPiDo8dYaPop8OesMcNLp4dphjPt7H8sjWv86Va/Oag/FmHcL30yQuc8mpu8SgW/Ulc1Hi0ZvCzXrxc+9YifFxxEvfMrb5ygI910d+tdU3fwYR/bh+XcstvXIsf1+LHVYFRvmHQhaFow1HYVhe/PjzEQzf+9Eh6xsSlGHONR5If9myKOR3jib7wyn32cYxHL5b6E23jBB9z49msPfX4wUUpH+ppH5c+L/KBDzt5UeixExfh37X+MORRYVvhj701yVa/tWIt4u06+3xfVtOBlX+xwrD2wqWDs5rAJvXj5pCA//LXoU066uzMcwftP/jBD+7YQfvDDz988Z+h4l6JtzjFha92MaibOzEYc++LWb9CzKXcKDA8H+n4FqX71WeB+ZB//7rAoa2DKjmNA5zmnx/9c7757z5ItzjkT34VfXStTz7hiM0v2/yZEFysDzodvsHlmz7dYmbrW7MOjvWJ3TNIESMMh27igQGXf386oG+QwvQM7KBdzHSJOBW+ifw5PCyv+vnCqXzAl2N9bGcO8HGw5E+AwPJZhQd/YjVPHTzB6BvgODUX+Cr5KAfy4EASBuHf2vbct2aJX4LKgQNDoh1PXInnpXyYH0LHZ4lfKIjFumDfAa+51c8eLzG1BsWLn3kXo3663U9sFD7Ml4KPa/3Zts7CF3v5xtO6Pf2s4CedcPmFTeQTLl5q+sbMqTF4sMXg2i+kzs7O/sfcy7XYjJs/BRZ/fLcfcU8Z06dMXT7FLDZt9uIxn/zjw4fDQf+Shg6udKwjax9H9ubb3s58wfEsoyeX/csGbZi444E7TnDVcNhah3JTztlo41rMbOGo5dY44QPH5l2fMde4lnP9BIb7wVjPInzuPv4rFPytN5zgxkGbX2u1ZxV8MXcgjjO+MN1L8qMPV7HGU01Pv/vbNcFJn7Wg3y+0+pNT1rJc27/ghJ/5YuN+s0b5Ekc+mxPPJHjGrCv3JTwcxOSb7P0/EmzKF16w4s0HDDWcnns4s5E7z77WMn6EH2sTjpzwDUcbd+vXGDvPRXysM/NkXsXLh/mSR/aeM3O++TFG6meDf3PYOuZHP7/8w6MrLjr8KPgr5hwXMbLlR0ww5BKGddB6s87Zt4YefPDBwwsvvHD46le/uvjxdR3ZB+3XydbW3RnYGdgZ2BnYGbihGbDBcND+q1/9am2qbDxs1GywbEC0FW0bDeOkjZoxmw8bDe3GbFhscir66Sg2L3Nj4lohNkWw2b+f0FPCm7z0xSU843AVYlNI0hMDDvzOMrnIlQ2eDaZNWTawsgnfmJLMeLXlki5buHzH0Xj6jcPPtz7zYTOIRxvAmUc6YsfBxr3NZHzU+dDmWy6ahxk3vcZh2sTalHv5kAv8cbAx9XJl7RQL/Sl0+Snv9PiMi3Hc26jr19dBO31x59cYnXhr20B7cRK3fjrWId7s5HJKPvilM/FtysXFxubct6TLO1x8xN69MnHfr11+5zrhQ77g6pcj3BKx8IcnHfpwynG6xpSuYcmJPrX5OcU2Fid21pWXwHJl7flGmzzCoxuuHGkTOPIBXxtXugn/cTE/cuulEQZfcnt2PIzgnx4Rd/PrenKl10G7NYkfXYfsDhHMS3liJ39KuQkvTNfsxaOPHp6tV/EQ43DUtfXz1XyoFbbFAA9ueZ186Exexpqn5jk7vi6T/BjDFZ75INpyKtfFWL8YipFOhyTxM14e2ZQv6yId/VPgsDuVGUv5qA/XcsheDOa4NVTu9Cvyy4d57vApnjNGHGAY45ONawWm2Is/3bDjqL92/qtxhcPGmsYnXXakGBxm3Mk/HeMb7fOgHQ85wy2f4nbt/tAXN7VCxE/Ps7fYW5PmxbqRY+MKXYdPDrfde9ZCBzMOqnrOwMYp0cYBH7h84SVnzRkd+MboEfzo40vPuuPTOD6eVw4DfVboNyc4w6VL6PoMMP8w+HH45TBInzHzo2jz5/nkoJNffmA73O7b4vR8Noi5ZwUs2PgrYuEPHzq4EfPkMwcmEWP5KMdypY9/fNyb/iyEtoMtPGDDVbf+YJ8etMsDLD7lXBtP8cF0CNh9YKy8Ongl8gvX5yBf8gkHNzhEvuUDP+P44+nzA6bPZodudGCwbT3IAzw1PHyN4QTX5wOMRF6Nq83D/Oym0xzAUeCKiQ9jCp7WqrXdc6G8GGcjDn24auuH5zpsPOjGFx7ORC2H1g0fClvxa6vpWB/x5ENMivWJozGxdi+yKybzYoyO3JpPenH1/0L4kxfioIufz0jY8isvfOFp/YujL07Qd3/Jb3HKm7XWmsVDTGox9RniGq5a4Z+Ngr97ofuh3NIzR3SM0TMmNn7VCj9EW6xyiGe+7r333rXe3ON05QeOggc7NnIRD2vb+rROm3/Pt/7Ek/gJLO0Kn+KXE77Ytj7gw3Vo7YBcXOVaTvGB01r0DCtP6sbh4eWZJL98mCuHw+Kma+7dz7eP/3dHv2Dgjy3O8aYrx+ZW8Uywl1LTFYM1JxdypHjGGKPPFgZ9seCCg/WTLzkVr/2YdQajNUBHvDA8H8SBpzkpd/HVbw0YI/LBv4KTucdXDue7Al902eNCj37z3fzzRw+GXOIidj5xZNO6g+lfoj3//POHxx57bPERy3VkH7RfJ1tbd2dgZ2BnYGdgZ+CGZsAGw5+O+cUvfrE2HzYkbapsMmw8bEZsMvQbJ+xsgoy3yaDXJk5tMzZfavTZVCls2vio+SJh0VX4ORU6jRubHOgrdLLV7podsaki4mkML5yNpdcmumu1cXrwxcw+yafr2d/4rGEpbPCApa3Ury0+wqdNrI0tfbnFWf5m7vl1TUdebbxtMMWiHx5ckm7tOPNPX03YZGdTbTNrQ2qDTIcvG2ovE71ghaXOHl9t+vobywde8iu2fIu7F2i2/CuwCBtcXcOTDzHbHPMDp3U4Y2LLF/uKjTts+sS6h0XC1aZfHHyUV304xElN9OWbLjFW/Oxci2H2L8XzH2GLh51C6M8S5rnZhQ86uMpL/vRpK2Gp5cBLk/UjJx2y51ssbPMlJs8HLzByRuh4KWFDV5sO//TpemmUX/7pmQ+HOda4ayLvCl9w9JdL3LwEO2zC11rB2Yudb/T1XGHHp2s1rNquYcq92jWhoy1n5UdfUvz1sc1GHK2tuT6MywPeuKZPpwMyvmArZLbjzI6/OLDRZ1whcqRP7vSlIyZlxkRPIcbME9FHD7+w1enyT9+1dvPClt98uE6KR50UCywY5oKtfm2F5Mf19EUXr9Ye7OYtG/qKsfpgsuOXmDPtfMeLvj41DHrGKmzT5Vfs+TdG2PLlmelvs//whz88+Gac/g8i5c83F7/+9a+vPx2Dg/vK88s9bK0l9I3zhxs919ahmNyXeNMrR2KuzU6BqWiz95nk2+Tlt7ljWy7LsT6+y7cahmLN0YNL9IWJA2lMTdd8a5sP8XpOOSwqJnZw6PBF332WX5g+G8VNhy4s9mp9bDqIxR0nvjxzPvaxj61cs+9gRhzFMv3zVd5nbuDR06fA9nlnneBhLrVxgeuQ7e23317PTbodDHmmwHGgRYeuXOjnA6Z5EyNR18bdoarPcPkoP3LARg3bcxle/LUdSnV/6jcvzbe6nFknMBT4ns/2Cmzg8FO84uKT5JsN3Sn0cKITJ+P4iI0vY7Vdy6Wc1mfurIk+F+nHR97kfcZNXym2OLHruYRr60D8ivy7T1ob+ccJBkxrDW5rQk6U1la58wuRflkhFrk113Rh+Ux10C4mnHDzSxf/8su1+PixTsSOHx35l58+f4sTH5+vfOHfWvQMgQOTbwJHER89bXh0CH1rjE/tCt7lmx3BJzvX8qPIL5EPNq5hKuWBf18Gwdc+AyZdeDip+TTes0/dt87FBt/69lxRxM8XPWPyqE9bwc3c0KkPDz6sdfOoTawHeaGnHz/8zQfeYsfPXlsbdzV7Ogob9qQ84WAfrtCBId5y6xon3PkvF/Km3ziBa45gqBVxsaGLP32cYBDj1gyOuLGRR88VMRqbnLVh4N48Nu7exhEPeYEJLxs+yxHf7HFjY0wcdOOkzpZPbXjNiXH95rPnD176+Tfnij6f3/ugXda37AzsDOwM7AzsDOwMvGcGbGL++Mc/Hn7+85+vTYSNh01FGxqGbVRsdGzibFDa3E1g/TY7ig1Lm9A2SzYoNuNtTOF5uVO3ubPp5m/iwFUS2ISNgkt9+ud1my39JO540BMPHdxs2mzU1PwTuNo2bvTjQd+Ya3zrr17G5z/qmxzLUX04iF2tr8JWH8HZoaKXKn1haOOAo1y7tiG0wTWPNsqu23zGF7a2Ais8/WJ1zYbUB5sPm/++4UMXhpc2L3/mVCxs+Cf5gae/eTbGnugjdKwROSb8tYGma36M05MnPPWFbTMv9jbmMGyc5a849BHY7Ans1ic8urDkjog97OaKj9p02Cgw5xqBrU9Nn04iN7AJGzqXSf3lMhtYxloz+unoi4/aON84k/hMPDaK/Fpr9L1Q9U08ugRPJQzz7IXFy11zbj7kMV7m0P3mEEAevfyy8byBo9D1YsunuSH4KsWQnjE8vZT6Vq2DAPOH8+3jt7kc5MhFOcBLEYM+HBT6078xOaBXLHwRupOHPrp4ZyPGXtT4Z1Pe2OLcYQYbOuLr4ISOPpzkkA7RBxvnxvnV5oOolWxg0RcHPfoEH9fvJezZEnr8mqc+G7IvrnDwxZuU68ZO6/Djalxfa6t+NUxj2dApFnatRbESesW8Oo4/6DfP9eHPho/GxasfBn1j+pS48BcXdvk3TuRLYUNPyZf7wDfifvzjHx8eeuihC5w4XbXOl18qPf744+vwlR8HOnzMe0h/camtN89r8VmPas85ZeaNj/Jibiv0xcOXe84BHj2fTQ5++abLl/zKRbjWkOvWLB/48V3e5UA/P0octBP2PmvgGufPs8Bzq88IsfUcoe+Z428Xs+nzgF24cconXDzo88XemGuHpp/+9KcXPt5sxSE+empSfOzoiFOfvGizYS9X+uXO56vnIP5y6toYfd9S/ctf/rL4iE3u+0WjWHxr1iErvmIsF3Q8l/jjW5249ly2V/DZiQ9/4sdLoQ+fT7yMqTsIPI3DtXmWC/btW5qTN954Y/1SwJj1GtfTteveMiZ/ccMbvgM//nHCv0MzPNnhKH722mw8exXXShxh40JXnmDyKRfmgg178fDTGtYHZ/qEY424z6wDGObVZxQ/8s2Gr54l9PW3BsXYc0Wf+VDo+Sa6zzjzhatDYGtfbgkfngt88yEH/j47PRhiU1tPdGHiwx88OOIqJm34rh2ansbGjh+YanMoZ+yMyV33DU58yp+8VOSMPRtjirnFp/6Zz/jClx+4xjtoh4MLfHwJDvSLi0828iD35c1huTa/fvHvXrd+5ZEfzz0iLvNK+LEG3X/a+BG++DeGpzE85Mc88Oue1o+H+5bP5pJvbbz5gmH9WYds2Ltm61qBoc+YPLDHvXWJmz545cJzU87ZiZs/tvLDZ/NjDePXM4meeIxbGz5XuufFjRcMXOCEJTfsCFv9hE/88LGOiNzBwc84aS7F1Zxa3/r5IvTzLS/0rCdx0zNuLt1H9OIDs18swTFmPYhLbhy0P/vss/sb7ZKzZWdgZ2BnYGdgZ2Bn4PIM2DQ4aP/Zz352sRG0OVJsfio2Lm1aLkd6t7fNL1ybSJu5NvU2OTa+NnYKbN++soHSJvm14VHgEOM2Sq5tgmy26Nqcneoug/f5AQMvNd9t7HCyccZXWz+dNnFtwvjUn2QvdjxdK8R1seHNrg0l3GKkX4zp01Xglleb215Y4euH0SaSD+1eZsybzaFNYnliV+5w4Tsu8Eh+5WEKbvJjE9zfrGQP5/SgvXjKhRouMcamWPXhTQdPm2G+i8+89LKm3zpS8G5+9MMTs/jV4oTbi0Zc+CNi4Y/w5Tpd/GywYSWwvIjAJcbcF3TnfMEsl/TKI/sZszF9CnuxlCNjU2Aay5+x6aNr+AosuOXAtX4xkTg2D+Wejtz2DSfrzWGOfniknMcXppcVL1ryTnAzj+lo42It0pdHxT1Il571S88Llrkgcw5wjjc+5srL1dnZ2Xrxg4Hj7eMhhMMmOkRsfONm3PVcH2HO3Je7BXD+Q67Y4nta0le3fvnnd/LAea5neGLs7/ByxQYn6wYnBcbkrA8H/cWEX2sRTv4bD8d1nOhNoVMecYufta7glr0aT8Ivvl3j+l4+pr/TNvvWTGM44ZHQUfTz2/OAT/1xpj9ts9NPBz82/MklLDpEO8k3rDDETsTMvthhmk/3KXENi75i7u+///47etD+3e9+9+DgEk+HEtafw4Q+c3BQ4oCbAwaxyB0xr3gr9MQ613i64mzduX9dO1xXe1Y4hOkAB5/5jOTHdT6MN9cdRNEp3/yUV22cEjkVA97G4Dgc6eC1Z7maHX18HUC2TmCxExsdWOrZh4v+vpUpX2IQ5+lBOzxjfea6br3A5dfzTtscaCf8KNaHZ28HcXIqLpw8Oz0nHLT7vMXFL0EdxonbtT2VZ59fespdz1S/jHSNw6nokxv5xN9aKSc4tYb1yafnMz7WGX5zDVk7zRVceWMvBnNAF6e33nprxYALHP2Kttjp8C1X2kprRJ8xvu1FcJIbn0Fy2vyp5VPcpPzOPvMAlz3ubDyjcREvwYeNOOTJ/MpT/MRLl602ve4nenDZy0HPBn1ijRt9pWcFv2FqNwfsrOHbx884vOE6BIcNj3+x+JcuYhMH8cUI64Too4eLfLUm8Ich1/yo6YqTD3ysOxzZsMeLXX7UOJkXGPxYL2zFh1s+jbOvxo0vvOH7bMeBP/bdM67h6lNc4wKfXzZwrRPYxgkb+VZwNsbOHLFV+0Wcg3Yc2fsFhbyJSWx03CdEn2cdgWU+OjRnS/iEDa84cZYTPMXpXhW33GjzaQ3Sl4N0+YJlneNgXGw48W1Mn2dA6xkuP0r5wEss8Nw7xqxxuYBDT37Y6ou3WOTXs09NmgP5dl9YH4pr3MRt3sLQpw2bH3W68Fznx1qkIxZFruimYx7lhj49v0zERz5IazSf9MTquSE+vORRzMUJR+6td7kJh3/3PvGL8meeeebwla98ZV3jcx3ZfzrmOtnaujsDOwM7AzsDOwM3NAM2Fa+//vrhJz/5ycXGzCbIxqTNg9q1TZyNi2ttGxObFZuXRNtGh46NnA2LzYo+G5xeYOjBbPNiM0bg2kjBxS2ZbWNsFf2w1VMn7uzrT0cNg12Cj01bfI3jodA3Vpz6EmP61aTNZBtJPKZOmHTZTVu6Yc+xaW9jrBjnw5g8pyMmeTE3bRzl1sYTfnGzJfpqr47jj7DiMPvxkyObf4evNrkwbFi9nHjJ8GIdZvGEcTpXuNKlB0fhN561iztuxq0rtWJtqY0Xk7XaejU25ztfvXCxwyN8uji1zujnqxcaffB7uWFL9E/Rb45gGpuxGisH+Z+24g83/9nTO/XlGh4d/uIPG1bjYU0dNnSy9ZJD3wGOQ5rpj57cdV9YX16yvLTADqdxMZgjL4i9xFqf5Q6POMlV9uxwr/RMwY2Nay+7DhnUMPD3otfLMN7lkE9zFp6a/qnAMUZfDtir6aoVEm58y3dx04GTjdpaxleRE32egw5G5r0jPriEH75bK2xOOdFzHyrxyqYY4eFT3tkQ+vypFXq1+eJX3sofPDj6jc82O0KfhLcurvCDbwWueSgP8Znc9OHS2MwLrol+km395SKf6bgmcMnEXR3HH/nEb863NUkfNm54uD/kXL9DVN+Iu1P/Gap/ufH000+vAyL+fKMSJ/eIZySezU/rR42XwwQHJuzMl/vTIU25Y1su1OIsVrH4bDFHYuLT54F17Znhc0IfPbawtOXCgYXiGk/FtRzhouSbrWsxKCQ8OoQf9xJu+rLteYGLPveGGNV864OtnehLtNPp8Fy88uNgyp+OaY2qlXLb+sdNcS1GOPjzSRc3dkT8xsSimD+5lVMYuMq5P2/RnkmMFTrwPWP710XwzIvDO37EY370wyPy2jNcTcol3sUyD835kgOHkPDFkq2Y8BeP57C4jfPXLw5gpY8/PPzYWQ/q8m9M29zBJPCsX4d+9D1DYfI17XAUC31jrsXPF7/64Sra/OLoOa3dOuETLgy868dNLo3pq8gprtaauHHku4M9evzox4Vv+nJtfRkPWx88ffyYf99qtxeRe3mwRlrn7D0H+C6f7nMxwWgdaMNtHciTNcdGfz7F3uGk+LPJTvytJ3042R/i7xpnIg65EyvfxBgdffjmV7+13xyxNS5H9GHjKxbX+mG4xqXY8hEHNdvs3EfyCF/bQTsO/ML1S8Q+q9nIrRwQcSr5Z29+XZNq2NZn1/zLMTxj1p4xPHwb3S9FwrW+tcWq0HFv02u9tB7ziQeO+eSr54z4FTnSj4tr844DTPHrb6w1Y61aR+YFHj382dDhs/cAc8GHPLLjy7U5xEsczTe/9PEgavji1Y5Xcxz3cNnwL09w5CPuccCDGC9GNvjjoeaHP1xb7/pad3Tg+I+Fn3zyycMjjzyyMOFcR/ZB+3WytXV3BnYGdgZ2BnYGbmgGbCr+8Ic/HH70ox9dbB5tLJS5eXBtg9JmyIbDZs4mBkZi42iDw9YmyeZNqW3zxMa4TZrapguWdhspeK4TNkQff9m2mdIXj9qn9nTD0bZhavMFG/f66PGhNAYXplyQuMDqutzFD04lrKU8fsQbXpjZuCbpyJ/NJZ/xaAObjjkyPwr7Npba7LKNd3HGj2/zJR/ahK9iwsGLat+0MW5ja+PvgLMXMf1T8MsnPNjhqoudXoWO+GygxU3CaRMO07zhW3ENU+wETv5ci0V+SL7oTx7GcNJHWh9tuvW3XrXh0Ffguyau46WvPK7B4w+2+nDVpk8PX7GpiRrO7KOfsIOhwCPVbI0rZM6vPBSTMfjdr/DNtX+9oL8Y+YAFV4Hhxcncuy7ObOASL4j9Kxax9GwoDn6tL8IHwa2XczbGrYli0HaAYI1oE/PSy9TqOP7A10syrrDLdXW5oc+P/vkC27i6ErZartkoU6adfr8Q8LLayzt9eXNw0kt6eZXHBE7YYfIZF7VcKdnRL1Z95qO+1gZ8/WIOS18ctAmcckcvHP1KOY8jHmSugfDVBKe4ro7zPm067mNrBDd6ra1swhFLucjWdVzop9u4a+OKNp3pp/inbbr05zg7Ytz6xNs4seZ8vskdTg7bHLS//PLLq568lsEVf5QDB+2+XedbrvxbR+bD/dH9UKyga5svh68OcspVhzg460ufjeu45luf2D2b9Ynb+hZj92hzqA6vexqe+1bO+C5HuIkFpsJP68u13IbbPMCgAzt7/vAzprYWcWXDN6wOfBa54w99U+jJp3vU88A4nvLbLxh6bvFBv1x1X/GHk70OHPrhlic+J29+rH0HPp4XruEp6ckRLnjVp+3gzucxf/zw4RmJB8ye53iSMOXCWiU4iodO8fimPB1xw8LLN+rNtxxly4eiDx/PNXzwZeNwHi/XcMwlX9riVOOkplcbVlysUWvN55P5dS1eOqR89QtYeXIIaL3hC7uciAlHfPGGqVgrOM688IMTPTmCQ9iaA3WCq/UIwxzA84uQ8oSHPjh06OOZDzj6xAS3mPrzQHiJHVd5FZtcweCHjbzKrzGcT4VfuDjgQg9X/TDklBiDU/7nPPFJxC9ePj1bYOLQnLClA8cYOzj62clL+YNhfug1Li7juLGlE0bzQMe4OSr32vxkS5cdXNzkUc7p28NaM9Y4HPefazYK/niyxS1+2bMhxukSuPLoOi64K8WvH66c921qfdaIeYu/e7svEsBTxCwe/NiUc3iuzakYzCsdgudp4SM+dPk1VzDUuJiT+PDrecYPO7l0H/mFlzHxlUsc+JYnMbBrncPHRSzlr9zgWju+cPCz9sXNnpgLGHBbF2p8i71xOcLZuD5zRMybfjb80BOLfv75dND+xBNP7IP2lbH9Y2dgZ2BnYGdgZ2Bn4NIM2FC89tprh1deeWVtflzbXNhQ2Ly0gWmDY7NhY+La5kPRbsNiQ6QQm542ODY5FZsaOLDp2sjoI/BseNTTvzHX8cBBiV+8Z52NvniJzbVNI25qmHDSg0v040nYEdf1rY7jD3YkLurwYOVz9tEvB8az4TNf+tLJB75KOmqxGU9HLuUUFqmmq6QXhvHmhD48cyU/2sR82ESzMa82m15E2jzbaPcyav7ivYzPf/DLni8l/+mUH/1xVPOliJuOnOrPhzZO+uPmZYA+MV4c8kLEY6OvhkNHmb6X4vhhDA59BVZrNwzqzVvxNRa28SmuzUG42nHmT6Gj6C/W8PWFUW7xgkfYm0u49Iojey8l5s78wjL35lUOYZjns7OzhWMcjtzRNw5Hbd7hqMtzc8UvfS9gXsT4dNDcL2vY4Y6nQwMxxtXhiGKc/+ItNmsDVy/ErUdzT48fgrO2+YaDH3zF2KmISb9Y0inWUw7hG48zfPZ0pxjH18unIj90vYT3TWK+85E9u/rgxYkPftX6xCbGaacvLnM+2BG6+q0TevgYy1/j+eKH5C8bfuWYPTHfdPKpD265cR22+lTYWg8OeKzJ1mt2xvkmMOe8wmtd0suWfna16ZaL1g1MNnJC0mVbMR5v7fpxNsdqscO2jsqPePzpmJdeemm9sLP7IJJvB+x9ox2WQ7iZe334uadw0pYvfBzouN/E1/zjinNzVW1urVN29OGwkTPY+Cj5MqaI11ovH+7R5lN+su0gCrfuVdyLU79C4LJrvviEiXu2eCps4uqgyLfQ+7YiLM8Wh1tErAQ2buKEIZ8Oh3zOEZh0caOHR/HhrMzc8K/AwxFXGPDyuYCPP+jogwEXZ89gvmDyo0+bruKZip/Y4Xs+65NT43yXO8/Ke+65Z8VojFiv/HkOK/rlAM/icn85aHfIZ4y+5zcsfFzzj7uc8Elg4eGXrNp02YmNDl1rhB/X8h2OmONCxzUdPuLJPj508Qi3fNGB6//BMNa66VvgxuDBLecOrq1bebNGfHbB5kNerKE4N5fWiTzFk65Y2LUe6PJDhz0sY2Eba67UMK0TbTaKfznoW+3GxG5OrREFf7p4wFSsCb7KYT6q5cd9KWZx0TPmM8m8wcDTOil38lhMOODFp7XHPxz9fFub9Alfxvgzzk/3mHjkjMDGgw7RD59ucfFJ6NAVY7mib05hsiG44Ebw0Tbecw2ufr98tDZgiBe+Mf7wNafs2OvXB8O1uYCBKz3Cv3Hc4k8HX3lgAxs/uPzJU2KseOTS84oev/pxSOJTn9q68Jw3f/yyyxc+eONG1zhh0xzyYT7cD9YBPsXnOWPOjcOFZwzmjFEeiZyYF/4JrIrY9LMTPz75lhMl3XRg0NNvDWjj4DousNjiqLg2TsRDT/ww5TV7OmISDx7a5sxB+1NPPXW4devWwuDzOrK/0X6dbG3dnYGdgZ2BnYGdgRuaARuJV199dX27zobJRsNGxKZCIXTaZNhQtEmxkbJ5NKaPbZuZcGyubGTmJr0XGjZhlb42f20i20DZ4ExObZj048dfxbWSaPMTN/1tytkYh6NMTvzxP+t40GtMm9DLd/7VfNDJF13t7F3PdtdxMgZHPWOAKQ/5ZEfMC1v6pJq+EjdtY3SzMQbThlyxqaRjPmymiwUPm/A27m1O54Z0zlc+1ebYZlsb3sxLfWp+lXhYS3SLCWeFLs7G8DK3XhjVxciWHp76cPDi3EsZW/2tK7pxWA7Hj3IrPvHalOOBa3ZD/SKOxudYbWPNd+sIH/dNLyjlVl85izcc9uLq5QKnMMxj3KYtX3LgxU1Nh67DEDk07oXr7OxsYRnnp3+5wBc8/PGD4TmCR3NinI31kx/c/D3N/vxQNubMP9U254Stwx3f2i0//MB3zQebvtHnhVXM7I3hE7de7tjpU8SnPpXiLOds6OIDX5l2xhR2dOTFNdFH0rdG57zCbj3Ki/HLBE4lPPrsi8m1kvBZDGzjnn16OMsXYe/+1EdgsGNfDOpirs2uHBsTkzE4ij46+MQXftjahB/6bM3tPJh9V+O/czl9t+6zp9scNF/0+Y5L/OiWH3UY6nxoE9fKFPgEtvnDWem5I275cA+YewftL7744h35RruDdv+M3d+8xsu9ZN3Lc1zNrXvCfY2rMXPs2j0jH61J4/IvFjmthunQrc9mep4VYoTPRpyKNqEjD/x0T3quuF97PssrH54NeCl9nuDfWsBRiR877Wpc5FhcOKjhqOHT5dt/QOsb1T1j+nvm+PY8Ky7+YeDmG9nmjz/4eBarHLApb+ysAz56XhvHQQzyxdd8HpYvdbHClTvPYNgKPAfVagILN3NjPyZetUMrcyb24sDXYdm99967uOkn5oiIT2GDP878q/EtV+zE70Dy4x//+NKRF/nXn88444QjHfPeepAPxRrESxtn3OWdH7mQx/Yb4oXvWdPzBne2OCt0XKvLO24O2tniReSRb32tE/a4WCvGxO3v4jtsJ2zlyzheYqIjb7hr09EPl19x4GM+823cNX/Gmovl5PjDNSxzKU5YbOTDQXu/UIMnp9ZI/0qKrmIMjr2OPIhLn3UAW8zmS57MSQfM4mPnMJ8ffvEUr4JvBa61CAOW54+5088XH+YTHh1c8eRP/PJDX+7o0uMPPl1+Sfh4y0Ex0ucfngJHfMb5dY/BJ/D5I+XBmLljw4fY7U2sDX5wIWo2cPlgw7b1ro+IjR6exrXp0O9+d63ffNC35xEvDjiqidhgFCt7+bUe0sFLwbW88C235oAtH+LpHjNuXeEkH/jIFXs81PStcdek+S8HMHC1F8RL7lrL+PBLstcnHv4UPvDTD5OeZ5g8wnJNX6FTPHzoK1Y+XNPvOYmbPvHBKy7rxJpyX8OBq681wEZMSvzZyrXr8upfpD333HOHRx99lPvlazWu+GMftF8xUVttZ2BnYGdgZ2Bn4CZnwEbDN9r9M3YbONdzg1NsNhsKsSmi57oXABujNkvstW1kKjYzNnk2OTYxbOnZvNjcwCM2fDY9NoHa9IzR025DlQ990y8eYcGjT+jggA/Bw8aNxMPmj22bPNj5hINDfOnUB1tb0VbgzL4w6+OTuJ4+9GVbzK4Vmz04CsnXuhg/8qEOy7A2WzXBgY7N4/QlL142esmhY87MdZjy6KWmF025C4eOIq6ZMz75Tle7edRmQ/TFTV8bbHX65Rx+OGrx4e2bmmJwDUMtfzbe2tZWB+0wyqU6//AqeKUDL//yYiPfi4N+NqR4XPPddfO9lMaP+ukp7OS5dQpDn3WcH1zp5MMcdN/Qj3N1+aOv8IO/uRULPfheRLxk4eSAw58aMNd8yZfceTHrJQYOf64dqMCiq8g3nF403duuHbL3t0jZuO/NnRc8vgiOXvYVNnzzI0Zt2OaZjUMCXNm0Lj3TcDM/8WJX7DCVRD9h0xh/bFyXv/SnLhv2SvdCfhqjj7Mi19OH/NDz8qm+TMIPF7cKm9qwib7WA5vWizqZ8et3LV+Evev46ouzMYWo5cjcmvvyRTcdbfzwUbvGiVTra93ol4vWXTHph8lG4Stceac3c0vHdRzp1+Yv/fC6VucrPTokDG195VM/O5x93vXM4g83c+z+ctD+wgsv3JFvtN8+/qeI3/nOd9Z/hoqP+0jhrzzh4d7CCT9j7lX3uT68jSvmWjxyCsd80dd2D3XP04Pb5yrc5kG7vJtDuOXCoY971WE7HbllB1eNC3+tWzHREYsat+aPH6LGg50CR20tKtp8eT7cd99967nj8wtevzRsjuDBUvS5F8yb2NVwcINrjE75LQdiwLPcaMuBXMhbGHIqbvzgzNjE4F7wfMO1WNnLH5/6jHsWNzcwPc8dfs17EVeY1ubZ2dni4ZrA54sO+/jzZX2wwdFBtWe/cbr/xd7d7VpWFW0cXzcCdkOCgECiB16FUZREAxoaRYmAgB+HYvTmVC5AVGhaG0+8jXf9RvafVOa76N6b9EmbUcnY46vqqadqjDnXmHOv3u0z4qmnnlociqn9Irf4FRN7fTmA2Zry4QUZDtruIe7bfU7Ii9z1jVw6bPEUtzURR2vQ/YJfxRrwi1efAeyJzw1+iXjiDAMnPPHuFwzFYxyfiY2Pwg+RD3itLVvc1eaUPh+NibPCTput/WEdG5N7L/0V4wQPe9u1Jb90iPi1rZtx1ztf8iVexTwe8iAfMOwp/v2CgS2usOS4PVx+9btviN31ZO3KDY72Iv7G5M6+4UM+2OChLka1Yh344b+44oy3OMIVvxj4M67YR17edt3mR2xw2dKXY2P4wfCLuM4/xhW6cofnvL74wcXaE/sCNl/ixp2O+dZSH5b1kPNetFvvPkP5I10H+uKACYtP2HCI+XLCtzWBb9xebr+KpX2Fj3jwEVPrzEb87Ihxa2X92bdmcFyDbJu3l8RPj50Cr8KGP+PWF3/67PsP4flRzM3c01NIeOYV4/aAWh7M4yVGAt/68mkPhm+8PcBGbstv2OWVnvj8Z6i//e1vT6+++urCpncT2S/ab5KtrbszsDOwM7AzsDPwmGbAYceLdv8xWy+ljE3psHE8TOg7kDicdPhxMGKvOJAoDjJqB9gOoeY71HTA5tOBxiHR4dKBjA5R13ZAmgKrQxQ/caDfgcuYQ1a2PSyIgS0ODlGwxKKYg6GOb3hsjOtP4Uch5ujow1OHqQ+zvjoxrhDjtXFkJ8bmpt0avPqRzbTXzi81bfGVZ3zZyY0DuoN6sdCZh0/xO6zKKR3z1s0BOp9qmMbD5le7Bw0cFNL66osRlzhbtw7GDsq46dNRcFCzxckDQjowFPy9JKCDgz1WTMWZrvjC5ce4sR78YBjz0DNfOMfDnHjCkJ+w535fgZ9/0EuXHn7s4fFLjGtbn3T1ywN92MS8Phxj4jRGX5k8W9u5v3pI49M6eynu5U4P4B5e3C8U2PnS9qDdA4m1aL/Kt3x5WMTLw6y/48qXdWHb3ism/j0ow+Sj2NTlw14Ny7ob55MPLwnY4eufwffQKhf0yvMCHj/MEXryYr/WNwdTPdtL4fzDmJzGtxpWa2D/ELhhyZl1kQMCJ2GXhGMef75a97jChwU7H/nuPmgehnl2dNnRy6b8yOeRc7zjpR8XbcI+LGP6cZw6dOHTxa89bq/mu7jpEvyLEWbFGF2+Zg71K+zzn3660x+9JD39YtKe4zAUMdjX+LcWxt0Lxfb888+vP/eizi+sm4gYif9E97XXXjv9/e9/X/5aAxwJDuVUbESuXBM+k13T+q7zXnzATgdnmIrrR1/u4CquVfjyYLw5cRc7PPMKn+4linE8+ZoiJ9aqPMOsD4M+HuWAbfsnGxja9MSqLz73Ct9Yda+Ib2sgRmOw5IqvMNzrxM8nTPcrBS+61jsO+MFkXw7My7F882FegcUHnJkPGOzLLxx2xDmqveWFGF0x4q/uPmu8GOFrw/My1Zx7Dg7w3Edh0kmXL/rio+/eLQfafMmnX2rTwZWtWMzDKP6uB315UOSTf3FZC/uCfznlB7584OeaaR6GMX7EqdDlQwzFQU+JGz5y4+Ubv0Tu4IrPvAIbJ1RADXwAAEAASURBVBzFx49vdfuMoodja6nNB8m+/MExJhfa8TGfD3jtjzDEYk/QYSsf2oSteWcO+dM2Bse+kkd5kLew6fgGfPnBA277DjZde9O+gCFu417m88OGn4nLBiZd6yMX8srGHsEnX/LOnr5x+WNvPtG2VgRncafDb5zMletqdnDF0Lx184sVn/vWDoa4jWvLuxoGbvzz4WWtkr90ulbU9qd9BI/AbM3wgI1/55bWj25t+aIr364/fuQNV3X5Dpcd33KpxpuNQjfsuMAWh3n5lnsY8oN3cbNV2MkBXvTEnw3s9ik7GAq78OICQ9EPL2705xrMz3l+/ULL9cyvtVQTNnEuf/CJvsKXOOEQ89YAP2P2iP0kDm1jdNiKXcFPbstvvuJtLdh50e4b7ftF+0r1/rEzsDOwM7AzsDOwM3ApAw4a/jPUDz/8cB2oO3x1iGHTYUNdMU4nfX0HnTnvQONg42CiODj1N2HNOQA5CHUYYhumw6SDlQOOcW01H2yJucTBCT4/5uPChwOUMYc2fNhpGwufDt04zPjzaa4Dmfl8GKuPD73JzZxinNSuvwbHD7gVw/QUucZZjERfgUfS084HHtpTxzwxZh4G23QdsD18OrSGQ8caiJUe/fKJq9yVa/PGwre+k2dc1GKxJuk2Zj1hJK0rvx4GfQPIQwTbctW66xvvQQEfvD0ceWlL+BGPg3Pxwy6+6Vce6MDzYM6PYsyLXJgeumDGuVzCgdv+Ne4Q33z6ccY7Hrhow1W39sWsL08KHZikMX3xeXDxwImvPPZwE65x/NTxgEEPhri9mPLnBly/xQ5T/B4M2dIVm3Frzhcf9NV8yFMPqNZRsY9wZMumggtcD53wYIQXNp5erPhmvBdoHlrlii0bD25h+FY8LHkl9HCeOZ59GPE2rg1LaZ+wVYxNzDnPFlZFPrSJa4Ztsc21g5tkO8fiA8M6EznmLx/auPABQ67tZ2tqH5mXJ/baCly6Xc984mXMPCxjin6czNdWw+Ebjj47Bcc4Gddma021+cKPPVHXXgPnH/SLEcbEjFO1ee18aoenhmMMN/0+G/TN5YfOFPOwcdEmdLMTR2MwxUTXfvV3wt966631ZzdgfBUphnv37p1efvnl9Y12PuSClCM8rDVuciAOhR5989r2BZ6knLomrV/5VRd3uWHjXsEfwctaTp8w2DXnundP0Q/T5zcucNgTNq0NDHziZt+KR1+xh+HFo/yz82KSLk6w+ff5wXcvmScXvlt34zj0ggs+X/o44Agz7nT5Ki5YbMz7XPUZwsZY91h9RRz4wlfDKv74wZYr9uLxjVjriIMxnNxjfd5Ne3bm05MTOnziBEcu8MSFfzGUU/Z0jRW3Ph9q2HJG5jh/7svWm/RC1H/aiwO77kna/PIvNrrwcYATLhy+8PfZIV+9WHR9mYu3/QmXreLzqc+s1qOX7eZh2Wf8soODp/XGoWsmTDWu1lKtL1fiKIf4wgkfNl25xjW+csuPmOiy109PXvo8bH+1LpMbbGtqjL2X3/IgTr5gGC9G+uIy33VozjrLB+7q9hAM8cp1+vjC9FJfbS+VI1jm8RGLvgI33rD4J/hZI3N0FHYwxM1WLhRtfMSnGKOHq18S4OOFd7bq8j3jyB5vwg+hYx3sGzkQm+vLHmmeT3NqOPiKQd7Zyq88iVHexKK0783ja585U6lh8d06421Mvxzwb3zGpM0nbPc4OYQjTzjFG09cWiM6EytfeLFNjMM3zgYO/sblALcwW2/zxkjxaJsn5mD5hZbY6ffFDrnkr73IL56JedIekVf2sOOpr9ApFhg4wyPxY4NjPsoJXRzw7EX7/tMxK3X7x87AzsDOwM7AzsDOwKUMOHj85S9/Of3+979fB5zjoYoNnQ4oDhuKvoOMw4mDi9JBOAxzdBSHkw7mfQOqA06HfgcaevmC2UHI4acDUvPmCD8Oew6yBAaf8Dpo0XHQMscOF23z+pViiUsHNj4Jzg5hbGHGpXn2HSRhGE+PrT5bbfMk29W56htrnF4lPvXDYKt9KQ6c0uO3PB796fNpHeWyh3eYYaj1w4mnmBubuPwaJ61J+8FYh3RtWHJjDIfib07Nv5fsTzzxxKqto5zQ12bjsO9hQt7bk+w8IHlY0jandKg2RnA1puCOqzyIT04c/nsIN9ZDnD0Mr30BqzZsuvAU9ni2H7PTV8zhkQ0sYlwJB7fy1zgseTDOL1+9aIcJ3zwJhx/FuuIMV4FlzAsM32j3dym9zKYD28Or+HtpQdeDiJcf2jiZxyGb4jKPo2JOvmEWYzWObNT01Hi1P1ofL4kUD+p0iH3g22xw8dL2gAyPpKddrObo82Usvvk1h7uSvbrSvH56M5/imn15Z9P4XH/jiXF2pHH8+JE7sRJ8+Z35y4eY7GXr2bUNy3XRGsXZOCz4pNw3byz/dOOvnlIe1GHiU56Na7MrdrgKMV8sE7f1MRdGfONYn186xmvnI+zG+QibjXZ99vGZsYfL1jgsNtYrfPvVSxbFi5zbt2+f7ty5s164w/wqApt40f7KK6+sv9Hu2rYf+HZt8Run9gl+zbMvrnIAV5sUP53uq+XAnDXjg69pp48LP2wr1sR+M+d6JeXZy1hYE5c9/vYMO/dZoo+PmsB3bePDNxs1LD69vKGrzx8/dOXEPcM1UT7V9JT8s3EPgWFMfvhsj7HhU03XfPnEz7g+Tt2j4MuDmrCDyQdc+tr8ipuemPW9RNPn0+eSXxzIHzw46dGFCUv+1OzoyImcaXsh51zm5ax7g7F4aBO2xeF+AVfdPdWcnOKgTldbzNYbFr64+mxgC8c6wM8XDHz8iydj9HyOlR9jdNi1LnICW45bF22+cICv8OuzgG2f6T7X5EA+5UlufI7JY3HwaR6eHOIEwzw/7PMvd+UXZ7b01HDN4+R+IN/sYdKF65xCcPH5ar92LZUHeESsrZX4cJQLv9iAW46MWQd+fXZ7Cc2OX2OKnLoW2OECyzyhb71x4bs1FTcducLdL7TpOTOwV7IRP772M319PmHA45uY588cXuISh4IXUbem+vnSJubtjdaSL7zETPTx4ts+s3ZyLE9yzE6cdOCIy3poh1N++BIPPnJH6IrBmLjsZ/d+6w1TzZf4Wj9r7f+jmWcouHKWD33tBEe820PGzecDRzp4GFebw8n+s3bGiLzjDQ93OSjn9NjBCwd3+YMlBnmDgS/MuImVrj7b7KvpKnzzx4f7BVx+rRWp5ss6KGGb58OeKRewWu9yUK67bvSLHz4M8dNXjOEJiz9z/p+PX//616cf/ehH3H7Ba3Wu8WP/6ZhrJGmr7AzsDOwM7AzsDDzuGXCQuPSivQONeYce0oHDoYM4cCjGHVQccNTzkOWQRAeGmo4DlMMMOwciBzMH9A4204YvB6EOm5NDhyO4DoCwYbBXSIcq/o2pYdLVdnCKPzxzina4uNLNN0xz4fHDr3lzDmTHHLA3R9iZp8/uKMYvCV1x4oNj9nGLf/7pEDV/7DukZ2NeGyfzCnz56YGAH9j5gweHn7iKberMNh/w8wFfIdZfTASPfKtxOQpcL9q/9rWvrQc5HGF4YHEoN99DGm5wjMHC14ODXPBlDY3FnY45D1Ew2OMMg46HEr5hFH//LJkN++LMjh/+W29tusXZPlIbU8Ohx2f5LQ/GyztduVPzQ9TWzjhbvjy04Wzd8gvHvDF+YOIIC3c45UNe5dvDhQdS83S9DPDtKw9k4biO5YbA/+c//7l8w52x8D9Fn7/imLrGKsbpwUtfTB5gFQ/L2YoLN32cPMT2EMg20VbEoJQH860zjMktH2GojWWvLyb94xrh2xhf9GC3jrgYZ9tce4OeMb6KofXjMzttQjcfMFwvrhV16+geKE7zBJ48lZf84BMnY+WDjT7+lyR7XGAr4ZSz7MOgO+M0Hw4f5Yq9Ika4JJ7lYmKVN9zFD9P8JaFToZcvuvGcficGOzp8wNf2QsIe9cLl1q1bp5/85Cenp59+euFO2+u2y8e//vWv9Z+yudbcC13L3RO7D1jfXhKJwzw+xq0/vr3kKCf2Q3uFDT062uUOTnuZXbnPDgZ9+PLgfuS+YcwLy7DiAwt2e9U+1RaTPcl/fmC15tbBfY49G/l2H4SFkzk68WhPGCsGeafPlk+1YoyIn7/GYeGfFKe+Np50yqdc6+NH4OJbzMbwUfBjx597qvs3W3nAA2f2xtT9KR736nLOH1s2cuAlGGy4ipy0nu6b9qY1wS/O5al44ggbJnvc+GCDF6xyzw4fvHx+8u+FKr7ux9aQrT3RvZk+Lv6Vkl9IES+G/f1mfouBD/zkiB+8+ZcTOTJnbL5w5ssLU59b7PDykt3/QeK6lEs8+MOpcylc6y5G3NUwxE/48UsKvLXxZO/zhx+c2MiZMfPw+JQPseib579rxBr5VnT7Mfvyii98ecQFLj9yLX+4tJdaA1gwxUi/PaS2F7t2+cJL7PzR58MYH2J1HlATc/j6V2TybO3EhCMeamtHTw7ECRcv+w5nvog5+6qx4hanNmFbMSZOfXEo+vyxESeB296gKxa/pPLFDb7Khfz4l4r6dNjdv39/cRebAjt9bWN80if6xSi+/sVde0meFXmJk2vCnwKz74pHvuAr8MSjbQ0UOYYJS1tcRFuhY0xt7fnD0XVq7xmTP/vIvpN3ds62ityxN8ZH+8EYW/te7nCyR9rz+Cv8Zidf7PJXzthqmyfqriV8+bY34y8H/TJEDPYXP+y0xafd2vOXX34U8Sri4z8dXMtluTMPy1rg8M1vfnO/aF8rtX/sDOwM7AzsDOwM7Ax8aQYcJOaLdocNhXRw0e7Qp510CKnvAEI6sJh3SHLg0XZYcqj2cKHt8OLQ5vDioEnXYYhuByp9hyG61dr4JB3EYLJT84lHuvr0FEIPBt/0CX1jinb845IOzObYxlkdz7Do8a3gn+5yOH4Yf5jAcoDEx0ExjsWir5QncbApJvgOi3TwVpvjW17iao4fxeG2/IiNsMu/uNjBLdd0pk/zpDWY+bT+SutCxzy/2oT/2rj6RY0HI9+Ycqhm72CsjZuHEQ8qMNnKBw74OZz30GVem03rIi57UTxs4iWeHgjN0VN7MIKpTacY862G3drTgS9GfPGjo5QXfumV7/KnDqu8TBtzcOROgSE+ufAALM78mqNvDDfFWLkuDvbivnV+MejhwoM1HfF7oPJgJv7y5iHNNQWbeAlYvHzwV2y4tq7mCGySvXZ68iEHbMqJtvX30rBvVmWLE2764ogb//k1l35+zcNXsys39CY/81PMi0+ZmHT4i7c1UGB1zRSPcWtHzCn0ilsu4sa/wh89PsNbAOcfjbGBA9u+a++Jz94VI378w5ArNvmDky/jiTE6yoMkzrCV9kEx5AtGPukd82gez3KiT+iKoX1kDHb+Jlb8W4Npw47wgQcMwsZYEob5S/blhI0Y8PViwwsJL3b8B5JvvPHG+nNMl2LMz4PqOLjGfLPO32h3LcBz79YWIz08XQ/ujXKPDx1j9gAdcZQnGGztEzjZ2ytiUuCYs6f0YRhTerHSOpmHwZd7JnG9EnNw3Gf4lDt1MejDxFWBqe++0r0Gtthg4QOvPS4m90A2OBajtjjplqf48AlLDU+Znwu4mceHwFHoJ/DpED5xNM8fMdc6qAmOdNVEW1yuR9I8bFgKHHtKmS+I2MqPnCv4lwNcfSbAJn22WRP84r0mxw9+xey+SuwH3IzhMu8tMBR48BV6fPQL6+499gQ+OMu1l3deFPucJz5nfBNdPKR9Ih4lP8YJXDHi45wA0xh7L+y9EBSLa9J5wst4L/bgyAk+fNIPWxzWiT5sf+bCvLb94FwLQ1uuxSNP8NjBEb++9ZAvWDjgR8QCk2/7BQYu4lLMy7c8sWfnumVjjxvny31G3LiwgcWPQvCCjQ9pr7K1hxSirxA88JYH+q0jXwQHsckLHl6008VTYYMHn2Kgq88XLDjioSsWL7rxhVEu2i/8wSPm+FO0wzAnN2z4tE44WpvE/rDXvAQvZnnm2x5p7dl9/vnnCwsmPHktb9r84MC/ggtfxrwMtsfEKJ9w+S6X8kqcqXrRDpPIE4x80NUXDxy+rLMid4k4zBG6uBqjo6aPV/kVI/9qY71oL1a8cQ4TH1jWSFzw/YLC3qJrXuGbjcKvPv7yaF4MxBiMStz06VRr4yQvuLqv4IWLnONuLelbE8V4uWFbDvnvsyEO7OWmdcKXHhvradyXTvyN9v2N9rV0+8fOwM7AzsDOwM7AzsClDDiM9KLdIcuhIjGXGFcac2hx4HE4cojRdjgx3+GKbfrh0nMIUhvrkAfHGH0HGVgOZcbCoc+XwoeazDF99vNAB5vAjk/+4eQDfjyr2cVLO50OduwdGOPSvL52/tjSKz79KfTL2/QXLjs5V+fDATLMxsRqTJ3/aRevGX9+46p2KLZODtDZxwu2Isf0YHpwcmDFid94s2mvGGcHP18wjuvMxhqygz+/7QQDL98qu3V++attLdT2ktg9QCp8wMYFjoOyh3U6xlo7fe3EHJ7qcogPXsYdtnv4UKc742I3Y89nPvBRpk45YVspx/o40IEVfnmCWwzGFDr4xbU8eDAxh7cCL51yr+YLJp5esH/7299eLz70STmEJd8esD/77LP1QA6TPdyk/QHTnMIWjpKYr0+n+VnjTfCsyJU9Q4pNnY84LYXzD3b0lfjQ9/BmjJ02vzgphG750U7oV+BcisF865MPYwSWvdzLEBiTcxzzzYZO+aqOQ5jlJ97ypOCRTVxxMibu/OUnnvr08zP5mEvM51udvjq/dHHhyxgp7jitwasf9Ai8BB5h335j63rPj36c6RbbrI0TOYBPP97l2bwxOqSYVufqhzm5LSY6xqyr9XU/8/8dPKq/0d6L9k8++WRdq3LgJYWXVz5H+ZRj4uWEeffp+W1Fc3S7tstLuTBP9N1n2zvVcIl8yxV/5SEO8kbPCzs67tlywydMvFov8+x6QQuvawMOfbZeSvUixQsec3SVXtLh5d4Ds30hPvwIG4XwT+rDwcFLbPowlO6ZasIO//YDfBwV8dWn24s+XIiXreWdD7pwzMPEvbMZP4q806XXyx/54k+etHEn2fRyCWc5ky/XOQz+Wye44leL3YtIewkfBR+fo3DlApY2Gz7jxbe+vYgTP2Ljq89tbXzgiVG8YnCNeFHsX1LBs2fyCYc/uvJQrLDMiak9Zg94WU+HvuIFqtgnP+vby0L2uPhMkzP+nTdwInIBx5/4sJ/lgG86foEAh53ihblveBM4ciQ+bQU/3IzTl1t+cZBrbbF0DZd/PuVSfnFJjx0sOfevZeDLL/32hdyxpVeBax3FIxZ2pH2mbZ/Rw58dPLFqmysX+JjzrwTwY6MQXMoNHnJAV+HL+hEY8OgQ42JQ80cXX/GWK7rmrQ+8riPj+ccTNjEv93LlGhQXfubdG61dvqyL9eaLiEsxzycbZ2CxtY9cO17g82/veNHOPyzcCX/G4MIxzi+d4mkf0udPLHKhtFZiYN+eoOcaU4zxQ3DDS/7KiRoH/9KDz9bXNaCwNc7GHH3xipWf9jU/xvDgR37Y0cWV0DFG4Fknejj1rzvExIec0GUrt7i0x/iNj1qfsIEp38bY4l9u1MYquLm+6ODGLy72Bd/6xBxhZ87faH/33XfXn2wzDvcmsv90zE2ytXV3BnYGdgZ2BnYGHtMMOEDMF+3C6FBRSPoVB4oOLQ5YDiOKQ8083HbwmHYdXOjmwyFJO32HLgcZRdu84vCVrsOPA53DESztDtBw8GJL4qcdF21Ct6IfJ+1kjsUxfHPw8TgeyNiHrTavsGGffn7gOMTRzSedxsQ5800nPtoKfblQHCD12ckF28mH32xal7jQk2tr4IELRjhs4tohGcfji/aw2Fk7NT4zV3TwgploN6Zm6yHYN8U8NMDg16Hcg0scxMiHuD2YzAdp2OKRF99UgqHgLZYZf3utfDUPX9sDkL3GlvCJs5qtWv7oznkPCO1XcbS/2VZan+zgiY8uvPIiDvz5wkuBwZ6Yqx1mfbrw9OnBFYu8acPhh2814cc+ePbZZ9fLBGuCl4c7D1R0YXjRfvfu3fWNQfHCKg98eQhS+EqMK6QY1HyWS/HKHeFHW6FH2NMxV5zh8m+MrtK6moePu5yUa7oedOmxtZfCqo6b+ijG+PHAzF6fHW7xi8fR3ri1kVu27PApptr0FFJ8tdVw49Fa6rOH2XzrGy7bYpy4xunEWx1WttV0k/LKz+QzudClx15+YMuda8wYKX+XfJhvnF57C38YxuY8fVIM2vZzOvr4moeRXuunj3869PX5qa2vEHak/cWXF0HPPPPMelB/7rnnvohzKd7gBy6kF+3+dEz3Cj5cn/rdb3CSWzlyfXqxgrf8w6IrLnEbN9basaVHR60vZ8Q17WVFOViDVz/oeXHRyx3+6Xc98yUnXuB0X5Uzbf6Nux7owBCXcS9S3Hv6cyJ8d83Fi40iBvN8wRY7sSZ04Slk6tGlI49eoPItdtzx6x7E1v3HvUJu2cFlK184aPf55bOJTbq95JMrsYo5znS6HhbB8w/YYiF8yT0d4+z4dL/upVpYfLKD6XOMnVyIWUnwIOzk3C9ZfQbTMSf2+TkKM9/mtfGiLxa2Ypcj+TOn7TMdPvHyu5eLbOTcZ7zc4C1n7svs4bM3xt5eaF/Ctg79Eolf/q0BOwJPIdbQOFw6pBxpywFdXKw/ESOufMh7e1m+xST3MBVcXGd04JtTtGHDan1gipFN+ZNrhW82cKyZNWw92nvWEwa+cuIegxMbGPzkS766L9ibdPj1MhMneYVTzowpOLBlI2fGXM/Wgg/zrQkORD7bX+LCnT/Y7GEp+VMrdMuxeftC4YNvPu0bnOHDY2etxKad1FbzKQ+1YeFsDC9nWb/UsRbpWmdcxGiMfvclOOUPZ2uFj/j9p9cEH2vhjNS3vunKnfWEK0/tPbHBJK03P2JvDeVRv31X/O1l+94vydjxY5/IIxuib1xsfIhZXPKHP3y87Clc4bCPI37G9LVbY/iuA2uFEz/mYRBj5lwHrnOYYnCfkSf86eJT7NZZsTbm5IB992S4xvnq/med+BVHuaFH9AnufKjpE9zE5XpgT5e/8g7fi/Z33nlnv2hfGds/dgZ2BnYGdgZ2BnYGLmbAgeJhL9o7ZNB1mHKg6aASqDkHJocVbaKtsH+QOOSE6aClOKyxdehysHGo1TbGt0OQQ6BDkYOg4kCVT/UU/fgZx5FfNg+SiYdjcTqcyQVOxTtxcISvHHPFroNptumaK8d0jOunx0d4DvI9gMkxfbzkooM7OxzNs6NTHJPvsc2ODVuiLX8krrMvj63hUrr6IX9z3eZcbbzYEn6UhA/7wQOAtZYLDwK+PeagDdtYh3k8evCDYT78Iz8xmsORz7jabw7+bNnIJckPH9okvmGEsybPP/iA0d9zhenhAr54CA4KKe/m5rXQPpV7fGDyRQdfuO1vD05yUDww2ccNRn7UrWcxGYMHWzturknjuHmI84sOL6DEw5e95QHRt9o9pLLzkiEu4sPdHqV7FL5ab775o8dGTETcCq701fp0xFhseBLXQnHpH2M1hrv7Sy+8PFATe+rLXiAuhcMPfORYDN0ftHETR3nMjP4loScWvNinZ7zYxaRfHvgl9MWuyF/j5Ur8pL0QJlyCZznUN8+2PcZu2raObMJgg7t9wS7+cVIbi38x8Wdc3uWMmJML68/XXMulcP5RDObjY4ydujWnj5dC+NLGh59ysyavfhiHQbdcZqs2Juf5hXXkyda4XNCVl69//eun99577/T8888v/Ct3N6rgkl60f/zxx2sf28utl/jsA361y7U8aruW+2yVd9eLz1a5Y+M6pIO/AoutXJVbe90LEGN06JdPHOEbg0fkjK415pOOeeMKXOO9BJprwF4c7v/9DWr9cjz5WwdYOMk5bLhxZUfwMkfgiF0O7Dl9nz0+a70IUos/XPlhT9/LZ/ji6prnwzwcNTu89Okq7QvzPs/nZ0P7PYzy6B6Fpzx6AWUN9ItBzr1k81kpfn5xFad8ym0v/PjQx9kcKUb84wSjtTQvBv7ZaPODpzlxqcXmviomfXjWSK5wYaOwh29ejD7b+dKXL9ysR3vZmHszXDHShYOPWHz+4MB+YsuBzy37h38vaeUPJ3HQ58Oa+4yzb/BS6JtjYw/Jt5jY8dW6ykG5YEevdZaLOMkzWxhscehFuzGSX5+zfMsD3+0vOvLSvueHfy86/XkqeeTfvDm48YMnb/p42EOKfHU9dt+lK9eKHFpXerCtg/0PQ77mt/rNE/b0CQ5d2+IuVjzg0pU/sX/66adf/ELFfhYPbnJoHVwH9pJ1J9bIusEJ1zgs4vpVzM+1wUOfDVy/wOtFOz7w5VDdPpCHzqVsxScG4/pya58Zgyu3//nPfxZfbWNyxncFPlscrBfMmSO+FULXPD/yzq85Y+LzLzn600v9UkKu5B620n0OlmLtFNysAd9ybB/kT+75UeM6Y7De5uw/84ROgpv1w1eRv/DkCTd4/HvRLuf68YVvjk33CXtSH1drpc2PIj4Y2njxYV5sCn3j2uYIH/N+zh97wgfdF198cf2N9ldffXWNzxjXwEN+7G+0PyRBe3pnYGdgZ2BnYGfgfyEDDhBf9qK9w4mDCHHg6NDhYOHgRRxcHFLoV4xVjCUdSMzBdXBxsHGYIg5PDozqDkAOjb1UhcXWQdXDBp0OU3Dgh62OjzqOfHWocoDTpssWRnHBNk7Ym48T3/Smj6V4/lGeilXdIZWO+bjCJTjRoVtO1GHQ0VaKpcOq/OBFX14cquOXrhjZilftsMgfLpeEXbGWH3rG2eGrTWBM/mvw6of88AWLHo7Gyj+14iq2cM2xsx8UOHQ8rHqAmQ85PRCqywGe/MCIH+w4OGST/NL10MKXmh0Ma0W04euXt/DbJ8XGVhs2Gy/a5b6HA/ja7OnAUxO25vpWEBwlLj2M0MPV+vfAYIw/pXzBZM9HfszxTeRDfopJjszD1sZLoa/Pl5cVHuK8fLIOxvGz9zwce3nBxt81tRfZ6OPew9Nyfv5hnG8cxWJfi19fPGysKb3WUZuww58Pc+ngQ+TBmIKfQsIuZn49YKqtFX22X/ai3TzhB5YCy7h2PI1Z9+4r5rMRW0Jv2mvTq8Bki3++6fBDB5baGlk7fTbq2vSLv/EwGk9Hnw4xNvcYPwkuCh7WYe7nXorkX41bew8ObHZqfUXerXnjamP181/NvzkcCO5KvLThk3yszugXKxxCL1x1ucynOhvY5o3li83UFbMcsvHi8lG+aL937976z1D/9re/rfuWvPNlLfCa+0GO8MUPV/chhYjddebz1H5l79oOC47rki0c9tl4+Sde17liz5ujmw/2dODC5we/ivF0XM+4tO58lVP67v/uP2KVU2PsYfYStM86nL1cowfPPLzWh52ir9Bxj+Kf4M+fF/te9rGVQ3iw1fTd8+QFd304cNPBkZ285IdOZxt5w9N9lx2hxy5urYWXX/yI0T0KV77pEZx9fvishMtvuaKHHwz3a3Psu4eyl+titF/ZGuvzpnyJRQxyYowvetZXbf/gwD48+XePFZfcKWxbQ/nqs7244fFDxx6BhT+9XrTn273DS9L08cgHbH+Sxp/0MEbPy0ecxAJf7sRsrb3EY09aC7lT5AsPsbO1Fvow+IknPnIud3LBLyy4xtmwt3d76W+MnpqIESY9a8YXvwS+MTGImZ195F+g4U+3+PhUcLOX2k94iMc+wE0uCR9xlA9FftiTsOFbI5/drkv5M1bO6GoXNz9sxcMHTvaAGPGvdm+zRuasGXyc+bfvvRC3D3CETU+O6YRbDuG6JnrRTp9/ORM7fcU69Hf825MwjPMDRw7kduYCnrzZk3hYb/nSDtd5yC+4rBmBN/3zQxef1lhujKn5JvTqi9X1xZ+80MHDOvjTS8bsD3570c6/NTBu3YjaPpNnAld+vPCOC7/FCRcvMSjm8DY/X7THNb5yZh3tETnEVZ6J64q+vj/Vo89HOcIRTteYmOUbBr/GFW3FHhQjsQ44m9eu4GO/6RM+2NlX/PIHSy0PMHyj/Xe/+91pv2hfKds/dgZ2BnYGdgZ2BnYGLmXAAeLSi3aHCuJQMg93Dj0dZDr8pQNLu35t43PuEq7DFXGIceDJZ4fGDtfhdLjTd5ByIHNAgpMO/+JQ4HTIcnjUNw5n8iwmGIp+B0X82OHXuLFypc5m4tA56s8HjDkPw1zz8IjxeMbBA0MPwHTE4gAtFx2M2TiEij0O5VpdYT+FX7atBZ+KcX7gmycwjIUbzuQ78zKx0q2mZ56tNv8O02J1oObDw4tvLYndvuDbHhC7PYBbB/Qwyic/9ImcFH/5lSuHboXIWfp0lPqw42mc6OPM3gGejsO6fzKMG/x4a9Olwx4XtT5uHkLg5MM4PvBwYCsn/MAqb2L3EGW++GDAjidcPmDCojfFnNyaV2DDI9rWwAOZh1o86cMuVg+l+l6oyD0bnHCzTnyWW226/IijB1W+4NJXzMshvARvOMaKVQ2zko59kR/5mDnBz8Of2gM8PfY9gOuT8qFOauOh0A07Do3nf+IYU+iIX95xNkboik9uxd84HePm8Tauzd5DbD5g4lNe+EnKjZo+gYM3m/rWgY90qpfC+GGPsOcDjx5i6cODEVZ6YogTHX15V+df3DjRm5xhhGPuUnvaDapfxMJnscJW8lte8D7Gnw2/XRutR7zUYhezfNCzz7xof//990+P6k/H/PjHP/7iP0Pla94P9CviKkZ5KS7j4rHHvNhyrZhz74037u4brTF7sVkr1wzhh52ctB7tA3P0zVtP9whjCWy86fAPVw1HXvnDHc/+RY17BX3FXoMrBjbq9pB7Lr/w3IdaY77hhYGPNWOrFKMY+HRdsS2m8oGrlzPm8sEetnzBnzHolyMY6XXPxxUPNfs4thY+T+Inj90X6LETh5j7ZS1/1hIejuLCVy7ouy8rMM3HzRwcedaGobSWYanxbP3g0xcbe7U+HvLjfj7jMt5alFtc8SDZiM+42phzQS9/4eMvH2LrWqTLV3g+t/ziRB8PuvOFI//W2UvH1ls8uOBprdnxxadirnuUPn90m5MfebCHjOlX08MV735pYqw41WzlnA8vS8XOnp6xPluNG7Ne/WeouMsB4Zc+ab3UsIyzL044hA0Mv4iWb7r5Ni8P8kGHX/lVyyu/9gTu2uzo+cY2Gz6NpecaFi9OxryYpqttne09eObZm+MHJt64uobM458+TBzwshfNlQv85c8awHAd+IWHPUEPJ/7T0bZH+LEu2oSuIh7++THHN37s/Qu/4y+BWj98cMAHjwpsc/rw4VWKybrgKTf44YCfcTpi4ldp7xY3XHxh9osIGEq884+fMWK+cTVxbeDYi3aY8qC0bsXAZ/nBFzZu2nT8YgAebPsSX7kqD+KyvuKETdjNvLHBl69iTA//OKiLmY18WS9Y/Be3WixetH/wwQenH/7wh8svzjeR/Y32m2Rr6+4M7AzsDOwM7Aw8phlwMLn0ot3hpMNDB5AOVWwaS0/foaoDTfONm3Mw6kAkXeYcDo2bb2webHAIYx6U6GfjQNzDJluCo3aFrQMSX8bwdogi2mTqsDfe4W7imuMbLzKx9DucZSMGxSGtnGp3eGPTuHoeFPkypuDegZWNh0UHTYfC8BxIHU71+RdTDxvG8IbPBv/8qS8J//T4dijWd9jlAzaZfMMoR/xpp1PejClTsmmd6PLhYWb+ndgeIHpowsW3T3q4hikP1kUO4JZrbbEaV8pTY2yLVxvvHgbLQTozf/QIzvjb1x5ytO0hD1h4wsB/PhTBKRdwcDE29yOePaho04PlpZ315YcN6YEKl+KSi5l7+vCMkclhrgN7PPANv3m+PVB5GWFvwMOphyG29lkcvBzyYCwfxuTDg5W1Kn5c4ORLTY8NHmr61i5pjVtTMeFAt1zV55eoZ7sxeQ2/nLSP6MBW4guDX3azxpVOfmBlF0/1UewNecU7fnDkzcO/hz925vhUzMOPp+vCnw3gj1hrOnTloUI/HLW1I9pzHA58Emf9xmC3VxsLz95U4jjtYImzog9HjSOM9IsVZ3P2jZouvbiVA+NszGXDj3FcEvjiC4f/fNExb0xuWr/8haNfO9ww8sfeNQLrUb9ov3///umnP/3pyd9ox1Gc+MQ339ZB2xx+7YP03We1fZvTPhM7m16GwLOXikPc7gtwvPwr1ukbBp/s8h1Ha0iXncI/PYIHXGuHq77rWYHp3upFqL3eergXya95uPDdf1zPfBtvL8SVr9aKDQ7uPzDpspUL1x9u4qXnZSL/3ffouk9Nrvr8hNXLXByNqfkqRrjzcwE3uSp/+q2Fb3vKiZjkiRR3scEvpzBgw6MnFvZ844Kbl7w+Q+GVf226/JYfOYeXz+7XxmrjIBds4CfacaFbLuJCr5zCkHtzamvJBiY7+ffy1wtYHOn47HOfbC3ES1eNDx12XniXC2sMu/XCzzXqX23RlaPm+e4zCF4iLrlSyineci1fYrEW8Oa9CwfFvDWwz+Z+FZdrkA7fOPrPVbt24PPdvuMTFn25qu2lu7jM4ygPeNIxDocuHPHRMd768QFDLHh2HdpTrSEdeHKndiaHib81wgk+7n4BX6xxhdXeSlescPTtC75wxYvAV8SCE2w84oJzv4iBwR4H8cszGznt2mzOmBwQ9xXrYMw8bDjihO0zGx8Fpv1HRx83NX58uk/yZR1m3vEoN/2CorXFoZjoyIOcdq9wL3QdtE/owlP44Z9vuHIuDnxgidE8zH6RqG1MLPhbS/FqG4MFGwZfSX7lWV5g4AjXs4p8wbFGcgCnfOJhneGHWb75FUcl7vy0t9rbfLKDDcc4DuXKPHtY8tv+p8sP/T4zrDm+dNvzdOzRF1544fT222+ffvCDH6zw41wuHlbvF+0Py9Ce3xnYGdgZ2BnYGfgfyICDx5///OfThx9+uA5hQuow0uFBX6nvsOGQ4qDjEEK06TiYVOik5wBTgeOARbykcwhikx9zHRL5IuZg0evgp08cIDu8wmajaIdJt0OVOQc73MOPp0OmA5Y+HYc2h7/4LofnH7DEzAccNaGXb2ONmxMTwQmmcjysmmcfTnGr+ZMr/OB62HfQdHjGFR6+/LAv5g6ZjeErZ0k5qH+s+bZ2fMHkx0FWWyFh0J1961We6NCnk95SvvphrPWVX7ps7RH/bN/DhBg8sHq46CVCD25eFMgDUcttvMSsn1/jxhSY8mlMTSfO5mCZk0cPVXSUxFy2OFsfDxV4a8uXFyNyJo/G5dIcP8rkFZZcKDDxsDflJc7aRyy8PMwp7AhbNsXFjm9c8q1Onx6//OFirrUvZn5aBxzoKvTMFYPY9eXe3ye1RsaIfHiosV/jpsZDTXC0vgqxFoqY8mGcPj+zzQ98uvzrT7v045seXPrGcZl+Wo/l6Mqvebb02SlyLG8EhraCJ93KUjj/MA7bQ5xinhhXrKdfJvXygi86fKWHB7FHb9++vdaYb7gkffeIrg/j9gY866cOp30Wf/Wcj3Ox8aNNj+i7ZuyJYk/XPD/4d6+HHX4cwtM3hxN966ptvDnz4prYOIqbjfWna2wKvsbUSmtIRwz24LxWjPOVhBcGH7jBaQyOPaF2b3iU32i/f37R/uabb54++eSTleeulXKHe+tgjXEoJ3TlBU/XMd79k31j7NjAYOe+YUxfDtwD2Nib9I2Jv3VWs4PRNUHPOtmHRJ7YuafT0W5P4KlPp/tAXL20dK0Q64Z/3IzZIwo/eJDWBiYc3HBp33Qvo8snW5+vvl1JFz67J598cn3+6sOOI77yiT+++gp8ODDlQt26TP/w5EA8hI6cK7jjwL8XkPzoE/p4mOOPhE/HnPtCezA8urjj5iV192ec4CtwuoblR5vANAeT37gaxzVssZZv4+KfXMzxYx+R9hsOzins+6yw3vT58BLVy3Av9XBwBrROCjwidrlhA8+aePFn7xjHOXxzrYs4/ekNLwhh4WFenGpccdCHzY4eH9pi1+fDNSJu1z08sdgf7PBT6OPPD4xyaj/IFXtY/Pocta+zN27eHFtYeCnG4Ts/wdQ3b53FIf7yLV/lwr5nZ5/ANy4f1r5fZIgfv3TYwxOvujyxETc8OLj7ZV7ntTjAUugZw9832uWFL2O4GCfa9eHKKd6K3NgrnRvl3hgcuq0nXTztf/bm5jri4r4kxuZbCy/g/Ys+ewU2XmzdC62FPMMzrp8fn+H64lHgmaNvb7gO+cWVwK5mh4vY5Flu7X/PAuU9nO59OPApxp6T4gYPP3n3ZRYx2Q8EF7bh4iFfsMzZa2xbB/PG9eWFDzxdo0q/CGVvD7XXxS+3+mp9Aj+RVwUffmDzjWt/KkgsbHCQz+blCI+uqbBgy6V5eGzlXYz8GGdj3JrEzfXo/1b55S9/efr+97+/KLZG8X1YvV+0PyxDe35nYGdgZ2BnYGfgfyADDiO+0f6HP/xhHcQ6MDhodOChY1xdW+gOVHSMdeDt8OiQ2AFMW3GocTAy7mBDHOKMOeDAIeY6VMUhXmzh0NcmDlVKByHcHboucWMHKx11/OE5WHWg7+DmoBUP/uiJJ77my09+6RF25hR6hH2HuXDTMW8sO7qzxI++B0a56+DOtxzEAUf6dNQwxWbewVHscK4j7BzGxcze+rCNW3HAMj7545HMvKWrhmttcO1QTNeYBwkP1R3eywHfdHDx0ObBAjf+1fZR8Ym1PccffnSm3jGG4ki/B5xia/3pVYyJwcNXLwCsu4cctfl4467oH7H4NCZ+Onzybx3iJQ8eIHsgoC9Oa6u0NrDEDgMWOyXffMBVFwfbfNHj2xihQ+wHDx2tl7jxMVY87TG1FyA94ONivTz42b/6hA/+SPHLm31NxNFaxiNfxQjLnLWFXUz62cLKZ/PNwVGMh01fW07I1NHGMZxws20diovetKenyLHc9VIgPuasp4fTrnX25hXzfMTXengpYj3Cxtk8/e6t8e0aoG8s/mp+CHxYzav17RlzavzbV2zkylh7Jwx2JHx88qOGnbBR6BqP/7zPsVHMzXUwli0fbMIvL3HpWuA3PG3jYlO3fkfbuBnnD8/4TPyuMfeGR/2ivW+042o9CS78tzbWAYdyIh8+N+WGnpePxL88MS6OY/zW1/6CRbyEEr9ru1j1+VTiUP7KIY75tW58wWoP+nykYxyufBrDS9814sUNPnQUscmtMwU/9gKb9hcdOPoEv/TaN66/OIiDrhc37t9i4YN/n0X81y9ONnzgDlNs9d3rjPFJT509HcK38bhqi5EeG7XiPgCblB/zSvlk6x6tFmu/yMB1xsiXON2Pe9klb/aH2NlabzjW3ucNDo3zUS5hxyEe6oo56yN/arEZ45s/bb4Ubf7lps8KvgguXt7250zwodt9Epa46OFEcLAuzk1yYZwf430OmReLfeQeCt+ayTdMuVYbI3wYU4zJo4IzPSJf9MTrGmtPmmttygEe7MUDU36slX1P6Pmb2WLVZl+MfIpFzZ82HTHePv/iVVw4GrPOeBiT0/yxpaPID/9qWNaMnhyzhesacM3QgVtO6cVB2/VqTn6tpV8cq+HyodATC1GL331F7PrNG4dtTIGLr3zjJQYib160W29rgJ85eK5nOWy9asMxjyeBL0b7ni0MvnFxvjNnXcs1HC/a4dCHjy883KwvneKGA88YfbUzUtcT22LEhy5/9q89Ki59+eUDRjjyKxa+5EYxB1McOOKkLVde1ncP5quzBh/48C0eHOGyhxVXNkSuXJv07ZG4du3KvRyJEx/+yw8booZfn199esbYEPmzBviLEzcx0bMv+OyeZY8RPunCkVvj2o2pCUyx8dt9kV/73Yv2t9566/Tyyy8v3XiuzjV+7Bft10jSVtkZ2BnYGdgZ2Bl43DPgoPTXv/719Mc//nEdPh0kHBocVDrMiNEYXYcXtb6i35hDiYOVg0tjbLNzcHFoo0PYOyjRZ0vo8su/AxEdoo4bXYWP5hyGHP7YaDtUquMId9rAcqBSzM0SdzqVeJhzOIuLcVzjEW/9YkkXN2MEP7b1px/jzeHMH6EbN/MOkOYdQmFX8kfXvLx3oO9A6kGn/CzwB/zgF04HVfh8JQ+KgU6cteHMvnYPEg7FDrEeIPDtEOwg7WHJA4W4rZmYe0jQF0u5x81YeeB35lTfHJ1jzswR+ubEVty4lkfj+BV7NumLA2/6cNgq/PYwrU1/Yizn5x/GcJCvfOKhwDFvzh7ogQCePHhA8pBFB8fyK15jMOJevz0CA1++ycTQTti7jrve63vg83ICL1iJtjXDqwdsD0Ueujy490DIR4WtWEnrVw2P3syr9Rd/66rvOguv/REvWNrFKm79auNs556VJzpiUfiCiz/9+BrPjzoO6vymk511sfc9mBLc+TAvV/aN3BkrFlyJ/CeuIw+68PKnLrbWtzk5Mzbvy7DEEld9bSV7PuWG2KPu7Upc2rv6fCkEDyW82s0ZT+LIZ3baclf+jItBkZfsjYdpvM8E9mLDq/Xip3jjFV/jzcPLtjjxgEnoKXwbq60uH+4LzzzzzCP7G+33z99of/3119efjrHmJM619ZM42UddL+a8aGHvepSv4hKHnBS3+7DrgLgvy4O9CZfQhWNPGGOvyIm++Zmf9rK938sY9/byB18bXwWG+4t7Tf5aX2O9LDr6yicMIh6FrYKXa4C/dNWKebrWcOppK63txNWesdt/7UHc8iFXsI3VZsdnYo7gJ/+uM2PWiH/3n+6hxhoXi2It7DttIs98xh9uOHIfns8SPNnxp2ZrrdjjAZd9fIoz/mKxz1pTa2SvsbOP+OWHT7rtHfji4N99zx6TZxzU9gAePmvZ8AeDrvslW5zgxF8/G215wc3nUC8WYcP0DV8vxssnHmz4ECN/+MIQv7YYi5MeW9zEKFax23/lhi/FPEy88cGZLwLXS8ls5IEOG3rsxUdwNK6mw9Yaud+Ux3yZY4u7mr9jYVORb/M4ikHfy/euw/KNC0wlLjDY4iQ/YqVP+BYHXZwUbYWfcOUvnuxaV7XchNs1hIf1Y8c3PDrWWQ7jwB9e/BiTa3zz1Qt1uHCKT/yuBXow2ML1C3F9ePwRbftB7oyZh2fv8GVuYhjnhz/rx4c+G3zE5T6nbxx+f2YHDh/lDr7Y5Uku2MxcyJ0x93JrScc8TvJSHozB4kvhB2bccO3ciyNe9OnRZ89XL9rlij0xpxQPO/lkS/TZKsb0CXvrIF/Gu+aM42MPyl85bFzNX3HkX781Lv98yqc5ft1/vWj/xS9+cfrud7+7eLC/iewX7TfJ1tbdGdgZ2BnYGdgZeEwz4FDx0Ucfnf70pz+t39o7rCgdjArLQYJuxbgxh6wOLw6dDjQOavOQ5XDCzmHIHB02hJ5Sfw1e/WDXAUitH9a0wcF4h6EO8/oOSWzpEzz4oj8PbFcu13g+6eZHmw1b/uYhEA4xz3e4bAi8Kfr06KejnV+6xvmRMz7NxSF844r+9EEvXLXDJhw+HGTp+4ZGPvMH4ziWb3mAM+fZ6SvpwVaIscnFGBxxtR4OyQpeDukO+gpbBW/zfFhLeB6kPSy1BjNv2vy3f4uJXfnUTqd41CS/2mzxtGcTtsaUMIszHXPi6Tqg58FD/vDygIG//cmveVIc+oo5WHib66FBHQf5UYiY5KQ9GMfyWIzpwyTwFOMwjJcfGOzJrPNrnuCr7R7gBYprXN/a4W/eHNxeNFhPufD3Wv3ix0MS360rG3255A//OPOJT8U4vGLno2uMjnlj5aCx4i3f4auN0bOOYlDsUXO4emjmE1/raZz+xDJGJ794a+NWHprLl5wRuAoM+vWL0XiFvjbf1tI11NqYI/wUrz5dNsYIO2MV8ZL40avAtibWhtDtOi4HxmEdBZ7CNxyFjT5pfvKTq65pOnTT0zY315uOvvHm5K8x/pR800+a4z+e5hpXi5ct3+VEu3jjxw4G6Zrxou9Rf6P9zp0760/H2Ks4xJVf/Oa1gVvj6jj3Uqo9x8Y9Su5hsFO6Htm5r1l37XD47n5iTP5hdR3ow4mj68j1NF+Q80mn/SGH1k4xBl9pHYz79qu++4xcm3cfmvsSJk7wlfjhlMAqbvNwYMotXBh05ImePr/mxdS9ny57olb4dK/QZuv+Jx79bItJzO1d/vTx8ELs1q1bi5d5pc+U8syPnMYPl+4r+OCq5Ns6ypV1Zis29nBhlB/j4vOCFWd72Z+FCLvcsYUjNzgZ12fD3ssqtjgYO15D7MRrXF2u2cpPewdnRXzlG1dnBD5JuRUrW1z5JfBh24NqfuOHo3wTPtiY96IQvrjYG6dL4ChxkAf82fGNIz+4GWPLn3jKQTHDkzNnNZ+RsBJYipgILCLWJBw+bp+/0Y6TvYcPvfjgBEfRFrM9z976i4e+sXT5wFte2MFWtI3Na87+8fK59SxuePQbn/GHVwz8i2P6lzP2ahitR5zKg7wp9Nrb5T8743waxxWuPJi31315oF8omcMnfbWYxGlfqAks+eZXu2sp38XCvn0iXnGIwfrw47NcrhTXjPt01yu/1sc3xP3pML8kNSYe6yNnMHCApw8nvvjxTxe2dcOLdN3iRIfQo4NfevAVeXE+MqdPF77/n8g1I244+BrHsRhhs8HPmLy3JrjDwpk9XuYVY/TpaNcXY5h4FheO5YGutfKLFdwIzOJR67cv+WDvWv/GN75xevP859q+853vLDtYN5H9ov0m2dq6OwM7AzsDOwM7A49pBhwmetHuINihQn08PNAl6uYcYvQdQhyyHEI6hDkUOcA4GKXjoOLQoyYOUJdw58EpX+ra5uMBS5uffHqYcXhVG6OfaHeAaqy6+PmB61AWvrHicECDSxqH2eFQm9BXiteYOVz50mZfMa+No9w6MGobI3x20FwD5x8w+EjyqWYnx7D4w4O+3BDYCqFrjl4YjbPDJb75K4Y41jfPxnj8sokPbA8vXhzYM71ktz+KFwbuHiD68wT2qQeadMKFF395iqsaD/x7cDZWmTj8tebwilub8IV/OcOtg/7kQVcuYNP3oNaDm/Xz8Oxhgw4stpOPPltzijn2ciQ/fNJRmnet2X/GjrnHgZhjmy9j5hQ2fFbkkL4+/faiMfpxSB8WLsYVOr65iLdxD4fyFZ7aPvzv+U9V+LvQ3X/69l58+GWHQ75wyB9sfbls3V33cpGOOdcsDLrlTD8d2IRfQo9f/HEQj/1qHO9e5sC1nuzNhc+HMevd9Q7XOrHxwIlj+wR3wo6w6QHQXBjlgR/C3hw7Re49sIazlM4/cCk/8YSlsLGviDlxH+3LrzofckNfzvhU6xd3OVnA5x/6FWPZwUs3P+aLTb7ESGdK/eLQh6Xfy7Cui15wmSMzX3FWsy92+YKpj+u0SQdePNSTi74Ct2vGNfyoX7T70zGffvrpWoMZG47yZr8qxUMHr64t/fliEV95s0flrb3HnphXfOa7Jrykae3V4fLfesJQ4PJNT3G9K71oh88PfPPWAwY7RV+RT3uWL+PuI/ZJHO1Nny397WH6MOm79yr6bLPBz77BR42/vLh34QfT+solezq44dP+h+/zjK5xGM3Dh81vL1CNyQc9HNkqbMz1YopfPrz486JH7vGmgws9bfHo+8zsBRcsuUxwbL1x8S9gxEcvTOuOoyJeHLXx9Kfc9K397fNLXFzg828N6Lu30ZnXHR1x0ONfvMbEhRNs+TxiGIMlp+5NOMNgJ1ftBfMwrIs8sGFLyi8/3d/kTKFLDxcY4qGPq7pvENNxDpFX/vXtQfsfJ1jtCZ9nSrmDQ6xNn9O44yPv5vmHA5dvePz1/ybQETOfc49M/nRgqMUP2zVgXeEZg6GUB361i90cDv5MjRfPsJoTq3zD4Vd81pg+O9eKexxMvu0Zf1eefzjiTcd32io/AABAAElEQVS8XMQfb3HDkt9w2eGnsCk+PswRY/rlBYZ1EoNrLqEPgy5ffFiz1pMNjnDMu97s9/6lHnt8YSpyynf73Ly+uLpezMG1r/EiOJByyFcxyF9rI9/4yD8O7mmuHfz5sD73z/+qyYv27i1yLce407NWCm7FnV98rCc/fMSLvpxYX7ps7TtnOvcL1whbvAk7nPm277V9geIf//jH4ggDJhs6BBcxwzCHR/7p06VTvPqNw8CPPm6EvXUThzE6cI2Zw0kRB7/W3S8CXJM4lCtthT/2dK1BeXL/9Zm7X7SvtO8fOwM7AzsDOwM7AzsDlzLgADFftDuYdMi4pD/H2Dp4ONAoDocOXw45Hbg6RNPtwGK+A5Z2czDoJI3PsebomncQUqeLewd0B2AHXP3mw6JXO0x9pcMVjvMQR888W3HlO/s5rs0nwbV48yHP7BXto9CXQ4c77ewcMpUkvnwQfZJvbTjiiFM86cA+cjOfaMOkY60nvrlyBStdNf3jGnWA9jBm3YkHWA8DDr72jgO1mK1ZvuD4z7MU4hDvgaW4+KZbKa9qXMzDwN+BOz1YdAgdBW88cciOn3TM6Zsj9cuhcfjWtIcqWL1oZ4OLA77DPb3yNPNJjzRHD3cPQ3JULvni03zXGn5ybK74xF48uLZWfMBqvfQJXYU9bPr857fc4xdW/O1PbRz8nVtrS89a4z7zZ509CHsQ91DKl29nuW7ZED6V/KzB8w/x0ank37jcy4cYCFyY5ojxiTfXL79qXHtIs44eXunCsoZi5cuehJc/+abHH9/ilEt9tu5NbLqPsO3a7n7FTiHq7PX5iTN9tvqVmeNinvmBQdof9N2/E/kulsbYK/DoW1+5oSdXbPgn+MoLaYydEi4bc+2reLIVkz5/cgTLmP6XSbh4wJDfsOQchjzFA05rzDZuYjPOF3uCJ1zjSm1zR07xjD8d+vYPW/c5L9rfe++99U/Q6X0VKd7755csP//5z9eLdj5aU5z5E4PYvTApr2wV92E2OOBo33avkCs28s9OMSbecsXeix/3N/aETzlUGiuXuLQG+CleCLvm5SXf9CaOmNgprQXdXkLhBgOW65I9bnj5j0vV9quY3Y/sDS+++BAfXALHfcgLIjoEL/eufiEsFvnkR2GDkzyq8eJDkQNjan22OPLLj5c8sPDFja17JJ/4wvY5QZeteTxefPHFFbu8sIXRvUQtNvnwklafv/YZP9aFD9eeOZ/B7m188gOXb/F5eYcDe3kx78Wjer5oFyMd/pTW2b1Ov3VzLcqtfOGhwHH/ER87/ujwn7CXQzoEjrZ1VounnJvDHx/5URd3+5JfeeLDvDyYgweLvbwa93JR3uXFt8vZacsBn35JAV+s8MzRsdbioAdHbS3Lh/zLA79i0KaHMwx5sI73z9c4XJzZ8IcjG1i9DJUjpViKG3e+5YXAECe/eLOBZdz+sw9wsD/5N88fHNcCW+vUy2Z5Cte865Lvcoy/fPIHZ/5ih60iXvpEG76Y8TCOA3tt8elXZgx0zPNn//uTKmIgYsRdgcOPNbMm7RP5NC8Xcoarf7XhGjHWOtsHcK2vsezzL9dwzdVW80lwlyNx4lC+5N71YC+QrgucXHfN8SdveNy7d2/tEfuFP7ztWX+jnh+68pFvtb5Y+ZUXa6aWO2Nqen1uyJe1g+kXN/agedhqfvjFASd9+fn444/XtWAuaf1gknDYtL7yAltfDuQVBt7Fo52+uO1d16McGhcfXbk0Jj7jcknf/rI/rFMxTD5xxos9HHnyov1nP/vZftG+Vm//2BnYGdgZ2BnYGdgZuJgBh42v+qLd4cOBRe3g5IDjIOpAYszBpcOdA4vDG+kA2cGIrTYbQo++sSRb/XTVfJhr3piDlQNtLwnowFNP/WxghjHr4jLPDjacDoCXOIrXeNjq+IpTPy75wjehS89hUJ7mwZeOA7nYHDrDglcOjeGawOsgakyfjhjo5avcTx24uMUpHX1SrKtz/hEf/XI3+YgFbwd0h1U4an2xtndw6sELFp6+taPAkwP8xdVDjXElKcf69AhOOMArZ2p2xaSmbw/jofBBtNmXB2Pa9BsLB2b7xJyHT5jG4ZhrHg6JsxoOPbbaci1HHiR6SGBjTrFO8OjhSKc4zZcDmLWzr6ZnnvArbrgw1a5vtviZU+iJyVgFD77pzhdc1lkJxzzdXgp5QOPLw3FtXHDCjfClJHGmwz+/5u0f14k2HeN8JcbpJ3TEUvzGG5NPXMVrv9LBs5cbveiYvOjTa0xdoe8BT4w4lbe5hnzzEWf8K/GOb3HzqRhXwzAHNx/ZmiPm8BKbh2iSTnyN0VfEpIYvL/akPl01HIK7/KebjjkYOFbsVWPio1fcMOMPy7j+5AVvChxFXNaHfmtvT8inPgkrzuHoxyddfXzxU4vdGC58TTHGLt/0YJYreX6UL9o///zz9R+z3b17d62LGOPEN874zLwaV9yTir+9JjYCIyy2FXMwiXu2F7Tub/LCDzv7A65inC8iJ3FrzvXv3q7PjtBh0x5jl3/jMOVTLrXx9LJEcW3hITbc3IPwg0/Y2BuuP1iuR9iEH3NeIMKxlt133be0W3N29tSMBwbO8mJfF6OaX7xg69vT4m5vsxUL3mzhwPZ5h0vz7R98cGl9cdfHy8s/91EvxvXL/wI5/2AjFj7MeYHa5zAMWIq8ypOcEC/Q4MmneVy8/BNvsWYvVsX6shFX+RZTnNjB47/PrdanNShOfnDGn466vVbOzccfZzpKbfoVebKGuOChsMcjDnTjB9fLc/wJXtbB5wKRK4WetbUG9iS94jUvr/rFw+9cD/uxtbeGrnF8cFPkik85lds+73CAq+CNh7brQA7aq3yxVRtPvzH70Nrhb7+a94J3/kKm/dsvEvhj33WSb7myb8TEH974eHnKBg6dciIGvo2LWZueUvz4KfJmfK4xHHHyZ/+IobOjdW2vsqEjd/TY5KNzlhisveuDLX/G8AqXLaykvWpdWnt+2BgTD5FTuvyKlcDnW67FSuRUrHLnBbf80YPFDg9fVPCFBT4IPtbKvY9t+VDzKQZtudLny7XMLn7s9Omq+ZQ7+bB+eJqDodCB2b0HD9e+vStH4fBH4PObT37lxLjausibNl/Whq0xuvDU8aRnT5UvfNNtXY3RU9jLof1t/+GOCzyiT4zRh6HIk7/R7pfb+2+0rxTtHzsDOwM7AzsDOwM7A5cy4BBx3RftdBMHjw5nDi+kQ3qHGYeiDlUORA49ChyHHHMObuw6cHVoyi6f6et3EOOTXocufWKsQ2QHLfYddB2WHAzZJeFc8gsrXW2H2/SyrzZ+nMNZvvA2B2Pq4VZMdOVCThzscTVGHweHWIdW+uyypaOQS/6byzf7Ysp3MeAaDvz62iS/5XYNnn8UU1zghm3MvnBA9y1n37YxZ6z9oo+f+Dyg9FBi3RyE9UkxZFdu+ahtrpir2ca9ulzR0cZB/j3UwFLCqt3DKTxj2bLXLmY+5Ni4fW6cqGG2tvTE1J6kD5cePPPG6DemT8zTJcXU/jEO13g66nC04eAYT/jsK+ZhWGtxE2PadGDEr7p1o1uu8NT24Gfte2g1Tvjnx7XlxYJv0nmAjGPx0okru+KPR3NwlPrsw2B37MOJi/nEmLgIHzPmcmv+6CcsdWvNXl9+7HFFXuMFwx7Amy699jwdftoj+Fir1hKu0rrVx9EDa1zDYT9zQB+WYrw1PMYOvz2Io9gIfNzyy27aNt7+av1huNflk15xGyPFHaa6fC+Fqx/FoGabPl0FLo7lQu4V+gk7OcCLsIND6Bk3X9zm4rmUzj/EyK611acvdzC8DOhF+3PPPff/7MN5WB1vL1l+9atfnf79738vfl4cuGeKk3St4o0XEQde5orFdefzpXiKjZ/yyT5b416AiMfLB3hy7F7Nlh5sL97o8GUcL7lgCwNX93vj/Cja5maum+MHDoHLj1zn2/VjvvjsNfffsLyk7OUaW7gJXsQ8PLhi1sYpv7Dxi3P206946fEBN66ue7bNdU2zDY+Neb7Ni4noG3cPhU/P9aPItT7BV06tafcT4/zCEB9/YjdmjeQIRtxw5osOXeO+oepFMwzCb2tPX1++yyPf9MUl7/iJZ36m8+lbsl5m9kINthjkKv84iNk6attn4oBHB44YxFI+8MdHzUahS8SDn5rfXhDri0/uvKBlax4OW9zFYT35NK7g68WigpN/geflpxj4xRtWZxl+8glHbPKWj9ZJ/nCByZ5vLzv7hrVxmH2eiI0v+HS18St3xhW+5przS99ade8SE3zCn293i5stf+0v+RZLwt7awFTEouBhH5RP/uJvLVof9vKsxofgqrTv5QwPtXjKl/uhfBC2eLTO9iqu/BQn/3SIeefTXqzjTh8+PqRry97gB451wYM+Pfq4dz/FjZ2abyL2WYzxVX6sW/lr/8SLLjy88bDP9OnBlCOxWBN9OPiIVU3PmBpXvuiaL872DT7l2RiO+vErv/D8EsmesGdhh2cOj/ISTz6N6SuttTG4uBK5LQ465sPTJtbA84Vxfo2Xb/YKgQnbHB3FWL7ERbdrjQ3+CrEHX3jhhfXL7e9973trrLnVucaP/Tfar5GkrbIzsDOwM7AzsDPwuGfAIeM6L9rpOcA4hBCHEIc5hw5tot0BpQMMG8UhykHQgddBSZ+wdXCDpT3t2SXpx6ODDx0HJiUxR38WPh0gHcD48BCKi3johVcbFswOYOzpNIbHJSle8/TTU/MbRtzi3cGVnlz08FYO6OHrINtBPvxiYEu/9Tjyo++AqbZW9Ge86RtXCF2YahwUbUVu6k9bc+xbW9/A6aD+9NNPrwcZ39gxbz3EBQc3D6kO6h7izBnvYYaPOGu3F/ErfzCNy1+5m/ytIxE3bHjmi9cayb89aVyBB5eO0h6FY56IGaa+eYWucWI8H/rxVNPBRT5hELpsjMkDCTdMY3RgqBN849wa5T9c+TKWb/61YRV/MZSr9OmVb2Pm45RONl3rxe5ByMOi/OKotj8UOnjY431bDB8vDhU+7JUeKIu3mMzHhV95K6d4wWqebpziDi+MsNXtQxhsym2x0jHOli6OYRqXK761FZy6F2qnK3bjMOib026eHzpigINH66BvXN/6sTEmDzDZVfRh69NJ2MMk7MIo7nI4baYtzISOGGDAyga+e4+XAHgSY7jIGz0xK+UXL/OwKvrGlYS++NOxf4k+/XDjqc+nOht6BJYC3xxe1eIK23yxLcPzD/Ni5sdc+q2Vve5F+zvvvHN69tlnF262N6nz6+83/+Y3vzndP/95BmNehrp/WmfiZUYvtorTuLa1cK/U9jfO2boPl1c5wB8uHePWSzHOHr7rWF/MXaNywN6LOdc8XWNyTN8LHLj6yswlDJ9z7V16rUncjdlDcTMOA09j2hVz+FkDfODCLwbjbHoRZxyOeHz+yItv5Xpx1r6gI3fstOWEsFMI/8ScNbBv5MC4fPTN1fzhJf8KvWIJ07zcdP/MLyxFHOUEd3zbh3gS+70XpHwQvGAp9PTFFma2fNtb7tHGGocR1zjAah3Nd4/X5ldO4dDzi4NeMMpTL/fES1pH2PTZe5nnc6Jf0siJtVXsSbriEAMb/KxdOYxve7H14U/OvMD0uSNG/ro3aNsnfjnQ3qeDR59b9ozrUYx8EnsAJ3rWl5RfPK2bmh/2YrZHxYmzcVj0eultjayndXZ26toVL6HfWsa1PWlczOIvRnHzBdOYOXpyZf3ot89xa/2sV9eV+BQ4fMGwz3FhW5w4GoMtpwr/+vaNHNCBYQx/XIzhBot9wtbe9GdU2PIj32xhFA978SnmYCiwxeCMqo4fXuLpW/niEreiDYOuOOF0X4HPznx5tYb6uLARk9w4F5Fw2LLBm//W3hrYM7ias979IsaYnMC2TrAITnRxxQ1uPOIuV/Y0Pb5haNtffqmjhgfLHDsYuOGgGHPNdH5nz8YasOeDLV3rS8RPhy5e5rTTg1++6Gsr4cKmbww3eHjFhw0xd8xDOO0reuVFHnGeeZY/HI2/9NJLp3fffff0yiuvMFv+V+OaP/aL9msmaqvtDOwM7AzsDOwMPM4ZcKC5zot2hxSHmg7lDjoOI8SBRbuXJ3QJHUWfjkOKw0qHLDYd6hxoFD4UbXb4HQXWPBBpK4mDlwMayZ7vDm1wfQPEQZmvdHHNNn117fC/rOZLTJN3/tViUpeLsOH18KFNT79ci02ePEzJX7HypcCElW25WwPjB78eQNQO4mIXb5jGk3jPMXOtF798sr8k7OSTn9vn/yxNLaZvfetb68Eiu16i4uCh1Lp4WE1aD3jlznoZb73kW67E3X7jS5uNcTlrncNWiyMbOHJS7vXN0YFB2kNwzeVjTZ5/hNHa6bMn5VTePPCUSzrmmqcrXsV6eXg05wGrPLJR4p5tdRjxxX/OxR3GFP3ilYsHCTz6aly1y50x8V3aI3QJP+4Z/jm0Ir7mJlf/yaP/UEss8tHD4oO4mbNHcIBZvMaU/EwMY+Zwzr8xGKRcy4uHra4fNkRtrTz4sgvDnP2n5FfdWOPlS996wdNO4MmZPONCR7716cqPeQV+JR7m3Xvd9+TQNddcPtjAE5vCR3j0u1ewowtTm03cYJnDLZ/FiLcHWy8yzNMj9JTa9PObbbp0tI3/H3v3smPZUaxxfD+JqTa2hbm48cCPgcBg02bAACGD3bTlCwwQICSEQALey5a4jGzAxo1pYHB4jLN/6fo3wVZ1u4rTZ1BShpSVt4gvvojMtXauVburszGGA76NWSMY+FlTscsxOzzoyYP7qjE5pKcQOmzVsBNjcB8mcSs3eLkniNlLFS/YX3755cNTTz11PwcPw7toDjbxov0HP/jB+ka7vNh/rpP2rWtMvl1fYi5O+fCSx0syY+67XiZ5OdQ10LqWb7XY2xfFBZtuuZLXXppYbxzEz7/cyIOXRvDsM/c1etaM2KM+CxQvEAlshT2/MMQoD/oKe37o8SVGPLQJ7riyM8fGi6RerKnlA1+8+LI//B1f/9mgbymLsxew7lv888sWntyJ3xrwAYPNvJ7kW7z+hY9vCeMEh678W0M5YCdOhcA0j3+5Fh+/MMReHuMvxwk8+vYMjnicCn3YfJYHOriJ0bgY6anFCAc3a6XPDwzjuClyz4Y9bnJJ3xjOxsVgPT71qU+tl8ls5IWOmp0x9yH/6kkc9i0e9rIX0Nav3NBlw9aYfWY95RA3+RKjcRzxrsgxP/RcF9Ychr3kF0euXb7g8z/PL3zYL+KzRwh8/mBZ23JRfoqNv64devZCwj/fxclGvnGjZ03xEy/hQw7kRo75gm9evsWNk37xWmd9eeDLdcoGFmw+6IqZnhxYM1j4ula8cMUVFntnQL7ZiM04PD7wcP3QN8+XmHyW4ixGIg7zfPNLT5suPMV68U2vvcRWn+CvrWjjZP3F2b3DL33MweXbWra2uJvLFx193MWhiIsdLvamvrZ46M78u/4ff/zxw5NPPrn40ZNf/zrJmpZ3tfhx9fkh59aNf+uu6OMhN/SKwZg88a8UO0xxwJVne6rrG2c8zMMSDz3rRdjCxFdOtNnIvT3Pjo58dE/lAzd7RE7xsEZwcXX/UOAYg0vnIjFvvZRyyo4+LsaI2HHGZRb88oNDv8BgL0fFLafG5DfO9szNmzcPb7311uEb3/jG8gPrKrJftF8lW1t3Z2BnYGdgZ2Bn4JpmwMHHi/af/exn6+HDAaVDyDw8OLA4YHQor0+nw3IHeX3zCnx4szhAGTfvUES/Q1yHJ74eJJMXnDin70DVGGyFOBR2cHMgdKDq8IULDuaVcqDWd6BN+LxIjMOYAjf/YtKOHz54sukgG0aHdlj05amDnvj14bFlQ4fAz2d+18TxBzsx03dQJ8VrTqxw2MFVm8eRtCatJd18aWdPF545e8JDlsO6mJ577rl1oMeBvnVwiJVfDzMevj2cmE+Hf1ziw1d8YfAD294sJ2r2pHjYiGeKONmnG5Z9CCM883HAB5ax8pQ9HWvJ3hw9fOGY02fvGlDMxU8NJxtcPezIDSy4YuzhhP7kHg57eSHaJH6rc/xR3Gym0MOVL3V86MAKJ1z2+YUZLn0cxCDGhF2FDw84XkT4z8as4UXiRbv/UAuWnLlu7H9c4lO8055fenKEIx2+J5/4w4mv9RGHMT5hsNHvulTjzx4mW8X15RtdJG7azRtT4MHmS7u+MbrZwiZqcfA517x80y/OZXD8AYsdHTkrb/aTUg7TV9MXEz9ibA+Ywyt+ccY/PsbsTVzosTfPF1vzdHuwtZcJfvSsLcmPduvDlo45Ug6NkfKgr/DT55F5fMSrhiVObddXLy7DNkcuyml8zD1MiqF8yiM+cuLe6yXdd7/73Uf2jXYv2v3JBLzcP+1D8eHr3qvIdzlUy7cXcIqcuP/OF+3iK6/iKD/2hnhgm4dbruWdLv9yq22uFzgwFDbGzLtXug8Yg4sLe3Hg5IUTvq0Hn/TU1hQGv+ztLQXH1teLnfSMy4U58cP0sksOxIOH0ucVrj535dYv+7zcpedzi38vhPGFKx6xsPHCiB0f+vjhHG82Xkx6qcd/141rxYsqRQ4IbPsGxtyv4iawzCvw5Ru2Pt/mE9xx6kW7+Skwlda1PLAzng+Y1kQeFXO9aFfTx1td7Gzp6sN3n5QjOF0bai/8bhzPDPICwzye1so8THnwSxjropY31xUb9vFlY03gFJO88ut+aE6M8mWefpxxpSNWPpxTcMfHi2W/LOMTNt1exqrhzxftE9fe6YVie0Ju7AF9+PYsTGuFrzYeOPLdfyZKXy5w6xw111Qs+NmbXV9iUPIJ0/qVZzVfdOxP14b84qDICR8KO9fLfNHeLz/4psPey2Q8XIdigq/QwUuRI36M86FtvdnxU25ak/jgy1YtF/YVHfn0rw7M8Uno4KBow7T+vWi3H8SMAxs5sBYwu6+yM18sanpiwJWIC/9eluPTOoqFyL917EU7WzHZO160uwfgboxPPuQaV/uOP7j0rL115FcRExsxwIirfacN09qo05crdl0HdMVp78iTcRzwNw4flpzjAcfet79h0xEjzvh2jcknzq0RO1jyJUfaxmDDIXwaEwvBpWuXHRs6bBR9gm/xwDJePs2bs09ws9f08cNN3MboW3vnBG252C/aZW/LzsDOwM7AzsDOwM7AQzPg4PLOO+8cfvrTn67Dj8OKMTXRdsBxuHAQ7CBprnG1A42DDz39Cj0HnIqDjoNZByfjDjeKtkNPDxxsCQ6Vj0f+/QJGH6bCHq4DXv7wUth3wKLjAOowRW8eGo3TM07MhVdOGp99Y3yIY0q+jdWeHLWLXw2j3GmbV8TnQIlL/fIe7vRbG0bCrgOxwy9xKBUvyZc2bFJe4fBTLozTz7d80WmfiMXh1YOEv3npwErXiwl2DrMw1D2AOHw70Dqo40QPZr5xYlPcfKYDm0+1+XTY4uyhxLx4s6FjP+NsjhjT94Aw8WA0Rw8GyY86njBdC7iUr+b1cbCW7T92zS/Q4w/4SnsWlhjgwtfPjk3trs/2r3ES39U5/mCv8Jsvc/FQmycw0tcXw8TVliulXBqLP/1k+qRrX3gQ94BXzu0beuzh+OWLIqYe0no5GvZpvPE0zo94TvdUtnwo9lYPafw3ZryYi6946ZhLx70NN37N8Wtev3imDbvmWuvJi33Cjv+4mcMjP9rpG4sTvz0MG1OKE3b29o42fRIPfRzjaY6fSnzot258mFeLiy1+9rA1t9Z0iTk6OBEcwlTDwQEWH9p0tI2R9Jpn07rTh19+i0PtGpSbxuiWG+04LifHH8Vc/0E1HjAJrmJ37Yrbfu9Fuz8hw89/I3CJF1vf//73D/fO/3SMl4KuE/HSkW/Xl89V8ZQP9yBzrjd83Yfdg+1feTEmXhhs9IlYykuxtZ5ihGldwjDX/ReGufKhj5vPCbU9yBduXm7NF+2n/uOkxpMfMU5fOPRZzx5vPuAbJ14SeqlirpdCvVwybz94+YWL3Ii564lv6wxb21xlzjUmbvvSnLZc2Q+466vlBzc+6MHmA4Zx6wRDPx9qYkz8vTiiR8IxL3bfOhaXvtyV29YbF3mCRcybw9caszMGCx/8vJizf3qJLJ/lu3MdvbhaXzHCgafwax/0CwjrYR4Xa6LQYWef2/vWxTrLIzvrOWNiy0YucG9PwNU3r939xxoYD8McX16a0hUDXo899tjKMz158EsqRVxycvfu3VX7z2KJXIqtF+3WuXtNuaUjDzjyE1f28iafuIkVB3zkohft2uzg0Stu69aaNWdN6MCEzU4hdOjzYy8Zx1dxXyFq/HHGhQ/7sxf+2fHhFyDyT19u6GnzY03Zm5dHIm6xzHsCXTbmCF04+vHFEz5u7SU6rt/2HV15E3fc/XKm3Ft/e1ihq3bdd0+1H/jRh4snX+zZypuCK53a+IpRoU+XXy+47RFjfDkD3zvey2HjWGxquZRnawenewVsMcHgDxf+xU5gKfq4t49gtd+tEXu5oyMuGGGqa5cDtfyzwc/1L2a5Ngfb+nZfxg0uLnE2xh9f4tGur57rFge+xKDwn546jPIGn+CjDaM1YI9junLY/qSjD9O6yB3O9L1o9+fabt26tbDjuDqX+LG/0X6JJG2VnYGdgZ2BnYGdgeueAQePt99++/CTn/xkHZIcOBxE1A4PagcOB7cOcmJ2mHFwcYDqoOQQSLeDzcwNLIcxhyIHLYcXesbZ8GOen4lDp8PVxDXmkMQeFlsFJwU/ApdeQn/iGGfvcOUBwSHRgc9YhU5xsVf4Mj+xtPlSGq+GcSpTtza+8c9HPsMqhmq5MNd8OVCfChv6csyXPFkTok8eZi835vNFP98erDwweTiyLzxEeBj1T13lr3z+/e9/Pyj11TDxkH8PNe0RdrDkp3jai3EQU/sxLLzYitUcGyURq3l5CI8P44o2fNjEWhA2ivlEO1u160SZIm+wFAd2scZ56mnziwPuasLOQ5EcF3fj6mziEW9zZNpox1m79WZjvHUxZwwHMReTeWPN62vj20MbfbjtFxxgmYeTr/Jpnm8x9rdv6cCFIf/artFevHtYC79csiHV2uWRDt7lqDjV9PlQ6E2ZWMXcvLlwxMu+B9TyZszcxNE2NnnXzgfeyhRzinF5VKffuPjg6+Pm4bD9lt9TPnCsDVs5dT/0cBl39rCINaNb4UesMNiUv+KJv7V1b3C9lTN8uucWB9w+A/AxTugmxREn4/Rww6XcpodLa1vszRnHnV2xu0bNK/8XwT+xXmJzP/SC/Tvf+c564f7f+igvvtX72muvrRd7sPrmpbgIv3LfyzBxmhOjtpwl4u8lSOuYn3Tq89Uaa1sL31z0r1O618o1fYXOtIHHBi8vSH1eWHe67HwOuN69vNFX4qRmC4+wEUv7Zg2e/6DnGmCf/+7B7NxT2bHvM0wtL/aFYt7atZ7GcPMtd/j2cHk3JyZF7kl++TOvlmvXFVx9PnxesuOnaw5XucDf9eX+Ejbf5hV4dNjC8oLLevBHr/1AD1e6YlTyRVcfBk7xZGvM3u1lt3zhAwume0Yv2vIldtc8Huzg4cKfF9Ls5Mb6aJvT95nPl32Bk5fnfkkPQ07h89svP8QiJ/2pE37gTCkvakWc/PDrRboX4Gxw5dseoIcTX64LvumwFZfavDkv2dMTD0w8XQ9svLT22daLdjr420c4WDM+cRIz3/Y5vfpw9OnIhb2jb3/4RYB9yCd9/vCVC7iw7B3zcqW4TvkhckiHbfu2tlrhnz2xhnwTPBS5gCMWa6etyFN7Ccd+IWPMde8XbWKCZ1/xYW/FEYYx8/zSEYu44enj3LWEExu68tL107r1Dfw+k/TNwbSG1tKawoVhfQgdYsza9UsVORSzfMoTKXZ9ecHfvuITT3z1FXuJDq7+1YwifrbWGa5cEWug1MYRL7mCyS+ZvHG176wvfftB3s/OzlabPlvxi7t9170Ft3KMB//G4sS+Mf7jCJMvYpyNNeRHTmFmJz/0iTYOxWJMjPKgsIGDqzjp4VKB2zrA4YsOfPl0bVgDQi8dfXiw2RSHmo45PPyN9tdff/3w9a9/ncnSW41L/tgv2i+ZqK22M7AzsDOwM7AzcJ0z4GDiT8f8/Oc/X4cfBwrSAaPDlQOKw6RxNTsHlw44DisOyg4h5hJtGMTBpQfCxvUdvsKC02FKmy+1Q1H+YWWjHVcYRG2+g1oxrcnjD775gNucA5QDu4dFPNl2IHToo6uIBT4dPooVjrn4Ns6ncX362gp8ueqwZ944H/T47KCnz2c6fJA5vgbOf8AhOJWT/LIxDgOetrHG9SvncP9RsStGewKu2kOVPwHigaXcik88cipeMfXPio3xwx6Pcipmha4xvjyEwIkXf+UJudaKnXax0MkOjgccD9H5hOPhyBrQM06vef5wCI8vXMVFzBdruQwDzrSLu7p1ZUOmDTvjxuJEhx2eOCfG+CB46qtPBR4sooaRH/aT52kcbMxbj+aMsW8djBPY5SP8rm/zMNrzdJVir4bpIagXJsWk5sc16Tr1cqKHNWMeUOfDO39yYT/EDwZ8HPDTV4oPP4XNg4Rue6yc0w3L2uIFvxyILR9sFP1pD4Pe5Np6pxdXfXryJ5ZsYLAxJg6STTp80LFOcgFLPNbJQys97f85/seY7dMFdI4VJr3WbGLD4pOIkR/XHU74lhN6fBNtfOlPmT74moVe89OGjvHWwxw/sE9LuREvYRenbKpxLDZ6p2Is/HgaC5Ov4ncP8qLdf6b29NNP38/XKeYn9ePx0Ucfrb8V608sWVPxyGfrIOfW3Oez+x1+YvGZp4iRnfVmp6/Qw9mcugKPwCCuP9ee+K23Fz5ermh3rbXurQu/rhOSH9zKUXtfvxzCz2fXGd9htl/LC2xzbOiJCV7x4GSefjbi1453bWvmG59iY+MlFfFLP333H7/wcA3pz2usfJVX80SNm89Ca8bmxvFPpvh2a59TbHBqneTZCzO85M18cesr8mQeXp+dxuilA88YDnS9iMShePEzD18uYImDvVoOteWVrTi8GMTP/VkfVjzc0+WMDd/ypOCUT7jFw7e+PWTNvKD2r0C0E7zgsVeX1/rqRBsmjp1VYCn4Wzv3PHpe+jrLiLkcWQOx2rM48mWOGBe3F7TW0jhcnMQQjjW1tjDCc+3ya8z+9xKQnuuHPeELb35he4FP12eke2t7SD75h83WGokHF+cy0j6CzzYdc3T5YA+z/DZn/dhZMzzoJmxJ+8m6WXPx21ddF+aLHQ6xR3HBGX/CDjf+yp85ecpO216Tm2zESh+WAlsc8dPma768LhY1H/4zVS/a4cKAKd+wcEqvf72AR3u1/YojG+vNp1wZo4dLBZ5inI714deekie+rbOYzPNtvlzA4VM89jWf7OSFFHt5yx+bflkDA6ZfGriPFU+2eLfW8tHeN6ZPD0848I3ZP3g0H1/xwVPEIm413e4ZbIyXb21xibExOM6A7r/uh/o4FBO9mVP5kFOc6fGBr1iIvarglf/2cvns+mK/X7SvtO0fOwM7AzsDOwM7AzsDD8uAw8Zvf/vbwy9+8Yt1eNMnHaz0HaQUBxDiANMhpcOReYecDjEdYOiF6cDSARIGPAcg4/x18HJY68AKzyETNhu4SgezRejkByzzSjzUxovLQYwPffzoOmA6EHYQdPjEzyEOV1yKnU625vJjfuYAtnlFrkhxyJlYy4/aHNwOqtryouaDDfx0zCXmYeRTnV1+1cYq+vT4M5bAKiZj2uaLD4cOs9bH35k8OztbLyPklR5uHrI8gHbA9g1Ah3lzMOnJTRzk1VoUl3jzEx9jM59srBsf2dEt7/hrw/EQjTvhuwc5bRzM1YY18wTTmHlCv32qTfjJni19dgodY+Ij9OLIb2trjG5xsiV0lHwZt26tXVzzt4yOP/jB0zjsHkThGJt2bIyz4V9bfl0bdOc8HPsXJ7jq9jM7hV1rYn1gdp/go5jKgzFr0t/a5S+/2rB6cIfnfsKHlw99uxFGunKDB4EzOevDU+hZF0XbXHZstY2Zq5Q38wl7vHBgo2iHz0abz3zkJ325MGfN8NVmF081gdsa6bPTz1949I1VvGhwLXh4hWt9PUTKIV3XkgdYPAmc9h39eMfTWOPGigeWtfTiyL5I37gSjnY5ZVuu6Me5WIy1Z8zpx1EbFl3tOKnzEdfGxK6YJzDZ49ZYfNTGibqiny9jfCtwmjNvDL58+PvOd+7ceSQv2r0Yev7559e3q60pDrjzSfCQf3MKDmLp+tHGTZ9dOeh67pqxt+CYJ/wQn5FeFvJH1/7yQtp1rs9O4YPw0TWMW7mDS4dfPO1RWHxmx1ZxncHgWx+GvliSsOnOlyyw7Uu1GNjA0HYvoU9wUcTgW6e+be7zg54XsWJyzyFeUnlp6jqCJQZ2fT7EsZwVs3Evilxz4vz0pz+9Pkv50cfN/sSJrs9OL/iKE545uvzh237GQf7klS1d862v9YZjPA5igWWsvFhHOPJZgSN+GH1b2HkJv3KQLj0vsXyzm285ptdZix58/Il1tF4484OPb7O7ZvBSii274sZHPtpLsLORFy/nnFUUGOxw8Tex/TkdIvf+3B2/OISBk/1m7eRGHNpquPaANrHu9pia4OC6t2+KTe2XY/zKHV069pqXiriJQ5FTcYnPvwa0JnjygQN7OnKKG85ELa9etMNrH9j7irVJzzwsvKyBOWOJ/W8dzdMjuGnDbYwNn+4BcoybMyD+BCcc4ymWci2/5vmGIR9q+OKDJQdErumr5ZcdPuVc24tuPOCZx4e/rn+c2csbXHjOqNZSnHDZWg+/aJAzvP1ixeel6wYnvvBUxE+H3yeeeGLFxk8xtwYriOMPvNqjdPCAZ4z0ol3fvDzYs+VKPNZFrO6Z8izfxBw+5d71Ij94yoUaN9ewfeV+Jh/8t3/n2sLUL4bitn7asNVioEPEF185dR12j6IrrvZ2+nJuf+OvLS7Xhf2gjyOu/YIMLizzfUlDX2zmxMeGn/yZw01O/ZJC/rTFIi8EhmvBfnCNy7l5fzrGvyJ78cUXl15rtTqX+LG/0X6JJG2VnYGdgZ2BnYGdgeueAQcNL9p/+ctf3j+4dfhxeHBIqxhX2BDzFeMdipqnU5ueg1cHrDAdcDu0OeTQdwB0mKKjduhxwJ282DgonQp7OA5U4Rnjv3F2Dm4OhcbN03cg6zBGV9sh2jgdpfhnHPjCgVtc6qSxOIcjNkX/VMoXTKW+Qx6bYlFfJPFVZ59f+tlri6k10CfTRl8MxS5e6+FAiwtOHkwdVB2GrRdf8uaBxCHbwVvOPFh6UBAPqYbPp3WgZ5w/2D0spMs/fLqEvgMwH2Tmnl5YHhw8cMIlag9D7S1jsIuz9cqv2ljrSU/86ZdfNRGPItfG4oK3Nl9haYcVf/3a8PiZvmDjA1+b0G+cD202YtQWw/RLhxgPQx9O/uXXdUDosYFpPt7VxsyHixsbAsd6uu7gF8+0geNh0EOWB9vJCYZ47SvrDc+aexDyYKm4n8Dgtz1XzuSdLxyMwYanaLOpxJnP2TY/bdjFkV72MwdibXz6hB03tnDp4q/fAzGs+Ikhf+mq6cDSVgicbKeOvdADN5/y6Jr04ArfWsslzglswjduxRcvutp85p++a85Liu4JxTkxcOA3f/ra8c8XPO25hsZIfuGUUzj84BVmY2zErRhrHE4xsiXFSCcxFi49fNX5xjNJ1xx8L0W8NLx9+/b9l4fpXqXORy/a33vvvXWdy0+CEz1+7fuutWKSL0VsrhfjdNngy0a/nFtH43OfuRbtnWzt2z5fs+uaizNfrlVSfrTjCsPece9ny59YynX87dv2Xp/ddBJxiY8/43DghW2stdeGYU/ApytWMfuc8BnnnkTP54i8+GzD2YucvpmMT3GwhWOsPaLPJx1YrjU5lCsvM71Udv9jSw+fbOl54VM87LXpyhlM/a4DY/yJRyzmiwkuPRgwXffaeOTXvDVwvyDsK/IIAyd27OVDLoqPLjz5ExPf7tfOBa0XfvDdl7TNN8eeH99o93I83zDtMfcW/ODiWkz0YKnLn88N3PplhvVjZ8wLO79cxNsZpm+0yxs9gpM8tffgiRtfcZujY0zeXefiai/h6syEDx32vWh3LYjDi0J2YitWuuWDDa7W2x4MHwf5p9f+w1kOcBETHnzDlVMYSnmgWzxw9Jszbl/iZ06emjenDz/h05rLb58nuBNjbBRtHGDhDduY9VVcp7ias07FB2fGDCs+8hj22dnZ2iMw2xNiwk/BGT972HVjHfzCrGusOPHoRbsxXFy31h0P+PYvrol15F8cbODLQddy65s+zuasESzz+NkLckT0e9He/VO81tc1Iud8eTHM3py667w1Lx9qmLD8wkc8eLKxt+jjRAc/4/CVci6P9ORVrNOfNlu/kJDj4hcjjHjQwTE/xn3ZAgc5lX97Ty74sQ985vQvZOHSs0Zywc5+4MP6uN/Q0edjrgG/riUv2/Ftz2vDYIe/PSFPYv3iF7+4XrS/8MILa13k4iqyX7RfJVtbd2dgZ2BnYGdgZ+CaZsBh4ne/+93hV7/61Tq8FIZx0gFCv7HqdB1eSIdih5MOYdoKccChay68DlfNm6vQyd4Y0XcIc6ALd02MHx3a4kVPW5mHxrD4iZs6/9r0p422g2gHRbb4kPCLDQ4MMg+U9PgWg0PdqZhTwjEfJziKeQdIh8Ak/RnLxKKnT9LRNjZjNEaKzXwPGtoOux5E5zdOHLaLEVf5cTD18OpBRl9xYLXmcODjL5/4KGzNlRv5cYCeuTSvz5ZNa6LOHn96hA5uDsh4kg7vYvEw0n6KF27s2jfh0uuBqnUwpxA1GzGqi4k/+gRPOAopz2KNs3H6+UiveX7YKbXp8kPyK+fafNFrnC5booZrzPzUMV9+tZuPVxzyLb84wFO8XNBnly6c2ur6YVgPD1VscZ4ip/aLPYWXvtqDl/2gDbMXUh5K8YDjelHr09FWcCPFZqw+/LmO6dNtPB2+42Sv8WGuvJ7qw6KjEHV5M9d+jf/0ad447DDU+tZaDrUV+2rGxo7AsE/lc95LxNBDMc702NNtXxezvrl0+A7fdaKIwzh+9Ejc6BqHY/20idpcfugba3z6oR9O8+rylc/6YYqTX9cIyUZdMV584Rgj4cFp78XzY42Pf9KDh7NrwQsYfwbD32h/FP8Zai/a33333bXuXjIorsXyEkfXjfjxsDbit/5i65oSAzuCNzGWjbp7lZjE1z1crdBX6M1C32eJGidc6Jc/fWLP0CsO+nBg4tr6WDt9WF6C2MdzTxrXV+b6xYmv4hFHn1Xwy4EaHy+xcILTtakOCze6OHU/gkkmD234rlFr5O8xu0/BNWZ/uP9pw4OPI2EH0wux9jFbIkc4tAb02gN04Suw+oWzPsGXXfmXR7gKHu7FfNOTS5xwY8+POTZeaLERI6HDHx5yRU9+6NLhj47P4V6O4THzJybzXlLbs/ow+xMwXqzp4wIPrraCK058auPmlxkKHDnjz4tJOWWLKy7mi0EOcPrwww8XljjwVrOBYe/Yx/KBJ37yxi+98gBXwakX7bDtLWtvn9ElML3UFQth45vUfMgn/rD1K+nSz6/cwREjwR1HvsQ29zGfriW2+YDZ/70gn+LlW57iKvc40GUHW5zw+iWuebj5xCPe7BXzuFlz+0TMCv5ybZ6dvOKh5tOehGs/tD99+cNYQhemdWqvaLcfzbeHrQnBD16x4mAubs1bazq4KPrOyeXAeVgM7RH5kzvY9Im6/LS27MVL1Hz7fLZGxH4V843jn52Sc3xwZG8d4MlTcTffGF25MM8XG37KMT/yT2ARGIp+cWjHH0668K2/aw9O4wvo+IMfeeDXvDVgLyb7oHWlQxdXOZBP/7onTLpyYN8Qfujxq7RPyicsAs+6sWNDr3jNi1Ou5EHe2XnR/sYbb+y/0S5BW3YGdgZ2BnYGdgZ2Bi7OgIPF73//+8Ovf/3rdSihZUxxaHLI6BDYXH06xEGFeFDokJaOQ0kHmvTpGtNnm65x/Yq+ORwc1tTsemhzwEtnNY4/woRBX78xhyU4+h20Hd70+VHmIcw4geXwRdh1YAy/+PT5oE8mrj5sQo8vB0hj2nRnMW5egX/Kj24PdtpT6HZ4Nj79hFP+zRsTXzkzRuDSY+9BzTeajHlIf/LJJ+//U9Xid1CPk9oh+N69eysn+Cg9HPQQ0eFV3vDgyx5yaO5gLRe4lVf+tB2i5VK7eGEUW7zM4w2bX317yEOthyEPYsb5UZKwO3Sbyw6/8g5P4Vstl3KBEwx69MOmx5+C4yx0wy0feGtfJHTZw5Yv/LTbY3jgXy7gmCP5Mlf8xRxvOmJqfcKNo9oYDP7lsljx8KCpXyzlh/9iUsOhb+098ChigcsmPmpcxCXP+oQOoW/MixPfMFUTY65da5K/NXH+Iy66tdnQz88c5y9e6dFVjIuDaMstW+1qNoq+2PGeJYxyAIu+8Wlnb8y1gCHfHrjNKTDYxE88cmhfaKsV2GFpu4aNs1WzUYrRmHWgS/huT1vLPg+0zRH4OMmPcfGbg5Ev/eLCjz9jFRhhauN3OqZfrsvxzIExuHwqsNkUS1z5CasxNazw2bsXsS0mc4k2fDErXqL6kwIvv/zyI/nPUO/evbv+dEzfaLf2XlK4hlyTuFpLL9m8nMDTdYqH/LouiJcI1rfcGmOryAEsLyTsJ+tszF5rf+u7n/tlKh/6sJT2ovj9gtbeKIe9DFHjQ/jCnx4f7WNtos9v+mqfy/yLBzYO1ticdrFYr/gYhykm0i+YtOmIgVi/4g4bNy/yzOHq25TyKofl2vVRnHi03+wJ+bdW/mRDLxH54ge2Us59TrHRF7f7GjzxyTcfxhU+u9fJN37lAoZ48ean+OLV9W2/2CvisOZ4svUSEjZctrBbY37NF4v51i0O4sOFP3h4s4fPjzYO9gI8McIRVzzo8O9l+Y3jizUvtMVEDzYbuHIDxzeP+TOHm2/++tcJ5ctce4cOznwkuDsr4POHP/xh1XTyKQ528qLo48pHdubhtIfwx/ODDz5Y38rFc163dMUg/85R+jiJyUtLnMVrTN08XtrlAhdjzmz2DCxiHH/j/HYGousakg8YxnEm/YsE+WwPsIVDcIOr2Kfm1PB8FstBOvaz/c2f9ZYL88XienJ94GsvsuveBZNdeOaIMXxdh3TkxlrHD/a8D1pPeVTEAw93eO4D1oQNbiRMejiriXzz3fWsb45fObPP5NMv1OQOB2trD+ALl1/CHyz5mePmzYmJbzmFY9z62Gc+U9jBNtZew0d8ONhP4lbYu17bS8UgDiIPcsCGTwKL8KHgJD68CBs64lLjx9b6h8MP/QoMubBf6OJjDo9iaA1bK/zh2dPypNDxi2v7Cg++Xe/uj/JlHcsv/fjhw3/5pituUt7Z8SmHxrxof/PNNw+3bt26r7cal/yxv9F+yURttZ2BnYGdgZ2BnYHrnAEHCC/af/Ob36zDiP7pYeqT4uvA5eHCwcghyVgCM1xzhA+lw226DkiK8Q5z2g5J+XGg6gDm0AMHvjahB2MKDAclOA5WDpnGHK7YEjgd/mqH2yHNQc9hS3/6Y8+vA21zxWqcL5gKO/zyZa78qGs7wM4DIR9sYMAUDz7146OGSUfpYJtfOHAnv3JOh39z7OLggcFDrXkv3b1o94DrQE3wcKh1cHdQVXzzyj9zlo+44AwfrpqefMqbvgPvXF+xEfxaU3ricxgOt3jpsqno40zPmLjh8OPhxAOdtljLE3z6RA0bhpyI18MpjsbCzj9s8XpgyA6ew7+Y6RNYlWI0TldfnU+8mluNcz1tunBgi0MxFjf5xiW/6mJS89M6w8FZDGpiXtv6GmcfNzUJW27dA+QIFlwvdIzRKfew9LOrxptOD/7aMORTKa7yO/kUB7/w+raTBzH8xWqPyQX7fKprr2DOf8CDj6sy8zHzp63ApMNGwSNp3ePLX3bq1rCaLV3xu8/hUqEf52Jml2izkcPw7Im4iUUO5EI7vnGDww62a5MOn/aR601drOaMwY6LWK2ZYt3FEB7e2sUlzmzNxcU4e5h8GddmG9Zsw9Bn17w42JQrfTjh1S8+ugQWG2IMD7jJ1DNGXz59nsCnb0zOpuBlXayFFwj+fMWjetHuG+3+VqwX7a49efei3R7gUzz4uSZ6KUuvFxvdk92HxSIGfOeaiNvasnPv0yb63XPY+QzwMqk1K3+tqbX3Isz9sDzzz3c5zBcdRQzs2Xbf1eYXBq78hWFvy7/SmrcmavNssismfXvePMEdl7D4xKM199nhz5kQa+peZ8yeKtd9RsHJtzG82PgM8ucP+I0rH2LGS91LRzzEbEye4dnP7nF84o8zfMVca1MucLU/vKQ2R+RQgQdH3X6xlnLuBR48n+/Wq/VvXdXyhlcx46K0TsbJ5MIvW/h4afPDh4IPaU/IGR1r4Rf/N45nEn9iQq6Mp0tfPr0wdQ6Bw688++Wvb2fDwI8/4/ixoScHRE5h2bPi82cW5UZM1qX5/MFiLxYvefFtLYqBrTXkwy/J/Ks/sboe7Qe2xLy1tT/YyDl+9hZ98zDlUI1LetrGcRGj+4G15Ktx6+osgyOf8sEHvq6l8Nr39Ih7iPsEX/GlyxdswqcY6ciXF63llY5Yrbl5eVXaw+0HOl5OWxu27XnYeMKRA4UNLHFYK2162mp5kyNY+Ct4WS/2rRvu+vYNXXG1J/iYedWOizn7gX9tGDiKARf59KdZrCe/uMuPfSu/CVvjnRf5zj/+xdL1wY5P63h2drbs5Io9XTYKfdeuvcO/NRafMWvJLxznfGuKv3F5YKNN6BH8FdjyUF7CEjddOtbVL0zyVc7U6cgRv+ytBbzu/fJjHg7eSty8bJdD8/S8aBdH1zufdLpe4FoXOcYdv/a3uOSutTdH2OAJ0zoaf/bZZ/eL9pWd/WNnYGdgZ2BnYGdgZ+CBGXDY6EW7Q4S+Q4UDRweNBxqfT9BzGOnB0AHKGKxEH665U+FLIR161cZmrQ3TwUjJj0MWbAdSfsI7rR22HOLYOdjDgwMTf+NqUh70tWE116GcL6U+Hbj10zc+x+A5tKnDhlOff7b4KMYT4wru8wBerOmVB/XkQU+uPGTBTc+Yfn4dVj0IeXiQIw9qvqHFp3V2sDdO35jDrwN5h1qHeW3fvsI1cUDmk/CnL2cwHIBhzjWBT1++5DA7mGyLm064xVDexEbfuAN2OZj7dcZOL5F/fNhrl5ce9OjB4/u0ppN4SIUTx3T5zdZYPHBQYORLHDgQc/XTMWcMTjmXM7mT3/xoy516YvHN1rgSH1jhGOObbgWGNv/2lRIXL0HknPRwM/mFgZuCvxzDkC/9+MBID0Zt4/nnVxvfHiazt888RBk3VlzabKZMjPZnfvjNf7G0r2HxDRuGXOFEzxxbEnd162zcWoobhrZ7W+P6dBNtRY4mf2Ps4lksMOM2+deGO9vul/aOMdez3CkwjIlHbopBnPy29vEXT4Jb49r5iytsIiYlP+bLp3oWuS4P6uZqw6Mjlq6FxoznRzs+MOIA5yLBKdzywkZewmEXltzIhZcQflH5qP50zL3jvxr61re+dXj//fdXbnFyDc0XFbhaKy+rcMMDHy9beqGkln9z4ig2Y+xbX9cxHWPWUrs1h+G+L2fmjGs3r90eYS838tXaGOObvvuzkq/WAH86cMzzQ8TXfQ0OPTHAVxsrJv7aa+41sGBmjxeubNiXF75gKHz7ZTPxOdk3q825dtxntKe4jrzkg8feOslX94/0yxl/+NHDRZ8dfgqc+dKQDr/8iFHuiiMesHyWi5eOPMFtHenLJV5ekPFjji9nRNiEr3ioYXU/oK9kK4f2XjZqfhX+2qvWXQ74glde6MHCnT6+8u3zxWer9eNPrqwFPD5cl17y4kXwcJbxZQEYfcoxfwAAQABJREFU/PFl38qbdaOr3x7jlz5bv8wSP1+u4/I29zS/cPnBQzwKewVH1xA9+e1FpnXF3bwY2Tg/+RcP4uYLV/5xlRt5KV9qdnzj1542hitf/R16vnEwjiPf/CryDl/c8IlcmDNmji/4nRHzZV4xDwcXtRhhKfh4qco3u/zBlR828fFi2pqEKf444ZU/8cqddYINlx+85ct6ihlWn2P8woJBl8DHw95nY45MHfzgW5P8mOdLDZMvmK0FDmIpRnrNwWBLrDFccwQfnNVEnKQ11xevXx6J3ZoS4+VVXyziVhtX7B+8YPMn564l+8E6uA7YdH+CQ6849cUp3taEjbg9HxQTHTjiaH3hyIE+W3z5xcWYuT5nwoEtf3jTgYc/Wzow+wWi+Oiw6TqJP33YrZVxftkY40PBmxhT4PEnvv2ifaVm/9gZ2BnYGdgZ2BnYGXhYBhwg5ot2ug4SHTIeZGte6dAFx4HRIaZDFByF0KVjTrvDqIOlA4xi3AGyg5t+uo3DCqcDmEOTNgwSjoOTA5QCsz77dPmnr8Y9f3BgVsSRX7rFSB9WnLVxNZ4Y6wBpzJwDYHqwy4c5fozxrZ3QqU+PjpKvWdee+vzR76AJj4jHQ4o8altHh/e+7STWDuEwFDF5cJZTxQO4hyljDrbGOgjHRS0Pxc23GOGr+S4e9sXLrgOzeBRzdGBNMQcjzNYPhjnjSbpqwi4+2cuFh0nxGvMwgGc26tmGoy/HPTAb800hWPFoX+qXT2PhzXVqX6r5JnFtDDe28tJe04ePu/zlq7WhZ4ywUwg+carPBg79OJrTrpY7MSr44OjBrXzJR22+ynUx5ZcPe9GeC58PNvmHPee0w6uOAzvcxWB/eogq/8aUiVVOjHtAtLftaWIOlhIfWPa6OWP6YiG44ErMK/mqNo8rXeupwDGmEPkwTmcKP3STOBib+Sxe4+UKln72xrMRn5j1teVA7jyow8ouPLbisMZxNNZ+0CZ0zIursbiry6u5+OEgLjJtapdT+vBnoVNOui/xQYwr+THOl35Y+Uhfbcw8WzbyIS/a5spb+Ol3XXjB5G+0v/LKK4/kP0P1Iu7OnTvr70fzZc/KgetKcc/qRZ29b82KEW9j+t1j5YCIp5yJBZYYXJftUePW0v7k24sIe8UYHXVrri5n+ViOjj/YznXThskfvzi7Hstt6+Tl0rzPluvw+KNrjbSJur2MH3w1G3NK9uWAXzoKkS/x4Ue3z8f6+M646eApx75hzQdeYuKDfmJcCWP6xdVa9jJRXPJtzWGzU7sftdbFgwORV9/oNk6PDf4+5/p8M2Zv+EzvfmlMnz/c2CtxV/Mx9wh/8oSnF430i8cYTDZzr7RP5EYs5uWIPj19+Xcd4SweNubwtye85OYHd9/ktn6th1jbM3BwoEdHLT4vF8PjDyY8L6tx0uaLjvXAQw1PjDD5KxcwXBvyx79x8/SUcgfXGivGvWj3jXZ8zRmTFzytHbv2qDE5InLSZy8+fOGusNHHHQ+c1eIRh3m5IHy0BjjRy4Y9P+zUcAhsNn4BxLfY1Uq+eqELky97TcmXWOHImZi0+YibmNnKi3Gc7AdnVvnFTa7sOTn0zWb+u4eozePGF3ttXPCmL5/G+OYLpj5deXJmNk5g4V6+2BB+2OBNx7hiLP8wxGCcDzF1bbBrXdkUG11z7MTsRbs46CT2cGvQfsmnXPChaOe7vJcr8VgDcRBc0ymGmUs5MN+LdjqwCUz9ePLtviUOY2Kf90J29NlZF4UvfXFoG7On8uO+qA8bLr7K3Jsz391X+hzEI+ww4g7PmPW/efPm4fXXX1//kqx59WVl/+mYy2Zq6+0M7AzsDOwM7Axc4ww4oPSi3aGnw9DDQqLj0KF2OOpA5JDiQKMYq+aDfoch2A4zxKHF4cWBKVzj7MPNl3mlw6J5kh9zjTlAdeh1IIPhEMhXkg993B3A6OUPrnElXG2HXQ9V2kRcymzXh9Vhju/4y3W8+CHmyMRbA8cf5uCkY7xD5Kl+/OlMbLY4WzPj8qjvocE3w3rZ7vDuQcihVazFAo84lHp49c96exBSe0A1J04c4M98829NWj99vvnqwbd182CgTehZOwUX3OHrp2N9zLWmciNOdWsHR6HXujTGj3H64lf4wauHz/p0E9jGlcmBbw+gxuH2H4mJnZ68tOeNKcUCmw0M+ceBtN64m4dj/fIrFrhKfszRl3di3L7T549NY/pwCRs4+sbpl7ulcK5Dj/Aj1rm/2OJebrTbe7DEY0yM8bSm9lF7ED49uNrs8hdXfW0FDl0FthckJFv44hezUq6W0rleeaDnhZyHdXZ8y0MPrTAVeuYTmCR+5aa9oN8YvdrtV9xJcfDrPikP+VTjHx8cCJ/09cVB4NA3roTLb3kwT+qLQUxqxZq4Z/EXh2Vw/FHu9a2bPh11e1abqIu/MTrtEXY4qCc/vE+lsTDDKM/pF3exyEtjan6m3/hkD58eHUK/nMLCV77VpBcT2cTPGrL1Qugzn/nM4dVXX/1/e9EuVnz5dv9yL1fjiJccicE9SAz69K2xlzPiUcoZHPx9RrivadNnT1xrYnNtdI7Qh5svNd9s4scWtrnuDfqKftdEvuxJbfsQb9c3LtnjhovYjOHAp1jYGbO+XkK5trVbJ1wI3+wIH3wqxuGq7XM6cPVxMGa+uPXjz4+Xv8T9BA8v87x0pw9DMc6n/KgTHM3TFV9/e9p6lk/6+gq+rlkFFlsCByd/UoN+17N7sP3Ry0P64eApV/peWsrdxJPX+IkfP4UferBxcGbIv9y094wl9OWAsMEvLnItfqLus1Fuk/ZoL5lhOJOIlY351iic9lbx0hevGOSEf/vMdUuXXli4Ogv20h8XOri6Fvjy0tG4vDkztS/Mybc4tHFUiD4cNvYIDnzKlby15nQbw9t6w+BDDqyBHBi373rhbBx3tubxw4WNMftH7V6m4ALTfaQ/1YMjTnDUCa7WDW9cZh5bH760022vtt58s5Xr8i3P9PFVXOuuKbkXD37GCE7W4G9/+9v65YLcwITVGqrLq/i1xW2fipkPY7CKQcza8x7ID672jAKDDfyuL9zwtNZ84WKuPS0fbBTzMPIvHvrmYPCvzaccyoE9Bo8NsT/E0TVnHB/YXZflFnbCryJuwkbhy5j4W3fzxsUAK058uF7sifJnjB0dNZ+uD581rW/+zCnGq+kWG3tz/IozP3zlR5ut/dw1jKtYcKBHRx+O9Za/OBo3lo1+Yh8+88wzh9u3bx+++tWvrmG+riL7RftVsrV1dwZ2BnYGdgZ2Bq5pBhw2etHeYfSTQunw47Dj0OdwQjpsw3SY0e8QNDGNdTBx6OvBgY5x8w5Cijap5tPhJ3tz8xAZF4cnB6cOrHQcnPjCDUclXGMK/A5V+nHgL24OzT3g818O0u8hxhwsfPmPNx++2YSbeRwq8TIeD2N8i2nGLVa+4pjeaQywzRH67GDTc/D3bev+4y6xwDPuEB8PufQwJEa1b1n5J9n2TPlvHfXjyV5b0WarDUftoc23cRxe8bFGXtR0yMWbHeweAPAzlu/wYIpVLU6xqM0T+LgR9h2i18DxB1sxe4jCB065aH1mLtnJJR01fYKzdg/Q+v3nczjAaE/Qj191Y+xw8aBAwmebsBGLArtinD1f2qdxt2Zwyq0xPtixgaVv38l1OWDDH/24mKOrlAs42vHoOomTvgdM8VknmPaZb925xjw8GrMmCrvixK+CzxR6eMHwT4mLCUZ8pn5teOzsszDsRXw86MmHFx+KfUxXkQc5Eiehxw/Bl3++xThzZN9kwx++7LRxMa/AMG6sB04++PVgHx/+wjcfDznmG67CZ37jbw9ol1Ntay4XYpMHawMzW/7oTzmNO39TZ47Bcp2IvXXiWyH8xSu/cZQXbXZdg3TgZzv5lRN2Clxjp1IM5uIERx92Y+Hlg29tayJX+YHPDke1/e5F+/e+971H8qL93vFPx3z729++/6djxMW/NcXBPcQLBwV3HMQo79pE35zPpQ8//HDt7z5vxGnePdGLNjiuXeP2Ix/2Fx37xbXRPoVtThG/HJX71pgOKT+tM7xsyyWf2vamzwixFVP87HdYcYInF9bGuL3GvnsarsX6MZOPf8a1+yN7+eIPBmE7x9mUXzo4uPZx88tWeWMjNp+fcp1N2OJzbYvVHCl+tRj8fXJYfCt8KASOdfBStT+bAkeMMNlbRz7oETzxVeJf/uwJL8SslxfF7jfm4rYAjj/05Qa++BScrAfeMAgfxu1RHMzhpYgFhhpfucKHmCfmjMGxh+NinVpnc/zTTfBLtzE1nbDFyC8ca+ZaNe8XE/5UTdcQLIUdzM4MYhdP14FYrLt45fHe8VqljxtdZy8vSvHll50aNr9yZB3tVSJubX5bJ1j6xjtXwu78AdPfB3dfgk3wYW+ODzzF4EWuHMDiX/7Na1tH5xj/v4S8sGkPwdFO9HHBi64zHgycipd9vsToMwY/vNjBIOxaO3FpyzEca2JtsoGHL3tY8t1nddzg0YNRoW9cDPa3eZh8KXLjrGqdrB8edN2DFG0x8AUrjjjwYd/45Zg9xRa+eFtX1yN/OMQPJhxz1oudtuueiNPa46a09uZw0scJHhy82arLFx/lAFc29om14TO/MAh/5oqPrVjMmzMuR/YRH4k5fbaKHLVfy33XLgx4cdO2F/KBP5/Gupfmiw7/9hlca2afiE1O1PCnsIFXHGzpyAV947Dibz9//vOfX//Hype//OUFBeMqsl+0XyVbW3dnYGdgZ2BnYGfgmmbAgaIX7Q4tDgyV05A6TKgdPBSHng5eHaI6yOh3OAmrfoc7h0eHGcVcPsIylg0Mdg5gcVTX7zBHr4MYXPOK+Bzm6OFOtEn+4gXXHH7m9NmITcxeAjqEEjpK/s2Xlw5w/LOHY8xh1hjRFyP7+NA1T98cv/T0E7zyTYfEk71Y2BWbtkMkbs3re1DpRXsHazUu9BSHeg8g/HhA8ADvG1I9ZOBarunHBQe8y2t7LL589w0peubhq8sLLOumELzg0SuHxQhXEaMDt/zIidjZpD95LdBzXA8iHobkBQ5f2mp9OEm5be1xSOh7+FETMcJlIz94qHFrTc3x0Rpqs/GAC7s5tvEoDlja4Wkr6ZW79POpb87aweCj9dIWmzm5TqYtm+zEqsx8xKdYzMXJHis+a0XsM9+apOfhFD9zCowkXPNKAhsHOYLhJYcx+WvvwymGuGTPrgdYefDg7GHVmDltxUOivNCRP/sVFlx81PzEubzQwcv+FH9c6Bszh6u++a5VenDx8IDJr7zziyM+5YEuf+b5k7uwjcMm1fjDpN8YLNd716HrPB38ihWPxBjhf+o0X52eunXBETdSbPpyruAFl+CGKz3j9ORNrRgzT4pH25jCXsmPuSnxY4sfv9r1jYUbD/bsjFsP61RujMPAUe16fuKJJw6vvfba4emnn76PNTlcph3Pe8eXSfNvtPNrTRVxusa8+PCCIC7y5P5ULHjZIz6X/AeN3Vtn3PYjDC97XEuwxUn0iT3Ctpcaxtrv8Pkp9+WHD7xwMk+M4da6GmNXsS/54pcNXdzcM+wlePk1Zw/Ra8z1otCDI1d8EjU/cXWd85c9PLmgU/zmYJH0un7xsQZeChqTGxi+berP/tDPHoa8dG/Rb964ONj6BaLPqvIBt2uIPntr6TNam4iXvRzIlXFxE7ZyWVww6PEFR+HL5777gvGLBF/raK0rcOXUvmAHF373Frhdl/TYE9zkipTb1Tnvw8dbgWkdFVjG+IKnEBj5bmxNnM9plxO5tmauEXheiPss8dIOP1jwzYlF3ujjROwL8dJlh4+83Tteq+WVrvOPPcs+32o5wVEO4MiVMWKMX/PFZJxPn03m+S0HcuJvs7sviSsb9uVMLMVrj8g7H/ZMeNZRLO5d2mRypg+7cXuGuN+J07w9K4fs5Y0v8eHNJ36ELm5iVuiyaf304VgXX3oheMqB0rXiLCFuflpz2ObV5Tk/9MRMt3WiJ5disE6N84dzvMUrFljySeSHuGf6ZQMc9jDp5su83MWRTZzdN9hZU/vRvmntjMmLvM4X7XInp2LHpzXHX5E/OcAPF3ja9igbPoqVLgmj2Ngo5Y6e2HC1l9Jja469os2nPY0j0bdusGCS4jdWHuGXPzGyCZtN+1hOxGePuNdZK/7g0Ce45Kv9oC/HdPxikF1z+bGfP/vZz64//fb8888vrHBW5xI/9ov2SyRpq+wM7AzsDOwM7Axc9ww4bPSi3YHRgeGiQ4OxDlRi7kDk0NMBRK3fAQu2dn3z9dk7XNGZuPwYSzfs8pyuQ5gCQyHsKsXRPF3xOTjBVMPCd/rTNn6KtwaOP8zBdpB0yE2vuNQOmh2ow8OD7eRTrGqcilk/vfDhlMfldPwwbp4dHw6GSnGETcch0ksXtb4DqQcIDyvaxQG+nOHiocBDCxu5c0Dugca8Q69xB1l+4TioO7DDwUftYQSG/JAe7uiah9mBWDxwrFFxseWPHw8pcIm1KE713JfmyxFbUq7UClwPKw7RPSQYh2VczUdrni9Y5UwdnrYDftdDv0ygL87WRn+uVzyNs5UnOeTPHJFnfohaTPDyra5P19rwSegqMOGLu73CxlwPjnJRvrNPB1b+tHGTm/JeHNYJvr59J5fNqfGQ73JMv72FC7EvFVxaA20lDsXbuuibz46f9j2OSfr65Q0H3GDInb74xSGf9p3rwbh57b6tSce8OfYJP7gXAw72PD+JvvliwVkxRuTDtYFDe8hY3OgpMJX66vaPWpzs1KT44qs25loVnz6fxQSDlA/t8GHW5oNO8Uwek5s1sv7FKh62+tp8x5cdaa3inM/WLR7qCgwlPrXrL+CTH3DjPevasOWFGNM/XSNj8aPjuvKfoXrR7oHd/H8jsIg/j/DNb37z8Kc//Wldf3JebObtq+4jxhvzgk++4iff7r/+BYdaXvAm2op96+WFzw99ws41TFovL2v6fChX7UsYxnC5KHZj7RuYdIu1Ot9dy2ovq3AhsHE3bozv7k/2mnuc6xRe+5/ffNtzfDSmDqO1NCZe9RTz3aeyiZ91wI1f+cHB+tDnz97Brdzlyzy7/PUv6uSJPgxroHY9lQdz4hOPl61qnOAab+/KnbzAw0FdvnAVI372hnvdg9aOLmzCj7jxwcucMbZ8KMVT/tiyiZ97K99xSU+ND872IvzihAmDP766f8BUcDAXhjZ943yd7j02Pr/Pzs7WFxLoTsGDn+Kj35h1sFb4W2u5M0/XmGsQf5hxpWfd2lewKriJR4zaxJ4qv62dcfb80POZ2r3cODwYcmY+Pmo5d/3iaQ4vueHDtd+/zoODS5+R9MTUvSb/7LpfyId2ueZfvApfXauNt3/pO0/5DHf/hFnfvsfDL678Isi1075iF0fxwMXXWHEbp5fo27OKttzB42/yxk2+YcnnKa5YYMipmOUOnr5cscdVH7Y5OVOLUy71vaAvZ/yLoetH395h04v2fBSrOAk/1fgap6PND05wceJbjlsPdnzV5yMs7XxaC3zkxNjMlxzywRff7T84+vJRLhuLmz5c/hU4dHGlo/DX9YS/MfcH7a4pfnAyJh+4TB/6fY64VtvbuObHmn7uc59bn98vvvgiagtnNS75Y79ov2SittrOwM7AzsDOwM7Adc6Aw0Yv2nuo6UA24+og5qBC6CgOLA44hI5DkANRGB22qh1y0qXvAGNM0Wannb5+vtWJA5ZDUAe3MNVhzMMUPQc5NubZ549NHPJtzMFKvGzD1GerT3CKlzHxe9DoYWNyoB+eQyxf4YpXW+GPb6JfDZNec2q6SXnKR3psKg7CDu5nx4dG/h3gvWjHkz0btQO3BwwPL/AcVL1oT6fcwSAd/Du4i8/DgoMvXcWcB3W+PCyR/MHhx+GZHhG7vSTu/BjvgK0WP06k/KnFS8wp1oXfU0mvXODMH174qOGpjePNBhab8k9n5pAOXQd9vj2ohysXYajtSfkTD0xjavpdS/zD50d+cCvuYtLHB74aRt+yotM8W/vAAwNuhC7Bwbqz92DIL7vJo5jp48O2fOCesHWt4GveA4wHSjlJT42DMTi4uU7tE9/GNC8P9hNfagUfc+HwZX725YF/Y/CtrZceYjcmLj4VttnrJ/SMTxGPe2Xr5gHXSyx4xnB3vcileAgcpTYfcjLzpk0fBtEXp/yIzxxMcWnzBzMcNV3Y5vTN02WfaFvD6vCKU797ZWuthqOGraYXVz5xJeZht0/p6qeDI1/G6FrfrhP26cMLB5ZxIiZYYeARVjGo2cdFHX+6pDn22tmuyfEjf+qELg6ktTCWH5jlaM7z7Z7rm+xvvPHGI3nR/te//vVw69atwx//+McVM3+4xlu+7QW+XQ9q+XY90sG5vaJdPsVWTNaZrTnXsBjousdpy3U5gdn+ad1wInLWtY4HGzL9GrfP2SrpFRN9e0YhbPl3v8IPV7Vx/twv3OvEqI8zXPHwD18hanMwcCCw5bBcwU2mfRjG6DZnH7CBgYf44yx38ikWOfIZ6wWP/E08WMSYIg5FnO4/sGGJ1bq6z/nsJXC9OPXteTHBgq/IAfGtWXH6Rqv7Lj35whU/vPk17/OB3cwDjNaHnhzyC4Nt+wRnfuHIcbkpX+bbr+zpEnHhgrvCzj1Y3vBjw69xwi9+4pAfWNnRhadvnp0xRQ5wwAc+/3R9fvsmtxds+vzApCvWcskn33j5nFHzQ1fhCzZRm+eTTVj4+hM9sHASNx1iveW+8wI8fuRAzaY80NPmny/45aDzGjzCDj+fW/w7N4hT4TtcbWuphs2HEo5x+87+w4k/Jd9qXKy9vBUP32K1d+XCurTXtNm5vq2D86o9RZ8ufGvlF44ffPDBwoTLxr/UxFO8+taJbuturLWCpXRulU/iunEONoc7W9eTom0v4EDkSV8tT/4FQLhy075RK8S4eGDgipM/DcWeyIlrGw5/1kcRC12c5NJ9w1rQwx0uHnKhlmN5n7nHgU/zRLs+TuUZN7jtVz6Jmh9zdHCG5QyUDT1rWd7xwYXYXwR/a4Q/TvHGBQ4ergP++TIuF2LRZoOLfNsXfBBjfLlnyRddPuHIHT9s+dA3719J8Oc+CJ8f3OLN1p+O8fn90ksvLT/lb3Uu8WO/aL9EkrbKzsDOwM7AzsDOwHXPgANGL9odKjp4XHRwuGiM/ak43DgMqSsdxE71wzRem41Dj7EOUdMHPYceBySHvPQcqMKgb7wC03wHPPYOTw5/2dDpMMc//A5X2iSMDrEP8gkr3/AVGIpx+XAgpGdMfRrzHDefbjHQNwaPqNNbA8cf+h0scRafhxV/ZxMHB3IPRh1a1Q69DsYe+hVrQJe9fJiPg7i05VJNl+DGrwNr+8qYgzQbXOm3jsaIunn6M8bGpw/xwehBV5sYF5tDsTE1PmEspeMPa6DwU4xqevyIyyEdVw+OfknRQ4wY6BFtGOqkFwDGe9FOXzGm4Cnn+PNlzc0bLwZrJgZ8jOGXHn+KvnUJS84bV1sHtuIwpx0H66oUNyxi3jjhX5sdiXs4fOBHrzlx4ATPPHt/ckkJN3s1ffYe8j3E4mndPPy7TuG3l60ZvgQ2n/Kk0JNPGHIKNx173fp17bFTCE7srRvBKb01cP5j5ljbnuYrv64Ze8ZcYk7BJcGJj2LHWfyEHl44iTl7MStsi4u+vtK8uXBhnvrKh/WRW77p06MvbyQ8/q2H8dbUutpPSRzai/SKw5xYFJjFo26/wWFTzPjIAVuihpetNtHHQ229aucPjjnYzbELq5wbI+2J/H48+m//+MY53YkLz3z8tM3zL3+uxS984QuHH/7wh+s/VUsvP5et4+dFu/+U7b333rsfv7ny56WXlzWuJfsUF2sgV/YoXvQbs9+0jdsXdMSktleKWU7dD10z9MTp2uLPSzFx0jWuJHIQrjWiA4uP1gRHNsaJtnmFsMMfTwID73iygyWu+Iat3x5jr7T301WzVfgWO96uddxgsWmP4UAvH3QUPJRiYdP17OWZ/Cm9oOrlovyIBYbrTiHxw4vAxi0+xuHLvbXQ5tO8UqzW1t/t9kIMN3tD7d6r0LWucOCLG7Y+PPdkvonxyQtOxTw9OuzqG8MNH77wKa/ptjb62vTFpI+PF4vtB9h05NT+8xmjb7//4x//WPh03JfNK/zKN51w7Ck+4IjbOrDzmeClrRftYp1cxdpa4xaGl358vP/++ysf7OwXuVbTlQf2uPLBlxd8f/7zn9d4+VLTMc8XzvEO03rxAZdfBT4+/tQQfL7Ly3z5GA95wEcfjvVmA0u+7Y1iLz/mrA3/+LGRPzWMKfjRcR+xhvzREUN2+u053Omz6881Fps9Qw+Gtni8gOabvuKlKV+4s7OeriU5yKdrrz8LQ4f/8qD9l7/8ZV0r4mjd5IBOXOgRNWwFD/7lBU/86BPczIvJmYS+OXEo9qd8WAd9tTJ/gc8XPnKk7dzhHgW76345O/6wpq2X+HGH11rXLte49AuH8MsXbD7osLeOsIlxuen+oA/TnrZ38GOTrr1Fyid9ImZjdI35/HJdypOx1lxtX+NUbq139zCcpw0u8spGXGzMF39xm7NnWg+8tflm70X7nTt3Di+88MLim+/VucSP/aL9EknaKjsDOwM7AzsDOwPXPQMOaL1odwglDzo0NM6m9mn8jTvQOMAoDkpsjCmXkfThhWlM6aDlcBQ2HeMk/fywmXoOcA6GDoMeVvJBx+HXwXgezhzm2HQY0w6PD37zqeYvYWNMHYYcOGDCMMe+fKn1w9QPTxtG/tnHg45Cp9K8A2oHWgdIL339Z3wOoWJ16HT4lpOKg7F/hts32tn1kOvAST+OagdReRIP/3z3EEDXuLHywIawUfSLszoctTEYibEO0fA9xFhPuTGn4OtQzI6uUr7CkRexWe/s6BBcYcoBDA9EvRSBFU9z2hU48OwlevoeuPgqBj7yiT8/HliaV/MPQ5kPMvyYyy98feviIQOWdrGqxZidHMVVjaMHFTowZ8GRsKGnz2bmKj84WMf6cPAwno0HS7noYc04fVIMrSVbnPS9EKGrH9f8sMXNeitwehEhb3Nf2ut04LROrZHY7BcPdcbiBX8KPPvdelk7xb1T7GrXjgd+8wSOXMhhuTWuLSYFZ7ZiTgefSrpiV3An2Wt3DfFXbuDiO9eOnnEFp/YMvXDkTY7Y8cHf3KdhqOO2jI8/9GG1n3GZuRYTHf7VMPCobo31W2vY9POnneQPBmwSZ32+pw5b83Eo7vDKOZ1TiQMe5tMxDo9Yw+b1zRkrf+65zzzzzOHHP/7x4ebNm/ft6F5F8u1Fu78VO7/Rbk7c1s/93nXHby/nzCnWSKFPl07Xhz1gb5jHX+0FxozNCzz3NdcnYeullZeMXrZby9a2fHuBAdc4aW/yB7scl1Pc6JqXQ2KN7A22xaKNp5LtUj7+oAMHBz7wVPRxVMzDhaNv3xJ47qnuQ677+KjFTl+bTwLfnlKKxxwcgrdxL7LkzwtcbVy618kPezZ8KmJoby6g4w82+dFOhw9riV/Xn88RbXr4fPTRR+ub07DgwuHfHoEjPzBwcW8y5jNQvMbETGBpw4YD33optcU7hb57rTzTsa6tGz2++BEHTNj6OJmzF9xn7UnY8My7v/t2vj9vAtu+dH20x+1f+9NnELEX6ZgnbLx4tR6te1ztaX/qCScxK4R/Ba94is1/fknn3XffXVjFJAYYcM3LEzu55V9cbIybx8O8AsO4dVLMyQ88a82eHqGHl/GnnnpqXY/a9K0xe+vKRzzYWI9iaQ8Z80sZL3PZEGvguiDibW207TV9dgpOfIiZwLDm9hxf+Idh3pwCw7qyt2ZqNnhas4mjr8CBJxfufdb3X//61/IvbjkzJxd4yvv8IgQ+4uqa8ye5fKudb3Otm7iKB2dtOrCJvWgP6MOz11oTMbk/2qfuzezg4SbuXrRbP3vWuLhdd9rEOsJpTa2PfMAqZ/GDbb3ELy5Y1gN+62+MLVxjODgLyWVrZD+IR5+OeODhxNYYP+0RWDjYN52J+Iw/7gSOQh92fOmKBRd7gY90+VTkEUfjRJ75I2xbD9xgw7HmbAhMwpfSnivX1kM84mrei3b/mfnXvva1ZYvvVWS/aL9KtrbuzsDOwM7AzsDOwDXNgENQL9odwhwY5uGssIw13thF9dRxyOnAF26HmotsjU17h6L6Dkm1Hag6bBtr/CLM5tT5djhzIHdAVAh8HB3SHf7oOlTx1QHMfGNs6KRnLuEr7nArsLTN8UM6HBqrpG/eGGxFLuOinfDngErSZYebcQdHh0o5E5sHRn+6AIZxYw6T5VR+HIq9YPaQYhwefYdWnB08jZdfeZRTc/nt0GwMb7pKMdCDoYj5IuEXTn7SYYuPOQdgPHGA07jYFDoEhrmJZV5MjcPlk8ASpwdfNh6+Pex5EE9/YrUH+IProUQbpgc5/XSKS82HQ7010IfZHrB2SmtgXj7Nw6JrjNDpQUqO42gunvnHy1h9HIvdnELMK3wUS3bGskkvvGxbWzZ0PeB4eCvn+WUnphmDNjsPqfYWf2KatuYV3FxTcix2+VTkCo4xvuSSTrkxNuOCbZ2tnznYdGvrw7PnrFelvY9rD5XmxMRGjcPMz0rweY6bn2sbt/TEjxc+2rBgaytsGxNHOsaLsRwbw0cRC/74EhjmwygGcdurrrNs85ndAjjHKH5x4KIuj1M/f3iIB1eFP/EqhM+4rIHzH+XOPMn+fHpV+QjDYHZimMIeX1xOBQ47hQ6ZOahvni7Jt/uq/Nl/vtH+ox/96JF9o/0rX/nK/W+0i7F9YQ29yOllhJc2+FoHcziVdzb2VnufnrU2n579XZ5heKkpHnrsfZa4frzMVPNBf+aie50xayzf/PLT+hgvz3CN42CctMatU/HiTAd2Y/RbL2N03AfcL2DiqLRHteWgfcC3vezFpDhxLQ9wYE7hKx7F0B6gC984W58LcuiFH7E/YPMnDkXb9YkPe1jsSbhq/OlYFxwr9IxZD/biMecb7e5V7NiLzec+//rW0tryreBtDAZOMMOj35po4y0H2ur44kL4hA2TjrVnQ08/nWJoTfhkSw9PvOATc3LqpZycsrHXfKMdXzY+H10Lrgk41tQ1wT+//NkX1qPc0/OZ79zkXwK2VvYOzDgXv5pvHGD6cybw6cmXzz+xw7UWijZc89bEL82Kix1edODp9/mGo7j5U+JAl9C3ZmdnZ//x0lQexC6HrRNd/hX2sPhVE7ycCe1RUn7oy1nXgmunvtjgwmgfGLMeSjGyYV9uYZszxlaM8kbk0py6Epf2JX1xu77E6SW0vNkv/JuLIx/OJWLFlciv60Ee/EkaL+q1YZDypM2mYhwOPXvGi3Z2ePGdWCvxuE96IU9g2FN054t2a1U+cBI7P60Pf/rWx9q0H4wVj7a4u2bg4Qgr7ubDNIY/bu0ra9S+ZQuDDU7WAY/WRRzixoWuM7TrTGxsCF/dT4xV2CitFT3rQ9d4fPnnx/rxxTd+8mWf8os7XgQ+PeteXMbFJT/FVD7FBB8PMZYze9SL9tu3b+8X7RK4ZWdgZ2BnYGdgZ2Bn4OIMOGD0ot3h0mHEgcOhRZs4nDjsdACaB7hTVIeUDjb0sknP2Kl0GDROnz96+Zl8tBUHILWD1EWYsOBU+MhWrQ/DYYq9A6BDqHYc4jUx5ERuiit9tZLMGPhj00HNXIe7fMSN/cQyTl9OrQFhYwx3fGDhQ+LX2hnvgda8h0zfonv88ccXJl90HYI7TOIK2wFTjuJDj191h1B94nCbfXnA8zSu9oZxOEo5WEAX/Mh/ejDE5MAsJ/Jq7+JLx54oZvFPPvwlxuk6wMPUZ58fHO0JDwnaHjw8uM0XseIvB8Wqb01ga+Pom0vs9eEXkz7uPfTiFg9th3p24mA395F5kr7Y7GNr1h5l0x4o59O/tnXDQR758w1LD4AEDp2uM76S2nDZtifYGDOvzh8MpVzLe3s3znTFwA5vIq4w5ZKNos2HHMJU2OBiPxYTTPZ8sFHYxK2aHTw54BOWte4bp/pxgke/2NTwfZvqn//85/rFDx1+cJkPmMYUQocv9sXUHC4KMW88/sbY4U7MxY0NrGnLT6V84m8MRjmAD0d/rkn97glhWXNz+mKcYq3L9cwd3OzwZgs3e+vIrty2thOPH/P5Fmu5Ma6EIU7+ijU7PBT9KbDK3RyvHX46+mHTaR1an2Kn50WIfe9B3Z+O8cL91H9+PqnO/927dw9f+tKX1p+okE+FyA0d93z7WB7dZ3DFwYse8+m5XtwL8CbtE/qEbvps+HGf9aIDXmP2nnuW9aIjfu3Wjw2x3jhZg+7d4c/1MlbO+SBwjeFsTJFbY/mMF32fb/YBEQ8OCrv2jTlce/Hm80VceOPJl0K8eMNZnDBglzf99oM2wakiHmJOG4/2iHuPPn9iCVs+4CvavSBlD1fOyy87el1ndMTi5Z1Y+dKWr3LmxZSY3L/Ehf/MJR9EnMb5ggtPG2Z+2So4GGst6euzkVd5FifBtbxpK3TNw5YXL8fsGdj4mIONL33S3mu/48umPHoZCceLO2PmFHr6fCrh86Htc99L017gi6084cevmOgq+nzA7s/A8IHnjRs31hy+8i8eIi/2l29P+3Mz+MBR5I6o+TNXfvHVb4x/642rmr1fLIjb3uKnl8+9OC/H9oV10YefD3570d49ojk+5JudWMSo5odMHONyIk44+nIcRmckY9ZcDvEXI/GFCucxuW+dcOOj/MoDXIITPz6D6dur8lCcONKNo/3kXtEXN+QSHmw+tWHgxja/6vYR7uboKTCysY/cd/ESF122rmfY5cZeModz1085gGUd2cPOd3mxdnTExba4cdLmR2FHx1h8rQPfxsxnK8f8mWfbdad23+AbF3miK74w+LAG9kU+6eBIT1thL8d09LXDkwtxKfTMEz7g40Ssi35rJS62hC5bcSiwzLs2iNwT16T9KTa48PDIvz3q8/uVV15Z/5KMDeyryP5G+1WytXV3BnYGdgZ2BnYGrmkGHFjmi3aHCgciB4sOWnQ6lDiYkMZm2B1kOgjNOj12jRtjA9s4fx2M0umg49BjnpgjbNl1yDJurHG44Rijp07SNS5mh7MeEppTx3n67KBmLP70/pe9e2u17KraPT6/R1ArKsZzFEVvvBb1IiFRUUKioqVF1HgkeEBECCr4hUQQghEliUoUMcTEQynoxm+x56/v9c9u72Al1oK6qZfeoK9+au1pT2u9jzH7GGvWqnTyY0wb9/gbY2M87tNWuxjZaDss8qnNJs4wHIzZGLN+Cjv9bOVV8YDhJaoHGAdddnQ7CLNlZ/3bA3Ezno/y1Jz1UdiQqbsGzj/o8olTOaGXGKs0dqzNO+w7oPfQiP/0Xa7EGz9++XKAVufHodnhXG6N4y8H5tmKs5c08uyllQe11sI6tv5siPjYtgbm5Zw9TuznvNw73IuBbrzpeIDlEyZuHgbo4qrwwa9aiXv81Wxb68ZhGycw7X22cuGXAvjGkQ5OuLHntxjNEbb4e2BU40LHWqjZxZE9gRemPIfLFztzpDjZZ9McjtpsyhtfctqDEx25kzcY5UA77GpYcqDPzl7zIKY2Vx7ZwoSl0JcDPrysUszDmA/5cjG50mFHz56Cb/4o8Pkp1vJSLMaVBJ4SLz6KKR39cMVjDfAj8SpHxszLq/UNT41Dc/T1SbnSxgU/NZtyF0d2lXTp0zU+81b+4loM7Ej95vnCWx2/fMU1XbZk5jXcqWtsjhdPOGrz8Oba2JP2kr/17D9TU4e7HF/hR/79aQx/K9a3YN0X5V18OPFvrHFrZ4xOL4npwuqXfa1pVMqFWjEPg4043ddgmTNuDL64a4vZ/rZ2ri/jcgEjf15A0SE4mVeKg552wp99l1+67Aj8/Jlvz2or+HWdudd0v8GZHY7iSo+ueyQcOu5zcMTN19z/8TRWbDiJlW1+zdGRM8Vcn0c+2/QJPwkMuv1Ls+aNTdGXK4VNa4QrXPEZz97ae+nai9eZ56knfnzgqeHJkVpcCn2xKdajc5VxNvyzsSfkvfG48C0vrZl5/uSknPLjc5QP+GzEjAfM1r6+mq7Pf/P8l9c42j9h0Cd8azs3edHuP6nkm545tvDwa9ycGI3z5xvRxnBU7j6/aIfH3jy/4oKl77PDi0uCp1J8bPTjx8ac2MTTvPOdP3OjpuscId9s8XSm8eKcH59ZuDpneBFMX05xhp/YG/05QZz5kmfXrWJ92PlXEe63fNHBq1yXB/Eq+vTww7V7Q9egebZqn6Ow7VW2xa2e+HTlg297xFqIgw58Bb5xemKRA222ru1+OQ5j5lq//Stn2nDtVTETccixuLo/yM1cA3YEL7G093CAZT/xG++lfP7BF1zzan02MOwduYDtfq8tLjrxhqldCdd4+8Mcv33WF7945Y2Yh4+rfWRd2BmjL+9HvWKZfGCyU4upz2m2Xf/0s403HxU+rRsxRp/QlQtrocx+funJYznMjj97WV2BBd/+8bl948aN/aJdwrbsDOwM7AzsDOwM7AxcngGHj/mi3aFlHvznoWUeWBw49KfAcihx6OkQpDZOYGWnDrsDDFuHHsUYO1gdRM0fD07Nq82pCfxw9fmq6JPm2cAWu4NpB7zG480GrkNaD4nGkuKE5eBWfOZnW58uHbracolPGNV0tDuI0oGF65wzhm+c4YbNnh0fHvA6/E+f2WYPmw8YZOIbtyZ0YSvacUp3clgg5x98yiEbelPyrb5M0j8+LNFloxSrfOXHmEM8Ph5i86Pv4dKDkQch/K29Qoc9n64Hc7jLXQ8k5mcO+ckn7B4a5J4dTva2v/NOjx96XW98zv3Pznp50YsHffvTQ2DrYx1wg8OeHmyF4JTM3JuHr2arEA9S/HlwNk9gwmFPyk1+zBnDz8PejLtcwTfXSxGYlWKBLUceEq2XNjGvTOGvePGc6z1jMqfIk5cLcl2sMGfs4pD/HhL5gzXvR3jRY9d+hwOfGOfDSwn5oCtuebUH5LB9EC/2+eGrPC/Aix9wyzs7uK1LMRoj9OiT+KQLW2HDJ6GPfy8Ps1mTF/Ow6VjbHkDNt4bNqfPFBnZrx9/knh4cugpd43TxlMPWzDx7+ZNPtT59dhX9KdYJb1hiM6+Gx8+sjZMwWntjYokDvwldcRPj9OJpLh/m6dnfXoL5G6/+hFe+zF9FcCH+1vZDDz20vgVrj7k/8iNvciIG+7aXJMWrT09+jLk+3F/wj3drpg8rTDrEOHw+Ychf8evLg3urUi7dE+C2HvTMX7t2beGYI9bMvQ4nHOnbe1Pgs8eD365JOsYUArM2m3yYkxvFfoOlbn/RC1/8fNh37cHub7h5Ach/XLsPlhO2sMUKt3zKKRtj5uwPNR98G2enxLNf5IlJTvhqbegr8RZjMRkn6rkn7APr709syHl86OKPK6HHJ27Gy5caZ/tA7szRZef+Jz/5hqMtd3C0ldZSntha9+5J5hRz5dFnozZsfsozfPHSV3ffpUtPLQYFV7WY82WMXeuIm7i8aL/nnnvWnDH5I2KojXc54ktO//Wvfy0fcfSyHnf8zFs7a9g6iicpDjrs+XUdqYmY2z/6uNs/PsPf//73r89x8eKPY3vKmthDfmEjz+zY+NN4eJib+0fbZ5p/reVP8cgVDl4es3FewAvWv//975VPPNgpYg1PvgleBC/2zmJs6MLCiU/x0bU3XWP46avFwSdhh5M5PuROnsVe3O3P1gm23Fp/djDktOsJnj6BARM2XW3c1dYMD/b2idr14BcXtfnmj257Fg/7DF750Wabb/ba/OLCHy6KfvsKlj59+YQrruzUYanhqAnfrkd1mH0esDNOtxzERxz2ED90cDDnDBVWuRZXvuiYL+727dzL7Mwr/IgHlzCKQd94etrFxo82/May4x9may1utp4H5MJ6Gisfy/H5hzmf3/sb7WVk1zsDOwM7AzsDOwM7A5dmwGHjshftDjYdPBjS66CldoBRptBx6FOIg41CzyHIIYZODwr6xFh4HSDr0+kwpG3e3LTpcGYsH9M3H8WCh3aHrnCMO9g5XHUIppcdDCJ2/D0QOLzhIt6JUw5gvpLQFxf88qmuzS6udMVtbuaTHzo4FDddmObg6ydse/BgZ85Y60GPLTv22grd+jhoe8jh87hO5ugr2bKJhzE2cyx++VG/kvDpgcXDc/mfuvzAF1dtvuRPXD1A4mG9PVx6wPPAZN5eUsyzx6U8wuBT0eajdaFbwUceHODZ8u9wTp8fD2J07TP4PURoT2zt+IkbL/vTQy4bhQ81vgk/fJLyjE/jfBtX5IqUczoe0jxA8z+FbjFODO3yGT+5he86ETP+Hsjijg8xri1PhE8PmUr+zcGHh2eFHfvWu1jiOWsYHhzt2+yMKfDKBZ9iZwt7ijjFoo5ztXiNE23f8rIucD2EwvXw6VpT2jfsxcZf49bgKLjEh598qVvXbMQjLvraeGjTvcyPOTryQx8n+4qUQ21xyZ+Cc3zU5tqLdHGiU37owDKu4GJMkSPCt0LPmDl7nj/jYciddZDT9PjBQWGv8E/kIm7xhlU+6Ggr+TdGB1dYzcdNP6HXPkoXr6MtbPzcC7xg//KXv3xbXrT7xuzDDz+8/kSF+6Lr13qKGS/5kiul3ONvnJ6ib5+yEY9SrGzibi2KlQ09OL0Yomct2CpsrZVCj417gjm5oG/MPf3u8zd9XSNyp7iX2JNepvHJN36tOdv52WU9xBI/POiQfPMrD3i3P7pH4RFn+vwUIwxY7MQkz+z418etb9qKa+afncIfTHbw8SsmnPnCrfsfHXzY8KHYO3Lpc6z45EdpvWcMeBNj8GAQ1xUsxRx+1t99SxxxpSseheQzG5zDFFff2oXX3uqeT5e0t8Q5YxQnXPP8WX+c9LPNnk9nGeOtuRziHSdYMHHiByciBoXgUOx4EvmF370Hjjz5G+3+E/muIzV8tQKHDT44q+1f3wLXx025du3aOnPwJT57oH1gDengK45iwA1nfXOEPzr5NOY6UpwbPvCBD7z8wtXaxBuG/dK3w/kUMxuFL/uAXsKPb797ye5P24hL7O41XiaXY7hetJt3jbBTiie8aj6sgTMYLNzlvuva/yMgN2KVR3tTvDDx7v4Ajx1OhD6fuHVW1BcnnzDhKOGUd3qth3bryRYv2MbiLq/2nv3Kv1+ksJNzf74nPXvIessvfDZw+BUPPaIPEwaBad4emnvAPC70FW3zdK2ja4i/xtV8yFO50qev8EnoEestv83jIX5+y3N7XEz0+DTXi3Z9OcYLLh0+i9U44Vu+6DcmP2wUfsyVKzj8xEVuyif9fNARa2unb67cwmxPwYbjF0f4iwmW8fjrW8f9jfa1bPvHzsDOwM7AzsDOwM7Aq2XAgeXZZ589/fjHP375gdbBqAOgg0eHIwcWBxQHlQ4sDh50iHFtY4TOZXph0GEDXyH5qh9ehy/60wa+OYehJIz868exg1NzYZmH4+DVAc9Yhzfj+rDkwQNBh3aY+aSDi1Ie8Go8XWPp4MJe0Y4THaJvnDQPTyHsqrXhikVhmy7eDrMOy9nCsx6tCX7lEw5pTA7oG9cm/E0f4eZf/uJHn61+8RhLjFf4hDVti8MhWBwwmo+DfvkKi56Y+XaoNh6+hzt4Dvpimgd6OmzEAFOOrLkil8bUteOSHbziZWuerQd2nOCKic/y1PrICU49gOp7iPXg5PqEC9/DnZpP+PDwUkht83wqxmDjpB9vtX4vkcyLjVhPPMNhL6ew+DQuBjoeIunDoqMQD7T4mo+zOBT6hD924a/B84+48UOXL7X+UXAqruazkzu2+QyDDcHVSwM8+FTiqD2v+TjEJ33jfqnATg7FC8/aqouR/vRPl3/zBGe5nZIP9XFu6vFN0m9OnBVzhK51s7/41MfZvDzSN97a9uBMTzHXXhQ7XmGHF1d44jNvzHx1bf7Mx6P9RI+9PHk503UoBvrx1Kcrt0TduhvPt7bCL1yCv3Y64apr85NkXx6mDhy6Ew++feCF3WOPPXZbXrR78eWfsb/00ksrJziI13rhZU95OeAzS97iJY9eJrgmrQmbrk3xFZsaDu5zfY0TMSr8plfccPnnV03HtW2+nNHpZZs5fTV8+0oc7SNrma3x+BhTxNC9pf3EJ8x07Jtiwl9ucDNWTHKUsG8NteHIpXWUQ2P8yiV+itiKr3bcxcYOd7l3X8SZb37MK9p408WPXz755i++bPlWjE//6bCFA4/QKT/69OCwx4uUA7g4kmKiX17KDY5yi7s5uvzAhRnuAjr/oJ8tfSWe2tbXPYngCotfbbF40a6PMx/8hQGndrmDU97pE7k0Vuyw2U3efIjJn1O7+/zLoPanz4nuQWwIe4WNeF1PPrP16bB13rDfidzyLVZtL7/Z0BND+TEvPmO4xA+uIgax+Dauz2/1e97znuULDzzZtwbzsxgWTPHgJudesrYW7Rnj/h63l9+4wsOPbzkWH+5szRsjapxqi50/tnyUz3JZ7PLohX97vV/Ui4EvMfTiWg7Y8eV6hq14aaqPo75c4wgTvhiOaw+LD/Ns+KEXP+NsWgs+2aTjXyziQt/5kp5C4steDIq52tbCWuNbHtR48GFOrU+HsNdXcIMhx2K0DsQYkXd801ezh0noiYOwdX9qDkdCHyd9+uVTn27rrY8vDFzo4hdfdZh4wKTLxlwCkz1e9Omq46GmA99aaccvvuKWL7pKubPO4mRL2Lp2rJ21Mk5fTDDNw/KL8s997nOn++6772W71bjFH/tvtN9iorbazsDOwM7AzsDOwJ2cAQeWZ5555vTEE0+sA3aHTocdBxsHCwcNh4xKhzPjDiJ05gFIuyI3temRDkHGtRPzfDqMaVemfTZqMutjW1/BU9GemMbEwl/SvJrIh4OYQ1e82PVy9uhj2oehFhesfLELT5tMLLxmno86+sWknS9tuBU6+QkvLDba1sDhsbXAtXVI1zo77MJg18HUvGKsfKodYO2h9tEK8PwDF0InibvDbwda/hs/6vUi2LwSB3q18Zxt8dH1sJgNDh4ue2FiffBtnXAQZw92+Hlo64ELPgx5yx8OYix/cawWnwcxWK1LDyHGHPLpsIer72GNeAhXcOKbjgcLfOETmMWtJjgqk29x8Jm+GJTmjDcvB64BXI33sgBHPhW8cMErPvD4Juw8SFkDejDZKOnTgwVXHozjoMCC3d5S69NX57c4YIVtDF7ryzbOan7y1Yt2HPhlQx9/+wgW3Xyqm+dTvwc+9vrFM9ci3mqYxUk3HLb88qee9nSKQZxTWm9Y9itbEha7Clsx4tyYfnmEhYcHajrlQ8zl0Zj9QQ8GvnGYvIpBTY/+cc/EgR1/SusI0zp6kaBow7Iu4jRPwsUDHh/q/BuHSU8tVlLccOgQNsqxHTYMbSU99jCrw6frfuNPUHjR7p+g52c5uMKPfPlzDt/4xjdON2/eXP5821kc4qIjR65Xv7RT22d4GXc/cT0akx92vVzBVV/uyhUde0o8+TfX/lfTN09PgW1trBEbfXU50++6Ej5b9yDrmy594/nFy+eyb1wWJ1/GldYkO3NiVuIhFhz0+dHGP9vWpVxNjPaguIiYexnEjt+KfjnSLg6+xNA1xe/ky5+Cn1yY8zLV/ak8pG8Nuz93j50vkIqbHWFHn508KOb4EluxGvfL6b7Zir+xuMqbAp/M+ODpmxN/+4pvYjy7yaG1Z8vGnFzJb3p8etGOR/mDxWcxLifnH2ziIY+w7BFjff6zyU97C2fCh3mfxX5Jjj+OXuK6lvXp8i9vdGEr8VW3Z+g2356xf+TZi2xrUiwzP2z0xTA5WjPXtm9P+yazPaJ4GajmT76soTUn7OWB4I9bn/t03Bf4mmvBxrhvluMt77i2z8QojvY0bGNyJFcEHq7OcHjzXZ7kuX1FF9qb7OkAAEAASURBVD+cYdLx+aMNk930b17e5YYv8dCxR1yj5sTjxb1fBMCee5w/uPyLja15tT3IL0wYfM31bv+LR1zOa/wZF682f3DEgzdf9PGdeeBb/ti0l/iFVQ5gxY9ea6cm5vHjR85Ie9ha8Bd23Iu7fQFfzOU7DNgkfjgZa93gyrd9J1fiEbOYtNPjt8KXfODslyn04JtXE2N8GStf7MhcE3vXeDpwSfHCo69P8BEzCceawXA9tu7WVO5wYOvz+zOf+czpIx/5yLI1fhXZL9qvkq2tuzOwM7AzsDOwM3CHZsCB4umnnz794Ac/WIdwBwsHD8UhxAHCAaTDnoNKhxXjHcTgdDAyr8+2gw5dYyT7sNJTO7Qp2vwTtkqCSz46uIXFR4U+HNL8xKGnD0OdzjI4/zAvDz140BMPzF5Y0BU3e/pT4sGuuBwm2fOlLj9HO5iKQ90Rl25c1SRedIvZeP384DLntek4mCrw6KQnLjp4y0X+zIefD1zbA+J1yFe0Cax4roHDD+vqkK7m86jLj+IQ7wHFfDrG5xrEkwu8eiHSgztdfsKi095vT8MWd/tRbA7bsOgTOHwpOCTxEocCU85geCCWa0LPQ4QargdDvPglXgT0or2HRHj8qq0Jfq0HnASn+jDLHw4eCD1QaJc7+vp4qOEXFx8ePDwwGffSQe7mWpUr3Ajf7Okr1oy9hyn5gKloJ2yMwYgDPooxcdJvX/FpjI12PvklYcu3tdOX73Tps1dw5FNu2ItNjuwZeSZ4hM2WTf6XwvmHMXzUONO3X5Ryk11+jcNOx5rgqGjTJ7AUYwQHMeFHJ5+4E/G4V8EPI76wjeEqJ+1DmMZwyRdd87104JNOfs15CQObvcJnGIvMxY/ioUPfWhYnFbjw+TbHZ1xhism6KOLkw9oq5uHDxYmIkX2c4Gob40sxRo9fGMp/E/rhHHVxUODgVx7wwvN2vmj3DdPvfve768864OPPO8gbEZccuY/4Rm73F9yMWzOfb3JKV/z6cLThKHKEu5jtU9cTDGIPWCPCRilmNWz6+eAnW3jGldbDnHsLzr2QgwPDPQQPL5G8wMGffzYw+LbusEj5N6edXhxgtTbmYLEXL27Z8y1f7BRz7NpzcPiWNzjmlHw2ryZ06Lsfdk2Zyz6/eItZMcafF5X46OPiOoAjH7irvUyUG3koDvz5Jbj5+9fzT9BYV5815ZwuTnTcs/kjxuCah4kLHnImfwRvc2zMs8ELlzgsxfMPY/DowOHf2uNo78mJWp7oEPg+g/g0rqZvXM2mIs/sjMsfXXniV7xwuq/T9fJYzOzxySdbL3GN25/+BJxaX9x0uzaMib38wDAnNuvCPx1cCL/G/T13n7NyBG/mqjF7QT5cp+xg+gXA3edv27vG7Qc6+vjxjYv1ti+mX/xaK20+4eLAxmcHDL7F2N7CW9tLd78csP9aQ7HR5Zcv/F7zmtesfMPy51zkXT7gshOPwo4NW7HNNadnLulFOzuCu7hf+9rXrpou/sUlnpvnX0b60zbwi904W/uBT3j2in1LxIaXMXzpKewU44o9ay/ZJ/TM5QNXe0pe5ce8dcJPrY9v9zV44YvpyIUuztaOvRy3h+XJGsY7bJi4wSsnan6sp1zzr82m9Sxe4+b5hsU3vebxwRM+TnTEal+7f8irvLNhSxdnAtu8HLFpHj/6rbE+fJwJLglsfujPnOJnTMGxom/OmsPjU18dFi782bPWltB905vetP5c24c//OE1xu4qsl+0XyVbW3dnYGdgZ2BnYGfgDs2Aw8avfvWr0/e+9711cHa4qnSIoePQ1OHKQUNxuKBLLx2HGHPEeAeQbNR0YKmJQw09cw49Dl0dyOAeCzuHIfr8mw9XrWQDtzjYKflKDwf65tQkHTwctjx8xQse/uxJvlbnop8vc/TZwoSXPX1tZQob+B2G51ztuOcbBnxiLNGmm+/s5G0KX3KKd1hs2OOMv7XBKyz2E58tDDrwPZwobNPThq9/FHbsHcDN81NuYJs37uDbg0f5DJ9e69Icuw7srQMdvhzI5wOKGBW2xZkNfQ8qrQuM/OWznOCTf+0wcfEwHH8+4BNjPRi2Bj28mfeQ7EGCDb907E3Y8m28Qh/fcLRx5F/+PPCq4bApf/TaC8aKgw8P1h7GiIcOXHtQ4ke8SrmoDZ/A9aDmIbD9gb89ksCRD35xZSsvrV/zxc0HHXi1YeFgPCwY1nruyemzPPFJj/DpAdZDnviJ/OA2JU78E/P8Gtcu7+2VdPCr0MGRfzaKmJRioUv0zWfLbyVfuJvnswf/qT/zhau8iJMOLH0+iDHCxnj7jV15sa72Jx3CpvjbY42HZ54va6nOH1yFXetlnl3x2XfyZT3kzH4WJ8kf3HjgxV/28Izlix3/dGpXG68YSwd2+I2Zn5I/HLX5xNO3Tb/yla/clm+0eznn89ufkMFDvxcieMuHa9316n5ib+Bjb4tfjnGjaz191sExB8e+aN2NwZJ/NoQNPWJejPCtDd/01Ep8spW/dFsTOnKEqzq+/Lo26VlbPnvJyoY/XI3jBJvPcj+5wNTHFRc6xMspBb4cGLfP7K/2G1/tLZzo8AWLDVz4M37Y5ir6eHrxpmYbBnyYMCp8Gxe/dSOwcLeu7MUs//i7V8OOk5zxwwYOcR9urfWtqXzzEXfj8Lrvw1fgtHY4wowDG/YKfnDp80W08Zmib1zu+C/ffBi3//Dn21h6fFoL4/yV93zANafG0XrpwyO9aDcO0xye7mVsWls+xeEXVQQ//zJNvujB4984LP7Zait0zIsNtnwWR36N+6VZL/nxVeSQrpouXDzFDVcMXrR7md31bb/ghzNRe+GpwJI30p7GDTYf8oyfNjz7DQ/jc8/YX36p5/+IcC6RA3GXb/b8sPfym8iFs0PrC9e+tcfm+rKDBwtfJVxtduZbe77EYD3kQlww5Iquws6XFeTAnHgVc+q4m4PHlvCrkHTpd22WO76Vch5POO5L5ciawcfRfoBDl8hFueeLHky6dOxNecLRPN/yaw903cL3SxW6xSI2WLgp7PQVwkYu+deGXdyTW2tkXlzZ1y8mPuTIGolbkYN4mMMhHny2D3A2DgMe7GPMxghusPRhuO8Zyw4//WKgRz8bGDjyxyZ+YrfXcTLuX4p0HYjbL8o//elP72+0S+CWnYGdgZ2BnYGdgZ2ByzPg4PHUU0+dvvnNb64HMwcShxPjCjHWAcWBRLuDi4NJbXYdvIw1Ho65DlgOK+GEYd7BxkGrA48xetW1O6ClB5cOSae+MXrGFUIfhw5cjU/e7BVjHUBx01bCdCibdrDCn7j80otz/PQVQt949umsyYsfdPKXL1ONqUlYM1cOjcShmh4dwh9f9dfg+QdeHYIdSOMz+bKBJZ8Kf/pyJTdqfbb62eZDDUM5xp1dh259+B5OiH46xcAPH70gMs6m9WbHlzH5gMVGnAq+arhw9NX0ejCiH9/8wiXGCTtCN0y6Dux8J7DphI8n33S9RFGIhwgPT/Dp4OihrAduNnGlz4cxIk4+5NHDsziMweI/PTqtYfbW3YOOBw85xcsLB7xwZps9X8UPV9GvzGsHFv4KPaK2Rwgu1bX1xU1H0U4mD225CAtP8TY27aa92Hoxou2FAN2pX6zFyT7e5nDl9xi7cTbV8MuLWl8p1vzmJ7/81W6uMWsnTjjpGEvPWLjqeFsLhciRtlqhZy/Ei41xa2lv6NsfHu7pJubr80tPP170jM17qbF88kc/G3blCR8xErV1cl2JVYErhuKFOe3NG6vECX5t2Di0JtrmZqGvwFO0p7AJwxx/rr3b+aK9b7TfPH9bEzcv6ry4sgfjynd7Q22P+3au+4E5enjiV97YuzatrXuMYs7+yo6N9bEPiDah45qTu9ZvTZx/sCF8kvIjf3T1vVyypvmx3jgr7PCky0afH7q4ir3PKrHCa23Eqo0fzPgaJ72gFrc59tarl/767M3jUIxs8VDowFf4Voy1Z+nAcC/vG5x8GZdzXOjCZpctH+1F61CMfYuWPl8wzCn84MnXzfP+sIZThy4pH/D55xOecRjxEzcMgi9deIQOPONwYJiDQ4+dGp/iZFc+tM3n13rKgzEFD2vLnvCh3f2DHRt1nHEyHy94+efXC0prK04+6NlDXiLD4IPAEQ9devanb7naG/Csh73Zn0Vhi4t7kn3Ml1ywtebySMyzg+Gb4X/961/Xt8S7Btm0JtmHDR8nPnHxC3w6RI0jW8XnNUyf4eWbjlzJSXZsxaoY66W4vty37815efq3v/3t9MILL6xviRdTeeNfXHLUn9zBBWc+1fJRvuHjprRG5vmC2TobU+glsMTCV58DMNi4DqyrvjgaV5N8wDPPF58KwZkYJ/pyLz5rx2/j4lJg8sk33O6ddMt5uSg+ego/eGibEw8b43IkX7CJcWtk7e0zvvn058ToFgssMvOev3zKR3p0y5WayCVM+8gY/viFqS//ijF9cbuWlKMd24r1oz9zDMd1Sbqvw+NbfukrcgDHuPscjPaWcWLO+LTTNiZf1tF60pMH+c0XLFzoEJx8fl+/fn3/jfaVkf1jZ2BnYGdgZ2BnYGfg0gw4bDz55JPr78X6poeDi4OEg1KHFIcRBzC6xmd/gnZgU3dgg8GOqPXh85N+eHQ6EGnTjUPtMBx+FBgd6qZfeulo86Ek/LPrkGY8HThs0lET4/g5gHmooE+vA2T+px/zuIexgC6wjJnLr7nizEY9JZsOxebFmR4O8NTEnHyLk2iTDuHxy66YjBvLj4OnOF9NcCvn9NjLlxIf43wYI/xU1sDFj8bUcHtgxWf6MF8OsgEB30OlOI2L38ORgosCp71Dp3F1OWwMHgyHcTYJbhUYhG0xxi0cOvzO9WKjD9/6NOdgL24+ifx7KDCPg1yI0Rh/xN5szfAiag8KalgeumHjgZfY4kw/fFzM8+sBxp63D9j5hg8smOzFxS7ucNjiYi49Y+l5ePJiSwxw4+CBLkw42vVhwVCM1YapTejwCweucfPym/5SvNCNO//a4oZNtHEvrvDM0Z2FP/j0a7NrbegSY3Qqjc85bVjlJJt0zaXfnL4Y25/ZFle2+vIjRm3ra22tBzGuby+Jg448uHbg88e++yB911nfAuUHP/uSPd1iySed9MwTuIQ/epdJdnTTM2Z/+8VPL1nYi4uOwoc6mXziF3a5pdsaqUk62vTwkG/taUeveNI1Rsd145+ef+lLX1r/Keq0o3urAo94qfLVr3719Je//GXxtY6tH+ziF6eCFw533XXXypfY6IkDZjr2Oix5tNbWE273Tb6LceYWnnWwX7ThWY8ZpzH4JI6145c9bD7bg+mp249qL5zsN5xhi6eYjMdBPHiZI7jwgYf7kQKDPj33Snureyjs7rn8tg7stcuPmhjjC4a8G+ePHy9d+S8H7Vl+w5aP8kzXWvQNUdhy7UWr+/q8X8Ewj69r8/e///1aP2Pu57C06RWbMbkqbnxhlit2cnMUOGzlRd4IDLyrjdEzj1P5ETtbOYlPOeRXGw8c+8UE3bjmzzrR6TOeDj/uTXi1PsYV/X6BgufElIO40GNP8NBXy7marnXTtgb2IYHtJbhaHLjIXZ/Z8uJFv/UTg2+H/+lPf1ovr72Y5Ke1F1Mc+fPi2rfEvVztlwXih1+s8gPX+rnWxdNcsZVffNPHy95Tdx3jbr927VgTcdw8//Lm+eefX9zNw5VHPr385Z8POWBTrviCT6yP/awWM2mN8ChuHGB1XWjzkw49mO0HGO5X7Vk+5YsNLNeRsXLML//s4eCrL69smqOvb6+p6fHFTvzG6MC3jmLmj4794D5gPenSU8NW9Pm2jmxg45wPmPzQZQfHfvNLUzzZs/ULG3HTKa7w9WHAV+NlTs2PkhinB0ccMBVtgqs88G09XAPFj4v94rnSXtEu3/DME/7EYa/Byr8xmDhYR3tEPsXH3rq3Nq07P/TZJeKqsJsxiq1r1x7Vd43gSXAsN7X5fPvb33569NFHTw8++ODSo3MV2X865irZ2ro7AzsDOwM7AzsDd2gGHDx+8YtfnL72ta+tA5EDSodAh4eK8Ogqxhw6OhAVusOJg4qaDl0HILrZqvkw5vCTTYfH9LOB0yHJGFt+q/nWhwuLrrYxB7H0jHWojC9f6Rgzz0e+2Shk5qF5PmA4qPFLcHAQdDDsMLomLn5MvNqmjvmCW0lPbW0cZONTTsxps2kObnlonE4ccdanoz3XTl8pp3JjfgqffCWT57Q3X3wO4rA8MBiLs5p9dnQI3tbQIVyh18MNe/PGFH2FsHfo9vAG1+FY7oiYwg/LON9HCVvs9koc8ps+vXIMmw8S//YKfubU/NEtr7j0UMUWZ311sRWfmNjae+ryJq/wioU+XA8R5cGDubH4xiMbXOVcvATfHtDhiRUn9jBJNS5T6DeXLXwYeLpOPKD38IaD64fP7FxHSv4ah6ENl9/yCl+fDR9xoCsuhS0xVqHX2Gynnx/6rSe+6c6ab3o4lxPtOC9Hhx/xaJiuIi4c7F9516abHNvlMDz+4ZQ/8+VLfjy8KvZSMVqDGRtbe0bhn5018/CLn3X0Mk/c5SE/fBmLD97mpuAnp8Rea79NndmGlZ/G5ac/GwA/Lto44qxMPmzNkXJkng0fxvJlTF8O+Mq/fLSn05Wv1juf+nRdi3ef/37yI488cnrjG9/4Ms4icYUffBHfKv34xz++XtLhxU9737w9gx/+7onic213L8YPlpccveiAQd+c/IhVYTvzY560dnBg94u49qoaJoHrPmX/0Lfv7B/cSRjp89f+KA770x7xkgkvPv3pDDHRNcanoo+nnPArB9p48GVMn8Dkj7AjsAjdarh8eWmGpxyxJfT14Rrjh7519/JRgdU5gX0YvXBsTegpcQiXXrk35gWvnFs/vuxRbTVb99iXXnpp2eDj71TjVw7klR/94jdmTRQ4cz3kC246arH6vBWXufSLxT4krWWfIfjbA/Exzh+7Xpx5kehPofznP/9Z47jaP2zw1bcectxnqFjsq/9z8Z935neuq9hwF09rhbf9JH/m4XhZiCNs4hww/3QMezi4l3f3Ijr2KBxc8IdvjSpiZX/z/NL6ueeeO7344otrvcTFN7G29OXK2Nve9rbTu971rrWX+BO/XNgX4qhPXyzyR0/srQ0erRFMunLOT2sjpmz82RX7iL0xutbAN/HNaZuz/nD9XzRq2GLRtp50xYtjOLgrMAkOeMcJhjFnFwWWvMmrAg+2X8TgwQ4+PubCpQvHOB01LHESY/LXOprXZkdHHxZMceIcjljoxc9+kS+xp9O/eCi/YtBWlyu47PiRA8WceIg9aJ/bg+bYKzjJE/5etHft4ByHBXD+0Vh7TC0WOK4j86Q10i7m4mYjl/HpuqNLcLYWrj/x4MUGtlzJZ7HJm+tEXNrtGThsyomY5BV2XGERObb/zXVOFxO/dNpT+cUDln+Jh4d7Ob9Ka2ld+BcHXT5cR160+0X5Rz/60eW7fK3OLfzYL9pvIUlbZWdgZ2BnYGdgZ+BOz4CDlBftX//619chxWHEQYdcdnig30Gkw2k5cDCs0OmQ5uCj6Ct8hEPfQaZCD266OMBSGzPHXsm/Q5F5WHHrANpBbuIUG19zng7MuBaX8ez56lCcXgdcOg5iHjY9VDngJeIjbGB08G5eXcw4FGdjxW5txE74g1U+YVfiy06MdORG4bsSrtwZK9f46jeuDzNhx1d+5hwdOHNN03M4Zhsu/uXE+LTTxxt/h/8eKLWN0aVT4Rcege9Q7oAMny0ba0UfH/zgm58Y7M3DUqauhwn6lezUdOMvd83RFbc1Dav808fVOC7w7S9Y1hpvtXl4U/C3x2Bph6UfDzbsPUTU7kV7scFOH357Dx82sHEkbMRTHacw1K8mbOGzx7MHqB7E8HDtWKewZnzTL9/5p1PcdNjiDYeEZQ/w3/rFxTzfyhTj5cEcf3GAQY52bFpTunjkTx9G/swR4/wQePTTM2bOHmof04dBykF9eXAPIvmrpssnH/Tkx8Npf84gXvZVeGzwwaEiPtcWW3jWrG+0wzaWHzgwcCD6jRmnbw62vofjHqbNKUmc6qvZ8OW68bLVftcXH3322mISL+7xUZvjv5zH25gShnE69pB1MBeOMXOEfntMnz8cxEfPy4Rr166dHnroodPrX//6pU/vqsI38U32+++/f32zFK9iEhfx0qF7iPUy3r6XD9zYuK92bxWbcTGTYjXGBoZ4rZMxuYchdnF6sdc3N9ka49O84rp3f2Zj72jPz9X2Amy+yqn8GevFh1wS49fOOdWHQ2CE07rbW/1SCQ4Rg3k8u27xii//cWicD3n1ckgezPd5X9s1aIwf/Oj3wpiv9jk/eLJzDbkXxqecwpAD6wGzvzNtTN8LPC/brT9u1nt+ZuLiRXtr50W7NYCLPz8kP/rG8XLfaf/ANpet+XzigTtfeIlRTHKqjY/xiSl2MVl/mOZ9BsqXdfESjHhh7T8f9aJaDIQfOeSDsPPZZt/xIRY6/sUHbjgY51MM5vkxDhOWMfNigid2wi8sY8RaepEuJjatl/ywUXzjHGe6/NizcOSSHj8KTvjdPL9o968O/CkW1ylcuZETawtTm69777339L73vW99qx4ePdeRvQ2LyJ/c8+2XO+WFrrVt3cUPly5bnPia+ZJjL9TjxRY/Pq2Rzw/5McYvW78c4NtY+WfvxStfhB4++W5t2Ymra5MuTva5Imcz1/Bx6KUuPNjWGX57BK6SX3Fri5nQhcWXtWaPRzZ0YHX/EnOx0LUf/EsH7daDDzbq9ifM8myv6csp/7DlSS7otFdg0nHPsR+617GlExd8vGjX57P84wBDadxc+ecPVtepvCikGKwHfl131sH+Lq6w2bB1Xfs/Q9wXur5gmWuNYfBrf/ZLqfzhhze/MOBpy4O84ZrQ619l44QLn+3p1r69w84auSblmQ3hW7/7GtzuT3Jkb/Si/WMf+9jLNqtxiz/2i/ZbTNRW2xnYGdgZ2BnYGbiTM+Aw0ot2h5QOdsYr4nP4IA5IDmbmHHbSMe8Q4lDicKSYo6+kC6N2hyljhG36bI8SHo4w6CYdyGAad6hyIOqADJtkQw8GrAS+fhyqjdPnw7xDITFG5MNcOg53DoP5bJwun8q0Mc6+Yr7DIA7lQm3cfJzUYiRh4wiLD74dwpXGjJMeEPhwGG28OWPWNJxldPFj+r1svpjVceUf1/rstCugs6NbHuS7hxHjDtfGtCtsWy9tvD1oWAfj9oK8iAmuMbbq+toEB6V+8cl9vs3hnb12tnDZhGscX7rlA7/yTzcf8lNhkz8YcNkfxZg5+y1cbWN4WXsPMbU9FPFRfPDCUBuXK4UNbrg2Jy7jaoXwpbyasKcPlw+41sfLgfkg5kHOOomBH0K3PlsFXqLNPz3Czlg5bizf5q2nYowufHU+2fAjV8S8vnmldr6X0sUPPIwTvOiWt8bolNf2Flxj+vxps9O3H+Y9rXzHN+7qmT/x5VPNbwW+62S+IIM7H4rZ4D8Lu1424MmfdWSrwLcX48RWu3n9eLMneBpjp7QubNhWlvL4wUZxj/AtSutVbrNV41xe5BQH0roaiyO8yTHfxvFyTakVel1P9IgxZfKwhuy8IHnd6153+uQnP3lbXrT7RvsnPvGJ05///OeFX/7Kq2vffQQfL/twEodcyAnO4rC/xCEPiTl25YvtzKHrV27ZwqRP1z3GiwvxTvvy2r7Tt9e88EhPnrTNwRZHHPEzJg7FmhN+vPiUW1zY04UFR05wh2W/ayf848NG3Zw+v/wZi7v4tOHzr02vQh8O3Li39l4keekJGyd6MGDx4TqUi/jApAcrgenFj5ov16GXgr14w896wiwX1skLL2vHRg6mH2N8EdxmrLBxLJb00hUbX7DxwjX7YqSLC1vc3Me6lxnr/q9tnD3OxrX7RYIXkHJjDGf4/ModfHtdHmAQcYob1syLGNkY04ZVPmGLCV77txfY8HGUD+uYn7k/xGfefvSiHXd+5BuOudYFFt/4+eWHa9hLUr9wmWvCL1+44vnOd77z9N73vndx4K/91priA5OutfELHuuIB1w42gp7Y3JpL4mfDcG1tfVC3XrgzF4t965DfrUVMerDlUfY7Qnr4TmjfPGljT//+BK2/KrptCbuYzjFOx329h5svuHgWL7M4xsuXgQ3/s0RuObk2hrpT470ypX8igt2trjZFwQPuaHPDo57Imw+cCke+4wO3nNP848Hffb67iH2lD3BzpxxewYfGDfPv7SxljDFF08+y6nx4ueTDjz82OUXXtzoKF1zsOwrpT0TT5yst33TmphTrAtb/tRiYK/PjtDBr5zAkk95N0e36wgmjvw0p7Y24tSGy1c1H+1XY9aifNHXx4l/vvmlz6cX7Y899thpv2iXxS07AzsDOwM7AzsDOwOXZsABpRftHmIcNBw6Kg4cibkONGqlg4sDUQc7NrPAYtuhLjy1cUKfnhouaW51Ln6Yd/hxeHIAejWBFz96xZRNfuqr6cfFgaoHjbiYV6aYC0sbt1fjR1cM8uEgqO+g20GOLa78O8Di44DnkEm3wyk94mAMi54DK5Eb2OGwKQZ2/E1xeA5PjYv1DAN29tmJwXixG0/HuEJgG6df3Hzg2p7Ijn5tuHJtDTw8O/jSZ2fcvDhhsTGnX9FP4iqPdNsb8YxrONlVw7Ie8WDPr3FtBUb2uPXwEa/4xBvP9K2HfCv0rKlvLfUwRe8YKx3fGuvbO9bMw6YHXTjyZP3UHrRxlAf6xoq5GNX84JdoixNOYqx4Z/7imN5l9cwVHHHj6yHRQxIM3K2TPOBLpz0UZhzp/zehg6c9A4+tMaU4wqBHh2jLk2uHyH9rqN/6a9Obog+b4J8d3+xgibG47K1eyBjn21zz8FwHPfzBiQ9dRZ9PumLlRxEnDgodfbU5oq9tHq7amrQG5vFnk539YL9ZM3PpWDttHMLDzRgb9uQ4BoNvQpfo01Pnoznz2uYUuXGt2NtyIB5c+IPR/S/+8kPg4hWWMXMw4BL2+nOscXG2JvQSuHzBlSPryB4/17UXcA888MB64T5jyv5W6vj94x//ON24cWN9Y5kP94Bizye/7hdEbvDxDVA1rgQeLuaNsXUtiFG7tWBjbYnanPybn7lKvzF5VdwX2dhfhE+lfM12tvSKFzcv1LzAiTOOvYyFz4+xPivzoyaut7knxGEflIv/p/X/f4GIU1y05aD7lD5/clWequHAlFP4OHlRluDhm8/2EJz01PqusWJlE+9yB9M3MtXxM4dfOnIUv9o4OE+4zsXOD55ywgff1oPYr35xQvxSh65/iSEWOvzgy6fCFoZ52PY/HfyIefnpT93gBJMuPDzUYlLTr5iDgyd7Ol6CxUGc7gNedloPc77lPP3TUQjeYeKLC5/4EHrGYFkjn//l2Vhc8MGlF4Hm5My/sPH/McCBqeBmjq3/yNhnX3b2NL7qeMkV3zDYuJZ9o13BB197Ue61xaTwpY+Lb1mzNQ5HrBV949bJi3Q2YlbSkX/3le73YjUn151T6Nurf/jDH1bxLwnY0YUrntZRTArh21zzxujh7T+dlCuczNPVVqypAt+cMW22BB/rYl/JTfjidb9qn8tdv0AQz7Vr11Zc8TNnjdwvYRG5LBY1XWNyYq34xhU/83ziQgdPc+XPGuJi3JqxcS9zH6MjD/BhquXDHnINw6PvOvYvVqwR6V9g8EPKEzw81HiVT/PWzpz9JVfwtenQxU8e5dhYfNho820ctvyKWb7kVww+f+gWC174E9jtPz7KpTrf/Oa7teRX7sLkg1/jeEz75ej8A554cTXPVk3YWQP49gK+uNkD7iW48ecXXf5fFL/gJjCvIvsb7VfJ1tbdGdgZ2BnYGdgZuEMz4GDx1FNPnR5//PF1UOrA0MFFWMYUhw+HkynpmXcIcmBx0FHDrrDrsDfn2VeyCb/DD2yHHVgdorSTOGVvLls62XW4FkcHxjDo4BGGWim+cBwYHbTU+Yg/HTzxTX/Wa/DiR7jltdzglg0dBz1+HFgdhLU7WIobbzpEbrSNwRMjoW+cr2qHRr7oGvegRx+mvrUUi348ph++6M94cVNghlt8+uUJJju6zeOpbSy9/HqQc+CXczoV/LOHOTlrm1fMOXTD45dMPtqEblIc9fmB4SCPByySTZzZyY2c09WPCwy+jMXLGFHTc8hXwxNzceNtXJ3vHmjsa7j2iHWdGMXupQQ7a+jBrv3LLy5HbjMu2Pwaa1yM8NTlylz5NWa++MRornG1IiYPifNbTx5qpi4dscHKLh7lc8ZRLHwm7HBVkrmextgpcqZOync+2RW3sambjTwXP+7iCZdNMRUXTA/o6mSut/WqwBX39KsNVxEr/2rjfPQiBw86uCgznx50xUXHQ3P7iD4c+sWhdo/pobR5+48enLiUPzYKwV+hYwxHhdAvxtY33ebbv8vg/KPrTT9duPD14c11a0wtz+UhjuyIuvYaOP8QK6mG0cvd4itXdORpxuYB/g1veMN6Of7mN7/5ZZwFeoUf/BIv2r/4xS+uPyGjP7/1K273IfcIRd4IPtYON1wJvNai2NTlQFuRq+P+b874XBvj5VQ7PvP6MKbwU0xxgmfdzOHcWtmf7htiio/7WrjFYw62mqTrRRZ9nGDzp+jzUV7M4W8MNi7Ny59rhk1+8I2zPSkXYsIdpjl7xRhs3LwEpWtOPOp48OFz30s+4+4R1tM9El9cvJjts56dtpdbinljbPs8wpUf4+W5z358cDYnbvP6ija/MNvv4gjDOBu6Prf4E7d7jzyZg98at3Z8EeMKfsbkq/yaby3U1sIa0ucXB/jm2JtXGzcfbjrwCH2CV/deNninC8cZxDrxaa1ws//U7IqFXblkZ73Ylj/YXpLKD59yY53Ea8w6GXNN423t/U1zL+z5YOOb8nef/48HNS7lXYz88ItXLz7peGnavprx0jcuVjysb/d0erDLH92ZV33XkLOFmtiLTz755OmXv/zlaouXwGjt5VwxJ+7WBg+F0LV//ELSXpNXL7txxJWdWgnHmNIegKHwLR/mcIYnH9ZGrmDANy8+6yAHPsvMWw+5tK7tFxzpJzMG+a7fnsIDNsEXjljpWle8+FK05RQ/OMXLn1hIuTKGu+tEfnAk+IuZLaFTjGzLjXYYYpRz8eMnR7ix01foFps64cveIWGYN66IRREbTtaxvR82P3i33+ROPkj7KN9s6MESg3ExuT75r58+DPP6YgivXJgn5l3XuNHnP31t83Jyzz33nK5fv77+ZBs7OleR/aL9KtnaujsDOwM7AzsDOwN3aAYcHByKv/Wtb63DRQcG40RfcbBxqFHm3DFsBxcHpHTC6BCldhDqcERXcagh7LLtkMV/B8wOS2xgNKcOkx29eMN1wHNwdMh2yHKYcqibvrJvjJ544SQOyzAcGumTDsn06BP+iyl7OSw+Y+ZxNS4vbPUrcPLhsOoFir78sQ+Df6JuzoHbYZbgbI5vvNnBio++fDis83MUfODKH125hwmjhw/j8VbrK3yIs5yaK6/80CHmw4CPr9qh1p+DwJstkSf56kDemHHYSvPzMN76xo1d+Y2rsdYuTnGkixPBhZ45eoox8x6eemg2j08Y9Og0Lj/sii2+5unJu1wYV4y3bxaR84/yW9zqBL618rBPcPONKJjxlzd6BA/t+mKmR/if4/g1XzywCBxz5ca8Of340oFp73nR7sFW30slMeBI2GXLJo7m6uefHR/6iTY9fM0RtT1lnewxIjb+XQf1+TUOI+7y2TVl3PzMOdvyGyZchdCF2zUfNhscyzd/eOs3p0+a02cPj8QXTvG6z3mIdj/AgX8lvzDYeVDOtxwocZ5xTv6uf3MKXTbiIsbg4cFHftWTP99w8GTTdUaHqOOlDc+aqekbY8MH38aSMIzZ+4q1I3LKDm/4dGcMbHAzpp45Y9/a4u7eCI8uO7radNofxvDD3X9m+J3vfGd9M27yhXurUmxeyj366KPrRTss149afsqluPkVe3uGHxzxMla/z8XWBeeZAziuHTljZ86655Ov8in21hYOfXlqLfiki6t4soNF17gSF9zE1P50X2Oj9OK8tRIX/4QNfJhy4DOFrXm+iHk2rhP3Inz14Wm3d/R9TuLS/l8A5x948FW+y0X5E4vcERjwux/LSy9ycTEP37XbZ79f0vhM6FvscL3c7HNbLHGTI/ZixItv8RNjuMEyHj9zdAluxsWusKGrhj3XR9s4/+KbL+l6UdnayQ+hm03Xoro9Sr+9zAYvfuVfu2+cFhO+eIpZDZ9dn6H0xDNjxaN9B7M4YMGha9xLbS+7vQB1/hOT684+MS9mvNtDrQEeMOUtP9aYPm6KcWtx1113rZfwbP2/C/yr//jHP64/VdE9xi/pvKx3HcLGlcCQE5hs7Rn8G4+D/LGjJ9/GYci3zwA5Zid/4mytxW6vtj5s5YJP8cDwLfaf/vSn61/J8m+MHzZqwj9f7Sn5wwEervraMMsrPvM/+KRzmdhP8Mu1Wr8xOXPdyx/u5QQ3uvjKvz835BrjZ+4DeZMXekpijD08+43A5C8u+TJnrH1R7OnLcS+M+ZCrYrAeinuUseKVn9YMrqIvx0QtLjZEXPy1Z42LU7570S4/1oEtHmJsbXAuF/zg6BxHYIiBwFRgGecTd78U8Askv0iCDSspl3E0jp+cseebDr9i0ibmWle29IlaHMr0Q0cxNnVxcx6FHTd56n4jFteg/2PlQx/60PIRh9W5hR/7RfstJGmr7AzsDOwM7AzsDNzpGXDA6EW7Q3aHnGNcHejUDiekQ1u6bDvQGNOn77Di0NJBz+Gzg1CHH4edxjr0hKuGo8B0oGKn1u+AqT8PUtl30PKg4pCEt1gd+NJXZ08fLt75NK9Nx0G0QyMfuKRPr2IuLLb85sccSbdDMb3G+YJtzGEVZ4dMB3n+FDmrT9+DCt4Ovmw6xKubx8OhGC7/6h6orFEcFpHzDzGI1wMK2/LZywj6fMbJvAJbXR6z01fwYcvOHMnOwVbsYnulF+0eANiSarhyKXa1PgmXT2PHGJfSQQ9mscmzHCpHrnPfwsdZvlpbdXuULQzY8WBPx5j8xs1YPssTHRhxmLzDDNccO3vCn44xD891IL/8Hm3CNZ7QExdu5VMflnri0EmKVRwEF7qKdnmxrz3U2oPyNF+0w2gd+cJLief0BVOhp44rHb6Mq9mr3YeOL9rtKdcOe0J3rgmM1kQ7ndUYP+iIk+A/H9pg82OPwo7PtDHWNSAOc60ZTPGLQZmxslOa1+bfyxJxzYdmdgoMPLr/s8GXDd+tFx1YYeLfPTQebLrP05cj1/HE4DPBU58ubvBhibc1VrM33pw9Xf7VxuOlTtjlg54cuj6Nl2/64my/iAEX48WsxnNia+MrD17ydu/lz3j30rAbs+f803O/3H7HO97xPzDjfSt1+Tm+aHctEXlXxImb/d4ewj3+ajriw9maNqePt/gVscCRQ/7ZGeuFo75iPczDkcv2Hl5s8aFn3rq0huYTY3TEwAcuCuEPT59JhC8vd9R04aoVccEyh5ccXPaiHQ59XOFb1+zVcYHT56WcTOEX3z4DygUOxJz8wcNfbt2b28/uzdp8yJt4+erz2t5R5ot2/0klrkR8bOzhYuC7/Y4PbH7lgS827W9z85oxjicuxpXGWjs48ismYz77xCFOdn5RIIY4wqBf7vTxajxO1sFnAaGPp7jY6csD3WJqn7GjE7+udzjGzOXbWDHHQb7kB181Xv4z1uOL9n/+858rN7gcfcDoXgiftPe8RMXdXjCGkzi8zLcX+PQneqzjiy++uP6DVN+gtb/50fZCkQ1ssaj1vQwUB1t7Rgz40RdHeSnXOJjHV946F8slXtbNOEz3OPjWVd+64+NM3Z52L/rZz362nil60d71UKzia43KCz7pwdYWD3zF3vKnUfqMon+ZiKMY+aPXmDhxtjdd/9bAmDj5lEN+5Mzfy7/Ki/a4wJMLWPyLg8AXD1/EXHHS0Sba9od9IG7c5UtMeFnT1sQcPHPW23wYeFjDxrTpiA83eVHwIPmxloo+//Fnp/BnLM76xq2nl+a4uv79UgYH/t0/5MS4OF0XrutetPOF01HYK3jC5Wfm1Ji4CB705I2fbI2Tcl28a/D8o3VoHA8v2XvRjhtc+wauWn5cg160f/CDH1xQ+Qn3v9X7Rft/y9Ce3xnYGdgZ2BnYGfhfkAEHi2eeeeb0wx/+cD2YOVg4uKkTbQcJuh2IHHocdBLzxhxKHHIcXNKBpzgUqR1W6NFxeNEm1dp8sq/EwZxDUz74jS+8+NGbAttB1wExG9hw2SmEXnHOmI3RNR+G+WJQT33t5vHlO25qOMWRXvP8pBOuXDso67NjL24xaBNz8kKKje48FJs35yG8vOl3eG9NcQgDrnXyoBc3/NhYU2MKKYZywZaEpZ0+3uWJXdg4O5jjqu3Qrp8+3kpYYcOCod98fOhqK+nR1Z5z5vnBO27xwsfeNTd12BtT0vGQQifOHi7kFj49kn8xwu26WJMXP4otfX0FtyNWsavjTMfaeYgnfFhHPs2R9MuF3PFh3pgYxKU9ccuBeJpLv769V7zG4JQTtZx4QPOyyH7i14uZcrUIjh/8wwm/HMA1N3NDp755XIoJJ2tkX/UATF/sHg616SgzH11L8MzFg++ED9jm+Y+D+Wwaz6aabcKHMoVdvmBp9xCdHgzrHDc28imOxsqVWjHvnlB+5EDJRl0e+IGpz3eY+vZ59wS1NW5fh80f0RdDbX1iTNFPd+41bYVfPOjGhU8SJ+38GiPhw5Bf14I5OWDfS6D0w1LDUvKfjX1kb9BRl9PWS13OPKj7z9S+/e1v35ZvtN+8efP0hS98Yb2cw821pJZ3XBT83Ae0zeEnBjXO5UJ+xES8IOnFTnkudvoKvK4F/XJbDdvnFix1vnDrukvXGsbHGGx61sc4e3syHf7cy+jChVee9QlduGLSVuh4yealoXjY8UG6L05dtvEvDxOTHX9hw4QT9/JDr7hw99LQva8zkDEvAVunicmfPt7W0t/27j4lL8XHh+vYurmP4ssurHJNL17mtNsveIjBOHt+XBds+Wod6bDBR7w40mOnD1NOuibdE/XjMq+zfLKjpzbvhRd9e0HJvhzTU/SV+LoP4QN3zuvjE0/YeIpBLOaJcQJT217xAlSNB3s55gOn4izf7clw6OFhbe03GHTwlF9z/kyKF8DEN6qtqfi1vehvn167dm29UOxFMd94yht+4sHP56m1EhNd8fGZsEnwpouLwvcUdl7Wu95whyk2can51LYvf/7zn5+effbZhYOb2HCHgZd1pW8cFl7yUm7wsoddG+zz5eUsbiTu5hXY9BSx4EJH3PLCHzGnLU840RFrccCSB/75Mq9Ph4/8htV668dBXFPPuDE8xCheHHA1ri8PRN/nA2505JZvfuTOfah7Ea7mzeHofiIOGPDM0SFs6dDFDaej4NM6xDmesCrswoaPXzmEL05/ZgkP+9t1Qh8+XDzcm/C1R80Zn77gGFPYZVtexSkmBQfjYvbLoK5TeObpyrGCE114xHzPMXiY8wsivLuvGcOHH1jWxr9I+/znP3+67777Fg7bq8h+0X6VbG3dnYGdgZ2BnYGdgTs0Aw4Rv/3tb08/+clP1uHCgcJhYh4cOqw5nDiomKPjcMVeaYw9cUDS7gDWIYWdAxAbOj0YhFMa46Fmq/BBj/0UOsrk3Dx9ou6wpt/B32EaHlsY9PBS164fjroDnLkeYrLBNU588uXQpibmjTsY5ltey4t5Ao8eMaY0Rlcu+aFjfIo+bgpdOvSNw7EucRSLg6XaXGsZPlzcrVVroHZYZkP0+UrCiYdx/vg1R46czcPgy4FfTvQdnh2Sw6cHQ59fbWPapLHpe02MH2wq2cFjM/NpTgmrXLZWcsQOV+s5MeDEUX5xDCeearZiVsIwTle+5Fi7OPnUTieOrVd9NooHNw/w+MijfOIfVzhswmtvsCXs8Jo6a+IVfhSzeGc81GGaJ2qx9aLdwy0fauPa9ONa/HDLAQz5U8zjHk+1MUUM8gvPODv9+fCFE13Y6dArr+bFw5dxMn1oZwc728b0889WGy9CR1z8axPzbOgYL251YtyDq/tYfuiXD7rhsYmDdr7EJ9/2aHy6HxS7+dpsYcaJj7jhQY/gZe3kGC7fCts45Y/+zIc+nXyWC7Xxrgu8CL04ho/fFDoTDxZ+7QsxwIBNj9BRpujHuxzId2PwtMsv3Lhoux7f+ta33tYX7Z/97GfXn1aQX//0vdjEZ8+6n87PKTmaHOnTo68Nxwud+cK2ue4P7Omx83JFWzE+seRUETuRi/ipG5Pz8gRDTvnUbm3sLzr2lHj6paF46OCm6OMCn36c+bC3SWsmN/jSFQfsYqUHl1926mI0B1tfHX/6+sUIKy7GtPn2gse3OnEl5vi2f/Chp5QLOrji2N9jZkOX7/Y/nr3EKhflYOYFLjF39AuXrlI8dPPBVml9tHGQHzrFVC0mnzvlCWaFnbZavMWv74xBjDlDlVdjYiNsykM8+gxZChc/6DQPm+BnLTqfmW+svcCnHMtRvujgTPBwrch7uPLiOodB1zhsfmAo7L08tla4+Yz2jVx8jLGTSy+mCQx6dPwHun55Dt8Y4VOe+MHZWky/7Sn6xmfBhQ3hV6FXDvSd/8TUdeP+bg+L3Tw8v+Tzfz75D1HhKfjwnd+JFV9+FHpsXBd///vfF2bx8VfOjdGLt3ziJQeKOTpeunaWFFvXsLnWWo7DLg51wsf0y5Y/PsRsLjyY2krz2vaO3OFTDvkwh7d57eJga17Jv7o1ax5HOsathb2Igxy0TnCN2w/iZBu3rlW68mR/4jLjqB0XNgpMOGpz7Ig1dV/Gwd714rr8ms/GWP6Nw2BD6CRyArM5sfJZMV/M9pD7jM8GY/BhicucOImcGJcT/3JBTWC5d8CGYz+SYlYb8y/R/L8oDz744JrH/SqyX7RfJVtbd2dgZ2BnYGdgZ+AOzYADh2+f/OhHP3r5mwcd+NSKQ4TawcUhw2HEoc9hxOFHn44DkMOTcX0HmYp+B0VYxtUORDC1FVhqumwUUp2eeRhJ2NmF1TzcsNUOUeLxkEDYdSjLRzU9JcGlA6+2BxAHOblgI37zMPkyLsYOf5Mj3LjFr1j1HQzVxHhcjOnD7hCqz3d5wSUx17i2Yh6XDrzxUsMJix2/DqqEnTEHUnHqxwcuUcNROvAbL8faR2HDj3h6OIKrXW7ZFFcxGNOmay7fauWVRAz4qekVBxw8SDr510/PvBxZW+vvAcq8MXHSU0h2cBT+jPGlNK7mOx/0cCTG6rNV5F9NzOmrp8hn/3TcWvSgx085iwe78MzDYgOj8RnT0Ze+Qjfbcgm7OW3iAceLdg/WXYs96Jhn2/5hKz65bW/Kl/wr5ozjpy1v4lIbs3/1ib4HQ3Yw9PlSFyc9baV9QjeM9NiQdMxPLLz12c74jU09nOO9AC9+wMvHtI+HmF3D+MgVP3DiDiZOavP5hoc3e3mPoxcSxopJzvXDjYd5bYKj+fps+LF31HGgm50x+sWgj3d+7A84dJrDoxc85hI6c03KWfN8wlWIebzsAdj1zdMl4ZknfCh0K9maNwavPaufjXnYrr9etN+OPx1z8/yN9k996lPrz0yIR27izSc+7qF9TuFGcJP38sHWXPkwPvMvDnlpb4jbvHHXFjz22vy5vuwnQhd+Pq0h38Zw1S6PdNipYZvn11rzR9xvvczpT60YMxcuO3hwFG1j/LR38ml/ipk/tZJ//LTFBRsHevow5YgO7PZMPM3RpUeKvzY8L5LxZitOtrCyyxeO2mqxlzNYcg3L/VNMihdcrmdjrS8fsAl7MYjNGI7wj2Ic72I45oYv+6H4+VL0K+zZ4Z6eus91vOKqXb7ZEb7pOj/10hlXL6Nnvrqfm2sf4IJjOPzCKx7j8cOxHOBqb/FpjL6cyadav7zggD9ufNGH5Vu99qg+mzjos8XN554XkdquT/rWF096rY9r3F7ht/vHW97ylsURFvz2UDGp4Zh33iXtAfnBV9160RO3PNob/Mu76xmOOI31OWrf4iR2uOb9Aug3v/nN6fnnn1+cyjc7bXnBxb9SlFvxsWuN+BWLvIi5ewhbXM1pk2LOh9ywh6su7nKIA772TesYRjmApdCFl+grRA2bsBM7XX6MZ29cXPrtJ3/qyvoVN3t45tV0cWLH3lgc1fzwoZibhT57Qk/ulDCst/hb99aPnTXFDQ+2ivE41L9s3/Bp3r6Vd7Hxa0wc/XJDrCT+5Yq9PUAPV3bFRV/bvjFOt5yr9XHnlx5MemGYZ+va6n7TfmMvHntWG+/WBe9yjIPc6xNx+kb7jRs3Tg888MAa4+cqsl+0XyVbW3dnYGdgZ2BnYGfgDs2Aw8nTTz99euKJJ9YLLwcGB4oOquaJg4tDSAcZeg5h+go9h5UOcQ4m8/Chb15pDqaDXYckfjqosc0eNt0pHUSNmYdpDD67aaOtxFXdYdxhk60DlyKm7MPmG6/EfHGYg+Ww50DHjzmHubCy78GCP3MzD+zIjBNP+VGXC23rkK4DbbHA47cc0DGWP/1ywU9ce9CPA3u5OMbAbzr4OBiLg8ArHjrmzcHCsRjKnbk40M+Gnjw6zPJHpweT/KTLn3k2YahJvvmjo1aS8tK4fhjw2JBwWn97jMRBX3wO8goc+XQdaMOn24MCXPpk+jROr5jzj4uCR3G2vsasU332+VwOzj/459s3qdjDt1dxyFc+8slW23z2bKYfOuVOu3zwT09N+Iaf4KxkK0++1edhR9u4B3cYMPHAtXuEPSm/7U0cXSP8lA822jCINiw4rYM+W/2w2VWyg8G+eMwTfeWonx78REz0jCnFbqw14MNe6h427eHQlUd1ePXlwj5gE54c5Ye9GOmnU9zmcKbvBUT41qIc49b9AL/ywa4cs+sagck3e2Ou5fjzr5QnujD4wyFMfrS9EDHOJzu6xvrn3fT4MsdHtVgVYqxcwIm/cTr2RRi148efNl1lSjYzbvP68qvkOzt47mce1B9//PHb8jfaffPzkUce+R8v2uONIx58enGoxq945NY66cuLfPTCBGexz9zRd33aD/JtHayB+wN72Hx4aePFBt/tDXuTH/rW0AtvY7gak/vWTc03zGLh0z6BAdtLScX1T9qz9OfadN3TMedzywsnHHDDQeGzur2Ev9j4w4d9HPmQu3ThEzx7uaRPH+fyLiZ9WPKphN2LMHN02LIrN/iIV9+8YgwGn10PeBVn/vgg6vIdDp2Za3qwxQZfIT7j5AOG+PloD4Rf7tkn8hoGPXP2o72m75et9hVe5sRNX6xs+fWC1r+wwJPwK9f5jSdbY/TgWWecxGJcPunGzzgbpTF+vQz2ucnWHKz8s4HTOO5y0brZL/3npjAVc4p4FG3fpvX5J472dNdouWfrG+L0yuO99957eve7372+3W4Mt64PMZY7eWIv12p65nHF2b7Bg7DBgX9rLG59a6Qt3/aVMT7Z+szoF3vybR1/97vfnV544YWFy46ozVvD/hY9PzjZ8zBg44CfP5njz9DQtxZsZ37Z0ZvFmDXphTGO2mzdG+QTX3HwVy7it4iOH/CI2jrDE4e+os2/eu4HY4RfPogcdr+SP/ryZ82IfJNsJjfj+cFDjsQJY3Izp09wgqnQY+86sIfELpf69jNf+PkXFe4HbPFQigW2fcJOsVb0FD7xEdeRF5vuy/DS5UcccGHgYl34m3HRV+RebV6JG137qH0DSzz8arPDS+49J/GHTzHQtSfo4m4ePntrw485fuSSH/civ+S6fv366f77738536txiz/2i/ZbTNRW2xnYGdgZ2BnYGbiTM+Dw8utf//r0/e9/fx10OlQ4oDh0dNBx0KgYI3S16Zr/OEsJAABAAElEQVTrUNUB5ZgX+g4uCoHv8KJO5iGSfhKX+h220lHzHzY93JrHD88Ogg56xhy02Dg4OvjCnQKDb7ZhqdMz55Aab/24ddjjx3yH3nD4pcvHxGveuIcM9gl8hQ5ODpkeCOnx5xAtDvPh8qMYqw5D/NZr+sTFeAUODoo2oePAymcCI5x80cOtvMgDG/kOs5oNPWsjp407KMdXzDBnHOaUuMHhA3+6cNTGtUn82GgrJJ/plTt+Ccypr42fw7e14EdelHzyQQcmfftAXQzm466OAx37lW/xqMWpnT0+9cPAszYOMPAzps2/HJez8hc/esb448eaWQ9YCik281P00wsHrraCa3zZ2ase/uY32j10yQ19gqs9pN91qqaDJ37tK3uZvziw12abHhsivvKrT8ecMW348ts6FUfYavrlTVzGLhM6FfPljZ/6fLWea/D8o/n86LOF1X5gI+64s5XD4qYrdvPsj3HDg+Hhk+hbFzk2Ln6ltYNLx1htPuAbT2DkW02mXbmih39ryqdi3pzCN+HTtdWL0jiY4yMeM1/myhvMOONC3/7SpqOd6Lemzc844NCR2yl8t2cbZ0/guU/4G+1etKubS/dWa76JF+0PP/zwetFubXtphR/pmveiwXWsX55aY1hybtz9AY628WLGXe7ht9+sgzVgoxa7a9X9xpjc8Gds5om9F33w2Sl08gvHGE6tAa7sCGw+xARXDs0r9PXxnnudLzkx38smY/gpfBK2rQlsOXP/JuzDDE/NNnscXUvzGmweLv9EW4z0ywFe8iIO8+zyVxsnxTjf4nSNWBvY9PDsOjFGRy5hKsURBh3F+BS6+Tfuxaf9C88crr2sY2tMLAl+ccyXORx70c7GZwAsHBP67UXrzK+XYuEf93k8YcPEh+5cB2PWEy5e9NTZios9nWKFYUx+7Pdsis24NbRmdGHA9ydevOCzVnTNKfYaf7iIW/7Y2/9idO+AwYYtee6555YuW3uxF+3+pRosHPi3D+Aag0fwZaOWX/Ny0n6hIz6+yjNb+nDMkf6DSDp44Iy7dYOp6PulgP/EtbVkX7yuWXmRW3GysablAG5j/HUfkTfrHabcwFW0cZUzMbCBY1zceIpXX328xoyzTfg/Cj8wCV9T2JsXjzhxpIOzdTFvTt7seZz4s1Zd5+WbjTF2009tHCowlHzDLc9iiDP/xHr7RYg97P7Ev1zwyb9/gcFGvtjzqRSfuKy1giOZvMTHvnFtOPDY8gMLR/koX3SsixfthF1x0Vf0Cd1ZzFlv616++SuvfMmLvHff6l5ZnuWAtGfEBIve5Px/2buTXcuOou3j5zJAoky5pbVp5AkSUwZgmYEtbAsGmMZCNrjBRiAGCMRl0cgGLIQHJWGZomzcqOhv49u/pP6lYHOqOe9brz4VypDyZBfxxBORudbOtc6uU12b/H34wx8+8efaHn744WVbHlbnJn7sF+03kaStsjOwM7AzsDOwM3C7Z8BB5dVXXz354Q9/uA67DjEdrjrIddgpVvPNGas9HzjCycbhSYFFjzjYOAQZTxyMHJrUpANMOuzzZy4susc+O5DRY3+M6xDVwR1OB+TinXGy16/wh4dxcahrGyfwiXmHysaLwVycq83xoU/kIbvqNXH4Adc3ds6dO7cO8Q6GXlh6cGGPDzyx4QLXgdZB1DgdMTtw5h82P3TLjz4sdXbm4MCmS9QVeMXvoTNMh3HjfMKauPripe/gn78eimGab634jNvMU/gd8OGS8LXxhNecMaIfJ/304gKbf7bG8BSTYo3NW4cO+jDodchnx0Yt92o+SL5wYEPEVcxq3LKhP0uxsM3ePBs+iWugB7L0i1cfttoYf+yzMa4vRoWu2hjJb7injdOf+ZMnLxv8bVcPf2w9EMLGgS7uijk5a11hGSsvdNtXi9DhR1zUXafa9bNNXz9fOLSO9MUnJuMKMWZOv/UMa9Z8K+nPPIqDhCGOJL9qkm848qOUU21rRTwMG6dnrNj1s1XDDRt/Eg/3iuJfE1d+0Md/Fjb8FYs59uWEDR14XR90j/XyXQ7YK/rmmodhPIy4zNjiPGNkT5dUyw1hq01fW6HDB7tw1MaNZbMArvww715gH5kn+RKHe4FvtH//+9+/ZS/afaP9rbfeWtdCL6TyGUeclPaCujhwbu1cA/rsuj705Vve4bsGzcmBfdc1k0/6hI6Xlu6P3cfbo7AIGwU3WPmWq9bevL5CcC8WPM3jkj4dOJX6dPlwj7E/zeMFSzufcGDib44OaUxMCh7lSZvY47Ddz7p++CTha7PjUy5xl39t3BqLvxoGm2IoV8WNs7b80tH3Uk1N5Nt89toKwUsbppj5wyf+dIz1Atp6Epi9aKXPF/5quYpztTH+5RSGfcOvM0v3CzpzndnSV4ohfnyyDxe2OX3jihjUjXtRxnc5Mm59cZE7tWtUHsKhC4N/bePWiH8CQzGn4AzHZ225Sk8c9go8MSvi5Y8dTH6IMf1Lly6tF5EwvVz3J6f8+Skv8uMDD6+kcfa4WZPyWh5xEbOiLe72NSx7WJzs/aszuewlufbxi3b77eLFi+s/Zi43civnMMovbnFyP5kv2vm1h+wr+WMDqxe8xYgnvvDhySlduHTECmfuR+Pt0fa2nJd7OZzXXrmESYfA0K/wzS8+sPgjsPiiZ5xOL3xh8RMHuSc4sxFvcbLPJwxxwjNe3Hz3TX5+4Sqw2NLTtj7yaP31cSD2lX+9waZzGJsZozm25tkSvhS69nlczeFYDuhrE7riF4caP3zsg8bpFGM29GDIjaJtjF95yVd51YfTvhYjzOzV8i0mOOZIPsKfGGF96EMfOnnyySdPHnrooWXD/iyyX7SfJVtbd2dgZ2BnYGdgZ+A2zYCD0a9+9auTF1988eqLdgcMZR6yGitMhxIHJdLhymFKmYeg9B2gHFIcijvowHBoD4cuvQ5b5sNWE7VDFR3ioNTcMUd9vggsdmpjDo0OxA54DlKEvrYSplox1kFPjXN6UyduzRULfVw70BnPBz5hF4MxbeOwlLibY+vg+P73v3/9M0aHbAfG9957b/1zZDq40AtLjL4l5KEGLjFnzeSDP/q4ll9z+W7s2GYBXcHKV3GYs+a4w/GgoS4X/OmrWyMPDfZK49r4xgVX9sQ4Ozp465vvRUcPTeZaf76OpXzwCS+sxtPXb4/Lh3iUfmGEF590ilndgz17PMzjKV8Vttr5zB4nY/wp8S939OaYvjLFPAx58nBqXr8154PwT9c8X3TwFZ+cEDyV1gEGgUFX0TY+8eAaY6umIw++ZfXPf/5z7V9jcPmlzx6eva7Plo0CI7180U/o46yGK55pY04pV/To2H/asPgxn07c+SX0CF1zja/BKz+MyXsPergYg91LADjGYCjpgODbHO7FTZ+OOTXJj7Fetmq7/sRFT8lWrZhT6sfNQ7n7o/FyZS1gHos1Kxb2igdyL9B6kMXddQmXbvtfW8yEL2262nDkVmntjsfEZMw8mfnQh5MOvcbU+op5MVqjRJxsCezwwzBOhx2hq9Az1n3PnDFz4nAv8JLsVv/pmF60y7scxpNvbf7xstZqa1nfHJ2Za7HRUQhMa9WLdvPuJd0b9GFYV58xeBAvA32LVdx01DjAk3e+FWPm68PpXlos6tZXXDCm6IshfTqKMbjixZcebHpiaN3FZ4+2J7Np3+vzL6b5d6Zxp2MONvv2uT47e7qCEy7uC3NMLMXNjuBeGw5RK/ibg1fM9h1cgkOfgdYDFq5yUJxw+FTLQ7kwRod9/mF7Iefbr3BwF2s83C/4ZMfGesJTwyHido+1D+QMd3uKbbnguzUr1uJVw4ND2CsJLkrj5SVdL6qtH5zub7jYB4q2c6kY3L/oJTCLW5x46suLnM49YM462Cdxp8sHvfhMvuXPt3vFT+D4Vyv8ydudd965flF39913L6yuB/mY/mHBwNkaKbBwkWe6zo1egrdnxG69YLLzuewFu3z7Egd7608HhvzYV+Uax7fffvvkr3/96+Luh1z6Mzr44YMHG/tBsfa9aD/Oi76cwc+m/W4N7UP5pSfXfHR/4ufdd99ddq0hHXjiUOSerXiMw2bf3rsaxGjIjXzAVPTZy2P+jePcntcmcifH9MzJIQ76hH9jU2DRUfNDtzWnJya+z58/v7DZ27v2kPXhG18Y5ZCOcXHCsv4wrB87PuQjP2xbK/uKLT74lkf7Oq54sWXHh6KtNIeTQvDBTXziaS48dXzV5Ul7Xk9wrHvXNX94hKldH2a5ar2NwYYbN3nofgXHdX7fffetf0X2+c9/fvEvrtW5iR/7RftNJGmr7AzsDOwM7AzsDNzuGXCweOWVV05eeOGFdcDqwNDBSHwOJsScAwhxCHEAqW9uHt4ah0/UDrQOdNrwiUOSwwsfxsN10NPOnq42PTjmw+lAyKdDUrqn8S0WBzGHUYey9MNXK+zVJH7GlPiZ4zdbXJQOqmqFfYdu8zO2cgFLG55Smy19tfiMw5AHDxq+XeEA74WWBzIv0+nwi2s4OHpw8mITFilnrR0duPFja6y+Ng49JLAnxukqfBaDtsNz9h4y4JN02Sr4mrNH1DgqDrl8dnjODwz4csFHuA7+Du0emKwvbHvMvDapPm7j2foVxzK48oMdLubwlfceVKmY418+zcNT8GMb3/TKk5i0q2G1T1or9hXz2rDNa5P4s+Wr8fzIQw+E5ozTU5Lynq04WhM6uMe/fcOeXWuBhzH4RJ8YmzHaRx6yfaPd/iWws9O3bjjgw9b89Jsfc0q88WFXfnArD2zgKsaTYp2+jKVjbeMPg6iVyZu9ko6828fxgSF2+1QscQ67/OnjT3DnAyZ9OhU65sKXS1zN92DPBoZaYaPM/BonfHjo7poTP2y6MMOCR1csveDQV8RmbT3si0Oc8Oi595ZL16j5fGsr/MDRLu5F7vAjHf7FkE/z+mTGqn+sM/2ZE5uHaG3SvFrJvnk6OMoLoaOPm3xZczX9ydN6+Buvt/JF+1e+8pX15xpwkWMckpk//ORH3T2TDZ44yrOiTUcMCmn97C0+zLuX+AxnX97Z+1cq9g/ppTQ9NnLMJx/ZsdWuL5f89Tkjh8boKfr8mG8u/urWS+xwjBH4rkM2xs3j07nEnrQ3FfP04oU7XMXLPb88cP/XpyNPdGC2z9V4EvscPi506Npz5uNCT1+hU5xxMZ+9dvPaeBDriot+9wE2XW+42oOuQ/P0zBF27Amf8msOH77kyS+WxW0NcaRD6Gi77sWqb63ESMyJmX+29o45GO2p8lD87PhVxFCMcHCBRcyVF3j12SXhWDt7Ut/6wNCXEy+FFTF64ehvqPNFl+/4i8V9DV+x2FOK/InZuJjo+zIEPjDEW9z6U/TlDa4zmhywg/WPf/xj7Uk+7jy8aHfmu+OOO9be7Zpo7fi0ZtahXFjr9iI/cGHZw2LtXmBMPuiw/fvf/77OkzBd07ikX4xwCRvX/DvvvLNetOdHvP4uuzxlI0Z2eMpTnx10iFyLi181rPZhe8MedP71ixN5ZRtP66PgIg+JOMUnNlz4YWucrTFc5Idfwjc55mTMnHG5b13lIM5ipJOe3Lnf8IUff+bax3gpBC4xhw+x5/kyNuetm/3gHgvT/csesofhyw1OfJZHmHIZ/+4JbPDjR00PhlisFXxYCizjOHcPXUQPP9iyax9rV7JX888eN+sQV+tiPhs4Yc12OYETHzVbuOxxMa+GH1exxN88yUc29OW3zy22rj//AfkXvvCFZcPHWWS/aD9LtrbuzsDOwM7AzsDOwG2aAYeLVw4v2p9//vl1MBOGsQ5XDhD6HYg69HQocaDpENihhk5j6RlzcHF4UptX9BUHRz7UlXzCqLB1AOwQyGcHT9xh0s02HuyMVTtgddB1sCJxXZ2jH2yVxOELlrjYq/OLfxzTw6NDt7GJJ4big6PQr22OL3XjfBhzuPcg5xAI37eOHPRh8jEPpPrN4xAezHDzVZzFla4aJl+tPZ1yEU6YalzZEXlpvdnhScc8PXMO2z344OzhgS8PTPQq5mCIxeGXTTHj54HJg2u4OPI3xRibMPXpKwR+Qsd8Nvx6QOfbGGylnMMNu3zAolsfPtz09BsrB/kPl2282JL4441X/OES+52d/Noz9os2u7jQ08ePGNcvH2HxjQvMcJfB4QcduOkah6Efb/baMDwQehnrW3Pa5mDKozYu4lHrT9t0+NA+LY5ijIM6HuIyDz8xZo/iGyad8mkfKrjHpdoYGz5gqonaWnpYg0UfhnjtU3Z0FHOkeOFNMU8Pv9aFL304RHyuFfc3Ol4ciYlMvDC6JuGS8PGDkc81eWWeDzGYhykOD+hs9NlouwbV5cbaslGMwamdf2OKHKjh0S03eBhTzGdnXkz1m5v9iUFXoafw51pO2NFXm0t3Yhhv/4RnvnFj6RvTdv35G6+36kW7f8XkRbtvtFtLucKZb7W+Il/FJEZ7A3d7EjdSTuXDfHvDHAzr3Atj+Pa1Aqd80/VChp543Wvm/YYubPb8alf0FZwIPvYMoV+Ba84eFBOhp+BBL51ip1Ne2BYr/t3Dy5c9CRuGsezC8MLMCz4vbenwJ1dqAluu8MmPz2W4dHAkcI3RwxOWOXWFvXlSG7Y2e3qkdvk1LgZ6cmqcaFsP912c4sCvudYm3PjQkytx0ivWeKr5UrSzE5eiD7s5L/Zwot+eisPENi9+ecqXeTG093DjQ7xKuYyTmqj7/OMLtrX3wtaaulfiRccXFrzgbr34aJ/gYo+zN2+/VvTx7SUnbHziHEaxqGHLKTz3bi9JtcuzdYIpXnheqnp5HZa8mlNg0Y2fONmrCVx5F6P927W5Jg8/cGVPXw5wwcOew5UP/uB0jcDj1/3ef4TqCx/NyYvPPvNs4IjRPD9q61+O8JCr9kr5gQMDL8W50JpZL/rh9wsQvnDnix844lBIuPp8kWKa/vEi9r04zREc6KuNtRb8pVMe+cAfRr7gsscj/Tjpi4fwyQcRc/u+/IRh7/Kh3/7EBab8Wzdz/Cq40TOGH27WgQ3hx5h5/un6LCf84JUfa9oeMI9//MoBDFyURIx0K3C1SfuMfv75wz0c9vwqxHz+xFSs9PNBl5/2C524wRBv+nTEYW3Z0FP7F2lPPfXUyRe/+EUm/xbTGrjBj/2i/QYJ2tM7AzsDOwM7AzsD/w0ZcJB4+eWXT5599tmrDwanxUVP6RDkMOKA7GDtYGNuir7DypRjneY66Ko7NPFDX+mApO3Q49DocO0QiIO6Q5l5GGr6HcimD37DVYtFDOrmjJ8muMCGpw3f4TR7Y/GJExzzHnwc6uKCp3YSV33+J4f8Gpt5NZ6uQyB8vjpgascNroOyPt/hw4uH9jx0somX/PAn5z280CXsw9NnEwc1vXgWvzzO3Jt3iHXA76Ukf/LYwxns8tsas/EA4jAsLsJ/L3vMwy4/xWgMVuugXz7VeNaHqc+HB9TstOnIiUO+ePip1jbn22DyUN7DhgsLrjgJPHoeIrWtF26uNQUeXHHkJ+7s4gZLn/TQrS9Xvg3mGsonLCUphnKMA/4EJ/Otb7Y4kGptc2JV6ONrjI7rpm/vzbiMww8HBz7ZGlNglAN1bT4Jf+zEy5awM07iRUeJE91yZkxpL2rbh/Nhjl9xyY+CIww24ar17Wtt9uK1JvGescYRz8bpabM3r+DZnteno+DoBYN9Yi/4ZZAaLzHkE/7ce/nlhy6eYqMvLvcO1317HX8v68xp+1cJveTgR4y4TH/GyazZH+uYx8Nc8+rGw9CXk3TkxJh+Ujz6/CiJOLNno99YOaWrXX6yVaer5ic+4aSTHh+uv/+Lv9H+xz/+ca2neLoH8GtfWjM1ab9aG/dGunhPzsVhXpl27Qlj5VZujIfTeurXLve4WCd5IHHQzq89a761wY2P9gTd2nSIPdg9WJ9NOnzmn06//MFD/DjQ51Mbj65nbeumaNNz3/Riy31UX8FDDRNGvsu/F6/ubfTibM41NK8TGDPWmW/cXYOw2PLRnhffFFzN8+U+4RfyeBF9v9z0ucROfvJTjHC7v8DACTcc+JePdPgpB3KjsIHLj7jlmR57a6VfHvgm+PlMVWCLUXFfgdMew8X91GdYa2aOn8444sKxtYevz1YhfHjZfOfhW+J+cWJNxYybl+z+BArO1kdtXxYXP/D4MQcTHrFGvtTADiYdnwF84Vkc7BS54xcGG7EStr513n6iq41H93U+jbFPT8w44Kd40Q5bXMSfjMFFnsWDH7/WVbE+9gE793F++bOu1g//uIjLGuBhnd544431sh1G8Xhhz4YftTXFq70GS1vRhsWXOOjiaP+KkaQnbwos/K0JfvzwDQMPvIwR+vBh8sWWj7iYkye5NAaPnrUwxr44zOFYTMXFDxu6MODhTh9P+uaajxtOfOBgLgx45qyXdWifwrE+1qz9yIaIqxy3X9ofeNKXG5zoFYs2Pv1ZoWJtLWC49sQjFvevzgF022fxwAU2rublg399Ik77x35km8hBeaBvP8cXtpxaX3gVOiQ7nBUxTeGTLzlVm49PevFvTXDnn68HHnhg/Svwxx57bKkbO4vsF+1nydbW3RnYGdgZ2BnYGbhNM+Aw8cqVb7Q7sHWoUptzICEOIRV9Bwt9By2HlA4l2bDrUEVfP50OJfra6ek7xDlAdQDK1+Rj3uHeYYpvByWFD6UDFCw4HZTYmcPbIdFDmgNj3MzBpG/sWHCNr8MbTgQH48VuXJl5Me+wOOPILzvjeGUT7zjQNQaHTqKvsFXTS4ee8XDZGItf+TdvjF1c6udHbuRTfhyaPYBNXW3Y4deXpw7ZuFkDEld68TXOh0O3tSleY+HhWi7UhJ71xA1Pusboynk5oastNuO44gO/fVEMdIlxOjjy0bcYcYyfBxYHfNcC4UPx0I8DcUCHzQYmgUng28+KefzZ44VrGHFTJ+YJrPDyb1xOCP/pmm/v88Hn8b4Pjy7hc+7fOJkvHnq46xuHQU9tnL1+PDyceQCfD+H82DOtIds4sCs3jelX+KcPAwexiav5Y57G6U8xFjYcpXuNORzgtl761t+LbTkWHz0PgPmTX33rDNu+oCvO8o8DfYUOXvXNlfv2q7gUexIGn7iqSXuRvr0K01yFTrGza13M8+X67gWgefu7ly5401GLRQ564NanD7troj6f8auNl/zAcJ8wT18hteFVslUbK1/6ckKMT5l+zfGnGOef6JP8lLPWQT1xlvLhh3Hra671N5a98eLUdu3dym+0exn40ksvrb9HDN+6WZvyzrc90v7DG0+f943rZ1NccZafcgaTD4W0dq4BAsfesA7m5IFt+ubtFdjyQM9c68+WnZc8/TIQx5lPHGDQ9fndmuvbc7jwQ/I7cwFLn088mjPOF//E/NwLzeWHXevOTwUmLCX/cIgx6wA7nT4n4MFW8KdjTcQqJhiuEfpw440D3WzUinl64qHjJR2f+HlRBxte3NThhGWsuMzF0Xxz8CrwW/fiU7OzNrDEJ4b8rsQcfngZ+L73vW99Y9v9tXVn629t//73v79qw9/U0bcP+II793L8ce6FoDHi5e0999xzcu+99159cQ0LjvudF7TwegGNtzyYt45ihdsZJ1/lhg/8iTnY9I3pWxcYxhXjPhv8AkTft9fxcy3IRzFYS2cR+z8e9OU2f+VXjbP8dL2xdf0Zx12xz8Rsr8FhJ1+9aHdN2jf8mPPZow+TT+uL94ULF9aLdtj05Kxf/OqLuxzICzw5qJgXq9ja2/RwLj9dFzhr54utfHStqsXEv5jo0bF+ar61+VYr4sITx3TECFdNzCkJDnIld3izM98+h48LvXjAMk7ExXdtvAgcn9/ywH/nNm1z7PiwZ7TxhmnfkO4bYmIjfv7Ln7Vt77KHqdDhi5358sEON+OKGPnosx4+/+boVaYPNnDKH3/i88USdXmAo5hnz4fC1nhnMPHjS7TNwSmHxSw+7SRu1oE9H4k566WGJ3dyQAcfvyh/+umnTx555JFlYu4ssl+0nyVbW3dnYGdgZ2BnYGfgNs2AQ4P/DPW73/3u1RdFDh0OJOYcNNTGHGoV4mDh4KJMod+BFUYHG2NwSIeS+rAduvQdbhxq1A44dM3xo93BZ85PzKnTYRCew5SDmRqWBwQPdn2jB555Ntod9uIPV2ErB71UwyefbPQdxhw+y1X8xFfMxghbY3DLw4yRjvlyKhdKfs0TY6RxuOU/m3wb78Coza/Da1zU+BQ7OwdXB29rUvzh5QumwtaccbgOvziIoQN4+PgqifXxYNG64MDOuDq7uPGBU2sGi2/6hD4x1hxbvHBll21j6vzA9uDERvznzp1bD+fa8Bz8PWB5mIM3uRqTW1zKES71WzP+26tx4U+hgwv+uMAvDmNETZeewleSLzzTwYm/rgs+7X1rPPMUhhomu/C18YAPZ3KZMchJfORVKW4v2H1rUJ0UszjhEGMKf0QtF+ryoSb0+DPHHrf6uOJPh5S3bNbglR9s6IrT+rOlz497h4d+9w96XsaIQy0+evQnN3188LIW3T/sdRwJHfMwibY44ckjnnStEyxz1jFu+BoLpxxY28SYghtcfD1sx8eYe9c/D/+Xg2+ot2/scS+b7Gnrh8ss8tR1jr/SPdBcMcVDzRe+YsG9+2V5p6OtnGZvnsAxry4Xjf1L4z9/4g6XZJMWvvmUK/MKrlP4IHzLsZyyg12OjSXsjbu33coX7f6O8k9/+tP17Vtr48W7F0vyj4s94iUGv+LAgZ41x0mp3xrgLD78i1tsin5xwZYvL9iM2U8w7FPF2s51odt90t6HBdOYvWbemBeLXWNyawyOIt/2rPi8/OPDmGJ/dt8t78azhcMvrsYJnDgZz4e57OSta9U+97e7+TF/LOHypYQpDhhyJmaY2nJP2OEiNj7kouuzF75yawyOdSThGYelrm2eHl8KH+ryFn8c6dkvMOQDB2ui3zhORM7pi8MYHH0lTG17wDey4csZHIWNwp6w8R9m+g8+1e0dsdH3kt05NWy1fIonfnLSGuFvPA7WQU7cp9UJf/fff//6zw1dI/RwgquGofbtdNfV3/72t7W/+fYNXDzF4VqyNnTFaryX49YTj/TCpwenXIrT+rvXun7F+IEPfODk4x//+HpxKhfi+stf/rKuZXlyTfdSEVc8+IEdrljFxb49gBs7/uIOG1f8+MYHD/scnvwoPg/1+ZYDunR8jsvT7373u5NLly4tXzDsIz7wo6tYA3MEFn6tuXncnbF8xpoj/PHDR7zhahN68omjWOUcdp9d8sKnYn0VNvLQZzx9GHIBFxd9eNow5QcWe/lkY+3FL1a5NabtM5O/uOQbXzrszSVyxC4x51rFD085kRtcYMUFX1jG5dHfECdiJ8bpwqaLr7b8WQuxwJMPOHjA4T8+7NkSHMyzkwvj9GCwx7eY1XzAVOjXx4u0dq5f9qT9CxO+9eAjbnxYF3sCHiz3K3b5h2ucT0UM+eRDm045wVVMahjWyDxMbfb6Pr+/8Y1vnDz88MNgls1q3OSP/aL9JhO11XYGdgZ2BnYGdgZu5ww4aPSi3aHMIcbBxkGDOHRUO8w47Dhw0HNYOxZ25o/t5+Hm2AZWBxiHrIoDDf/mlA5A5h18mj/G44uOA7LDqbaxDmbaXpb1kMKenkOeg1uHKuP8ygeJizw4oBLY8wCHk76Dm5ovdmJMjB1LMZZ7OVTo1mbT+uDIJlw+EhizlN/m2eFG6J02P+PGQV7ki674K/GDYz8UN+zyZZwdXflSxIQDnTCa74Gig75xoj4tbjk33rrRs//KAVs6xotb7dDOl2JezOIqDnYw7RtY9oeHW0WbPgwPp/YDTDiKuIzLBy5wynVtfXPyYUy8uMgNe0Xe6JlvTeCzKy940mmeXQKb4GecjjL3OZ9i5N/c3G/hqOWGn3jxH/e4NAaDLhtjOMtVewGefx7vha4H1DizkUf2Yib68sCXuBXzs+YDBnt6+nTEJSZ9ccKBR2/mkA77cPg1Rte+xyWO+h6m1XR6ydADH1zxssGFnbac40Svl/L2EV6k+Fbn8CM+xvHgi64Cjw9rBjOha5yw1/dwXlzG4qeG6+G0F2rsrJOXYl5oaLP1wqCXLnKIixxqw7TOPhvg6Sv61rsx2AlMvOMODxapDUNb0T5N4IgxPW1x3UhwZ0PkC05SfPr8zrVMj4+4i2/q6JMZX321zx5/4/VW/Y12L9p/8pOfnPz5z39ea2LtXFvWlPgctFddC/aN2K1Xa1dM1sv9ioi7GO0xOvTZzbjsRfH2QmmuQ3sUTjmmC8M64aTf+vKvzc7LMteYXPERF75xc2+1N+kUEyz3OTjtF7EqRAzs5QFeOnCKW6y4TmFHv/zRl1++jJ8mbMTYfhQXXPcA62G8/OAdDu5iU5dvftwzxIGnEjYMJV11OdYmxc23Nh7yBqMcyIs5fVzZuna7p5VD43TY0jfeWH7MiUeB60Uhn/YIbhU47PkjvoX7wQ9+cP3tcTmyFgp8f47kt7/97fJLl13xsNe3PuzkQ47Y8Y8PHHpeltt/xX3n4U/GeGnmG+140oOFI/uw3Qu9pLfu1oZvL5nz1Wc9W3Ebt3f5dh2qzbFtr8kJPXPaxHz3Wvl01nCv8MsK1wHurnfXjr/R7t7e9YEre9xxgKsm4vVZIz/iYi/W9hNcbZ9L7Ftb93yx4clGgQGXb/uIrj0qNz7LX3vttRN/xorQs488W1gLwj8f+LIVOy5K+5A/+PJsvL792Attee16hwuHPo5iJ3LDRk75I3JRO9/0+FbEJx999pmDC5Mt7gpdY8UvV3Lo3mWuuK172OW1/WccB3maeTFvTNz2kZqv7ofsioVP6w4HPl37GYbY6WqHj7vY5M9861C88l1e+DBOpxIvfLpWcEjPePdYuvzLJ/9xqI8vyYZdcRgj2cDnh08cu9btAdz4sgbs7IF889GasZ1ijr/2P1z+jHduggNTHObU/jPzb37zm/tvtM9k7vbOwM7AzsDOwM7AzsC/Z8CB4je/+c166HcYduBQSIfBDmkOjgobYw43p4l5JaFbX+2gog7D4SedDkd0FH1Cv+Ig2XhzahiEHZ302NHPXu3g7FCndtBS6BvroGnMYa4x2GHBU/hyCAtfv8Onwx3Rd0ArRnlzOOzQWB6Mw+cXjvHs4GjD7FDJJx1jfFg3h1G1fpyKG0ZiLBtrqh2/bOXDQwZdfOSFDnwHewf1uOAcH2NKDwBxhtOBNf/4aCvsyyffYaqtgbXAbeYBH1INhz4/rUtz+HswNA/fg6cH2B5ejLHH1wOINhvjMOTCN6zYwTAmTvo44camcX3z5sSWjQdX48ZIfNXsp8CAJy/5yYd1sAbybE7dg6c5woc84MyuEm/YXQvi4691aA+yL//aMCbn4uDPHDtjsMuJvrb92QOZWi56UDKviEXR5q9+3PmBrSTisScVwk5c4iZsJ6dje/OEDv76/NODJV5zcmw9SfnBj9953ZUnenJH2iP0tNnjZ4/xx2buN317jx4u/MNS6LVf+McLRlhyqh9H3zh2f+/+gEP7xssVxX1AvHKpDbcca7MtfnwUcdApB9rG64djjOBUjtX6+aiee9PYLOFkC9MYnLDoa4t9jud/4hmDRYzzHY52XMPSl/fuFez4b49kawxe+l0v+u43HtRfeOGF9RKN3v9E+CK9aL98+fLyZy96sdR9RhztvfZDefSnM7xg1MdNbW+wIcbYGLem5orJmP3AT784wikfxS9Xfc7CsCeI+035bi8bZ989qZcp8Qi76w33rjUYU8SMX3seH/y6ztSEjoILDNcQv9rF3fXKBo5fEIpbbMlcx/IoXm16rlvXO+xymk99/sRNX47wFqfr1ktM4xOXX3nh17j6uBgnsPltfbRxEzfxYgq/YsbLWuPRNQ4bH3b0SHjywhc886R9Ip/dr2CUb7Gy48vnrRz1C5bWHy82b7/99snrr7++5nHnS/7LGVs4uKrZxM0+44df30jHxTrIuW+L+/avl+b4shez/Sz/xe5+iqM5ecGhl9/iNeez2By/fMIUB57EvPvw5Ia3GPBT2MKgq82PMwssvMWNl7b1YiMOBVZtmHLXOvGPEzv+5UhM9hV+4jLO3v1J4YueWm7yKXf8wpYf/xmzb7D7D1Dl2C8k/GKitYDJNwnTPqLLJ5xe2lt/cbM1jxsOdPjUNg6HbaLPRh2/dMSp6ONhTXDiZ5b2q7xZJ7kxRldu2Wrz0zrLCW7tAdysWXuJHr+4szdOxKGUI7GUC+va2tIv13zTsVby15qJgZ64caFnb/JtXxLjdHApL7D4VxuDaW+JBYbY1HAmV3zEKB529OMEix/+tGHghSNdONnIFTsiv9bFnJJowzGvjQs7vIzhwr+5xtiGgQffdFqLsOEmrQMMNq23WOhN3mJy33jmmWdOHn300QUxscK8Xr2/0X697Oy5nYGdgZ2BnYGdgf+SDDiEvPrqqyc/+MEP1gOdw4jS4aVDRuMdzK4XPsx58NBPHFwcZow5DF0Lj55CL5tqh6vm+MlXfuB3OE1PTY9PeuYdmBzutI0p+g5aHdo8ACgOlYSOeWMd4hw6w+iQVox8dkjDgYjZoXbGjhfd8NXG5uFQ37ooJJ89eKh7gGEfh3JQ/MbFHp7DLsz4ZOuwSY+9GPKrzZdDubZ5XMobbsbN9/DJdzmlR4qRLi78yb+HDG24bOTeA5icFz//CtziUsMkxUbfGJ9w4WjD8g06D7HWz1i85NyDGf/i5x+2dg/+fMQ/DvnlO31jOOi3Xh7iidhIvvXZZs+GjxmTOXrm8Gy9y4sHU2PmErn0CwLxVMofvNZZDZfQwyve8uWBqXVRmy8GNnTh4aJurHGc8FPaa/lbyocf7OjZk2o5y8fU1bZvCK5yxC8b49bKurZ/l+LRD77C5KNctw9Sp2NekTf5xY89G/MTyxjexnCRO202+vRxlkN7K39qfBU6MOjAY0+mDSz71EtVD9T4wZUHLwqKB2cvPui5JvGo0IVhTbqe+OF/rm8crFux8s+erhq2tnnroK+ea20eFmx1/Xyq4RZv4+nSV1ovevTNK9lqlw8YNyNhTWw47S8Y5ua6xN+amYtfWOzF2rrR8RLLt2ife+65W/6iHb796eWse691sdbtWTHEWRz+JrZ7IL72KZ7WTD89NvrWUeFDMWaN7R37jy+xwtVWrAddY/LIpjH3+kSe6KjLmZziA5OtGpZ5MeHpnmROcS3BZKOPf5zbg/yxpwufwLH38WKDR+spBjH24jMuvlXruuFrcuY3jnLeGtDjU4mfGMJgx6+1YI8TWzry6zODn/IIWy4J3vSLERZdsZgjMPNrXnzmw+gzN5vG2cJik8CUF5K+ef7lEWf2xvAtn2KHZV5OxWq96No/YihGee4sYEy+/XLDC+fup16Eist9Xmxw5QwHvvPf5zvO8ubPsfgFE9v77rtvXQNikmf2av8qxP0yLBxwas+wbY+Uj3LNL11+6fFZbuDJGbxyx45N8eZDftmZd+6QR3bteXlTsjfeeUY+vGyFJW65JfzAkH85t6/ih7N7Ezu/wMIPf4W09/gk9q5f8vmzPhcvXlxt4zjzWY0L/tnRwYeOMfhip8M/fnPfx50+XTzU+Nbmi41Y+IvzzDFca9J+MMc/Wz6K1z4Vm/ywIWqYavlmQ3BQiLU1LsezmNOPc9zolie+CSz+cRSb8XybZ2OP4tfepCdmhS5frhHY8iHGeOYHB/r2Bxvxdx9nY8x6uC+wZ0fHviE4KuaMK+WErmKOjjUl8mYMP/P4weOrGPSNE3V7Gw499vlZSocfsMyJEWftrrPWLI75x4HAN0caKzf2JEw6eMGki8snPvGJk+eff/7k8ccfX7Y4nEX2i/azZGvr7gzsDOwM7AzsDNymGXAo8Y12L9odujv8ObR20FErDin0HTyudbBwWKHTvHYHmFJUv0NTus1Xs03YOAA5kFX02eIMy6EobLYORA6SHUDpN0+3w2ljfGmzVTpw8RcXfvj0wpY96eCefg8MDql0y1eHWn22OLAhaj7o59+42IyZx8M6WBs68TKWn3loFItxnPkkdI3jlphzuIZ7fIilQ98h04NnXIyxUysEp/r04gpXX8xypS5euA6x/OLkQdoLcA8K5ce4voMvHDHCZFdc8Fp/8x7CfbPKC0dzXjTzzZ98wOMLHt9xLQ90xGIP0aWHB5xyLF5t9vQJvfLAH9/NGVfoFBsfcTdmnj4+5dc4MSd3OLFpzDiBy0bRTsyH3Zj5ink8wkmnvpo/Rfu40DeGt3x4ydcelRtF3q2J9fBAZ6z8ypO1hY+72Omr4fbAVz7iij8b15W1aW8ZlyeF/bWEXjL1ZnvOGxcjHur0Js7U146jms0U9sVivL4x+vXV8jpzIjfy6Buairy6H9DxgsC1mj9Y1sNc3M1VYMOjF0969szkl356dGAaZ99DcnrGYNMTA7v86xNjxWtPpGeO/3wZr5ib9vpwlSnpzLEbtfkjOClimX1j9ty8nvixf+039uJmN7GsTdetzw4v2v2/KP5TtfSWozP8KL6+0e5Px8BynfWvF+REXnFSx4stPupidD90rSWw8jE5il8eiDzYW/wZE6ex9mt1e4+O69U9VR7g42Y+KcfyCYs/etrwzcO135Lmuw90XxCjkl0x6SsEf3jyMPOljZcXW85G/OJE5osumLC6/6jFKN/04JP2Rfkz508dlFvxyUvx9ZIML8W89aHTdbeADz9c8wrO7OWDDQ7FbEwxj6MXYPJF6PEHA196Ypj5M2aPyIH1JtZADPOzmD88CF2c5SdcunLqZff0bxyHYuOPqMPzIhkvscEzXv6soSLPxsTJr3zJucLeSzJ/m714+PAS3y8jxe++6pryf1Roi0GuxO7/DdDH0z23mFz/4vSym0/5FCM9fPCUc/7ba3Tkjk/t5jur4GWP2HvWQTz2gD8ng7t8wVITHP0SwXUlR/TUeOBaXumWT3jygjNdGOxbl9aAjXm+fN6IS468YH/zzTfXPae8w4JrDaxT69MehmNePOZmyR8ssenTw9dnGq7yZA2Mm1fav/LFD6Erju7NfMqjcXhs8iNHxnAxjiM7/YlfDo0R84kxff75wLF144etMcU83fDr05PbiWuOGBPD9B2eXNircka/X8a0zjhVYMFpz9K3rvYiDHua+NNE9jtsJR38iHWGz6daznDjRxz44scPnXI3OdPjX2EbFnz+YPENS403v4RtXJuTbzr6pDXhGzYxj4M5a23P0GdL6JpzLYhJbPLStWzsgQceOHnxxRdPnnjiiWUz12sN3ODHftF+gwTt6Z2BnYGdgZ2BnYH/hgw4UPz6178++d73vrcOEw42Dh8OOQ4y8zDqwOFA0uFF36HFIYMdMVdJV/80YdeB7LT5xtg7iMFTO2g5KOUbBv8dsOh3cHLIczA65tJhSz35zQOTuQ6A8LUJHQ9VHdb4wEnR9qDigcphl8ghGzyKQ1vhQx6NNxcfNmwJPQdBh8Ue7uIevnoeJs23nnzAaw09rOSHjsOmNZ9Y2dDrkB3PRerww1y5nXXcHVqV/Dq8ylHcPeAo/MqXl+weED1stm4elvAtf2J06JUHuDjA6wCOq4dm/5TZN9Nw9g0tOGzZ8GUsfmzwmA8acOUcZ7Gxx4sNvsTeK09r4PCDHZ84szPfXmmfxrd8qo2p5Q4uP+zFZcwcPvaeNlErfBJ6sz4en3NL8cqP9I7rqXOttpj4VcTqJYz10VY37sG8lxnyh7cceRFiPcTPRuzm4Wq7nqyBOVhywrbcyAl7xd4y1/3hNM4w/jfyv7U/zXd5F9NpIh/2uz1B5MWLh3fffXf9bW4vUsRtD3sx4+VN9wLj7Mtr+K2LvMp166hPv/0YN/rppE9P6ZpUm4vj9Jl966ivTHzxpzdzoS2OdOEbS4dfZc4vEmf4wRZeMerHL//5lJs5795gz9GfOdBn02cDO3vZn6vwoH4rX7T7TxJx7wWh/dL6qFtnnOTS/RTX9pQXK+5vCb1jETNbhbh+YXi5T+RArNY9bPcAny/G2LHhx/0XHp50EmPyBGfuQbblHVb3YTyzcQ+wFmJzX+CrvnUg9MPWd++HZRznrjN9bZ8J7mn8w5VjNnT5pWe8PaDm17jrsXth69Fecp36fCKTv3nYfMDQN6+4F3r51bp2rcHCkQ/6Clt66nxoiwNH+bcX4bJj72UbzsbEUD77/PJtZ+PuL3yrvaSOKzvSNS4v1lq+7QHz8iGnXrTzjw8s873Qaq8aLx5r71zVdWbOuskV/facmAk7fjur4SLmT37yk+ub7Obkk71rRxziwcPLZH/P3T2WnpfsziWuEbnD03wxyRMdsfIjRrb0cCPm/AsSucJVsf7yjjNc8eGIs7WyrnBgit+e9nfsYbLjJw7833XXXQuDLr548SceawyTrSLv8GDLqWI98MSFLhx5xE8e7A2/0IPlfHXhwoX1sl3e4Cn02LG33nx1fZmzf/ilQ6yjXPBBt751ocfGnHsMLs4LOLfX8iEP5RIuLq4VOYDBtrNn+edDLOJqH+mzsQZsFHOwzeHYOD+kfYoLrgT3zmrs8JPjci4/hA1+MKyVXJpT+DKfrpzBKJ76amcAPOWGDxyJPOAkZj4Ie2ssl/T49a9G+KZH/NLGfocNQ476lzz4GIfLJ9zWBGcYdPjBxfrLQXrG2NMTnzYekyN/8IsfB7HzA5tfvLXpmLe+5rWJcT75DguGQoc/1xff9iUJs+uAvbW3fvTZfupTn1q/KN/faF8p2z92BnYGdgZ2BnYGdgZOy4CDiP8M9aWXXrp6wHNQcthwkHE4UToAOZAoxAGkQ5DDjj4xptBTN7Yahx90iRr2jSSsfDu8OUypCZ5EP12HKDoOdB2qOjDSNeZQpsQRPjvFWOP0cS0e43DTc0DjG364xrSLUZx0wld3uJx5i8PxHH1c4Ti0kvzzgVO+YMQHNpt8sItnMbJzqIXbehgjxWz9HVbZiEvRJmp66Rpjn2/7KdweknAnHcDpWC8Peh4Y1WIg4uavPmx2HfD5L5/NORh7cPbwYb71KBfw4HpQFVc85EGfiMcDl4df+DD0zXc9qGHiX47Lh3i0jWsTenDFosDVVxcDPZg4iScdenh7QIJLsjFHN9/1G2u9zGe7AK78oIenUmz0srdnpq3xbMRE9PH2csD9g5jDEa5/YdCDWuOuI/HILT3j/KvDsxc8sMJWiNzhpG4tYXRdGjNHZry1q4/nl8H/px/itadbd7HKA/GQ56XNzKsxObXP7XdiP8t/D4XitBeINYCnr5jTNz5zq4+H9VAIXeNzzeOnxtm10zXJxjq2lvokDnCmwFf4M9f604lvnI3RbVyfHzyMExjHPtbEdX6wtaeKk6p247jxqba3jPOhtu/YEjwmBhv63YPsZX+y4lb+jfYf/ehHJ5cPf6MdH/e89gourUE81Pgp9os1I17wuT+T03InTkX8CnHtWiv7Ty0H5RA+391btdnJVS+y+GGH51zzfKjxVeB2TcOmD1MbL/OwWwv3XDnH0RiMxP1B4X+ul/bkqy1HvUhkw1+fl/zCMM4Xfnzxbdz16vMiP/DkGxdr5OVhMZYbuvQUUi605c390Fj54psfPNmUyxkXW7iEbxx9rvWizf3CfUOcMMQF12dk+5Yt/8ZgKfLg5TxfjWm3LtZE/vGVB7jiV7zkLmfGzeMhDjlO8I07vrDyRYetwi9c/Pkn/PNRfccdd5w8+OCD61+UiM962bt+Yeleak1giMkvheWEDq5dH3KHo3l1884trm2+rAdc8VgnYt38osJYHPnRF6+80vGCT20MH9dza8n3+fPnr1534sRX/PKMIxw56pci/HuZ2LlFnz6s1sB+FYf8igEG/3Qr+n4x4FvseIn/8uGeo+hbExhh8UHU1rB6rh9MRRz8zL64xGSdzImB4C3HcBRt2HTYiBNO+xwfOqS9QM8aqLNpD6vZyAEMMRnrJTTsuf/gGsMlHuWCPxjs8RNL+aFjjOCnj7tryngl3PKHTzGbg6lvL4nFvMKveUV+FT4IG9y6nthZQ/u2PNhL9iHhuz2tJnCLi69ixRseX3jxJS7FnH6c6bBVCDs6x+3Wk89yVUzlBYa47Q85Nk7gdb3ph0HfnHyzs974iM/4vA6svXH87Mn+dMyXvvQlkFfzujo38WN/o/0mkrRVdgZ2BnYGdgZ2Bm73DDiMeNHuod9DBXGo6aHNgUNfcQjpUNMhpsNbhxY6pPlZayswE7g3kuzodUhyKHI4IjAcvjoYaztoOXA50NEzpp+N+R4qwoedTfE4SMKnQ9TmSPlwwGQbjtocO6UDIbtpSyeM8gwX13hPP7jRc9ibvmDyrzbOXjGWj/wYKx9hmMOxWOHQqdBjB1M85a5YcMy3NoFZ/NXGYU5d8XSwZ8OHOOehnU35YAuvfLEhxhViTjwO0B2ajVXYKPp0Otzjoa0Qfj1o+BZaeRO7a4MO/da2/C3Dw4/Jp7jMaeM/c1t+y7F+MfBB5CVM8wkbpTE1bPp8sdf20JC9GGqnE391LwLYsYdvPeLAd2tgHga/annxwAaH/nxQ9pLdw7L8sS9eaxsnccNUtIk1gAMTfvljXxww5h7hWx5mbmClP/M1x7TZNs9GXGeVaX892/ImVg+iHugUfQ+HCnFv9uKm3OEkH3JtvBcd9rs9TY+Ihw91MnPTOsJSiDFtdsWhNp5+60RP27rwrU+HNDfzp02/sclPO575gdN4XIyxD0u/PaNNzMHIz79Gr/8Tvj0TNm0YxuVMmXs2Pur2YjYTA3970zWk9nLr3nvvPfnOd76z/lPUs3CcEeTft1X96TffMOXL2tsv3dusAxGb+wCuxlznrZn5+Zkap2rzpFzAIOIh9qk1IDjETR+GPJZLtl2rbNqP9lB7Iww42gr++QtfHPAnL21jdN03vBx2f8kGJ/2w8CkeNQ6uRTHhpMipORzE4XqjgxcxB7M9QoddeUmPjbXRhwmHHXv8jMtJvmdc5ujhzYaYd45R482Wj9aVjTl8zJUr470018YDH/mkTy98/pTG5MBeDpffbLRxL27jSTpqBY54+Je3aWu+fcFeLsXFhtDFBw+lcfzFbm+LF35z4vUvSD7zmc+sF+3w6fpFpf9s1b+4kgO48PnjFxdnElj1W18+XDeuaZ9T+WodYOAEDwYOuMExpqZL2MKynvTwcA17geqzU9u6+9a6Xxh4sc9G/kixF3fXs3nrZ9y68AsHZ9/45q89yIauWMXos4hfXOTKLyRee+21q9+eNi6eYioGGOwV2HKDhz4OXT84l2+1XBNclWIw19oUL1/8VNsHfNFjGzc+2ejDE9vco/HMv3nt+jDxspaEPt75WIOHH/ZTfoyxKR6YcHClZ9w6wIGXXmNdP3Baj3Sq8YMLU22t4GnTUeOj8AGbmMPBfnR/pFesUy87e9Q8bDmAEz59gqM1hiUvbMzlXzyN0ak0DwMufPbFaJzAyhcuFXrtAVh86Ftncwo74/n/F+K/n+vkQiH2OQ76eLI3pubXtek/Q3366adPHnnkkWVj/CyyX7SfJVtbd2dgZ2BnYGdgZ+A2zYCDyMsvv3zy7LPPrgfADjAd9Bx+lA45DjMJXYcv0nj28+DBx5yH1RjshE521eboVuh0sHYIouew6KHBN7QcIB2y9BWHbwcv4x3I2LCl5yFDH36Hv3DlwAFLjPFR42xOzQ6uOhy1GM2nX8zF2hw7Mek3xoZMW226HRi1SfY4aytihTn7xohxbTk8tl0Khx/mPBQo4TbmAMq+h1sYcautL166Ds4dcI0T4woRs7Y5dXmKn7788ufgmy9xKGHOtWuuebgeFhXrWa6Nd6gOp5p/cdpD/vms2PQVLzazC6u1W0GNH+yOxRh8nIm+NmycCR5ha5svnq45dukvo8MPemFnT8fDgVqho7BX5FihD9tDs3UzZ4yu3ONnjEx+bQ9TXwAAQABJREFU+vEop+zwcG1aP+O9RIbdOsNmO2M3Z8/gYs7LQdcpTDhKfFsvegp+xRd2nPE0pj/HsmGfrTHYx35gXE/YsBU7vPhNG/PxVROxycvxHmWPU/ei7jtyoC2nfnmhJnJmLh8zB41ZD9e2nMNXyjkMfXyOJb3m+eraTheOwle19rHAIMWv31icpz0MJT2xe1kjbuOuSS+k4KU3YzCeLb90qvmpPe3X4OGHMbnqusJPDuMJN7xs1MXDnq17GBz3FN9o//a3v31LXrT7Exb+DM0777yz/PBtT3ihO681vn3m4WOPuIdpi2Pmxpi+vHStzXmxi0fM9oA8my/fxmEk9Rujyyc+bMzrh8WOrvHEPJ98m4tbvo3RYWNOEat7Ry9Ap502/2q4ary6X2mLXeFDibM5ucMXhnFinH/jXvbJv1rfuHn71v2VP9j6YoITBv1802OrFB89+vDU/fKkuNnja86eg8EPLuULvnmxE/PwyrG2vaPwTTeBp5++PNMxrpBiwMk9gq441XEIrzr+dOD7zMFfH3d54ycMOHQUucHdPN/uB/zCca8jPgP9beVPf/rT62W1OfcQL9hdO76t3TUx4+EPt3Iod3zBa0+ITdtcuceLLd7GYKjxoidXcgdL23xxwMOBrlj8uRY1TP+/g3Lu3LllD4Ot+196+eWHjW+391KVLu6+sawYbz3ZyV9r5l9c9IshufLLvD/84Q/r/oKf9ZnnRPz14bg38yW+9qE+7K4N/OBU2gvsCbz2lD6exojxinF5EEv3PLmWs/ow6bHhV5wEnnEc6Citl7F8GtcXA3s6jcG0Zu0Deq21thyYYxu2euIsMocfdHAzny18bYXE0zj+xru+9ZV06ItBIfDNFXd1+8j6wCvO8hd3c+KBZ0zR9/xlDvf4N78cH36Y50+NQ2ugXb6Ke8ZsPv/a7PnH2f3dHjfvcw8mW4IXf8bkWjnGoWPfdK9xndM3TtIvh+63H/nIR06efPLJk4ceemjp4HQW2S/az5KtrbszsDOwM7AzsDNwm2bAgeWXv/zlyTPPPLMOpR0YHHYcMJQOKEJ0aCHNqZMONzAq8CuN0Z9jYcBOR53QNQdf0TZG6HlY8PcoFYd8LzJ8C9kLUoeiDr8duvIBhz7/Yc8DmQOmhyQHWDngk67xOVbc+ITTWHHGN85w+Fcai1cPdHzgYy0U4x4E1WRi1oarHQ9th9EefvT5lIva5pRszDm4GkvMsYNPtM3DIObjT0e+cPVw5uWhPlHjr9AXXzGaE6dxh9r44G8dHYTNm8NRHZ85Zs6ai0Gbjgc7h3DryR8fxsvtMQ5bmPzaR3FR9+0yNsUsD5UV6OFHc/rsEpwUOcxGu356094YDGMehJLTdPCGVT754E9Nn2gXUxyMy4f9bX20xWgeJn1tAqec6Yen3UM6Dvyyo9svO8KmG4fqxqwRHnA9SFmHfJtzbdhfOCbxwZXu5EQn++rs1PwfxwhPDvnTFvOx7RwzV37tWXj1p512uWnN4csbf/lyfcGhU0zxkUN72T/f9ze5vWSBy1YsvQRiqyR0urZdI6T51s0Y3nHXTxqTd3nBA6Z1xpWkgzNsfPAic53ZkbDgscVr3nvSU5uXA/cVL8bEb9zfWPbCmb/0j32yLbd0KnMPZbuIHX7owxTfjAdHffFcT/JRftjYz16036pvtIvdv0jzrVx548ufm7AnXENkxtX6GHddeclgzPrLD476re/c/+atMz90vEyzB+RBn5/a8OdYuTImp2G0/q0Nu/aNNmGLl7zzgWux5cO8OX3FL+e8/PGnOOSE2Dvs1HT5yY5/Zwd29MNhR5ceHtrszbcPxFD+3Je84LM3fe7wR5cNHTW//LHjSz/u5hXzxhrnO//wzOu71gksY+bk1tqKH7b7pf3QWsaJPWGDh71gfeG4v/SyFAYRL2FPR58Nju4rPqONweMLJ/kg5unpw+YbLl14dM3jERcxEPpyap7wLUcJDL750KYr1+GwM//Rj350vSTz96fN8es+cvnw5098ruNWDsVRLPTMwVRgeXktz7DFar6zjhz6/2bMwy3GYtAXu/WxfvZWa2NObhQ5ca/ziwC2cn3//fdfjYEf9vR8Dly6dGntO9ek+4J1Ny/e/iY+fPucb/ktBvmk35mN3nzRbi/w4U/s0JMntq6v4pALsciXfykAg8DWNs+OPY5407cWzdHXlh/z2fElXmssN3DMK+nD0SfmxdK6GaOXH/Nw2MAt3/T51M9GWymexqvN4QVHIe2JuBmDLe7yUQzq4qQ344YNg9QuDjaVMOVTrmDwRbo2+KGnaCsw5cB9z962NpOzOPhIP3zXBh/mYfhcU8NobfPVtcRWgc/OnipWPmoXb3X3CRzo8CPP9l5/Iolf+9N1wj88eVDiz7YCqzhdVwqBQ0dOpoTlmvF/rHz5y18++dznPrdU4J9F9ov2s2Rr6+4M7AzsDOwM7Azcphlw0PjFL35x8q1vfWsdUI4PDPoORB22HJKMdVhx4NFXtDsYOcQQfSUdtUPTlObCytY4W/oOPeradBMHLf9BlOLw5dDvwcI3fhyKcJ76cDsIxiXfHpTMOWx5WPCAZ0wfF3H3QKU9Y4urQyW++eVj+s+mw2fxGicOug6gHtI79PGFB9/WQh8mm+yNKeIz1/w8ZDfHN8GxBwQ84eFuXh8eYaeEb4xtNnw1j48DNr5i8LCDM1HLa/nXF6OaTf7KHS4eAByoxUEHN4devvnEmX45V/fAQ494ye7lk/WEQXAm+OZ32sL0kOoBVZsftl6g9DDGf7mmkxgn5at884UTP/gr2cM/lvILhx4duYIPS8kXW/NhFpf5dNSw6OU3HsbSFac1ShqvTzcxN/GKGT4c87jImbW33o1PO/pEHs3TZesa9hAXT/G7PuwvejDKA316CUxzRNu8QtjNdmuCP2EHv2twDV7jR3GE76Ft7ofmYWrjyF/7yng8zSv9ggFvePY0/HLjuvLSwzcyvRBhY95e88tHPtjGI3zzrnk1GzyI9Z75uEaoa1iOunb5wM21wicMvrpGGejzZV7RVggsOVbYssMvnclJm1/Xc3+fHoYXUX/605+u+mGbT/yUeDWef/1rCR35a63Caq/oF088w4o/HfrigmU/+9Mx/hWZF3/HdtnfqI6/b7E+99xzK35548tLVTmypvT4KM/aOFl/fzrCSzfSPbk9aT3m5408wejzRJsPn1fw4La+5ugfxxYXHOHo88sPoW8MDkyFNBY394ZeCM15dvXl2XXgPNC4vcNObPhNH3z7nHHdzf3Hp1JsbNjiJA5zrkkxGFfLS78Ac58yjjP/7IqrnMEwpn9a7uKKA3s6ijau2rDVsFyLYu/Pi+DgHkGHD5+DxVAO7E9r4lo21+d391h57WWU+Piyh9jAUMs5e8IOjlyT7gfuW14+lzt8upfDganwZS3EyIbPaQNXThW+xMxGjnw+GJMb+9uYtl9wnT9/fuVFnsTgWvHnl9TWjp3CFx5isGfsU/zkUKy94IOBP5946uPhz7vIhfsUgeEMAldMOPV33fkRjwKfT77oic9Lc9jOQv5sRTGUJz6dS956661V4+MXb3zi4DzMxvUOt88WOcGDP/GJwYtK+8O6yDm/bGBqq/lrL7lmfLHFdZbQ84tP/OUSLh9yrpRjPvRxoAuz3MiTfPDFP672lxzQp2u96MCBT5c9fSL+rru4VbOBI4fWEw+YzqyEf0IvTG3Cjj4/5gh+9qBCDy++sxGzvBrDk+Ac7/SMh6lNzBlTZr7gKDAS8zjwL34iZ/YBDsbV7LSJWOnghiOhbzz8uMI353qGI2eET3mB2f5ha15uFLmGKQ6+3JPokOIrp2IuJ3BJHOi4xlw/9h4+9oJfmsFsvxlX6GfLH976fBI69kA+jePJLsFdsQfdR5544on9or3k7HpnYGdgZ2BnYGdgZ+A/M+BA4RvtXrR70HD4IB3s1B3KtB141A4rSgcg7Q5K6nmICS9MhxdtOg5t2kp6kwN8hxsHIbXDnQNhB0c2Hih969iBy7yDkAcKB399gp8HCYc+vvqm2fGh1cGUjpgdGB3eHAj14wmLXjHqxx9fmA5pExuHmR993JRyJy90pt+w4eOv5hcf+uWycfpJ87jMdcs3G+M44EqMZafNZ+P51U+fLgy8Jwc8xOGhrAcL83Jbfmff2Fwf+LDVHpQ9GNoDcI2VX375jwMbcw7N7Rl+evGES2KcqNtzbOWDLUx7yd6y9+RcPLBmXnAoDxMPLr6w2ecH/wofbGEk9JQw1XwXJ0z9ONNNJhft/DdfbS5d+AppTDt8tfWZWPIUvnGiT3DDSb9rh479oJgPqzjpVsRJh655D3C9QGnOOliDfC/H40fc6WvD1oanEGPV4rdGarGmw7YybZfhFYx4l0P6HiqtcTjmFHPG4hMHY+bKDa7ito8JvF4G6Itb/O5jHiz7pqQ5a+PlB//TD3x2sMWqxJ1/9zo1nnTiBpOYUwgceVLouWbwY5cf/otp4pYLurjSI3SJ+cZO48CnB+muadiXD99IffPNN9eLLDjscFTDU9Mzl5/l7AY/ykU8w8IvnmI/Fr7yPfXE7J5yzz333NIX7f5erJdsrel8IVbc8lHsuCk+O91fteXVPI4403cNqtuXdKyzmI1ZB9c4exJuvviepTzJH4z8wGVDNxxzuBxjm6ePW/6M0Y27cdePXDsrGCc4u27UMxf8snGfUVxvbPC09riGrY4vjuzCzYfzgf3ZOcN896xiXIQOP2DwE8fjfOFpjB7J3jjfuMkdTq2fz69ix59/e8K80su0YgyfrqIvv+4JcPPZ/ci682m/yZcaj9Y0P/jxUWzi5Ns9q7hhWxM2pHFrABuG3OFvrxYvbsbtPxzF3D1I/uHq+2a5mOD5kyv6cAm/1skLOmslZoILvwQOPDmEoS8OGLjQ7ZwIzzw9fuj1zW729MoFfPHYn/iV7+IxL6/mcBOjeM6fP7/OQ8YJX3Tl1Ut9uvxcPtwT5UdefFlA6ZdObGDHxVrya10V8RJ113d7TC1GfMQkB2Iop/KBi1+mWEt9PNjRbU1hGDMvdljaxU2XDzpwxMuP6xr3uf64hke3uOwZ2OaIcfj8hAsLJ2vFn/jNw5k2YbBX6OeHnr5c40j4lTtxZVvO+I6vdv1lePiRD31cEv6UuJlTYLEh5uSIL+tnHC/5y382ccOdDc7Wio09whcb+nGk277kj2969mY+/IIGD3Yw6StsFePtN/bGiq0adlKO2iP581zgrMMvP85B9r+4+RC3OEj5hsG3eXHiyV6JC67s4uq6TleefKP9q1/96v7TMS3QrncGdgZ2BnYGdgZ2Bv4zAw4PfaPdA0eHKQcOonYgIXRJBxa6Din6isNP86fZmAsjvQ4vcBJjDjhqBx4HG4cphyYHYt8U8m11Dw10zHlgcTCCw9ahCQeHRIcqpRdSuHr48TBAjw1dB7UOlXSMdcDTJ/F18CJs2dFL5qGRPlHLT3HGcR7u4jJ9sWGbXzrGcGus+TibS8wZr+Bt3kNMdnTFrXTwLm8eZsJtb9AXh/Ew8mMuX/xMLtow8gFDO798WSdj4oQp1l4YtL7w2YqhXJdXtTFzHZThWWuHb77owJ7c9Al/bHvw8tDkRTs+7PuGFxwSF5hs9YtRnQ917ck5v+qZN216xaUPf/bTX0Su/IBDZ/KhR6rpTKxpw07ePDS57vTtGQ+s4rfXjcmLWt+aFWtrKVZ599DK3nw68Tav0MVBIWo6xtW4tu/NG29OP8meTb5w1DcnnxPbXGthvD2HUzZ0ws1v/tTmKuYJm2lnLAztcPiYhV/5w51+3GDJQQ/x7esw2VgHfXjicD9kQ4yX/7Bbf/r5tU76/HZ/WABXMPAur7VbPz7xazxcmHErjvLDDxu/IPXArJ8dXKKvFKs2DjAVsZvz7ck33njj5OLFi+sFDL32pXk+SblfnRv8YCeuuQ5MwpNDn09iMKZMaUwNQ8HDteMbcbfqG+2XDy/UnnrqqfWiHScvSuSlvM01wYHIIR37xP2VLm64VtObGO2TYqHrng2nvcZXeuVaDUdN1HyUW23z3SfSNQ5XMYazYhwGP7jgYV49Ma2NfayOH73KInP4gX/7DS4M93/rylZ/4rIrf/ZgeGwVPNKZ+9Q91NrkKzu6bMRVbrWNFSeOhE0+6KQHEyfzMPBWwqUnBn16eNCTH3PGKjCMyRl915GiDZPo48He/mm8XOKTvvOZe1b3F7Y+j/lJYOVfm+Cg6Jczn8XWRr/PJLj67RU29XG7++6711ri6m8rq60LHZ/nvmXuc8oYW3lRiyXO9jl836AVV3M4w1GXd3lmr6bn3GnefnLtw+SL+JyVG9jGrEtnFRjOuL6NTo+OMfpeKMLFix8xqcsjTv3iwNrg7R7LlrDzeY4Lbngak4fWlp5YFWvFhxhgiJUNvnBgEHrGYcBL4uVM4Zd7cGDgKV7x0Bcff+bpygnsOPDdC1365YpfhZ/2gTZ74+HKETGOJ1yY1qU1sK/MEbbyZw6ePmEHs2IcT/3OjmKTn/ibg8OWGKejlB/jdOimh4t5Y/Ki1o9jevJZu70nzjDN5aecmNM2Jw8TFwZf+adnPn08FXZ40dfn0z4i4aVbXMUO2xhb+6tc46MtJv6sdedPmGzo803oK/az+QQGbGP5pNOehcMHocOX9bMf1HyIp19e4SvW/jPURx99dNmyO4vsPx1zlmxt3Z2BnYGdgZ2BnYHbNAMOJz//+c/Xg/p80S6cDix0OiB1GHFoUYw7ZCgOU+rsYHQAUncYmfPGHHQ67DgYOeR4wHCgdtjxsOTbQfqKl+z9vUm482ALz8HVQco3asTUw0Mv2vE27hCMMww2DlHaJK71jWnTx5UuEb82zMRYpXzpd3ClByPf+uaM0eMnffnQVxwq9c2R9NTHEn/juMXDodFcODNfPXTRp+dhSZ3tXLf8TT/HfOrPONnJNR/GtRXY1syBmk/5MK9Yc4dbh179ci0f5TE+fBpjX75ht774luNpY8wcW7568aftwZBf+8WDOY7wkuKEwVf5S8e8mIzTUeAZV9iUR+36uJg3ly5bon8sxsw3x56wh5nQKTcT1zgbD7iuNw/4xe16KXZ6rk+69oy8iE8pN2J1XXhA6cG9uOJnnj27yS+eajjlhl9tRbsc0qudbnbGwy5mOsaKN1u1ciz5zM58MTSmtt5qGPk/xtLPJl7pyAeMxmFoxw9/a2NPasu/a6C4wm4N2fEFR47nfSr+bPi0Dmrj7GBMHWO40Cm2+mr6eM21tO7dU+S6NYOl6OPfn/nyr5Bgs2FLygldfMRDwmvcyzJ/PubChQtrD8Lwpzvsx3LIrtzX1oehPq1dfqdv7fy7j4pb/I3BTkeb6IuZ+HzzzVov2r344/d/IjCJPyvh772LH5Zv51qn+LRm+uJhZ51ctz477Sk5ak/FM87siLVR4PFDr9q9mV64rTvcKcUadvuAjvu/9abDDykGYzMOfYV9edC3Dq2Fcfbiip8xazb92mv59ZKNHzatK12Y2fADl54c6udLvNr5ZEPg86OwoyPGrpfyhFv84dJhG798wVcIDPNhlAM+wqdrnc3x77oQn0KPPV3+4ND3uWu/OD95Edpa8BkffOf5q/jwFLv5viQRfj7KDX/5Vzdf7OZxtIb+XAtO2dDhK8kGD3z9Ism3T8XJ3n+GKn4xqX0DvBfWfJRXtfnihCt3zgX0rDs7e5Z/nMwp/NCXYy+C6cLB/a677lr3pfzjHX+1uNiq8fc57BcF4uBfDq2F/5TUn4ziX46dkfnGA3e61g8GPv6sInx84LtnuD/Kk3jaEzhbFzY4hFX8fBmjIyZxOBfMa5edApMdXbzKk/sfbnDo4aTA45eo7Sv8YBB5bI3KhXk5KYfm+VM3JgfGGofn/sSO4ObaoGdMLPlUFy+uEzNf7IzLnZjh4WcMHr0KXYXAhjlrHMVOPxEjXHNyx16uWjv9uGTHN+zwJ29teuzERnAwjjc/ZOoZg8Wn3OFD2mfdR4yZo0PgKoTP+OWfPR7wyxm/xtoj+vxaFznGI+5sGrM39buv0WHLf+stb/i1Z8Kh036w7+QZDky29rjPBm3j7iP+X5THH398xcbPWWS/aD9LtrbuzsDOwM7AzsDOwG2aAQeen/3sZydf+9rX1mHCgcGYuoOaQ5ADmXGHlA4vDicdjjpMzTQ4xFTYEphhpAtfIR7Kzp8/v15AeMjoG3c9YMFz0MEBTtLB03gHo8uHb/r525sOSel30MKb6E/Bo/hPi8k8W3ZiOU2K2RwMvmE6tJnTv56Ud3r0Ewd4czDhxTV9esYaL47sq2HiQg+WA6Z44hq/eGd3oxpu/tOdHMoBXw7OxdJ+MKbo22/yrOAa34lLZ+bHHB9s8DBX/1gvrumwFa+HHA+tXiSHwTcc+6oHQtxPExj4i1HNrjxPm+m/PMz507AboweXzFpb7HMMH/r4aONSXstxOcjeNXf+yjVozgOua8gLPPEb88sH9nDN20MeeHqBwKfi4UgeCF1jib71zr593Xy8p01z1Tjjg8tx3PrG4RKxG0svDLWxudeM5R8/XPmRQxJG14/4xcmGTrHSy2YZXvlhPN6t2bSnBqvcxT1888ZaQxj5gWvPqovB2ti/5SL/+TbOlz7J7+ocfhiPTxjmauPhvsyuMTnhB09cFDiKNjHvodbfLP/Yxz628oZn/uXeHpkYbNwLjRUzbvbee++9t2z9guf1119f+9ZasJlCH0/2+NRuvxiHLybzhA6cYoFBxwsB+S42usZh0WVHNw7i9fLvVr1o9zf6f/zjH69v9YvVSzjXqRzyaR1wwKkXSnIsX3jLZfHqx1scyYx5rglb8bhnit8+my/e2POrhEFPm+CHG45wcZ5rWu6W8hl/tLbWB7+uCS9S3OfxoCNn/Gj7hY29Iz/WzBiO+Ce4wyQ40zFWXGHJTb6MlYf2AR/uj60PPLnnFyfj2gp7AoOOdVTLlxdAYcDGg552GPEzFj5uijHXGB9s4dr3ijx5odyfAcEhe222fMmBcQKjfWScxFsbF/OtiRjsGbnsWsUFd4Wwh8tf+bbvlF7I0RGHXwr7e+VwvXz2kpmt9XjwwQeXvesDjn/ZSNc6FAscRewKPTlR0yO49n+10HFe8ItCMdEVh+uLnlj0/UtML+j8h6W95LbX0gnHt887f+Dv7Msejuvr3XffvXquNcanc7NcENyN+VczcmONP/vZz6419Hfb5cW98fLhfCzmuQf0+VTaO+JmIx4v+dX67V85wY9eebPG7I3LBz7WQN8a8UNH0bY2uKoTc+XG3nJtsm2fZc8nDPXcI3D4Ts8ceznEX+6IeblXt1Z09YtrKV75kS/Y4dPDVcz2NmGfDhs++aYrhnjLW1zEbx3p0jGXDbzyGJZ52NcSGLDV9IoTlqJvHG/XhGvevYW+MXP2grXh0/p3f+Q7HHrmG2sd4DSOIz1x8wMz/3T4g22N0mkd2MmbPafmt3sMWzHSxdX5VQ7pyJ392nVGFza/5Z8d+9ZAv7n8tsfp4O069v+iPPbYYyv14j6L7BftZ8nW1t0Z2BnYGdgZ2Bm4TTPgIOFF+9e//vV1GHFgUDq8CMvBw6GmQ4f5DibGiDGHE+JwpU/MG59zsJtXd1ij7wHDt368dPEnBTxAODj5BjsOsNU4sXXoUhzSFOIw5mHr8uFBwjd3HNDxiDMdPmGxjUuxxMd4c+nT4Zsd+2sJPTbqcDqU/z/27m3Vs6Pa4/h6DyEmIiLGQ4iiNx4QBTGeYlBvvIhNOomHCBqSK698LTHg4QGUXBjTIqxH2fNTWd/ew7n/3em16ZuWGlCrZo3Dbxyq5vzXrPXv1WHqw6tmxuJUI7w2fMWcLSzXdIqteKo3/qRsydWwetrYNid0XGtIrghfbA8j/qbv8oeVTG7iLEd1zLc4zB1ZteLTplyssJFY4IlNHy/fenbF7BoePt7MKVx8zYuOlxlrLjybcjHbbNu0u6Z7ifDlM/Mq1vJmVz308fUfRvBhs6vhybF4XWvyVMtigU9Hjnr29PSN2cjd4YRv3aq9vB20OGh3nQ4b2F5m3Hu91OCJiT8vn60lfLziZUOeTrG0HtSCrnEY5/pUg7leylvuycVaXcKdWPTYdV8kg2HOrU1ED04kvnIXY/nh0eMXRvzskvFZbLBhuAdQvthH4bAnF29rm061xScvvl4UjdNzzXf+YdfIxKbHo+PaHGqo+MjpWivNMXl6ZHS1/DUm8+LqoP0zn/nM8mEdqbccvfy7ZpcNvjVcfHzhWUf+Q1Q1dCDwt7/9bT37xcGWjobE3LzgyU2vlq4RG/c+P6h5oFcsZHR6jpCJFb81WU2z6RDsl7/85brH8rec3OIHX8hB++9///t10G7dOWjvm9l08MQurvNBuxjVUgzlYozwNHGTwYLTN/vYyhumAw461lmHpnTZNnfsw9Ij9ubLPLN1XT3YV7t4y+jmx+TB5p8+fk2MDl0808iRg0Vrjm9kfbVu7RWsHWsJFlzxw5mY5tw4veZcXsVcbdwXiD69Pk/c53ybn/yzYY9HFpZaFAv7Pp9gqB19tUPV3DVcfmfdwzdv85AVn3/zr7kWr4N2zTUsenOexIUfsROjeuNrbNUQiYXcvLT27NfkAReefOSmGcNiD0ctYHaoJg/87Kw/B+hyp+PPzeTv+eefX7Z8wfCNdp9r5hHBgEVfbHp6zT87RN9Bu/jonQ/axe9zo/UBw7/E9C9YHLTz6TlnrcGUExy/wHZg37+iM88O2ukiOfm/KNzzbNVL/vbJchW/+uLxZX61r3zlK8un/8dBbP7Mlm/E80vOBjZ7WBps+dFRf3sA94dY6Lpf5ainA6Pa6bO1Hjr45Ltc0s/GPeleMSZTs2pjzVmDbPkqT7qa8Vwj9NMzh80fe/cVGXzEFzkMfHnD0ujIFR4ypp8vvTEdcy1n+SJ813oN/vQ/8+QXiVUdik2vvupG3xzr6fOF6GS/GDc/8MRNX0/PtVyLv7rAV2vrhg9j+YjZeuyz3YG1OW8e5AUTqYExbHYav+pZ/fDI4Vl38sVrrVnT5dUzetaYX3J+1Fb8bFHrTPzWG2y182yxdlyrAZtsxZ5/OGSwI7LWuprIQ42ee+659YvyH/3oR0sV7m1oH7Tfplpbd1dgV2BXYFdgV+AJrYCNhD8dc/fu3bVxl0abIxu1NmdtdsjwazYldNrAZD83HnQ0vsLW49lw+QaPFwpjmyQH7F5KXJPbFNmUsedXj1y3yeIPJpnNmM2VlygvBzaQyWdc5QILP1ybL60cyeVvnF7XZOJG7JO7jo+ntamja0yuwRZLtuTGKJ0w4rPBQ+FOjHJYCjc/6NMRWxtNPBtI+WTvurrCyXf+wpnYrvNZPGJ3DY9P1720wMhPfsXRZpYuYtcaiMfWtRz4qNZqouGhZK7pa8VBBsfGGt81sjm3kXYYlo0XYPpePLwIpAtrEr4mn+rpuvzoupYjgg8XT72zWcKH/KDPLntx1PC7Jkf0w5avFxh1Sg+v2rl2333kIx+5/7dtvaA4GOhwgA9zAtdLK7n4vQC51vOnFnIlKwY+2SN8cmsiYsOeLMKDV91mjV3L01pAxnzkX17keGSzTX0x0W09kBWreefbGMEO31hu5PH4KFa+8VH2XRsXGx7/aqGm+NUpXDpRsbGhF7b4m0+85qg5yR4mWTj5aq7wxYDSkxe5lpxdcnMg/vINK5/wqjE7Dc/95Rc7voGZP76QuGGmy68GRx/BUXMHUPQ98/2SVa+ePhMcEOvFBb8azByqHR58OcGe+vmkQ59O9xQ9fPFp2aoRPpoH7Y/jT8f4V1u/+93v7h+cqYG85YnmnIhVXnLHF18xdshjPuiwV//m98yTH91+MWnsXnHQqebskJq41sNQs2rhGp8fzw4xIXpsxKkZi5MP/Gpc/Ho6cFoz9OjLy/OKDR3Pd2MyvlunrtWtA1L8/BancZj05avHh6/xq+HxrbnOVs3kFI51q7Hhh1/105qn5PKkY70h9SKjxz7Knz4SJ9LTF1frgU+xq4v4+MhWTTRyxA+/cLTpl5yeONOHU8xy5lvMeBo9eHCyNW4ui5e8tcmPWOf9KR949HxO86NO/WtI+vaVsD0LyB0ceibwITZErh7w+CNjKydrFIlfTfjCFwd78dOv0cvGPtehv89Ra4yP1ip9/hxwO2R3cF/9+XBQSB+vw2581C+S7JHpwJK3XGGSf+Mb31gYvtEuP7+Q9K16Mfu8Lze1UEP5Ir9MUCM4YtbmumyO1FI84lOL1hUMPoxRdSn2xq2R6kw+a2PsXsPLlo2m5ho/2tkPzO45+cFgN9eo6+zkErZeTWd+dPnRkyNydaGrfoiMXvEZ0+l+zVYNyom+WlcXOPTh8meO9fTNI2xjNGPEN2YHM1n6xS6G/POjTurFrjqdfTYvdNjCgIvCLZ/yyIeeDj/yZDfr0BzjW8NqSb8c+NYQHrk4ED124s9WvVu38iPnl3/2UXGKpXjmdfnQh+1vtL/yyitX3/ve9xYE+9vQPmi/TbW27q7ArsCuwK7ArsATWgGbif4zVBt4hGfzYnPWBgKvjQyZTR65jQ4dPBsXG5lLxB7ZsIRt8+2b6p/73OfWIQt7mzrNZsmYrs2XzT6fyEbL5skLDFy6Nk/F6AXIAbsXfpur4tMXxwK68INPeSL+ssdnK2f8iUMm73iuq8Os4XQnFnbhThnbah1mcr7VBE37cNoQhpGdnk/2+vkiRNackEWu+dfLI7/VYOq5thbaGGcrrjPBCWvK4NbiqwNM8TYvsOGadzzNON/G8sebNnh0UNfyK0d8cuuvl08yvm3MrQVriv8Po3Tkw86ahMWvtYvvWuueaG6zPfvAn3G7LlfYqD7bcw3k4mAsPvvuHzJ8ufuzTV7UjcXucMA95V4UL99eWh1Y4DVv7k1881ssZMbs+NDkUj3UvDqolfsaDjtEzpYvPVu16oVfDmGyJ2PLzqFascFq7Z1rzH81SQYXBrxihS82PdzygB0Vn1ij8KtJ/PO4+OTD3vgSFU91o+faoYr1KwZjfPXUlxdcsc/4Lvk487LDh62dSa3C5VOd9Pypby+5bMVD171lvfnljrH1KI/w6cnXfFSv4m8Mmz7/s4nPuvGfpfqmt3WsHvwUJ9vqY775V394+RRDPvUaau35RbE8wmQLa+ZAn5012Z+O+dSnPnV/XshvQ+Uut7feemv92Rz2fsnsnlSHalxNilvO8jSWO1JzscldXn3Owqo+8iOrLp4lDgY1mJ4VHQrm230KCwa75opPOsb4PTfwjcmKm476ihmO2lrnDj3w1Rnfs9UhKyy5Nc+u1Ytdzz/4KP/k9MQrDzGzx9fEpCG+8dQmnCU4frDJN1m24rT++aOjZtZ890i++BW/OOTvWjzya03i00fw47vG51es7YvYwsnHMjx+FDt78Zn/WU926eQLhpiRPOkUC57r8jeGrV7yNV/uR1+CoKeJ05z43OHfHLHnozlgYw/IvhrClVNr3SG1b986pA4blgNufXMByzpRQ77Fxr/1z6/144CZTDxIbOoiHjh8m0e9/MVg/2x/ICb3kHhgwIIr7tYNTHOFJzZ6bMQhfo0fdfIfPPfnoOiKs2+9s+eHHYz2yeokZj7IHQiKzf/jgAePLj++2MKWnD/1ES8934Cny6+xObEWyfH4j19t1IV/MamPPDSUjZpp5qDnA7kaIzUUR/dm9q2txkv5+CF+2Hq2yJgezNa0eZKDWoud/hmLrdjkGLnGkw9ccaEZDzkiV5NwG5evnmzaLsPjR+uq+xsOok82YxaTOMpP3q1p+cE3Rnwaw4DJlqyY8dVCf47b/NDLP59hqCUstp7NdIzxUbh8wyDDmzWhJ172xUTHGtKLh5wPOLDxxKCVG561GZ6ebs8QcrHz0/6CLb544NOvTuVJJhb3Lh319v8m/PjHP16/wOIHxm1oH7Tfplpbd1dgV2BXYFdgV+AJrYCNyjvvvHP1+uuvrxd0G4Y2LzZFcwOBb+OT3AbMtc1HfOMHEaw2SnTo+obP5z//+fVP6G1svNjMF34bIS9FDg/aYOm9DDkwsQmy8WErBmObad/W8YJDlx+NbzHQlZt2jpdMPsimL59w2WZHz1h8ZOW/DI8fcPFQebMRA4z8FBu9bGZM9IxhIPYav+Lkm04yevTDX4LjR/blY+NKL2x4cI0nlmu2YqaDXMNB6dMRD7/V41yTZXD8gNMLQDx9tRVHecAXa3nia/zY/JYn3/nH64UkfPGKx8sn+3LNrjrwA9fBGb9sNHri62WG/ZnKF74cqxc9L7HskfXJHiYfrsWnsRELLNewJpGJka1rVHz516P8Jcfjz/2lz48XCPddL0rkvgXoP6lEXl7cf+4n+edXHl6G8fgSP129cXrVWz5iET+q9uarmOnA9GypRnCsF9jksPWtIbYw6OPzR8ZOXvganWJbARw/6GpigsPGmO6sMR6/XtqKwRgu2czVmB88GNVi5pn/ejYabE0sxpcoXNjZiEMOnoXWPl/G+OqpHuHhiUm7RNVgyvDYiU0vPu1cI3kj/s2h1lyIRyOLYLjfrDeH7eprzhwA0RUzf3q+6CM8JC55VNvyFKd1iXx++DMJDpk6aIdXPWa+fIqnex9uufPJV71YyMXVQVy4cGCgal3s8vOncvyN9sdx0O4b7W+//fbKkQ/3qTlXy/yrh9o05+J2vxs3Pw7GxNb6MXcO49x31ZW+fKuLvB1kOkSVM79+IZdvtXMNiy07MeJrsDTUL0Diq7O4rSk24jU3agyn5zR72PjiNd/8sS0/PTInzZWxvGCVDz22cta3zuiKSxzy9Mx0Ta91lA4MjS1ZduLX+CJXN7/MlJ9Y6dM15tv6VRM11fKtP8emBvhafvHaG/EHQ8/HjFnc7Oh69peb2vBPV8wRDDLEV2vDmC45voZgW1u+VKF29m7+1QU9+uIk95lr/ZkjMutGY29erSuxwcCjpw4+h8Sgnv25QTWEYS07aGYjHrnzrxYIBkz+9XB81vElZ/VAnkfWmzmBQwYbsbEOHLT3bXMy+cgNTx5ikJ+++nev0YPJj+egXORwffz5w3fffXfVS8zil4/nJV3x661p9vYZ7MQKgz6fL7zwwsrbM1Bd4IqZjj14tp4d6glDXg7a/csga0PM8nd/Wa/ysJ7NBV05ImN8+c+1xodG3r2pN4caYofEwA8fbKqX2LXGdPmASVcde464FremTnTgitO42k8seEg+/ETmvHsULlt4bFvncmCj9mKKuqYLt3VI1xhuOnqNTnEZu+bPGuWfnK3aqJkczU1Y8qNTrfC1cGAaF0/1y5fY1RO/tYAHt1oWAzkSW37NAVuxwhRH/vHIxIJXPdVUPPjywkfs5WdMlg4+giEWreexOMjNdfNiLCdY5sg1PLGh4mpMjxyffvcuvj9v6s/GfP3rX1+29G5D+6D9NtXaursCuwK7ArsCuwJPaAVsPnyj/dVXX10vBNLAs9mwcTkTmU0SmQ0WvTZU2RqfqY2ITYuXF5scmyEvX74d4JtdZPDpTj82kF4y2mDx28sAnDbMfMKwsfIy5eXMJgyWJuY2Tq4v5ScmGPT4y2c8+Wr8ItfFzQfKXz1efvVsbCSn/GxHD6lluPHCIINTLOVHn+zSPPDNnl0UXuP66Q+2WsCG0aY5nXyqhZb/5DDTwavRw0fh6uORmxNzrEds8eWt56+NeeP5IpQNPS8lc+7pa/njwwtDL+fx2cjZxr2N/Qrm+EEnv1O/PMi8eLDDg6FH9GFb091P4eFXp6V8oy/X4saf18bNAVtY9NUDlR8eOVITLxJ02Lo/vbz71hxyr7mf5i+75OBFWHNdfTqIKG6xicG4nPnAK8900oOhFmzSrW7hVhvxhaW+1igqJgcoiD057O5pfHhIPeBEs4Z0+AtDPxuZVhz0yY3lVkyN+Ui36/yWX+Nzzw+aNTMOWx7mWPzuD/rmTwxiQsUe1mI+wg92rX3++BIHgqWJnwyZQ37Z0BOP2Hpe0RGntedwyeERG+vRwVF6xTl9icVYm9fN7ZwDc+6A3Te/fdu6zw5r17UYECz3AP98yyNZ+ZUjn7PmHd6Wv9oUP10Ei9wL+8c//vGrN954Y/0dZbz/D1VnB2H+3rv/CJYPh23Wf7j8q4sm/vJyYGBcfHLXuhfMW3NID8FUJxgaDLl30O6gw3OigzO64fBjDCO/4uUPFXPYePQ0PPUUH4JjbK5QOvyabz6j/On5g1Ec5WPMhxjlLBYY5MVTHwZ8z3WUjzW4GceP19pnL17PJnXjj18Y2Rhr3T/0xahW9BzessNDrTdjcbN1rT7xzE385ngZHz/khidGDeVfvcyzcXz1QeKqTtUATysf2OKQr1jUzH4uPTwynzv8GLPlT1MvNu5XzwrjfJlvsdDzuW0tur/Iw7W/jCcWf7/dc8C1+hZfawmehp8v+MZqAVsvXjUjU1tz0r0nDwfN1qi45UpPXw7iM/9yhyOXia2ufonmsFv+5puePbPP5p6R4san796Tk1rQE7/rb33rW0vuCyhiUANz0F5HbL7N7hkiXmP+PFscvlsT1avPE9j48ig/1/jyV3M2ZBq+Fg4fYuZHk3trTw7NgXU2a8+Orj4MftmalwiPHV0NtVbEp4lHbMnpsBOXFpVDcvUOH4+9+RM32aSJnS9xsSfD46tYja0bsZFnTx8flTuevPksNzxrjA4ee9j5DLca80eGr7mOyPKFz4+WTnI+xEbmWi3CFI/84JDRKWZ+JpZ1gMTBDpGb12yM4cCjz5dr1D3Ex5ngwW2dlIfY5FFserrWR1Qu9Nj7F2kvv/zy1be//e2lwuY2tA/ab1OtrbsrsCuwK7ArsCvwhFbABsLfaPefoXpRsGHAexi10bHpsEmZNjYotTOGDYqXA98G8HJhY+YbNb0owLWJ71t0bcz4sWFsMzQ3bWyyT5/cBqzNF51kYir+c3z4NnQ2Y3zZiLJznY2xZpMmz3Inj/CNs9G3gZ0bsmmTbX164cSfPR2+2jBOWXbhkOEZa/mWm3wah9EcZk9HPSL8Nqh4xVHu6U1c12LV1APpNXbwm9t4+ObEpreXDHbFLQ66ZPr8GbMt1zbp8phEPx361pIXaOvUGJGzs4l3iMP3JBh0ZxMLOxSfnRxnnnDljGfNus4Gbnku5vEDr7UHlx8N8acZzzqrn7yy7Rq2plb06+Xv/uxAQM4OELyAi1PM7lG8+QuwFcTxQ1zVrFhnfOLQJsVjJ6ZywZdPmNXybM+mGrI1V8gvDNh7fohZvD1L8k//jDdl5VxMfKlBzZxpxcaWbkTGZtLMy3UxwBDvtGeXDp/FEUZzTdbcZ8OvdTVzKP4Z09nfjNU1XRhzffI14+JfLIhucS7G8cM9aO1Zj5F88R04+Szgh44DoPLLjzG5GOSUHFZx9KLNBq5eXD5XWq+uHVz5Vq2Dp3IXuzXfswImyqe+nPTGSD6eF+UFp5jJ4TSvYpGbb7T/6le/eiz/Gao/7fDTn/50/SeL7mHrm//iqF7mRMzFQ7ccxVl+rsVJ1jMBXjnoydQApnrJnz++3WN8VtfwJj47ugieVnzs4Gv5otfYNTIO0zX/xvGMxS92BLfGN390+EAwEJ1wjMnLPx1jenCKQ87sjDV2YVXPZPhi87mWXb7FBL/W87ta0HcA67mMRx8OPWMxdX/0rDe25tnCpS8WcaCuxanh44nR3LovYCAYsLLFoyt3ttU/OZkW4Vcn+shnjlirKx4b+SD6mhzpsOvwOQxy1LzDcyD9xS9+cT1b+IXn8NhBM32fCerIFztrWW3YwlVLvecEf74xD0McPiPpwYUBq0NoOHLSqxtszya/sI5P5gsmYlRn36Lnx6E9GfKZi29cfH1rv89n8fFPVwzyEptfMMjF8+ZrX/vaill84nUgT1d+8nHPXl9/8O15MjqaeMVDR91R67X5SabHE6t8kLF43GsIhqYmcMROPjHpsdOSs/FZjkcXwZB396A5URP5uha/2LU+F+CJ07zRcY2noeKbPD4RHnljvHLmS45i0tDUW4zjR3Vl1z1L1hpUC/Z+SVEO1Q5ecRXv9FENxWj+2TXf5oQ/fTg9J2DhadYYeySOfIu3RiYPxKYaiN24HPTWgTz4gIVnbJ7MAX9k8jdPdGDDYVu99ezKgY745afJPd/FpedHm+uRT03cEfsw+CJXKzri40uMngHk/uN2v9x+6aWXFkT1CO/D+n3Q/mEV2vJdgV2BXYFdgV2B/4IK2Jz84Q9/+I+D9jZUbURsItpExTO2MSFrk5GOjUh6ZHzYVPnW4tNPP72+uWjDhGxo+vY5exstuK5RPJu+yWuzRMdGij8bIZsiesXFt4bir8HpB502WOmHxS5bPK386LpuDDb7XMBt0xhPH+7kxS/+agkfBj7/6cEgmz6LB49+scNyzT594+YRb9qmwxebNsHF1MaZnK74bE7J+Q2vPrs5d3jG/IqDHzybanzXXpzwe6EqFmN+6Gj81Ni6juCJj202dFwXqzXpUEGzXsVUvfTWYC8u1Qmv9YrHp1hgo7DnCw6sWnnD8TJYjeHArRnDol+ufIi5tZUsubFGT/4wGtNB6pEdPVhe8tRczOy8XPhGsPtUzdl4MfdiTyaXGRs8Y3zXWjTzxqOnFXN6sy/uajhlXcNA8JsPtfHMkZc4/SLRy5xaF1+xs5WXhofgsCtnvOTZ5Y+uOLUzpVuM5OXUPLCHHZ/O1M+GvnrmxzVe9WOTHb/Fq5/89PRTj59LJL5iJJ9+jcms3eYaJhKX+uNbS+bEPE7/6Vl78nLo7vCJTi/k5zjNCR/wydiJwWG6MSx+yFHxVQdj32r1LU7f2GTTetd3T3VfujfZ5AumnPjlwz0jN9dsk6XXWI3k9MlPfnIdtD+O/wz13//+9/pn7P/85z9Xjfmo1movZjy5VLfiFq/YUOuArlzJ4MgHjrp4LswDEoeAMOUOs/qUL0wNH+HDROz4MSd8dmCSLrzaMrjwgxzpxclX88SXuOWRDj28eWhSfmRiYycmc65HbNIzNodw1ZQ+v67Lp7zZd60vNz08/lzzHY4etoafzFgc9D2L5UDXN6fFQ0YXXyyuzRe++npm4xeP2GBpcBCexlZ85trcwigXGJ6LxtZEtZgY6sBPJHZ4cM07e37T6bnAT5TMuJjFU130E8N8yR2+WGD65Z3/A8hnOmLjgNlnF1u67Lq/s3M/ixepHX09vpyR/KsdXFScevqoNUUHPht1MCaDR9+zq2+kO4wnbw7Mo2u2cswvPGNzq6Zw4PnXQV/+8pdX3nCee+65lavPQDqefX7Z4GDffSc/suvjsN01HcSPhsxp9SmXYhRb609u6tm/GmADr5jphQ+XvrF68YGmX3J18lnOn/Wn9vRda3Tkbc6tEfHQUVP1Cbd1KSZY7PKFJ7bWYDHDI2vNi8+YHZ309Hxq4fMBj275keOb09aZetHp3nJPy4Wu+dHnTy9uPqLwxYCvXnK1vunyp5EZz1jZ4mt0yFE1U8v47OQhHtd0q5nemLyYPRv861D65Q/LXGnNkzmy7uRfDtUAZv7yWRxhygHRgw8Xz33vlw54bPBca1ExlC9/YagJgquW8sLzn6HevXt3/2eoFXH3uwK7ArsCuwK7ArsC/7cCNhUO2u/cubM2+W262ozMTQ5rmxJk09Lmp01OG5U2benpbXaeeeaZ9TdpbX7a3Ngo+Sf9DjzmRsimTQx4Nl82OfyIB89GUsOzYcU/fyOCX/x6urXFvPlBR5sbTWO65SlXY73WBgyvDWa+ztht2uTMjg1d9apm0yZfeLDZ0C9fMSG2dCfRKw998ethlZMesS8Gttnnkw5deuYKkWl4xYJv4yxGeYYld2RcLuTp4NEhFwdfZL1YktmsexExv/zSM+5lvXj0xR8u3+WeHzzX4qVfLXop8M0pL1dkcrb2YLu20UbGiMz6bB7yLwe4jcs9X/Xk4oPhZaMXDdiuG/NXrcXNHqaYq7kxmdwmzVz5KyY6xUiHvbi9/Kl/eOrspdyLuHjk6qVILeRfXGI815QP/iK2s1YznqmXvr54YVf3Wb9ph59Mbfz9WXZycCg4nxHFIn421pU5xocpt/nLhXTSF1u8csJD7Gut68YfaPzvfWScb9j0zsRP82iO1AEvTH21gSEefbHS1SYZp8s/m/SKYerQjcjF0zpXNxhRvqwh65OugwPNfMzY2FpX2Zszf7sahs8Ka7H6lFf3xczbfPmFEGw++OV/kjiqk8Mp6/revXtr3t3zHaSxg82PdW79iFNM+Ho44bErT77x6aH0XMOzLh2w+0b74zho93eXX3zxxat//OMf67klNrlo5geJvWemGopJfORyNa7G6khHDnKho8HzOa7hw/TZ7eDSmF9Y2cDEa87EQWY+ycSD+HNfwlEfJLbqtxjHD1iRa/Lqr9fKgZyP+HMsF89aDfX8pF9s4jDn8Pgha+2yqQb0yKw5eeRfbTTj1vqsg3jUAmZx6ukg12rJFoZWbeVkTfKN51DV3ODD7XMEhgNbOnSt9+JKBy5iK0/+xOC6uVIvY9hkrSO64nePdq/Rg8kfX5EYxCgmsfcLMXI25cYXnfLmj19jvfkRKx33nGtED67PJWtJDOJ30O7bp3RhiME8afyyM8/s9Mj9aX75giEP+nSN+cSbc8BGLeTBD32fHfRgiZdvteIHFtKn75DdHNEVt95ho/8rpecSPP8Sh14YrsVvXtTPnPumvD8XE44/dSEezzt19Fl4fRyq+1Mx/KqZ1v/v0Lowr3JWK2tG3/5dHTQ6cm/uxGV+/b8YiA47fl2rkbEmR43MmlE312qihan3mcBeHOKr8QeLjlg1mPDkrCdH8NWQj3hLcPxgA0MuiH866kkWFpk4yGE1D3ThGtNvTevLTyziZg+3ewcfmUPPQYfT1gss8yJu/uDAZq/nE79alBdZPNfRzDk8MjriTFdfXcXBH8ITi3iTq5k1oLEjlwO5HD2f+GKjXnTg8ceWrGeCmI3p+MWKdS9mddFgkMPWXCP69PguHjL3j8ZfNvTSd229hLnAbvDw2dFRV9juXbY+t70z+78PEPltaH+j/TbV2rq7ArsCuwK7ArsCT2gFbCL6Rnv/ZNRGwgajTUYbGro2R8jGRLMxapNhE5UOjDYzei8bzxwH7Tb8Xkrw2Nq4+Ke8HbTj2yjZ5Ohh21zZ5PBHjmczTMe1jSCyIRUDooeKzbgNE5xJ6eKlRxexn3m2WVMbZNwGNZslOH40pisXDX4xsVWDM/FXrtWbjo0syp4tjMZLePzgg089HDrh5R8PJS9WPNf04sGfseJr+U1PfmKcG1Q4E7NayMt1cdIRC4LhJZcObPNrnZhfPqwHY40NHX5qMNlWO7HTic9H1/rIunTI7hu1c4PPLz319pLnGh7fvTzwoR6aOPLdNX1UP6/ZWLfzRQK2NQ8fNrxybb3Ddh/0kkvHNX6x8GOsbpd8J5eTRk/uamEMU519862DA9gdTKhJvuCzMb5E5K1ZcmOx6bVoXsMSg7joakgt0LTNbzrq5J/Zq4na+obdfEaoK5x6sZkHY6T+cmZLD37x5wtfqw7L8PhBXm4w6TROR+zxyHvGJT/3dN0b1aIY0iPX8MWM+JDPWTebYq8GxlPXmEx+4WXbeqEvRy3iF9+zQMzF3lqll5/WOR/8OSRyqALDi7q1GH5xzHqLA1mnDpLoqhFfZHCQGKwlzTU9n3m+Ce4+EycbMVfHnjUOAqZPccKFD8/zik+8cpx+4SE+5eM/QfVPzx/HQbtvtP/kJz9ZB+188ysXTXx8m0N1VqNqiEdevvh0xFh+1YsObJ/jnpHNiYN2NeSz+S5/2Kj1U208X8TkWQqfTwczninqDafaiUND8dbgZqzmMMoTllb8+Brbrvnmp/taneRHR370YIhP7EhMfNFD9NipVfV1rYYafBjsxcK+XPhxDcszqrjwmygrLQcAAEAASURBVBuY+BMLj0/5Fpuxf/0BB58ffvlH1dq4uefbtZYebK04xSJfuOJMRl/d+EDm2j2q55+emKsFHHmIs0NyB8N+IUZPLHQ0fjT6+LN2dLU+l/gxB91z5eT57l5lC8uBpXtMfOzlIwcNhua6zzP5y4O+2tGHhS9G+oiNPNSCPt2eAXTxHTbzKQZ25GK21tVPzHq1oo8Pl09/X50/B7Geh+KRK/3r44Dc5xJsOuUMjw8Hi2y++c1vrkNOvo0dojukZ+Pz3HPDL+n8Al3NiqG1RU8sfJsT+cqtg3Z5Vyu1bi7k4JngoF3t0oMnlpqxBltPl21zb8w3ovP000+vvnUrf40+4kccenHCUhs48BGehkcHkbkWlxysMTy4/FrfxmreuqcLoxjI8VDxwFI/GHjmOd/0zRVs90YxNgfdU+zMTeslP3zBRWxhn0lsZHTlV1yu4aDZq5txPui7Vo9qWg76YpanHNSeL7GqFbk8HJiXP7tqDZMtPTmyIUtu78YekTfv9OFN3WKnZ82wo2etuufEZawmqBzVsPrPGtKXDzldvuQlBjL/Is3faN8H7auc+8euwK7ArsCuwK7ArsClCthE+Bvt/hncPGhvI6K/RDY6Ni42J66RTYzNiY2OjY8NTBt1vW/X2HSFyd7m3UbfS0YbLLY2OBoevTa48W3QXJPpxdALgljwbIgQDOOu878YN3I6GlnNOJs2dvxpsMNxnS/62cdLLgYyuOHlczk6/QgnHTnnkyoMsYSFly/Xxd81vWJyHYXf+NyTa3xF4jBP8FzrxWf+9flJVtyN1aI5CoMP1zCsHdd4/Jh/Db8Nby8tdOBO7NZQGPp8ppt+fq3R/la0jTq5NdXaVDNrvLyN1QTPNRwUPp/5rW6XenZhz2ubei9e7rFqpTZiEwM/5VSv9qhY8q+nf4nCTrcDBhj8iMM34NQ76uWve6H4zU31OPszpqe5rsXjD088eoTnhdTc0DPWuk4nvr581KpvjKlhhymu6WUbll7sGqJXnmcdeWv45zUAOx9q6premaq3HqUndxjVgMw4ffnFWxfHjzDI6Fq37LVix49cF5N+XqeHV54zNhjp5LcaGBe3a+txrtWeD+LU6MKiQ8ang9z+dEz64dNlA9u1lk/r1MGvewY222Ridp3f/MF1ABW+g5lsxAJLs66N+YuMxeKZ5DOPHZ77h+/qULzs+LGe/cL5cX2j3YEWrH/961+rjmLNp5jEIm+x9zxxLzvYEC8ZPbGZZ6088cmrl9jNjcML+j674cCFpRYOZtiVv7yrlfWgPmTWKGz3m2sNJt1iIXON6PZ8M+ZDXFr+YFgH3cNsstPzKzf5a3xVHzKHlOYy/3pYasqOjtYeB49vPT14muvG2YmZLX244lEvvIhtPvT5NyeIrVY8YveMMy+wyOiSszWGA1e+xcK356H1Hi+//LimA9+zVw+DPmwy2Ppzw0f65ttnVofk/PqFmIPo8qgezSdM1+zFZ315FuOFbQ7IyxGGGNl2T1prvhEufr7UoM8BOYoLDh/s6Vg/9qWwxUwGDwZsPqoxPDh0WxPioWP+8c1PNYLlnmmNsue39ULfwbyDdgRbzvAQvz3j+NHY0xMrW81e+/nnn1/PUnZw1dwBO129/9uhb7QXj/zJxauXc+tK/cWLxy/M6mIsN41O+3qxpQePXC56hNc869NhJ1dj1+J55viijt4a5EOszSk9Mr40pKZs6/ONV1uK4wcMOYml+lr/8Hs+ZVse5dIcVQt1sr4QG3I5uWbDh8anMTsyax0vvvjZ5g+eePJTXnN9pq+P6BV79eIfFV85k+MZe7aoKSz1Fk/x0jvn0Pyzd//ZU7vG1yJ24crZGuQPptYvdOn33IGDyoseG7VC7m33m2/RI7F3D7cO8NmzUzM64rK+4SF9mPHEKA7koN3/a/bd7353jdXjNrS/0X6bam3dXYFdgV2BXYFdgSe0AjYRf/zjH69ee+21/zholw6Z1ubH5qRNlmubHr2GbExsrDQbKBtUmxg9mU2NzVWbTfY2rzYweIiOF5Y2jTYwZDZ4c3Mnrnzjw6LnesbsGvFfnOWDP3GS4yMyeOeWHpyw8sMuvp4tIk8Xrw1jvKV08wMvyjd7NZl+yh8WvemDPXm8xvoZU3jxyNH0m2xi0emFJL4am3d9uPrGcKod/rSTs0bXGqkG+bYRNr986o3bOMNMT1wwtDNmuHTzDUMztm69oGpekNi3ueajdRh2vtgivVae7OMthZsfM1asxlOXLy8e7g/xweqeEltrIVs45eu6OlcL2JPoIvzs9MbuWfhi0IvDQTuCR6f646mrOIq5l3Z67tvW+jlWcjytOcSDpyX3wuVgr+eEerCBy65cw2enVmLXxEyHvdjEiapBMeDRm/i9WHaP0XFNR8s/TNdhmTfXfKQbBr4YtWqe7+zxw6YXZZM+ncmLL258jQ5yjfgIuzHevBarnIpZDq4bT/1wydS9uupnfq7NhbltXep9PjjgdEAkLi/G1mC+VmDHDz75CsM1HeRazR0ezdyX8OYHu2IQpxfyDkLwrY3+LIP1LRZrpjXMR3m7rq5wrbPisVY9p4wj+Bobz5lPfOITj+2g3b8Ie/PNN9e3U/lQB76rk/qqqV78auZQwbeKO+xkZ75b0/RmruHJy/NRjnKho0YOOOCqA51pD7ta6ItDvY216QsumTy6/2Cwsy4QX/TCDoONeFoXdKtDzxS65rc5bs3iy8v+w3X3rbrArTZk8/kCVyzwyoNfvBobpNfEJ3Y4dM5U/cjo8o0m3zXfza+6w0RsxKMW9PjMlk/r3pw1b+Rss29cnvywrw7mmW7xkRnTU7/2cOzdZ+pq7uiYW58nfsFlHV7KH47GHlkHHfTSF1/5FqteLTxLHLTxx95zRS92a55feSOfLQ4Ci029/OLIYbhY3TdILNYRkqsYtK7Lnw47TXzs3e/45sMBtF/ci4VNedKnkw07cvF0sJxP9vIRs3lAjc2rpub+M1S+rR31c0DvgB2O/PwrUv+p7vxFWXVVx657tpk38bgfxMZn68B6w4edPz7L0XpAMFG5kMsdTusYr2bO4ahT3/JXu9a2a3KkfsXkmi89efXOv3hnDPyh5i37MIwjecJkT86GfWNzaCyW1g8ZntrkW2+MLz84yLhmnD5eOPjl4potX3DowNWnT04fX0NyUne4k083WzrmJdyecfjFXBxsECzzJm62fVawJZu5wSkv9sYIpnyKz7pji59NOHjVjk9/eu6Z45cyeNYdffbmDAY/YmFnrjwfyD0T8FA1gecan477l71/kfbqq69e/eAHP7ivvy4e8cc+aH/EQm21XYFdgV2BXYFdgSe5AjYQ77zzztXrr79+/6C9zYa8bFZsqGw2bDpsVtrg2HDQ1SMb/A7FbDI1Gxk9HbY2K23I8SZWGF4SvCDYZGVnk98mjX2bNjZ0whLvjJ/cWMvX3My1aZNbjQ1q8xb2B9wP8GCRp5Msu2TZ8s+Xvnhd09NHc8wH3TDVceqSifnsA0a5Th+u04cpnnTzs5wdP7I3ZqfRtxYam9vG1YOONmnmxD/dKH06sDS8cqJr3s05WzI8cq18HobLpvXomq4c+PICZk3CtH59W7NvbIqJ716q6NqMFz8sLwPVwRhuMadXrvUwEd2ILw0GOzHyZ53Lk4wfLw69+ODRrcFyPXGLKT/11dkYDpt0e2GTt7q59xxOwKZDX3zImE68Xlh6kfGvZOAgefOTP9c12MgYnntfz49/BePwxEsOrNYCGUz1OZNaaQgmfLqzpuVCZ9YNvjFcNvxoxmG5jjevw+IHn4+eV3o8FE55L+bxgzw7+GwiNpr6IfJZ0xkzO7qo3Kp7evrZlvLxA646m0PXiF7x6I2RWOGGbd6KL+ylePwofjUpD+vQ897LsQbPvGuue85P29Ycnlg019apb3ezKd7iFENx6uH7rLK2OohzOOCg3cG1wye46qDGcMqxfPDEWMxiwJuHtXTx2Yqbrs+2x/mN9uvjT0n4Rfn777+/nmnydw/3bNL3iwzPDjHK1WGnX0y4t8WmftaNWFG1pY/kQU9+cBBc+p6LcnOtTdueNezT4cc9Apvcc63nKB33ugPGPvfNl3VirpB5Yd/c4PEJV49gw9KLm58aO3UiJ9PEJwa+EB0N5sRNT107zKVXPvKHxy9+8YRnXN58FSdctsZ0NPFp2Uxd12xgzLiN8cWsjmzFg9iQO1xWW3JxVYOldPwolmlHZtz8GouNvb5YrG+fpdYIntjUCY+tuPjum91ioqOv1q7D5geOPNyX5s08wkTVBjbfDmQ/+tGPLn/itV49l/i03t3jcOBbT/3iCKZczKPPMTZyoGes8YX4ol8txMRW3Hj8dg9a23juOTnTg8PeXsO67n7KP11YYnGwLgZjdWBn/tiqGyquOQe+yQ8XpvvFc83BOl34Ppv7pQN5sbPRxKzG4ieTPzv3JQw5amI7zxseYidetUR6MbOvDq7pqJf5YAOXrvjUgNzckomVTXNijMRrbcPRsxG7mNu3qQ+9SJzi0FD2/MgJFU/ziC8mNuHptXyyM4anj2bO4rZu4KtJGHLvmixfrmddw6TLb88iOq3H9MmbKzHAYqcWrtVTn4+uyc3D1HMtLw3xoeEj+O41PLbmw3W5h40XsRUfIhebcZjiK0+YdOCZC9eIvnvdL7E1OYuRrfkXk5qzsSb4t87dS+pFhw+NDR1813Stt77R/uyzz1794he/uPrhD3+4fBfDGjzCj33Q/ghF2iq7ArsCuwK7ArsCT3oFbCo6aPcSYMPQ5oasDRC+TYeNCj7Cs5mxCaHn0MKmxQtVGxyblGxtUmxm2lDBmJswuA4/fBvJy4+NI+w2yvzbJHnx8ILomn92NXG45pPtw4iuOOnThae5xitOY3nQ19oA8qGdiW1xsE3HBnHG5roGY9oVvx6fT811ZKOpRQ/SIy9u8RRTeHzUwqqf/tVaqw7ygUGnOPKTfb3YNL6jcIrDXGjGbW715gR+a6k5x+MbZvrGkfjokuu9zMBnJxbXNt8anvXm5bWDXfGFLybrzj+/LhY8B00dPBVX9RC3azjlbYyPxFBfLRbj+EF/2pOLv5eM9OvhVgNxaQ8jWMULQyxsXHuhdO1+M1Yfh3Je+MSFV17iqc5s8B1ilKOXe/c9fHiIPRz65oB9RM9YDHp65kSdPTt6UYJvHsg1fid5gYIRX8/Gy5I41IqvGtvyqu5s6DXf+WFDVx8vP3Bc95yk14FAuOxQ2PSrCZ5W/eFE7Lo/2BTX9M1HbcbouhaeXvz86SP2nrn6+MWHx+/0Ga71VHyw1Hnq4dGddaPvmf/UU0+tv8vOX+uCnvznuiGDwReiXxOzb2kWt34SvBp7a8q97m/BGtP3ueI/FXUYJ8+w5FHsMMqLjhjlUR08D9xf6euLW619Pvq70f7ci3+CHtaM9VGuxYH8nWX/hN1BO19y8Rnqs9jnq3uhz1UHWeRiVq933313/fkIPAdv1qr7DvY5f77w5xz7288OwNghc2G+1E2uCLb8qxvfniVs5K5WMMTZs6DPfL043MsdLsL0TPGcIecTDp988Kfhs9WQGPhSE7GJk076dOCQXcqdPV01Fm/Pfjw5WTvhqREs/GohX89SucMQi1Zd6PMBg40YXGvVUoxnYgMPDl2Y6ghPnaoLOzzxOtyFLz79nFO+YMHVxK25NgewrRW+JrGBY/13D/DNRz7FWbzqYA7w1JI9P2LWqyc/yGezeXPwSsaPzwUxhOOanoP2Z45vtIqBnnvB2rJW/KkU93Z/Px2fTZ954nQtHjVyrT6+Dd5/tFwNyeCrlxzFJV9yOcEi11zLy+do+2Pz5P73/1GIQXx8XB+/ONPko8EkVzc48vG89NxSE77lozbuCf75cG+SI75g9nfTxcyfPb+4YLDjj59iVgdrHb+58TncemQjPmPX5lA/qVrgi8uziH5rAy589SSDIV5+Pc/dMzAQO/OB2PesgU1H3Hywl4f8rSP14WPqkePBEQPqWWlNsRMLOezmQAzk+OzpmBc+NTEgMrr8sA8rPnu5kBVvtRO3+4yuOeLP9YOID7GLgx5stalWxcUXH9WR3Fhs4sbXLhEd9vS0WT8++SDn25zh0TOvfBhrqDFfrmHR7ZkMJ1365PBhqQs7a1Zd5GBM/rGPfezqs5/97Dpohydmep4j1jt9sdnLs2u++cKnr8mBDlt64spWLHz4P1Zeeukl4a0c1sUj/tgH7Y9YqK22K7ArsCuwK7Ar8CRXwKbCQfulPx0jL3KbHmTDYQPS2ObGZsZY73Dcxtwm0WaEXLORYmfjavMCk7zNKTk9OF5uvEBpNtpkNkg2922qYcCyCWIDS4M7ie2DiKwYYPAvRs2mq7z1dPHoaXg2e0hNLvm5ZC/f8Mo3vOKcdnj5vZQf33AitvTOmORkyfVs9TOn8kxfX50mZnUz564RPJSPNRg/8iPe6stWY4Pgqas6pUfXvBuLhR828FwXc3VorLfxhpeN6+aNPRzYXrLYkzmIav3RwddcW4Ne0q07PPbWuxd6G/aZi3ysJYRfrMb44kPFoQYafo1NctfuKy8aakKHvlrBNxYTmTE+3pnyk46ej/js1MFYXfTy9QLvnlMvxA9d8fTyAwulJx4H7e7f8Ni5RvSbk3hiaR3o6Tvc8VwQh9rpNbJq1fUCPn6IyfxXJz1b8WvNB7/VmC2cZMbs+MJrrGejkZ99nzH4VUt++SvX9MLjQ83CLF5jjT/1Uje25OdY2ZcfXL6yLWb8CE7rhh6C2YtyPD1+LT781hD8+UwQHyoGvhqvi+OHNWR+HTY5GIJbnHq5qD8M43zpEUzX4rLu/CKM3+Jlh4w149a4+9ZnloMrcbODce/evfu/UKuWbFGxwVG36lFc+A56rD9+0tcj8fpcc8D2xhtvPJb/DNVB+4svvnj/P0Plx4GVZ5M4PDc819S5w0dxqKtfKlwfB3Dy70CnuOmoSWuy2tGVDzlM+K1tumyaAzazNsbuBeuLf3UVo0Osntd0yDw3NFh0ejaTmyeHJw4J+UTmIn984tfIxcyHGsAXh1w1+mzLec47PqKj0Zezedbw6ItVDOojXnb8kMlTHuUOTyw+N/IrVv5bU43xNBitJ+PighUfj38x0i8mOghPvOoNo3mqDnD4Ra7plgNs6wp+B5dL8fgBF5F5Vrf25CsGhJ8fWA6uYPNhbvkztjaqJz9IndS0X/h6Drp35ZC+GMyLA2jfaIfJzsG7Xhz+A1Df6rZ25A4Hrl5M4lOb9rLszAcbf3aFDZ/02Omro9jpGsOSj3rAgM+/e0wd8DUHg/2yylrmxy8DfG4iGLCss2pnf+Jf/3huiUGN4c6Ddmtc3nJhb61d3xy0F6O6qUOf1/yJnU/NvMDpoL05EWfrBnbrtHjNA5zWBKzqZF2oLRt4YtfEJMbWgdoYy4ucH5Qv2GKAMWPhR87qza9r8XpnYKPJC75enDA0PsyVX76qjT0Pnnllp9bsXGdTvfglC1es9BCMaipPTR6tJTJ+xYOmL/j+E3f3Cj4szfUZH4Y4ws4PTPUQWwSXfMZAHj+9+nxXO340+urDp/rIBa76seFXXK7paOKP2Gvs4IUVdjmSw3d/i5OP1g6dfLmf/FkXfzYJBj4986+GrvX28jBgWnPm030gNjmSefboqwlbecF10O4b7T53UXGW14f1+6D9wyq05bsCuwK7ArsCuwL/BRWwsXjYN9pLsc3M3CTZkNiE2xDbfPQSz6bNSZsrvQ2OZtPUhsZGB8HHtzG28fES4eUC2dzYLLe59XJg09OmjZ0mHn4fddMjhmJhZ9MJk32y8hYHnobayLvOxnUUrjEM+JOmPFx9vuUyx/QfRGxQsZ312GZvk+pazHp+pq/ihJWNXuOnmsufXTrVfdrNOOKnRxZuejCtJY0+f+bEmuEXFTd5WPS0OaYrV+uymI01tnxYu3JA5UaO7wCJjK3m2ouXg/a59rxE2Pz3kgObLr826UieMPiIijX9cx3LKSx1yE+5suVHQxMzvFljdo3pImM4Nf5c9+JRHMZePNyLYjE2X2pVXHr3Lx1y+TvY8AKD8PHyxbd6w9Ebo54n9PjnQyMXNwz45UtHfY3ZIDUJMxxyc9fLHL1ikTeiExZcJF/XdJPhFy8Zuyg7Y9fihaFH2cHCy9Y4WzxxynPiNz/k4boOo2tYKNvy1E9Kzo5NrZynLll55I+9fDSxqbk+XPZkjfVdk9F3+OKwycEQ4gc+HDlq4s6H3vzqET361pmDKnUrX/J84vHXenPP+ozxeROGevsWpXtdHDBb8/miC6tahU+OD1ezjsWIh4rXPeKftv/6179ehwLs/z8U7vVxgHbnzp31CwJ16TNWrsbuS3m6h9iIXw3wHVw6zBKb+1u+ze2MadpVe3GrlzqQa3jVhX38erzWrZ6+eIpVHI3F0XrrWVMODi3tA5obulr2emOx6BFc+w3rzX5CrvzS1VB25YVX7LM3t7D0+HzMWNVWncoVrjGiJxaNbXXQt0fiH6b61Ni2fqs5XNd6ePV02XvewXUdHj1xG5Mh9dXI8OHwRQ++mPGNycRZXOHSQw6SHaaqgfnpsDT8fJlD8cFzgF8tqwef/ETwO+RlM3MgE4/7roNo97W59q9H7E3Nt8+jfpHGBo5WLcwRXYf19gDw6Dns1Pg3Vie6c02EUT3kIUbx0G99wDTmV4z9AsIzxwG7b893T5Kxl4e68eke8Ayx/uCosXvXvSw+daAjB774oe/ZCF/8Gjv3UIeOsKtFOXZfwpRPObRu6KPWwhzDQGoUrpp6zpOZe/Or15A1Q1eTW7j66roUjx9icZ+IBV5yNa++4k8PhliShROfz+YLbrVsnZYHe42/fBqTo3jlgEemFWc6eGy7N1yzKyZ61kX3AT1yfFj0EJ71YA7x5UwHPpk6ZJdtejDI5v0Ek174xogeH5pYyX3emoN8TFx64hIH3XwVF0w8vuY8wdbopSN3MfLDR3571tK3tvzS3i9Lyheu+rV+jdnyCQum+8AvqvgTL1vPCzZ4sF1bp64//elPry+n7b/RvqZn/9gV2BXYFdgV2BXYFbhUAZsIB+1+O2+zYdMT2WyQ29TYlLQJcW0DZTPvhcpGBdkI2dD0MtTGSQ8Xjt7mBoZrGDYuCD4MhwI25GR4NkU2OG10bIjYiiFqA4gPW3sQ0TkTffiIT3ho5m7MlpxveejZTX9sz/bswiKzOURqkz/8YnNdXZbi8YOehuipFf/ZlHdjenBmo2+MXPMR5mKOH9lNeTViO/mZ8T3907mkl/7s1VNdvBS2psy9F8HqNLHmNZzq67oci6W+tWeN+VaYl+pe7rx4anTxYbjWq5OX2Q7y1JpMgyneamvcC7qYijMsctfNF+zipZ8ePt3i6EUjPPx8xpP7pOYYL1x26qnljxyGhu8lw/NAjGKA46AB372oTnJ2ANAhnsMSNTVn4b/33nvr20Tw54tL8YrFi00vifRcy128iI7cO6DAE7cmvq7xJ4mZDV+wtOJnB7c46tnTC3PGQL8DOPZnglGjqyH3DLxiyBcMdTo/P9jQUcdesItn4rCr1g+KB59evmGfiYye3FoTZx21LF56rjXxILm2TlzDrBaznxjszKv7z2GSX64mh8tnZD3U4JMZV0v+rMnr49BZTcjEg8gQX9aWnh0Ma9gaQXCNq6m6WfPue4ct6dCbfuGLV+yIb5hz7dHnl63PNQftj+sb7Z5Jb7311vr702IRc9/gM1ZfsfDts1mc7ll/w1lMxuJj41CHjnzoq2HzWr3wNeRPUbCrhrMu5Pxrk9imp1dnayo+f+IzF3jsi4G+cfsMfWuWTIxadnJrXvDF6ZnlM8W8splzpx7mjw0+X7AmHj4dvKgxO7GqOSz2Gt9yak3QwbfWPE9ds/V86hmFN0msMNWFLJ/yJytO17CqK7mxxo5cPOngwey5y2e18lkMF1Z1po8HJx+wzKGx9e2gS77uG//KxMExOVs1SCZ3OA6U8YqBf/lpsN3b1iWibw4a020u1AdWB9ieKV/96lfXPtWc+xvtf//739e3xhfY8UNe8K0lOD77xQ9DrHxp5O4P8SC5VAsxIHrk+PKVj4M/PDqw6ZDjhU0Xtj8d434il7vPU/+fAztzhIfUTTzqrVeLuU9Sh/71gXqZE5/nDuP5ZMfGvFhv/MG3LsViXYqXH9cwkPq0dvGMtfJJrldXRFae3hc8d4zLAb5Y9BEbGN4D1FCtyPH51WC0tuXjujWmTuzxiwm2usirGpB1T8FkZx0ieNXJOoZtrE501MEYf8YjLwSLL7JqgG+sFRcdungwxWM98s/ONR/Ic4Uu4ru1ZswOJhsyVAzxy5vctZaevFqTeOEvheNHMcMUZ3UUm1jLi35x8TtjoGOskWl45tb6FzvCc+/xgcSCZ6wVJ3tryhpBnlfWes/ZibcUbn7A0pD4r499g2eDuDw/2IuJXzx15xePnV/e3b179+r73//+wsjPGjzCj/2N9kco0lbZFdgV2BXYFdgVeNIrYNPwpz/96eo3v/nNevG08WqTVG7xbDR6gbQZsZG3CbTJsBnp5d7mBI9dm7U2Rvo2u/Bs7vQ1PtsEwZzXNlUwbcrbhNKn16Ytm2ImP1OxiSXC0/ibRKcGG8nJRjNf7KIZC15x0BFjWHNTnC3f2Zf3lKkROzKbQxtK9bP54wexr5bTH5mYZ35nH3Qi8Yr1jFuuEyeb9PURvbPfZOdevL3EeLGUi5cWL5B6vsnPVCzkmpjNUWsPr7GeXO1848sBH19qpo4a/eosJjKxeCH1S55qki+9GOjS02ZM4jVOTz3oIrzs9I35FCNdPPMNt1pOP/lagKcfZFMOS/zwqo/5co2nJfdySb/8e9kkd997ufEccHDlBcfLp8OJXhKFMv90DGz3LXs+5QtbTuqtb1x9YFQTOvI2nrG37tjIlQyWeLyEIX7xvczJw5gdLNScGcMQB7lDDDzXtWzqqzEbDRZfyV3nH4Y46ZQjvXTnXLHRyMrbfQBPs1atSXVF6U4M/LBdT8qv+chXOcKXCyJHeM1hmPXk1aFrMVeT5gZ+/uAh82ot9SzzGWPu2JhHMi++rqsZnOIRg7r4/HHILBe+2bRmxFYsZAgv/HJsHePjWcsOZB1SqTWfYpi1wYNZjrDnNVk54nveeFH3N14fx99o76C9PzfhG/lqoSao2vKNJy/X4pKvJh8yz1p5qm+kTuWnp8te3fmRPwx6+Bqexldrij6Zea5+bHruwhArH2Kx1mDQ0SaFqW8NsmPfnJtDPHJYemP+XVsn8O0nqhUfYqvRo9O9ZayVK7xim708G4cpNrw+Y4ytdXjqpGeH5IU3idyzyzOpb4DjlVv+9Gz5sX5dl3f4dMpLbsbnmI3VUD3Vgy/X6odPznf3BT9wzKPPBbnhqa17yJ9eIXdva/gaHXhk5W3MfmLQc/BKJjfzJobia87w4NDz+f6lL31pfS7xZb36U0v+ZVo66cOXj5q5D1xH/hSNA2K501cL9UPmpOcDvjjE5D4XP8IrR7UQC3ufR2IyB+rmG7n+dY/PLRjw5JoOLHHyOT9nxeVzWL6u4fEhR374hOeZyB6eQ3YNDj15VQt+NRj8mxtrqDzSm2sHj56cxRAme/U0FoN17zofbMSoxZcnf35RAo/MOhMPn8YzJvps5UYGm1xf3MbWpTrTMb/06WSP7/4qDrL2YfIgl4P1CzcceuzEh8jMt6YurSt64sDT1JNuVA70XSP6GmLf+hIHPh7dGh6/4m3/soxvfkysGQ97Yw0lEx8bPZ/mo3cPc9Eva8g0OGe/xQYXjib/qDo21suBHiKHgcRSUwtrWp9f8bkX6FiHxuKigxcGbDl6jviFsWcCPfetNYLkJ04+6JsXGPugfZVn/9gV2BXYFdgV2BXYFXhYBWwa/vznP1/99re/XZt+G8+5+bQRaZPTpsbmxYbeS4EXDHI4bdrZG+vJYLhus8XepkWz6TaGbUwvXXHb5ODbALmG1YYXHl222fOLyOgiPM0YH9lAscUXI4Kfj/TYaHSS0xVTeDaE4eNrxqgY9ezjz+ulePMDP4x0+EH8yLOY2+y2KadfLapH9YShhsV54251ZMUVv7irUTFNezxEF4aWPzxEv7lbjONHeWUXH5714CXGC5GxFxcvaeYcPpo1ym99cZsvzZg+e1hqRVftWsPTFz021UoM6g7Dy62DPHJ5ab30zdjoauQRuTG8sxwfrzlzTc/Lgr71Sa8WRrp6MiQ+/ti6Lt5kaqCZq8lTH40tn/JlW1xk8sXzImWu1M7huheT5q35gu3bjHTFB5PPevHCbl271uDSv1TT+DDEQUcvLnjkCKZ4zDFMOua2A5HmOQx29GCIsdp1CIFHtxrzMW2tFzYarPTpiZU/PSpOerUlGD/ozLUlHyQeWObPfDgwMUZqUVuM40fx1sevl4O4+NLYi931jI0en3yld8ZkO0nMNVj0pz9+8MjUXg/bvDlINFZXL7nWV/PDT/GoAT0vyz5/HFyR8etzZc6LuclPseJZbwgOXw7z9NXFmnFIqFcDGHARHY0/WLMm5QuXHKZr94wXdf8Zqr5YFuAtfuSrg3aHBbAcGMyDQvn1mWv+1F2Ti1o7WBCXurnn1ZDcOOJLq4Z6cvc2vvmBga+HnR965lVPrg7qgdiaQ3HNg0nxW+tq+yAqHjlr5gW2fJsjPeJDPGKLV93la/2EI0bxzTlmL372WljqasyWPMx6vouTLju+6KqZZycypid2/tnP3MN3YKo29l7s2ZUbHBjiYWtu1JBPOfOvJ0d0zIsejjbjpiMWdtWCT631zof6Nb+wyc2luYDHv7j9SRRk/TtIZit2/sWtt25g8QvH+kT44vNNc7jG/PInPvEUE73Wpef/F77whfVZykbrUI1etvyLlZ3niF9amafI333WzJcaygkWO3H45ZbnQ5hi5Nshnxzlo4bi9ZkIm71vmLODR98v3jwTfAueTfG4p90j7OE5dIZRrdTUAT07Ptk1L3TYq2fPVTn69rwvDsATN+xIXprnATmSd/eF2MRMpm7G1Z8f6zhMOubfOFw2mnF+jekg1/itc2tDPnKGxzd/zV+27Mm0sMQtPr48260pcvWHq2WDJ1Z4kZrZL6ojuXmEARNPrdnryflD5NaBXsxirwZyw9dc45dD9wFeOjDFDx8PrnnGo6eJRY+n/u59z4oIvkZeI3ON5HAmsfFdvHCtNfe3OsjZGuZHPGITP341LC/4xQCvNuXTf7njyW3GJ2Zya6B1Ry4OMdo7i9taNHd49PlE5c+3Ne5+9xlPLj82xQVHvcncg2w9C/Y32lcp949dgV2BXYFdgV2BXYEHVcCmwUH7m2++uTaYNis2SjYZUZs3GxobFhsOGxnfNrFJoU/HRrLNJntY+LPBtGlB+DZCNmw2QYgNWz5ms9lBbGw2ET2+5SA2OuT4ekQWDh58VMyu4bFhT5fetCfLrs1dGPjVhF6++DXWJh55udDRzkQnP8UDR52mPr/yrgZtJPORLTmiG02ceHwgsmLWw9XOVB7NGXn5xoPFr1iSF6e46OcXnrXhJaaXCHNjXVV/Y1hqATd/4qQDU18jh+tFx9q0YeffuvPS5VvtNtYwO8QUZ3OKX/zWuoN22NVEPHzyj+TLhs/yWoLjBxv8c+3pZdMc07HZR/xN/mIeP+jAJIMLA1bxiJutcZRc3GTFSKcawTX2Mk9erl4y8NnR9ZLrOaCJ1cuXWjr8VUu2XsLowuxlqbkKW5zFz5c1oC+2/MsBDr4YInhiw2u+1ASOePRszJ+XaHmJBeE3d/IRR9j49Io7fTbFoBcfW7FF+MWqZmGIbxLb5g2fHWKbnbG4kDUsV/Ond2/oER022qQw65MZNxfTl/yNycQG13U+5XLGglm+4bObc5ucPSwY5Pj8qAUyX9YTvvvQs8D9Wu3YkRUzOy/Y7k3zi+Bq4c5Y2KL8FmM61oz5lLPmgMeBlAMxPvnTxFGtYMSD7bq60TOWCx58fw7C32h/HAftDjB9fvun73y556wLNUZyqRbdJ/Tk4lmrtvJUD/eqfJufBXD8IJOD+0pTVzbd5+YsHXrs1YYfeo3J6FYbNq1ncy5WNj2LuxdnHK7psA2Hnmv2PQ/r6ctLHOJWi2KjI9+edXTLA57r4ueTPb7akfU5RQdPH4a+OOUtNiRfeurAnh0Sl3jyKUbXGoJlnXuO+ezqnpBb8fBDT73pqSMc/PDTYaPRF4/mWuOTnnj08kbWcOsYz72cD3Z45GLTRz4T/EJILD4nHF6Kr1rQI4On8ak+HWjKR3PvqBlf7nX+6MlNfZszuDAcjD/77LPLJ1z5ul8cdvM314gY2PUs6bAQjm+0d4htXL3Uib7ngzVkLB65ixU+HL7Eh98XUsSjLuzloyZPPfXU8uXQHZnb4oEhPzE2t827etuP+1Mz/GdHzo98+e/Z5lnmYNFhO13UHMvBtTzFrk2eGMibLz1duWr86LNhb67UjB17+bLTXyK29PxCRj7yUAfPNfGSt55htnbxNWM2SGxaNVYrNVFHPV2x6I35cB1OXySA17qCIUd2eJq46IhLz95a5ZvcnIkBX8zVgtx1tdDTha0GqJq7B9jzYS1lx4ZPNnjkfKo9/HJcYOMHu/zCnYSPVwxwzK39nvuSD3FaS3q5VkNxngleda4GMFH8YsHjNzlcshp59as2dMRhXsSnN08+V8SW3sTg17z5RZQmLvPtGQXPWJ7yRmqK53P7lVde2X86ZlVl/9gV2BXYFdgV2BXYFbhYAZuGv/71r1dvv/322vTbdNic2YyQtbmycbH5sLmzObEhbVNqjGz0am1m9Kgenk1PG0RjfrT08ksnPr1sxGcTZIzvuk2RMYrnOoxiwJvXdBE9uSQrtiU8fvCHkuvZFht5MU7/8dnyodn0zRcSsogtbHbFwMbGsc0nebmaB+NwiwceLHOiJ0dw4TTGk3fzSE5WftMn3eisH59tGHjG4YmlWPUwZr69QPCZnG04sx74jWGUay81NvvwxeI637DU3kunl1Nrm7/ycW2dhy8mGA4UHMrQ41cLF2Y5l2u5GcMk18qtvNmi/KUn/xrZXC/46YdtDJNfucJBjbPB7/4lY6eXi9rByG5dHD/o1OCohfvY4YAXL7FpeGS9kLiu7l6Cehktd7FY12rcXOLxNSnfeNWEnob4yw+euTWvrmHz64DDYUg5wpwYxc8uf+Tibi3B6VocKJw1OH7gq2c54hez63zq2aLmzby4FrO+e9uYbnmGXSwL5PghVjWHLQb2+uJhV8NDxVaPRycbY76N1VjLfxj8WYfFX17mtPVZ3vyEkZwPWGR4mmtry6Gil2U8uPhRcXjZd9jVIQldNePb+jK3eIg9HOMwjWv0e9ay40NNm3tzYFyN5NL8yB/JNf9i0GDpfY46aH9cfzrGN3Rfe+219R89OpQSlxjn2sATW2t/BXn8cL961lUTOmrY3LMjkws988CHMZk6wETpydNnNP9qA2vOLTnKjg6/+M0RW3gRX81ZPHL8ZGpLJzvxNi/lTd7cmGNjB3jyyC58ehEfUXGQh0femk5Of+Ytlg5+6Mi5OrGH1xohR+qBp+HxobnWyM2Ha/FrMB3gatYsHt/mTo2Mq7keZbsGxw+43TdiEyvSF6ve+nF/zrhhVm+xOSyF76BdnOLzOco+ao3g0S0v9ULWg1zEX93zL4ZZW2MyvuTgs4AcT/w+B9SGHzrw+HOtL3fj6sK3+8I6kR9c9dTLxxpix5f727VY6ctbPfixJtWkPPT5xC+X6uGA2nONTtSzsFqJB7ZaOaA3F/zJEY7aiQG2ueBTDeCaB/aw6OrnvMNSOxjkdF3Ty786lUc1ZFec6uZQny0sMraTwsKDoRbqyGdzICfNHOKhZPKHqwZqLB446VQH8yO/8/2RH/rs6MDgq/VjjquD+RAjf3StD3NlvrOFJS94+XctVg3RhSHX9PgUH1/pkSH5F6sYyMWpqW8yftUaPj1rlFyN1AcefHw24YcphihMOjDnuyB7n732VXAR/TlH4TRncMqrdRCPbTWDJx5NjfRw1bqYYOM1ZqsW8tSzm3sIfulnoybmzC+n3RPIPeKZxp5PJHY++Ibh/1j52c9+dvWd73znvnxdPOKP/TfaH7FQW21XYFdgV2BXYFfgSa6ADc5f/vKXddDeIZSNRxsgGw0b9A7UbH5sOBzo2KTrbVbgIDINtbFag5sxPRtwGzY+2Nq4aGT5tcnRwtV33WbXmB3ii+0cn/0vxZsfyWB0TQTDGL9NVnZhFyMdzVhPrrHH04zhxA/XWC0115PYFRNZ2DaPbZzpqzO9dOmlq0ew1FhfPmTzmp6NJ51kemM+xFAO4fJpHvRkc67wHmaTn+LjIx4ca0MPJ6z8FsesCxk9JFebfy934oOryY8M0VVHLzc21Xo+8+XaSxRfNf7g9vLKpwaXnWu6epRPsjCyyVfztwxufoTBrpqwoztfkqiLCRYblE3zTY5nfJ4r4/Tgp+NFDuGx1SJzEqZaqJFv/2jqqVnPZPBhwAvLCxkZXxGZHORWHvpycd0csqGPyMXSGGb5iNOces7QMfZM8+09zzh67MhqMMXgJdJLVny2XrB7ufO8c10O1WjG45pcz086fFzyi996yY5f11o50JvzFu7sxSpHhA/XHGiwUPW0pqpfcS6Fmx/zmTBtutbPe7f54xfpqyMZH/mbMc/5vnG9OvjmYv4ybMrDwvOi7FubfXZVM9jWpbWqpqi4yOgV7xIeP1qLZF7Umwu1V0droOdANSjPsMQGX7O+ZwzWphf1n//854/lb7RfX19f+XbdvXv31pr3eS1W82d+NHG79/TNuxjVRb7iNmZDL7vmWvxq4V6vlmzUu3vDWK5az4DWEDykHvzBVUc+yaxNduRwWqvqSgfPtbmY8fMNK1nzQb/PV5jVg5zMfS4fWO4ZeeCj+jU4/RALXzC1YoMjV7bJmeLzSU/sDu36trL85+Eduw5aXbNTE/Xu0BJPbfJFTga/3Nz/nrWavMWUnnk0xtfEZ8x+kljNE998hWP9uM6XQyzf9BZD60gtxcDOWvfnP+TTN0btG32rHAY+39VJLIh/vtmTm2ef6REenebRNV31xUPlJXd++IDTM7zcyZpP9TEHHa6KkZ5DaX8epv8DQmxy14fJzty6R6qnOXj//ffXnPEjTnsOds2Jdap2xuJQN+uCb4d/akWfPYLPBhZe8wEDNpmYYIid3C/jzJFnKR+el3IyT+XIr7XVs4qtOrAj6xnSvcJOgycWvbFr8ZoHdeCDL3GQiRPRRXRcN/dy4tM7B1sx4ckJhjEb+mLU+G7euoeaA/JygwvLvFiHcgqn9QLLs0GcfJUHG/p4qOehXk3MlZqzg1GM4cuRb/xkdK1b88ZGrPLs3sWrNvr8hwXPfGnlAhuGdSBfGNa82uGpDzv64q6ecio+13yIhzx/1qg1oYn9nDffbPiS9yQyJB5+qku8cigecVovGn96MrnoNX7kIb4Idvd868i6V2d8a6F1FJ772npA7uF+YSVWcebL5xp8n98vv/zy1QsvvLBszrku5kN+7IP2hxRni3YFdgV2BXYFdgX+Wypg89OfjvEiY0NhI9LGxUajDWybNpsKGyyHDb2Ut4lib6NlM4LoJoNpbMNj09Qmjg8N4dGxIWqzZDyJTnr42dKbuvN62rue8SWb9sWcTB8vXGO+y8t44tIzrsGgL3dk06tNmyUYP/JJx0ZUTcrXPPFhnF59EGKrVvwm13cNw7zRnbFO2xl32K0TOGKbcYSjh18r5jDiixEO/ea9+PBc1+RRDcIRK4LjJaO1jM/nXJd8itfm3UGedc0nguvaiyI/fCN9a76xftYgXXw++ERhu6ZjTN684CMybcri0RWzlk6xVgs68tVg0Jv5x6NfTfDUVaxeWLyAVGc8coQn7ny5761dhw1asanbxHbNBo6DbvOCF4ULq/sifbHjlRNdVEwTQ+7FK07PrO4teOJ1uOAlja7alCccY3bWgoMMY01eXvatKXbs1Ykv9mLRyPhhY1yOeM1HfvCmb/p0ip8euXG4bBBejc0kOOrb2i8WsVu7xcQOrobYXSL6ZHBcT39h1NMTczWYePH1+Sq2Ypj6rulpDlu89JoXawHGJGNY1paDMLmKCc/ckZtX61JfDOTaJXKAwBf/veyXp/tDLa2Jamg9oJk7PxqCBdOBDB2ff17UH9c32q+Pg/Y7d+5cvffee8uHWpkvsYpbHq7VJl6xyU9sdNRDTu6V8p1rsH2Agyc2dP+HvXtbteyq2j6+LkPQxFVuo5ioUUEQQc8EA6JGC4mKGoIGQ1DERFFBEEU80KsQxBMPcuyBqIW7qKDRbCpa6o2889ff9a+vfZNZSVXIe1DSG/TVd6097Wmt9zFmH2PNWiUXCmwYYlX4z5Zee8mctSD8EHrmZ/6MkdapfMZRbYxf+PrsCR5K96T48EHXnDWwHvJhLcWQTF/hNRcfGNp8yBXsYsyeTfnXxkPufObggbscxAte90EYfIjJWHvHWHmlw785tuYU179v1/ayDofy3jUQhjmirq3Pb/krNuPsFH74F4+XWPYGfWNicp+EJ8/+PBt+vlWtxk0bBj9K3Kvpwesebp2sEXyF0LHX8y0P/BkzR6/8qcUhN10HxQErTD7h+QyQs/LiRVz/TwMce7gX3q5/8bL1WehcQcTi5Z2X3ASe/LNjry8+15Lx8gDPnsRJ7SV1eSjm7GDgIxb2/MMSI9/G5U6+Wyt69kYvhu3FWdh3T5ALvsTSfrW+uJUbeMUAx5w+W3ZyY83xaF3lwxwM+tqJvrWUJzaED3HKTWN8aRs3L6fWXtHnCwdClw9rJCe9WBWT8fYC3+z4h4cfPOOed/hS4MmLnPJRvuWGDwIHDxj0laSY5al7Qmtpn1s7+sbYlyvxxjUf1ksxR49fGLDLBV7mWxe89OnBI2yLP97F2jqJDV+4fMK1tu1/9nQVok9gK8SYol9OYMm3PPIpBlzxkAM+1fTpqOmJQXtil3e+2kd+kREGO7yLDXf59ksSQtc9WqwzD/aefMH3fyl87nOfO7vvvvuWTf5X5yZ+7BftN5GkrbIzsDOwM7AzsDNwu2fAgaf/DNVB0oHBQcKhpkOOA49Ct4OpA47DyjzkOLDVpwuneh6+OrjSdcCi00GlA12+YTQn1+bZdZAzxj4/+gkdttPeHF2HOtjiITfSXZOHH/lId44Xp7H45lNfLDOexhzk5FWu6RdTsahJvtVwGo9z/o1P/8UeLtvwwqFTPls7Y/mgf+zHWHzT5VcsHj6UeNgT7ZOw1Kdk+qwNB1e56uCrNu+gjBve7T11DxAdpNOB1UMjrh7kPJgb42P6sS+Lgb12LzA8WLEnfDmA5x8vugq7+sWrb73VRP4SY0q5hakPSx3Hqd+Yef4UMvvhNa6GPTmz0xcLfUVsUzy0lHt68ualQg8w4nJt0yHw4OJojbyo8HAvj+01sfWQ1b0gG3jFU5zFop4Sf7jsrA8bPOVCLB6k1GzLTzjh497Debw8XMGB3QMa37gTGMrstzeNVejyq68m2VavwYsfYgoXPzY4tG7m6Bg3r98a4pyIuRjo42ZMqQ83gReWeVJdLObZKOb0SbHFSV1ZChc/5hh7xdgUY/aX69Tes65Tpr695UU7HuysnXWkg5M+e306xm4k9gDdcq6ecZc/fuwHLxrSNUbS1zdnP/aZ43rxoP7oo4+u/1St3N2Iz43Gi/8f//jH2QMPPLC+OcuHcWvbHpyxWK/84UgfN2PqbPFm374vZ3LjRYT7JizXspcUXtzp8wUHNiw4uPRyxDpYUzrm2PBhXj9u2gQGLOPNGavfGF02rd201S4XbNOBy8aLFhyywRE/esWAZ/Pqrq/OMse5ojPj4StcNbzj2MSSjbn2FNtKNnGDZT/p0yf2pBe0znPllb358kWfbT56Ac2eLj/xwRWv5tjZN9Y6nfga06YPBzd/N9yYF85qvrzolGNYbLKDx5/7GO7yzIaY67Mavpzru87VMMSlDbs5/4GqtjW2T/nv3pc/vozJBzx7FP/WXU5xoWcMnpfa/MCVbzWu5bm1LHdy5rphA7vcmVfgdt1q05EfpfUyRtcYHDHLFTu1cbj4uifiBMvnLr59c5quPLh3iQsm3krrEU5xwWGnJPjgIWdqOHJER47kQ79v15efclQOwtOnI157B9/uaWpx9cIbb8UYm9afHXwYr3nNa66/KKdjz7hf+dcV9kLr2f0BD3rtKXz4hSU2Itf8irGcyY15+RC3tmLeGPzyDMMYP9YLPn/67SV46aW7Bg4/+IVHh82cL5902iN09AlufLERh9yZY6cvh+zirzbHlxrW3Its22PsiJhbM37yFefwYBenveNeql9cC+zwgz1sNf/sEn2cm9Mm8Rav/eB6bl3se/sRb3pq+0D8hH57SCz4yFP7DZe3vOUtZw8//PDZRz7ykWUjpluR/aL9VrK1dXcGdgZ2BnYGdgZu0ww4qPgb7Y8//vg6dDuoOCTNw4vQOlB5KHWo6LDUQSkdNUzSIdQhiHT4cVBhr+/QRsJkS78S1lK60ONzYmajhpOEOcfM0fPAI0aHLALTQTCbNTh+sFEI3vFTT7/6Ha7T1++gGG9j/CvaCWwSThiTl7Fw6OpnB0tfOY6bbmPpibuDNoxjP3BIc/SNHe8PfKyl4tCsDwu2PSO3Yalrw67PR3HM+OTOw4F9iXe57ODOh3a1Nc1n8arZe3CDDcPLu7Bw0KbDlziMwXUIZ+OA7uHMob0HI3MVuoQunvmesZov98bpVPTTNSbXxNi0SU+dL3rZNN+Y8fKajlzBz4d5Yx426MCFY1xf28OHhxVtduVwrov5cgePPSwYHuoVeWyt8g+ra6E2O/P8ib+cGlPiaZwt4Y9+fWtDj742v8VTbOz4ItM2XHb5C4PutKltnMAOXzxwk3TxUIj5bNSEXuNqpVjSLRZziRhdA2Hr421/sjOnWGtxeYjUL8b8sDNG8i8nzcM69p8+PaVY41Ydnj4/hC7MeMB2n/ai3TVnX5UTc3TZqr1k92JJron1txfpV/BJiiGcdMxrx7/42pvpqc3JnZdY5bb408NNu/sifDG9+c1vXv+Bqf+oEc5LETEQ/wnqJz/5yfWiXfy9POEbtliMy0fXBZ72RPe7eOLausktLLEpbPj0bT8xsKHjXuu6bt1w4o8veMbpxcXng3lzxswp9Ehj8KfUx0FbcR/Gl00vSpqHrxD86eDEhuSv/W+Mbfliq5+wV0jnIC+H6OHfNcQmDjiy0Z8xG59+YBqDQ7c5tuXfOP72UutorM8rY/r0rW37ADaO5uHxow9HIb0oNt7a5WuuHz0cxY2jNl8w41ec5u05/yqFuD6JdWrvpcsXff4Jn/IpBpzZ6KdvjA58e7gzB3s4+fZy2b8ekSP21s31Kg4Cj+DT/omLMUVc8PNTnMbo0vHizudaucXDfGvFxhh9vOmp2bC3ZoQOG3y11b30h0Hoahcn+65T+HIjPt9i93JQn45cuJfCdfYx7jzjxbXYjcONN3598xuuYp5/c+xxoK/IpTFz9oW6fMTLfDHQMQ/DvLoY4+E/h7XXwsHVvUY81hOXcgeXnT2hlkf/aaVzSyJPYrYX5ahc0ldIceGjfcxNXPJVDqZNuvgqMI3xYy3kOB3Y5o11HcIVW9jm8aCTLdxymz2s8mlen775BA4/inF6rRP94ggfTxj6FTrGrTW8dPHJ3pz9FW/j4pID+uTYjo3rq5zgV4z0YdFRiktt3N5Ts41n8RvHV8zFYt8o8I3BJGwUff7xpYO7+4ZibWB50e4X5R/72Meu267GTf7YL9pvMlFbbWdgZ2BnYGdgZ+B2zoADxZUrV86++c1vrgOsw46HaOOkg4ZDqYcCB1ViXjHvcEIcchxcFHMdcvQJPTodaIzRIY196EcSAABAAElEQVTpK9mYg2VeTaafDkvmJna67I7FnBgd0NjrO1Q5fIVxbKM/MU/FRsf4PBDyLxaHPfaVcqSvXbz5N14u4Bp3KCbNhcWHOEi+wjdGj6SnzpZdB3TjSpKOOlt5wqsHq/yolThrE7wdUPmIRzr5UZubh346+XWw9bDl8E46bMOOf4ditT3qwVc7wceD5qtf/errDzrWhL0iPjHx48HMdUAcrO17XNQe0r04wMWYeQ9QPejCMV78MIpDm+griTgUMuOeazHx0jGmiIMUS/7zA6f80+khI7/mjdORM305loOJ2beC+DTOr5xZH21Fu9jgeEiJR7mUL770FTowxQXDGqjZ45g9neJkgwObXrawyTdd9vDDERs8fRL26hx+wDseo8tX4/nVJ/HGI4kDHaUHtzDmPJviK9dyQ8I2TnAplvyzbXwpXegd24hdMS6GCl89RNoXsOKXPlzx4aM0n9/m6MXdmJKuuWNpjh9Y9MUFozH3aX86pm82tsb08XXdsfFSycsT12U86dY+xQUGWzmJrzG8ilNfu3mY9vi8P/iGpBdA+EyBk709wI6IyYt2/wG5B3Y6L0XK37XDn47x92Kfe+65xbWX3jDT4V9uyo+8eeEkDtcbDvaEON3/6FsHeuIy137APxsx0evFJV2FfQWHmX/55q+x1qg8WBP+4GqfElxI/8Qf5ryf6E//rQ2+4oMLg+9izD++5hXt1r8xfruvuPeY5w8enfYKPONKOGz1CTv7iT5dtur2GP50+cKRuN8qdMMpTjgwm8tv+Wen3fWVH7g+2/CHRc8LXmvsxSw8/tX//ve/1zmxzz8+rJW5YoRRXDjZY+ZdIzPHxumxU7SzxYmuwofPc5+9Cf2w4bDTJ9kYsz/e9ra3rVjwNOf/cggrWzlpv/HnM8r1wS9e7j/+1rxaHw7BQ27cA9xHjRdH/xLHGD35pdPnH398uHZww9fe7M9lWUv8XG/yh5dSO9zu3/DtR+Nyba3MEWM+v2Hh4lv+1pl/hR5cxdpbX/z8AlOuxGQ/yLF4yyWOeKsV2PpwxIUvLHlLjJmDo93nNz4wiHFY5+fnizMu9qgX//i4noufXjbsYJhzrftPp8VjnIjTWrlHWgdCj47Y2Cn8KbDKi/Ekn/qN000/HPPGYMkZX+KUI5ysGV35JXzRFV854AtG+wpPfWJOYSefbBO4MNTZw9A+5q+PG79w4Nl7uMLQh0NwN07fGJ/iEB89Prqu4KYTTtzpGiNiUuibV2CaN5ZPewW+MUUbD7Z0rala3xzf+clXPuiIw/UGP6EnB64hMcF0H1DLj9h60f7xj398mZWbMF6s3i/aXyxDe35nYGdgZ2BnYGfgvyADDh2/+c1vzr797W+vA6gDpxeSDg4OHB00HE57IOigInx6HWb0HZAccDosOcxoz4OIA1QYDmnm9R2I6GdjjKizTy8b89oEFs506TW+Jo9+eKBxaEsPpw7+R6onuw5mxUkhfh38zIsDfkV82sanpBcOPYI/PDbi6hBd7NX0w85mcltghx840oOVDzVctUIHRtj11XHAt4O0OKfuMQbfPQCIg7CfB9s1ePjRwZqv4jZH13p5YGuOT23+8FL0YXiY8iClTeg4UHth558SO5jjQt9LDHtcnw4/Hkb5Ih24zXvQ81Dq+jCPA3sHcHr5W4YXP9jRKy9zrnb86c64m591eMbkkX65nDj0pm4xWuv2ufhJdvP6kSMP5sYUWF4cuGaIsdaRfzwUY+aIuPnipxx4UFHkwzrJKZ30YcivGq9jwcM4DPnmz1pYM9z4SfgQN8GBnbFq4/RhGsdbndDjQ2Gf7/SM8a/kl05t8/DEQsKmM/vacYgbH2Gp4998fPjOj7kbCTyFjpyIqTFr0IsPHONHJ8zW1lyFL77LYX01HePlwtiUfBizlnDEQvBTjFlXfwPaSy7r3F4359rDHUcv2r1Aox8OLP718c8n20S87ItBmw/9cqHdPBz7zEsneHji4O8ouw/QOxZjOMBl47ryov2xxx572V60P3j4z1B70e5lVDHxXW7ds11bxnD2d+3F4p6HlzG1l5PuhfaHmFqP9gwchfTyzVqwdS3bS/Ik3go/2hOTvsKX+fq4w+NvXjPNwzCn358FMca3FyLtCbiK3Ntj+cK5dTfX/bt9YU7MfBCxuB9mI3/m8WSvNAej2NnipYRtLMEHFjGv6JeP8iUuHEkxlZ9scOCX/cSCkZ9eJuLj3mucjRq+GKxDe8I+8GdfxFlO/T8A/uwGHuxOCczJhR5s+Wxf4tULsjizgWtOPGp9Nva0a7xcssHTPUGdDV/05YeOl2jveMc71n2Bfz68PHa9EvuYPV3C1l5xfvCLOzUbefBLejXe9NofvbzNJzzFfQs/6wefXv9PSfvCS2PXiz4ucu5exw8bccFqveUxnjhYa2ujwOBPDmD6ly58yqWxzlBwX/nKVy5d8cktfXEr9Prs75cSeLh3wHKN0cMFlqKNi1zFATaO7PoPcePuHAUnznGDD8e4Gs/JpTVx/dG1P6wHYdN1iY+8Oe/hZJzY52KVrzBcFz43xMinYs2aVyvWGy6/fCrymrAz375oXC0PCl/WmS+Y5VGfwGv9xMMXO5JfMSvyTujzLZ98x4kdDEKXfTbG6Ok3J1/2Cxxz7pO4wik24/SKQ7zikFd7tPyIh7+4GIdB8qkNe+oY06fDRtEWL598t97p5kus9hwbOvxry4k88wXLHJww7U1tunzTlQP/p4+2nHjprhYrHnfffffZI488sr/RbhG27AzsDOwM7AzsDOwMnM6Ag8Xvfve7s+9+97vrkOIA4qDscNLB1aGzg8bxwchhxgGKrtpBxsEWrrrDnX5CV59ubX32jU87482ZjwN7xZhDknFFmzRnnszaAdLhypjSYSzbdJfhsIWJm8Na+Gr8iJhn3OmYxy37GQM8Upyrc/iBw5zDTV+hq6YDi8Q5nfTYFRc97WzgWIN01PnFNT126TrY2iPlkB47h1AFnrGKsYkDvxIubDrTP/5heBDyMGZe7uVYm51aIdaxg3EPMeYcjn2ryoNbDzVsO4DjYz94uFDoEw8PDt24eDhz+PbgJ3bcxEbHNSJumFPiL7bjufTij4O41Amb7GrDJDiJpXjKn3kYcOkQean2UNR6wMwuHsbkwgOyOQWOF+3ihp09X+aqtfOlPfOb//aDfHroxYdPGGLxcsQad28o7hXA4Qee5hT5sl5s7Ek+6VsPBRd9nOPNDgaZuSoPxtjot5/pGyPlSU1XIfDD009/4hmbOnykFyf9Y47wpl99/sRLzMV/DYwf9ORhFroV+XfN2MdxMWft8CD84B33anPZpKdfbozxn452vGHQk2N1PvBszDXv5ZNr1zXZ+sKl18O9F1jzPw00n/BjX/FL+ErioxYzTLrltfniNd6Durn4e2FmvxmTM/Fmq2Znrxp3L/MnY/y5Ng/s5SZON1vDJf5G+6c+9an1op0fvxRXu4ZxFRcRF99iwZWez3vXjzEvv3Cngys7+W0v6msXC/+uOX6IPn3X9YwZB/cNtVj5tr7FjZc5uKR1sBba6a3Jww8c2PNhX7C1DvarfQxfXwwKPVhqumJO+Jx7Xx4Ie37Y4MemObU4FTxaVz7YzfzAUMQAi2gr9GAfx2ccT3Pw4BavMfPum8UUDh64scmfOX4V66Qvp2LW5secMbbWiQ/Xmvu/X07zzR/cq1evXr/Owq02r+jDUkhrIA/N05kc0+M7/fjR8xlsf8LMX3uKnmKOLj/Whp7PrLe//e1rTxs31p+ZwgVGZ5mZP/ZeQHtxB9t9CJZrQ58fOSPtO/gw5Nl+kTu1szORc/co68aef9cKe7xw4cP9zhnDGDxr5FpNr1jLL1w4cPsMNPb888+vz1Z8FPhqvv2CSh+3Xnq7btjB4F98zjt881Xs1oIvgguBSayf+4kalhjkQP5aH/sJJs58mG8N2BG5oe+XFfD03eOtCf/sYLdf2OAkR8ScWL1ExdHa4Dg/62CY499+l+tscYSXrb6CR37L/zK6+MFHuTCkTZ8vRc75whsevvmhp8C1FvELr/nuDeU+//asOIka18kHLowp+nDat/LT/Xvul4nDv5wpxvHnW9Evp2GLtVwZ40s/W3zEar/EH0Z2dK2lvNkn2gSWkh5b+1ltHL460S5WHBSxwDSXb3ZisUeLDW5nVf7f+ta37j8dU2J3vTOwM7AzsDOwM7AzcDoDDhh/+MMfzn7wgx+sQ4pDjcOIg55DRofBHgigOIh0iOsA1UEye7gOQA4yHayMEbqzHZYx2KTDkzHzSX01nvyZD4N9/NiYpzvb+g5L7MPGqYMWG4XQzVd1B119Aofwm7/s68cvvHJQDJN3uOrs4WvnW1+O6HSwNAZn2vFjDY91irtc6VemfXphw5E7D+GKwzhe9oo94jBq78AoNjZwjCn6eLHLv37c2YlTHY6HPA9rdOYDgHljFdgOyXio9YlDuodHnOHSJ3hpw5HPDvN8EBgeAMyJz4MnHfzY4O1hSeErXLbmFXHSa2zqGCvHdLtW6FSaVyvwwqUvnnCaN6ZND4710bYXxBMHdbnPHywPUR76E/H2C4byB7+46OWLD1hyZj4e5uWo/WiNeuCmLxZ7y8O1mi4bGNNPnPJhb7ziFa9YLwL45K+H8ukf74k1453tcse/vIVRHPxrsyHZti76raN5uko48Om2L8LiK6ypH26+zMlLJR9s82FsipzDF5OSHix9+5cOMabd9QOXrynFYNw8G2Kc6CvmptCnIz/adHAh4gzLmLbr0IsWJZsw2KTn5YuHYXjmSb71j3No3nhYaljixq/4jjHgKPZZuHTtZbbGekmifVzwcx/zgv1rX/va2T333HOdJ063IrCJF2qXL18+e/rppxcv/t2jXBddR9aYvusaf7Ea85KhFw2+LSqH4knwJcWtL87wrA9f/BD7yL4h/LFz7+BXTWBU1sDhBz1+W381Hwqu9NWV/Lsndc0bw63rCHZ47PDhwz7q+jTf3tc2Toeufvz7zGkPitGaK/HmOz/sYMQXlzDFAls+4KrDwN18XNUJGwLTZ5F4+SmeeNMpv9nAKWb2+Fs3/mFoK7ikqy23vZyEZY+I2Z4pRn614fY5iEPcrD2drg/cxKk/Yw2nmNUwiFgV105x4NCcGj867UG2Pu9da64Fczj6kyq+la8tfntIsYfFXJFj9xU4eJbLfNWHAxtf+QqHb7ZeDtORc3h0FMIOjpjE4z4nX6Rxc84drmt4bFs7OfN53kvK7pP61w5/UsraidHL+65RXOixbQ9X+zyGb17MfT6LrTWHCcMYDDVRy501EoPY8CUzV+KAYZ3giA9H+PloDGYYfiGApzyG156Ze4p+ecKFDn1Y/HZ/NkaPLzEXS7X5iljiG9YK7CI2YyTf2vwpRJw4you149P+x0UdJnv+2xf6E8c4OeUnX/yIUx+WvlIsC2D8oIOPtevaMW1M4YtkT59ue1hseBWjeetJ2HdfKRZ22vRbS3599pQLdvZguvZuzwCwxVbO04Fn38PsrBPXrkn98smeDZ9scDDHN3H9m4cln4ox8z63999oX2naP3YGdgZ2BnYGdgZ2Bm6UAQeLJ5988uyHP/zh9Yc3Bw4Hlg4rDiLG9InDR4eciWveAcpBBK7DmIOlMg845jrksIENk13YHZ7gn/LFj0Ky0eYnbIdLvujNWhs+ERuhSzpAhk0XZnxw1C5G8wqfp3g2ro6HNn/6sEljcQ5XTdT89oDFvwKjw3e65QOW/DogyjHd4oSpHT997WOZnM3Ds55ehvrnzR6MjMujByEPhB4mjbXm+BBYBAZ9fOl1SM/Gobg9Y0zcHoR7+ONTHuCXP7h0+SpmDzGw6YRpfcsTm+yNafMLXy0/8gYHB7UY6cWdz+LhS9/cLPyQxuYaGGejyE/7qnG66YtNO850YNZPzxgsxRg7xbi8e1jIVm2O/4Se+H1LHLaceWD1gKONo3Hxir244Xhg6eFp7lHY+uVKbZ/4xmD7RY758C208s+OrkKO80TPLwTuuOOO69+Ex8PLRy8a6MtBOYmrvnF9+kS+xKUYK74wwqFrrGJ8zmnbn+KhE3/j+vIgj/zoG+fPdWp99PNRGzec86ldn61xfZwV7TDMwTWeLzZh02ucnbkePMNWK2HQw18sbJU44EpmLGvg4kc5hjFt9OEbK965h9JlL7fqfOHGnxwmxk4JP0l+jImh3BlXwjCfnZpvdXt25sVnZ7Fnwx98e8ELAw/q3/jGN17WF+1PPfXU4oOz+yU/rg8+8TMeb7G5J7rG6eHmevFtXznUp9s+VdMXb9csDOvjmu1zgI/jnMGhp2bTPaQ1yMacNW6dcZ7Xjpwq5gn9PgeMFWP+1cUuHmI9FLHgw0Yxb7x4W7dyII98saPrc+H4RWxrHr/8qY2xU/BSw3PvUsK1d2DjlD0OSn6tz+RsLsFbXujiI35jU6d8W/t+8exfeuFBjw0O7gFefolTn/AtFuvND/3Wlp3PSHZ8mJfPdI3TxX2eL+HRVXDFnZSzYpKj/lQQHHucn/LFPx/lEDfx+dcjzg7yYd5nw3/+859la+/CaQ2sM77s+IetZlds+FXMKTji5Pro3oQvfl60t17i8llqTrwJG375h+eFMtvw/OKYfzEZc80q8mtcIb1YlgO/TLBe9ll/Mk+OlPJmbeWFvrX2jXtzcz+KHVfc1PSJmCv6k5u8ypH59oW42OI682Gcvv3oF+byKA5r4l/rOB8QtfWAy6a9hxPOsPnS55fASs+YWFrTuFezU9jgI8/wCL5485N/4/SJcZxg8Ue0YanNKdZLbumUd5zYE/rlnj6hq+jTxancxj07erDkSlsc+vgr+VnAFz/iKV649OLbnDiNmS9HcQJDz3i8xKkNs32NIx12RBz2HT3t7mv80Gl/s7P37AfFtUyHjcJXXHC3p10/2mzlgE3XXHGwtab9iw65Je1z3OjQV+SOPl/+9NsXv/jFs/vvv3/ZmL8V2X+j/VaytXV3BnYGdgZ2BnYGbtMMOCD50zHf//7310Gnw4dDoANQBwx9B1T1jQ4VxjuEwXWwcchR9B1QHIocZAg8h/sOsMYcZuDQVdjpT5/GlGTOGTOHR3bNTxsHQH0csulQiLcDWuPa5uKDY1hq43yUr2V48cNY43DiVTscmBM3jOb15c5B00MIf8XAjujTccCUU8V6OXRr8xkf+vTYwpr5NkeMsZlC3/r5htSdd965DrDm+fHnEzwQ9ncSjfNXjsPiDw7/5klj4hWHPSNXpIOymh7/2vRgVvCFh4tDe/vKfGs68wm7Q3rjsD2YwsexPJrX70EHd8X1osxY6Cr8hssXfmKiK44ELt6nbOhMXW2FvtIc3PKVDv+wFQK/61s//bDMK+zba3Q88HjBYW7yNJc+XA8mvgHXPUK88lgetO0Fejh5GHL968NS2Hjg9nBmfQkbmK2vMXN8Wy/6ly5dWjVf8nvt8NLQNxfxJWJqvfjWxxmuPiy2fKRvnE7CJlv6U7e58mMP4WicD+PaBGfxyQccc3RcP734CB8nMvXEQcoHjsbo4tc8HT7Nx9uYtlJujJH4aU++xq2Bvd/+b96cdSMwcahf3Gty/MhWTDPncRTXjJsp3cS8wk/j+tp8NtZ9R7/Y2Cj6jR+vMd/m4sMv/fLFl/tJftTdi2DLvzzxz64Cjy/3b/9Boxft/gm6+Zci+bfXH3roobNnnnlm5aW4ywm94s6Pvv3nHu7axo09rF5SiMk+Fuu8L84/qSFWtq2p3Ll3KK1h+5MOTvyGi0/5ad8Wl7UUS+PqYsMNJwUmDt2r6fAVjnZ7Udz01eaPc9/a86WYL3etsTF4anGa50OcxvJdLviD5T7X/qTjvuoXhH5hLR/G6Cj2T3llG7a18XnOFh86XZPaky+8FxrzN8d7selFrM90+vLoPu6z3ItOn6Xlq7Utt8bxaA1aazzoVHAxR9/69AJYjpqzF8wr5RGf5tV+wd/e6aV764i3/LiH8oWTl+h33XXXuubkSe68aPcLJdj846/wSdjZo50ZjDl3+ZwxzgaWzy5+Kvixxb88Wjv89N3z8S9f9PHFW5s/+SXtL/7Y4c1P+bTv48IHfLheKPIvv/6+utpY/ykoP+J0RuvvwxsTjzX3Lxa0E/a4wG6v81euWicYRG7wxcE+Nq4dbzzZk8Zg9BnuP5kUm779+MQTT6x7krx6Ido1xMY+cC8VXzHgiz8/rSNOOOjLofl04DRHj44CVxzhWiPYcQ8bV3ZyVOGDnXFrVPxstEm4eLge8DVH37U9zwHylLBT6KvZKMfYMK0XfuzxxkvNbkr2MJT06Wlbe7VCxAVbncDQb33zZdy+VhP5VloHPAme4hY/P62fObbWw58Jc/1oi8M1obCNo9o1Za/Evbl8i6s1MgbL2qnZGLPP3P/UxvCy31rTN73pTWef/exnz+677z4Ur18Pq3MTP/aL9ptI0lbZGdgZ2BnYGdgZuN0z4BDx29/+9ux73/veOtw5bDj8qDuQOfR0MHIwdBBhd0o6rHXAckBxENI310O7Nsz+SSx//IRNn4/84GKOOOTpx89YerXrs8mu2hxOpHjwMeZwrXagok/XXA8ZxjoEauOAq7ZyLHO8g6kxeHFkA1OZQq88lD8PIL5txS88GOUNJu5y6aHAIdFaOoxqiyOf+auGZZ4fUtz5KDY1Hx48vSRwOGbTWjqceoCLEy4KgU9wN9/4GrwY55fP8q3Pn4cpB12+HJx7KIWpT1+Nn0Oz+NvHMOg3nz81O/7g0tO3ZxUcPWApxY97ecWfD7HTZa8k4eqXezgwwjPHViHThs7EM28s3YmFP9vm+TCWr3BwtueJeUInYa+0xua8rPBC7pinmBQ4cmCfeQmnzR8+cMwrri2+6eEhjx6KrBV9OvDsKettzfikq5C4wmZjnVwT5+fnq7bGbP71r3+t/zwvfTVe9ob5+nOPsOVf/Plioz/zV59u4/BwVIujhzK6MIwT/V4QyAcMc3h5MeLlDRzjcy/wk154/MArR3Rq8zVt6CV0ykFjsy4mY7Wtm3VS8p8vPBQy22Iq7jV58cNYfMSZLTwi7taXHg501PGhVx+etXPt4macnbXNT/rxC1eNp9pcawoTn/zWh02HL9K4/WpMn/DdZ0s6avy8KPDnLL71rW+tF+6T4zK+yR/lwl737Tovyo21p+NSXHJK+BODa6eXrWJ99tln10st16Q9KKf2qutQXXF/91LOvHi6R/LX/XPeb+VXLvjAgV97H94UWLgVlziKhR78rrFw5F0sfNib7in5ai1hGmMPu3yojwUufVyUcsgOnvlyrOYfTtyMacOg6/4nT/jJq3jS9zl+6fALQi/a7Qk23RPjK2ds5Bi2vHtJ2p8CkY8+j+gS+PmIS+N8pOflev9nyetf//r1IkvMXvJZY//56N/+9rflv/3us0BMXTPlhL+ww+fTWOO4ljvxdI+n12esnLUGcMqredy8aOPf/sLdHsKBfzpyjD87Y/LqJTNfcip/fnngXkvokHxpG8MBNj/4+4UEf+K3nvaal3nyoFgjGGyV1lvdWYLtq171qsVXHuhbS+snN3I8Y6eDgxh8ZtIXa7pw6bfG7NuPMJ3F8DTmxaBrTixwfXNdgWsMf589XrSzhUnkVAz8yEX+Ycx1xc2YeXra1oJoFxtc68hWnuib9xLVOvkFpPX19+2N/fjHP173Jf7lCmbXhrhcQ84L8HDFXcxyBJsO33wQ4+yLix09+GoFf3bli649pWZP7AHz9Lq++U1n+uc7bLZypcg5LvIrL/Sst3jmvQLHhA5d9uWwPZeeWo7FLZfm8TGmZjtl8hMLrnzQhWUMBqHbXjCeGI8HO/xhGKMPp1Ls4hc7kcd+icaGjrq8yLU94ZdrriN2rmXFddDe1DbmuZLIAZ7lq9zxjY9YiXlFHLBdC34ZZz8Zw8+6yKfr0S/vPv3pT5994AMfWPawbkX2i/ZbydbW3RnYGdgZ2BnYGbhNM+AQ4UX7d77znXXodhBRHMrUDhD1Oxg11sFE6HCIw5HDi77Dj4NPhz0HHgefDj9w+5YKbAe0MOCQeYChT+BpdxDkq7IUXuBHejC0O+TiZgxf/PJPR9thcQp93OI854xX8hce3ubgmUuMV7Kpnod0h0wHPlKe4bEtv9bFAd7B3zo69GqTYjNO2NEnOMZJ+1Tc9OXIy01/4gMXscijBzcPah6I5CXsYucDPn/5LE/miHn6xabuwcdht1wUaxzpGGPPNz6KOPlq/n+9/L8XAPDYqWEp+vTxty87lJuD30NQ83yIo/nWI0z98HCDMaV80GNjXptop984v/nSTs+YPh8zv0vhAsucePJjLl/q+FnjHmis8fn5+dLLX7FZe2056EU7HePllQ/cYHpgtT9wsEcrYoPDxsOma1F/5iaesPJLD08vQvzyR57ZeJHiRUM2auP2hBhxxFnRJ2Fq0y+XxWwcRpitwdQ1bxwveObyF66HRpw9sLke6ciDb+B7SNRnC2eKcfg4q+WMDn7xKj525ouTbWP4TE6N0z8WYwpcHL1I4D+f2tnjkh9jbOiFsRRv4gcc8RO29RuDqRhXcDBn77SWeGiXF1jpw5y82NO33+CwKb/G6JvPBo5xY/SMW0u2sPAwbo8TbePlna4/Z/FyvWj3ZzC+8pWvrBftOHXf107KI+617VEvD73AEIM/NeGacY3iSk+cbOi6D3ixZQ8o5sTlfujFBAzCTi4UbftALuSBjWvUNeA6J60L+8m5/VYeYSm40YMvl8bKL5v2XbHSNR8/PFx3CtFvztqlHw58vM3xCTc8Y+bZKObgKdrueXToe2mDe30vEl/3utdd/5YmfTpdY7jRt57urcR5yedsL/jwlp9yAoMYN1ZcOOJOGvfLU5/hxr2IdQ/F2/r7half4PhzRHJarty3tPkUb3nhV7/Y+TM267jwL7fyAIuOPWQcnjG6FZg4yKGcscMZd/nlh137DLfG7LHXvva1a6+Z58d9Vg6POcsNLgrhAy4ePltcJ+I3ho89jxPeYqdvb6uNWzN6/MCw571MnLgwrLcYxQWbwMPDdceOTj74gyFPsNkSY/LBjr69wj97v0hxrcA37xcpXkbyz15utJ3f8JZDenjzS/AzJja1cVyUOMDHGS++jWvjxj5f7FvH8uta8B/XspdrufrJT36y/gNeuDjbm7jyLVbXgTWGgbO4tRU2Ym+P4ckWL9dUOPRwwVOhD9NaEnpw2cHlm577of3Ah7jo4KfmqxhhtF5xoy+PsOkmuNDlK4x4wVPYmsODvnmiX20+n9OGbXp08SF06CswSbzkpjH2/LV29PTNK1277mONh3Ucu/jh8S3fPlvaO2xwwVXhz7znDvuYnTXkR/7Z8c+nfez+xR87hfCjwCt/9OnBsm7mw3YWM0aHDxxh2Xful/4D8v2ifaV2/9gZ2BnYGdgZ2BnYGTiVAQeLK1eurId+hxaHEAcPhw3tRNuYA4r5DpUOHh3C6HTYoePQ5QCkdECZD4gOWmwcjDwAOdB08NQ2p5AOS9o4E3xg8OlQ1ri57LSNK3EzRtg4NBFz+PJjnP9TMn00z4Y/MZc73LTzS1fOyIxlDVz8iDMucZ3+tPF14MO1g7AHgvRByYmHDjUO6vLKN9180dfGVyFin3hr8PCDf3gOnR6CPAxZT+Kg6iWN4oBa/PT5ZKvgTbTlmR5u+V6TFz/SEW+HaVP44icXavhyoIZpTIErDwRWoo0XnzNWfTltj5cjtdJ+to4zt7Cmbti4GIfLlt/0Jqf8qpWpI45wirV8Fk/+4oE/HBJmumHjo4hfLAo783jmi70HHN98NTYlHbU8e0D3Et1atDblKUz7wzclPZDyxTYcfLRJa2cMNh7dO4zB50duFH1FbuCygcEvaZ2tnYdYvAhd2GKPIw4zh8WQPhu5VhrTnnr8TWGTrodz38xS7G1zcvfcc8+tlyNhwRAbwc34XE/zivHWTmxiL+7mik0tLwqbsPOVnXG+jRvDkT7s4sRF27ii3Rx7Poh8hqNfLsI1NmVysNYKLo3Dglkf3szLHMfL3PQZn2zmXDzKh/yZh3nsEzbpeqTHzssAfOWKvbp9x6fryZ+Meeyxx9Y32/Of71up8fJy7Ec/+tG6rnDyTTyfp/IPuzWC24sMdtperuKLF+7sccXbPd317H4uRrq9GHbt2WvODK7p/kwTXX328qXwLwd88Ku4VvslbfcL64wDodv9xL3CeHtBTL1kMa4v3+4PsNkaM9dawzQmPrxdd/SNiRc/AscYHUUcxviWL23xdN2Kl478iCMf/PDdPSq/cOQbf7/kuPfee9fnaOsCSwzlQexeCltTfPwC0QtweoQuP3gp+tZdTK1/ufOyWG6smTmf4cbY+Sbx+fn5ipOtNXQ/8mcFceADtrjpy5dYta2leX34/MmHWI3LMx26kzNdIjdeCrdn6cEID0b5g6Vv3pmgc0H65tpbco+Dc4o2f3jb033+WAdj5Z2OPJu3/+QCBnxrVL7sAbZ44Wsvuz74kiP5FZMi3/DpwTAPU3xi5gMOH/iXu/ps/IKBff7yjysca6Pwo69oK3z514fW20tKuPatF+390htf8XQt23P88du+SQdfecoPTuaMsbEm8s03nur46SswfQ7S7/7iX1i8973vXfnx2ehfevz0pz9df+rHPrEf+ZYfRRxw1TjAxQm2mM3hojZP2FtXzxytCyx6c5/hL+/FqE74EavcyKtf+LClI59///vfl099fuhac/HKhT4+ajps+dO2H6yLNsEdD/HgWSzyjYfYKzDhT6FP8ktXztX8Fwu9dOnHi8+uefry1/WSX/zkzzVgTDzGwoQl5913+MTVvGuVD/HJARz8ij8ufIdNn+iz4VcNU77tY/mBEYdiVvPZL53EQteZ1C+a6eMODz5MNu476nDf8IY37BftaxX2j52BnYGdgZ2BnYGdgRtmwMHiV7/61dnXv/71dRjqYOJg5qDSYQWAtgOPw8cs6TiYOIwoRO3A0kHRAUc/DHYOTQ4vDjzs1R4e4M9DI15kHhg73Bo3zz7+2oQPEi82hN+45Sd7OumxN5/fYg03v/lLL8yJFQ4b4+rww8OtGLTZNGfcgVSJH79iizvdDrLyrF+hkx7sONDrwE0XXn60ifnWyJyDpwcaa0ocbj0keEDtMFq8S+HiB7z88R839Smhw0cPp3RmDOzowFWsq/3WwThcOoRvecTRwV9ccVgKJ360TvmQh3C1y128xG3/lm+Q6Z+AX3NscGNHl88ZV/YwxZfQM0bYiwufrh92cKxZe0lfnsqJ6836iQWeOPnw0MOmF+1szBvroUmbf749hNkD/BP48Vbj5ptGCl24/gSCteUblmuSXwIHFy8rPMDCK6dxx0dsHrY8yMIi7Oi2F/NffvA1xmdFP3xjdNRstEnzdJVkYhgPv/lqczjiqsgpXfn0ksM6ZA+TiFWcCjGvEGPs2ze4KunCMKdf/ugr4cMxh0v66rne4o4XW6LPVzba1rV5bTqthTbdfOsn5XVyNWcfuv5hkOJo/fPFrusw3HJQzXdzsNjkL2w86McnW/NJGPAILopxY+49eOOs4Gh/W1s5Me8/Q/3qV7965m8Shxf+zdZx85LA33u/dvj76vz3oqa8x5M+njM2L4tch3S8fLA3zdNzLXuJ73rV9xLRL9zYiM96u3f00g5vuv/85z/Xt0+7pmFXis2a2v/lWw6KRz3zJmf0+Oz65hu+NWeLn/tGa9pahOu+AtdaKHAUvGY+8DMPFxZ7Qi/seK6Jww/6BA59fbUY+MWNLb7a8oy/PPZta7pwYdBRiPuCb/J68QlXruUYH321+59rVWGPO1/lHw48OVfo0SkHfPvGs5eG5uHaQ/6U0O9///u1b3FTrAF78ZA4q8WsaBcDPvT50M5Gv2tEDNYYJh3xwCDmYObPC1h2BFd65QKGa0xs8s4vLHHiA9u15xcdPi/Y9tLVPobDVts5RmnNfP4Y72UiW3jl1Thca8uv9e0LJLiLV17hzXyYU/iOrxq2wsa8a9S4trG5/+VDLviATwev9rxxe82166UwXNe2PeUXN3IAU0zGrfvVq1cXHmw5tAZygyd7tcKuthoGG4Xf7NgSvBVrEmd5pW9tvcDkT7zuN16uWwfiX+7Y/2HxpfAhbusP2xqL33jtBXD4wZaeONX40+VTXGwI7vrlspjNi5ONa9c3m+UVD2Pulz//+c+XHT1nFz7NiTd7c9rs+LK22nQ7i+WHb/ziiDM9BYZ5+GEao6NOavPT/mIvX3TLIy4KaZxfNkQ+5Jotf3zbZ9bT3g9HPYXdLLCzxx2+PQCvwh5vWDjwow67nPKNM3zrSophdQ4/YGbHd1zE4R7btUrfdezZppjDsE/bf/4z1C984QtnH/7wh9d0+U33xer9p2NeLEN7fmdgZ2BnYGdgZ+C/IAMOH7/85S/PHn/88fUyy4HEAcNhxOFhHiC0HY46gDnoOAQ7tLBzuGGr1O+A5BDloESHDYwOWHQTB79eSMQBR22+888Wtjo9bViVMNXxogOvg372YdMNRzt/anGq5YGP8gMvm7iwpdO4ttjZ0OnAOPHNJenxOcfFEY42fP6nzsSEZ15hh0fCnh0fDpx40TNuveRITaeHkxmPFyXm2TiEhhE+u8mFHnFQp88fvMkrHbba+OITF3j0CQzc6cUrXQ+W89sxPXTaX/TF4yGoB3N4cYGhHRdzCV7iJOGIRyy4ll99og+LDe6nMOnNXBW7OO0TfAju5jywEe3yo+ZTXPi0V433IERfKVe44CQHPXim76HJAwd963x+fr7yzoYfL3s8oPNljB6fHlo8jFgb4+WSnx5m+IPh79V6ucOXl0lsrLNvBvZQiqsHbN+YFRs/sPjim7DxbT0FVzrG5K+HdLnDt3VghwMs5VjKDX1+6BiDebw3+FPMK9r8ncLlp3VVE7HQlztt+I3jSM+6VPIRfzW7bGrr46CfrfqUGLdWsHBRihNGnLTFFw5sfePyZG2N6VuvbOMsn0p2xgl8xRzscmMfuI67Bugr+ceXf3g4s9cnapjlj24lG/zgqWG63sKmw9a8dr7CNp7Ejw57nO1r90d9vOTGHnQ9esHuRbu/1Q77pUj+rx1esD/44IPrBZkx15kXTPzjJYZyULz0cO2lo3EvF/Rxx9E9wYs41zr9Xn7Bhoc3O9et2OTaC1ov6bxs93JS3GyVKdYVP7lp31g/nODEQbucyqVxfsNjm41Y7Tl88IJnXxB2OBvnk394RDzuF8bpz73Jl7743NfU/LhWcZAzOuJU4MePnjzyCwMvc8bp8esXjWIk8LSV4mNjz/isMg5HzPFSw7dv1ezkgx4+6jhp+1zkMzuY+LgXu3/KEwz3Y+v4xz/+ccUsN0TexJTwxQ88JYk/3/zSmwIPD/606cGFr7CHVyxqMXq5yYao5cc+VdtvXh7bg3zCFRs7At+3pP2Sy7en5cuaitU1U77sG/tIn1/FL7PowcBL3fnH3rGWeBcLW589sPinr80PPPHxL/+Enf0Iwzgdc62/MUWe+pzQJq5Lha39ybe4yy1svwjwEvv88DkOF0b/OsL1LSZx8Ovv8v/1r3+97t9+az3EIlaYdPki5hWc4IsXnra4+SP027/0zeMKUz4V2GLB2Rwsuq4Ba2CdYWYPtzy5VmDiUUzyKnf0ib0hT9071uDhh3l6raP46MIzpw1XW27du/1LEHuJ4O2s8rOf/WzxYd+LdnbKscCCHz/x4tsLXeNw1HJPV1zyqMQne/jNH/vDTy75IOzlET4eCt90iGvAPGyFbxj5Vuuba731W288lHDpEbzkkl57q3U2zkafHeHXXrA35L0cmKen8AsXpn738zBgxs016Bci9qTY7Rnz+MHwL42cQekrONG199xbxO0e8uUvf/nsE5/4xOLI/lZkv2i/lWxt3Z2BnYGdgZ2BnYHbNAMOIr1od7hzsHDgcAAhHVQcQBwmKoXrYcIcmw4+2uE49PSg4ZDkQOagw6YDUj5gOig5BPeg0wGGPk75gs9OoaPmNx7ZpQN7HjLjYpwNbL61HeQIX+GoFXoOXmIyry2O9M0fcysX6lnoKh0c4SkkX+aLQbsY6cTVvDk22iTudOrTwTV/uNBzcEyfPR0HbodVNXEgdtikS0f8Dr49TFkvOvIBiy81XbymwJBrNQ74zLzQZTvnPIjxxY7ApMMfaS+J19p6oeCBqVjxhYejGl8PQR22py82rekCHz/yW4zFMeMtnql7nIMBeT1HMJR05c6ebQ1ap9YwP+WYrfhaB7kwJzY4+trGKuJwvXlZwS7scmjeQ7xvbYUn5x46PKCIHxbf2vKpwBIHGzzh0FfknnjpoVjXHp61PeSImb3aS3b/gZ2HaTjGcVDEY529IPQNOFzpwOEbF/py1wsZdsaUFxIx0Z2x8KckMOjxOWOVC2NEfkj+5FihT4eP+MEylz6b1moNHn5MDuzYs6OrrSThZ3PMPT0+zMWpvBlrn8Eq1uzU5UDMvcDAgf7kz9Y4zuGET48+/+VLbW3tRTWho8SXfTngX4kvX3DzwS7fxsKS73TdJ/Th40hPG06xqM0dC78Kwdn9sT58+94edC3+X7xof/7551f+3Nf46OVfe00scS82Lzu9xJALL40V147is92fLPEijq1rq5ej1ql8uD7EZYyu/5T1xV60y7Mcqds3c23M4R1neu4F4pJLayK3fONOjz4M9wmY6uKEF2frI74+H8zBhQmbjdjm2smFc4v9zR+/fMoxv8byV16Mw+UXr+4j6ftFg88psREY5vhtz4nDucwLZGIcPzwIbAUGOxhiqOCisIFlT7pX0uVLDMr5+fn6trMc8+F+bD/1jXY6RM7KG0x+xMZvEia/zWsn2nTwkAP8cVNbl34Bw9Y4Xb7UvWjHka6c23vuV9bH55Ii1wQmvmzF6yWab6OKVw7YitXnkjjyCVdbXDh4KQ0Xd2N8+7yJs2vIPuKnmGGztQcadw8IN37m4NCDay35ECMeYtOmZ9za44qLYk1dt9YOvjmxxocdHf9qwee4Ody8bPRniOytYoLnT5/MF+1i4N9c+cRRv7XnI37G+ZATOWbf54l1jLv42dCdL9rZiIW9OX2Y1te1gHvXGl7mYVpD977EHHvr3742Jv/42CP4GEuKTz7M6fOtrVZwllv7yIt2f04LBzbue0888cRq8+P+mYRRX803H625Nq5iFSNffIqjewlcORUz4VspDvqtyxyDBYMvAkMO8DYXD75Ieyns/IiDLR7w42bvwpnrDYcOW37LZ77V4cY1G7rZ2gvuC3wYZ8OXwr9aHOGJ0zi9RBtne8jet4/EItfFAuP8cG/wBZB4yKX94iW7wsb/JfClL33p7PLly0tPzm9F9ov2W8nW1t0Z2BnYGdgZ2Bm4TTPgINOfjnEAIfPAo+/wceogYdxhTN2BpsMPDAcdpQOcg5IHgvDZ9UATvkOMw1/fBqJD37g2gRmGPls+HFDN4WCevjkFvw565tJtzmGKX3rZ82meGNc2Rrd49Y8FfvzYaKevHf60wzW+cz7/dPntkOlgSC/dbKdfNsWjPXXg0C0efswTuelQW9wOsNY6Pvx6OKKrLXd08IKZL7WxsOFrl7f4T1xj8W6eH4dnWB6cejkSbnrs6NpndOyHfOLocM2XXNpjxcSemNO2V7TlCIa2nHWA1+bbw52DetdB60uf0KkYU8pHOvTYVdIzjsspbvxXxEzKPft4GLMuYjdGd14jdF2DdKwJzOK3B9h4yPGCwks2DzpE3O4X6mz5kgfjXUvyxSc/5ujLO1/+GXsv2j0g40HfS4GZcy84+iYRHKJW6NmHXs7D8/KmPOLVyxEvJ2B4YMKTjnUJZ4Ge+GHeXlGzmXs79XDq0+VPLfbjvd66wcNFoaOWe/MvJMVHh4044xgWv/Ti3z5Sm7O/5Y6wV8RhjuAD0xgbujP+YoavJO0l8wSOQsdYfI2lk201X/jxV3vmBBaeeBFYcPFVyk8cw81/fOJdzPX5NAZnzk08c8SYkn4Y9nEvHszhas51YdxLmkcffXT96YFs4nmzdRz8EuqBBx5YL7jlyXXm3ue6cK9srem3V8qXF72uN3nr2nOdu4fSdW9zzcCl1z1ATPLofuqapgNffGy8vOz+qqZjTh4qMBTx45OYx0Utt/zwr1gb+op5fX4V/eISD39szck5X4ReOdeOh7nWM73G5MLehgszXLllD0ch+riaU/PFXg7KszFzvQSMU7ZhZss3btZWzuERGPliQ59ec/CNF9fUXUqHH3x3f9emaw29JHz66afXvQwGUSv05DVcfuc66CvylI6apGt/Wmd25cVnjoKncX74s5/9omf+6Rhrb43da+XH504vw4wTOgqB2Tf68yGPdO0b/tTGFOuHH272s5yIJ13cxIJffMVonh4MOnzp07Me5cFc+cGPP/P40gnbeFJOYdHDubMQnj5H7RHz7Mxr+wx3z/Hta37xdc36JbZfIsifcWPuJwqRU/vNXD75ZR+X4qFvTOHb/YKNPMA1TuiLWyGw3G9co4q+X2J4gd0ZTk79QsAvBvo/XuY6wLSOCt/85gff9pl88JsunXIUv+LEQ9zyKga6CrFOfmkhn84w4XqB6/81YMOPa94cYQtv+uEDv+bp0rEe7OOAU3N0w2hdzFknfrXZmmMfZ/302dNRwgqfDoHFFkZz6lno6uNnDbWJ2hx8uS5/xsRbPK2hvrnylj0s/p3r7GHrSOgrsLpm8iUPfR4Ve3tArD6PnAvleGLAxqfrBo4+XDjigMvG/7HyyCOPnH30ox9dfMrh6tzEj/2i/SaStFV2BnYGdgZ2BnYGbvcMOND8+te/Xn/jtQcJhwrjigNEhxWx6huv7QDlIEKyWZ3DDwekDlUOL15+zv+QycGFzw6V2cF0QDUeF3W+YcaBjTn4DmJ8OgiZN+6gpDbeARyOQxWcMB3w+GOXfbYOgOyJsQ6z+uzFr6ankPgZn33jdHBKP/uleGGLg8K+Qs8YOxxIc2rY+TWXr2zo4E/KIUxY5rSJhxsPSWrjxJp0yDSm9IDHDww66nDC9OBnDO9s42ZM27yiLdfWB+8EX+Ps7SMPzB7U2ZNw9dnaCx5wHf7h4ubg7BuXcm+sBwC2/BpXtO0V4zjA0A7Xw6DDvbH+qbr9yjYxR9TGy7F++WhejTdfxRiXajrm8cKHnqIvN0RM8I03JkZxewCHZa7c8knfnpi2rQE/fFpnL7LPz89X7o25VmB6seEajid/xszzYw1wNN/1LlfWoxft8D342F/45RcP4sFImYKDeT68gLnzzjv/v5dFYuLHyyK+5cA/64YjVrZqxXy+8iEv8oMPLDrG8K5Pt3H1bHv5o8/e2sPXhllhP/HEZN3ae+YJv+zjqJ/g3z42zxd+MPTpGssnH3Jm/7avcVXYsSm31jDb9kxxqssfG4UP+saJMfHhlz4fxujgpqTPXhs315h+2OowtXE0T2DALXb9xqv5pzP5axN4+TIG21q1XvmOMxs6/NA3Xs7SYWst2VoL+VObt9/9bV9/4/WNb3zjwoF5qxIv3zy+//7715984EOcrjv3QGus4EPce+RfseZenLuf6ouFneuyvdFawYXnvmuutfIfyHW9y4eYFXuHrWva/z3gOnQ9ypNC5ILAMsZOW8EXn9Y0vebNid/nVLHRETtcJe7GcW6N6ItdLuDRDe947/BhrLWurTZXkR/7FrZ2600PJ9dAv0w0T8LKzhi8MNQ4V+MJQz7jW65gFh9cNvaZtZVXY8XaNV2ejLu/W1+48tZnpRexuIfdNcRGwTfRp0fgKITvfK2Bix94sW/eNW898TAnptbNvvNi05zYCH+42Wt4eRnuRaf8GCflThs3+5vgFlc4+TPOVo7o4oO7feyzQ27o8NnnWLEZY4tLgr/PJzrW2fmXP0Xs2cDEoXjlxJgzjmuUGGODd2cQbXuNrs9h1xmexlsbORCLf0XjW+3GvbjEab641re/rDkcIpfG2FiPuc/Mx5N/JY44iVuc3QfMFXfXNRtjYcsB7pcuXTp717vetTBgwfCC3Tft/fKnZxW8FNgElpzBsQ6uc2P66fLJv6LNn3nt9rf8KnBbo/T5oW8tXTeuMSJ/9qC/K98+gcdvwldiXcSt5rsCR5tdOtrG8IFhvCI+c86i4i1O2HjCo2Oc/Sy46LOndyxs+AvTfJzgG2dLrBPh035Ty4PrRHG/5Ute3Zvo68PAT6Ezc2aeH7946b7QPHzXS+P4Wyt7V8HL9ah27fHJFx/ub3CMu7coOMOY9xH5LCZx44O3a+nhhx/ef6N9ZWf/2BnYGdgZ2BnYGdgZOJkBB48rV65cf9Hu8NHBKQM6DhjGzTt4ORQZU4x1SOvARJedw0kHIgdS30hyMILhEORQ0+GKPzYdzozDzb95+DCNJXz1QAO3gyHbDvRsHJDMGafvAId/Ph3SCB1+yoV5MdANM9/qONKbvKZObbjwYRP6+B/njY6Sz6mTDXu+5Ytko82ONMbGGBzCXzg9QJgz5kA6X7Qbs1Ye4LQJLAfmcooDnbDSg+lQq7YG4jaHl7HihmkOLj0H4OI3Z0xh49DdL2ysCzzjijZODs2KNcZJcdj3UkjO6PKHtz7hW4kfbnzCM94ekx9tGB7svbwXY7h0SfzzE76H9vzAIPlSm4ufeuLhIjflQ3wK4Z8uHYWtPe2hVNz66Zf3cocj+3jQEyOxzq5bD+ke+sVF3wN48esTee6BDwcP9HBg2x++IafIu4dU3waTz160w7amCi7s5FYcXYM4m1PD5qNvlnm4J/LAzouEMK5du3bDF+3LaPxgH5dyY0x88ORS0VbomCdqfM3jKVZYrRPe5d1ctnTkTEwTy7w5ax5+8+a67ujAU/jimx7O/LGXQ/j2kDaOvXSkB4Odcbhi08fLHLxiLn7zxWMsMYZLuYCvGIs/fWP6cBTcFO1TAtdcXNnKQ/hsGqNL8qPOtzq+YcKdbT4UY+kuwMMPeYDBJkx6rZf8kq4leYdhv991111nn//851+2F+3+UzZ/8sE6yYN7n3u4a7f7BS4+U62rNXE/dz27fnC2LnRdlziKC19xigGme6842guuqb4RK/b2FiyY/LlH0PNZXz5xMS9vxuRKsUf1+TY/15QNKd9q13t5NsemdYmD8TjjyIfY3YfZphfu8TqzfyGBKe9y3Vrr8wMLvny7D6vF1z7BV87xMEbYwVHoquHBch/3EolupfyxKwY2zlnWV1tO+Gjt82+c+OWK9eXDmsmP+ztf+IfNHmf99jyf8Fo3eHAUQk+b3RQ2xLxiz9mzingVuYHr88efjanPjj0++ImjzyMvh+UZJltc6eLpJSx9do3JS/sWzzDxcGaFLSf2ixqO2uc+LHHZp83rw+YbrrwStXOL9YABNy7aeIqZHe7EGrrmCG7s6MiVXLBR+PQZ6mV0+zoe9O1N32j3LXHxyifxp076hrgYfHbrq3GQS3Fqxw9/YkzBXWm9xc6n/IlFjDiZ11e6rtmJCaaCmz6e73nPe1b+5dCa+AXAn/70p/Wy3RmCLV+JNnt5hiV++5gYTxdnc4o2PuYJXvjKr71i3lor5vSzcd+0NuIk+LjG8aTb2Gpc/OALDzHmVztcGHgldMTPxhw961C+tOnIrfuweOkao2OejTFFOxw+jLHlc46bw6tCL5Er66uG17rbj4Rf92U68uC+r9gD9O1F+zp9XMuBswib6Q+OPFsP8eBqnn8YsFpv133/pw8dePStp8KPtcSF4OIle+uIizz6Fx3qXrTjoLDvWvL5vf8z1JXG/WNnYGdgZ2BnYGdgZ+BUBhxGjl+0O3ARcxWHKcVch68OcMbmOFt9tg4uDkQOQg5EDqcOpvrwHHgUB2l4sI07MHX403f4UpM4rc7Fjx5oHMRg0KHv0IwLHg5Kan36dLXDp5uwJ/kqZvq41Mc5vC2AkgAAQABJREFUyQYePYXQJcWnL7byp8aLfXja9PThpTP9ps/PtNOu5Ld+WHE1byw9+A6vDrUOlHGQG2uSHhuc5RCWeORlxpUuO/p08WBnT+BtTEmXP3MdaukT48XrUOwFrb1Ej335W8qHH/rWuH2Gl4cQD40JTvZd62ScXiUu+NCVE76JOXYO4x5we6DDF0+luODJTWvgoG8eR1K7OIzBnnu+vKUTvvjx0y9X4jaOs9x7+MNRn66c0CfqfKlxUvgpbvtAvr0c9KLAHN1ebMipGOHbJx6C5ZWe8eLWFnsPU+4DPZD1Mr2csy3HYpCL4sTZnFoscPxnfv0Sjz/z/PjGLa7uMdrWCQ+CbwUWO3WirfANg6jpsVPrVxprXE34Ew+uRH7xI92ftPmiY+0IvLDFDiOJJ24w1HBr06UDo9yFAd81TsecNWGXsMHZnBhwhU3MKUkx8lW7OWMTRywwFe2w6LAtL3KgFOPEM1bBS2GbH9jEGHx1bTr5Lf9h0wkvfHzilB/68WaTwGVHjx92c73l3IO+NfA56BdDDz300PoPCidOeDdT80d8o90D/1NPPbX2Di7ujV6y8mmt+cfNdWmt1X7xSE8Rkz7pmqRfvsTTi0IvJtwL2XgR1zdgxSE+casVvlx3OLoHtbb8tO78lGsxaXcN0IHBFy7Z8EWvly/w4NAzp9gL9I3RnevaHjSejnk+woKXjTF65mdetBXXkgKv2POJC7uus3wUEzsYCTul8TDhWCPFPdk8DLGUNxj05M86ul/7PCgvbN1r6Yev7d5pfXFz31TcK93Lw4fdvds6hmmciAGW8XKlj4+x4qZrvJKt68KLbXXXi3u7+P3yxzfau3/DxAtuePHt84c/nKwHfTj2Om6dZejAUMzrm1NcO+XE9cIOZ3nT9plSbthqW2O6/JFq83i4Fls7c7BgNi9u/XDtb+uIT/7lnh488Snm+oU6DsVc/PaAX5RfOnxT3Jj7D1y5cl16Ear2bWy/XLFH6PWiXSw44GtN4OFITx7iRi+fMxa25Xjuu/IjL3DdW9g5a7z//e9f17d42bu/+de3Tz755Dp78A+zfVUe2eNA4Ff06ejjO+3Sh+d+g49Ct3tmOGo41tFetU8IW7mXS9gwW1/z7KrZi8s6afPBHi/+jVVgEPMwxMe3Yh3UsDrf0JWv4osvPsVpTNFX040Dv4l9yUe21ebZ4USMt97sxYU3e3P4iItN/OHSpaM2Zw/jwYYYg+O+IM/auNIXszVSwzBuL8q/+xwd/NR8lms8+CDGYahhK/LoM637SHrlQb790sq/SNsv2lca94+dgZ2BnYGdgZ2BnYFTGXAImS/aHVY60JmrGDs1DrPxDkyNsXVgMq44zDgsOVBrm2fr4c0BldDvkKXvoIWTw5GaqI0n9B2iHLgclPgyRq8DtTFzxtl26GoeD/rFAptuWGyyZcNen5ibfGB4CKBXDtTxZzf9wDCvTBx9Qpcc88lvdvSUGUdjanrNLcCLH/mBx4fYOsjL6cRkAmPGws76KGLWD5M+e1K+WiN6fCmETfuktWqsPhsPY/6mrJcDHbTxVMw7RDvYwzIGAwf7rBftrQE9nBNxzYM4DIXYuw78cMoBPA8HcPiBW50d3+UFP/hxo6/kZ9rYQ8Q8MQebbzjGXUftRX7MG2vd5MILCA8e5ul6YGCvxI0vuOU5XubtBfm+++671zcf8TDuIdvLdtjlXC6Mw4Lh4d0cXnLQHokLnvAaF2cctHFkB6+8qhVCFz8vULw40GZjHib/fOGAq/vMXO8FcvSDPsl3uYFpTEno6qtbF3ONa5uXi9YPZwUeLvmjKx/Wh8Djmz199gRW8bOnozY2uerHq30Cwx7QhylH5R4uX7CMxSuc4lwkDj/iUJ/9sbCZBSZ8pXwZo1N+4B5jwzXGR37SY1uuxE+M8QH7VDnGYpPPOcdX4zBJfFfn8MO4MUJfXy3PbBW59tLM/rRPLx1eeD344IMv24t2fyvWiyj7Ry56ge6eVXGvxLNcuS/4LFaM+7a0FxVdk+KgK4/EvoTb3/NmI073wKtXr17HtXfo8gejb8m6N1hjNmxbK/3yVO7YG0vPuHb7Bi9j9nH21ewInQpd43S69urTga2vTfBMT9+8ewj/5nA3Bm/6hRFuGGrCll1xG4OhTMl+YmvTY4ujF8D2l7Z7mjkxlid5sc98Vs51twa9hJJjGLCtq70Jz+ebNeRLzN0f+MiXPUKm3/JQnOrGxJTgSMqLOTxw9YsBvOHjY2/C8EJTzF6A2aNs+GZXDPjih3+f6627uKynvQu7XOEIT17YFissOWwPz7XHh/APlw5u8NnDaR3gG8NXYSvv6tr4KPwpcMVA37UL22cXDmzMy50SDh5itra4z9zm27fEz8/PF/d77rlnvWyXO3auYf/6689//vN60Z6vzjcwvHQ33ucsO5+vnS26Xoozv7jhRIzhJs70xSOHfjHoF+bW3Yv2973vfeueGUfcfvGLX6z/oFc+5BW2MqW1Lb/6dBpvbfgl5RA3Yh5H/Ig1nD7CodP+o2ecnhxpmxMLKSfm5MK8fdBetN74sDfPN3x24ZrXljv7AnbXiM8WX/qw99hYN5jxFiO8MOPEjznY5ZMPYsx8e7v8tKfp02Uv1vZ1PM3h59rVxkWBKQaxx8c8XC+3i8EYLPj2nBi7PnBhCyNe9OUXjrZx9nymU9z65QT3BKbc2es+H+ERnOmxE6cX7X5R/qEPfWjN83crsv9G+61ka+vuDOwM7AzsDOwM3KYZcHCYL9rnIcmcQhwk5mHCIcVc+todRIyRaV+fjkOiAxIMBxgHyw40xuiYD49fh6d8dcCL23J2+EGvwxNc+h3uHKASdvTM9wDQnLH8sIFD31j+tDsksuPDWKJtDOd8mcsX38eCexj5yW+6xdA8PH6Ms9c2xq+2MVLNzrhC9M01vwYPP/BzmOwg33y5gM8PvfLoYdXB3nj6+cAvX42VA2vcOtPhQ58NHX37xYOYnMuRQ7dvWHsoM+7wja+2eVwc2PFon8FygO+fRJcLYzjHi4342mNr4vCDfQ8HHsrZyCNfMNjQiTf8KXjBVtjhBW/GOm3osYFHR7889TDBnzGF0CGNsReHB2I2+vxaV+32glgUY/kICx593yh85zvfufKOk3k2cNXW3gOKf3begzd+vWiHky4/E197Fnb69Ih2XMuRMW3FHimf6mytidhJbTj550cRT1jm8DSubW3lUJsObGI+G2P5bJ4fbTqk8fzhnI/m6HbdGcNZbok5+iTf2niVmxmbuQSWvPAJR22dxc2GHzrx0W//048LX8fSvHF4xxJvNYEV5/DmnHZx050SVnlojl4cy5e42vP8KOmFi2+c1fmGP33Qn/b0KjgUR3zYwguHvX73U7+s82cwXq5vtPtn7pcvX15/o93aWjsvJbwgcU9U8+llqv2FlxzLT5xw9E/uXcPto/aGnNIn9HvRLgeXLr4he+3wp2FguN698DHn/iZu15D7pGsRpn7XVXkvdzDYioPoy2/5NAcDlmKcGC/v6Rpnizsb8/a9HEy/zcMgE0u/PPBHly3c1h3H1pptc8Zcdwphq2S3Bg8/5Pd4LDw1TD7w0C4Gc8ZbHzUdWHxady+qtekp7tMK6fMHJl167Fun/LZe5uJA1zyBS+RFwaN7vX5+8CX0cawPx5rYV/6vDf9qzPorbIm8+QWuP4+kbq5fXsGCmW8xug7wba/x4Zvc8NkRNr4Ba+/7RZPY8YHHd7krB/DZ0BGbWLxI9AsCtTmxEzrmcVdnY64+fOup7oxTrLB60e5b5nETPyw28lAexRo/PvT5Ubv+fKPdfYe8+93vPrv33nsXb30vrv2yzH/k2Z8LYsuX2Pl49tln1wtIeVHEKXewzeOD15RyIBb5UsNlL24iXmvjHuVcJw9+KYCjs545sf/lL39Z32j352P4ZUfKJWxjeIkZJ1jq8kBHSfCTQ9zpKXgd69Evn7BeCI+ueZiuK20+FLmyN/Fsf9GX43D1m8OPrr2sxgs/84r7cb+EKids+nNAsIjcK+VCjZ/84MU3bPuHHyJevtxD0pHbroXOCHCtkVjhwikW+NaVwIZZzmGHaw5eL9rZ01Xg+yVMv+CBFV9Y2gldccE2Z/86j+ItrsmVHlHjz4bYa2zkU6zigaXgQ9//rfKZz3zm7IMf/OCymRzWwIv82C/aXyRBe3pnYGdgZ2BnYGfgvyEDDg+9aO/lZIcxc8k8SJhXiIOHOboOINMmW7XDSgcwB0T2dDsQhW+8g4/awWj6g9GBM/wOh3Fh4wBHjCl88dGhyVxY+TBG4sKmeLJvzsGMXRhqZdrTnXZ4EtzCDl9MeJLmtMMsB/mh4xDoAJnwB6cHTON8ZcumHGUDD6/iaty6eBh1iGfP1piY8yEH1giGB7W+FRZnNmzjkC+1OcUczHJFX79xe8Uh22HdQwVbh3cPy/4puQdROrgo4vNNFIdk0uGZjgO0BxA6cMTRAzn/fOJEzJUTNV5quYXfWoZlrnjD4IPom1cSecOpnE6b7OgXG7uuhx4kjZUr7Tg3xr5rAz5c/uRMG3dFTAp98/GFqS2v8u3B94477riep9aKPw8mvhHnW7VetuECi59807EG8Zz54Eu/gpc2W/r4tU+Nw02XLaGrGKc7Mczr40yH4F2uioUv62ucvgc1NQlbm/7E4jPJvzobGPnPVj3t+LTHWx9c8g073ura8nBcwkwPbj7hdG0ZI+lrw+KzNYJh3pi56Te76ubgJHzwrxC6s5i3x43Z1zCstX0SbljqUz6ax48twd9LDbzhmFOzV7Tjpa9tjJ02XtmVk9bCnBySiUd/xmsuvzDF6Rp2L/ONzZfrP0P1d5YfeOCBs2eeeWZxt2f5+x/27q3V0qP69/h8I8JqPKDGJAYPAQ+hFXLjIWo0HkCTXAQ1ahS9jgfwxvfirXdqJGiMsQ2YRmIQL/ql/Oensr7rP/Zk9d6rQ++LBTWgVlWNGuM3DlXPM+up+fTs7jEdBDrIdNjedSkecZDjKxyHbB1KyEX3Dzy5FY83jx16iNU9Aa5rG5YDy9u3b6++fMDODzbcb/1mu/szbH6Wb9gwyxv/yrncuTb6DGDP5w1ZJeJDBRYfwmHHvczBER3xqX2Oiq25C1PNJ36S6Z6CDwvBYINNPqrLm3GxyzcfrGl4ZBA9Ba+CX07I5Qs+mWzD0+czu2yaIz7iF+s8SINXLuCVa+3k8p1fxmG5H7qW8OCKR8k3PLLxYZQvNh3Ambfs8YGfERzzcnZ2tg6DfcbgkYFF3hfk1rfDYOu7z6T2BbD4Zx6tMTKtWZ9H+PYzDnDf9773rS+O89/exU+m2BuYI/mUD8X8yYH44fCDT+nyzbXgS3/XhRiNq/moyAEMWO7tsLqW4JRrdsnQt77pyJ3r12cr38jzQc5hybl2BRY9frXe2HLNidubuGQ/9alPrWvXwTZM+bpz/LLMz7LIgxzCaT2RccAt//CQMTlmix98FzcfyLMT6ZMhS0dfQXhyZI3IJTn3FG/d+78DzINY3J+81W6PwV926MFhl7984zvMbPCLHPnWUzr4zYuaz2pyzVFx6MMtx/rklGIp9nwTkzZM88tv1xNduOznu1xoi59e/pSz5jM5NpO1FsxHvvn5E3k2Tm7agccOG30RR0ZpTuEo9F039PnsnmttwjaeL+bIPh2uop9dGOT5L1eo2I2ZN+Oui4ldvuXBv151ffU8Uk7o8Y0tmOKRZ31++Dxy7cBlGxYZX4zJWXmwzvD4guf+RZdPXQP0+cRn19K3vvWtw+OPP77iKRerc4U/+6D9CknaIjsDOwM7AzsDOwPXPQM2JPOgXTx4pxSvDYxxm5I2ZPg2ODYpl206yNocqdsY0bFpCRumzZLNUA85bRDxyGXPpgcW6kFZmw1y9FB2V+f4Z/qmbZzP04dk8GYha4x8sRZTtfH0s6mm2yaTvjinTWP5nl72yNHRnzybTJvAiF04+Gp9eZA79vIxeTW8NujTb/NiI25jm69w4GWjOYLRQXsPaPlMN31yNqrqOa6Nh8pNeh5UbbAdENkYk5N7m3pvv+HpK/zjm4cZDwRIHOIyJi8OksqNuG3+yyFZ9pFcIb5Fydt8n85Vsunzk93iLMfiIsNW+dTPTnrpyvF8aGGnBxA65gMmoqvAU2DwU01GWw0Pjywe3xR9ePlSzU8HGt5od6CQ3+Udpnn3z/r/9a9/XfwTc/x8ge1hp4et/OLHKZFV2IchXnqtHTr5n6w6HjxzzAYqv2HCxYOdja4T8vw0LifWUT5Wh0dXOSVyfEVk+cEfBWXTWBTPNWfNky2mZKqnXdjlEn/mAL4YFZSeWIshTDXd8NSIDjJWWYxzHh+RscuIbWu9dRVGNT9aj+aYPbV7OkrubvjTJl/Ku/x14EJXPM0/m8WvLj/Gpwxf9NPVhoU/cwijfMEKn2/4dPDFKRcOk7wR94Mf/GAduF8lthln7ebGAdR3vvOddVjITl+Ya/PTYZ1/keIA0xdmrtv86j5E1oFEv/Mrf113tfW13Yt9LrD/6KOPHm4c32rHd19wD3jjjTf+jy/b3KP5wBdz4o33ftqgXPKj3JY3Pipk+OzARzEPrkulHNChz0bFPODB4J++OXAvwxcPfZ8LtcUgF8bZoec+YD1q49EhpzaWXT6yTQ4evrjg8YEdvHTzC072xEE+Pf3WE9tR92uy8stm90hYdNhR+FSfPHuI/TD5Tobf+a5v3Jwp4fINJspX/Xzmi3zxkX1zz8d0YCrFDcO8WEeuC58xbPmc7bPWunzzzTfX5zdsuA7GYGsjOnznKz1tvlhr2taOL+fZcLBWHhyg+1chHU7ypfuwmOSJTThkYMqNot1Bu2tLjOTF5D7eNY/XGu5NWTw+qJFxpdjV4uugvTnwsxZiZlfNFl9g8Qeewmd5Ng8O2sX9wAMPLB8fe+yxiy/J2LZ2HLC7du8cD9y7h7SXhO2Ncl9IOCiGzxZsxA+FXLnhF8KTF306/KKPj2qLvf2mXPLXAas88s9946233rrwgb75KXZY4iXLTn0yfCPHX2Nym1/syrOaj3wlI3a+0UPaFePWFDw2UXLa8GHln1rpSyt65Mmkxx9tvlqr5BE+W+JiS4GfDfmxXuOR9WUMX2GxMeM3zg6deTDNDr/KERk+0FXTs3btr/OfTXp8MGds1adfkcvyaRxfnhV9Y+7nsOUWr3lkv4N2eaErB2EWI754YBqH4XrtwFwu+em66T/8JmPe3Us6aBcr2+mJW7xqNo1bm/ugXUY37QzsDOwM7AzsDOwM3DUDNhr/r4N2MhVA2m349G22bHJsWNRt+NJR47VBbDNG16YIGUP6cGyItMnG00bwbHpsyJCHKhsgZHNpfOLG45uxKJ/04+cjXvLGtOEgfugjGIhe4+E2ZlzbuBpe9owhscDATx9POz+K922Nt3021jh8G0IPMvIDj682ovJhbMYHZ/oVrpqeOfCAXPxtuPnBRg8mMG2QPQiah2LkF7tqhD/jPPWdTDrZZMPGWPHQCsMDgsP33nbKBl0xephxWIpaB415UGge1PKkZs8Gurllh07zQYbv5VfMxslF+vRRmPow+KOWU3L8UrJHx/gk42KmY0yZPsNpTrQjvjXP/Es3n8WJjOGJq3nJ/3wkp+0Bx9uAHdSZgw5Q+GfePdz1Vqxrkl38fLFm9Lt247MR5auaL3JAx9o6Xb/8lw8FVjWsxsTVHCRrXEzljC157CHOAx/ip3mDVa7o5OMSuuRPttVky2/2i61cBwHbeudL80E2gofi6csJ3DCN48OuwE1XG1+drLHG2YU3eafY9PKhOZzyC/j4hx1rTWmtn+qRFTN982xc7UEXr5zlU9izzjYZ+UgPjjYfyye98qJdbK0ffTryo2QXD1WXQzJ04CNxTqKP8F0z5tZhgDfiHLR/4AMfuMCceldps4vuHA/Gnn766fW2Kb986SkevrHrHuKLSfdL900+5JcxftHz0xmuYYds4jEHruMOPIrdQbVrX989wVuxzTF9//EpDPnng/uDa4td8+Ozgo8OOKefZBFcxZgiTvhw+IvXYSodBU9M2nOtwRGLaxnB4Dv5ePjkkHG5gMVXumo5wCPHnykXj13202XjMv+sdxjsyxE9/XBaW8uh4x9jeAi2Uh8+X5ovviKYzUlt8+zznH3U3Gp3DeLJLRvsouLJNh5M/qrpssUXPD6IjTy+uWdbG5GzFuhpwzAnvji/cTxs9xkDw2e1NSI2tYMv+ZJX8dMvb+wqbLKtkMMTEwzyrgPrtS9b8K1Vh7jZIien/AqfnM8FcmwUNxsOhx3cweaXcXpk9PlATszWr+usw2pyybNrfuSJPWP6csdun4EO/PFcy3TYgS9muGo2q4255txzHBDyab7Rrm99i99BuuvXYT5iS9xk7hzvM/0nkfyDb57Y4rNS3Nr8MkZX31zTEUfxkZ8YfYGn9oWLfR9d8+6e4csAL0vAQDBhZFc+tNmV1+5Bck8Wjz1FG89cyzOZsJLhJxkFZrjigG0c0StG+SYXlvjlQr89UHMetjocsq4ZerD0ybOpr61WyPBbmb61b8En0zqBoZDFm9dlmPDFxW5+q/GsL2uFfv5ps9P6hxPRk5ew1WKli29cXy6tM/lBxrX5Ss5atya0EZthuqbgoGyZP/mWB9c/G3wk617j+jfvMMQrF/qIHn98lolVW12brH8Z8uyzzx4+97nPLR3+3AvtN9rvJVtbdmdgZ2BnYGdgZ+CaZsCm4rKD9jYOxm1SFG18GxN1MmrjNjlqlJ4NU7rxl8CQabMDx2ZICYt+G0KbqXBtwE43U3iw2sSxG3b+GctvYzDSMWYz2ThbqL42HHI2XYhPcxwvm+qIzOxnF58ddmde9cngReQq9DyE2HzyB9GxOW0zTLe485OMwpfL4pu24Lax1TYv+co3pA8rX4unmv3mDS8dNT/ow1ano62Uaw9B4uyQxYbew7gNM//EaT740KbYgyW8GTe55sDYLNkUow23BxC6YfOX7swfXr7nLx1+6xvTpuNBma/eBj2dFzh8aU7o8EO8ijYMREas+vDlxvUBO9vWgIcLPuCp5aZ85t8CPMeEqyDy8ORBG8Fhh03tvugwD3woTmvPw7iHJjF5k46/cPjsAZl//GGvuNkgA59dMWvj0e+QIR16SC2fsM29Ohyy8pCs/ukagMGOPDsA1XbgEG526SHYlxH57CTDHn/E2rg+ysew8q08Jx8W+/kebrzmlY623Fm/zTNMOgoZmI3p88kYvr42bG0FmXs49PDyy1hy9Oobl1NzaS3pq/kGR5+8wj57CN88KnCNaXdvz4Y639T0yZZr461549rG4Rf7MnhuM6x41flFR4m0W5/ZhK0geGHidT2J3Tpz4PXCCy/ct4P25557bv2GMtsODvk9Y219O2DgA9/4r+9QR5+8a9OBlly5lnuDUZ+8+XPftb6QWjzhulZd+w7o6PPDGphrwf3C/fnO8eDOeJ/lZOS1NcGn8s72zD8ZRV6NwXGtFkfzo893Y6j1Z85aY2KwvsXPB3VrkK6izwYyLgZxwUd8Ma5fm552MvLODj3+wZQvfWN44qFXTvDYg6HwG6Y5EDeiExZdfXbUZOnr++zxrxq8HYrvM8m9zjj7MPStH/aRsXImPvdTPvOLP2zIH33jMPiI+KfIaTmmo+1zQzEG3+dJh9XyYQ05WHfoC7d89CaqOPmqOExjk6/Z1OajvtjZpYPKqTZca0PhOxJLuaNDXl/cDnnljo/mwJi6g0D91gFd15O1jl8OfD66rvhc4a/r0N7Gvo7PxUCXf3xVXFv2Q3LRgSy+nDkgJ0tHzEgb3o3jlxjmX04+9rGPXfwLtdaeuPjq52G84U/fvyLw5bn4jTl8tG7kormmB5MMgmdeXSNiULJBD05rhA1tOUPWAuJz81As7CliZXMWMvIrd9Y3HLmXZwSLPGLPvck438ylos0Pctkh3/rHFyefG89v+DDUxUbeGiAPG+G1PvD4rcBFyYoFn6y5Q7DSxw/HWHz6ij7M/O0641v5Zv8yv+DBEEs+6MeH2Rg7XSPtn/TdJ/hnTbAthnRg4it4SD6tW/14+rDIda3xnSwiJ+euBXPEHrvmlQyf8fnlWukZgl45Jet+5x7SeoBtjbVOW7Pd+9h88MEHDz/+8Y8PTz31FPFlazWu+GcftF8xUVtsZ2BnYGdgZ2Bn4DpnwEbrsoN2mxbUZqyN1ikvOZuvNoxqem30GmtzBUshZ9NivA1fbbhh2xi1KQs7ebUHDBvnNlfL8eOf7Khh2HTBt3lD+G0U9bORv+TamJJD2afLtj4/GyejjZeMuni0lYkbrzp99sNlqw2imqw3FG0ebUjDs1nU72FELG10880YGb7Hg3dKbCpIbsyVPn25pk+Pj4qxU0w8ukgO+J7MYo4/ZPlLhg45bQ9sHso7pO5gx8OIOeVLB0La8mZzXO74KD/4MNkx1pwkx5VpnxyZ1pUxfqmLm0xt+vD5JOceDsjLl0MDsTiQIl9ssLRRODDJehgoD/HIwRMLO2yUBzpILjw80AmbDsouXfKNk1UiY+Yb8ZE8ynfxmQ8HAx7285W/XYvy6tqUe20HeD3Q6MtrD+yw2WFXKS/a1jRMMYTFjwjWLHSaNw9HZPXpkyvOdOBkkyxbSFue6WYvv8IIm1zYZNLPBvn48ZbQuR1tfGtdPuHBzo6HPrmUL/6QzaY5hJ2O9eBAxVwg43TSm+1w2JKDCB+pyc91iM+vfCu27OW3NSMeawXxUZlysM1v80oum9ooH+ObR3lIh/3G8NhXtBuTm+TfRn37r3H5oV8OwiJRbK0P/eLr2hED0g+rHCcr5j7r3L86aPdmHJl3QnxBfvLle9/73sUb7a4xxBcy4tF2jSrsyaFibvhFxlyZM216rk/XQrkO02eONZbf9PEQnlz3JixdvHxgw5uq7PoMklf+esuXPXkjb52o9eGFrc83+nwoRjJw+G9M3VyYd2sMHh7iT9h8aE3Sg996IaNM3+i3lrMPb649thT87LIBX2GTrtz5PWr5g8muw2MHpu7h9MNmlx795pFvxunVTkaNxMOON8bbM+B7O1jejcMUo777tLXBv2zBEoc8mlM2jStRvurDNCYmtssvvlitgYcffnh9rptHB9VsicO6cK/jn4N2dumQIQuPf/2MCXvssAd/UvbxzQ/f4WsjMSv6/GcL0ZuFTXpsyoF7tDfj8fnW4TgceLC06biG2JcDtZ+zMLfmC5E1Zm9gLYgTLr658GU1Mgd41rnryOevtd51y561I8bmRQ07OTUc6+DG8eDdT+m4H4lBgUmfXf75uRiH7jD8bIvfyXfYLv/lUo3kS/7E2Jyyj5cfPo/dG+jjK2KiQ2auWZjGEDk6U1a7NU/X+hGD//DW/Mg9Wz47zQlZckiu6rOpsIGndD3xC+VbawKPfThkEfvG+YngGIdbfMbzQV0/O8XEH+P4ChvFP30hP8eW4XPb+Wrc/CnTTraaA3LG6aFssycWlE90ZlywrVk1GQRPTuxRxQOvnGTLOB4sdsm29uecud+Rs9Zcf7DoktVGMOTbGofDD3ps0822PMJRhykX+Q2DbTL81K/QYde966c//en6+ZhsLyeu+GcftF8xUVtsZ2BnYGdgZ2Bn4DpnwCbllVdeObz44otr8y8WPBuLSN9GxEYGtYHTTg6P3NzQJWcD06bHxggOPPI2+W3Q9JHNzdwIxQ9PnR1YHjxspm2C9G2eYLCB2KZj06UmVzzJk4PpAYEcHZstm7o2fGSjsPDC4ydc9qesNn/yiYw2PfkrvnTCUEflj382esY8rHqg8HAsX/ys5INNJhmbT/hskfWgBxPBmrayqU6HTbbp0PcQAxulbyxM9pE+OTJ4cyMeP9t8My631kTz7UGyQwIY+h6oxEXWHDmYcMAsfj7La/me/XLNJhlzUK6Ww8c/5Iupmgxb7PILpUdGmz3x8t2Dt4dWbT55i41tfLXY4ZSfmTdYiAzZZFpzxWVO+CMfjfHFevCAOTHFidiEaz3Q1w7fWPOtDVPfnJAPDw4f8cTDB23FnEziK5JrB4Id4uB56HbtWkuITaU5UrNtvTmsMM9da/zK1+RhaMNgr0MOfH506E5GLGJoftVdj/HpkTOWLf5MH8OmW6zldPqFp9CFT1Y9iXxfIsHLJr7DDWvcfY6eMbUy4xG39eAnScxHRK5Yu0fwAU61+UZ41enIA365EIcSX166P9Dlk3G+KPoVfO1smydzzEd42VaXs+yKzzqQBzow8peM8XjaCF8+m6Pkpz9kkDiaG+N85QM+3/DQqZ/xyMOCEY4x+u4FsFwvDtq9EXc/fjrGdfX8889fHIhZ5/zMx2IrXnmWQ9ciHt8Qv7qW8eRJDsWhVmBZo65zbTJittb0tfHcf3zG8IWtrj0HIO9973vXZ5d14R7kcPDO8e12NVk+hWet4sHkN1+Md39lU59vDmf55cBSrvHpNPfaCFY1HgwFmR968bILg6yCp69uXeDzLWxYcCJzQVaRI33xe/vW72b7IhnPtWA+HW56c7i8W+vGXWNizG82+ZL/bJJjQyy12Xr3u9+9csMHcg58fVYg+YJj3syDtrkxD+rmNXv8ikcWH7GJX+za7iv8KD/Wz43jIe/NmzfXF4J8c7hsrtl3r3N9O2C2Luja6/iZIutIn03/H4h8W7PywqY+O+WH7Jwj+t07+Cuv+T/nnJ7YFW0+0vMfgqrFYB2bC/Y72IPfWpcj+NYv4h+euHyezfUj/3LgC1K/FS3n4hC///xTv894eOTZxLfPcD1oFxufkfzji4NtOTZmntiTU2vQ+lP7eZk+B+h7o50PMP7whz8cXnvttXXfKDZxWLPyjeRQXOx5i5gdhJd/Psf40ZrNH/NEXp74rW1ukpNXbfLGtbPLBr514N5qfuS+z033Ij7QU8iGo269whQb2Xj6SM7p8rMc8a9Y4KD0YRlHsMRDjz4cvPzQZlM86RujA6d1ZByGOOWYjjElwoMRPn0EzxyU43mdkNE3xr+pQ2/2ycFXi0Ne+EJXaW3yVdva1CYvH9aMAoM//KVnzsjSYc+4mn129Iu1eVBbF3CT82WV5wWYxrunurf4jGBbm0456rNPnlxfdIyzyT/YZMUB98Mf/vDhZz/72T5ol7BNOwM7AzsDOwM7AzsDl2fA5uGyg3abIpscmwybFXLaNhoIT2kzZFzfhstGsHEblMgGziYKThuY3sqxeYGhsGFDZaPDh2yrYbABXx910G7DC5tOfrJfaYObffLiZDsZ/vEfNh9tusiFN2PhQ1jk0yGLr6/Nn0hfXG069dvYpjd1YIRlc803vuJ5KwnPATNMfvK33ObT3JTjya0N5/Qr/+5W2xDLO9vs2Ijyoc1sPuMhduTH+CkZu4zwyTcH9NkTszevbKDZ8dBrU+4hl19i9kDlYYpvfJADpRi16Ub4cw7ye47TQWzIGT88CHRtJKumjy8GeSLHR3NrbrzRbgxPLTZjrUk8xC9+hlV+jcHlS3HR9YAgH3xrPXqIcIAid3Dh0TE+cwqrPjvkER3Y1g0io5+PePxkV5wOtvhm3hRy8qE0H+Lp913jWUMOBlpL9PiQL/Tx+C//rvPmkP3k6ZR/4/iKvLs2+I/PljyQPaX0+YnoIjniH304+rDDyDb55sV487pAjn/oisvYnOPG1cY6uIGv4CkdQHlI5IsxNX+1w+cHHx2qWRN02SWT3ekru/ltvmEq8cOGT589tbjFyFby2mwaQ+xaD9ZGc2pM4RdseK5f8wsXRnZgsEsejzxfrZ8e1OOpleYtjHTnfZztU5rzFUbzlQ/pwBQnG2K/DI/s9K1cqF2z/z8O2r1tC1+OmpN8rhYLf+XQgZ++eafnejZfzSsdWBWYYua/ddqcwDBv9ODgd6jhEMT10yEZXYd77uXsknWw6yc5XKvWAf/Kr7lQ8KyV2nD610H8NOYzrXtS9yE+t2aaqzkvrV/6+PxvzRQvHxvXhtcaETPfpgwcvElyxCf4xsnz1We4L1scepIxLz4r/FyH+eEDW9YvXdeS3ODxU5GzfGUXD5aCyPvccfjkfq2P5NznJl244vK5YT7ES47PcgSL3/gzfjjxtfNJmy/0WlNi5itf3v/+9x8+8YlPXKwD8cP15Y+DWHPJN58ZMB1Au6e57uHIk/XOtjzylb1yC0ub/eZInNYiDPrG1XyST7h4cOTa+oQrZmuN7t/+9rdV6zuUJuNa6KC9tS5+PsDGk0PYrgNxqfOvebUXth76SR3+it+b5F1b+SzmDtr5IqdsyJuYxBDB9y/PxMEXJC4H674scLAv/2pvg1sL7PDfQbsvfth/+eWXD7du3br4QqzciRF2+VPDF4fa/CG1z2BrjC45fuLzkQ3zpa/GMy/J9PlvXKHfui+XcmJe3B/4xZZ8001v5iZstrRhilsdic2YdQyDn82nMfJR+vp8m2MwrJfuA2SzA1MMdGBqIzpsyZe5I69vjpqn1hidYmg++Cu2aYctcmyVP+PasBV5NwdK+aADixweG8bNcdc4n/XdZ5B4tZNXi8N8uKfxhY/0ybmW8PhDFrFJhk908Nklh+DxhYziGvL5kv/y40tFny/suvbc4+SUvLjYVVD5DHcxz//IMX/2QfvMym7vDOwM7AzsDOwM7AxcmgGbjFdfffXwi1/84uLw1WbCZsaGKmpDYqxNWzwycGxs2qg1hq9tc2JjaONFpvE2TGq45FH247HLH7UNVhs0smTaHJGxIbOJaqOWrfTYsolqMwlTKQbj4cLLLh4shTxSZ0c/v8Ojyz8F4eMhsjaI7E68ZNnJF/L818+mhysbVJvP/GyDTb7ck7H5ReaBXYfS4s+X8r6ELvlDDwY5OuygbBSXsWIJE08bhjFxaBdn5qyLDkqsk+bLBtzm2cNgueS7OdcXjxwUT/4Zy5fa+nzRJ58OH5rXxvDkG5+Oos+vMOKlC18c5oa/1jx/FJt8D8Jhqekh7QiGkq2ZN9jJ8sPDARvadMRjbtmBTRcOHeMIn7xagWluyfGTHPl08MmgMPDosK2woy/u/nNE8nJZ7YCDbx141/cA5HrN7mX+whBb9hfo8Q8fySPrwJqwNsnpe6jiG2KjMX0y/MtH/daOGsE2zo6cKcbYae3AtP4QDP0wF/P4R55h4JOJkmPHderQpIdUNsqLOOTOGsIXGzt8gQsfrtq1421CviI8dshmL/tqWMbkybgCEy/MMGZsZOio2WJXwaNnzeDr0yeHskFGuziyRUZ79tNR80vu86W+XOFnyzibdFobxcqGMbJdU+wheMgYIqcYV5srOsbzh1xt8c5+cdCh6xq53wft/mNVP+vgWrSOyn3rV9wKXxR5ct3xxXoTV3raxS6mipjoNqfak+hltzm1Vh1qOPBy3cNV2HWwR6f14uDXOqcbkRUDns9sGEicPiumn2LiE8x8KX7XpzjIs5d/xsOAS18hW3xqa2IWPDbkInsTB1Z5o0c+W+l2nT700EPreqXjkNkhuwNW80On64odeXMgG6aY5bbDYzbFxy/+kFObW4ePsIwhuZRv/sAk4xrCo5e/MPXVdMwpzGJq3VhffQ7Dp289dICmT/fs7Oxw8+bN9RvhDnv5Kzb3NrFYL9q+rPFlAxK3Q9TWCFv8tAaM+eyxPnzu0eUbH9nURnRg4snBjIuMQkZOrQ8yYoNj/wH/pZdeWjky5iCZ7/wSo9zCoMsGn/CsVfHB5bMcs6PALJ8Ow32h4O39DsZ9meAtejZgwSHfvU4M4rfXUM+YioOP/ONzcZrPfBejzx22HSCqjSFrUE7FY27+/e9/r8N2X4hYCz6TzIk5ay2xwVeHnWzyGZ42v2Eq1krrk618027u6GqXP350H5VnMcojGfhybU/Enlyw0ZqEgaewpY9O7dKFDZcMH9l0/bCjLb7ymQ/yJAdk6PBDLlHzYr7lAL6Cz575PfWPX7Bcm9YSIkPfGlBg6MOVG/Iw9dXk46nNNSyy8MkocOiIyTg9dbL6/Oxa1xejIr905UsuyNh/sKHow6WfHlm6xps3OYjPt64VbXrFqRYL38y3uYANx5ozT+aIjvXpnuq6n+vNmAKHHpp2xFFuYLPFX/cWY74o9P+iPPHEExe6q3HFP/unY66YqC22M7AzsDOwM7AzcJ0zYLPhLZ1f/epXaxNhMzE3gTYfqE2Jmkz8NjT4bcxsXGygUHJtVmyKbI7o2eTAUittDOlp01Vgq/lFXp8NmOSq52avDbaNG4Lfxo+8zRosPPW0l8/sKHQj7amPT58OjDaK2lFj9avJKsWXXeP5K07tiZed8sx+BAvBUsTXRldf3sl7KGA73Gk7rFnzwfyGe2pHHxbs6Q8MfePNE38UfDHANWZteFj00Gccj789SPMBTge0xZDvxrRbJ/mqNlZO9flaHsmj8Iuj9YLPF2SMv3iouIxrGy/n+Y3vYckm3c8B0JV7dslP4huauPD05Uo+unbYlCf+GIfnGrC2W1f53rzDz9fy0nywA6P8TIz8USMY/FGXC20PSw4KPOzAKVf0+OC69AAFW9uDkDfO1Pymkw905Aeuku3lwPkfvPLjAaiHT+1ybByd5hu2wmZl8mAr/Bar4t5l3cpzuWZTTPlnfNqa2MayOeX4yI789dANHy798tWBmn5YYmNbn48OnzoUMIayBct8lTO+hNNcFgfZCI/sjKu1Rc88d28v39mAMTGzBw8fTmuoXGVXn5z5pKdPR62voDn3sMjIUfFpW1+KGBAZvlv/yeFVyOQPHspXegoKD4a2uOnFJ0OPvDH3hft90P7d7353vflqfYqHDevIvPBL/HPNaFtb1gk5Mg6GrB3rsBwWt3jIqGd+yInTWjUuPvrWQnl1qNYb7ubJgR1Z90T6DgH5Qab54ZvrqvlV67OTD/IpXjWf2HZ9OABkx7UgfuP00zMf+go/yNGFMfnkTqnYYaHypN2YGsGWG0U7+8bLU2vBQalxh0LevnRPdH+USzIKPQewDpPYRfLhZ2YcdJKHAVvMyZDTFic8NZJreUJwzT85OUCw+C7vyekjeWUHkWMPHn/4af5bS2LzpYp5huOt6ccee+zizW258VkuBge4MBSfl/jw+EzO2/7ml02+WmOtAbKtM2N8QvwvFjLiVJofMvJCXnzyyL48wDHmX9Rp3759e8VpjKyab613Ms1v92HXF/swrc/8pY/HHj156l/uuR5gO2h//fXX1zXKBjl5lgPFdYxv/uRYXMVhrDyZK4U+YhcO4i8ffW777el+t52uGOQ4Mkf/+Mc/1ue1XPoixE/4+C191zWfxQjTlxPlg0+KcfG6J/BBDsjOwhY5Y3w2FsGQb7zmjyw7xsiL21iYxZ6OvpjMKzl+yGX2jFunrXm2rXc5gsGOOcRjl31rzNp13zIfsMyHLy7Ck5ferGaTHuKHeYMt52qkTdeXUa4dPuvzlS35N4fyqfCLP2LCD3+BHf/IG7/ZIwcfqfs8MC5OdsRh/vHo0uMDO4iOHPFFkQN2yc+XLeDD6l7MP741R10/1rzYWpeuf3HJpVKs7PIfpmcFeWaTXzeOP0mF5EYerVf3hOZSXOTEop0vMNnQ5y/85pe8Ym5hqf2riWeeeebw+c9/ftkrl6tzhT/7oP0KSdoiOwM7AzsDOwM7A9c9AzYj86DdZqNN0Nw8tPkTb3w8Gxa1jYkNWhszfHI2MDZIbarwbYpscuhUayt02uzM3OJPuzY+7PIXhjZbFTbnw3qbKtjZgk8/3PptUMm1yYJfDLDmQ0L6anbbsOX/tBePjM0fW2y00SuXbODb7OHBbl5g6PMHL/vk6CFjShhqNm1q6cjN9MsYgoFgKvDIq83b9IGcfuPTp3yhN/3TFpMNu7aNsgMX68b6UWyg+Y7o89kG14Mcn23G+X8ZweSPeLQVbXrswjaOj5f/+og9uWpd1xcPeWPqWcgoeBE82M2Bh05xmHNY/FfI0MObvugryDi7cmYOeqhIzxh7sGHypfzCNCZ2dVitD/hiVYzlD741yWeyHqI8DNYnq802IhN+Ntj0kMgXPHPNDjkFuY48rDtA8XDEfjVsMYmHrctIjmArdPkMu4c+OuXWtRnlQ/r8p4+KyRi78l2s1ip/ur+oxeChsJhgtB7w8kvNjpj4Z67ox8+/7HcvmxjWMgzEPwVPySZ9uTcWsUEGVnw1LEX+XHut+/RmTRcGLLZaj9pKayh8svk6cbRhoXD4nG/0FES/da0mQycKR002DG0P6XJIT27lXDuf+Cluc6sdFl/YwONHmHitNTLFmZ5agV8M2aAbboer9+s32u8cf0P56aefXm+bsiFmB28O7tzvikXO8pF/1l+5MEbHm4hqc1u8YiiP9Mxz16N1Zv07IG4dw3Iw1P2iXKjNSV+sNZ+urw4Iuz84uPGfYbo3uN/LuzHxwTGXYuErfWN8puezgh3j/JQDBYY4xA3DuLq54TeSkxkLHrvslBfjsNQITv3mHP8UxxgsNTt8EgP/yrN8dsBEVgzNobeoHYjmCzkHnR0mkW+OYfM3e3DomTPk4K88Nad0KnBcN2TExgefY3yAC8vceKOZz+aTLQdffqZGDcs9U9/PlJCp757PBzxrorec5aH8sguTbfny2UAekZm5qm1cPGzT52PzLAftUWHQgYtnDbJDH7+DPjpnZ2crdjpkjFmf1lKfNfRg8V9hH8mjvlj5L39zvcOTS/kyt64d/iI5Mr+w5AGxIXYFGYPn2lXMDRk5UNifB9v6fGajebf+2PUlTi868MuBIp+KQT67b6jlwO+2+09T+QrX/ch65JO4kZq/cBAc9sPlszlQEGy5IlNOzYM2XbW48fiJ8NhonE05a771xev+a18iTrLuXX4exzonY576XNZnhw1Y+sWAl304YjcOly/uvx/60IfW9SYeL1mw4/C3z/rwi00czTM7bMOBWT6tTT7C5LOCh+AhvpUPfZiu+/YFsI2j2nLNlvVpjD2H39YGPT7yh+/sKeLmi6LNvrXsGjenyJywX/7Sl69iNEd0XENw8MOnr03eGILFP77yOVvm1ksbcs0XOGThk9GXLz7AguneI15rg32xitt+SJt98fXZIk/m1f+L8pWvfGX5A/deaB+030u2tuzOwM7AzsDOwM7ANc2AzcjpQbtNR5uwu4VlY0G3zZONnU1OB6X4Nig2LjY18JK3cTOObG7wK21Y9G3q9OHY3OCxg5IPVz+/baBspmyObKTSpQePHGw6sCfRbZwMe+rkwzjFzX78GQcMm1S28BV29NnS56N2REeObA7ZNpZs2GEYD5cf+agdThj6ZM2Lmkz62WYnX8kbV/hjLNwph6dfoafgo/BgmHM1+zbKHjBthNvcasMxzi4cBy7eBkIewGy8s0EmebVcVsLgh00zbJT89FubX+ZK0YfNXzjsaaPGyFfwEFnxWgvmiE6HI+zCFIOHdeP6SnrqqDF6rhvXlwcMmNkjK94eYPjuYScccs0FvNqtP3064kBslZ/8gg8zGTqV7KTTXFu73o6TczjmGo8/dNRy5KDGW5kOA+h6UGKPjlqs/KMTNl2FTIV98qiHqeTw8cggOijftZMVV322+a9WHIrxhd896HYoEBYcMnDwzLHrjQ/sa9NxAGTO4nfvWMaPf/AVpG6+9ItdDU9hT1xqvpor42zyQa2voJlPstYW3UpyS/j4h/18FZ/1YE2W/2ySJyffCB5irxxVswun+WWTLn+zpe16FyM99siFMdvssMfXri/6fFHCIEcPFr8n8QVfvvhADmb5NKZdXGyh/GCvucLLTjr3+6DdT418+9vfXgftfBKna81hknsqXn7IWetBfvKd/3QctDmss+aLj86cE/dROcNX+5x14AYrPIcm4iTLHjJmHt3LfWnqGoAh3+5pDpOsBbaMO5SC64CD/8YUOnTluYNFGNavewhdPrGLLxZj5s015t7bOoArTmMRPb6yg5Kx1hV9MvxUEF9g0zMeHjklMtY6ostGb6vS0edbB0F8I29M2xw5tDavcuse8sYbb6wcwSPHFzj0xN56du/tWuOHPMhj2Op8VyNY+YLnc8zPYfAZrnz7mRtriRyb3ma9cXyz1NzQMa/6fose6VubfoakQ8e+fAmD/+VOm2/IvM6cs6vImVisfXripqM/D9rxrbX2VXTJWx9yyn8xW6c+h2DKs88xcdO35vntLW5yZPilbv7Lnz7f+EKGnvy4Nlqb1XLCBj+sJX5Z//4zVNQ6gGlMXhS2rEv65kcsePyETd41xD++iE9BXcv06VlfXbcwvJHtnjCJ7eJxjXp+8PM27kPy8d///nddg+Igy76CmscZA5512RyIyZw5rOdnMYqHnjWilg88hYx1UWzpkIFrztkRr7VrDtyjyNtX8tn8kJF7xZgcVLpPFBM+fHz+KPIth+zbK/hZKLFZZ76IkCNxwaePwqeD4DWmDaeDdvZa03JkPmHJO78QXX7od62UJ3wxkjHOplJM1pAiFnmTK/NIr1jZF0/XlXpel+J1+E0nO3T1xZP+vF5cV/LG33wWkzngC1lxNgaPf54dzKXr2RjbrjF7SnG1tuTPGhcnX2GXN/cvdqwNGOKVczU7xsRr3mDDePDBBw8//OEPD1/96ldXzpu71bnCn33QfoUkbZGdgZ2BnYGdgZ2B654BG6F3ctAubpsmmxO1DY3NrA2TzQ6eDZJNimJzgtijo0Y2P2T1YbRhmX26NkDx1ApKvhqP3TZR6uyTgZUvU4cePt0oO9PuZTGRJ0PfxlcNOx/FZ8NGF78ipsnLrjyQtzmWq/ISvnhg0MVrHC/K9+YmPpn8o0+OrXwlZzwZ/FOMsPk/5aYeHSXc4rQ+bGDNuzEbYMVG2ZiaPz1M5Y9NrgMU/tso90DegwP+LHzJJjxj/LE25ctYa4ofxhEZmHKPT1a/MXw8ZNwY/OYAD8HnIxt0PHiw3bh16YGDXLx8VuMp/IENx1qQI3Vxk0Vqa08x1jUWzhI6/oEX5swXnjjUsIylq6/ATZfsjDsfxGN9qsl7A7K4zbOH+K55WPz18OLwzcOMOB0KaMsRH+SPLWP5km9yUzHGLt/llj4iS5et8k0HlQPtcIpdXwzsqxX+8wWWhzU1Wx4E6SH2yo1+PqsRv6zhHpTzmY/WjPwh/a71YkuWjfw1Rhaxy0+1gvgYTnkrbniIrHmJyo9++aAbkbfGXK/x6WSTvfIfr/y0htTK/LyARbdrhz0+whKHWLOXL+HGFz8da0jd3JunMIofBv/S1acvFroK0p9+JwMnmSV4/MPHSr7RpaN2//PTMS+88MLhgx/84MW6Sf+qdT7fOb5B+uyzz67faIcvTgckDgvcL8jlv1j5JA8dvPEVuT47aLEW6JSnmUPXgwKXDn1vharNHVn65rU8lWN2HfA6oHUNoOzbP5CH4ZATpnu+eeSH2MLpOukwBJ9NMcF3bdKBZ40WD/vyw4ZxeuznAxvInMYrf+Kx5hGeOPmByOu3FuQOwWCHPFvy1r2ZL/T12c0OjPDSbaw5kitY4nXg21onlw/s9XnKH/KtQXKuKXkwps+WgmqrycDU7osYuPTMoc9mtRisOb9f7O11awnx1aG7w2oy+fTPf/5zzTE/zNm852e/uRGLPImXL/nLrtK8qpH5RtaBzxN8GHxhXx5gWAtqfAd3YiJLL3/kzSGgAz01P4w5ODV/rbnmAMbMGz/w2HLPh8EeH9Tw+St3HVDKhzi7DmDwHw6+uj7/+WRtOHiEhQdXvs2f6wiWuPStVRj0FGtb/N0z+CYGP/NjzskbV+DDlSef2964/89//rPyIQfebvfFeb7SbZ3xOZ/wzS9f2ffZKgYkp/xlo+sQn05rEb4Cj6/4YbZ+jLsHdh+Ub2vx7OxsrU/yDlr9/xZyzpbaXBnjWzbY0UbwG1Nnm4x7knF1/ym5eNzP2ueI624Ez9xl15qQd+sWPl1r3lzyUW7zt3yS0zbOF/bvfkEAAEAASURBVLrmGaaC1zjfI/s1Bc+cyBtfIrquV7YVOPzhAzx9dnz+8EFfoWfuxeaa4a+6HLJFp3sSe2T4obhujIkHFmzr0HqRHz6yjyc3rnl9svzpOuML3OzwnWx4dMiLW87o89O6tk/1uYW80e7/RXnyySdXH+690D5ov5dsbdmdgZ2BnYGdgZ2Ba5oBG513ctDeZtAGsIeWNnP6bbJsXBSbJZsktc0LHrIZtbEhn06bFjYivPht2OpnI1k1OzZINlTq+nyAe6pz2p/24OmTsTGDqX0Z4U9dtirx9cVqc6rot3nUlj+5VLSNpdvbI+IJl83a+RSmOoJBL1017B5+kqsmD5vMZThyMfOQj/ky5zQcG2NvXfW2m42xOPnQOjJfHrKaNxtjcdvYozb18PM9m+r4ZPmEJ1bt1g5/4KB0a5OxJsWt8Atp29AboxMevjbMsNTw8el7kGguYZUbcvlC3vpE+FOG/zMu45G2wlY+9aAWj6x28ZDXVpcb+D1U4eur+dd1k0/k5AlG2ORg9UBE1vySQ+bZvCvx+STuHrzMuUMBb/J5MGWn/Ddf2VMXBz+yDxOeglcOipPOJOMIhna5Lv5kjZtH+mSsf7XSXBur0NPmf3nTlx/rWUkvG8b4TU4ulOk/+dYIf2C3pvlhbSqITbwOp7IRXnWyct1cl0s1yhbs5j0eX8uBdn28dFfj+IdPMOa9TRuJle68x7LBT2PihtmcZqt86MPnH5k5//RgwCZvvFzSmdR1ym72jMPnD/yuk3yZ+vlMly16dMRtzGemw0gH7d7yZeedEFzkrVL/jN1hFztilFOFn/DZZd+BAz0yihyVd/IOOzq4ICc+tTisIwcOxS9vDuIckDncINfaJs9u8+26KWfk2ITHrw5G+CNnirb7Pf+0+aHO13zr+tE3b+ySK+/sd/2RUZofudMuB/pyQKe5E0N6/Bc7ypZruPyGq6+g9GG655l7ex6y4nOoJyb2EL7CJt3WqHE8eXQIxL6C77NSDMmEwSZ/8z9f9BF94+Tll768qfUVOhU67t3WkLlD+SgGB8gOoD796U8fHnjggdWHIW/8psemNeLA8datW+vNU7pKh4fNaT6xUe7KFZ9hmWt4+U0WiYu+HHtjmQx5uZOX5MjyD5+PiA3zKqd8Ie/acV10cJqMXLV+zQObfOMPvr45l/Py2qEfXO3uh2LkC5/lh6445jzBwSdbPvHIWbti0BYfLDbELgcwrTe+Kfykwz49fnrLmx6CYYx9bT8j477l4J19PDHC9S8SfOHi0PIvf/nLmlsHk8VsnvgJT+GTIr/43XusIX38ZMSrdK2JT1ywyYmFLwqa65lMeTHmiwT3LOvUvwwx7i3zN998c/luzt1PzQE/kPjlhF3YCvsKKkZrgi/0+CtO+1164pcrMtp0+JsN8hGeuS1OX1iJIWIDBqxyU77gZr8x8ubLHDeGp8ixWkzs2Zv3xUrzLhflGX66/KcnTvnRxpOX+nzIJ/4bh6Vmj0/k2RJj9zJ+ipE+e/H1y0s6bDUfPovoZkO7wib9av7wmb7PPbrG2KVPFsmz68Yhu88/tnxB7v9F+fKXv7xk6N0L7YP2e8nWlt0Z2BnYGdgZ2Bm4phmwCXknB+1tsGwkbbSQDZDNj2IctQGxWbJhsbGzUWkTY0PZAwZ+OvTSnRsl4/DxItg2c5Exutlk18bJhlF74rUJbAMJY47z0xg8bfo9ZGbvtM7v+OHlFxy5ym98MRW/jZ8HPw8++IgOXJs9mz7taQeGnKuj2aYfBr3iZrMy9dIlNwkfr5zCnJQeHn/Ema/seJB7z3vec7hx/KfkrRd1Ppgnm1mHrW3wxcxetuCxU87YoZ89fEU/23TlWyGLzxaCpZAJ16ZfG8a0w1frPXvZkJP08YzjsaNvTulqI/jWPWx+iM+1MXVmDPyuT3bKsRXBh80e4pMSGS/f+ZKMvthm3NpssWm8Mh+uwiYnFg+r/A3HuDY/Pdyae4dNxWNMnujT9eDuP4HzwEsmOdhkUfMarloc5QWO0hyns5TP/2R38vKDr4q+WGBPHjt4MLJNdpK+fJkP+RIHDOvaoYECOz2yfHZ/IUtOCb91QgfBImeu1ah50aZHx/WUDhvs8T27ycKjIzZrsQddOviwPRir9ZExhR2+ImOwlcbLFT/d25TWqPwYFzvdrgVtxRh8MSj6fGycTTwEXxz6cCK+dDgBi76+wsdJ+jDUzXPjbJZ3vOyGoe/6Yi87xvhV3qx9B+z+6fn9OGj3Rqbfe/fzB2zL0WkM+uaug59yaQ124C0u8+IezVckfrpy6aDIvVgs5kwuHFh5A7I8wHPYZi7llgy7Puc7VGFDfthlE6Yv1hzUsWMs2+wrrS86MPlHly1jeArdivHudWHi8UNM5PVdH+G6J9PJprjCbm3Bsnbl0AEQotN6Nk6vnNA3Jgfy77CPffkUM4zWIX6+0WPDmLzg8zeZ2uyQIcs2PxU+wUD4MPTpi6/rUD874cCkU6GnOPSD7fMZBh4/6Htj/ZOf/OThC1/4wuGRRx5Zb1eTyW+ySK79bMwrr7yyDoC7TvCtH2uH3rQtdw7D+BemudIWF/vlhQ26xmC6Ptyb+C1mfhgTI571gG9N02OfH+6BZMRH3tz5AoFd/NYq2d4Yx0fGzKu+A3o2FfZau3DZhYenyIU1wWfk8M/hs/UjPgRTLqwjvkfwyajFwRYb4vCGuTfwHX4bK19ihg1Hjl371o1xcq09OB/5yEcOjz766PrXCvamiC/ilAP7Ul+O//73vz/86U9/WjHIG4LHL3bEa17MCXzED/m1vsQAl25rQV+OjdHnjxwbbx7glONiNCYe+HThu+d+/OMfP9iHsGGv0f9zIA4/1SNn5BF9c9Mc6NdmB4aaDn9az/TpkScjVnKnlK/x6fUCEl3/SgFOOYEPS06RmI1lu37ybMu7Yixf+GsOmhsx+RLCHg0+P9TWI2ztYmO3+KwF69h6i4xlCz5fxKmwb/74I04xtlatH/dF+mzRY9dnBB/okzcOg164+q6J1kc+GhertcAXujAUeXV9WRcdtFubfKDDV7U1bn0bY9Maeu655w5PPPHECpmNe6F90H4v2dqyOwM7AzsDOwM7A9c0AzZDpwftNheXbRzIVmxqbFI6MBO+jZpirI0WeWSDY8Nis2QsfBg2RjbCKN3G1WEY17ZBUicDm8+TjOEZs2FT21TyoTHjCiwbOiWKR2/iw4KDpg/1q+eYtsJvtuHps82mdhtN+nLooccGduqQt+FzMECn+LXlVInwpgw79NMhJ9dkaquNp6tPZ5JxPDHMTTeZqReOuMwx38TibRlvhamLLZ9gyq1NtQMUc8WGmNXZCJt+60WtsJfNYksePszypK9NjowcweBvD2bGm5tsTbvG020ujdOJr4ZJH5HT96BBVj49TCjNEVxjzRt+15Zc8B3lizY7bPCdfbrKJLGSoccGSqZY8cg0b2yzmbxxY2xMHvv88kBDB8HGb204lPPWlPUtHhj81UZ0Pdg5ZPc7m/xg27wZgxWFyweFreySbf1MnXTvVpOFk7/kzAseXyZfm121cXLNCx5SNx/lnG8e5Kx1sU3/jClsuVd2v4RPVhEjXDLyBjfsclpu+MMW3+LBgqGeBFM85PhQLouRDfhK8cHQJivfk9LDIwfXfLuvKdYQvpq+WGGVA/rpFjd5hXzx0MFDfEPG8IwpxSQPsIzxV7846aUjt+WC7iR8uZg0fTUGJzvGyhvcDtr903NviJ7iT9z/W1tcaL7RLr/mnA8Ke/pkrUOHCWT4h99nonF896SuTbzyIRaHDA4b8GGr3ctdzx1gOqiaB+38Y7eDTHrw5UT+1T7P/Od1/aeadMjxRxGDNUFOQebM3Om3FvgKT+EbPaU46MHlC5J3/Q5Q8PiKV36am/BgJ0dm5oMeOf4o6YjB/Fvz5l6BI1cOlny+iSV5OBU48mSe6LCJB684yZrL1ps+m2rx5zMbxUPeXIsXFS8ZY5OMKfyzfuB2TzGXHb6fnZ2tA8ybN2+ut5/JwjJ33cvour97g9hPjHTwCzs58bLH1/Joj8gWGTw48kiGz+Qj4/pss2ttqeUMBjJGTp7cfxS5wrfOzY1xuVPoWzfeZJU3ZJzf5sYcqhEeeRgwfeY1B+GR05Z/tpsvscuJN9DhOKS3V9KO+Ch2h+305QBPKW+w21/ImUNq15drk7zCN/rlgLw1ii82MmIQFxlvtPvNdl82sG9O5JScOZA3vv/1r389/PnPf14/x8If9ptn9uiQhWvNIvx50M6+eMjAULw1Lw8dpMI1Pte1cb6qYZgH2ObOmvFFwo3jAbvf2HbfYsP9078Gag4dvPOvnMsHm/LNd4UNuuaLH2TFwl4+iwufPhKDeQkXr7lQ1zfe3JLnO3tkykvzk45+hR2+KXj6rXF4cIzxu2uNTTbkxL9a6V5Cxn6cnDzHhyMuuNaC66o481NdewU3/sihuKw384L4ZJ3KPXz28MorGTboGuezUpzaDtrNt7a4YZOVB3h44mwd8t8XGeWbDfc293Uxwzan+tZH17RrYL/RLlubdgZ2BnYGdgZ2BnYG7poBG5IO2m0m2pjZkExqY9WmqA2PDUubnjbexuAqjcGdG7uwjcOw4bEpswlio01bcuowqxtro1Wf7wqbMOuzr+DbPM0NeptCslPHJi98dunSuxuJp5inDF65g6HkIzlxK8hGUk48+NDjDx/4bhPId3xUjuvHO80RjOwaa7OaD+mTmzT7+dG43MCM8kVN1hyKwQOU+RWfgxkP5jbmbM45scG2mfUw2EMY/8Qr/nzBQ22i4bCl4LEjPn5E+PRh4Stw8PPXeLnnL1yFTPj65BrDR3jx2U+/nJtPdvTFok03PL4o4cA0JsetN5jFRRZGvuUDHfZhz7kxjuiQoadGbMaPRz+fjUfabLMxMeb4jIEP+cqGhzIHMOKAYX3oWw/w5MYcWQcO0fjjIb03neDlQ37BVeLzBY7cKcnl491qchMjORhi4IvCT0WO2DXGnmvTekbkjKHyVF8M5HqQo4/w4Sgo/2GVx2LJDznURvxp7hfj+Ae29SOn5WLayafkYSAycMOedic/343TmTSxjJHhn7n2gG0N0CdnXE74M+PWJ9McwMAjHyZ9fCVMbXwlefhyQa+8mAN88kjutemIUz1JX4E7qTzB1YYBq7414HoSv4d6v9H+/e9//74ctPvpg2eeeWa9JcyO+FxXPo/r80cbjw+IbxV9OspcQ+UFpjw5aChHdFy7DmYcBopbPl0H5qv5gdf9X9605dBc0CHrWu9AFC45vjqMkTeycNnns8MfhzJ0+YinTS//m7vG4cqBGPH4Rx6uzxs8/eZPP4KFHya/9DuQi6+WH4UfYiindPpcYEfM7mswxIf4J17FWuYj37ITdvb52BwbI8+H8sBeMcGXI7bki9z0u5zAQPRmPNr8Yts1DMtnuUNL68BvmPt8v3E8yHR9k2fLvdxcKXJm7qxZn/PGyeEjPrQm+SEmJJeKXOCJ2aEpXX4g8sUXDnz7Wnz59PljrBzAESddxfplw5poLvhTX2z8gIGy79ogV67h45n7ro18W4rnf8StpEfGGpcj2N62lVd4/Mt38wqbj+xmr3zhmyO4dBTzoJCHLQ44avKKvhrRse7kBI55dxDrbV7za859EeB+BoPvcufg2lvhCgyxOMhmN1+t/T6T2GIXTm//i8c42zDowdEmK2flU43ExE/+G5cv/vDVHhTf+tX25Qf/yfjip3tPff6ZP3gIhtjlnH18ueFTa4Mcv80fyu/84pN2ZFxB8Gafb/OzjK4yZeqLn6/mAL41IG+tBTrNMR2EJ6etKXw+uD7Ms3FjsBVYavEZY0c+4cqN+xz57Ms7OZQsfIUtOTQX8okHWx4VNuio8eGQIavIi3F8MeQfW/xH8sFnst1L6bCNx1+1GPgPHxYZ82oO2ceD5R7iftV12X+G+rWvfW3ZK9bVucKf/Ub7FZK0RXYGdgZ2BnYGdgauewZsLF599dXDL3/5y7WZsLFANg5KmxMbEhsTBeHbnOAnY4NmXD8ZGxsFlg2RTYsNdNjs2awpeDZgij49WOEt0PM/jenaUNnkKQgmXjbIIvbbuNlI8QU2+XSSoV+BCyvSrsRTw5KT6Vv+q+PThclmPotX7sppPmdHbfNq80dn2koWL8pufTUMMZPvgVO85YoMvWzqR3j5HHZ9Y4jv4rAm2LCZ9TDsQVEb/8bxQZVcG3GbWkVcHgI99DhYzadsZT9/8NnAr13u8ef6yS9y4kXa8cmHYQ7m+jM2x7VRdqdNfOMwbO7Fi8RCTr7Eebqu2M7+Ujj/A8t89aDbw4k6eTKw9dGsm5d41huiw7eph58cPTLsIG357DppHD+d5OCK3xi5HlbIJa9GMB0GWCMeLNkzJndq9tTe7nMwY220/uWl9gI7/ine+vTlOh8b11f0K3S0m5tkwlAjOROfoo3o8MXDmHsbymZt2GHghUtX27i1WdtauYzkg11F/viByMfPL3y4xlxvclZ8XfdkEH9br29z/vegLV/hwFPI80WpT58M+cb12VTzyxz3wKxPN/yuzewXq355gqvQC9t4vqjxUeuJLH1zFA6b5OTE/YdMcvwwVgwL7PjHOJ/ZmKSf/uTHS0/cfHKg5O1QB+0O3I2/E+If8p9hPvXUU+vnD6wJvru/K+zpK0i/GMxX9ynjDhz42PzhlS9teZGrDnH4re3gypv5bDc/1cvo+FOs8BS54w9y/2ePjDFru7WC15ypHVD7KQzrGhl37fGhmPjbnJNpPuUAwUHWgMJmvPxXR/H47POsXJ/6Vs7ImGv3ODr8gt/BnNpbujOfxRw+LHEVZ9gdDrENG+4sfIXV564Y+AvHHBoXsxxpWwvmQVsekH4xssuOWPy0hDc69d/1rncdPvrRj643ScVqvuA6lDKf8m+uHL72cyjs+4wvRrb43nrsnsY3BYmTXx2A8cu644MxxEf20hGLMXw1HdcEnOKmb5xP8qyYDzj2swpZB2x8dBCMYMDMBh7/+S5vZBF9X0QZYwMOmwqCo6CuA332Ycupw3bzhlc8xpovtvgo78mUSzLaPl+N8wF++TZf8/OWvDzRQXDJs2c+8c05HZ/b2n5uRLt7Cwyfhf6DUeRz279egGNd+Cz3dr25lHt8uO0F6JiHDl3FrPCd3/Cb98b0+c0HWPqw+eFa6eeaYNMxrsCTM7lBsI3z2VzBRDDmQbt88J8cG2yae7oO6cMWB8q31Tn/QxaRpV+/OWCjeSUHo3knQ0furFfrQ/7wWs9w80lboV+BGU0eP+DIDR1rhD2+sAMf5ae1Rcb8wJFL9zXy9PntWu++nB5+PonB+mIbBj7KB/kXHzvGG+MLO+TwxWvd9FmiT4++taHPbr7AESufzRUMtTizDd+cWg9wyTho/8lPfnL4xje+sXxp7lbnCn/2QfsVkrRFdgZ2BnYGdgZ2Bq57Bmwa/FPPn//85xebCBuhyLiNiE2KYpNiU2ETom6TTq7Ni3akrZC1KWqzb5wdPOM2VgqMcIzHn5iw+GRc22bTZghWfTxt+mQRnxVkc00G4dlc2TjbLDYGL5mZEzrswZ/ER7amr+zX147SbYye3CqIbTayH6+865ebajwEuzjf5vzvX7hisfFkmw2bXJSvdKcdePzAKwZ9/OJQWx89nJpDD1/9U1QbZGTcw4nDU3g91MJrg+xhDB+mvMDlK3lUnviSD9MPbfLiVMLQLp/aNt1tvJOtpjPzURs2+/Wzo1/JHjnj5c7aF5c4mt/8Dm8FeP4HDln6xuWwgxN9BL+Cx/+7ERz2yPENPl28SjmGEZaafDKN0UX42snxM99bw42nww5MstZE82CuvW1mLPLQ47DGb7e7ThUPt67VrkN4+ZFe/hYHGbEr/NBXWhPmpHlJp7mDCS9949p4dLqvuXeg9PKJHcQuPf3saZMTS3JqNpQw6Crx5Uye4aF8q48Hp3XXfY1v2Z6Yrll942SbO30YakSGDfbNXxjmzPqGjdimo4ihuVYjPDLk2UsPTutBrMmWh/ozBnL8IMOeNgzEhliKSR+RxRdbRLfPgOyFS6ZYk9eXC5jkTyldMta24oDQAbt/en6/Dtq//vWvXxy0y8s8aC+3fJB7a0bp4AKfjs+E5kYc9Fx7rjdtpfkVq5i9peye5C1XmNYQXKX7Nj05bj3BVNhkm46ibR7NgQMNn8dsswXL58k86PR54be++URXbe2Q5Qtdc4kfmQ822CMHm1+KNp9aH+mo02udqdlg1xifYdCFgeSgg3Z9cnzy+da1oi0/rVk+GYPPH3x4ij5is88BmPrsklWTw4NFrnGycqbgsQsXf95L6FfIiTOf/P8qfof98ccfX9hi9NMLrSu5dqDuyx9vCfNJjO7fDt9QvhYDH9zPkXnxecCnGQ8da8i6kOfiI4eKWd8YksPaajGwiZJX81lO1OWZLj/4g8cu+/lG1vqcPrItV3SR2hzIjbbDOjnoOss3snTNAXkY4o3HB3Ol4BsnRx4GOXyFr/kkT4hccYiBjOtP7OZPTvI5WTUy1j3B56/rCRbCdz3eOL484TPbfQ1PG64vU/hmzWvz25vtf/zjHw+3b99e+0B5FBdf4MKgU34bY4/fxviqFnuFv/Lq0JcdfLr+7wd9Y3jswDGmLs/hWiOKtStetujh8U8bngJDPsRHzji+HMMzD/KM0tHOd3V97eYWDlw4jTcvzVN8NsjxQe75icy9mH0OiDmq3VohFw8WfIU/5dQcW2/sOGzu3k2OjDkz7jrHM+7LFPkpd+bFWuIfHmKPDFt80M4+Ob7Dx2sN8tfa4D8dhX6FrOcL9xsycumaLTfGUbqrc/wjNvbRHDNv1on7k7jIwPITUj/60Y/WF9zpLOUr/tkH7VdM1BbbGdgZ2BnYGdgZuM4ZsEHxn1K9+OKLazNhI2JzgY/UbfJspmySbGBsktRzk26cfrozL2RtWGxobFhsZtgJS58uvDasbCn4tWEmSx/BtQFT4GXLGF3llPiYn/Q9NHkY6J+MhsEW23KgXbHhkoMw4GvP3MVT08tf7WRha6uNK2zDlys2yE+s2hNHjHDwxJMeHsJnAzbZ5q2NK5kw6Cpk0WzzDxbfwl5Cxz8dLNgg9wDuIcwBiTmFZ+79x1w24vp8VcOCaR481HrQwG/t8Y1dxUYXHh2Ff+FM3+nYsBevtvFyDduaVYuLnLFZip8dthEd8tk/1TMGEz89efYwpKA5R4tx8oceDL4gdQ8M8fLHOHn86Ve2kxO7Nr+KmczMmZxPMl58agQjO+QVtuUXv4ca/LDpJAMnDDoKWXwx+k/1rE8y2bMe+g1nhyKuVQ8/1gxd+Ux+KY0/7IqDHP8UlG9qY91DYBWrscsoW2ry/FDIs+f6zSe2EdnpC3vZLgZ18vwsV3jxYeDLmzo548YUtvThu+b4xh+UzWTw4Mg5Xb53IKdNzrottmy6DjrAyCfzJC6kFg/ii7l1b3Dt8qVxNma+jPOlayj9BXT+Z+armA3x1Zgan139bGQzLGN4U9ZngHhhhJm8GqbSON1pE78xudImLx7F/fB+HrS7n37zm99cv3ttLYjHvCjsmXs8vuB1zTkENo74757t2i2fDjRcY9aCfMDBKzY6DjRg+MkQ+Oa4A3FtWHTTN+8OZOTYeoLFpnXBN2uKjEMuX8Y6mKQLy5vU7MDku1hffvnl5aO2OTbGH75Y9+xYk2jOWfbEwF6+aOMpqFi15W3miy08NX35SZd9+WRHfHDIyGUHUuZEn9/0+Cd+NVnj2a9mS6x9fusrxmHQQ+zDci3ln9h8vsoHXnFriwsuPVQcxsShGPf2+he/+MXDl770pdVfwud/6Fgvb7311lqL7td4bDYP8OBU9MVvHanl0zqQg0l8lV/45MSrJKctBjE3R9OWttiMNWd0w5WTcPkmbwpZMfDf2odv3Lzls3mCQ44dBdFlE19tX0PHFxNinDkwzp48syGecMzpXA/G6bsmYNAlKx62yIqFz/pk4OHzU5FHfsNgU17gWKsKG8ghq4NUxHefu+YBFnvWoX+x6OdxxAXPG+5+Uugysu/77W9/u545HIK7RuW1uWdLLGzI8bwG2ONj8dYWHz/cE7y5rk8Wri98xCu3eIqcwMeXl4lDV7F2FWScXDowzK1aHhQy8iaPZBHfxdfcZF9fYUdNni+In2LxBSZduHjyCl+/eRSHwk75C1PtPlw+yeUrO+zJj4KPYJh39smr5dNcsk3WIbbrmc1863PEvRrPvPmPueGJWU4ctIth5g0eWTnouqSfTj8xiafIh3VrXfO5fNKFgcjxw9zJK78VdpPh+5xLcjM3+YIPjzybajbF4ovl559//vDkk08uu2TvhfZB+71ka8vuDOwM7AzsDOwMXNMM2Dj0RruHDf02JDYP2jYpNns2YcZt0mzEtNs4kWtDg39K5OnZ4Hhw1qdjQ4jfJqaNEX6+aLMTjzxdmyBkk0Rf4XO2jJFTkLE2RHTx9emL3QOwTaQNIhtKcdp8adcn02ZvgR//8BdufuKno13+6JFTylXxqOmUE7L5DAOlg5/N5iFdNQpPmz24dOTZmL5YwjKWz9V8QNOGXNNHdIzZgNp0e3CzqbbR93ZTh2tsyLE33rwxlK/4sKwN+beZtkaQvCtskEOtRW18/vFHPX2ec+HBlB4Z81Pu5QG+fvKNw2dTKW/GFP6ynaw2giEXMCP67IrJwwXSV6L01Qp82PW1+doaSq+cJFdc+trywY5+BBuOcTRzl4x6+gBHXEg7O8WWLFyFv/nGvvzRm/OZTrmC6eHOQ7s1VEz0PZBZM9aqHFpH1ok1Y7xrlo1T4ocCL9/IzLjp6St8vRuFFR697PNLv7zDMaZPXl+N0lMr+GS1+akv3/KIj+SrnGjDVeQvOf1yT5Yuv7pfZR+ecTj5wJ6+HHiwdE/MZ3mma7xC3nyFw7Y1Xv7SzU/rlzx/i5cMe/xTI+Ou1fyBH9WmX97Eqy1WOmGr2Uaw5UFNFoXBNgxxaYtbvMmRrV2sarz4sOizN/nZIS8msblP+ukYD+r34z9DddDun7D7DybFL0b3O/dd9sSCxz98PPEax+M7ve6RePyl535sTuVF/vp8LHcOD+n6l0t0OpxxQOcaZgeOYq7NkUMkOYbBL3npc4Nv5Hor0cGeAxYyfoLDT1Xwz2eLa/nvf//7ug/IM/9gtt74zY5Cp7kwP3xTyM+119zhI/3a4mSznImXv2o+wxFffJ+B8kEPhiIWOUN0+CgHU8+YvnFY9dUwxGfuEP/41Dqf/sp9cw2Hf+avfMBnB5HlJxyyCh7/HdZZs8Yeeuihw2c+85nDZz/72fUZzx7/ETz3DT8ZonTQjseucZgKfHlkE4b5tkbYYNP4JDL5Ty6/YTQfdMUL07hcacPThiFXzSG/8dXmxfohA4deucMzTs465L8cOtDjS+uHHMp3dsgiPsqDtd9BOzv45LVh85VdRBefj+y3Hui0fvMxLHr8KKZ0ygcsZD74zias1pAaT41cZ65NPvK9g3Zj+eynbRyKOpR1j/eFmH0fDHrZ1HYA+7vf/W4dtPvpJ5/rrgG5h2ediVtOjc2c0hc7OW21Qp5d9y8FGRefvaYcyBOewp9w4c05gGfclwribZ3Ro1M+2cQzrtAzd2KWe0RWbIjs9F3bGoPDHh0Yco/f/NDje/NMjz3Y9BT91qZxPPlwj5APNsjIqYKKpTWPJ1/8pwuDH+5hrn9+scEvOggueXa05Qu5Nswt+fznB1yY5Zg9c8yW+Iznv9q6klNthV3y8MVDDx8eOwi+t+7NH5niUZOlwy95kAN69MsHDLJwyJEn69rVR64XPx3jp9/2QftKyf6zM7AzsDOwM7AzsDNwWQZsNF577bXDr3/967WZINOmpbZNUJsPPJsPhVyyNjFtpCavto1hGxx1ujYxNlw2RTY8NmxKG7I2mTZ6bdDYJm9zNP1p48QW3Hwk08aMjHYPF8VC3iZOsaHTVyvw2Eb85p9xOMWXrfyPn059edKmS1Z8c2xuBuWJHJ/hI36QQY3Rj7cGxp/iwyJXjorHON7cuGcr3fps8DmyCYYjBg9W3mxqc2z+sieH2XAoZEPeAwg+Itu8WQ/5w57NPjv5wZ6++JE8NWflRE0mf+nA6aGAHpseAMTB33jiNIb4F2bx8wOfDFy6xvCTyb/kjLX+s0NfoZOv6vjhJq+vGEcw801bYU8dRu3yAN+13Lh6xhi2OvtsyC8ePCRumHzH186/eGTNI3xF/ORcy/SLOyw4/PNg76DOQ3f26HrIg+Pa03b4YK1YSx6uFNcv3En8hwM7W8bxK/kKu7VHhk+TyBtX8wWp8bpXsD9zE7YYtMmnrx819/H4aq4Qnew0Tp6dqdd9mq2pJ44KGffqsMUslx4mYcunN4rx2TzNgX5zvIyc+5dfxrXpmmv3WmujnNAxnjxfFTmcY3DEprCXzVnHD48OOwhmvmRDza+ITbGjZLXJmCO46vTIJFcNI9+nb3BQ9synPLgH+QkO//Tcm3Hl4W3pq/9lH3lr0xvt/vNBNuC5rynmmH08vumr5bQx8eE5LOsNSH3zby0Uv2vLunD/dtjBfnGzy4515dr1r1J8FuizrRiXR7pyDh82mXnQTta1xI4DEwfT/HH/FhNbPm8cvDv4gwvT4a4+XQTbGKLDXzatc/d86xLRFSe7XU/5a5xeucZXrGv+qNlBcmpMzZ65lh8xJ6PWR3zTp6PWL6dkkiNLJiIDG09e5I4feGyLUYGHR0ZbLU65z0725zzCkB/5ffjhhw+PPPLI4ezsbNmTd192mGNy8ByS05d3bW+09zkvBvdltn0Zo5Zj/lp/8iSO5oDfiH9k2UDlqC9XF/P4h5xSfqrLpfhdb3D4Inbt+mzIgTgUeggOX8QFH46cWH/aPn988QuTHv9dH1OeHDuw2CFHxj7JZxseffbZcB10r4RT/DD0i02eycGQR8VaTJf/fOdj68qal28ybBk3hteax9eH1/XCBh1+0hFD90s+KfxLT8wO573V7nf8i59P8K2P119//fDSSy+t69WXFea061YOxG0exGvu+ILYMFYe8GDiIfEoEYy5T8AvRtdM+77mRy1OuXLPMadIDGiuBzyxInpwmwttRW7okOUL38QijmIxxv90tM2H+YSfnnUjFpj2PNYAX8nDZLt4YLZW5RPRFZO54wefFXhsVOBMHfOdj9myJuSPj3jGYXr5oRyyBXvqkOcrefZgm3s6YpYTto2j7CYrB3TYyi65riHy1io8+VFXyMmxPr/oaPNHPOpJbLBFhyw/rQtrQo584eg32v1kG4J1L7TfaL+XbG3ZnYGdgZ2BnYGdgWuaARuJW7duHX7zm9+sh4A2JjYykbaNUBsVfe2IDp5Nks1hY3jJ2rhUbJzgGbN5shmFgZd9GDZOeJVw24iRjRpT20jBZCdi24bJGLKpy1c6ZI23ma6tr50tNdlT/Oyc1mJswwgH6cNgv800H5RiM66gbGqTJyOefE1GjeBU5/dijD/xk+Wb3Ex+PqltLm1ixWOeHcg4SOmhQdvm2xgZWDamDmZsuj0c8NebLjawZBA5RTzZLmfG2c5u+RA/WZhqvsOEH4aaXHb0xcDv+Hy3ye4BhT3y/8Pe3bVodlRtHO+P0gNKEDVKMEEU8UDwNYYYBUl811E0GogGRRQ80DP9QiKIZ2Z8x3eNGiYoPF/juX+V/g/L/XQy3T5zMlILqmtX1VrXutaq2vuuXX1PD5/htG6MsWstuq5MH/TY4oqXGl5rW7v48nXEDW/iw9TfWBzhxZXvKfrLK/8EpjWkn8CJRzj6Zn/5Nc4fgddaZA/Xy4o+Y+yJvjjzqb949WfLprb5sJ4c5lgbhG882Otrvs25dWCNeRnqEEAfHS9c5Ug949JurFy1FpfT04+po08MdJpbdkqc1OW4mNhlk5/mxVgiV2zD7MVTXvCAocy5K9dsxNb9yIaUb23XhB96fMGTK89hOYSj7XBMHU+2caDj2lj3XO0Zg7XQARCehC2B13wXlzo/02/cjeGslFt9JCz45QQeiZs5g6uwi7846YQF3zUshR4sOol+PtVy0DrLln147IncyIlnjj+B8vTTT9+Tg3aHmk8++eT6Rjsf4pd3hT888DremzjhrhAHoQ7JSLGr2YrdGnHw7U8+WB/65UBe3XdqfQ4j/asU969nN04KXXmcOXNtzOdGnx346mtd8st/nMRH1yFc32x3r/v2qj8348BHTPLenMHDTR+uuMiHcbZ8wddnLFtcWmt08TdGr3tNPx1tYixs3PmLBzwlX2xcG4dbjPXpr+jjR7He6LuWb59tfIpR7N274iYz7+YJB3GqCR6+ae3byHIqt9q+ufmGN7xhzScMPsQk1/yLzSGpa349g/15EGvEPOh3OGVv8OY3v3nFhyP8PnfFZQ4cBsJuPRarcb7peEbhjzscY4o4+Gp+tBV8W4Nw7Ufopd+akE/jE0tsfOKBKxz3FFv69jfmpvWvjz1ubGATOtWu5ReO8eYWpjk0X/jJA5z8tn7p46VfDs2bMXVrAJY8mAs1TuaAnvvGOM769eFKtHGCoxA8YTcn8PhX6xMzPDhyTdhaR4888sjCNmbfxY916XDdf45qL2jtKP0rR/mGLX7PGOuGPcEDR+PlFF95ihe7BC8+8ez+ZgfHHLhvjMOkS8SDn3y1TujjQI/QVfjWVz89setPL3784ihHsPRrK+zxoKPA9hlhrozhb9239s1dBRZd/5qAbzjxCk8c7i0xEeP05I3EDRdjzaNfdFpD2jjBNx9+ISt/+MHGz5rgI2ldGMfVeqUvR+HxR4/gkg/cEn344c4HXwQGPePlEXe/CCxvxnCyjtyrbPGR0/KMj88pa6F11rOIT7rw+YZhffHrF5DPPffc+tzFh951ZB+0XydbW3dnYGdgZ2BnYGfgPs2Azcgvf/nLsx/84Adr09MmxKaF2JDYnKgrc5NGh00vBW2i9BP4xuC5ro+ePhtguInrNpH5a7NGh40NkY2bTdJlGxx2bGyQ8k/PZok/9q6Nu44XfLHxEWc1W7pwbcJsPm3atBMY2vDx5z/fMBT9dPTjHjYs1/ntuhzFTx0/NriojzmIK27H+YjvsY5zWHzho/BpM+pbSuJyCOrbSr7ZZoNKV9zyositDa6X2pdeemlxbE7V9ONl40q3OPiTG/ObDv/8KoS9GPmRT9etI/blbcZIR2zG1DbjHSj0ciTvfKkJPT5xdh03LzW9vBuHXf7waW70a8MTD2yCQz604Sr6xDaFTXaz3zXd7NTWsljg4KtYI730sNEXL9fNBVt24oFFxESKqevs6SsElri8mBcrHId32o3DN1cwpsSjufdCJ8e4s1XkFSY+c+2z1WdM4cM35/zpAi+LjVtrYqKr7yh8JMbh0G9uG2NfDti4bs6NyeUU7fTUcOmR5krfXBf05KL5pKuPsM1evDMWa8Xa7pvJxrWLBVfxmAO5VSv6wsEJjvuSDtupT1e82eKVbTFodxA014hrOuLig63CB26u9StEv5Je9uWYDZk2q+Pwgz3e9OGRYjio3uEhd3E/6tQ2D/LQS7nYpg96fMMRM97W9mtf+9qzmzdvrj8hY/w/kXLuYPMTn/jEOmi3Zvgw52p5KWf8G9eWA/nwDO354BvM7jnxiIGtexcWX/TdQ/9z+iavQx84CnttdnIqJ2z4Y+8zwlrQhiOvYm7ucMmfa5jWr8I+vvBbjw5y3dv+UzrPHHn3GeW+x8/aNSf4ipFf+eiewlO/mGb+6eFiHBdcYcuFMbqKQxfPINzSoUcnfdg4pDfnWI7k2mcQP93PsHGUPzjGxA3LtXwo/TKBP2UKPTi4lXMYOBsrDvNinJ4/ZfTOd77z7L3vfe/65Q8fMBLXipz5D2h/9KMfrevG1c0rbj777QX08edb3L4ZLw65dA/wbRwn3NixwZXQU/g1bm7Np/kp5/KmhGMMnrbCd/POt3VjTtjANU6/dRWufmuADXvtRL+2OcKvNSAec6ePwOcHhuuwjbExv/LcfWocthw47DVuryF38kUPHh2+2PIl5u4N46Sc8Q0Xr3SMiZcdH3Me5EJc7il68NmT8mQNwGIvDw56O6zUR/plIj4OZh966KHF3xhcIgf0zbt/jeJf5PjXOe4X9a1bt5YuvUTsfOOCG+7yQvSb2wTv1hldXOOtLfawjcXHOsOhXMoFHM+wbMQgtxNPjnExpuAmD+HAd407O88ohS8iF8aIOAk83PQbhwungpv9uDWS0J37Hz7Z4UfXc5WdHCikdWdd0OfTOoTlF25srTfPjGxhsnNPuj/ZwsNNP+7mo19uGZMTxRqDOTnIJ4HLv9zRdU1wqehjaz4UnPn1p9jw5J8O334R7T2kLw/otzYUtvJhftkZ81kmf+KHUz74Li7faP/a1762D9rXzOwfOwM7AzsDOwM7AzsDl2bAxqKDdhsmmxUbEJsLYtzGxyZPn2s6+pP62vgbV4ixxtvc6GevTQ+uTQzhpw2n/nlNh76Nng2YTVL4y/j0I7766cdZ2yYJHgwbXNc2e9mo2/jFTR8cG2PXNpM2bHMDxrcxvtp4x0cf4XPG6povfnAjMNLTb6NKR38ydcwXPmzCoIevTasaDgw6U6a+fvEc86WfPzy8LPUf0TmQ8ScPHLQ7LMi/zbZNqs01bg46+0+R5AG+lzT6vUCwUconvubWht7cxJutEidzB6t+8fKBbzGXN7G2ibfBb969xNrM68OHXf74YQdTwc+YtefFw1onxuApXVsDuMWJXfcGTO04tga0FZzz27zNOIwlxQqPrvtBLHAIPni0RujLF66uw6UvfjiNsc9X8RvTl208jeuDYT0UK1xrRM7o9kIkl+UmH/zxb8690Cpiac7psSP6xCTPfLMj8Pk07pu3vjHnwIKOvtYL3WKv1pfUxwbPuDauX4EbNi5emOUIh9aHtryQ8sem3Kn5E4NSPswnOzHFx1i+XdPnK7tw+La2YSja9PkXi/sTV5zhuZZbutoEJr1yXHx0y4laf5zZ5VPtHsY/numJq3XKH105waH8Fbd2eROfeCtwSZzrL19rcPzANx+6+Qx/tpsf+LjCJXDDjhPfMK0tfWzEWazL8MLWc8369mLvWXqvD9odgPKBc774k199FTHgau56PujzXHevurfwp2/twBKX/Hmud1+lI36HZXJBB3b+zbNnrANlWHKLE11ryTyzcV1u+ZUjpTUEE6/y7BuwDtp9s9AzB45DJAckDtodkvgs8tkCWw7MIz24fUbphy0W42p8+FLrE4s4jOEtBth04GnTE5c86Qu3z+hig0G05cV9yg9cY4r4+VTrl18Ftn7Y4ssve2P50G5Mzumzly+5MEaMxdlB+7ve9a71n5w6ROL7MoHtQPSHP/zhnYM4eniLGwdrwWe/Wl5w66C9PJlXsbARo3jol1eYdI2zN+7QTBzFNznyq984PDFX2CvGrQ9zYu1r65cP7XLcPRMeHTzwIfD1lTvXfMmndYKXPnrWFnzX6uzwVeZe1hgO9pfWsLY17c8wWSf8xdU1f3jhaV7FwI8CRx//cPCyXhVtY3SaD7U5xKn1Ti+e4qbvvmnvXDzWMZ4+s3Hh38GlQ09iv+SXLDjDO4o58f9L+Ja7A3Yc1c8///zij1u5x0GcfMs5TPnGnW9jYiZs3OvliW/Y9Ng2p/rFirfx1iAfMNiLUWlu+eNLgcceF7lTw2IrJ3wZJ/SNsbEOzbUaHh0+iyMMeES/gi9M+J599ub+BQF7fTD8yx7PSPsf2IQN3ZkT66K8iLvngz5tueyg3VqVg57Jce1fJeBG8GCPi/XiudOcyLl8wsg3XRLPcsEXn3izlw9j/LomfBiHAdu/voGNCx7y4B3EL6N7b4uf2nz6bLJe+SL05C19PuHziwc/Pnf2QftK1/6xM7AzsDOwM7AzsDPwShmwgeig3Uupto2LTUUbnzYZbTiOWPptWmygbFxsfhR2xmCRNkWu68tXbRuZNlX6FJsqxTXMNtfwiI0P/23E8gmHjTax+dKn3Ya3TRrcybs2XPrsjPNhMx4O3K4vGysGGLCKRz39GU+XnpgUOuVx1nh76VD0s4XRNU74aMPIt7brCpuKWAhsObYRNqeue+Fj5+XBhr35hiknNqY25w5DbNi9QDmUwYUdMYarNjttBVd9fFtDimt9+Jk7hQ2h3xwa11YbL17X+hL9YqELu0Nhfdr0Z2HHxlicxexFBb/mK998xWX2iUHO+IlTvIwRbWOJdmugHMy46Gq3RnBU8CK40TEvijZMdWujPvjxaC3TVcJqremLR2Nw2PMtPwou+vxTXm124s9m5idf+IonDC+tMOIcX/rF4JrQKwfa1pS12MuitaNPLsTCvwIH7lFwMWYdt87o8MMnm/jAhkuXDdvmmg5eamPFGoaaPh213Craze3sd51kR9+1Uh7MRX3Gxdo9JJ64wCo+/vTTxVeetBW5c8DiUKD86YdZDHzzCwd/1/JQHHzFWT9e/LALS7s49M+8zf6u1fjiQL+8x8k40RZnMenX1xpwXVtNiiee+tllmz5MuZGLOBtLPyzrWU681Psb7Z///OfPHnjggaW3HF7zR7E5RHjqqafWN43Fj0OHZXJPT596rhXtcuLaQbtDCnNB6JpHdfby5UBUvMRnBH194nUfOFxho/DvOevQhG42xmAZV7cG8eCzMn3joNB3kOsw0iFJa82BkDngHw+Hs/Y0sOWjWByo+GxSph++xWI+ywu+rWPXfIuTn/KkhuO5Vcx4wolL3I3T1ZZreZFL/qx1IifdN7CNKey6vzxrSPnBCTcFt3jmC7Z71+e4PBn3r418jsMw9/51wMMPP3x2fn5+Z1748QztMFBOfaa/8MIL63k344bpOeFgTWEDW77hh1suuj/YWT/9UgRXOvIgXtfGHH7JQ7HpN2eJXGVrvtkbp9/cmnMczY08lWdc2MdJLXbrKB+w2ajFzYf4jOPiWr+SX7pdw6TDLkz3RBzSw0+e6dpryF2YMGBaa+4r+RFfOaFH5Mm6EhNu9PThD5cP7cbUcQ0bHzmkz695dC0n2nzCx7+9lD441pk/FQTXmINgtlNg4GPuPcN887hfpvgG8q9//et1/+ABxxpoLfKjv3yXl2IwpuBGh702vmy18VGMi5OtOZe3qQND7OIISxzFyjfJJxx+pv/s2MSVLzGZC4ILXsbZVvfsxDHbfOvDT5HLxPrpngrHuvPZUxx4kjDZWxPuDTzMM979OZbmz5gy48WnNhzPPQJDjHhag3GVT9dsCC54VPTTV+JiDAdY2dWmg6t7BRc+6ciBNaV4HpkXAss4e+vdsxgnYj6sAfVlcfHloP2rX/3q+r9R2MC7juw/HXOdbG3dnYGdgZ2BnYGdgfs0AzYb86BdGDYSNg5tfuprc3NZqMZsWGyM2gjZxGQDr82QaxuYNjHaCtFnM6TU38bVOAw6NlUKnTaONoh0w7bhc00HjzaRcPKn33UbVtcwCP754Tf+Ykzo20zmkw/cw4jP5MIGV3X5oVfc+SmP+TrW+BG2+dOGO2s+4jFjgp/enDsbct+g8hLuhUm8NqLa5ROezXxx+1aLbxHb2JZnG1U6+MijuIzJRXzjihc/9PBNp/lhp5DiSSeM5ggWncQ17Dlvxuinm766HBn3MiD21gEMfXT4FT9hl3+6Mxa68ijHrolYvGixb97VBJZifnoR5yvfdOC0ZuPGPzt5gaUfvvWpyDkc416Eul/YGIsHHe1iU9Mt3/T554/Q18eftYOza+MOwvA2Xvyuy5XreLmuLcf0xZjvcjftF4HTD3180lf4pF9+YbQeO/ySf0VcR4HHxvotV3Rglh+1Qo+OORULW7lUl6fyS/8o9OQDf3HLIWGrj5RX4/QVWNMHPW0x48OnIj7zH798wSdx5ost/eY6ey+uvbiLl54xceIBU97NGRw8SLyNE3X+1fFt7cGABx8OH65n3sJegBc/jNPnn40yecAXf9xhhA0i/Grcyr8+unNOy52+1olrPvlxHRZf9OXCuIMTfzrmi1/84vrWZ3oznqtclwcHVP4zVN8KlT/5cg/yJ47mih82Cj0HC3jiq88zCrfmhb4idvy7J48Yxh2A0XWYYZ1YP/wSMccnv3zr44sd3fThWb/WnAMPWO5n3BwU0efDtxUd6OKPmz9f4ReaPX/c74r56WCHP+KQXoHFpnUDq3ule4COmNVdi4PQxVu751UxGev5Us5xs18h5gfvDn/h0JMveHKOA07NEX1FjnChC49escJujtQEJ/7e9ra3rcN03ByE+pdpfCnG8ZNr2ObALzT856b+5AoMeeeHvrbPRnnHiX6/wHBdXoz7HGg9mg/rpIMva9D+Qa74hSV2PlwTePmmYxy+60ROcGJjTtnTgUvfuPXCP2Erd0qfUd0PbPiUJzlko69DWNjWlPwT+afTmlmdpx/x45uuNSIP+DTXrvFW03GtTH33V2vAmLyLsbmCBbc+PNjgRJ/oEx9dcWkbEwspn+4x86WNr3yK48aNG2sPyEbBR47gxJ0NMee+xS4G/vCMh1zwjwtbecXV/e5av3nyTWR9fMO1Bq1Ha6xY9CswFbrNizaOdOOFAz70jOONmzj10+eTXmtPDHRmDGKkI3fG4ygue4a45JcOPHPkmuBlfpoT/o3RmWuk5545h1Hem0Nr0i+hmgvYeOHAP27w3Nvh6ncf48o/v8Zxgk/4sg78fxs9Y7oHYfMBj473hXLhvvZsFg8/8MQAgz6Ru9aMNj2+FdiEXXkUq/zLAazmAoYCT5zyae0oMNnr69koVn3V/GjjZQ3AwBummsB2LS7PKXj+1c+zzz67/zPUlaH9Y2dgZ2BnYGdgZ2Bn4NIM2EAcD9rbYNh02ISQNhuB6G+DQs+mxsbMZitd9dywwA27a3UbrDY5fLiuTadr9dyYxoevNrB4tcGzKWrzZhNvwzY54EfYzs2pPmOVYmojbFPqGh9jCpnY2nGZMeqzacPNNQxYYbDTpxiHaUzcU9go02c2alL+688GHjsx22D6JoiXNHNoE+vaC1cvILDyI482nL4l4lqubfJt2otLH77FmL0NbzHpa+PML/zmjV7zjLt5a+7EACPfxsUj1uJTFzs/2uFrs+FLTYpN7Lj0QqLtBSF8+Zq47LSVcuqaXvcDDC8ivWSwkRcFB7FUcIETlvz3AgCn2GHEiT9STNYa3HBcy51xxbjcdV8Yl2s1XLXSPBnL3rgCxzg91/pwK26c9OFe7ue1sfKsxjVuXnT1WX/0lGKhU9GXTB39/LtHvZRpl185F7eYqo0lrlt3xnHxYi9+orbW5a/46Vmv5Y9vfvB0zb8cdB3XYlMbp1f+2GZj3NwbK45884sTf4Qu2zmHcBPXCj0SXjnVLjdidG3MvS0X/CXpGg9XzmHzrw9nJTFWrPq05UUharb8si8OPl5N6LLlyzXcYmIXpjwV0xy/DDuu6vKUH/rFr3YoAI9uz0BtfglurXPr2p9VuJcH7R/72MfWQbvcitGzpmeYPusn/zM3uFrPeDqg8qwzh+JkVym3fe5pKz0bxS+v1iJMtftCbujlHwfPfHaeB/rxZW/u+JM368zhkWLt4TzXkjbODuj45YfPDqXms5YuKSY+2eCnDw/69Kx5pfmES09fMcFyTcf4XEdi1WZjHEdt2Pny2apNV58Y4NHTl8BmX8lGjtLTJ6d05JGN/PoWqj/b5XPHnCm+we5PFvmsF79fnDsQxQEeDrhYD/Lvfne46RfoDvPSU/Mz2zjjj4cxhUwdPsyh3MArf2ysGTk2JqYEpmKMTXmCS3f60RYX+3nYWh9M1/KlEGtBkVOYfNEJOy54u25d0Ms3TnLlX/TJG1tYithwV1tn8u1fFOAHj215MEe+wd5hOXs+zKv8uJZD+PjGyTgs+A49xSYG+vzSz49+YoxNa8lDxounAABAAElEQVS14j7AD0+2fPAp3v6D4/rgipceHXybJ7jn5+erDy5O8sxGrub8w2bLhg6BiSM7/rTZKdYncehrD2p9iq9nmfzB4ktu6RvnQ8EnySc/eODv816e6JJqHEi4cHBjS0fuXBNtPnt2tfbNj/szG3pw+IY/c8FGDuDgZZ7piElb/5xj+gQGfGNstK0N64sOf82dnBUrbGON968prAexxbV7Ruzpq/mBVZ70ya9SH07mwzyKAxZOxsWEF4xw1Gzo4eFPUFmbMI01v3G3rvQTtTzQlQdt+K7FnY3+5lEMYpUr8SrGrXOH9z6P2PtPor/85S+fffjDH16+2F1H9jfar5OtrbszsDOwM7AzsDNwn2bAZqiDdpuPuWGY1/Sm2HzYqNjA2YzYDNnQtBlrk1KdLRxl6tksKaQx47PdJpIfm6XG1DY+pM0g3vi1GYXdZsk1bDpqnAl812Liw7i2DZgxbcV1L0Rtqm0C6RoLR03i2wYSBh9eEnAxrs2PErd4GC9nMLSTbNTpGMvWNR7lUjueeBDcbaj7O6DmE54XwTbmdHGVT35sZr2AKzbNxei6zTIbRd6NV4zrL06bZy/8/Oo3bh32AsAfWy8VSpzp0mktwCsfYlTaxLMJJ32YcVugFzrmFBfxyx1Mh0KkuXUNj6RTXvEwpr9cGvNt0V5+6JijuSYW2OlH9tpi5NuLI/18lEs6fCl06bgX4GrDYuNav1ox3j0BS9s4ezZE/9Q3L6S4yx8besXMn5yJv3zBVFpP4ciP2Mo1TLy80LiX5Qx28wqDjkLil/9w6enjz+EAHgQ3kh0c14lrawIHGK69KHu56kBB22GUtSd2OtnAYacYI/KibS0qrssLPo3r167gUtxdw8PNfOXbC2t8YNBV4Kr19bLJr7YxYpzgD1OtT17gi5U/fe55MVsn7MNvLrRhl2s2+dOfZDtrc929qr+csnONCzxjxHVFGwe5gkGnGOf80odTnHOsGGAl4RQPHaUYjcNTGstW3jyr4q0fTvNvzTtof/rpp+/JN9r92QUH7f5DQevHvSof5l3tPnCPeZYUD244utesnzjSxS/7OTewYYrDNSz3sGs5gGm9uFcUa0W/cYUd+w4TYfPDBmdYxs0Vbr696jPGwRcc/dYDcViFpzWpHwZ9/Q6XxTu5mnd6eJQL/omarrnlt4M5+oo45KjDIXOvTa+1Vuz0+cJH3Trix7UY/TKgttq9RZfIh1j51OeawCUwFHpqgoPx7l/PTX9z3TfW/Qfm/Jl7a85BnxzQF7PrBGffRPVLdGvYwbE/EyPHePDjl0TWCF2Cp7nDFVa5bJ2lgxt7/a7ZyJkYYMu7NaPWr8Dkp9yy0S4XxruGyzZ9PPCBTUeho98aMQ9846R0jS9/9K1XhcgfW2N0+W7vIz/WqM+J5jI8sRqnD8PnkV94WLuk5yqexvvlhzVKxERHbooB1oyLjrZ5cQipptsaMUf2m+XcmJiNi09e4ouXX9LYl9Gbos/6YcdebLD5hkHE6uBbv1/owDWGE184tL5cs4UnXr7NTfNkrYlH3unxJ1bx8+/Z4Fvvt2/fXjkSo3mAY+5xUDqcZwNbcV27POBvTvHHjdCRBz7Ls7q5F5PYYPDrXqtdrOHgVA7Fy7Z7UHyK9aUub2L2L2/6Jr/1zb9aoQcXjvXjGl/Y3Tdq/qx58ZRL/KwrPvT1PGOrD1cH256n8PNhXsxTeuzMe7zkQh74YiMfrWE6nis+d/TBiBM+8qzwXy1/YvOO4heF1icbWOYWlnnWhwuf4pUHdvyHS48fzzd9bPTJG978znXYOM7mwC922Plb8H5R/sQTT6D3f+6V1fkqP/ZB+6skZw/tDOwM7AzsDOwM/LdkwEatg/Y28zYoymVSvw2JDVwvNHBsSqpdz3ZYxm10CSwbHBtGmx1jRG3Tw742PWJDaKMTD33s9dtgpYdfL25tsmzC6NLBnfBD2oDDUeJm3Fj9uPHTCwC9/MKla/PIji47/suXtmsv6mJmjwu77PXlzzUcNTt1Mn2VK+PwFNf66TUeNxjGzZ9Y/A1NG2qbcdyLCQ4uNqc4w7FB9kJu46kfDm6ubX7Z4EyKQ1868TJuM+/l0saYjjmyeTZ34dA3bwrc5q8XWDhixNtYeSxW9gQXc9F1+WwchnzgoogVppyQ2sWmL7/5bkzdiw87Lwf48MmGz3KCF2FDl9Rn06/gzc54tunQ1we7taZNHyY9ay09OuVBnzG57R7kozjYwjWOb5I/ffniT2kOioWNa3k0TuDLsRe28qSfHy+6cuWlnn9zohQ7f8SYol0fXD7EZw071NCXf9wmrwU0frCzjumJ2wtZhxTyo+0+cA/QpaOfDT9KXMDWB88aKUfiU2Y+uufYwdCmI8f0xOq+kCN+9bsHvASq6bCjJ0a++fSiWdyXxd78w4w7bLjigteLtJiLiW76+vJf3HFIp366XdOxLswvjsb44N8YTsqMyRhMfdXlM1y18Sna4bGrhDd1+RaPOh/s8SuX+uGxJ8b09fwyVj8cc6F2P/vTMV/5ylfWn+5g859IeXTQ/slPfnL93Wx5sD74ct38u88U3AnOntUOccyzfnzZOEgxH9afWl+5gOeavnJcs9aSNWrdmEdy1Pc50z0vH3jQlxf+WgOeAw423H+w6LjvzIODHAf24gjDwRt7/DtgsfbxF1vzp4+tfOhX97yXO34U86KISY66H8SDEy64apdPeN1PcTMOB09rXZwJHb7U9HB1jQccds1zNtrNiXGiD77a57m//f/QQw+tdSZW8elr/tmwlRPCzrPNf6DosNK10sESbvA9k+XY5zRb3D0bcC338knfuHzQNX/5dm3O464Wb+uGjZJe13zIDf1sauMPo/0HLvkzRh8n62ausxX86YfYFIK3656/+sRk7uDky/zzL345c+DnGm/CX/HjBuP8/HwdtuNBOgSGY826N8xXvuQkP/T5xg8eP12ztya6d/HUlgMcrN1yY0x8xsRY3GocHa46JCfwYRPrCm928TDmmi+1+D1TcIZFPDOsPzXexqwJawc3/WI3L4q2+OUCj3IBH/d8dtBuzfLrAN8vO+jjSA++HBsnYjQvsCr68IeNF/7yrg1HDQf38g0v7p4nOPdMEqu80seJvcKv/W73I5vyX46tcb75wYsPfPoPqGHSUcw/TBh8ljtxwoZBR5ET94Q+mPqKiW9FTDMXfmEn/+KSH3G69gxQ82tNiVHBGy49+13c+OS75yUf9k/uF/PSXPDf+nQdT9d0rCXvKH5xCJvwB8ucs6WXf+tJm2889SvyJofNHxw+Whd05JE/fQp9fL3z+EySN/+fhYP2xx9/HMSa33VxxR/7oP2KidpqOwM7AzsDOwM7A/dzBmw2O2i3ybQhJNXFpm3zozTu2obOZtSmhqjbiMNus9Km1ri+8Ni0saLjWt0G1Dg/4bOjY0Nkw0PXtT46ij42xpX0ba5smuio6fSCgNP0wQ+c+GuTahs5sZNs1W2e8YdN+OdLcY2TDZ92Mn3p56dCp3F1HPTnu3625cO1/gpdG3KbSDUccTjotnnWh7P5I3h2CODlyIYWlk2tFzd9dPiRT/1qMcIIS7tiww1DfgguNrY25HjPF3f8cIZVXGxdy18v8HDkvbXIhl618a7xILBdq/ODg3zYnMPSz7cXB2J9iKk1tjov+vXR5ZcdERscfQ582/BrKwSH5ovdXIOuzQk+8lwM4o+764S9/sa0YZsXNaEfVvnSNm9yryZiwRfPbOgVGx39+ceNDUxFOzt8xGKe5a84XMttL0P6zau1pSb8Ge9+Kz9r8GKcn3iVW33wzIE+vviXz+IKoxoGrnzzA8PLnLzIn/hbn9Y+PfnyXOlbVWwU+mqCBzwFFzU+Sn10WmfNVTph8N8zDDa+/CvZwINF+GpO6lsDF2Ps4Yhj8tWvz0ustUNHrU9+SLatCX7N+4zZNX01fXzKheuK+RV7zwSYCjy8+NWeAm8WuGJVK8b4VifaFf14xVEbH9J1c5O9mk6xauNV7o2xtWa657SV+NGxln3j+JlnnrknB+23T9/o/NznPre+0d69JJfWD79q/YrreIrd89iBh355pu+e0VbktDyIo5yJvTyUd7hy4R6RF/r66NFRYLoHXeevfDlY8wwOzzgsufSs9/njsKM1BZcNTP7cG/z1DOJHLGqCO0x41puCr29KzoNFfa03NtpypOBDXPcM4JPQZRe/5l5NOnTit1y5d10r4unZBCMOy/j0g07zWQ6bE2tKkQvPOYdRDqYc7HVv+ZyX20Qs8gFXfh0iOdCzJuSIf+MENyIG3Dwb1Aodug55+TUn9MXGh2ejGg/iWu74CKPnGCx9pLyko6/PFn0wFLbyYJ70y5H80IUhp/pwkhv3QWNsyLxfyjPMuNAvd8bxtN6MwxCTttoYHf5gaCt8n58O2v1JHweVdPBnA6f7DR+Y1pMcGZdTHOJjvhRtueeHxFEbPlGbt9YyG3y0cZQb14o8WCfWDTt9+cR/7mnClmvxmF98+6VDa4Rv43y5pheHeODAtzF6cuEaD/24wJADsSnw+VLDkY+eZfDo4N9nuLa80lXLGx50iDYMXyCxpvCoyGvzw8Y4DMKXcXzlp1jNmwNowodSDmFpw6jg55dbnnFs46VfDEp9YcoL3/Kq4NJ8484WXzpsrTc4Yi02+vQIe/10xaHIvz61Z4wYxcoOll8EuMe14YrRgbi5Eie77lX67hNta4W/8mks//yVbzjWmF/0KK7Z0Dff8OSQLRGrgk+xNeczTrrG6RIxG8+va+Pm2jx6PlpvfPvXQTdv3jx77LHHlm24q3GFH/ug/QpJ2io7AzsDOwM7AzsD93sGbCSuc9BukzFlbtb0t8lx3aZJzU9t1zYmCjxtom2zo22z08ZJX5KdjZNCtw2z62NJv41Zmzs1O/pELRb8p982X+nAsanDjw38MNixN2ZzmQ7bYmOv8EV/2rpW+Kw0rg4vn8UWt6MPGOz4aZ5slG1WHSzot2n2zRXY2onNpU1sL0s2tV7A+ZB3+cuffGizkVP98mAzrujDRdw2qvzoJ+VcTS9s+vHGjcAl9Pjik55+cRYrO31qhZRv1/SMp6OPnhdw+fDCQmDHQ21OjeMDL53pd3WefsCTay8JrudBO534sC2WXhb0EbbyxF98q+Omnb4+uWmNqWEr6av1wxQPH6Scmmc6zR+e8LOnKx5t/fmuH+4RU1xwvLR5SZJfbYUfPBS4dK07L5xeoODDZCMX9PNLn5QTbZikPMQTvhdAHMKhByuccKuNs4c/aznqUMUa7OXYyyP+dLuGXYFH4tnayL82W/cA0RZ742LiT928xwtn19k0DqcY1SQbOrD4w1u7Pn687Bsnajpq9op2XJtLuhMnfX3iMH844pJe8y9WfbAJXWt1+jXOdtp3za71wT58NZn3RX705W8pXfyAWd51uVby3Tpje8SQE0XsjcWbvueCF3X/mdrrX//6xXP6vuo1LuT26aD9C1/4wvpGO2wHnu6z1o58y7F1X+7Z4eRgyVyLB1f5Y1seZ+7E07OEvXzwoYRbPrJLDx4dfvCWH/cQDBzcU77p6T6n1/3evdoBmG+v4unQ3eGOQ0GxwWVDjPOv3S8Y+CH4+0UeYSMmB+1w8GJXKb/FZB2G3f3hHtFHFx4/ijY7+Ip2c6DWxgUOnvLDXuwEpkLio2Zrjn0O5ct8+RZyh+rFTafc0DVPMMWh7TmLPy5y4tvrimcXPVzmnIkHX3NBBx/jxeMw2EG7Z6yYzSl8mGq8+YIxD8j40icfuPGDH2yctRX+xKqfnvnHmx9j2Ynfsx4vebUG5JZo64fBBi81neP90fxkxwZ/BWdrWE34lhOfBfg0N60J+XBfOoA0V/gR94DYWyN8wrHvIvBh26/hp81/n5HywIe4+ISjDzc6amP2fGr2irjpstEvB3Ewf+5FwrdCxC//1lX++E5fP+HfPu9vf/vbHR/84A3XGmlO+CzPruHR40u81gxf+sQgb/qLtTUTf77zhYt+fYpr+uZH4U8xVm0++oY8fXzUOOCCF6Evj8YUPq0rORCjtnmUh4Q+nDBaL3zCkOf2Enhq82/dsONTn1wk7Ii++vnuGR4/djD5bM3jK5d8KM1JNjDcS2z10XE/dl/xC9N7gXzKD2HTL/XixWf3ePm3NnGVl+YAB/h88c+fazzzi49cwFPY6lP4UbPBGbZ2wl9rS061+aQLh11rQa2fD88ZcZof4hfln/nMZ84effTR1aZ3HdkH7dfJ1tbdGdgZ2BnYGdgZuE8zYCM0D9qFYdNw3DjUNzctdG1M2uDR0W6TYyPTZoaOTY2xKTZCbcbyoU2Pvmv9/KoTGzwbI+PGGqdztA8jGzqubaBs9qaNzZzNHd9tuHDMt+s2iLjkN154F/cxBrYKadOIG+FPITDpqY1X2OChH7bryjIcP+pnKx6bS/g2lV7a/K1DPG2OvRjwV7xqL2leZJV4yxnf6cXBPNjgygtdPtvM2iDTLx4b/TgVpzESdhjwlbgXHjyFPqHPtz5xJ+JW9IWlTvCQg8a8IODLJm5iFhsfcuVlTw7ZkTjAUki49MP3cm3+itVcNGYdevngB1f2xsWNUzHwpRjvOn9q8bem+VHMjRoe7Pphwo+DcZjzRQVfuZlx0dMup+zjo09bmXzwYufFyUu5ApudQh8Xgq814sXGGjQef3NDNw6ujRO1mJo781ZOjZdLa72XUDbNfdfszS/RF6/VcfEDRy/HcsWPly/fgvMipi0P+JsLXBUiv8ZI/cWi37hcKYRvfPCY821Mn0LEAAcGm8lZn/ylwwY+PP2ucXb/1Cc+fdrTj34xqePJjg/+m3d2xsM0DgeHyY/eHDPeXE++dOKmJsWuzXd8cAgzPtoKHfj5PWIu4NOP5iQf5UA/gXUUuPXHBX4+8i2v1p+/8fr1r3991dkdMe/Wjt9LL720Dtr9jXYHUQ485yGrnHuOKPJK+DSPPTf1pdd9JqbG1bibf3ltjfXMVBM54qMc84OnPnau4bh/ur8d3Gp3sEIPnl8AK54X/PpWoQN2vF544YWzP/7xj3cOinDu/2MQl4ILrArf5sH9igMcxUGWZzV9fOOsHYbnFU7FLVZYcPiCbazPD/HqNy53RB+cnn366WTDFxx9Cvy5hlx7NvUMg4nT+fn5+hMxPmNg8XOZsJdz+ebLc9Yzkk/9nl+KXBPPnrjKiVzJf4dN+uTNAT8ePdv5b07FCFM8xvl1zS//xuHyqWjjSU8+y7dcKK0Rer5J6znrOZzgbO37F3pyYe77vOaHX31w+cGzvPa5IC59cBVtGMbZ4Ub0E23YDlV9DuAkB8b5wgceTv5kVHsI4/yLW0603QfyBcO8tHatUXNBmq++yY2XeTDempRbzwU1znJvjnDFRf74k68+Y9jqg0OXiIs+McZXv9ARI376xBgHtbjcn+WxfaQc9C9I2OBD1/oTOw7iM3fG80tPDA5wPRNal0vhGj/kuc9tsSl8Ksbk6x//+Mf65ZC1Inf0jfPZvSUXBNeKNWKeFH3iETfddFrvamO+Jc2nOZAra6E5Y8Of/bo8s8GDHt5wXeNtTNFmI1fEGDHmWcSeHR1z3D2ijXf3BZvum56VsBVzQV8pD7D6lyzlFH/X+XWtmG+50Q8LhhqGZxu/bOVEvyJ+tubCvISlxomI1b8GgEtfPxwxFadruLXpWa9EbrQvezZ55pkX3MXtoP1Tn/rU2Qc+8IFlWx5W4wo/9kH7FZK0VXYGdgZ2BnYGdgbu9wzYiHTQboNhw1D5/8QG16bFxsbGhOjr+m7YdG2w1MSmafKyqbLJokOMaRM22dVuUwiHno2nTZPNUxs1WF4abPhwp8dPvvLRhgw22+y1yfStzS6/auPHTTvfFX4VdsUHRwyNuVbypVbqc81W26ZSTPrMh427b1S61i9mMdmgVrzszX8qSRdnnOSDnljKiQ2wnOKXHxtadvrY0MenGMIy5lpJJn9xaB/HzZGCi41wL0Qw2NhA27Sz004/LLWY8DSWDo5s8LVGHPDg7CXAYU4vIOxJtWt27GHKq/jh9nJaDPlS48+Pwg/RP+dOX/nO32zDlX8vMPIgp/QUOHiQct9YPMpB/Jby6QdbwhcMbbb05Kw+bWuI3tTBSV885NALmdykhwPBjb570rPINVwxeQHtnik32bPFBaa54Q+Gl3d2cOHQ9/JOJ96tCRjNGY70ceZzir7mqwMSXK2RDqnYOiihR1/BQX7USXFr49z6Za+0No0p9PXhPm0nnn7+qtn1vCpfzRMuinUnhtnvGg4bBV7riy472N3XdOUSb2P6xU/YKnjTgUePffrh8UvPc8m4a4VoZ5O99swvP/rUMNTZwi5GfWHoc53EEe5RJl/j4eMfhti1E3zKh1x7Hj/44INn3/rWt1adXfpXreN3++JPxzh8tr4dmHj2iV8s/Fnz2qQYOuyIKxsH9d0f8oKvebTWzb846NCFA9u1e0/b3LqPZq7jqVbgdX9qW/facqnow9sz0+Gxg0nYMPlX/vCHP5zdunVr3XN44eTwA/ejLrvWMWzzwadCt2cNHbrlA5fy54DQc0usMHoW0U3fOu35Ulx84McnPT7kqnlQt8bZ0O1+zK61A6NfpOCl7UDtrW996/oTRD7Xj8+r5ejiB30H5f2rsubUMB/a+LqWF1IucXft8NZzVT7geVbeuHFjxW3e6Rj3/LO+xAQXXzZh0hMnX3CsCfPAvzkwzpaojRuTK1js7E/4oJ9Y4zg5jLU2zaGcZOPb9fBwJT3LtOm3BuDzaQ6IuYdpfcGCSxeWgpv/K8G3uPkwzhYuOzFax6973evu3F/65EB+ihmOmPDiBycFH6KP3+4f8yJe2NaCMbx9Fv32t79d+yJc2MsNLLnVp209t5bhiyVxzS7ffFl//iQRO3MBp3xo63fPupYP49YcLvIhf33Rw6G5/IjVLw3aw4mhmFojuMCE7aCeH9hiua68ko348DCHnqUOwuWmz3Z5MGf01OLGHy/XnrvWiWcAbuJiy844vebbmHWiuJZXQk9s5rPntftG7tpTWC+tTTy05a51BCMba4m0jtsj4R0nucUXB/G61kcXZ7hyxieuxuhZS2rPaftiscO19uRQnvi1VvGESzwf5FkuYOXLeoBljbDtWcCG/+4NNTx2MF0bx/P3v//9un/wImKwlhR8xcym2lqjE7fuLfkUr7lTd0/yLSfuYwft73//+5efV1pTa/CSH/ug/ZKk7K6dgZ2BnYGdgZ2B/7YM2Kx00G5DRGwa2jio2wwZc303sWlRbFoqYVS/GgYd9vmKj7pNlRcT1/DpurYpojNt+akNz7hNnM2TjZ4ycW3ybHDhwuRHYZOtNsxKY8U0Ywz7yM+mj57+yQ+Gvgqd/Kj5OvpvnC7h07UYbChtJG08YYrPy4pvVhlrw9yG0mZVsRHuBSN/dNlo23CzSdi0MeWfnk23op8NTtqubcDxhuEaN1IMXR9jq19sveDAxxcnvo0p5rENN7/0j0LHGL7ljE+Ck/XRt5Js1i87aKcfbzau+eplFJd50G6cTT7ljh+b+ezZmGv8zBlhp+hXE/Eq7OQSjnzQIeEVo3a5n7yNzxzBNI4HgYdvbX2NFwcdc8sWPzVOcaDnMEAexRUeHDqtC/OIY3jacoRfPqvLiXy7p+Dy20EE/3Fg417ohYt/Jf+ujXthLH/wYNPJF25euOKIn3tF0c9/L8XlQWyVcgczYdN9Ihckfq6N07eey4M+JV7mpj46+mGJn23+9NEr53Jl3YiZDrvmke/68KNnLugqsLPDl1349PnBC4a6kk585zy1DmEVLx5sijXudPiNj+swy9/MQ2sBHj12M1b97PBkdxR+KzOf+hJ4cJP8yId73Pp74xvfePbtb3/7nh20f/rTnz7785//vJ45Dlk8M+RRLPxpy2VziZ95bw3jau07bOnzgk7zbc7lTmx0PNvE5f5wrchB88xWodOc5ZsePP6N4eAeSh8XuuJwSKmmB4stPd/et29xUOWe49+/0hIrHZjN6+QA23jPFPnBAwZhYzyxDmB6Zjn8khv+5ZItKS4c8ZAT1zDLGw6wwyseNZywykX3GDt5t3aI5ycecIzJzTve8Y71H53KlWdV2Mvg9CPf+Dj0dBCGM0ycXKu1+XWdyEUF7u3TL3Xky+cZPXwcvMoLTrgan5/HcK1FNmHhVIz6xM1O0a8vgWscfzjafHveHnXNi7mSC/NA5IQdDL8oEIc5lXN95tN1z3nt8iEeAtPngvmFBWMKHrD//ve/rzVpnC3MPk9w8p8ospdzMVqHcSgn7jmxwpBXRQ6Ni12Mxj1LcG1NuC/hwvP545dRDjXh0JUPcbPBy7V4XMOlJw/84KaPX8WYnDhENt89T3CByy99mP40jH7fLmbnFyIO2uVD7A6k3asOVtmKF08cccen+82YPviKNeSgvvWWX3PBl6LvlcT4K4m48XjxxRfXPLpXcMHfPSP+1ob8wBJza0f+zUXrw5pwH8gfPVj65MH82VfyoY8toSc28cshH/LFxuGvXFTw0W8N9UsKffjAawwG3vphmUNciFwVB7/m1Rgcc4kPrtqtBeN0FbFa1/3JKG0xO2iXIza4sedLn3s8vvD1w4KDnzWBr/XAjpgbccuV2ri+RAzG/vKXvyy+cmfc+oZpXuDyR5fPYtdP6MsRfu4feM23a3kQjxjdxw7a3/e+992xXRdX/LEP2q+YqK22M7AzsDOwM7AzcD9nwKajg3abTBshGw51121K2hS9Wrx0KscNDTvYbXC06eZPOxv9rnGw2aJT0WcDpCbp6pvCvpIPNWFr02STSmzetNs0w6SjsIGjbuMlBjpK4wvo9INuMRqDwc7G17Uxm1iiHYbrhF229ONVH73itfE1Xp9+enjo79AFvg28/4zr/Px8baiLoYOHNrJecGx09ccrPPg2nXKWaGerjy5s3Is7e9zirm5+w5o1GxhTxGSzazMtdjx6CaGrr7q86MOnjTs82DBgGcuXWsFTHrwMufby4kVP3UsQP+nDLO/wemnh20ulOU9XnU857kWTvX648sbGywJ9feZCP9FHn6jFBqt86y/PcLKn51phZ927xtehQHrxg0OO7Zd7X+bhmi9Y6ni5xhlXeeADl+ZwzgveuJnP1lyY+psn/MpReWkt6Ofby5Kcsq/AhMEn/3DKIXx2cLyYsTGGbweX9MtNXGFa914urRPrhcyDduP04wG3XPJZfpbh+FFsceQbd0UfO/auK9r05JjwSa86f3FR42fe6JUXeq0j2ISe9UVXvporugosNq7FR9jiU11/9nQJO/gEBwWeujVyxCgGOuVi5hUW3ySubNKNQ+2lePrBJrv61PwXq1qbTMzVcfoRJj1YanrWh7nxp2O++c1v3pODdt8cfeqpp9bBmgML69U6Lw7XirUtV3KEj/tMDnDFjQ77nm/pmBuFLj06rS82rvXBIfIyc8InPbUSj6V8+sHOmpKbfGjTdf/BxlnbWqDvW9m3T4e+DjbZwe+bpHzDoZvfGSdsBQ5M9tZe8aarLYdw8IDvUKY1nk/cYLGDp0304QKndnja+uVqrm8Y5oUP0hzSc21uOmiH7/rd7373+sW5wyQ6U9jB9Dy0TuRNrPT4gNE1PXwJu3x2re5PM/g/R9iK1+eTmr19QPuG8gTTnPtsIeVlNU4/yruDR38OpkPNxvGjo8h/vvjByTzIuWJcjuSitRJP3Pwyynp1jxhXYLRm8jPnzXhr3DoId94/rv3S51//+tf6BQDu5db6lRt7AP+SsPjVE4MNv9am5yzhV37Z48a3+NiaR/rwrU26RN7lxt8aFzNbf9KGmIfyCJetfMqx4hq2oo2fQuDIrz0QHPbm1BrkW/7jB8dnoNz5XOzPyLQmfGFBPuQTvv5iZAvXgbp7U4y49ExoDcw5af7ZWg/0xXkdoS+n1qF7xQE7XLlz3xA6eMZZnog46RrHk9CxBxGbMbzxIjDaoxgXCwyiLkbXcsQPPLlwzY+iT476xVa54i89GObFvsZ929rHkz0c+nRaR80TnQ6dcYYFx5yrxWMNWQvWBBxrTu7gunY/t1Zxwrd5bd30LBU/HXHID34EN3MLnxjHR6nftXniFxeilsu44U/o8FOOxKnAal4ay4ZPecHFN9r9jfb9p2NWOvePnYGdgZ2BnYGdgZ2ByzJgE9FBuw1GGxgbCtdtwmxA2uxchqOPrg2T0ubERqxNXxsXOI275kfRR7+izcZmCx9txbV+xXXcYM0NVL7ZwLeRYoMfXdc2fPTarE4eYmJrPGzjNnTabfrmNRuSnRonPOMdnjoJl67+xvTrE6MNbbmE62UMF5tV4/S0+VGLT79Npphhekly0O5bSfrYyIvNsBywjQuM+Kj186ufDd362dpM66PDN33lKDjhEj6MqwpdG2cvH/Ih93D451N+Wn/8lBf4uOA3BdZl84efOOB6+Yctz14ufPOmuYBP8FLY4aAOV/5948fLSGsmDny477woqUn2+PLj0EBf/N0P+BD2cTXuxUaMxo3hxFa+XNNRZ0uPb/1i8+cXxKStlltSTlfj9AM2HeMwXOPVGsp/+mp4uCpkvgB1j8eRTrltzlrnxsojHvSMxYlvL7jyiZ9+GHJD2OuLd3HgwL9cGefDnPn2nRdLfvQp0xcf1r4Xcn6J+yne8ut+Ke/8K4RP/uHxa63wk+5SuvgRp2JnV57haathHOeb/3ypFfxgHgU+DmISG0x+tM0vLP3sXRuH1y+7YFovOMx1M/NmLuID2zV8cfOtwNFmJ6bup/g1Tse1QoyXD2O4wlf4IvrKybRtnE54rl9N8pEt7kRbwQd3Im5r1X+C+o1vfOOe/I12f1P4Qx/60Ppn8z0vmrM4aZsL9xw+YivHdOTD+jHul7F02STFItbuW2PhznkuH/AIfbysB9eeZ+4nBz4EF7oOuMyJdeBwzv1rjeEJ3yGQQ0Yin3TtXRwq4j8PdGB6nvFl7dCBRc86xRsGrq1F19a3Nr0p5Uvu5AKeWPwZC324zHuDLc7zfoZB+En04aHgZAx+OuzlTtzG1T2LrGefRR/5yEfWMwqf7CY+PQfkP/nJT9ahGV+Eb/qK/E8uYlLiVtxybD48E/XZg8infMmJQznzJgZ8w8TN/MMzxp+44oKjw00H4WpzReIll60h/nGWc/NrHbmn5EodLv/s4+PZ/POf/3ztgc7Pz1cc8gebjjisvQRWz1F9YqELF1829MWueM476NNPJ2EnHgfLDzzwwBqXN9yIWk7kU2yu4yEmHBJ5jLMc0G2O+NTGhT/zoc2Xb5TjxYcib+4P2NpsK/jAIHHjS8x0fSbSdRjuP3d9zWtes+ageYkrG7G7l/0pFm35sZ8yZx3WspNXxTUf9qnnpzkqBjieD9afPvzwl9PyIVetsyOXOF2lFrN/neCewcW1g2Mxa/ONw3H+ra9+WSRWOHTUuHl+KTiKR79Cd+be80dfQpdfZV5rm2c++td04eEnB3wRubpx+hNP/iWVX3JYM9a7AgOuYm4VYj2L23yJDSdjnnmKvOuzxpRwcHBv6vNMNGfdW3LXPYMfXupya63wRY9/cfBhvSief9YJsR5hiREGMWZNu3fFQ/CAF0/8cFXwlL844tG8wtXuHpQztvLuG+03b948++AHP7h8zPlaHXf5sb/RfpcE7eGdgZ2BnYGdgZ2B/4YM2IxcdtBuE2PzYNzGwobDZqbN3mWx06czN/7s2/AYD6fNj3abFHb6iX6+tG2I8IGj37U+mye27OZmjT27cLVJfTBgtSG0OfMyYrMKNz9sXOPBB+FT0Q7HNZ1Ev0Jw4Kc41DD5TIdeG0Fjlwn8Dhnokg4EbCrFzxf+Cp8EN74qNqs22jbKvUS2GbbBZIsjewVmeXONn34b1HKl3+ZYDusLI664sMUnzOY3rnTuJmxtgHvpFhefYuBTTuWCFDMbYtzamdLLGV6kmHGlb6Pv5RAuv16UvGDIHT9iUPhgy04/XNcEj/PTS6OXlLjob1zevVTIYf2N9UIsRrby2YsYTgrd/HdvaONRPPho04Vh3LVxL0H6rC9/Ughf/bDLqb44LZKnH3QUQq+XFly1j8K+fMEu9/rYtlbiRofAI3KPR/36wtTfPNCXS3OXLWzrk7BX4m8s/nybWwJPThwkOBTQPuYADht59w3CvsXnxa0c6jNn5QoOOz7ZsZ/3qXm6TIqVPYFXzuDFT22tEthEfvmi3xqJHx4KfL7DSZ+N4qVWkVNtNdzil284BIY84gGzfmOu2bF3Had4se1+FBd786u41qfwq8BhYywpH8YnvpgrxVLcdPWFH9as6dK7TMLFgx7he3KDLy8OPJ577rl14P5KeJf5mH35uOyg3ZjcwnaNU2ts5jA8uvJIx0G75yveYjJWoW9OFePFJ6b40NGv6KMLT3HPO1xxP/UNZzr8OGTBwTrw7WD3cJzwcv+zpSsGer/4xS/WwQhfPr+tK1xhisP9y3Z+tsE1bj3Jj3sTlmtrWJtfOolrPsUMH55Y/MJaP32fQeYXFwKfDv+EHh90E7jG4bamG9Mudz47tMUjb8XvQPKqB+0//vGP1/MJL8K3WOSTwMRFzRdOdBXX9DzXXLd/EK8+McmrazkMDz5McdinsNVHfLbBhqv41wn+xrL1rI1fuZRHObDO8IPB5/Gg3Tg9uHJtPXjuu8avg/Ybp0NHmP3SwpjSOuAfX2uWrSInYlHTswbUdHERu70CHDr4l0d5sm/wTVjrBCe24itGnIvNGiTyJiaCA//zb/G3ftgRXOLTPPD9q1/9avGir9gHuj9gm5N4qrPHyxh98enX7hDTOvQLF7+cb02ywZMNwct9/ac//Wn5kB8H2O5jNt2f4jQf8NmI0eeuvUmfMa59ljZP+Dtoh8MWL3PvWhwEl+uKtXX79K9l/OsE9v/85z/v7AHxE6M5xKP7XW6sBwft7MSvz75OjZO1ip9Yy3P3Qm15ti6myIfxYlJbBwoueMhxewyccWEnJ9pyZc37l1S+aIMPHWuWP3wV/Dxn2ci3Q3bFWjJuzDMPhnuHnhi6H3ESb/eAueND6f1AzviUSznBRcHXlxXwguuQHw6/zTN+7IzzI34+9RE41nRrVB9udCva7LTxM0fWpXjlln8cm6cwe1bxJ4+f/exn9zfaJXjLzsDOwM7AzsDOwM7A5Rmwiemg3WbKRq/Nng2J8YrNjM0Q0dfmZiLbADVm3MZFOxttGG2U6LhW0k9HjYNNWZvt9G2U2MCic8TIH9+N1VdbTfjhow1W2I0Xz1I+/dC2+cKFqItxdVz8YD+5dW24HOibgssRK/9tHuPVJt/Gjx1p86mmxw9+Cj2bY8XG28YRtvmeL344yYESv3DzIV/64opLfPhVjCtT8CFxU5eXeT1t5jWdXqblAx4f+BB5EGv4+RM7Pzbu048XB8V8wpGL5h+edWcDDocOn14SbcLLq1oe4KqbQ1gw+fbi6IUQdzp8GMdJ7jukCROG0jd5whInffawmyO+lbjzAYvoJ9owiXHFWC/18uCXMB1STN1pO+0X2OmHOOTKMwQeHvA7PKCHN86EX5jySq/1xKd8ZdcYfDlvPrUV43DYxFE/X9ajcUX+9JVzHOiVR3xwg+FljuBizh2QOHDRNk7y37XYvUyKHZYXNzGx8SJHH0dFDHDo4aNurHF9eB8FnpLf9OApbOpLZ8Y4ecOhrw9XXMJ2LR+tMVh0xCdWmOzU/BlrfvPfHLKFw1clbLqu46VN6JHZLm/idB3/ONB3rX/mQizWAo7x5i8OfNHni0648Pi5jEt5okOKA2b+04Htmg4engG+0f7ss8+ub8YV48tIV/8ZLweTTzzxxDqk9HxynxQfbDH0zFRbY/jED45reTLmmUMPbzgwwqNTvhrXNtcEjvacU23FGBu67jHPUdj685+tZ651RroncHIwB7tngUMtnMybQxpth13anmdi4YdfYv6tUzVfxOe+Plxa3zC1iZpu608ujOPg2aAfp3LDhj+8xaomMGDxTVy3XrTzAS9f6uKXIzE5XOeX+Bz3p2P6lipMa0w8YsGVPweUv/vd7xZHeST0lHIRnzl3xrSNEZji7u90myPYzUH3GF182eHgWhyu0+mQzRhxoHf7dMBpHuXCs7d1xbb5d42TGOWHXuPyo+jnCz+c8bCmfvrTn66cddjoAI+9NaDANXeKZ777iW25tG7xlRfYxuJvb+EzAI5+hZ4iP+bMn47hQ1t/uRA/zrCMt/bjIhZF25oWY/sfffDE53MH19aNvMDyjXL8+CRigyEeOvziW17llj848F1ba4p8abO17hyI29+YHzzYKq7Z4uWX0Hz4ZZh7lC57PPhw7d5W13bfFg9u1qrcikPe+qVT9zc766X7jG86xuHqx0G5m/jMxptf/8Li9mld9kUcvnFRGyfyZu9DxzomcoRveTRfrVXc5F0bH7miB1PuisGYHNHNV2uKvmK+cTXPeLBVF7u2vGh7dsgHPL7Y0pW7uPDDxp4UrhjosrH23Pv+nyd4fIrZM9e84IsTW9ew+SAw9ZHi9yypT1wO14sfbtfWnTVTHnCEzUYfPDh9LvDBH9/trekWWz5xNZfmO/5i1Q8LrryIlX/2/PmXKR//+MfP3vOe93B1Z25W4wo/9jfar5CkrbIzsDOwM7AzsDNwv2fAZsRB+/e///07GyqbpzZtNhzExsSmw4aMTdfH+G1+FHbZ0E30wVDDsYmhb6NJbAj1ZQPHxgcfm5z8soVB30bJOKGTjzZg+vhItElYxvTxZbMMDx99Nmf6pw2fvSDUHzZe8BR2yVFPPx34BBe8la71s4MpZ0TdNdu4r8GLH/zGgW2+YTvs9dKRXTlQ0yXGxF/sxly36W083Ozyqz//xXdBbXHBf/prjH2lvmMNu5dp8yumBKZSH13cFPMF2zd/4qb28msTb1NtnfUCRReO2mYdrnlX5guuWOjNwsZ6ZCd+Y9a0Px/jb2TC6gVAnss1nrD5YEPPfOEolmzU4XuJwLtY+WanEDmCmw5cfXzgbiw9OXL4Ub96Ch9K+jDyI05xyF8vZsa8nIiJOJDpIJ6u/OPbfMDmkw0u5kRf43SJPv5aW8UrNvHAoKvgqA8Gbr10Tcxw6ZknOSgvauN8uhYLP3zLKZzWDW509HVAoO2+waOXtZk3uvBh6u+ZBYvwexSYievijyM8+SXwxS0n9Oi3BvhiQ9966mBBbDjnmw17mObPGNyEnhzohwMvjvTg0eE3rsbDry4HbOIPF+bEwNs8zM8JNnTp8QErDPXkhnf88l0sx/row/iMIX0+yglMOng2n/yVZ9x9s/WZZ55Z9d045ONYF0PfaPefH+Irdlz4g63PM78DJ5zYmlM1fX1iUNNjEz6/cMqx549cs6PHphj0iV2bfzbW38w/WzbuM3psrP2ew/yZx8S4woaea7YOfbTFYY04zPvNb36z/kM8Byd40HOY6iCQPS7ibD2JcR6O4mus+SwGdfOOF5+eT55VMMSh7rkVV/mhW+7glNd81RYXfbjNTf7xocefw7IHH3zwzrP1TW9605oz9jAdGHn+OKiS6zA8f+F7DuGrTZcNWz48u/tMkVPj5k5O+KfH3mcZjvA9E9iKeT4f2dAv5+z1tX58jovHHMotPf75g228ZzFb3LX7rHa4Rx9P8eDVITQ/4lLgGhfLz372s3UvyCGfDgzdGzjBImLQxz9f8tfz3BplR8SGJ15ih1FO2RD5Cdc69A3w5hanOLomzZV+ooahuOYTJ1+WsDeInzXsOeA/g+RPnvplCFuxN69wy2cxiskc0hGrOPjCBzfxeWbBTNc4e4ft8ui5Ie/WHXt5J805n3g6iA6z+xdf+xzzAhcX+TTHcNjya66tDzGJ3TyZL3hslObevMh3f+YErtxXYBIxFqc2LIU+Hf/SwnPF89VzhW8Cv/XLr/vAZ6gcsoepP6lPPw5i7tBbTHw1V5ODdS1286+fbp/DsItD3LDxlhv5VLThyl0Y+mDiUS2X1om5g0mXmHtteYZnD6sWv3j9uSe58Qsy8ZY3tvjyYV7dO56PcKwb9jizERO/Cp6k5wTfdOOEV7m1NozxYRz+cb1Zz/LFDje600Yf/+YNhnxYl+bWmFziLj9Enz+Z9OSTT+6D9pWR/WNnYGdgZ2BnYGdgZ+DSDNhYePn43ve+tzZZNmRtymyAbJTaiNlw2aQoNhukzZ3rxtoQqenVhqWdvWsbGhsghR8bKNd0yazp0yEwFZKP1bj40bixaQcbZxxg0VPTIXHJr02fDZgNaPzp24TBINnHh172xl3DhdVGmG2bRToke1yMT46Nqbsutpet//1nHPhQtNsw/7vmy/mz8WycfnPAh2trwbqgA6vNcLGziY+avk0wPfY405V79sUwuVgL8Onlf+qxIzbp8l877PxPTH3y2AupFwNcs/GyY3PO73Hd0ytumHT4lavixtk1mTnADZ4+1+JxCODApzw03rqAiw++9HG3wWdHvKQqcmiMjrU5c0xPbOWt6ziyKw45cU1HzX/rgF4YMAlfXn7E5OWvewAPfWrciGulPMESFwxzgLP45Vc5ziU7NsbwxAse4YO9MX5J/rRxj7+20hqwJsVQzrNX42A+zYF8sMEjX/x4SdRHNxt84BKc9XtxUzeXajGocSPG8Yalj8/8GjcGu3lQz9imTnnXlw6e/MEMg69Z4oB/nPWJGU7zwIaOF1Y1f/i1hvV5RrLli/6MDQ+S79W4aNNrLvksbjrxahwfc2QelGKT2zk39JV4ZF8OYYuhOOLHX/mj47p4tJPyWf6OcbFrrnEOkz/PG99svVcH7Q6CHnvssXXgITeeF3y4Ll78zJX5cx03OumJXe4bK3dixL/1SQ+WuBwe8geDTvlwTbSVKcbcYw4L8etehOVeL5cODD0rrKvWiHnEw/PHIVVzXpx+kepwznOmw2Yxe1axKybPVfba/OAgHrHjy4+5Uou1dWGcwKJPl296Sgd/1qNY8GMD3yGdmi2RBzryVxww6fSshantmZWN2B955JE7nxUOOcWHRzriwlnsMMhc73SNw6aLN150m1/99PDHS9t4eI0v8NMPevQ7NONbW47Yi1XMcuMzXLFujBF65llhp79cGeMPBns+/JkZf2KIH+MdPhvvoJc/WAre1oT8mX/41iFMuRE3PXMhH/rFxK91aE6M81UMrXtrBBeHjXyzNa8dpMJw7VA6DH34Ka5hKKS45UKfeHGkCxuWOOhZG74JfPv0rWt/lkWcxn1rXyyw2bjGm39YYqPX3PMlRljuI+LQ3J4DhkNrh/v8xQs3efS8gd/c8aOPL4K3vMF3v9HTh7+CXxzZ8EefnhpXh7V0SGPGK+LGBy7BAWf41nlizuQOP7ZidPgvx/x2/6lhmdcXX3xxFXMrXnPreSV/8PgWF9EfB3X5hm8dqfGXr/JGR9EPi2/ciGtr3HNw9tOXD2sYH/rsxQBD27W5JnjyKZdiUNdmp/TMDNvaUOjKp+eMtmtiPm+f1p38sG1d4cVG4RdHsbIzH/Dpsifiss48u80hHfl0TxJ4OMtn8cljz5jyTcd4uWOrzV8x4+Ran5jNqXxp04331BeDMTz1+xvtX/rSl9a/JMuH+qqyv9F+1UxtvZ2BnYGdgZ2BnYH7OAM2F7du3Tr77ne/uzaBbfJscFy38bDxUdqk2GyQdGx02pi06SktbWja8Ni0tKlxbbNjY8TO5gvm3CjBoZ+Pie+6sa61FZJP3LKDLRZ9/Kkbz24Zn37YWNng2ozTDc9Gvc2Xmj1b40k8xCcmG0MYeNCna4xMO2MwcSymMNVww6BL4MQtm/D5FLO5UyszTtc2ssUBK7ywYeijq4ZB+FIILgod+l7IrKN06biesepLbMLjEfd01V3LvQ3/1OEzLvGBWy7Fhncv5XTkt0N7ejb4c93jKg5zx5Z+L0b0YXQ/8EWH4FKe9OFpHXkp6yVMP2xjfGqL3QEAruXMC4o+eB0i0eU/XNjltTyo9anpKkQNvzhaY2r5bw2IDT79sLyQWMMEr17S6Cl4yVW28VQbN2derDpwkm+FTRIOn4ocsVNcE3Xz5Bo+nK5nvGGLTcxyZV2qJ+84yoP1VZ7izB8xR+Y8W7U885/oqw2ndcLOtbj4Y9e86e8lNB3cxaSdFBuMfItFMQaXiGPGwDcxDrNcafNTXrTrC4MvPM29+ZOLMNi51ufFGBb7+OEeZ9c4G1d3DWPaweOPuF+7Z7VhiKX1K2fwtRXj8W3O+Cne+OCgj18FBsGFjnI3gYsnnKPkp7oc0MfzXh+0P/roo2d//etf1/p0IOVZ4/7kVz7E5ZCngww5VKxvaxpPc+vekBtSfDjDsB7oljft8/Pz9e1m/YSuAq81oF+74hnjmeZbkcS9wsZB6cRx8OKZpzZH5hM/vD23YTj0EaM+zyRrpcMs33B3AOQQrecaf3j5VqZfevILFz6hZ7x1gZtxax9/fki1XPBPDzd8yiksc23cmFjU5VD+zJPDV/E0V+4jz0ix4MF3h3jmho+3v/3tK36c5NFcuzbOL36uYZj75lIsuPIF2zWRy56xdMRVvLBhwsN/rhM68S535kvOfV7gIZ9iFiMe+PcNVzb6CD0Fpr5ZzBNOcuaeF5cviJhjucFNHqwhOg6LccVNu9zAsE484/XhAo+9fPAvXlxxZs9GLOJmo81GzlqvxnBR6LK3vhQ+xKLPvwRwzR+Jn2vzrBg3F4QvcyRe1/yXS3hiE78D/tunA0+HwvRw861buvAcxDokZwNDPs2N9Ydf88u/w3qFnb9PDpvcOP2Nb/r9QlV++W494RJ3enw2//JK6PKBIxE/3/Kpbt3KDxt5aE34Nn2fzfxY1zio4Zk/NR5sYDpo59P+nQ1cOcFNjuhbq35ZKcdE3V5Hrhwg+w9R/QkZzxb25tEvMuSUH/eMvIjBnxXBgagVHN0XsJpL/daaZwTMcoSnHJkj1z232fKDU7mSH+veL9vospEHXKzJeS/zZe3jGy/2ci4PdN03PiP4sC7K07ThuzWEpzUiP70jwYbb3PI715l+PM0dnnEWp7nQj5O11bOL/2KWV3NqnP0UOazIB19scWCvXWFXzDjgTYzzL0ZFWy2v4nXtXxT5028f/ehHlw1f15F90H6dbG3dnYGdgZ2BnYGdgfs0AzYlzz///Nl3vvOdtWmxmbCJUWw+CJ02ZjYgZG4+jNfvug0KvTYg+hObSmLTC1edLxs+JbtssofNRlvhlz3BSV/cYBhTs6Mbjk2Xa76I8ezTUcuDDasXX7nBE6bN8dyYsc8uPH0KfTg2dezppXuMky2e5Ts9/YS+vpkD7XLmujiKP87GlHCq9bWRZZsd3pX6+NE3JZ/lXZtPMdsoh6EPjhKPOKjFZF5wkTd6bAh9RZ8XABt5ErZ+/uPQGBuYCh2beDbw9ZlHm3B25hffNvf0+NfPFr/0W0vwjz7pTtE2914SHTC0JsqHPNHBpxchbUXbSwo/Dmp6YSwXcW7++cXHuD7XtY3hLXe93MW99YYDfuyJfoI/3/LHBq9e0tKVL7FM4U8cYoXtRcWLZmtDrqcNDLxh8sPW/FgTxQiLXfdjc1Q+m5v4iIc9vuzEEhb85tm1eOnx7znlYKIXVnG1Nl2zq4SnH462seKAGy990y8bscIu33SKzxgsNuGJKQz5owufHpFrok/+4Lbu6MaPvra8dG/UR59vIrfyptDVVpoH/eYVBmzCFgbBu2u84x5uNvRcK/S9TFszYRS/mMyTnPFjPWvDFTPBhYgHnpp9eRJ3uaAXL9f0Lqv10auGKYb61sDpB+4V/MoFXVw7aPfNuKNtGHer4+iQqIN22J4x1m2HN3hYI3LpsMaczTzSkxPz15hxBTcxEjrWlRjkU/v8/Hz98lA/vUrc2StxVVuLnoUOqbTZqD3ncMGXjUMUh1MOYMxTzwzj5hoGv2xx8blg4J8ryQAAQABJREFUzq0Xug4IHXx6bso/aa7kiH++wzbGP93WYGOtpXCKCxfx0HMPWJc9r2B1iMleLHRwxg9nz1G/fKUHi5gHMXvu4NS9lU/4b3nLW5YtGxjmvTnARyH88gVHwRMO38WmLffuJX3WgD4Y+sThWq7g4SXHdIj849Hc2Ss58FXjZAwOjrjg73DQIZ5xOEo49LXjPK/pKzj4Dz79vW/5ouOQHSau1jmu4qQPu7Xp3ijfONMx32Knp8/awtN8y4e541ObHsxyJgfGrDWHjuaOD2tMnHzxrc8BbXGx4xtffuVUET//pDmDj6Ox1n5ry33tgLT/tJMebh20a8PjX0x8weVbf2uHP2sNliKn8msu+fUnWOiLzzzKC/14iYMeH9ak+0ueCB3+5E4sahxwocNGoVPM5YwOcZgMt/nkW77U8PBRYBBrzkE7HM8SNR54OmS3VrT7xvr/sndvrZYdVRvH1/cQtQNqEo0HlAh6K5Ko8ZRoUCIEExAVNSRpIyreCN7qhV+o0x7AC0Vi4iENGr0Rv8W7fsX+N4NJK3vnzc2GGlC7ZlWN8YxnjKo5V83aq3fjRaxbMcIVj0N3eZBfOtaHX6CYy9YbHuz47qBd/vjCA5Y1aQ9FV4ywxWI+zYE4W+vNt7ZrdtagOMPkCxccrLVs6VgTfIpP3Gzklx98rGMFBh7lHEd+cLG+rCMFT/r6q+GKxXNWfuQMDl229GDzzS//rvXhhR97fGtbd+Llx7gx1zjDZStO/T2L8CDFT0fBhW3+1XGCRZ9/8+vaOKEjL/pIMfNj3Rv3n5l/5zvfWf8RNZ10XV9G9kH7ZbK0dXYGdgZ2BnYGdgaueQZsIm7fvn26efPm2nDYTNikkGqbCHo2HzYj2orxNjnpsqOrkDYg9altuLJVh2fMRsYmimRDx+ZGm9SuT1tJv3r6pquNr3EbLfGEGQd1eGptG7Y2rPjZAKqLHV96CV+wlTiGk395dA2bGMdl+tbOPmx6FX3p1FedvvF46LNh1eeFJF3tNrHTzri4q9ngrH0UvPkRl5pOeVMrbMM72muHMfnCwQ9vLxXaxhX9cclv88xPhwzNBx0+2OULZrHHj2089TW/9LwU8c0+zvmefNbgxQ8crRnr3osiPaIfjlofnviEr+3Flg3xQuBlJu5y2uGma4KvQugVKyzSi1kv18VhLN1qY+zkwotbL4n4ecnETez5Ztd8dF0blmu57N7xkgNXnaSjnY2889M8iA9Ga4qNvnzxrY03PQJD7DCUcsQmO31sm4NsrHu+8DGukGyr4ZaL8OnRZ6vMttyGp5bX5l67dcgGbtjaEy//+tjjreCghGmcbjzh1Raj+0Vbv+v0+JsSrnH5xbMXVtfG1bBc56drtfiI6/JbH32ltcePscbV1oMYxcaPQyTrUYzs4IoBjmt8SOPF3TrSPko+4SnlD57Cho5++HxNjtnnU5s/zxAH7L4R5z9FvZfvI5d7tfPloP0LX/jC6bXXXlt58A1p+YGLpxwReXbgJJ/6zRmM1ocY2HVf629MXc7Zya2cONzsIFFbDuDnAwdFfznCxfPHYVd5he3AyL1nXuWIwPHsLOflmD7unkl0XBvrc0LO9ePaM5J/+WejTuLGB7/8E/q4w1bH3zVcdQdK9LXx4huGPDpspDN9hKcvG3kgzQt882WcPnHNRttBn1j1EeufH/7F0KFW6zufeLUH4AteUls9+dMXk37z7iAMv2xhtz7EwSc9NTtjeHY/4mj+zXX5yrccu66dj+IUGxtr4s6dO3e/AIGDz8nWrnUOiy7+eGnjzrdctUaKSc1PseOXXb/86JAZJl902ciHA0ffyPWZhqf1bV7ELx765o0u/vmCgYv5Jrg5OBVTxZh8artPFNjigydeHK15WLj37X455Csd13TVOMHBAXY54YtkY8xnPj3feG4u5UcurDc1PfHOGPgXP13XbMuBOYFpTlqzMMRrrvBR2MqpQ1/zzJccthZhOuh2UMyX2OTALxvo59vcyBF+YqfreWDecMKvQ3bXuMiFsWLGt7zxQccYHPH4xRl/OKgVGHzLp2tj5UW+xAZHn9hhwRS7fvrZ8M+vEj494+Ih1oUxtsbwFXM+5AC+/OFMt5yKlXSPwiX02KmJfrHIl7j4xl8scoCDWMyLYr6MT574xFE/HTb0Jn+Y2ny0xuVNEQdObPplBF14+uDjQle/IlZ5gUevPIuLHhtc4DbORu7dL+9+97tPTz311OnRRx9lsnTWxSV/7IP2SyZqq+0M7AzsDOwM7Axc5wzYUNy6dWu99Nvc2YTYTNh4KKTNm7ZNyGzP2Nu0qBXYCjubFdjs4evXpxA1GxsjNZn2MLQJnDaS2o2lr881PSX/019c4DTO97TVXxseexsvG0GbveJs86k9fbCNWz6ME36Ld3Wcf8Q/zmyyT6cxXGEZb2NIJ//qciDfdIjNojEbbDWZPurTHz+1GG08Gy8f2erHrbxqZx9XffS1Z65hkeKvrg+mlwSbbRjFA1+b/txI68PX5l+c7NmInZ5xgou+Y/5w62WCXnGwxUFd3MaLWR+J12pc/OCztU9fmx7uroshPsxc29SLnfRyyg8sHL0wmxdYxIuPfu3mnD8vsUTtBVwcjdPNHjY+6uKUS374t/aNOUDqRX/O5XJy8QOOMbGxwatY9eEN1wso3Hi4Ti88bYWo4dKffemojfGHu3ZrYOqEjYtSDsTdnKr1F0Oxiie7MPlqPCx6055PdnCVcOJSn3ZxhB8HNpXJwTXuzeu0g2dcH46zmAf3Sfe3vJlra6l4+IPbmtCfHX32HTTkVz7KSX1yUT6KsXXBB2nearMl+CfFr4ZnXXev4KkPvxlnODDiYTz/M5d0teHPOUlHTcc4f65hJvGjl7jmz/3sW4/f/va31zfbJ690L1OH7T9BfOKJJ06vvPLKOlTyzU9j5k/+48+PNp5q955rXOmLozya59aS/jBcuz9hs/FcNVYu4PacOuZVTPoUOA5yCD+eRw6D4Gl3yEMPdrHSb+7wsObUhE6HrT3v2Yuv56I14VDNYaE1O8eKAX65M44PPPh0jHdg1mHXzCGfxWSuPcfjLFcdzlkL8PTN+Pgux8bKiRj5gdchqnzTn/F2CIdDfsuPPPdZkH+YDqv41KdNx3w4LMaNH1zNbZ85MIlxPMtBPosNlpzAN/d0xUBcEzHg0D1bnltD+hWcigsevXLHj3VjnC4e5Q83MTiIlSu67Pj0+eMgUGzEmHmTR3Z8sHWgaO3gaiwubPR1kAqzGPkobofj/twIX9YefvKAT3nQhkuXb/MhFvpwCG4+fx06yytudHAgzYc44q/Pt479MkBO4fHrl3IORa0LunJHFzdx0xOPPof/bBxm4tL6wQHvbOnCs0YJvSQ+7MNgx15OwxATv7gS+WErbv9KgL6xcMydZ4F/vcIWd1w9C/tlF17m3zzxM9eANS1/MF3DKAd8aM84YMFQxM+OPZ1iwEGh2/rg27V++OzU4qMHC++wxK5fSejkWx+MYqYHC0Zrio7PRjmzTno+i6s1L/d0+NXH1hyqy0f6MPInDjEr4lD4tjZxhOdZaW7CwdFcwq5oK3DFQ3BqHHdiHA+6+vjSxoPw0brBpX76BB6bsHGRz+JQN3/i1K6w49P96V+kOWh/5JFHFi6dq8g+aL9KtrbuzsDOwM7AzsDOwDXNgI3GrfNB+3PPPbc20DYdbdCF1Caj8GxUbGDaoNRPz2bLJqlic9NGyXibHDV7OGyMdQ3PWCX82jDbaMKZ+nBq58umiQ18hU5YUycO7Okr6dWnjmebs2Jts6ltc6m4nv7gkXCNKVOM4QVfSTedNpflDc9iTDdcbRg2iGoCm63NtJp9fWHSEyf+9bm2oT1KuaJP+NSHA1uFaBvDn26b4+yNJXTDM467AxQvmPptksMJl544FCL/Xoy92OjLhh4MhU+5MZ5/ddzhaCvioOflg+9s8q+txL24w2ATNr1yky9juMBvrnrhV6cXb3HA8CLs5UM/nV6CtOnosz68HPABy4tnLxoTN6762NJhA7+XjvyUB9j0k67VSnzDgctGDqwp/M2TFyRzRt+L0swfPYXtUaY/NuyJfja4u+afvdzyndSvTlzPwo6NPnhEG5a+4uQ/PvSMFWfX6mOBp6+66+KF67oXPX61J05+i617NaxqPuQIpoKnF2Gll279ruWvfMLNv/kzZs7MnWvz6PDSdb5wKP/xq17Bnn9oK2z4ULNTXIeV/qwbYy8fDtk6DBJD66l4cVO0FfZs9YWBA9vGtZsHfa7l3/0cb/loPuKnnS08pbYDDX/S4JlnnlnfjIPzZqT4HbT7W7EO2t3nDs5w7VlAL99qY+bFuGuCg3u6g+H0xTrXOV02cS6fcYHpmWs9yD+RH88SOPKQX21YciknPfv41mc+Pa/Ywy/HfFqf/HhWdK+xd0ApB+zF4ho2e5zpOyx16OjAEyY+uBq37nB3P7g2jntccKbH1vonccPbPaLQK4d0xM0HXp6/hJ3YlHTLEd/0jclBz2LXDr99u9gYHbrwmxNYYfLRfIlFjmDQneteLHJKlz0deZND+ZETQk+Rc3gKHwrMfNE1Jh5zAEfbOF39/BN9MM1nHOqPo8Ndh6RyJ784OsiFK1a+5VbRzi5fanH42+OuYajlzjPMvxYToz5zLXZYOMPWj6M/DyPn5qPDRGPFbh74FpMCE3c2nk3ue21YxnFV5IM/8SjmiW/rlf7xF0rWebnIJ79zHbDHTY2v/6/As4IeXPz9i5r7zn973f6KHi7lHj9zgisczxXrQhuG3CmujZsT4pq/fkkDR34UeYcRV2NiV7pv8BCHnCnswjbneMDXT0+xblojsMPFQZ6sQT4cxNMzLt9w4RB91rXc8KutwNbHj9iMyQE7PMRTjuHRN6b0bLL2rDPPlbCN40onbHNvnViDcTNWvvDEgT91nGESNopxY2wVPPXFQTxxlBcxWFPmU2z6cOFDvugrxhTxwOer+7G4+LGO2BL+u7dds2nNF0c1/+m4B+gZw0cO+DjGygdfcNXxFJ+24hpfWM0ZTKLPHPBN8kmfbXmkx4dnw0MPPbQ+v/3JNgL/KrIP2q+Sra27M7AzsDOwM7AzcE0zYCPx8ssvn55//vm1obLJsOlqEyasNirzus1PYdNv02jT4jqduaFxbbNC2LTJtLlqg2WcbTr02iSxV9qUG0uPvTZb4zZUbQLzpc5/etOfPvEq9xL2xtpczw0wjjagbczbeIYTNz5wnZLPdMxDG7645Fdc9KauMXEoruf4zJX+5klNVz5x1RYDwU+f+cFXv+ujsG8cdkIfhmKcGG9tHdfI1MluxuSl0MsSOxjlP1z+igWWTbOXCi8F2jbt8iDGaSPH5Uw/DFIeig93eZJ7JRvjFX7Krxhc66OLLz24+tW4KHSN4ecFq3nnR7v5XsQuftBnZ701b9q9qMBX6HmhlDvXsLx8zpfMOIEuBjVdNvBbB9oVcdHTnjLxZj8cOSzn+HopcmhlruLu/rH25Cn/dOMG07VCipWOglfzAGcK3zg0f+Fok7CmzdTvHtCnZMNf4jq/8ONOP87ZlSv9uNWvXV7ZG7OGW8cTJ7/V9DsYC4N+mMb5NR94OmTyMs0Gd2PW1RT5wcEaVbNzb5k7OTFnDtphk3KgjcPMz8RtDDf50eZb0ceuMu2O1zhbr/6TS2tbG8dsxWp94eqawCfa/IpRnzY7fenAU7TlYD5/8JYTY8UDq/UBTx7oKA61bty4sb4R5+CNrzcjfBEHaA7aX3311XUI4GCJv+4nOsXCPzGuEP5dd8iHe5xcKyQbWPmWT/3abNzPDlUU/ok1C1ve6Fpn5iYM82a8Z5J+PNnJs3598osLDOvOutU2L2p59WzLl1rbARIfpHXqm73sYeLTeremux/o8svW81PBh9DxzBI//wSH+Jp7PM19hR9YDsmJfOCoT7xsxMoOH/nT132PixjZW+fsYfMv7wpb80C3oq3gxxc7bXaKa3Gz15YTcfjsUZtLsdLrF3Ku6VXEU7wwCP98+uxuXuLETu7gsOszIA76Z/HLEYfcDlnxV/xZENiuiVr+5BKHcoEDv/LvP22ES1ef/Ind80+ceJkTeZardGDi5u90W7vG8h2+mj0b/unD9TfA2fizMf7khD5ri2QDX76tMfMNQ8FJ7A6IYcCHK58OnYudP+PGxMSW0A/bc8KfmTJO14Huww8/vL6d6x4h8OTNuDw54Dc38Hw7XG74oGON4ievzTkMuvIjFr7hNBfWk4NKwsaYHCjWOn2c6c9nS3nFE284/LCHg4s1KrdhG28u+YTtM4qOHGjzqfBPn1/xlUd+4XZATsfcwaDbnMEwJ9affOGkiIENPDb9Ao+tfjzo4M+X+G6cPxs8w2HBoMunIl52pLzCoEPKkzHPD6VY9fXcNL84d7+o+aSPI7G+5cXaKyfuFeP48gnDXKv18YEzn67l2JoqTmP5VU+hD0M+xGHu2Lom+vFWw1HY0Gn+zDMMc0bKB6706eFr/fAfXzZiJ/qVMNnlkz5e/jPUb33rW6fHH3982ei/iuyD9qtka+vuDOwM7AzsDOwMXNMM2LTNg3YbDJuuNnPVhadt46Gmq1ZsNNoEzU1NGxbj6drAEH10028j1AYnn/Syh1exiYqLuqLfBk8cbcJg2ezRYU/Sw6t2vo0p2ur8pwdfPzz8w7Bha9M2N2fZlQN2MNX6ulYTfnFvo6kfnk2iwi69OKvFFt+wYeALY+YbHt/0XSvG6bUxTqe+5fTiB7viMT6l+PQXH2xctI3HLxz29PWXU/HgbtPvxc0aM69ykF1Y+YKDtxcTLwj8tbFmz46way3RIcc49BlT8IDDt1w3Bm9yKcdhNy8wiq063bDo8qN44Z4H7bj9N37wxOxlQYy96MCVLwcHOLqWS/W9YtbHB10ctFsLrou1Ot7VdMSEz1HgFh97OubHy5/ivtFn3sQBJz3XpPjhxJWNfjr5UOOtJPTnnMx44BF2lcblAY8w9dOvT39ijMz84xcWG4KrEj+8zLVxfeo5joO1R2c+E/KdX9j8yZ+aHMf0K+F3kObAhOg3L9nrg1HMuFlr9L3Qpt8BA05s6bjOv+tKffnTlgPCTkknvsbYH4WeIj8OIa1tOXQfFAM77e4NMSiELnttNZvZpsNevxzgaQ7U2oq2Osk+v3JE37PD/feOd7zj9JWvfOV03/nbpPeKKZz/VfNBfEv1ySefPP3pT39ahwDwj/HTo4+jms9qcdG3tuSQjj465cm1GMoNPH1KuvCsO4cx7mFzSMyHZ5k1DMN9zl/5Li/04qfu+aefbW3+HPZYt32e0HfIovR8Fk+H7/oI3w4PfTva+sUBX+vCdfeCdd09VN5wwJUeW/eIOIoFF/lT0xHrLHzg4aAQJr1y3lriAx6e8OGUPzbiY++QlS5hC7tnZvNSTSccNq5J3OecFCueCt9y0uGbXOEFm9An2nBaC6vz/IMvMfrsVpunijHXbDqEFDeBNfn7xcgbb7xx98+GiLlvNsdB7hWcyztsAsuadGgtLodl7HCQN/GJTR+uDh3xNd78snfQTp9/vtR0+LHeZw7EAlMxBtN/KCqfxWkNwGjt4KVtPuNcbvjAz9qzruHNtcaHucGh2OTXnOOKu19WiIeug2H/V0T/yak88U2KQ77cK2KUb/xww0Ue5KT1QIeo5a41Cos/Nq1leuLTR/DFdeaTHZ366fBvfsyhfr704yQvcguTXfi4NJc+o8w17HLDZ/dFcZkfnI2xMYeEP75qyytsHFoPxvjWl41ceaYYa27zaT7kkIhPnmEah2NMgaGNA+7wcdRvHGdx6ReHsebKOiH8yxO91lw51DYuP/x41sAy/3wo8NTsCduwcSj3xmGIwVyRxsq7seJYChc69Pjl33rhA1ax8i9n+gh8OnzCxN8zHoZC0uUPJs6u2Zk31+mwaYwtPnHng737xr9I299ol6EtOwM7AzsDOwM7AzsD98yATYWD9hdeeGF9S0vb5rKNhnYbEPVs26RUjLUBo0PCoGO8DYv+cMKOHF1jYdRfbTx++trwwamw5cOmi24c6RuLjzY9wtbY1GcfRuP5V8fRWGIDWBEvaZM2fbEvH3RsItmla5zvNoHitEG2QbTRo1uc4eLORj99xRgbY/HUz15N6PMfh/ir9RlX2JeH+qrhhK8vyW7GdbQ52k0/5cDhkZcPnMUy46EP35hSXr0UlKc27Pryzy4s+c6v+ihsYDjs6SUvPbbyXKz102s+cEriN7nGvXzz5UXDi5drmOnD0cbd+uhFR2xefJXipGfcSzWeOHlR1VfM8Zp1OVLjK4/FJVa+2Rsn1XTopzvHXLNhS5+OZ4YXWYcJvahZ5/rh8CXu6Z/t9Jcv+vlwHQ/j9OPdXOHiWq0cJZs5hzD101fDzr92NnEx1ry5ZqcWjzky38Qcmxe5oU/kwDgbHFp/8YGjxMd14rr4jcNR+NU/Cx5yr9Cl44Wbfhhw86c2Rp8evtrW3ZwnfSR+sMqFPkUfPZjNQX6W8cWPeBhjR2YtJ54P1nk5dPDAjh5s18WvrcDTR0cJP5sL93er7NStp+YmvJT5U5pHvNx/OHbQ7lu5fL4ZwZE4aP/yl7+8vtEuB4qc8ttamvjFij9+zYn1peBJykVxpRuWNp2ZC7m0Lvg3TuAp/NGnU3+xw+CbTnF5tnneqntu+RwgMPCGS59dz0LXhE0Hc8boWevWbIdS9Lpm56BOEQP+ilg6UHRNT395U+OPizr+xVbbOhGP53r6nsN4wtRHh13z51p/43QdssLIn7zRiw9u8qO45p+udQGLnj7ro9jlgQ58nBRc6Du4kpNs5DApRvXxmm8Cd8apDbt5ZedfCPCBD2Fb0fatWgfFDpdxZANHLR4iJwpc+VPkAGbrxTz61rB7kMBgr18RLwy/zPA8llu2/Fg3vp0OV7vcquUS/z67YOqjhw8duA5R9ZdDc8KHfCjmmT++io2/5gxnPK1rMbAlbGAq8TJf4in/DkwdQMKCKY/4lFM4dBW29PyCw7fA8XLvWb94ERj5y48xtuLyS0/9cTOWnlrRZ1wh+pLG1eWntYmPPlxdw8FHbsu7PFhX9OLtvrYeyhH7sPGGYwwWTsYdkLPhO350+M2/XFVgkHir4Zk3Nb1yZA6I+YYJrz529PhnR7T1NxYuHcV80OHDtXF8yhsMfthbO3zRlzPr131mP2acDVu8m5/pPx50+GLPr35xEPquFf2zj++eyzjBoSevdN0v8TNuDnAxh/jQp2du2YlVsc4VYnzOk7ZSHHLgF0J8iZfALX/xql+cfPmXKV/96ldPn/zkJ+/arItL/tjfaL9korbazsDOwM7AzsDOwHXOgA3H7du3Ty+++OLaYNlktDlqQ6JPsek4ik0MfeM2IaRNVZsZNVubIBukbOjmqz7txHXtOKhtjOkTeG2G0q+OvzZ9m7Y2j7i24YUTftj0xaGtNg5H2+bMOHyizl67a/qNtQE1RsKMey8ItdnRsRHlS+5sgPWJQTsd42Hixgc8OnSV/FXbsPKV2MTKiXzOUo74EDts1wq9pJi18VLET2CQ2l3TwcE4+/JVbZxPL5RtutNT5981HPxbY/oq8PBVs9FPwm8s/TV4+GFMHr3gWkds9DWv2vBIuF425ZtOXHFQ6msOtM2ZlwjX7DpQMaf0xGaMfXwcBvCjj70XNsU1DH7l0H8ghiOsXirwLGb1/xL+K+zkorwVk/HiDIvOFLYKG7U584LoBa9vWnlhEysdMbgWD475jAvs/BfL9Nc1X7Dkgj57190b6c08xJEdYUNgFdfRp376xWgc/543+uHo64URJi7mW82GTuuZDZ7mToFfDGxn/Oy06ZP4ya17Ph70jNEl1pVnAF/m0JxMfvT1K66bE5hs69PvGo5+PlzLSxit4fxOXPriS7/Y6BYLvHKgn3hOeuGWP+N8WTNxCZMuTDoKwbk85GMNnH/UnjwaU8ell32x0BVjuZJXXOiaFwdW952/yf7000+/ZX+j3bfj//znP9/NAX/8iq0Y8HVNcJSreGrLkfWFo/wXs5qwFZNaXtkqbDyHWrv6ym+2C+DiB3v49Jt7fdr6CQxtz1qFD88t9whMfeacnVJuW2Nq9uYFN8/t1hRsMSpstcPosFTe5IPIZd+SNM4XLDU/RM3GuLzDbM2p+epAh6+wXYulfBUr7sZgVvgpJ5752ehzTbJx78ZDvviXv3jqc+/2zJVLufVZCxsm8byw7yhu+AT/ObdxMcZH85o/dTljaz7NDb9w8iHX2vTlUCHGHRJ3KAxfn9zECXcFrthgKQ7dxCEm68DhMj0y80VXHHTMVVj0+JPTvu0LT+7048CfQ12c+vzVZz7d63DF6t7nkx3hq2eHmM0Ze360zRs7OPIiH/yxMZ/yCAsf/I2zyweb5ga2GIzRJ+z5MCf0tBW5giV3YmrOjDX3zZF5xQ9O+aAnz+UXVvzpFBOfeOM1+YeJJwx82k+1Pujox8e1Yqzc4ef/YiD8wangQ/jPdnWcf8BLD17zLCZiXKxs+cBRcY+IwdywU2AT/hQ2Ct7mr+dSnJtLdbo+i/GR47gZh6fGjw6M5lW/9WfOcWTb8xO/5lg/seb8WaV//OMfa87Fx44Uq5qtXOIhPrz4ELv1jxO99qTx1MemfKTj2QwHb7nDBzd6clPOjXdfWCtwCUx68Pie9yFu8ozzxGLLFzHmF0Lu9XyVO1/+cK/JAyzX7MyLP/nml9uf+MQnFo7xq8g+aL9KtrbuzsDOwM7AzsDOwDXNgE3Or371q9NLL720Nks2DEoboto2GzYyyhT2CR12Nj82I6RxmxQbMhsVGzXjxmyE2lCyzY5t1zjY/MBnA58d/Tmm33h4MIwT+l4kbazEYFOKS/zU+c9vG6wFcPGjDWKbzbDVcOMIS4GLg37j2ngSfrQbE6PSGD0YpI2mNg5sCB1tIkabRX5sRuXbuD46eIhf7eVJHb95sBZfPtJpo06fH2Vu7LPBo/wf+4qFjjE81RV2dGCrcefXC5uNe/bs5Mmair+2+dRnHPcKHZIuf67huU70NSfZNEavXLNLL6xiNobzPKyIjzEYsPGtPyx8zXNrwLyZL7W4ii0MdjDlK0xzTi9eMM29Awo6sLxU6GNLj05cinfW+cGLLsGBX7VxODAU14Q/4/wQtvoUwg5Xa9ELvRcpbS9sfM249JNs+VC04auLI51lcP5Bjy94akLHPWye1OHxK4e1xTOFvdwd8zd1YPNVfnG3NmGxx9M888Nf/KybckVvxsGfuSsnxpTwmpfw6Mk94av7Gwe69BQYfLqeh2le3pXyjiNbetkXg3Z94kxHH37wFfaVGR99dgo/eCvFX5xicW3MnJUrfeUbPgxS7ZrOMYdwih0fwt6zs7hxU8KdmK6N0XVgAP9olw4913Csufvvv/908+bN9Z+qTcxF4pI/xEQcjnz9618/vf766wsbD3PnfhJL81PNn3jFj49C2DmQcBjoWm7SU7Mz50r5sIbZ+JvhrU121nIYxadm1zxbz/oq4ikmffiqibq50JZvB0fig8kOx8mPfzqefb7FrE2v5/P0n1/3idzxJQ429Ok6xDFGt/XKN7/6/Ueb/ga2Xxoat0YV9p7jvgVpD+I+g8GWn9YuX57Nvk2NMxvryTwqhI5+a8j8yRGdOSd0+VDLG1902WnT1WfuxMTeHPqcNY848gPbuG80eya3HvjGU9z65Ia+NhuxNw/is08wT3zSx8W1MXzkAVc5ZEv0KfDg0lXkRk5x9rnBLz5qOevAzBju/JoXtfj9nXR1fOmJzyG+fBDzJR9we87gbZ7Y4c4//HiKtxjEUd7YPPjgg8sWngN88YibwKNDcJQrOPDo4CGucisH/Le22NLlLz5ypk9sMLrP5RZv9nwZa33iYR67r+TAOH14MIzzx17Bxbg+PI3LYbnXJuyJHJYv88QXP3BwF7d1G2f67dP5YJMfOnAV1/LTuoIB0xgu+s25WimX7AhOrTs+Sbp0xCifSv70s1HEbAx/WJ6ffOj3PClmtvLdnLuWI1g9V/jGXT8uzbU8sdPXOmEDm76ajnF+FM8hxZh72tr3d/bxg1/OjOPulxI+S/oXDDDosYNt/ZozPsSLB1sxOpQufnFZs7ibV+Ni1GYrDvMIS23MnPFrTO7p8unaOJx+kcUvCa97nl65tV7Ex4cvmbjvev61zlq7/IjDXMLUb934FzRyzB8bHOjIiT8d841vfOP0+c9/fnHh+yqyD9qvkq2tuzOwM7AzsDOwM3BNM2Bj8etf//r0gx/8YG1qbRj0JW0gbEQqNjBEu/H02+hoz7E2ZjafNmw2XKQNpTbc6btrOG2c2dhEKTZhxMaIThu0iWOzSPBqow7LRsoGKh9s2pzRh1e8rump6dgciiH/sI3zxca1eIoxPOON6XMd13zhRvTDh8FO3mz69PFH8DHephk31/RtCsUHp809H3gTm1Z6xvXLB3y5xAu2QrRtUjuA4YewwQvO1J32+ouxeNkWrz4FBhFPa0is/Nro402PyBGeMOKpzxpT9MOrZjf5uc5v9nDrwyHO2RnXV+x005nXcbZGGoeBS/b0tXE2pp9P/fqM1S8XyrGfDaHHjhQz+0SfFwkvGnStj15MYOhT2NBVSDHpp4dDOTeGr1y0RsPAM6FHh27jxartGqYXMS+EXra0++ftfJJipw+TbTzDo1cM+qZOvnBpDI45chBnjRGY1o97x3UY4RY3XvLYWqAbnwV0/lHc2mKCKw4YdPV5aYPNj365jJ+c8aOPjuva+aBDH155D88YW9j8dNjVuDobGK7NAx5set7EWV82/LkWEz1jjfcMKW7Y5SKeamKMv7DKEe7HuRJLNsY80+orDzjAgA83fdf65M+9MJ+X5ZfujAGOtvjNlQJDX5I/OXCQAVcshF1c2OlX67Pe3ve+951+9KMfrf9UbWKGfZm6GN84/+3qZ599dh20w5Yb8+B+wo3vWfiT+9ZH/PAXh0MS18bTU7OTB5hq4jPGPeRP4DQP8ozHcb1m79DCNZ7/S8ph3DvwYOsARdEnp8S6sNbxExP+uHn2KeZeHD5L3PtihEX0K30O8ikeHHtOiBk+PbmVYxy13TtvnOfB38l3sIsDP+zDeOCBB9ZnqEMpwgd7eYKhxtNht29Z4s6nexc+wRkfRbww+JIH3MQtv/Rx1LZO5AIP8fKpr1zBMF8O2t/+9revzwdc9HsW/uc//1kHafKhX97xxLl7UX/3GS7x4QsPOIQNHLr6xEeng6zmEm/9OLAh7DpoN2au5NiaFZt1a4+CkzH4cmNe8JEzB43G5QGuw73+PAodIpbuI9f8yjtfYscdb/r44arwp09tbfz7/PfN+XCvw2BrXsuTWr+5IXJgXyZfcI2LTa61xcwPG2sZR7zMI1ulnOnzy2s8xQtLbrVxiru8wVJc+4UUn9qEHX1FX1jhwZQjuTUOV077LFkgFz/wFgcRk7liIyZ21rn4STnRzod9i3uCDf+wyos2fDzLA1zz0HzScd38WwN05Ey+tGEQOnHgwzoyr+W3+cfbGPvuNwe7fPHtXmdDH0784eej+NkQPOQTF2PwtPHR1zqRL+P0SftzfYp17fDcuDFr358sa//HBiZeuNN1uGz/JY8wrHnPI2sNd2sYntj4Z+teE6c+Yh3xIT591qEcEP7MHxyc4MOD4c8yGecbrrWtjQcca4GenLOhx4c1C5Oo+YZPXHuueW7IIbvWmTmTT3mXUzmAaa7E45cO/CrWMx1zzcf73//+03e/+93Tl770peUH7lVkH7RfJVtbd2dgZ2BnYGdgZ+CaZsAm47e//e3pJz/5ydpM2NSQ48ZBvz6lDWAvRYVOx8bHZpZo2zCxsXmxsVFsxNrg2LSw0Z6Sr2pYcaBvA5YN7Hi1WQ1Lvz76Noo2jHBsmnEhdGyw2uSFkW/tNn984i9GfUQMcSnebKqNu1YI29rGZq7io1+sxmzwbPhwtAGd3PQpdBVibsTHB7765ck1mZt0nG0k4ZfLpXT+wQ+MNrDscafXxtM1oVdcOCv6Zm5c81eetNkUP325bV2I1SbZhpwe4Y89sYFni6f+irHJAe6U8jf7XBeDfE6h33zQSQ+nYtbX/Fhn+ovPywExTu+YA/NDd/LKz5FHOnNcX3kIm3995swLPh1+vODIK3vj1a57IcJFkU/j7ODSIY2Lh5/8N67NrvtEP3v6CmEHv5csLzr8e8mhyyec/NKHSeAZ01fe9Cn68kc3PVyy129NeSbIT3j49CJHV8EJB4I7XhXj8Omoib7i1sc2DO3Zx2824giPjjmCU0zGxWaMnmsCG+/EGF2S7w4EigMG3PzD8Ewg+jw72OjnJxxttvmkp03omEtj8sMeF3HEJ59qYwr7+IiDbmtEf/HgobSG9BNtevx77oWnNkYvf9q4hcGXcbYKPbwnjn4xGUvYwNdP10u8OPXBrF8dtjHxWXMO3/xy2wu7/jcjxe9AwJ+h6U/HePbg5DODP/g4uK4988g3np65Dtk6sJk5gkEHpvzAyU7sni8wCTscmvfmrfg7kKJDxNE8uK7EV97ZFpNY8HSIQqe5wj9+bPh1bzt0cQjrXiLqPl/gWg/68Laey5G2/sb4DbeDF334+ix0sHXnzp31S0Oc+GArD2J1iI2PAyN+i5uea3wdGsmlwyHrBBf3lGciG7mmY47wbk7sZ8Su7XPcvYwTG7hi8bxT80WKx7X8G4fNLz1Y5trBGzw64pBPPODQw98YYYML3z0bZj7xocsOXxwUnOe6kmdYbElrwLzLpzE+5BNffcbEAB9f/s2Dw0PXuDu0lDc8iLyKz3zyJSbxwFTTJfjyAZ/AE2ex6eNLf2vQLyjk/l3vepfhlTeHnWIRMw5wrRECDx/cxWcMD3E1t/jhJBZzgCNd+XNf4QMbDwecavjWizFt+YGHh/zBUFzTg13csOAT43KAFx7F230GA75ciqU1wZa+ePmkLyZ+cNOPDzvx09XPHg4OzS8f+umQcqmPjsIGZ3bdN8b1TT3XhH94FX1dq/kQK1zXcMQp3/pwr03/bW97G4jVHxfj7Nw78ii//Mtl8ZcfeuKs7dmlDVvu3Cfz/qYnVrjwcDTX1p8vMLDrudGXVujBki/6eFovnk2u2Sgwe3biYM7wE7vSdXMubnrdk3i4T2EVL5/y0FpjIya+mxO4rnEsP3Csc7kkxsNS80FfrAoM/Pkq77Dwds+bNxjsYMspe7l07RcP5l3hV2HD10MPPXT65je/eXr88ccXF7hXkX3QfpVsbd2dgZ2BnYGdgZ2Ba5oBm4zf//73p5///OdrE2FzYmNhs5G4tpGwKbEBpmMDpU6Ma9u02azQ1bYpCg+OAoOOYsPdpn5i0Zt+4sCmTWL69IyLZW54tPGp8JOvOIiDDV0F77jNOuxqGy5+6bepNEZwia9xmz0vaHzTUbTh59sYTunoxzt/s52fGTe/YcPlt6IdjhquOSEwxGKj2Yuucf6Kg54YbIzLCRwvMWzokemfHpzGzJlxm/j6ltGFnWtc6Nio2yg3z/zqE096dAme1fmLv354zflSvOgrtuznGO58T6HHP6wKPeuHNJatzXj8+epF3jjJr9q8Ww9idg1Lv+L+UcQBhz9FjLDKSWNqdsVND7ZvJdGXR/ksPuNErUx7/bDYHXNojI/qfGrD1obFNzFfuMJSiNo69NLj20xegNh4yWEPx3gxyoNxftnm0zV+2nKTL3rlyrjYiTjplnNzxab42RgP1xi/hG5zBJ+eMTquif50tPXrK359pL5w1LDypY0DO31yoTQOg1/3oBIOfS/ExcO/6/C0FTj6YcgtjHLtpZKv8lnNjoRd3PFjp48vmPDkTK3oz951fWpzZM7TUcexPKiJfpxwxEmNf3z0dU2/Nhu2sBX+5Mq1Mc8nvIuBP8V4gutc4+zMtz7iWckGRvNV3vS5zx2wv1XfaPefofpmnW9Ti0WRy3irCZ7mR/zlmy7u+HX40bMXRutdHP1CrLUBhy6M4i3n9ZeX1gCcDmj08ctPnF3jBq+1yY/CVjHmMOud73zn0oGh0PE51meM9nGO2RvvfpAXh8v2IebPAbdv2+LDFoa8WRNxgyEXfIkXH5gdSFuH7MQhfnaw6Hm2OZA3Lt8Ofvk1Rs9ewsGW4tpnswMzhz44OyjzZ4d8M1X++HWYhguOuM1vflqLcRCjX1p7/uefD9zMiZiaG3GJWyztdXDEC+9EH/5iZWNtdFjc/e+5y84hM18KG/hiav7Y41URi2IcD7mDyYao5QA+PLhs2eAMX1tutHE11/T4Io11P8DyuUBP3ugak2cFF8IH2+aaf7YKP3iaB376vIXrurjgsFPg4ihGuHT4DtPcwLRGrJkOqou7ucKn+K0L1+bYny1iq03wkjtr3Xj3KX/G6InbvsWaEJO2+8K9rR1fvLRxIXi75o80BrdCp2KO5FaMDnvNK07iLJ8w5E4NozWiJsb8Iss+p70WXn4JqchFdvjTM8fuj+67fJkL67h8G28d8SVua9y/XDHHck7gy8973vOetYbMibmUC/mk596hI9/dl/LAl5rfuLbW2MOGITdq+vCJnNBtHFc5UPg0Jjb+jLHTJy5rAL4ihz13+JEnOjix0afu+WJdaLdm48DGcwYv+GKWa+sfB33m1xrmw7riX17w40cpt3C16ZQ31/FnH4YcyhVeRP7xM2ew1XD9q4vmja51Z07ZwyL0+c5/c8C3Pwflz7U99thjS5fOVWQftF8lW1t3Z2BnYGdgZ2Bn4JpmwMbij3/84+mXv/zl2uy2mbCxaZPR5scGZG7W6CZ0bfSIDRZcbRsbm8KwGodlo2QT5pp+G0a4bNR8q22GYNBhRz9Jzzh9MvHauLHlS91hCD/6Etjx0Tdt0uGjF1L5sFlU0yVxdg2vlxM6sBWbTTUbRbvNMO44i0tMpHjpuuZDTspLenT5rGizyRfcNurlSw686Nh4tlkvZ/ywF4PNMYmLjSlbbYVNPOK5DC5+GLdpV4cxx8WrX556+cOb7w4M4Is5XtrwtPOvD05xwzgK3XJnbPKhrxz7wiu32jgT+vrZuDaf2uk4hJEr7fix06ZrDYlZnOzpKM0LXL5gmCPtWei2JtSkGGA7mPGCYI31z3qzoeu6nGjnj0925oDQq87/bItHPz21uSSwjeGkrojHS47DpNaGF25+6TTPMJr3sPigI8/8lB+6xd76pCPPOLVW5MLLn36YjXlmwRW3Gq5xmPpgFYd+45OnPvmKP9309SXh6WOjxK0cFot+8+4epdc8iK81Egcc5QMuvfRh5r9+Y/IqZtjG6fEFF774yj0+YfCnnz4d+r2UhyFG+cWpHMBgS5q7cjr1wsWRz2nPH26Kcdz5x0dsimvimj8xiostgc+vNQDbWM91+uxIc46DPjU7Ug7iDdPcaxvjS41j+u5Hf+P1xz/+8emDH/zgXT9L4Qo/+CL+LvgXv/jF06uvvrrub8+QPkvwUPAW3zzE6zlL17jngoM3n8liLE6xsnVA4XCpAxY2dM1v66P8OkTp3uIfJ/XMMTs+jMmJOajoF5+8ySF8c62Gc+PGjfUf0pXX4nOoYg1mYxyWGIk10EGcNjvfIHcQFK5DfHER/thYW8blwnw6qJEPfvC0/rTnGuSXjUJw8az7+9//vuz4dPgsZhj0+HXYpcgfPH+C5F//+tfCcJjoX0OI3zhuDuE7iBWPzxqfzTjJq3nGmz8HjLDFoM0fG/ZiYtt90nqRAwLD+oApFnZixB/35laMcmy+9NP3C4L7zv8pqDizMV7+cDTWvaI2Ln6+1GIyv9p80mGn1GYjblyMKx204eIAUB8d/OnDsxatQzn1OSw3+ugo7htFLvCEHy482O57sbIzjq9cwhSzGq6x4sbbGB90YXaP6pdzdfMiVr8MgsMXv8bhyZG1LyY+/PIapnvRc0Z8+RUHLIfZ7vueWfDkBge45hEn17jCaG8G27qhiz+uypyTtXDOP+RMkWvc+GdD5I8f688hMx2crHVrtbnll7ClIxYFDj3/QaV/PYCvfnr+lY/nov/oU174cqDsFw/y2HyxFxuB3TwUMx/6jMkzrjCtde0EtvsTFv9yCQMfcbvf+DRenuSWLm6erfZCcstXOWtd66NbDvmFT/Awjqs8yik9GNYkPbg44WOu9Kvx6U/LyAUcPI2Jm/84wO4ex4UfvNmIAab1yZ91Bc/9bx0aU+TBHPNBT5/ctSZg8VNM4qMDTy137d/kT4xqfPGce0lzZZ2KHV4H7dpEn3uFXuscDl5wFSI2NnT8MsVB+2c/+9k1Fu/VuMSPfdB+iSRtlZ2BnYGdgZ2BnYHrngGbiD/84Q+nX/ziF3cPGdqsFZsNho0EXRsQ1/ps1tqI6LOpIzYiMGx49NFrI1JNx2bJy4fNPRwbG2Lzxja/bPTBjMNSvPgBP8706Ldhop/PfPDHtzZ9bTr8uWZL8oeX/kR/GzmbPjGERweOQuTLhlCh2waOP7i14btWxzn/C+jiBx388C5W+lNgKPTwiL8+mHJrc0m0zZENpP4wi0HNJ+424/liZ/Mq9/wo+iqw9TWncGA3V8aPQgc+fzbgcuZabnsxYRMG7OatvjDhxKu+amN4smGvJNnJVWK8vOszVlxwtI2r2Suua4urAzycCMx8FV8vERO7e4gNX3JovuCwhx0WHTEp5ZKeF1SHR3DNoxcaNYFJYIXvWoHDP35ekmAqycwvDoo+duzlhLhOsqm27hwi9FIFw4tQMWanNhaH/BWTeHCFhy+hiwtfzQ/9bPV1X+JoTA68iJq72jDYaMfbdeNsGlfT90yAab74KQezhtUaKffq/ybG5EUNRylmcfOLE0w8wtY/ZXKAZZy90vyyt2bhp0NPP96EbvNExzNFCcMYDuZGXf6yjaPxcqnPtYKn/MFzza+aDmx81drloVj1sWPjGg4d47gSWHi57+gZM/fGFfZqY+YQJ1iEHaGjaMfPsypd+mHRd+3Z5htxP/zhD9+Sv9HuG+1PPPHE+ka7ddfnUWt+cpUDuRC7+6RnLJ6eE+5zhyDGSTmSZwcuDiPMcXnhy/yl33zBkAe+YZefcOjxj6NagaHII/3uG77wNjfm3LgD4/vOB7ewK81f65gdPHOBI+Hfup5rw4GPOOg53HMAp03whOfz3rh84SYXfYbi49rBqkMnXHHSr7BTxOhQ0p8ywdUBlMMtOjOf+h1U4cC3Qy2Hb/QcFN+4cWPV5guOX3504CdeHDxD5QtG68DcOvCCLX5+9PHts5wdfjCLW67kjOBPXw7YF6N8iI8d/Q7E5cGY+8uBrs+g5pc+fvwQHOHBUFwbk3fXdHEs53BxYNfzI3t+wxBbnyf0xGwcTj7U8GBZs3LWZ6Qx8ePBhk8SN370mRv4bNX6Wwv64MCWP7EYZ1M+8IyXcW056v7ssBNH3BS4eMOBhx+euGn3mep54/CXrVjYVFsLYRmHZcy6w7k1EU9rwHyKhZ/uA3bGYMCnr8BQi8WYa9zYNqYPd/NkL0BwNleeI8XHp2vCVo5gqcXgeeD/irBOzImxv/71r+vPOfllVesCdof4cijHngHmDa6CjxzgZrz1Cle/vLgnrfXWBTt8+9cD/CtELWY48qQ0d3yIQd57xvIDz5iY2fJLr9jUjdO1bog+vNyL+eSLrRzQY6tPbOruDc8HuaCrD5b42MUJRzlWw1fzhQMsOfULOfbWijVvfsyfcbHT8fxSi09ejPMLR+3w23rOr/UDszUGR9u4git8uZYrNXvPtHKhH1/5ke/i8/y0/sLAZwpOBCYf5viZZ545fe5zn1v9ja/GJX7sg/ZLJGmr7AzsDOwM7AzsDFz3DNhY/O53vzv97Gc/W5tHGwZ9bX5c69O2wVHa2Ihd2xgdmy4bMhsYG6U2TcZcs7NRUeuzmbHRsmGCod8mRj+/2uyS8I4cjBuDnQ57JXENV+HLBhAOfQVvxfVR2NBNcKfbpssLgRhIucBdPuiKyYaWT1j65ga4fEzOrvm0kQwTPiwFTzr8wq2v/NI1Xnx8atNzbY5c07eRpqefuJ5zSU/Bg4TbS13Yxo1pTx5i1k9cwzd+FHYwxOxlSGz026CHrY+evOkLO/7hFnvtYx3PGTss2OIlxvKTfT6zj6+1TOROftmxp28ui4dO3GAYFxOfdNT6ypExUt26gsFPbTrwKjBcW3vWKHs8rBectfPdNX0iBwofOIlNPEo6bBVSPI031rpJr5ywgePFx8u1AzzrSV81rtpx657LPyy49MSoLR/aaoV/3IjrWegp8Ams4nbNzhzwF2/jxvQprivlABY9ks5qXPygz6eSHlvzqPB1lKkLk51YiLx4edbWH++J0drLVtzZ88ev54Ccde/OfLtW6BXn9MNvvvkgdPmw1tTxM5aOXPBJl98KbCKuDgbo4mrNeNHv+UOPPsxiohsn18aO2OzkFT9C3zUfCptZ4CTxYwOjMXXrCpd8ZwfXYYy/8friiy+umo83I/n0Demvfe1r65ubnpsOz3BI8BCXYh3ET1sulbCKt9zBcN366EClcbE4SOFXHxyFD7WcW1cd1phrBxrafLHRZ47lUcHRM1/BUZ+153CrQzSHQQ7E6cYdV7HShztj5sucKeLFj61+XPgn/WkVY3T1i1kRK7+w+Vb08WktOtj0LGu9lkt8cJEjtX55YX/f+XCwtZ++ZxlcRWzyg6Pr5hJ/12w7iJcfbVzEiL/nNj3Y7H0OOPSyDv2yor+t7+CJPV/0yhMsXNmzwV/8zV+cxGhcPxyHW7DwNI8O1YpHntkZZ6PImQOw7OJLl4gHNl1j5RQfc4VTBbZSG3/x1A/HepIXeHKmFHtzZZzQkR/8kvIxazx8tpq/JB7ygAPf/VLkGKM2znRbJ+bKHMFhbxy++Cc2f2LoGS1mfMUEC4a5NDfiUuBYk2rt8tW1uH0uu1/5g8kn/eKBP+cCRzzU+l3z7xctbIg4K3y1NuQPHlu1tYAzHmwVvptvXOAQa8svrRwU901+dv1rj+6H1ldYuMHsPQRnmHworumYV+uYlCexmU9Fbqxh9v3ZFPzKJf/WkD8b5RmmzcZ8qQm+ck2nOYHRvlJO6MC8Vx7igR87XFyrxQ0bBzzFBUNcckFf7VluPozzxc5zDV/xm0fjMPHGyTqTC89G3Dxj/CIZNl39fCriTcqPNn/wcKTDt3+phS9sY/iZC/OijVP8xA6vfMIrBjW+uLnGw7rCXZsdPH4IP/Kmbdx6VMSiiM9Bu8/cRx99dNnQu4rsg/arZGvr7gzsDOwM7AzsDFzTDNhk/OY3v1l/L7aXWKHYlBhLbFQUfTZBZG5ebESIjU4bpTYx+tnNDaq+uXGCBYNf/WoC44hjg4hDGyO2xGYpHtrstNV826DBDs9YGGzbeLEt9jjzwU4hXRu3EY4D/K5xhFNM+rXDCBsPuvqNxzlbeq5n0QfXxtg3xXCQdy/6Nr7w8udafES89NTGjdmwqvnNB902n/roph//XhbirVbinx6eMHD2Yqeff3WxpSt/vazyZ9wGnz1c4po+zoRe64WOfuPmkx/t+LNVkiNXY81XPtLJbzxws6bwlX/rkk33gGtCr5jiWW5hhU+frhLH2nDYiiP9Y02HncKOwGTDP5FfcwBr+qCTL7jG4spGfPqJMTlV9NW/Bs8/8q1ffmobZyN2vOCYI2vWy3EvS2q2OBEYruf9OXGM4aqvdc2HNtvmgQ4u/KrFFXZ86MQ5PPqkOOm6zsYYHT7T0ZfQ46t8xsF4PF3nr/w0JzDhK9MvPDrZuVaIXOnnu5jUMNKLhz565bdr8yCffOYXNn1Sv2s22vnU54VWLKRxbZjdl/rp8Z29sexcGysndLRx67klDjiKa/HhGM+ujcdPXzbywk7dPcxPvMOpza5xvsztFFj6HAo0H42Lw8u6v9H+Vh20+0b7k08+eXrttdfWve1enfHF0brGKW3exiIAAEAASURBVG4OQORX/unLDXHNRj5at+VAHwy1WPRr8ylubcV1+TZPfLQvcDiizR9dc+kgG2YYeMRbP54+1xy8wPUMc1Dt77Tz35rhw/pontXGFHMWpgMjByb82ff0CwS48/MGXp9z/DlE4983NtnThUkHDn6ucVB3oCP3DgP9EkTeYVhr1gLBTZzG8o87fvr5UOD0fNKWP1j8FXe5gJsufPPVZ5U2X/YPMBxwdWDGJ9/mRZ8c8EH4JOV38oPfXDa/1o8YrQ/XfDUndOIldw6B5QsO3NYpf3KJh7mOAyz2cYlXc4YzXVjlSm5wpKNffog+hZgX64ANDIUfbXPDjqgVmPDw0DZfuDVvdNmWH7G4Dtc4W/kwh2z5MY4fLlNgEZz4w5c+f+HSkSvjrs11v5BhC1cJi0/5Lvb2C+5VeTGen+aA//ISllyw0W9t4QPLIXh5EZc4jcUFfxj8sLUOrEm+tY1ZQzDY02Mv74ox96ZizRqj07zyx859Dru5gotf841P2GIh4qajJjjgK3dxwLH7Tx5bk7ASfT0bWodyxQ6WcXPkb8rD0Gf+PGvgWB/swoaLP+7uMfzY4QKneylbueDLOFy2zSUscfnFjueUXOHmnpQzvMXsFxlyzCcM8cPFK6w4FQMsz0V49PDBg13PXX14mXNj2v7FABs+lPIuTrnJxrMDP2Lu46MtV3BxIGzYKkQ/3HKYntgmf/5bJ+6lGzdunD71qU+dPvaxj93FWReX/LEP2i+ZqK22M7AzsDOwM7AzcJ0zYONx+/bt0wsvvHD322JtxIy18XBNjJE2ImqbGaWNl41vm5vsbGxsxBS6+m1wbMqUNj76lDY5y9nFDzb0bPjg2/zUR0U7ftqu22jlv40ojjZnCt7puq6Ivet0wseRb8VYtVj4qG/GgkuY+LBJ4qnPtVjU2hVY6bmWS5veBx54YL3A25S+8cYb6xso7HHBg43Ctw2vzag2EY+NbRt4vvCHT9oY46tol4NsluL5B5/NQZzDw0Nx0KCPT1I/TPg4e2mKO87mm8AmuLs2puBKn+iPoxcT8xt2cfGZsCfVOITHD9vG0itGeF5KFJtwdmzEZn2VM/56UaNT/HToV8Llj065UeuLfzzo8DHjqU//1AtDnvCt3VxqK+z1qfnjtznRl44ct27CKHfZics1m0RfcdKHY036FpcXQ7rNWVx6gWSnj7BTypW6PGanbl24jld8jekzJ+FoW2/04fGBp5IP9q6naOPHhm3jam33qjjEVz5geyksrjBq8xkPvviFH3+8YeVP3fqC3T3Gb7ows6me8U1unhPmgsCWG3HkYw2cf+DNn/Ws1lY61IARH/ek51SHBmKZL8Ywxa8QOGLWLm51Oq7xVyt4FqM2e1JctcsZncatB7ki6bmmO+0nLl/ykoSrr7w3psbbS71vtH//+99/S77R7pt//lasP5OQTxwVfAj+5k2MOFvjfkErTuuEHn165pgOXXowuy8cMuCvbU7NsZjY5GvWMOkp5jF/1go7/tz31hqfhB5OxgkdfdaNgx/4ePmW7sMPP7z4WGPWVN/A1bau6DuI4Y9vMYnB33L2/1YQvmE3jodr/hUxsPPnJhw0acuJmHGjj2/8+Nbm24GXfrl38IizvLOLs1yKyWeEvzOtNuYXkPTE2kG12vO7+xkHh2N9/qyAzj/wJ+xJOeVLLMZhKKQDtdaC+TIvHXayb35wzU6f63Ig5+zg8BE/vLXZwk6vHPcFAfNEYIpbXES/nMghTHz08aW/9QUXZ3OuD06Fb/7otx4cUOIen+bBGtePs1rb3kWB17yrxWoNwYBP9NNjmxijaw70x4cPXPH2Weha7ISNttq6I+VxNc4/5FZecCRwrU9rTa1tzfhltj8zBAs3/fII3zWfcNwf8iIGPvPrwFf8rXu2CtvWsNyKg417BVe8/OuJfBqTK3PANwx9cOiwMW5NGtPWz7dr93kYfcaIEz+/QKND5JgdfUW/9eJ+5Je4F8QqP8T8iNv6UcqL3MCDIVbt7iP5JMZctw5w11bjJ7f8tKZxt27kASZdh8uvv/76wvMDf/OIB3384ItBTHiI2bOJnljMgb9Nb67pxQuGueMLbvkRryIec48nG/NoDuSKXzF43zCvdOCYB2N0FD7499yDITZrWhtv+nzT0e9P+shPfORDHtJxDQe2PvFa72rrSrz5p4tv9yI7Y3wpxsXc/dL86ZO7nu35F6N8EX3i1ebXL44csvscJ3xdRfZB+1WytXV3BnYGdgZ2BnYGrmkGbIxefvnl0/PPP782ljYUNkM2DjZfxkl9bShsTmw8jBtrvM1lbbZ02sjZIGnDUWvb8MDTVttQtRlMd+LY8MWDrus44K/NX31s6cHWb9wG0ObLBg7n+NKjo0yJX5j40cGPuKYT/67V4oPbRjQf+dV2rZD6+Sp+nPk0Jkb+5MGGz9/f9O06m2qHLjbrbPkNjz0sm28b3HjTgycfruE2H9kWGxsx0CM2sV2nC6s4ltL5B55heFkKR25I3OTBRtaaUDeOTzyzxSNbdjPWOMqHzT0c/um1Zpfx4QdsuvTo46VM0YYvRrri6fCJjTG5VBtvHYsHx/zTUeA0p2pxqvkpZ3C08VLwJPE1Pvvo6DsKDBy8nNDR5ovwRfjPN13XOHs5ybe+GSebuMwY9cONG/x88qvfGvJC5xDAfJHid81PubO2CIzWmWtS3opHH3x81HjgH7Y+cSnlqj4vwq754L986tMuR/lQE7Hkn65rBQcxKGHB8PwRMz/6Z1zahJ5CGlfDb95d124emx9tL4bGE3b6Ff18yYM2bIVPL604hk2nuZh49Plzr8lBGA4GYIgRnjEHHV6E1WzE7sBADVNxreAJSw7pus5vOnDrM54Un/H69SUTqzkzT+6NbGY+2GXPlg7BUV4IHtrw5NRzr3lcCucfeJsPz+yXXnrpLTto/8xnPrMOaPgvb8XBN+76W4PWuMMZsXgOiQE3eninS0+bnWeAzxn85YqtwyhrpDibi+KlIx+Ka+M9+/JnLVgn2dI134pr4roDJno+Izrs6HDJuIMbhzrWlPXns07hk39xeGbL/40bN9aa7HMCn+ZM7qzX1p2YfXveYQw98csRETtdMXQYxh+//uyCPrh4OtDhV571y19Yxv0ne3IuJ2zpaff8dVCHP5/yIB7ftGfrmv5RxF087FqvUw8XeTCXRNzaYsCluYIl7vZxrpt7OTAH836m58BKjQPOYcNvrh204yBvMHFkI3Yx4QXbZ6042fEDQ63NPwzzjzc/cNjzq+BPTxGTecWfX/h0Zr7lwvyIwdp3mFue4Sr8N/cwYRC4injEzocC33qgRz9OcuAXRWKlo58+fPYKfbHCVIg8WRc46sMJvl8k5cf6sJ78QlvssBV4Cjs+rS2/uLHe8AuPrnXmUJc/Ir+KMTkqF3KPo7VuDLf+M3aY4pDr8qHGibSW9Jlb3Ojrl3u4+vm1Ls03LJysDXNkfhIxyR9d/NhmT0d+yh1sWEQM9iVsYDfn4mltirk50Y8jvuxmnHDxwE3++ItLa16brX3Q3/72t5U3PGB6zhG68iQWn6HiwMG8+FMmN87PFfNm7JVXXln/F4RrHPFrjsUMl091Bdb8Rrs4FLmGIQZzwJ8Y6IsNJ8U1PT69Z7iWT+vOunatT/6scTnuFz/68BAbf7jhrBB9dHAQozmx3q1XeeOfjhzJC1/61Yr1pC0H7NnJA3y+rFV5xo+e2NLhXx//cTCPH/3oR9fniPF4ur6M7IP2y2Rp6+wM7AzsDOwM7Axc8wzYEN66dev03HPPrU2VzVKbBmMKqc+mhNRvA8OmPhsV7frqV9tI2ajMTZQNjWKMtJnRpheHrm2U2ii6VoxVYLDRjzM+6nSNaeNnc4Y/0baZyp+a0K0vDvptvPPRRpQeHTHgKC7X9Iz1wiQ2fUk4uBJ1vOOhn10xacP2cmGD6EUKvkN2L+/iwUVMruHBsum1EWarrd843GKduTSuTejZIKtJcbumE0bc1QrefCk2uemKOx0Y2vJqE90c05VHvviGQdTlED4bNcFP6SVMv3jzu5QufsDQX6GrD76+o+hrDKbNuJd112LB07qS9zBh4DM509VXzsMsH2zlAh9jxBhcxTVpLHvcu5/q4wMvtTEvKOahNQBnzl245RMX12p6cYepiIPwXUk3rKVw8SMMONaslzmHI16yjMWVuljxxHtyLAcwwsNDW9wKLsWIjzLFmCI2GGxcW3uui7N8svW86KXtOH+97NEzd4QOH9anl0TXBIYXQvHTwbX4jMfJ2JTiEwsbeuoZHx6w+eCvA5hw6M4cibf7Bz6B6QXVXKSLH9HGq+en6+aRjTYczxk83LfEnLGZL770eqbkJ3scjLOrbwGdf+ivTzzlbl5n39zOMX3lwTU8+vJA4mKsdvra9Amb5pQNndmfTbVYPC/eyoN2f2rg6aefPv3lL39Za6z1i7siT2oc+txSO1QxF4oYipVeRXwVa80ahk+fTuuPrfibr5WE84906MMxbl26160NNuZf2xh9tfZcF/D1J+5J/H0zHSfrz8GNAte6pa9W5D2OeDhYcWiUHl3F/MMm2eEoX/QdMNGDISbxK9Z1h2bZ+qx1kOQQFqa8+bz2rVBx9vl03/nvtMM19pGPfGR9lrt3/KepfItPYUPPZ72DK/xw6N41Tr9cNe/6GsNBoYMzDNfWAJ+4yrs5ktPmqPnmG397Dn2wiZqdmJpLOcLNPIkfJj2++oYrjuaGH/5c41oM2mxgKg644l8M4mj+XMOhCxsH9mHyHUexw6KDmwJHXPrNeTG6ZxV98Ni4zlbu+GVvXJn2uMoPftYRLLatS/1youBlnolrcfi8ts7g6GPX/MqtPFsjMONnruJvjH95Ztd6gFeeYFiD7MRPxEOHGFfERXCWTzUdfvHS5tfBMoElZj4rdPPdvOMuL8RcmEO1eOnba+GaT34UPsWHez5hw/PZFxYM8bDRx05O5ZZf3PQRv7Czl9aHvxyXf/GbH3305RUvPMVifRF+PI/CpN/eC1brlB6uuNkL+bvy+DVP4sKhnPHDJx047i/3o/uSHv/+jJj8mQciDtfmr1j47Loxcckl4UOu8SyfYudDDZOONVucYijfMMSGj/ujPNFxrc+7Cmxx4GBMm4ifaMshXmKVQxzMmzYxTl+O+ISvT660XcM2XtzsjIvR/MszX+Hw15zDYCtmOfQvND796U+fPv7xj4O5y3k1LvFjH7RfIklbZWdgZ2BnYGdgZ+C6Z8Dm4db5oP173/ve2uTNjY4xYvPRtY2GNj0bEpsUm5g2IY2plcR4OurG4NnM2PwQG782f/QInWzp2WQpbSLVirEKzOlHvz5YpLE2X8XT2FIaP+jHQR0WuzZyYjKGv43ojIOeXMlZMasrbOmow8lnnPic42zFbeOnbj5sjF3Ds5Fsk8nWi5aNsHzA10fPNdFO8sWPa5hh0xF3tnRINur818eHGPimr01HoaNPzmxwi4muXPIlf3T0Nd98ZmNNGIOHqxcNfPmEwR8cvogaTljG42V88qwNx6Zczc51PuWaX0XOi1sbd7zgTykn8MSRwJQD3Aks8+YForyHryaw6ReTvuybtzh7WZFnbRxIOK711a/dHKm7Ltbsspk5bAyG69pq8XjZ8pLWixjs4oOnLQZl2k4e+uPkWpG/8hAv9cw/HbjqJLt8w5rPGvlvntnwa64VvI2xmQcjsOTaWsGJnrWptE7ipcaBDYE168bjac3AzJ6+vDoww8W4l9Hm2Xi65cPam/fOcnj+Yc3gR9RwlWI13sGNWLxwe6kuJtd08CB8ly9rR1uhr500l/i1xvTVP/X0yUXYrRP97PUTMdcOp/jV9bFPVz3tjdEls3/m3xg7nCaOa/bisQ7e+973rj8d42+1h8X2KhIXB7I3b948+Vvt5rsYYMGWX0WMeMTF88Vzqeeq/vTpzhKvbPkQo1j4pIuP+PhyrdCzvnqWGbP+80uHz+zpu7Z2WjflVw0r0e4+sy49R9Q4wDWebTkw7jBLvzXPF25iIMXFPk506Siu8VXEr0+Nq2cD0WbrG8oO6zzb9MFUd01f34c+9KF1EOkg8cMf/vA66BR/B+148iP3Hf741qsc4ovLUfTJA+GPntJnq3683Le4you2gy+42uWMf3a4OojzLyHuv//+NRf8lCf3OgzPBH38yas5IvrFIDbf3KWPY1zVxvHVbxwX/Wxx9S8K8NFHcJR7/via860PHoHJBqb5x4EPNvmDVSxw8Jb39NiLjz82zUnrmZ5+tnJVrvVps1P65by+8ty6hI+zA2PjOPHLhj+ir/tn+ix2OuXHNbzuG/1wcSLaxSwXfCj09Vfo8QuruI2JXcGDhA1L0bYO4LnGMXwcYJgT2PQc8tMrp8bkhl85YEOXP4U9bjCtTXPW5yr/9jl05J3wT5+O+8+1Pvz4Ly8O2q1RbaUx+nyYH/i4WZvwzZ11hTs9tT586WnD4U+tzU68+Ku1zS1MdvqItSQ3fMpFYhx3z+G5v8Cdrs9++vFnhxuZXOBMXOP05BhPOSyPeBnTlsd+KaFfHywxxh1Wc2Vc3uVJMb/65Li8ZBdP9nTE5zDcPNMVX2uRDtHHTh7VFf6JNiztYvO5AQ9u42r5wCU98Sl8+BcETz311OmRRx65i7suLvljH7RfMlFbbWdgZ2BnYGdgZ+A6Z8BG4tb5oN032h3O2IQoSRsV7a5tPGw4bGZsILXhzDL1XTfm+ihwjdvY2MQoNoHZGCfp9OJpc2SMbhvJNpWzr41ym2lYbLVhwU0mTn2zLgdy1LU8lLM2Z3Hlm558lSs6ijE1oSOP5dKYUg7SpceX9tEmnnw1R9X6CFtFPwkv/vpc61eS4rJJzrbNbGP5Yoe3tk264rqcyD3+4UxfxrxUeJmxDuiZI774Nj/lzhjRx0ZhT8o3O37NNTsbe3U54CM+xV0u4ktHHx42+r45xFc8zCtccbJRxNZ8i8+LEwycjSfGWs9eGhqHjbM2OwVemNnPHOqD3RrWxn36hyveXkrzUSzllG3Cnp9euLQr/LFNahdj/OiYC/PClngJ7Z/LF1dxGo8LLIVd1+HTm0KnPDe32eAw7WZ/GPqKBw488wKLiMG4ttyJz4tx3wTtPrM+jOcPhj5zYy14ybSeW3v8iLeizU+c+dVXTOyUuNHjmz+cvACr6Tts4DcuYcJLjGmr+WLfAQIc61tb6Z7GX+zlwAtrfuHS7Xlx9JVfNT5yXe5cKwR2a6Y+/fGFK2eNyYm+SrrFXn+1frnRDiObeNGBO3NIhxjj3zh9fNWz0NHOjwOTBx988P990J5/Bx0//elPT//85z+XH3MyY5G/5qx1hIu1Q3CmLwY1ezYKfeNEHPI0Y9OvLymv8CtwrUN28OAS4/zh4Xmkrg8HeXUPeT7qhxFnOGLqoAaONhu6fGXHFz3PGPfpnTt3VpsOcYDHv/isV9gk/w546MTNGCyCD5zWT/6NdX/0bBN3z7xyxv4DH/jAwufHN/R99uHrW+tEHMUCH56Dds8QnAluxU1HwUtpjF5Yrv1izMF6uZPz7m/8YMMxB+awGH072b/I0M9WvvgRr/g8A+iyTYzJPT28fdu/vPADX9xyYJ6tObgKH7jJic9eOTM+80vHfeVZB4d/JeEXH7kQYxzFwJ8xPNio9cHzzDZv+uVqrh06dK07scDmm41+9mEYg4FnPHCTk2LDSbzsfUM5bP4dmLb2teVQ4ZsefDkUJz/yY0ytD1dCl/90+KOjrZCwtMtL+YYlx/Aq/MLNlg198dBXEvlhH1d64jeXMMROxIh/OaHvXzO0Pvho7amNF6PnITxzy1/3DtzWrLmEzQcRq7jD8FnmFzJxLz98eVb4FzGwcDeH5t9exnXxsxGTGp/8wdCv5tMacU/lH2dzKwf03Ct4eQYVT+sWdnj65IF/+tYMrmKATc/9af3Dbm5gWAdy4heDM27+ywEd8Sri1VaXK3PJBw7mieDRs73cspcrz5+48BPv/MFxbQx/61/84tQ3Cz325bzr7HEzppC4qsUN294e/2zoatMRa3No3P+L9eyzz54ee+yxhRfualzixz5ov0SStsrOwM7AzsDOwM7Adc+Azcqt80G7v9Fuc9emQlzG2pzYcNic2XB0bZN63GDYhFToNd7m5V754lOxOWrD3IaRvrGw4Niw2WzZfMFvw0XXNR1jNthtSLVt4rXZGLMBtBnNBm46MPIJtzjKj82ia3pq4loMciQ3atiEDoxw4jzH5bcNML5yEDe4ruEoxpsH7fT40l8xBlNN2oB6aSVh4JrgSN8YgS03NqPs8seGrriJmG282bFR67NBzQZvBY/0YHRtfmymleLnl7042CbsFH0dIGQDb8ZNByecmzNc6YsNH1ybNz4mNiwvD/4jO8U1HzC8LChs4cSxl6Ww+TUWb/auy6215xpPUl0sdAmccr46zj+M0VNItvCM4de4Wn7l1ThO8q7EfYGMH2zEp4YnH3zQL+f5xU3MxunVbx3AMJfEy5ZvXjlQqq95hgE34dMYTNjlIF/6SPyy736vbVy5l/AxJS6tRWP8m/sO5+j0gtqhAB15xT+u2rjgYV14IZcb2PqJXBYHLq71wbPO+OqZBlsxh2o6bOAr5eH/2LuXHcuOYo3j+0mgGmNuMsgImZGRJzAAIwECJMQAcTdgQDbI8AAITxgyYIDEFPEK3AYGCYQx2GDMTUYtnuTsX7r+fYJ9qt1VuA/nlJUhZeXKzIgvvojMtXaurOrd/OKrjw6Bmx8c3NPmxjU9zzbzIi5j+r2g44y7e6jcuObLvFpjeOKhwIHbc2I5P/6Ih7oY4cEgYXetfdGchUOPP+1yUZ+anOrCK0fZwCD8uZaLajrmoj56E9O8iCVceumnq0187tztg/Zvf/vb6ysHcPc9zPJeTnCSW/PRcwBfa9jasEbYidFc99xyXe7FVg7EXXEwQ19s/Oh3DR+uPJRnfMoPv/4qlA8HHP4pfgdw6XgeypV7pHUS15671qXY+OGzZ5o2LvDdl9au2jPn2WefXbmIs8NbuWDTv8rA1TjfePYd0/IBVy7x5LNc4Khow2Jfmx0bh4C+6oetfDpkgy0f2nLAzj3j3ptxwRKPOfSVNOLhS57mga7niTz0bIAhHnmC3fPG3Dkkw6Vnc2uGL3zo6us+97UW2tavMXHhhAd83NojZIenebJO6MmDwzz65RNXeXbgKBb+FfMNx3zTt1b4xQd3pTVtLweDPRuFqPllB5+wJ3In9z3j6Snm1VzoFx99OX/66adXfGzDjxubDjdxx8O6UuTSPJCeoTDNgbUpJ3DY0bcm8BCb/OFRLtjJp5KNMfGZX7zklZ65hcO/tkLkks/mSoz6rAMS3+4neMblyy8B1PIjn3LefSBGPsXUWgkLrvuZPj2Y+ItRwU38CZxyBd+/pJjfD04ffxjhwbl58+bCkwt5wZNfOvDpew7IH3s44jYmh/zSEa/cNf/0FGsQF5xay+ztY/CFITbjYoVb/ozT7Z6xRjx/zDeueDrEN+dsiP8c1bW1NderucEVT3X3O7/+4lrc5VMu+LWGxS5u64QdbHnzXHruuecO//jHP249g8TPJ5zyAkd+5IJtNV2Y8hw3tV+QWNPWsDGxWffWh+dhuWALQ6HXM7F5EUM+Jncc6Bszp/nXJnjHUbt1UW7YW8f+tQwxDwofxirm2rrW9vz7xCc+cXjve9+7bOheRfZB+1WytXV3BnYGdgZ2BnYGrmkGbEb8Z6hf+9rX1ialTeXc9LjWb0OntAGxeTkVm5wKPYW0ETrV14Zt84KLTblNjtqGiLTRgQXHmNJGiU5+XIdjk2fTG1ZtOjajNqI2zTD50mdzp9a2QSPwFIKLHNioGsch3+E0bjOaTCz62moFNtzyALPC3jhsJT3X4YRN1zWdsNVw04mvzXL25pFOMjH44V9ObJS9KNCVH3HSNa7A0ReWMW2+cKLTvGXDZzxwM1/8tLmnx7caXnziqGZnzTTX5aY88MFef8UYvtZE8413L1jxbV2Iw9rwQuRFE0c61oGceHmAB58Nf708xkeNa/kpdn044CIO7eaPD6XY4w8/+/IHFwe6+khc5nzTk6vuM3NSHvgOewEcf5Q7PCYvXNgq00Y/v+q4qOVQfou/g3aHW/GlZxweXJJPY/or8PGdvnAkcbOOshMz7OJYiuc/YNLjyzWhJ5/mOi7GOkDxUgzPgbSX7Dnf9HHDQ55xrE3PmuHPmpJ7ko1rPNjo41Pe6M91YlxMcAm9fNRmz4YtrsWHl2vxxcc1saa9CIvLutHvBdZLJl048BQ5UtNhlw99Xkyz52sKrjg0d+VaP4y46Fcusqer8FVc8PSR6um3azbZyVECp5j0wZDT5gbn+l0bp28e8o1/duloN27ddNB+3333/Y/YloNL/oDrsMJBuwN2MXUIi1d8rR9rroMCa84hEC7WBxGne7RnPHtFTuDIgVJM05c+7eKGn2445ZuuQyMHG/y59stL99Vcy9r4uUf0K3IIT47FZD3C4Je+wjcf9Oh4NtOzPh3w+v5i13TgdDgKw1+P0jXmvuXbIYyDNcIXHh3SxRcv8cIg7OVV0S+HfDpc8tfochG+eShf836mA59ecyQevsXh3uKHrTx5TuEBQ5/CHidYYoXjmUhOD9qNw1NwDkc/X/LpP1t3fc899ywdfXJC1GLEUbyKPs8BOTUPuLC3Dt3jeBVDh7Zi4b9Y4KRrfvHSdsjuuQsLR/s5B3rsCTvCp8LOQa2c8EvkVp5On/F0yylfivvML2nwT+Aa419e+beexMReW+FTH07mrjzBrA2DX+vBeoMtNs9h2HKCt/y252ADe6413MyLwh+/xvE2F/r47/nc2oCrj8gLXH5xKk7X5gmefDdn6bDl1xr95z//ufgao8+P+ZMPHKwNnKwN8cy8mnv+xU8Phl/GmT9+8WttiQUev7B85ZK1xl7hr32+OMQpp3RdyyEseeK3tpp++dFW+Pe8woEfWNZAeLjiYpxvuAoc8bChD9saEZN9pfmF7aCdHzGx8S+VXNOVR3NivaqN486fZxX+/PpKMj4T9ng6RPeMw4Ho58t8ubd///vfrxoXuSH8wCV09fPpml8YfLU+XeNp3L3lFwnWCc7GzDMOPqfmQTt9Ii/88QuTjZj086cQtTzKgTE83Ets5IqdfkInPdj4FRM7/MwDffOn5I8dHfeGPPHrq7M+9rGPHd797ncvfONXkX3QfpVsbd2dgZ2BnYGdgZ2Ba5oBm4mnnnrq8PWvf/3WhrHNjDGF2FjZYNnYEBsLGyObkCn0bXBIto3PjY8+GOz5c03fxtgGyGbJtb7pA4YxOq4v2uCkY5PXRq0+djBtpGz8bPzDU+trE8YmLurJGaf4qomanjH5ahOI4+Tpus1xODOXvSDQM66GrWjLlxo/0gZV3QY4G3VlKR9/hAEPFrsw6eaz+MudvPRSK04bZrpw6LANTz9ca0ZJrw0zLuIkxhSYfFRgKtrsXIfDl/zyR8xdhR4pJm36xr2MJNpebMw5fMJGDhWiX+HLxt9LkJcn6wcmPS96ctE88CcnzQXOiWtYdFrfrsUOE6f4wqdfjDAV/Y3Bav5c46HOho/4TNvpm99yToeo6fCjxgvH03F9YRVjNsZIMePUetDvpcVhiRdANrDpyps6X3TndbHr5zue4la0xWzezG3YYoArX2oSrpoeYUvo4NxzxLg2HH3yBssLmJds60CbPZ0wrTl9+Zw5sKbgEDZK/mvDERfh11yxKU6c+G1+LsoPjviV22KDi7uDDrzY0tHXWipGL+fFmD3fruHw4box+jCNwVXKtxjjL67sXMMs3vrZknDYl6f6wqbn2vjs05/ADRMPUp/+ruMpt+HRb93TbU00d9r648BOMa7PIYDvaPeZ6ys44hG3q9TwHFY8+eST66AdL3NnLsxb8Zs391vPb/dGBzd4lQPzxZ5tccgFKZ7mTb9fklkn8Ei65Ufc+iow2HvuOtwwz9azNhvj5c69q1jz5ZCOcTXecHEl7jM47in6+Ct04KrlAWc138aLC65nETyc4CgdDsoNO/xheHbpg4uPe9J1mDBwlxs+9Dvc9heqfMExxoe6azatpbjRZcO/+ek+Nq7wxZ4eLmoFHyIf+h3iOggmDql79ooDPwKveODKU3H6ZY5rvyTBEY/u+6nHXmkdwTZO2HTYKCbccJdnhU99eBhXxKHdZ7U+GH1+wJRHaxpGUixqfB24ssWLD3a4uc5nus0L3vkTvzZd8y1GY4r1B59/uccVHzV9MbB1H7pn5NGBo3tSG4Y8wHDoR+g6PGxuYbDr2Vx8uMibGPXBSnDEg43nvDEYSnPe/OjDlT92MBXx4F4uit9a5TufsI3RExdc43KDOyzXxvGpWNd80yH8K+UKF/e2tcteG4a1ByO/avkqDlzks19+aOPExtzzB0veCExro19klF86bOGbT1yIe5Eue7kQHxs+FPhs2Mthz2Z+6Flj+HkWGmePqzp/eJZDOPKirfARZ3lhA9fBPd/ypw9Ha9ezx5oTfzHRM+4XI/6q3XjzbUxsdIure1rdtTG8mgfcjOkTj3wVk355sD48fxJx8IuvuuvGYVf0wZGbxJh1JKd8xgkXMZQbdfGITy7MnXuET7p4q2Hk05qy3vT5ReMHPvCBw7ve9a7lns5VZB+0XyVbW3dnYGdgZ2BnYGfgmmbApuEXv/jF4Rvf+Mba+Njs2FDYxLR5aDPXS4k2sSmZevrgkWxd61PaQOkjNjnZG4fXpsZ1No21UbIJ6hpONvQIWzptJMOhx6e2TZSNnw0WLKU+NVvj8+WPnWKMXfj0uq5eRI4/+JMvJc6ubWzl2jgpD3TCMNbLQDGGpS5HvaDAs9GcLx7FriZwSLHwwTcMmNp0yqFNK139Cnx6xHW69JWEDh4dtqXX3NGDqz+f4u4FApZ2c2Kj3guaOBW5mTmUu8nDuNhgEC9IDgj4NGdeZuf3fpZ33L0IqNnKARvc8OBjco8/H+WJPjw1jvRxkRPt5pkOPG2FHmFX0dYPu3WiD04vmq7Fa13JuWsCA28vHtOP+W7dGLeezU0SP/Zy0H1ABxe1fvyn0Jc3NT21gnt5PT2YwaPY6eEuT+ryooZDwqtdbuC09vETU+uXXXxcJzAU3OSn+Zi6rstdPtTFiXOc4NKXm/rkjg4b80fg0ZH7cqhtXeLOVq3AY68WkxI+zOa8HPGRL3Z4OlRzKNXzodq6Ye+ll402G/yKGRcFrmJcG27t1qLY9Gvngw79ZOazPnUxhqsvu3KgrYg1MdY4W+P5aCzd6nC16ZByBVvfKVY5MV/mjU6+zIfx+tgqsOg3t3S80PuOV/8vigP3yWURucIP/hy0f+c731l/LW2tObiB6f5pztxzDjXmIZQYyiMc8bMxb7hrE1iuzakiHutSH1w+Wsf6WnvslHJhjB858Cz2TDJOjPGtuC5vfLmOg1ouHUx5lnd/0xO3dlzg4infnvXuG3qe+Z7vcoGLr0lyHQc2sE4Ph7rPcJBzh1L+Qh1nNu5dz5+eQT6vFH7FjRsMf1VK5E3+yhcuzV++cTKu8Ks2B8bloXE1aR7p9AzVj5tfEPtLafHTdwgnDzO37Ik8tabhWBOktWHMvLSuWhuw+MLPHMMLS03yYV3Qn6KtGGvtqtnwKZdyrV0McjrXZeP4ySk++TQfrTNjDhXNv+cfPBzZl1u4+TZ/xWSNWb9qOPTNnbXWmuRXP4HBr5zHF3ZfYWKMb/GxV+RBfnFTly92rTf4iraCS0WbX7X1b+3wDxeGeMsRjuW7HBiTr+LhH1/r3rqB0Rq2LlyzxUfs8sE/PvJEjGv7LMLF2tIm7HFkE07rzbhr/d3HcqaPDQz95ocO7gSmeXI/61OMlxux+eWTv7qGZT3Ij1+IuS4HMLrn4PJpHj1T5cE99fa3v339Hwtw2Jk39zqe/PGFD325LE5jCjHOv7/el3s4r33ta9e9K6/GFHOnpt/9KQcw08FfEa9DdP+S54UXXlh7ARz4lDNiz9gvkeiT1hsOMAl8hdTnWh//F9n2PDYOS62veyc8OGKEAVve1HiIEWdt9vXJdTzi4B40V8R1v1y0JvmXu0T+2hfph9FcWUuui984vzj6V60PPfTQ+s+rYcUh3DvV+6D9Thna4zsDOwM7AzsDOwOvggzYWDho/+Y3v7k2hjYeNjg2kq5tLupT21C0UWkDMjcZ8JT6XNOrX53AafOUHjslvezapNmEtRmDS+JFJxxjNkl0lXDyrc+4ki828LVhGbMRtUFrAxk3G+9sbaCN59MGzSaZXZszNX1is0Ymp+KGUawzP/U3F/TjVA7VNp50YBgPlz/XxmDZ5KoJPh3OGucXN/ZiYGej68XCdfnir1wVS9xhWkdeENkS8cOTe3qktUZfHuVVcU0PB9c2zPJKj1/rs1jjpFboGO8ltk09371YeAn0ctUcNk/4wFfDMk6XsLWBnznqmi6Jg3zQl2N8GuNHEZf4mlftclIMcYBlnNARhz64+Y+/uNlNn+WwOeJTjNnCnP75oUsPF+NyyK9rY2rjp8KvdYIDvXzw58XTgZZxesb5lYew9bPtxcq4PPJf7qZ/HBTzRNcYztps6jvlOdv0YYc14wpPrcRv5rgxmK4JDLhxUcsF+/zg1nU2+hT6cly+my96+oy7txwIOPSTV3Z4uZflmE0i9w5HrI+w1Pi4j+TbNY4EVnNcfK0x4/yXC/2wOgxKr7UIU5z6FbbacLVdE3jEeDrzutw2VjvcauPGwl2gF/zIPn01DuyyhUm0y4fcWF8JHOvXOg4DDltj7FrjbD1DHLQ/9thjd+Wg3S9Rvv/9769/iu856TC151xzbU1YI3StETzcH/jhTFzjbFytX10RkyIW8csJXcIf+9aBtWD+FetOscZg6iNwYHuuy0k5U9OxLtXa7KyjuPPHxgEiHDn2nE5PrU8+fM3D2dnZ0ve57OAKroM+cfQ5gb+8wO6AEY5Y3D94JHTl0sFVn2/64OLo2ueWIs9yJU54Dudwc8Dj0BKO+WFjHfXc4ot+eXEtVjgOeujKX8+V9PFRzEVrVTz+ylVN+Or/x4CBj1zAbG2Lw3Ok/LDDTU59RsPmwzyReOJoLuQR53IST4ee+MNno18ulD47wmrt4SuHan18O9zUxiF9/ujhUDEH9NnJi5qOYl7NhznWLz6x4UiaS/mRG2suHjCVOKnpKa7p5TOe5lm82jjLrXtDH7tEHMWiz70rToJTeyJzxS5O/GXbtXFrprXIt7jFjD8MNnIDmxQDO/MIX/x0rBu2hC28fGlbY/KkwBGzNS5eOHzJublmZz3RxaV5YCM3dIuPbzHQ7Z7iuwKbbvOOHx/w/WLOuFjiLOfNt8NYscsznw6dxcmGPgzrjX8cjfvqE2uWuLd8jcgDDzxwi7N5pWf9i61cuq7IqWvCrxwp1iBuYuMXh8T9Jj94wJbLvobFmLg8V4zLB3xx2SfYL7Dlg4iPWFvyTfJV7M2/toITwRe2+VboyT1OzR0uPcddE3G5v8Tll38w+DSvMLRhK82tuRGPgisstTUhFrpi9dxRGy+XMODya4yEyw5fxVoUHx361oRamx48PrX9y9YHH3zwcP/99y8841eRfdB+lWxt3Z2BnYGdgZ2BnYFrmgEbDgftTzzxxNp822y0ObK5ca10TT9xPTcY2m3E4JA2LtnMOl8TY47Pa9g2OG2ibczakNn8wDIWP35tYm2U1Prp6yfh6MtG/+TCX/HUb7PFVxthNnzAo28zZ/Nok2ZzTtoI2qTD0e5FdHJayscf+cSLLoHNj3mwuSyeqdM80S8+XOUnDuzh2xjnBycvJHDpwpl+jXtpsHmGizPhOwx+tPFU2MTHRtu4ORN3Lxf0bZx70TTmrxQdjNiI04+r3MFNcGWLJx1jrvE3Jh7fbelliT9zgTsbfvkyT9oKjmwU18Um5+Yafy9KXtjga5Pui9r62MoRW7Ux/Fyrjbd+6eOPW/GWO7ymbZj4wClueP8XgiepxlX+rRMvc8QLjHlRexn0wu2Ay9oQj3k1N9ajHNCdORWjFzDzxYYPfXLVWnQNg545IsZeTSIn1qUi3/Lp5fnFF1883Dz+52++ykI+rRn9Xr7NRWtEXud9PddM/fXBb0711Q9DSZorc4If32ptAlebHh76JwYf+qxl18byxb5+Y633xtUwFX56bjXO/t8R9vyF75pox4FPuZ661p11SH/mQDv9ngfWqYN2/y/K3fjqGIc9P/rRj9YhivvE85MPn0X8y2vPbwctcoWrew+3YnTPaNM3LxX5pVMscKeuvOijD9s66PDSc8Da7L6nY0x/686hxete97pbz0cYDgI9R9TySfDqQESf/Dvg6vMdB7ie4TBw9Ly+cePG+qf+PlPMk4N2PDzH5YEuLmI3bp70i8v95n4SAz+eU/z6i1NcfKcxHBjqclVOcIIFm71r9rj5Lunf/e5366/iPRNxsq5gyaFCVx99155zDqn5x9Oc6J9irvsM65nIzvcK6xcLfr6T2V+64oyn2OhbF3It9w4K/dW+uSA+M/k+Ozu7xal48IdFxImzWKxP9mLUNme+QxoX+vLmYBAXf4HbfC+g8QO+MTbyKR58XTcGH59yjYe4xMfOfkA+5Y4eO4XIpfn3C3gxsoWX8CNvaljWGhvXYtFufYbN3jympw0XB37lpf0PP+KTD4UffMyHe6a8qJsrWPnCg3+FDr/mkfDvl1KeDWJw6Gpe2LaO8Od3Cl3javsOeYXNl2v7XGsiHXNOz72mDz85/8Mf/nArl2xxK0b5tqbFKhdyhJ+vOeG3fOHqcNYeEXal9Qpv3jPikF9rxHOgGKyF5kte2PPtuvmz7j0r2cghX/In7+4L3Nw/3Utnx/vhfe973/orZ7rmrjkQb3mWLxh05M+1sTsJbkRtLYgLDzHLr1/4PfPMM2tO+fvNb36z1rx7zVoj+hXrTkyucewekHv9+PBjLvEzl3IGJ65s6OhvTsw7Hfe5exmWPHfv48qOjfmwFhV+fG655/jLj37XCvFct2bhw4bVWnRNDwfr2LyIz+cO/43TMTfVrvFRi02/uMyPzyW1NaDPuhSPa+t1/0X7mpb9Y2dgZ2BnYGdgZ2Bn4HYZsLnoP0O10SI2KDasNhZtaFwrNizE5sPmpI1bmxRjdBTjFf1T6Ld5Ub+cwMifaxuwNt9htJHKnw2TDZSNkpo9n4lxGLBuJ23G+IAPIxwbc+Mw8xGnXjRsHtnKIaFHtNnbaF/kvxjU+c6PjaUNq3b+myMcXbOJqz5zVD97uDa0ajh0zD3cdJtXfOHZYNrg4gtbH9sp8IzFm09rhk81kZs2r+x74TEuJ710eXlr3vTLraLPy5DNNFw+8usab3GIx2a/F2svA/zarNNx8OCFjS4s613dQTuuYuHbyxFf7DtoLz/qcsuGNDfNNx0vc3Oumx/cFXNpXE3YyE1Y+tiI39xZO3TZ3klgmK9XKqcY4YrfGiJ0vAD2/JDT9BzYOEgxLj7xyIv7pBcsWNYCHJjy7kVZyU85YS8HcmLcnMJj270Yp0Xu+IPtdROcrVPrwdrXliMHgP5punXuZZLIu/zKe4cGxSt/8t5ctfboyXO5MQ6/NTr7p708K2zj5zp8unCaTzzoN4+up/DjHmDPltDRf8olO2PWAL/lprGr1vmfMcLQL1c4lLPu08Z7RpWPcqDNRlw9A6zVe++9964etP/whz9chwvuJc86fNwXeOLieejwweGRXLk/8MGtecBRrOLXV2k+9BsvVjhs5CUMtX4HHNaideFgyH3v2WpcGx/rgP8OAHHV5sdnjUMVa9m8ho+L9cQHv/5637OQ4OIe6dmjLRcdtMuNnDjUh+ce4Y8UY88i+REr/ji4v2bOHMLw43ALFk75hYUbXz4D2Gm7xom+2vPwueeeW59RcgODnvi7n3DQp+DqGSdf86B9BTB+9Fmuq2ei2pqTS3mF17MDX3zEruCpDycHjopnjflx6OaQSZn3AF9sFDzFzoeYzCX75t+c+UWTfBWrX4r7xYM860tcy5c8qM07THNuHn1uGOPXWGtKDPwbc7+ZA+Pw8TZuDD4b2ASeNWN+6fFF5Ade1+xaw3Tk1drTj0sCO85q43AVeu5JeTFG6MPTptPa4YstMWY+O9iUb/zZyalxOK7V4lSLyZ5HHPZF1gE79zMda85c8aOtyEefqXziI1a+zIF9Gh7NN85xY0vfve9rS/gSM3v3Hn+42PPhxU/9nh/WA4kLXWtfHPwpOMRPvHKJA10xiwe/DtqtBXZ880XEjytu+tXzoF3bepkH7X7BreCJnwPthx9+eB2+lgtYnh3mByf9/bIv7j2nW3+wSG3XrY3i6nkkNmPy66D917/+9brP2Hiu0Hef8iUX+HTP0SGtNTjG+cdXv2v87H9hwDNG4OFofsUkN4q8e76bOzruCfc+v+ZdHxzz0XPEvSX/2uWDTrlQK+4BsZs3vmEVD15wrAdroOeV+906N4cwiwFPNtmpYfLjGg/xWFt0jcmJHLnGdR+0r6Wwf+wM7AzsDOwM7AzsDNwuAzYWDtoff/zxtYmhZ1PSxqgXB32kDazNRpsTGx7j2iRd2EQ9i3H2JN3VuM2PactHGyqbPDj867cZVNtMGdNWa7PRVhMbqF4i4i02GzU2+nCDzQcOxQwv0W9Tps91GzjjcbOJVfinA1d9KvSNwcBB0UfwsdnHB1Y4+uFOPTHCIPmip69ciZMeHHNsA2kjSZ9uOQtHH30v4vro0tGfwKrkG14FR1zLFR18WmPGjclnL8fG2bNTXNMLc/rWr7DBz4a7l2GcjYmTrTbuvdjJKR69RMKg4yXCoYa2+HGDkR4bvhQ6STnU5o8toYOHdn1yxldrNT2c6Bsv1+UXPpviYNMYXYUf/Oh4+Z1+9GmnIya5cN/nEya9uMaBjZjoFQ9d/eUdd/rmTFz0HfJ56enQAK51aF27xgcejNYEXGvB/eqljY/iUJdnGOGwgcev8Snliy0Jb2Lh/Z8UHMQtZ9asom1O9BEvmF5gzY9cKvKk30ull24iR+zNJZ3ilAeFr3JWnHwo9ElzwLai37h5IXF2H+hT4zZx9MNSkuzi1vzw0/qiO33Rab2GUw0vTH7gqMNP7041DH6smzDV4eA2S+sVLp/4KYR/tkm4nh3WpPXs0PMrX/nK4c1vfvO/6GZzmZpf4lDoW9/61jrcwEve+XHv8W1OrAf3XesHV7qKuPBtnvSxq5RT46fzzy4seuG1dq1Ra4N/NX3r0zjhA0/3bvHQ4Yct7mp6dOSQHp9qOHi5pmO+lMTzxTPc4Wmf7a7ZuWfYiV/Nzucb/Q4VjeFnzvTn30GLWB1yEbZ4qvGHhyP7uLrG0bhaThy0umezZSdm86SfLd6KMT49C/GABysxTswzW4I3W3Zi4tMzg3/PEznAWb7DjzN7Y2zwYUPU8CZX/XQUY+XQ3IjNnDuUFJtDVetff+PyiJd5gS9uxTU/1rP5x42o+WDPZ1j4Ngfsu9/U4nA4igNMtnTjoOZPvuRYTvChq6/7iW/9Psus6XzHU/wEFnxzAUu/+egA2tzJi3F65RS2fnjNBXv6Cn90xaSNt5o+n4R+fuXB3MefnpzxQ+Dokxd+2cJhpx826fOVPwUHecFRmx0RC/tw9fOldn85uIXJH1257sAeHqzWXIevYfas4JvfCr/yovCNNxttPHq+uBYXLvGFpeBUH//yV/z8FD/e1qp7pxyaU/9SBt/yJg7rIz768YflWg2fT/7ouyf96w4H1fqMmyv3dDrw4ty4X5w8//zzyx62A2ZjcqutiK/1Kl9wiDw1f64J2/LmWcMfoTd14MqLeVXYyY/cEbWY+OZPzObYelTw0w9HbsSII6FL+FT0wzOn/Ey7dJtX/pTWADu84EzhF59yoW0uxSx+woZP/s03Xc+vj3/844f3vOc9S4evq8j+6pirZGvr7gzsDOwM7AzsDFzTDNiwdNBuQ6Rt02BjZ1Nhg9HGyibEhkvb5qPNxWn7olTYnCjwbYbYuFZIWLVn37yGYQNkg2Zjxk7BzYYvjnjOTa22DVQbbpu8XgbjBrfNHxwbMwVX7Tjb1LVpyy/exmHJWxtj+bPJ6wU0HPbGyiPbCq54KgR2fsTaywB7/trg0hFDcbOFqR8m3vS1XeuDDW9yyb8ctwlVy5dDCvZs2tzyczdELmxmce5AQ7xyJy688ORfHJcRWHJtA28e8BYzP16UvFjmU3/5pceHv7zxl3PNAR7mlg0uivnuXokTnFOBqRCxwEqaIzVfeMNundE3Fj+5IuZAYUNwNv+w6cJw7a/G2NM1r9MGJ7nwcubgB/bEM/fuHbgwCBvYaroKO3noZd367S/V6DqY4Md8ssMBN4W9mBU43R/idjjBN1zjdOPvWszaSvzUExvn7Iydrh997PlT/tMiH+LzywgvzeZOrhS8HUQp2vKDP8705FxOiWvrU5sdnRm3tvjkUz3XmTVNF6b8q4k+0tx0TYcf/a75nXbmHNcpMPWFjY9YcDFfsIzli2/jp/MFk1540wf8fMQ9f/Tqc61fuxqPOd76nmuDTs9Fdrgm0zZ83MXWy7u/sHzDG95w+MIXvrD+sndyC+cydb5uHr866POf//z6OgNY7mF8zTEdc9Q8neLilZ5npFjc62KEgXvrTE6trw4tYMddPrTV4swGXnNZzd7aIOzhXiQwiHE85a3PH88w/v7+97+vZzuesJon7daAWMq9cfG5j9rvGG8ddhDIDxttf9lovvzC1f6AuDb+vyHWXJ9XcZfXy0r7DfpyVh7lR9yeM3InP+ZEv3vX3Lo21nplr22+6MqZQ0Y+iHXVX4zqN46zA0c5hMc/fF8dxk7/61//+jVmXLzsPDvMm/XIBofuM/ONi5ybwzjy6ReNcccRV21YPoPMGSwc/vjHPy59vvjlXx7oK/qIfnMgPjj8wuIbN2Oe0+0D6ONqvdDFjy4+8s0HHr4qw0Fzezs+cSH6YMuRe5gtDPmER/jpuWpcYa9uztjQwZ1f+fQ5jGufH/Aq4oMr9mzwiAs7OsW+iBx/ZF++i0W8YjAOV1zmDk9/je5fM4iJnQLbPWld4MlOP/++A9tYEk86xtXXWeTEurT+5dkB+69+9avD008/vdaA3Fjj9gX2Z8Q8y5N8yaO5N2++ysYcXCRw6JpjayKRQ2NJ94Q+95y544+eMRyzL//GYbNR9Gur8RIbHfcHTMU9Yl2aTwKTrn/lQ19M4RuTJyV9NtajtdH+0JqRK77148sXPetenvGHbYzQFWM54NOen701DJMNbtryy+Ztb3vb4atf/erhox/96MKZvFbHHX7sg/Y7JGgP7wzsDOwM7AzsDLwaMmCj2kG7jQhp02NTYaPRxopuG6k2KzYs9dPTfyrZ0GujTE+/TZDrfLS50nc7LDZzowZTn42cWrGxs5FzDbPNl00V8dLj4NiLUT7ZaNuc6bOxa2NZDPr5MyYeuGolYWNT1kata7pwxCWv6vJRno3jLRa1Nh34eLmmq81eXZzwK+Jmm9BT2jjr1yZxaA7YtSnupRGunNngG8t3GAvoFf4QVxvhYoKvTzw44Eru5Bc/a1NhY6OstF7NnxdCxXXCTh4UPqyRDtr5F7sXe5yaC7julXKin7168oxPc2MtKfJdMcYGlnwocTZGnxRXGPmBI3fWMv9wXHu5z5c49OULlnu/g3Y2cIoBnrlvTvJvnC4pZnmQDzmF4cDFS4s44Mu33GkTHHChGwae7GGRDlhw1C9W88AmEZNSfvTDds9MvXJYHyzX5YK9OP/TIh9y0z9Zx6HDQNwcsjvY0SfneCrmrrUtfzP/2q2LGbc8wVfDklNz4jkFk42+iwQmG3zZKGE4fGJHh7g2NsWYdaOQcm8+cYKrsDOm4FMcYRlX4NEJd45337A1Tj8sNtnLTWtdTqavMPQr8qPuBZ7eUm/hAABAAElEQVSdvJXf/M8aHhv3gbVuPd/Ng3Zfu+HQ/s9//vOKaR5s4GV9mBtzVdxiJz4PFHFZf+LB01ywLf/yJxetE3NE1HTkQ5zi6zNGPzzrQM0nDGtUHWZc4LGpNKfGYXoW99ew/OHs60/E15w1D/mGOXNv3Ge8+8hznF7zCsMYHw6xfPbVvnH8nndfeWLuiIN2YxcJ3v+u4CA/5qt1hYc5uax4TrIl+JoTnORR3OZZ3ObOvBD++KUjr2zk2CGWdnPvUN1hVvMu9/qM6++gyz6hueILJ9+7bS34xYWDdr5aAx00ir+1Z148F/ThIha1OdSHY89I3AlMPrRhwxIDXTH2vdryQ5fgLo5sYLPVRw9/fq3B1hcsh59s5IK+cfNElw2f8osjHz5DfR72neZ89wx1LVa5humgHSZ/8pDo46+54wd282atsDGOf7zMBV/mXn7EyBd7wp6NMQKDrfj1i4WNkpQnMWZL31yLIR/mQCHiN/fw8eYPB/eSA84O2uPoQFO+cCH5wpcdHOX/i8z83I5TsdBtnqwR8+Vr4Hy/+m9/+9u1XxKj+8vnv+eVvMiVe8gzSl5bY9a2dXmRmL9y3nqhB986UPBS5JZOzx22xvVZQ/xlKwbrHg/jfFivajZicm/rax24P8TAjoTd/kcu4PKjVsTNt3w19/Dcb93fxuwx8dUnlvaJnku4wNFPl9BV+CDG5JW9NcwXG3llb33Tv++++w5f/vKXDx/5yEdu2a2LS/7YB+2XTNRW2xnYGdgZ2BnYGbjOGbDB+PnPf742DTYjxGbDpqliw6PotymyObMBsVlpI2QsW2NT0mkzY4wOG1j6XetLVzvMaecaBxu5+m22ejm2CdK2WbJxt6lLvw0h//S0FX7xCBOuPhs7Gyybq7ixFbc+/GBP0S6W+MsjG2Ow9beJLH46+ghf2jZ4M/f6bf7wKg/lAKbr4hCLa8UmN56uZ/t0HIZxG1TFdb7KLSy82LouLvzwKD785QnnGZt+8aVnrJjrb6MefnPF5tQvfgqb7OSRnn425tEGvhcRPuURt3xO7OK24Xaokk/4NvM23fTxhlV89PQXU7nDh2iHVS1G15U4l092OOpX8hnf+sM3T/gbz859wI4YEwd/+WpNe9lhp+hT07UWsmksvOYftr5eiGD3EoQHbC/hxme+ykNc+GntwHbA4p7Wlw/ctOMQhho/4jrOYetzPfW0mwN18cBW5vpYwJf44SVw+pgm+vMTHz7cKz1v8BaHQle+xGtc7PS1vYQ7lOnZbQxn/ovTfJNyZcz9ZJ2kAx+2ttL8TN5d48S/ecRBOxw+tEl9+Oub/WGpcSb5lZM5b2vw/AcdPtx/Dh4Ufe5JuWCnzRc915VTDpNPY7hOkQd93VOuFTlU56d55CsJ35g5cA/iZz07aH/00Udf0VfH8MOfQ5jvfve765c0YvYVHbh1z8qV9eHeEw9e7IoDJ2JO3Wf+6tZBiH54hL42G33hdBjRGjOeDjxza530TNBnnTnEcXCt7VpO4scXfPcD7tYYTPH0eU7fwTv88qyGrbBhrybmC3+FP3yM89XcFqN2n32u3SueY2z5wE0OYOIRhpzBDi9/uFsD7OSJ/mWk+wLOZW3ClVfCdgr+5cR180sfP4IrzmzlIaFjPuSOLk449vmuv7kyT/KW6De//MlRh6dx6HOYPr9xwIMfecOl+46efp8pDvJwK8/xxLE5Mie4+1qO5q6c4iCO4odNB6fWNz54weFHv2cPO/7oG+ePDn2c9fML20G7v+iWFxiEbX7ps4s/XtpKXNnor+if12HwO9eP3PFjHtTdj/mGo/AlDgVueWkeJo+u6fEHC3c+1OGxLV7PF/ctP9nQkzN5sW60jRH/Eu+6iP2l4rkiPjnw3JWf8uyA3NovTrmi4xnOzi/afQWMfmIe3C/NhT5zYjyd8OXMNRs5thaSOTeu2fLXPclGP1/mCHdrWRELgW1ucFeMNYfG0oEFg65nsfuk+Jtb+Ar71hx7n+N4kTnOzhrpGaDNDw58GSvG1jYMcXpG+EwUa/cEbJz5tu7U2op3SUW/HMLtWQCbX+8Evjbmne98JzfLbl1c8sc+aL9korbazsDOwM7AzsDOwHXOgA3Lz372s/UXcQ4q5obJdRspmw3tNsxtamw60publZkT4/wk9EgbQ5j6tOubunzYSNGz8bGxsiF0Dduhur+UsSnX54Wmg/ZeFOkVg2svP3wZnz5tzGzGbMTajNpktTELp5cncekjrsWh4Ip3sdLpOt106BE6uPBvQ8cvzvoUfBRcSPiNV+dfrdBT4MdDnggOcju5xUs8MBPt4tVP71RXPx84ikGebJzFQXpJUNMr362n8gy3OMy1gw4b3/ziX/zpiUOpv2vYNvwdNvFL4mm8Pn5t3r1IuHZ4Ym3xQQdv90kvA9kZV8oZnnOetI3jRrrOLts1eP4DVv3stQkO2lMaU+Ot4EZPDac4jeWXfoVeOhM7nHxqk3ye6uIHx7g6kTPFnBM4YRWnfvzkDo5r828+GoNpXXV/8BPOjIU+XGK8a+24p2+svISVXfHMfmNk4jQOy3MFXn0vab/0k02+4iS38jLz1UslK9fWM4EpP+LvoN3LJIFjjblf+FDcK3DZGIcDT39c9Ltf1eVkAV7wg394+DaXMM0Te4WEI8b6XF9U6NOBjbMYsi+H2vn20tzhur6bx69P8Rd9Pdfh6Q+DT+18GL+MsMfl9HmjD+bkOvHyGwf2niv0fT75+oRX+h3t/PFjDfjPUNXannP48ac27/LiGWjN4NS6wEsc5lO/OfQ56llbjM2XNn1CVzH/cmqM8E+6z907dLT51rZW+Tk7O1sYDjUcQMYBBmw2OKuNVfjyXHZg5UBJm414YYufjetiFq848PcssV718UOqravuA/3lib4xRT4dHomb/3zjZG67V7vP8INvDuC5N5Ni1aaj0GGjtG56/smBHPZMEhM/cFrb+CmEvbGkHGrTVwj9cOuLh/G4qQnMfOZ3YrNV8Ct+eWWvz1gYE2+Bn+PXX5+6uWkuzYfDTfzlQbx4mHe1PvOCg3Wo3/5RHwyCP/viLl/s9Zcb43E21ueP6+Jq3ujNuOlY8/3xR/NSPtXwTznoV/LhWhw46btI4t9Yc0CfHSmu6Q9f+VJcJ+UpHtmoYU4edPSrlfIVJ3EXe3r88DfH2JKeYXR7frgmrU92JLz48uk6LvHJrhjxZ0u/dbkAz3/Me00XHTlSE7Z0PG/80kdtzFp1gB4+Xc85zztrgT921iQ78+rZ5V9KeI70DHY475kSP/ie9Wz4bn49i/DSdo1DceHimcgHPuZfPvmWFzlk5zmj6MONfusNf3ruHcXcwKLHjzG48uoZhy9bPtyn4eChzX8xwRJvHPmaeRMXXvJGl53Cl341zmLos05b3D0j+CsfbIm62OkrYpM/MZT3eb/IqzH/MsMvi9lcVfZB+1UztvV3BnYGdgZ2BnYGrmEGbDQctPuOV5s3GxFlbh5q67ORUdsEKbX1wcpOfzLt2ugYp28DY+Oi0DMOl2jbBNlctelx7T8dUmyG6PbPKI3BsSlrkwrDBs8mq7/81Of7Qm1YbaQIHHo2jYp2XNQKwVmxgYunGEgxqxWbv/rYaJOuxZaO65kDemHQT/TRI/q18xFf8TXuOnvXeNOTI5L9jJuetpy1OdUnXrG6Zjf9u9ZfnuKSPl/G5VhNZs7p81Ve5QWmWL10mGtzildzLGdxoC+m8lhbzcZmX+Ej/mLAQTv+YXsZh8W3v/CE4yXAi5ACkw3ecWheylPrwjh9/mDqdw1TTeiEVw4bb0w7rHSW8fiRrprA75pNsTdmXMFdKad8ybcxc+ZlxdwUt5cb+jDlVMzFPefYPSdeeNnTw4ltJY74KUSfwrbCp3E84LKfWMWlnx47/rpewOfYxa7Ojxoufb6sKe0wsq+mnz2fJK7GLhLYShy7FhM/9Xuh5F8bpudbL+DlATd5lXMCyxy6X9jgQJdeceGrTw2bzwodNj0XJ/94slHoNte4ekHV1k/EUxumkm/X+FlHDnbFBp/EqfbqPP5gYwyuNdca4M9XiDz77LOHv/zlL+s+DSef6sk/zDvVOMqnGvdE/vSZn17GJ1+65bdY4eiTpze+8Y3rO15fyX+Gigtsf633gx/8YB3Q8IGbe9ecxJ9fefIMNNdxj5O8miuldWgMjviKpXVCv5zCKgc4yYNnZThszFfF8xOXbKxVfyFoHXRogjs7fNhZ4w5U2fKLj9z77MdTcYjJd8+Z9NX6mwfP9r4eQD/MfkHjO5I9s/iVR7jNsWegInZ5FKPrBCe82ZRfMcLBCa5aTvmlT08utJsD60MsfpHgWl7khw6eDtj8kgkWbnRhdT/gZUz+eobnj44iF821MTmWB9jsCWzFOCw2Yqmfz8boiwMmXXpikwsx0DUPxDhd42HiCZee8VORG7z8xa8cwPUsFKc54Vfu4zvXuX48cbJe2kvyrV8+xK/WxgG3+PFtnH9Fm23ChpSb7LTp4qjG2drz9Si480NgiRk2P9r0CDu8xEhHsY7sXeHmeymPHzD4VyvyK0d8sPG8nWujuHEsj+C0FcKeTzV91+2pjBePa7xxDRcXYn7gN67GTx8+7n9tdvXzLwfuTWvI2iF0rS2FPh2Fj2J3/+ERZ3PDjzWQLzlXGmv++MBBvsXZ80ru3Jtqgg89xbX1KRfyw5b/xsViTBvn4py5g6mtiIMfnOgSMeILHw5M3Nqz0pNXMdOF4ZoNfuUcJltFzuTEOFy++/9i5FwfXDZ01XFWw5BX2PxZ33RcE++W1jAcBRd45oA9TPzlCgYxrpDmlK5x/a75sHb40WescXb6i5G+oq8Y6OTDNYEpn7ixpZ+tfBs35jPEv2g6tX8J5eV/7oP2l8/PHt0Z2BnYGdgZ2Bl4VWTAxsFB+yOPPLI2Q23E2jwYJ21+XBuzIVJsQIjxrrNdA+c/4OhX6NVmZyNj80L4V8Kga9PmZdKG02bwLW95y/rPaPylsU2bF1HjNk/sYCs2mW0wbfJ8/6HNIx1//eiv0toc8klfPTd7cKbgg2sbd+02jflV61eyV9u0pYOrNix9vdykr99mDz/5IWz00S2PfBhnp08+8e9aXTyuvQSIEVZcYPfCVPxeyLzMKTCV8gmHz+LRJtXharMTC57a5a2YtOEaww0PfeWGrRcpa0Au6MHSn045OO0zzg8O5h+2a/kg7Mp3XOnLr02/HNlId9AOo5cunAk8GOwUOHMt0eGnF1w69bGjX77oxYMO3fipiyf+C2j8YJvQhzdz39is6fADW7yKPnWHAe4xL1vWgrVOvGiyMVf6WzfyQr88u9/o4KGe3NNRJ8Uf/+LHiT81oTfjhVGbTnzK9ylebeNhho+ncZzlIX+TZ7yMsVfEhgNMtlNngRx/6KOn4FgOWjP664M5+Xu586zroMgYzjDZVOszPzgk5QM/uHHTL15z5jr+7rV0wogXHdf0Ww/uGc8mOGIg1rwCnz4pNziwcW/3S1N9hH7PVG08KrCNd/+x0ed7yp955pnDL3/5y7Ue6etX01HiHRfYpDHjp2L+5XPmMh19Yvas4IfEJ74wXc+5EvPdPGh3j33ve99b/5EcPj4n+TCHOFo3rWPPMHnBU59SbMYciPTP98XtGQBPDPJuPs17ORRXPmfMrQN6/Gkr5pUPh7raxHr2jJUTh+7WBe44sjfXPhvw8v8U9Iwxzg5PHM7OzlY8bHD0zPIZr46vWMVj72DPoN8znQ6ef/vb39ZhLp5yExc5FLvPEIKDfMEXNxz5aa75wQsGnvAcEntW6uNL7lyza23y4TMHP7HhKC7/AoIOf77r3B8KwBQLPVg4FXfPZGsTF/zoNA94so+z+P31rfyy5cscKIS9OGDIiXw0P3wSWDC1i42uv+DV7g85jNMVO4FjDYiFnnH+FaLmX77957e4hts8wNOnEPNkrPmQb5zf+ta3Ll/88MuXnItZXZ6sJ8Uc6rP+6Jz+FTEMwo88888mv9mWE/fljeP3/ff5WWy4ikv+2Bs31r1jbujAs47kEic6SsIvUcMhOPJr7uUFpnXlXis+GMVgXhR2ciAm12wVOMXlPtanLacwXPNRrR+OPljWpFgUfbCtM8+a9hzxMWds+HzhhRfWM4CdcWtGHHLFl9zRax3REXdzrG2O9PU5iq88KsbY4oOztuubx38tZd75o+/+9JfpHbLySVcM8qlNT81OjK03a6z7Dq9ix4mOWHGwnouTTvk0n7D1EbW54pstDLjWknmBQQcXfsNkw6c1IMfs5ZKd56xx70iKGNjLH6x816YLQyFyAFtOjGnDhA1HbDjqN984uxb3FPhiVWDJAVsYBA92fLi2BozTtd4ITmLsc4V+c6Vmo/CVaPNZPunlxzVf8K0Ha3nahnGneh+03ylDe3xnYGdgZ2BnYGfgVZABG4qf/vSnt/6ivQ2dzQaxqaBDbCgq9BSbJEKfbuPq7Krp6adH2Cgwph+bmTY5NoA2tP4SyabJxsb32/pLQH02Vsb1w4GPlw2lFyPFhtNG2v9o76WajkN3G0h+igUXG0DjSryrceYDP/gEbxs/GPSKw/W0c21DWH8bvvLXhrTcGLeZU+iw0ycHdMs3/Xzig3d57Ro3fdryoA03fsZ6gRKXcZtyfUp4xuRHG6fi0U6Krzj4xFsbLntCTx9Mc0gvf9psFLm2AVdwLlZ1464VnPSplfr584LTBh0PEgfX5YqdNecFwNrwwuAvV/Dwou+vR+G0TsQOJ39wjJUr2Hj0Eh8n+qTcxYV9oi/JB7up03h1Nunz53r6oaufGBObuRSvmg/59uLlWrz9taM54t+LqlybKy9QYlbo6qvtBUubHzmJB9/pqItJrdDHsTZ9PCdvfRcJW3Os4K8dnprULj/8FHt2jdGNR/Mdj/rpiMO4sWwv4keHDzX7uLLvujH2+bL+HSq0NuVDnzqBp+0lUB2/1qN2sbPhs3vQPBF23dur4/iDDU7NVdfm21jrB4YYiGeNNnx9+e0eVXtu++fXnuXuNeLZwxbX8lA+9YWnz/zCdhDlIOapp55az3x2nv34knIRHi6wCIzZr6+xeU/UZ5zwL//mA54SVuNsihsHIs67cdAOlzh4e/LJJ9f3T7tv+2ttzzE+1eLAV17Fiqf8l1c4xnw+Omz1vGILz2cOX62T1gAbOPTU8YFPV+yuzU+2ap+7fLVO4HvWnJ2drfWAV3xhsLHOPGfYkubV/cC/9WcNsc1vB6Oe2wmesD2/HL7g5/C6zznf4e0XF/zBpSt/OOqzNsWJO1wHnnJYzPxo42FtsOVTPv1FrueoMfY4G++zAW/XPXtxdEjtr9n7D7nlQu7MOT7sO/AzJi/ypLj38BYHwcc4OzHAoeNaLPKg4KBP7ApcenBwFB8sdbmGLyZ6+uiKU4z4EZ+ddFoT8uKaL/eQuNnRgaE/0Yev+eGDmHvx4B4OXvzqV8IxLhf33HPPrfXcmqUnZsV1sbtP2cDgX96mr7jRb87Fy38CrwNOOjA976w9seojctyhtbZcFBP8mTv7WJ+rrVn8EjaEDXzCh3XSno6OdWVe6DVn8oG74pr9rIule1e+3GNwCX14pJzFDQc5xMNcN16M3QvyXU74pm8Nyr3/7Nn6zEYu5VEc+vARCxu2fLR+2Wvz4zPH2pFjfPE3jj9bfezLg3cF91P5wr+DdrHySRcef/JE8DFPuMFT8sUmTmx8XucTzswPbBjWCDHWuFyJybpXa/OPr1osCnttha1Y5Vou2MbBmmILy/PKL7A94/A1fwoMeIQ/WOzhwHbd3lGfnMJ07xS/2PFqvvkr7rDh0+FD4RsPeahf3bpj1zziQOCbN/ONB11YxsOkB6ciBnPBlr78K+XXmLz5ZajPWvpXlX3QftWMbf2dgZ2BnYGdgZ2Ba5gBm4uf/OQnh89+9rO3/uJIGDZTxLiNhZrYzNhYtOmyWWnMuLGK/oqxKeHoayPj2sbMxsgGxmbG5ssmVNvmiK4X0A5m+NIXR20bMRtGhwY2ul4GbNC8pNvsES81Xhjwiwtb15NzY8vo+IMfmy8+6NNt80pHu5wYr08/nmoCh55SWx9h55p+G0N2+mz29Ml/vpbR8Yd2PutTF4OxNve9UOiDZQMsJtf0XctZsaXXOF/FY0yJD56uiX56JCz4hA4/ij4vJop2scPCVdGnnW3t8m1MbhTYs8R7GY8f2eKJA0zrzpqTa+vRCx1sa8pLhzjoZsNPc6mfLzHQi6u2frqwpl84dxI62YSZjbFinTr86DfOd3r6xUmXqN1bcixe+RO/Ax7X1oYXJfdT948XdWPWiLyIT3FPFav43XvapP7VOP4wbj3CkLcEzynGlPjOsYviZk9fXQ7ozdzAyDY8OVH0syM4zrUTz7hoG1foNh7mRTVexcgXiW84+vNbDLh1H8i9ok8dDixtz00c+cGrexkm3XJhnO/mwhh/xQeP6EsPRnbmlK57xRpqLo2b26lLDw5+XVtvXsodPnlxJeysORjwcaOv4KdfcV3buvRXvr4+xjOEvcPIDoXo4V/JDk6x8Z0PesbKt3597Ej24u75MPM2+dJV9MH0fHHQ7jva/essff+OxMWByOOPP37461//uu5b/0LAYZC1QXB0jZ/5KWbzILcKUbtffWbKH3xz2nwtpeOPcqhNxxzJOVyldXvaZmfMnMD0jKEjL/xYsziSckUfL3r1dwCiXb/rbOvHybNJLPDKl2sY1h57600M+LVH0KYPU+7ksFzpxwsuH+EWC3z65rl5wMN6tO8oNvFaO9ZuMZofPq07HOnYDzlQ1C9n2nDw1ccGj+43+VX0N3d84qNmR8oN/uJVxFDcbEmHZHzhKXbXBJ7Chq1ijG1rztzC9vnBNhu62sRc9NkTh/TCFg8MsfEhD/iI3Vzog9E9mx0frvHBJaHfOtAHC0/6+Js788MWrjmNrxqfsGHBZ+dajs0HnXIGBzefnWrxdX/Rtw7Mq3i0le4LfUSfddQvh2DLF1HX5gsP4hovGHzgbD2JnX7+xMcffYIff3BhGdf2jGAnttaccT7YVJcbuuaMLZ9880M3yeesw1SbF8+55p6tOWn+YNNR6BsvH/wr2q0P/unpw9P4XB/sFTpyLU73D37FYH1osxdz604brvvLL0hwC6v49FmzcAnMxvjkK37WOXuxZScPCuE77vT4pitGnOAah8feeAXXMODU7xo/975nIj1ce2YU0zI+/xFHsfSvbHDwDGOrwFSsQzXBLz3zwFe5UFfixoavqaPPuDVJshEzbPlUlx869MVBxKvQp2OdyLs1r7/80aXjffQd73jH+pdG+mBdRfZB+1WytXV3BnYGdgZ2BnYGrmkGbEgctH/mM59Zh4g2DPpseNqUtQHR3ybSWNf6bU4I+zYd9bcpaixs/TY/Nt5tWtW+w/I1r3nNeqm0UbTpaePJLz75cg03PnzawDkQ9ULiLx1t6ojNZ5u4bPTFl87krD+u+mcp9mzUSXraMCZmOury0rW6nLMRW3k1Fq56cm5MTYy3YXyp5783gm1EbYZhlzf9xQS76/zroxu//Ex8uvwqca2PvVwm+S2/xueLm9jDsAba8LKny0eb3/TY6FeT+tV4KK4nv3SWwfEHTC/X1iQcpQ26F1IvHbgTPBI4RJ/cVcrXjJdeeVHPsYlJ71Timz/j9YWZjTa8OLgWu1y6p1zTUcTohUgxLn5//Sd+cbuf3EtetPijp/byZNx95L7rYJ0vRZ9cEPOrL77mXh/bybF8qAkbGN2rYYeFP55ws6GvLZYwtLtmS+IShpy0PozD6d6onQ9t1+LAjW7c9MXv1Bc7wnf5r11OcGBXHPTiGq4+67UxGPKgT6GPXy+5sLUnH7ZEP18XSTzZFSc9/WHxK9dzLruOt5joxVc/ntbS2dnZ4d57770Vc1xaH/yd2oajpu8577BdnA4h/PVrBwPWYdfG+Razwn7GwU/j7ovZplc8rsXUZxQ9As+1MrHD9FnmX2XdrYP2m8evNvjkJz95eP7559df7rlv3d9yYg7iqy5O17i5d60PbbEal6fmTluhK1YFbvOjlmsHMq5bX9Xlgx3JvwNjfxXKLw59RrOD0z2nTUcu7Q38UkaNq3nsq6nYePbEFd846IOhpsefOsGtcbhsYcsBPXbxoDelNh3CVh9M67rDGjny/JSn+HRors8cxBfGLLBaSw54/FKKLa44OnxW4OCNMyx1cbLHR53g5L4odvevtWlv4L7EEy+HhT73cAoTPtEHE0f6imtY+rXpmk9550s/fGKcnMYLg0562oq12f1rjbvGEX7Y+t2T+Z8xyhGM1nxzIO70xYiX/Cpw/UVsc4kHHbhxwZ8eYau/P+agb6xc4EafyHVrTn6sYQU2fbHYj6jx49fBr/mgJw6S79YsfLkrr67Nt/sMrnhn/tg3ZzDChU3fOAxxySEerdfG+RJrXOmKTSwdOFuD7mF5lwf67GDQN49wcSgHOOTXmDywy1Zd/MabW3ZyBIsY41OcrsWg8K3AFSMs7Sk4GifdJ60NujiwVfMXD2vNdXjG4cDD05yILU7pWmtx8YsZ4zCMm0NrS2z44wuPjpro85xUSPe1/rjxbS7lnMCCYf4IGzF2b+Hbmi5mdfNmXOxs/DFU+Yx7/OGJAX8c9OcXf21lzisfU8QBny82xU2vHNLhS1x0FX046k9XbUzc5Rwfa1TbWHMbls/YD33oQ4eHHnpo0cL3KrIP2q+Sra27M7AzsDOwM7AzcE0zYOPhq2M+97nP/ctBuw2FYtMyNzJtKNTpCD0deFO0Zx+8NqI2MF5g+t/bbaxsDPV5ofQSwpZ+myI+Xduo2YjDYMc/TmqbWxt7L+FzIzl52TgRG64psNrg8cV3uPRci6Frdfq4plvc2gSv7LT1x5uu8frp1UdnCk750E+PpJe/8rIGz38YEw+b+ZLAn5xmq9anhlubTnow0s+HGOgr8ccjXfqum8N8hBO+8fJBH1cb37jQd21jrM5vm2Lt/Bsn2q4r2iRbbbj8eBl00Jxum3nrzYsGPSWMBXT+ozGxVYrXi7RCJ2z50TYvvRSErT6V4ihG46d92gqd0/XCn/jEFAd5c695oTemLf4bx++Sde1ecz85KPJiBBsOvu41MZk7L1p09cc9/3jqj5eapKftGo5cwHJNxCGXfMFzrVaIOMpjfWzhWSPsSfjs86vfOHv15OdayRcb3GDnRx+8/GkrYiW4GSfw46IdvjqBwwe7sKdu+PpgpacfjoMEMbs2hqf5wSfO6nIw+cBI5nW+ilNdLHFX68O9eMtV3OTYeqJHX9HnnvMXcGdnZ8uWTvccrsq06Tqu4oRFz/rjz/qxZsVt3Vi7vtvaIZX7mNCnyz7O+caL4MYfvfRdK8XMxr2Dc/0w9dOZ+q7p+qWCg/ZX8p+hwiY3jwftn/70p9dBu/v27DyP4na/yoFibU0+Ym6O4LB1/+Mo1lnYKWw6UGHDXpnrSz+9ciEP1mQ51XaQ5MBNbh0S+7qaDnj59ZxVs2GrOHBygAOXHZ/+E9wO5Kxz/Wyycz80L+Kn0y8Mm3PjOBH/Ug4PvuUOtmJdmVPrgagVfvjsvoWpyBXMDhPlrIMl2MReRx7Eygc7ePhMTuWejdjN0QMPPLD2SXLg0NUfFVjv4oNRPOamfOHvOn7NI/6EDWycYYhJDvySFfdyq4ZBcIN7moPyIlYcjFv3dBXj5jSe8CZP4/IrD4QuXuWJX9g4qtmHYYy/dMxdY+zlqV+Yw3egZu2bd2382IpZwcV4B+3FRkfBGwf5xEcxL9a1e7B1ggMd3JLWkb7uI3hxYMOHtY+bNj38+0trWPRJucBRvtXGxMjOfMKQS3NdvHTCELN9s7a844iTddpa5afYxSouffzBNK/aro37VzLafNrbyycOzbFaDppPsfmKHJzZ4axMwY+/WfSZbzY4iwUm0Ve+a8PUT0c87BV9CslGP0yx4Z4ejmzxh1cujMtfc+vehJmua7Zs6BYffDGxU+SweaBnDfdsh4ETW7qwKziyM2YtyD0RK47haMOABYMPNRtr3tqBY9z6KVd0YIsBlrzPMTE0DlNbrYTVL21gKXzJNxxxhwEfZ2vJGAzx4NfnBntxlF+1POGl3ziJLyzXYqIrRrnXlw/9fDXGHj//Eu1Tn/rU4eGHH9a18NfFJX/sg/ZLJmqr7QzsDOwM7AzsDFznDNhI9J+h2gwTfTYabeJO47NhsYGio24TY0PCVrmd0A/XRspftd1///3rL/zawNo4tbGx6bEZs/G2MSI2XDb8Nkh8tmHn18bM5srLtBdENvi1AaODQ1xxmdJmUB/f2eMGg36bsHDZyElxq5U2fuGzbQwH49NWm4TbeLj6m5fs6ChTB4b4lCnxb1ydXXOij17zWtv4zAefU4cefzN/8TdG+KITzku9L/00xkelMRg2tr186McPjnk37tp4awYWHVyaN2262uqJw14fHb7awOtT+IFp3Vlb5oAu0Z+4zne5UStesrz0sY8LfopxOYEPm8DRPyW7YsCNXjxdk9mOJz9EfF6gwhC7vDn00d9Li7avjqHnRcUvrdxTXngIXP3uzV4gxeCedM/EPU70jeOGS7zLgX4ifhj80Cc4spc/6wM2ve5N4+WxuWHLxtwZJ9pyHO7qPP7AhQ4O8S2HcNkp8x4IP1zjiWvcSNzDCz/dWbPDn5/yUR6nXrmbOmz4Mn9KMbGXT3zDoluB+3Kcpt9s8OS7nKUDv7wYl4O5pq0l648dn4r86nP44l8yid/954XbWAKvHGerXdwwCXui3xqia436nt0XX3xxrWP3IK501GzLDY7y57MpfvCMV8pDOWDvhd99FEd9sGBkR5+4z/xF+6OPPnpXDtp9j+6XvvSl9R31sP3Swpw7jBNrZd67cVqEzn/0neB4E3G2Hulr9wxUE+NiZqMWo1KOxC+XcmqeteXJX0sq2g6JfS0E//jz5ZBSna414Rfwis9+fq01/zmmWPPLFz/WDizPMb7xoe+ZJV8dwPEBu/n2zGMDH67csbH/MKf0+PJcwU3c+mHTt+b5kgux0SX6PCeNl0vx82V9mhv98MvN/HzjA4ZnMJz3v//9a+/EL64OJeURX/HjJgfG4eLj2rzBgcfOWBzVbMTkeuYAP31yCRveqYgNNz7ErvDFL7u+iqx1InZY9PjSj5eChziaF3rmCTY9BSf4iVj4wgNexVzr40ds8uQXO/QJbtaV9SL35c6/jpFXNs1J840XOxzhiNs6wQ8H3OynrYnWI67GT0W8cgsHR/PueeKaveL5qL/cuQfsb/mhNzHo8CkmfOXSs5Xwjwf+8t8vGOgRObPWFX1yIu8wbx5/oWf94Vnu1PjJMWw2xQuPb5h05AVW/ypFnunrK+/80PdLUV+FJa/NMSzj2vxqi4M/xTU89xNfdNwP2avZVORNH13cYZsHudSPB53w859fY9ZVc8ofG3PiGh+/uKNPR46Kh+0Ubf7pmme4MLoPYcmRWr9xvNloFy8cBf/WhOt539JVipE9HIK/fn7Nj1/w+Bc0fMdFjaeaLi7ikndYMMRq3Jj7onWBf/cXDj6jYBAcrFNcYVgXcg8ThjU/15k9gs+MfhHAn8KGP9c4KfDKMX/mAzdz1S/d2MmZPuumeWRnThSYagftjzzyyOGDH/zgLe7r4pI/9kH7JRO11XYGdgZ2BnYGdgaucwZsIuZ/hmqz00ZtbsCKsc1MmxX69bFTSHV21frbpNlweYHwV303jn89a5MzN7U2SzjY9Nhk2Zjx1+bNZgmWzZuaqG36vKjbQGUTTzo2XRcJbjgohB57HODCELeCm7axGX+4sPSr0zMGWz9cNVw6JJvVOP5gl75rghOfxBj7yYUe3FO7ZfAyP9gpsLtOXVvMOCt48ltu0sNDP/9s6OGRaJtfMfRyoo+o+TCmrg/WXBP6YcM1711bSzboMxflhw4p33QIP/oq9GB6ufQCSvSFSR/v07jpFSssOWye9CteFKxj9pNP+uWWbTb8NR/5oF+O432aY20Y7Fsf2vzKpfj0h+nFwcuK0r1Ex3dm08PbC7Z7ygszTkov2Oq4ujfFKP7w8y1GeNO3sfim14EFH6Qcua+T1hC/c571ixMP4gVROywvT+nwx964a7zKZdfG8CZ0mqfihRX2Ujr+YDN94M9WmXLaNhZuaw5OApc072p99eNuftniH4a8mZNiVecn7MvU4ixe3PkrX/Ewbgy3uRaM49P6KnY83bc+B7w04+kF20GTWAi/xZidWp84XMNRm5/6+ddnPTlcc8BqHVvPMK2FdNjgzKf7Qc1WfGr6FT6bF+Ni6mU/nmJViL76YTjg8pn3xS9+cX3Ha2NL+Qo/8CLi8tfxf/rTn1buHFY4kPCZKUY5tQaUUy7yJm7ifncIVszFKVZ5hSOX7vfuLzpEvtiFR58OfzOnfPWslmcxmBuHmg51rAU2Prv5lUP3sDUhx3Jn/ohxvzzBp7mj10EO/NZb960c8NczC3/8FL6sQxg4sJE/unJJ6IiRDzb4a7eeus/qL7e48g3TGP3y0OcCLrDkAAfc2dNXs3FoRO/BBx9c+dKHk4NjcZl37eKmq/CPG//FwVYJnw9zGOeZA3OpHzfYxpJw6Fz0fOXbXFiXfOHDBhau5SP/cqC/Ej/9pHhgTKlfjHHiW37nWuyXxnT4sL6sLXyU1o+cKuZZzGIwjic71/rhiDs//Mu1NWzO6bDBr/VR/uY9A0es/Pn8ZUMfBn58sqPT/W28vOVDTuj2Oc+H+1ofH3ISf7jiktvm2xpzn9PBpbzLm5iIWAgbuXWP4EJXvOz4JXwq8mLMs936pktHn+IaLl2/pPDLUbGTicWnwp6firbc4A6Hjmvx6s8mPbh84Y+78fwYI9mUC21Y9BT2ce4anljxso/kT7v7n14CT1tNiok+4QM+/z3P6OazuMTIRts64AuWtUyaD3psK7jqg8kuHDbmqH9FxDdsdnDxwY0+DP48I8OVT1JO6CvZ8ueeYUMHFo5+OWQt8OVZrw+m9e6XP9Ymf7C6b9XabOhXtK1L92UxTk5w8bTW5A6HxvnAj4684CSXruXiTW960zpo9/UxpPlbjUv82Aftl0jSVtkZ2BnYGdgZ2Bm47hmwGek72udftNs4VOgQmwxFfxsqG5jG9Bu3YclmDR5/GNNv8+YvJLyk2Bx5+fISoJ+NDZvNkU1OmzSbIBuiNkva8IwrvRi5hmEcDht9OBE22a2O8YMdfpO/GG242myxLe42dvoIe6VrONqNxyG9uNa/DM9xumZ7Os4uTFg4vxyXsG5XwxJTfOKnTtKR1/Twkhttgkf5m7an1zbBMybX7OiZXz7KtzGFjTlW4xJm13R6QVFrGyOuyeSmD0axhKefHy+oXkAnDk5z8x0+bPbFHxZs9vqJuMSnPyxtOtrGrVfXRL+SPn/TBz/h6zdeqV/bC0IvaHCtFfcaSZ+OlxXFNXt5kAPY7iXPhl5y8PYC66XbC9BcBzBJvJuP+uK9lM5/6CtvulpnYeFgvJziR8rVahx/sMOFeH6wLwb9OHeoVex08wM3HmptY8UXB34VfC5aszCNJa5nu35xTZ/681uM0w4X7fimC0fRry7nMOibP7kxrsRfDeMyAkesCgzYfGUf5uRdjujTs7YUazCBYa35DHDQDl/bGjWWj/zEnx7JX+OtHe3yQNcLfb98tQ58xjhE0xcGX+4V/tmGn8/ikQvX5YDd/Iv2eKsJLgp9du4z/xnq3Tpo99fgTzzxxPoaFbytffemtS4fhF95aB3gZi7kHR8x4dRfHeMLxz1v/XTtL039Ja1nVXH5LHcgIz7X8ifHng3s+DLn6vIQJ890zxaHeOa8z7JyrGbDVmzG+SmXbPng0y8K+gtHujiadwc05UIecJML86qEp8ZHDIprfXTloFzANt+4wIXhGgf4cqyWX+uJfs8fsbA1Xv6KAQ6hX6EjB43xA9NnlDE+/ee3YvJLJHUxlXeYcmRcTNnyAY+eGBW+CGz98BV6RF7EReTGfSS/YlbCYW+cuK6tLhdqeSAwFX7o8I2rWMUjLmvaWGvCuk0fRv7pi43kyxiBa86aN+u/w71w6fBDxxqGJy79Pk9gy4n16ppdcbtWxCXnbMWAJx14YsHLmBzxpcASczmPgzWcDhv41jYM12zkTm08Hf6M442DdSdnJBs+caAHT8xyBYPgqo+Oe0A/fjDjCoPkS7/cOCjFAfee5+nplyNFLO4tceYDptL6gEEPD/hqBQ+18fDwqG3NaMdRzWbmCK51jFOCr7XO1tzxET5bhQ8lLvpgmHf9cYPpGk7+2RD68l3O+dOnVmC2xuuTf/M4c0qv9UbPM8W49c2XcXFaf2r+yj19/KyRcoGbZ7o5pEdHTPi3Ps0DXFjWSJ8L/NEhavcMXfawuie7F+jJNa58Wst02ekn1oavfOpfcfBLh6j5xE2u2Cj6p85SPv5gq4hJvPYA5UUfHHbiInKDvxp/1/6i3b8i+/CHP7x04F1F9kH7VbK1dXcGdgZ2BnYGdgauaQZsKH784x+v75uzibFhsGmZm5Q2EW1mbARtOPSrlcRmRGmDU7/Ni42+r4rxH8m0EbKZstmxUYNnY2/TY+MbdrVNUD5txmDaDNkg8gmHjkLozlj0wzrlRlcfDPrV9NuQwso3jHSyrYaTz2y02yzTI/Tg05ky++jMwmeYbOiSyUV72kw8PGrTIdptKPXRiX86xW3eif76JgfzgUt26arDdd1GHQb9+MNX9NvMwmPX/OpP6HmxIGHDmRzigaP8Gw/DWG192nx6gfFy4TDCONt49RKirxzFNzz9RDv+8GE1Zv3Aknd98Lx8eMmccwGHLh/0FLgVbXEprovDNX/0jMmfnGvrd+8QfuNmPD28FfmAhZfDFPclfvh4Vnj5cd9qk/DZwsW9HCyF4w/9/BL6s16N8/7G9OEcDj6VdGAqcYOPEzt/USYOa+X0hSo7NWFXTrTxh2luXKdPp3Y69PjDbQobOsqUcsWG5Fe7vqk/r+MBgz9zLD8w9JWXeFpr2eTLmFJ7jk9fXcunGIsjnnwVo3E8SGsCP7r6rTvrDN/8sTfu88C9p90vuuiwUfTHGbaYCFxjpIMieq37ycc6psPWta+FUKzhbBxO4IhTHFsD/NLTT8QWf88MdsR6Y5+UAzUMsfrqGC/qd+M72h20P/bYY4ebx692EK/7VJzNgVwo+ceLHh4+k8UsDgfV4mArxg435UfO1A47uufheWa4xxyQiBkWXPeawx4YpJw1j+XU3MLzLDH/eJLumfItlvLPpvkxrsg9/vYTzYN7Hi4eDvLKB2w88CewujaGgxj4mevLoZ14zK/DWRh+QSAWeZA7WDBwogcHnjYf8pOtNYifZ6mcE3pJudInf+zlmr3Y8nt2draez/5VgDjpsiXxp8uP3Li/4ocjHVzosNMWhzFzorCDa+y/2LubVs2O6v3j9/sQ9BgiQWOe1IGCA8WBqIjEh0TFOFCRiLGNSsSBE536kowSFVR8QpKYaBKTHvhCfven7G/+y83pTh//PWmpBXVqV9Va17rWqtr7rl3n7tN4FI98OMC3PvRlJ2a6cTDGh3Gx4slfc5Hf8NVyJV62fLhXmyf41hy71joO8LLlS595a+3g0PzgZj/KBzFGLx/0cFT4kA9/CsS64F9dnuVGmYJ3cbGF59405+WLDT3CL87lzhg9e2F1+O176LKx9uRKETs9cbivcNfnvvBLKPc7Gz6LLT+4uW/LAb6teXHQw40f8Vjb1gb/uMTPtTHrlB82/LNJr/UmLnsLc+tfZMgNHGuUPa58w6GrHQ4sselrrnCvz7U1b9xcqQl8Y2zgalcXA31+tNVKuHTljj2Bq8TTWnFN6MBgKydK/Mtp/uGyNW/mQrz66ONbztyLnjVyX0x84QSLT8+83rfkKXv3a/Ou5ou+OcINHgzFHOBoTbTmcKGHAxv6cKzR1rVYzTdbenh0r+BBF4/ut/TYtJbg+tdFOLj2vJATNsUoV3ipCb9EvLjJnWuFjym1cYcdH7mAo/Ablrj5xZ3tAw88cHrqqadOX/jCFxassavIPmi/Sra27s7AzsDOwM7AzsBdmgGbhssO2m002qDYHNm00LWBaaOjn9icuG5zoq+NDF3XNlsO2H0TwEYNNjsbJ//03Uuits0NHH7U7G2GbDqNh2tDZvNm3LX+NpFxhaWQuK7GLX7MuKnNWLvGY0pxtzEzhkM85mYt/nRwmrzga7Mj5SJccRrL/9F+GR3s6OdDTl1nj4trfTjyrxDtclfc4SyFww865sPG2qa02PkkcqTYGIvDBhpesalxgcOmlzk2Xii8EHjpo8cOjk0vG3GUY/pxVxuzfvJffNr4kjB6ufOCJw46fPFD4OABwxhs6xcXGPzlexmMH3JSPuuOt1xZ3/z00kAH9nzZ4oNuvtXzpUfexDT94KrNP39JGMYVtmKGR1ebDlu8HHR4ae0+dK/pjx9suuxuJWKQ03iVr8ntaE8nvsex2uVSDV8MXkY9d1ybIy+f5s888l8+q9kZ0yZis+aa32yMuyb1sb2ZpGt8xlns5pTfeN0MR37Nrxy7nqItR7jFT30rXuzzTe9Wuo0XS/nGpRzgP0W/3OMsVvV8PsSzF2b5Fod/8aQY9/Lt/i+WaYM7HuLmy3r0LfX88j3zVI5wZmct0H/llVfWHOM3D6z4EpP5t97VsJs344Rd9yEu+W2u+Y2HWD3//NPza9eu3ZGD9jfeeOP0xBNPrD8dY807DLTu+cG1+7rPXbzKhcMLcdFxUNKfcem5Vl3cYvWcpA/HtxA7YG6u5URe5/3W2uZX3tg2D431H5HKkQN9aw4m3nT0l3M+YFkbcp64Xx3c0TWGK87iYCsOWGxaN/JEpzmiJyeKNVYOyxtd2NarfQuebMUTFhuFGNN/zz33rMNObflzgGXu2OM1RZvv1jhsItcdmOpL74UXXlj/Ga745UwRhzUOQ7vPXLkQC6nWhxf8coY/O/bljp6CM1FryxV99g7I1Pixk2fYJM7srB33mxjkAo5rPvXD8csT/q0Ha9MYLL6scXPts0mc5oPIrc9wvmBah60fB7rWRuL5Qh8fMRB2OLOBKUf84vvO8584NP/iMl5ceOuboo+O5xKBo09bf3lV5x9f/OjmFz99fCkOBsVvTeHp/jBnHVROTrCN+9cqctI69wsiBRd+xC5PfmnnOcAfTvD5InHWx4Z/82ScPozyoI9feePTtTEczGnrgA1/7iPF+pVHvBW+iodPY43LC//q9BfRGz/w735wv8KJp3mFg4cxc4sjH7CsK7zY0DF+cXGx8gwebwUOP2KjO3OlT/yTdzmhqx9//vXjg5858ZmEOzx5ty5ai/jxqb9c8FWuXNOxHuSbr4QOTsbdM+KES0fxiyfPYeN42PNZF80te/lQ6E8u+PCNc+P64FsD5kk/HbZ46CPixkfMfPHjeek5Qh8GXW1x5Vv8coEHPZzNm881vuc80SFscZR/hd0UePrNC754Wuvw8FM/+OCDp+9+97unxx57bJkeMSbeZdf7oP2yrOy+nYGdgZ2BnYGdgf+xDNhQ/P8ctLdRseFps2EjU38bIC9FvsXnmwBeCmx02Ni0+E+P/K1Vot+mzMbGNXs6NmI2QFPHBohPm1X+bK7oxYNuXIzHxSauzZl+bTbG+VTYEX1t5ui4VrLpevphR1cJvw1buPrFpST0tdX02OBC9LUpxSn7chKGmi1+bONebMZgZdd4Po3DroZnjB5ucEn2ro0TfNtQs1dwyCbe4qCXT+N0wzRmQ60fFy8hbaDTs/FWmm9+4FoTdPBlq1+tHUe1fnz5wIOOjbUXE99wwyE7PlyrvQzAbywOzaOxYla3fvDSngJDoQPby5QXA22c9MHFHa5+AkeBae2rxaLIgbHmpNjo8JW4hlks2cKTExj65EHMDjkcduAE0wuHfvzCmHj5mbX5jVcx4lE87Bufdvpxwse4kh29sPLfOrWGvNSzxdVhTpxhyGsFBn5sW4fmwouoQ1Z98Pmlm091GJOza3GxsUb4qz31jBPj/PHDx1Gyn2v8qFP8OMEKBz8Co75s6Razcbr60lPHTZ0P/a6tDzYTI2z61l1rUq00j/wQ97YiT/re/va3rwMtPnxuWJPwux/oyFM842rcHMOR6z5DGtdnLSj65MiB8PPPP7+wPWf4imM61kzrBl/9fCvlwLOje4x9PujT4Vs+cOTDL5z9Z6gO3PX/N1JcHbS/+OKL6xCib+mKBw98+IwjX82NZ46iba134CU3+q19dQLL8xG2+B2GmiNzik+x+xMzDmjYN3fdV2r6+LhW5MezV5/1xJ5f/XzRkTu1PJezDpJaf3w6iCS4dJBqfbHBEQ7/rUP4Pe/NlXH63UP0+ExwkgNcHEyqiX784bUW+DQH9jy+aOAQiw86DogdqOGOF3v64u8+pNv6oeOZBkPc3Xvy1EG7g7HWnvtA/glddnzpw6+c8Vmu5auctXaMi1HdejD3OMqRe0MbP7bWRBj6Jv/acurwsvl26AuHD9z0+4WCP2UE230q1+bUuCKn7vfWSs9ZOv0LC5jWdTG8/vrrK1ZtEk/xiYXAxs86gIkzPv7MoT/TI5dyRz8cOvMaDt70cJBLot3aao7Z0tVPN5/0+fIcwwU+XX7hGVPjZj26D8Uu33TTd+87tJQT68468wsHeTOf9GH6fPellw4T+Ycfd7xwpo8HX7DhlStxyCUdvOnRMdf6cZBDtviJmT/PHZzMJx908wWfwJI/dkQ/7PwUM7544Gvu5cl9U5x8wkm6p+SGD37x6Nvw1oO596yWY9JcyRt9XNjioO1aH5+KPj5xs7Z6puCvlA+8YbqfcYDBzv2pH77c6FPgTuG3Yk10H7BhKxd8sfO+JPfmLp7ut365JUbPU3s//tm3HuQENyLPrQ06+vvs1c+WT0XchE5rG196ntsKfeKXWp5zdI2zd7+aA3zlqvVWzA7ZrWPzrk/O3FPN0wI+/2APVyF4Ezblw7qII984WBPGO2h//PHHl132q3EbP/ZB+20kaavsDOwM7AzsDOwM3O0ZsLGYf6PdhqFNiNq4zYx+1/pct3Fsg6G2mbMRaxM2N5U2kzarDlFsWsK1afECZdOvz8aHvQ0OX/zAVfCg02bPNaHPv41hG0pjCgyFxFW7TZo+eI1nF7Zxuni4VitsaruGmQ2siWNscmYXLuykfjUbuYirvqOfuEwMftkoro3lKwz9NumksTCm7eRlvLj1yzN+xamvl4fmPw70+MleHNmqFbp8qNm3UddnLVgnbfZ7yVDP+e4FBh5fBD/9cLqOM190cdNnjXoxsbnnn+TXNV82280DTH298OQTLh1+Z9z6LxM4bIvHtcIX/3zEGW4vLOW7OIzJHV1+iev4uE6M66+E6/BCH1HLvfvK/emFBVfiJc184FYOy4c6/0v5xg/xxcd4xTBf8cu/fjriVWofsflT2CmuYXlxdliDH65eKuMMI7vq8q/NRu6nTfyMizs7c6U949FXrHBmewVy40ecNafe1HENm645N1eu88dP3PAmXizrw21Kdvpc4yaW+rvWr4/A019M+cRFPx/yh5cxdurWqGtrs5K9utzhzqeDOofFxswhG/3ywxeJV37UODqcMMekzxDXsODPoo/u9fOfXAkHhhjKsbZ1Ty/f7LpOt3tS27ND3PTyXV7E6jnj0OZOHbQ7PPzSl760DmccDvic7TCcX3ngs0M2sTbn7mOHbXgp2g5X5FoRv+cQGznpGelwjz5/YqVL6BDz4NCj+40un3Ki4CRP+qwbAkuf8eYQttzKN1082CY9r4zx4VmFc3qwcBNjMYQTBp8w40a/wxl9rVl195dc4u2AmF/2ctI8w9ZfXvD0rzTEKJ/0HSqxhwmbbc98XLUV0npjPw9MjYnHAen18zqG6TCKDt1iZY+P5xkdPsXQc1UsYpULW/n/pgAAQABJREFUxThb/Tg1RzDoscNRruXceOtDrNZJMYXDluCi0JEH19YdPfGyg28NexYQPujkPx191hn/uMSzdYS7tYSzMf/BJmGvDwdrzBhdMYkdD76UciUuc9y4eGGwwV0crqewx52NQvjSr8bZdTmyXsoDXfkRC9z8WJuwjOFuHpViZoe/MRz1z2eCcWtAKWZ+ta1H+dQvNvxcEz5hNq9wW/NyLM6EnnzJCS7mU1xqB6W4NyfuTb90UqxPNnjD4JM9qZ//YmscFnxFn1zhLZZyQAeWMTmPGy64iidbcXfvsuNPjmERYwoceNm5Jvkxx+z5UovdfQmrOPTjrYZD1y9PcYcjt/EJh64xNU7x4h+WucBZTIm2/Kvxlnf3D46Erb2v+y4cfqcOP+zVuPIPSy7gsNO2Rgm+2nIsXnZxh6OwMVdswqGDh/XFBjZ7bXNVfuGzgaFPTNax+GEYkz/48kL0K/gXQ/EYLw6c9fOrwJILPh20+xdp+0/HyNiWnYGdgZ2BnYGdgZ2BSzNgw/Hss8+u/0HdC7YNSxsRNWlD59pmhY7ahsQmSpvYgNhA2gzZQNlQtrG0YdFnw2LTQxeGzaSNEBxCT+GT5IuuPhjG2StEjYviGu90w9HfNSwYhA2x4TJOj89iqqYzufDRWHxnvmAp9am7jq/xNnrwjesj8ViNGz+M88WG8E+vOche3Vh99Mtx4/oaT1+tb4o+0li1TXux42RulGLKT3jZ1VbTVcrXbMchnNZcc93cNR5+ePmB3QsGzPpdlz991q0Xe8XaJTb/vsUCm6jFXJw4KXAU14RPenFTT79L6caPsI3jri02Lwz8u27di8MLiJp+frPltz7wc73czH96vTiHa73g4/6UgzjQbw74oi/uXsrU2kd/dAmOcAk9fsobG36yZePlz3zgITf62ChhwmKjNP9qMemD70WpFy445b3ryQMH2F7c2LpWF3e6bMOOjz5c9fOtnT6e2vHE0XX9xm4m9Cr0cFJmPrM1zr9yxCyW+tkTus0LvsVgXO7EPmNirxhXs+l5AK+11zjurn0GeIltnlw7HFRwc/ilwJvCBwy45ofQh4Ob+8U3I81xeSp+flu/9HFwH3lp50efz6JXX311xZo9LOtZ4asY6Cezjw+fgWr9U9jgI7Z3vetdp+985zt35E/HvPbaa6fPfOYzp5deeunNQ7UOY/mXX88LtRiIfPm8ly/3Nq7uMbk17+Vev4I7DPei52OHaMbkzbceXYuPvbmQs3DKHXzxyz99IsfWF//miQ7+Cj/lMh508FHSV7c+9BeH2HwbugM8fo3j2GFMucEFDj4OVIzj3ZyK3WeEGOXPeM9nXH0TVNxK9nIDT8wdGjtQJN07fbNb2zcx5QIPvPRpK+LvoAkH3NLDg1++rK33v//9p0ceeWTtv2A4QP3jH/+4/sNcPswLPd8ulg86FX7gyJlvGVsn8kXP81Qe/AJTjvHArXWFDz3FNcFNHtSwPVP9IoY/bYW+eBVzBNt65c+YfaTng1/4Wleww+cDBo7yrpifie+aHb/ue/MVT9zFy0Y8dNXh4qLImZyozYNfBuJIFzYMY/mFb8w60Ue3ewx3unKLL9vyEC86cuF5Ig/a/JhLut1H9An+ciAevsRp7RrvMxQev+UZv1lwtY7MEc6eD9YrjPLmnpQP/sVDz/wq9Pg0xifR7x7E2Vpp/roX8bY25MEYPfPtlwOuCR9yBNN9Zi3gLV7FNZzyyEYfTLZyp2bPFn95kouKnMk1n2IUAxs5kYeXX355xQJXnDDg0qcHz3X3LV5yqZ8ebL9g9Qs3HPTxLdeeU9rmGQ/5MAbXmLgS+K0JHOXK3LChx68vL1mr8ikvzRXb/NJjYxzH5kVspOeeXLBRxNyaoqNPzOzhaePrX4nBpQ+vezocfa6JOPGWZ33w1cVPB37z0zNBP+l+x8PcqAkbHHp+ahPY+aeLm/w03zDY4JQNPXMBDz//Mtsvyj//+c8vTGNXkf2N9qtka+vuDOwM7AzsDOwM3KUZsIH4xS9+8R8H7W2AjLlWXNt02IRU23QobUZsNmwAbcxsXtqYq+fmxgaGnbqXvtKXHn8Edv6MtdmyCYNhI9fmXZtMDDhx1+9arcBlUxt/fdnA0m4TpRa/YqOW/txwT/90jhIHm0p+bNrUSfy0w29MzZeS0CnucPQp2vXRd938aePXuLpYpz09oi8J21zjAkcx522SJ66Y2fBdf1j0FWKM7owPJ3b5NG7dKPXTURI45Ym+MVytnRkHfW1riVi3DhAUL9LEi4gXh9ZJ8cINm31c2OSjXOi7HZHDYremvSh5iXDNl/zi5WDGC5M4+RZffPgpH83LMedxSc9495U8hQtbDF6gHAjwiQNf4lVgiNe1Ne1+Njds9cO6zD8M4+zLH70442icnkMRL/S9NOa7ml6Sv3IZX37MoVyymzb5omNMza9a7PoS162/cq8PLnw2inWjxkN/uvkqVvNdLvKh1o8j7Mvy1xgf7Fs34R85z3iNKfWVM1hdG5PvcPAXo5rQVbTZ4JBttbUjfm0Ck55+a0ltzJrzGaHQsRa9TLuGn0+6c15h4geTjkMNB4PmJw44wpm2csWH+4hPY/qscX9+pXudHSx5UGsXp2uijRPJh3sUvrH0lsL5h7bxO/mNdgftn/rUp9afIZFXzy+HLw4OxCWX3bv8K2Lqz3GIW57cZ2zmehVbMZonOg7APCvlnp3DS9+qh2se3DMOj6wXfaQaH7byo0/O6Ct882XMYVp/AocNveZJO170rSN9RL+2fvegQ0lrwp8TwBe24lnl2aqPXzliw4e57rDROGw6DsodkBUjDLzly59l8a/15NLnBfs+O+TanFtrdP1SgvBlXsTZgWV/notPnOSXvVzGAxYOsAhu2vjQs7Y+9KEPnT74wQ+u+YLhoPC55547/f3vf1/8+PatzHvvvXfFTUdpnsQlluvnb8nLoVjklm/ry/zIMxs81ARuNSz98uyw1ZowroaZnT5zYn0prsUK3/Nbca9ae9aZOI2R5ps+zj4zfQbJGd/xoSs3xuGYy9aQOU6fjTbd7K0Lc6HPWtKPpwNT+dCWH7zEJG42ODWmNtcd8jZmvq0V2PjoV8RcbK75V9NziArffQST8Ms/HvzjZ73RI61duTVuvcF0be2olXKIE87Xz/PfQbtnChz5k3/+xcO3NS+3+vkwxj/OxvxpSHjwzT89RYz8y78xtTnjw/1E4mbMfeaXQ/kVLzsYckMnMY/iMEbgsLeW8MIHdzaKXJpP/h3IK3SsX7+A/cMf/rCedfDECEMMctya4QOOuDxHrEUYdGA//PDDp3ee/ySKXOrDWd7cn4SOAg+W2nMalnXBxtzScd/Lc3tWz2FrQCw+E6wt1/jSNedq3Fov7S/5YasWP99ilOfyxa71iQepj515lhPPDbnim35rIv7ZqIuRLi7pw4dZoQdb7OUXT7nt/tEmbCvilDuFbuNxoQdXbuSSH8W84MM/0Ue05cWffvOfme+D9pWW/WNnYGdgZ2BnYGdgZ+CyDNiczIN2Om1Y1DYiNkTEJsMGxKbDpqVNUBsYGyobM5sWmxebQZsXm7vs2dj8sLEBtFHW10bGJqaXCn7ptVmCoQ+2jRMu2nDoqOOM92Uy4ymOGR8uhB4s/ukdSzb685k/beOTg7761eJWy5k6ya92/FxnG258yqPxiZMNvGJgW66nH+PZh1sNhxhno9S24W3Daty1Um7Sq82PMkX8CoFNV8k/fXOrHYfmWyxhNm/0CB5w1XRwtW5cFwM92AqxXntpsW758wLgxZBPtvmhX8z4wsy3Oj90Ev2V7I1Xit+Ytc0v//jBc2/g5SWtnMWHLRx68RD79A/XmL5yQF9bfnqJ0YbLLz9eZL1sy1+YxzjguCdx7sBBH/6wYB5tJod4wNevtG686InZPcMHXjAVdhNXjHzhjS+MfLNj31zqPwos42G6Nhfx0w9Hf/7V9Rkv7mzirE3o8K2UA/3xrL8YjSXZwci/vnJVPz7p5lebaFfCZZeEgTcf2vTFrGRbnf/ug/yIreuw9Zlj80Nf6b5ziMOXebMe2eIg/6Q1kb1xfOJn7c2DdvyMEbrx4dO9ZF0pPm9gOvDoP6Hjly3fCj/hwJrY8PQRPnz+wXcNw1j+2YnXYagX9Xe/+91vclwAV/iRT4dYjz766PolgfvEQTgfcpzO5ODa+nCfOowRN8FZLK07etrikB9z4vDMIZjPdLEY83xwyCLWDkw6tIFLJ/9qzxlzrJ80R/D18SkOzzqcGlfnk12YbMRavPnDwQGv+Mwn22ysFQcp+sx/6824uRYHG1jG8TGv9PDwLOp5RL8DKblQ+HYA5NBJW8ww4OPErzxrz3z2i0r9ckTo8qmv/BgrH67NJz/Wqr+z/NBDD61vtbs2dw7hfMvUQbtnuT5/M/5tb3vb8sEOH7lXxG9tXD8ftKrFUy4cQFpjMIojLtoKrhX5kSvzoA+W9ZJPfeZObtv7NZ9ic82ntecb7eaF73Kjxk2/OZXf5lt/6yKu1pVijMhdn1PiIMWQDl54whYPruZTTUfu9LODoeiDrbjm0/7CNSw6DlFh8p8vGESM7jN29M0LG3kUkzH5yb98WgMEX4U+8WzFFQbhI275owujIh78zBV/1rDnippP+Nq48auEj1fPQfeBXw6ET899rYgx/t2v9NxPclVO9BnX77Bc7PjBah0VT5jiZB+GNu6KeGCK3Xyo2eFN1F3Dd//4cy7d8/r4Fzs7ccsvXmr45tX9Yy3Sk6v777//zT8hpQ8H4+bUNZ/wtPnQx7fYph8xyL8cwrVGPNPKgc8EGDjCoJcNHH3iJq6rcZIvfcUEO9/GFflS6Bgj5kfcar8Qw2XmH+b0FYZaDuQ2P/rY49/8wC5m13zDtwboxi074/yxV6bvRfj8g83MTRzlXj7xSOgax8E8+vz+3Oc+t4bDTvet6v2N9rfK0B7fGdgZ2BnYGdgZ+B/IgM3DPGi3YZgbU9dtWGx6bEASuo3pswn28mHjZ8PUpokPGxYvEzZF7PQppI2UfptzL1Vt0rOzCbOB0rYpU9pEwmCbhFv7WIspDsUHd27q2BiLu3ESb3UbPWPT/9RbRjfs6Jcv/GHI0cTMJ7yJy66Nv342bSBr68t+coib8eKGR9hmP21nPz1jbGxw4RB89GmHoR32Ujr/YKuQueHVnmukNaMufvrNO/38GG/dlAd9xYcTrvGFGQe1Nh3z0Jr2ImLtOfiwlunln28vEF5ecNBPvFj1ckU/3nRcT4mnvniyKYfl1Thd3Ogp1qZ884Un3fBhEO3yo09JL2w6ruXFeG3YXhC9dBjvXpcncXvZo5sPftgbV4oBb4cd5dSLunue7pzH1kl2cOnUjwdcPBwSeK548YELR+GLHTnmm32xiMc4LM8gGGwT43yrCeyJ27PGWP1da8OKi7bCX/1xToctSU99lPjiQujEE1ciHnrEGB0+9LMrHv1sijEb/Yq2OilP5Vi/8bCPccA1b2pzpp7Y4eIz51vbOnSv+Yaswg5G63Pen/mBQYd9eWJnnXXQzqexYmVbPoxZGw7urC01f9a59epQqG8iNnfhwKjIg0LCNyaeufb0ta7xdA/7j8GfeuqpO3LQ7lDjiSeeWH86xn3iG9LuZX7Npbwo5rP5wdc973NV3Prdt9rFFOfyLiafyw5e4BOHDnInLno9I/mSMxxgN+9hs+GfHSw581yDUa5hNP/6aqvZKfrV8OZzkd/mDs8OBOF5BjgEEysRFy5sCLzEmJxaJ3FTd1AfF30zTnl3wNi3q4tRvgjecoUD3uVCG0d5widc2Pp6fuGkr/jnHIvVt639Msefh4HfvPgb5Q7a5cs6xEe87HFuXnDwSwL3glzJJT7mkZ3PSddsK+zpqfGGpcihPrmAIWf80S3X+sVTgZ09LD6tO/GLWZ/SfOprfRSLPMMRY/ow9CXs8ICLI4kD/3Tl3fzJo1hg4V3uzV1zaIw+LvKGSxjmzC8+9LFVfLO/NcI3DrjQgdUzCh59WPjhgR+d8iSH7NX6CBs67lu8xEqsAZ/p1oVY2BC1eNjDwoNNfulow4JLNy5s9bNhK2e4miP3QuPGzIlxtmpjuOCFs346/PKjz72hrR+/5sCYwrcaHj06HcprE3ksR9qwyyc842rPQvc4XrjQ0a/GA0/zxic/5t9z1y+g8KNHx39qWo71+5a+Z4n1DJut4pqUv+vnA3oc8OOP73IBW96VhH0xw/ANeeuIfZKOGoY8WRdw6HluzNzCqcCIY7k2FiY8BU55NOaanhxYN+UfN+vCXMBTG8eFXW01DH3y1FpzTVcbJh9ELV/NHTuc5Ebhiz5fro01B/iT+ODnOgy6xFz70zFPPvnk+gW3PhyvIvug/SrZ2ro7AzsDOwM7AzsDd2kGbCJudtBurGIDY9PR5qSNhReuNiheCmx82LTBYqfYMNm49AJBx8bFZo+0ofEi5KDTNw1t/ODYpHXIZoPUtz3gGg8LnrZyO5Kdmv82da5hwDNG+HJd21gb3/SPPtM/ctIftrH0woNztKFfnvmbQvcymVzZE3XlyMO4vokXN3WbVfbphIVTuvqOos/4MVf6GrPhtR7abPNhTqyZ5pp9+OVB3dzNGORLCT9f2vy0vuLNFgf91iDhl7Dx4uyf/duoK/h5MfHSpOQrf3HWxlFbLY9slcmJH30zLrZw9bOTGyVpTrLjo750YMSJHqEz4zauT/x03KvuOQLTPSh+L0ja4sfLS4ccqMtD96o4/BPmXrJhsOWXr2KLbzxbA9rm1cugUs7zr8ZV6XoRPv/ATSww+EtHXJ4h9JP4aIfNjuSTfXO4Bs4/6OS/OWsMJoHHHxyx6G+MjT51+Nnrw1Uh6bCNG9tpT48/uumHWx7yrZ/EPzt9MPlVG8+Gjr50s4XdHMq5a0IvHe144waHWMvm1gGUQrKDI28KDtr5am6nvvXVQXuc+SLa3Z9wXFuvDr98bmnjZH27x/s2oMOODo5g8F/Bs1wYa9z67XAmzsZcE8+X++67b/2N1zvxjXb/EeY3v/nN9W18n59iUuNAxCWHxznFSWzGcHMw5HDVeiXl2rVxeA7E4YuRvRwShxv05QNetnTKEx4KHtaFuTc/nh+etw7FXCfmwpyWf21+YLAn5b/57NmBb/cdLvJBh29zan5hFQO/xsNr3YrZ+sQPHi6wPdM858QaD9fwiLjwVWDCaX+EP078e6Z6dsoFWxjGjzzCxJ+OePDoXtKnaMOyf3I/+ca6nOA+88YX/jiINVz25U6MffOcjjF28Phv/lov8OEUn3wq7lW1mJPyqw9m/IzrMw5HTIQvfnEwhqP7SJtOul3zB1fJrz5zwD7OanOENyy69BQ+snVtrcurePhjp+6+MI/09Vknvn1vreHNpzXm3iF48dc6woOP4sGHDl/s+ICtdB0OHflRw5glP9ZTvnBxbe11P4kXf/MKJ9HHH6Ejv2zVrVH+2DRuXYnfOBGTnBB9Cr4V+DDE7L5sfsWKv6KPT1jFZDyMxuUxO2N+4eQdxRzo54MO/fzgjoN++SD+FYe1z4atOciX2Dwnza1YsufH+qInHlh+cVuu8DYuxzDphOmaiA8PvxCDzz+eU/hjpzYu7/CsT/0wzEE55xcX89a8sKPbc49/9rjpKz/WuF8olDO++FXijJtrfc1VnOUHBr/ygJOiD6bx5lO/e7r1hh8xbh0q+rQVPpXuQ3G3xmETNVx2uBM89LeWYBlX8JYbfZcJG7n2p2O+/vWvnz796U8vteK9zOayvn3QfllWdt/OwM7AzsDOwM7A/1gGbCj6z1BtLNtoCNOYos+GqDEbkca9zNkAEZu0NlZqmxllbrBct0GDw7ZNjdpmz0utfzbqBZd42bZxhGWj7FtANk/Z0YEVL5uh29n4sA8D3zDZKnN8bsr4s2mb/vQdJXtY7Cv6bSbVcXXdxvGIox2W62IrZmP1N0+r4/xj4rKbG2T24lDiqGYTtlr76BM+XyQd13FxfZSJM8eykRObfEUu+LReeqFhE79pL4fmbo65hiHeBM9eBnpptmmuz9qCo20N4lU+YXnhcKhFDy9+6cLA2UZduzpObOHQh4kHfgrRVkh6ro2Hpw2n+YKjaOsn2cJqTvNHJxu6uCT6E9fG3HPiLY+w3XfmQuxebnBzzyvuVS+Rvq1ljI7yt7/9bb08w/ViD6d49bmGY+5x1i5/cWld6DeOU/nHVYFbPsXCVsywXRM6xxe8yYU9Hdj64Xrm4AVj+oUXrn66bJKjDcxiz876UPTrcw0nX7gq8TJGGo9rdnFOj65r4yS/qzHadGDRy5e49bORx/rp0DWWHb90FHOlbpwdgRNvGPCN0bd2HAgq7IzRgcOXEg++lNZIMcOyZh1QsM8f33FonanZ8d3hgnY2DlF83uDiW5/WLUw6s8Clo8ZRjTNuldZf2Pi4Xxyw36k/HeOZ5D9W9Ustn6eeRZ5ffbMeF/7F4CBCjbfDDwcwxeZg0AGTfrFMzuKG6x532CgGOvrkvb9d3b2q5pdYw3TU5pXPeY/RxdefMrEWmic5jSM7183LAj7/wEEs8i52MeMGw3OaTzh80IEDYx6094sJNsZxU1y7jx3+wORfHHLB3rOQDuEjf2xxqtDHTd7gscWleMQsj/SygecaFlyFiJe0rrTNH2m+fB7Jg5yKja/isa/yCw125swzna/ibm2o4wcbb3yIXJZjdvTghaMWC7/6FfH5bIgjPKU4zAkceHTw1We9sqfX/MB3LZ+4ENzkKP7yzT/d5kMbb7rNG58KHUJHwT/urhXPCrmLR2tLvuGKEXccrHHPIs8OY+zDP+454jzzgTeefIhLrPBx4gN/Oq7xda/BVVzzp4ZJ15pzb+MTBvvip8uH9WFcvzjF656HoS1PMNR4d0+XI/3mzb0hB4lYFD5hledi1jbOb3nSR1c/fLFmr9/cmxOFDi7uT2P08PUN894lYIjNGH3X+nBQs8edeO530G4Ml/TEiKf4iTE6/Cnp6SN4s8ELV/PY3NCnhw9xrfilp1jyG281W/MsftfWl7mDzXe6xQnXZ1p/Bqj1pp8uwZGtZxEctrCtPZ8L5pIun3Ra7/oqcHAXZ3PPl2vxE36M61fXp5YDzyz5gSMmHOSgX1Dwnz/6MKw1PF3Lm3nkR7FWzanYYMWv+YclVj77xR09fppHOrDpqc2ZX5R/9atfPX3yk59cMdC5iuyD9qtka+vuDOwM7AzsDOwM3KUZsBnpG+0dtOsjbVZsShTS5sOYDYlvjNiYEW0bUBsrmxKbqfnyE064Nj02ODZSRL+2l0ObLBs6OjBtOm3W2vjBxyVhSzdpI1X7srrNEVt4ys0EHvx8iJVkA+Mo+hR+2E8fNsphhaHdpv0yvCO++JV08zHjcg2zHPcioJ8de7FMjnhchn3MweQdhyPHq7Rtbr0gK3gS8+1l2waXj/zEn86MW38y49YvrubNi0L/CR2/xBprk94BRdjy4f7ooB2ffJVD2LB6CUoHD7nCvXngjz18fa0FNvqKVR7i3JzQNd48sddmB7MxPugo+W2sF7/yQrdYcZULL2eEf3ZeuLywu6/dk/od6LhPFfesnBqHr/afS3rZIWrxxUkfXDhyJlY8xTlzQt+Y50zrojzhWil2uK5h9NKmLT5x4c7e+PTDjk4vhXBdx8f4zBvuhI1CTx9frvEmR5vZbyzexcQGjrWoGMdljuvTZq/wLxb9rsNwnY/VeeMH/AodWOYrezZh4Eu3fJTv7IyXy55rdCaPMOLjvnbtfuledChSTOxh0lGmD9fWgeKa4O1zx+EWbP0K3o23znDUb4565mjTpwOnXHQ4Yc3QqeCW8D3nAC84sOnFQ01XvA7av/3tb9+RPx0j5mvXrq3/cFBsfDrU9A3LDhDw4dsvz+RHnh1AuB/EKscO4tzzfX7Tr+AO2/3u8M39zsY96fnskF8OtB2K8CcPdPhx7/OVX7owCT3PW3/mBD4/Dj34tv7ZWQ94uzYHR4ElVjHD4r99gzqBqY0zLMJGPNaDcfmgo5bLnundj/rE0y8dYbATk1jLb2tFfD7THCLJh8NtGPBhypdx/gkdeGGaD0WM7MobXTpyqp89n825mODqw01M/nTFO8//GSMf/iyM9S23MPAubvr46YMtn8S1fJgfPOiIGUac1c0RXFjWhb1iOYFnntX05ZJv+nDlxRz1y1564tNPR9vzQnw4EVzxgceffm25w4G9fuPiJ8asA+O4sVGKjS9tY/LqvjKfMMSsXxxw5YXAEo/7Ev/mFhb+1jj9fNCHN3MCh74cKL7Q0kGgfnGpCRycmnc4eIlXPz0HkB20ix0WPTkzf64dSPf5zad4+PW5zh8dts03W/kzb3JB+NKniBU3sRVjaw0/Y2qFlFPXuPMPg8/mhT0sdc8J+dWmi5saD/juLXG1nxMDLJhs+KSnLQ5rQZ99jhwYo2ecqCszBn18qosJL/e8WIzhbT6U5iYuOPOLn7j4lnN6Cg7h0zHX9PgwP35J7RrfhD8FJ3PvX2pZB3Dj29pnw9ZnExy++FD7hZy84senmDwze0azhceXeOD7HNHXGsF/zmGx8Nn8w7H+3BvE2nMtX+YPN2sCD8If/u4xc6fdvzilB1vcxmHoK998wlFw4af7S4xipyv3dMRBjw9Y/hPpr3zlK6dPfOITi0ucVuM2fuyD9ttI0lbZGdgZ2BnYGdgZuNszYMPxy1/+cn27zobE5simoc2P6zYRNi5tPGxGvDAoNh7p2PC0abQpselSjMNWSFhtaNr4wLXh6SWRHhwbHZs1WDZPro0Rtq4r+qYv7SnFFGf26deX/tQNn77NLrH5mmKsUj+M4g6vTRxMsehn12bU9VHo6qdLcDAfsOs3Fk86jdVH33UY8WCPB33j+qcefaV+2IRdvtmm9+/Rf/+EQ+co4cfFOrIebHqtAzbm3UuHNUAuw2KPe3nMD/t84DbtrbG+rcUnsWm3vtgZx4ewFbf7w+EELnE2JqcKHcW82NSXjwVy/mGMHp58KHRwNKZtPcFOFwc29LqmR7LLNk6N0zFGjzSu3UsDLtrGXItN7R72smmMf+IXDV64zIn7XIzuf/eqfHmplVO28gjr1VdfXfOHk5dvfa7hqhX4sMSHb7Gr8aJrzJqICxw5UfBVig8mW5heGl0TMVtL8YDbGFvXbOmF7ZrQJdr5okvSNe8wtIvPeM+u+IU1ecMKl402O4WdAjf/dF3LtVwYh5seDKI9cf/d+//uW+2wzFnt5kkbRnE1r7jki99i6r7FrTyYM+Ni0ge7nBizdhwWeHlnR0+/mg91a785qjYeZ/Pa/Wk8XnHrvoRF+NBnjRB+rJnyBduBgXVv3dQfPzbiKRdxhankhz4+tT3f/P1s30K/E386poN2h938kp6hYjQnnnH8y2886cVfvxgdIMujdkXcxQCrz2b25o04PLY2uufYstPnmeFZ4vmq37MDnnlX4wzTISaeOMNhy4Y+wZv9UfTLr3n0PHIgA8O9wTeM5k68+sVoDZLisU7g0OG7uGHh2TzTYTv3OnDwYFNO04cr94q1L890XYsH3+KGQ1q7MPDlS18+5Eyb4KZfca3fPMFtf8aPmMXqOU1XG7ZrOZIrBa+4sWs+ynFrKTtrRr4IHf3yUC7UbMwvwTFMNel54BoGv/rwEg89/c2LXMLTJ0ckn66tH35g9MthOWu9wie4izn+fMFU5IB9+RUD+8blGC/91rI2+3Lt72T7ZjQcevr5cVBpHuB0v9ERE9765bAcqP3/Fda3/taXa4Kf2PBQ+DJmbo0Rexe+5BNeevhYB3j3GW6cHj4dUuOHGz24hC29MCdnHOUDhnlhw5YYK4facmx9wzNWPOyNwaVvDDd4RJwKXH3sFToKHHl2SOt5SE8O4cYVZtc4iEW750b5U+NA2PBHTzGmwFfHkU/7IRwJG7YK0Q9Tv/zo1ydntWHGDy6d1on5MI8+N60P/tjTkQcY8qftM8xnmWePNkx1c4eH3FgD1lLrEY4vWJQXY54fniv0ywue8PjH03rjA07PWu30ygX7BIe+uGVc7oqpmPmnF474xIYfrn3+m2N6xvzSS1uu4OAxBVZzYYydUmz6yr0YYfk/VnyjfR+0z0zu652BnYGdgZ2BnYGdgf/IgM3Ec889d3r66afX5qgNxdyMtPmwybG507bJssGzIdJWbOxsVm2ubEiMVdLhnM82MW1+bHYas8nhy6ZIP9sEPxs3dfp02izp43v6W4rjhzE6Cpn4x3a6aj7wZhe3MNgVkzphF4a+MNRt5tJhV796ijE+J7YctbGGMe1hw5D/ONKlU4kPXfbpTt/60tM/bdnURyf74tFHP7/axpL84qdo28TaXNvww7Z5tlFWs505gJ0Ysybm+tUHt7H46bN+vUTazDuQgNXLnmvj/Fdw85LipQNevo/5wYeNmMnUhYG/PiWBpbCrLhf66Kr1Kcnsi89luPT1y42arnu0fDSmrxfbXpDY8slXLzNw5MpceeFSzJk8egnrxQq+fHku8Fl+5R/ejFVe5IyvXqb4Li76dNT4wlbDUoqNDTF/1pDnC0y6YnLo0nqCrT/hv7Wan15U88Nvvm9mzzYd+OLXTowrJP9hzTa+rftiwEe/eI3JtTZ+MNR8TTx909f04Zo+PDja9LVxDFN/OulNTHqV5ez8gz3e5TRO8HGPp/k2T9aTvg4Q6Jtz/cfPicmbP2vT3DpMgNFc8l+Za4y9/vDZEH4U9nSsWbgKH7jjRYyXK1j1izv/dPRrwzXmPvHtbf8Zqr/1Sue/kfz5Vzaw/FKLn2LBTcHN/ek+5VvMiusOz3BoPTlkMtfWWusNP/7oweNHLBcXFwvHs5Ff/qwP+ZI7BV6HfOyNuzd9IzksfODlg458KzjQw9VamflyreAjRvc9PTjs2LtHxFY+uh/D4bt44ONB1/hc861D2OZSvA5y1Gzg0CkWtuHA6rlIl40YjeObf3kWKwwlDvgTmIpY6eFCT18xwjUmxw6GcTIubmN8E7kSBwxxKM09XunJiQKzz8v4iMlhslwTOmyN84W/goP1x1fSWDHwMfNg3BhM1/iUWzmUAz6sMTXbSvpixk8t3ne84x0LS5s4EPR5ID+Tm2uY4nANzzw5JOdbPPa/6opc4oonfNh+AaVMPIeiPif1uU96hsPlBxf5dE3kpXnUx44fhY22uJsnbbzNpxi08XGtwC+PuOozZ4Sua4XOvJ+aH3ozzvIfhjFrr0Nm+GLEHV/jzRMbzwbPbWuP4MCXvBavmh9jbOHAFZdYW6vZL6Dzj5657IlD937JwUYp37AUnFq/bPBV+OaX0FHih1PPHc9C3Dxfrbds6YrRM8k4m/ItNlyKHRZf+vjBUXFNB6ZxeeLHWpRzmGzku2cnv7X5ZU+K2zh/MMw3XH0KXtZxeYEvp4r5wWNex5ldPvhW5BQm//QUeKR+e3IctD0v+KCPa/rWJb8KwY8/sfksxFVe6Mu3e8mzQn70kzjAMCZn9PTDmbnWR+C5Fq9flPtG+8c//vE1hu9VZH+j/SrZ2ro7AzsDOwM7AzsDd2kGbBx+/etfn5555pm16bfZaEMkJJuLNlM2QDYZNns2SDZBXlJsTIjNThtUG482osa0Ff7aRLq28YHlWrHhodempjodY3xMPfjxNJ5feJfJ1DFuU0XEyabx1Xnjhz4+GnMdt/TioE0vcV2bD4WumPKZrhqHiV1brrKFN6+12cQhXLkQX/pqeMZJNnSOOc12Yi6jGz/oE+MwCfwp+VIba27o4JAPNRwxWmM2v9p4WZPWGPtyZoxUG7Mupi5MHBX2Sm1r18urwx4vXnBbVzDb4OPYxt6m3Us7KX/48SM+dngoxUs3jmEZY6NMMY4HfUUuYOGcbX7DnfmgO3FhaLOvjptc6MtG2wuKHOhTui42+kTtXpej+e0m8+YZMV/wPB/4hyF/7LRx06eIoRd//V0XY3zSj4OaGG8eanv5NK89a4zj1YGpeKfA5pe+GHAic/25Zlfuso8X7oo5Sqc8lju66ainNB90SP5c40Za3/EwZ67LkTlTYMCryDkdUt9sG1fm+Gqcf9Azls94Gs+va/FMPzi3PhtXhwenfnzDMgcKMY99I9H9UG7iK0f6vGz7Z/HWGJzWVPcUPH3Z57f7qtjp9UIOR0xybh07LMivPvy1cWjNamenjz8Yrt0fauvSPz2/U3865vr166dvfOMbp5dffnn5EAOf8cOHb3l0v8ojHg4yyok8iEn+xNo6E5uY4NGp1L7nnnsWhm8S8leu3Gc9T/R1LR8wHOr4cwfa8bRuy6dc4+KeLb/mRdFmI65q8bhvYeMWLt3uCfqKtrjlgfAJh40+9vXh7pmlyJ0cwnDgSsfBjvuCLQ7Wa88PmAqJD37mQj/suNDRhy/88quPH0W/cdcwYBG1Mbrhans+46kmYpZPuS3WcuBQtgNCvuGIiz+65bU/JQJPn7x0oMuGXzGJrVjYy4s/C+Ga0O2ADI7Pe+vWeLHS08bH+lHEQ48fxRpR+BOnvIizOcehuIw7/C1H8OWCLeGHGMeBrWv8FGvPt+jpyZuY5r0WVzVbfN0HDtqJtnvLQXt7DmsGFhv5xpWNuhjVfNFN2PAtVuMkXq756hcgsMWRiI1ucbk2zr9czJj54Zeufrp81oalGOOHrnvE/V2McuwgnU5c6cLSNi5mNR3Ch/imbwfy2j2fy2d2OOFrnH3+eo5oG/Pc61nBv7hbL2Ih8qDgSaeC87HQ4ZtP9njC48v9Qp9vY+bfPcgnG7bG6BuH4V6wzsRPjxjrflJX8IqP9R2HnpvL+PyDDzbhsdNXmy/z5v6RY5jlsPuLLh75NK5Ym0rrOFzxsekeFSNbevKfLzmgZ9x1pftLuzH+4qeGZR3gpbjX3DtiZef55Hr6w4utIm7PFNJ8l1t4BA4bhcizz+/Pfvazp4985COrT1xXkX3QfpVsbd2dgZ2BnYGdgZ2BuzQDNhG/+c1vTj/84Q/XBtGmxebEZonYjNik2IR1cGXMRs7muA0dHGJzYqNy3Hhos6Nnows3HbUSRhvHarjGtOn1MqDPxovP+NK9qrTZtJHiA5bCV30w46c/0Rf3dLXjVAxt0sLB20bTpo0OyW7i5ZOOTaUSFt54atOjk/4CPP8wbj7UjanlvzbdsPiecbCDm49w1Ta/4RoXkzJ5TB+w22yHM9cLO/a4hcNmStz5I/miZy0q1gfBLXzxuSZ05dF6dtjeS4J+ePw3L8Wl331hzaeHS3lzHSc++JZ3IhYCVyHxgpXwAQOW/u6j2l4K8NIm6vLFNhvY/MNyjaNiXJ9iHozpg2Nc3tThG5/CF1s2coGL54IDKNzkVJ9nCBzCD27EQejxecGXnLCHH5/q+uK6gG78gDu5ipmd2ktuL9w44+slzEtf3Mp3OPhbC1686sPNi5uYzAf+vdhNLq75rj7O3Ro4/8Al7LgbwxkvNTHW3LnODq5+esqcI21cxchGm745mPPNJozl7CY/8BETvnDip69Y4wECx7C1Wy/FOeNmr18fmXar4/wDtrnwLTdz2b3TuLrcWFv+VIP5YQeXPk7dN62lxsvpxHOdHQyHHuzwkwP3iIMdhynlUD8dXOrLPyxj6g4BPXd8o/1b3/rW+mZcuTzyeKt2eX399ddPjz/++Pr/ENyLFxcXK2/8EfhixUEp764d/Lg3rH3PNgdiYtNH9OMvh3JhPvB3nxMHl/4u7s9//vM31xrbciwPCv8VOJ4b9gH0uqeME/l0j1nHsLTxsAbY9gwRlzUpnmJj39rCueeKeSG48AlHoctHnxliNV4fHgo/PiscIBqXB+vghRdeWPeWPlh9puMjHtzi7j97tZZx0C8OuZ5xm48O48SNd2UFMH7A4Ne9bT7s0/jFlS1cfXKAg8M742xwMG/9GT7xEvzZ8Cn/+JVvePg7PPQLarh8Zcuna/r6ywlch+yPPPLI4iRP8P/5z3+uNScOc6GPvbyKSd47RPVcc31xXtue0fBnrsqBPOA5OZtT8fJrntUJXePyIze44AGvPOm35sUuDrrFTR9n9w4+sOGpjRHX/IvB38SHBUPMDzzwwDq0cz8Y9wsrfwrKvPAv/65h4kpwk/s53/gQ8fMlTnzMSTyWwo0fdHBwT5nz4qZPspFrOrhYD+bEmJgUnPiUozjJETs54Ud9/fzLQHllH6/yggc9PuSyfn1y1Jr1ixlc3YOtF/OswJYj/dYmPXmSP79wkFv49PA1lzjiL2Y+CZ/62LHRxhcv9vTw6T6JOwyxKeZCoccHwQUG//nip1zqd21O3af+LwV5188Hm+YGjrkQN3+4+mXXFPqwYIhBbuYc5q+Y2PJPH2c2/euV7kf++K1dLtj0mcAOtvj5FLf5V+sXM3xzaM1bM0RMYrD2xUOPjhhcK/LZfcCPPrmhU3z8+gxT+HMf8C02BQaf1onaWrBeuydxaT2zn3Pluhj8kvhjH/vY6QMf+ACTN/VW4zZ+7IP220jSVtkZ2BnYGdgZ2Bm42zNg8/GrX/3q9IMf/GBtomxUbE7aZNjA2Mi0MbIJseGz+bTxtfnSbiPDTtFukyJHrtvUecG2QdIm7NnYBIWjv82Uego7+ur8qOlNP/reSujHM9+11fWpbez08U34U7TTpUOKLZ24GE/HZl0+G2MHh2142avlR97MCTFX5V4bLh264eAW3+zo5lNNFw6/bOE0rk/RnvZs+CeTI71KWEvp/AMOG7ZJcx8G3675ioOajboc0Jl5N26zrrSx5st1XOnDwEMerUMHJjb+cEk5NDflkg1/sL00xIV+8Rhnm8xYiweeAk/c5ZyNvlm7hlE++LFWvBykC7f1gBN9ddflRy0PJC7aMNkQOjNffMCZYk7w0S8XciR/ng14GRdfL5tsYRI2XqR6XmgrxcC+/OVDfozXXzwL8PADVuN4mFMvU4Q9vx200xMfbMW1IpfsHKg1Lh4v3OzFou75SGcKDvKJd7Hxra8850s/34lx+IprfvFUyrv+47xlz5/iuYwvOz70dV80F2zCdn2MQx+hT894+Dgo+osze/35NEbEoRAYpJy7ZhN24/rrs74cingRhp0vOgldhyn+TJFYYfIhb2rz2v1cLGHVDkttLeLMthf94rW2rQHPAX18l1eYbMTuGg6JQwcCnjv+xuuTTz55Rw7aHVg6aH/ppZfW/ejPFThwFzMeOIoTj+4zbfkRiyJnDjh8pls/1jid5o+dAxW4+HsWEXPjwPbZZ59dNuzg8clfOYFjHtTuS1hq43LqAIdNfM3jPODinz6/8FtfPd/5gi2m5pSuHPBLr/VJx1wUA1848A+DXn36Ff7E6llnvq1LnP/617+uuNkSHPMpFsKfnN13333rENC6wVccfZ4Ut5j1OcziExd18YqN8OfauNjEwjf+8ItV3vQZd6DEjzE5cajl4Je0BsqzPvE5sGoMZzlw0O5b2eKEJT9yYu7lTYl7eaH/vve9b8UN27h16zOBjucuLLb8wXPds0xeFAeQcilGYwqe9M0pTniyhSf3rY1i0p8Ylwv5ab5gKzjiRsdngvyJXz7lHE/j6njA5s/chFcfHc8o88SnmP3ywS/dHDq6/8zJ9fOhtF8cEjY+t3BojfBtnsQLR+wKLuLg31zIlzhI62Y1zj/owHAflrPmjK7C1nMX3+JsbtPBiU8FF5gOuuHizo/17JeB8iBX4owXe3Zq/sspO3kuV/ThiNlc6BczfZyMs8HD+jRuXfpc6F9OiIENXIfZci6v8sm3mPBQu/8UnNXFrc0Gj7iVKzr4yD0Rl8Ifv93Ta/D8A1+FlA9zIT6fD3KIG3uCI+HDmuePL3lpvSyFGz9wtMbKJe7WBDt88D6Ke0uRqw7a+aPPjj3feBH5skYUPMsFrvziZ77Z808fJ8/PvqDBF2zPAr9oMl9w5kG7nMNXuhfgNxf65dCc8ycnfGrj2ryGY+6sVevFfW0tuKanXw0PZ1Ku9MFw0P7Rj350H7Sv7OwfOwM7AzsDOwM7AzsDl2bABuK5899o/973vrc2xjY9ik2MMZsKmz8bExsRGw+bKBsjG0ebmDYj6jYnbGeBaUzdpow+HXiu+dImahzaIEWe3sSio69Nl7GKfqJ9FJspPtowZnPUm21c6MWBT2Xia5P62OhTi881vwoO8chP9mFMffZw4hFneYXXWLbxVDduzPX0Y1weJucw9Bkn/Cf6+SWwFONthuMddhitgYkDCyeFxLV2ccFX5Ax+aw92a9LG3gabGO86v+z5s5Ztrm32vZDwUQy9MOoj8fPC4SXAOBz8+OC7XOir6MNNG1a50W4M9lHqY4uToq+XDPba8dUm5Tg8bXp8TX64yEvcwxNHL4nstNWEjpzhQLzAeC7IoVJOzE2CHx9xcGjjBUge40OnfMMuFrVCT65xLr50asN3ja8aTly16eNr7tT14Vl8fCjsvAiy0RaPF0t5wQX3YsL9KJMHjNZQevrYZct/JVttvtUzfu3mjG52sOBq44mjOPPhumc1HjDNv5IPeAROYpwuHWKs8TDY5Uf+8daOn7ZC6jOeDez66YTv2pi15aXc549cGtc/9XDxrU8HUjjD49P6pMfOGpvrK//8HMWcFwcbuvnlS459/nXt8CE/8SpGXPLfc8bnn0NXf1f9TvxnqG+88cbpa1/72umVV15ZeRJ38eLR/MVDrb+1bX2LpZjELo7uBQc+HSzhDh+G2BR/G94v660zOEr+YfHPHxvt7vfyTN+8dc/Sx6XDJOPswnKARx9H/o0T9njCJ8abj54N2njwnR5f5jSebIuNn+45a9EhlD5+6Hum9JyE2wEOrmLmT60tj9YTPP3sWkuwiBwaF1M5w1WhU67UMPDEXyzmBX56auOEf5yzoYe7XNLjy2ehg2wHbPzh5tDKIZ7n9ozDQSWfuFr/zT0swg/Rli956c9oZOOe9VyiY+5wNcav+NSeZfrDdyiNp3EHcwr/dGGUA+PEnOCixp90f+gvJrHQwRUneRG73Mod7or1Tw8+rrixwS+O4eIDn54aFr5iMvdy7BcQHRyzo2Ne5Ia4BxwWmzs8CFxrSU71wWsOtOHgpI8fvs23gntzQg8WHq7piosOHNf5YSMfMGHTpyNvCmx+2MqROYofOweo8MpTfmGwIa0Lvog6bq7lgB1/fBW3+cJdMR/uUXz4o2NtGCN8ickvTNq3wI67uGDgbA24ZlN+tBXY+hrTNnfyw5bM3BR7sfEndiVsNvDEaE2InS847OS92jVMRYy4ujausBMfHL7kQw6sLRzlmtCjT/CQYwWWX5g47A7X3PGjuGaLv/2SOccTBn34runxV56KrwN99yIxh/aHPsNd4wxTDthYS3Tlhk++YYud8FWfeTDn5QofApNeuY9Lv0DlQ5/CFg+2ysy3OP3rpMcee2x9qx12OXR9O7K/0X47Wdo6OwM7AzsDOwM7A3d5Bmw8vCR///vfXy8BNiE2M72wtBkUpo2NTaQNjdKG21ibGv1JGxq18TY8vTTcbHOCk80OO9cJffg2jK6Nt6HWZkM/mzZJRz/GbULp20wZpxtu/m6nhiVHR67ZGufHhrFNJT9427CxjW+6xX7kHWZ1trjnv7m5lW154695tDF2fSu7/B5rODDF5yWm+cXLptfGHD6doxTrzXizkSeYcogfP+za7Mtnm251LyT6cSDs4OCHrzXuZRBW82dO+Ggzzw4GPDy89HoZ6CUSTocBNvzdD7jBPEr97G4luCrw5IVv3C7L381wspk5SBe2/mKLD1/iYeva3NEldLz4yI1x3JqXXqhxdK30gtQLHV9eohQvezM2uYJbjObMtb74tNar53rBTZudoo23vvzrF48+Ylxfbf7YKc2d2rrLTtzNM/u4LMDxwxi/cZEnthXrgB/jCv23kmzxpa/OvnUFA65ce66lK9dikEs27pFj2xjbKezoJzjwpeCQ//izd228fLJtPBw1XXow8W0epg4796uX8p4pR4508PDNXCVu/Fuv8Ke/o/3013W82BaPOWwew8PZsy2/sOWMb1Jc2j1X9DuYcMDuM/f++++/ND/03kqKxbdgr127tr4hjK9nFN8Ex3IrHmtWLUbPPgeoPtPr80uNi4uLdQ/Lu0MIh6rmQQxs4MFXXnvttdOf//znVayr7pnmjB85KRfFRE8+8eUbNj9yRdf6dK9Zl+zpuaesa88P1+xgtEblVfHc4Hd+JuSXLjzjOBB6PSeO861Nn53nmvj1acuJbzbKh75iV5ub+vjA+1//+tc6QBWTMbHi0cGXPiImMSjWvc8b82CcrdzEl295kgt4+cav+ONPT3/rRq0t3w7U3vve954+/OEPrz9lwidM436B4xvJ9B0A8y92fHB3eIwP3/p7/rNPx2dnebfefLO7dbmCPv/Q5o+N64q2IvcPP/zw+sUbf/x2cNjzS+6spfKQLSx99n3WmfWJHxGXeVDDgelfaSi4svMLCAeP6V9W8yGXfJoLuVA3V/rNiVzyQVdO1Hw4FDXPrt2XciG/OODd/PpFiLY8p+uXIe774mVrntRio9u88Oe5JVZjcAme+JRDfXJuHcLtFy75YGdcra+5gynHfpkIy9xbNzM/4nSvGg+P/z638MDfmH6Y/swOfTmRR7U41OnzJT6+zCdu5Vk85l3++nMh1grM5oqdIla/4ODXvYCrfuI+Mn9qYg74wFe/PY423+7f7iN9rivG2eJprBy6nuu5GPTJMX12uCXliS0dXMXol0P0xCmP4rKe5C+b4oKlryJP5sn888eerRjNE19yZw1YW2LFjX+6rnGmazwc/WzkXOGPjvXrnjaX8x7m2/PJ3MERj1zT9RzpuYY/W/HI8cwRrgl+ePErt/YJPvfcU2zxwx8fNV0+suH/oYceWv8K/Mtf/vKChXUV2QftV8nW1t0Z2BnYGdgZ2Bm4SzNgU/Hb3/729OMf/3htoGyGbDz0kzZNNrBKm982izY2bTLU9bO3IVFseIwpNjJdw8+PvmkD52ZCFy4d/NgpE5ftsV0fO5s2m7k2YGobKXi3kniKqY0cG/1wbdxsPvEjbfr40kevPpzZwFGnb5w0Vj+O+ecHHt3Zz0a/EuYCO/9gm25j7NucGp8Sjr7pJ16TNx365YSO+Ni1KddOL//6lPJSLvXRiYMNtgJPfo1N3vq9cCk2xcVSDc+c+7MKcVTzl09zZOPvpcqLALEmrHv2aptvm35c9HWYwWe5jfsCGD/0k+qGcI9nedOub9qwLe/5KZdwlDDmtVwRfa3z9PlxLQ/VsK0xxbixDtqN6TM35kJJFzdCh/AbTzmSQ+sBntwpvZSFZw7gxA9OMar5ZqNoe2aZDxymsOe/+OjrS/ST6vzly1gY6vwe55k+7sVMT5uNOOOVH7h0K2GzgS0nCezmwJhCpm329fPDL3GtiF0fXfNf0Wc+FH10i0PuwilGtfFw028cPz7EoqS/yNzkBxuYdIsxrtacQxsvwu5J6yL/YpIrug4xHXhbB/mkq9RmpyS448pnuvoIm+ZQ23U61jsudPl3KNbBFd18TCy2ni9ETO95z3vWf0DucDO9NXiFH/lxcOeF34GoteIewxdPtTy19rWzw8kcK8ShjG8M+7aee5Du5CZP7mGxilvuOuzsnnbY4jnLtxzSsWdgh0O+5cJcwS+v8OnjQ58P13T0m2clDPzkkj1//BI49NQzdhjWuMMi/XAnFpyksXyKxcGTw9A4qHGkiyd8h3Jyhw//hJ4cOBTq8CZ8Pj2/2h/EHRYdhW/ziitdpflsjA822mHLD119xssHrrBwwt+Ytlw6nBODuTGXPgvpmF/SPJYrPMoBX2JvneeTH/eItcIPLNd4En04ypkiVu0KPT7w9vndgV6+cBErLrCt//Jnvj0X2NODTRc2v/nXR5oPcbsOB651D1se4XgGxFkNj37zoI+f1nDjsOpL3xh/bNSEH4eaDnzltNrPL0oAAEAASURBVDViLF085AeeuRGvvBOYxnAwN7X10eO7fLjmj8DWT+gag8kHwaO5kTc6xukl/Dm4pGderAG6fJgL17OIm0/6eIYv382dQ1/3X3NTPPlU6ysmfs2956P/v0PM5sz+DU7POJzw57N4xDrz01g+1e4Rzxw1X9aH4rq8w6Nb3ObINWx86Osrd9Z2B/vy3Fx5ZtHFC9cK7HLVXMkDv3A6PBarOTEPSusEV2LO2eNivPmIu1qhg0M89BE1jOZUGy/45o9vuVfTUVfoyQlO1jsbfXjwwycbnBRjRN09ETe6Sv7Zpa9PnmHypebXGsPNXLJtbvoFjnb5pg9zH7SvKdg/dgZ2BnYGdgZ2BnYGbpUBm4/f/e53p5/85Cfr5ceGzAbNhsPmwqbH5ssGyEbPBoW0gWljYjMCS39j1TY69BIbHEKfD+NtgtjYsM3NEV32dLo2rvDLhtgEwUs3DDpEm67SS5I+uDjZEMK4lRSHzXwben38kjaDxw1hXPmKV37w0QcH1/jHlR788kZXKR/GirGXpDa9+VCHP/Vdi9nYFNgKDgQ+3fjnJ+75p5tOHHu5CIetDTK9KfDjNjH48HI1D2Zgp4u7axtja9SL7IwHN3PlRe3ee+9dc8QvnTbz2jjx08sTDrh7yXFtQ+6AoIMIfdZMLyfmB6b+xDWuOBibvNKbccgN/SMOPH3GmhM1fYWE4zoMOvz0QmWuxUw3Lq4VY3gqMHsRDVdu3Dcw9cGlJ2/Wu2t+W0/G5YefOGsr7M2Tgk/xmif5pQ8nKVfa+MEQEz3rwiGRFzf+Sfp0YCvFodZOjy5M/ozV75p98ejXzp6dgoP4JyYeM5dsw3adxJMtm55DMPUp8kovPunSibc6rHmdn2ILgx9Fv3XdCz/scLKBwZeCo/F04qgd5+LuGZhuXKr1s2+OssfL5wwc96JvkjoAtB6tD2LMusFdTP40gYNM+nASfLVbm/FtHI446TRnrhX8jLMJh3/rDBfjeHru+KagtcyOFHO2/LPVj2MH7b6lSee/kXz4W9ePPvro+hvtuMmfe1LhF8eeczMP4g6Df89GfPx9YPeT2MVkfmC65xz6OSz2zBOr/BsPt8NZ+SJ80JUjHPhjJ3/yIHa2+j1n55qkH0dcFOJ+z5+DpGL1yxj2/HWfsnedvRh845ROeYdlbqr5sKYUeGpjFxcX6099wNInN3LhGld59hnjIE8e+DamNs6vzw96ibj9IsmzVV7wCyt7HIqdnpiN6SuX/BRnOcVBjt2HdPXD55/fPitx4ZN4vrOTY77kVOz5Z4sPe6IfF8KWjfngi16x2z869CQ4OHgPUx889taFmk+x5ds6M2eeBfDNl18M9VlMzzg//TKDf3N0/fw3z9V84CVXR+HLuNgdwvb/HPCDp3814k80mT8xyanc4uKeU8OATx+WNsGD5F9Nh67r7hV6+tnB40cs1k0xs2muxKzgwoa+ONXauKt7dulXZg7CwI9voo8dsabipc2XtRGuPnZyeoyJjmLMunENC3886Isfz9adXOrjR/FMoM/WuvendqwBesbZqo13jZ9r68GftfrLX/5y+sc//rHWnX7z1oE9X/TkTV6MyxfM5jSujfGFL4zuXfHh2jqTl+YWLgzr3voUD31r2jf92dGB2y+7PEf4kDvPTuuOrfyZk+aFD3bmLNGHq3vJeiZyp91csMcJXhjmwzOBP/bEuPwYk5dy0BrS39zTT6fcsRdr86vG17giz/yXI7mgTzwj8GxMX7GK1zy7/8WFFxx8iGuSPl75wclcwFbbN8Dr80hecDBGl38iTjY4+5c1/tzqF7/4xTWWzmrcxo/9jfbbSNJW2RnYGdgZ2BnYGbjbM2Dz8fvf//7005/+dG1sbIRsOGxYbDhsLGy0bIBswObGg60NShshtY2NYmNT3aZHrlzDbRy+a8VGpn41XTXBpzZ7kq7+OBhLl3+ibdxmzOYO52y7bvOFw62ELwUWfNdq+Py4NqbATid+/JYztqSajhK3aQtbbPqMd61N8GYbt3zrI9Wu6ZbDcI1PHXrkyK2XGv2ua8NUyjWOCrFhzZ/5lpteqIzntxi0s3XNhxcQG2vtYsMhv+bPOvXy4kUmLvi49sLh5cULNP/5taFmCwsnm3aHBXwRWNY+PrC9+HppgaePPb/04BzF/CjGivOoE1ccmt90bmZjnK7ciIetHMMiuMmTfjmIG53yEzYbxVjzJBdy3hgcbXHDDW9yyF8cjPEFMz7li46XUjm1Pggf9Lw8iSmcNTh+iMc6gsunucINZz4JW+Mz7+Jlq18h/CmtE3UCg32x4udaPyxtwt48xBcnOGFp5zub2vlS64sbPPb8sSmu/POpj058Znviui4X7MPIl3nwbDcPOBA1vfIkBvi4xAcHevlnR4+wo59NuMXPtmt+Yegz7+Y2Lu5F962DdvMMLyw67j22vrHoII8+nCls5DO+zQsdWPEo331GaDfOVhGfcc8JdnKEgwMTNZ2Jz4c+HLpPrVV/MuaZZ55ZB9vFQ/cqEu8O2l988cXFDQaOCr/uue5DHJoj/cYVHC4uLtZ/zupb7fYA5tD92b0mPr9QcOAj93CMy7/nAhz3YNfiNsbOM1TNj377jJ7ncQpL/lzTb/3pg0X4KKf9Uk6svnFOR6w4u2ZvjpoT12KAbVwOywFM66R5bf3jLFaHfNZi4/zAaQ3ICT4+H8QHv2LMZ4c80CfhwpQL/vGGa26KXa2f3/ImnplLfuCq9YuJrrUmv/oUPGDx5VCNL9dq4+GbQ5ysA/bxpTMlvziaF/eFucAvPnLkoFDeidg8b4iYEvZ88o2TGOQdFn6KX2Lgo3gm4MdfMVg3nmfljG9+2eKqv9zxXTzxwMH8OcSfsfsXMw7brX0YfBq3XhR88IWtwNNW00/yg4uSHh7lSyzl0BzJXTkpLvr02E/f5hfOzJ8c0osb2+nfOH1iDG/FNX+TP1+4hUmnEn6+46Zf/rVxay7Y6YNl3YkRtj451WcuxUTXWnavONymp5gvpVyz1YbJzrfZn3/++fUnrvjW7zPCL5D6rLAerRM8cS9GNRE//3wQNd/WovvdmoUNg89yWWxwjRtz/4ufT2vVYbIY4eNmTfUnW+SDb2vALzjpwnH/qhVSvmEksNgr+MKVF3jZ07cOEjzFgF950Md/vspzMRqHoRZveTJ3dPkSa/NrXssfPvJI2OPGPzw4+YXLf1zFZm5gmkMFFk58ZQ+XL8VYnGHRKxf+RBQdOeJXP50KbhXx4Ow/MX766afX32nnh91VZB+0XyVbW3dnYGdgZ2BnYGfgLs2ATcyf/vSn089+9rO1sbEZseloM2hjYYNoM2hzQuaGxwbEJkOfAq+NTRsimyv9Cl0bGMJX9vqn7VI4/9BHGu86nsbbBKkbj6PxNlg2Zzjpq4ZL6OOVn/yqw8jOpk5M4eoPB65+fUTdOH61+Zox0IWBRxzwVeqnr62mhwd/4aqLW7950LZxrD8/2cDOburxoaTPnq6XUBtNcbTBdS0ea6aXDbrs48BHvmCyIfrz65qN3IqTDhux8OtFi45xHPQTOvjxnX9tnGAbtymH4QULp8T49OvFxIsTfdLax8eLkW+XGecfV356mWj9hK0WAz0+8LhMjBF6Yio3+uA37hoGPTrioJ+NsUp+1exxFKviGteJx46ePrjyIN/h6fMNrvKiTReOEnd1zwk5mzlprJch+fTi6dCF7/z6xlq2cmBMOQpu1gKeXr7V7PBy8KkUY/mqzXYK/Prkc8amPw6uK9MGVvbigCHedOEpBBeS/dSpD0bz5ZqE7xo2nGz1afPBLsmXnM81QK+YzFHj7PRru5eaP/7yScd1ccaDX9dK2PjFgZ1rdubJdXxdyxk7OPrZWm/m1T3HJg7V+XEA5iCifBx9po8DnYReXPiVI/z002PXXPJFtHsGlgPr2LOCnbzhn099Cl0Ynpv+ZMyPfvSj04MPPvgffOJ1OzVMcjxo1++zoc8HMSl899wUg9z2HBOrQyyHyZ6RxjzPHQ67P13bA7in3LfWBRGn54Jvwzev+ZZXPuXDoYkaD/PUgZNx8wujfKutP4UfOvpcs1fzC7+DdteeAZ4HdLNRK0RezIlxMYinHC6FGzr8GsPXuBwpfCpy5/moL3y1MfzU2vwcSzniz7VcwYIZLp9ixIM9PGuz9fN/7N3dimVX1cbxfRmCRKuDMSYEDzwTTwLiQUBJaKUjEiIaNBqDChr8iiBGRNRr8sgoxhNB1Gha7UC8j3f/ZvrfDPZbbWprTkrmgFnza4xnPGPMudaea9Xu6vgZJ3HQpkO3Eq646ZU743Dw5c8cHfkzpx2/Pufp+Fvl8gwHN/vC/oBDny1exl0PeMi19ZdTNnDUcOWQnZotLuaItpIYhwHTuDXHMxs4xuTU/m0erjm8cMEVB3bqPuPVdIpDLmDQ45etnLGJM//w6eEHW25IOVTjrIYJj/AFz5x2cZjTVuSl/WGcDzjyq2RnDi9Cx3hx4sevvMCDi6N4888OriI2BU7FfGvFT+P8KPlmX77DLC41f64rMcNIf94z6InZi89yw4c9JA6/zFGbd69Kr30mL/iwsTf9osL9xhhsccDgE461U8zLS7U2fRxhwY23/Mx9Rk/cCn394leLGZfwjMFU+FNgisX/++AXPT7zrJF7bv8axprioMQ1+/jBNsbeNUbixAYGETO+JB6uG7mnny3f7RW25uRNHtsHajLzQ896u3a021d88oGfIiftBZjm9du/cPGGpeAaB3wVfIz32SLfMPIZv2r50cbXusgFLsaU5qsb45+uPx3jRfvTTz+N3rJZjSv+2C/ar5iorbYzsDOwM7AzsDNwnTPgkONF+y9/+ct1IHJYcahxUFF3oHOI03fwUIhDDH2HEEIXXodNBxIHJwdSB6NKhxm24WsT9hX6jeVjDRx/hKU/ObFtjE1YxvDFTW3cPP9Tv8MnHfP5KSZ1JX5qugq7pDw1N7mYY5d+OjMWc3wVk75DpZzSk1fz5S6/sMIRn7XrgNzcjFm78bDilu/G+zYRfS9HHE7pwvcw46HGwZV+8dIN3xhu4dXW14bl0FxsuBnzMkahMx9w5AQm/A7iuMDTFz/7bORPP4mjuvx6CKDHFwzXgjzLo/i06RaT64JPtbGJWdv4/YQfglfxpGuueTHBmfy1lfyo6ccDjrY8GI+r/iknfT7EJwc9aLkmyr85Yox+eMbgy4OHMnPlCSeiL5/yaN4+8WCkTt86+UaXGh5bPpTiLlaY9Lxs688I4CW2N998c/3d7pkLdjNuc+JVwuTDGhijyy9u4Wgn2hXzCoFl/4jXPBwlDON4zj1k3j5Tsw+PfXrapFqbrn6+82WcmBOLONT01LXpzLH6rSO88NNTw1faf/mZ/XIHk9DJpn3eWOP8TZEn94P0w5dDbcKWr+5z2Yux+cZO+/k1Li7+4RpPNz/miT5edPBwP+6eY86LhdPYl+Hxh3HXkhfs3//+99+1F+23bt06/OlPf1q8xNCLDDxb6/jG2Tcy5bZYjctzAkdhj7f96ZuVavFaO+L68wIWDnv56CWqMevCxn2BnW8Y+6wIny4u/MBsHbTls7WPhxdq+IjNiym8a3fd8ctWrbR22mLmX6ETN3Nw+MVV4RumzzmCAxv3HbpwG6PrXgYPv3yry5Xc9EKHviIP5rXNE/bulfAr5vmSz144pztzVZ4mL7Z4w1T0CTv89MXTtRYG3/arF5PafhHjDECX4OGXXO1/eO2Z1rfrEmZx8tNa4WUNsxW7MT7KR9xghUOPXwW39rW1YcfGGD/a7HzeWFf6rQt7Y+W7dcNBwau8sdOn01xr2vrgRSdu/CrxY0voKBOzcbmjJxa5T9c8HHztM7jlhv/w2NuLavr2HCxtYrzrEk928ZMvMeF1em3QiYuaf1jFYN7ayo1xOuUTP2O4zzk2uLHTZouDa7tcwRdPOYHlvkFHfsTSC+ni4Vvb2uWPnXyJj5/4ul/CtnZisq/xNEbPmFzA0WevwNOnBwuO68VYou2XBPgReuzwM6ffmLj7ljwd/Nm6V7nv8Y9LeS+/cPE1josCx5dLpg57xbx8i0Fb3HKIR7mRVxz4hWseD5zwlke22go/E9tYuHGOS3t2YmhbT7zoE/gJLIV/+yFJh415+wRnYo5P+tmIqT0ahv2nxFMc9g3b7OlqWyN/Yu2rX/3q4ebNmwvC+DmyX7Sfk62tuzOwM7AzsDOwM3BNM+Ag8vvf//7w85///N4LAge2Dm0OEA4d88DagcVBqrbwtY05yKgd2Dq063egdMghDjIORB2E5+GKvtJBqcPUMjz+0G9scmgsvXkAModD/sXlYJYO3g7KeNMzjoNxh0BjMPgzRvRrGw9r1saVDpXhFiMcsdOBZ74COz3tHnrNwzMmDn38jMGyXtZQfA7qDsnm+CjP+WQLJ9/4FLdxws5YL9r1fQMSH3756++JevCGDZde9sY6RNMndNKjWz7tmw7DxjxUKXQciNtX+Cm4tZ5qvuwr8eNnTcVPD15SDo0p9OwB+HzJm8IOVg+38BW+ZhELHPrllC9j5i4TfmbsbJPyo18bVjbp5ZOtOdyMTTv2uNoX2ubD0menhiF+a6sv733LPDx5Y2te4U9uehCbOOVBbq0JPb7mAyQsenB9S82LAetG2Ch40as2Zy/Qv3HjxnqwZC9Gf0/XP/UvJrqtlxo/etZUDZP/uDZvTrsCj+ChEHPGwzVuD+Fijg9zccG5+wxdc+LzSxy1MTZqfHAj+QjLmLnG9fFVSNiuNTZzbGIYxzPRNj9jh9E6mCtmNT+K9uTLBrdToUeKjw2hq4iptdeml2Qzx+nqwy1/9Gc7n/SUxLh44p//OJmvmMs/n9pK/tnolyv5g01gsDfnuvI3Xn/wgx+8Ky/a+89Q//KXv6z8u768JHHd2msEr2JXG3f/bo/i5+WSF5Hu3+4R7r9efODLHq45LzLEUV5g2M/5cZ17wWNMTqwDfUVOvGjXxtE+p+9+4yzQtSJv4boXlFs5dI+hZ96cOt35uWBd2ImXX7Y4G3OtiVXbLw9gEvHKDT025rsXmtMOB0ex4cIXDr2gy5a93NEVs764jeXDfRAGSU8fhn55ZpOOzyTjhB5pfbOhj1d5iJ8846Fvjp62dVCM8S8Wpb0k7pkLGPaEXLa+ajzsHfPFgas+MQeHFFtxs2dDx9q29+rjCR8XuccPBzkQh7kp+vyq6VhzuWN/qhvHcgGnteajM/HEN4+nXxSpSetmT7lecCThto5qeWgNZi5a03T1+SpGfXky5jqXJ/vWWKXPYn5dj+KVZ8JePOKizzc9a+0FrZqubzM717FVcFXKHf+wwjVnrQj8hF7rn74xUl7ae2LUFle5oYejPn3++cnGnvYnQPwJMfN8wW/N8kVf4WNyljvYfBiXF/uEXmP2Jhz28u3+hocxOsQe8Et/WPmkY9/hhg9d/NTm4LHTLj73WPs739ZI3mBW9NnIg2Icd2P2lfu7L8MQuMbTEVd5Ny42+8Ve5cv8zC97+ehP2NCnk3/zuMLXtn/MGcOzzwDY8Y8LfvIhD/3yl54xGPxM/uYUmNZJzQeRR9zEwVY+ypt2cdETH1y5spb6dMKVj7gapytnPgf8Hytf/OIXD5/85CeXX3GeI/tF+znZ2ro7AzsDOwM7AzsD1zQDDh6vvfba4ac//el60O1Q1IGow5PDiwNIB0V2l4nDTQckh1eHGDV94w4z+tp8OLg5wDnIKPzR7ZCWD/rnyOTXIWhygC/W4oHvoOfANQ/dxeOQFQeHL+1yQye+HepmDPSJQxphp80mya6xiQ1LwcFB1EEPpj59tmHKt74DaIdQD/IOnvTh0C3f6uIRU/61Zx9Pc/y3ng7yDtT0+LSW/RPX4mlNi0eOzcl7vspPNTx65Vyu+HE4xr89hAcMhQ0fsPNpz/ZAAI8dnSmw8xN2B2849qbCLnx5tXf5gl+s+NOBU+60SfyKcXJoDYy1pqc80zdOn2iHVx74M6+c+jSHq3iI+akfd3Ny5eHcvP3m4XH6LmfFKR/2mW9tlQc41owuHNeWfPUw52GyvWleDHT585BtzYzj695D0uOX2ANetF9cXKy9aT3Ffuf4H+D5DzLLj7r1Mi+W9odxuGzLGWw2SvrG6LJtzxkj6alhiRVefowTffur/QzHnOvB3xiXGzqtHwx4irG539iSfGvjp5BsusdNHFhxWsqX/MCDjRpG10KfDfmlExd1bVwv82EsbLrlPF19cU+hF/85bix9OnzGuT1Dn7980W+MT/GELS/0FGI+XvrT35y3z3FOHyYu6nKNg7XxksY34n74wx+uf4Ju/D8RXIhfKj3zzDOH119/ffF2XdlfriPXh3iLvThdW35p6nqLn5dB9qD/HM4+hOG690s2eu57dFyz5VY8YlQIfPeOXtaxa0+m63MCH/9yReyth3H7LH3XkFyJQ27T459OnwPGzXffNt4Y/3zh2zriypdY2IlXn/hMc98rL2zl0OeeP+mg5tu10GesfvsCtj5fcTBnL3gZaFxew4fhZSx+7ORdDrp2Wpv2CEyc+Gkt6ZD6dLX5sM5i1JYXL4+UOQezefoKfPuIrnVwP8bdOBx5Uscfd7zFwR9960E/fnGXT3NiZJetnBa3eetuH4mFL3nT146LnMoZDH7C4peOXMBUm+uXSObg4gRP0RY73/ibZ0PXnuNLf4o5e1Q+8IXBt+IFtc9D+4zkx/rhQ5cNf9qw4CutOxw5Lh6cEhiKnPTL6daAvrUTu/UwD9c80TanT3fm2MtZmPjcOX6Ouj7ibJ90T4kLrgou5hVt2MVlX9CHoy4+XPBr37El+p0dYCjyx7caRoW+WL1oV9ixx8G64SEW+vaQOf7LKex4a7OzF9nFVb4IHPhyZN3NwykH5h588MF7OYBF7AHc1O1HNvIhJvccUkzOLq6/uNFLcMgf3vaPuOgUJx7uV+7dRMzyjA8dNdtyiZMc2q9qOnzDFieO8uF8T8e1gAMdc+UbLkzxmBMPrK7tcmU/wKuPOwz7Ti3fxtg3N/HM4yCfXZfisS44uGbY0lNwUMJyfcdbfHyGjytcnwnxEyt990KfAQ8//PDh2WefPTzxxBMrv3yeI/tF+znZ2ro7AzsDOwM7AzsD1zQDDiO/+93vDq+88so62DlQzMOJsBxQHDgcxhyQHCqM0WWvJA4rCnF4cVBzQHHA6UCtdiiC0Td+OnwaIzD56QDDPqnd/CmH9E5revHAkb241Pjg6yDloFgMMIqpONNXywGBax7ejMHcKT92chAeHTjGw9FW6FSzcYDtoVefPn/09BUcHBZ7QHMQdailqxBrDJct383B0S5muvSIMYfMHgwdah3o6fPpAO4gbk1hwlbyA8Ne4Jt+eyAuxQnPXDzYeJDILx7trXiJu1zxSewphbSm5tIzzo8Ck6hhwadrv7fn8WErn3DFaA7/pFzRTdjAJGz0E/rGFO18NE83/Wq86NEvVn1FHx+1WLSV4uMHd7rG1May0SdyIud8evjpRXv+2M4C0wOahxPj7OC6nvSJdbQn6dmP2vapHMaHX3tK/rUJXfj6cOGZZ6N2PfiTBq4N68yvlwO+ORtfOMZbr2K2D7Xhwit+uS2/5rXDgJm+sXTLoTmxWnNzfLAJQ3xesHjAS0cePFz3kMuneNs3MGHIAz8EV5jGwzfPH/3m9LXpG2cfVzjGlFOZ43CtA57FgyO/2cZBn79TH+GbS6YP40r7ik5rYiz+6TUHozmcCC44k/ylRzehh2dj+mHlhy7bam181HT4tKbWC5Y6XH35woWeYt29aH/55ZfflRftd44vw5577rnDX//618XJ/dd1gJM6vvZS15Da9dL+w8t9zTXTL3zY+w8nvZAXr7X34sqLTfHAFV9FLuDa+7C79sVfYecb0MRnSevKP2zXp9wpcHAot9aFDzzVp/H02Y0DXfPzvs+ncdhepIjD/cPnlpwRLyS77xWjzx3jzZUrPOLLdu6bci4+XGHxR6y/cTjugXzLLR119zs82U4RG1t+SXuQLsGB5F/85UmNszzDaa41MCYfxuNsbeVD4QNfPnwmwMPXeool7nxbM3krhvjwFZ9F9PiDDvsKXTq42AMEH7b2TPzY8YmT3Onjq909ip15tTnrzg8fcRK3kl+8xcsGDoFhXfggagWWfWdvzOspXz4PvXCHhbd4tNmKhw1f4uWLD7b5sM5iLB7jeBI4pF9I4CF2BS9rDQs2HRiwEhyM0bWm8RN/ee+LE+WHHt44tNfKBT5zjG+6JE76sAh9pbzzr+jTsf5i0oaLF3s2fMZB7dqyDxV6bOnom2vNzfEBw1j+8ZGn5roGjcNJV7v1tm58yyEcRd6ci42HrfbS3HUuJ2JRtONVvsWq7T6Md7mGNyV/xmDhTgc/AsO92y+A6HZdx8sYCQcXe8P5g1/j4sLH3oGn794x79OtJ1xrzD8ucoNX4vqxl8VLYNHnN858OctZA2NxVRsLDzfz1ggX2HDb5/D5YkfMnebaGpYT92PxsecDNzmQC+1sxaqIzYv2L3zhC/sb7SvD+8fOwM7AzsDOwM7AzsClGXAY+e1vf3v40Y9+tA6DDjAOMg4nHYDqO3QoxtUOZh2CA3dQcRhh43DkAONwS09fm086aockhyVY+VGbU7TrqwksggeefHYIM87uMomb+drZ4RPfDlww8m1+Cru4GQ8Hn5m7fKkd2NjQTT9MsdDhpzlj+W/OQdRDrDl5SJ9N7damhzaHTmNh8MmewM9PviaWMfGwlRcPlNaQL21czPF1+qJ9OTjx4YAbpnzLSXsq//AquPDncMtW35zY9bVxgXW6bmHTYQdfrPpEn21lrhv8eLZu8I07hMdZ3OWHD/jldjm5+8OhnpjjD3aFfcXYFLpxr62vEHZETAquCj90Wnu89Y2z0S9fYikeOjjw5dolXgY88MAD9/JmjJ5CT+HHdexhkp0xPMSNF7/WyLyH95lD/vBhEy8+8GTbQ7p9wCfe2q05Hx4G7RFtvjwkebhN4BA8lfJNV0lm/rXLZeNq+urG2BqbOSwWfBvPxoOda0eRK+Py4U+AyE/cwog7H/iYJ3M8bPtRvszRY6Po46JuvWHp82PuVIxlAwsu/OIxBoNvPmbfGD11OKf49+vjVMHNequVxHy4xY6DNtGOm37j4RojxvFWN1fMM2/Gwkh36tmL+mzap3CJnPmckz/z9qoX7e/W32j3J5K+9rWvHW7fvr04eknDd9cUvnLn2ogbrvrllo7rwv5j7/PYvBeb9qvciMM+pScOUm0eBhufUYp2dvDYWRMvO9X2Po504LSvym/3AvXMNR7FZJyo4aVnzJoYU8RvDpZxXPjT9kLS+hCfKXTMGcPNZ5w8wImr+wu71hgfQgcmf3TT5w9v4+6njdsTXsTKjzY9pb1Cj41CcNPGTQ6JuORPKX522nTZFDc7ZY5r45+OPVHbOlp/eRGr9efXPmKHtz1jDG7zcqDgkf/48IWrvLb/7BX6dNnQgSkX2nAVXOgRuvIkr2p6Cp5sywle2sZ9RuEdtwV09wcdc7hYR/pw8dE2X37jphaDzx7XdTHRx9eLXucitnzKm73Fji+/sGAHQy7tqfYlm+IrnuIWp3m1tbFOsPmNKxw6/OAFi48wZq7FhYO6PagdV7rmCRy45mHjgB+/M1fG6Rijb56+PKjTZUvXOJ7GCR25MU7M4SNHOMCOM3xjCn3jcP3S0DmAHVxxKGwVfivsrL0+HDZEH34x2Bt4df4sbvgKXGPsxEDkXV6tt+sfhr69aa4ciJGOOWMED77hEZjlD08YSjzpiCVf9cXWmpev6bv4isc9Dr5Y2YqNDilObX7xpc9W/PFrnp/iMN94MRYbP+WMTnHHm166fLVOxuiIWzse9gGu8x7BR7ngq8+rPhuLU0z844i7vjjYPPLII4fnn3/+8NRTT92LZTWu+GN/o/2KidpqOwM7AzsDOwM7A9c5Aw4Vr7766vp2nQNs0gFn9h04Ohg5cDjAOsjMg5FDFExizoHSAUZbrRA6igORB+9eis3DGFw6uEw+Hbo6BNHjVz/c6uXs7g96cXUYw6nDsnG4xhR4dPKbHagOcnzQM2dMIWzEpRA6Si8I+CFxpF/fXL6MK/mgj68cWgfj9DucmsfB4dOhUB2PfLChR7SJufTYm4drvjljDrG+IWNN9XvRDsNB3wtUpW+Nsc8HfNi4i4+92nj7qvzBS9jz6wHbQwgdBb+wtOnoq2HHm65+8anLbzmMT4d2e/BUYMCWa+vYPpVnmAQOf3CNsSHG5Kx84msMRzXdcqBtLLEX6dOFr48HLHrs1PnCy1jYuOq3p+MDQ4EpBoWePoHPBrYHLf/ZIR5T6NA3zt5LDA9b9ijbOKvFZcw3zb0Y7Ho3NrmIQ4GHOx/WJR70FT56WKKjLcdquuUhPDzp2afFSk8pV7NNF2e6U+AVj/lEu7yzpaPm1xzsbO1lfzbDN87EYU7e3njjjfXSbeKwZ0fowYpvvpszLmcKG7oKKX7j8qnw05w1pMOHQhpjo8hpdnyxL5f81M8n3XDk4ipCLw58tj/Kg3kFN/Nx5Rs/feMkHuHhPCX7uJuzFyc2X/mGQzef5XRiGvPSDe+42HM+W9U4eAHiRft3v/vdVYc3ca7SLk7/EuLb3/72+hMy+L311lvrJR9fdIyJQ2yuZfHFTdu4eTl0XXrxaw+Zc891XdG31srkqx0Gf/azl9LuxXLAtxeOcGHS0YYT/2KFg0elcTbTp3U2NgUWe3qtEf/4u97mZ4UcWCeihhUeHPu2F7v61tPLMTp4w/cCtfMSvub4ht0vGfQVeYUpfpysf/7MexHbi6hyzIYObOvTGogRZ/eL1qK9hhcpf+r67GCwwcNcWHTw0G//yxeefsEqdj7aH/YxwQOWXFiT9rmx1oMfWHzDNx4H3/ztPs6Hok8HhhjtRX7VXppaTxz5hilmeN1r2JZztXlrKZfa1owPOLgZw13RNiZWXI3BLhZ+zdHhDxYdYtzayxl8/tiKwZkIdp9RYmMvBmcoNuzp9kso/PCPg7r9QLcY+carHBe/eTzV6bQHjclduWdDV8HTL9oU/Fw79r85PnDwOR9/vuHhF0cY9EjYatIeY5c/6wNPXPYAXRhw+xcMbOW3fLpe2MNR2MqvNt7mYLoXstEuF+azgYs3f+WkeIwRsSjGjfFlffiDZZw/Akt+1KQ9bw+Thx56aJ2lxOJ68UsqextHOMadC2DDNEYPnjYpZvNyZ63ssWKUPxytl0KPTfuvvW3/2m/2KZ25NuLyp27cq7v+2dsz/VKHvrzwK2bXpzjxLP5F+PjDnjdGHzeFT/pqUr5X5+6Pct8YbKV9hSfRV+gn5vDFU57kkQ/9/PNNxz4TJ3txlv8w5ch9Tq7F8dhjjx1efPHFw6c//enlrrXJ9zvV+0X7O2Voz+8M7AzsDOwM7Az8D2TAQcKLdv8xm8Oeg4cDSgecDhD6DkUKGwcPBzW6HZSkw5y+4nDn8KrMNqx0HNIc5hyCjDnEdEjTJ3GBzZ+azEOXvkNU/mdtjrB1yDLHVtshK90OYB3CipkuW1I+5IHQbY7/5uOsD58OG+P6+RQju8bpKeaNhVe+8JXPckRXPxv65uRVDUN9ypdeNvxX6PMlF83TVYzPb/Zp40OsnwcGLw3sI3jFbZ49sQ/gkMb4pJ+fNXn3Bw5y7HDfwyc94x2GteGaLxflju5s6+PFnxy1DtzRk6fW6ZQHH/LiIY8OLLmNO/3pT5z1PfCQ8mI8MabAVOOBl8KnYk5fLtqfYdMn+uHEr1qOlPRgwIXpIaiYxIe3Ir/mPYD40zHTnh8SbtexB67JsXjowvYw5uHXNc+2/cwfXwQvecVL295yv7G+YVtn7fYprrDU8lDhP47GwpKz1psO3/nXh2uefli4GSetlTkSljZ/5o3BpFN8xry48Oc4/NJqvrzwjXYPc2xhTE5wSVyq6cDEmciZkt+phwORW+vFTz7EJdf0YanLGxu2xtmpi9e+0aav9kALl9Al4cTFmHaCA1HTDUsbrwoOinFrT4qbz2JKzzxO8dPPb3Hr21t02ME1FwZf8StuOM1rJ/RwbR/SgW895EWu5N697MMf/vB60a6OUzhXrePlenrppZfWi3Z58OLdZ3MxlSOx8V3u8HO9WHcCj52XCfa9WOxV1xoMeVIm3zDsYzpi97IIpjljsOZ15+USHPikdWajPSVf1WKCBbf46WuLy7w5NSz3DHzEzR9OvTiEOTHyi5s88EMfBnu41lKO3b+saX7y6cWp+6V8wDdP37rDI/ybg01c83Bh2MN02ejTwVtuYIlRnw1d/PXNKYSNYk4tD+ytDR34bMyXV3bpqfH3Atif5GJH+Ctu3GAY68VivPmAkQ97rDafxej8YI6u/Cp84exaEaPzBF/9SwsvfrNRy5P1Uif8FxdbnM0bl2c+rCk/uMSnNcEVJ/GYo+ca6GxhznjXGDtjcK1t93S+7RF/PoZva4Bz1wIb+8X+5NO5qX8dAMM83n028yN/MLSLGS79+MmDeeNqPNjJEyxjdLMxV6GLryJuayTnbOibb73xmz7M0Zv7AIZC2ruNqeUFJ/mEZw8k9VtvnPnGjY2cmcNBG74+EQ8e7mXWSbtxfunn3xwerd+MAY64FDpyzpYuXzCImo4cW3MYbI2rWysv2v3yyj6xF3Hzslshcu1cwAfhk478wJSTYtWWB9eIc5U48isX8qWkL09xpuu6sOeKCZ41piOW7kvWBB578zN2/sRhXfCAJV7jiba8iEE8rZM6kadySP+04KvgRdLni+CusONDTcTPD/8Ke7Zyko15eVfYik9JjPFtjew9MXrR/sILLxxu3ry51PKXzTvV+0X7O2Voz+8M7AzsDOwM7Az8D2TAQeXXv/714Xvf+946LDmEOIA4XDiUdIBQ6xvv4Ojg4tBhzli21R3sqh3SFHZs+GHvANYBTdu8gw2dWfjoMFXqjeU/DnOuMbXDFS4d8PDUNkdg01GM4VQO6Iq9+POR3eRprL422zDDMKYQusbVczxd4/jgh6+aFBPssIzjXdGH09qJP/tszHeI5YuP1ixd9nQcQIvFg7j1JA7bDu4eChz+6V8m+TSviEHhV0ka51/xYMw3rjCMZaePMx3F4Zrki0368kLss16UnPpeCic/YJXnDuzs4MmLOv54nQr/5sV8qqffGpnXhsGm/dq4MQ9C+agOOz44mTNeftLFTSywiPXy8M9GHunz62GQTS/aW3eYcteDEx384NgDxkkx5xe3Xp7Q9YLBg7w9ZP+Y59cDDxt9fNh4AYGXcTXsajYeBuG1R4zRERcbnPnID76V8g2P6Gtng4cxgk947OkQ9cSxR7IxD4+dMfHiq+BoTD56KQDL+P0EDsmndVPYyL2SDj089Sv6fJ7ya3+bb/+EA5s/uSju9IwTc/aF2lj3ebGXz/yGwY6PqTPHrGOFDklXuxj4xJlPeOXPPC7FoR1f9sUAk82pD2Ns4cQ5vuyTfMghvu5BvdRgh5c1VtyjvGD3ctw32yef8K5SF5MX7d/5zncOd45/q10e/IsR92GcxRNvbXtPTAqO9iCe7Myz869OrKNY3APowWpvhce/WOl0r9CHV57ptj9bI9czLFxgdD3wgxdbNmynGIfhXmAeX/q4hcMGttoYzO4zuNHNRvtU8u0+0V6SBzbGrB+7GRMe7PjzL1W8PO0+hEelF6z0SPGIKS7G6BtT65vTVrv/4GN9zOEVlhq2cbWSvjzgpp8dH4q+GOAq7OTKulhXvrtv+mW6l2qETbmAw4fPCvHb43zF3bycxY19HLUbF0+5tk98UxdGuYfPD99qa91nF5zEPOG3F8P5szZhwC22mQcc2Cqw+HWtEH3j7Njgp2Rvni+18e6D7SN8jPEBEx/6rj2fn/Ikd+bZixG2Qg+OtnXRt1YwFHbGFOuHAzzY9kxczHWOmNzh4qCw7UU7HX7VXQPmjRUXn+b5616njxN/9NjwQac9rU9PbZ5kY53EB7ucyzv94hYHrPAWwN0fbIzDVghb49W4mLMW1rlxdsScNZBDurjgx781wrnY4dLVn3PG4fjCQv+SI87WRL6IeK1j+WHnZXgxwy3vanp42VN4J/gp5RxXfUKPHb/t4fTlkk2xG8dJLDMescBRcG/PsGPjvtFa0uVLXujDd3+Qb3X51HYt0yM45sPe5UPNB5sKP7jBlbvWS+7MVWCay06dFL95509cWh84ihjw4+vRRx89fPnLXz48+eSTC4LdObJftJ+Tra27M7AzsDOwM7AzcE0z4LDhRbsHdQeZDiEOGQ4P/+4A4RDUwafDjAOLAw8cdQc84w5WioMZfEJv+nC4Mt+Bq0PVaXrZJezh92Chj1u4dOPRQfbUbzYOUc2Vg/w4bMUbHht8/53AgomfevqZ7Q6UsKb/OISTHv/yK+8EVhIuXXatB/44KFPoOUTyBU8eHTTVeBOHX2sCW6FnLeWTD/ZyASP+HVDhx88cnQ7RsNs72oROPM3pewBQ4PCJFxzFGH2cO7y33mLnX01PDMQDhgcYcYVjnJ4Cj9+KOVyMF4vaXoU18xdnuOzh8SMfuNxP4FXo8MUWHgnPusA1PveVnPIz1yE9OHzHR60Ug7ywC48Pv0hh48Hj/e9//3qIkVdjfQur6x8OfnC8jJETPuEpbNxfPBDmy0Onb3dZNy+Z2XhA8yDaWsuBb2v961//urdnYCn8mWfvJZJvguEqz/YBv30j0vp4QTfXm/39pHWgUz6N8df6pqMm8klwE4uabvPm9OVFod+eyCYfdMMPtzr/dMTVtQczvunAwF9/luLgt0JXzkj3aGP8xlefD3VzahhiYac2Vg7gwUgHn+I2R3DDybgaDzb2gb2oDgOO9hR2cBXzU+jCj6d5RRxhlQ92dNnQn3HTNXYqxtI3xwZnD/14w6ZjnVwv5rxg/+Y3v7ke2C/DPPVxWb8cuDb8x6pvvvnmyp8X764xfElxahcnjq41xTUtb8RLG9eidaQrBnyJHM/7GP/mvchW4LAh+SxnYjQmB+4d/PUCBwcvuOQKLzb2Dn/ltljZ+Vaheb74hGvefQC/uQdh4ubeQNe83LDPjm348W5N1GzkBW+29geealzZ0jPmzz540SxnuIoBpnltfvFjU1sO7XfxtM/ZKGzsGZ9VhI906evDMtY1w69CGufjxo0ba72KDQ/rEfdiYldMYnffdN8m7sW4yCWhJw+4um9/4AMfWH+/2P1YLHjwI3/i4AsnvnxOwGfLh88HfXHl115kwwe8/swKv2IKWxzG2CqtDf98y6Nxe8Ta4E+/NaDHTxj4tXdhvec971l7FFdiTiHFKD482hPixLkzEl0+xMmGL37wMs5WPGI3F5/08DCGQ9xgikVc8qFdDtpXfPkzIPKgTejzzaccwCtvdOSL3/mind84wYiX+BR4dGDy1QtivuSPj0rXoD5bvNnKIVxj+M9Y5SafcmHevYOunLGFO7m5r7TWxsVGBz88ixUPZ4fOPPHkjy829iI/5ozLV3sZdvnTnuuqL28EX/vPvsgePkxCDyexqhV55D+u9OI123CME9iw4KrxNC9mMcirfkJfHtWEjftY1xtdY/ZFewaOvly2t/gTn/Xmkxijiz/hQ679qz56+l3bzmti5U8NX3Hvdb9Qyw0uYpVn/tSKf4Fjzv2Kv/Y2HfHRMY+THJRTPvSJ/dqeMl+ceOJlDf2N9ueO/wH5pz71qWUD8xzZL9rPydbW3RnYGdgZ2BnYGbimGXBYmX86Zh5s52GuA1sHHOFqO8h04HFYmeKgpTigqD3wegDrJZgDjAcsByf4iYOcg5JxfOCfCkyF4AEfrgObwxTBhw8YxhyelA7eHY7gO1DxW8xq9sXLvsOZ8TiFsRwef+TbeAc3upUOa/w5tOnDK/7ioh+2Ot9s+DCfXb7UxuWCXnb04TYfVzVcOLiaZ+egKZcOp8S4PDr4ahN+OpCyMS9/4konbHtk5qJ5vLQVeAm8HkTyRTd9D38eAhx42ZU762p92cpBD5640cHfSxptfOIr/skDZnzgyIN5+B4QOrTj5uHLw4GHZ7i4E5ik9eTbfuYT1qnwJz7+zLMPI13YOPAPl74+GyImHCaO2D0EeUAhdJVizFfrz9YcXPk1z58XSBcXF+tlAx7W2TcOxe9BkF/FWsuH2jpYAzUbOcDDtY0XzPe+971rH1kXD8q4FR++bPlhZ27mLp4epnHz0t7ekGMi315C4iUHvumLQ3tRXdzLYPzgB2f5ECsMY2rrwk5bCQcfoi8W+jizN2fN9GES40q+tIu/efitSfjmtNnhIl7FWNzg4E8HrnYcrEnXBjtrpW6/0cXVuDH+7Qf2xTtjx4eNUkzsYKiNZVe//BWDOn7dp/XjrU7SayyMfOsnkzPf/JLGy2/8zLX/6IpBuUz4YQdXvgkO8qWw40fuuifRlfuHH354/QemH/rQh9YaXYZ/lTH4voH+k5/8ZL1ox8m1oi4/OImFbpzM40K3605Nt7VWy4VCuseLOYFLzzXIn9hcgz7rrSOf7THY/KrdA3z2szHv/tkeZCN/cga7fNa3L3GBJe/0FViub0VsYsUHN0VfjO5Z/LVuMMwRmPnGX6zuI+5xvTgsr/TkBkdY9Njo4xNPGHz4TPWZyc58uOYV43jC5EOeYMgV30QOxKTQgSvf7qVedPNP1/1UfosHJ7jGvLBiC1sh5pXygI8c4yhn2gQnEkfrb93os7Xufinr//Twkk5exMUfHcKGX1xac+vBV3uEP+vIN31xyx8frTe+cOixkwt6dPT5Zgs3HuV/ETn+kC8yfcGFAw9vQk+/PODAjyIGny/iy5Z/ftOHYS2IOGDpK7DUdMUDrzn4dOUVtjj4Km9scY0vu/LcmtCxh/SLp/WDw2e6/BF5g2UNnXnMi4fo40I3PPNs8LNmcM3p07cf4qaWH4WO2Ohoi62Y5eMPf/jD+lcN8g/DnLWCj4P1VIyLU5GvijhxoE9cG+55/MS3HJi3V/HDBYa+2FobNs2Z1+aTHh5iUfTb42xwFYM2vHzoywMOxvjRhgU/Pbm3hnSNJXTy25q2FnDa+2wUuVBIOdNmAwvn1tk9xl5tvxZrdXmx3t2jipWNPZmOmj+FyIc1d8+Khzx2dsQFD/HC1BaPPqzyIqde1jurwnTvoeceT6/7Cjy6rS8O5URbTPHAwT1SntJR4wcTjn+R9o1vfONw69Yt5ktvNa74Y79ov2KittrOwM7AzsDOwM7Adc6Aw8NvfvOb9Y04B1CHCwebDlNi67DRAUdNHEzomifazbF3qKGjOHQ5tHvR7iWpQ1EHoh6mYLBz2MTF4QomjvnQ7lCkJnzCc8Dlh19zYuFDbd6c4tA1BSafDvDa7NXsYGtnY2weds2RDmJirV/e1sDdH3jFbbbhlCvj4arhyAOOuInFmD4uxDwxr5D868d/Tdz9IZbWLF2+HVodgh3cjRO+HFoTeg7i8qltfh6E4y9/7PgRH5/mZoww9enyp803fX36YqjvcG4f4VhcbOm0ztricCiWI9w8ZPUfk8E1jlc5UOefvXY42mL1UsM+FrtYfFPMt/zsV/a4k2IpD/zb5x5kjMFTaqvZ4q+GRVed4CIevrUV+gp7fAie9HDoYa9/gp++XPKT/2I3TuRV/ggb16yXgvJOhy8PI2L3Irx4XbM9LFnDHrj4YiNP7PDy7aP5on0+ZOOliNG4a1ObGIeniNN6PPjgg+shy97ARb758veq9T0I+hvoPWDDEHNFf4q1EafY8S4+bfumvWNcgaMmanzDwAWWnKrxNgfDdUPfmLr1hRMmGwVHdpV04PBRLMbzAxPnxnCwfzyci42dNVPg4MGWWCO25dk43/FSN1/++Guevvn2MfxKMdA3RsoLfvZemHSnGIetlDd+4KjpZ6vGpznt8PgmYejDlJf2mj7Jhi5M/bDyVex0ZrGmrgXXJR25dy35p+deuIe9HJ35g2/X4M9+9rPDneOfjoEl3wR383IS1+6XxuxR9y/XL91exvWiqL1oPeDYK31G0heLMbliQ9yTvfTt/iwP7nuKvQ6HnWsTb3y13Z9cm+aINeC3vMld7fY6vfKsDZsfHOHgZR/h1i8CfBb55Ruf9oQ4xMkfe3y02VkneWMjR8UAO72uI/l0DRkPp89E+jB9q969yhooeMJV80PHfVbc4hKnteTfZxecrl84RIxeLrn/9ffUvWQXY591YqTH1v1QMYYvHzjLgUIPf3zMiZke30l5hSGHdGAUJx43jt+etwdgiYdvmESurDWesPVhiBUeyX9rae2tCT+K/MBkzxaG/InBXNe78e4/+JZbGMR+FY8c2/+tAz14bOjSIdY0/8YU+OKh6/MOV7ys2dzT7OlYO/uZyA+RO/lmB09fHPTxcO7AyXh7sVzBUuiaVwgcwoe2+eIoT8aLybxCxKi4bsQEU45g4cKf/OPYWuFDz3qIpTXv8xkuXbjWhT57eIo4rTcOxrV/9atfrZemxvxdbLVrF2/6rj/55qs8GBcnXXPllX+5s++sCy7tj/YwHcI/HBhioqfgbixf9IgxeXL+UPjnw1mIXfu3e0Jrp8avfW5ebPLBhqjNd89qbcxZR3tYjtvb+MK1XsUlVsU4e4L7bIsBZzZETsXknqRtXlxKtmJj45dm8lp+XKv0zfPJBgY7PPRh+1a7MXqKs6FrgMiLWIicmCf07UO1+N3/YPHnX9Sw87mGi5zJnbW0ZvzC7LpbgMcfxhWYd46fo+6R5SadanpetH/rW986fO5zn1vD99PN5rTeL9pPM7L7OwM7AzsDOwM7A/+DGXDg8KK9/wzVYcZBpMOMdocdhwltOuwcXkgHuNJjzqEHRsVh0QOvA6RDocOKA5iHEQcrbUJf2yGxgxY8PvkPW610wMHF4c5hrgMTrg6uavNK82xJmHziYbzYxcVWnx3dGWsYC+juj/hUG06vMf3a2XaITbfxajxwFFtc5ERJ2MKBTV8xVj7oTb/wxDNFrA7sDu8d9I3JozXJHq5DLi7aeNBR55edtoO4mi6dYuVfW6GLC3xtvosFPzHow+k/knS47oGRnfnyoxaHeeKg7tDtYaB1Vc82PvD5x1UbJi7wYdm/9rF5mF4WeZiSm9aCjRI2W3P2lz1tzlic8dMm9qh54gEBhvwS4+bx0BZj+9o8XdJDIP44usbE3f4ptzDKO37sjeECW34JHx62/HPZ/qMu6+ihyDeH5JUtOzHyJU48ceHDnDi8zKCPFyzfRrJOvXDiX27ZJLAUEk7c4XsZ4NtuXtrjaU6s/PSNduvT364uT2o5Ui4THOShfcE3G7kqX8YIDHNhT5vyLo9EHhS6XTOtsZy13+jCV/AQV3zzq4ZfMQ/LeLU5scgrDu0PmDhYC+umbYydfLMrN2z4J/Qmj9ZKTpL8w4BFX1u86vgbZ1eu6cqBvVdOwqxuvJzAggFXSeKAb+vFn3FjzatJOZptY+kbb9/F25i8igtm3MLCsXy3/u6tXrQ/d/yn5x/84Afv5QLWucKflwqvvPLK4fbt2wsLF/xwaM8Uf2tYTO4N3bvsA/M+R/HG11q4Pun3sgdHesb4oucaxMWLL/dIfbbGrClsa4MT8Zng/iFn7gnuGd3vYMsZe3V7Vm2uNW6vwuMHH7j2srb5+Lef+OilPu7s8hMGn3JgXN7kx72kNTYmv/DlRkziUNpf/OtPXS/gerHLhxdaclA8xsyLk7A1Jx668PjCy2dQa+ze55cb8m4vWlOfSe6p7MUFE7b7tc8sONbE2hCxsKVL+Mo3HX0iLmuAQ3Gbz44f93V/FsznNExx0RVPGLC9nMPBuPhaOzpig2scNn8K/0ox0YGBH17i4Iu9Yjz+5nsBGA/7FZY17kU7znyJBRYxpo03/9p8wYynNjzxWrPimZzpuL+Hp89/+YaVD/jF6nqCrW/P2Mfp4YkvTPMEJh3ABdJiAABAAElEQVS5NabmC2a5U8NIR3+Kvusmv2KCgYsYYZHWwPVRjmBqWwMYfvlC9PFRtOF5HoAJT84Sa//aa6+tvSxGL1HpFLu2cTVf5UFNjLlOcMGd2HOdP+Jg/5gvn+Lu7EjH+FyXfLWv4RoTp2tQwQl/1xv/OFl3McNTrHnrLnfm1Hy5VuETtvjZo+VvTdydsz6tE7904MqlXBkTBx6Kthhx1lYr5vhgZ55f10vPa3TssfYsW0Wccur6gYG3vJsTj1hbo2zkwprLFcGXwGjfssODGGuNGoNp3/uXjJ2ZLi4uVv7knS/xWF+xKGLgyxwpD+Iyr+/M6B4Zp6V4/JGt+PzSx59+++xnP7umw0v3ner9ov2dMrTndwZ2BnYGdgZ2Bv4HMuBgcfqi/fSAUZgdkvQdthS66evTcdAjDibGqh2KHCB908nBxkHKnIOawx3b9DtQwnZ462EKrjG6HbjYwHMAUvTNwWBLPx2HM3PV5mHRcShMn5/0YNMn5js4wkzowjFf4d94fIyXCxj0FWKc7v0k3bhkl3784Dqoi4fANaYQ43N9jOnnXy2HDu8Or3DZKMWe/bRrLr9wE2P4wpYLB1q4xjoA1y/n9grd4g5L3/5xuFbjCkNNxG4d+SpXxnE17uCthgNfO37G9MNo7WDR8WDgxbBDf3oO5F5s2J8EBjuc2LWmrUvrIF78cCgvjbGJy8xnWObEw7YH7OZgGeOfnocTDy8eMGHxYT6B09rRj1PzbDxs+daQF+1yzi8bmB5o1PqKPLiWtWF7KaCvjaO8KQQP64Yzfb7oVOLAFrf2iDYO+uK0Vz2wecneAx5bXPhnLw+4xg1GJT/V5ZIdXtYsDmxItrOfXvPVdPCVW9jtS20xFzf99oC2cf7ZG1fkKt90tOmkV3vGgJdrWa7xULpu2NvPcgWfT/pKfmDlN758GzMnN4T9qZhrHp629Yc/OcNib752MYSpj7t5oq+UA7gwCZzwtculOfZwLpMwzWmXc+3GtGHyWz60Ezbww1Jbc599vbi4OL4Q+PznP3946KGHFk6259Rx8rfZv/SlL60X7Xy7H+GHg348u/bY2Q9ehOJDRxxxc58rx/ho99LIL6vmvY6dl1JeIpdTa4tDL0zgu07b914KWRvXpnF6XgrDNU4PHo64wiPasOSRDl7zM8q9XXGttz5q9mLHVS7aezDhtFb6MHGK77TPP/18uI7g0lPwD1+fsIOLu3vVfKkoT+JxL6TDpnVT48s+ntXzMx6uHLq3iVMfFl7yAYNfL+P50SeTp9xbYzjGi4le+dAm5unhypc1KIf82g/2El906JvHgW85Mw/XOB147s9+QSAn4mCnFn+fFfKOW/mEUbxyb460P2ATfunJPf/s4Rrn2170OcmnObwq7NnCVLMj1cUIi61iLJ75w52POLOPH1/w6ZrXJvS9xPT5Zlw+jFkv+DDYyE82MOXC2qvplHe6+uWJX3z1yzl7Ooq1ZcOeD9euF6+4lDv8FHmExcZaK/o42K/ahE+f0+bpaqvlxzeJ6Wu7J3RfEJu1a9/gRodP2OWeHix94rxC17oSuRMnHIU+f/Jp37kGxOv+I+dyYW8447BrvcTChwJfbuRFgWufwOv/zZBffgh9djg11r7S56d1oZ8vGNOnOX26OPelBRzhmWstYSj5ZtM6wbFX/Akyv4TEu5jaL7DYy5dYrT8M+OXW3sCRnrZaXuW8dYIrP/LkvgfDGL580YdpnPArHzi5P/iFrPscaT9aJ7bs8mlvFD9O5ohajtsz4rD/7C37kfRLg9UZP9jiwpdvtH/lK185PPXUU0uDr3Nkv2g/J1tbd2dgZ2BnYGdgZ+CaZsAhZ75on4e5QqJD5mHCgUZJn44DCOlgk072+g42DjUd0vQd1Byw4Bt3mFM6bMHLj8MOfbrh8lmbjeLg1qHKwcq8cRyINgxY2eaHHYl/mPTNKR006cWt+XD0CRw+OpDme03e/ZHPy8biF590xMUX6WDNh8NgnNjGOR/xhKcdBl3FuENsD0J0FOOw4aQrFtJDuvlToUM/gZNda928Oblt/el5IMCnNbV/vDTwTb7m7D1xxAMO/fyo5cZDE47iIQ7cxvXpiM18D43GcJNrHDwkOPTT4a8XO+bpwqGff216s9CBhXu6bNnoK3TYGA9XPObyrS1Xjedb7ozPWFxf8Ix7ERI+3uIvB+VdbuJM3zcUP/KRj6xvpsVH7jzQwFZ7GPWw5sGKLZGrfOPNT3PmxTAFL7yLxZy+Qne29XHBuXyqw+ALLzbitKbqiVF++QlfXNYCDnu82RhTp6tP6OWzebWxZMZpvcrz1KNjH4uBtDba5vhTtMOTS3pqc2pxm8+/Gm77pJzhYE58MMzjw17Jnn/tuFYb51OfsD+VuMYXTpzDVzfPvvnLsMrBnItbsde373BTzKn5KYfVsOSEyAPJT7zC1K/QMw5bTcy1ttrNyc180X7j+Kc1nvsvv9EOn/zzn/88PPPMM4c33nhjrYHrD388FPtJwWHule4/MPDXV+wV/Yp514QXHK7nuTdwcH9wT+aTDR9yT4/4HHHfxIEOHr3YkXf9ciVf5QqW68893Tg8exU/dmzcz2CSfNO11nTxUPA3RuJJPxxtwrexMPmoGG8uH+bgho0PHUIHbvb5w5/IEzs571qUF2N4tGYwtfMfB7gw4VhzRcy4w5C77sX2ns9L65DED0YvS+VKX4Ghbh/p42IMrvXARTx84qPGXdHnQ2GXb+PZ0YM3P0vEYCy89NX2gnnCFo7xdI3hw58xHO1bHIx7qWau9S1H4hG7GM2JmZ6abWtEh+BHlw81P4rxBA6fXjriibvPSH3ryZZ/dqScmFP4xR03XIgxenLQnhYzfRzplU+29kYc8WFL8BKbOfr0YOJTXPQmpj3kWobBDhf56CUqDD7Y0BUnwZPe9Ml36wcPVvnBRx8XeAS2Mdj2EVvzbFoTY3AVAgffMIzRhUMHn/YCfHlW4Lif4S8X8sLOOukrMOAT/OHgBtO4/LBx3qRLBy5b8xX2dM0n4eprx5mekm01W/dgvzi1D+KYr3DZlgtc6HZNyuP8IgIbayim4lZbSxjiNBemfOoTY/DxguuXZ/ZitnBdhzC6luVPDLAVtrXlz1r7pYvrpz3KlxyIgz6/MFpT/XKgTtI1j7cvaOSbnj3Al1rM9HARUz4effTRw7PPPnt44oknFiwe58h+0X5OtrbuzsDOwM7AzsDOwDXNgINDL9o9bDkwGDtH2DiIOPCoHVbmwQbeHHPAokcciggMxSHIGCyHoA5FauLQ5VBMN2mscbpsiYOScRymTX3z9OMTj3JQDSsbOh3utB0Wizcf1eyIPl9qvjq0vT37dlww+MiPPv3G8Jx5dHBV0lGLVT6UOHXoNQcDXjkpd+nGxxp4SHEoxpcNnPD15YAeWwdTL2HmIRgWW2uhxk8O6LMncTNH0sdTsVcchH0DxkGeXmNeVnlQwMMYbAd6h3u2E9u8XPlnoWLAQY2v9YMbT3MebggcnMqnuR5gzZcP9vQUos9WjZd4tSsO9vNBxbzCD52ka8GYGGDOB6/ipB9HcSts+FYI7mKUs+JnY749XA7iqcbBQ9zHPvax9bIGNhFr+fFQ4ttof/7zn9fDpbzAgk/4o8NPMRrLz8wPW+OJfoXNLHTKXbnXF9PEgccOX1IbR/G0dmy87DJGx1qXPzrGSPp8kfgWT76bF3Nxs81ntsVgX/SCgt9806MDv5zrp4MXzPzQJ/Fkkw/tU//xpwNj3lfgFI824S+bt0fe5le7mv/Jl005pMOfNTAuFn2+7fHwjSWz3Vh6avuL4Nu9aOYke7rxol8+cDAXb2328NTsm9M2Tyau64UOKW/wXXeuYS9xfJP9+eefX39CJoxlcMaPfPai/fXXX18xiRsHvtT8+YamlxvFIsf2ed9EhWVdFDo4xUttXkzFhaYxcbmP2bf6c8y68m8/40APNn7+JdCdO3dWtHj5VqL1IDC0XXs+U3rh4YVeL/rxzB8bPHxWlXuc6c8XccUjhmKFQZprT+jjShd2uEv5+MMY29YXHltxWmf67Zm4wux6hSM/7f2w+kUwfDm1horPuLiy8ZnIB2yYrpfu4drWts9kOnJz4/h5GS9YxYyLl2xyizN8wq746osNN2sy58zLVflLH4Yx/K0/HXvPuhRPuvz2Wc6HuPuMtBbi7KUuXPrGi1u+eolnjg59f1qJLSx7ER/CvzwpckafTN848MEOd9+opacYh6EWUzwWyPEHfZzsbZhilmPXYvd4ecQRP+vBprj5wKszinzj7ixEH54aBzbWRtHPjg2hp12MONGNe/O4FBc762HPELmVV9iw6IWPlxj5pi/uYoRNV98aENzLGTzXuprAUviae8Z+Ng6HD7hs1PJGXx605VLhNyx9fK2Too8zLLxxsh7sjcEjOGjDIvxNexhsCHw4+deXc/lwb4BRPtjB5TvsYodlnK24+eNDMaawoSNmZ3Vrijef1pFNuGo27NnkW2z6OFkD/mHQtU+tORx9892f+LQO+NOHN/H548u15V6PD17w7Tv54LdcwTCOD6w4asOB5zoIB5a+64lu+v58IN7w2dFjmw6+fMiXNh33UgLPuvlMdM/wr7f4I+WYrc8rf8bo6aefPnz84x9f8+zOkf2i/Zxsbd2dgZ2BnYGdgZ2Ba5oBB5D5ol0Yxu4n5hxOiAMMccgw5rCkvuzQ4RBGX01vHnzCgxWOAw09BzNjHb7Yh5UfhymHQYdFuB1W01PDyJYfog9jxvT2zP//Ga4Y+HLYwklbIfmAGbeQ+MKPdHiESdQdCOsbC0f7Mux8s00XP36MFTd/ckIHDjEHN339KQ6hDqMeDtjQNUavdXSYdQDVdwDvpc3EYsuOf+MermZu4pZvfug27kHPS14PEfjAM+9h038AZ8xewUPcDu5Kh2h4/MHxUNY/TTZG30G6dYEL35yYiLZi3BiMHu7Eo5gnfM1ifM4vpeMP4zj3sJFf87iwScRFt5wYt+50ypU50pqny0948mneHL9xExO89OStnMEUt+tQvj/60Y8eLi4uVq7zDVfxgOqF3x//+Mf1MgJmPNT4eiiSOzzYlxtcSJyaL+e4TY502eKerTF9hT8Y4ejzZ45owzauaCtih+eBUp9PcSX5MhdGc7Omx5bITbyMn2JMO5j2s3sLkSvXS/zSzbdxeSg3+sQY0S8+NtnNsaU4ftCRbw+d6TcWrr4ilsYGxL2meb7aI9nIR7kwJmb9fIq5h15gdK4iuOBOrL1r25gSVzUpp2Gryxd+xYW7thwbz049hR7h1/VCwoBtvvuUe6oX7f7pub/VHqdldMaPuF/2ot19o5eWXjz4u9n84icOOfbSsG8xisecONVxjw7+ro95f+CfD3Gdfqb3Ug0PL1Dcv913rI/ry4sMvGH0oh0OHnzjSM9nimsQX/d1fdeF+eKXP7z4wMeeM9ZnAX1j9I2r2SviUvNpnP/08gEbLl32xstD+804H17aeDkl7nJdLtXyGx85gwOPPSxrouZLvtSwXCOEHht/EkO+wmzdzLt2fPOzP8NiDKcbxxftbMNna470JyOKba5D2PJircRpHQj7cIzjO/NLx1j7BC5+1jTf4YhTzOKir62Q9qY1Lef0u1fgYJ/Z42KVW2P2kM98OYdpnvCNby/axUhwN84+Hjhrs/HSU45g40TUeOBlHAZR429P8I27dfEnPuTRvD4O7NmSfJs3bh6/1gYenzMXbPiyT/DHpXWjq6/E2ZlKnmDKTfzVdMTKv/2iwHRNq60fO3pqY+llI1/4WHt6uDhDtI+dBfB3j1YXC/1yQFdfkRsvbOHj0fUVbxzkQJ4J/gq/uNHHlX42eFlb83yIS661jfOlLRY6SfHAN98cjrBhtA9gaIvF3tNun7BT+IIJr1zyla17Alx98zDEkg8Y9r41lQMx2/fWlR6Br82Xkh/50seJfjmEDc8+hYeba9bnBS5yYv+Inw08GCTecOXCvT4u9OSCPTEPG4YYzJVP3OibxwcPvsXCl71jH5mjw+7ieD71WWeP4JYuTgo/9qW47An4xWgPsnFNumf8/e9/X/zwLN7uMT6/P/OZzxwef/xx08v/alzxx37RfsVEbbWdgZ2BnYGdgZ2B65wBh493etHeIUWddPjRN+7Aokyd7Oikr+6wZ7yDlHHioOMA1OFWvzF2BK5DVwfADmAd9GCyIQ6X+dTPj8OZQibnNXDyI7704CkdUB3klGKFH3a+wGmzowdvzpk3hz/b+GRj3pg5Y9mWc/MEhlw41KrDcgAtz2HQDxP/KfDlT4wOlsUPg71C4NLTdwh3uG9NwmObf3p8qfnmByadYmZXX+1g7AWKQ709wdZh3EOAPx/TPoHTAzwe+vnNj0O6Q7Q8GYNVzvnFIbu5f+gbV/MBJzs2FXwr8BWidog3Z2/ri6uDvnEYxuVHbayHAutA6OAsx7jo08GVfkIHRvrGzRsP13x6YikecbKjF64xefZwIe/4WAMPM/YHDnLiZY2Hk7feemvFC8c4rsS+LH/8J3gkbBS++SUw5p42xr4Y2PMhdwp7YlxfLMbSM6c/Y7UWYqLbSyQ5sa/Z5Ytd+NXwSH26/DYGR788hMHXFONyKdfEOrPFsxjo4ENmDtoP5ukXmz5bukQ7vMbDUdPH1Tplqyb12RE8JpfiM0eXH+vYdTg55ZOumPXFy856828MZkU/iVN9POjJFz19GOr62ReHunZx4AtHv3ltY+zTV9cvLlwaU4chX3BdN2L1YO8/QX3hhRfW/3tA9z8RHIi/A+zb8X/7298Wv170mOPbi3Yv5+xv9yHri5v7pPuhur0gzuaNuS5wV8Sp3xh8MdFjQ3Cy3u4Nxdv9QuzwvSDxwtKLYOIFnHt8fq0hTvMzJV72SC9t2HZt4eZehGdrQ9degjvH5Ttf7OSitfISRnyNiw1v8Sjm6MLDw0sweO3Z8iMHeLCHpbTP+ywwZl5pLcVDzMU5nPzwhQuduItHjvTVYrf/1cTa+w8p6fVCCY5Cur+a5y8+fIapFhe+xidvfXxx4h8e7Ljj67ODjXHri0fXKz0ce1HuHmgt2JFisl/ZxAGWGPnHLX70s/Eyjg4be7G8q+UIDzjiIzDsJS/s7Eti3nVl39JTYKrLPQ4zb/yJw/5uv8iLb92Kk74Xlz5v8MAXHl59BsDmm515c9kaN8anvSVf7PTNiYs9P3JGV9G3Fs5U/ME2z86cMXr4axN+FfPFbU5fbPa9vBF9POBnZ854OtZRPvGEgSce/XKUrrWiHw/xFKt5nNnjw48cKARmXGE0Xj7iAwe+Yi4svrsPuA/hyl/5oC/f9olaHwc6zkF842a/aMuHe7B5cfIVBzEZJ3i29sb5k5Ns6BhjHxc4cSkv9hPM8mActpi0YSt406HrmhQDHdjWD27cYFo3duL2Oca36xZne4YdDGOw5c0vSLxsdx3iXW7hyBHJLzs8cTIffzp8scWfL3mxNnJs3Yz7rFNwK062uMAzJr78GMddjOIzD9OfQPSvX43hgJ98wHXt+Eb7zZs3D48//jj4pbMaV/yxX7RfMVFbbWdgZ2BnYGdgZ+A6Z8Dh47IX7Q4XxHyHlHnw6QCkNu8gMvXY6jemT2DMYh5Gh0YHnQ6E5uDOA1Z8HKwUdg5DSgdLdh2yzE+OxWC8OfOn3PSNK/m8rB9O9uoOnOYStvXhzYNyNsaU/Kj1SbzVtT2EOgg3Rlce5oOjOfmUD3i45WMBH3/Eq766HLJtHWDMHMMzp/YgYD3gJ3yHo+aH7pS4G9MmdLO19uJ0yHXIxt3Dr4dgD7DmCV4OyIoDOHt8i5tvth3s8ZhlgRx/0HcQV2CwUbTp86OIU9/+JPHVrzRGz8OXcXHgwg/uxsRLjCvszHsAUKwBf8bNi0GfbfOw4CjWQsl/2Grz7MwpuMGEl2/j5SEM+B4y+NOW+17gGSPy7qHHi3YPWKSHIG286dijfE3f5vnCrf2Kg357uuudLtvq1kgdLixttol+69aYWk7sLftM28MkfHj4nuLCVuIAQ1tpLh7q9ktj6fB1Ku0L460JPbazNGcsPG269q4HYYKTHJqLL/3pG5YSjrZc6yd4tR7GYU1MevqkPHQdnd5D8EkvHLZx4NteMSf38tca5GP6DiPd+nBqw86W/2JTz/yUa3aTIz1l5s28MXkJO3v+YGRDRz7UriPfZH/xxRfflRftrreXXnrp8I9//GPx8ALb9ecegIMXc/a2dTAuT3ip7W+51lfolyt82bm+y5kxLynURLzhsNV3f3A98cfOmBK+9bQ2anlzP3c/6SWqOfcN9/LuY2xhKfzxxTYc/fCNK8VhTt7NK7joK0QsOJtz3eBOhz2hJwfmutfBx899XRtPuS1WNa5y0P6HS5eeOh7yyT8/uBg33x5Slyuf7fzCphOOGIvXHAzxsCN82wfsvfDiC+eus3Iht/mNn/oUH+d8VPOr8Bk2LGtE3//zQZcP89ZbXQw+G+2FPuvZuFbYlB8vwOAZ82KQPR8Ejrk+Y4zLQXPm9XEULwxc5UChT8ccv/4DcL+cMO6FuBeGfJYLvszpE3iw+RAjKe/afNHtJbc2XOtRHHEUL6FjrHn4znzqKfps7DUiHlzLAd9xxa97grY4+BE3HLqKNt+K2OjAUIi+km/+6dnDrhNFHy5e4bB1DfTZyg4mvn5xRc8YHPziwE6fPzUbeVb0+VLSw01s8UsHrvuaPOJmnPDDBoY9SMecf3njG86uHb7gsZVD+6T1gIuTewKxZtpy2f3DmLjx4psvPtnxBcO+N6Yk/MIxRi/O5uHIFzEvDuvf/tTnXzywW6fi5Zu+61FsOMChp2+e8O88ZRyWHGnPXOGJj/s5juJ1L79z/DNhPpfYl3M+YBK6xt1j2yvFgqd5c3zJN2FbjuUUV8U1p8gtLPEY11dwNs5f+njLgb59KBfus2Iv962hX5j40ok/HfOJT3xiccH1HNkv2s/J1tbdGdgZ2BnYGdgZuKYZcIC57EV7hyvzDieXicMFvXQcUjrQzLZ5xZjDTdKhR22eZK/dAcuYwxJbuso8hDkYOQQ7WGYTXofJMNQOTiT+YtCG6wBGh32HLPpwCB3zU+g1b1w7TDj5iYu+Q2J2+uaUfKVbDUf8HX7ZeNHpwCvuMB1kHTodGtni6tAprvx0QC1HxpVTKdf5huFgizdctTl62srEKVd0jWdnfIo5XGHR7RCcvQO2w61DNu695DUuH+L3sOpwbC+Uj7jBl1fFGMln+dUn+YdLsjMfn2zMF0v21gh/h/L2LAwParBxD4uusYlhDkf+2cMyD8OYtrWVS/Zy4MGDHiy2HhB8S45u2HJSPujBYl8+xDLFnH1DYEx8/dbEHtTG1ThefNsn8mRNWg+8FHtUnMbFcj9u8PCgb12tPcwK7nD0zWkTdfiuBfN4yaF2ok0PjnyIUd9LAHW4bPUJTvRn3uiFbVx+CRu2ypSw5ph2PORyinFxyEHXdbhqnPjMj/3gBRE73MypK8Wmrx13uSbpaadrTuHrMonDnBMHLj304qHkhy7OYmptGzPOt6LdvDa+XQPp4NxcnNmUA3usPTJjuIw3HHgJnWKHN8WcwoaU6zDo58MeM+/lzCOPPHL4+te//l+9aOcPvpePP/7xj9c9RoxeDHlh5TNRLqyDNeDbvPzNvGmTue7aXsp48ekzhi1xjbi3da3Acn0qbOTJXHmB3Xqp8VVwgsOmF1ZexMTPnyLrXs43PPlj1/6Jr5pdn3va8q/wzx8bNSx70p9ecS+mU5uP7nnuXwrO8eeHDhz3CIUOH+ZgwcaTTv74pmPemrgnwjQux+6h7MqtObjdJ2HHw9i8p8GNk/Whyz9sbRzZGuODf/dg3OLNLs505Y/AkO/Wng3B0z0/3+aLFRcSjjisJV15zq95PFzH4cC01/rs1Pa5D9/Lab9c9683yrl9X47gGrdn4KbDthj4yb8aV2PWxf1BrZizLhcXF+vb5+buHF8U+launJLWRE2fn0qY8iivfeaLmb49hhO7Pg/N6bOt6BN9HIg1kf8wxIBze56Nwo/cJvJhjLARX3u1MfyJPaLgjid/OJgPu5pvuDDp07Vu+Bmnhzs8cwrd+NKBbR2dG1wbxF5w3mPXHjHOVg7U5Vtb/viB2xzfcNVsCF6w3YO1cSY4xIV+9yTjt2/fXr/EdMZsTdur7S0+xUbsQWKMyBEctevR9QuHHzL9wrMu5YeOfvzpuz6M4U/owOeXnTYfcqfmFy7O1p1da83evP3hOhUDPRh4mVOIHCtyhoOibb0VmGzw4aP4rAvseb1bU9ysDxu5EiOc8givHNIRQ/cGfunTEScfOFuj+mzoi5ktPvnJXm2fiREf82oFHhs5ldvyAM8vyp87/mfmTz755MoN3XNkv2g/J1tbd2dgZ2BnYGdgZ+CaZsBB4tVXXz28/PLL66ArDGMOVB009LU7TDiMdABKT9+hR+kA5BBjnL3iAOXAA6fDlUOdcXZ06Jvr0EzX2CzTh3kHOAfYDlvslfiKiT3fuNGDQbQ7QJlzQMSHvgOWg6BDqDjjgCddfdLhVptPePwnxtg3bk4/3/DoNB4f4+Fo44+fvNL3p1Mc+jyc4KDgijN8QtehvLwbc8iVL5iED3iXSTpw+HYAxU/s7MyXB/3GGi9nzcl7+mGbC1Pu5xrQF6MXhx606TmMe3jtAC1mL2m8XOrgnr/ikms54VMxry9n2uk1j6OxdIzLgTya0yd08oUbvg73ODrA05dv/7ESOw9wbOl1nYQXVvPG22ewYeGAs75c8dH6woThoUYJFz/xEzrFodaf/tgTfrsOtIt7TR5/wG4demilY+3kDD9Y9ku59qKil/BwzHkosmY4wMQnTsb4Nu9BRx7hlm8YdIgxUl+O2Cl4sIsLPb7CKWY17nIVHl1j5uKnzo95uu0v/daMDrtsG8elOOgn9O1peTVPjCnWs5en8Q7HvJwZx9V+8I0r65vvbOLaHjJffNZPnw6prd+aGFPKBd/E/NwjxsWLi0K/YjxsMbh+rS0/dNRx0IfVGK707YfWKQ6wxBU23Wzh58MYHaKdj9rs+KsvNpzV02ZizDY7GAphFwZf7gHv5ot237T9xS9+ce9v4foPifv24OQbB1zL1RyTH5xxpOOz2UtgfFszc+4L7Oh0jVkL/e4t2nLY+vbygz0se9xLfMKP0ossHHymu16tJxuSrWuEf/hq4/R8c7L7RPmngwuf9HD32eFFyfve975l588APPDAA/d0+HWt4dO9xzdTXYPmiHn7EG/r3b3YZ5Qx/nAoD/j5nLYuvsWMl+sFF59t8sEGVvtbztgbU9jACddcUh6M4SLvPuPtDXjG3JutsZgI/8bZ0C9n2uXaZ1n+8XMtG9NO6PJ/WuBYD599uPis4ksc5ub1yxYXpXXyuSKf9pT/j8Wa+Vcb8iKOO8eX3/AJPuKyb4zxQWCJEz4dbX6VeNMTO07yy5ZP6+LvqdP1yyt7AD/5EIdSboq9OTj48Oka4guOMb7oGdOOKwxj+uzpaLce+nSso/1iLfStr/zKC/30+A6jvQRfEYdcWEuxGhMPjj6j5RE27tYNz84z+cCRbzbG+HNt+uUIXJzgui79STnjePOnwBcbbq6tzgZs+HW+tX/NE2vOBm/28sCPGgf+rD0e5sUu362Tmj4OihzA44+IEQ47sbZffUnCHsbPPGxx8jNtJhY8+9d9xbgY5AEGTuKWMyV+bFqX8srW/YQ/cfMJVy7VuMPAy/1FjuBZv3La/oFtz5Q/2GKhj5N7WusH0/rCFSMdOGGVYxgw2ZVHOmz16fGbwIHp3oqfmi84eLkfqklcrQc8POjq05EXORADX3TsF//Cy32WL3sjHD7ijRM78z1X2D/lonVmE19c6bB77LHH1i/Kb926tbiyO0f2i/ZzsrV1dwZ2BnYGdgZ2Bq5pBhxafKO9F+0dGByWOtTQMV7RdwBRO/wQB50OMg4ztdMz73DkYEPCduA1xgYe4dtB08GJHtvm8u2gxIZ0wHYgos9+Hsqy5R+fDoHi0VaHiwtsPuE5gDq8wqNjnHS406aX8K3AJGqcKs2r2cEN05h+fIxrK9q4iUHcdD0IenBwQIYlFlyV8iYWB001EYN5B364JB+rc58fHUp7SJBHHAhuceU3vuWdbj7KYTX7ciMuMYpJnDDZOsR7YPHQy6d5Y2o29ooceNDQzhfdOMqNdpz4NNYa4JFkr8+mNZLD8o8biTs9bfhi8JDmRZI2H759BxfvYsddgWUsLHrhyzsdHPjGIV/a/PQgwcacBxglDLjs+ZBPmMWhP8sK6vjDWNzSZ6+UH/n3oOMahqevTT+RY6L2Ny/nw6CHz16MFDPOCj8EB/vVA7S1FV/+zf9fe3eTo8lVrHG87k66hRACg2HmHTBgYCG+xIgJIMAIbBghDKgtIbED9sA2kMAwBmSDZdQSG+H95a2/HaSq+1Z1NxcKIqRT5yviiYjnnMz3ZNbb1elrN67Gub2qwGLnJVn2M494x5GiT4/wDwtm3E1bOnTbR/SKSZ1MPluPfKRD33p6sWmOXnj2txd0+GouHPZsxSV+e86LdnVz00as1oMuKWf6/MElbPQJfO3G9HEjL+Nq9tbeHDFvTxg3Lz5zE4vv4oEdXrnDoK9fvvaBvWNfZNOcvMSjlJ85unONjgAvP8RUbMa044Nf/Yo+YSNPPmATbRJeec0xNrCsr5eGL/Ib7b/4xS+O6ws3f/7zn4/rX3v6x6XrVB7ic21oGxe/vnF94l7lHuYaT0d+2vKQOx+tAww5mrcusKzHXC9zYrDPvVSBo2+PuD6zsb7FwycpVnHBIeaM8+Pewk6biE8RFx267pn9ouOmF+10vVDxUlUtBucLL3C8vHEfouP+KlY5wLXPtb20kRsexNG+s/fYuIZdy+Jy3/ZC0Web+6YYYcqBTzUe4c9CD2/GxFKOR9KXH7iJj160iwfPxUS3zw0YxvnWVviAgy9+iL6XW9aKz2KiW0x0+FLgyKOXlLDYVcwTtrDkVLvPNi8UYflliJdb8rEmyuPrF+1w+LV/4g3uOT441slaWBfz/PApdwUPOIfnG/jWh74X7da/z+/wi1ddW35wxMOHHMzBEbc6/srZvLYin3TEoog9n/i3X6wFO358Lsz9Uq7yEAte+KRPzMNpD4izmPtMFot/SeD6F497AZ9wxBhn4iOw8dsv5vBlzL5/7733PvhPYMVkL4oBlrOo60INkw2/zrd+OS8v8eGuvGb8ranrVezm+GADT13e8qXPf+NqIsf2hTwVIrY+e3EE3z4gYsI/4aMiLznYs3y5b+DDy3b64qKjxp+2OOxH6+KeyZc1cD+x3uLWx6996X4jT/bihs8OlvXul4P6ZPIuB0VshJ37Ej/261zfYoXDV7zJVRuGmIk+HbETc+KOczZ4dq/uXkjfuNz5Dgv/7MyJT2ErNrGLFRfWQt+c+4P7DWzSHlfTwQEOYcaHdZJb93ZrKuf05WJv9YsS9p/+9KevfvCDH1x99atfPfyI6S6yL9rvwtbqLgPLwDKwDCwD95QBByMv2n/2s58dB90OZR2upOVQkph3qGDnwKFvXtuYw5IDDDFWodOhy1gYDlLTxngHNXV6+VdPP+YdMh2OHMTYiN2hS5tuRVziKDe24m9e3eFKm55DVvr5NgdHDaNDpT6/kyMxzDzMhRd2fBR7+NMH3/iLWxge6h0gHVqz5d+cuODKhw6OG6PTQ42x/0vE06E0XsXGVilebfkpU8RBJ9E2piRsxehByAFbrunoe+hyIJZn42zZWX+HZCX+zdEVC3+1jZPWoXzKo7nsjOcTl+0P+aerpkf4oiMPDw1q9h58+KIXNk7lEjfNqRVzeIBnTdU4Iub1ewDThmNP2Q8eDPSLUwzafCr09Yu3WOA2Xgx0zRcn/9quXQ85ajr2mYdCD+bijGM42uKy73rQVItTmdfQ5ASu3F3fc63EIM6KeOQIhy+69oV7gjkxGINlnhgrNn32irHi4V/bGA6sB3tjdLXV/GgrdPlUkhlnevmiQ5cv3Hl4pMOHeNniyAsLLxIaZ2+ehM+3dfD3kNXGCV0l39Xm4pU+e3PkjG08/sRrnXBCtNnbC9pEPvaBuvjiBVYxhcnGvBjMqdsLU5e+mIubDk6st7r44eWHrjkFFuFLXOIj/BljM33TMZ7w13VIt2KeLk744DMs413L1td/hvq8L9qLyTf4fvSjHx0vA/nVt0/wQeRnXRRxi4UendZYnMVLB7b1dO91D2ND1PBwUG7lj7P0+I5zteuDL7bwum/gqjU2H29ermUjFrjikgMbxTg//LJlIxZ4/NApHrjEmLz80taLKuNeqHqJSNf+cK+e9ynxw3YPMs8fv3xZ04lbXmKg4x4nD358PuEclj5uxeFadR8nfNFxvdOXFz/0YZ65Mw6/++MBcvkRH7DEHCetBe7wiQ/4ctemZ04hteu3f+Abo882PW066cnffQuneOMr3Nr65mCwh8neWuNFXP4DUddMfODWSzUc4YAtDnCrJO2Ncmy99M3xwxZHuAmLnvOGfWHcN7K9yHTtijEp71nDhScOfuwJ88bhG1NI94R4h519uvrTFh/tM/q4mOtvLB21WLwkhEf45jcMHMCHI+b2Kxx71PWCA59N5WIdxGyN7El+6BO1eLwkh6vts9/LYXjtGXpisje85LXn21e9RGUnHvyJe37G8Ok6F78c4SjG47P7DTvj8uaXvtI6iEOO+ZeXwq89puDHfNyZk5s9TvQJTNjy9aKdb/i4lacYYdFr7cqRT2coc8UCB+/iJ/i2Fl0bxsTuyxx8iENMvWg3bwwn+FAr8WFeHPiHzb91wxM7sSjG1MaUJLz2FztrQviLS2PmYLTmYhY7gel6wxeRszYb/LQ+xQbPvFoM+HLftmfiwTycsOiJM/5xIGcxwYcNp1zShydmtZw+85nPXL3++utX+432Y6n2xzKwDCwDy8AysAzcxIDDzdtvv3316NGj4wHPAUPpEDoPVOwdesw7kJhzEDGm3cGtQxadbIw5cDnwqB1W2DjgwOgQqQ9fzV7RVugr5unDMM/e4chByJxDlIOmmswY80m/ufD186Gdf3UCS4kDtrhKt0OafrHSoa+fXmPGST6yo4vXeMm/MTp84hGvHRDDDouNWD0YKARnbB1GW+OpfyidfogFDtsZt9haexjN4UA7O/UUdvCaD0M+HiC8AGmPyM8Law8bHiz48XDjBYJDtXYcqvOdP/r8qBWiLz75K2zMiYM0J8b4Nh4H7CvmZzEuPwf8XrTX9yDj4ce+pBd2cekT/gl/8p/7XFvJT9cTW/l7IHEd4CUdOIQf7dbNGB2x2h/GYRSXOLMRB9FnU2zG2RnT9qD08OHDD14c0VeIvHqJZM+K0z708Ol65RuOkmiLp7GwzBsXh8JWzoo+fO3WNlwxwFAr7NTm62fDR/7lqODJvHjh85MvurBhGpu4+YdJ0qNLYLf/XQP6fCjy4WvuefjiUOIBFjt7wt6zTxJ65vkVC0x1sarbV3RINT0iHzhqUk7xwq+iT+wHfki62mccfsph4mdn3nj3K1j0jeGB2Pe4ojPxsjWvhBE2HGsqTrp4mPkd4JcfcaCmK8dyi0O6xmDCCEsbNn5x4v72sY997Op73/vec/2N9mLybduvfe1rV++8884Rlzxdu3HhxYnrUpErO/vJdecFUntVvOJ3P1CXS37Kfd4rrLec5Edg8O+67vprPA6Kw/rB5F/Rxh0MLzTgaBvnQx69hGqtejmnDw+3fX74vOglILywzntJfHwQcbsv4U4s1plvnPR5S1fe+JEjaS/yQdS4FZ99yWbuK/Ne2vpWvT+RIS864pzfoKWHG1zw58W8P6Pi89A6iFPMPlfU+mzac+V1BHX5AUcpnvTiresXBj37KB7oikU+5W1OaT3UOMe9+PACS15eVPMbl+ZmESOs9p0a98Zw5WW7X7h7WSsWmEr7rNzESMSiHS9w+IepaBsTX9cLO9ep+O1TfOD0L3/5y/ELA7+U6f4GXxwEVnj6bPoc1qfLTu5qffrwFVwRscQZHfEROcjFmDxxw0ZtTIkv+Io9JU/6/jWZdWu9cShH8ciXT/Ni5tNeJ/SziTf6xqyJf43hP43li1gPL0/9iR9/2xwP4pRj16W88S1X82yc5dTGEjnpq9nAEbf9JcbyFgtu2MtBfOYV+n6R5Rozjhc6YsTp3Dti4Y8vuvKNU33tGYc42cMTy9zLsPyi5lOf+tTBcWvlntu5lT6+/RLEL6Ng+Ox3jVuX8hO/9RCbIg7xFKOcYPllkPuNvPmHyR8bY+wUEj8wCB0cwhIrTq0Zv3IWC9E2Vyxx33oaF7v7Ex84bI9rx6345G2ftAYwrG169pRYiPzYqPlUtBVSjPzLUR7GxALHechekIdzFG74hWP9wmHLfxyWZ7UYxPTyyy/vi/aD+f2xDCwDy8AysAwsA09kwGHkd7/73dVbb711HNIcKBw6HCgcQs7iAMKmw46DWmMd0jqoONSEQc+By2FHrQ+Hrw5GfNGfdrUdAkm+1OzUHTQdWuF5sHB4cnBjTydbtRynzHzoE7Vxolbymf48fBU3/8YnTnrh0Z0xTP385UuOBB694tCWN718Z5t+OTgsK3TZ4MVBkx05+z8Gr3/wF8/s6SpsrXPxzfHwihVUsdAPzziM9pBDtoe3Hsjomevbh3KA4wVGDxE95MgrjvgXq75Su3zFpW2Pz7jFQ8JhR5ec4y63xtVTVy69aDcnLw8W/t5n1xY/M6ZznPr4UYqhPl+4wYmHCbpw7X0PnNYYJ3ybU8cLDPb5DoO+/WtObK65rk869LOhy38+xAfX2vnmoTrdeFGLzcMgbA88HgS9WOphJ99Hwpcf4siPPKbQlZcY+IJtbxiDr7SWavbqCj7Y6cPSlq8yJf9wcW0+X3iuwEnkA69YtPnnJ1/tPX0+8OdB2wsednz04oOPuLPG+vKz5nTZw9O2VjDwkojZvBjFYU4trq4DtmcpZnbs27tTL59id2/Pr5jKVQ2LwBEP36Q588V4TFzP0aOfDb10W2MPzYr4zMEkapjmrMk5frFaU3r8KPSzlXecyRO2mn41XWvCLp34UpcnPhTXhr/R/tprr72QF+1esHz5y1+++uMf/3i8BBCbPBViXbz0cT/qxQUuvPj00sdeik+1/VNu4ifqcsYX3uTVy5DmrZF96v6s1ofVvPx7SRxnXT9xB9d6mWdP+JSHIi9cm/OyTA2fnX/lpdiHePYy0XXV2YCe3PX5FQ8/MM25H5nTliO+8MFvLyaN6+PKPUzc7N17yklM/WKMH0Kfbdz2otJLwF4C4cxLc9/WtjZwYMNl76WbvSNHcdn/uPbiUB1n4qffvR5f+DEvnvYIfGJ/wJRX+eBJoYsn9uKTp/UxrhD+4hD3cHwGsqHDRk705IpLsYhfDEoxi5uNOBR9+s4BD8cvcdnAFaN2+0gcxWVs/nKbD7x1zdPDDRuxEGsufoWuuV60e9EfF+wITAVWsbMRG77omWeHk9Zf7foxZp0I3Yo+PLbODjDxaX8SePZTfvXFrlZgw8Wzf+UyY7FG1oFvunFpz7LBN9w41RavOZyIw2fMRz7ykeMXP7gSp5wfP358/NLPn7DCKT/2l3ji3f6Bbd768WssHsUjbn4JHsSs8C8WMeBEgRNmnNARlz3T30o3hz//qa77X5ywhcM/kSde+OcTT7jVl4OcCDvxsyuOYpKzPzHCp5jh9AsxftnIWxzGiXuWXyjRjwvXPN9w23NyU1pvfPnFhnsGrnDr3qjPzhj9+FQbiytcwtZX4FkvedI1T9iIy3zxWCc8GIMhdtcqXRy2bjgVg5peL9rbBzjBbXr8i4U/wiZu+WrNj8nLD3HCh6EQtT3g3mZPy8N90pmTP3jOo+r4Ea+4rSuf/Ff0cb4v2g9698cysAwsA8vAMrAMPI0BhxMv2h+Nb7Q7xCgOJQ4YdKZ0+HHocCBxoCIOIBU6hI5Cx6Gnw71DDWy10gGOrw417LXF4VClpucgRjpYGXNQcjCi4+Cm7QCoT+DQI3SLT54dsMRJP//wFXbTFwx69OOqOGEb12fTuDopxjCnXzqNi7GY2fClL9701OaUKfmDhfceTtjixWGzvNimD0NbYUunol+sxWiOiK25Y+Dyg44yxX6Jb+MeYHrYc8B1uO6AbR4HvZgJz8OcBwgPTPgm4uBfHPLRL6/Z5rv8zJ9Lecdx2OIobnHArDTHNt/49iKlveqh1MHeQxUdcbenw1PHoTY89oo27qyla4xvfrXN05e7tVW0zRtX6MDWZkP04cJU5McuMSdONubVYjcOuxJX4nN9exnhoSbs5sXQtQkXHx4GPWR64MRHPtVJfurPGg/dg1zzMAn8cmlfqIk84MuFaBtLT78x4/iSg2KPmuPL/ushUc0ffXrWgIidLmyx5puufIuJHsGfB0PCTiF0Pcz2cMi+PQQTB0RseJ4v2o3xo7Q/xSgefeN0igGOuWq69PIZb3TM8W9/WHP7Ho4xAlcpd+NhNR6G/rQ5Opcf4pNr8aczY8ePNTAGD5Y+f+ysBy7pFb85sYrdWOP0SXnDootXYzMXbWWuP1024cCiw5cyX7T7W+3lTe8uwg/xov1LX/rS1Z/+9KcP7g1857/7qvXhn4jXCwbXHW7tH/rlWY7lV4zmYbRm9qvrA3fmYMB2bfTyJSx+2XV/txb2VHGKwTyB1/42bxz/fBuPX36yN4ZbxT5Uu5asb9cg3Pm5wWcxmPPyp3uROPjjF4c+p2AVC337io4YyhcP5lyrsOjM9deGAVOMfb7BwJ0YfD6Ls9jU7Ly88w1itbjYyI1u9wa8Kubic3KJJzHCVEi8WU829OF2PzUGTy5K2GJSCBtFXHCsAV+4CI9e6yjmrkd6SsJf3IsVV3Lu270wjeNc0S8fdXmL1be58WqMXp+ZM3Y2YhGDedeKfWq9xe4a81nllyKtt3EYuNBW68ct3/yW28yHjnjk1edL8YTBrrzsIzHqO/8QeDCy0zam2NdyaH87L7VubNmYU+jDlb949a0dPGMKoStevIjNteWz3ktMObTGvkzw+PKy3S9/2JpjM19WWzO+8qkfn/zi0nyCrxmvdtzgpTUIg508nMGsmV8ywiX2tDMHTvjHRVyr88Ve3361D/g0Jx+5EDGKnZRLefkM/sQnPnHMscEpv65t1xZ8a+I+bAy2NXM/ECvfan0xyFeehK45ccEm/T177fMZmS5/pBzbA2oCk8Qr7lzH9PFqfHIlFmPlrdYXj9zpznsB/oqDLv5dm9avvdMeodfnFUxCB7cKm+zoFhc9/vFC5CwH62/vwsK3a9m6wRCHcTitL7zWFY759hhsv0B544039k/HIGdlGVgGloFlYBlYBm5mwMFivmh38HCoUBywbpIOZOY6fDqYOEz3gOXQwr7DkJqdg0+HeDYOP/Q6QMKkZ059UyzTf/owFHMOcQ7THuQcZI13yITnwDbtjs7lR3GUuxjYKdrGidwclOU0xbxDYLkUv5pNwo8YFDbw1RV6/OHWQTUuiw8+TP6LwdyUfLJV9AlM9g7ibMpRTScfYiEz72IxRuDQy7d+hQ6/8X4YXP9wEFbYOQB7kHB4tX8crh22wxUTDA8ovhEH07ri31yleIopf3BwJB4+7D06pNzEUe7G+aNrjI6+Nt/4Kyd29c0RY8XAJh59S0nOYjGO/1408KEQ+tno0yVwe8jFD3/mKmzaU/SLRxu2OGebvjjhWleFnjE1XHjm050PPvCV4j7Ar3+wUfj0pxHEC89ax2v6Hmasa/9hHn48BLmG2YTTGmSnNsd/RezsjbvulfgxXt+80px2XMBqfWv38IcjL6Tk7Tq3hjDtRS9C8AST3eSmdcmH3Nhkz04M9Ipfftr1a4dR7GpzbAm/eLfXxEFg05m2x8T1nHF2rr/iv4lvcYZj3lrak2zyq21Osb/ZtPfKs5jomoPBXg7GxFM+te0TYzCmyO2MZ8y69HJKzNbL2MSYcU8MsZQ/fXhzTZtXE/jFoV/MxtllC5ONFxgv8k/H+Cbjq6++enyLFD5O+cq3PBUxiq1YcdmamE/ShWHPt37ywUcvOvjqBQbc7ODHjfHm4oY9HOP0FHvJCzu14jOBWHfryMa3zb1MEkdSDjDsebbdy/DshY99Xe5wvFhxTTfeusB07/HLUL745kteuLRP4fPp2nUdx02cdq8Qj/zotOf48fmjwIxLeuyVOJ5j4jLHhj8++kUaP/JQjPPhuhN/34IOV17u4dZMDvzH5eSNP/7nNQSDvnz4hCMeufDNrzMXbtm152Fpu2/6VjF9Oo8vL2KtK0wCszjFpC8mORHx8NG3ffnmVx7WVFzxYx/QbZ38aSXz9kXxw6dPVzvexcBWnM6yYuC7l5i9BI0/c+7lOLdf9OESWNrwElwQ9kpx0BEfXhX+iXjh+wauPBuDm23Xuzl5mIs7/mDbL82rcW8d7GNrQAfXOGUTDl15EPP2Ti/WXQ84Yg/Py2J4ra1fjODDfhC7OMVmDFdy0+bPnJxbb/7yywZX7a3G6RB9XMhBETt9mGLFa+uCS4VvenTkLFb+xQKPvpKELxY29g2BEVfytA8UbTr2S2vA1nWJJ/njr3XGGz0FHt9yyJ8c5KZvvvj5EL/riy1h28t7tT4/dGGyl2N5wNX2ixPx+QWJvmvNPRRfbKyhvGDggw7RtwfoacPjiw972RrQT4zLH0/2DRuFDzGwF7M9az+kT5eNOOgbx4c9KBb29og+3mEYI+LBIY7EqpjDo/skHL7gyFExphC6fMKE40X7D3/4w/3PUA929scysAwsA8vAMrAM3MiAg8STXrTfaHA96MDiQORQo4bjMNeBzryD0DxEOaw4qNA3Thw2HYI6yLJRpsw+Px0o05mHLmP0+XJYcijrQK9tHIY42GmT4qydz+b16XR4c1DTJ1PHfLbmtM0Xc335dtgzR6fDK36U+nEJz4HcAy0/CqFXDMfA6Qf7MPgvPlwQh8swmguieOuXs37xi6McxJGOsQ7jxeqhoG9B0bV/OijbB2zE5VBt3WA5lHs48dBg3jrC6+Fj+paHfiJ+umrjbLThzlos5uOcXmPZmNMuJz6081/exmHjh284HlhcG+mmQ0+hJ29Fnw1/ibF8N1582ecLjx60xVPu2ajtrXzAIOp80pnjMKxF/uUw92i66VkvudPx4MSOjmvd37j1EIQL3LW+1padte2XKh6aug7Yl0v+5CCWOI0HNSwFPn21mKZteavN1+ez9sQ37mHMmFjE2jWgnY06vvnTLkZz7ks9kLfHxWztu2exMxeueTG2R8ItVvPaOJ3+xAkz7mDQJbNmIzfzcaFmR/iDPfe7tn1mjl57N8745UM/0bYf2ktiti/oybW82RIxwMWFuvjoFz+b/Nj7xLp48E+PLcxwjBsTt9zDYCu2eE0nfPHHA5szR+xJcWuzaW3YuAf2ot03HmE/i8Ai/gzCN7/5zSt/qoEfefJvXjEmBmOtCZ8+R8wp8jSGi/Rhz9jY4xWHeMOD69geyAaOef74Lvd0woQF2zzh18sieKT158N68Gc93SeKVd3LZDbwYHhBw5+9wBZ2MbOxz8RrrvzEoe3z1bXJF5+KWMuXHT25GeseY6xc1eZJeep3X1bri4kfGN2bXIOkOLXhtS71XTMw4JcLrsoVrgI3G3UvcsVbbsb50zdeH09iI3DNWxd+u2bFi2/rZs768AuHjVrxGe/PSeAcv176G4/38oUhZuPWUOFPgSfH+NWGUexicW0pzcnBHqGDd3PWWIFpDfhTYBljK157CV/G5CVuOIS+60d/2lsLBVewYcpZzDiCl0+25q0hYSffriljcOQwf/ksHsKW6CtwYPKFC5+zfBN9fltP+eCATbzmGy4cmPhiS88ZRl+cRFxxYIy+z2y/+HNesy9gWVO69sy8bwu+egAALAFJREFU5ugTOuXS2tLljxgjzoTwxY3zKXTKwzg862jP4VCcxrq2tcXcmnjRzh8OzLGRsxj14dNXm7PHYeITV8ZaV/pEPPKFAQsP+WeD186+bOkYlxvb+CkGmNp80VPEw4e9Ld90YZgzloTP3pxc+ZcXfWuEW3EaMy8OseW3OPXpJHKGr4jHuY8PegpsPugpxmZ8cHGJEz7h2APyoj/5hsXW2rU/xYIPe4TIGwafcVWsxaRPh2/2fPFN3zgMfXzxqVb4femll66++93vHn+yDY4Y7yL/czG4k0Xqgq99F4eruwwsA8vAMrAMLAP//wz43H6WF+0OIA4mDtMdhhxWHE7UDkJTOqw4xBGHGecFhymHPYcXdsQhR5kiTqKmV98YLPgJ34pxhyg+O+Tqi5E+H2KApd/hVN94cZjr8MXeoe8mmTE9ab4zEs7gxwM+HWzxoRajHCaX4vDApUy7+Jj++SlH2Iox8asdhmGQfGSvbv1gsCUdxsVNRx8eHfodTOnSMZZfvtj4Z7z+XIL/0I1fhU4+HWg9THnZimd2+tYv7uDnb2LISRHHWTpwF/vkPlyY8GCoxSS28Gqbp0voEXh4yMZ8/Gtnm/58yJJje1RbPOnDmwJTLvkKj392+rBdT/rFoK2Ipb3FB3w+w2NnjJ492rx1Jsb5iGdYxQjH+nlgEqNxcSVsHzx4cPxdVw9ibMVQDvTw4BtVXho+vnzrsbUwB7889Umxwm4N5CmG4tC/rZTL1G+P58sczHKbNsYVY2pxWQ/XdPtGXH07S05T5G/f46V2fqwRfnELuz2CRwV+fBWD2PkKw7i2OhGrAs8cfHblTc+cveH+xEc5WztY4hL3xGWXnnFcsO2eHw5cubGn3x7Knm17Xnx0J2/m2cEXjzob44o+3Phrr+rTn9K+NMaXwl6hG9fGxTN9sGk/Z2feGDviZZt74Iv6z1D98/s333zzuF7g+1aivcM/3/jFNcGxmOVPr1ziV5z2q5o9fuwDNiT+4doTpDXV59fLGlwR+NZbznDxJx7j8QlfPObdc8T43nvvHb6cL/y5EPpsFbESsXmp53oSl5dYdP0rGi9g6MItJm1j/MLQJ2q5ErqNy4duOZeT3MVF3KvixnxYxuiRuJK3+wBuxcEnf17YycW4F37mukfANC7/yYExc7ibL/zyB4Nf8aj5hY3j8jqCu/5hzeLRELvWhd/OeHRwxz+REy6ssXx6UVfOeIAlHr5JHDn3dQ6Sw3wJyd6+6jNIrbiXsSfty9bFi1Ivl8UjPhj5V4v1weXzx7+gcs0QZyl+YeJF4df+wRcsscu5cwl/1q0X+HBwBF+O7MWGC7W4YcDyJYPWG19xUQ7xVvzG6bkmxAAHnnG25VdbLHIQR/+ajJ0iT75bJ7V1K+ZsiwuObyOLm5++yW4N4PmWvW/6i7kvT+Dk3XffPf4vGrESeIq14Quu/RgvOJKf2PDKjq74ib5Czz2r+5uY+J6ij3+1NfGinZ3cceYXDPyY518cOPBNfcWenGuhzQ//cK2LWJ1PFVzAx4cc5QaPLhuilhddNb382zN0W8dwxCH+cuTDPaLY4JrLzvonsFu7/vNeObcf6cG2Fq4ZumLzC1uxulfDlad4+aRjLj7UMxbz8jAmJ37xC8Mv1fBe/HD4do3xL156dPALi9SGKQ72cc2XX4R5ntCGUczdR2Dgmo37lhoW/7DVCnuFX/PmGtPGrfjU5sXuF+V+uf35z3+em2P8aNzyx75ovyVRq7YMLAPLwDKwDNxnBhxQnuVFuwOKQ6rDjgMVcShxgOsQM3lxgHTYUczzC8OBEk5jDjsdmhycSAcifQcdPugkDkAOVGdxsKrQ4duBDQ5/RFyw2NMxlz/zxvNLlz2cuwoffMLihw8iH9JB1SEVnw569KvZy6Vvds/8tWcfXrjq5rXlkH8+yzXez/qTV3NiINbA4ROe8eyPycuPcPmOP/l4aPOfZfpPtPSVGQd8B+75H2T2oh1OAp+tmn0PTeLST8RG1PIWMzsSD9qwFXg4tyfFrg/TmLYxB21t+nzBzj6bfOSfD2OwiHXugax9ZW/hmw2cfB4G1z/4wdHELS42BBcKHfEZb53oiiPs8MpFXHQUOmzxxCc7fbrmlMm1cbquD/6KR0zaMP19Yb9kmS/aw5A7Dry88p/PPb68aGeDs3ijE0cTlx7/zYmhOOKT/rNIe16c0w+s+OVD7vIWg3jLGaf2kzH69qCHQYVN8cGWvwdi3PIrBzXc1gE+mdy0NvkKk63rqfXg35yCrynihWNcjD0Yl6P4w6fHf0KXTX6Na7ONM2MwPGDPFwkw5SRXMeBAYauIR1/+ir4Sv3KjJyZinG+5qxP9uOSvB3f6U8QoZr7yoWZTfnSm6JtjUxwzTvGFa+/3n6G+iL/R7j86/PGPf3xcL2LyGSE38Yrb3rOfiBcu8WifiTnu8Cjv9qo5YzjLBmbrri1X+u5lcNq/dBRj5ueL9omPE/jitS/ct8ToRTt8L7/8yZHix2nrLaZ33nnnsJebfe6Fnz95UDzlAJOtmNjBgE/0tdM1Z4y+sbPg1LnHvM8pfQKD7dnOfDyUu3zoWwNxt997Mabv5Rf/OFbgdG/XVsRJz7WjTV+O5ogxwi8ucYxzcdJNTxyuX/rszWmLQ6z8yqt7avvdZ6HPdPj08Ww94cpZjoo23WKmKxbY2vyz5U9shA9+2ZS3eyY8EtfiIq4rL2jlyR8xRw+GPWF/eNHuBTEc3POtzZ8iJrqwvAiMC3rWG7Y4e+Frnp382GnjgD7fYoePJ3u5e6uxchUfgYV/GNZc37WBGzzx7X4Zj+zjjC4bOnz2op0dPWvHt7Y9Y1y8dKeduFpDMdvrMPszLDjjy0t1n9XaXmj7xYRfXPjsdk8yTuDxZV3446v11I4rOcpV/l338oSjwIDv/iZna2u+os8XfmDAFpd87RsYYueHjXn71r3JC9t+EUBfvjC04wKudcGjfWAfwRMz3wobOcLXpq+mM69T8zjofiBuemq52Xfi4x8G+3l9ii9O6LDTh8GO4ND9hA++xUqXb3vcfs2Pvfr4ct6C67qUc4VN2PBJ+R6dyw/jMOnhyV5RywVXfMdjvDsDKOKRGx1zxS/v8iz/1l1O9qU9h0cYYrK2ijUSC174ZSeP1ogPNsUtdmNs+OS7MRjwyllePr+/8Y1vHH+yDQfs7iL7ov0ubK3uMrAMLAPLwDJwTxlw2PCi/a233joOOg4VDrTz4KBNzwGkQ5C2g4hDh8OK4uBmzBz9DjLmYDosdVDKxuEFhoMTP/AV8+xJWOYV+FNgi5vQpaOvwFc7ZPHtEObQXWzm6Nennx9zsMOvr36SlBc8AosYd3gj8IorLDnjAIc9+LCRq5q+w3CHdfjxDINOOagr/GmXEw60cd44bO2bpPjNaTu0qvnDKQlHHOb0FTrycpi3L5SPfvSjxwNgD2/tCbYO216qe4DrgRBX1qzDPtzJWbHgbHJnfAqu5OnADIPox68+G/H2AFTfg1PzbK3j5Ls5eMbNt9aH4eXH9GOMXhjsZsnGvLxxJBZx4TARizKx6enLQ1spX3baxag2zzdhx0c62mTi0NWXH/2w1Yq59gHb2TbvZYi1Lxf70JiHXfFYb3vcw7S9wIcXGh7W7N3wZkzTd7nAwV37VSxPExik+KduGOJTcKuUP5v2addXc3DbLzD16dJTtNkTtbW2R+HLVQ7q8i5O+ny0DvpsZp8uuzD5yr8x2DAS/uvjUVu++VQrxtX02w/F6h5mjq+JpU9XjNbamtvLjRUnW3wr2vnJnn4+Z93ayEVc7IrTGF35KmHxYQ26vtiZY5tM3MaNldvU0+bHvFpOir51wY385e4F+3e+852j5vdZpHj8/wbf//73j293G5svI/km4lHkVzzdk8VkTC2W9lwxsSNyZpO+3Aj+fDbBgK8vX3riodea6MNwr3ZfNc7OmL6avhzg8G2esFXEAZ8v30y2jvruKb3wg+P+4duUajhs1da8fWCMnVjLc/oy1r6hKxa1Fzza7ktyEJN+n89sSHmbd6/jR376RDu+jdkbbNwD4pQdvuDLk15rLL5ewGmzjUvXmTZ9dvqEP1h402aDE/b0uobNi8HnrzYRFzz3cBi4iJdy0YdjHj4bOfjXBsasG11tWNo+860TXfGQiS1/LwDFSNh46WrtjKvNwZOn9eGTHn9Ev5fBPl/48dnSeYM/9rCcWbwstB72IV8KrtnBFGv4fLPriyPmcaaYU/iHF29HUJcf+jDh4ZstLLG03vaVNaJnTLGXiDFCX5GHOS/Jrb816AwlXoWvYuq+xAZ3uGYHBwYuxDi/xc2n3OAQuYkZP64549nJB4dqvgn8coNtjg17Ioa4ii8Yccq/cTEr5cheHM152SwP84SuudYNDs7Ew05MeKFjnOCOfjyJwfUXp3TMG1fDyJ5vojbGT+uEM2Pysg/Fwjcce1qs8OiJX25qOlPgiY2Nmo5fdPBpPcOBxQcRI46tkTYbL7rtMXrFnR9xNqbm0xg8ayfm7iFytHZwzRc7nWJnj2/XizG54dOYePmQCwyCI/P0+KNDV4FVbPThyYHM+PjXpyN38RebcX3Y4RpT4BkP13p88pOfPP50jP+EPD9H45Y/9kX7LYlatWVgGVgGloFl4D4z4IDy9ttvXz169Og4aDlMKA4YCR0HGwcUhyjiUOKAY5zQcahzSDHXWAcymA41DkwOZISePhuHKj750FebD+swGD/muEPQPER2IJo50HHQcpj30EKHqDuk0Rcj3TDr0wtPXXuEdOCUb5iz7gBZfPmAIV8cKPTkxwd7NV0HTdxpG8+X3ONKbU6ZHBUze3MO5QSWHMlNOR0T13PFERf6+YVD2hPG7RV+fMPQwVaOvs2unb4HSw8tYujFiIdg/WJubYuvmq/aOOtgbpzEg5pvtT2gTozHo5j17T+xyxOueMuZXTlXTzxYMNg3rjYOQ176ahwYm5jlY4ye9bJntb2IEkv7yJgYYGsnxurzAXPqmNOfY2wnlrY8CH0+xdoDjDnjxQuLDaGrb66HK7r5LX4cedDqW3PdA9jmS9uLxL/+9a/HCxG8xWP8FUexHEFcfoi1fWbMfHHUP9fZ0Gsun8bkaH8oYiN80OlBddqaZ8N3RfwKu3IwF446DPbZGcM7PG084pDAm3PH4PUPeB5QWwux2lf6YcGrMJu+irdaPEntbMVgDI+tI3/6YVrz7gcwSblrG4NBP8mPvjYdmOGml428xDLXSL78sGGvjQfc5NNYPLENDz7MyhyvXYz65/jEImfr5eWGf3r+7W9/+6izK4fb1vn1T/69tPdNUvH1sg4OHfy3BnISi3uJl9JqfXpeIBCfM3ggcaAWOx37jsiRrheVCmlt6GeLT/7DpBeWcby4B7imuneIyX3PZ4PClxiV1sCYXGGw9RLVC57y8GLQi3ixdb225mr7gPiMYlPs6vzQEb9zirFy8qJZrJ0l5CNm9wAx0acr1uI2D09e5VAtDm3rQexL3BpzXxSfdvzwIwexlgc/RK6uMfuMnTjoqVsHOOmzkSMd4+yJGPjBn5zox7WX0PKJTzEoMMRpLn9w5ODb5NMnjoh1tMb9kiIMOOnbI9Y2EYe4jFsL+PiCqe3M0Us8OZWbF69s6cF31oBjTegQ4zDaS3R9e9mLdjnFtzZdHNDRxzf+5AQvX9pyoSMu+0W/HGHK3xmIjX1gHpaCHzzCJfiFwV5++grhy7h5/sQHW9sY4YMUr3HFGV6RPxw27RX/qezf/va3Yy/EAT9ErOWLS3b2CFu+xD9/kWKcLT2+1Pag/UaaKy/4cNnRr7b++MG/HMszbs3lC27XRC922cmFbzb8ySOexYV3OvnFp1jYELFmA4M/ODDosRUHXsWL5+JnL2dnHLiEnXWhA49fHIbFVxKOexi+4dN7//33j8818RM4CmHPzh6zx8XDp3F7XDzm2cZ/vMRT+yU88blHyBUf7Ik2wbP8zJcnHXnyjWNFHzZRi0HcYjMvN7V+OZUXX7iadq0Nn+15a+EahC0uOYtLv9jg0zdO8qHP/uWXX756/fXXr77yla8c8/TvIvui/S5sre4ysAwsA8vAMnBPGXCA+O1vf3v105/+9DgIS6PDjbZ5fYcLBxgHLmMORx0I6Wk7vDSfbbWDiENMhyX6DkEdYNQdlDrQ8mtMOUtzxh1+HIrg86MPn4Sr35x5hb7agc8B0iHdAbzDdzrs+EvKRT2Frw6YjbMrx5nHjC87tunAVuhVxFse8MtNXdt4ttpTjMPgx1qxwVsPDHTzebbjFx/y0YZDYBBz1s1BX9H2UOOBt3++Ss8DgQcuD65w7IcO4R6UzTn4OlCLBR/2XX5giP8mrugn9MVKTw0DFp/62nTsa3u2MW267OAVA90KXaW+Gl6FLYx0xMSvPBWCP9wbJ8VzdC4/YLLHqwITrx5Epm4xNMaG6Gvzw15/SrywT+RaPOVkDA5e4oO+PjFG6Cj8dP3C6mGlfGYcMOTjgQ9f+my9MNOHzc512bfpun90rcInfBXLMTDGxAUnHsSgz+Zc4OEsG+2JXR740+aTjmvI/u1aMjbjoXuTz9aXbvshO3EWq5zYNyY+fM11MNcapA9fTHgLXz7iKze68nEt8JGNeW36MLTFRif/2bAXi4dtdmKhyyY7a+u+Y82JeYV+vOvD6hrkSzmLmMKmX18MU1+cMOHjoJyNsTHumtQnxqyj8WyNkWKZ+Nr0yvFQvNbVbpyOvPHlxaBvtPsbr1645zvb29bF4eXX/Ea7e6h1aC+KX+EHP/hyzT148OB4+SM2xZg5ucNur9U2xz7ecelFtvt1fIqdfv6MZwePrbh8ziowvOzppVw+rb+57pnlyj47Y8UiLi9R+YUvBy/36Gq7d4rDPJsZn7zN44A+7uyVdPLBX2XuTznrK70IYmOtrTlcuYjLvP0lT+PwtPlS+3yMY7EUa7ya65ozRiZOuHI1TmDjQE7ZG8e5X3CwMcdf10jce+kmXusgVtJnu3ytrzk+2PBjrLzoZxefYosrNubLGRae6PCDPxyY1xejeWNqsdNVN67flz5qF4fPFmsNj1/rwU6brvitv70jXsKXbxzTtT7t6XDilx4csagVc/CJNh0YcjEvf+NqfvlgT8c8UYuLLd8KG4XgEl77bMZhXh8uTlxrxUWfnf2krsDnD77r27/aSNcYbmY8rUH+rSEM/MDW98uM9jP9OGJDTw54ci8hYhS39bdW8NjTdf+EiyP5yAt/5u1VMcaR/QzL2hK62u6RzhDm6fMlf/j6+DInPrGKoVjmHmnvm/fZJp6eg8TinCs2+RmHJTYx8afGJ57FkD91hQ6f7VPjclDg4cI9zP1Pe+4lbSIXsfLBP1u5ijd+6eHfWhF+xF3esOQEgz1far67TmHTwx8Rt3Xh3zhuFRJ+NnTFVDz80JU/fCIHeMbjwTweFH7EBYeIX4z048KYefbGYGqzE4v88SCe/IiJjj69vtH+xS9+8fDD7i6yL9rvwtbqLgPLwDKwDCwD95QBh5Tf/OY3Vz/5yU+Og6e+g4maqB0yHAo7WBl3QFEcgBxA6DWfbfb6DiIOig5JHcL4MV6h5wDUwU5fge8QFZ62cWLOgayDKCx9pXk6xBwJdx6yxOXbTQ69Dmsd8uh3iMunwxZ/dBoLd3LHX3F3YIsrtuaKzeFPm16+tcWoHxZ/5VFsbKewU+gpxdiYGB2O+ZeHfOmkl7/s608f5vJjnI618/DjYQa+B/mHDx8edQdl+Xgx5FuYbOIRnn3h4cch14HemL1nX4lVn+g3pm8c7uRKLvjsgCw2bf5g4UDBndK6sWkcthjlCa/1CtM8aVxdGyY9ffZiw3N7X18s5fS/SB/+5I+9mg4c3MqDZGeeqMWuaCv5Ln567NKVJx1j8qykw78xmK5/4wobYyR+jMFjY6212x/psJk+tfFkLYvJvvF3bI0lePJg7GEUf12r9op7Cj98iI0UW/b8wKeTHzr67ZnWiC9jYUxceOwr+nzS97AmNvq40IYJR02yY5M/+toK3+nSZ6uUF1ylHHCNP2NJexkuUYvF3hNnvoznGx6seU+I52KaufEnLmvkWmffWlqnHlzjtvjh07c/xNE8H/FOFy6dcoN/lmkvlrNko07XXlHihi9tvunJS9/LRXzp0yl+PuhVmuOfj+a1p44+rD5DvSjyL3u+9a1vvbAX7W+88cbxrz7E1IuC9mDxi8E6K+4l/p8M6yF+c166iLH4jSvlUo0vPFo//xkpf60pHVh0cKltztpbV2NeKPqs7c8l8OvvI1vvfIhR3HzA6r7Bnm3rI1aFPl7dG3yG24PdG+TAf5jHQl3/4MNc91W29rCaX/PxN+204cpJzGLXFi+/bOTt5Zo5Y8UGm4145CUnBV4vEeVk/cQgF/my4QOmmi0bJd6q+RdLhX/3S7nim7+Hl89mf84Fjtjk3fWbz64F+rDptp7xaY6Uu5iJtRcbG/5hySuu5ESXnv1IF4a82cjTOBvCv/jYtSbm+Fe0jcPjA4Yap2yN+1ccfatZv7Wip4jH+cPfcO+lImx73Jx9Gr5rp8/F9hvdfLUuchIXX/Smf5jxZg3o4JUOmXmVM3x6ipztBYU/Y/mjFwbO/FLFy1jxw2ots7eu8hGjPUrnD3/4w3GN48b/r2I9zOWfL37Z0dFv38KXC9+u2cmN2BQ69mTc0+O34ro0J09+6fa31HEkH+trnt98w4YRnjiMyZG013EuZnPW07UBy7ViTm78sxMLrqyZvQzbvYy9cXH5UomY2NlHvqlOn38YdPXFhjNrwY+/dc8vPf7Mi8m8Ojs6fMGiZ44NXlwv2mzxao1wT3Cn5JuefOQbv+z6U0r5NtcawMMLDPm1b1qDYrZ/8Gu9+ec3nsVP4Ctw1GzlKK9yYJsvceJC33VJ5Cg+Yo5YD/a4KMbya//p82PeGN9xKhZ/dqf/w0G8+YGrz/6ll146/kXaF77whcMvjLvIvmi/C1uruwwsA8vAMrAM3FMGHCy8aH/zzTePQ5QDyzz86DtgdJA2RxxQHIwcOozRo+NQAnOKOQcRBzAHLgc2OsZhwHKA0XcAUsIxxn99uNodkPhmC0fRrs8neyXRZhOGw5xYHNA9TDlIGisuGMUahloOYijX9ODCN26MqBXjzbHVlhvBo9huymPmOnOBqQ8jf/nCQe1ibEyMHfL5sy5kYqSr5p+IFya9MOuL32HYQ08v0zzY+efi+ubpejjx8OEgC5v/MHDqoOwhxnoYZ+cQnG9jYjeWwHEAlwc8/bnO2h5Epg0OYIelX17arUsx8mW+NYOpr85XY9nTpROGfSVGOeDU+JT8V4sBJjGGRw892cGpmC8W7WzM1642L0aFTfG1FvrG+a+Nq/aBObkR+HRg0sfxXC9z5UoXDj36MOIKFlz5efnjgb482Hm48u2w7iHzWoUft9rxXu71myt3fTm3Z+whRX/6FlsC81zg2LtiyEfrHL94IPqEHl/GFZjGilmNJ8W4eGZMcHCpyI+++fiVQ37ExRecs7BT4OEFhlxcg+7V7MzLR5z0+Mu/9WLTuHWKP7bm0qeriBGWeBT+FPrEvOtS7q3djBummOIt/2pjRJukZzw/cWM+/+JXzMlBvoR9GMfA5Qc9Mv1rF8c5hua6NtwjfZP9tddeeyF/o90voPyi/PHjx0cM1s710UsgsYoNl4p19hkrDm35mXf/Nl7O+G8dzDeOm/aTX5p6kcKO4E9pr+WrdTcuPi90FFy61r2sgcEPaV9rx6c23z5D7Gm5iK/c2Pv89oKr9aMDyxxfsMSnlg/x2WBe356H0UupQ+GGH3yyETtceeILhhyV4lLzKWb4PtuMsVPsS3ba1qScjLPDtUIHj3xqt56wzoX/7GAo8pKrzxH5+4Wm/wRS7HyZ7+Uh/oyJlS1/hB95yp3/KfTY8Evinr7crQuRpzyMsSFejIlDXHyz5cN43NCzd/gQh+uJLzjGknjhByZf2vaBf2HnBW0cs6ffi0q8idPLtvYR/9p0+xcAcupMwZ6OXNjHlfbsy0vhX0xyiC91fIhzvmiHQegT+HQVc3hS5CoGBY8JfbG7xvpFQdzggZ0cjPFhzd07iD9H5UsRYrJfrIeXqMXNFztrQYdfc8VgTt/1xAdffJSLMVwYxw2ei50tTDpEHr1cF3d7Wc1G3ApO2BpzjxFLGPDgiEeOcSge14Vri53rtH3IV2ca9rh0rbjH+qyAJ37c+kUOnvmXy/lFuzxaT5j8wuj/erCvFL7Lo1zkQczjTFzm+NbvGhKPfGEo+vLhp3zNd33Bk7Pi+pKbebGpy51/OGpz7MzJu+vCOH74Er92vu0DPohaXIQNMWYNYGrDYCNH+RH5yCH/YtAOgz9r1PVQHmKOT/Nxzw9bfYUvzyb+BSX9uGxeDNr7oh0TK8vAMrAMLAPLwDLwVAYcMn7/+99f/fznPz8On/PQwlC/A5VDC1E7gDikNEbPYaiDz6F4/cMccWhySGLHXjHmEKTtkMPeQcjhsX7+wzE+D07FApc4IFXMTREv/HLgH666w7fDnH4FRvqw+DeXv/DhiJsunXyrZ+za4pNXfLEj5RVH6go7uAqBQdjykb9j8PJDny07RZuwZ9MYn+ayD6s6O3llB6fY1V4Q9E/RHXKNOZDaE3D4Eq8HWIdYh3nj+TUvDvvDwdyB2Tx/MCaf7Y/igtsBHAa71oAdbA8lcNTEuBg9pBmLQ7rlSY8PJa7Dpae0l4ovW3jZhiOn9k325rTZK+zrwwhXTsUPl466tZt4MBN25mAlfMi9sfJTJ8WgJnDOHMRFNvDisrjZwC3W9kW5xVf52zN9Q8raELbW1wO+fLXtH/vEftF37RrzoD3zYgs7HHPtH7HBK0Zta6SW7xQ8GIOXvna47MTBtjW8yWaOtcfzFdf5wKUy/WgrcuJHLuUnlpmbPuz86BNroLAn8rEve4BV+w/t5DN90xVjhX0Y5ujyV4HLT/eDYhPv1I07/toXdMpRHTf8NFcc/KXDZ+1iN2/c2shTmzRe3vDY0FOKUc2GPqGn3bwxbcL3WbKLdy+LvGh/3m+08yMW99Nf/vKXxwsC6yFH14prorWPq7iRjxdN3Wthud5cf+KVv7aX78bZsVFgmqfnZYh+ewGe65C+9W6fta7szHuhw1Zc80V78dkz/MPlhw/rBF9ecoQ//8yUHLz8kru9xDcMenDD6QWOXIj7anlbx/y0/8XIPtHGSS8uuwboERjy5Eeu7S/jijgI//KQm3EcedEkd5jG8h0P/Payk71Yqunos+GDvTjUdMQRJ+atLX9sFPl6OdjLbDrFegR8+SFeY+5L5WtOmy/z/MFrv+MWtpeJ5uTHrzG5E7EXN3xtY423l+TAT1zxZx8XF7/m4mLmYJ372+1i44OdtvOL65I9PLF6SatN7Dnxljc9MfFjTE78xjm+2fg8ojv56RdacMsn7tRwXRME3nkNYPdSOT7tC3HQNX+20ZejUuzyFnOxiUW+8oQBu+uUnhyN2yN4y89cKzHD548OgUPXPsifcTpsxcGGX5zRLUa2CjvXupe6uJk4sPCGE/eH9gwc1584YJAZG5tyMCc+hUx9vLLDD2Gn3X2ErhzsHy+cXZ/ykot7c2tqjdon8OTAVsx+wYWP9m37jV4xF6v9YS/DMse3tmvKXPHhw/UFlx9tY60Lu/YwHaVrMg7la/xcxw97+7k1oSd3JaE79xU8MbaHsjHunio3ucavcUVsXS/yFqMcZqzWT0wKfuXMpj0gLuMKKY/GzNvz+DfHL/z2Br+4/vjHP3719a9//erVV189cOjdRfYb7Xdha3WXgWVgGVgGloF7yoCDhW+t/OpXvzoOYdLokOTwMA8m2h08aqs7ADogObAYu0noOWARhxjtxvQ7MDnMwNFXO0wpE5ed0tg86Gg332GpeGA6hPFBT4EhlnmQ03dAU2CIQ02Xrfn6sMOBb7641LXpJ/SflBc984l2Jf/m6E3M9G9TFxNd2PjKR2NnHDa4U9PtAcSYByDFoVteYXS4h48z3xZx6D77gymX9IoFlw62eDVG4pguUVs7pTE65aiGI95eLLAL2yFaG76afrb5hFvbXLps8yV+9vqK3Of6wAiHXr5qZ5f/cPPbNSF2OrD5aN649uynC4sUH6zygJONMTpErPTM9aBiPB3rbD59dfuDHrvy1bb+4qCjpl+pr7ZOHlqtVXGJUQzh9BApf+veyzvj4pv+j871D/EWc/GVf+tTzNOuNt30tAmc4jM3edAn2dFNvznz8dCa4MrewsW0mfcdNvgq39bFeMKWGDOv9NBoHczDdJ/zgEnw6YWl8WRiGstnHKiVGY8+X30uhFE+4fBjba2ltSFxw2ZiloOxOR4W7DDgJWKJO+2EH/nGk/HiLAa1Mu20p03z4jvHlV25eBHjX2187nOfO+qJU1y3rfnzUuDXv/718YKZb368pPACZ3IAk754zPmlpzWXv3G8sSe4snZeoHhBBDMeZq7zWsqvF93G2btHyE/hly3ffGobh+96pysOOGzd9/sssT/Y+ezoXmT/+ka2a0S8MHtJIm/jMMRS7MZh2O/GCJz88C1OPhTxGVMSbbx4KaTgrPzURDxi6WVtGGLhS18McuIvP/JW6OECdmN05CMvL4LFR4cvemxmnPQV+Pmgr5Bi0ueDjn1jP8E0L1bYdGC5v5ozHs4BdvkRx/SKp/jx3reV5WDNjbUHYLIj+ROPeX6skRjLR672DA7aE9myVwj7rm9+rRec5vmFDcvZxXiY4oXNP4z2gxiMKdpw7QfrImZ5Kdbf+uJRvOXjfsgn266D5oyJAeZNYp6uvdMe5hemOqGXiFMMPk/xro8DMRF44pCrnHFCxzid9OTUNahN6JH8iV1uxuNdu3FY0yY7GPzaX8bowcE5X/abb9R7kS12GOZwwA8dtdLeNAYzDD7klE+cwFET7Qr/YibtO/zAtKfgVLOhi3/rVo789sLWmDVy75/cw5CD605csNT9gqDYxFHcsGAo5vmWM2y1nPnFBXx2xcSXuIyXP+yk/NVEnvDo58ecfmPikLv1IvTiQZu+deU3/vGoryTi8YsgtvTYxLe4FX1zMMu93Ix1bU2/uGUXv/zRnTL78lUIG37wKj+4cvX5/dnPfvbqlVde+UDvaNzyx75ovyVRq7YMLAPLwDKwDNxnBhwwPBj7X+o7XJzzmQeyDh7zYNLhyYHHQeRJwlYhanaVcLPNp1rp4HS2pz9j0adzLsYJXXGehb5YHB7Lx+EMJ+bEoCba6Uwc2MVyU80mgSUnWFOM5+em8ekj3amf32l7U/tsc1M+ZzvYcx064BrzAOeA7NBdDLjEnwM/fMXDypP2GX8zLm1Y/Ez+jSnxqe7gn30xwKwtTofk+ubas3NMO5zs+ZhjxkmxaTcvVhhiasw8KWbzrb12/dp0taec52CFR4+vsz/jZ7viM0emzdSFHe/nNaNnrv0Ax5g+CXPGp53djCGf1eZ6eAtnYhrruoSJZw9h9plrFk76dCdG8dJprvn6M+YDaPyYOtnli1052heNV2c7a3PlXW0ejljDoRd+ftM3R/RnfXSux9NVw/XgqM4X3nBI8NkLD/1stc8iJhKOtVOKUfx8GUvPnBIuDD7L2Zw+SUedaMNrrvHqfIXROPzimmP0Gg/bfGPslMR4c42FXUzqZOqKDR/ul/7msZcjcz6b29b8WLtevMJXXB/GZ9xhGvOCw+e+dY6nYlbTsT9ch62fMaV46XX/M6YP13UoBvZKNtVi0ybs4PPDhsBhZ1xNxNiLmfyb8/IwH/JNB/7ce+yNKXRmDHHGrzb8dMur2I5gLj96qebFDrtsmtfHrZc88QFDrAobMYiFLsl/nBpjUx70tNnDZU+MZ6s+i/l00q82TuCSYpJ/vmfuOMZlY/yFzSY888XU+uDBfPmkbwzm2da8ccKmGPVhO2+Yx6HaWD7VBIaYiTisW/wbM994e9AYHtwPYcMqluJhS8oHbvHRUXoxGBdTn8/yht2cmr8Z4zE5fhSLGGHQda3kf6geTXiKF4XpqMXFXoFlfexZ+M3BVeh0famLGS4Jhx1s4zCJtnFxqqdkVx2/6cMwxtYvQlo/GOasT/HEO10iRriNG8tPMfEzc6BDYCj05aO2nrC0p7BX6J/x2nvm8dgaxMN5LeHCb09PP7Xjhr98G4NvDKa1xE+xphsXrV/zsGHN+I2ZZ0PfXPvHuLFs4CuEnjzV4YmFPrtsi0U/u64jY9mww2P99PMdB+o40CbscAkjyb7+uT7P5ycOceDz2y9+/E3+s/4Z76b+vmi/iZUdWwaWgWVgGVgG/gMZ6FDyH5japrQMLAP3lIGnPcDsPeueLuqG/Q8MPG2P/4PiUzp7LTyFnJ1aBpaBZWAZWAb+CQw86+f3vmj/JyzGQi4Dy8AysAwsA/+uDOzD+r/ryty/uDp87p7691271kiE53Vqzvhs35RN8zfN/SvGzrn8K2JYn8vAbRh4kdfO7vvbML46y8AysAwsA8vA8zPwPJ/fz/Wi/flDX4RlYBlYBpaBZWAZWAaWgWVgGVgGloFlYBlYBpaBZWAZWAaWgWXgfjPwzC/a73faG/0ysAwsA8vAMrAMLAPLwDKwDCwDy8AysAwsA8vAMrAMLAPLwDLwYhjYF+0vhsdFWQaWgWVgGVgGloFlYBlYBpaBZWAZWAaWgWVgGVgGloFlYBn4L2XgmV+0z7/n+F/K3aa9DCwDy8AysAwsA8vAMrAMLAPLwDKwDCwDy8AysAwsA8vAMrAMXN35RftytgwsA8vAMrAMLAPLwDKwDCwDy8AysAwsA8vAMrAMLAPLwDKwDCwDHzKwL9o/5GJby8AysAwsA8vAMrAMLAPLwDKwDCwDy8AysAwsA8vAMrAMLAPLwJ0Z2Bftd6ZsDZaBZWAZWAaWgWVgGVgGloFlYBlYBpaBZWAZWAaWgWVgGVgGloEPGdgX7R9ysa1lYBlYBpaBZWAZWAaWgWVgGVgGloFlYBlYBpaBZWAZWAaWgWXgzgzsi/Y7U7YGy8AysAwsA8vAMrAMLAPLwDKwDCwDy8AysAwsA8vAMrAMLAPLwIcM/B2GbiAET+P1xAAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAGRCAYAAAC5ac09AAAMaGlDQ1BJQ0MgUHJvZmlsZQAASMetV3dUU8kan1uSkJDQAqFICb0J0quUEFoEAamCjZAEEkoMCUHEji4quHYRxYquithWV0DWigXbItj7w4KCsi4WFEXlTUhA133vj3fOm3Pmzi+/+eZrmbl3PgA0+7gSSS6qBUCeuEAaHxHCHJ+axiR1AAwQARWgwJ7Lk0lYcXHRALah8e/t/U2AKMZrTgpd4H9rOnyBjAcAMhHiDL6MlwfxSQDwDTyJtAAAooK3nFYgUeC5EOtKoYMQr1bgLCXepcAZSnx0UCYxng1xKwBqVC5XmgWAxn3IMwt5WVCPxmeIXcR8kRgAzZEQB/KEXD7ECt9H5uVNVeBKiO2gvARi6A/wyfhOZ9bf9GcM6+dys4axMq7BphYqkklyudPB/7vl5cqHbNjAThVKI+MV8cMc3s6ZGqXAVIi7xRkxsYpcQ9wn4ivzDgBKEcojk5TyqDFPxob5AwyIXfjc0CiIjSEOF+fGRKv4jExROAdiuFvQIlEBJxFiA4gXCWRhCSqZLdKp8SpbaF2mlM1S8ee50kG7ClsP5TlJLJX+N0IBR6Uf0ygWJqZATIHYqlCUHAOxBsTOspyEKJXM6GIhO2ZIRiqPV/hvBXG8QBwRotSPFWZKw+NV8mV5sqF4sS1CESdGhQ8WCBMjlfnBzvC4g/7DWLBWgZiVNKRHIBsfPRQLXxAapowd6xSIkxJUevokBSHxyrU4RZIbp5LHLQS5EQreAmIPWWGCai2eXAA3p1I/nikpiEtU+okXZ3PHxCn9wZeDaMAGoYAJ5LBngKkgG4hauuu74S/lTDjgAinIAgLgpGKGVqQMzojhMwEUgz8hEgDZ8LqQwVkBKIT8l2FW+XQCmYOzhYMrcsAziPNAFMiFv+WDq8TD1pLBU8iI/mGdCzsP+psLu2L+P/ND7DeGBZloFSMfssjUHJIkhhFDiZHEcKI9boQH4v54NHwGw+6G++C+Q3F8kyc8I7QRHhNuENoJd6aISqQ/eDkWtEP94apcZHyfC9wG6vTEQ/AAqB1qxhm4EXDCPaAdFh4ELXtClq3yW5EV5g+6/xbBd/+GSo7sQkbJ+uRgst2PKzUcNDyHtShy/X1+lL5mDOebPTzzo332d9nnwzHqR0lsEXYIa8ZOYRewo1g9YGInsAbsMnZMgYd319PB3TVkLX7QnxyoR/QPe1yVTUUmZS61Ll0un5VzBYKiAsXBY0+VTJeKsoQFTBb8OgiYHDHPeSTTzcXNFQDFt0b5+nrLGPyGIIyL37h8+N71LYNk1jeOawnAkWcA0N9/4yzfwGOzHIBjrTy5tFDJ4YoHAb4lNOFJMwSmwBLYwXjcgBfwB8EgDIwBsSARpILJMMtCuM+lYBqYCeaBUlAOloM1YD3YDLaBXWAvOAjqwVFwCpwDl0AruAHuwd3TAV6CHvAe9CMIQkJoCB0xRMwQa8QRcUN8kEAkDIlG4pFUJB3JQsSIHJmJzEfKkZXIemQrUoP8ihxBTiEXkDbkDvII6ULeIJ9QDKWiuqgJaoOOQn1QFhqFJqKT0Cw0Hy1GF6BL0Uq0Gt2D1qGn0EvoDbQdfYn2YgBTxxiYOeaE+WBsLBZLwzIxKTYbK8MqsGpsH9YI/+drWDvWjX3EiTgdZ+JOcAdH4kk4D8/HZ+NL8PX4LrwOP4Nfwx/hPfhXAo1gTHAk+BE4hPGELMI0QimhgrCDcJhwFp6lDsJ7IpHIINoSveFZTCVmE2cQlxA3EvcTTxLbiE+IvSQSyZDkSAogxZK4pAJSKWkdaQ/pBOkqqYPUp6auZqbmphaulqYmVitRq1DbrXZc7arac7V+shbZmuxHjiXzydPJy8jbyY3kK+QOcj9Fm2JLCaAkUrIp8yiVlH2Us5T7lLfq6uoW6r7q49RF6nPVK9UPqJ9Xf6T+kapDdaCyqROpcupS6k7qSeod6lsajWZDC6al0QpoS2k1tNO0h7Q+DbqGswZHg68xR6NKo07jqsYrTbKmtSZLc7JmsWaF5iHNK5rdWmQtGy22FldrtlaV1hGtW1q92nRtV+1Y7TztJdq7tS9od+qQdGx0wnT4Ogt0tumc1nlCx+iWdDadR59P304/S+/QJera6nJ0s3XLdffqtuj26Onoeegl6xXpVekd02tnYAwbBoeRy1jGOMi4yfikb6LP0hfoL9bfp39V/4PBCINgA4FBmcF+gxsGnwyZhmGGOYYrDOsNHxjhRg5G44ymGW0yOmvUPUJ3hP8I3oiyEQdH3DVGjR2M441nGG8zvmzca2JqEmEiMVlnctqk25RhGmyabbra9LhplxndLNBMZLba7ITZC6Yek8XMZVYyzzB7zI3NI83l5lvNW8z7LWwtkixKLPZbPLCkWPpYZlqutmyy7LEysxprNdOq1uquNdnax1povda62fqDja1Nis1Cm3qbTlsDW45tsW2t7X07ml2QXb5dtd11e6K9j32O/Ub7VgfUwdNB6FDlcMURdfRyFDludGwbSRjpO1I8snrkLSeqE8up0KnW6ZEzwznaucS53vnVKKtRaaNWjGoe9dXF0yXXZbvLPVcd1zGuJa6Nrm/cHNx4blVu191p7uHuc9wb3F97OHoIPDZ53Pake471XOjZ5PnFy9tL6rXPq8vbyjvde4P3LR9dnzifJT7nfQm+Ib5zfI/6fvTz8ivwO+j3l7+Tf47/bv/O0bajBaO3j34SYBHADdga0B7IDEwP3BLYHmQexA2qDnocbBnMD94R/Jxlz8pm7WG9CnEJkYYcDvnA9mPPYp8MxUIjQstCW8J0wpLC1oc9DLcIzwqvDe+J8IyYEXEykhAZFbki8hbHhMPj1HB6xniPmTXmTBQ1KiFqfdTjaIdoaXTjWHTsmLGrxt6PsY4Rx9THglhO7KrYB3G2cflxv48jjosbVzXuWbxr/Mz45gR6wpSE3QnvE0MSlyXeS7JLkic1JWsmT0yuSf6QEpqyMqV9/Kjxs8ZfSjVKFaU2pJHSktN2pPVOCJuwZkLHRM+JpRNvTrKdVDTpwmSjybmTj03RnMKdciidkJ6Svjv9MzeWW83tzeBkbMjo4bF5a3kv+cH81fwuQYBgpeB5ZkDmyszOrICsVVldwiBhhbBbxBatF73OjszenP0hJzZnZ85Abkru/jy1vPS8I2IdcY74zFTTqUVT2ySOklJJe75f/pr8HmmUdIcMkU2SNRTowkv9Zbmd/Cf5o8LAwqrCvmnJ0w4VaReJiy5Pd5i+ePrz4vDiX2bgM3gzmmaaz5w389Es1qyts5HZGbOb5ljOWTCnY27E3F3zKPNy5v1R4lKysuTd/JT5jQtMFsxd8OSniJ9qSzVKpaW3Fvov3LwIXyRa1LLYffG6xV/L+GUXy13KK8o/L+Etufiz68+VPw8szVzassxr2ablxOXi5TdXBK3YtVJ7ZfHKJ6vGrqpbzVxdtvrdmilrLlR4VGxeS1krX9teGV3ZsM5q3fJ1n9cL19+oCqnav8F4w+INHzbyN17dFLxp32aTzeWbP20Rbbm9NWJrXbVNdcU24rbCbc+2J29v/sXnl5odRjvKd3zZKd7Zvit+15ka75qa3ca7l9WitfLarj0T97TuDd3bsM9p39b9jP3lB8AB+YEXv6b/evNg1MGmQz6H9v1m/duGw/TDZXVI3fS6nnphfXtDakPbkTFHmhr9Gw//7vz7zqPmR6uO6R1bdpxyfMHxgRPFJ3pPSk52n8o69aRpStO90+NPXz8z7kzL2aiz58+FnzvdzGo+cT7g/NELfheOXPS5WH/J61LdZc/Lh//w/ONwi1dL3RXvKw2tvq2NbaPbjl8NunrqWui1c9c51y/diLnRdjPp5u1bE2+13+bf7ryTe+f13cK7/ffm3ifcL3ug9aDiofHD6n/Z/2t/u1f7sUehjy4/Tnh87wnvycunsqefOxY8oz2reG72vKbTrfNoV3hX64sJLzpeSl72d5f+qf3nhld2r377K/ivyz3jezpeS18PvFny1vDtznce75p643ofvs973/+hrM+wb9dHn4/Nn1I+Pe+f9pn0ufKL/ZfGr1Ff7w/kDQxIuFLu4FUAgx3NzATgzU4AaKnw7gDrNsoEZS042BBl/TqIwH/DynpxsHkBsDMYgCRYj0bDO8om2K0hpsJRcYVPDAaou/twVzVZprubUhcVVkKEvoGBtyYAkBoB+CIdGOjfODDwZTt09g4AJ/OVNaiiEWHNsMVBga6MNpz7Y/2nrE+/i/HHESg88AA/jv8Gi+COM6eyrzEAAAAGYktHRAD/AP8A/6C9p5MAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAAHdElNRQflBwcMExzZXiCBAAAgAElEQVR42uy9e5CkZXk2fvX5fJru6TnPzp53OawIIqJESjSoiBGBRa1YVqJJ/jCplKkkpdFglIjhs0wZC6MlqKXBqBEPoGhEXRCkEASFhV122d3Z2d05T5/P5+7fH7+67rr72bdnZpF8Sb6iq7ZYZqe73/d5n+c+XPd1X7et1+v1YLx6vR5sNhteer30eun10uul10uvl14vvV56nfvLOegfer0eLGKvl14vvf6ffm2UWLx0Jl56vXQ2XjobL71eem3mbFgGWN1uFzab7UU9MOt9nnlxL+R7f5frfbHv9b9yrf43brz/LfeyWdR2s/v4/7UX79vqmQ56zv8310Rf30uv9dfpXM/luayp/ly+z/xO8/vNf3uh/uBczvBmftdqn79Y63+uNmajdVnvM8/lbA7aHy9kvV7os9rMd29mv5zrNev9utmkYr3fcVq9oVwuv+hG6ncpO/Jh6/dv5kGeiyM41397IYGDfs966/G/oUS73oa32qj/G5yOw+GA3+8fuPY2mw2VSgXdbnfgMzPfu57jMI3ZuR7uF+v8Dfo3/ezMv9vtdkG59fWbn6XXxMoQaqTcbre/IKPIhHDQPrS6vxdjba1sgHm+13uW/9VBy4uJNtlsNni9XjidA4seqFQqloH4C7UFfL/VntooydnIV6y3R/T1rvc95n29GEGbec8vJBjezF4YtJ6bXdeN1nQ9/9vtdsV+cB1pU9e7btoH/Vz4fv6/tgVW9mbQMx5k//R3DjrvNpsNfr9ffrfvfjUHq91uo1QqYdeuXYhEImi32y+agddfbjoop9MJt9sNAOh0Omi1Wn0Lrh+GfpD8HbvdLg9JG2v94PhyOBzygLlgbrcb7XYb7Xb7rAXn3+12u3y++f/a2ax3EPn9XGur3+c6WTnxFxsd4j1YvXidnU7H8nvNzcR16XQ6fWvLn20UqL4YSNfv8hmtVgvnn38+vv3tbyMcDg90iNdccw2OHj1quW4+nw9erxdut1ve73K50Gq14Ha74XA40Ov10O124XA4YLfb0Wq1YLfb4Xa70Wq15NnrPWi32+FyueT+2u22fAbXm47P6XSi0+mg1+uh1WrB6XTCbrej3W7Ldehz0u12+86DaaxarRZqtRpKpZJcu2no9J41A6pEIoFIJAK/3w+n0yn/1ul0UCqVUK/XUSgU0Ov1MDExAafTCa/XC4/HI3un2+3C5XLJOtdqNTSbTVQqFbTbbeRyObRaLbTbbdnTXC+n0wmXywWXywW73S5r7XQ65Xq47vrF9zebzbPOhdPpRK/XQ7PZRLfblf3darVQr9fhdDrRarXkmnq9HrxerzxHfo7L5ZLn7HA45LMdDofce61WQ7fbRaPRkDXnvbRaLfldPjN9L51OR2w4vwMAisWi7KHNJI1utxtDQ0O45ZZbcPXVV58V0NJ2vu51r0O9XketVpPrcLvd8Hg8KJfLck1Op1N+xv1it9vR6XTk/z0eD8LhMIrFIqrVat9Z8Hq96Ha7qNfrZ9mk4eFheX6BQAAOhwPVahX5fF4+t1QqoVwuSzLFvcB15ZlpNptYWVnp29c+n0/OXiKRgN1uR6FQQKvVQrPZlP3F93S7XYRCIQQCAVQqFRSLRdRqNfm+Vqsl19ntdhEIBFCtVlEsFuUzuL+8Xi98Ph86nQ4qlYr8XO8Ju90ue6nRaMg16LWy2+3w+XwIBAJyNvi8crkcKpWK7BXuCa/Xi6GhIXi9XsRiMWQyGWSzWbF31WoVtVoNlUpFbAntUbvd7vMLnU5HbGUwGEQwGMSZM2fQ6XQQiURQKpVQrVbPsq1jY2Not9vIZDJoNBpot9vw+/0YGxuTPZ3P52UvBYNBuN1uuFwuOUterxd+vx/hcBh2ux1zc3Oo1Wro9Xrw+XzweDxoNBpyjsfGxhAOh9Fut+Wams0mvF4vCoUC8vk8RkZGcNddd2H79u1nnR+n6SQ7nQ7S6TRKpZIYt0FRP42Zw+FAu92Wn9Hw0xhzcbVh1p9Lo6KjaDNY0u+nUeMGozHkz3hobDabXBcNDA+OdijcBFbZJ9/Pe9LGio6MD7DVallm7/wubTj1pnM6nX1OVd83nQbXRAd+NPQ6cLUK0KwyQX0tZkbgcrng8XjkGrvdrqwDv5frpvcN/6sPmNX3mxmM3idEkgZlrfx3/q7ONPTvmwEQ118/Z/P3h4eHNwxs19bWsLCwcJZzAoBIJAKfzyfZDJ9Pt9sVI87v18aG+59Oj0ESnz2NHa9Z70P9zMzMrNlsys+ZtHg8HgnqeG38w32snXK5XEa1WkWlUrEMwHj+TRSPv5PJZOD3++FyufoCz06ng2q1ikajgW63C6/Xi3g8LsEJHQh/3+PxyLo0m80+9IvOpFwuo1arydnhOvN7HQ4HPB6PBFi0Bzqx0YkD96beEy6Xq+/58L+NRgO1Wk3WjsEp19rj8ci5os1ggMXr4JlkoMXglkElz4XL5UKz2ZTf46vZbMp6Mejhz+iAe72eBKQ6aOPn6KSV+y8UCgGA/L5V4tHtdpHJZFCpVJBOpwEAoVAIzWYT7XYbbrdbgkxe6+rqKjqdDtxut+ydRCKBcDiMhYUFZLNZtFotCTa4z+gci8Ui/H4/QqGQBE8rKyuo1WrodDoSZNXrdTQaDTQaDUmmO50OstlsX4Dq8/nkfIXDYQSDQXmv1+tFvV5HOp1Gq9WCy+XC6uoqer0eQqGQnO1ms4lAIIBSqSQBuMfj6UtAeB8MREOhkOwhBlo8t3wPzy/3M/cbAAQCAUkKc7kcer0ePB6P2G6uu7bTpVIJkUhEgqNWq4Ver4dMJgOXywWfzwcASCQScv4YqC4vL6NYLKJYLMqerlQqfQlGLBZDt9tFuVyG1+tFKBQSP5JKpQRQ4TnQAW+5XEapVEKj0UAgEECn00E+n5e9XygUUK1WUS6X4Xa7USgUUCqV0G634XA44PV60Ww2Ua/X4fV6EYlEJKGx2+1YXV3FqVOnZJ/X63VUKhX4/f4+e8g1O378ONrtNrxerzwjn8+HfD5/VhC8qRLhoNKBDoLMoMNEqDT0p9Ek/p0Xb2ZaOnLWqBQXTwdg2pjTSNBR61en05GNq7N7vp8/Y+CgHQ+/T/8+P4f3rB2SWTphkEejrH/fDKw0ImaFgOmfM7jVga7+rxXqptEi8+c0NPw518xE1TTqpREZ83lop6RRQzNY0nw//X79uzpo0FmumXWb32GF2NGpWQVIm4H3BwVoVuvDPcLARQeHXGuusYla6SDYDE657vw8Gi79Pv7/oBIc96ROMvR5AYByuYxKpYJms9m3H0xE0rQBGumqVquSPZvlpWaziVarhXA4LNkjr43PmoGpDuh4lrxeL8rlMsLhMAKBACKRiARZDFaZdHGf8bOJ/uhAh/dmVT7QCZcZkPE7Op2OZNb8DqI4ep/qZ67PtE5E6fD4nbQVfB+DK70/+Fl8L9dYJ7Daceg9rBNOfS06gFoPHbbb7YjH43C73eh0OoKO5HI5yfgdDocEfHT6NptNggOHwwG3241ms9kXEDG40der94XH40EkEoHH48Hi4iJ6vR78fj8AYHl5WVCkbreLQqEAj8cjAYjNZkO9Xu8LDhgY8VnQr8TjcdjtduTzeTSbTRSLRUE8eF/6Onn2u90uqtUqms0mgsGgrDNRbQbTXGMNALTbbdmf9Xpd7oXBCPdEq9XqSz4YFBPZ8Xg8giIXi0WUSiX5bu7pTqeDWCyGcDgs+47BHAEXJkS8TyYSDF5Is0gkEpKYJRIJjI6OYn5+XhKObreLZrMpwTATegaI3B9MCKvVKrLZrCRaPFe0ddxDGjmuVquoVqtwu92Ix+Po9XoSJOZyOXQ6HQwPDwvS5/F4kM/n++x2uVyWAN9ut0sZvFarCRKpk/0NA6z1asZm4KKzHX1odWBiZrYbHVR9sPUm12VDKx6HDm7Meq42joO4DDpY0gEQD4iG43WWar5MxE+XBE00RjsLM5PUvz8oOtZBCmFhGlft+Phv/CwrZ85/4+fxOWgHbQbf5jMZVGLgdZioJUswZrBA5zqoBKjLIOb3rYdA6aDD6r2bKS/qUp35+41GAx6Ppy8RoAEw94FOHMy9qH/G72GwwedCJETva34GS4E6MeE+5toToeB1mN9bKpWQy+UGBsk6+NXPlwGkRiHp8GhMmYnyOph1EgVmOYSBKYMWIiqE+7PZLBqNhiBkLLEMDQ2h0WigWCzK2rlcLoH+WZqik2YApJEUbUN0QqGTzFKpJPfEtWTZkjaF10sHRDSJn6ttEz+fa0JERJebeMY1GqsTXV4rz5UOmKw4gRrxskpaaN8bjca6dqjb7eLw4cOCGIXDYcTjcVSrVXlefr8fwWBQ0BGNxPBcc394vV4AkLKMPm8a8aZTZpmOwWS9Xhd0pVaroVgs9iXHvV5PAnsmEHa7HalUCs1mE9VqFQ6HA5VKRa6diArLlMFgUM5WvV6XPUqHTV+hn38wGBR0hdfCPUTULxAIiFN3uVyCmPBMFItF5PN5QcgZ9Hg8HilFEiFqt9uo1+viW7h//X6/BC/cUwx8iQb1ej2sra3JdXo8HikREuVyu90IBoMol8soFApiA/P5vNAK8vm8BDXdbhc+n68PYeazJ42B9sHhcCCVSklwzj1QKBRQLpf77Iy2q263G4lEAn6/X/baysqK2ItWq4V4PC7fof0UA+BMJoNWq4VIJIJIJCLJIJNZlrCJBp9zgKXLGKZjMtEtnUGZDnmQM1rvxczCNPwbkas1tKeNis42zdKjRlF0SdREx3QAuRk+E99vhbaYmaKZJW+0Vtpwm0GtValGow+6BGeum/l89TpZGWiuixlQb7SndHlHI3G/Cyl+M+/Xz/aFvrhODDjMdadBrVQqYvjMkrpG6dYLEK1I0jqZMANYvc9olKPRaF+wY/KvGLTwD6+f3B+ThKq/y4rjqBMkKwSSQYJ+Bsy8zftggKGRl1arJSUBlkjIGbHb7fD7/cJp0WgO18zpdEr2zbNhInIM/nVJh2eNToDBlDa8en8MIg+bCaFVCZ0/J8JAdIT3aNokjXjo7zGRUpNioe9R/5tV4mHyrqzONtEClqBY6q3X6xKk2Ww2QUT4zDX3kN/RaDTOQsf5KpfLqNfr8ky4Pvq6dYJolnwYsGvkl+Vjj8eDbreLcDiMcDgMj8eDYrEIh8OBWq0Gu90uZ4NUAAYnRN90sk/ERtMF9JpragATTvoioircF5rzp/cly89cY66RtlVutxs+n0/QIKKDGnVzOBwoFosSdDmdTkSjUUGbmBwQUdMBB6kERJH43DV1gdfBgIW2hueVgTUBDZ3w8yzzumKxmCRl3P+9Xg+RSESQc9oH0hE0D9btdsu1kAtqs9lQrVb7KBMM/vn9mqdNbhgD7XMKsMzSmxmlaWNuZXxfKEpgBiNmwGGWO6wQGCsCtlm61GiJGZjpbJYba6NOBysyvYbfNSStESvzv7oENqg7yDSmZqlGZ3n8HZ1Vm85no84z/bnm7zPrHkTaHxTkMJjVgZ8VGX4zHS6b3VdmUKp/ZlXCGhT8W50DlnBqtRrK5bIlL8yqs8nqZ/q9Jj/ODKoGde91Oh3U63WUSiWMjIwgFAqJI9N8RY0Y8uck7A7isjFQ1CVR8/t1INnr9cTYWaGQbK5hEEAuSaPR6HNCRJ+YhfJ3SayNRqOYnJxEOBzuM87MeovFItLpdB96qrlhmiagExntSPTzpePR62eeDZY0dJBjcus0OVknRAxMiDBoor+Z1PA+aasZCOpkig6YwYu2pXyfmchpRMnKiZgcUO0MaT97vV4fJ4fOnyimVdVBc2c119NE/HQyyXIXbZFG5Yga6rUrlUooFAp9jQe01dxvXq9Xrs/j8WDnzp3IZrPIZDKCzhE5I59J3wv5Wfx3Xe5lwMR7cbvdiEajws3iGdXPkkGXRqBZpiyVShIEkfeUz+dRKBTkfrhPNLeNfD4Sxrk2TqcTkUhEiO8MzohM6cCS1Z5gMNhXdgwEAn3ny+FwIBqNCvLMNSSaWSgU+lD/6elpOassH8bjcWk4AIDV1VW5Jp/PB5fLhWQyiVwuh0wmA7fbLYlXJpNBoVAQikG320UqlerbSx6PB0NDQ8jn832NApVKRdaEvxsOhzE0NHTuAZbOGrlYuuvFdPib7fA6F6TC6qJNEtp6Tnyj9mldmtKkcX3vJio3qKPRRL3MTN0kNuvyqhVqNaiNVn++yT/aaB3W62Ac1Ha7mdbbzSBQ66GblhvTwuC/GC+d+ZkdnoNKIINad01EkdmxidBYBUFWwdMgZGsjZNOqTVyXjpaXlwX+tkITuRYsb7AcZF4DkxJdMrS6Jpa+B7VU673Pz2k0GlhdXZXSELPSQCAAr9eLWq0mfC4GPHxewWAQ0WgUo6Oj8Pl8UnrUAVY4HBY+z9LSkiBPDOLoBBgQaD4jv5eImkZ/tBPX59bkq/l8vrMSPY1YmZ23RFkY6OrvMBF6q9ZzBqD8wxIqnbJVcGaWR7kumiQ9KCF2OBzYt29fX+MRO+JYbiEPiX6Ee0SfOzOxMG0GeVy0Y0QxrJJxzS21sukMdGw2mzhJcrFIstblV4/Hg9OnT0sQw45C7Re5l2n/q9VqXymcTVbkVjGRJ49Ll0QZGLDEp4NK7kHdiRgOh+VssMuWfESbzSbIG0t7OmDnOSDXimtMJJKfqxPiYDAIj8cj66DROSJNurmHz5fcK66DDop144fNZpMyPwNQolFEE1ly1okI0TR+puZFsgyqkzVdTdLoHO0BAz42KxDtImKpUa5zCrDMTPO/wuH9Li+Tt7Oe9oYOLnw+n2xWvbhmizMNheZn8ZBqB6K7g5j9m45bd+FZOSNuPB1gaMc3qES6GR0cbVA0oqU5WlYOfJDzNEtiZoaoO17Ma1uP16XviRvcqqnCqjQ1KJDSAaXZZKAzFs2D2OhzdQmbP9MdVkQgrErDVs0jVj83n7NZXtwI/TU/L5vNIhQKwe12o1QqCb9JIx61Wk2yXJ4r/lc3g1ghWtxbuhxNkqwm+ms0SCOCzWYTs7OzGB4eht1uF2IsHZDf74ff70ez2ZQuNe67rVu3YmJiou/cmEGhz+eDw+GQcsSZM2cEKVhdXYXL5UIoFJKyH88L90atVlu3W8hsRtFrxfOlyxN0QLo0p9eQZRLyaXgmdLBkJjVmdzLfQ8I3HRmfhb5ObXs0tYDB1XpnQ6NERBnINWo0GggGg/D7/Th69KglX3Y9Lqe277zO1772tfj85z+Pz3zmM/jKV74iDtwsx5vNMVY2gzYll8thaGgI0WhUys7BYFB4OjabDSdPnkQ6nT6Lj6gbBBh0RKNRae9n+ZSBgSaI6yCTtqhSqQiXU3OSyP1iRx+bQhhIcR25Hvl8Hj6fD0NDQ7IHms2moD25XE5oBOQOMlhot9sIBAKYmJgQZF530JIHxkSo2Wyi2WzKXtWSFwzy2HXHwI4BCs8keVVEEXl+A4EAut2u8OiI7lWrVRQKBYyOjmLLli19vNZWqyUNFtxP6XRaAiNy1bQCwvDwsCDH9XodPp9PEEnuKXY7Ly0tCdo2aG+tG2DpbJUX+P73vx+7d++2hMP/bwVTTz75JO66666z+FSa72R2UWmOgcvl6ss6rbgFmgNh8mw0P0M7PkK4VhoxG5W4WDIw9Wxo2LhpaURMQ6IPJ2HnQQiTJrBrHoAVD8tcE6vNpK9Bt5lvVCLciGNmFcxt5r1meWM90VDeDwNrndFtVGrUz4D3bhLWN+KIWclnbCS0dy4q8vpzaeCGh4fFcGhHwQyaTpoBgMmp0rpN+gzoTiIdIGtuyXq8RZ0R8pyZXXxEnbjPiDwkEok+AjMDOxPF8Hq9Qlydnp7G0aNHhctDJ2FqfZGvst7eNblUOrnQTQoawdAyMkxOuO7s0uJaMBDWXVt6bVlKstIH1DbJqow86MX1H1QatKp2zM3NyV5ot9sIBoOCiM7PzwsSYwakPHdWYr0aTaTzjEQi2L17NxKJRF/506QTMNgwdQ/1/ejnQ80tIiVEsOiQqaHEzyMKo5MPlqvT6bR0vREBCgQCiEaj8vz4cyY8LpdL9LpoZ4PBoHA6uad0gEbUmVwgt9stAQLvw9Rm43nXzSEsZZPknc/n4Xa7pSuXa8GgT79fo0UM3DQiRdAhEon0+eJYLNbn28g3pBQD5SbI1/P5fIhEIn0IKBtb2MRy5swZCd7q9Tqq1ar8eyAQ6EukmbhpVI/rw2vudrvynSwFd7tdbNmyBR6PB/V6HclkcqDvcA4y1JpIzf9ef/31ePWrX21ZJrFCPtZTpj5XtXLCd//xH/+Bu+66qy8o0IfHSl/JLKmZ7eRm+c+8dhOFMduiTbkHXXo0HYmVuKdu47cKChn162eiP8ssxwwqQ2kEziyPbkRUX08F3LwnK4TK5JVtZLDXQ882s282SgK0I9wsSV934JnlWfPZ/U9Be5m5snShAySN3rIsaJ4ns+nEDLZMXp3m11kRp03kTwfCukynkRUaXiIqWusqEAgIOqXlUExCuA5+yNPw+XxSEtHQv0asGSyYgp5WCYxGNzUnSjtDInpaZFaXXc0OXVMCRnenae6bttNmGcxsZrFKpMyElc5Rc+Y2ol5ks1kkEglpsKD+EEusJq1E70VzL5nSNLrhShP29dqYjQQaLNC23krChk6Zv8fAhdwpBuJ0sCwXmXtaJxgU02XgroNVfj9LXfx5vV7vqyhw/2m+JO+dz5bJjU6I+F2UEmCZjGVfnfjrxEL7FqJS/BMIBCRI00AAS6K0jXwWDGqYMFAElkktz4JG3liKZdKguwT5d3IT2RWpOYfFYrHvHmnbtFag5l7z+zTn0crfmJIRtFUMMgf6i/UOjG4PBoC//Mu/RDQafVFGuZyr6ja/M5VKnXXzZhBhLpJJojTfw98hHMy6rRkUmCiK1goxgxS+x4SArQI4K74Lsw9NWGeJh7wQbiaTYDpIVsEsNZrIgu74sMpudYatP1+jbYPGRlh1L67nsDZDlF8PfTX5KesFcnrvbOalBUPNblAazquuugpXXXWVOO1BXXXrjZnZiAy/UUn88OHD+MEPftC3bproTsNKdWmzs3O99dAK9Bo5Mp+TLo2bJGN+j8/nQygU6nMcy8vL0orOoCoUCuHSSy/F888/j8XFRVEYZ/ZPwUl2A2kRT6JQzH5JhC0UCnIG9FkwO9tMZMUMznXnmv4ZP4dilbosqHX7zOYdzX3lOmpBZa1FxHui49IUBu5rLQ/BYFpzY6xQb14bg6NB0im8lyuuuEII2LVaDaurqyIKyd9hIKFtAdeWZRnuJx0km8i9fh5mgGY2LOkuM9oGU4ZGi40Gg8G+hIRlWRKkKXJKJ6tRRD1BgKgRCeT8XMqgEJWKx+N9iJku41JMkyKXJN2zdKUnQvBZk7JCkVGWy9h0wedarVZl7+jGCz2lQEsW8d+oBM9nlEwmJZinuKxucmBwQsI5g7+1tTXZ+/l8Hi6XSybIUAqiUCggFAohFArJGrdaLWSz2T5b5fP5EA6HsW3bNuFXMegkAkc/X61WZQ3W1taEpE9pEZfLJSVHjczxmsvlMk6fPi3J3/j4uCVCvyEHy/z7c8899z8iK7eSRDC7WTYDaVtpaGlRwvXQOKsS3yB+khnwaNHAQaUvXgd1PdgSzMNDaJeZlRYf1G2/g0YMWZWb9L2vN7zXbGM3AzyrPbQed8XULzPRlfUCcTPgG8T1smpEsOrE3EwXJDMuKy4YP+Pqq6/GBz/4wf/Wc/K9730PP/zhD88KiHUHoW5336hJxByJwzEoVmVps9PQJCpzHdkKbsoR0Lk4nU5RkXc4HMhkMsITY7cUycJ0anQUbBs3CdW6pK7LjVYl5o1QVVPY1koomHaFhFieXR04EI3Qelg8a9yrplaWKQWjycE60GYZSpcLNZ/RintJVHAzY6z0GlcqFSEPZ7NZuQc+azNR0CXq3//938cDDzzQpwVo1eChA3SN5FjRCprNJi677DIcPnxYkE/TB5iUDgbnZuLFBgz+l4GqDirNblG+l118AMTh047TjrGrzoqny1KlFtDlGQsEAnIflGJgQKE5R3wvAyCuXyAQ6Osu1RUsBow8L06nE+VyWYIsTY8hh4vXR1FP8g51sBsOhxGLxYToPjQ01BfQ5PN5SR40YsQ9QX4knwOlEiiPQyTQ6/WKGjx5dcFgUJ6Hy+WSEUDNZhOFQgFer7cPteJUCaLeWnJCa0yeU4Bl5TDf/OY3Y3x8/L9lGDEN1/Hjx/HQQw9tqhvR5PJwQ5oOxUqOwAq10BCq+d1W6JBWjqbh1waOWYfmY/D9DNr8fr8gZHrD+v1+6aAxERKdiWjjr406s3gNFVvpHlkRaXUQpPV/NmOINfpjBp68Hs074c8GBc2680SrX+vxRFbftZ6zXO9lJQJqha7deeedePDBB/v4dWYpwUqGwsrZDxp0vp4mnN1ux8rKysDrYybIrryNeIJmKZn3RINqjm0yS/VmlyT3AoUVdWnGZrMJ8ZVBE8sUs7OzMsuMiQedFr+DhpCQvr5unjV2PzHI4h92DWnDahV0mkG6TtTMc6ADBTo+dsBZod68TqIPmv/I0pOWl9BnWAd8LPOwRGee60GoqA5UzTmQ6yWsv/zlL+Hz+VCr1RAMBvsI0roMRTuqu9Q/+MEP4rbbbsOHPvQhfOYzn+mby6g5sXSaGp3USvr8Pd77m970JvzoRz/CD3/4Q9x0000iGGoG3d1uF8lkEuFwGNlsVn6+urqKVqslQZWea8d1YiCvbbgecWaOAGM3JVEZjYbrRgaW+vjctA4X14dJUiQSgdfrFTFPjcAy0ON545llgKIDBH62rgRpQVOiQjoQ5b5jMEOkdnh4GIlEQpAuosWUXMhkMvIMdGmR5HXOGuQe0zplJMGTK5VKpUTBnkkMZ6iydNpqtSRAAiBold/vR7FYlMCMlaKVlRWxFQymGbBqzth6Ps+5UWeIhuE+/OEP44orrvhvzcrvvg5BYq4AACAASURBVPtuPPTQQ32k4o2CMnNg9Eb8HrOFepACvf48rZZt1cViNSKIv09DqcsCOhhjyUNro9DAakE2M9CzMpq6RGQ6RD3CQyNDVoGjbhXWCtW6W8mKyzYoKNHGX6McGyFLg7rbrPhRVvvCKiPeqLRtBjJmcGmz2TA7O4vZ2dl1P2cQUjgIWTP3r1VZ0USKNIFY6zbRQGqBT5NPt96Uel2WMAnaJr1Ac770fM5EIoFEIiEdUMyItYPhSBC2Vmv9ID3iRicG5HcM4nxqLSUdwDAgM7kogzo+dXJjjgIzx3fpBhP+nK3xGnHlemlythVvSut8afFJk4dEp6FLZFZ8SStunLZRm0mqGRTSjpRKJXHiek6r+Z12ux333Xcf3vGOd+C2226DzWbDpz71KQlAtSwF5TI0p9SKu1qv1/EHf/AH+Pa3v41sNosvfelLfcGoHprOz9Dde6Ri8PnRSfO5ESliGY4lZkpr6DFGFLU0p2vouYwMFNmJxwBCn0/9HJh88roZSOnxawxKdODE62Fwx5Ix70PzvDQPzJT84PBn8p94xlm65Pfo+2JAxsCE5H6/3y/BM7uFyUfjHmRHqhXdgUgSEy4Osm40Gkin07I/OK+U98brpt4Vv0tPBCBHi+tAdFCX5F9QgKUPIf9+8803Y3R09AWrbb8YCNbc3NymSMzrle80rGc1ekUbRkbYNOo0UozitYPXh0aPftCIDL+bgRWdoG4NZ4bEFlyd6eluGt0lRMNOo631R2j8eWhZg9blPq/XKxmz2QmlRepMRWgNh7daLfkOjTzRyZtcE6uSqjmFnUbDHKUyqPRoOtX1UEmNcGw2wDLRukFlFu04dVBhZoxmQG/uQ3Me3HqNI3o9TcesnXGpVBLRR70/TLKvVYlG6/nogIw6Wyw/6NmdWhdOI8HJZBKhUEi4IBQgZLu2VmHnniI3kUa7VCqJ8KC5ZnrtdTcXz2C9Xkc+n+/j5ei9qIMMvYd18EhEQYv4WjXOcO9rno0uU1qR4vVgZx14mTZJ7ys6eAYi2v6YDQpWgb3ZOKTRyfUaYGw2G7Zs2YIdO3bA5/Ph1KlTyGazCAaD8Hq9yGazfeR+k8Zw+PBh7N+/H9/97nfxT//0TwCA2267zbLr2+zq1MrbnB/3jne8A1/60pdQq9Xwrne9Cz/96U/7iM9mVYOaSyQtk2jNEjS74CgVQEmKdruNeDyOeDwOAJifn0e1WpXZd0TziJxxbA/nE2ptRN0BT94a7a62H06nUxKPRqOBsbExsZXBYLBPdJP7hMm47ljU83lDoVDfgGgiNpzvqYcx8zkWCgWEw+G+od4rKyt9AWY0GhWpEyY+Otli2ZY6U0yg2NWs710Hv9lsVnymz+eTzknNhdVdx7Qb/Df+LrsWg8GgTInQgqtE0eLxOIaHh1EsFgUNLhQKqFQqosN1TgGWFbfgF7/4xf8IDtagNnid6WhHzXKcqTVj1W3CDa8F4PRh1BkpDzfLeGY2p0UbNadIOz5+ptfrlc/Qs6uodDs8PIyRkREpYdjtdplUru+Vm5BZgd5oWvy02WwKd4AOkIeP2TwPml4D1ux5uLUIHYmqNHYcNUGodhD6p/eb1rvRZQyrSQImOXyz8y71+zVquBmSu85MdVenGfiYyI9V96hV95OVw1tPzd4K5TO7Y3XwwREW2pFqdFVrtlmJTppBnhbqZEbLrJHGjUE31zocDmN0dBSTk5Mol8uSIWoxUZ5TPZuP+5HDfTmMmu3lerCxDu61UrZWBqfGjkb39HPSw7CZ8GjkwCzvEAXQ5Tyr8qtebx0gaCdLUVh+py5FWO0JvY/0bESNvOixXFblXP19fK8uDW+EJA8NDSGXyyGbzQpRmG32+ppM0jqfxezsLK6//np897vfxa233gqPx4OPf/zjUpYzOwvN/2fSsH//fnz+859Hu93G/v378fOf/1yeJREKzVfj+7dv347h4WFp5SdKwt9NpVKiF8VgKRAICIG7Xq/D4/EgFApJkD4+Po5GoyHDhbUOI58DnTx9BhEnNjYx4NIIPwNoTj1ggsCA1kRUiULRDjBIIG9LSxpwhEy328Xa2hocDgdGRkaETkB+FQdfa+5ZJBIRHhQDRAZL9Kk8606nU4JA3fDBBFQHY3qua6PRkGHW/P1YLCb2jTMU2TigzwftEUuF1Pvic2AzAtX8OZPV7XaL6CnlHux2OyKRSF/ZcdMBlpUzuvDCC0WIbbNt7esRxDeDQJmZ+traGp5//nlLkrYph2B2sOlMzjRIdBJaYFE7bj3Ogp9JYp3f75faMYMzThNPpVLy+TwQGqamodYwtKkkrR0tFaGZ7epWah5SnelqpEyrQvN9DKiY3Wi0g/fNNmX+G99LSJgdlxpCHhkZEf0ROlyu0SBRU1M+w4qorjsEzUBLi0yaJVorouxG2l+DAiw9OsqcVWeWqzYqEZr720pI9oUmIGYphkikRpfMIM8sp+t2f/NMmOfDNGQ6oNFoysTEBC688EI0m00Ui0UhsurWbO38TGkDZrhEoUqlkggw8joZ+JldXXxxtIgW9DWV7TXPUKMe5hk1GytoI7Qiu15bSkvoBgFtH8zON40Im5pYGk3TQZ9G8K3oDoM4ZGaCshEKrM/vysqKBINExIkMWXVlat4e0bzTp09j//79uPfee/HRj34U7XZbkCxtK63K4q1WC9deey2+/OUvo9Pp4KabbsLPf/7zvjK5Oc5Nl03L5TKA/19k1GxQIIGbekxerxeJREICYbOrlGVZjcQysdHcUa2j5/P5ZF+b66+TDb0f9f7Wor669MgqCdE4dtbRH2jJCt1hqveFDjSJVrHioWktpp6UDqy5zny/WYHRXYu6i17vS91tyTOqhb1pd3QQx2CJ4ATXhTaDgIaWhyBSqYM6U6Q7HA5LCf53KhHy9YUvfAGvec1r/lvRq+985zvYv3+/ODkaH515mxmPdrr8QyPLh0LNDi5qo9GQgInGmYvPzXfxxRfjFa94Ba655hrZtNzgVPFlOYZOplariSFi7Z5Oo16v49lnn8Xx48fx3HPPCUxst9ulI4cHJZlM4uqrr8bFF1+MmZkZKWVoREUjGZw632g0sLy8LNk/DZ+e9QRAZk55vV4UCgXMzs6KuBznivG9hNbD4bBs3J07d6Lb7eLo0aOoVqsYGRkRDREzqNKt2zq41eUNjnbQwq46q9HPVpdDmZno1mxdLtHOaDNCpuRTaF2gQQ0FOsg5F5HUc0l6NnO9/H4GyYTqzTmV2ojrEg4DeT5bGjntLOv1OpaXl+V3HQ4H9u7di8svvxx79+5FuVzG8vIyfD4frrnmGiQSCRw/flzKLCwNcg/yLPLaqHFz+vRpnDp1CvPz8xgdHcX4+Djm5+dx5swZTE5OYmRkBHa7HXv37sX4+DhmZmakw5Bne3V1FadOncL09LTsc6JNxWJRzgWfMTNjfVZ048Xa2poYc7/f32crGEBxhI/T6ZTkI5PJSLs/2/CJttH28PN05y73LpEWHXBobhbPltlJaSafOgDkGSSiwHOmZTTMwIrfd+rUKYRCIbG/RC/ogHR52aw40BYEg0EsLCzguuuuw7e//W184hOfQLfbxac//ek+IVrzjDWbTbzlLW/B3XffjUajgRtuuAEPPPCAdIeZfCcdaPL6CoWCCGvq0hKlTLQkACsOlEXQz0wjOoVCoc8OaWSVSYBuhPL7/RgZGUGhUBBE15wKoP0Mny8DrVKphGKxKJ1z3E9EtvR1cm1YJte2gWvN2YEulwvFYlEkFLiWRKBSqVTfGCldXtbJgBbd5TPXZXdSQrZv347l5WWxBwzc+e+8R9qhQqGAbreLoaEhQRLZpRkMBlEulyXQJ5DAf6tUKsIps9vtovCuh8Yz8KQt4b7WkhYvmOTO1+23344f/OAHG7byD/osq2x80ExBE73g71EqQhsQOjx9aPVATC1jQIgQgLQih0IhxONx7NixA5FIBJFIRDaRJs4SEXr00UexvLwsXRMAsLy8LOqz2nGzS2p4eBh+vx+hUAgjIyOyAfjgOejzoosuQjabxZkzZ0RDhlkCs/NgMIhwOIyJiYk+zoDmKpRKJYRCIezevVva23fs2CF/14RIPQ9KK29Tp6VWqyGdTgvMGwgE0Gw2sbi4iOPHj+PQoUOSsbGDK5FIYHV1Fel0WkiLfC4aRaTBZdbFlm2rQcQmIV1Pd9eZEg+/5mmZekO6JfhcugitlOpNFKzX62Hbtm3Yvn37WSNITA0fq/E25nVYcbQ00jCodLqysoIjR46cdY5paLWmEg0eA1NdUnE4HJiYmJCSLw2P5kxwsO3S0hKOHDmCaDQqnKu1tTVxXoFAACsrK5ifn0cqlUKj0ZDOI2bATCK4j3Vr/LZt20SPyOFwYGxsTErQDocDW7ZsEb6EiWqR1P/8889jaWkJoVAIsVgMhUJBlLapT8SyPwONcDgsiAwDQiZHHIHCtSiXy1hcXEQmk8GpU6fkHmh/mOUXi0U5U5oEb5bqBslHaGkHXSbj2dIDhlna0VINVmOrKDug9xcTUKth6IPmIPI9JlqvuYGmojpttcvlwsmTJ3HTTTfhO9/5Dj75yU/C4XDgE5/4hOV5azabuOGGG/C1r30NtVoNN910Ex544AHhTpmleyu+o+7c1oivRilZCuL60mYySKeOl6ahUArAdNB+vx9vfvObMTMz01cGdzqdiMViffMvbTYbstmsPEcGQVrigsn8oUOHkMvlpJuQvpHPxG63Y3p6GqOjo7jooosQCoX6BHZpT8lZ1CXNkydPIp/Py71XKhVBFldWVqQDr1qtYnFxEXa7HbFYDKlUCul0WgI3BmX0lzzz3GNDQ0MYGhpCJpNBJBKRPZlOp/sQbS0voeku9XodlUoFsVhMgA/6VwZfpho/9wnlIujPstmsoGlan40op+5qPecSoVnCuPvuuzddsjC7dnjgWf+kkdEigBrG1rPRmBWQS8RoncaHB1OXEug82D0Rj8cxPj6O0dFRvP71r8eOHTuwY8cOIc7ScXDDnD59GqVSSQTMxsbGBDV76qmnMDc3h8ceewwnT57EgQMHJPPR66U7/DRaw41G0iCzDF6L3W6XIOz888+Xe1pbW8Pq6ioOHTokkGetVsPCwoJA0Zdffjl8Ph9mZ2fR7XYRDodhs9mwuLiIYDCIUCjUJ2dADRGv1yv6IL1eD8lkEiMjI8jlcgiHw9i1axfC4TB8Ph8uuOACjI+PC+mTNXdmsffccw+eeOIJuN1ujI+PCy/H5XIhkUhgZGTkLLFEZo3kdWmtJl2i4OgIPqtOp4N8Pi8Bq+4yMlXL+fsM8sxBvRuNBNGdUrxeTX7WZ+aP/uiPcPPNN4uG03pEfKuS+O9SImRA8o1vfAN//Md/bCm6SnSG2XQwGEQikcCWLVswNTWF8fHxvhlmWpojn88Lz8br9SIUCiEajcLr9WJ2dhZ79+7FmTNnkMvlcP/990sSEYvFcMkll2B1dRWpVApLS0syskeX2XgONAmX50J3GjH7nJycRKfTwTPPPIOf/exnaLfbGB4ehtPpRC6XQ6VSESL98PAwnn76aXEUPp9P9s/Y2JjMV9Pn2O12C5G+1WoJaZn7KB6PS1CSSCQwPDyMK6+8UoJQp9Mp6/HUU0/ht7/9rbTWs82fUgAcH2LKGpRKJbFzRMZMZJRUBSKAuslHdwib80PZEacDSk2tYNv9RuXuyy+/XBw9A3wGl2aZlWfPHDNEB8kg64YbbsDdd9+Nj3/84/B4PLj55psl+Od73/nOd+Jf//Vf0Wq1sH//fhw4cKAvANGAgKaHaORMay85nU7h5TAp9Hg80tYfDoeFq2Sz2bB9+3bs2bMHk5OTmJyclLXXfGA+w6effho/+clPUKvV8PKXvxzxeBwPPvggMpmMPAs+33A4jC1btmBiYgLbtm0T+01CPW18IBAQ30a/wOCFjSyNRkPOFACsrq7i+PHjMquSZ4ToaywWQyKRwI4dO2RNXv/616Pb7QoCqwNnk7dJziJLcnqocrfbxdNPP40777wTJ0+exMmTJ+XfyG86cuQI3G63jA5yOBwS/LCqonXWtJwDkxAmXSTokzemJRZ4PqLRKLrdLlZXVxEIBKRcPD4+jtXVVQlieU6j0aiMRDIT9XUDLE2YNtXBE4mEQKbr6VBpyJqZn86q+EcTrrnhzfKW5uKQXLe2ttZHeCW5luS8RCIBj8cjyqwk1RKdGhoaEtXnUqmE+fl5VCoVFAoFWUgSBzmte2RkRNpYCa3Oz88jk8lIp58e6sp70iKDpi6XRrvMOje7bhYWFsQ40VEy49bdiYFAQIwjgx2t7MwMigZPD4WlQjADG27QfD6PVquF5eVl6d70er147LHHMDQ0hNHRUXGwRAuGh4dx7bXX4lWvehUOHz6Me+65R0o2DGR37twpXTaEV+lE9ZR2XYZkZquRLjYB0GhRrVgrNjOY0Pwhc8i1OeplvZcWCdS6TWYg9Nhjj+GOO+6QTMcqYNLBvS4zamRMN0VYKVmb36uF/37961/3cV38fj8mJyflWTFIpRp6IBCQNmc2J6ysrCCfz0umzs5Wzjrzer3SFq31YYrFIrLZrCRGDOCGhoZQLBaRSqVkv/EZ6w5VjXQQCeDvkHeVSqWQSqWwsLCAXq+HTCaDXC6HarWKXC4nhGaNmGaz2T40RwecTK5YMuQzYkmANpHyA3weZ86ckXII147rTGfM79y5c6dk57/97W+Ry+UwNjYmaHo0GsXQ0FBf6dvs4GQQxsyZiQPvSfMqjx8/jieffBILCwsSJGn1fZYB+XdzuLKJMm0G2fV4PHC73diyZYt0ic3NzfU5Px3omDMcdfnoxIkTuP766/HDH/4QH/nIR5DNZjE/Py8yAG9729tw5513otvt4r3vfS9+/etfC1Fd8yQ14qfFXXVgFw6HxVFrjTGtXTY8PIy9e/dibGwMyWQSrVYLoVAIyWQSkUhEOlPp3MfHxwURikajGB8fx/bt2zE/P4+nnnoKDocDjz76qFQL9PgYp9OJZ555RhJgliUZwOmZhuFwGMFgEJFIRPYmy7Us4fE583zOz8+Lv6OY59jYmJC5fT4fJicnJbhnQkHfyYBNyyzwTHAdiZZTUDgWi2H37t249NJL4fF4kMvlJPkulUp45JFHJGnnvmLpsVarIRKJSKKfyWT6GsIYxOlB0QRv6I+5xhwcT5SckyKYpJBmQhSOYAAROPr40dFRjI6ODkxAbD11alqtFvL5PJLJpECLGtZ96KGH8JrXvGagJoqVfo45N2oQid2q1GEliPfjH/8Y73nPezA9PY1ut4uLLroId9xxB1KplPA/yAuKx+NYXl7GwsICnn32WUF6lpeX0W63kc1m+zIqjZppOJOtmnSIW7duRbVaxeHDh/tahYlO8YETmuW0c4qZaefBUqWeJaWJkTpDpW4QHRyzqVgsJsaqUCjIZtRoDmFQZqQkPOvAw+ygZPCk50AxitdzmGw2m3C6hoeHkUwm8d73vhfBYFA4V695zWv6Ol0ajQby+TwmJibWLc8Vi0U50Ou9vvKVr+B973ufzL7SbewmIZuOQ8+vq9fr2LdvHx544AHEYrGBnaqveMUr8Nxzz4nz1l1imwnQaHzi8XifkGK320WlUpGJ8/rPIFFTnZHrP/xMosXc3zt37sSNN94orcWdTgepVAorKytyJoimcNiwThK4r/jZdJZ0IOTQhEIhLCws9GnkhEIhXHDBBdi3bx+eeuoppFIpCYLZIVUsFvsCZBN91KiD7sxkYBMMBjE6OoqJiQkpW/O8kM+ytLQkBpuOkwEFkRpm3KZWkykkyiye662Vwolc0THz7IVCIbziFa/A2NiYIPJTU1Oiak2nzxEpHK8Sj8fFWYyOjqLT6eDUqVPSybRv3z7MzMz0kdobjQYqlQoefvhhvO9975N7ZdKlRX3ZDaX3Fs89RY0/9alP4S1veYvlQPtms4nJyUmhX3i9XkEB2Om23tgxU9SWAT+7w6ampvC5z30Ou3fvxsMPP4zXve51OHDgAC6//HI0m038xV/8BX7+85/LeunzYEo8lMvlPqkIPr/zzz8fF1xwgXBIk8kktm7disnJSblnEsXZYTc/P49nn30WmUxGGifW1tYk4d+zZ4/YmlAohJmZGTz33HP4zW9+g+eeew4ej6ePE0WbzLIz9wTLzx6PB9PT04Kk0NEziadd1qrnDMADgQDsdjuWl5elekEQhN3wrFqQUzg5OYnTp09jZWWlbwh8vV5HLBYTHhK7KXlWIpGINEcVi0XpFqasA5OtYDCIZDIJn8+HqakpbN++Hel0Gvfffz++//3vC7dyenoayWQS27Ztw759+6RaQUCFNtuqUcwEfnQS98tf/hK33nqrlAKJqIdCIREv5fnjYOiZmRlkMhlBu0dGRvD1r38d27dvP8tGbyjToIOge++9F0eOHLGsYetZeVbTzbUUvy6ZrSfeaSXm+eSTT6JSqWBtbQ0AcOLECdx5550oFAqSdXBRXS4XUqkUMpkMlpeXReGVGRQDId2dRk0PHigaTepstFot+RmJ68wstEaWnnSvO7E0t0Jra+kgT7fM01izLOL3+zEzM9O35pOTkxLQ0WlUq1Wsrq5iZWVF1p1BF518OBw+a0acDhKp9UKDyWfIUmg2m5Vr4vqcOXMGi4uL+NSnPoVEIoGpqSk4nU489dRTKBQKKBQKfcN5uXa6JMQshWs9OTmJYDCILVu2CKHfNMive93r8Fd/9Ve44447BJHTg1W1xpHuDtIGWI8ZWY80TudElGAQR0qXWlhq5hmhMWJmRKOvhQKt5CgGBVk6GdEK1yR0drtdLC4u4uGHHxZjy8kA5PrpddASJ1oqQ6uP05kzIWDAwMYOBuvkVYRCIdG4YllKJ1Ka46Jhd41qm+Ro3blks9mwbds2XHbZZXL/yWQSuVwOa2tryOfz8r1Uf2ZJmsEHHRqfg1m+1HpL5F+RH8YgVCcvptgis3QGD16vF/Pz83A6nVIOYXJLW0JeI9GHWCyGdruNfD6PQCCAoaEhzM7O4l3vepcEM/r9ExMTeNOb3oQnn3wSJ0+elGvSz1rbQl0e1OOENqKE8GwTHeOe1hI25AVNTU31+QDeN4M5zSFzu91oNBr49Kc/jY985CO46qqrAABveMMbkM1m8fd///c4ePCg6EExqNAJjEareE7S6bQkqt1uF+9617tw9dVXo16vS9n5zJkzOHnyJLLZrFA0+CwLhYIED9w/eqhyt9vFsWPHRE+LqFe1WkUwGMTMzAycTqf4Ll2WZJltbW1Nns3a2poELLTzptq67obUumuUjtDyPrTdQ0NDEmzm83kpFzocDpw5cwb5fF4qDOT66skZpvQRz4DL5RJZi2AwKMnv/Pw8yuWygCJ+vx+5XA6hUAivfe1rsXPnTlx55ZXYvXs3yuUyJicnMT4+LkgZOVG6fM0ZhrQh+Xwey8vLKJVKmJ6eFl0r8/Xa174WxWIRX/ziF3Hq1ClRqydxnjw+kvs9Hg9OnDgh50E3sp1TidCKaPu5z33OEmmg8+AFWKEHmUwG5XK5L8Ay29lNeQAT0dL19EKhINDzvffeKwvDrIUZJI1/uVw+q51ed52xZMZNyI3EzaTnANLokZfBkpbuVqTRZtDD4cxUjXU4HALFsoNQcwsI8zebTSSTSQwPDyMajWJkZASTk5OSoXi9XoyPj0t3iR7WySibHBiWfFZWVs6ShaBT0S32ev2ZDTPI4rNjFqSdYavVwuHDh/sQtlgshvn5eeRyOeE06O+IxWICz0ajUYyOjgrRc3V1VVA3BmxmgD8xMYE//dM/RTAYxEMPPYQnnniir7tGiyjq8qDuYNwMB4vrptHdQbITHATOElooFJI1J1JFtIL72STym+fFLM9bNZAMGqGTzWYlQaIj1GrmGtkwldFNMUQGw9rI8/zpobI8M2NjY1JmZ6cPjTpR0kqlIkhPrVbr4xxp/So6TsoBMLuMRCLYtWsX9uzZg3Q6jWKxKG30RFKJSLfbbSQSCUFSiV4zK+Xv8bs0mqiFVjUdgHtCl3W1nhafQyaTQTqdxvLysmh61et16TjTFIp6vQ6/3y9dlXQmPOMk5i8sLGDv3r2IRqMS6Or5jG984xuRSCTwxBNP4NixY33ddBSZ1IErnyc7sTbTzGQq+DNg0ArcvV4P8Xgc//mf/3mWdIZGZM2EgvuPz1P7ng996EP4u7/7u4EVELMSwrLq3/7t3+JnP/uZlHBZ6Uin04K+P/HEE2JD9egVzW9jskUUkwE4nz/t/fz8PNLpNBYXF4UbpTs7WWWgjdHacCzNc4/pDngtNaIDDwo/s7wYi8UQCASES6YpM+VyWRqbKpWKlNrJS9NaT7wfXYKl1hX3TbvdRiaTwdLSkjRmMfAmQMHzrlHker2O2dlZaVLhM2UHvE7m2M1J/jBRVJfLJQ1W5FM1m01MTU2dZR/HxsZw7bXX4siRI1hdXRWbzWHwDBSZJND/cZ+ySeecZRpMDQrthDWHhB13DodDsmEabS3Ap7v8zJZ2zU3i5w/KmMySCYMTXVfXMLjm8eh2fTMYouFiHZ7XPTMzI9k1DY6GifWIGE3M1hkG/50q6ocPHxa+iDnaJBgMyviAQCCAiy66SK6Jzlp393Q6HWSzWUFs9AxDn8+H8fHxvm4xcgToWFZWVqRsQiSFz1aXd3mgdcs7uzWKxaIEETSyfD+dWaFQkM4MIlN6thO5LeRVEeno9XqIxWISlFQqFUQiEUtkae/evbjlllswOzuL73znO/jSl76ExcXFgTpY/F4GDJtxIlqdn/vCFJPlvmJQRSG/XC7XN6WeZ8GcJGDVBm9qg20W9TWV3rmmNHLm6BciL2bnJafNE1HQpRy9htzrWjfL7XZjdHQU4XBYsnl99omKaVRAd3/R4XDgOd8zOjqKZDIppWqWJ4vFovARn332WVl3rZPj9/sxPDzcJ+LIMi2NOJMBd71YfAAAIABJREFUm80mCt1EPDTKp22PFhnW/DLdLKC7QLUwKD+LBGGecapOm/MSue61Wg0ejweHDx/G5OSkcLT09SaTSbz97W/H61//ejzwwAN4/PHH8eSTTyKRSCCZTEpwQFuqh8tv5mzwHJOPqYNSr9crJG6iP88884x0VOrgTpOmzeHknU4He/bsQTgclu8tlUo4ePDgWXpJVhpzet3tdjuOHj2K5eVludavfvWruP/++0XVW89yZCDD808OHKsFJupJDhjtDPk9DocD09PT8Pl8iEQiwgli0s4giiOk0uk0nE4n0uk0jh07hnQ6LfMS2cXHIMDn8wn3i6jfjh07MDk5iWg0irGxMQmuarUafD4f/H4/ksmkjJBhQMcuQjYqVKtVnDp1CqlUCvl8HqFQSGYJBoNBseuU9kkkEkilUtJJH4lERA9xeHi4T2Vdj7c6deoUDh48KOin3+9HIpFAvV7H0tKSJBm6GYYUGQDYsWOHSCQVi0W87GUvg8PhwC9+8Qt86EMf6iuDc7+NjIzgwx/+MN7+9rfjW9/6Fh5//HHhHGuahJbp4NpVq1VpJNtUgGU1lZxR+je/+U286lWv6uNX0aBqYqRV27iZcZ+Lng8PptPpxD333IP3ve99soh0AjqqNrlgmldEQ0j4mZuREC5ryQxIGLnzYGoRRF3+sxp5Qz4Lf59OamZmRoIR6paQ60CyJEmL09PTfU6VjpFOR0PgGgbXcgsaeQuHw0gkEsIzmZ6eli6JWq3WR6AnSVnfD7+fPB2NwpDToQmkbGllXZ/BCQMvXj8zQ4q3cap5LBZDNBqVbq/f/OY3uOqqqySgoSEslUpYXFyUAPiaa67B/Pw87r33XtFaMtvRTRLxZsfkUM6Ae0t3JWo0h3uHmjZ6b+p9vd6MTLON3ny/yf8yB0abAZQe5qo7I7V4LcvSLLMQ8eLZoFo1S+TFYlECAF2u1Bl6LBaDz+cTeQUOU2aCQtSYwQFRp2q1KhxIXgMNXDweRzQa7WteqNfrSKfTyGazKJfLfYixWWrVrfM82wyESF4eGxsTVI4ZN5E3JgQaaTMFLRks8F4ZcGp+Gc+cftbMkvl32iIafQ7EZhYPAAsLC+LMqd1EZHx1dVWCpZmZGensdTgcCIfD0pGsh8Wb5emNZExIOyDiZbfbkclk+va93W5HLpfDDTfcgHA4LJ2qtAfkNZLKoEU+3/jGN+Jb3/qWBAfk2R44cACf/exnLWd4Wv3Rfo1nlNSEoaEhhMNhIVlTBJft/uag516vJyBDJBLpQ3j5PMllZcJF9F6fO/0e2kK/3y/duX6/XxTxtRyBTurpx5xOJ6anp0VNf2RkRMqB9AnkzdEGUwGdyR8J8slkUtAnBnZEg59//nmxhZryokdPDQ0NIZFICLGeybVuWmEjAREhjiXyeDySQLGjnyKgtBlaZJaBo1YhWFtbEyTs1KlTmJqakkSP98/Y4uKLL5bnvrS0JKV2KhnwuWldO03yP+cuQhPqPnHihAjfaa0UDY3rESKbFW80HYnVYeCDO336tKXIHPUttNozb153yrAkkUwmMTY2Jvwm3caso2SuA7sstNaLlvdvt9tIJpMyn2jbtm1ot9s4deqUSPDT0CQSCcTjcezZsweLi4t49NFHEQ6H8epXvxpDQ0NyTZpEqtWmqcszMzMj/CSKMNLgayVrPhs6FHKyiHCNjo72iXvS2DHzL5fLyGazOHHiBBYWFoRkrzMQHlytdE+42YosTJIpDxXbinngWbogp2F8fFygfI1IEBo+fvw47rvvPnHCW7duxfvf/37ccMMNuO6660SfRQdaRFVNNeD1Xgww9FBZHmieGwYDPPAkhpM7oIUOTX7LoJmE6/GuBqni65Z87fi1syNCwn2miahEI7SsA4VmaewYmOsyktn9C0DECqk3FQqFsLa2JuvO5ISQP8uGJ0+eRKVSwczMDEZHRyUp4hry/Vw3NpPY7XYkk0lxlmxw0edXJ4WUfUilUuJAGdgDwNatW/uG3wKQpIIaX0QVaA9p9DVnRAdddDS6q9VMVLW2FtvNWeIiUs6WfgZV8/PzfdMhisUiHn/8cUEnI5EIJiYm8Nd//dd4+umnMTc314f+aw6pRq43kmlgcNxut6UsUywWz5qe4PP5BFFhyZTnmc0VmidWqVTw7ne/G3fccQfy+Ty+8pWv4AMf+AC+8Y1v4NJLL8W//Mu/IBqN4pZbbkE0Gu2bGqCnO+jqjJmo8F5XVlb6NKc4L5Mcs3g8Lg6bki1MWiORiCRSdL7sDmT39+LiYp9qO2dwkhTe6XSQSCRQLpfFtlAaZN++fdi9ezd6vR6Wl5dx8OBBdDodpNNpRKNRTE5OYteuXXA6ndLZRvtCEV0GTSyDkeROFJNkdpfLJc1efHZer1foKXa7Ha985SulZFYsFrGysiLNGb/61a9w8uRJjI6Oig5eJpPpU41noMPGEqJnTCK0Sr3Z1UsxUD1PllQa+qXLLrtMEKy1tTU8+uijuOqqqwRx0vQQEtovvfRSTE9PY3p6GrfeeisikYh0WhMxZUlwYWFB4o5BDU4bIlgacr355pul20RD1zyEVjPq1nMeg8bhmJm3diI8oHrCuC4/smzDtnFmKEQU2JlDI6+1QXgYdLCg5Qw0D4Nt7L1eD7OzsygUClL/7Xa7OHHiBJLJJPbs2SP8JcK5mpPgcrlw3nnnIRaLCVmdQaOG5gOBgCAINpsNkUhEBBrpSILBIH71q18hnU4LB4KRPrNELRug+VQ6+6ADo9Fm6SUUCmHnzp0SfKVSKXEUzFgoA0FxPWYJDKjMzJiGVYv2kbtFdflyuYx0Oo2tW7di69atQmJkkMA5WgzqyDlzOBx41atehSuvvBI//vGPz8oyaFi1nMNGL6IXOtjWCCID+ve85z34kz/5EyEuW+3zc0HOrDLzQZpZzCp/8pOf4Oabb+47y+RIEtWlUSeiS8ifGlemmCX3B9ERPQKF66MbPegolpaWMDExgW63i9OnT6PT6WB6elqCaK6pDjicTieGh4cxPDyM0dFRsS+8bz1T0Ol0CjqgZ2KSc0IyOWVPzNFYLMtrYU6t4aNL/txHDAJZtieBmSgazxjXzywNMzjUSt5aPV0nuLohhgZedwq3Wi1ccsklwsnqdDrw+/2SHNKOkRPqdDqxb98+7Nu3D7Ozs8LzIRqhNeTM0TSD9iYDddrifD6PSCQCr9craBlnVrLJgnuIa8NnwfsuFov4wz/8Q9x+++1ot9u44YYbMDQ0hA984AOYm5vDrbfeivvuuw8333wzHA4HPvrRj1oSsc3EQ5fc+TxKpVJfJye1vLLZLBwOB1ZWVkQqIBKJSACu6Sq0oSxb6dFpRCu1Ojr5f/SrJH5TamJtbU269lgdIZUkFouhWCzC6/Vienoa27dvl1F2mmpjaoHZbDaMjIxg7969sj/IP6It4Dmmr6ef0N3kzWZTnmUulxP/Z7PZkEwmkclkZMj16dOn8dxzzwkfWaOT/E5yxliJoq8icMNr4v8Hg0HZly6XC8vLy1LFCAQCKBaLOHXqFOLxOOx2O17+8pcLVYVxBJ8rO0HtdjuGh4dx0003IR6P47Of/SxWV1extLQkvlQn03o83TkLjeoX1cPZhaDJzbq7hwaKwYc56HS9AGszAotm9tHtdoXYyZZxt9uNkZEREQSk4yM0ryFrDU2bqBkfvG7nZzRLrsfu3bsRjUZx+PBhzM3NSVfBkSNHsLCwgFwuh/HxcQwPD0sGqaF/ipjSMVDAkOgbVbM1Z6VSqSCdTuPBBx9EqVTCjTfeiAsvvBCjo6NoNBo4c+YMTpw4gVgshrGxMSHhj4yMIJFISEux7gyh0+QaMIPR2lyjo6PyjHlQWCIiclCpVLCysoJcLtc3T5HBJZ83O4V0sKdVipnhkVh/5swZ7N69GxdffDEOHjwo7cFscWenKPdHOBzGY489hrm5Obz1rW/F1q1b8W//9m+oVCqiRK/3p8mhGvTS8gEcFEpI/vTp0xLk0VBrkr1Gdc8luHohL36v1pRicMCmFBoH3RWngyNdttIEV6fTibGxMUEzWYKmEjKDNpfLhe3bt4vYH8uKhw8fRqlUQqPREG6W5iQxgGk2m0gkEsJ5ZADAII/cKz2/7PTp08jlcqjX6zh06BCGhoZw2WWX4ZJLLkG73cbBgweRzWYlkOT+N8ffsIRYrVYlSdNJHR2pdkZEwXq9HsbHx4Wfw9JlvV6Xc6ITLdpMc37iIMV0otv8GbW90uk00um0lPGJrlBNnwkNkaNnnnkGXq8Xl19+OR555BEsLCxIUK07ZHWDw0b8RKIBWsoiHA4jl8tJqYvnWgdUnHJBMjmRoLe//e19g5t/9atf4brrrpPv5Fide++9FzfffDOazSY+8YlPCAKm0WUT8dVooV5fr9crkzd8Pp/IClCwmnIHDB6JmDJB4L7V+l9MNlKpFLxer9AtVlZWcPToUYyOjmLLli2SjOzYsQPbtm0T+Q76U9qfcDiMvXv3wm63i44a9zLPKEvjnA3LDk2e0VgsJkOT9+zZg5WVFXz961/v6ygdGRkRJXnuAaJHtDN+vx+FQgF2ux0TExOw2+0477zzpOxPPiDtI58xSfC5XA4jIyNIp9OYnZ1FIBBAMBjE6uqqNLtYIfIM0PUzjkajcLvdQnLPZrNCdr/qqqtQKpXw05/+FKFQCFu3bkWxWMTS0hKeffZZnDhxAplMBoFAANu3b8cll1yCLVu2iFgxx/FowEM3wp1TgKVLEISlP/axj+G8884byBvR87KsILPfxalwcz3wwAP42Mc+JhsjEAhgbGxMMjZm4gxMaCx0N5A2jHrwqDbueh4bNxxLI8xWarUaUqmUHGRG1zS21NwqlUpYWlrq405x/eLxuKiTax0jLbDGlmwGINlsViBrtorzdxmgELas1WoStOmxM9yswWAQe/bsQaVSwcGDBwVpYoaiVXpNjg2dQSgUQjAYRDweFwJkNpvF0tKSbEgiHVopmtk90RLeX61WE/IpS0/dbhfPPfccvva1r2FmZkYU4SuVCrLZLB555BEcP34cyWRSSiqZTAYrKyvYvXs39u7di127duHJJ5/sCyL0HKnNlLPJedGzw3bu3ImVlZW+dv8vfvGL+PKXv9yHOOnuo0GQsolUWXGuBnFhdIaqiZmab0LHQT6OLgfxjGiOlh4Yq2e3sVzH4IyGVutlEWEJBoOo1WrCaeDvNptNrK6uShCiB9nSYTHY0N1lWi2af3i9a2tr4sw1wp7P54X8rjXMWPLVRGomXFRwZzLFwIXIF6kImr+mJUBYUqbTZqAVDAYFLdGoFsuxpB0wweP6a6FhigvrUvVTTz2FcDgsJSfyJldXV7G6uiq6aBRGrtfrCIfDGBkZwdatW0X6RtNEWKrRg5kH7VuWmHUnMkUqeW50A5BeJz4LzcO69tpr8c1vfhPVahU33ngjHnzwwT4aB6/z9OnTuO666/D9738f//iP/4hWq4X/83/+jyTU5ggh7bc0nWV0dBRjY2PCxWIJUBPUtZ4W75cdbrqzLJPJwOVyybOiVtv09LSsA+V2fvnLXwqNxOv1Ym1tDel0Gh6PB3v37pUgmvegNQ2JOFJSgJ3tDAxZ3gwEAtKUlM/nZZzOrl278OY3v1kaE4rFonxPJBKRpL3dbovUwcLCgiTofB99TyaT6btengsmABqoYbBP+ofNZkMqlYLH45EpDUzWCHDwPHOvsGGFCgXDw8NSXWDVSs/oLZfLOHPmDIaHh+V+NLWIiUk+n8fTTz8tFZvjx48jkUjImdSVPZ7xcwqwmFWxpFYsFhGJRDAyMnJWRmWFUq038mPQLKiNAiyn04lkMimLwjru1NSUqEXr1nYtN2C26GoHRiNLgpxGx6iiy1lG1COpVCoyrJVzqDRxL5FIoNVqIZVK9Slf89q1CCu7NngNvDc6DgZVRBVqtZpkg6z/U8Zgy5YtwmtgpsMuRJbweGC0BhCFQrVwIw2KLr9aKfbrafVE+EgWLRQKSKfTor7PYE0HeybSqXk9dDoOhwMnTpzA3NwcLrroIlxxxRXy3EulEo4dO4bFxcU+BV/dyDAxMYEdO3ZgdXVVujd1oqCHb6/3Ilm10WggEolgcnISiUQCJ06c6AuaeA9me7g5yHpQYGWeC6vOQP3ZOvDVjkMTaUmA1nMG9TVZyVdoJXgaulKpJORlkuGJOhKCZ0abyWTkbFCGgEaPHCZqdWn9N55jqvPrsiXPLaF+rdrN62JXMGkAfOYU+CyXy4K88Tyy3Kb3Ih0UUUmuIRHWfD4v3bFcVz1MXJcPKDPAEju7zdg1SQNv1f2pKQrk9OmkjppLoVAI27dvl0kJtEHZbFZ4PvwuImrM/MfGxvqQCn1Pm9HC0oEugxs6ObOcadWZyzNRq9Wwf/9+fPWrX0WlUsFNN92EBx98UD7HbODweDyYm5vD2972Nnzve9/DbbfdBofDgU9+8pPSEagDKj4jLevT6/WwZcsW7Nq1SzqA9fQI3RXKbjvyWGlLaUOog8ZSPUex6IkKlUoFW7ZsET+xuLgoQt/BYBCZTEaCFeoREg3ieRoZGUEoFJLkhyR3XiP3RqlUkg5/lo/z+TxmZ2fRbrfxxje+sU+AlfuatpV+jY1lFCa12+1SImRJWA8b193rWvhYDwOnxAI5fDMzM8Kp1hMeTHFbPfZJz1wslUpSfaGkB3mdv/3tbxGNRoXwzwQ0lUpheXlZGkeoB5ZOpzE1NYWXvexl8Pl8OHLkSF9FQs9NHZT0DgywZmZmpPOLm+XP//zPxZmaXBAuohW/xOwuXI/MbgZupmAc4Vce/GAwiKmpKeluYCaoRy6Ybb9EabTUAgMN3W7rdDoxNTWFyclJtNttzM3NIZfLiaYXCensJCFnqN1uY3p6uo/PoUnz+v617o7uvtGBIkuuusWcdf6hoSFs27ZNuqkuv/xyTE5OYm5uDpVKRRwqIfNyuSxRNwmwDz/8MFKplJT16NC0sSefywyKtUPnIeFYCI78oJTDyZMnsbCwgNXVVcn8KV1h7hduZN1eT2d49OhR7N69W9p+2aXY7XZlCLcWwcvn83j++eeRSCTwe7/3e1hbW8Ozzz6LtbW1PlRTZ7zrlQgDgQB27NiBYDCIQqGAQ4cOCSfMKjO2Go5uNYKEaKnmHVhp+ugAlyjUIN04zR0jH0SXAOjczHFNQ0NDmJqaQj6fRyqVknZ/ZpHz8/PSJMESIDv3mHnq+X3kDPJ5kmirh6aa4peUTeC51+VPLRiskV46FXZQsdMuGAziwgsvxNatW4WAbY7s4n7RBOtTp04JEqrtCTmPLCPyTOlAl59rhZAT+WU3WKlUEpIwEx/ufy2KzJ+zi1GLkdKeZDKZvgHTVFEnOsnPYCDAMu/09DTGx8cxPz+PpaWlPqTdFCK1SoBJdmaX6dVXXw2fz4fFxUX85Cc/kWtgosnkl06Sa/nud78bt99+OzqdDt7xjnfgwIEDfaiq5lBp3t/p06exf/9+fPe738Utt9wCl8uFj3/84zJ/VZ9hrpspl8GgnwE47Sf3/8jIiCBy5FKxI01rtvF7qP1GFJQlseXlZRw7dgzJZFK4WY1GA6FQCOPj431BKfmuiUQC0WhUFN6Xl5clcSCfMp/Pi0202+3yubpZpdFoSJPVvn37RHx3ZGQEb3jDG3DixAmcPHlS9OqIBD/zzDOCFHE9WeJfW1tDuVxGMplEPB6XEqnu6tu6dSt8Pp/4yVgsJmeoUCiIL6ctGRsbk8SVnFoS3CmdobtsGbTxjJIbzP+/66674HA48Na3vlUaX0KhEH70ox/h0KFDmJiYQCwWw+LiIorFogATfr8fU1NTqFQqmJ+fx/HjxwV40rNtNxVgMQjYsWMHDh06JFA2SYAbDa09l0G2643E0fIDmlhqKm7zYeuWf3PGlD6U2lizRs2Ho0fWkB9BxKLVakmHCrVJRkZGRMuELaXMjol66an0RKD40Glg6CxodHhQmc3TQTMo1KRkXfdngwE7qObm5rC4uIixsbE+de98Pg+32y0ZCTN13THC7EMTfnUWoeUq+PxYduLaadg1HA5jcnJSRhtQZV5zvEy+kJVEArNvBtrNZhPZbFYyNM0p0oEF90IikcD4+DiWl5exsrLSpye2mVE37NAZGxtDoVCQ4MOKhG5KJ2yE0OoExUo+Qqtec+31OpnIsdX7dWBCx8brpLEg5K073xgkkPPE/9cZaafT6evu2b59u3xHJBKB3+9HJpORvcdg3+TA6XKyiXaa0xd4fnivJOpzLin3PBGHWq0m3Ey2w+sAlbaOA3VpV0geZkDA+WVEtrRcjdn5bD4XXUpm0EseGrsFOQvV1CPUQrD62fA6GTQRzaCTJrdKXwvtiR5iGwgEMDw8jJWVlT6UQJfSB5WnKblA9Xh2VWez2b7gUs8D1GPBGo0GbrzxRnzhC19As9nEjTfeiAMHDsj+2mgQusPhwMmTJ3H99dfjnnvuwcc+9jHYbDb80z/9U5+osbY1uoRIBIodc+yW1xI/RId0cxRtqN4D/GyOL2LpmpImRMlIyCbPSaNiprYj9x59QrlcRqlUkoYgHdDwOtlkognrPF8sfXJNyAdeWloSP0qqDUuMurOeDQDpdBoLCwuCJBOp5trw+uPxOOr1unDw2ETFCSoMVmu1GuLxOKrVKqLRKFqtlhDNeQ20BXo99LrzLGsdPzayMZhjQMqmm5WVFekiJvWGJUmtT8n1ItK2aSV3Bgp/9md/BrvdjkceeUR4Mo1GA3/zN3+Dbdu2DTTmmyWw682tAzNz2KupEGy323Hw4EHccccdMv2a85+YVWjUgJuQN68FEvn/7DbUJGk+cPKtvF6vKESXSiXcd999mJ+fF24FI2tmNyQ9UqXZhPUZgDBwodEkkkXSLTcG74XcKHagjI6OCnmebbLMji+44AIsLy/j/vvvx5VXXomhoSHJdjgXipl6MBhENBo9qyRIZWs934zjeXgPdDbc7ETaNELCZzs8PCzEe2ZmR48eFcNDVVw6DAajRNt0J9aRI0eEfMo9QhSJhoHQcSqVkv+urq4ikUhgZmYGXq8Xhw4dkjIJ9/p6r3379iGVSuHMmTPCRdDZtDkf0EqfSgeq+ud6LqHV+Buz2cFUfjdRYRMlY0szHYVWcWeAMTo6il27diGXy2F2dravs40lIHbwkIsWj8cxPDyMTqeDubk5nD59WtrbyQ8kOZhdolqYU5fAaBB1ssROJx3AM4jSxHjOR0skEjIegyXhdDotyBo7sJ5//nmUSiWcd955sh7cb5dffjlcLhcefvhhhEIhDA0N9SlO22w26TpiiUOjWI1GQ7qddeCpg36tAk45iEAggNHRUQm01tbWpNxsdj5qMWVtJ3O5HI4dO4ZoNIpoNIqJiYm+88kkUouLUuLC5XJJqYa8NdIYNkpAOp0Otm7dissuuwxzc3P493//d2l80YLPWpNNa5i99a1vxde+9jVUq1W8853vxIEDB2TPmnNrrebYkrO5sLCAd77znfjWt76Ff/iHf4DT6cQ///M/y2fppF0HAjMzM3jlK1/Zh/Dl83lJwLiPiEaxDEVBzHg8Lj4pGo0iEAhg165dElQwoQgEAhgfH8f5558vPLlEIoFisYhnnnlGAi8igkz4KR+i9x33BFFZv98velMM1JrNppTvKGYaDoexdetWxGKxPsR9amoKuVwOjz/+OLLZrIyOY3C+vLyMLVu2YHp6GuVyWdTheT6cTqdUvnRlgVwxBmDsbKdKPhE2JhY8D/v27RNC+/LyMur1Ok6fPo3nn38eqVSqj55CJEl3HNKusTGN9mvfvn0YHR3Fgw8+iGPHjmF6ehrLy8syp5VreuzYMWkK8ng8kqCzSlOr1RAOhzevg9Xr9bC2tiYbSBvvq6++GldccYVlPXQ99MpKVXpQFjIoS9FCgLfffnsfb4ROl4bCLJFwdACzE80p0qrVDIRIXvR6vcIhosaLy+XC8PCwEAUJA1PHh8aANWkqQ5Onoo2jrh9rQ8N6v3ak/C+5LHQ8zOj1nD+WXjhmRwdx3GyUbGAGz0yS0DJhYyIr7KRqNBqCzOnMgfC9JsTqtl46T8K5NOTbt29HoVDA0tISUqmUPAs+FwYB5viY2dlZrK6uCoxL8vT/R9yb/MaeXmX8x0N5KNc8eShPd+rhdkLS6VYCQUGKBAtWsEBBkcKKFRsQazb8EewACSkSIFhFAgUWJB0FkjSdpLtJp7vvYF9PZbvmKtfg2f5tfp+j5/t22b792/wsXfVtX7vqW9/v+573nOc853lCjpIKm6pVAwT/paUla7fbEePvu4RGea7Kb9JWOS2zz/v1MjIRn+drdnbWAyjXB2qryR1IFMk7HmnPnz+PWFnAi+A+K4+HJBgSayqVclgfPgvoKtpUtGN0Okr5G2rJpHo+VOE60am6USBOtPLOz8994ELlQxKJhAdyNa5Op9Pe3oSgS2uF2KBT0+pPqZw1COSdTsc2NzcdQQwHbDRmsAZBgkh8kF4ZpQ9I3ON+DAYDe/78uc3Ozvr+p1ADleT9w+ECpil5jsQF5TGNitcM3YCEP3/+3Pb39z/jHxn6AdIG/fa3v21///d/b/1+3771rW/ZD37wA6dYhAV8GBPh5XHfp6en7eDgwL7zne/Yd7/7Xfurv/orm5ubs7/+67/2da7cINZNp9Nx3UI4dsqdVV9RkFIkCkAyaF2RaCPr8MUvftHy+bxNTU1ZrVZzLizJHvdNW/iKkqmBs8Y2EkZeD5V7Xpvf06lx2l4MiuFXq+LasVjMms2mDYdD974kQTw5ObFKpeIIjtIU4B8jOYGmI4mamk4nk0lPYCHucz6QVG5tbXncooApl8v+OiSuJycnPtHNPmVvQanh+0oRGQwGlsvlvJUKwKGoMJ+Z36dYIRYoOHFrgkXm99Of/tTbYdpa+7M/+7OIAObL6vmE6rlsBh2lDV8jrJbYjN1u161TVANHDyhOo8TJAAAgAElEQVSQJaoFbR3opIeK4KElMhwOI3YZjNLiXYYlR6FQ8B54Pp+3arXqejJ4OkEoJKmiMoHsGWr6pNPpSGKhmkIkYZBq+/2+7e3t2fLyskOaa2tr/nm+//3ve4+/2Wzav/3bv9nZ2ZkVi0V7/fXXvX88MzPjyB++Z5A2VftINY1ABdUPjt+B/6aK86oSDdxP0EXnaG1tzfr9vm1sbDjsTFDlOSihvtlsWrfbtd3dXV8vICMkj6pbwgHMc61Wq5bL5exLX/qSNRoNe/fdd+9UqiYYgQSCUPL/2hr84z/+Y/uDP/gDJ3Dfpfs2ar+MEhO9CQELi5mpqSn75S9/af/0T/8UsYxSfzxFdCFtEmBAYvl3KnL4csSGfr9v1WrVgyhEatosrP+tra3IZB1SBaplB++P/TMcDl0fiENN+R9IbrB+qdwpfM7OziyZTNrV1ZW1Wi0P7Jubm/arX/3KYf+nT586aoGsyS9+8Qv/TCAW/AzIahhP4GIR1yYnJ+3LX/6y7ezs2MbGRoSyoIgkhSw8KjWrh8tYLBbt6OjIWq2W25GpjYxSH7SAbLVafj0kE1rls455LTWNZyJxb2/vM5qGoyge2WzWqtWq/cd//Ic9f/7c9ypJfTgFq6+J4v4f/dEf2TvvvOOJF3Gc5Fzb1pCmSRSUuzg9PW37+/v2J3/yJ/a9733P0blQhofi4erqyprNZiTBor1F61MHDUBMQbApfGlBr6+vO2IWi8WcV8Vr0DLU6+c1ibm00tiTx8fHLnGgXqfa6SAeVKtVSyQSlsvl7PT01KUGEBFOpVK2urpq2WzWye9jY2OOTDGpx/WC/FJ8dLtdl2Sgy3N2dmYvXrxwMVscQpBMqtVqLg+BaTmFAfcVNXzOI+4x3Cus3ugY1et1azQaLqTKa7IXeN1ut+sC1T/5yU/s5z//ubd1kQJSFwk6U+vr6xH7LjTLxsfHbXd31zszL+VFSACAoxMKsm1tbb3UATEqMVJ+l/IeRnlH3USEV9NlreaUnBxyVNiYYR/96urKFhcXLR6PexaOITSbSe1ntre3bWdnJ2JNAXL08ccfR+DmMPhyrZATWbg6UcZ/4WIgasfUJBsokUjY2tqaFYtFr1SpmqgY6/W6PX361L7+9a87UX9tbc3++Z//2TY2Nuzg4MCSyaQVi0Wbm5tzW4KwrUTrkQmxUOiNCqbRaPg0BTAtyY2+plbt3F+1nqFteXR05IkWlZMmR5pIaPI0ShU9VJnn94bDobckl5aWbnRbD79UnV65FPBM+MxvvfWWffvb3/bK6yah0ZfZQ/9fvnhm3/3udz3pU54T/BxsbJjqq1artrm5afV63RYWFiL6UNxjlR6Ymppy9FRJrlSA1WrV2xPsiRABV30dfR9tWSuSykFWLBZ9nJ49nMlkrFgsWrlctsFg4FXq0dGR1Wo1u76+ts3NTZuamrKHDx/a6empfelLX7J2u+26aeyjtbU1n8IiweKZgZjrPlZRVgjnH3zwgfP0ECRlf+ikM58b1IJqX9vDrDX4Y5DcQR/Ym+hf8ZzCVjsFHIlCOEFKco2eV7lc9jbRbXGeqVG8Jzkgp6en3VZIPRaVD/T973/fVldX7fj42JEr5d6F4tejfAuVV0ic2d7etq997WsRY2ZF0RTdwx0DdIT3SSQSfm9AP7E+ury89Gk+eHlMicbjcfv000+t1WpZqVTyxBUtt0ql4mcZbTXasWiokeyhq4aoMm1n1avjbKRbAoXi9PTU9ce45na77UnVcDh0dO38/Ny2trZsMBjY9PS0dTod29/ft1arZalUyorFost36PAFxS9FC/QbksdarWbVatX37/j4uFWrVQchVMpCYz3OCGNjY7awsODtQyYjZ2dnbXl52SVfqtVqhLumxQTnC0R7Bjzg0JIsc26AsisIw/7EZJ7Wpepz3dki1PFHDSjf+ta3bGFhYaQWT9iaGaWppbyKUfytUe3BkAS/sbFh//7v/+6yA/jQMfWhfC4myKgMIC4S5Jl2IftFpwdIloWPmNvm5qbVajVbW1uL2Li0220nqtL6e/z4sXW7XfvlL3/pnxl0jGsA2ieBRcuLRQZkGVa8S0tLlkqlbHNz05Ph6elp293d9WmHsbExe+2119xC4I033rC1tTXXziJg0N4Jx5ZDhXO1F6GCImnCbFpbiNqGUksD9SlkQ8ElIUmjQsBiQSHwsPrWVqqqNN/kRsDUJ1yJSqXixr+8711kdLVZYa2osvvY2Jj9wz/8g/3oRz+KGJGPQmVD+YtRUPNdXp43IVnNZjOCEul+1hY1KOZwOLRut2uHh4e+ruA/cbAoagwvJJPJ+P5MJBLORaT1AH8KJIUWIlM+fF8J4xyscPwgxEJeBy1TCyJsfkAFFhYWvDpn6o7iqVAo2MrKijUaDVtYWHA0kuu5d++effGLX7SDgwN7/vy5cw5VnFLbEWHspCrHuFYnNbUVyvtRpZMwIgxK4sSAAVU3a47EkmdJTFPEJeQpQWUgDocCs8qtHAwGrnF3UxskJP+rNhL3Qosd1rxO2oKchTIhivDr/dCzQaUB1NpNC/hQzVyflyaOyo9TH0TOA1AvqCL9ft9SqZQX3aD5XDf6hcQZeISxWMwODw8dIKDNqKR59SskOaTlRYFLgg/IkE6nHShQPUjW1/T0tC0uLrp4M6gara/9/X37yU9+Yq+99poPeNHeR9MRhXZki1SGQiU7SESIIXw29hJtObQ2afHp2cLzAJTAQg0bL90H1WrVnj175h6kExMTPsiik5+6jjQuksxReKBKwO9ooq1AD/v7zgRLESF9qGyCv/iLv7Cvf/3r9v/n1/e+9z37x3/8Rz+Y4/G4VSoVP4AhT+uBBdGPjJqFQK9ZJ+VSqZRL6zOmfXFxYd/+9rfty1/+sj179sx6vZ49fPjQp+C0D3x4eOiq6c1m0zWr6EFr/592murmQIZ9+PChxeNxbz+pMCbJIIuDrL3VatmLFy9c4fZf//VfIwFG9Z6QaLi8vPReuRpnk7lz8DGqy8IjmIAC0tqp1Wou1aDIJJuFhE4rddXGoepAS+vk5MRarZbt7u5au912eJhRdtVoYjBAe+gc1Hxm0B24Q4eHh1ar1ezhw4f29ttvR6QoblNI15YgAQZ7lMvLS9fsokXCz4aVTqidxDpQjogqaYc8pdv4jiTeOoG5vb0dmXrUg4HqeHd31xNDroMDnlYdvlzdbtd+67d+y1599VVLp9PWarW8HXB0dOQitrS2CfCNRsMLDtr4FAZo45BohbpNuVzOlZ8hYZOodDoda7VadnR0ZI8fP3YeCUa1qMhfXl7aO++8Y71ezz744AO/x7RCSGZY03t7e5Ggz/2DN8LeAHmC50LrBP0ruJ3aslYbI3ii3PvQDxakF4FiuD+0olj7mlCB4uuQiKKDynMLDeP39vYsm83a/fv3nd9z0xeIHghvPB53qRYmf1n/irpo4aLFpE77qaAtCTWfjwOUpCQUbNYCQ4sxfod9try87EkVxSeo0srKiuuWcf+z2axdX1/bkydP/IxBKV21tR48eGDvvPOO1Wo1F+/EUWNjY8MKhYKvl5OTE/vSl75kh4eH9sknnzhZvdVqOUJGgkWBTlxJJBK2uLjoCfjExITlcjlPvLDsSSaTtre3Z7VazduZu7u7Tuy+uLiwP/3TP7XJyUl79uyZpVIpW1paslqt5omT2jWBkOl65VmQfJycnDjtCPNsUDX4UzwXBTvgRDJAo4LhODyAtpbLZVtdXXX6wc7Ojm1ubjrFAAmLTqfjKGEoLA7X+Pj42Ck9rE8ETQFeGK5DO+1zK7nTFuL///Iv/9JJszcR0nVxhyPkISoV6gNptRWiYXyvVqu50Bk9248//tharZZzm/r9vick4TWo7o3qH3HdtACB2cvlsjWbTfvxj3/syNHU1JSVy2Xb29tz/a1ut2vVatWnftB86vV6NjU1Zfv7+59pcXF4YENDLxcPLsx1CTaKDKkSMn8g39NGYNQUATY1x9VDfZR2E/ApbU1gXB04QJgOixBg7Far5YcLmwG0CiIn1RktDdCMcKiBiUkWOAleaL2j2kGsQ1XWB7FSyQl9H/gtL0N0VxV7fp6pOtA4NQxnL+izC73BNPjr89X1r4dReJ0hgqW8Kw5b7Dm4Rk3si8Wio6WTk5OR5IWElgqQ57iwsODTvKlUyqffSKRIimhnoZHUaDRsf3/f/c+63e5nhAdBSmk7cI9UBgV+CkrxJP4aOFdWVszMrF6v2/z8vGulsfdQlFfu19HRkf3nf/6nvfvuu+4UoJpTHO5MPCmJm/sNDxCSMZxHHXpRWyo+H5OwrCVd31o0oM6tKuNwH5WLxbVxkOm0Ksg190p5kyobAlXgpjYI74UxLodj6Lsarv9R4tSaGKqzwCgObyhZoXpoIXIdvraiasSnFy9e+HDX7Oyst56Pj49tY2PDW7wQ3ZkQRyWf0X/VxNrf37c33njD3n77bXvy5Il79k1OTvrkH0UtKFI8Hrd6vW7NZtPJ73wWEnBFr7iuWCxmw+HQcrmcra6uOnoDmEAbHp00ivXj42OrVqtesDYaDfuXf/kXi8Vi9vz5cy/6k8mkJ5igTsQIYuvh4aEnmiToDMcwcakOAqp1STfq4uLCuVTEa3hhFAdMiddqNTs8PPQYQMGYzWY9OWYit9vtOlpPkq4ixSStWjBoax90i1bq5OSkW1F9Lg7WYDCwdDpt2WzWe8ETExP2wQcffGY0NmwD6WGiB0c4TTJKiHTU6G0oVKpjz+Pj4/aDH/zgM2a9qtXDTeFadIKHQMK1q88h2TPV+t/93d954gXM22w2PfEgIVPdK5AnKvNw8gmF8fv370eUt5PJpK2srHilS6KoNjNhCwwV4FKpFOEh6Og595IF12g0fIRXp4hQzKf6h/tBUgbSwcHDYVKr1SLBn353qVRy6QkOMgJJrVbzw10HAFT7hsoMVV2sJLa3tyMBXJ8dJG7GnVWbi89C4EYDhUr0rhahqvhy+CH6Wq/XIwm0DokoAkayrYnSKMVitbzRBDTcG2oarJpBOuGmLT6dDNvd3fXnzHvBf2PdnZ+fOxeOPQOpdHl52Q4ODvyZkMTDu7m6unLNuG636+PQFA0cpO1221KplHMhSNoSiYQdHh46b7JQKDhvRHlXBE98zP7v//7P3njjDSsUCpZOp+3p06e2sbFhu7u71mw2nZxbKpXs+vra9vf3HWXt9Xquas4BhaAwz5mkR4s27inIM/f84OAgwjejXTMzM+PuGCCgmnSDYKTTaed9KQEeTS8OOQ4SBIyJiRxyOsXFdag8SehFSZw8PDyMGMWPmq6t1+uWy+X89zgUSRbVU07be8rhIQ6q2GtIW3n69Kn9zd/8jb333nveXmVdgtZpEhYWJyrNwCEbi8Xsv/7rvzwJYGBBVdLR8yNOoiNIIqOt7TfffNMWFhbsl7/8pR0eHto3vvEN50OhB7Wzs+MyFvB96vW6/fCHP/TuCPZjuAiodyrivblcLmJ1MxgMbGVlxRYXFy2ZTLokQihyzT6dnp62YrHoYEGxWHQHBpKUubk5X1uq3wZxHFV4fbbI7zBpB5Ld6/Xs2bNnLmhNyxIpnXQ6bY8ePYoIL8diMXv06FEE6WNIgDyF5PHk5MQ++eQTi8fjPkWL9ypivurQQoIHx417yrOHBtTpdDzWHBwc+N7K5/M3JlmTNxFkqQjgZnDjFJli4eqYZqjOHvbSuejbjKBD5XfVxwlV2bWvH3K+NAFREjTViyos60HF96miObw4YFRqgX46lTsbTe+hkuWBauk5EySBloEl6W+DktC20PaBXsvFxYWVSiXf/KFQIxwHWhqgWicnJz4lROLFa8OrUtRG+VNU53wPUiJBazgcOqpA8qmeakyktdttb0mCrqiivporc11A36iHq1hoyHnSVhvtSQIhP3+bP+Aosc9wAuny8tJKpZL1+30vSEbtFyXXhvsgnBhUTlnolxhqH43iWSmaTNUF4tRutx2NQcGag1DvuV4r+wauE8MTxWLR5Q/Y4/yd1nK1WnWtMx04OD8/dxQGPTUQUXgWmOyOj4/b+vq6pVIpOzg48NZ0JpOxmZkZr3pBSM3M+v2+i2fiJ1oul63RaLiPKIemihaTkPT7/YhkzeTkpHMQE4mE7wNIszy/YrEYQdIQ++31elar1SJIF8MmcNBYrxxYFB08F2IE4q2aJCF/AsKHdIAeVKx3yOShir3yoBRtvY2DRYKk3q1KqE+n0867Uc6tohejbHlCzhRODn/+53/uBa92WcLkNJQIUk0/HahQ8chQl44JTaVHMJlG4QLPl/uFAwDI+9OnT50X+d5779nFxYU9ffrUta0o/OHosk84xCnIiF/KxeW8gI8EdUNFNvP5/GdMiYnvfG6GLc7Pz336kEIIRw4QZPY2163xfHZ21vr9vk8MYvjd7XYtHo97oXVxceExBx9MknJty+lACObrIMtIw0BfIKaQOFGcUFAymAavlFjOOc4ZqQ4SxG+cFxqNhstM3LUvbuVg0SvNZrP+wVlMal+jSIAG/LBaIWjo1Jxaw7ChSRD0IBtFfNeKENQiHGlXg91QlFH7/mH/f5SNT0gsVFsXevZscpIm2gE4ngOd6gj2+vq6JRIJN6rkfZnK49DRREOFBvlsoEQaIEDBNIHl98/OznwCTL0JT09PXZhxd3fXtUmo6iAN68KitcOipMdPG7HZbDqczabQe80oLBuzXC5H1OqxjgB+np2ddSV32rNqnQMiA8yvhrqQ6fnMGnBfRskdLkbImZqbm7PHjx/bxsaGV/uh+bKiSKohRrI3ys+TPRKiU1qI3ObvyUHOOkomk9btdiOJsxYv2rJXSQaQhVdeecVeffVVe+ONN+y1116zDz/80HZ3d+3q6sqy2WzEjJbf73Q6Vq1WXTtIZSJyuZw9fPjQUqmUbW1tReQ+2Gvz8/MujsgoPJNPjOuXSiVPhmi77Ozs+IFz7949u3fvnqMO//3f/22NRsPXYKFQiIyIswdoL5P8KOKTTqfdnLxer38GKeRg+NrXvmbX19e2t7fnbVGCOJwlkjrlEvE+tPonJiZseXnZEomEt0mQ04DiQNKXyWRsOBz6Z+TwYG8on5DChUlD1djiud828YqSOxI2GldIMKempqxSqVi32/V7qROS7Icwhmmcp5iZm5vze6bniGqiaXHO74Z7nCRAW890KHT/kngzyKP6ifrzXCuyCHt7ezY2NmYffvihI2wkJnxuTTZp16OtxGdFhBZuKoNXtM9feeUVn/pFMoOzlnNGtZxAdVhzy8vLzqu8urqyQqEQOedarZbLLtBahxKDWj/PFQSQ/a00l2w26wMqaBjC5SS+QyEgFymXy/45odsMh0PnNDYajYjTCQVVOp32ydRKpWLFYtGnJpFd6HQ69vTp0wiizvVr/FOkG4u1dDrthdbn5mBBLiPxKBQKHkBDkq1m+2FrRCFNteggEKllDK0cbe3dpqmlyRM3YhRvSw8hkjDN5kMpCG0TKbyswnT8jFYdqVTKW2MsHnR6IKfy+7Ozs7a+vm7ZbDYiYkqVTIKmOliKIhEQ0WrhfnL/2PhA5lRJsVjMjo+PI/IIIG70r6nAr6+v7Qtf+IJb8ajwJ8+z3W57a0WfM1UFwwdUBc1m0+8Fm43rnZub86pUSdg66RQKS05OTlomk3G1Xcx+QxKxcpJU8VcT7LDCu61S12CqivgEQQoSNZSmPaqoFgekShTohJlOWRE8GQVX3o+uY54p+5B7R6JDFR4iXewp3Uf8geh67949e/z4sRUKBbu4uLAf//jHbqkVIs8kompDorA8idbFxYXt7u76mhsMBq5CTlW+tLTkGjmXl5dOOiah4PPB9RsMBpFptkql4tIkfJ5XXnnFXRxCztvMzIyLlXJAg+7wJx6P29ramo+2o4vDujg9PXXrjadPn3qFTiLENUOmRs6C/cNnZ92jX8SQhvIqmfiCdMwBpBPRTEmBZnMIajueWEFSzTqAI3lbi7DVakUQANZrLBazVqvlzw4iNvQKEi19P9Xig8Kh1jrwxZiU08KPJJh4jQj0KJ4iB6627blujTOgpaAcrGnQWtq93HMGg5haVqkd6Bqnp6eO4NEypp2nw1e5XM6lVPBHhJtYLBYtlUp594N7yqEPXwnkM5FIuOUdPz8YDNzfNxSWVrNsEGLWdzabtZWVFW+hwYHqdDpOiEec9PT01DlraKxNTk56YY1nI12VarVq9XrdxsbGPFnlXsK9xP9XB2DUZQL9L/INJCNIolWuhmKA6UPtaHBO8F4k2tzHnZ2dG0WiJ0cdIFQxLLTr62t75ZVXrFAoOM9KJ2oIbDqlFTq/kwBwgaqsDQeGrDVsm2gypdYYShBV3guLXBeMVpNsEK08uKZRiAUJ36gpMEW72MygBKlUysVD4YqsrKw4bApES5Ag01eHboXPQZc4mKhE+YM+in4vHPPVKUZF+VQZXkm4bAr4UaATCl2//fbbjnDRi69UKhFxv6urK3vx4oVVq1WHlyuVihMvaTMpsZfnysQUSaY+A9YePIJ8Pm9LS0u2t7dnh4eHfvBz0KroYWhn8zJfmgByr9PptJXLZT8MEomET7Mx8aZokRIlWa/NZtO2t7c9SKh+1unpqbeVVEWc1+QQBtWbn5+309NT+/jjjz0J5flDdNfnroRr5Z9wnePj4/aNb3zDfv/3f9/bCe+9957t7e35oa0teCo+7qtq3MzOzvoBQuClpTAzM2NLS0sRZIohB4i4yDQgiaITtpBYSShUI6/b7VqtVrNPPvnEXnnlFVteXraHDx/aq6++aj/60Y8cgVOOVChjwMFI/Dg7O3NBTXiL3LNisehTm7SP1KZG26kcSuxf3peEgYEC2ilPnjyJtLdA/+BGDgaDiM4V64ZihASMpF75qvzRuBbqT930dXZ2Zr1ez4VeEY7l76AvkIwhGPMZVUKFdhuFBIKzrVbLUY5Go2GLi4v+8xzE7E9FmVVvTNF3EDDWCnsym8062TzUI2OdwH1TT0vQKRA6OIXsa12v6mHIPmPKfWVlxXK5XKQlyN4lpoDqMlCEfRqtLF6bwpmkEmSJLglIKC1x9akFOeWeqJ7e8fFxROR1YWHBgYavfvWrLuKpnpwq1ru3t2ebm5u2ubnpe4A1jbyEev7BgxoOh/bgwQO359E2LZqO6IBxRnQ6HfcQpsDG+mZxcdHGx8dtf3/ffv7znztvjMlIEGI41xRHTEEWCoWXt8rRKpZFh5Ktjsyy2dRwUXVHSJCA7yGfqS0DNxvSKTdUW4iqQBx65fGzYVXC9YeVeOh0r4nGTVpcevjqgUzfVpESIHaSUB58KpWyQqEQGT9XR3deV6sZbT3xd16X1+b3ldwJ/0FbrQRZKi69ZyBJamNDVaxmzSRWij6GvBXGdamaQdQ4YNjwmInCWYHXMhwOfYJM21bISRD0lI9He1afUywWs5WVFQ9MBwcHkVaEts10TD4UKr0JwdIR80Qi4VUeFSZVKMFJ/a10Pes1zM7O2urqqm1tbUWU8iGWUuyowB/vRQuUz0VFpmtWOTFXV1fuo6WteIIR1wfJ9o033rDvfOc77m7/05/+1CqViq9B9rEisLSbeW9aVoyY8xwY5aeipjLENQGhUNoh8I+A9CmqKMB4PqAJBN5sNmuJRMJ1sWgZTExM2OPHj21+ft7effddRyM4iDm81ElA2/QcitPT07azs+PikKxtECptsaoQqw62YE/CvqG44LOgdg4K2G63HR0maVIOo+4RJtCYBmP6jelAtdNSGYSTkxOXf7gN3R0bG7N8Pm/T09OOGpydndni4qItLS15oUo8oIWuPqOtVssKhYLl83lP3OHtoQvGXmB9VSoV59OQCCjFRIuQUWKlev0cmCR+8KPUlUB5XSSG6tdJzFaOJfGN9+d+Eoc1GUulUpZIJPzfGSK6f/++o1grKys+qBByOklo0I0jLpNIkmCQXClPGl89KBjKZVJUnDNQOXAkNiqkqsUa03yxWMyLIzOzR48e2Ve/+lVrtVpWq9X8D58JVK/dbttHH31kU1NTtrq6ahMTEy7uzD1gndB2Z68BVtAKPjw89D3EPiRvGbXW0+m0a2pqMcrA120F+uRNcC+Hcblc9otUATAWhhorQnLj0CNw0/NU42j6vYwAkyDomLsqb2sVoWKTIeE3JLSr0rfqC4WTihzMIVk4JCAr6sN7QTbN5XLeamNsF10t7ALUCoBkSvVn9PBXwjCfSacK2cj00dX1nspYq26tSHU4YG5uzt+PDR1y5JSfBXStyvg6yUPrETK/KvESVJnC4vVoaTBYoc+Rz4dYHhWDKsErT0mrNgIg4++sXyW2hnpvd00RqvAcLZuQmMt9IejDadBJHv0ZkrWlpSU7OjqyRqPhOmoqEKlDJVrEaAVNeyKcIlRvPap11XPi+kG1VlZW7Jvf/KZ99atftVKpZBsbG7azs2M7OzvWbDZ9kjKTyfh9JRFn/YBa0fLSA4//ZjIZv4ckDHD3QDII5uHwgyaR3GuV4ghN1CnulJeHCXm/37f9/X0X4yXB4lmTdKrFBm1QRX9AZUOCNs9K1a85pLGTogUSqodzcFGAEA+5rqOjI+t0OpExdPVpVcV2vWegQhpfVPRTbX9u2x+KpCr3NZ/P2/r6emQEnvfiefJZSAS1BU7s4ZmwlkHUUcmHf6M2Q1g+6QCMDsKA3lBY8vrq1RhyenWMX/l2WnQpf1ELX9YtxZFOoerQE607nD0gqafT6Qj3kHVIUU/ypGgrZ7kW7oq2kFiyhhVZZj/puatelplMxpMRReMpIOiGKegCIsSwQzwedxCGwa7Z2VkXNEcIdWdnxyqVir9Os9l0Jfd8Pu8FfzqdjlBaWBvEKmIf9wuhXuLQ0tKSt3ZJ3ik4WBPKfdSBs5dOsJLJpM3Pz9vY2JiVSqWIz5WSdXUhcdNZbKi0sllYXCQHtFB4MCFaFGpk6ee5pgMAACAASURBVCSFckZCvlRoMgyao6KTeiBrFRBOaI0ynNaWC6+1urpqCwsLnyF9F4tFK5VKls1mfYqI9hsHBpuc11IlWUUpOASVqImtBK0FJeeFFhh6KGm7lYVD24+DicOIimgwGDgxl8OZxalqyFyHilmSdNImWl9ft3a7bZubm/azn/3MURfsD+DchPwzxpk7nY4lk0kfT4a8DhmYZzo3N2exWMyh5Eql4uP+rAcO/ZvMbEcZKCOYByKD7ISaqnJvGJ0fDoeWyWRci6nT6XiCC28GrZjl5WUXqMSihXWgh4BqPjFNhI4TMD/cmZAbRSKtgynn5+eWTqetVCrZH/7hH7qocKPRsL/927+NHERUdiBK5+fntr297QmGrnMt0Fhn8IwU0eZaqJQ5SCk+aD/xuslk0pMJVSBnXF0n2vAerdfrrvTe6/VcgXpiYsLefPNNe/31120wGNiHH37oFhgkyEhJsEdBGUBs1Aidw1hJ40w18Uwh/LP2CoWCvfHGG5bJZOzZs2e2t7dnT5488UOIohakCrqBDk/o+gAZ0/avOinQiimVSnZ6ehpJtEjmabeS6N5WePT7fW/nz87OWrlcdqsvpot5Njx/NTeemZmxer1u9XrdBV9V9Pj6+tparZYjuxToiq7oEI8K7CrHTpMP1XokLpD0kTCDWnLPWP8cuBTmKnYachtV2Z57DMfu/v37Ebsl9jO2aBTuUEP6/b53HojdIK0UoqCdJAMa65E6AOjAmJn1QSeC6wkTX/WwJXbAI0Wgk3afrj3uQafT8UGV4+Nj29nZcZ7c0dGRc87QCet2u5ZIJOx3fud3bDAY2M7OjtXrddvf37e5uTlrNBo+4MUZgR4YvMZ0Om21Ws2SyaQ9ePDAz0MGWfL5vH9eUFfsruAXcj/X19ft8PDQyfW0kV+ag0XFqQE9lFlgrFPRGA54HoRWQfw/EzSoD4fBX5OrUMZBeRU6QqktydD0U/lXoSZRmCDeZMirGkQq9sl9QsdJYWGEQ4FOlSypkCv3LTw0FYYeFSwYrSf5UeFQtYRROQFtF4XcCqD1sJqDxA+JkQ2sSbGiFYquhB6B2opCo+TVV1+13d1dD3IgINVq1UfvVWGXxA9zVQ4v5RPp/eNaSNqSyaRrzpDYhKbht31p5c3BHaJLtKhmZ2c9cYIfc3BwEOE98b7sBYIP2lG8BsFLhyv0UAAhIIAyfUmiS5ADXVYEE47Mb//2b9tv/MZvWLlcdt7Y+++/776Yk5OTVq/X7erqyorFoqM7kFl1iITDGSkDDfJ4mpEck6iEYpTajqEdACrK/gfdBKnUCVvVRIIbSXBVKRVFdTiovvCFLziXr9vt+r1VmyQ9hEmwKIxIqIg1aqzN5yY2ItDJaypZd3V11dt/8Kbgh3CwkYApSq3DL9oeD0Weuf9weLRtrdqBL+ObSVxg4ITkD7sxNdLF7xDkljVCDGNvktyASBAfKKZ0iCOcONThFs4MRe+JFSrZwx5R7qtOvxOD1ExY0WQdUtFiJOxaEJPQetN2LFSSZDJpmUzGXUBUcw3kmP2nXFJ9pipvoUMHw+HQ+VbHx8eeAHM/kJoBBWQvKY2A9cG5wNom2dWhNjhUoacsfwe55ecPDw8jkky09+A1k9Cz1nEvUds17gmcOAagIMFTgDC93+l0/Hx58eJFRJiU9ie+s7S4Q0H1OxMsbD/ofd40vUdPWhWy8VMCkgcdIKOmf86N0eAXKvBqX1nJzzrFwIIaFVx1/Fw3WzjppMlb2GLUgE+SQEU6Oztra2trfpip1UUikbB79+59pj0CGqNJH5WsBjw1QoakzQHJGLrC0yxMevcktPq62hrk/VkctCCUf8Dro1IPt0ThdTYwzyibzUZeW4ca2CzogsGLef311y2Tydivf/1r9+1CL0c9tY6Pjx3mVc4ASZYGL4IAhyrWKPCAMMbe3t72KljX011WOeGkqvqjqZ0J94AkGJ4BE7pwEfr9viNPfE7WUrlcdh6kCt5xrwiO8FC4/3CPeEZwa1hL+PgVCgX7+te/br/3e79nb7/9tov9/fCHP7T33nvPq0MCICPW7Huug8OQvYDKuKKy8XjclpaWbHV11dELLeZIJBEjRMJBJ+qWl5ctk8l4hY7gLVN28E1oMRJoeSbIpfC8NTFW/bHFxUVbXFy0Bw8e2Pn5uY+Ow/E4PT21ra0tn0hUfqJqSrFWGDNPJBL2+uuv+zriMGs0Grazs+OIJO2gUqlk29vbVq1WvSuwurrq7Q01itYkjX2nZGG1DiMR4u8cNiQ57HcS67v2BygaB9b8/LwtLCy4dx0WV+xfyNwginB+NEEkhsG3ITbRNsK2hetKJpN+7cpxUwshXD603UvCS8LGOaIFqBbPcNng5THJisyAFrPEYPa0dmwymYwXM7QTr66ubG1tzcrlstNPtBBB1JI4wZQdLgxKUWBNg5xqUohINKKdTKQif8HQiU7LgYZpwkdRSMJC4QvvtNvtOtWB96CVSZuUZ5hOpy2Tyfj+ZcIwl8tZMpm0ZrPp17SwsGC/+Zu/6V6hPAukpXgPuGrEJ6RSkE6iy6F0KHwXlcu1trbmnZcnT558RnT5puJj8jatHw5nHTVX/yYWio450kMlQdvf3/cJGs0wQ4PNUe2Z0FSahCwcuSVpIWNWfzptPYaZpk7sqZWEVp6KqrHIs9lsROSPQADMTYUNysVnVSRQqys2rpqukrRyDziEVZ+Dw4z31spLCZnazuQZasLKsxsMBhEODAmR8iG0ElM0QQ05Qy0xDgE82TSIqXkvbTGtnrX6XV1ddT80belp0gNPiwNBEQeCGFwHrrvRaEQsE277UtuKcChCkQ1N3HlmHCQkqbS74Jjg19fv9/0QoTVwdnZm+Xze5QsIsmgwKQQfcgV1P1xfX1sul7NUKmUPHz60r3zlK/bw4UMrFAq2vb1tz549c57VycmJ5XI5u7y8tG63a6lUyh49ehQhHTMcQZtUFZLVe45KPZ/PR9BIlVng/iC6ybXSClQTa9XjI7CToCgvgoSe1vHp6akf7lj7wHli/bI+1fsOcVudsHzttdes0+k4D2hhYcFjEGRhYgn/hV8DmkkbhHF89hctXBIgWrEgWxQsxFVkJUh8Q81Aros1rtpOav9D3IJoTsJwl8OBxnLoBDrUoTGUg5/2cbvdtkql4gkGBQtUE66ZfRQOWvFf5Ef0TOGsIlHUtlaILoV8RF0LijRzhpEUKvKjXDUKT/VJjcVi7mpAsaJ+qUygsxZpC4bSKyRFxAcd6iJGsQ5OT0+tWq36mqJ9fX197egs3RVtATJAo4bkrLt+v2+5XM6HJECpODd4TeIOiQrXzzkEp61UKnmsgdbRbDa9mKB9CJrGVKqZ2fPnzyPgCe9BN4AkeH5+3qanp32dEENJ/OiW8B5QpYhtUCK63a4Pc4Cify4Oli5c2kYgNywo5S+F0ytMiVBxQ2Qm4PMQR02AherBStAOuVIqu6CtQdVV4fdUuE8D18LCgv3u7/6uPX361H7xi19EeF869aJ+ezqxpGq/TDnBD1JeWph4qHKxomZ8NpIDUD8gSeVP6Kam4g2FKlWpnANbDwmqYvUbY6Iv9GbiAKUVqBMX/F6YnOqzyuVy/jnhtxDMC4WCbzDQB+3ds8jpz1ONKYlfr0E5EirRwb1Xi5GxsTHb2tp6qSlCnepUr7+wMKAqYu/wfdbO/v6+XzNj+ARN1RSjisIWCNTn3r173lpjylcrZJIXEhVG2M/Pz61YLNo3v/lNe/vtt61YLNpwOLQf//jH9rOf/czVzWnlrK+v+4TXgwcPHMkiIOXzef8sJFe0F2jBUAFSlDAhqIRzEKZ0Om3pdNp2dnZ8Mk3H2mmHxGIxN4zGXL3b7Vqj0XBUDG4jRRSITLlc9iQvl8s53+mVV16JEIxJHmnJ0Z7ga2lpyQuj4XBoT58+tUaj4a0XOFbo+0Dwff78uU8kMQTDWqIFptYdaBxx/Xz1ej0/uNAq5PmwD1TslUM+jIOsT9rKaC3RnoYXeZeSO2LA0ETwhEskEi7hUKlUPGGAn/rRRx/Z7u6u6zmxPqrVqr8eiCuHO7GM+EsbHsI4xTxdFCbYVREfRJHfpzPDgakK+bTe0+m0W9cgZXB0dOQJE/QAFWmdnp62arXq58f8/LwjYJjZU/QsLi76Z6VNGCaL6P4RI+GkDYdDp0AoL7bVajm/js+kEjwAA+ioqUct95SEiOlVlXwhaR0Oh7a1teXIIsVPu922RqNhb731lk+v5vN5SyaTVq1WnetNG29mZsYdRShaKCLY/+hmdbtdSyaTzu3Te8Wz4z7lcjkXNeXZIcTKOQDaiqeveqDC+3zrrbfs+PjYUW0oHS+l5K6VD4cy7Q5tq9FvB9bX8X5uNg9dkTCdwFNNDU0Y1EvwJk6UXjObRoXyQlsWKt7QaHQ4HNqTJ09cqp+Dmy+gZYKCJlYklXyffjW9XIiKyvWimlEumSIxmnApTE8VwbWAVpH08G9hgqPq7VqdsWiY8FTEgyBDEkwlpUmituMIdqrgr5wmFXBVjgnvR1tZFbLVbJbXrNfr9u6779r6+rqtrKx4C0rRIzVcDidiSYQJfJOTk67Lwwjxy0wRktDRvgSB0OKB6pHNTWUbKmOzfpjai8fjdnBw4DC4or4qUIgWEjwJJZTqs1SuxPT0tOVyOYvFYra8vGxjY2NWrVbt/ffft5///OeO/nHg0PY/PT21YrFolUolohtE8QGt4PDw0PXeaOVks1lPZjqdjn366af2la98xVKpVISvxL4koQfqbzQafsjohBeBn4GD6+trW1tbs9nZWf83NHl0LJ59oM8aRKFarTopHDkVPPju3bvnuk7hUA2J1MOHD33v6H1qNpsuTULiC/pNfKGFDdkcgd6pqSlbXFy03d1dT8ixLwMRJj4jZspkq1I41Pg+1MdT1Jtr5xCmJbO5uXmrFyGtUookM3MyP/wVrp22NZPEpVLJD0/aV8Ph0A2JtUjm74qOqnwPaIkq8nN2sbY4H4jXoByqh6jyIhpHiZVoVT18+NA++eQT99cEadE9Nzc352tzaWnJKQPLy8uOVJOg6YQbfOXhcOjOFpyxnG3Hx8dOWtf9z1AC8UalRVhzOmxCksI9UcSMa+LMYwgBbb7JyUk7OjpySyZyg8vLS6vVatZqtbytqjEe8nq5XPZ1GqLZrMfBYOA+l6BpjUbDLi8vbWlpyRMy5XZph4EEf3x83JaWlnwPDodDq9VqnniCdNJu3tzcdCSzWq06ZQEkslar3cpPvBHBYqFyY1kwLDwOEtVQUSQDJWtFnRTGCzVJuCEh7Bt6tCnRXVtPal2gY7psWm3FhcTM7e1tlwkIZRngjqCYq9UefCdVhiWJIqjx8+GYM/dtlAG1GpTqFBRVsSZRXINaDek0pcKmarUDf4UqSg8fRWWUc6bkYE0+FanTNaLtZhWWDX39gLnhshAINfnkHvV6PatWq34PVBcMtERbwqwZTfbC9aBE45dBsHTN6aAC76OitGGRQHtI4Xz+Dd0WfCK1MlJhXfafImCK+HIfQEW0RUiAImFtNBp2cHDgHAVFf7E44hogWqtfp2o4Uc1SgZuZS1nwjCBqM34eTrXqXtA9r3xNgijrEv4gCQfXpUruwPrT09PO7aOQ0+EOYohayxwfH1u9XvdpXZ3Q0yIDqZZGoxHRf1OyNsWK8kv5zPo5aE+CstK+Ac2+uLjwworkodvt+iGGMrfGa+6nVvYhD1WLEF3voWXZbS10poyVfEzshJR9cnLivFwKDp3Axds1lA4ibirXTdeMyvWoZt0oSRcddFKpnNA+Sve+ijGHjhFKDVBZBFVf16EDzg0V/tW2LddJTOOM6Xa73jInIdRWMHueroR676rWIlxaKAfEIi1AdDgCriWv1+12I1QO3pfziutHv5DnGGpmKXILQq/tVhJFrpH8gjgHz5bhKc7fcFgBSsbq6qrHDRUIV74kSGWj0fCk8ezszDtU8F8V3HnpKcJiseiEagKkqoWr6KTyewgo1WrVD2w9JFVDI6wEr66uXKgOWFNbf6OmBFVlXRe9JmGhX1toCM1YJxssHPFlEd67d+8zBrokH/Pz8x5UlFCuBzzIHhWLZtckTgQUNqCiHHCP+Nw6PQm/hIRS0RutUrkWqiK4V1SEmoxCsgYBUIsT3bDcN7hT2ppTe5rQ1w6kkk05Pz/vfCu9lvBAxV6h1+vZwcGBvfrqq5bNZv1ApHJjrRG4+UwcNhxKfAbaXXclWEgcMC5ONUOVxCGha5xNOzExYZ1Ox++LIqtajZfLZev1era7u+trglYSk4EEB4XwWRdIVHDYaqufSvOdd97xqhFkgtYswVuTXdY0wy0UX7SBUJEnwaHtmslkbG1tzf27yuVyhHSO/Ea/37eVlRWbnJz066F1QbBj6INDh+eJCnSv17NSqeT8J/boycmJV6IrKyvWbDbt6OjoM+12tYQByQada7fbVq1WXXyVgQ7uB8MG9Xrdtre37fr62g138UmkvaXee5C1OTTi8bgLSbJ3IKvz92azGZngIonkeZCcZzIZS6fTnhhrmzWkUYDo6BSn+ncuLS1FFMFHfZFwkPjxXkoop5iKxWLOOyTWZDIZq9frTprOZrOu6QZijGK9CkVrccFzVzI5sUjJ/axxzg3VpFJzYboznCWgu2NjY64Lp3xi3p8kmcSwUCj4+6EwDr+NZOf8/Nz9/h49euT2R8RAnk+323WyOXuCzw9JnbWQy+UiU928F59HbXXg+mqXRe8tk4banh4bG3MPWeItiR3UByglY2NjlslkvKuzuLjoHR/u2+zsrFuNKSBBMsqaR1qB7gPJfKVS8bNJza6vr6+t0+n4mlxYWIio+jMwApoNd/bevXuRbhXC0js7O7a5uenP86W9CHV8lSAG5MgByUZXGA49GLUECDWl7jLU5bDWyuWmzPDq6sr1UVQugPdQZevbiMuhDlaYhEE6JBhD/lNBRg4VFiALXNuL2sdWywVtq4YohKJySuBX/zkNEqrMHVoM8ZqDwcB6vZ4HXZKfUI+MpIpDlcEFlbxQ+YVRIoZsVCWts4b4GZIh2iw6EROOPqukBwgMkDa8BLVjYC2zJkMCqmqBvYyhLYGl1+vZ0dGRI15amfKZw2S72+1GBg/4Xe4B/w88n0ql7MGDBzYYDJzErgFBD1wldaunpSKIFBwK2wOTq9k0yT97n2CuCeDc3Jwb0ELM1RFySLJwlpj+hOhPxaxtGg45ChDVxkJ9mWpVp1eJTRMTE1YqlSyfzztJ/OTkxPlWyE4whh0a7HJ9FI9UyCQM2vpg8hA0jrF3+IypVMqRPJJ7WskqMgp3i4STQpZDhLF9Vc0OEw7tHHDPOPwSiYRPTepkNhpHqssUDjaxb4kFKoR8U+tc0SWQCgpAUFvlP2rbiX2hRR5TbdwDbfcpqq2IlNJOeNYUkKqzNj09ba1Wy/eu0l6QwGBf6rQmzwQuK/p2DFIQG2ljLyws+DOgIKfYo32ICDFJMsnP+fm56+WxfuCdKcVCebsq2M16U8kWCs+QYqN6eEqVITkBiUTkE24c+1cH3wAS4vG4F79q7J3NZiPcWgolzgCeBf+ubVMGvXQAgXikAwysAQUQSPIZSoHvh2wIcjCtVivCTySWpVIp5whfXl761PJtnY/JcJOcn5/bD3/4Q3vttdec8EmwUf8+FgSbpt1uR/qRNyU1N31/fHzcx62p7HS6RX9PeTAsAlVw1irsptFighZwHyRUnVa8vr62e/fu+UOAsKpTKkD5BGBNem5yWtceeMj70kXOw1PJBdA61SNRjpsihoq40c9HSkPNMbWiVdI894cEKxwA0PawojiaEGkbQnW8VGuL51YoFKzdbrtpNrCsJkVhEvzixQvb39+3r3zlK7a0tORVLQcmJG+ScRJOggBoxmAw8APhtq9f//rXtru768FbCbYERqZUtH1JoOQgQ86DAMZ6IqmF01IoFGxlZcVqtZq9ePHCk6pkMhkxoKXi1kNXbSqUr4W1D0kIiv/qMQZpmtFnCiv1GgS1UmNYEOxcLmflctmFWKlQSRSUUwjSwjSnemPqgAdtal1HFGXZbNaHNRKJhP3617+2s7MzJ7AqYZWAS2DkvRDAVPQXP0Btsw2HQ/+MVM6sLfY2womKVuhnIhbAfyGpodDhexhIZ7NZT7A4eGq1mnObQCPDgnE4HFqxWLSFhQV/bT43CQGJOQm4akG1Wq0bhznCuI5Ct64ZJna5R0dHR/bixQt/ZnD7QBcYUNCYFDpwQIpGbFTbcL1eL6JxRgIcGleTAF1cXFg2m/WpM41TaoemqvOq6q3tVG3ZU8x94QtfsGQyaZ1OxzlqFJEkBZlMxote1W7ic0DI5ppmZ2cjyCOxXwtePrNapmlXBWNmnj+6lKCPxDI+C/sCA3PQcFQEaMlzht+/f99pADxH1TtjPXEPmDrFdYMiIZVKOT+MzgUoF8+auBC6NdAd4gyhFZtMJt2Avd/v22uvvWbFYtF15SgmODPwP6xUKh6LCoWCrxuEoV8KwdIevVa2HBi0BpUrxYSS6ouEkgRhX1uTgDCx0EA4CvHSFosS2kJxUkWEwuDA51LZA5U04O+5XM6KxaLrJ2kSAp9FRQhJDDlQ1OcorKo0aVXRu7BFqQtcbXTCbD0UZFWfK0iBbCQlCivawcbmD9UFrbxQM0ynNhUm1YqI69cJDw4j9T9kWosWbDjefdOzRJNoOBxGKhkdA+YgOjk58cNWuRzj4+NWKpXuRLCU96F7hARFfchou0F+VdFJXePA9Bz8EKBBg7DKoJJnSoyDRQ2C1aEgl8t5i4fvE9i1/aRJsqKPHHI6JKAigiSJtK/hdhH01BpL29VqYKtIlaJZFAG0LxhdD4cgdC/zdXJyYqVSya9b1wyfj0RI1waJpQ7H6Jg9iIu2YtUyS9FM/V2QM/QBOXhI8nTSCUSHVq7GSgaHmAblmXMNSIAoSnx5eWmtVsvW1tY+41ShdjrENVTu4cYgq8J130Zyj8fjTvCmNcua070CoZ2f5T5o6zRUTWcN09YnCWSoQMWgFZHXs0JRD+Kukt/VTUOLMbU+UhkQppmVa6wSNqHILfcWdXE+H/eXpINBCCZfGQJSDS7a/xrrub8aZ5X6wmvE4/GIpIu2R8POFPcCtE7V3DXmsJYuLi58uIs4TvGdSCQ8BqtGGJOXKoyse41CGUs99g6x5eLiwgqFgu9fVTPgHui5PDU15d2mVqtlh4eH3pHgMyEhAteM/ci6o5g5PT21drv9+ZTc+aBKqOYG8jDYzI1Gw+1HQnJ1KO7JTVbfI22r6ALlBoZJ2ChjZk3MRgXg2zRbNFkha2fxJ5NJNx9Np9O+GXgvqswQpgYlABnQIMg95DANFcS1RagQrt5D9UNjg4fTk1qpg1ZVq1WHN9lE2qJC7A2odm5uLuJAT9BSW5zQTJtFrUhWaLDKQiY4hnwSPleYYI/yhmT9VKtVq9frdn19bW+//bbl83lXT1fzYio6EhamsGq1mo9P3/ZFEApbenwWeAgI8IGgsbZ0elWtOHQ0n2pudnbWlpeXvX00Pz8fqST1IBgMBlatVl0kExkAWnrJZNL6/X6E06F6aYq8qt2LJpQESoIXyRWcBcRhme5UZXMlGysPh2esenQ8+26364K9xJLhcOgVvCb54UQsSQKSEWprosM0TA6hHK4DPbq2SapIFkCeqOB5T53aPDs7s+3tbUsmk24Zc3Jy4ntMXQTMzCtkCoVYLObThHQIIIWzJlhHivQjAcBBmMvlLJfLRURuNZ5y6IASzs3NuSZQv9+3ZrNp8/Pz7jk56sxAtkP5ptPT07a7u2tjY2NuvYZQMkkSQsrEGZJ6bcvy7wiOkvAo9UIdC7R4UDJ4aOzOuqdY0YRKZYVUvJTEB56Rrl9ar/xJp9NWLpctnU57HOCM6Pf7try87G09XqdQKFixWIxMVoOe6gQ3qPjFxYUtLy/7M0cAk4KF9cxZQ4xmaEp51Qx0UZRpOxreKZ2Qs7Mzy2az7tWHx64+616vZ9ls1icSkVUYDod+D7l3cGW5fiR5EF9utVrenk2lUi5wDG93cXHR2u22T17v7+9HOjxapLGnQPI++ugj5wHDWcObkBgBz4t7BrhSq9Wcu/rSCRYVlhKWQyHGs7Mz29vbi2gWjUKbSNjIDJWjpR5yquIeXqxynnSiigekU1KaYLxMq1BREt2AiUTC1tfXbXFxMUJwHMXVUl8vApaOurMplLgOL0OvNxwfJzlikSgJnyRGdZ6UxMjroRTOAlVl9RAdUp4I91o1zBQdUZhXjb5JLlT5mWRd1efDhEfHyPWeKDn/Jv6crg1sDlAdR62aKonpj3q9HkEsp6ambH9//041dwQfdRqTqkqRAJSn9d4pH4ypIq2qEomEj6ZzYO7v79v19bVlMhm3ZAItYA2oLplW1vwcBrIgEslk0oOktuTW1tZsamrKms1mpDBSQ171Prx//7634LStz2GkvB7VLNJRbZUcIalgqANNIMapmRKCZ8ZaDicROTQo6JTvpVC+6kLBNdXYQeKrnqELCwv+XBlLJ8GkuKIlDX+RhBqfM0U3iA+gU7SpaI2qRQ7PFJ4YxS7FDogQBxb3Cq9B7i+aeSDITCWqawNoQ6vVsrOzM/vwww/ta1/7mj1+/Hgkqnt1dWX7+/u2sLBgmUzGixfVxWIkv9VqufwHU1pqfZZOp53jBHKkaA1xAf4fRaPKUNAWJuZpFyacqtSiXdcm61mntkEop6amrNfreTEdTmFns1krlUqOBMIturq6snK5bCcnJ47yQi+A7wWCRSGiiZuKUJO0sKdoSdPCPzs7s3a7HSkwlHbD+XRychLR1qJLhb4WxRL6X71ezxMkimKKE4j5SqdB1gFRXfIBCoxQjofkkAQKuRctIq6urqzZbNr09LRlMplId4ZcRc9qziW4ZFqgqbhvuVz29z48PLRareYxEr3BXSw2XQAAIABJREFUxcVFLwYPDw/97HtpmQZFIsLRVzZ/t9t1R+zbuFU6Qajj8QSKsPWjB5z2mJXcpzIAVP5qi6Ew8yj0I+Rz6c/xe3ABlJQaVrM6uahJoPKTtBWoiZTea/X60uRNk0bV+1JDU+WcabuUzY5tARtQdUJGqZCT3ITPTCF+fY5a+Y1Spee+qCq9TrWp/oyiBgofc9jrdYX3UgMo1c3KyooVCoWIOq+OhDebTSe0hm3nm75WVlY82MON0wqUipgDW9sqEJcpDpQPQbLAdSqvjnXe7/cjonggpKCp/JtOfGpiQTCCMKrFDvpVaNooGq2tYG37sj5BD0ie9UDS/aVekeH4PwrgvGYmk/FEsdls+j0eNW5OwYUdSGjqrusX9FFH67XgUGHgkL6ge18nVbUg0Mk7RQxU74sDX0VJVU+QNjDoFOsBEU0OADVCn5iYcORAbXFItrrdrq/DVqvlbWkOYZ3A5gBnKln1tO5Cd3VyLmx/c5CrECd6QzrtBRlbRTt5XsRcHa7S/1cxUdX9y2QynujCp6LVqs9ekWnWjBYKoNQkGCFtg/u+urpqKysrnnBrOxCaiAoha9su1A/kgOfeEMNVXR6qSyaT8WemOnvhOaKAiF47v8uwGQgjgz3qiauq7CcnJ94GhUqkE5Uk0AoUcEZgMRR6ZeowHZQS5Yuxz5D80EEe3cNcJ8+aZ8D5zBoaDofWbrctm806Dy1E75nahGOoch0vjWDp2DdvzhtVq1XvW2pb8KYkTac7lC/EwgQSVtie6kuDeCqVsng87ouUBa8fkJvIwg+1UcJkSqfKFHEBbeDwpTJlwbApQmFWTQzI7NkMiuxo1akHUygSqZOEBE1tK6pQqSZjHFZApbRBWCDKGdDnrSbGbCJNZrmnHBCa9LEWtP3Jugg5OHyO8/NzJw3qNOP19bUVi0WrVqsRZFMFYtk8BEI2HEGJQ4OqDp4cBwBE5eXlZW+lIap41xfBEGgcmByLEFT/SbTYyL1ez+bn551MqVOWONgXCgWv3FutlieETBSBolHZFQoF/+wkioVCwd+XyTp+l31CQoaCsnpR6gFJwqDOCSTVJIN8P5lMegWtiYseJlSYKNST9FKN87qNRsOFN5XgrKgTLTmdcgXh09abJlC0dlRvScVVtcACfVHU9+rqyjl8DADhBartVhV+vLi4sFqtFtH3MjOr1Wp+D2hn0T7UODc9Pe2ekJikw09Lp9ORWFitVq3ZbHoBTAWue5gECpQh5BDBuQGJCPmtN7UJiS2VSsWn50CR4HJtbm5as9n0+053gHjbbrd9RJ/PTqJH25G4QaxXX1fiJZ522hnQgx10F+RORVUvLi7ctoihIBAUPBVDoVI9p9iXS0tLzksjZqDVlkgkvM1JkosQqRq6K99RfSppt5KcAzTQ/mKvKceX1+x0Op7UKU0H3iPJZ7vddtV2EG+SduVtEVs5EyHAg9ppQqhcbqQWQMBArnkmcK5UqgchXgrCer3uSBbUBGKmdnxI7hQ5Z+1RlCOBguzFysqKra6uOtpIEvbee+/Z1NSUlctlpyC8dIKlvCc+FJk7gQ9NmrsqfpUXCBEkPcioyoA7Y7GYb2yVQtD2ggYqJeIBnyv3SKtYzZBV4fYmQj6vrdOAyk3R6hTyrmpkadtRYd6QJK4kzVHBTNGksMVG8kQGj54KeiFUPfps9dlxQPEZQ0kFvXaSrrD1FXLIQj8+/l89AnkdqkRFI0L9mhB91EpPE3q9P/1+33Z3d219fT1CJKaqhaOj3Jm7viqVir148SIiUKeHEpWk+mPCQUAJnFF19hXPlZYObYLQWknbbDjA6zNjjypRvVgs2qNHj+x//ud/PHDjKq/+kqoNhmgf6xFyLuuVwQe1blFSLHpOmpyRlKmgp6ISBDz2DAkfa4N2FsWKiqHSflNpFJARkiP2I20/2iCjBGP5Pj9DlQyqhFCi2q9wsKguGchR2JrXwhFbEJX0gMdCOyafz7v5L/ZjWKzU63XnVmJ8DSJAi0W5SKqfp9cTDtZwn7ino7xcQ14shWAul/PEjcKFogHBVugIJAYqD6OWT6qIzwGrk54c2Kr9RLIEaktbigEYRVp5RsQENZoGjdH7RLGm+0clPhQ5Yv3o0BN7C/TQzNyuij3OgU6CoB0ZXlcN1mnrcT5yf3le8K1Y1yp9wT1XvUKKoKOjI0drVK9P9y9cTD2/FV3T+6pnqvoYa54BMoRorsq2sNfJKSCeq5yEKh2ErWH2GzEb9w7iGeuY57u3t2cPHz6MSJoQAy4uLmx/f98mJiZsfX39RheQkS1CNW8msdnf3/fKaNRE3ig/Nt082lLShGdyctInfhC1pEqHl0LfWzNQJfFRlcAXUHsI1aZiOkfRNOUyKcSLN16Iwik0r+1Dki+dzGLRa/DRqZ3Q/FQzeQ4bFrZ6QfF3hezZ8KARLFIWsJq5KqrHxtcDlYWs16vol6o2q/0QBxXoDpC8tpdVP4tERCucRCLhxEWVsNBRa+XQhGr1oQF0v9+358+fWz6fj7RvuAdwDFKp1EslWCif6+DC5eWlc6VUoFILBLUUSiQStrq6aolEwpaXlyPTbmNjY1YoFKzZbEbUofP5vM3MzLh5+uuvv+4Bm8Seypbxf8bU3333XTeSZg8AgYeICmP5PFu4QXBy8GBDDBP+CO0BVcwmqCL3oYmMJrzIO2xsbFgmk7F8Pu8xAXf7X/3qVx7k2HscgBwmHHLsDSYhSapZ4xwY3AP8z/D7U25aIpGImCfDhQKlhMiNYTeHAogFUgpcI//Fd3FsbMwqlYrlcjkfzJiZmbEHDx64S8T5+bk1Gg3b2dmxjz76yN555x1rNBr24sWLkW1O3cscPnwGLQwRrEWUljimMjwISJKg3eRbiyArjgy9Xs+2t7ctHo/b8vKy9ft9e/HihXOLmFiki4Hpej6ft1wuZxsbGxHfRLSQIDhrdwART+RLiEf5fN5Jz8qxQodra2vL5ubm7MGDBzYcDt2HEwup4+NjKxaLdnx87DFJqQQkFCQ2JDoqj9But12qhAECtc86Pz/36yexUicSfRZh7NK/67AHSRSxlfazAhMMhRDH2RMUE9Vq1TsgoMucbXxmaDmgO5g2g/TxX9Ay5XxdXV25zAlIv8oXgfplMhk3baaQmZ+ft16v5zxHZEG0sxKq7sOHhPtKdwACvw7gsZ9I6o6OjpzDTELc7/et2+3a66+//vkTLCUD0kqhaiJohmTgcNJPD3LdhMDxyWTSFzqqyEpQpF2gxHZdaCQmigJBNlTeDkgBizqVSnlwJ/mg4tNxXqpolK1DHomSBUOR1lEWNXq/9HBRNEZJ8MDDmlSMUsHXtgMLl0XDhg/lJ3g/DhhsNRSGVj0dsn/9DMq3UMI5LRwQMyVsh6R6HQJQHoZetyJZpVIpghKNSupDmQ+dzDs/P3eCL/cqrLju+tI2Nhw3glPoi6YtVdY9E2soodPWSiQSrhC+uLhoq6urThamGLi4uLDV1dWISjEHuU4OgdboiLO23xKJhKMmJByTk5OuukyCrh52rEet2kmItYjQwRWKG1AarovEkCKCCR2mA4+OjiJ6WRRqTKmxjhmwUXScGIO2Ge0R1e3j92iFgpahewOHjXVIokObnwkvkMYHDx64RhpIJHFlYmLC1tbWIkUFzx6kB39ICknW5PHxsb3//vu2s7Njn376qfV6PTeY1VYa7S6IumovFHYNlAKgiA2FnQ4thDzcu+RLVDD27OzMcrmcnZ2d2c7OjvP6eCYocFN48mwo4CGCq6o/ulysSz4ziav6pVIkUCQzPMB9psWj6AaHOcLFfHZalOwdTe7gy1FUU2gUi0X3ZdRpR0WVaGuDAmMppIMRJB8k6bQYp6amfCKTz63FPet0lLuIchFV3JU9MhwO7fDwMLKO0PvC9Fp5TOxP9DCJQyTRxFWGMEjYa7WaF5xcP7EdgWJanuxTVR3ANkcpNir1oecWMYtnRfI1NTVlxWLRuWCsP5LG58+fR4R/acOy3ujqvbRMA4uGg7xSqVitVosopSsvJ9SuGuUbqNUU8gXpdNpyuVxEeZpqnHFKgrGKvmmwUGd0EgS1n2Ej6ibK5XKfUR1mGpKACFLT6/VsdXU1ojhMZa++TbrZeC/V1FHrGx0XViQonITi/vE7SsIkiVSOFJ+J/rfaAijxWNEk1fRR8qOaF6swJ/+vY/SK8GliGULBbAidTKR9Eq471UkiuCqkzWF+04ShHrh6YHEoEnSAhhG91PbkXUkWgRULGFUH1z6/fn4+C9M0Ok1Lch6LxVwWZHFx0R49emTr6+uWTCZduJOKk7b006dPIxwDbU2cnZ15BQjczgg0lVuhULBSqeQ/d35+bouLizYxMeGm0uHUKARlxqOpJkGNaPMrsZfES/XC5ubmXCySYigWi7mlkJLqR/H8lK9JVQuJHUSXhIYpKX6G9aAcPgx3SZxLpZIjPOw7DF+p6mkVzs/Pf8am6M0337RsNjtyyIb1wjj4xsaGPXv2zLa2tux///d/vR0C1YH2LTpo3EeSQS1SWc/KQ+IaQrSL+6nuAqohpSjnbQlWv993/lEymbSjoyPn6oaWOsR8RUe4H/V6PcIPAiUleUOIuFQq2cLCgh0eHvr+WVpa8sROx/7VDgjZEpJdksv79+/7+sBLF87To0ePrNvtWqvVslKpZMfHx/bJJ59EuMrEe3hXV1dXbmRNEYY6vU6vspfYC3xekD2GU9hPnU7H4wD3UD1vtfVKizscwKKlyt7i/tRqNWs2m372ggxpexRwBDQZlXPQSEXSKE5ITolH+Xzek1XOdVp+JEqxWMyq1apz1RA1pogA2RwfH/d7wtQ4EibcR9wW2BeKcJ2fn3sBzj4CAcdj0cwsnU7bgwcPLJlM2sHBgW1ubkZkYF6ag8XBCLSoVU9IWte+fDi5owJ8IAfxeNzm5uY8C9fpj0Kh4GRHDjsNHBqYdEJHLRBYQOqlRFKjv6O8GbzU1JE7tAfRNp5OkOnnZ6GEmiraglPtIk2MSMpUaoLfUQ5bSNRTqwl0UNQCJ0S6VOCNvr/asCjUGSrm6wShBmwVIQ0tF9QOQTltmnRTUenkiHoRakKj2mW3Bf3Qokm13KiKdboGAby7lNxZzwRw5duo7c8o4Vvl2SmCiXI+qCABieDy9OlTm5mZseXlZddle/TokZOQ33rrLecscj81MQaJVRNjtfqgOHn+/LmvQV6vVCp5u7LdbtvOzo7Nz8/bw4cPvZVXKpWs1+tFEFjgeDW25lpUmgI7KiX1qt+ltjFZwxRloF7cW4YEGALQ/Y/KOOtMhz6UF3V6euqo0tLSkj1+/NiTRX4G5E398MzM7XgUrYK7Fq5VCN8HBwf28ccfO3dmOBy6HZOaMut+okBRVFj3sMaP0Pw4FHrm3vHzcFYVSQeFfZkpW9pCkL2VHqHrE/4QbdlYLGaZTMYTddqXDDeRxOJZSDLe7XYjSCftvHDMP51O+x7H8Ju2qfJ8lO6gGm6gblh0zc3NeXGh90hFUfm7+mvCA9N2I1IU6JOB4iBdosgghbV2e4hbOlVIrFMeIj/DOuA5cE8U9SIp0ffj3kD74LPRAuV92aNoaaHuT2I5Nzdnx8fHEb1A9hKJWq/Xc6N5kkkQLqZtae3rswMR5JmRWIXFBV0o4iEJFZxBFSrl9bS1fnR0FMlLPpdMAygI5L8QlRr1YuGbqIv19PS0VzW0MNgU6pPG77CYtP2kEwgc4tyIUUKjqq2iqJuKgfJAmBiiElfiLoGFBasK4KE/lyaAWgGOIqzrNWmiqpwjbXXpIaPvxcYmuKhS+02Jh25GRYH4XCF5O1QJVrRJEyUlu3IIKHlVlechUSoBn8VMIOTeA2vrRh8lNXFTy1rVm3X6R1ucqkt21wHCFBNBf5RIrKIAoYUR1SMHO36X3Hf1/4Lbc3V1ZfV63SeQPvnkE+ezgHhhSzI5OemHkJJQ+bxA9NxnqnD0nLSV8ejRI2/51Go129nZsVKpZPfv348cOiBqvAf7nKRYW8b8jLa2dehDp560pawm4SoHQJsZWB8UUA+hVqvlxsJawYM8aEHE0A1ojBohKwIcIlGj+DBbW1vW7XatWq36XiE53N3dtWq1ahsbG77vNAlRPTnlmGlxGzpthIkCa0lj0ajWuiL/qiGo0gG3CTdzgILIUCDpFHpYHCtFgGeqSCXFHQgRmlPYd5EEQVwndrRaLZufn3ddOabeSOhASTKZTGQKWTXhQIXY53ColpaWrNlsWiwWs/X1dSelJxIJP8j1uVGQg5aDNNF94NwjoUG8NkTudZpWYwSIv06HUtTqNC2JGEkQr805y0AF7XodJlCesg6JkJyQXGnHRbnF3E9eOx6PRyRi0NXS3yGmMGSD3pnK3DDJSCzhzFJ9POVPareL8xW0XwcZeC6ALlA4JicnfQKWeKdT+S/lRXh1dRWZSuHCVWNkVEWvFRIbG54BCZYaOXLhWvExTgwXSKftFIlQ7pK2YpQzpAkUB6xaEZCc8YBpTXY6HTs8PLRms2lTU1N+wPB5VKk7DB6KSIUJjRKdQ8Nj5WGFdjPKtwmDIG1QKl9GTPX9w6pVCaO0Vhh11najIi46ncHBoYMESuimmlbuldoxYNKNqCE/w4aBXKpDDbrRuQe3wbKagCriqFMrDE+ERcNdCNbJyYk1m82IXICifKOKEL2nimbwDEiUeFYcCtoSn5iYcFXjRqNhu7u7ES9Qnh/tD6BwPXT1WnWAQVFJ2rNMYOmQBNYSqKkXi0XLZrN+rewP0AM4I8oTpCXGPtVxaQ4g1pGaaIfIjbYPdUiC91DrDvha6hepiQmcEkXeQ1FU+CfEQ5AHKmXlaTGdSnLcaDSs0WhE1qTaBOmwhibw4bg+3nsqTaPcGhU1Zv/cJI48KoazHtSjUYu9mxIsfheNtVgs5oRxklgQW4j9tHVoBZMEx+Nxlz7RZ4xBcDKZ9ClONYCGxByPx91ztVAo2PLysqOCTEuH2mX42PE5mCyem5uLCEnGYjFbWVmxfD7vkiuLi4u2tbXlE2aVSsWfDet/ZmbGCoWCcxIhs+M0QeuaJEuRE133CI6CoujgAftLJwHZN3CGiNs60Yh7x8HBgSPmGvdDNwe13OK8ogDj/nGu6ISicqWazabzR9UaB1kM9mo4gUoix8+pZdL09LTV63Wr1WqO/qqvqyZatDrD9jFG8XSC4IwpHxPkin07OztrCwsLn4/kHtpn6MTdTciVHhxkx5lMxlKplAcd9bsKzSmVjMeD0RFo5XiFo+XK0eDDK6RO8NHXIXBrQEFcDwKhCv0Bd2tiFyYxSgzV/1cPrPDg1EWs/mE6Qq+tpfBgodJgketCCu1r2CDKb1Nyst5fhZT5Ows1PARCoVRNiJRcH/KgQrV3PC0VbVKrh1B9XxFLRRHCaapwKKDb7VoikXBStXKMXqYFoi1QbfGOao1zD/WeqDQGwUgTMR131rWl5E09JPQLfleIROmBDELLeyofjAKCBIskWltt2JWsrq7awsKCt/zU6DgsJnQtMP2kVh7sYQoZRbhI7ENpEPXd072nsYWqHgVnTdjVky8chSfh1cRZp+yo6jW5A6WgtaITXPB8wjUcDuUoMqzfB0lR6RRFmULRYI0BxLjbBBH57IPBwKe3lHN7V4IGhwa+jxZz+rkUfVYEUaeASdDPzs4snU47OkvCqaP/7CXleWKe3Ol0rFAo+CGtrTQ1fSbp0r2pQqhzc3MelwaDgSPDxD6ujQloOgnwvFgHOjykDgkh13WUF6DSM5TzRQKjgpycY+F0o4qAqrCvmXlio/QFbb3rpLoKihK7Kfi5xySDJEo6MAJfj7OEfYpGFwAMkgogZqH1G9eJFl2j0fDPqwUD8ZNYC7eRtUCCxnAKSRbnJHsONJXrov1/G7J7ow6W9qJVgO82zosS1rD2IFumStdWFC2W0AhaJy703zXpCpXlWVxsZKpKpldUr4RkhAqLDQXpF7hUK0GtNLUaV52iUBGd19egr5uMxCZEmcKqgQNRybigMWwU5CfCUWLla3E9HGw6wqpwsyJuOo0BUkZPHY0aXYTKmVFDUb1+lc5QCY1ms+mVs0LSGoTVCihM7DXBvwmRurq6sna7bcVi0a2NWIt32eRQ3RIYFHEM2+PaPtXWDPcdI2bukypWA7Or0r0WG9omJ8gSVOFUKEqj+xKhzJB7p4mcEr+pVAmAKk0CGg2czz2BYKv7RzlvTOvB/1JeonIFVUWbn9EJ4xAdHWXyjngqaKkmbmEhpLQDTVyJR+wJ0A4KIoK66vKQuLKm2JvcHxI7nZxVFXUOFJUTUTSPyl1RXY3XGkfCdTCKT6WSNSp9oXvpLg4W74s6PagLLSySHiUxI1GgrSaeFdN8SFaMj4/bzs6OdTod93fMZDIRRO/09NSKxaKNj4/b4eGhtVotW1lZ8YlD4vzU1JQfkCE/B7QMAnM+n7fFxUV78uSJHRwc2P379y2Xy9nh4aFbEfHzc3Nz1mw2rVar2ezsrK2srHhRl81mLZlMRkjoikqB9FCEa6tPCzim5Xu93mda9DoVjV2OGlCDIM3NzblH4ubmptXr9YhiPwWTaqeRpGniw7OjpU7ilEwmrdVqWbfbdeFj5UwxRMZwSrVa9UlJNYs/ODjwGA3qV61WI+t+Y2PDEzNa03r2KA9OB6WwZcrn85ZMJm1/f98ajUbEkQGqQa/X8+8nk0l79dVXLR6P2wcffGDb29sv70UYHkyhQGcoQa8EbyZr4JQo6VuFAbk5HObaalF0SbkGKnKpf1SkjADAIUy/ls1D8Aj1r9Rp28wsm836pBEERIW7yWz1ukJ5Cx0M0ARHJSPoi4fTfKGwmiZw6nrOxkWtWREPnRjkHs7OzvqGVO6afg6gZQ3SJFUc+lQ6GhhCtEKHDjhIeAaKgoW2SSRUVEPa3gMh0UotRIxCYvlNmj2qEsz9eBmZhtumqsJ2tlZRWvnQRlFOSmjmra0ZHd9XNJR/U76iIp3ajmJPgYaq4GuIvCmiPEqFGf4kzzO0uCDhCz1AaXko70/H9JX7oy1q5UjxXiRVYUKliJj6p2kBx7rVlrvazugfTRDZG+F9otDhXqrOUci/00RRbbSUU6mtPX12miRr7FM+aOhPqHFJi6kQ6VWOlCqTqzXZbQU2+xsuIeuD1hCTZ6EYLp6hOmFNS43P0mq1fPhjbW3N5QuQqWAAgYO70WhYKpWytbU1a7VaHk+IebSE2SugdhCiG42GZTIZS6fTrmOWTCYtm81arVazer1u2WzWisWiJ3XaHsfRQP0VOe+YaoW4rWbTTMipSDEoO7EKD0RFekmkKBBIUJnQJrah1K7G2ZDQEUHGo1URMOIjQ2ghIEBCyPNKpVIRb0QSyqurK2u1Wq7ErogX18oegvDPfkBehTVGwc9EIbZa+DkiF8FnD630OMuhZNTr9QgthSKYdqI6u6BXd3BwYK1Wy5/R59LB0kNiFAqgm42fY1IQgT4ydDU1ZeOj9Kw8GpXzV+2KkEQKv0N/V804VduDlhkZtxLAScLYgAQuiMOqswVEj7Kyqmpr1a6q3Oq+rSrD6pkE5Br6+KnND/dMTbPRvGk2mxHvuFFyAqGdDqrtWsGzuPg+idJgMLBOp+MwLIuStq8SBtXgVyt3TWaVmzUzMxPRgCHZQDNJN6ZyDO5q1bJBNNkLFd8VKTk/P/cA+zJ6P6G33aipSE1yuV86OatGsqOkJjQ514RLkTFNErTC1UQjVFHmOWjri/cimIbItQ4EMIbO++vz4KChpaD7XUfIWSOqGRaK3eq+DwcIKDo0sWdPce/Yq0xFKpITtpxVQ0vJtioIrMWdjnJTsdMS1ANNCcWj/FV1b4aFAftcxYv12ZDQhYlPqH+lPERtF2qCQXKi+wXEQC1Q7vpSSRTG43VSDr9EpBAymYwbP7OuoZWAQjUaDUeDkMdQbSo4TCjHg0ajKD89PW29Xs8LxOnpacvn83Z2dmatVsulguDL0WJEqy6Tydjp6altbW15UoWFTDwet8vLS7eHGg6HtrKyEtGx0oI1NDnHM5WWFF0ekg3QHG0X83skVyQVnHlQD+bm5pwvpK1GOhhHR0e2u7vrVA2KZ/YniSNCtNPT05bNZl1TDN4ae4t2I5pSeF+qgXi9XncEOPTYZNKcApxzAgSdyU8Kmna77ahdNpv1s6lcLlu9XvepZu5rJpOxarUa4U+DkrXbbW/nosnJdWBxdXJyYul02k5PT+3999+3TCbj7WNaxp87wdIgOUprSKsf9eqD7KkkQjY3UzwELH4m7NNrn1kDRuiTF+p6aJDWClH5UOqfx6HKotY2GkgRrQwQMPWhU5FKNT9WnpRya0IBUiUUjmqDaYAMzTXRkdLJFZUI0IQz9B0M7TKUUM+henFx4bo7VEiK8oTvp3plquyu76XkZYjt6oUHkVsTAPWU04NCET3tqWsSEvLWdDqUoK8Gpi/zFYrpKgKhB6buH/aEtpp0KohnpShDmFyE3MKQRB8izKMmKnkekF6p7MJ2LDxI7pUmpOwj1osaeatjA0id7nGdvCW4KyoUTq2Gh7t+T9EyRWmobpV3eZPbhN4bXQuhSX2oN6eDGapBFqKRWhjo/g5RUPY3BR4xUv/L31WWJhwECWM1z4T3DH82pGewLqBEfB5tuGw269eZTCZdiwgyN+05rgXxatBdYietxEwmY+VyOeJdt7e3Z4VCwdLpdES0k/iaTqddaJkkkZYTyBf6UqBXxCn4wjpoxTmDYTUoE8gPCJJaNmHwznUz3LW5uWnJZNIWFhYikhFzc3MRUWuSMm3jqx0W7TjOMjpBWoijPE5ScHx8bIVCwZMHkEQFHZQATwKvEg/scxKWer0eoZpQwHFPz87OrNvt+mQ+rgB0ivQ8QnRV4zsxGmsfcgeKGtaNTtIz6AVKiCaaTiqyZ7rdrq+hi4uLiIXQ7OysO6GQQIGgabwkwb+JhzV5l96Pqm6PQki+uc4iAAAgAElEQVSoaCEjql2KHhj8v7a4Quhf2wo65UHiReKinkh8jz9qCRFycpTEqhWtjpjyejrNwQIFAsWUEkK88oXCQ0+rVU3QlL8V8rbCqZ5QyJXNTSKiOlJsbEVG1NpHD2YN8oogcEAxoagWBGHrK5xwHA6HDsXqZtHKRDl0Oo0Fj0U9vcL2VSiHERJwR5HM9fdYi6enp1av1z2Zvo3EGxYcIe9O90bIowPWx1hXE131l9RJPzXG1vZ5SOzXZEjb8fo5lFcT+jxqUqGHcfiM9b4pcqtos1bC6i+oRVholRT6kylqMyq5CpNYbZOpTx2Is1pE6dh8uIb0meh9D8ntqjmlk4WjTI91cCT0+QsdATjo9LX5eXWZUJuRMEELKRshPSFsv+qkZJiUMWGGJEhoQ3VTpwMJBGIN+wrUQCkPOhIfDkeB6MzMzPgwitq+oKEEwZwYSGKiHRZeR+8zSCttPT4zr9lutx1lPT4+dvufwWDgorjqboCoqPobwnNkog2EiAlFvddacCgnEp4V6CzJkRLidYCL+wzyrzZJvDbTc0zqqU4WE3Y6CBOPx72diSMEa0J515oAAlYMBgP37qPFyT5VqzVdY1oo6WAZE3wI7pIskSiBNCEYqkNcnC20BXWfUaSx9nSIgi6YDreo60oqlXIh2pdOsELCsAalUT+L1Uoul7O5ubkIPyQU3wTl0EBKcqB9fuXWhJYNIFUqsAkvKhyJVw4BiZKSPUFlWKw6qkv1rRL7vB6+brynkuj14A85VmrxoO2RUKNLkSo2D5W6up4T4DUhU+FM7i/ifKqFpF6RWvlr0FYdKuVt8Tm5HkjLIFNUjkxQaRWkiS0IGUgcSWPY+gvlGUKCuSZieuDq98MW99XVle3v71smk/mMUvldCZau33CKS58FCsyKiIbco3DIQxG+sK1FgNUETw++sLWmB/2o5EpbuLoHaZertAb8MW2BhQmFjkPDWQiV6sOEUYspSK4g3To9qe8VkuJVlBhkQIVrVQBWCzuqUTWqDRNy5U6OkuXQZFmnkvXnlEsVPkvV09FWm9qwqPAm16yoc7i+FTXU9w4tdEZJinC/GPjRGHfbFOHV1ZVVKhVLpVKeGNAmKpVKlkwmXd6Eg4uDLJlMWi6X89Yyrd7r62vb3d216elpW1pasnw+75zQ/f19m5+fd42ii4sLq9fr1u/3/SwCeW80Gh4DQbi4p3RfwgIwlUpFYh1ThN1u11XVSUKUc6cTpJC+idVYfW1vb1s2m7WFhQWXPoFUzv4LPSORrWAfkuBzrmAlBVqUTqcdCWQdMOHYbDYdUSIpIraTQNLexruP50QS3el03LEA+6OpqSlXPue8pDuEwKhKn7CWua8g/aCP+t7dbtcqlYpNTExYNpu1fD5vw+HQKpWKHRwceNKoZ8dgMPBJbZ7t+fm57/Xj42PLZrORQpehMS2A6FTRSqb9mMvlrFgs3qoRd6sXIfCoWmRooAHBYWOE8gKjevS6SXl9VWjWxapBk4RKPYmURKpB76ZKnwOOw4FFpeiYIkFMwWiLAXiVEV7V/QAiJtsPDwdtf2jSyvvrIRBWvtrKU3mGcLpRR58J9GxcsnkqS1W+D82uVV5AD0f1INQqOWy1EHQ5cJWsDh8Ot3YVu7vJPDyUXbhpIuymttlNSRfGvarE/LK8RH1GygMMOUOKHCiHTcfoQ9RSkzB9Nmxm7n34MypxoiihShyMUrkPk0ZNyhTlYH/q+8K1VIFY+HUgWVppj5pwVYkV5QjpWtLWWih9oS0N3cfKmQpbfSpXQrDXdaYTotqCVnR11H3kZ0JqgybiYQKtI/i0I7QADFG0ML6GJH+NfeF1hMKjnzkU/t8YpC3zl5mw5f4kEgk3+4U4TeuJNkyIROl+Vp84FQemIAQhOzo68pYcZHcOQAZiMpmMtdttRwG15UsSrzIlCFoqckus5T0o6BHPxJgYXScs4XiWxDtQQVApBsFC9Jn1pibIoGGqR5hOpz2ZBQ1i3ZMoqgwJCUaI0ipyrTI0FFIq0kqcQKZB95T+nb3MkAE8NS2IaPnpJDmvgTo8914HA8bHxz3hCgV8Sc45i9lzvK8WhiG1RDWuUD7QDhs0FpLGarXq1lmfy4tQ7V40KdLxfTYi46/qp6dcBXhHCrEBc7ORNOMMRd9Up0cDBtAz/XUWn45D62HCAaMckFFWOKAyqucCDAjESzXDuOubb77pkwRooiinQQ8J7pUmjjpJGeqPKV+G11DLGF6D+5hKpVyjI5yKQkSOYKcJnMpGsFjUM0zFREnsQjV77h9VapjIqEAjVRATWCjQh+2tUdNOysW6SzwxbL2pztjExITt7+9bv9+3bDYb8Ze8i+Q+ihOlh4Naqiikr0hMGFx5TTaxqvtrK2PUtB8aM0qIRh2bIBUmV+EEW+hMENqtqM2EcqqQh6BlPT4+bs1m09rtti0vL1smk4l4J2rSGT5DJhRDs1ZF8kLemx6cOriigZU/atMTJikkWaEnqCZYrB0lHYd0Ct1Xujd034RrWB0ilG/FPiRmqrPBKJuucFJQ/U7DdrQWsSGVggK7Vqs5cnEXF2t8fNwWFhZsfn7eUQXMc+v1uk1OTlq5XPb3oX2XzWYjgqSKXoKIIQ1DMs7PYOME54t7Bakd0jpxifihIqqgJhgpqxQOU2KJRML/DoGdA19jYjjtGY/H3XdvY2PD2686mcaQE3IAFO4gJclk0n8Gazfan2bmbT3Oplgs5kkcbWblyDKwRcIwPj5u2Wz2M0MxyD+kUiknf9OegyunCClxChFZZCvIAdrttl1fX7s0B0nQ9fW1K+Hz/BlgAOUdGxuzlZUVOz8/t1qtZoeHh/bpp5/60AL8KKUaKZKoVB7OS0WRObdBzhYXF/0c7PV61m63fd8g8rq5uelWPy8t0zBKG0X79Yp2MFmgWWHIawjJryEBWFEQgp7yerQCU2KtJgI6dTNKfiBsNan7dyhNoYKYwJc6JRRqpjAKTtUSckbCKlXvqx7KYaJHgqI+V1QgaB2hI8aGJuFUnyVFWsIRWz2odIJRrQeUcB8mpsq1Ckfu9QDQdhifQ0XuVPk4VPBXbTN95uHhFR7WmrTq38PX4D7rRONdh4iipcpvUYRD4Xxts4/ypFOkSw9vbYvqetbWt9rOhF6hug5J+rjXDG2ESYEKzGoiqvtaYwDJoLb6VKgQTg5od9ga1CRYp4j1WYYCnWoirnEC7kkoH6EepDrBGHprhhIY2lrTvcKzZf+FbUeVggifmX4mXY8ai4g1Gje0QNVCVveXIoMhSjnK3kc/j+4lbS9rkXiTcwLPcHFx0ZE3PfzV967VakU4uTy3/4ezd+uNPL2q/7fPdrnOB1f52O12Z3rIhJCZRGESokCiCBCIm9zBBe+AF4J4GwghIe6QQOQCSCRgMpMJk5lM5tRtt892natcLp/a/l38/5+tVXu+drvT0ijQbdfh+T7PfvZee+21kroLmrjqABRIBS1oCoher+f6Tsg7nJyceGtK438UVwaRYbyfNpYm2yTm/D6yI0zT4U7CeeH+oE3HRCOTa2ZmlUrFETH2G2dKNfo0djBxHQVBVcRX3SDUkJik5fz83HK5nLcfeR6sq57lXC5ns7Oz1mg0nPeGrRDPgwJAdd5YG/hM3I88M/aYAi60HCnYdCK51+vZycmJtVot6/f7Ttrn97XgZM9S0Okdq4bY3JsMBzApCdeLO0ILKl6bs1csFl99ilChVFVmJkvF74wDpNWejv7rNKCSvmNVHxOxSFTWL6jtLk2g1J+MA6KBX6doOOQEXK2MdeJHlZOpdhD1VORIfdn0s0QPJIXm1ZQztrh0RJ6+MBcHBroIwpEIAb9rEqdJqlZbmqyyISNZXtWsFYmiVatefkC9yuVRvye9WDCzRZwSywKCAxUSz0aVfDmYrMFtrZIojqjJrY6zo9VzcnJi7Xb7pWKKUaFdvdDUzwpeD4EzCcGKfCQVGlVYOtpB6eXK+sSkRRNhvUD1wtLJt5hMJK2tjnvDNVFkEAVunUzUi1M1zuBc8ZngVWqrQm2AlIfJv+kFFO2wdLIYJEGTjCirohwaPfNJMghRKV25l4p6K5dOScfEKM4P7SueoRZPnCvaKVwanJfohaaE+ducN2JyH7lnEa0lgbnLmgr0sdfr2fHxsXcBSHb4D2scEm7lcNJWUySIeACfCbmYk5MTK5fLbkYOwZ3kg1jYaDScB4usgmqCge5o6xKUiZYgaLs+O1S/icPEKhIb/fezszMniMMPhPhNfMzn884HBbHhfUDwZmZmLJfLeSurWq06t4r15EwxyYctFXcIU52dTseWl5ddbJk/qVTKudTwaNXwmvfXYk6lhUjoIMMz2ID4OJOFuEWoBd/4+LhPCGriSOFN4v78+XObmpqy5eVlGwwGtrm5ORL/VbNK7z8l++s0L+uk68u+UQkYulTqG9vtdu3hw4evZpUTUSgV5OQPveHIPVAYV7WWotqw8q0i6qOTRkntCxady1bF9SJHJqJxCpdHCwGtllWtWi9mHgYHFksgyKBRlDESh7VdoO1XHqKOSPPdgCgVpdFpBh6+urTHQQRttWjlFvWjojSGTnPyWfHAUmhYK+/IY9HXbrfb1mq1RrgCGnBZR5JGRRl0dFcTN14jXhwvI6zrvlQrkvvIliR5RGoCBpoYuT2KnCgvSYM+P68VdEQh9LLTAkEN0/XsqZSBoslJ/pkEPNVx0kQpCRXWdrZWealUytvt2ppR3kTStKCKyWormjYS34eAHa2EiFEUUTq5FjW39KwrGTyJV6qtPG1rKcquyBLrquLCcW9y5nQKSiczeU99FvrctUrnLBA/bmsjJk1nRmcEfpbk8K52/M3NjW1vb1u5XLZqteoyATzf+fl5K5VKrjd1c3NjtVptRHxW9yxEb2I8e7FSqfikMZQHaCr4GeJ1l81mnZcFd1bPCEUxCQySCtPT0zY9PW2np6cel/r9vhWLxZEiinYca0+BQfuQpIHESjlGtPUmJyetWCz6z3B21I0kqrnzXRUZUyFnipIXL15Yo9FwGoZKl6ArxRoowswkuBL/SYCJH6iqqzyQchmjSwn6Xhrv6B4ggqp0IHSpZmZmrNVq+WdROsfBwYF1u13fBxMTE1ar1fy+7ff7ztMjSQcwwG4nn8/7vXN5eWkHBwc+mKWuEQixkmCzX66vr10F/5URrKRxZiWIcYkkVXr8m8J3yj3hoSlErq2pOBas/AAlQ7NpWSBN8DTYEuiSps000KrMA6/LRUnVWa1WR8jvKuegKu/a9lFybSRz8/48VIIrYnjNZtOazaaPLLNRWCugV50iU80iTXQ5DDpZpe+pSbD+PMgVHCN6+ToRomPGkUzLQcRgVDckaA9k1dgeVI4fejuXl5duSq5Eep00jJdCnJAFaeCAKzR/17ngtbnwQWXiJFf05NMDSnXH78dx+SiJEVvIsT2jJHdF2ZS/pN9V+Yix1a7FBBeK+jbqhI2qh5NQ0bqJLcAYR7Qoi8RyvUxiG52/p2WA/QpFn6KEILx6NvS14HxFtXslpsd4qGK1ylVVvzkukyRkNbpkqNSFiusqwqlTnJGbqFZLFD8gxCA0aj92m+SCJmOxPX3XFKGiGKoCriR1pA5ULwqbmeFwaL1ez9rttouGcuGD6EBcx9pkbm7OkwfWBlHMiYkJ29vbs+PjY1tbW7NCoWCtVmtES4+9C+rF39HSg8OqMVmNllUXkUSfRAjEj0lGhj1A9ZaXl/38M0HJs+FeYUgARBZeFgnn2NiYt+zK5bInJrQ32W+7u7vOb4XSMTc3Z7lcztFExF/hPyt1h/iU9Ox6vd4IR5dkfH5+3kV+iRMzMzN2dHRkU1NTtri4OJJs0oLjvmNoTBM89jKJc71et+3tbf8shULBCoWClctl6/V6tr+/bxcXF27XxzkfDAYusKrUkFarNeIkkk6n3c6Mc9ztdp2eQzw8PT21nZ2dWzUUJ++CkGOLhQOsY8AaaBRqTxJuVDg9Ti1o4EUFOKllGacZFWHhc3HhaX832m/omKgaVFIdc2Ey0ql+S0xTkFzoZYZuDaTQOEkYtbF07VQqQLW3gDa1tRmrWkVBVKxQJ5AUrYiaWxGRUQ4IrUMOPN8LboC2b/icStQm+YLUrpNBSFbENlrkrej7krwvLCyM+NfFiyO2NHSSS0fcVUjvZX/0OcSxffafngXlFOnUjU7mqqZUEoIcixw9dzpZx2VAoaAFhiIfSlqP/n1qo6OFiqIqiiwS4NhzcDg4U4o+ktxhdcF3jubVFGAqs6BcGDVS1qRfk/LopRc5T8QETYpUUy+ur+5nRZ+1jR/3bPQDVAHHKJxLW5B/Q5xSEVPV/lMUUrsBfPdMJmOzs7NOwNVzrkMKSVOA6p3KGiT5F8bYjrFyOp32Cx8ki5H5Uqlkk5OTdnJyYvV63fcDmlsq7kxiQdE6HA7t6OjIYwrDOoeHh97Oy+fzlkqlXEG80+n4Jcv+JYFrNptu0sxrtdttq9frbpOCdUw2m/2S/IwKVBKzb25urFgs2snJiRevcMOIWbQCs9mst/jS6bSjbSTMTKZns1kX9tS9RDKArIHeeexVPP5IWGdnZ90pA+Tq4uLC34+ODi1GJhW1u0JyODY25kR/SOmcUy04FTBBBJZkhb3AWhYKBUulUtbr9XyAgWc7NzdnzWbTNjc3rdPp+ADA5OSkbWxsWCqVsl/96lfO/UNugztck1bu3Uaj4TmNoo+sB+eXfYyM0NzcnNVqNTe+v+3P5H0UqyNhW7klsV96V8WjLb44oajVuLYyIl8kcqiSOCwEWw0ivB4LGzlRGjSpwKiw1atQq36+g6IPfH9sIjDmVAI9AVJF1GK7hX6zkgejWKpqisBp4ZLnguOiUasTvjfvqxYsmghjS6CDBSSWUfyUJIJLgOBMdUIVGhWPVaE3KWGNyZcm4aAVBMYk66SkCj0S5dWN/mUtQkVxtN2jBQhIp3Iz9OLWRC6iJdpS0tZfbOPomLla1igiFic8lcCurTpNRG4bBtAJoShwCV9ODZ5pMSS1rKlEVWOJ99JpN23TKerKPlHTbdWZ0jYsaIMm1ToxqCKPfDcuKi1G4rAKUixxKERjSdxzKmqs7Te+k05DMmSjk6Sx3atWPhExV0QErmMcsolDEOqMEbW97itfotO+kJSZ0oOfo4bWtIZAPokvTMWBUKHzRKcC7SioBMrlhHBfLpet2Wy6Nx9oP7EVHp4irQsLCzY7O+vG9qw1U24g8NhrmZkjXsgHlMtlvxtVAT6VSjlKT2J5fX3tE3DE+1KpNDLpyTlXNJikhxjNvcNU4P7+vuta8bxV/X1sbMyq1eoIfUTt42h/1mo1L/axs6GYo21GXCeWkIio/iPDLlA7KNSUV6qE81ar5S08zmuj0XANLzSy0um0zczMuAgsa0SRQUKMLJCZ2erqqiOLUBrwtURZf35+3ukH7Bem80n+lcj/ykKjaoocESguN4Iyo6s6VaZTOfHNCd4sql7ubAANkjqurWPZCv3HcWv1G1PStXoOsvn4LgROrUwjkVUr/2hwC2lPKwwN4Pw9AU+J/tqi1OAMJ4OePuRueFdMHLKp4J0owVfNlPVy5Tup8aXKQejlp/wf3o+LgSCpbVkg8263O5LlA/vqoIMG3OhNqdpfegEQdMbHx61cLo8o2ivKwv6NHou3iZi+bBT9Nt0tbdVFzlpMoKLulO59bSsqYpMkZqeFhyZtigophytJYFLbJVpEKSlbP0/kYHFebrOIiZOI+jtcjkquZy8o4kYBoOeI8xnb7RBqOYv6+0q61xaotr2VmB5FV3V/ck4UvSUxolWkIovRhYDXRC9P29eawGsBq24VkN1VB48zqUkkE3QkKyqXoq1SRVUVmdWBl7vOhPKSer2ec1VJQovFonNXpqambHV11REauDxoQ3Gpvnjxwo6Pj+3k5MSlAkqlkhdtrHetVvPpM5DAmZkZFws9Pj4e0QQEzSFusefS6bRNTU3Z2tqaPX361CURSOhAbtTybGZmxvmx1WrVTk9PHSFizy0sLFgul/NBJe4GRYG0gGPCempqysrlsvX7fWs0Gp5g0gkAyecMIKxKO5E9qnEFH2Azc34SxSDtQ9WM2t/ft263a5OTk+4zSAIGeEDnBuT15OTEzzjPF71BwAf2DEMBvNbu7q4NBgPLZrO2tLTkfoBHR0eO4DE88ejRI7u4uLB6vW6Hh4fuE8xgAq+PThlFVaVSsbW1NedPffrpp/4ZMpmMDYdD29ra8hiZy+XcszKdTtv19bW3tLHgeWWzZ61IkmwllIROJRCRmliJatXPg9HkgoOu1WP0BtMJLj3YUaWY/ztC7EoSZpOrYKW2PVQ2QCfP4nuphpZW9DqlFy9FndSKDvcq/0BWrtwB2o86OaStwshZinpLug5qVaNO91qta2JCMI+q1NH2RHWJtJ2mlz+/ByKhSIomO1EehMOiyTGu7RA6oz/gXQKROjhx30o9SagxWvioMKgOb8RERPWaoj0QiYZKkyT5/ukEnib2inLEibk40RglLjR5SCrAtFWoRHA9C5pY6evFFrWK7+qz1zamcrXgZYCskSzowIp+FiW3K0k8Jpi6JtrOiwMNGi+iAK7+r/5c1E/TlruittrOVP6c8oD0POsZVXsyRadAO/RzxWcaB170vSISmdTp0MKLy11980D2aO9OT087okPyDPJBIlCtVh1B6Xa7PmmsWlraYQB9AKHI5XJWKBT8ZxERTafTls1mR4ocSNQkaNHfVfeP+gcySd9qtUb8PKGSKOKogs1wIeFd0Z5TGxmlD5C8ayeBjgUIL6iuTqKTQPE9Qc6gn+jAFnsE8r9SGWjbw5Njz2lHBDROn6cCHiQ9tGZB9g4ODnxvwMltNpt2eHg44tOIIfP09LR1Oh07OTmxo6MjS6VS/r0o0GhFso5wtTKZzIhxtBYQatXGmijNRge3Yu7wykKj2s7QKSUeCElIbJ8oz0pbadEAOUl5WvVXkgidsRLX6Z5IhNWAoe2EyPUhSOvkF1MHirBFUrCO4Ks8gYoSqiYIF4dazcTvFZEWRowVqo7JLK+tBPeYsEU/PioebY2qGKX+bjStTtLKiSKGkZ+izunlcvlLyUSUFVDkUS8QRnmVB0jSpd5aSYT1pAkungWTTi9DsHTyTi9PlRCBM0IVl2T1EydIFf3TZCOS2BXF08Ih6s5FyYa4BnHCNip+a1LBv+mwhE7/qQUOe4VgGCcflbup6I7qcukZjWbztIiUHK5rB8lZURhtiyu5njOte5C9ptIESUk0iA+tXEUFlVSuKII6U8R9zfcAcdKYqcmJ+jxqgs/nUD4Y7XeekV6gmlBpEquJp9I57rIDUS9IRaq63a6LdGo78PLy0ur1ul1cXNja2tqI/yAtGRWRJqmi9TQ5Oentn16v59w1OJ0kFI1GYwTJB9FCkoUES8VlB4OBNRoNK5fLlslkPFGLQr20QIfDoS0sLPjrsv/47CA6zWbTB3ngdekZ496cmZlxMU8m4SDMk8QVCgVHrvAWZPgJ8jnT2qx5r9dzZAsDZJWqoN3HoMD8/Lx1Oh1LpVJWqVTs8vLSGo2GD32BSOmwE3uLTkqr1bLz83Nv/e7t7Y14RlLQg1RCG0E64uDgwI6Pj70rAw+OaXQSq3w+761YLJM6nY7z7pgsRKOtXq9bu932djWK+rRHQa3S6bSlUikfopmYmLDj42NHx6JQ8ysjWJFrwtgiHCzN1nXCSc1lNdBrwNKKkp/VwJk0oq/tRQ2OOs0RJ3YiyVQXQ8dEFT3Rz6qtwdhSogLRpEnlEKIgYJIytva1Fe0iMavVau6nxe8wRqvTIlQkHDIVWtNklwPH99OJJQ6cBnclI0dtqehvpugiySFtCTS7UCWOgnpxakkd11V3iXXnklKUk7Ypl2PktCRdkppY3seLMCKqcWIUyF2ThCThyog0qKefJuvKFdLkV/d4VPbW5CmJa6NomMpDxLY3Zyy2CRXpTbJSUaHc6J6g+nrRVkv9RGNxoggPzyuXy9n19bX7mOmQhaI8jJ6rbVQsmAjcOo2lz05NXyPCrpxE3jO2tDUhj4kW/A4uSQZvYpLMxa0oiMZmLbqIjTrhqabL+sx1wjCej1eRPWFwpVgsunp/p9OxXq83Ip6azWb9sqedlEqlrFwue3uM9g081unpaatWqz4dicI83C3aVKenp3Z9fW2VSsVyuZz7H6JfRLKGxQ2GvexNxCv7/b4NBgO/51QLin1CkUGbCzK1colIluCSKRLP2WJvkrShQwWvCJ4RrwX6R0KtnGidlNVC/vz83CqVis3Pz1uz2fRkVFHP4XBoxWLRrq+vrdVq+X4bDofOyeJz0PZTlXhVyucc0Y7mM0xOTro2GnqInU5nxCey1+u53y9rpvEG5K5arTrpHqV4CkESL52cvrm5sePjY3eMSafTVq1WfULy8PDQ1w3EDhkH5JJUnPTs7MxRuFdGsHTCiRfTSlaJ3gpHaoXIQQHG1cCqB1J5NlQc6sfHl9VAG02keYhKFI5Cevr+Kn4ZgwevwXtqjzzKLKjwn6rDqg6PBkB8xjCNVpkLKi3doEx6KIlQR1zVpoHNrC0fRSB5BgoXa2JFYstrq6YOl7hOwamvlRrUcmmQ6FCN0sOm9arWBlSe7DnVFdNKW+F2fQ02vSIhCpdHCYQ4VKAt1rv+qPxC1MdStwP18WNdaRdEHlfk50T/PSW2agKsSRcTTor06SSpymjoHo/6Tjr1GSUVkqZgI9qhGm/qN6aJG+dFOZsEaRIYiLFUobFQ0EuGZCW2Z0FC2CtMiimJW9GbuI+VGqD7XoncOi2piWaUgeE9lQbBz4JWoMGkU5dKaFYEiSSeS02NrHUtFfmMRWCcrNbkURG324ZGkv7AS2HMnUu/0WhYp9MZSQgowAaDgbXbbW/hoAfGdBvj+9iuFItFazQaVq/XbW1tzafmKKR6vZ7Nzc1ZPp93larsmBUAACAASURBVO1er+fxgDXjMmeqlXXkeYFwpFIpS6fTI/IMIPKqdK96VLRFG42GJ5QXFxe2tbXlWl5QG0B8Jicn/XvCYysWi65ZdXl5adls1k2beW7FYtHbXZp8dLtda7fbNhgMfCpwZmbGDg8P3VuQP81m0xNT1N0XFxft/Pzc6vW6zczMWKVScfRvfn7eDg8PvSBQon2v13Mi+vT0tCNZrBNcOfhstHCvr6/t8PDQ79FCoeDm1Dc3N97uW1xctKurKyuVSv5ekOAh7y8vL3sRD8rG5wNVzeVyjjB2u90RzSxU7huNhg9omP1/xuUzMzOu5aaDb6+UYEUldi4QHX9WzZyI/qhcgE79RSVhta3RMWm97NTgUqtvJaQqHynyXJREqq0J5a3oFBSBWb+PXnSaSBDYaJWCYPC9lYxIwM7lcnZxcWHNZtMPqrqwn56eWrvdtm63a/1+fyQJ4lBqoqITkipOCGFRq2Ztm5KEKBqmQZpJHqY+YmKRTqd9c+uQQK/Xs16v5webSiC2Lrk8lX+nVYpaE0QSMAmtksB1XylZOrau9cKPrb77/FEENV48POskAVdFKOOzUL6VPjNFwfSMKHIRld6jGKUWTOwX5b1FPp/6KervksxEP0QufOXmcaEr/01bhpwNAppyupSgi1ilJkIQiVXBneecSqUcddA10qIwovI8B12TiNQmofsqCKxov6pEs17sWVo68F+owEnuiDuKHKrVlKJfmrRp21J5RbFNzHlJSsb0e6o9j3Lc7kKvstmsD7ZAsCcZURRfNffGx8c9HmJTMzU1Zdls1kqlkk8AghjR0llZWbFOp+MehSh3r6ys2M3NjT19+tR2dnZsbW3N0Qx+Hi2lbDbrnCwSjqOjIxsMBu6hiZyAimMrigxqztmAd4XyO2iN6glSMChqznQtvqwkIwh6djod12Wanp72pAC+mWqhkbgqgR69sU6n49IL2l6/ubmx+fl5a7fbdnZ2ZktLS3Z1deX+i2iJ8R3hYnGOaY1CaQF5Qg+LZHF8fNx2d3dtOBxaNpt1mYjj4+ORhFVbnTyz5eVld4/BLoe16fV6ls/nrVKpeKLe6XRGOkSYZ9dqNS8gm82mAx7cOxSbmISDrp2dnY3YBBWLRev1er9dizBajGjg1qpTkRHVKYoTUkmTilExPYqZ6qWnEzORJxBd7iNp97ZWSlSb5feU58HvcIiobDhckeyedLkmEaCBj9vttld5oEVM4vT7fdcI0e8LkkTlS3XPs9GJJuWYRF+8aIWhk0WqlB3FMDUpUp2sk5MTr1A4qNg9AKOC6kVtMOX9aVtJW89RwZr35dIBwUqlUiMj27H1lfRMklTZXyZfor+jgw2xlaaIVJIfZFTaVrRXfy5ysTQgaQKn07mKTCUJpSYR3NUjM+kzcimr2KIiaarSfpsKfmxtaTwgCaC9rIUZ4+wQnyNpm8SbgK9xSQWOFaFTGQfdM3FYIl5K2lqKvoKRowiZVj31OA/KY9VERD+3xtvoaqHnIU616mejOOazqC6eJoGKat0H1WXdSVApiGiz6UQryR1IJkkxVji05dA+SqVSIwLOw+HQ+v2+yz8oR5Upz9nZWSuVSi61QLLOeuvapdPpEYkYEjxNtlWfUKfyKI7V0YSClZiECCgIDogcz1E1/GJsVhuo+fl5v5cUKeJnSPQajYb1ej07OjoaaZlzb7VaLVtZWXFUlKSevYbtDpwy1aVU3UOdBNe7Qz18QY7Yf2oOTduTz9Xv90dQ8tPTU2s2m24xhIYaCQ7q+2o+XSqVnDcHx4pnBpJJ0c10I8kfgATrTRHEujNhqXuc2PRKMg0xMVKlaq00qZZU5TxqIykvQi8d5dUkySsoZ0pfNxqoqi2JIiNJ4+wYWmolGIUBB4OBt6pardaI4ODjx49HULfhcOiu5lRkCMeRmMTKWS8USIP1et03oU6zwCVQlBBUgUkNxplZXxS0qbSUv6Pj3IrcELh5vyiaqOiSJtTK5SCIISmBwi3vjZCf+jUiHIf/X1Sb1jH7aNzM5tZRbQ6Zol6aRCoKmMRNepnP2m2K3LyOKvgnIWJJbcG4jzUB1KGIOECi7QwVAlXOHxdCtN1R0dyocaUtSLUnUfVqLkl0bTCN5fV138G5iI4CmozGAQbWgwDLPlNVeYKcDlVEDhatAG2F6ZrSYtHnCaoQEcc4EavuEVp06iAAKLla+8DZVCqFTuAq103b6BoztV2aNIygBapa50Bi1oltRRXjRLfG/zhodNufTqdjS0tLruQNggAioRdUq9Xy9tfl5aXl83lHPSA9gxTMz887qX16etr29vZsf3/fHjx4YCsrK96qbTQatru7azc3N7axsWHLy8tWr9e9U5DL5ZxycXp66hwsWj71et0WFhasWq1au9120jp6UozycybQTzo/P7dCoeDEcFqkJAM8c4q+VqtlL168sKWlJUun0847wz4HUUxEQRH8JNbTLmy1WnZ8fOwxcWpqynWiaLHqswQNpvswPz/vdztcRhC3Dz/80GZmZmxjY8PXIp/PjwiZKocapBGxbpIg4vLV1ZXt7e3Z9fW1LS8vWzabta2tLb/LWFO6H/xspVKxbDbr06RIm6h+2srKig8D9Pt9R/FmZmasVCp58jQ5OWmbm5t2dHTkd9bp6aknX4VCwduUJPG1Ws3vQdqrnBv4g3fxE29FsFTwTbN45Qcl+aRFHSBVz1aOB4uu8HpSpcRrxJZK1JSJCZxyIDQQq3hp5Bqo8jskPk02UPeFCxArDyoJnbbkfZXfdH5+br1ez7rdriubx4kinQ5SfgRVmLYyQfdOT0+9IlOyedLkpKKTaoCprSDltmm7QStcdWcnMaSaTKfTls/nfXPrBaToG5Uga6Tm3tF/S02yVWZDEQfluBBcNFG9i1v1smpdzbCjwjuXBa+XpP+maK8m1fFiU6NfRTA0udAEQFHYJJFOPas6qag8seh0QDAmMVc5FhWMZKybao/KWOUaFNlVZEaREp4XrQXlSSqCoKiStnsjKso+UZkTjQWRCxYlFaI1kK6XolkR+dKkTE3bueTUOBfeYWzHqUxAbK1HI+rbgrsi0iqfohSQJDuc6MdKkqNt+KTCA5V2tOkYLkA3iMJKtfogicN1mpmZcdkDvWt4jrwHBGmSBdS7WePj42O/gGu1mtvP6OQaul2pVMqKxaK3OGnvFYtF1yyEDK/m3MhCgIakUinL5XKujQVCkk6nbXl52Un97CeSi+jzSnsVE3m18+Hs9no998Cbm5vzVintWbTC4GVC6qb4pZCinamke1CoTCZj3W7X10BtnHjOxAAKplar5YUg/47qfaFQ8LN4fHzs+lrEzcFgYPv7+45KVioVW1pa8gKFPQuXlzMCKKDcU1qj3O1QVdiH2DfBx4JjDk+Qu4vvfX5+7ok6XOdsNjsifPxbtQhjO0LbGHHiT+HqyH3hoMTpNEUVoqmqVmQERq3IqQgVytYLLLYtFGGLnIDr62vP/lWVnM2xvb1t6XTaSqWSPXnyxEqlkgd4LiutCLUa1zbX1dWVHR4eWr1e9ypDq9NYMeqYN9UGSYiaqfK92ABK8tUWnI7wq5yC/p22h/WiiG0MoHXGdElKUUSmSooEZVBHKgxIlcqzUd5D0oQiYqP6mqp+zWCGIhJ39sr//9HvlyVYurdUxFLbK0ktSJUbiK2ZuDYRzdKhjdjSJmmnClWLE+Uf6LlU0+Ro+qx7VwscyMhxr+LdNj4+btls1kX5aOdoQqeadYq0KLkazgYWLxGR0b1MsNfpPPaWIkVJa610Af0uynvSOBUnKXVQJmpfKbeJSl6TUc4E1b1yRnl+oG/ahtfhBBUIVTVs1R+LRutJSvwx1kffRY3xtyVYvN7q6qodHR3ZxcWFPXr0yLlCMzMzTnlA+qZSqYxouMGtAh0l+YQuQWIyNTVlS0tLtry8bLu7u/bs2TOfiFtcXHQV9IODA9vf37disWirq6suFIk20snJia2srDg6lc1mbXl52blNELlJMPksxFOkAmZmZlyAFKL0xMSEJz9wlYbDoT158mSEq4qOEyKbJN83Nze2tLT0JYsp+EDn5+e2u7s7IqbJ3j45ORlxRVAulk7jnZ6eugQGxQbo4MTEhD18+NCur69tZ2fHSqWSc5roDnD3qshpnKpGMoHYQPH/7NkzRxTpRiAkioDpxsaGTxVeXFxYv9+35eVlJ+pns1mfCER+gYlSlSxikhXUL5fL2dramjt/gGQzSNDtdv314fKBek5OTtri4qLNzs5aq9WyyclJ1+l65QQrib+kQSia0UaNqcgNiLyUpA+kF0xMklTjKYqNRgsavSSUoK8VoAYPAiGkNuXNgOK9ePHCer2eb+r19XWr1WpO0lVdLEVLFIFrNptOYEfwTfljcE5YMw5VHA1nmoKRXQ6XEul1Aon10xasTnrpMAPJKkGcbF3RLHW4Z5SYRFOtYvSS0+lRbdXGoQZFfeIFocgEeygiY9HoOu4Hnk+cItUk5D4yDUp0jjwm5cFpMqFnQNs0sV0bJxzVp0+TDBXajQUKgUhFImN7MrZ9k3Rd2I+QynV9FBUCZaLSzmazIwMxcUpTkxz2HRNBFAa0YdQ+Kon7FEVutRrXwkHXX6fFVFtKW7bRC1PRnchPUqsiVddXk3SQW02SI8cuyUdTkTQQt5ikxoQ+aVhI967+nUqORCuduB53IVgkkdfX13Z0dOTxSS8s6BDsk/HxcR+AIRYhW6B0AT4fCRdk65WVFUeCGo2GJ68gUiRCx8fHls/nnUCP1RFox/n5ubelEBFl77PeIKK0O7FewSpGixAKRrhox8fH1mw2bWlpyRYWFkYkFSgKlKtGTM3n8/7eJACHh4c+damFDPwzLny1LYNnqxP5JP/cQ7Rk0bCiC6Fi1Ox7kD/2B4V1JpNxwVYEXVm/3d1dv1OYqmy1WtZoNNyqZnV11eUgSN5YA3iVEOD5d8yruX/hA5OYInc0HA5tbm7OO3EIz2oBB2pI8sxEoToDgKKxvnfJ+0zeRUDXAxY1c7jYVGdIL29I4TFRUj2qeCnpCK1q1fCggX95ba0gNdgwAhzJpwRCDV6gMFRY2vKJQZDfff78uR0eHtqf/umfWqlUcpKxkluVBE9ydXBw4LwURmlVlBVRu/Pzc+9pK8IXL/I4/q0IgR4yJd+rxhYoBpytaJGk0g+KLGFHonoovE6hUPDnR9BgLXh9qgGFqeH4RLXt2GJBcFA3ddRTioanUcE8+vtp5fWyPyQKfE7WVy9RvrfC1yTZ6nGp3CEqOf6NgKV8RU0wNMlISlY1mdCkgz2iOmKKFqu9FPuHZB9CqGo9RXcAiM3lctlef/11/xwEWU0iVXbk5OTEkTBUsOHh0QqmZU9Sr+bJyoXStgXBWttdyrWKQwixnZZkQcNnUa021oD2C99LhRW5IHTP6eSxPlu14qGgiVZK+nmj6C/nhr14WyEbJyN1IEGTUn1uScX49fW1bW9v+7mHV8S0NMk+MY0YAj9TTYgRKr26uvK2m9Ieut2u7e3tWSaTsWq1aktLS3ZxcWG7u7u2u7trV1dX9vDhQ3v06JGNjY3Z9va2q6xzYebzedcWRGuQtuP5+bnl83m3KiPuwefpdDrOSZ6cnLSdnR0XbYYbxF7c39/3xO7999+3g4MD+/73v+/TkxDBWQf2bb/f92cMKnVwcGCbm5seY5icZPoRhIt15nPC6aJdiDwCiCco0NjYmL3xxhve6hsbG7Pl5WXb29uz4XBoS0tL9uLFC2s2mx6veS4I5BIn4DJDAQFxm52dtYcPH9rNzY39z//8j+uRLS0tOWJ1dnbm2nYPHz50jtTz58+9eDs9PXUBVDoX7XbbDg8P/XyDAi8sLNjS0pJtbm46F4yuC+R6phwfPHhgh4eHtr+/b3Nzc/b1r3/dzs7OrNls2t7enp2dndni4qIVi0V3W7nr7riV5K5j3QqBE4zJdvWiUJSBB8DFwM/G/i+VpE5WRJsR9W0ia49mz2rsSmYZzVVva1Foe0t5ENr602SLi+4nP/mJZbNZe/LkiftNKc+k2Wx6K/D58+e2vLxsuVzOstmsFYtFt0ggceKh0XNut9u2sLBgp6entr+/P8KLUoFEngUChaw1vCKdfIyWHCQ+2saimtdkNBpRo2+ml43qWEU+R5KxLNMcJINR2FQvIkU+MBzXqVLlBbJnYmtYp8gUvdGk6D5/1P9LL2aViODyV/Vz9jr/ntSKI+GPwrmqxh05fdFIXDlNyvuipazisopYAJVrcqcEb9Y0ImrRwJyA/v7777vgI3o5KrzJmDWI7tLSkiPCqpEF8qMipozw05rBwzMmQrwHF41OXUXz8iRDeo0f/DufjzgTtbT4PT0DtC5U/T76lCofivVUMj7fnTaVypPEgoFhCBX41OcWtclUZJR9qZIT95kiPDk5sWq1aqurq460cxZ5DnyniYkJq1ar3j6ksKxWq54kwPnRYQmQMIrC4+NjN1VGWoFW2QcffGAvXryw1dVVe/vtt21nZ8fbSWNjY1apVOzg4MA+/fRTm5yctNXVVctms54MIPyKXpYiweyZm5sbT25mZ2f951T3T6ce2+22vfPOO7awsGDf+c53PLHiXoFXBGqCcniz2bSrqyvXbqpWq/5dstmsra+ve3JTr9c9mQF1zuVyfs/RgkfSAM5TqVRyPSwQmnq9PqKLyL4uFApO8C+VSv78SXYYWHj69KmLrK6trdlwOLSPPvrIOp2ONRoNy+fztra2ZmNjYzYYDOzw8NAKhYIVi0Wbm5uzhYUFT7ZSqZTbCaEt1uv1nLcFz4sYWKlU/O7g2Z+fn3u8ubm5cfFVXh/PzsnJSavVanZ2dmZHR0cuKkr+8fz5c+t0Ol+ShLo3ghU5D3qQtMev7Q61vEkiZMappqjUrcmD/o62SXQyJiJhesnAv1E1WyWLcomTLVNRRb5O9BLUKpAseHx83I6OjlzPhkDONAeWCnNzc1YsFp2gp+geY6CMrsIxYnQUVI7RY20robKryS5rqtW7JiCaSEbCa2ydaWsQQieBksMZUSBFsCIX7S4/NE0eo98kiInCxyTS8TslkX81GdAxfU3U79MejBOHSYRr9bhTO54kxED3uaof6+fXNnskVGuipqhYbAPFZC6aPuuz4nuqKCAFkBYsca/o4Ae/w8ShIq2cPUjHjGLrhGG0kFJEXCcVuUjgTxIflOPJZ1ZT9oh8RkHNyLeL+lCKBJEIKKqu6GUSTzQOT+jaapGSJJKrey1KYcS2niK3uq+i4r9+17iPXtY+RwcLonUmk/GWik4Ea4eC2AHqwyi/Gj/TOlKrLdqGIGXw9nK5nCfo7AN0x4i5MzMz3spTTSdQ1MnJSUd6QI4g5/N3FKWQpknSmTTkPZSewBAMLcurqyv74IMPLJvN2uLion/HXC7nLgiYHzMBPz8/7+KpIER0iyigSAQajYYnTAweaTcHkETpFdyB3EU6pIIafeS78t1JcFShn8lc2rbtdtu1rVDWJ8Fjf5bLZfeJnJ2dtU6n43wnBmlA7miZKiWJ7zI9Pe3rRiuS+Iv/5cnJiXPQrq+vrdPp2OnpqaORzWZzpEvB2hCztFX/yhys2wQWucyVeKvih1qJ8eXiwY6kX0WMCJ6qgh7FMfWiixwG/f+V/K38Av60Wi1rt9vuhn4bzyAunpK8OQRJXAdtTS0vL1upVHLfKmBURlm5VLXvr+7zjx8/9lYk4mgEAJIehPQIaBwMpnO01UvSqX11PVDqo0dAAkZHWVeFEqPxMJelCiBqkqxCrWr5EwcPIn9KUSOVhEilUl5lRWuSJJ6XoiOaEL9sFD1O/SRdNNpS1tasJknx57UdlcSlUUFNLpk4damChmrxEh0UbhMM1T0LDyFqTSXZ9cSEWdtJg8HAA3f0FOV7Y9QKpK9aQqBqquKv2lWnp6c2Pz9vxWLR7a/UdJZ1U8qA8jJBGmKxE4c/dIggGh+z53jfaAmmhUYcNtFnoAWe8uFUW0glLaL1lrZ1dQ+qCK0OKkWHCZ0Aj3ImL/NcU2Hj58+f2+PHj13QkcKbWFar1axcLtvu7q5ziK6urnxqT9EVBmTm5+dtZ2fHJRGQE2DPU3SCdGKXMjk5ae122z7//HObn5+3xcVFy+VydnJy4u2kcrnshUCz2XQUDO4hU528Nvu92+3a5uampdNp787Mz897MhNN79m3eDGiVVWpVPw12CesA7zWb37zm75uc3Nz1mw2ndQNbUZ1KFFPh7O2u7vriODBwYGlUimXsFhdXbXLy0tf99nZWb9HeB9iPDQJ4sf4+LhrOWJFhA9isVh0pf2DgwP78MMPbWxszBYXF51z2Wq1XHS0Wq3aV77yFQcuEDZl0u/m5sY5XY1Gww4ODuzFixfezlWLLiyVVOgcGYZisTjSjSHBY72Jr/V63YefGARgSAO0Er/G27ofk/cRVIwqwJqNa1svTjkpGSwSJzUo6MWsFwx/p2ao0fRWK13NJpUjo4Q/5eig73EfYnNch0ichxemk3QasBXJAILkkgRW5jIgaeh0OnZwcOAjpfATCoWCZbNZJyLSuydAAc9z0SJyR5VABaaXr0oCkBgPBgPXbKEFQzKn6CQj1lQ9GvxVmoMpSDa9tki4MDWYR/6LJs9R20t1n7SKj0bj+rOaqPOZXpZgxVH9mHxpmzlKl+glGduDSUKomsjr8IcidpGUHNElHTbRddWLVAcx+H3QSW1txkpNBzTi94hJAwhsLH6iPIK2s5SbqPwikmHaTurFpnZM/J7yDWlzQKTXNjJFjhZx0cRZ9yAtB1quJIHq26lJtQ4cqExB0rAFSCsj8ooMR5kK/bzqf6jPJQ5nxFgZEdK456NJ9F0enVinMFEHugGydHJyYrlcznK5nCMo7DsKQoQk9Z7AUgW9JHSxlIjO+2KIDLeG1v3R0ZFPr2UyGbu6uvKJQTT6iJmzs7NWrVZtMBi4DAKIR6PRsEaj4TITOnzAnkylUk6k19hDsQsPiqlG9cdkn1JgLC8vOzF8MBg4qjIYDGxubs7jPlZsIGokKBsbG158lEoln9akg0NBrSR9CldETdVkHN0z9imUjf39fbfVefHihT19+tT6/b4rrfMe8I2vr6+tWq2O2NbA32PalPOtQIKZuTaW+n5qd4Dnr8Ub+4BYBBlfRUWhrah1FQK4KsGkVKV7K7m/7ILhwROQoixD0qURLyOdEtILNMk4V5MObUHFJCombiy6jnJrZaq2Ca/6RwVElUgKoqPJkyrTnpycuBQACSqtDeWDNZtNe/bs2YivIYEklUo5lwtVYH0dkCVUfhXJ0EkuDjtVHs+LaRh60WzmTqczwoVgzQkIHILY+lOul7ZkWD/E/FSOIra2lJDNhQ8KqEMXoBEESCX+antLUZT7CCgmiTomIaJc4jr1FJEJbf9E/zjlnynKFpW9dZ34ntq20sKF91WRUf28oEV8VtYOBEhfJwnJja0utSTStphyOaPAMJ8D7hl7iuQlTqodHBxYr9fzSwFODyP8+XzeLxZ+nzOmk47RIoZEW9cC5II4wtQYaL6O1+taKVKq5yu25SLhPGmSln1CYFc/Th1i0ERKOwIUThRWMQlUbmoSPSAWt7clV81m0y1oiG9qIbaysmIHBwfWbredfzM9PW0rKys2Pz8/YnDNOoMOHB4eWqVS8Yk/Jr/1YkSQE3QFjhaxKZ1O29jYmB0dHdnl5aU9evTI0um07e/vu1dhtVp19B2KB6bAw+HQjo+PPQFptVqu4UQMIqFiT+s0M3uIWMieqdVqnnhSrNIp4uxi1YIAKcbXrVbLPfk4e8gA6VQjHoOzs7P2zW9+0/b3963b7bqxM6jd9va2Sy6A9nBHY65NksdELG1aWqmLi4vObdve3rZareboUb1e9zVkUIAp0qOjI9vb27PFxUVbWlry12u3227azfnE6LnVatnm5uYIzQPbo1Qq5ZxF9idcr16v52c4lUo5Ck6RAsp2fHxsU1NTVigURiSPWAPutlf2IkyyMVFtJto6LBIbTCvPOAKsk2lxnF5bFAQNTYwUto6SD4p0JbVqYqCAVHnbJXEfBAsuAZ8VVCTJioVMud/vezbdarV8I/OAhsOhByCdeiSZLBaLtr6+7tMxpVJpBHHo9Xo+qUgFCzrESK222HhW2I6QPJPB0/JQZfDo+6ceWPqaBA+etT5zrb611Rsr4SS0M7ZBVJqDnyPYKNqlyUdEkEjM7iM0GpMh5f1p21UJz1EsVCVCYtsttrv1O+vlq21QFfbVy5q9rWdP0T8dZFGrEBW4jNyfyBnT4km/S5Qb0OJInR3UaUFRcqpvYgqoFYVD0tRbJpOxhYUFV6jW1jWXDZeKxhGQB0Ud1fKL9jjFC4gMCGrUzNLnqJZPXJY6NAC6lyQ/oUmdPjddc2376fNQQ3j9XSW9R7kbTbAUXcSB4WUcLEVL1X6LCS/iDJNloDOaWCt3LpfLjXB9QTBQVKfwIy4prwq5gCQTaEyomRzPZrOWSqVcLwlVddpvtLlpZUNwJrniHiQh0kSd2Kmit2qtBndKnw/q7RTmmUzGGo2G85DQFwPJ6nQ6/r67u7sue8AaT09PW7vddhNkhGBp3RYKBX9e/N+gihpfKWZol4EA4tqBRMRHH31ke3t7Zma2trbmumCcXX6WxKfT6XiRvry8PGJZw110fX1t5XLZE+mxsTE7PDx0bSvOCV0UPUu0Gll3tctKp9OuY9ZoNEYKzHQ67fEHAAU3AgAI6Ae/FQcrtrjI3Kg2+Xv15FOER/UxoleXXp6KRGnFpTydWL0rnB7/Xj+7mkTz2eGWJIns3Qe9im2aqHSeNNZ8enpqv/nNb6zVanl2PDMzY/l83uX46/W6u5VzcNnsDx8+tDfffNNqtZqryOv6ZbNZK5fLtrKyYnt7e/azn/3MLi4urF6v29zcnCNVHOB4UYMKcGEQGNFY0eel/XdVekfNWJEd5XaoFx3fjYuU1wOBbyD7+AAAIABJREFUUlFFTWK03cjrqCu8Elg1MYjcEkX1EMa8rw6Wok/63dgXqiWm76soBTyGyL3ShCru5TitGBMeXTPOjfKIYtLKmnPBUdGBJETtKFX41+8bky+QH0UflYunIp8kMWdnZ7a7u+tcC9pFmUzGYXu8OYkpBMpisWiLi4u2srIy0grXJH5ubs7y+byVSiX79NNPncyqVbEq5RPraMOgS6QTf0kSMbquEZVkTXSggKReBSwh7+twQdQw09asuh3Q3o/Ip+p+xeJX9wfxUpXF1Yrsrj8IzfJaFHVcRlT8XJKZTMampqas0+nYcDi0TCbj/46O1cHBgU9A89m5W9LptPOntCg/Oztz8nmxWPRkoV6vW71et0KhMIIAsU4kka1Wy/liSEQMh0N79uyZX8YnJyfe8gfVIQnj0lUyP200nqkm0njqXVxcWLFYHGmlj42NWbvdts3NTdvY2LBarWY7Ozt2eHg40rI8OTmxVqvl/CpkLjizqVTKnjx5Yl/72tfc8JnE6OzszPltTOQSh7X7QBIGkggXF3ucTqdjH3/8sXO50um09Xo9J98DMKyvr1uz2Rwx3oa8T8IICgg4kEqlXMWf91KbHR0O40xrkklyenl56Unk0dGRi8Dq0JaeR3UwUMFg7h2S298qwYrVq5KLmYrTgx8ha50aiu2RaHAa/ds0a9bsM14yvH7U1yL48tnpNSMuliQOFhOJu9ZExediO+c2L7rBYGCdTsc1QzY2NjwrZwS30WjYYDCwRqPhEyKlUsneeustq1QqIy0fPYSKWiwuLtr6+rp99tlnDnVvbm66Dg+bgs0LDyFm4tr+il6PcXAhaUoNCBmZDb0YtC3EHxX3gyyqf6jYuAj5HJj70itX5IjPFUfx44SWIhH3SbCiZY6SeWnVkkTp/+rPK8IQkY+ISBBY4jlI0kOKUiex9cTUlq6Paprp4EksKqJnqOpLqfK0JgsE6SS3AEUx8f+cnJy0bDbr/Avd18Ph0Kd7eN/l5WVbXFwcMYtNGqghaavVara7u+sXRqPRcAIrbSfek+kpLciSznoswHSwQMnL2jbkP1VL1+fCGeF7ceHFYQGePQg0lwRng4JMExQVF1a3AJLXyAN8GcEdz1HiNq0i5bsR/2jhcHFzmaOiPTU15cgF03MgTqwPotAUR5wROF8gZe12289ULpezarXqZsgIXnK5wvkpl8vWaDSs2Wxau912KYFer2dPnz61+fl5K5VKIxpKqgkJ1ywOBnB3TkxMePKpdwVTuzzziYkJS6fTdn5+bltbW37f0ppkUrNWq7lUAeRu0N/hcGiVSsW+973v2cOHD50DC5WBs7KysuL3+v7+vidcvE+hUPBWOcUJ7bWJiQnb3Ny04+Nju7q6slKp5GtI0Z7JZOy1116z4XBoOzs7Xtin02mXpIDawv0wNzfnyum0MpkiZ6/EO1n1NM/OzqxYLPrzYD8jLzQ7O+uelMg7oHXGgACuAshpMMGINhZFwr05WElcrDjtwqFRQb2og5OkLBwDvbaVIuk1XuyRmxD/PU4zxY3LQqpa+svag5Gfo8E0KbFMCsAR/bq5ubFut+s9Yn09khE1Lc5kMra6umqVSmVElFS9HdUslo35+uuvO0JEZs44PBuQipwNFz9zkuVL1EnTaSu1aol8Hx0ZJ/Cr3IPqHIFEaWKubUHVoIraXrFVllQk6PNDlTkmlC9rhSQRgRURjJ9Dz0kce08yKleCdVKioBetno0kFwNNhmnF8CxAPLRFzH5WcdC4D+Iej/Iqisyp9pUWApFPpEkCLQz9WU3g+HusedSXTCcQ9UyCejFx+MUXX3hSGf0fWVuq4HjGk852/LdIKtfX5dloy13/nTa/xkgtcOP7JXknaoKtseouGYpIlo9SK3f9KRQK1mw2HbWYnZ31qS+SJOKfCqzqxUiBrsR4kBq84VSIFfKxkvFBRZKeh5rFK/+Q/cV0NtN7kO2xZSHh1kIIhI0ESIs5Hdxin9ESVgRxcnLS8vn8iJ6ftqopBNBwW1hYGGmH5/N5W1lZsU8++cT5iePj41atVu3x48e2urpqNzc33trkTOoaz83N2ePHjy2VSjlyiIQR3DB4YNihNRoNnxpEeR60kAQM3jFJMbJDyHq0220vNjKZjOcDoNkUv6CS8CKV2kBXJk7rsh8opjDJ1jixsLBg2WzWZRrw3lSdSdXhggdIy5fP/EoJVqyUY5CFlKfilMq30tF8/eJx6kWtT7SFpAiN8j2isJ5e7vo72vvmsyqhPI4rJ1VpcZpRCdPaukoKUEmJIJMqGCRTAXHJ9Pt9m56edkIiGfjDhw8tk8k48qBIhSJ4HJLr62tbW1uz6elpVxkmI9fEGIKi+iHehebpXogE7LOzM5+80T2k3DQ9zHAiFDLn0Khqvk5+KhFfeWBUJTq5mDTxFjlgkCjn5uZ8quVllwiXgoq1KkmaJIkDGEn9KmHC91IBTgKqJh7aYlf1dOVxqEtCksWKTuuqzAoXjbYFtYWqiVk8u/F9NJHmPCeRozX5VHQTaxO0iyC/KqIBgR3EEIHf2FpV1EinN+EMrq6uunccmkB6pkm2OS/6zOPEclISGqUTuFSiTINOtXI2uDhoIXMZEFejcXMkvEdtN/18WKQoehs1t1THjbjHJXfXH6zEQD52d3c9uWLgQNuV+/v7rgOVz+dHzjvPuNfrjQzkwN1BHR3ZGBIXOG2cA72wW62W+xNmMpkRGxgSPfYe7VGQlU6nY/v7++6nR8sX+geFGgk5E4IkaqBpfE5kJWhF0VbEQLrf7/szBVWEd7W0tOToDnIR2N2A1vAs/+AP/sBee+21kYEf7Syo8frV1ZUPKBwdHdnnn3/u0gXPnj3zVh3SOpubm97+LRQKTiq/vLy0Uqnk5tk6mTg3N2ePHj2yfr/v6wHCyTNhYOXFixf22Wef2dTUlOXzeU/emJ6HMjA/P+/vi9g3iT2oF8+BQpI9xnuCmun9MT8/7zEPnh4oG89cyf6vLDSa1IIg+KDjxKZQsVANPHqRRLsSDppyPfSAawUeJ2tiRR0RNlUGVwRHL9j7IBazs7MjFVOE5u+r/I2AGm2Hy8tL+/DDDx16xALiyZMnVq1WrdPp2GAwsFqtZrlcbkQ0Vaf3tN2qbU+kI3K5nNXr9S9N0SmKFf3o7kP81wsV8iNBABSNqkS5SSpRoYroehHoHor6WdHXj8+gqKQmKzFZ1MuRQKySBPdpDypClTQdRvLCpaB7WH09tfAg+PGMtYKN8grxolcF98iriWP50YdTPS+jjU2ckEwymlZleY0TKtWSJKOiiBv6OUof6PV6tr297ZPKtLpQCW82m15pEpB1v/F5IuqssQQ7Ho0LST6ESQh8TLQiWqoJDMmCJrggiVpxR+PqKPURBZW1ZZjkwsE54WzoZGMStSGpkNB9cNf5UPP5bDbr6t46jg9irZpmtGH4LLQISZZIfCcnJ/1iA4GBM6V+fSokrG4UvCaXJrIB8b2Y1CaxPT4+9tdS8UpdG9A59cZTnTrI2iR6KqmAbANxKHJOOSvEeBDAer1upVLJ92m327VOp2NLS0u2u7vrE+uLi4vuragSECSEaium5/prX/uac7N07/D5SNKV28RZB9lRhxQz88/baDR84EFdG7g/9NlCYIdHOT4+br1ez3q9nifW6qrAHQiooIMD2O7hBsDz2d/fH7kT2UsQ4EnauSfU0g9g5Lb78laZhqSRYv2jZGn8+PTiwx5CL0UIgYpyRB9DAhCbXXkMcXpKWzP6+7rQkGMhPt93JJ8EpVar2fn5uR0eHn6J+5WEVsWABQS5sbHhlgpsKOwCVF39k08+GRkrr1ar3itXYjkbTu18Ij9qdnbWstmsB3Q+LxM48BOi/pS2el+2Xlo1QxClCiFB1eeibShFP/nOTAFpe0iDQmw1Kq8I3R3IyRwaTUD5A5E2En9f9gcSpe7ppORTWzmgMErajy1C5Tup2GoUWVUEKZqd62eKfJ7Y4uI7g2BqwpC0FtElgOQGMqlaVPHvmlxFIU+S7unpaSuXy/5Z1D5LCcg8VxAGeHckZyoaCuqAhpS6RYAOMRmniV48xyqAG/loScWe8uaizpkqZVN8aCsu8rUUjdXCCGRJE2pFMTUeaiLQaDRG9Ji0TRy/h05gEl/uIrnzbxDVuaAYUODfoAOQJEG0RnDy7OzMKpWKZTIZRxbw6yN2K00ACZmNjQ1HS5ggViuxSMSHr9lsNh1h0/PEvaZr12q1/O4aDoe+l9TZQVF6Ju2mpqbcnLpcLrtQNDEB3inPCmQGq5h2u23lctny+bzv536/b5988olzmarVqp+jP/qjP7J3333Xnj59aouLi66mD1n/4uLC1eJ5DqVSyS1xkLlIp9O2u7vrbb6FhQUbDocuYDo2NmZPnjxxzjAxFY4bUgycbbhb3BcTExMuEMqzgs7CcMHExISVy2VHa/GORCeLfQVPjNeGy4bemtqVXV5eWq1Ws16v5y3XbrfrSZdKUFEUQP7Xggdyfa1Wc/mPV2oR3gfdIeDhCcaG0nFJTc4UDo3ihJqFasUVbSPoR2t1QFap6uNokkBsvw+HIAnJOzw8HOF9qBdbPLyxojUzW1hY8ItcDU9Rp52ZmXFOgH5/khSI3bEVgAWObh4N8JHXdnV1ZZlMxifFSLzYKFE24L4TllH6QUeiC4WCt8B09B9leZWIUL4CgViRTdWU0pF3OAFMeUW9qojaRA0ivTTvm4BH/lPSRB8XOd+N/am+jUnDGsrbSZoSjMKj0W5IEbaojxQROM6Nks9vCxQRpVHJgqiWr7zNuMYqtgkPgz2sz4lWhAq0gnyAkiC8y3dQ2yZaBWqto36L0A1Un40LL7ZRY2szit1qMq+E51io8prwaJRkrAkObRyVGVAkWK1F1PUgaSCJCcjIDUriVKrmXhSEjXsyKVZWKhXXF1xZWfHWC951p6en1mg0fIBlcnLSHj9+PCLVwVpiqcIQ0OnpqXu46nj8xcWFHR0dWavVsmw260kzPCrWXItAYjhrSsJD4ksriMEfOjWg9DpVB0GfvcLQEAR6iqSpqSmnqRDbtftDh4WklLixtLRkCwsLnpSwR7XDg3Zio9FwgrpqnUWeH/tHeWC0p7XtNT8/b9ls1q6urqzRaDjat7GxYc1m0421C4WCyxeoMDb8NZJQPi+TeQyU9Ho9p9BUq1Uv3jSRQZNMiyrajnDnKOqIj0zAUujy3FqtlgND3IfEZbpLxG7slyjcyHnYpwcHB1+SiLo3B0sTCZX51wSLPurs7KzL+Ed3ekWatG2mwUyTBNXK0KAbvbr4N70gQEfQ0qF6iBNpL/vDhtSgpFoft7XSVGxwcnLSfvSjH9n09LR98MEHfqGgr6H6Vnx+esRocYB8QE5XlCEOBigMzAbW1hfJqWp46PPVNiIJTNJkXQzMmnwyXYJCLrA83DACApsW4mBcT21fKMqkl3mv13NeQkwqlaydRNjXSwTbg/uiWDrgoPslXsBUbeinKGFVfSEjr1AvaAID0LW2h5OQZr3IqYj1jKirAjC6TthEUeAkn0XWmSJHp9PUEF4TByUSs9dWV1dtfX3dtra23C5D0VyCLlO2Ki7Ja+rFoYk3F5Im2nHqWFtVUVA0ydpLUWAtsOKEtK4fZ1d5eioCqgle9O0E6Y4cQk1IdRIzollqIRMR0yi2q4mzthf1DrjLr5N2DokBhSnJCfY2GLzT5ul2u5bP5y2Xy7nkgrawj4+PR/i18HxAYvArxKcVAnYmk7F8Pu/tLy72iYkJazab9uLFCysWiyOIOugonL96ve6oCsK1nCmljMDLIubBCSXOgdSQyKm0EPsF4vvJyYlls1kXhl1fX7e5uTl7+vSpx0yQ41qt5kryFDtM225vb/vazszMWL1e9z0Oos8eBNCA98c9pcrms7OzbrzM/YdeGMKxJDUqoq3dKSY+kaXQDgRnBt4faN3h4aGjzaurq54w9Xo9L9K73a612+0RIVA0ykimFIE/PT31ZwZKTvtQYxbvA78sumY0m00/3/fmYCVVa9HHLcmoVKfC2AhKlIwK6EkTNTFA64XKgilfJSqGE7zQlIJMnjTxlYRARYE9bZXRkkun067BERdVxQXPz89taWnJ3eInJyetXC7b5OSkq9KyUff3912HhXFxhTzZeDo+zsWiHA4Iw3yPq6srOzw89AqWZFOhUEVkuDQVRVGe3G2q50nBF8FS9gFtHSVjqyVIlONgwytXhMuX11JD1TiQoYMRUYNKpxJ1OOO+OlhxyjVpglUvCf6XRB9+AWhM/L+jQKcaBsc1V7J/fKacE21pAqur/VGU3NCkJU7Rxv2i/4siv0qkUMED8+t+YrgARBeuyGAwGBFAVZI/qBWITKfTcTJ8Es1BC4eoko+QLn+vGliayKq6PPFFW6AamHVcX/WZNNaoJpUmgdou1yJKW61KXuesqHE8CLI6biSp6ifJruj6qT+s8j3vKjr0PS8vLx29YFIZSxbWpVKpuMPFYDCw9fV1T4LQtgPd4BzDveOZgcaASvLeSMCoJIQmnFy0cAD5fu12261rlOicxJlUa5yJiQkrFAp2cnLirVJQK3Uq4X1Jqtg/qInTkpqZmbHV1VVbWlpyXSneP5/Puzk6n395edm5iWdnZ560EjNo/UG10FYmoAG+uLwu3RMU99HIS6VSTg3gbsF+iBYrGlvsTZXhUYoHptUgT9vb264PSSeMSUSmS+FG0XLXKT+1a+OeoAVLuxreFN8PMEITvrm5OR+6Yd8Rw4gTfO9KpXL/KcJoWBzH4JMm7djkanLKAivSEtXX9WDrodeR/ehGH0nEesGxgZDCB3bVg6EE1SSeSVQS18QplUp5TxnF36TElCri7bffdmNREg2gZp0CIiAApTJKXigUrNvtWrfb9SAex+yTEDR+5uTkxDqdjl+wBJQoBKpcH10bRSWSUKC7JidZIzNzVdzYJgQGVrJ7nBrU/1QKgsOW9FmiTZHymBSFTZpWvS+yqS2Uu0jAKp6rmkMkkUpo1rVTAnS8UCPykES81vOriTPcJJ0q0vdR9Ea/TzxDfF9aL2hXaVVIIqLt0LGxMctms7awsGCLi4seJ0h4OLPKo9HvTUCkamSPwRlKkqXgMuPZaRKjVa8aI+vPaZKjhONojZNEDlfZDt2HOr6vyCLaTyQMeqHHqdU4GKKtYU36VDfvrqnpSOLXqcX7CI1il8JlDloyPT3tqAXFJ0RvCigI1fBG4apyQau6vcqLKDcT5AKUA85v9CNlX2hrCHQHLif6Tbw3PwP/h+es039qC6b7XxEc5AaUHxYdFMzMVlZW7NGjR97CqtVqfneomDJFFkkPSCJom5LyVYaEoRAGj0i0eBbcFyR73HfcYSqCCwcSSQNen2en+1Pb6JG7xvPlGZNkqZyPTpjCoctms/58mLgEjUOhH0L92NiYUyNoP/LslHNIJ07tyIgJrA/JHJqV90qwmHLTTRk5K7FVxKaBF6GHF/SGvnOc9tLJNRCa6F0WeScEAPUBw6GcTUFgJMlT09fbIPKomByDGBCyjqAnJRpTU1P24x//2B49emRPnz71qgVCOzBvnDpSXtLe3p7VajWbnp62g4MDKxQKViqVfOxYN5GKObI+5+fn9t5777nabuRogCBxSG4baFAEUCvglwVqnllM6nQcn8SSKZ7oe6f7gMRZEVPdH7yHtuDia2lbhfeNPmEvS7I4yJHXlyRsqSblGpD5rgQTLgUVy4u6TEmJXjRQ1ySNS5ZzQ2VNkgVRWpNFDXTRkYB2nKrsUySQiGjBw2g1CQIcubGxMfvWt75lb7/9tn388cc+uo2NBoUX1iNaMCgaMhgMLJPJWL/ft/39fVtcXLRCoTCCIOllp6KetA729/c9Puj+Ux0tRWDj9BCXW3QNIGnT39N/Q3eH9ob62OkUlrYeScJIMFWsVhGkKIKb9Ez1Itd9pObrWujcZ4pQUXY4VzrmzoUPWsAEYbvdtmKx6H566FBRPBWLRR+5h/Ss7XcV+SXBQt1/YmLC2u22TwLSQaFTwPPpdruO9J+fn1s2m7Xp6WlvO7LvdJ/rvQG6xO+DlKCpND4+bktLS7a2tmY3Nzf23nvvjSDedHlI+h48eGB/9md/ZqVSyT7++GObnZ11DSnOL4k4k439ft9j2cLCgguhouxOwkD7jUSNwkhlWK6vr21vb892dnYcoSLp5x4bHx/3883Eu4pLE6MpnJUgDjeXLo7GLpJjEln+bXp62nWzhsOhLS0tjextpijPz899Wp/9jfUOsUvPPLQf6AHHx8d+LuHkcQ7IXZjABMVDNf/eLUJt37ysVaJET8juc3NzLt6oqEw0ZNRF0GCmaEUcf2YTwbFi4aiKVOMiSQJCA0k0piZ71baSXpwQJ7lIoqbS9fW1ZbNZW11dtYcPH1qv17PDw0NXjudS04QvKjxzoV5cXNjBwYE9efLEpqambHd31zqdjlWrVatWqyPWGLG1dHl5aT//+c/tk08+Saw8Y0sofs+YXEZE8zbuT6yCdSiACT/2CSPdcBhAGpSXB9GQ76QoUFIbSAcoYhskqsxrkIWAjlXHywjuUU07DocoQqECmv1+f8SRPr5O9LjUqonvregJ50pbGFr0cEnxugTlSI7W88C51GlAJoK5+JOSO2B15aosLy/b66+/7pNFeMH94Ac/sGq16ggtI/K0sXm/JG0xLkzG7NfW1jwgT09PW6lUsqmpKatUKpbL5VyhWc2MDw8P7eDgwG1PMG+GO6P2UNpuV10i/e7tdnuEOA2/TSeZufinpqZ8LZvNpmvh8V2VzK/DLEmofyyAkxTmkwRtVSMsdil0elE5ljqJfNuZh0/JMxwMBpZOp91CR3WYIp+MqVAGf/guoD0kITplGmUmQC/gecIFUqK+DlB1Op0RugjIBvfYixcvfBKeWATtRc8tSRicU1AXRd4vLy99n6iFVlR5r1Qq9ru/+7uO+nFumbAltsLpVHFpnif7bWpqygaDge3t7dny8rInKApyRH3A6elp6/f79sEHH9jz589HilAoBdxjEMtVm08leRSF11Zhv99PpNZoQc060TLGbYRiFFFQYhv0Ab3D4aSBjLfbbf/eJMEkrXrmIvKorW/lSmtB+EpThGT5cSFuG8/lTXu9ng0GA/ejyufzI2RxMkcl4UKCjklOnJrisHChEGyBckFD4iRTnIhks/DQYqKk1Wbkn0TBvWgp8eLFC9vY2LC3337b5ufn7fnz525ySoDQypAAo5ewtgKGw6H1+31bX1+3iYkJ+/Wvf21ffPGF/eEf/qFVq1WHZ1Wxfm9vz7a2tuyf//mfR/gGitJFQqt+55gAJj3zu9qsUdhQZQvYiBxMZCbgMKiNDmuirYQkAdRo4qyXDgiDam3xeWZmZmxmZsYTdGDh+7QIVc05aQAgGvEqYRJdFdXEUo6NVuQ8Xy6h6GWIj2M0GibQsbagWfw9e0bHxKOmllZ34+Pj9uabb1qxWLRcLucIDOvV7XZtfHzcarWavfPOO/Yv//IvtrKy4uT+/f19905bX1+33d1d++STTxzVWlhYcPRpbW1tpHKEpIoeHOt1fX1t3W7XR9Q7nY51Oh17/PixJ13D4dCHcK6vr13c8N1337VWq2WPHz+2YrForVbLxsbGrFqtjlim5PN5T4Y2NjbceUELNy4CLuFms2mHh4f2y1/+0ra2tuxXv/qVHR0dOZKr7U0EEzHNBYknXqgUgFrqcHnr870t6VHScCy2Iumdc01bTffUXURe/mQyGTs9PfX/uIjOz8/dmJ7kl2dYLpd9GAfu0sLCghfLvC+tmmaz6Uio7hu0rVgb0EAuU3wLz87OXH18c3PT28wolWezWev3+yPor7bbuIRZK6bnKF5AdZrN5sjULNwu9bJjCACKxPX1tf3whz+0P/mTP7GPP/7Ynj59ao1Gw/c5xtOcD5Io3Rucx5OTE3vy5Iml02nb3Ny0k5MTW19f9wIEJxF4SorO//rXv7af/exnfrcSH5FOoBWMRAJ8KBIj2q3Eb86GtlQpHtLp9IiEA4UvwxDEFk2geA7Eg8FgYKVSyWZmZmx7e9u7JMhKqDsA66ayH9p2RNaCvANj8VQqZfl83icl9Yze1TpPTLBUi0gvrKQJspjQvHjxwtVfu92uX6R6ObCpeH3lFujPKfcKhIp2w2AwcJdsnTTU9qOqbSfZViSJlt4FhesUoWbpqkFTLpetWq3a5uam2w0ozyXyvXSiSHlmVGv1et3MzF5//XUrlUq2t7dnP/nJT6xYLFq5XHbUj/Wh9aEQK9+pWq263ojacOgGiVAnLbck1egkdIeLMXpBapbPWqDwC7qliZUmgUnPJk5TRo5gTBj4OXwg6cVrS1y5HC8rKkhO4qTtbaKR/D18AiYoy+WyV+6ZTMYqlYotLS35gWYiM065DAYDazabnoBiFM5lpeKhinxpO4K9BkTO5VYqlXxyRsUQCXTn5+e2u7vrAZ6R7ouLC9fiQfPt/fff98KrVCrZysqKbW1tWbPZ9JY+/CgSEHg7nH8snvg3Ljw0fKrVql1dXdnTp0/tpz/9qQdfij7WAmTsV7/6lXU6Hfvggw/csJU2jrYyOYNTU1N+McHn4pJDM4pAixZXLpezr3/96/aNb3zD/eOGw6EdHBy4flGxWLRer+f7Fb83RSOIZzxL9bBTaRQdIFItLHiYnMskqQlQCH0Oun+jgfZt5wLVdS5X4jvtLT4XrTOeCZddOp22s7Mz+/TTT70QIYnRdQA5iDFOnSyQT+j3+95W2tnZ8WST6UA+D21RzhPPXScLp6en3RtQJ+8oWmjzkkjyfdWHlb3LvuZ7IE3w+uuve0xkElbJ6jxjLdy0fayDPbu7u7a4uGgPHz60zz77zBqNhpXLZVtfX3ekjv3LevzmN7+xX/7ylyOOAEgUqBCnAgwkYCR7tFajfiWvVygUPKEBLVb/UtaT2EMcIHaqKDMtf/hBqx8qAAAgAElEQVRY6GXRJVFtMh3c4F7gPOnACnEG5I07Ex4aSRjo7sLCwsiw0Z0JFtopjGkSAKL5Z5LOi17S3W53hMeAuKVO8mCfABpAGw2FWVCmwWBgx8fH/p4o+ka7EOWKcYncRtp9FU0sTTxVXyhe8isrK/b48WMrl8v2/vvv2+7u7ohBriJoBGN4A2o3Qr+bhIteOu/TarWs3W7bp59+6skFhxcvsHgIrq+vbXl52dbX1+0//uM//FK5jU91l5DmyzSxIpISJzJjgqvoSmx13PWcdC9GHR8Oi1rOzMzMjJBe9XW40F/2h4qPSzBypKLAZPzuJCpnZ2f2+uuv2w9/+EP78z//c7ezUFSu0WjYF198Yfv7+3Z6emoHBwe+X7LZrLe/QFnOzs7s2bNn9tFHH1m9Xnc+A+dhdnbWKpWKT+mUy2VPqjQxBk3pdru2tbVlR0dHI3pKkH4pltivVHsYvTKqzxTTysqKLS8v2+bmpm1vb4/wN7k8SAAxVeXcUYlqS1wFGhmMQUBRW7/j4+MujdJut0emKCcnJ50IzKW8t7fnFwyfh0lf9hcIIdUxe41zzaRXsVj0WJrJZOztt9+2H/zgB7a3t2f/9E//ZK1Wy1577TUX6CyXy7a4uDgi0sze5Vk/ePDA5ufnrVgsunQBE5W0ULjs33nnHfuHf/gH+/DDD/3vOV8IRkazXNWLUrunlxUfOiVaKBRGNN7QPmLCLJVKWavVGpG8UEupvb09FwZlGo/JLop/ij94bqjzI++h4rMgD0dHRyNCuyQkJLbqyalFIUkVllzsF+4DLmXagexVzgW6UJ1Ox1EanilTswz+PH/+3InZqp/HsyVB5RlqZyGbzTp5nz1Rq9VsdnbWtre37dNPP7XPPvvMzz5JUL1et3a7bR9++KE1Gg3nsIH8gCJjj4fhsv47AwygVVrQqbcmxTf/P7mBxtO473htWsR0BJg8Jt8gj0CzDNFhYhrFpFJsSGSJlel02vfC9va2J5i9Xs/PtrYmQS1fSaZBCWHaQlBzZq3UYy9Xq3fN+IH+WHz84NCKiQRmAilIlWoIaS/7NtG8uwRGVUVWk5/bfl5JdYricDkBWUKapJKKv6v8BkWydM20EkVvjJ//y7/8S5ubm7N/+7d/s8XFRTs+PrajoyMXhAMZijIbT58+dVTtPir0ryLOGic8k+xcIhckthzjv92lz8bhVE0mbRNq25Z9jGihXlxUXSrX8LLvqaiuPitN2qJBbrlctrW1NXvjjTfsd37nd+zb3/62c1PGxsbs3Xfftc8//9x++ctfekXNwAbvR9+fAMTlAbQPAlcsFq1arTofJLa9SRDNzI6Pj+2LL77wpDzKSmjFFy2PQEgIQFSKrVbLJTp4nul02kqlkr9voVDw9+G1aAspz0m1rZTPEmUgOGtf/epXbW1tzX796187SoQdC5c7bafhcGidTscr888++2zkctT2tiI6KpEC2qHTiCAnoB/Ke0mn07a6umrz8/P22muv2cOHD21hYcHRG2IipGUSR/bt+fm5tVota7Va9sEHH7jO0srKin3jG9/wnyE5+dGPfmSVSsX+9m//1hqNhiN00WIHzSM9+2o/9DIJExWLLhaLfunSClIXCQaGEINVtJXkJwqEIjapIptM7xFjQW5VzoGWK3cKiQf3kArg8rvalmTv055S5EljgXKUIJSr9IeuH3IRiq5ns1lbWVmxqakpOzg4sEaj4SR01gAgArRM/Xmj2C5JwNbWlrfJSTpnZ2f99dmrqi9HMkG7D+PlWq1mjUbD6vX6yJ1JcgIiiGnz6emp72lFp7SYUhNs3Uc6XBPjvMZ+jMMVaNDEiaSKjgN5BGcWxEqnZVU/koKY8zAxMeEdhenpaW81RxrKS2UadLH10tQqW1twcfou6mdRbcLWJ8McGxvzqQSt9iNZU/vMBKE4KXMXEqPyELf93n0Sikhq14mjpaUlu7m5sb29PRsOhyOoCEGDwBHhSp2QVGNsVatnU7799ttWLBbt888/t6WlJUe1SJ7iwybJgacSg6tuSoWA7ytdkJQoJfHYImcvolk6NBER02gXE5GhmAhrRUFrCL0kgh5cJ6rM+wx2qI6bSjRocq72KxzuH/7wh/ZXf/VX9vu///uWyWScDHx6emr/9V//ZX//939vw+HQJ6l41nGqVs+HJoiql0WFrBW1TtQq6qHBhMJFvR+TJkepTuH/6ICJJqyc94mJCVtaWrKlpSW/LOAdaWzRswpaHG2MuNgoPNQEeWZmxt588037/ve/b6VSya1XWq2W7e3tubkzn/n4+NjbGSoUqfynKACqQZcEmOcB4qC+g7SESBb29/ft6dOnLoaZyWRcEbvZbDqaEnk+SpJnfB2laWxVHjx4YDMzM946Ztjo937v9+yv//qv7V//9V/tF7/4xZe8DEHGVMqBC44E5r7eqzxbJvRIUk5OTlzPiKIdPgyvDTqkBsdaIKhIMklXqVSyxcVFR+cYHIBvw7Mm5lLM84z0P51i5z/1FdRWn2qzJVlR6eQqZ0z/HtSTPV0ul21jY8NarZY9f/78S9On2q6l48FeUY4dmlqIJyvJe25uzp48eWLf+ta37L//+7893oOgnZ2dubArMXFubs5OT0/t6OhoxH8weooSc0HS2Ucqv6Ngws3NjeXzeee/qWQN9yKJKkkRzwlUjOeiKCVxpFwuW6fT8eRdtas0f2HP6R1CvMxkMs7lUn9FYikUglcmuesmUJQnetbp4t6mBxX1VDSj1y+sfVWdcNHNS/CPgo68NtCfThASvKkA42i/TkFED8GYPEQRVtXO0XFOfLgU0dCLWcc+CXBqgp3EQwIdwGaGSuvk5MQajYY1m03b39/312Q95ufnnZsTDZK1egJBuK0qJaG4bXIwbl7VRdM11MQ7OgPEiT+dbNKkmCQwJoDx97UVu7a2NjI1o1NaqVRqZPT6PkR3JR8zjqx7l8P7+PFj+5u/+Rv76le/aktLS/aLX/zCjo6O7De/+Y0ndz/96U9tc3PTiw/2gHoFql2TXng6NRlFXjUZJenhuyvCyPNCSFBNW/XiUz045ebRGoRvycUDHD89PW2VSsVqtZq3/qh20dG7vLy0vb096/f7I3ZYqrXF+mqLBkQom81atVq11157zZM5OJrIOhC04ZstLi66GC+8MrzWSP6o4OGeKeeEM6myMARfEj+SmKjpdn19be122waDgS0vL4+sBwk2rWTlZsITgrtDS3dyctL+/d//3cU6iadcXm+99ZajXP/4j/9oJycnLo9SKBQ8gSN2smfUjuiuFjrfCfXtiYkJy2az1u12nQd1cXFh9XrdE8+FhQX3ikN0ljXEEJjEBh4efCGdFHv27NmIqj0/m8/nrdFo+CWvemsIQStSTBGby+VG3pvnSWcArg+fVyWN2C+0nYkXhULBnzmvydlFbX5qasp2dnas1+t5kqpJibbGVUcxk8l40sEzpY3Iz5+dndnCwoKtr6/ba6+9Zp999plVq1XrdDr2ySefWLPZHNl37Pd6ve4teF6POKEcRZW9oAtF0UMrVRPOONSjKKc6usQWKBIMOqgGQqm0jXq9PgIWxIlsLSwpVJWfqxZdnMFSqeQSHiDgi4uL9uDBgxGtv3tb5fAGbP4kWYOk1lKUA9BLVFtlMWHRiyWJ1xP5LvEy1sspmqgmmdhqwnMbYZs14JK7rZ0Kx4KJCM3ctS2oLQbN2iOMrJouVJcE9Ha7bXt7e3Z2dmZbW1v23nvvWafTGVE910TgtsSB9fv6179u29vbLtqY9DP3aaHFScxoDkxQVCmNWNVExfIkpfikzxHRJN2r+Hmdn5/7ZCyXtSKQ99HB0guIPaIwN89ybm7Ovv/979v3vvc9n67b3d21o6MjN7elLc6loxYUilApgV+1q6IIJIGbZJqgFoV6IfYqOqi2LzpBRmKNlh0VM2RV5TDoeioSBske8i4XGkGS4L2xsTEybaUIuaIsJMYMlMzPz/vfnZ2d2d7enlfGm5ubPsmrU12qs0W7slAo+Cg+bSbec3t725HkSEnQ9iXnTAnYFDsRxWW9SGpVw4pnSCCPbRIldROnQGtSqZSTxxk0urm5sVKpZN/97nd9+OD//u//XPGbBFtROr00bovxGiO2trYcsVX/OYYWFMVPpVKOJvb7/RGuLBe6UgHU6UFJ3RQLURSZGKxJNW0dxJf5vsQXBFLRdOJ+ULsd+MEqR0ICSdxRmy5NApSPi5MB66EtZi20KOAUQeNuJnFRCSQ+a3QuqFQqViqVnJdJ6/zg4MCRXVBPEjJ9luxp9iEIOLIaJPvx2YEsQgVQ9XoKA0WjACxI1tHworDQYlJpTEpn0AntqP3G2SNRU5I9xTaIK04PmG0rN1ET/1cSGlWvNhWaJHipD5YegMhnSjKP1baPTg0mwax8EU1yFComOKmJqbY01N+NJC+pAlMvNQ0mDx48sK985St2eHhoe3t7dnx8PHJxx4mxQqFg5XLZNUv47EDVkC9VpFHbUnpR8r0iykcwabVatrOzYzs7O/b+++/b1tbWSFuKgKSaIIymRjuZ6elp+8Y3vuFu9tF0NtqCqMVCNEfWCydOTargZrzA2W9UBnCQYhs2crqiuKNO6ZHkVKtVe/PNNy2TyTixWhOBCPe/7A/rR3AD0dH1mp2dtT/+4z+2H//4x3ZwcGB/93d/51UWlwpq1fV6faS4UAFUbcXx/ZUjBIqjCZi2PdXDUYNaTOQJ2IrkgkohqIecCtyeBw8e2M3NjTWbTZ8Y5ALT92Rk+ytf+Ypls1lrNBqWyWSsUCjY4eHhyATS1dWVLS4u2uLiojWbTde84pJOp9M+mg86ppOroAp7e3t2dHRknU7H9vf3R9oK2n5n/4L40Ebmz4MHD+yNN96wm5sbe//9972lyn+7u7sjgrHR+FwLP6y1qMJ5ttfX13Z8fOyXJJ+P9QTlRd6BC/D6+try+byVSiUrFovW7XbtP//zP+1rX/uaffe737Xp6Wmr1+s2GAxsamrKPvroI0cVnzx5YhsbGzY1NeUSAPDTVI0+JlAv8yJEWJT9isYZrSjaotls1iqViu3t7TnpW+kb6AbOzs76wELkzbJWDClwh6izgK4/6wmRPJfLOc+Iz8Yz1I4LCTboE1YxExMTToiP08VMe9Jh0IlpCmaQW1rAmDw3Gg1vD7548cIJ/XQjUFUfDAaOPB4cHHgyQ/JD0v748WMXDi2XyzY7O2uff/65tdtt+9///V/74osvfKiDczYzM+Pn+/nz5362dMIVFK1Wq9nY2JgnmexP5BV0gjnaiKnMDMU9cXt+ft5arZbLMpDUIDiKqCt7VUELncrXoSmme7XDg7jr5OSk61Yqjzyfz7to7t7enmUyGUc4oQrcpZ84edeB4bBr31Ez81jRRMK2+qHFREv/Pip3aysn2pyojAGJSNLocVRJT5IX0CkSRZvS6bRNT0/bzs6Oi71p3zlJnA/PJCVXcynphEkkfyd5PUa+WJzGq9fr3k4h2SSTV1RR1/n6+toePXrk2kAEwcnJSfv5z39u9Xr9S7wlFVjkEua5J/nU6TpGm5XIUYjPSpM/bSvqfiL4abIcffP0fWipzs/P++vrBInuCzW2fRkHSzlrTGKReCwvL9va2pql02l75513bHt7293p2R9UnRExpHpXFXwSUEUwIjKrwT1Wa1F8kmAXW7nKtyGQIgCrfEHag4gmUtwQGyKSBxTP9BFm4Fx2t+0d3oeLaGlpyYrFoiNPt2miqVI9Lajr62vrdDrW7/dHBjyU44MhOYUGMY6pM20xkUgw+Qcip8LHWmCqV55SJ0D+SJgovCKqCKKFmKoSm09PT63ZbNr8/LwnsUdHRyNoGnpAnJvj42MrlUr2F3/xF7a5uWlffPGFJ7p8TrWm4SK6665gcIEEn5h3dHTkXCwKguFwaI1Gwy1K1DlEBZmZmIvDQnFYhv+foklRYNA7CnqSMb1HkIFQ5JhnTiuMqT+16OJzsl+41NPptK2trdn09LR99NFHHrfUG1RjEMV5JpPxAhF9KL2r4BOpECaEfVA6iN2sNwke/LexsTF7/vy5PX361La2tqzRaIxYQrFO7XZ7JEEhidDiCY/HyLfSJFXjDJ+d39HJeop2kmGdKqU45/yBOiliyGfXeKl7QydnIbxzf+pELUkqa4L+HRI0uVzOE3JoPhFouFeCpaiBSuVrG45DqD+jIpTA1PHLR55MEodGuQpRckAfmpJio/JyUqsqmpyqXosSUycnJ+3w8NCFDpO4Pnwv/JAQO1PIWBE55ZWoFxkVEptSkRv1R2MzHR8f287Ojj1//tynvzTIqLaWciMKhcJIBXx1dWW5XM6Ojo6+1H6ImmJwayBnJg0IKGcsquGrWj3PimRJE6mkNm40IY5tR50s0/cvFoseGA4ODrwq1nFh1Q+6TcsktivheKgUQCqVsjfeeMOePHliZmZ7e3v27rvvekX+8OFD29jYsO3tbdvf37etra0vWfjEBE/5B1GxX9ESEorYdleyriJVSsAn8Sep4mIjgaS1R+DnfFBFg9AqJ4wklAut3+/b0dGRk7dJOt966y336uS1SSr5rNVq1Y3SldyrMYrYhFUXiR0XQ7lctsFgYJ988ont7+/7BUWLhrPG5JNSEdQqRc8oCSK+obR4Ecyk+lahV/5XFbljsaIFmJ4VJqDw6qNlgxhjpVKx73znO67rRQuLi0/5WuyPb3/721ar1ezp06eeeIJ88rnUruguagBoB+gUvLu5uTl79uyZT6yBzjQaDU9CNE4gs0Fyr6bADEdpu16TYZ4N8RfUDx4ZxfJtHqW8J4bLyq9Uhwm9W1gz1kdRJpJCzhWxTknpKuWhyQPJm4q+sjY6CKBInpKwNZklRpKkHxwcOOdKPfW0K8H5UfudbDZru7u7dnZ25vfczs6ODyqwBvAsNRnkGahlEZ9f28kM1emQmHrw8txVPzO23TlXfBelniB+rEMNai5ObBkMBraysmJvvfWWDYdDOzw89OITg3poCFHM/KVehCoMCqKj3AMy5Oi9xmZXdIgvrBfYbcrDWpHHi0L7smw4HhZZe5L+kk4fqk+ajo3G6RCCZiaTsffee2+EL6Wj2Pz+ysqKXV1d2e7urr8fG4ffU8sPJTfCHVG5CVV2J6ni8zab/4+yN4uNNL/K/x/vW+2b7Srvbrd7m94mM0p60tkmREwiUIZMCIEIRUKCO4TgDhAJIEHEFRIILpBYbkCgBAWSUUISMiNmktl73223d7vsWlxV3u12+3/z/xydeqd7en4tRUlmsave9/s9y3Oe8zwl3bp1q46f48dw3r8pCJPevn3bgjW/o1QqWefpx5+8M7pMv9X1uA1DH6y4TB49CXqaBTcWPdrit9BYUX6U/pjvhPjT1dVlo6Tm5mZNT09bwPDm4Y/alnvSH0ibfG70qBi5zM3NqVwum5oynXmxWDQPLooIn7SCooReKTyo6+abCD9S8kgQY0zfhHBeQFZJnrwv7qsv6Le3t61o92OU3t5e237zxHM4JXyPs2fP2h2Fh0ShPTU1ZWMOfnYQGcV7k+/JeSCBkARZCFheXrbANzU1pVQqpXPnzml8fNx4i4yuwuGwFZbFYrGOa8nZpfuHKxV0KPAGxJxb0A7vPEFx5QnVbGUFtz39O/NFhpfK8IglBd39+/ftbMJzolvP5/MWB7jv7777rtra2uwdzczM1BUq3nXiw47PGxsbVSgU1NnZaVSJZDJp+mM8W0aIFAE0iiCExCPcHoLn3SdO4hK2Q3xWeE8eXSJJcj/QWUSPjX/XO2/QyHkvOu6m98gkHmQyGc3MzNjY1ftj+umLF60NhULKZrMKh8MqlUp13n6o1Ht7IIoxdCP5jLx/eHitra32s+AnLi0tmc4Wz8jTcbgD3ioG7084bPC4aG44336JxjfknspA0Ueu9O+WHIFrAp8lyL17lJWVl23yMd1vHSOIy/uAmgKnDBQuFospHA6bQLCPf8QpP5b9UErufJj+/v46uJoCw89ouRC+iPKQ5qPMb/1W2aMQikfZffgCLbiiT3cZfNh+jOkRrCAvyI/z2BgCHt3Y2DABRl8oBEnYzLy3t7d17do1Q0z8yrPnDXhhPZ4x5EAv1RA8NPy9Wq2marVqoy6/qeJlFvxYjd/rBeo814bNEL91h4FpoVB433LBo9TdvZxGOBy2jjvI0XpUgRYUryWAkaxAUAhM3q7iUVINsVhMsVjMLjPvA+SKQoNk7QvsJ/1Bu4ouLplM6qmnntLu7q5mZmZsCw04H+Lk7OyspqenlclkrEsNyppQhHt+mldqJthBFPWjQh9gSdDwnw4ODmz7hYTu1dz5HX4TkqRFAIQci9hqJpOxwEoh3NXVZfw5xp/wzUCxPEJMAvKIjm+qQqGQcReDW8ZeBRpkgnHZ9va2EomE1tfXFQqFTKh4Y2PDbD0owijuKFS8F2h7e7u6u7vV2dmp1dVVex4Ufb5I8mi2j1sUnF6xHC0rgj7cR19Y06XzrnxDWa1WDXHjzK6vr+snP/mJ0um0hoaG1N/fb4jRxMSEpqamFI1GFYlEDH0sl8uKx+MaGRnRqVOn7K77mOVHlk9qQGiE+KyxWMxEZH2DwHnCwYARKGi9F5z0ywFMUPhrNIp+JOg30HxjTKFDIXZ4eGgbjIi6+tzkpR343Mlk0hAyNt9Aq3h3bLMNDAyYgbTXEgNFoXALhUIql8uam5uzhQPvv+eJ4MTd7e1tM0g/ODhQOp222BCkmsBhzOVyWl5e1pUrV6yooyDyz8uLFrMgwKgXHjJjNk8s53n5xiIej1sBjRWOp8ME+cI8Y7iUgAvBWBjUUSRvP4pLTdxnDM299b6gvFO4f8lkUul0Wvv7+9a0kNc3Nja0vr5uore8yw9tlcPh95YyBDafFKl0H8XBCSZOD0t7hCXI9fIFli9Q4NN4U1gP1/quPmjpEHSD99uGXv+CF8jnW1hYMD8pLzTouWMQO7lc8Dg8kgcqx4KARyV8cnyUyKhfBQemZjaOoB9+jI/bFAxuZnq5BfzXIOf7zaWhoSFls1ndvXtXMzMzpmLrvdiCRTLJ/FFI5Achlt6Ak1GFF5z0opN+m8YXVvw9X8h6ZMaPyLz5aNDK5klJhKQGinPmzBnl83nNz89bgPMCm554D/TsjYC5F4zWgtwBggL/vFfj5u9z2SnEWDkO8q28XY9HnQh4JHPEAQnqbCbyHTY2NjQ9PW3/nP9M+KWBBpRKpbp1aBBG3yV7jpm3PkLzqKmpSYlEwlAk7rJf/wd98hYY2WxWqVTKEJtwOKy+vj5rDiGsejmKIBlXknkpchdjsZgymYzpWqFf5X0xPVeO7+55fl1dXRoaGtLm5qaWlpZsfONjMONZ34ARy9h2AwmBdL24uKiuri719PQYugAK5FF0/wzv3LmjRCKho0eP6v79+4a8ehQUROGD/pCIkNrg7GxubqpSqVhMiEQipn7tFw4oJvyUgHfKuyHR+ebOo+xehNePEL0GnOfgePoH78WP4EAcH5U3KFTZtkPTkfGoL7I9r4iiIRwOm+E40hZ7e3tKJpNWtLCh5/1s+S6g6YlEos7M3Wu0UVhQRFSrVfX399dJDPk8GOQj+y1yJlve0QSCu9fkIg75+mBvb88I5vA3g1Qf4g3FmJ9WBYXMgxQJTx3i7PgCmGfjqQ5Y4PgagfxA87e/v6++vj6Fw2HLj3iU4pXKePdDc7AoBJgvek8sLhJB169GBlEvL17oC4fBwUETvQwWP/wOfo4f4zxqTBLUUgomSc/h8sVhU1OTRkdHFY/HzafJ8ztqtZptfAWlJfjMHR0dhmZAbvTzZ4TS/Jo6CcYjMH40yKHnRYdCobpg73kVEBcRhwvq5QS9D/34kkIA2NgrLx8cHNiGlH+PFC0ePvboGu/Qazc9rtP1FwWuh990hNTp0SrPR/Kdq1ejxqSXZ8+zIED5MbUv9r3q8pPsQMLhsIaHh81ItVAo2NaM59Z5XglBzqsd+3PFZ2GM6GFp0CiKX8916OrqqrvwFGt0njw7Aovnm3muDQGIYralpUW9vb1GSOY78P0wnYUbtbGxYavejC56e3ttY47xAuN8dIE8YTiYwOGUgEAEEbsgj9MjxcgSwK0ALUmlUlpaWrI76+03KFbg/EjSwsKCisWiISC7u7smA4E1FfpBvrkLOhX4z+4XGSKRiKFK+Eny2fz42vNI+N/wuuCd8dfgxvF7WWDxVA7v84aWVyQS0fDwsFZWVpTP5+umCE9qPrwhNM8+nU4rkUioublZKysrdR6ZfhUelHJ3d1ddXV3q6uoyxNA33xQ5QTV14rmXf/Fx2sthBNGgoP4dHCe4VH76wTiNPME2Gd+JM1gqleosfPxyk+cje84X3Ec89DzHcH9/3+4RRZ/fumbESc5h9AnxfXt728juFDjxeNy8MHmePtcRY/2z9KrnDQ0N6uvr0+HhoXEq8TDOZrPq7+9XqVTS3NycvQffaPk7wc8kBnt+rAcDHqfDGIxnnpdNnIeKw8jUF3QUq35Mz1LS4eGhcQrhinKWarVa3QLGh5ZpIFmxmupd41k/RfsJ9MSPfvzcmq7EKzhHIhHzZQoS3X1X6zlGnpzo12/5wpKsGAHCfZwSeTQaNfNW3zF7rliQ4N/R0WHjPDrVkZERU2JmROLNXsPhsL1gP5/2RDyPAHn+klfy9ogg3Xxra6sGBgasw/Y6K48av3rSH1sq8XjcUEAvRIka/eLiol1qj/5wgf2Yke/Iu38U6e9Rm5OeIO+d3f3YjKKIZBuUsEC59+jRo7bO74n8Poh6Dzm/YADK+EFwL0XNmTNnFA6HNTk5qfn5+bpnT6IlENLJcbl9QUFAoMiBD+TdD3zwh9wcCoVs09XzdfwZCqq+s+pNsUkC5nmQnLu6uhSJRCyhEOzgrvi1eM45HTzddmtrq+LxuC5cuGBr5729verq6tLc3Jw6OzvNeLxUKtV19z4G0X6obSAAACAASURBVBT4bjnYnMDTAQEhqcTjcXV3dxsyRALf2tpSJpPRw4cPNTU1pc3NTfX09FgyxwD3+PHjpg4djUbrCtjt7W2trq5aPPDWHUEbmuA2NUWdR26wcUqlUjZOmZqaqvPE88iWvyN+NEWRUa1WFYvFFIlErGhjHOabDn9HKRK6u7sViUS0urpaFztoNj+I6L66umrecLOzs2ptbTXdOVbd19fXtb6+bkg8RSvcK4omDI4prBOJhOUftjVBvTkfjBCDyx5+VAs64acl3rMQBJhY4HXvQMsw/3722We1srKiN954o24DGg4V55gxOIUMBRznEBs0lk6YFuzv75vLSSQSsbtAcbW1tWXoFmfA85URZqV5YSxdq9WsKEeehKKbSRExjfPPYgvFM5633kidGoFRO42dHzcSJxgJ+8lK8DsEJZu87ZKPud4cmuKU/M2780rv/n3TqFUqFYVCIR05csSetx+Tr62tKRQKKRKJ2LYxoqlM1f6ftgip6DB09D5RTU1NSiaT1rWUy+X3yfr7sRQBgcuN2KIvMIJkyaBUQXAkBVcsmUwqHA4bD6NSqahYLD6Sb8W/d+HCBR05ckSvvPKK7t69W6fB4Tk5QUKxRyXgh4C+UKh4dM8L4zE28iv+BG2/3RP0P/NaIiS13t5e9fT0GGR87do1QxuDKJ5fc/Uo3LFjx/TSSy/p9ddf12uvvfY+joXnC3hyvifus90VDoeVz+dttODXvD366Ispj0p54mLwDPmL4j+j11nq6OgwuwxvheM/d5Cv5YsuL+b3pDHIwMCACoWClpaW7Az7M0o3xGeE2+Y1eghgQR9Pv4nmUT24Ap7M6rtr3q//WS0tLcpkMjYe4vuBGnOXvRYdher4+LhqtZqmp6ft7JEYOadYjhCA29raDH2bn59XOBy2xMEGkbeYqNVqdkcodP2avEdcuSMgYL748nGCpi+RSGhgYKDOLqNQKNRtWzJSC45xaJTOnTunxsZGvfXWW++T9eDeIj3hSfhwOvyIAr0kvpcv7j3KRQPR2dmpoaEhk1TxfDM/7nqUCwKF8bvvvqtIJKLOzk4lk0l7715wNXh2vFBpT0+PdnZ2rEB6UuPh80YsFjPkk2fAiBXZmqA9FvGT4gs07HEuDTxn78fnnxGFE7EDHSrPyWXrlAKoo6PDzqwXsfQoSjQaVSqVUmNjo2ZnZ+u0voIisBQEFH7ExI6ODsViMXvnNLvRaNQADbhQoLw+R/FzQGDYsPSOIjRDwckU2+4gu7Ozs1pbW7N3QDEE15oiyVMzksmkstms0TnIjZyt9fV13bhxw+oGmk4fd/ydJ6/5DXWfD4PGzEGdOaYExG7ioxeo5ncHzeH5zL29vUomk0qlUpbjvLQS5wbNP4rBWq1WZ0z/obYI6dgIQqVSyT401Vpvb69yuZw2Njb01ltvaW1t7bEK7L4TAjqt1Wp1PAVfVPlE7EdIfkyzt7envr4+c6Jvbm7W0tKSLl++/FgeEt3RkSNHdPHiRb3zzjsqlUp1SdsXBV57w/uLMYft6OioU7P11gXhcNhEFb2PHCNAX8CBCPqO0mt27O/vKxqNWhcQi8V09OhRVSoVlctljY6O2uqzL+h8N80ohKDT19enF154QWtra3rjjTfqtmT8O/CaJsFCV5KeeuopnTlzRj/+8Y91+fJlQ/GYy3siIwgZiYRE5KFfL1XgN0seJQuBHcfQ0JCd16AOjOeceTkEP6un+PGbph/EM4EQye/zM/3d3V0lEgnrUOfn503p13+HoKcVz5pkSmKke/QLEH4cwe/2EgaMWvr7+w21amxs1OTkpL0Xz8fD6+7g4EDZbFZnz57V3Nyc7t69awGNz8XzIyDSwbIOH4/HtbGxoXg8rmq1qmg0al00xScdMEiCD3x+POa36rwvYTDwef0vzlBvb6/29/eVSqVUrVY1Nzdnz4ln4pMQv5u1+bGxMe3v7+vKlSv2/SG1e/88ElFzc7MhMfx87unq6qquXbtW58XKefPvgXEOiTwUClnziHl8kO7AmfNdP+gC3wX5GPiMvtDw/wFNW19fV09Pj00x4KM8bhWdP9glxWIxEz8F5ZyZmbGxGCriFI9dXV22KLS9va319XX7nL7pYcmHhpYY6UdvfqTIP+eV9YkvTU1N+uhHP6pIJKK7d+/a7/YbcL7IAmF76qmndPLkSc3Pz+sHP/jB+2zNIFQzqvR30ueHnp6eOsV0v41GI+RV0dva2qz58mKXfqvUG05ToHkNrYaGBqXTaV28eFE7Ozvq6+tTKBTSa6+9ZugeqLtXVKfggnZx4cIFvfjii/r7v/97zczMGH2ARSqeh+dE+iZyf39fnZ2dRkFYXl5+X+7xMj5ersHHUa9WH6w3KJC8L6afHMC/YgucO8LvSiQSOjg40NLSkm2awlPm/hAPP4if2Pw4TymSaiqVUmdnp0qlknU3JAg0aoaHh+t80x5FGubheKE3/rlH6VX5BO+7f78dwNYW0N3q6qptKvnfzfiLl1QqlTQ5OWlO3B698iNKD6ejFxIKhZTL5ZRMJpXL5bSzs2Nqt5VKRQ8ePLDPw6UCGvYyCuhZHR4emllrcBuHrgoSM2gIoomnTp3S5uam1tfXbbvQI4leOM6vr0rSlStX9Nd//ddaW1tTd3e3OZ8H7Yb8JmZwe7KtrU2ZTEa9vb11QcUjdwQ172/GGfOaYP4sBBGhR9nk0ClzBr0Kuu9YfHfplyuCel/A6U9CsLCW4FmwreZHE4za2tvblUwmzZ8LlJGAFdRuAfofGhoyNWPfudEhez4EpF5GjxQc29vbmp6eNi0gRhF+ccKL+fHXt7e3VSgUlM/n64jo8LwI1NwlAiQ6VJ2dnRodHa3zM2Mz1/s3BgNiUB+KUVkkEqkbQXqpiIcPHyocDpvwJwiq59uRfOG7HBwcaHJyUpOTk2b1A++lVCqZXcqPfvSjOgkJkIrg+NsX1jwbgjCf2/OefIzxwpjeZiSosdTd3a1YLGaaYoxmgkLOHg0kbkDG9mitH1d6FwSfkKvVqjo7O41Lw0jkg4RGI5GIEchR3aeQPHbsmJHyjx49qjNnzujmzZuampqyAoDiNZVKWUPmfSQpWlmnD3rZehsa31R61J371tnZafzBCxcuqFqt6ubNm+Zd6At3b1sVi8U0ODhYZ9bstQd9E00jAiLFf/f09CiVShmXioWFWq1mTgKVSsXG0Sja++ZwY2PDijBcIbyHr+dXUlyD9vf19Wl9fV0LCwvWYLH4EY1G36eD5RFWPxGJx+MqlUoGUnCW+d7ev9RTQmj8n376afNiXVlZsekPY1oQTb/pGKSjMG6laQkS3/1iAfGfMSKbrCCA/D7vKMJyGgtskUjEfg93NSgt88QRoUcTQGMoTEBQstms2tvbVSgUNDIyomw2q7ffflulUqmO4+JJp49Ktv6BBxGS4AgxiHIsLi5qYWGhbjvPywjw8zs7O217aHl5WZcuXVKpVNLi4uL7PLb81oRP7BxgkubY2Jj6+vpUqVRUrVaNSOhXRgmAnqjqq2kgVtRhPQdqb29P4XBYg4ODtka8tLRUN3/++Mc/rv39fVUqFQ0ODmpiYsKKG4oX3/H6DQ9GNMePH1c+n1elUqmTVvAJwAct/j/P7c6dO1pZWdHS0lIdP4SL4P0GCRD4PflV3OAW5KPOgS+went7NTIyYs+UcQ9bQPDw+N2+WPa8Fu9F6PXfHvdnY2PD0CveK7Yb3h+uq6vLkur4+Ljy+by9P84lvxP+BdY+FAzBBQOvAM2l5x75O+fFEb0Aoe8iOzo6bIMmHo+rs7PTtuVu376tarWqgYEB20aiuGck4YnASDB0dXVpeHjYCu719XUTmfSFXtClgXOBJ11QPNFvTEajURWLRe3s7GhwcNCoChRXqVRK/f39Ghwc1NbWlm7cuKGtrS0Vi0Wtrq5KkiYnJxUOh3X8+HFVq1U9++yzWlhY0Le//W3l83ndunVLjY2NOnHihHFXSECe38Ez8dZGfhu5WCzqzTffNHV4ilo6ae/7x7mEp4KopndpCIVC6unp0erqqiqVio2zQAJ5Th0dHaYBx+cBNWCs6yVLguMWmridnR2lUilFIhEjYn+QB+nc3JyGhoZsxZ0kWKvVDNHd29tTJpNRd3e3fc+ZmRnt7e1pfX3d0B1GZZlMpu6ZcgfhYXmeLBIcvtDyhaTXbNrc3NRrr72mtrY2DQ8PW3MBf9Pnqq2tLUWjUZMdIAb4jU7iJWrqjPRo7rFhSiQSSiQSZnNULBbNNHpra8vyCyKyNG6e90gRu7a2ZkiV57MGF3g4lyCdmEmj9zg4OKirV6/WNaUUbSCX5NPm5mb97Gc/0+TkpH0WtmFZXPOjSi/B4BcOotGozp8/r3A4rImJCS0tLdkz9Txw/5mIcZ4awLMNcnc9p4t4AjjERiCIG/9MLpczX04Kr1QqZYUd9KOVlRXFYjFDex/Ff/7AAsv7+xHgmNliVHvp0iV9+ctf1kc+8hH98Ic/NP+lpaWluuLJBwVfjfpNLk8o/6AL7EeEqMN6ZCu46UfQ6erq0vj4uG0PcTiDpGa/ncSlphLv6urS2bNndfLkSY2MjKitrU2vvvqqrXKShHDc9qaxfpTEiBQoXZJxDiDWNTY2qqenR9FoVLdv3zYEwRvhLiwsaGtrS5/+9Kd16dIlhUIhjY+P6+7du7YBgamp19Xi2Zw7d05//ud/rs7OToVCIX33u9+1d+c3P70Poe8ACWL37t2zroAAECyweZ7hcFijo6M6fvy4Jicn9c4771inQhdCsvXWGXwWCMy9vb2mxutHd1wiRtAgQn7DEnVvPyrhdz3OET04IkSXy5Nk0YDCgT4UCuncuXO6d++elpaWDEbm7DJKGhwcNHI4W4G8L36HF+ck+HguTVD9279Db8LqdZpATz16yDga1ADuUKlUqhvZgzTAl7lw4YIhtt3d3erv79fq6qo1MJ4KAL+os7NTr776qhkqNzU12baeV+4naKfTaQuQAwMD9ryXlpYUj8dNN4tV+f39fZ0+fVrb29uampoymQf03SgeNjc3df/+fe3s7Oj48eM2Vvv617+u8fFx3bhxQ++8844uX75cZ+rd1NSkTCZjyAv8T4J6e3u7dnZ2TKjQe7j6wgeEbW9vT7FYTLlcTo2NjZqYmLCuncKfgiWRSNhyATpLxEG68qBauedcEa9oRPm8fqmGeDU3N6dUKmWN3pOM3vEWTCaTdncRct3Z2dHW1pZWV1eVzWbN8PzUqVMql8u6c+eOtre3NTs7q6amJmtK/HYnIx9GvJxZiMi+CA5umPsGXJJWV1dtw5F3AleKeAEvB5+69957T6urq8rn80YUBz32av+xWMziDu+cEfrIyIgSiYTJB5CLaMhALkGrvXgvUwbuZ3NzsxVDnr/Z09OjZDJpJvdra2v2GVpaWnT27FlJ0s2bNzU5OWlFG+eFhpGY7l0HNjc3lc1m9eyzz+rmzZt6+eWX36eYDhmcjVZP9djd3VWpVNLrr7+uw8ND3bhxo26cSM72ThY8Q0j4nhMe3P4mD3jx5La2NkOnl5eXlU6njVpE7ZFOpxUKhWwZBmWBzs5OJRIJK1BZiimXyyY0/rjmo/mDfAg994kOigAMkQ3Rs729PR07dkzJZFLlctkOAOgPVa2fpfpRoieIemf3oH5WEIWAV+G3nrwMgFdljkaj6uvrM60evy4f9EIkqdMhjI6O6vz58+rv77eH75EQxjT8h4DIMyA4U0xAkveFJoGYgALJlTVuVuB3d3dVLBaNbH/u3Dn7fWywsLobVEYnoOfzef3oRz9SLBbT7du37bD4TUa/Yea5aX6E4TkzjG8epYPFAWSkVCqV6tTnCWwejvcdYFNTk83KvXRFUDqjUqlYtxc00/YjEr+lEjQqf5KYIt/VL1Iw4uX/V6tVLS8v1wl+jo+P161UAztTBDJW8NwSnr0vkrwnmW86/Fqz377b3983tMoL8vkCiy4QYjPK2wQ3ClAv/ko3GgqFNDIyoq6uLuvc+efS6bSdRwLU2tqaGTKvr6/bWJc7zzPx2jygcIyBKRQpojl3jI9ojiB4s1hz7949ra2taW9vT5cuXVKlUjGonxX99fV1vfrqq5qentbCwoJu3ryp+fn5OkVuzm1wrA764bcu4VAyIvPimX4hBF5I0EuVRsM3kPC0UEz3EjRBOyW/0OAtcLzWlR/P+6IJgjWF6Qdp2rE5zWeGA8Mo1o9jNzc3deTIEXvvJFV+Z1CyB34atA4vyOp1jDzR3CPtfsnFby+Sd4JG3Zy5lpYW9ff3q1AoaH193XTLKOa8yK9fBOIz0Tg/9dRT6u3tVTqdtvzGAhlx8eDgwLYl/WKDFz6l0WTc19LSouXlZYt3oEps/VF4g4htbm5qampKJ0+e1Mc+9jEdHh7q1q1bOnr0qAqFgsVyii2/HcgEZ2hoSM8++6wuXryolpYW/eAHPzBNPGoBJhTEkGATeHBwoOvXr1sRGYlEbBLhEW6PXieTSdO0m5+ft+LJS9oQA71ANfFxbW3NRqTe69S7ZVAow0ekCaF5YuyOoLTnl31ooVEIYt6gESiOS7KxsaHLly/rzp07pmmTSqWUzWa1s7Oj69evW/eJTgzVIcHazy+bmppsG4kA6dc2/ZzbXwR/qLzyq79oa2trWlpa0vj4uI4cOWKcmaWlJUswXibfJ1A6gc9//vMaGxvT9va2/vd//1eVSsVQF5R80cuo1WqWoLzUP/A13lMEuGQyqVqtpqmpKTONZoQDDIyU/8rKilmy8II///nPa3d3V5cvX9bRo0dVKpV048aNuk2WaDRaZ3Z78+ZN/cEf/IElb79NxqYP6Adoi7cP8aNbb5ECzBvcSIxEIrZ+DmcNlW2/acq8HO4AozBGBxxoT4IlyO3s7KhYLFqn60c3PtgCCVOwBC18PuiPVzb3Nkg+0O7u7qpareqNN95QOBy27am+vj4b/4F8wHXgfJNggzILcHroBv3igS/0CBQEOPg68Al8AiHBbGxsqL+/X5FIxDYOZ2ZmVCqV7Bl5bzVI3ePj44rH46bnlMlkNDExoXK5bGM7ktL+/r5ta928edNkDhiZUQRw9nlP8BkJhF6Zf3NzU11dXaZFt7W19T4UcmxsTPF43ExtGSlSOHR0dFiAhudSLpf1r//6r9bVe59SkB64anDgKPg9YkJARqgT9Jrii6KDRAkv0xPlfdNHkiKuMQZk/Eci8H593C2Kes/18oiVF3Hmr9OQ8ZmfJNOws7NjYzSSJrpW3muOjeOXXnpJuVxOly5d0sbGhs6fP2+UA6/hBArmLVsosOFvUVx67Sgvb+MTv+cJe86Sb4YoLOBm8k7K5XJdE+ebQoosv+mbTqeVTCb1/PPPKxaLaX19XVevXjXeEs+E4pHzgIA0d417DN2Fz9PQ0GCTBxqzzs5Ora2tmQ0aozbiOTY+586d08mTJ3Xz5k1lMhktLy/rpz/9aR0ixH3zhu7r6+taXV3VwsKCqtWqfQ8vRux/BkWJl29oaWkxAjn53XMzq9Vq3YSCJpG44PmsQWFxr6Hoz3MoFDJ/TM46dwyCu7dli8fj2tvbsw1YxHtReycef9Cfx5Lc/ZjNj4WA+b3FBIGP7aeenh7T+ABR8XwKv8nhN/RAf4IWLI8TuWOW+8wzz2hxcVHT09NWcPEyCHTLy8umbOsl/vkcQegRv7aBgQGNjY3pueee08bGhvmvARlyIXkBh4eHNsrjM7a2tiqVSmliYsIE43w170mZ8XhcmUxGm5ubVpgyykyn02YnkEql9B//8R967rnn9Mwzz+ijH/2ompub9dprr5lJdaFQMPFK/l2f1OiovQQF48jDw0P7DkH19uDWH++TrorOxb9rVHxR+CbQeYjWk4DpiLGP4DN541V/Lhhr0Xl49M1r2XjtrKDdz4cZEQZFI32xCXLkN2c4GyBcjDXoLn1i86RJAjVJ0a/7e18tT/iET+A7slQqZYHArx+DEqDmvbKyYigmxYtHBjmzfrV5bW1NbW1tKhQKevvtt1WpVEzRXpJpXDH+oqsGQaJQJZasrKzYGIrRRyKRUCgUMpJ5b2+vUqmU2eA8fPjQ7It4tu3t7arVapqcnNTg4KBSqZQuXLigubk5LS8vGz+KM4mt0srKip0Vr2HmLXTQIKPx8YkuKJLrhV1B7xAoJAE3Nzert7fXiMtBBW0KInhaHunkszCqYuzn+TskOsaCwWbaG9AHLW24l8T3D0J4+f0gkhSQbAoiowAndm9vT2+99ZYikYgVhdFoVMeOHVNHR4fJ7vBdmZSgoUhj6FEeP7UIGsL7SQJ3l0kCzbVfBiKRrq6uqrW1VadPnzatMtBpCl2KN794QNwfGBjQsWPH1N/fr0qlYpqJmUzGpDPa29sVjUYNvOA7eUSMQpOxlufJhkIhy7OZTMaaec4fP5dnura2ppWVFe3u7iqTyeipp57Sz3/+c3V0dCidTlvzw90gXnAm8vm8vvvd7+r11183PhqUhFwuZ2Rxzp9f6glKJvkpAiR6P1ECYQR4QRiVz+RFeP0CCc0WjhaABoAWnq8LCgxo0draqlgsZvFpcHDQzo7n1sFL9woCHwrBCho2+oPpRwvAwVx+gjRdxujoqIrFogqFgiVcutOmpiZls1mFQiHdv3/fIDg/h+ULknSCWljRaFTZbFaxWEzXr183H7q+vj7Nzs7aGA+CeK1Wq9Ma8YKVXvtLkrLZrLq7u/X1r39dZ8+e1dGjR3Xjxg1VKhVduHDBOt1arWaEai/4SfAEcTh27JhtdhEE6PbQmoEI29/fbz5W0WjUklUmk1Eul6szqP3e976ntrY2HTt2TF/+8pf1wgsv6NatW/rnf/5nvf7667pz546RLjlokNm93ohHQ9A1Y1zDts3y8rKtSQfHhj09PfrEJz6h9vZ2Xb58WTdv3jQC7+Hhoan3z8zM1Pk3+UKb4N7W1mbr5f39/YYSwQWikKOz4SJz8UhMHs30gTUUCtUhPgQvv37/2I7k/z+b8CH4nSRkkCbGQ6lUSul02jbpILJCyEX93I+rSSwkcooxuDpe0oORHoUM5725uVmZTMYkEQj68Aew5vCbgz7ZeITOL6nQfKRSKQ0NDenpp5/WyMiIGhoadO/ePWu04DFgJ0LHDqeIwhouVDweN04OBRM2NqjKt7W16eTJk+rs7NS9e/ds4ykejyscDtvCQBBJTCQSGh8f1/j4uHGyVldXNTExYSOXBw8e1Jme++3HarVq3T/nEHXttrY2e26VSsXOcCKRqBtlHT9+XC0tLVpdXdWtW7dsXNPQ0KDe3l4TJQZlplCn6aT4am1tNX2z7u5uG6+ur69re3vbED1QgHw+X/fzKLa896H3dAP15QxxroPOEI/jJ4K8MZpi85E4zoZZNBrV0tKS6TARV8bHx9XT06N33nlHi4uLdRumvGsaeegDnHligReMDo7QGcfv7e3p/PnzOnPmjN5++20tLS3ZqNIvF8Bj5Yywuec1lvgsFGVwrdrb2/WRj3xEFy5c0Orqqm7fvq07d+6ot7fX/n2kDzKZjEKhkOUY8hEN9+3bty3xe31CpAPgnHol/sPDQy0tLamnp0c9PT1WqMTjcb399tsaHh7WyMiIvvSlL+no0aO6dOmSZmdn1d7eromJCe3t7am/v9+mH7Ozs/a5ATSoF4gXPT09evjwof37nAOfv717iedfM6XxOm0Q7kHEeRdeZNSPakOhUB2XjmKff4d7xxSDWMOzRMyYAi4UCpk6wd7eniKRiAYGBrS8vKzFxUVbUvtQI0Kv7RK8fBxSdFzy+byR+RjPdXd328gM8vTp06e1sLCgubk5s4HwXQVVaDgctofG7/DwHpsWwIt0jaVSSW+99ZatzjMvDgYKTHe9UroXLaOjgaT7mc98RgMDAzp69Kg2Njb0L//yL9aRAyEyJ+dFkyj9LJjAsrCwYLIKe3t7KpfLdviAfo8cOaLBwUHrzmKxmL1sOGR4e1FstLe36yc/+YmuXbumM2fOaHBwUP39/fr617+ukZER/fu//7sKhYJpmbFOTfAkMYOKkEQ4rCMjIxofHzfLEKBUP77iuVcqFZVKJTuMHvXhwHvbDb8RxwWhi0omk9YhMP5BKoB3zBaXH5twufgO/FwCP2c7aChO9/ph/vjRqC8Kw+GwkezpUkEsm5ubTf+H85hOp+0Mw1HyW19+c4/g7UeLHponsfCz4SWhVs73Y+07aC3Dc/FNkLfJIPDEYjEdO3ZMuVxOmUxGiURCly9ftuIR/kiQbMxZQS/Lc+tAJs6dO2fbrLzDzs5OG+2hCba7u6tYLGYFDpwtmge/oLO2tma2PqFQyDgkoM0rKyv2bHp6euyMMm7r7Ow0RNlzQWnO2IzL5/NaWVl5n1AxyA9xrLm5WfF4vO59M3KCk8M2obdDocCmoEPCgATLcySWYUbe09OjWq1m8hWer+LPL+eMsbw3S/badB90J6CRIK3h5Qloxr2bBssxmUxGW1tbKpfLppiNgTHFLMgGnx2JA79V7renH+W7CproqQHValXlctkan6GhIe3t7Wl2drau+cMIG+TUj5f8lnU8Hld/f7/Onz+vTCajF1980bZHjx07plQqZcU/FjMHBwdaXV3V/Py8LZAQv0j6p0+fNt1D8hhor89t4XDYliug9BweHmpgYMAaebwOv//979t0JpvNKh6PKxQKaWJiQv/93/9tOZsaAKSOOO2Lb79Vzn1PpVJm3lyr1cyzk4LY+8KePXtWbW1tunbtmqFUgADpdNrujHfj8BZwHhBCaw3kl7wGF9BPEKLRqBXcxFy+M8+yra3NmkgsrVpaWjQyMmK86Q/tRUg16leovaw8CYytDTgmBBXm4Kw54kcGyuPJxxQqQPsUP3h8McenM/HbBOgLQZokYGxsbNg48ODgoE5LyB8Ub/HitVEuXLigX/3VX9Wzzz6rtrY2vf766/rZz36mn/zkJ3Vqy42N10Qz4AAAIABJREFUjerr67MLG1TqJqhy4d977z2dP39eH/vYx3T37l3Nzc3ZgX/w4IGi0aiee+45tbe323YLcC/bkn4WXqvVbHQESvjmm2/qq1/9qk6cOKFnn31Wx48fV6FQ0I9//GMzWwWuR6cJ4jyBncsSCoXMa/HcuXNmc7K1tWW8G7ZWDg8Plc/n9cMf/rCuK/FFuUcxvTYVkgbM71OplDKZjFpaWpTP582TjHcejUYt0MCrIaF4lXS2O/kdXuvHF1iewPlhSO5+YcA/T9CqaDRqo1mvRO/97fwdy2azViTRlXLWIY6y5cgzQhLEe2B5qJ2ixCdtimIgfS+a6yUT4Nr47p8iKZvN6vz583rmmWcUiURULBZ1+fJlXblyxQpof5/C4XBdscNihy8U4BqurKzo5MmTCoVCyufzxrujyBgdHbVYsLW1pcHBwTqOkzcMhysDLwmx5Gg0qtHRURutnThxwrpxP2YiMPsxmvdApEiMxWI6deqU9vf3dffuXU1PT9e5Cezs7GhqakqVSkX37t0zdIRRoyc7s6FN8sHGCnukra0tM3Hm3oLE7+7uGpkcrh0cFGIx43nePQ0QRSrviRGyt5TyvrRP4idubW1Zgd/S0mKj3f7+foXDYZtyeONtzkulUtHExIQ2NjaUSqWUSCR0584d29hDnLe1tdUaVO856rWg/NTFN3reKHlmZkarq6s27gOVbGxs1P37941bCB/My54Q/2gUaLL7+vr08Y9/XC+99JIGBwcViUR09epVzc7OWlJGAoO4h2XU5uamoSEQ2RcWFrS9va3Pf/7zunr1qq5du2b5ga1lzksul1MsFlOxWLTPRVE4Pj5uy1KMi0FzKpWKfvmXf1l9fX3q6+szceT9/X3bUKdBhQO2tbWlO3fu1AmxHh4eqlwuq7W11YCKM2fOaGZmRnfu3HmfKTf/TjgcNlurWq1mhVTwPTJahlLBfeedgril02lDvdbW1gzhT6fTxj0sFAra3NxUW1ub5bC1tTVVKhVlMhnFYjHt7e2pUCgolUopFosZsFEqlUykdX5+vo4+8b566tDhvkBoX/3qV40Y51VRva0LkCHwNzYZcDT8Bg1Q68zMjCYmJupW/z0Rmt8FSgOk673w4vG4Tp8+rZ6eHr355puampqqI77zc4JbRlyChoYGmzF7uHJwcFDf/va3deTIEbW3t2tyclJvvfWW3njjjToTSP87CJB8Vua+HlrP5/N1avAQd1E8R2tja2vLIHFGanisgWAAWRL0UfWFbO/XSv/wD/9QQ0ND2tjY0P/93//pt37rtwwF5AKT3BjfeDsdghBdkUeMED8cGRnR1atXtbKyYp2i1/Liv72tysHBQV3B4408s9msOjs7VavVjKxOsj99+rSN4hYXF03/y0P+nnPAto5HO3l3oIokTUbQR44c0Z/92Z89Vpm3oaFBv//7v6/79+/bCAmh2N7e3jpuQKVSMeHAbDb7SCsbvxJeKBQ0OztrpEnfke3s7JihN/chKIXBO02n00qn09rb2zMldl8okEQ9wsdolAKA8+z/mc9+9rN64YUXbFRy5coVLSws2GjKiwwCzUO69cgY41GQASB/+CDwrhg30XUSBOFmoU9DAc27IO54sU+/XfrgwQONjY0ZV6SpqUk//elPbTTixRz39vbq0FgviYHsiHdNoPNFZsVLDvjVej8WZuOrUqlYYe69UP1olzEHdArQedb+0ZIKWvPAd/NINRIBXieO5tNzbj0S/c1vflOf/exn68SYaRAZnyDnwGo7Sxv9/f32+a9evaqtrS198pOfVDqdVj6f1+7ursVBmh7kaPBFRe3do1MefeMsMGbyY1evodTT02PFHjmPUTkIU7FYrDOxBvkA/ec5RyIRra+vq6OjQ/39/frTP/1TXbx40fLB3/zN3+jOnTt1NAZGVqDSNE8Um/v7+wqHw2bkXCqV9Mwzz1gzPTExYUgXsiK5XE6JREJzc3MqlUo6ceKE5ReeJ0XS9PS0arWaLXCRO3O5nH7nd37HYtP//M//6Hd/93e1t7enaDRqI3+I4js7OyYb5AU9GZseP35cX/nKV3Tv3j298sorWlpaqsv9Pp9wh4K+fviaYijP1IjaBB4mW9nPPvusNjY2dPfuXYulyWRSg4ODhvpCW6C4IwegdQdQk8vlNDw8bFY48NDa29utUSkWi4pEIvqHf/gHDQ0NvW+M3vTNb37zm74D2d/f13e+8x0Lul6h1XfJzP29gKE36yRIoMgMaRzYzQuDep6HX9P30vV010D96+vrWlxcNAgPqNATQPk8JGFGD3RjzKM//elP69d//df13HPPqaWlReVyWS+//LLm5uaMQ0XiDor38bNICBB2veozYwwgXxIkyBc8BEQc6Rj8s/aCgH60w2doa2tTNpu1Z8AGFx5XZ8+e1cOHD81ygyTuCdWMBfmsvMOWlhZls1kryEgyBGqflPymGQWa38wJqsRHo1H19PQoFArVjSkhJe7u7ioSiainp0dbW1sG1VNEUzzz7BirspnllzP86Jbv5rWNuru79clPfrJu1T1YYP3oRz+y8SzG0pFIpI6sDZcq6I9FEgiq2fOz4QB6k2p4Wp5AzffwhuD8+xST2PlwTiiUKIDYzPPisbxTL+0xPDys8+fP68tf/rJ6enq0vr6ua9euaXp62gKO1+7xosAkcBBTb5vjzwscKgi8NAkUSoyNEMr0a/VBY1h/N7zIIYiAl0agGIPzBwnYSzEER9ggVH45g8KRAgqOjF868MRdxmh8ZzbtfHNDAcFWJXcDJJtnc3h4aL523iuSd81ZZpGHz+o9Ab2GkR+d+zFxS0uLPvWpT2l4ePh9a+mc17/8y7+0MTmFEDGFZ+5jE8W1l+PwExImEGwNQi+B2A1J3ecSr6geVDWPxWK2VQqnFJSYHOKbMKYpoK4shIBOIutx6tQpfe5zn9OXvvQlnT17Vvv7+3rllVf09ttva3Jysk7+hgLWN3e+GI7FYpbD/P2iwWX5JBKJqLu726g1fmu4paXFikuKdLhk3jAaUU0a11qtZuADm+7kYbjGFPy4G3hxah+bKHzZ4Pf2YslkUslk0kRMPVrOd+deQjZHTwsjZm9LBIjCEg3KBXyuTCajVCqlfD5vzic0xhhq87OQPolEIsaVY3LAe+P8Mv2RpBdffFHxePzDmz2T/P0qpGf9E0wht29ubtpaLgUNTH0eeDwe1+DgoM6cOaPl5WW9+eabdsARxvQwMJcXfgtJ+/bt2ybWiTijfxDew4w//Gxv5Hn+/Hn90i/9kn7v935PHR0dunr1qiqVipaWlvT666+bqFhHR4dyuZzBqYh8Emi4nF5eH8SKxMah5HtyEBgFDQ4Oqru7u24bjwIKiwYgXU/w8yRCTDyRoCiVSpqYmNDFixf10ksv6dixY8pms/rpT3+qhYUFWwNmpMRoDp8wkg0rxAR3RgGQw/Eso8j28hB0+B0dHQbLsmJ++vRpPXjwwJA7isTGxkYtLCzYluPp06dNSRc3d4KiJ5v6rcGgv13QF9EnWi8Z8qQ/ns+RTqeNUOx5H/xckITt7W1lMpm6QtkT2uGTsDG5sbGh6elp5fP5OhTJk/G5YwRur32Tz+ctQVOE+c1L/lmeB+K7vuhDu+fXfu3X9Mwzz6hYLOqdd97R1taWJiYmtLy8rFgsZk0KBTs2TpxdiggCIc/eb+DhA0by3d3dVblcrlOuDofDdXw3z5fjrxPsH+WigPwJgR9eFp17LpdTKpWy8T0oCPEL9IXACueSxMYYj26e7tzTKryMgC8KaSRYsd/e3rbGEtV2Fnjgg4Ey8uxLpZKKxaLi8bhxFb3+EEUThTR+ax4R9hu2XhzTN3ofxMHiTHr9Iooffj5FUnt7uxYXF3VwcKBjx44Zed1vA6P9B1emublZt2/ftvNP4cU5AnkgF3l/PyQkent7bTkJVJQChs/Z3t5uyyCcl3K5XDeeYhw5PDysv/qrv9LZs2fV0tKia9eu6Xvf+549UxpHiuWHDx/aMpRvvih8Od/cIZahQFMrlYqi0agymYyJ6q6trdkiEgsQbL5ubm7a2N/TZkDayR/JZFLNzc16/fXXdfPmTT3zzDM6f/68/uRP/sR04b7xjW9YbGEBhFxNTKGwo1G+ceOG0um0BgcHTUh4fX3dnoXXPQs6tzDB8VI03C/G7IAKjBWhzYyNjWlhYcFySnt7u6rVqpqbmy1ux+NxTU9P1ykjPHz40JpmSZqYmDB9N5BaltH8tO7/ySqHg+m1QQjWfjPAW2Vgi5FMJtXT02MPDFQHMiEV5ZEjR9Tc3Kzl5WUtLy/X6cH4tXZfOdKFVqtVq2RbW1tteycYsHggvMhEImHbjU8//bS+8IUvqLe3V1tbW3r77bfN9LNWq1mH1NfXZ4enWCwaeuHV0YEb2RoEpfKwMMGGS82l5+dsbW3ZmjjBVJJSqVTdmjcBDz0SyPkUCQRUP9ZdXFzU6OioRkZG9PWvf13PPPOMLl26pJ///OdaW1uzdXsOUdBWwnc9XGTPFfJ8FVbfERLlnQEzZzIZU77lWdNdEozoMtC+AlmF3Ou7fDoeb8EEWkZC8cR6kBGChN+E/DBmz6Bk/J5HIV0UKygsP3jwQMViUdvb24rH43U6Xt77jY6e5wx3iK0+kpUfx/EduLP8fYT0EML0nDDsRrwFCQUr3ImPfOQjOnHihA4PD3X9+nW999571kXitxmLxWxjkrGoX7WGW0kB7zmU/H2evV+28Ei0pwwQgEkajKK8nRINAN/PjyIZ03E3CMa880wmY8sm09PTKhQKdb53/CwaCDgujAtApRk18iy8gjbjBW/wTDzJ5XKG8C0tLZkvHijPwcGB8YUODg6UyWTsvtHMUjx6XShP7/AoFUV3f39/3fcADfOjSm938rg/5AgsjfAURG6GIpvzvr+/r4WFBRN/hPMJioBf3s7Ojhmoj46OanZ21qxVfNNEg41+GYm7paXFtjqvX79uW5U0seQ17g8bodxd37S1t7cbT/SLX/yiLl68qCNHjiifzyufz+vy5cvmppHJZAwlrdVq2t3dNYsyD1h4+gDIC8ss3lORsRyb+hTj2O945J3/7YsF0DfOM3m8vb3d+I6nT5+27UNM08PhsC5evKgXX3xR165d0+TkZB2qTC1AMwuFCOSY7wzwwfMmnnqFAn4esY73xgZha2urEomEUQdoyGjAmG4Vi0X19vZqfHzceFYAGBRYNFdsqgfRYZb0iBsYk/f19dlSV1Dz60MVWN5TiZfhrQbowMbGxoxvBLwID6ivr0/RaFTVatW2+kAhODijo6M6ffq0JGl2dlaXLl2ySpsETQIIh8NmKcCWAOrCzMv95iGVNT/v4cOH+uxnP6vf/M3f1PPPP28BbmZmRv/0T/+khoYGdXd3a2lpSXfv3tX4+LhtlBwcHGh2dlbz8/O2beItYXwxR0GXTqeVSqVUqVQMhqxWq1agedHEeDyuQqGgmZkZhUIhdXd3m9v63NyceYvlcrk6r0PQIo/WvfjiiwqFQlpeXjb+CAKdDQ0NGhsbU3t7u8bGxvTbv/3b+tnPfqa/+7u/U61W08zMjB1ueAaecAlqxWFmwcETYr2KNEkhHA7r2WefVTqdVrlc1nvvvafFxUVtbm6ajyVcifn5eT148MC01A4PD1WpVMx03GtFeRK5F2WEd0JCoDMhsVI4+gTsE/6TkgjQOTw4NlL9z+rq6jIIGvInfLdwOGxFGsUG9wuFfojdIyMj2t3d1dTUlHE0fAHvNYEodhHspdHg5xOg/OaTbz5+4Rd+QS+99JKef/55LS0t6fr163r55ZdN7bypqcm8P4eGhqxwRVgXDRmeN8Uod4XmjFGN5zRtbW3VURJIdCBtiNNiKE0RAPIDSuY5bIzrQFe6u7s1NjZW5+3otc9o2iKRiHK5nPb393XlyhXNzc2pUCjYs/LLCJwzgrBHDTlPfnuVBtaP8kDPDg8PNT8/bwKMiURCx48fV6VS0fLysklGwEF7+PChCoWCkXeDW7s8XzZHiRXBUTPjQsyZaeZAdPg+T0Kx2LwigXqOHAggiAJFG6h2oVBQMpm0ApnGLh6P25SjVqvp5MmThk5cuXJFq6urdgYo4mk4uJ9Y3qB1xtlk0co3ADS0FB9whuC7Dg0N6Y/+6I/0xS9+0dC+//qv/zJkjSI1nU6bPEJDQ4PeeOMNI1XzTlj8YnOeBY9qtWooKTHU60gROxDjXF1dtXNeq9XU3t6u7u5uG3P6e0ZRQ8yG04gu4uTkpBoaGpTL5dTU1KS33npLp06dUk9Pj/74j/9YS0tL+rd/+zf96Ec/0s9+9jPjCFOsEpN43iDvFII0j/v7+7bswAiWc1gsFlWpVOrU2A8PDzU0NKSxsTENDw/r6tWrunTpkpqamnTkyBFls1nz2KVYxRqnUqnowYMHymQy9jO3traMCwoNpbe317TPkAQplUq6d++earWaMpmMLSYsLCxoY2PDOF1BTvkHkty/9rWv1bnP+005X2x500W/ik+wx2YAyB/4F4FQ0C0IkZBz19bWVCgUbEtwfX3dVmkRLePSMp/1QpKIZYbDYTN+/djHPqa+vj57ybVaTbdv39b8/Lwpsa+srNg2DhwS1rwZD3ovOi4BFTpr2ygs+26XLRiKrNXVVbtwPT09Nm5BogD0i86nWCyqs7PTVmzRxgGtwEZmZGTEPr8X48vlcta1E4TQGeI73LhxQ9PT09bZFovFOjNtCkkqfV/c+ZVmBPnowlDTB+EgyNDBYy5LEiaB05kzyvEQPYWD54l53SFvrg2SFizK/HIEJPdvfOMbH0hy/4u/+AvNzc3ZffBEW19c8h8KObiIjMDhdsBTgPhMAe+lDCiaPOrHyj1nxG9REkRAkkiWXgy1s7NT4XBYuVxO586d07lz5zQ4OKiGhgbl83ldv35dU1NTKhaLampqMlQEKJ3mq1ar2XnknINA0Z1S9EajUbvnbK/BlwM9YAwOKszqOOg2xYQnJiPRQvMR3CKleEBwF0SI4EpRGDR85+fv7++bByur5nt7e8YBJeb5pOjHmD55dHR0mGiuN5zd3t5WPp+vKzBJerOzs5qenjaJFxomtiFBm/35pqnl2fqNUY9y+2ILbuCDBw9sjMXoZX9//wNJ7hS5Q0NDSiQSdRvhFF48W68bBDLR0NBgEwmSfkdHh6anpy0RM6mAaE4hODs7a1uFFFVeGwtuIjEboWa2xEC0GRv79X5Gy1/5yld06tQpPfXUU4aw3bx5U9euXbO80NTUpHv37qmhoUHHjh0zRfVqtaqJiQkbZZLHmGhwlilQ/OSCuMHmoecQEZcjkYidN7YvQVa8NqSfqhDHQXT6+vqUyWQ0NDSk3d1dQ1lHRkasuWXDb3Z2VtVqVVNTU1paWtL9+/fNuYRibm5uTgcHB+rr6zO6APywWCxW1/z4MSC+oiCovb29JvtRKBRMCshz9KBV8NcTiYRGR0eNuN7d3W0LFJ7XyaTDOxpQbJJr8Er1Lh40uSCxDx480He+8x1r3p6IYHnCuV999xfU+8jxSxm/UKwwD2ebJJ/Pa3p6uk7FmM4SUba+vj6dOHHCAu/CwoJWV1d1//5942N5vSvPFSBxIriWy+X0yU9+so6vsb+/r+npab377rvG42pvbzcRzU9+8pN67rnn9Morr2hlZcUOMoRG38mR4CCoj4yMaHBwUF1dXbahAgmT7juVSqmnp8c6ZEkaGRlRLBazgM8loqDa2dlRLBbT8vKyJicnLUCR3OAqEDAIEiMjIzp27Jhef/11zczM6Ny5c3UmolTu58+flyR95CMfed/a9ezsrK5du6bLly/b89/f31ckElE2mzViN4UnGmY3btzQxMSEXnnlFQtUIyMj6u3ttcCBSCZIBJfcO8Dzv1ll96Md3qdXHCdwUfgwtvGoDYUHRFKfaD6M2TNdJcHBc374PIyMgcuZ89NVbW1tqVQq1Y3XMMT1MgFwMzY2NjQ6OqpMJqPBwcE6Tt709HSdAB9IC8+JjWCSdnd3tyTpueee0+c+9zn7/3Nzc3rttdf03nvvqVqtWiNEEZfNZvXcc8+pWCza2jmkz42NDYXDYRvlMJKAqNvT01P3fpECIaCROEOhkN3rg4MD4z8QBPf3903CxevaYdrs19O9uTbntlqtWpE4NjZmkh/JZLKuCCAxM7aGP+r/bGxsGOJNlw3qkclkDFXzvKuOjg6trKyoVCppdnbWNnjb29uVzWbtnLLMAVobCoVsa9HzUXjfyB7QGHox0aB0irekomH1qvEstZDUOesf5n7AOwQ5wWqHMR+CsEiGeFSNmITW0ODgoBKJhI14GIkxoqYRGRsbs0WBQqFQl4gXFxf14MGDOrkSins0rTijIOYUpslkUl/72tf0qU99ynwTJalQKOj69et66623TJONPHXmzBnFYrG6ES/0BqYMNFqM0yjsWltbNT4+btZaj5JM8h7ATJpOnjxZ9++DbG5tbenu3btWfPIskTbi3BFr9vb2zPoGRfcf/vCHGhwcVG9vr+lbplIpjYyM6Fd+5VfsTr7xxht67733NDc3p9bWVi0sLNgGPVMu76RBYwOHl8a/v79ffX19BoLAWbt165Yp30PABxwAjDk4OFA6nVYul7OFGShAjAibm5u1urpqI0AWoXAYyeVyRpshp8diMQM5QK89py4oavtEBOs3fuM36iwJvIqvHzGAHnhfLX45lTkvHg2O6elpK77i8bihUHSBdFIEvKDxIwmW0ZWv1IHoE4mEXnzxRT399NN2eAqFgubm5sxLisON/sra2poGBgaUTCbV1NRk/k4gT4uLi5qZmVG5XK7j/RAEY7GYwdlc1qB3F8G2qalJy8vLmpiYsHEJtigkQf4TiUS0u7trwptXrlyp09LhgnAZNzY2lMlk9JnPfEbhcFi9vb2amZnRa6+9pqamJuVyOUtMiPltbW2pt7dXw8PD7zso8AGQCpifn9eNGzfsc4ImsmZOwYCUAd/B80j8hhWEwWw2a3wSvhdcg0gkUredl8/n60RqvV6K12HyvoacVe9UwGeh6x0bG9Pf/u3fmhTGoxCsb33rW5qfn69LOpx5j4b5jpR75BFWzEL9+AiOH0UWBRP3yRPaPQoQNIr2BH//77MpMzw8rM9+9rM6evSo4vG4lpeXdePGDa2urmp1ddW2e1paWkw8eGFhwYiwiGTyuT3HggTNvQZJ49zt7+9raGjIxnx+Q9ebeGOuTKHiOUAeHeSvd3Z2qlAoGDmewE2x6tG0sbExC66SjPsIp8sjOixWwHEJLjx4Qu/Kyopx7Sg+vbQCz6JUKtkdhrDNGWZUjgCq1xzkzBMrWHqggAT18A2S36b03nx+pZ7vxXf20gvlctn4s9/61rf0wgsvPFamIRaLaWhoyOI2VALeD2PMIOLMz2JchPMGavXNzc2am5vTlStXtLa2ZnIe3hKrtbXVGj4QKxoe0FBG+fAT4TZ56ks8HldfX5/OnDmjbDarRCJh7h/wa2/dumUyMqA1jNWeeuopra2t2d9H9wuZFc+FQ/uKRprRflDsm+KIs7CwsKByuWzoDUWZ18Wi8S0UCpZfmSIlEgnjZoIss73I9x0eHlZXV5feffddk3TA0on4BFrW399vOcIbnxcKBS0sLBjlZ2lpqW70ysZ8V1eXNU2SVCwWNTc3Z+NSGhW4cJ5HRqGK6LHnLLe1tVndQdG8tbVVx23kn/MeqxTxXkTcA0/eh7RarSoWi5nE0xMRLC+V4NEAOn+/KeV/McUPAQ/Y3SMc3d3d6u7u1uXLl3Xr1i2rhqlMSTh0cDxMXoTfcPEQKUmHgMxIgfHTw4cPdfPmTS0vL9tmAoGBz9vT06PGxkaD4oN2C7h9sz1Fcegh2t3dXU1OTqpcLusLX/iCbTV4RfrgEgHdHYUjCCBdKFtYFA0nT57U/fv3rfP1HTsE4Z2dHWWzWeVyOTU0NCiRSOjYsWO6fv265ubmTBk3l8upVCrp7t27qlarhhZ4HhYJ06+VM1PP5/M2Grl9+7aWlpZs9h4Oh23Dzkt+eN5OsVi0Dc2hoSGD9r3XFkRN4HTgZDp7zgJcJ84BZ9aPewi4dOVA7SQSPzZ83B8KKxoMPqtfBiCA+oUGUExv3+NJ3JCNOzs7NTc3ZwmKAOLvJAELlIZixif+4NgWhJkgzvLGysqKLl26pHfffVeRSKTOTw1Ow4MHDxSLxcy2x58PUOiWlhbNzs6a5AGcNq/5trm5qampKQvmnkTteSIgud6/zm8vexoC3S8yG3S+FB2Mk/xafLDjjEajpjcEikNRD78M4ra3+OB3eLSxs7PT1tfhZ1UqFS0uLtpI3BfIFFfeJBcRYVA6yM2Ml/359ia1c3NztuoPAsJ7JJkGpXa8wCpcJi9twJleWVn5QGNbiji/0IPQY0tLi6ESXmGeJpRmiyKb9fzNzU1DOTs7O5XP503lu1ar2fhzZWVF6+vrun79uomPHjt2zDbA2TxmyxsOLcgYRQ+/r6urS6dPn7ZRbkNDg27cuGGFOO+HM5TP500JHbPzgYEBQ3JBy6rVqt0fCqhwOKzh4WGl02nLB8RQ7h9ng8a4UCgYIggqBdkbjp5feMHW6saNG2ZnBQkfFInvPzg4qL6+Phstnj59Wm+++aYuXbqk0dFRJRIJ4yMhkBqLxeq4kfzJZrM6ffq0Ghsbtba2pu9973taWVnRnTt3TK4h6DGIn+nq6qoikYhNs/APResNmYi9vT0TAg2Hw0boB01F9yybzZrXajqdNl28rq4uxeNx+//oNEajUU1MTNiUhzHhzs5Onf2fX9r50CR3LgGBhCSBSGawmPJruX7M6K1KSIiHh4c6efKkIpGI3nrrLeM9gXR5lXGIrB7J8bwWzy2hQ0Wfii081qoTiUSd6CAHylfdHlkhOfkOmSqZMcj8/Lwp8noIne8KIc774Hk+BGqzJFmMnFnP5nnw/H7+85/b84wpvj48AAAgAElEQVRGo0YOhLNWLpd1/vx5tbe36+WXX9bo6KhdSAIddiNoqMzPz5tC7rVr16xwjkajGhoaUjqdriOtQ3ifmZnRzMyMGhsbNTc3p3A4rOPHj1tQJykgvhqLxWwMtra2pocPH2pkZMTkC7zEBrok+PixjoxemBdK9WrxPGv4BWyysFrM+8GvyncoBL4nkdwp+kmgvHuKO7aGHpdwKPAY4VBw0mB0dXVpaGhI09PTmpmZMe4OZ4DumyIcsUPPsWKtHXSSs8WGGdu/vMNarWbdKXd3fX3ddJ1IWtwNPjfFaTabNZ4EukWMM2iOfIHNuJ1RkdcH82R8jwJBeGe7zBvdUiCvrKxYoIWTQkDe2NhQV1eXent7DSUMh8PGAWJ8REOBuTYF59zcnL0DCgHWvyniCcx0uGyP7e/va3Bw0OJCsLAEbeGeMm5Fj25vb8+eKZYyeBL6cTuCv5VKRSMjI3Y2fcPCOfMm1qAKPj4RY7kfXq/qSfZRPDP/7hlXezFJGlm/rc4YNR6PG8l4bW1N8XhcFy9eVCwWM0uZdDptHDGvldjU1KSrV6/q8uXLJn3CfSNv8Z4pztFXo4H0nLxbt27p/v37hsJ5A+7Dw0MdP35c7e3tFocl6fbt21YkNTQ06Pr161peXlZ7e7vFZe9lyRRldnZWn/jEJ4yIjV2UnxB5/la1WlVXV5fFL0bs5GpGZdvb20omkxoaGtLk5KTFQaY+NC2zs7Pq7e3VhQsXLK6dPXvWtoVjsZiN+0Gp3njjDR09elQ9PT3GK/WIPVIT58+f1/LysqHm29vbun//vq5fv25cTxoGJlLIIfEZa7WaeSI2NDRofHxcFy9etJiaSqW0sbGhhYUFpVIpnTx5Utvb21pcXLTFgoWFBVWrVbW1tZnLQrlcVjQaVTKZNMCHCRbPH0CGz8SI8gO9ax+FXi0uLhqkTdAhKCCR4C+G3wLgglIgkWS8LU1jY6MGBga0s7OjUqlkXBK4EWx1+I0SOjrIwfwcUBteCCOMd999VxMTE3YhIIgGHer9Z6SLCofDhhZ4SQZgafQ+gHhJqhBQMXHm33n48KEF9WPHjlk341XVOTx+EwhvNU+m6+7uNsSM5JrNZrWysqK7d+/WoT0o7XNA6fhQoL19+7aN4CCNEliTyaS2t7c1MTFhZM18Pq9yuawbN25oeXnZBNn4TFx0RkVeKgIkBC0aUAovGknCIRlvbGxobW3NRku+kIW/5TfGvPM8SA9FOO/Qj838JijJ+8P4EPK5PNKCnos3mvZq9pwHOA5erJVGhDvY3t5uXABIqaias91LUekFLL3YKAmE0SGJdG9vT6urq3r55ZetWORzcw+8WCzFkDeg9obBoD2ojXvOEY1Ob2+vjUxY+/bosyf6ep6NR8koVPjnaAAh7Hqk2y85YMTs/dI8CgFNwJOuWfrw2m4Us8iNgBoEmzPuiedfUqAQnDkvvHM658bGRts+xmKGzwDiAmfIxwvenVe1np6eNhSZz+e9Oj1KxWcJij2TPFiND45IH8XdZasKlIjzUi6XTemeptDzH7mf5XJZhULB0HLOGkT38+fPq7W1VbOzs1aogdSzJEJ8Z1TmzawRuva8YZoY0J7BwUGbLFA0JZNJE5PlrlOoUlQy9vXLBvxetqWj0ahRM+7fv183+uJdgLL55sOPg4mvTA/8kg1FLGhoLBbTw4cP9eqrr1pj1d3dra6uLpORwQKts7NTQ0NDWlxc1O3bt62x4DmzYJNKpdTe3q65uTnLrSwaUBAeOXLEGirOHLFpcXHRChyKIp4JkzLG/17ehU1RnlkymbTY450XmKCQh5eXlzU9PW2NyMOHD43DxRmhEeBOExeKxaIhZ6DUngpFU/WhvAgJ+hMTE0Y+7ejoMHJi0KiXYOxn3CSLRCJRx8/Cm9Crm3NZrly5oldeecX0LZLJpNLptFpbW+3l+8QFtOhHZxBRQcl+/OMfS5IGBwdtZAhkS3LF/+jWrVs2PqJ7ymazNgbjsAb1k+ALMNOmUqcrRbSOQ+d1WwjIHI7V1VVdunRJw8PDVqQRiNHI6uvr09GjRy0B4hOFynoqlapTuQ2KDEIiZivszp07ZpLb399vSsAE4IaGBt2/f18dHR3WXbGxBV+N4gGVaC4ShSuCqr29vTYCQ2eG+X8ymbTExKFm25RzyOYHf39yclLValWpVMogZJIE52xzc1PFYtGQQC+P4WFkuhVvC/JBJN6NjQ0Vi0VDL+hkKNjoIL26MarRQd4ihTmLCdyNVCqlXC6njY0Nvffee+ZXCWeJkTSFE0kDp4OgDh2F5NbWlmZnZ3Xv3j3jW5BEPdJG54vuEtIqjPVZv0bnCt4XhWRXV5c2NzcNUWIEwD1krMk/z53wula+CMXKxvuM+cYKOxZGe6urq1pfX7cRCp8N6RbPUeJneX4ZBtmM2Bkn8W4ZN5XLZbNLYW0+Ho9bAEf92tuG8X0p1NkShe9GkOf9HRwc2D/nN24h/3PPaDDYdmSxhIRIg+GLPYoBilI+I3cENJHG+UlehCCkm5ubNhaFhI9OEuf83LlzxrsKh8O2UICiNgWat/NKp9N6+umnlclk9MYbb2hubk5nz55VLpdTR0eH8WyZiIBUk5DxMvXJkQ1xttExLWa5xhfdIJMg7iw5kVcSiYQtPzEC3N/fVy6Xs8lDNBpVqVTS+vq63U+mNqFQyGxpWLRYXl7W/Py8+vr61N3dbWeK0RXnmzvDX29ubrbJwcrKirLZrPr6+mwr0Ftkvfvuu4Zwr6ys6PLly6aPRWHO2JYCaXV11QrSUqmkqakpI6pPT09rf39f3d3dtqQ2NTWl2dlZffe739Xw8LCef/55dXV1aWBgoE67DJAFsdnp6WldunRJHR0dGhoa0okTJ4yOAArGv+PjEHGL6RXvkbiCLid8uOXlZZNKoildWlqymkKS+vr6FI/HbQpDHn+cDlYdyZ3Orru723gUjOz8tpRfR/f2IPAREAFELRUEi0RHMqbLZtxx9epVFYtF41CAKhAU+TnRaLTO847DRWebTCZNpRg0DYjbEz75zEDaJFuQFwiQdL2gBjMzMyqVShobG7OgwT8DmhAKhWxLkcC2uLhoY61SqaSVlRU1NjZqfHzc0Bjf3QMLe1FTOBbFYlH/+Z//qU984hM6ceKEdRmeW8JIyf8cvh+8GBJGd3e3dfoED8x1vU3Czs6OdfcYyVJESjINH88BSqVSdWgRz58CFqSDUdfMzIxtujCmYiznSYd0FJzTlpYWFYtFS0Qe/aEIBP2ic/YidydOnNA//uM/WuH+KPTqxRdfNINPzhbPhSLOj4XpPhmH8Nf8HfDJy9tp+LFZtVo1dWg/zvKJ0fOh+H5+fEJxho8fKBSokzcUh4PBKInz7a2G2IoFpQBdyefzxlGEC0nCePjwobLZrBU7JAeE+ygO0fZJJpOGoHJmvReoV0R/8OCBxYy3335bh4eHOnfuXJ3htv/D+JEzSYHEyI+Ewx2iaPbWPwRrEG+Ixr6o499lA5J3Qjxh1ESM5bN4T07GGXNzc5qcnNT29rYVWsQovznpPWRjsZjJ5Xj+FY0xBb8XfuV5EosfPnyob3zjGx8o04C4KDI2Ozs76unpsZhFIwIiPzw8XCcCS4OAZA0NoaenIAVAzK9Wq7p8+bLW1taMKwgqXq1WTcSaz4ZeklfpJ0GSm0BJ0um03SskTIgDxGlkd7hbLE9wT0FDKOpoSHCrYPoBWg3CRdHGZ7x586Zxf69du2Y8KiYkxWJR4XDYAAVyGpQflhCgR8zOzmpkZMQI/AAIWO+QS5ka0Mx5agY2cidOnDAO48LCgmKxmE6ePGlbd57CwliRQtM7hOzs7NRZoSHBgsUW54L3hW/p3t6eSZxwH+A1UwRx1tne5Z0SO0HLiFFISkDHqFartvACzQEUeHR0VN///vd19OjRDyfTQKfq+SOet0LB4JEIih3GBuhOQI5kK4Ggkkwm7eeAOvziL/6iITZ3797VzMyMjSaYR3tp/mw2a/YwmFoi8EgHCoeEUSGjJmBeLhCwIwmcpMn3j8VidURyxohsP6B9420RuLzemJIDVS6Xtby8rGg0qnK5rIaGBiMdUkgCr/oxJYVTPB6v0yvzG2ee00KC9ltfoJHAy83NzZZcKF7hrVA8c5AjkYglFoQ04X5QFHR3d+vUqVN2FiikQCtqtZru37+vhYUFs2Xhe01OTmp5eVnr6+t16tck15aWFtOBgl+3v7+vgYEBnT59Wrdu3TLhQngV3oICVAzFbC+qy5bck6xyKGA8QgUhHVSHRM26uN/4o9hn5AQqBHrgGxY+TyaT0cDAgAWs+fn5OlFVGgBfeKRSKUMsKEo4+9xtigb+4wV6vSI4aBOIG8hdIpGwuwwStra2VsdvgufhtwZDoZAlIO+lyBYU94r7QFcefEZegoBCEk0zrwHl6QneQoXATiHP3yeh8JlA5bwYrecdeWSRz8JWL1tuFAlwt0gknjQNWgWlgHfCCL9YLNpCBtMCuKWMjUio3PulpSX19fXZ8+PnMvLzTSSkckarIPZo2z3pbvh3g/sFCYrfR2G4srJixZ03hy4UCmaSTkzHnJmCkdHe8PCw+vr6VCgUdPfuXSMge7Fh7sX6+rqmpqYs3lNw+rMwMDCg0dFR0+0jscNdA03jTnJHKJiJB4wdKZy3t7etGXznnXcUi8U0PDxs7wgZB84zDSaxr1gsWrwjV+Hth14cTgTEBeJ5KpWyphgx4ytXrhgCSjFILkTzrbOzU7lczmIKxQMIsvfH5YzCIV5cXDTZB9B1YgpyQtBxaIRpFmk6xsfH1d3drVqtZpQl9BtZbpibm1MoFDLZo9u3b9u/f/PmTTszftsX0AeLP6y4yuWyisWivUdABqYbfrxP8bW/v29Tqw9FcvfqtTwU35H5gOvF4fx83m920f2y5p1MJjU/P698Pm8vGLNfL+lw/vx5nT592oIeo6FCoVDnmUcVnU6nbbvNK2TD70C5lc6ajsuL7tGJB9ePPdnfK20TGOkivCyDl4HwYyFE0RhlMPf2/DAKFS4PB4/xAURvCgeKYZAjj8qA4vntMoI5Gzbe246Rkd/U9KbJBHy+K5IJaDNRMHHxQAXhiXlV7HQ6bZtb8/Pz2tvbM6V7RgcYTHNB8JOC70fnffz4cfX39xs3BsV5ngXvmXdHAuJ3ggo9ySqHxOj5M57n5HVfCCZ0fDw3Ony/tl2r1RSJRLS1tWX6MaDAnhCOT1oikbDECDcEFeNkMmmcN8ZRCAXyvCj8Qds4R6B/fnTn+UJsrsET4z6B3mxvb5s3KGfUP2/fjHmjak/8Rhh3fX3dkoYf63kCsue64HPmt41pdLxJLVwzLyjI+fKjYv5Zj7x7wjToPd/BE8rhM+IrSKAmnpH8KbiRboH7Q+O0tbVl/pJra2s2NqKZ8tu0UBA8KgpdI5lMGkcV6QPOI++XJozY097ebuKSXg7ncU25t07zfEfvC+kNfbHI4kxQjHreDdQHBCi9RMjo6Kg9287OTg0MDGhzc9P0ySqViqrVqr1fCp/u7m5rauBd8W4GBwetGee/vTJ8W1ubjh49amLE8M08fcT7DHKfyFO1Wk2Dg4NqbW1VuVw2xIxmi03YZDJplJXm5maNjIxYAYRXLMUIaDj0Cy8PwvuFrweX82Mf+5ghyYlEwqYXFJTZbNZEYWkcuQOeN4i7A/mO2gGUCekiChsQIu4slmjI8rDc4CdIbMUiqIwUCgUoWmLIL/Gd2ZaHH5dOp63YY+mLyQl6Waurq3UNK8+EAhtk1eu2ZTKZxzbmzcFLAueAZAnhlGBLV03gxTiS6tIHFa9JxCHPZDJaXFysE0Ocm5tTPB7XqVOnTFsDFA2kiEo+nU4bT6NSqVh309/fb0RYb7HiL2Q2m9XTTz+t9fV1TU9P1wV8vp8/lL5gArIESaML9EJwftsSnSOKF5IJiEIoFDK3bhAHgq/3A+RnBosukovXUaIS59lRYPlChMKLwwVSB0F2ZGREbW1tunPnjlZWVqwQjcfj1u2jdcVmVk9Pjynznzx5so7Pwztpb283LgBFEhteHGjG1N7ixROdPVkSMUd0knAB6O3trQtsFNeY4TKKxXgUIuvOzo6eeuqp92mXBf94KQuSNO/BJxXEUz3SAmrldW746xRB8A5I9OghofHCyMBrO4EAYPzrl004a3TUrDKXy+U6k2dE9eB8eONVEjE8IhDN/v5+RaPRug1N7wdI0OH+0ijxfPwGLeeXv5/L5awTJ9B6zhRFG2fEI89+acILc4JW8r2ISf6ccdc9WufNheHFMbYGUeEcgCrxGUiQGFyHw2H7vJCk+T2M4klg/Me7APglD+4B8Yv4wWiQxBuLxayB4O+x9YnILeMY7qwfTVN8vvTSS09sPrwQr0c+KZ48X6itrU25XM4QbIpkFh8o7srlshkrr62tGWq9v7+vkydPWp4BnW5ubtaRI0cMdahWq/r5z39uHrPYDJGDMpmMGhsbNTU19f+x9269keVZWvfyIRx2hOPkCJ/tzHQeKrOqq6umu4U0DAwXCFpqpJHmihsQ4oJPwmi452I+wYCEEBcgbhgQmkYzNA1NV3dXdVZWVh59tsOO88Fn+71Av/U+sWqH09ld6OVlvKVSVWXaEXv/9//wrGc961kDliajo6Pek4/5WSgUbGFhwcXyU1NT/p34psESsq/x7nAbpyKX3q2lUslTwrOzs5bNZp1VheTAHR8tGQwdHTo4t5CnwFRTiKPkQ6lUcmmMnluAbPZPPee0wo91p1kBznyCAs41WC7ScNq7dHt72w4ODmxlZcWDTlLyfKb6KNZqNfeEJHvG3oCpudoqYQDLfknQQgUxTbSXl5ft7t27dnR0ZPPz844ZSJsuLi46ucK4UHS3s7NzbSXheFJH9D/8wz/0DZ5B2t3dHdiM2RQuLy+d6tza2rKtrS0v8eYAo6oDcTLCOVA3G/d//s//2dLptK2trfn3PHnyxFMduKoqszI+Pu6TdmZmxh14u92uzczMOJU6MjLiZaTkUom8AZK4hZO3VW2aWjtweGiahUmp6Q42CADT3t6eV9Lkcjm7f/++pVIpe/78uY8ZwLTT6Xg5LOxCoVCwfD7voIXDnHtik2eiqyM4G7oe6KR31XCT3DOTVSvcNE3EQU0UxAJhI6lWq7a1tWW/+MUvPEoitYEfDj5YmvokukTnRIUiOg78uJT+p7qFzfDg4MBZUgU6Chq0Mba22HgXgwWA5GDOZrNuB8Fc73Q6HoECQHj/ROewTdq0ulqtemUNtgTcL10QqGYiupybmxtokguIwcuG+U3DW4Cy6vHYXLWKUueJNm/VqhvSyugRNN0Iq6rvST3bOEQAZ5o2IM3Md9CpQDUVtKXCsFDTtESpfK4CQGWyGGfeJWte2/uo3gi2C/CvthiMlVZbwiZG93TA7evXr90wkjWoDeTVTBEgPTc35yAMUTQHSKlUclCjz0LlaPR8I02L+Df687FP3/Qi6GIdaeugUqk00KYMTV21WvX9m+pCmBu1bkCmweGJ5+DGxoZX583Nzfl+RMUZh+KjR488i4GlAj5Zjx8/tlwuZ5lMxr7//e9bOp229fV1L1xIpVL2wQcfOCPy7Nkz36+vrq4GfNJgdpTZZT4BojCaRS7x5s0bB2GI6GE2FxcXHaADTrlnCAa8HclwdDoda7fb3h2BQgXd8wB4NJ8HEGFBpN5Y2q6LOaw2TjBMhULBnjx5Ym/evLGf/exnbo+0tLRkuVzO9YTaOozCAPZ11q4a6WLU+vLlS9epdTod297edtJC+ymSNcP+ggzb9va267YousLkGvDIGKtNBnsvTPLnn3/uBTu0MRrG7o4nmcV99tlnLnLPZrO+WUCJUxXIxOEQx1vp0aNHni8mVcKBn8/nPTXEYLCREV0R8XQ6HVtfX/d0B5saHc3ZsH/3d3/Xpqam7ODgwAVtgB5ePhTmmzdv3GsGe32AAxs1SJ6cOwcG90dkpO7LRA9MdICGbl5oT/hcJhMTj8iVyKrX69nGxsaA7ou0l0b7vFz1HVE9HPQ9kxtGCUE7GyqRDgcZ90AajZQf44UAlSgNMEl0iKYjnU57E3AAMIBJ236cnp46U/PBBx9YLpfzdAbjSZXLzs6O9ft99w5i3ADrpFbIuzNWCrJUcM/8f9e1ubnp7sjqGRQPNkr7ma/0FyNA4ODnMEKbCHiE6lYBPCxuJpPx+UfqgQ7ygHc25YWFBbt3757t7e1530M9zKG/EXbCQEf9H5s46ziyoWoCyhjzdyqaZq4h6lUrAE0/7O7uugkh30uVF/OfvoAcAGoNQkpbARDvnUMQcBE9ewCDzB3WinrjsNYBaTDPzDXtrwgIVbaT59B0LWlhQDhCXUA8mQTYBwIv2IFer2etVsvTZOoAr4UypLL6/f5A6yyYIIAiQmqtULsuRcha116I2goJMX8mk3FjThhZWGUCFQI+5uLZ2Zl98cUXbk7KXkNAQ9CCySt6KqrS79y54+zSysqKPXjwwPdEPmdlZcXXBvNRjZNJR2mvUNXlImjHg6/T6QxYrTCPOXfUyocMAqlHROG8c3rz8c5Zn6TLyDQR4FC9S0APGGcsCZJi83fOWtKNyFkQ0hOIMU/GxsZ8zhFE4s3FmakkBPdCQRwpeAAxLG6n07GnT5969qXX67mkh0zK4uLiQIETAXqz2bRut2tPnjzxtYtgf2Jiwr3KOItfvHjh7BiEDPpA9i3tPELxD/MWLHIjgHV2dmY//elPvTpKq+2IgokWcedFHAzTpKwH5l7aVw6Wi82k1+tZtVr1iYQb7dzcnBuLkXYC+PD5qVTKvve979nJyYl98cUXls/nrdVqeZkt+Xn8Mmj7QHuPo6MjK5VK9tFHH9nCwoJv+BzqlHuz+JvNpu3t7dnx8fFA53VSGd1u17VZ6iOWyWR80o+MjFiz2bSvvvpqoCoJOpcqFdKSAAtADe+BKr9Op+MpjFiuSgqBiTExMWHVatU3IiI0Kt0wOCRfjoGntjHgeT799FO7uLiwX/7yl74hcmjCCgA8NzY2bHV11Zm/+fl5W1xctNnZWWu323bnzh1bWVmx5eVlN01stVr28uVL+9nPfmafffaZra+vW7fbHQC2THp9byx+Dn4OIKXDYzXZTfqsmZmtr6/b8+fPB0AEkap6Sk1PTztgZ/1ok2GN5ABYsDvb29t+kGrDdQxhaXPEpgzbxPeTWjg9PbW7d+/aX/trf83+zb/5N57ee/XqlWvzSN9RtEJ1GnsBgcfq6uoAoEJnBuOgRqatVstTGmrCqWkJPjuyFETvmP3xTtHDsEFzqJPiZS+AnaLhOfYQRPqMMcENBxjmoQQ+GgBp4+1Wq+V+ZBzEHLJqWozXEMa6msJUlhzWBlDIukVc3G63B/bYo6Mj9/T56quvrFqt2rNnz1wYr07trA31YWM9jIyMuAs3DBpzkr0aG5lYrTnMZJQDi75uxWLRWXoOQrQws7Oz9urVK09hTk5O2p07d6zT6djR0ZGLkxHEw8h8/PHHtrGxMRDAEshpZR96vAcPHjg429vbs83NTfv+979vc3Nzlk6n7ZNPPrGxsTHb29uzQqHgDP69e/e+AZBHR0et2Wz6++NMuHv3rlctss5ZD0hCVE9FAQPSBATc6PBGR0ft7du3dnR05GCG1nH4OgGiVFPKHswZwvnGGltaWrJKpWK9Xs+rw2HCIRao1COVhyQCiYcWQrBPMcchLgj+6blJN4JqterrVHsRX15eeishQOzS0pJrolgbaKhXVlZsfX3dP6vf73v7sh/84Ae+ZldXV72P4OXlpb19+9Z7Rh4dHdlf/uVf2osXL5yJJDglEOW8VS02bfB4JjJjN+pFSCoMEblGNeqUy/8TxQK+oPdxGcZFlxeFHkRZH3KbRI0wFMVi0crlsrVaLet0Oi6+jm14RkZG7M6dOy6u1P5ElP2qFoDqOA4qcv3cGxEI90Z5JpEyGyoDSiRJlRsHhYIS8vRbW1sePdBPiw1uc3PTNjY2vLwWilxd8HnBiC7ZRNVaAuBJxDg3N+fsULFYHEhrwAjATMK2aNNa/LHUTR1w9+mnn9rGxobt7+87eNBO4+gJRkdH7fPPP7ePPvrII3ZaZVAx02g0bHd315rNpu3s7NivfvUrf/dENarV0sNI2QWN1DUdqB0J9BBChHt+fm7f/e537cc//rGPU9JB8gd/8Af21VdfDYjWYQq0xF/bR0WXbNrJwGhqNSMHGZEyYAQmAX0MBy5VReq2D0vAvKxUKt7mg1SF9vXTFBhCUhWOo8MjQi8UCra6uuosHYETewDrjnfFhs38VINW2D4OUdYrAI3qYPqYcWhpqb4yL+oYD7BWM2JYW6o92XP0u7QVE1WoAMRY+QzQ0lJxtEWkfdWzSxtQ846ohALooI9kTFqtlh0eHrpNA7YEGxsbDtK1bZSK/2O7KO26wdznoFBjYH6Hqq3JyUn74z/+48RehBzqDx8+9JQ4zEQ0sWa/ZE/ks6n+JqXN/dD7lVRUOp32uQyzAaNMQQiZi8nJSW+rwjpij+n1evbkyRP70Y9+5IVXuVzOD/VKpeKsB4wiTD7BFOmnjz/+2M8SXVME/cgqAFMwKoBfUnK0ioE9RH8Ew0N2R4sHCEja7ban0QF1gHhN62swT4oOAByNV7WohfEgqKJpNPsEARPMLectZ00qlfLKZ3rkjo+Pe1sc2ungos+eBovNPmlmrhWlKI1/kG40Gg3r9Xpekfr69Wvb3993lg/Ch3kLQaIyBtYIQaVWOTMnsDq5c+eO/emf/qndv3//ZjYNKm7VPllqXKkicCaxbkzPnz93SpOKo6WlJVtbW7P79+/b48ePXaAMLUleGxZrb2/PDxMQOVV7bHiUAFOBCL2ZyWRc2Ay6X1tbc3MyLU9GC6JtF9hAqLrAGkDFfs1m05vLAnQAf7u7u57yovSVSQfrRGk+qc1iseiLhvTc7u6upw4v0F4AACAASURBVLwAbOgIyP3ib0K0o4CiVqs5EMFhmkIBwCUHPZujip9xiP77f//v2+eff+4Ryfj4uB0eHtrr16/te9/7nls2ENl0u127d++eLS4u2sLCgv3oRz8a8CHj4PvJT35iv/rVr+zf/tt/a0+fPnXmgQpRFYqryJm5x5iojksbHeuhG4sRlIW66aW97M7OzlwjBCug/TrZXNhg9Pf39vZ8EedyOSsWix7ZP3nyxGZmZgYiIxhGIilSD5qC07QR4OHs7MzXEZu4zh3cy3F4RoAKE8aFPlHXPWkgNQYFXNGyhc2djgcEO7VazVNKMFOwS1ipkBZEQ6JpbtgdNQ8E9ALuMHIkjaZ6smjDoml3DQI1LUdKCJCL0PzDDz/056XyDe+j0dFRB1vcO9pDApDHjx8P2HgAAmu1mn311Vf27Nkzb7Debrdte3vbgYCm69WvTA2G1VaCdcD6U/8tDmDWqArBrzMZZU1hyky6jEALJp65CptDVaA6Zy8sLHjvuFwuZw8fPrTl5WX3Qup0Orazs+O+co1Gw169euXBF71iKeDpdDpuYUC18dOnT+3Nmzd2fn5un3/+uTP4pN41bc36ZT5Uq1UPJjFU/fnPf+6pdVh1mP+f/exnXj3PwY2OEgE2QOH8/Nzu3r3r2k0qPnO5nP3Zn/2Za4kfPXrkQU4ul7Nf//rX9urVK2s2m76+ouG37kVbW1s+1ygS6/V6ztRhEAz70+12Bxq7w7IRXLAP0B6NDEw+n7dareZFFAApznBc+1nvZIA4c/P5vK2srNjOzo7beKRSKfv444/t3r17A/YL+AT+q3/1r+zVq1f2+vVrD1rBFwR5/N7i4uJA+lbBaCaTcYaSdYXRarPZdLAFmGcPvjGDRTpCoyGNErU6Co0Dm5FG8AA1Nnw2KlJR5XLZI5/79+9bPp93wRsRPeCAQx9/KRY9xnyk2xTBk1KanZ21QqFgOzs7zoZQck1PvbGxMadv5+bmHL1DL1KCzliVSiU/EGDzOGQwbwN4UJLLxIf1Y+MDdGgFEi+QZ8LxXTd7bcqt0Q1jATLnAKMhdjqdtoODA6tUKs4kaV890iBsPtD/tVptIBq6uLiwjz76yBc284CJ2Wq13PWX8unXr1+7QFVF6hx4fC6HoqbU1BOM6E0r//g7/VnVWBHBa1Nnfv4mDNbf+3t/z168eOEAmPQPY6zfgT5L74N7Ye2oEz7gYHZ21jcZ+l9mMhlPE+DHBKMKeNdDlTWojt1KY2t7F6qjYElwVB8ZGbH19XVPGZJ2QSBaLpfdpwadJVEmDA3vRucmOiuCIp3njEeMIrXcnzHUClzST9hioHlSXRUsBJE385TvIBjE8JaqWsxSGU/+H+Ewex1eQ7wbAiztgqH3ggYV9hMbmnq9bs+ePXM9Kf/wvqiApVSfsVJAxL4LeGFt6vxQ9pLAURv2MqfYC/7ZP/tniQwWKZQHDx64DICzRBku9cVjXQDoWe+kg0kLwfAw18rlsrOceGABUBj/6elpF5PX63VnbBF1o416+/att+/ifKpUKpbL5TyAAfh98MEHXjVGwNRutx1ss6eQWQFcdjodr6JXs190VjD9Cm7RlbEO0CQTvJdKJfe3uri4sLdv33qai98hza2kAPsAPXKZ92oCrsUgBEs8F6CKqkfdv3gm9H6c76Ojo7a4uGjHx8cOhBcWFiyTydjz589tbW3NPvnkEz9Xut2uTU1NeX9TmmBzpjYaDSdN9vf37eXLl/b55597xTvpf+alNpFHP8y8Zp3CuLJ/YKDNHgkmoeWbZtHGx8dtbW3N/vk//+eeKn6nD5a6/bL42ODUt0YXdURw2uiSyFTtGqrVqiNG8q60yLl79679jb/xN+x3fud3bGFhwfL5vH344YffcDdXR+ekFBB/pk181SqfCb27u+u6gadPn9ru7q793u/9njNitDppNptO62O0iZ6KtAPprNnZWd/QACikL2GA2PSI5th0SPFoagmtz8OHD50+BVnzfoggmTTaFJgDjwkzMzNjH374oa2trXnDZUrIGS/Gj/HS/o/KGFERQtUT4Pv58+f205/+1P7yL//S/uzP/mxAfEzZtkbWOnf0EIhgSE0+lU1SoBPND+M9xwg86b+vi9bxV1NWQN20dewiC8ziV0BIKpWDmRTExsaGz4HFxUUrl8tWqVTsk08+cdEq7RvUq47NLa5jxhXXYqLi8fFxDyI0tbmzs+M6q2q1al9//bWtra3Zo0ePrFgsuocObBdGnGgC0XtwWNEqBU0O7AYpStLUylgqq8J+QuCDUJafY52ga2Hs0YlQ7aXGnjqn0BeSvnrw4IGzDBoQ6X7DO15cXPwGE4UukbWtPfu+/PJLe/v2rf385z/3Q4HNnzQYGQE+B08fgl+eLz6PGh8quNe1FOe7dqMgoCOAJE02LNtBH0VtX8YcolgAEM1eUa/XHVSpvlYDqmazaZubmz7mSCdw6f9bf+tv2Q9/+EOvMFY7GgLm58+fe9XXxMSEr9vPPvvMu3IArmBKcHHvdrtWLpdtYWHBms2mHRwceIup3d3dASsOAgD+Di3emzdvnA2ZmJhw09FCoeCpVO69Vqt5NTxeiQT8sI1oz2i/pWk6miajPYQty+fz1u127eDgwKtQtUACWRBgnXWlbbZ070D4zz+8Q55/fn7eLi4ubGtry+c/1Z+0VFteXrYHDx7Y/Py8lUolm5+fdwsNzaTw/59//rn9j//xP+zf/bt/Z+vr676H4PmFLRKsNSl9Uvkwn+jOZmZmzMysXq/7z7Kn8A52dnasXq/7nMGaAxAZ9aLvZLBarZankFi0ClRYgAAdFoamE9XlVX9OIx5N7bCQ2ehIwamQfWZmxu7evWuLi4v2ySef2MrKij169MjGx8dtZWXFQcf/FxcaDPXHIGKjaon0Y7/f98OUzUdTDqDqpIORyIzUCizW4uKijY6O2t7enrvB60GgNH98d7/ttbe3Z//6X/9re/bsmf2X//JfvAQfj69arWZ7e3u2v7/v96T2EVreqlozFaszN8nxU2GHHieTybiNwLsaNRNxqfEhh8snn3xif/7nf34tg/V3/s7fsefPn3vzbT289P41UCHHrylMGFbEkgBqTe3xfKTRWBuqn6FSq1AoWLFYtJWVFcvn87a8vGzFYnHAwgFjWVjY970ODw+tVqvZxMSEra2tuYaETVjZOg5YTGIVjCjrDcDS8dYOBGgSdW8hZcdnMRYEagB51YpSJURhANVQqpmLhRLDRN3vsy/88pe/tM3NTfvyyy9d8wJIQF/YaDQGmE8CENUcUgBEFA9oUdmGps+jL5uyW0nzGmCLTIExOjs7c/b0j/7oj+yHP/xhIoN1dnZmT548sdXVVTeH1Opw2v6QSoNBBPDA6gG+dK9gjWCmi16NjAbsyuXlpT1+/Ng+/fRT+8M//EO7f/++raysDDCnBLlkDEgZEzCrTo2ACdsY0uRavIE9DJXlz58/t4cPHzqQWltbczaN4iHSacVicaCgot/v2xdffDFQHby5uWnHx8cDVcn0xgQUaJYJcElanQzK5OSkm66S0lJwjvaL/ZW5AruIbjKVStmHH37oDCINxUllwi6qzk8DAU03Qy4kNRF/8eKF/cf/+B/tP/2n/2QvXrywRqPhqXsYXOa/BjtqtYC/o1b/c05oX0qenV6XeGhitUNREWxeLpezWq3m82Fubs7+5b/8l/bgwYN3M1hq0gfwUWZIDxN+jshJN1Gt2tLPiN+jDttansxkYrOo1Wq2sbFhExMT9l//63/1kkvtR8dGrgBOTQjV0h+vGtKNsfUJ361aBRXXsvhHR0e9ZJjnwNuDXLTqf1SMzsbIf8PoaVSsndHZsLg/JiaTVMXS/A4TJJfL+XtARKlpONJ/gGLGAq8sdB4TExNuaEnDzO3tbdve3h4Q+e7v7/u71co/fq/f7w+4y2t/Nk37KbhnM4zpSBgQWJlh3QkYvzgfNU3yrguvGTZnQK6mHSNbqpWAmibSFDjzj7HRAENdzAEmABDsKPDPefXqlZdBx2bKalURgSF/xjwiha0H+cnJidXrdTcDJPLkfRDZoXFAo8HhzrwF5PAduuEyh7WAQQsXksZY/0wLNAAIBDasIQXzAB7V9SX9PgJZHXvK7bV8nmfCA7Db7XoLjjjfWIvMR91z1PKEfYADEoZT9ya1l2AdKRv8ruCD30FkrE7kZCCGfQY/m8vlvIhofX3d575WePJzzBdYAeZZsVj0n41nQLFYHGgnhmYX5pROCD/+8Y/t6dOn3kIFJ3hMRh8+fGjz8/MD5r9osAhCtLjr5OTELVb03fHPgwcPfO//23/7bzvgI4sAcGTOcZagSyOFNz4+br/7u7/rQO/s7My2t7e9Gp7iLQJsdU/XFlkKigA0y8vLVqvVrN/vO7ukliJIbPCg5PPURJl/EyBo0QrfpbpF1XEri8+/e72e/eQnP/GWNoeHh+7Vh6/m4eGhFQoFW1tb8/NxaWnJ5yqMu1qnkBqdn5+3QqHgru9LS0u+JtCcAbSYo8wtlUk1m02rVquuz2TM79696ynPJJB4rcidFxwPHT0s+CJ+RunnpGoWXZBsrHpoxEoY7WuF8JZGsNEokcMgqalrvPS7ASjqBkzuFa8L/UdbYihNz+YMYNCokg2SDV6rPzRqVnG9jpH2mYv+RGxECrr4vjgebMLan011TjAkarCogAwGSZsnI8Zl/PhOrd6J70PTZdyDasWU/VGn/TjH9D5jcUJM+ynojvMZ/c4wmjcJZPHu+Vx0coB8dRiPGxUUNY1TuVc9gFRkzGfxXWpQyrskEt3d3XXQpyaiOiZEawp4daw0VcD6BhBTEj0yMmL37t1zPYV2K+D3NG0LG8e6Bfzx/1TXqvuzHtCa1kfHwlyB6VEhOffB5orxse5dugdw8RzRkV11Kvrnylbrs/PnFGvEQgC+i7mpFak8A3OAXqHqkRfHLxZtMG58l2ozk4CSttyhdYjOY0D2dexwsVi0u3fvesALSERioc2fKdrQ/nVHR0d2cHDg2q10Ou0+VKSW0ILi0UUq7/j42G1cRkZGvPjoF7/4hfvEEWiiy8rn82638+DBA/v+979vr1+/tp2dHdc3YUuDjotgn3Rz3JOYv9j8qC8cawsLCHSImmnADJUiLtKWMR2NzAQLH+Z5ZHQnJia8kADiAqYS65LFxUUPnn/+859bvV63ZrPpABbzY8As6xqH/ZGREdvf3/f+sazPcrlsq6urLiHBy40qWcAaKTwzs1evXvmYog3t9/u2tbXlHWZYMxiK0xWC/QktJe+AKtxWq+Wa1cvLS/88bYRO8EhWTFk+lfzwjldXV73B9nsBLI0edRHrYaZag7j4lLVJOrgUzSsY09SYMmf65xqRs3moeBjmbZimJhpOqusxbIgyKnqfKhTW8l29Hz1YtMO9gq24wcdNT4HVMJ2Q9ozk8NbKqFj5o0yNVthpsYCKyNUYUQ9CNZzkGfWgjimE66Jn1XsRKatujsOQ+aiAnfvizyKTkfQdkVl63ypCDg0VDQMSVTOn6UIADdEqRRgKxHUOq69UnPtqOaCWHMwn/okpVh0HHNsBbPFneBYV5BIxq3EqBy/pA56J+4njENe4plN5vwoyVLOkB4zacihg5P60cESbvusBpYFjZKTjXFGtoWqLtNSbdcDBoHYPGsHrAajtf3TtaDAAUNUepTo2Ok+GBTFJbYzifqI6QphvnjNpDsZsxOXlpT1//tzHCC0MgSopHTycYDZJR2lKWHVZ29vb/v+ZTMaq1erAPgXDxNgjsSBtSRqKA525TFUivfeOj4/txz/+sRtyoh1SSQL7P9YJmp3RoJAzj5/R84jKWAJg7cKhhUkUaFH5HXviAiL4HNVAaR9ZZUXZD8bHxz0Qm5qasmfPng0whSpBIMtD4KzPjLaXBubsYwomqbBWOxaqkkmDopuDaVZPPEAT3pIAdeYqqVJtx0PwwdiwJgFJvFMA397enu9XzFu0o7x7Amp0fFxffPGF3b171370ox8583hjmwbdyNlMoocKwEEjRz3E1NcnbvQaacbqlrhZaMpAPV2SrCSS/j1M2Bm1YXHDiaBKLRCil5DqcKJ5JX8fN9/rQIfmmKNIW/8sMl+8E91UIzhVO4cky4KYWtUxit5CEQQyZixMHXcWIYeIHlZ6n5rSjWOl9xS1VEnvVwsykpzbo/D3XTYNEQgnFVdEDQ+pW02/RX8s5raCEP5OG0zz39r/E3YnHrhqn6JeTAQVSetGWRTSdnw2my4HJmkcTRNoKi0e8Fp8EdlmDeJUX6UsuZacR12XagxhXbFOiClS7o35wXtRAKZpNgXVOlcxbFQ5gTYVj/MyzosoA9BUXNwno7ZSHfI1FaMsbny/ccyZH/y++tjpGrwOYKmlzfn5ucsDtPG66oJiY2/tO0uKBqNpWulQqVosFn09swYALFR/YuqM6TMgDgCNmJ6xh7Wgl+nf/Jt/0168eOHmo2dnZy5oVtNiWCMtEID9rdfrvu74N3+HLpFnmJqa8gpRmhoDfs7Pz90fChaV/6YakIBXgyKejXQ17JNWWVP0pOwlVXTazBpNI2Jy2jshwtcqaM4snhGQqUVZkBL0btTG5+q9hkO6thvCx4t5R4sjdGyaviQonJ6e9nZbusZhq0mdMoeodidYYO/BfoPKV/qUMm7vxWDpQapRj4rUdAOKlTVK6+vfKcJXg8B4SEe9VyzRVmARP1c335tc0eclKXplE1Kd0LDPGvYcym69636icaRudPxZBCR8l9oXxEPoJiDqOmDK4aktSLRlRJJgnQMLgMmzxPx8ZEJVX3PT6zpX9gjO9SC/qQYr3msUcQJ49PN4J/hTKdOk/lgKqqKzttpXRBZGn0X7iing02djw9KCFQWfynypka1W9ZVKJd9QmXtU8Wh6Uc1xASlE43q4a5pED081PNSqtqhlUmaNasWojdT9CBCpfnjMSQVzOna6HlUrpUafmpLT5s/KRkZhLp8d0+S8E2VoVB6QtM/pZ+tcj8GW7qcAN00/676vAdx1625hYcGBFia3WAzQoQFzY9Ke2iNPWcZ6ve4ABtDEvcFGaUNp7h1wUa/XPaghwEcXiOM7lYeHh4c+DicnJ/bZZ5+5YPvXv/61AxgYHgB/t9v1A5/0WzabdU850kk07AZYqJ4XVpw1pWwxsgwKXXj/BKgwSKpP1KAIlkmzLZwh6nXIZ8TiEO1dODo66vZGrHuc2bV/qhok865Y07S6ARiiYaQiUTsr0BcXTzvAEBptvg83evUL5Ls1MwWw4plJeVJQB6sFQ4UEiLOeTiqATwxymfc3apWTpH+JB59qAJIOKK0W0MOblxbTSsNal7CYWIAapanuJgpbVaz6rhYoUSgbNxH1BRnGlgy7NH2VdPjHDXZYaktZOz2YdRx001Z90Lv0aMO+XwF1fAYtl48ReCxdT3JMj+kIDrphaT11PL6uMpD5ysLQiF0rqaLWSNNJN0kVRq2NApZ4OGnUTG8uZWxZ8LB46v+l465RpwLpONY6DjovdJ7oWo2C1GggrL48x8fHA/oSFVPrZg+I5FDggIvpPk0f8t70fuMYx5Se9oBUMMp+RQQdG3xfB0ZiAKLvVlM3ACpEx6pp02dQoKhBpFZJMg6qr9OxUSNOtQbRvTRpj47zVcdXQTH3os/JIaa2GzexL5mYmLDl5WX74IMPrFKp2PT0tO3s7Hi/PITosCz1et19jyjUaTQaVq/XvUx+f3/fUqmUNzXn3ff7fZ+/pI80UFG2lTJ8+sytra1ZqVSyRqNh5+fnNjs76/Myn897sQgMBU2T8SPTop9mszmwHrBF4P0uLS1Zu922L774YkArG7MRAI7V1VUHUwBO5o56tZF6VQaWgAgPLYCPrgPdu1W7yUXajnuF9cFagT2bs5FWd2rGaWbWaDQ8HYoeDMa73W57M2wNMqmq1s4OX3755YAeiz2TimBSiDBQuKm3Wq0B3bLqnzHr1mcnXVwoFKxUKlmlUvEK1729PavX6w7AaVM0OzvrGsLIVr+TwSKHqUxWPPxUoB11TUmRFYv7Oj2AAgoGM/pvqaVDpMB5YUSkSVFejPiThNhK9f82VwQdUTsTAWlk1WKFUdRf6LPEis8kEe9196l+ZWrWGd+nlrTrnyuTFdkxZQveBZZ0bEhXXKfdimymjjOLSM1WFTwO6094nTZRe21G/Ux8DqIj0h/KMiq4UeF1ZFBiIKPsMKklgA9CezXYgzHQqimeQVujaLQXgwE9FFQvpl5PbMCURivYVV8loknV8ekBwnckzfWYimV9R8ZHXc0VNKp3HuPHO9WqK9XEKDCNBRqRIdK/1/cQ903ui30W3x/AmgIiQKgCy6hVTUqLq+Go7h0K+pg/usZIY3EwRt3qMG+4L7/80qrVqgPfmZkZr3KF1aIhOMCNlM7BwcGA7gVBP8aY9LgEMGh/Tl3T2BkAci4vL+3Ro0feE/fs7Mz29/e9vRftjBhjDnc8rP7BP/gHNjExYf/hP/wH79mH3yCl/9pLs9Vq2ebmpvdG1FZrsTcs71mrn7VZNho1Ak3G8ODgwFN5COMBLLC29BJmLBTk677OvCc4T8qK8D6UjQeMTU5OulicZyEVDACizySM79OnT63T6Vi9Xh9YZ5VKxQqFgrf+SaVStrCw4EEFzBhMWb1e9yIh7Gt2dnbMzNxYvF6vD6SjNa3PXJ+amrK9vT1vs1Or1WxnZ8f7G+pcwyGAhvTdbtcZzPcCWApyVOQeD5KktIqKh5VuVCo8HuDDUmwaaSqTg/hTqxmThODDoi8FL8OYipiWvGmKKlLt8Tk0NXbdAa/aGwVLSZtrTC3cxDQzVoaqE3/UwwxLq6ruRcFAZIuuS0eq0FjZx8iWJTFPScxakuZMGa1Y7MDhNYzmTQJ2kb2L98N7pkJG00xKuyc9gzLHkfXTHmQaHESgq9+lGsfIgLGGom4rFqfECsCkqlqAFmkgtTXRzg7DBNpExhyYEeDFNG8MMggGlc1QOYKm6nQf0fcTGa0kVk0/O7YU07GPOlPADD3aOAA1yAIUAFhJkQEaVX+noDMWhiiwi/uqzpkYlGk6VbU472Lu0d1onzbSfLGwgm4BzHUF5tqQG60e1WCk0gBhmHOSMiLNBdvCnIPRQd/EM3e73W94ftFrECuDn/zkJzY3N+c2Gfw9le18jmYLqJK8vLz0ljcczqwLUumsEYTUAAS150DEra3ctO+v6ljRZgGaNRgBLLdarYGCBlgxKvq0iAD2Rwuz2KuV7WTPQtPF/ELntb6+bq1WayD4YX8sFoteCUzvSYAzhqlaVc34x7WlDdOr1aoDVxXsw6oxPqwtAjrSoIeHhwMV4gQC2A7Bfh4fH9vi4uLQc22oD1ZsXBs3Nj0w1FsmshQRYCVF5rGKSpmuqAOIGzURX4xk9c+uE7RfBzBvWl2mh6AeNsM2Io1s48GoIEp1ObrJxxYdymjoxjosRRrL9pMYGGUmkwC2Mjg3NWRUdkBF3Tonkqpzou4v6kiIvFTzohYiWnWmwl21MtC09U2fJalFTxQFq8+SrittAp1kh6JUvDI3MACMC5tDBHbRd0bXk4I41WBA+cciF7VtITqN7bIwk9S+XkSHpAcimxLTgDoXmHsqlFchNjoSjcxj37hYNKCgUFsUAWp0vijjo1YySRpMvX/GT9lJfQ/RMkWZN638Je3CAagAQjs+aAo4SZCuc5y1qoFU0rxWy4gYOFwXeBQKBZuYmLBisWj9ft/evHnjbuF0ysjlcs5gUtYPcEDPVC6XnR1A6K0tZ3K5nC0tLXnKEBAAS0zKECaEd1csFq1UKlm9Xvc+kqenp3b//n2bnJy07e3tAd+/0dFROzw8tJ2dHXv06JEtLi7aixcvbGRkxPL5vPfCJKBgD6Iv5OnpqW1sbHwja4OtSafT8ao50s7MRcaIQ573SGNsWB1l6EmbmpkDWgDuzMyMp+gAejDIgDiALH+PhgljbO5f+4/y7jmTSNXRL5degBsbG95flMq/SqXinn08/97enrcfo38jP4e5M/o5vMTo1wuDR3ZAW+PAuE1MTFihUHBfMXR+ykDBuqMV00p2UpKkE1utlk1PTw9dI0M1WBr9Rf+WyLyo+DJpwUawoawEk4RqpKjfiQyNimI1DRJLlaNOLIld+7ZSf8Mi3QigNNWTxD7ouESLDL3f2HNMWQbVtukYqCbsOgAW38u7mDA1AY26rWFu2FoBp4BPgXlkVBTE6savoDveq1ZLann7daXtN2X94vtQsTrfgVdNTH9p66momWLDVFDJ4ausl75//W9Neynoiz5zujmqxUTUkOk7VNsGfU/KQvCZRIKzs7MDNhwx9ch8BeCQ9oCBUJ2Wsm1JxR2Alihr0OoqqrY09acifO10EPcuZXl5r5ouV+YtFgRpkAQjoOtfjXP5R7tcML5xL0vSfkVfM8Y26rRiqlCfk2q7arXqzNK7Lpilg4MDy+fz9r3vfW9AV6ZsAq7ZsEAq3r66uvKKNVKFGtTRT7JWq7kzPIyZFpHAoABU6/X6gC4Hz6yNjY2BuUgHCryuLi8vbX5+3rLZrN25c8fTfvQSVNuETqfjqUztwateVoj9tWqT+RPb0gFUCoWCV1IyzwgOYA7T6bSDNtWt0uaKK5/PD8wVBN7sRVoRCyhiTV5eXropKZ9Pb9pUKuXFL/RXpIoXxojxBNTQ/xKmisAHMD09PW2tVstTeFrIQ3Wo9gLO5XIDLD8/owbhjDlsMn0HSWcWCgXvR4nHlrL3pPJjUPTeDFb0GYqUcxIwGJafv2mV2nUMUQRoqklQwBV7EUYW6H10ScPE4FEbExmpYdqlYZ8XxypJg5WkY9Lvv84xP6kkX9OA8XCFik/Sr8VCBwUnOl84jGMKD0AS5wyLW9nKCCTQPST5KEGlK73O3CEijILg2AT5JnNCqxtVZM0/ME9okSKYHDZPYil9rG7U36XMGaNZNV3VA1TnD7oPpAAAIABJREFUh0ZiynQmVUXq56nLvIIaFd/qXGIjPj4+tna77akAtShRDUhM7arnT3xudF3RwBjxuX63zkHmFD5JajbM4aLzNCmNpoyfbrgckKxXZZvU4ibJC0wLGHT+6CGrG3msNo1ASgMdBW4RiOv617WogTJ97wAJ70oTTkxMOKCGqWGtNptNrwZTlo++rXgg1Wo17yOJUJtnpmk2TAyptn6/74UkHNzz8/Pu4UTbIWwbAEM4nkeZAO9A262MjIzY4eGhvX792j799FNPfdGq6uzszDswcPim02lvhaT7B8ybMqyYoKrfEqba/X7fBdXMMbRfAC3MQjc2NgZc/nU/4fn4Hvojom3SQCybzXqfQd4ToJCfU985gDD73tzcnNXrdXv9+rXrqLXoBfuMfr/vvfzIZJVKJRfYY3dBdSDVljSxBxQxPwBk7XbbRekAXX2n6ARhajF+Pjw8tMPDQ2ev6BtZKpUsm816S7Jer2eNRsPS6bTduXPn5k7ukcFQEdx1FgPDely9jxboOrYgyWRPq9fiYRzvS3Uo7wJ0N9UtqY4ndqiPoDBuau9qnBotCoaxYTdhX6IzfpKpaQSOUT+n4xfniNpXqHAyNpmN7vvq15XUSkG/SxnVqP/TKhSNciIDGnVNsbrsJuXobFIaVHAIqBkhFTJa9h9NXKN5rzba1TSmtq1SBlf1UJpGS2JTo6ZOWZTI6qoGTL2zYnCjfSI13UDz6rGxMcvlcp4G4LMmJycHUmSkHKJjuLLamirUtYFwlj9LqpiEQVCNUXRfj1o1BSnKTkZXbrXE0CCDNCp7pjZz1gpZTd9qykI1IrAMypYArjWDEAsOImseMwQxQE7SrWKf8C7fPtiWer1ujUbDJiYmvB0NFWEchDBdgKr9/X0/MGm0q+AWUK1Ndank4vADYOEp1ev1vKmxtqnh/VHogRgcvRlsCGOPXu6zzz4b2DtWVlYsnU7b7u6uHR4eupmqAgF9bxcXF5ZOp926AiB2fHxstVrN2TqsGSgw4PfRjlGAwLjyXHt7e5bNZq3ZbHp6Sy1NpqenBzo5UPXLmowM9OnpqR0cHFitVnPtFqlNWOB6ve73yBqgAvLrr792J34NqJnvMzMznhoFjOoepMVSmL+yH6DzAqhS6UllZa/Xc/8uGDLSkBpQ8o5gFNUrTwPIk5MTOzg4sFQqZbVazcrlso2MjFij0fDf1Z66NxK5w2CoMyr0vUZlww5u3bzepW2JWoX4/0mi0QgcIlsVGZtoLngd+FMRcRKoTOqvGDelpJLwm1SsRbBzXSoz+pO9j31E3GQ5MGBGok+VelepNkgb/HJ4qXeRpocU7BKls/iiYDwyatF2IokBiyBTfZainoTF9b4+W6qJAlzE+ccBm1QAwkbEODOPqCaLFWtKQWubpJjqUSDE5q2MWFI7n+izpsAVHRWbWFLQEC1MuEcV9qupqu4H3Lem+5MKNRCB400DgOB5tFmvVsNqZZGue9IwkfnW+aMAX59L12Rk43RuoCPUgI/v0uIEbXhtZm7KmVTtpakvBeB6KZDgUNR9k2dIAkvDJAW61q9jsNAlHR8fuzHmy5cvB/zSOKA4+LAbUNPhcrnszetPTk485YVXVeyVquB0c3PTD1QsNGBn1AQXDdDp6akVCgWvymNO1Wo1nxezs7OWSqW8crBUKtmzZ8/ss88+s0wmY9PT096DlXmBzke9nwAEp6en9sUXX7jGiIADPRfgAluX2dlZ29nZ8ZZL6l1HGh2mDr0QrAzrAMZIPeDS6bTNzc25UWtsoabifwD/xMSE99eEnYcRn5ubs5mZGSsUClatVu3Fixeu2YSBmp2d9fejHSLo58va5p2DN0ZGRqxcLls+n/d2SszpXC7ncwEH/th6DyCpDb13d3d9LqZSKcvlcgPegbCSAEDmJ6lFWFANeN8LYEX2RD08hoGOYdVWbHQgZehkbb/CJppU9cNnxNJuRY3a6DQiVDYmPcCiZiwaeibplK7zg7kJwNFy+aiHiHqld1ksvK+9wDBRfuxwru+AyE79c9RiQDVOWmkWxym2BooNexEkJ2nZVOfDe9d5pKXDkTXj0EtiLVWErIfYuy5o42geq0wvwIGSaz38AVbZbHbAvylq6DRlpWMZD2/dFPh57UmWpMdSRliBBPcPqIFhOT4+didrTW9pBRTpNw5PnVfoFvDr0YrNYVV6jKum33Xfubq6skaj4eX7uDoj1OUdo4NTQb5aR+g7Z1y0yg/xbuzawOatTvnarwywE4Xwuu5hqQg2SC2pppSDQRswxyILPptGtHg2aSuWJNlEXHO6N2oRSNRuDtuP6CGIuHllZcWfU981B5OZ2crKireF4SBfX1+3vb29xCbWFI0wzjiUn5+f+/vHeR0dEGJoGC2Y0kwm4yCId312duZMGMwJIED7H56fn1u1WrVyuWw//OEPrd1uW7Vatc3NTWc0RkZGbGtry0X8VMxVKpUB3zH6AirLRi9Anom0IazdycmJNRoNfxbWvFpf6DrFsBOG7vz83La2ttyaAs0bqUeE9gAQNd5UuxkCHATm//2//3fvS6lgJJvN2sHBgc8Vqk1hHtm3KKJhjEnvYpmgF8UzVAg2m80BB3cay+ufYe0AQEyn07awsGClUskmJia8wlWbnDOftdCHzgMYyf5GVYTxoI99w2LLhiSmRBeyRnSg7wiKtJJF3Z81AtGNNjJRmhKKAtUYocV+efF5hoEYTeO9L8gZ5hqfZBIYU3a/iQA/iR2LXj7DWppoek8/V9u2xBRsZOv0XSUJyzV9NmwuRddvIkXVDcUWM0m/G/UoEXzf5F2qaZ+uDzYmqneUEdBUqJbrx3FThi6JXdLxBTjqelQzVxVjR/1Ykt5G16dWpkWmgDSFOvQDXrRRsgrq9TuIhJPsJNT+gSiUDU0ZUCoV2ZCVnY49FOO4xE4SEaTqzypI55CMFdaAomHVx8q2cBjy85qW6ff7zuZwSCpbGqvJkgxktVihVCo58AdkaQo4MnXKMKruS1ubvKt7BQahxWLRyuWyH7paDt9oNAZY9GKxOFDsQdsS3iUpJ2UAqf7U8RwdHbV8Pu9AX40wAaewpHt7e+4SjrkoOist2OGcOj4+tu3tbQextFA5OTmxzz//fKCFTaPRcPNRQANsXalUcp+nsbEx29vbc8E8IJJnYC/hXS0vL9vBwYG1220HJOPj41YoFL4hP9GegQAQUqJUBEabBeaB7vXMG9riTExMeKqdADKbzdrk5KTt7u7a3t6eM5btdttbamlBCalgzv6rqyvXhBHMaGHdycmJfycMHuwcgnZ0Zel02m0ulIRh/qBXpRoxn8974NhoNDxgPDo6svX1dQduAHHSqnNzcw6INfX9XgxWUrowHpDRzyouuuheHMFEpNgVBMVWGUTVGo0pGzRMBxUrjXRzuo7tGNbOQml67ul9LgV+SZ+ftHG9jyh/mDWD9nOLKSKthtLIWT2FtN9cfN+8B60oTAJTWu0YLT00wma+RUYVqldbyERQGAMD/Rx+n3enmqWbpgpjv8EIajWdBTBQIKEHfBSd67vT/mKRyVMmlzmvDcaVjYvdCqJmTQ9s1eJoQMN9wvjE9xrZMC1m4M8VAKmWLOrv4ruIzEusGNZ3CCgDjBGRq4GuthaBqVLvtSjoj2a7WhEK0NP0eTS21XvVBsTKpGh1orZ1oahD57u2S0qqmlbGGYChBsCxKjymTnVvh8Ee1nQ8aW3QuuTq6sqmp6etWq1ao9GwmZkZfxYq3tDMdLtdu7q6cpsHmFoOVGwTAIsAGPat1dVVd+8mW4Jf0f7+/oAnW/TLo/IOITpzHO0T4A2wANCenJy07373u3Z5eWlPnz610dFRm5ubs8ePH1u327WDgwO7uLiw+fl5P/wvLi7c9oFgQ58tm83a3NycnZ2dWavV8n6a3IPqqfL5vH399de2t7c3oAtlj0EvRcqZajotQCCVD/glq0T/QtKDZ2dndnh46KzRxcWFzczM2Mcff2xTU1PWaDRsZ2fHarWa7e/vm5m5aJxAMp1O2+zsrINngI4C+qmpKZufn7fT01NvwHz37l3vzFAulwfALnsFvSp134IxxI6hVqv5euL9N5tN6/V6zu6pdxig+OjoyNrttmUyGdcGHh8fu2bvzp07A/rS9wZYw1zGtaz1XZ4qSX3m4sYc6f94wMbDLH5mFHHqwanAKG5OERgMK13Wwz9W8QyL7JLE9lH3lOQx9pte11VJalm2pvhinzI2Vj3gk9qJJDEfsQF1ZHrUhyipGjKyWLEXnBrjqfN2EtMX2UcFXDG9yFy76TvQZ0sqZEhi6dTjRkGOHnpq5RAd+tUaIKkXnc4r9YSLFhbaCzDee2xqrgyfpvT0ufTzNTBS9joythyimvZVhic+k+q2NIWm4lJlWgFVuiY0tco8IRUSbUOS7Fe0z6muidiuRrWFOg8jqFFxrc77WMkb7U+4B5VeaMPtyDByEKiWhHkY9WWsCz2I1SPpusKckZERW1hY8MOz3W67MJu1jveRgrzLy0urVCp+yEUQ3+v1nN3DzwkxOMwRqTKAwsXFhRWLRSsWi5bJZOzg4MDb9JydnVmpVHKtFU2ltXelGn8yT/L5vJXL5YFqys3NTWs2mwPC9Pn5eVtdXR2oaFRjVdJJo6Ojtry8bKOjo+4fB3MSzwzYTNJaADRSYMwNTc1T6KBnIbpIQA4u8GoNos2QAWC8D63cXFpa8hZI/X7fezziz4U1BmsWdlLPaUAsqdCLiwt78+bNQLN41jcVoMq0qjBdm9OrVk/BY9RBjo2NWaFQ8PFRjeLl5aXl83nLZrOuKdzd3XWNabvd9rQjTcZ/YwYrHoJxEwLV6sEFcNDGw7GST/sdJpWvJ4mDNY2n1V+R3tSKI43sozBcS+GVwYkgK+pGIjuXpBtjkuiGopvmdQ7JN+n/dZPfieMWASmphchM6AGt1XakdiOg0Ag+lrlH24+Ykk1iC5M0UfrOOCz07+JYRiCkDGcsYY66w3dp32L6LjYwV+ZG/Zz0uaIVgAKcWCDAvSljokUFCuL057WsX9klNAWR+UuaTzGNq41hFYjo+yJ1o3oNbUUTfWmSDDA5NKPrPfOQiinEp2jAFPBFzzNloKPQXm1peFeUgmuaToMFZao43HVvUODGswGAk3RbsVVSUheCWHSgAJDn4v3j88P80/u6rggnenu9y++H1jJmZrVabcDUMp1OO9hJp9PuoJ7P5+3i4sKePHlic3Nz1mw2vcnx69evXcwMaEO8r/M8l8tZuVz2+Y8Pl7qeFwoF1+IUCgVnb2LqmrYq09PTDqbq9bozORiYslaz2ew3bDd+9atfWTabtbW1NctkMra/v+9psnQ6bYVCYYCVwhWc+UZ1nXbIODo6cg0SoEADDcATcwANEXMWzZsGmNls1qanp50l0yo+QBh6K/oAXlxcWKFQsLW1NRsZGbF//+//vXtI8Yyrq6sDe02n03E7BsT7MzMzXmGMjpL3DEBDiD87O+tpY3WcB7DiXJ9KpRzMahEI6+Hi4sJ7TqLbW1hY8Apn7p92Od1ud8CfSw1Sr66uvFIRfeqNfbBu6gcVG0YOM6uL5cJafh49ZpRBGZYyU72NWiXEfmnD2ojogZpk0pckBI46isj+JGkY+HPYAvULimmm6H2l/46arOtAV1J1YJKRov68VmOB5KOOR5+fPLkyeWqQmMQQxjkUD4dhACapQXOs3Iv6LHU5jwxl0hgOM0O9bi2oRYGyHmg/WIiMG2tAxdo6z/UAjyycRlfx+3WuxqIAfl+bkGrvweg0Hv24YhARU/LKesX3kuSZpmAEgKFMmjJhyrBoOx71wSIFEFNyEYjENaD7hs4dZaA0gBu2ZkjhxVSgRsfoNqIGNXacwIcLYa02EY89U7WBeBLYVyCvwBEQmrSvRJ1cBNO6zq4LOt6+fWsTExPWarXcAgH2C8YRDQ0pwJGREfuf//N/uicVcxQQrKarlPVPTU25cDmdTtvBwYFrdbAT0OBqbGzMW5uYmQvHSSvxvbOzs36YcnhGMKVnAuJtwA3rnH6E+Xze7t+/b5eXl1ar1ZxxpWE0qWBE7wjsYbMIVNBBRXZZ/bf4TO1ugQs+QIR5kcvlnAHS4qXJyUnXfalFC/OUNO/r16+tWq36/Ca9d3p6atvb264BVMa31WrZ2NiYdTodP2+0FyFkxNzc3MBZAxMHkNI9XokRgrlisejrEoYOzR6MaC6Xc+aKgqXR0VFrNpteXMG8AqTB6GmhDlYQ150f4+8CVTx4FIvqh8Y+djGVFw+nuGEkpZiGpbkiQKFcNVYMKh2oNHsSoFFNSmTZFGAphR7Tp9EYUpke3axUV6MHamwmGysX9VmiJkyfR40tleWJhQGxDQ0HmQoN9XOJuIgekgxoo2han1cFx3p/w1Kk17GZSYeKAo9ouqoHUmw/BHiJgux3pc319zn0WYzat0/TmBo4qJYsyVMqBiqRldXITNmd+DPRSBXtSzQaVS0Y98Hv8vsKHpICn1ilqxWMGozoWlRvO2VL9HCJzaX5XSLHVqvlztXqh6W/g25Co3m+RxklBas6LrHKDgsbImfYIh0PtTqIGk4FDkTrABIYE10fuhezRmPxj3ZxiNYT+ns8rxpsxoKVmDKOvQ2TLlqRUA4/NjZmh4eHtr29PdBGDBNLgAD9/XRdkjbEv4jP7XQ6nhqETaItClVrakbZ7Xb9Z2B6GXdACiX+lUrFBey1Wm2gGIV0FHsgTNrx8bHfk3YSQA+2urpqpVLJrQlIeaqf1NTUlHW7XU8fYpKpBRvFYtGDM2W8YNxI8dJyJklPCHjnbASIMnZahLKwsGCpVMotGR4/fmydTse2t7fdJJRnLBQKPh5HR0cDRQvq3wcbf3R0ZGdnZwPMFRq5hYUFB1LKNuHHdnFxYdPT017kQtsb/ONY46wfNH9YhLBPFAoFOz4+ts3NTU8DowlkTZZKJVtaWvLChVwuZ/Pz87aysmJff/21/frXvx6QNPzGDBYbckz5qGA0tq6JUWzSIauLLrJOccHrgaktR2KkHJmbaCw5LILTzUn9adhIo0fOMO1XdB6PTX5j2jEyYElaJoALVUGxoTLASNthxOaxSV43Gu3w/jgsFAhqlI4gNWrIkoBQdOxWNiaW8SsYiS7nsahBK5z077V/XGSGlLWIOi/e/U36KqpYVlkXUqyxx59GaEmtknR82YB0zqopq/6/3rOakao1irJkzGE9+KNru1ajKdNINMl9JM1pFelHcBsLWhD8aum9BhyqT1Lwqn5PpIz092ifoa716uSuEbkK0lmrOn+0MlHb+agUAKE7P8/hEjVYCtQoHKE67fLy0oFENpv1QFH7TuraUb8l7XjAd6rmSYM3DjFteaJzT4GV7qWkia4rWuHPV1ZW/HvxoqIMX9uvoM8iTbS0tGRm5gchbMrZ2dlAGxja6ygLBJOIXoYKMb4bDREMC95YaGmoJCTbQtq53+/73CClhoifxsR8HowQjuDK3GxsbFij0bCHDx9aoVCw+fl5q1QqdnJy4u729Xrd5+rp6amDqaOjIysUCmZm1ul0Bp6LVJW+U/otjo2NuYCbuUKVngYtfFalUvlGM/harWYzMzP20UcfecPsFy9e+GdiWYEgnjXP8/PP9PS0lUol6/f7XiGp5qKsb9LAtVrNwW1kcCkI4L5hQbe3twe8BPl79a7q9/tuHTE2NmYHBwfuEl8qlXy/KJfLlslkrN/vW6PRcPLm6urKtra2rN/vW7VatVar5Wau12VBxq/TmiQ5dseIWiN61UBFEKCRkh6+euCqhiDJCC/S/Xroxag0qcdekns2wCXJ7kGZpiSXbwUOmhOPqVKNADWCGGYUGje5YcBFtSCID4nqYnsWJpreo/ZO0/cXRdFJoCWyR9fNo0g1J3lvqVBXI0f1TFNbBhXiRgAd3eYjMI6Nxt/HpiHev87LyGDpwaVBiIK6eO/DKhq1RYse9FEwr0AxWoJoNSbpGdUIEsGqRkmr5jR1oKyVfp+2ueG96fPrXNHUj2qhVF4Q/cqg/Xu9npsTRoNXfIDUyoK5rm1stJm0BorR+0k3eDUxVC8rTR8qWFEAx/d3u90Bw9RisfiNAEjNfmPApRWjAH5t1KvrLLYc0ueNwU1SUVNSZ4Bh66JSqTgwhIl7/vy598vjgGStZbNZKxaLLvbWSnGeESYHE82JiQnr9/vW6XSc1cpkMlapVKxYLLo3Ur/ft3a77ZVv9+7dczNS0pEAJQ2IMLokXdZqtTzFRxBLkMC5kMvlPA3GHKTJNCnTL7/80ubn5+3hw4c2Pz9vzWbTWq2WO7zPz89bqVSyra0tB27Mp36/73Naz2FaB+3t7TmY1ABHnerxv0qlUg4SVQqCoXCpVHKmrVwu2+TkpL19+9bevn1rpVLJJicnbWdnx7VZzHGVAtGH9fLy0g4PD92fjbECaDH/KC5AMK+pbd1f8TRDw8c7ZE+CuVRGVQtKtLG1SmJUQoMOD+3X5uamp4H7/b4VCgUH4blczgmHYWfHta1y4i9GHykVeV93KMQqLd28ojCdFx91JlGYHUu8GTRN9SV9X/QUij+vm1FsvKlpDU0nRv1CTEMmbVx6GEVBdpI+a5jnFwcGlGtSYYL21orCZWWg4r2zyWuRgrJmKrZOsoSI48C9aG49in/jeCgw1oOA79GyW3W7HuapRqTIxsp8e59KzSTLDRVXx6IKBVJqKRBTwZFZiy76+vMAI6K0YWlxNnzGCa2HghlNiWlKj/HW96vWBuoKz3/HAEYDE7WOUC2LWhcAvPC4QmTOOyVIYEOO85W5QmsNNUNV8bAaJ2sKUBnsmK5nrNDHkKoC2ERGiPFAFKvzgr0RXYcWCqioO2kuq4hXWWTVSiYxnZlMxtM4sc+o9vFU/VnMMrwr04HP0y9/+UtrNpu+hqn6u7i4cMPN7373uzYxMWFbW1u2u7trnU5nIPiDWaBa6+joyA4PD+3k5MRbMKFXev369YAR5sLCgq2trXnq6OnTp+5CDgBsNBpWq9UG2g8tLi7a4uKivwME9F999ZWzVjGtS1UfqWg0PwCJTqdj3W7X587q6qpNT0/b3bt3vRcf6U9AAfsUaXD2SywW1AEfET/muxQVXF1dWbfbtbGxMSsWiwPVs2jRTk9PbWtryyqVildkLi8v21//63/dzs7O7M///M+99ReNm6lK5Vlhp5mXONwT9JOuq9VqDl4BLKT0ZmZmrFwuW7VaHdDMwcph+jo+Pm7NZtNF6RS2YLOwvb1tU1NTzqzxngqFgs3MzNj09LQDPvpe8jMqAYI0gWXNZDKeImWfyWQyA6nt3zhFqNF11E5EGjrqZ9StOjIvSWCNxRzNPJP6sOlmrZFkUhVcEriKOoYItiJo1EpDPaSjcZ9G47pZqyA4puuSQNQwbzE1SIxgStO0ScJyBa6xBDw+h+p5lJXQtIeyAGq9oMJn1T0oW6a9sYbprZIa2Op4cNhpRWRShd4wDZXqilQQ/q4qwqiRi/5Dyvjoe1URchSMR+G8fh7PACsDG8GmpmneJK2a+kAltU2J2qNYxo/LNr/P5nh2dmaZTMbTWwBZGDAFHzyXdnbQ96RsT7fb9dRJnItqzRCLH/hvSsd5ttjiSDVniGgV1AKO1L4gygn0/rXfGuBE/60pPEAXYlltF8Rn4qytwnRls3Qv5rPVBJfv4gBQdlv7Oap567A9SQ2hr1sXW1tb9vbtWy9dh6k5Pz930TNC926365oX3a9giWj0y1zSe1UvJ9XU0T/v9PTU2u22O6IDfLSTBmOFeFoLG0jNMb9JrxHEoGVSjydAJPNmcXHR0um0s0tondBalctlu3v3rpuG8rtqNGpmLuqnio25rfs5jBPVgwAgqoWjbQ6pMqr6njx54hV6MzMzlslkbGdnx3Z3dz1Y6/V6/v2x96h2O+DnG42GTU9P2+zsrI91o9Hwea72EIzd1NSUg0wtGmm32+7SPj097e1xSPsBtAFmBCkUQjB+e3t73kQbKQypUsYLkf3u7q73xmR/L5VKfn+43ycRDNcCrOsOuljRoqX9w5ivpMM/GoFG9+QYXemC1ya7SXR6kkt4dPxOMhpNEuOrViOOifrhJKWXYrotqYFzEoORBKySKiOHicpjGxr+Gxpb0xrKqkXwRmQSXe01Atfy89hHTtMqCmY40KL9QFLZeByjCI5UuK/ap2Hu+6q7USAMaEgy0YxXElPLhs0GDahW9mCYP5geHgqoYH5VpK5GlcogDtMSxgo9DivGDlCo6W3V86ABInImvUiaju9AXDw3N+eVXAh2GQ8NmtBUaYqKjZkxpB9ZUieIuJ7VPkXT0VowoAeqBjx6QMKCRyAU1xJVY6RZtaFzFPOr9ozDu9frWSaTcXEwIB/TR62g03ZBGqyqbUxkuDiwGIOkhr7RNkSDQU1zwhJoy5Zh1/T0tO3u7npqjnU+Ozs7kCaGScItWw8p0lj87ne+8x1bW1uz/f19b4x8fHzsIvqjoyNnErQ9CqAfW4iLiwvLZrNWLpcdMLAGcJ3n0Abc8exnZ2e2tLTk903AoZITUlSsWTyTSN1hw4H2Cm+lubk5t47geXZ3d10rBhO2sbHh7wMGTrXRgA/mLMzOxcWFtVotOzs7cwE5ppuAFRpz48L+2WefeTpve3vbjo6OrFwuD7BssMSkA0nXz87OegoPzRrpyampKctms7a8vGztdtsZJExht7e3rdvt+h5TLpf9edhvtNcmqdvLy0tbWFgYCDyYE91u19O7R0dH1mw2fY8ql8u2t7f3DfwwOztrU1NTtre3Z0dHR14wARvOOt3Z2bH5+XnvRvDeVYRJh40KdWPq7Lr0VpJFggre9cBW4BP7qGlKI1ZWaYSnm0t0OY7+P/rdCgpipWTUYUXAk1ShF920h42pHqKRbYvANknPllRhqZ/R6/W+kTZVeleNDRlzrYrSgztJnzeMjWPTid3SeS6t4Ez7J1goAAAgAElEQVRKlfH779JHacSTZBsS561G8RzAN/meaLGhaeQkU86Ydo7C9aRy+WhNoNqpqNfSd6b3RbpEqW5Ajlb3DGNGYkUZwCB6kTF+rVbLS6CLxeIAWNEqQv3vqKFDg6GHZZIGKAJV1XleXl76gaZgJ/ZiZF7FysDokafpjyiRiJ0kou6JNKYyKGNjYzY/P++pEWVQNWUOS8L8Qmyr6X4Fzmh5uF8OfAWoHLg6V6NMIzb15hk0QBt2NZtNm5ycdFH71dWVV9F1Oh1rNpsugJ+ZmbHDw8MBLVOxWPQDn/fT6XTsJz/5iVfbTU5O2sLCgp2fn9v6+rp1Op2BKjn1U8KriLT2+fm5tdttT28tLCzY+Pi4l+afnp7azMyM3y+VZKTPlHlTDyTegQbdjDtACKPQYrHogG9/f99arZZ9+OGH7rtVLBY9VadyAMAnrCyCfvUHY84BCmG61FsLpgjAXCgUbHFx0U5OTmx3d9e+/PJLf46TkxPL5/Ou2yIwz+fzHiQxT2ZnZwcYaxpQM79g1/r9vr18+dItN/DjAjQTgM3NzTk41vVEqyCeB6BNGx+c+ev1uq+JUqlkl5eXbnWBGB+m7+DgwGZmZlzTtrW15UAvlUrZxsbGQLDGu1Wn9/fuRai0eBRsXxfNf9vX+3xHUhPq3+Qer6P8/nd91rD7TPr9b+v+osUC45c0jr/t+0tqffObvtNva77E5261Wu8EWOpOrd+nTshQ09oKR0ETDAUppOsqXYmyVUQdtThJ/RdVY6YHdbTeUJCjlD2gGaBDq4zrLprplstlq1QqVigUvpHSBWxw39gcXFxc2Pr6+sDYqicc5fY6/2ERNIgg0FKvJNVooUdDlwVzyT8q3Ne+pxrcaIUiaSNSScr6Ur0UDWjRriCC1vdHZoAxAihHVjjJT44AKzreK5uEhcD7mBhzsA1bW5p50LYw3W7XDg8PXSiu7uhYH+Bflcvl3A8KfyR1UW+327a+vj5Q/IImMCkw0j9HRsAa5+J7ut2ua4fq9bpVq1XX+6C5ATjm83nb29vz9OXJyYnNzMwMMOO6LySdo+gDcXb/7LPPHCR89NFHls1mbXV11Y6Ojlz7BcMF6KTCFqaTKsNCoeBpNVKtvBdAAnqm+fl5m5iYsM3NTfvFL37hP3dwcHBt0Q/Vd6Tber2eszvsSwTozMc3b954kEJaEZsI9FB4d11eXtr+/r7lcjkH0DqXe72et+LB4gPAFcebtkLK4nY6HavVagMAtV6ve4siM3PNWdJVqVQ8OKBt042c3Mlr/8N/+A89Z36dP9a7KkuiWDn69UTdVTTtS4pCYxNa/Y7IdCVVVmmJf7QFuK7lzfs2XH5X2ivp3jQSjj5VkVGI7WtUlJyk+YnNUzVSj9YYumknmcy+7/Mn6cWi6D+J8byuqi7+fPQDu8m9xcrE1dXVAYfzpOuf/JN/4r2w4vfQ/0utHFSboOLm2HRYD01lJaNdR7z/yECp9US05EgCl8qyxqbZSskjVFWGTdPgGm2TXsDML2rD4nsAyKgvjhZKqDwANkf79cXn1DVBNZvaacT1Fm1f1Hg0aa0xLlrIwRhpUYymPNV9ne8C/EUzWDUkBphoJXNSAU/0E9Tqysg2A/qG7e9qNKveVffv3x+6x6fTafuTP/kTGxkZsW636+wRhzFzYHJy0tNzCuSjyz9Vc7CRHMBa+azVs4wjTBRjls/nHaAzJhqYqBREbTSKxaKzLIBlmjErK4M+SxkjPexjoRTgIppO8+yrq6te/IA9ghrb6tpVuQxAHDDBvRAsYE1BUIMIHaDx+7//+wOVrnyfprhVZgHAih6DKsfg37HTCWOshTIEAFotqd6T+rnMCd6BFk4p2K5UKq6v04D96OhooNMAdiukWFm3qh9m3CL2OD09tVKpZDMzM8n729W30QTv9rq9/i+5rlsO7+P4fnvdXrfr4/a6vf5qr4vxYZTwMDf1m7IyMSJKWnxRo6R//r9rsWoUetNn+U1ZnPg97/r8pPuLv/+bjst1Y/1tPe/7brhJ7TmG3UeSpu19nuldY64R0rtSisO+56/iATPs3dxe//8HS3G/SfIC1Csy/H/VYveb7M833cO/rT342/j8pLX9bZ/R12GE6zDE+5x13yZWiD8zbG1cy2Ddklu31+11e91et9ftdXvdXu9/jf82DMTtdXvdXrfX7XV73V631+11Q4B1y1zdXrfX7XV73V631+11e33LAMvslr26vW6v2+v2ur1ur9vr9vrWAdYti3V73V7J6+L/5rXxmxQMvM/n/u8sYLnpfbxPccL7PP9NTWrfd779nzQ33kfkfnvdXn9VrmFO7oki91twdXvdXt/eIXl7/Z8Pmm/f728P+G7H7va6XRuD1/jtsNxet9fNwdVPf/pTbxkTL4zokow91bRPm7nydzBjGO6p0S7mkPxuknO1NnHWnnFqKqummlyYHWrbjEKhYKenp+7EjREgrTbi/as5nxpl0jJD3covLi7cxVl7FeKoTvsfNTRWo0x1sKdRMMao2jdUx5r+gel02pvraiNrTB3N/t+WSYx7o9Gw09PTREduba2Dcae21OL5+H/ejbbnonUM5pQ01cZBnvE5Ojoa6B9IT7rYE1bfSTTS1Dmh7vDRpFkd/LnPdDptH3/8sS0sLCT2qb28vLR/8S/+xYD5pxrs0vqH+5+amrJGo2FXV1fekJexYawzmYybopqZtx3C1Zy2StokGqd43Ne73a4/XyaTsenpaet2u9bpdLxNUTqdHmg5hZEt44yxqBo5X15eWrFY9OfQrgIKNnF/z2aztr+/73sHvQDpVUh7Kwx01Z1cm6zz2bjcsx4YO8aXhsnZbNbXozbWZr3xGXQ3qNfr3gdR57Y6tXNP6XTajXCZc3Qg4DPz+bx3L2g0GgNsDz0DcdCP7dv0HvXP+DmeEUd7DEPZpxgjPpP1SkcHDGh5b9oOi7XV6/W89yBzgu/inafTafu7f/fvfqNzxS2DdXvdXu8JsP7RP/pH9vbtW18n6raey+V8Y9JNj8Ph5OTE26QUCgV3QOZA6fV63jUe52BcohuNhrsz07aEg4NmySx2em7RYFadidmo6WlGu5ZyuWyffvqp/d7v/Z49fvzYDg8P7fXr1/bTn/7UWq2WtdttGxkZsZ2dHZucnLRyuTzQb4/+bmzU5+fn3vKjVCoNOHDPzMx489yTkxPrdDreH0wPDMaA/8bhGzdtGsniyDw5OWknJyfe/gQAkUqlrFKp2OzsrN27d8/HHDfqlZUVdxKn2S/v7le/+pW3e9E2OGbm/eLoncg40IiW3m2jo6M2NTXlgJO5w0aN43QqlbLd3V1rtVp+UNFXrVqter/HbDbrPR8VxAJUAX+MHQAEwESLGtz5Ly8v/b0BXA8ODgYA8czMjP3Tf/pP7Yc//OFAT1V1scc1PSlVmMlkLJ/PO3gtFov24sULByGzs7OWz+ft8vLSW7XcuXPHtre33VWcNiaFQsFGRkYGWpmMjY1ZsVi0Wq3mf1Yul7/x/6urq7a+vj5w2E9NTTloSKVSA43MaUWT9EwLCwu2tLRkT58+/UYLH65sNmuPHz+2xcVF+2//7b9ZvV73v5udnbVUKmVzc3N2dXVlh4eH3iuRVkzcT9JF771CoWC5XM7n38TEhDeMXl1d9X6IzWbTgQJtccrlsjfFHh8ft1//+tfW7/fdLX18fHygJyHgpFqt2szMjPcoZc33ej2/v4mJCXv8+LFls1k7PDy0ly9ffuMZCoWCLSws2PPnz21kZMSKxaKvJd5rqVRy8AnYLBQKVqvVfM/DmR7gzPsF5NGWiEARp/7Dw0N/t9pAu1AomNn/ags0NTU10G6JnpDMv1KpZH/xF39h3/nOd74Z+N4em7fX7XXzK5/PW6lU+sZCggkhuo6tcCYnJ50JIerKZDIebdKBPpfLObAikpqamrIPP/zQxsfHrdfreSNaWo5wINB+BAaLDUt1Yxyy6XTaJicnbWZmxj7++GP7/ve/b4uLi9btdm1jY8OePXtmb9688UOnWCza2dmZffrpp97klKa3HPA0eYY9UBaINiM0VQUITU1N2dLSkmWzWbtz546dnp46kLi8vLRCoWDT09MOXkulkpmZP3Or1bKDgwNneGD42EhhcAByu7u7vhnTv3B3d9eZC+5/ZGTESqWS/cEf/IGdnp7a119/bXt7e9Zut53JeP36tbfqOD4+tl6vZ/1+3989QDeVSlmhULBUKmWZTMbK5bK/X7P/1SS52+1au922sbExb85LG45UKuW952ZmZqxYLFoqlbJsNuvtmTgkAGYALe4FlgzgAMjXXpXKPGkrkqmpKe9xlxR0AET+8T/+x9bv9+3Vq1e2u7trU1NTlslkvNE8DaMJEiqVirMi9Jp8+PChLS4u2s9//nN78+aNLS4uWj6ft0ajYel02paWluzy8tJqtZqdnJxYNpu1ubk5DxJevHhhtVrN3/v09LRNT09boVCwdrtt1WrVxsbGbGFhwX7nd37HRkdH7auvvrJarWa5XM6Oj49tfHzcHjx4YMvLy7a1tWUHBwfW6/V83jBP2u22PX/+3DKZjM+nQqFgpVLJD+s3b97Ymzdv7KuvvrLp6WlbWFiwfD7va+Hq6soqlYpVq1WfA5VKZYBRpbEw7OPdu3e9xQzsEeD/6urKZmZmvN9ks9n0dj3ZbNay2ayvFRpbm5l9/fXXDo5o/pzP5+3jjz/2vWl/f9+Oj499ztCP8eLiwqampmxubs6Bz/7+vo2MjNjz58/tyZMndvfuXW+FRR/GiYkJOzk5sc3NTe/1CKvHftJsNq3f71u5XB5oBbS5uWnLy8s2NzdnvV7P194HH3xgx8fHPm7FYtHm5+etWCx6e5y3b996EPW9733P6vW6B3Y7Ozt2cXFh/X7fSqWSffzxx7a1tTXAOlcqFTs7O3Ng99FHH3mLn9sU4e11e/2WeXZthAptnU6nnbJWKh3gQxoPZoQGumzYx8fH3rGeSJEebTA3dJEnKisUCg4clFWIwG98fHygnx2/u7q6avfu3bN8Pm8XFxf27Nkz297etu3tbTs4OLBms+kHR7vdtkKhYLOzs3Z8fGz9ft8PeZ6b+yZ9qGlDAJI2I2aMAEakFwEDRLikOWgKy8HCfUDdA17T6bSDV+1v2u12vTlvKpWycrlsV1dXzspls9mB/qatVst7Kt6/f9/u3Lnjz3V+fm6PHj2yZrPprFOtVvPNfXJy0htLp9NpT8VMTU35vcMo8N6KxaL/NxFzp9PxPmkwY/QupKcanwuLR186DmjGjhQJc4E0oaajeB/T09P++Rw47xKxA2yWl5ft008/tUKh4OnNt2/f2tHRkf8MbCUHGwfp+vq6pxxPT0+tWq3awcGBpVIpOzo6sv39fU9hkhLa2tqysbExXz/ZbNYPvJ2dHV8D2jsSBu/k5MQODg686TQBCqwlzZIB64uLi7azs+MgAWYO0NJoNKxer9vMzIyNjo46yGYNmpkzr/TybDabzirCprGPzMzM2MrKip2cnNjh4aGNjIxYq9VyJrTX6znLSCDXbrcdSJ+fn9v09LRlMhmbn5+3dDptW1tbdn5+bgcHB9ZqtZw51FT69PS0XV1d2RdffOGpMO2PCdsLA0vKtlar2eTkpOVyOWdbGQNYLmWMAFmAfvp5koKjATT75fHxsaddaRB/dHRks7OzlslkbG9vz+czc6jT6TioB3iVy2VnoXq9nk1MTHgmYGJiwhqNhnW7XX9nAF7SzplMxiqViq/zYfrDW4B1e91e7wmwtBINsIXGgUMDcATlzIbC5gRDc3x87ECFgxcmCvDFJqzajXK57JsIeodUKjXAmI2NjfmGoqmtbDZrn3zyiS0vL1s2m7Vms2kvX760jY0N63Q6/n0XFxc2NzfnacBCoeCRIofw9PS0VatVP+BpcguggIWbm5sbaOSMxkGbRnO4TUxMWL1e90OfcdJo/ezszPb29qzf71s+n3cA1+/3nZ1hI6e5LUBWNT+ZTMZ2d3ft8PDQSqWS5XI5Zz9GR0ft8PDQ8vm8ffjhh944lve5vLxsV1dXVq1WbXNz054+fWrb29ueTiTFiSaEA4Y00NjYmKdntPk0qT4A0fT0tKXTaQeTHEQAW5irqakpb26t6WvVq6lmij+D9dN3BgvJzwxLkynr9fXXXzvQePjwoZVKJTs4OLB2u22np6cOFjjoAfGMRbPZtE6nY6lUylPYMJ2MCalLGFjmt76rqakpa7fbA2lz2Nnd3V2fUwQ4AKE7d+7Y0dGRtVotb7JMup53uLm5OaAxqlQqtrq6as1m0/VLfPbo6Kg9evTIGcUXL154ILK/v+9rGbaJtVKpVLx59b1795zBHBkZcZaJ+Ts2NubMKnPj7OzMWT1S+1NTU87g8Lv1et33IW1qzlzqdru2s7Nj+Xze1x0gHy1mNpu1paUla7Va1mg0bGpqyorFonU6HTs9PbW1tTXLZDIDzZRzuZyDM76P9wx7fHJy4kwecgDm7/7+vv3gBz+w8fFxe/36tdVqNW/2vLOz40ERcgT20Z2dHWf+Hjx44DIN2MOxsTG7c+eOHR8fW6fTcbDH/kFKfmRkxObm5mxsbMxarZb/2S3Aur1ur2/hQiTK4Q044HAk2kVwCQjikGCTVcBGOg/RLFEcoIy0ItEUBwBRlwpHOVQALgACdGKwWL1ez/b3921vb8+2t7edYUMDcnl56QfB6Oio1Wo1/3NNSWYyGcvlclatVn3TVbaFCBS24P79+75ZsWnqmMIw8IyIuAEtrVbLD2XVY11dXdnCwoKDDGURAb+kX3O5nG/8aIN6vZ6nCAGMzWbTNjc3rdfrWSaTGRDmlstlTwlXKhV78uSJA1j0VxyKvKeTkxObnJz0z4J9AqRz0JycnPhhBDsEgFamTsem3W67hg/Nm6YL+X3YE8A7hxoHCp/HvEPvlCT01zm3vb3tKbBWq2Xb29t2dXVlR0dHNjo66t/78uVLZz4BSd1u1yqViuXz+YFUHGMGeIKJ4DtTqZTfI+mvra0tm5qaslKp5MzWq1evnPmF/Xn9+rVNTU15Oiqfz9vBwYF1Oh1bW1uzUqlk5+fn1mq1nAkhpUZ6np8H5LIemIMqWmcNFgoF14vBtvT7fZ8z9XrdyuWyTU9P29bWlvV6PWu32wNsLUzd2dmZs9uwwqTsSM92u11nPQlUxsbGPFVPelQZVGQIsF+kG3knd+7csd3dXZuYmLBWq+WC+lKp5KlnmKDDw0NnKVOplGseAd4wWRQanJ6e+ryfnZ31uQODlM/nrVaruUaM/0dryZ7TbDbt7du3lk6nrVQq2e///u/7+7q4uPD1zjyCBRwbG7N79+65vgowDcgGxHIPyAZuAdbtdXt9CxfCaiJD9Qfi34At1WqxkSpzpdEPACKXy9nh4aFVq9UBobtW0PE7pOC0gogIH+Hr+Pi40/xHR0cOeBqNhu3v7zvLBvgjXXd0dORVNhxkemDDlgEMYVvQi3Q6Hd8Q2SAVhMIwoKkCfCCWJX01OTnpUS5jB0gFSHS7XWs0GvbgwQNPc5AiPD09tf39fT/MSI3AeJFO0rFF9Awgef36tR+svPfHjx/b3bt3fRwQAl9eXvrmzaGHaJbvAZDD5qn4+Pz83O+JucYcODs7s1ar5ZWYsFNUHgLqc7mcp5uYn6pF43cASKrBAmChOSENkqTB0t9hHlxeXrrGCBAyOjrqcwOdFHOW+VUqlfy9p1IpOzk5sbm5OVtcXLS5uTlrtVqWTqdteXnZ77vT6Vi1WvV03eHhoR/SnU7HKpWKnZ6e2uHhoX3wwQe2sLBgX3/9tbVaLZuZmXFG9vT01NNFsMcaNPX7fVteXrYf/OAH1m637eDgwF69emXtdts1ahcXF7a/v+/z8vT01F6/fu0Hupn5GMDSEaiQEuZdka7sdrs+33m/4+PjNj09bQ8ePHDBOfOUQhPYSJ4JHSR6MVJiBwcHnnZH4zg6OmqvXr3y6jwFUNls1ueiznktYuGfVCrlov65uTkHTfv7+y6kJ9hgf6JylECn2+06M7u/v28XFxdWLpe96OPRo0e2vLxs29vbls/nbXd31/L5vH3nO99xhrRUKtn9+/ctm81ao9GwdrvtaUPYPvaLubk5B2l/8Rd/YT/72c88YOl2u2ZmHmAx9gsLCw6gbwHW7XV7/Zbg6ujoyFMARGqqKTo7O7P9/X1Pl6g+iv9W0Xmkl7XEX1M9kYomik/6PKL15eXlgRL4q6srT4mxqWiFDgc0jAAACxZLU518H4L2crnsOizSS4VCwSqVirVaLRsfH7eFhYUBXQoAodvt2unpqS0uLjoYKxQKVi6XrVAo2MbGhpmZdbtdZ7VgfXK5nJVKJbt7967lcjln5xDFstkDXBAtHxwc+BjCAh4cHAykznjuk5MT1+OQKlxfX7eNjQ0bGxuzo6MjBz+Aq1wu558PCwCbqfow9ESTk5MOVPkcM/MNHiCGnqfZbA6AJwBbr9ezWq3mkbtaGFDtyfvjnrQwQv/NdzO3r0uddzody2QydnZ25rqokZEROzo6smw26xolDuvj4+MBlufw8ND1UoDbra2tgWo+WE8qYZVxJX0IE9JsNj11NjIyYltbW7a1teVrlgMeoA9reXZ2Zm/evLHz83MrlUr+92/fvnVrCTR8i4uLlkqlfExhfWdmZmx6etrm5+cH9gQY1aurKxf91+t1f75KpWKXl5deWctnkhIdGxvzuavFCuiAGo2GnZyc2Onp6QAgI83X6XSs3W673vD09NQWFhZ8DpH6AzTmcjlrNBr+bqempiyXy1mtVnMApFYkvNdWq+WVsTBwBHqNRsNlEbxL/o45QXDQ6XS+wcSzbhCu8wzz8/O2urpq3W7XqtWq9Xo9q1Qqlkql7OXLl3Z4eGiFQsHW1tas3++7hnN9fd2B0/7+vj8jgQ1B0ejoqM3NzdnS0pKtr687i3hd4HELsG6v2+s9LipWSFHBHp2fn3tl0ebmpgMe3VA1HTgMXHGI6d+xySa5oMNa6ffBPh39P+y9SYyk6XWdfXLOmKeMjIicM6uyhyoWhyZFdrdaokTJhAEJgr0yDFNe2CstvLC99LTxxoZhQwt7YwjwxuLCC9uQaQMWKAMyyFY3e6rumqtyzoyMiIx5yCFy+hfEc3HjY1ZTFBv/v/jjBRrdXZUZ8Q3v973nPefcc09OVKlUrEzcm1MBKeFw2IAci5rPloHp8NlR7IJhl2DEfM7TyMiIVf95cz8LNgCJl+bk5KQdMwwSL+ib8sGQUIkpoPoyEokYG9fr9ZRKpYwRYBHA44JkC+0fjUaNrfAghN0+7BK7b19Oz/VDemGx5rrwGT5fCdYKRiEUCtni6GMCuG78PLt9/GBIizBc+JqoLszlcjY3YD/w1QEgPVD3cRRIQn+ZAYuE/ANLRdECbIov5fdSLv/tix+4Zr64hLkOMOZecfwAaoAvPwdwp8p0Y2PDKjFhlLhfyHfImBxbuVw28DwzM2PArdvtGhDzuUozMzOKRqN2LLVaTZVKRbFYzN4bPHdBFoSNERuWarVqUS3X19dWqZdOp62Ig/lE4QsbJhjCy8tLA0WJRMLmI0UGuVzO5ir30ufPsSHj32wiea7582q1au+KbrdrzwhMPMAF2dkDbiRPABubDuZEMpk0Vvv8/FzhcFj5fN6k/3Q6rbOzM5XLZQPteDbL5bIBW6oMkXOTyaRtpJi7eLt4dhKJhGZnZ401jEajVoQzBFjDMRy/5CiXyyYLsPPmJUF5MrtyL9kFARYP5E0Ppvcm8f/sNv1n+nDIIEgDvExNTenBgwc6OTnR0tKS5QV1u11jUQBkACkWM1gV5Bq/kMJkRaNRWwRCodCAERmvC4wBL0nAAswKx8piw/eenp6aVEKI38nJieUCEY2RzWZN1gJ8FItFXV9fK5fLDUicAMtUKmULDX4jWChfhUQlES9kACFSq6SBKihkTLKBgjEK3EdAViwWG9jJ+7kB24jkxyJNZWGn0zEA4YNO8aYhvTabTZPKuHaYiz0YwFjOAus3ApjJP28QZ0HlFywRnpxWq2XysK9G85VaPEsswj44lvMk643MMsAZmx0WQwAM19MDV79hur6+1tzcnN17Ciymp6fNw9Tv95XL5Qz0np2d6cWLF/Yc8b3kOmWzWTP+A1JZtCORiOr1ug4ODkzOgx3lH3yM/X5f7XZb3W7X8ugmJiYsvw1gXqvVLOZhamrK7hcbi0qlona7PcCi45nC0N7tdnV8fKzDw0N1u10793g8rkKhYJEovgqVjdjMzIykn1ZtUgmMPMy7cn5+XplMRufn5xa/EgqFrKL27OxMiURCoVBIz58/t4IUPKlzc3OWlzY1NaVer2cZVTBkxWJRpVLJ8s+Q0nm34eEcHx9XJpNRKpWyDSVzJpPJ2GY5mUxqY2NDvV5PhUJBo6Ojev/9901WHhkZ0fLy8kuzQ4cAaziG4xcYvFB8NRkAqNVq2e7yq1/9qr72ta+Z8ZVFzYOjoKwXlGf8f/tdO7t0//PBzxobG9Pu7q7ee+892/2++uqrVj7OYoSM4OMCWGABdJhmMYrzkmbHiKGdz4SRgVngRcQxY+z2x020AkwQbBYgEUYF02mv19PExITtRgGlsC35fH5A1vLxC9zDZDI5sGAApIKsIRV2PvGdzw6yapSP+8/x5e3IDBynT+j24Ba5hM/BCA4LhAcGEMJ98UUIDEAIIJisLLxy/nyIlCBSA3mLjKKX+a9GRkb05ptvmj8nHA4baA+FQup0Oup0OnafmCv+mfCdAIKhrgBwSfqVX/kV/at/9a/0H/7Df9B//s//+Wf8Y9wj5vRNLLF//nq9nkqlkrLZrE5OTpRMJpVOp40ZBNSen59blSI5V1TqxeNxJZNJq0yj6KBer9sGIplMDvglU6mUsbTIVeRi8RzgTeRYkKpggq6urrS3t2egCzM2bKcHApOTkxbqioTaaDQM9DKHJxviVgEAACAASURBVCYmlMvlBir7er3eQJGD38T5e37r1i0z4fMuwHeKv61QKOji4kI7OzsGevk3kRwzMzMDbDHzncpGzh852VdCXlxcWJAoLD0bYa43DDuePxi10dFRk7Fh+/FcJZNJtdtti1/hcwjYHQKs4RiOX3J4gMGiCYtBSOHl5aV+//d/X//gH/yD/0+P9X/+z/+p999/39iKUqlkHief0dXr9Yye50XhXzgsWjBUXAfocc4Z3weLs6+o9JlYSITIDwAlgM7Z2ZntltmBUlk0NzdnLWUAAxw3PipfWcmiHGxhw3EQ3eALFzyg9Qsy8hXl8TBYPg6CBZBFsV6v20vYVxMCNDh/D6IAJVQgwgSQleSvoU/p53oDkDkHqto4b4AVcxgWEUaR/CXknmazaVLKTYPv/Cf/5J/o448/1tbWljY3N7WxsWHny7/5fACmB5cecMGuce29Z21mZkZvv/22fvCDHwxcf7/ZYMFmXnCOPqeOn6eognu/uLiofD6vYrFoFZZ42JLJpMmrMCtIRfl8XolEQvF4XHt7exbEi59pbm7O4goAuJ1OR1tbWwqHw8bKefkL0z7PFJI+mVDMgXg8bmn8bJh4ForFoiWW+3uczWbV6XTMAI+fDdkVcz7+tNnZWXU6He3v79scGx0dNZ8n4MUDNzYLME7X19dqNBoKh8PGJGGGB7DBMB8fH5vEB+uN3Fqv1xWLxWxTy+aPDhLr6+smO15cXKjT6dg5NJtNM8l3u92BnDreGSMjI8YQclxIruFw2K6N79YxBFjDMRy/5OAF6qtlJA2UjkvSf/pP/0kfffSR6fcMLxMGaWUvDd3EZAV34zf9mf9zDNi+FxmLLT4dJAdMu5OTk0ave/8YCxyLTTKZ1Pz8vGXasJh5X5gHo7wk/eLp+9DxIgbIkNjtGZ5Op6ONjQ37PgADLA7HSA4YcheLqI+z8H3YABc+/8pHFXj2J5vNGivge+bBTLBQwaBQPUhLIgz+LMzdbte8P1Rtcq5IYHwXCxpSqQcOADLOkYWLv6etiI93IE4CIzEMHjt92LTz83M9e/ZMv/d7v3fjMwEj8yd/8ifWv3JhYUELCwvGRL7//vsDoIrnwvdD9DKgf0YAoRMTEzZfmVPcF8+E+Y2P77mID8sXjXhmM5lMqlAoqNFoaGNjw1iSfD6v8fFxM+pTKOC7B7RaLWvlw/OGfwvAgveKOd5sNq19VbvdNkmu1WpZwUg2mx1IGSfgd3p6Wru7uwqFQopGozo8PLTrQjHH1dWVMcze1J9MJi1IFnYW8Iyc1u127e+JphgfHzdJkSDQdrutcrlszwDzGlCC1wxPF5I4RQr1et2KAsLhsIEbvJi+zRbWAUlaXV01MEX1JBl65+fn2t7eHvCHMsc9KALM5nI5xWIxizkBxO3s7Cibzaparerk5MRA7MXFhXK5nCYmJrS4uKilpSWrkBwCrOEYjl9izM/Pm6EYPwgvXCQQSXr48KHu378/sKgHKwo9IAsyZB4o+R2+z8/yTICXrDxg46XLSx35gfwWYg9opQEQCTI4UOmwXmQd+YXZm1Q5X++vgbECfLFI+ioyfi6fzyuTyej4+Nj6nbEAc+3ZXXJdPVPmm9J6MMv9ADzAcAWbbfNi9nKWb08UBMEs3CzuLGgYoTkOb0YmKdwnQZNV5e+ZLzxgvrEokrgNeMPQy/HBJnD9Li8vzQvF4kcYJcALlgEpDCbiJr8f1+38/Fz//t//e0UiEZNvMQhzrb2Ex/fBlHoTtQ+k9WA3KC/7ZwQJ6KZ8LM+cwXh6VpPji8fjmpubM88abC+g6OHDh5Ykn0wmLeyXjQk9Q/F7Eb4ZiUQsYwrg4oF/vV435tczJQD4kZERM7fzDFEUQnzJ2tqaBX7Ozs5qaWnJ7u3u7q5arZYuLy91eHioUqmkdDpt2Vr4z05OTqxKrlKpqFgsWhgp1ZiRSESFQsGYRFg4vF937961KkieSeYxzwk9Vz3oZ85Q9RcKhcysPj09rUajod3dXQNYMNwcE0x6rVaz+0hVJVW6ZJ1x/0ifx9uIFBiLxbS0tKSPP/7YKq7JCUMuTqVSlpsG+z0EWMMxHL/k2N3d1ebm5oBs5D0HgA3Aj5c4/ILsTb5B/4iXd4J+LR+e6f0mLEqeSfLtL/By1Go1k5o8aKHyx2fyAI4828Euksor7y+Kx+M6Pj62dGMWCwztLISwNDMzMwqFQtYfjia+hPjV63VjY/CWADR86TvH5eWgcDhs/i+uDw2QMbbXajWTMjyo4trhVfImfS+lAZpY/PBv+Gbf7OgxowfvHYZp5gymZd8FIBqNDswXFl+kICTeSqViixXMkW8u7OMhABV4y2AJ8b0hF3GML0ur9h601dVV633J5yCpPXr0aGBe4iny9ycom/qIElgHvFzcC65vUBrl/73EDfD2fftgGn3LJOTUo6Mjk88ikYgymYz1v5udnbVzQcoqlUoGoAAq6+vrtnAjsReLRTNos0ljI4Fs5vOm8NDRd0+S9U3s9XpaX19XvV7Xu+++q6mpKbVaLWtAjY8KMz1tj87Pzy1mgjynbrdrzxzp5V/60pcMOAIiYIF4ZvgsOjA0Gg2LcWDeURXog3q5LxSDIENXq1UVi0Vtbm4qGo0OpN5TJDA5OalcLqerqyvrEjE6OqpsNmvnKsmYumq1akUt9Xpd0WjUgCL9Gqn+pQABiTiVSlk1MhvbYrGog4MDjY6OamFhYZiDNRzD8UWMdrttJcieVQr2lfMLj995BnfxXgbxIMmDJg+0WGT5vGCulk/f9iwAi9Hx8bFJDUh1LCgsyiSFAzB4MfvP9AZ4ZI54PK5Op2MZTL7tCiyM9ysRagiT4cNMWfSg5H2FHS9QAiUBBzBSsCEkvOPdoEqN46YKr9/vm3cK8MXPIR36fmwwVFxzz04BGOi1R1AknhjABWCKxRWDMi9qn99Fs1/AE0Dq8PBQzWZT1WrVzoXPD5qHbzJ6w8QCRrm/XqqG0XxZKxAPtDKZjF599VWNjIzo/v37KpfLtsAG56tnZr2/DTAFcxd8TryEznzyMqCXAwH4/u+ZA753pm/Offv2bVvwSZ1nznEvrq6uTGIPhUJ68eKFXrx4Ye2lAAvhcFjr6+tKp9PmT6LCslKpqNlsGnA6Pj62ZHNYrX6/bzI8sRH04SNiAcYGoAcADYVClmbvGSXytzKZjM05/w7A3wgoisfjNoeQJk9PT1Wr1UwWpVUNwBxpHUDEBgMJlYIAimTYmPKssBHifQtjTaYXzyHvSvyvNLDmPsMSw+LOzc3Zu2dmZkYrKyvqdDoWPAzohWXj3QTA8i3Jms2mFaEcHBzYZnQIsIZjOH6J4RkOSbYoYuC8yT/lWSxAAguAp8/9DikYIhqUNXzonl+wPEPiwwORcWq1ms7OzqxSzEskHjDBWvFixESK6fnk5MQqhHwOFZk8lE8jXeEJok3P3NycYrGYlYafnZ3p4ODAYg3y+bymp6eVTqd1cXGhvb09k4FgeWDH0un0QO9BSQZqfL86H67JS9TLMb6a0McJeHDk5wBJ3L7Si8WYn6MiiYUMacynZuMrIph0enravDf5fF5nZ2eqVCqq1Wra3t7W06dPjSlgvgEIARnIhEHmNFi95/PFkOg84/Wy/LWgTHh1daWnT5/aNWs0Gmo0GgPBpt4fhvzoQZFnFwFFMMOeBfaRF1xnrrHvcRlkjFmM/bkhYxFp8Mknn6jb7VosiAfRPrIDaZamv/F43HrZLS0taWFhQdFoVHfu3LFiBcACkvvz58/tXH2SOb01x8bGdO/ePWsdVCgUBvLeNjc3ValUtLm5aX6tfr9vQZ7JZFLr6+saGRnRo0ePbH62221tb29rdnZW4XBYs7Ozevvtt9Xv9/Xhhx+q1Wppfn5eIyMj+uEPf2ixC1TkzczMaGpqSo8ePTK22FsBstmsCoWCgep6va5ut2vvsNnZWUUiEW1sbKhUKlnhBdc4EokYCA6FQgNp8TCBtA2i4fPZ2ZlisZi+9KUvWbUtzCJ+ORgsjvfJkyc6Pj7W8vKybt++bXN1ZmZGvV5PBwcHFoEBy4Wfjc0fz/3LxhBgDcdw/ALDm6Ghl/1u6mU+lWBDVf//nuHyVWqe/QpWSnlz7suCTL05nUUM/wFGcb/gUGLO7g1zNYsi508bC8AToIwXuy9fZrfKLnhqakrLy8u2a4e9wlcEmGSHyznkcjkzwuOD4LpQhUWoKR4VSWYC9rIi8QEYbX2Jui9zx3+D3BAEwDBfi4uLkmQVX8wRqs4oLABgTk1NKR6Pm+emUChYyChg7/Dw0KSNRqOhSqViRQnsngHO3lvGPQuCcz/XfF4UYMx/hi8uAHzjq/u8AYM3NTWlXC6nZDKpRqNhaeAe9PtCh6DP0EvnN8nrPirDV2H6jYpnjD2D6xljz5bxPKXTaWUyGWPBMKhzXyKRiOWQEQRaq9XsO588eaJnz56ZHy6fzw9cXwBJKpXSt771rYF7xv33cSaY16enp9VsNi09nT5/PL+9Xs9aU5EvRXuXkZERzc/PWw9PNhBIhUQfMK/plXh1daW5uTlji2HRkMiXl5ctWsVL7JjKaZrNuSeTSZ2fn2tvb8/uSSKRUC6Xs6wxwlDxWvEcnp2dDfjYEomESegE215eXuqjjz4aeJ6Zl7xPYSaRx2mf498noVDI8tsAVLBovGeQ8PGKMQeHAGs4huOXGEhfVK6Qin6TZMKicVPIaNB7xWf40ERfeccL12c7eQ+JB2D+O4P5WXwefdiQnxKJhIEPysHpEYahmgWQiqF4PK5MJqNOpzNA7yMLrq6u6o033tDa2poZbqPRqGZmZmwhR0Jg8KJDCmBB5NgODw+1u7urZrNpFUBIKx5sLCwsmDTjvwt5p1arKZ/PWxPbm6pCz87ONDMzM5DQjWeGBZyF5+rqygztMFsEJ9IYmlRqGg5TnYSH6smTJ9rb2zNWot/v20KD/AeLwoIPGPLghOvv2TdYyWBIrZ8npIB7aReGC1D9MnmQPm4ASbxj3nMXBD8co2cW+RlYL5+3BKhl+A4EACJf9el7S/o+nv754lgvLi70O7/zO7p9+7b29/cNALI4d7tdPX/+XJVKxdqw+CbLnDcNz7le9L2LRCK6d++etac6Pj62Fjnj4+NKp9PK5/Pa3t62IE2k6dHRUZsrk5OTKpVK1qwcgEJe1+HhoTUhZmPgm4pfXFyYP2xhYUEjIyPa3t62KtfXXnvNUvcBZ4AUiguOjo6MQQLULi8vWy/JnZ0di7CQftqwmZZX3W7XqpSXl5e1srKiN954Q6Ojo+Y1K5VK+vjjjzU/P69CoWC9M9fX120O9Ho9PX361Dxz+CDL5bLlUnGMMM7klJHgPjs7a9lWxWJRCwsL5iVbXV3V2dmZFQKUy2U9e/bMemwS78IcHzJYwzEcX8BgwfFBkFDFwd1xUDL0FYTe0OtbhXi2yGdVsVh6WTGY9u5N1EEQd3FxoaWlJf21v/bXbOdI5SNs1OnpqfUA4zvYvftkcMy+GKSR7qanp1Wr1bS3t2cszuXlpe7fv69ms6nJyUnNzc2p3W4bHQ+rAOMEQKHayzfVnpyc1PLyshYXF+0YCRr1ZnIAIh4sSeaxGB0d1ePHj9Xr9cxUSyURVUt8T9CMy/HBerDwBAG2v//cFwBos9nUxsaGzs7OrCqtXC4baPKSmffDAIBoYsx1YS4CVphTnsmDhQwacT275QGO/3sP/l+WVs1cfeONN6wPHc8EPhzM9n5OA5A8s8vxAAa99OQLPbgnAAmAEFIjoNIDSM8Ke6kd4Pzf/tt/MwN3LBaznpKwuszNr3zlK5ZtRUioZ56J3cC/RnjnxMSEGo2GHj58qKurK33ve9/TrVu3VK1W7VrcuXPH+gRGIhGLhSGUE/8ewDsWi1nfvLOzMz158kQHBwcG3ogw6XQ6FkMxOzurVCplYbw+ugKmEqnbS/GkrXPPyGTzbbbC4bB6vZ62t7fN7+Qrmfv9vt555x11u109fPhQ29vbevTokbGB5IktLy9rZ2dH+/v7ikQimpqa0g9+8IOBYhDeiWxyx8bGlEqllEgk7P3GMZCjxztnb2/PohySyaRqtZoODg40Nzen09NT/ehHP9LExIT29/fNJ8Yz1+12LXjWtz0aAqzhGI5fcnhWxXtrvEfH/0zQuB6UDH0vNnbdvDw+L8TOJ117T4rPn/LsgiSTBZLJpC0wlJCn02nFYjHl8/mBna9f8DkHAg79Qs53zczMaH19XdVqVb1eT4eHh1aCHg6HNTc3p8nJSatY9GnvvIQJZ4RBIcGaXTbhoywAgK9ms6lisWhNo705nWqwXC6ndDptx8O1pDQcOdXHGrDY+BJ5z6x4sHtTVtnFxYW2trbUarW0s7OjZ8+eGejCoI78Csvlex8Czr0/DLDkA1ZhzjyrBYOF+djPT++94tpy3fkZrjd5Ti8DV+Pj4/q7f/fvqlQqqdPpmBG4XC6r0WgMdDnwc9pvOrgXHJNPXIfRgUHFA4d5nIWUc+RZ8pWGwWcQMM6fVyoVHR8fG6gBGPDf19fXymazmp2dVS6X05e//GWNj4+rUChoeXnZChv8M+mrGPv9vj799FP94R/+oba3t/X8+XNtb2/rv//3/24sKt+DD+/Xfu3XdO/ePb322muKx+MGIOjUAHuWSqUUjUb13e9+V91u19pV8T4hbuH09FQ7Ozt68OCB/st/+S+q1Wpm7CZd3hvhV1ZW1O/3FY/HtbKyosnJSWUyGeVyOc3Pz9tz6CVdzt97R/21iEajevbsmf71v/7X+uSTTwZsFsViUfv7+wNFC41GQ5OTk8ZIeZY1nU5rZmZGs7OzisVidh2RRdfX142pJ19renpalUpFL168UKFQ0L179/TkyROVy2Vr64RxvlQqGcvP+wjwzDOXyWQG3rlDgDUcw/FXHFTJeUnCl5oHgZj37vCSIeQSszOeBhZVfpaF1Ms/fJ5nVHhxcTxBeRA5pVqt2u4ZSYOB98NXdWHSprrw+PjYmvVOTExodnZW6XTaDMtUBcXjce3v71vVEDv4hYUFFYtFtdttHR0dDSz8MEGwV95D4/vK+QXdl+QHJSAS7AG+UPr4mPCu+ObU6XTaztUvkt7bE0wF9/lOHpB4ZhFgNDU1pWQyqVu3buny8lIbGxuKx+NaX1+3sEwq2LwxnGPBc0VlFwCbPCyfI4WBfW9vTz/5yU/0ox/96GcqBJkfsDZIkR60eHDwMjMv1/cf/+N/rEKhoGg0ahESSLcEPb6seMN7wvg+3/4FNstL5ABCQmWDxSCeGWYuXVxcWA5ZcFOEbIUvL5PJDAR98j23b982Gero6Eh/8Rd/YXMJX1On09Hk5KSWlpbM04QRfnFxUc1mU1tbW4pEInr11VeNwdzc3LTvOz091Z/92Z/p/v37Wl5eNrC0urpq8QM0JuYaIiFTMQzo3N/ftw1Dp9MxqSufz1sFYygU0q1bt9Tv91UsFrWzs2MVg1QmMk9CoZCSyaQ9U/iZkOAIwgV8AXIKhYK+/e1vK5vN6m/9rb+lv//3/771/RsdHdWTJ09Ur9dVKpX03nvvaW9vzwpbstmsvV94b0ajUbsXVG36Te3FxYWB/Fgspnq9rmazqVQqpbffflsvXrzQH/3RHw1kkPV6PR0dHZkHi4Ba5Mdms2nFCLTtGjJYwzEcX8BgUfVg52USi2cxAAE+TdmnrEPxkw7tk8q95BfsQegBljfFB6sTiSogvJPAykajYaX+LJTICh64ICOwWMJqwCjA8ABACeT0Cz5sV6PRMKmVCkzkPe8TAnCwmPqcLx+yCsM0Pj6u+fl55fN5bWxs6OLiQuFw2BYIzpP7R+UnL+StrS2ThJAukXk8ywjDRAUp5wcA8b31kE+9V29hYcFkmlQqpXQ6baGHnDeyJYCBRVP6aWEF1ZykuC8vL+vOnTuWw8TxpNNppdNpbW1tWfVnUMoGcCMjwswyn3wQ6stYXUnqdruWEUfxQ6vVMm8eAAd2yfe2DAJkKuXwI3HM7XbbUrORipiHfB5zwbMnADRkI3oywlBK0vr6um7fvq3JyUl985vfVDKZ1NzcnF555RWTx4+Pj82Ivb+/r3A4rHq9bvMFdjeXyxkoAOxKP00gf/HihTY3Ny1HKZvNDjy7yF6EW5JVVa/XzWdF5wX8fRwb1Y+01gG85HI5k5z39/eVy+WsnyJJ9Lxb2DSEQiHNz89bvh2N3wH1i4uLJllnMhkzxo+Pj2t2dtYAS7vdtiKNyclJbW9va2dnx0J2Mc4vLi7qm9/8pq6urvSjH/1Iz58/t0bvr732mubn55XNZnXnzh2Fw2FjD6no9ODdByBj+L9pfP/739fU1JS63a4ajYYlykciEc3OzloAKdlrY2NjOjo6UiQSUT6ftyDTIcAajuH4gjxY7Iw+L3wxKH9MT08PVI6x2FBR5ZPSgxWHXlYMSpCejg8unEEv2OHhod577z3LqCELi9JxgAy7cb+wQtH7oE0Mp7xUqaxhcWPRxCtFA2DfXNWDSMzzfE4QqPhSfx/uimR0fX2tdDqtV155xXbwVFSVy2VFIpGBnofVatUof5+2jofLy4Cc7/j4uO1qYWU4D+Is/D2BdfA/t7e3p4ODAzPg49mh3VLQfE7oJ6COawIwQvLIZDJWFg8bCMvza7/2a/roo4+0ubk5sFng3AC/gEv+DmOz71P5MpDV6/WMwej1enb9yU7yfSKZU3iASFmnGOCmbDgKFJBUW62W9vf3zScUNPkzhz3rCYvogTwVn//oH/0j/d7v/Z6azaZisZhOTk707NkzffDBB2o0Gvrwww/1ySefaGFhQaFQSN1uV/F43MAD1577w/MNW7q4uKh79+5pf39f7XbbwEs0GlU4HFY6ndbS0pKxnVSvwZxfXV2pVCrpo48+0sjIiLLZrCYmJnT79m1LUye1PRqNmjdvZmZGy8vL1iLn3r17WlpasmvNOWAUPzk5UalUUr/fN5M+vr9ut6tKpaJ+vz9Q/BEOhy0RfWpqyqIOKBAYHx/Xr/7qr2p6elq9Xk/xeFyrq6vmS6QaU5Ju3bqlt956S7/9279t55DJZCxA9+rqSrVaTScnJzo6OjLWG5ZtYmLCwkqnpqa0srKiV155xcCnn/9/82/+TX3nO9/RH//xH+vBgwc6OTmxtlWSNDc3p/39fSvUaLfbBrKq1apGRkbMMzcEWMMxHL/koOrHgx1KuYMLEIsGJdvsIJHDWEAwiAYf/mAEw19GhvTAK9jgGKaM7wK0+HJ9mBIWI2++R+pLJBL2M1wPXmxIOj5JW/ppajtl1plMxhaOoHQDw+ANzj6c1KfjI40BXBOJhBYWFpRIJBSLxQbkAaQTfh+TMrKKZ+e8wRzg4X0cp6enlhqOr80vqL4XI8yKZyGRpyirhyHE2xEE0rCbvpEvkhKFBt1uVw8ePFAymTSwS4XixMSElpaWlEql9Prrr+vjjz9WvV63is1YLDYQ6ErFISDFz8OXDUApga407eZ6egnPM5vci1AoZBWbQV8hi/D5+bkBLD6TeY4kyPznXLj2vk2Tz+PyYOjf/bt/p+9///tWsEFrmdPTU/MhnZ+f6+nTpyaXEaPB809gKYAAoz/nicx+fn6uUqmkXq+nfD6vZrOpg4MD8+Sx0fABoDDcMDQHBweWP0ZOFeyfr2ylOTJAp9/v68GDBxZYCvPsDfrk02HA91EFAEK8cj5QF3Yedmd7e9tM8B9++KFSqZQWFxfVbrf18OFDXVxcGEg6Pz/X/fv3jVFio0e1JO+U6elptdttm2+01zk5ObH/Jhn/lVde0ebmpk5PT/Xmm28OtNB6/vy5bQD45/r6Wnt7e5bi/uTJEzsOms9jmF9cXFS32x3GNAzHcHxRA8nHe0g8k+RZDx5e397ESyp/mYUrGOfw8zxeN1WCeR8WoMVLeH5R84wBP8uLl2BMjKKcH+wMbA3ygjf64rXi5c2xkYzMS7TT6RiYCZbo+8+fnJzUzMyMVXLBip2dnalcLqvZbKper+vZs2cGlLwnx494PG5S2NLSki1CrVbLzmNjY8MWYphMwkoBEwAT78uDBfSgE2DAQs/c4Pp4Hx6ApNfrDfRe9JVpLHKdTkcjIyNKJpMGEAFzp6enSqfTSqVSymQy+uyzz/T+++8rFApZwKmvFvTtamB7XsZgAVyWl5e1ublpmVezs7NWwebZyMnJSd26devGNiScP7IxmwB+JhKJmOyWzWatFc1NjJeP1vAGf465VCpZ1Sjs1+zsrOLxuN2LTCajw8NDA3UnJyfWwgXPHnImx4F/qtfrqVwum6eQ/DUCcL1ZPpvNGsh4/vy5saSRSETRaFSbm5v68Y9/rIODA/V6PestiHxKpAJVhSSx01B8ampK6XTaPGXIfwCiXq9nGVuS7HrDhk5NTenp06d6/vy5qtWqNWrOZrNWfVuv1/XZZ59ZBAr3l/iSZ8+eqdvtKpPJqN/va3t72zYkbIA4zlQqZQ2tYQXz+bwxaGSzwXqyIctms5qbm7O+jDRcr1QqFpMB2H711Vftvv/BH/yBJOkP//AP9fTpUwsZZfNDLAdsWSqVMgb685jdIcAajuH4BYZv68FLHYnDyxN4NliAb2qD83m+rSBwetnf3wTCfKk+O2B+zpdkc7wAKf6NAd7vipFbYLBg5TCPe/8LCxagguBQOtbTPBc6Ht8JoCOZTGp6etpAzsXFhUmM7DTxl/CCZiElI6fT6ejy8lKJRMLkkiAb6Cv0KDzACyb9tI8ZrJtf/GEBG42GsUrEXABSfHCs/0yAqPfeeZbLe0g4J8AbLBugyfd6vLy81O7urubm5mw3DVAbHR3VixcvTJKTftq0/Fvf+pZV/Hk/Gn0WPVvriyxethHAqEyFJmDo8vJSz549M6Y0m83qhz/84UDFbLD6Mih7+z/nd/7gD/5Af+/v/b2fkemDv3MTszs+Pq7vfe97+pM/+RNj3HZ2dqz4AsmLOY05PJvN+xke4wAAIABJREFU2rzherLYAqwuLy+tz9/a2pptTnx0CACDFlvIdwcHB6rVarb5WVxcVDqd1uXlpebn5zU+Pm69/s7Pzw3kUfxAFtm9e/c0MzNjuU5eXqOAIJ1Om++P/n5sKGgh1W63jTVKJpNaW1tTPB63SJfLy0tLTT87O9Pc3JzGxsas0bVnhLl/jx8/HuiccHV1pXw+r8nJSR0eHlqGVjab1fz8vJLJpGWJwZYBsACuvg/s8fGxnj17plQqZSHG2CDu3r2r1157zTa9hBezmXrnnXcUDof1x3/8x/rkk09M3gbIwrCXSiWT9PP5/BBgDcdwfFESIQsk/hEvxwFO/s7f+Tv63ve+p1ar9TMNmf8y4OrnjeBnBBeZiYkJ/Z//83/0b//tv33p7/rFkwWDLBoPZABAvm+gJMvE4TgAHpeXl+Z1Qi6DRTg+PjYvFeZkv7gCTmGVAE35fN4ylajqgWHxi68vFKB0vd/va39/317E3A9AHWxjIpEYCB2FjSL/iD8nDRrZpNfrmZGdfBx8TL6aLdhoGRbKZ0Jx/bimVGl5aRlplu+ORqOKRqNaXFzU9PS0gUvflJpSeM53dnZWv/7rv66NjQ09efJkoGLRm7UBFz/P5I7Hj9+nPdLCwoKSyaT29/cNVI6Ojur//t//a1lOQdCP/4vnys/z8/NzLS0t6Td+4zf06NEjffrpp+YF8sfiGbebYlNGR0dVLBbteJG5YZHYUNBRoNPpaGdnx4o0Li8vtbKyomQyaV4mPDrn5+eKx+PWLiocDmtxcdGYMa7P4eGhRkZGtLa2ppmZGUWjUT1+/FidTkcvXrwwaTsUCqnf71vvQx92OTk5qXK5bIb8bDZrGVo+CwwQBLBiviOBI4kCXpjvMHWhUMjiCLiHgOd+v6+trS3t7OwYk/bDH/7QrimbCJhh+oNGIhE7vlarZcCcSl/etUjEpVLJ7hEMPH48runExIRarZbq9boxs2z4Hjx4YFK53wyfn5/rT//0T83PF4/H9Tf+xt/Q0dGRzVs6MiDrA+aIzXgZizUEWMMxHH9FYMMiSRIzL7Dz83OtrKzorbfeGmgA/f/mGBsbs6bUfpHxeUm8eLzUSHyEX9i8vII/hZ0jVWEsfl4OpJSZzCf+/+nTp7q4uFAqlbKgUN9IGaAFc8XOmuO7vLwcCET1WWIAklarpc3NTUt7X1tb0/7+voV8+v5qfGYwtweJCqaOnT+7br6XKiZStVlouSYwX5hnOV9CXH2mmY9FwN8VbK8EywAQgM3gM/lv2ETuG+BtamrKZKZUKqV4PG6g1EuceM1gLl82j/nzaDRq3wfTsLu7q8PDQwOksBD/8B/+wwEWwfvVgrlrnnm8urrS7/7u7+rb3/62vv/97+vf/Jt/87l5cUE2K9gj1EdqdLvdgbwuz15Eo1H96q/+qk5PT/XOO+9Yk2YAbDKZVDKZtOsI0KFfZKFQMPYKIzkm7e3tbb3++uuan59Xt9s1A/zq6qrFRXS7XasQpYqXVjk8f41Gwzx3MDLMQUJAmb+0aKLake4GgE5AOm2gut2ubaja7bbdR6wCsVhMKysrxuZ997vf1enpqR03pnMaaOPxAqgwJ4+Pj61opd1uW/o7zNHZ2Zk1Xub59F0KyAXLZrPqdDp6/PixIpGI0um03n77bSUSCX344YeSfmpgh9nb3Nw0KTgej+udd97Rv/yX/1L/7J/9M2uqTuELrYPq9boxfEOT+3AMxxcEsJAHkSu85MXL7J/+03+qf/7P//lAmCOMi2d2Ps9zFWS4ggGWPsrhpmbPwabP7Nh8Tzwve/rP8vlQHlTC2NEI2jMANOtFdry6urJEdOQjrt3Z2Zmq1epA2jfA0McF+NYrfAcvZDxOgB8WGRpakzM0Pj6uV1991RgTDOMYgn2FIrKQB3ueCQlWq/GzHDtSgr/m3l9FzzWfO8a1h+3iv31y/01SHcdLiT5VWDCY9I30vjdJlr5fKpU0NTWl+fl5W/CD6eaAuGARxk3SeSaTMeYGSa1YLKpcLtv9Y9H1MiCFIJFIxHLWfMNt35/QM22+B2GQHeaY/H0AvCK/cgz+ukxNTSkWi1nrl6mpKc3OzlpUArEIvuk4oCkSiWhnZ0fFYtEqVIki4FkBQLZaLVUqFR0eHurTTz/VRx99pOXlZZ2dneno6Ejz8/NaWVnR4uKiWq2WgWYyuqjCg2kDsHDeqVTKGj4T0QIAB8Dv7+9rZWVFa2trymazkqTnz58PyNBLS0tqt9s6ODjQ0dGRhfnOzc1pfX3dwDfREaurqza/MPoDOGdnZzUxMaFbt26p1+tZA3N6Cx4dHenjjz8eYE4pIiJSgsrkeDxuVb9sfKLRqPX5ZCO4vLxsrPJbb72l0dFR3b9/f0CuJdx0f39fvV7P2Lt79+7pzTff1J//+Z/r5OREY2NjisfjunPnjmq1mra2tnR1dWUxK0OANRzD8UsOfEC88MLhsFZXV7W1tTXQTJYF2VfgeVD1eY2hf96fBdORgz8bzMni56i0882LPVPjYxnw9vi2JV7qA+wgJ/B3gMzj42M1Gg0lEglls1kzscJwcA1pm8NCiWSBB4xFkevN8eGpYtcLQ1Ov1y35GWBCbzVenjBStODwxw/bxEvbS0T4Urh+nNNN3iqfk+aZBPKXaLzrmSl/nYMDkEbSPUZl76N7+vSpYrGYsQiYluv1uur1ujFImK3Pz88VDoc1MzOj+fl5kxG9RAdzkEgkfq5EuLW1pddee00bGxv2WQsLC1pfX9fBwYGmp6eN4fEdAJCZ+HvAuGdXg1Kw/zMAk88i84UR/ne4dwAkALUkvfLKK7p7967i8bhyuZyBWypjqRokw4kwTSRc7jdtadh0AWwIHKXQ4K//9b+ukZER/a//9b9MSmy1Wup2u/roo4/09OlT3b1713K3SDLn3t2+fdsqL5Gr8vm8QqGQstmsQqGQUqmUzdvDw0ObR5ubm/rggw/0xhtvaGlpydLqd3Z2DBzNz8/r9ddft3n75ptv6vz8XJ999pldbwz1l5eXOjo60g9/+EOdn5/r2bNnCoVCFj/hpUKACqAom81qYWFBpVLJwDPsKew3/RV9Q/Fut6vZ2VktLi6qWq1ajMzIyIiFCTcaDWsbtLGxoaurK21vbysSiWh5eVmFQkFTU1NqNBrGml1dXenjjz/WBx98oG984xu6d++ePvvsM8sKOzg4UL/fVyaTsXMYSoTDMRxfwEAyGR8fVzweN+M2D2Yw3JCdd1BevKl6MAi6/O/dtMB4EMUiEWyD4s31+KyQj2DSgv4gPg95z6fJ49NAZsOTBTghXZoFDC8FixnfTQ9AzyT44gEWFEzYGFr5Lp9671vuwH6MjY2ZcZjfZdEpFosWcUAUhc8ZA+hR4Yd8wjHGYjGFQiFFo1ELf+QaA/R8Fpj3FXk5MxKJqN/vG6tF1hCLoAdXgC8+x3u1AMb0x6TVCYUHyIYwUQBnJKder6dIJKK5uTmTyfz1hfn7y/iw/Pmn02ktLy9rampKOzs7arfbA9EKnq3zfSRhwPwzBGNH70zPduIfwjfn5zIsmGcfmUcAYo6dCrFWq2WtnKjiI1sKTx8gFXYFvw8AFjBEJWA6nbZAT8DO7u6uZVlxvOl0Wmtra+r3+6pWq9YRgXsKY+s3KzCCzP3p6WmzB+B5qtfrVlUaiUQ0MjKiQqGgxcVFm4cwvZVKRbu7u7q8vNS7775rwMhXMBJySiyIlyKj0aheeeUVS/Ln7zGDM8cnJiY0Pz9vFZizs7MaHR1VrVazSmCAEvcX9rderw9Ez9RqNds0ce2xC8Ay/dEf/ZGSyaTeeOMNhUIh1Wo1RaNR/cVf/IU2Nzct7LRWqymbzarX66ler2ttbU2pVMpysh4/fixJtnFsNpsGsIcAaziG45cY6P2UEddqNTNu3+T7CP73y/wrfnEP5iC9TCb06c9Bxsp/t2cDoNiDUhRggmONRCIWFkilk2/p0+/3LYdmfHzcjN68xDHTkhcEcwbVnk6n7SXopR7PKHAd+DnyqIIRGbAivmHy5eWl4vG4mX3Jyzk9PVW9Xrd7xuKKFMnCDhNVqVQszwimqFKpWGUVPhLvCQH0BBtuBwNL+TcSUKVSsQozzpdFi/JyZEOf8u5DQqlGJJrCJ9Z7Kc3LvTAGsVhMuVzOvEM+EZtr/DLZfGRkRCsrKwbUzs7O9O1vf1szMzOWqs9u30t8gCt/PShWQFb115VnEJDGz3o51z9vzFsf0QEzyrznWYvH4wYg8FYBas7OzqxZOJWCCwsLBsiYr/T7gy1bWlqyOIFKpWLNi8vl8kA4LF6tu3fvanp6Wvfu3dPp6akB1PPzc+VyOcViMW1tbalerxsQOTo6Ur1eV6vVUjweH8iN4hoRJ3F5ealer6eFhQW98cYbeu211+za5HI53b17V7FYTGtra7p165ZmZ2etvczW1pbJ78SGVKtVi2e4vr7W1772NettyhwmTZ5A0V6vp2q1qlwuZ62J8OllMhnFYjHduXNHx8fHevTokY6Pj1Wv11Uul62ytdFoKBKJmPyHPDozM2PPytHRkYEz2v6Qf5XL5ZRKpXTv3j29//772tvbUyKRsMpv7kGhUFA6nTaQ/OjRI+3u7lpRB9WdQwZrOIbjCxiYmKHEG42G+TqCC44HCd4L8nmVhB44+Je/X1BvyiS6CcgFy9NZ4AFVPsWcxZPwwbOzM1UqFTsWzM8AHhZrdvBTU1NmPG80Gsrlcrp165axIDBJPr6BDC3PZnijM9/JP/hNPFN4enpqQZ/slokISCaTBrZqtZqBBfKBisWi5UNxnNzH1dVVC2ikiosFGUaPhZTv4Lu5nr71yE2hriyA3GsM/7AwfKf3YU1NTQ0ULMAIegkaQzNMEL4U36fPz0mYo6urK5OVKLvnWGEFPm/AOlJtVqlU9PTpU2NDYHC4Zr4Zc5DF9fKh91l5oMXPANB9KyUfRgt443r7Z4lrSEUaMQQwta1Wy4zQ+NZIcT88PNT09LS63a6SyaQBIAzgk5OT+spXvqJer6disajJyUktLCxIkjKZjL7zne8YCwRIOjk5USqVUrvd1ubmpnmSdnd3rfdnr9czaXtsbEwrKysqFAqSZJlWsFq+QwD+rZOTE2Ne8O0xz+7cuaPT01O9++676nQ6+sY3vqGxsTHNzMwonU6rXq8rmUwqm83q008/tWv/+uuvWzYZGx2f1YUPjBiF8/NzVatVY4aZn/zd9PS09vf3LbcLHydp8jBeNHHn/lMJSD4WzZupWubd9I1vfEPxeFyNRkOffPKJJiYmtLW1pUajYbEaBwcHqlQq9twVCgVFIhGTsoloqVQqL918DAHWcAzHLzDS6bRqtZqq1aoZOIOynwc/QWbLA7CgTBhcVPwiwKJwEzgL/plvAcLvsLD4hfimcNJoNKqVlRXV63W9ePHC2CTypficeDxu5xaLxSy/ipfRzMzMwGLm2SlepP48PWDgv70BHdDlmQrAgW+2inSXz+eVTCZNekOG834a2DMkJmTDaDSqu3fv6urqSu+++659H+CUqkMfzeF9bORK+T6CsGVUTXlvEPIVLFkoFFI+n7dGuzA5wbgHAm85DgD05OSkisWihU0iFyLheQbJ9zgk9iEejyuVSpnhHHbzZYuIB0cwIz/+8Y/1p3/6p8bmeamZ+embpAdb4nj5LhjVwADwsUkImt+ZLwBFctPYsPA8MN9oVdNut03Sg624vLxUu902duPy8nKAfUWepS0OGwo8cZ7toeHz6uqqjo+P1e12LRalWCyaJ6rX62l7e1u9Xs/8QcznWCymubk5Y4g4R+9zo6oTj9j09LQV5MzPz+udd96xtlKVSkXNZlMvXrwwX+PDhw8tcLTb7SoWi6nVaml5eVkzMzMGJjHdZzIZLS0tqVqt6vT01MzjdEpgQ0UF5iuvvKJKpaK9vT1jvo+Ojgykh8Nh68gwMzOj3/qt31Kr1dJHH31kXjV8nJ79h7GNxWLa3d21ima6AlxcXOjWrVu6e/euHj9+rFu3bqndbltqPxsh3mtUmn722WfWyDwejysej6tardo1HQKs4RiOX3I0Gg01Go2BFwZUuGeWWPB8Cf7nVQgGd/C+lcdNfQaDbNhNbXb8sfDnLMr+MzCCw3xEIhHbAeOpwXvmQ0l9OxRvaKX5M5LP2NiYms3mAMhh8fb+K0AT3+ur2pA3vO8KdgUJyId2hsNhnZ2d2WJYLpft59rttmq1mjEANJ9GPoKdZOfMS9tXAyLH+UDMq6srHR8f27Wcnp7W6urqAFilyTFgAwMyc8RXE+L/OT8/N+8OP+ujInzfRu47jB8MGQUJwUKBm+RkUr0Jn8Rj9vP8V/v7+8rn83r06JEODw9tsSVnyTN2vn1OsFGvZwA9ixs8Bp6PaDRq88czXIBmLzt6L1aQ+SLW4/r62qQ7+hIyt0lDp1gBiRdfXywWUyKR0OrqqoF1ksnpa7e1taXNzU2T2WAsp6en1Wq1dHR0NNBCa3R0VMvLyzZXeO8AHqamplSr1ax4A08SsSGEplKpOT4+rmw2q0gkorOzM21sbKjRaOji4kLr6+vKZDK6f/++NUjHyF6r1czr99lnn6ndbpuUiu+LakJ6A1KJmEwmVavV7NqGQiHlcjnz6k1NTVmwML5LAGW73TZm6+rqSqurq5bX1Wq1rMuCf0/gBwVAE7Z6fn6ujz/+WLVaTfPz8zo7O9O7775rflA2S61WS81m05pNw7aenJwYq1atVjU5OTk0uQ/HcHxRAz8O4CQcDg9UEHl/1E2eqpd5sIK/4xe9m4zvN4GyIJPFzt57MdjJs4P3/fn8z/pFH1YALwoLEoZ0XwUIhe4XOH6Ga+ZztoKLLv8gYfKy9qXbPtAUqZEFie/1ZmB/HuySDw4OrDSdcEgYkZGREWuH4j1OnmkB4ACsbpIB/bED4Hysg49C8H4gKjO5Phjx8b6QUeRlPu+1o+qLewx75X1JXPcg08nn8Rkwtn5evgxkUe0FkINB9PlPXir38znYNiook3Ov/e/Clnpmj/NjseXZ9AGZwVgTz+DxZ3jAYBRhtHz2Ej0IE4mELi4uDEBcXl6qUChY+yLyp5C1jo6OdHh4qHK5bKGfx8fHBi6IGyDmAd+Rj83wHQgIAZ2enjbgt7e3Z30biTc4Pz+3foR0Y/ARKvgum82mms2mVVz658r7uHiuAZGjo6MqlUrWlHt3d9c8qoVCQUdHR8Yu88xyXQgdDYVCmpubUygUsnDg2dlZnZ6e6vDw0CpiW62WwuGwAU6YVhgmjhnfJ+Dp9PRU1WpVrVZLBwcHGh0dVblcNgmRn+G9QQWx91n2ej3r/5lKpZRMJocxDcMxHF/EgEXw1U+JRMJoav+iZ7HApBqUWLzXBHDDP8Ed+01MVXDRD8qOnuWCefE/D+iiOoqcG0L/crmcnSs+HOhyH/B5cXGharWqdrutpaUl8+B0u11jh3wzVV52MGCe/QnmE/Hi4ue8HILcx0JKbAYtQk5PT63snBBGZJhYLGZ5PKurq2q1Wvrwww8tjfxLX/qSstmsJicnVavVLH3aS77cU/xB3GcqLHu9nj766CN1u92BpHb/+0iGDBZJgBpBo5wnwIkdvQexXCvynDxwp6IQwMJ9ZeH2USIwiswFQMFfJjC3WCyq2Wzq7OxMpVLJmDx8Xh7MAzz9fAoCQY4RHxWMjWdhfUgqMigAjM/g3JGH/bMD+FheXtbrr79uXjoagQPWuPe7u7vWbLjRaAywHrFYTN1uV8+fP1csFtP+/r5lLuFRQ3Irl8sGrCqVisl45XJZktRqtaz4AMbp9PTUGBPeOYlEwq7v6uqqZmZmVCwWFY/HLeOsWCzq4OBAFxcXWllZ0cbGhg4PD22eAkzee+89PXjwQJFIRKlUypqCN5tN86dx77rdrjE45PwBLA8PDzU/P6/19XUzthNMzCaCljls0CiCiEQiKhQK6vV6xoiRn/Xqq6+q1Wrp+PhYT548MXAHg0jxiW/UTkNrmmPjqSyXyxYQzHPR6/VsY0JaPp8DY1YulxWJRDQ/P69Op/O5LaSGAGs4huMXGLzEfeAoIIqdOzKE75Xnf9ZLISzOgCFPNQczrYKD3/FsRpDp8oAFv4KPQmBB9vlPSGIs3AAGGASkNOj79fV1xWIxa3URj8dt14fE5VPvKRR49uzZQOYS+T4saOzig4sqfo9arWYJy/weL8Gzs7OB4MZIJDKQwYNk1Ov1tLW1ZeXrMGVra2uam5tTrVYbqBQNAiSum4+OwMBO/hUvfh+c6ME67AAMIOCU4/XMD+fPjt9/NosHqfcwHBicfam7Z6u8x8832SYs9PLy0mSclw0AJmCIogcWO6oSg7KiB0r844s5vJ+Q++tb+sDwcW2C+Wn+e7wBPhjlQIba48ePDTTAIJH3hMQ8MTGhfD6vpaUl20BQUUuydz6ft3kaCoVsrofDYS0sLGhkZEQPHjzQxMSEsU+np6fqdDqamZlRJBJRvV63rLZ2u22Ge2RovFXMFZ5BcqzoBcnmY3FxUalUSnfu3FGlUjEwzDWlK8DR0ZH+9t/+2wqFQqpWq0qlUtre3tajR490dHSknZ0dTU1NGbBrNpvWsxN2x+ezcYzRaNTiOPw75uTkxDYQFBsAXGDZLi8vDWzRwuj111836c9L881m0zxafEYoFFKhUNDJyYlKpZJdO4oFsD/wrIRCIds403gblgzlAsBYKpUGpOkhwBqO4fgrjmDeFLtv/9L3IMv/DBVwXtLxckUwJ8snqwerq4INm/2f3QS2AErNZtN2jFT08RJiweYFxG4TwznyH9ELAIOZmRmtra0pmUyqXq/bd7L7pvKHUmpJFggKuwXL4lmciYmJAXmCFGp2qR5oepkHSSCdTttLEp/L5uamXdvPPvtsIPyVRTwcDmtzc9O8WuVyWaVSacAb5AGpjz3wJmoWej6fhQzg5EGF95Jx/by065kedvRUb8LU+MR3ABvfg7zB8QYr6XyMh6/s5J4VCoWBa34TwJqZmdHJyYkFO/r+dXt7e9aLzlfuBbOwgrEjnhEGBASbQuP3gxn1if++8tVL+57t8j61s7Mztdtta5oMw0KxANWE/C5SFgt8v983ADw1NaWvfvWreuWVV/SDH/xA+/v7Gh8f1927d7WwsGCADIYTNum3f/u3dXR0pE8++URXV1dKJpN27zz72Gw2Ld+K84XFvX37tsbHx5XP5zU2NqalpSVFIhHF43HLqTs8PFQ4HLaCBpi8fr+vQqFggZuc29e//nULgr26ulKhUFC73ValUrGilnK5bO1mmD/kU9G+hkq9+fl5VatVlctli1fAe9VqtTQ1NaV8Pq9wOGyZWJjL8d6Nj4+r3W4rn88rnU7bny8sLGh7e1tPnz7V2NiYcrmcjo+PLW7i2bNnFo3BvPOBsb7fKWb7paWlgST8UqlkG6aXsbtDgDUcw/ELjGBTXCQPXnAeMPnFxFd5BXurvYx18gbfIFgK+l9e9nd+cYexQSoEjPT7fWv3wAuDpGoADTk2vlKtUCgolUpZLlS5XDZ54+LiQpVK5WfCBkdHR7W9vT1Q9s8Ce3p6akAPwBSLxQbiGjAmU3mFERvfhG9E3ev19LWvfU13797Vn//5nysSiSiTyajRaAz0BIQBItDx8vJST58+1bNnzywUkQFooiecz7RCKuKc8cv4ewOb4CMHMDhfX18PgFAPnmEFPDjHvDwzM2NggtgKz6YGJetgVhoAzlcjerM5pv+XhSnys7du3bIWIpint7a2rADBe9z4Xs9YBReqoLfKXw8PwJABYUeYZx4senO7b4nkGayHDx9qe3vbKtU8S8QzDtMCkInFYgPhraTnk5J/cnKiSqVi2WAbGxvqdDoD/iQiGog2KJfLevz4sUqlkpLJ5EDQJt/jQfLs7KxV3RGASmscWFl8SYeHhzZnaEZ9enqqSqViz+v4+Lj+43/8jzo/P7f0d3orHh4eGqvzpS99ySrqAO70Hjw4OFC73db+/r6lssMi8xz7/CgsDCcnJ8pkMgYQy+Wytre3zTAPo+pZPSocYeIB9/v7++aDu7i4MLaOZ2JhYcGe+WazaX0VKZYolUoDmWaJRMKuMe9GYm2GJvfhGI4vaPgXnH9p3+Sruul3/Q7+ZY1obxrB8FIv/93038H2K8GFDXBHHADGcP6Mc8Q07H1bl5eXlgFGW5SjoyOVy2WTynw1I6ZaStkBQ8hJ9MuDzfKejMnJSfNnAQTxB/GyjkajRvmHQiF1Oh09ePBA3/rWt1QoFPQrv/IrevjwoVUHIkHQDkeSKpWK+XyoUgJAey9PLBYbyPMK5jbxEve5VMgL3jNECGYikTCQBssCMIAl8U20AXWEt1JVdnFxYZVpSLQelN1U6eqBvg8sZdHz7OHPi2mAqUgkEqrX6wN+qJsYPOaoj/DwUh/PlJ+vPtaCeY7k5PPIgr0rg0yn/30viwOOOJdOp2PPAhJfMpnU6empyuWymcN9UQZm8rW1NVWrVX366af6+te/bgwOGwTYKxbrkZERW9RhlI6Pj1UqlQz04tNCDiYiIBaLWaVer9fTysqKYrGY5ufnrSE5EQTz8/OKx+Mmf0s/bXzcaDSMGS2Xy+bN4pl6/vy5zeGpqSkznCN1w94lEgkDeFQUYxvgerbbbT18+FCJREJzc3PKZrNWqDIzM6NEIqGRkRHLmBofH9fi4qJisZgxi+VyWSMjI5qdnTU5nncPMSVra2sWv9BqtVSv11WtVgcKbojSYGOZSCQ0OztrVZFsQMhFa7VaSqfTxqQNGazhGI4vWCJkAfQPqn/QvK/Ft+rwrIJPLPdVeZ7B8otjkKUKMmHBxrbezE4uDF4Ryue9fMgi703PSE8cL3lByWRSi4uLWl5etko1dnRIXvicKL9m0Q2HwwPXMJFIKJVK2UvSg9Vut2vteAjMhHXzAZzBcmnagcBI5PN5fec731Gv19Pe3p71lPMUfzabNTDJbpqilPFrAAAgAElEQVRkbi9VHh8fa3R01NqcXFxcDPRDxOfFOY6MjGhxcVHST2M+9vb2TGqCHZicnBzwc/mWLjADzLNkMmmSLWwK8ijAKxqN2vFz7CyevmUNoA1vEdeen/es1ucBfx9zMD09bSGzmI07nY6FjPrNAufow0B5JgAsgAvPCo+NjWl6enoghiEIDj075rsW3ORt9Dln0WjUgBabIC85NptNk4kAYsx72I2NjQ1tb2/rz/7szxQKhaw58cnJiUKhkMluPDtUsNG/k8We9wrVsjMzM8ZY4rkiV2t5edn6cwIwc7mcSeoHBwc2l4vFogGXWCymWCxmBvWrqystLCyYHwrWdmlpyWTJXC5njFupVLIuBDBF3qBP3AjsOQG+eNfwTV5dXRnofPbsmfm2eDYODw8NwB8cHGh7e1vxeNyM8RjR8YLNzs7aBuXs7EyJRELxeNzCWMmHa7fbFr1DxSuhpq1Wy64f7Lj3NoZCIc3Ozg48N0OANRzD8Vcc/qXoDcE8+J1Ox170XmphMfEyhwdY3i8SbFzrmScvKwbzg4IJ396nFQqF7CXkF04+B4+ON1Z7QMjih79hbm7OjLwbGxuWyIzBO3hOvPj4bBZ7dsPRaFThcNhaWnBcyHcswrA0fIZf+OkDR0Xi6OioKpWKeYKWlpYsw4h7dXR0ZF6gRCIxkFrfaDSMsfKAGiA1PT2tZDKpbrerUqlkidkAJ38N/Q7X5y/RegUw6iVkSfZSZ6GHMWHh5feQEX3KPBEG3W7X7gnXDnaHecocwOeEeZ557ufry6Rzrvna2pomJye1tbU1AAwePXpkx8cc5ThYsHzxRdDDSKXgj3/8Y33ve9/Tw4cPzQ/oF9cgoxyMAAkCw5GREethx7HAFnGt+D0iAfDoeNbQ+wiRa73Jm4INGEGKQigiISEeSQ25mA0NEQeLi4s2Zzn/+fl5ra6uWjYVG6o7d+6Yz5LWTrOzswacfEApx0ojZubaxMSEjo+P9fTpUwMcuVxOpVJJrVZL29vb2tnZMbkObyXvSljWbDZrlbG0ysKHBlghq2pra0uHh4fKZrOKRqP2+zR57vf7BjB9b0giKfi8o6Mj9ft9HRwc2DWhGXoul7NIC6o9aX1UKpWssIbPJqgVRrrValnHhZflxI1c3/A3nxcqNxzD8f9nafD3f//39fTp04G2IWNjY8pkMpqamrKu6x7seJB1U66V7wt3kyfL//lNPiv/uZ4x81Vrs7OzBlKQoFiYfHq2D9MkHuDq6kqLi4u6ffu2BRfWajU1Go2BxskAB1gvYgt4gRMISdihT+s+Pz9XoVAYyMDiJY0EwosTqYYFF5YHFoaBtIG3Ce/JrVu3lMvl1Gq1tL+/r/v37w8AIq4hUgaAyVe38V2UrVPh5Zs8n5yc6ODgwMJYYQ+8kXZ8fFyhUMgKDGBapqen7X7AXMEOMff6/b4Z3bm2sAT0N/SAA18aVZaAaVg431oGYHh2dmbg/F/8i3+h7373uz/jhYJ5W1paMvnm6upKqVTKFudcLqexsTE9efLkZ/xfXmr1IIt56llG5jR/7iMUfE/CINPr2arghoVYBpiO09NTq8QE5HCdCar1ciWl/tFoVMVi0Tx1bDY8Q4efCwAGgweLhGxM/zufBs/1SCaTSiaTJlcuLS0ZAwyoJWsqn89bUK2vziW3q9vtqtPpaH19XdPT03rx4oX6/b7JzxjJLy8v7fioDmYeHR4eWugmrWkmJyfV7Xa1s7Nj8j7Hz70mAqJer6tQKNj3nJ2dGWDjuRkdHdXi4qIVIRAfwrNECyBYufHxcZMlCQnGi4b/DJa31WppYmJCR0dHevDggUn7AD5Cd8m+qtVqBu7I6fof/+N/aH19/WfDcIfL5nAMx1998AKlwu7tt9/Wp59+qnK5PJBP9DJQ5IFRMGfJ/4xnQm76900er8vLS6OwWYTwxXBM7NBZMEimh22D0VlfX9edO3cs9uDFixdqNBrGusCgIPMhm3GNWNSQoWBmMKzyQqZRbbfbHWCoMPqyK/b+GQ9gMSHj8/ISCyZjFrVEIqF79+6p0WioWq2agdYv0vw3x+sBKYZeriHMBBIh8wIWADnCMwxEGfBZ3sgMsKO6EAnFMytnZ2fK5/OWuA5AZnA+vmckJecwBz7E07OYvkG0l7RfJhPy97ArsAQAmGg0qlwuZ5sQGCD/fT4sFDmJDQbXjbnKcfueiT4+Jbip8ZK596HBjlGRdnx8bFVw9Xp9AJABTji2fr+vZDJpTCvssPdVAWz4bn7GM8wwPXNzc5qcnNTs7Kz5knwGG9IgshTxG7SxwlOEzAizy3NCx4Xr62t1Oh2LIODYfMAqABs/nw8gHh0d1eHhoXq9nhnZU6mUVVBShZjJZNRqtQwAMS8ajYYODw81MjJikuzm5qYqlYoxiYlEwuYSvQkBvxQd+PeVrzaFWeTZY87EYjGrTES2XVpaGtg48d4jWJn3FRtGgDY9K1Op1DBodDiG44sYfmeMfISUEg6HNT09rW9/+9va3d01dgfw4R9CX/LPjsm3ZPFSlF8wg4ueL+Vnp4yHSJI1WPWSGrtgdpa+RJ7qNHaN+Xxer7/+un7zN39TjUZDpVJJ9+/ft0aupDmzYCETkSvDjjkWi5n0wEuMPoAEAeI1KhaLBoqazab6/b69FGE7fAUan+UN/DR0BnD4ZrKEir7++utaWFjQb/zGb6hareq//tf/agsJ18yn0nPfCD3l5+jBSPNoZDkWKCq1vCEfaQcfGYwVSejBno7szlkwWbA82POsFCGsPn+MRHh8cDB7sHMAbZ9uDhifnJx8qZGXhelrX/uaDg4OrGrrs88+0/X1tb761a9ac9/r62utr69re3vbMqN8ZEIsFrPsNEAy88q3j+FnkCZhfthU+ERuvwlg4ZRkmwGANa1gkKGQ1q+uroyZ8ceMdH1ycqKpqSnzYnHf6e2IJ4rrh98KAEEl3vz8vFKplLrdrknXHPvt27eVTCaVyWSUTqcNbJPfhhndm/0BUd4fl8vlNDo6qm63az6khYUFkzdfe+01Y66IdCFyBJP6K6+8YsAOwOQjFnz/UuJNKHC5urrSs2fPVCqVzCOWzWZ1eXmpfD6v+fl5HRwc2HxeXFxUPp/X0dGRfvCDH2h0dFTJZNKAlfTTUOCJiQltb29bkcDOzo75G7Fw+Kwyiiq4J0jiJNlLsme4UCjo9PRUT548sWePlkm+YncIsIZjOL6AwWLDbhBww67v9PRU6XR6oLUMHiOkBxgK4hOCjEmj0VClUrGegLywkCt8r0H+zPfr8w+991oBeny7Fs/YIN2trKxoaWlJ8/Pzikaj+slPfqJisWjVNMfHx2b8pKqOKhsM55Sx421gx++BBcwdpnIqtgCSvkoqKPfwkqTtBsCUzyI6AcDHd7H7hWVcWVlRPB7Xr//6rw+040BW5PrCzgST0zGN+3R1XwUICwhQAfzi9yF/iKwlzuXk5MQAF3PMy64TExN2fZD/fPsYX+3qJTFYGBgHMs98ZR3zAhP156VVs6D/5Cc/sbYwVK6Nj4/r6OhIyWRSMzMzVp15+/btAbaKa0bHgLGxMRUKBbsOVM4BuIhD6HQ6dm8A9Xw3fSYlmcQMAPWNy33vz/Pzc5P3/KaDhdTL7l5Cv7i4MDnLR2kgX9PLk8Xc53KxSYN94f6fn5/r9u3bikajisfjVkEHYCEewEfDMNd8ha4kK7Kg64FP9B8dHVWxWNTx8bF59GZmZuw++Gwx2Jp+v6/bt2+r3+9rZmbGACXHRgUkc8D3tTw/P1csFlMul1MoFFKpVLL4BzaF6XRapVLJGqd3Oh2trKzo+PhYlUrFmDN6YCL3cY3HxsY0Pz+vcDhsHRyYF0idpVJpoKLw8vJSuVzOWvUcHByoWq0aoxcOhw0U4tMaHR214OQhwBqO4fglB9o9cgEPM4AF9gHWAC8RC4vvAYh0ESzJx6/ky59fVsnFZ+A98j4s8qF8379gabsPx4xGo0qlUspkMnrrrbe0sLBgPdN+8pOfmJwBSIJ+l2Sl5by0WThgxFiIuEbeg4NviD9HUkI69CGtNLMFOPhr7030GFB9irnvc4gc0mg0lMvlFIvFtLq6qlQqpVqtpidPnhjD4/1qPtGee3d6emqSKPfC9zYEBE5OTpqvwwfNsnjF43GlUikz+xeLRYuzgJljERoZGVE6nTb/Fp8DwwOY8xIQx8uCyZzzlYq+qtSzVsyTzxteYr2+vrbyeSrnuA6dTse+CxYIUzktl2BUiNDAoN1sNgca/8bj8YG+fbBvJycnxtByrcfHx9VoNOy6kADuwajPNfObI8+AkaEGWIEtQ8b0HiauHRsl7gsgJRwOa3l52YATVYBs4BYWFowhIvqATQLPhmeQ8S8CcgDOZ2dn1o2gUCgoFospk8nY83t0dKRut2uexZOTE2vEzPuK8yOVH2mbOYc5HzDsNxiAN8Al3jLeaQSgcj1prt3pdLSzs6Nut6vV1VVdXV3p6OhIGxsb2tjYUDqd1tOnT7W2tmYWAIzoNI0mh81v6o6Pj3V8fKydnZ2B/qyA8UgkouXlZesz2Ww2jeF688039d5771lhz+Hh4TDJfTiG44sYvuKJXbenxEOhkPksKIFmtwplTpxBUJK5vr5WpVIx83c4HNb6+roBIjw53qvDC5zqGyQ5Xr4+GZzdPYsDDEU6nVYul9M3v/lNLSwsKBQKqVwua2NjQ0+ePLF8qouLC5NIkFcAF5Tj+yTxo6MjO06uB+bTTCZjEiisAs2Xg+nqsHMECFItR3UPDAwAAxDGS58deSqV0sLCws/4y7yEB3j88pe/rNHRUQtMJGgT2YgcMO/vYT74zCaANveCggjfpBpPCb4oKp8onECaPT09NQ8Kpf40yGXhoB0JDBSmbb6LRdyDMsDq7OysHTM7ewAZu/eXjZGREaVSKQMW+IAw++PjYQGfmJiwarNkMmkSGzETzWbTspgmJiZMKvayOrKyl+FhCJmXsVjMNhnMk2AVI9KiLwTgGDnnXq9nACOdTluEAx0H8NjhiyKol+gM7xuCjR0ZGTGvnj8P2tykUimtrq5qenpa29vb5ldCikylUsaIIYv6QFeKFjh+/j+dTlt1Lb0T8e9xH2DmkTj5PTaGl5eXVgDCdWWD0W63Va1WVa1WLbWdecyxZTIZpVIpHR8fa39/X/V6XZOTk1pdXf0ZQPrlL3/ZYh5OTk6soCASiRhr/vz5c42Pj6tQKBjIRKqem5uza1CtVg2QptNpY6+ZMzDx+MF6vZ7y+by9jzqdjv73//7fajabdq/pVjAEWMMxHF+AB8v7f7wHiL+j3N0bx3mhwm6w2xsfH7dqNV5UAAoW83A4rJWVFZMcWVhJ7cYP5ROqvV/HxyWwsGAinZub05e//GV95StfscbG29vbevLkiWVI+Zc/JtxOp6OTkxMzebOQsGNkR05uzsTEhNLp9EBQKNeD0L6VlRVrxYHniJJqDOGJRMLkODJrjo6ObAFHUup0Oj8Tk4Hsg1wRCoVskQC0wS4AcN966y2NjIzoxYsXqlQqluV0cXGhjY0NY+0A1d5s70EuFXWhUEjpdNoWZDLCuI9UPvrmwu1227xk+GFg1HwfPi8F+xY8vs2Mb7vjs81ggUij9ywcf/Z5QaPX19dqtVpaWVnR/Py8JfDTCuXo6Mh8K2wAkKphbCcmJrS3t2cNt2m9wmIPk1Sr1YyBJENqZGTEGAvfCxQGEHkels2b1Oke4IM2fXq6r2aEmfUJ7r5pdqfTsecAgADzjXzf7/cVjUYtMgS2JpvNWmUgc5fMs1Qqpenpaata5dx5FpDCubZUx8HAeTP/1taWsYSkrmN4x7gNSC+Xy7q6ulI2m7W5ks/n1Wg0TEZ89uzZgFzearVULBZVrVZVq9XMl8hzk0wmjSVCyidcNJ/P6/LyUuFwWB988IF6vZ6y2axyuZwFGvf7faVSKcViMT1+/FiPHz+2yAc2nzD1MG4AZB/zwkYAdnB+fl6JRELHx8fqdru6f/++KpWKScbEWvhK2LW1Nd27d++lbaSGAGs4huMXGN775OUmJA0WLdgkD8YikYjJbIRAAnioosN0zALKy2Bvb28g5oDFxlcF+fL6YK8575HIZrPK5/NaXV1VoVDQ6Oiodnd3tbGxoUqlYsnuZ2dnFr5ZLpeVyWTsBXR9fW0VQ5StY/L3DAFgLp/PW2igbzHEtWJBxW/F3+PlAkw1Gg1b2ABiyC6EQyIbeWCLKbpUKlmfORYjWMXZ2Vm7nyMjI6rVaioWi0qlUlpaWjKJAgbl61//ujqdjorFoiqVykALIMAzpfacaygUUqvVGnjpwxABHpFUiAm4vr5WPp+3xdxXqiHlUdrvw129dMqcYz4A7rxs6iUlWrQghfrPu4m9kqRsNjvQm44NAeb1fr+vvb09LS0tWZ/IWCymDz74QJ9++qklfpM+3m63zRuEV4zrAijjXmCS91EaPpKEogLiPbgGMDgXFxfGtLCYwkR1u12bjwBJzNZsePhsJDJAKRWbrVbL7AW3b99WLBYbaJnEOdBr7/j42OIYTk9PrSil1WrZM8n5jo6O2rPgZXH8nsViUU+fPh3oLkDRSKlU0t7ennmUuHb421qtlqWcl0olux7MM6RemDlfYZlIJJRIJNRoNIwFp2ji4uJC9Xrd+vnNzs7q+vpa9XpdFxcX2t3d1fX1tX7rt37L5LxarWbX6vz8XK+++qouLi709OnTgQgU5iObPDa8a2trJgvC7BEIPDY2ZllZ5GnFYjF985vfNJ9fOp3WycmJ7t69q1qtZj+/u7s7lAiHYzi+KAbrJg+Ul+B8lICvAGSXy0sVNgHzcrAPHywHLzPYklAoZJVrgBkf9cBLl55aABJktPHxcS0vLyuXy5lU8+TJExWLRWOO2MGTlo2Xhxe5Z+oAErBE7KQBeiSwX15eWjozIMG3+PEvQ4ClLwZgZw0LUK1WzZTsFyxKqH26NwzC6empVfGxGOKhIBrCL9IkS/tKKQAd55zJZLS3t2dtUGjDw7HiffI9HmnQ66MtfIyG72HJLhvw7YsnfNo/1xP2wwNuZBHmhGdWmTc+CZ3PBijwfZ83mAuAF0A/FW40G+cZwPfCMXFdAVMwRjwDyFGwBcwjzPGwrDCjXEMWfK4/0tzR0ZGV6sM6AjwxS3POADPv36NNy8HBgbGTMI0+eR6vFY2VkaQ4d5616+trpVIpzczM6OjoSNPT09Yn0D9bsKsY4X2uFmzLycnJABuGXMnz4osrYHLwyXHcvorTh7cydw8PDweYQK4j2Vbn5+dKpVLmXeK+djody/Hy85J5i+yPRMu95TmiRRHnCvCp1+vGAsfjcZP8mAf/D3tn0iP5lV33k3NmzPOYkQOzWBPZbLYbMiTILRm2N1roK8gL7/QdBGulL+OFYcCA5YW1EWAI3ZYoFlmsYjGzqjIz5nmOyNmLxu/6RnCQWuTO8QCCNWXEf3zvvHPOPZdm3d4/6zd7zLHz+dw2udVq1cAhwbCHh4cmdbdaLWNUVwBrNVbjRw5vhvXmciYh5BcWG79YsVCw42NxAxQgBzSbTZMHMdJ6r9bd3Z263a7R5SxUPp6BSZfjoOKJXS27zX6/r9PTU717987kJs7j4eFBvV7PJmEa0vpFWZIteJVKxTxWLPQ0ZGYCrtfrZn5f7ovIZE41mG+ay3V8eHhQu93WeDw2YIq/Ai8En40MxQLOfQmFQsZiTadT6xE3GAxMfgMUdLtdaxKLby6VSpkHhOsej8dVKpVsJ+8XWpgXqrq4Jj4oE7bDG5I5d1obLae8e8P0w8ODLi8vjdUkCwiPji8U8M8vQJlFyBvDvReOzLMfei8A/+l0Wp1OZ6HDAT6Ym5sbk40BdMFgUAcHB9ZyBakcPxHvCtKbz2OKxWLmP4LV4xxhrvL5vLU/gbHq9/uW6cbz68E8laGhUEjJZNIAM5uN29tbpVIp/eIXv9BvfvMbAxuwP4BT3mNytWChb29vrdKYtkuwSmxENjY21Gq1LNEcGbder9s7hjTGO0k3glqtZn3zNjc3FY/HTUbnO2HOYVl9ZhQ+P46R78AsHggEVK1W7TwbjYYxtOTK8XOxWMwYWHofbm9vq9/vWx5Vq9VaaD1WKpU0nU7VaDSMYWSj0ev1rCl2tVq1MFvPWrEhApzd3t6q1+tZ6C0yPZKzL/pIJpMWGvrFF1/Yn79//16FQsGYS1oIIVGvANZqrMZPMHzFkq8+8S1qWACWQzCZCJATl4EGWTWYN73XC6nJByYibfhAPjwMeB4Aaexspd82Nr65udFwONRoNLIUa5+cPZvNLBMGZsMbxNm1wQaRa8UEzudGIhGTTJer3vi8fr+vQqFgGVIwWLBMtBCBkUOC8zIjpf3LrYpY1PET1et1dbtdA70szhwL8gvA9vb2VpeXlyaVkWWVzWaVTCbND8dkzrF6Y3kqlbJryHlzXQHiPn4hGo0a2OLaYeBGWvYl/bA4mHUxXuPN8RWPmH9h17jfnomilB+5iSiB72N1kXfw1wBgeUbwJ8ESAaQAfiyKo9HIZGofsEt6OGCZknyOiQo0BqARvyAyNsyY9+h547uPNkDS4nkDsHK9KpWKZWP5mA6qNAHhe3t7dr1Ho5EKhYIODg4MfMM+dTodzWYzk8WRC+nlyL0kUJTqOKoDqWDEcE7z6lAopOl0arLXycmJxaf4RuL8Hs8Uchsbkffv32symZiUDYPW7XYtCgGQ3u/3tbe3p1wuZz5Q5sxcLmcADmCbTCaNyctkMvbuc56Y7TlP5rpcLmc9A2H97+7uVKvVrJoREEShAJWpzJ/EyeCvwwpRq9UUj8ctF405CaBJayDA5wpgrcZq/AQSIVk9VI4xIbMgsGDAbjAZ+PYY3nDsc6HYkRI6iYeFsmaYKRYnz2rAVvkqRhYFwkOZkPG8QPlTFcQO1adM+0WLz/TJ8ix0ZCD5VjEY0wFq0Wh0gb3ziwQ+L6qNqJbCh0ILGHbePteJwFIAHtfXm4sJIK1Wq+p2u7aIY+CVZH3OOA+M6xjNr66urFJvOBzq4uLCFo/5fG67d5gnABZy4rKkhrzCIg9rCSvnc42QkVj4kDI4Vnw00+nUqrcSicSCGRs/EMyVf6453+VeiN43933sFd4+qggzmYx5mFjoAXYAVKQvgAhSDwGa3GfeC7xol5eXJrsh0wCGYRWQlJBbfZ9HwHAqlbL3zOdWbW1tGYMEUE0kEibX4SMifd8Xq3ANkZS4hul02rw9vtUQmyHeA3xUx8fHVvG6s7OjyWRiER6np6e2oQAssnnxMt58PlexWFQ2m1UoFDLZjvkgl8up0+lYdwEqWQFPyOn4kvg75j/a0HCtfTcAnvlEImHSLJsZjhN5ljBUYjcymYyxWx7ccu14lrkefP/Dw4Oq1aptVnhm0um0bTzv7+91enqqbDar/f19e24o0jk6Olpo9h2NRm2uSiQSBsZ8A3U8aSuAtRqr8SNHs9k04MPw2UPeEIyRmmocz6z41HUmA8AYu+disaj7+3uT5vD4sDjDzixLdhi8YT5gIvBYjMdjO17+LWDPS4x0nef8kEDwcCybjfkuACE7QRZUGAbYNSb15RRoTOKkr7NYsGh5f8/u7q7y+bzJRICRer2u6+trHRwc6OHhQclk0oDA/v6+lZLf399rNBrZcQCUYBjJ5fFtRFh8d3Z21O/3bdcMm1gqlRYkYv4tjBTPAOeBPINPybf/YeHg52HHkKJ9X0J8UvhItre31W63rSSeHXg8HjdflvfBecO1b5sDAPs+n4nPVhuNRur3+6rVasZKYIQm9gIPUTgcNnax0+nYs8+zBavCMZGRBXD2yfRsCny1oe9PVyqVDCDBivLe+c2P34wABslV414BzAGeyWTS/H3Idv1+X+PxWM+fP9ejR48WfF6j0UjX19fKZrOKxWJ2XQEdwWDQevwh+frcLkCw98vxfvDn5MjBHlEhiA8Otgu2kJ/lswF9BKiy8SI4djabmTmejdp4PFa73bbimMePH1s+FbIeBR1+48m9Zc6p1+u6uLiwSlTmkXA4rFarpa2tLR0fH1tjZt4lriuAx/cmRWYkjqLb7SoajSqfzyuVStm1ff36tYHX8XisZrNp0SHcZ+a42WymRCKhk5MTm9NWAGs1VuNHDBqk0kLD75784gTYwDPF7hbABUBiYfO7P2Q0Ftbj42OruEEOALwxIfrecQAkTK0YRaH7o9HoQrwAu2++07dO8QnsyynfyH9MsHiPyIcipwdJ0EcMePDhF0cWRAIq2UEzgbHbZaLDyAtr4ZPwASB+4UDCicfjVpHI8bGoMjl75guZDR8QC473pXjvEj9L5aT3PfH3LJ744bzRH8DW7XYlyZgAwN3m5qb6/b7twH3zYaomOTYStWEmuIfLxnWeScCJL9rwFXrfNe7v763RMc3ACYKkqi4UCqlUKqlSqajVaimZTBo4xNPkY0Y4RtgMH8FAQrdnW2FGvBw1n88NZPiG0RiwWXQ968z99jEfMGk0+PUdELguvuk01+7Ro0dKpVLq9XrmcUKWIstsOp0a6wMDxztCQQbPMjEjHDcZVoAhNmz4xAjzJAiYykmKLWCWfTEIkifPSTAYXGjKDUikgpVNA2wibZMymcxCVS+f0W63tbOzow8//ND6KKbTaWsg3W63rXURMiHPIDKzT2Tv9XqKx+O6vr62d4LNF55T3+eVd5jOFNFoVPF43FhKNidnZ2cmt3a7XfOZIb0TL/HBBx8seHFXAGs1VuNfONix+dRw7+VgR8zkDqPFxO3bOVDZg9GUibrX69kkwM9TXcSuu9/vf6s5LiCKXT/BjUwIgCIqDZESYEW8TMIiBGDEMAqoQIbEsO0XACqm6HoPmAJAwEz4Rr4AL3wdsFmwBgCS/f19kzXwBrE48F1ra2s6ODhYYAQBIPzZzs6O0um0KpWKMVMeRPhEchg1JDi+z7dHYhH2sqqPWaDqSJI1ZwYQI4Vc1AYAACAASURBVF/BELJA+xBbmCEAPgwkn+urU31FIT4fFn+eS4CBb5DLNSROgH+DPEVJ+w+9Gzc3NxoMBgaGhsOhgQrP/O7u7povDmbHJ5TzLBNsS/NietthMmYDwbPNZiAajZqMTnsVAISv1uT4fDwKjBFMBZIqPwPY5TlBJgbIUXiAN5FzgvVAksvlcpZTxbHD9vJ8vH37VltbWyoUChZKS1QCvr5CoWBFGuVyWYFAwK5tPp+3IGLpt7l4sVjMmBlM9z56gcIDQBnPHr41/EgffPCBbm9vVS6XzTRO+xuA3/Pnz20zVCgU7Honk0ljwgCcm5ub1muR46eg5/Xr1+p2u+a7ur29VaVS0bt376w1GQwpXkiOlXl0Op2alYGf6fV6evHihbX8KRQK1n6HP4PFo6hpNpspk8moWCzqzZs3+p//83/qz/7sz1YAazVW48cOny/lF2IYKKpY2DGx6+VnfYsVvyj68nMYFSZqQJL/LPwn7MhIFsebANPjfx6DPYu5T0MnkoG/89IiYArAw0SfTqcXKqx8Y2G/gC//mv8DeCKRiAE/b9SdzWbGFjAJI0/CGHBcAIVlSQtg5b1C/te+vJ9FnXvkq/XwtAFoPCPiP8/3mwOg+pBPngEvw+ENYlHy4NXLEQArzh9QgkwMkwGY8lV6XJPNzU0r3YeF8dWEHnBxHvhvfOTId/mwkJkoJojFYmq326pWq+Yn8g2Pt7e3rTrRMwx4xzDze8O1N9pjwMeHhhcPmZfNhm+TRGUmjC0ACEDIe4EXC9CNzwmDN2wpDLYv5mBxz+fzymQydsxUEeMdSqfTCgaD5iHjnfcFDgSp0rKFYySnDUaaVHxYc57ter1uLFAikTD5EWbPFyLwDlCcAXvIRqzZbC744ngm8ZUGg0E9fvzYpDxAY7PZ1NXVlZLJpG0wQ6GQ5cbF43ELRt3f37fnDybfx5bwPbe3t+aHw7TOOc1mM/NxMn/4rD1AHZtUH5PB/NPpdIz9ggGfz+cKBAJKpVJWveql4RXAWo3V+JEDWQ6AwO6MiYOFlB0Pu1oWBCZHaH+/qNHTzEt9yG2YvX1Jv2dTiArgGGHN/MKDLwzDK+AK4JbP581jAYgAOPoICEBRoVAwucEvvrB6/jr5RZuFxuce+T6EGFOpGPKVgtVq1SQAqiu9/Ocr3zDIAlI8aGQn66+jL9cHdPhrHQqFzK/hfVqe2fFxGUzMPukelo1jB9zBblLlCdMBEPC9Db2sxXPF9/pwV5iYra2tBcCNlw1W0rehwcDMOVEZhxTzQ2M8HlvYJoxfLBYzdomAyzdv3pjcghxFqC73iOsL28jizyYGMEJlLvdUkuLxuJrNpknBk8lE9XrdnieS2Gu1mm1i+DuM5t4nFAwGF2I2WLyReuPxuDFjHhDF43HV63VrXuzT4MlAo+k4jBf3jefOe+RCoZAxRvP53NLP8ZBtbW3p4ODAwMbd3Z2q1aoikYhtnmBg2CgMBgNjagB2SG3EoTBX0b4GsEf/QlL019fXVSqVjCXD80WnBewN6XTaDO/z+dyM/VQ0cv1hbre2tpTP521+wy83n88NrF5cXOji4kLVatUYQgCT9xJynWB2kVABc5PJRIFAYKEDxt3dnRKJhD1bT548UafTUb1et89cAazVWI2fYKTTaTO88gIjbQCOZrOZBV0CipD6YHN8AKRf0JlcmbBgP6hO4/Oo8PETBEwF7AdMBkxLIBAwJikWi1nJNIsZx+WbQgMgmbABXQ8PD7Yw+zBN0tdZ+JEVl5k/H12BHAgDwySOBEQMgs8iYsKE3fE7d4Aa8ptntLgX3pOCNAQbRH86vodFDs/KctsYX90EYwjIpL+iv748PwBcnzrPYjmbzRaAMcDZZ3wBknxyPvcK5m4wGCyAQaRQKip99hUAkco03xTaX9vvG6FQaOG/ra0txWKxBWCBNEX0Bs2vAeE+1Rww5HtnYpSGeYD52djY0Gg0MjaFxtgY7Fmwx+OxyVTIZxifvWl8OBwqGAxahhsLNiwxGx3eVTYqgHbM3PQUDIfDajabVtZP+joMDZ4sKm5579m88B75iBOA3WQysXcOppHn0LchYu54/fq1rq6uzLtIVhabjOl0aqAIUNfv9+3doJBiMBiYD2s+n1vUAY2RuU+xWMzkYzydpKDH43GLu4hGo2ZGTyQS6nQ6ury8tOvHposuCDs7O5b2z3tEq6JgMGhVk3jIfJwCrbGYl3hmPBCMxWLa3t7WZDJRPp9XLpfTeDzW3//935usT1uiVRXhaqzGTzBGo5EZLWFPvOkRzR8vCAutb5jrDdlQ2JhJSTumTNjLVoAzP7kjzfGSk+XCpJFOp1UsFm0H71uksHDgz8LkzYKIn4fzgwXynjG/uJNEz8/B0nB+gBy+h6athA9mMhljdVgcWbSQawB8sFJMorAZsGawYoAT78FCghwMBhZNAbD03+H7/wHWvHRLVAeLvE9Hh60DoLDQ+/5/LOZ4fPDs0HvPg0buOfffJ/ZzT0mzJttsNBqpUqmY/MvCzHXp9Xom4/jnzKexk8PkW0R932BhZfjCBQDzy5cvLdiRxRxQB9DkGMfjsZLJpGKxmFXl0ZOu2+2aGZ6KOcAZnkXkIMAY7Bf37vj4WHd3dzo9PTVJs1wum7+N4+j3+wtMmpe4uYc8K+QmhcNhM05zbrSVKpVKCgQCKpfL9q7xvqdSqW9lsjHvsEEDdFNVjIR7f3+v9+/fG7vJ/EOxCO8VG4tYLGayIYwa4LrRaGg+nyubzVrjZjYotKxijoExDoVC6vf7Gg6HWltbU7vdVjwet/Mguf3i4kK7u7vGqmYyGYs9QVqcTCYmndKzkfeBVHa6UHBcvCO+AIjNCOBJkjUXR96lcAFfFoxnKBQyn1k+n9f9/b06nY5+/etfK5FI6PHjxwbEVs2eV2M1foLhqWHv6WHX48uxeXkBJCzMGMMpnWZ37qukAFN8j29Cy6TEQuvjHgAULD4wTIPBwKSeRqNhQMqzZ8u7eV9B58u2YQNgeZjcotGotbDxzZPxL7FIk3uUz+cXEsx9kjNACdYNEy5SAnKeN6B7EIe0xfnw71loMdIjUbADBoTSFBg/yng8XmiEDMCGNWAh4xyRZbrdrgFaX/HGLnt9fd361FHNSXVSOp028zVgod1uq1araTKZWIk9jbf5d7BUvpjB31PP6LEg8Qx40Azr6iXu7/Nfkd0UDoeVSCSsNJ8MqXK5bNVynCcSse+j6YsGAMN4z7heXmL3Aaz8HO8XCze+p5ubG6tMQ35PpVJ6/vy5SZV+sceHA9OHBQDGDxDtgVe/31c8HtcHH3ygSCSidrttkhmZZDRa5j19/PixAQcfjom53T+fMH8bGxtWNOA9doB9P7dMJhMD3/1+34ztyLK8w2wmWq2WXY/PP/98AdjTD5E5b3t7W8lk0q4TTanL5bKFFxcKBe3u7ur169f2jvh7z6+3trZ0cnKicrmszz77zBowX11dqVqt2vvDZury8tKYPTZKvv8izCWMLYwiafO8Az4HjSIKfG00AS+Xy2bKR0F48+aNVUOuktxXYzV+gsGixEIJs9LtdhcCBJmEmfCZHH3fvnA4bKXE7Ez9ztVr+4Az6HykExrP+rBSjosd3+XlpTFH7JSZ1PzCijGb3+PXQMrw/ge+D2MpMgTHhmwAjY7/Y2NjQ8lk0sIPkUKvr69Vq9WsATMTNd4VmDGAAkZXMrdoEcICjSzGfQJ4cn4AgPl8bkwUf+fN6T5eAVDK58H+AGR9+x6fIQRz4tsk+XT04XBo50CafzKZtGyz8XhsLUMajYZOT0/V6/UswsGfH+dGpSDXg+Px/Ql9MQaAhkXPs1DLm4nvA1k+/6vdbmswGJikTNp3LpczoA+Txu6fBHpfaOBl23g8blEf+NSQxwG5sJ08h4VCwY5pMBhoOp2aB+39+/e6vr62TCWeP44LGZWWSTCZXFvPKgJekbsBMdVqVaVSyUA+n8Wmi3uCJ4p4ErxfMJi+tyXPF+8yzxdZaDBSSKL8Gx/p4AtaYFcjkYhtJmB3ms2mRaH4Rs1Ip37uWd4gbWxsqN1umzSHPJxOp827RYgqQKxUKhkDxqYU8MQzyuaN7wFAemnZF8IAimCaaBmUTCYtCHf5HAC7g8FA5+fn1r6M9xsPWDqd/kFmd+3hO7Yl/1RTz9VYjf8fx9ramv70T/9UL168sEmL4EMkFk8Vs7jxYmKE9enYACtYnWAwqGQyqWAwaNkwZEH5EvDJZGJSHL3uYEaWS/X5eyaO5cRm34aHyQ5GbDAYmCmW88G8HAwGLUkZwAELR3VTNptVNps1GXNnZ0cnJyeKx+PGICGz+Yo4PGLLvQopGUcGQRra2dmxZG4kQv7eVxrCbvX7fb17927Bx8O1YBG9ubmx/mfMi99VbUcFJGGyvpptY2ND4XDYFgsANpVPALv19XV1Oh2T9srlssbjsUl+MGGU6E+nU2syCzDi/nlgyfH6JtD8uQ+nRRokfd4v7nt7ewoEAvqrv/or/cmf/MnCRgIWkR5uh4eHevr0qZX300gbqY7FPRQKqVqtWiECzxAACckLsITEyTM7Go2UTCbtWaQpOdeW0M77+3tjzsiGggHyrZL4PWb2RqNh0QY+B40N03g81sXFhT1rSEySlEql9J/+039SNBpVs9nUZDIxKc4XO+A5whNJBRvBnz66AmYRr1I4HNb79+91d3enjz76yAAUm7tUKmXXNB6Pq9vtGvigZQ7MZrPZNM9mrVZTv9+3jc75+blCoZCi0ag1g08mk5ZMDyDEJN/pdBbeG8JAK5WKNWHOZrMGun1nCjYePr0dnxfeQgAe7wPPFc/+//k//8euI6wdLC1+KjLSALUUZvgw3WQyqbOzM5sHAaDkycHibWxsaH9/X//1v/5XPXr06FvYacVgrcZq/A6DHZvvNu8DONnRwlTgm0CyYSH0EzYLEOXFZP/UajUVCgUlk0kDEHg5AC2YzfEhkR2EZIWExWQGg1EoFCzPBs+I7xXnS6yptmExJRMpkUgomUwaUIJJmUwmikQiOjw81CeffKJMJmMLHRVVDw8P5msAJNDKh4kZYMXCSr+2RqOh4XCoQCCgTCZjxliyktbX17W/v28VVhy3TwS/v7/Xz372M62trZlxmfwvZML7+3tFo9GFoFDv4+Fz+bx4PG4eLRZDJAkkQ85tZ2dHFxcXmkwm6nQ6ms/n+uqrr1Sr1dTtdlWpVEyOhckBDPLsAaAx/vMM+obX/BtAkQdGvvEzz6zPdQOsI4P90E4dn9NgMNBoNFIikbCqLBZBgBNZcfiafJ6Xb4rOuwWrC6vDRiUejyuZTJofByYCCXljY0O1Wk13d3dKpVJWEEJgq4+3iEQiev78uWXTBQIBA7eEwRKiu7W1ZXIl3iUkXK4Tz1Qmk1GtVjMmKBKJWH6Vl14Bsefn5wtytc+yA3CwmeN53draMlaaZ5dE9Ww2a6CE7wyHw9rb2zPwy6aE94vYDN5nzhPGCw/UycmJbm5u1Gg0DCQBIpHseebu7u6M7anVagsbKD4f7yBeVVos+Yy77e1tNZtNTadTtdtty9TiXclkMnb83lu5sbFhVbBYMpibvR2AquharbbADDOfAsa4HvRI/L4uByuAtRqr8TsMFgEa5zKJAL78btf/DP/hafG7UxgfTM4+2qHdbpspmGqaWCymo6Mj+85cLmc+GiQOWAFYJwzteLhoXdPtdk0m6vf7C02E8ZtMp1PlcjnzrTx+/FgnJyeKxWKKRqNW6r22tqZaraaXL18qlUoZAPniiy+s6306nVYul7Mdv297wvFzDfBMra+vKx6PK5fLqVAo6Gc/+9lCjMR3se8+EBUjebvd1mQy0RdffKHhcGgyJYngLAC7u7sqFApWReSzrvyi8V1sv38eln8NCAFA/e3f/q3K5bJ5SQBNXrJj146/CinSty/y7Y38z3IvfQbQ8vF6D5738VG0gVyNJPND7C7Pza9//WsdHh4u5BhRNAGzhgE6l8tpOBzq4eFBiURClUpF7XZbkUhEvV7P4j7YfITDYR0cHBiY9mZ0FksiDILBoMLhsDEPy5WjZDCRr8YiDfDgOgeDQWOaaLa9vb2tTCZj0qT3QZI/dXNzYzEVBKMSGEzuEwwzcu98Ple9XjeWjw0M0RC+hY+XJTn+SqWiQqFgzDMGb5o97+7u6uTkxK4B58JmC3B9fn5uYAlWr9lsWrsiIjCQdelNmM/nDYBtbm7q9PTUGkH759Nv5mCjpP8XAUHfSkJvt7e3jblut9vqdrtqtVpKp9NmY4DB7/f7lr2FWsAz7f2tVD0C5Dc3N+3cYDbH47HNx8yrPmXfKwYrgLUaq/EjBwyCbz0DEGAh9cDJ+4L8guUbmxYKBQNP0WjUpK5AIGDsDIspO7larbbQ+wyWzPcp82AOMzD/R/LjOAKBgAqFglKp1EJCOTt6vgcmrt1uq9frLUQ/kAn1e7/3e2q1WppOpzo/PzcZMBQKKZ/P28IAE0MpOhOXz4vyqePIWBj+6avHbhk26OrqStFo1K4BXhSOAamCiAIkUCTRh4cHtdttM8/7BVT6fy1ZPBhaZo8YsAeXl5cm/9Xrdc1mMwMTyCN4d0jrxqvk4xV8VZT3XXGNfDYa1Yt8x/Iu20vanAcVeX7TgE/wn6oipBQ/EomoWq2aVy4YDJqk4o3sSJzI3shYAFtYUz6bCkv+z8K7XO1KCjgAs9fraTQaKRaLWf/Dzc1NPX78WJubmyahf/755zo+PjZwQ9cAD2zYzNCfjugFgAJSGIAZIJHP5xeauHNvkG+r1ap6vZ5OTk7sOjPHwOwiYcfjccsUg62hShlJEEaLrhCRSESNRsNA6GAwsPNcX1/X+fm5gTgS2W9ubmwDhvTpn4FvvvlGt7e3C/eLjd3p6al1dECu96zh2tqaEomE9R08PDw0ybTRaBjjmE6nF6JF8CjyLgPS6NV4eXlplYxETMCa+v6vvPvMmZ5Bv7u7sx6qvk2Unx/IC8TSsaoiXI3V+AkGOzUPoPDQ+IXOMwkAK15MFuijoyP9wR/8gX71q18ZI4Wn6/7+Xu1226rEqN6hmomyd35Pw+VGo6F6va7hcGgpzOyg+XdIPqQR+96HSAKwJpeXl+p2uwYOMJxub2+rUChYp3oYOADi6empMWJILvl8Xr1eT9PpVNVq1Sh/z/RwPFRocaw+B4uFk8WFa4CMQmaXZ5sAOjAHVDP54NZsNqvBYGAJz3wXQJT7B7jC2+PlY1hIH17KucViMR0cHOjx48fqdru6vLzU9fW1Dg8PzXuEZ4sKPr+gccypVGqh0pIiCRgiAOdsNtPLly/1v/7X/9Lr16+/FUbqE645TxZYDP7LvSJ/aFBpCQjOZDJ2rQFfsVjMDO94mdicXF9fq1Qq6ZNPPrEQS5gQCjp4zmjHcnNzY5Lh2tqahVi+fftWiURCh4eHFqbKO4PcDgCq1Wom08E0UbjBO0m0CsDq5uZGuVxOgUBAr1690tbWllKplCqVioVjUnWKp5JUe6T1m5sbtVotFQoFe0fZbPB9WAbu7++VzWbVarVM7icHq16vq9frWdBrr9dTNBrVxsaGvvjiC7tmVHRyrZrNphUCII199tlnikQievLkicbjsU5PTzUcDhWJRAxcbmxsWFNmPGgAYApbeJb39/dVLpdVqVQs1f7i4sLeE0BfIpFY6AVYLpcVCoU0nU7VaDSMBeVd4t2nenE2m6lcLqtcLhv48n42wBtG/n6/b/eTe5xMJhfy/lqtlr1ffqOJpIiN4tNPP7V3cAWwVmM1fsRAu+cl5L/vk4aYzDAAf/jhhzo5OdG/+lf/amFn99d//dfWW4tdFC80zA1/ho8AhiQYDC4YnSlT914Pv6ji8bi6ulK9Xtd4PLaMGECEPwd2wHhR2u32Qn6Wl6DYMfrmsOyUfdm4N5XC1nCefL+/5r6ZKgCL44XFWF9f1+HhoXK5nN6/f28hg71eT4PBQOPx2BgJX+HHsZ+fn9tOlP97VsqDaIAfiyH3yRcc+AbMVJWur69bynUwGNTx8bEikYh99tXVlUmZPqAVvx/yGt8DGMrn88ZAki+0tramZ8+eKZVK6b/8l/+iWq2mwWCwsNvme1nwAKaARJ6rf450zuchTV1cXNhzQ8sdqmBhcUlv39vbUyqV0ubmpt6+fWvPLXKtZ6eQTdnwhMNhY1I3NjZsIZ/NZtaAejweq1KpmGmfpsa3t7fW4ub29tbS3elBR8eCh4cH/f3f/7263a5lXV1cXFjrFO5vNBq1xsDBYFCJRMJas/jnCJaNaxyJRIwZpzDj/v5er1+/1s7OjnK5nM0lSFYXFxfmBQOsP3v2zDxlzA1sTHK5nNLptN68eWMAnncDlggAAgOYTqeNucHvdXh4uGBGZ2NHZIPvBHB2dmb2BszvxWJRb9++VaPRsGft3bt3ajQa2tvb0/7+vhWN0FvQt3QCNBUKBa2vr+vrr79WpVKxZxuDeyKR+FZXC/xgmUzGgpJh2WD/KY7h3NjoEPkQj8d1cnKiVCqlRqOhi4sLezdXAGs1VuNHDICV77nH732vPijn7e1tZbNZ/eIXv9C/+3f/TqVSyfwt9GF7+fKlfv3rX9suzadT++GNqhg4t7a2TGrw4M5naH0XKKEfGwv3MksBMALsYDL3EwmyE0wUFWIYvVn8kb6QZ3xoo29d4cMuvV/HV2kiy3pghw9nZ2dHmUzGPFoY+GHRfMsd38AaGdKDGG/6BhjxnUgNVFwi++JpgVXjmvuQ1Pv7e2MgyBZj4qZNi7+PeKP4HsCOl8V2d3dVr9dVrVb1h3/4hxa+ShxBLBbTH//xH+vzzz/XmzdvzN8CeESOZnHyaeFIyf+coFHuNZIV1wNjNb0HveTsGV0M8YPBwGI3YCpgbQEGMBSTyUSVSsXYU5iQra0ttdttVSoVkynpI9jr9aw3H1Vl9N2DLaInHqnq0WhU6XTaNiQAoHg8bn4wH62CX45nYzqdKp1OLzQ+x8eF3ycQCKher1uF4Xw+V6/X08HBgXnIksmkyZqwpz54mAIKQj+5zzDWk8lEvV7P2OdGo6G3b9/ascHgwMZGo1F7ponHgK3Ea4Xc6QsVqB4cDAb64IMPtLe3p9PTU4uK8Wn1gKnd3V0dHBzYswLAgpmOxWI2DxUKBRWLRVUqFdXrdcvkYtNDVSVVzzyPsF4UYDB3MWfTW5V5KpVKLQQ0r6+v65NPPjGrw6tXr2xjuQJYq7EaP3IAWNjt4M/hBWMB3NzcVLFY1NOnT/X06VPd3t7q9PRUn332ma6urmxCWltbM0+Oz71iAvZslgddvq+f/73vH8jiDPsFQPG+BJ/3BLPj85I4Xz7H523hscAXRDyBbzDNMcEycI0AVZSoL0sknv3h+/0udGtrS5FIxGQfco+oXgNUXVxcmEzF9cAgTIAkxn9KwX2cA9e10+nY8fgcKYJKPbu4nFy/fA5cV6o1vVznvVUMn//FeWBG90xgu93WxcXFQiAmJemxWEx/9Ed/pI8//lgvXrzQ5eXlgpnaNzv2/Rd9j79/6r1AFsU3CGj1cQ+Hh4cGpDg2AAIRADAP/Gyr1TI2NJ1OW+UWchShu/S9w4P3/PlzPXv2TLVazWS0fr+vvb09Yy+KxaI1h8brhTlbkkqlkq6urvT69Wtb4MnEwuTOczcej3VycmIAjigHnqtHjx5pZ2dHZ2dnFiZLX9Ber6dQKGRp7vxMMpnU2tqaGo2GYrGYAoGAqtWqBoOBstmsXXdS6enDFw6H1Wg0jMmBQer3+8rlcppMJrq4uFC327XnHTaWa4CfiR6lmUxG8/ncQkiJJWg2m5b71el0tLu7q0qlYiANKfH8/FzD4dAYTuRfgO7d3Z3K5bKBovl8roODA+3s7Ng7tr6+rkwmo16vZ/MmsuVkMlEmkzF/I88081GpVDKf5vr6urLZ7EJHDd4TNrj0k8Snyf0YDAbqdDomQSYSiVXQ6Gqsxk8xWIC8t2e5fx+ZKb/4xS90cHBgZm9KrK+vr626hfgAL+PBoPB/FlwvU3k5DUAGw+Zzc3z1F4seLJlnKnyCvK8sA9TBhrDL9QszO8NlkMd1QmaCiYHJ4Rzw7eDj8JlJ/pgwncOQsbBx7fBl0WYHQ7lvDu0jCwBKvu1RIpEwY+tkMlmQWLhXADWYIFgKGEvAEkAQBsYDdIA5AM8zXL7XIUZ9FiXuKcyfz1RjgaUpLhVt9L1Dpv3444+1vb2tbrdrER0ASv8M+z5t/5xsRCIxuKawurCESEQwFIBPX7nIc8XvfeED7xHyLL5DGE0WwdvbW/se+tPx91yvq6srNRoN5fN5O3/ux/b2trEih4eHtoEim47gXYI7AUa3t7c6OjpSMpm0bgkY6qfTqZrN5rcCZH1opZfaAf2+ATOg3McQcG1Iz282m9YAezwe23uLtEb0Q7lcVrPZlPTbyj02N1x3PJy+cwFsD164SCRiMquvXubZ413udrsGNm9vb7W/v2/H5Bt6E/nAXILPjIwu3onZbKbz83O793i/6M+KjzAQCFh6figUUq1WW/AZIg0DsnwREhtMcriowJzNZvryyy+t0tn3Hl0BrNVYjR85kOiQCEj/9WCAlg9HR0dqt9v6zW9+Y9Q9EpCvXGFR8h4fFkzv6wIgec8Xx+H7ogFAYLh84rJPKvaSHAu9N+9TscUEiKkzHA6b0ZokdBYEfAuYjwEuyWTSAlOZmPB1QMcjLWDIJQcHXwqVY5jAPcvG9YIJwXOFpOiBDf92uVfi8k4eY74HqCxEhF3CTPlWRz4mgXtKCKQkuy58Lx40zwT5PoqwaiwAXhrygZT9ft/MwX4hXltb0+XlpQHkzc1NHR8fW9PccDi8wDoBAFhcefZ+CGRtbGzoV7/6ld68eaNWq2UVXvSU49nEZ8Pvp9OpstmsYrGYAZfRaGR9OX147eXlpQaDgQ4PDxWPxxWPx80ITjNfAlzb7bYBlHA4rI8++kiVn+xJ8wAAIABJREFUSmUhaJLWOblcbgHIIP3e3t7q/PxcBwcHlsZOE2yiJQCm5M/RN4+KPF+l9urVK6XTaT179kydTsfYWmIO5vO5AoGAhsOhcrmcMc0+ZJgMMVpT8T56ELy5uWkyMewTGVowNTCytLfp9/vWNHp9fd2uXyKRMA+grzDE5E7kC8w0QImsMVjDbrdrKfqwTgBbQCrBvL43JZsKL5vSb3Fvb89a3ZCXhX9xbW1NqVRKP//5z1Uul/Xy5csF9p5wWDxtpOoDMAlgJU+PxPnhcKhoNGrnOxwOFYvFVjENq7EaP8VgEvGNdpkA4/G4MpmMJUx/9tlnZngmi8eHUBIc6eUyX+VFdRVAy8chAC7wefDnAC5AHws5IIDJdtmTBSuAJ8j7qQCRnOfe3t5CSTOgDpCFX4MdPECJnfxoNPpWuORylAXyI8edTCZNYoRpQIL0LW0AfLAYyLA0C6anIdeZYw0GgyoUCqrX68Ym0Y6EwUQPKwNLBwOFadsvjL7nnPeZMZkjBXlmDTBD1SMgmWvtwTmhtHt7e4rFYkomk9ZbzVdiDgYD67/G4vxHf/RHajQa+uabb4xJACCToeZDLH8oB+vu7k5ffvmlfY7PvgqHwwZOfdUt5n6aFcfjcWNJ6D+Iv3B3d1fxeFzpdFrz+dwaBsfjcXufkB55ByqVis7Pz012jEajVnEGsKedD8Z3nluk7uFwqHa7bezOeDy21HWYDkA3uV2bm5s6ODiQJMuw4vwmk4lqtZpJ+7wjPCfYBwBqND+mr+HV1ZUBSQo2mA+QvSeTiVKplHnReKYo/KCJcjwe1/X1tR0jAIfnFPDmC254L5DNkK1pp0OlMblV8/ncvFhcf7K7aGrOM061NLELkUjEKpbv7+91eXlpBQP5fN7ysMgc433b2toywPa///f/tvePalCuNVIhfwaA5T2gUpVqbA9yt7e3rXqSuWsFsFZjNX6i4T02+FUKhYIKhYKur6/VarXU6/WsmiaRSOjo6EiVSkXNZtPycZjQfZuG3d1dW1R9g1PPNnkD+LLh3nu1vGmdBZKJzbNmAC4yj5hoOFcP8Fhc2KF7iXE+n9ukzK5vNpsZK7Gzs6Ner2c94KDpfWiml6UikchC70VADQydN9Ui/yDDUiEUCoWsAS3J3lSlAVaQFGjk6uU8ZAN+7WVT2oVw/5LJpBmm+TmYGs7R+6aQKHzFpmeQAF/IGL7KEgkQ/0okEjHJabmRN6CJzwLgZrNZvX792o6BTQOMAAvqd4WULr8P79+/t+DOcDhsG4hkMmndBpB9aG2C5EpMAtWVo9HIFl1AsA+HJDaECleuJQAaMI/nJpVK6dGjR0qn0xoMBpaZ1O12dXV1ZeZxwCdAh2rTy8tLJRIJ803t7Oyo2WwuZJH595LjpctBs9m0Xnj9ft9AA5Eg+AkrlYptvvg+3sV+v28bIApl2OhQCQrAgt1pNBr2PgL++/2+MYTEYZAn1ev1dHd3p2w2a9caaRHpFmmUPC6Yt1AopE6nY+Zx+i4SacBcwwYVoAvAYu7jHcMLBfNOoDFeKYqEPANPNSzA7ubmRoVCwZ6zSCRi3QaYR5hLuJaJREKlUklnZ2caDAa2MSZ0NhQKGQtHVM73FYCsANZqrMbvMLa2thZkE5iD/f19XV1d6fLy0iQzdqTb29uWxs5LzAu5vHBR/cakwQI9n8/Na8LCR0JzIBDQbDZbMKD7HoO+HYqv4GOS9syZN7UvM2cABLwN7XZ7YfcHoKDKcW1tTT/72c8UCASM0fHj/fv3tijwXZ6dYtHl+z3DAhBht02Sc7fbtYn18vJSgUBAjx8/Nt/HxsaG7YJ9OxifiwMrAfCDBcDD43f0vh0SjA9gmGvJ59ASyct3vtQdsOwbNuPvgCmjOg1QKMmARLPZ1FdffWWMDN4yvDncf3wqb9680fb2tp4+fWoZQoADmBUA3vfl/CyPXC5nO3/eAfLbkLLodcfnI89Vq1WdnZ0pEono+PhYmUxGqVTKWF6eXRgqUsKPjo7MGJ9IJMw3EwqFVCgUjMEZDAYaDocGLmBI5vO5Xr58aZlGxJyk02l98cUXC4UmyWTSWFH6Lb57907hcFjJZNKADACrWCyal4zwVZ6P5ViVRCKhd+/eKRKJaDQaqdvt2vfB7pCe3uv1FI/HzSTP+wsoq9frds2QUPP5vBV+0M4Hfx/nksvllEwmzbfmY0tgTa+vr5XJZPT1119re3tbH3zwgW5vb9VsNhee2clkokajoVwuZy2Ddnd3lc1mjTHjXUO+LBQKymQyisViJvXD1MEekShfqVQ0n89VLBYtnw8zv9944QdjwwfIw0xPjhrhxJPJRO/fv7d0fJpD01S8Wq0qFouZZ5HihxXAWo3V+JGD3SPsSCwWU6FQsPJndolMCCzi3W7XFhbfwHiZXmYx9j4sX6rPou6jIXxOFCALhoXFG/8Usob/XoCRbwvjgza9kR5ZkgmMSQymBMYBfxWyKQwO34H0BOBE0gJY4S+CEWCRZbDowfLApuFt8ZKp9NuyckywgCJM1T4yAqmPa0sJfrvdtu/Fs0FbFp8yv9wuadkPh0TC7hsgg4zr/WC+OtXHVuAdoXKLv4clSqfT1mpoOp0am4oM5vsZkuOUy+VswcVDA/O2HJj6XYNzDQQCOjw81Ndff22l84FAwBbs3d1dk9zoGeirLH0sCJ4fQh9DoZAymYxub281HA7tHFho6ZEJY0Y1GXEDPF/cM9+Pk+bZtVpNmUzGTPK+UfJwODT5GcAYCAQsRwojNCGekpTJZBSJRHRwcKDPP//cKu5ubm7M2wMrBFsFC8x54nHiuQTgeUaQ80Bev7i4sGrEbrdrxwrjAuD2kQr39/dm0gc8kXdFUCwZV/F43FicWCxmFYfcQ6wAtPba2NiwhtfhcNjCi2mD5P2dxCh4JhjPJrIjLG8+n9fTp0/19ddf6927d6pUKtre3l7wR/J/4kDoJUkxCy2MAITRaFSZTMZAKvK8j6jx1cfT6fR7Q3hXAGs1VuN3GCyYhNNtbm6q0WiY3MHCDIsAYwJQYUGFveJlZdJmcoHZ8tVvy3lEACh2wF4KxMuyLOMsN/JlkmbCYnEj+NEDGL53Op2qUqloc3PTZDU+C28GTBd/hr8FRsi3AQKUUKnEgksZNGDRe8+8/MZ3++pI2Awkp52dHR0eHiqdTluZPDldy/41T/d3u12rhPJmY3KZmGABut8VmAobCesEyIzFYibxeR+Pl0yWWyT5vDU+G2YO9gRDMNcLiWeZJfPBqLu7u9YjknZDywG1PwSuJFnSeK/XszTxh4cHA7cAYoD23d2dsa+9Xs+e41AoZAwFpfIc26tXr0wmC4fDyuVydn71el1XV1cmPTcaDZXLZWP/EomEAQWYZUlKp9NKJpM6Pz/XN998o2azqWKxaMUAMDRffvmlqtWqdSh4/PixRQ34Un4ke555n/tVr9d1cHBg/TGJc8D0zbHxPPkIiUQiYaGc29vbyuVy2tra0mg0stDOk5MTq5C8ubnR4eGhSai+pdb5+blKpZKxe0Sp5HI5ra2t2XXf3Nw0hrlcLttzSNwDkReDwUDT6dRYIsAepnkqWKfTqb7++msDJwDDo6MjY5A4Z7xPt7e3FojKuy39NkKD3pEAxmAwaOw91bawZER0EMJKn0PA+t3dnYrFovWSnM/nCgaDFgHio3jwY2J1+L4okxXAWo3V+B29V0gM6+vrlrvjq758SbH3OvnFlgXXL1LLZccYTX3JPoDARyfgBWCn57OWPLDy4MGDCJgqX8lGFR2RCYA9Fl1od5KkfWYVFYiFQsEyqvAHAUai0ahNakhXPhyV7/H9/nx/Rc7Fe0S82Z/J1pfeA6ioZFru7+fvF8wXDYL5TgAm3jPM2N9VNODvwXIbJSZpjhEJAgaJ4ggWCeQkL5d6391y8r03uQOWfNGDz+jClE4vzJubG7Xb7YW8Lpibf2rz4RPL+W6kQg8EYVL4M87j6upKnU7HqrqQ2+jRiOn44eFBBwcH2t3dNS8UrXcuLy/14Ycf6uDgwAArIA7Wj41OOBw21pSEdMIwaQAeiUTMZF2tVjUajcw76HtD0vcQVgSgwPVF4uLXFGQQZwATwvzBZ7J5y2Qy2tnZsX6HXjIH1Hk/I/JuIBBQt9s1KZF/432cgUDApDLmHt8EmbmFClWM9rBsAGe8TTDQnpXEU1er1azFFn3/otGoQqGQtQbi2sBc4a/iWSdx/urqSuVyWZ1OxzY+ALrZbGZMt2dZMcLDHs5mMwO3dBZgg8TmkecGbxjRD9PpVMVicYFdXwGs1ViNf+HY39/X5uam7RpJJGYy8g2CkQ2W26ywGHtGwXt/+HkCMZGyyGTy8hmgDeaEChzvF+N7WMBheqC9vRSVTCaVyWSs6SqTI14eJisACWwCE+7W1paGw6EymYyOj4/te4LBoB0zkxE7QJ9a7gNGfb4T1WEwEJwXFYpcR9qKwMABUFqtlv2axRsPWC6XMwmT4/voo4+sCW4kErHGw/6ewRYhKwLMgsHggvmWnDDPBnFNkeCY9AGimGoHg4GBKtgDvzB6cAhY9CCTMvTvMqvzWZPJxAD27u6uwuGwBaiyGH8fwPLnU6lUlM1mv9UbkQWRrKZut6tQKKRnz56ZF280GtmCyXFwj6vVqi4uLhSPx60aEDBH/8H5fK5ut2uNpf/hH/5BH374oX75y1+q0Wjo8vLS3s3pdKp+v69SqWTl+siR9AWk+TR/Np/P9fz5c8ViMX355Zdqt9t6+/at2QHwSFL4QIjt27dv7dnBDwaDxzudz+eNySLOhIgRFn4KX/CB3d7e6uzsTHt7e0qn05a3Ryo75wXjd3d3p3q9rna7rXw+r9///d9XuVzW1dWVSqXSgrGcCAr8WTxDiUTCqjV57mG3ASyTyUTHx8cLBQ7dblfValXn5+e6urpSLBazucIDuMFgoJcvX9o5AjApFLq4uDBf583Njf7mb/5GvV7PfGx4YWG82u229U3MZDIG0BqNhgWV7u/vK5fL2bkS7UGcDpKmDx/m/RqPx5pOp3r16pVtIlYAazVW40cMJlBafvhMKhZfZCAWUOjw5b6Fy9V5/Mdig1F5c3PTKpd85Z/3xHhTOmXmsVjMjJqwTr6Vy3I7FliUbDar9fV1C/3zchJsDcZkQA19zwACtNiAMfILMhVEyw1cvTHcsz1eTvVRBpjBub4+YyuTyRiQ8o2yMXB7+Qvgh1QWjUatzP78/NwWcy85IL/Bxvi/Q4ZlR8019+e1zFyySHMvaTwL++GPmSIHnj8+B1PzxsaG6vW6+bQ8MFvODUMihtGCjUUaobG5Zzy+Sx7kvnuvHfcCcEAVGAsVbVQIrvWhuABY3qWNjQ21Wi3VajV98sknOjw8NIaCe4Nstb+/r6+//lp/93d/p1/96lc6Pj42n5GPLYAtYQHe39/Xq1evVK/Xlc1mzavEfQQwhMNhy40irNWfL+cfCoXUbDbVarWUTCaVSqV0eHi4AHy5zjwzsVjMADpMaTAYNDaZxtnkbhFHgpeR+wVz9M0331iFM1EdH374ofb399XpdOw4YNU4FjLTsEQg7wEkWq2WVQpy/X1YLAVA3lvYbre1s7OjUqlkm7SdnR11Oh3d3Nyo2+2q1WqZpDkajRSPxxUMBs3oDyt6dnZmni+8f3jaaHR+f3+vw8NDxWIxYyrr9brOzs7sHlAAwOYVtpfWPNxPJFCy2vL5vMW4tFqtVS/C1ViNn2KMRiPbXTLx+9Ru/qO6EObEsy6wQSy2XmJjIaRSj0rAZdDhZUOYLiQhPpMJnwUAX4ZviwMg8L0Efegf8puPTvBp4yyWRCEAar6LRWMxxPcAc+CrH1nIvdmfcyMt24eK+pBSgAjff3V1pXA4bAGEy8eCBMAunQUCAATgJCgUAMJ19gwNoMuDmL29PZOpzs7O7JkBXMLY8Hx4JkyS+Ywmk4llIHkDOoPJHdkSkIbEyEKI7OOvl4/iACACeFgAYU6+z8gLYCsWi7YwSbJ2NoRnUjUGu/PZZ59pPB7ryZMn2t/f13g8tko/L2XzfOP3oVgkk8lYo2Mq6Hheo9GoGo2Gzs/PDbQgX/noDN5bYi4AN7u7u9rf37cG2aVSyUBoKpUyoFatVhUMBlUsFhc8XQB6KhVhNgHzmNo3NzdVq9XMo0ToJtcUBoV4E9493xKrXq8vXCeAyPr6uprNpra2tqynHn9fLpeN0cFkjqxGRS49GcPhsFU3++9Ip9Pfag7ORoxnCWaLjRRSW7vdViwWsyIFvJ6JREKxWEz9fl/VatXerVQqpXg8rk6no6+++krNZtPebx9N02g0TKIslUr66KOP7Nq9evVK8/lcqVTK3sF+v2/vKhWDSKC7u7smTz48PCiZTBpIGwwGKhQKSiQSlte3AlirsRo/AcBil84iiJTiwRItUmjnwb/xCe38e9/zjdgCPFAwI94v49kSFj3fYBggUq1WzewOI+Cr9QAopGXjvRgOhxbAiKHUm0b5PRMqC+lsNlM0GrXPI0/JT9qcp2+GDFjy0pdvPQMAJGgU2ZHjQ2og6JGqN84F1oTFlfyjbDZrxzSbzVSv1xUMBq1FCEZxDyoBgb4owFe9cZ/4mdlsZlICVUucJ/dp2cPnE/ExCnPfyRRDevbVZPya4gNfYei/1zMOLMywFRw/Emc6nbYYiO/zmTD29vbU7XZ1eXlpIA7zvE83930EMaZHo1HLmCJ3aDAYGGCaz+cmh62trandbqterysajerx48d6eHgwRgZGLhAIqN1u6x/+4R+swIJiECpfCc28vLy09O9/+2//rbrdroHas7MzVatVffzxxws2gGAwqOFwaGCF4E7e2263q6OjIx0dHRlQ943JKfCgMnltbU2VSmWBXYXNubi4sIyu8Xhs4JjYDjpF0C0CgOclXvyQNBzn3U+lUtYPMRKJWBEKxR20ngKAYvLnXeXXzFvMkbBBw+FQtVpNJycnJg0Gg0GbM3hXKRLo9XoKh8MqFosW7VEul/XNN99YdTLfl8lkDBi2Wi3d3d1Z5SKNtMvlsrF39MPEk7a7u2sV4MsSPcfHZhUfWCaTsard8XhsralWAGs1VuNHDhZF3/A3FAqZ/IAcw6LFzoe0ZN9Oh50ToIxyctgXfDK+X6FnIHyCs2e1mFhJTPcggb8H6FG5SLUTlPd0OjX/h1+QfbNl78FhQY5Go0okEpJkkhCVP+x+uWYACwAmQMgzKnw+TAxGYRYnZA28IPQojEajuru707t370xuIYCRirVisajxeKyDgwMNh0N1u10r2c/n81Z92Gw2NR6PF3o7AgKXq/p8RSgVU0RX+GsPEIZR9BK0l0a9URlmjqwergPeOEAvshoD8Mq1X26kzULJ72HEkJ/i8fi3qiu/y4vV6/Ws+isYDCqZTFp4JRJZr9dTuVzWaDSy+IFms2mL1eHhoT744ANNJpMF6Rvmx0vjVK89ffrUWBaA3v39vQGDWq1mAAsvWDAYtLgIPrfdbisQCGh/f1+RSMSqzogd6fV6C9XBsGidTmcBwLNwE8xJO5rz83M9PDxof39foVDIfp9KpewzifAgsBWGqdvtqlAoGAPrpXvfUoZ3hPebCjh8XMhaSKbkhwHCYN8xoLfbbXu38PL5wgg2PrD6+MNqtZpFcyBblkqlBZtDs9nUdDq1dH0kztlsplKppHA4bBWp7Xbbcvc825XL5bS7u2tzFgCY+axarRqrReNsMriokiyXy1Yk5Ps2wiS2220LLGUeI6CWnpKrmIbVWI2fYDCRef8JLAOLF76gQqFgpl6kKsyTVIZFo1GTjdiBMlH74MvlVjqewfCLI4DKV4D5BsEsBJ5Jo+8fjZJhDgAKvo0KhnwS0weDgT799FNr7cECNB6PNRwObZH15eskKyOfcn7+nOlJyOLAgo+3JZ1Oq1qt2q4Uoy395WazmR4/fqz5fK5arbbQ94xJtNFoGCMEgI1EItaDMJPJmBRBThDglcUQ8Mv1BVD6OAbf3wyPFOcDkOZaI+tiNPagxxvGfUk/i4ln9Hw6Pz4zACzy5HJSvy9o4PmBdcrn88Ygfhe4kmQAhYULKY/kdL4bJpXrhMdmOBzqzZs31moFMzQgDeaGew1j9rd/+7cKhUIW9EmvQTw5PDcA7a2tLYskwJc4m81UrVZ1c3OjSqWiUqlkkQXEidCL7qOPPrIgzPv7ewOEr169slyvQqGgdDqt+/t7NZtNi2RIpVIWP+AXZWwBwWDQ+iOGQiGVy2U7HyRUABmM3WAwsNiY0WikarVqbCfPYKVSUSaTsWBNmK3r62tdXl4a685308z8+vraYg3wXR0cHCwUQBApArM/HA7tP4oQDg4O7P2o1+sql8u2wRgMBqrVatre3lapVFIymVQsFtP79+9VqVRMUvWbU8zvo9HIUvIPDg6s+vDs7MzmqHA4bBl5eOX4Oyo9SfKn7ZUkawGUSCQsINe3B1uem1cAazVW4ycYy0ZsQA2SGdlXnU5nIb8pm80a7QzzwWThF2Pf08/7aZDCfP9Bbwz2O3xkEpglTLCwIjAbHDMNSwGAsE9MJOTG+AbQyFBEMiQSCbVaLVssvHGZMEWknG63a+ZWbyIGxGKc9ywG3ixkRaQe5E6AJSX2yWRS+XzeDM2bm5tmUiXXx4eKIm/wve/evTPmkWolfFNk+CxHMfhr5kvBkWbItOL6A658uyPYKC8/Mul7SRm2FPmQc/BtcnwExnIlK58DM7X8LCEZIuf9EIMF20pxhSRru4J/zYMppDHPiEQiEUsDp/kzBmXiLMrlsq6vrxdY1/l8bgsrn4s0D7DEz+RN7oSFwoL6kNxAIGAgq9PpWI89mEm8ZNvb2wb+JpPJQhXxfD5XNpvVYDBQpVLR8+fPVSqV9OLFiwVDOG2JkPd8/0VYb/xtnU5HxWJRe3t7VoRCzABFBoBBX9lGbh0tcAgu5jNjsZjdb9jpq6srRSIRZbNZY6V4bmCQp9OpvQc0Jd/c3LR085ubG2WzWeVyOb19+1ZXV1eqVqvqdrvGxPIeHxwcmJeNnyUiZDgcGgPNs8B7WiwWlU6ndXt7q4uLCwsM5RhoH+U7Kfi2VTCKvLc+1gVJls0ZsR++zykgawWwVmM1fuTwL6HvYO97bPHnnU7HwAFJ0vl83vwlRAx4psJ7cVjUYCdYvDkG3xSYCdFHQ1AdQ+NVquT4Od+jjkWUz/Y+GQCMT0fe3NxULpdTIpHQxcWFGdbr9bodk/dLeMB1enpqn+0lv1arpXQ6vRCASsNaGByCC0nu9onnV1dXJpf0+32dnZ3pww8/1CeffGISTT6fV7fbXTDvk6xNexdYB5rIcn2RzKLRqEkZPrEdEzuLPgwTPwsY80GfsE5M1sPh0NgxgCC9GGGyWAQBB75CkMBL2ASfTbYssS33WvSeLM4Jhq7T6RgA/qEBaCDXqN/vm2cFUzIs3XQ6NdmHINBMJmMbkH6/b5lPoVBIR0dHKpVKVk2H7IO/j+ei1+vpyZMnOjg4sIW6Xq+bHEV+2XA4tJBRmFGkx3q9rmazqVKppHg8rlgsZonxZ2dn5k8rFosWWoo/jE3CfD7X6empsS3r6+uqVCoGTKLRqJLJpMrlssllmUxGxWLR/h0NvEOhkKrVquVgEV3w8PCgR48eGVgheoGemFQ78z5RYQpLyzyE35HqyX/8x380Rg1gyebs3bt3CgQCevPmjUKhkLX4abVaisfjJs/v7+/bc12pVPTq1StdX19bfEIikbDqvkePHikej+vly5cWfzOdTu26LFerhkIhffTRR9ZL8c2bN6pWq8rlcgsxC0jQXFtJlvmWz+eVTqfN41Uul9VqtcxHivzn/ahEbXAey3mGK4C1GqvxEzJZywGbyDL8n8XSm9OZgJEeYBuWqwD5bBZZ7//x3e19ppVfWNnl+yo9GCuOg89DTgB4eOO0l0d9RaFv9TOdTlWr1RaqJn0cBQs8FDtsC6ZUH8jqgxuRTbnGZCB5wzmsAf8WD06lUlE+n1ckEtGHH35opeK+Ce/Ozo7i8bgBSyQogB9gBTmLY/Q+NH7vz9dX8/k+iz7uAjYOb4yvhPTVnst9IXm+iPEIBALW3NpvBADc/p754Fr+3JfYw1IBFLnHy56t7xoAM58VREwEifgADR+2CyPJJoXngzBJWMRQKGTsDTI27U/YkGBGJqwU/9jt7e0C44NUPhgMbBNBtW6j0Vh4rjF3k+MFy9ZoNHR/f694PG6sCx45Fl2eMWIAWq2WvWMY27kHFIlEo1G1Wi1Jv00rxxCOTxMTOUwxbBngmiIH3iFkMe7j5uamGeGR732uGMGmvs/mzs6OeaTYtPmsKO4n0SywiFtbW2q32xoOhxYQC9tPMQPezE6no2q1audBgKlvReXjZzjmy8tLtVotez5hnijM8LaIvb09C0CORCK6vr42Nh0GzsvtMIHYCijC6HQ6C90ovu/dWAGs1ViNf4E86Be05UUUxoadViQSsRJgfBvsDpcXRh8FAFOCr4eO9z6tmZwn77Vi8af6jMWIiY/qLc++MTH71GMGPilf1UZD3mfPnlkVTb/fNwYKIEU1Ea1mKONnIqO83peoAzioJCRTZ3t72yq1aIfBokP2FrJrJBLRw8ODlbAXi0Xt7+9rMpnoq6++MrO197UBVjHr4yeh5yATtZc2lxdIQANGfyZrAmppRo2H5eHhwQy99Ltj4fJ9+fChYZ72DBY7ap9RxrODMRsg+vDwYDlrXoIEzPr0f/oWLifFf997AdDj+SUvioo2qjMjkYhJf6PRyCRiL98hSeOJ63Q69oylUik9evTI2pl4VjOXyykej+vs7Ezz+Vwff/yxLabS/4tZwe82m83Ubrctaw4whmfv6upK4/FYW1tbymaz5uuq1+sLnrBwOKxQKGQ+Hipanz9/rqurKwMe7XZbg8FAkUhExWLRAi5595rNpoWsenYbsMF9IuCYDCxfVRuJRGyDMBqNtLtP5EeJAAAgAElEQVS7q3w+r+l0qkajoUePHqlcLpuJn83U3t6earWa7u/vlc1mzTdIvAQML4CPzWO9Xrf8vEajoY2NDT179kw3Nzd6//69NWemWpR34+TkRGtrazo/P9fZ2dkCo+m9b7wH+/v7Oj4+VqFQULfb1YsXL9Rut81DSQgtTaPH47FVUhNCWiwW9fTpU6sMhSkD1DPPUbRBHANxKXjeAL8XFxeWl7UCWKuxGj9ysNtiF87ijCxCqxHC+WBfaGTqZRsAAaZs32gYEzbfhQTArtp3b/dsDiBKkpl3fZ4UAAzWZfnvmOh9Oj078r29PSWTSR0dHSkUCikcDms4HNpiBrDCn+EbpcK60LvNm8C5pp9++qmazab5MrwRGtDFAsnPe28QUiKeJczevV7P5EfYLCqbLi8vFzw1BCxS/QRYBmj4CtLd3V3LXvI+Lb6fSjbiIug/58MzWTw9c+gN6oQ1kqUEMIdt43xZINlNj8djSVrIYeLeU5kIoPFdAQiaBND5oo5/jnwOmzEYDKz6CmCcyWQ0Go3U6XQ0mUxUKBQUj8ct1oNKMkl2j1n8qWqbTCbWMDmVSlkgKz4rJKNcLqdgMKj379+bVI68S2o6IaG8U61WS0dHR/rkk09Ur9fV6/WsSTuZZOFw2BiQcrms+XyuwWBgHRD6/b75hmDDYLcolOCanp2dKRwO2+aCxs0erLMxoak0PjaaUwMu2FiQxH56emoMjs+v83MDrFYqldJ4PDZ2Cmbm6upK6XRa7XZb/X7foimur6/VbDbteeH+bW5u6uTkRLu7u3r16pW9q1RBAtZKpdKCTYLAV5o5cx5UYIbDYe3v7+vp06e6vb3V3/3d36nZbNp7UCgU1Ol0FvK28L9+8sknNtdGo1HVajX99V//tRqNhm1saZ3lLQs0d6efpvTbXpudTsdy2rx/7Pv8iSuAtRqr8TsyWJ6p8rt3SsAxfZJPs5zY7lkv4gp8jhKsErtSpAYWeRZvZCUWW8AKCyZU/3IAJiZt35AYn5FnNnzvO1rQHB8fm+F2NBrp9PTUYg88q4ZUx/djPvZgiZ06NH00GrU4AtgfwA5mdhZh2AYmN898+JY3gDR2rCcnJ9rf39f+/r4Zc6vV6oLcCWCBMQQgevMr8lculzOZhAIApD4mYMyxeLOQ45bzsnylJz0eve/EJ3/DhPpASgAlz4pPlw4EAgvAleeMZ8gb3P3ziez1fSZe/8wQDeG7BnCPiQnAFE27FVK9AQIALCIWAHkcTzgcVr1e18XFhT799FPl83nt7u4aw9PtdlWr1Yzpo6iESAGese3tbasQ9QCPvnPpdFqBQED9ft82OoFAQNls1nqRJhIJlctldbtdpVIp+w4fs/LNN98on88rl8upXq+r0+nYs9tqtew58r5OKi4jkYgBOEI5CctFUuPvd3Z2LFB1MBjom2++0d3dnY6OjgzwIb96YMT95Vrw7y8uLqy5dKVS0WAw0PPnzy18eDlgmc0A7Nrnn39um0wiReLx+ELj7jdv3pivj56feB5Ho5G2traUyWQUCAR0cHCgcDhslYXz+VwnJyfGZpMhyDFtbGwolUrp5z//ufV/vLy81FdffaX3799bzAZgFnaN+AkfegqAZdNJ+yo2fz/4bjx8x/bkn7tjWY3V+P8NXP3Zn/2ZXr9+bSAAwEBLB8ADDWPxA/i8KxZOXxmHjMBC7A3ovt0Oix//Z0K4u7uz9Hh2uM1m81uVZHhkYDt8xaE/Ft96Jh6P64//+I9VLBY1Go10eXmpcrms4XC4kNflfRccO+ASBgATOuwVu3M+gzgIQCeSje/P6INEAWpImVT38HcwQMi6Nzc3KhaLyuVyymazCgQCevnypVqtlhmEudcY330el/cjwRb578d/hKGfQEcWDyRPQBnPj8/q4u89q0jlIdfDP0u0BWIh9QZ53yOT+wxj1u/3F3LIADP8O67B3t6ewuGw/vN//s/6D//hP3yrTROM3R/+4R+q3+9biCvAcGdnRy9fvrSYCiogCYmkCfHx8bH1joPRgxHywaX+/WBRv7+/N+nx7u5Or169UqVSMfM6QH19fd3kQvoOkmnEM4vfKhqNGju5sbGhy8tLe89gcx8eHixxnIpaSQbcarWadnZ29OzZM+XzeWOqbm9v9fr1a62trenw8NByr/BR5vN5RaNRNZtNdTodi8o4ODhQo9HQF198oRcvXlhf1M3NTSUSCW1ubqrZbKpcLmt9fV0ff/yx7u7uLEiV6765uWm5UOPx2N7fQqFgfreHhweVy2UFg0GLzMCjhX+L6wu4fv36tYbD4beaqheLRQtqvby8VK1WU7PZtHvX7XY1Go2sUvDw8NCabM9mM8ViMcXjcVWrVdVqNWM+r66uLD6BSsjNzU0z2CMLl8tlvXv3biHegTkQpp85kLk6FAppMpmYX5R8M94RcroKhYL+23/7b+bzXDFYq7Ea/8LBospiH4lEFnaf3kzOLo/KME8lL/eDg6GB+QBwsUPzJmr/Hb60n8mKvB7kCH7Gp8cHg0HbKfPzbK4wOG9tbenk5EQff/yxfvnLX1rX+q+++sp8PAxSm31EAawFCxLgi2vAv2NiXF9fN6kNIDWZTEzaILrB53H5QEWkF6q6JJn8h5fn+vp6oeT+8PBQP//5z83rVq1WF0IuMdN6aRePFOCHqjgAMhVwMDlXV1e2sPq0aD4bQAYwx1TLcftsJxZxDMUMTM5IHr46k+fNy0V8xnQ6tbZIPhcLMOfDLH+oWspLvQBbrhsBuuQ2AVCRg/DNIMne3NzoyZMnSiQSevHihQERYgvS6bQSiYSljHMfotGo0um0UqmUMZpkMcFQ4ZuCHSHNn7523W5X4/FY/X7fTPWJRGLBlA8Y4/l98uSJhsOhOp2OXr9+vdBL8vr6WrVaTe12W//m3/wb5fN58xF+9tln2t3dNWDlu0FcXV2p3W5bTIDPp+r1enr37p0mk4k1KsbfFggELGokFApZQYBvKo4vC7bo7u7OqpvL5bJms5m1Frq6ulKxWLRMLti929tbpVIpe+4bjYZtHrBJANyePHmi4+Nja7J9enpqyeu8D5ja7+/vlUql9Hu/93uazWb6m7/5G5O8mSMBv3wvBQ07Ozva399Xr9czYE7gMnNwMpnU/v6+6vW6gTf+HRu5QCCg9fV1A27M7/jsqKxkswp7umKwVmM1fiSD9R//43/U+/fvbZGCvWBnzKKPOZagTKpPCBz1yc9M2H4ha7fbajab6na79vmAGCQTLzn69jTIUMgqy/4AQBAsh0/2JoPq448/1ocffmhp1C9evDBJo9fraTQaWVsNFnMmGgz2yWTSPBTs+mCWWIRhZ7gevsIKOYTFAvbGM3leEvXVid67w/EQ1khVFVWWjx8/Nhbp/fv3qtVqOj8/X+jJBuChkspLuUi2MFU+ZsE3tOZ8vKnYV5oiDQIkvBGfe+PztHieOF/fW4/P5XrwnMCiYa6GffLMJc+Ib2wdDAb1l3/5l9/JYCHBHB0dmXeNeAGuFUwG7wwJ5aPRSEdHR2bMZmOBCR4mEAmJdHCeJfroca4wJ8ViUQcHB9rc3NSXX36pN2/emDzIsz4cDhUIBPQHf/AHkqRut2tsFPIqsRLElHD/8f75fpGNRkPv37/X7e2t+RTPz88XFt9SqaRf/vKXtokBOPp2M8fHx/rHf/xHXV1d6fnz5wb4AMRscLa3t5VKpZRIJPSb3/xG9Xpdx8fHCofD5nuKx+NaX1+3BsecD2w354phPh6PG5h/eHgwMMXmATZzNptZrl+v17OCAzZUVLceHBxoe3tb7XZbv/71rw1AjUYjvXjxwuaBbDZr7weVgoPBQI1Gw0JAm82mNjY29MEHH9h7RdcAmn+/ffvWnklANnMa5wnLysYFf2wikVChUNDl5aXevHmjcDisTCZjG1Zy5zKZjD3/5XJZkUhE/+N//A9r2bRisFZjNf6FY2dnx3b/XlrxlV4sauziiViAxVhmArwcCBPFzt4Hi+KL8t4dfxyYNok52NrasnJuXwkGU+I/gwkWf9Ljx48Vj8cNcCCPECHAJO2/m3JvQB2eIcCgbycD4JJkshi/x78FePNeMN/nkcFCxTlSUca13dvbM9aCykoiFgBBSJc08oWFQj6CweI48THxH0yjzzTz7Wlgw/b29haqDX21HFIqZfT4WjhOWAE+j3MA1PqSdK4TQIvr471pyKG0RiGFHLAGi+hZ0x8a3W5X6XTaFiAfzDmbzUw65rx81hDPC+Gs9MbLZrOKx+MLzwTSNNcE9k+SsWQwedFo1CQx8uFoqQK7Q+87NgWY3/m3vCP4K6kuRAqjFQvvhu+BOR6Pjb1tt9uqVCqKxWKKRqN69uyZHRdhuLyrbI5gXpDPWOx93EAymVQymbS+eNxHAAj31vfQHAwGCxEfxEl4/yHPOmCNzR9m+/F4bJstulfs7e0pkUioWCwuJPxTtYjni9wtGCP+fbPZNEB9fX2tZDJp95drw7vC+wrYRo4HlPMuwJZz7p1Ox9heNizce9+tIJ/PK5lMqt1u2xyMpM7z9k9V2K4A1mqsxu8wkAUARYAqn1mEAR3jM4sZ+TyU8fNyevmO8msWHEyW/X7fJCEmed9GxXvCyMbxoaeAICp0mHCvr6/NQ/azn/1M//pf/2s9fvxY3W5XZ2dnevPmjfr9vslvGIhJ64aB8+ARk3e327XdLKDv5ubGqr9gTXw0AonWy4DJ+2ei0ahV6MEg8XO+cTKgF7N0MpnU4eGhnTdeIJ90D7v05MkT3d/f68svv7RKMrw/3B+YQhZgSvY9gEbK5D4AogCZa2tr1huP+4xcGY1GrX0JiysLdiQSsTYf5Igx8QOcYbZoLeP9dj7BHYbOe8mW2xMhm3zf4HwikYj29/fV7/d1fn6ueDxugGRtbU39ft/enXg8rmKxqGq1atJ4oVBQMpk0qXY8Hlv1WiKRUDqdVr1et8gT7hvp77PZzGS0zz77TKFQSJ988ol+//d/X2/fvrXQSFLWYYSy2awFT66tranZbJqhGeCazWbtHFutlqWLt9vtBTCK/E7lHJsE2JMvv/xS+XxeH3zwgT3PjUbDpG2qFm9vb1Uul5XJZPTu3TtjzTOZjKLRqI6OjjSdTi2CYGNjQ0dHR2ZYDwQCVlXp4z1oL8N19Un/9XpdGxsbymaz9h7DFJL31e/3lUgk1Gw2DRSy8Tw6OlKxWFQwGFSj0dCrV6/MisBGs1qtSvptVV4sFjPvXLvdtr6R+LrINfOhybFYTOl0WltbW2o2m3r79q0uLi50d3enp0+fajKZ6OLiwp5NgC5zKc8I1a0UFKytren09FTNZtNAH3MWG17m92azuQC6vg9krSTC1ViN30Ei/PM//3Nr0sqf+bBLv5uGvWAhZsH1jAMLNSXL0NhUmSELwRghhT08PFilGInpPlKBRYzv8H3P8IPFYjEVCgVrUREKhdTr9VStVlWpVFSr1cxThPSVSCRMamPnCzvHpOUBHtcISYIMLSoYPdO1v79vvcBgV5A0uK6wHhj7MWvDIOE7AlRxTYLBoEKhkBUjbGxsKBqNGsAE9DAAbL7hK5IvbMXFxYUGg4Ht4Mkj80ATpglpmEWClj6AQCZqFmmYNaSnWq1mVYYcP/9nAfdhtr4C1bdkws8CwISx8CZwIgU4p52dHYXDYf3FX/yF/v2///ffaXK/urrSp59+aucAI0H7JfxSyH+xWMxAIVVw3hcEi0JQKceczWYX7hds0dXVlb13XFukIaQvpKD19XV1u101m007fjY6gH+ACf0qNzY2VCqVDASSqF6r1UxWBKgS3YH8BCvtGwNjKN/b2zNpFSYtGAxqPB6r2WxqOBzq+PjYpPVUKmXtn0KhkD0jSOA7Ozvq9Xqq1WoG2OfzuZrNpiKRiPb29vTu3TsrdCElvtPp6P7+XoVCwd7TjY0NNZtNO95isShJury8NC8iFcxUB5ZKJQ0GA3311Vfm7yPA+OzsTGtra4pGo1ZgQjQDhQwwakiRACLk4nQ6rf39fY3HY52fn5tvj/mCzSwyLhvK+XyufD5vm53NzU21Wq2FDEMS7Wk3hDeUcFyeTzZbvO+lUkn//b//95XJfTVW46cAWcvyHqBouWLLL5ZU8PDveEGZoPCesIsFQMDmzGYz5XI5C9SkBB1anrwhX93GhM8OnEmatj1PnjzR8+fPzZSKh+Ts7MyMsT7GIRwOq1QqWRjmckYSpd+eteOa4LHxkhf+KhYGcm34d7ABpHEDqFiEAXaAA5gwn42FLASTRUUSQJCE71AopGg0agsuxQLr6+tKp9N69uyZnSfnVSgUVK1WdX5+rsFgYMCWykJ24j7glSRu0rjpO+fly//L3pstx3leV/8LY6PnudGYAU4QJYoyZYuyZafKslxJnAO7lBykkjtI5Qpy4MPkElI5zTVYrlTFQ5VTsqKJoikOIkGQmBvoudENoBuN6TtQ/fZ/d1uS//6ks6/fKhVtEuh+h+d99tprr7028/vI+CnJcm6+ZRwgRmAH7BBsvCO/d2ZHn8Ia9k7xPC/WIwDdg/T+hBzBL0amPE/sDLAl4B5kMhnTT9E96b3ZOD/AK6Dv7OxMMzMzVm5FhwbQ7R98DttQq9XMO2tubk7ZbNY6/EiAeGfwmoJh2d7e1v7+fo+nGddB2cnvB2jN6HKjWQUZAB5K1WpVFxcXev78uZVtYVSZZ0pJ7Vvf+pYlGQAwNGClUsnE+I1GwzopEasHAoEe41s6DhkXBIgfGhrStWvXDHDxLElMotGoaZfQmNLAcPXqVUWjUe3u7prwnPeTEU5MW8ACo1wuq1gs2kDxubk565ykGQWfLtgk7DXo+kXaANu2ublprDnJJearMORUIMbHxw1UsR9TIgTYpdNpW1+AY7RssHveoHfAYA2OwfE1wNU///M/a2Njw4INmytBnRcbkEWwQHzsgzcMAiVCupx82zRAC8YBOh6fJIAKYIVAQRedH3UC4JqamtLt27eVyWSs7Pf06VPzJ8LFmE4h/IXIwr12h8DKhsQ98INQCahsYpQQCILj4+PK5XKanZ01JoHRF7FYrEe4jqbn8PDQ9DEEHdhARNQABn8vjo+PNT8/r3g8bgFrdXXV7i9GlIAeSrpLS0smSsdHCQ1UtVrV7u6u1tfXtbGxoXq9busFUI0+rZ+lQVfE+UkyRtM3DgAOCZBoVNCOoTVjLXKvKF36mYkEPYI+5SEACevWj5Xpdrv6t3/7N/3N3/zNl4rcU6mUBZvJyUkdHh5a8OOz0RAxCw9g6UstAD5vO+EbABhqDMPVXxrlncQ3zs9/xHYiGAzq0qVLCgQCWllZsXvrrz2VSml+ft5Y0nK5rEajIUk2TJh3pdvtWjJycnJiwRzXbxKQs7MzJZPJHtE/YKdcLtu6gpUC8P3sZz+zBomDgwNlMhkFAgETX1NOq1Qqev78ucLhsCUPoVDI2FqezcHBgWmL+F5ALXYj0WhUCwsLph/EOBRGp1qtKplMamFhwaZD3L9/3+wrAEq5XE7JZFKxWEzFYlFbW1vW+QjWWFhYMHaauY6np6daWlqyoeCFQkHDw8M2Roj3oFarGeuE1ACdG1oymL3h4WFjvoLBoFk0tNttm43IvkJ3K0AT9h5WCxZ0dnZW77zzjpaXlwcM1uAYHF/n6B+a6w1HCVowD7Ao3lOI3wdcwBh4KrrfaZvyBxs4ZRfYCzYgmBwfVKDJJRmbJX1uPAmVXigUVC6XjW3xJU0C/cjIiJXIvGBaknkd1et1jY+PKxqN2vlSZgOYlctlpdNpA2CMwfGO5IAC/j/aIMAo7Jo3wIT5YwA0wIp77BsQCOqBQMDG89ANRYkLvQrdY+vr68aw4clDpgzAY3guQZb7g0YIAIwbO2uG50YA9bo6tE/8vi8R+2cryUoenBc/50Xvfr6lL43BUvkB4vysH1vyVQcAZXR0VMlk0soxMFVcH/eartcbN25oenraOvuazWbPTD9f8kX4DQiq1+tWPqcMTPCj5I4XGqCU0l0ul7PyLYwr60/63D/p2bNnxuAg7GaeYKPRsGvzdijn5+c2CDgej/fcP4Ybo/MCRExMTNg4nUgkYiVaEgeMWRFxRyIRc3PHqkH63JakUChYgre7u2t+doj+r169qpGRETUaDQ0PD+vSpUsKhUJqt9t6+PChDg8PFQqFzIKB8TAASRKeTCZj9huMrEEqQXNIKpVSPp83g9i9vT1tbW1Zg4wf/wPgn5ub0+zsrM2JrFQq1rxAWZyEyCcmdGRi+hyPx23tMOAd4OeZcPYq3iUvRSgUCvadfDZ7K2t94OQ+OAbHN3RARUNfsxF5MEXm7Lu3+DnKGIALH+AQxLK5oH+CofLu3j5QknV7V27a93F/JrjU63Wl02k9e/bMPGLa7bZ19sBu0EGFsB4WyA8BJiNOpVKmP4PdgYVC53F4eGhO2t7UEmd6n2lTfsB0MplMqlqtGsAjy/XGo7A9CwsLdg7+ee3t7Rm42dnZMePF09PTP9JYcE99yWltbc3augGU+Xxe2WzWyq94+VAe4RlIUj6f7wnePEevJYIBDAQCSqfTxiSQgQOuKUcSzAmuBBq69ygPAVLQ61Dq8uwm95E1BNhArwc79VWJx/j4uNLptAV+7m0gENDm5qYFM55btVpVIpHQo0eP9Pz5c2UyGSvfBgIBLS4u9viiAVZJOGiC8AkBlh6Yr3KvMQultD02Nqb79+9rbGxM8/PzSiaTSqVSxuhwf5rNpjUTJBIJvfTSS7p3717P/DrAPuuf50JSMzExYXMZ+T2GjB8cHOjJkyfWxcaaA/S3Wi17Z7yxKqC/XC5bolGtVrWxsWHlVswyj46OtL+/rytXrujmzZvGLuIplslkrFS4vr6uiYkJvfzyyzbWyM9AHRsbUzqdVj6f1/n5uarVqp48eWKNGd1uV5VKReFwWPPz8+af1Ww2tbu7a8w3LDdsJoar2WxW3W7X/Lj8gGgAExMwGHc1MzNj4IoyJlqqbrernZ0ds3vg+WO7wv2hAYHEluQDWxGagtiDkCT4JqUBwBocg+NrHgi78Rzy5TgCDXoKynZkXAAeMnvYCIKH90tKJBLWrs9GQqZEUCVYs+nwoqON4nfY1PhOBvB6SwD0TZT/KF8BuHxwZLMBPHJeXrxOuz3GfLB3iUTCzgkGkO/d3t7uaa1GFxUOh80PjE0N5tBvgohko9GoeTphUErAhM1gADa6F29s6u8BbCRCWZ7f2NiYisWiKpWKgVEAKyyDZ9gASL4k169/8kwIjArrh1IHpWjKnTxvQCGlZlr5YZJgpWhK8N5YvlvTg0DKMHhhfVmWzr/NzMxYmTIcDiuTyZiOCn0Ynkp8FmCPIAsAyWazxjLCIHA/xsfHDXiy5tDFnJ2dqVwum9YGt3aYF9Yu8yUZgIxejCYIdEQACzRkvG+JRMISFp6FBw88L68LRNvUbDbt2vqnNgAYWS+dTkflcllra2tmG8C1n56emkcXSR9O6KwNTHEZzH758mV7n5eWlqx0T8dzLpdTvV431gizU7oW6SDG2Z5xPTixU56bm5uzdxodnZ8ewZ4VjUY1MzOjubk5BYNBmw2KJxrmnwA3b+yLfxw2I5Rk0TfCqI2OjlrzAjMPfVJMAuM7scfGxsx81lcF2DdomkgkEsbGDwDW4BgcX/PA7BBxNYEe9mlsbMyyf+/KTGBjY/BdgmyuPniOjY0pm82aoBrRKhsDXlAAN18mo9uQzYINgr8niB0dHZlWg7Kcd4undIfQms9BV8P54zvjvaoIeJTauE4PPD34gGnieig1shmTZXowAQiKxWLmoUSZE70ILAajP3CC9ho6r+chKOKTQzCGLSTocU1kxJwPGiEyZM6V58B9AnTzzBgjRBelL0F4lhOmy1svoCFhjRFoCVLZbNaGMNNuzjrw/mrcDz8T088o/FPa3OnpaSt7MYoFHV08Htf+/r4N5QUMoYvhOfPuMKB7bm5O6XRac3NzJm7mncIby5v9UuYlACJkJ5gnk0kTzXNPKRnyOZlMxtbuysqKvb+dTkdbW1tKp9OmY2q1Wj3Jx97enpUBPWs4MjJiw61rtZp1F5Og+NFaIyMjmp+f19HRkQm5C4WCAV3ezcuXLxu7hAB7c3PTQNX4+LgNvn711Vc1NTWlcDhsg6zRG7bbbZt0cOvWLa2srOjOnTumBz07O1MikVAmk5Ek7ezsqN1u27gcEh46DQHHW1tbOjg4sGYStIFoB1kjvI/47cViMTNvBRjTLBCPxzU7O2u6K94l7kOr1bL3hUkB7FmJRMIGObMuW62W6vW6SQtI1PpnxrJn4uh+fHyser2uK1euGAM+AFiDY3B8zaNcLluZCNEsmQ9+LwArH5jRp1Dv90GWFnpAjO9kCQQCunz5sgngyeq8yzZAio2OgOl1WIAe9CqM00Ak7jv+PO3tBd/eHR7RMWJxfhYGAWaIzYlz9E70PguFufHBwTtm4/VEOQjmj42fAM01MMoCdgiAR1mOVnc2cdgngCb3DDDjh14DorlHiMi9sz56Et/swHMBlFMSBXyxocN04psG+wHjw2aOPs7rsniegOB2u61KpWJsCVYWHlD7wd8EGW8wyvl+lQ8WDv+8E8+ePdPq6qqWlpbMYwgNIACQ5xKLxQzcwtxRLsVvKhaLmfA8EAjYIGmeD88B7RIMEu8QDR54PBGA6eLFfPf+/fuq1Wq6cuWKstmsXnvtNRUKBd27d0/VatXKyNvb22aZ0Gg0epIcTFW9cSfWEeFw2DpxAR+UCumSROvV6XRsD2k2myawpzt1enraQOTi4qI6nY7u3btndg8HBwe6efOmrl+/rkAgYKOuMNREuxmNRo3JQgv38OFDtdttXbp0yWYWfvbZZ+p0OtrZ2bH3ii7HcDhsZe319XUVi0UDjrVazdY+CQhAH5BNc0g+n1cwGFSn01EkEjFjXQBcKpXS1NSUDYOGjS6Xy7aX8j4wxiYWi4ls6RcAACAASURBVCmbzarVaml/f98aD5rNptLptJaXl80yYmNjw7oOeR+82z3JFdM5dnd3LekbAKzBMTi+AQ0WQZ+AA1CgTMS/A1pgt2CqfFuvH6brGQ6YHX4ukUgol8tZJ16pVOphcvzIG4AMomw/p49s0tsYME3elyg5VwI4HY2wMnwGugc2UH6G0TNsdv7+EXy8Rg3Wh/MhO/adkZKM5mc2GZoXX+7CWgE2ACaGg44rOvO8p5bXsXkD0VAo1DNH0f/ph29z71gTBFvPAKXTaQv6MChes+fNM/k9mKv+c/a/B1jwGj0Cu+/o3N/f73GZ94a0eJKh9wN8p1IpG5L8Rfqr8/NzPX361LR8uVxOtVpNDx48sM45QBzdW51Op2ewLqwWDvqUAnneu7u7CofDevHFF42Va7VaKpfLdm8oK7OmaUagaw3tZD6f1+LiooaGhrSxsWHMHyN5nj17ZuaUQ0NDyuVy6na7NvsQp3pG+rCeC4WCGegGAgFNT0/b7yFsz2azdr9h287OzlQqlczPqlKp6PT01DRJnnVDtM3zmJub08TEhNbX183gFDD5+uuva3FxURsbG9ZggBkx/lQkJe1220xAv/e976lUKhm7t729bWV6QD5Ab3Z21hinR48e2f7gpy5cXFxoamrKyoTNZlMPHz40Zo+GAd6f6elpe4aArddff12pVMoMhulKZU9ibA46NaQJWEyQUFICxOQU8E5JHAAI00pCzcxIfLrS6bTW19eNPRwArMExOL7m4YMlga/T6dhLDhvlZ+p5ITyMkheoEwTJ6PC4AawxHsIDExgNgrwPpHQheQBAVkyAY9NuNpvGCuGeTGD3+gPfxQgYmpmZMcNISmsIeGHBYHAAHb4NH4NWZo3B+MASwC4BcgCiXI830PQeToALL9T22jg/YsibmhIU/CgcACHlSTbj/s4l1oMv21Fqozzr9SdePwdwgx1Fy+PND9GW8HkEAs6FGYDcE99Jie6Ma8MegXKuZ7UA3eheAHaUXL+MvRoaGtLs7KyVzmOxmHK5nAFlytwABV9Wbbfb1rqPEatn0eg2pORWKBRMjwOYppzebreN3WLkTqlUsi5D/IvK5bIZXmazWdVqNe3s7JiVAPq6x48f23ONxWI95XBJZoCKJ1kwGFQ2m1WxWDRTSrSQJAqULWOxmDqdjjY3N3V+fm7+VZTT8HyKxWL61re+pePjYxt9s7a2pnfeeceYI9bSm2++qffff1/BYNDMg5vNptk6UMaGCcPgtF6v6+LiwuaH/vCHP9SHH36of//3f7fkzXvzjY+P64UXXtD+/r5pJ1lDsN3j4+Oan5+332G/KZfLPUkI/lOUdSl5jo+P69atW5aIlkol7e3tqVAo2HQD9kp0Z5RPSQoB7bu7uzZ255VXXjFt297enp4/f26MJwByf39fuVzO/PLYnxYWFjQ0NKRaraZKpWLP+8sGoQ8A1uAYHH/GgWgbkABoYsOg3dizIb7jC2AB9e9/HyYKxouA4kEJpTTvFg4zwL/BjhC4ydjoZgRg+bLU2NiYzfXa3983uwDOo78rknZ4T+PTYQgr4WfjeX0ZG5kfWA3jx0bFZ1OGIMP27dUe/HgmBWDqhf+e5eFc/EgeGEM+B4aS5+rZuqOjo575hHw299xnyj6zBZjyHR5wcN7cr3a7bWJmgrc3A6VtHzDoy4hcI9/nS6+UL1kTdI4CNCkrom/hfntd2pexWP2AEcE3zxaLA7R76OIY1k23np8+QDBHB5ROp40NBtCzprlWJg8APrl+PoumlL29PQ0PDyuTyVjSgpaPgM072O+hxZxPADAibp6PF6mzbwCyvLs73ZSAcAAuzRmIvBOJhOr1unX1npyc6PHjxxobG9Ps7Kxdx+Liop48eWLMDYzL5OSk3TOvt/NMEO7yNGigC/NayFAopEwmY0kkXbPeRd8/E/zAAJYHBwfGlHsbE/YaElIALeNt8M9C+wTg4bmw/ng23iaG9Qzjx7njq8V5sz+QnKG3gtn17L33JGS/GwCswTE4vuaBWNIPlCXYs9ECkLrdrmW9+GB51soPaGYOGKUUXLEp8ZH5+c0NkEP7tGeO8O1BvHtycmIbDNkymxABlk0X0S4MHYGYTYwAyEBbv2HCHBB0YXEAeH4TBgxSegCIoXvwFgYAjX7BPSUfrpVzoVOzf1Ykz0WSCWVhIBHHA0QJsHwuuiGuldInQYPgySYOSwBL48f5EFiw0fDPkBKld3WnY4wg5Acgc80EBYTX3W5Xa2trBuI4EMPjscX99KONmD/pzUu/ClzBtvm5jvx9t9tVJBKxhgfMMjGzRFBOOY1n7DskT05ONDs7q5mZGbMEAICUSiXrdqPkgwYpmUzamqbDk2vd2dnR+vq6gV/OA4AAEAUcAhT9APJQKGTi6ePjY+3v76tSqfQwzsfHx6pUKubPFIvFjM1hhBSdbyRMdL9dvXpVyWRS5XLZQBjz+paXl3V2dqZgMKjNzU1tbW2p0WhoampKhUJBjx490rVr15TNZrW/v29JAv5W3iNrfn7e2BrKdwjsSRZeffVVAz/r6+va3t62d541nUwmTbjOLEIP3gGgrCeSE0bezM3N2Ro8PDzU3bt3DQiSwCJIZx5nsVi08urY2Jjp97Ci4Bqr1aqN5mHsF6wsI6gAfTDVMIY8s93dXdNqjo6O2vP+Mo+4AcAaHIPjzzjobkKo7TdFjDsBTGTTZKToWmCtYKsIUmSOUPHeCoHNHArca3/I/tksaFmWPp8IPzU1pc3NTQMMgDeAAVkuAAswxcaG75MHAQAmLwqnvEjWzr/7cpoHcXQlcT7JZNLuDcONARyAOoIuWTGeT97Nvt+Vup9lAahR9oKhIEP1bJkHTp45wlvKG8ECJn2npBfcerbL/wkzRNDB/BINH+wUTBegxTdX4BlEOQ9NErPk/OxLron2dD9iya9dRvD4xomvOrwNQ61W67EowRaEzlRYMRhNWBZ0V+iEvPcY10oS44ERDB22GYxjoaNveHhYxWLRulRPT081Oztrg48PDg5MOxUKhaxrjLK9vzd0/wFSATAAW9bP8fGxmZkyeQC7Cs9Kcv+xS/CDjhOJhO0JfHYqlTLfLEDH+Pi4AbZgMGg+dzCFiMI5/2azadrO6elp05TROIHgHp0VNge1Wk2bm5s2kJr3hI5ExnAVi0Xr0Ov3VqOhx09gAGyxFmBv2UtYDxMTE1paWrJ9Ah0e5qvsZSMjI2Z+yvcznxHtH/cF9sxrSwHYlUrFxgwxWoh3en9/X9FoVKlUalAiHByD45s46EThRSQw9wMVQAlZpx8AjWko4IjghMjbd1ix8aB9YgPyw58pmUCXA3joXEwmk1pZWTFAsL29bUAIAEUQPjo6smAFO4Xxpe+mgWEAoGCXsL+/r1KpZF41vvxGNgyz4a0TYL4IPn5wM5/jy6GwdVwTAYuNHP8q2B90FFwTLAmg03fV9VshUGYgIHLPvGM+oM272weDQRu2y3nys36MDoCCETCcr/fOikajxoRVKhW1222bgbi3t2daOu+pRNbvgbC30fC6Kw7/O74Ls98f64tYLJhKGghgWQl82AGQDOTzeZtJV6/XTZeEOSnAAp0eOkPuMyOJANwTExM9ZbuxsTG9+OKLVlbETBKmDWADq0nJEYNfjHHRH01MTJiea2JiwoZM090YDAZVqVSsDOfLzDArpVLJvhPRNOVM/h6gcuXKFY2Pj2tvb89YLkmanZ21tcv95Txh887Pz5XNZq38OjU1ZaAbI9WrV69qcnJS8Xhca2tr9nvsR0xGmJubUzQa1c7Ojs11BAz5ZInzevLkiba3t3vmb3qbk/57z1okQeUd4+d95zGWC2dnZ6admpiYUC6XUzweV6PRsAR0YmKixzONfRRmG4E8z5MxXCRcJBX1et3YVvYH7g9NCQMfrMExOL6BgxefQEYrP63aBDOf0WCOx2bCwFNaj9EN8MLOzc316JYAZt4lntITwnUABYaNiPHb7bbef/99HR8fm3aI32dToXzkuwBhV3CT5u9hI7w/jQcDlCbJ8Oko9NqgfD6vfD5vzvaxWKzHTmBkZERTU1PmjM0sRC8A5vq4H2SRbIoAHkqFMGceQG1vb5uQfnh42BjAfiG8n9UHIwmb5z8f3x2uAbNDNnueYTQaNYsLOsZgLjzbBKu5v7+vQqGgRqNhw6VhBzxDCIMG2PQzAzl3wJK356BsDfMHUPJmpl9VImTdM9Ab9pV7BdgjkAL6z87OVK1WjXVdX183B3wALM78rM1EImHDxhG/w8bQOs86uLi40Pr6ujnBk6DA7CCIB0BRUsK3ivtJmz/aLFg6dDmFQsESkUgkYud4dnamnZ0djYyMKJvNam5uTq1WS/fv37eSFF5VHtydn5/r1q1bWlhYsEHM7XbbnkO1WjXvM9497iFg4o033jA9HW7lrNtAIGA2FK1WSysrK9Y9yLy9paUlYw6fP39uo29IKAGsgNdut6uVlRXzlMNqgfIhZp+sfzpsAakkLc+fPzcgz/fQEZhKpXR4eKj33nvPjGIBiGiqOp2OotGo/V4qlVKlUjEAD7BDU5jP5xWJRHqSWywaTk5OlE6nbQrGwcGB7Zm8o6enp8aMDQDW4BgcX/MAJMEEoEMi0BCY+BkEk/weFLVvpw+Hw0omkzbiAx1DOp224E7WT8CvVqs9nUe+pEgw5KUHmBBcI5GIdVzxe7gSI05mQ/GzEn2XpGfi6KLa39+3wAjwoAxAOY5uoUwmo+3tbdPqnJycKJVK9ZRiRkZGrL0dRgxwRPv40dGRjQxBn+aNKwF4lOxgx9rttur1ugEIGB42Zu4bANiDaj8kORQK2UBcBsP6OYvMf/PrJhAIKJFIWIa/uLho4AptFuNFHj16pEKhoO3tbRu+TJbtDUlh/yi5ARD9ASgFRLGeuQfe1gJwCYDzzQBfBrJeeOEFbW9va2NjQ1NTU4pEIgbEmdHIOaFLpKSHkzi6JzzlOp2O6ZkODw8NmFFeD4VCyufzVi7m+fHfysqKda3BhDALMxaLKZPJmIEpIAKtIvcZ/7mpqSnz4To6OtLe3p6xvbjQYxUAmwITPD8/r8uXL5uVgfT5kPBgMGi6pomJCa2urioajerq1atKJBIGGH//+98rHo8rGo2qUChYaQ+gjdkl3l6ZTMZMQkdGRlStVu3dxnIDt3oYVbRHeHvt7e39EavFPkGJMhQKaWtrS9vb2+p2u+ZjRbn95ORE0WjUHOg90xiNRtXpdKy86Y2UkVwwq3RsbMyGU4+MjOjSpUv275TGYdeRQTCFwjeSkMjC5mLuyrtFIwP2ECR5vgwOQGdfofvxC9+Liy/gff+UY+/gGBz/Lx5DQ0N6++23df/+ffMjwg3ba4x8l59nEujWg7oGuKCbIAiSQU1MTCiVSpkZZSaTsVZz3I+9uBkwhnYIdofhuvw7mxaGjwRodCK06Q8PD6tWq6ndbtvQ2na7renpaWWzWROzYu6IRqlUKimVSimXy+nq1asKh8Mm8iaoeZYIQAY7yLX3D9Vm8DJlHvQ3ZMCYayLyZxYf94CAubm5acGYoOQ7vyjxAWApAfvnSLmC4cOcK99P2ZLSJ6wMwHN4eFiPHj1So9FQqVTSycmJ1tbWbJQKwll+HhB7cHBg+jRYEg/4/T3lT68t6ddR+bWLvg9QTCkV8fe//uu/6q/+6q96mDEfdH7605+q2WxqZ2dH1WpVx8fHSiQSNuKFQA4bit8VomuYAcqho6Ojikajpk3kmeM9xTXDpuDPdHFxoWKxaOOM0DMxrw8PqHK5bBqnSqVi4Mj7sHG/sOgApCKyh50FIFB2AgiikUIsDROH+N1redA6vfnmmwqHw1pbW9Mnn3yik5MTE38DImDj6MDz5UOaORCDt9ttXb16VZcuXVI4HLZrK5VKGhkZ0bVr10w7JUn379/Xf/7nf1op2ssVpM+d7vHtwu+L2Ym1Ws0Yx0QiYcayMIeAY9/pi5YKFhCpA8mgT2Zhr2lC4V1LJBI2S5FyYbFYNCYNMIbpLXtVMBi0RhcYXJKUZDJp7xOMqR+vlUgkVCwWlc/n9d///d9aXl7+I+w0YLAGx+D4Mw4fJPxIHB/YvO6FF86Lxn0Ap0SHFgC3Yl9WYtOG3SBYoiuACUHvBeXtRfJ8JxsyLFaj0egxvCSb9qNZjo+PjU1rNpuam5vrKd2wIQYCAe3t7enTTz81TcjQ0JB2d3e1t7dnzNDo6KiBOYINGgsAKMENXyUc42OxmObn5+16fenKt1dTpoRtajQaajQaOjs70+rqqg4PDzU5OWnsFCwKfmCTk5NKJpMWQL/ugRi40WhYu/pHH31kg6e90ztrhQBKVk43W61WMxYOUNV/eCbAlwX7f9YDRd/p+UW6rP8/7wbMAeDo8PBQjx8/1szMTA+Q8+udc6zX62Y4CqBEVwbArdfrtibz+bzNtmSNtFotYzr4HcpPsKCtVku1Wk27u7tmHIrGCsYxGo1qf3/fmDT0eOl0Wk+fPlW73VY2m7V5j7CwJAbsD4CPi4sLm2WInYZ/NxFev/XWW7p9+7Z+97vfaXd311gwwCHu7IzFoXOSAcewNOvr6+p0OpqenrZOVMrsdP/Nz89b6ZJzfvfdd/Wb3/xG6+vrGh8fN1YbgNXtdlWtVnV0dGTu+9wfbEwoF8diMSvB42IPwPONA74sT6ITCoXUarVUKBSMXSVZOTo60tHRkYLBoFnEoGll5A+JAiagNEIg5uc7vF8cexhsFwO+sdxB68rP+hmeAw3W4Bgc31CghLXymitfRuN/9zNblL7YUPP5vK5cuaIXXnhBs7Oz5huENkeSMUiU9AhGlAgJgAAumBrYDgANmwi0Nm7HBCY6A31QJrumpZvz+OCDDyxgUf6i7EPX2dOnT00cChDNZDLqdrsqFova29vr8Sni4DwAXGSyvoPOz4D0Jq6np6eq1+vWBACLBNDiHCkpIITGI6nVatlgWr4Hlsu7tcOKUaLrL8Nxbt6TjODGpt9sNrW6uqpSqWRgA+bId9qxttjwPaviQQ/XCuNFibJQKOjx48fWWs569eDJs6ve5JPvYMbmV3URMrLEa73QkAGY8Pe6uLhQJBLRzs5Oz/PnWezt7fXo7QC/ND74WX6AcdZNMplUKBQyEJ7L5Qygbm1tqVQq2bNHIwZQRYfF2j47O1M6ndbY2Jjq9bpqtZqVwRlAfnBwoO3tbSsloRMiaTo+Pla5XNbZ2ZkymYxCoZBqtZrNivRmmDBF9XpdxWJRBwcHWlpakiQVCgWFw2EtLCxYF3Mmk9H+/r6KxaLi8bhNepA+9/g6Pj7W66+/rkQioTt37uiDDz7Q2dmZlpeXjYWqVCpaX1/XxsaGGo2Gfv3rX6ter2tyctJMSgGrdGH6ph50pOxFmMsWCgWVSqWesjsdoDClWExQKsQSw8suvJ7VT8Zg1BEaze3tbWOJG42GGb2yP6Cd6na71lnKPulHXbXbbYXDYS0uLqpYLPYw3Ug0aNrgmV66dKmH4RsArMExOP4vD8TiPrChbyKAQTP7DJUNCO0C4OrmzZu6ceOGUqmUdRn5LimyVj/QlaHG3kgUJoByGaVJzplNiQ2JLje0DX5kBp9Lm7Ivf1CiGh8fVz6fVyaTsZIn4DCRSGhra0v7+/sG1BClUhoql8vGZHhzUASy3E/AHgDCl+E8QPPasIuLC21tbf0R6OUeUt7l92AEs9msld68VMIDaUoUvoPK/wz3Af0SYOv09NQ0dpioElwR9AOG6S7zHaqUKYaHh40d9KCU3/ezA4+Pj/X8+XNJ0kcffdTDVnlm1a9bgCwBw7OEf0o6gmaPsmG9XrdZkbwjrOVIJGJicm/VAJgiiQEwIiynXEfJkAG/sFxTU1M2/Jvf9XYo6KT6S6O+NIRNCKUrb0HC/fVrjfIXLAvv4tnZmfb29myPoBxGt+Te3p4Bi1gsppmZGZ2enpozOuAcMTvvfLVaVSwW6/F5A8iWy2WNjo5qZmZGk5OTajQaxviUSiU1m03l83lNTEzo4cOHarVa2traUqVSMfADAw7jjbyA64I9Yi/KZDI2zoiytS8HomFi3cEYs/9QBoT1A/Tw/nqHeP5+YmLCAA/6KRhs9gz2Bp4TGiuSLxqEYOJ5l5nTCFiDYWdvbbVa9jywX/myd2MAsAbH4PgzDt+S/0XUMMEKBguGY35+Xq+++qpu3LihhYUFXb9+3Tbhra0t/frXv9bu7q52d3d7PI44cFT3LugEV89QQbHDJhHwvC0En1Gr1czgkA3K095+KDUBl7Jhv2EkGrJms6lisdjj/g4AJFOH1icLppPLa448Y+Xvsy8xUf7BPHF0dFTLy8u6cuWKnjx5YtlqtVq1shFmk9LnnkkwB6enp9rc3LTrRmtDeYz/7++DL2t4ywcfTDhnGgp8FyGGmOjlvKYKAOg9hGDj0GR5d/JsNqs333zTyr48w+vXryufz2t4eFgrKyumSfJt6AjzPRilS8p3Sf4pkXskEjGn9qGhIRM2Y7LJCB2Y1pmZGU1MTBjbANBBU+XXhV+fAKbt7W0lEglb261WS/fu3bP1D3MFMAoGg8rn8zajDuE9omd8wbBgGB4etu46QACsTigUUjqd1u7urgH1o6Mj03jF43Gdnp7aDMNqtap6va69vT0rt09PT5vh6ejoqFKplEKhkB49eqRnz55ZEgTTtbe3p0ajYcObd3Z2lEqlbHTOzs6OzT/8/ve/r0ajoV/84hcaHx/X7Oysbt++rfn5eeVyOf3P//yPCdN5Lt7faX193Vg9QEg4HLZ7FI/H7f3f3Ny0vYn3JJFIWOOBZ549685+AfPp2VVGULEOYMkA3YjU9/f37fxPTk4Uj8fNpHh/f98GX7PefTMEPnzsE91uV/V6Xe12Ww8ePFAikdCLL75obvUks51Ox0qJhULB7tMAYA2OwfE1j37DRe9+7dv6/ZDcq1ev6vr167p165ZisZguLi5MvHp+fq7Hjx/r4cOHPe7dlEy8t5P3KCKIs3F4psP/u2eA/Pw5OgUp3XjBqTfE5Jopp8Bu+GHRHuDBRhEkKTclk8ke8T5AxWsaYAL8sGXYHw+sfFmWzR9AOTU1paWlJR0cHFgApfR1dnZmpoEXFxcWJGBLADEECrxuPODjemEu/O9QwvPaN8Caz95rtZoNM6YT03sAAaA9O9Y/V9F78YTDYZXLZeVyOYXDYTNnHB0dtS6p1157TYlEQs+ePVOhULCyGIEMZhPw4k1dvS/WVx2xWMwYQu4V3kKUhDCGRR8UiUTMbgLWpr8USVD3XauASO6vn2QAiOxnngi2aIHS6bSVCxmADdjuB5Se1fQeVlyXn0kKqwEYAzxheQJY5PxglLrdrpWNAY2dTsdK64jz8fqiyxIQenFxocuXL2tyclJ37961NYb8IBqN6tKlS1pYWNDDhw9NX3V2dmZdlBsbG1bWHxkZ6emABfBGo1FjFOluRnjvRxy1Wi0rfcM6ca/4WdY5YJ4kw7/77GW+EYX7B4vW77PFnsb98iysL2HjrSbJZBP+vGDwDg4ODBjzOYeHh6ZhA1gOANbgGBxf46CDjNIGIIsX3WtbRkZGNDs7qx/96Eemq3ry5Il12kFDP3/+3NgJ33VIpgZD4mlvNgkvgiYoerDlhzQDTjxDBiBkk/aeRV7/4Kl9gFS/YBltCt8HFY9uCSqebJN/45rRKfUPbeY8/OxCACMmi8FgULlczgbfwuyVy2U1m00DL75rMZvN6uLiwrJTAgZAl0DJffb3HrAK8PQjjwjMbOo+YPQ/I+9Z5s1V+zVWft2xJiiZAZIKhYJ1nXKt3NtEIqGbN2+aRxPmp5Tb/LBbP4jXJxBfJKb3B+CJ58fQZV8+wSjUG+9yfZi7EjjRxWAuicap0WhYSRGzURISgqMvAfqmAWwJQqGQ6bPoyOOdajabPZ9F4OccSQiwGsCklM/Ae4oGj1gsprm5OWPx+HyA1NzcnBKJhHK5nEqlklqtlqampux8ASyLi4saGhrSo0ePLDEpl8uKRCKanZ01y4rDw0N9/PHHGhkZ0SuvvGKO9XTiXVxcKJvNKpPJqN1u68mTJ6bBqtfrph30JVKShFarZRopkiHWjp8JyL3gmlnf/pn6EjRr1Xfg0gXtmct+g1+SL2QblNEZFo2/VX/XIT9LEwJgLJvNWokSaQQdhLynnuENh8PK5XIDJ/fBMTi+iQOdgAceACF0RBcXF5qbm9Mbb7yhSCSi1dVV00JQRvLdcoANXxb05ZL+ESb9AmRveuqzt/75hwRd9EiUysgAvTu9D66IRBHIIyKnC4exIniAYXjqBbE4HnunelgZSpm4TcPM+KCFZoMNm/IJuhTOH9aqUCioUqloY2PDKH2Amh9f41vB+01S2+22UqmUGVZyL/mTodgEb3RufuwM59bf6ECApKvNu9f7gbIEK7zUeMZ+DcF27O7uWgmFeZU8A8p08XhcP/rRj1QsFvXRRx9ZOz8gwZfCvdu2n1X4Razu2dmZHj58qGg0auViP0aqWCza6Jl4PK5wOGylQYIsXk6Yk+J1hpVGvV5XoVCwZwg7QlcajCBlUz/cmQYRSoPMpCNYAtB5L3K5nCRZOdx3Mh4eHmp/f1/pdNrmV6KNYx2cnp5aKeri4sLmbcKc+gkBDx8+1K1bt+zzjo+Ptb6+romJCU1OTmp3d9eSmLGxMaVSKQMjWAlks1mdn5/rvffeUzQa1e3bt01HVSwWVSgU9Nprr5kGcHl5WQ8ePND9+/f18ccf2xr2TGEgEDBtldfWwUxKMqNRdG0I7f1YIt4DnrOf5Qkg9V2KzNlsNpuKx+O2HrxOi3uH55bfE+loRHfFMzg6OjLrCq+DY4QR3do43vOOzs7OGsjs99drNBra2NgYzCIcHIPjmzh8VuvHLhBYKR8sLi4qkUhod3dXDx8+NIDiTR0RZfrNgU3YD0T2f+czP/RJXtPAOfoyJcAPkOVZFUAYgRydAa7yBvSHTwAAIABJREFUaHAI5rTfAzw6nY6JjRn3g27Cd+AReLvdrgVGrhGwgJ6Ka8CPSJJpQBgNAkMEWPGaLsoW+H1RHvT3zw+o9iybZ7m8ZQbXx5y0Lxpg2/+cvDie8SmUSmAdKbN6zy+eJ+eC9w4WGwQusnl+vlQqmT8PP8fnbG9v93Ro5vN505dQzvHrB6BHcPpT7BVu+l647K0DPKiNxWKmX0IIz9rk3Pf29nqYJ9YhJUJ0fNwDgCVMMWwK10z3Jqwda4r7x4QCAidmoyRTaHcIwr5E7i0eOJdsNmteZ4AuWCA61QCU3JutrS1zQs9kMmq1WqpWq2agiwdcPp83MExzzMbGhtlczM7OKpvNqlgs6unTp2b2eenSJc3Pz6tQKGhlZcV0n2iceNbYVFxcXGhzc9OSJ99QA7vEWmY/RBsIKIdlJSEKBALmSwW7ynNFeM7+6Ad9kzTyWSS2JGywS36WID5jXqrA2B7eX9Z4IpGw/Qarlk6nYx5urGHsbXz5HGZ+ALAGx+D4mgdZMtkY7d7S5y3KMzMz1sb7/vvvW2t+NptVMplUvV5Xp9OxDOmLWufJtKG7+QwftH13lP93NnEf+LzBJCDC0918N5ssgQfjPe+hRNCi5do7xBPU6ASk4+bk5ESTk5PGWlWrVTMHDAQCPS3ZgAoCFqATMa8XwfpOPW/ISbkCPxxa32m190BZktlNxONxVatVAyYEZV9qIxiMj49renra/p7v5Z7got1vXEoAAFgSkDgn7gE/S2kToCL9fy7o+GoxDPpb3/qWYrGYeTsRALAioDw0MjKiWCym27dvq1ar6ZNPPrHAToZ+dHTU00H4VT5YPkEYHR1VIpHQwsKCUqmU7t+/rydPnthnHR0dqVAo2CBk3gPOF5Exz2R7e1uSNDc31zOY24Nm3/DAfYL18DNBGanimVGej39+Q0ND2tnZ6SkF8vt+mgKNCIzPKZfLSqVSSiaTtrYvXbpk76g3/qVMK0k3b940E9B3331Xp6enunTpUo9HG+AP5o/uvVarpZ2dHc3NzemFF16wAd/Pnj2TJF25csW0T+12W48ePdKDBw+0urpqA5nD4bABwr29PdVqNTO/hZUl8YFhmpmZMZbq6OhIzWbT2Fw8p+gI9cOxmRXI4YX8JCsYf/p5h57FQrQOU9U/59PLNABUJCe8lzCZrGuGok9MTNjeu7CwoLfeesu6qSuVipLJpDW0MOAboDYAWINjcHzNwwMhP5ommUzaeBA6uZrNprlSQ/cPDQ2pWCxae7Yfouv/9AwGQRF7AM8osKF48OXpfF+e8s7XvvTjQRilFc+e+T+9yN/rsgCdXi/BEFWyVTZqRo+Q/XrNFZ9HNup9bAB9PpsFVPIfLfY8g1AopEwmY5k+Xl7Dw8PmhwOA8m74/SJb/jeZen/5DwDlW/F92z8ieO4/z9E3FnjQRxDw7BzXzc94ewPuI0HRg4/+YdScJyJtP4OQtdHvw+V1ZF/2TlBym5iYMNYtn8/3dGvCFHpg6bU2lGdYc94brt1uG9PmZwVShqTcCltIeZAuQZ437xEu36xHL5j2BqfcB5gSStokOdxj9oLh4WGtr69b1yzX0Gg0DChxLylJRiIRTU1NKRwOq1KpaGtrS9FoVDdv3jRnf5IvulLRhaHxymQy+tWvfqVisai5uTml02ktLy+r1WrpwYMHluCUSiUrpZPMUY5lPXkNG/eKc/OzOP24Ju4Va9trlRKJhHX9Ab5YD755hN/tL+/6/cfvjew9WH6wjikJ+6YNv2fznAFfJE+8m0NDQ5qcnFQikdD+/r4l1qwDz2RjKzMAWINjcHzNA10D5YtwOKzZ2VlFo1HzlDk8PDSmgiC2t7dn2iP+ZMNkU2Ez4z9+v9/Xis3Ml+X8tHgYEt9+7Q1EvVO7Fy978akXU3tASaD13kbemJRzB+S88sorSqVSqtVq1lEFoNva2rK2eM6RAA/4xBmaYNBv+onWh1JNtVo1U83d3V1FIhFduXJFCwsL1qnk7ymbI6NauHdcJ6NaaDf3c9u8xQOAy2u9AB78HMJdzGDpyurX+ADmYA88AEYbBlBB7N5qtXT37l1rNGCsC8wJZph0HTITLxgManl5WdFo1FgPrgFRM1q3LyuDcH6vvPKKdnd3tbKyolKppIODA3PER4PI+xMIBLS2tmYzGAnMBFZG7fD56+vr1vnor5H112w2ewb6cp82NjZszbVaLStx9/tZecDLDEVK3SQ3/YCWshblKHRIY2Nj2tvb08bGhn0W3kqxWKynWxOz0FarpRs3bmhqasrAabFY1H/9138ZM07ywFgXuiFPTk50584d1et1TU9P6wc/+IElT++//765zh8fH2t1dVXHx8cGMrk3hUKhJ6FBGxkMBm0gMwkcgO/SpUvqdDomFoehBNzkcrmeMTgAtW63a15ulPNDoZA1OcA40t1IUhIKhXoSTp4H76RP8LDlYO+Btfd71tjYmDHUsJW1Wk1jY2PK5XLa3NzUr371K2tGYh/44IMPrBvZaw4HAGtwDI6veTBKhqyTIc2NRqOnBRsgQ1CiQw263jMQgKl+RoNgy4biTfR8UGeT912DBHuvbQJcEKx9eRC2wzMS/ByZoA/8dO34rB2wg0YGo0VYFRgoBOuUV33bugcYwWDQwASZJpS/H3DNxoynF98FMGDeGD45MCjcH66b58H9JYh50EWJgs2Zc/emoP2u8360BtoSAJcvffB73qbDs06sK9glng3nzuw15sDxezjqAyABox7EJRIJxWIxA6veiuLLyh/9LFar1TLTTM6tWq32rJnDw0OzKqEzEBDoWUEYqVqt1mNP4gNpMBg0AMRYHkADjKkf8s2zInHwui6+u9lsKhwO23vK9wMM/P0DWAK4mFt5dnZmA5NhqcrlsiYmJmysDrogZgBWKhXdu3fPtFrcGyw1sIDgmeTzeR0dHZnvGIaYL774oi4uLvTw4UMTdjNF4fj42FzyfTMGz589BVbca94Y1s79p0yHvQj7C3NGYQyx7aARBhNTDD95v3lmfqwX7xXvD1o33/HpBzzzd14OkUwmjXHCpNSzWj4J4rwQ6aMvnZubs6YbmD6aS3yCOQBYg2NwfAMlQl6qTCajTCajUqmker3eI1Qmg2LDIiB4doR/8z42HuT47/JlQDYJ6PdgMNjj7o34lA0DZorvBThxLl5jBZswMTFh3XVe24BwFfEv8wUBAIhOyWIPDg6sVAgYJOj1jxTi770FBQECoAPT4UtogFQGSsPeIYin7MkQ2LW1NStl8Yz6nfjZNNE51Wo1u48MG45EIioWi3btHgx5XVh/GRc9C4CmVquZ3463fGAdoDVh8/fO477kS/mi2WwqmUz2WGr4knE/UGMIN+W8arVqz4D18afG5EhSuVxWOp023Q0gmedHCSmVSimfzxur6xMRkhevkQGQ+gHmrAM8zHz3KyVbf94+IEejUcViMVWrVVu7MCRop2KxmNrttiqVSo9LP2uQZ0vQxfaA8uTCwoJGR0f17NmzHgbQT0xIp9MaGhpSNpu12XsE8FarpVgsprfeekvlcll37tyxOXs0n2xtben4+Fizs7Nm07C7u6udnR1LAOfm5npGXqF/ZM1yhMPhHqsUGklgiPCuYn/wcztpAGB0TCqVsnedeYrn5+dKp9PmH0bZrd+tneeRTCZ7TGIBi9z7drutTCajo6MjJRIJA3FICCj9VioVa27w4Iu9l/NB5kEicHx8bKa4zDpkBiPCdixDvmrCwQBgDY7B8WccY2NjmpqaMgbm+fPnPW313gzPZ9M+Q/MZpA/ubHQEdl5u/t2L672RImyVZ5T8LDe+j58naLLRw6CxmVFmQbxLloneASBBRo7Yn46hkZER5XI5LS0tGbDK5XIKBAJmSpjNZlWpVHoGWfvuO+/FhU4HhovzJXCiCfFaikAg8Ef0PQGS4bjYLMBg8IxgKvHTwZYCcFKv161kSHbstWTcA8889V8bz58BxAQrxo0AcrjXPHvKqQR43yQBo8DP+04unqc/L78OYfRokS8UCgbIYb+8gPiLjrOzMxWLRTMWTafTVuajpMf8PtYBTQGUL7EIiEQiPZYA/Id3E0CT0hvlXj+LERDOvSPxOTg4UKvVMsAAm+cd5zEW9a7wBNqDgwMbZsxcwXa7rcePH5vLOR1/uLPDvCAGhyXFMmJ5eVnT09PGEvEs79y5o4uLC926dctYNIDp8vKyAYWdnR01m02lUiktLCwYOJBkTOv29rZ2dnasCWF6elr1el3xeNwmSHh2GB853lfsKOiqm5+fNzDDWisWi+bZhedYOBw2Jp2EiYYGwDB7VyAQ0MjIiM0xxCQUvyqsGjCOxZuMhAlmCkYfrSdJBODMJ5IwYKenp4rFYkomk2b+Cyjb3d1Vp9NRNBrVrVu3bO7p9va2ySUGAGtwDI6veWCSyQuGANOXiTzD4MuB/e3ulP28/sl3svixOziWIwAlQ/+i4b2+nORHzXhPLc/+AMLOz88tM2MMhhe08/kEZvRQME+Mkbi4uFAul9P8/LxpHILBoILBYI/zuy/PATJ8edSbeXqH834WBkEyJQSyfMpkFxcXlsVS+mPoLpoeQAaln6mpqZ6BsgQIsnoCC/fAM1+egfTPns0f0OTZLUpGXD/ADTDJ/SIQ+T8JEL6zEtAN+PPzHf3984kB65eA6AXFXzTY+otYLECjH9AMw0E58OTkRIVCQel0WqlUysBWMpm0Em88HjdwwPd2u12l02mVy2UDWARrvOj4ObR7CNjR2XAtX5S4kHTU63XTaxG4+80rU6mUlpaW9PTpUxu+jG6x0WjYvYWNQuxOyQrQwDVWq1XNzs5aqXtqasr0dWi4fClrampK8XhcpVJJ1WrVOkQnJyc1OTlpQA5AgV6RdTExMaFEIqFGo2Estzf5PDg4MC8s3ic0g7DldDdWKhVLpA4ODozNr1ar6nQ6SiQS9vt0Evp337OSJDI0AbEn8m/eloa1S+MD30HpH40UySrvLyV+z3qTkOVyOUuSq9VqT2dzMpns8f1i7/8qC5MBwBocg+PPOMLhsLa3t9VoNAxMeK0UYIINx+uyfImRQO11R2zKDFelFEAXkg/e/cNMCdbe8XhyctIC5fDwsFqtlo3Y8EyQDzKM9qlUKnr69Okf+TERNKLRqAE2ptgT7FqtlhKJhAUp3xnHzyB69iUvrwvz3XxscnQAAkgZhEtGShkoHA5rZmbGAtjx8bHK5bJp1ShJcV2URzqdjsLhsHVvnZ6e6qOPPuopsdH677Vn3uiUsi2MG4OLq9Vqjzif7/edh3RvjY2NaXp62gIA5Q7WDdcOoPBlPFiq1dVVY/IoTfsypnfD5p4jwIfJOj4+tu/lHn/V0el0rCwL43X58mWl02m9++67Ojg4MLsNjGC9jQKWAfF4vGeoL4PGGXvC9WIB4gMdnWeUzrlPgCw/SPry5cuamJgwITWCbtgfb167v7+vUCika9euaW5uTo1GQ3fv3lW73TZ2FtNTXPBPTk6M9fHGtMlkUgsLCz1lQdbf1taWdnZ21Ol0rDuQ82i326Z9rFarJkyfnJw0k9JAIGAD2tFqwcgw0Pz69euqVqvmOF8uly0R8u8rew+WBHT/RSIR3bp1S3fv3lW9XrfkD3aJJh4/EeHk5ETpdNqSE54V2jvK9fwdWj32FQToJCI8S0qu6D/7jZkBX7wDsNMAMxJWBPFXr161/TqVSqlQKNikiHa7rWq1apMEKpWK6eUGPliDY3B8AwflADJiNn2fAZIBpVIpC06+xOKZC/9iepsCBPQAEl9K9MwYIK2/ZR0AQDDHqBCmw7NeniFhZhmMj5+B5xkUX15Eb8V8NzZ6RPeBQMC8bRD612q1Pxr/A9hEf+U3yv6SG//uzVG5p36cCUzG+fm5+VcdHR3ZiJWLiwuVy2X7HrqoYAR4xr6V32vo/Gwz7om3QFhaWlKtVjOAhW7HM4n857VcrCG6xCiFwCR5PZ0Hyn4NAqJ9+7kXAvfffw4CKfopSr9fdQwPD+vWrVs2YJcAjY3A9PS0jYiZn5/X3NycSqWSdZKOjY2ZMSmGpcPDw6rVauZDhbWD7zj0mjffpUn3o2/lhx0GSHz72982FqfZbGpjY8OSAoCon86An921a9f05MkTbW1tWScjwNS7yDOiCMDAe4c2aGFhQdFoVFeuXNHc3Jymp6dVKBQMEO7t7Wl7e1upVEo3btywElsymZQks4FhxA5rNBQKmSWMn/UXiUTMcBT7lE6no93dXXs3KLfTkAD4g/kZHx/X8vKy3n77ba2vr9soH29jgP8cXZiedfKMOvowTGV5Vz2DSccjjBNNBl5ewdrnOhGhA5LRk8LUUaamGcF3RJOwsU64F+wpoVDIuioPDw+Vz+c1PT09mEU4OAbHN3E0m03LotlYMMcjuwJUMIttenraMlXf+cIGSFCkMwWa3M+oA1D5jj7PTvmAD+vhhy4DlvgMXy5h7A1jMba3t1Wr1XpaygE13j0cRo3RIWzsU1NTxuJUKhXz/vFz7fz/7u9eAjiizWFDphWcUgN6HcBVqVSyYb4EtnK5bO3tsAubm5s6Pj7W1atXdXp6amMynj17ptHRUa2vr6vZbNqsOlrj/cBnr00i4/fCfALK+vq6sZ08I4Ak9x/A0G+l4ddYLpczlmN/f9/WEsGd8/DzBbnntNJ7fR7lR9Yfz5KgBJDJZrNKJBKqVCr2M/0HwGF/f990KrCEAMAf//jHOj091aNHj0xvxHDh9957z5oFSBJKpZIBXBoLMHQEfJ2enppmjDXM/QQgAP7QYqHDCwQCajQaOjg4sFIq73Cn0zEmkHU5OTmpQCBgRsF8JomIF437d5qxOJlMxtiZdDqtqakpXVxcqFQqqVgs6uDgQBsbG7p165Zee+01ra+vq9VqqVKpqFgs6je/+Y2V7wHLgUBAJycnevDgQc8e4icrHBwcKB6Pq9FoGNgNhUK6fv266vW6JiYmtLu7q729PUvWYK7oRj05OekZwryxsaFf/OIXBuIA0jjd95eNAfK4pAPCfvSjHykUCumdd97R6upqDwj1Vg1+jaINw8wXVtrP1gQYkzz5BgufWLJmAYHxeNzAdzwe1+HhoU0WkKRisaharaZ6va75+Xm98sorqtVqWltbs711ALAGx+D4mkf/WBo2Oq+9wsMJ/QOlDK+p8XPwJFmgwBjRm0t6loTv9WM/+o1GvU8WQYt/B+B540sCIkaPvmvQl7EIIH5AK15RbMy0fJP9+nZr7pefVk/AgHHxjAqbotdkUaL0HYN0VWJRwagfBj1zPwgc8XhcyWRSrVbLMnNKB6Ojo5qcnNT8/LxarZbN6fPDp/k5AgbBB7DEBr69vW3lF/RRrA/PZHEA0BEOwyYR7Gk88KaQHpj6cTh8DwGKc/JMli9ZfhEr1+l0TNf2ZW7u3A/G8QB6PJMUi8UUiUSUTqd7rDZCoZCVQ9HE0aXqjW3RTYVCIQOaBF+vq+L9glmlrM/a9CWr1dVVY1v5TO/Yf3FxYZYTlJG63a4xIF/EPiPc5/1FSI12JxAIaGlpyYYyI0BHZ4W+jHeWJpKtrS1jWDY2NgyM8C6hbfSjsPCgisVi9k5z37LZrKLRqJX4NzY2rNGC9eLtWmC3pM9dz9fX13X58mWdnJzo6dOnOjw8tEYTGFyv3/SeW0dHR2aJQRn6iwbQkyD4dYC56RfZyngDXjRcTKfgXYD5pvToXd7T6bQZybIn4d2Hlcbp6amy2ayVg9FoDjRYg2NwfAOHb3vnZYaSZiNhE8vn86rVaqrVamak520TGLRLQMWE0c8n80yW1yd5jYjX1PS38LMZsZn4khKZpR/3QtbHps/1eBd1fHC4zitXrpjxHuJySoChUMiAACBoenpaExMTqtfrPZ5EXisD6KPkQ1cZLfThcFibm5uq1+vWeUmwRZtz+fJlG0lCUGfgMfet0+lYx1IsFjNg9tJLL2l2dlYbGxvWus498loogil2B/x/P0sN0bW34vBWE94iAkaOZ8Fzp0Qqfd5oQYYNgOfn0cP5RgQYPg9gvdAdYEAZjXV3cnKiRqPRI+79qqNerxvDAqvQbrfVaDRsNA7nE4/H9dlnn6lSqejatWtKp9P67W9/q5GREWN+vQksgCaTyfSMhgKkVyqVnsYQL+hnxiHdZKzrp0+f2jtHWQtAy0ic6elpzczMGHN1cnKivb097e7u2rw+LxHwTBY6H0BmNBrV0tKSXnjhhZ6OUM8u7u/va3t723SBdOSGQiEb90QXIbYS09PTPUA/HA4rlUpZ99/w8LDu379vz6PZbOrmzZv69re/rQcPHiiTySiXy9m7RFOC94wC/LPnzM3N6Yc//KEePHig3/zmNybs97MgSfZYz35fazab+t3vfqfh4WHt7Oz0GAn70jRsOzYPCPsZEcW+RlLKs0ADywQIuh+73a6KxaJSqZRZZ3gbCdZdOp3W2dmZaRl5r2ZnZzU3N6c7d+7oyZMnCoVCtq4HAGtwDI6veXgmwneOwerwd61WS6urqxbsxsfHtbS0ZELpfgYBRsj75BD4YCj8iJUvGuXSz6yh7aHjzYvgAWDS511MGCBSDqhUKhZsvBAenQliXTRK2WzWBvxCucOy8D0wEysrK2o0GqpUKsZMwVZ5cT+ADeYLoOYBDmwJZTt0G4CVa9euKR6P686dOxoaGlKj0bAAu7q62pPxE0goUQWDQWvp90NouaetVquHbfO2CrBJCJz9MFoYAs9S8r0AAECYd/PvBw+UxQj0fL4f2+LXl19bvj2ec+T6vZUErAkjn77qoKyDh9D8/Lw935WVFWNetra2tLy8rMuXL6vdbmtzc1NDQ0Oan5+3MiOfw7kHAgE1m00Vi0UDg0wMwBjUg3U0f7wrzWZTzWazx/cMxpZZjXSUwr4dHh5aIK/X6z3mtoeHh4pGo9rf3zerDe/VFY/H7T4Gg0F973vfUz6fVyQS0aeffqpSqaR8Pm+JS7PZVLfb1Xe/+10Fg0F9+umnKhaLCoVCNgcPcH3lyhVbO96VHBsCD+zQuMGeHx0d6dNPP9Urr7yin/zkJ0okElYOLxQKevbsWc84Ge4hIAaQOzU1ZfNVw+GwaZharZY9M/YqPyqHYdJnZ2fa3d21z47FYtZkwDqmE5X9i3d/bm7OGghg3uPxuOkUKSl3Oh1Vq1Ub5txqtZRMJjU/P29AjlJyt9tVvV5XNptVo9Gw53716lWzwMhms9YsMD8/b/GA7x4ArMExOL5hgOV1UAQYWKFarWZ/h0ickgOCb1ggb0cA40Tg7g+s/LwHYb6d2He9+TlqlMgAZbBbfEYgEDBtE51rfmCwH3NDKSoYDPYMPfXGm4VCwa7P2xxsb29b+cZ3P8J4+WwcDyE/y87rwaDv+Y8yIte9sLCgyclJ01Vhz0DjgRfLEkSxEUAHRqDk89G5AOQIrjAYgBKYLK+j88/Ss1TeKsKLdtFseTaG8wUMeO0Js/i+aOC3Z0EJTB6oE9QwgIQRpLz9VV2EQ0NDikQiOj091c7OjgVhD+Tw99rd3dX+/r5yuZzm5uYsqC8sLOj58+fa3983M1bKScyS5B3x4568oS5dbyQxfu5mp9OxEhGg0pekAG28A+jparVaT2ck9iyUjtFeAjQkKZPJ2FrEOykSiWhtbU3r6+vmzwT4Q8zfarUUiUTsXLGFAYx0Oh3lcjnrXoP9RrQNI3d0dKS9vT1jbBFlHxwcGKMUj8e1tLSk2dlZKy9++umnxor6WY5nZ2emPS0Wi3rvvfd0enqqzc1N0xxyTpS3SSJg1EgeSLYoc5JYsO/4cj8Ai9JiqVSyagD3Hf8+vOtY35ScvXO+LwmiCzs6OrL/EP6jP2P8FuXpcDisXC5n975WqxlLNgBYg2NwfIM6LL9J++CE+Bogwt8TYNk4yMr4e4IKgRvNB0GXzcnPJmTjIzBQpuI7mGFGJuqF6T7Q7+3tWXAiiHnAwObkwaJ3HN/Z2dHm5qZtarRfc55YV7Tb7Z6OG/xlRkdHtbe3p0gkYmCDkgOM2fDwsAXtQqFgAMDrgzDU7Ha7+vDDD/XSSy9pZmZGP/vZz7S1taVKpWIZKcEGo1FKhQAd9ECAKe+CT9nAA26aCrzrdf/aQHjvRe/z8/PW9USJ0Tv9E2y8Cz4dbTj208LPtVMOIijyPH0Z0LOoCIv7gb03yf0yHyzAPnP3ut2unj9/bj5CiUSip1wDMHz33XeVzWZN39Jut7W0tKSZmRmtr6+boP3s7Ez1el2ZTMZYCrrCYCCYC8qa5RmxltC7dbtdRSIRhUIhJZNJTU5OanNzU5VKxYABjCjlokAgoNu3b6vb7WpjY0P1et067+LxuOr1ugXubrer8fFxkwX8+Mc/1s2bN5VKpfT48WOtrKzohz/8oc7Ozkycjmfc2NiYqtWqNjY21Gw2reMVpjKZTGpxcdHA5tramiUs1WpVkUhE3/nOd8ybCi8rtF2U2qPRqB48eKC5uTlNTU3p7//+7/WLX/xCx8fHSiaTxmbCxKFlZA2cnJzoD3/4g+7evdvTAdvtdnXz5k0NDQ1pa2vLkj0aULxujDUGCOU9Y/8E7GKzwL7RarV6un7ZF3h3fQet9/U6OjpSo9Ewpgzpw8TEhF588UW1220Fg0FjvCKRiCqViiKRiG7fvq3x8XEdHh6qVCrp2bNnVvquVCrK5/O23w0A1uAYHF/jgAnwQmavvaBc6A0vyez9yAayIXQDXtRNIPOaB+91BShjjAUZO6wV+h+YHzZH70rd783lS49kgYCrfhuFSCSiTCajhYUFXb9+3cqggUDAuo4AGIhr2ZCGhoaMxSOABwIB88gBPFBexNzQa2XQsnGOHsDBRKAloQV8YWFBN27c0MnJiZ48eWLdP2zEkhSPx23DBmRxL2HcsArwLuwEEW8Mil4JQe3c3JxGRkZUrVats9GbfFJ+8efj7TQY0YEGDSDZL7QfGRmxNUdZE9AIa+X9OjjOAAAgAElEQVT9trzBaP9YGs4NIP6n3ouxsTEb/wLQQmeXyWTM1+j09NTa8Bkc3ul0tLa2pnA4rOXlZR0dHWl7e9sCLV2q/awT/x9gy/tFFybWEKxr3pF2u60f/OAHunz5sqrVqgXTXC5n7BFl6aGhIZVKJdMvwUTDWOEBBfgmQE9MTOiNN97QzZs3tbKyotPTU2UyGQWDQa2trWl6etp8qHgPAQmUKYeGhpROp61kyT7SbrdtnAzzDBOJhK5du6ZisWjJCu7uy8vLxraFQiHdv39fFxcX+v73v6+/+Iu/0Ntvv61r166pUCgYy0ZZkZIf6953iHrpAvebde47nPtHOyWTSUWjUes8jMViPfpRb7oLIIetIwmlk9eXRgFonpH3ujGsb7CXQN/mvchI6NDLrays6A9/+IOq1artVcg28vm8EonEoEQ4OAbHN3F4BsFn+hjVsRnSRchGTwmFTcP/O8aAbB6IkSnR+e4bgq2frcWfdOpAq1Ny8LoaMkHfneP9lNgs/axAXwKanZ3V5cuXjSJfW1vTzs6ObWQ+i4dN4XMBBmSolBlx3L569aq1rPvrwcMqEAiY6SPmfvw+4BbBORkpw44pW83OzpqZ4Pj4uB4+fGibtR+YLcnunXck923ekUhEk5OTOj09VbFYVKVS6Rl63W63TRy9s7NjgBNmk6BAmcJ3znlHdd9lGo/HTQ8F6OM+YZCJOJ1r4l577R9MJOdC1xprG9AImPmqeWvcF3Qr8/PzVlZGI/fCCy8onU4bqEbLtrOzo6WlJd2+fVvFYlHPnz/X1taWFhcXtbS0pPv371u7fKPR0NzcnNrttlZXVw2wYapJYGS90cwAy0IZHm3hBx98oLW1NevQi0ajunbtmi4uLvT73//erv/4+Fi7u7sG+JPJpGZnZ81E9I033lCn01GhUFAkEtHy8rK+//3va2lpSbdu3dLKyoo6nY6mp6etczWRSKjdbqtQKJh9wdHRkSKRiMLhsJLJpMbGxlQoFDQ6Oqp/+Id/0Obmpjm30xXZbrcVDoc1OTmpVCqlK1eumAUF42QYq4N4nLl9Ozs7+uSTTzQ0NKSXX35Zf/mXf6mXX35Zn376qf7jP/5Df/jDHyzB8aAnmUyq0+n0gFfY0Y2NDUmyuYOLi4t23j4JxCLi9PRUkUjEWL3f/e53Nr+U95By88bGhmn0ANd03QKqp6enlcvlNDMzY3KAnZ0dlctlA0J0Sh4eHpqpLclAq9XS5OSkrl+/rnQ6rUePHtmoouPjY5VKJe3v72tubk6pVMqua1AiHByD4xs8fMYyMjJigQ8dAGJxLAzI8j1D4YMm4neAih9l4l3MvdEeLI+3DaBbCedoHwT5PO+bBPACRPkhygDK09NTTU9Pa35+XlNTU4rFYjZrbWtrS4eHhyYe9p1pgCtfDmAINhkmPwvAwDKBoAgYJLtHhwO7h0aJQAgY9UCCzkg20KWlJWUyGS0tLWloaEifffZZDwvEvfEzEgGbvkwKU4NQORqNGhOUTCYNALEWYN3QCvH5AGLuFRog3yFKuWp4eNjGyQCM/dBqgoUXrcM6oElCEA6Q9q72lG894/OnDj9yptvt2py/YDBo/mO4tMNGjY2NaXZ2VrFYzPRBTB6gXOeBKOCPGZCevfJDtQGtvquvf8h5PB5XKBQyDyTueblc1trammkkPSuN+Fr63EUd4AZw5XN+8pOf6Lvf/a6WlpaUy+V09+5d3blzR+VyuUdTJ8kkApFIxEA2+isYG8bRvPTSS2Ziur29bY7pSAvS6bQikYjW19fNLmNoaMgc42E1z87O9OzZM9ubdnd39fHHH6tcLiufz+s73/mOXn/9dVUqFSUSCf3yl7804TrvcTweN2E37ynAib0If7k33nhD0WjUkj3eT95n1trW1pbJGyjNk9QhaKcLmOfO/6dZAWPXiYkJ0/sxtgePKwZNk6weHByYBGB/f1/dblfNZlNbW1uq1WqqVCpm9oudBN2G5+fnajQaX/meDADW4BgcX7NkCEhCUAtzQjddf/nHl/vYJBgiDHPAZkXAZJ6ZL1P6+YVkmGx+aA4AgH4ArteoePNJGChKE3zH+Pi4Ll26pBdffFFnZ2eqVqtaXV21QMjnMM8L4MfneD8dAJMvoZEZM+oilUqZ67z3OUIz5X/XA1aACZ49gET+/ejoSCsrKxY0YRwPDg5Uq9XUbDZ7WD0PuLxuzM83bLVaPRYROE/HYjFjuThHyjycD6aymNJ6QMD9B1T7cq8X6cKEsp5gqQhAnCsMA8zI4eGhBS3fNIHez4viPdv1VSCLa4EhwU+IzJ8uxlKppPPzc8ViMWWzWa2vr2t/f99GvqRSKd29e1ebm5tKJBKKRqOmuSuVSj0dknQ4np+f20w8303KwUBoWNhEIqGHDx+axglfo88++8wYPUrPZ2dnFkgBCwDc8/Nzffrpp9ax+tOf/lTf+c53VKlUVK/X9fvf/147OzsW1D0ziV0FawmDV8rtdD7yvrFe4vG4ms2mWaLQeTs2NqZHjx7p6OhIV65c0fn5uWZmZkwIDvAplUrWlMI9/Pjjj5VMJo2d++u//muFw2E9ePBApVLJdJswgegP6/W6ddvS/cr7isHq5OSk6Rzp/MWbCzPie/fu2fryDv2w/MgoeFacu+/OhYVtNBoqFApWrpyamrKOT34Otot1wx7LqC+0VYA11hnM6t7enpVBPcv8R+/FxRdwv19FBw+OwfH/6jE0NKR//Md/1OrqqtX78VIJBoM9lgLdbtcYJHQziIjJYtHteI8Yhq+yufpWcxgOMnr+8zP1vN0D5UA/gsaPovCO4x5MkGnHYjFrp8/n87ZpPXnyxMoUbFZ+3A4Gf3QFjo+PWyu9t7TgP8aNkKmiYyIrpuTgB0t7nRgdSzAXfnAyGTMlB1iH0dFRTU9PW+t1q9XShx9+qHK53FNW7Tc+BUT5+wRArlQqdk/ZQ/HxghUEFCFO9z5V9XrdmDxvxkpnFQJs7ygPe4EfEzot1ooHY4ASSmpYA8AWeG2TH1QN6P35z3+uN998849G6yAeT6fTisViplFBp4T5LF2OONtL0quvvmprAnPQLxpbEo1Gtba2ptXVVRPMM5IHo0c/GNqPfiLgDw8Pa3Fx0Urlz58/1/n5uVmUYCoJ00YHXCwWM4CE8J53ZmJiQn/3d3+nH/7wh7p165ba7baePHmijz76SMVi0UpsrDlfvuXcfGcoZV5MLGFz+V3P6mYyGStl8w6Q6FCe51wpZ+IH12g0lEgkFAwGFQqFjIkbGRnRiy++qDfeeEPZbFZ7e3t6+vSpPvzwQ/3yl79Us9m07y2Xy1Y6Z01nMhm1Wi3r/mVdMiHh7OxMMzMzikQi2tjYMCnA4eGhXRfPj33Ll7p5F0hk2Qu9xxw+VnijpVIpDQ8Pa3V11e4b757XeJJ8+O7hjY0Nm2bgfwfN1ubmpqLRqN555x0rLw8YrMExOP4vD15i6Gs2Yz8Kxrtlw2QBgHBu5yUGZLGZJJPJHpsHGBEvPO4fNeMH3EJlk915psoLhP1G4AXX/Dk7O6vr16/r+vXrVupYWVnRyMiIDg4OdHBwoFgsZjPOfMcdujFKV5T9CKKAQv6Oe+a9izxQwuHeMzKeWfFDnQn+MEJeR0a5jvtGqQejyxs3bmhtbU2FQkHVatXcoGkBRwTrS7SwDwAe3zlFZ5UXYmPr4R3neQaAdDZ5dD2UywCvgG38heis8/PwKBF5c1Bv6zE8PGyjkChp87+9dYUvI39ZF6FPQHxZlmczMTFh7v6MjDo4OFCz2dTExIRu3LihdDptJdx6va6FhQVNTU3pgw8+UK1W06uvvqrbt2+r0+mo0WjYtXDOlIr6mzIoRcM+YeYJmDo/P7chzD7RwHi0fzA3ZayRkRG99NJL+va3v62f//znmpyc1MnJiX7961/rf//3f1UsFjU2NqZ8Pm9skfcjQ9yNkSbdipR6JVmjTLfbtZE2hULBfo9RP/g88X0jIyNqNBp2Hdls1jzGYIL8qCmGSg8PD+vZs2fa3NxUKBSy67t165ZeeuklffLJJ6rX68YU+skTsHHZbFbFYlHlcrkHeAWDQQWDQbVaLT179swAOn/PGsTuArYKywhGVtHIkUwmdenSJfP7Yg4j3+WNiePxuNrttpVYM5mMhoeHzWcsEokom81Kktmz8B4waBxNLIkwzBkeggMGa3AMjm+Awfqnf/onra+v97xQBCGof88YoXXxpRqAAwd6D8oDCM39IGA6hzyr0s8gEQw8S0bw92W6fp0UZc7p6Wm99NJLunr1qo2i+eyzz7S3t6dCoWCePZQ1/aR7giblSLQuU1NTZsNAgELEy7X4sgi/D9vlmwo8oOS+eYd673hPhslnJBIJm1HotVsTExO6fPmyMQVHR0dqNpsW7NGYeZ0JwRhAR1cjZR4YJN/V5u07vKs93V9076GjwrYAzy5E83SC0c0EiEGH4kuyAG8Psrnf/nw9EwVrxdxGAFk8Hte//Mu/6K233vpSBmtmZkapVMpa4bEiOT8/1+LiogX87e1tPX782Mozk5OTZj+ApYjvGmW0zenpqRYXF/X8+XOb1Qdg9aVtRO4AMMALNgisf3yOAK2MbTo+Pu5JhIaHh40Bisfj+tu//Vt997vf1auvvqrJyUndvXtXz549U6fT0ePHj3Xv3j1dvXrVbBCOj4+1vr5upeLNzc0/slwBTD1//tyE6JwTbDJWE+wRvNcwhcxUPDs709LSkmmPKKvxjpKMwKrRoEPDRavVMpH666+/rhs3bigWi+mTTz7R48eP9dvf/laffPKJgVTsLWDgeY9PTk6UyWSsBL69vd0zvaLb7dozZj/0sz/p0CTZ7Ha7yuVyWlxc1NHRkcrlsg2/Ru8HCw5bOTU1pXq9bhpIzGYpzZLIhUIh8z1DfH/lyhUNDQ3p0aNHZjuRyWQ0MzNjJcJaraZ0Oq1f/epXeuGFFwYM1uAYHF8XZHnxs9fMsPH5AaUEW6wUMMjrp8P5HTYJQA8CaNyYYYoAWd6kDx8mRozQWcPPop/wZUY2l2w2q5dfflkvv/yypqenValUejJm71RNCRAwQOcgbf4ciNK9YJfMHM8tfz64X/NdnoXwJR9MHylx+Q4/dG3ez4qyCa7nNAqg1SGA+1E9uVxOk5OTOj8/V7Va1f7+vv2bn13n5+EBpgBjfkYaIAu2BYYRdgyzTC+8pmxxfn5uQMtn6QAiX57tB0uAaEpDXrOH2/bp6amBEM6f0smfo8Hy7BVgGmYMFhewm8/n7dniwwbbFYlEbI1TXr64uND9+/cN5GSzWRssfXx8rJOTE8XjcSsTUipHGwQrAijAO40gD7sKYGM9eI+vbDar69ev6+2339b3vvc9lctlbWxs6N69eyoUCuYMPjo6qmg0amAe1tM7vaNd5F2nKYUxTzwnzoNyIUAMMPV/2DuTHzvP9LqfujXeeR5rLlaRRYqSqJblbnRiw27bQgIHBozYGwNeZJtl/oAA9s7+C7wyss/GMJDEQRIn7gntdKvTpEiKZBVrHu4835qHLBq/x8+tlmS3peV9AUHdIqvud7/v/d73vOc5zznMYXSNBJDzPSgRomEEhLZaraHmDN9Y4UO2vWHrRx99pMXFRSuTP3361A4D3uCXUifvKOCHOY+tAuwU84VYrbOzMzWbTQUCAbVaLcsNvb6+Nr1dp9PR7u6ulQN5z9BdlUol+1w/15mL2OR4FhT2jLU7l8uZjtYbNqMxpCT/ZTYmIwZrNEbjlwBX//7f/3sLRvX2CJyQoaFZ9KR/aKfnv3m9AOUdyhZ3XdURCsdiMaVSqaGNDL0OWgM+jw0UnYd3nueUOD4+rtnZWa2trWlpaUmFQkGStLGxoTdv3ujo6EiVSsUYiMFgoOnpaYs/QX8BU4TtAZorAB8LE27OnDbZEBDGx+NxLSwsmNiUe4TRIe3YOGwDYrBCQK/jNxMAhvcdo6yLXoRFHh2Y/2dqaspyE3u9ngE6vtfbt29Vq9VM7M8m4hkrWCrEuujkLi8v7ee86SjAm42VeBj8vMia4zvBTvE5vjzNXKBzk7UdEO87LdlcAYvkHHa7XU1PTysSieg//sf/qN/+7d/+QgarWCzaM0VzyPMpFArWUZtKpRSPxy2m5ejoyMxD5+fnlc/nrTT+s5/9TLu7uybk39nZUSgU0sLCggFnwEQ8HrcczXq9biVrwCaebLFYTIlEwjrHCLVGn+eNbn/zN39T6+vr+jf/5t8YI9LpdPT27Vt997vfVb1eVywWM70RFhD8/1qtpm63q06nY+AKU0xf6oWN5qARjUbNbgRGBdbx1atXQ0kB77//vj3z9fV1RSIRs07huywsLBgAI6IqGAxqcnLSskSTyaTeffddY5CazaZyuZzS6bTOz8+1u7trQJZDVrvd1t7enp4+farXr19bCfL4+HgoxgYxO80edJUyJ9DT3bt3T4lEwmQY4XDYMhjRR56enhoYg8U9ODiwA1CpVNL7779v7DC6Ra9JOzo6GnrHSHn49V//dU1MTFgHITYSuMhzz1OplMLhsLa3tzUYDPRXf/VXWltbGzFYozEaXxVkAazYzFgk73oHscHxczhZY7sAm+UtAND9eId4Ih3QN9FJBJDjtEgZjhMZ10H7PCxTKpVSKpXS/fv3tby8rEAgoHK5bG7slUrFcvYQ3dJFw6LKBj81NWUbF2DQa7xgoViQKJH6f8OweTBE6ZLfSekIAEWuGmJpQAvCY+4z948uJjoRYQimpqbUaDR0cnKiTCYzxPBw4qcTKplMmo7r+vradEP7+/uq1Wo6ODiwUhYlLpzp+a7BYNDE7AA2gJdnkC4vL43hkGQneO9Q7TupKBVRVvIdnHfzJ33sjme1PHtIyQam5a4H2Oe9F9Fo1Nzl8/m8YrGYWq2WKpWKifFpCPBgFCE8eh5E8LlcTmtra5qZmdGnn35qeZ5omubm5uzdS6VSWl9fNzPfo6Mj1Wo1HR8fG3sMq0nZ7OTkZOiecy0zMzOKxWIqlUpDTuzX19dqNpt69uyZXr9+raurK83OzlqDAn5J/X7fom34TNYJ7Auurq5ULpet3MwcmJ2dNWbPN0GQ09dqtTQxMWGWLqFQSL/1W79lTS3xeNxsHcbHx4eAJoeJRCJh7AvP4OrqSo1GQ69fv9bY2JiKxaLC4bB+/OMfKxQKWeMCJepUKqXFxUW9++67mpqa0ps3b7S9vW3MU6PRsNI2QJNcRIx7r66ulEgktLCwYH+frsfz83Pt7++rXC6r1+upXC4b0zo3N2csMJ/FwW98fNzMXGdnZ5XJZPTmzRuVy2U9efJEsVjMdFZo4aSfN9HMzs5aFiExRaytNGpwzyjLVyqVIVnG3TECWKMxGv8MkOXBFuAK/YP/c0pIsAdsdPw9NtJoNGoiUOh7TPDYINBBecdtSkY+YNWXpfy10M49Njamd955R/F43KI5NjY2bOO7vr42fQ4MCUBrY2PDNiM2YUAQTBIlAEqcnFRp1793754J4/Gu8uHTtEbDYvk4ITqgYM68FxSlDoANDBIADJA2Oztrnkuwb/1+X0dHR1Y6olx1cHCg3d1dzc3N2e+EhZubm9Ps7KyKxaJlpFUqFdtUEMbS5o2gmecDq8V1cI2+SzAYDGp+ft6y6ugo4zNmZmYMkNdqNbsXMFHMEe8RBtvhfZm4jwBWb1PA5uttDz7vfSD0O5lMKpVKmQaMkt709LRarZZFuCQSCdPC8P1hCtrttgaDgVZWVvSd73xHDx8+1F//9V+rXC7r3r17ZheCaP3169d69uyZvW+5XE6JRMJ8ttD9YHAJs4MfFuXXYrGofD6v3//93zfhNxspmYH1et2YVxjGUqmk1dVVTU5OqtvtWoce5rg+CJ45zf1cWFhQLpezec+9CIfD1omcTCaVzWat/Le9vW3i9NXVVbMMgQ3kswOBgEqlklKplF6+fKmDgwOl02k7PMH+cJhrt9vK5XK6vLzU7OyslpaW9OzZMx0dHek3fuM3JEm7u7u6vb3VT3/6U8ViMX3wwQe6f//+LzA4nuE+PDzU//pf/8tYUdbNRCKhpaWlISNXupSvr6/tOy4vL5sOtdls2jzu9XoKBoMGhojWur29VbVaVb/fN3+vWq2mZrM5ZI1TLBa1tLRkax36uMnJST1//ty8tdLptKLRqHWK47EFmzYCWKMxGl/DQJ+B+BU9FhuN90TxXVn8mw2U/+ZF5yyq5ID5/Ds2MO/C7f2yOB3fdV0GsPhORbr88H9qNpums/CxIlD5bOqU5lhEEVXDTA0GA9MH4UeEHYHPTeRU7w1X73ZHUoqjM8x7OwG4aDtHExKNRi2qhXvEKRfgCODo9/sWigtg9V1yiHYBYGhsWPSDwaCxNLA3mIvSxXjXR4tnTXs595kSBs+Q/+2jcLwGCisImDF+Dr0IZS6Al8+gZK7gmeW7Yu/6f3k2lN/zRe+EJMtmw2OLjER0PDBasJ0wdcxbysiZTEbtdlu9Xs+MStPptB49eqRPPvnE7i0lSIDn8fGxxbkQYUJnHiUotFDoIAFozBM6HnHLDwQC6na7evnypTUHwFACxAFlkrS3t6dGo2HzAqBVqVRsc4dtjUQiCgaDymazVrqqVquanZ01sAPIhh0ncoou16mpKb1+/VqtVssMT3nGnjFG2zYxMWH+YpSrPeuJwSg6w3w+byzQ7u6uEomEaaFwzt/c3DS7E2KDWGdgCGdmZrS1taWDgwPTM6I5w2mde3N8fGwdscx3GK9+v69KpaJGo6HLy0ul02k9fPjQ1uNYLKaLiwuLo+LZwDZT+oSFl2Rdw7xjdHwyx0KhkIF/DktYsvjrHAGs0RiNr4G9AijQ7eZb2SlJeQNMTqQI0gFpADQAAaLebDarWq1mi4B3PvcADobAM0BsyCymlBW5NkozaL5qtZqxYGwebLTeDZ7r987vMCCAKBZUDFdx7MYJmfvFJud9vNCo4H8EQ4O+hYXNZ+5x7whilaRsNmtaGi8qxmRwampK1WrVWs3Pzs5M08R35PsDcG9ubnR8fGylXb7z6uqq5ubm7F7RzTYYDNTtds3CAwbCe015rZbXTmEsiuAfrQ2dpZRrYdgA8pSMPEOFxoa/g8Eo/mpeTA0AYy76ciRlaS+i/zyQ1el0dHBwYHqqQqEwFC7ty5O019frdTt0RCIRlUolzc/PG9jf3d3VycmJSqWSPvzwQ0nS06dP1W639fjxY3tegDz0ZbAk09PTyuVyarfbZiXA9+OeUBLMZDIKh8MqFAqWWTcYDLS5ualXr15Zd5/XV56fn2t2dlYXFxf62c9+pmazae8dB65QKKRXr16pXC5rZmZGpVLJmFAAAMzd/v6+7t+/r/PzczUaDZMCUOYDRPt8Qs/MALjPz88tqmZ8fFyVSkXBYFALCwv63ve+Z6y0d4QnTHkwGFhHXLfbVbFY1N7enl68eKGFhQWL5UFH+Mknn2h1dVXz8/PGxOdyuaEDVCQS0be//W1tbGxobGxM7XZbzWZT1WpVP/3pT9VoNOze0PTB+oRXl7eCuby8VD6fV6FQ0NramprNpgFfun8xBa1Wq9rc3LQ4HMA23+HFixc6OjpSNptVoVAwsLaysmIB0AcHB7ZObW5u2v1FdzgCWKMxGl/DYAMl6wsdEl5YvuQCAPLsi/fMgk2hm4yFf2JiQsViUalUytqRfVAzG6aPpQDASBoSNNNxB5sBXV8ulw0QwQihU2FjICLEa3fw//LaMroWESKjNbq4uLByEW3/xAp5QIOeant729gLHJ8RRHe7XYsNYYPjHqD9icfjpuWBoeGkTtMAbAbO7bBIgB2yzgBGXCesF8zA9PS09vf3dXBwYJ1wdBah3yDkm2dy14fKM1Z4GfFMKQlyL3kegHI6Du8yqIDng4MDE5Rj0ojNg8949MyhZ1q9lYXvuvvH2N3p6WkDJ+122+4VmXjM09PTU927d29oDsN8UYJLp9MKBoOq1+uqVCqam5vT+vq6gsGgnj59qufPnysajdqmTtmL+BOYvMvLSxNrT09PGxhJp9MGVDqdjra3tzU5Oal33nlHf/d3f2dO5VgEYOMxOTmpdrttVgvlctkA19nZmb1bMzMztmF/+OGHBlbRU/393/+92u22jo+PrSR+fX2t/f39Ia89ymrRaNTWhMvLS/NvW1paMi0XIvNWq2Wmmt1uV0+fPlU+n1c+n9cf/dEfaWJiwvReb9680cbGhh0aWq2W/ut//a9DTRqJRMLuK2U8gpbX1tZ0fX2tra0tnZ+fq1QqWbxOLpdTpVIxBu/w8FB/9Vd/pcnJSd2/f1+hUEjf+c53zB6DkGpC49GWVSoVnZ+fq1Ao6MGDB0MdiBsbG5Zz+vLlS01NTenJkyeanZ3V9fW1Njc39dOf/tSaL1ZWVhSNRtXv91WtVs0+5OLiQoeHh8YGcuhEu0pXIhYXmLO2Wq0v9IgbAazRGI1fYhA2zEuH1sX7USHQhr2izOR9sFi4WCT4fTAv6KV8Cezk5MTAgHeF9z5HvuyI6zNgyDNwgCmuj8XMm2JCj/uuPTZhaHHPWPkIm6urq6FsRq7Ds3neioFNl/KXvz8AQ4Do3caBZDJpreuAAnykotHokF4Mw0nKU7CRPDtKJehj6DzymY/YbbDA+hZwFmLv6+NLkDCJfC+vowoGg5ZPx73hnvHzdEryPHiGdCPCDrExAMi8RxjPCYDgWSzYJuYB85K5/GXgCpCN3u74+FidTsc2KuYs3lYcFHxHnT+kABA51KBDxJwUN3r/GTQzeJ83yul0nXmXdoKR6Zw7ODjQj3/8Y21vb9v7B8Pj9YzxeFylUkmBQEDHx8c2T7w2bnx8XAsLC5qcnFQ+n7f3DtDHfITVDgaDWl5etq41ADnaxZOTEw0GA3322Wfm1+QD53mOPvWAppOFhQUTccMi837eu3dvaM06PT1VuVxWKBTS8vKy6bmazabNb0qXsVhMCwsLarVapp3jeYXCgNcAACAASURBVNGhiQM/QPL29laJRMIaN7LZrMVjMYcBdz4IPR6PK51OK5lMmv1GMpm095m5TRMQ+kfYy0KhoNvbW5XLZR0fH1sTC4AK2wbWpnq9butTMBg0EJhKpezAShPIiMEajdH4GgZRNuiKfJQKLyzgAHDkQ3699xTsBqdaNmlYJ9gOuqXQYCDK9ovr55UyYbK8bQSMG4yQZ8K8GSrXxmYH0+WjeDhR8zlsckdHR0OgyTvIA8godfJZgMNWq2Ubrc9JRMAOU0T3GC33XqflM/o8OwV4QDguaYidoKOI5wlQ7HQ6pndCB8fmzaYGgPFaJm/+CpjxzwCA7o1gMTylHR3mj24mgBNsCj/rPdEAVFh5HB8fa2VlZUg8z3dj/sCKMRe5//45eXPcz5tvAFzyAtPptHX85fN5Ayw0d+CkXy6XbYPDPDafzysejyuXy1l3Id2a+Xxec3Nz+oM/+ANdXV3pJz/5iXWZ0XVGJ1mlUtH4+PhQoDLxTHSlImReXFw0s1TYPg4uqVTKmMxms2mlO7Q4vqxO9xoHhcFgYB2DlEZTqZR+/dd/3ZzMGZhxHhwcDGn3sCiArb28vNTW1paBHN7Hubk5Y5PwzwJsNRoNi7ra2NjQ7/zO72hpacnsZfg3JXOMhckIhYXlumB0sW2AtZR+HgiNtQJzPpPJmHP6YDAw49Dr62sDX2irtre3rWECoI31S6PRGNInvnjxwiJ8OAR88skn2t/fV7fbNTBEjufh4eGQmTGB25S5faNIq9XSxcWFms2mXQvaRQ4I/N0RwBqN0fiKw5fzvJaGUzKLGZsIgmX+GyckXx7yCywCaXyiADToROj063Q6QyJ6WA0WM++MzsLJ76E7DIBIl5kHJz5rj++HUSaLC2CJjZfvxGLtf+dd2wYWZH9C9IZ+MDWI9QEQaJmICOHnPFsEk+KF5NwjgB4MCewPzBTX5Bkr2AFO1XwfD1y9kNw3MVCqotFAknUPcj985x6lHgZzjGdOHh6MqbdcAMAzr7hunikAF+Du8yn5Dj5qxJe9ksnkl4p5GeS0cT/8/Wy1WhZL40E9OixK8ICeVqulRqOhXC5npbZisWgsDJ5ml5eXWlxcNLdw9DiUyPBuQqjM902lUopEItbRF41GVSgUVCqV7DDj7Ud4x9AIDQYDK+Xy/HwXL/rBu+sFVguwQfhE4bSezWatWWN1ddXiWXjmNGdwGCNLMZlMKhwOm3YTDVUoFDLmCIAbiURMvI2Q//LyUtls1p6h1wgCOrA34LkSwI1Gr1gs6uLiQgcHB8YM+W5Zf3Dy2Zr49aGjOj09VSKRUC6XU6fTUb/fN20bUV0kRxB8zfNHStDr9YxVprkmFApZOdGznawrHFL4rrVazb7/5eWlgsGg2bWQ1DFisEZjNL6m4buxPDsFm8QG7ENEATpeIM7wsS+4U6MvoCSEMzIlFh/5ghAZ4IWpJzomFuTp6WkLhUVvQFcOG38ymTRfq7slkbuLfDAY1OLiom0OaGg4DfoypvdXYiNikSZIGLDggSn+WpSqOHF6jZhnw3yeIr8nHA4PdQb5zY6TLX+fZ+rb6X2Jj8UVTzHAG51TnnFgcf+8rlPfnQfjJMlMMmHEfF7l+fm5/U6AjxeQS7KIEA4BNBiwWTBXisWieSyxYfoycK/Xs7lKybJarRrD90WD7jMyNPk8fi95eTCb4+PjWltb07vvvmtdaxxSuLeULvv9vpXZTk5ODETMzs5qcXFR9+/f1/X1tbETlIlxpf/BD36gWq2mYrGohw8fWlk3GAzqgw8+0OTkpFqtlplcMidwKfeM4gcffKCFhQVVKhVFo1GtrKwYO0fIe6PRMLbQdx8GAgE9evTI2JdSqaREIqGdnR2dnp7q8ePHpsHj/Y9EInr8+LGBi4uLC+3v7yuRSGhtbc3AbyAQ0P7+voLBoL75zW+a5xYB07CJs7Oz1tEpSXNzc2ZJEQ6HlclklEgkrOzMYSmfz2tmZkZHR0dD4djk9cGIk5HoffIoc0ciEZsLg8FAh4eHdsg4OTkx4Adjjji/WCyqVqtZ/A+eZIuLi/rt3/5thcNhHR4emi/Vu+++a8bFlAQLhYKB72QyaZE3MJpkGk5OTiqbzWpiYkKrq6taW1tTPp9XrVazsnK5XNabN2+sPPxFHbYjgDUao/FLDNp9fcSCD/SljACzQXlD0pB7Nj/P//clRMCAtynA84VTF14uPm8OJszrlwBxMDb8fTZSbx/gg4PZHDkB+kXkbqQImwff2evAYCM4tfpSpLcEgJXiMzGDpBTH52DO6eM8vNbNfxb3zfuBcW0+xJeN3BtzehsM/pyf955dngWiK4+Sqgdc/Kx3uEfv5cW0/E5vjMk8AejBLqAt488ikYg9cx9bRGmK+81zh1XrdDpD2jDcraempuzew3R+2Tg7O1MoFFI8Hjdgg0B/fn7eysm433O9k5OTxnJQovHNI4jQKfkyP7EZabfbVkZaWFiwA83i4qLK5bK63a4WFxfNSwoWKZVKWSl5enpa1WpVpVJJyWRSh4eHxmxOTEyoUChYmRhQgU1CLBaz66ULj3IY85R7ySEIW4pQKDRklosmCOaTZobp6WnzuopEIpqdnbVDDO8MTu8zMzMql8t2X3mHsMjIZrMaHx9XNptVJpOxkigsGFpPtJUwOHc7ke8GNVOipJx7dnamubk56zLm/ej3+0MmsMViUdfX12q1WuY3RRwOcxuNKFIEujTPzs60vb2tYDCoy8tLffjhh8b2T0xMaH9/f+hwUywWrcN1dnbWDhYAPK43kUgYm8t6Csje2toy7R8+WCOANRqj8TUML86EzfGCaBY6qHjKCV6rxQmdjZTNku4z39bubQhOT09NwEopiWuZnJy0sg7gC7DG5o51Axs/XTVoCjzb4P2XMFG9q0+CUfFZh956wmcB+pKXL5d4wIEuDBNOSgXojQCWPh/N+4r5DDwYPu/f5BsBAAReMM7PsqHcdT/3+i/ui2fOPLvE74DN8+AEdoeSH2JlHz7ry3oAUMpUgDfKHJSDKcPwPCRZqQRGFWG4z3WDYWCzpESL+N6zmV80AG6RSMS6SdmAI5GIFhYWbE7W63U7fFCagpWEmYLx8FFPOMEjaocpbjabpl371V/9VU1NTRnbgJnmO++8Y+8lG+Pc3JxdJ+9gMplUPp8f6rKNxWJaXV01P6XPPvvMGKZkMmlzmAipRqOhQqGgfD5vXk2wUa1Wyxz/sSug3IUPVbPZVDgcVjabValUUqfTUbPZNICVTqdVLBbV6/V+ASADCjEbxWDVH4KKxaIGg4GWl5dNz4XXFLrRZrNprBygku5FynXFYtEYScDZkydPND4+rhcvXmgwGJitQzqdNpF8LpczhjEUCml9fd3WOFiusbEx7e3tqdls2rtCcw3XEAwG1e/3tbu7q5mZGeVyOX3zm980jSn3rdlsWrIBjGc6nVahUFAsFtP19bV2d3dNwI4HGt2YBwcHOjo60tu3b9Xv97W5uWmgi/zCURbhaIzGVxxjY2P6t//23+rVq1e2gcIwzczMWJePLyVSomGz4s/8pg0woGxDWcF3HVIyYdEDJKEjQg/AxsRGv7CwoPv37+vVq1cGBNhgMO/jM9mk0NAAPLAQQKMUDoeHyhKwROPj41bKgplg4UfUzUZ0fX2tQqFgFgzj4+PK5/NW6gSYeQ2ZB53eYZ4Fkc/AIRoA6406YRKurq50eHiot2/fDoVzIwD3TCQbDJ1ElCr5c2/GSckYwEOZj3vq7RB4RoBA7BT4rphKwmgCPGAk+v2+zs/P1e12TaPF3KErrtFo2FzhHvgyNe70Price8h8A9j9+Z//uf71v/7XX5hFiEkomppMJqNMJmP3G7f9SCRiVh+eNa3Vasbe1Go104zd3t5qe3tb8/Pz+sY3vqFms2nZkCcnJ3rw4IGSyaQODg7MxmBsbEyPHz/W6uqqxsfH9ebNG/OLWl9fN7+lyclJpdNpm9eUqGjk8KV88hOPj491eXmpg4ODIT+xiYkJE7Pn83mNj4+r1+upWq1qe3vbyvN098KewIhTTpNkQD6VShl4gdFDfwgrhIaN5+6zEel4hI1JJBKq1+vGUE5PT2t+ft7ey2KxaNYnHKAASZSgU6mUWq2WGZaS4hCLxTQ7O2tdmeVyWYPBwEqLWNKk02lz8OcAxVp3cnKiSqWi09NTvXjxwkAPDFMymdTq6qpqtZrK5fJQrA0hz+Qjvvfee1peXrZ4Hw4UW1tbOjk5MaBLabHf79t8bLfbOjw8tI5cmM6pqSnrDOVA8uTJE/2H//AfrEtxxGCNxmj8M0ev17NOGV4mXM89YEIATnK7j64IhUK2uFMmoY2dspQ/VQMmWFCvr69N73JxcWHWDng9Aca8GzeGlbe3t9rf37dNms1X+geBMsCK3wWb5QXVABKYLU6eZ2dnarfbBgJ9R5vvNJuZmTGTTjYnbxvgxfhel8Xm70X6AB4PHHgedDqxGMLWcU9gzyh5ABYICfYlEM/geSNZ2CE2Ke+PhqUHoAoQzOmX0gMgxuvhAI8wlHQzHR0dqdfr6eDgQIPBQPV63cAWgM275XuvKTZdb8wJiLkr1oWd86XdLxu0/cNqDgYDe67eloKDAV2jPFfiddrtts1bgokBDTBQbK6wLoiY0RmRt/fy5UsTzJfLZf3sZz/T0dGRid9/8zd/07I4idc5Pz9XJpMZysmMRCLq9/v67LPPbEOGJXv06JH5Nkk/zwalI5LOPb5/rVazJgwOOuh4Jicn7X8DzGHMAeDX19cql8uWoEADAn5huKD794CUAaK3cCAfDAZmccB7ii1FuVzWycmJ/Qwi+Xa7bc+HwxQ2Ehx0KFvC7tGM8OLFC2PHUqmUzT+ezc3NjVZWVsyuBbsIjHar1aqurq60trZm3lrT09MGlqPRqObn53VycqJisWixObVaTdVqVbVaTbVaTYeHhxoMBtre3rbDDO822tKlpSU9ePBArVbLmELY/nw+P9SJ+qUZnSMGazRG45/OYP2rf/Wv9Nlnnxl48dYJsBLevJL3idMPGwwnJTrMONVHIhErA3q9FRoYGCc2O05n3n/Ldx+yeCAsx+uK3+U9jwCKvp0fRgR2CKPNfD5voACGh7BkdCDQ8vhFUf5aW1vT3Nycer2endTxumGTp80eFgixP+UyQCFdV0SS8L2JG/KGpoDO09NT9Xo9PX/+fKjTiDKif46wVt63yzc0wO5dX19rZ2dnqDOMNnm0b758GIlEFI/HFQgEdHJyYuyJjwo6PT3V/v6+6vW6gapms6nj42OdnJyYYSbXjSDe67mYPzyruzFOzGs6zPieAGRYjomJCf3Zn/2Zfvd3f/cXGCwA1e///u/bu4AgG+YF8ONtJGimYGOn6WBmZkbLy8sW6JtOpxWJRNTr9cxcFYC2s7Ojp0+fKhAIaH5+XvV6XcFgUA8ePLD5woYPM3R0dKSjoyOtra3po48+UjweV6/XUzKZVLPZ1ObmpmkAYfjwKNvZ2THQjKidUhveXzc3N5ZVt7Ozo4mJCdOGIe6fnp7W4eGhQqGQSqWSdXZilwGrRsfk9773vSFX/2w2q6WlJevgrdVqFucEOJycnNTR0dGQkSb6SUr8MMV0YyaTSc3NzRkzhSg8lUopmUxaCsDExIRqtZoKhYIWFxfNFBf2KZ/Pa3p6Wru7u1bOq9Vq9l6urq7q8vJSu7u7pseDsQ0EArp3757m5uasoYHSLaXyUqmkUqkkSdrZ2bFooe9+97t2IOl0Omq1WsbYEaVVKBR0cHCgFy9e2OEQt3gsXzj0+u5RGO5cLmelVPRxf/mXf6mVlZURgzUao/FVhm/Tx0CUzcy7YvsN3WutADSeBaPFuNvtKhaLGR2N+BbmyoOZXq9nmgrAki/LecsDIiY8W+RLQrA3aH8oeVD+8/5PiOl95h2bujfsRJ/i3adZ+NbW1pTJZMwM1DNOXDsaLEBgKpUykMgiDxPS7/ft8/gOmH0iMGYjx9dqbGxMmUxG8Xh8qIvQZ/NxavVZih5YAGbRcdDq7dv6Ee0CILhvgCsPgGA0KF/0+30dHx+r0WjY6R2GEU2NL396Lyav6QIE+U5O/2cetANGAW3e2uKLAm0ZlKV4Hzqdjj0HGBnvEt9oNAx0s9lHo1Hl83nTqfmuPuYEGZCnp6cqFosqFAoWpk1r/9LSkk5OTrS7u2sM2tTUlBYXF3V7e2uA/sWLFwYmGo2GdXL6SCqyDSnXU3ILhUI6PDzU3t6eyuWy+v2+CcTxXPIeZ7AelI8rlYqBYljqXC5nBw3moW/64CBTLBatVEXJFLBGSDTvFl3HgInb21vVajVJsvUrEolYJydrFECZa6jX66YxoysZSQTvJLYVZH02m01jquispATX7XY1MzOje/fumbYQc8/V1VXNzs4aMxiLxUzLJsl83ba3t7Wzs2MJFf/3//5fA6Gsz0gUOCze3NwYmPKZpoFAQI1Gw4Do6empgSkOGnTmws4hlfgiC5MRwBqN0fglBiDG09h+42Gz8v+fkzMLN6UoQBEnQij3VqtlQAhvG9ygiZF4+PChlXVgdAAHsEUwOASretd4ygutVst0W2zivrRHYnw6nTbGaHl5WfPz8+bA3Gq1TITearW0vb2tXC6nVCplCyHC6lgsZsLaUqlklgQs/IAjylY4pQNQCKDmv3My55QOsEX7xqCLitbwk5MTvfPOO1ZyQlgP2IFx9KwSZQSvn6Jd/fr6Wh988MGQp5TX1cGEAD7Pz8/1wx/+UOVyWeVy2coh3Mt2uz0U+EyJ1OurAN2wqFyf9+Ti8yhNeoDoo3K82SubO3Plbgbm541AIKD19XW9++67CgaDOj4+1uvXr62zle8Mu0a7PmWxcrms/f19nZycqF6vG+tVqVSM6czlcnr8+LHdj8ePH+vjjz/Wxx9/bMxUJpNRNBrVxsaG3f9nz56ZMHt6etrEzX/zN3+jTqejeDxu5dmFhQXNz89bqa3Vaml2dtaE1hsbG8rlchay3Gg0zHYBl3Y62Kanp/Wd73xHu7u7JvoGdEWjUWUyGWMp4/G4QqGQ6vW6Li4utLe3p3Q6bcHPhULBdJzX19eqVqs6PDxUt9tVv9+3kilsHu8tYBTQMDY2pvn5eTugAULQNwEU+R7r6+tqNBr66U9/avFLmUxGu7u7Vu4sFovW4YlcgTJdIBCwjsejoyNdXV3p0aNH2tnZ0Y9+9CP9u3/37/SHf/iHevbsmWnAfKl5bm7OSo/9fl/b29v6wQ9+oL/4i7/Q5eWl3r59q9evX5spKEANEByJRMxHbX9/X51OR9/73vdUKBT0G7/xGyqVSqadOjs7s/mGGSyALB6PmySCIPOlpSVjfkcAazRG42sYaFvYLHwArqeHvVEn/53/huEdgmbM7zhVpdNp0y740F26xG5ubkxgS+s/DAS+W7AG/BwdP2yslLAIZOZafNcWDAYt2Jx4Y7GY5ufnhzZiTpbdbld7e3smXKYzqtFo2PdE04FuCAE2v88LyQeDgTFVPlA6FouZPxhgh9MzAmIMJNHgAHAxLvSMCyUxQAgO2WwYntm5G3pM6/+XDZyq6/W69vb2dHp6qtevX6tcLuvo6MjYIxg3ROCARwA5ABMWyweHU8b1pqPez8vr6Pjvnpni830XKN/blzg/b9zc3OjVq1c6OjpSKBQyNgjWxWv9AE4wB3xHwq3pJvMaP8D406dP7TsfHx/r+PjYUhGwg0gmk8rlclpeXta3vvUt/dqv/ZqxWMyhsbExfetb39LJyYnZFyQSCXOQxwLg9PRUKysrOjs7U7Va1f37920uvvfee2YtQA7gxcWF8vm8dnZ2dHFxofX1dTsEAbqYW3RRXl1d2f9/9uyZJicnVSqVzC7g6upKkUjE9HeUPWmEmZ+fVygUMqB0dnamQqFgeXo+YPuunQrser1eH7KA8M7maLEKhYKCwaAePXqkWq1mthv5fN5Ka9hQcO2sUePj43rw4IGZvtZqNb333nt6//33FY/H9dFHH2lsbMxK/ZeXl9rZ2dF//s//Wc1m0xzh+/2+/uZv/kabm5vWgMF7IMnWZBoCaDyh3IeWjZIoJXe0gtVq1Rj9o6MjO+zQfMDBLZPJWJ5pOBzWH/zBH4wA1miMxlcd3lWcWr0vHXkvJv/ffbkQETXUPfEc8XjcAllnZmasw86bbcJUARIAQDAEbB6+1AeIQ4sSiUTs9In/VSQSsYXSZ8/hg8QmT1gyrJvfkNlIKP8Brmj5p4vJt/7DsHnh+NTUlMWU0AXI/fPhw5SEEMLj4o2Gi58fGxsz88xsNjvESvl8QLypKHGwIQNA2SgAob7845kcb9CKluPVq1fWKbezs6PLy0tVq1W7XhhDGiL4vpyMER/DQty1pqD8c7dkSHamd+D3AMszbgAA2C9+j3fe/7zBdZTLZW1tbVk3HeAZQFIoFIzVpTSFFxQMZC6XswYR9FiSNDs7q3Q6rePj4yGrDvR0eHDxrABCoVBIT548sT/z3+Gjjz6y9+rq6so0Xx40YnAL+0TOHlqnXq+nSqWiTqdjGqPFxUU9evRI5+fnWl9f14MHDywKCEYlGo1arA9RNGgbac7AjuDy8lKpVMoOPojWYRffeeedIRsVdH8eoIfDYdO/UY72HnQ0SPDuw/ienJyoVCppeXlZxWJRl5eXWllZ0eTkpB4/fvyP2nf8U9ZTDkXYaGDl8aMf/Uj//b//d+ssTKfT1omKOSydh2g06dTEiw0GeHx8XPfv31cikVAgEDBGajAYaHNzc8igmCoBui281zDk5b5xQP2yBpCRyH00RuOfOMbGxvQv/+W/1PPnz4fE4QCZu2aVvqyIAD2bzWphYUHf+MY3tLS0pJWVFZVKJYucePv2rTloo+lAn4SOik0edgEARQnNl3+8ISgAAY0Cmz+ADyAFSKMlnBIUmwsOzrlczhY9MszC4bBlwHW7XQMDMzMzmp2d1dLSkrXL++vx1+vNT30gts8aZCMAUHj2h9Imvw9DTzZjNFtee4Qpo7ep8OsgJ37v++NBLP9w/X5wj/kMfICq1aoGg4Gy2ayVOvHXYdPn1E0pB40XTQ9sKul02jzUuLbz83M1Gg395Cc/0X/5L//Fvu/dDYGyKMARZoB7DVD5kz/5E3388cefW2q8urrSn/7pnxo7wEaPpxFzAMaRZ4m9Sb/fV71eV7vdVjgc1q/8yq+Y5UO9Xle5XDbncjIAd3Z2jMEJBoNqNBp6/fq1pJ93sh0dHanZbJpWJh6PW0nYx59Qyl5dXdXBwYGxtAj20UAyN7AfgB3CyR+NIIcZr/eh5C3JOuNIQOBZYJkQjUat7MzvofzlkxRgqO/fvz8UFB4MBk3jVKlUhjR33vKFuRyLxeyQwvvhm0oA+DxrtI4zMzPGVGaz2aHYGw5D6Ol4P/HzK5VKmp6eNk0lJVnYe38ITafTCgaDOjw81M3NjR1A8XSjPI5mtVKpaHt72w6psPipVMrYfxgx/PLoRg6FQvYOYCPBWuAzB8nJhIVdW1uz+TBisEZjNP6Zg0WOxc2/UIAsX5phs0smkyoWi3ai/fjjj01YWq/X9eLFC21tbenFixdWavDJ7lDefkNnkYRlgSnAwgEhNWwL181JFvqbbhtv2wDo8GVArsE7utN1yO9mMUX8yvWzKUgaAoGSjI1AuO79oviusCoe7HBdsFrj4+PGAqIDicViajQaplvqdDpWOgBo8VnVanXI5NNHEXk2B9bOa7K8iNv/rA/ppjyTz+dNYI8AHrDIPzBuMFiUOwHsp6enBmCx51hcXLQSIvesVCrpW9/6ll68eKFqtWp/5lk2nrV3qfe+Wf9YeZDv+sMf/lAPHz60rk70Z4FAQG/fvlWtVlM6nbbyLc/PgxdMITc2NjQ/P6/p6Wlr5Zekv//7vzex897ensXNoPt6/vy5xsfHlUgk7B61221jfsLhsF69emXsGd2D7733nn7lV37F9DeA9EajYYwnFiSHh4dWikKPw73DD2xsbMy6PGFumbs7Ozsmhoc5o0S8trZmGrPBYGDMNuU9mmIAKzc3N9re3lYqldJgMFClUlEoFDL/LawRmOeETwOqsKDwzBYB1gjFuUY0iugTE4mEtre3VS6XzcGd7EbsM+bn543JJBNxMBjo0aNHZkMSDAZ1cHBgJWCYI0KkOezBmsdiMSvZAQIJwT49PdXe3p4+++wzS31ApE6aQKPRUL1eNwbcM7msTRxWaRzAyZ/n1Gg0zBA2FotpeXl5VCIcjdH4OgagwZte+tIMf356eqpCoaBvfvObWllZ0b1792zD/du//VtbPF69eqXt7W1bBCkJwr7Q9cTL7d3Iffeed8D2m78HOTAbGB7SjeY7HAECLGAwTHQr+hIWXkcwJwA0mCSYgng8rnQ6bRYFPl6CwF3KoSzQXsOGxoZ77Nuo0a/lcjndu3dPS0tLprViM6c9Hudzn63Y7XaHxL4IZdHtUL7wYJrvi/UF94e/5+87Fhrcn6OjI5XLZQMv0WjUjEO9J48PyKadHi0V5Uw6mPb29sxwkZ/xn/97v/d7KpfL2tzc1PPnz+3U781rvYkpP8ep/R8DWLe3t9rY2NDU1JSePXtmpRNKzGRW8s5gHOm7WyntFAoFffLJJ/r0008t0mZ1dVXX19f6wQ9+YM89nU7r4uJC/+2//behTbbVaun58+fG7ALiOVzwXmAlMj4+rq2tLe3u7mp+fl5PnjzRj3/8YzM7rVarxrTiO4XhKNcP8CU3kUMVBpgwHbFYTGtra0MZkDA2p6enOjw8tEaSQqFgTPb8/LwBUsT3hEZ/8skn9pz47EwmY7mC3Hc0njx3OuHa7bYdFjudjrGMsFT4eJE9GgqFtL+/r+3tbV1cXFgnLiC9VquZNUO1WrXvyKE0GAyq1+vZ3OFQRsanP8CSBBCJRMyehENFJBJRJpPR7e2tSRFgqkqlkrG/6Oz8GipJ1WrVWCwA1WAwUDKZtHJ2V9rGvAAAIABJREFUt9vV7u6ulW0xaOX+hMNhzc3N6cGDB9a4MQJYozEa/8zhWRU20rvlQDa4YrGod955R++++66VBmq1mk5OTsw/ZWpqSnt7e7/A6rDg+eDiu67pXojuy1Rs8ldXV5/b3QL486JuGBQ2RR//gb6HTcL7JlGqRJQPk+QNRtnM+J3+2r32CEreX6f3efKt65QEiGaZmppSJpMZcrbH2BG3Z+6dF9V7XVIkEhliCQGPdGXBUlG68wJabzPhY3P8/AAceTAKqOFn+P135xzsHn+OdsWfvrH+wLHaBzyHQiEtLS0pFAppMBjo6OhIjUbDSoOwDz73EGbQ5zd+Uelc+oeczsPDQwt8npmZUTqd1tLSkiSZyzbt+Nls1jZBNm+0LYT6Xl1dmX1CrVbT4uKistmsgVLPnCIYxxaEzZR7BtCmbR9QTBfg/v6+crmcRfGEQiEDgnSlsfFiSomYmygbNE8AOJo2eDcHg4GV+mAjT05OTPAOkMOCpNFoqNPpKJlMamZmRq1WS+1227ynsLuYnJw0cISfFHYMHNyur6/tPaFRhNIi714sFrPDUTKZVKlUsvd7bGzMrpP32us8KYdTUvPfGd0kQI53dDAYDMV8eY0hjBeWDswP7iHifMT13EsAUCQSsXUMcMR7dH5+rng8rmw2q2QyqUajobdv3xrTjVcdayO+hJjjnp6eWoc3h+IRwBqN0fgKgwWQcpnPFfSb9cOHD/Vrv/Zrurq60ne/+107mZ2entppG7sHD5TuAjmYFP4bYAOmCm2H3xzpCPQZZD4DkY3dR3x4gMXAeR69Fm3XeD5hIIrnD+DJM0+ALNym+f6c9H0XZC6Xs5+lewkGD70OmzBmjeiGWMgRPKOzoJzDYs/i7TMHva8XvwuAWigUdHNzY8J0wBQdR76bD50d84RF3udQUmr1ZUeu2QM0uh9hr3zANs8ZRoIS4fPnz7WwsKClpSULJOaZHBwcGAD+1V/9VfX7fX3/+9/X2NiY0um0MUoAJm+yiDXAFwl5eT6dTkf5fF6rq6tKp9M2P6enp9VoNIy5I/5kcXFRpVJJ3W7XNjaeN1oumg5arZZ1193c3Ghvb882O9gMSmNoZACX1WpVmUzG2MJ/8S/+hZLJpJ4+fWqbL6B5aWlJsVhMBwcHqlarqtfr5gXH/ZGkVCplpcDBYKB2u61Wq2UmnZ59BCDH43FlMhm9fPlS8Xhcp6enqlQqSqVS9mxxOb+4uND+/r69lxjvSrIIIq6dciggybNBk5OTKhQKKpVKlhbx0Ucfmcfa4eGh3rx5MxQRhQif+ZxMJjU7O6tQKKS9vT396Ec/0vn5uaUMUKbHOBZxOWX4eDyuubk5dbtdTU5O6sGDB9bVCJPMekfTSjQa1WAwsGeEJs0DMHJY0T5dXV3pwYMHuri40GeffWaeZQAmNIpUBjKZjJVYeR8/+OADa8LodrsWWs1ajxcdkUGUsEdhz6MxGl/D4GQP8EAfwGLKiT2Xy5mvSrVaNR8k2BrKeP7F9MJt2Kq71g++9OeBAJ8PWPElNW886ctjnBi9VgxQx2bEwg9QorMOYOfd4DnFeRG4d16nPOnBH4s4fxeAQns/TtLRaNQMIRFRcxoGzHi/p8vLSysbstADELgef18ohwCEvREnxqewW2jUAIsALm/u6mOFPPMIiIK5Qm/jQbpnFSklAQL896XLzAuYAWc+Z5LyK2HaAJL33ntP1Wp16L7AVvFc0Z1wH76M2S2Xy6a/ymQymp6etrIkZqmYNy4uLmpqakq7u7vqdDqqVCo6Pz8f8kCTfm7PQHg09hWdTsdK494+I5lMWo4huif8szDzbTQaSiQSxiSHw2HzyGI+npyc6OTkRNFoVN/+9rd1fn6uTz/9VOPj48pmswbK8UyKx+P2fieTSXOdp9TqbT7wTyKnEEBCWRqWjLmJ/gm9DxoqNIY8+9PTU7M98Xopnk21WrUSJWCB/91ut1Wr1XR1dWXgzYNzbApSqZQ1uHDACQQCxoixBgBEYrGYCoWClXOZw7B8nzfvi8WiaalwlYfth6GbmZlRrVbT2dmZwuGwvZuEXk9OTmphYcHWCubK7u6uHYhoPKC0uLOzo8nJSc3Ozg4ZLvPuAFynp6eVSqXsHvo1awSwRmM0vuKAOmeThnkgN2x+fl6Li4uSpI2NDXU6HUtcRwzLz6FPYcP2pTAftuy1Xr40yeJEOcEDFV9KuxvvAvhieBBEKQDRPD8LiANg4ijuwRmLMt18Nzc36vV6urm5sU0MAT9AjYUZsOedlcPhsFH5nKDRKPn7xL8BBjyTRCJhp2y0LTBD3r8LwJFIJNRoNIaYPE6n3jWd64AV8OyB/8dr4BAy8yw9c+JNQH1XGd5KHjBRrkUT1Ol0bEN97733TADsW97pBgUIw6o9efLEomZgO5gnAGEfo/SPdZfzXarVqiqVitk14FUFk5nL5ZTJZKzLsdPpGHiKRCKmJ5qenjYgxr0kFDwQCGhjY0PT09Pq9/v2ndH0YX1yeHhoXWe7u7s6OjrSxsaGpSZwDXxGq9Wy8m8wGLRmlF6vp+npab3//vtWMtzc3FS/39fCwoIxPgD0Xq+nRqNhUTnZbFa1Ws1iYQBX5+fn2t7ethIyBr2U0DiQ1et18+ryWrlgMKi5uTnLfqSMlkqlhjzx6KZst9va3t62uXV9fa10Oq16vT4UUu7BBD+zv79vJdJYLKZcLqfLy0vdu3fP0imI1QHwhkIhK9/ivfejH/1I5XLZmMZCoaCXL1/q5ORE77//vqanp60kz1zHRiafzysYDOr8/Fy7u7s2T2AUKU0+ePBgqMrA/WV95LDEfMHBHUd8KguUjznUMU+RecAgfpFdxQhgjcZo/JIaLEALJ9TJyUktLy+bpoEQXjqVeImXlpas5RwHeISY/F4vdL/LNgEKAAYs0Ihk77pte7Gyj8lBN+U78zwzd7cL0gM3TFLZpP0i6MX5l5eXCofDZklAOTKRSOjVq1caDAZKp9Pmu+W1Sfwb5oo8O9g1yqBsuIBArAFo+X/58qWFSt+7d0/7+/v67LPP7DQKwEMrQ9nQ65cANZ698to0wCBiXJg0xMacmPEpo7uSspEv7fpnx+nZB2B7htGzg+12235/s9k04Ht2dmYMFIAPQHp6eqpqtaqZmRlls1krR/nnimiYz/uiwXUtLS0pn8+b+LzX61l0y+vXr21TZ9Nn7i8sLJiJ5GAwUK/X09ramnWg1et11et1myMIuG9vb40ppnuW8mM+nzemBHYMPRRO4QQYw1yi7cE+IBAI6D/9p/9krNzV1ZX+x//4H/Yc9/f3dXt7q+fPn1vZie47Ov3W19cN9LfbbZXLZfv+aKx8uRgwhXcZ831lZcXWgZWVFROSk2UZDAaVzWaHvOvQY01PT+vBgwemn0R/V6lUlEgklEgk9OjRIzM+bbfbdgik+Ya5wPNutVpWtnvz5o3C4bDGx8fV7XaVz+f18OFDtdttNRoNzczM6Pz8XN///vctuDsQCJgu6/z83KwfXr9+bSHOkrS5uWnzjINasVhUJpNRIpHQ4eGhtre3FQqFNDMzo1KppKurKz179sw0ZKx7iUTCAu29q74H/ZR3CeH2PmXoZFnbsHVJJpNfqE8cAazRGI1fYkCPs9DQxVYsFs3TBadtaH9o/VarZVol3/7vGRNvp8DGDu3tGRA2S8TvbOYsgoAzX4r0gnPvp+TzFb0o238W35cyFcaXvqvPh1ADENLptGlj7hqw4qCNazn3A4YJFsEbRPrNyPtowdI0m031+32dnZ3p+PjYhKrZbHYIiHGP/Xdis/MGjGxQdBp6WwYAljefBbjetW9g4/Mu83cbGvxn+kxBP094LgAl/jt6Hp4fGzMavF6vN8T6XV1dqVqtampqSvl83qJmPMgCYHovsi8beDadnZ0ZCCLPkWuAGcMsttFo2FzCX2piYsIaF9A48ay90ebx8bGxJtxH7u/h4aEBXcAV2kmsSXzDA9Yi3E8ODWgBAQBXV1fGuo2NjVl3rE8lIH0AHRkg7m5TAr5NExMTZq/Bd+ZZw8zhMwcA4DDhDYdpFGBu0QiBISkMI+Uw0hK8txYl2mazaYkPMJqU/jBf9bmd/mBCOTKdTptdRafTsXWR3y3JIn+wUOj3+8YGs3ZxWDw/P1exWNTc3JwBeBhHbDyY8/v7+9ZYw/zFEBZ2isNgIpFQsVhULpczVvP4+NjWJhoaotHoUJTX9PS0Tk5OLKJrBLBGYzS+4sASgHZtPJdIkUcvA91OaaVWq5lQ1zMWXgDNAuH/vw9u9macLMAsIES9sCFzSmb4jh4vbPfCb/RWfCYAAgYK4ISW565hIYaRMAEAJU7WdDUCQii74WbONQIOYV84oVNW5B4BHnxZBl+usbExO2WGQiHbiEulki3GbIIwdx70UEoDHMAKXF1dKZ1Oq1AomLjZg8O7mji6IxHa09VEOQcXaj7TM3kAee4T4BAWDGsFwPfLly8tMHhhYcFYrHK5bGUw7+lEFxoAVPp5lx9AA0Ev9hZfxGLBdNbrdYVCIR0dHanT6Wh+fl6ZTEb5fF6Tk5PmdM4zWV1d1WAwULVaNRauUChYUPPe3p4ODw91dXVl5ShAB0AcZmViYkJ7e3uanp5Wu93W6emplpaWNDMzo729PfMek37uQzY1NWWCeDZ+DidoBAHHxWJxSNzMoQQzzoWFBV1cXBi473Q6WlpaUqFQsEYIymXcx2g0qkqlYusEmi0ipDhUsKHn83kDnWjHisWivTuPHj1SJBLRs2fPdHl5aXmmzL9ms2ndh94ehS7Fdrs9lAJxc3OjVCplrHu1WjWWFOYcRiiTyZhuDX3Z/v6+arWaBXF7KQUsOCXsbrdr85+mAt6Xx48fG7vY7Xb19OlTffrpp0P6LcrnfNdIJGLNE3t7e8ZAYmJKzA/AmPLo0dGRpqenDfhOT09bFyZZpYVCwaKZbm5uLOfQg8ERwBqN0fhnDlgPwlpnZmZM7Op1OuQCeiGkZ088qwSouLm5sWw2X4LywcJs4izMCNLxP/LGpGgQ+G++mxDQ5N29uQaYo1QqZSJuFkAYIzbscDhswbz8A8hh47+6ujKBLgCR+BEPEDhpeod8gqu5VwBYTtVcF50+lOS8szxsSSQSMUd6NGGwd4DOuyCCqJlOp2P3l1KTX1S5v96vymc/elsKwBj+QfV63bRAXN/dUvH09PTQ8/JWId6MkS5HQBudnl6Me/f+8XyYQzCCHtzd9QG7WyJEGwZDSiDx8fGxKpWK+v2+wuGw1tbWdO/ePSWTST179kz/+3//b9PAwThgN0GnHYAUN3MOObCHvGewVNgEIAbHCRxATcmTkhNlwWKxaOkJbNQnJyfa2toyr7bDw0N9+9vf1qNHj/TZZ59pd3d3iKmCDUmn00qn09akAcCpVquan5/X5OSkdnZ2dH19bYaapDEsLy+bKP/Zs2fmtXR5eWmRPAjHp6entbGxoWg0qnv37imdTlv5EF+xVqtl5qF0M3oWfWpqyrou9/b2FAwGFY/Hh9YbWBysIugIJJy5UqlYE4G3I0mn0waod3d3jT2iI5P7DeN4e3tretXJyUkDm1wnTKck3b9/X2NjY9ra2jJXd0laXFzU8vKymdtiekqFgSxTysvlctk6hiORiOWWAhrJzqRs+/DhQytp93o9e8af+26MonJGYzT+aWNsbEx/+Id/qGazaa3nx8fHthFScqALygMpTsV3gRKbHaAJ0ztE5GxelOUoN7CpsLneNRqlq42TOP4v3icLDQIsFSUsmDcYJLQefC9+dyQSMf0BoIvTYCKR0OPHj638Njs7q2AwaMGtuVzOomLueol5MMdahNO074oE7LAJA0zZTOPxuGkv+C7X19dqNBpm1IgfEOVR2LBsNmssGyU9nhGLKWAS7RaAyru5A2oAhvgt+dKkP4nDgBwfHw95cvn8RoAe/w3QRMMDgnfEwJ9++qmVr3i2gCfmEPYRiURCl5eX2traMmCIvuXP/uzP9Lu/+7u/EJUDsOQkj+ElG60k/d7v/Z6JoZvNpqrVqnZ3d3V2dmadnmjCyIuDXeC5Tk1NqVAoKBqNmu8UGy7sKCXCUCikhw8fqtvtqtFoWM7mYDDQy5cvLaQ3Go2alxYHFV+mDYVCVuLGLqJYLOrevXvKZDKWy4lWDquR7e1t01sCpmE+QqGQ5ubmVCwWdXFxoePjYyuVoZNCFL64uKhOp6PNzU0Tc8M0waadnJwM+VIB5rDJwJWewwwWHjx3Dhbes4uDESVJmiRgYUOhkFqtljKZjN555x37HYRS//Vf/7XGx8f16NGjIY8o1qGpqSmtrKyo1+upVquZjrRSqZg+LJvNamlpSa1Wy4KX+d5TU1MqlUrKZDLqdrvqdDrmCebnHcwZLP/p6anpzrC3KJfLBqoBd6wJADtsJVqtliKRiOkdz87OlM/n9T//5//U+vr6KCpnNEbjqwxO1ZxwfNs8//ZaLa+vumu5ACBiw/LRFHcDpfF88mDDgy+vA+LfLGZ8FiDKl+EAC2zAsVhMyWTSjA/5DEAZiyWdVmi5WJQRiLIR+LIlQIHf51kYz1zd9fvyDAqfw99HX+MF+JxQU6mU/Rwib1/OQ8jsy7OU3orFosbGxnR4eGjAlGfpDT8Bzl5bA7Pin68P1eX7+U5Qr3XD74tyLH/f5wP6MjPPAs0fInaeLZ5EfEd/f72xqGcqEB97JusfO3ijPYLdI+Cbf6Nt2draUr1e1/j4uDWHABI7nY7K5bJ1oqHtgVUDpFLapZzD5sscxJCT96DZbFoZDoE9+YS48ftQdYAvn8uB5+bmRrVazXyUYEIGg4EJqHu9npUpY7GYBVpT9kOHxDOjMzIej1tn2mAwUL/ft98Di0x5FO0l744vk0syWwTAF+++ZzwpefqSOPIDfj/3FWE/zCi5moj9FxcXNTk5abo4noWXRXiPNwCVf2e8AWsikVChUNDa2pr29vYMEPKe+6YOQu69iWqr1VK/3ze7Csq6HIpgtcbGxlQqlWwO0BgSi8XU7XYNqPryJpo3GGl/aBmVCEdjNL7CgLbudDpDmxXlNx89EgwGrdvGC8U9KGJx8UwEtDjCWvRHPv/Oa6V8cC2/d2ZmZkgbQH4W10LpxwvUQ6GQstms5ufn1Wg0rHWZv4dQHaDpfW/YlOPxuHkI4T7uhfYwIjhR0wbtPan4u96AkDIgYlvfRXl2dja0uZI75q00Dg4OFAgEFIvFhhoVKOVK0snJiZ1e19fXdXFxYZoQ/qFjzVtl8P1Y6BF7wzh0Oh3zm8I4FsDDBk5pi2vO5XLWMUdmpLdM8JFKMI/MT0na3t42lgu3dp45v4P54sEj+jkvTPcA9ctGJBIxvRadn7Ozs5qcnNRPfvITdbtdLS8vW8kK3V42m1UsFrNOOwApDCOlHGwFEF9TWiaSZX9/X4VCwTLw0um0HYJofABI4qfV7XZNB8f357sC8BFUM3fpKNzc3FQ+n7dnX6lUhgxhKY+dn5+r1WopHA6rUCgomUwqEAjo6OjI5jP/eACD3qrf79scpXOy3+/r7du3Q2HcuJzDujK/E4mEwuGwGo2GGYQSfD42Nqb5+XmVy2UT7gcCAXPh55579hSQE4/HjYltNBoql8t6+fKlMfDRaNS6Jr3VxOnpqZnbjo2NaWVlxRoKjo+PNT4+bgL5v/u7vxtiitERwlACuiKRiDW2zMzMaGVlRRsbG2o2m6Y7TCQSZieB9xWHKcqf6NeeP39u6xRlevwNsXNBJ1YsFoc6skcAazRG4585WKjZvILBoLXk+5Bf2vcxufPlIM9W3NXT4NCNt9Fdp3XYkbsieYYX51ICZCPyYcG+7R+AAx3OZ/hr5pTmY3h8aQuARsiv7xaUZHEeeGB55oQFnJMiAnZf5vTlN//9YHwwWwR0AXph+hDIU76itBsIBFQul+1aYY52dnaG4nm8TQOsDvfdG4AOBgPTgdGhNz4+rqOjo6Fn7LtAKUFyzwCdHqxTDqUL1YMjrsHPJ+9hBhsBwPdCfl8iYl74a0gmk0Ms2heVzsfGxpTP5411gYWrVCqanJxUuVw27ylE+jDBMGz1et20PbBBfE8fnN3pdOwAgt4LzSBMGRrDSqViflGATDRpRO9QPmPu300i8N2t2LOEw2EtLy9bJ65fHyKRiGkOiQNaWFgwlq/ZbFrIMQcHyp34msE84i8H6Ol0OspkMqZBg5VinpC3RxYkZTKeLRYUCLQ5MKJtY3Bfveku5WNvgoxn1NHRka6urrS0tGTgDdYJ0OfL/RzIYAR5L4lUors0HA6bQSrzgqBnb7eCbgpWCyZ2dnbWzFRpCOCgCCvHPYNhJJMQthTAyDwMBoPK5XIKh8OWdzpych+N0fgaBu7dsDG+I86DF05WGFMiwmYT9IwOGz2lFZzeEanf7Sz05p5s9GzefoPEz4ZNgNMop2P0QB7AQJ9zkr6bSefjdmBwOPEjeucEj+Dam2l6zc8XldJ8eQbdmf9sHwbrNRIsuHw3WCkYIzoBK5WKms2mgR+fiUb5UpLpce6W1gAVgEX/DCjvUFbx5Sfu913dFPfA65rwPGPhp4OMzcv7Y/nSp7d+QG/DNfhr5fkArHwZh5/B+JPsuC9zrMZElNw48upCoZBtjnQa0hAC04WfEEARXyQYB+Ylzu38/NnZmYrFopUj5+bmzH8OsEYJaX5+3ryMBoOBzXPYV+4zLJZnUSVZTBTzPJFIaHl5Wf1+31zQp6entbS0ZIwz9xITzFarpd3dXZ2cnBhYoROR/x2NRjUzM2N2AthWwGbjX0YXHgwtjQB0A/J+8F7Q9CHJQqIBcIeHh3Y4otzO4RDrCA4xHGAAWfhFIWFA/4nXlQekWEVQamTNKpfLVsJ88OCBNXSgW2u1WvY7uKbLy0ttb28rGo2aoS3vLO8YnZsEPfNOYa2Qy+WGMjgRrfuyn48eQ0hPeRkm88saQEYAazRG45cYbJy+5BeNRu0FZmGlXR4n95OTE2vL9sAFrQkLCk7JfAagyWulvOYH3ZZnErhGNlAWWzZTQBsLUTabNX+g4+Nj23xYrNigfTckm9LZ2ZlmZ2eHvH2g6ymZ+JgJOpbm5ua0ublp3USBQMAiUPj/lJDY7DybQ8QJJ2oADHofurhevXplrCMxKRcXF8rlcnr06JEajYYZY+7s7BjYun//vubm5iwAdjAYGHMGqGFTAPBxP/yz+j//5/9Y6dCXkdHAoINhXmQyGWtdh5XjfuMoTfmVsolnejj105AA08qfs2l4Bswzq97Kg5Z+4kk+Lzjca+ZSqZRFp/A8AGfYM5CHyIZZKBSUyWSMSWk2m8YeMN/o0IOVYJPNZDJKpVJ6+/ateVcxB7e2ttRsNo3pgWk4PT01fVmj0VA0GlU2m1W73dbh4aESiYTm5ua0urqqYDCovb09AzcI3QGd3//+91WtVg1oBwIB/c7v/I4ePHhgILDRaGh/f19Pnz5Vp9NRvV5XNpu1qBxKccxRrAbQVcHe0DGMQSqMCjo0RNj4RRHnQpSSZ+W63a6i0agODg7s4MC7TlMIzQJXV1cWhtxut01TNzExoZcvX5rtCtd4dXWlxcVFPXjwQJVKxbJAAYrj4+MWsg0Av3fvnr0HgK1AIKCDgwNj/WiewYKBlAhibDjUEoqdTCYN0COcL5VKkv4hJH59fV0zMzO25nmD4Gw2q4cPH2p/f1+DwUCzs7MGvi8uLrSxsWHPeGVlZQSwRmM0vo7hTUbvlgO9ceXV1ZU5RHOCxATQgyNAh3dK9vlkkqyt3JchAUk+ZsXnsnGi5vMAAd7EEoat1+sZDU4phk2bz4Bh8/5ZsAiJRML8wHDKBijBaHnASJcYGz1lNx9WDRPlHcjZDAARvV7PFkSuic339PRU8Xjc8ugQx6NXQmjc7XZtQ+cexmIx20gox1FG8eUgFlwvsvfxRzwbn7d4l3UErHmPMDZrmEq+vzdH5FSNTxUlRoAQIP+u+SnP1OsB/bzyprWAwKmpKWta+KJDB6UXSls+ighAi13C/v6+gXvP4hGge3FxoVevXun8/Fz5fN7AWDwetxgVwOfe3p4dXCit851x8WbjrVQqur6+1tzcnJLJ5BArFwwGVSqVzHKBhIGpqSnTUGE6StkRUACYvbm50c9+9jNzKKfchCj95uZmCCx61hFGiYYRwCClQdg2xOiSzM6C0vf4+LixKsRMUU67uLgw3SOCcG/vwf1PJBIKhUIWyg2bfnt7q0wmo1wuZzYNeLkFg0HLC0wmk/Z5g8HAHN5rtZqFK7Ne0lQzNzen3d1dYy+bzaaxd8TQEE/lDUx5p9FRXlxcaGtryzoKaS4glJtDGetqp9OxbmLeUz6DPEjmNwJ8Pt/7iXnrmBHAGo3R+ArDWyxQygFs0do7NjamXq+nly9fGq0dDAZNX8CL7PUNnOzY0GFS2DzpjMILyWtvAH20/3ONREJAi3sDTN+t2Gq1lM1mbUPECRv3b8pHlBYnJyfV6/VULBYVDocVCASUTqdt0QKwwaQBNOiAqtfrarfbtiF7vywAJ5sApRBfPvINAtls1oAG95IuJbQqpVJJf/u3f6uxsTFbYAOBgEWdsPmhzZGkN2/e/MIzYTMFRLHBwQ76LksPorHp4NnDXvJ5vtmBjZTShY+uYXhQQMu4Z8W8Oz/Xh4cQc8k3R/hsO3+A4HMGg4E1NXzRO3Fzc6NPP/3UOvxWVlbsZ8m2JFSYsi05kV6Y3Gq1dH19rW9961s2B/b397W/v2/3PxQKaXx8XFtbWwYsme8ARX8oubi4UDabtU2YZ5dMJnV2dqb9/X2l02mL9YnFYtrf31en09He3p4k6fHjxyoWi+aLxRzineSA1Gq19MMf/tAAhAf+MzMzSqVSFtMCSJifn7eImnw+b2wpP8/hjXWDBptcLjcExLEggLnhXb24uDDgwzrBuwxrTGg1ditYNpAZyTx99eqVNX5ks1l7p8nm8ya4rD2F1vJCAAASdklEQVQcHPCny2azdoDjfg0GAytZctBJJpOmJ2Ot7HQ6SiQSVv5n/aOZACA/OTmp/f19XVxcWJoDQIn5vL+/r0QiYXMjnU5re3tbg8FAb9++NVNhAGw8Hrc1ZXx8XBsbGwqFQlpfX7c1agSwRmM0viLA8oJhmBi/0XqWiUUGBiEajVqnHUwLm6PXJHkdjg9c9sJz38GIa7dnWTjZUUJDUOy7DWnlpiTlQZbv7POGk7Rvc3Kv1+va3Nw0zQuar0ajYSAOVgMaHubFs24AUZghgmMRLk9OTpoTNjoPTu6wZPj+dLtd7e7umg3A4eGhjo+PzRgV1onNAKAJ00f5zXtueYYO1/i7TBBsHBo2b3rpmRrf0ce98eVRroOyDdfI7+CE7sXs6L8AUt5jzWvI7uZNMoeYM55BA3Rx/V/EYI2NjalYLBp4QETeaDTMiJGOtmg0qlQqZSaoyWRSqVTKniVlu8FgoMPDQ4tNwSeMZga6Zf0zokMvn88rmUyq1+tZmz/3mggfbzgJO1Qul03zc3V1ZTYLROHQecc9pPzL53KYSSQSNu8uLy+1tLSkubk5ZTIZ1et10/sA+nlmOKYzFwiS3tjYsLKwL+0GAgEVCgVzgMdWAAAH6+j1czDZlJy9MzmeYjDP0s8tH8LhsMrl8lBIPb8bcTn6LBpUkE9MTU2pWCwqmUzq9PRUu7u7mpqa0uLiomZmZqy72TfwwFqiSfWNQpQFKdfGYjErFwK8eA8BtQC2QCBgzvRoqjBUHh8f18LCgjqdjra2ttTr9axph7niPQphvQgyHwGs0RiNr2l4HxrfeeQF6gACNkEMMSmdIbjFa4aTHosjbs7YNrDpes0PJUhYFu/8HYvFrCUbVovOHbxqOF1j0Ec5ixKWNyoF5NEqHYlENDs7azqyw8ND03wAPgAybNroSnxOX6FQ0MzMjI6OjhSLxYY8vrh3WADMzs7q+vpae3t7xvJRPgKw0bZ+cHCg8fFxzc/P67d+67fM12Zzc9PEyd5TjM3Fg1bCo703EsCYnwMI+9gWOsEANolEQlNTU+r3+9rd3TUNys3NjR48eGDlDr9ZseF4xo7O1fHxcWPviG3p9/uKx+OKxWJW1uQ5w/7AKnEg4DngteZtQwCyXhP4RSMQCOjRo0d68eKFarWanj9/PpQewHOan583FqrVag1lSDYaDYVCIRUKBZ2cnKjRaJg9AkzC1dWVWQpwyPjwww+1vr6ub3zjG+r3+zo4ONDW1pY5p8diMS0sLBhI3d3dVb1e19rammZnZ02UD9gkKgjGy1t1+NIvpeRkMmmMECVMuuoA0ZStCoWCnjx5ordv35peinnKRg1QZD55UEkOHv//9vZWu7u7Q6bEzM3JyUnl83mdnp6q3W7b/EErhX1HuVxWNBpVNBq1den09FT5fF7hcFiHh4dqt9sKh8PGKGYyGQN8dNVhZ8EalkgkrFPx9PRUhULBXObj8biOjo4M+L3zzjs6Pz//hXcDO4jZ2VktLy9b7mC1WjUNJjIKysT4x0k/7+pE4H9wcKDp6Wk9efJEjUZDu7u79vno2M7PzzU7O6v79+9rc3NT/+///T9lMhlFIhEzrAVAzs/Pa39/X59++qkB+BHAGo3R+AqDkqDXxfiSiwcGCD8pE3obB07q19fXQ1lcACT0G3fdvnm5AVk+HgYtB0CNBQZtFYsunjN3Pac8G4E2hOv2JUIE5IuLi1pdXbVNyIvuuUdcF+3odx3OASipVOoXynQwE5S7+N3ePNGn2LPIehBaqVR0dnamtbU1yyQbGxtTtVo1YMp3JrqGzwEswqDBDiJM5prQ4/iyr2ei8PXhnnptmWdAASOf15VKGVCSaZGYbzAKPmTagyRMRxGBexDutXuUEimNMod8LuKXlQgpr0gyp+xaraZer2elX5gggBt6HspLlJ/xKmq328bWkUc3MTGhlZUVK9cSxv369WsDAzBp+J7xPMvlsur1uk5PT42lqdfrqtVqur6+1tramqLRqHZ3d63b0JfTAXv8Tr4TcxnGhsQA9HC4fvN+EuN0e3trhrjn5+dD+jXKy3xnnhPdjtyvy8tLa37wyQP8bwA0ZTIOJwA1rycMh8P2bt/e3urTTz/VYDAwlo93CxCGPQugitLv4uKiYrGYAap+v69qtWoC8ng8rm63ax2Qjx8/Nu+0VqtlrvaZTMb+fi6XswYFDjc0KyCcp2s6Go3auoMHHWxXPp9XJBIxXy7WkqurK+veJFaLwySu/TCS3lQZX7wRwBqN0fgaAJbPB/RuyrSkA0rQnlAiDIfDQzopOoZ8/pzP4btrO4BFBJu9L+HBOkn/4LLOCdlbIdx1gAa4eQd67/rs9UWBQEC5XE6rq6vKZDLWlv/27VvTI7H4sBF4IEq+GBs9TBYbOWJXYlb4jpQJsA/gz9m0/bVz39jw2KACgYDm5uaUSCQ0Pz9vrfCcmHk+vpwL+IKxoKTqPYAymYy1qnuTTEAtPwOgxR3fO+zDkNEhyobH9+O++kxFb6vgN24AHveAOQZTCbDhfgHieGZec+fZKa/JuguuKC0+ffrUxN18P+Y099RnOhYKBQPVlJzQ/2EKm8lkLDKHZ49YfnV11cpiBwcH2tzc1Obmpi4uLlQsFpXNZi0Chhy8crlsQnba/cvlsprNpi4uLrSwsGDdid6WgefJPCXg/eLiwjqFOSwRJBwIBNRut40Vhq1iDgLUYrGY6vW6dc2ho4JFQ1qAJQNea8RMAZRZg/Bdw++NqCPWklwuJ+kfQq6TyaTN2Xg8rvn5eS0vL+vNmzeqVqsG9LyXmTfL9dYXOOUD5mq1mrFMiOILhYLS6bR5BMIcB4NBA4kI/qkASNLe3p4SicTQQYfDDwwpthJY41Ay5L2LxWJ2EEU/59dJSrfeYZ93rl6va29vb6iJBYbti8Yoi3A0RuOfOMbGxvTHf/zHev369ZDoGOdtH/qKKWQkErEF01s0wFywkbfbbXW7XQMonrli8WNz9JsfG9/l5aWZk7LYY6AJSGJh8Toe70DMtXAyZaO8urrSw4cP9ejRI0WjUY2Pj2t/f1/NZtPap4kf8bES3m2csp0PtWUTZiOmUw0wScefZ7EAetFo1P7cBzajOaMUiWar1+uZaH59fV3Ly8s6OztTs9nUD3/4QwMkXnB+dnZmFgN+XfRgg7KbZ8O899nh4aFpPfByomxKxxgGkbAlsBeADzYG713GPaOtno0DLY/3/+L5sAGiYUFfRcmI7D3mCiU+NCh/8id/oo8//vgXsghhXj/88EPzPiO/j+/Ec4JtQ99Eg8LExITZNQD+otGo2u22MpmMMQtv375VOp3WvXv3NDU1Za3yXAdAzPtaAbD5XvF43DL7ANRoCr1WUJKVDvP5vL0LlMYAOBcXFwbKyuWybm9vzUgUdhozTRg17i2GpcThRCIR7e3tma0BTN3R0ZE1hvhMUDSKaD2ZJzByzCdAZzqd1unpqXVeYi6aTCbNqfzw8FAzMzPa3///7Z1PTxtJEMULbGdCMthgjA0OBGH+CHFBXHLId+aDcImUS6zAgYMzgO2xwQaDIEqyh9Wv9DwbWG0CSpZ0nZAxzExPz/TrV69etezjx4/OtnPcy8tLq1Qq7pR/dHTkzzseYYVCwY6Pj+3r16/2+vXrMSsDxr7VarkNC9rQk5MTB1dUX/M+0b6cZn/bgjCnq9XqWCqU9KJuguv1ut3e3roPGNotpBxXV1fW7/dtdnbWFhcXrd/v+/sQkMz5w/YOBgNbWlqyvb0929jYCL0IQ4R4SMAFcwBYUUdsLVMnNad2CwqUnj9/7osjnwN4bm5uxnbQsBzZlinsUJX6B3yoTYDqh9Q2QA0rART0BVtfX7d6ve4sAIyNtq7RvnwIo1WoD32POzLHZlFXA1XAnYIezgdGB1aGBZEXICyMMnaaMu10Ou78Xa/XbW1tzbrdrnU6nTFwqNYNGixapGi5HtIUjIP6j/GZji/MAgaNw+FwTODMdfA/YAFUC8Xc0r55/K1aaigjxr3AKkDbtQC6tFIWsHJfmhCwCRPGGAKitJBBm5DDBmizccTNpF4+f/7s7VHSNHXBdJIkYy10OAZpM1hkxo0UNUJxzpHxIYVOayLSsVQWct8BSlT2AeSoulXZAFoq5i9MHcCCOUqlG1of0n/ZPph0VSCVioWBFpDEcezP0NTUlLNKAAOAh+qu6Kt4cnJi3W7X4jj2ohPeMRyX4h00ami5KGzgXtAVgfY0HLtQKPjmTG1a0LUBdmCvYWkByIBylRHA3jIHeb7UDkaLj3iute2YboKz9ieAYTa/WpCUNQkOACtEiB8MTZ1hAqiNmQEmvPDwi5mdnXVxsoIadAvokNAknJ2dubZAq8T0gVbdFz+PRiOvgtK0jwIYFgg0RlkXdb5fq9Vsd3fXNjc3LZfLWbPZtNFoZAcHB9br9VyHpLtPdnaYMfLyZdHUCiwABAJ2GCMWfEAOO2h1Hc+24sHIk3SrGqHigRPHsTdrbTabVq1WrVar2Zs3b+z29tb29/ft06dP1uv1xir8ALPcf4wNOTYpNVpvIMxWnyyuCfaOBY9xYCGDyQB0wpSQ+iAFTYokjmO/bjyOAGw6XzmOprNZIFXgrT5qzFE1mL1Ph0UqBlF4HMe2s7Nji4uLXqkWRZEzrO/fvx8TB6OlSpLE1tbWbGJiwns5ct8o0vjw4YMlSeJMJjo3vKpYUC8uLpyViqLIZmZmLE1TS9PUmTnuJQCX1BApWdrzVCoVazQaLrDGJZ6enxyXnoKaygfwAvgYU5oSLywsuMRge3vbWa00Tb0at1QqWa1W8/uMXxYWEMq24oaOTQGVv8Ph0F68eGHLy8tWLBZtbm7OisWiNZtNL/6AzSP9RY+/fr9vxWLRhe5pmtqXL1+sVqvZ1taWW7CwSXz16pUlSeLNsS8vLx14UTlZKpVsZWXFWq2Wg+soiqzb7TrbBEtI6nF1ddWLIHgWsAM5PT21XC5n5XLZO1ksLCxYLpfzdjqwkIzdy5cvbTgc+r3pdrvuc1Uulx308X7O5XKWJIl7fwUfrBAhHihIw/EzL3yAhepaNMevC7328mLhggmZn5/3lyR/kxWGq+4Ipoc2GIihqdRSBoOXAKySam1gOGATGo2Ga62ePXtm7969c20M/j+0qWDBpCpMTR/VvRuWgvNR53uEs6SzAFJotgAS2jZIWwwpI4gfFL9jAUX4zo53NBpZp9OxmZkZi6LItra2LI5ja7fbdnx87C1vGHMYHNK4pEMR3XMP+Q7nQvpUdR8AYsYbLzHE6zT5vbi48Pup1ZVodaieVK0U8w8RfrZEH7YB5hGAzL3TqkUtergPYE1OTtrbt29tNBpZq9Vy4Hl9fW2Hh4dWKpUsn897v0J8y0ij4Xc2HA6dCaTwoFqt2unpqRUKBXfXPz8/t6WlJXdpV/YTVhPriEql4vfp7OzMmSLmCHOU46HJIx0LaGIDggUJ95X5C3OGrcBgMLA4jt2mhHtO1wb8pxDaR1Fk1WrVzxs2jfYsKriGZeMcuHaMQgHYvV7PN0GA5vn5eTcMRZ8GewtbBcMDq47IHSAJYC+Xy7axseFziC4O5+fn1m633TKBDg6whAAVNqloBWHjcGInxYpIn5Q/wDefz9tgMPCCIDZf6KgAcXQjoOqRVPb09LSnoHl+qdSkRRWsHMUMvJfQjFHAEjRYIUL8ZErw6OjImwln6WGt3tLdP6FpG63ag0FSbQ9UtDq/Z1kG/UxTEzzD+vu7WIdsfz3SQ6R21Mlc/7cyXXymoEIbR2fd7zk3/Vx9vRhHBQzK+qkWSgGofjfrTcax1DNJ2/4wfoAwdBdcm2p4dLfK3+j/VkCbPS8W6uz80bY2VPEBzDWNpfonxlf1Ugp47por6oyvoWBbx5hxrNfrViqV/jGnuMZ2uz3GmmEMqddA2k9ZXhY2tR8BkKjXEhsUrYrUpuY8W5r6o6qPFCrGmIjO1eme9DPPt/YMzV6vtgLScVQjYs5JN1N8xnwkjcw9YcMGcFItHfeB5xIQqsfTdwjnmU0XA3jYxGnFqNo/aJpYu0xo0QzstBoKs8FQDz/Vnmo3AcaCjQ9mo8whff9xHWwMs42n9ZliTrH51QpZNkPZ9CL6QD0Wz6Ky5Vk97dTUlDUaje9WE94JsO7brYQI8afGn7j5+Deg9n+5hnB/H3cMFYD/lzEPEeKpPhv58KIJEeJhQFb2Ifve9+56ELOL0q9+/vQ8s0zXYwCbpwqMf3azet95/+h8e+yxyM6dXw32f5dn6nc654f8/09hA/Zo9/FbGJkQIUKECBEiRIgHjckwBCFChAgRIkSIEA8bfwFRvjbahA36uAAAAABJRU5ErkJggg==" } }, "cell_type": "markdown", @@ -97,7 +97,7 @@ "metadata": {}, "outputs": [], "source": [ - "#%% make sure figures appears inline and animations works\n", + "# Make sure figures appears inline and animations works\n", "%matplotlib notebook\n", "\n", "# Setup the working directory for the notebook\n", @@ -166,6 +166,18 @@ "Boubertakh R et al. 2009 Whole-heart imaging using undersampled radial phase encoding (RPE) and iterative sensitivity encoding (SENSE) reconstruction. Magn. Reson. Med. 62, 1331–1337. (doi:10.1002/mrm.22102)" ] }, + { + "attachments": { + "grpe_vis.gif": { + "image/gif": "R0lGODlhIAMJAef/AAQvYgAzYgA6ZgA7bQI+bABBbABCeQBGcgBGeABJegRJbwBKdQBNfwBOeQBQdA1MeUFDQBxLcw9PdgRRgwBUeTdIVABUgABUmANWfABWhxZTegBZhCRSegBamABciA1ZhiJXbQ5bgQBekAZdnCBadgJhjCJZgVBRTwFjiShccgBloxthiABpoR9jgypgiUNcaAxplRRqkAxtpSNpiiZojwBxqDdkiC9nkTBoil5fXQB1rCFvlgR4sCxwkThukA95qkhtjWhpZip2nRB9r0BzijV2mD92k1hzgU90kzB8omtydTp9nkR9mkZ8n3J0cU17mSSFtFV6mkCEplOCmkuEoVOConp7eCyMuHl+gEaKrIV9d0iLp1KKp3+BfjiSvlyKqWqIl3iGjGqJpGWKqmOMpVyOplaQroeJho+IgYWKjEiZwF6XtWWXr26Wr4+QjXiUrIyRk0+fxoeXn22et1ujxYCbsXWfspeYlZOZm32erWGpy3SlvoOisnmmuYeiuYGkuZqgop6gnWuuzpWlrKqhmnqsxYCswI+pvYirwKWmo4atu6Knqna104azxqqsqY6yx5Wwx6iusJ+wuJOzwo21w3+50a+xrp21xom60466zpW5z5O7ybyyqrC1uKe3v5q6yrO1spDB26C/z7m7uLW+yKPD072+u7q/wbHByKXF1a/Dz5vI3KLG3KrG0MHDwKLN4bDM17rK0cbIxbjL2K3O3sXKzbTQ27vP28vNybzQ3MXP2bjV37/T38zS1NDSzrfX58TV27/X3MLW4rrb68vX5dXW08XZ5snZ4OHVzcHd6NTZ3Mzc49nb187e5c/g5sfk7s7i7tLi6dvg497g3NTk69bn7uTm497n7+fl6eLn6dnq8d7r7Nvs8uLq8+jq5+br7uft7+Lv8OXu9unu8Ozu6+/t8eDx9+rv8uvw8/Lv9Obz9Ozy9PDy7un2+O/19/bz+PP18fL3+v717vP5+/f59vX7/fn7+Pr8+ff9//H///v9+vn+///9+/z/+/7//P///yH/C05FVFNDQVBFMi4wAwEAAAAh/hpDcmVhdGVkIHdpdGggR0lNUCBvbiBhIE1hYwAh+QQACgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRoxb16bspcKUre6CsTXM0LZGrQMUs3aFnpZisQN4ceZ3maxpTgUv1IV3Ltq3bt3Djyp1Lty5SpfbOFpvmxF4gXPZMsbPGzh68hIXJSZVqydudYriKEbRnt7Lly5gza97MubPbs/5AFeui2Jq/wxfzsmPnzwk8K9YO21Trubbt27hz697NGyc9a8UCNaYskDJoimpNUlabqPVJer2jS59Ovbr16z5p+ytWbFQxUJP9/mnvSBm6QFmyEtHzhRa7+/fw48ufr3mpv8GJIt+Dbk+pzpu0MQOPKYlMI9Bx9CWo4IIMNuigQ2rR0x0o5hGllloG5sCfeA926OGHIIaIGz2RgecPcUjdQxkolhg4nogwxijjjDTiZCBV3vhj01vmnWGPIzUGKeSQRBbJITzTgAKPaTrKpQ9l7OASyGH0vGjklVhmqSVvN8lCTyAcWjkXOcy4ceCWaKap5ppzsXPPHawhaBdxbrgiJ5t45qnnnhrZl6QlOt5p15P+WMKMKe3xqeiijDaaqBvTSCboZcQVKJmjmGaqaZa+MCNLorepJRU5/W1q6qmoPqiWN8zkKJ01/omUmuqstNY63U32yGKKi9HRdoY1rtoq7LDEWuZfMcw0x+F0lMniS2FiFivttNT2RFtjn0YbXbJnVuvtt+CC5As8dyj7HnQ5BBvuuuy2uxBtvhRjRXHxQScLLk26q+++4VIGT52B1DQpdZQZeiK/CCcsLG13WCMlignmeMbBCldscabwsOOINzKpmyBlo5h08cgk72mKL+SQYwp4A7tnjz2QilyydEqllVd/L59Y88w8UwSdPjj644hsHprYcs914fWkrA8plxbSUBdEqDdusGZPIohqS59aVmQb9WZKx7RdpI74kt8ZyW51hjfcqWRPTRB/jTRlOZzJZIg3kWOg/txxHceO3t7gUmZYU1Y9TWw1DXTYNN6EVRUuiXwnS5TweKw139+qRQ4u4OUM690gSmgJa5ivRVl5/rjCDla+yIIs6RfRY8+4Yk0zryM5i3d06Qtvx93BlN1BY2S8G1Uqa07Qg/ZguUu9LEMXHgRdMevB6QZqOhdfrT3swDMx9jB7E7eId5jin/ZAQReIrsWc/vxINzHFTDGObFzl5eifyo4po7wfE/4Pogw58vcfgQgIF1VDFIfGl5P+BAge+WEcbQBIQD2Jih1BoNeBVge6GKllFBSqYEjOJwtruEEfJtIZBUdCKIH4whuGckVxVijCLdnHF66QTJUGAh0zCelC/v2jYQ0XwpSbOMEfMOlWW2izkn8p8HxDtCBzVvM+tcBJiA1SCyhkGMWM0IMefOHY++iilH/54otd3JMsAjNGDjGDgTTK2O7S6DzWuOFqGqSUWlxhDUesRDxYpOOHjBMc1lhJLYEozJXWFsghMuVk8WpKZ4gTL1+wh2KCHBJN/MG/JyIEPVgKXl4yScTtWAMU3Gsj2E7jjxP2T5WkxJtAzlCMHGntJVhSCzMG2EgCrmdycLyNYWQBCjfFkkb28EYXYDmQZGYwS5Sp2jENwg4YuoSZtmEKLvaHzWkmyD/N4VVCboKvYAapWd4EpD8S4Q1eWqc802AGMzCZzgVBhxyy/phnN6EjvF526CSjsIY5RfikjE0setehjT0s8alR1pM+++Gkerp5sLpVSEuROibdDEkfypzAHxd9KHwoAwGQrrB9/gyRKYoBxSGqBR6jUNZAq7NJR4zCYyK9jjdWdqI5hoYZLdUSM6YR0iEOtaENIk4xd5jT6WjuSyCdaUG8wqabmKmoWsKHZgzjj4nJLItqGR09m7obDHmJItXEE2WO6NMZcSMem0kPRRMECiCRlTeicoUCJfIkquBJLbCzoT8YoQZ/aLUy9yBHIpAaIuLMK7B3rQ0z2HHEfEVEH+RgT0pFdA9m2HVLWuUBFAxrF5H5UKoKEpkpBojayMLlhoGY/idTL+sPZnAxT/rAxd629Isf6GAVB1GHOg6bIn9Azp0yAixP2+rau9zHWaCSyFrHqiZ7TAN7WoqDDGRAB6nhgw50qAdxi3KTUdx2SN6jbnPpIgt4yHCziuST2YJaJG5coQY1gAI3CKKP74YXH+MlCpDiK6RSfWq9dbkJPTzFUYvcxBLv3ZN1Z3ulX6hABzoYwSv469960IYb9ZhHO9zRjnaoYx488UZMLTukFZUFwX0TSIEANVeGwANQrb0SkHIMIn3UQw1D+MEPvKAGfEyww/owhw4q4Q4vsGC7+dUDaUkSkxbVWES61CGM20IZb/wFOsxFyE3mudkZ3WOZPPZQ/j3McQVzBNnN4qgHWvzrDneogBHiWYc5xLGOV1zAHHImiebMtaWVsnjLRAEZoMK8kPJ9dU+2xBI+4sGNIfBgv+YYSH/Byw0W4FktIa4HNC5gjDIz5CZ3+BSjQcSUDKYZ0SDpoT86qBF6RJpPqG5ekfjhj0pfmtea/q4XVCCDX0wZH/PgASZ2IlM17eizsP4JoZjRuitHZBTG5JNaumPtEPl6vxwWxAWGQQceVONMXhgtTk6y2Eej6UnWuAOpot0T4qwPuR7BhSVeXSTKAMnUCvq2d+kQh3mIYwSVIO0aZOCPQItEVGLbU2y6Te+k+EMWE+M3RABuZk4OMEsC5zB4/uX8i3H7oxIjaAc3zLFnkXyRrRJuDT0+XnGSWMMUn6LwRxyRQkXdJIQgtzS4g60GNQRaDRcYtQyeDOWGe4Q2YMLqmqZH5pqHxECnZSE8DtwozNIYSyEvCDWo8eFfmOMXxkh72o3N8YFA7pqLogko9mr1khRsGpAdoT2YIXXcLlhLYV8IsAX990yxo32rrntB8gaWtivkHqvDFOQDofEHBX4oNJkGmDTliG0qPiPTQKCOHJ8QmugTU+0M+qWNwpTmVN5ITJHh6yt+E/eGsO8gMQy0426PYtDcSJcXytzhnqnMC+/zESmYN0xEeoWsareOYpHqhz6UlOE+7vfAKfKd/q8Pdiz6J126lOQBL3Sj1DXxaaorxemtXMb6pEvYbRSBmv+e4GfnR7TS5TzR31zi3GGnh8YT5bV+WcIOXkJ/2GF/PNF9lvB7qZJZ4rd94eEK5qVEP0EZB4Ux1sB/C6KAO3ETWWMr5HBrEghO1HMUNIGAMDINVcOBCeKBOsEOaGYrN+EKgKKCmUQOriATLogRaiEOL8ANPSgkOjckMIgTOqheqLJtEVh39uEs8UcUt3AAKUAAn5Ap9zA0QygfRwg/C1aEtDJZyGceGUSCRWEEC5ACB1AG7oCDHnIPB3glXRgSkAcp1OIE4uOE6zQK1wd+/lAGEiABC8CGbvhPppA4/sBXfu/nD5c0LZSBKLOXSclhDYkEUs5FDUjgAzigADgQDcUXh4m4ej9BDjdFLVbkUNEmUM3RQkURaH+AAa0gEGEQXYtyD1Ywb6FIfQXkCmZILNAxL5HYRW/TVaRSiA+BYtdAAX9ADU4nC0amKcRXX4rYE6BkjFiSfa8EY112QtboEChmBxTAC820TptyZrgojaIogBL0LZCXjQhmD2fQUN3YEN8wAz5gWLTRJQSYJSgBdtO4E6TobtTSKc11EwZIY8GYEfxAHHNgArngD+5AXD/ngI2SCNmGjrpIeKBAkdVCD45wkWQ1CjClTkaBYssQAWwgZ8ehFrjQiI5iQv2Y/os+QUXsIilk9RJ41Ic9oVV2gAH14A4KYWubkpAv+I+Cllu7By7kYCZEiTmBE2FHwWvO0ANGAJEKYQ9LqSnTcEVyaJQkYYA6OSzbJk7TRByOsCsBGBQ3gQ9/0AKx6HAIQRMu2SiNM307AR03yC5qMTn7iDmEgnMKtIUXgWLRcAB/sA5O9y5gpCmsIpjxMYcacRMW5S4YmHd05B9BkH1sAZRUYAIZ+XjsYAXaxyeuwHUyqRMpgzB/4005FCdskQ0SMAf+gGIR8UeYcjh2uW5CYxb7gpX9JEja5HuOWRH8EGhl0ALAYJUSsUWO8iSuAH0YqRPMAAoCyS6ycF5R1COV/rMWQNkKM1AHAhFgD1EMpjCcIXISa5SbOQGG7MKe+UMbXVAMljkUcsYGGIAO4lmbTZlc9CCS6kkSZ6kwmjcTUdQ4VrAhzrcTWmUPzrAA4EmbFkEuMelz7ICd0Slo8DCX/OJ78zgt2WcJl3Qh9mEQEfIk1akWDmQRcjYPZGAE4giXFsE4jLJtdHeaI0EZFrovh7iflGkPNxdRNaEdtvYlHmkF8JAusgCikeMaZ6Ak5aRpS9FWcKUKIeAHC7oRxcSjIBI85gkfkGkRlNEF0Mkv98CU6LMUGSM87jNr0/AVENam97BNyfQ28GAYWJkS+HIGuIALTkCeEZei74JiVIAD/uAAEq7HKATWlen4cLqWMESlPS/lD3UjEDBBDk7gC27ADKBzIaiTFsqRPZPhC3VlCoKBRgxRDRFQBv4AVx0RVmk5dZKqhEHypRUBHV6lMFpEa19DGbgwCv0TT95wBje2eLOBUAmaFypSEDD0HbiZR3KGD1wQAisaErWkKK4aljFCqxOhRRy5LzaxinxDG2LhD4lUNad3IABXMxN0eOwwMTRGDyg2CSZACeEpEpvTlzOCIVF4oSPEiNWpL/rYoaeiD63iBvTgBN2zrzFoDbIgbwJBBT2ADjiBgbKKJvDwUdgKI9rKV+Rasezyc6NJMrThq7KwTAfTpQxBHPyQDRXQ/gJ5kJgkwT01iic5oqVc6JUeUaGv6i6r0oQl4x++YA1BMA0GkqxEIWffYAZNcArY0AmppIL6wLA2m0X+0DBT66U42xGm4A0CK2HkkJQj0yNuIJ95NBRTKgGTIBDx0KaCYYGtykkhuyW+kJfkt6ggwXdda0H3YA0Zuy72YQqw0bc4gWz+QAFMcA4F8RuugAs/IxJSwScEuiUbKxEWibKakhITVTLZ5xqmYbkTsQwYkLYQmijymaMckVF/Vaam+Z8f4Q2+wDQXg7ojU0tW0D342hFIC4gCMQ+Dp2nlMZ11+q8VMUVXuzWscruWl7UbkaGwazE0WTGp1AWusxaEgggh/pC22AQv8GCy+0kO31ddnKQmkwsRozCzFmMKX5cw0MEMJ+AN8xkUoMYBZVCoD3Eh5LA+HhsRN9Ecghsj0PFRxYu1dtuqddozE8ovhmEFZkJfQaFV9dAKCrAMMAsROIo7Qwgdy+S57qFL+Ssk4+sQ95BDPHNKzauXL/FRrHQUWnUNTIAE2zDBtSkQGeyCahFJaBKm5JC30vHBp0YPxdQzFhnAegIdLHIYOmwQKIYILYAI9epgUQtd/XsQkOc1W2IJkZsmPNwQpjoz7+sthOIE5rMWhNsCTECLF6EPozCDGhEI7ogleiPEj6m8GIGVE9MzkALHa8I9yzSiSNEKBWAL/rPpESJzoBwRjVfiC6aAx/Unx2dceDzjvu2ybeOCikSBYsdABi2wuyCxH+wgo2V2BolKJP6WJ1n8eCPZM7jgDRqcJitSiiioFmTQA5fgD/yAg9NgCfiSUhSryHhVKHHrjwO8EfowDeZ7Mb6Qy+ByE/LZrT/BDzexDiHABoi5E+5LlhXhvqscHUSMvCBSyqXHNkgDzkd8Tv6wTFEcEu5wDAIgwfnpcq3RwVf5ztm8Gx5liXjizQchZ7/TzgpDijtrK0qBCxlnFFr1DS1QlTDcQFVrzdIVvkXifmyCzwWBtJIQC0gDD5IxzjRCD2YyzwlBuG3gA1f4jBdYtWYMEfdg/jZXXCPF5NEC/JkY4Q5UgAE03QLOAKMWcw8DbYr0w8sJUQ/34A4YwIbcnBp3AJU+kyPnTB+OYLpYzMgScQ/1wAQLQAFWHQIF8A39VTKmodExMkDnOhT80AoHAMg4DRQA8svQQw8Ym6+mpCgSLR74YAsCQAGBGIghIAEJrTBmKi2IxFJDgQ9yJgxPcI/1UA+9OxS5IjyJt79FXR3FQJB8Etdy1gN3fdcU0AL0ezFWBM+aUsM+u4j+QAYhII78PBQZpXE1eFYwsiKNuydxjWJWfdkSQAEYkJwl08Wp8mCbFxTF6Q/bUACf8A2P/REY59kkSrAzcseLEteUQQUKYNeY/h0CPm2tsbrUfAId2K0R8zAJDuAMxf0Rf9mX8ICH1X0ZYsQocd1w1VAAFOAAgUgBClCVZ+2o4S1YmXrfEOIPUwkEtHzaRyE7XfB6na3fnrFtrhDWsA3Vl4UPdiAAtU0BAdADQD0zOCaW5GjgClGcckbasDCbXt0QlEFo22pcxKMqlNHb6s3gE+EMRkABJCAKQBniasIOhzosVCWwKLYNAWAHQAngbkFMSw1Y5ICIDlI3500f6z0Q94AP2IANGp4qGB3lRrIXQqG780DjtbnFFmEJ6bsg5GCTjrLkaFEPvVALSGMN/ePSMKJLKq4T9tEKTMAFq6rlywkms6dvoEof/utBGJlC5mhBJuFcdbaCC4gyz0zBBi3wkPVdWqcBJo2NwSeNHYrx5Y0C6DoCK0hzMlQeJAFSb70mAJPw47WBJGNKEcxwBxqKHcqc0ZqC6U9y6hcjPna+IMyw0zmhFHUQAepQ66lRFZHpDyLp6zshmknOIJjOPW9OMqDAm7UCD/MkxLShDC2gqiSNG/K0ETeFzO90H8pC7NcB6/2psBUzOsf+IaTonhwRaFyABLOwqrzxtYY8Ea03DeD+dFpkCa+9KZiuI8xcMdCSf/qwtTmBYrkgAX1grLvRP0S5FxEVHQASBNV67+HO4ttKLqteMfTQBaFsKt2n1hzBBgrQcBSf/hFqcUTbTRBwkvJyAUYLXPIVH8yFrNv88rypshRU9XC8Ngsh8AcQCfMZcRMZTxHE4QTk0GC2cRJdFXps7m0WTxFWPjPeIAsMnCnBg9zJZ1hRwAQv2u38WxLlZWjCaxnQEZp72uk10u/GZQlVjzC4sLoeXyg0bxEoJgwKoAqI2fRC0VkmyxE1zA6vBPQJkTNuYAV7I/gxD9MbMYwzk5qzchN4DhJyZgcREA4Q9REvszEKjhlszeW2ovbkApK4mjqbvymOYLQccVjCIAGqGg9AziX/IutnfB7FIHuZURXCIzvFovapc8C4SiKITx37s9IZQZs90AMvzKrysXXqXhFM/gEKb48WJU8cxUBL3fT6esL7LKX3eZISxawpYd6UKGYIGCAKk07pcz+8lFoMW6Fpb1Eq8TYK5uRjh40qvI/I/xzJekMrKa2rg0kFADHD3z1/BQ0eRJhQ4UKGDR0+hAjRzSh9+iJeTGgRlKti7AhiBBkyoT1/XUwVa8jPXz18/rjpwWdR5EyaNW3eDMltCA9uOB3SQynT51CiRY0eVWhx2iikTZ0+FamPnixvPlvqUxXij794UL0eJehr4FOpBU3h8jVNqNCvCIXSY+eEnZWCHxHOWwctGaMrLC7QWdlW8GCiOnmS9RfIH0nCjR0/RkjSzVjIlS03tHcvEU5+8woy/sFRLfBl0ggJTmb89OM0eomYmSp77x5bqPoYs/PnBl4QWbjp0Ta4youMESx01PCyUmVp5o4N93SqdJo/4M2tX3eo79507N3bErRED2dXUgVadbXrvXKxO9S/yrTHDt4ZcrIM3rNX3WfF1ImL+TLFF7HcY6iadeio4bgfoFGvQaSeQ4wZVwh0sMLrrJksPQs3nMkiWbirqR5/VihiHQ5PLEqqYhJxBCWv7IHHFyvIYaoYb6p6qCUdjtuxEhR/BAnCp0jaTD8gjzzKIkf8EQ9JJxeqaEINL5LpkhAQ8Weelp6EiiQrcHOsv0RkcQSXG+Fp0i33LKporOrksyYtK/RZ/pJJWWT5zUiZQjGuBkF0SM4zLgd1aSfonCLIEXIIZdQn8Chr9Elv7DOyoa64YcIH8QSNFCl76JkQMv4MKgaXDwNpDU/74FnILnboYYaZYooxBRRrHLHGmoPcYMeShzwbRg0WVPAimWGGyHK5ToEUUjVvNls2Wox82WxKaSs8bTGRujLEvIIqvbZDdnS9jDZ9rKFnGlD8sYIZGX1xA5dAeu3CHghkGcUNb0CZhhlypgGzIJKKsSRUawvCR0RBfqhBhVDc8UcNBsP9sVmyyEmTYo0NggfcjbEjx+OF5sGBiWQ/Huoeeu4AETvG2LJnGnu8kVk7g2wDjiRTKH1IH3OG/qihhh+40Wc5kVEuzeKm7mEHVaQ3voOc/p7GjiC6pm7oI1Uo+CRLqofyJmDsLMoPP7MJso1J2cpWiEh/vKm0pXlYUaEGHvRYySJ+RPy6QaWdmmbAvpf1xcXBu7Mk5Ij29icXJqhwZrTDaypcWvz8uTOohkQMVgUW1PjF68kd/Lspcqw5evQN4cFR9ebYEduhrigJoRWEXaeJGYpS55AxK4pZtCF9PPtTB4e/xV290puiD+vkObyHnC5af94yK7xxHiF+TFSgCn+2rD6kmXnfUMkztHWIJR50WB8f8MO/bvkk/cGFQvg3JIfV+0X1KLuCKIkAL7iyv5Akon+M0oc3/lrEJOGthBEqOA4jBkhA68jvKNawz8Eo2BylMGWDjQEFPDTYFWkggQly++BFitExRk3nfOgbmT+GcQUZECsZyklh0gz1HX9Yon7ky2FbvATDID6lGIHIj0Lw4ZkyzGAWRbyIJaahwd6RBFdV0VNL4jAEFrCAFer4HhQvY0GjWIQZ9hPjZUIGxDQWpR44oILk2rgQ2HGpIuS4A/Uawg0oBA0Kh5ojZMhYFMlkL5CCsUgX0nZIo4xiXWpyhyoEkIuTMTIh01iSIS30rHXNhiEWEccrOlCDIQBGS5Z0zg4F4zY2ovImm9GkK0NiDerxgyTLWAEZIBbLOZLkfLx02dtc/gEtTRIkGX2RgRd6wilZCmaQKbKHK1rWTKjAoxi/oSZOmNEyiJHBB7ZDIzWn08rL3IEepkAelEREhx2p4BUiImc2Z/JMo/jijPKEii88iM+aFOOeFZkHBsrAz4OQBAIMPBEtTUGPWLaEG+yrARTmUQ9lERQq9DRKIhhq0aLgp34cnUkxuFMPAAqQmQRlRzwJIxN2+EJKDazHA3eECdGB9KKqJMy+IGXTmuhjGnji6UVEdIrpLKMHRhgI3yxKkPYA8zKMYRlTjJQwf9CiL597hhyD+iCcCuZRGdsqSKyoUnl6xggUaAETKCCNrVokEORST9pMYYkBaXBLceBBw2jh/pn3hfUoGO2oPZywU79CRElwK+wn/WEIB7wgBQWgaljh4dTK+NIbYFWiP55xHBlcAWKJfQpgiWKR04EWI+yYhh5Ni7xJLMACFCgAQnlKkLeSFSrFsA89qGiRdWBCBTIYggSVulqjiJYo2/GVbflpEQGFc7X1INkBGsAGrdqUGfq7zkdwATzn3swfv4BC3dSwTOI2xbhFcWR5G+IKS3hSvd4dRxgGMZCKgpQgZ5hmaZo02Nhp7x4iikOC3Pmt+r4XJ+cdrTfca2COYZPB773udSxyBqA6hCDVYMEPOlvTBxemq445A/Y6HJ/JdPgglkCnXy1iCdWKyh/wsEZ7iJiR/oLEoU+v4LCJfYLgoZBEMZTlqXjaQ8Xy0rKwzO3venRXl0+KaBV9UYEeGDRcHe/4w45RVxLV66EfVtkf04BrW/2hKNJkxh8GBJfcAiwDHbDidl728GEqQ5BQvTdbQE4sLj4aVqUkmTAqY0eJ/bfZoF2BynAeCo+Pa488vndll4OzNfJr0zs/xiLiud6MFbIOQUBQB6HIMaKtLGfSgEK3q5WKNDFrYm+4QstBtcjuwuQPcljCg4aMiT+MMQQZyEANYJxHgUV9E0UXhR6+sMaCCwujjgybdaCdonIxIpNAwKN+GmRcxI5Tg19cZdh/vfJjrKbpoIpnsN/2R/PCSpIc/shWMNaAh6+ILKJkyIAHyfyesNFN7HA/RjwvPHK6yV1lduBZlixEpEVmxTPF3kMNng4dRfcNblKXGR6yCHNQ2cERZSM6EZP1a60J2xSSRBMUJNGgPlqyCl5H2RzVnfioAVkufzADT0TOJn7EIu2gjuKlW7VEsr2SNhTv3EgiMocaasCCIeDYuebARK5jPs9+W0Y3PE8hPeDRhalrvbDWeHVTbBYEf/jZIPxoySs4q4ZDI2Sz9Wj71CFSbE8lZlFY31+bUDNxgpB91RZNBDlwjhNQeENXODdHp3XwA1CfNCHPqAHcGdJXuR+E7p6yR5ysWzm825S52OUpO2QRdkIu/gZApEcIPlTyCxkETQ0FkXhDIC95f7wiGc94RcJE9IrQVR4hl5+fN0Yh9OViECWD73Cs3Q1S1HaeOuLRhxMQvpBse4GzE4vI7FliY3OIgwVxKMgqZNB73xsE+E2ZVXct6SH7VF487Tb4If2JFJlcz+wGEVEo2skIxztk9utQAx0II1pgARwbArxxvsQ6v6aYBq6Lvw/Cj0QQHLmziILbKpFCCnbwBq5bpIVoCQBsvR+IOH1biGeQAXO4AmTxDAC7Aij4gVCrvAUEi4JQDPWboxJ7QAMjiSGjNHoIIaPQusAbuYPYklX4gbqhg66Iu4ZIBh24ghq4An3gG8/gARXw/ofPKj/zq7rSIAhmAIV7ciVyGBObKb+ZETTmuyai+A12MAW4qRQR4QY16LUhoIV0AonNEgRuqAHAoKh4gAaGAb8ljDkZfApQeBVLsofMA73ys42MI6jMq0Gc4A9miESGYJxXSBAWAIwwmgnI84xKGL8BYgFB+AVu48QsJESnUBRHhCLSehYb3Dd9gAeWsS9/+LmeejF/OAEms8Qr9ALjEEGYwwgTnAfPcMGCSMGCsL7+k7tURAqC8AZe+bscUiCxyEEdSyBmuMYgAo9pjAiZ2Jl1MTMoKQhaCBodAD8cqok/hLti/AE9eIUfyKquGILXI8F9c8ZnNIuC28a++QhH/iAI5Nu3fhHIQ1IXWGyg+pAFVsE2z2iH4ZCBBfkeyhOJemCQXKsGc+CGrNoSc4AGZhzELRybkliUfnwagmAHDsxChsgjk6QghfNGiLgHkcogh/jEiBwB/nuMe8RHkQwmbzifgpwcD5kQl6wyZmgxaroHB+wQfzAFd4kIdXhCoREN1VtJQfLJYBozXrwfT3IE8YjJ8iMIrgvLQxqFjQqJsJiGRECbySuIUOABFpABQeCrq6yMfKwNuNCN5UueJgmEaxJKucMjhJyjjUMsjPiIRPhC6jg6f4CGOPAcL6hD97HLu8xK9WAHXAjK8PElSzDKYaujBHSdYvhK3kHJ8wnL/vxjMxnYRIqszMHAy68ouUBQi+phhzMoudfEjMRov5wLHiphKna4u/SZB15jmJ4QRN38itj8istxBG/4zcMhLXbYDLRUzoUgCVyITlciiDa8CJKAB0U5NeqTiVXoE8D4L568ztC6zAqpCtT8zB9JIn2ZtPU8CKmYQFeyCFxIsYeQjTHDBVa8C3+ohidUgStgENG0z7lrTwsRQ/tAPY0ZmKgpS/uUBTdwMFQiiGIAJpKIC2vAjTf0B0b4AePBhLpcUKysOC4hCWvoAjQ5yUDrpBSNiPsTI6Uokocgh2KYjDbpRXPoI6HhSPWkUadgzsZgjEBwhXsKzBOxGX8qsQpN/lFQyCRZqk7FWhS/80aCwAfztDe8OcUiTaUVJZQWnYY78I1lKYuS6JfFUFB0IwhZQKc3RRl6GAXNSQommZSHYJxgGRYvGIaVcE0xbYsjtQxmsIZzi8+nKogusAYwJNQa9QZIlb/xHAlac4XebAjPYIRMpKkwjdTGMNQ5K4jrQYlFdQwz8gZFDdVvvIc7YSSpuANNTQgN5DpYrAd3ME4dQM5WtUwy7ZQ1tYJ+CR5UHZKCSJcNRFY6Lb8POSSfotR0cgVXQKcI9Qe0W4lQ8DS8qYei8VUVnTnLGRhy0I0Umw1m7ZBFwgU68QYXadJQlYpAELw2atH8HAsbISZLIVAa/jpQjvxWyxjV0mCplqIPgzDWm0iNlWlDG/1XhxCLd1Ud2ppRhGgphg2MLaqBEaAFExnUhl3OBmWUj5gZR/UFKR2McYmxPUPXymQ3vkyhH1yLghiFadjOAumjznq5lfXYhQhYCfsIfzkDfTAFdLkPwrQJsnGPmcEFeuiCafio/NBZlsWcNCIHjmMTmaWHM1wIpFsFz4ECBIzanU2Inh2bj9C6YboHJ4CVm7GN/8SJ2RCP1JiOFwUFM7mPsH3NOKUKKJoGw4nbQBiFkrREzrmC35IYGBRbwiDbCsGNvvWGIIg3GP0W2UibcwUONik57Xi1RFQMCPCGAC27xE2RL1tE/goCilvVFhRLygEVBDZTAR8BVdEVVZDVGKQlCFip2zswBVeAB9aACybx0bbRrVehBxCVBWYIAna4gxUaC5LAWzF1AhH7IHqoirbcS17CB3dgMx1Alm6V3TGi3Y+5tISQlUTABWawAntIhMDFlf+YlWfxQVQJgp8qk9RCCOj73qMgiUd63hMRPSmRxVFAE0PC1pjyNAk6pfz91XCtnoogw8iAhzMyhX8pnNSyD9YoXW3pOAUeLVu0hv6EHw+xC14xHIboil+AssPtWA7+WGBl4cqzCEkz2q+5hzt4pLUUuqkCsB1hgb2a4RfmKhcG4sqzBEfo3wZRCmQ1hR/LkWdg/piIgpgVHuKbEuIpnrhLQyeT/Rha6Qi6cNmiFQdMkMvgyhsrBlczXkmp0AeAU52ymAw90y0qEhFWKFxNzCqQRGOvWNw8xifpWF2qqeF0g4cMvs91ShAZcDop5mPzCt9F7rB7kJUjZo6RXcuBO4h68L4d4YEyduQxZeBOnjg3kJUfbhSSeI0F8kaLmAc9qJtPQ1xQ1uNGFl2feZiJgyo3/RpQ8AUZ06S066MRoIOsglhY5rcqnuJ6KMVPhjPbCDSLGGb5bKmztFaDaIlqCJrx8wxJ7uQ9rkxkrgHoINIHs4j51eInoQdycJqIEBEvgAIsJOYzBmVvho56eIV5oAVA/tKL2FUvsGRiitGdpsKILWGJd15gWJZnERmCH6gHHXi9gnAHV9ZmCsqPafAVS34SWZRTgQmJenhmgj4wWU5cb84qHoCCgkgGFbihqlKBifKySwsx4I0UpoGHffLoigFpsUVmGeCGH7gCQXWHAvwePWC7iE6hNiG7g7W0HsLTmkYRbrbLehgG42BoAsEEQ3voOhy234CHnbFYJCaJHb0DlGNqZrnpnYXqnByGEXAzi0iGEeCGJjSRiSsGV4A3i/aOJjmDXrHDsT4Rp75KqNZpfxCEGhANZXwFL0jHiesYSxiXgehoRCKJUbhTruTrpi5rj5VnfGgH1vTeP7mCrKq8/rS4Ugt5P5Wp7Cfx65WE6qEpCGjoAGjINShAlscGrX9sDYwZCKI+iI+wBskWD9o+bXjuZH1wh2SQuHl46wFqOlIW55Kzh3mpaOdl1IIgmL1l7uCuoMtm4VXogFdGN5kQD1AQb22Z5i6JYQyRYewelNS+znrgBhno4euGMzNrN4NZKdKSwHXRbfUuZmUG5ezVg25T5Cu+nM/9OKYImKt9W/vJlSPaLmTlb0JhbxpNmP1uJsZYlEA438kwHGemXAXPCAcmibg1iNTa3ZMQHLeNcC6BEPdx8ReH8RiX8Rmn8Rq38RvH8RzX8R3n8R738R8H8hcXEUZgu2v13te8WtxY/iFXCIRoJLff0K1ETESFwI0guAc3mBVrqNkVZxSdYO0gB/MwF/MxJ/MyN/MzX6KIiciIE9OBkRdTSASOGL2Poo1JxSA30IcTkAVLYBWk5nLmeO8foAM9IPRCN/RDR/REV/RFZ/RGd/RHh/RIl/RJp/RKt/RLR3Q6YAT2+S1BqIaeGHC5ww/agJ1RYAdQcANycAJfcIRWtwSCARXZitvg/fNI4Qdz0IQRUIER4PVe9/VfB/ZgF/ZhJ/ZiN/ZjR/ZkV/ZlZ/Zmd/ZnD/YLSJAf4IEOyEl91s2KmA2hJAi2qXWKsYhCqIRxJ/dyN/dzR/d0V/d1Z/d2d/d3h/d4l/d5/qf3erd3dGeEVVg8FfgBTOAGdQhn5WSTq3Vggv92qkHzhFf4hWf4hnd4z6AhBI2sg6f4uCr4i8f4jNf4jef4jvf4jwf5kBf5kSf5kjf5k+94gmAEMK3winf5l0/qlUhOmKf5mi8KqbP5nNf5nef5nvf5nwf6oBf6oSf6ojf6o0f6pFf6pWf6pnf6p4f6qJf6qbfiNpG2IyYfCz9acHlentN677oJc+m81Pl64oro/a6OskdMs5VvsG/7iADutlQNPyciuW8ghI0lmbi0KYnZhbDUtwf8BspQkWiSNPm7v5tyhsDfb6yacv7GwReJ7FEu3qH7GYY0xqcSwviUyK98A4gICAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRoxb16bspcKUre6CsTXM0LZGrQMUs3aFnpZisQN4ceZ3maxpTgUv1IV3Ltq3bt3Djyp1Lty5SpfbOFpvmxF4gXPZMsbPGzh68hIXJSZVqydudYriKEbRnt7Lly5gza97MubPbs/5AFeui2Jq/wxfzsmPnzwk8K9YO21Trubbt27hz697NGyc9a8UCNaYskDJoimpNUlabqPVJer2jS59Ovbr16z5p+ytWbFQxUJP9/mnvSBm6QFmyEtHzhRa7+/fw48ufr3mpv8GJIt+Dbk+pzpu0MQOPKYlMI9Bx9CWo4IIMNuigQ2rR0x0o5hGllloG5sCfeA926OGHIIaIGz2RgecPcUjdQxkolhg4nogwxijjjDTiZCBV3vhj01vmnWGPIzUGKeSQRBbJITzTgAKPaTrKpQ9l7OASyGH0vGjklVhmqSVvN8lCTyAcWjkXOcy4ceCWaKap5ppzsXPPHawhaBdxbrgiJ5t45qnnnhrZl6QlOt5p15P+WMKMKe3xqeiijDaaqBvTSCboZcQVKJmjmGaqaZa+MCNLorepJRU5/W1q6qmoPqiWN8zkKJ01/omUmuqstNY63U32yGKKi9HRdoY1rtoq7LDEWuZfMcw0x+F0lMniS2FiFivttNT2RFtjn0YbXbJnVuvtt+CC5As8dyj7HnQ5BBvuuuy2uxBtvhRjRXHxQScLLk26q+++4VIGT52B1DQpdZQZeiK/CCcsLG13WCMlignmeMbBCldscabwsOOINzKpmyBlo5h08cgk72mKL+SQYwp4A7tnjz2QilyydEqllVd/L59Y88w8UwSdPjj644hsHprYcs914fWkrA8plxbSUBdEqDdusGZPIohqS59aVmQb9WZKx7RdpI74kt8ZyW51hjfcqWRPTRB/jTRlOZzJZIg3kWOg/txxHceO3t7gUmZYU1Y9TWw1DXTYNN6EVRUuiXwnS5TweKw139+qRQ4u4OUM690gSmgJa5ivRVl5/rjCDla+yIIs6RfRY8+4Yk0zryM5i3d06Qtvx93BlN1BY2S8G1Uqa07Qg/ZguUu9LEMXHgRdMevB6QZqOhdfrT3swDMx9jB7E7eId5jin/ZAQReIrsWc/vxINzHFTDGObFzl5eifyo4po7wfE/4Pogw58vcfgQgIF1VDFIfGl5P+BAge+WEcbQBIQD2Jih1BoNeBVge6GKllFBSqYEjOJwtruEEfJtIZBUdCKIH4whuGckVxVijCLdnHF66QTJUGAh0zCelC/v2jYQ0XwpSbOMEfMOlWW2izkn8p8HxDtCBzVvM+tcBJiA1SCyhkGMWM0IMefOHY++iilH/54otd3JMsAjNGDjGDgTTK2O7S6DzWuOFqGqSUWlxhDUesRDxYpOOHjBMc1lhJLYEozJXWFsghMuVk8WpKZ4gTL1+wh2KCHBJN/MG/JyIEPVgKXl4yScTtWAMU3Gsj2E7jjxP2T5WkxJtAzlCMHGntJVhSCzMG2EgCrmdycLyNYWQBCjfFkkb28EYXYDmQZGYwS5Sp2jENwg4YuoSZtmEKLvaHzWkmyD/N4VVCboKvYAapWd4EpD8S4Q1eWqc802AGMzCZzgVBhxyy/phnN6EjvF526CSjsIY5RfikjE0setehjT0s8alR1pM+++Gkerp5sLpVSEuROibdDEkfypzAHxd9KHwoAwGQrrB9/gyRKYoBxSGqBR6jUNZAq7NJR4zCYyK9jjdWdqI5hoYZLdUSM6YR0iEOtaENIk4xd5jT6WjuSyCdaUG8wqabmKmoWsKHZgzjj4nJLItqGR09m7obDHmJItXEE2WO6NMZcSMem0kPRRMECiCRlTeicoUCJfIkquBJLbCzoT8YoQZ/aLUy9yBHIpAaIuLMK7B3rQ0z2HHEfEVEH+RgT0pFdA9m2HVLWuUBFAxrF5H5UKoKEpkpBojayMLlhoGY/idTL+sPZnAxT/rAxd629Isf6GAVB1GHOg6bIn9Azp0yAixP2+rau9zHWaCSyFrHqiZ7TAN7WoqDDGRAB6nhgw50qAdxi3KTUdx2SN6jbnPpIgt4yHCziuST2YJaJG5coQY1gAI3CKKP74YXH+MlCpDiK6RSfWq9dbkJPTzFUYvcxBLv3ZN1Z3ulX6hABzoYwSv469960IYb9ZhHO9zRjnaoYx488UZMLTukFZUFwX0TSIEANVeGwANQrb0SkHIMIn3UQw1D+MEPvKAGfEyww/owhw4q4Q4vsGC7+dUDaUkSkxbVWES61CGM20IZb/wFOsxFyE3mudkZ3WOZPPZQ/j3McQVzBNnN4qgHWvzrDneogBHiWYc5xLGOV1zAHHImiebMtaWVsnjLRAEZoMK8kPJ9dU+2xBI+4sGNIfBgv+YYSH/Byw0W4FktIa4HNC5gjDIz5CZ3+BSjQcSUDKYZ0SDpoT86qBF6RJpPqG5ekfjhj0pfmtea/q4XVCCDX0wZH/PgASZ2IlM17eizsP4JoZjRuitHZBTG5JNaumPtEPl6vxwWxAWGQQceVONMXhgtTk6y2Eej6UnWuAOpot0T4qwPuR7BhSVeXSTKAMnUCvq2d+kQh3mIYwSVIO0aZOCPQItEVGLbU2y6Te+k+EMWE+M3RABuZk4OMEsC5zB4/uX8i3H7oxIjaAc3zLFnkXyRrRJuDT0+XnGSWMMUn6LwRxyRQkXdJIQgtzS4g60GNQRaDRcYtQyeDOWGe4Q2YMLqmqZH5pqHxECnZSE8DtwozNIYSyEvCDWo8eFfmOMXxkh72o3N8YFA7pqLogko9mr1khRsGpAdoT2YIXXcLlhLYV8IsAX990yxo32rrntB8gaWtivkHqvDFOQDofEHBX4oNJkGmDTliG0qPiPTQKCOHJ8QmugTU+0M+qWNwpTmVN5ITJHh6yt+E/eGsO8gMQy0426PYtDcSJcXytzhnqnMC+/zESmYN0xEeoWsareOYpHqhz6UlOE+7vfAKfKd/q8Pdiz6J126lOQBL3Sj1DXxaaorxemtXMb6pEvYbRSBmv+e4GfnR7TS5TzR31zi3GGnh8YT5bV+WcIOXkJ/2GF/PNF9lvB7qZJZ4rd94eEK5qVEP0EZB4Ux1sB/C6KAO3ETWWMr5HBrEghO1HMUNEFDAIaA7zENVcOBCeKBOsEOaGYrN+EKgMKCmUQOriATMIgRaiEOL8ANc3QN1HAOBNghOjckMogTPKheqLJtEVh39uEs8UcUt3AAKUAAnwA9/tAKC1AALUB9RXIPQ/OD89GE8LNgS0grk4V85pFBJFgURrAAKXAAZbAOJlEzfHhY7jADCkABC0AGWXIPB3gl/moYEpAHKdTiBOJDhes0CtcHfv5QBhIgAQpABdTwDd8ADp74iZ74DdzADTNwiQuABFmiD6aQOMBXfu/nD5c0LZSBKLOXSclhDYkEUs5FDUiAAzigACvgDOswDqAIit+ADt3ABhGAARSAA/MweEWiD4fYiqv3E+RwU9RiRQ4VbQLVHC1UFIGGCBQgCigWBvWwDp1YjKHoD5+AAX3gD7zwB/4AjWVoBfNGjWSYEzc4h8QCHfNSi130Nl1FKjoYESjGDRjQBsBQD9kgDp0ADulYjN2QDfUQAmVwDP6AYmlCfPXlij0BSgWpJdn3SjDWZScUkhCBYnZAAa2ADuPwDdng/g6AQIzq2A3rwAsKMAl4cmb32JHVKIAS9C2QR5IIZg9n0FAo+RDfMAM44A+cGIrrcArnEJEQuQ7ZUAYHIB4OpyYoAXYeuRPX6G7U0inNdRMGSGMAmRH8QBxzoAGq4A+b+InfsA6LIA3nEIrf4A+UsALyOA/6QI9okgjZ5pP5yEL0AAoO6C304AiDSVajAFPqZBQotgwSwAbhsA7XUIzfcA6ncArrAA7cMA/cYANM4AxThicm1JX46BNUxC6SQlYvgUeT2BNaNQcYkA1HqI6fmA3KgIzu8AkS0ApbqSdpGYNfKWi5tXvgQg5mUpyYEzgRdhS8Fg09UATuQA26uZvS/pAG+OAMTIAD63CaejINV4SIx0kSBjibw7Jt4jRNxOEIuxKAQcEUfxACotBrNJmdMNkLiNACdtBwAZYnjTN9OwEdOcguajE5SYg5hIJzCoSGGIFi0XAAdRAN7sAN2fmJ3PAN4VAAZnBuGrkorAKh8pGIGnETFuUuGJh3dOQfQZB9bOEO/kAFJuAM4zCVGeqJ11APohAAR5CYiuIKXLeaOpEyCPM33pRDccIW2VCZ+FANVKmb3+AO18AEIeAP6wCkfHI4BLpuQmMW+2IP5NBPgqRNvkeiFsEPgUYGLTAL+ICdOTqX+FAHPeAHGblFjvIkrgB9hKkTzAAKYskusnBe/lHUI5WzFjLaCj1QBuqAjjkKmvPACz0wBft1E8VgCmiKZVvnnGl4ni6XlHrShgREG11QDCw6FHLGBhTgDNuQnxl6DfMgCgVwDHJ2WLKTp/TwmF2KE/CpMJo3E1HUOFawIc63E1plD86wAGVQDxj6qBA5DiFgBIY1HuSimj7HDoTap4IGD7GYML4HqtSSfZZwSRdiHwYRIU8SqGrhQBYhZ/NABj0AC732qHNZD3/QAjrpYQbBOIyybXRHpCNBGdm6L6vIqSpqDzcXUTWhHbb2JYtpBfCQLrIwrpHjGmegJOWkaUvRVnClCiHgB9swD9uQo+NQDeuwDC1ABtngdAdR/kwGCyLBk6nxYaIWQRldwKf8cg/NiT5LkTHC4z6zNg1fAWFCew/blExvAw+GIaYpgS9ngAu44ASXGnHs+i4oRgU4IIxRqpvnJgoLIK8M4XqMQmDm+ZMPp2sJQ1Ta81L+UDcCARPk4AS+4AbMADoXgjppoRzZMxm+UFemIBhoxBDVEAFlAJfOCg7r4Aw2sAL+4A63VCjyOXVtC4VBQrMVAR1epTBaRGtfQxm4MAr9E0/ecAY3tnizgVDFmhcqUhAw9B1cmke1WgYY8FbV4KrqyA3r4A4reZ9w1RC1pChhpYu7ChJapKX6YhPeyDe0IRb+kEhVc3oHAnB8iBaHxw4T/kNj9IBik2ACfXAO6LC1xbhftqABfbCyc7Q5CzojGHKF2jpCsBiox3tx6YugreIG9OAE3cO+M2gNsiBvAkEFMyAN42C7uhmafRACzRBdC4GBlIsm8PBR6hkjljsRiNTA7PJz2lcytAG6srBMByOzDUEc/JANFdACbEAP3EDAxXgO3JANKwAELJt83MQnOfKyJeqpHYGtkesuqzKFGqwWvmANQTANBrK6RCFn32AGTdAJyrAI3yAN36ubNqm7FCCvvctX/GvDWeQPDaPF8DHBE2EK3gCuiiKmyjkyPeIGpppHQ9GxEvAI6DAP2dALp9AJ2fCZVEkN/gAMGFAG4xDD/nzFSRmMJr5woORntiDBd2SsbfdgDRGMoCAIG4+cE8jmDxRQmo4KDuMwx51wCtkQxaDpD0XQAhipEVLBJ8C6JWAsEYIJwpuSEhNVMtnnGqbhyhSxDBhgCPNqjODQDrUgDZ0wwOsADDNQuH6pERn1Vzo7pMP7Ed7gC0xzMck8MrVkBd0zvxyBxJY4pdWQnZ+cDbUACs4wCQegDBm5EVPkxVvDKtjsIKsMEdwazRbTmhWTSl3gOmtBKIoQAohQDy/5qOc2CC3wAgIRohtBDt9XXZykJu/8EKPwrxdjCl+XMNDBDCfgDacaFKDGAVTgDJrsrOfGptQgD+tjwRFxE80x/skyAh0fpc5fjMN9orQ9Y638YhhWYCb0FRRaVQ9gaAvn0A3OOpXXUJmGdYO4g4bQsUy2/B66ZNJC0tANcQ85xDOnJM8I+hIfxUpHoVXXQAVAsAzxANQ5ug3uUA12QAK24A+9ax5KDYNA7MNXYrPksMjUAdVEdJgZrTCC6dKhGhqWcBh0jRAohggr8J9PmaNd28fFMXgmwb/sodJiZoDt3CB/HdjTYdcMEbgzk9fVQihOYD5rUcktUASXCb7GuA34QAUUEKBSMwo1qBGBQJRYojd8PbMwjRFiOjE9Aym1vSbcs0zmihSpUADC2c1xeqO5EAE6KaOPxzWQjRiWvRu+/mAKvV1/t30Rpoc0GN0u2zYu20gUKHYMbNoOLKzCn3gN8VANZIAC0XDOp7YS/FpmZ0C2ROJveYLZ4wSZPYML3rDUCg0K2IiCagGvh1APEPmo+/UJKHAIKNZW02AJ+JJSDFzdeFUog9zMHKEP0wDRI+MLEQ4uloqkRqGmWNoCXGCypi2X1VAPZRCMFoHR7VkRGO3f0gEd4BHdl33dScE22i0ZOF4jNiu8RuEOxyAAPp3in3gO11ANBcAGgCwR0HFErzddNM4bHiXka4LfByFnv8PaC0FcVV4k17jDtqIUuJBxRqFV3zDa7rAOYv2q7vANRtACeXnFFRE8MS5dC10k/u7HJlpeEEgsCbEgEfhwE9wgCufm5bQCDz7+LfRgJmFeeijWBjgwCfpw2Bmqx3aAA+/YcIA5EcGjwCdtNqkcJMUU6S+NyBrhDlSAAa7eAs4wnAuBDkbAjBoAnsxNLPeA5tlIPxSeEPVwD+6AAVxwDZmcod9g7NX5x5+eGncQnT6TI8+dII4wsAyt4yddD0ywABTQ7SFQAN/QXwxRD38oAd1OAd+OD7JeK6bx4zEyQNCLea1wAK1wD82K7OcwDpSJCO7tEQBy4Q1BExCsvqakKH8uHvhgCwJAAZd4iSEgAU9uEEY2CQXA8A0fAi0Q8bSys9KCSCw1FOruD8LwBDiA/g/dkJk5CqvXUAYK0A4avxG5IjyJh9KTXR3FQJZ8cvBy1gMN3/AU0ALgwBAoxow9b+4YUPPvxsVOvSlvTRRMQQYhIK9I7on7dQgh0IVkvhEZpXE3eFYwsiI/k/PY/hAo1u1FTwEYAAxC7w8HgAFnjwF5WSycjSoPtnlBQeLccACIsAxxTq/XoA8h8AQJzBMYt/QHoRTxHiK8vSgHTxlUEIg9j+4ztfMW7/NHv+5ROLnTrijQsfkbMQ+TIAG8gKOPOg7bIAoKoMth3qALCg+O+OuYIUaMcvANx+QU4ACXSAEKIK2YPxD4YA+wQACVTwF4KJ62kuf510pVJ23+QJ02/uAPoPyq8+AMZcABBe0TstMFr2dFoq4g2+YKia8ntN9fdiAA5k4BAdADwR7wlWj+3R4ATPDys4Jj67lO3U8SaipnUH+f14Dk33BuAPFHwyR/9vDx85dQ4UKGDR0+fGjPXyKIFRfq84cLVzGLHT1+BBlSJER9EgONRJlS5UqWK7kN4cGt5UNnRiiQEOXOH0aQvIqEmNFq3kyiRY0eLcqOokSkTZ0+dVpM1k6oFYduC2Dn27pu4Lx+BQtu67oWVNBVDSkLFL2VGNmRo3cP7VyoOQrSxZu36MuYTu/hw4aNqki5CQvrRZy4KjyOPBU/hryy2LTIZSSE4/Yt7GZw486J/lLQqt7hyP7onZ5pyVJp1hDJcSTdWnZevjKb6qvXq5ZKe/PqOZ4dXLg/a6P8xR6ePC9GZicR65PbigkVf9Q0c/7abd4xKi3OIo8M6iTTlbhW2wOuPC89X9bYqYd/tPZTfeSYxcefn6G3++n1/58JF1OO06swNkJQxZ9tsAOrG3wMwYAgf/AJTi54TgIPpHvY6iIh/wA0ihxrVgOxxI/m88saikxksTVTfBmsRRk74uk+vSSqpgBErlnnOga3oQafBdioZkLl4JmGspmYuQPGGWeSq5jGnqQSxdvsUZJKLefyBr0tv1yImTPuwksffeqIwDofGfzGnU0ECIZA9bBc/rEluUaB50MwO7Kiyz1btBIpe9hx7k9DZwJlmgwPBRGe+8iriidlysLnmzU5uwYfZYrowR9+6smPGRtnGsUbXGJklCGJlPIwVQADPUofevB0tdaQLGEHUlsBJGcUevQ8aih/uPBBFH+qYdCrb67xp4weLvFnHgrzI8cRdoDVMKFEpsF2TzP9AcUStrrdVTZYj7qHnHLXhShXctmVzUxTvKFrKFskmEOcHpMF55pzwlmBiniMBNA4XVmabMNa5dIniGLofRdeyM4tSh94mpRYYnq6yDXj+PRhh1682DjAn8z47QydVAQ4hp9pAcTICdOMuoMdtlylZxo3dorYY8Uo/jaKnfd8LldootWDTqpIEYIlhDb8iebSzdrkZYZO/akHoRLlcpIoppwg572e/7PYnzOmwWXRo0sDuqjJ1rbVG1m+hXs2ie4gsymJ8InCiFkUHCdZS/EhowiC6DZRIopuhvJOU2AbOz622LFCI1Trbq1tosxDHPM9cZnK89YwwhWqoYRRYBJq3JEarHG4QacaCv44h2AZ72Gmw1j98YUd4y5PXCI3rFAyctGr0nwmexg/Hkxy1G0+MrnGcyrrNtI8B2Wx0KGEAGGAn1Ft3uxxhD8t6TkBtehnS76li9kRf339MHJlVPkTc+Seg1uaVhgJqLMOv76xnR7MwB/uiN9//u4BDzdkySg8kUUxXJG3Ek0jEXijx/7ul5j2tcQV8EjgBpFGD1wYT4QtYYcp8hSshPSgB8s4Fr+68Q1/UGEFt4jWn+Ahi181pTCgAJ2HTJgYphTjDFOqyMtOCJUOIgw6SzTRAgcERby8RoMqGYohTECJdewrWdyoxzJCYAgaDhE/YYMKT7xRjDswzoxz8ZI17jCKK+6kHnekIvJgYhuo+GJAIczj6MjhwED6pT1IiQcVZjCOGaJsHNXoQwGOgY835scNo+jcbcDlimLAb07+6MLjKoKQelCIG3qgZCHls0e00AOJqkSaP6bxO1giRVayEBn/dqKKENShOgIMnDJ6/lCFVjGKa3Kiz81MgQtfcEshlWSJY+jBDidQzjAOmcc6oJEMRlyBBRegA9ZqSZQmqgQj1BtncoSHzHQq7x51Wgk/hMUEHCwDH9fg1zZqV4YQwCJa0MSPXHZWx6IUZhr0SAQzTCGr49wDoCApSULe4wZ4BEEW7+mhQ1bhBRmMgAU6qIEXsKa1dqqknCnBSJLAV1LIQIeQLFWJXMQ1k4GRogClqIYXGVSNeDhDAIbQCah2xcaV2jIhg4LHGcgRuuN4ySlmglQgiuFHXzgJWzmlQw1A+gNowJQlJ0UJcyb4UK/OxBo7A2RZG4IRWbx0JKBqQQ+oETiUfSMebMAAs9RK/hJXJsIRHIEjPHxhhV7542G5TKI/dADSxVZirykBK0oUV9THogUjjphZZUVipgmm9SIJuUQI+mAyAYJjHrPoQRGipURbScQKQyPiQhIhC0fgwhvegAfznkkVjHyLYQ5hBzys0Uwr6AOzppEFDzP5WX+E4qM1EIQORCoszZ6IlVWRiyOgV90C+WM1nq2u3CgLkYFxg57ZqAeyvhgPbvBTFzmU2PIm2NKIJqQYoJtGIBDKw6nA4yGHsZmopGQKUFjDEdawxkLcwA4SWcUfw1ADC1TghWQMYwjRIil3LRJZlNzDG/DUMF18QRHwPlagFATJwAxRgE3MYxytAwuzYPFT/p2Q1UQgSzBr0qMPa+QMFP6wAjMG6ws34CIQDO6CPSAgi1G4wRuJYsYgYXuXYlhivovCB6gE8YMaqCAUOlFDV0Ns3b7MpT66HTNUVphmj5BjiPPAAROqQ9dkbcMd3YkHdT22oTu41W7FPOo07OENQT/RQ05diERMMRVy6cMcQ6hBDX7ADX1ozcYl5fBI7kEoNLO5KXcgB0HTLBcroLgihVEFBRCxjrkK7hzrmEUI2IA11nrMG1MeDkbQoz9eM0wicdGfoVU1EX94A1sUmgcrVFADHugBaxj5lKc7kmmUTKNr0m6KLwCL7YdYws0fiXYumGAEYPijK8nqxjrQQQUm/rQCvnDTtjElktxXOgRUyVCDClighl+8m9sbvu5cRHTpf/sDHogtuEKM9pGBUQIDn1jHOc6903nYYgF2uCbmmIFJgreGKVYoxnYfoo+hRFcHXgZ0wiFCbZQoVdQq70i6uoBwlfdJ1PxYhz8WwIR4aA8c3JhHGRRgO88NuuM69ocjxiTqUvJAB07HR61h7hCWbzYj4526Rcjh36zvxJMV4QklIgALfKiXTeCIhypaUAZ/rOPoWkrE17ekD2/8NbMjxxojVABSRvhjYF2vSNVFYo2plDjrKaVl1kEBQvL6QxpIYMI21rGgZBWJGn17r56PV4w1a4kyYzL1QoYyjCvI/mDCyRgp4AMfcLTI9FRv17BrQ//vYgQC0QvBx1DKMINLxOPFyXqdPx4RgktQSOqes4SiqGQPiRwYYiShUByGwAIWsEIdRFc91VlvWX/0J/sgcTPsH1uPOK+DG9qTfBVa4I6Xw23hMzITOe5A84dwAwqRhgIfv7/6MtNFeO3PPozogvrKulH4MYbAiHVQBQFoBfYCJm44hgIwBHE6oWnALABUjg/7MYciCX8Qh1fogBoYgnCSlv0DuP7zP2ITP81aCtWzBsTiB4lYhrWrhnmYOOy4hmwqgiJwBn+7H4lYusQpNldYkTqSi2TwJhnwApnQPBPUPhQ0M3twBT9zQoMr/oaM6jpmyBJ80AkywIFSqIdzgLGvoAZ/QAQSoISMgyLKWMGnaKMpAhbc8Ac6WCwVeAVQacPqEjyU8AX7qcKF8IXE67pisBEzmQcM4IJ1oDN+GYfu0IlAkggIuLv/eEFTyCCLMKWnqwEo8I0M+8P62z68SIRL/MSmOpXvexusoYQD8Cd84gxLsRR0GIdP0ICnecRCuhaykShf6Cywy7u90wFM8MFSfEL9y4snYycn1Idp4CHVA5VToIxl6AEj8IdsOD/OcJB5mAd9iAYmmIGhaMIlkgu8wUDIYIo+Mw5gyTJ/oAVv2rdnoEBi5D9jpAuZmkQTbL48DKShsIkWYAIK/uAFd+gM7OiGeiiDImADNigAXpCL4zuhc8ox+IgoU7AEJ8GyhIgDHugyWhgKh5RHhdjDDrMHmTE8NrssYwM8jDAEB3iBFCiAb5ghS3lFfGADCZAABTCCnCspeChHxQBCb+g0hqCQZwApGbiCW/zIaQtFusAIEflEdpgG+ks4jJiEBbAACiiAfzJEd+DKrtSJKFiAmyyCdfBIcfSHQLAGfVQJpYkLX1wHTFABGRiCvhOqpFRKKMyLe5iG1VBLVcKIqsI6aasHODuABpi1uoSIPxAABxAALlguVWIGrhuOwtgIdcEWjPgFKFg2NWBCuyQzetQLA6xCV7AEDlQ9jBiH/jAYhOPwxIZwmUtAyHcoKbk4m+S4GZnBNYbgh3sAlTjQKjv0kNb0zGKMDLozze/Lrb7UMC5EzHaKzFwzm2a0CLmoBhb4AaMcxuGcx9I4Az/JvkHZmSq0hCnSEOV0FdKRSsXACOHCm9krpjh4rlfITu1cuaXMC5Nwz39jC7wpyTR7QW77y9yMDEL8nUWRw1XwJhXQg65qTvo8QdBEjGkAhdtTObZ6vSqchoj0tMsSOXOUi7jrFmTzTRnQAVZIiLJ0UIYIyZWQi/nquhPrSWyzHGxLKQFFjA1hh/C0CIwgyki7ggZNUY9YURa1h/nrOnq4A/35RGugQu6C0cfACLbo/pP8TIh1EARgDIX5DNLtlI216E+YkpUpDMrs8wZXoNAQwwiO80l/IAdL+J0rSiVjGAIZkAE1uL55EM4t5VLWYA9rOE5uswfGsFHkTM8QUxTl5IlAgIdTWZRo8wc1AKka+AUKMc+uG1KWIDUq5S62kJmPdDlpkwi7GFOosAZ4+C6LuDcSVcIJyVM9vUsIVQy2AD0ANRtNVb2OwbbOY0qMkBJG88V7yLfF6rescVXIss/HCFRZ0FA2YwdO+tNPTASexLY2TcankAgpnNBqfSYKWYU5VVBziMdiHYlLbQnm4KEvVSX9gZFKbadR6EVPswQ/jULvehGegQhQMQc1qAEW/hgC+QQfc8CEVBLX+sTL1qAodiUaeoAH3bFLheU2azhTW5KLIPCHQU0Il/GHVyhKNQDShSBKPBpYUCzY0jAJy9Swbxkou5zYewyxRCAHdPUIUPCGBIsfc7hSHfiBLA1Hj60BkHUIFLVLcvUaexiuMROyeiPGv5TMNGMHWYhYrykIP3raE0WIX5CBSFODhCDWiniGnhWqV0iGZ3iFLAOVV+g3PRXamcAIbxgFedUsHosgbf3ENGVZ7oLKo2MofXACXXVNofKCohSzj+jaO8IH+DQHcWCBOEiIVZCBs93StHUbpPUqtmKq4WQLu4jRcSLEp0qIPrFYrW2uOmSEnYWI/sFdB0g1ElpgAfkcAmdD2MeC3KKYhg7JXBHSn0S4tuF0i9qtpVREipDpEAL82bZTg6v9gWFtVYd4Bhkwhyu4sKHozSuAgh/QUs+MXShJCOd43VQJT97NuruR273akMVDCoV12fAlmFX4gWWjg4Hp2IpIBh24ghq4AjnMIR5QgQMq1uvFXmYABT9sJ3KYLWGjz0HT0RBjhys0il9JIWPDFlDhhuKVS1pIOZAgSkHghhoIp6yJB2jgMsV9X+s91uEABZspKeYrVVctiWWtLqItlHItieboiGh7Ba1igXDCvpDo2qGohMb1O39gAUH4BUnNYe3kX6PQLhYOpKb8sMBM/tqLaVKvalH0/Yj19IcTUEOHQAh38IKPOt5wRYnl1UZ/mN6EcN6E+FvSFeGRncxiW7BRPaG6gxHv/T66YwY6NsuZaouEWLQfswcDTQhaiDQdUNzUWwkPviNt/AE9eIUfgMeBGYKsTd6PPOKC4uNcwWOJKYz8oeLhnAZmgNklklAndoimTC7/atShaAeOkgGumhCg7Yh66KpUqgZz4AZ4nBZzgAY1TspKfiBQUpdMXhe5YIfgDdmEmD9hlh9eheOYm4zCswgebuURGN3HmGRKHmHlkAhvGJNQ3hW2miBl3j9mKFSYugfaRSl/MAUh+wh1mF9JK5KDOGa88OWjYIrj/vJmY7ostmhmB5WLDunncfKVGOUaC/qth5iWUOABFpABQejIeaaNbB6hHPWvgM6Ym5GqtoTohJA/UsZFV0DJkCiMRPhfe30IUIGGONA3L6DgqNtoepbo+GAHXOjm5gFCSxDnpxSbyioGR8BCjyDmMWlmUAkFVcVhWH5pcopp+LjWQHAm0WGHM7jWpD6qs6zcskqXzRrHtxivwZxTLpOJEKZqpKjnp1DS8ulQj2lKViHFsZYIXEjr2VTnck40g9MujdZinliF5won3rzmsd6Lpc4PehHqnAYRL3GyKJ5nWcldlsIIAfmIe8guXFBihhiKaphfFbiCrtreeS5rgZut/oLo7DVlI7gAbIeQBTf46XaKkpdbFSdwD8oCFUb4gZPDhIc+7YhmYxaRCGvogtyCl01zgw3M7Yf43CWWJYogl9fYmcdUCIQwh/uTNFz+6+IO7N3m7eytnyz+kycixPC06I0GhQv0qsXpQHWhWPX5rwnZaxlothO1br34bLzo7WmombqlEoYCpU8W7fhmCLmQhQEZ7S2ZFcltFXoQL4uINgiTMC8YBlrzb92G1S1hBmvoVMOODKboAmsA4AhfiJDpcFi6wgyRCHJwhat+iKFgBBsWxiL28KeY7xvt3DWyVfxgDm+48Bcv5XtIrnaSlTtA8Q/3Bt3plnpwh6/WgbDW/nEJrxX9Jp4oq2oAYYqcGfKEWO0lX4i2Sqdl7HCecAVXGJCnxdh6CAVgdLbfqG4sb4kYVwwlDTmKmiKHGvBSrq8SKh/AyufFpodAeFlY6u3GjpImzs+BwWzTuwJcVnMmLxeeEBpfUCqFwPCWIA8knZfjTvSEgJE8Z5fpIW6GYIfe8YjehLQRoIWcQ+pLX3PBBpPCGLQN94Xwzgt2QLA7OEWPXvJQxW8RIl/H4IlRmIa4dohquD+jBNc5t242H53CiLIz0AdT6DGFOOg0ugtdM5WNQZujcm5UH7YgPyETLwYO7HV6OOCT9gdzWAV9gwLXNfZjV3VDMTSFJcJ7cAJ6/hgVqJJsonAotiAPyvhtIMqlZ9X2U/OH5KLr5pmGbdP3QBiFYIaIBb+CuAyz6g34pkB29XiPg/eGIDBV4PYQyY4oOfeP3rpW6EA05jsJCDCVBLP0ice7aVhaEXIlhpWI8Sz4kiNRFXAsF2d5p6h45dA1AqF3ILoDU/igg5om08j25dm003APWWCGIGCHO+A8ApGIdRdXJ/BOmKeX36IoTeVCEtWBC/uNnZfvdl+XKG0IZiiGRMAFZrACe0iEhT+wqZKSD6MH8aCHIGDG2opKhhgXsmcJiThAq0+Opu0si8GTtnZNCqkHvVusvitBwIdp7IYbMyFgSHcUdR4kbYvK/qk4qJevaoCX/LDyB1ewBvKMHrY6jAXbtsb7hQSN+FMf/VSn/NlXRuJgw/W5hzs4QAuSV3XszcViAY60ddt3CbM3ftWzBEcg/NGRJSs3BXRKomfgsk3UCdlP/uOv/eyvY9MYEFgfqsexplwnEHHABIaey2fjfrro+fWvJVnRh1mtfLbYGY0AtooAFVZ4+BuGR152/+sGCG7+BhIsaPAgwoQKFzJs6PAhxIgSJ1KsaPEixowaN3KcqM/ftGneOpIsCfHeHX9n4MFjqK+ePzo1dMh4NRCfyZw6d/Ls6ZMjtyE8BP4savQo0qRKlzKleI9ZsY9NpxK0563LtET+7DWs/ieOhQ4dPPzVk0r1LNq0ahcGHbr2Ldy4cufS9ecGqj+zdUtyZWbKUTF/9BZ+nKdHxcxQ/ubtbez4McS2RCFTrnxRn7lQ7ixzNsnVX0p7ejtTBOUr5daFOF9BqTGCzjN/90jTro1Wsu3ctev9qjFZN3CH+uyxc/NxdvCFxH2NoieaIc5qNWrI+MV4dPLs2jHi3u49Lm/fA/l9//4xyLTB5QnSIxdIvUOYXqBsXm//Pluhv/HzNxqeaD2vzEPLb9Ak4w9O/UE2GD2BpFYeM6OEFlGC9SSoIIbfdZchhzn9B9MQP9SjgxoEuaODYth1GJdo01gy0GfJ6QOPLKbAOFE9/situKNuG/L4o0XhxcYDFAMlo8KB/tCiwjwwATnXR/ScMRI9KpJ2DzvwjPIklwr62CWYC/EmAzc/XEEWPu6wYBM+eqhRVphx6XPeg7l9ZElgVsa5Z21f8slnPcOARWJeA2FyRT0n0vInXFXCY4os7NA2nD/kFHMHVzoyuilpfnLaZaAjMDLMCKwUmswI3CSjwzqfwlWMK9a0FONj6p3BzouFurorZZ7yymOgZPojSA3VEOTFK17E8ata8OhjCTvWyKYpXZSOMkpgsjG77V6+cpvhf/i0IwMdcAqiwxWxfYuWL1kJ5thgOdwD37r1vuWtvfgF+gNR0HQADT4fQTGE/rb5LoWcI/QkQs5g9+jJFHLWXNuwwRWfha/F5rmTTD3kzaOqP/H4M4RND2esE6X22BMIrjea/FOMxVgiy0i6nnzzURjjzN8qHSy2M1JSDQYK0ak9p9Rz1ljjhjXTAP20UTpDvV093MjAwqIvT+3ZbDn448pA1Po0Z6WJ+AKKzVurXZLUawOXph6/4HOh22Pfw5U3uCSipT+SDvSR1g7NppfSxQSCS7b01r34RW0zHhw+cD7O02fk+HM4M274k22h93hOtpVzzsnVYDGKZIorphTjC0GeT/46RbjNPTvttdt+O+6567477737/jvwwQs/PPHF0w4TI2/6w4/ksJsE/njfm8PjSiDeaE4re/rQc7fK2A8kaRD3uFFMMdZY7jz6FQXFL4LGu/8+/PHLPz/99TOmhgw//EJW+kVxVQwuAmGKRLiiGLKwBy7+ZhBvMMMasjDOCWRhiVn1r4Kxyx8d9KDBDXKwgx78IAhDKMIRkrCEJjwhClOowhWysIUepAMjxKICGQiiGgKhmwU5crfRsIMdo2AHKNxADif4whFGxJMl6AE2+JSObDl8okL4YQ5NjEAFI7giFrOoxS1ysYte/CIYwyjGMZKxjGY8IxrTqEYuXmAmP+BBB0SFICg+Tx8OExtDZiMaPNKxjwT5SCEqIchBErKQhjwkIhOpyEUy/rKRjnwkJCMpyUlSspKHZMQqdPADFfwAE9xQB3n8yBPAQU90pRQlKqFTv1WyspWufCUsbceYK8jgCgBzUipzqcu1mLKXvvwlMIMpzGESs5jGPCYyk6nMZTKzmcScDSP0cJPm7bKa1rzmn6RSD1xis5ve/OaOAgbOcZKznOY8JzrTqc51srOd7nwnPOMpz3nSs572vCc+86nPffKzn/78J0ADKtCBErSgBj0oQp8EOo4EDmUSaehenKgQiJKEoi6Ri0URMhqJdqShGXXnR0sS0pyoaKRocd27TGoWkzaEj05JW07u1hNaDa4hLN2K9wwilSiJbaUK2V5BVOrQKl1EKz1MTIjiqpJT9sCUMHCZF0mJepGl3rSpyhnbSZaaEIhWNSL2SKpDVHaWgAAAIfkEAQoA/wAsAAAAACADCQEACP4A/QkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocufGePnj34NFjt5KdPm/04MHTR+/ePZI4c+rcybOnz59AgwodSrSo0aMW9em7KXClK3ugrE1zNC2Rq0DFLN2hZ6WYrEDeHHmd5msaU4FL9SFdy7at27dw48qdS7cuUqX2zhab5sReIFz2TLGzxs4evISFyUmVasnbnWK4ihG0Z7ey5cuYM2vezLmz27P+QBXrotiav8MX87Jj588JPCvWDttU67m27du4c+vezRsnPWvFAjWmLJAyaIpqTVJWm6j1SXq9o0ufTr269es+afsrVmxUMVCT/f5p70gZukBZshLR84UWu/v38OPLn695qb/BiSLfg25Pqc6btDEDjymJTCPQcfQlqOCCDDbooENq0dMdKOYRpZZaBubAn3gPdujhhyCGiBs9kYHnD3FI3UMZKJYYOJ6IMMYo44w04mQgVd74Y9Nb5p1hjyM1BinkkEQWySE804ACj2k6yqUPZezgEshh9Lxo5JVYZqklbzfJQk8gHFo5FznMuHHglmimqeaac7Fzzx2sIWgXcW64IiebeOap554a2ZekJTreadeT/ljCjCnt8anooow2mqgb00gm6GXEFSiZo5hmqmmWvjAjS6K3qSUVOf1tauqpqD6oljfM5CidNf6JlJrqrLTWOt1N9shiiovR0XaGNa7aKuywxFrmXzHMNMfhdJTJ4kthYhYr7bTU9kRbY59GG12yZ1br7bfgguQLPHco+x50OQQb7rrstrsQbb4UY0Vx8UEnCy5NuqvvvuFSBk+dgdQ0KXWUGXoivwgnLCxtd1gjJYoJ5njGwQpXbHGm8LDjiDcyqZsgZaOYdPHIJO9pii/kkGMKeAO7Z489kIpcsnRKpZVXfy+fWPPMPFMEnT44+uOIbB6a2HLPdeH1pKwPKZcW0lAXRKg3brBmTyKIakufWlZkG/VmSse0XaSO+JLfGcludYY33KlkT00Qf400ZTmcyWSIN5FjoP7ccR3Hjt7e4FJmWFNWPU1sNQ102DTehFUVLol8J0uU8HisNd/fqkUOLuDlDOvdIEpoCWuYr0VZef64wg5WvsiCLOkX0WPPuGJNM68jOYt3dOkLb8fdwZTdQWNkvBtVKmtO0IP2YLlLvSxDFx4EXTHrwekGajoXX6097MAzMfYwexO3iHeY4p/2QEEXiK7FnP78SDcxxUwxjmxc5eXon8qOKaO8HxP+D6IMOfL3H4EICBdVQxSHxpeT/gQIHvlhHG0ASEA9iYodQaDXgVYHuhipZRQUqmBIzicLa7hBHybSGQVHQiiB+MIbhnJFcVYowi3ZxxeukEyVBgIdMwnpQv79o2ENF8KUmzjBHzDpVltos5J/KfB8Q7Qgc1bzPrXASYgNUgsoZBjFjNCDHnzh2PvoopR/+eKLXdyTLAIzRg4xg4E0ytju0ug81rjhahqklFpcYQ1HrEQ8WKTjh4wTHNZYSS2BKMyV1hbIITLlZPFqSmeIEy9fsIdighwSTfzBvyciBD1YCl5eMknE7VgDFNxrI9hO448T9k+VpMSbQM5QjBxp7SVYUgszBthIAq5ncnC8jWFkAQo3xZJG9vBGF2A5kGRmMEuUqdoxDcIOGLqEmbZhCi72h81pJsg/zeFVQm6Cr2AGqVneBKQ/EuENXlqnPNNgBjMwmc4FQYccsv6YZzehI7xedugko7CGOUX4pIxNLHrXoY09LPGpUdaTPvvhpHq6ebC6VUhLkTom3QxJH8qcwB8XfSh8KAMBkK6wff4MkSmKAcUhqgUeo1DWQKuzSUeMwmMivY43VnaiOYaGGS3VEjOmEdIhDrWhDSJOMXeY0+lo7ksgnWlBvMKmm5ipqFrCh2YM44+JySyLahkdPZu6Gwx5iSLVxBNljujTGXEjHptJD0UTBAogkZU3onKFAiXyJKrgSS2ws6E/GKEGf2i1MvcgRyKQGiLizCuwd60NM9hxxHxFRB/kYE9KRXQPZth1S1rlARQMaxeR+VCqChKZKQaI2sjC5YaBmP4nUy/rD2ZwMU/6wMXetvSLH+hgFQdRhzoOmyJ/QM6dMgIsT9vq2rvcx1mgkshax6ome0wDe1qKgwxkQAep4YMOdKgHcYtyk1Hcdkjeo25z6SILeMhws4rkk9mCWiRuXKEGNYACNwiij++GFx/jJQqQ4iukUn1qvXW5CT08xVGL3MQS792TdWd7pV+oQAc6GMEr+OvfetCGG/WYRzvc0Y52qGMePPFGTC07pBWVBcF9E0iBADVXhsADUK29EpByDCJ91EMNQ/jBD7ygBnxMsMP6MIcOKuEOL7Bgu/nVA2lJEpMW1VhEutQhjNtCGW/8BTrMRchN5rnZGd1jmTz2UP49zHEFcwTZzeKoB1r86w53qIAR4lmHOcSxjldcwBxyJonmzLWllbJ4y0QBGaDCvJDyfXVPtsQSPuLBjSHwYL/mGEh/wcsNFuBZLSGuBzQuYIwyM+Qmd/gUo0HElAymGdEg6aE/OqgRekSaT6huXpH44Y9KX5rXmv6uF1Qgg19MGR/z4AEmdiJTNe3os7D+CaGY0borR2QUxuSTWrpj7RD5er8cFsQFhkEHHlTjTF4YLU5OsthHo+lJ1rgDqaLdE+KsD7kewYUlXl0kygDJ1Ar6tnfpEId5iGMElSDtGmTgj0CLRFRi21Nsuk3vpPhDFhPjN0QAbmZODjBLAucweP7l/Itx+6MSI2gHN8yxZ5F8ka0Sbg09Pl5xkljDFJ+i8EcckUJF3SSEILc0uIOtBjUEWg0XGLUMngzlhnuENmDC6pqmR+aah8RAp2UhPA7cKMzSGEshLwg1qPHhX5jjF8ZIe9qNzfGBQO6ai6IJKPZq9ZIUbBqQHaE9mCF13C5YS2FfCLAF/fdMsaN9q657QfIGlrYr5B6rwxTkA6HxBwV+KDSZBpg05YhtKj4j00CgjhyfEJroE1PtDPqljcKU5lTeSEyR4esrfhP3hrDvIDEMtONuj2LQ3EiXF8rc4Z6pzAvv8xEpmDdMRHqFrGq3jmKR6oc+lJThPu73wCnynf6vD3Ys+iddupTkAS90o9Q18WmqK8XprVzG+qRL2G0UgZr/nuBn50e00uU80d9c4txhp4fGE+W1flnCDl5Cf9hhfzzRfZbwe6mSWeK3feHhCualRD9BGQeFMdbAfwuigDtxE1ljK+RwaxIITtRzFDRBQwAmRAHmINNQNRyYIB6oE+yAZrZyE64AKAhISuTgCjIRgxihFuLwAtwwR9dADedwZcvxITo3JDOIEz2oXqiybRFYd/bhLPFHFLdwAClAAJ8APf7QCgtQAC2wX/0FYAehFtvQBlPQCgGYWkMDhPPxhPCzYE1IK5OFfOaRQSRYFEawAClwAGWwDiZRM4Z4WP7uMAMKQAELQAbQgw8ScAALoADXIIe4cQ8HeCV0GBKQBynU4gTiY4XrNArXB37+UAYSIAEKQAXU8A3fAA6wGIuw+A3cwA0zkIoHgAT+0A3iIA7dcA7rEIzCCA7OUAAUQAEScAweog+mkDjAV37v5w+XNC2UgSizl0nJYQ2JBFLORQ1IgAM4oAAr4AzrMA6yKIvfgA7dwAYRgAEUgAPcAA7mKI/nmI7rYAiqqAAKMA4Ol0WZ+Iyr9xPkcFPUYkUOFW0C1RwtVBSBhggUIAooFgb1sA6veI6z6A+XQAF24A+wYAfqYJGyyA34wAstwAStwAZlwAsEeCtWMG8ASX0F5P4KfUgs0DEv19hFb9NVpLKDEoFi3IABbQAM9ZAN4tAJ4FCR59gN2VAPIUAFs9Br6+AOIDmL58YGMyAKBdGCDEJ89QWNPQFKPLkl2fdKMNZlJxSWEYFidkABrYAO4/AN2eAOgDCPSbkOvCABhrAO54CUU/kN51ANIdADZkYaN0kfm+gR9yBB3wJ5ZIlg9nAGDYWWEPENM4AD/uCKs7gOp7CX6LgO2VAGB+AO43ANUxmL3bAO1IAIApAN/oBiMoISYOeVOzGQ7kYtndJcN2GANFaYGMEPxDEHGqAK/tCKsfgN67AI0nAOs/gN/vAIK1AH/lANfAmS1xCGPeCITjcjif6QbV0ZkDohdw7oLfTgCNxJVqMAU+pkFCi2DBLABuGwDqSJjudwCqewDuDADfPADTZQBLwwD9NpkXDpD2IwA7fgD/yglSBiQrD5kj5BRewiKWT1EnhUij2hVXOAAdmAhKWZDcqgju7wCRIwCdzAmaV5lN9wDQfQBygmmbrBm4Ypm4KWW7sHLuRgJi7KN4ETYUfBa9HQA0XgDtRQotkgDWmAD9HABC2AhP9Zj+tQDZOgAMp4o9cxDVekiTBKEgZIocOybeI0TcThCLvyhkDBFH8QAljJDXQJknBZC5OwAmzgD9uwpLJ4DfgACzPABALRjzXSONO3E9Chg+yiFpOzkv6YQyg4p0CWeBEoFg0HUAfR4A7xWKLc8A3hsIrHUA/xWZrdIJJICgzpOSSskqjxcZgZcRMW5S4YmHd05B9BkH1s4Q7+QAUm4AzjQKKleQ31IAoCcAQdWqKz6A7LQACUgKBB4gpcx6A6kTII8zfelENxwhbZ0J74IJ2++g3ucA1MEAL4kA3ZUK3waQcKMA8+liWH06frJjRmsS/2QA79JEja5HuiWhH8EGhk0AKzgA9BWqLGWQ91gAPQWQ2LUJ99yZyf0ANi8KlF8iSuAH3dCZMiwQygUJvsIgvnFUU9UjlrAaut0ANloA4U6av4yQs98ATHgA/cgA610AlL6or4MP4FPZAL2ZlLWyelo3qlLseienKHBEQbXVAMqjoUcsYGFOAM25CmU3kN8yAKBTAL20Ci3AqScboNATAJWoWz1EET52muOAGmCqN5MxFFjWMFG+J8O6FV9uAMC1AG9RCp1ToOIWAEUomU45ANcPC0s3gO6MAGIQCreoolkFexDbtu8DCNCeN7Vjst2WcJl3Qh9mEQEfIkEqsWDmQRcjYPZNADsNBr3joPf7ACj+AP1zCd6NALymCazdkDeFoPfXsl20Z3yDoSlAG4+9KMNMsuL3NzEVUT2mFrXzKeVgAP6SILihs5rnEGSlJOmrYUbQVXqhACfrAN87ANJToO1bAOy/6AA1VwDPfAtrIYD5HArZFqBEagDDGLJsETrzXrnSFBGV3AsPxyDzaKPkuRMcLjPrM2DV8BYfh7D9uUTG8DD4axrimBL2eAC7jgBMXQjKgxue+CYlSAA+Qop7J4bqJwAKUgmhI8DnggDvHQDAqgCHxCYFaqvnpXu5tCVNrzUv5QNwIBE+TgBL7gBswAOheCOmmhHNkzGb5QV6YgGGjEENUQAWUwnL4Ki+sQDTYQAsMpwUd5nO1ABgXQmsSaJegihUFCqhUBHV6lMFpEa19DGbgwCv0TT95wBje2eLOBUGSbFypSEDD0HeWaR3KGD2WAAW9VDUZ7jtwQlWtJCUSsr/7MyQct0Aejh1uFwo1aCxJaFJ7vew8KyTe0IRb+kEhVc3oHAnCGiBaHxw4TQ2P0gGKTYAJ9gLdMfJ/+YAsaMAfLUA9MPA57jA5IwASDYMWCdV1bgsUToRa+ILH60iWE2i760CpuQA9O0D1ZuBODIQvyJhBUMAPSMA55bJFvZQchcAvgYKtTWQ3uIAoKMAmtZKB8Ag8fpaUxgst8Ncm0zC4/p30lQxtiLAvLdDDo2xDEwQ/ZUAEtwAb0gKa+eg6T2gJAwMpFbMRUEAFatRKuiyc5YsLwYc4SwQ4yNM/Fh0RV2M66bA1BMA0G0sZEIWffYAZN0AnKsAjfIA3osKSn6f4Oa+mGxFmaLDsJGIAI/uAORmYNa2RB/tAwDF1/NtsRpuANh8sn6zqjI9MjbuCzeTQUzCsBj4AO85ANvXAKnZAN9smX1OAPwBACbECO3AuS3OAO34ADRhAN2akWP70nvgCo5EfCH8F3Qb0nS2EN5ByoIAgbc50TyOYPFMAEEQyLc9sLnXAK2XDSsLhfRRACs1CrRdwN9QCiswCrBiEV4fzW0eHQEbGdEq0pKTFRJZN9rmEamT0Ry4ABhqC56AgO7VAL0tAJ0LwOwDADXBCdRWyc0YCKDScmGfVX8HusifwR3uALTHMxuT0ytWQF3fPLHeHRqGit1TCVg50NtQAKzv4wCQfwlM2tr+jwoSFwCOXLX+skwu/GKshteT29EYMb3BbjoBWTSl3gOmtBKIoQAohQD2/pq+c2CC3wAoZ1DdHs13vMDSbABZ7qmglBDt9XXZykJpb9EKOQ0BZjCl+XMNDBDCfgDT8bFKDGAVTgDPRo3/5ABisgDNmAB6eQD9nQ31c9CRFgCytaSs1x1zICHR+10w1d3hlxEjR+KguKMIZhBWZCX0GhVfUghrZwDt1QxHt5DRJQBvHAsqewCOfQrRZ5DuMwA0WAsAoBHcsU2u6hS+nshDaOEfeQQzxzSugdqC/xUax0FFp1DVQABMsQD0deotvgDtXQBybghtedDf7xkA9Y8NQV+Q38aAgt4M00/RC6XNFXwr7kQNnSseCnRg/F1DPbmeN5Ah0schiObhAohggrsJGYWaIUHAJcMA7rIL2x2K3KcAq1sK3X4A49agTr8OUGAXlesyWW8LUKHuYY8cMzc+HeQihOYD5rkdctUATvWcrfsA34QAUSII/9Dc2dgAXt4A/UzQspFQiNiSV6Y+k1ztYbsa4T0zOQ4u3VVYO6wxapUACtUA/X7dK1mgsK0Af46qvZcA75oARP4AO3jRFceSW+YArm7h6Q/i6FxzMWDszbMS4HSRQodgz12g7+3N+weA3xUA1kgALCMA94rK/BWAcz0Aa8VmZnAP7eLSY0eVLwj4eePYML3sDlabIiBImCanG5h1APRzm9+/UJLVAHX43qU+nK83AMLfAG3CAPkYAvKYWBtB4iYcXOa+2wG6EP0+DgF+MLSg8uN+GzjAwU8+oP69ACXFC9yl4N9VAGISAMFFnK1IAPhqAAmdvC7NClFWHhMB8dmD7eIKLypcc2SOP3m35O/rBMMD4S7nAMAlDkpXzN13ANBfCmQD+964ACM9CaPNQaTZ8Q03X3u+FRiMwmfH8QcvY7U4wQxBVmDsf58zGQYrowuZVxRqFV33Ds7rAOc36r7hAORtACyzCtvtq086C3MAvZzZTTdC9dCV4k7gf6vD4RHv4tCbEgEfhwE9wgCudW+lLDa9QgCuCQ+UUCD5IR+DRCD2ai+gihDyjWBjgwCfoQ6qV51XaAA3YwD0bu4bbgA2UwDt1NL8fnT/dgNgABT58/ggUNHkSYUOFChg0dPoQY0R8odvckXsSYUeNGjga5DeHBraNCd1QwnGzhrJ5EdEYwUNCAY507id98vNTQwx/NkT19/gSK8N4Zf/aCHkWaVOlCfcUcGV0qsd49dxi4XFv3DdxWrl3BfbuGrkcPaeu8nt1aDZ8hBbwI4mNo744rfwM30vPmj15Uvn0dOqLrV/DgjR9DBr1Xj8kCCo1DFPimD27Deu5mSGhM4TG+lQ7rrf7L3BiDAn/zCJ9G3dBa3dStXQcl54/Z64P6Wh1odY8b2q7fzo1bJuGPv2u8u567Ns4EkNIPLerLy1EfvRN6aV/POLDYauzd/RoW+VOyLQEUJJyXEEKCv84L8embVMA8+hAt2FP2V4YxegkYmPizyDsBj3KjqAEPFHCgQIqxyzXO/BHmCRzw6aY448C5Zp5ruFCgGne4GefCb9ZZp48CdmkOIntkuQNAjixKhDUEZySoGF9mozFHjsADaqUe+DuPghbAcci0l4CkAAMZFzJNAQyQXK89HadkaKAWoaIyy6UG8qWY6wIkIwRY/NHqQnBEOiQERNRZp5sLxxEJGAzsiP7nvoum8RJLjCxyRZa9tLzOKFD2ahBQQw/i8SfTGkMSA2CK9OeAJ/lL8htIC5gUPZgO5bQgdjoFtSOLLAmENn5W4uYARJZxp0zjwMKnBSNuadVV3qjxhwsc3PJnMoxkIUrPi/TRB8dQUXNjGmGP1TJRn4yiQoH5ggxhWYR8nDZIJaVMyMhsMVvPWmYHHCgH68ZFt6G9/nxtnkkk4OUcW3kb55tWFLBDn3nRqvebEKiwUyN9jDJlyYzgccIbcdMFyht4GDbUWZ/qqUY+B4JUwIiAFcLHHlgImJaCA8rotaH3EAEZPQwKUMRgiAecxuWX0R3IjdkKJWygaHqwwR909v71apt5nNlCA3QoNnMbd86xIwJldhqJHnu6WBgiKwnCeWbp/CnGFWO1zlHiniSzQwDMKAigh6keGqgMsxsL4D9uOfaHirclEICMjcHuzhID+R53oBhl7uvUlcIUhTigueqmGn/+0MAQ4rYR0XFRcCB5742MGnyjgXDBxUvApTOq1NHDBim8o5wxggISRKEpa4Z4KSKEGVoxTSJ8SukBgx7GlP301NiJsWrhqSxGFsL7Mm2bAOwY0U0RSWyBCa0W5+qbb/B5YgZlBvLVJ1kG3ZodcugJ8PiLzDVe/dTE/ukefLDBZnmG0k9f94LCd781eLwMXv90VIyYuaYMEggHN/6wx5VxnEMUCxBFNrJhpq18AxgU6MM92qcRenSwJ5bwmwAfQg4v5U+EtIGfT/RRj17UYnPzqEcAq2SPediDfyccjDVG4SIc6mggzDBdzizSCiYAjBoLBEc35nGMMrSAG20K0avccQ02tGBMcwMKKEq1wYbgwm/2kGH/6OELa3yqh9dJoQrJ8bUzCs8bN2tjjnBRMBPyJUBsCIEq/EE5M3VjLRRAhD+S+Ca1tCIEbCAIFuPnD3iUqo4SucdeuoC1OJLDGiGM42vS2JN7WKNzmRydKXxhP1C2xi5s7ItRKoYIrCCxG9TAhwLK0IxWmekb0aibDXAZxp/AYxoFHAkz7v4wyjNapBgALGVrNjmSgQEzmWBTGC+fSRhmBGswxKpDBI6IxK+4YxMCgEVWKAiOdQQHkbnziz2m8ckX+WMUAjmjFRQ2zfelTin2YEcQ6fkyUEzjkfs8DTxmw0VmEkQZLaACPrRnpmvgQxlFmEE7xmEh43CjHs5ggwau4Y86nYYZqNzIKLyBC1JqzSjEoyRAB7PMjkznnSqFmCXYQVCYIoUco6CHNEeSOy74IHHVsOU28tODQCowaf7oQw/aQJB/8oUcjmCHTu9HkERMQ6qBGwgoLEGomgqGpaKKTVfRNdOrinVs+jBFdPhiGltIYA7iEOeFrnEOcOCACdWI66u4Mf4PJsxgo7TZIU0dQsBInu45QShGXspqVo181XPwGCZjQ0WPLsxUsn7RBzvU2hc2HMAfRjXTONDRCnB+hYLjqEY3BDCJkr1mIE44l0/uwA528Y0e0ygQsS7LF8dyhB1m3K2hfhtcvujjHsmLij744Q9YhGCp0UDiN9zBixn0YB3ysuU8uEGFEAhVkaexCDGfRRAnkONTi52SPh52hmngoqnE9UlvN0JA+ALKG7LQbX2PYpQr3bNXUTDCLPYYRd5oDx9i6MEj8FEvhvrjEjiwA0EEuxTOxXYk97DIKExRQvTOaC/ssALoSqrfwthzKV7ML4lphAvlqRgoA5HpUkwjDP4FTIIatTTORNFRDQq0wRnziO5GmUCWEYOXGZMMCpfYscMi68geRnGDFQrYYRczRL4asUdtq3wgcoR1yxf2xxaTUg9+tEGbdKXgN9BBiQLAIh7cBAc6YFGACH8XO+/dnD0c8UZ0UceDXz7KlQ82WzwDOmf+8JqhR+IIDR5lMsKQgBGjO49l9MA+R+zjPKJRBgqYZh7LPdA94JEspNhFFl37G6fW2SKpKRoogs6IK+BRaFf3ZTq4oLKr2WEKeAIld2NZhj+AeqFuWIq7iaNogUViBwp84i06goefcr2QAIGCxVibtmCgUowzIJMhN6y1lU28FAbROtxLEXXBzo0REv5OuCGmMYQJKEEiJFp0GSGwgzRw/CpwuAMHbHBGa3Vk3i0RxBvFuAO7sk3hgVjjDqOo2grrYed1e2TcSvEFHSuOGn2Qw5kbb8g9yHiUeFBhBuMo9mmrYSJYbAPO1cgFAVi78MG4YRQpTkpWXVGMitDIKF3YMEOWWw+4cEMP7wG5QmCNEXp4O+m29sc0mPx0ptBDFpvlCFz0oYoQ1MEf1LBliJTRgyf4g8HTy8YWOLASd7smvDxUynQIYgpc+MKqBaG5wApCD3Y4AcRM7dY6oJEMRlyBBRegg+aevnSJKCjVVKewPwpk7orb4x7s1Ag/cscEHCwDH8lGyzbOkZ8QlP5C2AsEiz8QgYE+sIfy3bFIgdp+kQBNgx6JYIYp5I7hvLMNKp9yAzyCIItP5VQhq/CCDEbAAh3UwAvsATXkCcL4iAzkl02WvsDu8fHsA36rPakTKQpQCrwisRrxcIYA+nBj6RkHK/WIABeyAfdDIRz7LZUwO+BxBnK0GEBgjLuBMYgFyThfICYZwis6qIHm+wFo6D6LO4yCYwa66L0HNAhrmDwLpCRZ4D6MWIkW6AFqIDARiQc2cBQ0oyB3eJdcuL9nmo5iSARHEB2+sAd48AUruCmu8QasoxsdaD4frAQNnL6LS4oKq0ALHAhHsLAHJBa6eD2DsItLCIHW2w0RAf6HeLiFsTi9pKmHXAgTACGzUDEKKwCu09CTRJAFR8CFHYQHLaOkgYDDgXiOhNA/a7A7K9AHJdQLWZC2ALKLUGC+GhAEHXg+dHpA6osIi3AELxNCTvIHv3nCc7uvFiSIOuEGzssGpLkQbogHbiiDPBI2W5q/PgiBS2CPI0yNLAsMUxLAGmGxaQiE2/MT5XmYhEgf2vqoYzIFULAGR7AG7iAIN2AHTGISfxgGNWABFfCCZBiGISiN6DtEIkyKe/AGzGtEjvCFGIlEV4u9x4uIOjGEAtiEeTg792Mu9Xui6AKHdtCAMtgoVDQldgBG16oNa7gtUPAHK2CGG/QFN8CFQP4YRqqBAFkYBTfwhn5iBo8rQ6MoBksIjKZ6EEH4gRpQgVCgCTVwwGtExMY7n2v0iV67RnLosHmwq68bQd5QGu6Kh2o4SbRQM9LiFYiJpDvoQO+AikJRJ3vwBmUxLrwDwIMgGOXhJX0whyGogRr4AW5QrpRqxI2EiHvIJzf0yIy4A3KYPUOzCCvwxqnyB1UApHUQQRE5h3WYhRAoA3cYNjNxh2XgPLjYRirxhjI8kIEAIw2yy+cwCvTRoJ5EiArzBhmCi3lgBRWoAR7Qg1P0h1OZSqeMiGkQr6nUiC6ZSksQSYhQzFxgAiN4lPbjjW64LirwAWerQuNwE3yookCaB/54xA7JBJtG40OnS4iVSAY1UAEWUINfSBHIHMII7AtLUk3IgwcetMDhgog6oQQM+ITr4ky0qIZ5sIUFmAMSWc6zeKJq+BeaeEstYYab+03XgAorKAZGTAh9MI1B1IGKZErd/CxpXAr+u8pGvAdy6ALhfEB5ah9+WAd/WAAmiIdxOpN5KAMFcIeWdEl3aAQBcAeKSxed7E5T8gdHsCbKwAce0AEKxQdw003GtBp/IKkGrThyqMVrzCw8swtKiABYwIe0LLArVAWE8gfoEhHpAgYj0Al3uAdo5JtE6DmGgQ4ZXMLaYA9GUIHmYwSOUs+E0FCIsAblyU4htL6pu0ZQmP61hagTaUACJtiGdeAjc6SGKOgBAWNJYjuaNpgBU1RQiCkGkByXmCGKrTQI0xiGK5ABZUwG6DtShEhShxiVDr3ThhhDN+2+YgiEnzwIfDCNMijTeChHfhGJRwiBQwiHvOIXrOCGrhOJM40pfxqXJ3tQa1AspoCLOBgCFmABVlAHgevTgshTh/ghSvRIkfRQQKsHu1qH0byQLOWCEOAG0EPJdRCFALAFHCLOYyEWcrgD+sRTKDhKKFCdVMVT9vQvN3hPJvSHLmjFaxwFfATSdVAFAWiFTgw7bliGAugDfLDVAjuHavCdXsHQ05kGJZxW2qhGfLwHP/QHcXiFDqiBIf5IvHlo1z5dVYcwQmdNiOKBTE81CH4wimVogTJozun0igxZhyLoAV4w1z4iEpMTsHiIVQQxigg1FKPwBlcYnKqxiGQwPBnwApEwRIKFwGa1NXtwhZpM1f8xvqlkBmDCB5ogAxwohXrArgvBFUQwAUMYB0llTn9oBROYA9No0nSJmY49ioRTNz9cCTrwQRV4hZWQWlcL2Ie4EZc9CF+AUo8sBhwhlnmwinUgUH6hghaoBnQYJ6UxBArAlTgyCgj40SnxVFNotW/7rAqtASiAIRwV25dNjUT4W4LVIJJST/piD0o4gDHh1QrSHjUbh01oxxcFmoXSHnRYBhxAAo7qWv4diSotsQt28AUnrJIgHVIdwITcPFwkhVa+OEj661N9mAY/gcyVOIWYqTSNyYZzZRxDTc1oYAInSlEC/QbTQIf8bAMxUbwTsoj+mhKooMkdCqAHoQXDs81nmN7Z3U2Y9YtR2VvdNApHKF2zMo3WqR4K4AV3AIe27YZ6KIMiKIPOUoURWRzpMgQfEAZeWIBJ2ChMPR4FmccZEUBTsARigkiCiAMeoEhaMI1/Fd+vdQ57gK2n3bgk/MupHAhDcIAXSAHIKLaFOovtYYPzUIAeUFHeQIdJIIDzaIFjACh4iFca9Icz8AapLFR/eIbmk4Er4AnxdQgMZlV/sCSCZYdpQP7W7huISVgAC6CAAigNYiFPd9DiLaaJKFiA8wjBbxiHMSbjMv6GZjgSCUAkC6beMLOG9b0I5EKf1l0HTFABGRiCIjXg2UViPZ0Gv4FjyeKSUQrkmqoHkjyABkAkBf0DAXAAAcicd2OCA6AAfFEpZgjRAQmQ0IkNGRqIX4ACwlQDljViiOjjh8jWVHUFS6hX3RyIcQiDQQAQwz0IfsCHSygCNsDUa/iRMtjj/rEI9kKQP4EtuazlxPCHOFhArcUaWi7lZ+XN1ICOVj7SNixkV9tZA5a4jgIoTJ7LHebdkBM2FviBIZbdZz7i2hUMHs5hRcOnAklVS1C3RLyqibvm9P56xCc+jYGAB4eTsNZN5kB8hXNG54Y4ZYENM0B9wL1oEQ6uOISVPiUTkLNlsqZaIX9YBcNTAT1wwF9G54N+iGkABUJ1Un+QBT7t02lI4KRLQvFsDcvzBx0No8BUZhnQAVZ4toKWCJAW51W8xm5s53MTsYiOOmNGjUhiB3huiIEI4qO8Ao/W6fH9ErnQZ6qjhztoNGe1BppdN6B20L2QJ4UuiHUQhNcNBYKO6ofgaYgYFIdWsemYWR/WzZElaZAbCO5MRSW2BCZbGKQzhiGQARlQg1P9tLTGiLV2iDGyBmruvhrkObENzgf0p9K1i0CAB5JqKsX0BzVovhr4Ba0z7P6MQGxx1sqgJq69gK3ZdU/IMwpzkeulsAZ4gET8SAabVtlecebQTudopo29aNPsGwiQdVnLkj41tTXtQC5PBhDa9EHcDEPdFm11Ro0alIWVBjl22DnGdtlEwGHpI4fZTqWicIWRxl0ohItVAOyNNofwhe7dJl96ZAY/cevL0iBCFt9RYF2qs4TFjtlHFKW6CKCVMAc1qAEWGIKBJhxzwASka++FGO2ICL57PiF6gAckM2IKzz5rqOtSs4gg8AejTli4eAUhVgOKC+KJa3AHl+68DoROrjjdkj0j7vDzPbdEIIf5ZghQ8IbVKDRzKGsd+IGzblmEeIYaQHG6ge4HV/4Re7BDkNtH2BRbLsnk65aFDf8Jo7CHjLPy/VmuX5CBo1SDRMptgijyI3+FZHiGV+CMlXgF3AxtJWcbf/CGUeDvcNOHJS2hUr5rGq+1JoZHudMHJzDuWu4MLxDijISIMie6OGABcxAHFogDglgFGXBzw4bziDgmV2WsgeBDnd4L9nm6s805gpAnEDeIlQiFrGWEIW+IMl8Hzi4ZWmCBgR6Cw5RwQLv0xpwk004mDUqEx3zmgSDupIPco9CsSbrWhICLV//yH3DuMSdyGTCHK3BG01iJOLgCKPgBtP7oFX+NADGdW9caeOZ16eOv8q61SJLSo6BwG0f3/ZH0HyBMOv6oE49OBh24ghq4gotuDh5QAajR7Vx/StkABZDSL3JAQ77UaZ1U6o1jh2J4babLrLTCuWv5LDUI7CGghfSMiCAWBG6ogcQjs3iAhomMdKgGWG/vDoqIeMZ6stjW7YGx7lpjcn1qqYEBIodQzFdYQBZIPFS9iCI3jUqgdCNlAUH4Bc8G+oIW+ItYxJkXZCWuRk0/UvWiyY3jk3dvPEbyh+rQ+sTcCS9gPmdn74d4BhmYB9PQdoKgdoIwdFbvdt6mEYvwBmFs+ZryBkcYpXLXQOhgBr6np1G5e4A2hfEpCosmCFo4Sh2IdDvliJKfuLT/AT14hR8A3zoZgjCH9sNtev5ImruZAvzRCRBG+3p0ngZmwPGaEmmqH4j+k4WHyWzTaIfkk4EGZNeeqAcHRLpqMAduAN/JMAdogPtS7vxhqdbYCP3W/HBkT3GCONbkByXtGHxqIyAmfTd/IPofGIFVb43N53yVFxCRJYrUHx1OpwvoF0JmqGoXu4dd1ztT2EeIUId8R0rHwQfvb/74Av/wJwg9JP+ZAYh7+vw5oufPoL+EChcybOjwIcSIEidSrGjxIsaMFu/563JQI8iQIkeSdDiKnj2NHH1NS8Rx4EN8CUPxYCFD0Dx/Mkvy7OnzJ9CgP7kN4cFNKNKF+uixcwPvY9KoUhMiDFSMHsepWrdyjf5K7o4/mF3Hkm3IzpU3sRWzJgLFLKxahvX8QYujgoUXWjp3lu3r9y9ZokYBk2SH64y/rIQXM0x5xlJKxpInS2XHLizlzCWLFYwrkSM7xAgjzg0lQ4cMOgn5am7tOrPgo68nprQXaJrn2VtD19bt+3fDlIFkAS/O8B45jPo43mGXPPfCevOGyPhR4+hc49q3Dy0qm3vCeykdeUsO/udAcuwSHYx8/j3hlLjMw2/N0ZQ3iynhOSKHFSI/MK3Cgg41qHZPPfzUtyCDDcXGYH6iudfgRfYM5IY301C4IVdL+cKhZAPhYspaHDmCizUT5VTNFTWocAU0mIE4I3gPNkhOIv7EWUhjRCkVc4d/PAoZlCxu0APdkFFxVMyEEKXEjhPWXIakP3Mx8oMOKmCSE2tJeqmZjQymZE0X8Iz25T1NgZLYl20W5qZWA7UkY0TkFOMGXBEpaA4UNdTwwzM6KQgnoYuFKWZCgbjyFps0LudPMczgCVWhlU4EiiP+NGmpT+ydyVB6/gRx0KfH6TSgDDzosRqnrQbmHYhjTtMcpRQulVAX07y1o6u9KsSRLCRS6atF9IxSDJ2gHuQNcRLxM9cwarCgghfDVNklsdl2NxiPzFjjREKbvhdZF9Ywqq227HhzLrogXaVYY/6Q40qzEuXESA06sIAJq+3629OhIGZlhf43yIqr3UDMeAOupv/6upws9TpM0VJ3SGyWNx4l61A97lCHJXYTiyxSwCDe6o8Vupp3sGuR0TNNxlQNO3KbsmhIc0T66OoQTK64QiKvDfEjUz2hqKCDDqvWo8+gODs9UckzigcpOU6RmJg+M/uVdWS46EMeso0+belSgZAD79hjfmhqMd6w1zBE8fjDogwvBort2HkzFLWjCVnmyxn0sfyXe/Tcgd9levv6IdpOcxTImo2z40viEs0VxxA1jEDLOjop/rmDsMKZlT0ZW+NLqYuxY401d+CikNagC5lSDrU+DcpTYsE0yjT0SVRNnzJcYc7Gsn/Od5KP+sMMOWfoY/6KNaO9JNVAKVXvDS705Pq6plkb32pKFzs9bzECyXjSpKT5Y84qd0GxqvffG4+8l8rTA48rLjlBz7lc39M4SARiEPdoqEygwEV+whM7+QkJWLJI4NOmEbaP2GYUyWHZs/wxjCuoQAZqiFFOGDg/0RHrMhL0RhDgYQkzwe5/+kiJQOKnlLDUZjlBs4dt/AEB7KWociIklpye4jR6FENjDbMEfiiSE0GcRgWV6NcPQUe/QlWPTfw74OFcAY9p0IMpB5FhcLDCji5KSRbMCAI77lCMp3DEelFslxO8MTht0SM/03MK3CKCD3ecRgdDqNIC3+iwKZLNdssrRiJwwQwr2P4jERZ0hDWK4YtitC0R9ABFIOgRhGnI4kQwY4hBAinINqVkTcVDFztk4QqswWMUZsIg0RhxNB0wwh/zwNson0ZIV2VNeY2Bx1tMQY5pTBJmxOGiEONlvlz6ayCusMbV/jUQWSjGDeyYYNz88YsrTOuDnmOmFEkIznE+bSDW0JAo3XSPO5iyJdaYXkwuhzQW0CIn6SRntnaJz31myxKOuGfy/HEzepgiEHmECD6eYZ0aQMEd3+Rn3vQJ0YlWaiAENaSrimGKYrDDClSJCEfEgQmbDKGWS6NoRMWJ0pX2ain6QAwQDYInXGTvf+pjBQdZQIdAhZClTpOoT4PKIzl90v5X6/THGeCRzIfoYy50yJcMXgFFoY4MqFS96obuwYxiAHRDpcsVe+ZYJXEQSAc8ACRWcWbVtLK1Pm7Y6imTlBJmmMIRyEod7GypBxXkKxS2bCvN1grYxejDHKFw6GAlEhmwBM1NoPAFWA7aEJm8ok8j2KnYEvsvwWrWL/X4xXU6mzN7NGUgAKQRaX1xksY6RCbV8JMMfmFP0Q5SpbRtzWdD64+m3Tavm8TrjOhBjkxaZC5eaGhvJ8bZ5G4lt7KpxyvmQYvv0CUZD22rQehhULEuiBmjYOxFdlIPXDLXVcstr1ScO5ch/KAeOlCDQtyhA792FZ8WmoYlwjUjfcAjWP76xUg9Tote89p2wITJbaB4AIWEJEMF1vUHLVQwj+xo1qJnyM+RssqOVhr4h+ftcFA+KwNu/OAK13IHC6SKDz2o4aS09d6ouFucgVgCWfUFsbY+jGOf1GMYZYUvTDBxhY7pQC/JPRI8TCELH3LnhfL6EQx3/D0dS7kkPR4BI4YxAlZgJhkj4EYydNC5ARfjmU+RMWUQcgZ25DeuVdZlgd/MlR6P2B+CqEE1FOKFV3ghDh2Ghz4ssbrECDgzTh7FscIj5xFya9FkcS4+2pGakwpCB1cIFI5Z4ingGCQH9wCuo8dG5VBnpMc/kA00OgANfAwECn8sNG2zUpBEBGmZk/7JijUQbRBYkzqwce41UvThjmQkyJZg9ofchiDVG1PVyTgMBJv1y+ySuKcYlnhgQqYN7FaNetskWUUH/iplmBgEFOZuGGu5siPWueGc3pZft99dam7IgJ5uBrE9OFK7VWY2TulJhC/WpG15E7jRBOfKHvXwC3yQF8c29Af2EsHhyg1E2/BMCOuKEQhchA3UB1frrz+uFXy42NGRSc7GJQWpvP4vhnHtpZMHqBCYmeJnkvwVr0UusgcxvOc+/znQgy70oRO96EY/OtKTrvSlM73pTn+6z63U4t2WfNEV98dl1uiKQHgDT+I6ElZwiEOHXCYI93ADJa3hO53Dm71Hgf463OMu97nTve52vzs+cqKG6vyiSh/3ES4CYYpEuKIYsrAH9+KyLmsUSR8nkMUKJct2EdL7B3TQA+Yzr/nNc77znv886EMv+tGTvvSmPz3qU6/61XOeDowwawcFUY23e1s8cbHMKNgBCjeQwwm+cATwa2wJeqxyNAME4+S/xw9zaGIEKhgB9KMv/elTv/rWvz72s6/97XO/+97/PvjDL/7xV/8C+foBDzqA5etuO2sCyflC2ujL5L9xIIWoBP7zr//987///v8/AAagAA4gARagAR4gAiagAi5g/zHCKujAD6jAD2ACN6gDb+lcxV0dzGHGwNEfzeAdCIagCI4gCfSWYE5cgfCsGoV5IAteFcy9IAzGoAzOIA3WoA3eIA7moA7uIA/2oA/+oA1yBCOsik5UXQseIRKGGkzUwwomoRM+YZWxGhROIRVWoRVeIRZmoRZuIRd2oRd+IRiGoRiOIRmWoRmeIRqmoRquIRu2oRu+IRzGoRzOocN4z8B1oEaIEh4CBvI1xB5aRAf+YU9MW1z0YUkskCDuWCIqx2TkxiJuhU19xI3pjpL0xMUhxdRExYRcIlNR2xzBhEU1DiU+xH/klUgkokXVF0IYHyk+xNhBRCgBomZ8mlC41EgcjLYFEpqd4kbsYiA9okPYg8e54i4mRUAAACH5BAEKAP8ALAAAAAAgAwkBAAj+AP0JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHLnxnj549+DRY7eSnT5v9ODB00fv3j2SOHPq3Mmzp8+fQIMKHUq0qNGjFvXpuylwpSt7oKxNczQtkatAxSzdoWelmKxA3hx5neZrGlOBS/UhXcu2rdu3cOPKnUu3LlKl9s4Wm+bEXiBc9kyxs8bOHryEhclJlWrJ251iuIoRtGe3suXLmDNr3sy5s9uz/kAV66LYmr/DF/OyY+fPCTwr1g7bVOu5tu3buHPr3s0bJz1rxQI1piyQMmiKak1SVpuo9Ul6vaNLn069uvXrPmn7K1ZsVDFQk/3+ae9IGbpAWbIS0fOFFrv79/Djy5+veam/wYki34NuT6nOm7QxA48piUwj0HH0Jajgggw26KBDatHTHSjmEaWWWgbmwJ94D3bo4YcghogbPZGB5w9xSN1DGSiWGDieiDDGKOOMNOJkIFXe+GPTW+adYY8jNQYp5JBEFskhPNOAAo9pOsqlD2Xs4BLIYfS8aOSVWGapJW83yUJPIBxaORc5zLhx4JZopqnmmnOxc88drCFoF3FuuCInm3jmqeeeGtmXpCU63mnXk/5Ywowp7fGp6KKMNpqoG9NIJuhlxBUomaOYZqpplr4wI0uit6klFTn9bWrqqag+qJY3zOQonTX+iZSa6qy01jrdTfbIYoqL0dF2hjWu2irssMRa5l8xzDTH4XSUyeJLYWIWK+201PZEW2OfRhtdsmdW6+234ILkCzx3KPsedDkEG+667La7EG2+FGNFcfFBJwsuTbqr777hUgZPnYHUNCl1lBl6Ir8IJywsbXdYIyWKCeZ4xsEKV2xxpvCw44g3MqmbIGWjmHTxyCTvaYov5JBjCngDu2ePPZCKXLJ0SqWVV38vn1jzzDxTBJ0+OPrjiGwemthyz3Xh9aSsDymXFtJQF0SoN26wZk8iiGpLn1pWZBv1ZkrHtF2kjviS3xnJbnWGN9ypZE9NEH+NNGU5nMlkiDeRY6D+3HEdx47e3uBSZlhTVj1NbDUNdNg03oRVFS6JfCdLlPB4rDXf36pFDi7g5Qzr3SBKaAlrmK9FWXn+uMIOVr7IgizpF9Fjz7hiTTOvIzmLd3TpC2/H3cGU3UFjZLwbVSprTtCD9mC5S70sQxceBF0x68HpBmo6F1+tPezAMzH2MHsTt4h3mOKf9kBBF4iuxZz+/Eg3McVMMY5sXOXl6J/KjimjvB8T/g+iDDny9x+BCAgXVUMUh8aXk/4ECB75YRxtAEhAPYmKHUGg14FWB7oYqWUUFKpgSM4nC2u4QR8m0hkFR0IogfjCG4ZyRXFWKMIt2ccXrpBMlQYCHTMJ6UL+/aNhDRfClJs4wR8w6VZbaLOSfynwfEO0IHNW8z61wEmIDVILKGQYxYzQgx584dj76KKUf/nii13ckywCM0YOMYOBNMrY7tLoPNa44WoapJRaXGENR6xEPFik44eMExzWWEktgSjMldYWyCEy5WTxakpniBMvX7CHYoIcEk38wb8nIgQ9WApeXjJJxO1YAxTcayPYTuOPE/ZPlaTEm0DOUIwcae0lWFILMwbYSAKuZ3JwvI1hZAEKN8WSRvbwRhdgOZBkZjBLlKnaMQ3CDhi6hJm2YQou9ofNaSbIP83hVUJugq9gBqlZ3gSkPxLhDV5apzzTYAYzMJnOBUGHHLL+mGc3oSO8XnboJKOwhjlF+KSMTSx616GNPSzxqVHWkz774aR6unmwulVIS5E6Jt0MSR/KnMAfF30ofCgDAZCusH3+DJEpigHFIaoFHqNQ1kCrs0lHjMJjIr2ON1Z2ojmGhhkt1RIzphHSIQ61oQ0iTjF3mNPpaO5LIJ1pQbzCppuYqahawodmDOOPicksi2oZHT2buhsMeYki1cQTZY7o0xlxIx6bSQ9FEwQKIJGVN6JyhQIl8iSq4EktsLOhPxihBn9otTL3IEcikBoi4swrsHetDTPYccR8RUQf5GBPSkV0D2bYdUta5QEUDGsXkflQqgoSmSkGiNrIwuWGgZj+J1Mv6w9mcDFP+sDF3rb0ix/oYBUHUYc6Dpsif0DOnTICLE/b6tq73MdZoJLIWseqJntMA3taioMMZEAHqeGDDnSoB3GLcpNR3HZI3qNuc+kiC3jIcLOK5JPZglokblyhBjWAAjcIoo/vhhcf4yUKkOIrpFJ9ar11uQk9PMVRi9zEEu/dk3Vne6VfqEAHOhjBK/jr33rQhhv1mEc73NGOdqhjHjzxRkwtO6QVlQXBfRNIgQA1V4bAA1CtvRKQcgwifdRDDUP4wQ+8oAZ8TLDD+jCHDirhDi+wYLv51QNpSRKTFtVYRLrUIYzbQhlv/AU6zEXITea52RndY5k89lD+PcxxBXME2c3iqAda/OsOd6iAEeJZhznEsY5XXMAcciaJ5sy1pZWyeMtEARmgwryQ8n11T7bEEj7iwY0h8GC/5hhIf8HLDRbgWS0hrgc0LmCMMjPkJnf4FKNBxJQMphnRIOmhPzqoEXpEmk+obl6R+OGPSl+a15r+rhdUIINfTBkf8+ABJnYiUzXt6LOw/gmhmNG6K0dkFMbkk1q6Y+0Q+Xq/HBbEBYZBBx5U40xeGC1OTrLYR6PpSda4A6mi3RPirA+5HsGFJV5dJMoAydQK+rZ36RCHeYhjBJUg7Rpk4I9Ai0RUYttTbLpN76T4QxYT4zdEAG5mTg4wSwLnMHj+5fyLcfujEiNoBzfMsWeRfJGtEm4NPT5ecZJYwxSfovBHHJFCRd0khCC3NLiDrQY1BFoNFxi1DJ4M5YZ7hDZgwuqapkfmmofEQKdlITwO3CjM0hhLIS8INajx4V+Y4xfGSHvajc3xgUDumouiCSj2avWSFGwakB2hPZghddwuWEthXwiwBf33TLGjfauue0HyBpa2K+Qeq8MU5AOh8QcFfig0mQaYNOWIbSo+I9NAoI4cnxCa6BNT7Qz6pY3ClOZU3khMkeHrK34T94aw7yAxDLTjbo9i0NxIlxfK3OGeqcwL7/MRKZg3TER6haxqt45ikeqHPpSU4T7u98Ap8p3+rw92LPonXbqU5AEvdKPUNfFpqivF6a1cxvqkS9htFIGa/57gZ+dHtNLlPNHfXOLcYaeHxhPltX5Zwg5eQn/YYX880X2W8Hupklnit33h4QrmpUQ/QRkHhTHWwH8LooA7cRNZYyvkcGsSCE7UcxQ0QUMAJkQB5iDTUDUcmCAeqBPsgGa2chOuACgISErk4AoyEYMYoRbi8ALcMEfXQA3ncGXL0RA7GBc6NyQziBM9qF6osm0RWHf24SzxRxS3cAApQACfAD3+0AoLUAAtsF/9BWAHoRbb0AZT0AoBuHj+IAqXMAnrYB33MDRAOB9RCD8L9oS0MlnIZx4ZRIJFYQT+C5ACB1AG62ASNfOIh+UOM6AAFLAAZAA9+CABB7AACrANLWgQwEABBVAAPRAPe9g3B3glfRgSkAcp1OIE4oOF6zQK1wd+/lAGEiABCkAF1PAN3wAOwBiMwPgN3MANM5CLB4AE/tAN4iAO3XAO6xCN0ggOzlAAFEABEsALdRYP3NiN3ugPhnCNFBAA4+BwvWIKiQN85fd+/nBJ00IZiDJ7mZQc1pBIIOVc1IAEOIADCrACzrAO4yCMwvgN6NANbBABGEABOMAN4BCQDSmQBLkOhiABDaAACuAM3SCQwrgN44APbGCRCnAA6yCPZJSK6rh6P0EON0UtVuRQ0SZQzdH+QkURaIhAAaKAYmFQD+vwixoJDt/gD5dAAXbgD7BgB+rQk8HIDfjACzNABZ9QBmXQCjuJlG9VDUXABHYwA0UwDnhoBfN2ktRXQK5giMQCHfNCklH0Nl1FKk0YESjGDRjQBsBQD9kgDp3gkz3ZDdlQDyFABbPQa+vgDkjpk+fGBjMwCf6wDlo1lT15bpMQAp8gZz85ZdRBfPW1jj0BSm2pJdn3SjDWZSe0mRCBYnZAAa2ADuPwDdngDoDgkALZDevACxJgCOtwDjw5mN9wDtUQAj0wD645mD65DlRAAQToGWf2lZeJkgIoQd8CeZ6JYPZwBg0lmg/xDTOAA/7gi8P+uA6nYJsDuQ7ZUAYH4A7jcA3ACQ6wSQ2IIADLUA/VcJ4EyQ2woACX4A/xMHjugRJgh5k7oZLuRi2d0lw3YYA0hpYYwQ/EMQcaoAr+0IvB+A3rsAjScA7D+JOPsAJ14A/VcJs9+Q3XMIY98AT1MA7c8JsaCWLV8AQ94Az+gGLykQjZlpxhSXig4IDeQg+OEKNkNQowpU5GgWLLIAFsEA7rYJ4DeQ6ncArrAA7cMA/cYANFwAvzwKEdmg3+IAY40ArkSaUaSQ3+cAgScAly9onXYUL6CZY+QUXsIilk9RJ4VIs9oVVzgAHZgISDmQ3KUJDu8AkSMAnc4J3A6YvcsAD+dnANgIqbSokBVHCHC2Kg9LGKG6EUuLB74EIOZuKofBM4EXYUvBYNPVAE7kANwJkN0pAG+BANTNACSMilEFmklKAAsOCk5wkO6HAOrSABYeiiCTINV6SK/IkTBginw7Jt4jRNxOEIuxKHQMEUfxACotBrJgqR2VALk7ACbOAP28CqwngN9TALM2AE83AORjqY1RAPx0AFLYBiuhox2ickkFprhVKcpqIWkyOvfEMoOKdAp3gRKBYNB1AH0eAODAmc3PAN4bCLx1AP44qU3XAN+MAEIRCr2gmcXhqOYWivusEq+xof74oRN2FR7oKBeUdH/hEE2ccW7uAPVGACzjD+DoeKlNwqCgJwBHk6q9/gDsZAALQ5q8O4DSYArmRKH67AdWiqEymDMH/jTTkUJ2yRDUKKDxsKn+5wDRCLD9mQDfBZpHawAAVbooG6DtwwCxiQqx5yONOXE2pBFRvbKPZADv0kSNrke2tLEfwQaGTQArOAD6L6tfVQBziQodWwCEqKlL7oD5/QA1NQD3gZqPiQC0wABF5aD/i5IE/iCtAnozrBDKDwn+wiC+cVRT1SOWuRsq3QA2WgDow5mE3KCyF6DPjADehQC53Aqr6ID2UwA3CYrYF6bn3QAhc7t55xEmt0tjoBiOxivPlDG11QDCM7FHLGBhTgDBw5q9cwD6L+UACzsA2AerV5SYwB8Aewq60P+qEL8ATRpSr0wKPEixPIqjCaNxNR1DhWsCHOtxNaZQ/OsABlUA8DC5/jEAJGIJi3OQ7ZAAfcO4zngA5sgAHc4A4ZGajQqAgSsAwtylns8LmYK2jw4I4J43vUWS3ZZwmXdCH2YRAR8iScqxYOZBFyNg9k0AOw0GtZOw9/sAKP4A/XQKXo0AvKEIzd4A+T0ANMUA/f8MDk6g+zUAUz0MJYth10V7QjQRkYvC/oiKkhaw83F1E1oR229iU4agXwkC6yIMKR4xpnoCTlpGlL0VZwpQoh4AfbMA/bAJzjUA3rsAw4UAXHcA/9K4zxEAn+V8uQ4VAEPfCXfdyhH9oHIcCglAkiwQO89ferH0EZXXC5/HIPl4o+S5ExwuM+szYNXwFhoHwP25RMbwMPhtG2KYEvZ4ALuOAExYCOqLHC74JiVIAD/yi+wXhuonAApbClgzkOeCAO8bAMC9AHwAzB7aABTLCuMkJgvqqcD6drCUNU2vNS/lA3AgET5OAEvuAGzAA6F4I6aaEc2TMZvlBXpiAYaMQQ1RABZdCgPLsO0WADIdCgugyhi9AOZFAAAqvLPmmbkxAA0eB0M4IuVBgkHeszXaWs7KJFtPY1lIELo9A/8eQNZ3BjizcbCFW/eaEiBQFD32G2eTSmZcDA8VD+DdEqjNwQmKVJCfIcqD/JBy0wB1YL0D98C6YrEOYII2F1j+sLElpko5d8DzF5rwIhFv6QSFVzegcCcI+IFofHDhNDY/SAYpNgAn2QwAC9X7agAXPQnrpMorWJBEjABzgMnx9KBT4QhpwbIhiyhRk8Qu341u7SJRi7LvrQKm5AD07QPXJNg9YgC/ImEFQwA9IwDistkG9lByFwC+Dwso3pDqKgAH+AD6aaz00qAfGc1/EBDx8lrDGy0Hy11AndLj/XriRDGxUtC8t0MJC8EMTBD9lQAS3ABvTgtcB5DgXbAkBAxDwLDuvABBGAutcgDZ0gmB0KjYYgAF7qzDWSI1b+zIeS7BEX7NDtsipXWDL+4QvWEATTYCAgTRSSaQZN0AnKsAjfIA3owKqw6Q6lCYcOipvfgA+TgAFDGQ2/qAynkA0mSoxI7ANMoCM9TSNWJFBbQtoSYQre8MGL0raUOjI94gbMm0dD0cYS8AjoMA/Z0Aun0AnZsKQc6qXAEAJs8I+HfKLu8A04wATHMLUB+Yvo/ZvbgA71oKIM6uC84Qs6mODV3RF8p+Padg/WINoPDYKwYeQ5gWz+QAFMkMvASMC90An93d7AuF9FEAKz4LKz2g31wKeiYMcCOQ7K0AvfeQx9moRBWyPw6+PSDBIwGtuZkhITVTLZ5xqmIecSsQz+GGAIMjyQ4NAOtYDcir0OwDADXKChNkvPuPjPGjkOvVALw4gO3NAHCkDBaz4jS+EGRBvUH+ENvsA0F5NRJFNLVtA9nq0RkomLN/uePZkN6DCtoOAMk3AAf+nquBmYnxACf/DnGlnfgHC18wALMzAFFlgkL1F1bj6jHbHBom4xaloxqdQFrrMWhKIIIYAIIwrQ5zYILfAChnUNi92QLc0NJEAFt/C6dCwNgOAPT+ADcDgPQt4b8KgmCg4Ro/DEF2MKX5cw0MEMJ+ANzRsUoMYBVOAMD3me50YGKyAM2YAHp5AP/o2UXlrrrXANqYuU5yYHJmAHS6gl0PFR0/2oP97+J6jcM2eKMIZhBWZCX0GhVfVAhrZwDkY8mLZ5DZwdD7V7CotwDlirkedwDi3QAzsJ0BAKDnZgAVgA1FqiS6dNJPfuEPeQQzxzSs/+0C/xUax0FFp1DVQABMsQDzXfk9vgDtXQByYAh66eDfGQD1jA4Tz5DeVoCC3Q6/NNuD85CUYABP5QC9t9JZRMDvM+HVF/avRQTD0DoyO/KNDBIocx+AeBYoiwAkM5sUcsCiHABeOwDnMcjFjL37VgtdfgDs5AyNEQDwtL9uOADlPQAsfQcAaY6gxiCW2eJoXfEO08MwPvLYTiBOazFkzeAkVApEbviVQgAQ252IrdCVjQDkD+fACtENnnmZruEA0F8Ako1l9L/ZxYojeLL4MljxFtOzE9Aynfryfcs0wljBSpUACt4J7+ew65oAB9oLfnmQ3nkA9KwAQ4MLVGH5AAQYUCOn/6/B08yM4gQoYNHT6EGFHiRIoVLV6c6MuUPYwdPX4EGVKkP25DeHAbKVEfPWYpXb6EGVOmTG/sZt7EmVPnRIPFfMGzd29nx3n+jpFp0e4ct3HgnD6Fei1eNTIohM2r1hTq1m/r0NWZQQaeua1lnc4j1aNMQXwOz7DjOFTuXIscHdHFmxdjyZM578EbpVfwYMIWcXkTWljxYpgcQY3yxpihPoNkehyqB+6b2afjUH7+alGHm7ttnJ16nneshZhj2BadOre5rOdr86j4mOWvqEOOZ/zFlRw8pEFLkYUfn8kXJU5900whhx59pC9cBaVfFy60GDtywvnV87euBZdq62Sb/latXpkQwsyf50wNHyIFrdyNQ6dMWq9w8J1Wu6caAfo4aCGIakoMOwURoscfUKxbMMKJlMtJH2+KkTDDBS+EUEMPdeKoC38aFM6dYwSwJTbTnjrnmmsKYMOf0lY8bZ0QZvCnmqeyQUeJfLLZ6px1mDjAn3rakogjJ/xJ8EPhODphRCedpPAm8IrBEEmMtGzyIvAO6rIiyhDSckrByAksTDPX9IgyXHwDbrG2vmn+oQh31umGxmvcCceIFpbBR8cVuzlnHjYwaMUfarbKph44etHsm2/weSQESnQzMEl/nmMzOFl+6zTDKmUC7xtJYvEIH6G4EaUaf8qkSB9+FBUFHFAvWkiYUgyqZ9ZQ54IHw0x/JXYietxgUjJ9imoDh0n0kZRGavyxAwc75jknzxVdtcUHKqQhTSuossEHDnDMwQoJKnQxEqN7fEkEnmGLpQsUdtSkV7hRY3KHCgz+bcGZLy1CxwgMKNAAh3XcwegbHw7WoAd/GK6IH314ORjhGAfO96Z74Ow4ZIT0KcaROBWr5x53MODiGvNo/OYadHroQZp1aPwPH0MUUOUcdPz+g6qrNEyxRYFPwJuXInoiI1HkoRxxxeno9nXpnnqYWIACrUMo4Bt9YH2oHndmkEBrCrjGh+OI6lnHbK0xUEA3ilQ9JoCMKVBgrZOlTsmaDvkmtruWgtOnlQNauYcbmM8ZZxkJ/vDnGpxbPMcEG3IUlzPUqCBhHZFWirJpwGHqye/R9TVpuZe+tkUACiSAXYIQJGhXInz0maSA12MPoYXa1/anjKxjlwADJpKVqCgBZo8dgwKaefX0lJDdW/oPDQqkmKTzStsfYZ7AAZ9uJF+xtmu4UKAad5hasat1+igAlhxhHmceVRwYhJN6qr9IqET+tp5IfDK4ACqGaiMBTw/+iAc7CrTAVhMpysEWSAEMANAhRVEABiZIO7U1pC3ZGB7xKHA8fBVQJf64w61M6CGD+AJDi0kMGUIgP6CVBSWHCAEi1IGnFXnGH8DAwByqMQ/FrYgb8ThHD6jAC38oA0P8q4hQXCEL0a0QI45p0PasOJQDiqQoWpsgBoBBkaIcQIMixMA3yOiPApwxdgiLlT9gEcI34qiDW5SITfCYIaFYIhCL+Q5JDoCIZbijhkG7Bj5aYIRbGPKQT5kWF1rQinWM45FOuYY/DEEBQxykLbIAGUgoQ8A9XsQN04BiKXPSxZBwhAoK2B0DQ5DKgyQwlgys4B0ZEsFblo12tASP7kT+6IC1lFCV1smBlI6JnQZVcTDzmIQEeKEiGlmyFQqwA7RwZslvhOB42mpfbKgQAiMtRB8ceY4WKwIPJ3iDlsf0BjyWmRdWhqQe1dCdAxioACP8DiL4sAcsCBBLChxgLWDzoD4QMdDmFUARFmwIeFoASwZSYAHu0OU8DzINiGp0MQZxQ0vUuRODRKMHl/sZjbYxD2dsQQPouKdK3XEOO0TgFoqiEaHW8QkFXGJimaKHPbrwTp6gsEAePWoxXEFKpK4ydTL5mh0EUDYKBKAHKRNT8KaqtQAcL6MMaQsVtioBAZDBnxHBBzgwMNCCFuAT0WtqQyyhwrgqxiD/6+hOvgP+HhmKInKX7Iar/qCBTl5jRpxJjz9EgQMu7LAbmbPhPX3ABJRUjyN4HY4/cIGLF3r0nP74Y113Us+ROMMIFCCBKBg20obwogg3asVuLoKPUvQAAz2QH2sZEg87tCAEZYhGXjXKjv8RVbRDKcandHuTomwjAHboCjgRuw7xMGEzl4wUPp4wg1l8g5qaQ8klGjCLoqhTFqBwJkYMwh16GBOPyTTucT9CWpHcAx/YwIZwIZIg9/6TTG1KDD4QGtdg6Ve+yOVoYcoggXBwA7vgGMc5RLEAUWQDSDj7BjAoAF3poucbNJOtseiRXo9YYq4eJQeG+ntgkNB3OPXoRS1aOY/+eiy3Ieechz0GPJG0zWPF87RGmlisF4MwI7R50YdQWsEEKigKu91ITRlawA08QZYr7qjGHEKQKPKhp5KtwEAn57FcUPwxvhHBxVztYWPA0cMX1tDjkGXi4uGQg6ly/pA3RIpnvODiOT+GSWLYEAJVyAhn3dAZBRDhD3B0eCvjqAY+YPFbthXRNEN0xgyMkA25WUQo8PgjoB9yjwaJyMCjI4c1TsznmNAZJPewBmZZ7SFT+OLUs/7cQe48FI7gExEue7J88tYMQ8IsuFQwwTFeJi1NFmAZBmHzQeAxjQSnhBl3sDUetSMsXL/E1R85Z7W7LSF3RnvcHWFGKOdCmTr+RIAa0YKZOzYhAFgsm0brcNxauryipeCgCBNr5TRkXV9/jEJeeLSCO8/tkm97xB7sOPLCFQSKaYha4haBR0vOnOsmtoAK+IC3aRKpjCLMoB3j2LdZuFEPZ7BBA7yoBzWsHDSvIAIDPo2HtXcNEshUx9yd4ghxj3rxkDS8IysxONGxYwm4KB0maKLHzz2yGy74wK+CQs82gteDRTtYpf7oQw/I4I6UGhEfyzACGVz11YuQwxEKSUliEjENqU9pTKCwRBad3uKn+qU7e48OXOoO+ILowxTGGUpRbCGBOYjD3py5xjnAgQMmlAe73+DGPJgwA2VjONKTEEBubl2RwGz+fCLFqDiJ6SUUfQShGJEZvNKNrl54YJvwx6FHF5p+e3CzA/FyYUORvF5NdLSC3prZZjW6IQBDlJ1GQwzBE25ikCWp/iN3YIf1iUWPaSBrTLzvyOw7wo44g18x5Dc/gJNL0llNug3+iMbl3cGLGfRgHd9F7DyuMc5lEBFmCxu0t6IYmRCKbHuJuHACcrCJ2IsOfZCnM5gGXLC49BM/jEC99FsMb5CF78NAiuCIFDK9i+AIfIgCI8iNbZi5p5AUfBCDHngEfLAkPfGHS8ABNriTlHu0TFIFIOCCogixmLgsZaoaoRgFU1AxBhSOBmEHK9is0evACryINOPADswLXPj+FCqMI6bTiaIQBgWYBGooNtNAOXSoBgpoA2eYh8vLpM3LhTS8pG+YljlogTGCK5y4B2YwtZhoIXYIDCeUDnvgCDewggRDwr2DwrrQPizMCXL4O0WMCKEwM5zolTZwN8nDMHSghPiJhwcDB3QQqDkgCZwBh3NQBxM4nh/ciQmsCEB0BD37FXo4gRFzxL3ou5yovXuZRbkwiKXKxYhwhHsIQR47CGGQgCZ7N5iZh2XoAd85xkGZh2goAwrgBjJUKa/4gwMQhk4bir84pek7CFlQKrryEIFLoaDqxYo4RItwBXhQxXPEFXrAhUIkOnYwhYOLid2gmWWYn0FRo3HyKxz+5AqU6APCqgf8Uzl/aIUZYAPPYbuZgAcqkkeGSAxQsMICiUgQOYhiOANusx13JIlazAntaUePpIi/4BSSPIgUC8aIKApDMAFKoC7sWrllCAE7AJfLA4d1mIEyAAZHYrYyWAHRu8iKUECdWIgLuYOmGUogNAhruINRSCV9qIepJMl0rAiNQB6UJB1yEDePfBfTiYl4oIIZGIdueDBIgx9Y2AZOrIZcKABDMEjO4IYybLIdkws3GIUp9EZQcIXtGEm5CBEjlIhZORKS0IPbOUerVBqO1EqXMIhp6EOSXAlZ+D2RaAt9UIUQqAOcap+mUIYekL4YbJ91yAYq4AB1qIf+w5oumooAZ/CHnCOMAsxK5iARU8AFX6C7kSkMA6EHdnCCJQSTh5iHdYCGZGCEK2CBC6CDs1JExTyhSGxMlwjE2TzHoBg4kOCH3WACHAAUgISKbTiH4AmBUsiRN8wkm+sDfOAGRwsaV2mF33qVlXwJoaAeuUiMaaCHRGAGU1gJJrmHpYyIz/IHm3ADeAgCWbCJqIOIVfACGRgBFtCBGvACI/GVXHTOAPUHavPD6HyIJOvKc+yjRKyInCOFAigFy3u+eHCGAQFD9oyKdZiHCOACZdhEmOnHGcgk4SiGFAJQh1iIh4OHMyCHK2SSNasQAT2I7NEIX8g2dSoPOqiBCP3+AWioSpD0RmaImh7tRWtAlr9UOoOQhQ/1CInqAZkTxW+Ih0MBBkvEGXeIplaIS7M4h2OAz4aUnpUohkRwhM7aCXuAB1+wAjTxh9erTP/SgQg91EpAyQuNiCDUUkc0iLsQUQykjKhpx4W4hBAgEEtDLHCIh1ugmfKkkUbJBTLAgHr4BhdVwXighj+QANe0U7zgCCsov7yIk0SQBUc4jHhKL2izjjFhvYdgB3iwBty0An24ixGRBYjUooUIBQitAUHQgQlFxVlk1P3yB0doRA59NX+YKy91Og3c0Nckie1sFKyTy3jgBvYoNHQ1i2/gtD7AgEPwB7PsIZR4z81kTsb+sAd6iJrdRNJisMJpCIT8pKJPkadRQ4jsYwZmwBJTAAVrcARrAEt/cAN2WDWW9IdhUAMWUAEvSIZhGALdqNDEtFI79Ibr5NaOgBfqzEX6FEeLyDlDKIBNmAfRFDk5GhAqw8l2MIEycIYwRI/g8gEkyAV/sJgGZIeK3c0bswbuexArYAZA9QU3wIVAwNihggBZGAU38AaKYwauLD+OKAZL+NcS6h5B+IEaUIFQYBg1oFKtvNYAJYdJXdmHsEetJAepmwfKU5QU/M5+CYGpAFwVLD4BaAVO9K5oEIBLURBSuwMxfZKhOwh7QCVvQKUkGxkjbQh0Uq5YMYchqIEa+AH+bpAVyq3SvthGiLPbu22IOyAH+XQ6obCCmH3Eg1AFRVsHM0UPIZmF38IyUXSHZdjOcHi8d42HbDgUlKhW6KgJ7DCINQPG6WU9jmgvYNRc3vCH//EGdWqLeWAFFagBHtCDckLaWKXCuY2IaTBA170IF4pOS9hbiwikXGACIxgjVXWKbri/23grTjWLPMEHLdtU7JqWSVCLVwFXuoBfkQFGf1hWxgwbf0gGNVABFlCDX9BGblVfiEi1R8VCeChUd0Q/mfUHSsCAT7g//QWHIbKFBZgD6mJhKqsGb1IfFsY8f2CCFnAVD2GGvAThwYgLKyiGbe3QopBWHWhb1OXgk9X+CSGVXZK8B3LoghE+x4R7J37wnAVggngQRXDIvDJQgPs4U3doBAFYFE5Eh2MggEkY18Wwh+7tmEhVt7XBBx7QATwWMPdFiA7uUM1648Ykh4TVSn3AxRM64QiAhUCBGU9VBY+Dvzf8BncAhiK4qmb0MmpgD5RAX+RIhEMmFgvZUyH843pgBBWIUEYgVz4+CD9+CGv4lAXuxceMTK0EBXaMiJyTBiRggm1YB9U0i0yihijogdzIikGBqTaYAZ96MDU6hBnQ105GjmLI21DhKN+wXYQoimG4Ahn42GSgUFZuZSe2Q2/1OXF+iFnN5lwshkDgXA8qijJY5njAWbPwoUr+OQTjvSSUWwduCIE2OIZ68M6n2IZtqAcl0kdphg5LqLhQAcRstQbYC9C2iIMhYAEWYAV1qENxdmUf9Yc9Q2eH2Nsgdrp6oLx+FkVf5oIQ4IaB/s51EIUAgAXGObTGGRBiKWE2oQxyuAMrdghugILRhQLVCelxVt25CMQonmV/6AIkRclReJAbCw9VQFx1pR9uWIYCSE8AftcWuS1/CLnp2gaBqKVfmYa7UGrFSNkH+U8MFYdX6IAaGILlnAe7dN2O1t7/IWnAKy4OjWiG4AeOWIYWKIMhYuHaWAdL5gX1zClboYIWuLo3FCxr0Q27zpDeWGfs4AhvcAW8SiWhSAb+5JQBL2Deom4IvL4xe3AFyeXjYFHQ6GSGasMHhiEDHCiFgjRgf0AEEzCEcTjesqiGwjEBNhgNFu4GdHAHJmACadhosw7kxUhKTmlW8KCDQ1WBV0Aa0z5tct4JX9g5PvaFWm7MYhgcypgHlqmkLx6Hx64GdEhpdzAECQAG56ORXQgAN95rWfUHCCBlCYloUzDHjuSGPK4BKKCxktVuoyZqvEiEABdnYKyOlb1AI6GEA5Af75QUSUGHcdgEDViL+HvX6/oGdFgGHMABUW0fMqQCDWiLe0BwnM7vlFgIdvAFSz0hU0ZlHcCEDU7wPubunfhal73b5qAiDgWPU+AoZez+p2zg6v3Fh3kYs2jYYW4IlJn7hqJAh3XAhzZAFMZ+12tYTzWyuUWzr5ARChCMkLiI3MDQou6hBeTE4GfY1x5HbYfoo/6+W7uI8SEritNqASagAF5wBwjjjG5YjyIog+BTha44pEk2BB8QBl5ogD8IaBeNsLTBh7YB2szuFOxh2gZEJ0vINrQ9iDjgAbalhaKw7KKuczu3hyWRZfCLVDluTIMwBAd4gRToGrMMaxXEBzaAHQXoAXc1C3SYBAKAnRaAhQ1Hj274hAPQgNnxq9MBigXpDW9IxLZ4hgiVgSsYwB6PiFaX6lQTZ3aYBp9e6klYAAuggALAFPN2h3iXd4b+iYIFgJ0y/YZx0Pd95/dvaAYJkoAySCt+P4eCN/hMCgAU0KBEad7VAy1r2HOPWL/2OqF1wAQVkIEhUGWFRmdxb4h7mIa5ing8ayFbG3n5qoe+PYAG2BiK+AMBcAABWAsyIhK8sQOHuB3KoAyGCYAQwIAD8KuTFwxmIGTkSAzO6g51MohfgALxVYPSBvcJ+XG5gGo+dgVLaGsONYhxCINBYJIXbwh+wIdLKAI2iNVrUKAy6JWJEIoyCAABONVYf1x/gMDoIJElqdWwtxp/iIMove4CAfuoZwiP91HEEHoWg4fXFnwywShcmUrYtIhoiK0AInroMIgzKHK2zxEW+IH+bufxxYcIwncLhePWh0MWPraEk/Q0NptKG7MaqbxTb0V3IvMHYk2hzF6IOIDWV/h80H8I0WcIjoDOxmyQFJL72/tr5Dh8wdjD4yDvPiwh2F8F5FQBPaBSjqfzqZ+LaQCFd5ZMCD5n952GT+/ASDViwgiK7YW7jpyHvpcBHWAFT/J9iwB+ifSHf21MmE1r82vCWXzMvAcIfwIHEixo8CDCg/fosXOTkKA+f8901Khxpd7DjBo3cuzo8SPIkCJHJuQ2hAc3kioJ3rN3x9vKmDJn0lxJ707Lmjp38uyZ0No0n0KHEmXpz6G9ogcj0vNnBWbSjOsEqdChI5S/eUq3cu3+2tMkSq8JQdG7J/Ys2o766Lma1jQt3LgivbmyF1Eu3q4RR+m72zUpOUujBEY9iC+isSEyZKhRl5Vf3siSh4JNKZeeL2v3/E7uLNQevGLsPJPGCw9m6dQ0p23WKzAQPFz+zCLkh9GfGoo1fuHzx1k18OAHK+M1a8VfYeHKPTZ1svz50DPkkkOvPjBpDn9vuVqDZ2l2RozJZOiQ4cUfPsjW13smjrfpGfbyB0aMT30+fo7s7ucXDu/3UH35U0wxsvj2UET3qFGVDr/4U496/UnolXt4gSaLNRM+x44rxbSmIYgGJQIPfyF2Fhh4RCVljyugJEXbUr2topgKepjzoIn+OQpVoVwRMSNLWTqS1pIvBwoZ4iiupHjkZJZoRpQ+SVliSpECIoSROWrUwMIQrwgEoD/mYHIYk2V2xGNebvxnZl70wNMFmyC6Gadk1tgVoFlB+DPaQ/z09gpFjN2W0ET1DEonogKhKVdSgZBjZKJcCYhUpPPlqV2laSVCDow+geJNhp0iZA5VOvyAlVYPPVODoQn1lqmJizJqjzVFwroVM74UA+mtz0XkCzy9esWOLHfytKIvphiLUHr+/CJDRWoIBGFGq7bqzyvJPPMKPq2+4qCw/ckaV0TejPJkuDzpY40su4qaLnB7YQovUexMA2ZMa/nmxJoJ2SaQF4FC45H+tfXgEwcL5ojDQhwCrSIDuPSyNy5eBPIqsUoRyWIgxss1lV2JHcdUDDPqCvQUnw9hFIpVKjCSakfWrpMbev7QwoKXQ+hxscjCUYzXNHCG3LNGLSViK9Hx7jl00iIVE9RO7HgDZ5QP9TYztD84SG3MMphzxRBZ4RjHFVD8IHbTyv0cF22BfJm2Rw4hB3dpSd2xJN0iLQRKsDW5uSneBr26yg8q1EBHPDh+lIwOV1ikz21a8aCCP+7kHdzabPvDDCglX/4QOYnIos+7n1vojdymh8ROMdvFRI8+7JjijZVX+sONGosNQcvbIE0kCDeHP8hPPND8UEPDh6ouWeZ5gcL+juuq20Nr38tPFmWG1ntEq9sy9WUPM933idErNejAAh0CvRrSqlpVArE/ibMgyC+71ax9ZM3j5Qg52aseETm8kQie4S8t+oDHHaBWwIeYRUml+0hEgnUCgTxQIJBxhxdYYKqtqeQZMpiHVswmELABTAcwW2Bc9Kc51EFved5wRJGYhkJJeYMZMsSfWSwRPZDcxRSyAAVyKngXWlREBw0bnkqMZygQ/kAPr/jBM+LnjyFIK0IzPIsKNecPU+znhvCijSPMUsEremUazBgjCqcBRHxtBIAbC1YF+aGVdnhhMT8YGD7WR5J64DEi1TAHN6L4KnNA44RkpNBJLCOciHT+4VFeFJZZ2EG1Q0bmJY80XURap5J7PM1AaHSfDH4wgpedxYqU5EoWLeQPb8QHjeHSmJIuecqhMAM1s7yH0EQSEVPkiiPqcFwNflAN9JhylrFKJHSi4ggKiqw1jmjKDo0pFrPAKZooHAU9ZMlMX0wjEWZh46tCwQMWyEAQWtGjNHOUyryspSHBsuat3hKI1rkynUohx93YqD0O0e4jtElE53zDRoxAIw4qYIEXeJdHex5pnZJhBy5aSa+knMES2mSoT9gxGn1arxjP5GhBIhkfeA5kZeSRQfruh1EdOTQyKwrEveDFjjOsaKVxaRTHyHiPR3mEdP64AzsexdF6zEP+McdLifJsGqKWRiYnjvAGTzMFQHYMMJtKvak/cBFVFJpldh1JCjz4F6Ta3GUVGhTePbh21WOGBT8wGelF+3MnN3hDgWs1IGbIGBFcmIIj9zCLI3Dhv4RopRqOU8EVBgbSu86HqZ4JnYGWZaakFOMO5CApY7kiCzfAjqsDumFS2OEEa2xUZf5gxA90oAJMnDOzLEWmXP1hjS7AA7MgukdDgFhP1yolZfiLSDcJWBByFMMhtTsIZMwBhYpAkZi8VSdsY+uPQLjCc7u1jk9JJjfbPrcooFhmXDtW1YQA0B96ogdJzYIPs8qABztTaXdB5Ni6yXYaQJ3XhPTljy6YETn+i42vUMwii77+l2j0GMWu8MUUb+TUXxgZhhpYoAIvDONB6ASwhOYLHGZYwzlzk24XrOE5DONFaiPWHj0RAhhXNJiwpzUfCzChPhKzVZEhos1TdhXeyPjIGx7eMY1pQrqNaW8td2hxQaQGJ+GW1B1G1QFSg1xjIenXCmbkKZC9EhV6TGNqAumslPEiC7t+Th/9NchdXOGKvkqWIH56UCgYtLN66KOYYcaPhoWTk2KQQ019nc1xJfM9geBCH0/dVeDujJa1OOq6E5Ut0gZilmIIkDAPSZxhZYBYQSp6qdE90l006gvpXKczhbnJ7Hzb6bwUydHpMksgdGsQdvhC1bb+i8MQajACWqwDvqsW16fLRBt7TK1W3B2WNaxxB9n07teqzM6x6cU3SN1lFNPY6kOqsVwZXOFGBXb2cvKMXdowgxxn0IcprLGdbwZobhEhNi7owV9m2+Xb4FaRP5DcNHJ0qDXVpkfqEoKlVRwUCjsL9L3xHOw4+VQ78HCFN51AjxF/768y2UxTChMU2oICF7b8UMLzImBZ2DJt00A0puwRiFE40sH+GMYVVMCYgRky5Apvq7BGc3JvBME7taXPX6u2GYRHpGp2aYlfpuc2CHhDsHuyeWqAW72k0aMYS57blEruYkGQRwWVmDHUM7xwqc7NLBPv+B1M4Qp4uIUh2kH++HXKAj16kFYWzAgCO+5QDDi6O+yqcYI3smwmesCE3Wr6sNXcQR4dhI3Ofp+QuEHEFIMwoxiJwAUzrGCPRLDcEdYohq4onQh6gCIQ9AjCNGQR2C4XpCn2frxYkgJEJudcFg484ChqG7I314MRDGJEVi4M+4mNPV19aXhBQFMyU5BjGrrqsoHcMvVSg3z4UfeHK6zxZ4xpDEZuYJ1GEveLK0hYDXi0vthxjv71e6++tM/UPe4w+24+CZwYiYNVWEALrbye/aSJvP/5nyU4Qv+Bmj9ADT2YgtvIED48w/HUABRYjvAFYHUAIAVaH1P0VbSZSTGYgmgcB34phD+IAyb+kNMQAJ/jXWBjFZ8KtiCCwE58CIu+OAQuxJvFCZw/sELMoU8U1ZwLQocF/qDfARfr9Ur8+cMZwMP0oRlG0IH5yICX+JoQAiELTqEVUlDlFeCEEBt/DZAM1cPCWAUPPIgWXiFeBKEZQp0bVN77mUhSMIMpOMKukFREzIMeGM5VoE0aWgcaWqE+mEMoWA64RcXdtFmZgIIv3A3iGQa2LNcI0EEUudoeTkYfTmE91I+N/VqUNESCTBatYZMhFkRvVENFQAz/TSLxqR8qjsQl1oBl2NmdRQTqbeB80AM5mF5HYIQXROAqrqAq9iJItKJl1MMrzAMt2Bg0JIMUPhc0LeD+kTDDKBSiR7yKwQDjelSiEAojRgzBD9SDDkiLQLhDHpahNNnFNHzHIkrIAQ2YpX1EPUiiNTJPFcajytRPFPEAFAhEMqiAMtqMCsxDUgEYU5wBTIBZf+AWPAwGPdIJNv7gJcoAN/zAFViYO+AMeuiBGqRgmAmInggej/mDJSTYQsZJQ7pgPQyDBn2jkWDCRYgj76wa7MCDD9marwBGZb3ISJLkPOZkQZzkKA3DCLDCgSTDCHAD4/TavRVD9gWLR3bFW5wBO6AjOfIkFf4iVV7JMECkPwhCDQwTwLyCFxzRvf2HJbBDqMDjWVTNKCAYM12lmZRkCwojPrQDSjmeIDT+ThRBHTeNV3B8zEK4JaLApQqe5A9YBjR0ADSQCRSEDVo+FxjRw6Y0RfUVh0BYw1pKJmAy5E66pT64QzJQyzwYpRR1SRtu5IqoXFRa2lTGRGEUgyWQXLNl5ltupmwexCp0gB5C3V00BSj05tyEYlHcSbK5AVDUZqQI5hXWAzfIgP6V5iCaRXYoSaIFCAAdzRoZ53HSJnbigzvoAW9MYNiRTlI03YgMRsoU3cXxSrIVQyDgAqLRInZCnnbGJ0F0y2qSWFQ8Snsyg0OgXIIEHXouxfElRcYNRJepnQcizQ3Sp2aGRR49KIRGqIROKIVWqIVeKIZmqIZuKId2qId+KIj+hiiEYgQjZKQ/2MZ9Yhh6jsbeuUIgoE46ftlatMT08MdoBME9uAGBWAO2MWilmERhooeIDimRFqmRHimSJqmSakXuaI3iuCBl4UIgmEIidEixMNtv1BC7uIE+nIAsWAJT+ii8LOcP0IEenCmapqmarimbtqmbvimcxqmczimd1qmd3ime5qmerikdMIIOTE45VUNKgCfsIV2SscMosAMouAE5OIEvOAKkhqQOKcl2ZBzciSmi8IM5aMIIqMAIfCqohqqojiqplqqpniqqpqqqriqrtqqrviqsxqqskuoFmM8P8EAHjNIysl9fbIarmcXRYSq9REQhVIKxHiuyJqv+si4rszarsz4rtEartE4rtVartV4rtmbrsjLCKpiKCvwAJnCDOsCiCxYdeh7fuQor0Sgpu7aru74rvMbrhGrFFXBbYgakuuYrw6Erv/arv/4rwAaswA4swRaswR4swiaswi4swwqsWTDCe9mnvk4sxcrgtOBrxWasxpYJmWysx34syIasyI4syZasyZ4syqasyq4sy7asy74szMaszM4szdaszd4szuaszjKogKRoiuoSBPXHpdJHWgoZaazmbwwtSRTYzw5f047E02bMUsjHDbqe1MbmTjSmQbBbgDVlQiQH1yIIazLNXTDFu/gFG40V1vJQTzBFGb5FpSKENU0lz0NYLUdEbUz85U6sBTmWyH1+m9eSV0fkhFr01F/AJ3IE7kgEBAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRoxb16bspcKUre6CsTXM0LZGrQMUs3aFnpZisQN4ceZ3maxpTgUv1IV3Ltq3bt3Djyp1Lty5SpfbOFpvmxF4gXPZMsbPGzh68hIXJSZVqydudYriKEbRnt7Lly5gza97MubPbs/5AFeui2Jq/wxfzsmPnzwk8K9YO21Trubbt27hz697NGyc9a8UCNaYskDJoimpNUlabqPVJer2jS59Ovbr16z5p+ytWbFQxUJP9/mnvSBm6QFmyEtHzhRa7+/fw48ufr3mpv8GJIt+Dbk+pzpu0MQOPKYlMI9Bx9CWo4IIMNuigQ2rR0x0o5hGllloG5sCfeA926OGHIIaIGz2RgecPcUjdQxkolhg4nogwxijjjDTiZCBV3vhj01vmnWGPIzUGKeSQRBbJITzTgAKPaTrKpQ9l7OASyGH0vGjklVhmqSVvN8lCTyAcWjkXOcy4ceCWaKap5ppzsXPPHawhaBdxbrgiJ5t45qnnnhrZl6QlOt5p15P+WMKMKe3xqeiijDaaqBvTSCboZcQVKJmjmGaqaZa+MCNLorepJRU5/W1q6qmoPqiWN8zkKJ01/omUmuqstNY63U32yGKKi9HRdoY1rtoq7LDEWuZfMcw0x+F0lMniS2FiFivttNT2RFtjn0YbXbJnVuvtt+CC5As8dyj7HnQ5BBvuuuy2uxBtvhRjRXHxQScLLk26q+++4VIGT52B1DQpdZQZeiK/CCcsLG13WCMlignmeMbBCldscabwsOOINzKpmyBlo5h08cgk72mKL+SQYwp4A7tnjz2QilyydEqllVd/L59Y88w8UwSdPjj644hsHprYcs914fWkrA8plxbSUBdEqDdusGZPIohqS59aVmQb9WZKx7RdpI74kt8ZyW51hjfcqWRPTRB/jTRlOZzJZIg3kWOg/txxHceO3t7gUmZYU1Y9TWw1DXTYNN6EVRUuiXwnS5TweKw139+qRQ4u4OUM690gSmgJa5ivRVl5/rjCDla+yIIs6RfRY8+4Yk0zryM5i3d06Qtvx93BlN1BY2S8G1Uqa07Qg/ZguUu9LEMXHgRdMevB6QZqOhdfrT3swDMx9jB7E7eId5jin/ZAQReIrsWc/vxINzHFTDGObFzl5eifyo4po7wfE/4Pogw58vcfgQgIF1VDFIfGl5P+BAge+WEcbQBIQD2Jih1BoNeBVge6GKllFBSqYEjOJwtruEEfJtIZBUdCKIH4whuGckVxVijCLdnHF66QTJUGAh0zCelC/v2jYQ0XwpSbOMEfMOlWW2izkn8p8HxDtCBzVvM+tcBJiA1SCyhkGMWM0IMefOHY++iilH/54otd3JMsAjNGDjGDgTTK2O7S6DzWuOFqGqSUWlxhDUesRDxYpOOHjBMc1lhJLYEozJXWFsghMuVk8WpKZ4gTL1+wh2KCHBJN/MG/JyIEPVgKXl4yScTtWAMU3Gsj2E7jjxP2T5WkxJtAzlCMHGntJVhSCzMG2EgCrmdycLyNYWQBCjfFkkb28EYXYDmQZGYwS5Sp2jENwg4YuoSZtmEKLvaHzWkmyD/N4VVCboKvYAapWd4EpD8S4Q1eWqc802AGMzCZzgVBhxyy/phnN6EjvF526CSjsIY5RfikjE0setehjT0s8alR1pM+++Gkerp5sLpVSEuROibdDEkfypzAHxd9KHwoAwGQrrB9/gyRKYoBxSGqBR6jUNZAq7NJR4zCYyK9jjdWdqI5hoYZLdUSM6YR0iEOtaENIk4xd5jT6WjuSyCdaUG8wqabmKmoWsKHZgzjj4nJLItqGR09m7obDHmJItXEE2WO6NMZcSMem0kPRRMECiCRlTeicoUCJfIkquBJLbCzoT8YoQZ/aLUy9yBHIpAaIuLMK7B3rQ0z2HHEfEVEH+RgT0pFdA9m2HVLWuUBFAxrF5H5UKoKEpkpBojayMLlhoGY/idTL+sPZnAxT/rAxd629Isf6GAVB1GHOg6bIn9Azp0yAixP2+rau9zHWaCSyFrHqiZ7TAN7WoqDDGRAB6nhgw50qAdxi3KTUdx2SN6jbnPpIgt4yHCziuST2YJaJG5coQY1gAI3CKKP74YXH+MlCpDiK6RSfWq9dbkJPTzFUYvcxBLv3ZN1Z3ulX6hABzoYwSv469960IYb9ZhHO9zRjnaoYx488UZMLTukFZUFwX0TSIEANVeGwANQrb0SkHIMIn3UQw1D+MEPvKAGfEyww/owhw4q4Q4vsGC7+dUDaUkSkxbVWES61CGM20IZb/wFOsxFyE3mudkZ3WOZPPZQ/j3McQVzBNnN4qgHWvzrDneogBHiWYc5xLGOV1zAHHImiebMtaWVsnjLRAEZoMK8kPJ9dU+2xBI+4sGNIfBgv+YYSH/Byw0W4FktIa4HNC5gjDIz5CZ3+BSjQcSUDKYZ0SDpoT86qBF6RJpPqG5ekfjhj0pfmtea/q4XVCCDX0wZH/PgASZ2IlM17eizsP4JoZjRuitHZBTG5JNaumPtEPl6vxwWxAWGQQceVONMXhgtTk6y2Eej6UnWuAOpot0T4qwPuR7BhSVeXSTKAMnUCvq2d+kQh3mIYwSVIO0aZOCPQItEVGLbU2y6Te+k+EMWE+M3RABuZk4OMEsC5zB4/uX8i3H7oxIjaAc3zLFnkXyRrRJuDT0+XnGSWMMUn6LwRxyRQkXdJIQgtzS4g60GNQRaDRcYtQyeDOWGe4Q2YMLqmqZH5pqHxECnZSE8DtwozNIYSyEvCDWo8eFfmOMXxkh72o3N8YFA7pqLogko9mr1khRsGpAdoT2YIXXcLlhLYV8IsAX990yxo32rrntB8gaWtivkHqvDFOQDofEHBX4oNJkGmDTliG0qPiPTQKCOHJ8QmugTU+0M+qWNwpTmVN5ITJHh6yt+E/eGsO8gMQy0426PYtDcSJcXytzhnqnMC+/zESmYN0xEeoWsareOYpHqhz6UlOE+7vfAKfKd/q8Pdiz6J126lOQBL3Sj1DXxaaorxemtXMb6pEvYbRSBmv+e4GfnR7TS5TzR31zi3GGnh8YT5bV+WcIOXkJ/2GF/PNF9lvB7qZJZ4rd94eEK5qVEP0EZB4Ux1sB/C6KAO3ETWWMr5HBrEghO1HMUNEFDACZEAeYg01A1HJggHqgT7IBmtnITrgAoCEhK5OAKMhGDGKEW4vAC3DBH10AN53Bly9EQWERcO+gbT2gdM4gTPaheqLJtEVh39uEs8UcUt3AAKUAAnwA9/tAKC1AALbBf/QVgB6EW29AGU9AKAbh4/iAKlzAJ69AQWrUOrUANTocZ9zA0QDgfUwg/C6Zz/rUyWchnHhlEgkVhBAuQAgdQButgEjVziYflDjOgABSwAGQAPfggAQewAAqwDS1oEMBAAQVQAD3gDsdxif5RDT1AASswhplxDwd4JYUYEpAHKdTiBOKjhes0CtcHfv5QBhIgAQpABdTwDd8ADtAYjdD4DdzADTOQjAeABP7QDeIgDt1wDusQjuIIDs5QABRAARLAC3UWD+zYju7oD4ZwjhQQAOMwDwCGD+4mEHVQAMpIBfVhCokDfOX3fv5wSdNCGYgye5mUHNaQSCDlXNSABDiAAwqwAs6wDuMgjdL4DejQDWwQARhAATjADeCQkSWpkRy5DoYgAQ2gAArgDN2g/pHSuA3jgA9soAAseQDZUA3O6IzdcA3bEJTXUA3nUAbmuIz1kYsCuXo/QQ43RS1W5FDRJlDN0UJFEWiIQAGigGJhUA/r8IwyCQ7f4A+XQAF24A+wYAfqEJbRyA34wAszQAWfUAZl0ApfyZZvVQ1GwAR2MANF4AznYJLROA6E+Q152AZGEAIFsACToBn3YAXztpTUV0Cu4IjEAh3zopBd9DZdRSpRCBEoxg0Y0AbAUA/ZIA6dIJZh2Q3ZUA8hQAWz0Gvr4A5sKZbnxgYz0JjrsIdgKZPnNgkhgAjj4A/LEA53GZbcoA+3MANlcA7RMAu8wBnEV18D2ROg9JlZkn2v/gRjXXZC2PkQKGYHFNAK6DAO35AN7gAIgimN3bAOvCABhrAO59CbbPkN51ANIdAD87CetWmYVEAB5imW/KmR3LAOfXAA0TCIQ3FmkUmdTCmAEvQtkLedCGYPZ9BQ3+kQ3zADOOAPzjiN63AK87mR65ANZXAA7jAO11Cb0Nie1IAIArAM9VANLCqW6MANsCABfuAP1TCgGjkO4rAMOCAG2VMbKAF21bkTTpmP09IpzXUTBkhjmpkR/EAcc6ABquAPzRiNhrkI0nAO0ziWj7ACdcCj9CmT33ANZdgDT1AP48ANPtqWM/oEM8AL+NCjLGqf8dAGMyAK/uAOuJEI2eag/pNJeKDggN5CD44wqGQ1CjClTkaBYssgAWxgnCu6kedwCqewDuDADfPADTZQBLwwD2eKptngD2KAA62QoqWqkX54CBJwCdzgDjHJotRQD8cgAW2Qh/UweJ5hQkcqmT5BRewiKWT1EnhUjD2hVXOAAdmAhLWZDcrQke7wCRIwCdwwonlKjQtgB9egrf3plhjABBdZo9CYnHNAAafKG1Mqg0kqaLm1e+BCDmbSrpgTOBF2FLwWDT1QBO5ADSyaDdKQBvgQDUzQAkjYqiR6DZSgALDwqeaKDufQCvDJo+Y6DutwDD4wA3+aoTwxDVeki+9KEgaorMOybeI0TcThCLsy/odAwRR/EAJ+Cqd5mg21MAkrwAb+sA0KG43XUA+zMANGMA/ncKm1WQ3ucAxUsAKzSpIsWqDUYAchcAz+gGK80TjTtxPQoYPsohaTQ4ClQyg4p0AKehEoFg0HUAfR4A5OW5vc8A3hsIzHUA9Gy5Y/iQ9MEAIP+6G2Co8UMAnuAK5hqaL+YAsU8AdwVbZswSqKCx+7qBE3YVHugoF5R0f+EQTZxxaASgUm4AzjILhh+bOiIABHMK3m+g3uYAwEEJ/mOo3bEKoCWqMqOg9PQALXcIq64QpcJ6w6kTII8zfelENxwhbZQKl32rPT6A7XkLf4kA3ZUKOGeQ12sABvS7P9/rkO3DALGKAIdBun04gO26AMLaCzDicdh5O16yY0ZrEv9kAO/SRI2uR7jUsR/BBoZNACs4APAJun61APdYADZVoNi7Cp9TmWn9ADU1APqpmn+JALTGADwYAPbWu36AAObGACcmi1NGMPrgB9hKoTzAAKTLousnBeUdQjlbMWgNoKPVAG6nCcbjsPvMCmxyDB6FALndCqzogPZTADcsizeXpufRAChuAPC1ybfjipOvuHTrV19kqII+tyHosniFhBtNEFxVC5QyFnbEABzkCT5noN8yAKBTAL26Ctzrua1BgAf8AN6IC8YqmmC/AE6vDG0LtfRYABgIodNOGo6IsT/iyrMJo3E1HUOFawIc63E1plD86wAGVQDxPcn+MQAkZAm705DtkAB2k8jeeADmyAAbNaq/0JjoogAbkAydCLsa2AATobD7jbG5Bnwh8saPBgkAnje1MsLdlnCZd0IfZhEBHyJEyqFg5kEXI2D2TQA7DQa9C7DvPwByvwCP5wDWeKDr2gDNHYDf4wCT3ABPXwDaLMluc2C3T6jdaLl/hwDPdLtXDFx9tBd7w7EpQhy/sCkE88ufZwcxFVE9pha1+iqFYAD+kiC7wcOa5xBkpSTpq2FG0FV6oQAn6wDfOwDSw6DtWwDkJaBcdwD5EMjfEQCc5LkuFQBD0Qmx2Nkmo6/sSXgA+gK5P7JQohcAgW+E7+cAfz67hRTB7+0AUezC/3UK/osxQZIzzuM2vT8BUQdtT3sE3J9DbwYBjtmxL4cga4gAtOUAwAiRrF/C4oRgU4cJFwDA7nJgoHUAqsWpvjgAfiEA/LsAB9cNZ5eg7toAH+Gs5Hqw9IEAL75avvQWAi+6APp2sJQ1Ta81L+UDcCARPk4AS+4AbMADoXgjppoRxF2ky+UFemIBhoxBDVEAFloKWtuw7RYAMhoKXI26XtQAYFwLZwbJ/fMAkBsAvrULdseQ7nwAsNQAlMDB/oYoVB8rgWAR1epTBaRGtfQxm4MAr9E0/ecAY3tnizgVCJ/pwXKlIQMPQd55tHcsbDoBwPeOq2symeur2//TmWfNACc9C8cKzNt9ADVPDCFM2i28C2VGAEt+AP7RwfYfWQfwwSWoSoPn0PVck3tCEW/pBIVXN6BwJwl4gWh8cOE0Nj9IBik2ACfdDJcLxftqABcyCjyPum8okESMAH0wy9asoFPoAIHgrH0bDN6C0QvTofGNKFszxCBTnC7tIlYOsu+tAqbkAPTtA9NE6D1iAL8iYQVDAD0kCY5vpWUnsL4NDSGom0oqAAf4APBHvankoBzQnD9blfPdCKDQIPH2WyMQLcyHHgvt0uP6d9JUMbyi0Ly3QwN80QxMEP2VAB40sP/udc22/bAkDwza0LDuvABBHwwtcgDZ1Am2FpnyopAMJAadAbmLAgAFma3wqSI/cMxYANEuwgQ3WOKauShW+uFr5gDUEwDQZS3UQhZ99gBk3QCcqwCN8gDXYsk+3pDuIph1ta3vgwCRhwltHwjMpwCtnAn9ToD7PgA0VAqtfgvZ2KD8tABjgAV+W7NTUtUFuC5hRhCt6QyxJGDvI6Mj3iBlmcR0Ph0BLwCOgwD9nQC6fQCdnAqfTph8AQAmxwkSctjbP6DTjABMegvBn5jLK+ntuADvVQBT1wCaTa5P5w3pcgEK8cH77AteTX6R/Bd+BuQfdgDWbetSAIGx+fE8jm/g8UQK7Hicm90AnGfut4HAKz8Lnm2g31YK2icNE/qgy9QKK5+gdgDb0XPQNMMJYfQsjbntMcIaihnikpMVElk32uYRpLLxHLgAFFHMnP2A61oOiEuQ7AMANcYLHNHA3IyNoyOQ69UAvfyw1/sAC84OVsuQ7VEA0K0JjXviBL4Qa7298f4Q2+wDQXk1EkU0tW0D077hGujoyoS6NhmQ3oYLOg4AyTcACxyfjXW60h8AfM3Oj4AAjOOw+wMANP4A/jEN9sWfrz4AwHm4Qa7CAvUXVHj/EdUcuAbzHEWjGp1AWusxaEogjB6aZwfG6D0AIvYFjPjtYFyg0kQAW3IMEV/i0NgOAPVYADoiDBp+2Hf2ACjemyCoKQasLtEjEK8HwxpvB1CQMdzHAC3qDFQQFqHEAFznCSNXpuZLACwpANeHAK+XDsbOmHk98KAHFt3TdwBQ0eBFfNnxwLbMANRBjx2zl3Jqi885dR40aOHT1+BBlS5EiSJT3S83fCnz2TLV2+hBlTJkduQ3hwmzlSHzyWOX3+BBpU6NCN8O4RRZpU6dKX9uBZceNPnz6mLvH5q9dqga1z3SJGPPftmoQy8b59w3dq0blsX8+da9FjIMGvBr+tA2dHgxJ/1+raPTfu04Fc/uZVRZyYKrOViR0/Nlnz5tJ7ropBxpxZc0troOxR/t0cWnTVqd5U+oM3muPVa1SALIvn9S+4be6q9THRyl+1gtni5cMyLxvdb+PqGWrxxx81unXP+vtkBIc/VLrw/u2Gj1cZHO5W8lMdfiTLLuRAi0cfVDLOpPfogWKXXv78n4nY9aSfX78/lKAspT4vvMMQWcEOf86aLSF/RAmBi3HW2eagtpQ5pRZ8srnGHWeK6CGaePyabZtx0OFiBVj62uaUfJpD6Bp/DJFAlIwC3E+8/2isMUeP1mOKHpR0BDLH+IIkUjN9WHLCFBxHw+ewFooIB6LZvtkGHyokAGeccerSshMs2vFnkgNaAeecBMf5RsMCDOFGSjw6ue6gb6rB/kcBMsCRqkjVyJkGPz2D5DEpe8g5409DxXOjz0MXRcoedrqQ6ij5UimglXp4m3Kcc3JRoA98qEkwm3PyUYKJ7q5h8aviwKFCg2jCMmjEbLYEbBxRKNCtHkY388UUP3fNL1Ck9KGHMWCPTcybIZFltiWqivGFJ0kF9OcYMlpo5xxuaK3rmniqIQMFYeaphltV10GnjhnIgMecBAuah5QeysAHHNkMcgeLbNoC5xp8cmFCLsOaTYwlRwgO1ib2kLoHnlEQhjgoXLyZNmKLGwNlFG/Sm8ofMno4pB5wUkVoHJw+aaEObtyJ8C+T5zmmBTGOwWaRU2CNyORr5qECBxmr/iE5G3+w+FAhNnC4RKolL/6JKks2Zjo8YYnSZxpTosbaJF9wyTPrZo8qhh1y0ONH13Va4KIaKf+as54yQhBmrgSpwQcRBVpxZ0RlpOklHJKruZQAO9Al+aC916lHAioq9jqo/rpuPLOph9LHm8six3wjyyHPfFHy+EvPnWME4KpwhM655poC2PCn5TPXCWGG3QzKBh0l8uHXoHPWYeIA1O+tKxt8lNAkADoZ7zwmllT6MXnHJg9K12Iuu8oqjZAnSdeMsBep44yqd3ajpS0m52Hunc9xKlwK/TW0q7550p11gP8qw3CMaGEZfDDF7px52MCAbkAloXrAoRcjOws+/iaBgT70xXQGcVEr1mCE7YEHfTORRWMumBjo/URX35BELF6Cj6NwQxQKAR9J9AEeaogCT+0LCWiEUQqq1MOCJKleLnTjj/NBDB6XGd8G9UOPqPTwMfo4TBtwMAl9IGg21PCHHXBgh3l0JUEKsYUPqCANlpmrN/iAAzjMQa4nMGEW+KCfRL7hjzq04BLeSMQ6gihEkcDHiHT8SQd94g4qYMCPLXCG9kqCDiNggAIawME6vGOSb/jAkBrogT8WORJ+6IMXhjwk6wRJklZgkoH4mOPX2IdHHemjGI6AoWbqcQ93YIALAnlgQcSCjh70QBpxmg2dDKEAVZwDHQ+8SxpM/mELBSCiG2urCzcS0oAyrMMwG2seKUviCFdIkyl6lMk96sGEBVDAmyEowDf0kcKP1MMdM5CANykATnxsEiT1WIc6vYkBBQxMJCQ8RgAwSQEFlEGDMdTHLPSpzgIox50XswbnrDmfsRkrPPpoxZjuocwpBWYZElAOiGaDunOYwAa78WLOuMEzB6zDTO/6xjz6IIBo8FAq9GDeQmPoj2IkVKZJwSZMxmkLAVBAAj+VQAgkgJV76mMSBfApUEPQAqKGRFdl6CZQJYABJrg0JIcRgFCBioECNMMf5OzIYQKg1Z+GgADuuCOzopLKm4aGKoEoRiir0k5/COMJOECjRrs1/o9rcEEB1XDHtqa0jnX0oQAn4p9zxjEPVUhADpzgRu6cU49btIAK/oiHII+SCIW2NSPQcqhn1aMwoeiqB1L9KQVagCeRHMaQqKUABjrLkcMoAAOwHepBN3KVbERVqhSoag+p0gpv/lYCrEvrrqhyh3+KVjRU8cXlRCMpMoTgRLEsCE4OEQJEqGN+szGZP4CBgTlUYx4U/Qs34nGOIlBBN7XoBT5WFZFurJELPVCFYW7oUlfIIpqeZQkoUCJX55Ykpy85THF/iwFgjOQwB7jtgtfYWn8UIMJAPaRO/AEL32JYdrrVyFVglNTUUoCCyQXWsgocmqNYIhCjKZs/uHEA/kQswx3YFQs+WmCEW9wYu1DkQgtasQ40JchFfaDA4AYyjlNgwR2SLUg33LEMDLDhMB+ZSmidmyi2rvglB3YJS6igABKnMwRdzohpy5xO2YJYI65ds0+b6xFdIfW3DvDnHY9B5t8qwBBfjRpVcgA6L28GJf/VzDwmIQFe4Ay832iFAuzQxHeh6RshqGoaJRIWJoRAvsTJRj46cWPAbOMRAnDHOEUCDyd4A8109EZqCg0UMLvkUkh1QGoVQEE3f88esCAAiSlwAH+CdTX6QESwt1oARcx2I7pqAZ/TSYEFuKPXGTnMtEs81CtjbRrOnvVSqOIGxhB4WP6IRg8++ssE/m1jHs7YggbQcal2u+McdojALZaToG7s7hMKOMRyWLSvLkh2HryYQRWwYmyOLHdGMn2WK7Qc7pjU2ln4sIMAph2AHqxShf4og8a9GYCqXvt7/qCCyCUgADI09Z7gwECwh12ATwC6qM6QAFIpUAAFzALcCLPEnCkubn9w9udKKZuuqisjVM2mGwr5gwb+fA3XqUohosABF7zbjZAehBv1oAYQjBDIqhdkHL4BBD4ihI8q9EBGJn84LnAhXWkeyR8vHrpPLP4SZxiBAiQQhXfM7Q9eFCF2reh2SfBRih5goAcnGnw87NCCEJShpQS+yjomHwI2rHHwu2IHZ1+dd6AU/iODnw/KYbYRADvcRdNyImwLmEAQHKPlCTOYxURiGd5LxKhNsTxFJOLRjAJMAk9w1whVxEYPFGNu0KMnPUj27pJ74AMb2Di6R6bV/BB33yX6kBQ+GB6Se0iq+pH7Yfaj75NifDs0ZZBAOLiB3SydQxQLEMW+3jUyYCT5G69HiLPogRlAr1A5hzLAgG1Qv4+whKCzJnK4DO5bv42YPmeph16oBZmwh3moB9STig20h/ELiXaaBwn8nnooQcyxBvOZwHNjBryDDPDzh1ZggstiDn6DmTJogTbhuimxjTkIAd3Qq3MZh05qIKBJkJRKhSPAA8wSQZLAhaD7DDqiB1+w/gYVa8GWqEBnIYeJy8L58IZy+8KhwIWrMcGZkBQ2CIH8KruvyA5DoABE8Ad7AS86gYXKg6cC/ArzaoYZ6IFlqAc9jIj5Q7kWEAZ4AASrign38AdIWUCmIQdrcMAxdIktNIl7sAajo0T6MAVfeMRNBAnQ8EKmYIlqKABEgCV+o5t+agZSm5KWogITOAZkqgsoMoQD2IXdwS6csIUIMITDgIdpcD+fYIY78ET0ARsgAsXIIK2kOJJhXEb0cDUPjMaNYIZRcoypqIMIYA76S5NNEABYoMW6WIeL8qchrAttwYEe+JT9G5kyoAB0qKSVmAZNzImjGAV4oEZmsQJXq0YD/mvGRmEHGPxH1QCFaTjDf4QHxoA+nwANZbCsTzMyfFCGIpiBdhgHdESIr3MGNtAAXgC7rrMLdEEEDJiEvhBJWTqHeLiEdcGKAGGGUYQJjeGafTwUlgi9hytIkbDEkiCWfNxJ1bCE+whKlygferBJk7gyLvCBn0lCBSyDHpDD+Ws3f+iDHiADd2C32eAGfFiGIngC/RHEgxiHY1oHKngCfTsocnAEdkhKq0qEaXhLIukY/xiwogyJniyJexgbvAyN+5jLMZwKU4CaqjgMW5CAORCHcWwRM8EBJlAbHBspJpiBWUQpOpkEAmiFt8AuwAIGAfgzm+uIh2lIkmg/RmSa/qPQhyAoho0JzAnUS52AB2P0S82ghy4gytqMIXYoTMRggwOQMfobkVYIx5GptGroBtDcyiuqhxB4gnmgP3vhBybQAA1zAkIDijtgB0RDGHqYhqjwHt3ckYBMCnbAQvGsCvNEz1C8B9NjihXasBBoA3TDMXdAOLlwNOfgKyoIgWU4ryRUJABqhH2bkm+oh0mYAdaRI5E4imMEip5wAnKIj9dEj53whzOYBlxIyGiMTdOExvVkCm+QhfAE0YxgCeYqzTD7qigwAp8TkQLFBzHogUfAhyKbDRe5BBxgA/nRyFhxEVUAgi34uh6FoHjghjLwAWWwJ5FgCc7izkXER1OI/kAKHQ2UYAcrkLtPDMoOHYkoJNESRQpcyCAwTT5/GMqlOAxhUIBJoAZX5JJrQIdqoIA2cAboTEIXocxcgM5YEgt/AEJVsDfschFbWBOdJIl7YAZHFAroYoeH0VL6sAeWcAMrcD8qzUIuZdInJdOgIIe+3NSjeLEUNQkbagNuPKkkRAdKOCyz2D90ALY5kLH9Owd1MIEimJ132YZ4eAIFQMFsahR7cIQwPBaY8pFN/QhMDYnZZIcNNVaPoAqJa1Z/cIR7ENWRqB5hUByBS8J5WIYeYKobdLp5iAZ45IY4bTd0+YMDgAVyScmRWUlROIABrYcn1D54SJRz8wdZKIZq/qpW8ahH5qKHfi1KZA0JVzCKaA0KYsEFS10/djAFfRyKK6ulZbhV7Fgj/mS6JMSJPpC6esjPr8CJVpgXapgHAMyS2qiGeaHYxHsJePAvhpUUUBDTGWHYRvmsM1DGEQRTggWJuGJWhL0eeLiaZoVAgf2IwzAEE6AEwtrFeliGELADLsKxh5iBMgAGH5sbkGuBwLNRLqEGfRAFDThJ0YwJCSU6f7CcO2iemn1QqrCGOxiFLtOHeqBbMuXZj+gVRQRamdAHPmnWe7BCoogHKpiBshTO2zisbYjOasiFNfnYZJJTKnAHd/SXIpAtejUJNxiFL6UafwAFy1hW/SAPKQ0J/vCYVxnTA1AC0bs9iZzd25igimlwVDIlFlnozZm4Cn1QhRCoAwJlmy1Rhh54An/oWudYh2ygAg5Qh3powwA0KXzbBd+ti25Ah3gQBQk4SWcCigbV22H5EVPABV+QyzLdjPOgB3ZwgivdHo+Yh3WAhmRghCtggQugA5cTT9ZtuLsTutc1CUnt3vW0h3uwR5nghyszFf0h0oLYhnMAuRAohd3gUxcpSU/hBpOdE3/YXS6Azhf9C4U4BiToAZxg2Xv0h7VCDEmZBnpIBGZQEpQoP7Z11p6IDzeAhyCQhfhAyo9YBS+QgRFgAR2oAS/Aiv3STfwVH38Qxkfl30j5UBBt/jFNbYl48AdSKIBSiMwrigdnEIA+aFOT7Zd1mIcI4AJlYNUCRbkZUIbAeJcjwwBPyF2kKAbmguEjXgl2gIczIIcx5aEpdEa70wi46hVfOMYgUhs6qAEg/gFosFvydMFqmmPxtIYiot18beKXgLYeoIZ2tYt4ACBgONUEcYdF28zoPIdjCAEqQAcvlqVrqCVrixhiKYZEcAS6Wwqn8AUrKB+a8obb/Yir0AEg/uVK2FQj3ogmVeLXpYqDgWK/nIpqOkPQuIQQaKCxlBNwiIdbqCUIDpV6yAUywIB6+L8kjIdo+AMFEAZ9ECy2gZBPMEn7JQqWsILzdAw/SQRZcISJ/ok17qSKfVYal1oSO7YG8bUCfTgY/pCFlx0f0AiFH64BQdABIR7h+2VkhpFWT13iSzTT/11PEVViKeYGU8kGeuNKI32b/EosVRGaPsCAgKsv8ArZECADdFiHBB6H2qCGGaACBo7oobAHeqgmt/JjmhLTaQgEFfavDJK1jpiW7YzJ6TEFULAGR7AGm8oIN2CHSQSJwxgGNWABFfCCZBiGIdCvRZ6MqrgHOLrol/AFzvrZLDwKE34JKTaEAtiEeSje+tmwLf69JASHdjCBMnAGN3WOlvIBIICFvMGulkKECJCRY/4+dqDq52o4a/BOUPAHK2CGW/YFN8CFQLjqLrAH/giQhVFwA284SGbgExVjiWKwhJ8+H7oShB+oARUIBe9QA0U2VmJuOHJY5rTmCIglWmqch8dcDk2mDT4KgW8x7m9AB+JsheiciGgATVxKkHXIZqN9Cfe4g0pGj54IEHvoE2/oExmcET4uZn8whdPTCXMYghqogR/gBvh07GXU7esZyN72bY24A3LA7jE8CivY34+QFFWIw3XI5Ipah1moPNvYvykzlSjBsQ/xyGD4z8E6h0kwgZOcpMdQlv2gis+g1hBXTZZgPmolb44wZm8IoquYB1ZQgRrgAT14SX+IsWat742YBgfN75CIrmi1BPMoiRgDGCNoMC8+pnOgAh+o/jlqNgivwAcgnOYfC5Me4AKJzCV/SIUkl2LkI4oejxhqzVd9/TldSQY1UAEWUINfWFKgvXGNiMRHxkt44OUSVc+SkGJKwIBPMCkvNi9bWIA5ICwvbpNqwDTA8uJvwAkmWAFhmNx3UQgk4wVDxQxm2Fw4z4yesIJisGhnPQyH1gHalnQ2n+ilwOP+BlO+7II5B9F+fDV+cKYFYIJ4cMeRKgMFyJv9S5NGEABQiU50OIYC6IN1YPKDACxm6sDRsAcVR5hkxkanwgce0AFoFz/fbvO4m+9NJYek3lR9CN2Z8gdKiABY2B++jgdVsCz6LFB3AAYOATscM3AuCIFjCKwk/gysScAVd94M+2hrjvGGWcZOZ8UKRlABIGYEzMrvas8Ia8igfUfP2J1dYwWFg/0IKZYGJGCCbYAQI1uOKOgBnysXp5u3NpiBpPFGfziEGXgDeOLzeciFIqgCdFhz0SgG4D6WbyuUAMc2fxiGK5ABr06GIT74UW8PM63JHUfxy8Z58SyGQDDv3TqMMhj5eLjrksGJRwiBQ4Bw8BIIbpDPY6iHBLaXbaiHIjAjfKBKtrFFDGhsSy8JS0BIYIlUabUG1wzFq4iDIWABFmAFdSDbtEb4PBFDo98I82D7L6yHxxT2/cN4eOcGsFfgdRCFAIAFNea3cViGLRYZlBqHcIgA/l6bjzpnlKkghztQ9Y7gBihwbyhYGMH/e0k19YZvxKDe1FGw7PxdB1UQgFYw0iQ0mWUAdrNHKdRxvANx922gAgqo0WEfmXUIhz5QAFuQJPqYhoN5/dCAI8u+h4T2B3F4hQ6ogSGo33nAXFEv63kuumtfT9FD2LnfCH5giWVogTIwLy/emXXgEF4AfqfDEyrYWm1mG6gDCBxs8HH7Bu4gwoTgrvn7hKOMPn/1/FGsaPEixowaN3L0Z8/fGY8dR5IsabLiR2+uElH8uPGev2RXWMjwws3fvJM6d/Ls6fMn0JPchvC4GfSkPnuuph1t6vQp1KgX4RWjF1Eq1qxajzJj/koRnzt/ZHCUqnfOoEKF1PwhMmFo3Dq0aRFW09fKBBtu7rrNTdgNnTsmTHTVk9t3IT42PXRRvLr1J1PHj6PeoWeq8UZ9E+no0KHi1UTJk0eTLm1yaFHTFH0xU+36tWlfo2DTrt2zWGt/+vTNw8Bl3bjDCsdRaVENnXCE29wZkgAMnWHhtgT8iZv84LVwCsjgE20740cI/uh932nNmyl6Ljfi88dNB48aUObV41f+Pv6fqI2qTqQ+P4ABWnSPPbgIeCBtxXhVDyUHwOLPNX19M+E36IyziQZl+BNNdAdNCM6E6CyDAw7+VNOhQhVWQ0UE86zDl3DfrHNOHxEsIxGC/hex4x2CV7Hjiyv+wJSZRIyo0BkmOOW4JIL7veYNKEIyOaVq+kwjC3lUavnURKcwtUwPRviTDTd9dYPPPPPoEw0TLXCDTzXBpfVNTuisg08bGLRCkITXcNPNN/5MQoEh+FwDo0LdbFPQTbO0QMVEEzEJ0x0iMenSHdPMxuNXE9EyEwtqPIPjlqXS5qRqMFkynqmtQvWRI5y6OutGORlBQQtMUMCLO+DImVY39ZRRRBlsHKCKjCiCyJwPwvDSwB/H1IPocOfgUw8+61DARS74bNPXNnfqA44/LRQxS6kRBWINk0n5Y4olvlA0ZEbt+RNHfCrQkpO9tPqrFaqp2uOE/pT/GlxSRI54I+vBtEZkiAMvpFDAN4B+OGdiEkigQA/VXIfOJARo3AIsFh5W8ScHaBCCBJMAd7I7fVAQwich2DErPOsh+NEZ3mTJUXvP6FCDDFeE1TDSUAVsWkTksJs01BixM403UTcc0SQLWEBBATjtxps7YYsdVhQLaNwDNd+MszbbbX/TDAYUaFwGPr6yfQ7eeTMUAAoYSPDJPGUets4nCmCAQQDrKFkqTOsyXF4xsoxHb0YRrYOJCjIMwQipVnu+09Km3TPNqo9/nq4/vshr+ulL1jMPDgc0wEbnG/0hgAMCaDjSPEwcQIECN1/U3df6hBVACBgc8AmaaTr//nxOVMiNAcU5ucoMPAcOiUsx5OjGUUS/QKFCDWrcZH3r6XcUumqjRKm+wa5Ycg/r8AsY0ThhDCKkfRzxg88lisAGSY3kGj2QQBnq0xGYlCEAAsBAPUwXjwJgQAA+mEe/tgSTM3gFQFkiGDv8d4+JxKEGnnlFY/pnvxVWhH1M8wb9WOgqeFhFhuoDCwFHopl6xOMk0WgF+jpSj3sIMIitwl6AInIGLI0EJtVgwQ+Ktjgb2tCFpumZzqi4JHuwww1abJUlLnOSGJqkHhE0yQg1YxLrUQ51lqjafSICD2tUylIauUocWDA0FBrxi/CzImk+Egg7+lFA5KlUGwuZo/Mk/lEnQ3RY6kKIH9zMpmCVm8gqZqICPUCjdopUHyBLMw1Q2KN+nyxNRGRhIFOekjbTeForq+QPR3jvO/aASSJ21JH2zKOEMtABK74Syz8ShT+wgUmQhnkfmHgxi8rMDy4M9EzSRGQakqzNPejRRZJERGg1qMEVcjjN04WSNAS6AxzH+Rp63IFA6gyQNTr4zqwwk5BMY5UVquZMjKxDEEfSQSimOE+rldM0oKBHIgeKFX3QYyk/U+h3VFJKiEYlIqPYzWs+Qg5LVHKfX4mIMYYgAxmoQR04USFFkVZQ0tDDF9YgY0qlYg+qXDOmtIFHOm3qlGnAlJoUCQQ8DJRQivBD/lJqGFoNftEeVup0SisdDUysYM+mAoU8BKNqbc5ADo9itSQfyQGrVGMNeKxqqBWZSDJ+WRN/4AOlXfXXU0dDnpC8FShKnGpdJ8MOrua1I/BgalAwWozIfY9I91DDP38hEbf2tVVxHc1MZQHLxpqEHa4oRk8pu5VE5EyzJtmoJbfyEaWQMrQX0Ud7ViHSTZrDk54t1WMnExFmYMmsr52XPVZ328eMIki23a0lXirbj4RxdbKaiDnUUAMWDAGFhb2IOTDRnd02qZgCcsNfqZsResCjC9p9DHe/uxFrTHQr+oBJEPxR04z8zx+vGBpJxYkRoZlRvACKLWT9EQjvAbap/hhtpn2lgt6wBpgiiSDHb5sCCm+wK8Hm8KcOfhDQPl7kGTWor0YyWODJ4Bey9rCGvOzLDF8U47kbPkpEfJG9E7NDFuWVqUd8YYoX18s+v5DBN9VAEQVyxMIYfkUynvGKa03kFYo98WM6LFt/eGMUwqWuPqwhixInGMkmsSiBAzy1/nKTPPpwQnY3UlSKeAG+nTSJj7GVR3OIgwVxoMgqZHBkK2dFyaQZrIk1m0rJ0fkp5AErX1+Lm4VSJJ/rzchEQtEZFTCCwj2+8DqOylZ/0IIFKByCHvLcZ6fYmTTT8G6gqUqgRIR4002JyF5PrCCssMMb3nUXe/wRaRz/QLE8/i7JM2RgjisMQUkkvAIUfiBQU3Paugga0iA1XVcv4pXYO/kIIgOcTVCs2M/wOLBphwfnH5CPDj2U70iSoYMrgFONSuKBCvxxNGc/pdNQ9QczQJGbxpIjEbI4L7uPYg9vMFvLVfGzPthhioUxbCLcUMNIh0ALzOxEaILgRg3osNh4QOMHNXgzuPPdE3cblB0Pxao9Plxtjdv1wwX+cLJRnBRmpFzMRTYhCyQ+6Z5YOCeVkLM/esgCQfwiqTMnuX6MPSVaTta//iCHN1jCZaBXRB/wyJR9kZntncjRHyeYl//U7QU91tq1Osl1mvwRbIrwmsw6cDTTTyP0JcGE3x7v/qo3HCGvUKe9I/rwBjPoXldVfZzqFDGFLKJ0SyJR+ps6ePNigVJxM6bpB3p4xQ9G1cMh6JixdScJx0szJFPsVe/DHJIjYFLly3NkGswYfV1HqWyEHV0WssieWfmRk3Z4YaQ/6CQ+NNyTeuA+ItUwBzdGZS9zQAPtpN9I5u/ZBe95/pQwYcerjx8UdDbf6P/+yT0UJLnf2lwGPxhBo2Fjeekjf+1USklIUK/IVAap+uTHCDNyutt7gLonETHFiEuiDnLX4AfVYOv4vd99JJ9quIQjYJ06xZAjkEffCSAa+YN3NSBljcJ/7ARM+MI0JAJMyIq9hAIP0IQg8IsD5ggB/laJNmFXlg1TlgRCVajfCGIEOVTK0imUZS2MTgxJIsibbhyXP0BDHKgAC3jBwuXeC1ZXatAKO+BC+j0Tz1iC+xWhjoTQDA5UMSwgKz1fSEigRSSaWsmc7kEhfpRgRnlEIEzDFHoOO5zBaIFhTwgSn73WPdTSlVEKO/CXEM2DSFncTWQcG5aHGL6GOymMHPpR07ADS1RgHz6bP+DCIDYWTAycSXwEPNASQonZVayCHkWckNxaIubHH9JG1WThEyLNRLmBN8hTJ+oEQ5UaZUUELohRE8GEI+BC0WVETlQDuanAFXTSGaZinZnfv9Sb5NCY/XxEMdwBOWihL5KELLhB/g05oj8UA919BDs4gTVIIUdMBCP8gGdgggguY4B8Ym18hDV0AQ3J0D10UZS4IDhKTSv6QwaunkWQQzF4EUaJmT+YAxR8U+QBYDuGIzD+i0sEgivkBjumC0zgBrMp4z92BCgc4Ciq0yESifekFz0oI0zgAybKAA9k2s81ZBgGpMGQ4zTcQQgx5KwwFEV0gel5RC/6IkzIwmW85CfRwyiUGKdEBD14wxu6nD8MgxqwgAp4wTBIxBeCpG2IY34wgzVcVUQeiEt0gTXMG1L+RKtR5Vu1oEZolCv0ZK34AyPAXJJ8ZFUOoEgizZDkU4k9JX7Mljc4ZVn+xHm5Xl0x1B14/qWOuBrDbUQ9uEMe6sAexiVAHuHpqKQ/WIHp1RJbuoZL0APVeNd40GRVygIq6pSVYCXDuYIrXAYxVkR71UMo/FOmRVAACiZsKGWAuFP3YJcY0Y9kVhSs4YI+KEyJTZ1pqiI97NdBthI5siLWFUPStQRH9BAuyoAuCt9tDqYxpY+P/IhWoYSArAc7DdyhJSdQyMtuflLjrKPU+EJ1YgQJDUENjAAtKM5RWuepnOXpDMm+SaUvoORrsIM10JE0ySN66sRXpSBFUdtzXcUoTEMjbkQ17GPRtNZr3udRoGa7DAkzkMMZ6IMpWMPPbOBjRMRHWKg34AI9sKQ0ldKBJudH/uAlRJHDZcWQf9JDv/FlPq4CEEJBpt0jgoYkYVIRvo0HPKzEPTgBPczbbtxSdl4E/ZDHejCFOYICLqRTZsUoUMSkLMifQk1DbbKKPQTCKDCfTw7DFWSOGnSS8Snpayioq4QQlHpDEJDVOTbGPdDPR7imd0SEu5QSgThGyA0SBGQou3ynl54aPI7cQNFDMUCmSISRk9qiPwjCL6lAJQhTnsrocq6fSMDEjhrpHZiCK8DDNFzkScIoRtgDQnkcPVyjLDBDELDDHRQD7InEhy6qRTiBNyzmCu2klEQECoYaWPySDvTaGakqo06TTsJfMSQCLjCDFdhDIlSpI1hDMZAY/nD6BygEAj0EwZXMItVchJfpqmj5w/ukKtS0mG853SjQEFd9ppF0BudgkLXu6jt9TULNVGuYAjlMA4lRjeRcKp8KZ5Keq1REhCtYAyzyqj/IAr24ATtE6Ub00C9o0paSJb7WBpgurKlFRDzZZyHdwx28TwYKFweSUGewwL5IrMOWRsN+rKlZQqw8UzVRhGUMEq0+g8XJR1icp8iqRsjGrJXp5GXApwwVgykUAztIlX4OiD+IAybQxOZIhLbSrE7MLNKeGEPpA12dkkp6UTQhlG1NBCtkacyNSpcuLWkoLdcWWDVNq/NVyhnAQ72e1maYkAw4F8x+bdeqp9tC4T0w/kMxHO2WtGc8hlo9tFln8IDRxu13eC3gBpgb0K3Hes5HMIMpOEKJKWNEzIMekA9ADdvgfincLq0+mEMorJsDYopLUhEo+EId8VV7vMI+jgAdjMqPVm6xzWjl1kPPNer7JUUXRcTqmgoXyYZ6PE57VMM3yVlO2C3rloTgNiTs1oBRlOblRQS04mzD0AM5OGsZ+YMXQAHnDm9SXi7SHq9R1MMrzAMtGBM0JIPC5hsDqqz6MMMoVErz2Qu2YK8fai/Ncu9EDMEP1IMO6BhFuMPkCu9blRLpCKfVOJ1MCvBJPBL8xq/rDu7xjgoPQAFFJIMKkC+lqQB9HJ9O9kxkQk06/sJDJSUwXMlvzMKuDHDDD1yBUbqDpbGVHqhBrmIw8zZbSvqDJeAkCIfwAgNuPQyDHuVvYWFCOPHvwgmgVcAD4OGplrgLPd7Bmt4wDstu3O4w+A3DCARTRCTDCHCDuClOERbDvmaPq7pGlpwBO6zK4ToxCYqwyO5wCRdqDfwfmb2CFyBeEf6VJcinkNwuKn3EKNwkAqIxrRTvP3IvPrSDDNDBGQnCuI1KH2LgRFLJn2UTIDeMILfjDv+AUUBDB0DDdEFBr+nxpoEePRwYedyrbQyJNfRxKU/ywVQyOBpPMihQ4JDv5KGQ/37Xm05pGQvnLXfEehSDJTTpXrLyExMz/px1AOVC4VWQByg0s0h0ZiBBrDW4QcQas0qpsdvWAzfIAMee8QgOHlglEygjRdOQWpT0sjW/bQ4nMFjogVK1LRieV0rgAmfNxjW5aVNQaEXMZzEEAvegbDonjStb57Wg84m5hPf4MzN4UZTabppiVE5+zUcIaUVQDaXubKmlaUALtHXlnkd/NEiHtEiPNEmXtEmfNEqntEqvNEu3tEu/NEx/tDa6sD8UlUFvGD6HkKm6QiDwG15ZBUKFXMhlRAgFwT24wWBZQ4BuNNQMBSazVUxHtVRPNVVXtVVfNVbnBMJ1HR82pDHiQiCYQiJclotJk2jgnZS5gT6cgCxYAhgz/vUfeR8d6AFd17Vd3zVe57Ve7zVf97Vf/zVgB7ZgDzZhF7ZhHzZe0wEjwEfmCEI13AQ8J2KcRuEosAMouAE5OIEvOAJn17AlNBSBCammwnXU8IM5aMIIqMAIrDZrt7ZrvzZsx7ZszzZt17Zt3zZu57Zu7zZv97Zvw/YFmNAP8EAHgF/5NuRu0I8LwgSckrb9REQhVIJ0Tzd1V7d1Xzd2Z7d2bzd3d7d3fzd4h7d4jzd5l/d1M8IqRJgK/AAmcIM6KG9Zuik+F8/33LRz5wdW57d+7zd/97d/i3ROXEHRcHJX37eBJ1HxJLiCLziDN7iDPziER7iETziFV7iFXziGvGf4g8MEI3hkQR84iId4HO1YgYu4iZ/4VkwXiq84i7e4i784jMe4jM84jde4jd84jue4ju84j/e4j/84kAe5kA85kRf5j0O0U9i3RTCVkmfFaGNEk0tmk3MTip3Wh5rSlJNeljddfvDIlh+FRrPKFDqG3Y6zPmuFO11rRZw54QHFUIMPZlTiaXG5Rsj5MPOEturkDGbJz0igBL55nXvzl2eEJOfrM/qER70kK4Wx3aFR87HSTXMqTwB6bQQEACH5BAEKAP8ALAAAAAAgAwkBAAj+AP0JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHLnxnj549+DRY7eSnT5v9ODB00fv3j2SOHPq3Mmzp8+fQIMKHUq0qNGjFvXpuylwpSt7oKxNczQtkatAxSzdoWelmKxA3hx5neZrGlOBS/UhXcu2rdu3cOPKnUu3LlKl9s4Wm+bEXiBc9kyxs8bOHryEhclJlWrJ251iuIoRtGe3suXLmDNr3sy5s9uz/kAV66LYmr/DF/OyY+fPCTwr1g7bVOu5tu3buHPr3s0bJz1rxQI1piyQMmiKak1SVpuo9Ul6vaNLn069uvXrPmn7K1ZsVDFQk/3+ae9IGbpAWbIS0fOFFrv79/Djy5+veam/wYki34NuT6nOm7QxA48piUwj0HH0Jajgggw26KBDatHTHSjmEaWWWgbmwJ94D3bo4YcghogbPZGB5w9xSN1DGSiWGDieiDDGKOOMNOJkIFXe+GPTW+adYY8jNQYp5JBEFskhPNOAAo9pOsqlD2Xs4BLIYfS8aOSVWGapJW83yUJPIBxaORc5zLhx4JZopqnmmnOxc88drCFoF3FuuCInm3jmqeeeGtmXpCU63mnXk/5Ywowp7fGp6KKMNpqoG9NIJuhlxBUomaOYZqpplr4wI0uit6klFTn9bWrqqag+qJY3zOQonTX+iZSa6qy01jrdTfbIYoqL0dF2hjWu2irssMRa5l8xzDTH4XSUyeJLYWIWK+201PZEW2OfRhtdsmdW6+234ILkCzx3KPsedDkEG+667La7EG2+FGNFcfFBJwsuTbqr777hUgZPnYHUNCl1lBl6Ir8IJywsbXdYIyWKCeZ4xsEKV2xxpvCw44g3MqmbIGWjmHTxyCTvaYov5JBjCngDu2ePPZCKXLJ0SqWVV38vn1jzzDxTBJ0+OPrjiGwemthyz3Xh9aSsDymXFtJQF0SoN26wZk8iiGpLn1pWZBv1ZkrHtF2kjviS3xnJbnWGN9ypZE9NEH+NNGU5nMlkiDeRY6D+3HEdx47e3uBSZlhTVj1NbDUNdNg03oRVFS6JfCdLlPB4rDXf36pFDi7g5Qzr3SBKaAlrmK9FWXn+uMIOVr7IgizpF9Fjz7hiTTOvIzmLd3TpC2/H3cGU3UFjZLwbVSprTtCD9mC5S70sQxceBF0x68HpBmo6F1+tPezAMzH2MHsTt4h3mOKf9kBBF4iuxZz+/Eg3McVMMY5sXOXl6J/KjimjvB8T/g+iDDny9x+BCAgXVUMUh8aXk/4ECB75YRxtAEhAPYmKHUGg14FWB7oYqWUUFKpgSM4nC2u4QR8m0hkFR0IogfjCG4ZyRXFWKMIt2ccXrpBMlQYCHTMJ6UL+/aNhDRfClJs4wR8w6VZbaLOSfynwfEO0IHNW8z61wEmIDVILKGQYxYzQgx584dj76KKUf/nii13ckywCM0YOMYOBNMrY7tLoPNa44WoapJRaXGENR6xEPFik44eMExzWWEktgSjMldYWyCEy5WTxakpniBMvX7CHYoIcEk38wb8nIgQ9WApeXjJJxO1YAxTcayPYTuOPE/ZPlaTEm0DOUIwcae0lWFILMwbYSAKuZ3JwvI1hZAEKN8WSRvbwRhdgOZBkZjBLlKnaMQ3CDhi6hJm2YQou9ofNaSbIP83hVUJugq9gBqlZ3gSkPxLhDV5apzzTYAYzMJnOBUGHHLL+mGc3oSO8XnboJKOwhjlF+KSMTSx616GNPSzxqVHWkz774aR6unmwulVIS5E6Jt0MSR/KnMAfF30ofCgDAZCusH3+DJEpigHFIaoFHqNQ1kCrs0lHjMJjIr2ON1Z2ojmGhhkt1RIzphHSIQ61oQ0iTjF3mNPpaO5LIJ1pQbzCppuYqahawodmDOOPicksi2oZHT2buhsMeYki1cQTZY7o0xlxIx6bSQ9FEwQKIJGVN6JyhQIl8iSq4EktsLOhPxihBn9otTL3IEcikBoi4swrsHetDTPYccR8RUQf5GBPSkV0D2bYdUta5QEUDGsXkflQqgoSmSkGiNrIwuWGgZj+J1Mv6w9mcDFP+sDF3rb0ix/oYBUHUYc6Dpsif0DOnTICLE/b6tq73MdZoJLIWseqJntMA3taioMMZEAHqeGDDnSoB3GLcpNR3HZI3qNuc+kiC3jIcLOK5JPZglokblyhBjWAAjcIoo/vhhcf4yUKkOIrpFJ9ar11uQk9PMVRi9zEEu/dk3Vne6VfqEAHOhjBK/jr33rQhhv1mEc73NGOdqhjHjzxRkwtO6QVlQXBfRNIgQA1V4bAA1CtvRKQcgwifdRDDUP4wQ+8oAZ8TLDD+jCHDirhDi+wYLv51QNpSRKTFtVYRLrUIYzbQhlv/AU6zEXITea52RndY5k89lD+PcxxBXME2c3iqAda/OsOd6iAEeJZhznEsY5XXMAcciaJ5sy1pZWyeMtEARmgwryQ8n11T7bEEj7iwY0h8GC/5hhIf8HLDRbgWS0hrgc0LmCMMjPkJnf4FKNBxJQMphnRIOmhPzqoEXpEmk+obl6R+OGPSl+a15r+rhdUIINfTBkf8+ABJnYiUzXt6LOw/gmhmNG6K0dkFMbkk1q6Y+0Q+Xq/HBbEBYZBBx5U40xeGC1OTrLYR6PpSda4A6mi3RPirA+5HsGFJV5dJMoAydQK+rZ36RCHeYhjBJUg7Rpk4I9Ai0RUYttTbLpN76T4QxYT4zdEAG5mTg4wSwLnMHj+5fyLcfujEiNoBzfMsWeRfJGtEm4NPT5ecZJYwxSfovBHHJFCRd0khCC3NLiDrQY1BFoNFxi1DJ4M5YZ7hDZgwuqapkfmmofEQKdlITwO3CjM0hhLIS8INajx4V+Y4xfGSHvajc3xgUDumouiCSj2avWSFGwakB2hPZghddwuWEthXwiwBf33TLGjfauue0HyBpa2K+Qeq8MU5AOh8QcFfig0mQaYNOWIbSo+I9NAoI4cnxCa6BNT7Qz6pY3ClOZU3khMkeHrK34T94aw7yAxDLTjbo9i0NxIlxfK3OGeqcwL7/MRKZg3TER6haxqt45ikeqHPpSU4T7u98Ap8p3+rw92LPonXbqU5AEvdKPUNfFpqivF6a1cxvqkS9htFIGa/57gZ+dHtNLlPNHfXOLcYaeHxhPltX5Zwg5eQn/YYX880X2W8Hupklnit33h4QrmpUQ/QRkHhTHWwH8LooA7cRNZYyvkcGsSCE7UcxQ0QUMAJkQB5iDTUDUcmCAeqBPsgGa2chOuACgISErk4AoyEYMYoRbi8ALcMEfXQA3ncGXL0RBYRFxCtIMToXNDMoM40YPqhSrbFoF1Zx/OEn9EcQsHkAIE8AnQ4w+tsAAF0AL71V8AdhBqsQ1tMAWtEICL5w+icAmTsA4NoVXr0ArU4HRluF8oxnpDA4TzQYX+8LNgUkgrk4V85pFBJFgURrAAKXAAZbAOJlEzmnhY7jADCkABC0AG0IMPEnAAC6AA29CCBgEMFFAABdAD7nAcmugf1dADFLACZMiGALaLu+gPKLYCOGAE/hAPgycU93CAV4KIIQF5kEItTiA+W7hOo3B94OcPZSABEqAAVEAN3/AN4PCN4PiN38AN3DAD2HgASOAP3SAO4tAN57AO8BiP4OAMBUABFCABvFBn8bCP/NiP/mAI9kgBATAO87CL7iYQdVAA2UgFDEEZLXCPFDADgIh5ppA4wFd+7+cPlzQtlIEos5dJyWENiQRSzkUNSIADOKAAK+AM6zAO4RiO34D+Dt3ABhGAARSAA9wADi6pky8Zk+tgCBLQAAqgAM7QDS8ZjtswDvjABgoQlAeQDdXQjd3YDdewDVZ5DdVwDmVQjwrABONwDugQlmI5lvv1kPYYAhMpFPqAjBe5ej9BDjdFLVbkUNEmUM3RQkURaIhAAaKAYmFQD+vgjUcJDt/gD5dAAXbgD7BgB+owmODIDfjACzNABZ9QBmXQCoHpmG9VDUbABHYwA0XgDOewk+A4Dqb5DXrYBkYQAgWwAIbgDo5JmODgD5OAAQUgAAUwCQToEfdgBfPWltRXQK4QicQCHfPykV30Nl1FKlAYESjGDRjQBsBQD9kgDp0gm0fZDdn+UA8hQAWz0GvrAJuO+Q3nxgYzoJvrwIeCeZTnNgkhgAjj4A/LEA6ZOZiQeQuT6Qy8IAqY6ZjjYJTfUARG4AytMAvf6XBEQXz1hZE9AUrNqSXZ90ow1mUn9KAQgWJ2QAGtgA7j8A3Z4A6AQJrh2A3rwAsSYAjrcA7rOZ7nUA0h0APzIKKxiZpUQAEdSpgy+pLcsA59cAC8IA6meQ7nMKPbUA0HQIafQRrISR/KyJsS9C2QJ6EIZg9n0FAW+hDfMAM44A/dKI7rcAoqCpPrkA1lcADuMA7XEJvfSKLUgAgCsAz1UA1qSpjowA2wIAF+4A/VkKMvOQ7isAwtEAVcuqL+/rkOTKAB7pCWa4ESYMegOwGXBzktndJcN2GANLakGMEPxDEHGqAK/sCN4IiaiyANQ0qYhfkIK1AHekqoPXkNZtgDT1AP48ANfPqYcfoEM8AL+LCnavoN5xAPbYADZAiqRIoPiBACibkjb5EI2bagbqkTcueA3kIPjtCsZDUKMKVORoFiyyABbECfaQqT53AKp7AO4MAN88ANNlAEvDAPrNqT2eAPYoADrXCm7xqOf3gIEnAJ3OAORqmm1FAPxyABbUAN8xCusbmj62ACVCANisoWJsSowOkTVMQukkJWL4FH1NgTWjUHGJANSBib2aAMMukOnyABk8ANYdqr47j+AHZwDSs7o5CJAUzAknP6jdygD3NAAccwmjf7DfMgCgsADIZIEpjKpI4qaLm1e+BCDmZytHwTOBF2FLwWDT1QBO5ADWqaDdKQBvgQDUzQAkh4r6G6DtdACQoAC+l6s+hwDq1wonp6s+OwDsfgAy3gD9FAtl7aDGQgAcOoim0xDVeUjElLEga4scOybeI0TcThCLtCh0DBFH8QAqLQa7UqjtlQC5OwAmzgD9ugt+BwDfUwCzNgBPNwDgjrmNXgDsdABSvQrzmppjtKDXYQArCgp5crm/UwCRSgm1A7Eo0zfTsBHTrILmoxObuJOYSCcwpUtBeBYtFwAHUQDe4Quwn++w3hoI3HUA+pO5hUiQ9MYLvuCrp/CJCT4A4xO5ho6g+2gJjbUJ/++b7qIAFlsAwPGxes4rzx0aQZcRMW5S4YmHd05B9BkH1skahUYALO8JWgK7qiIABHQLI/6w7GQAAoerPiuA3riqNziqbz8AQYUJTpO5jVEA+iQAGzgFB24QpcN7E6kTII8zfelENxwhbZ4K27Crrf4A7XEL74kA3ZMKeoeQ12sADcMI65i5rcMAsYoAjcm8TosA3K0AJlgA/dq77ocA1UwAGJCrhycTjCu25CYxb7Yg/k0E+CpE2+p78VwQ+BRgYtMAv4oLW9ug71UAc4oKrVsAjlOp6F+Qn+PTAF9YCdM4oPucAENhAM+GC9jtkN6PANbKABlUvHMwq0hmADf+CLV8oRT+IK0OeswSkSzAAKkbousnBeUdQjlbMWidoKPVAG6gC/mjkPvACrx7DI6FALnfCu3YgPZTADc/i5vXpufRAChuAPhOyYf9itbBDLV/yS1zAP7hACTJCovwutW3fN8MG/XrTJebKIBEQbXVAMAjwUcsYGFOAMSXmz0SwKBTAL27CyQOy94xgAf8ANjyzErroAT6AO+dyr+9UDGBANPDmn3eAPc1AA0cwZNIGtYYwTjqswmjcTUdQ4VrAhzrcTWmUPzrAAZVAPjDyj4xACRgCb6zkO2QD+B/MsjmDJBhjQr/86o++oCBKQCyAtxHPbChRQBqsqxKzLBEVgUpwBeagMyusGDxuZML7nzdOSfZZwSRdiHwYRIU8SqWrhQBYhZ/NABj1wuyF9lKg5D3+wAo/gD9dAqOjQC8oAjgc9CT3ABPXwDTGtuv4wC7jqjrQqu/hwDGSwArdgxUmcopcQApfgi52xbXTnwiNBGUW9LxWpzevyMjcXUTWhHbb2JdRqBfCQLrLw1JHjGmegJOWkaUvRVnClCiHgB9swD9ugpuNQDeuwDDhQBcdwD18NDvEQCUCck+FQBD3wnbcNk65azJeADyN8lPslCiHwB+sQD3N9lK89D4D+SgbxiaBb5Q93wMb7W7geQRld8Mn8cg9Piz5LkTHC4z6zNg1fAWHqfQ/blExvAw+GYcYpgS9ngAu44ATFUJGogdXvgmJUgAMsCbrgcG6icAClYK+xOQ54IA7xsAwL0AcK3qvn0A4agLXPrbr4gAQacMTJPJh/mNC7ACC3QWCE+6wPp2sJQ1Ta81L+UDcCARPk4AS+4AbMADoXgjppoRzZMxm+UFemIBhoxBDVEAE8Tclqug7RYANoSazjuQ6L0A5kUADVq8MqOgkBsAtme7NCygsNcMzPfJRKvgJcoMm3gS5XGCTc7DNdBbnGGxq09jWUgQuj0D/x5A1ncGOLNxv+Klx6PaUiBQFD3wHGeSRnvvzS8cCrCRueGUoJnyrEhckHLTAHPwy6B30LPUAFsdzaaroN1UsFPVAKcUvh7mCe6IkbYUWSDw0SWiSt4X0Pd8k3tCEW/pBIVXN6BwJwmogWh8cOE0Nj9IBik2ACfQCWoLtftqABcwCnejurKYoESMAHZq3P/sAFPoAIgzqn0eAPn9ACbIAPskzCkUnFKGbdnoEhXmjUD6eRpewuXZK87aIPreIG9OAE3ZPuNGgNsiBvAkEFMyANpnmzb1W7twAOx/2SqysKCvAH+OC1ejuO87DT76jDAd0D1YAOGBzNhiAA52DutwEPH4W4MbLmfFX+62neLj+nfSVDG3UuC8t0MNrdEMTBD9lQAd5OD3mtpudwxC0ABHGNweBgqBHgzNLQCeIJ1u+48cJAaUI8mrAgAJ9QD0g+mN/QodGAA0/gD4naGzkC2dvM3R3BDjIU88WHRFq48mrhC9YQBNNgIIBOFHL2DWbQBJ2gDIvwDdLwzy9Jou6QoXPo5FT/DfhQm4mZt+CgDKeQDTI6jnXtA0XgrteQu5C5DH29oznfyO6gDnUQAnM4iGWF3QK1JSQvEabgDUzNJ2bMtCPTI25Aznk0FKctAY+ADvOQDb1wCp2QDea6on8IDCHABiwZ3I/pDt+AA0xwDDzskt5Y9yK6Dej+UA9V0AOX4K4C7w+H0AJ/MPGuvV+30AJ18Icejxu+ULzkh+IgwXenvydLYQ0ib7wgCBvtnxPI5g8UULP1idK90AmJ/8/7VQQhMAsAMe4cOIIFDRLsVu+TBFHV1h0cp6yXwW/rjkn442zdt4MdvzmcUWQZuo4lqemj0mKZP5YtXb6EGVPmTJo1bd6Ep+/mTp49ff4E+pPbEB7cgvZMxO7eUaZNnT6FGnXnPXiJ6EnFmlXrVq4s73lzAs+av6Vdgy7DYMgft4Mc29WS1mncuHXAZnDxV61k23XRykhwx40jxF61CH5Dx+3PAl4b9xpcVy3aAUP1uj0uOO7btxBl/NX+Mxvap757bmSJRp3a59CiZr35sqdT9WzatX1OK2Zb927eLIt5s8IOnj/ZvVmC/vb3mzu9JbOhy1YLlLNJB2blxQyuortPIf6s3fsNH6Bs2ebBmvHE37htmNnPi8YkRLR617JfO9eOjQRg/uIZV00fb5ghDkADsWLNqK7gga24Ax+EkCl22ImwQgtvsofCLmTJ7UF97PFHkRAQqUez7KrxZ5AWXvAHn2vGeWwcbtbhhgQqbsGHrRilAcSfKnAQJcfBwqPGnz80aCSecy7DDMVWTGADn8/4uVArEE2pMsubEjRrFCy1BBNMUywJs8wHr2LmBG8o9PAzDqhwBhwYT/T+h4wVhMkGj1PyyWbOjoqsrpVrHGvSHzksYAMcQh/75hx3TGDim7myA+cad6gIIRvQzITqqhP8AZHTMrnkSh94QhU1VQDhKUtVV0WzBx4r3CDOwd6krKeVBWxZktJzvrlGgjLi2QyfUxY5J5uSzjmnhR42GjK8h+zQQAl/7MOs0XE+WaCVwLKTdBxeevBsnleP0olAVM+1kNSt7nGlQ3bnFc0aUGKjN1+n9BHwU3+GO1DKa6gAYpl4mHxsG+b6MKEV7MDJJp58sJgnm8EkrceQFr6jJlqPvvHnEyNw8AcVXR56rBt8eCmDhG3WQXivbuKhZg4bYPHHXH15ArELcmz+3dk4d7O6hx5Q2Aw6aaiSWldpp2O6ChRLhgOaN3MRWcEOfzajU5QQuKCrvYKUVeaUWvDJxlJniughmniwTXgcdLhYAedrttnT44Ku8QcRCSbBRzs6YZFA68+etmnqqhGnbWit6LmKccl5QnpyxD/0xwlTFt8NH3NbKCKcRcPbBh8qJJDTT4jG6QSLdvwJFJyB3FvOmQIMmXEwPDpBmaJq8JGAjGhGL+mbaPzpwYZtLKeJnGmaZl41x6Wyh5wzosc+Jjeezz7pDLsgrtUDUymglXqaY1SgXBToAx9qssvmnHyUYAIHd67Ruy0YqdAgml8zg47qtCUKCogiHjpyzzr+bhGCPuSsey/xhSmg98CuTC8q+qAHgSiYvTVtkF46KYYvTiW+3pjrGGRoQTvOwQ3VdeQa8agGGVAgjHlUo4V8QUcdZkAGeJiDUuCYBynIFbiYgcMdWCgPQa6hD2AwoQfUmAfc9sKNedRMA8rwjwdB5AgPpsaCUKHKKLoYPVx4g4RjNBOIQDEKb3hIJ2TowSHqIbgYGeUTLagDN9whtr3IaB7HaIEYjoGNRZzifx2R0TXmQQUg5UVv2fAHFt6GIja0ABFbK2JbUFQKDLCBJfigEgV1Yok2otEsX3yKPqbxJVMyzhe4KFAry7SUYrCDHAfiB2jW0QIuOCR/vqtHGUL+IAxoZYca+ECEArwlN2VIoxfh0Fs1zkcAO6wDHb8kSDPXUQ8NUGEdh8yWP54QAnBsqotRi6Uss4LKfXlDXupUmjvTCc8q9cwfkTOQO44hAF5hsyDnuMY1CuBJPiYwBDN4GMTQoQQ+HeQc62DCAQCayYNkAx9K0IQAjrENilJEM7AQgCgON0YQfQqf9IwKO5kCmmLkRko+eSlZgGLOM9qEXy2JKU8cxLmZFAcfPLUQOcRYU5QaiF+4uN4EbSOlb4DOHTC7jzvCYQSV4AN9MjvHPNiAAYe9zyCagsNENiOeSWCggfi7jz9asQYi4KNXmEnIMsrQA77pDI2nUWpRj6L+0qAgRxKx+Ak+lsKNhrSoJ/qgEjVEAQ5QHZYlwiiFTuoRypu8NBcOkylPllIPWNiCJUCNEDxyA1q96oYetCIqbfRhrjbgYBL64BpmimQHHNhhHm99DIps4QMqSGOPN7QoHMBhjho+gQmzwEdHC7IZf9ShBXwoBnmwOY4i3bEOx5Hl0VJbWqEQRUFYuRQGxNsCZ5jzJugwAgYooAEcrMMdPfmGD9SrgR7447034Yc+eKHe9XrSvDZpBX/N+tOdUIkSGqAABUIQJE7dI6nc9VAxHJFX2tTjHu7AABcG5U/tXAMdPeiBNHrXJHwYQgGqOMc1GbWONJjCFgpARDeI1xH+tlRDWA7JhjL4dEPtOMMfM+gBY0mLPUe4AsIp9S5W7lEPJiwgwQouwDf0kVOZ1MMdM5DAk0NQAHz8t8rreHKCMaAAB9ZEsMcIAH8poADPUPiz+phFmp9cgO94GSagnIQAnoyBkN60TGMZ8pFFc0sNAkgfrThAK+6BwPCcYxzLwMi1fIUfE9ggLzw2iB+p4IBv/vAb8+gDAXaxDrFl4wRoK8k6diGAT5TZlCAci6CfwtfD4sMWepZAriUQAgmMdCY/nUQBKKDrXbfA11X2RxmcTGwMMCGzMzGXAHitawwUoBmGpYm5AjDtXIeAAO7Y7nHcsW1ib/nYWqKVm2UdGp3+BKIYgeZKl/0hjCfgILlSLIkir8EFBVQjMJg+zDrW0YcC4OyqxRvHPFQhATlwghvKylY9btECZ18DYZDEAz6G1I0aYup1dm1lCAu97r0mOSqg6QGxc02BFjC2JuZSr8opgIF5xsRcCsCAzHttZ5z6IxvLJjYFnL1dnbQiwUGXgCe3K6WtynwBrYb3bnRyh8aSvDY68cU7dVMWMoQAZxwGh1EOMSJ1QLWO/gAGBuZQjXkwuiTcUFIRqOCwWvRC4zy+DD640INP6OPgFenEKZT1DUjaoQffqTlJ/QGKq0Td6i6hNU/MdfSgY6A/L/fHAXJeeZBhvgCb1/V6beoPWAD+PfQI5fkn/WGILAedAkZ4dkyWUgbKrzzp2AZT5R6fmqVYIhC9yeVaDoCIZbiDw8DCRwuMcAvjc7hIXGhBK9ZhIszwrQ8UqOZGxnEKLLgD4gbphjvQUgY95m8zZ5PTOWbABL5RVp3bU/fuZxL5nYCICgoYduhDoG6U5z/0NE89loA5/7O9qpsJ0BC2oHMAzwg3fzgG/As6BVALKnsJnWA9AqSAREu8CtGJHLgn+VONqzgp3ZiHSZAAXgCnGPmGVlAAO4AtStEMznA25VquX5EPjbuYbMiHTjC+GtwGRBAAaqC+PsoGJTiGVigAVcA9ePIGgAFBoKC/nTgfYXOAlVP+ANgLwBaxB1ggAP/LQM+gwJf4KUToQmorAEXYQJcAjRaAwCyjgAVwhyx0IDdcuWFzNWjzB2HLv2GjOZDTkmlIwyeUCp1wAwJxvAvyh2hIHn9QMczYhnlwhi3QAHQ4n+xQmHOwgwi4BX/wqpR5qE9QgEPgxGgpjy74PiDihfTAB44Cl3gwB4IRQHoCIVcYOUHkiSi8iSmzAwFwwwDoAQvLxWTjxQQLAGeTQ8OigmGUAAEgg3OTicDBgC7MwAJotTAUQ31wBgnQwwJQgOsALZ2AhQPYRg0oL04hk/izxaDQiUT4rNrIJdDoOpFCq5RBkSNRi7vJFhQRBRzggrLrBoD+C7t6oAYgMILyKiiCGIeIAYRVLKcqmIFWo0HtKBI/IIE+QAatayXM+b107K7W0ApnMAIKIAFReC9444UiOKhW8EObwIdS6AEM6AGcgbd4sIMW6IzjGTIpWYeaDAE2AJkh0wlwYIMQaAE7uC8zYQd2REeO/IliOI1DfApz2YYAsIOKiMiK2KVIoSNGEY8nmIFZaBR/khF/uASGyB3MOIVIcIdmoDODichtEI8WoIJxYERyoIcGpCAPXEqmXAuTIxp8wAZsCMSZaBW8vLOeG42ywAdrpIl7KIt7YEzCLIt6iEwLEa3B5MugKAZA3I2/CAfBgMFzEIUFEIUkopRvAAb+7PuGiDyMb+iBGXC7x4gf2luGGUOkc2iFCGi1ULEEMoEncsgNw8zMvvTIrNCHeiiMo7CHeaiHQ/yQebCHynzGepgH4RRD6rROl7gH5pTOCrGGoRrOVPIHZtjI2SANtWICKhjF7OC4YyiDFpiRf8wW5piDEHAYfPOI6QuwBqqG45sHWjgCOPA5DrsGfLiFvyCOyWoJXDhHqFQaevAFa9C98Jw/vzROcqhFCgWQAcFMDbUJXMCS7HSKshhKJTzIklAZQ6CASwIHGhyH34GFzqgHGjmReWgGIFuGeojNgxAMf+CCEEiFPMkHbAIWf+gDDBApP/OKqwCfDp0ccrAG3/T+0JrAxZ64B2tgxyk1EFPwBSfV0gpkiQwNDRCphgJAhA1jz2Nis2bowWw5HiowgWOwzYMoEkM4gF14KA4zCluIgD6oiGzohV6YHY9Ah3UQFrpkTGa4gy71IFoarS+t0OI0TnvgTEjlDW/AF0vtCWZ4sNTglzqIgI4Bu+XYBAGAhTk9iHWANM/Az2XhBhzoAff5Ie2gPWewGO3oBUCIh5Jgj+rgBcxcilHICQ+yAkzVVJmoUp5hh/I81toAhWkQ0S+FB3VBDdlQBrnEwfvAB2Uoghloh3FoVYPghnpwBjbQAF4QSICsCHRABAyYhGtRV0e5hBaogmxNv1qoBZJYLnf+UAYu8AHQQEc2giUHdRUQScp2bNaXSNadwCBhTdjasAR22EtLFSp6IFjJYwl/FamD84jlmatLAk1HNNIeIAN3aMTH4AZ8WIYieIJlyBH3kDF1oAIkuM9oiYhFuNUiNYQR+YwhK4tEmIaL5ZSbkprGe1iFtVCiuaWjnQ2JFdrM5BdTKKXQMBdbkIA5EAdUVaKBwAEm8CVwoSImmAE5Pc3fmQQCaAVm4TB/EwYB6IM8LYl46AToYCF/iAAuMJdo9YfNLBrJWQp9CILf8FItXdhchIdFZdrUoIcukNjEhQl9YIepFQ02OIC1ADu5aQVT3coYqYZuEABDONkmqYcQeIL+eQC7FuUHJtCAedjctnAHJ4gHdyC4/tDblrgDdhjBB50GWlFSxyXO79qKCfHd0BDe4W0J0nBKs0As0guBNkjE43OHVHyWFCyeKMKUZWg7cHGvrWoETgSXb1CIFvCMaPAnwsOHWvABZ8McpggVJyAHCnlaCDEVfziDacCF2tXQwt2JzTTervAGWehdxwURqpvYngARfIgCI7iObVBX8RCDHngEfBjCveCbS8ABNniqcEVIvlEFINiCcdVgJYqHbSgDH9CFtVBXdNCqI7gOAhvRYDWF4IxfALkKdrACXBjY/mUJ/b0JBg1gHX4KXDiN/h2lCZUKcxEGBZgEamjTPvL+sGqggDZwBtMFF74R21ww3fLlm/pUBXegXhcivQKwg0IVy0HhBjbrhevBCqxjBzEa3AuxBxBxAyvgzBnmSx62CXvIXSB+CnJYWuNdit8rYCnkhzYI1UHNFnSghIIjlh9CBy6cA/DwFXUwgSJIKEd0hyeIgPMBSILIhnVAhALwMa+wEntwBA6dF3o4AcjhY8hL2qw4XKVoZfGkRSB2hHsYZDN7LAlQz44Bl3lYhh4wNl+GK/igPW5AB449iJdBhz84AFiooXiNB1E4gLM6vngQhvXzh1yCh+3RCtngECPLZQCZhkSgOnoYZ0jFY5twBVaZ5X2hB1yw43RkB1MY1iP+ZgkQWwllBj+QwRR5BFsj1YDK+GIeVStygSIXVZhq6AEq8KwQBge4TDYjeNd5eCl4kAWL1YqyAAUhfjMwCZViOINHpYnuJNxXzop3w993Jgt4YCXjBc50trnVMwFKEDg9rYdlCAE78K3jU5QZKANgaD5jSrYWIMkJRqRjIiBDELiIZDu0sAPQyKn37QrZcKc7wKd5xgp8sYY7GAUKO856OMYvXeeaiKDYY+nRcB4dvocIzYp4oIIZGIduuNxqIDhYgMsfqoZcuJ2CpjEopgJ3mNUCLQIMcAekLp54mAMBiAcXfgk3GIUfXuPFixdZtpCeiWGaoBLKXAs9cOyHLWv+mqAHkk7r0fCHaXDj4cUgWZBcppASfVCFELiuTgwPGFGGHlAPxOaLbKACDlCHejhRvsDECNgF74UrdJjmSCPfbPk0WMCBZnSHqlmKLl1pm4ocU8AFXwja45W6lqAHdnACGyZlmJiHdYCGZGCEK2CBC6ADZzzW0JaJdjPA0uYZf0At47WHe8jSpuAHnakfl4XobTiHZAuBUnCkbOGbdm0fbqDBj/CH2Mbbb2DgQjmGJ+iBY2g7gJSxeiCDGfCs1FuKdBONspgGekgEZticq3BMraaJ9aUQN4CHIJAFCtHomFgFL5CBEWABHagBL5iSxIXvmNCJaQBEFk9c0qhU3+3+vT3+if8ghQIoha9tknhwBrdl4ogclHm4W2VoZOb2h7hWBkejFOsLgUl4GbGEO16ggD9YB7SOiWKgOiN/XJbIEHg4A3IYYrLI1G9eX5ZwtwjyBUblKYeggxrg8R+AhuEN8jlnBiOTc6a1hvv2XZ2QhSTvK39wFiH0tHjYKmBAZMxwBxNM29M9h2MIASpAB9bssNfsXE/7hj+QgOMJEwwqhkRwBIzciljxBSsQqr31htZ+Rn/QAR4f9kow3kWHCRBhx0dPWJ3gIiZvdn0wMr2VjUtgIElmFHCIh1sAsQPHDE3JBTLAgHpYzVaMhj9QAGHQBxbKFlL7hDWXtOwQiGj+WAH1nLL684fg0I11SQRZcIQyasI91omBrxWZqhrhsAbttgJ94KJ7koWMlmyEDYUdrwFB0AEfX0nQRmkl8wdH+GP6vonec3Om/d83bon/4Ib60RR+Lgi44wZhUkKWPwxIOlJRpGv3MIpWCAEyKNQQZg93oIb1Ky+Zl5H8qJ/rmAd402Mjk7o+LwYhnoZAMPGMPg0nfIlWwV1mYIaWMgVQsAZHsIZYYwk3YAcpxcNhUAMWUAEvSIZhGIKccT+mRXaY+Ir9Bvmb8AV2rG6ODPH55on/MIQC2IR50G2D4BuQ6oOzzBZwaAcTKANnaOLwOB4fAAJYOGwOOx5EiIBN+Cb+5/MHWzgASvgPEYVcsecNW9EHa6CHaQCFfGeGXfcFN8CFQCj7LrAHCJCFUXADb3hWZnCeygGRYrAEpk8teROEH6gBFQiF91KDRO/fuX9cu7z7nbjn/v2ZoJiHruXETo7oSwkBGOJ+xMjcVjjdRomGzx2x7FgHIIuHUwR12oP7oCiaO7B0CAkVB6FUe/CG5znPz9rzlgAIe/5MyfKnzx/ChAoR6jM3pEaNH9z08WO48CLGjBo3cuzo8SPIkCI5chvCg9vIlPfYBaKX8iXMmDJn0qR5h5zAmjp38uzJ8Z4/K/5yegTqTxUFROuojQPn9CnUb+fWzQpRxl01qFqhulv+xgRHuHXftmr9Fu8aGw3B5nEjG3XduUkm/viL5vbpt3HuSuEg48/dTG/sfO48aE/fPXuJ7wHVJ5Ae48NGFwpM5M/bQY34/M1jpaIGDz3+6h3kV48w6tSqYZY8uTrhNF+vZ9OuPdNXMdu6d/O0RC5zR9P+cjExAsxft7tOu8Gl4uOTv7bKk+ObE6JP9LHKqfmb1IMLvm/a71bzl4oKDm5nm97t5u5cmRa8RleUiZs37cT+ZMnKDRzjacmooQILavzCGX4JKhhTayjNRo41/y04IYU1weNNhRlmyM5gH8XjDyUYfAJXcspVM48tC8yxzjol3sXNOtWEwEQ17rjo1jf+KDGxgjDuKPdUeX1I0Mo66IznVjX17BLAJ/P4M5lMzIyij4QaxpSTFcWQw5E+Tgqigw4qhGKRlWVW2GBtZ+BkJpttJnQPOV1g6CadqlnhDVEa8bOOPwswEc+PT3EzTxkKuMPej9+404gA1IBz5F3oHFNAH+tI92ONDVBxzjaBglMNPujxyZM9mNWZ0kGOnDFUR/Xgw4MOsOKz2am1zobmbAfhYpCtveJHDjy+ChuTPuxAiVFmlEQACz5ZKTdWPKq0QEVdkJalKDBF9FAPNdaWtRQXIRzjzqU4kosIBaLgUy5Z36Djjigh2DFalTMlYuywG+njjSO5uaTRQfUwooL+DjUw4s+H+SpME66zWVPQsQtLPNNB04wyMcYagQJPxAl9KA0STGyzTqfKXeMPNVH0MIs/1SBKVjfo1NPGDJf4421Z/hwywxv1tIjpPLwY8UQ06yo3zjXrROPcMgj6VAw89So8jT+rsqqRk8NcIYMKXiRDX8Zhf9TwakBZsqvUYqudkUBC5bn2wsUEchhG+DhZRs3xjIOzU+Og9EgIh4TFNzhIWxpCG8fUc82P3WxTTxFMzLIu4d9wZwgFTT76I3ewJEWmT5ZM07Gw9gjkiDUYpq3PZnEMwQILrKjjD61w264Q2asdxAyvt/t+0W9p/45xPTgwYamnI4fLDeOBjiz+SgCwnPOyW92Ms4wAfdTjaV7hRGAEPyUHWg8QFDidGocYU0nOHXN2xA0UEEHh4PC/566aQG68XT/cB3XhGP+GNQpQXOQg61CFAFoRD3ZtJS/cWAaljJaoc1wDAz24GeEeRTIqUAAffkvUOsLRBwWUYh6OepZeRIEBQyDsNdNwxNUU5o1EEPAeq/OHOF7RgRoMgQ6cqV0A13Y//PnDMsIL4sIssz8k0il1CuGHQJbRgjKc6EZkucY81qEtXkiwPeDwBxVaIIqWVa48f8ABGyj3o5N9AgdcCIc7tkE9rUxkGWTowTHARsRVLbFOAvGGKywTQ4wAJRlXYIEMvIASJzH+EW5DTI1jXEG1RooNHsWgxxEpmSFmTJJ2gCEDDkpRj3NkkDuIMIEhxiEWTOmjFSZgAzds1Lh3MYEJuqhHBsFxDXywYQaqiAcpj8YdSlBgEgg5DW2olkk23YEepgBdAU9DBzCp4BWnWaYmffVI1fiCd9nEmC8u9s06FcObVJoHBriwjjm6ZRxhrAY6kucOQ0gAGEbyFDhsIYA/rDJQ1wiHAp5wz0CBagY2AEx9ZiMQCPjjX71KnSno0ceEbIYbsaoBFOZRj4SOM2PbVE0iJNrRYSVmVyN1UzEmWQ9KHAAW/mheA8XjrnFsQgNlqFa7xiIedCwDBzggY6LQUQ0qRCD+i1ZsIFz6sIBgRGeC8IoAdBKmG3Zgk0KZYYcvXPEkfY1mYGDCxPlOirGPpsYbNRSrrfQxDVk4FK0VOs0pqLaMHhjBH9lg4HLsNg99RIMJLeBGs9j5DSehYx34aAMGWtHFslyDG934RncoYAh8XOOo4HAcN3Lkj1lMkRvnwOujxjIoZ/SgB9sIa378cYdBtiknd7BY7+p2GlocskDPGI1bPWoS+tXGbA3NLZ1OV1XgrsZJRqBAC5hAAV74iJ2XrUcZilAGNhxAFd/oZwPn6QNh8KIBf1CcZQt3Dny4ah0U4EIu8CE+rYwMH/r44gx68Inw4AhG3ygPIkKgCoQAsTb+BwmENeoEQFNYQjZbzQit4sCDGqiAFk7qL3GHRVbUJMYJB46whlJlKgwn6CCGcMALUlCAbzxWPO3ipQQkoIAeOEs56JgEAVLcAligw7mP6sYnDqCBEEhgEuu8i6L6QIEQfCIEbPBRogzBC3QwIQQXThA8JpohgZzBG21FsD+eUTAZXAEwHJ7YhAlzEAh92UrsmIb7yqybg0xiARagQAE4Q6UuuaPOdgZMFBaQ4h50axx+/jOgv9EMDFAgxWXAR+H+fI5FM/pkAUABBiTQJNA6ZR2fUAAGMBAAZwhVpp6W6TluoYADFKAANpMqfoAC4OHyphgFgQxX14EJFchgCAf+Q6aa8xVmwtxjGpaIba55cxBfyIbVwaZJPeaBgwM0gA245cgfBOAAAdy0I/NgwgEooIB5LcS9c9YHYAIQAgwcYL7zODe60+0kDkoAAwWwiztYJO95r2MenyBAoY2gUY4miBnBMpNRcKElYBfQH7+AwmfUsMhj63q3ChogwxPkCkvYMOL+9cc4wjCIJ/H7IvzAxyWKwAZcc+QaPZBAGTb6E3+UIQACwABpOhKPAmBAAD4geUL4oXOd++MTL3fAtigElDN0UkP/snCHMsKPe5wmDjUI0ysY0nGL02nXqNlXxaleG3hgUutuwoc7cK6vetQD1R2JRisY2ap7iFztHLn+trRdusl/Z7hqbO0IUKrBgh9wGbVeP5XVUVNlKf+9JvZghxsKXxtLPDMkWf8I2avKdH2IHWsIId1FJmPsq/vDEmle0EHgYY3VsnYhmYkDCwoWdbcrvk6B94lAAlH61tPEJavFPO114kQrsboeuL+IPc69eTH7wxdJp1A5xYl5yvtjFYdUgR6g8ezcu97hC5oGKOhGfZocRBZo2z5qphFg8IMkVVuakGKKSFWObGYeTpeBDljBX/JX3foJAopW6S8ToCSe8PpPCS6Y1P9x1TQcX6rRA+J5xEFoGURcQeUNoIa8Hq/ZQ/tA4EjQwx3ohwXWhDUU3QYqBP/NXq781p3+iKBCrIMgEIwOjAnrfeCZ2N+EgAKsuSDA0IMkXRkNpgQgaV8OHsSUDN9MCAQ5WII4TZR7+YMxDIEMyIAazM48TF0OJogEogY9+II1PF4UJoQ9WJIBZqFIXIgXwgYWjqA/BAI87ArmCYc/qEHB1MAvbAYQhmFPTCGvBYUJfqBLWJgcwoSa+B/9CUQO/JZuWAM8/NrvBQj8JRLtQOEe7gYdEoZLWE0YHgQfNWJKsIMf6l/U2AaV+EMxuBrBmd6TDAiYHIjKWeKEPCJhbKEsjF8WsoMrFMMYomJHJEKUeeEQPllqCIQ9uEL26aJCsE7zKSH0mcP00aKCqKJP7A5b/R7+/SVGsSFjSIyCVjkj/VnCFb4GADFesaXNaZiDGtQACwxB1IWiP5gDJhyhNL6GMqKGG2wiDdIDPHTBOoqEPIahNfDg1QFFEPhDFy7Ex/nDK2yZGjxgQmgZ2dXjarQj7JXhlsQhw3Vi/ylkUfhDP+LgBiYCOVjjTICCNwSYM5pDCurAD7AgRzxDDSQkllGkTDAk7NmDNRjYBjLDfUCkHA4b3dEgO8iCPpLKUPiCKfRkt1XEL8gARKjBMTEiQqCkSr5CMjzDK5DXabzCgbDkS7hkTxyEN4xCNg6gPjxMbnCkQvqgIOrkNNhkRuiDS+iDE8Cj0iGTF2yZ9IEEU7oK6pn+gziwQBwgxCrIQFVa5UhgJWF8ojnmXvcVBGB6hEsEYiZSXzkRX1AIRqv4QyhQEyO04Emm5DqwIe34Ay2wQNQNgWigpTQKJmFMAz02ZsQlRiLIZGJyiT+qZu6lFGGwgzfQIwBphj9splH+gCkq5UU8gwyYwxUMAYI03RVAwQ/43WuSBAyWiVHIXmEWXuLdYXOyyu254D3Qw8b0hDxqJDAqBK2swg98Bh18iEFqRDLowBXUwBUwH4LwgAr8xXWGhGn6BFAwAyh4E/WRQyLIAmLUJ0eUSnW6IDtc0k5gEjuYAmYIz2lwgxos4RDQAjTRpQ4IAjfUgA9tVDxAww/UwF7+pqeAJsR9pgYosANGUp3pEOKIdoRjuOIGwqR0cp9jMMOM6slUPh0L+FBnvgRKOkkl+GULsYAg/IIb9miLZkSJooYjkFnhjdkMTWeS6gM8vNYH4l94ikTo+cMJXN5GVIQ7eEHq+eYxpoRwnps/KCdCFCdCxCVmJimJPmebAIU3uAGKFh6/yIZsNue+MMOeap3ZpGj5IQRBEFD6pSVC0AJE6MBe6hFMeCjZndsP6MEr/MBtfcgQICVwCuiS1uFAYOKfjpRROAJQiOWITgMzmGrhYZ+UwiY58EewpKGTtIMXLOEPSN+sIBuuHkQ1mAM33BatmAM0vCmcdirndcGWhOr+NwEFO+AmnIJE+yjrsR0EgsbEPaQUxLydPwTpD4zAZeLHpnKqnPrRZayKqo5T92mVtF4nM3ye/t1Dar7EQZgCTX6EOrRnRJQHPoTrs9KGse4iQsBQlqJVxTmCSwhqvy4EUNAjwtLeKIjUSACFL0xDIjSGblImDyCSIDxYwmbIv0ISAr5jWQLXvwTCJZ3rs7JPqxYeLG4YSBgFDfFOJ2bEaUBDHBCIF1BornbsC7rGwrADLpgrcVGZJaxrkqYPaWJYMRjscDHrqjQsboVCIvIohPFsMo5rr/BiIJwlcLHDGfCi1YJE7CHmM55f+QHFHbDDQ3JEsinhh6KEiIatbnz+7GvohyN4g9miqz+QAztYBsTKrUcIBC7kLfUBBYOKrT/AQ5POIEbwQ2asQupp6JOcIuCmItYOC4Y8rdFKDN24gTd4YOVySRXSn640Ht4BhSPgAoxmhJNUQ3uqwBVIX9KGLsNcbr74Z0EIJf8IRDHcBNTS7kLIght0XeF6oh8KBDs4gTUMhoP6AyP8QJhgAscCL4XQrW0IhDV0Adc10kq4wVlRr0j8499VjBF1BDkUQ+LNrNKdY/xEBLDyK/gupO3mS04Egit4E8r2SoCWU3X+bvwmBCjA0Obmlt8CzN5aZEMhLFDgA+TKQGjM3/9ars+uDfZOQ9qOrNioJUJ0Aar+DsXsdixQyMIzffA40cMo+Aei0oM3kC2O+sMwqAELdM0wjEbVRrAjzi/GMIM16OEAT9kGWwN/2nD4ekMQK97Jss3eugILWx4j6ChYIakQX+0E345R3Elu9LCC7I438HAUa+k98EfrqeUdLPFC2CY9tmo9uIPb6gDcdnH14rD6/IsVoOr5YbFCIQQ9oNkZE68bi4QsgK7FqVURk4kruMIz6a4/BGQ9hIIKigZpwG8fo4b1Ch3vksM7Np4NkXBh5CYu6MPd5sbARnINBsJGeh32uqaXFkOU3uGHuC7XXAGwirIE81b9XBVWqYkWmglRYCCDiq8sg4Rs5O9Jqdr3KgT+VvmyQjTdQ4wALfBJDf9ybUyylRhFqXRBTPrvVFnD6AmgJkcwIGLwsXUncGTGKEwD4WpENcQPlxljN0OzSEhzmQSoPzADOZyBPpiCNTiUxaqGYfBKqeACPXCwSR1GO3vzfmgdOcRixZEzPRSoRnzjKhAIFIxmQbszSMCzmcizPAbSPTgBPfAnlSiGMCusBhMF1WgvKOCC+8yiRYtECMuCu6rZNIDyb9lDIIxCsraw1tCaGkgfsbZ0NMMxEw3GTHtDEBTi9jIEYwBQJlfJQQCQZPCg6cgeBHiD6vojUPNExeSkmtFDMZwxqzBeTF+El8CfClQCBGe1FAo1EvUzUHz+dErfgSm4AjxMAz0gYEOpL/BBBorSw/LKAjMEATvcAdRslUBUtDs7AZ4Emwpv1UGIrP+BHfzpgHHGnFovCEbrLzgzQzEkAi4wgxXYQyLgNOoUA26ockiBQksEwVqlLpotxFpedkMS0MqO1E5WI5WOAtdNlCJ7lQ4czDw8s2z7K1t/05x1zBbyjimQQ2yk1Ar7g11zNUIIBEsPd00chCtYg+lGWPdNhp3StEZ8yC88X09DsXXzRmaf9wYeRAfWdjbdwx3QNsVmY9qQlz/EAZiwgIO5t3pLcnH3d31agiMgtsJUDB6bguxF9jN8KEYBhnADODv+N4Qn5kE4EziPVDH+mEIxsINQXPib4BAmIJKt0cuEr/UUl3jCqqU+SOJJaXDiBSBk4N5psMIVEAgd3NZPo7j8nriOP2vFvLZYwXfVwIN0m540PZ0MlOOD93hqpDeTvytnE/ipVDPFWudo5CWY8ACJPzl6SziXs6QbcDZ/U/A8m0K/eLhFzIMefMYKMueX34qXq3VDhIKXjahrebAmgYIvkJ6UbcYrxM8I3Hgov7lqODng1oOR0nJ9OgbiHcRID8vhhZNEHdFmVANE+KWTSDmhY4Shyy2i14CDQLI0HgRrY3PG0AM5tARInIYXQEGdbzp+dHrYfrqD1MMrzAMt8BY0fM2Sy+HBJjj/SMn+aqkmrbgKrJu4ous4rZ/GEPxAPegAUiKEO7S5ppuyWv2alRc4PIjwdI+E7x27FCc7in/6bfEAFCBEMqjA13imCmgUhTdUleX12qwEPIgTuEtYnGc1ossAN/zAFdCwO4Am7ehBQVa74nViP9rxhByEJaDwvQuLrFttPQxD6kF772CCA047hdYnJsEDQSBzrQDQ+d4BdT88vvO4sg+Dt6q8/B1EMowAN6znqLRoMWR3sCj8bPzLGbADthu8yetExPPsxPO7PwhCDZRHm76CFzRqkkaNJbADSD46JwrEKJywl/78yYt7idM6PrSDDNBBzH0JLHfsxBZwrSzmdmK9xAT+fcdOvEQgBDR0ADQcIRQYp9Q34qjSg0a6RHUriFFYQ9XzvdovDNunuDskg8qxxddgatT5POnyok3zfLc7PvAlRDFYAkxX6OBrU75D+Cp0gJu3aGa4BCiUPqsg8mvQjTa7QXtv/lh1/nnXAzfIgH6PeX2mXyDm391r6Zi1JgFRvuv7ROFXLtjpwRv2+pTqh1Xb4sUk3VPXxD4jhDbLjcDhcfDrFso/PHkBf4wixJYEwmcnHk07+lI/P7LM2WPEEJrNtYbLJGNcP/ajxKzMP/3Xv/3fP/7nv/7vP//3v///P0DgEziQYEGDBxEmVLiQYUOHCuv5Y6QmIr96+vxl1Lj+kWNHjx9BhhQ5kmRJkydRphyJESM7f8XguQrkzY0/ex7p6aN3z17Pmx1dBrnnplgxa+RUJlW6lGlTp0+hRpU6dSq3IT+4+Xu4lWtXr1/BhhU7luzDef7UyPjxy19Eqm/hxpX79GYxXIFMJXJVTJY9XBkxbvTGzJosN/pOyLIEz+Zcx48hR5Y8mfJIbmrp6NG8mXNnz59BhxY9mnRp06dRp1a9mnVrz3QY6eChQoagalnxVda9mzdHnoE1smM3ih0oN+Sc+HK03FIxS/Rc+aOncbo9fcB7Z9e+nXt3lfzMaRqhYkR58+fRp1e/nn179+/hx5c/n359+/fxq79QQ8f+Dx4dRmBEK+8ILNCp6+7R5x6UFrRuQQMhjFDCCeXCqJBKMMxQww057NDDD0EMUcQRSSzRxBNRTFHFFTtkZJX+VPgBE27U4YfCG3EEiSWW/Lnuuh6BzFHIIYksMqOykExSySWZbNJJgc66QoYroMHHLSOxzFLLLbnsUjIfwQxTzDHJLNPMM9FMU8012WzTzTfhjLPMBRnR48iLvMxTzz357NPPPwG9MbB6rgzU0EMRTVTRRRn1Eh/sGo1U0kkprdTSSzHNVNNNOe3U009BDVXUUUkt1dRTUU1V1VVZbdXVV2GNVdZZaa3V1ltxzVXXXXnt1ddfgQ1W2GGJLdbYY5GITVbZZZn19UdIl4L2S5SkNfLHkKp1LFuVtu2t25IgvVaqbzUit1nIzJ0r3cekXdfAex6czt2OgJuXQagWtJfBn+Li1598V3KqJ5ECw2gnessF6eCEo4XLYH0zmk466j6SuKOBFQ6SJIjlusficXNiyt+NOCb5pJHfSpenk9YtWSV7PjYJ494CAgAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRoxb16bspcKUre6CsTXM0LZGrQMUs3aFnpZisQN4ceZ3maxpTgUv1IV3Ltq3bt3Djyp1Lty5SpfbOFpvmxF4gXPZMsbPGzh68hIXJSZVqydudYriKEbRnt7Lly5gza97MubPbs/5AFeui2Jq/wxfzsmPnzwk8K9YO21Trubbt27hz697NGyc9a8UCNaYskDJoimpNUlabqPVJer2jS59Ovbr16z5p+ytWbFQxUJP9/mnvSBm6QFmyEtHzhRa7+/fw48ufr3mpv8GJIt+Dbk+pzpu0MQOPKYlMI9Bx9CWo4IIMNuigQ2rR0x0o5hGllloG5sCfeA926OGHIIaIGz2RgecPcUjdQxkolhg4nogwxijjjDTiZCBV3vhj01vmnWGPIzUGKeSQRBbJITzTgAKPaTrKpQ9l7OASyGH0vGjklVhmqSVvN8lCTyAcWjkXOcy4ceCWaKap5ppzsXPPHawhaBdxbrgiJ5t45qnnnhrZl6QlOt5p15P+WMKMKe3xqeiijDaaqBvTSCboZcQVKJmjmGaqaZa+MCNLorepJRU5/W1q6qmoPqiWN8zkKJ01/omUmuqstNY63U32yGKKi9HRdoY1rtoq7LDEWuZfMcw0x+F0lMniS2FiFivttNT2RFtjn0YbXbJnVuvtt+CC5As8dyj7HnQ5BBvuuuy2uxBtvhRjRXHxQScLLk26q+++4VIGT52B1DQpdZQZeiK/CCcsLG13WCMlignmeMbBCldscabwsOOINzKpmyBlo5h08cgk72mKL+SQYwp4A7tnjz2QilyydEqllVd/L59Y88w8UwSdPjj644hsHprYcs914fWkrA8plxbSUBdEqDdusGZPIohqS59aVmQb9WZKx7RdpI74kt8ZyW51hjfcqWRPTRB/jTRlOZzJZIg3kWOg/txxHceO3t7gUmZYU1Y9TWw1DXTYNN6EVRUuiXwnS5TweKw139+qRQ4u4OUM690gSmgJa5ivRVl5/rjCDla+yIIs6RfRY8+4Yk0zryM5i3d06Qtvx93BlN1BY2S8G1Uqa07Qg/ZguUu9LEMXHgRdMevB6QZqOhdfrT3swDMx9jB7E7eId5jin/ZAQReIrsWc/vxINzHFTDGObFzl5eifyo4po7wfE/4Pogw58vcfgQgIF1VDFIfGl5P+BAge+WEcbQBIQD2Jih1BoNeBVge6GKllFBSqYEjOJwtruEEfJtIZBUdCKIH4whuGckVxVijCLdnHF66QTJUGAh0zCelC/v2jYQ0XwpSbOMEfMOlWW2izkn8p8HxDtCBzVvM+tcBJiA1SCyhkGMWM0IMefOHY++iilH/54otd3JMsAjNGDjGDgTTK2O7S6DzWuOFqGqSUWlxhDUesRDxYpOOHjBMc1lhJLYEozJXWFsghMuVk8WpKZ4gTL1+wh2KCHBJN/MG/JyIEPVgKXl4yScTtWAMU3Gsj2E7jjxP2T5WkxJtAzlCMHGntJVhSCzMG2EgCrmdycLyNYWQBCjfFkkb28EYXYDmQZGYwS5Sp2jENwg4YuoSZtmEKLvaHzWkmyD/N4VVCboKvYAapWd4EpD8S4Q1eWqc802AGMzCZzgVBhxyy/phnN6EjvF526CSjsIY5RfikjE0setehjT0s8alR1pM+++Gkerp5sLpVSEuROibdDEkfypzAHxd9KHwoAwGQrrB9/gyRKYoBxSGqBR6jUNZAq7NJR4zCYyK9jjdWdqI5hoYZLdUSM6YR0iEOtaENIk4xd5jT6WjuSyCdaUG8wqabmKmoWsKHZgzjj4nJLItqGR09m7obDHmJItXEE2WO6NMZcSMem0kPRRMECiCRlTeicoUCJfIkquBJLbCzoT8YoQZ/aLUy9yBHIpAaIuLMK7B3rQ0z2HHEfEVEH+RgT0pFdA9m2HVLWuUBFAxrF5H5UKoKEpkpBojayMLlhoGY/idTL+sPZnAxT/rAxd629Isf6GAVB1GHOg6bIn9Azp0yAixP2+rau9zHWaCSyFrHqiZ7TAN7WoqDDGRAB6nhgw50qAdxi3KTUdx2SN6jbnPpIgt4yHCziuST2YJaJG5coQY1gAI3CKKP74YXH+MlCpDiK6RSfWq9dbkJPTzFUYvcxBLv3ZN1Z3ulX6hABzoYwSv469960IYb9ZhHO9zRjnaoYx488UZMLTukFZUFwX0TSIEANVeGwANQrb0SkHIMIn3UQw1D+MEPvKAGfEyww/owhw4q4Q4vsGC7+dUDaUkSkxbVWES61CGM20IZb/wFOsxFyE3mudkZ3WOZPPZQ/j3McQVzBNnN4qgHWvzrDneogBHiWYc5xLGOV1zAHHImiebMtaWVsnjLRAEZoMK8kPJ9dU+2xBI+4sGNIfBgv+YYSH/Byw0W4FktIa4HNC5gjDIz5CZ3+BSjQcSUDKYZ0SDpoT86qBF6RJpPqG5ekfjhj0pfmtea/q4XVCCDX0wZH/PgASZ2IlM17eizsP4JoZjRuitHZBTG5JNaumPtEPl6vxwWxAWGQQceVONMXhgtTk6y2Eej6UnWuAOpot0T4qwPuR7BhSVeXSTKAMnUCvq2d+kQh3mIYwSVIO0aZOCPQItEVGLbU2y6Te+k+EMWE+M3RABuZk4OMEsC5zB4/uX8i3H7oxIjaAc3zLFnkXyRrRJuDT0+XnGSWMMUn6LwRxyRQkXdJIQgtzS4g60GNQRaDRcYtQyeDOWGe4Q2YMLqmqZH5pqHxECnZSE8DtwozNIYSyEvCDWo8eFfmOMXxkh72o3N8YFA7pqLogko9mr1khRsGpAdoT2YIXXcLlhLYV8IsAX990yxo32rrntB8gaWtivkHqvDFOQDofEHBX4oNJkGmDTliG0qPiPTQKCOHJ8QmugTU+0M+qWNwpTmVN5ITJHh6yt+E/eGsO8gMQy0426PYtDcSJcXytzhnqnMC+/zESmYN0xEeoWsareOYpHqhz6UlOE+7vfAKfKd/q8Pdiz6J126lOQBL3Sj1DXxaaorxemtXMb6pEvYbRSBmv+e4GfnR7TS5TzR31zi3GGnh8YT5bV+WcIOXkJ/2GF/PNF9lvB7qZJZ4rd94eEK5qVEP0EZB4Ux1sB/C6KAO3ETWWMr5HBrEghO1HMUNEFDACZEAeYg01A1HJggHqgT7IBmtnITrgAoCEhK5OAKMhGDGKEW4vAC3DBH10AN53Bly9EQWERcQkRD9OUROjckM4gTPaheqLJtEVh39uEs8UcUt3AAKUAAnwA9/tAKC1AALbBf/QVgB6EW29AGU9AKAbh4/iAKlzAJ69AQWrUOrUANTmeG+4ViDXEWLVgS/kMDhPNRhfCzYFNIK5OFfOaRQSRYFEawAClwAGWwDiZRM554WO4wAwpAAQtABtCDDxJwAAugANtwiAUBDBRQAAXQA+5wHJ7oH9XQAxSwAmXYhgD2i7/oDyi2AjhgBP4AVwrBDyjGBmwAiCFxDwd4JYz4jOwAKdTiBOLDhes0CtcHfv5QBhIgAQpABdTwDd8ADuiYjuj4DdzADTMQjgeABP7QDeIgDt1wDuuQj/oIDs5QABRAARLAC3UWDwRZkAbpD4bwjxQQAOMwD7/obgJRBwUgjlTAEJTRAgBJATMQiAghZz2AAeGIDg7XEfpgCokDfOX3fv5wSdNCGYgye5mU/hzWkEgg5VzUgAQ4gAMKsALOsA7joI7q+A3o0A1sEAEYQAE4wA3g8JNLCZRCuQ6GIAENoAAK4AzdAJTquA3jgA9soABSeQDZUA3maI7dcA3bcJbXUA3nUAb+qABMMA7ngA5yOZd0uV8Y+Y8h4A/rUGd8OQ8hNg9+SQ1HSQEEUA0jyRH6EI0ouXo/QQ43RS1W5FDRJlDN0UJFEWiIQAGigGJhUA/rcI5YCQ7f4A+XQAF24A+wYAfqEJrpyA34wAszQAWfUAZl0AqfyZpvVQ1GwAR2MANF4AznwJTpOA7E+Q172AZGEAIFsACG4A6sKZrg4A+TgAGyWADN+Q1neZbm/pgN2fAN1+APnyAA/xgA2XCYJWEF87aY1FdArlCJxAId8wKTXfQ2XUUqOygRKMYNGNAGwFAP2SAOnQCdWNkN5RkCVDALvbaXz/kN58YGMzAJetmHoImV5zYJIYAI4+APyxAOtxmarnkLsekMvCAKtsma43CV21AEPcALnyAKm3mVWDkO30B2VNADt5CKiECADUF89ZWSPQFK97kl2fdKMNZlJxSkEYFidkABrYAOMpoN7gAIwqmO3bAOvCABhrAO5zChrPkN51ANIdAD8zClC7oOVEABMiqaZAqU3LAOfXAAvCAOxHkO57Cg20ANB4AIdLqnC1oN+EABbCAQ8wBX/oPnEWeWnj3KmAIoQd8CeUSKYPZwBg2FpBDxDTOAA/5gjuu4DqewpUG5DtlQBgfgDuNwDc+JjlVKDYggAMtQD9VwqqKJDtwACxLgB/5QDWsKlOMgDsvQAlGQqVxqouvABBLQpjC6oOfgDnZQAMsgjA3nYSOBEmDnozvhmBA5LZ3SXDdhgDQmnxnBD8QxBxqgCv5QjulonIsgDXUqmqP5CCtQB7carE75na3QA09QD+PADbnamq76BDPAC/iAq6fqpfHQBjhQhuZqp/hgoYH6DcfKmufWCjhQkRyJE4mQbYm6noQHCg7oLfTgCBhLVqMAU+pkFCi2DBLABhxqqkF5/g6ncArrAA7cMA/cYANFwAvzIK9OmQ3+IAY40AqkqrPqCIiHIAGXwA3u8LChSQ31cAwS0AbUMA8s+5xtug4kQAX9uQ2w6rD1UAUzoAsC4YogYULSqp4+QUXsIilk9RJ41I09oVVzgAHZgITPmQ3KMJTu8AkSMAnc4KkDy44LYAfX4LcL6poYwAQ9CavoyA36MAcUcAzBqbjfMA+isACt4KWSOw7hsAJlYJ464a0ySK2Cllu7By7kYCagizmBE2FHwWvR0ANF4A7UcKrZIA1pgA/RwAQtgIRCe67rcA2UoACwQLOKiw7n0ApYequKOw7rcAw+0AL+EA29u6nNQAYK/jAPYrm16+AMnxAAzoCFJDENVySNoksSBui2w7Jt4jRNxOEIu1KHQMEUfxACotBr+7qO2VALk7ACgboN0wsO11APszADRjAP5zC1EOsOx0AFK4C0SnmqbUoNdhACsHCr9wud9fAJFJCjCMya3YAPsBACZSAQnpsTjTN9OwEdOsguajE5Ooo5hIJzCqSIGIFi0XAAdRAN7vDAVPsN4TCOx1APHTyg14APTEDBOfu/gJiQk+AOhBuapeoPtmCa29ChJlrF6qABZYCz2QCr3XBuOIAEt1CyP8EqNCwf06gRN2FR7oKBeUdH/hEE2ccW7uAPVGACzgCX/xvAoiAAR3C3/pLrDsZAAFmquOu4DTarprBaqvPwBBhglU8cmtUQD6LApEK5x82LARBaFK7AdWarEymDMH/jTTkUJ2yRDSkbsP/7De5wDUeMD9ypvddgBwvADex4wcbJDbOAAYogxLiMDtugDC1QBvgwxDGKDtdABRxQDVbcpZ85BwTwvYQ4FIeDwusmNGaxL/ZADv0kSNrke2dsEfwQaGTQArOAD7M7sOtQD3WAA/BaDYsAs106mp/QA1NQDwK6oPiQC0xgA8GADzzswejwDWygAfWbzgs6uYZgAvCasF16DfrQCi1QkfVwD4UqbfbgCtCXsTrBDKBwresiC+cVRT1SOWtRx/Va/gbq0MweOg+8YK/HANDoUAudoLPmiA9lMAN06L8De259EAKG4A/5zJqAiLJssNLGrI7XMA/uEAJM8FYBHZpV6g9H3Kxiay1bl7qLWL4uR6l78ogERBtdUAxvPBRyxgYU4AxaqbhLLQoFMAvb4LexPKDsGAB/wA0DvbXfuQBPoA55PbD79ZHR0JRe7A9zUADAENeSuw6wIAC2uRY0MbLWjBPuqzCaNxNR1DhWsCHOtxNaZQ/OsACdG9VdOg4hYATOOaHjkA1wMNeiGZdsgAFIq7RY6aXroAgSkAv1QNpOybytQAEjnL0Dq8BM0APxwNPqHA1zEAJ7WA8XPRSQN9Ic/i1o8MCSCeN7Xl0t2WcJl3Qh9mEQEfIk16oWDmQRcjYPZNADFczbnzoPf7ACj+AP1xCs6NALypCO3SCdPcAE9eCwsHpus+Cv96ivEIwPx0AGK3ALxYzL66AOl4ABf+APWru19aAKLWCKO+JcxUB3nzwSlCHd+2KSWt3G9nBzEVUT2mFrX/KxVgAP6SIL3B05rnEGSlJOmrYUbQVXqhACfrAN8zDhJsrMy4ADVXAM98Db8RAJ3KmU4aCiCMre5/qdP30J+BDJWLlfohACf7AO8UDb6jgO1TAPvVoFzkC8z1mq39kDRtCs04wUwRPOaMzV5OEPXbDR/HIPqIs+S5Ex/sLjPrM2DV8BYYB+D9uUTG8DD4axzSmBL2eAC7jgBBseceX9LihGBTjQk/8LDucmCgdQCkF75nggDvGwDAvQB58+sOfQDhoQu15OofiABBpgy0O9tP7QBgXQCnH9vyC2DAKwCVp11URBYOSrqA+nawlDVNrzUv5QNwIBE+TgBL7gBswAOheCOmmhHNkzGb5QV6YgGGjEENUQASOM0Ke6DtFgA3np0KGJru1ABgWww6u8pZMQALvwu4pLp7zQAEGd1EBp7itQkfOtvWYaAtBRwkaBLuBbI2lsEdDhVQqjRbT2NZSBC6PQP/HkDWdwY4s3GwjV2XmhIgUBQ99RzXkk/mc4LdvxILBUu5dLSgnlurWjyQctMAew/L/5fQs9QAUrDeSsuQ07XKOloLynGtfu4KA5Oth/6w+I0AOBOg/ZzVeFUpOTDRJa1LF3fg+VyTe0IRb+kEhVc3oHAnCeiBaHxw4TQ2P0gGKTYAJ9EJe6LsUaMAetOr35qqVIgAR8IN967Q9c4AM5qqmnGg3g2QJsgA8s7eq7MLHdMA+tjt87zAQz0AxT9lr+cF1bsvDIsZIg7S5d8sLtog+t4gb04ATd84U7MRiyIG8CQQUzIA3EqbhvNcG3AA5WDpTV4A6ioAB/gA+3O73sOA/AjY+rHNg9UA3oYMhLbQgC4AzfkKZD/s/YApALdVwX8PBR6BsjmD8RiJTw7PJz2lcytFHxsrBMBwPnDkEc/JANFUD49EDgp3oOttwCQNDfhgwOwxoBSC0NneCc646Pyi8MABGPGziCBQ2C+3ZuHCwBn+pROxjx27hv0XA88QcxosRvVEzgq6fP30iSJU2eRJlS5cqV3vzZYxlT5kyaNW3elMltCA9uOG2yc+Xvnk+iRY0eRZoUp0hvxZQ+hRpV6tSY+kT6shZk2jShMKnWrOfvm5kmnZQt+iYN3beN3da5s0OhVUa2Gwl++4ZvEgY7/qKxVXYq27iD33rO8lFk3rdrhO2C44ZvGZkV3NZxc2y3mzt1dUJ8/vJXLfNGvPgutZjjbx6+r1FF3rHmtfVs2jh18pxtypvI2r19/zZqj5wj4MWNH59Jb+QZN8XYjZSNfGQ8f6okPEI3L1uvU52yrUNokJo/YCHYOLv8mCA3d99wMDnmrnF4s6O3oatXpcelxerX+zukhT/OWacuu8bp6ZYW2gAGn2v84wYdd1ogAxjVpPPJF0v84Q1DD6O6rafWmKGnww9PRDEpfe6xRrkUX4SxqBX9McWKFl/EZx5/KGACvbrG2a4Twdb6r4gQZhnnHP/A6aaeTyQQpRrwDBpHmV4M+madYyT4w0f/vpFyhiKWQWdJcKjRh4oVblmHIgjnaUUB0GKk/gkeE+nEk6UQZ0uEnaHyBDRQoeBJxEVBD8XzHm+cgMcaoWBcBgND/BkIS3DaqUWaTsYZZx1gZuAitCWzjKYMCdzhxsCCxumllrvQ4eaPBXgpcMl1qonmAEPq6WZJir4JgQp/rlGVtHWy4YIA1VhDlKQV3ZClWWn3/MobX+y5U1ptkZvGqW2/Ra4Yb6xgBx4OUQzrG1O/cacau7JBJ5taQHFmkgNmEVW9LN35JIQ/KLUrL0CyyWYeWGbAaJxt1FN4nmiYCCGaeh5U75pz2mFDAljyfYyteCiRYBJ/3AFXH2+YORfcPKmlCp5rs1U55tbYeU5mm6my57kuZPEWRX1g/lIkBETqcVO9avwZpIUX/HFwtIMQvIwEKm7Bp9IDpQHEnypwEKXqYgsb7w8NGonnnF6N9qcVE9gIx52zH7smIxuoiLsefsCFyZSb6WR5qlH03jvwqUzZUHDDi1KOmRO8qdlnf+rhgApnwHF6o6MpEyYbPE7JZzC7xrO3lWtqRVsOC9gAh/SOz3HHBCYmqjyibdyhIgRlEvqaytERWQAYHWFGVLkTXjr8xL5dgye64pf3CZ4/mYdeJXvgscINDoE3jrV6WlnAFrOXPIcxCcqIp7RTFjknm43OOaeFHgrMHUvw7NBAiWG/VOiTBVpB9UtOgekBFfDhLv+4iQszqAez/lQmEpQpL3rAOR5U7uGKnj3QgiuxBiiwdUELWsUbw/OHuVDEmmtQAQjLiMfb7DK7avTBBHMhYDbikQ8saKcuE6mHIQREF319wx+fMAIO/IEKXUxJM/jgRRlIsI11qLAt8YjGHEwgCo4FbBzz+EQE+nAhmcGkC+TAHge/EkGl3IMeoGicGNVIkj45cI17Uw4oLGGuMBZHR4hYQV/w4p+jiSIEXOjUwgqivsDUAh/ZuIY7nFGEHkQjHhR7zDbGgQ4urGBj19gG5+IXN0SEDB/hMRo+YCEBNsxjHZC0y+jigQEuhIOLNptjHd8IFTI+hR6GmqUY05jLm/3MH04whSyB/pMjf7SgCOFQXcC2gQ8qSIBysXtmJ7DQDn+EDhxKYhi7nFEAQ1imLnjohBELAiZ8SIAM0UgmaaLhjx7YAD1milsfIrAxpu2NHNNwIy+lUkukCOcM+lSjG/AJUJvlrAsceh6KUlGAVtSDgB1LUi4U0Ad8aOQx2ThHPpTABBzIJ37jJAwVNBCN8K0qXqNJyDhEQQFRCMRX67hFCObgIDOtYxk9QIFqhNksX5ginwRVCj+Pog96oAyoFmTcUUvmj2L4InkJxZCOjkGGFrTjHJipWDyqQQYUCGMeotHXOtBRhxmQAR7mMNM8SNGDMnzSie7AAsEIcg19AIMJPaDGPFC5/hFuzIMac9AAvqgBTYJsZhuT0MAlRiY4mBBHqVQRqlHuAY9RPDZ6uPAGVC0LKJiAYhQu8ZlIyNCDQ9QDlAfqySdaUAf2CBK18zhGC8RwDGws4hQljQiCrjEPKnAtNF/Lhj+w8MijsaEFiBCLEwtztFJgoK1NhJBkWkAFHdnjbnsTiSVAu1la7kREUtHHNADH3cP5AhcpI2+imMoOcqCIH2FZRwu4IKWP3qUa9ShDCIQBP/9QAx+IUAD/JqkMafQiHF+7bzUIYAex1pfA66iHBqiwDtzqyx9MwAA4wBrdPxzgGL8zXBzRm96jRFZGTSGx4VC80xQXx4v+wKWH3HEM/gF4r74EOcc1rlEANvjDtQxbRwhmwDF4KaFzByEQEw6QY+UeJBv4UIImBHCMbTQZSxSZRQA+cUozaXi6TFNg4GAyvBi32Ccm9klYiuGUMM9EgZqVSVhGAmeWWIUkbZaJiVjsrDvveSQKtDNwyFFZOpv5OFbBxT9/OkyxGNMd0K2YO8JhhBYsY4D+6cY55sEGDMzFogTJRj3gcCW85GUvWySWf+LWijUQAR/fU0+TpjqDZdQDqx1bxzr+0IMt6mh50Vq0oWeC5pukSxKxuAk+hsKNKNWTJvq4GzVEAQ7iPXskwiiFSOxGE2blYi6PoslQ6gELW4xkz2FxRyt4YW7g/sDDKX4WdmvoYb1C/0YfOmoDDiahjz2qZzx2wIEd5gHrxxzNFj6ggjTcIcmIPBkO4DDHV5/AhFngw8rj9GEdWsCHYgzso+MYzydWQIZXX5xy47nFDJgwFF8vD431jndMiG0T2mHA5i1whpxngg4jYIACGsDBW2ryDR/4XAM9WKxM+KEPXvj85z3WuUxa4XQMUHSnd6OEBihAgRB0zdpx2XoI1g2ceyg65hjSRzEcEWzf1OMe7mDl6G7MGHT0oAfSEGfB8WEIBajiHEQK2DrSYApbKAARbrnxQKoxPillQxmdi903nOGPGczAS/paZxk0YKEHOiIoZyfKzGdyj3ow/mEBW+d6Ab6hDzyfpB7umIEEUB+CAoAkzutA/dYxoIBXqkTZxwiA0ymggDJUeyVWybLwC/CvqKcEH/yYhABQjwEBiCLQKwlLGQowfQEAo/m0cRS8Qf+U9hr1Q/poxQFacQ+rBUwhy+DS/fyT43OYwAahISxBEMRbB1DYTN+Yhz4ggF1YB0HKhhM4pI1Yh10QAEWYGDNBB2rggB4jGeYRiWJwlPE7M+96CtazBemTgBCUgBCQgMdhCXzQh0nYPhEcwRYwQezzhzI4PRbEACYAN5XQEQEgQRHEgAJoBmfDQX8IgB0MwRAgAHeAucdxhyFkQdp7Qd+rKAHAgCbkvZar/g3rYTsNdA1/CIRiED+osD1heAIcsLi9iojdugYuUIBqQJX8y5J16IMC2JiHsqJ5sA454ARuUB99qQcFscFreJvgwgN8MJBu+KraQaf5iCR3GIc/oABh6L3laSrz08KaEL2YCIseYMEQpIAWoDaW0BGf20QKwIARQwkdUYApZEEKKMHvKwnWyIYZXEUbrDeRaIWtW0VSukGUYA1OG8UFAI0wGooeUEURpIAC4LzaeA3jq8TZuIoKOo4/IYMQ2JgbgwwAERp1gDTUIg8MmINqmIf246uyKQIqmIta6AVCjJ1ewQcu6IFP0Ac6RIh1EBL1wQt/sIMeaAN3qLCNGIe4/ikFfaQOV2QsfwAF5fjC8btEUNwRVlxFDEjGIDyAYuREDPAhhiwAipQ9DagKf4AFWTTGISPIP/MHQ5C9VaQAI9jFkxiKMsBFY9TF1iOJTHRIY5QTU5yZZuyNobCEQMCQ96KUA0CEZWiPL7kGfGgBI7iF9rix8eCCFmiFNrmxeKIABiuQcTgFLHCHPTSIzYiUMmCP3MELQ3omMdkvM6EGd2CDEDgGdnsggcpCnSyJhVwJmKACBahJ2QsBtqPJUSzFkRyJUMzLk2RGlAiLFTRGByi+JDwGvFxFBZgUmWQ3k8xLClA/nCyJoWCCl+REH0zImxCJHIAxuZwN5SgzO5oE/gnghX48kG+IEzvgN1/BixCwQZO7i/CBGEK8oWzIh04oytvcBkQQgMGqLyBRgmNohQL4hHmwzWtCEwoovs/UFm8QIdKkCbrEvmrYPgfgRAVQScBkGnuABQKoScssPsn8M31ABPLkwQJQBMwsibBoAceUPQpYAHcAzwupT05kxUg8RX/YPodkxVK0wpQICykUUAUYsgKdDa6QTutUCZFwA5R5UKIQiWhoJ38AvEiaB2fYAg3AD3mUHX60gwi4hYzANAL5BAU4BB4apGzoAq4Eh3ngBYTBhyr7kngwh95qh/4Jq3DImI2hjge6QFegRAjVEw7sQHywAwGozwDoAbfL/rMYdNKtCwAbzM96ooIqlQABIIMnXIlPwgDytEzlBELf0wdnkIAALQAFwBdZEglYOAA21YCck4mh+IQ23TodhDDg2JC4RFJrSwS3/I33CotppKJUe4xuOBqxmRRM0pc+wgEu0MZuyD9ueAggMIKc+zH9kyFAuFFwyI8ZAA3b/IbxOIQQ6INWwabHGA9VWBsdYdDi8SWfDNRhU9KocAYjoAASEAWS2TNeMJIZaIVZDdOAxIAe2Jg9iwc7aIEQKIN12inWWAdnNQ8f2imRAIe1bAE7qMCZEIlryC8BMdaZGVRAvVWZKIZoqVCc0JFtCAA7yBJTzbUWeJ3TCpi8eIIZ/pgF3GGYnrgEKPEm9TiFSHCHZlg+FLLNbcgLe1UGdwAHaciG+PmGbriwFrhINRJNdIVQ7IyJe8AHbMAG+FyJ50lCXrwz0PwTfEDPlLiHPwHZm3jZkUigZGOWe2hXm3A3kk3XmygGrkAOUwmHVPGVcxCFBRAFuRoVYKjKiv2/b+iBGRDHizoHl1yGdPLHc2iFCGiEBwSHRViE2EkSYcCAHivX5SEHpzjZdPXYOquHViEKe5iHkFgKubWHlnW+epiHtT0JkNhbn7iHucVbl53bnLUJayC0njUKBrJVexuKVmACYaGGGzPEYyiDFrAMS9WXdpmDEJgLMyyMNpm6LaqG/rmbB1o4Ajjwh4lVtT40lXowjILIh/OJl7rohnigBkM4gLg52+KhB6zYJcVFibatM3I4UuHFkJPhWeRlCVzQG75Nij9ZS1XwsSXphr2jAORiEoapBlGC1npID6OZh2aYgR6otak9iFTxBy4IgVTQnHz4KMbwhz6gAJHpt7t4MizQUPltBQnYIjC1IHKwhsJhXpUg3pK1hkEtYA8xBV9Y3gU2Cd443tmACe1EBLnDNP8ivmb4zY5ZJ484BqyNiPHQ3V0gkMTzB1vQoizZjl5o1cJAh3XQgDKghryjklqAg1Ow2CdAAgtZOjEaijV7YOE94Ai1B6CFYOTwhg1KYppg/gaz6w2rqIMImFxrZJdNEABYEOGIsKnxkb/54wYc6IGK6jJ1oQBnYN1v6AVAiAd/PCz129CAwYdIUAVoHeLisYIlbuLhzdWoyJnG3WPgAIVpgF4IhocGUsaRUIbp0k1VwwdlKIIZaId/hJB6cAY20ABeeAg3FCtEwACRUUT3c4fTqIJGppxzqIVaKJNxcgdl6K22Qd+ulI8pWIFB8Ich5SCYYAcFNlwtLOKUIKpRqM5A9g1LYAeOXeBBKxHa8DUu8AEqEtHC2IYY7AHkIlr1mOY+6AEycIc45ivJKIInsLRY1j+3UAcqQILPVZUqWYQ0jhtD0ABUq69T9YdSsONE/pCGXgYUO5MjhCRmk/hll22vf/6NY9ZnnbQK3agNHbEFCZgDcdjigrAYcHgP+vqSvmKCGQjhUeneSSCAVmCfG2NDYRCAPjjhjYiHTogXzPCHCNiCsPwSH8KBGVgHf7ibnzWjBxoKfQgCcblj5g3ok9AHeLgDBybo2qCHLjjmoxZqdtgu2mCDA6AUa5ykVshifD2QaugGATAEb7aL+wqBJ+gP6+UHJtCAecBqLHEHJ4gHuJBDglMPdJBT0Ii6O2CH0wyxabCe62NqSuljqaCZvp6NwBZsZ7mHdW0NaPPIEGgDv5g7d6jR92FNidCr2lmGcPySt+C0RkDRHnKSFii+/r/QlyerBR9ggjbu1DOsB2H4A4sEU69wAnJ4joNGO3M5g2nAhUIu4KBGiZ8t7GqRBb5mapi4g8J8CpjAhygwAnxhuI7JCzHogUfAh6KBG3+4BBxgg0cD3VWJG1UAgpf2WriJh20oAx/QBUpxw+yYgyNQBX6bSn8QBRSoA5plyaH4G7WlbeNQDnawAlw4r/yuRN4+CVywBOH+7aTAhWj57ewK3qfQEWFQgElIy+K8BnSoBgpoA2cY646Jm4zOhcWY57jpXFXgx/eGhQKwgxim8FuRACqohTOA31iLDBzwgclDz6tgh8r6aTyxB5hwAysAWgAP8L/2Y7w+8KMgh4Eu/uyh8Elkngm7aQMqfuGOQQdKkMPygcDxTA1yNohzUAcTKIIqWsQniACHyj9QWwdEKABn+DvtCKvxpKKd6nFHUF6boYcTuKUjB2gihwqi9hM9VxF/MNIjd4R7cPITvLYWd9GOmYebcsHJxTSHcckIiWaDYCJ06DBY+Co3PId4EIUDkOcc/RQmOJZryIY06IVVLgx3eJgWGEhr8weeCYpD/5BpSITipgdaX2ABPwlXcB5ARwqiwgUhHz92MAU7gQpfs7tlEPOI6AYfqp1Evej51YBdmez0TRu2yiuTU5h2CaBy2+6CYNgYLALS9VTBUBXD8AdE6IG+wFmZHQlQSHBz/iP2pPCKYjiDd0N0puZ1k/BC3QZ2loSH8SrstNX1/zQEE6CEXEu8eliGELADhZu71JmBMgAGpuyvGGyBX6Vuf/SvlTKEXLNNcIwUNkgkAxkHiRWniXCHqK1pGRmJprgDQ6n3uBUJa7iDUVg0faiHnhfsfi+JnlrJgLcJfbinA78HrIiKeKCCGRiHZ/eVFpJDhjWTasgFbrr2iOCGC6cCiIUnfCgCDGBEK46HOSgA0fiafICDSNgjivjAEwV4YDZICvpzOvEiU4BGk7ibmuUGPUDBowZ6kqAHfSf6pfCHadBxwSYqWXjqomANfajj+f400iAMZeiBhJm7Y6ECDlCH/npI7dA9hxLdhc5eVHTw9PgT7Y4xRFjAgSpYdCzJh1rYSijKr+rqQBcxBVzwhWnokJqX+5GgB3ZwAv6es1NcB2hIBka4Aha4ADoA4D0O/HNp8sLHCR8f+n+2h3tQYKPgB1/jKEsLd4LYhnOIwRAohd/SF06quqoxOTCpjj9ajOb+an84hifogQ+7Nc2AMKpqBYvrmHgAiDv5/Plp4cefP30IFzJs6PAhw3sIp9FLxMyUPnr+7t1TCPEjyJAJ7SFk588NvCCyTNLz6HCVFxkjWOio4cVfPX4id/Ls6fMn0KBCGXIbwoPbUJ4Kp01LmPQp1KhSp1JlqO9e06pat3LV/irRkkao8fyRKlCq2rpv4NaybQuuWjxnAvpQc9fNLd5r6+ZF4KIsnlq8bb9980dlhrJz4wS7veavT4hJ29IyXjuOWzxeFOpEcxe48rZahEKQWYazK0KP9tjBO0NO1sJ79lxq1aeP5MJAxXyZ8uUrNUi0dGrU/AENNfLkyj8WPYpcITNXTpdTr259qDU3G69z755UoaysSev5a9GD2uLKbL/FY4MB2Dn1bd1NktDq3Gf1546FoILurnzgfHNNDzNUA6B8hP2hAC/xBfjNOK0s0Ip3GRWTiCPFLGcPPL5YQc4o/hTjjTc74eOPDjWlWIl3LbrIU3NIIUdSItO9eCOO/lUp5Ig/YeX4o4u2SSdRUB5dEkIf/nCTIDjx3NJDD/5Uk59g2dSTCxkY1PMNgoyxF82CwujDTXperrPNJxT84c81AY5zTjQhMOEPYfJlsw41TOxAyDoncocbQonI4gguJMLjo1VOKWTbdrQtxJo1vkxjhT489iiLLC05mqg/odBUgyA63DQPkKV2F2NyEjlCjqmtuhrSV9u9Oity3sC26U5jccMEDlZWIx9m3JQRgipSJpjNYxgc4k83VLp1mT+tkIbOOm1WNs427lAzAxPO1PPrtdyc0w4TK1DIjbNtdVONP3ZE5s840rVoG6DF4BJeIBVlChs8EBHpDzv0MMNM/jHFmAKKNY5YYw1DbrBjiUikDqMGCyp4kcwwQ/gzj060elwVqql6U+PHJZfqS43/mrxyUBJpB6hPYxlSwCbzjJNuW47BMhc3lKmnVjsmlOGMZwlG448PQMDizs3yHY1IBJusg5981PhjywGGZNulYNe4U40JVIyTEDsM3+ioPtbQMw0o/ljBjIe+uIFLIA93YQ8EsozihjegTMMMOdOYtBBJxVgir8oN4UOeID/UoEIo7vijxnEsWy5UyMnpQw6il3u+HDy4fj76Q+SIHjEOc6IXYLZUhBBPNWVW9g06rQjQCs5ufQOnAIasEyBb68zQQzzZAA+OO2VIcA64AZ7T/ooEsOCj0D303CFeq7jRZs809njT/VUL3bYpSabcKpI+5gxRQw0/cKNPx6eTPn/mqN3DTr7z68/VHeTAvP/8JGIFf/wPJERSBQUQgSfZ4WV365hFCMrwNeC5Yxm8CofPZhePa7BBA8GYx5J+NrVJmGBN0UjQONxRChxUwR/UCEeA4pELJtiAVPfomD+8MThXKWQ2svmhRG7TI4748CE0yqH8TjQPVqigBjzQA04Uwg/yALCKSjKKjJQzjd9YsYtC8YWGvKg/S5iOJ1P0xwyNAAxmyacbU6OCDz6hpDaCAx9zQJKScrcWq02iB1zAR53Uw65UUAEHmLkGA93SDaax/qEFsJjjz+rYhxY8wh/TawgYxYgQ2fgDUxqSH3mSoQYVsEANv9iYJq1YP+SQwxrySyUs4VEiWH6OHTsUyVgogYFPTI1reKnGPGyxgDmsYx2+dEvPqiGnatglQUgplzDcATx29cE+60CHHt8yj10EABFey+aS3FEAMqzjNA5hxigY1UXcWKEYrAKJPkgVKh1ADji03N8qkeOaAt5Tk/cgRxdm2U+WWcEb/GwIP8q5ACbE43jcmEcZFMA04H3DHY0QADUEBDx0HKMAfVhHCOXDzAZQ4RzbmCY+Ckkm4G1DH9VkF0i890rP7egMBBRJPfDBAx3sFB9+Gqj+8tkVheDC/kZA1SQ5+nVUk+mDHYlziEcoEQHpNc9LTVJFC6jgj2jokTDuAEYRelAPamTzG3jiQgiO4Y6QemmtiKCAKPDBVsHQzh2iCAEb6nGNss4DGExoAU6o+JFEONWK+vBGhnoET5wwQgU1YYQ/xrJU+mGxOtaAzVMnq7+lhEizHwMFPDKLkLFIAwlMmMxJ1eMYakShB7OQUiLVhY56tGEGl6DTg/xxiBm8oR7GFOk8eGGEJ0RDruoZh16iQYUe3IJN8tnGOOoxyduSSiTFCF0Vm2LTm35EYleQgcWSgRMcevZyQuXKV4o60/KajCQDPCh7cVSMQMzmIfggVRlsG4+mhcsf/o8IwSEwqEfkgjQEbTiGXtu4jXoUgQmzkGtXrWYICnxiHhpVj9VgoYE/FBOc9eCGBqggufX6wxLTEC3L7EEShZXodPo4URyGwAIWsEIdlozv587LFegYFcefMx2JfVyqeqQOpCxdB1q5Ya3nrkMUAYCFYgLUjXEsYy71oOg4whEBI/AjtQGqBxAoMI/YPcgddQjAOSTnE1tudnN3EGhIuAEF9kEhi0I2b2WpQxI3wPfOHlNIF4To5x+Nom0NUcg6VHG7eMy1gZdZhkeNm6BzXAMDUQrk7M5EBQrg4zIJWkc4+qCAUswjoz9LoSgw0Ad8VJWuTeLFDMpgyZ/yZBo8/urzx0bWto58RCHieEUHajAEOmyM1oMumY65csQgHztHNcJ1sy0LZ36QZBktKAMwj5mzeawjrLyQdGXuYpgWiEJKXWXXH3DABgjLxzGfwAEXwuEO6KpWH8sgQw8euWQvnWMdbeiBHOdhbJGQxKbQzl4OXUGyPkskGVdggQy8gJTqRttkyd7KbVyBvYrPCh7FaAnHX8QM8eBDcmTAQSnqQTUM+wMRJjDEODLImGrooxUmYAM3mqmebqDDHUxggi62FKBr4IMNM1BFPFbOmHFYjRJq6veA9cINCrSBVIIFSlOYDaQ70MMU9nyIPshDhxSp4BXk0XrIXXRxrviCGWmn/pUvOvt27xTD7QmJJwa4sI7YCmYcVGhBNdDBUncYQgLAwObxbCEADmdzLdcIhwKegPgA0XwGJmj0zP0xBwLYOSgkgYBiWWYNb5iCHrg+ETd4WgMozCMnc0d2nq+TCNO/HkiyKWrtu1OMrNSDEgfQt5cIQ7txbEIDsuYqXdVCGHQsAwc4MHeC0FENKkSA29pez9T6sIBgQHJ2aRaFAijhwq426RhZjSzaHcKO9FeoJL4Y0mLr0dgUYQKVuffY2rnSN1ndP0jTyFT/UQd5nEJTLEMPGIE/ZAPmgUM33Nc86EM0/BU3sFpsfQOpUAs+tAEGtAK46c41cEOz+MMkUIAh/uDDNRxTN2wDuiDFLFybuCxgnTyUM/RAESxDtfCd47nDOeRXsXDMU0jEHXAXreDG9YTI6SyOP9DCw5XSM5hTAL5K/nlFiYXeE/6JPzgC+1WhT5CKEVBACzABBfCCNPFdN9RDGRRBGbDBAaiCWeFMRRmCDwgDLzTAHyCYtr3J4uDDOlAAF+QCPniZW0zG9ICDPwzPJwCSl/TMN7ALIkRGhzEGN1SDkunDLGDAJIzNwBWJPwSC2cyKEJmCJXARivlJHPDA49ACqWSiFuZIFHqFPTgB/62icuyIN2ShLIaEQhiCA7xAChQAlwgfXRWdBEiAAvRAqwkGOkwCAQyjI6ED/g5yySccgAaEgARMwt7Njjv0AQWEwCfglTQliCHwAjowAQbIXAOtQz2gAzqwgQJ8A/xUBTwc3IsUnDd0jn35wzPUhAxcgZrdoqu0oo74Qyv5I3WwwzTAGUFKhUJMwgJYAAUUwMbYRjy5A0VWpOREwQIM43lAyDh0pEd65Dc0AwZQwDCWAT6Aw0eeg0qupGMEAApggARU2AKuxTp8ggJgAAYEgDNIn/D1pPCdwy0owAEUQAHc1jGuxzfkQgEIQDGSgRNKhURwoi0uRzHABj2gmFOsAyaogAwMAWRdXUL+CEBWBVZAzFSGZa/5g2/0GFqOxzzgwAE0ABs8JUT8gQA4/oAAyFrEMMEBUIAC2IFDTI9E6oPkBEAIYMABHOI8LCZjNiapbJoEYEABnJA7FJNlXuZefAIBkKQRnNQ1qSNoguY34AMFUABORkk/VgUzKJWpEAkuuBNbJsovQEETqcHEtWWpjKVWFBpuboUrWAKv9SZUKMQ4hMEgbAR5PQQ/4MMlFEFe8QSBSEAZuJ4B+UMZBIAAaMlMxUMBYIAA+ABYIgQ/jOd4+sMnZKcDiNWs+RR7sudYEEAIUAAKhABdRoVEnMHG5UhYwOItOQQ/3AN5xAFxlF1qJKdwtohu6og3BOeBQsWhnGWDCkXJhWev1UM9SBZPREMrUFxI1MM9OCeH/oLEPDDBXT4STnWDAFBAANjfVqymqSjEGQAgrEgJC/zAPrJohN5IglbFGRhUjg7FamjHj0KFJXidTzDoTlhokAFo2PVEdWFlRIiPUpinP6QmVSiEJSBkkPgDPFhDEAoh2CFEHHzKK+DokCJo7HUHSQQCmJ6pSGhEEEKpm4LE6L3oT3ioT9jDYpJYk1KoQqplf75I3XUWijXpKjycCujBcfjpnFbHjlYF29RXoy6WLKjXpGJdJ3IchKblquCIPUgEYb2SEgmoDOgAKyCEKl7qcjzqVEiEvKiqv5xEm8JqSOAC7k3qUgQqd1QPOwgpLuJjTdTAFTAqra5qmnqHbLxZ/rE2hPVw0rLuhDXk55m6zKxSh0JoREFVa0OsgyA4lg6Egpk+K3WwqlaAwlUua0ZonD2K60N4gytI6pwqRDptKlCQBDlYQmfB1yUZwxDIgAyogY35ILtaB7lSBT34gjUg6aVySDHo6sA2hCzR6onRa094RCDAQ1Gh2BlNTrD+wolQ7MPCyLG2iABp65lqBCyGrEjs06SSRA5QoWXBA8RAaSiVasRZkoGqbHIUrMH6w3apKoyarM4CjDz2JnZVB6MUzPmk5T2MUoqcEnUO7biOrItwiCxk6pyygysUg8JK7UIkQjxe6r3GImqQhD24AiiQRKGeyCr0a6KaQ316LXLw/uyV+gMzZIqc4qZs/AbInukowF+jWkLCziJJFCnfng55mIMa1AALDEGZxqY5YMIlyS3IUO2NoETfzh09wEMXUO5HbK6qWgO8DpVEBAHAhMRy+sMr6KMaECuwWqjnUgXdVsWaskrmVhyjvEzsNkTpwuyZJgI55C1UgII3MIycmkO36sAPgGuIOsQz1ADsQkSq7u5DzC7t2kOknCncfBL1SqkvsKabsoMsjC7tEhBvkK/i6MQvyAD7qAFCRC1EPG/0vkIyPMMrLA55vMIpdW+cWe6LKIQ3jMLgNmjayIKGCK/Kyqvv/qhB3m5GJIQTHC1EbKwX6GPl8IT85tSYmoM4/rBAHCDEKsjA/vIvc/ivfHGvcIIHbJAwQ2jEyxZtQtbdjiFEQTksQ5BHKJAdIzRvSMjvOqiBDtwYLbBAmQ4BFN0urFovV0xD58Lw/clGInARC0spOzgxQe4eV7CDN3SuoEmvP/ww+/4A1ObsRzyDDJjDFWiM1flDHFwBFPxAuE4xQiixFG7i14WlkFqxypJEnE4rPYCWVmwu8JKt4oDwDzQRHYyF6z5EMujAFQhrk6ISD6hAlcoxRNCxFDIDKNhdWJKDoISPJSOE9/jqkLLDxxlsU5lCLYKSkqiBvw4BLdxxT+SjIHBDDRBbTsQDNDjOBy9y92JyV4BCwBCkilkD/viG8khgbYRiL5sq5G0wQzODxBm9AnGwALHdmFA8L6lUgghHlj+wgCD8Qg2c0vTyLzBzxaoocwAqBDmMTGxOsT7Aw/UMqasSMlAoRL+cwCZJc5V6AU2Icdz6hBkvpj+8MUKkMUJUMA/L8TlLoTc4zLreH2L9hh7L7WExQ0UH4FdEdMUihPm0zaemZRKyjw588Hg9xS5b6GL+gB68wg804VgMgfuSMQk3dB2bQhVndHwRiSNIBAJ379/8tCyyzTvvBDtjSr9oLKm0Q0zIgHHMWlTUw3FcUjWYAzc0oZ+YAzQsNAvbNMb5Qxewik57lkSwAxcjM0i82Vi/nkKcclLc/sPuYVZIbLNTj8AOewdN17QJuwpJeINNCXV8gYd0rDXlMoOW9uY9NLFQKIQpwA1PqMMjtw+74ENeo7VyeLWyIYSlAPZk8ZojaARHW7ZEdG5oE+Qo0B5QSISkJEIQfYSfhAIPQJwgpKJlvwhm7xg99Gq/lHZ8hYVunGttgwQ5BCES35nW1uJPEEkibPLdfQR5QEMckJIXxLJPBbfa7bXHsAMu/HW0FZwlEHb3sllxC1kxfDazlbVN8TYO2+w1l7N1XzZ2DyEBBcI0jHctnYHZvndMbeIKI/Y7VSwQsoPtdug89KvjIIUv6/fcxjetcJIjeMN/B7ZAskONoLaCQwRJ/uBChIelRKhyT5AEPKwKcCunR6zCpxAbgFb2hS+4c+xPiaQ3eH9OffGNtK64VRxsbxKVkYoER1whLqhzQ5BKNTyyClzBcdi3jfdviwOQJ8MG+vZT4fQPbye5LLgByHG4iBwcSbCDE1iDSbAyI/wAPWECbSc5mi75/pCENXTBoXR2r+6amfOEDVfhUtTITJFDMWiHOk2wP5jDnLUPVqt4nKPGbVsHbgSCK9gdZ69M+NSdkE55nIPCraFlhaclq5guPYS2ROCDicvAE6HqoF83mleRmk/DHbCEGD0wWP8NASH57kqELHidqw8UPYwCCkNVj9iKSJzRxFSMFwwDTrh3/qizeOd5ETNYQ8rGeI7gRhdYAycPu5x7w7Pf4seJlr26Qn+LqD8wQjXXHzZDu3cUOsnSsDdoiLLPi916Q7KDu1LcA6b4Y0bcQbar3xbLskPUgzsYuA4gOLuLerF7kapbwd+807krB26sTb33yKxbcnjcoj6wOq77gyu4gtc9uT+kbj2EgrdCUT28Y7+HO4PrDye5E0oYaUcs/D0LGi5USrnv88dXLD0EQvBqoZpLcWyIiDsL7VgMOXhdAVa/vL8flUfYki+4BuEgHEJYjyrPOdCHxG8supBFJZw3BDv4AtO/LxuvzwjQQjkJe9N3hbjbnihvcaRA+nWUjZfeKsrX/rbLLnDtAbJLeMQoTMOGf0Q1zNk+wu3af31DhH2pgDLgnIE+mILa3Lx995BTeA8u0EMXTAPuzcbes30nVSE5bC2vyT09kDJEJO4qkBIUHHHk8/1C+P2LEsnmKtw9OIHAiM9t9Lh9PjCgNAWbg0KhxEboBzesy8Jhv900hJFi2UMgjIJYfwSvXwFXUk4ciz7BhjxQmUTve0MQyGybpwZHCNHJb8qimO1VwKuKsSkEeMOPn67yT8VSHPPb0UMxdK4ol5iHR4w/CEKpqgCLfPv4nwrzDxTiS4TA0P4dmIIrwANATKNHj50/evr0+VO4cKE9evfYDbTGThazIOzuFIPn/u+eP3v+EjIUOZJkSZMnUaZUuZJlS5cvYcaUedKJt48zcebUCZOeN44g/bnZePMkPncydOgY4q9eyJ1PoUaVOpVqVZfchvDgZpVrV4UJ6Y1kViwRLmZW7CUaRc6RtWK+ihXzlogeqED0gkyT5QjXNJ8Mwzr1OphwYcOFP4L6epjxToquOOqDNwoePaIj+eFjykhFUkb+5mluPJp0adM6sWo9vTolQn0dR9qDx8yfKXLT4PqV5U/gxtiRWQcXPpxqQlfWTBEnnlAW7KDsiqWM5+/XFRYq1EDzJ1p5d+/fd6beCp58efPn0bdMaG0a0PSG791RzDuRtY6CReKr5y9O/lIWtOZx770BCRROvAIRTFDBBbmyxBH8GNwpofYMMiUQj1LC55kfaqgBCne2i1DEEaU6kMQTUUwRQbCSC0tFmYoxpRh2rFDIxZI6EgcTFmQY4rOmXgxSSJJMHNLII5EkTJ+DzkiytbDc8AcXXB5yjqT9WLlCBRboeAY0J8EkscgwySzTTJQm9OtMhuLz5wx4fDNJn/3oqEEHGV5RiLs1+TRvzD4BDdTIe8aCEEx7vOlimkQwRKkecVhIigemDBXUUtb+vFTTTRd0YywBk/yIGVMcie5GkhKaRw8V7AzlS05hPS3TWDfVx5xQQKS1u5vu8KhSIUHxpddGS9LsFShq/hihy590bfawWZ0NtJ5fahgvWuH0sYcdNxKyUkhtfRnFsl/19KeaDmX4JUByr203vKysdVdaasfjR97VEsrrVCHpIeculvbz4sN7CaYK2oLDnLZahep5ZR5a4oUmmRARtiosei68TEVmRulVY5REq2fPikmG6eCSj1SYm/2G+KEeHdRYyB0dXGUXZZns0WcaSxT6OELJZEmOWIC9vdnolE4++kWFveQBCoWSUWFif2hRYZ79lI4KrDN8OohEiCbLWuyqkh6bxGll4OaHK5gyioU88dFDDSDNfgohf4IYesGELInO5roBRxrewIWsZ5hIYXYPkyvqmZkWwp86CB5T/mQpKMFs/SGnmDs+Khryz1EqG/QCDR+BkWFGYAWoZEbgJhkd1hn9qWKOG2pAF89gh2dQZe99JNF9R8/wtP0RpIZqFvLiFS/iCD4nePSxhB1rOPK8O8xHGSU6Zp3vXiHgvQdPZXzakYEOIAXR4Qovw5/Jl0UNOi+sHO7Zt33nwb9fOcN/GA+aDqCBj4RAYSnW099JYOMIeiSCHGG5x98OAxtrZM+BB/Re/iwYHH24Ixn1sNc8XOeP6QwhTxDM4Fc+Yg97BEJ3PeNdY4hSDEvI4i8mPKHYMHjD76yiA6/S4UpCEhZQDBFDORuNEa1hDTew54cXHFwTCVQPbsjgPy+E/mJK7NGRHPgDMtxTUkLIkQhfKMaGV8xaDs14GqPo4Rf4GFka0XSPj3gDF4kIm+WAUkaT3IchSSxGIHCxPfvBEXJoJCRr9KPHK96EHP4AJDOitD2g3IOSd6uUazAXFqL4xRSukJEvFkLJQ/buQG405SlRmUpVrpKVrXTlK2EZS1nOkpa1tOUtcXnK/TBibv7gB91GeZKEJKQgGnFFILwRJZ8d5CEqVCFJChKEe7ghLtZoZDCd2L/t5JKb3fTmN8EZTnGOM0BqkMEPfsEUbMLkI8XARSBMkQhXFEMW9sDFYhjiDWZYQxbcOoEsLGG7dbZvij+ggx4QmlCFLpShDXXo/kMhGlGJTpSiFbXoRTGaUY1ulKF0YIQOeKACGQiiGlt540BHIkf8sIMdo2AHKNxADif4whE17Zsl6AGZG2nybigNHj/MoYkRqGAERTXqUZGaVKUulalNdepToRpVqU6VqlW16lWxqtQL2OkHPOiA6SjmUzS95jUu6UjODCjW0SWkEJVw61vhGle5zpWudbXrXfGaV73ula999etfARvYuTJiFTr4gQp+gAluqMNean3JMIcJEtfk0bEZHOdlMZtZzW6Ws6oM0BVkcIUAYq2ypTXtSDCZWtWulrWtde1rYRtb2c6WtrW17W1xm1vYdoQRetATME8bXOEOtzQhqQdpsYmbXOUulysCZO5zoRtd6U6XutW17nWxm13tbpe73fXud8EbXvGOl7zlNe950Zte9a6Xve1173vhG18zWtJuxXWJIr3TUzmNBr8l6a9X/rsQ/OgXKiYM8GkPLCFsoUpBooxfgJ2SYAQ+hY9ckWNXLlNhYerkmRsGykNQK2CTgFjEM5Ewg70mExfttCSD9IjPFhIYlpw4KvUrTopx5l8FswTGWmPJhWesnsM4hJ09NkxAAAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRoxb16bspcKUre6CsTXM0LZGrQMUs3aFnpZisQN4ceZ3maxpTgUv1IV3Ltq3bt3Djyp1Lty5SpfbOFpvmxF4gXPZMsbPGzh68hIXJSZVqydudYriKEbRnt7Lly5gza97MubPbs/5AFeui2Jq/wxfzsmPnzwk8K9YO21Trubbt27hz697NGyc9a8UCNaYskDJoimpNUlabqPVJer2jS59Ovbr16z5p+ytWbFQxUJP9/mnvSBm6QFmyEtHzhRa7+/fw48ufr3mpv8GJIt+Dbk+pzpu0MQOPKYlMI9Bx9CWo4IIMNuigQ2rR0x0o5hGllloG5sCfeA926OGHIIaIGz2RgecPcUjdQxkolhg4nogwxijjjDTiZCBV3vhj01vmnWGPIzUGKeSQRBbJITzTgAKPaTrKpQ9l7OASyGH0vGjklVhmqSVvN8lCTyAcWjkXOcy4ceCWaKap5ppzsXPPHawhaBdxbrgiJ5t45qnnnhrZl6QlOt5p15P+WMKMKe3xqeiijDaaqBvTSCboZcQVKJmjmGaqaZa+MCNLorepJRU5/W1q6qmoPqiWN8zkKJ01/omUmuqstNY63U32yGKKi9HRdoY1rtoq7LDEWuZfMcw0x+F0lMniS2FiFivttNT2RFtjn0YbXbJnVuvtt+CC5As8dyj7HnQ5BBvuuuy2uxBtvhRjRXHxQScLLk26q+++4VIGT52B1DQpdZQZeiK/CCcsLG13WCMlignmeMbBCldscabwsOOINzKpmyBlo5h08cgk72mKL+SQYwp4A7tnjz2QilyydEqllVd/L59Y88w8UwSdPjj644hsHprYcs914fWkrA8plxbSUBdEqDdusGZPIohqS59aVmQb9WZKx7RdpI74kt8ZyW51hjfcqWRPTRB/jTRlOZzJZIg3kWOg/txxHceO3t7gUmZYU1Y9TWw1DXTYNN6EVRUuiXwnS5TweKw139+qRQ4u4OUM690gSmgJa5ivRVl5/rjCDla+yIIs6RfRY8+4Yk0zryM5i3d06Qtvx93BlN1BY2S8G1Uqa07Qg/ZguUu9LEMXHgRdMevB6QZqOhdfrT3swDMx9jB7E7eId5jin/ZAQReIrsWc/vxINzHFTDGObFzl5eifyo4po7wfE/4Pogw58vcfgQgIF1VDFIfGl5P+BAge+WEcbQBIQD2Jih1BoNeBVge6GKllFBSqYEjOJwtruEEfJtIZBUdCKIH4whuGckVxVijCLdnHF66QTJUGAh0zCelC/v2jYQ0XwpSbOMEfMOlWW2izkn8p8HxDtCBzVvM+tcBJiA1SCyhkGMWM0IMefOHY++iilH/54otd3JMsAjNGDjGDgTTK2O7S6DzWuOFqGqSUWlxhDUesRDxYpOOHjBMc1lhJLYEozJXWFsghMuVk8WpKZ4gTL1+wh2KCHBJN/MG/JyIEPVgKXl4yScTtWAMU3Gsj2E7jjxP2T5WkxJtAzlCMHGntJVhSCzMG2EgCrmdycLyNYWQBCjfFkkb28EYXYDmQZGYwS5Sp2jENwg4YuoSZtmEKLvaHzWkmyD/N4VVCboKvYAapWd4EpD8S4Q1eWqc802AGMzCZzgVBhxyy/phnN6EjvF526CSjsIY5RfikjE0setehjT0s8alR1pM+++Gkerp5sLpVSEuROibdDEkfypzAHxd9KHwoAwGQrrB9/gyRKYoBxSGqBR6jUNZAq7NJR4zCYyK9jjdWdqI5hoYZLdUSM6YR0iEOtaENIk4xd5jT6WjuSyCdaUG8wqabmKmoWsKHZgzjj4nJLItqGR09m7obDHmJItXEE2WO6NMZcSMem0kPRRMECiCRlTeicoUCJfIkquBJLbCzoT8YoQZ/aLUy9yBHIpAaIuLMK7B3rQ0z2HHEfEVEH+RgT0pFdA9m2HVLWuUBFAxrF5H5UKoKEpkpBojayMLlhoGY/idTL+sPZnAxT/rAxd629Isf6GAVB1GHOg6bIn9Azp0yAixP2+rau9zHWaCSyFrHqiZ7TAN7WoqDDGRAB6nhgw50qAdxi3KTUdx2SN6jbnPpIgt4yHCziuST2YJaJG5coQY1gAI3CKKP74YXH+MlCpDiK6RSfWq9dbkJPTzFUYvcxBLv3ZN1Z3ulX6hABzoYwSv469960IYb9ZhHO9zRjnaoYx488UZMLTukFZUFwX0TSIEANVeGwANQrb0SkHIMIn3UQw1D+MEPvKAGfEyww/owhw4q4Q4vsGC7+dUDaUkSkxbVWES61CGM20IZb/wFOsxFyE3mudkZ3WOZPPZQ/j3McQVzBNnN4qgHWvzrDneogBHiWYc5xLGOV1zAHHImiebMtaWVsnjLRAEZoMK8kPJ9dU+2xBI+4sGNIfBgv+YYSH/Byw0W4FktIa4HNC5gjDIz5CZ3+BSjQcSUDKYZ0SDpoT86qBF6RJpPqG5ekfjhj0pfmtea/q4XVCCDX0wZH/PgASZ2IlM17eizsP4JoZjRuitHZBTG5JNaumPtEPl6vxwWxAWGQQceVONMXhgtTk6y2Eej6UnWuAOpot0T4qwPuR7BhSVeXSTKAMnUCvq2d+kQh3mIYwSVIO0aZOCPQItEVGLbU2y6Te+k+EMWE+M3RABuZk4OMEsC5zB4/uX8i3H7oxIjaAc3zLFnkXyRrRJuDT0+XnGSWMMUn6LwRxyRQkXdJIQgtzS4g60GNQRaDRcYtQyeDOWGe4Q2YMLqmqZH5pqHxECnZSE8DtwozNIYSyEvCDWo8eFfmOMXxkh72o3N8YFA7pqLogko9mr1khRsGpAdoT2YIXXcLlhLYV8IsAX990yxo32rrntB8gaWtivkHqvDFOQDofEHBX4oNJkGmDTliG0qPiPTQKCOHJ8QmugTU+0M+qWNwpTmVN5ITJHh6yt+E/eGsO8gMQy0426PYtDcSJcXytzhnqnMC+/zESmYN0xEeoWsareOYpHqhz6UlOE+7vfAKfKd/q8Pdiz6J126lOQBL3Sj1DXxaaorxemtXMb6pEvYbRSBmv+e4GfnR7TS5TzR31zi3GGnh8YT5bV+WcIOXkJ/2GF/PNF9lvB7qZJZ4rd94eEK5qVEP0EZB4Ux1sB/C6KAO3ETWWMr5HBrEghO1HMUNEFDACZEAeYg01A1HJggHqgT7IBmtnITrgAoCEhK5OAKMhGDGKEW4vAC3DBH10AN53Bly9EQWERcQkRD9OUROjckM4gTPaheqLJtEVh39uEs8UcUt3AAKUAAnwA9/tAKC1AALbBf/QVgB6EW29AGU9AKAbh4/iAKlzAJ69AQWrUOrUANTmeG+4ViDXEWLYgQ/oHmcKc2NEA4H1UIPws2hbQyWchnHhlEgkVhBAuQAgdQButgEjUTioflDjOgABSwAGQAPfggAQewAAqwDYdYEMBAAQVQAD3gDscRiv5RDT1AAStQhm0IYMIojP6AYiuAA0bgD3ClEPyAYmzABoDYECj2CaJQjA5xDwd4JY8YEpAHKdTiBOLDhes0CtcHfv5QBhIgAQpABdTwDd8ADvAYj/D4DdzADTOQjgeABP7QDeIgDt1wDusQkAIJDs5QABRAARLAC3UWDwzZkA7pD4ZwkBQQAOMwD8LobgJRBwWgjlTAEJTRAghJATMQiIjoDz2AAemIDoqYEEiQjqkIIaaQ/jjAV37v5w+XNC2UgSizl0nJYQ2JBFLORQ1IgAM4oAAr4AzrMA7yKI/fgA7dwAYRgAEUgAPcAA5KaZVL2ZTrYAgS0AAKoADO0A1LKY/bMA74wAYK0JUHkA3V4I7u2A3XsA1yeQ3VcA5lYJAKwATjcA7o0Jd++Zf7BZIHGQL+sA51dpjzEGLzkJjUIJW0GA3uIF7DOJl3aIoUIABlyITZOJOr9xPkcFPUYkUOFW0C1RwtVBSBhggUIAooFgb1sA7vOJbg8A3+cAkUYAf+AAt2oA6yGY/cgA+8MANU8AllUAatAJu9+VbVYARMYAczUATOcA5XGY/jUJ3fsIdtYAQh/lAAC2AI7tCbswkO/jAJGFCLBeCd3yCXcumO2ZAN33AN/vAJAnCQAQAM3ACX15Cf+nkN3VAN8dAKBkkBBwAL12gF88aZ1FdAroCJxAId87KTXfQ2XUUqOygRKMYNGNAGwFAP2SAOnRCeY9kN2VAPIUAFs9Brhgme33BubDADk1CYfRibY3lukxACiDAO/rAM4YCcsvmbtyCczsALonCcvTkOYrkNRdADvECNrCmWYzkO30B2VIADrcCKfQCisgmIotADPVAAAsAGEEF89UWTPQFKFbol2fdKMNZlJ3SmEYFidkABrYAOUJoN7gAI0ymP3bAOvCABhrAO5yCjvfkN/udQDSHQA/OQpyq6DlRAAVA6m4q6lNywDn1wALwgDtV5DuegottADQeACJoaqipaDfVAAZ6IDtvADZEaj/RokgrQcAAZiwdxZgc6pp0pgBL0LZCnpghmD2fQUG4KEd8wAzjgD+44j+twCoHKlOuQDWVwAO4wDtcAnvC4p9SACAKwDPVQDdQ6m+jADbAgAX7gD9WwqvI4DuKwDC0QBcYqqEW6DkwgAZPqpCp6Du5gBwVgC/bArfXorvOoqa3QAGUYD/VADxYJESgBdmS6E5+JkdPSKc11EwZIYxCaEfxAHHOgAargD+3IquuwCNKwqbNJm4+wAnVArv7KlPDZCj3w/gT1MA6qSq0gVg1PMAO8gA/lSq2EGg9tgANl2LGcig81CqbfQK+9eW6tgANUEA/nUJUy6w/HULPLYI0UkQjZZqsJSnig4IDeQg+OcLVkNQowpU5GgWLLIAFssKPTypTncAqnsA7gwA3zwA02UAS8MA8py5TZ4A9iQKXRmrfxCIiHIAGXwA3uYLRZWg/HIAFtQA3zsLbgOanrQAJUsKHb0K1FWw9VMAOqEA+PKrP48AchoApa1UsmlLAI6hNUxC6SQlYvgUfl2BNaNQcYkA1ICJ7ZoAxO6Q6fIAGTwA3LqrP0uAB2cA3Bq6K/iQFMgJTdCo/coA9zQAHHIJ3N+w3z/iAKC9AKhFq94xAOK8AFxyuz9cAERYAOGlGxMriwgpZbuwcu5GAm6Is5gRNhR8Fr0dADReAO1ECt2SANaYAP0cAELYCEgIus10AJCgALc9u86HAOVWoI5Nq847AOx+ADLeAP0VDAs7kOzUAGCjAPbYm56+AMnxAAu+AOkDuogboLAUAJDTd4FTENV6SN6ksSBhi7w7Jt4jRNxOEIu1KHQMEUoluNMaui2VALk7ACYLoNGnwN9TALM2AE83AOKSyb1eAOx0AFK2C4Thu560ANdhACBJqzKgoO9fAJFIAI/lDFstkN+AALJeoO64C4Yym3vGgEe0iIGNE407cT0KGD/uyiFpNDgKVDKDinQI2IESgWDQdQB5DZxcn5DeGwjsdQD2y8lHCJD0wgxnirwYAYkZPgDuH7pPBpC7e5DTxapKisDhpQBnebDZgLnzjgA61QD8eqooBoBy3gwlOWEaySyPKxjRpxExblLhiYd3TkH0GQfWzhDv5ABSbgDHvZxPUgCgJwBLpbve5gDATwp807j9tQt5DardI6D0+AAWE5yjMaD6Igp03ZxOtgDBjQB3ypwU25Dc8ZvwLhClyXujqRMgjzN96UQ3HCFtmAtjhrzyi8yfjQniJ8DXawANxAj+aKrNwwCxigCJZc0d66DcrQAmWAD5e8lOOADtdABRxQ/g2pPKiwaQcHsAuUJsLf8AkFQIfO7BGH08frJjRmsS/2QA79JEja5HvAbBH8EGhk0AKzgA/7q7PrUA91gAMnWw2L8LaDSpuf0ANTUA9YOqj4kAtMYAPBgA+Q3Mbo8A1soAHV2NQqar2GYAInC7SDug360AotwAS9psG/CQxG4AMCsZIZ8SSuAH1YqxPMAAoOuy6ycF5R1COVsxbOzLJloA4r3aPzwAstewxkjQ610Akp6474UAYzQIdMrLPn1gchAMFdnaU5iraUPdLxeA3z4A4hwARvVdYhuodMsALAMMeY2w3+YAcSQKCE7Hxbp8/BXMMuF6x7IokERBtdUAzI/jwUcsYGFOAMZdm8si0KBTAL2xC8Dh2i9BgAf8ANZx3L/rAAT6AO562z+3WS0YCV3Qrcc1AAwPDd1bsOsCAAkxANlT2W6YkOIcAG5vtw9CC2Oo0TPqwwmjcTUdQ4VrAhzrcTWmUPzrAAZVAPuC2b3zAOIWAE3ymj45ANcBDes8mXbIABhkvHWQmQiiABuaDhmDvBrWCqKIu5WMwEPRAPpe3U0TAHIUAN65DdKnrWaPyigN0RkMfYhS1o8HCTCeN7zF0t2WcJl3Qh9mEQEfIkDqsWDmQRcjYPZNADBLrhzDoPf7ACj7DG7ooOvaAM8Qjck9ADTGDLLC6P5zYLNfuP/kWcnPhwDGSwArcg0hx9nepwCRjwB/5wuZg7D6rQAlPQrtQqrf4gDGEtEHoMEttGd/48EpTB5PsSk8jdLi9zcxFVE9pha1/itVYAD+kiC1YeOa5xBkpSTpq2FG0FV6oQAn6wDfPA6EWq0suAA1VwDPew4fEQCe1ZleGQpCdq5qwKn6h9CfigzpJ6hyHwB+sQD3cOj+NQDfOgrlXgDAsMntL6mz3gA7kg0gX8DdHgD1PQAmXINCERPEWd3Lda7/7QBYTNL/cAv+izFBkjPO4za9PwFRB28PewTcn0NvBgGD+dEvhyBriAC05QDDGJGl/+Lig2pUipweBwbqJwAKXw/rfmjgfiEA/LsAB9YPI6ew7toAH52+14jg9IoAETvdpjCYhtUNPfrdeKKwCNEA7WzqzqcABzkOk5QWA0nO96N+qmQlTa81L+UDcCARPk4AS+4AbMADoXgjppoRzZMxm+UFemIBhoxBDVEAFlwLHfvA7RYAOEKdcc/rHtQAYF4A45//LfMAkmvA6wHY+aygsNAMGBH49wvwIdeQ32HJBUoOLgQPMbfA6V6gxUmxPogoVBIswWAR1epTBaRGtfQxm4MAr9E0/ecAY3tnizgVATnhcqUhAw9B05nUdyFtoqHg9knJyGGacuzNZX7Q980AJz0NAaDNy30ANUQNnA3pvb/qD3VNADpRDB1Prd7tCiahzfOgvcjdADbb/34LkNd8gEeA3Eml4oQJng57+1F2MTpsk3tCEW/pBIVXN6BwJwoYgWh8cOE0NjBjueAGGizzl038AdRJgQHDd/tjTMWVbPoMKE47itO4cECR9/1ygq/HbNHxcfiPx9m/jxYDR/n1qwwbcupcpq+HbhoNJtXjeVCLu5q/Zkhi2JPQ+GdGenRSt//vQ1hRpV6lSqVac+nQbP6lauXb1+BRtWbFduQ3gwHBv2qa97T9O+hRtX7ly6dO/5k+W07l6+ff3+jauPmTc39Jywg6cVsFd21mTdIdeUygxp48YZPcgtnp0Qt8Cd/pv5sZo7UQr+4EuDLzRIbvMolDknE/M3hj16VEOH+eC1eYYEOPs2brXCbetgCVDVLffsav4ksHG32Cu8E/7oSceeXW7Zs9ifBvJnT/t48uXr3gXlzfx69u3huh01SlaXpuLvuhfvj1+2Ci/pcbvMqHO4+aYFIIrSDZx1mIhAnXWukaYTd1T6JjbfhImHm9nOGee4T+qhZjbhosHhCX9C1A0lKkxwByXdxlmnDwF28ace9/xRL78bd5SOO7SkY8cVf+7jsUgj/3rKm2KOZLLJxfRZy5ogpplmSB13tPEbM5roRJlFvpGmoI+6WScpCpiiZjiEUMJnEgzs8Ccag5Q5/iWbANdkaBYfipgnpDs/4gafZchY4SIAjfpJnTpC+MSfav6kiM1LVmDDUTURClSVIqhoah73nrrDmiudJDUsH7MzxRu3SmW1VavsIccRV2eltarr/DnDjWLYqe/IePxRRYJH0Jknm15O6SSbdcCZiRp/gAmBDWfW0dAoblrEgYlj3LnmMoO6/HMbdOqpoodL+tSNoUNa+CO2S8GxyJ9bWmgDGHw8shYdd1qoYhZHMdvmG3+MMMJffFZtzxdL9Kq1YahOxY4ZehB2uOIi9bnHmlst5thIjP0xxQqNncTHUwqYmHaicYztpE4xF/KniBBmGecc3bqp5xMJRKlm2YqU/ukloW/WOUaCP1Jmbp0ZilhmOcyo0YeKFW5ZRzjMWmtFgkYwehec4pyhAE4m4aG4Y1Yhli4Rdog0u+3y7oEnkY3dppu8e7xxAh5rhiR1GQwM8afaNcFpp5YILVsHmBm4+He2daIpQwJ3CKRonF5qOQodbv5YgBfZMFunmmgOMKQenjAT7psQOL2m66G/oaKAjlxfJxtDAJhHHxt5xNiNvOo+26wfAfPGF3vKBj75vqZZUnnn/SrGGysQY9jILCP/BiiVskEnm1pAcWaSA/ytxnF3Pgnhj8ApxAeQbLKZB5YZTBxnG6PqnycaJkKIph58e7rGOdrBBgnAonE9MUg8/iahAJOkySjfyAY+YEEp/eDDY95gRvWeVyS0AQYexkPeBkU4FnbwaoQnFIs9eNUFWTSPSfoQjyJCgIh6WM0ozRlEC17gj3tBqiKGIgEVboEPwX1kHNIAhD+qgANREPFd33DWHzTQiHic43Q9aU4rTMCGcLjjiioRCTVsQIVmeHE24MDHE4ygCh4ySTymQCEHhYedUcAxjncMiykWhkc+TuU6zDiBN0z4whpxgArOgJdumkMoYWQDD6fIh51U4izxteIan8OiP+RgATYoyHXncIcJmBAcH1JkG+6gQgiUUaF3jeOSiFCAKorTNY9QgwJ/WIcGeXSd6oyqj+PpoF/0/gEPX/7SmE2BB9uOiUJ7wMMKbnBKCNtjwXq0YgG2sKJuQHMNCZQhHmw6xSLOkY2PnOMcLeiBTGgHDjtoQAkd2dA4PrGAVkxOROMARg+ogI/yoc4gXMCBz16EDhnRSJm880cGi7nMxQSzL/dwhQsZakxrgOJ4Ex0hlLxRHX8o5kgWvAYVgLCMeHzxI6esRh9MwJR+ZiMe+cBCsSYSnHoYgl0neqLAPmEEHPgDFboQ6JjwwYsykKA4JqVIN+IRjTmYQBQHpNA45vGJCMzBUpi5Bj60yIQa7c6N/ugCOaSJUb44dC/3oAcoBknWPqptoWw123VAYQmtjJU9nkLECuDk/qIb+kMUIeACjOyHEHLSqRb4yMY13OGMIvQgGvH4n0q2MQ50cGEFBrzGNiCpJpEgQgKTwAezMFMTWDxnHg/C6jrigQEy+g9gAsNBD5zhD0+Viq52hetczMoXeswtt3Fc62/bBkN/OMEUuF1PyfzRgiKEA5MU2gY+qCABeJWyup3AQjv8UcnP+HOxBTDERSaCh04E9Sg1kQAZovHcj3yDJT2wwbQSJJI+7IyyXcNZKw7widqyihzTeKtwdTtHwMDqDALGoxsAjGCzqZA+H3NSKgrQinr0E4E1y4UC+oAPFPUkG+fIhxKYgANuue4yVNBANECDEMpKck0cEgUFRJGh/het4xYhmMO9ErSOZfSgBf6jHTX+IIF54OOgTfKFKQLM4Lfsli76oEcGmXxCQU65Yk8phi+IeWT3eOoYZGhBOwZk3d3EoxpkQIEw5vGoB64DHXWYARngYY4EzYMUPShDaE3qDiy8bzf6AAYTekCNeUQWUPOgxhw04C9qkBkcP9nGJDRwiBOJaB6qaIEYaoRc/PhDVlYuK4H/ArdRgFqEuPAGl039VVCMQj0vfAoZenCIeoi2J/FySR2uNViVWGQex8j0MbCxiFOsuHLc4A0VmHhVhWTDH1iAbHPY0AKTfAOpQmtOKTCQ53VcOyGBWkYLmBDdIn7kku5YIjDC46qn/lji1asecHcAo49p2BHeyfMFLnR5byPdZVeRORI/bLSOFnChZ66rRj3KEAJhqPNp+IBlPSmrDGn0IhyrSXg1CGAHN7+L4uuohwaowLUU+YMJGAAHm6+Gjz8c4BjVMDYW56HfT0THgq6S6775bSpRC1NJOwfezzkN9PGIhz6+5ZE7jiEAbHbtM9e4RgEqxev7rSMEMzgg95QQSYXEhgkHOMc1vE1YfChBEwI4xjbGfhThzCIAn0BtgrYh7m47nbJMaMHBhn4j8VQH6UT/ipPlYqNiLOnmYTm8qrfiVcVXBUpQOTxYELb3pqzqYGM5/OPFQiR8RB4s5Ch14wGvHSjh/uLASy6PBQtUBHd0G6vuCIcRWrAMfmKmG+eYBxswgKZm1wMOQUPJN9qEgT7MDqv+aMUaiICPbCKqHl+eQUQOhcB1rOMPM7CqoSP1jXpMogeMiwflb5QX1I+eKoKHS5YkEQvM34UbPGuj5PlxIlGAY92Sb4owSvGUesz/KzfPBabgG7C4i3qABVuovLCwEXdoBV5IwK8QOH9YB1E4hgcMC3hYEvEzv76gB2gSvfHQB09pAxyYBH3gq55wFjvAATuYh+bLJFvwASqQBneYLIqIIDgAB3NYsydgglnAh7VjFoGpgxbgg2Jwn0sZB2f5hBUgA+ZbuySUlx4wAu6zMJW4/ojY6wFn669aUasP3MCoQL+3QCUMIMMWcAav8gp0MAIMoAANCKjoAItv8AE21IAe8Ac47Ap+0AdeYMM2rBQ07IpW6EPiuzyvmD9K0AAKoIAQaCL8swNFXEQHhEAbmQJIXAFnGYt7OL0vZA99KAZHKL/xqId7cAcM4IJLcp1rQAfbkAbzogl8MIRYIohLGZo0MAVbYCAy6RoNqYZu6plsUIZIKqVvmK0ZmAGkeSBnKQMNgIWq2cV5sAUBaAVP0cAbcQQh4USek7ezqgcmWABIDIEC+AZ98DyqqAd3mAEJAMcCwAdArIp6WAdIVEQMUADa6gojO4YA6EMKUIAyuL+t/oASt9vHAlAfd5wKfOCHSRAASMQAARAFzVs8fyiDAmBIAQAGg5wKGykCdZxHAaAGjNyKvanGbISLyJAyj9GvVriHcosUDlkGo4EnzAi7czABG3AUR4OX1qACB8CIBPmGeegDAtiFdRisbDgBxPqIddgFAVAE19INdKCGbgKRBAkHcCADDZDAK/OHYtgbkgSLMFQLfIhGCpCAspSAEJCAGuGKg5kEijTLs2wBtYzIMvjGt8QArmo8TxEAtDRLDCiAZog/q/CUAODLsgwBAnAH0TtHwnzLcJRLq+g8ahAADGjMetxCqniKVlAAsuzLELDHsICmUPRKufiOYhjJvWhH/n8QhifAgR/UPoXgjWvgAgUYjemjkOrrgwIwoCpsL6kKFjngBG4gpweqh3nhKrEjLH/AA9XwiTVLpfXqFqM4pXD4AweAhQpztG9Ah3i4hJsCyVbJspMcTa4AS7CwkR54y7KkgBawP67wFDZMTwrAAJ2LCk9RAMp8S7J8TKqwoGyoy/zES4BEPkXMz+cYwKqwIN2LzwVolLG6ix7AT7OkgAJQN66wEQLNzwIAOfy7g38cTyTxB1+QKPe4DzIIAQNyOnWZIQd5QoYABgyYg2qYB5ZUCM04h01hilroBdUoJZ7ABy7ogU/QB94cmpYhJ5TwBzvogTZwh5gzIpFohR4g/oPReEKdqIYemAIDukxaEQ9QuI7TBLzy/AqT4UwJxYAK3QpPOYAIVU8MEBj39IcCYFN1xEqueApY+E8JxbrvtCBDUMf8pAAjOFCquIsywFD1NNByjIrzLFP1VIAGjcgVaFR1VABqUNStCK4PfSh/sATw2JEI5IYDQIRlaJHZyKoWMIJbaJGucRYuWApnPL4+CJvqC45TwAJ3GM6E+Am/KYNrGQ6UOKzqWpqGSxBqcIc5wABY4BBWPZ+dscCKUTDRHE0x9QrxoILNzM8QQD1Gjc/5/E57hM8C9VBzjNNGpQAH8EfROwZslVAFAJxLTUA/NdcDYAoHNblDVce/tCsb/mmBSZ3QePjWqHiKHLAOTQWM6/i79ZiHSZAAXnDSXvsGzbQDE3wRlAgBrgJCZgGN/VGNmcqGfJCQlKiQbUAEj7ShXssGJTiGVigA/srYc7BUCqCCb0oQhiiCuKRPWvEGjzLYraBWr6gwinQARxXUb8UHe4AFAihTCjgAf4TXpjgYRFDaviwARcjZpuBXdlXEBXCHgPUUjlRP/dzSqfAUiuRMspzPsZUKG5nMs1UArFNbyFONtlXPAihasagSMO1ZqXgKN8ggvX2POIEvf3iZntiGeXCGLdCAceFNU2pSO4iAW6g0RImNT1AASnMgwsqGLshVcJgHXpgffFC72YgH/nNQtnawpzYLBwIqBahqL4FpBAkwCXcA3PXAMlcQz709v557MnywAwHgyADogVH0iqcoA+BVxADgqoBtIypAXgkQADLYT8gEBwxQWqZt2cCETH1wBgkw2wJQAH/BrTs9gO/VgDP0irv4BPBVxL3c0K6wEd/YTAoQgJ7qP7FYGGnVXat4ikR4VvIQOBsx0adqHURpDikCnMx6oOYQBRzgAhZ1NG4AESAwgjOkuoNYmXgABNEFB3KZgUYBQijyh0MIgT64HJsxCmdRhS3aBhozimvgB2cAAiZgiLhlN/Hw1P21ip8FC2cwAgogAVGIjr3jBZmZgWkUC3woBQjtAQPa/rvNaIEQKAOW4DQLWgeliBaB4bSnAAc2CIEWsAM8LN6OWDh2seGr8IdjoAIMmAFEeFqrYAf/1V8dpopiyIvaHQtP2YYAsIOhCeHqEzeDcB3hE4pZYKX7YYhL2BnxMopTiAR3aAaCJCkgDBh8EDdlmBBpyAY1sTaTawFlMKddzBkKUAUbweP2INg5nlbePSt8wAZsuNqqIBIvlIrDe2PMvI/Oy8T7uIdbnop7uI968OVavrm2yES3qAcNxMBYpuOuKIYquZHICQfKQZ1zEIUFEAU/SxFgCBtr88lv6IEZoNGP+DBDXQb2MqJzaIUIaASnXIRFKKWaEYZtc0pFIgMM/ghBuiGHJaFlg+Xhr9Cdy4ELe5iHZE4LGJoHexjmWq6HeejnqGhHh36LeyjohZYKijbotGjojB4Lawi9Zj7ohMrh8viYVmACTsncntCJYyiDFriIbshOoJiDEGCK1xSaqhHE4qsG15kHWjgCOPCHTcaq4owciRCcfAin7pkIpaIGQzgAYJjR7FwWUZAAwGFenPMFa8hUkG6KfwZocshdrm4PDGJmsZYKXICjh56L+/BiNrpgoTIECjCJR7sf0pJieBxnhJDRZpiBHpC+qxEYLgiBVHCkfKBF+qKASTiJmYAgfMACwqUN5JOAOWi9VmoNW+KC6DhjWiEHa9gjs5YK/q9OX2vwX9B2D1PwhbIGbbcI6+wQj2ooAERARduz1H4sI9dhiRU5BnSmCGdx6l1wl6tpiAjog6Exll5A4UhBh3XQgDKgBldksVqAg1PoBpPrAc85WZVgCaXwF9VmFX/LQNMGQ1beCxiCZvFeD2+4KPTmCmbYRPKAkjqIgDRxuuzZBAFoRqdTkJf0R5vuOm6ILQ5LEGYxVGcQ6m/oBUCIByOKNHotXPaJBFUALN42N9sYVLexAvVm74ch77pQoZHecO0AhWlQa5CGB4UCwaZQhhbYpxMEI3xQhiKYgXZwpaupB2dgAw3gBRCRanRABAxQ7OhEIFDqziroWAw+h1qo/gWnYRZ3UAZl66K8PoifuIYnWIE8mFzDrT5EVGwx7hjxiOP/FW/R7gooGwWeDXHssAR2UOVmBr2J0Y7aIomnalyQ2AaJ7AGToGbD9Yc+kFJ3eHBAEZQieALak/JxIBN1oAIkqOmZGAcvOXCRMAQNKL4CRiBnKQUpbh9dCI5McgYcKIL68L+Oeby5+tI0D5wOPw+AQ/XsYPNTHk0oSZXx8BRbmGxxoHCECCBwyJaDm43WYIIZ2O0UqYlJIIBWCOXRcgdhEICB4O146ITuARB/iIAt8NXZgK0ZOLgk7wUI8iGREIMDmMG6uQt9CILo8W46JnM7hYc7SO1Wlw566AI2/of3ymOHd9MONjiAwLE7dGgF/La1uu4GATCEQKeJegiBJ0CXm+EHJtCAeQj4SHEHJ4iHpNBNFzQKdMBTRXDBfIADTYYU98KAPwQeepgGaIJIVF/3riihel+Mlnd5jLFj75g/WAiBNogT13EH0E2nh42UQkulZZhR89G9RshyCuE+l/BHOXmgCKoFH2CCBX9r2KwHYfgDCiAp23Qpd1ACZeCe7ImGS9g92hp1UteKM5gGXChxdVf1unhmlyceWUj5NBePDm3zauWhKCgYf6hBBBI+MeiBR8CH7DY3f7gEHICOuOs1kVAFILD2egajeNiGMvABXQic7CSWOTgCVTBB/lryq0yDx7dGiXqIhFOoBdWcgSnoFLq5DnawAlzQN1hf5W0EDFywhLmH+7nAhd+B93bb6r3wFGFQgEkw1lZSxWqggDZwhoVHIJEI9lzokycSiZlWhSb1fFgoADtYbuMPHQmgglo4A8NGlKzCARxoOBcHiXjwBH6YAhOQRNk3D3sQDzewAmiGf69cea6wh4TN/bggB1YHCH8CBxIsaPAgwoQKFzJs6PAhxIf3/AXyZy/iw3r82kSgdg4cyJAiQ35DR6kArHjfRrIEiQ4WgTn+uLVkeU6diSL+qtUcuc3dkwj1qo3rGTLbOkQFnJ1DNy+b0W/rYH7St9IoyHPrIpTx/qYMI9iwGOmdoEdPLNq0ateyBcttCA9ubRHCu8Nu4ty8evfy3avPnytmfQcTLhzR0b2LefEJFCaBij9qV3t+m7esR4vIk2t2mxetDAVu6Hga3bYO3Z8DsOYRjXounqgDffxd29zyWzxgM5isy3YtW5pe6G67i8akBU+aUde5s6MBlr9TxVxZNNx3WqI7/ugptu79O/i3cQu7gocXPPr06hXqo4fr7/r48h+yMwUPftt5Anv0WLYTazff+ENFCKLQhtU3cvWhgSH1nGMbS3K10kMZ1MzTjVHj/FRND1TYcmBpApZRxGykjZPNKdlslqA/iPTAhj8qYiWXKEwwMZFi/qDgIotA+uA330KKFXNGMf78eBBjQCqppHhyEVaMPuctOSWVad0DjylVahkfOcV0x5Z+hphAyTrrQDgSN/UsE4Id0rhzpkgrrTNDGcC8CWdI1PhTRguiuDMOnuCMQw0+olBgSJkYGlWNZRiwcc2bIY0jDVJxjuNOEShEoxJW4HRTD2jOCMQYfN4Uc8dZPW4pkD1/WXPHKF8apE89ta56a2FNFuZLllLi+uut+pAzDbDF7nWPL9boFQ8VM4wTYKfjVNMHStsEGlI1uRRgyIOdgsNNNRRQ4Y634FyDTxEY/HktOLjNUQBREOYDRyTfrASoLQKo4o6iGVZDjQR1+OPr/kB/geJKMXfdelEXphSZED/+1MMYN3rgc6SxGUOkK2H0FImxxiGn99c0o4h8MkbtyeINW6SqEoLA1CBYlDI9POEPoAj2RgUH6tSzjc7n2BHBLpEBiA5sEvzhTzSBftMZLDhUodlt+dTiTjbxfBYCN+MoR9k64fyhgTD+zBPxQe0JZAouvkyDH8je4UcPO06wY4VABJu9DjTJMHIFCxfQITHKhSfEcV9/VSSr4Y3zdZEbAzs+eUH23JPIWvzo5w8TOCyDzzVYbXPOniGUspPT17SIQR/4cNPvbdX48zIX83yzTVE9yX7MEz0cM0/XRnWzTj1ktNAKPrCPhNsd+fjj/kcLfzh4reyztECGQPUwhNc09CTCjClq33NP3Hzpoxg7/rgBTxCypE9P3Kt4IcMILOhQgxcSo0254Yib7880iFU+/hEwIlEiVgEnNxFLpCot8fAHKQpQimqYCSvViIczBNAHavALK9dYxzwiwAVlcCoqAmqWMs6RO6Oorg8hmIRpAuW1ePCCAnWIRqRKUwtCrKAMt8AH0KKiOi70ABj+SJJD4GMPdsDjDOTgUd5albjzESQQxeCVL3yhqoRQkA41uN8PoJHAxvnPL/5gBnUGOMY1JsQakdMbG4v1F1kgEC3aa0EPqLHCqMSDDRgAxke85Y5JSKAV3erUOY4RAiqg/kN5NfnGNXowg2o48jbf+IMCeBHImaViAZ/IYae2oQEmEC4t7SlGIhzxsMLYAx6+sAI5TFYMb7CMIYzRwf1wWYk4oqyMe7kI5tTIyzj+xRHbGabIfEQdODIEPpcIwWy+9khwxOMW/EEdVrJRj1yQAQP1eBqCtIZJYegjeGDbxicosLTQYWUc54hGCEhpr2yugxpMiAEhpFFJkZgmGn0QwDrMtj+xfCkRsnAELmgJjwYS5C8ONdJfJgIyJlrDbVbQhzG3IwtZwK988AmF/WogCB3kb3PINJYv9TIRR5DjpC4lyAIl91JjeYNHwjzIA7nROW2SpifciAc3yhACVfwn/irZ8EcfMHAIf0CrJ17zRytCQAZ0rIOdNdGQO6ixG2cMJUPcOEc7mLCCVswkUN2QnR1CgAh/OKMT66CM6kQRgjZkby4+6k4xdjSNQHiPozyCB0LOww56MIMZxSiGKUBhDUdYQ1kDcQM7LMEQ/QxDDSxQgReSMYwhCHSmwEqpSr2BOc+61BeYYyZplTSRyDGuIQ80RAE2MY+csdAfsNAgNyoYFXC0wwRlcAYoHxkNf/gACLBYF1aGi4gIbGIdh+yJnmxxAEP8ZJ8hgVQ1bECFaJhJGiSE0zfqAYQeiGowR9KHNegxDVD4wwrMeKUv3ICLQES2C/aAgCxG4QZvgGIa/swYVvoGcpFiWII6MkWS9gTxgxqoIBTu8IcaxJjaX4FWL8Ji6ITXeJ8M/4ocNz3IPHBASj2G0h0EikdrEISOVgigFexq1zsFgKhygWNOPYgHVARZBgmco6dYOUcrJCCKbn0jG3DoxR6x5YxDHXE9ivmRPaZhD29IOUoFk2Ll/GEKmzbTHEOoQQ1+wA19oO3DHFZPhedyD3bw9cxsvAM5Wutm+UwEb3I+CF5UQQFE1DPJy9PKLEJQBnf4uCfuWEbnwqFbysTjGmzQQDCAF7RJmGBp0ZiZO0ohtciEo1PuyAUTTKAOdExmUjkmyTqmFYFglFI9f2lVYmIt0YvQY3yw/j4IMP3hjQEyZh6sUEENeKAHif2FH9qbs5bSnJdpaBHZBPTFKp29JEt42CHG9geojWBE64JkeOeggg8+MRMAgQMfc4BmWbGip0n0gAv4mOei/JEKKuDgp9fws0i68Sc2tAA60rwNOOrRhxXMpjYiGUctarFJ2cECA2Woa+ES44+Nfkwh2kuGGlTAAjX8wmzSvpWy50IOa5j547iCRy1NDiR2BNi1/qAEBj7hXG6Dg1G2WMAcEjWjVMezGh2MilzEKgxydUp2fSjkaag3j10EABGQuhZN3FGAMmwqiCI5Ry86Ya9uqK4FRhAVElGmGCsUo6Xs0c9IddDgLaq8SiGf/osT79x2XN2DHF1I+dzXYwVvyF0g/AjoApgQj3JxYx5lUMCfvPUNdzRCADJ7MTqOUYA+rOPfNfF5A6hwDqsvCh/0Nqfo9HH0Y7y1J9lQhr3m0QoFzKbkqyrmGaqzkInxQAe1x0fY8z6lt7PlL7gwku41Rg7ABt/VCmOPQCgRAVjgo9AsWUk8VNECyDTNhO4ARhF6UA/J6IwaXAjBMdxh+eWJHxEUEIXrVOwOubKhHgaPyjyAcRyscdsdeEAHMNpAAXR4vHH68IYqHVNC/EU9MIIK3A8j+MMDFR+V8B5bWAOPoBYDKgnJmMwEogcomEdCPJA0IAETmAbntYTqUEMU/vTALOwEvoVEN6BDPbTBDFyCP7CLgBzCDLxBPawDzTEKLxjBE0RD+jnVB0UDFfTALYBIT+DOPLjQJBQVZZxDMUwCDgjMwAzUyRBL7MkeQlDWFcgAZiWD/lzgkjigWizQ77keGHrHRdjZGVpHMQQClhUEPuhHGbxgPNDWVcnFI4TAISiaDH0QN8zVMbgfgGxDPRQBE8yC6ziNnhgCBXzCPLSLutmWBvxBmUBdPXDDKNXYtXTDOMzDERCBnphhldjDRTAWy3gUY8TBELAAC7CCOjTZGgKJGKrFXwiGKMYiYXjYLeLiXNSDiFWet5jG93GDVZXGOohCAMCCCnUKJy6D/gbVg+KNQzhEgBHwQwj2hHhRAGukYJy4Qx0EADd4RKd8wznkwgHEQkvt4pL4CDncAd4pBDdAAZhBgZPwoizCRT0aBuT0nT3KjT90ARX1I1+MAnsVxF+sgyq0GFDNDDcsw+T9oGtcAwb0QAxei1RsAxVQAD54jc6EQx8oQCnMg8xExaWIAus0H4JQEy/MwBbUg4xEBaFxAXJgwyJgIcqIFnuRzwD6gzi8QgfUwBAMzjzknkCixyyqRa6pY1GqBebw41KChTXgHT9cxDK0QBkwCs1dwzysQ/bxAkRyBjgMSJ9gE2XIzh/gABskogf5wyfgABeEgzvgDgvpwzKQQQ9A/kcx3oZWuOBajV+cyMUfUEh1xJ5TaslFeIMrjJbcTUQyAI4MeIFcmNRTpsdRmpI9uEIdTeZ3wEMxwI9mzgUz1BE+PBgZ4EApTE8kIoIJGMI4LNrl6UMrmAAbcMPP9cQKuoON6MI3dcq5sMEMqEI8PFdLDMrLqZNW9GHlUUAZQMo1osk34EMLMIHqHJsAoQyqZAnwIQSt+AMd4JIKvIL2KOVnikVlqoUvCMZ4eocvWGB6rkUxoKePzAMGcME6cONIjAMVIMdwlJghSAAwkFq55Aslvtg1hIMCPAGAFp0+zIAJ+CVLyM67BEPpIcg8lEIA7AI/KJE/QIAAakxUmgJ3/iwExdheDUDBPGhEe1ImPqpHIoRoivJFYvzei6pFMSBQPVCCahjh8thLSYzDJmjAw1Xf862EvaDDMuAADpAlZYwGFUTAVtKcVJxDHywAqzkoSJDj+ikAJVANZVDTMUQn6GyiOzhDFWTGPNzDQLGDeH4HfLCDLywT8hXgAeoAJvTfjH5HeaoFfx3YnfbeNHBUn4KF9pwCsVyGEcSIX3ZDHM6DPhhHC3BD8+FbZfgDVeFDG2AA8vglJL2OgEzCoYBOJXXDNnADi1hPGXyVpq5E4TlDDxTBMlSVfULKOMyhuDnf8oyDP/xBCyyhr0yEdhTmfCjGHZRMdiKYP9AC4Gzc/jO0WqAaRp6iRUxhWLOGRSmuaXrqhxFQQHRSAC+QSwp+yoiUARscgCpIBXi5gyH4gDDwQgP8QSDukzvhw8SsAwVwQS4AUU2YxsWE5Qz0wCe82yPl1jfIDiK8UCXWBLgQoz40HCI0Q3DlG018wzhcwwxQgZ4QjOI4Fq5QkSlYQrMxU5LEAQ8wGC3oB1FOa188K7TagxPwKcoakD84wq69bEP8hSE4wAukQAE8DY/eBj6wgQRIgAL0gK2OBDpMAgEEbb+hAzc+zSccgAaEgARMQn1Shjv0AQWEwCeEABsQXVQYAi+gAxNggGs+H/GgAzqMqzNILGWEA6A0ZAGQ1ULA/gOwxsdFnIE3SKtBMMYz3I8MXMGD0ax3qKxY/MXICW5YsMM0vCPizoo/TMICWAAFFIDZ+Ig+zIM7ZK7mPlgULEDQ5pHEjoPoju7ofkMzYAAFBG0Z4IOgjO45vC7sqk4AoAAGSIAjWuk6fIICYAAGBIAzjAaPBi+PnsMtKMABFEABwGDRtss3aIsADO3U5CVLGAcGzEKoMcax4RlFkNyvFAOP1BryrQMmqIAMDEECZm/jDgbhisU9TINkWeuL/kUWFWv6GkQ9hNgBNACMoC9C/IEAOIAAPNxkMcEBUIAC2MHeWq6PPFgAhAAGHMC/zoMETzAF60dGSgAGFMCluUOZ/nSwB4PQJxBA6hoB0JwG2p7wCT8nBVAA71LkpaFJN2RDNqRJCCgABQDAw9WDBJ4R8WkJXuBC2dGv4/4CFACbGkRm/ebKisYHQSZxQ7iCJeikEzvuOITBIEzhQvADPlxCEbSfQ0SSBJQBiirERJRBAAiANwlTPBQABgiAD/Cv3/GDHEfMJ6CxA2jfEeGeHu/xAxFACFAACoSA2YwPIdvDidaKfqzACkOwPZwsTPnDGWTmlKRKy7bcQfDDPWhPHHzRd/YIFU7xXKwvWvyfFIOyQSwU/ILyaMLxANbKAjpENLSCZFrcPXTxLCfEPDDB/0IHQ9RDNwgABQSAnQaWP7QA/gs7HisfBDP08JT8xRkA6kJMRDWwwA/87TCb8l6IMlrgbd2+7BJFDjYjhCVgp0SUXK2YWSZvp0Nszg7nTcEkEVv6Q+BGsz0YwQwgT836gyUwbnz8BTy8Cqsgnz/EQUi9wjWHc15oM7VShE2C8lloRzsncVRqievpMEQYMqMmkfYkM5LArC9YMpC8pwUy03auAuCogB6IEUcj9FootFis1xtO8RyVIUsXxDRobN65Hj6U8kIUk9kF60QkgpqKqNlssgzoACuMSk2n7BLHx0QYGDavVkPXNC7IqOCSDEirxz3QDTj3tD/0LZhdwUovNVu4dFgkhjtiMz3cgcSR9UBY/oMko6xUd7NdHdPeTbVBrIMgzGkoHLRbh3JTAwkogG8Stwdm6m1NI2ZMT+tfjIKPqMdFkIMlWOCdXYw/GMMQyIAMqMErns1fM/V4KAk9JAtPI24rJcxnDwTK1e80lLZhwEcgwMPvMdO1Qdj91MAvkEpqg3Y+0ll74TXKnkXL7vZAxJ3gXkQOdOh3WAM8SJYEXtxRP+YRfTJxt4VZo8VZXGHjOjNwkzU70LVmbhib/sVhcdlO3kPG4VLHjXF1Z3NgA0kryQJOvyw7IIxr/3Ui0C3iSrbL9sVFXCYoXARJM8YqZDZKmwOztrdeXPconxFHRfRnJoYWpTLKjgKc0qwl/lgDhI/yRYzzhJeP9piDGtQACwyBQQuxQJgDJli2gqMFg6vF+lD4BNIDPHRBiwsEjTeuNSy2X0xEEPhDVheEFvvDK/itGox139rKjYfFi6PFRQRCOgbqY7NWi/u4ck9rIpDDhosFKHiDsuywOey1DvxAX99yQTxDDSh5Ry/54bz3kpBiRU3re1WcgssvM08rO8gCj7fFf/PKng8EPkTML8gAmKlB9lA3QaC5kr9CMjzDK8ir9rxCx7G5QTR5g3vDKGj4naKXLBTJlmNzY195oCqujPfIWeiDE4g3QtS2F/ithDmEok8MQZuDOLBAHAjEKsjApFM6QVg6jdJ5e84R/hSx+VkkN3gL5Hv+T3t5Q5AXhPaEgncygpkrhKKvgxroQJPRAgsY9BAMW6nXr6+rxTTY+LEzYGIkQrNR+l98N83WKF+wgzfYeEAiBGNYO6H/wHojOkI8gwyYwxVwln5o8hVAwQ/4NZuHO7QKREWg+FKCc7lj80VA9LRudQbqBY1neX8TRJKswg8AGx080FgfRDLowBXUwBWos37wgArIM69XuptXyUQwAyigp2aSg0FZWctPWVc3Kzt05lzAT33s2gBpDzeogWYPAS2wHUT0rSBwQw0MjkbEAzQs2K2HfHsjPFuAwmA9JZzfOa+fz3zfqT1Yw8KvxV0xQ9lDTKR//hELDA4sggWa60cl6LoC+gMLCMIv4PbbtzzWrwVLhX0sGq5oMfyS60NdxHWKPnXGwyxgnYA7Q4w8e4H94HuCYwS/S7A/ELxA/LtAtPq0L3nfW4muQRZigyEAatHDL/X/MUPqg+EClT48a5kssJfl7OSxgpkO3PoXosXUI/I8/IAevMIPLOsDDYGh67uCh77oa9l3t/6E4QViLD6v+9en2+N6EX4+P5EsABZt60c7zI8MhFEer0U9iJFlV4M5cMOyJok5QMPnt7jy0+I/tpTze9ZEsIO8t7xCuGP9Bx95wz5A+BM4kODAe8WmyfJ3r2DDef4qyfgxgtHDhhcxZtRI/pDfRo8fQYYUOZJkSZMnB3IbwoMbSpco7fnzdmbhS5s3cXrU50+WK38xcwYVOpRo0YHMvBlVurTovS4/Te40xcwXSHVXatT4Uc0fvo5MwYYVOzanSpZkbwJ1JJAhWrco7+10RM8f3bd38eZl+NRuXr9MR9EDOpKhr2mJGO7EiE9gKB4sZAh6yPhvZcuXS5ptiRmkPnrs3MCry/my3UDF6LUlvZr1SHJ3/CluPfsjO1feZINsmwgUs9i5C9bzBy2OChZeaHWlTJt587CanWNkh4um6uhgY56xNPh699Xs2MX2fr3YXOAbGbKj2Tej8FAydMigI3D5ePv3RUK/H9Ne/qBp5/HDST3+AizwrZgCUchA1u4hZyR9GLqDHQcBJKieeYaQqIaWhFvQQw/1u++emBzxxsEPT9qJHHYSqYs7FGEcKiZcTozRL4ZMSQqkmOBxhJzUMuJHsVVY0KGG+e6p5ysbmXQuxACTWu/FJi+yZyc3vJmGyi1v8qwqLt3aCRdTdGPIEVys8eiharBS4QpoxANTTtKeLJCcRBSycs6BYirmjh/3DHQkWdygp0JBc2KomCmr9IcdJ6wJ71B/hGPkBx1UwGQyRDm9q84AY7KmC3jYA/Me0ECpqdNVMwqPVaF2OixOjcgpxo3fNOrIHCiy+uGZrpZ8VVijPgVVoEBc/vFNVRsh9KcYZm4dbdhhQVmL0WlNarFUglT0J4i6tiWIIXyIlIEHPejDVt2hii0w1GkklBZFzwTqYhrf9Fx3VYZkIXNSfTWiZ5RiZi1oJ3q8UTBX4YZRgwUVvBiG0voArtikdj1kxhonBLrWPqC6sEZZi19lx5uRSQ4JNesIiokcVxTW6CFGatCBBUzSTVnnkTBesC0rvCHY4+h2QopjqHbmFEJZYk76Is/uaLogk58q+KJ63MnwUg6d7tqjnhek1x8r7j1xaNKAomcab6o21OtOZdHybYPvfVogV1whM9+G+GGsnlBU0EEHdOvRJ9i5EQfbwxGdJSc0MhfS51+8/iQHChd9SiR4WcT39CwQcljuOtQvxXXWmxaRxigef9iUwc1fKeY88ZU2A1Mx8Hw5o8azDxyInjtydFX2VasKPWmGAkk1dHZ8EV4j4eIYooYRaFmnq+GxVzzGtuxh2xpfwvWLHWusuQOXgSbHvsmYcpDXa1BEk02xUaapcaNqeJXhCnOsVn9u7ZnVFmaQ4wz6MIU1+pKYpewkJgz0Bi7oYa/z/URy/utUTKSWtJcVIy5xCky0nucPc6zCOFBAVwUtKDsAMqlZdYGHKxDjBHqMrHL3MF5J4kKXwWhpVKDAhY4il8J98UQWQHTaNDQ3mv6MwkEe4wfDrqACGagBThYR/iLnViin8CDRG0GAhyVIhT4b6iMmcUEht2LDHwjtzR798QcEHpgm513xVbESjdPoUYyqQcUSOfrIQwQBHxVUImd0nN1ZsMXAmszQh8BzBTymQY/P1OWMDbFHatghyUjJghlBYMcdiiEahjTQkOpygjd4Ny2E1eRKouEdPtwBHx0MgVLpK6XFstg59wmEGcVIBC6YYQV7JIKJjrBGMXxRjGKcjh6gCAQ9gpCQM62tIHSx5S3nFJNU9W9d7OhJ5OAxClI50W+MCJwOGOGPecQOm07LJaIk18KC2AMevjEFOaaRzLUpJJJ3nGcQ27munbjCGpCr2E5koRo3sCOJGVnd/i+u8DAqXi+gh6xdRTGqs51YQ0vXFNQ97rDNw1hDgYuBnuBYQIuHeDSj2HpnS2GKKEs4gqVyipVA6GGKQKQuI/h4xg+yAgV3UDSmXXtpUZG6pYORKXyrKoYpisEOK+BUIwwRByYgM4R0Fi6pRqVdV8EqLM/ogybTotetcAFBG4aQFVFkAR1+ZcWw6uyoc7WrgWJFzWGB1B9ngIc/MaIP4dChZjJ4RSHvSrK6Jpax9rlHL2sao+7Zq0W8q4c4iqQDHtSysXT9amdBuyU39JKbXIoJM0zhCII1VTzz0IMKahYKdYY2ZYulbZjMEYqh3jYjQIHN3vYECl/AhqcNYcwr/ng1Arhujrfrsm1zxVKPX2wIuoG1B2h2ckMbXdcXgQHuRRhTjazI4BcrrS7AnnvepUiXuv443Hl3Ek3Wwoge5HhmSITjBaGqF5ef5S9p2LuZerxiHrS4KDSSQdTO0oUeO01lgZgxit+KhDL1YOd/X5VeDA8lwMIZwg/qoQM1DMQdOpBtZFtqpWlYomPMgke/WjySemh3w6vScI1zwt5f8QAKAkmGChLsD1qoYB4duu3BzpAUt33oVOHEcQpv/GSbSFcG3PjBFSbmDhYcFh96UANXoVvBbz3YOTuxBMFQLGXn+lfNeKnHMDI7YsVg4gpY00Fy1GsoeJhCFnP0Dhn9/lGrO5Sxzdljc6Hd8maKDGMErBBPMkbAjWTowHobLgZBXekdu5yBHSwuLaLdeWhQj+XNVfaHIGrAFYF44RVeiAOO4aEPS4xvITTGDKBHMTC2jHp4Uea1SAKMj3bIh6uC0MEVfiVlw2jLOXTJwT3m++uk+VraH3nzDzYDjQ5AAx87gQItbd3ctswlEYDqIGbaYo1c0yXc1a6tqN1tFH24IxlKUqek/bG6IRw2zYkFdBsD0ekW9xsngymGJYooEILHO8PwZjhZVtGB2bZZMXQBxcWh8l2x6Il8buDow9VHbZCDpB7ckEFKP/1kezCkfT5hLlMqeCdfpGrhIxeWyG2+/hFY6uEX+LiwmtcoE1wkwsnC20nNWUkQ8hUjELjQXLRz/m5ERt0t+AAzr4HioKZDy1noq7UZSxtPQOtwIGszRd6QaZB2U72/Z/H52+Eed7nPne51t/vd8Z53ve+d7333+98BH3i4V+rL7r36qI/uKGe9MBDeuBWjDJWaNrbxIuEJwj3coExr2I/tIf9wSwQfetGPnvSlN/3pUY+Ph6hBIr+gVM77hItAmCIRriiGLOwxQeCczBqE0scJZAHG4nbegib/AR30kHzlL5/5zXf+86EffelPn/rVt/71sZ997W+f+82nAyM0K0VBVAP0DB8RcMAzCnaAwg3kcIIvHBH//jNbgh4+6YsOK0l87PHDHJoYgQpGIAAFcAAJsAAN8AARMAEVcAEZsAEd8AEhMAIlcAIp0AAvoGZ+gAc6gCIULN4kJy7WziAoKAT17212ohAqIQVVcAVZsAVd8AVhMAZlcAZpsAZt8AZxMAd1cAd50AUZYRV04AdU4AcwgRvU4b1y7ugST+zEA+lKcGdSLwqlcAqpsAqt8CGuQH+4zciesAvnSuzAMAzFcAzJsAzN8AzRMA3VcA3ZsA3d8A3h8AwZghHQpSsOzwvxMA9BTTHqgQv18A8BUcq6LRAJsRAN8RARMREVcREZsREd8REhMRIlcRIpsRIt8RIxMRM1cRM5i7ETPfETQTEURXEUSRGvEq9LKOdBPCT/GsIJScIVXRFWbAI4WHEWQyIWEQ0Xo+IyAEQXyWKtRoPg5EcpSBA9Uu4mGEcpuKOkNKLmKK8ZFa4uQmcYMQJIvA4lfFE8lswk7OL+qhEjnvEbrykbXQLaiGKsXOJakM6jyAwbQyIZO0MkyBEcoc6S2tEoAgIAIfkEAQoA/wAsAAAAACADCQEACP4A/QkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocufGePnj34NFjt5KdPm/04MHTR+/ePZI4c+rcybOnz59AgwodSrSo0aMW9em7KXClK3ugrE1zNC2Rq0DFLN2hZ6WYrEDeHHmd5msaU4FL9SFdy7at27dw48qdS7cuUqX2zhab5sReIFz2TLGzxs4evISFyUmVasnbnWK4ihG0Z7ey5cuYM2vezLmz27P+QBXrotiav8MX87Jj588JPCvWDttU67m27du4c+vezRsnPWvFAjWmLJAyaIpqTVJWm6j1SXq9o0ufTr269es+afsrVmxUMVCT/f5p70gZukBZshLR84UWu/v38OPLn695qb/BiSLfg25Pqc6btDEDjymJTCPQcfQlqOCCDDbooENq0dMdKOYRpZZaBubAn3gPdujhhyCGiBs9kYHnD3FI3UMZKJYYOJ6IMMYo44w04mQgVd74Y9Nb5p1hjyM1BinkkEQWySE804ACj2k6yqUPZezgEshh9Lxo5JVYZqklbzfJQk8gHFo5FznMuHHglmimqeaac7Fzzx2sIWgXcW64IiebeOap554a2ZekJTreadeT/ljCjCnt8anooow2mqgb00gm6GXEFSiZo5hmqmmWvjAjS6K3qSUVOf1tauqpqD6oljfM5CidNf6JlJrqrLTWOt1N9shiiovR0XaGNa7aKuywxFrmXzHMNMfhdJTJ4kthYhYr7bTU9kRbY59GG12yZ1br7bfgguQLPHco+x50OQQb7rrstrsQbb4UY0Vx8UEnCy5NuqvvvuFSBk+dgdQ0KXWUGXoivwgnLCxtd1gjJYoJ5njGwQpXbHGm8LDjiDcyqZsgZaOYdPHIJO9pii/kkGMKeAO7Z489kIpcsnRKpZVXfy+fWPPMPFMEnT44+uOIbB6a2HLPdeH1pKwPKZcW0lAXRKg3brBmTyKIakufWlZkG/VmSse0XaSO+JLfGcludYY33KlkT00Qf400ZTmcyWSIN5FjoP7ccR3Hjt7e4FJmWFNWPU1sNQ102DTehFUVLol8J0uU8HisNd/fqkUOLuDlDOvdIEpoCWuYr0VZef64wg5WvsiCLOkX0WPPuGJNM68jOYt3dOkLb8fdwZTdQWNkvBtVKmtO0IP2YLlLvSxDFx4EXTHrwekGajoXX6097MAzMfYwexO3iHeY4p/2QEEXiK7FnP78SDcxxUwxjmxc5eXon8qOKaO8HxP+D6IMOfL3H4EICBdVQxSHxpeT/gQIHvlhHG0ASEA9iYodQaDXgVYHuhipZRQUqmBIzicLa7hBHybSGQVHQiiB+MIbhnJFcVYowi3ZxxeukEyVBgIdMwnpQv79o2ENF8KUmzjBHzDpVltos5J/KfB8Q7Qgc1bzPrXASYgNUgsoZBjFjNCDHnzh2PvoopR/+eKLXdyTLAIzRg4xg4E0ytju0ug81rjhahqklFpcYQ1HrEQ8WKTjh4wTHNZYSS2BKMyV1hbIITLlZPFqSmeIEy9fsIdighwSTfzBvyciBD1YCl5eMknE7VgDFNxrI9hO448T9k+VpMSbQM5QjBxp7SVYUgszBthIAq5ncnC8jWFkAQo3xZJG9vBGF2A5kGRmMEuUqdoxDcIOGLqEmbZhCi72h81pJsg/zeFVQm6Cr2AGqVneBKQ/EuENXlqnPNNgBjMwmc4FQYccsv6YZzehI7xedugko7CGOUX4pIxNLHrXoY09LPGpUdaTPvvhpHq6ebC6VUhLkTom3QxJH8qcwB8XfSh8KAMBkK6wff4MkSmKAcUhqgUeo1DWQKuzSUeMwmMivY43VnaiOYaGGS3VEjOmEdIhDrWhDSJOMXeY0+lo7ksgnWlBvMKmm5ipqFrCh2YM44+JySyLahkdPZu6Gwx5iSLVxBNljujTGXEjHptJD0UTBAogkZU3onKFAiXyJKrgSS2ws6E/GKEGf2i1MvcgRyKQGiLizCuwd60NM9hxxHxFRB/kYE9KRXQPZth1S1rlARQMaxeR+VCqChKZKQaI2sjC5YaBmP4nUy/rD2ZwMU/6wMXetvSLH+hgFQdRhzoOmyJ/QM6dMgIsT9vq2rvcx1mgkshax6ome0wDe1qKgwxkQAep4YMOdKgHcYtyk1Hcdkjeo25z6SILeMhws4rkk9mCWiRuXKEGNYACNwiij++GFx/jJQqQ4iukUn1qvXW5CT08xVGL3MQS792TdWd7pV+oQAc6GMEr+OvfetCGG/WYRzvc0Y52qGMePPFGTC07pBWVBcF9E0iBADVXhsADUK29EpByDCJ91EMNQ/jBD7ygBnxMsMP6MIcOKuEOL7Bgu/nVA2lJEpMW1VhEutQhjNtCGW/8BTrMRchN5rnZGd1jmTz2UP49zHEFcwTZzeKoB1r86w53qIAR4lmHOcSxjldcwBxyJonmzLWllbJ4y0QBGaDCvJDyfXVPtsQSPuLBjSHwYL/mGEh/wcsNFuBZLSGuBzQuYIwyM+Qmd/gUo0HElAymGdEg6aE/OqgRekSaT6huXpH44Y9KX5rXmv6uF1Qgg19MGR/z4AEmdiJTNe3os7D+CaGY0borR2QUxuSTWrpj7RD5er8cFsQFhkEHHlTjTF4YLU5OsthHo+lJ1rgDqaLdE+KsD7kewYUlXl0kygDJ1Ar6tnfpEId5iGMElSDtGmTgj0CLRFRi21Nsuk3vpPhDFhPjN0QAbmZODjBLAucweP7l/Itx+6MSI2gHN8yxZ5F8ka0Sbg09Pl5xkljDFJ+i8EcckUJF3SSEILc0uIOtBjUEWg0XGLUMngzlhnuENmDC6pqmR+aah8RAp2UhPA7cKMzSGEshLwg1qPHhX5jjF8ZIe9qNzfGBQO6ai6IJKPZq9ZIUbBqQHaE9mCF13C5YS2FfCLAF/fdMsaN9q657QfIGlrYr5B6rwxTkA6HxBwV+KDSZBpg05YhtKj4j00CgjhyfEJroE1PtDPqljcKU5lTeSEyR4esrfhP3hrDvIDEMtONuj2LQ3EiXF8rc4Z6pzAvv8xEpmDdMRHqFrGq3jmKR6oc+lJThPu73wCnynf6vD3Ys+iddupTkAS90o9Q18WmqK8XprVzG+qRL2G0UgZr/nuBn50e00uU80d9c4txhp4fGE+W1flnCDl5Cf9hhfzzRfZbwe6mSWeK3feHhCualRD9BGQeFMdbAfwuigDtxE1ljK+RwaxIITtRzFDRBQwAmRAHmINNQNRyYIB6oE+yAZrZyE64AKAhISuTgCjIRgxihFuLwAtwwR9dADedwZcvREFhEXEJEQ/TlETo3JDOIEz2oXqiybRFYd/bhLPFHFLdwAClAAJ8APf7QCgtQAC2wX/0FYAehFtvQBlPQCgG4eP4gCpcwCevQEFq1Dq1ADU5nhvuFYg1xFi2IEP6B5nAMUQ+LsA5AOB9VCD8LNoW0MlnIZx4ZRIJFYQQLkAIHUAaOWDOi2F8C4Q4zoAAUsABkAD34IAEHsAAKsA2HWBDAQAEFUAA94A7HMYpqUQ09QAErUIZtCGDESIz+gGIrgANG4A9wpRD8gGJswAaA2BAo9gmicIwPIRmEWF/lB37sACnU4gTiw4XrNArXB37+UAYSIAEKQAXU8A3fAA7yOI/y+A3cwA0zsI4HgAT+0A3iIA7dcA7rMJAECQ7OUAAUQAESwAt1Fg8O+ZAQ6Q+GkJAUEADjMA/E6G4CUQcFwI5UwBCU0QIKSQEzEIiI6A89gAHriA6KmBBIsI6rOP6LBBEPfQACLTAPjxgfkQgSN3FJ00IZiDJ7mZQc1pBIIOVc1IAEOIADCrACzrAO40CP9PgN6NANbBABGEABOMAN4BCVXSmVVLkOhiABDaAACuAM3SCV9LgN44APbKAAZHkA2VAN8AiP3XAN25CX11AN51AGCKkATDAO54AOhFmYhrlfIpmQIeAP61BnjjkPITYPkEkNWWmL0eAO4lWMmnmHqEgBAlCGCoEP9SAMApACJEABJikkOwkS5HBT1GJFDhVtAtUcLVQUgYYIFCAKKBYG9bAO8aiW4PAN/nAJFGAH/gALdqAOwDmP3IAPvDADVPAJZVAGreCby/lW1WAETP5gBzNQBM5wDl45j+Mwnt+wh21gBCFQAAtgCO6wnMEJDv4wCRhwiwXAnt+Ql3kJj9mQDd9wDf7wCQKQkAEADNxwl9dwoAh6Dd1QDfHQCgiZitV5DhI6oeMwkO5wDvWACAdAAhigAakZJKvZETioicQCHfMilF30Nl1FKjsoESjGDRjQBsBQD9kgDp3wnmrZDdlQDyFABbPQa43pnt9wbmwwA5PAmH34m2p5bpMQAogwDv6wDOFgncDZnLcAnc7AC6JQncs5Dmm5DUXQA7xgjbqZlmo5Dt9AdlSAA63gin2Ao8AJiKLQAzNQAARQBuE5j/EIj9QwmhJQABtQAB+Zk/711409AUotuiXZ90ow1mUnlKgRgWJ2QAGtgA5omg3uAAh5Oo/dsA68IAGGsA7noKTL+Q3nUA0h0APzsKmlug5UQAFoGpysSo/csA59cAC8IA7jKaFCug3UcACIMKG8WqrVUA8UAIrosA3cMKv1uF89oADqMA7OEA3MKo/dgA92EADrsAwg0AoYCXyG+oES9C2Qx6gIZg9n0FCQChHfMAM44A/wWI/rcAqjOpXrkA1lcADuMA7X4J7Wug7UgAgCsAz1UA3+GpzowA2wIAF+4A/VUK3yOA7isAwtEAXwSqpdug5MIAG1aqZCeg7uYAcFYAv2YLD3iLH1KKGtoABHSv4N3cAN14Cy74kOx0ACbcCM+CAP/FAPg0eF4aoTramR09IpzXUTBkhjKJoR/EAcc6ABquAP76in67AI0nAO9Sicj7ACdeCwMqun/tkKPfAE9TAOy+qvIFYNTzADvIAPD+uvphoPbYADZRi1vYoPTcoG8Oqxy3lurYADVBAP58CVZusPx5C2DHkNENsN7hAObzADZUiIjUio8BGifUIPoOCA3kIPjpBtdzUKMKVORoFiyyABbDCl/TqV53AKp7AO4MAN88ANNlAEvDAPXaun2eAPYsCm+1q78giIhyABl8AN7qC3cVoPxyABbUAN83C67lmr60ACVDCj23Cw39AN9f5QBTOgCvEQq2aLD38QApcwDu7Au+NQDfNwDC1QB8IZaCaEEldCuRtBRewiKWT1Enh0jj2hVXOAAdmAhO6ZDcpQle7wCRIwCdxQr25rjwtgB9eAwELanBjABE95sPLIDfowBxRwDOBJwd8wD6KwAK1gqhw8DuGwAlzgwGZbD0zQA9UQDhQMDucmsrxwEEkrgz/LQrm1e+BCDmZSw5gTOBF2FLwWDT1QBO5ADf6aDdKQBvgQDUzQAkjIu8G5DtdACQoAC69LwehwDm1qCA5LwRV6DD7QAv4QDVJcns1ABgowD3RJvevgDJ8QALvgDsxbqqPKCwHgxYJ7sG8cAR85D/4vMg1X9L43PBIGiL/Dsm3iNE3E4Qi7UodAwRTfe41lK6TZUAuTsAJ4uw1SfA31MAszYATzcA51DJzV4A7HQAUrILx7fJ0AawchAAsOC7HxWA+fQAGI4A+lDJzXCgs96g7rQLxq6bq+2APKa7D+eg3oMA9UMAPN4A/ucBCNM307AR06yC5qMTkEWDqEgnMKJLkVgWLRcAB1cJmtXKXfEA7teAz1sMtSeZf4wASxTLtSDIgTOQkXSr7+aQvFuQ1U2qX+rA4aUAazmw3U65844AOtUA/xKqSAaAc40AeAW8//aQJ9IGf30LMDwSrgXKirlxM3YVHugoF5R0f+EQTZx/4W0UwFJuAMgtnJ9SAKAnAEAczB7mAMBBCqLxyc2xC7snqw/DoPT4ABaInCphwPokCpVNnJ62AMGNAHg3nGyToDPZANVkvB21APZRACULoQrsB14PrROZEyCPM33pRDccIW2UC6bHvGdCzP+LCfbnwNdrAA3GCPtLwO3DALGKAI7UzLyaoMLVAG+ODOUjkO6HANVMAB1fDPrfoNdnAAu0BpbtwNn1AALUu95yAOxxCj0MwQh0PN6yY0ZrEv9kAO/SRI2uR7HT0ROysQZNACs4APSOy261APdYADW1sNi7C6pSqcn9ADU1APcFqq+JALTGADwYAP55yj6PANbKAB1/5Y20LawYZgAltLt6W6DfrQCi3ABL0mxSAGDEaAA/XgDpW8nN3wunWgAcuAjc5nD64Afdwo1iTBDKAgtOsiC+cVRT1SOWsRzWBbBurg2FU6D7wQtsfA3OhQC50gs/CID2UwA3TIyW57bn0QAl5c3HEapaRb4IY9j9cwD+4QAkzwVs39znvIBCsADMFMvd3gD3bQALBQjwd7bqKAAX+why35hlvnw5BYyCFBiexC5PlDG11QDCU9FHLGBhTgDGxJwSMuCgUwC9uAwHKdo/YYAH/ADc990P6wAE+gDl/uts6KAdHwlQcb43NQAMBw5Ry8DrAgAJMQDQaulvd5DiFQBv5PecbVoA9P7AwbRw+eK9o44cgKo3kzEUWNYwUb4nw7oVX24AwLUAb1kOJ4Pg4hYATtqaTjkA1wkOXBOZhsgAHCK8xgKZCKIAG5cOnUW6GtcKxcS72ovMLxYOG2HQ1zEALUsA5RLqTPfctePL1AvQ6zsAJlcIwrBHn9Xd/UN0Lw4JMJ43vr6i3ZZwmXdCH2YRAR8iRCqxYOZBFyNg9k0AOyjOlSOw9/sAKPoMsYiw69oAycGp89wAQMjer0eG6zkLYBmd5Vig/HQAYrcAuFndfqcAk67g/E7rbzoAotMAUX66/86g/CkNzuwMYHK7zUUAYkAKXR/BDbRndh/ey5l/46FmMKslNBL3NzEVUT2mFrX6K5VgAP6SIL2B45rnEGSlJOmrYUbQVXqhACfrAN87DwwFm+24oDVXAM95Di8RAJ+8mV4RCmP4ru9eifGX4J+GDUw3yHIbDj8YDvEWu+FFsFzpDF7smvzdkDPpALhc273xAN/sAFIUAJ+NANFN3FAoEPGr0QwdPaHk3yHkEZXUDf/HIPPYw+S5ExwuM+szYNXwFhkH8P25RMbwMPhnHaKYEvZ4ALuOAExYDyqBHu74Jia9rnFIzjB1AKu5v2eCAO8bAMC9AHre+259AOGmDEYp/v+IAEGnDXHK6WgNgGBdAKVy7exisAjRAOXA+W6/6gDhHABsEPnN+AD08QAhdvEQRGyPatd0COKkSlPS/lD3UjEDBBDk7gC27ADKBzIaiTFsqRPZPhC3VlCoKBRgxRDRGQ7NTtr+sQDQBhI4Q/at/AHUSY8Nu6Re3IFHDHzWBCiuC+nfs2KcCuddcqVjx3jlcDQ/48fqS4LtoKKiYnorS4bh0VDNzAdYN5cOG5Pgd2obOZ8+K5WRQU+ZvnT+lSpk2d0vOXw589p1WtXsWaVetWrl29OuU2hAe3r2X9QT3j755Ztm3dvoUbF64+f6CsycWbV+9evnKp4ho1yt80Zt7OwLPU9N5ifXTpZqVrbzFVpt4sFQM17a5Syv7q+f7DV6ZmvGrjcnJb584OBUoEc1r85o9Pizn4sr1E2c3frR5U1K3b9npbRCo9SvmrJvycOzYzEPmL9vqb7kY9yviTKN2fKCpG1qHD/VG3MDY4bCHlx5ZuYqh93b/PG3YsfLqgyMHHn18//MWJ/D3eL0ABB9TrMUeK8ScQdtxghxnFAJyrscf0YacYdtJK7KykJjGhj3PAe40sWzSYY5l6wqNoHNTOQQIJPkyS7hp/uPDhuW9QpCgafz5pgQ181sExoWrw2QUHKrqZB6ecunGnmidmsOXEGFUL4ZN5LHotmnkmaeEPpT5ri65p4CGwzAHlI+s9uny5B0Iz34RTv7Vk+f4vTjvvfFOfwtygxwl24CHTTHaskeWO+/yhYgZpxjEtxHjsCOEWcDB6rRp3RFHgD3zSwCdInbiZh4IyzgFSOrJ66KEadF476Jp5DBHAmW/G8fSgbdaBRQBVullVumr8kYALbnoVSkdU0cELnhPOwrPZuNCkL8GpnKW22rLWAsUba7flVj2lApOlC87UepMyfrKpoEd6uGkUpnMkagEIKVkFZx0mIvjtGmk6cQeli9aBVZh4goLponFy/aQeaqSjNRocnnCN1RupMMGdG1kdZ50+BIClnuCEGudSAVpLSi5tO+s25aqghY8dV8hVOWZr6fIGQZlvVrkxf3yxJohppv5RC+U3P/vGjCY6UWaRb6QBsaJuUlutFYJqvRGfSTCwAzqDlDklm3Y/9WcWH4qY55trvq6IG3yWIWMF1Nhd0h116qgSObQpqvqSFdhArlZw1FalCCZ+Ixglspypogd1/IlHLrrusEZonLtl+T1TvHFzcs3LtIccRzYHHc/2znDDwnHvbFwVCR5BZ55sejmlk2zWwRIhavwBJgQ2nFmn8I+4sRgHJo5x52wskf56G3TqSfySslkl65AuSa1Vxd1aaAMYfE6CaVh3WqhiFuSEi42JHi7xpxuqfzWkBT+UytwtXxKLP/RmK3ePGXrqt79/vvS5hzXa4z8C4geA/jCFFf4ESC18JIUCTODdRMbxuk50rWlkKUIIZjGOc7CqG/X4hAREUQ3aJWQcyuiFQtZxDAn8IYK+WscMirAMYuWEGvqgwgpusQ5ahWgerZBAI9ZBqZzcyhkUYEPG/HYjfzChBe5wDzz4V8A34a8viWDHWqi4xbzcAx6JGCAXxRiXe3jDCfC4ixadtQwMlMR3BmlHLfbFqHUAYwZcGJ90VFIGCUQERePoRS10ApQ/LIAXpXrNOqoRjQMYoh5KygmtvhGCllxjiUCiQgFcosdsGCIA1ZiOdNBRDVsEQBSe2QsA3UCnMd7Jinvxhi/sMcVW1jIr07CZLXXZlWJ4wwp/qhOeiP7Gx280CSXZQEc2agEKZ0ziAOJLjlBS84kQeMl3CPkGPgCRjWzMAxYzgNg4PoYScc4jGkwIQTTqwT2UXOMc7WCDBGCRx4KBIx6TUMBzCiKUbOADFi24zsWWVA9n9KAIsSlZgbzhIFru8j2v1As8ZNlQhzqUHeyoaEadYg+MdkEWucSTPqiiiBAgoh49zMmvBtGCF4DGeOR8GwmocAt8XNOE0gCEP6qAA1HUlGq3+4MGGhGPc0ASJb9qhQnYEA53GPUjMqKGDajQjKZKBxz4qEIRVFE2v8moDTiYxJf6QhVTaJRAEM3LKMpqVrYyxRQZaqtDocKME3gDo86iSz04QP4FZ4DjbhX5VduEkQ08nCIfXkPJ7ZzZimsgEia/koMF2FCvJS7HBEyY1V8pMhwqhEAZF6leYxGhAFXcqqvjoAYSo2Gx16ivHTNgwjmCyReoLEtyce0LWh0Hj9vi1qHwUKNvx2gPeFjBDf+h6H7w4ZlWLMAWRWUVRq4hgTLEo2qnWMQ5svGRkLSgB0C6JDjsoAElwEgo5xjHJxbQiogwbBzA6A0+ohlJg3ABByWkl8YEYIt7VHYdoiBAWBP6P384qLfCjY9Y0tSXe7gCpAjepTVAMUsIb7Ex3liWPwKFp+VegwpAWEY8nFqR4VSjDyaQWjSzEY98YMF1E5lVPdrnpf59Fiw2nzACDvyBCl3gVzz44EUZSHCrEVOkG/GIxhxMcMr5+msc8/hEBObQt9dcw58mMIJJxtnOeiyjCC3wBz/A5B6qdIEcya2wWXQLl3vQAxR3TfMusXjgON8MKqCwBJnQrJ+kIGIFWRPoY7cTAi5kbMvb5VotbHMNdzijCD2IRjzY+ZFtjAMdXFjBPK+xDcMGSUaIkMAk8FG7x/pTAmyYR0eqvI54YGCq6ySfP3zQg11sTzq66QMGVAEa/eR5z3XuyprjQo8wAnuMcDa25kTqDyeY4tf5aaA/WlCEcDjWX9vABxUk4FfNMqoTWGiHPxY7qdfQqtEFMARqJoKHTv74WCdDkgAZomHtj3zDWDbgHb1k1AcRWtpvH2xFPkm4RNS6ehxh1g85pkHnZKtZwWQmR1oa3ko3LHziOOOouA5IrVQUoBX1aHK9OZgLBfQBHwvLSTbOkQ8lMAEHxSM4OKiggWgQ0a/J/JrBREEBUQwMY+u4RQhqM2mUrGMZPWjBOi9JjT8oAJSXjIYqDiAMVO7HF6Zg+MWD/fC+6IMeDtI6F+0a9pz5oxi+4G1w45SUY5ChBe14l2ZbRRoyoEAY8yiNNNFRhxmQAR7moNc8SGGdUTvVHVjgZqv0AQzzUWMeRKcIqKgxBw2Ijxpyv4k7tjEJDRwiYgV78ixaEAV/3P6GvvM4hhGAIFb9UOVzZIeLsN3iRcHAvoC48IbabY8nqoBiFNpqls7I0IND1IPUH7Eej+oAvC1XREWob4EYjoGNRZzC5ibkhquowFMqUyQb/sCCpH/FhhbYqMjY/FUpMFCGH50fIWpbRguYgG2bJqSx66jCDGCBj+ZX5Bu3a4MVOKV6eLYw8QdLAL7dYwvZC5NpWCsFtB9fwIXZgsA4WQsLOZQ7ETN/WIcW4IKB85V6KIMQEAbweg1qwIfRYi9LUwZp6IVwQJFqADkCsIPvqJUWXId60AAqGCK/sYgmwgBwyLsQwYc/OIBjqIbr+4hq+KEDQARqoDenka0DYAMoKv5At7gzCqxArmBA9aiZLQydL7xCMMyLMmOWZnGHY9gvJeSua7iGAuCb/kO+dQiBGaAnZFKCw6IIUmGCAziHa3C/g+gnJdAEATiGbQhEi6CVWQiAT1A1etkG+VsH9cEYdHAicQg0d9EYBeCFaREQqliWYiPDrOjCsviMYkCQ5foKVYSZrxgz3dMKnVEKVuwKCHk2AMGHZ2NFWfQKNcIHWuwKciirMRtFAWkMXEiLrFMuf/iGaXOHSawydwgHI2iBZZCv1jqHeWADDJAalEOIbKgHOEihG8mmq+mDTcoJGWmFNSACfICugWq7GTARuCkYmfiDGZgyyFOIb6iHSeiNqf4Rim3QB1gogx4IM2IMEDpRxmJUilL0CqKRhFgoC3xYC24YIV6rxfSgBlEAB0/kiscQhlLIq/TgClXMBalpxa1Yi3qAhfPQwqz4DHdohU58yavYwP86BvjxCqpYBj44uHoARobED3o4LlgkEH1Iiq+aBH3IxI+4HTvAATuYh3cUNFvwASqQBs27m36CA3AwB7x7AiaYBXxIRCaqgxbgg2LYJk9BrR1ZATJwx0BsS94wAn4MubRZh3BgghnISX3EpnEQwRA4pZrUjzczSqFsCofsCnegCQzAgBZwBoTMCnQwAgygAA24Lyjqim/wAcvUAIPUTK3gB33gBcu8TL6RTP6saAXTxACTS670oAQNoAAKEMygvAq6WI3ZDAGa3IoNnILZpIAVuJ3FlDbHxAAmWAfE1A99KAZHWMj8qId7cAcM4ILGWqJrQAdUkQZ3Oyp8MATS+hBPWYg0MAVbyKen8RubqAbqIqFsUIbD+qtvcAZ/mIEZeCGhuJ0y0ABY4KH09CYB4MimgYng4IYIQISDgxNHeBnl1ArF1Ip7qAcmWADgDIEC+AZ9sM2mqAd3mAEJoNACwIfUdIp6WAfgnE0MUACk0AqKPIYAME0KUIDryLrGYMQXLQAvEVGmwAd+mAQBAE4MAFBevIrPKIMC+FEBAIYcZYrPKAIPPVEBoAYlXf6KpBCAEABOCXiiw2TQuLgPsLsTfWiFA2iFe6g/bEKvZWgh88qJPzwHE7ABuyk3UKECBxgievmGeegDAuCIj8mGE7CNj1iHXRAARYA1VkEHaqAuhaGXcAAHMpAAc7LTc0CEAkDBMZwLs9uMLcUKB8UKDLUFH5WAUJWAEJCAqruKXJwEIxXVUQUzKSXSCV3V40zJqqBSUhVVDCiAZsDIq0iKALDVUA0BAnAHLf0Sd/DVVa1QU7WKX6QGAcAAZE3RAasKugg4CojVgZBWp1iLGfhVDy2AT9hVTXWcBCkGS5WLEPUHYXgCHCBLv2yVx+MCp4sIzFsIjSmAebpLvHky1f6RA07ghu0Sinq4BfkzCUj6PjzoFIRAkmrorHl7KZQYjnD4AwfomCH0F3SIh0vAHpPAPIvAh1noASaYRTg5Oy8V15XhOrn4jB5Y1VClgBboyKxICstsWQrAAMKcUn9QgGddVWtVVqdYrmyA1Z4VWS2l1tns2VOb1aZYrm2s2QUA1ylaix7gWVGlgAIABq34DKTt2QLIQa0oUWuN1Wg92XH1hQcrEy0igxCYJx+MnpL6DbkkC2DAgDlgwjI9CG4gqiKgAqmphV7olL/CCXzggh74BH0IuYWooO1iIjvogTZwBzY0IXXsATKwFLlc2B54AiaTju8rgycQMHN9i96DCv7RVUBO5VV/4FqrxYCslVl/OICqdVkMiI3XLQDZ9VANiEV/gIWhtVo7VNLlMgQP7VkKyDItXYsyWF3i5ZsMFaseEFurVYCoxYrPWIHodVkFQEGtiAYrrVmyLdu3WAtLCIQ42UBucMJlYC2hsLIWMIJbsBi/uR0uaIFW6M8q84c+oIAaBJJxOAUscAeATQgmYaMyAB4cuRFF4zYZKkF6oQZ3mAMMgAX0kl93CKFJoJ4QGYdwoC6djJOKe07lRF2roAoqUADspc2sW1ns9dCbldKZZWGfZbjPUFWrdYDrIFZ/OIYT7lkFKAnnrZPhRWExxVlyYYLlvdpmoKXPaIEYLv6AeJBSDKXZpFXR8H0LqBBFAtkSCeAFyU2Rbwg4O2BKjLmREBDZRLQIjECnToGxbMgHfnmJi9gGRIBSlCKnbFCCY2iFb02S6EJBCqAC66IXDGqB+wUZd+iDAEiKHNYPb9gwKwaLlFXZajBSB8jeLJNSfLAHWCCA6KWAA7gOIAYNfUCETr7VAjiKJZY2HnbSBXAHKVVRJ3VZn81Wp0gKIxVba73ZWtZQf3DWXFYAO+TlpfjFb/hlly0ATM6K5D0ATw6AYxBSSPYKunADhjITuoiGHnhTAYXYeXCGLdCA5cnXhBiOc7CDCLiFz8sNUvkEBfC8GhPEbOgCAQaHeeAFcP7iv7KMB3PYvnZoL2kKh3g6jnHGpmxqhDSF53rrp1ZgCca5B5K8ZrNzBZOV5qUYYavAUDsQACcNgB6Izq2gizLY6NkMAJGFZV6jgpGWAAEgg59dVnDAgE7+5G8N12XVB2eQAFwuAAUQn4aiC1g4AJ3WgMhUyR3Z6dms0q/VWn+AlROmAAHQsXqA6NRlggBAWgFo3oouC7rwjyJ2DzH7jLU9JUtakl8JqpLYNKH4FVHAAS6IW8zjBoUBAiOIzP6boHgABP4DB+aZAXAty9s5hBDog0DqIBvyB1VQqm3wuXTkB2cAAiaYR3p1h3aIgh7oxJM2IKooX62O5PngC2cwAv4KIAFRsEKv4IUMmoFWGOZlLQWq7YF52rNHaYEQKAMdSa7lWgc7mG02iI3kogtwYIMQaAE7CE2QNokR7JLVdgq6OAaacA5RHtFWaAEFMALX5eyyKAY6MV2zSIptCAA7WIiylAn5M4glyqYnmQXQiiSyuAQRUrecOIVIcIdmuNEQS8RtyCb5U4Z+kQbTqzfdcCJlCIn07EcKuIT3Po1zEAYKOITk3G65kIoQ3tKLxop7wAdswAavrgo1YmSgJeat1qJfvBYtsvAR/xLoBlpVbJNreQwCXEV9gAcEwezrbopiAJo34aNwyI5yOwdRWABRSDyJAYb9DSWJ+YYemAG8Tf4IlVPeZYhC5zuHVoiARijURViEv+IgYVi/QmWVaiADDcC7SE3V23lwLkWQDj9ZCr/NegiktrCHeXDxrX5ze0BxoK2HeUBzpr3zPGeKe4DzOtdWOL/CO4/zstiXpaXx2yywzTbGtWgFJmiJhBYP1CuDFkCNbpDsapiDEJAad42JcVjNcwQl6ZgHWjgCOCi9rhJYPjoRgskH7EqmiTgyajCEAwCGeaBHfwESTDlHT7eIeuAFQAYNQM8PeuAZZEt0Nb9NcqDoRBeQhdJwZ1cKXCgrPmczpQjuXZNDI/NOCniOm4ikIYEF2iZRJWfCZpiBHpjHEIkNLgiBVCCsfBDPff6jgLDKxG/oJyzwB/AgCyCag2esHslzNRlUconwB8FJZ+UeEHKwBriSduyQZL0IoK5+eAExBV+I9kR/jGbHD6qgZESwztZCwRilqiXSEYo5hieniNup9V3I4NPwB1uIgD5YiNfphcL2P3RYBw0oAyiEiXGoBTg4BQC3bEOGCR2BlFZABy9GCKSSgD6gijK/dlTM+PBVdoy2hxuv+ADxBgrb+qtghmQMkMaogwgoCB8spk3gGJVPCTS9Dl+fFG7AgR44OXqxCOV1BtP7hl4AhHhAvs0TU26uN3yIBFUgNLY3MiQXfHL6hiJdBxGnFivo+q+HeM/mC45idMrHj8ywdv6thgcDW06lUIYWoAI2rjJ8UIYimIF2GAdPj2tnYAMN4AWFodfvQAQMCKuHrbfl0NgqMH2/OodaqIUaKiZl2D6mUnImuYYnWIE8UGfxkAlKkIDniI7zWodWCAEx8Ad3kPrR9Qd26OruB8Orn1Z6GIVH1nz3sAR2kHDOJodR2J/8KBka4dyA9IeCfI4dH9D8rVx3WPzIAwh8y4o8WYaPG7iECheO67ZOHRUkrfxd+8ZQ2aJsFr9d82dIQx+KFheS/EbNX6kQZfAB0vVtHMmF1fw1w9EjnDtuMGMq5OZO3ZMWJ+v5K2r0KNKkSpcyVapPnz9Qluj5g9r0KtasWrdy7f7q9etRbkN4cAOr9R45s2rXsm3r9i1Ydvaswq1r9y7eok9NecuLdJ4/WxLmiFs3kmfCa+fA4WBSzTBihd+4zWMy49i6yJKr4ZtEoNW5c4cRV3MnTECfc5BjxuuELptOfxG2+BzN89s3fzhmPP52rlavb9l2Luwo5sAxaqsjc4s368Cscf7w+fV6r2qQYn3pVu/u/XtRsWTz6oN3xxf49OrXs6XXRS77+PLV6mPXFzybA/642eY5Dl0rAsACTn8xjVNNNwIYgk6BMVVTTwhPzNMgSd3ww4QG8xAY2TfuOBGPO3YUAMs53WimEDqwLKBIiQrlA4c0w5UUDQZlhGPiif4EnsNFCB1RN59S9EzjRlXcAXkkkkiJV5Zf7LCTJJRR5uWklFUeqc89xchSnT78+ANLCG34Ew2FCXXIyww9rCPaid/Mcw0VISwzD0KafbOOO2xg0Ig/1LT5TT2ftFDGmGUKh08tPjARDzjbnHhNPcL8QcEy8eikUDYgKqFMNgy6E80lFHyyH3G3jeOOKj1U4U89RgJZnj9nTIPLdVbayt6S1RUzza29+oqVN7I89SuxeNnjzx3+HGvsdFEYMYs/25QaE274iNHDI/iMUyY4HV2CAxvurHONZuN0pAoQtNVDrmbXxLNNGT7oQqqd6MwzxxGq6IPbo/6I0oIY9azjaP5JgEZySi3+CDPDE+NYWu5j6jDhwzL+uCMlVexYgQsuVRX7sV25+oWLJcOCfHKVuGyJMstgQWXJk3kBJowCk1DjTpnmolMNBW04M2GbHVmWy4SGdjRHCKq4w2a7XxZgBzrL+XfNOtVIQEUtZ+RTZjfX4IMDDsIYRuE38XgCzxQmwLLOtidG488nEYhCVJdQ2nOsG1bw6nHLfXslcl72UOU34fGRk1bhiS91XSDK4lUPP21EQM1iOX6DDiUjxsNtQikSMMd+OYJzjjomFOFPNaJv484TEdRTzbQ8ZbMOIgU4c4692di5DiwEfLKv6KopQIUyscRu4DxAzOBPPLbSc/4CPYMrPj1TgONlHju1Ur/9W1C5wgz32ztyz7Jw/SjM1X1y6+YyPbSg/ondzBNNGRRws/OJ26yDzh8HwDIP7Ox0jniI4gAhqUib4gGMGTBhHdm4RjbS0At03OZTTGhB6urEITzZQQOiwIcnatGJeWiEWueYxyQwYAjmWWkaiUgWPcoXPu5ZDy+ugIf2ZqhDr+iDHrhw1Q5Rxg5TwAOIagGMP3rQg4qlTjPdyE2cREGRNpWlDxowRD2Yxhx/tKIHZaDGPHCEmHGsrho9oIItpqiZbeSmDEUISRPHkY1TlFAyZUFED9jgjzpuURRMMMKdVjeOg3VCW7qziPyAUYYenP5EhkdaVjHOUAy+MeVHQTxZDe9SDCxdspNZuQc8TOHJvpGjGI5kC2AMYQJKrENqPOFGPZYRAjtIA2dtAsc6ZlAGYOCMWycpQwtE4Y62RWYc1MCHKChgiFaKkTTzWAYG2HANWyZkHDHKjGROVQQURGNzOepGPcqggVugQ4vrkEYt4JCNrR0oHrBQwCeoY0T2zMUf1rjDKE55FH3Uo5+jBFkm7eILUebwnwbVBzn2ZtCP3cMX1rBLPKgwg4Zw7kB9GBEbRVeNXBTAEFrUDDd4RgV3iK5b+CgCBobJubLNoQCw68+LIsGvbdlCAEpr5hirQQ0JtCGMkclHJDpRi2Mksf4FF6vSsbpgikkyxUv1oA439ICPeS4USQGtCz0mSdWqhg8q0xgFV4nVQ1nchy3yVEUI6tCnNsFEGT14gj+IucFsUIED6qgHwTZ4DjtEYBdrdSI6CCiBPxTKTvKDBQ5WRY0CfSMftXBHpugXAp1oEDF3AscfJAALfDTxNtlwBzo6wQcK6PFHW+WSUejBDidorCgFLco81gGNZDDiCiy4AB1YFVYrXbV7/micPncbPrz547XCtds9EtEWfiCRCTgwCLsis41z+KMMISgF6ozmD0RgoA8HwWlJZoJWLkxIWpqZyTGe0INj0Ol4CnFIPcjQglbgA7ySiccd8uEPP7TgD/5Z5NZMZtECMpyqsjypxvwUVQ1O9MIUPSzuPU4LF30s60lugEcQZPEkehhxFV6QwQhYoIMaeIFVXjoulHrrFq/ySsIo7huWFPriKF1nKm1pHikKUIrenKga8XAGam5m3+KsYx4R4IIyvGknKM5AGedwb3H80YcQTEJ/OWsOLyhQh2hQU7q1IMQKynALfOTVsh3hwgxaUY8n9tgjIYCWP1QLjzOQY2XFrSdeniLDQBRjoL5ADyWV8hg61GDEP4DGjKOk4rZAhRmuCHSiqWcNIhk30uyBiixkDBaitICRUF5I2fQEjMrlyB2TkABoODe6Y4SACugYckmu0QPewBrU3/74gwJ4QWo7jSMVC/hEl/OnASb4o9YKGUc4fBACfyDRKD0sRiIcwdTu2AMevrACOcCqnbI2hTo6GPG3K2HpJC26LcdSrovHLVZ/OCLO6r6SPh5daaxY5RIhCImBqQWOeNxCidk9UTbqkQsyYKAe3zB22aKBa2Ho41Ib3MYnKEDY6BbzHNEIAbH5pZnZUYMJMSCENIytv2j0QQDRAGD81hGOUhQAWs02igwTIQtH4MIb3oCH9PbpMagM6zpAZAc8rOGLaVhBH+2OsyxkweF5WiUUIq6BIHRQ4pe/ez3lZst1HIG4qhOuxsXl+nyCBWmtNI8bzg14ZxHTHG5YVxWoa/5TNqSMgUMU+8pcDAEZokZxA62OGgx0xuvKxY1ztIMJK5gIf5w4EzuEABH+cEYnsHmbjogiBGyYR4uadgwbUKEjVN8nhY1SDJVNIxD0kDk9tgSPxRmFHfRgBjOKUQxTgMIajrDGQ43iBnZYAiuAGYYaWKACLyRjGENg9onBrp6rY90bylW+33yh3HlDHy/XIVJwr9I8QxRgE/OQK2I6AgvUcMOV+m6HCcrgjGDf5m0+AAIsVOq27UZgE2vyZWAOYIjVGXua1eB8NBiGNCRZgwAKEPQAMLBNznSEIbQAKUCFJTWFkeiDNQgJKPiDFTDDtfmCG+BCIPBeF9gDBMjCKP64gTeAwjQwQ0LFTFEcSzFYwqN93VLgA1EIwg/UgAqEwsWoAaJVn9WNBZN0B0LlnA9+TBEV4XqQQ7r9RWP0yaclxOrESTwEUJsAiAC0gqr5RjQoiOTlSC71QDzojui4QxlIwDmknWacQytIgCiwiXDAQS8cTzU4AwXYwUdFxjWMg/usw1ssC3fYwzTYgzcEIifpBZ4dxbGYwpaclj6YwxDUQA38ADfUzdghoV8w31rcAzuYniWCzB2QQ/Z14ltchxU4zlkUhSpQACKsAzV8mm+swyyohDugIWK4wzI4VziYX0nEwzWwgQYEA520yZpMggkQVjSwlTuUQmL1STiUWv4uMIEJqAODHFuMlETV9EFfhY4AncMm1B+z+dZckI84+tyx0MM9kE8hIsW5+YM3UBV1zAMrqEAN8IAesApU8ANRiKJ3YCJbTAOg6WOv+MK0AWReWIISagU++sMzGgEwFFvKnQMV+MCo5FuFgAM+IA2+4d8k9AAX4IPGRcZMpAIV4EBz5KETDRMbtAAsaCOHgEM99MEKHNBojEMt1AKpzQQs1Ag+dEubRUMLGAFs0dixJJ1WNQVRJIMaqAALqMEvfCNBggc/rgU5WMMSPmV6wAO3WWVdUAnZ+QMlYMAnrImxIZgtLMAcMNOJlF81YFxpIFxZGJ4wkFSOzEQfoNr+AP7YPOxCACDCNHELQrhDAZRBN5VZQpxDL3QCbnSNP3QaLwDNiZwEFWAAUSFVUVhBMWzdUugDYESdDuSgXmjld0TlWtBZKIJmeqBFF2SlabaFFXhDafoDP/DhAixKSVFGGSjAMIlOhzSCAPiJqqHDMRRAH6wDRTqIOzQAFZwDYZIGPoykw+WPPtQlZmycMuDGPKTCYOiigXDDDFCBDEYJVDjCGZiiUeIDD+jAeeJDBK7mJQIheEBFx1Qle9oFOazefK5Y9lyFVVBCBGwWLZbEvqlCC3gnmSyZOwBDEfRAPSyWMFIDjxxDTrRJTiACBXxQcUoGOrhD5bHBuqzPPADDBf5BVq25Ax6gAzC0AQVw2d7FRDd8yiVAh1OCpzdIm7sxBVTUAyOowIgxAgvdZ3WIplpYw5ZQn4/mmT98VZG2BSjgEFM0jzQgARPoz3KSREdQQxT0ALRQIWJ0AzrUQxvMwCX4w0r5wyHMwBsIzFjOAy8YwRNEw0GUC9VEAxX0wC2okXSNwzxM2SS8nQAVwySswBv4Q+bhIT7YAkFQRz5GCa+MJ3kqxe9dgQwMXzKYWJLmBZCCRY3FZ6V+x7GU4mtu6lIUQyAc4lHgA2CUAZjGA/htpz88QggcQi4uIHGGyTGsS/xsQz0UARPMwkEYykkYgqhoCP7Bggb8QSv5ZT1ww/6w4RK3dIPDHEELOMPY2ElHENxKVqJ83A27WcN22Ch1xMEQsAALsII6TAeo4sWluow/gI98nqtXKGG7uutV1ENjEKfqrAOPcMOK8oT+iEIAkMgTgoOzLgNq1INuIlsEGAE/TClP1AMQUAAABWyH1EEAcAPlWM455MIBtII0TKOdNMpg2MpTkMMdqOZScAMUQCIUBKG8hox7ggfefGrLfgVUdEHozaxWjMIFIgVUrIMqXOHD8Bo3LINwvmmbnMM1YEAPiOn6DAwVUIC2XKiZqFwfKEApzIOf8JqGdhdn3VI8oMkW1AMfWdYsckELGIMyAAJkbdA4IM1ENE+VON8FRv6YjfqDOLxCB9TAEOTWPKwnzrJFuoLFOsbr3y6Fcsns33LrUfDDsSzDoCBY/8VWgvKC0UaGifgDFQTTv3HITPwBuPRqv3wCDnABTpgXHurDMpBBD6zkvoKaanyp40ktgZTFH5zRHuEDFuSDGDqIP6QKsemW3bCjKzxfKF5HMtiWDHhBWXxe4a5F4NKsPbiCpjWvWcBDMXAY9V4FMygUPlwMGeBAKfzXY26XCRjCOGinQlSDPrSCCbCBTxgbl7oDEzCBLhhcjngNG8yAKsTDHZKEMXmlxKmGrHIDBZTBNDFsT3wDPvwkMNiqOExDO/THZPgDG0iANBSF3x7JHdCDKP5ha1UQBR18mwq8At1k71s8L1j4AviYsFr4AlixMFMUwwo/xTxgABewTUmNQ+ZWAwXlyOoYggQAg8fmSE0Zq6pdQzgowBMM8XnpwwyYgOymrz+0VDB0IYfMQykEQCsMTELE3Qk4ELVwQwSwAT7YQ/JBCbeaQgxdBVShZw1AwTxADgy7BQqDRSKs8RxvBfl0TB4rxa4URT1Qgv/YacHgBjqMwyZoAKEUKLVsxOUsA9hsLofsDBVEQGwh3Jr0wQIEA0ta1jloqAJQAvy0ZDwcQwswAT4g0Ek6QxW0QDtcQzNtAzmMxp1wAyIsgDPEKJJYBTv4grxJIKvk6Ldhgi73sf5Z1PFXnOB3GrONToPSMTMg+8Mp8Er7ACVsbKmpzoM+RMMFcQNnHY+b+EPU4EMbYAB9FSdHcMMT+cMkKFMq21c3bAN/lIWAlcHgobNFUIYz9EARLMO4fNo0jQOqjsp/gpp0/EF/eWRJ1AMeqIMY5oYoGIEYXEyiIsmy3AGSzhMN+gMt2NZSPgPwQvMxv6x6eB0RijTMsRvhgipgGAEFnDIF8AJJuRc4uVEZ5Icq3EkBuoMh+IAw8EID/EGtDtk4nAMN4sM6UAAX5AKZIYb+TBU4+EOaxFMBlt83zAQiUNmxql016Ks+5CQiNAP7vRdCvISsMQEwOCaoxQMgxKFJ4P6DEfRALhQJlISeKVgCoM3bj8QBD+AgLQBGBqP0ViCzddiDEyyzYIdnO0IzVBiCA7xAChTAweEGY+FDBUuAAvRAQS8EOniGBEiASh4yh3TDJxyABoSABEwCDpNtH1BACHyC5cmlnRgCL6ADE2AA+hLIOtQDOqBDfjjDS3BIOGzL0BbAJzwZh0gDbviEBNiBrRzLGXjDSScFdTzDiMnAFRyVYDsvSasHVEzldiMFO0yDycIwVEzCAlgABRQAsz2FZroDfMf3xUTBAnw2I73EOOS3fuv3NzQDBlDAZ68EOOx3aBQ40vpDAKAABkjAJwRjZKzDJygABmBAADjDzlA2hv5T9jncggIcQAEUQJhuNm5wlABk9qq0rkJwMwbMAjTmIqyhgzmEweWxQQTMBPMeiZbEGfX1LCaogAwMAY9WdHh/BWFbxzT03krLK1T8mQebcD3MAw4cQAPokZArxR8IgAMIAKH4HhMcAAUogHMjxVS5tz5cTACEAAYcQDzNA5u3uZsDxtNKAAYUwDGKSyvdOZ7PwycQAIAbgaPsT28HeqArMAVQwIQv7TGShDpnA2xAiAJQQABMAWfxR4ZTNjhcnAMogAB4p7KcMZDUCi5cZpNDxS9AgTyqwfIOOXePx3zorKq7giXQrUhDxTiEwSAUl6cnBT/gwyUUAYdqhaxJQP4ZyHFTXEcZBIAAFNxpxUMBYIAA+ECVwyY/TLuXfEKyO4CCTod6bju3Nw8BhAAFoMCyzcM5lrs9xHE/AcYKFLqaszmIyLd834O1v4ADBHGVDM5hs6BS8MM9EEUcFNoI60WuqzpXFDnNeoOsCzbOJblId2+0Z2Y/wa1WREMr3HhS1MM9+LrF/wUTYPm1zmuCQHoxJ8V1tICh9+bDH8U7FToFzDV4xsozX8V1VAML/AB2jzzBE3l3x0d0I27h2gM7EImqW0IH6/ES9lO69Ts/bQUSEalRaI+LQcWoaHex24MRpFlg69wktEALhATDM5o/BF2yNGpSWEUcPN0r4HzO//7Nzq/HsQCXSFNFsjj9HCtulVQlxnPFuWuzVix9ylN3VxAFMkRzksjwC8/b0q+CbamAHiDa36/9YLc9e0wDKJDqHGOapg75NOSe8lUlPiS8frLbYj/SdSQCO2zVO/67DOgAK2Aw5LeFwX/FdcQgM18f2Qs2x2SvV+m7fNyDagl96Fs3JF7B479+V8S+7NtDyTIzPdwB+eS8NUzvzNq+z9cFVFBFa95+UqyDIOioDoSC2hu/zrN6koCCOV4+PUjvdAu2N7iC5bcsVIyCybi9P5CDJbxw9k2VPxjDEMiADKgBQKjzN4+fP4MHESZUuJBhQ4cPIUaUOJFiRYsXE3Ibwv6DG0aPDun5snZP30eTJ1GmVGnQHrxi7FbGlDmTJkV43mrm1LnT4TSSPBOW9BcIHi5/9xryq2dQjY4aNX7h8ycUaFWrV3lq5Ii1IVIr/uxxFTuWIj1/TsimVbvyDLmwa+GKDZvDn1ms1uBZOvpwaTIZOmR48YevYFzDh7Fq7RjX7BnEj6uWdPwWcuXD7Chb1pwSHlWg+koWKyZrqsOS99So0KHjl796hTfHlj1R8eGWsqzN1n2RnatiP3cH35kIXmbhxxWS04uUZ1h7rkCFZb5Qn9RVQ2So0GPONXLvs2sbLslMFr3p35Hfs+erNHr3Jke52vseuaWRPPWFtWSKPf7ohkvNUaMGFoZ4xSDPDjIHE3wQpM/BncJDzI3OHtyNHni6qFDDiS7cMDhr7GlQJn2QCsIfmBziR6pXnJJBjaUcekaHemD00EaVIjQsrEDIae/Gw/xzA6wfidzLRLuKhCwRcs6rCRRvcmtyIXMEUe2HUAZ66JkaaGxIqiTBVChHHe2xhr0w4WLGl2J8RPPBknyBx83LZAmxJud8McVOLwv6RYan1DDoNS25hPGVZJ55BZ8uX2ltziTHjKskb0a571Gs9LFGFjalvPS7kkapy1O12JlGRJT0MUsfJyhMCkYvWoSGoi1pxCcOFswRh4U4DFpFBkdHtTHSw0RrM9iaSv6ShbRjHTSLLuOYBaoYZmgSygpvUHRoqVBWU4GReSqidZ2mBvOHFhYMHEIPY6N9b9jDpskQ2nZRUi+RM+lFryTM8rWqmGloYsebDPNzSKpx//yhtUEnekYGc64YIsul4rgCih+y7Je+d+NiLpADNU5JyCFDPi6sO+YreaZ76AFFzpguXDLlhb5c5QcVaqAjnu4qSkaHK2q4Qh8YweVBBX/cUdk9jjv2hxlQqFUaI3ISkYVEqYWzx5uRsY6JnWKQRIkefdgxxRv//vOHGzVkkGEIWkC2SEZBuMnZNX7igeaHGnitsevdmEYMFHbC/rshe8p82XDd8sttcZTK/Dgl0P7sYUbyFJd6pQYdWKDDoC8v2hLcSn71Z2cWBPkFqnIfly3wwxwhx/HWg/KHHG8SYZf2x/SB5w6Ad78IKfk6ragkOU8wqHiDCnLHCxZ0UJhnjxyeB9yLDYrYIFjBDV6z15vemnDvDfLGEfbmJV88b5hJX/2FkLKkcIuEMkUWUMBaXihantKB17tNojcaWe8HenjFD55hOn8MIVCweV9cwNc0f5gCM+5TGnMcgZTlPXAt02DGBjl4kGng71QRKQk5lCWn5fEDXO3wQtt+ICt8gO4j9ZBhSaphDm4k8EvmgEb3QgiXCIrHH13okQVDhhR2ECyIlrmDN5D4wNDMryL3+P4XaUA4Ohn8YATfGosDm0iWIerIH95wDAjzlSz5RDGMY2EGTtqokHvICyMlMYWaJKIOoNXgB9UYDBjjCKmNLCY4b3GE8qT2E0eYhYqBTAtSMtTIII6CHmyUoz98MY1EIKWEXwoFD1ggA0GAi4aOBNMYgUQPdkxIVCWzSyDAhkZTcoUcKCvhA3tztioaJBFQm0oJlwKNOKiABV6A2wxn6SZUPoYduDhjyMJyBktYMplYYQdMbvm+YiwymwlRomMkeZBt/UUGnmNdNcO0TMQ4JxCm0hg7zuAcdNpmKMuK4z16RJGr3YEdPcpmPeaBnb11xG/zFORW0KMefzjCG/k81v4J2ZG7ShqUnrhwaBORYraJhAUesTNPUoSyCujZ7R4Mo+hBCekenICTmh6ykxu8AbyTiickcSwJLkwhkXsgxRG4mF1DwFUNoKngCrLq5kwrpE7NUI00e3JTWIpxB3KEE6ljkYUbxoZRfxSDjWFhhxOsgU1t+YMRP9CBCjBByqqmc5AVCos1ugAPqnroHqvEnyzXypVscbAkmtRdQshRDCGhjSEFMQcUnoLAP+b1lG11q0EC4Yqo4dU7V5vWyObKWKyA4pAt/ZtEG3JCfxwpnEjBh0hlwIN1nVOzRFJqbN46DX62UkOpMkgXPAiWo7a2KkiRRU532zV6jIJNpyoJPf68YU9X+WMYamCBCrwwDNeUkrfCcuyNmGENtJDMQW/pgjWiVl1msi+IsWRIWMjhCuUClaybYwEmPidelBKJOddik2crMx5vbBe/8t0JiZQlRXrcYb0JEViG/ipOdwhUBwT173yJZFt/WMGD+exvWt5Cj2kMzCBZffBjZCFT7+kjtwoRiitckVOnJkRFrgmFanSwrnroA5Af1tBrhaPQYpBjQjk9CmF5VzB/4EIfDGXTzGwsKXrwiLLQ9IeZLlkM3LHEITsTanauwMMkFwnHxxHKNX3RloNceCeUGbDZ9rplyLCnyf1CSiDuqhB2+CLNDKHYEGowAlqsg7Vq9lCXvf7DHK191xeZ1as1rHEHo8TNz4+ZC21b5zIfCWUU07ioQ6qBWBlcgTvBbbR3AP0p5jCDHGfQhymsgSRO/ndIJdEaLuiB20WHyNOfvkpYCmy49P6mJJSmB9fSZo5VEBMK6wKyrTcUan0x50Ku2KQT6BFeyu00JSQxC2UAFldQ4AKOP0a2ZXwri24vbhpHFpU9AjGKIy53GFdQgYtkBcRv//m67YJJub0RhLzI9SAkIol0QNOgXjuHRE5F3Mcg4A2fnmjejPPHNBT3N3oUA8FD2s+42SuIv6igEvFtuHURSi9X7yXa276DKVwBj2nQQ5V1OTZC7GEewtEjrLJgRhDYcf6HYqiw1R/fjROgaDjk7qUkrIwiPtzxFx1IbMY+v5GyPXRchTCjGInABTOsYI9EqNsR1ijGmqSciJYFgh5BmIYserrhhKjK6bsJC/4STC92yIJ4vRuFXN3X4nowAsaMGAh12+4gqP8o4J1qCbVMQY5prGnDpFl5xMfs7cAHpySusIaPVZas6bjhaxDZ2S+u8Fw1yHDyIE9p6VGPrCcDrNZuuscd4K7J+3SSYqthAS3A1frUu67eu/e9TCzhCN0nqa8dNsXHjv6MvdUACkkD/O/RM3joQ/+4OTW0m4phipd8BdKXFAcmQjkEvzd9+g+Sfvl9nyp9OEbkZhESLmBN7f60scLdnUugvNHvrt7nn//6fLja2+X1/OEM4AHyTGwp6GBzZMBA+qz/vuP8HBD17oHqhk9DBs2voqgedGU1eMA1KjACHwMCQbD03IDq4u5HwoIZTMER2CScSmIe9ABndABL8G8EH3D/bBBVzCEUkmbe3gJlVgxNQMEXUIa7aMYfXgGxRoAOEqjNctAyRHAE60F1Ts/W8mOVTgNN7GHOKCkIFUIqquEpfiX3nnBjcLAMPWIKa2AxaszPSsLsro8+6IEcyG4ilsILmg8Nze8M9dAi1HAx6uEV5oEWUgoakqEBq4uRkC9JmGEUgJAivqQenq8PgyMKQfAPl2IIfqAedP4gUAzCHWbwBBkrRKZBL4ywQnrnt6isIurBCSmxMiwxAtUwgXgACgwiGVTgEM1FBeahoB7suM4AJzzsQeoKHkLlFYMlFh1wCmWAG37gCqbLHdBlMPTgRT6QovzDRMgsv/zBEooLGUdFGfuvHoYBejqxPTDhCuoBFOHG1sYGHuynzoSjYALrDqQDHMORD/GRL4ahi/qRFUojGUaAG3yGzxquGCxPTraRLOziDNjBFK9xH6NPHyXSzoahGf1BEGrAj7bnFbzgfxquMyyBHaLEFceiYEaBuBCpIi9FHPnvD/GhHcqp6QThZxKo7TIJtGbDWViGJY/FJfOPHH9gMaChA/6ggUH8AQokxiSrC4PoYUnMAjgOgzmsISWj0ieTkSKxst/cIRkGZR4IUoEKRBTVrGAO7iGpLCIh5yCKwRLEjdG28lGAsgxXoQMyJvCEwixAYS+HxAurwk4QzQ2sQcTiMh9DrjApoh64QQZujyx9ECnoQj6QDD9O6F5ICDGZZS5HEOn0IComse0KroxwgThCJVt6rdraBNGKIRBw4cjiEDOfTith02DIz/feokdYkxmExNxOY6f8w7gCLiyuTYS8AeW0D1/kbzYNsyNmqDmd8zmhMzqlczqpszqt8zqxMzu1czu5szu98zudcykY4UX8QSnU8sNOEyZ2zhUCYWtOsf7DUkU9EGdeYCII7sENRMMaLk05o0UjhnIwwDNABXRACbRADfRAERRc2EZ6fBH9oAoXAsEUEsE36mTREIR9NMUN9OEEZMESFJI/VWYxf4AO9KBETfREUTRFVXRFWbRFXfRFYTRGZXRGabRGbfRGcTRF6YARdMBoRKkamDP/1ANBrmkU2AEU3IAcnMAXHKFJvVF+5ANJru3lQPRY+MEcNGEEVGAEuLRLvfRLwTRMxXRMybRMzfRM0TRN1XRN2bRN3fRNw/QCNucHeKADuggRqY9EroYikCJEmLJKwaQkCqESCLVQDfVQETVRFXVRGbVRHfVRITVSJXVSKbVSLfVSE/6VEVYhelTgBzCBG9ShDR2w104z4EoVUBcHQVV1VVm1VV31VaMTXK5g046yQVH1Vh/KVHV1V3m1V331V4E1WIV1WIm1WI31WJE1WZUVWJGCEVZrUc4TV6V1WiNMUGyVWrE1W48FKbW1W731W8E1XMV1XMm1XM31XNE1XdV1Xdm1Xd31XeE1XuV1Xum1Xu31XvE1X/UVLn5TJaK1joznTbLpXwPWXy1DLRGESk8iuAgW9RoWYInIxNxD/tjuI6jiYRHiT73JMT9CoXQiM1btIdQScUQWZD6qduBy7c7jGjG2NIbxIuxCShmikUi2ISrWhCCjJ2dC/Uwifc7T0xZSIhCCy2OF1v9u7TVZImhTIiAAACH5BAEKAP8ALAAAAAAgAwkBAAj+AP0JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHLnxnj549+DRY7eSnT5v9ODB00fv3j2SOHPq3Mmzp8+fQIMKHUq0qNGjFvXpuylwpSt7oKxNczQtkatAxSzdoWelmKxA3hx5neZrGlOBS/UhXcu2rdu3cOPKnUu3LlKl9s4Wm+bEXiBc9kyxs8bOHryEhclJlWrJ251iuIoRtGe3suXLmDNr3sy5s9uz/kAV66LYmr/DF/OyY+fPCTwr1g7bVOu5tu3buHPr3s0bJz1rxQI1piyQMmiKak1SVpuo9Ul6vaNLn069uvXrPmn7K1ZsVDFQk/3+ae9IGbpAWbIS0fOFFrv79/Djy5+veam/wYki34NuT6nOm7QxA48piUwj0HH0Jajgggw26KBDatHTHSjmEaWWWgbmwJ94D3bo4YcghogbPZGB5w9xSN1DGSiWGDieiDDGKOOMNOJkIFXe+GPTW+adYY8jNQYp5JBEFskhPNOAAo9pOsqlD2Xs4BLIYfS8aOSVWGapJW83yUJPIBxaORc5zLhx4JZopqnmmnOxc88drCFoF3FuuCInm3jmqeeeGtmXpCU63mnXk/5Ywowp7fGp6KKMNpqoG9NIJuhlxBUomaOYZqpplr4wI0uit6klFTn9bWrqqag+qJY3zOQonTX+iZSa6qy01jrdTfbIYoqL0dF2hjWu2irssMRa5l8xzDTH4XSUyeJLYWIWK+201PZEW2OfRhtdsmdW6+234ILkCzx3KPsedDkEG+667La7EG2+FGNFcfFBJwsuTbqr777hUgZPnYHUNCl1lBl6Ir8IJywsbXdYIyWKCeZ4xsEKV2xxpvCw44g3MqmbIGWjmHTxyCTvaYov5JBjCngDu2ePPZCKXLJ0SqWVV38vn1jzzDxTBJ0+OPrjiGwemthyz3Xh9aSsDymXFtJQF0SoN26wZk8iiGpLn1pWZBv1ZkrHtF2kjviS3xnJbnWGN9ypZE9NEH+NNGU5nMlkiDeRY6D+3HEdx47e3uBSZlhTVj1NbDUNdNg03oRVFS6JfCdLlPB4rDXf36pFDi7g5Qzr3SBKaAlrmK9FWXn+uMIOVr7IgizpF9Fjz7hiTTOvIzmLd3TpC2/H3cGU3UFjZLwbVSprTtCD9mC5S70sQxceBF0x68HpBmo6F1+tPezAMzH2MHsTt4h3mOKf9kBBF4iuxZz+/Eg3McVMMY5sXOXl6J/KjimjvB8T/g+iDDny9x+BCAgXVUMUh8aXk/4ECB75YRxtAEhAPYmKHUGg14FWB7oYqWUUFKpgSM4nC2u4QR8m0hkFR0IogfjCG4ZyRXFWKMIt2ccXrpBMlQYCHTMJ6UL+/aNhDRfClJs4wR8w6VZbaLOSfynwfEO0IHNW8z61wEmIDVILKGQYxYzQgx584dj76KKUf/nii13ckywCM0YOMYOBNMrY7tLoPNa44WoapJRaXGENR6xEPFik44eMExzWWEktgSjMldYWyCEy5WTxakpniBMvX7CHYoIcEk38wb8nIgQ9WApeXjJJxO1YAxTcayPYTuOPE/ZPlaTEm0DOUIwcae0lWFILMwbYSAKuZ3JwvI1hZAEKN8WSRvbwRhdgOZBkZjBLlKnaMQ3CDhi6hJm2YQou9ofNaSbIP83hVUJugq9gBqlZ3gSkPxLhDV5apzzTYAYzMJnOBUGHHLL+mGc3oSO8XnboJKOwhjlF+KSMTSx616GNPSzxqVHWkz774aR6unmwulVIS5E6Jt0MSR/KnMAfF30ofCgDAZCusH3+DJEpigHFIaoFHqNQ1kCrs0lHjMJjIr2ON1Z2ojmGhhkt1RIzphHSIQ61oQ0iTjF3mNPpaO5LIJ1pQbzCppuYqahawodmDOOPicksi2oZHT2buhsMeYki1cQTZY7o0xlxIx6bSQ9FEwQKIJGVN6JyhQIl8iSq4EktsLOhPxihBn9otTL3IEcikBoi4swrsHetDTPYccR8RUQf5GBPSkV0D2bYdUta5QEUDGsXkflQqgoSmSkGiNrIwuWGgZj+J1Mv6w9mcDFP+sDF3rb0ix/oYBUHUYc6Dpsif0DOnTICLE/b6tq73MdZoJLIWseqJntMA3taioMMZEAHqeGDDnSoB3GLcpNR3HZI3qNuc+kiC3jIcLOK5JPZglokblyhBjWAAjcIoo/vhhcf4yUKkOIrpFJ9ar11uQk9PMVRi9zEEu/dk3Vne6VfqEAHOhjBK/jr33rQhhv1mEc73NGOdqhjHjzxRkwtO6QVlQXBfRNIgQA1V4bAA1CtvRKQcgwifdRDDUP4wQ+8oAZ8TLDD+jCHDirhDi+wYLv51QNpSRKTFtVYRLrUIYzbQhlv/AU6zEXITea52RndY5k89lD+PcxxBXME2c3iqAda/OsOd6iAEeJZhznEsY5XXMAcciaJ5sy1pZWyeMtEARmgwryQ8n11T7bEEj7iwY0h8GC/5hhIf8HLDRbgWS0hrgc0LmCMMjPkJnf4FKNBxJQMphnRIOmhPzqoEXpEmk+obl6R+OGPSl+a15r+rhdUIINfTBkf8+ABJnYiUzXt6LOw/gmhmNG6K0dkFMbkk1q6Y+0Q+Xq/HBbEBYZBBx5U40xeGC1OTrLYR6PpSda4A6mi3RPirA+5HsGFJV5dJMoAydQK+rZ36RCHeYhjBJUg7Rpk4I9Ai0RUYttTbLpN76T4QxYT4zdEAG5mTg4wSwLnMHj+5fyLcfujEiNoBzfMsWeRfJGtEm4NPT5ecZJYwxSfovBHHJFCRd0khCC3NLiDrQY1BFoNFxi1DJ4M5YZ7hDZgwuqapkfmmofEQKdlITwO3CjM0hhLIS8INajx4V+Y4xfGSHvajc3xgUDumouiCSj2avWSFGwakB2hPZghddwuWEthXwiwBf33TLGjfauue0HyBpa2K+Qeq8MU5AOh8QcFfig0mQaYNOWIbSo+I9NAoI4cnxCa6BNT7Qz6pY3ClOZU3khMkeHrK34T94aw7yAxDLTjbo9i0NxIlxfK3OGeqcwL7/MRKZg3TER6haxqt45ikeqHPpSU4T7u98Ap8p3+rw92LPonXbqU5AEvdKPUNfFpqivF6a1cxvqkS9htFIGa/57gZ+dHtNLlPNHfXOLcYaeHxhPltX5Zwg5eQn/YYX880X2W8Hupklnit33h4QrmpUQ/QRkHhTHWwH8LooA7cRNZYyvkcGsSCE7UcxQ0QUMAJkQB5iDTUDUcmCAeqBPsgGa2chOuACgISErk4AoyEYMYoRbi8ALcMEfXQA3ncGXL0RBYRFxCREP05RE6NyQziBM9qF6osm0RWHf24SzxRxS3cAApQACfAD3+0AoLUAAtsF/9BWAHoRbb0AZT0AoBuHj+IAqXMAnr0BBatQ6tQA1OZ4b7hWINcRYtiBD+geZwDFEPi7AOQDgfVQg/CzaFtDJZyGceGUSCRcEEDZACB1AGjlgzothfAjEPPaAAFLAAZHBq+CABB7AACrANh1gQwEABBVAAPeAOxzGKalENPUABK1CGbQhgxEiM/oBiK4ADRuAPcKUQ/IBibMAGgNgQKPYJonCMDyEZhFhf5Qd+7AAp1OIE4sOF6zQK1xcUSKAAEqAAVEAN3/AN4BCP8hiP38AN3BACFOCKSOAP3SAO4tAN57AOAjmQ40ANBUAB+cgLdRYPDNmQDekO/oAICEkBATAO80CM7iYQdVAA60gFDEEZLZCPFDADgYiI/tADGCABEoAOipgQSKCSqzj+iwQRD30AAi0wD48YH5EIEjdxSdNCGYgye5mUHNaQSCDVFvXQDjggASvgDOswDvMYleAwDuOgCgdAATjADVMZj1ApldfwDRqgAGLpDN0glfP4De5ACSrZAAeQDdXwju/YDdewDXQ5l9zABgepAEwwDueADn75l4C5XyswkSHgD+tQZ4g5DyE2Dxe5DBiAkAUQDe4gXsVYmXeIihQgAGXofPUADAKQAiRAASUpJDsJEuRwU9RiRQ4VbQLVHC10F+7wDdfgD2FQD+sAj2Z5lvgAC3agDrkZleNgj2VQBq1wm78Zj7NZBzPQA85wDl0pj1QZneOADrlgiwtgCO5wnOD+8A3oYAcBcIvY+Q10SZfvmA1wuQ3j0AAIGQDAwA1yeQ3wGZ/wyQ3jIAoLgJALUJznsJ/8OQ4C6Q7rEA92IIYYoAGjGSSl2RE4qInEAh3zIpRd9DZdRSo7WBHzcA5l+Q3i0AnbqZ3y2A2H6aHzOA59iJvaeQ34sAzhYJza+Q3rwAuiUJwimg3zMAmiIArzUJbHiZa8QAEH0Acdepx8yQQFQABl8JzyCI9wCQ7cwAsFsAEF4JE5WX/d2BOgVKFbkn2vBGNddkJYOhH8wKLgkA3uAAhIKqJomqZm+Q1n6qH8qaZvKqLfcA7bQJ9oSpXOEA1tKpXdIGfNAAKtcJHAV6X+HyhB3wJ5W4pg9nAGDfWlD8Fr+mCi9LgOp3AOkqqmmJqpmrqpaWqPl3qcdfmpZ4kOAgFg8sAP9TB4VEioOnGaGTktndJcN2GANAahHuEOOnqW67AI0nAOnPqrwBqswhqs23AOzTgQjTil8JGgfUIPoOCA3kIPjpBtdzUKMKVOKHiM4yCqc3oKp7AOwxqu4jqu4bqt69CSJoQSV8KsG0FF7CIpZPUSeHSOPxGmHpoNyuCr5Lqv/NqvO7qNBWGrMsiqLJRbuwcu5GAmAos5gRNhbFEPexqV2SANaZAPouqvGJuxwJqECDENV7SuBDsSBkivw7Jt4jRNxOEIu1KHQ1H+D+6glR76DdlwChpbsza7qWyKYtHSONO3E9Chg+yiFpNDgKVDKDinQMpqcRd6sVIps72QnTcbtVJrlsHpDjIpEKyStFS6ejlxExblLhiYd3TkH0GQfW2hVejAtGsqDUqgDBE7tXCbsVLlClw3qFybEymDMH/jTTkUJ2fLppk6nWobt4QbrvC4hw5xOD27bkJjFvtiD+TQT4KkTb6ntRehD+uAnpo6DovwrYX7ufs6pzoLPfbgCtDHjXdLEswACq+6LrJwXlHUI5XDFloVD5bKqedQC50wuKDbu2naDe6wQiexRoubE5TILsebP7TRBcUgtkaBDsKaDdngu9QLrC3+CT30YK3FSxIqqzCaNxNR1DhWsCHO5xPPyLsiOg7ZAAfSW73um6aIGxGQB7uoS30jBA8+mTC+56jekn2WcEkXYh8GESFP8qpq4UAZYZu5Gqzo0AvK8L4Q/Js5223bRnd2a7+5lzoWYwqyU0Evc3MRVRPaYWtfIq1WAA/pIgv/GzmucQZKUk6athSMFg/bKq7xEAntG8E6PJVkerUKETyWu7UY7BGU0QWnyy/3oLDosxQZIzzuM2vT8BUQFsX3sE3J9DbwYBiQmxL4cga4gAtOUAwcjBoI7BBhir6Zeg54EA/Tu8PvK55uaBEEBrKpq3cLmypEpT0v5Q91g7Uz5wT+vuAGzAA6F4I6aaEc2TMZvlBXpiAYaCR4DWen5Oqii+AObezGvnu4GIEuWIigIdsR0OFVCqNFtPY1lIELo9A/8eQNZ3BjizcbCFW+eaEiBQFD36G4eURa+pC2b8vAteC2mOy72xCgRMshgEKyMcKufBUa0IrE9+CafEMbYuEPiVQ1p3cgACeKaHF47DAxtcohT4nGnDoOynAKsRnMhWuuqloRGPKF9ctC/uALresuXVLM7aIPreIG9OAE3ePONGgNsiBvJwKxNZsN+IAF+CDO6LyvssgR8PBRyAwjykxbYHLHp/Jz2lcytJHKsrBMBxPEC0Ec8EAOQUAPypANVKn+sRPbCVC70FHrovZcy51Mmp/MEewgQyDtKKuyhRqtFr5gDUEwDQZCyxaiVQAWCbUQCd8gDWmbseWM0i5ts9w5un3iDw1j0ZBY0xthCt7Av4wCuQc7Mj3iBs2by0WRndnAxr1wCp2QDeCq0JgKj50AzFGdsWlNer4AtORXxx/Bd16NfdYQ0etiH6YAG4K9E/qgr9CZDb3QCaeQDU3Nr+TcC3WNsWzqwxcBvlsy0RGRCNRaMSkxUSWTfa5hGjkdEbwWD9wKDu1QC9LQCeHQy786Dr1QC5XNr5oMEkvhBnW7vR/hDb7ANBeTUSRTS1bQPTH9EfUQ2bkJ2YzdiOYJ1zH+iw+AIA2XfNvCyp1y1nwvUXWbrdUZgb/CbTHuWjGp1AWu8xbrEA68m7O1kA3L1A7XLazjIA2LUMPYHaxo6Q/rTB6cpCac/RCjYMEXYwpflzDQwQwn4A3OSxT4INtNm7bZgAenkA9QPazfQN34MN/5HbiYvcn+8FFYTR8BzoRZ3DPqmjCGYQVmEoVCkdrSLY8GfQqLcA4c/qvZUA8IfeMdHrMQuYO6NNNEUuKnlkM8c0rjHbQv8VGs9LC3CeHHmdb5gAXzYJ4YPg610Avg2uNpOqdaVaFFTA5/bR1E/njO2uAK49kjvijQwSKHMeYNkZ0xLpXTW861sOEYPrMJzeX+MzoP/GsJmp0mZb4QjzwzaF4thOIE5nO2/jDnQjoOnYAFFh6ueNAJW87nuemipz0QerPmA8vXGwG5E9MzkOLpesI9yyTAa/Hk+4rS+aAEFw6s0xnrmH6W4BC/O+ELpmDqWQ3qzXrNJcPg97wd47KaR2EPlgrlODuxyiANqh2s8YAFOVzr9MiSyf0Q/pYngy5m19ozuOANm44mK4Kaa8Fr4ayxtB0Jlero8ZgN/oAFbEzt7wiR1lIoGb3XQ9wn00DgI+ML+ALnRXITzdvMRFEPt2uz69DsvcDewXrS7P6+fPbhH9Hm1/4h2/6GbIM0GQ/wRFLER3kUMD61kK0Ek47+4/WgBPXw8NT7DQDLEx718Wxy8QUhZ78j8QRBXGHmcMwFRTavafy1zKXahDEsEYbY85yOKNdLLEqBCxm3FhALuCJfD3BA2Y6uvvPA0squwy7K8Rcn5GAH3hQhZ98gCbEgEfhwE9wgCufW8/rAa9QgCuDg9T/vD8JQCqDW3wlxWLlAhywrZg0HC7YQXYvoD+7QCrwg+M4oZ+sgCseA+D/sD8vAB+PQcEavKfRgJuHeEGf8uQYNB7fO7t9wCoBg5ZUNjy3/E8WU+ToJ9hPhDlSAAbDfAs6Q9AmBDkbwmBqAA4cJEd/gA7jfA4RvxvrAC49JARrABge6EK1Q/BjQB0b+Zsb+QAkagJAhIAo2rxZ2QJiHb8ZyNgUTuQLT6BAQ2QKwjwFMgOtKTz+8/hBaVQ9B+rkuCgeWXvX4auFZv/Lr0PZD4Qj0uyYyryMAUY/JAgoFQxT4pg+fP4YNHTKs526GhIIUDuKr91AjxHUVC2JQ4G/exof47h0LgKGigjL+7JF0qE/frJQVC/zxlxEmQ3z8JgmoiEGAKJk7IforUyCoAGA6jWYsQvGjAGpOd44UEKKihBbu7hkFG1bsWLJlzZ5Fq5GcP2Zp3e7kt64bOLp17d7Fm1fvXr3fzq1Tdo7vYLrZTuDLRljxYsaEv8V7G9mfPn/FrEnGnFnz5ofchvD+4KZZoS2gEkxLCCEhp1F8+iYpPY26xeqdGcsQjI2Bib+vV/1lzV2gmb+FvgOkPh2CgFewEY/HPkgbJj581ARggB5y5E7KrRRQyB1CpNGvM5CbplDgE3HO7d2/d085UDHK8MvaA/et8X7+drOdwmMd/forzB888BmQQAX7++abdb6qzz6jivGlLQkvxFAzz0DTLKMeYkOvBXDAGkklECnAYDKjRlIAu9jAk26jhbLB7cXdeiOpu4JelIAN3nZaiA0XT6NggfUi3OirHoZErwBgmvNnxxcLWMcqkjoCLzftMuSyywsp86UYL0nqyZ91FkRzMXd66QXBcQh0sJNTEkv+s87BvhlnuzEfegkUelTcM1BBG9owtMxGkpJIDJ5c0Z8DmKQIg29I9KcASCnQACzKYKmRyBli1GghQyh6kQIjfoTpqzISJdXH4kjyMEsiFTiyNn9WkBU9Bah5FaZotDpxy0GHJZY8fywJpFiG5jknQTuftWucU7Bwh04Gv6kFH3DehBbacRxUliE3pnkpXHPtK1Szl6j47sUQyrW1h1wjBVWjEueFEV5YK82VAgdawhGmY9qd1RD2YKJs1H4PaAVQkr5igtX0mkFyo4xawLeAeKzUSCETeRzvXJEH/fNPYvERsFuV6/omm3w6ccfZ/cbJRgllZF5ZQW70JdYbeEb+BpqzdDusRikHdD2V45LsgYUAWSk4oKVeZdQHEadPw6AARRzetwWCC1rAHaUfGkkq9GDUE6aRlMoSvBTT3ve6thX4FO5QEZS7yaSNLeOApwM4pqigB//SHzfaqrhLfnLKL+ecs8mmC2sV9AeOepp1nMBu1lm8WMqKccVCwkdHa+jMFLJDAKkC6KGegBFGSvWCAtht7JL8oUJ2CQQgo14ZwcHAaajVOxhIfZyRgO0CFJiF6xz9geUA5TVwxnaHvvpk+YKyqjKsjAwR4DsKBMAhp859YyKAHQVwlXT3OaMsEYYSV1yuzHOmOR5AtFUQz1NOqcWZ7seYbYwDMsrSx0v+kvU+Bo7FdJtxhhEoQAJRuMN5RuFFEUIwg1bYjTWlWFIPYHHBncTDDi0IQRmiQUIZmemEIWDDpOi3EcqAgw0haIEdLDgWylyjDDj8gwdhdwwqYGAGiJhac1rhNSMwqoFPjEwxZMHCws0DZwPs1ikiMTn+OGgc0sjGFbF4FwclkVg5cAkU1biRB2rmHvjABjaomKqGvE4srzKjUfTRG+qY5R69eaMfe1OPPAKpOPeY4U4QCZFEkkkf8BCT9dY4SZIUYxqD4gc6uDXGx7WsTotYxCY5mZcDmoscYrIjJZ/YxtPVoxe1SIs95lGPRiJMlvYoJJDqMY9UhgUjvETLPWb+mUtFzrKWMNklLdEijU6gSpXPpCFbFhioeXxrlI5zRyTwEA8u8icfp1gEOsJ4zcahgyfmoocvrMEOaE6Slacjh+jaOU/3eANx9MQnLkzhzAwVJ2XkzNk3qoWHfIhxMS3DBxb8gQ6DrgxPQhwWOaxhCXyq8Z2YuYc15FdRjmLGFL6YY0fdVx959tMf8bAmQDOXDTYJBk3jqEUaToGOMY5jG+445pi+Ugwx5VSkyrqoZBJ4yZ8W1SzesIdPjQo0ZpwhjV5iqEoH+I1eACIedfpGPbbY0Gd9wx7nO5cVkLpU0gU1MvZgxzTJulaSgGIavWRr0ODRFp5dqB5claqdxnH+jlrUgqZpQkcnlHEKKzoOXCJ7CTs2qtS4jsmsb9EHPUbxs8ZW9ljsqKtlR0aOUdCDsZHRxz/zOsBxKGMR40STQMcBiJuJ0k5+gaigigIKS/zps5rF0GPfco+14DaumL2tbzMkE1N4Y7giSelosRiPTogTq36pRS9a5toFbY6Ye4JQEIph3OAKFz66Tcsj7wBS7xqVHl3AbHnPpQ92GJdLLlUuJwXqhHl0U0H5gAMYqUugcUhSUPSYhhsm0131uge8bmEHOwss0gQvOFx7lGKGChvfa0L3r3XKRjzcYbNsRJVB41jHyB7pjzNMAxdwdbCXDpwWS6aYo96QheBcHKj+l9zhqfHJif0oXOFzAMIf9oVTViMBwJjhNVp4ysh1vfQndlgBF7gI6YwvtGK04MISMpayKnExxSzviTKWUPB7FuKO5O54lNjCQj669ZhTSCMSezXytrixw3PZ4yVusAJRCdxlyVD5LPYwGZ9VSY7eCppLX0lWZjXjYTMDVB31XVkYAZGNWuw3LzIEGj1OQI9AG3pPfjYLPO7ADhR7OmiUCZ2pueSIeyhaqPUoYKNV2rI09OLCXQXHOjpRi07UV4wN4hzQppEIG9PD1apG12cMBR9XwKPUyF4vPXCxZ2iLhR2mgAe1W6gPdHTD0rLGIs3mFOf9qHbIncAHzci4jlL+hqtcxThDT1lT7faA2iz0eTa9i3UPeOxT3+855bHRQpl1lBnc5PxiNgTouHVIoxZwcBme9CPQYu1yO0n1hzXuMIpj66MeH//3ZuxdFl/sM98hD5Q+yEFUlLtRne659cGlit9INGiA+YjErqVBFyVjiJA/ekkXTCEmmCzu59zQQ2ta/paRk4Ue8l66uSgzjVFEHTORlYV7NROPbcg8vt/IRy1idr+WoVROtcBGhLSdlnu4YwkBeAAv+KGEJjMklfNYBzSSwYgrsOACdPCd1cPSdLHI58aCH9ad+Yl4s9jjHhuVzELqoWOvj/Yxd8gHkNecDXxIgx+JYIYpIsubRQ7+1x712IUAPPCCAmjhFOz0LElW4QUZjIAFOqiBF8zH+LIQPixTv+Taee+WPbJ8+GX5Sm01cyZyV57svYDD2DP3rXj0Bq3wOAM5uMwbjMcngQ1xhxw2YIEUOACWc6zGOuhQA9z/ABrH772y7UMZZrgiyvB/jzUEfHL8q0gWxie+b3M+lRoHAYSWHHm6RHAEopMQe4AHX3ACeBiAECABClCFkFoIHcA9DayE/nMg+bOPl5Af4fPAwvMHR/CHTitBhNEH++O/HJkHbhhAM8uGerACaTBABem6ECMJfUkEWXAEXPAGn1HB+VERyigKCNkIdoAHa/CFaVAoRygEGqA0XPj+E7iqj1C4vRoQBB3QvdhaQX/wvbD4CkcotDC0j+RbPDTUCBi7v2iqh26bwUbLhm3ohIWDlm3oHj36PoYohi2bhkCghx+khymiLI3AEXagB2ZgBp4yBVCwBkewBmXwh0/ggkJIBHlAQaUjiZEYBjVgARXwgmQYhiEQCbBiQ4cYQzL0BshLxffwBfl5Qfj7CgETONhhvjmUNWlQhnhoPsX4BjDsmIfQB2sAMFDwBytgBl+wAl9wA1wIBHawhC6wBwiQhVFwA29wK2ZYOXYqDiYoAlIwBX+DK4zwB0H4gRpQgVCwIDV4v1ckiVX8PXIoQnjMjGyzR5IgBwLDh67TRVn+axk46IUcbIxxmEWjKBcksQdy8QZy2aOGSKCKqYYHeARZgKVj0gdzGIIaqIEf4AZ96BwSjDp5JI+0qsd8jIw7IIdbXMGvsILDG4uYIch/RDgweq1ce0MTTKpW40kIeQl6+KOdhEh/GAc20IB2kJ99BBKRYAUVqAEe0IOcoAx+8C82JEmwmAbyQsnMCJOtfAhLUMqxWAi8k0GaBDeYqgX46p9zWIieu5CvEAUMyIQ/BKlGyohkUAMVYAE1+IWQ8Uo2AsELkSiRREl40Lq/bLCyKDKzPLhz6IVOsDmd+TllMcceWANzQINeOEMaGoku1IF1NMK/jMfAvJDsY0nRfBj+cuiCw/RKsTpNhvhFxiSnbLiZ/lkHt8QQynAGDWgEU3CqWyQkHtAB4ewj1ISJq9Qjf4AywnxFcjjEv2Qv/vPFmZRNlXKHSYtNPKGzYlmIdZiDB7i2XkhB7sgJRlAB3GOEkzLOnUBOo7CGKTpI1Jy6qjNOUHA2EjmHuahOr0OHWkAtAnqQBxuJUsCBKfAHhYJJsvGHYbgCGRDFZNi99RxNDsGQ5FtOCRWLl3jJ1yzBYgiE7oOJXNxPr4uHSJCuxghGf0BFQSkXG2gdSOQuhFmIOBgCFmABVlCH4sFQjWhP8rynHQWLfWROD8SPER3AL8JBxjiH9YKeA7iFbLiDSRn+PCjgSChYNiCd0CttQMPhUOOkjC7oQ9EcBWTMEekz0spbh6qqljsZBwsaUrRYCGpggxjQqGYqvWgSh1fogBoYAsCbB9xEzR7dCRHMSeOUny4tQWtgzYZgltg8U4DivDTTvPy4TXPBnh1gA2TYqGP7imToOxnwgtAQRiAVVFtyBQDEUoeApNgzTmZAVTOJzEd1PnGYhnYwqKxaUUHBh5eYgTUIA3/wt0TyOH+gAw1UgVfIiDcNw1LdiQpJVZLwBfpcz2IoKXwIB0eVVUj1hxNYB/s6rHDJiFQQgEmQB1Ogh1x1iIXghuGsASiYJXR9VlUkTS5JBGOLV7uzByjD0Bb+4wl38La9aJDmC9hszZltIAeceSgdHZSvWIcy6AF3KIZTWMOYKM/z1AFM8Mt7Pc55zRBtnFgM1YdpkIWTzMeMOAU5EonG2YtuwIdZmskUFa07uQZuKEvF6IZt2AaBxdaAqgc8UIfJ2Zxk3TfKmIMl+ANOUIZmSiRzpIW+28tnCDyNlVcK7RI1JFnjfAlHUNaQGwkjIAESOIaYzYtuqIcyKIIpqIYcFChD8IFd8FfC2KuWdRPC0MOFwBzH4AYB8UfF4IZq4Abq7AZuiLPHAISBrIs8MZeMmIce2INBMAXx/NiDiQMeUEdaGAlATVVmVSR7cILIFU3KcARv2Fp9Sxj+B3iBFDiAc7iGgcWLb8AHNjCNA2ADg8MLdJgEAqAISnCHO+mGT/CbGViHve0Ld+gDFGkFPOSLbzAEXmC05F0HvBvccKBdgJWGyBwHJoUFAOCGNPCGqz2nZ8A9GbiC7ZRasNBc2JGoeGWHaVjUraSMSVgAC0gPkZAJfZgHd8Df/LWgKFgA0+iBnC3AABbgb2mGj6GCexjgc1DgBb4GfwgAFACJTxDbu1iHT2gRClAAZxDcgOXggD2HW1AA6WGDCbaLBsmFAhAAAViHmuWLaGACDKggvEIHcwiDET6HkRhds/iGImACeZCFXUUxgsMEFZCBIUjPqixfhjjfVJkGisr+YZQDk7pcz13CgQNoAB/xrz8QAAcQgJYgESbwGwXog1CpX5mwoOPAgAMQhZOahzZ24zfGHbehCnRYhzq24zt+3k+4GhyghnVAhz8G5EB23YrYIH8QXrrghm6AHG6ohxD4jgCwhWrI2Q7mYHD4FQdQgBCwIMzFMX/wgyJ4hGnQzDmijF+AAqdUA1FN4g+k2j0Z01R1BUu4U/kkyjAYBN6AV4bgB3y4hCJgAyS+hg8pg3rI5R8pgwC4DmUyiniwFAHwAaXhh2iO5kq8DgdoHeKgjmzWZsggAK1AAfHgpT8Kyln6uJHAFahBhF3SMP3V33v4BAF4gaMZIWLhh5Gohxb+aIN4QAN/CLON4Id7yIg4YL9jnZ9iXmVC4dgu0QdvmOX1hAdWPehQERse+rh2A4to6CCxcB1fHlWRYIItnuen6AagCICMTRJ/wBihqAqwgAXxoYBcqDh/EAUCGAY0GFmw+IpqYIEfEF+TjmijWGKjOIOxklC0ErBUtQR/G4uGfgplJkNaQuKQOTkc8SnKWA/yfRh7MAIOuq73bYEWGOMnJk9u2ILZgAOG6DiGiIMtfAWf/mn2TGguUaAE3co/sbH4ZENFFZnPch2ykKV5qOqMiGpAzQhkOIpA6Q022IFBkIdmitxhXYW+UwE9eL+ofmsxjOsumQZQAFGvpAxZuFD+LJ2Gy+iyzzKJqj5B0RWUjGiGHAIHS1jSeZsHgZYBHWCFc7psVtZSnfIH+zPOWqTr9XwyeJy6fvYSuGyAZUAHG9MUfwBfjrwCy85thG5lxLaHO2hfe6SHO2i1eLWGVy1B4EbUzMiGIkACf3AC4/JeMxEEiw0Ft55uoM7sMfETvEa8yDrV9RZNb3CFzl5ByhgFLLuQ4kAEGvAEZHBsV1M6YxgCGZABNcjReTDo+O6M+e6SdLIGpmZDBywG48ZSw8zHtxLrZVFRDCiEs4YluKJKhlAD3KuBX1iIEcfQoCbDZAzuFfyTzi1f00zFl0Aj/caMjLghVOAHiiq1u6xtUCX+jgmncMCsbpIhsXykjN8s3/R6RXzkEmcogiWQh16YokaijHvISw3sS2Ju8tKxcC9xQFkg7VRkB1coBg3H0kSAh/FeOnIwcvtIsjnYAV1Ahkh4CSxciFVo8Mk2h6g9c/NNc4Vmi5G1739rNSku31FwwVS0hAyHj3r2h2qQgFVYBNAeMGTyB3NQgxpggSFoaxIyB0zgxETP0pFxAyzHcXjogoimh+dEQ2vw780YiT9ogHhAIw9/iF32h1cIXzWQJPAFOVd/9Trzh0BYCxkXrqKwxVX+iiAYTzZMBHJ49OlgiGuYATaQBWy4jGczh/bWgR94bzB8hhpY9hY6cxq/D3v+cMIVXEaoK18wwfUSZAdZ2PW3+GeGsAMfoITGdjwgWZxfkAGOVAOIKOZ2X/ZXSIZneAWMyIhX6EsKl3eyoAxvGAVMh79ilAVUOmgAz/YwXF/mtCBYWIFC8ActWIdGWnF/8ILwfUexgHhCWmtzEAcWiAOGWAUZyPj43vh7w3fG++zts3V/QCM7/zdq5YyRMAPx0AJvEPaHyIhQMFZG6OiGgPh1aHH2oAUWaOshiEpp98CiN4tpqHWn57NWSwSt/GnKsPIw5FfN2IUGKAN+UKgwbSGwX/gfKHMmZ4hnkAFzuAJTtGd/iIMrgIIfgO+IVnuy6I0FQvu1Omq3F80a81z+xLsHerDPIPcHd6iDGQAGTsgGzy2OVfgBp6QDyJBuf0gGHbiCGriCYR0PHlCB0Y/3RV9YtgCFkmo5cvjBh8xte/CGo15BdigGIIeLkYAFFKiDbMCFbBBwrBdDNXDwIaCF0CwL8BUEbqgBwCPmeICGdPz52M9c3y8WUFDEpbMza9j3t06gNidSa1CrtOh1DTgHZnBFkgAIfvX8vaqhgwUdf/7wKWzo8CFEf89qzPNXScYvf/H8sRD0q0ZGhhFHkixp8iTKlCpXsmzpkiS3ITy4vaxp058jctZu8uzp06c+f+S8JfIX9CfSpEqXMjUK7860plKnUvV3z58rqzfrnTv+UMbfCYVXSfLz584LCx0/Mg60+UzGvIpQfii8MkShFx0Vq/Lt67dnzJl/bV715oYdvcGK+Xpz5MufvcWSJ0/W541ZZMqaB1+1lNilQH/1liyRgywS5LERj9KqYTCOwnplbUL7Ua9e3B96Xv14ptHfEDX+Zm8ubtxnYJrHTY41xc5e5uXSSY51dFX19OzaT05jhn07+JbTQBl16c7fJx95ZBVbp3Ukv4rtvMiQ8QPaQpFb8eMLWs0cN76JZA40e4V3YHbJIehQUF2QA9mCy13FThflRXhhdnd4Ex2GHQZVzGcs6cMQFTOcYo0sFpJU0UU/jMCIgYMR1yGNfymIYWT+3pzxXo2KBSVLVhz2OORgzHhDJIb3VCikSSLt8oAhyPTyGErqXOHaD9UsNCOSXSJ5I44KOSKWl1PdE5QjiYVYJptLXVXhmm1KNwo9TJYU2TplCFELOYCUdVREIoXCAwsyCFKRfnIqGiGYGOpDDztuwONPnIva9FkgIH5nKacvkXOHip1Sxo4r3gB6UkWthEALIKYoY9SpDw0ETRwqsOAFLfmJumuCMinXIzu47LgpryhFdoYldha7LEnssBMqs34Vk2asI+lTERNFHOMGpScNFIoMOsiQ0ELRmjtZozRGZk8g01R7LkTsnLEuvPU2FFkgKdpb1T0PquTONQ1QQsj+Og++6xBuQ9hXA01t7fuwVOnSeE9kjnjj78NBkcNOUXVCXG9kuGD8cVJXmXKkSQONQ8UN7piSDT3EKsTPUaukVUNC98hGMs9ISdzjkTt6DHJQbngTVc/nPkpl0kD5g4spJunj3iMr/GIKLkiXVFE1V6pwBX4HNz22Sj8PSU4iKdojdqeRFXMHOZWSzassbtDD9tzM+VOMsgrpE5QJW3zjhDXPsj0QIz/ooAImiOb9+Epm9xiZNV3AI7eo90RKnsyQd/qs5ysFNU1R74rUSgOTTJMGrCWVZQ4UWArIZei1OyT55AoF4gozZCKpmsN+X1UMM9x2azuvoIzZN/IOdRz+UWTH/EGBP1YMhzmZ+NgsAw96KJRo883jPiTl09zxLPYLVrTNJsIMd9WjCnXRHWR4h9/lVbJEbX/t9IxSDLRE449GhGAS5MAF+CASmmGogQUq8MIwRJPA+9VufF1ihjWcoBDmgec8PcAABkIwg10crwvW6B0Fl8WOy6QwIpp6iD7OE4IvZEMW+jJJRRhhEBZg4nstvJ8Ff6cQK3gDgBycTlAoEAIQgjAEzZiGNzQIoR+KSh/3sCEVjUKPO9zwIbA4QCv4gQW/pcwdClNcw7IYviAiKX7V646/jmicMmCAAna04wEKMUZK8U+NXZKF1lKoD/ohzB/ZoEIRbNiJ+sH+hyH1CIUKdKAD79VDH7Tz4+PYiD+3kUNSUbPK37RTFio04I52xEADRNM5TLLpUYEgxyohRzmmXcsfe1gCGPgBiA2WZCNdk8HXBMRK8fmKWUdxli/OgDE5KkZnRSilKTFAgHMEb5icekws83aVQHCuXP6gQRHYUQzQpcwfcRhCDUZAC/dM0Jp502SbxmIPb5jQF+mbDDvkYQQLmNKOK1hHNd0pp8jk4HjhA8WkvJmKAIjDVSMrSTViJ4MrmCOAAs1kMeFlRYUwgxxn0IcprBEi+FElKJExqTdwQY8uYAMMDQjBHTFwAEP08aK56yLyyOGKYlDMH83YghlMwQ/WldP+HKuwFRS8F0qbVjCj9doopeDhikTcwwn0QCGs7HGPbKbkTImJTlQsBwpcoMwffRgAEwlAhRgxVU75k0VZbScNADJEDEX4hCVMMY4pRmSBV1CBDNSAH7a2FaOC6dmzplEMbwQBHpa4XEOseKbInGmpDDLKuqy4tnuxyx8QSOlOyBkbZzAhBkWYBWEL20p/TCOh/StGheZRjxBgYhGy2Amq/CGIcKmgEj5UbejgWSyTauWqY72DKVwBj2nQA1J8FJs9YoYYehROFswIAjvuUIxJXeWkEHFYJYHbKSdsqH9HmoctCJCMRDzriPhwR7h0cJfwije4Tk1aUCrFjGIkAhf+zLCCPRIxCnI4whrF8EUxFpsIeoAiEPQIwjRk4YisxbVbh7tNO+vbpciQx6JJI1UxxjGDHvijE+sYWl8dyYhI6oAR/phHhjWcNOFq9G/Esgc8emcKckwDwVBMEXNd6xDK1lTGnAqKK6zxybkF5RT+4EIRnkGIcwDQJBv5xRUcKFhvGhlyNO4ymBcVFGtEpcjmokciTrGCPfSiwEERGz4GEgdJsoAWFTFzmOH15TzzmU2WcASei3UVZRiCANEwBR74ShJ8POMHroHCeWLc54/tedKWrlF+o3bPaImkGCSYQvUUkr6riAMThRqCi+l76bFVetWuXtCj9LGjj/FjLHP+eEErvFGLmK1yIKz4K0J8k9pXU/q+xD62l0YHRYgNZB0heME83OAOIa9mIHQwiAxe8Vtk96zV3P62hPYbaEX1gQKcUEZRjlgPcaRFBzwQzbjB3Slvy7vemnHDfj3cqYEAgwsKQAYgAJi+oMxDDyowSChebO9uG3vhy9GHOUJxHodPEVSbLVZb2LCDMMgDDrxcNEFiNwI6+IarFC8WvU++lHp85FcO14c9IhUUkyOpIsE4gB18YQp4nKlJ/qiGazByZ5UX+7BENw7LGTazkwcFwpv2Ej7qgIF1ZMPBKhmIFyB9dJ6lfOs+Sbpy6vGKedDC5dBIBpddraZAKHq1/uD+xQzm4I1OWHwlIqmHpL2O8obrXTFgH8gQbKMD4SjEHTpIeLxVu7ZpWOLjZXIkG3oAC2ScgrgsqQfN+z5vvmveL0n3DQ+goJBkqADt/qCFCmT77fye4Uh381JF3NGAPqyDH4vsPAW7jnuXsFwG3PjBFSToDhZoGx96UIOquR3KILS9RgwpgwS2gRMAJn739tK99VdSj2G0WzhHwcQV6mH4XNn7bvAwhSxE66igzAIFa/BHLe5Qlsxnn2TYrz9Ktv+iYYyAFeVJxghwQzLogHucXDEk2aQwk3HsBRBIgTbcQTY0nr7hH9ncHwWWxPb5nm7VgJbgxSt4AWyoHDzogyX+sMNObNWBxIc/wAIFQEMnmEKV0d8FQowFzmBEgB0+tMO4hJcg6MAV+MbW+QLpGBR41EMbHIA/5MA9PJ0NNk0NNiHCDMMPKAc0dAA09Ic/QMFdyOCqVQeaxQ0oFUesGEMIgAEydEJicCEU7ssTrqFRuEMy7Mw8COBvDIG2VV+fwRxksAs7SKB3SQZD2EIb/MEmfAEJmEY2kJEbNpXRLWJfrEIHKJzeHUVigIIlQsjFKYYzoMABOAAJvIA3VJgj2lcjjmJT1AM3yECdTSDRaVUSYoXv+EVQ3IIdkYAD+J8pElMp5qJSvJce/AI+5J3KaZY/pFQiwMMo+AM5vZlPkFT+Q1iDgcmBBDTAAzQAMPAi8rQhNkJEnOHhsWXGgwSCf3FLlZXHVlWWh/3N30TGVzUEFCUXDD4GMBQBFRwDK24j1xVTMO4jP/ajP/4jQAakQA4kQRakQR4kQiakQi4kQzYkPyIO8g1H8nUeMz7LdrlCIBhG8/FRzEAHdETEswTBPbhBglkDxjCEOzgOPnpOTExhfjgkTMakTM4kTdakTdpkRaiBfbDFGroNLgSCKSTCTsmCPeCCIjbEZaCIG+jDCcjCY23kSq6RfdCBHlSlVV4lVmalVm4lV3alV34lWIalWI4lWZalWZ4lWmYlHTCCuwGWIFQDTQjj1lFMrDjLKLD+Ayi4ATk4gS84gl9aQjF4RlaEyFdZVlSGDz+YgyaMgAqMgGM+JmRGpmROJmVWpmVeJmZmpmZuJmd2pmd+JmiG5mRegEH8AA90wIukHQXaGFSpRHe15mH+UFAUQiXUpm3eJm7mpm7uJm/2pm/+JnAGp3AOJ3EWp3EeJ3LqJiOsglqowA9gAjeowyVB4ZsxozpaZ2y6001uJ3d2p3d+J3j+Y0VcwURdYUBlJ3oK1HWuJ3u2p3u+J3zGp3zOJ33Wp33eJ37mp37up3xeBSN4z0JMZHoOKIG+2lHcRoEmqIK+GhYuqIM+KIRGqIROKIVWqIVeKIZmqIZuKId2qId+KIiShqiIjiiJlqiJniiKpqiKriiLtminhJI3HuVimFmMGodhroZk1Og9VkZPxMqNOk1K6ChFiuHD4SiRoKCF3QSgCClEqGFEOKNU9NRUcAiUkoQ3fmRJHEV+bcqSkkTMXJZNMGlk8dGliFpDYA7mYOlIJEZNiWlPLCFTxNpNKEuMFpkChqlr3mmRuemdMOFDqCllBAQAIfkEAQoA/wAsAAAAACADCQEACP4A/QkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocufGePnj34NFjt5KdPm/04MHTR+/ePZI4c+rcybOnz59AgwodSrSo0aMW9em7KXClK3ugrE1zNC2Rq0DFLN2hZ6WYrEDeHHmd5msaU4FL9SFdy7at27dw48qdS7cuUqX2zhab5sReIFz2TLGzxs4evISFyUmVasnbnWK4ihG0Z7ey5cuYM2vezLmz27P+QBXrotiav8MX87Jj588JPCvWDttU67m27du4c+vezRsnPWvFAjWmLJAyaIpqTVJWm6j1SXq9o0ufTr269es+afsrVmxUMVCT/f5p70gZukBZshLR84UWu/v38OPLn695qb/BiSLfg25Pqc6btDEDjymJTCPQcfQlqOCCDDbooENq0dMdKOYRpZZaBubAn3gPdujhhyCGiBs9kYHnD3FI3UMZKJYYOJ6IMMYo44w04mQgVd74Y9Nb5p1hjyM1BinkkEQWySE804ACj2k6yqUPZezgEshh9Lxo5JVYZqklbzfJQk8gHFo5FznMuHHglmimqeaac7Fzzx2sIWgXcW64IiebeOap554a2ZekJTreadeT/ljCjCnt8anooow2mqgb00gm6GXEFSiZo5hmqmmWvjAjS6K3qSUVOf1tauqpqD6oljfM5CidNf6JlJrqrLTWOt1N9shiiovR0XaGNa7aKuywxFrmXzHMNMfhdJTJ4kthYhYr7bTU9kRbY59GG12yZ1br7bfgguQLPHco+x50OQQb7rrstrsQbb4UY0Vx8UEnCy5NuqvvvuFSBk+dgdQ0KXWUGXoivwgnLCxtd1gjJYoJ5njGwQpXbHGm8LDjiDcyqZsgZaOYdPHIJO9pii/kkGMKeAO7Z489kIpcsnRKpZVXfy+fWPPMPFMEnT44+uOIbB6a2HLPdeH1pKwPKZcW0lAXRKg3brBmTyKIakufWlZkG/VmSse0XaSO+JLfGcludYY33KlkT00Qf400ZTmcyWSIN5FjoP7ccR3Hjt7e4FJmWFNWPU1sNQ102DTehFUVLol8J0uU8HisNd/fqkUOLuDlDOvdIEpoCWuYr0VZef64wg5WvsiCLOkX0WPPuGJNM68jOYt3dOkLb8fdwZTdQWNkvBtVKmtO0IP2YLlLvSxDFx4EXTHrwekGajoXX6097MAzMfYwexO3iHeY4p/2QEEXiK7FnP78SDcxxUwxjmxc5eXon8qOKaO8HxP+D6IMOfL3H4EICBdVQxSHxpeT/gQIHvlhHG0ASEA9iYodQaDXgVYHuhipZRQUqmBIzicLa7hBHybSGQVHQiiB+MIbhnJFcVYowi3ZxxeukEyVBgIdMwnpQv79o2ENF8KUmzjBHzDpVltos5J/KfB8Q7Qgc1bzPrXASYgNUgsoZBjFjNCDHnzh2PvoopR/+eKLXdyTLAIzRg4xg4E0ytju0ug81rjhahqklFpcYQ1HrEQ8WKTjh4wTHNZYSS2BKMyV1hbIITLlZPFqSmeIEy9fsIdighwSTfzBvyciBD1YCl5eMknE7VgDFNxrI9hO448T9k+VpMSbQM5QjBxp7SVYUgszBthIAq5ncnC8jWFkAQo3xZJG9vBGF2A5kGRmMEuUqdoxDcIOGLqEmbZhCi72h81pJsg/zeFVQm6Cr2AGqVneBKQ/EuENXlqnPNNgBjMwmc4FQYccsv6YZzehI7xedugko7CGOUX4pIxNLHrXoY09LPGpUdaTPvvhpHq6ebC6VUhLkTom3QxJH8qcwB8XfSh8KAMBkK6wff4MkSmKAcUhqgUeo1DWQKuzSUeMwmMivY43VnaiOYaGGS3VEjOmEdIhDrWhDSJOMXeY0+lo7ksgnWlBvMKmm5ipqFrCh2YM44+JySyLahkdPZu6Gwx5iSLVxBNljujTGXEjHptJD0UTBAogkZU3onKFAiXyJKrgSS2ws6E/GKEGf2i1MvcgRyKQGiLizCuwd60NM9hxxHxFRB/kYE9KRXQPZth1S1rlARQMaxeR+VCqChKZKQaI2sjC5YaBmP4nUy/rD2ZwMU/6wMXetvSLH+hgFQdRhzoOmyJ/QM6dMgIsT9vq2rvcx1mgkshax6ome0wDe1qKgwxkQAep4YMOdKgHcYtyk1Hcdkjeo25z6SILeMhws4rkk9mCWiRuXKEGNYACNwiij++GFx/jJQqQ4iukUn1qvXW5CT08xVGL3MQS792TdWd7pV+oQAc6GMEr+OvfetCGG/WYRzvc0Y52qGMePPFGTC07pBWVBcF9E0iBADVXhsADUK29EpByDCJ91EMNQ/jBD7ygBnxMsMP6MIcOKuEOL7Bgu/nVA2lJEpMW1VhEutQhjNtCGW/8BTrMRchN5rnZGd1jmTz2UP49zHEFcwTZzeKoB1r86w53qIAR4lmHOcSxjldcwBxyJonmzLWllbJ4y0QBGaDCvJDyfXVPtsQSPuLBjSHwYL/mGEh/wcsNFuBZLSGuBzQuYIwyM+Qmd/gUo0HElAymGdEg6aE/OqgRekSaT6huXpH44Y9KX5rXmv6uF1Qgg19MGR/z4AEmdiJTNe3os7D+CaGY0borR2QUxuSTWrpj7RD5er8cFsQFhkEHHlTjTF4YLU5OsthHo+lJ1rgDqaLdE+KsD7kewYUlXl0kygDJ1Ar6tnfpEId5iGMElSDtGmTgj0CLRFRi21Nsuk3vpPhDFhPjN0QAbmZODjBLAucweP7l/Itx+6MSI2gHN8yxZ5F8ka0Sbg09Pl5xkljDFJ+i8EcckUJF3SSEILc0uIOtBjUEWg0XGLUMngzlhnuENmDC6pqmR+aah8RAp2UhPA7cKMzSGEshLwg1qPHhX5jjF8ZIe9qNzfGBQO6ai6IJKPZq9ZIUbBqQHaE9mCF13C5YS2FfCLAF/fdMsaN9q657QfIGlrYr5B6rwxTkA6HxBwV+KDSZBpg05YhtKj4j00CgjhyfEJroE1PtDPqljcKU5lTeSEyR4esrfhP3hrDvIDEMtONuj2LQ3EiXF8rc4Z6pzAvv8xEpmDdMRHqFrGq3jmKR6oc+lJThPu73wCnynf6vD3Ys+iddupTkAS90o9Q18WmqK8XprVzG+qRL2G0UgZr/nuBn50e00uU80d9c4txhp4fGE+W1flnCDl5Cf9hhfzzRfZbwe6mSWeK3feHhCualRD9BGQeFMdbAfwuigDtxE1ljK+RwaxIITtRzFDRBQwAmRAHmINNQNRyYIB6oE+yAZrZyE64AKAhISuTgCjIRgxihFuLwAtwwR9dADedwZcvREFhEXEJEQ/TlETo3JDOIEz2oXqiybRFYd/bhLPFHFLdwAClAAJ8APf7QCgtQAC2wX/0FYAehFtvQBlPQCgG4eP4gCpcwCevQEFq1Dq1ADU5nhvuFYg1xFi2IEP6B5nAMUQ+LsA5AOB9VCD8LNoW0MlnIZx4ZRIJFwQQNkAIHUAaOWDOi2F8CMQ89oAAUsABkcGr4IAEHsAAKsA2HWBDAQAEFUAA94A7HMYpqUQ09QAErUIZtCGDESIz+gGIrgANG4A9wpRD8gGJswAaA2BAo9gmicIwPIRmEWF/lB37sACnU4gTiw4XrNArXFxRIoAASoABUQA3f8A3gEI/yGI/fwA3cEAIU4IpI4A/dIA7i0A3nsA4COZDjQA0FQAH5yAt1Fg8M2ZAN6Q7+gAgISQEBMA7zQIzuJhB1UADrSAUMQRktkI8UMAOBiIj+0AMYIAESgA6KmBBIoJKrOP6LBBEPfQACLTAPjxgfkQgSN3FJ00IZiDJ7mZQc1pBIINUW9dAOOCABK+AM6zAO8xiV4DAO46AKB0ABOMANUxmPUCmV1/ANGqAAYukM3SCV8/gN7kAJKtkAB5AN1fCO79gN17ANdDmX3MAGB6kATDAO54AOfvmXgLlfKzCRIeAP61BniDkPITYPF7kMGICQBRAN7iBexViZd4iKFCAAZeh89QAMApACJEABJSkkOwkS5HBT1GJFDhVtAtUcLXQX7vAN1+APYVAP6wCPZnmW+AALdqAOuRmV42CPZVAGrXCbvxmPs1kHM9ADznAOXSmPVBmd44AOuWCLC2AI7nCc4P7wDehgBwFwi9j5DXRJl++YDXC5DePQAAgZAMDADXJ5DfAZn/DJDeMgCguAkAtQnOewn/w5DgLpDusQD3YghhigAaMZJKXZETioicQCHfMilF30Nl1FKjtYEfNwDmX5DeLQCdupnfLYDYfpofM4Dn2Im9p5DfiwDOFgnNr5DevAC6JQnCKaDfMwCaIgCvNQlseJlrxAAQfQBx16nHzJBAVAAGXwnPIIj3AJDtzACwWwAQXgkTlZf93YE6BUoVuSfa8EY112Qlg6EfzAouCQDe4ACEgqomiapmb5DWfqofyppm8qot9wDttAn2hKlc4QDW0qld0gZ80AAq1wkcBXpf4fKEHfAnlbimD2cAYN9aUPwWv6YKL0uA6ncA6SqqaYmqmauqlpao+Xepx1+alniQ4CAWDywA/1MHhUSKg6cZoZOS2d0lw3YYA0BqEe4Q46epbrsAjScA6c+qvAGqzCGqzbcA7NOBCNOKXwkaB9Qg+g4IDeQg+OkG13NQowpU4oeIzjIKpzegqnsA7DGq7iOq7huq3r0JImhBJXwqwbQUXsIilk9RJ4dI4/EaYemg3K4Kvkuq/82q87uo0FYasyyKoslFu7By7kYCYCizmBE2FsUQ97GpXZIA1pkA+i6q8Ym7HAmoQIMQ1XtK4EOxIGSK/Dsm3iNE3E4Qi7UodDUf4P7qCVHvoN2XAKGluzNrupbIpi0dI407cT0KGD7KIWk0OApUMoOKdAympxF3qxUimzvZCdNxu1UmuWwekOMikQrJK0VLp6OXETFuUuGJh3dOQfQZB9baFV6MC0ayoNSqAMETu1cJuxUuUKXDeoXJsTKYMwf+NNORQnZ8ummTqdahu3hBuu8LiHDnE4PbtuQmMW+2IP5NBPgqRNvqe1F6EP64CemjoOi/Cthfu5+zqnOgs99uAK0MeNd0sSzAAKr7ousnBeUdQjlcMWWhUPlsqp51ALnTC4oNu7adoN7rBCJ7FGi5sTlMgux5s/tNEFxSC2RoEOwpoN2eC71AusLf4JPfRgrcVLEiqrMJo3E1HUOFawIc7nE8/IuyI6DtkAB9Jbve6bpogbEZAHu6hLfSMEDz6ZML7nqN6SfZZwSRdiHwYRIU/yqmrhQBlhm7karOjQC8rwvhD8mznbbdtGd3Zrv7mXOhZjCrJTQS9zcxFVE9pha18irVYAD+kiC/8bOa5xBkpSTpq2FIwWD9sqrvEQCe0bwTo8lWR6tQoRPJa7tRjsEZTRBafLL/egsOizFBkjPO4za9PwFRAWxfewTcn0NvBgGJCbEvhyBriAC05QDByMGgjsEGGKvpl6DngQD9O7w+8rnm5oEQQGsqmrdwubKkSlPS/lD3WDtTPnBP6+4AbMADoXgjppoRzZMxm+UFemIBhoJHgNZ6fk6qKL4A5t7Ma+e7gYgS5YiKAh2xHQ4VUKo0W09jWUgQuj0D/x5A1ncGOLNxsIVb55oSIFAUPfobh5RFr6kLZvy8C14LaY7LvbEKBEyyGAQrIxwq58FRrQisT34Jp8Qxti4Q+JVDWndyAAJ4pocXjsMDG1yiFPicacOg7KcAqxGcyFa66qWhEY8oX1y0L+4Aut6y5dUsztog+t4gb04ATd4840aA2yIG8nArE1mw34gAX4IM7ovK+yyBHw8FHIDCPKTFtgcsen8nPaVzK0kcqysEwHE8QLQRzwQA5BQA/KkA1Uqf6xE9sJULvQUeui9lzLnUyan8wR7CBDIO0oq7KFGq0WvmANQTANBkLLFqJVABYJtRAJ3yANaZux5YzSLm2z3Dm6feIPDWPRkFjTG2EK3sC/jAK5BzsyPeIGzZvLRZGd2cDGvXAKnZAN4KrQmAqPnQDMUZ2xaU16vgC05FfHH8F3Xo191hDR62IfpgAbgr0T+qCv0JkNvdAJp5ANTc2v5NwLdY2xbOrDFwG+WzLREZEI1FoxKTFRJZN9rmEaOR0RvBYP3AoO7VAL0tAJ4dDLvzoOvVALlc2vmgwSS+EGdbu9H+ENvsA0F5NRJFNLVtA9Mf0R9RDZuQnZjN2I5gnXMf6LD4AgDZd828LKnXLWfC9RdZut1RmBv8JtMe5aManUBa7zFusQDrybs7WQDcvUDtctrOMgDYtQw9gdrGjpD+tMHpykJpz9EKNgwRdjCl+XMNDBDCfgDc5LFPgg202bttmAB6eQD1A9rN9A3fgw3/kduJi9yf7wUVhNHwHOhFncM+qaMIZhBWYShUKR2tItjwZ9CotwDhz+q9lQDwh94x0esxC5g7o000RS4qeWQzxzSuMdtC/xUaz0sLcJ4ceZ1vmABfNgnhg+DrXQC+Da42k6p1pVoUVMDn9tHUT+eM7a4Arj2SO+KNDBIocx5g2RnTEuldNbzrWw4Rg+swnN5f4zOg/8awmanSZlvhCPPDNoXi2E4gTmc7b+MOdCOg6dgAUWHq540Albzue56aKnPRB6s+YDy9cbAbkT0zOQ4ul6wj3LJMBr8eT7itL5oAQXDqzTGeuYfpbgEL874QumYOpZDerNes0lw+D3vB3jsppHYQ+WCuU4O7HKIA2qHazxgAU5XOv0yJLJ/RD+lieDLmbX2jO44A2bjiYrgpprwWvhrLG0HQmV6ujxmA3+gAVsTO3vCJHWUigZvddD3CfTQOAj4wv4AudFchPN28xEUQ+3a7Pr0Oy9wN7BetLs/r589uEf0ebX/iHb/oZsgzQZD/BEUsRHeRQwPrWQrQSTjv7j9aAE9fDw1PsNAMsTHvXxbHLxBSFnvyPxBEFcYeZwzAVFNq9p/LXMpdqEMSwRhtjznI4o10ssSoELGbcWEAu4Il8PcEDZjq6+88DSyq7DLsrxFyfkYAfeFCFn3yAJsSAR+HAT3CAK59bz+sBr1CAK4OD1P+8PwlAKoNbfCXFYuUCHLCtmDQcLthBdi+gP7tAKvCD4zihn6yAKx4D4P+wPy8AH49BwRq8p9GAm4d4QZ/y5Bg0Ht87u33AKgGDllQ2PLf8TxZT5Ogn2E+EOVIABsN8CzpD0CYEORvCYGoADhwkR3+ADuN8DhG/G+sALj0kBGsAGB7oQrVD8GNAHRv5mxv5ACRqAkCEgCjavFnZAmIdvxnI2BRO5AtPoEBDZArCPAUyA60pPP7z+EFpVD0H6uS4KB5Ze9fhq4Vm/8uvQ9kPhCPS7JjKvIwBRj8kCCgVDFPimD58/hg0dMqznboaEghQO4qv3UCPEdRULYlDgb97Gh/juHQuAoaKCMv7skXSoT9+slBUL/PGXESZDfPwmCaiIQYAomTsh+itTIKgAYDqNZixC8aMAak53jhQQoqKEFu7uGQUbVuxYsmXNnkWrkZw/Zmnd7uS3rhs4unXt3sWbV+9evd/OrVN2ju9gutlO4MtGWPFixoS/xXsb2Z8+f8WsScacWfPmh9yG8P7gplmhLaASTEsIISGnUXz6Jik9jbrF6p0ZyxCMjYGJv69X/WXNXaCZv4W+A6Q+HYKAV7ARj8c+SBsmPnzUBGCAHnLkTsqtFFDIHUKk0a8zkJumUOATcc7t3b93TzlQMcrwy9oD963xfv52s53CYx39+ivMHzzwGZBABfv75pt1vqrPPqOK8aUtCS/EUDPPQNMsox5iQ68FcMAaSSUQKcBgMqNGUgC72MCTbqOFssHtxd16I6m7gl6UgA3edlqIDRdPo2CB9SLc6KsehkSvAGCa82fHFwtYxyqSOgIvN+0y5LLLCynzpRgvSerJn3UWRHMxd3rpBcFxCHSwk1MSS/6zzsG+GWe7MR96CRR6VNwzUEEb2jC0zEaSkkgMnlzRnwOYpAiDb0j0pwBIKdAALMpgqZHIGWLUaCFDKHqRAiN+hOmrMhIl1cfiSPIwSyIVOLI2f1aQFT0FqHkVpmi0OnHLQYclljx/LAmkWIbmOSdBO5+1a5xTsHCHTga/qQUfcN6EFtpxHFSWITemeSlcc+0rVLOXqPjuxRDKtbWHXCMFVaMS54URXlgrzZUCB1rCEaZj2p3VEPZgomzUfg9oBVCSvmKC1fSaQXKjjFrAt4B4rNRIIRN5HO9ckQf9809i8RGwW5Xr+iabfDpxx9n9xslGCWVkXllBbvQl1ht4Rv4GmrN0O6xGKQd0PZXjkuyBhQBZKTigpV5l1AcRp0/DoABFHN63BYILWsAdpR8aSSr0YNQTppGUyhK8FNPe97q2FfgU7lARlLvJpI0t44CnAzimqKAH/9IfN9qquEt+csov55yzyaYLaxX0B456mnWcwG7WWVwshbgWrTJXLCS8dLSGzkwhOwSQKoAe6gkYYaRYLyiA3cYuyR8qaJdAADLqlREcDJyGWr2DgdTHGQnYLkCBWUDfaNMDmNfAGdwd+uqT5gvKqsqwMjJEgO8oEACHnDr3jYkAdhTAVdPf54yyRBhKXHG5Ms+Z5ngA0VZBPE85RS3OhD/GbGMckBmLvv54Jhl9vCRZ8IPgWFC3GWcYgQIkEIU7oLcTXhQhBDNohd1YU4ol9QAWG4RJPOzQghCUIRooDJWZVhgCNkyqftHzBzjYEIIW2EGDY6HMNcrAwz+IUHbHoAIGZoCIqTWnFV4zAqMiOMXIFEMWMJQQZeaBMwJ26xSRmBx/HDQOaWSDi128i4OaCJZPoGAFBrvhW3LgEirWcSMT1Mw98IENbGDxYQ2JnVhetUaj6KM31DHLPXqjx0T2ph6EBFJx7hHHVNWnHpSkGjzEdD07dpIkxZjGoPiBDm6h8XEtq9MiFlFKU+YFgWWJxgxQdABRcIYcYgqkJ6eIx9TVoxe1SIs95v5xybM0cB72gCSQ6jGPXIYFI8xEyz2GmcydSJOYZ1nmNc0ijU6gSpffxCEzHhioeXyrlY5zRyTwEI8w8icfp1gEOsx4zsahgydmoQYKUCSAS2yGHr6wBjvA2Ulepo4cpBtoQt3jDcQp1KG4MIU3M1SclNEzZ9+oFh7yccbFtAwfWPAHOji6MjwZkTwL4YIADnCABlxDM+SwhiUcWseCYuYe1pjfTHWKGVP4wo87NV19EDpRf8TDnBbNXDbYJBg0jaMWaTgFOtA4jm24A5MkGQk1NDCHa1DiESOyaWXEdFWghqumDLRHKMu6VrN4wx5kZWvQmHEGOnpJpEgl4Dd6Af6IeNTpG/UA40if9Q17oM8shigAN87RjWx0w6RnsYJb42q6s0bGHuwY52Q1SxJQTKOZmw0aPNqyQAnVQ7B4tdM4zlGLWkg1TejohDJOsUXHgcss9RGGD5rgj2jop0HrsKw/2JFTuIJ2T5V9iz7oMYqfGde5x2IHaZ8rMnKMgh7FZWBFUUvAcShjEfNEE0bHAYibsdJOfnksTHRSBhSc8BqsRAd2H1IUUFjiT/KdLoaQ+5Z7rCW/oI0ufv+bIZmYwhsEFslRt9vFeHRCnn71Sy160TLzLmhz1NzXMhpAiWO4Yy532UZ6UzWZIBTjwAIeMHz2mxZ9wOMOPk0xW+nRhf7oxvhc+mDHgbnE1AWbEqNOmEc7FZQPOJSxwgQaBydlR4UVOANzedkGcM9Cj2m4YTIotrF7VuwWdgg0y0Dt8pfDZUgrZoi2PT5nhF1bp2zEwx02y8ZdGTQOKZtlccqIgRn80SC+fAPDMfnZGaaBi8+K2UtbTgsoDa1Tb8hCcIsO1EvuUNf45OR+aE7zOQDhDyHD6a+RCGDMThstPGXkzw3hx1t1t4ITVkOw3XglWP7EDivgAhc/hbSEEI0WXFji0bnWJS6uCOw9UcYSXn7PQtyhYEy3EltYyEe3HnMKaURCtaPeFjd+aJaRLOMAhliHdgnjR3u8xA1WUCuWiS2ZXf6fxR4mW7cuyeHfeHPpK8mSbmbk3GyLqiPIKzMjILJRiyPnxYZnWdwWQvANbmCbLiEOCz1OQA941/u4nzHUe1zMjkJbPGiUGZ3HueSIe+Q7MvqohwH5jdSWpaEXax4sONbRiVp0Ishn/K1hPceQUqBAz9ToT51JMo1ETJoeJhe5ijEuIVfAo+NJvzE9cKFuqIuFHaaAB9VlNBl0dKPgK+8izebk8MaIF9SdwAfN0riOWI8lI+coQxFOyA0FJa5cxTjDWFlT9fa0+yz0eTrfi3UPeERU8O+5JdKLaSZmg52eZMzGAB23DmnUAg4uw5Nvt00WfoxkFwdoBDouTaAqbf5H1da4wyhMjvJ6KPnwZfG7WXwR0cC/PlD6IIdabZ9HgLoH5o7HK5EjwWf85SMSNJcGXU79kM77owg2WHaavmHPH72kC6YQE0wW90h/cEMPrdn9W2JfFnroPfzmosw0RnF+zChXFjrWTDy2AfwefyMftYgZ/lpmVDnVAhsRIqvimIUV6AN/uAayy4tuuIYiCIAH4AV+UAJaY4hcmod1gIZkYIQrYIELoAPgYb+wGD8g8gd8+0BlMTeJKkGzsId7yCnJWIh6GD36Q63HuIN86DRpywZ8kAZ+SARmMAXl4o1JIonmmwcqeIJW+zrFaJluSAUC8IAXKAAtOAWBui6SWP4FL5CBEWABHagBLzifFIS9pYOP9AslrQPD5LoH3TvDsvgK+9KMM0FAGaytXoCD/Mucb4mH3rgseDgDchg23lA1h4AMWLCAPXAHcSs7ClsHcaAGMNiADUgBBwAmLKqGdaCDGuDCH4CGNQxDDhlDtnAFXONE97AGK6u9UVQRWVBDt9CHJJRDixoHV3yWHCm/RHCE7NuIJ2gAf6iGNKGZgVOCbcgKEqAAVfCjhdABLkzGSkBFCRJD+HiJ+THDZhRBR/CHiqNGhNGHUDzFHJkHuntFTMuGerACaZBFApk/oeMTh0gEWXAEXPAGb0i1VGiAWmq4b2kQPuOzxMAT1VoH0f6jPKWSMCVYB0DYAxrYhlrAhT/5rPoIhS2sAUHQAS8UMWoMwbH4Ckegt2yUkDZEQY7ciEYTxY7Jia4LR37Lhm3oBMmDlihTMpmAl2KoBWRABSAwgkGoBXBYyWzwB3fAh3hIO8jYBjPJhzJiLdbqhEjYK2WIBX94hCooBEKQB2sEP6zyh2FQAxZQAS9IhmEYApHQOZB0iIvESG9oQbGED1+Yn27kxK+wMsXLETNpnJPkN2lQhniIwzupyJi4p0sIgUnIBu/6KNnCglOAKjyoNiyYhwqouTRQBqXsBbtMvm6wpyIoAlIwBcP7LIzwB0H4gRpQgVDQIDXYRLSECbIEIv5ywEbT3IysY02YIAcsw4f5o8uVaxk46IVzZIxxYMuGgIwe6IFtKYx+zBN06KteCEzkvJxwi0XiqwtjOIBHkAVguip9MIchqIEa+AFu0IfOmUb2Q82wuAfMWs3XxIw7IAe4pMavsAJKI4uY0c3aPCfIOy+ZG0n6YYhdeIBG8Aegows8MaOWEVDfygaaaZkAZZl1oIZVaYf5iU0gEQlWUIEa4AE9yAnK4AfXA8nwFItpgDHz1IwwAVGNsIQHHYuFqEBwlM+Vc6pa4DH/OYeFWL5l4cUi6IFoiAcVRZNu8AdKoIBNKAZc8ClKyohkUAMVYAE1+IWQGVGS4NCwgKnvHP5ReIC/JhUuZBsLUVtRxzuHXugE5+wPbuC+stCHkeiDELCFcdg3CxPTGWADc0CDXtjI6BkJidSB0MRPK3XSZ7yQPlRPPU0ScuiCKm3SyPrTPdtSGQzMvPzPdZjRh1iHHlgCkzyvc8gFDWgEU6ArxXskHtABT0UkQD1NPrUPyrg1KWVNcmguPcWxU8TL+ExUi3IHgYtDPNm8ExUJVbCAfnovv1qHaGCDCLi6XrhG7sgJRlABLmSEohLVnXjSsLCGK+pNQE2/9RNVUHA6ElmsWJVBdKgF8CqgB8EmXlyCJ+CGb6wTBfSHT6CBKfAHkHJPe7nKK5CBrUyGL2zWPfXEC/5pw1PNV7F4ifY81GYshkAIRJiAQ26VwXhQSrL7hpEIS7DQoEtogFJYhydDE26oEhzoAXwABWs4MYRZiDgYAhZgAVZQh+P5V414Vk1hi/ts1thEVWrED4V9RTIyR8Y4h7TIiBDYgt8Lr3UQhQO4hWy4g0kBQSjITijIuJUd1X29EHMbWGr1hy5oIFEdBVBAGDu0WRlch72qljsZBw2Sr/r4hBDgz170q3oQhjLoAZzqJiGMS3F4hQ6ogSHowHl4VD1tWbCIRpjV0/mZ2mYEWazC2K6lvxyEthvMD0c9C8iYBSrAgXVwBx1dkGtYh0nYATZAhpwyua9IBg2UAS8Ijf69/Ne+LSR7cIVVdNqH0KQqFFVmYF0zAVPEpT9xmIZ24Ki/ithCGok5CAFVqIfGIxBuCA0UWIMw8AfDiyOU8wc6SEYVeIWMmFmxRF2wqJDWhQlfsNZmLYahwodwYFTbpSeePIF1EDLbQgt1eAAuQFc74YZ7+AQCUAR5MAV66N2GWAhu+NQagIJhyl/tHUtSzZBEODoBBiR7uLV/VTSe8LCvy8dEHF/yHYxtIAecKSmVdaacmAQJ2IXKhdW96AZ3kAYu6AF3KIZT+Ei+rAdkTUZMYFIEdlYCxhBv0NppZU19mAZZKE8QzYhT6CORmEu96AZ8GCbdfFja7ahrMF7G6P6GbdgGh51glfkrPFCHydkc6r0Pf7gFJqiCc7VcOBkRNlgCROAEZeimOOJMWtDAJH0GD5ThzqDhjjyWYhXgl3CE6t29kTACEiCBY0BEvOiGeoi7KagGWcQoQ/CBD/4wvlAtI3YTwoiyhTjcvWA4AaFNxeCGauCG+OyGhuuo/cnNusiTYhoJQ1iBTzCtKaaLa6jcGdiDQTAFYl3he/KHOOAB0KSFkdjb1r1esCg5J6hlqnUEb9Dj10sYB3iBFDiAczjA2v1PfGAD0zgANiDeu0CHSSAAiqAEd7iTbvgEv5mBdcjkvnCHPkCRVmDJPjMEXlhTS16HCsS2bwiHa+4Laf4gvnFAC9ZrgC2IvvMSWgDghjTwhh52iIV4Bi6UgSu41TgGi18uJH+AKQRmh2kg1CaljElYAAtID5GQiTJ1h5AWaQ2KggUwjR6I4lhU6ZX+lmb4GCq4B5Y+h5mmaZcKABQAiU8IZLtYh09oEQpQAGdouHwk6nw8h1tQgOlhg51mmW/IhQIQAAFYhzDOi2hgAgzIoNNCB3MIg6U+h5EoW4aYgwOoKrWVPgXtASaQB1nAhxU01nXABBWQgSFYVg11aIaAaPKYBpk65vMDkyFt1mXCAZbyESX7AwFwAAFoCRJhAr9RgAIsiY+WCQ06DgygpaKah8zW7M3WHbehCoAMt/7QFu15mF/wwAFq+Ed0UO3VXm0/q4gP8odypgtuYKxsENMQ+I4AsIVqiOKiJmpw+BUHUIAQ0KBHHYlWwIEtqIdraOQFKbU66IFGmAY5xSLK+AUomFA1KN27Jou8Bous1V5XsAS5FVXKGIcwGATeCGB/4Ad8uIQiYAMNvYYPKYN6WG9VCYDr0KYUshQB8AGl4YcAD/B1vQ4HeB3ioI4EV3DIIACtQAHxYCZFUiRhar1lupWCOABEWCY3G+mRll8BeIGjOSGyAD8zKAJd8GY7wVxuaAE2iAc0EC64uIeMiANMlF76WW/uHmCoHRN98Abyzld4gF0dlxGxAaLWazujiP6GEBIL2IHvvZwHJkDsEX+KbgCKAIjhJPEHjBGKqgALWBgfCsgFsqCMbaAAM6jkBRHTTSiAYUADHgZmXmSBH1joLCfyh55jLjkDycrXy7Iy7bUEw8NI7Gq94ppx5xWL7ag9HIEryliPhk4SezACEMKwjG6BFihAsqIMd2iEA6iGB/Yrd1iGJZgNOGCI1WOIOIDIV7DzOzcK7zYKB4rXJv2TScNhkCzcGysL2CELYZqHRs8Iu37UjECGo4jzY0CBpR6H5laQuUCKGBgEeeimYXbeVdBAFdCDTbRrV8frPOeSaQCFg8Vof5AFf23dabgMYpMvk2h0fyjmq7qH32SCWv6C5jDFh10wgT0AB0vY2b2bhxqXAR1gBVvmdmfk8TH5ilAUVbec9Xy1tRz2h2nA0j/ihgYwBHRIc81Zh0ZogGVAh0lz2YTOzivY9oLf8aYNlJK7g4s2T3q4g5JDYGuY3fU0nIbHz3mYgwbQWKrujzeZ7yfwByc4MINuiHUQhGTVgVBodZPH84MXFD+59Q9UrtUlelH1BlcQ92ykjFH4tYYoU38QhR74HdpO13CYBzugAU9AhmnPN/AzhiGQARlQg5Sdhxxnepb19i75J2sActO0B02a+NalUvP0rMTRiSfoAV7gWjSphnLSAEMwdWD6rAxlCDXgwhr4hYXoawGGdf6xYE+bz8Y/Eea79lO0fIk5wkbKAIYGaASve5Zt0IchQgV+kKmOK9KAH13isPu711eUJxl/oKvXpIxNvesaM03X5MtvQAQMcIYYRJN1yAVJlYdeuCJKoox7ONJkXFL75v206PwEggdZSHe0ZAdXKIa+F+BEgIfBDT9ykKlyoQxRKAIqwIeM54/NCQc22AFdQIZIeImGBAh8/lYNkaFCjzl/9fwxbOjwIcSIEidSrGjxIsaMGjdy7GiR2xAe3DyStKjPHzNZ9O6VbOnyJUN8AmFyvGfPl7+TNHfy7Omz5ShX/lj+LGr06ERL1u7xsyewiBFe9b59A2f1KtasWrFyq/4XTMGqRbJw5dQZcaE5NTVYDHnF0KxDc5jwwUVq9y7euyBF5tXoBl7dvoLP2qtXLzBSevC6DG7sOK/ix5InP7RmT99CZwM2uRu39TPoq9zmtWkQL4c/dhX5CXylo4YMNQspPtNhmDLu3IL3jtTN0J6/QORy+s57DRYsagIR+9R30o0/4MWnU3fIMog/etW380wEzh8+LiHwcesW+jzWb+PWAYsxRxY2a0MtmhOkQsePUP7mVXxW47ZEM3E3IIG8UWePPdbgRGBP8xgywAEHDMBGNXkx40sxxDG4YWMn+QIPhyFmxE4t/jTSQxn+XIMei+B00xkbPlAiTyf2EBUgP/7+/CJDDTWowVA9OdL232yvJPPMK/jc9sovIjopmYHTneTNKEs96ZFAfRyAAZcYHMDEXfpYI0uGN155Jk8njZIdmmjeI480VBTBiz5VtXheNPOI0kIh/mixDnMM8TObF6/JAI1G/hmGTxwsmCMOC3EwtIoMTbZ5qVFRVldMhoFi+pAtElhAAamkHtAKUifJIsunrbqkHWrSuUogS9YI8Ak449h5J2gVcoGCn96oVtFCoeiggwqM8Jfof+uooQN4/tDCgltD6KHhrNl6pGl10zAmq7YOiUJAqaUe8MlRNiWyYLjtVnQSO+C6W9w6RUTAjq68glaVO7A0UAY/WOQk7/5DAjnL4w9NBpmoDOZcMcR+CvkTxxVQ/BDxvBlTxO10RAXyVsafEIBBuRQcQAlS0EWnMcu/+XPHfC1LptMlKxhiijO76psVN/dU08YMwHCSTcwBTvqDCjXQEY/EGyWjwxU1XIEZQ/zxoII/7si8NUMcd4wSKMxofEvJFGBQALpFkZOILPqYyXW79nijMtyC8RcPClzkIk8t2ey8VTX1lIKCH9ngko1zFC3EjRoyyDAELSBzVJsg3CitED/xQPNDDZLOVnfGXm8HCjvazcvEqKVaUISnJSFoDYigZ6xPgrLnxZ8wFnyyzje94DHP3zzrM4cG5zCTiEWD+vNKDTqwQP5HTCT5x18llfrDNAuC/FJDkwLarq3o1TlCjnzuslRECA00QEEP6zTnDzneIN/692jqA88d09Rv1En6NEGBirLRjk7kQ2c7O8c2nHGAFJ2AIW97SI7c4QUW4EdhLXmGDObBH4sx5GEMKdSy9pet8H1tbqVzF38+wYUy9GEo3qOJNxyBE4KJ8FP68AYzaFhDksjERCgwhD+qQZV4LCIbntnZOLjhDm4UYQlyQEYkovPAhuiEFj3SgaQw15LNGUaDP9DDK37wjOv5Ywg/EtIOMUXCr/nDFPHSIaY+tzKeEMURLJliGi81DWbgMY8ZUR43gLAFYdTDPODoXSTcYcAWRf7DH4jwwR/I5L4+8oM/7fCC436AqB66pB6bPEk1zMGNMc7EHNAIoR/RtEbqnKQLw4FjKufDDsbQL5ZOuoM3YGnLiFTSH5RAgSjAcQ47fSMftQjHItFDlXkwYQa1GBO2JEI9GfxgBMpyDBp36aRVHsgf3jhD0bRJHFkIRZfiDBEzvHHOjNQLB+qgSlaygYV8+O1O3zjHOWzxgEIgoxfsqog6olaDH1QIH9lcZyy52U1/OMKB2rzHSRyhHdMh1E3+YAxFK0pFhkwiBI0IogHr0Yls1LNF25gHNagghFqQAxA5CtRMQsEDFshAEPx5oUb9qFBW0oMdf2FTLE0XiGKsJP6nlyIHzGrpx166AwVmcMYSt5KNUyiDVyP5BAZoAQhTKKMsE1kINOKgAhZ4IXKcNGpCQ9KbM7EDF+Ds4/eAcwZLmBOtDGKHapSaR/40QgO2wOdnzlGLIiZTK9/oShGKcAzoZFQixZKBDmQAvWjZ1ZY73Q5w7BGIaeh1a+w4Q2YriybgBIJVRh0HFYB1jcIeUhrnOGJovoGOavCiAY8gxDqG07p6zKMgnBuJHEWrU7VeyiYM9cZw9ncScrADefSoq3Ax6w9cJPecC6kHIlZwCX9QI7br6IQyYLuVJM4jGlS4gTtMkY2iSoQfOlkFBS93j4VFN5WXJZA6wflc213GH/5u8Ib+6ms/evxTm/xZxgzK4Ix5cCO24KhFJ6ayL2f4ow8r+MUocBFgivCnGlFTwRUQ1VkBw+2+DFobq/oLN+AU4w7kaCyJnyQLN9BjxHDr5SE0wAtu8O48sq2FevY1Dn+YYAvfcII18qo4fzDiB8jCxE1jnFa+uAo41ugCPGCssXv4FBThlDJbxTkPCmzBHYb0MTp6AYh5JPOe6/hEAyYxjTR4dSI5MgcUeiRG8BwUzDU0MYOkEwhXiO3LV7pRcN3mj2IwQ2Va9nOIQNFQ6HLtJPhoBArQtaIWzQMQ9NzKNvxhizlgAB9W8Ac/Hu1QfMBXBjy4FmUhnUdAb8jK0/64g2pUvSH+bGMTwkA1S/Rhui7sMTo2lrVuWCILU0Rzf/xxxgyooMQGtygbkajFIbWSDXwYIgSTIAcucArBhQxDDSxQgReGoRBxI7t+tBYRM6zhBJc9SWs94FIIZrALoHbBGoVu96XYgcM08scQDbDFOvLVonAYMxsG/MY13BGCL2RjVRfhDyOaxwJMRA/gsybuvIhiBW9kiNK5OQkFQtAlDISgGdPwxrzn6PEzuc3iO6yGCZbAXdZu5RvZwMMp0JGVcaBDFA9oRcAk91V3+FYHwJ35cKk8L2EzxAp7TK7JJVMGkpXrAIUQWHaODfXpyGLDspvNH1BQCu6Kl0W9U/6GzrqijCUUYVWdMHZ7BVKPUNxHB9c6TJ/H/r13P8m4xSDHX5g9lMRRJ0dUWF+5MNAAhcBV8BsStnAq765e2iIGf8jTme+UDXf0ohbrsMo3KsSGJYCBHx+TeUSY5mGDXIGUlv+41FmmE7z64gzVzTpe5lsEyJcKAwQ4R3BvfyWcaL5d/JkDCm5xep5/5hv1wEMk2OwicLhjBUVgRzGGRayJDaEGI6CF+9itfNkRvk1EkVu/faHrx7BDHkZIXblWsI7krz9EwEHN/IXLPNRDA1SBP4SevsRDJBjRIb2WKASAOXBVdVVENeSZDFxBQohd/7lL+12KoqEEOZyBPpiCNf5QVLClysqchNzgAj10ATaAQQOEQPEdgCFo4AbiBnCYVssQBRuEgDFwV/BYhTR0ApARTS5QwRqYAj/Q2fiZwyqMFRRcC+PdoAh1IKZ8oGK4QiLcgxPQw785h40030VAlHbIiv5gGSjggjoxRB8MQJcQABWgEhWKiLLJwhpmDNPcAg6wwTWsA7UFD+mZ3jf4gxgUwSc4gikMGRwpzzBcgQrEBqLI4RwOHsjtkGpMQzF4QxDAgyVkGRXdA0QBB0RN4UbRjrHZhFkgyMdAgDfggnyIH5A4AxPEQBHMgiROIoecxDTEjruYYhHMgPSdQxBaRTbUAha0AzdwAwZggliUT/5F8IcgQJYKVELH4eL+WKG2qOB8eGEa3oEpuAI8TAM99FTYBYo9rETp0EOSyQIzBAE73EExgAhLAEdgfM5hWCOaOEEuzQs1rAAbAOEw5ko2KAM+gEMqFEAyJIJqmBM+uANk6QDE3CM+VmEl5tFJwBgzFEMi4AIzWIE9JMIokIMjWEMxYEgmJgI9gEIg0EMQTIMsOIKG3SFDaIenGEY9qN9EDghweFmzXcpCrMMfHMCCVUPbIZE0nIIsLAMK9IA/dMI67FfeKQQj9B0j7AdO5uTWYKPGOMcHPoQ9wIPYmAI5TAOGvByriCMvOoQo2iBWXp4/uII1KJ4Hohp/tAIK9P7BOvRYQBZTFMnJMxDCOWRIRTDNL1zBuanBJrUlReaeYjbmlZyENegPW04GPgxgPTANExTBLkxfQBLjHURCCOxBL4xk/0yEkkzMsbAALfDHZDqmGlWka8amiFiCI7QmNuHDNeTCPLiDBsyBhHXmIa1DLfRBAUSDKeAB7AXIM3BODUCB1lylbGqMVkYnddrFRTJbAEqJP7BBABAACmjAMvgMcFbFOvQCCUyBP5waUEkES4gDJtDUEFSlRFZn3Uwnfd5nc9QYOD3JOsRgCBQANXwDAgaPevDDGrxAK3hDLawEXC0EKzji84zRLeIny9gnhV7oS+jiyznJNlhACIQAAf4Iw6YFJI85Qwi8wDy4gTukZURQDR00jwy4RaxhqMxYKI3eqEfcQ0baJl6cRCPIIBd0A/W1yDrYAQVwgjIgjznVA6QcCw8oBI/iKIfYqJRWaUa4QUb2ZHUIyD0M6XlkwzyoQhY4ADIAQobo2knMgx4kjQ7ox4RaabtQKZxihD6YQyhozX1KB8yoGIHgA0S5wzBywzngQxnsQBh4AxzQm9G8Qp6NAB2MkRjO6afIqaQSy/asFX3Sjk+dRKTmhjD+TVfswgHYQTGYAjxAVEUIRDX0SKWwZqW2DKW+qmNdqqDg50m0ZHb6htAhETq0AQasQzasZEYshBc4p6xmJWweq/5R1AOtKsQrzAMtYCo0JMOMTuREfQzwOYZABJnbjcM9qIJ7eEMn7KlGzMRNKmuFJiu6+gSz1kBXlNEP1IMO/AhDuEObaqk1XsY0WIKiDkhRVp8wckERwAIynII2bkQ9dOq6qpK6LuxOtOsY8QAUMEQyqAC1SosKDKBrXuQZqFON0cqAasU1jAM1NABe8sPdOaxlNazKvgSzygA3/MAVrJs7UAt46IFsRCnAJQ52ZKtg6AN6hNoWWECoOUKntKx9sSzSlkQ9DAMFzauGYMIV1IO9Rg511hg8mIIswGJ16GVWLJMooMAc+EMt3EGOKOzSwqrSpm1HNK01DcMIsAJxJP7DCHDD07gPfhYDXIKIz9pFPWyDVijROuCAFGjDHWQDv+Ir29pOrDps08KsPwhCDVTIB72CF2QRfgKGJbCDfIAidaBD3OFDKUgANHSCKQgm2i5uujKm6pJEu3IDPrSDZN2jIEDNGNGoL0yDc1GHInEFGyyAP+TAPeRq69bn2hbvRTTtD/QGNHQANNCFP0ABxKQuPtYRPSTCiy0ebvQP1Z7DLoQAGCBDJ2gH9SJv6Byv+VKEPrhDMiwMg1Er07SF4kanKaoiOyQuPT6GQNhCG8xBI0gBCTwR0cxv+oJO4xbvKnQAxtyoTmgHKDzwyvCpYDgDChyAApDAC3iDTBYw7v5hKge3RD1wgwyoJgFTqI0E71s6VF+cBNlQAAk4gNx+8JR5sAxjiTvowS+cFZy6DXC0YiLAw5qIX2m+xAk2hDWQpBxIQAM8QAMAQw0nLes+cUsoic7io3QMRyBwJHQIJnGA4ijiK1eaYhk2xMt94+niBDAUARUcQwlLMdcYiEzEsRzPMR3XsR3fMR7nsR7vMR/3sR//MSAHsiAPshwvBCPIBqrN5w4Th2rEoysEwtwk50wKm00gCA2pRhDcgxtwijVUl0C4Q5S58Q6BxPKCByGfMiqnsiqvMiu3sivzR+MkTNMsLIvhQiCYQiK4QjHIgj2QRbPh0Ji4gT6cgCx0ov4ki/IuifAP0IEeNLMzPzM0R7M0TzM1V7M1XzM2Z7M2bzM3d7M3fzM4RzMdMIIOXE1NVcNIQOeNouJD4NUosAMouAE5OIEvOII9W0IxWAI9CAVFlSEpInMs8YM5aMIIqMAIHDRCJ7RCLzRDN7RDPzRER7RETzRFV7RFXzRGZ7RGM/QFNM8P8EAHWFO1yqpzQJTCzmNXAvQ6nUQhVIJLvzRMx7RMzzRN17RN3zRO57RO7zRP97RP/zRQB/VMM8Iq4IcK/AAmcIM6BJ7D9k9phjFxVLFKw40rV7VVXzVWZ7VW1zF/XMEFPi//TbVYn1MYl7VZnzVap7VarzVbt7Vbv881XMe1XM81Xdc1W7MEI8AaFY81X/c1pOkEgPi1YA92fUEvYR82Yie2Yi82Yze2Yz82ZEe2ZE82ZVe2ZV82Zme2Zm82Z3e2Z382aIe2aI82aZf2uwxxhs7MRkj1Y/wzRLD2RUQpbKe2S9SFa9N2bH/wbGvEbnMEYvS2XXgum7ClWex2+UJEERuFcR0FuCT3RLQmgrwLyLCXQxT3RFB3G6tvUVykDZpOP0vEo0X3dWc3effF8P6EsLGlDtlmZ/Utb2fEctPpe/fFOXaEeE9GQAAAIfkEAQoA/wAsAAAAACADCQEACP4A/QkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocufGePnj34NFjt5KdPm/04MHTR+/ePZI4c+rcybOnz59AgwodSrSo0aMW9em7KXClK3ugrE1zNC2Rq0DFLN2hZ6WYrEDeHHmd5msaU4FL9SFdy7at27dw48qdS7cuUqX2zhab5sReIFz2TLGzxs4evISFyUmVasnbnWK4ihG0Z7ey5cuYM2vezLmz27P+QBXrotiav8MX87Jj588JPCvWDttU67m27du4c+vezRsnPWvFAjWmLJAyaIpqTVJWm6j1SXq9o0ufTr269es+afsrVmxUMVCT/f5p70gZukBZshLR84UWu/v38OPLn695qb/BiSLfg25Pqc6btDEDjymJTCPQcfQlqOCCDDbooENq0dMdKOYRpZZaBubAn3gPdujhhyCGiBs9kYHnD3FI3UMZKJYYOJ6IMMYo44w04mQgVd74Y9Nb5p1hjyM1BinkkEQWySE804ACj2k6yqUPZezgEshh9Lxo5JVYZqklbzfJQk8gHFo5FznMuHHglmimqeaac7Fzzx2sIWgXcW64IiebeOap554a2ZekJTreadeT/ljCjCnt8anooow2mqgb00gm6GXEFSiZo5hmqmmWvjAjS6K3qSUVOf1tauqpqD6oljfM5CidNf6JlJrqrLTWOt1N9shiiovR0XaGNa7aKuywxFrmXzHMNMfhdJTJ4kthYhYr7bTU9kRbY59GG12yZ1br7bfgguQLPHco+x50OQQb7rrstrsQbb4UY0Vx8UEnCy5NuqvvvuFSBk+dgdQ0KXWUGXoivwgnLCxtd1gjJYoJ5njGwQpXbHGm8LDjiDcyqZsgZaOYdPHIJO9pii/kkGMKeAO7Z489kIpcsnRKpZVXfy+fWPPMPFMEnT44+uOIbB6a2HLPdeH1pKwPKZcW0lAXRKg3brBmTyKIakufWlZkG/VmSse0XaSO+JLfGcludYY33KlkT00Qf400ZTmcyWSIN5FjoP7ccR3Hjt7e4FJmWFNWPU1sNQ102DTehFUVLol8J0uU8HisNd/fqkUOLuDlDOvdIEpoCWuYr0VZef64wg5WvsiCLOkX0WPPuGJNM68jOYt3dOkLb8fdwZTdQWNkvBtVKmtO0IP2YLlLvSxDFx4EXTHrwekGajoXX6097MAzMfYwexO3iHeY4p/2QEEXiK7FnP78SDcxxUwxjmxc5eXon8qOKaO8HxP+D6IMOfL3H4EICBdVQxSHxpeT/gQIHvlhHG0ASEA9iYodQaDXgVYHuhipZRQUqmBIzicLa7hBHybSGQVHQiiB+MIbhnJFcVYowi3ZxxeukEyVBgIdMwnpQv79o2ENF8KUmzjBHzDpVltos5J/KfB8Q7Qgc1bzPrXASYgNUgsoZBjFjNCDHnzh2PvoopR/+eKLXdyTLAIzRg4xg4E0ytju0ug81rjhahqklFpcYQ1HrEQ8WKTjh4wTHNZYSS2BKMyV1hbIITLlZPFqSmeIEy9fsIdighwSTfzBvyciBD1YCl5eMknE7VgDFNxrI9hO448T9k+VpMSbQM5QjBxp7SVYUgszBthIAq5ncnC8jWFkAQo3xZJG9vBGF2A5kGRmMEuUqdoxDcIOGLqEmbZhCi72h81pJsg/zeFVQm6Cr2AGqVneBKQ/EuENXlqnPNNgBjMwmc4FQYccsv6YZzehI7xedugko7CGOUX4pIxNLHrXoY09LPGpUdaTPvvhpHq6ebC6VUhLkTom3QxJH8qcwB8XfSh8KAMBkK6wff4MkSmKAcUhqgUeo1DWQKuzSUeMwmMivY43VnaiOYaGGS3VEjOmEdIhDrWhDSJOMXeY0+lo7ksgnWlBvMKmm5ipqFrCh2YM44+JySyLahkdPZu6Gwx5iSLVxBNljujTGXEjHptJD0UTBAogkZU3onKFAiXyJKrgSS2ws6E/GKEGf2i1MvcgRyKQGiLizCuwd60NM9hxxHxFRB/kYE9KRXQPZth1S1rlARQMaxeR+VCqChKZKQaI2sjC5YaBmP4nUy/rD2ZwMU/6wMXetvSLH+hgFQdRhzoOmyJ/QM6dMgIsT9vq2rvcx1mgkshax6ome0wDe1qKgwxkQAep4YMOdKgHcYtyk1Hcdkjeo25z6SILeMhws4rkk9mCWiRuXKEGNYACNwiij++GFx/jJQqQ4iukUn1qvXW5CT08xVGL3MQS792TdWd7pV+oQAc6GMEr+OvfetCGG/WYRzvc0Y52qGMePPFGTC07pBWVBcF9E0iBADVXhsADUK29EpByDCJ91EMNQ/jBD7ygBnxMsMP6MIcOKuEOL7Bgu/nVA2lJEpMW1VhEutQhjNtCGW/8BTrMRchN5rnZGd1jmTz2UP49zHEFcwTZzeKoB1r86w53qIAR4lmHOcSxjldcwBxyJonmzLWllbJ4y0QBGaDCvJDyfXVPtsQSPuLBjSHwYL/mGEh/wcsNFuBZLSGuBzQuYIwyM+Qmd/gUo0HElAymGdEg6aE/OqgRekSaT6huXpH44Y9KX5rXmv6uF1Qgg19MGR/z4AEmdiJTNe3os7D+CaGY0borR2QUxuSTWrpj7RD5er8cFsQFhkEHHlTjTF4YLU5OsthHo+lJ1rgDqaLdE+KsD7kewYUlXl0kygDJ1Ar6tnfpEId5iGMElSDtGmTgj0CLRFRi21Nsuk3vpPhDFhPjN0QAbmZODjBLAucweP7l/Itx+6MSI2gHN8yxZ5F8ka0Sbg09Pl5xkljDFJ+i8EcckUJF3SSEILc0uIOtBjUEWg0XGLUMngzlhnuENmDC6pqmR+aah8RAp2UhPA7cKMzSGEshLwg1qPHhX5jjF8ZIe9qNzfGBQO6ai6IJKPZq9ZIUbBqQHaE9mCF13C5YS2FfCLAF/fdMsaN9q657QfIGlrYr5B6rwxTkA6HxBwV+KDSZBpg05YhtKj4j00CgjhyfEJroE1PtDPqljcKU5lTeSEyR4esrfhP3hrDvIDEMtONuj2LQ3EiXF8rc4Z6pzAvv8xEpmDdMRHqFrGq3jmKR6oc+lJThPu73wCnynf6vD3Ys+iddupTkAS90o9Q18WmqK8XprVzG+qRL2G0UgZr/nuBn50e00uU80d9c4txhp4fGE+W1flnCDl5Cf9hhfzzRfZbwe6mSWeK3feHhCualRD9BGQeFMdbAfwuigDtxE1ljK+RwaxIITtRzFDRBQwAmRAHmINNQNRyYIB6oE+yAZrZyE64AKAhISuTgCjIRgxihFuLwAtwwR9dADedwZcvREFhEXEJEQ/TlETo3JDOIEz2oXqiybRFYd/bhLPFHFLdwAClAAJ8APf7QCgtQAC2wX/0FYAehFtvQBlPQCgG4eP4gCpcwCevQEFq1Dq1ADU5nhvuFYg1xFi2IEP6B5nAMUQ+LsA5AOB9VCD8LNoW0MlnIZx4ZRIJFwQQNkAIHUAaOWDOi2F8CMQ89oAAUsABkcGr4IAEHsAAKsA2HWBDAQAEFUAA94A7HMYpqUQ09QAErUIZtCGDESIz+gGIrgANG4A9wpRD8gGJswAaA2BAo9gmicIwPIRmEWF/lB37sACnU4gTiw4XrNArXFxRIoAASoABUQA3f8A3gEI/yGI/fwA3cEAIU4IpI4A/dIA7i0A3nsA4COZDjQA0FQAH5yAt1Fg8M2ZAN6Q7+gAgISQEBMA7zQIzuJhB1UADrSAUMQRktkI8UMAOBiIj+0AMYIAESgA6KmBBIoJKrOP6LBBEPfQACLTAPjxgfkQgSN3FJ00IZiDJ7mZQc1pBIINUW9dAOOCABK+AM6zAO8xiV4DAO46AKB0ABOMANUxmPUCmV1/ANGqAAYukM3SCV8/gN7kAJKtkAB5AN1fCO79gN17ANdDmX3MAGB6kATDAO54AOfvmXgLlfKzCRIeAP61BniDkPITYPF7kMGICQBRAN7iBexViZd4iKFCAAZeh89QAMApACJEABJSkkOwkS5HBT1GJFDhVtAtUcLXQX7vAN1+APYVAP6wCPZnmW+AALdqAOuRmV42CPZVAGrXCbvxmPs1kHM9ADznAOXSmPVBmd44AOuWCLC2AI7nCc4P7wDehgBwFwi9j5DXRJl++YDXC5DePQAAgZAMDADXJ5DfAZn/DJDeMgCguAkAtQnOewn/w5DgLpDusQD3YghhigAaMZJKXZETioicQCHfMilF30Nl1FKjtYEfNwDmX5DeLQCdupnfLYDYfpofM4Dn2Im9p5DfiwDOFgnNr5DevAC6JQnCKaDfMwCaIgCvNQlseJlrxAAQfQBx16nHzJBAVAAGXwnPIIj3AJDtzACwWwAQXgkTlZf93YE6BUoVuSfa8EY112Qlg6EfzAouCQDe4ACEgqomiapmb5DWfqofyppm8qot9wDttAn2hKlc4QDW0qld0gZ80AAq1wkcBXpf4fKEHfAnlbimD2cAYN9aUPwWv6YKL0uA6ncA6SqqaYmqmauqlpao+Xepx1+alniQ4CAWDywA/1MHhUSKg6cZoZOS2d0lw3YYA0BqEe4Q46epbrsAjScA6c+qvAGqzCGqzbcA7NOBCNOKXwkaB9Qg+g4IDeQg+OkG13NQowpU4oeIzjIKpzegqnsA7DGq7iOq7huq3r0JImhBJXwqwbQUXsIilk9RJ4dI4/EaYemg3K4Kvkuq/82q87uo0FYasyyKoslFu7By7kYCYCizmBE2FsUQ97GpXZIA1pkA+i6q8Ym7HAmoQIMQ1XtK4EOxIGSK/Dsm3iNE3E4Qi7UodDUf4P7qCVHvoN2XAKGluzNrupbIpi0dI407cT0KGD7KIWk0OApUMoOKdAympxF3qxUimzvZCdNxu1UmuWwekOMikQrJK0VLp6OXETFuUuGJh3dOQfQZB9baFV6MC0ayoNSqAMETu1cJuxUuUKXDeoXJsTKYMwf+NNORQnZ8ummTqdahu3hBuu8LiHDnE4PbtuQmMW+2IP5NBPgqRNvqe1F6EP64CemjoOi/Cthfu5+zqnOgs99uAK0MeNd0sSzAAKr7ousnBeUdQjlcMWWhUPlsqp51ALnTC4oNu7adoN7rBCJ7FGi5sTlMgux5s/tNEFxSC2RoEOwpoN2eC71AusLf4JPfRgrcVLEiqrMJo3E1HUOFawIc7nE8/IuyI6DtkAB9Jbve6bpogbEZAHu6hLfSMEDz6ZML7nqN6SfZZwSRdiHwYRIU/yqmrhQBlhm7karOjQC8rwvhD8mznbbdtGd3Zrv7mXOhZjCrJTQS9zcxFVE9pha18irVYAD+kiC/8bOa5xBkpSTpq2FIwWD9sqrvEQCe0bwTo8lWR6tQoRPJa7tRjsEZTRBafLL/egsOizFBkjPO4za9PwFRAWxfewTcn0NvBgGJCbEvhyBriAC05QDByMGgjsEGGKvpl6DngQD9O7w+8rnm5oEQQGsqmrdwubKkSlPS/lD3WDtTPnBP6+4AbMADoXgjppoRzZMxm+UFemIBhoJHgNZ6fk6qKL4A5t7Ma+e7gYgS5YiKAh2xHQ4VUKo0W09jWUgQuj0D/x5A1ncGOLNxsIVb55oSIFAUPfobh5RFr6kLZvy8C14LaY7LvbEKBEyyGAQrIxwq58FRrQisT34Jp8Qxti4Q+JVDWndyAAJ4pocXjsMDG1yiFPicacOg7KcAqxGcyFa66qWhEY8oX1y0L+4Aut6y5dUsztog+t4gb04ATd4840aA2yIG8nArE1mw34gAX4IM7ovK+yyBHw8FHIDCPKTFtgcsen8nPaVzK0kcqysEwHE8QLQRzwQA5BQA/KkA1Uqf6xE9sJULvQUeui9lzLnUyan8wR7CBDIO0oq7KFGq0WvmANQTANBkLLFqJVABYJtRAJ3yANaZux5YzSLm2z3Dm6feIPDWPRkFjTG2EK3sC/jAK5BzsyPeIGzZvLRZGd2cDGvXAKnZAN4KrQmAqPnQDMUZ2xaU16vgC05FfHH8F3Xo191hDR62IfpgAbgr0T+qCv0JkNvdAJp5ANTc2v5NwLdY2xbOrDFwG+WzLREZEI1FoxKTFRJZN9rmEaOR0RvBYP3AoO7VAL0tAJ4dDLvzoOvVALlc2vmgwSS+EGdbu9H+ENvsA0F5NRJFNLVtA9Mf0R9RDZuQnZjN2I5gnXMf6LD4AgDZd828LKnXLWfC9RdZut1RmBv8JtMe5aManUBa7zFusQDrybs7WQDcvUDtctrOMgDYtQw9gdrGjpD+tMHpykJpz9EKNgwRdjCl+XMNDBDCfgDc5LFPgg202bttmAB6eQD1A9rN9A3fgw3/mdpHeK2ZvsDx+F1fQR4EyYxT2jrgljGFZgJlEoFKkt3fJo0KewCOfA4b+aDfWA0Dh+21A5py0KkTuoSzNNJCZ+ajnEM6c03kH7Eh/FSg97mxB+nGmdD1gwD+aJ4eNQC70Arh0uj9tgCH1QCsx9luegVRVaxOTw19Zx5I/nrA2uMJ5N4osCHSxyGGzeENkp4/5SOb3lXAsbjuEzm9BfDo9McABsCQvdcKk0yr+WoNlp4uYL8cgzE+fVQihOYD5n6w98LqTj0AlYYOHhiged4OX5XY8Y8JgNQAnbYKIuetoDoTd0PrB8vRGQOzE9Aymzrifcs0wCvBZSvq8onQ9KcOHAOp3G7uPgcAwo0AAWcACisOgdGr874QumsOtZXevNes0lw+D3vB3jsppHYQ+WOuU4O7HKIA2qHazxgAU5XNfXsA7c0AcaYAg+0ANzcM7andwP4W95Iulidq09gwveAOtosiKouRa8Fs4aS9uRUKmdHo/Z4A9YwMZ1fW7HsAJUEA3UoA7LALX7bS2FktF7Pf7EfTINBD4yvoAveV4kN9G8zUwU9XC7NrsO6d4L7B2sJx3xcDvxVUABvHAMztAMy7AMb7kOIP4Rds7vHwLwb8g2SAP1LU8kRXyURxHjUwvZSiDqOV4PSlAPPC/V23oMFLAF1HAMzZD2aX8MAMsTHmX1bOL0BSFnv5P0BEFcYeZwzAVFdq9p/LXMpdqEMSwRhtj3sY4o10ssSoELGbcWEAu4WV8PcEDZna6+88DS5k643zAPztAGwYgOQq/2yxANOt7fOuF+cQ/eFCFn3yAJsSAR+HAT3CAK59b3+sBr1CAK4FDkzuMPwlAKoGb6CHFYuUCHLCtmDQcLthBdi+gP7v7QCrzA/M4oZ+sgCscg/T/sD8vAB+PQcIavKfRgJgbfEGf8uQYNB+Agppr6DacACFkOweNwbrAwA1/ADWev9mlfDVs5ZT1RTOOvkwAxhAc3fwUNHkSYUKFBd1QwPGzhrN7CheiMYKCgAcc6dxQVfvOBUUMPfx09GuSnjxfGjGz8TTx5sBVLDH3w6YtZkJ8/ShooUAghCl/Ogjjt/ATKi6g/fhOnIF1BbWlJfy0eYmCybupWrl29fgUbVqG+Yo7siUVrcGg9cN/AvYUbV+5cunXtyv22Dk6ndW7v3h2XTVm+bOP+HkacGG80f0s0wKLWTLLkZc78toWZdqojV5o9f/4GjZabQIKe79VjsgBpiALf9A09Wc/dDAmrC+DL7LHeOqQ/MSjwNy8mvnvHArCkoKCMv7Mn9embdRxpgT8vh/ObJAApBgGinsecWKbAdgHAclOcWKS2bwHUzi8ULiAEUgkt3N0LnV///tDk/DHjjyt+1ulGMQMPxOucdZQ5B0G5sjkBn2wcpNDAdY7RYA53gJmMsmoMi0urAA/CqRhrRkQxxbRGG8iz12zRTgIZJQhBAus8ummS8WaksYUb0fOnDNV4xMof/DyKr8YZMSigGX9go0i4AJSUMQQC7gPPnSl5ZO3HhfDBhxoBMOASOOE8wqkVBSggMoTgTsJvBiprK/7gkydVxDNP/nAKpBic9FzInrYqJPSwbE7Boy9Cs/EHD3wuKzRScK6ppxo2VhDlGmCcmWyZaLYZB9K28izGFwABRTXVg1gsLa2JeuBRRgpaACcm4TCKlQIM/PkzSn8UIJNHNr1MaKhshhSWCSPR9KeVn4SVwKUjv/SHjWBnpGABO3tVCL8erpW1AGDA8+dZYQtY572EeGOTSDNVhTfenHDypRh58dlpHUn3rcudXnp5FEQE8+rklAn5JZSgPnrgohpqKqPMmQ/tMmnEs0Chh1d5N0aRVc+EMxdbDMY9SbgDwK0Ng29s9acAlDOKCSdYkMV2BmIRGsqQ2oSlwIhlKf7Cr4yQd3YJSoVebRdbBbbVzZ8VkpZVAWqMXiia+XJ9l2Ot5cXPkkA4nuccURHmd5xTsHDnYAe/+aYWfMARmGzFutFnCxRy4XQyZzyF2668VHRjmua2Jhw0jzU7i4o1hQ1hcCB7gDrlmxG6NfJhHT+6ZagpcGC5aSk6ZnGlDbmTIpx03vyAVjQG2h8mhqagSW4zb8HyAuJRl0R8cIX2zcJ/1zPjjOPFR1G5j/8mm3w6cWdsxQJTQhnnj6frHGqcGeCPapbpsJllthn0r3p2CtAbeIBHf0XSPqt0PAei9jl3teyBhYCkKThgOaqL1QcR+5csgCJYB6QWiO4nC3CH/P4MIpz1yGpYZ0KS5trFpl1BEEhjmqACbGZBhYDpGxgMV/zgFKQD3C8Ax/hO+lSoH5y4AUCzw9NO2DI96kUqG9nogtoq5A841ENsNaxLN+JBjTKEYBfVOEaH+Ba+u3zDJPtLS4lccaoVVnEqh9PMa+wggPUEoAf1+JzpgsTFnwRAWQpUiz+oQEYJCIAMkysWODBgP/zVqXQ40oczJDCe2ClgFgMUIywOwMcCaEAiOcHPJwqwJgrIJ105mYghBMBIAeDgJeSLIBMC8CwBFM2Kn4yiPxJRFFUNqEBAPF5g4gGIt1XoG2Y7RS30hUq4jKMa/rgEDcpQjb11yhncMFCr4P4IFn2c5WugROZJsPgZZxiBAiQQRUdg6BFeFCEEM2gFB4dTim/1ABaAjEk87NCCEJSBMdPsoD/WMc4QsGFl6EwITsDBhhC0wA4Vm5c/rlHEFvxBm8w6hkNmgAgo6qYVBTQCyZK5UK8UQxbgVBFO5kFDWu7rFJHQ4cDWMQ5pZIOi/PrGLXtQhFlsT4nR6Ebc/vINfDxiBSsgHTzBkgPmMNSmBlmmafCBDWxANCbTCiNRoFRQNB0JTFy5x5HuQVSgHakeTP0SbO4h04VMtSD1oCr/4GEvNN7UqwYpxjRKiQ6VVlRuHs0ohRaxiLLKbRzoWEYD5vCNJHavGg0y0Dl4Ef4DXR1AFKAhh72C+tVP5jSL9ehFLb5ij3lgtSvFnIc9oPqlesxjsDnBjWW9co/GTraqjc3qQirr2K5IoxM/I2xqDYITZhwTVfMIlVlR6Y5I4CEeaT1QPk6xCHR49HhCXIZDghGNuuqtQR+dCzqO8TTuXOIz9PCFNdih2oUaNovkoCJ1tesZb7xwu6rFhSlQmyLYGE+2QHRiNvCQD+Q2MRv4wII/0NFexXyDIIYIQR+i0ctm7M0ZoKIvXLrB0i0I4AAHaMA1PEMOa1jiu8i0blruYY1RPtjCYDGFL3x6YSv+Kbvk9Uc8YnveimbjX3gl1DhqkYZToAOkecEBE25xPf69LYMar0QQN+axCwvM4RqToMQ4NIOfYtgrtByOV4TRUkyxItnJRPGGPY78ZMIx4ww1zdN8SSzbb/QCEPGQ1DfqgdEAA6YbsGiAIR7WvWbgFjHjGMceCsCNc3QjG93451esEGUqp0/JYrEHO1zbZ0IfBBTTuGyhCwcPAGFuRPUo85YjNY5z1KIWLo4UOjqhjFNM1JXucEYZTBCMbBRXMtFgYmJe6Q5Y9OAJ/oiGW9gmIrCchR0VnrKi8fTnsOiDHqM4n64LbQl2OFrYhCPHKOiRa7How7ySNus4lLEI3xbKieMAhPTautJbTmIFbLgQ9/pbGW5s+y7cWMc5uICCb/5eI27oYDaJcAIKS2Qs3scOEK/Dcg//4LvPxb63v0f0HFN4I0USHTG0zxuPTvQ2zN+odC+SZ+65gMofISgCL9bcqRtTnC7j4IY+ctGASRzDHaeMyzby/FNeBaEYBg+4wPOj76/oAx530LDMOUyPLhRb51rTBzsMriIUK5zETnTCPNzsoHzAoaMej8s8+tAASmxcbyg/kFuosAJn/JAu26D1VugxDTfwKuY/N9z69sOO6aL9wWx3+8b0cQ+HpsjTRoc2xC/Nr2zEwx3Ry4aW68INfsCCCzO43jHyVpmuRxpu6ODFDJbDtiZ6drXnO8M0cJHouO9a7foJa+e36w1ZpP5Q9IA6yx2wnB+c7AbreD/6OQDhj6UPTMyRiGXzRPWNa7jDECj4wza8Jxn/XsPriQH5N+axhRV8sxofFeJSMsYOK+ACFxs+fYpoDhZcWML02b8pLh4Kfj3hhNj8GYo7Eg57SbcNC/kg2zficQppRILSl+nGOfyBgyUAIxri7q9joAYKkQpbOABDWIdn+wvsKwh7OAs3sIImOzvyC4vtW6zhocCbIod+y8AUwY+vMTbPEDz2Mzp1ULrj8ShAyIZaAJFvQIdPCABRyBslojwEGYd1YIIQ2AZuKDOVywl6OAF6wMAO1BML9IqbYwfOI8LfwYkpWsIUcYR7CMElqwdQIf5BvEueNOgFTEMYt1iHTqiFTpiHBaGCHnAG4lKiARyYcYgHb1sONTyQsFOIaUgE1aOHKXzC/TBCr3AFeFDCPAQ6esCFCQTEmGAHU4AHQiwWXkGHlLpC2AsMg3E8xHCib1iEYiiDIiiDcOuUaLirHKuHaOCCIvgmYKIQGGqOYjgDIzsJyyvEK/o80Ju7V1She4AH8aLF/AgsPPQKnNioSXxEt+qoWToedDOHWQmDX+KeZayGvjmQapiHVDgAREAHAiGUdDkTKfMHa7iDUcBDfaiHcMxFz9jDrvAF8frDcUQVfSCHJlPHIYuu/ODCYGS/pouEGuzCeTCEAICFa+CGQf6QBFTgEMuAOrqoBn0oAhtoh4JcKXQoCPw4iy4wBXuhCBkaCm7Qg5t4R7AoR66gB1bcSI7BiWkYhZBcMnqQhaHzjHgAH3q8wm/Ih1ponheLB2EYqXgAhmM4Bl4aBE9ABenZqFTzm3Nwh0vIL30CRgG7hiIIgAPgBX5QAup7SIUYQ2hIBka4Aha4ADoYJpP0iI6cCj5ZPa9UlQccL7LcCnu4hwpDi7WwRpd8yXi4A8LYl7yYhzaYgUlAok5ZBm7oBfUKQ3Dou+ShIW5gSSZ4gj+aGFe6s1QQAA94gQLQglOYrmVbiFXwAhkYARbQgRrwgktCS1hskf0YSbFSxNCsuf57cEfUnIquGUKx0JekhEvq6TI4mMlCATtqQIEygIVvAMC9eb5zCJUbwgJpOIV0CRV8fItbEoUG6AN3UMD6mrh1EAdqAIMNsIAUcADFYsBqWAc6qIHO/AFoYE3RFKbQYK3OOM3y5AprKLt0ZE+NkYXVJCaGnM0tg7MwO4dNKIBWiAY2awbnSZ5aAARAYEG6WIcnaAB/aMZCCYwVVIJtkA8ScABVYMA70YHOzNBKiE+iAMupOItRWs8OjRl/cAR/eE0SHQt96Az4NJ15MMX7DMZsqAcrkAb7nIu8WIYe6IF1WAYArAxqaKvAAIdqzAdAOAUklQZluKHm/CseTE62kf41t5iQV6K0dajGdeioxOoFJVgHQNgDGtiGWsCFeDhLEimIUODMGhAEHfjMlVNRf/jQpcAPR+DAON2PrjlTPD0I0rtQMaqHRpRRuMyGbeALB+kGBSvDPlgHYBA3ZziGT1m/HE2eQF2HWiAFXPAEHDCCQcAFcOALRnEHfIgHfGBDf9gGdcqHjrI0S+uESPAyZYgFf3iEKigEQpCHE8U+4RgGNWABFfCCZBiGIQgOTOLTVYlF/bgHb2DLY80PXxglFy1P/Cg7XhSj2BzU2VzSeIi0auAHYdAANgAGbgBA77kGZ6TEtyCIR8CATxCMRYAvTsOCU2AxPKg/LJiHCgjDNP5QBljthSWVBnDIP38wgiIgBVPAxUTDDX8QhB+oARUIhY5QA/J0VoWY07AkhxSt2LRIxI1VCHKIOXxoyWyFy+SBg17AUfmbAw2wBf7Sm5F9xnngURwTTCsdh3lABzD7S2X4Sx9KQDhTTnAwhgN4BFlQrKzSB3MYghqogR8IOfIZ0Xe8WKK4B0HTWI8NizsgB2slUfywgrFciubBUZLFz45SNXBwB1vwgSI4B0ftnmgYQVXDUlh4gEbwBzh8JY8iTL1ti8JAK759i7ygBjPQgHYYJZDFkeBgBRWoAR7Qg5fAiabAWoSY2qWYhpybXLSol8w1CEtA3KUYijGMUbKFS/4Vq4WiCyKitIN23Ybi8q+UirRrKA4ejYZ4GF1CWZlJoIBNKAZc0DCZmohkUAMVYAE1+AXf4VzKTdb9YLCo3Vh4UMnMhbut0D3SldFz6IVOCFq54IZ6oAYKYANeMKlO2QaarS8FmwMjeivZFLBtqIcZWANzQINeuNOxEI421QGIJaXkTYjKXYoz2Fr+7Qp+64Londw941qDYF/rlS3BoChucAehaYUZpIxYo5BxoIYZKAKHq8tzsAUJaARTuDJrfSoe0AETPioBttjlZSF/uD7n5VNyCDbODToX5daxZWBocwcVnJ51mIUeYIJvGL6IWUwD6YZ14IZJsADncrcwW/6HaGCDCDjEXkBRZqkHRlCBzmSEEFPhhfBforCGh5JWAR7JkuRfUPBDW6mzHCZZdKiFaoMLsFMHLsCBT9gQII21ST2M7l2GIngCaLxdCklUf/gEGpgCf4gvsKUcfxiGK5ABYE0G0Ozi/mXh/OiaF57kmDiLr01gEi2GQNBGj8BWNs7WeIBVSKmGehCGBmCDaPg/JQrkxJCKP2iAVki3BQYHdMMHG+gBfAAFa4A50xmKOBgCFmABVlCHO8pkZB1NFGGtP81kkIVh9hQUUiZdjrpRuBAzLmiAahAGCu4vCkmeeAiBLZjHSMkLUSiAW8iGO1iZnOAGKGBaKDjPZVbeZv62GH9wg052sueYZtL0hy4oJv4dBVAwndu0ZpJdBy9LG7Rthd0EBw7xpQ+JtLwIB0QIAbttUHSuB14ogxjIhkQ4LataCJwQh1fogBoYAq6cB1fk3y8mihCFZg47D5eOl1HiZxIFZvg4voTO1vfCgt3ghjnIS+WaQU95pdj1B1Gggo1wh1h2kGtYh0nYATZAhgrDQ/xIhqyUAS8gCDi1Z5ieF3twBfpUNOH4BCpgAi7QijFOla2yTP5lBrNWp+316etVhnqAhXCVmHJdhnMdGKmgJ1WoBz12EG4giBZYgzDwB1yEJ3D0BzrIUBV4hYn4ZxIVa6IwFXwbCipoAAqwgP4QWAC7vWzP8AUzFuBi+DB8CAdcvuvzgskg4AINUDwKXiIHOYdwkAAugFF+4YZ72AQBmAR5MAV6MNZ04oYTrgEoaKzjtmcvruQASYQ7PDb/YYnQloBdqEV7uL4uDr2CwIeTMzcpNRDyfm3kudlW2IAyuOOJNuy76IanpmVbeGocpov4lgYu6IGtOoU9Xa2XwOIMxQTkfW5lim7+8AaDdmvC2g0UQI6faAAuUCF9mAZZuNqNnYhT6KngEEq56AZ8aCyGVL66VjV/hOr73obyLW/XLhQI/oYnWIJE4IZN4biUglnECDlVKIIq0LETL+9aYYMlQAROUIbTgqeFpYWsLP7eZ+jKAmfmeh4RPb3wC/MhAnhwCmgAI7DpPDkLRyjtVxQOIyABEjiG6PTwesjEKShiv/E9H9iFkzsMSgPxgDkMsBuKnvYbdPuGGz+3aii3ueHBu7ilT0ABNuAGPIiFGXSGJs46grCDEPgESMPl3uOGGdiDQTAFKvbv0okDHnhYWhCOLV/mzKZae3CCTbcwe1iHBbjyBqgC9MEJR/CGLwfE03GAF0iBAziHazBvvMAHNpCRA2CD94YLdJgEAqgNSnCHleqGTyihGVgHPscLd+gDXbFlVTMEXohbv1mHMaSvbwgHYu+GeuACCnhlR31U+7YvbmiALRAxkFoHUQAAbv5IA2+YcvD2h2foTBm4Anxycg89cIBmMEW7h3jogc/uDVZOH3aYBgOeXJyYhAWwgNgJDn+eB3fA+IzviChYABnpgfKFs5AX+VBpBt6hgnsY+XNQ+ZVXsABw8KUxc7hYh08AluT4JSnFeZw/h1tQgEECN4pim1woAAEQACRGjGhgAgyIJkjJC26whQZog4g+QyUgg/0yvkg7YnSYgwOA4I22tnWgBiCWB1nAB7VklnXABBWQgSHY4q7693uGchRRTQej9cIBBgKwgIcIgQZAAXEAHnr5XQGuLBxAMJfoqj8QAAcQgOWwFSYoIQXoA/7xZ33oiCnBAL8KsXnQ/M3nfP41oqD2yNIEFP3Rn4dP+B8coAYsRYfVZ33WZ6nVsBk+5wY7y4buDYE1CQBbqIbyta9Q9AFsat1m4IUQcAAFCIG7KrOQImQc2IJ6uIbXE+dxqIc66IFHmAb6ZUCc+AUoYFw1+Oq33wpSn4qCVrSdmIUVCAACMKNbqns+tASS5l+cGIcwGAQjcW6E4Ad8uIQiYAO31ydYAYgy9fj5K2jwoL97/soEEIChnj6EEv3FK4BBgI96E/lx5Ojvk0MHPTTiK2nyZDx/BEJQQBHC37x7MmXam1fv5jx/KyhQOICo3rx44/xNWnEpGjhq1bZNEvDCgYRW68BRrWr1Krhu4PBtKf6iyx3WsGKxXlvHrQWbeGj8sZtokN89jXFq6FDxqqA+gm738u3r9y/gwIIHEy5s2B+3ITy4HW58UJ+3exEdU65sWN+8dbzm5bTseSI8epM/ky5t+rRnfO40AtZ3M2XgaK06+613rwgb2n3nMRHgANbfet0EUAgAs6/CFhQuUtOosUiPZeesrhOlgCcFqWOxfjvXTAOXc9+2k8fKrd4mAsPQyKLnV2E1Fj9kXDmO+j7+/Pr9Jl68n+8Z3tjzH4GBAYVPTAUSZg87bij4IIT3WWLKYJIJdtNo70HE2l+dKfTXh/5kyFdEn/jjDoj2GDFDK5PZggEb/lRz1Tf1GEJCC/52+DNeed+sU00fC1TjTjfjlHfkN+4ss0QL/sBR0IB7TRYHCzrUcJduEWq55Zb9MablgIH4EyWXEY5YpkTu3ZEQmm26uZc13ryJ12C2CVbTPGe65Zo/HPqFz0HuMBHDNu7MSFY9uMDjDjdHduMPLCiwsc44Wh1JnlYLxTCIPJ0UFKJEfK5yBQsq6AFNn3OqumplXpY5DSj26MkqradFJAsuIta664PTWMMrmrPudc86/oiCwSfnoMMjd+IsogyzY3VTjT80LCGKPt9Ee2lY3OCziwl7gGPJOX/CNJcMOrBSEKDAuvsuYop9qaVCrsB7b2UKOUgmvv1Whkuu/tYK6P4SM3yzjZFjfSNOL9KUt806xzRgCDricYvpOo00sAw6a/oV0TNW1nCFnwKbjKarXN5jzx1ynvyyW/TcsTLMNQdmzTQ2owmoO7w08IeMCSucTxrjZKPwOtmw0UA1Zl28nZHX9ICEP07I6V5f6wiigg46hGKfzmHvlzKaoNADqtj46kOPK9NgnTbcBXnjiqxxFzhgM1zYcN41SLoTCTjbUvUNtZ/0UAZilj7NXTjz2EGDJ8h4OuZe+ERkzBAyyKCGOjDpZTfolpHNJT2+WGNh6O7aA08xbaUuNjwuv44fip8gS6ngY6HTy9FYIezPEz3w4k7ui4NTzTzjWFDIk7Ww6f4WP6ypIfIvgAo7O/Z9jb6lQlZQnj2r7jkBfthnkMMv+ZRh5o8FVFQz3cXZ4JMDPr1X5aMtCzRSpPFibaNPGUKACn5Y4nl70Ugy0iUDL/gDH59LHwT3sr0tuecMEXxTRCyIvgviix0b5KBg2vUJDZioUU8zmras4qNj9AEDzliH4vpHnVz0YAny6IUsdCWlhKiBazr4RZ8eCEIQTnBLq5PFr4aoJXa4ohioU+K9EgGPD0JxLzlZxhd6UCgTPu0cyliEO3r3jXlMoghcwIfFZFiVbqwjHGzYgS6QEYkBoe0xgFpF5kxljlRVcYhF1FJEmNGeOmavJBFamS902Md3jf7CXoRcpEH0MSBKhGAS80jj4tzxrPFcoxvt6IEReFGPFKqRKudJhgJWsQhciUhYGjGHGmrAgiHcRZEHMQcmLAfJ1/2RS26Ax/VCVw97YEhB9IBHF3Z5r2Mq0y34iIsLiuAOhKnRi9k4mDt2MQBKuENopQQHN+bRhgbEIwds6Qs/APUKK22uZBIJ2U2aCbpegskfgSCHLbF3DVjAghoRCaZn9BGRfcmTVwoJgj/e1syI1KMVBNjFPLgoQ3cAQhnr+AYVQlAPbsRQht8YxzqAEQM2yAIbv3rkLbemgx98LUvvrEE8nVnQk9ETTPawRiLBNw9DDOAABxgAG6j1H2b4ov4Y+ZzpnCLiC3jMVCPHKAIVxOG0Uo5DGqfwRx98EKO+fTMr3WSDDyjRKXugtIEE+YUMalADNRRkIH15BkxZ84pkPOMV+IjnK4CIVHzV1Ez+8MYoTjc7QPXhABjgCQYOwIT96MMasjBqWffKpYiMIqHyTEkfioCIHRXvadyQRi+YUAReZKur4IjGPESxgkb4QwvruF70CuIFdqIqMHC9CT6oZA5xsCAOBVmFDPQq2Xf1dUvFMCpAbXaLBlgAOzw5QCnyc6scDrdW7jEnFUG4PgwUAaSdfVo21qEMAXwCHOP47sWotYWXaMEbruOLRkLRNRUwwqVvhek6ptdAf9CCBf53GYIejlpdVhV3S9NIZnbDJgoCOPe5m8DPyhKR0wGzKiIehORkKFGAXcjItIFbRw8UQI7zdnU87oBFA8rADyyIKMGAym9afwBEt9pWBua4whCOI5crQOEHYKNwrQp8yIKIScBh+wSDG3yAR+THQd8D8pwGtKbIki8nx/ABE9TxDW54s3/d8QciQmAIUzgDvZfixj2qIYYZAIMT2TDgRNq1ih+ooAZ0SIk7/ZIMHVxhZHw6Dg9UcCIo80rIQ2YGKJiRulk0mCcEMBFqyJEIWeiDyoSGkD284WQl6gNQUeiBKrrZ1XFw4xzXWAEXciGPWthPjdWoRylQ4Ids4CIbAv6FL2LUoLkh0IJOhAmZILhh5yDGAxo/qIFv83zpNhmaS6Bgh0LhxoQGOFcDRWhXaexxU6Yue1WSTOIQXyypayzLtOdB8Scu2gs8zOOb3NBHGyhwDmYkwi+xfQVdWEAHdh0GrjmpRHAp4g8WCOIXNQAitrvtpmZvyRHkADfcFFKEEDSA2j0oVmkiQg5v1Du5Ci+QPuBxh5xxMCLrmMUAhEEk0/poG0aggD+ukY12dCIfZt7OObbhjAMg7gSf4gtB3OGFKsmYj/2WAWf80eOC4Fi2OrDvx7skL3cpRNPQtltOPvGFMuzB6KTxhiMSmeCoQwgyzBg76ODiD2fEgAlo7P6ol7+B1dXKSFvxWEQ2unwpUjOqCEuQgxzHhNLJ0EKtOvBtEB1jbJzM4wd6eMUPniHwIbBViGSPEMPpVRBTeBDtAvOTshvzIUcoxNKXL9A0mGH6tOkDRV/wgSjwQcpSvrsZNqCCMIQzuF5EgnjGiwaYafCHxxYLpfzISTu8oLkfoMqQlKlH8yNSDXNwQ/LtMgc0oH76AmV+SxHpAj4930eFsCOZHt9+gVom/rANBB8NmEN4b16ecSDPECEQRXd49I181CIc8lfhGDHBDNSCYxmZQfybDPzACNRXhFge+nHf1N3LgHiDBa3eEN2KvazfAw6V7MxORMxDIxzALsSDRP6p0XlJDQ5o2bZkAxbkQ6v1yDmcgy08QCEgQy9MWF+oQ5/VwA9QiwNtYPZ0H5dEiSP8nDxZiCO4R7QBIff4QzItIdxUGqT0gNtxVImhgzvYH2tVw7bUQydkwwuSxzbMAzVQgRDUAjkAAkEIS7uEAg+wgAwIQk4kHBOmjhBOFj00CFNBIRRhTSAUw9nU4ZuQw5qcn8B8CBegQO79H3lcgztQQwiUgTO4A1ddRTacgjJcDGN8wgbQAiCYgjK00gH5AzTEgQqwgBf0mvMJIi9FoMCwAy5U4C4NyBlYggay4n6wQ1sYYr8oBDccwCdQw0WZG1ZZgC3EoFicQy3g3c1tWf49FEERHIOD8OFBxJcC7dt+4eLs3CGaDIg9BMI08OLssMMZeKM2tkmYUFcUwsQfWAAwYFIp+UgzMAEKxFxnfYM0nIPecQc6VIPPUAIhrAM+BRNQZM6xMUbonWPacCOa0IwjeAM+XaA/kAM71Bs93KJC3seA4EJE1sxoREQuFEEU+EO5fVM3TNMfhMAl+AM1bIePdIIy7GNVkNo8RAMT2IA7mEI2BCL0TMYqVMmwxYUDZuRCuuLLyIkFXeQF1Y0beAPJEWWwlI7YCEMfDEUZ+EB0cWFXVcO3xMAXOENEuSQ41EInjJLCOMPc/cIo4MJTWpGM9JkKXAGqiCNUCgxDzv6JpOVQ3ZDPgBTDHZADNdYlhMiCG4jGy3SaLRhWCGjApJTkN1HLH2gAL3DDMLokOtTCRynMUJjAFnyDE1jDLuIaI/xAXWDCHApmK/qHzgyINXRBaJDPPTQIKMAZaqLJe5lMTlAAS4TADCCGh4HDNlgAF6xcj+wOIMxD7nTHOnxCA0zCNKSBKO4FQZgDFKhV5JlVbdqhUdZMlASCKygabfpLiJSMFBYDMzhZYGangoBCEWLknGgEClgAxVEBcn6Tj6xDH6yAiVRiecwDILhgWGwDpMwBBuCD9/BDYCoEPvykDPBAgGWjes7TdtoMa07DHbRFevJKTjCFMPhDOokI1v50QeqNCV1GqGkohCxQSIm2iUAJwwoAABPMXv+MAzVk0wxQATcwCrdkQyTUQuBghfwYAgZMAjngAh1KRGwNgxqUihcMQ58cqYmKzV3uCjNYw/g82b2gSA+YAAaEQAxwWIhaA3hG6ZuwgzeM6ckkjXl9EzX4wx5IgC3gDreEA/9dE404Ygh8QTbIgjryRU4wQr5hAr+RqYSqpt18iBV4g1G5p/f5gwawBHZgADRMgzdcKaMSqq3cA5/WTFyUlgyNgzosgwksAUsy4jdkAx6cAjpcxTiggygcQCusmK8dkDsYpA4gJKaGzpTuytoUhBWkXkReqoKUwWE51wEUAosl1P6K5ipqyEJbvowMOeI4tAEKRBc1yKTC9AK0WMV5KMMSFAGfespeIimg1EMo+FCAQcRQMmvN7KpB9SU5/BKFJMStrQpBUAG1ORcGNECfWCC76sfa3JO/0opZepY/xNofgCXclUc2uEMv1MJUBM41+AMbLAEY8AMgQAlfpEQ1XIEMxKX1/WuhzsvrTIYu+oL5GISw3kdcFEG+RuoBnENCiiyEJNLAVtjCbgfysAEK3MJUMOLg1AMeREJ9aoU7rEARsEPrBIc/xMEQ1MAI0EKxQCnN2oy7wsuHZFoX4FSGQgg7yIMRvCx2rMA6zGzVEsiAmFPXAovvHck5NEoDVMGOyP5QPERC3gWOPpZCAJgDKHZkX1RDddLHHi3r2RbahGKPFPoDM5DDGeiDKVjD2ygE4f5FRAxI5XoDLtBDF2ADGDRAsS7HARjC5BauZwxIn5rM8ZkZxKhDAAEDS6qRNHQCZk5sLlCBGZgCPUBnX7zSKpwiFARYvZJuURoqBCXuMblCItyDE9DDmAoUWd3sREiGe5BJzrgmKOCC7PRBAGCHAGyB9glvgaCoLHSgwKDRd7WpKOAAG5RFCT6Nw0Ks3IlBEXzChAxFdiXpFajA5qDK94IvTR0uB7XFNBSDNwQBPFjCa+KFTEgSvQZvJLUYia7MaGibmEAA5v7KbcKEMwhgEf7YQv/6739ExDRw28uAhVicqjsUQc+uA/zIUDbUAha0AzdwAwZgwipBnFsKQrqoQCUMKghLKQBfUOWyCfNe7x2YgivAg9vkobIKiz2cDbTRA2jKAjMEATvcQTEwlUJYrkRwyLj+MJdYzcqiSbuFxTicwzGsQIy0JFVlgzLgAzikQgEkQyK0BdqpRrroQI5BBBjDzdWGTUQsITMUQyLgAjNYgT0kwiiQgyNYQzEUFQEnAj2AQiDQQxBMgyw4AluSr3tcz03UA9X28d34w2waoLt0GTfEAzXMwQE0wzxUA7bunVXJwjKgQA/4Qyesg1JCT7kygg8xAkyEsiibzB9Hof5AEdLqKJopkMM0FBWl5pDbkPBB0NHoDjOBRIQrWMO8Ckzq8sgmihk6VKYa7V8k+AMVFMEzEMI5GFVfpMQvkIoKqEHzWfPwkiw93zNpRATOmPKuAMo1fEM3tCl07MLPdlU23EEkhMAe9EIj/1PlyEXXsAAt5EQ14/PCBbFFZ/RhWIIjVPSDpJNscAM1vF/B2uc61EIfEEA0mAIeYKkzPcOx1QAUoIgwazRfYbRN5zTlJhSFrC0GUWwAEAAKaMAxpFmJgcM69AIITIE/eI9lDYs/iAMmwOEQADMf6zTMFDNWi/La6IMF9Qs6NEAIhEABUANAl9g40MMavEAreEMtnP5NWWkEK+SvvkneB2+1u2g1XoOxCFMqvgTnWBMAMPCnDFFmNITAC8yDG7iDNE8En9ABXchALdX0Xuc1Tlc2Zn/KIHs0wIIZS3BBNwCtWKyDHVAAJyhDvaFdPfBW1/BAn3B2ZkOIXsc2CLvBIPOzm2DbPYi2Jc6DKmSBAiADIBhVYH6gHtSZ1/wYbfvLbO+1PphDKKCI8EbJmnzxwEiGCfdPqeFDGexAGMjDk7g0QqhTdY4AHUge9C73mzQ3XteDwdnz2UpSg0REekdIC3vWtxyAHfiCKcDDE8lUNahVcFG0er8Me2+1e9fAl6wru0bEJft0m6zq4rRqG2hA0lSygf74gxfMdIFb7WV3eHC8d1u9wjzQAslCQzJAKJkqoZiM8X8ASmYiyTjggyqgwBx4QydUdwi1FWWDuOESr48XRoKfhz8MwQ/Ugw6wVUG4Q3LD9unJyjQUkHizSiyr0HRwQQ/MAjKcwhDXSX0HObN9OJi7RYJLHg9AQUEkgwqkOH+pgE38ayAHiLIaVM5aBSyPdB+sAz9Mzpinz4FjtXvLADf8QH2Asjv4VwPpgRpcNZw7+JQn1cP4Axc0gIA6AnL1uZ+LOaZX4zBUSZLrECaQDJP32tmKBjyYgixk8KqIMwCmlo37Qy/cAUF8+aYzt6bXep8MwwLq+rpERDKMADfsGf7GCW8xZDNTufhp1MM2mIc7rAMOUIE23ME3SLmT4/qu/LlO18MwCLo/CEINCJWGv4IXIB74ApMlsMNJ0fppOCY4HawEQEMnmAI7q7u13zSQ1zuZvzc+tIMM0AEfCwKfSR4Y+8I0WOSqtK0pscEB+EMO3AOE43vYYHtOa/sPfAk0dAA06BIU5Bi91+Xo0UMiACa9BouI1IM7nMMuhAAYSI57dDzE34vE23TrJYNbRVSKpwQt4Tace+M3soOUc3GEAIottEEbNEIVkADgvZnOv3w9M71hrEIHKDcIT4Z7gILVU451E4gzoMABOAAJvIA3kK/Tg0/MV/ZGyYBELz3pkv4Vw/uDvYSndPnDLfAECTiAKIw9B5X9XquGHlRPj4NvpU0gLkhRZb2XQ+eLLVmDI8uBAjTAAzSA6+J9BOk9bd9VtWdnlOBTIBiyg7CzrszErc2KQDmvZVGvNyCxvCcSMUDVMai95AOxf5yE7M8+7de+7d8+7ue+7u8+7/e+7/8+8Ae/8Nu+RjDConsoo9+zQ7dFFrtCIGjalIvG2Wibtk1EWwTBPbjBcVlDR/LMab5+pld8Aw0/+Ze/+Z8/+qe/+q9/Tuha0ZntPfclLgSCKSRCE8mCPQTMiJypY7mBPpwAQMiyBM+fPX8HESZUuJBhQ4cPIUaUOJFiRYsXMWbUuP6RY0ePCLnJ+EFHT0mTJ1GmVLmSZUuXL2HGlDmTZk2bN3GmpMNIBw8VMgRV4+YP30ejR5EmVVrxnj19CtmxG8UOlBtyTnw50mqpmCV6rvzRQyjW6dOlZ9GmVbuWbVu3/MxpGqFiRF27d/Hm1buXb1+/fwEHFjyYcGHDhxHrvVBDxw8eHUYwIuqWcmXLHfXpu6fZ4r2CnC+HFj2adGnT/p4WqrSadWvXr2HHlj2bdm3bt3Hn1r2bd2/fsBmtaqziByZu6vidVr688tPMqFFndg6deXXr17Ffx7ede3fv38GHFz+efHnz59GnV7+efXv34Of5uyLjCjR89bLn17+ff/5///+Zk07AAQks0MADEUxQwQUZbNDBByGMUMIJD/SMET0Ous8sADns0MMPQQxRxBFJHNGsevArUcUVWWzRxRdhjPE/fDaU0cYbccxRxx157NHHH4EMUsghiSzSyCORTFLJJZls0sknoYxSyimprNLKK7HMUsstuezSyy/BDFPMMcks08wz0UxTzTXZbNPNN+GMU8456awzredq5CjP5iza88PnHvKTLUEzIrQ0QynKE1CkEE2oUTsve3QtSdvyk1Ls7vEsLOo02vBSjDT1yLNPQTUoLVMPGjUiUhmyB9WGzHqKnlAR8tShWR3V8yxZWR3rILF+bQjYhVx9SCxKeyBV655hGaUn2YNezdWjS6NditKmKrr02YzsYZaiYksLCAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRoxb16bspcKUre6CsTXM0LZGrQMUs3aFnpZisQN4ceZ3maxpTgUv1IV3Ltq3bt3Djyp1Lty5SpfbOFpvmxF4gXPZMsbPGzh68hIXJSZVqydudYriKEbRnt7Lly5gza97MubPbs/5AFeui2Jq/wxfzsmPnzwk8K9YO21Trubbt27hz697NGyc9a8UCNaYskDJoimpNUlabqPVJer2jS59Ovbr16z5p+ytWbFQxUJP9/mnvSBm6QFmyEtHzhRa7+/fw48ufr3mpv8GJIt+Dbk+pzpu0MQOPKYlMI9Bx9CWo4IIMNuigQ2rR0x0o5hGllloG5sCfeA926OGHIIaIGz2RgecPcUjdQxkolhg4nogwxijjjDTiZCBV3vhj01vmnWGPIzUGKeSQRBbJITzTgAKPaTrKpQ9l7OASyGH0vGjklVhmqSVvN8lCTyAcWjkXOcy4ceCWaKap5ppzsXPPHawhaBdxbrgiJ5t45qnnnhrZl6QlOt5p15P+WMKMKe3xqeiijDaaqBvTSCboZcQVKJmjmGaqaZa+MCNLorepJRU5/W1q6qmoPqiWN8zkKJ01/omUmuqstNY63U32yGKKi9HRdoY1rtoq7LDEWuZfMcw0x+F0lMniS2FiFivttNT2RFtjn0YbXbJnVuvtt+CC5As8dyj7HnQ5BBvuuuy2uxBtvhRjRXHxQScLLk26q+++4VIGT52B1DQpdZQZeiK/CCcsLG13WCMlignmeMbBCldscabwsOOINzKpmyBlo5h08cgk72mKL+SQYwp4A7tnjz2QilyydEqllVd/L59Y88w8UwSdPjj644hsHprYcs914fWkrA8plxbSUBdEqDdusGZPIohqS59aVmQb9WZKx7RdpI74kt8ZyW51hjfcqWRPTRB/jTRlOZzJZIg3kWOg/txxHceO3t7gUmZYU1Y9TWw1DXTYNN6EVRUuiXwnS5TweKw139+qRQ4u4OUM690gSmgJa5ivRVl5/rjCDla+yIIs6RfRY8+4Yk0zryM5i3d06Qtvx93BlN1BY2S8G1Uqa07Qg/ZguUu9LEMXHgRdMevB6QZqOhdfrT3swDMx9jB7E7eId5jin/ZAQReIrsWc/vxINzHFTDGObFzl5eifyo4po7wfE/4Pogw58vcfgQgIF1VDFIfGl5P+BAge+WEcbQBIQD2Jih1BoNeBVge6GKllFBSqYEjOJwtruEEfJtIZBUdCKIH4whuGckVxVijCLdnHF66QTJUGAh0zCelC/v2jYQ0XwpSbOMEfMOlWW2izkn8p8HxDtCBzVvM+tcBJiA1SCyhkGMWM0IMefOHY++iilH/54otd3JMsAjNGDjGDgTTK2O7S6DzWuOFqGqSUWlxhDUesRDxYpOOHjBMc1lhJLYEozJXWFsghMuVk8WpKZ4gTL1+wh2KCHBJN/MG/JyIEPVgKXl4yScTtWAMU3Gsj2E7jjxP2T5WkxJtAzlCMHGntJVhSCzMG2EgCrmdycLyNYWQBCjfFkkb28EYXYDmQZGYwS5Sp2jENwg4YuoSZtmEKLvaHzWkmyD/N4VVCboKvYAapWd4EpD8S4Q1eWqc802AGMzCZzgVBhxyy/phnN6EjvF526CSjsIY5RfikjE0setehjT0s8alR1pM+++Gkerp5sLpVSEuROibdDEkfypzAHxd9KHwoAwGQrrB9/gyRKYoBxSGqBR6jUNZAq7NJR4zCYyK9jjdWdqI5hoYZLdUSM6YR0iEOtaENIk4xd5jT6WjuSyCdaUG8wqabmKmoWsKHZgzjj4nJLItqGR09m7obDHmJItXEE2WO6NMZcSMem0kPRRMECiCRlTeicoUCJfIkquBJLbCzoT8YoQZ/aLUy9yBHIpAaIuLMK7B3rQ0z2HHEfEVEH+RgT0pFdA9m2HVLWuUBFAxrF5H5UKoKEpkpBojayMLlhoGY/idTL+sPZnAxT/rAxd629Isf6GAVB1GHOg6bIn9Azp0yAixP2+rau9zHWaCSyFrHqiZ7TAN7WoqDDGRAB6nhgw50qAdxi3KTUdx2SN6jbnPpIgt4yHCziuST2YJaJG5coQY1gAI3CKKP74YXH+MlCpDiK6RSfWq9dbkJPTzFUYvcxBLv3ZN1Z3ulX6hABzoYwSv469960IYb9ZhHO9zRjnaoYx488UZMLTukFZUFwX0TSIEANVeGwANQrb0SkHIMIn3UQw1D+MEPvKAGfEyww/owhw4q4Q4vsGC7+dUDaUkSkxbVWES61CGM20IZb/wFOsxFyE3mudkZ3WOZPPZQ/j3McQVzBNnN4qgHWvzrDneogBHiWYc5xLGOV1zAHHImiebMtaWVsnjLRAEZoMK8kPJ9dU+2xBI+4sGNIfBgv+YYSH/Byw0W4FktIa4HNC5gjDIz5CZ3+BSjQcSUDKYZ0SDpoT86qBF6RJpPqG5ekfjhj0pfmtea/q4XVCCDX0wZH/PgASZ2IlM17eizsP4JoZjRuitHZBTG5JNaumPtEPl6vxwWxAWGQQceVONMXhgtTk6y2Eej6UnWuAOpot0T4qwPuR7BhSVeXSTKAMnUCvq2d+kQh3mIYwSVIO0aZOCPQItEVGLbU2y6Te+k+EMWE+M3RABuZk4OMEsC5zB4/uX8i3H7oxIjaAc3zLFnkXyRrRJuDT0+XnGSWMMUn6LwRxyRQkXdJIQgtzS4g60GNQRaDRcYtQyeDOWGe4Q2YMLqmqZH5pqHxECnZSE8DtwozNIYSyEvCDWo8eFfmOMXxkh72o3N8YFA7pqLogko9mr1khRsGpAdoT2YIXXcLlhLYV8IsAX990yxo32rrntB8gaWtivkHqvDFOQDofEHBX4oNJkGmDTliG0qPiPTQKCOHJ8QmugTU+0M+qWNwpTmVN5ITJHh6yt+E/eGsO8gMQy0426PYtDcSJcXytzhnqnMC+/zESmYN0xEeoWsareOYpHqhz6UlOE+7vfAKfKd/q8Pdiz6J126lOQBL3Sj1DXxaaorxemtXMb6pEvYbRSBmv+e4GfnR7TS5TzR31zi3GGnh8YT5bV+WcIOXkJ/2GF/PNF9lvB7qZJZ4rd94eEK5qVEP0EZB4Ux1sB/C6KAO3ETWWMr5HBrEghO1HMUNEFDACZEAeYg01A1HJggHqgT7IBmtnITrgAoCEhK5OAKMhGDGKEW4vAC3DBH10AN53Bly9EQWERcQkRD9OUROjckM4gTPaheqLJtEVh39uEs8UcUt3AAKUAAnwA9/tAKC1AALbBf/QVgB6EW29AGU9AKAbh4/iAKlzAJ69AQWrUOrUANTmeG+4ViDXEWLYgQ/oHmcAxRD4uwDkA4H1UIPws2hbQyWchnHhlEgkXBBA2QAgdQBo5YM6LYXwIxDz2gABSwAGRwavggAQewAAqwDYdYEMBAAQVQAD3gDscximpRDT1AAStQhm0IYMRIjP6AYiuAA0bgD3ClEPyAYmzABoDYECj2CaJwjA8hGYRYX+UHfuwAKdTiBOLDhes0CtcXFEigABKgAFRADd/wDeAQj/IYj9/ADdwQAhTgikjgD90gDuLQDeewDgI5kONADQVAAfnIC3UWDwzZkA3pDv6ACAhJAQEwDvNAjO4mEHVQAOtIBQxBGS2QjxQwA4GIiP7QAxggARKADoqYEEigkqs4/osEEQ99AAItMA+PGB+RCBI3cUnTQhmIMnuZlBzWkEgg1Rb10A44IAEr4AzrMA7zGJXgMA7joAoHQAE4wA1TGY9QKZXX8A0aoABi6QzdIJXz+A3uQAkq2QAHkA3V8I7v2A3XsA10OZfcwAYHqQBMMA7ngA5++ZeAuV8rMJEh4A/rUGeIOQ8hNg8XuQwYgJAFEA3uIF7FWJl3iIoUIABl6Hz1AAwCkAIkQAElKSQ7CRLkcFPUYkUOFW0C1RwtdBfu8A3X4A9hUA/rAI9meZb4AAt2oA65GZXjYI9lUAatcJu/GY+zWQcz0APOcA5dKY9UGZ3jgA65YIsLYAjucJzg/vAN6GAHAXCL2PkNdEmX75gNcLkN49AACBkAwMANcnkN8Bmf8MkN4yAKC4CQC1Cc57Cf/DkOAukO6xAPdiCGGKABoxkkpdkROKiJxAId8yKUXfQ2XUUqO1gR83AOZfkN4tAJ26md8tgNh+mh8zgOfYib2nkN+LAM4WCc2vkN68ALolCcIpoN8zAJoiAK81CWx4mWvEABB9AHHXqcfMkEBUAAZfCc8giPcAkO3MALBbABBeCROVl/3dgToFShW5J9rwRjXXZCWDoR/MCi4JAN7gAISCqiaJqmZvkNZ+qh/Kmmbyqi33AO20CfaEqVzhANbSqV3SBnzQACrXCRwFel/h8oQd8CeVuKYPZwBg31pQ/Ba/pgovS4DqdwDpKqppiaqZq6qWlqj5d6nHX5qWeJDgIBYPLAD/UweFRIqDpxmhk5LZ3SXDdhgDQGoR7hDjp6luuwCNJwDpz6q8AarMIarNtwDs04EI04pfCRoH1CD6DggN5CD46QbXc1CjClTih4jOMgqnN6CqewDsMaruI6ruG6revQkiaEElfCrBtBRewiKWT1Enh0jj8Rph6aDcrgq+S6r/zarzu6jQVhqzLIqiyUW7sHLuRgJgKLOYETYWxRD3saldkgDWmQD6LqrxibscCahAgxDVe0rgQ7EgZIr8OybeI0TcThCLtSh0NR/g/uoJUe+g3ZcAoaW7M2u6lsimLR0jjTtxPQoYPsohaTQ4ClQyg4p0DKanEXerFSKbO9kJ03G7VSa5bB6Q4yKRCskrRUuno5cRMW5S4YmHd05B9BkH1toVXowLRrKg1KoAwRO7Vwm7FS5QpcN6hcmxMpgzB/4005FCdny6aZOp1qG7eEG67wuIcOcTg9u25CYxb7Yg/k0E+CpE2+p7UXoQ/rgJ6aOg6L8K2FS67fkKtwO6c6Cz324ArQx413SxLMAAqvui6ycF5R1COVwxZaFQ+WyqnnUAudMLifi6nvOA8wO7Xd4A4rdBJrtLg5QYnswrz5QxtdUAxiaxToIKzZ/pANv1uu4+AMbHAOdiq1LQk99GCtyksSKqswmjcTUdQ4VrAhzucTz+i7IjoO2QAH15u9wZoNvBAAGFAAZBm1iBsRkCe7qkt9IwQPPpkwvueo3pJ9lnBJF2IfBhEhT/KqauFAGWGbogus6NALyoC/wMoN87AC+IgCB9BrGpuz3bZtdGe3Bpx7qWMxpiA7FfQyNxdRNaEdtvYl0moF8JAusvDAkeMaZ6Ak5aRpS8Fo8bCt4hoPkXC/IKyp3wCIIVDFIUCSw8uv9Gu1FBE8lru1L+wRlNEFqcsv96Cw6LMUGSM87jNr0/AVEPbG97BNyfQ28GAYkJsS+HIGuIALTlAM/jOMGhjsEGEqv5l6DngQD9gbxWrqotUgAVsQAgMQAtmwwaAri1fbEAQGsqurdwubKkSlPS/lD3WDtTPnBL7gBswAOheCOmmhHNkzGb5QV6YgGGgkeA33vePqoovgDovMyDELrobQALBwDNswDy/7tsF6uBiBLliIoCHbEdDhVQqjRbT2NZSBC6PQP/HkDWdwY4s3Gwj1vnmhIgUBQ9+huHlEWvqQtsrMwbXgtsDcotvgD5+wBEXgDM6wDMcADMsQpOS6DQFKtBwCKCQbI+zKV6EBrWZ8D67JN7QhFv6QSFVzegcCcKKIFofHDhNTqxzylIbMqeOgDKcQm/Ocm8Fb/gYx8Ajr0AzL0AzNsM9MPK7mqqoVgSFfWMAs5A++8Lru0iUE3S760CpuQA9O0D05TYPWIAvydiIQW7PZgA9YgA8h/bnfUA3qcABsENMvDdNe3ZxVLaKyyBHw8FEHDSMJTVtg8smn8nPaVzK0sc2ysEwH88ULQRzwQA5BQA/KkA1UqbET2wlQe9L06J9zUAC7EA3H4NWMHdO7vIcclyNsDYnRzBHsIEN27SirsoVwrRa+YA1BMA0GYs4WolUAFgm1EAnfIA1pm7Ek7deEzaT+MAszsATbsAxd3dheXQ3vjKbcWbp94g8NM9nykdYRYQrewMCMArkHOzI94gbSu85F/pGd2aDIvXAKnZAN4BrWjQwOnSDP89wN3+AP+DwJ4LDYut3Yepq/8UB6vgC05NfJH8F3yo191nDW62IfpgAb+L0T+qCv0JkNvdAJp5ANra3FytALJ+2iwhACZaDP6R3hltzIJCoS6rslxg0RiUCtFZMSE1Uy2ecappHZEcFr8cCt4NAOtSANnRAOvb2p49ALtQDMLkoNc9AAtoDbEZ7ey5DF3R3AT3fGdVu+H+ENvsA0F5NRJFNLVtA9QQ0S9XDguWngAt6I5sndLYoPgCANv2zV4DAPrbACZIAOLr3jEe4M25Cp3ClnzfcSVYfhla0RCIzkFuOuFZNKXeA6b7EO/uHguzlbC9mwTO3Q5cI6DtKwCDNduPBYD09QBJ8QDseQ22be2MsQ1mjpDzZNHpykJhnuEKPQwhdjCl+XMNDBDCfgDdNLFPjw4qMqs3hwCvkA28P6DVqOD4Q+tdywDrvQAH9wDNQg6ZNO6dEA0NpZ4SMBHR9F3JQt3xxxEso+K+qaMIZhBWYShUJh4lgej1F9CotwDrf+q9lQD1P97TZrqXMgAbvw68E+6WAN4CgNkTuoS8+s0yFxDznEM6dE50H7Eh/FSg97m6w+5fGQD1gwD+Y56+NQC70ArlL7jvUACzNQBP7AC8C+7rq9DIbQB6Ug5Wd5DlpVoWNMDvVtHZ1O/kTOmuoKs+HPzifQwSKHMfINkZ3ZLrHgQNK1YOuzPrNUHbXcgA7zUAQo0Arn7QwWv+PL4AxMcABsCQviLbHzwMCWcOFpUvIMccszg/LVQihOYD5n6w8z/5tU2QlYEOvhigedwPA1u1+f0ACGcAzRUPSTzs8Y8JgNQAnbYKIuSuIDoTcrv+xhrBGQOzE9Ayl9r1Y1qDttAfD76tf5oASyDqzT+fgY66LOQAUo4NIVD/eMrc+zgAINYAEHIApNz8w94QumUPg6GeeXW3g8g+pCvR3jsppHYQ+WGvBqPrHKIA0nHqzxgAVQ3K9zOg6kMANlcA6Zr/kwfQzOcAxzoAGG/uADPTAHJr3mTw4R/pYnVD9O19ozuOANeo8mK4Kaa8FrIK2xMR4Jlfr1Y+oPWKDI/coN5zAPTIADrTAO6I38ug0M6wALIUAF0UANAKFumTtw4L6585dQ4UKGDR0+dKjPnyVvEC1exJhR40aOHT364zaEB7ePGvVNM1VS5UqWLV2+hOkLlz+JMG3exJlT5T1/xdiR09my3rlvBY0eRZpU6VKk65RJ6xWuKFOqR5Vlm1pVq9Jq9XIJaLQs2rJmZc2eRZsW7TF1TyjwOuas2bJl1b6twxf0Ij1/oGjqBRwYZ8iRQfV5KyZY8WLGehH/bRxZMmN7/rr44zv5IT9/8bJu/gW9NRs6JfmyhV6arZ6Sep9RUz23bgkKsmTV3sbdTO4sC1uoHVs7T3PlE5g1H9dMmGTOej0T5+0I3R9Pj80TUueor6Y/6Ru3Q86uEN93jdK1e8SOr/tGcimtI4cf/6N2XGf8VZavsN64b+Ne/2dKNTh6MQjAgsbJZp5O3PHPQKS6AWeeSXqgYh5gbMstw7KWuWYXMlD45Jy4zBJLNc4mk+W+/FbUSznm/PlGklg8wocnbkSphrvsOKNGFHBU9C4hYUqRqJ4TM4Iul1au44inemCxJSHyLmrOnVZ4kXIjfppbR5RjstyosmX4GMefetZjMc0V6XFjOhb5Wcc1B+fM/gYfOMCJc85vTgEEqzkL6soZKoqY5RvgNNTQGWDAEWUGMqr5Da1qwPFPR8lAYQc7NTdlyUWc3KECA1FbcOa9jNAxAgMKNMBhHYQ2+sYHVTXowZ9XMeJHH15UXZUNMzlqhVcM+hhPI84o0YACCkIQBU2IJLJD2WWxNLa5KaRdgRqOEGpBVAyYWIdTceHTpxhH8JMvr3oK/LPdgu6Co5M8DURQGdMaNPAafDYpQJFoxkJUw2V4iacIDWChBq1lnMnqG1MZc8SVcScuyVOY7qmHiQWkDaGAb/RxlqF63JlBAo4LwOfhh+pZR1plMVDAH+EuqvGYAHilQIEygLRIu1lu/pa2gD9+pZmfSQSQFgMBRDmPSn/KKCBpAYBR2aHmijD5ZQGoqboh4QQIQVoJWnBHU4rP1gsoZt5cB0J33zYoNmXO+TObE/A5zcCiiqBhHWACDpgaWDSYw52/z6oL34LCZUyiYqxBO/KMLHYJZFuQliBzCUKQgGiIxpskas03b8HzlZ/eePRv3bToa841x6CAZiyFSLgAXs88BALKxmjk20fv2HSH1KNGAAyAj3nmZ/1pRQEKVA9B5ot4mgF3kwv4hHbJt29JokCKmfI4e9iF++1sTsFjXgOz8QcPfOSs6q51Jgmhj20OBxy3Y7IBpowVRLkGMOSyoWhsgz9I+UZk/orhi7Vxz4ELoZxQ/NGD0WWOAi340UWEo6oKUgAD4HmIcBRwvNE9T3gMyUs2UldCJrDuIRJphbJKKAFfmQ2F/mADCTVHgQVkL3wKoZ4OLVgAYPTOHzIsYQHW0bWFtOx5qkveA6XoEYn4IjHxwQdn1lE+LhbEHb3oxfsUh5q7dOIUedvKOLjhjmoUgQqiWMeh8nebY6xjDj0oA6QWtiFnVGOMR7lVYCoDCr78cIoTiyBLhIPEHWKgiBr0xwGEaDIMJBCSBZjkqjAiEViscIczOOFC8mIIk5WQAkZwoUN4UgZGltJXIUtIc3rwxB0qwIcWac4KaGlBBVADlgqJRtg6/hjFQxbTIjyxRCBWNA+idLGL4zgFFtyBxv984xu1wAeltkKNe3yiAX2ghjMwNMe0HAMcTIhBLgZYFnFGQ5tLuQtj3DANdBkzcolcSWWo4LwShqCep5tlBz/IxIRscJel5NnpRLdDB+zMhg05Bj9raQjtNUQipNwlBQ6wJEO6iQmtpIDsOvqrFhw0pPEgKE3wwcEZSs+eL2UIXzIDH3yoz5nl+0Y28rEg+IEGQUpQRk+Psg2ShWAd5MyNM4TBCwH8YRvjnMs2yMcUIwnGG/CA6fbwuZJ6VCNqDuAlKlOKD3vAggC01OjOfskdfSDirLDrFwit5o8WSFRZC3BHSqWX/jULmlB5tfNH1J74vA/+9XTGG6wCQGnYhqjnG4gdolin97QDoDUAx2haVu0pETesbaSA4cy6hHrTumWjC9Q0kD/gMBT49ScepESEO3gBVaQ24xj340IIdlENOc7FnVOF56vWqhLHuaKBmj3bVomLDzsIIGsB6EE9HmrRpzlXWQFooV51RAXrSkAAZAhlY8GBgbNqFHsVHZ4+nCEBwRZAAbOQa0T8AYsDtFcDpcoITz7hXmWBbYkZaY4hBOA8CggAB2Y6EmCZEAAZCuCVyN2sPxIBJs3AyW2kdSaC4gGIbDqoP6c4RS22iBRtCcMHTBAGb9dZW90AYx2IoEEexUki/mdwAzXLiSVO9FEZZUIYbcpliTOMQAESiAIhn10IL4oQghm0grE0K0UPMNADWMTXIvGwQwtCUIZoWHl4/lhHlkPAhgQi+S/gYEMIWmCHQG7SH9cog5r/8OTlHSNUM0DEcEXWiroa4ZE+tmcxUmTmnEhkHqPFMNxOEQnUvuYu45CGnw5EkjmE4BPOmDGLSeTiGfRgFtUYp1i68UemfAMfj1jBCihKaI7kIKGA5hSQV3IPfGADG14+JhA/Ih09M0Qf1FEPeqhDa2HHsteihM49WH2dmtRj2eOBR2K0C+uzFWMayOEHOkid6C5ipdEAWsQi8PUNahShB9HoraZ14wxb/khgDoZKSzXohppz8CIGHjyAKHBCjsRMl9orkjVx69GLWqjEHvNw9nwObo9ji7Ie8/A3zR4e8WMivOELuQfCl60fjZdEGp1I5b+3JxFm9Fgz8zggt7ntjkjgIR7fRk0+TrGIc4yjGvQ1RDjSzeK62IIJGAgGutHiDLohOinoOIYulXaJm9DDF9Zgh8jHFXDikuO4Usf6Q7zh2axzDxcpoXhOoGNTlWP4INnAQz6MTpWc5iMN+YjBEnhxjZ0jdRnHOEcfhhWNTIvTGQZc+1G6YeotCOAAB2jANWxCDmtYouuxFgmOcXIPa0z48ZdPiCl8gWvMr6gmV19MXuKR8rKX/j0bYJy3g7o8BQHYIZy0tfsyqEEDJtwinGYRJzX68x9uzGMXFpjDNSZBiTK9hCfFSMzGO9+iyBvGHtdefte9YQ/lR78xzLDPPxWDjsCXHm7f6AUg4jGnc1ADBUVYxyCOAXtyilMUDTAENWgLc62MYxx7KAA3ztGNbHSDziWxgumzvvygupKwB3YwuQH8N1CYhrBTwMmAh7XRvsBoDe+zQEo5h1qoBXT4j25Yh23oAw2YhHUwhkGIBU/gBvZDlLrIhS0wgWDIhnRzp+57l3FwB1jogSfwh2goCmtinHzyB3awvOp7QJsowPmgh1HAqiKENUtghwlkwuMgh1GgByKc/g+yu0CVGwdlWARJA40cUbIi+Jf1Cyc5iIU9mqNlAAZ0QIQxa4f1Y6eF4YZtowpuWIdz4AIUqLJrUBx0IMLzAAVLKKQoPI4j/Ih7AApC9LEntEJFfAntMIWKUAxDI70s9L546AR0oL+kIIk2OABY0I2hQ4UzHJGAiYt1CIEi4AX5Qxzdo8OlUCN9yIUGmIRjcIcLM4pt+L/J0ocgKIaKaERHVAlD7Ah9gIc72DxhhCl66IInVEbN0Ad2kMTFSD1LvMCDcIJ52ESj4IZrGDNWVAtuCANgKEVEuQY7aABKAEfcw0UyAgcqWAGi66lt+MGOoIdpaJPMekbGIEaPYIeo/ttHY/rHgJSMXxO0xTg0a1TIb8hADiy1eYiGNjSEbSjHtYCUIwAGYIiG3MC7VqCCGeC7UlwYefyPcUAHXpiBnbEmtms4Y/SHM5gGXHBAgryJfuwIa6PJQ/IGWdDHnNSLyriDV7uJImkbhVzIcwAEf/i2ceAaVchBhqk7xFkGbhgESUAF+YOqu6uGPkCBP/iGuYhDZ7iGZgoNNfqGediCFagyu6iKboiHjeALdrACXJiJYPTJjbBJjsAFS+jJy3u4hIMwXEiRuwwMiXBCwMgLBqFBo3Sma8KCfEiKb+iyNGuFagDLFawGTwCGQcA0DFmYcFgBJtBIDHGGY6AGA9EW/ls4AENYByxkCs67j8pwAyuAPrskzMlpvp+cqeXjDJABNHJIxNsMCp5QJiiECe5jzORUB21MinWoBgLYAqRDqvWTA2BAhQESi0cYAFFYsQ1ZyZJcByYIgW3gBhrUxYyghxOgh90UzsDIy404xkyJvmWgggYIgUcgiYubGIkwrvbUC0e4B+PsnnowoORkzJxKg15wyG5wh3NIM1i4n+4MGLKgBquUBG6Qhllggh5oBqEjkdOspnGIh0lYgZ0B0deoR4eYhkQISnoQUP80wtzUC1eAh5lELn2Yhz5APFU5gBDIEZjSB3rABduEUYZgB1OAByIVD5pAh1Ez0OREkDP6/oYcoYQiYIJ/UcEJTZhBqIUpKAI2iCPPjAZ54716iAYuKIIqszEDmRL8KIYzSD6aKdKXeM+NAB8b1ayRKS+XWQH0kqJ7gIeUmNOb4LcXnQ8wq8QnVUhIy4Z1ULw0K4XXU7eyOAa+c4AWCIMaq425mJRXXIpqmIdUOABEQIeidJAlmhnq8wdruINREFB9qIdYHVSXqFON8AWwe7zmmIONcRkKQIFdAFJygL5ZdYl7eDqdcEhFfdJ8gINF+IYDIIN1nNRmuIY+CABYuAaqtMq/YRhP/VR9KAIbaAdv1YpvQAcmqYwuMIUr2gwzyQtu0INiIdaPqFX0jNOua44ZsIBe/l0WfYuwaRiFee0eepCFaYSJeJAqZX3SuzAHPmiAVuCGqEzDuoCFGSiCdiDHY6gGZxgET0CFoFoH/1g7hnSHS6ifN1vMpOiGayiCADgAXuAHJZBLJvGadYCGZGCEK2CBC6CD8BJYi6jXi/Aeofy35iiDBuBXPXwp2Qy5n+UIe7gHy3MJdTFVhU1OkviEEAiEZ/BQdVuYbWiDGZgE3iKRqewFtKuFTgCHbPAML+REhGWCJ4AvP9KT/ksFAfCAFygALTiFqKvCh1gFL5CBEWABHagBL0Awp+WIoO0Zf5iGa1PSyKmH4gkbjmkAnx25exhWxe0IZGJPltiilLXaxuwG/n9ggiJoBVRIA2lFqtKMBmBAgTKAhW8gzbpgSP7IhmzAAmk4hSXij+80ihx5vz5wB9fcCmvKhnFYB3GgBjDYAAtIAQcoOM6rhnWggxow3B+ABs7tCMZdHmaQmMhFm19jg8p6mQagBvFFDmtoEzzlXomQhc1dCX0g19Etu3XYFSoAh5Gc1oUxhAJohY1Mi9bKhloABECoBVJbhye43En5EwQpYCXYBrAhAQdQBdjMCx0wXA2uBO7tXhkNisqYMPWNnDtCgR5ogW5w33GRCEcwDg/2Dn2QmBX2tXlYU/tdSHeghjlogGj4jWPgBiUQIJ4TnB7ogXWgCxqjBlJDEHAo/tV8AAQ+OQVpuIpseD99K8/ftaYeLIrT6I9xiI1SXYdII7heUIJ1AIQ9oIFtqAVceEt/q4lQKNwaEAQdQNxdhGEIAmGd4AlHCM7Hg45oOIeE0E9xQaamzWOI2EnYXJ56aFIcXkiSEIUVYIOEsY27iwQBTsM62tA+8BvbcF3AY7uccuR1qAVSwAVPwAEjGARcAAd5YR93wId4wAcR9YdtALN8iDQN1MBOiITwU4YZeYQqKARCkAcXxjXhGAY1YAEV8IJkGIYhkJkES+SH8N5j8gapvbztIGHk8IUJo2Gn5Yk2MdQXAjPggmTvK4p58AFPu72zAIZYALU5AoZvGBw2/gCGFESca3in4y0IkngEDPiEbOBCfMACZYimU0gD9JGGSMCCeaiAtE0DZfjlXqBiaQCHbhhkIygCUjAFQfW3lPEHQfiBGlCBUEAINdjeasbNwhAMfSCHz2VpnUjSmc4IciBCfEjYdLZEa+KF1ZTQuTiGNIiFoMaNumADDbCFTMO9nX4NUDXi3VvbLx6HeUCH8TtbZTjboWhN+wPegjCGA3gEWSi4z9IHcxiCGqiBH+AGfTiRbm7Pa4aIe0BAmbbpm7gDcijnROYJKyBajHAHqeZpCzyIaEjqYKBI3CDH/LmGVuiBIjiHC0GLaEBOMloHdICFB2gEfzjR/sCKnALt/h5MXm/7bKO4C2owAw1ohwnDaYvIi3lgBRWoAR7QAzORiC2564uQa4uYhmTM7Zywot+GCEto7Y147XW44cEuvSntphLVORV0Bo816rOIi2rIoU9I7LActcW8hns4BiOOhnhIbj3xh0mggE0oBlzYvI5qjmRQAxVgATX4BZcSbt3e47SxBri2aXgw2PpWiIHsiMAWXeWeE/L0h06DhXlOKlRYhMuko20QBgtgA15Q8A3ZBsEGjW9QvErbBZMc8AfZhnqYgTUwBzTohT+OCOGoYx04aQrzb4jYbYs4A71+8ZZAxC7o7xcPwL1OiA8ncA+Lh09YTdY9asnWn2rgAgxo/oXuFIsBZ0qL1cTvO4d2awRTyL7ewQce0AEtD7Yax4gYN+e69PKVIIclHPNotFHPqN8fdxdu8O42QIFKldi0oAY8gEO1oAZVmAEm2AYHXxi6fQ0P5IZJsACm40N3uQvDjoAj7YUXNud6YAQVMFxG6Iwx//L71gtrSJFw9nKJAFhLTwhQqFGMYKZ2ZHPSKgp8QIQZ+IJtYGpEiQZUMHJ2iotooAIc+ATDEdP+WExuqIdlKIInANXxNpCV9YdPoIEp8AcsSAgBVeYrkAFnTobEBXUYx3Q+nggxr3aNqAy/5vFELoZAUFWLCN1TV7lRU4ceYIIEz9LbqAZAOEN4zgZY/qAhLEUcYgcNbfmDh71DH+dGvLCBHsAHULAGYHyWvIiDIWABFmAFdfDTbVcIMDdnroP4m+7LileI8TH3stPoXAiATwjF1s1ItPgGKliAahjis3AGvWHbEIhOnOqSAriFbLgDS/pyKFBrKJA8jHcIiXcI2fz2f9MO/S40y9gxUB8Fv3ihwN54bjuIaliCGXD1ds+NWMeDSKmGT4hdcMCfueijRC3XdQiHNtxsB24Xh+GFMoiBbEgEkFO25RGHV+iAGhiCnp2HQq5xn/95CWPkor2hyJmwoE/kgg8hsmz6m/oGkvgDPApTTVsGc8ACbqBINhBbpFunJgf7qlA8Ubh1/lfBdwC5hvnZATZABssTUJ5IBp2VAS8gCTzmeb23KHtwBfm9POH4BCpgAi4IF06PjGj7W1BnBtoHs68+fC7Sv3TvgVyg3WlVlBtpADZohgqfC36uJm1JM1XYD3//Z5JogTUIA38QVEOCVX+gAw1WgVdoDqKHYdh3CAaKvryoTwqwgBBYgM1Wf5fwhYDd9mIAPXyQiuIHCHACBxIsaPBgwW/zSg2gdG1Zs4gSJ1KsSHGZtiBUNBxz5mzismgIRxI8F04Cl3ncSLI0yO3eJgGT5Jmix88fzpw6/eHzx00HjxpQ5tW7ufMo0qRKlzJt6vQp1KhSpzrlNoQHN6padyai/mdvK9iwYo8iIoCBAgULISTsGut26T17uN7SrWv37tNi03Lic9dt3MhvglsSFPyNMOLEihELXudsCQp1x45ZrGw5orNqnzaUcQcMYsRlmccdVtzNHbc/DWyhBrz44GlpXHrAK3bK372l+vzVY6RChw5M/ubhLW78OHKkVrEmR+oNFO7m0qPWW4fiLFq0DbhM36pvmix63ceTt1vP3ylsOOeBK42wGz6irlsq9LfOPctv17itRNxt2zb40ScgSd+g408dKPRBDWWXOTjRMdU088QSiXADzEehUfPXNotxo48qRVTBjUqvHXSYP2wsgQgnynTiz25J4XMeLVewwIIa/s/wVh6PPZK3XFbj5WaJP+L5yGM955iVnXZG9HTkUl85EiOUVVqpE3FGkEDCMfex1E09ZRQxRTXzBeaOIT7s4ldL45wTHz7fmInQNuv0dA6BJ3JzX4csjbMNOsuEQEUr34Dm4DINWgbMOZSswAY3eMSSYTPOXDMnYd9kZUcIn9QzmIkFXYPaDHsMYkovOOUmI05xBKUCLcQ9eSWttU4FZHlxORGdrcjZs84C2GXXQBW95rSbI95QaSyzye1miAMvpHDAOdcYdiI+bEggwQFskMYSOpMQIAEFlLiTXzefHEDBDOv0eWYfFGDQyjqMGcILOnkStM04sDTQSjWHIuqR/sAXbUMFBdFA9BlozmCaKX8NbBHPw6F+s44oAHCThjdGLtXTMzrUIMMV7jR7Mso54UrebuRYk/Jd98TTQwNMUiABGyezM403MPtc126TLGABBQUMpw/S87izNNMmR7HAtj0EOA7VVVv9TTNnbUvFPVa7eQ7YYF/jTwDXKfCJlyOt84kCZyngDDeGyS33ObcocEABbKRtkIHfzHBACAIIUI2il/FiBAaTSAiSwq000AY4GEajBBnRWIrnYt2sg84cB3DjTjWh8r0ONT0wIY8s+NizalK7rYOJCjIMwciOP9tu5crk3TMNkcveDhYvBFiAAQYhNIDCN8zu5osvMP7+/jxV9cyDwwEN5HweU38I4IAAZTg1DxPrKtDHUfggfb7JAYSAwQGi+BPPPPHLP78/CEuAgQDUoLMO//37v848PkGAm+GAGptDBwL3hyd/zGEFm5gBuTDQgkBVZDIW5EYIFEABAYgCGMdYRqK2sQsf9KAV26AML0LgAAWEoBqYS8w3quGPT+BgC/W4RjdEV5hx1KMOPXjENHpBDucpZTe/gIIKaqCGrBAHek4cT+7KMwroPFErN5nFCgJAgAEwQYa+o5UrLHGPL1axjDrZzTjCMAjcGEUp/MDHJYrABuw15Ro9kEAZisKU3JQhAALAQD3IuJN4FAB/PqCjTvihSEXO/vCPDujBefAhSUmaDB8m4AIw/CGAEFAABSHwSTdCKcpskDIbn+MkBQ5gB/5Uwxn2+EMILiESalRjG5MQwAscIAF6mQYc+NhCEXRxLh0S5Brr4EYL2BAPNPiDHUvhxz3OE4ca6EAFr8CJPtpoxm3aJYos88YYuRkVfcxjHbyIH8rgQQ9BirOdT+kLIpmij3rUIx5RiUYrmtiUetxDjvpkCvi2B4ujPKsBqjgHOPgjAAoEwB3X+BI+ViAvAQgjG5pyRxF6sAyEDgRjGkQLLxlzjmZogAsvJKZAuFGPTRBgGGgIT1NyUw0W/IBkw3EnTt/iTfKcwRtfySlTpBcf1vXK/h7scANQ3WkJU0glnFChJzuPEs15QqWJRIXLsY4SjSXMwB/VOMw4ToMIf1CDoyTpRjZ6MINPfOMc6yiFCXIWusLUwxAkaIEd/KGvhKyjGn1YQDX8UrHFfMMdy1hCC/wBB5z8tHWtYoHIrvnPpFI2KjvtzlcC4Y/GVpagJxPPHXjV2Spao2e1iipS+BkVe8QvRk8yRAjc99CB6Gcdl2IMTsbhDmowYQbbAN1BrlEPXMADNYTphj9ggQK9hRWl4MihP8oQg0HI40WiJeh5VmEjFegBGrUbLXiZctnxTAMU9kBteGm1G1nMBb3pbdY0XvbenJxHHRqwwzHi8a7CKEYw/tTwRyM0IIpx5Ash3xDHIpSx14F0Q4Y0WIIo9AEqYnIDH7swwR7AYYlzNKUn85imDHTACpzMar4m9slVgtSj3LjixCjLDVI562KY4WIuJibOIxqwCzctuL/rKMIMvsGvAomjF9JoSZ2O0QBDoOOkxNRcIxqwDHSEtim7CVkNanCFeM54vuPtTlzuYNou14oed4gLmX9mjb2Y+BsZ1WuPGdNXVTTgD14drEC+kY80jCMbgVlHNtjQgGoc07ngAIwdkeAPJ/TMY0pZhyB+o4NQ3DTNJv4yeUBBj6taujz6oIcrpuHoTjfLG644L3h/2gccjFUkKP1TPXixBRuodLb5/nFHJNpzIhl+ogfe40YOUfqNcMzDDjTwBDKsK2OdmM8fxhiCDGSgBnUMR5ukHi2mu0MPX1jDqdcmjz1q48xvnwweY+6syY4RAyp8bsgo/S8iMIC2byEGHb3ws0H45Y8n9IAX7ogzYqoxj3FYoBCLrcV1d8IP7KlBZDX4RU/cS25xZns6ubHCZieu7UVrHGVnIMeycZobNlAAbmYlZgz9oQEquHAx2cBHDvCBb9quwxYLaMRfDA2ObeijDCFABT+IxOmdnCcZIZaBF3hi7Y5TtuLTEc8ZmN6c3UQ95FKvEjusLs6bZK0M9oibcy+2jgBPwiev6fOE27OOY/QBA85Y/kewnbuOXPRgCfLohSyI6Nh7qEHSv+DN0q+eU6dPJ9yykK/g78IOVxTD24m3UiLgofUy9mQdh5hBK8zu3A/Z4gs9+Fx/FnMOZSzCHfhWyCSKwAV8OFl0mgsHG3agC2RE4itDx2ZPVgFt7prju49PKuGlsxtmhOf2o5Ukj+LSPIn/XjqjaLHxn0icaKCgDdQokbDhA9tJzKP1iXFHgg+Dw3b0wAi8+BTAW6LSZChgFYtgL4zYeR5zqKEGLBjCNfWuE3NgotnNL2PwdYcbwAPzuVM92ANUjQc9wEMX/F+ZwYM4zVNuEAciHEAwoAO9odywmUARuIO7hcroWdRv7UJD/rgDnnnIPLRBA8RDDjQTU7yRP7yCyEgbl+1EyNCTA1ZRAEpHZg1RAXLTNcACLFDDbvygd+xGjOVgleRGEBTJNt0QOPiExHhV+uXHfQjQLmCfDrkDICjDfVBBCNQDsIXdOKwDMMQAG8gCNrxM9OGEOUSaDvwApU3WUTxDDeAgqyjhyewgD9qDNTRPes2DIQzAARzAALCBDEkHM/hCMeifHnqaP/gCBJrROpiBADRAH8SA+1CDoSHXLPQAFfxW6InOOEjDbfSBD+SMrT2ZCbKBD1BCda3Ox9zEL8hAlqkBTujRUtghHr5CMjzDK8zIebzC3z1ir/Dh1PmDN4xCtx2f/j/0wQFgB/swwdRZgyw0YhsaI3Lsxig4YRmpglkQjTPol6GNDRsUwSPA2eZJQy8wQRHwgoQZWjTMgyisQCP4gxasQ1QtHE54wQx6F1TwYj3gQxywgDmIAwvEAU6sggwUozbSCjJORzE0ohFCzy00ANEwyQGUwjb6gyzk3UMeiXi04OT5zCUMkAXMwDGcnOjE0DxgQBGUYRWyRDasgzIIwCcc2kyShAxtwSdpgTeM21KcRygAhwowAh0yBS+uQ8PxhD/QAgtc0xDogSOGpI9E5HRMQwOW5DaJwgDZzAFswnHERSIAolX2yG5knRk5wwwMDxuwB8q5VSMUQFvMVdit/kMPKAA5ZKAOHYY7+EsZ8AMWwMjkVZ4a2OIP/J0uPsUzyIA5XMEQ3JQ0XQEU/EClnSWUYGVzrIpmVWU7CZDNpFI6HgdSZRxmlsdXhFY2wsw1NALa7GRCjM0s+MASqIOmnGCmcBgihIAhmIIzwOZBvEQ1iMEMAAMnZEPC7cSTrMIPJBEd2FMNMkUy6MAVaBlV3RQPqIA/mMxpZmaKnUxuMAMoMENlzUJGMkkBfIJxkEMiyII+rGZ34oU9eENpVhGVcANuBkYURkEPqIIJOtc4cEO1rAAX5II81MLM6VA11EMpoIAfZAMuZAPSDKVPHKbs0AI2UUXICAI31AAdAF48/kDDD9SAQkZnfEqHZo4HKLDDqLkTE9RMdlhAEZQYXdiDH07iiXqaH7bTv1nMOETDo3BDgW1ePfjLa/YCHsClDn1IG1DAOTBDIjQFP74CNbHAhzqlVtghcVRCQ76PP7CAIPzCw2FpjkLRd8KMI7hMUvVEERhPzfTAOtxFy3hDlFZkmYqFPsDDHbCZGfHDPMDmxUSDKFAUm9zlNhgBBfjDNWRDO3RCPgDnQJzDNjjDAXjPCajKM22nF0BWYvqehsoAOlUmTkBmP+pAUt4pcqSoxSmjG7AoUBHHJ3xBGZCPiYaFNzhC83AlqsqpNzCDrvqMPqDDYlyDhaEAE7Be3PVl/vL0gT1S4TfEwyJkQ34aRICiRhEsgRzQ3mYZX4zQQpbpgEICXliIKD3Fzw/owSv8gI7Y0xDgYuDtKl6o6qr6gylk3a/+DiLdK1SsiiPkBnzCa11MAzP8K8zsTX781xP4gCjECaQWxIc0gw1QgTDUQ7B9Qy9EQo++RjT4AyLQwB9cY5wan5/6Qzt4QbT9gHchn1jUQ8ruRjWYAzfoyJOYAzScKsB205kCqz90wRDpa5rlBjs0oJ3erFiImc82y8IhhoBug/VcTMMSxDgIHGyJQluVhp7VQjgAqkL0Vi1Yo2diiT9w6Q+MAFLyyLsSLV3I63h8hTdEHcF22Xq12NGi/u1YMMO5mRFLjg43QOMuxMMo6hBp2BEO2KaAZAMW5EOC0gfY2MIDFAIy9IJZMoU6VGcN/IAM4cPZ0i30qO3a4oQjYGrHhZMjiEeLau5Y7qw3mlHG8g2YlILpiGGytiQ6oEkI3ONXFUQ9dAIpKcY2zAM1UIEQ1AI5AMJNsNOThAIPsIAMCIKsmG47ce54fNpRQWDpWpqRBEIxbJrzjgc5hNbQ2go/5Elb1QMYCsOfluNuhUAZOINDHUQ2nIIyKEZWbAYtAIIpKEP8KcV5QEMcqAALeAGGquz2bhP0lgc74ILbkttXnIElzO0AiwU7ONP32kq9FEQ3nMMxtI8BPS1B/mRFH1iALYANQpxDLUQrwGlKPRRBERwDUlWvThDl0V0pjT6wDubs83yFPQTCNExwTrHDGeAwDReePwQCSJpRT9haW13DHFAAo3AwzTUDE6CAou7VN0jDOeCmgVQDLzQAJRDCOvhgUM0DtI1oVtRqEP9OAeeKlHjDEJFZy7BDlHrFGQsxLrSxGd2DO3SNQqhCDzyBPwwpK24DLF0CWRXIOnSCMuBZgM5DNDCBDbiDKWSD9iYFP8TIKkCWh+LGYs5xDTOHGfVM1MnxiaGaG3gDn3Ly1G1bO/HCHDjDPFCBD3Dk7aJUNVhYDHyBK/9tQoBDLXTCpwSGMzzjCvzCKODC/iknBXFUQ3WqwBV4Fw+jMkTacBmxZ96h2nt9RTHcATm4MDQXhyy4wTrZJz7YQjSGgAboDSATkwz9gQbwwp70mIHUgpwExjj4gwlswTc4gTVIMIUywg9UEyY0bzebURofyVdYQxeo03vdw1FBx9sOtFsIpRMRBwVwUgh0lS7r0DZYABcUan7YGyCcL9+41Sc0wCRMQxrkrxv5gzlAQZapq9JBNEFLcxn9VCC4Ankm5++wTjy9pz8UAzOUJjfL9F2Awuc68JWcBwqoRQNQgUj3Jf8wq3quIkvMAyAg7kFsQ3LNAQbgA8bxAzfnBj5csgzwAFWSKVE/UUFXyUFPwx04/tNQowxx2JIw+AMMfhpOdIHAbtYzp/VT5IYsMFVf8wjSCMMKAAATpJ2JjAM1uMMuzAC7GRdiZEMk1IKuFcTLGULikAMuzLDCnccwqAELqIAXDANveLZf385a0wozWMOumObtmEwPmEDxxEBbGEkXWENOp/Z4sEOvUqKfTStJ/NceSIAtrANfskQ45AOCCoh+uEMIfEE2fOT3+AMjVKlwoDVvby5Nt9OqWIE3NCJSE7bKoRJaYAA08Mxrj/d2U8V7UncZTdXTjoM6LIMJLAFZzeQ3ZAMenIKwQi06iMIBtIJgZuhQusMY60AZtzcAdnc74bU/WIHAtjF7T0cZCAta/hxAIQxmkQw2g0eFLBzzE4nOqIxDG6AAR1KDcOdZLyhYB9eDMixBEXzki1jzUcBgPYSCpFFlIGXuh6fMatsKmhUDOQwgU+HGhPbKTVABjGYHBjQAbzz0j+MpPQQCOUh5r/yyh/hDg/6BK8cuYWSDO/RCLVSwfqTIEoABPwACYy2FPSmzDDCzzE55J6tYZ8VIBPvCx+VEheNFNBVBk583AZyDGdM5XjQPltuKPoA5SwgcG6DALdQLoNYDHkTC+eaQO6xAEbBDMUi0/vpDHAxBDYwALcQpahu6zwR5s6zKfOa2L8S1AcuDEQQ6WoTAOhQ6qteoP7QgrKfM6rLEOawE/rHolejEQyRIa3tccSkEgDncrx0zRTW4NMn0nofnenmo+sn4tD8wAzmcgT6YgjV4TG5UO1LsxleYuzfgAj10ATaAQQMIC/sYArlbe5R4ZJ8+9UjUiTr4XCZxouhIQyfI89jkAhWYQU2kdFCx9Cr4LxRQZZLT+/NgO8po+wK6QiLcgxPQw24jzeok+k6MkXg01l4kNCjgwpj1QQBkhwBsgc1CvF0Atizc7fOw3oL9lyjgABsYU0Z/H5nfhz+IQRF8wlLVs9bx4zBcQeyogXe1vMujjMTfjjNNQzF4QxDAgyUoNDbdwxjZ3vl4lj7g8HvauI1qFgSk+8t4+jw4Q28t/sEsMH3T08VuTAOOPtEwnYiYFwGkr0PeulwtYEE78AcGYML7Id5SEIcghJgKVAKJvT13e3KnmXt0aHzJ34EpuAI8iBo9wPXDH4U9bBqL0sM+ywIzBAE73EExQGBunPtR0FEgMf50MFqfH4mSFoSbHMOjFDIx9Zky4AM4pEIBJEMiOBNX9kWI6UBktr7rR7yDu3Hq5gQzFEMi4AIzWIE9JMIokIMjWEMxMOLUdwUoBAI9BAF4OIIx3614RBU9DWTyN8dXUNG8d8eccEM8UEPnNMM8lEnum6IsLAMK9IA/dAJArKNnz19Bgwb54fNXj5EKHToY+Zun8GBFixcxZtS4/pFjR48fQYYUOZJkSZMYuQ3hwe1kS5cvO+qTee+iPXjM/JkiN81XsWneZPmbRg9eTX/39MFUupRpU6dPnSZ1Zc0UVKsI5337Bg4cy08hDKFbt5VrWbNn0Zb9li+SPypFnhE6V4xjPH+/rrBQoQaaP4pXAQcWPJiwy5QrCydWvJhxY8ePlSa1Ns1fUsgjFV771o2avyI9dq0DRzZt6dLZ7kQKsaeXI2tJLV/EV89fnIcsaM2rfJl3b9+PD7P8PZx4cePHH1tyFBu5xYTRWnGj1mBOPdKmsZv9tq5WHwLRTOHxR3Ajvmc/atSA4s5vc/fv4V8MHp9+ffv3fSelV5Ue/v2kbAIgAAUNjrmnmuwQ5GqrdXoBYQp/rCiov4xoEgcTFmQYIqJ6mMPPww8Lmw/EEUks0USP9KFHnzPsQ6eBEEIogJrNEkTwm3HoWeOFVryphZ57aMqINlauUIEFOp6R6MQlmWxJxCahjFLK45Ka5if6trEARgKAuabG7LhZJ5oQXpjHDXeK0kgf2uioQQcZXinorynprNOfJ+3MU889n7qHmWI6pNIfREKggIturvsSrXXsoIATZRIZj6N6xGHhIR4WCpTPTUHEk9NPQQ1VIzf+3K25v+5JVFGusplHlSwUQAYQuibEKKl59FDBzVCUFNVX+zz9VdiQ9DEnFPaG/o2PvDvG03Q4fJByZ9WzuDkHnzJ2CEMeOAoiDyOFXoGihhGQPCrZc5ELFt11LarnlxqEYxc5fexhx42kgnzvnGm54gafXQ6wwxdT4EGqPH+qSU+GX3RzVt6HFVMX4nXdhbcgfiYuLqkghooPHX7HQacNDdbJJpBaJ/XHi/UybtkxiV0WtmLh6nllHlri9QeaZNqLubD+6AlE0lP9ubHGG/FRBYU5vOmEWW87oqieOX2u2iqYrQZ1ZtqG+KEeHdQwyB0deHU466bs0WcaS7p1b5yj9+Wih1mQOSUpqD2qJ9+z+WYK6773rDhJHqAoKBkVePaHFhXmoQ1wwPQ7wxt//lRE7p5uEKxmnOn6WIefTh4PHTiVchZ9U3dl4OaHKxbCxx0W4sRHDzU4NP0qmfwJYmjj9EFwG3+4aOB3R+gy2/bj/SYd+dOHsRRsUzG5op6xaVneKhXhMUUWdpAbKy2t5hFlaX96uQPjva1Pf6m/1T+xnmFGYAR+VnZLZgRuktFhnfatKmaqovDGm3psAy3ccMc6cEAFbdzhG2wzFf8g6CTlRVBK70udPwRRg2oYxAuv8EIcKOgUeOjDEuywxlHQdxl0XIclpZAANDphCrqYK4Q1HAn7bHifmeGjHTKgQ+0EoYMrJCmHTPHFNCKFMt64g4VsOIA/cnAPJRaRihvB/mEV4fO+HwgHGh2ABj6SAoUh0BCLJwmSI+iRCHL0x2CPgc30zrGLEIABGZ1gYxnxiJIJ5tFD+nBHMuqBsXngzx92GUKcjMfHjdBrPPYIBDscSJBEQkUhtmhDGxpRBRLIARnZKMgkFVnDK4ayPqvoQK9ISRLL9AcUrZRU2hbjDBQcwAEkeIE3JpfKVI5Sl8ipBzdkgJsH9rIk9qBJDvzhioKk8Hb+uAUFKEACB4iCmLvcYzXv4zo9/AIfVMMmse5BEG/gIhHwGIU/uPfJYZqEJsyxhjWKIQcFNOABDQDGNxXJS3weZzag3GdFyEMOfwQCF8xwgz9muBsgIQU2tpIJ/iP7462fmMIVMvSFP4hRBCocY53/zOF8uhlSkY6UpCU16UlRmlKVrpSlLXXpS2EaU5nOVKS0YQTt/MGP2nkUJA3lXjHg4YpAeOOgAaRcisJpD6VehHtBuIcbilEMawhUTv5wh268yVNRdo0lNPXqV8EaVrGOlaxlxYdu1CCDH/xiIVptCUGKgYtAmCIRriiGLOyBC3UexBvMsIYs7nUCWVgCgG4lJjB/QAc9LJaxjXXsYyEbWclOlrKVtexlMZtZzW6Ws5317GPpwAgd8EAFMhBENbpq2JCEs0PsYMco2AEKN5DDCb5wxG0tUQxL0EOZtYoo7lSrSH6YQxMjUMEI/pCbXOUul7nNde5zoRtd6U6XutW17nWxm13tbre5F3DTD3jQgfj1LLg91QdSmKkRmqQtveXFY1IKUQn5zpe+9bXvffGbX/3ul7/99e9/ARxgAQ+YwAW+LyNWoYMfqOAHmOCGOjDm3pPApqEPrbCE8WlWDW+Ywx328Id1cwUZXOGLjsPwiVFcEguvmMUtdvGLYRxjGc+YxjW28Y1xnGMd71jGNGGEHuS00xQPmchFro9l6mFiIy+ZyU3+DRidHGUpT5nKVbbylbGcZS1vmctd9vKXwRxmMY+ZzGU285nRnGY1r5nNbXbzm+EcZznPmc59w50/OYLnpuhZz1QyXp9hbALojAg6MIQ+SIeAuxR/GprJjA50bzTl6McASUIdJZZBJK1emLTzKuG8CtQ4vUiXLFVN6vyRRWLjsFNjesJP0Y+hJ+RbjEyxW0Y1SH8WPRwpRqVyJrF1pvFsa0V/xNMfwXOmQWIPWnOE1I4JCAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRoxb16bspcKUre6CsTXM0LZGrQMUs3aFnpZisQN4ceZ3maxpTgUv1IV3Ltq3bt3Djyp1Lty5SpfbOFpvmxF4gXPZMsbPGzh68hIXJSZVqydudYriKEbRnt7Lly5gza97MubPbs/5AFeui2Jq/wxfzsmPnzwk8K9YO21Trubbt27hz697NGyc9a8UCNaYskDJoimpNUlabqPVJer2jS59Ovbr16z5p+ytWbFQxUJP9/mnvSBm6QFmyEtHzhRa7+/fw48ufr3mpv8GJIt+Dbk+pzpu0MQOPKYlMI9Bx9CWo4IIMNuigQ2rR0x0o5hGllloG5sCfeA926OGHIIaIGz2RgecPcUjdQxkolhg4nogwxijjjDTiZCBV3vhj01vmnWGPIzUGKeSQRBbJITzTgAKPaTrKpQ9l7OASyGH0vGjklVhmqSVvN8lCTyAcWjkXOcy4ceCWaKap5ppzsXPPHawhaBdxbrgiJ5t45qnnnhrZl6QlOt5p15P+WMKMKe3xqeiijDaaqBvTSCboZcQVKJmjmGaqaZa+MCNLorepJRU5/W1q6qmoPqiWN8zkKJ01/omUmuqstNY63U32yGKKi9HRdoY1rtoq7LDEWuZfMcw0x+F0lMniS2FiFivttNT2RFtjn0YbXbJnVuvtt+CC5As8dyj7HnQ5BBvuuuy2uxBtvhRjRXHxQScLLk26q+++4VIGT52B1DQpdZQZeiK/CCcsLG13WCMlignmeMbBCldscabwsOOINzKpmyBlo5h08cgk72mKL+SQYwp4A7tnjz2QilyydEqllVd/L59Y88w8UwSdPjj644hsHprYcs914fWkrA8plxbSUBdEqDdusGZPIohqS59aVmQb9WZKx7RdpI74kt8ZyW51hjfcqWRPTRB/jTRlOZzJZIg3kWOg/txxHceO3t7gUmZYU1Y9TWw1DXTYNN6EVRUuiXwnS5TweKw139+qRQ4u4OUM690gSmgJa5ivRVl5/rjCDla+yIIs6RfRY8+4Yk0zryM5i3d06Qtvx93BlN1BY2S8G1Uqa07Qg/ZguUu9LEMXHgRdMevB6QZqOhdfrT3swDMx9jB7E7eId5jin/ZAQReIrsWc/vxINzHFTDGObFzl5eifyo4po7wfE/4Pogw58vcfgQgIF1VDFIfGl5P+BAge+WEcbQBIQD2Jih1BoNeBVge6GKllFBSqYEjOJwtruEEfJtIZBUdCKIH4whuGckVxVijCLdnHF66QTJUGAh0zCelC/v2jYQ0XwpSbOMEfMOlWW2izkn8p8HxDtCBzVvM+tcBJiA1SCyhkGMWM0IMefOHY++iilH/54otd3JMsAjNGDjGDgTTK2O7S6DzWuOFqGqSUWlxhDUesRDxYpOOHjBMc1lhJLYEozJXWFsghMuVk8WpKZ4gTL1+wh2KCHBJN/MG/JyIEPVgKXl4yScTtWAMU3Gsj2E7jjxP2T5WkxJtAzlCMHGntJVhSCzMG2EgCrmdycLyNYWQBCjfFkkb28EYXYDmQZGYwS5Sp2jENwg4YuoSZtmEKLvaHzWkmyD/N4VVCboKvYAapWd4EpD8S4Q1eWqc802AGMzCZzgVBhxyy/phnN6EjvF526CSjsIY5RfikjE0setehjT0s8alR1pM+++Gkerp5sLpVSEuROibdDEkfypzAHxd9KHwoAwGQrrB9/gyRKYoBxSGqBR6jUNZAq7NJR4zCYyK9jjdWdqI5hoYZLdUSM6YR0iEOtaENIk4xd5jT6WjuSyCdaUG8wqabmKmoWsKHZgzjj4nJLItqGR09m7obDHmJItXEE2WO6NMZcSMem0kPRRMECiCRlTeicoUCJfIkquBJLbCzoT8YoQZ/aLUy9yBHIpAaIuLMK7B3rQ0z2HHEfEVEH+RgT0pFdA9m2HVLWuUBFAxrF5H5UKoKEpkpBojayMLlhoGY/idTL+sPZnAxT/rAxd629Isf6GAVB1GHOg6bIn9Azp0yAixP2+rau9zHWaCSyFrHqiZ7TAN7WoqDDGRAB6nhgw50qAdxi3KTUdx2SN6jbnPpIgt4yHCziuST2YJaJG5coQY1gAI3CKKP74YXH+MlCpDiK6RSfWq9dbkJPTzFUYvcxBLv3ZN1Z3ulX6hABzoYwSv469960IYb9ZhHO9zRjnaoYx488UZMLTukFZUFwX0TSIEANVeGwANQrb0SkHIMIn3UQw1D+MEPvKAGfEyww/owhw4q4Q4vsGC7+dUDaUkSkxbVWES61CGM20IZb/wFOsxFyE3mudkZ3WOZPPZQ/j3McQVzBNnN4qgHWvzrDneogBHiWYc5xLGOV1zAHHImiebMtaWVsnjLRAEZoMK8kPJ9dU+2xBI+4sGNIfBgv+YYSH/Byw0W4FktIa4HNC5gjDIz5CZ3+BSjQcSUDKYZ0SDpoT86qBF6RJpPqG5ekfjhj0pfmtea/q4XVCCDX0wZH/PgASZ2IlM17eizsP4JoZjRuitHZBTG5JNaumPtEPl6vxwWxAWGQQceVONMXhgtTk6y2Eej6UnWuAOpot0T4qwPuR7BhSVeXSTKAMnUCvq2d+kQh3mIYwSVIO0aZOCPQItEVGLbU2y6Te+k+EMWE+M3RABuZk4OMEsC5zB4/uX8i3H7oxIjaAc3zLFnkXyRrRJuDT0+XnGSWMMUn6LwRxyRQkXdJIQgtzS4g60GNQRaDRcYtQyeDOWGe4Q2YMLqmqZH5pqHxECnZSE8DtwozNIYSyEvCDWo8eFfmOMXxkh72o3N8YFA7pqLogko9mr1khRsGpAdoT2YIXXcLlhLYV8IsAX990yxo32rrntB8gaWtivkHqvDFOQDofEHBX4oNJkGmDTliG0qPiPTQKCOHJ8QmugTU+0M+qWNwpTmVN5ITJHh6yt+E/eGsO8gMQy0426PYtDcSJcXytzhnqnMC+/zESmYN0xEeoWsareOYpHqhz6UlOE+7vfAKfKd/q8Pdiz6J126lOQBL3Sj1DXxaaorxemtXMb6pEvYbRSBmv+e4GfnR7TS5TzR31zi3GGnh8YT5bV+WcIOXkJ/2GF/PNF9lvB7qZJZ4rd94eEK5qVEP0EZB4Ux1sB/C6KAO3ETWWMr5HBrEghO1HMUNEFDACZEAeYg01A1HJggHqgT7IBmtnITrgAoCEhK5OAKMhGDGKEW4vAC3DBH10AN53Bly9EQWERcQkRD9OUROjckM4gTPaheqLJtEVh39uEs8UcUt3AAKUAAnwA9/tAKC1AALbBf/QVgB6EW29AGU9AKAbh4/iAKlzAJ69AQWrUOrUANTmeG+4ViDXEWLYgQ/oHmcAxRD4uwDkA4H1UIPws2hbQyWchnHhlEgkXBBA2QAgdQBo5YM6LYXwIxDz2gABSwAGRwavggAQewAAqwDYdYEMBAAQVQAD3gDscximrBDT2AASsgCuIBYMRYjFqFYiuAA0bgD3ClEPyAYmzABoDYECj2CcJIiA0hGdhIJJEYEpAHKdTiBOLDhes0CtcXFEigABKgAFRADd/wDeAQj/IYj9/ADdwQAhTgikjgD90gDuLQDeewDgI5kONADQVAAfnIC3UWDwzZkA3pDv6ACAhJAQEwDvNAjO4mEHZwABTQAFvAEJTRAvlIATMQiIjoD78oARKADoqYEEigkqs4/osEEQ99AAItMA+PGB/d+BE3cUnTQhmIMnuZlBzWkEgg1Rb10A44IAEr4AzrMA7zGJXgMA7joAociQPcMJXxCJVSeQ3foAEKEJbO0A1SOY/f4A6UoJINcADZUA3v+I7dcA3bMJfXUA3qwAYc2QBLMA7ngA5++ZeAuV8rMJEh4A/rUGeIOQ8hNg8XuQwYgJAFEA3uIF7GWIx3iIoUIABl6Hz1AAwCkAIkQAEmKSQ7+RHkcFPUYkUOFW0C1RwtdBfu8A3X4A9hUA/rAI9laZb4AAt2oA65GZXjYI9lUAatcJu/GY+zWQcz0APOcA5cKY9UOQ7fsIdtUAQhcAANYAjr/nCc4PAN6GAHAXCLhhCbczmX75gNb7kN49AACBkAwMANcXkN8jmf8skN4yAKC4CQC1Cc59Cf/jkOAukO6xAPG5kCGKABoxkkpckROKiJxAId8yKUXfQ2XUUqO1gR83AOZPkN4tAJ3cmd8tgNhwmi8zgOfYib3HkN+LAM4WCcZVmEt9ADTMALrWCN2wmi2TAPkyAKojAPZHmcZ8kLFHAAffChx8mXTFAABFAGzymP8PiW4MANvFAAG1AAVFCHblV+PgFKF7ol2fdKMNZlJ9SlE8EPLgoO2eAOgNCkJNqmblqW38CmUckN69AH+7kMzpCnziCnv+mfbfoN57AN9tmm/lTpDNHAp1HZDXLWDCDQChcJfFoqgBL0LZAHpghmD2fQUGT6ELymDyhKj+twCufwqW9aqqZaltLZDDHwBOuwDMvQDLDaDOp5qm1qj6R6nHR5q2aJDgIBYPLAD/UweFQYqTtxmhk5LZ3SXDdhgDQmoR7hDj9qluuwCNJwDrR6racKqO7QBivQCOsADLEKq8twqNharqa6DefQjAPRiDmpk8S6bvQACg7oLfTgCNl2V6MAU+qEgv4wD9IJp+dwCqdwo+ZasLlZDfNwDBpQBu95DOEaq86wDQY7sbkpnevQkiaEEleyoBtBRewiKWT1Enh0jj9hpjiqDNZKsSrLDfow/gcYAAt5+rDhugzVoLI2S4/bGB5g964slFu7By7kYCbOWjqBE2FsUQ+IOo/ZIA1pkA+6erOlCqDH4AMoEA/gKrMzGw1QS7FJiBDTcEUby7MjYYAkOyzbJk7TRByOsCtYKhT14A5ZCaLfkA2nsLXYSqfUYAchIAroAAzOgLXh6gzHsA1Pa7ckGqcoFi2NM307AR06yC5qMTkEWDqEgnMK1K4XoRYZWrhRObe94A6GG7WzaQsYwAbLQA2vCrgPe7qha6rB6Q4yKRCsgrnwwbEO5g8W5S4YmHd05B9BkH1toVXowLlS+Q3SoATKkLStW6II+wQhsAt4qrpY6wzL8K/L/tumUuUKXAepq6cTKYMwf+NNORQnwRunrju818ud6NANyjADXPANDiu9qlsN4ZC+vwmPe+gQh8O46yY0ZrEv9kAO/SRI2uR7tBuE6zCrrrsIA2u/UtkNwzsHGkAJViu/0tucxBu6gJq40GMPrgB99SW2IMEMoHCs6yIL5xVFPVI5bKFV8TCq13oOtdAJGWy3gLgMC2uo8WvBgLsM3DAPcevA4NAN7rBCJ7FG/JsTlMguS5w/tNEFxcC7RoEOBZsN2SDE9Lhf1skLMcvDqpunwDAH5zCoDtyS0EMP+ZrEJLG2CqN5MxFFjWMFG+J8PvGMNQyi45ANcGDF9hunfhgC/lwwDlfrxap7DK0QABhQAGNpv/kbEZCXwiHcvVrnkwnje5vqLdlnCZd0IfZhEBHyJMeqFg6UEbYZreaKDr2gDPbLDfhwDG2AAqoADn5LyIWcDSiAjyhwAL3WuojbbdtGd9xLfSFBGZC8L6YgOxX0MjcXUTWhHbb2JfVqBfCQLrKgyZHjGmegJOWkaUvBaPFgvQYbD5HAx8u7X6UQAm1ADdWQurSMtcsADPUQAvIcAiUZxFCbx7BLEcFzwLUrwhxBGV0AwvxyD0KLPkuRMcLjPrM2DV8BYQx9D9uUTG8DD4YRwCmBL2eAC7jgBMVwzKgxyg5hpndcqueAB/FwxaFb/g344LzHwM7t7M7UEAweGQIDEALZYMo3+w2yGLsNQWBhK8kPp2sJQ1Ta81K4OxAwQQ5O4AtuwAygcyGokxbKkT2T4Qt1ZQqCgUaC13BkrLLTuQjugNJb25+80AB9cA47/NKrGw3NYAcNAAvLsA3xALfKW674ixHogoUK6s8bAR1epTBaRGtfQxm4MAr9E0/ecAY3tnizgVB0nBcqUhAw9B37m0ekpQ/DW9fYig61kLxbyw3usA1U0AOfIMtq7c7oMAlFUAR5ugzHAAzLYKQ2uw0DOrkcAihlGyO2S1vyejE24Zp8Qxti4Q+JVDWndyAAJ4pocXjsMDHNyiFPOdK0/joOynAKsXmzgPgJKGAG2xANLn3a4roNXBAD3toMqUu94DyxFiusFYEhXxjJwvx0/uALJuwuXWLb7aIPreIG9OAE3fPeNGgNsiBvJ4K0y5sN+IAF+CDdh7tfPdADswzeqwsM0XAAbNAM1CuzGKyyssgR8PBRuQ0ju71xxK3X7fJz2lcytGHYsrBMB8PPICkQ8EAOQUAPypANVNm6S9sJoGuwgDoOsEAAiLANgyzhsOoM1ICXuxANaR24Xr2HHJcjQxtwfK0R7CBDMI4pq7KFKq4WvmANQTANBhLZFqJVABYJtRAJxou+hlvdOF6wrLwMZbACx0ANx/C3Rt4Mx3AO/qIwA1KwDa4qvdWg2YeLDhzcJ/7QMFMug1WeEabgDZfMKAH8syPTI24QxZZdFKCbDSfdC6fQCdmwnQz+pvDYCZ5drvt1CCjwB9Hg3Xmu58vgDkXQA5MADk2OteRarpxOer7wuOQH1CPcxPqyFNYQ4utiH6YAG8a+E/qQstCZDb3QCaeQDWx+s9TdC3ZdDevQA0VgC2z96uZNDbCAAWXQxTyM06Uapzx9EW+8JSMOEYlwrxWTEhNVMtnnGqaR5RLBa/Ggq/DYDrUgDZ0QDoR+quPQC7WAretQDdRg1t/w3eA9rsDABg1gC+ZNyD5Mq3cNEkvhBturxh/hDb7ANBeT/lEkU0tW0D34DRL1UO1lSe3Q3ojoOerc+Q34AAjSINZu+lbRwAQhwAvXcOunTbOfEAJlgA4XT8sRa6reKWfN9xJV5+6Nzu4jH+mN4rEVk0pd4DpvsQ7hkMGIWwvZsEztoPMFOw7SsAjpXfOA2Ach0AfVkOF5/qrb4ANF8Anh0NIvvQwMfpb+wN7kwUlq8u4OMQrAfDGm8HUJAx3McALeIMVEgQ8F76TDmw14cAr58OY+fvP4YPb3G5AhwAQYjud5fgzRAAtmXecQ78XjKtvcaaJU5g8ftehUDuwdcRK0bysamzCGYQVmEoVCwe80H48IfgqLcA6ej63ZUA8Knvxm/umcotAAnxD04I7hy8AGErALqGvkGOzsuen3O6hLJs6NU18R95BDPHNKJJ/fL/FRrHS0tzn5Lx8P+YAF84CePj4OtdALBFuW3XAPAMGrTIhm0Y45a5ZQ4UKGDRUuW7ZN1Iwi+Hgtc5hR4zJDfUqh+wZO5Ehw387h86fP30qWLV2+hBnTnr8u5FTGxJlT506ePX3+BPqS2xAe3IL6vEcPFLujTZ0+hRpV6lSYidjNpJpV61auWen5A2UJXsquUd2VJJlW7dqR2cApO1ULn1u2ddl+y3YKX8i1Rg1RMASuGUaNhRke3FYERattBw0/XuaMyYEGB2B149t23s2yLsVy/u4cWrTUoUVD0/s6WvVq1l2ZtoYdWzZLfTOdmAI9GybKzHZ9qx03rhOWfHR/H8fTaZ3ab9XuWajCKxrhx4adHVtHqYGhY9GqV192DAMGCg0obcv8bd291uSmYdUdf3Vpo13tkTsjX//+1m7e8wcwwJ/sYaeLlNgT0J91vhnnOAdJymacfJSI8EG7xkGnwpFMGkcUCiip5pjvIIsmFyZQGIy6ETNyxplZUGjAggNEwQytdWLzxRT4EuSxKfrK0oceZnokssievHnNSCXlU6kYX+CxB8EA7TmHQQuvxEsaZaSJp7crR4oHi2zoukYfXqjoAZhsRFwxo8icuSSGMs5R/rHNw66bQwNDfOhhDndC+gadeshabSZHlkRUpx+7ugeeURKFtEhcvJEyUkvLmgmUUbxJkB8Fx/HySwfH6SWSU6oUFUJ/sIjnmmr8mWOFP9CByE6HDuJmCRxaGYdNWxkCZh1YQqAiGmrUWeasktyJTSVLOL3U0kW50mcaU6LFVj9fcCE0W2+fYq8YdsjhsR5UUxV1nS17CSfUL7dcpx4TmIgGoV8bOiabVgRoZJnp7j1MnSco4MUxiKpRD6XYvgKl22+LnHYrfbwp5mGLV6PY4Ys3zmkmA1Pjz9Mu0SU5G3SUKI5kcLLBR4lMBIClVoAXciYaxTCq816EZrFgC2p8/k3omHlmm+kEf0DmOMGIsxq0mIoV/gnqSn0adKWpedKHM6h9Ai03rFnCx+udoM46KCnx2doncq6tOmm3W8oal/x23K8eUBtUOdVs6oGjF7REvcafVtaYwRxnIpt5sGa2QaQHLuYBJmdbl7lmFzJQ+OQcxxLyd29PZZPFH7rf5m/pqQb9RpJYgsKHPW5EeTVtnfTxlBpRwBH9p5uEKUWlej7nSWFbYLH6J/bqgcWWlcTGaVB3WuFleZ/4GXQdUY6R3qeZluFjHH/qkZ30i+lxw5+r4+NnwbzzZhkOcNS38Jtv/PkDhT9qkSPyxI/5ZhcmipjFN4CmM2CAYyJkqMbP/hhSDXA0yB/hG81Szie++JhOKu6gwngw0AJntI0n6DACeTSAg3Uwyyff8IEIe+APE+6EH2YiDwU0wIbvTa8VIcBhCAwRtp54ihIaoAAFQiAKCMJEJXYIohCj18NBTSGJK6DGT5jVAg0y4UYU5Jg+iuGI0ekGJfX42/pUph44KMddbOEGOKhBASoA42fAMMfmfnWMbTSiAI2Ixr8StwxexKMIGoAFNRgSmfR4kDWOcAUWBWRBcNWDCQtIYggK8A19FJEl9XDHDCQQyQLgw5Axqcc6khhEDCjAH0PTSeuOEYAYUkABZcjd7PQxCwGEIIghOIAhzDc2fkxCAEnEgABE/lE2nQyqDAUApgCA8UmYDKoImySlAKjBzJcMrZZJlEAL3DFBRVqKXEMCUPq6IUZymkRd53DQN+bRBwLAQo/HeEEcf3U4Z/iAhMBI3EKoAQsN+AmfC1lGNfA2kiuupknW6GaAGNmUStrilxKAqARCIIEa5iRsk0BmRCXagoo2zx9lgKRGMcCEXebEmhONKAYK0IwH6mRoAUDBKFFQgHhw85LuCABKISrJjsYEbdQQAAY0GgJTohInKmmFAigg0hCcUifsmYFON1mAT7Q0odFSSSCKwTzZ2COM5FxfXvAAv7p8ox65iAET2qG/oOVDDuaQXGH8RQ1EhKAP2/jn/rIB/owyrEAU1wCGvQYTjW2AKi3za42TwHlV/Sz0KIPqgUYhSoEW4M6l/iCPZCmAAY1V0x8KEKpGl9rTl6AkGyEVLUltqpJUtDKJFpiDVX3qDzaENqIUWEBVubrLGdh2sgUAxk4GFUTNFiBeOxHlUkVaVMZaSiW+qJh+8OGp5YDVuuBwRy96sZeBkmSc+ChDDyYhwEFGQxKSGGBhrhOiHlBBFOtI7xzXMYcelCGBiBuMMwRalxaKJlNf2W1zVePYoAyNuKLFQHAvewDfbhID29jJ0ArQYBnK1oj+gAVqbzsD0roEJX9xbRBVmxP2lOHAk5UADS0JWeXeVgG6zcmgVtDi/skqgBqWXEk0bKlZ5goYUeyxRCAANI9zXRes4zgFFtxhnJF0wx3LCMEWjkENyUEEFeYYETDq2IA+UONw+WzGMcDBhBjkQrDNOFw0GljWgo7GP130cWsIDJSZUEGpog0BnFvCYs1ylposGVpmRUtRPa9kUBm9rQNgadOVHKMBrsXAdiz8EpUYYpOiPUArOtsS9jDhxFNtRoAH1QIaT9Udf14ePgR9W4oaNc5G+grSvEhWI4MVL/noxJ82dI46EiCwcU3IdZQQC2ArZMoxCIE6wBxsYfBCAH/YRp0i8lW2/G403hjLqytIlPpQpR7VQKYDamyEDnvYHrAgQIspcABY/uI4bIhId0oLoIhN79kfLbgzNBdw6gj7A4gxJM8GnHpZZCp3qZx1NSj9EVSDK4DDCS/tXhj+W3KjepdlOIC6A3AMYmq7Rypxw5ACHBpPgfGMtWZfNrpAl5DEgxc9eEI4ZGaYfISBG19uSGSqYQcJIGIdF8knHYHBhRDsIkQAVTO11/INE+LYKU1yxWI9Hps5A6WSdhAANAPQg3owWnplyHoQA0BSi68EJVQIuwQEQIZylxYcGEj3uqk66d3owxmVGQ9llDdylcDiAAUvgAY6yBP2fKIASqVALY8rXH8YQgCIFwAOvgc8nAyNCQEgrgBUPPWP+yMR2ZuNOFGO8nFk/iMegMDHNsBRjy/MQBG9+k5kPOEJVHgHWMLCAROEEaIzzzNYiKCBfXGe3zQ+qNttf0pt/CFkzs+m6kdxhhEoQAJRMGvkLeFFEUIwg1ZAPJWl6AEGekC867MkHnZoQQjKEI16l5aFc0ABCtgwv/KrBBxsCEEL7NDfnajkGgNpgT/wvqPyh2PIoBlABKdziXpoBXwzAgVrvh4phtApP2o5pZMbPbA6hUh4sgOwg1yohmLLuXoBhmOgjutYB/z7hBYRwdgLlhnogVkIQaTrhu7yjW/Ah0dYgRXQpQr8iRyIpQiUM25jFHzABmxoP5yQEq/bDbAJCn1AELRhHQS5BwV0/ol7QBDwYR2FuQcftJqbqAcvDBt4qJiyE8LZKIZpQB90sMEMrLVsOIcywABb0CNbGYRBODNh6IEeMIhlaxFbkIA5IK8FQicLOQdeiIHNmpGtIIeKYcIz1Irne8J66IVacAp7mIcwPIramAd7sEIPq4d5eMTSqgctPIp7yMRPvMJM9MJLYsWmkIZOKClI3A+VYAbmm415MCw3HD11ooUjSANzYKtf4QZPwENnAAZR2I5wiK/JqQZbYAIMCIY+pBl0wsC1QIdjmLFgugStoAdfsIYkocUBI8Ku0AdykLpx5BhvEDl13A9cuJZRpAqFoTVevC5umJ8tCIFNOAY44IYW/pSrY+CGMDAHFFiCXbiGZmyT8DiHPsCAPqgXwqCnwrpGtcAMfNgCATgAyggcqiAHa7AEd2QNSTQba/g8keQYU/CFJETJ0LiJdFQNlIiHXbRHIzMKQJyDgjiGWIiF3rMTYHAHIhCAPPAygISMZaAGGmCCW/AyhTgcarCSK+GGedgF2LqGSaAE75mKcKmYVmzJoCBJq7MHNfxKi/EGe/DKspQKZpib2ACJmuxFNiCYWlkGVMCDagAYZESBIliHQTDBfDocZTQEKmsIJrOQ4NiDAuCGc+iGbOiGAWwKKzhLtQyNsBwQdsBFysQWUJgGedTMqICHISm0rqiHioRLUTEJ/ndQhRlggm+QmRZBhdqzE39phjkwgUlYh2UYhFjwhH+8l4DKhS0wgWBYE4ZQM9MkCQZxB1iAOX+IBkBRj6iYCXY4ybT8zJ2wTK6hh1HItuu0FEu4Cu8cDXIYBXqwzk2sx9Ncn25YB3XYAh/4BPhSEWQEhGGsDjFrhR5YgpoxQS+TA2LzScgABnSoKzZoh79Es8jghjb8DW5Yh3PgAhQgnmvoLnSwzrIJCwATz63ITqQglw2NlKs4TxDNiawxBWgZDZXQReRUzwepBncQhgKYg5qRHG6IhDp8DOzAuFlAM4ZwBlQgNjnKUWdYhxAoAl4gzIeASga9EG7Qh1xogEk4/gZ3GKe02AbIfKqUCIJi4JQRJVGX6FCsgYc7WMkvVRJ66ILwNNOs0Ad2QFHVKMQWBatuwIdoxEu5ogYlODrIOIYQYIMkbYiBLMEAzYhrsAPzANRgq9IvCQkqWAFnKDIrbbOfoIdpKJ+OW9OoCNOeYAdxzNQE6dRPpQoonMDVmAcWldPfkJ96+IQZMIN1EAYRjAxSIFTO4YZg+AMdEiBCPYYEOgJgAAbby4hjOIdWoIIZqJfNeZNIHRV04IUZgCX5sQsc1J2xOINpwAXPFFWc2FSeSMNt5RFvkAVMBdegmIk7CEILDKVFTVWV4YZ44AYz6AFV0JxafQhnwIN8iC9k/tyGT4A5ZxjEjVgGbhgESUAFKpO2Xu0D+/kGxUlQZ7gGZvWNccDHediCFSAehPGNbogHn/gKdrACXOAWLwXXbt0JXLAEcvWxUNTEt8GF0CnXp/MH8AwNlHAHmmxXkgkcv2ODPDLKwUAFLOCGnOOFehiIUsBLowwoTwCGY6SOyAiHFWCCYD3BKUuVKLKFXFqH9KwLlrSHmXADKyBLki3ZcsQUWYszT6kk8SGHD43ZU1y+dOWKt8zZvNmGeKiCBgiHwLITZ+CG9IqGYCiALchGWzHB/EEFe/GXRxgAUfDJZZDWLxmHdWCCENgGfLSQK+UJejgB1HjbqTBZnRhTdtDW/qRZBipogBB4BKNQRSVRiaj73KZwhHsYzeSrh8KqW5JJzVJ4ADtAh7xakWUAhjSIBdtDSmcYCMbg29lsBmowWEngBmmYBSboAZ0EKGpAzXGIh0lYAVjC3i+Z1JeYhkRAV3qo3djFTrMtC1eAh9K1GH1YJ8ogjwMIgVfZmCDBBbL9VHYwBXjQXyfUB3SowdxNlXHYBneohiJgglbQHAKKBBPEDkMoAiqgUXuFDEEahFqYgiJgA/l8iGiohjg1vnqIBi4oAuIpPlHxGqwohjPoylRCX54IXZ3YKvd9GEyKu1FaAbrDlka5lhj+iUY8X6v7FFQlYJIYhxsTBQywg4jM/ssSNAh1SN6iDLp6cYAWCAO/xZnBYCAmtYtqmIdUOABEQId1YFfwDcWVQEt/sIY7GIVC04dSNMMYnuGcyJFZvKpBmQNIGiUKQIFduF/3AGKkAMeuQIcj1ll8WIIQaMp84oY0GIRlOAAySNTEuYY+CABYuAaCNVh8Algv/mJ9KAIbaAdQTid0KB6PMYXoiomSQwlu0AMeGmSYqGOcoIcXbq5BmQEL6GMhEoWLUYlpeJRZnh16kIU3nYp4UD1E/pJuQId4EAUJsIOf+1m5igZoyAMLaIW/zaeDgQWKWKtj6FVnGATaUwb1aBDTTM1LsCt/uAYjtshrKIIAOABe4Acl/gDZ4qmmdYCGZGCEK2CBC6AD5APiWr4wIRtijjGmBuhlCb0YsMVjYn6JKDlJqfgiM2bmLwmcY3iC8WsMC/6OY0CHSdiARHgGapyZyNiGNpiBSdjTFOGGXsgGPKiFTliZLsmGk3vXbWCCJ5gFf9gvdMGLbkgFAfCAFygALTgFpjDPmFgFL5CBEWABHagBL5g8iQZT9bXAaVDD/02UegAqW4qkBiBoSIFCssRqmAAytH2K5YBnZg6cPggBRPCXahZYcCiCImgFVEiDSu7b7gAGFCgDWHBNpwwoDsGLbMACaTiFeAGVyB2JV1HGPnAHrj0O+YmQdRAHagCDDbCAFHAA/ktMwmpYBzqoAar+AWhIa6HQaonxB2ZIJK9GFChkg4wjpQagBtmOD2soHxveVpWQBbSGCn0w5Yy+C24oghmwz8SJhlbAgC0AhzfpZmcwhAJoBWFdCHfBi1oABECoBQZdhycgawZSmdLLhlpQgm2oJRJwAFVgSZTQAaqO70pYbdY2jdCYic/T7UShLxTogRboBt8WEJU4FLZO66xJJAGH3xQ27steB4lg4nlQyIWkhmBggwYwFnHmBiVY3snZpz3Mzad1Bmpg0NIDhzLOB0A4BRXXkjFRxl/Gx8eWH+hcmZIIjnNYhzJeB2nIhkrsBSVYB0DYAxrYhlrAhY7lppsI/oWprgFB0AGrxtJZNmi19gdHcFsBU5hoOAezuxggi+j69gdxZUkCrAcBbvBR4QZ3oIYeONK96maRpgQ/FSTCCI8bnRzsoN4+WAe2ug7CwlnmwIsyX4daIAVc8AQcMIJBwAVwUI5sYCF8iAd80F5/gLB1yAcer4VMr+lI6AVAUIbVeYQqKARCkIdDab+hGQY1YAEV8IJkGIYhOCXKq+8pV2tvqGgf44z9jg9f+DwB/1T2KJ+EdgmVcOszdxD2QwQNoAQq3qNm4AYciMFGVghgiIUZXBFg+AZ+YgNg8M2HuIY1SyeRMIpHwIBPyAZlWAR8wAK4wIJTSINTwANpiAQs/piHCqjpNFAGTu8FLZEGcOiGLTeCIiAFU/hhbvIkfxCEH6gBFQgFZlED1QbzrL5v0ThHA4/4p/Dfi3cJm3CK1DN2C1mHPXzpPVqGVsilAA0P4gVpgKoGNtAAWxi+YFvmLwHjPYzKnA6OcZiHZwYHmVYGmTaXrQ0OyBYJYziAR5AFS+Q7cxiCGqiBH3DSz9H1DaX1l7gHzLR4jT+KOyAHYY9d9rACue2JPyluY2fPc5gEE/ATXlj56qgGvhrOxtCIElyRa8jPIjiH5Y4Gun0Q9UAHWHiARvCH77XxnMaLwweUCMnpMYFs9aAGM9CAdvg8jscJlJgHVlCBGuABPfge/pWgHq1niaqHiWkoU9CHCugy/Zml/J6w/HVg8I9ni1dJBSqggWDgvXzSskZYATZgRmBzBtoD6YNo+XKX+2CLjBo04mu4h2PYw2iAVzGan0mggE0oBlxYyd0alGRQAxVgATX4hYFL/dBv7bL4yKmXaHhA5osPVaD4k7dG5FfpAwr4BCfeI+xpgfG7BhH80UVw2GHdBmEACAtseFVb1uxgs2Xbvo0D5/AhxIgOv13zNyfErnHovkns6BFit231Zqwxh6YXOX8qV7L0p2+eP0E6dKgIpVJfy5w6d/Ls6fMn0KBChxItym0ID25Fl648Q84e06hSp1KtahXoPXJdvF3t/ur1K9ieVrxBFcrxI9q0ateyfVjNHQUmzgwirGv3Lt6E1ygtMESNbt66y4ABxnusGhcMrZzZXRbtbNuH46jNKIIuW+S0387ZktDI1Bl/ZXvWw8dDx2l8+MKybu3669Gkr1fixOVyNu7cupmSg7f7N3Cv+tjdExqPYebkyiN/c8dtkgVK344Frm74Gyw2KI5Fo24dITU8xwrXpaZqBpNtCREuc1atYeZu655buOTvGvzlD7+ti8YmAjum9OIPPT3hVA8jKuhQAyP+xBMchBHChpRSuVkjiz/FSbghh1fhNM0oHYo44kqgwKNhT/Oc041+LboYUTXz8FLEE8Js4913/tYZtM0fM5DBzVw5IhQNKoTV5cwxzkRDBQ6fuGPkQY4xBBlb3NSzDI0xcvMiON1U9AkNU/iDhUqj6QTTMFfIoIIXyfhTDz8kyjnnSrFVOFtxltiGE5199gmVFaL5OehsxQRiD588rQMOlVw62tY31PhjCAaIcLOekNW1Fw16sPyVKULVABJLYcBkA4sEbEQTTWHLbKmcpH800Mo65zS6HDfr4GNDD/iAYg1Xieakz2pxDMECC6yo489qhDoLoZ264cTMbc9aGyE5+gh7Lbeu2fMouMkxFI4ERUwHqo7OtBLAJ80whu5BzgADjF3fULFANcC8i5Azy32TTTwhbIEO/rj8iVLALdnc8U1Q3EBRQw1Q3Nktxa5FmxtUbphZ8VfabussTl3oszHHJfs0Cig86ePOreG6LBF/4fTRwCfZ0AsvXstQA0wRM2wTJM7NEIkHNdRV8wkKZYBzc5TujdMyWjEjEkIj/lTj6Df18FJGDNkk0kmGH9PmjzivdFDDEHT4M0+zJrtd1cUY+5NItW9PVU9LbT9LN8l2++0PsDupCPXLhSslig9bOFP0vkEndAw6bPRQxjrjOZ6QOVhwcyMbM0yCTpLsPfZ0ZhWJwuQ6zjl6zTqT7MAGMnQLylNxyVzBggxeKAXT370bReFuI7syje9MwfQJFUxwsU6G1sJT/gw9YhdfMjPE57TON4QX7vI1+HR+STVAX95MktH0UEQu35AXtLzciNIAG80UJNg1ykXqDxshqFIP6S9yo1QL1hAGf5jiJirDGx1mooJX4E1603sgS+KmG19QC4JBWQ0VGkABC4RgAVVzIIl8ESIL2q0YFVwJPsKhve2Fq34NeIL4xpeQbWxCAJS4xvqCtgxtBIEKGkhS4xyjn3OQiwvzeBWXuHGPGk5CHqagR5x6shpuoCZi84ATCbOYEwnqJhH06JsWV4IIAmCAAhsMgQR24ax72MM2YTRZMazHLHd0Iz8wyx5z8MhCiPDnHIZoACwqJ8MoUSMXPZiBOo6Bo/G5/ucTGyjDkwDTnvesUCLdcI6sbOEcO+rnktLgQg+ed4rmqexNCZoJJtb2xlVyMTfeSBmKVvmmdaCgjGY0YwO4ALJpyKJAsuQW3k6BDZXMg1Fo6QY+rsjJj3wDJthjC0X+15Zu/O8bSpnFDKiQpEUKJod5ac852oCCPhRtkOSrRjOesIREcENf7KFGHbeRGW7oQxVFqAI3jsgljuBvCYjghDLA5kB84I0Wt2OBGp7xpl+GsZV48oclCMTQN52DjLfEpRH0NieoOAKEEyURTIxAAhIc45nHrEcZijCF96ilOYbwwS7oqJZxnCOZ+EBOWraxDm2Bwx8z6MEk1PdN7izD/ptHStItQkCFVgj1O8vg5l2AcQ5KrIAN3MBDLPblDPyISyl2CMEn6qFHF13DOTPYwyAEpJJY5k0lceBBDVRAC5ho9KPTcyie7OEEUsrSHutYgC1v2YAqDAonjvCGR+3KIZwYwgEvSMEBznGN7LXsG96TgAQOwIb+fQQdkyCABChACXdophufOAAFZrAOeUbNHX3AQAg2gQI2UCNHfViMUZv2vlbML0ftiWFjtkEFCrCqGYShizOWuRZrcqMBW4iHcv21DlEAgBtp8IYvpeiPZyxIBldwh2IbCjzg4IQc1pjoPeLRAw1eNFWEYsc0uBJeP+FkEguwAAUKsDaPzcMd/v79L3ijsADM9mAh4zgwghP8jWaUEbNUuEeCaXqOCU+4IgGopQI+YVKPrOMTDQhBCATAC3kVtcQmbk8rMluAMtT2m6yawQFCLIBqQBUvvDACBiaBTsGwqhUNaMPSlKQEMkRjq7aKzzrQMYcDcMMdV9vnOqjRAybIQxb4sAdbW4KTdWBCBTIYQoPwNl8S4hVP04hoYh/ICwJYAAOwbQAKGNYnnPjCF3Ubs5zqMQ8cHAB+C/XJHwTgAAGUASjzYAJqFdCHnODDY9oCbwBCgIEDiMJB87g0pjPtDyqEgIMHEMbiqCFqaqyq1NF4TgEoIAEcCKPIzng1rI8xDzasYBIz/ggtBlqAjvUpstfcCIECKCAAUQBjPE/dxi580INW3KgZvAiBAxQQgmocGVLV8McncLCFelyDRS9iSD3q0INHTAMldx6WP34BBRXUQA27wzOZxwshlE00TrNYQQAIMAAmXDvNEHKFJe7hb3j/BifjCMMgMhRFnvADH5coAhvE/JNr9EACZcBiT4pThgAIAAP1SGw8YlyAAoODwhNuSDhSHo7WddwBPejGN7Yhc5lT44gm2MIx/CGAEFAABSHwBze6IfShZ6Po2WgyzylwADv8L3z2+EMILhENcFCjGtuYhABe4AAJ0CoyLMLHFoqgC9Kubj4tYEM80OAPdvSEH/fA/lscakCTV9xk4QQvXplxow9vCHyiL1kHLy7tLHhE7+5/w4c7JP4TfdSjHg8SSjRawbuf3AMfEJ/sTK9hhAI44BPniEgz7dAAVXz+fwKgQADcUb9j4mMFFMCAAISRDWu6owg9WMbnHzLdYJux69A8RzM0wIVqJ7EemyDAMNDQS8pbjQU/8K4qDW/BvOPmDGT5qJ6TmWUS2YMdbpC+nyxRwKH0XSiNH/jbGS8U3lVyIuzfDzjWIYyeWY0j47gkIvxBjdwfMxuH/MRmrEMpmAAbWA3o1YMhkEAL2IE/tB9/VEMf4AsdRVdmNMcyLEEL+AMclImBuBULLAjdTR743ZW8/gUHVATC7PgdoRTIHfDVCI5I4MjJwKkE3mxYTl0DN5wFf6zDV1Xa6k0E63DVcqnEOLgDNTCBzzhZR1xDPeACPKiOWnSDP8DCbK3D/XEJi/gD1wyCPICNC2oZ3qzC7aiAHkDDn70gCcrGhkwDKCAKGkIITsjCnrzhiEzDedmNPVAgWuRKNEhAHxxDPLAW6OWRpDSCBoiCRkDNN4jDIihDJXXDtdHAEoiCPoxVi3ADPuyCCewBOFjCOfzEasxD3MmADrCCStQVHdoN9T2UK6RicBTH94GRK/4GLriR3eihR1zDPMxMRhCfi/BHz8ScHi5iL0iDWujUMTSAIaCDL7aI/nw0QgMsAzq04OJt14LUwBUo3iz2zirm1R3I1zbOBj3cARuF44ZYgxy9zaJERuXYXgO2X0utQzWoQgP8gdXg4jfkQxqMA2Z4BH9kAxs0QDXMh6M0BMUhgT84AVdkl6IIgoLogE2IoDmqYgluCCjQw/ZNZFXoAz0MD0Nq5G94gyu4odvgAz94W1rkyjrMAQ7k39S9yDiIBC9sgQ1YyQ+2ViQYE8xc2ydMDtChZIt8QzjMgx3QgCcggxfKYqP5gzEMgQzIgBosyzzYHUiaTDfiBj34gjWUX1VahT08D9t1JXDAAzjajQ12BDXoAyysABU02TbgIltICiJggIZxllqg/kMv9GNEvKU/PEEP8ALLOEqMjIMFFMIG1sIXsgQ/iJkaXOMvrMYMiqWfXOVDBYosSqZQFMheYSZwOMVlcgs+ACXM4A8FOAM38N8vXpsGUAG1ZUY24EMO4INeTsQ62IIH1dGjbIM+lEEIoAI/RFRGrgTeJAMp5g6zUCVnVgxliqM/hEZyMgVOhMZnPqdXsMN0Xos+KBdHrEMuYIAZ1EMOQtk6GOIkAF1y8KMl8scxvJYzrINotgh39sASyEMvYAgI4cQ9qMFD/sKbICd1cstyzsZXysId/mdQsIMrFANXGmhrJAI8XOez8MM8iGY3zAM1+MEMpMJ9OAo92cIX9ECT/iFRZJyDMiyCO/RjM01CEXABPjTjcshHOLDBDugCMkQCVAQnsfjDKjglGZrDGTIoxQToa0xLLwVnGKkGhLCRnUUmkC7FKLSikV7LYkLEOAzkLqBAG9SciOrHNyCTIYTAJAzOcrhDI3JEt7VDDxgBL4gVPKZkPSSDAqzCIsihSzgQ3piDGtQACwwB3Z2bSpgDJixlk/aJkOKGG8ADk/ZOPdjD+f0GPcBDFwyqOPpG70iWPEnKHDxAMKCDXXKpUJpAEbjDW7YIic7eNrjDLgzAaMFlW+RTGzRAPOTA2vlEw/nDK3SXGmhjTnBX40kqnRTqa5xgSiSq3VwDLHgKThBr/lFoiz/Eoq+yRnEEgUT5jTtEAzWAjnPVH5R9wycQwC7ok4u4AyAoA/ZwGni+p/2MwzoAQwywgSxgw3lFqT+Yg0PqwA9EpE88Qw306k6g4rPOBrAGqz1Yg5390jwYwgAcwAEMABtcW24wgy8Ug5/+60b6gy9QqlmagQA0wBzEQKVRg6NI4Sz0ABWc6pYqxzhIwyj1gQ8U4E06ozuMAxv4ACV0IZZJUZz8ggxAjBrQoH+yhL7y6yskwzO8AkHhzSvwJ8XmRsC6Bk54wyhs5RutRh8cgC1NGhPo3YVIrLwu7bL6Q4h8ZMmoAhnhlzME4urgTxE8wjsmkTT0AhMUAS9U/qKjRMM8iMIKVI0W7FTbiZkXdJcZCkXQlkYcsIA5iAMLxIFKrIIMKK3XvkbTForEKivF2EID4NdFHUApDKk/yAKGPC5YFIisQiihXAIBbNAMHANqcmmMYEARqGubpkU2rIMyCMAngEOn6se1bcHPaYE3hCVp+EMoKBAjSORPBO06NCaz+AMtsADdDYEeTCzodkXkzsY0RCrpuo0onO5FKd0muAYbJULBTq9wrF32DoozzECbsUEx/eI5jGcBqNGTQVkPKAA55K79gIM7wEIDlAE/kMnIaFfy7uwP8CfGBcUzyIA5XMEQqBLcXQEU/ED0kW9YVC/4qgQKSm/vdGv3/iod27rG96UgBVcFVLRg1z7LNTSChsUuzFTELPjAEqiDNbGqZnzi1BiCKTgDC3uEElWDGMwAMHBCNiQmSzTLKvwAu9HBg+jqTySDDlwBNqqfKvGACvgDeI1wBVfknBQHM4DCCVnQLGDuRRXAJ7QGOSSCLOjDCWNxUNiDN4Tw2yQKN9BwR/BTFPSAKsQsl4zDaV7DCnBBLshDLcym7tZDKaCAH2QDLmQDs/IE3nCDGjzlENCCARUFdwkCN9SA2sBJPEDDD9SA4jIxG0+FBecGKLCD2BYPE7CXGVlAEfgrVdjDwGLsKFvFyBTo3wRmukZDVXHDRnBoPfDvCvcCHrTv/iXqQxtQwDkwg+z0ra3KHQuozfIyhb7CRCU0roP4AwsIwi/UAH/Cci3/jho+iyOYFwmtRhGEQANoUA8wT8f4Azl4A91QbjizhD7Awx2k49tI6A7zRzSIQuzJFJRtgxFQwH1kQzt0Qj7sMEScw88cQKGdwFq1nRV7wQcW8I8uRQILXgSrBAOrxN8abz0zRSk/1BujsgUdzxeUwaKJMlV4gyPY2fmOtMp4AzPMdGERTGR0z5UyQYuiq7gwTB/kbf19QzwsQjbQMZWGaBEsgRzUqGjgqErQAsTogOL251R4cuNd2g/owSv8gEI9yBD07M/SdMNosZ9oiClYJ05bi+K1/nXGqYQjFMcam7VPTAMz1PWznCUzScoT+IAo3BRDSwQ9NYMNUIEw1IO3fUMvRIIuZ0Y0+AMi0MAfyEIxME9wSqg/tIMXPOUPmCGSUkU9gDZOVIM5cINCNYs5QINI2/VZj7O1hExKwLVdFQc7RCo9uzZLfCNty8mUrsVpbgP88MdgR0SVHmwIiMJm6GA+1IIKBfWhzUAtXIgGE5M/XPMPjEDxQkhZ63ZPlLRuQIU3hIZeh1cctmJve/dKMENZ+s3qwsx8VO0uxMPJLsfTUBwOyHCjZAMW5AMh1zBnPEAhIEMvjK9PqAMU18APXJtJqvezgHd4y/VEo2HfOUKBpLKD/hNFcUQqhnPMY4NeNxjylJ3rPqGDO3xp1VRDo9RDJxRdZGyDhVKBENQCOQBCnAyUSoQCD+COINBVhj84Wj8LR3qfb3T4mPlSIEBPef+4TpBDC+b2iPBDZZ1DPXCaMMxDcUdEWVFDCJSBM6heR2TDKShDZCiFI9ECIJiCMtSpI/sDNMSBCrCAF1ByaDP5oEA4cLADLpA3+EHFGVhCetu5SrAD20H5iKwjSJzDMVAaNfA1rvhDH1iALUyYR5xDLSC1A1pJERTBMXyfkdOg8BanNIOzoIsInv8GVNhDIEyDoRcPO5xBqpf6VJzg5/rNavzgZlzDHFCAVGU5H61DMzAB/grcB+F8gzScA1x+AzpUAy80ACUQwjoMq0/omVN+slK4tKyPyKn/RjkeVkqMWXmxA918UbbPuj/gwrf7zT24A4Q1kyr0wBP4wy+/yCXxSNTpX9SsQycogx7y8TxEAxPYgDuYQjZgJMPxySp8oCZnyAGX+68GecVwRWiQu125oRt4gz47/FJwpIH7DS/MgTPMAxX4wOaqOJdUQybGwBeEfH3DXy10glgxkzNA+gr8wijgQsbnBExUAxSrwBWYYatrPGtsO7agsWgEPbdARTHcATl8utAHhSy4QeG5DbHYgtWGgAawQZL5ulv4wx9oAC/kygopey3gVB2Pgz/c3Dc4/oE1FHrwMsIP0AQm+PjTTybEcwxUWEMXEB5D3YP3wVLdWwXwmgxMUADPhcAMmGduWgAXCLRm4CUgYHkdv6+HTcI0pAGbM9y8PoyCp3Z3B/6GEH2ElEUguEIFLfkWC6eWFYcJhbDTg/5PgIIjiHDF4A0KcFADUIHk/+I6rMNQl/HLosU8AIJ/d8Q2TOEcYAA+BAo/GHlx4EPCywAPRO80w/7Dw3bv5P003AHbvf6gwMTVCYM/1CpHqkQX4PXRW79UFIcsFBDSF5w+CMMKAAATWCLKUgOqZlOItkU2REIt6CRAgBMILhs+QxgmkcOFz19Dhw/98avnb5gaFiq8DPNX/o8hRI8fQYYUOZJkSZMnUaZUuZJly5TchvDg5pJmTZTMrDlpaM9mT5Xu/PUwgSFEjF3+6DXsYo2ZT6dPoUaVOpWdt6ZTsX5clw3cuIFfwYYNS83fHgm21o37JpZtuHy1sq39+u2auxBfssmSVXKeP0Y1dLDA1LBjVsOHESdWbBKmzMWPG95raMVbMX88IbvU509DCAqfKWCANs2bzsuZUadW7VPfPb2rfd6rp08uW9sDx6lbZmKJP2q1bw/8lg3PKXRgx6ETdaAVPywNN4us526IjB86Zk6EvZ17d8WNZ3qXqi+pPyvTmJHbKT5kGQygPx8o9BxpdPb38UOWNS3//srgt+sapw0USvHNq//m6kUZ4LipR5klitCrk8vsg4gfhuoJRQUddNBjI3346U/EEUn0B7wSbbqHp2LIcQMeUyLTp0LvQqSiAfhCa2AjyVDs0UeVyAuEHB5/9Kge4BAEZ6ZSUPjDmXm6SfKrbNzppZZ1BKLLHzaWAIMfQNYLKR5/qrlCBhWueMafwops003DTnwTyIbYYceXM9QLUzzZirgRPgwKOEc7OQl10xd/iJRTnyilBKeaedhA4RYskUTwm3rwiGSetaJ0Z4Ui2CmGnZImimOIGkagZZ01C23VVZfifNUkHu3xZilfyhOPHXmM8BO+ENYZVNZh7+MpB6Ra/nWnUrbO4QacBqrwZ9kk44kkG6++OWecUgIwxxRl8iSpGihqkOEKc/yZkdh12TUxpvDaFam1htI7Qx9TrMlVMnWh2ownf73BhZ4usAGjgfc+w+AAQ/iN1+HHeNqrUH42/W+bddQpIwRgfGs0LGk6qUXLXKgwwxR60iBpInNWUYEFKDyU8eGZX42VZo/mRQoeVxK5xwl6rkpXH3vuSdSle8g7rSH+uoAHFFy8caiPAEATYIu+bs46Mcn0ippQfM6ZViCyRMGBjWvWcdbjr6q88ht/xCjiE0tMGUfpjySi6AoVZFADGn+w1lrwH20e/KNRpynGmyDgsQSeXFtDmiek/mWGaLOhKVTRPnvsCcQfCAK2xp9RH5rHGSZmWGKWwA1v/anNpoEnWduGc6cISdc5Z22wsqkFi3a44QYDTBaRRXSS+hJEBh1UqIQw16EXsfDo0z1NMqCfvsMUV+CZhh56RqWn8o/soecedr63hh1ZmAmCnTuKkV2yf410aDbq8bfJCW8we3MetsZxjmOsgA0d291XxpENZeADHKkoQDISMar+hQQf7lieDobwofxtsDvTy99mcuUQZhQjEbhghhXskYhRkMMR1iiGL4qhuETQAxSBoEcQpiELR+CCNBBJSsMaUg8hsomDRSwJT0ABHTkdaCDciAc15nCAZsyjGkw8/uA4pHEKWSwDBT3wRyfWQY8JWghDjNiQDhgBOCIakY3feVcbHyKjnEHEHvBoiinIMQ0YkmYv3pOdRyYHRDgOEiWbcYU1YPQmin1DLjP5RAgMgY51iE1K38hHJPxBhSI8gxDnsMxIxvSLK1zEb6wi5Cnh9EZUrpKV3dmMNfgjSBEx5Brf6AZZitCDXVDqgLy7QyRCsIdetPByFCwVh1hAi77IspXNfIkqnRlNaSbGEo5gZn4uFI1WcIMaDZjDkXoJlm+soxZ9IEA0TIGHu1HwGT+oQQ2gAJQ1TpOejIFmPfGZT80gBUYhLNFm2BAAAqBAA8e4RzXCKRxwrKMXIJiC/nka4k+ISEYcmGCBDIaQxvvpk6Mi8WBHQRrSOIrvDG1CRwNCEIIC/IZRCf3GOOixhhe0whu1MJ/RIDIRVuyNBXRQE+tEKtKPBpWo+oRdD320DQuklADAuEZCBcKNdUQjBC+Yhxvc8ceQ6GMidACMDF7xvKIGdahjNes07zHCa7rSH4jwDBe6QUkprcMOFOCEMhKxTpDUQxws4BAPNHhWod5TsIWlpxtGWD0SFeYecv1PNuahiiwoABmAsIxE4wg4PagAMKEAnGEH6xjQxksf5ggFUEbrFMzcgUIlwgfS3BFObpwDH2XYQRjkAQc9fYQhryDXCHyKqNSCtKzDlVM9/n5RA3gZtyZDY4cbNoNTEelud9zAxy4OYAdfmAIeSBsJQ6rxThn8YpnM5WhxzVsk5Cq3ISFK7z5xiNn+HGdtyWmDBrZiw5NMxAvxfG9H0ftfFK03PPV4xTxosVxoJMOUAv5IUujhuTHmhyEvTdJL8aEKFMzBG51g7YRF0hGOOBifASaxiAg8kSH8oB46UIND3KEDz67VvPbQxzQssdv+WPE22QIHF3owC2Scwl8qqYd0T9xMEycZP+tVEw+g0JBkqIDB/qCFCuYhLCY7BIRniJr4RnSPltqmit3swzr4MaEtD3fJa/YOcmXAjR9cYSMVZEFY8aEHNWzUzXHcTBD0/noffVjMH1xowDb84QjL0LjP+mxzo2FTj2H41cWKxcQVpqMDWkDaI+J7kSxI159JioWR8xDFhv3RizuECMmcDu1yXZ0fSY+AEcMYASuql4wRcCMZOlhVrD1SjEPKDsTbqcc2wsINd6wDB1TQxh2+kWPFAnusj6b2YyQdZ38IogbVcIgXXuGFOFwbIvDQhyXYIbqi3QcdDPJHKSQAjU6Y4pOtJvd5CXtv7hAYH+2QAR3uJwgdpEnfEPHFNPIq39Uo6yvcYMMB/JGDeyi84ADOd8VVI+kfhAcaHYAGPjYDhQza29U8cgQ9EkGOpHgXNpebzjl2EQIwIKMTK8d4tS9+/vPM6MMdyahHiObBa3+MaQhhZbSbMce5QLBD2vRDDUNs0YY2NKIKJJADMrKhRJ0T1dpbf8wqOvDZrUcnKaAw+2lsjBpnoOAADiDBC7zhNa/jXLRzfzM3ZJDMadudaBH3hysi85jN3OIzJHCAKOx+1q4nHisV1MMv8DHPsavIHwFLBDxGMTou7/1oe7eGC+WggAY8oAEcY3xRF3/6w+CDz4nHjHoCYUI3+OOT1Ssa5TjPZTnyJCn9I8326H0oYhSBCsfIveod/cbIL5/5zXf+86EffelPn/rVt/71sZ997W+f+91n/kQYseeItN7uxRxV/FwRCG/MHsTiMx/nOHc4/n8E4R5uiKE1wsUQd/RF8sgv8YpnwvsEcAAJsAAN8AARMAHxoS/UwDp+YSP8j3xoDxcCwRQSwRWKQRbsARe0ziGswhpkAbpOQBYcJ9AiUPGsgw70YAVZsAVd8AVhMAZlcAZpsAZt8AZxMAd1cAd5sAd98AXpgBF0gAf4RhCqIQBPUHMgok5GgR1AwQ3IwQl8wRGo0BKKwRLoAfBypffG5wTNih/MQRNGQAVGoAzN8AzRMA3VcA3ZsA3d8A3hMA7lcA7psA7t8A7xUA0vADB+gAc6gNYa7ARlBGlIziPmZ468ELQ2oxAqoREd8REhMRIlcRIpsRIt8RIxMRM1cRM5/rETPfETQVESGWEVdOAHVOAHMIEb1MG9EvEjLqeY5AgWW/G9FLAWbfEWcTEXdbEvzOQKPk7LZjEYqS0WibEYjfEYkTEZlXEZmbEZnfEZoTEapXEaqXEZJYMRPGRNyE8YubEbvXGrgggYv3EcydEbQa4c0TEd1XEd2bEd3fEd4TEe5XEe6bEe7fEe8TEf9XEf+bEf/fEfATIgBXIgCbIgDfIgETIhV0lmjk5eVOPoGrI/utAVUSMiwRE/LNJyLCcjHdIkONL/PpI1vINfQhI21g1ZPtI+SlIkCvEk9sUwKC8rJuglR6Ik468jQQinVDIkzCez9mk86sMlymMLQUK+KG6yKI8PJFYSKiZuPMDMJYptJRmt2F7HJamSIk9iKU+ifFbiKFUjIAAAIfkEAQoA/wAsAAAAACADCQEACP4A/QkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocufGePnj34NFjt5KdPm/04MHTR+/ePZI4c+rcybOnz59AgwodSrSo0aMW9em7KXClK3ugrE1zNC2Rq0DFLN2hZ6WYrEDeHHmd5msaU4FL9SFdy7at27dw48qdS7cuUqX2zhab5sReIFz2TLGzxs4evISFyUmVasnbnWK4ihG0Z7ey5cuYM2vezLmz27P+QBXrotiav8MX87Jj588JPCvWDttU67m27du4c+vezRsnPWvFAjWmLJAyaIpqTVJWm6j1SXq9o0ufTr269es+afsrVmxUMVCT/f5p70gZukBZshLR84UWu/v38OPLn695qb/BiSLfg25Pqc6btDEDjymJTCPQcfQlqOCCDDbooENq0dMdKOYRpZZaBubAn3gPdujhhyCGiBs9kYHnD3FI3UMZKJYYOJ6IMMYo44w04mQgVd74Y9Nb5p1hjyM1BinkkEQWySE804ACj2k6yqUPZezgEshh9Lxo5JVYZqklbzfJQk8gHFo5FznMuHHglmimqeaac7Fzzx2sIWgXcW64IiebeOap554a2ZekJTreadeT/ljCjCnt8anooow2mqgb00gm6GXEFSiZo5hmqmmWvjAjS6K3qSUVOf1tauqpqD6oljfM5CidNf6JlJrqrLTWOt1N9shiiovR0XaGNa7aKuywxFrmXzHMNMfhdJTJ4kthYhYr7bTU9kRbY59GG12yZ1br7bfgguQLPHco+x50OQQb7rrstrsQbb4UY0Vx8UEnCy5NuqvvvuFSBk+dgdQ0KXWUGXoivwgnLCxtd1gjJYoJ5njGwQpXbHGm8LDjiDcyqZsgZaOYdPHIJO9pii/kkGMKeAO7Z489kIpcsnRKpZVXfy+fWPPMPFMEnT44+uOIbB6a2HLPdeH1pKwPKZcW0lAXRKg3brBmTyKIakufWlZkG/VmSse0XaSO+JLfGcludYY33KlkT00Qf400ZTmcyWSIN5FjoP7ccR3Hjt7e4FJmWFNWPU1sNQ102DTehFUVLol8J0uU8HisNd/fqkUOLuDlDOvdIEpoCWuYr0VZef64wg5WvsiCLOkX0WPPuGJNM68jOYt3dOkLb8fdwZTdQWNkvBtVKmtO0IP2YLlLvSxDFx4EXTHrwekGajoXX6097MAzMfYwexO3iHeY4p/2QEEXiK7FnP78SDcxxUwxjmxc5eXon8qOKaO8HxP+D6IMOfL3H4EICBdVQxSHxpeT/gQIHvlhHG0ASEA9iYodQaDXgVYHuhipZRQUqmBIzicLa7hBHybSGQVHQiiB+MIbhnJFcVYowi3ZxxeukEyVBgIdMwnpQv79o2ENF8KUmzjBHzDpVltos5J/KfB8Q7Qgc1bzPrXASYgNUgsoZBjFjNCDHnzh2PvoopR/+eKLXdyTLAIzRg4xg4E0ytju0ug81rjhahqklFpcYQ1HrEQ8WKTjh4wTHNZYSS2BKMyV1hbIITLlZPFqSmeIEy9fsIdighwSTfzBvyciBD1YCl5eMknE7VgDFNxrI9hO448T9k+VpMSbQM5QjBxp7SVYUgszBthIAq5ncnC8jWFkAQo3xZJG9vBGF2A5kGRmMEuUqdoxDcIOGLqEmbZhCi72h81pJsg/zeFVQm6Cr2AGqVneBKQ/EuENXlqnPNNgBjMwmc4FQYccsv6YZzehI7xedugko7CGOUX4pIxNLHrXoY09LPGpUdaTPvvhpHq6ebC6VUhLkTom3QxJH8qcwB8XfSh8KAMBkK6wff4MkSmKAcUhqgUeo1DWQKuzSUeMwmMivY43VnaiOYaGGS3VEjOmEdIhDrWhDSJOMXeY0+lo7ksgnWlBvMKmm5ipqFrCh2YM44+JySyLahkdPZu6Gwx5iSLVxBNljujTGXEjHptJD0UTBAogkZU3onKFAiXyJKrgSS2ws6E/GKEGf2i1MvcgRyKQGiLizCuwd60NM9hxxHxFRB/kYE9KRXQPZth1S1rlARQMaxeR+VCqChKZKQaI2sjC5YaBmP4nUy/rD2ZwMU/6wMXetvSLH+hgFQdRhzoOmyJ/QM6dMgIsT9vq2rvcx1mgkshax6ome0wDe1qKgwxkQAep4YMOdKgHcYtyk1Hcdkjeo25z6SILeMhws4rkk9mCWiRuXKEGNYACNwiij++GFx/jJQqQ4iukUn1qvXW5CT08xVGL3MQS792TdWd7pV+oQAc6GMEr+OvfetCGG/WYRzvc0Y52qGMePPFGTC07pBWVBcF9E0iBADVXhsADUK29EpByDCJ91EMNQ/jBD7ygBnxMsMP6MIcOKuEOL7Bgu/nVA2lJEpMW1VhEutQhjNtCGW/8BTrMRchN5rlZnOhjHvWozf49lsljD9XDHFcwR5DlLI40i8e/7nCHChghnnWYQxzreMUFzGFnFvpDsWpaKYu3TBSQASrMCynfV9+C4il3xpZYwkc8uDEEHuzXHAPpL3i5wQI+qyXE9YDGBYxRZobc5A6fgjSImJLBNjMaJD30Rwc1Qg9Mv9Yfk8BAEaLRmVc3r0j88AenPZ3sUH/XCyqQwS+mjI958AATO5Gpmnb02Vv/hFDMaN2VIzIKY8alFQcIQQNiEA9ZG0Ut3Rl3iJa9Xw4L4gLDoAMPqnEmL4zWzBCUxaTR9CRr3IFU3u4JcdaHXI/gwhK25ola+hACC4QAAN8odGYoA6RWK4je3qVDHP7mIY4RVIK0a5CBPzQOElGJbU+xkXfCk+IPWUws4hDxuEj4MY8iNIACC2CDzNlyk9VqCeQcBm+af4Fvf1RiBO3ghjn+LJIvslXCraHHAGeOE2uY4lMU/ogjUsgWrY5jFgS4RDVMIHTP3CSEWUK6s9WgBjur4QKqlsGTobxyj9AGTFhd0/TIzPWQGOi0LITHgbnsj2rM4Akn/oZAKt0ZzNIYS3InCDWo8eFfmOMXxgh96Ket84FA7pqLogko9lr4khRsGpAdoT2YEfihwLUNIYDFOs7xDXB8YxuU5wxN9In5TtebIc0myfA1xY72ubv1BMkbWEqvkHusji0+jgcGyv7wjXGA4/vf/8Y61Lw6nD8o80OhyTTApClHbBP6GZkGAnVE/YQs/yinFoUGNuEPaoD//9sQYJvRTnFnfEbBFM1hfkbCFDKkgDN3E+4VQrUHEobRbUOBYtxQBDMwD+fADf/3f98QfPVhD8WwdVeCfkKxeqiXKeonPPAXEQXjDSZSfwqxKrslFITCBSFgC+7gfR/4gZJXGyxSgJ5mFCkzgal3Dzj1gjWoD+zwaD/RJZciFFpVDQeACNvQez/4g9/wfMVFhMc3FHXlhVtSV0PnbcrFWD7RJdiVHf6wDoiAAbuADh64hXZYGwRCg++BgtnxI7SiS/NEhpFFHHewU4vGE/7ldYYZQRm8UARioA7xoIV2+IPjIIhEwQ5eoofYwYcS94QmOCuZNYVMGB6uYF5K9BOUcVA+UW3+UAYh0Ar4kA2SOIk/6A6esSSWSB+cuBNFp4h4Qg6+NorgRD34F3YLAWBCJIBa5Q4NMAf14Hu0OIni5xnTUDW5KB+7qBPswGa2chOuACiaSErk4AoycY0VoRbi8ALcMEfXQA3ncGXLkSh9IIfrUA3gJ37x0IPRCH7dQBxCREP05RHGKCTZiBPjqF6oAm+i2Hr24SxtSBS3cAApQACfAD3+0AoLUAAtsF/9BWAHoRbb0AZT0Aorh2KfwARMoA/j0A386A+fMAmIEP4N57CP4gcOrUANfWeR+yWC4zQQAogQdsZyClEPi7AO5ggfBQk/CzaQszJZL2geGRSMRcEEDZACB1AGRlkzWtlfk9cDCgB0ZOBq+CABB7AACnANycYEPTAL9dB74fCW4LAOt0ABBVAAM/B7QPgNeqmX6BANPYABKyAKdwZghFmY/oBiK4ADRuAPcKUQPOcPbMAGONkQJimYPJkQknGZNZKUIWF9kEItTiA+DLlOo4CEQYEECiABCkAF1KCXdvgN3MANIUABZIkE/tAN4iAO3XAO69CbvjkO1FAAFECbvEANB/AH3EAN1bANzLkN1VAN8dAHw0kBAbAN19ANe/kN5/6wnds5Dt/ABgdAAQ2wBQxBGS1AmxQwAzkJlP7wlxIgAegglAeBBO8Zlj9ZENEJAi0wD0fpHpz5ETdxSdNCGYjigJmUHNaQSCDVFvXQDjggASvgDOvgg3Y4DuOgCuGJAx7ogxT6f9fwDRqQmgcAnsHgDMfQDMuQoiq6DNVgCO9JlsdwDCu6DDFao8fgDGYQng2wBONwDujwo0AapPu1AtMZAm+YZ0iKZvOwpPiwDBgwnAUQDe4gXoVZpf4gCl9JAQJQkTVYD8AgAClAAhSwngRpgD9BDjdFLVbkUN4mUM3RQnfhDt9wDf4QBvWwDrP4mvgAC3agDvv4fcn5B+dpBv7c4AzL0AyImqiJegzr0AYz0AO74AzOoKiSKqnLEA3oUAZFEAIH0ACGsA7R+A3oYAcBUJeGIKfNmYXfIIt6uQ3j8HPUCQzc0A3XUKu2aqvcMA6isADDuQCtsHvc2Z296Q7rEA92IJEYoAFkGiT/2RHeKJXEAh3zYqBd9DZdRSrhWBEcyJLfIA6dAI1/2g3r4A5/6nv7RQVUIArbcKiK2q7NYKLhYAvOEA3uuqjf0AozQAW80AqfIAqguo/ZMA+TIAqiMA8sSYvf4A68QAEH0AfgOok9ygQFQABl0KHh53uuyQ28UAAbUABUcIg00qwdAUrZuiVK+Eow1mUnVLITwf4PeAp+2eAOgGCx5UqT3+AMFMAG0TCp9dqzPNuzxxANc+Cry1CpzkCzk8id5aqd25Cr5Wqh84q0H9gNadYMINAK83CfbmWmiChB32J9KItg9nAGDcWyD5Fs+pCn4ncKvFezfyp+0cAGDbAL1XCiPXu3PrsMt/B465Ciiuqqbhu4sZmntMicH4qw6CAQACYP/FAPyTckIrsRaDpw1NIpzXUTmEhj1OoR7nCwILgOiyANMxm4rxmAn7ACZbCudou3rIuoRVsNZYACjbAOwNCulyq1pJu7pLsN59CYA1GU/emfXJsTqveJ30IPjmBudzUKMKVO+HeY3rmF2nkKp/Cvuv4LftwQnzZQBLOwrq37vc0ADNlwCxbABrK6upS6Dde7vqTrnevAciaEEic4vNoYe94iKWT1Enhkmj/hsgCrDKO7vuIKCw/wCcBgqODbusewDWyAAbAgqXfLouw7wUurmZubIJF7EUqBCxYILuRgJheMOYETYWxRD7gLs9KQBvlAuDUrfs3ABhogDAicwHjrDNQACz6AAvFQu3h7qRT8w0mbENNwRfNbhDuBifw7LPAmTtNEHI6wKyA7FPXgDnUYqtlwCuubDfXQCijABfXgtzQMtNEgDGwQAqKADgfMuiaahUDcxt2HYtHSOGC4E9ABjuyiFpPji3xDKF+nQMGLHP6H2bZvmw29QK6kyw2StwI9AAvbgL5hTKnH4A6tgAFscAzUwK6tuwz+18YUPA7c4A5aKxCs8sebSL8icRMW5S6paL9p5B9BoIRtoVXowMLSKA1KoAwnvIX8RgkEQAk7+8g+CwzbwAQhsAtFS8OGGr2czL5S5QqLZyQZbBEpgzB/4005FCex3H3tO8tum7DOwAQxcMmODMyIaqi30MWNTM7VEA7LnLu9N34OcThzbGZCYxb7Yg/k0E+CpE0lSMrnuA6A276LUL3h+g3xgAg9QAbuwMPkrKjHzAYmQAkL3dDOIMjtvLTnAMfQYw+ucIP1ZcohwQygQLnsIgvnFUU9Uv45ZceYFk2651ALnUDLAJhnRdADtsAN40zOwDAOttAAZTCvOZ3Ay8AN81DFF02L3eAOK3QSazTPOcGU6wLV6EMbXVAMrFwU6EDB2ZAN+5jUpRAApXCjDe2ukdwDISDDP0vOkgoMc9CBuXzR8lmD9MC8Tk0ST6ww6zcTUdQ4VrAhNegTPCfTbjsO2QAHW/2a60ANVBADk4rJY1200fAJGMAF48DQY30MrRAAGFAAzuC5R/2B8BwR1nfSH23EiSegCVOCZustSmgJl3Qh9mEQEfIkJK0WDpQRd+rZ7IsOvaAM0osO7nAJKFAG7iCjY22vsEAGKKAK4JDGx30M2YACs/6JAgegbJ99j+Og0Tm3HawHzSDtEZRB2pXnYfJhCrJTQS/jdRFVE9rRa1+CvFYAD+kiC64dOa5xBkpSTqG2FJAWD8r8w/EQCYf9f9UwD9FQBEYwC98Q1I98DOGwCSHQBtFQDY7d0MsADPUQAhoeAupp1O1M2KBMEcHjz6Vs2iFBGV3g0Z1hZ08SytFxDyA81SnBDsLjPro2DV8BYTh+D9uUTG8DD4aBzymBL2eAC7jgBMVg3qhx2w7hsoJ9veeAB/HA1YDqD4ZwAL6c1s+9DT4QAsZ93ImqycEwniEwACGQDbq9zL/nkRZBYEUchrIXwunnD9sgCmXQCvv1uNdBVP7a81L+UDeirHVO4AtuwAygcyGokxbKkT2T4Qt1ZQqCgUYLkWz14LRqDrruQOWJ3QPqKQwVTtHO0Aoa0AfnwOBhfKnNYAcNAAvLAHxU/NbX+84YgS4IyazfzRHQ4VWekWaTUAAHQJYH0Ah6jBlatGtfQxm4MAr9E0/ecAY3VhA2YRII9dd5oSIFAUPfIc95RFr6MMuwrrvoUAvKoJ3uQHGGcA3CAOaIasnLQAU98AnNre4oig6TUARFYKnHAAzL8LCcvA3F6othtaB1/RFaZLz14Q+2kG7DiQGbnQvihR028aZ7LBBi4Q+JVDXEdyAep5Vo0XzsMDGayyET+uQUrP4MqOAPzYADXAAL4PDp5CwM7tAIqLsN0eDywNzqXBADs4ui5bwM/w3E7qvngHxdWxLN2+0LJH0ZaRYCTzqdw4kCy3orNTfs66IPreIG9OAE3fOQR2wNsnBwJ2LC1w2z+ZAGtHAAolC0Nn/qx6AOPdADzq3uFx4NI/qun17RJB+4AcgR8PBRSRwjRv8QiFTrlaEWJtD0RdoAhwnxobGEJUMbyi4Ly3QwJJ4QxAEP5BAE9KAM2WCh130O15ANW0AD3iv3kioKBICFln3cNgyeuxANQe0MnDyNOpcjcq6Lt74R7CBDlU/PGoD4wxkCC7D4CYVEC/n4auEL1hAE02Ag1v5uIVoFYJFQC5HwDdLAzWrOm32gAWxwCrwg78fwDbZABSsQDNQg1mB+DOcgCjMgBeu69s1QDd8equig3RlhRQJV9LmvEabgDatNEgBRz5+PEBQMGsTQw59Afw0dPoQYUeJEihUtXsTozx45Rxk9fgQZUuRIkiVNOqTX8IybYuwa2jsZE6I7cNniZet1qlO2deC+gQMaVOhQokWp4bsWgkuwb4NiOWsWVepUqlWjOjsW7w+KP86iLbMaVmyzY8vcFekxCdyxsVGjjSsaV65NfTIh+rLkr65dvn39ZuQ2hAe3vxCZ0dtbWHFFfOAGoDgYgkA1mIstn9R3z1rKy509f/5enNmfKSubQYPUd27oOJydTmVD91PubKKEuawQFc2Zs1io2v5eBizajCK3ov1GHnUZNVgYyuxO3qwbbdrfxuFbDC/xae7d/QUefDkRu3veF8+LtiBEAwwUcvnjZ16+w3vwEnGen1//53venMCzxp/y9nMovnhkG+qndmqRppNw4KKOtnWaKaKIbcpqxhlUPInOKmeAEaaBPr4Bq0OxlokGGDYasKWZEpFbhpsIi/ppHcUyc0MWAnfkCzzCFvPGF3u24/GkUsoQpSEii/RsmmKYhDLKj4rxxgp24NGLyXpimw02nBZZJ5tvEJwRnG7Q4eaRBiYZhy3luJEDGDejw/6qGl6KWIGXa+Y0saplqvkkhDLQcdFEZ7YpM6hv0BFoSZn08YaZLKWk9CIfLYNHSEcrvUgf7BrCZ1NO+2LHpVFPZdIel7qQ5cko1wmHzLism6eWbLrwp51sEq3GH2dWoOKYal68CphBnCG2reDWmcOEPqpBtk+rwNrGhyI+CQdDE5eRlbpv3IFvMZhMQbVchy5dbBRyzWV3R1Pyajde7lJi5gRvTGUSHwjLXPSbbPA4JZ9s9p2tGnzakKCVY6KlKkY5zOFzrGWcoSaEJTKEStqqjokGFhGPoSbZ6FD0acbrLkvpBI3k5RTdwvSBpzKWZ+YOngFpxrkve+Cxwg29RP41z8Buy8wGn1MWOWfX2cYZx5kQmAh5rGO4UcIckRveTc1N9tTYw2XYkGCXqLvO8JxvVJvt20lv9EdSmXMu0uW/7nHFVbjv/ssaUIbEu++Q9IFUZX+w1HId6xIlyqZ8sJhHzKK6MXyOFQyJBxhlnfEEleNO/KaV25qJZmGylVtmG1GIw4eXq7c1pI9SuCTqbOyAlgmmLsih3e/T5O7rHnpAwVd34Uka7+3hj0fJH1AswTJ372gaGvGawFHmlFrwUTooau7ZZQYmqgkdRmA8sTqsY9DpgwJDwil0dLIOLQKFVi7MuOuJmTiggQNg6UbWbOZxnl2YF0DkLYZ3fqEHfv4KuECLBI+BwtMHTJxgCgKeBjvRk55QmNYJLAgsKL3awgN2oRsTyUESm5vKMo6xDQ1QgRdfcV+GjrEOSjTAEByLoYuOgYH2NIAS20DQN9ZxM8+QYxrGeyBoDmiXjZwhiU+UiBuOCEW/qQpXomGS4QiWwbgMLB9KGBg41nGMELDhHJYzVOjqdxVnTIIClKhGxOwXjVwwAQUuWl2fdjMLFDTAAgcQRf9KZiPu+MIUSKSiZZb4KHpIKpFUvNcj4VaXYvgiZkQkkD3MtkUuziob0uhFNqjxhxBMYhvAWGN0qhEGOcnwG6pgQg+EkQ05SmtizrhEDMpwjjyaaGHHmIMGDP7hgx7MwR0/WVSjQAOTjkjyM4uMSX1G4cwn4sIbmKSmuWACilF4g0nxWcc4MNjJolxDGZEgwhecQSL7mSMMcQSGOtiwgj+gYxm9jM7CuLEEHLSiTTkExjpgEQIqRIMa6jALUNTGnbpYwpvZvAw0MTONdUG0gL7AxdoseqrytIQcUKqH2ciZqGv4gw0t6A3D7BcL4bCQCSTM4TGy0QoBNAJF+MynOp5AAV6I7p7VEOKn5qU8jW60LxI1CaTsZlTheeNJFWTqfGznDwXqR2gjLZM4qSEANmTDGUrgRi07NDUlNEIAsLhnDjMUjfiBBafJgcosLLAFakTsGPMwD0xUVv7VqMoEqSQRSDGeJFSPCBWbGGGIgP6WGMJmZDtQXVuoQiJUwIXkZvhobEbIQa7E9hVKgMOFExE5n3qIk5NYJUo33BGOMqAAFt8oCzfSEIv29ekY5/iEGXrADWSl0pbN2AYiesCFeQDjrcC5xi7IgIJPnEN0yolGNuoRH+/oaLSeLclfRSKQb0giFpMtDzdE0avMVkQf8aGGKMCxMo/sRRilqMt0C9sQW8CiIYelSHnqAQtbKOkjAnFHK3jh34zwQyDrEMUxCJwRmCyDD+NYSHmxqx96+Ay/QTMcaiNEDX98wgdbgJablmEOOIDuuFK55zjYwJVaxOnEYjnGN3bBhP4izAK2MfwQOE5HhmrUlSrVAAdc/CHhywDvwhMWiXZD4g4q8BADLXBGZy+CDiO0RwM4WAe4PPINH1hZIVq+CD/0wYv2UEADbFiIR/jRihC0OQSGkCxG4kMJDSBEFESOSF3sEJkBF1ggUzjICjjsEXC1wMlMICSSCaSPYjjiut3BTj1KpuG09cqOt6CGn6KRhkjAMDlsSUYLgVFXYEDMt2PdRiMK0IhoeHp0y+BFPIqgAVhkOoXrVJSUP+MIVyi6R4L5kV3uUQ8mLCAyBfiGpy5SD3fMQALHxoeuJVKPdRwEIQrwB14tgo97HCMAZaaAAsrAXvPqYxYCKAgFQnAAQ/4odtv8mIQADoIBAYiishYRSBkKMG8BAEPaERFIEZ6NEAFQ498QwSu6DyKBFrjjyL7+zEcdSSB+rGM6lJbL2cCxjAd0FY1+othTkrOMa8yhALDw9DFeADGN9dYHWP54DJmjAWPG3EXV2GKiPUPJAEHcr8Dmi6dsIW8JFF0CIZBAmhmjj0ns2+hHb4HSKZJvYz8dA0xwN0USjnSjY6AAzRiyRfAaAMgcBAUFiMfDF+KOAHC96CEogNQngtmtYuDpIcC2tilSl1YogAJWD0G2LVKeGbj92QX4RNh93p26BKIYkBXXpDFOo3hEY0W2iOOplRMJOLg6LMvIRilQwAR3GP5XKsfIx8Ne7CKDIiIEfThlTLMBjDLg5hqoRHE0tiHOBHGnkhNffHaBbheB9ODpRadAC9Yrdn+05/gUwEBRI4JXBdj96X+Xe0Swk42qXx/rR65LKsB9EAvMQfFzN6n1jU6BBSQeaIRXP/ILAIxl+8Mgzy/AOg7ukGr/3ep5D77TqAtfWCr5wAdwmrzZ6AZ/mIQQ+AOQwSlqQAVUsJpTA4twoIK0uLEUigZJkASx8hBhOYYeoAJRGKOYYpYeKIMemxjlcAackwswu4xtSgnIC8BzGT6ZwKv7uz4MoD/mO4D4ezYM2IaLwKsCEEIzOz+JqAtY6L71m4HsgwjsMATos/42g/i+iiiPMuBB5JMANMOz4vO/9VMA96sIgViBMUQ+BTiKi4iGgng+ALzBzigPSwiEHZkHkUrA2LmGeaiQVuCGDnEGDvKxhqEGWwiBLYDAaVkGCowOYEg1EaEGlRqdYwAHJoiBXFgjZImGIMs4nbsMKXq0ObSUHIwJmKACv7u+EBjFNOsBNRxCKUS45oNF7BtFgXC69XOAcVO7Y2APa8MAG1rCPPMHQ3i26zuAVpC+hygPJujCw2sG2hGIFqjFAnCH/dMLfHC+60s6vSPFxUgJvvIOfMiwPSQKceIFC2CDcVg9suCGRRibqziGPiAAVOolrFCCWMApkImBEFAHtf7KEGHgBQH4g21IltKRPLmQr8vwBsL5xpFQMo+oh2rYNwdYQyOQxYfAB3uABQIYQwo4gHHDsyHTB0TwyK4rAEVYxoeYRlUcuAW4RiP0hzors/bYAMFjvn3zv7+LPm+cCIEQgG0Mtyj0Se3Dh28Iyp0sAIzExi08gI8MgGO4t4f8i7pwA0mxQZmID0kbJ0rbBnegBjPQgNKxuU9bBiwglmpohRl4gnBIq9/IhzDgrauZmGqwAwlAhHVQnRhaIWDgghDYhTjiQIXyFi0bSZKgJFcAPqr8iIh0LHywAwEYuADogXpQuywpA8k0iADAOmwEFX+gAs2UAAEgg4ycQnDAAP6PBEnEG0aJCBVn0B8eyp/+yp0mPACdLAANiDKMKI9PKAC/owB00z/EKkYBAE4BwIGFoK6KwCsmCID746rWZMyYqItEWDDvqLiLM0dF4bBAYQODbMer+BM8KJ9tqIIZUIR/ghHMyRwUkoqAggUcYAJhyDz3+ZB1QAQaWEGVmhgZKZNgM03EhIk7nM4kM0W+cAYjoAASEAVwqaA7CYEZaIWi3LZS6IGEsK8Kigc7aAFBiYaV1D5/cIc5QAEUYINvAFGIqAtwYIMQaAE7kMFO8YdrKAMX/QMK3Tt/OIYmmwFEOEyIqIdWaAEFMIIfLNC/KAYdyUrMyLaupLQz8Qcc6P4B3IuhTgCEbciFBbCDXBiWDkGRD9EWGVqHFv2E3QhPPwmoGeiBWejS3OuG05oVfHiEFZicFCWJHCC3IwWMAxU2fMAGbLBTibiZywzRz0SNAcEs8LqvH4WIexiQemBUjfyUe4AsSm2IeoCqUIGHJ/FMPRWJYpiG+eAHdIDTybMOdPgEditEvnSGMsAAW/A8ExmEY5kKYeiBHgifHNoNW5CAOdjAqagGtCmTc+CFGIA+QPILcngSQvXUhnDMj9CHeuiFWiAJe5gHTBWJCJoHe4hUjayHeWDWKawHSB2Je7jWbmXGa7XBb8VWkWiQrGvWpGobAjWPeeC97VQUf7iFOf4IAa94rlcTryNIA3Mwva7hBk84lg8RBRvKlhz6E1tgAgwIhlyVCmdQDScdCnQ4hjSkt0voC3rwBWtwoHitiGeFVnJYTJIlkEgJVJW9CFwgl3CViU8pR3wFij4MlDnYBkrsmrJQByoIgQSDA244U+WYmjAwBxRYgl3gGvdRoXPoAwzoA90okd7aPYwViv7Bhy0QgAPIn5KyC3KwBnhx2VIMj8LQDOssW3fxhZZdW2JsG0jzh3i4V5v9hiJcgSLIBfesRHRohV4FnWOIBZEjG2BwByIQgDyYxKJNoeWgASbAtPpBFmo4HMThhnnYhfK7hkmgBAiTiY56qrctWT61i/4IClXR1Q9v4BvUBQlmEK3ugB2b9Yl18M1GaFOH5cJdSKtGxINqIJsPQYEiWIdBCNPfXYaFNYR4lIrsQRym2YMC4IZz6IZs6AYcHQkrUF3WpQiT9QhVoVft9Q5QmAaZRV14cBvuqAesxaptmAdpMIMZEMEYqstJ8B4SqVoN0Zw+QZFmaJZJWIdlcApPIFr7qYZc2AITCAZaoopOVF+FGgd3gIUeeAJ/iAZkEqKTgAl2UNslPVLudSx6GAWHBF/usAR2aMUR9gdyGAXEAA19qFl87R9/aAT9HCPGFc9WYwIf+IQanooPAYSC/TRwaIUeWAJ/XQ5nkAN91DyJAQZ0cP49NmgHbektbihVueCGdTgHLnCtGSUYdMjKylqeGkThiPDgjLiHjxpj7jBhDo5XwDGFh+qMurDXBu6kM1GHFeiBmwIo5iCAOfCKq+GGTjuxGSqDA5iFDKEKDdHHf/2NhVmHECgCXlDe5ajcrOIGfciFNTkGd9DOoGDfctWLIKASt33bMu4UeLiDtk3jz6CHLjDhVWZCdoBjzxBW2R2HcxCFADhkG06hb1gCDfBdiaEGJRBM4CAjNlDeqeAGVmLktrgGO/ChZHaGTk6Un6CCFbDY6NkGUPQIepgGn5lKWHZW0uWLUhHnzjDnc36IzEjSz5gHOu6kb5gHYUCLbXgfp/4tHURoATNYB2HAp4khhSV2EW4IBlIyBNjSPGGhhiMABuGQmnNoBSqYAd14rlvSw0QZB3TghRkYtzFJm26FGX84g2nABfItZXK2C1BVZ8vwBlkIZ3GGiTvIU7+IL4uTXZ/4Bnz4gx4oyLesRIPMQFVoE4F2QTzIh1r6kG34BAleJxAkHW4YBElAhZA5SGHpA674hvbprWu46AgZB26Q5y1YAfsCKtrohnjoZn9gByvAhYxi43g1ZYzABUt4aSpi17eOElzQkZXOkhK2DOxwh7rFV7BGB6W9BYMEqHEohQPw41iVGFTAgkBsGF6ohxotBd89rj/xBGMxUxRzhnBYAf4mEI4XwQpq4CIOswV2W4cXpg07tQeYcAMrOF28bta4vgh7EEcoig9lEx5yQOOVLo87POGSiF27jYdPIIBN2Di1+pMnaABwoFJBDKuqiIZgKIAt0FhpKYs4QYWMQZFHGABR8C1ugecgWwcmCIFtAOtE+eSLoIcTSCC+lgjbtghUJg9nWgYqaIAQeATCQNdKqQvFlG9/cIR7GO5srYfdu+nqXYYimAF1OAanHplD+YQGsAN0KEvxma3NOeIanZ/o9tJmoAaplgRukIZZiKXATSHTlh7riIdJWIFxY3HE4WaImIZEkGl6OPAxpm+LcAWbSSR9mIc+yJ/2OIAQ6JW70f4HesAF2j5SdjAF7fCL2UGHN5Xdb1jADLSDtcAxkAGGHmCC15HwsfiQSCiLGTKEIqCCPyZqZcm0QaiFKSgCNuBh6ApW6eGGeogGLigC+/LPDFqSyiiGMwhdxjjnHq+IxzPpnGE21bS2FZDOeKmPilppZd1xx/KHcCpv6TnrjS2DXEBs+wSGb/gEDLADqv1dOQkddfDwxeVL3XCAFggDZxhgtwKyKo6LapiHVDgAREAHm+4k/dM2vrGGOxiFR4vWcVVnRKcIQ4JXBhKIOTC2K0SBXVByI5LvewjZwkCHmwaKcegG34QFniUbSyyCEJjEHJKtQViGAyCDZB6da+iDAP6AhWuAaqm2nHXC9VzXhyKwgXbYd29Bh/tamS4whQKEiK3EDm7QgzhLY2afCHoo9CQSiBmwgCtUtyTJmbqYhmla6SWXhVmWiXhAlJv+lmMoAhzIFl52kRd8BAmwA71keRSBhjywAEAccxj5E1ggjnaQE2FxhkHIHGUQIrjA2LNxh0t4vRnd9KDohmsoggA4AF7gByVYa4KfvnWAhmRghCtggQuggwAVXYgnRuGGonxrAIzf4pyB7WdfZXu4B7WNiUgDdrvN6ToIAUpoWL4cB1h4gh6ABfrhS3SYhA1IhGegWLKZmG1ogxmYhGLGI24IJTyohU6oiQNxnLjgBpJngv4nmAV/gMF4pt5UEAAPeIEC0IJTcAkWlohV8AIZGAEW0IEa8ALlhGWyV1F/mIZQdXJUqYetSjeDWA+xR5XMOF11rsPcHomeaPpEueJ1kIBPv91KPAd+RQQ9xmdw+ENUSAN4NxSOAQYUKIPXIu0/ORtxyoZswAJpOAX9EyePFopeWdg+cAfW5hd/GYd1EAdqAIMNsIAUAAgHtfz500fwIEJ/1dbRqaGjxg9oCSdSrGjxIsaMGjdy7OixIrchPLh99GiQmauCJVeybHlR3z02ByjQxNCAmkGXOncitObG3z2eQocSLYrRoKxpPPWNA+f0KdSoUqdSffptXR8Noqg16/7q9SvYsGKXHesxA9gysWrXfo3WCsMWcMucOWNr9+tcQwVaRRP7beq3bLUAAarVVOq6Jw0UVm0cdVw2wUq2CQhBwoEqlRfx+dPx0HMlo6JHk24ZcmRpf/b8JdKc+vXKOT1Q9GjRLSjs1wYd+aOX+zdw0fr0pcTNUt88bo6XLx9Xrx66eLOK9JCb9u7dZdGWTcJgZ94x7NiXUQvGpkE0aseOcVMCrK74sORh9eixbtn1ZnOpHX6cDRw66+QDyCkESqNMZKI0IIo/3HwzzjcRRgjOhP89OM456wS4jjTZ9FJLL0qsA8geNGxTCy7xAGVRTqGw8JAgOnjhzzzB2Xijaf4ikVRaUI6QgyOQCHHmTzTnEDRkkEIFZcmKSTr5ZELeyOKaSf5A1w1zWVLVTTR22CEKGyGIsk548a3lzDHVBDODEbxkA4yZa5GFDiUhsMHVdWRF0lec+h2zDhM99LEOWl2hGc02EDYWYTbQrVMLKbh4goMRg+ACTifrZOOPO/jEg884Km7jj4Ad1nJqLZ1E0gsgysTizyNVFEKIPLxRmVCNw6jBggpeJDPMEDTyAyWxSZ62I4/etFZscDndyuxKvrRmHLTVvhbUT6uVZNA6FGr5LVTcxBNCAweEwEQz1OTXJ1i8YCUBJdE4sy67XaXFDQ49zEINfF4BE0s19N4FzP43sGjABjDcrLvMNeD0t9xf4JD0CAafZKPMIvhgocwpWJySxil4SBMJFvNUkGoayqzay4HSgNONkUYUQYopphBEbUL41OOPID/UoEIo7vijhkTWGg3bsbDpQ45vRzt9NDzOPj01UeRI7RE+24C79VPX4GOuTZTMW69Y0dRXTZlk47VMKwcY0i9ex6QRC9zZVcOGBraM/ZUzWnNdzTz1PehUNheOM0904PRy8eL1ZLjOOBBG/JQxBzwiy0BXU6SPOUPUABE3+gz7LNWls5R0avewE0jTprsO5B3kaPs67RwFZYVqJbkzONdbc1NPA8Ev0MreZJPnjCEmzOEOL2qDVf4NMGWYEMw2aYcFjPV3XdNKD0WcU2hb6Eye5VXowPJAI/5QYxVkjAY2YWDtRzahU1dRY4YG7bRm9WY0sqJCDXigBysZhB87qx0COYK610zDFwl8YGl8UQwIUrAiluAfRzgzj3Uop3dci1ArmFCEPqjLeccYxyeYgIM0HaNu9QLGNhqxAjaE4xgC84ozPIEKF4alhXerWPVwOJduKOpb17hHWXoQjXh00INW8cckKLCJYuDCgZpDyM6SoQYVsEANv6BRBcNokQWmhhzWuKIY08gReHhDjWFkBzs+srvxORFc6/gGN/iktj/NgQKfkNcN+0QWf7SgB7C4RiBxiIpF6P6HLcfYhjAswAZeBAwv2+Cdlr5xDX/MIQS7GIf46uiUbmyjHjNYgznQ0IsfvaRGMdIB0AiCRjdCkIypOYPsaKlLjNyDHF1o4y4TaAVvzE4jdBQl18ZRDbWhqRoUYELxnKefa1BiAYYo4XjAp5Y0cQEDxAOLdo6ZpXFQYwZFQMd/kEmhc9hCAo0wxRlyh5F64IMHOrAnPpAUTDHakjQGwQXp9qlLcsBDoLXTBztwdpF4YFKdHkwkW5YRsD9gYBJBlGYzjlEwNqDgGNHIHluogQcbqoUaqpgBE7bRSHs5oxoPy1I3ODgJC1zCH9d4ae+uEg02RIAdpuhFb15iJUao4P4hjPCHigzKTx39xhpTUqhS02iQaYwiqq8DBTygiqtzYMmhTnwQD9mCpm2ooghP4MVFnZeWbfxhBmTgRjTvEg1UaLMZaHJGNKiAg0+4Q5vhLKKWfrcMswKuiU7sxiY/QYMp+AMLBCnmRHJ1BRn0KhlWGp1Va8lU2CwJoLPMbAJXgzvIgtZaxQiEPT5LKm95VZTbgCg4hTGPPmDgESqFrXjmEg2UwgKbZqoGIGKxLmBkAxYSYEM0toMXw36LGv74QwNasY5ziNN368CHDXqAD1BYo42z1Adn4jAEFrCAFerwhz5Li8B++tMfzAioehFoNdXGd2r2aK1DI4RbljZDAv5FAAdIjeeMVgTgE3atlzOAAaevfIMKC4Be3ZyR02yMawvo8OpVRFGAW2TjDt/YCDeg8DkoIKu+D2TvaFbjBtLWdzj0ZZZBuqAPFpsYSqMABYt2h1+vKswu2nHGHBpgsQVLkzzAKMIMthFXM80VD+ppRjU+gYIygIPI+mkpYMm3jnAgIgTpq4Y6v1EPXpQhBtlIRCeA8l1/iOMVHajBEOhAo/TW+HUoTjFr4BvVAx6EzkdrDY3r7KTuVmQe1N2xV1XqSHdQAgdbSFcLi3wMdLChB2Ug037lZA4scKN6bJjBJNARaXtF40HVrcomRaHXdbiDuR68xjomsQM2IGNZgf5eUTKuwAIZeIEkNRJ0Au8sHHu4QikmrtEnqMAELqyjSU+DRzHo8WJgB4cZxk7IHU+N6N7psYfbKMMMLqHkTNulhWYrQi6+QW6xJkxBbIDywhq2tW84N0yqqEeWPcgNkrRgDWHwh83gq4+d0cEzKnjFzqZNbWsJezS+eG99OUOFBlDAAiFYQPoUHiRfVHXhzCoGxPscDm1vO5lcEct7JPCEJRtvG5sQACUQiVH9aCMIVNBAC+GmHQ+eIxwS4EJyHMqNe7x8EvIwBT0wWxHOcOOeNYDCPOqhdI/bebPBSQQ9bi1QRBAAAzSxuAR28bR72AOgVC9WMa6ND3cQsSoS+v7W2xH9DXDKyw4NgAWZZk6eXJhFHeuZeUs/sYEy9DU/c3EpyaXSjVZD1xatxinXFi8NLvQA2qdw9uaGWlQdYAKMZ1+v1YHjDRxrdZ/1WAcKvE4TmjSAC0/TxzRk0brPA2lnp8AGQebB2i3hI+qQB0yN7ki+a+ybOd84x7xs+CdRoIAKLQywfsg9l3O0AQUkhH6f0tSMJywhEdx4j1fIQ0S/BVYfZa0CN4Iuyr/4gw1LQAQnlJHmWerMH7TQdRefYSXagx41wVlSUIGW43Td6rGeEfgZsayGI2gc/xlFjRgBCZDAn5BcN9RDGRTBFLgUxLiDIfjALrBdc5xD7+FDQ/5RxTZQl5Ktwwz0ACWom1qQxXbg1l3dQghQQSu4YHZgX1cAwzlQwgxxAx7QDQ7d1LyRhB2EwCfUA/3U0TW02gzswSD81M1YxJDEAQ/8DC3UCAI24NM03GiQnRNgnlLZwzosgOqtXgNUwdHshjcwIBcKhUEYggO8QAocwDlcQ9xFxTfgAxtIgAQcABvkm1SgwyQQgARQACW4g2N8Qzd8wkzMwDqQH1V8gzvQVggYgp0oml30AfHA1lwoSCtU0njQRSItwzZQAQUoF1pchzP83iLuWwNsQTy44rytgygAADekgTfM3tL5wzM8hAxcgdC8Yf+V2G8YhBmV1j3EQw9QXP4BHpfTsMM0ABMxAodBTMICWAAFFACNuNg8uAM4hqPQRMEC+GEPXFLkpKM6QkgzeJ0fUsE9rOM5zCM9blIApJ4CfILwVcU6fEIDhEAICAAvJBh+FKRBzkUr/GEBlMHJjcV2zIC5CIAAoA128IIRVNQy4cV2tEIDtEGV4ZUSkIG8XMOhfUtMocMcHAA3uAOYIZP99AATyIMs4IM9lJ5KrAMmqIAMDMFR8Vk1uo4XfuE0MIkbVhAvEIAFYAAGkAsKfJi1GIQvWNFPAkc9zAMOHEADsMH+YcQfCIADCEAZaMQ8MMFMKEAfTAQ+uNhwCE0AhAAGHACDxMM8zCVd1qU/UP5BCFjcAQiDM1CDX/plcgVmNHDDJBQABUgADgiDvNAFY6LJPLDBCkzCDBwiBrQAOgjMemQmN4SAAlCAAIgC9uDHI+2CD/RAKwQRL4SAAyhACFRDSZJPNfjDJzhaPVxDV9XRg9RDHfTAI0zDKumZQfwCFACQGvjaVNJOUJLGjZXWsMzCCgQAAQwAE8RmUeaGK1jCPVTnca6EQYxDGAwCUEzdRPADPlxCEbCBT17ENfSABJSB1PGSP5RBAAgABtQDfcWDuRTAOYIDPc5jU4QDgIZDrNGnA/RAN3zDNiRoglJDcpjAFhyDP1QGBaBACDRIN1wohkZGZKxkCNDEAdjBvv5VgzPYwx+EwCVEAzhQQzVswyQIwAs4gARIl0mCAz5sQRHogiKqE6xxQwuwQTyggT/EkUXwwz3sTBw4xMHJknhup9Mk52jogzdkZ2khxzrwwlw+m7QxqdOsXXq+xHMk1Ua4xa9lxD3gw3niYXNcgxEUgAN8wjno4TzYnSq86b4JAAUEgDvIW1V0Az6sAAVggAAIQ+GsJHUsw5s+hS12Jk3IKPmcQzNoABe8pij9ziYQwDCggeyRqUKwwA8Eo+dpKVCG3o2cATGpV1X2nk06iT2ww0+AKnBYQsDZjsY9h8IV6cBxxK8lXv3kqlWAwzoIA5IpxF+Mw+IhgvocamN0Q/42mMUnHN86lIIJaGVLWkU9GAIJtIAd+IOuXkU19MGDsR0tZpI7LMMStIA/wMFjCZU/xMGL1MArfKqrlo6TisZqBII8TanT+MYdiGG8kgahwZhH7Mw+Lsc2EF/EXMU6HCGD6CmFwBoRGh9BjIM7UAMTJBlLTsU11AMuwEOrMUc3+AMsoAAbQM5tHhY4xGcMDII8pBm/HsStroKuqYAeSESX9muTiuqNTAMopJbNEgVSeFbPpsY0WEMF2UO4UgU3rEM0SEAfHEM8SGKvZhK9+UMjaAUoVdc3iMMiKEPidUNs0sASiII+LKETcQM+7IIJ7AE4WIKRYIQGHakM6AArHP5J0Morzv6fP6RE3SqJP2TL3pIGLpgdBR2tVFzDbDXAJ0nqV60DkiEoLWYtyxAsmTSAIaCD4npQTDVCAywDOuxrRhjEL37OFdTs3xrNvH6hPdwBNZbuStDDHZAd64qGNVwbBHXLt5AJdWirrkLMOlSDKjTAHyhEuH5DPqQBZLidppzHQrha7zTFeiKBPzhBG/EiRayDIGxeKMBr7Jru3eIIKNBDqm5vQugDPRQb9YqvTniDK/DsA+EDP5RsVSTtOswBDhgriorSOJQSL2yBDfwOw7qdO0TC7kHFN8TmJ1iahbpkOMQpDXgCMrBsoKWlPxjDEMiADKjBec3DkqIvsf6cLmnQgy9Yg5RyMEbYA7QJKQnzBBuJ0cBSBU7AwgpQwUomCjI5FyJUDOTsLoAszlQkij88QQ/wgo4hE+CMgwUUAroOROkZEEGowUPUwC9whnam8Gt48Bf6w2hRcUX4RhhqsVDgktaVDj7Arx62HwU4AzcgK27GpgZQgWuCSzbgQw7gQzpZxTrYAsa1nTptgz6UQQigAj8wSapmUdzyGnptsBc7iRWPhm/EUyIjhEHEUxg/ckawwyRTDVMAhq/mAgaYQT04iEuuwzpU7SQ0yNa0z/hcxTHQljOsAxl70Drw3RLIQy9MyWcZxD1skWd80XtSMrMscorBgywQLSWzg/4rFMMI+/JKJAI8XPLT8MM8wG83zAM1+MEMpIJNqVPo2MIX9MBKMu9ynAPGuEM6fcM8TEIRcAE+XG7kbRkb7IAuIEMkrEbpgZc/rEIFy6w5bKUyFwswC4d7yV74BlM+4QjZSWU/r8QoFAcFGRBUKNM67AIKtAGDgjO4MCI+YOIkGJoOR4U7bO1f2GY79ECbKGFHx289JIMCrMIiyIJnzdLOmIMa1AALDMG7ko45YIIEJ3Rw/DNpuEHUxFc92AOtBgc9wEMX8HRLHHUa3aHWONccPEAwoIMgftA3hIMJFIE70DDPIQiCusMuDEAiEm6WpF8bNEA85ECQYgR5+sMrAP6jGpDuQfzicyg1cPg0vfpDIPzIFCfQNcBCbxlEX3PEcPTtvdq17fhDEAQgBblDeohaLAprKH/DJxDALqifE7lDq9wRXn7yK8/bOBBKDLCBLGAD0YavOVyvDvxA9o5pRTxDDdR1LyL2UOA1vdqDNThQZs2DIQzAARzAALBBbOYGM0iQntH2REBlQVXQOpiBADTAHMQAg6wPMn3sLPQAFWxDx9bROEjD5fWBD2jl/2KuO4wDG/gAJaxsTW7GsPyCDHyOGhBEL1sEbMv2KyTDM7yCzuzMK3wRcuuEbRuFQXjDKIiwUnFGHxyA6r0lEyiNU03QQP+3LPlDVZ0v7ahC1/5pozM8rY62XxE8gu4iEzdIQy+IEC+MrTpFwzyIwgqkjxasw2cxsT94ATAWzUbUNz2xqzmIAwvEAUGsggz4t4SfTvdCSTFM0GCXji00gDYW4AGUQmogxZQMeUf4hlo789FcAgFU3Awcgxp7UAHPAwYUQWifdFVkwzoogwB8gsOYOVXE5hZUqBZ4AwpbxM6EgsExgmtrRH2vgxOjl/2xwLsOwQAlOW0HOGlMQ1JjeQKJwpYXIAUcwCbwiD0kgm5TOWEHKaMbjTPMQFKyge7hZoY0QgGI3bSu3zr0gAKQQ1XPGzi4Ayw0QBnwg2PNWP/4+Xv/AC8jMkU8gwyYwxUES/6NGOkVQMEPaC+mK1CRPwlu2OtxU1BlQ3qkg3hptOqmS/hq7GuEP801NII+urlVbNIs+MASqAMekfWiGEmXGYIpOAO4R8XQVYMYnAUnbIpNDskq/AAA0YGKyLVFJIMOXEENXMGtghEPqACnJPtKIPoVMwMohNwuzUKTF2ABfAJpkEMiyAJMKDxH2IM3tCoEOQs3oLtUsF8U9IAqlDcyjUMaX8MKcEEuyEMt1LETVUM9lAIK+EE24EI2FLadN4gaWPAQ0MKEf8QvCgI31ICcSV08QIPP+Li/czxFMHxqgAI7WLgYMYEzfl0RbKFL2ANuL7fUb8SMEbMYDTFoR8MPhv6SiNdDrH97L+BBqJetPrQBBZwDMyzLRTDxKzgEC8gZoK8EbNdIJQQ5UvkDCwjCL0Bx4I99RlB9afiI2dMSZxQBuVCcfQi4P5CDsjy74xcEPNwB7UIQNJu5TolCoIJgKG+DEVCATWVDO3RCPrw7fyrZAYTlCUzhkHKKF7yIrvOz4MvAlRo7QQQ7QdD4nn8+SCx7sQTFx1/9LiHbF5TBWUY9S3iDIzjQtSs8lDLD9j/lhRnR2aIAE6zzZ1/0h/VBiwvrN8TDImQDyT8Fy7daESyBHMizatQzQdDC5+iAj18WQPgTOJBgQYMCof2oV2/evB96Xv145i+evyFq/PE7uP6RY0ePH0GGFDmSZEmTHLkN4cHtZEuX/u4JNMXOnr2XN3F2rEfQZs6BMf05ignUZ1GjR5EmJTiNGVGlTzeu+waOalWrVr9R8/fEhyh836ZeFTtWLDd9zWxQEVavG9VvvSK5C0uWbjR/iGj8kVVsHUyO/Ob5a+dFhowf0Pzhw4ezHmJ8+vxVM8dt4mJ/5qAFhrqZc+ekKVd69gm5Czl/PUWnVhqTXRd/kFXHlj3b4x1vqGn75FeP7lVu57Y1YPNNam/jVsdVm2cohKhv58J+y1cr3NzjVcHOYzKjljVZrz0GrmR4BCPNsTXmVr/+KWiW7Efa9HbGL3z7HSHLcnX6fv5//ziZ8ea/l84xjjhu+jhgl3i4ue66cb65pgcc1AHrqmywyCcbB9065xxbHigEmV58CUmdK2qo4YdqEktvwBdhVM+9GDfqyRGBnKJxtnsgc4Qef37UUUgaY3ItyCE9kousb7qpp5QemKiHm7Y4pOsbdNxhrpHIrAOnnk6y2ZDDbeahhgohaiEHEI1gO8iyUHhgQQZBArMMyTvxzGnGPPWhhx034AEyT9GCDKQYenIcVFHayLkDvEUJ4qfLDuuhIgRh5pm0SquucYeaEMpwxp1rxsrmFGWqZOmTDWgBxBRlXmvToJ2giUMFFrygJTE7Ie3V14L2VJQdXOhL9FecbP46wxLcjm12M3bYefTXdcTq5pxjDhCFmuI2JYulPiywxUOyzqllkWw0Fesbbuopoohj3BDUo51CkUEHGegQiFdn+c0z2EFtsieQaWTttyV2zgjY4IWNsimQ745djNQOr5mDAmCg63bJdZphAgV/rkkXnG+kOWec466shpcGKCFkHdMKnnWeIQyrgaWdGM5ZyH8HvccmR7wxTeeQICOHnUSAZHbopePzBxehf73HnXsgnEeVHp7wBx2Rq+zGnW3+COESf6jpjbhOlDmZrnG4mScaJmxwx5RsEP0LtlVY0KGGfO+px0WmAYeP50UFpI8epQO3BzI3vJkm8MdH6rNEZ/55mcOZeajwoRQuNRarGnx2ieGLyxu0EpxaOqlH5G+c8aePFX4ZBRfHw4sMRRWuQCxmyHmPbXBIyUnkO8V5t6mYO8g5svflN5LFDXp2v1MffGw5AIMQNGBjna0799yfPzTghRturUSnlm/UHgt9f0zY4hsnrIk2eoF2YuQHHVTApE7m+Vft90VtYo0uwEN5TLvHn0BRn/4tkCDR6lVgKBCCCM7AH6Xr3lW2YQEuuINKBkJHLwCRKfWdYx2faMAkppGGWHVEI+aAQook0iIGzhAq/wOgQALhCmbgyFdEwdlA9BGTYjAjXvKi4QJBcSPEIWknKLBACBpABRFecGTrWP7H6z4BMg7NAxAaGss2/AGLOWAAH1bISAELEhN84E0GPNCDvo4YR6TYEFIBnMYdooXGOwVmG5MQRkYW0yeBdIEpp5mfHAEXE1mYQlp80ocwVgAAJljoguOghjt2MQMqcMMdFjxONiJRi5GJJRv4MAQGJkEOXOzLILvxxzDUwAIVeGEY/qgHKxGZy5PQ8VfMsIYTBLJEGrnDHz0wwfVisAt5dcEaO9TlDNnhDWf2ah0bSl/3tLIHCdhiHRDiUDimg66rRMgdIfhCNmQBsdoxogY6YAEm4PhMebaElz0UiBW8UQz+IAkyGpAgBQCKAWhMwxvA3Oc8mRfEdEatHvrg2v5xxqGOZZhgCWR76DizgYdToOMq40CHKA7QCn5gQSCHtKU7aHa/myGUpSWpp68E6Q8rMEVowuxPGTAAUJ0eoBAkBZJJW8o0WdDuV93r1DjagILNUeOa13mLMqzDLmUsoQjp7IQhN8KPxdQjFCrQgQ7e2NC/BZWsG3lp1IxHDkAxEib6AOpsNEKFBug0oA2wpbHKGrg+BYIceMWT6rrFklKg4A+X6yCHsuGOXtSCWiO7hj/YsAQw8AMQwexIRapxBRngrjJ59SxKVPIepsEGWr44A9RsSpu+FWGudMVAAc7xw8/2rkR+ld5hr6McNqDgFtS6qLrqgYdIiLAt7lhBEf7YUQwHzssfcRhCDUZAi77gcraePSu/gGIPbzDTF3pcDzvkYYTW0jUE65BtdRPnjxwYEVJKus45GtSAKvjjt2SJRySycbLnjKMUATDHq6DmkWq8UAZXMEcj0Vvd6/YriAJhBjnOoA9TWONIMXnrSyBjkwx7Axf06AI2wNCAnAb0AIa4cIL7ZRN1QgowF93GOtRRhhAAg2wXlEYnzvfYXFDBDKaghwqZa45V3AoKb3QrilG8YIM1GEjwcEUi7uEEekzTrfa4h21HwqMfocZxAwQFLgQkkD4EQKcC2MJ5kBw4RcoizJDCR8boohVR4IAN11iHJ7ulWMZ+wx9iKMInLP5hinEctJU7GcYVVCADNSAGzWmerZKXFq1pFMMbQYCHJQgIxCvrwyY8OnJBIMNpQ/qsTTUJhD8gwGFr+GO5ApmHM7azhFk02tGj9cc0AuUrd1gpsUXg7ToKdMFs1AIL7eAGNzCAiUXIYtUfCYwg7KWCSsSz1goObRwz7Jcpf/kOpnAFPKZBDz/9dH72QBQ7xB0/WTAjCOy4QzECFRMNz2ogDa1275xwmweSZRzXWgEbakzFcWRDGfgARyoKkIxERCu1iXGHvXQwBFue+N7PhDTgIINGZhQjEbhghhXskYhRkMMR1iiGL4pB6UTQAxSBoEcQpiELR8yuzQL50SEXcv7LikPOJglEMJ6ayo14UGMOB2jGPKrR1G6NQxqnkMUyUNADf3RiHYf7y1YZ4VUdMMIf86DuzoN6cci5lckFsQc8dmgKckwD5QT9Trhzbfa2gl2XkHGFNdiqqBaHRVUhMAQ6yNc96UTCH1QowjMIcQ59eqQiv7iCLBedGLqjV+yTt/wCIWMNx1G8PxJjklaK0INd+JaKVMnGHSIRgj30ouSh5gg+dhKHr7KAFoHh/OXjWHnc7355lnDE7e2j1Wi0ghvUaMAcAFv6KtaiDwSIhinwQOiN4OMZP0gRFIj5dd7PU/fb9/7SMs5I78IIMmwIAAFQoIFj3KMayp/KOnoBgv4pyNTmHYmJODAhpyFw3d7fL2v3/S8Alwx66CNP0KEBQiAECoAamMT9xoEe1uAFWsEbagFRbGsnWAHRWIAOJoLWBJD7ru0DRbB/IGMaCApPMigBCQAYJoaKxicaQuAF5sEN3CHuNkIfdoIO2kkGXoHaRhChAPAHhXBR7mHjgI82IAMRJIgLuqG+jGMd7IACOEEZkKbh6kEc8kYHeGDihrClgrALwfBO3GDjfm5A7OQenJAsssFqskABkAEQ9Gn8wGMe9EAF2ikUui4MWeoL9VA19MEcQoGY+tAjesJRiEdH8IFHdq17fgMfymAHwkAe4MCyXs8fXuGFRoADFWgQdf6JDzmxM+rhF2zmE/HDHv4EMrDMP4ItsEDnAOzAF0wBHnjEIxajGlJEBn7B9kjR4kJwF2MkFEcxI3zRICAD5uTwPzhq6dChDTSgmlxOJHbCC7BvGOXJE6kRKYDxPerhFeaBFkTLH6AhGSSvD3+EHk6t4eBjMdDHQdAHH1QBBebAGzrBEEfCMnTuGhHJGvGxKLJxJ4ZAIXQAIwTCHXQAD49w9xRnGiyBEmlE6ZakQLigB2YBGU4h20iiHlJxH5dHHzWSMURxIngACgQiGVRAHP2BFlRgHs5LDzPuDAQEeogEt8Yi6YyvD9aBH66qIx2NI3XSJUJRBrjhB67AlvDBHf5YoAfxQQ/UoP9I8ciCQPr+Qx+OA4y4oAHAyBH06SB7Uo54citNoh6GIQsxAjYw4QrqgSB1hRqhBx5MQRZabUACDzu+YR5EAR79oRfuQCMy0iuBsBf5kjbAsjyGYQRYATySYQS4IRl0oC80shjuLlDQUTbqYRvKwh3WAQeoQBvu4BsWsgz/8v/88jNjAyyB0h8EoQZYRCC84BW8IA50Eh70wRLYYdWuDBmjyh9KQQKgoRNMYfH2UjSrMTSBUzSyER/aAV/sTRB04AomYit9YRqQ5hhnw72oghvY4ADU6x6kczi9UDi5kzPA8gfeAxo6ABoewx+gQOJ+sw+BwkcSIf555m49Qu0sz2EXQgAMkKETfmQ9v7MTvbM/n0If3CEZ/KbrEpMiLKIHtVIIRc3U2KEz5202FsMW2qANGqEKSEAOkCEbSgpAKe8/PVQ1VqED8pAvYeNHQCFF+eMQY8MZUOAAHIAEXsAbai5ErS00bFQyuUEGaM8zt9LK1Msf9mMTOwMybgGgSMABRCFHkawrmbQjilIPfkExvjOI5AMXEgEeRoHVgMhHScLCCMIaTE4OFKABHqABaOxJPxRH1VRCmRI4e8I0AsHj4mXxwOPKPM0zyU7UtmwgCMrberNEiKEIqOAYvLRNQTA0FGNRGbVRHfVRITVSJXVSKbVSLfVSMf41UzV1Uzm1Uxm1fpYyI95UNF0vWuDNFQLBG+IFcaAHUWqiJg4iWoLgHtwg5awBahbDHfYHUT8rJcRzVzw1WIV1WIm1WI31WI81MNTAMH7BltTUeHAhEEwhEVyhGGTBHnChQwlCmrzDDfThBGQB06CSV9NsR3+ADvQgXdV1Xdm1Xd31XeE1XuV1Xum1Xu31XvE1X/V1X/m1XemAEbQw0QShGlhC+/6S1AoCWkaBHUDBDcjBCXzBESTWEorBEuhhP45kyz6NXNOMH8xBE0ZABUZgZEm2ZE32ZFE2ZVV2ZVm2ZV32ZWE2ZmV2Zmm2Zm0WZS+gnX6ABzqgPMbRRt2KR/74U97KjmPvDTIKoRKUdmmZtmmd9mmhNmqldmqptmqt9mqxNmu1dmu5tmuflhFWQQd+QAV+ABO4QR3Gqk1DzfX2FDwW1GjLClnldm7ptm7t9m4fNTA0K3dgD279Fgz3NHAFd3AJt3AN93ARN3EVd3EZt3Ed93EhN3IRNyYY4Y0SY1T/NnM1dzhhYyE293NBdzjPM3RJt3RN93RRN3VVd3VZt3Vd93VhN3Zld3Zpt3Zt93ZxN3d1d3d5t3d993eBN3iFd3iJt+5cLyfeFsNIInntY2NvcDaYV1ujEicKxnlHQySiFziz1yW29yZ2p3tjozYFZUHbBHwJgj/t71BxwkdnNgM3wNQjkhdW8aND6wbUunQj6ld6T8J8wQMmWyJIMhZ/a8Smbg57/0M7k6JPFnSJmJfiIlN5Q4J9DXiCRcPcTEJ+1SMgAAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRoxb16bspcKUre6CsTXM0LZGrQMUs3aFnpZisQN4ceZ3maxpTgUv1IV3Ltq3bt3Djyp1Lty5SpfbOFpvmxF4gXPZMsbPGzh68hIXJSZVqydudYriKEbRnt7Lly5gza97MubPbs/5AFeui2Jq/wxfzsmPnzwk8K9YO21Trubbt27hz697NGyc9a8UCNaYskDJoimpNUlabqPVJer2jS59Ovbr16z5p+ytWbFQxUJP9/mnvSBm6QFmyEtHzhRa7+/fw48ufr3mpv8GJIt+Dbk+pzpu0MQOPKYlMI9Bx9CWo4IIMNuigQ2rR0x0o5hGllloG5sCfeA926OGHIIaIGz2RgecPcUjdQxkolhg4nogwxijjjDTiZCBV3vhj01vmnWGPIzUGKeSQRBbJITzTgAKPaTrKpQ9l7OASyGH0vGjklVhmqSVvN8lCTyAcWjkXOcy4ceCWaKap5ppzsXPPHawhaBdxbrgiJ5t45qnnnhrZl6QlOt5p15P+WMKMKe3xqeiijDaaqBvTSCboZcQVKJmjmGaqaZa+MCNLorepJRU5/W1q6qmoPqiWN8zkKJ01/omUmuqstNY63U32yGKKi9HRdoY1rtoq7LDEWuZfMcw0x+F0lMniS2FiFivttNT2RFtjn0YbXbJnVuvtt+CC5As8dyj7HnQ5BBvuuuy2uxBtvhRjRXHxQScLLk26q+++4VIGT52B1DQpdZQZeiK/CCcsLG13WCMlignmeMbBCldscabwsOOINzKpmyBlo5h08cgk72mKL+SQYwp4A7tnjz2QilyydEqllVd/L59Y88w8UwSdPjj644hsHprYcs914fWkrA8plxbSUBdEqDdusGZPIohqS59aVmQb9WZKx7RdpI74kt8ZyW51hjfcqWRPTRB/jTRlOZzJZIg3kWOg/txxHceO3t7gUmZYU1Y9TWw1DXTYNN6EVRUuiXwnS5TweKw139+qRQ4u4OUM690gSmgJa5ivRVl5/rjCDla+yIIs6RfRY8+4Yk0zryM5i3d06Qtvx93BlN1BY2S8G1Uqa07Qg/ZguUu9LEMXHgRdMevB6QZqOhdfrT3swDMx9jB7E7eId5jin/ZAQReIrsWc/vxINzHFTDGObFzl5eifyo4po7wfE/4Pogw58vcfgQgIF1VDFIfGl5P+BAge+WEcbQBIQD2Jih1BoNeBVge6GKllFBSqYEjOJwtruEEfJtIZBUdCKIH4whuGckVxVijCLdnHF66QTJUGAh0zCelC/v2jYQ0XwpSbOMEfMOlWW2izkn8p8HxDtCBzVvM+tcBJiA1SCyhkGMWM0IMefOHY++iilH/54otd3JMsAjNGDjGDgTTK2O7S6DzWuOFqGqSUWlxhDUesRDxYpOOHjBMc1lhJLYEozFDwgQ/PrC2QQ2TKyeLVlM4QJ16+YA/FBDkkmviDf09ECHqIUg8lZiZ4eeEkEbdjDVBwr41gO40/Ttg/WKoSbwI5QzFypLWXDCUe86BBD+ZRyvr4gxkDhCQB1zM5ON7GMLIAhZtuSSN7eKMLthyINTMolHn44wAhCMEB/OFNzVCmatQ0CDtg6JJs2oYpuNifO9OZIP80h1cJ/rkJvpyJE33w4xgNwEAIGkBOzjSLnoD0RyK8kUzrlGcazGDGJhG6IOiQQxYSnSd0hKdMjDTSH2wYAAYoQNBy1gceo7AGP0X4pIxNLHrXoY09LPGpVFKUPvv5pHrmebC6VagnpVzHA9gwiyIUARg8pUukqEk3Q9KHMifwx09vCh/KQECqK2xfRy9yk09oYBngAMc60FHM2piiGFAcolpQqqyVVseTjhiFx6h6HW+s7ERzDA0z0pqTRmaDCT7Yxji+AQ5ucMOknmHGNKY6RMXWtEHEkeYO6TodzX1Jqm4tiFd8co9G9mEGffBHNQgb1sH646OcuYmZGKsl1FLqMBOT/lkW1TK6iVJ2NxjyEkXW2RNv4iMEVPjGOroR1uKC4xtbNV1r8oUmbsRjM+lJKn1AAaTb8kZUrlCgRJ5EFZ984gDOOK5xxzsO26gFdjb0ByPUcFrL3IMciXhsiIgzL/RatzbMYMcRmQsRfZCDPcl1SCmFwQQUzIMb2xjveM9xm3swo7pbaiQPoNDeuojMh5lVkMhMMcAM3xcuNwyERCcbEbUwg4sk+WgdZjAJf5BWweN1R6hwsbct/eIHOljFQdShDtcaRZ+JaKiMznvXvH54Led1FqgkQpkjergipdxGCNpQDXcQF8bjFS4/bGOPaWBPS3GQgQzoIDV80IEO9fDx/lBuMgoUD8l7tj1yXWQBDxkmV5EkKaUoCmCMF2MZxvXYcm3MxtciceMKNagBFLhBEH2YGc2MRAqQ8CykUn1KzhaWqqecapGbWMLOI1kHcOvxDT//2bjdeC6XFxtgBv1CBTrQwQhe0ehH14M23KjHPNrhjna0Qx2IxYk3RtEcI3doRWXBdN8EUiBASXch8ADUkyFSTDb04BP+4IapT23ccah5M0Ca9of0UQ81DOEHP/CCGvAxQVvrwxw6qIQ7vMACMStaDxUeSUxa9OwQmViHym4LZbzxF+gYGyE3kWirC+JNYaxgC9ywMrdPvQ1dlzW12BR3h+phjiuY49wfF0cx/h19Zne4QwWMEM86zCGOdbziAua4+Aj9AV81nZW/AScKyAB18IWUT7Yd6UMDeLGObU+cvN8Qz7cxw0ss4SMe3BgCDxhtjoGQnA7cYEHK1WJxaFzAGAtXyE3u8Kmeg4gpGdR4zj/SQ390UCP0aPpG/OkPYeCgCqI1+tGLK1xDhKAI0ejM2JtXpC1HfeqCRouZvaACGfyiwviYBw8wsZO2qmlHEF77TwjFjNb1GyKjmKZGitkGFMDCH9fYO7fd8YkFDDQG8TC7UdTSnc+D6PCMrrUgLjAMOvCgGmfyAoX7CUFZAB1NT7LGHUil+Z4QZ31C9gguLKH2g3jTGQ14xDLm/nFl1WP5G/PoQwgoEAIAfEPmlBKa7T+E+zLTIQ7zEMcIKtHeNcjAH+j3iKjEtqfYrL/5yOEPsjAx1fcQC1dKexACx3AO3nd03NADDUABC8AG/5cinzRAWdJ+tXZmpfQLvOcPlTAC7cAN5sByIvFFRyR7M9Jk9ICBAEgS1mAKn0JiIOEIKYQR3xADPoB6eteA3eAOzqAKAnAJ1WACFOgZNxFCGSh1uWd1+KAGalBManABXicD9WZv+Kd/AgEmrLUm06NwLxgSBoJhLAQPl2YRpYQPXBACtuAP1NCAf8YN+LAMMfAEwJZ0BeUZ/uVsWKKBBUEN1IBrv2AOv2AMhmiI/o8XdgMBOe20KDQBCtoVhiVRMNNgXyNkD8zQhQ7hTbsgAX0gXD3ofeNADf5ABiEAC+twDoT1DdsQbPVBDxnVh0zoEInHQrCoKezQPiooiQORN2ChiGK3OhjxBCEADoIFh9+3DdWAAWYADuOQZetQG/ewOgXoIH5oIWAEJpriCPHEixkxDQikI8CYEDQRi/0lELnQAxT4hsioYMIFDl6Fbew4XtuwdEzngkZyjULBFM1RjUXCFDLkj813E3UWQpoIEoaReQLmD+4wByZwetzQjgrGaMbQA8N0DhEJY+Cnh/ZQDPhoaLNoFJDYiJlCE9MgPN4YEQXjDSYyjgqxKjW2/on+4AwL0AjbsA4JJpF8tw3+sAVs6A7PeGp46BkssoRTZxQpc5COeA9zlZIvqQ/swHM/0SWXIpNMsALREJQ6aVzn4AwHgAjbEIp8t4tHQZYMoo9BQV1mmSXUVYE5R2TyxVkC+GUJ8VGqEAIUqG1bGVbf4A7R8AcYwAvokJF7Z1aJ4JLvgZbZ8SO0YmIStZa3RRx3YFc4xxNsNk/ehA5c4AO84IZ7GVbdgA+w0ANioA7xIJbkBZlCwQ5egpjYoZg8AZWW8JGo8l9V6ZTh4QptZko+QRkvpRDeJAoh0AfzUHSf+Q3X4A9r2Ar4kA2oqWAy1hlLopryAZs7cRNZYyvk/iB3uGlP1HMUNIE/TBACeVdqDbht3zAO1dAAc1AP4gWHwuUZ01A11Akf1qkT7JBxIHZa9tgbN+EKgOKaqkQOriAT9TkRaiEOL8ANCEIbvJB99VAN43AMwuAMxjlx54CRFypc4zAHIZAL61ANfLcO8QCUe9cNxCFENFRoHkGDRHKfOEGgcWYU/MAUH8WiveI7TmkfzkKXRHELB5ACBIBtA8EPQVUFSwAL+MAN4/AJClAALXAM6FBqVOqO47AMZUAFn3BgwIcIRrAE+HAO3dcN/vAJk4AI0cCA3PaOrUCK+WcQasForohwA9GfBFFMb3oQ9bAI63Cg7gGj8AOLLnoU/qUEC4D1BGzwXHa6G/mVkuaRQdxZFEzQAClwAGXQp2ohY6UQAoiADkU3DuMwAwoggWTgD+eADqiaoaqaoayoAQewAAuwDN+AD0zQA7NAauAQDroqVrdAAQVQADPAillGpaWGDtHQAxiwAqKgdIzUrM5aUCuAA0bgD6qWEPzgTWzABqTYEN70Ccs6pwghGeBKI4AaEtMIKW/RSIYQgRogARQwA8D3Hk4gPpLIHKOglEGBBAogAQpABdRQatSAD9F6DM6wDAZ7DMcwfhKwAEjQDgZrsM4QDRI7sc4gDAVAARQgAa2QDAfQB9xADdWwDSKrjNUQD32AsRQQANtwDd1A/qyreg6DxQYHQFJbwBCU0QIZ+65ZmBClhKwSIAFk1RBI8LOluqgmCwItMA9+eh3l+hE3oUlw4Qzkh7IkxQa3hh2UgSgCKUjJYQ2JJFVtUQ/tgAMSsAIW6qmpcACUsA7C0Axu2wzO4AyXMLM4EAxwG7fO8LZ6ewzNkLMLUAYHkAzOwLcPW7jVYAg/KwEHgLCFuwwI+7gEawYz2wBLMA6niqqYm7mMtgIoS57rYHKgS0zzMLpzOFK+Gg3ukGbOurr+IAqjSgECQKTkWA/AIAApQAIUsLND0rQfQQ5yFRdUEIFUiwEDELQx5Q93YFOap1LN0UJ34Q7I6Q9hUA/ZMA/R/lAEMxAM0UCwetsMy7ANosAGedu95Ou2xwAMdcC5ZVANBVu+5rsObTADPbALcau3eFuw0YAOZVAE4tQAhrAOa4oOdhAAv2oI0DuyYfkNzllqgiW8AQAM3NAN1zDBFEzBTCoKC4CxC9AKqfiy47AOn0uidhCkGKABuiskvMsR/xmpbFEGwouyxBsNedob0DEvWxtFb+MPZ0AqAloR8yCmxyUOncBobDADhkAN7Vu+y+AM1eC+5Ou46MAEVCAK27AMTuy2gxsOthCxTnwM39AKM0AFvNAK3grAE1e9kyAKosB9a+oOvEABHfuef2a5TFAABFAGWsl3x2We3MALBbAB/gVABZVJriHZE6PUwxjhwlRLARgQAOf3HkxZS8o2cCeEyBPBDxd6XOsACNXQA0XAt1ccyk+8DLxgAWwQDeMrylh8xccQDXOwwUuMt3nMbaq6d99wDtvApHsHqhE7yzDWDaXUDCDQCvOwqCKSwiUhQXKxrqaLsQ0wA+6wtH3DDpKMafZwBjVlyQ+xZfrgZ8JVDZKwAYbwDaCsyqG8DNHAC2zQALtQDeVszk5csLcwA0+wDgart8f4mTBmWM8ZViJ7DaH4DeggEIwkD0ZaiyhcyDvhu8fHFqXEBQSAARLdAAVwDPPRKUd2E6zpbDfcERJXXN0wD87ABDRgC+QMz1fs/rjboAgrwAZV/M4o3b1LXA1lgAKNsA7AINNZqc88TXHnUK0CwafSbB3IjBGPSJtuoQ/u8AgUQAAH0APJOR/04AiiZ12jgFIJBZ7kNFh8R4p/oAGUIAmoEA0x7b4Euw02UAS3UMVl7b7AkA23YMoQDNNYnJM9fdelJVwyZ0IocSVFnRFURBdbBrpALR+SclsvgUf4+hOYPKzxQAFUELfHEAup3NZuuwzUIAoH8AnAkMSWvbfbwAYYAAv1677LIKJ4jdcbeRAdTR9/XRFKgQsKORf1UNv3gNDwQQ5m0tp8Ezig5tB5zKGPoAGf8A3AsAzAEAbc8NneSw22wAYUwAue/s3ccEsNsOADKBAPOZ3S0ZDad81gCHGSJPmiCo0TrLnYw0J7+JROxOEIuzLIQ1EP7kCY4AB8u0AFK7ANg1uwx+AJzP29n4ACX1AP90zdzdDKwsAGISAK6NDZoTy4YendW5me3hQtjWOUTegbheKWm6IWk8PhckMoMqhAQ11i5KSKfAd860wJ36C3jhsL1FDWg7sM7bACPQAL20DXbT247tAKGMAGx0ANVqzKmC3hEjkOEWenrFLi1fHaE3ETPuUuvmmJdOQfQcCUbdFIU2pc6RkOGlAG0TDkb4vcSkDZMX0M62AIBEAJqGzgWAwM2zCeu7DEKF2wXG3kcJhZrnCG/vlY3iORMgjzN/SUQ3GS5ek5otzwCQ2wCftNvs6AxCiN2cCAvUKu4zu+DLeAAlyQ45ZdDeGA57YsVg9xOBieE2pBFUyeJ/ZADhwlSPDkkaleYjiplaE5C0wABMGQDWLevc4wCJ5A1qJssNXwWW2A027uvXnLBiZACe6w3TuO4qAulOdQ4dBjD64QkyB5lDnBDKDQ0OwiC24WRT1SOWzRSPEA7cel4iuACPa867yOCoPg7uUb5J3cA7bADZZe1sAwDrbQAGUQsflO5IdF39GOau6wQiexRqWuE4PaLg1PQLTRBcVA5UaBDuMlwfhwAFuAxPJOvggb7NTwCQNQCtx7/uzH4A49EAIVWtk77gzAMAcY6cvRPsMHQRNXvfA44d4KMw1Tos3g0jhWsCEv6RPX6s2eOgcHYAvbq8qDGwbH0PHeGw0EFgN5C/UxvcTR8AkYwAXj4OzMfQytEAAYUADO0H0FH40SMY3hnu0ZPkLwALUJ45E+Xy1MaQmadCH2AadYlRdiohYOlBH1MFzGBXylwARFsA0HDs/OEAuxoMRMjAgtUAbu8PRu7sWwQAYooArg4ODUfQzZgALjhwLjRPDeTeGfR3uR2OfaPhKUsfadQW5z3xamIDsV9DIxmFM1oR1x9yVTbQXwkC6yYPeR4xpnoCT7ZHVL0XPxcOfgQFz+/mAGM3AJbI3S1TAIwPDOFVsNu9ADTDALJ1354bAJUxYN1WD1kQ4M9RBO4TQD2Ybn45AN7mDMrI28sU4dTv4QlNEF2N4ZI2cP8q8bAHHPjT97/gweRJhQ4UKGDR0+hBhR4kSKFS1ebKjvHjx2dwh+9GdtmqxAllyNvIeLnT1v9ujBsweT3EZc/s7gwuWkmKmXBu3p0zeR37pv4IyC+3bOWYgyy5w1gxpV6tSpzuRQOxb12Lg+BxpFe0pV7Nipx7b5CHFsGVm2Y5dRC9ZgS4gBIbJ1O5pX716+fY1+24YPH8aDKwkfRpxYcURuQ3hwW/xQn72CkS0TDrpNVJlWkPld/gYdOuE0eqJNn0ad2nJQeP5yHPRGj5wTX26YWUMYdLK/0hp9F/yZ0J4vUI5MmWJHr/TDz/W4jct7bpudA62crW3rNtogatijCesxw58w7NmzO3PWSkOfc1nNZ18WrZmdBrCWbZvn7rlf/v2PFl0nsdJeq0w1Aw98qLHHUivtDH/uQRC1evyZpIADJDjAK3+CirBDhoICBTcPRySxRIsKwmWUUfyZhhlvzoDHkoTuoRGoDSEKyh4aCzTIG0uKAWUaEUEyaDB90PkGur/qgQUFLr657r2xnEElFqeqmSMEQ7IRRsq2jumOih4+AQcYL9laBp1JiigCvWWOAWYZpPyj/pOvbdaJ50bM/JFxORP/DE1ByE4DkRxAIwvKlgNCoIACDDAoIJd6Bjs0QhoT0bNSTTdFjUNHivEnEHbcYIeZGTlUDCgbN2SnGHYclPGjoNYZpyijurnGHyqKaKS9M8eKxRN1bMFhC1jAKe/XqYRxp5EVytgmmmSVjeo+LmJoZJ1msLuu1jq/BafWdT5LLKhpWuM03YsE7dQfX+5BVV2KJgwBg0bvpQAFfyaU9zQIZcm0X4EHjkgfF92gxwl24EF3RHaskeUOQ+2pR8mjuFlnGQrKcEZaasviJoxVDhDFqWmpfVOdHnoAJqyPpVoGmGgOYKOZKKs6x1Zw+wvMMnhO/uCNYKETYpfQUIkcOiN/TLAX3xAa8GeepC2DEBRvpsZ6YA5VlKULnx4ssTJ4yAmCHmWyGQe6b5Dsg4BjqnHvZaicgVMKHLY5GWX0RCEAkW3MlDsqZ6hh44Bdoom7qp39+ybAeBO7mses+y36NHZcAXtyhYLSoOl7Q1ggas0RC8obUEdH3UQbfbEmiGmmeVByEvUZTLBIaonkG2nMYbKHItwhL/BtB58DAzZOATzwY76xhYoVgsHK5ZePOUeUGaTAO++oqrF48bzWlvrxw4K6wxrZU6+0ctNM8Ub80SdEC19He9gXfYzsIccR+/c/cLkz3HDV1zblDnBkIx7Z6EUn/jpBjyqgQBR4k97HgFGmEGyBF9kYRCwi+Cu6xeMPKPhDx7R3JrW4owg9mAQ4EjeWaHTPewWMh/sS4wsZyZB/JFKfaJhBDxtODh/gGAAKPkeAapzvhg7RiDX8dEQmpgpCprCCEuWlj3PkZRx3igUJwHCLaoyQhO6gggPB4oxYoEJuMYvGDIpwC/kIb1vUgAUGOLZBsuDlhUgZB6VEA48eNhFBOQxNItgBoRvOIxoLeJq9cuEPcvnxIRtJxBIdOUmK3MMbToAHbgipqc/EQ2dIWUc02ICBZJACGJFAT+CikQvfbUMtNkOFJ17mDGAIowF9+IYXvRQfYLChAbbYlpSW/sGNFwLINBpxA8AoWSJAXsYbvghOE0tRBlEYpI/LZNHpsLnNhhTDG1ZYWMAqVQ8kfQ8dt0DBFs5hs2OgAhCIW4YuxXIMuhlCApMYR9yGKQdgrPA8b+NFEVbAi2v4E2XV+ART0BFMLzljG4tb24SuiRF9eMNUE+XmZZrpM2hidGq0Owg+PDpJdrAjoyf1iUm7IAttpmsd4dDZNbLhDybMoBXfcI8zuIGKY2AhH3Dz0jHWsYsVUOFt06LlIG5mnpitYw4m6EM1lvqytZylCJ8IxyvPtIxP0ukb7mDkaQpiCpRGaKORGQVZy7pWU8RqrcssDTNO4A2TqgsfLrwGP2BB/oA+gCVZJgMGHDrBDYOKBRjhIEMDWkHPk+3THIWlilOoEYIl2IyOyjpGNGBxSzDJUztzolMeGeQPoBnxrRp1zKBEow+YnLas8Nika5kYEysMZFWc9Icnv0cUM4QgGFOdyjLM0QlAAJcq6MlFCJjQHbYcgxtKMIcuneKMRzRgEwV1o82WwQYJ7IK5s8xZFfnzVXGCJiimMq1sF3NWxdzDFS1VLyWtAYpoxtd+QPEG0PzRsE3VgyhKKso9GmEEJqwjTl+qhjmwwI14iuUt222BIeKRPLc4wxOoaKNbvtEKLqygGYi77C7vY70i4IMXnm3LMgzRh1KUcy9JMVJqCtIF/nKM1L4UYS9i7kEPUNT1xpQUZHp/LLTSgMISrbHxgQioM27oZ1eiUOF74hmLU6DiscvaMAqoUA3EMRUYnojuWI6Bjj5QwBDhYKjc6LmNIqCgFa4MsZSdwYQDNOAAsOhGV7MxjyQf5sh9HnKCUosa5QSapIbW3G6cYApAp2YwXW0yLAaACJOdCT2RWHB5gEEPKhgOLGeSgyQyXC2zaIAKvPBY4Oi2Dko0wBCZdeObHkWBBlBiGzprXGxVQ45pCBnRFcnxYfDnoF830Q29LnbS7MEOr2lEXf/NC8aWsIJtxDnFOlUCPT8MixCw4RwUfk/HtC0V9EyCApQAqvDikwsm/qBgWyg+jzNmgYIGWIBkeZ5TgDrkC1P4OtmMGfRq6WGqf9+QrgXXmj+K4QuY6PpQ9sgZgM8Rj0uggA3hOPDH3gSMWABjF3UIwST+Zu2xVCMM/WTnN1TBhB4IIxuQ3SV6LhGDMpwD3l+i2xw0YAgf9GAO7ihKRMsrVn/oD+GICTZhNrKio9sPF95weNMBVRBQjOJqnPoMrWw1jmq8lAlNEIWB3XiMWgCCCF9oRi41bo4wwA0Y6mDDCv6AjgYrT6dLwEEr8ulGYKyD21SIBjXUsQwCIgWsHQqKJa4u9XUFPDT6mIZaGT86X9Sk0ZO/DIRcZah01SNneamGP0pxgDlI/vXmbOm7GVpQRuNutePR2IYGmPDpsWejFQJoRHxOT5ZjqOMJFOCFtuNZjcbpMUJFHjrmHZJ0ippO+Zpz/uWfr5gZBw23us0LOsbhAw3MI+OqjhkB2JANZyiBsGp+biMEYJ/dk6VjbV5L+8XylFlYYAtYKYvURlQQoEly+st3vMuYkGIAFeOTCD2KOojgl8yhiNsywILJDYtAFZGyCD26rYnYJMG4CHIgqwX8PwQBClxwEH+LkIpJklsZh3owBAwwhG+LNWpwBi6wKZwapjSIhTQjoXP4BDPoAW64DpKDj2bYBkToAS7wPvkLrmvYBTJAgU9oD5eJj2yoh0bqEIAh/sEPZL6KmJBvkIRYqEAI4QZRCL0HRKLPoAYoQxocMQhhKIWgmMKJoBRbgAWDSECGgBAmsQVrmhd/cIdW4AU9lAh+mJB1EIVjAESJKIhl4INx2Bcy/MDToIeBqMMRGYpP4oZ7MAYfYAJYUDvhAQZ3QIRikSr3EC44+LDTi6dxYAMQqgV+QkKt+IZdYIIimAWcEh5aAgfrIYNqwD+pqIZwAQd/cMTU6LFJfMSDyEKKAKNHwYAWcAYPhAh0MAJ70QAcWIfDk4hv8AFqpB9sZA594IWm0QA2qJ9AbIUQQEctocCI+AxK0IBGwQBRGMbN8Qc7+Jw/DMQJmYJ7WQFqUEZ//mgBZiywYzQQfSgGR7hC1RiMegCtcKmGefgEC5gE7VK3T2y3W6CGyIqGNIiEVDOPrEgGUwMGrACGxwJC3tuGRiiAr/BIquKFeCgCDYCFjIQZZ8A1aDwQR8AcgoSIZIyIe6gHJliAzymAbwCph6gHd5gBCSBKfMDJhfAv+cEABRCdh8CHeziGAPAcBSiDNFwIoJgFAWAUCgiBAzAEBmwIfOCHSRCAe8EAARCFC2SICSmDAnBLAQCGp1SICSkCpoRHAaAGvUwIqRHLe5GAFnAHY+RJxDAUgquUobAjoxiHa1iHIsCB77rFZrCFBxg/cKuWwdEgKbuGOSgAWEi1Y3iB/itTlh/0AWv0zJeBIw34OXBbBu7RC307kKAohiFZzIbwScnAB1toSwkgTgkIAQkox7TUhwqhgOI0zhZIzrn0hzIYSufEACZAy4UgzOMsTkhpBmF8CKkJACG6FxQogHhQzKQMAO4kzhAogOhcCMGgBgHAAOcMAarUP6VpBQVozu4MgapsCAiZAfZkygL4BPDszdUIlWKQvsuwh4YEEFG4JbFTt2rgBTOgAFuAmxBbhkiAg5Z0sGwoBRRgAnf4vmPIBzkIs10KPEQIgT74m9oDhjJYAVG4hpapFtjzlu/pkIVzzARdiN90iAnpAeckTgpogWAMT3+wFyN1lOQ7CKlR/oD6dM7mhM+EGIxsqM4qxc5JDIpU8Jx7sYA5QFCGGIxRctIFONAeElAqLU4KKABgUEB/aBQnLYB1EMyDWIc6tU78BNLFCApfgC8SUUt/WAe94IZ4UMoigAVXGrtzMIQQQITOyg5qQAUrcwoHa4ZwEJNJsEWYiQZJkASYq4q3OYYeoIKwI1UpEao56IEy4MVMHR7b7AtvRA2q640/DdIATAyp4dM3xQA5XdIDcNMjxYBtgAipKYBiZUoNKNOv9AdY2NI3FY88HQxDcBT5oYAudQgIKYNfZUoJIMd5JNL+fFMFWNMh9YcVMNcjVQBqmEeDiAZGcVI/1dXDgBBLCARN/pmHz7sYf8iSr2i9X3kTbvCdzmioTsCCXoQZarCFCqLUyFoGK5MSYEjJW4LBV5SKYwAHJoiBXJCe64gGYOyLxkGQY0vIYxTShigIKuDPKg0BXytXJ8WAKx1MJm3XcPXKhJgQu6xSB+hKxTyGBghTDHC1Z6VHe2pXCqgOKAUbJgBXOG2GPpqQFshZOHWHPN0QfGjSKkXO/LxXjCgN/xsRfCAKvUAHZyiCGbiGugO/VqAANhiH3XOuRcBMdmqblvEiulECK8kOMImBEFCH7LIZYeAFAfgDvAmuh+oqvnjD1PAG/gpbhFjZhqiHarBLB3BXI7BZhMAHe9grc2XaroxX/pFCBAIwV0hRBKetnxZ4Wb9cgKxNVn94x6axlw0A0IZQVj5tzpoFW+mkz/6kAAUQj99VCMH4huA90gLgXK311gMQ3QA4BrmcXIkICttgXdRoDghdh214BAyYBAqVm+uAiy0wAbN4zb9dBixIlmpohRl4gnBwW7bIhzDwwby5EjuQAERYhxMTHvTlghDYhXSDivj4C8Y5vHjdk2JwhR+tXoOo3A/BBzsQAL8MgB6oB8W8kTKo4EYJAOzU2iLRlQ6WAAEgg87FUnDAANRlWgNF2vjUB2ews0epszy8pqCAhQOwSzjVgGf8SX/4hALgTwoQSzyNiAkxBAEYYgHAgX2h/kKGkBomCIA6FYBxfeCKCApMyV7tXYfIBAdumAdnwAEqEIbzC5xlEIZ1eIRuyx5quY5qwIMw24YqmAFF2DumsrALGzWo6DtYwAEmEIYNVbW+QwQagNWlcgpi+hbVQmHMKIh9vWKi4dXIcAYjoAASEAWwGqmACgGbMl6rLIUewIAemMORigc7aAGmiIYtBk93mAMUsLhvYOWgAAc2CIEWsANblQx/uIYyuOU/+GSlOQYqwIAZQAQF5tlWcF0jENZIrohiAJgG3ZN56KrQQ4QFWCwQ1Zt1wIEZwFHhIa5tyIUFsINc6CIWpSWtYqd1sOVPcJOKXIcZ6IFZOOcc7QYX/hovfHiEFViBs5RmhSAQZ0bGSV6Me8AHbMAGVkaITdLg4w0pCSQkDayIq6RDZJ4RQpqUCqQUeLEIjt4XGxMpeACVEBbohCgG2CkRftA+vfiGb5iB5dJYcnMGSjBLhrW7MsAAW9BmKRkEpZIK8OiBLnMj9LAFCZiDT/VF8fqWc+CFGHAUkgENcgCVhgbSCEaieuiFWiAMe5iHeuizyZgHe7BoLK2HeaBqss7oi7iHrh7rGelqQCtrr8YIaeiE7CzpD/EHZoBkEpmHHTU8cIhUNpiwWAOHVoi7Dxu3MwrDI0gDc/g+ZeEGT1AqWpLQM1tVKasGW2ACDAgGoRacKmrc/v5Ah2Ng17e8hMugB9bxsZK2aiQiBwe+6wOxKIUWaFwgq7NeDErpYtAKzFY4IYe6bPOw2Eidg2qL6WZQC3WgghAoRDhgMKpyrjAwBxRYgl3ArjOmnj7AgL66mR/cBr+ukzzDhy0QgAxpgFyJDHKwBreK7dYOUGvQ4tiOEFPwBdq+Yg6BbYXMrVoBjG+ohtAbpVKAwVg7hnpYgSLIhT2eHnRoBaNG7FgIzZf5RCIQgDzIWHV7CxpgAox0GfI9wZ0B410Y02uYBEpgxIJWOFD55+lz7w+xB5SWbwRpiRVPUGYYQQ9xMXdYhgNthgeggjIh3GighAIwhHqOtW/dhQab/lg8qIZZAgYUKIJ1GAR1nqVlqOy7hYpseKG02YMC4IZz6Ia7CGaMsIKWiHEIJujFWLa9PnPVCBLcvmJ4QK8OqQdbSYo+KO8CmIFP+IZvPiNxlsFgIGCqcoZqmISXziVuoRIMI1j5eKrwXYYM8oTnPqhcMN9geLmpGNnQHq9xcAdY6IEn8IdoCDqTRYyCYActpnEWT/NUoYdRkNw2Nw1LMAxZTwhyGAUeAsGzNYpqK4B6idt1CO4UWwaueBZhj2mRjQYm8IFPQHZyAwZAeOy/LeweWAJxewursJKThBlgQAcXZYN20Kof3A8QX4dz4AIUmMNr6B50aDQbMbJcbfMW/rdDzrN11FiJVT9GoGCf3Iwa8Pb1esEAKtgGdUOPFegB3eM7OCKAORAhseCGjoQ3oSqDA5gFm6mKKnkTbqendQiBIuCFu32LD/+WceAGfciFBpiEY3AHL+71MX+kDQkCb7Lve6X3zYGHO6jvezcNeuiCWr93fWCHxTMQpb5NCUUBDcBKVZvpALj44y7gb1gCDWhyNKEGJRh0sniTbsPyqAiZfuL2a6APSsByZ3D5bykK53EGf92LOxHbabAtfcfCVl+MkuJ507D7u9cIaD4QavaLxnGHa1AHP1eWYQL1JSj4xNa4+0CEFjCDdQgeNHEGUoizYQqGP9ASnLqst6GG/iMABplprnNoBSqYAbAYt+li+5JHB16Yga5s6XxuwNY4g2nABTiv3ptfiJO+e9HwBlmg3hgvCI9IWSzel90er27Yhq4XprRrgx5IXBz8GLNYBjFRhXwiOafAg3wwKFrahk8IdZsk1XjihkGQBFTojml5k2roAxD6Bob6wWtIff8w+W+Yhy1YgTkkvv7ohjyRiNJgBysACFy4/OnzZ/AgwoQKFzJs6PAhxIgSJ1KsaJDbEB7cLFbEZUlfQY4iR5KcWG9evZAlV7JkiEtWy5gyZ9KUWNASu5oI8flzN+4buKBChw4F2uwo0qRKlx5bFg0Fk1vbli2talUpsHGlDsxx/haN6lWly1Bh4bZ0Ga96ZUKUqtYMbNijy6p5AjbImTO4y5yFW8EE2Fekzo5RI2r4cFBq/mwdMLRuHVDEhgk+tGfPnxsr0wyq1On5M2iOGDWCtkcvNOqW/AjyTO06ITlyr2fTrnnPXyB/lz+jiyz5cDW4cZPObURgEzjhw+POfdIAHDBny5U643ZsabRgBbaguz49aVM5wFBJfxvt0QBR5Yl/8/3b8Lh1TEJs4+b+Pbht8yLSO0HvdG0BChjTaBt9Bs8d7Nw2IIMHLUNFAyE8slFrDcZUkCvMWLghhwk5cs9uNelTzzbj4HcYN8oxx80tPcygzjHefWfVXtt80oAd/ugAMyNSywCTRizRyEWNM2u1sk10PMrVDDWSoCIJN9LMwkQPzUQj41uFnUjUN+PEM8kKZfij5ZZCrfPQNInc4Q89IXb4ZocFhuYKPAvCmZo+8/RxQAMYUHBACNXcWZI+9ODS2aCJosaOKfAgyhJP+qDTjYllEiXkcsscEw8VPdgBDpZKCkYYMD0wUUp3oh7lDDCRNHXMOoYUQYVXe6k6ZDOD1DJFEWys01SP0VRzjqVBcVNPNFwUAYs/3BQ71KO7FXNGMZQ5VKGi2dIkJ2jF6GOntjXV4w4BFJh77gr+YBvuQ/fAYwq78dJETjFutlTQOj89O9Q5gcV1TDW2hFBG/i5T3ZoUq998goEd0eR1MKvHXKmOkUSqKKrEzjjQQhjVUfVxNeBUamk186RyACLorNPNvmaeZJA9BVlzxyj2JjRiPfXIuzNJ3H7mC7zg8kySznMscO65KOwytEP6kLMZ01FTdI8v1uiETsuHrWdVXoocAMvDB4MHThEhECk2UtykMcgyB5BBzcW3XtNHALBcw80gTu7oTJf7VqNPETa0M3LW36Bj0G2XdWFKtQ2tVg9P3OiBz6NSW95sRgZ+Rk+1lV8ekc4zWIC0uSGI8vlBBU0zCuqtI1SoLN7QFM82WcO3tVjUwNKDD+EAi/Ze1TwigR3r8BI3j05Bk4cFrViH/vZbc8EyQxHtABNjNc4M4gkqynyTLzj3IfbNOe5cEkIf/lwjfrHdXFNEAAfwwo8S7FiB+ELzrANNMoxcwcIF6OAPnbnOcj7TSUFyY7MCNkRnZWgA6SiAAma17jJu8IfQGBg1e9wjETHhST1WZjsUVWUZywhHG1DQCN9BrxnHGAcsntADWGzjGLhT1THQMYkNJOIZV4Jejdowg0lUQ0Ym5EYvsoGHWnQCHNmIxzeywT5j0Y4JT5iFP6pBuGdFsRupEIAHXlAALZwiJ/Tw3Cq8IIMRsEAHNfDCAFejQaYdUET+mMZmPDdHhNSDGgIIAdJC0IABtu5bUNuj1G5jCQC1/mQd4RuhYbpkK6RILBoNIFhwWniMc8whBIhwCvJmZEKyFaEVqEgD3MQ2mGgAAwVlgMU34JKXapDvJ9nIBhakcYp11OMn7SGKoETRgD64AzIta0824iMOaoBhAxZIgQNqwRmHVGMddKiBG38ADURGrY40KQgzXGEtbi7kW2w4wLkw0ABq6JFp1rhgBskZroLI4pCE2iIkgamXaNjBAqKgRgvlcgwXASOUSopGKzCwheTgBYjOMEQBWoEppbAvirUABCBqgU9wrMM5WYTkOG5ZCyVs448kcIAqxskQnujAjS2thDyH5k2aXMaD7ZTnHHqAgh60oBvxjFpBHMGmmPIM/iTi/OlE8uSsfEpmHNv4hjOqIYoe9GAqBp0OKCfBsHmE6lbLoEYw2NCAaFAjRtxQQpJU9dXd9WAdJuyRM6ix0ZCCQ2X5AMQp8CoNZdxSmKezjy/bA5RfZiN84xjHOdahsnVIIxu9qEUvlLAOQOyBBtuoBS7igcGGhCQUbayBIHQAx/0QNV4zncltHCGb0iqkNdE4h0HWZTlFbpa18fIGTG7K2QFOiqmS6UY02MCGSaxFFL+C3mCqEYwZGIEX2dgR8HJIiRCwAaBg0VQkJipKWFGpD+so6KokVqIpBgWZ9VBZLUiBC0/gwAiDwAU4OrGObPQEH/HAh5f8sQ1/rCMf/o2tBYCZGIleAEIZsfDHI6pQCELIQ6gqTch+hqEGFqjAC8kYxhD8MQ852jZbp0WtNzzY4delToO+8CBSR7yh21xwgRHB1yN9i6J4CBJQTGDSVafDi3X0QQKUcFiOh0MVbuCgB7M4W1KAEYtMzggY34CFBtgAjBQR5xoiK1NkNvIIDHwiG8pYBD6woIxTYOEUaTgFHqQRCSzMowJMTIMyBtyLvUoDHN2ArRGKQApTwKu2C8GHzgTxgxqoIBTu8IcatqlibX14Jk5j5KIR6ahIa4scum0IPmonY8lcAx+AUiclwga9aFC1iAE1YSsac8O3HANIq77KXNigAVuIelWa/n5WyajaNyd26bDzQEc8wJFEZSSxHonNly+JYowDPEIW0tStPswxhBrU4Afc0IccL01pATU6JvdgRyAgvW0G3oEcLh73gG5zv3M7xB273jSK6tGAeS+gFbUW1VcfaoI5uIMXAa0GMMpggmDU8CrXm9E1WtGDIpwDvEmJRm+K9T10wOIBjRiTULokxShyfLDJlOItf1nedVDDDBpohwctfS0Ns0IFNeCBHgZYEH4QEN1w6rZMpuELmzPQF43jeYcsofKJ8ER/S4X3+L7RCiYUoQ+pPNgLP8EEHADMhtADxjYasQI2+A55zuDeq8ETVTZwueCr2gulyIuYa9xjoD2I/kY8jj7Cb/hjEhTYRDFwsfN26iwZalABC9TwCw0DXVE4jwk5rKHtwmsLHrJj/IbYkZOKuFvtSA8KZLihXRyuYw4U+ASQgXgMf7RghtcwqDNQsYi3hOUY2xCGBdjACybL5akb/c03ruGPTu5iHBGHZDe2UY8ZrMEcaOjFajm7n9DqoNDThPydDh+TM5gb+ky7Bzm68HjrD8gK3mC3Qix/eaKMwy23Si4FmHDvgy3jGpRYgCGeLmSHWwVgXMCAvcUSDfEjZhzUoB46FBZTkY8tSEAjmMIZ6AZEQA4P6EAD4oNscd+GSB9LFMRALJ4Ebgg5wEMGCog+KMhEQNHtjZ9k/gSZWATHH2DAJJgd2hzDk7EBCkhMV10FNeDB7ywFNajCDDDBNrCeXETVCP7WOnDDJFjAJahPEGLZOgRXBDBKLwzVbtUDI6iAGzGCP2hWB74JBbKENcBEimXhhqgO64AhbYBCnUDEPJwDy5Aglo1D2HGN66lCETwBL7Ag+zXDNvzBDJABN6xfWEQDKtBfMwyGV1ABDnyCO9CfU3QJ/w3FsSzDHJaM3GWN+/jDJ9DAFPgDFsCMQ0TYFchAhSVDHJEhh2xhSSjSBZLioFzGuqliahRDIMTMQzhSI7LhUBgMVgmDnmDAI/SgCYbFXkTDDsKC/H1HNQBCLAgHMGQDLEgA/htEg7/IxSSWiWL8QQO0wjqcQy3+BjesAz7YQA/gAyhYg+zokT7wRBwMAQuwACuog7q44gRmzmuA04PBo4VYGgbao2fYgy0eUyxhlXRIQBGAyqk5QysEwCcMoqqwCnQhxTdQwQIAHO44wzE9UQhwh4x9jygUwC1kwx3QXURwAxRQGxRojj42iCmWhAWBX4eBRD5aSEF0gT6w5EmSxCiAAme5Wz9mDZUBo8PMQQN0WUOKzVcBQxHMwDb44XQAIh6UVTNUwye4EnQQBxBuY/isQzggQghcXMjk0zfUAy+UQQxkQyJ0AgaZoz+Iwyt0QA0MgQDNQwTW5GykpEr6g02N/lvNxdbOeBBNyqVIkCNDpKFV7uQt/os7UAIObAGTWB1R5hAb9EAZ/MovnoU5lEUNscEQdcd6LKK+WIruiYIhroM7TGPLXMM6TMIOsAEyiBi73UYy/I8MeMFGkJZfDghdksRMuoI9Ldp+fAIVMAEXnMkXdgg8FMMZ1WZNMMNuGgRkDCZhDsXmgcc2lMEMXEJSTmb9ecXC5cI/og2rcIMwscFTCkf77cs3KAYbhIAq9JJzGgY3bEQLrEEY+EOfmaPO0EFLqcAr6MxLIudM3GZJ+IKGUBpPQAgFWEAILMDF9Wdt+MIY+udMFMOAHgQ+hEN7PmdQ+J9VRIcEPIFS4ts2/myCAFDC6bXQMmhDEFCBBtjQ1jhF1pxDOEgAF8wDabYMN9yDiE6CPJgCPXDYSjWLA9YAFKCEj0JobQBoSSRCm1AaIhCAnxxoCEjA0mgLiAyEkUboIeGDO1CKZAiWpXjp5X2D/jmDHTQALBwXEFFDLrgIjMygqETVJ2xAGSSiXlRl+4ymNdrCaCbhlnSDO0gDF/RAcZ6Cn5XTAE1hS2EC4V2pbcpjbXgDTg7nHoUQCjzpuTQAF8zTNMiCuDGqSOjMKWCDQcxDjCFGN+ADSvBpee2HMZ1I7r2nq55DXrzKOogCClCBDbnpWwHkOaSQ07mpkgBMMzzBEiQCN6RVllDK/q1tybXJYRVwA416JTj4AxssASJwgjKYpR4Bmj/Qwv8E3jMQkqdym6POBm11KlEZm5OSTgMYQVxyyGU4AoOO60HshxGQAAnAiuV1g1oUwRRoEX58gzsYgg/swpbiB2KhKj68m2RsgzYm5TrMQA9QQneehcTsalgQ4i2EABW0QsUCI7AeBTCcAyVsHTfgQSyshzNcg6pyyUbYQQh8Qj2I3Ahdw2jOwB4Mgik8YaEmRGvEAQ8QGi3sx7vSa2ggKUmAiBP0LFHZwzosgKWaSwNUQbYElTfMK70WhCE4wAukwAGcw/rQbFHgAxtIgAQcABt0pmToEAFIAAVQgju8xzd0/sMnoNMMrMOyHobA9gEGhIAhUFcPDkcf2JtB7YUwtQLtMQdeIM8ybAMVUEBgFBRYOEPLuiw3NMAWxEPlBmytAoDaeAO6+qw/PIMbycAVHJrRMgjSjkRBJJ6K3UM89AAEIY0zags7TMP2pW5FFMQkLMDoFICGueQ8uAPxFu+hRcECmG1V9dphNW/ziqmfmC0V3IPzItY5XO/16l4AVKoCfEKrIsY63EgIhIAA8AKrmBD6pu9etMLZFkAZABSNfMUMAIoACICpDQcvGIEKml+wLEMrNEAbQIdXKAEZOMw1aGP7KNYcHAA3uENXQtL3UIOpyIMs4AMHNQ1/YYIKyMAQ/lhhXuoubazuSNzDNFhCPRIVLxCABWBA3zYACoDkoBSEL+wdCFvESeAAn7CBuDrEHwiAAwiAmKAhE6CTAqSPz7okSBxaAIQABhzA6cTDPESxFE+xP1BBCCDoAQhDXFEDF1MDNH5xNBBhAVCABOCAMDgMXqTxYMwDG6zAJMyA22JAC6CDisSIHXNDCCgABQiAKFyPCbneLvhADxzJdfBCCDiAAgQKAmOZoHxCYtbDNazh3I1DPdRBDzzCNCDfCZfYL0CBy6nBbNYwuZLGgNykiq3GLKxAABDAADCBoGDtnFjCPcBy1vrDOITBIGBQkSoEP+DDJfTKBzfENfSABJRB/j3sckLcRhkEgABgQEpARDwASgFUFThg7/WaSDhkczicZjM7QA90wzdsgziLMzXQqAlswej9kQSFQLN0gzu/8y3dUgMD0p/YwXtmjz38QQhcQjSAAzVUwzZMggC8gANIADZaCsvgwxYUgS7ELVOZJje0ABvEAxr4w+QxBD/cg87EATbpJ2cgsyijhgjjpjfMsorlifFEcbjAw3GGNGpoaTBzVs5goUQgFG22Cz70yvog7DUYQQE4wCcQS1HMQ5mqArG8pwBQQAC4g5X9xqmuAAVggAAIgxQ1cBH0wDIINeaJgh6by0FvCfk0gwZwwSLn07FsAgEMAxpwKkTcRjWw/sAPmO6iunSAjDRJnMH3LdpJoKqkDog9sMMF0TVHWEKfTYRJm8QzS4RGj8hEkFYjfoNjZxxHCcNRZhFQjIOfIsKYaPVvZYOLfAL5rEMpmIAOP3B51YMhkEAL2IE/8N/3VEMfROSWbm6XusMyLEEL+AMccOJu+UMcfNYrzLVgh3C5BshlKFCk0XJonMaa9PVwHwRgwkk+6sz3vsc23E1kfM86wOzpNHV5mSbLgrVBjIM7UAMTIKUDH8Y11AMuwMNonkg3+AMsoICvYHY+sYw/iOUgyINZMm3q6Mwq/I8K6ME2xfRzi3RxC8g0gIIsHrhC0FMqOnhETIPVoI490Lax/iyhBPTBpuRteX3pefpDI2iAKPjeFH2DOCyC9+BHNwgKDSyBKOiD2PIkPuyCCewBOFgCbD1E0XG0DOgAK+ilhM9lgtfGbYjTkCczZihgkj+EQLgOhl+DnjRA75X13K3DUYZzEKL4nOHHNvxKAxgCOli57XTDOjRCAywDOqwJRBQE6VLbFRh4k4OGXSetPdxB7g45PdwBiMz5Q1jDckqNI1nKr1x1a19oUaxDNahCA/xBFiXhN+RDGtDV+MyXWFVTjT6LiQwzEviDE8hO6CLEOggCFepAKAi3nyM4KW8IKNCDcxttoehmqKe6P3iDKzS45eADP0gyNz7GHOCAZvcz/kgJHy9sgQ0ci3fjnjtEQqkWRSNDZjt7ZTgQNQ14AjL097lRjj8YwxDIgAyogTtuGK27Rp2XBD1UzWEfuD0U50WPu0I4XgFV92GwEyysABU0cInkk2IgApflSy2iQxIdRon4gwzxgk7mU8mMgwUUwm5LE1LRnEGogRvVwC9EiruTe5ELiLox+XOfxtJefENQX1+GCz7weiRRKwVUB2fbzjcIigZQwbAUSzbgQw7ggwBm3DrYgoJyKVNtgz6sBSrwgwl/Yd/9eGyqC0iDfE2Uu7n7QwIeeEEk4MjPOTtMvbbow0YBxTrkAgaYQT3Yh1c+xohPQrNo+sYl+jHwrTOI/hBTbX0PLIE89EJuYfA9/F1LDd4xKz3Gr/qGrLssVLhgs4MrFEO66/1BJAI8WL2i8MM8mHw3zAM1+MEMpIL6MNW12cIX9EADZ/pvnMOXuYMAQvYkFAEX4AOZt4yZhwMb7IAuIEMkXAZSnaM/rEK3D7g57LDhH23GDwg4ceqrzxEEarw90HDuI8QoHBXq0NxQlN867AIKtEE5cz6WnerfToJgtow7qDhQRHI79EBzzSyiC8WxJIMCrMIiyMIF6pHOmIMa1AALDEFwn7A5YIK2F39LMH1LuMGk6bU95IxyVwRA0IPXxV9BgwcRJlS4kGFDhw8hRpQ4kWJFfwItZtRY/vHctW3gqPmb8yAYunHfwKVUuZJly5XfvoUzUcTdtnEucbo8pyzbt23udg2g5O5mTqMuuc1r0yBeDn/sHPLD5++Vjhoy1NRz+ExHPa0bwYYVO5Zs2YnchvDgZnasPX+ByPnTx5Zu3WuwYFGbO7cuQn1z3fhz25dwYcN07/kLcvFwY3/uolFDd6zBFn/VUB7VDO7bum+fCOyax23zUXeAlHmmEqIet26lj34btw5YDDaysFnzl9ihOUEqdPwI5W/e1hpeGU51vJx5c4to1TqHaM+eNV/SsRucZ2jAgQMD2FRbzsxXMbnZ0ac3O9cXPPVk15kR0GBODFH+qME+2s3f/qweVH4iTT+XxpHmFH/68IENf64ZMKduiGLDB0rk6cQe3hbChx9/fpGhhhrUKKieDRt65rivXknmmVfwQe6VX96LUUayoFtrxoLm8mYUazC8ka6p+jgAAwoowOAAJhrTxxpZzOvRxyefnGsUxqCkSBUCMLCAAmfi+chBl67xh40iHvEHpi9b4kaaXpgoghd9MkNzpWjmEWWFRvzRYh2+FuLnKy+skgGaiUz0Cp84WDBHHBbiKGgVGWCsUtJJC6pR0mLM45PSsGxpQEsiiTygFMPmkkWWTVF9jx5/nBos1YUuIYACC2Y45hw5X6pmHgyKmC1OXMHJZh1lBPgEnJOA/lVJvC1CyNMbqBzSKhQddFCBkeIIPW4dNXTwZypaWHjFnyH0OO/Vc9GzVNJpCHIVXYpEkRXUUDcp7B57Ernu3X2TfMpdfv1xZgYLMGBjnmS/OWedRgrY5bJkVeqsBwXIQRZhcNyBpYEy+MFCrn8RmmpbD3+AcURCZTDniiGI80erOK6A4oeWAa7ZMHWh5C0QHG1+CLR5Qy2zsMAE69notvy5Yzejr2nkE89w/SbMWXxYQp1vuCkq6nP8QSQEQ0xx5lc5ubmnGjFmAIaTbJZOztEfVKiBjnhcrigZHa6o4Qp9viqOBxUeO1rwsnDO2R9mQGFm8IVm+XTeAj4hjJxE/mTRx8nFMZ/OG6Jt5jNrOVHyJ4oeVCEK4nG46WgFLnKRp5ZsIK6mnlJQ8CMbXLL5qyGtuFFDBhmGoIXnirgShBu5XeYnHmh+qKHRrzKPXqLCJwWFnVWl94eJBua1oAjl2KLOGveyL78hfapb3J2xYZMtmhXY4AYd9tHkph6Nn/6mFzwOBpYbfdpAgXMwIxEP8RNVaqADFtChIOAjXg2KUwlI+YNuLBDEL2oAIweaj4OVSouNNuUIcuhGelMpQggawL0erIMucyGHNwqoqQ5yUB/wuMM0BMePedAvNuuIhigEIAx3vAZindmGESjAoGy0oxP54GFpzrENZxygDP44/kFBLneQDbnDCywIjsnA8gwZzKM4MivIygoCKGzNcIbUq1JiNnc96RXnE18oQx/qRhdvOOI6IGNj+fThDWb4kV/6QMeAroGPXaCACfg4BxGBBRME3ekyMInHIrKhNf2gzh3cKMIS5ICMSAgmi8OjxYd00KjkgYV5XiHjD/Twih88g4LjChGJ/lg+N76xIKZgB3WiB72imYU3jkhMKXMpvWkwA5n7gtpmvhGSJ/hAFPg4U7L+1wwbUEEY9SCi/iKxvi9Fo2s0+AOTWIhMHfqjHV743Q8GhY8NZqQe8ZxLNczBDVoqxxzQWGMypbdLSc2lC3EhJEAjkhh2EESGCDXf/h28cVB0+ak0qdtGA9jQmSduUleGCIEoEpaZb+SjFuHYKE5gMg8mzKAWSzIXQyIogx+M4FrYwaVDMSdQSbnFG2doG04lUipXDBOoHGSGNxZ3K6N0hhtB2kU8BJSsk1yjBzi42tiygYV8wK595ziHLR5QCGT0Ql8PUUfeavAD8WioqG0Vi053WhBHYNGtDLnHXByxKuzVVXqJIcheeyZOl3yjG7PrARNaA8moocMdHsUTZlhSj05kg6ul2cY8qEEFIdSCHIDYUEMNopxQ8IAFMhBEcebJV9VCBK4DpQc73OAewKoWe4EoBj2auVqjkUNpoN0XP+iXsHqsRhg7hBg4/q7hDmqEoAzOcEeDWpKNUyhDP2v5xAZoAQhTKEMuvq0bNOKgAhZ4QXjy1O15I9JaSrEDFz7NLULdcgZLSBS9RmMHVLz7rnW0pBvnOMYBREGNZ2ITQRawhVdxco5aYPKkKcFaPYpQhGMEZrYKkZYMdCADBnqrvh1uiHon5RZ7BGIa+UUoO84gYg9nzi2BONXRpgJdznRkDhQAxjkaXJrONIMJKGDQE78hjXNoEqXoqAYvGkAJQqwjLiauxzyGINMarEWYK7ayB6NTs3v5wxHeiEtRXciOAtKDvlfel1tw8WWj3cMd9zjJPFTRgyf4Y34Qg9A2/hCCS+BnqevohDKI/swS1M0jGkywgTtMkQ3cMoQffFmFF5F3j5OZ2cwgRhVSfUpmh9oDMN7AIaUxpw96lPVovJiDM+ZBBR+MCrLJqoYiY/AFVEd1sOCoRSfqAWRnTPIXo8DFpxtSnGrkTQVXGJSJQa1bS6dqcqfidDLdUow7kKPCyT6aLNxAD2RTSh/4sIWQQqABNqyjzrHzxx80wAtuDLjItZBNTmTjDxNs4RtOsAZ+d+cPRvygWphArbUpvWxUucUaXYBHtct3D9iC4qcAxxy0alYcCoRg4jPwB62TtQ0LcGGI0ERHLwBh3JYkbB2faMAkppGG7jZkQ+aAwodm6a2bOtzDAh94QQLh/grFNZxfGKqy5fxRDGYQDeE0txko5lrmSWkFBRZAIRVEHrV1rKMPK4icjDUzD0Bs1SXb8Acs5oABfFjBH/wo+tLw8WgZ8KBcHDb6lW2eKoJP4w5QOfumirONSQij7FMRdUG6sEzBbPvt50qMLEzx0nf9RRgrAAATrimncVADKDOgAjc6CZtsRKIWnIkuPgyBgUmQAxep1aJWhqEGFqjAC8NwmekLr+wPlo8Z1nBCQZT+JHf4owcmwEAIYuAw7HXBGjuPffTYIUijrQN2gXZQSPYgAVusw2KbCQdJe8ISqbkjBF/IhqkgUhxGJJAFmGjg8eE+++zxxgreME/uZTQX/g1QHFQYgMY0vHF7oqJ/cJYDf88kDU5wZRzUYRlMYAnwI8ciJhvw4BQOaSXGAR1E4QBaoWOGhyHqwR2ijN+ojP/SL8uy5+/8wQqW6cvgLz3KYEjm5QAKwWMugvA8cF9kAdh6Rk6SaxzaAAVGhRqcb6l6QRl+xX6UYQmKwFQ6YfD6ZCrqIRSAQwfKpR70YeZi8LzirueijRxiK/F2Q3eeZEOogHvmBQMawGXeawoLiR7gogw3JdccZC1o5w9QTbFKIxvcoRdqYb84I0zYYAnAgB8AAfcagm6GTQaKbZ/M0MqqEGD44r584QzU7ASXQ9KKAAzrrwDOocoOcXCuQw25/k0ONUNX2AAFbmG/FPAl6gEPIsG4XsMdVqAI2KEYIC7f4mAIamAEaIGFYC8T+SoRbYY37MEbiM8X7g472EEejIASQSUE1gETdbFn3MIphhFVBEszzoE0GqAKzERO4iESMmnGxqEUAsActkvNHKIaXk4GrsAcFK8Z0YsXewboDocczkAfTMEa9ioxYFAj5sIt9tEbcIEeugAbwKABVLBIDsAQ8pEd5c4fXsxmdKjBtmEd1KEMQgAY+ExOpKET3C1McoEKzMAU6EHlosUfzGEVxAsKyoULFbK+3NFo4FEgXCER7sEJ6MH4/uJCONEh7mpVXAWHDA4UcAGpCqIPAgBU/gRgC/5pJdeMIWVBKGvGkTYqJEQBB9jgGtYB4wakDu/wG/xBDIrgEyzBFMZh/xDigIbhClQAKwYlKZVS9kDQraBiGorBG4IAHizh4AzCcu7KLe5KJfPyYwbvXviEOnYGAvxRN2KROJxhpZZgFtiyLTvHH6aBfGzGHeCNDotAFNdBqeQkG2oBC9qBG7gBAzBhEWSBhByiOAQBw1SgEs4PMllS/epqH5emJoHyDkzBFeBhGujhtV7Qu+wBt66HHu5NFpghCNjhDorBPRKDHxMCeqAQNjHHCSLKZvqnJcbBv+DnIgcwG5QBH8AhFQogGRIBKsoMH9wBw3SAZaJTOmPz/i35ai4qjBmKIRFwgRmsAF9GgRwcwRqKoTzmMhHoARQCgR6CYBpkwRF+zSkLYlXyyyvqIRfd813cguHWEV2IjBvigRrm4ACaYR6qoQdho0BOQRaWAQV6wB86YR00LQldhhGakBGIQ0InFKhasoP+Ah4Rwh7gQXFMgRymoTzw71R4kzIPgi8TskYFZy5cwRq0kF8eMjOs62vQgd3QZKRGiQqK4BkI4RzMwyHo5heuYPXUIJ6U9D1B6EzVFEf9wRpwKEllJMYIKySKoAd2gRQhJhvuIBJCYA96oT/3IjlehlpYgBaKA07XtINuNFEZNVUswREQ9T2kIhpagRuogT7Y/rCI1qEW+oAAosEU8IAsFQIfnqF5agAKdo9GGxWgFnVVXTVKLiLxovFG5oINAoAAUEADjsFsiggc1qEXQGAKRrBBGyIxxAETSmsIZLQ9X7WuWrVZofU9RE0ffOpd0KEBQiAECoAaCKuIxoEe1uAFWsEbagG3mkkrWAEtF4iWHjNaHepZ3TVepWMupgH/0EXjspUAgAHryMaHQuAF5sEN3MFIFYJv/IEOEkgGxMXt5LWo4LVhIdYx7oE+I3Veu4biuKAbStEo1sEOKIATlKGAyqweFoVaeMBlKjZiB+dhVbZlCcMN6PNCoQR87mFjXSIb4CwLFAAZAME8zm4u5kEP/uJGB4ajXV32j1j2aMNCH8whFHavZQdDaZ5tU/DhriyTbM4BH8pgB8JAHuAAEN3mFV5uBOiAlnJSaaMnadFWI+oBg9I0YtEHtubibNWDMweEGxTpAOzAF0wBHu7KIaaiGj4EUg51bXFKbQ23Itp2ygpCCuV1Lg50VmXkAQckAttAA5ivQCVCK7wAVRPXYWXzc7FjcW2kHl5hHmghTaEhGRh2VfVqZyAxO6bi3aBpHPBBFVBgDryhE6R2IpQjQkX3XUM3eJuDdLViCH6gHnQgRArCHYhWZhOV06bBEsCWUkRU+26FC3pgFpDhFGiTIuqBbol3ZYd3fB1jcWmJB6Cg/iCSQQVY1x9oQQXmgRkbVT7PAKm0jVLuwRNbIkQvtQ/WgR+O0HxBDXEJGAM7hBt+4Apezx3CxVv0ICtSVil1ZzFi1zn0QTO8jgsawOscIVMOuNLKN4QJox6GwYuW11ww4QoyUAeEB2K1DR5MQRYS80ms1MG+oU5y1x964Q42RHxJGKEMOIgPwoRpahhGgBXOIxlGgBvuhoVcthia1D0uuDHqwUtWAvPWAQeoQBvu4BuoF3qJeLWGeIxdZhhkYC0EoQbEI41ewQtUyWXhQR8sgR104x6A2DDKLSXcUAKgoRNM4Uvz2IxzqYzHmHTxoR00LDoFAW9oaW19YRrGTPeC/pANDoBV7kFyCdmtDJmITfgHbAQaOgAa8GEuoIBlBllNi4keEoHatlBa5SIDz2EXQgAMkKETViWVN7mQR3iXxUIf3CEZTmY0WJduhkBcJvhM0UcwRowdwtg5sWMqbKEN2qARqoAEQoltxNiXybiXubkvVqEDaMZw+WJVQOGci2ZqncMZUOAAHIAEXsAbGPSbEdGb6ZksWkMGCnWblfZCWMUfhornDmMuboFISMAB7uOeA86eFTos0FMPfsG8zNdyeAoXEgEepgTiAlUs8PEgrME/5UABGuABGsAiG/oD3/ak+6JFkvlVByMuAuE+A+NLzwOP+xJ6c3SZedIg8C83/gP5OoihCKjgGPhZpTl59uQpqZV6qZm6qZ36qaE6qqV6qqm6qq36qrE6q7V6q5VaKxghK8qOWYk3UKFiOV0hEDZHVF8Qt6gDmBICKoLgHtwAU6xBzabCHf7NqGsOedeCq/36rwE7sAV7sAm7sPGhOHynZPLIjKMNFwLBFBLBFYpBFuwBFy6wIARpSdxAH05AFu5SrfW6gGWKDvSgtE37tFE7tVV7tVm7tV37tWE7tmV7tmm7tm37tnE7temAEXTgb0yrGvo6iAUTIe5rFNgBFNyAHJzAFxyhuS2hGCyBHoZqr3jSL0Ob0vjBHDRhBFRgBLz7u8E7vMV7vMm7vM37/rzRO73Ve73Zu73d+73hO77H+wIS6Ad4oANoqnVJ+C/u6mybU0evm+bmohAqocAN/MARPMEVfMEZvMEd/MEhPMIlfMIpvMIt/MIxXMEZYRWCQwV+ABO4QR0cl5D3IlBz+jxaOsBXy7BZvMVd/MVhPMaL4wrQkZTpV8VxnP9yesd5vMd9/MeBPMiFfMiJvMiN/MiRPMmVfMmFPDEYoe1YOselfMqblS+Qg8qxPMsTtZS1vMu9/MvBPMzFfMzJvMzN/MzRPM3VfM3ZvM3d/M3hPM7lfM7pvM7t/M7xPM/1fM/5PP42+pfRIyFTXFpNbNApYtANfT0A/SCseyxgMNE/YBfSLULS9bFge5E3HBQs+ITS6WosOtpeqngi3OXTz0cs3Joh+EI+L2fTGWLR/nIjKF0+KxZ7qHshEO7UFSLTI4LTNyKT62JawYKQWjofQ30iYHDLgsrYmyM4LQLXsyMgAAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRoxb16bspcKUre6CsTXM0LZGrQMUs3aFnpZisQN4ceZ3maxpTgUv1IV3Ltq3bt3Djyp1Lty5SpfbOFpvmxF4gXPZMsbPGzh68hIXJSZVqydudYriKEbRnt7Lly5gza97MubPbs/5AFeui2Jq/wxfzsmPnzwk8K9YO21Trubbt27hz697NGyc9a8UCNaYskDJoimpNUlabqPVJer2jS59Ovbr16z5p+ytWbFQxUJP9/mnvSBm6QFmyEtHzhRa7+/fw48ufr3mpv8GJIt+Dbk+pzpu0MQOPKYlMI9Bx9CWo4IIMNuigQ2rR0x0o5hGllloG5sCfeA926OGHIIaIGz2RgecPcUjdQxkolhg4nogwxijjjDTiZCBV3vhj01vmnWGPIzUGKeSQRBbJITzTgAKPaTrKpQ9l7OASyGH0vGjklVhmqSVvN8lCTyAcWjkXOcy4ceCWaKap5ppzsXPPHawhaBdxbrgiJ5t45qnnnhrZl6QlOt5p15P+WMKMKe3xqeiijDaaqBvTSCboZcQVKJmjmGaqaZa+MCNLorepJRU5/W1q6qmoPqiWN8zkKJ01/omUmuqstNY63U32yGKKi9HRdoY1rtoq7LDEWuZfMcw0x+F0lMniS2FiFivttNT2RFtjn0YbXbJnVuvtt+CC5As8dyi7ET7+oEsXdDkEG+678Ma7EG2+FGNFcRq988knwjS5rj+y4OKvvAQXDC5l8NQZSE2TPoRPPUUIcEADtlRGmaEnGqzxxsLSdoc1UqKYUT3gLIABBRKwcVmOZ2TM8cswZwoPO454I5O7GenTTQMUWGBBH5T6M4pJMRdt9J6m+EIOOaaA17BD6qqCAhtF4GCHP/VQag+kRB8tnVJp5dWfPZT155/XaE8EnT44+uOIbBnN4882SzzRjD/oVOOP/tyamfh02nXh9aSsDymXFuCIF0SoN26wZk8iiGoL0Tr+iKLBJ+uc0w0446CzmVpWZJv450/SdNhexTjiS35nJLvVGd5wp5I9NYk8OuCU5XAmk336g0IR7mwOzvDDc3YTOQbeHtdx7CDvDS5lhjVl49PEVtNAh03jTVhV4ZLId7JECQ/Okiv/rVrk4AIe2f7AyntF6jaCQSP+VPMN8cS7w5mElrBm/lpl8wd0XMEOrPhCFsjy30XoYY9xiWUa93IE+8Tzt/91bDvcyRhl7hA3fzQDCUyIxjy4gT/ifYNynYmMBY1SKtY4gR6tG8wEFbcshlzoINApxnrg5AbUnKh8/iuclT3YAY+W+XBr3rBdRPiRtT5Q4BbiWMf9SmjCrHXmDqY4WxB/Ap1A6KoYAQSiRm7CFGakrmZVEuMWN8UOU4yihgKcyUXqsQ4fPGEe16AiFb8RD89Qhhxr/I9ABISLxiGKQ0rMidkGCY/8aI82agxknkTFjiDg60AFfF9E0IWPUjRAFPXTox7P0Rm1jIJCkgzJ2WRhDTfow0Q/jKRICCUQX3jDUK4ojixTqSX7+MIVkqnSQKBjporILRsh4AI35rENUeqRGxWMy4XeuEteKoQpN3GCP2DSrbbQZiUJO6QWrTlJ5qwGjmqBUzXTpb85zKAV7gDHFJ1ZwhPyo5Sh/sklOTNCD3rwxWZwpItSEuaLfu5zT7IITEA5xIxENuRhM+hBPIRHTz2O4xu2mVk0D0oQtbDGDY+7JKXU4gprOGIl4lknRz1knOCwxkpqCURhIpK1dRjiAK3wBzUqWlF36ENdnIGdSnnJlKTVqymdIU69fMEel610SDTxhxvFiRD0SERuzYgBFdqxjmuMg6fOvGg3M7PBvDx1ITcphjVAMcSFfu40/nDlG9161hAx5QzFyJHkXkJTf4ghBMv4xjnmCVYqjqMa26BBD+ZhxcyohRmAHOoa1xM+h97GMLIAhZvqSiN7eKMLdB2IZy35EH7oYxxTAwdFCyvKa+DjACEI/sEB9rYZyjSOswZhxy1dElrbMAUXbewtbhPkn+bwKiE3EZhlO4o3VTQgFf4gIWudeT9YNAADIWgAbWsLsOGm1B+J8EZkrVOeaTCDGU717oKgQw5ZoFe40OEgEOVGDRRQIR7rkO509bg5fJRhACfTLt/qA49RWGO5qXzSzFp2w+vQxh6W+JRZ1Uuf/UhVPcLNmO4qhBB99JELK7BFPAm7X+KNgxv5PQAbZlGEIgAjw3SJFGdz91L6UOYEAqSwjf0BAQFGEoxidEYD2BC8EjuzG+toBAWWMbx1oKOxnjFFMcbJS7UUWFkIrk5UHTEKnOn4Ot5o2ok2CgpmUHkgWXPH/hxCwIt45NHIenTHMorgg21cFBzcWOZtmDENDpOTzxJuEHE0K8wvTwd9XxJglgvilYQ8zB+p6AEZ8LtaOKv2G/qYQwyAZj8TYxSom7mJmfy8JVBbxjD+aFnXGuSf/qXX0LvBkJcooluE4ANdZcDAMdzxDRLD+Rrr2EYIqACOdVRanpJlC2W0udEZcaOPmkkPjOkDCiDBmjeicsUhJfIkqhyEH/M4RwMQIUVL79EdjziAM+QZVtt4VE1qYYQa0mWZe5AjEYEOEXHupcBr24YZ7NDmwCCiD3KwZzxqmUcdQpCLEZrbhN2oByyKMIMRNtOZpPQtM6xdan/wAAr0rgvR/oq5aAURzRSALLm/4eLLQKC30BF5rD4H0sdL9OALdNSvuZG8jjfM4BP+8HWcQ4WL5G3pFz/QwSoOog51mLooyU3EeDtSj3lYPdb3EXOzV36X+zgLVBJZtsvqkbUZMOEW9eiG0Pd74nU4IwRtqEaReWpP29hjGj7UUhxkIAM6KA4fdKBDPZ4ulJuMYuYeQdc9oMybIr6a63WRBTxymez7oAhdzjiAIeZxbEtvwx2TOIAx1k7PetyzNqs7M5G4cYUa1AAK3Ogo4AV/a6QAaaYdwTwVAlCAA8AChbop1acgL3IBeqrGFrmJJXJZ0zk0gBvf0Lm5TxiNYdej1/vtBrRr/nN3mF/pFyrQgQ5G8ArZB74etOFG1dvhjna0Qx0Dzok3RtGcrTuEFxMLAXYLwAX712VFZUF8yyMQBQIo07YQ8AAo0PEJKDAH83BnD6da4+APXNADQAd9RjYOhKcZQKJyIaIP9aAGQ/ADP+AFaoAPkDR76GcOOlAJ7uAFLMB3r6cHITcSMdEiB0hTRcAzFNCDFIBTvfFYwSSAbUEZ3vAX0OF/BnET6FUPPlAEwjBiEQgO1aAPsLACW8ANc2dk21B1jKcZ9wBaHvgh9WAOV2AOI4iG4mBFPxV47uAOKsAI4rEO5hBFr3AB5vCFH4E+5gISvHAyPtiDB/AI0yFlA0eE/kRBGaMAKEqYEHfQCejQAIZQblMoT+vgfLxAiZYmVj9VG3qFJfgQD9wwBDwQe+YwEG1IB9zAAnKoFl4IDRdgDJXXEDdxB5/SiAxRCgcQiD3YAGWAgr3BFJY0hogYEsTUPh/BD+BQCOpWD9IHZ98wDutgCzhQBfVDeoV1QoYQAkUQDZ1RizNUJPc0iqV4emgBeF6gAjLwCyGHD/PAA5iwE1g2EseAArz4g4QoHTvCccX4E4TCDAeUgzYkN58QAmyAD9E3hUjmDmSAArDgD2/2cO7wCQuQXTEQD7hoIdtBTVlCjrEne4JwAcNABzygN03iBSCHEyeBb6smEkWgAYGI/gEPkFOHZg/WcAek0o89QRxeNHUaYUUh4ABy4A7ZMIUnNg/49wjLwHlT+A3z0AchQAEhAADfoIcW4zYCCSIe+Xd0EAfzIA4jUAn0tgYygDUkISoxoRPxoH8+OGTYERtZqZMVoRay0DLEaEP+0AoNAAuDVYngsA3rwAYrcAzn4JfDww09wDMLoDKzOBQ3gXJaspXmJ3j+8Asi6Q+VMALtwA3mUIci0U/MphNZUwQ90AM48JBWuRvLRg+AJJc4YQ2m8CnehxE3UQ1s0ADjIA6A0AnrEIHnsA7LEAM+AJHYyFrd4A7OoAoCcAnVYAIq4xk3gUodSYofiYr4oAZqYEVq/nABsCgDMSiDZtkRtAEmpDYSjJeavJFD6NWYrnkQBkJyHKEuohACfxB02XAKX2Vu3HAO4cAFIVAxOzWF3IAPwfkE8IdR21VK5GCAWCKZBUEN1JB+v2AOv2AMFmqh7MieBOE9vNUT6gKM7kEToLBt7VkSFzMN/faTAmEDTOAMUvQN2VAL2ZCfRkYNeSkBfXBCxVlY42CjZBACv9eX37AN8fc59PBeDUqdDmGOI0ETSOoo7ABGGVmiZ0IOYKGhApE1orCXgnU/3yANeNCb0FhHIfCXNPpwQ1oNGGAGnFNPwGc8BXSXHuKgFuJPYKIpjgBcVJoR01BIOoKl/lAOVFAE/uswDhQFo7WADiUmWOswCz2gMgEagScEDp9wOTqlR9uwgZghXtNZikbBFM0hp1jCFLkkqu15E5OHSuU5l1ljCD6gMp1mQtkACCQzXcd5DWxgAg/5jHAWe8ZQmuHGq/JUpI5lD8XQmldCp0Mxoh2aKTQxDRy0pxFxMd5gIhpqRSjABNUwUXqkDL0gpoVVDfWwCwfQCIB5cWi6Df6wBf/pDmeqRwjqGSzSqdU5FEuzqo2yFF4mrQqhFOzAiB5xE40gALzwriaEDp1QC+DKUzZaBC0QDQZrbueQeYiwDTsqT1P6qZGppEVRbRmbJdUWl/3oUbH5eBdxE9dABYt1DWv3/g3ocAozSne/OZ8qg4GS6g7R8AcYwAvoIKyiVBsEAqjxoaz++CO08ljo9bGwRhx3EGaHeLICcQgzUJ+dZ0LrEAnoUJzXUA/OQAU+wAuXqpD4AAs9IAbqEA8Xa2JKKxTs4CVC+x5Eay3/iqyzYnCXwq8FQRmucHhjhRFZ8w0zQAVLWbXEkw3xkAaFSV3X4A+TgAF/MA+aOH2L65+tgA/ZkLb4oz+dsSRrKx9xyxOPKbJ5Qg6fiLff9T34ahFZ8wkFwJcRC6/ZgK6itA5MEALXiH3T5WvRWA0NMAckg7n4c0KeMQ2N07nw8bk7wQ5iyHLpoqnB6A+uAChvy1nk4Aoy/rG294QOPVAE0UW4wTuxLxBY7ypY4JAKEjAJ9VAN43AMwuCiF3sO54BiU3RC47BmubAO1WC18eCuhdUNxLFLsqR6HTGbQ4K8OVG9JlsU/MAU6iLAQYhB/GofzpJ3GlF7f9ADhqBTaXsOrXAAJFAAk1BCy0QNT8AEsKAP3DAOn6AABdACx5C1vYa7wTsOy1AGVPAJI6Q3iGAES4APmkM83eAPnzAJiBANiUtPk9oKNoqeqBhdCYpWA+G8BGFFTDzFi7AOxgu3HPsT+8EMBGwUWQMLTGBHbNBHUrwbACet5mFJpasRchMOK1AG1zAPwOsORtAAKbAAVEANFvsNNlqQ/ojwm9E4DjOgABSwAGTgD+eADowMv44Mv0OqAQewAAsQWPjABD0wC9cHDuHQycV2CxRQAAUwA0NaTzHca+gQDT2AASsASj91a7Acy7S1AjhgBP6wfQgBbv7ABmxgow1BkKBErAkhGcJcIwY8EvfADpDyFuhiCDyjARJAATNgku7hBElUoswxCqlbETfxCQdwDG26X/OABNEsAUwADMuwDMCwDSiAA8fgDOm8DMdwDFEpAQuABO0Qz8vgDNHQz/7sDMJQAD0oAa2QDAfQB9xADYi1DQxdDdvqRD0YANtwDWoXw498DhfFBrvYAFvAEJTRAigjzeGJEFmzyhIgAU/W/hDkLAGJfMbx0Acg0ALzkMXYccwhcRNNBRfOIJWBOGTohx2UgSimWlfJYQ0ylWPnIhAkvAL+EA3AW7jVgAMOEGLRwM+bUK7rIAzNsNXN4AzOcAm7iAPB0NVe7QxcfdbH0AwhvQBlcADJ4Axprc/xXA2GcNIS8M3HINfzvNfvbAYbvQTjsMiMPNiEHXsr4IO2uw5vuNiMZXXzQKCAWADR4A6DF8uWXTmGTAECAHT9Wg/AIAApQAIUMNJCYtMhQQ5dFhdUwIM+iAEDkNIO5g93MGH9eGDNQUsq6g+IEANAp765e1HUoM74cATbcAzXwAsUFwzR8M5n3QzLsA2iwAZm/t3c1L3VxwAMdXDYZVAN8Fzd1r0ObRBRu+DVZ13W8BwN6FAGRSBbkriw8IoOdsB7BWAIvMbQDN1rl9trdsaDAQAM3NAN1xDgAi7gKSwKC9CDC9AKmXPR0qjY6xAPdnAAKYABGkDaQWLaAQu9bdwWZcDaPeja0VDFugEd9zLUHEU7qUYqWCo33IABc+AMTJm753AN3b3PknAM/mAGLYAI1NDd1b3P1eDd1C3P6MAEVCAK27AMQr7VcB0OtsDPQn4M39AKgcsLrfAJouDeopQN8zAJoiAKMU5d7sALP9gH7EZPgc0EBUAAZWCwXop93MALBbABBUAFT0sjGO4RVjW9/hvR4byIAQFQle9xD/OHiEboSoAqN2XAZujwukgMDsHN1ctADXIgDDNQBGm95Jo+5MvACxbABlW96eW95McQDXOQ4Ptc1o5ORY6cjeewDSnMo+PAz6s+PBHnQSDQCo9tJHnOEffwSHLhzIDYizPgDjQtF8k8VwJoD2cgYViKD+nQA0wQdE8tT9+g5JIeDcIwCBtgCN+Q6aKu6csQDbxwm7tQDeAe7kIOz7cwA08AnNi+1XZmmCJss2DF0CyLxJ7TvPLARExa2lu8E6jdkm2RNVxAABiQ8A1QADguH53CdTfRtgZo4lN8T3NgAkBHDU/9VcE93c1wDNywCz3gA7Pw/u3qvuTyvA2KsAJskOTpfvLNDeRlgAKNsA7AEPMQS+86jz/bcA647A9XfOzX0es5Qw+gQLcsh24UQAAH0AOLOx/04Aib5W+jUGDftRF9tA3OKQ5b6Orc4OPODQzgrQGUMAioEA0w793vvA02UAS3kORp793AkA238On+/fJMLrs7X4kXtQ6M10ookawBrxPnRBf3tNg/Hx+SAmsvEVLbPBFZUwYU4AzXcMT7hfZnnc7VoAFU4NXHEAseH/dbPemicACfAAxgL/pcfQzbwAYYAAvk7d3LkL97b5hOiRAUvyBEfxFKgQv8SBdkVw/38O/wQQ5mkvsW9DyUF58CUY9U/qAPtF9iX5/5Ve1Ek7AN6AwMYcANqu/c1GALbEABvJD63e8M1AALPoAC8XDzKB8Nte+XGeee6iT4npq8swYvarEXomtBxOEIu3LnAOFP4ECCBQ3e84fuDwpR/riBgxhR4kSI38Ztu3as2cZmx8a1orKCm7NjzpYd88RR5UqWKpdt+4TiS71ly1rexNkxmjA2IUShA+YsZzOS275RRJpU6VKmEi3O86fPoEBv3qZexZpV61auXb1+3cptCA9uYM0WpOfPUtSzbd2+hRtX7lepstixnZtX716+ff1q1WfPnylZpgQizAs1GAY269xtazrR4jWTHJcBc8emwadvLo/F/qI2tCXJZe1W9IC1TaNo0STdtWJ8jJpN1suoRcadu+k4bu7wafXGDPFf4sXfiiVrfCDCHP7SKoceXTpYwWfuTseeXbt2fVKD3LPKN54/KhqoodMd0WJllc6caSgTjbZlYEpiCWXN8dg6QwQoRcMvv5ycAWYbJkLYZZkAWTNpnKPSgzA9wbZyRZbtLjQOubKiI4ccDD8E0S92PAyxRBNPxMqVYu4aTi9nQpjDH2oeTC+b+Zqx7RhENPiEpAU3coaaH4eyDZgiZphtNQFxMukWFLhQbUmVqgknQiuXOmodr6axBkUvzdIQOqkcmabFL8880x5y7sALTTff7AsxXIoh/sfMuOrxpx42cGiImnF0s+ib2QJ86ZIigNjFxpucGcSTaGpbppo+ZmhjHWCkxEnBZtgwgRJ3LsUUyHNovLJUcL45ByqpALPHlWnghJWgMKFjBpR7Vo01VwxlcUVXX3/d6rkz4AlPr/FsQcEMd9whNTJUKZvvMnTKWAGRdWpiEpVBbrxJtmp66MEWbpQMVSVgxrGlgTKciYZcTJfhZp6HTL2yG3dw3UofeGSZENgzZ4WOHnz9JZg4gQtGWNdVu1gxTn/KQOGbbf6E8JsfT9rmgC2E5LalY9xtybZPBiilpHI9dqeHEIRx72QgCZzjHG4opjc9POmiZxR4EkYRYOMc/jGMZ6H1miYQeAYeOukPq7IirX6vQjqr3/RZhgBE6qnGSm5WUpAaNg6wpV0GjwnjmI43WmYnJmIQ6ux32f0EAy7GAdXljloJAIMCnOmmZt20NOsednpVGkSf/9LXl8IXd4vOqBmHnDjwLFGcre7sZEtge26dSqp7BAunjRmWwWfe3AKVz9x1PjGiiG06EtCZWGIJ2ZlqEGmhDHfMtnujY76BhQwUVAEnqN6PyQaFEChA4QCH/GbqqTa7kqqYoCPP7nC/BCNcaX3qeRz7gkyh52nxz8/LHnusMeWetOjhXCB6vKEnEHocsQKeHLyRhfJEinECPM4ACnjgwh8TUsUK/uowDnT0LT3jqAZ7cNSMdVBhBpfYhttwUo1BAINczhBGNXbRAybM4hsgK9cxwrGJELQhGtXQ4JIuU48Q1DAEM3ge9JAyjmz4pi2CuQPm0Ecc7fFFMF14ldJuFpjfDPEgbjigE6XYFn3cAx7sYJNgJmSNacgiEJZwlSzugQt22MMb9qAHPOyhxjoV0B9nwMUp0ECEFAAjG/FYRza+0SylHCV1lnHGLkxQBk2FyhlyoIaSPNKHAzQCQL3TzzZ8EALeQRJH1AhGA7YQggGEIBsO1KFktoGPJrqljFNUThH5EhjzIUwq2xBFGVpRFn6gciDTeI4tdYkVqeysOVShBzmc/uALNzCjSwORSmCcE5Vb3UqLuArHB9jgi0UAohOdkEY2snGOcdAsKSdckEnm0IBWSFBKaRvEbDaykx7gUBgxXJJ7WqGBPpwDhaFKWzPs0ABYvGQe7phZKJ0CDsC9JS3NaeUu56JKvaTlDP4Q4q/wNIkCHEACB2jk9IYoFVAcU6EfFYhgcDGKUfhjGszwxrDWQpB7tLQ7Gp0KVMDBhRAAQ17xiIc7lLGIWiyiF70YhzjckQ2nOMgkhILlk7ZhTkw5AxWxUFA15hACQ2RDGJaUzTKo0INPFM+Sy0DHJIpQBPecBBjLOJVAIbKNdYwnfFyRylpyCdK8MHQuHCURz6Ri/osDLI8CGNBbLupRSie2NBEwpetGBeKIYvgjEOxwAzuYUZD4fQUfUKFECD5xjnUcZY+oeow0aiENLNQjEv7goYPWwTHLeIQJRWiEPSEZC0+owxY42AIswAFPAQnDHY1YQRm28cfevYQLMWjEOiZIlGU4SKCqrWVcpDKNnSVWL3aVi1R8UVmE4SkEGKBAeMWLgjyhEiEWeqt1IacPlLqBHk5gBzyqK5ffjDUa3FRKN3mojFPAQRn40OOPjhENW1hgXcR12TG4EYZVHEAUCuJtbY6hDnAZ76vAiMYB2MBcljhjVKEcpV7gcYJlqlcu2JWuY6OoV3+YALzipUAIGuAP/qhMESGgKJaJxbcqksqiCyGFaIrnIYwGTKIeAW1KNrqZDWkEIRuxKEnbSGKHAwSjGvds6jGAIQUcZPCr7hGF1bZRt94F6Wu7ENtoQvkNLaUXLFZJqI7BNJYNEWdwQWaxBl4s3hAsgMaolIo3GivnyL3UF9YIwjRe9Tm58ANP3yiDDaJROkAdBR3mGAQqFnEZZ8ByBkVoxzsh2bU5MOYUZE7wN2wRkmAkckihOsY5RDEDKWQwhtXw5pW+gQ5V5UUqd7BGnAntFRTHxRTecHOu8DRJGP+1B+VFpZocMWzGCcsNDVuxXNzhD1VowBD1cG56zhGaSB0DFZKIRDaegIJS/mTw1ZgCRvFCsAVeZGMQ97EbSeKxkD+wK8KiMZs7itCDSYADyxyJRq4jdMdkm8UXa2k4tadSbLgw42BDwwc4BIACPhOgGsLe8T2sMVeJuxIhprDCyFcJFRQwIRqdjZDF2kMUVJAADLeAIVbdQQWGAEh2qLDbZaLx6Vs86qvUgAUG1vXuloAy5uMgLF+OVvK2UPwtiWBHRP01D2osQMbgzYU/omteeCSC5FT3F3gC2CWtuyUXGDCEPkyXHhguKBq8KEMIkkEKYESiZXaLRi564DreOTUlJyMQkfvwjX+LJm3A0IwtllubuQOKoIi7hxsshPY5J4c43vCFPSLuq1KU/qEhiJXiNAbNeX8VwxtWiC/q2wKVY5AhBttwxzUgZNQbpU0VTzoHUcwNiHZhS0olOYYhJDCJcSgJXnLwoJRIUg1eFGEFvMjIV6vxiRCUAR2Tz0+nK4YOPI2eLsGRPesnTufiwCP05oeVPkqJD/gvjh3XUX+u7HGXLshi9b6GikYIAUTAhw97INbynWNwByaYgVY4ISDhBlQ4BizIhytbkv3YhRWggmPIufYAhkFgqpy4jHWYAxPogwhqPBFsBkkqgk8Ih0qSIT6Knm0bu74QjOvJP66wurYYBRzMQV0xhZX6wTdJC2Y4AW/AP18TCBtgAgN8IJlTCY8oBQLoAwDp/j2TAAY46IRxyQ9gCAcyIKeS6JjnM4eDc4kgCYElIAqmO75ogIUG6IOsKpe0SavIgDrjSAsSA7khFIgdNAt92UM+/BJ4aDtBvJA1sgIoeikl9IcpbIV1gIwI6UC0kQ+aEsNMMYdOAIQQXAn3yIUQYAJ1wgkFUwJzgCcFcYZHaIBNyD5LMgk2kIBdEEXEG5VzmMH0yy5/mKxA5EM/BIt7UBFDzBVrAAXRE0YT6Q5vIDF/mK+5QAhlKIMiqIZ5iETd4CH5wA+b+IY+KAImsBR44kBzwAJuMD6umQ02aAFDiAdUYwkF8QRUMLqbWIZvaAUuWIFmaBc2zI+a8LQiwAde/khBeTSEPigFdJBBVJka4zgicqg/zvNFr3AfUEjCY3QTrONFisRDfwAFS9iZhoQaPPmEFbADf/gGp8uN0IjCK3stUTC4fVyGWDgFVCjDlRAGekQBKqiGNCMSYPAEU+wWdOgDCjCEcAC/kymJbSgCFGgF1dBHx3MGJjiABjgAWOiGZsmGefDIs+DIrKS6h/wKejg7jPSSiRRL7FAmJzAFrpyKwfIHDGACNpPB6OmMlZANUQiAR4Aw6XOGSBjH+QAGeqCCA0CzplwJOZCEeGytbdAAKuAFBEO8/aCEBjCEAfuqYwAsCmgASjAK9ViHQtwLcpiGi+xF9tsecniosnQT/jcITdTMjv37sSrqi0YYAAqqPNwYh0FxCWoogi4jTHl0Bm5QApNxwxBgg3Ngx9bIx050hkmgAEqwwFELPCZAARwJSCZxhllAgQawAAeryrQqKOnwBVMQzSH0Sriih8lizTNBwvSUjurxBTXyTMBIJjw5hm4sndqMnos4KrSxHdxhgzGrTs8AhlgAhl2ogxCYhDHrzZWohjCIPpL4BlVggh4Qhmwww310j0uIgTI4hwD1GJKYA2/zgR6YA2Y5FfLDxb0QjGljz4Eoz62wopJqURTBBW+Izxl1C8EAhVHIsbdYlWsQiDnogUuYh7hkittkD5IAkCVoAlFYhwvNj2Oo/gVAIIIvaAbGO5llMIcwuDJgUAc2WIE/QIdyTLDfXAIcaIXmsyRgWAdYCAEqiAZqUIdlcIeK2DazVIseTc8XBYxp8EEc/RBfMCC1BNSpQIgVySu5yIUViIEZwAA4NdEHygZzAoZz+IQFsAMUXNN1MIMWiAVU4EQZItBoUEyXW1CAy4ZWEIBGSBsPZYkJewIK4AWTqYlqYLOoi460AIUUFUY+zQp9ELRCLZFgJVRhJYgjKrG54IIGoIAFYIM9spJJfBkfsIB5OCtXvAwCYINJVQIuTDDgbAQB6CdX7bBoSEqbINeZmwUL2Bh3OYYaa01/ILGwRE1fvQo8KYbGwtWt/iilGyWIm8EzusCVfQUMgoC/gYW/UlrErxgOUjoLcjAMgDVWuOgOXHio8eQKKmgADDiAMuAGI1WKpSokm9iGPoA74zw6Z+CCBjwheEkD2vHQWPsEM+iBkSgklyFZROgBLrDWdEWba9gF4dksk6HEbKiHGpwOC8HY0fS8vXg0SYgFs8AHhOAGUagGfyBYqKklamDJbIMrgRCGUpCKo/WKJrIFWDgMhs0TWLAFgRg9PHkNXnBbr3A0f1gHUTiGufUKwVgGPhiHPMnaifUKeoAif+0KURAAAphKhWsKBPsdWPABKoAFLIUkzEAE3Iqg1dBSOMDHgKyJcWADFPiDWoA+/p/9nV14LROC0taIt1kjg2pIJAYFhz/BWu2QSMNl2jrTi50DLAxoAWeQ2K1AByMALw3AAcf4im/wgeJ9tjvdCn7QB154MQ1gA2jjCn5oBRuiKvrrilqiBA0ILwwQhcAtCKmwAz6T2+7FkykQrxWghq/YthboXW8UXB8tBkdY2q4AsFu4hirBjaO4hk48hm1oBA2YBA4rLsyQzltASZeIhjSIBMfMCY1IhsUEhkQChjI81Vcl4AJwJAnGJ16IhyLQAFhoYP6kkW8I3uhwhO4BVHtlqXpgggXgswL4BvnbinpwhxmQgBrGhxVey3VoNgxQgD/Tiqk9hrwRLwUoA6+F/hp9mAUB8KsQOABDCFiswAd+mAQBEC8MEABRWFiswJMyKIAuFgBgAGKDwJMi6OHwFQBqSOOCgAopFi8JaAF3wN369QcPQc/tuYci1Q3cBJIB281ZLLNmsIUH2NbjxJEgwbfauIY5KABY+KNjeIGZNCQF8YHjZeRyQToNKFFUi5Rc+07lqB6PKlQYdlt8sAUuloBXloAQkADrvQr6oygKgOVYbgFaXsuHoeFcdssrjil/kGJgLoBmqN2sgIoA4LjxKoB4KEQdDgBZhuUQKABeNghSogYBwIBcDoEihleo8YdWUABchmUMCAEjxgqEmAFqfmUKKIBPSGY9/tpAKIZi/v1Vg9yNSY2WIKEECegDS9E+XjADCrCFK2O6ZYgEOABhl8iGUmi5T5mPY8gHOfBJGYpTRAiBPhgzrMoGYKAWUbgGC8MRUg039cCOYvCFPk5l0pwLPOmBXH7nFgCHrYAK8JLpv8JFqFCAbs5lXMZmgviNbPjln2YCYS5ff0iFPRMvC4iRwP0NNvBpWG5WeX4rdp7qdy4AYchhfwivnC6AdYjjgRBicz5ncKbnr/WF/ysOmPum2UXMjoDdFigCWLBQrDoHQxhAORwKakAFmbxZl2iGcNiqSXhAB5YESVhd4buyHqACJ13sodgPIS0D2B1Z22FciHBehdTItMBntFPl/j/76p/GAGCwaX84gKzuYQzYhtMuANWmAA2Y587xB1goaqrGobH+DUP4q2ajgKPWOoQog9F+Zwmo3sCFabN+ZwWw6qzAkxVQ7h5WAGogX3+IhuXJabRO66xACEsIBOmwh8wGB5kxp/3oCUWwwlFTsMGbpXjqBCyIXXO0hXnja65ZBpkUkAJpBDhEwOMBh7XJhXCiQ/FmM+lQzfw1xNAWDCoo558OgUBM7pzGgKAmiJuObqDeQzwp4592gCbWut84ho2FMQyQzNk2CKlQPuWmgANohfRDCCYg7h4+5vTCkxa48AJwh7GOCnzA6Z+e5XDe7ql4n+noI8d0Bl5op2sg/lOXMYlWoAA2GIfqVLBFMGSS6AMCCIoYIgn74C3ZiIEQUAdLAhJh4AUB+AMvcwnIAFmIIFvj8IZmNNbQzpNqKGMHWG4joPCBwAd7gAUCMOsVb2LypT9EcOVX1htFwMUab/A2XoAcP23wfTHw2gB1xgqoKGNzxuUJB/Je5mZMVwAc2vSCIKVv6HStxnMdF+4D+PMAOIYwDnKD9Ydi4tXEaJaSbGRKXAaTvQSBLjPbCIYtMIEB7uQJXgYsuJFqaIUZeIJwWPKbyIcwsNnaqQY7kABrAUhIEnaa2oXnpMSKaIpvuNPqpiJ/KAZXYOk4d+m7wgc7EIA2DoAeqAfPlAo2/mj38AqAo9ZxgfgNKqh3CRAAMshzoQYHDPDzFY9nE58K+nMGqQSsqGxbN5MKWDiASy8ADQBerkCITyiAcqYAKRZrrsATQud4AcCBPEHaYWaCAPhqATjuV6ftw5r1ufiNB3kQx+WGXcABKtiFKCkuYViHRyBOWysXk6gGPPDJbaiCGVAENa0NZ/CEd4zrZmBTWMABJgghomVyNkUEGqhsCVIQ/FQK3c33PxSM76ZnOR8IZzACCiABUdi20au+G2qFUNeKUugBDECNmPeHeLCDFui+aJj133CHOUABFHjWWZcKcOiJFrCDzc4Xf7iGvGuBP6B7cT4GKsCAGSDAX2yF/hZQACMwbZfHimJAL+zgB2Z5Fm45lz9YgFYYMJ9t5HXAgRkgabvRxG3IBUzNBWl1PADxoPkgiXXoiR4J1XNi0xnogVmQ1rTpBvGmiG/Ah0dYgRWw4s8eCIQ6+3TXi3vAB2zABr1P2/AHi/n7Q8Rw2PFHDO4PHMRgy/FvIu7qivgBn/HXl8Ya++0uhiTKDnzom79biRgACCbUljUraPAgwoQJnTmjdMAQtWMKJ1I0eMxZGQy2ohGsWHHQIGcHhfXoEU2ix5QGGdqSMOcbyoPVzoGrafMmzprneMWggOGAKH9ChxItavSoUHLF/N1D6vQp1KhSp1KtavWqUG5DeHDD/ipVX71etbz6szevnj6s+szaw4cVX715Td/Wq+cW672zd6/mRes1rl+s0joxJWv4MOLEiqmmZRZosddsIg0uo+aszwo28YCpVLkMXCs2K5qdnNyZ4jJuoo6kMQes42mE3DyFdAZMVAND4WLGVrismi0mGIKdROiM5recym+iO7bCp4BLkP3R82WN3fTs2rcj1sqVuz5yzLiTL2/+vFRv49Oib+++PS5Thd/fXVdt2TKRwLJ96lHE2Ta89YYQMNsYEsIc2zgD24AHHbOMOlSEIMoxcHDD4IDLHMNNGOagsMQu1wjYYDMantMHBn1Es2BBCwI4TnLLLdfNN/hsIcAB/gc0cA1k5FhjyXtBCmmYd11td481iQy5JJNNGmWKL/6w5ySVVRrF3nhBuhUPjNw8CAww/rCBQSuWkZiQhvWsUEQu0ZyZ0DHotOISacfEEotpJALjDhEC5GEZhiTiRw0NTNxiZouVfTOOjDJyM88uFsxxzSSUjLNYU8UsNaWVnb5XJHj2TOMpqaUq5o09nJq6qnvMnFGWkOjE6A4vjazTEhPgcPYmQtFQUoAh9/GK0DJlULALfiWigkc1b9qGQhHrDPLgsM0siBtEgWbTaKPjjLNHAdyc00023cwDmRWosrrudqBuZw87j7E7L71EgTLNXPXquxg849kTZD0xfnMi/o4HzLDJNsDkeeYy2+TCxQzBVDNig/lVM8kMTHyTrLXOoIKKm70t4+YcJkyyzjKDxOLJhQxXk8sWJgSTjYDRgBMjtzct6g4sPTzhTzTJffPNOoj9y46SUu679FXuaqcPPaPAwzTVnVrCzr9Va10VOaPQo2p5+qyDs4IFhIABBWysQ3GGy4yDWRlrBzrggtFEw4QPn8h9kG2AvBbbMaD1sIQzJ1XmjByx5JchMOggEgIb7VBrbX7cMJozTtyscw4XKMDizzWX14QO2IylBYol9Ci9NetGOa3dPeS0Pvt7WJdOO+v66GOKN+2lNQ+MN5V9NgZUbFNtfs6s0MPIczcI/gw1sBAwR+FzcxMJR6cds04ZB8xirXGoKH6R9s6sE0IRvAx0kKKiYw7OONzok0sDkxzjTjc5bXMuXlIGUUzvboc7pr1uOvqAxx2iNMAFZoceXcAaA2mnD3b0zj00Uc46cIMCDdyDbbFhCCUC8D3nVewbS9BAsypSGSVMzDPHgNz6FMIhYJCvM9ewQwMoEcOV5O99OEkOFVZwHJzhZBtFwwo9puEGKQkwgvoqYHbYgR0nUtEwUqxi7u5RDFm0Zx5E/OE63HENdQhjYSLjRs+WcLwavgk/20BEC8ywDmGQsCD5IYUZ2ceNYPwhBIaASR6bcYxqUOMIYArZRI5xjlZQ/mEGK6ph8s7xRcyNAx28mEEZ/DG0RtWoKgf0xxmmgYt8YZFqUJxOMUZVylVOxRuy0B0rl/avO8AKPP6oxzp6KKNv0EhYgmrGN9rQgz8cr47a28YyqNADVYyDjahxBh7yQTHbbKM/T3AGTDyCH24MQhKoGAiGNFSNPqDgD98oUaKccQ1J+hB+3PjGPLawgs9VY5I46UY8qKI6dlgBF7hYXSz3dUrI4MISsAwoUgDTRNbhgosIrVdarlYet7gjeD4804OigQJDIbNazQDGOEpxAOplrzPLQAUWuIEmXtSjDCEoRbOMSZlqeAIYtYFNfsKxAiYAo6TWOgY12nkTavjD/hYPWcfYfAhQpNjjX26wgioX+lBSDXQx9lDdVI3CDyntJYLkkF1W2dWUx2SNO7ISKjh8GZvfNIIAmwCHTE/zmyc0QFeBrIgzvJSQaASjAFtoToMeJAdgoGIyI3vEAERhxmVsEq3jWAcTQrCNd7Zzf1KhxwnogdWwPnErRuIOAtlByqwmswEheERXutq6tLgiS5xllSPuUdbsgGUb7vNhy+TKjVv0YAbqOIYH1wqgTzTADujYlciAkYZYhOxwLm1Fwu6qwmZQw5uS4IY0ZsGEHtSJfUFF66LiMYkVZPK7Qj2iU6aRCFrSY7avZVdVF+MKeIw2oPqYRx90hLYDhKAa/guEGi6k+t4lscMU8BCwVdyiD3R047btRKQ2jxEPZdoBHME9jTOACoweMKEUgCWRbSLxoO0ZoghUqJ50U1KZZgyiFlMogtomV6JozASt3KhHNLhQhM9xA602AVvWinGGTUFFtQNuUnwVUwx91DeW9XAHASgg5SmvwB9G1to94CGfI5dKKe5NTFrWYVEfg+McPqXIIG0RgjLkoqPDss03PoEBO6worhSxzTFOoo7nAqpaeXaGA1oQhrwSpNDVgB9aqzGPVBwAEejIJZlrso64CCVV/rDGHUbxZaKApS5ctlKSE+ML+TS5lPXwxxwWMOUpo2AXAwyPKj9tpXtYZzvo/oh0TlK8IEUcABYs8mjgihACRA2LG2kYxDIOQIYdVusafQgALK7BTW9yBpsOxlw19FEEG7Tj2kL9BjqE0pR/dcEUS3HKVu3iD27oAR8IlnW7PGseehD5oaeegQVWLeUJ4S4t0xgFvKsENVlUEDLx2AaucTKOu1amZz7YjZ216YxqPEICdlgHLyKuwmhAIw8WaIVeh4WfasBiBkVoBw0H6YxBeAIVyiAao+yZk4G54xIh6APoZO7DblyjCAE4AC/4oQR+ivso81gHNJLBiCuw4AJ0uGXAhxTqw6SFrFM9dRkaoG8KeA53Tp1P1Jdkj3skLTFuwaUuE24TlaJpGeFo/gMKGrEbYI8DFk/oASwClOLOxGkSG0jEM4ojcgC1YQaTaKEdU9OLbOChFp0ARzbi8Y1s6JwbB2fCE2bhj2p4+32T70YqBOCBFxRAC6fAzteQsgovyGAELNBBDbxwy62G/VPyJo+/R/XuAdaDGgIIwapD0ACoz47Jsa69kJqSOsis42Zq/+E4FmcRuzWAzWrllSLnEAJENA95nylCEVqBijQwu0EZjgYwUFAGWGxsJb8ZGIyykQ0sSOMUk4ZRY23iX9z0wR1J9fHQZMNjiQM1gMEGWEAKOMBYLJVRVMM60EENwN4PQAPyCcnUGUZjuAIDshKTzcEBTBkGNAA17N68/ljDEpVaBeKeP8jC8WFg5z2fWo2MHViAKFCDR9nRMfTW39xgNLQCBmwBXDEE8jiDIRRAK0CYQdjT5NUCIABCLVzbOtDV5qndOMhfLSjBNvweCTiAKmxgUbiFDsBeGFZCCgbJBRrGvygJCS7QHPQACvRAC3QDCjJNWjgCdZThe+iOBs7hV8xDjz2fjIzDNnzDxIlCSSCTxqEGR0zCnM3DhckVNQQDGzRANETEhiiBwjBM9JQEyuCUM1DDtVUhODxaPgDCKZiiNCiD/OFGULwT/g2N0CTHtizKOJzDOjzaOkhDNohFLyjBOgDCHtDANtQCLuQTCrJHKLxeDQiCDsge/v/g4XmcIVk0hSOAVVbNRTScg1BcWdUoH9hB43m4khd+xS0xGCDKSDdEAxuwwSS4lCisTbVkWDUEwwwYAS9kA3K1UZxQAgyhU4kcA/ZUzPZsVx+sww6en23p3M1MXj08Wi2QAi54Ag4YwSDgAjh0wjpkgz+4Az7EAz6MQz5tgz+sQz7oYi2cpONFQi8AgjLEgj88QhUUAiHIgx2Ooz+cyzCoAQuogBckwzAMwU3SHjiWhzROozeUXVZNyRrOiy8oCR8OZWI0xRJtGjk2n0I+n+UJH38xAXUlIkXwwjr0gQRQQp0hTzNwAw70wCwQW0EAQyxcn0oAwzfAggawATDk/pYdXQOieV5NdMUjYMAnZIMyLAI+YIEynAIWnEIanAIeSEMkYME8VIDjpYEyqGQvpKI0gEM3aKMRFAEpmMKWoSBc+IMg/EANqEAouIM/qAEFQmU03p55hMdmuea6HBhtngc5LOU2Itw5Nso14AN/hSAl/Fq1RENJIJ73tcJD5JGGLNfesU81sIEG2AJxtghvJto8lMSi1ATlecs4zAM6xAM4LJ4yLF492KKY4R9OGMMBPIIsjIVU6YM5DEEN1MAPyA/t6eZtUkVResU9xMts7mep3AE5UKWAHkZTWEEtWYU7bGdvOko9NICELkArVGfFWIYhmMAc0MoNVgMwlIHM/gQIRdBQbFxDK/jHOeygQUTDWbUT0aADLDxAI/iDeS0K5U0ejgqNAFKe/OUf0VCDGWhAOyhJbj6FW8wDK6hADfCAHtxSWvDDqR1ovH0HekyDAkmpp/jCuWHpdFhCkVLFka7DHz7oLn1DKzBBEfRB+Q3IMYzDJzABDgySM51JgTRCZkDcnbXc3l1EdAKmiKZTg11lTlxDB5VENMTDmCbcN/jDJFDAJhQDLkRJE51aMqiBCrCAGvzCTXIpUcKmefiIfnJqdsBDwYlqYlwRg+YfmTbK2HADEgbWOswBBXxCWYrcMfhDC+DdNRiTxyyCPybSNgiDBbABL1xfwzioD30D/o9o3y5UkqBiTjdsQz3MwBqYAxr0gjUixX2RZhiiplCEqqlCRX8axhkUaLguSex0QameK1mki4EexbOu6k2MQwqB2CBRABNYaBtdAyUsQLaYlIoqxCBxAZkszMjEa06MAzWYHDpsCyAOTEs0gim8yrsKhV3wgA5gLD5wI7smxrh6RVr8E7h2LFaQw9SQLFlM0FMOheS9oLwuh1eWyH38AQZMwp8OyzHMJRugQJ49okFQAx7IGEJQgypkTDFRxsS5rHJ0g5hOggVIR+g8H9GoYwQUWC/coVOkRT0wggrAHiP4Qz6hbHZ8rFdYAxetrNgihr8BXNpiBSjQV1TMw7i8/uy3LVxvZNg2qEIRPAEv3GwbNcM2/MEMkAE36GtFRAMqBGyGFQ4V4MAnuIOKHuyYvc+NLcPeKlqiRhrP+cMn0MAU+AMWVNpT4OQVyABPJsPstS1kkC1f+IMliKzqcse/KGjFxi5RFEMgWNpTWCXd+pibeYYw4BcGPMLRDl40ZAwsrGlKVAMgKM5B7AcsSAAb2A2DpAaZEdUfNEArbA7CNorm4IMN9AA+gII1BFDWukUcDAELsAArqIOV2e5isO5VNIZNwq9h5ObI2m+l9W6kDY2dLY4EFIGF3WB+tEIAfAL4mB+YIMQ3UMECeOjCOAOZTV48hMBf9SbRiEIB3EI2/tzBokoFN0BBfULBZ+mvx3qqeThV7SKU7uRvHvpDF6yFCUPFKIBC1jYo/+IaXk7EyDjDHDRAYOZjG1EDMBTBDChIzBYE4uJBRDRDNXyC+ukK+yRt997MOoTD48zooUltPfBCGcRANiQCYdyDAKWFOLxCB9TAEDzdPHDsDFeF/F5FGtavk33hvijJCutv+SKF3FZxDheRR9wPJeDAFlDXnAokOrBBD8SN0GaIOaRUgLCB4TWHaUhuFfOIKDRuGGVupF3DOkzCDrABMiTNuzZFMjCdDHhBVzzjGx9GHFvFWrhCC2bVuXwCFTABFxQN2lIJPBRD6rUyUjDDLI+kqv6x/o+9qkVsQxnMwCUgsZ8Vjn/kQvu92V3iBhs4cfXqJXgRFRuEgCrUw+RGGjd0RQusQRj4w5aV8anRQbe+wqm5cCu/8lX4gmuFlVtQgdZZQAgswIzCc3n4AtsCM1IUQz1bWTj4sTErnA0qhMJIwDUlsW9swyYIACXsqkctgzYEARVowEXkychE2jmEgwRwgR+eIzfcw0RPgjyYAj0IJVK4BTdkbA1AwVm4tEATCQq3RyK012shAgGgDQXoswS4mljZwz/d9EDHGj7gT+fBoosWMwYTy4rgECzAI/JQQy701m/5rEpM3CdsQBlAridyXhV3gztwQ/bawlkrLbS6gzRw/kEP9PIpfOOV3BLXhiEmbCpSnzCVBok32PAuLxAuoQBQT1kDcMG86MM0yEKAIvWpnQI2CMU8OB864sNZsPXNnMv/5YyyjjPmDMyCjFgGoQAVXATbcIxnHAfcqSlXp8QgNcMTLEEicEMm2hE1NNh1Uq4+6G0VPAonAyA4iMkSIAInKANhCNBo0gLTYeozEN9ed0dOn4c3NjYrnedP61sDGIEbU8m/OII/m+q5GAEJkMD2XGU3tFQRTAHncbY7GIIP7AL+5EwtWjY+IKuMbIMkKcg6zEAPUMI0o0meofadXcQthAAVtMJ/q9CFAcM5UEJmcAMe4MlKRO23dYUdhMAn/gQMQg/qWc/AHgyCKVwtXRPFXcQBD5wmLZzLdj83f0a3dNuDE4z4KtnDOnwgdlfButShN3w3p6aFITjAC6TAAZzDNTj1zOEDG0iABBwAG4RzTqDDJBCABFAAJbgDt/DSJ3zgDKxDbivHN7gDivgR5BxPSvRBhRpTfuBGK8DlMxmuHW0DFVBA9rxGRzgDZv/QODfAFnDJOWYwABibN1C3HT8D7MnAFagmi6+ui8emP/jINcZDD2jdqkkvu7DDNKwrUqfFJCxAvhXATbbwPLiDqI+6akbBAih5Dwyid666d54T2ig5FdwDq58Drdc6jwQAYSuA3ijkOhBXCISAAPCC/m3gB7EXewEveQGUwUL7BkfMAH8JgAAgZ0XwghHUbL3aEUe0QgO0gV1FgxKQwYqsU1nfogdygztssdr9KIfJgyzgw9g9RZhhggrIwBB8bZQmumLIM15MA5DweL3wQgFYAAZggPChwAebSlr4gqTie1zggI6wgXM7xR8IgAMIQCbFLRN8oALg3Be2sO6oZgCcDVCA7TyUvMmfvD9IiD4fQBlRg8u7vN3EfDRwwyQUAAVIAA4Iw4owBM9n2DyIBsZMOQa0ADoECnAdPTeEgAJQgACIAg3hxzFswy74QA9Al0TwQgg4gAL0Fzslq399AiHXwzWkXf+OQz3UQQ88wjRg/mv9psUvQIGSqsEq47ui9/WQ1HBWbdUsrEAAEMAAMIF/+bt8WQIZ031ajEMYDAJT2LRW4cMlwNi9Q8U19IAElEE9MH5RNEUZBIAAYEBgPEU88FcBpHqZ1fo5MEo4pH44fHLnO0AP0Mg2xH7sU4MfmsAW3OrvcV0IrFs39L7vy5/8mTvwUcAB2ME4V4Mz2EMfXYLNUEM1bMMkCMALOIAEbG875Y+NFIEuWDkgejI3tIBmoIE/TBFS8MM9nFocRKAKvMK3Yj7de4W+g6w3FP5UWTbGlfy8wMMvv/9buEPkQwVA6KtXL54/gwcRJvQXrdU8hQ/93cNXhM21b+AwZtSI/nHcNSMFHHw6t/HbPDsNVI3kxk0AhQDurm2U2Q3fCgoYBAjL9o2buyI9lo3MuE6UAgpHW62TuRTjt3PNNHA5d5Fp1arc6m0iMAyNLHoQEd7zV43FDxlX/DkEu5ZtW7dv4caVO5duXbfchvDgZpdvwjPe7PUVPJhvvXn45oklvDihPXZuGEeWPJmyW0um5N7TF3fg5rf36gmEq5aq1aakM15cJ6zIjLEXx3Vzh8gfNaFWu2XrMeOT03WlTLAZS7KeIRIt7PgrbfXbump9FlRz122caetN3S1b0sIfHIOBwXqOw0JHjVdpK6dXv579W7x624MNHMgf+Pj333rGL/fr/p2I+wEMsDJrvBFwLf3eqsefdZazaptruKGquXXsCEEUf2JK7Zp1rqnuum8MGscdapiYYRt3qlnqmnpwgccdbq7rxh9YUGBjndius64bcPwpI4ZB5OnEIMUeEm2VK1hQQQ9o/FHQwCehhPK9vaCcBhR7EIxSyy03kwUXf7LcUswx/ZnGGjLtssfDHDPiZp1oJOjjmHi2WapB0775hhp/GtFAlHHQubMpcRZRRtCNuqnGHxqWEEWfPNm0iht8djFhD3AsOactfNKKowYZdGDFIE7RLNVUvqaEUixXTm01PrEgs8/VWePD5Uta3VqTzWvm6aOBXcaZKlLm1mntm210/pXpG3F6kca6bdY5pgFD0BF2WKa6WaeRBpZBx7+2NnumvBqucBLXc9H1J1VV7bmjwHThrYueO+6RNd57+7JmGnwVUirSaH9S7tBhm6tGlQb+GCtZZfNJY5xsqmouGzYaqGYdGK9dqrprekDCHycK/IqtdQRRQQcdQkGP35W3XFdLUOghkuWZ9aHHlWlEnlnnt7xxBUuW8eFnR+vcXGcOHGiLJmOZxtmmHl62sAGrDPF0JxJwBP1G0U96KEPdoZdOLRyTaPAEGSHrAwufzYwZQgYZ1FAnLX52rns/l6GkxxdrNLObX3vgKYYdvwl/CJ53dWbQNGr0gWUFKnpCNmyN/vZEBINPbhxYJnR6gVgmZP15ogde3NE80mrmGceCQryr5T+I+HFSjXF/4TTMwnFnDO8nxbIi7dzP/coJ4Ik/gxx78cUHbDv9YYMCZ7i5bXKsFdWAimqkvy4bfHLAx/PU1rFlgUaom16jbfQpIwRU+LHkdbAUTAZUGbzwJ2ji8dc9Lyq1/OqM/Ge1mf8hD4AzYwcB76WPhWENHOvIBQbMUI8ImQ9r69CWBiahrms9DFLgO0YfMOCMdSxveg7swRLk0QtZgOlAEVGDyXTwiybRrYA1rMvuoAQ4WZzJhmRihyuK0bce6iwR8EAgvPgxDxJ2Yx7U8MMMUoEhCoKDG/qw/sUXetATjA3rHMpYhDs8V5JJFIEL+LDW9LIVDjbsQBfIiERgZJYQfXBqFW5TkjmaNEQ9wgWHT9oMM7wSRxvig1QAqpcvWLhHlo2CVYKMV+w0Mg6L7QIFbaDGPLY4uW/QxBAhmMQ8zjgsdxTqItfoRjt6YARe1KOD08NKMhSwikV4CUy3M4iCzKGGGrBgCOdJZELMgYm1KVKRfYySG+Bhy/zVwx6d2Q894NEFYuoMmnY7xzXqtKc5PCAY6BiH6XKUp3CYoAjukFzYuriTE+1iAJRwxwKXxo15tKEB8ciBPwa3Fn5w6hXlgZu5ICKugUxTj8Z80nzI8csaXgMWsGCc/kLTo4/NxIqg/BJLEPyRM5a5IxrUQIe0tvAaCjbnG58gwC4waT53AEIZDKJCCCRIwqV9YxzrAEYM2CALbJzJkcAsmQ5+kDK1gOUZNRgoRApZUb8Z9KD2sAYibTgPQwzgAAcYABsUFR9m+KIYEFXquTbjC3jsbB1mEEAD5hCDC1FjijKaRQ+ocKJMLm0c0jiFP/rgA+FQDY3vZIMPKBEke/R0VHT7hQxqUAM13JKGRDWqk16RjGe8Ah8DfYUMv1o3phpoM94YBd8AyKk+HAADR8HAAZjQHn1YQxZdJWxmW7WZUWRUZ6ogAAYs8Dw6TfEazSvCIwRGQW5IoxdMKAIv/h41xWjMQxQraIQ/tLAOZfojdgbxgj+ZBJeiDgQf4zGHOFgQB4OsQgaYhe3MNgulYnR1unazRQNye5SjHKAU6+nSCs97r6/c84jougQBKGCBGRwjezNFHQaKUFNw5igb61CGAD4Bjm9OUVFbCAF0vZHPtSgoFCdTASOG+pbtrmN29vMHLVhwniHowav5hVd6qyTN/tZNFACW73w3oZ56JQKqLobXZg6oM2fMwAIYYMM8zOebRhRgF8OZYnN6oAByTDjJ4HAHLBpQBn5gAUz95RSJEfsDGdajsW55hgzMcYUhoEdBcbgCFH6gMh/jC8YGUgx9Wmw3k954vsBVD2R+/jfncwXGP69F1zUagbkFR6y3s/DBEtTBE3hGyin+QEQIDGEKZyzaNNy4RzXEMANgcCIb73sIqVbxAxXUgA4FAehbkqGDK5BLNOjhgQr84Q5B86vOdvYHM0DBDPzNIr43LsAn0kOORMhCH4beNZrs4Q1As0w/3Ji0dS7ijyj0QBXvpOA4oneNFXAhF/KoxfcmV416lAIFfsgGLrIh0Q2rSw1vGwItDNLegOpAENxg9QzjAY0f1EC8r342rnodJVCwQ6OFY0IDbmyBIiSVMfZw6lgPni59ONVvpZvpOKKxAjZwI1BTxAqWFd0LPCDZlfpoAwXOwYxEtKW6r6iBDlhA/odR2aWoDqlEef1REBYI4hc1kCHFM+6qhEPJEeTgIe44VYQQNADiPVjHZDZDDm/MXN9JF5M+4HGHfe0siZwGXzREkZPpPHkd2zACBTCUjXZ0Ih9ml8k5tuGMA3jtBEPSZ669QB4x55EvZ56HQ+BsEDVbVwch9rrS94crsUib4blzyCe+UIY+EF4y3nAEImf8+DHpwxvMCD269IGOYV2DUihgghllmrE84dW5r/lGPBaRjWtXBdwvKsIS5ODG+hDWM7RIrA7EO8O+CHwgh/+BHl7xg2cE3R9DWGyZRV+qpfPOIKY44OnvBVDwx0UxjhCLs7MvpmkwA/3oUtyH9vQE/h+IAh+tnFwVm2EDKgijHkP7Ri8iweOuJRosjQb+oLWujrCSyB/awQve5geYhJAGox4icDOqwRy4YfpIxRygwfHSj0y2D0o2owsSavyUSizYQZq67gPFxF1M0FUg6TqiZxsagA1I6ttQp5NEwSkkJB9qIRzsDmtKokRqgbXy7CB8TgZ+YARATECwjwXFJARzyB+84X/ar6K6hFVeEAqfhBkQZ2cKjCQuZrR2IR7mKmy+iWNwINIaJBuwIB/QDdvO4Rxs4QEKARl6ocfYQh1mrQZ+QFHuhwsJSgqn0B8cwe/mrG8c4SsaThBNRSykqRH5RQCVpRvWrQeYIKZGCh3c/qGTnqsaGqQeOiEb4tA0tqGJqEAIaoEcAIFulIlUQoEHWEAGBMEhkM4RCyry4qVmHmOsJFGpRCYQiiFmcBFXyME/VpBW+CFrzqEeXkoY5iEImeIaRiQEysAZYGIpsuEUlCFS9uITNoAWAMEUlKGW4McfoCEOVIAFvADfJLAYp4kQt4QdcMEK8yswzsASthAeDYQdBicZacVfNKIbzuEYDkAUqOH9zGcv+sACbGEOmeIcaiH3Fown6qEIiuAYIOMXEYLD5kfnTIwf41EX8SUw7CEQpgEgC4gdzsAkRXJW5gO/dIZTqMYprmEOKAAYQkmT1qEZmAAFMGRgvkEazmH3/rAGHaqBFxqAEghhHRKqvQzDbQZuLwzuJYdIHrekXgzRGxKKoLKOHWaOHvbRKvcjMHChK3XmHtzhHr5pHlShB57AH0rOfGRjG/4gBC6hNoilE5Th2sBtHqKBCWzAHUwhG4gRdjxjFcjj30DjCcnShrByTArkf8RSkX7GDbxh7B7TVWpGD3WGF+bAGeaBCnygvkCRgqqBUmLgC0TzDDXiImqhE1gpYpyB9n5hFHBBM8HCIaph1lTgCphEJTezcCKTTJRthX6mhwKjGO6AHDhyOMlEFtyAHoQTTebIFkgrBDTARubSfBTlDzSAF9zEdL4BHWqBpiJmHPzBBLbgG5zA/hr+cd4Y4Qd0QAUwwRahk5iKc0wCwxq6AB6eE3fu4TFAwdTy01U0jF8cggJCgEFdwzXDZhssgAvWDts4BxCi0U7OYR0+oQEmYRrSwBzBgm7MAQoSS/rsxzEPtID2kz8NIhBcQdgM9F6I5NWazR+KgRkALUBXdEtA4RDHUkwUBAUsYOqoIEOnZ0L6YAWQja9MYx4AAQ6XYhtmZA4wAB98hx+eUyzwQTFlgAdYLCR7NBfhg3D6cxruYHB41FUcYhsmQRioy3ZEpgvWrz6qc0zxQyxkATPulEv0QRhWAACYwP4yZhyowR12YQYg50XYJBsioRYYaCO2xxAwYBLIARdu/hEhqmsY1CBJvGAYmiRT8TR/WvRUmMEahifQ0kXXesAEMCAEYqDJ5tQaZHRUcYUdSi9xIMYorWNP9kACbCFz2CQcfHAnSIIaQ+ALskEWZHItHIIRbo4FMGHnbJVM+UdADcIKvKGrglRANkMDGlS+MAAapsEbUrVbq/U+mo1Z0zI0pDEjxkEdlsEElqA2zO4bsgEPTkH1IgkdROEAWmHL8o0t6sEdpFIHqDJd96hUT6VmsnX9uhJd76MMSuvGDqAQuCyj+lRhAUQWdJNlwoYax6ENUKC+qIFXX7MXDEUjsEIZlqAImFVIklMh9qlJQgGGWCw0VJRjiYdhW0Uri4Ec/pAJMyJC3kqFbqgA4m4MAxqgSa6QZ0WQHgKBHJ62VWZzWPaC3f5ANGPPNLLBHXqhFvzlG3qLDZYADPgBEL5jLQqiN2XgNzUQaq21hjzDH33BeA5CYikDNIpAacW1AJpRbs8Fkaq2Ybu2KlCHDVDgFpQiCL+hHvAgEjJ0R9xhBYqAHQTHLdpsCGpgBGjh6kRVcIHHZyXvO7yhC55qTQGEHeTBCPxWvkJgHapSdMkkMO5JdWeFEk3jHGCkAapAOcImHiJB97CmKEshAMyBHNGSLarBRM8CjzaWdnmNJHvoRn+NHM5AH0zBGnJGLKLXLTYjMMLXG3CBHroAG8CgASr2/iYOwBC+V3rZIzCalV/K7lnWQR3UBxj0MmykoRPOs7dygQrMwBToIUQJ1h/MYRXWEQpYzGjht4ZIV+MUA5pcIRHuwQnooVYlarAKFyI04yvsY1/+ExRwAXH+YADkSwC2wAMfmEz0VBa+MHl2ciP2RBRwoCIuZnLAVmxBRAyK4BMuQz2PaFOvQAXghklYuIV7lnoranCmoRi8IQjgwRIA9CCaTTPgSKLCZDM2zk7rRT8sjj4ggHzPJEGbxBlKZAlmIYmV+OvKBOM2KmK+tggWdx3CMFKyoRawoB1WAgMwYZaezln9QRBARQUqgVrbmEWZ2CvTRiwymITvwBRcAR5w/oYe1NSBFcIeYobh6AE+ZYEZgoAd7qAYxkosxFchzCU0EnlWQEZvoYTlmKYgRW5/J+dhlAEfwCEVCiAZEmFwQg8f3AFUdGDNVHmVIXiRlWozGpEZiiERcIEZrMAeEmEUyMERrKEYuAqKE4EeQCEQ6CEIpkEWHCE3Y/grpmsg6iF0jTlKAqNAjxBXkoUb4oEa5uAAmmEeqgFlec+uZGEZUKAH/KET1qEyYYdT6oERYIgR0kKd13mpkBm2tNiRAEfYTIEcpoGrynWFcAaOESKLG1pnNsMVrIFo8aXsqOIbMQ0dFDJsviEfIsEfqKAInoEQzqGr2KIgfgFJVEANIvCj/o+5TH06qLnEH/TlnV2FJjdpT35iFxqXgrLhDiIhBPagF6yZi9WmzU6GBWjBId5XqBHuob06rPfDEhyhqwNknxiCG6gBra42ydahFvqAAKLBFPBAVZHqGQauBqBA1xharHUmgv06sNlCmTEDd92YDQKAAFBAA47h00aqgXoBBKbAH3yHtsBCLMQBE2ZxCBS6mAU7dwD7s0Vbjqjzf+IFHRogBEKgAKhhk0ZqHOhhDV6gFbyhFmLmtRSEFYo456aPjUf7r8H6t4VbMDZjGsoVXiRUtQkAGJw0nt4kBF5gHtzAHTi6SBSEDm5OBnypr4f7XkK7u0f7HpjZrFXL0hqU/gu64V03gkIogBOUYeZCrx7A62R4oEnIG7xBMLjxe7/lwg2Y2ajFpJDuQb0xIhvcMgsUABkAoaueczPmQQ9WDWXkjL/t5rspHEzMIRR0zafBwz9m9qg1wx3u7xzwoQx2IAzkwTvsOiH4yURHgA6mr4MvfFYsnMLroeiutaE37jE2Q8YN5I6JhlIOwA58wRTgQYjUZiwSq7y4esYJp8b5+8ZrgEp2Vok3A5wNW0v4dVgApQ00YB2ywZvhQkG8YK+dHLT1+8ztQsqppB5eYR5o4VqhIRnElHYZkT5cmT04BT0/ZBzwQRVQYA68oRM8PC5IJZ3V/MnTPNHngs0VZAh+/qAedGCxDMIdJPy+RRJLpsF9VtxUUNYpwIELemAWkOEUwrfRfZzRWwXK91vKp48HoMAgkkEF6PzEVGAeZldwlfkvNHZW7uFwMyKf17oP1oEf0EbVlYrV8fvGZYAbfgAt0tkdUsx+9EANPNvKr7zTyUQfnsUfuKABqNQR2AvZk33RyV1zh4E8Jj2RMKFcLB3f1pk64cEUZMGMS2WlU6MkRCHQ/aEX7oBuUv3cK9zcBX7DhoEJD15UNiMZRoAbYu3qgroYRHqs8lwy6qFONqIn1gEHqEAb7uAbOB3TC967CX7kH6IehqHZB7kGssofvOAVvCD5gjqZLIEdeCrgK6M7/qnIH0pBAqChE0zBpnHe5IEbqIleLtgcH9pBBuhAlQVB1qZPrH1hGsKyVHSXG9jgAPwhB+4hy49+dEv+629pGH6ASqChA6BhmKBgzYY+XcuPHhLBOYtWS7i4YM9hF0IADM7mK9pe7FlG2cFbH9whGcgsLRye+noJwNu4i8OYHTj9lAWEU2yhDdqgEaqABIKv1BTf7/EH8BN9FTpgwsPaM74CFEw/bT4cP5wBBQ7AAUjgBbwhhjl/JI1+9hudG2RAqzf/owdr6/2BVWbUvvzhFo6CBBzgQmz/qzx/xoFZD2qHu3262QKDfItotjTMqgfDexHCGq5ZDhSgAR6gAfQ3/vnLvfbJvy4qS+ShFjwSKhCeGTJsmoXuYf7lzZa0uItB+CDKVZKDHpGIoQgAgsoxf/r8GTyIMKHChQwbOnwIMaLEiRQrWryIMaPGjRwlchvCg5s/fCRLmjyJMqXKlSxbunwJM6bMmTRr2rxZsp4/Rmp08qtXsKPQoUSLGq1YsCA7f8XguQrkzY0/ewvp6aN3z55WqgqXBrnnplgxa+QO4vPnbt7Io2zbun0LN67cuR9/iMSJN6/evXz7+v2LT60aGT9++dM5N7HixUWpFsMVyFQiV8Vk2cNlMOhBb8ysyXKj74QsS/CmMj6NOrXq1awVciNMR4/s2bRr276NO7fu/t28e/v+DTy48OHEi9umw0gHDxUyBFW72zq6dLdZNRtkx24UO1BuyDnx5Si8pWKW6LnyR+9genv6rE9/Dz++/NT8zGkaoWKE/v38+/v/D2CAAg5IYIEGHohgggouyGCD/11Qgw4/8NDBCIysNV+GGkLU3j363FMRiOyBuGGJJp6I4kQFFVJJiy6+CGOMMs5IY4023ohjjjruyGOPPv4IpIyMrCKhCj9gwo06/KTIJIpJJUVQe1C612SVVl4JH2Babslll15+qdYVMlwBDT6IYYlmmmquyWabQ0kJZ5xyzklnnXbeiWeeeu7JZ59+/glooHWCyIgeBplJpZuKLspo4qOOPgpppHMFVc+Zkl6Kaaaabspppxvik6inoo5Kaqmmnopqqqquymqrrr4Ka6yyzkprrbbeimuuuu7Ka6++/gpssMIOS2yxxh6LbLLKLstss84+C2200k5LbbXWXottttpuy223KkIpVKiTIsVmew+JCxe6FqmrGrsRuWeuUe5m5m1r86Y7XaL3zncPientu5BmAFtEYkcgDkwwV24p7M/BHHak1bn0YqWQwA1RfBDCCGn8Lnoco2dQeiEzJLJCEV9MkIrx3VNyUVd9bFrA4VLEcFv3ZkXRvjBfZE/LE528WkAAIfkEAQoA/wAsAAAAACADCQEACP4A/QkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocufGePnj34NFjt5KdPm/04MHTR+/ePZI4c+rcybOnz59AgwodSrSo0aMP8ekrqE/fTYErXdkDZW2ao2mJXAUqZukOPSvFZAXy5ijsNF/Tngp0uhSp27dw48qdS7eu3bt4hfKrJ7BeU3tqi01zYi8QLnum2FljZw9eQsbkqla15O1OMVzFCNrLy7mz58+gQ4seTRopPn/cRBUEVaxLZGv+HF8EzI6dPyfwrFhzbLNt6d/AgwsfTry48ZCGDjQIEYtZIMqbBW5WW3Gpyc1LE90+Se+49+/gw/6LH0/e59J1PihgACHJlGZ/vjtu7i5QlqxE9HytLc+/v///AAYYmlP+fEPODBiEQIBq9jSl001tMQOPKYlMIxB1Amao4YYcdujhQ0vR04ssJKzQgABLuCPUUktZmEN32H0o44w01mijcPTg4oscBBjioINF3bMZKJZYGN+NSCap5JJM4jQNPqYoM0MP86xzzTXUjOMWfWfY40iTYIYp5phkwhfbNJ34A4YPhszzzTfgxAkOX0jpsxk7uATiGD1Hlunnn4AGatxNssCTiDk9MJHNOnLK+c08c5HDjBsXCmrppZhmahc5+Nxxzi0WPIJPNY2W2udR0bnhCoaaturqq/6wckQgmqZwQ4UJ7azDzTilOnqaXHb6Ywkz7pkZ67HIJqvsfv64IY08kIQgyjzgwNmro+vUFV2FmS3r7bfgAlpMMbX40wAby7hj7bWNfnPXUlWR02C49NZr74dLeTNNNsI0UIqb7F77aF7WJDLvvQgnrDB4N9njCi613KrPOdwEzK677wp0hjXeLOzxxyB/5mAvzHCyxwyT4LPNuhaXOg6dd20miy+MnRryzTjn3FNbkfBzCgdsUINOyxZ/k21nzGjnD6s6N+300xv5ws8dL4RQTTUsE92r0f7w48+vdnWXQ8dQl2322Q21hZYSZkixctZal3pONpN8IszSeHUnC/4ueKPt999Q33kGLlMk8UiBcMctZzffFCGAcrZwttmw/kQH+OWYK9zWHdkoswEb1ayTuOKLO7MABhRIwIZnHZ9Reeawxw4uPOwkQs4kBwijLuktf3NNAxRYYEEfnm02ikmyJ688rJ1go8oMRcjizja8s9vNOuFcEgIbReBghz8w52WPPW6kZfPywjXFFmANjl+5+ujHT1F39TgiDxBZHMGPOaOTPg4382hGD57QDH+goxr+gFRoQFEp+ZXmL3Y62EOuwxYHWpApm8nGHYCxAjbgoRPVqt61oqGPSVhAFOs4RzfAMQ50iGYpVpCFsS4IGgjGxB+CKYYjfJEIXJwhaf5eOYM3xqUSe9TEcjS04GZy4I9PHIAawHAHr0TYq274AwVFcMcKSzWam5DDQklckW9OhSF2fNEbuJgUWfTkBnZMYzc1GYhjpuENsmAFF4koBihkgSd4kG0g5wvj05byDVyYwhwYoII/lAEIZVCxUd04Bz76gAFK+ANrvVKRaOjBFdsI0id0mgQlPsGszczHH65gx1Z8IYtiMMOTF6GHPXwBj7JMwwr+cIT74MO0T+ZsKb0ohjfa0INUbAYO+ZjiIxFoCyQwIRrzqNjWjjYazPiSJ6eBxQpCQIEQrOBufPKHbZxAjx8qZpdMmeFCWHSQ7hQjP3dghxtk875r6swe7P4Yxx3MIYE5UMMd10iDNLLxyDhdAx9zoMAtuCG6gH0jfKG5gymAZM+RCIObFMgo6pzhtUDIwhTFMKU6RXKTpzBDh46ACUUr+jF2mMIUe2hAMHYHjmz0T2v/owYOnjCPaxDtG/EozWbIwVKR6KMebDhARpdKATMQwqX7QeJOGhQhQ+GCjm0JZFGP1SJ2WEEbPmDCJd8kDTgoQ5m8M9o4JtEA1ZBKa+cgzVJGAQr6bLUj9UAHBlDH1AbEoB3SWSlQgiUQX3hjWK4I7F2XRaBayAIba0BBMPSxq2z4Iw34QKvi/oePY4TADNXoqeK40UvOsGgUI12sRarEV6ZqAAXOAP4WVNgBDzcUS7Cq1RQ/TgMIf7TCAp+gRkMfigebUjEa/mDDDFLhjhAqzmheG81SQJHY3GaEHutogQWYSoEGFEGBdWlKbX1BD7tat1WysMcp9hACalxjXd84Ry0IKsJvcGNK8dgi78aBsdLQrrTnVchSbEOpMDyAqRhogCbEtxRXWMMRK4GPVgO8pOkUIxGxiIEYCtSufBSXvqNdBzUQcYBW+IMaBXWHPsAmGiFOmMINNIUvfNGtPhxgAQ1QDiLAJ7nCFmPG0oHxmGjij1GYQhZjiMEu/PHeRp3jFKc4B+m+gcBcoIAKubqGZv2HMQDHzB93AIyQFXKTYlgDFPg00/48qDEHJvQhtizOy1Ic4wZ9oDa1Y7bRU7CAjVgc4BGh02+cxkHos5LOslEIwTK2cY6bEm0c1dgGDagE0c4shRlEffF588NHqfLyHkoRKjxkAQp2eDnPHrKHN3DZgxnwl13ZyEYQ6kG6bThje+AQ9CMPeoAQhOAACRTNZtqI6oKw47AuwTM+6hHn0DwFF1DVdLH94yDtDKIHq6NG4r7hjlP4A8RFc4czJqGBUqCmoI4CBywakKAGBFvY/pBhsavtjUyPZz7TYAYzXjftDnUnG8VQBhdQcAx8SPNaloVDPBwNDm7gQxhXdoeu0B2nFeKjDANAnbvBW0N4jMIanraunf5o5zp2kqct9rCEDMXcbwHdozud4IQoGvCJcTQU1vg4QT7ALTBq+IMKK7BFcxn+aIZy4wBsmEURigAMPHtmGt0S8hJtI+3jbOYE/jBvy/2zGQj4owo42MZbLbaOU7SD51tzxy7OpUWKL24djaDAMuK0DnRUWjQgxe1W5zwKpYWcP0R2xCj+uHX+ZMMUoLgGBuaAD58SLR6RqMWbrOcOarAhBLuIh+Pd7o5lFMEH23g1NwAYHGZMQ+uqNf3KOxSdUoez8OBZCjnc8SUm4GDJm7eYfE/BKIFtwx+i6AEZ4rEOXVORcfqYQwyIh8lBu6vZn7kJpVAfKOjjpTH+cB3yPP7kIEvY5u+wD85SlIGMT2DAEOooftzG0bmLPZQKGDiGuohOtGusYxshoAI41F+qb1RdW7fRN5bCDUEVGvfhdB0CCl8SfsYBL6cgC1KwAv5gfEXzDYDQC1vWcM5wAIhwc27HbY9wAM7gXNeiJb8xYJiyFIygBl/TGfdADomwejYSHbgESwwIHK/kBMMQAjsWDWklDbUQD/1XfGwQdNH0gd1QD7BQBDMQTdQTMHEFHPfADAsoKKfBA1DQgniBPJTCbzeCPKZAVOB3g3jRWJbQC19QBM1QD1o2ZeNQC53Qe3GCQI/QA19QJQdXUNezDm8wA6REdJp0gld1Kb/wAzqwCv4HoQ7qYH1CcRN4ZG94NQ+SWBwDhngCSIaWJk6nIA+iIC0MRX+Nkg34oATfVnHX4A8zsAS3UA+MQ3H/sw631gbV0HY/tQ7RJVTTQE+BEgcyIAN0wBT4QAd0wGxIcROjUF0fcRr3cHfDAQ+uM4aYOBeygA6yUAUrMDcFNVDYsgsH0CYUSEXb4A64YwygKCf1cIukwUN6JybccAU1UANQwA0EsWLCyGyM+BNfwhgecRrOQAUBUAAHAAvUNBzzIm/ReBc3QQ/TcAqxUACGcEmP9FCLEIfXUHlsQAHcYF9uVy3rEA35Vw+TRzrdUIC/YQ+n93828gsqoAM6MAKvMI/BOP6MbcEN9TAP7eAO7dAO6sBxOOENfXeJHMELyhECCVIAXHCPozEkaHGQdPEUgEAOi7AESxBauVc97LcI+fB7jYACczAPr0Zx3aAlXNADpJSRIjQOSNkZXwKNSnJUajAEP/ADXqAGoQYfMekX5qADleAOXsACvQiPeqCFIxETRYKAF1EPRQA8TFVix3FpmUF9TEkUm+ENcIAMbEADn+AOjYZu3zAOZzUOPlAEukOCBVUN+qBNW8ANtChC21CTzOgZ99AFXjgm9WAOV2AOcImb4kAn9EgH7uAOKsAI8LEO5iAO6/AKF2AOrykr/gCDI8ELrbVUfwYeIAWUkTkUxhMJ+P6QinJIcfUAB5LgDA1gCB5IcUYzBw3AC+V5lu6yYr/RMSg5I/gQD9wwBDwgj+YASDHJDSwgnEvhmtBwAcYQnxJxE3cgQ6dmEaWgVNzVAGVQl8XxFEEwm9cZFN1BKZIgAZPgDz64keCgDHvwAM5QD3kYkTZnCzhQBWPFmetgCCFQBMjVRWCGTmTiNfV5n+hIj16gAjLwC1qID/PAA5iwE343EseAAtxFAdP5HTaRSxW6IpvRC97QCd0TDgCVgWklj4+wPfigkWC5Du5ABigAC0zGeZ+wACHgV/GQoHOxFMWAWgQqIzcqjzApCBcwDHTAAwiEN16QhThxEjG4fSNRBP4agGAPYGKxZw/WcAfy8qQ9ER13gAxvsAKwsA3rSUUV4w8h4ABy4A5od5YAJJSPsAzz8I1pNQ99wE0hAAAPlZROGqcfMqfASAdxMA/iMAKV0IJrIAM8NhLwckM5EQ9EuVTnUh67YZiO2hFLIQtngA8UQAVj94HzMHOwsJkbaalFeAxS5qEN1wPAswCrA6tGcRNhGCiyCpP16A+/cKf+UAkj0A7cYA7FKRLl5QTWGRJ8UQQ90AM4QKbLSZC3QQ9Elaw4YQ2ycAqqQAGiwA8lGpHzAAxsYAHgIA6AEIcUdw7rsAwx4ANMVo4B0w3ipgoCcAnVYAKrUxo3UVfmap90qv6faqAGdKIGFxCgMuCXf9mrzOkPgZB1PAFR/0oc7rRv4kqwCvEkhNAOS4AE7kCfH/hQnxACf1Ag2XAKWDpa5xAOXBACkYNibudwGvsEO4kxPDkg5GAJK3ufB0EN1DCTv2AOv2AMcAu3Pjq0B4FHydYTvwKhJ0cPoFAsRMsRQuIPi+APZaABqQCSHluC9hcPJrAEziA635AN81W1RONzrSABfWA0iVuCPkcGISCQm/kN2zC2NUQP+wYo58oQ6GhUpgsu7BBSbPq3DOFFiSANGLA6Dbtr88BWsBBfcPIN0oAH3ZlW6BEC4BB6Gym61YABZsBCQ/gb96BKbKkkqUsUNP4xDTsLLo4AbbKbEcpQDHBACxTQCiLmoe4gDUxQBOswDvoVubUwNGmFsbOAbSeWvIzyCRpASlxbKtuQlnlRb6jLsuMqENoxvZnyFIllwN1LEDdRduVnBuqrLpQbN76DD3uAA3Owoo6SDYBAayIJUGxgAmSauyIkj8awr/NAMRdDup5hJ8UwsH5SvUPRt3f7Ldd7BwscEZOTDchQCCjQCtSyub1yDedQDyjABNWQX9eiDL0wvC1TDfXAjY1gqU/Imb+3BVorRb0DHEQSwGhbFORADpCpLE5BeDm8TvrADouADwLwB/CbvPfQCALAC1j6DejQCbXgxAHjc0XQAtEwwf68cw4biAgrozXfELt1gcg3IsNBoYCK7CoKiKwLPGCuIAuNcADpQsJp1Q3zcAxM0AOaNzp2fArZAMjxtQ6diLtC3H/uEA1/gAG8gA6afC2/QSF0qyGMbB5ekjCXtm+PfJ3RAQf8IAdSQAXzIMsfuA714AcxELWmypGRgA6Odg310I8+wAv163bdgA+w0ANioA4L5z+/DBfsIAuvRya5zBNpbAkwjDDkQGNnbBCbcQqdgAxbsASqwIqrLCfjUJHOEANUQKrPXFPxkAbbejGnOAkY8AdVss+OcopZ2wr4YFy8E4iiAQ/WMM6xKsCN6A/uccuWQg7wGc8S5g955A4mS/5TXesOhlAA1QrIcRK5Vcwu68AEITBWIflcWwNpDTAHtLa5XEMa09BGGt0h6bwT7CCbCvwTS4EP/jscN+EKZgvSLecNsvANdrAAxzBxGwmLPVAEqDHQMS3IL7AMndl/UpYKGloP1TAOxyAMj0t050AxN6dWcxACubAOY2c08aDFWtMN0fF/VbeOHHHO6MzRQEEOCRwX/PAUv0LYDYhDUSe7BHIK2NAKKzAHmunQMf1QbNADD6ltcXMOrXAAJFAAk1AqAEQNT8AEsEBZ4/AJClAALXAM0vwmOe0o47AMZUAFnxBNCIQIRrAE+KBCi9NEk4AI0XDQDsUoreBzP2sm8v7IwgahFk9NJ9HdF4uwDkXNIUeNEy/HDIaNFHwBC0zgA0/ABkH11MLxSgtMH0zkA0swCz/tdtcwD7dWBvddju5gBA2QAgtABdTwNj73tIiAsZ05DjOgABSwAGTgD+eADhI+1xQ+16KrATe2AGaND59M33ASDiC+f7dAAQVQADMguv2H22+CDtHQAxiwAqqxYk494zQebCuAA0bgDySJEPwAKWwQNA4BKZ+gGtRtEJlR5NSL2D0RveUjF6dhCMCjARJAATOwp/zhBN6w1OG3FBW7DQ2ACL6bvO5wycfgvLwzD0gw5RLABMCwDMsADNuAAjhwDM7g5stwDJ6VOguABP7tYOfL4AzREOiC7gzCUAAZJQGtkAwH0AfcQA2Rtg2QfjXx0AdLFQDbcA2Mg9sVfg78lVTdtQUMsRktkDpUjrMHwRcuLgESYHcNkeYS8OBpOekg0ALz0N24rOQ7cRP6QRfO0E19xQZ+UR6b4R5a3m/WUTDSkAkE4Ayl+oEtdAxPgAMcurnZUA044ABBFw2AvgkH0AjrIAzNEO7N4AzOcAlKhQPBMO7k7gzi3u7H0AykvgBlcADJ4Azv7ud2Xg2GoOoScAB4ju94HvB0bgZK1QBLMA4RLuEKv/DyuAJLddNg+pu/OQ81KYn4sAx8VQDR4A72SOM1LgoMTgECQEoCVv4PwCAAKUACFGDqYPLdI0EOg0cXVKCYS4UBA8DqJzejti5k1uAOnKANMSBWkabN62sHMUBKbe2G30ANb44PR7ANx3ANvMCEwRANdN7uzbBoosAG7I71Xh/uxwAMdeDwZVANdf71YL8ObTAlu0Du7b7udR4N6FAGRfBr46nH7YIOdvCPDqkukA7pb2JTbxJ6ihkAwMAN3XAlir/4uyIKC5BRC0C+m87p6wCm6xAPdnAAKYABGsDyTeLyIBHVIy0XZUDzGjUA0ZDdOOIPuFTseWZE/oAGqNgDvMCGbvc/+tDrc8DsYo3W13D2fy4Jx+APZtACiEANZ//1f14NaO/1d/6ODkxABaKwDcvQ/OFu7+FgC4De/MfwDa0wA1TAC60w5HhfKtmwu6IwLQPNbbygpH1AmiV4DkxQAARQBlv2u5PHDbxQABtQAIq08wDhT+BAggUNHkSYUOFChg0PchvCg5tDihRlyfKnr+JGjgnLNKAQMiSGAN/qdUSZUiXDe95GrYQZU+ZMmjVtorTnL1uiUgcojRsHTuhQokWNGq02j0sIXuiCHoUq9Bs4asuaXV1GTY6wGUWOXQUbVuxYss2WLeNlgU00Z2XLtnV7LNqcBa2WOcPr7GlUouf88iX67dw2bnsBA3UWzTDUbiebgWg1D99NypVpQpRoOeG9ad40av6OaagBBpEUGsxwdw/06pT32L1kHVv2bNo36bnphCmEuHHcAP8eCvRaDyr+vk0FHvibVbDLogkbtMHQt69urY91zotNg13Vql8H38zZslsznqw7G3bb4uTJuXFDDnzbtmvxj35DJxAfPnn86vGrLcDVMJuINnJGueczARs6iQsCMICwgQKOWbDCgnxhxkINN+SwJtXYqcUUUYQgwzj72jPqGnDWmcOET/yh5sTfgqoKrmaO4WaXHnyYhbrwwFvmmG0UWYGNbYL88bq7qikDhUbWAUYs59hDsUorjdrmnHgKWmQd1ToEsyMCZ9OHHlDICTMhfdx5hAICDujhmjQDpP7HEXa+nDNPPcHshB9k1uhBmHqOu9IoavxpRgM2xHGnmyoF42a85oBZpw0NKBkElWiStO4YZ7axoYhbjuTUOmCyuUUtYLj5LqxPC4W10HG+WeckgqxxAx489+R1oDFpY4edXgcC0B1jtxyWtWL82TVZZ5+dSR9v5knkGgBE4QYdGQvtBh8uLHDmmnMK3TSss6rRgAq8jonFxlLNpUaUAz4BRtJ3yRKSDQxgwcutZaqJNWAUv5kHoZyg5fVX1vTRBxdHEK4n4nsARJgyctzw5+CKN+a4IW+KOYWNFqpZZ1srvxlnHVhQoEIfgK+M1Fy2+qBgkm2AWQaYMLi5tzlqbP5hgwJe7O3ZVWpg8QGFeKK0zjmBnwbsnISmuYMdBTvmUGHW2JGFHqy/lkmjYqbJCGyzK85JH0dwyWOJ4rhxVGCCqWljBlH88W3gcehr9ZhxWqFihUg9DdKTos3a5hMUvqgnvcOvkksYNkIQBZ16r3NGSJOhhhXlgq8myBtvzs46ogJZ89qSskln3SGNZBEW9NZn51CfnDrB5RQplhA074DHqaYeWzBgYx13tnl0nGuIztmd7T75xlx2qXk382XaWaEHWLZptejM3WmF+GOq+jErzjnvzZ3JFPKGmWZpl01rzVTLwR+v4cffoJzOEDZ//wXUh2qC4A9FDKAU6wgH5/4OxQQNUAMdV0IZ0a6CFw2UIRrMmZQS2lWqY6zDEASgBFseBxZnAGMbTAjBLu7CqfHM6nxP05hCXIGR/8XPdLIhB5pquEN26HCHP1yNK5iRDSrMwB/1eRrK1sGLEMwBRpvjSzYwaBZqHAMRGvhE5tw1QWpsUUnUAEYRZlCV7nmPPCjgAvd6Vo0EvhCCK6LINKwBxAHdcDUaccQ03kdH0tmDHHdYHR8FuRLV4GNsfEDBH9yhoqdx43hl8MHdqEGlqKDsGzVqzjYuUQQg7EKKbxmEJ8qlpH/1YQZtgNIIsdIWNpiAEu5g2r2ccQ4ouvE+5/gcQ2znCrINkjLyswwzQP6RIF/SThauKGYyN3I/N7CjBVyABd6gVg1/tGIFZTBWLY0imOVhMGfoKMMKEIGeKYrFGagYRDnxRY1q9KAHtmCVKpsBjHHYogFlSEwZObUMbszDd7YETDfcITs1wUMWMVRmTIBpGXoQNKEda+hDJXqQz2ChGK2YFzpoCbVv6IMKKPjGeiC4xSBt4wBb6KI6x3IMfUqJGp8woKfkeSN39CAEwujX4fACjDmcozAABYytKFKmUcBjogq142ocYYqjmm0agYCHQ5s6SHJ4owvu2EII/AGOuIEDOVOREVhvyQ1eEAAR9XiZlXhmLmdQgw0HsEU0WmrOY4ThGCo1y3OYEP6DtuC1VHeJxicwwIVxxPJwx2hFADBQAGd0FahFWUdHXIPMqapkoTbRBzx8UVmwFYMcUuXsDvWRjUhgoxE0YIM/ovGNbIQjgfUARzzw8Q2dHIdQ+AAHPtwBDm2BIxvcqIczyNCDY9Tjn8Cx5AXDQqlPGKEI27hRkpwRi1iQZUmIaAE276rKY3wDFmRAgSrAcbnHHSMbKAgBBVBwAGk+VirjyGVFxMbU0IopqZbJCWVZp496gLaGpqAHQuu7wwBLAxmg2sIx7HGNdawDH9lQRjbwcI5IdGEdOVBGJxZxCkDUwgnfOEMnznEKd2QjH/6AxArqMA50ODY5wGNeM9ZRxP5LkIpT1RgEMFrlDGFUQ0dM6NFcORiOTYSgDdGohl/3CYx6hMDJITDicd04jmyoDyf+uMMeB7yQy9IkJ13oJelsZbv1CfIeGBPwluFXj3vIAxycaIQGZpENfMSjF704BR4W0Qk8j+MU2toGa7NBqGyAQx2nyEcaatEJNBAhBaeKxzoGrU2pgEO5zXHGLkxQhhXKUg5VBIvf+nCARohQnkLyQQi2K8+sBKMBWR1ACLLhYjeGdD8rYUea1ZyQLtPEdrremEa2IYoytGIiFBPkNO63a/xNJrJBWAcXcHAOaUjDCbWAQy16kQ93jAs5hS60bQcNbq82OBofYEMvFgGITv50QhrZyMY5gAIY6rhrPHNoQCskuM9oDIJ8zXhOD4woDCWz0Bmt0EAfziFkfjfDDg2AxTK2MQ93/BSgU4nsSrxWP2AzmyC9lonXzsAss51kEgU4gAQOQOpA/lAjoJijx2l3kka0IAXQKEAe2IGFbCwCHeKoh1MmTaha9mYezkAhMOaxjXjEwx3KWEQtFnHncTCq0EOx5HhsJHFRoHEb+y7VOWOxpDmEwBDZEMapq0KFHnxivKxGxySKUAS8BAlnXgXoNtaxJf8uRCOqW7bMeX3fm7zch1+bjC0OkF4KQKgAuahHmX94j3skouWCx9pn5nAAC7xgA24ARy3yMY7dEv7qZNQ0BAY+cY6SefU45zieNGohDSzUIxL+oPKs1pHS5viNCUVoxMJVGQtPqMMWONgCLMBR8CQJwx2NuOY2Lj1CiXMhBk8yywSX4cIX6h7ZKtHINIyKeYWAHCYa8QUxwXaSEJCmNOr1h1An7w+M9J38w9KHMuSBAgxYgAQzoIduoKRHWQcfKAJxGUCgoDJlOAU4UIYH+4YtkgtbsAB8mr7D4oYwWIUDEIW7YL7wCBJ1cCfyUqWciYYDYAPxUKdZojQU2QbJgwl4OAH7uT+EML+V0IhAyBiz0QgTcD+RCIEG8IeCoSPVAIXRqcFgE4hRGAVTmIIg1AAz2KhYwQ9umP6FBpgE4xpAosgGoMgGaQiCbIgFT+mrzLGDAwgG75CnzAEGKcABG6M+vBAFs7qZmWqrt9oFuXqLF6KVy1uJ0ek48rtBXEMmLUMYjdCAHwyJEFiAIeQjjfiYJDxE9LOGIJgGZfCHSYgCNsAH5KHCo9sCHIgG4xqYqUAHc8iURciZTxGFrmgHgivBtpoD4jkFwzqsb7CFwAmGKvKiezmGc2hFKTgSJauGLWwP/IivmNCIO7CGQMS8QVQJU/CMszmJVHs/DOiB+BMkP3oYSXSW+zkDNyiG/tGYFowKapoEDTCEeeA+FDkH6vmXY0AFSYiEbHgCFCiFI+nFdwGG8QqBLf7ghWwYhA3SqWOIhz9IpMT4QPC4K3cogh6YBHBgOIAzRuDIhniwP47wBdXJSI+DxpRghog6G9wSABQAQgKoBmeEnwCyhsDzxjwJIH8wBStoSYPQCHPcpolYASaghtY7GXsTD1QgATC4hSQ7NXf4KFFgi+lChccxwa64hVGivqPBAHzaR7KgNb2BwZqIqpcsiI9EiUS4E9aZB2pYgCAkjVzwh+8DonuAh0RwSa8Mk5ZwAniYIy3brZPxi/AxBH2QsuRIMneJBl4ogxBIBlIAhkjIqcOJhlzogefarnMyHO8BBmFogD5YDlaLBmDYDlvIvvL5S+SCI8oIIDegIbkUCP6w5Ahv8AV76EhoKYUyuBs/pKNpWBbUTJNi8AYrYAejAi1xqJKJgIUymAGBYiQUmRUJcg5VQKNzEA95BAS5chxO8ZRjMAQJmIRx+A5+kgMdC7tjqAZeKIIV4IVrmMjyqYZPCIEyQIfPlC5PHBh0OInXlK/2oU1JVM2N0CzXbB19KDN8oE/aCRbc7BB7EJYukIXbZIh1OEbUC4FHqIcpRE7eg5xjcAcmmIFW8BHx4AZUOAYsyAc1TJIO2oUVoALwLKcSGgSw8xdKaZE+qAYWfRer2AYD/IRwWLV9wkmvcoe1xC+ZJNDUJDybaMIgTRNTUB0jrRCvYYYT8Ib+aYh7CP7NohCMejABJpBQ5IxAsfCbUiCAPmCLKfJAYICDToin8ACGcCCDfCMc7OAGOTCH8zSLtgqBJRCPq+SgaICFyxyfhcSOaMA74BiHrbQJr5lBlXzGIfU1eEBUJZUNXXHUALEHeLACjGGYiuitShqMTyCAVFgH+KwSo2yOC1qKNi2LZTCHTgAEGSUhZ8iFEOBJJcMRJTCHgrsLZ3iEBtgE87TDZWADCdiFf/MeWhoXvviGHg3QjdCIDGlUwctPirgHV1DQSLUQawAF/qTWhZGWGfSH8aMIfpiHrJSKegCGLSiCpADVF8uGC4ILq/iGPigCJoCSggNPc8ACbphOePHVFv4whKVREmfwBE1pmm9oBS5YAYCTKafkuq7AB17wU38xhD4ohUyl0nOYjGTdiC/7LCN91ig1EyjN1goRy2YNWZTwGlCwBN/kCP+Aim+QE0NYATswDnEFDOoJC/A8ht8TBYksn2WIhVNAhTgVC2EgWJapBj0EEmDwhFoti2NAB5oxhHBwz8P6lCJAgVbgHjwFQaQ7gAY4AFjohhPJhnnAWJRI2bJVs451CHqIy5IFFre1DNvxBycwBbT1B58cCm7IBnWggCWglR11vZWKlwB4BA8MO2eIhHvFIGCgByo4gDzU2rGQA0mQSqwQknThhQv0ng6ihAYwBLlgtWOAENOghP5AwzovmQ1ymAaSdVZFlQk/Gjm4XRA3WF3ZtQkD7YKMMESHwFvBcAdDEAAZm1K+GAdM8pkieMPI9Rdn4AYlkCk9DQE2OAdbDI982iK8mAQKoAQRpb7GZAIUMIuHtQ68mAUUaAAL4MCwxbuMmw1fMAXWlTm19Tt6yBDbDZAntd9o8Ydi8AVG3V2KAAdamohZ8IElwIf3SJ6v67TragEjwZnDsbtYAIZdqIMQsBkSvLEw8M7M+QZVYIJAyQY5/VdnuIQYKINzEN+4yJw5UEcf6IE5cAewks/7pIyc6EZHlV+FcEvYyN/ZwAVv+N8eZoicAIVRQEKYcDYL9Qc26IFLmP4HwAWH4rWXzGGLJWgCUVgHEb6OY6gFQCCCL2iGzOwZVA0D7wAGdWCDFfgDdMjXovEUblgCHGgF7ZQnSoGFEKCCaKAGdViGvDzW2vi7I1bSHFaTaaAvIY4NX8AFGkZkHd7fHqKJXFgBFJgBDMjjGLYSKpMgYDiHT1gAO4jRFC4LSjGDFogFVGDV8pHgaNgGDWACU+OubGgFAWgE5xBlfFGHJxAamToXWiHU1ThZRn5JQkYIaZnWRtaMSLRb+/0yGpwJLgCJBWAD07MSUW1VH7CAeXhgVRoPYCAANsgGZ1CCM3Xj5m0EAYi4WyaLxLBaq1Bnc2qGWbAAlOqeYyDC2v7IiRlsW9wkZoM4iWJYll9WiDIL4oMQqoIuiEvVD464mgBVEADliDJT6IrAk1vjCHJgKvlDZr9rmJGDX4WggtE4gDKADytR4HZthm3oAwwwhOlltS7iggylDn5Kg+q65V/8BDPogUjpNAhOaUToAS7Q5ndujmvYBfBavYTNq2z4DwHBiI9u3cywiZP4BkmIhYhWDW4QBWoSaIoCkHgBhx0cKoEQhlLQiKZ2iPWxhWgiOWiNP1iwBYF4zZMAH16Q6289iXUQBQoR5oLIiWXgg3GIv67e6IG4jbamCVEQgDeBhYo0igvsLqShAlgQ4xECBndABOSL0epAVTgAOPE9i/5xYINEqoXuJOob+YZd+L0g4+Z+bEUyqAZQCwuACQp/IOzKAIWxpNZ+JgikhBAMaAFn0OiFQAcjIA0NwAHjqYhv8IHjzsYebQh+0AdecD9F0UaH4IdWeDKzg+jo9gdK0ICREIXbHgiNsAMgtGvsPokpEIkVOBSK6NEW+G15LWy/KwZHgOqFeLBbuIY2Es1roKttiLNJUMESvOzvvQWblZk0iATN7ZRmSIZ0AYYqAoY4Vd64EPACKDUHvxe0iIci0ABYUPBVig+TCBBH0K/ddt3WqAcmWAAgLICOuu16cIcZkAAYx4fhNuh1uEYFcET9vodjUCyRUIAyEGuFYJhZEP4AxguBAzAExE4IfOCHSRAAkcAAARCFiU6IkyiDArByAWAyBvGHIrjxkRAAatBxgyiYJRcJCWiB1KhvhECT+q3he3hiFDHe54wG5BXWEWoLW3gAcKbeVaIGggSSa5iDAoCFSzuGFxBaWboLH0juQS+ao9EAGLbFf1kM9l2Y/Y25kOVt/7SFKpeAUpeAEJCA645yfTg5CjD1U18BVUcILn/xV8cAJoDyg1hzVDf1xWoG216IggkAkxQJFCiAeAhiGg8AXi/1ECgAWT+I/aAGAcCAV2fEH1eTalIAV+91rbpnhFCNGWD2Gy+AFyHv/M3BYlhmXaLYqNBkb2orSpCAPv5IpRIMTzOgAFvwjqtchkiAAw43l2woBRRgAljCoGPIBzgFbT1GhBDogzqMZWAIJ1G4BhJ0jvU4EdqaDf6l82zl7ZPogVcvdQpogbAOdn8gDZFvPGEuGAWo9ld3dWgviMnIhlqHeVzfXY1IBUUMCQtwoq6eDH1R+QV4EdBSjR54eVOngAIQBoY4iZBQ+QKolQWFelv38W+vb/Q7ZsvA222K4soFT2pogSKAhRA+tXMwhBBAhD4FD2pAhaDtaXNphnBgu0nY0FGVBEkQ4czxDuLAYi3uFBbpgTKI7QV2hmKMCuheDSL2mnVnNt4umKpXegwABoYomANI+pHHgG2wfP5/KIDMv3ENAPZshwWbV3ojSvOFNoTGez8KwHlHLgPJv3EJSK2uBnluV3oFKHqFOIkWwP2RVwBquO1oSC+Vv/o4FwjVsAQdjA17GECfkqAOmhxFCNMSxJHHNDYW6gQskG14sYV/ZHvsWIagTRITaoTLpNAROgZw2KtcsDenGcA+jA3azW9BXPGOyAkq2HaYDwFnvH2VBwgM/ur5K2jwoL95/jBQkODQYUN/9hBSJFig4UMKDsr4u0fxID5/xxowpGASQwND/kJ+LKjPnyEJGCEeaOXvZcuO/piYfCizQDOcOQm2mAmxgDuCOW/iY+hTpoSES6dSrWr1KtasWrdSpf7nzytXruDGkiX7LdqyZmrVOuPVY8a1ZWnX0q1r966zZa0osBk39y7gZse4LaL2t5mzY30IAMsbGPExJbEOAz5GLUYIdY834xXGS8CfbZSXbQP3rSxqsvX4hcXqDV7r2LJn047NbQgPbrUL1qt20QFEBUYGTsVnDxaBmRQOcGSZE58+RAJmYijQ6OZUogowmlyQlKpCDRRKMtwgdarCi9wlCFSY3Z8ApzIVzDj/HN+3+NwLDFea02MZBygXwDH6CLUbggkquKBL/rjBDHYMUjTPaWV9000zyzij1jJo9YHBJesAwxmJeVETzBYmHLPNiCTWdcwyWBxWTSszPBGOXP4k5hMGN47ZpWE1dkiAyDq8UOaiXSsCw0UIu1RzDF0djlVhaha6U5BzCL5UjCsQSvglmGHelpuW+NghgEwUBNBDPR5R9RIbaJoUABPEURUSFXJKIAAZdhYHDgbJLVfAJyvdqY8zDRyAAQYHNGBLhEu9BMsB6hWggTP+LeXRJwVsR4EAIayj6VD+SPepADgMxBp6OwXQkwBsGBomrbXa+lIiDdYaUoUVokXXYLvgQMUu20CJZGDLCLPOIyGwIdqRLuZVDR7mpLVNFTMoMs6xnGnoiSeoRGMXMOvAggMTwjy5IbJ4lYsIDWVU42OGznBTJb7g6GYQqbPpM1Egtgo8cP5rY+6boDNGUECCKFceSBUvRYQwQyvuYVVKDxj0AEukVcVjRwshlBFNx0uF5M4cKKDAxjcl5/QSOGyE0IIdV1710jVlzPyHxVW9dAwVGMyASJZV3dNKC8IBQzDTTddWjCwug8mPO998c05cdQEzzh8LtHLMr+3epeE6OMzQmNiAdQLINrksYEcu1USbbDTOAAPjWomtI/MnztCb9lrLlDtDD7PIHWU03YyTb2rf4PPICiuo9DBtOUjkNOaZG2Twgvfggw02Uk/lpk5aOVe0z27ig/qdbnqu1T1u1sN6cSzdQzlVt/OGu8n6wFOMn5oLPzxFxUzTND7dgOP3XTEwYf4Y4Hg5Q8kBhlDTbfRrHeNMGRjYEnbagwzCrlrC9NBDNNhnj5gztkgwxzfqN1PNOYxXeQ4vMYx3gCgJkgM86YgnQDHh5mBaqkcvahEWe8yjHrybyr/mYQ/aFace8wggVvBRj9lx5R4NpODoGvjA7IiQK9LoROkGqMKmvYQZAXNaNsiXIWo4ow8rYEM8WrS+DIGjFWxYQTPSJ8PoLYMbojhCGswBjLm5iBueGJ/dRJGScMgPcMuohi2YgIFgpK8uzqgflexHFnQcYwXjEcAlEEQPX1iDHSt8I4M4tyB9kMNLcLwjHnPiDQiNMI9+lA0uTJHCXRVkHXLTUDOAkY1P9P6gCM4w1g7VAoxtGCIEc9jG36IHI3VQIQSiOAYcuMFEEi1jMGEwBwqWsItrVFFspTzHh/pQt7nk5ZHjCKMYwdENx21BAAdw1DV2Qw5rWOKPxgyLHBV0D2vk6pjOXKEpfCG6Z1LzTQWxo61CEo9bcgNGwFgaGzDQChpGMkPHqMcKipCLcZXzGOhoxfuCeIxYxGKIYgOGO4gggDzQcJRIkgs1aMCEW5CTLcugxjcWl8uycGMeu7DAHK4xCUqMozYeKQbw+ljNZyYzQf863kZD6jRv2EOjIj0pM85wuYGho0Lu4EUj1uE+JoBDh5GMBiUKYIjDlTNDZaDALnK0DFTgof4a2bMbCoqwjkHgbYd5kaL1jpSNhaZmHOPYQwG4cY5uZKMbPZONFUh60rEWpKMIsgc7XkjWtX4JFNPAIFvHCg8ITURg9egVLH15gBlsgkX2TBtpcsGFGQTjSZEE0iRmwIRv5Ih9qBCXK8c1BxNMYh3LGEQsPCFKIlYjFykKRjbUFw3TUHVK43AHLHrwBH9E4zRWW4dsJsKOZpo0rnA06270QY9RwMa2vq2NJdhR19+elByjoEdtaaOPdVAJkwUIAUPYsI5Wtksu47BhGabrzxJ1KBpM8MEntEsXuwFiicg6Rg97sARnpO+gzpDDZP66GcGhAxHOakdTa8kNhZaWG/7rOAcXUMCxa/AXHOhILkUM5A9QWMIrCCYu8XC7m3uQA8IWDotwH3xh4hnIFN6o1UvmccuyOBe6GKDCNg7rtxX0oEPbdREwqIGcObA3WtyIBPg4c4x1BGgWiPEiKiazPSRtbx0hKAIvoBc4hBY4l+Pghj5y0YBJHMMdykPNNr56FY/oIwjF+LCGN4w5CSsXHneQppjTvBR6dEG4aj6mPtjxYVvVr0rrkCIKNHAP6iLJb5QIgI9f7KJlfGMJGjDqYw6qBMN66xjOUrJduBGGu8n3LtewQwMoAWm2XLm0UwIHFVbwRVySZRuw3Qo9puGGm4T5zUwjc23Y4UZX07ogsv6utR/1cQ+o1YpC+frGOtxxDXWgjYjcSO0SUjzk9cllG4hogRnWIQx/aogUlc4QN4LxhxAYIn7yPUY1qHGEb7KzMudoBRVmULdla2jUngbHONDBixlwxGqMcxxWfOePM0wDF3DFtQphTRvjAdzV3pCFggu+woncYaVzHMg6Oo2vC21j09Vtxjfa0IPQZCiSK1oGFXqgCm5dm0POwEM+qmi3bTDyCc6I33yLOAhJoMIwowF3H1Dwh290HDEausY5SM24J39jHltYAceqIfSydCMeV/EKO6yAC1xMU+GaE/hscGGJhBfcgg4kLi6iZnUVviS4XzrZiHN5Gk12CAUDFf5NObdWigPQOMfzRQUWuPEjXtRDZ6UwqqCv6AlgQPEvGgrHCpgADPAlhhrvHgs1/GGL6q2DuVStukQm4gYrgLTVYycgmSRkD7AonDX6AGFxK/x5AXokYMNdUEvfzVNkXbERBNgEOARNymo8oQE1LTleummXaASjAFsgY9pgJAdgoIJdHXrEAERhT0Iv3X7jWAcTQrANblS/SlmuCj1OQA/Sr36FWJeNmdnx7zeDvAEheIRuUO/Ml3Sp/AJ0xD1ef8BtNHmhm/0nN9zCW6jDMfDZPz3SJzSAHaCDTf0TMKRBLLCTe+lMK/gVYDUDNdCcJHCDNMwCE/SAPEWJ471bQv7FwySsAEeMoKedWk5MQyI0HD3on/1FWAGBiSvAw/ptmD7MQx84CkMcQAhUQ1zpFi543gwiCDuYAjwYYUuEhD6gg+I83liU23wdQzyEnB2AgwFKi2UAQw8wQSkgH+DYTSTAyI4ZQhFQQY0BX6JRQzMMQi1MQRFIV1NlSDTQz7txQz1EAxcUAcfcixRSTl0VwxlkVHEcYdOcn2wUg67hWj24g6CYhEmswKyM1T3AgyAhYub8jwzKxkusQ9pJ4TnY3V2Amy2ITC7AnVMBwzd8AgbYwSwd1d2kjzpQYD95XN04QAuEgb2khS9WA7zJ3jykwgEgAjpEnBSOxai4R0n5g/413MEodKJB6MMG9Ysm0ooixoYvCFIOQhhBzMECSKIkosAusBUdgdQ1Ms09sBHsJWNqlFxeKMIBwEImZQ96SUxB7RA3pMEgLMMBkIHFrc819EEAwMI1cMPMocKIvFz/5VI16EMR2EA7NKSnfQM6FIRHTEQXmALw5ARrcBA36AF0pGOtZGNr0IMhuhpBzIAFiKNJeNJavcQ0jAJJEoxuycKc7UY8lIY7lsU4VNpBpZYPUJHuJZozVMMjSIAdFElR0g005IEFtILw7ZBcVAMszEARtMPdgJszDEK4KAOwLU73mcU5uMMlhEAf+MM1jKUYdcM1FEEAHAAv8IMSRB1Gfv7EPKwDNCQDI1wBC1wAHQRPTcZRDUrIS7gerRFEGTSAS1KAgK2V5g3SYIKJPdxDM81GSNQDMvYkaujdjyxDOLQBCjQCFbXTOMDCE2yMsbChjqHDJGxAIjxDF1HlI7XBDEwCo2VIEfVCNuBBLXQCOGRDPHxDNlQfN+wkEzzBLPhDNVDkQhFnN6SCAHjACxSAFpyCGyFXS6yCF8jACLCADtSAF6zKZH6JSXKFTB4PE1ZTPVBDqIhjCDSAYG6UrqFjeYKJRzTYbqwDaXGmhfiFDIFNNDRAGcRNUwbGMZzDHIQAIrjYYS0DOBRBEbQCKqRBQLZLYkQDMKBAGcACY+XNFf5dzS1lQzZggTScwqjckr2VhRBKUR+4g+U9ntVkw/WJAzWAwQZYQAo4gAJVXTWsAx3UQHj+ADTcJ5ic51a0kCtg3m/p2hwIyEk0ADWspwBZw6p1o5H6iz/Ign22hj44p3/OXofYgQWIghv2VCm9hXn1VDS0AgZsQe4xD20aQgG0AhWuhdARZy0AAiDUQkOuQ+8xJ2eOA4nWghJsQ6iQgAOoAuaFhA6E56NWQpaaZ2GKnj/kCpVu1Bz0AAr0QAt0A5bCmT84wldMqmHqw5KGKgTNAyD6J76MwzZ8w1GKwvlAy2GhxSS84jxs4aCdCBs0QDRcz2AoQbEBloydj2UZnv4zUENDEqqBrUM+AMIpSKs0KAOJSlH/cJ+KWo1rncZUJdQ4nMM6HOM6SEM2JFAvKME6AMIe0MA21AIuOF0O4kQogGcNCIIOjKeWmSptIOlWeIQjqF6tuUk0nAOWrFV+Sia/7sbBMWlLvEQ9QKGr5ks3RAMbsMEk6IwoTFckJUY1BMMMGAEvZEMDWpE7UcKj9Vwp4Rhg7dgH9oGI0BLY8F/3zWjErkMtkAIueAIOGMEg4AI4dMI6ZIM/uAM+xAM+jIPTbYM/QKu51gLU/mYk9AIgKEMs+MMjVEEhEII8kOo0KcQwqAELqIAXJMMwDEFCsMrC7oa//qs3XGatCUWmCv6QL+SKqq4tVnjEqkmjNfEnW/bkccYnEDIBBh4oYPDCOvSBBFBCLFJlM3ADDhROPkpSLMwejH0DLGgAGwDD/3HINQTjc46FbjwCBnxCNijDIuADFijDKWDBKaTBKeCBNEQCFsxDBfxmGijD1PZCtUqDLhmsERQBKZhCJuagBvmDIPxADahAKFyJGhQp3iZI2yYpOZBf9A7PEl6v/3gePvDkxObLNeADEKIEJdRj9ETD+eQmVepF9fxVKUEga3JINbCBBthCJj2SFFbDPJxPQo1FcVrVOMwDOsQDOPCmMvBmPYgrKKooahjDATyCLCiQRumDOQxBDdTAD0AZq8yt9v76w/RmxT2klfV2MObcATnwLQlvmT9YgcNhRdWA6ffqYQPMsNeYL+3RkCGYwBy8VE9VAzCUgQkEAyQBxt0gyzW0QiOdw5quRTTEXmkBGzrAwgNchwomVHESJxa7Fo0WJ4muqGmsAzWYgQa0Q66QwwiFxDywggrUAA/owUC8BD9YYwpvxQdrxTSg2Rw7jS90ZB63hiWYcQYlxDq06vf+2je0AhMUQR9c6HmNwycwAQ6A27KtzyQ1wg0RZWA4Q7gA3/bMb+kOsc85g+L8bVlcw56dTzTEAyG7Y8tMAgVsQjHggjSNEEEkgxqoAAuowS/YRx/PRh1nxTBxcC9jBTzk5P4wa8WtZUXVkHIhMxc33GnyrcMcUMAnNC6zHYM/tMDGZM1jOAMqLELPVcY2CIMFsAEvWC5p9O8TB9OC7kK8MTPjdMM21MMMrIE5oEEvCOzDKgS+6gDz6soxy8YvZ8UZnHBA0wqFdYExH7RVhBUKUwQ8FzJZjAOijSG4UQAT2DBgXQMlLEBUDdoSl2I1cIE4DVGHRPREUwNWosNUuerVuE8jmIJKPfRA4AMP6MBNrw5D92ulgslLUJ0w7zRFkENvCbXPqN9VDCcMS3S+GO4VLcMfYMAkgPL6HAPmsgEKgA2vqgU14EEd1gU1qIJipZiyNue7dcMgT4IFpBGB+SewWf5sBCRhL5TqywwEI6hAeDKCPzidUdtGT4OJNUTN3fZ1vvnDTBJ2VYACDoLHVjG1jP4khq6IKhTBE/ACVRNRM2zDH8wAGfRIUUaDQh5GYrAXFeDAJ7jDEp90KPpfPSwDZevvKkuhW/rDJ9DAFPgDFhQECoPtFcgA2SYDeSI2Vwy0ClsCUAs3bUwEC9N0XxdDIDTjUvitYyejKpKSMPAgBjwCWatYNCgWLDDyY1QDIEwGXSgSLEgAG0RDjhWRFEbeHzRAK/wXSleJf+GDDfQAPoCCNYDZy4REHAwBC7AAK6hDJSK3VhD3zfgDHxn4bJhxUDO0PUx3T1pN4G2IBBSBFv6iqTO0QgB8wo+ljd004DdQwQL48BA5gxQSZzyEwPF9L7CJQgHcQjbcQctUBTdAwQVDgQExOB3/9ZdoHnOrmYE8+Je8RBf8C49TxCiAwstUjYRzZucCRoc4wxw0gOmWrBVRAzAUwQxgkuGqBWjjwfXMzydwaE1FyVGuttqtQzjY13UAo1vXAy+UQQxkQyKgkO48rD+Iwyt0QA0MQWDOg/wleUsg+FVMBKZaHakMOvHkSpD39X63xDwE3ZNzZoo9RpVRAg5sAQZOMhG5Exv0QHZ9tSuZQ94ZCxvcJhmRj2pHdDCJQmkHW2xL4TWswyTsABsgQzOhsEckg1/KgBfoxv6+ErpVGLpV/IsrdGmtKcQnUAETcAFsDXbm/I52ErtBMIOyN60XV7o7QrP2bEMZzMAleLnHsVcj5cKHrqIRNQAbzM9hLMPnkmDkyYwq1IOaSyE36EYLrEEY+EMmPhA1+gMdPKoKvAJBELlRG/tV+AI21RqeMKYFhMACXAfCI4gv0KS1H0QxNDw+hMN8c3tVnSm5OIMEuNyXj802bIIAUAI3U6U2BAEVaMD2yJCUiGI4SAAXsOrEcsM9qPwkyIMp0IPaNqEH43QNQEEDDX3GZ4XCX0UixGDBIQIBlETES0A54lH+Ud3SGwTBYYmVOSe3PvG2FzLPIY4zYBoscOxhUf5DLgxgAZbTUX7CBpQBapf1vdtPN7gDN7y3Lej9UudS3ksDF/TA75yCwh4ExN71o2ICL2890/s4rXgDk0s7W2kmCpSEJDYAF+SRPkyDLIxwkhPEKYROQvQnvnQDPjTQ35uGQsSoGH3DQc5645xDXpjhnaEAFWxPKzUWKX2RaC7yVuuYUT3BEiQCNxTrQSmO9/qfPkx2FTSU7FckOPgDGywBInCCMqDQAx0vLfhlLj/DfDr+VTS90fhDMYH+hiXw1LtkAxgBozfNRDhCxa+tQhgBCZDAjo1lN/RdEUyBWdsPQHxzZ8jHLnfdwCVUuDDhuHP45uH7No5hRXDbzn3b5v5s3YwelL4tazaS5Mhlx6ItE1mS5Uhnx5zdCkGlVciWN0/eLAnsHKUVbLjhieWMpLNrFC0mTfiNmz87IT7V+/ZNadWK19xxm7FnkKle/vzdAzuWLD6wcXjUUEFrnj+zZOHGlTuXbl27d/Hm1buXb1+83IbwaOqXMNl79pyELbyYcWOw9tYdoDCZcoMqjjHP1efPkbfNmUGHFj2a7mZDDl6kOHDu2lSqFb/hYyNBwgE2414rRTeJgAQKlNxZ/dbtk+QZ67YJd9cHQwhDIdhs08myTytnK6cvcyaqQatq2KebdHY9+zYqFFI2A6bSJVKrsLlxa7Alnvv377+tEwWAW/4ab/TuMusZHWqQ4Qp3SEtQwQUZ/CuwwRqEazNyrInQwr3uiaeHBiibTAI2LiSMnWm8CdHEE0XbbJIFLKCgAH/m0UfGedyp0UYEo1iAth62mWicH4EE8ptmMKCANiruCdKhc5hk8hp/AkABAwU+WSc3i9b5pIEQQhCAF2fWU0nMMZ1ppbYCyqAmu5RmOKBLAao5JjySeDECg0mqYWmZlFppoA1wgHEmGiXIiMaojO5bqJt10JnjAG7cqSZR/Nahpgcm5JEFH3vEKs2fdTBRQYYhGPGnHhRRTVVVfwATDNV7prHEn89WPZGXAizAoLkGUPimVk998WXWX4ktdqx65v7B4YAGQDzVrj8EcECAMvCahwnJFOgjLnxk7BbBAELA4ABR/IlnnnPRTdcfKkKwIIQDhHGGmnnnjcbee7mZpAAjcRDG0PEAfmkeNlaYZAbfMGgBHfBGOsZhh7kJQQEKBBAFmGNUOmabXXzooZVt5OQlBAcUCKEaRCf9php/PsFhi3quQWhSpSaqp44eHpmmF3KG9fQXKFSoQY2m2jLW6KMLaxVCFEcBBekG+fFnlhUCIGAAJlam9WhXLLlH66fBjnCzccIYJKyo6+IHn0uKYMPZu67pQYIy6kGbLrHKCEAADOr5Wq543CyAR3CaZJKicBAPZ51J9nagh2402kbybf6omYcbE7Y4xh8BQqAAhRBY7Ub00bMpPRtIO6fgADviq8YZe/4I4ZJowKGmmm0Yf8EBCVpZZ2aE8NmiCF2Cm7mqa9bhpgU24kHDH3bSvufUOGrQQYVXwNLH7rC5757VB1XVxxuvvR8NonV4Obd7eOjxu/z3U8XHnbfv0qeeeuLZK5pWir7rHnza1pr3jOMaRiiAAz5xDoZ8Yx52aIAqFBgfAVAgAO64hlW6gY8VUAADAhBGNpjijiL0YBkKVIh+JjaZ3qXsHM3QABdQZrykcKMemyDAMNAgCwDZRSzVYMEPDAQj+A3xaUpb1Rm8YQ8iZgZZEOnU0+zBDjcskYqYsf6EKfhCPr3cz31zkZ799FK0K1WFgWDJDVXWIYwizMAf1aDKOLrhDkT4gxomrEo3stGDGXziG+dYRylMACJJLeQb9TAECVpgB3+MMSn5qUYfFlCNg9hHhgoRyDKW0AJ/wOExdflMHFhAIOz1r4qlRJURU6XEQPhDiaZcTBeLBaA7KMaVtcyLNUpkNFjO5VRWStQ2rsGN1+RnHU8h1wUtibyjJMpX/hiHO6jBhBlsI1IWuUY9cAGPrNynG/6ABQrYsA44VrIiCPFHGWIwCHl0AixPjAsYV3EFFqhAD9AwlS3xaSFUqmoaoLDHLvNJxM3IAhc9C+hBxzKNCtXSHpRMFP431hENCfThGPFIDmxmNhVq+KMRGhDFONDByKWIYxHKEClDurEyGixBFPqYCjkZwg187MIEewCHJc4RIBhRTwY6YAVY3oJQoYJmn6/yhyuGWkuxTLGVSQ0oLgpqS4e+5xrz6EMDduGQk8owP2vUyFQtKY5eSOM921jHMRpgCHTEEKYJWVQjGrAMdMyyfv4YUA1qcAX6OZWviynqq+xxh1z2dYj0uMNhCJtPa0wDn76b2VlHuMitZnQd1VBFA/7QRrBaMh9pGEc2aLaObLChAdVIXlsXQpG4IcEfTijRDuuyDkGoQAc6CIUQE5tbvvxVVaCghzt1izR90MMV04BtcP5L6Q1X/NOV+OCHzKwC0XXMAQdzpB1qwTGObdSDF1uwAQ2RqZxIgEOkKmNZD6jFDei29RvhaCANPIEMdrKSLtzyhzGGIAMZqEEdMNoecgEcF96iih6+sIYWA2wse8CjGNBLcBXhMdha+rIq1NAHLFZABUhtY7Mz2ygiMFAl3EwKHb0AbUU47I8n9IAX7pjszKoxj3FYoBCcrAUt5cIPZ6mBQDX4hVkA+mDdDhhFYrECfYX8KwAlJslVPAM5mmpKfKwXNv5gAwWcwQ07ota8GqDCyYyXDXzkAB8ntuQ6bLGARnSjw8bbhj7KEAJU8ENWwI3LqZLRUxl4wS3/bXKCif6MIgCd4c+r2gyho1zo8rEj0aXUx1TRmAsMmKEewsQuedexjo5OglUy/OxLz3wM5nCEym1dRy56sAR59EIWBpXLZu6hBtrq4Bem8rOikRtoFC1YFgvFdYjY4YpiIPjX3UsEPBpNRX7Mg8rdmAc1/DCDVPgjvKjlhj5s8YUeQIoblTyHMhbhjhMzcBJF4AI+2ArTRYWDDTvQBTIioUQ7j0UfZllFfulpjnsW+8G6PtFmmKHDeecWH0E10WGEFWR+E2sUSB34EHWcWtPuAgVtqFy3sTscfDxnEvNI96TcUVKqxKwdPTACL6Ty4ofWIxkKWMUiCDorWJ7KHGqoAQuGgP49V4/FHJiw78Kd6m9UuQEeCh9qPezBRRPRAx5dAPr7mB5Q1iRno3N4QDDQMeKMt9cERXAHh9v6bRBScxcDAE6bZ8aNebShAfHIwfPsojZ/vIJA+91rXAZ0v6cnVegnUiXPjH7Qa8ACFhbeeYJk5A+m7p17YgmCP45rSndEgxroQOsW2qjy++TnG58gwC4sh113AEIZVmJXpUtdyYmsAxgxYIMssFGhh/N8tjr4wW1JKZdn1EDvczE444nYd7/bwxrCCu48DDGAAxxgAGxYmYWY4YtiHB74xdqML+DRWDMIoAFziAG5qHFpcHRzFj2gAjUx3tZxSOMU/uiDD0BU7f62xnEcbPABJdbJqbo41x+/kAFe1QAs6sYudq/3XiEZnuEV8EHvXqHWqm+IhM9ENsMbRuHAEsss+uAAioSDDoAJxMYaZGH6Zu8Bw8cfRgHybEkVCAADWsQZLEr8noQNiuARJOvSuEEaeoEJioAXXEr8omEeRGEFGsEftGAddknHwMIL6s6e9KIA6wEfQMkcxIEF4gAsVkEGHJAEyycCUaQYpi/wXMkWGqBFOuQASoFBBqrVtBBsAOTtko2ILoEAKMACZuAYtgymVGYeMKAIxoHCsCsb1kEZBOATskvz7mNltgB0tMAbHKwuTiUUaksFGCH37qIA14HH3MIfaIEFsP5nCPSA+tbwaLgQRabB6d7woERBDjtEdTZhQQ4jEYwvFIXreU5xiJxhBnKFDeYh4/yoEQpgF9pI/DCtBxSAHLSOy8DBHWChAcqAH7BgVmrRLC7x/36g1gawCWXAHK5gCIRoeq4ACn4At2QxbEbx4MBilUAxnzxvFVWHBhdkipBsHBXMH2ZpBN/nGhqhSgyxkZ5kFnxgCdSBKdAOP3IKEZzDFJxhH6uCG+6hGsRgBoCBE7IBx+TiLVbhB4KGDvLn7u4iGXTgCvIKjISIB1TAHxBEHskRfMJGLJgBFJihr2aBDDukAD5BQcghEWRBH+wRJf3OG+DRlWiFGwaykcDBH/6ioAdUwR2G0irGQcuuYQW4IBfkoRbMrK2qoR5KAQX8IBtwIRsSjy5OhRvUQL+GgBayxy8GRBC4oQbowNbiARp+oAaqkCN58lfKMVVAgR0iD6GYgEMowwKK4Pcywx6IL/vq8mj0gfgOysXIaSKi4Se4IaTEj4aWUR97AQ920dr0oQ0o4ByYIRHuAglfoXpYoC0zkTB2ry0qAQvLxR9YQBB+wcdO8zCL5S5RxREoxKnMoghCoAE4pAfWYTQmxBtAEwxps0H0AR7ugLHwadkUcikiShQ86CDELz+2wQgogNqyoR06IR+ekyHOYSMOgFpOoJ3SxiS9IJSqcd8K4xlkQP59wBEstjEJdYASj1NVbPNExMIn9TKp2uITvqAMtIUuG8MbHEFYavE+/80bmCFBh0gf0MF4rmGmUIAJ0C31uMpX+kAIM+8b4mERsmEpU4vbimAJ5ADeWOnhPoMW8EoHqtDWGAMu7+dcfkAPXuEHnqE1hyAAb01BTSQ/9RMsTIHRHLSK6KdIswgsHEEsdtJHL2QamKFJ38cPhWOjnsAHREEivtMirq0ZbIAKhKEeZOYbeiESGFOGosEfEIEG/iAEg/Phls0f2sEL9OsH7KngHKMe7nQzqsEcuCFH38IcoME+nTREgBRFNqMLeAZJFU0s2MHpjLNQG0SwGLV7Iu4+tP5sG5iF8y5tHGLsOUShj4YpH2ohHL5zKqxlBmoBBNMRLFRTBn5gBCYRVXpUUiPkUHfNH7yB0KS0yQYKqSrVVhuEGSTMlu4QNpInA3chHtIPtXAjbnAgIMcoG7AgH6qSIM/BFh6gEJChF2LRLtQBJGvgB1aG/4Q1sXA1VznDPJ+OfBwBQPbyXI3K6eK1is4UNroBKy8F9S7tG9BhIEJgCN2IIeqhE0pnZrbh2ahACGqBHAAhamDpLUKBB1hABgShLQRTXvlOJQWKHqQo++r1z3YoEIrhtzS2WMhhliIVbPihvM6hHthFGOZhS60JmkKgDJzBgiwiG05BGdKOZTaAFv4AwRSUQebA0h+gIQ5UgAW8wCzx9GQJK11VhR1wgVf5TYnOwBKCFWoZhB2gZ2XBxrEU5RyOYVyogUrbqin6wAJsgUmS4hxqAUQ1jynqoQiK4BimKGSPxR9CQc9MM2O5VqikNpVYKRCmAWz5ih3OQIm2NnBJQ5XU0JbMIrz66BrmgAJ4gmaRtRmYAAWobau+QRrOAe38tRp4oQEogRDWAfDsAlnyKy6bgkAd96AGN1UQqzN4xlf9gRzYATTpoXFndzSUCBdy15buwR2ShIFUoQeewB8kE7viaBti5xLoiIzWoROUocOach6igQlswB1MIRtMdi744TNWIZTYMiyuMf54g45jXalECO13H4y53MAbmJN9a2W4vtWWeGEOnGEeqMAHznBgsasaZioGvuB/mxWjaqETpIJmnMH9VuAXRgEX7pcu2qIaQFIFrsCeEBd/IdB9a+kmW425kEuJiuEOyEFvQdhEZMEN2gco8cEWNDAENCCcnreA/eEPNIAXIOrF/LUWJoJmxsEfMOcbnMAavtYR/YERfsB6MAFjW7ivavdXlMgauoB9kOsepMhpenWKG6QRS6ktKKBzQoCNFhi1tsECuIA68aPEAGFmLaKPsqQBJmEa0sBo6SJqzAEK8ApH+wyM+aqKrfgcXeElKbKKnmivdNIfioEZ4JGFBflCQP7BEeKRik4FBdylAahAjrks0za0JuWvKuYBEKzVIrbBm+YAA/DhyPhBb8UCH85XBnjgE2dzkoeKkInliqfhDqBHkrmnLXBHGPxB7oYLLLoASlnpg3E5M8RCFrCImQ1NH4RhBQCACUANpsaBGtxhF2ZAw7YpUbIhEmqBvCpCzAzhTsgBFwB3LJBwGNRgnrxgGEylnZvZlnTZaJjBGpgMeGsFQXrABJojBoBxh7rAGhD5nouFHRjUlkQru7Bro/ZAAmxBnPYxHEgVhBYIK0LgC7JBFiK3LtqCEUgTE4BKodvXVZyqU6zAG6bPn1FlMzQgdSYDA6CBRPoZpYlFJ0HaeP77RnOzSx2WwQSWgI4U8huyAQ9OIUJTCx1E4QBawRnP0hHd4XV1IHZ1OqWXZqiO2R+sAEpzF6ZDpAw2kDIOoBCeEfKkOatDQxYu2JVgCivGoQ1Q4AypQUTJqxdMaiFoSBmWoAhAmp1MOC7krh5CYdY+sW9qla1dKZ+RBrGKgRyIDovC4iuPJmqowC8pAwMawFS+mLEXZLgCgRw++2ke2HiaIiv/4H8xtCqywR16oRYc6xticAnAgB8AoZPoIn80WAY4GFBBe2NVOrE+w2t94cnGQqwTRHqKQLNrugBeNriNRVhKW7haOylijA1Q4BZ851TrAQ8iQY4Rwh1WoAjYof7B8GJ6hqAGRoAWgtOepduUHLvxHsMbDtoXgPlE2EEejMC5JyME1kF24/tClOjt8rt77tUqzqHbLGORYCoeIiFEyWt0SyEAzIFoi9cuqsGPDUTf1nrAi0iEdauR/YEZyOEM9MEUrAG2xOLDPYm+NsMevAEX6KELsAEMGqCsxcUQXBzEGUOJQrqUnLOs1kEd4gwYqhempKEThPhJcoEKzMAU6CGPW9cfzGEVlhYKPtGyfTyg5rt8SJzpXCER7sEJ6CGhZYRTqjsuvAZAmoqxshgUcGGw/mAAKEMAtoBQuzxEnlkWipWK0G2yNkoUcIANkCeNZwa2ZdtXxKAIPuGKiv74FN/5CkRFDexJz/dcvkU8yaBnGorBG4IAHixBi7PnHrxG3rrlnaBxmQ+DVghzlSBgxitEjE3FGaRpCWYB0zPdQjZjGgzTlYpnjl+7CLZ7HY41zGoBC9ohPjAAE2DO10TaHwShp1SgEk5612l304UsxhXjzOX8DkzBFeDBuDxWrWHJHn5LL+lBiWWBGYKAHe6gGLJPLJTIb96mb7D9V1xLuWslMyvCIY7hJ5Jc/bJBGfABHFKhAJIhEaDHQeWnp3SAG/E937N9uH9tM/aSGYohEXCBGazAHhJhFMjBEayhGKTv0xOBHkAhEOghCKZBFhzBgosVQHbpfp6Q4ldFif6cplW9h5K4IR6owVGaYR6qAa//nf1kYRlQoAf8oRPWQX7J1yzqgRFmrVQiAucrfqv5rVvmbcFe0hTIYRqkj0Razbh+nSxQHevfZzNcwRoou4qc8zWa4hOcAx3QVvXyIRLWpQiegRDOYfrsIn9+QZ5UwNJvWe3xWdsRf/EZYzMWi+fDZnKHY6NGaBe6+9Ky4Q4iIQT2oBdIfjMidnpqiwXYAvIZH36+/PRx3hIcocdNRG32hxuooftOO+PWoRb6gACiwRTw4JJ97xnisgagAEHgW/VD2OKNP/n9AuOx6MCtz8qqBgU04Bgasl/BYR16AQSmwKvBApb9QRwwoWJJxf5UXF/5UyX1zX/Ph0sfCG2J0GFLQqAAqGE4+nUc6GENXqAVvKEWfmv2ToUVAOKKChZ0nvmb5y+hwoUMGzp8CDGixIkUK1q8iDGjxo0cO0rkNoQHN48kS5o8iTKlypUsW7p8qVGfv2nTvMFcuc1CiBAEgF0DBzSo0KFEhXJbFy3Ei3lu3MGTqK+ePzo1dMh4lRDfza1cu3r9ihKkSLBky5o9izatWpP3mBWTuZaiTEQhKHDp9q2o3r3g1tmhwElZIn/2JtYTx0KHDh7+6sGNCzmy5LViR06+jDmz5s1o3bj191iz1oT38vI9DS7bPFVZFCADVMwfvYgy5+lRUTXUQf7OvHv7tlj5t/DhJPWZC+WOuPKVhf3dIRw6M757+tyh5svtHL4yO8LIg5Ow+UOtr6DUGFHQ373l7NtHDu4+fvx6v2pYlo//oj577NzIXO/bOdcVxQ0+uxxghy+mwEOdRFpVU0MNMvyCUHT5XYhhSvBlyKFm9NmXED8djqiQTEFMM5tv6Aw41DjotKHBOtkEkiJFUnkBRXIk7sjjRRv2CGRZH1pWzyvz0HKfP9Ak489oQQo3Gz2BEMabVt+MM+CV+KiCwhzedPKceBSNVo+TT57Z449orunSkFIN8UM9OqihkDs66GYhm5nZo880loTHG5bXfSMgFz3MgswpMolZUf49AOoJaYZqRkqpRx8axAMUCSWjApP+0KLCPFJVuplM9JxhEz15RnZPN6hVMw41DfSxDj+dkIorpJPmyqthv8jAzQ9XNIaPOyxghY8eajjWa2b6mEilZvqgto0/XDRQrSOxrdpst/nt6m24jQ2T2JygJYTJFfXYSYu4l6kKjymysLPZOqYN9c0384jSpT+93CHio+4O7B64BPNazzAjMKIwK+cmMwI3yeiwzsGXFeOKNU8xGlc92xDFjTvr4ECFNnd88+e5Fq9MnMEsU5owsP4IUkM1CnnxihdxvBwZPPpYwo416gkcFzr3gjNSKRJA04kpsanHc9S9uSz1mkPi0/6ODHQwK4gOVxhUdVy+TDNYjZC5czQ3bBzgTw73mB123JNRLTeQCf9gGTQdQIOPTFAMAXXdZgHoCD2JkDNbg2nJFJU75+wSAhjIdJK44JbHRfflI1aXTD0iziOxP/H4MwRW3Gr+0n6E2RMIOykXdjpMWtnSRhuNVEGCHMhkk1DsqP/uUubAB7lKB7sN/xVcs4HCPJV8luUMCgc4QMIL3tiEfPZeCa89h/VwIwML7frePUv2rJeDP66Qlrw/t1BAAQkOiFJ+/TBxbz9+xerxCz5m5n8TfdyjMN7ARSLgMQp/0Kt3KiPJekJjDWsUQw4KaMADGgAMAGowLCFJ0gaDhP4PZn0QJs0hhz8CgQtmuMEfTzvXPV74rAYy5FnPKsxsxFMTU7jCab7wBzGKQIVjyHCERAROB5vkvyQqcYlMbKITnwjFKEpxilSsohWviMUsanGLSZQKI5blD36IsIgsYZwCWQgPVwTCGyvkmGz0QY8B2mOODqFXEO7hhmIUwxomzIo/3IGQ/5FxkBABCd6QyMVEKnKRjGykIx/5SISoQQY/+EVjCNmVwhQDF4EwRSJcUQxZ2AMXDFyIN5hhDVn45wSysMTGMAlLjoDvB3TQgy1victc6nKXvOylL38JzGAKc5jELKYxj4nMZOqSDoxYjApkIIhqjESQsWTL8xbCDv52jIIdoHADOZzgC0eI0xLFsAQ91lejG8awmuyUCD/MoYkRqGAE9KynPe+Jz3zqc5/87Kc//wnQgAp0oAQtqEEPms8LVOUHPOjAwprUzjIKUIAYWQ+fiBbRjDpEJoWohEc/CtKQinSkJC2pSU+K0pSqdKUsbalLXwrTmI6UEavQwQ9U8ANMcEMdItIoTBhnRhoG1adEHRMkj4rUpCp1qUxlIkKuIIMr8G1URa2qVS8j1Kxqdatc7apXvwrWsIp1rGQtq1nPita0gnU9jNBDVsZ41bjKda4Wg0s9qErXvOp1r7nqG1//CtjACnawhC2sYQ+L2MQqdrGMbaxjHwvZyJtKdrKUraxlL4vZzGp2s5ztrGc/C9rQina0pM1fDMlXEdS2RLWljM86IcLalMQWKpiZ7UZnaNuJqDa3iuWtbCGTJ9+u5YUJmY1wHyPciWCUIw+EyQBJuJDm0pYkdKQNA+PYEORCBLsl8khyYfvGjqQonQ+Bm0KqW94hWlcybyujqjziRvVuhLXx/W1FnmsR1n4XI/YwL0XQe5aAAAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRow/x6SuoT99NgStd2QNlbZqjaYlcBSpm6Q49K8VkBfLmKOw0X9OeCnS6FKnbt3Djyp1Lt67du3iF8qsnsF5Te2qLTXNiLxAue6bYWWNnD15CxuSqVrXk7U4xXMUI2svLubPnz6BDix5NGik+f9xEFQRVrEtka/4cXwTMjp0/J/CsWHNss23p38CDCx9OvLjxkIYONAgRi1kgypsFblZbcanJzUsT3T5J77j37+DD/osfT97n0nU+KGAAIcmUZn++O27uLlCWrET0fK0tz7+///8ABhiaU/6Qkw0JFIRAgGr2NKXTTW0xA48piUwjEHUCZqjhhhx26OFDS9FTzCimlNKAAEu4I9RSS1mYQ3fYfSjjjDTWaKNw9GAGij/bZHOag0XdsxkollgY341IJqnkkkziZKEj1mQzTzbffFMNNeO4Rd8Z9jjS5JdghinmmPDFNg0o8GCDzznfgOPmm3whpc9m7OASiGP0HEnmnnz26adxN8lCTyD+0KNOm2+++c08c5HDjBsX/inppJRWahc799zhmDuIJuqpnkdF54YrGFpq6qmopsoRgWda4k89/uB06qmip8k1pz+WMONemar26uuvwO7njxvTZLbOOLLO6uY369QVXYWZBSvttNT26QszsviDT6zKdvvNXUtVRU6D1ZZr7rkfLuUNM974w2m38C6alzWJkIvuvfjmC95N9shiioVVwivwt+AKdIY17eqr8MIMe+ZgMcws4m6yAs86Tpx3bSaLL4yB2vDHIIfcU1uU4bJtxSgz6xkz2vlTqsgwxyzzRr7Ac0ci+FCM8qwq86MtXt3lkPDMRBdtNENtXduFP/FkszPK52QzySfCuAy0P7LgYvXRXHc982bwwKEVmzo/nWiVRQignC2cbZarP/bU6vXcdOPb1h3W+IJH/sBmV8wNNQ1gQIEEbHjW7hmvAlb34oxLCw87jnjjzjjKoNM3yt1EYwEFFljQh2ebjWLPLc7g43PjqKduqSm+kPNNJ5G8e3nF6xwzgw92vOpZPe4IgMAAXPCqunFNsQVYg/Zs1iCQwzcvUXf6XNUuINnEU/bsZ7uzTjX+MOrZPN0gsEIJE3DvfGl/zWnvQ9exdf77TG3mzRnwzPMNHp0gi/3ObY6Djmd76R4BRBAEElADfqNJX0z8IZhiOMIXicDFGVjmlTN4oxjFUIk9ahIdBMJvMzkQCDrG0YvJ7W92oNmDB6SwgRKUgRweHArzQIUhdpBjGt7AxaPIcic3sGMa/rupyUAcg0OyYAUXiSgGKGRRJ3gMTVgx7NpSyIGLHTUNHcoAhDJOODsV4eU0xpDCDgjijUjIJoo9idMkKPEJYSmvUP5wBTu24gtZQMw2GKGHPWpWlmlYwR+OSN5aXobGkC0Fg5lBxzey4Q845GMcXOybyuwSpzXQoGrzwEc9+IKZQvLkNLBYQQgStAJgFGoptnECPSaoGEEahEUOgaVBulOM/NyBHW444/o8+TF7sAMeiBthm7KRBmk4LZKSxJhc+OKMAxhCRXq6gymYx0uRCGOUFOCc4Jxxk0D4qxhv9JhHbvIUZjgwcnkSZzXRxQ5TjMIf6+jGssBBJWRe7hvx/qALP/BhiA3MI58I2QwM1xkSfdSDDQfIpkIpYAZCtHM/HeTJ8gQioQjisC3qJGivwrWOIAjkmLGSBhyUAUl79u0ccanVMZbQBLglZCmjAAV9NNqReqADAxtYKAUaEIN2SIeaQLmVQHzhjVy54qc0DRaBfOGKzPCNnv5IAz5KalKzcYOQQeHHU+YQg1ToTiEsemdGkwqReaxDcDq1QAycYSuo/NINuwIqWS3loESwQx5T7dQ36oGHelZVkus4XVH4wah5IKAQ+cQqQZYCiqPONSP0WEcLLLCBnGazAUXwXl2aAg83+IIeM32sqWRhj6OyyVPfOEctQPrXpyHLNP7Y/sIDfhSRxylWtC/1h20gFYYHbC6bGGjAJvJCLldYwxErgc9Ycauk6RQjEOzIWbK+kY++sra1T3OHPuQGFL7wYgeFiwd3H2LB5TJ3a6zzRbT6cIAHNEA5iPgqXqKjXl/ox6XnDRNN/OFO97jjGlR90zlOcYpzYPdyr92aT+JUhSIQo3sU2cwdFJffhNykGNYAhS/LNA9qzIEJfWCred+yFMe4QR/vFF6Fk/SUMxSjXU9N1DhmTNIDm20c1dgGDXowD2XmhLD+SIYHEEFbiiyFGTAc8Vzzw8SIDvIeSilNY2QBCkyteEn28MbS+DFjeGUjG0GAlY2fdg18HCAEITgA/oR7gggLxEOzFtmMD69cEHYU1SUqHogmxxuap+DioUqmM3/q6g9m1ON6sXLHKfxx3TF76xyiCFwIGrBmktTKGBsonI/jjDVB19UbSR7PfKbBDGbgV9Ac6g45ZDENfLij0Z5iJBys52j+RSNwO610SALojyaYARbyzchJRmENJ4t2To9DnCzH0xZ7WCJbFEZ1gO7RHQrxIx7cEpiPTpAPWNeaZ+doRRGKYMpAS+Ta/siFBR7hMz5npFgrBqFtzE2czZwAjtIO0GYg0L0AC2wdp2iHt7+tLHGsAx2b/shp2PABnJiiGHLVaIlH0TJj92e/jhjFE/NdHm+Ywr/Z8De8/uIRiVrEmOAC4wY34OwRffhsFzRYAzzdzRFmTCO0c7U5tDsUnSrniePhmeKg3HXap6n2FOtAed9eS/OLeK8KO+CGrkFyE0jh/E9Nt0tj/IE4k6RrKZawjcWBLpwWkSoe+rtxNraodEnSeyFAToUFZtGst0tkM05Q8J+4AVDQ3CfPMgKFl8hOPH9YwxXuEXnKvgGIXii+7fDKUkfmxIYYuOO2LdctpZbCCDX8jDP3IEcidm6j6PwRj4QPDjPYkXd8XAN735BGLbANebOhVCOncQcxPPCGYD+IGYPHuj94AIXP38XrkDq1jbxuChiOPfV5WWogTP2NbcB+HLXoRNJr/m82L1qEH5upxxJ8wD2W70QfuLCQpH7xAx2s4iDqUEfWgXITJIa6pvPIf3FQaYodYR76bcUOG+Mu2TY7PqIEjMZ9T8MsgkURKqIKDzBcxucT9jANZ+QncSADMkAHTIEPdEAH9TB/PXETo+BYCqctCTccwKR8AJgXsgAPR/V4fWNMCng59dCAE7EDRaB3QQFBERcm3HAFNVADUCB1A7FdHxiCIsgTXsIYHnEazkAFAVAAB0B3xkEu2XKEP9iCQVIo2MIO9cANMsg/9bAI2odoNfgm3dB3ENEWqbADhuAuRlGBP9cnv6ACOqADI/AKi+WBINgW3FAP89AO7tAO7aAO/uY3Et5AcTy4EbygHGgWAgXABUsIGkOCFuP1fFz4E09RITsST2O4M+OQDYvQbWnoWpU4EIyyDmYQAyiVgkDhJZq4JAalBkPwAz/gBWoQZfDhh35hDjpQCe7gBSyggUSoBxMYEjFRJICnEfVQBBKQTZZ1AK1wHEdWC/4gCkuwBFIAbIm4iRToD95gGHtxcvvzDZRTdKdYMdsgiLBYEHyRCQ0AbM0oFPewNLOYJPVgDldgDrfoj+IQJ0hIB+7gDirACPCxDuZgcK9wAebwjhsxRS0TEryAAb+lUAfQCOCBDC3wAZW1ARZQOOA4FKHTCa8SijYIB51gjutoMd+yXQyx/kkr8AWaJBftYncegg/xwA1DwANSZw5H6IfcwAIIuRTuCA0XYAw4yT7+cAfZ8n8VUQoJlVOW1QBlwIvGoUIe8JEewACqMZJA0R2QYg3uYH1/tXay05Lxsg6GEAJFEA25hQ+q4AFeNQ84aBQ3MWH5mCQ+w5M+2YBI6AUqIAO/8Hn4MA88gAk7UXEjcQwoQAGW1TkH8AjfIX6U9ZEgaQZeB5Y6cSvM4Asmo45VNQ6d4Fdq2S3uIAoLMGkxEA8YEkDcsARVcEDfWBSHJFZ94pdGGJSCcAHDQAc8YD434QXFhxMnMXqbORJFoAG/ZQHBVY3eQQ0xgJkfaQHrAJGcuRHR/oEHskAO81CAVYUOpxAJA3ea36APbCA4IQAAe0UQruYPjeABbVSPoQJI9NkkutmBdBAH8yAOI1AJP7MGMuB7HxEuC5QT8RACaLVTIukd41AEl1mdlgeV2WkRSyELiIN2jpZ2pwkv5zALGIABC1A48bEURTBGFDoUN9F8fpKffZiE/vALvukPlTAC7cAN5rCQIgFaeZeiF8EXRdADPUADwIadpSEFEVpZCVAIyVihHmENppAt6wBgY3YOgKB9HRov6BANJtCgnycKHwBs3lcXNyFTLdqTu7kW+KAGahAnanABSCkDxWiMBIoRbUEoVzcSPmakpWEMD7ABHhCoFlAC/kDppCFhIYhzaGgYSYt0CihpngTjPYyyC00gBf/Dp0ehD+TgKrmJpgdBDdQAiL9gDr9gDKZqqoW5lAiBRHjWE7WCld4BhUsAAL+TBYuwK4bKEUKCK9PAD+vAkn+1SKv1qOa5DYzCF22wA7MARXhBE6bWqT7pEHcJEs7qK3vhDs6QSewATj6aqxZWIGNRD91ArIwqDXiwfVlaMcwiXiVgBn4BGvcwR3uZJC5qm/QwDYTiK+7YY4D0Z976brgAKb+qdMJqOek6MNuzCwiwC3XKGaAGrWlqjwKhHfNKKU9xVBX7rwNxEzCoYf5QfW23SIAgZgerLNWgD84QA1JwGpga/hdzUgwDtSf1ShSgkBiqSiY0MQ13oLER4Tbe8ImLemDK0AvoWrKKckBbsAOikE83WxREArFGQQ7kkKdKdQ8bx7NgpQ/s4Cr2w33fgA6dUAtFa7RVIp1bcCzf0K1yobY0MrNCIXhsWymCd588y3+ygA/rEHJeK556a7Tg0A3rQA2NYAGqQQ1v8hsU0rQZ4rY/MSfBdy5HZmpxy4XRcQfecFTgIA41yCyRoEh+ew36AAtC8AXqsA5i6CbjMLlIIYB1OCaMOzJbG7P3Qg7qhbUGsRmuUIJMU54EVz1pYGAlW33+8AUrkAuTkyxjGhrwYA2qyyGvyxMrSrfSQg43abvK/uUPSUQPOaOWi2SWCwis8QJ738AND2AI1SCay9IspDENPtS8GvK8O8EO+DgXS4EPqRgcN+EKrqK40kYOrhATnruOqeUML7AM6IgykHQMwuAMAws158ANDayu6/Bm1IAIHtAK8+C9s9IN0RFoSraFG9G6ruupQeG/LHgUWtUXa8G/zcpA0fKvBLIx8lAPHHqK4XYAJFAAk5Ay4PAJClAALXAMilQl5oiOy1AGVPAJ4FMx3eAPnzAJk2AGLbUOGoxaSdcKB2SkSyF1tVkQalGJcYKpZbgO7ru4JMyJ9MAMIowUfAELTOADTcAGKnK/wLF6GksfHpUNnBK0KOcORtAA/imwAFRADdvQDUR8yOM6YzOgABSwAGTgD+eADpJ8DpRcyWyyDRpwAAuwAMvgNOHwyaAMyuBwDrBAAQeQACEwD9wgK4dcJVvaAxiwAqqxXfZby7YMYSuAA0bANHDHKGzABgfUEIzyCarRxQWRGcZMr2c8grikfnBxGobQABSgAdI8A+bDH07gDRlLdtkhU/NQwy05D0gQjRLABMCwDOiczuq8DMdwDKMkAQuABO2gzs4QDfZ8z84gDAWQTRLQCtWQY9sQ0AK9DVfiD/2UUwKwDdfQDYZcJZZ8DsiCUDu1BQyxGS0wOBQwAw2rwrAsARKAcA0xzhLwyCIYD30AAi0w/g9lHCDwOxI3cV9z0QwJkk2b0wBs8K7ksRnusc2oZh3WEAgwBA5VrJbZUA044AArYAvR4AzN0NRO/dTO4AyXkFA4EAzNENVR/dROfQwyLQEKIAG5cAzrvAxNvQzUcAxcUAIeLQEH0M7r3M5w3c4S3QBLMA6RLMl4nddStwIKFQLwVJCA3WP5l0nLgFYFEA3uoIS2fMuiwMgUIADz+VL1AAwCkAIIstHKHK0/QQ4aRxdU0ACWBVwDANLksRQTttK4VWzaMSVZio7fQA3LAAz4cATb4AxkrdW4vQzbIApswNS4jdvO0M5cwAWfANu/vQzjgAhF8AXrUAcz0AO7kNVO/o3VWN0M0dAKGKAchjC2PIMOdjCFBfBM1SfQVUIlVbIN4yDNFBAAwMAN3XAN8B3f8S2GqplNC9AK6/DQEL0O66A98WAHB5ACGKABmI0kLR0S+Vu9cmEG6q1QGDAA0dCywNEdf8TT8dYdZ0AOXMbHBHsO12DbzbAMziAJIf7bx+0M1WDivx3VVRINt/3U6DwOWxADovANxwAOtlDPKl7WsE0NrUDM3K0sUjIJoiAKSzww7sALptwH4Kksds0EBUAAZSBybULE4MANvFAAG1AAVNCITHLgIWEf0jsUZSDNm5NTGBAA7ckfVptimyg/AnuwbWLcPC4Hvr3jeJ7nKh7b/s5AAHsg3Ved5zre1FhNrpW8gOewDacriuNQzyjZDXzRDCCAwXQsI2D+EfdwUXURzQu6Uz1wef0Rr25OuWeQLeDcklXy4mUdDZ4A4nr+6nq+DEu9BhawC2f96iJez6re1Og9ZirH4QF9DYj2tQJhv/KwF9P65cusE5ydnHHBF1xAAAoaXAVwDAFyLQB4EwLoKvhgmmoJSbB956s+CMAg7rB+7jAuxI+wA1KwDSX+6s5ADa4O49FAruu4DefAhv6wCGQss8tOEjQBCrJLv+4wCRRAAAdQBNcgIPTgCFaWeqMAD+8UwOb5wPMO487gCZ5ADeje8VsdDdWwjZ9g47Au/usXr9XOMNQHiyzXWRDWkEuoDSCX7hG1gRc+A9j6/h+ZEfNR9BL2oB0RnKXRkOfHEAvm7vGxvtsPwAZDf+7xvuu5XQ1+qyjfaOEzMvMa0RS48Lh3sUn1cA/JXh7kAClWr1E5ZFoHnKXccPS4fQzAEAbcgPQlHw3AYAYWgA5ife5Nn+eyPvWjnBA626ojrNk6wbpGc0hGImjR4Qj/koAdio4KzdV8fwyeIPexrtuNsAJzsA15H+tLzfYrfgzbwOEhOw6M4jHecLVA+O87iitjrjAXOm9XdiumUAvukbetPQ4fDvUmzs6xwPGWv+fNUA0+IAWiAA683/tLnfy9b7hZ/joO3OAO87cuPP8fWI8RNxFCVCsym3EGqJdfDhIEWXZo6YqOJ4/nsa0ERh/8v30MztAKDdAHV838Wi3iS93xtn3qp7iXrpCF/k74AOFP4ECCBQ0eROiPHLmEDR0+hBhR4kSKFS1eFMiOIUaOHT1+BBlSpEVXxdjpG/cN3EqWLV2+hBlT5sxsy5rdxJlTZ05n1JztBBpUqLNjax4E22ZTqE5n0aIpXSq0WriZVa1eZalyncRp1kZ+BRu2ILchPLiJLajPn6Np99C+hRs3rD1yd/yplZtX716+Cd36w1WM3LpvKrEeRvzyW0pqy35GBepskKdokC03W3bsmyEaVOoJ/oMa1XHl0Jd5njOcWPXMb+fm3X2oz56raX1t6yVrNi8zUPfw3gYeHK4sV8KNH0f+kJ7AM/yyueu2WjrW1teclTbdzBmqQdiz4zwWbRyNJbC+HXtsOdr170CXcZvHbfr8ld3c/Y4NT5a95P055j4rL3rw869AAxEa8EAFF0QLry5Mmic1+iZ06Zv02svpmGMw3GmZcfqw4BHtslumMg6ZcgaYOc7hZhwKVauHIn3oGQUeBm80CMC8HDEFRx/7myYQeAj8sUgjDfLGGyuWy0axlVSS8ElwonyxJW5OZOqYMI7x7rJlqoFlixiu6zIon7DU6ZhWAsCgAGeiq/KqrSq6/oed4o5kUEe49IHHFzz/7EswIgEl9MB7vLHET3eaLCybcKiqB5x48PnGn2wKKwwcfDR1Bxx0VLqUysQW++YpNHmKJRYOlfqkhDbGWaZMnUY7NcNvQkCBAhQO8Ee+OGNa7LVBG1KrmB4LLVDPt/i7E9m06hnWWYlMoYc/aa89zh57rDnFH3fQCXWddfDJRpls8Dgnki7WyUGZThY5BZBanPjmjE7OOWVRb93BVFSrxqmGvVpvqmYQYDbMjqhowtmhCFi2QRgyx84c+KZjqukBgxBCmKHXX18a5zl8LuLvjr+wNU5ZsfjrojaUY7zLnpFRnugeN/yxlmad5arnHnjY/sHDn3FCzieeXno5BY9FOkF6nFM+3eabbEIFp0l1TsknjVpOUaKWTqaOZx2qr1LJ1IpxckYOaiK2DJhrPkEgE8dkRfHCijNrQIAQsoHz46y2wWdmjNjJeWfbVBZLtsKRVWsbUcpoZRt/+DEcommWqzzzr0beKgeBzpEmG2mcqAWOWnrJx51zplypSUYblbrqlc5ZBx18xqklEkA66ST0bM4Zuqrz7B64xEEaM+2pHXaY2zRnmqIby2W6mcedFv2Wck6OlvN8cc3jQhys5c7w5+RCY5ykgAMaOOCARmD7Pi1/QPEqfvsxirGRFkjwR5lalMFCNhaBDnHUAx0h6xfr/oQ3JdihIx7xcIcyFlGLRRxtHOJYVEtIdR3iVWw7sejgrJqRDTbQgA3uAEb00Ia8swHlGClU4Me2sY54wO8iarGEPzB3P/CVJUCJm99GnDUyWxQgBBSgAAYwQABb1ENw97vHPRJhQx5WMSF4mcMBLFABM7hhG7XIxzg6lakq9esc7tiGNGohDSzUIxJCy0ZK1uETFaIpFp5gYVCOcY1dFGEJwICYl0oksBZGxkP+mo8cKecRtUzDRlaES/hGohZf+EZaMdqYBSiwgQ0gEQX+gBkP3SILKkLSlALRhzLkgQIMWIAELaDH9bAXk6GFTBmngIMyyGWhQurRHGEwR5mO/gEOQwxAFM8zzTKs00vIOAM1vwKcSOBxAh2eUiySFIlaAoEzaanFBBjYgCY1GYIG+OM1VXQLKLxhzVPiZRSjMMUUyKkBMzxzllWJY8ikEYRsxAI9IWzhC48XFKIIoQjoAMZ3TMTMqDjjV9/YSrQssk7vsRMk2BSJncrXTX9ooJUUsEAnQ/AAc1pRLd4ohkWrqA9KWiMI01CGPyYRBTbgYxv3JJtK0GGOQaBiEcsAhtkY2ow7sg0z1KDGH1DQh0A6j2JDXUo1XDShb6BDWCFRyx2sUVGVdgSjITGFNyRqpBj1YAWa7KQFMNADUEKSLo7oqv0wdwY3mEQgOUMkTl1y/g5qYKYax0BFJyIRVMww1CaDAOFNiFKNVsSACq1Yh1GFYpP11JGh4plQNuIx1ov4IoecjetEvgoSZiToWvgIhwBQ0MkNhIAA1eDq9/RxD2vsMLQ6m60/TGGF2hpELXnV65PsRpRYRMIT6LFse5wRC1TgBBib2cAxCSma9UA1O31bzWKe+JUh3TYko/1IIthhPmfNgxoHIGcrczE5U/osEbb1LrYO5QR4eIW8A+lUcGVSDcd0qBnVQAUwIoHMXm7HEziJhgd24A4uOW+h1rXMe6SjlcTZjJTx/Qh4O+INX9gDtHgqRRlEgUp2TiOlGMZWMZTEDhtJVBz6dUlKptuh/mgAFhA1jlUL3yMHQLKhBJk4hzCc15PkQtgZNx0VOmL04YrowxvMKCWKK6JhjvTJwzTTh+DwweTKsYMdUkaWPb7cBVmc+CHrgDFLxkFHiTmDG6g4Bhby8deASmMSNNiCMPhrGQ5WFsLfWQZwFeMO9q5Mt2D2qg/fAk9EX8sUOWw0npbDjBN448sRuYevgitjQF8HGHDoBDcke6JhzmEDtOivl576ZxJFI4ZVGcd2xecPasY20g2h8g3hYetb/wge9+21guwBDyvcjKUT+ZR+97wqc3QCEDPG0HWEsQMftOMIwbwMkVnNIWe2RniE5rJF1AJlXgc7R4oWyz1KYm5A/lkDFFdm94FY6g1q+uOREuHHPLDrt5A9BaCWuZg5sMCNHGNoGY0xRAMasY1meAIVDxaKU7Z9omUYog+lSLZizjGycFuEZeToeK9zTSd6gOLS8T6SeMuN8r4sBxSWaHFF+BEpnPa1eMuIxSlQYY5RR+UY22jFB+Zgi2xwCRiewHZQHPO8Ik8cM85gwvoOAItuRCkb8wg5RmCe9VuP3CL0gC/LcXRysR9HNv5wgim4LhDC+K0wBXZGJAaeXGCMwww0SIWfbyIHSUAcJ0t3+qqWEQIMUKABlIhaVtYBbLSQYxorF7vXJ0IX8pW9SG54vOWNI+Yu3IXxEmn7r9acah27/lkJ6Mm2LRoWWabUmHjXsXngDc4NE1hAAwcQRdVZpz29+MIUkGe55CUyIyhr3keWNj5wiuWLXX9+IuBAjaCtsphtcNCwL4wFMKqxlBI1gw0f+IQ7hLyTaoThYK1vuuz/7gwf9GAO/JqSkqOMFv7ANfkJET6m4TGK+98IF95wvv4DC/4AhVFYp4/gnGNYB/hLJDazru0ABE+AtmYQBnCAhRXYgqZAvQ75JTobjQlUv2RCh2XIr28gNL7AoQMUwLFAN7DQh2k4lhU0EF/AhfmTwZFwC5MQoo/IhRVAgR4QBnSYjpABQWaKhuxDhRk7BnfgAgs4mH+7ieyLlb4qwhAU/qRqgChZkwuXs8H7yz+IcDIzu8H+QKkuHMOPYJlqCgkuaAAKWIAy4Abpg4llm7jwUAJRQ6afgIUHWIO1AThuuEO/s0IsOYZz6gv+oKawW8EvdIgYKYaU0kKHEJwARIhQokTf+o1IJBaC6LhM7DjBOTaKOJnAsQhy6JFQOsNs0gdcIB/giwgqaAAMOAA2SLzEqD7Sm7j30BpREIVt4IU5WIFWGJ7LOAZukIRVG8RViYZsqIdF6gtScsXIa0GRiJFvkIRYqAh8cAtuEIVq8AdNPAh9oBxqEAVw4KbhEwhhKAW1aEaJmJlcgAWBuMSBcIt6gAVbIDGJiBF3aAVeyEeI/pg5f1gHUTiGf4QI/lgGPhgHUALHVPy6m5nHiRAFASCAqZsqxBAq9TsGc+ADC7AALtgBM+iJnusQZPIEOSDJZLyMagAHF/lG2zC5iCw7RkwId6ACJcKAFnAGVHwIdDCCwtMAHFjAifgGHwBKtjrBh+AHfeCFwqMADWCDtpKIVtiYjTGELYsIyqEEDUAiDBCFhuREf7ADJKKAEPDHrIyRKSDLFaCGiSC0FsBJJuA9h+wIfSgGR4hGd8yGW7gGqqAOcLgGldQOWCiBkCIARKi+ZKquZnghnoNCwZwVZ0iNb+DJHWkWh6RJg7iHemCCBSDLECiAb8iyh6gHd5gBCfjM/gLAh8o8iHpYB7LsSgUoKUm8h2NgE7JUgDI4R2LRh1kYgCMqywPog42SRH6YBAEgSwwQAFEIxYaIkTIogOQUAGBgTYOIkSJAza4UAGqozoJ4Db0hSwloAXeQSbpECIYovrm4hwhBjMZ4zD9zhgvcgA84gEeIvWbKI8Z8AZ6DTC+RKpeYyz3xh2KoH/PMTE7EB1tATglgUAkIAQmQyoTYsvShgAZ10BWI0Er0hzLwTAvFACYgzoT4zgdt0DZphpdsiNcIgFwBKV0pAPIkTXcIABJlUNDM0IMIHGoQAAyw0BBYgNm8In9oBQWo0BINASBFCLeYARpFzQL4BBQ1zybz/odAKIa1iwh9yLiZIML0GypnYEMSOIJSeM/ncc8MyQc5SLr+VLpo2IaUqBC+KAZfSE+6PNCBKCsLZVAKaAFzdIjXKDw8TSIzLCkF4FELrdAbLYiRyYYONVQQdT61SAXYJEsLmAMoxVF/YINCbVA3fFKJcouMAdQCEAbS9AckCtV16M6BeM0iLVHZNMQoRUdfEMO3CD2YUIlxEMRkJApDKAQ+qIVgCqE+g7YSkQRJSEnBdIz/jImkhAsCXA4rNbc6FYjXMFVDxQBgeIjXOABNzVMMkJw+9YcC4FbU1ABL9S1/gAVG3dSOSdWRMQRNQiJ4pYAlCNGDcIsyqNY8lYCo/gTHsmLVPFWATnVOf2iBf0VNBaAGsIyGIwJUV4XVmvEHS9imvLCHi3wJFqlCK2wKaoiGTsACP3ShpACoWNk5NWWKEmlJmYAovcC8vLQ8aeUmKiBSQw2BcvNXQMUARPVOf/hTQ4VQXouR6DRUB9BN5xuZY4hF2MSABjAEc5UfQ0BNQz2AVjBDt2CCfG3SZhirGCnYUHWHVL0LfOjZTYXQV31Y5VDDvFDZjDTZDOGGRchPxcrVLFGCWOBSCFuGmxK0doQLb7g3WIVZUKqG6HQAgDUCnSUIfLAHWCAAVqWAA9DNhtwyRFhQBm2T99lagp3Z7FyAr83WjlIij1QiCkBS/oR4jegs0grNWbNtTX/Y0dRVgI5h3USllNfN0wI4XLC91wNw3AA4huY82010AyiD1olgTw3qhqdrWxdaBiwIjaXL2JzIhzDghujNRVd7NWA5QbC8oQF1hTmN0sDNMjsQgOwMgB7oGTDE1PJFogAAUbAViJGhAvaVAAEgA8RNVHBYIiQ6ACd1WoPYMme4vU5aH3zkLLWAhf5FogLQgJ2ECLf4hAIgUgrQG1SFiBih3AkWABwAJWcUUX9gggAwVQHg1+CNDX+YIkEdiZExDMNg2+XliS/BA3O4Cei1LMfwBIebW6dzDE27ih/CX4w4u4kN3sAdCGcwAgogAVEAt4ng/oUi4JhWmF2HKIWM6YF45LJ4sIMWCIEyiAYVjl9vmQMUQAE2qJQPUwtwYIMQaAE7YNYTvoYyYOM/mGKEUItjuMkZQATuJYh7aIUWUAAjwFYTjohiIKXipQh+4JfquFuVfBcuccBWS5EGG8QS6QaLFR58eIQVWIGmReSC6B4TNmJ5xAdswAYwLoiTKc8wZuWJyK1v5OPE/Yt7iGV6/AsnysaZsSRRxAtooYgtg4eUgl9CFohicJm+wIfoIDAYhgwu+ZJjhYxBGIT3tK5qWB3EOAdeiIEkwr2vIIeUWmUvnMZsqodeqAWMsId58OUmS2eZsYjVnIdw/sZ6wGWLWM96/qYTdc66etDni5CGTqhXYj5XZiBi28gGambmL1kEOKAzLOEGT5hmSnY6Z8peq1gHWDgi5byEkaAHX7AGsjvbUUYlcgBfge5b4jXphMCFHpFnjpiZdeAvXGRm93geUYMDgpOejVSCdnhhhuKgNpXDGBOHFWifBrgGkSAHa4A0Yhbp8rGGFE7puDAFP/nk/sOLko6LkYmHlBA1oELo/hwkzDiGVPlqgkKFMJBA+Dy4xZgPcHkESlhIkMjBlKpqlGtq2TjmqH4Lb4A3vSYIZmjFvsg4d+CFRhgHaDZZ6Pk7VMCD7TuV9xgEiYaqJqEQqaEekbACvk7pphazgvbrsACF/rb47IGAB3Lji3po4XPoAwFon5mOTL1TrO14uFqJBsTyBJy+rIqejsII0IrgD3ZI4boOvnHOJhr529EeCUsgHORWiFEwLbnQh1qtPiNSoi1gONe24Z1IEUBIocf2CTmw27Juph7G5BdBB647tpd71qhu6vLZQebOqL7Wa5YKq7xQi3lwU5aYbsLDACr4BtduhsUMCm6IhJ7mNlSw2w2slbUu7xfZhjp2CLfQhyBQMVSmU+LGKni4Az+Bb5Gghy5Y7s/WB3ZQQbm45pcYyAZAAQ2oTdeO2w6hBiVo6FrhBvNTcDR5E5yaoYugh2kwNuF+WQzPKJDu8I7wMuSeLUPO/ovjtdUFvAZ1AAbxnjjY5j5nIAUp16NqoIYjAAbCWpXnsad7+oZa5hN/OINpwIWWPsP2HtC8LvINkwXgTemS2U0XBKV12DfF6IZteHFkXQ/rfTo8yAfEFiRuGARJQIXGSC4OuoYwv6duqKGIWA52sAJcqEEg1zw2xwVLkHNI4ud11hlcuDC/xiEiX2Fvye/pA4e2pZX2WAZUGDgdqwZPAIZpBnSioIY0YwlB1RZ/cAMrcBlMz3QhDwl7UEQropzRNJyFGG232CaXRbagZgk6FMymOBE3I/Tv4BIeS0IvIaM0e3CIoIcTALs3Z3MNHy92WgZYDIFHOItavhG1+F7k/naEe4B2MKyHNl0N3E7GpTNwiQGGNIiFHV6VZqAGRJeErp6sXNf1luhtgpiGRLCLajF3Yg8JV/g1U9KHeeiD9VEi9GpLeF+QGcEFYRc7djCF7jp1LL3k6SB4VpuYRtYOAZPsu/GJyZAEcyCKWYkGa254lyASaymGM6BrSWRviweJKlXz83EHAnDKTqIADhZ5BfGZGPTrb773IF2HVF+Nc/h3mA8YmZ/58IAqagCGsy5Gm1B7lmxwXUfVc7oya7iDUbA1faDnYTZQpP8I3wvo+ImROXgApyRLFDjLbnK8ZvfosBDCF8FyD/r67+CGNPgpsYcMnkL0hJLMttf1qpJH/m7qAlOY1YKgHFzmBj3ASoFmcx0q+iqKkRkQpxYtyxHjqGngP1KnB1kocZCIBySjkHFo/Fphut+flTfr87PJjICZDFRQBohyEWn/lW64hiIIgAPgBX5QAkrvfIOYh3WAhmRghCtggQuggyDOe91okCmtc/t5zqSFfRSIR2nhD4j0a3uQopAYGdfMc/q4Eh5GJsrPiS8BCDjcjjUraPAgwoQKFzZbtoxbr2x4anUCly3et2zfwHHs6PEjyJAiPWbslkqAhxcFtJxi54+ePn8yZ8pc5UXGCBY6anjxV48fzaBChxItavQo0qRKlzJt6o/bEB7cnDaNOW2av5hUt3Lt/lq0HjUBISxQoGAhRAOfXteynanvHta2cufSrYv0nj9L9OauA7dxJOCR38Ytc8bwMGKGhaklbqwYVZpqyxxTTuhsWbVv58ZlzIZF2ql19Th/+xv4tMjS2cahW9dtitkUDmrJ1Eq02jo6NXb+gGb3N/DgXKFKFR6Tmauswpdz1YdvzgGyFjA0iGabOXNrbvzhxe79O/CYsuKu1TcONfqQkiuzTxgtWvv2zgzHb2+aZLZagADVOp/+v0fjZJMfFt9EsgIJDqiinFH4+KPDThBWAh6FFbZF3FTC2eNPIgxa+CFNc/SAQg8tdNMdiHPF5MhLKbr4IlH66JMcilvpMw83/gDqOM4238BXX2OFRXMZkI4dw40SwNBX5EKL+feRgOC0lg8gp1QpjTIDjhPPOt90SVppG5VmkV/jjHPOOq2tI002vdTSixLgAOIgP7LgEg93RWkVik41CKJDT/PAOCiMGC6HlyPkEFqhg/5Ec45MjS7KFV6W5DkpphV6I4uHVfmETjc6AthNNGywIUpDTC40XzSTqRrkMZH8+KpBzhwTzTacAaZaPa3VckonveDxzSKnoNPJOtn44w4+8eCzpT/b+LNOPmzWci1FkfQCiDLKzPONTHewE0ltRQk6jBosqOBFMsMM4c88QGU6L3OGHupNh/QyZ9t1+jLlS4c1+jtw/lt4bbchVTH1dZ+op3ETD1oNUMCLq7QaRA2RFicGTCzrabzMNeA8eZqY6yycZS+L4IOFMqdgcUoap+AhTSRYzFMBRWkoo20vWErD0TrngFuMJabIJDBN+NTjjyA/1KBCKO74o4ZvBFs9l73L6UPOXld7/SI8/X49dlPkiL0UPts0rOM1+BwQAnWUZPzqMu9VrPFhyxyTRixLvuqM2muDpJGZ48yDTjzgRKRMRPWguY6ZY5K0jj+mcHp2UPqYM0QNNfzAjT7yYk426UVlHdw97ATSdemtL3cHOQi7PntQeFnhj+xMuTOY4P9xU08DwR/QisWL3Y33xgRZHA06DPc+/phGGUkv5moaDSh5R5pJ3aE3o/vj4DysqFADD3r4FBM/S9O+flCnCzeNL+zLz5YvxcwvvyVmMwX+Ojn2/l9pWsGEIvSBGserzzIwhrzKOMMTqPBbfC7jjG7o6n8W7Eg2KCcLWdjPe0tLhhpUwAI1/AJe9zvhU6KSIeaQwxreQyEMaQIPb8TQdexwSVN257wLBqZL3JhVkQoznwMukCHOQMUiUgWkZfRoZDwUXEZkYoViKMooN2IahKBWrhqyz33COUPsuCjGmdyDHF2g4RjHZgVv5A4pO3wiasZRDVXVDYhFdMwygEFEPEbjjXAUFeUccQbcIaUe+OCBDhCJD0ml/nF2XgyPP3DRqUaikBzwoKTX9MEOpBUFI078Y3r2SBnGiPKOC6EGHo5RyiY5oxqfBCWANGMPbzjCfqwbSkzqwQgV7IQR/sATJh2pwu9Yg1OcDObsrDIKZFoNFPA4Jk3mcY5QwTKW44AgZYS0SlMqJBqo0CN76jYYP1YzMN2YB1a6IJM2BuVcV5DBupLhE3kxk3SP/E2lJPnCenptQ7djJz8JVYxA2OOFCyunqLaxTcsMaaHcREg1ABELhxbkIQhtWEYE5Qhr0HB0zvFHHIbAAhawQh3fC2jp7vmb40wSpaQz2z5dOi97XBSj36BoQebz0Po4AxjAYGBNRfUNd2zt/g5oRAo3oNA5KKxQpmRTqV025AaA1lNGMV1UTLqgD6o6FUSjAIWedhfUhnHDoc5gzE7r4008GBAxhXElOcc6uXrgC6z38Kg/xPGKDtRgCHSAFyO7ejWoRpVDLQ2m+mYSWH91iKuCtRBHiSLNuMpVJNtIzGTsllYEmgMLA8lbHytYWcF8Ax/ecEW+HIuXZFyBBTLwwlQE9dixEbYuW3UFeeopqE9QgQlbQMelBgaPYsBktoNiRm5n0iXKjjYkdkSIkOa2WfncSpQgay7JILU6ox22NkujQxZfsbSrGndRtbWLL5gRUAdRQWJnWUAjujspXyyzvDAqhnqTFg7mYhdK/mhdyJCmG0RznCAayoNuNPobmKF6wxumoIdjT8qNRNYACvP4iX1pO8wKJQLC/EQEATBQlrNIYBcDu4c9JJnhFxWDPPhwBwVJy1+OhKma31hVgAUcRI8d5K2iVTBJzoEPePjCaNBUji55qQNMmHDFXzuvXbxhV2TWYx0rEHFZyqIBLgxMH9OQxS2dDJ6lnQIbMpmHXwDTDXxc+JUh+YaguoSeb1yDG/5b8Dkuo8qcOqNVecPpQx8CB+kmkIKBA7JHsuGgO0xjmaNTmj9o0doRPkMtYvYalOlSqRYh9hwh3kCWKdAAI5DXQhtyRKkvLRdBGYEEJDiGnNVcjzIUYQqu/iSZOwzhg13A+DRnYjM+eBeYbQgNHESCj3WrS9FjAOMY2FTMgTFbDTzE4iDOuIab+6urylkifsEVSqPiwIOn0UJQi1W1vjKtaXs44dtptMc6HoBlC5ClAVTQ14q6h+7vxMQQDnhBCg5wjmvUGCSlZYMEJHAANvw4JOiYBAEkQAFKuGPB3fjEASgwg3UcOjXu6AMGQvCJGzumD62QrmKo8UOHChGnenSVM7Kt4KH64wzeCPNQHPSMncjgClLb95M3TKGYtBCZ94hHDyQ2YgpIgA3+Ysc0jgp0rfljEgsgSwHgZdV5uKPrXpdaFBaQ8B40sXBmj1wzRJxwKtzj7Od4/jvcr+GPAKAAAwr4RKxFso5PNABuGsiFKh0i+MEXphUKL0AZ/tukZbSiAAQQQDWizRBeGAEDk5hjYvqsBDIM6RrFRjRJ0GGPYnCKHkdWGCZUIIMh+DKxUyeYujU9DUulmn3AKMB0Qt4AFIBrXjHxRfxq/3qq1GMeODhAA5zueqL8QQAOEEAZkjIPJmRcAX0At1VlJLUAwO0AovjlPMIv/vH7gwpjCUEBnE2N9a//Pe6PBjcmUQCm40AYQ5oP/vO/jG5kGQMtQMcBHYMACiA3hIACUIAAiEKzER7hNQMvhIADKEAIVMPngV6aUQ4uUJF8KccvQMH4qEFsDd9gCZ2F/nwVMgHFLIRAABDAADBBNWygi7iCJdyVCFLdOITBIHAHPREFP+DDJRQBGyxfUVxDD0hAGWCYUeBFGQSAAGBAPexTPLxNAZAdOMDd251HOGRhOKzDJDShA/RAN3zDNowhGZZhNcwDAYQABaBACDxFN7whHA7IgHCDO6ghBRyAHdhZNewhH/bhNnThCziABLRCX1ggachEu+EQD97D0sTBbqjAK9TGDtYgvcSebXkDDQbTjawDL4SfcBUXJWLKiwmhntRDPQCTUkRDK8jWXeADEBKcr12DERSAA3zCOTgMNwgABQSAO4SMmuHDClAABggAMGRDD4nCAZYFIRoizZ0B/pjdhT9UAwv8QM81WSjCHglaiM1FWAwVH5sd2YvYAztsxzUyR9E0RSYqhSmSFyPqAylKlkzwF5zFYxx1gzsggj9Qwy2aUzb0wAyMHMnUgyGQQAvYgT/MWDl5CT1Ywx2skxXJRBz0SSSyYjn6iyXSxYYEAiExk/CBx140JDhW5FpE1qSk2tLk3bDVmTxewzpg25zJBEqOxDXUAy7AgzvcWX+VBj7gV31Bkzv6wyq0lgrogW+8o0hOykXWxTSAQkEdJVuIhz455W9MgzWsjz3I3P8gpF+E4ZyJwyIog1b+0Th0wznsRSKwwwuBjyPKgA6wQqRIpUVmY4XgRXLApVcY/sxG2uVc4IKK0Q5WWmBqiEPPIJo90sM4JkVM7FznXIFR6iWhJOW6GZVjUgU93AGKTeZcWENytU4hAiYA5UMaREl/rQNQrFFeFsU6CIKShYI1YiamQKZdgILpuSZS6AM94BbO0eZWnFZTug4+8AM1eeacuUMkpNloRRE5REInOCRR4ENMGMMQyIAMqIFJxYtuvqZcfgg9+II1pON1BoU9DJcifidXzJD8xKRwAgY6RMRo8QjlEAI8SBI0pY9MqMFO1MAvOEhHkmdwwKam+cM/8SdN7EW7CahXgBE3Wg0+BGd6Aoai5QA+GKNcfUM9WAM8WAo4fhBbvtb3TKKBuoh//tLFXgzSh8bEICXohxIFO6AowZhHg/pa9EwopBQD6W1gTNxDCEFICSFhihZKdoJIeMpCVQooO7hCMXhnjy5FIsADi/oLP8wDg74oSJyDMiyCO0goQkURP7gCU7obTXzUKkTnUJqDpSWpjxYHoRwHmIVkDS3Sh6BY8JmpU4wCjdBO+kgpYLjDV4bljmQDpBRN8I3O0piDGtQACwxBJB6WOWCCc8rpd4Tob7hB2NRTPdjDOlIIPcCDOjmqU2Tq/AxclOJpFWYJn8aSoASBP4znUPSgP7wCz6lBY/rDzpkip2IHpNZFRirKfrrONcwCLFCDfmKHjPjDwdTqUuAFquYm/um4QzRQQ/OIake4w8yUKmpsBOWAgjdUZUiag2rqwA+wJkUOxTPUAK02p7FeyI+6iD3YgzV4GyXNgyEMwAEcQACwwQt6BzPUDwyea7n4wiWtzzqYgQA0QC6IlagKyClgDxxtRDzwQ5H1ZnMCxS/IQOeogUzwKFGMa7m+QjI8wysozdK8Qgnx63Cka4rEhDeMQnemkYP0wQGI2AZgwAEwgbAWk/2wKb/GxDIp69ioQog1QAy45MFKQy9QK2DwSO85waQWBX36gxfwXNUohcYaUkSagziwQBzUhAyMLMlSxa0CB43uK/vYQgOAWqgdQClQ3QZ17VLsRQ6cZulcAgGY/sUMHMM+iuqb/OWOcIODrJGqDsXShEIWMUK4IoXGroN9nhQtsEAkDoH57Oq5fi1wTIM6NWnriMLcmgVZ3OEmCAeKJYK7sm1tpqrl0oszzMB0sAGaQes45O0TlYY7sIM3qNNWNci0qAHF/sCOeqhRPIMMmMMVvIugNOIVQMEPtKboKoXk2kV3aKTYus4nEIAFmG1ZHMAkLAc5lu65bghIrs81NALeGW1QlUYkSIPezhmayMMiKMqRNcoq/MD40AGexOpQJIMOXEENXMFPmhAPqMCyJK9TLC/z+gMzgEJ+1dAsbO4GbG4BfEJwkEMiyMJbAHBSzBI5JtNMcMP5zpw0/tQClv5PN4gGO5hC93jQU+Du6tHCFjXFzgkCN9TAX/1EPECD02Qt/VJwBpvspIACO/As+zDB9JqFWRTBubHFulooDivFVg2p/BgsnrYJHqxuVs7DPTCD8xoFfb7CbrDAX53UVoyroFTC1v6SP7CAIPwCfnpxEhuFAAdHojAxCuFFEUSMxlGObfkDOeDL81KwPsADo8nPk4rvRX1DO3RCPojvRrjDJZ3A0WDxsniBTuhumX6xDHii8cpE8MrE0xbuGgtFG+OTP3iDG/RwDO3WF5jB9RlSlDlC/Giv6OqDNzCDK/seOojqN8TDIqyG4Php5cgCWNmDT8oELXSODmTt/jx5BQ2bYvj9gB68wg9UGp4MgcXybifLxCeDcuWs6CwPjOttM1F0hyPgBc528jQwwzhbDXp65jf0QiQ4MYDwCD6QwwZd0nwKSjvchAz0xvcUcVPUg280ajWYAzdUWqOYAzRwcjVbsw5jSlYpijcbXarSbkIvhVE9NKHcqZR+Qz7Uwn6tDYW2mDEdRRjn8wgQ7odQc0Jfc3BsiDcM0jmjlHgkh0WLLjNI3frcbYN6Rj588Jx5SeXkq1KoA/56zgv+5kQ/5kJnCsKwiJc+Fg06wl748FHTBF6ok1R/jTt7Zj10woDoCAX5gy9IQyLgxaPJRCjwgGsJgrlNNVKj6djY/uY4XtJV81PXBAJxvfRRk0NDQu6i8IMgw1I2nIIy6Mg2CEoiGHBWCKo/QEMciJAXqLCbsvWgqDR2sAMuuLRxbcgZWMJMJ/EN7THBdKZnnkMt5LJWpuogXXXgbmgX87NkWwhlM8eG2EMgTANfoxA7nMFsv/ZSZCSnsI+D+KI6S8NmzJmZ+IO46OpRFF90Os1U3DBvP2pS+8tlOoI3VBFM4zE7dIiHRbdSbAguYDft3IM7tB1gekknKIPelsZLrO9s8qBWrEKf/BUjorR3U0hsfwcNpXZnk05TuoE3bOZ9W9F23g8vzIEz4GROggNF1ANlZZA/OAIuwDE8VgP+qsAV/vjGbQ+4XOQ3eEAwp0AsJW1IMcDOXHM4TciCG4Bi6ziHLbwNBYSDgjfXN6BDLQgbaaWqE1iDS5gwI/yADqgAJqw1ip9pU9HOhlhDF8DDic9P6rjBlBV5U/wt2QgKBahhCLRhqE7oegLCtwgGOMwDORTDdgwr0/qDOSiV5xC0fUu5dLs1+yBMILhCfuF1pqDI8k0wfpFjk7u5P4ACi/S3hSwNCpxFA3BBPWy5XM0DIOy0YCSLPySrD+MFPsi3DJTPW/r5i3h4hST5NIgLp5WOoPyhMPgDq9qmTHRBOePOhr82XsiC0bS6hciIMKwAADCBwjZXNkRCLRinwcXDPGwK/lLQJ7qoixcMg0+4tqa/+ZGfEDNYQ4EK+ndITQ+YQMjFQC5wWhdYwwEv+5THMsAa4wbDUjhstEaExH7Fsyv8tkj7AyNsMZOpsbenCKeDSHeskf1IO9VpgB2CGgY0Q9RF+7xXxT2s7Xg/4V97tEQYy5vNgzzM7goTRT24Q3PrwHMPvJGLEaoDaDlXkb7/hhlgGQWA2gEUAhbIBItjPFOMh/wA2TqD5eBokCkYjYjTBKvWQygomfk8YZurfL1M93iTODlIKnfdlazTBVC019IJY1rUg52rvG0GAjk8PaY4OHZlgzu4iWhbhD8Ugx7DbVDgiYXD0xUQtM9nfCNpxQ35/gIYzcTHrwUjFkEDbC5ZYEABnAN0n71QxA/Vl6SiZ2k94EEkfDmNCRk7+AKVC0Ujcs4I0ALlKLve2yrQO/k6zW679vl3sIM8GMHmlgWohYBoRH5TbMjbYj69ZHVNxUMk6HL24MkoTIN4G0U1KFXPkenRi/5W1DtDdwczkMMZ6IMpWAPrkDXVbUhMzBIu0EMXYAMY9N3Ix+wCGMLt+/mGsLvrBPJoSUMn3DhHhHDl0MMFfwWar4IIQcHjTj/uB/Dko9AEvwQ8oNY9OAE9HLCMAHPfUzWqy046wQMo4MJR/QFADNiAAQOBLfP8JVS4kGFDhw8hRpQ4kWJFixcxZtS4/hHiPX+yZHnjOJLkQ3znvoFTuZJlS5cvYbJ016vWOnDfsuHjF2gUOX/2IPKr52/YFRUy1EDzh7BkU6dPoUaVOnUqtyE8uFHVupUhO3/TinkLAs8SPHoK9d27pw/oWn36GsJl+zOtPbgJ7dkL5A+CN1zW/HldOM8ZkxlFbDHluphxY8db4U6D95iru5iXMV/OVgtLvJvf/IEyJXIiQkEydKiolBAfZdevYcdubBWrbNsS4bb1R48ZKFx3TLmCN40ePa/03kK0R+8eu+LW2MliFoTdnWKTPQK9u3Bownrbb4cXP56kE29AyW+cl5l9+3HZlOHLBm6dPzeT0UfE5w61/o4h/r5LT8ABCWSMtqwKDA+usxhipphEcGHGCnsS6ckRa4rxpZiwEqEHlEDoCWIaWRzBZRrSFDoLvIbqabG1BGGMUTagQEloRRkbGqe9HWEaR5pTOgFnHH/gGcWs/Brip7V6GFFBBx0YWepFHKms0soDrZTtrbQcsgceZvwxhZxpNDxRlq/omayhtm7M0s03uYLLFWtMgVMhfub5JiUe+fwGn1PWGWcoN9gpZqJ4/PnlChZUSMqfKe2MVFLXsJzU0ksxzfQiuKyZxp82qWztmm+24ZPHb+DoxJ2vErHGI1AfHSqOJ1mgBSFYNc1VV4oq3dXXX4Gl0hJHcI1RyWha/tnTVMy+WacXcObhx5S9kDTpmR9qqAGKVSEN1ltve/1W3HHJZWzBOhm0Ei42AiAghGqUXfalcWrppBh5rEgoXYc8EgcTFmQYIsoAyy1Y03ANTljhhSnSB7kz4ESngRBCIECYa+SFKRv7/MEFF+Y8gmgoVoxigY5nlmJYZTgRXtnll8uN7EQ3t7GAYgKAwThjlsY5Bx08/DkDHjUh0mcoOmrQQYZXWIPZ6RhbflrqqTO9x8FiBYQLkRAo4KKbeHfOJpsupknkp4nqEYeFJ3kAEGuq4X4s6rjprptKNxz8NFSF7gF7WVLxmcaUSAzdN66l9FAh6VBSttvx1+Z+3Gl9/swJZVXJBUTvDrpCXcuynW8aEhRfNj8botZegaKGEU72J2TMYecq8thVrueXGhCkXTy22HEDrtepPCfj99ApdBR67JKotWqyleGXW3WPXqrZpTfYdtwT4qd62+AS0XAZ0cn4m3roIQdEi4byYtvt2XeK+vbFvR7Bel6Zh5bc/YEmmUfhp+oseqi1t2/oaEd6qg8zRrG5ainPO93q3wMn8j4I/kp+QxnCD+qhAzUoxB06YNzbJngRu0zDEnihEgHb8w10uIMfsqiT6S5SD+CFkIYOkWANNXU9lPEACglJhgr25w9aqGAe3cFhUxZ0BpEgR0b36EYK13GPdxTpiFV8/soNrTgp28mAGz+4AoD2wwKm4UMPaiBYFkmSnCDAMEH62FF3LGEoEKKRjgvBYh3fVI9hrE2DevMHJq5QD3fUgBZ4LAly4GEKWQgGRuvwG0u+cQ5/kKMYd9CNITEZkTtmkkp6HAEjhjECVugtGSPgRjJ0UB9OkqQYc8JPgepRqpfgJCFnYEcJ/bhKXSZkk7tMkB656A9B1KAaCvHCK7wQB19yBB76sAQ7AKMWAqEDbOPYRn1MMQpDuW6ZvuxlNwUkP3y0QwZ0CJAgdHAFlIFzI74o224I5I5qrioH9/geOzP5TXyKR48/QBA0OgANfMAFCv+Z4T4lEjJH0CMR5DjL/lp296l6rCMb65gHNkZxPG4idJX65KiW3JGMemhvHqf0B6KGwLQ5cnQueQnELU24Uqm0xhZtYAMs/NELS4TERh/t6FXw59NIraIDjRNqw/QVGlDUCCjJg40zUHAAB7QAC97w1FF16VGs3qYe3JBBrXK51YrYwyM58IcrEnLQxcDlFhSgAAkcIAqxZhWoc83SfvTwC3w40K5FuwdQ/JIIKjJSLk551UKsgSE5KKABD3gAMPqaz7pG9k34OCNllZMQnwQiQm7wxzb1pha3hHUhW5rLWfJzouCYIkP+IEYRqHAM0mK2ilja621xm1vd7pa3vfXtb4EbXOEOl7jFNe5x/pGbXNwOhRFm9IdQZCrWwnrlOq4IhDc8u8DdOOyvedGuV4JwDzdsyBo+aZo7EMJX2uLQKv58lHLhG1/5zpe+9bXvfRGiBhn84BcAWm9GgFIMXATCFIlwRTFkYQ9c9HQh3mCGNWThuxPIoixs/G9W90sHPWyYwx328IdBHGIRj5jEJTbxiVGcYhWvmMUtdvGH6cAIHfDgKIKoRlbUe2G+OVUh7GDHKNgBCjeQwwm+cMSR42gJeqA1XahNjo45yQ9zaGIEKhjBlbGcZS1vmctd9vKXwRxmMY+ZzGU285nRnGY1c/kCSfsBDzrwSf5BGTdp4dJFsnNnOu8SLoWoxJ8B/h1oQQ+a0IU29KERnWhFL5rRjXb0oyEdaUkTmhGr0MEPVPADTHBDHdrbM0bkUljT6i26n87ifVGdalWvmtWt3i1CriCDKwjUiKa29a1tZFpd75rXvfb1r4EdbGEPm9jFNvaxkZ1sZQPbI4zQA2sui2tpT5varrlLi6qdbW1veysD5fa3wR1ucY+b3OU297nRnW51r5vd7Xb3u+Edb3nPm971tve98Z1vfe+b3/32978BHnAIJqfUDyn4U2R6cAI9uWixUfjhCvRwBqNF4g6ZY8VNjfGSaNwpbeJ4bKQJz4dv5+MNUetGDsuVvy4GSSmPSMXzgpueMgfis00R8EauLZUFKZxBTX7IPX+i3RTZ3OAEsidVHPZwoWN8pUKPyhxXbpGVlnwiy9FIzMMTEAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRow/x6SuoT99NgStd2QNlbZqjaYlcBSpm6Q49K8VkBfLmKOw0X9OeCnS6FKnbt3Djyp1Lt67du3iF8qsnsF5Te2qLTXNiLxAue6bYWWNnD15CxuSqVrXk7U4xXMUI2svLubPnz6BDix5NGik+f9xEFQRVrEtka/4cXwTMjp0/J/CsWHNss23p38CDCx9OvLjxkIYONAgRi1kgypsFblZbcanJzUsT3T5J77j37+DD/osfT97n0nU+KGAAIcmUZn++O27uLlCWrET0fK0tz7+///8ABhiaU/6Qkw0JFIRAgGr2NKXTTW0xA48piUwjEHUCZqjhhhx26OFDS9FTzCimlNKAAEu4I9RSS1mYQ3fYfSjjjDTWaKNw9GAGij/bZHOag0XdsxkollgY341IJqnkkkziZKEj1mQzTzbffFMNNeO4Rd8Z9jjS5JdghinmmPDFNg0o8GCDzznfgOPmm3whpc9m7OASiGP0HEnmnnz26adxN8lCTyD+0KNOm2+++c08c5HDjBsX/inppJRWahc799zhmDuIJuqpnkdF54YrGFpq6qmopsoRgWda4k89/uB06qmip8k1pz+WMONemar26uuvwO7njxvTZLbOOLLO6uY369QVXYWZBSvttNT26QszsviDT6zKdvvNXUtVRU6D1ZZr7rkfLuUNM974w2m38C6alzWJkIvuvfjmC95N9shiioVVwivwt+AKdIY17eqr8MIMe+ZgMcws4m6yAs86Tpx3bSaLL4yB2vDHIIfcU1uU4bJtxSgz6xkz2vlTqsgwxyzzRr7Ac0ci+FCM8qwq86MtXt3lkPDMRBdtNENtXduFP/FkszPK52QzySfCuAy0P7LgYvXRXHc982bwwKEVmzo/nWiVRQignC2cbZarP/bU6vXcdOPb1h3W+IJH/sBmV8wNNQ1gQIEEbHjW7hmvAlb34oxLCw87jnjjzjjKoNM3yt1EYwEFFljQh2ebjWLPLc7g43PjqKduqSm+kPNNJ5G8e3nF6xwzgw92vOpZPe4IgMAAXPCqunFNsQVYg/Zs1iCQwzcvUXf6XNUuINnEU/bsZ7uzTjX+MOrZPN0gsEIJE3DvfGl/zWnvQ9exdf77TG3mzRnwzPMNHp0gi/3ObY6Djmd76R4BRBAEElADfqNJX0z8IZhiOMIXicDFGVjmlTN4oxjFUIk9ahIdBMJvMzkQCDrG0YvJ7W92oNmDB6SwgRKUgRweHIpSBgIqDLGDHNPwBi4eRZY7uYEd/tPYTU0G4pgckgUruEhEMUAhizrBY2jCimHXlkIOXOyoaehQBiCUccLZqQgvNzHGEnZAEG9EQjZS7EmcJqGJTwhLeYXyhyvYsRVfyAJitsEIPexRs7JMwwr+cETy1vKyNIZsKRjMDDq+kQ1/wCEf4+hi31RmlzitoQSz6N496sEXzBiSJ6exxQpCsIEQrAAYhVqKbZxAjwkqZpAGYZFDZGmQ7hQjP3dghxvQuL5Pfswe7IAH4kbYpmykQRpOk+QkMSYXvjjjAXtolp7uYArm+VIkwiAlBTgnOGfcJBD+KgYcPeaRmzyFGQ6MXJ7IeU10scMUo/DHOrqxLHBQSZmX/vtGPOjCD3wYYgPc4EZCNgPDdoZEH/VowwG2yVALmIEQ79xPB3myPIFIKII5bAs7DdqrcK0jCAJJZqykAQdlRBKffTtHXGq1jCU0YR3SPMhSRgEK+nC0I/VABwYwsDnOUUADMWiHdKwJlFsJxBfeyJUrhnrTYBHIF67IDN/s6Y804OOkKDUbNwoZFH48ZQ4x2IQ//kdOFsVzo02FyDzWEYJtboBzb0WBM2wFlWC6YVdETaulHJQIdsjjqp36Rj3wcM+sTnIdpysKPxi1DgLMgRvrmEdiE7IUUCxVrxmhxzpasLm3brMBRfBeXZoCDzf4gh42xaypZGGPpbLJU984/kctRGrYpyELKTfZwgPCgayJMuRxXFWtQlQ5LH+E4QEM3QAGGiBWvJDLFdZwxErgg1bhKmk6xQgEO3KWrG/kg7C0re3T3KEPuQGFL7wQwg6W8IA19LIhFqyudbfGOl9E6w8HeEADlIMI3eUlOvb1hX7gNl8x0cQf8HSPO66B1Ted4xSnOId4L3fbrfkkTl/YAS92YIESIGAXJnnIZu6guAIn5CbFsAYogFmmeVBjDkzow1zNm5elOMYN+oin8EycpKecoRjtmmqixkFkk07YbOOoxjZo0IN5MDMni/WHMEqwB+7FwAMbYEAjfjZLfzADhvLFbH6a6Fv42GSGpGmM/ixAgSkeL8ke3lgaP4gMr2xkIwiwOvLTroGPA4QgBAfonk8QYYFqcGMea9iABTbQgHU8mSGb+aGbC8KOpLpkxwPBh19+8xRcRDTMk+4PX71cj+vFyh2n8Ed49eytc4gicCFogKBxwtINmKEe90iFFJbgjz1IQaWTdYjGQs1Xb4B5PPOZBjOYQeBQd6g75JDFNPDhjlV7qpFwsB6r+ReNwFFA1qINSQD9sQQplMIf39jDCmjhX0zPEh6jsEaZMTunxyGOluNpiz0ska0SOztA9+gOhfgRD24JzEcnyIe1t82zc7SiCEVAJagpss9cWMAQ3aiHOiwwB7JS9yLF4jEI/m0z8eJs5gRx/HeANgOB7jVYYOs4RTsWznBliWMd6Hj0R07DBgugYxvr2EMC5uoRUxQjrxy18ShaNm/+HNgRo4CiysvjDVMoOBsvh1c8IlELIddcYAENt0f04bNduMAM/ujGLWKQBX941SPMmEZq9Rr3fncoOmzO09TDQ8VBueu1T5PtKdbx9b7dlsYa8V4VdmCMe6xDCk1IRfdKzpCbQGruf0L8fx2DuBB7yEGWsE3T9x6cFpEqHvpDcja4WPhJUn4hUU6FBUSxDH8YowRziKJHNuMEC/+JG/sMzX3c/SFQeIn0xPOHNVzhnqyn7BuA6IXzWw+vLHVkTmxYATW6/jGPOQyg3Qf1Rx4ltRRGqIHLebkHORJhdxtFB5DjRz5wmMGO3uPjGtj7hjRqUXDqm02lGnEa7kAMHjAG8gQLNJB78fB6EXEPzHB8mecPPAAF6GcXIQYpzXYjIWYKMDR68ocXTxUIzPYN25B/41ALnUB4/mc2X2QR/LAZ9bAENFA13PAFRaAKrxJsIqEPuGAhkvILP6ADq3AQ6qAOmjcUN5FEx4ZT89CExaFKprAjwfWBdKFKG+MuBjc7PqIEqraCT8MsOhgRKqIKD7AJhyYKG4AI/3OEIWEP04BGfhIHMiADdMAU+EAHdFAPbPgTNzEKl7Vz2qJzwyFMGUiFnCEL/vCwVNPXN8jkhZdTD2EIETtQBOdQDd1XAtwQiTgBQUgXJtxwBTVQA1AgUDR0h3mID3voE17CGB5xGs5ABQFQAAcwC81ickuRLTTUiYYYJIWCLexQD9ywiPxTD4uQgqbmiG/SDcEXEW2RCjuQe9+wCw+AdvPAgBjhhnrXJ7+gAjqgAyPwCgRRXni4aahRD/PQDu7QDu2gDmJHEt6wdL7HEbygHCGAARtQAFyQiqIxJGhBYx64iz7xFBWyI/MkjDszDtmwCAqHjLaljwXBWGZQAstwD/FQBEswVy0IFF7yj0qCUGowBD/wA16gBmgmjnmoD+agA5XgDl7AAnMoinpQ/oEhERNFQnwZUQ9F0AAMtU0H0ArHsRTMUAv+IApLUG6wMGsAORTyYxh74XX78w2UA3gMWTHbYI6CaBB8kQmzxz2i8AGNgG9BcQ9Lw5FIUg/mcAXmAJJpKQ5xYpLu4A4qwAjwsQ7mcHOvcAHmcJWrUiAtExK8wFOe9VYHsGXfgQwt8AEbkJgWUDhJqZT+MAqd8CoG+Yhw0AlOOZUW8y3lxRCctAJVIA7c4A5r4AF6iBTtYo0dgg/xwA1DwAMCZQ6liIfcwAJyuRRWCQ0XYAyo6RA3cQfZMoUXUQoLRQGK9lllgGbGoUJYlpgewACq0ZhA0R2QYg3uUIKGtXqyg5nx/rIOhhACRRANlKUtquABqsENubACbeAuR9GbsEQmPsOarjlZ4ugFKiADv8Bl+DAPPIAJO8F0I3EMK9BTbnUAj/AdMbhoiamYZuB50JkTt8IMvmAyUplV49AJhaWd3eIOorAAsRYD8YAhAdQNS1AFu+AP0cAFMTBXemkeDHRWfQKfpFiKgnABw0AHPGA+N+EFFIgTJ8F+DCoSRaABimkBy+WT3kENMZCgSmoBjtagOREdeCAL5DAPWZhV6HAKkUBzGPoN+sAGghMCACBYBKGa/tAIG9AIC/gJDVAKzQKcPrEZXrKbHAKjdkgHcTAP4jAClfAzayAD4AcS4bJAOREP/vXoVosJHuNQBAiaoBYQA+7gpk56EbeIOKjHaqmHofByDrOwUwtQOPGxFEVARtXgDktQBLUYFzfBgX5Cp+FoinzxCzTqD5UwAu3ADeZQlyKBWr0HqTfpD0XQAz2AA0e5or8hBYuamAlQCDIZqR5hDaaQLevAYHp2DoCQgpgaL+gQDSbAmAJRK6Iwe/qQGjtAjXNxEzW1qq0Zo2uBD2qgBnGiBheAmzLgki/5pxnRFoSCeSPRln0RHsbwABvgAQLbYbDJrCFhIYhTascoSYx0CpO5pQTjPYyyC1Vwkf5ADVKwAyqVkXGhD+TgKi+argdBDdTQFtzwC+bwC8awsit7/p9yahBJdGk9USvI6R2uuAQAkAADkAWLsCsGyxFCgivTwA/rcJmGxUiz9bBbug2MwhdtEAOXwD2lUIZroYlHQRPMFrKu6RBWuyr0kLWqshfu4AzzgA/sIE68+rMLcRPkMBb10A1Ky7DSgAcqeK0VwyzxgA8lwAXjwJZLUALqCUZ0RJZJwqpFQRPTQCi+YpVOFkieprYZMQ24AClFW3hIazl2OzDbswsIwG7dIAoPsGXtaBfGprXqKhQCWYi/8hRLRbiQSxA3kYgrhm7W+XWMBAh5lrnKUg364AwxsAQClQtcsARZQqxvMSfFUFB7YrhEAQqJ8bIGRg/TcAevGxFu/uMNBLmwE6YMvVC3uqsoB0QFNNAI0TAPjUCe3QoaRGK6RkEO5KCvTnUPUle9w6UP7OAq9rOC34AOnVAL3vu9VYKkUhANwmAPkzi6nZG2N8K8QmF8Clwj5bWZFWF8Nkm/ZfJOsoAP64B1+nulHPy94NAN60ANj2ABmnAO0WAIDSC6pEEh0CsgDPwTcwKBZEJjkDgRQMlsD9yY0XEH3rBU4CAOjsgskbBIIMxnsFAEUtAM60ALTXCR/MCxoMEOgvLCABLDI3O/yjsmS+EOFesDboTADUEO9mXBBbEZruCHTKOlNVc9aSBhukuC/vAFJVAK0RB0JYAIMAUOUvwZ8GAN/jssI1jME6lawUwCC53TOR6wAkgpEeRwmmbMV7eUM9rJSLXLP0YbL/n3DdxgAXtwDNFwDDSwA/NwDebQt+jQtXcxDT8UyB4yyDvBDmM5F0tRs3JhD+JAACWQmIjpAby2wzfhCq5ixaFGDq4QE0Y8lbHlDC+wDFCJMpF0DMLgDJULNecAWdqLty6GCBvwCeOwC5qAALOAD8EoYX0bHRMHarq4EdlIJrCcE8asukfxdly2zkRxGo0AsEq6yKcqEYgULZBLIBsjD/VwqQzpcAdAAgUwCSkDDp+gAAXQAsewSFXilFC5DGVABZ8APhXTDf7wCZMwCVngA0BHCzSwBejg/g5wS2TiIA6T0woHZLxLIVBiXBBq4ZD+Zbx9sQjr4Mod8s4kEXDM0M5uwRewwAQ+gARsoCI4/ROMIrBKmpglcJQWQX+vSx8glQ2cor1f5w5G0AApsABUQA3b0A0VfdYrPQ4zoAAUsABk4A/ngA5yfQ50Xddssg0acAALsADL4DTh8NeADdjgcA6wQAH5FQLRgA5rsAOqgHP0tCzjsA7R0AMbsAKqUV6omNmaLWgrgANGwDSwxyhswAYH1BCM8gmqUdMFkRmqXbgiy4e65INwcRoqjAEaIAEWMAPmExd8sQTHmpgrYAwY4QTe4LrIlx01NQ8GjZnzgAQSMDhMAAzL/jDd1F3dy3AMx9BWErAASNAO1e0M0RDe4u0MwlAA2yQBrVANSrYN7N3e23Al/vBPmxMAy7ACS0AN52DW6HAOOLff48AGC9UAVABp/tACg0MBM2CvBMEXPYABEiABOdcQzi0Bb62P8dAHINAC8+DTGwLUIXETAzYXzZAgDLVcbECOx+sPsIAAy8mcgGuNm+Eexv1v1mENgQBD4HDJGJoN1YADDrACthANztAMRF7kRu4MznAJC4UDwdAMSI7kRl7kxzDiEqAAEpALx2Ddy0Dky0ANx8AFJSABGiCkD2AI88AL1I3dao7dAL5cxCvXcB7ncv0tK8BQISBP7hAP8fCW/k7WhGW7DIJDAQUQDe6gh5p96EPJ1hQgAG40XPUADAKQAgii4Evi4SFBDlFHF1SA2z1FpAMQ4ahaD0LwAAKLZQigCYaMNP5AYhxuYvKmHVNyrVD5DdSwDMCAD0ewDc6w5VHe68uwDaLABkPe673uDNjNBVzwCbVO7MswDohQbs7wByHwAEug68fw5EOe7UMeDa1g2A1gCO4AW2+CLN2ADnYQiwWACCq9LN8gDpz8DWYNt4oeAMDADd1wDfieDd3QDfZ+7+Owodu0AK2wDnYd15G9DtoTD3ZwAClg25SuJJZeTnIEyXJhBg3gWdw0ANGg00KxBQiQAAhQApLH8QnR/h2ANONutkH+cAbkMGdcbbnncA273gzL4AySQPPEzuzOUA05T+xIXiXRwOtGPt3gwAXjewzVwAUekApOnvNb3uXNwO2oXc2e0rcntSiTIAqtUA8fPA6n/MyRJA7xwAuG3QdVEkknRWdgjw5MUAAFUAYv17exUtHZwAsFcI8D3uow/No9YR+pThRlcPFupR4BIKZVGK3g0NoQIb86BpDyQ7mZ2ybLzuXUIAfD3vOYn/mab+vN4Fi2wAut8AFscO2ZD968/uRwbDHi0GD7nczgMH3IssHZcA4NRmdCLMSIcg7OQA2vf/Zz3z9twpb+0Awg0Apl6858vxP3kFF1UduD/t8APfCodbFJnETylccOjb+L9nAG2bLcmFklQs/l0eAJM6/55n/+NC/ka2ABqXAMpUBopVANpK/zpt/rwTgwWBVJwbj67m4xboKQAMFNnDhw38CBG2fwmzmDBxNmy3aQG8Jx4sYVFPcNHT5/+PDJ41ePnz+SJU2eRJlS5UqWLV2+hBnTJLchPLjJxMmS3Kh7+nL+BFqynj8uBEJg2NCggLKgTZ0+VemLGVSqVa1exZo16z1/7GRZ6pit4UGyZc2eRZtWLdqL1JY5axY37rJog4DBlZtX716+ffUuO4Zu0o4lx5Zt2tGkWrRjfps5o+Zs2V66F9eaHevw7DfLZTtb/r7YmSDZ0J63jYt3ctE6rlpdv4ZK0yZslProgSJHu6o+d5MwEDjQ45pu4k/pOWLXuvhy5s2d/xwFb5Q/dJkvX8eO/ds5bpL5vvXkiZpj8uX1HotGbUmRR7yicaGxqdqyyX3peu/rzHp2/p4PGhznonACZIug0L5h7SRr3IBHuecedE22m5pjhx0IcxrJHQ1Tu7DDk4rxx0EPRySxRJz08caeRPxZZ7/+XnwxmvKOiQUv8260bxtRLFgjl1yOYcCMY2zMzy3ylqkGRiXLMgchzvYzEDMOUbLHRCuBknA5ffTBxZErXaonzHtG+tI5ctzwp8oy12TzQm9wccWfczhb/rJO7LqbEZgwuMGxz7zoAsYMC5zJBZY1PhAlm8Yck9E8uly0M1K0zuEopWnuYMenNjctKcvlvKKHU1Eh9KmYafzRdFRVVwVKTUdMOTUiSWcli7Ntrln0yGM88dNP+rZpZIU1hDnGECGkiCxXyqJxhkjHnDlmGzpppZYzdzpSyRtvWG3TU+JCBStVbsfFyidZLBSXXHXJ1adKU2oxhUVZqZWUs2vwKw+wWMbr1dFmqvFhiUYAk6KEVLY5ktn6blyGGifpjTShBFnyhhkR1/XQW9q4ysGfUDEG+akqz7AwZJNF3dKfIOzxph5IIX6RM3wdBUaJGvslb8hWLJjjFl5S/mFgD2cpc4bZXiWz7OWXlVy6oHleckWWk0fUmDZycps665zYwVprr010pZhME4J51mwW7hOyoXHOC1o2HoDlGFjYsGAXaJ+NJhq0/azmwLJfXMcfMluaxpqvH6zaNZ8cmebiwx9Pk5w7UIW88uJaw6UYclps+m+1nnRr7fKcGcSTRtmWC7BtDKFBimqEQSQGLqqZ+a+im9nbT2fO6Qahz5lGy8Xtrn2pXVdOtby4xF1jBpSekk9eljihpx6rj8/gJxt3evec6XPuzR1HZ1AZJPxe0QOHhiJEMUyKIhpBxzBGa+93mWvm6b3zshGstHh4ZFFT9V6zPNfQI10C1JoB/hG4wKBoqgtim4f+upeWb4jOT8dQFtuWMY4+WMAQsODFjrYQGfPN5XSoe4wzgDEH7pRmgmaZx+CKR4/oMFArBMzKq2z4tWkEAh4H3GEQT6ItK4RqXrX6T0E2o8Tu8QmFcYFWGOSHMyTBggso8BEvuGABYFQjg3uJzBPlcoxWBAADBdBPQZr0QnCgQ3A4uQc7pifEquDQKvqAhy/oqDXNAXGPNryHNyyhR3dE5BvfyEY4wgGOeoAjHvj4hj/EckiD4AMc+HBHGw0yyUg9SW9ihGIsYkHFuHxiBWagSx9KYIZxYNAvbznhE4/xjRCggAIoOIAkBdQ9zkxJJqWK1x9j/lOTCcGmSnM8mT7q4UfomYIeARSmDe1hD2ucwh/uQMck17EOfGRDGdnAwzki0YV15EAZnVjEKQBRCyd84wydOMcpCnlNd1BSgmYZB+1K2K9q2OWL5IFWNLbRgx2Iwhm78EERWrGNEr4ljKCMyzGq0QMMhCAEM5Ck7/42jmxws1X+uIPjookTO1KlSl1A3snqwZF29U+A90ATNEdKvXrcAx7swIM/ApSNfMSjF704BR4W0QmgjuMU1ZEWRA4Jjoio4xT5SEMtTqGEWnQCIvFYBye1A45PQlQuzpADNf7pF2Bc4xMI+GAIP7CHIe2zWRZEHWAaIIAQdIN7vFypDLcm/tOZkpSYumkXX9Xlk26Iogyt6MYbFziNj/UVehwJXMfkJI1sSMMJtYBDLXqRD3ecg4kRMeQhxQLag5xjHRsZRy0iAYhOdIKy2TgHgdbyjSF5NXV1MdKN9LaDHYBwbgywm1uLtk8ULqMb83AHN0BzkNFQK3BOCVXHBOtYl5QUKqE6Q4hCNpRJFOAADTjAARpBuer5BBSGo67lhtKIFpDAH8qohTKwkI1FoEMc9UAHR+3JxNkWRLQaiUc83KGMRdRiET+tSCHL8iTJwBWF47vZkZqRjTnQwAxibYQHzKAO+jwrt7Y9DzCWwct1EK8pPgFLY9MbE+s6xbxdwxhHbHGA/qNgwMYEsMVKX3qPFTFzxRjT1BwOYIEKmMEN26hFPsaRyaVWi5LncMc2pFELaWChHpHQaTYkRkIQ7yUW4tnnMa6xiyIoFIMrWIIoWvnK+xAXokhrrmY6oySJ+TgmPpkGPH7s19m8xie+eB7IhnKUDWzAAhQ4NAr8MZTqcUVqdt7zuPShDHmgAAMWIEEL6KFcNnpmp8o4BRyU0c0KdpkvxzBHGMxRwmOAoxADyMQtnGGIDWyiWQ29l6kBio5aTctO35guUOBxAo9FGiYtPrE/ApGmkPnEBBigQLQRHYIG+ONpjfYHKLZl7GaTZBSjMMUUqK0BM8yp02jRMkelEYRs/sRiSA4G5TGAMQh+7QVaQhCCM24xCypswDDEjaWu+eIMhERJUs+1yraCze2Z/BU2ctQuyHyigUtb4NAUCMECrC1An3gDRAwf7J+tEYRpMGUSUWADPrZxbgoaBB3mGAQqFrEMYHRV4F/OYMOo8YcVsOEYvDDEKe8BDIA+VOCO6VsSkdif7TwN0ncGqTUWDnJ/ILsppvDG00U1lB6sQNqIxkAPFo1Ae5DDS1Tn1vXcIDaSBPCe3TvHeJB0DFR0IhI1x52uJzOICEOrGqmIgRQ0kQ1b0GAHu/DiK5uhsKOXJxqWyciSvuEOl1bFF+FC+0qsHhRmKNBk+AiHAGy5AYwT/qAaUz+cPu5hDRVnvk2q94cprMD62vjj7X8rddtoFAlPtFXXzogFKuQCjG/QuhG2EEYjHpCKXdh8WfBuvFy6AfklMVorP3S9SjYPlEQkZ2rzoAaNG3DpXCj2pfBIROuzX6ZAOgEehhNpJll+lvkMbTLVQAUwItEsU4+PV3GJBg/YgWiwBVgoGFvIO7+4nehjmGvwHV+bM7XwqKxQPTeQmvVDie3LCW/wBXvQOlYpBTMQBZL4QB76OAwsk2LwBitgBz3zsTg7t4Sgnz9hDFQABMboMK9aBm6QA2DYBjYoAUNwBlv4A9m5hxwcOMhwMwb8KuuIwOBBh2vTChSZihKM/jQNxIk88sCs0Yf+wQcr9JoKQcErsQcL6QJZOMGWWIf5QwguOxJn4AZUOAYsyIfE86pjkIZJaJ1WOIZdiIElsAVwILqBg6UZZEL7ABAnCZCJoCCEcw13GcOTwEKZALdIXBNTAAtLHJFQYYYT8IaSeYl7YEQ2kkFfkQxggINO4Iax6pdZmoMNEAVYoIY9YABbM0TcMbpDZJhoUKKGCBDZMgvUMw5/IDZhBLlJhAk8MkZNdI4GYcYLsQd4sAI0SZmYqI5Omw8NModOAIRbFB+a6wEfoIYjgAbDEyu3+jBdFB/7iq2z6AwEwRY/84epWEaGQ8ZQDJtntBJrAIUt1Efm/tgSbyA2f9AzmeAH/JkgjtIb6PMLiTIHLOAGJPQVtzCEBjCEuJgCFJiDcRhEv8gbdawfQ+iDUlhDd9yOoai8rDgpcgDDK3S4rbgNUPzHEem+epxJ6Mo2S3BBDGmkCaq3J6KPWDgFVDAHVmzIbWgFD1gDgxKFIliCVmgHVnyLWwPJPnkLJviuA4AFsSiI0OiGR1oOnWxJl+yzAlK/m3wQmURLxakSJzCFsSyJFtmfb+iyZokEiFzC4RsHM1iBTfiRTHiAR1gGOZCEgJsL/qtKX1mGo6CABqAEhQCHjEAHkXINcpgGm7THl8SKssuutfQQN7hMz3xEdugCVKFMmJBL/ogZh9DpsrfgBiWoLfMglBgQgmiAhVnYARp4K8YYGsn4ycTEkR00AQvQgAMQhUMyEBNbDl8wBczktntsCduYCtF0E7WkTqgoFV+AB3s4zZgAhzm5veAZh21oML2Tt1joIsegi2Vggw94BGqwBTZYgT2YB/mphjAAhgwaLuCsH2fwgR6Yg3oqCHSoErj8iSo5u3+ETpawqem4zgfBBW/ozgeNiSoBhVHYtqeArGMosfDEJzc8uvEBBE+YQWAAh1ZoHVhYhlQoASrIBUVJnVRLvELMS/6kDHRYhkxKCHfQK8DyB0vIUH1c0JXQh2kIJgptDl/ABfJCUqDgCrGBsafI/oUVQIEeEAZeWxKO8kYQiwb0RIXaOQZ32KJZaAVnmAMPMKi1QU/6GI8ttVH1RBL+eY5QAQUmfcYhVQkUScMmJQ6Ps1M+lYmTKraq4IIGoIAFKANu8FBwyEZ1RA8lWEX+gwtYaAAzEIZbgAUhKIF1EIa+OIbX5AbDfNNWlMLmqBJiO0tLxFOUGIpiAJGUdIn+mdCUsL5ZPYlqjMdfMgkwTJUvzIn+wdWYUA6P+AlyiBfrA9Rk5JLsck6WoILxOwA2kBYYIc+3qModjCpREIVt2IU56MuD2gML+AR0uIuG5AZJyMVR7RW6yAaReBCpadbMLEurGApxkIRY+FWu4AZR/qiGXC2ekaAGUQAHZoM6f+CFUvAJd4WJSilAkrBVh100WLAFEpSJoXCHVuAFioUJfqiSdWAfjYWJoVgGPhiHRYPVZFUJekCTh40JURAA4ICFJ7wO56tKVOMDi+OCHaCCrdyED9gCW7DD7+A/T5ADo1RX8kiSi/DX5QAF77vJVTUJd6ACG8OAFnAGZHWJczACaNMAHCgxmfgGH+BasVNOluAHfRAGaKMADWCDsYuJVrAoizIEX32JkaAEDYg2DBCFk00Jn7ADaQuBjN3YoZgCaVsBapCJa2kBqmUCR0RZIi0GR4jXluimW7iGRcoOg7gGdXUGWCgBC9gABPiDXFiG/oIRhfV8JaNpBnkrSoY8WtxJo//A2uJwBGSaSagNkXpgggUA3AL4hi4EE3eYAQnoXXyYXVpdh6+jAAxQgI2j3Hs4BjOSNgUoA4JliS2ZBaMgvRA4gD6IOJbAB35ABAGQNgwQAFEIVpUYijIogPIVAGA4Xlb1hyIg3rwVAGqI35N4GrqSNgloAXdgWSTNjenUCu6MoP5gzTft3BXYgA9YgD/ghR1AFuJSwrw4hhcoytd1lKQrC8eljVJBr7WE2i60BfKVgBOWgBCQALddiS/sLgpA4RReARZWX38oA96NYQxggu9Vif1VYRQ+o2VYWpR4mgCwpWizABQogHiY0Hpw/ocA+OETDoECGNQWxgdqEAAMiOGMc14i9YdWUAAYBuIQ6GKV4IoZiGLiLYBPGOLHpZxAKAYDTcZrvAwtrVEGdIZCJYEjyIIPMIR46MgkTOCIygc5WDUNTt3TsI5IYo5ikArRhFquE2MUpoAWGNiWeBpoi2HiJWM7exoF0OIYhmEaRgmOyAYcFmUq4OHaawUbQ+Ll5Zk2LgmOYINQpmQFYGMf4wqK2mQKKABhABN/iLZeLoB1yN+4HOYczqVSdWPK8YU9fY3UDB6EEFX+lIxWaIQ1UAA2CNWxajDG+4tokARJMNpRfQsORouyfQ0LDRU5fk7NfIqnSWZKxgBgxmR//jgAWz7h5d0Gl3iaAtBn4tUAWaZYWEBlSsaoY+YIQ6AA0iM9advh0+SKMphn4pWAtuXbseuBSd5nXP7TkxiKFuBo4lUAashokoiGEBhpCmheZn5crrCEZSsOe5DZ0uqOO8ZjYYCFa5CCFbCFU8CCdLRghrIg+iBKRG4butCo4PHg1wDNyaU6qK0SKghjUQ6BJvaHje5lDCBlIvYHTRblFZ66oWhfUXaA6p3QYxi/r8MAiyRoyjEEi6bkA2iFjzYJrmCCivZlZ7CzkF7pJT5mVMEHsKbkFXbpxw2VVHWNz6FZdRWGn5HgbcAgblgEoX6MatY9m8HpQ1yGleschYUN/m8oSOrE3XqohvZ1gI42gq4+CXywh+ydZAo4gOo96S8c30k+o/Hqa39ogaqu3wVwh8DeOA0otPK1gDLuYX9oXzGGYa4+bJD2hyxmbgXAqOeeZUiS7n0ugNUO7Ik+gNgOgGNIX5T1CTeowuU44AXrBtjV4MkohTkQV0GElmXAArSZSjeVi3zYE/zmbF7kr88hnpNuIH8oBlcgYEiG56foQjsQgPoNgB6oqeLxBzZo8GgLgB0WbmyhggqXAAGo3gzXB3D4jWg7gDV+a5L4QmcoTqT4rluw61v1B1go8WgrAA242lD0h08ogDCmALoy5pcYivHlcQHAgUXrUa9mggAY/mYBwOhmptgVeXGt4IiGaIjGNmdnyAQU+AKJWhTJqAY8MIfDpEqGcYbwQAXM1kXX7I9iYm0XqxKZflDcLQlnMAIKIAFRuBYBNwleKIKLagXrXolWoKgegIUoT4l4sIMWCIEyiAZDNwmOcIc5QAEUYINI0jqfAAc2CIEWsAN1vl5/uIYy2PQ+APTaO4apnQFE0PO7boXeNgJgcPIPebTm4Id62o5r2GwGBAxnWIIPsIUxzwt0MgwQDU5myc9cBzG6mD7++AZ8eIQVWAFDcHSgkC4KlXOHxQdswIZpRwnlCGAUn+WcgL2OWPVHb417KPeSuIfW0DGcINYQAcNAWyZ3/scjEMnwJjWVB8GH3kFMRHaGVNgANjibhqSPoMWZQRgE1xW4avCs/jgHXoiB5TVOrCAHEPn2Mbx2VKmHXqiFoLCHeZh3ca+HebCHdJ/lkb/4jggTk1d3kGd5hwX5sRz5kM8JaeiEVX5cn2AGOH+ObFB4BqyGa8ibZdgCGmgEjnylalgEODD4fuEGT0j4KVLH3flv7FgHWFBp872Eq6AHX7AG60Tweb0KfSCHA4/1q6gYbqdQXIiXlG+KSlmH+bDWN32LOTCDTxCFwMsGxnilZllFOIjIuEI1JWgHK++/t1BkOhOHFQivBhiOqiAHa8jEJs34ELEGKD97rDAFPXJn/mbUFLMnDo6Ih4RYRZr7+S6Lli2wuBWIAVhA8/vAHRqJMNQZnzAgUTxuGF9Tkmx6BEooWap4UhDpfNer/HZJqcxPOH+MdWZgVuegY3fghaMv58YDBncYgBIoNDMYeAW0uWVABTyoBjHawUGQ+qM7ol/LhuOyCitIkWSt/DLkeeSnClBonLOHB3psDpf5j3PoAwEIrzcFCGDnLFjwkGDOtWXNFjJstsxZNGcKGTpzhgpVtIYaN3JkGG1QLE/cJnYsaVJjNHDfwLFs6fIlTJjfvq3zZ/Mmzpw6b9rzxy6RTX07hxItavQo0qRKlzJlym0ID25NleqjNwre1Kxat3Lt/ur1605L7HqCLWv2LNqi5EbRE5p2p751K1luc1YgBAYMW7ad7Ou377FdQhq02XaM48OKJCkCAwRs8d+Ny6g5kxPrYeS/Ep1xGxfzM+iY6NxO1ScUlCV6/ki/be36NdGnUVvfIwf7Nu7crcey1u37d1fTprzhFjpv3Fy6dvFioPItM/TMzoSVooZ5Y0ST3CJFgxy9ocXLx5x97zj5m+fQ6kNvm5f13uogxYj3Bm7/vlHZUtPqg3fHF34BCugbPV2MNSCCCa7GDnG5nfPZOqI0gIIG9xxWHoYleceQdSdNpkQ1F2bIEDdhADPeiBR1sx6L7NU0FT3TuLFafQramJt+/q6xw86NPfrY1I4/CnmbPvcUIwtu8yQn0zruXKMOMOSlOGVJEW0omTOkSDnlMdVQcwQwwGRUXmLnLNkimi19g89S/flzxjS4wDcknW/l2Fox09S5J53eyGIan4F21dMd/pDFnz/1rLNiaN90s02HVErK0DIRSfTXQ3jkI2KKyyzDzSCSoGLdlR1tdo2ZaarqUjfxKKUaO1bggstqgtq61Z1v4WIJoLeaVc889dToq064IEksskcJJZZrbLqDXIsrTTrpQ2NCtwwqWHAz7TLVeALMIIppdgw1q5oLU61F2dOTG1bomW6y8cYG1X5v2aOavF3xsxqb+e5Ejm3+Cgxf/iCGuobOmSxWU+q00lkbHWecSnrMMnIAg8qWHs50LsfgtIcUPSfQg6/AJd+Ua1r+sTOnyUstQ0UDITwiVb/5CuUKMy3n68g9h56lTz3bpKfqSA1jmFh3ZAKTRiwPU6kQNaJKwg3FGpbbMdYvEjVNIoXS47PO+aKclivwsBw2UfrM08cBDWywwQEhUONPzfFWhcuwaO/Jjinw5K0Vm/qg083QqzptNKbORIqhM8BEUnXDkzkziCeSmOOMxJVW8yDWWNdHVjFnFAPvUHXrXefYaBVT5OlE1eMOARtQQIEFGFCwAt3+3gOPKa37Sk4xYHsl1DrQcnxO0ohH1u2lIzZ+/szh01JzcRjHFK1Qt+AU3vm56wBrkz1CWXPHKMLjBHQ99fjOZ+pn+dL72eurP0cDGBA0OwUo8CKwPuS8uz6f7uELa6QFHdxjScaUZxKIMAw63EjDIjylwIWYI1SoAEYznIGeA2LtG+iwCXx60gVTjI4o+6oHm7ihB3z8DYACap9Z6DG6FupMfTOwAP4ssAEMhEAU/hLKNEbhwj1VRRYNKks8tsHBcSRwghtRTBOPxo1RNbBTXZqcJ1ChDJp4JmEcXE83rlGEAByAF/xQQqxAuJN5rAMayWDEFVhwATokaog+giFYhFIw851OfWyoH+1wmD9Y+Itd/oifHW9kj3sA/uUrbFIUozi4LSdiiTxVvFY14EA1SnqKG73IBh5q0QlwZCMe38iGF7/4klN2IxUC8MALCqCFU/CoLUNZhRdkMAIW6KAGXkjUvhJpIzx+BYh6omHL6kENAYRAkBYIQQPqKK8i/U+YPYJPasqyDpWoEj3X4aTiFIitNCxsghKpxjfOgZxsZAML0jiF95CzMVWq6ZTjQMeipkC7FDigFkEpSjXWQYca9PIH0LBmj4g5PH8wwxWkW58+8DGHAwQSAw2IBjL5ZI0ZIRKhAhKKLKq5FX1sT5XlpGQzohG9aVUEpV48ZS0AAYhalJSe42BnLbDwjUisgAQOUMVDdcImHfSS/qiV8OiNFOqVngAlozqbQw9Q0IMWdKOjvhKKI/xBMqQiyDQOtSpV5sENer5kHNv4xkqfBpHmKc96SogS4h5CjZreFBz4zAcgTpFXaSiDneOIh1zkIs+ZrGRj2VDJOMZxjnXgcx3SyEYvatELJYADEGzihyxw4SqwuiUUvKyBIHTwS/dwFUFK7Qp8HBGwRPYrGuewiemQhc1DllZBfgpqUoRSj8GRlVXRYAMbROEQo1UkeU5cxjG40zDMRUNoqWTJTLKx23XU4hSd6AUevrGIU6CjE+vIhj/cgY944OOv/tiGP9aRj8fWor2ijEQvAKEMZSjJJndgRyT+ORT3DEMN/ixQgReSMYwh+GMewaxtgE6LWm80UpikcSqffAEUsCI4N/CZER+VlV5u9pYl3IgHNBtAAV5cMjqUKTGVgBGLk0pqGdfQHpoKu45tfqOvvVgEPrCgjFNg4RRpOAUepBEJLMyjAqJMgzLg2wu+SoMl6zCTP4phid7RtnTqE8QPaqCCULjDH2o4aIUHpODgkGOrYUaW3848IHJAOCf4UGKHXXINfMTNopRga6dUiuKnHYNpUWQcnA+IysSOYx7oiAc4PqmMT9ZjscWT5yprYgok0VAf5hhCDWrwA27oI5htVjNaxryVe7AjEGYGta3uQI4Mo9o18LGCwZrijg3GuSXc/qhHA3J9gFa0WHF7ntaJJhUNhH0RPag8JbILm42bnvLYqzxHl4Hijb+xaR6sUEENeKCHRAmFH+prtX1EzZVpAAjctvJFCc3tG0uweSnVXsdYa+2SmbSCCUXow+IyJDmUmiqLf47MZgj3XHl/Jhs1kYUsZlgU9SVDDSpggRp+UWB1J5heuCGHNT5N8fvA44gbv02QmDLrgXdYLtxIa2YSg2d+UwQVixju0c5aU4KD5pQ2sUIxVjsUtfkjtDrYsn4/Dhxxc+UMqxb6j2rTBY8jvTVW8AardUJygo+jGnlGOcuX8ZijRWPqNIdJTRxxhlgvHB880MHZ8RHbpuPI4kTy/getNM7215ADK3NvjT5WphRTzvzrLfn1RqgBc5Z3hBp4gFzKnVGNvvv92fbwhiNGd+rzJYoRKuglI/zhqrv/huhbsQaSKMz53ABRiKNPCyjMdpR5nCOSjZcJE8nEQMKfJBoX/HWl0ON1v3djHnrqAviKwt8ryADAyQDm6XXj+ff4wxJxT/59egLrqEOfKcUIRPiMQuPXq2cbgF8r4CdYDUBcJuXx5n6jsuEeR1iDPmljUxyGwAIWsEIduas+bpafFaHkTO747wqb+d//NYU9oN96zMSvtRTt+UXjYBDAGaB6fIM79M8dMF1sQEGmQUG9DOBt6N9UsAv1uZBpCCBw/ghFF+hDCHKgUYwCKKTNrEHgehQNAwreAv6F7eFBviGG4hkPDM6b9zBYC95D3giFOLxCB9TAENDRPKydCoaa2+EGU+HWEH3bTTChjwBFCjYhUbTffqVKD7JHXyiEntUgppiDtkiMRuQeD37hTOCDN7hCI7EafCRDHMmAF0gFaWnha3hgadiDK4hUIrnHJ1DBEmzBB4legsBDMdiSHmYFMwBies3TF4YGylXLypHhAkFPqbjYJD6bP5galQ2h+tABUanAK6gPCTZiUvBhVvhCziAUm1CBIIXAAjSCFNqIL5ieKk5FMbxiFYbD7vXgONBgR2QHJi6POZxANKChQ6RE/ifOmzt4gzeYwtcYRQqhXQ1AQbAc2C62BitmRSJUozUhQuzMzjNJwC7QSc/QSjfy4v/ggzsQTs1JIosQVoc9B0es1TFiknc8xOIFI82lEz7Aw/tU2c5V3uXpACZMXDvu4RPqhjcEYSIpygrYjyBRgAZwAZ3owzTIwuQ15FCozylgg03MA4d9RjfgQ7Aw3ry5h1xEyzVww/k1yjlIBOQUF8NI0D5SCjfAAZ5NBuEE2iRmA5vcQRDdIj6oDy3EEcQ9gzSBpDc+JG7M1kf20TkQgO3gDwU0gBGkomv0hCN4JQe6hxGQAAkcw0uGRjfUQxkUwRQs3gG6gyH4wC7E43oo/pZK4gOtsUeqXEpGbKImotgxnMi/SQYzmkc14EEsgMc1sOTrQYs/mIIllBtY9Usc8ICW0YJ7WCFUgsU3TkXPOIFBApA9rMMByI7s0E4DUIGQYNW0daZRCIUhOMALpMABnMM12KNM4AMbSIAEHAAbrKFoTAIBSAAFUII7RGA3fAJFzcA6CGVMSGAf8NAn4KNf9EErXCJiUMPJlVhi7NljTIQzOCb3SeCbeENVVqE/PEMvycAVdBlswsZnNoVQYFwi3UM89ICIUcAG4FADsMGQsMM0WGB8Ut4kLAAOFUCBjeA8uIODPmiXRcEC+GYPyByhXWhiPYft+CYV3AOGngOI/oboNfhDAKAABijAJ6QlhHxCzGCABuQCxXiKjM7oQ7TCbxZAGRCjeSxDKxQAAQhAiPgFLxgBBkyC1fUFRCgBGUQEqgAkwXmQPRyJVlEY8WCCCsjAEGQeFRaonUilhU2DJdyi3gBDAdQOD03IN/yIUPgCgIjlAAILDrQNgG7pUPyBADiAAJQBUswDE1CUAvSBUI2gaXRZAODFAfhQPMyDoi4qo/oDFTRTCBTAeFADpVKqSl1qNHDDJBQABUgADgiDpVSEqIrqMnQD/mBAC6CDdxwDq7IqN4SAAlCAAIjCidAojTYDL4SAAyhACGyOk9baStQELuScmArFL0ABtqkB/h5yqUPOxn2wYCLtyyyEQAAQwAAwQTWIaYC4giUIIbMe5DiEwSAcEjfuBD/gwyUUARvQKVFcQw9IQBnUQ7nqBHyUQQAIAAYIy1HEQ9wUQIWCQ4iCqGeEA8GGwzpMAr46QA90wzdsg8M+LMRWwzwQQAjkTwj4Azd0g8ZuLDuxEze4Q8VSwAHYgUxWg8meLMpuA8K+gANIQCts0yTKk02IJo+Y0D2oTxwQlCkGxbx+a1nM5/55g7fakdqsAy8oKp3AAyP6rCO5A7umTfpsXlJEQyvkoVHcAz6oa27e5TUYQQE4wCdwTmjIpABQQAA4iXqk5ApQAAYIADAcVmhESKzO/s7Lxqx5noFHHgV8VAML/IB7MiTTRqWz3scZQJ0wAcs9zAMi4oc9sMOMBC5RTBlTDG1SpI9T3SzQKAVp7d43bC6LjEM3uAMi+AM1iC1odEM29MAMVOcB1oMhkEAL2IE//CpZ0QQ9jE/wpY1NxMFnvQLgQm5aAO0HfiLZEe2QqEahLC6zcqGNtJn6qGj3xSTnXsM6NGa02AT0gsY11AMuwIM7zCT6tWEvmh5nqc8qxJEK6MFBPS3w/qyX/sY0gEL2BS5IPV/75sQ0EJC82AN5coyTOgrnisMibBEMgu45qEYisEMLVVvOyoAOsAJs3a/gbiBwwIdDAe+FFa8Ewx07/spL/z6jmojDkvVg6NKD4yKFULBnpl0B+26w+w7uffRMBUIuPdxBz7gwTlgDJPoKzIJwtORDGtSVAa7DvjydBu/EOghCQobC7+LwWQgvV4ACPShvI1bFH6Yn8L7h/CILPvCD6/lwo7hDJJyk39kcOURCJ+TuTrCQPxjDEMiADKiB/RmYE3cpDOMHPQwQ5canPShizdaxP3ScwGQvGH8GOnzSY25DTRACPNAKWHmbTahBL9XALwQOINsxBcewP0wfl6qGaF7yTRhdFg4JPnxxIcMEUeYAPsDt131DPVgDPISp6DGcA9sh3fQsKH8FFG+FaoxdgQrF2I0y0x6IzXzw/jMyG+3672sVg5T+jVDcg8MRlcTJay5jsoL0sSzob2eygysUwx4DciLAgzD/CD/MgymfckucgzIsgjuwcpzZHD+4gvyOZk5ElD+swhunrzk8ZTU74R0HCP95JBXrjNrZR8+0aT+PwlfJi7ehM2i4wwAnc5rc1GtNWZvmjfqYgxrUAAsMge/iljlgAhv3M668r4C4QZodrj1YLoHAA/CRtFbZnb/g5jmfsjqjkrx1rj8EgU8Yxbn6wyu0pxq0sE2wZ/rAtFbs8qB8om24qaBcAyzAAjVYMmwACoaRNHzwNBYHijtEAzUQm0OzhDsEmUQfIDjUBCh4AwEhojkosQ78/gATW+1OPEMNHHXpIHVRKPWg2IM1lJsLzYMhDMABHMAAsEG24gYzoJu2bvCaynS8rIMZCEAD5MILOvRNnQI9Fhs4xAM/vM8Wr/G+/IIMZJoa2AQ1FwVd2/UrJMMzvEJSqs8rSBxe64Rec4VQeMMoWMNAJwubsE1esO0BMAGRgN7o7DbkCoUQbfWeqAJWNkAMWK9lS0MvlDVomFWa+oMTpPRQQLI/eEF7gllSpDYK8a45iAMLxIFNrIIMyPZs40RtewUzL7a/2EID6BBB4NABlMJrgNSx4LVq5MAR38olEADtzMAxmO4pS5Yxt8g4cAObPN0fu44/hEIpMoJcH0Vq/q+DJOcOLbCA7w7Btjm1z763V0wD8I2zr4gCgfOnIB3AJriaPSSCX+O1UBBzvDjDDWEAG5hkWI+DghebBDII8KFgUbCJho/2D0wzLg/FM8iAOVwBgbkHzl4BFPxAE7c3iXPFnBSMfCfLJ5Qj/sDNJLzG46J4+xIKPRPLNTRCilL3k+6UNCw4Ta6DPCyCbVBYv6zCD2AbHbgKUQ9FMujAFdTAFWTuxPGACoRXe9O2SScIfDADKPgi2swCDunQ7GxAAXxCa5BDIvyJcW/w4z2u3ZyMnL/eN0hDLbgz1nSD9/DNtP2N+nCDGsDxENBC0C0FewoCN9QAHclrPEBDlqH3/p/3c5aDBSiwg3InCxNUOosXAWduxbrA8qKfD1+bTGWjM2ThAY93TufeAzNweVFA8isQFAvQ0f1NBV27RyWst+b5AwsIwi9Q8rkverF/hWpps87ARxGEGAXsgNaURX0yWJdfcn8YpcCUs5sDazt0Qj5Q90q4A1acgBqZUHh5AS8lOT+juwwgbZXbBJTbhHdf+GzXO2r5gze4AbKjjSB+QRkAKgqhBeQBiJnjsD54AzPMfI8IjkN/QzwswrJ1TDa81qS14CLprj/QQqbpAHoj31YAe/oo6g/owSv8gFO6yhCU9pITe6PfyJyYwljg/JBs6bA3xZzwTJpP+zQww6cL/gkhP+M39EIkXLuqmBU+kAPCYcUju0c75JIMGBTdPHvlHhQbV4M5cINT9os5QIPIIzXJF5M/dIFtgP19+sSQTztRVKDkJ0hDn/I35EMtAKP/1kOehJ5RqHvfj4CF20fWa/0/00lPeMPYrb2D+YMsOFTmOzEzEGiyIDgIt1M+qHo90kRkJnZSqMOga1q2drHl30fjgwVZZNXZV5i3OoJqJDtewwfwWX+dyP0z1kMnsNOqEI4/+II0JAJ85E2/hAIPsIAMCMJmLj9+NH8emTBKaxWq4UsgLKLs9zM5FIqI4wdA8PsGjmBBgwcRJlS4kCG4bKeUNUy4bZ6/RKCY+dOn/s9fR48e6/mDFkcFCy+0/OHD95FlS5cvYcaUOZNmTZs3cebUuZNnR25DeHDrOZSoR3a4zvi7V5RpU6f2/J2xBNVpVatXsWaFyY6dRq1fX66TOJZsWXDnai3KNtCsP3ZJ6c0MGUqGDhl0Oq4Eu5dvX798fwb9exWqvUDTOA5WrPNt4cWPIUeOCTWQLMlVV14zu5lzwW/Szo0j+23cOH932JHzGrPevCEyftQQGvJybdu3nQYWilvnPaiOvKnm/ZgjOXaJ/NGjOpx5c6JQcQl3jvOeu3uiO2dv+G1dJ2XYt39LvogcvaUv+SVexUJHDbz36vGbPp++bd31a3qLmnw5/n6r9jhyw5tp/CvQwI70oceXA2fiZQ5nuNFOQoQGqqWTethiKJt1/HEEF2tmqqiaK2pQ4QpoVmNQxRWLuo/FlshJxDIAX+QJqmLuKK/GHXGTxQ16EmNRH3xsOSAECsKJcMIlv0GnFtLCc8sJa7oK0qWQGPlBBxUwqUgvHsEMkyUXwYTKmi7giUtMmu5hxw1QlFpTzsW6qrEiCo4MIQR/ullSwiZ7AWSeDCkEZx5yinFDIytbks8cKGqo4YdnUpJvzktfJLPMjgJxJaM4azzPH9o80mepYphRNDlMWQULFEf86Y/BkFCwIIQGuKinTz+1mweQfLJZiLts/AkiOTVf/loKn/Vk4EGPvFqN9kBNwzRzGtRWZbEibiYBxh9+Vkqwoy6myYhGadFtailZTEmRwY2EWQEAJr4hlNfNsomkFnDs9SyeebyxTCZ+QhpGDRZU8GKYUb9M1+HmqJWTGWuc6EhW/9zxpwcMNthghlyy7cKaTx8uuSh2vCH5xXWCBe/ezcLJp5a1EgrnG3zIcUVgmSpipAYdWMAEWpOJxi3iNc+zwptiYjWQI1sxoACDqZuZxpuKmy5aa5xMlWXnF+HTp9+XJfomGzxOQSehb+aRx5suEJSpHnde03K2rfGW7Og1xfXHinKFu7g5MyiwgIINKKDggEKw6AjIvCGvSRYC/sEkm7NvelGm3w39YbfdcxtdqZ5QVNBBh2fr0cfSyFkHDKjdovXNn2LIcQOedpXaqDn5qGig8MM3wKCBUUVt3fiPEgyEnOJZxNBysrJxp5daxDKI2GK8QS7rl+LxZ0QZTKS04ePJv2rvSxPjypczpBP8MviKaMCC+RPHoIBzSC2//AWZX1GfXZ/HkG/UAw+RGJRnzoEPdviiTnLzRxyGUIMR0IJD49PfBVv0OpOdxx5vs4YvkIUbdsjDCL5LXOJstY78YZB1UMlBtmrkjrEFsCDxiEQ2XPaN7o1iGtKRSTUgJYMrmMNdLDRiT84XLVN1hBnkOIM+TGENZC2FUVfh/ghUrugNXNCjC9gAQwOOhDgMLMAQVTxi3qDyNRbx44A0VIg0OvEkgnSDQ6agh6pY4w9zrKIkUHiW7s4YyJ0kUVpLTA48XJGIeziBHiTbiD3u0b+d3ENcyyEQmkCBC/10pA8DCB4GCECFigiSdeuSxSZfhI9zzDCA0qMev7KBD34EYhSqcd+3CnYFFchADSgaJSmBaRNCmqwr08BeEOBhiTSVKpL6gAolAYk8jRTGVKCzh2H8AQEtgqiBHZmHM5gQgyLM4pfBzBtHpgEPHrnDjQjJRi2wEA9+iQcUpkBlTCoiiLqooBJDM+c/YzLMkl0xTo3M5B1M4Qp4TIMe9OgK/pDMaDHzsKOhVJIFM4LAjjsUQ51LwWJLSJU6gLLOCd64pX/m0U6DjCMbysBHsDhku+3BBB/uqIsOhjCqiI6UpwIlGkdCyMRiJAIXzLCCPRJRS0dYoxi+KAb2EkEPUASCHkGYhiw8ZDWWxGWno5pHPSzIU6JBBU5FPJDLaDgOaZyiE+AwDTxGkaZbgmtUjCidDhjhj3mEVaw91SAGN2JIltgDHhkxBTmm4VSrWYah6mzJM7vaV/JxxBXWwN2K2FgvN97sFOsYR0jcwA6myaR7v7gCwnqZEsmu1iM+Ze1rg8kRaxAostPJzDe2QcNvwKETGZtGIqxBRZqGJA6mYwEt/ipSW9gK0rXLdW4gLeEI5e4OH9FoBSv/tI5eGIofpgjETF+Cj2fEpgZQyBhfnxvM5qaXveUDaruCWh+OsCEABAhBNbDbmXFYqBjysILjYrIUcWCCBTIYQl5F2l6/CkbBDSZlgvSRFAahA4whIIAwNHMvYikKF1uMZB5ZoUsW0IFS5XSwOdd7YhVrDZ1aNdA2bGVhYGR4SeM4BzrwEBV4OBYm+ggJHX4mg1f4c8Xq/WuRkVy+ezCjGNO1DUcQcSQudCO/ZclGNsiFnJN2pB7iYI8OeKDTJP8zxWM2s7TcwGSzNudL96hy2baBj2mYIhJMi68056EHFfwsFHo9M4qP/vznF+nDHKHImKBzQpU7xMrJksEHJdk5IdL4AxS+WDR4WbKSV0BqBCQGFaKZG2hQz+oXshk11+zhJo5Icjrn0A5L0SHaUSgnsiupRqRk8IvknjrUDOb1gepR6t2s7tcx4YhV7zwdtWVngPQgB1VtEhIvmLfYpCxztSMTbFOP6hXzoAXsRJIM1RY7LvT47pZvsxIolaVeHGLGKBaN7o/oBazYPuO17b0YbXMjJEP4QT10oAaPuEMHfW50kQE0DUtYDD9o3Q463MEPdjEcJ/Vgdb7Jh2+M/0XblOIBFDqSDBWI2x+0UMFX8w3UM+jncfO5BwC3s457vAOuG2evxm3O/pdgy4AbP7gCw9zBgiHjQw9qSHDKj43p4eijLLSxBNMOnvNeg1vqvKnHML4s8MRg4gpzqwFKcg6k28mim81ZB3a/cQ5/IOoOz6z6cnH+9qxcfQSMGMYIWOGVZIyAG8nQAYfkXozKqlPe+s7t2ogVFXYsfM1yXzDVHX+Zq/PcH4KoQTU84oVXeCEOkYeHPizBDhB9eDjosNc4tlHHUYz24pEHaNxd75R946MddxGpIHRwBUrF3he/hSFuZHiQcWQsB/dIduzFCnvkF+XqP9gNNDoADXxwBAo5bT3Gz+MIeiRCR5SsDUd8zLJ1zAMbo5j1p5e/WuWnvyf6cEcy4qPX/r77o3tDGHLUee3MWBlm8QzHf1NWwhbagA1gwR96wRJOKW7Yj7XWbwGtYhU6wM+WLzHiAhQssGlAZzCcAQUOwAFaAAsGxAGdqwFFkCjqgRtk4LgaL/YgyR9eyBU64vqsyB9uIXFIwAFEoQRHUNR08DFqSg9+QSV0sJr8QYsSoeYaCPyYQrg8whqYSg4UoAEe4AG8pQdfiwStsCjw4egckCpUIxCKSlFGyysiCZoaL7D0Ly4syRsSyhSayh+IoQio4BhWMAuNTDBUIg/1cA/5sA/98A8BMRAFcRAJsRAN8RARMREVcRH1EEuMDpf+D+OUsCs4yhUCwRsURXCAxDyu/umaXKIrguAe3OCprEE6VsIdvMQO1c/fhIIRXfEVYTEWZXEWabEW8aEi1AA2fmFUVPEjbgQXAsEUEsEVikEW7AEXFNAjUsYafEQfTkAWlEnpehHuYIMO9OAasTEbtXEbubEbvfEbwTEcxXEcybEczfEc0TEd1XEb6YARwGyXBKEaWtEOfYNRuGIU2AEU3IAcnMAXHOEfn84S6AEGkUUNo2kal4sfzEETRkAFRuAhITIiJXIiKbIiLfIiMTIjNXIjObIjPfIjQTIkRZIiL+BnfoAHOqDuxk0VN4KSZJAlPEqwELK9OKIQKuEmcTIndXInebInffIngTIohXIoibIo/o3yKJEyKZWSJxlhFXTgB1TgBzCBG9SB2GYybnQH/ALLKyLxKnnKFsEyLMVyLMmyLCviCoRI+lbIK9kS29DwLeEyLuVyLumyLu3yLvEyL/VyL/myL/3yL+1yKRjhWVKCC9vyMBHzMBOjHtYyMR3zMadx+iBzMimzMi3zMjEzMzVzMzmzMz3zM0EzNEVzNEmzNE3zNFEzNVVzNVmzNV3zNWEzNmVzNmlTMbKyKbqyKA4uN3njIF2CN3kCOEvFOYCTUXyTKZxMOEVQOYeCOXXzN0PlPLiqOYdTK16yJpjQOguvJ/ojO3usKDzR2OLGPFoiSHaKPKszOLMCqLpSTQryLCWSLTzhsw5ZwjnV5fias+Vs5CWEs9G2s/1sQnZsotHscybsAT9hQj4jIyAAACH5BAEKAP8ALAAAAAAgAwkBAAj+AP0JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHLnxnj549+DRY7eSnT5v9ODB00fv3j2SOHPq3Mmzp8+fQIMKHUq0qNGjD/HpK6hP302BK13ZA2VtmqNpiVwFKmbpDj0rxWQF8uYo7DRf054KdLoUqdu3cOPKnUu3rt27eIXyqyewXlN7aotNc2IvEC57pthZY2cPXkLG5KpWteTtTjFcxQjay8u5s+fPoEOLHk0aKT5/3EQVBFWsS2Rr/hxfBMyOnT8n8KxYc2yzbenfwIMLH068uPGQhg40CBGLWSDKmwVuVltxqcnNSxPdPknvuPfv4MP+ix9P3ufSdT4oYAAhyZRmf747bu4uUJasRPR8rS3Pv7///wAGGJpT/pCTDQkUhECAavY0pdNNbTEDjymJTCMQdQJmqOGGHHbo4UNL0VPMKKaU0oAAS7gj1FJLWZhDd9h9KOOMNNZoo3D0YAaKP9tkc5qDRd2zGSiWWBjfjUgmqeSSTOJkoSPWZDNPNt98Uw0147hF3xn2ONLkl2CGKeaY8MU2DSjwYIPPOd+A4+abfCGlz2bs4BKIY/QcSeaefPbpp3E3yUJPIP7Qo06bb775zTxzkcOMGxf+KemklFZqFzv33OGYO4gm6qmeR0XnhisYWmrqqaimyhGBZ1riTz3+4HTqqaKnyTWnP5Yw416Zqvbq66/A7uePG9Nkts44ss7q5jfr1BVdhZkFK+201PbpCzOy+INPrMp2+81dS1VFToPVlmvuuR8u5Q0z3vjDabfwLpqXNYmQi+69+OYL3k32yGKKhVXCK/C34Ap0hjXt6qvwwgx75mAxzCzibrICzzpOnHdtJosvjIHa8Mcgh9xTW5Thsm3FKDPrGTPa+VOqyDDHLPNGvsBzRyL4UIzyrCrzoy1e3eWQ8MxEF200Q21d24U/8WSzM8rnZDPJJ8K4DLQ/suBi9dFcdz3zZvDAoRWbOj+daJVFCKCcLZxtlqs/9tTq9dx049vWHdb4gkf+wGZXzA01DWBAgQRseNbuGa8CVvfijEsLDzuOeOPOOMqg0zfK3URjAQUWWNCHZ5uNYs8tzuDjc+Oop26pKb6Q800nkbx7ecXrHDODD3a86lk97giAwABc8Kq6cU2xBViD9mzWIJDDNy9Rd/pc1S4g2cRT9uxnu7NONf4w6tk83SCwQgkTcO98aX/Nae9D17F1/vtMbebNGfDM8w0enSCL/c5tjoOOZ3vpHgFEEAQSUAN+o0lfTPwhmGI4wheJwMUZWOaVM3ijGMVQiT1qEh0Ewm8zORAIOsbRi8ntb3ag2YMHpLCBEpSBHB4cilIGAioMsYMc0/AGLh5Flju5gR3+09hNTQbimBySBSu4SEQxQCGLOsFjaMKKYdeWQg5c7Khp6FAGIJRxwtmpCC83McYSdkAQb0RCNlLsSZwmoYlPCEt5hfKHK9ixFV/IAmK2wQg97FGzskzDCv5wRPLW8rI0hmwpGMwMOr6RDX/AIR/j6GLfVGaXOK2hBLPo3j3qwRfMGJInp7HFCkKwgRCsABiFWoptnECPCSpmkAZhkUNkaZDuFCM/d2CHG9C4vk9+zB7sgAfiRtimbKRBGk6T5CQxJhe+OOMBe2iWnu5gCub5UiTCICUFOCc4Z9wkEP4qBhw95pGbPIUZDoxcnsh5TXSxwxSj8Mc6urEscFBJmZf++0Y86MIPfBhiA9zgRkI2A8N2hkQf9WjDAbbJUAuYgRDv3E8HebI8gUgogjlsCzsN2qtwrSMIAklmrKQBB2VEEp99O0dcarWMJTRhHdI8yFJGAQr6cLQj9UAHBjCwOc5RQAMxaId0rAmUWwnEF97IlSuGetNgEcgXrsgM3+zpjzTg46QoNRs3ChkUfjxlDjHYhD/+R04WxXOjTYXIPNYRgm1ugHNvRYEzbAWVYLphV0RNq6UclAh2yOOqnfpGPfBwz6xOch2nKwo/GLUOAsyBG+uYR2ITshRQLFWvGaHHOlqwubduswFF8F5dmgIPN/iCHjbFrKlkYY+lsslT3zj+Ry1EatinIQspN9nCA8KBrIky5HFcVa1CVDksf4ThAQzdAAYaIFa8kMsV1nDESuCDVuEqaTrFCAQ7cpasb+SDsLSt7dPcoQ+5AYUvvBDCDpbwgDX0siEWrK51t8Y6X0TrDwd4QAOUgwjd5SU69vWFfuA2XzHRxB/wdI87roHVN53jFKc4h3gvd9ut+SROX9gBL3ZggRIgYBcmechm7qC4AifkJsWwBiiAWaZ5UGMOTOjDXM2bl6U4xg36iKfwTJykp5yhGO2aaqLGQWSTTths46jGNmjQg3kwMyeL9YcwSrAH7sXAAxtgQCN+Nkt/MAOG8sVsfproW/jYZIakaYz+LECBKR4vyR7eWBo/iAyvbGQjCLA68tOugY8DhCAEB+ieTxBhgWpwYx5r2IAFNtCAdTyZIZv5oZsLwo6kumTHA8GHX37zFFxENMyT7g9fvVyP68XKHafwR3j17K1ziCJwIWiAoHHC0g2YoR73SIUUluCPPUhBpZN1iMZCzVdvgHk885kGM5hB4FB3qDvkkMU08OGOVXuqkXCwHqv5F43AUUDWog1JAP2xBCmUgkd9KMG5MQZqGsJjFNYoM2bn9DjE0XI8bbGHJbJVYmcH6B7doRA/4sEtgfnoBPmw9rZ5do5WFKEIqGz3RPaZCwsYohv1UMcH1kBW6l6kWDwGoW3+JE6czZwgjv4O0GYg0L0GC2wdp2iHwheuLHGsAx2P/shp2GABdGxjHXtIwC5yfhFTFCOvHLXxKFomb/4c2BGjgGLKy+MNUyg4Gy6HVzwiUQsh01xgAQ23R/Ths124wAz+6EYuYrCFeLyDxhlhxjRSq1e587tD0WFznqYeHioOyl2vfZpsT7GOr/fttnDPiPeqsANj3GMdWWiCG7/YkZtAiu5/SrxzHYO4EHvIQZawTdP5HpwWkSoe+kNyNrho+EmSfCFRToUFRLEMfyRjBWxQh6NDshknWPhP3NhnaO6DaRmBwkukJ54/rOEK92Q9Zd8ARC+e33p4Zakjc2LDCqj+0Y15zGEA4ajS67ucR0kthRFq4HJe7kGORNzdRtEBZPmTDxxmsMP3+LgG9r4hjVoQvPpmo1IacRruQAweMAbyZAslsATjYAvxMH7swwzIl3n+wANQoH52EWKQ0mw3EmKmAEOjR3948VSBwGzfsA37Nw610AmFB4BmQ3kVwQ+bUQ9LQANVww1kUARS0AAD4AG7kBP6gAsWIim/8AM6sAoHoQ7qoHlCcRNJdGw4NQ9SWByqZAo7ElwiSBeqtDHuUnCz4yNKoGou+DTMEmwSoSKq8ACbcGii8AFtsAxSsGgW8AU5YQ/TgEZ+EgcyIAN0wBT4QAd0UA9M+BM3MQqXpXP+2kJ0wiFMHJiFnCEL8LBU1Nc3yDSGl1MPZhgRO1AE51AN3ucB1LAN58BhilYFOgFBSBcm3HAFNVADUCBQNPSHgYgPg+gTXsIYHnEazkAFAVAABzALzVIc5JItNJSKjhgkhYIt7FAP3DCJ/FMPi8CCpmaJb9INwhcRbZEKOzAHqrYLD7AFY5ULS1AEO4ACUvB7ImGHe9cnv6ACOqADI/AKBFFegLhpqFEP89AO7tAO7aAOYkcS3rB06LgRvKAcIYABG1AAXFCLojEkaEFjIXiMPvEUFbIj8+SMOzMO2bAICUeNtsWQBcFYZlACy3AP7jCObMMNa+ADW7YOxvAqmQj+El4SkUqCUGowBD/wA16gBmhGj4GoD+agA5XgDl7AAnvoinqAgSERE0VSfBpRD0XQAAy1TQfQCsexFMxQC/4gCktQbrAwaxI5FPJjGHvhdfvzDZQTeB5ZMduAj4pYEHyRCbPHPZvwAYVADfHADRYwB3wRJxA4EfewNDSJJPVgDldgDjiJmOLgl7LoDu6gAowAH+tgDjb3ChdgDm+5EVTUMiHBCzzlWW91AFv2HcjQAh+wAahpAYUTlmLpD6PQCa+CkZcIB51glmtpMd9SXgzBSStQBeLADe6wBh5wDdfgD2zwAOpAFO3ylxyCD3k5BDwgUOYQi4DIDSwQmUvhltD+cAHGwJwNcRN3kC1YeBGlsFAUoGifVQZoZhwqhGWo6QEMoBqsCRTdASnW4A4oaFirJzu3GS/rYAghUATRQFnaogoeoBrcIEpt4A/nwAsxEDzzAJIhAZ6wRCY+ww3QyQ2TRY9eoAIy8Atchg/zwAOYsBNMNxLHsAI95VYH8AjfQYOLhpqpaQaeN59AuBnM4Asmo5ZZNQ6dUFj92S3uIAoLEGsxEA8YEkDdsARV8IPRwAUowDbz8AVCkEn/ODIMdFZ9gqHR6YeCcAHDQAc8YD434QUXiBMn4X41KhJFoAGpaQHLZZXeQQ0xIKN2agG7Z6M4ER14IAvkMA9emFXocAr+kTBzQfoN+sAGghMCACBYBOGc/tAIG9AID/gJDZAKcwULMTAHjOKdGbEZXuKpGsKlsEidcTAP4jAClfAzayAD/iUS4bJAOREPB+lWqgke41AEMSqjFhAD7jCeeooRSyELiIN6rJZ6QQov5zALO7UAhRMfS0GO/lANJ1kE1AAO58Bz2YCJR3ETH+gnpOqH9egPvwCm/lAJI9AO3GAOlCkSqOV7wPqU/lAEPdADOPCVmfkbcWinG5AAhaCUweoR1mAK2bIODKZn5wAILJis8YIO0WACqykQtSIKs6cP3FAKMYB23LALK4B2xkiI/lBT4JqhfqgGahAnanAB2ykDRnn+lK+qmQJBKJg3En7ZF+FhDA+wAR6wsx02nQEbEhaCOKU2jZLESKcgm4dKMN7DKLtQBUswV9QgBTRQe+HgtKnwKqK6KuTgKltKsgZBDdTQFtzwC+bwC8ZwtmcLolk7EEl0aT1RK+vpHbq4BACQAAOQBYuwKz/LEUKCK9PAD+tgm4bFSLOFtIe6DYzCF20QA5cgUKXwAJnQDfpgCxaACIkbFzTBbF3bpQ0Rk2NHD5qrKnvhDs4QoewgTvG6twxxE+QwFvXQDYZbtNKABy3IsBXDLPGADyXABeOwmEuwAvMQDYj2AcE4F/dAR4OZJOFqFDQxDYTiK27pZIHkaaqbEdP+gAuQEriGR7iWY7sDsz27gAC0kHai8ACG4A/jsAs0cI7rsLYhYWybW6pDQZGN+CtPsVTJW70EcRORuGL+cIKtx0iAkGfeqyzVoA/OEANLIFC2sAVF0Az+oA5msH1gORdzUgwFtSfLWxSgkBju2yTNewf6GxFu4w0WSbQTpgy9ULsFrCgHRAU00AjC2wge0Aji4A+lEJ8xhRdEEr9GQQ7kMLNOdQ9SN8LDpQ/s4Cr244LfgA6dUAss3MJVQqdSEA3CUA+bGFDoQI7t6xmpiyQbPBTH98U2Ul66WRHH55RGvB/vJAv4sA5Yx8SDGsctDA7dsA7U8AgWoAnnEA2G8AD+/0oNxxADe1DBeUEhH+wfYVxUXdInNMatEoGVzEbG8xkdd+ANSwUO4mCJzBIJi1THfAYLOtgM60ALTbAEtoAO1GAGN/CSV3oX7CAoicwfi2weSZzBY7IU7uC0PuBGr9wQ5GBfa1wQm+EKhsg0hkpz1ZMGElbAJ+gPX6Bu0QB0NPAHzTAPJnK+A5kX8GANlDwjtdwT3qrGTQILndM5HrAChgwR5LCcw8xXt5Qz/clI+UmGghsv+/cNerkHxxANx0ADMVANxgAOOxAD4PDNbzENP4TQHhLOPMEOgmnB2jLL8iEOBFACqHmaHsBr33wTruAqFF1g5OAKMfHJaxlbzvD+AsuAligTSccgDM6gvVBzDpCFwrjrYoiwAZ+QvpqAAKJgDs4gCjtQONRQsxABah+rEetIJg6tEyNdv0fhVRK7FiGNEafRCDlrp+lcvJHMQNFSvQSyMfJQD8jqkQ13ACRQAJOQMuDwCQpQAC1wDItUJWaJlstQBlTwCeBTMd3gD58wCZOQBT7wc7SwvsvgDqnABSUADPxArd/QCgeUr2UiUL9cEGohoXEi2X2xCOvA0B3S1DgBcMyw1G7BF7DABD6ABGygIhL6E4yys/zaQl9pEfanv/QBUtnAKSj8de5gBA2QAgtABaHYDXRd3LBLZDOgABSwAGTAoOjw3OcQ3dL+zSbboAEHsAALsAxOEw7c3d3dja2wQAH5FQLRgA5rsAOP4Azq0AgW8AjgsA6Q5Qw9sAEooBpLQYv4nd+CtgI4YARMA3uMwgZscEANwSifoBqVXRCZkeDK67UTqUtDCBenYQiBowESYAEzYD5xwRdLsKsyugIveRFO4A35m3zZUVPzUNa3OQ9IIAGDwwTAsAwyPuM0vgzHcAxtJQELgATtQOPOEA1AHuTOIAwFsE0S0ArVoGTbsORMvg1X4g//tDkBsAwrUATCsAzVQAM7MDnrEN3gwAYHYAENAI4LwRctMDgUMAMvaxB80QMYIAESgHMN0eIS0NwMGQ99AAItMA/+nr0hoC0SNzFgc9EMCcJQy8UG9vgWSwELCOCe71kC5NwQm+EeJe5v1mENgQBD4FDPyZoN1YADDrACthANztAMpn7qqO4MznAJC4UDwdAMqq7qqH7qx0DoEqAAEpALx1Djy2DqyyDIii0BGuCm0JQNsEBojbANwHDjzA7mb74E5/Dc0j7tzy1QK8BQISBPjrntTiaFEboMgkMBBRAN7iCI+X3uW6ncFCAAbqQQmgYMApACCLLmTfLnIkEOUUcXVHDhPQWnAyDncbFJQvAAO4tlCKAJkY40/kBifW5i8aYdU8KwaPkN1LAMwIAPR7ANztDrs97xy7ANosAGpd7xHe/+DDfOBVzwCRVP8sswDohQbs7wByHwAEsgDMeQCl0pCt9wDLFe6tHQChigHIbgDuLQPxTTxHbQiwUw9Cd4gttQJVRC3Aym7gEADNzQDQGVDddgZ1u/9eNApNu0AK3Q5dN9DuOwDo65DvFgBweQAhigAfTOJPb+ER7tznJhBg3gWdw0ANGg2UKxBQiQAAhQAlfr9wnRHYBU6W62Qf5wBuQwZ7u9vedwDRvfDMvgDJJg+STP8s5QDZtP8qpeJdHA8agu4+DABTF8DNvABR7wCbDgDHtQAnOg8b0+8r/+661w4FEsK1WikfMwCaIgCnsNDieFVZH0De7AC+LdB7FCZLz+RWTFj5bnwAQFQABlgCxl/Q2bDPW8UAAJSQXbvCRz/xH2kfBEUQZ571bqEQCOqoUGCw4MDhFErGMSKT/Z671tsvK+Tg1yMPKf//8A0UzgQIIFDQpcBqwZgTm2eLX6YAbWLWBFSmQ76CxaM2ccnTk79w3cSJIkx4E7Oe4cOnQnUX6DOU4cSZHfznXjNk4nSXHjuoH7Fq7nzHMfz42DOdLlSZvc6vlrBqLVPHz+rF7FmlXrVq5dvX4FG1bsWKzchvDgRlat13vTvOlbG1cuVkMNMFCgsIFCgx7u7s0FvPZePcJPA2O9x27UYcaNHT+GHFkyWHtnZPlDWlLzZs6dPX/+1gxzWcFl0Tw5G31Q9WrWBks7W2Mh1bFSiBpoOmarzwND53gRXPYxWmqC11x63rlZpDiRSpuDC5ctGzeaTJEeFzk9W03OMNHBxYdPHr96/CafR8/YLNr0XMmNuge3feCnXAiEwLChQQFl8/0H9oWZ/wYksEADAfuLHVks8Qef7UCDMEIJTQKHmuBIi2YQYDpqrUMPEToGnUl2WOKYZT7ZwYddqPmkiSKO2eYYDgVyhhrUEBqotOMmXAqlknY0qblvMqNps5SUOyeerBZZ568Dn0xvvbQG1IceUMiBUi193JkEAwIO6OGaLMfEih5H2HGSTDXXZBOwUeBZDJ3nJqT+s86RmrrRNWc88YSaD/9c7ZhoqFmiiEd4iYaLFRrhhZovYkAkmjwRkpQ44Dia084f7/QRSE573JSzk5rMyho34EmzTVXHktJAdthZtSvz3KFVyVgPLMafVG/ltdcn9fHGnkT8WSdTTY+FcKPWjollRkCfbWaZbUSxYI1ccjnmAYlg2QWFJTY0qEZLD1qGOmTrHNLHCMMZEilbtbLHV3m1avU/ffTBxZF5syrsHvPGrIpMctzwJ959D0YYMm9wccWfkDw9N2KSuHFWtWOACYMbaJ8tDRgzLHAmF1jW+KCRZVoR5YFGsjnGIGU9vEZimUE7p6tp7mBHvoRvrfc/Ben+2XnNgK2qZ2gD4SpmGn90Drppp7cy2BFTlM5mZquH3Oaaljtc5hhPNv5zGWkbWWENYY4xRIgleDmmlR2EOKaarSn96ENnjgHKar1Fcmdprrzx5ulYe54PaAaZFvw/fqoSZ445GrEKcSr9kQVWyRPHfF594jWlFlOIrVpviYe8ZtLWuo7FT7BPb6YaH5ZopBljpCjhk0bNWMGQ0i19bdzTqclb9HORWsewrrxhZtfMoSQ8vb9y8Afo5f97ag8LPNjggxWiyTLeM2CdPvxe7/UnCHu8qcdY4e0c0nSugVGi2dUDdaYVC+a45SEG2Mgflg+WuBBwNFIxD6HmJD1B1/r+gDKPsLjiMuLLUvPSQw4sQbA9cCkEA0qwAQ5ugAbuMN6B2FFBC5ZwTa4oRs6IpEBkZcN3BbTR/FRzNzY8ABbHgAUbGpAKXsBiDw0oRTYUQhCNDGd11YAYC0GDjn+BZRrWMOGBJDgZuDhiGsqLYmPg4oENdtADCBBFPS7nH3uQ4w5+y2Ia/eMkXBSDHMVSnxJBM6RvWIiABRyEJ14mw65twxA0kEI1gIGIGFBBGM74xBJ8YCMZ5Ugj0ZqfM9DRjSPJsTM2eddXNucKpanxP1OcDDNAER9PQkYUH+igF4vgjxAaSBYNK2UsIyO9M/AjG+74iSXpZJPdrc4ZqBjEC6H+JShw0KAIojjGMaRQhD0IxAwf+MQ2IEmQSskwWteYByV12Z3ijUUf8JCFwWSJHlBOhh5jHOdaSpHKDv6PlVk6ZzrlORf5dCGF84jjNj3zjTsOc27zW8Y4+mABQ8CCF9SSAi/yZwE2CMOIwNljJJ0BjDmggxsh0SdJ5tHEsFTpTfOcTDkjIzWQBmYdG8BeKhuwh3sYzUDTCAQ80FlSmloFcFYAWuhKIqTg7bSnCtSYNTlyjDCYaHXLqAYsuICCa/FiCxa4oQ89oIkYGSSGQm1G2wKAgQI4g475FB064pIYWNbUMSJ1zDd9Ydax+mMOCeiiByxggcGQyY0zZWs67+H+DUus1R1Vg0k2whEOcNQDHPHAxzf8sR2YiAQf4MCHO8AhJ3AwNmJ0fKhQnRGLWIAtNZ9YgRlK04cVcCGZjVgCDahBjX8GJ6IyPMY3QoACCqDgAP4w10xYOKRMetMfxfhcXtVzlimlJ15lnZ4+xDifeL31ARZAgGrXZAp6iFO4ILWHPaxxCn+4Ax2MXcc6HKSMbODhHJHowjpyoIxOLOIUgKiFE75xhk6c4xR/7a47GgtW5FTDfTKshob+WUBBbaMHOxCFM2zhgyLYzhlcKEEj1CE2R14Vq1mtRg8wEIIQzGCxPUmX8MZxy1aOJV53wOJ11YJWxsSrC52cXtGWZg/+l04GH9UwBBtowcA13YNg1lVxLOtxD3iwAw+YGXE+4tGLXpwCD4voRJPHcQo5beMb0klK1dRxinykoRanUEItOiGdeKzDshESSWYvzBE5sBZQwLjGJxBQ0INuYA43tIW2quG7j/STj8dogABC0I1cqkt0IikaR9fCDiAHecXEnc/mGv00uHRDFGVoRTf8oWjJbE4f/Kgrm6YhPUeXsirr8Af0HCaNbEjDCbWAQy16kQ93nCN4VQNsYK9c2ZGcYx3owMc4ahEJQHSiE6zOxlGSSJNGrplSg7DQn4azgx0YNIcJgIUwbGGGBuyiawURjjCFuoxuzMMdOfmp6FAdGKD+QW/SpQYLiw8DtDPoKnNPmUQBDtCAAxwAcnhtDD5IuSa4gAKK8FbjUxrRAhL4Qxm1UAYWsrEIdIijHi1hbFL4m7fGbgcd8YiHO5SxiFosgsky+etOkYIaP1vzl/JjXTbmQAMzsLYRHtiCQAxRBCnYaFzicvZBLrYMlSdndB8/DFwYRGqEswrS6Ck4CRNXFVscAD8YwDoBbCFjWd7jHsMCeNOdJp85HMACFTCDG7ZRi3yMQ7JJuVpjz+GObUijFtLAQj0igZlsEM/nQTdILPok7qxeYxdFKEIrkmnMR3SNCzFoBDgojJDeAT4jAdVtu2RGvBrHBS7TgIfYH80eqPv+wxcDT9xT8MNBC1Cg9Sh4Z9cph0bRh08fypAHCjBgARK0gB7ozqhORqyMU8BBGQ7ip+UNcgxzhMEc4sZbIQaQiVs4wxAfMITIhPGANQSHd6VTPmskOSRzzAwpJQYMPE4QvdqLRd6AgUsgCpY5uJjgLnhxfQga4A8ex/IvoAic9qM/qxiFUTCFKdA/DTADjMqokui7EZOGIMiGWJCRlruwi4G2GToGIRACZ7iFWZCCDYAFh1gDBoAFNyuI1wo/cDO0IjmWdXuMwHk3AcyK9wMMdmiYFNsZuNCA3ZsrvAiBBeC/cYILb8gVGqQ0uPAFawiCaeiPSYgCNsCHbWhA5RD+CXQwh0FAhUVICDWzPMEbsGVYrT9YATY4Bl4whNLahkECpG24G3CzsBVUjW04oOdYtn06BwYKO7GAizuwhhlEQquwwbkwhbdYnqfogRXAP9fDgB6IPVkqI30JxKChJTdIIasQp43TpXPwE6Q6BlTohEgAho0gPD5qhkGAubuphlSIASnQhGywBRrYgVI4BmEolE84h9ZqhmqSQ9aIhpRwCU38kW9wh847DF84nEnsikGUC2aIp+XBh3AQANrSixAggGoAxCjSh3uwBqZTRl/ZRn8wBSvoRq2AC2FUouQjImaJBE+QkVKMpFhAhYEAhm8whA1ohFsQhkZ4gE9ohRP+iQiN4B1J6cUPyaWZmAmkICw0M8bGkKlv5ApmjItEQJPwmQdqsDq7sIBc2DR5IrJE8EaIvJW9cgJ4gKIUk6wqLIk9I6DRqAZUAIZIqBvA+6WvEYho8IAdiAZbgAUpWIFS6CE2YAAL+TkVLEhyMY7qqKR9AgfxoiIfeyCRrMGnOw9v8AV72MOdKQUzEIXIKalpOEKpvJVi8AYrYIfQmyndasCVI7zS+ERAiAYTgUeO4QY5AIZtYIMSMARngIU/aMVt2MfQihFL+YhoO8oCao6l/IxvQIf+6zTkoT2xxC2qnAx4uMqsPBh9GBp8wMwSehXJVBV7gJUukIWw/Ip1qML+cfi703EGbkCFY8CCfJAbZzsGaZgEQFK8XYiBY2oGYXCRT5C8gWA5XjxMruEpNCtG4xJH0CwLypQMA2TOWzEFBolOMgEaZjgBbwCfsLgHc9GlleMY1AAGOOgEbhiw+YmtOdgAUTjBPVAZWziGT7gfYDBMhIjD4uSaaAAHBOKJFiQJe+A0yACa9cvGSZRIsvimAq3OA0GVBYUSe4AHKyAY8hkLytKlPTsqc+gEQPgvaBHPHlikI4AGWRQGWMgFKfCAVriGn6tP/LQbObG1FQoNVGtILfIHAVHQQDzQsbgHFHLQNrEGUMDKHyWQe/GG9fOH0CMLfsgmORqx4bDAZan+BnPAAm6YPGgRw2WoC0OIlilAATZYBjSkuXUwKmoyShdlDS3tg1IoFuugiXN4ihptDBcjh85svx3lTivZTiIlE4rMUT6dN38ABUtAy7UgD0tSnXFbhlg4BVQwh/PsEBhpBQ9YgwT7BMSbBD8pgmpjGQH6iLlEU4RwBibYtwOABW6go53IhnjQQckgVDu9U+ecpZAEVBGq1QuKFycwBVjFimJZH5igSWeIhCoFVYEAhnHAnU3Alk1ogIKSgykgKI4gjZkM1bBZBvzYi0mgwxCDUwIhh2n4Ux2VVccoo3q71TFxA3A918kQzS5YmlYNC18VHdUMIGcLDm5QgmbrkJD+iQEhiAZYmIUdWIFdEIZWMAMPkEsiEsNqxVJuMAEL0IADEIWfSAkYHBBfMIVwRUI8BYsqEZB1hRLtBFnIQBpfgAd7gFexAIeQQMd9Ggc3rNeg6xpgiAVgqIY0HQ42+IBHoAZbmIMVmINtsIVJiIE1SANgGDCBZFgsdQYf6IE50C+kQIen4FW5iBdJ/FGO/QoiW4yRPRBc8IaU9dqwiBdQGIUAPIxTO4Z10K+IUc0ODbpfAoTTeCFgAIdWACRYWIZUWAEpKAW+FIJZ/Ibmm03XgtulPR10WIaUBIe+KRClQ1sH1Vqv0IdpCK6xJRBfwIXIxFy1+IsUkrrDyIUVQIH+HhAGdECWETtcwIuGmkUF9zkGd+ACC5iFVnCGOfCAR7ihR0CARhCU0ahZsfGT1UXcNEWqb3BKAwEaUODc6JzcrgAW0+zc+TDC5p1esvUHd6XVueCCBqCABSgDVD0WDMVPQVEC86ybjoCFBjADYbgFWOiBEuBLYRCCGBhMgTgGfOWGMy1eQDkGxySQeFm/7QXN592KpyiGXJHTrRgasdUK43FgrKDQBlkLprFTneHMtRiaCebRqwiPuCCHz0G/64VefKk3jQULKrCLA2ADK7MTmI1SyysXLxMFUdiGXfjZTVAw60EEZ+CFOSjadRCGgshfSbjP/gWU0siG8niSy0D+YXElPch4CnGQhFjQ4L/gBlGoBgr2JvOgBlEAh/nzLX/ghVKACyYWi4DhSauIYHurhxH0yrF4CndoBV6I47Dgh3hZB2S647B4imXgg3FgpQUmYaugB4JpY7EQBQH4Eli4w87wQhdlPj6YKy7YASqAhW3YBBfYggSDhUKZhW/Q1+DoCE+QA0hFYg+pBh/h4gIBhYrkUwPOCnegAqzDgBZwhhHminMwgrvQABxgW7L4Bh/wZUd0XLDgB30QhvvTADZ4xLBoBQ7jMEPIYDz2B0rQALzAAFEgZK+0A/wLATsWC/LwhynAvxWgBrLomxawZSaw2ELmCn0oBkd44rBwkFv+uIaFRDNwuIb+5csSsIANQIA/yIVloIISmARYsL7eJc5oIcisAoZHjeFUjhavogldTg9HQC4ilWU2rgcmWABwLoBv0EywqAd3mAEJEGl8wOirqId1WEQKwAAFGMKvELhj2Cr8U4AyEGPK1YdZuI9qPIA+sDeb5gdEEAD8wwABEAUO5oqnKIMCUGoBAIaWJhp/KAKV1mYBoAarHkJBwz8JaAG/gOeuwJKPZdd7wCc6saPi5csVyJ4F+ANeIJESzYUioAF0GCIiatFjeIFHpWiuQSLNeOcL+q2Dq9WO1kxbSGoJcGwJCAEJeGYG1od8o4DHhuwVmOwH9ocyCGnMxgD+JijqrmAgQQPtAliGVuYKBgoA2sILC0CBAmBVk3aHAIjsxw6BAmA/rwgPahAADMDsIKxp6PWHVlCAy37sDRturviLGbhtx6aAAvgE1S5rvwmEYqhab7LQz1DdYi3IB2sAEjgCM3iAPciGXADioN1rGhEXZzmGfJCD5wts1SiNbQ2NAimGADnXjkZE5H5sCmiBMP4KBroLzFbpELBerGAgBQBuzL7szcaKqsiGz3ZwKhjtrYCLVsC615bp+6HurKgKNmjw/1aA6Z6pv9AwA49uYTBpf8ALFS+AbjrNFwft2wJgeFZC6UUPee0OlODfUEWNVmiENVAAMBiGZRCFGOD+glQgU+E0XN8pDUmQBFRO5eAY7M445vYoW6DJbhrsaAai8f/GABYfcH84gBGHbgzYBrBgoAJAc5XWgA+XYH+ABQr/bw/D6KowhLzgc/wT7Vb9izIIc5WWAGeu0f5W8RJP8KtuAf+GbgWghgWOhhBwdJWm6Rsn4b+wBPn7D3tYtnOgGO/+7hK9Bp8sBUlAg0IomYaGkZgljWVw1Pl2cv1cNuQdkHStZ2Xs6HihguN28BBIWUR3cAyAcAX3hwJ3cMnOxqeQagd3AJ5OWUC7P21uVjm/CrgwBEL/7wNohUW3NyYY9Oh2Brx6ikaH8Xhoac1E9v+WbEwnYaAh4MnYp0j+Ll5hyIVUIBEcOgYYIAL5Brcfp5FjiB9RP0xpSTfOQOP08AYlXdeOZqVqkGoHeHQjKHYPtgeg9m8KOACellPORGr/5qp/+4py93WtXgAQYnN/0AAOUmoLWO7V9gepRu7LJnZ3x4qn+O2ZVwAPs3mrCI9vyHnoLgCKb+lAP4CMD4BjcGoShgs3EJAuV4u13qluqGiKHo1S4OFm+GELmAQ0AAbiIGXiJYh8yBixL87S4JQ5ctxuruDfcgW03u9xhT98sAMB0OoA6IEh6yh/YAO7x4sAEG2vrgoq8HsJEACe9mp9AAcvwYsDkG5rj3B9cIaIzY99uwVv90pYcHy8KAD+Dchl7vSHTyiA46YAQZPxkfcHpCZ9AcABVgrQrGAgJgiAFxcAQ69uvxkWzIeMqjhOekfc4KCEGKiCVqiGUgCkXdgGasADcxDVTw2bPfEEVAD4o7xXOimuiqeneOH0kXX4q3AGI6AAEhCFvmF7Mi6CDpuKtWgFDesBWNB9rIgHO2iBECgD7tnDqnCHOUCBL1WsPYQLcAAINiFa2HHn7yDChAr96fN3rczAPvMWUkTY8BgVDDMQ4avo8V6rFgqMAPNo8iTKlCpXsmzp8qXCYrIYwqzpj5+7b9/OXVvW7CfQoEKHEi1q9GizZcecLflQClY0Mx4+OXPms9OiY8uoWUX+SnRZNGfAtHota/Yo2G7jwLFt6/btN3yPVqwwRNNmxRz+7OHt6/cv4JfchvDgFjjhPXzYsN1leQ/hY5cdD05mqS8yvsor8UVO7PJe5HqaVWY+eK9hy9MH66HerA9eMX/1DtOubft2wmLTcJ/E1w1c1bPChxt1lmrDmmOwWtHYEe1YUK3LqkEnHnTQIGfWtx+tdu4tePDneMWggOGAKNrkYkfm7f4978GFbeur16tWTXvzWL+sP8/eaKTVM097LeFTj2gw3bNfgCotyN9LA0LokjSd+FMgfBlqyFtDzASy4ULZaMcdid1dE000y5gRQx/RwDKHB43QU91P0y0CB3X+JXLjSXZklbidM999Ex6RbK0DSwjmCXDJYfT4Yg07IEo5ZUvyGUYfOcxQuSWXXR7kjZateTkmmQnhYsqFIE62TjXLLDPijz++OYcZn4gSwxLALFNKCWbwkiNQbzrDzTFwcOMTd0qZo0Q7KcZpllXObDPOkEUWOY44KxxwQAPXBEaONZaUOaqUVt52jzWJkLoqq3iZ4ktjrcr6HmpaqulPPJQSugwwcD5q3THbbGGBBSXQIAoszqzxgShhIVpjWEkdE0ssvgKJShieWPvrUFZR881aloqLTjaPUDIOYI8VE5uYs7rbl6n02bPbu/Xa64839rR7L794MXPGXlKiU6n+O7w0Mg6N3A4HjDsDlLDBBlsot4MQ3yT8kzOO1ogKHtXEuQw3g/ioMFHZiHtyW99k081EgFmRb78xsxRvbfaw86HMOY8JyjQY6vyzSfBoydeG9VS6Ux8CbEoysOcQ60EDa+zxgSEFB/Wms0FVhQoq0cQZzSCxeHIo00BFA06lKJ+s0zp98cWOqrECPTfNtOlDzyjwzL23hpawQzTfgSNEzij07IubPuukvY0zBYSAAQZbbFP2WT7BQoMHSxRRhDPULBVoVV0JJRYgesrJlRyxvKlwpNyEqzbs6Byukj4NgWIJPXILLnPdtN1Dzu7B1/b37ML3W7sp3mTY0DyUusX+uOOQU/EN5ZDyYoszRcSQyupCRWsUN5FoHKczqKj++aNbgQs7++Bs0/JnDAVRjPLFG/9u74G9dges9/sPEz268Lf/6Uwf7FCehr4TnnWIogEo0MA9LlY9ojiDF7CARQPMML6gUONZRdmKEgAVJ26EYSzbAtJv2te+bbTtJfSYhhsYYj8Cyip/h2FHlGioQ5TgcIcxu4xMMjSPtIHnG+twxzXU0asJomUZsGBDCT5hsaFkzStvIsUJt3OMalDjCMAAhte2I6hzEFGFaouLZfR2hmngwmc+dJcNA6ObN9JRId6QRe3q+C6+3CFgt2lIPdaRwiJ9oxvb6CATi+IMYRz+4xE7oMIWEwaWqngQLc7AQz4kmCiQDUISqOhgJZESqWuQ0Ywq7EY8VpI7dlgBF7jQnR5ZFUfA4MISeYwlQiQ0w5/hYia4lFVD/MabjrjDeSgbUiKLwottSEUUXHkW1qyzDFRggRsKm44ngJEd0XnFGceghinDyRZYJsQefHGDFei1y192aZZ/sUfu2HkThjQocOQAnjxX9ZgPAc42A1Nhm5IpFFg8QArnkGDGuDMoTf5IK3IABiqyOJRl6EScpnxfSuhxAnrEM5+zcqdf4HEHdrjxjcugQgNC8AjD1DNnDXGFrTw6Kkfco5+Hqc+kzEi2CbpJKdQQhhlQUIpsCOP+alXZoHB4lYZYhJFbPqGGJyWxK6NsxaIWbaFHppGIPtLDpjIlFUj94gp4lJSG+phHHzgFsQOEgBr+aOkP6YGLdX41Q+wwBTzoypKO6AMdaglnUykHDnRswx2GoIEZttK9pHQulMMRSyRG5lSuDMITkjCHN4UCFu9Y1aL7IloxzsCu3tSVS2HtSzEuE8t6uIMAG6AABSyAAQqs4K2Buwc80FTaMa3Hq31pyDqMacpzINWpvFjCDrawhR2oohrcTIpzHfvYsQSWadSAaBiOQTafTAccr+usKdcxoIPoyx/WuMMofGsRBM1mt1Q6LV58gaay+m82c2gABogFWwqggBf+gtMHOejl3i3d40n+BC9wKMcUC2zAAlt4TreKyx1upGERbmKiOTqJCmA0wxnrQ3A4v4EO0wSsC6aIjUf4IZuOcEMP+NDrgP8CX5vQY7R0nM0MLLBfBmMgBOnhW0OmMYoYU+luskBgYOKxDQSPQ6JyKgKDHzAHhEbqVyD7pHStvEVnVBYVyjDiWsoI4pN14xpFCMABeMEPJbCSxAuZxzqgkQxGXIEFF6CDbIicoRnDpCH8rONs2IDf2OqYv7AI3DnTpOcN2eMecfNLRwI5SPBas2zRYAMCGoCAR8BJUEm5ZjUMxdBrgqwX2cBDLToBjmzEQ2ViHjNcVpYKAXjgBQX+0MIpomS4iqzCCzIYAQt0UAMvyEbFi3YPn/vjj2nsBsaBqwc1BBCCQlsgBA3I894uI+Bjw+cxuAvMOtA2ZnAtlltWKcUaRNFhxlKjetNMQ0CrZ5Vq7IRS2cgGFqRxCvFSqqKwZotOsjEOdAhyCrFNgQPwQ86DVGMddKiBsH8ADW7DJ9ku6ZArFu4/feBjDgcgNAYaEA1nu8saMaQvxQHTEFls2yb6+C6s4102D6KIicFJ5KtVVgtAAKIWMP/3OO5dCyx8IxIrIIEDVKFx2+pA2E2vRMrfY3GX8EVVJBfcHHqAgh60oBso51dDHOGPjkb9j/rI+NdPclZu/Nst49j+xjeqa2XGVpFy2lXCEpn2Jmr83LsmI3g+AHEKwUtDGfceRzwUp7h+62RIFTUZuMZxjnUQfB3SyMZ9eqEEcACiI/yQBS5SWVbUhCLYNRCEDogNv7LXZuqp8Ycj8KnHyUTjHJS5rT9ElXbW2+SOS/cIIP3a9rZ049JsUHeWSXTU5Dv1GOIjmTejMalXp0xl9SB4LU7RiV7g4RuLOAU6OrGObPjDHfiIBz4Q749t+GMd+bh8LeKf6kj0AhDKUMYQDzLSSBykeBMZhhqwgAp4QTIMwxD4wzwYG+/Rhuulhjc8mh61xtW5iy+oyu4t4OvFkHqhBHCJ2/CBAzfEg7U1AAX+8ALzbcczCVQzAEMsyFz6XIN3wY7jrUO4fYPh9cIi4AMWKMMpYMEppMEp4IE0RAIWzEMFpFoaKAP99ULhSYORkJE/FIMl6FZZHYg/CMIP1IAKhIJBqMHEYaBtNGBLABjZgeGo5JUZ2gY5TOBbLdkHtsU14ANbhRwlPFeJgIWEudsxLJWTEYekgFg2RN44zAM6xAM4mJoymFo9TF5w9RtctI0pzMQu6YM5DEEN1MAPcIM+GBsbpqFHiOFK3MPNlKEneskdkMMGluLrWYEftURO9N2/cUM9NAAtHkArWFljqaBQjAW3RMM/IRi4BKKrCSPaCFwg3pu/pcw5GISqeIP+/XTEPLCCCtQAD+iBbDQEP7SXKsoYYVzJe0xD/2xjl/gCioljX1jCGu4VAq4D272hW+hEKzBBEfQBIp1OH06QM3hCRJVIpKgF9bljkWRD28iCLNhYRcxGMqiBCrCAGvwCApojA3ZjhoBKJ0JkX8ADklkkTPSQKyYjQLaF4nCD3ElT6JygvKHCInxaosAdLH5keKjMQVhBMcheRZzVFTbdFvafRgYGKLbEGaDiTmrI73RBRgYlS7xMKi7EP7rkOHjMHdacLn6Q6YhRNCylSy4Q7AFMUq4YD+hAV5aGUQJGT65EQ7xSRYalSpCD3qClZZDUSrRaS14lOJjkUbQbXTL+ETXggWSZxZtUQ1zKpTLagzc4QmyQYkIAEiOogLAxAq6wJTfOR4ZYw0xcoGOO4bINWWWqBCiQFUrMwzlMGmC+Y5OJUcbcZSJFw4aZZlJUpXCFZniwzG50AXmZxP9dgQwMYDIUW2bixVg6SO6Z5W4GBl+w4lZmZjEEQnmZRA26ZpFsg2p2WN1FZVFUAyCoTlK1I3MSicpMhCNYQ/0AX0fEwRCwAAuwgjrYVnDaRG/Sjj+ESXoCxhqeZXDaQ3Zaik6o5s1Jpyh9kXA4Q30SkjsA2B0U5SdCwSVCgTe+p3pKZIacU3H6UO3I54Y0RBfow4NW5iiAAvDlxH9ayk51U7v+6WdZoCYe1CNVOYNfWiVgGlE9PKCGqkZN+oM4vEIH1MAQ4Nk8wJWCpsR6qkTV/R4NaePt3YuqXGhlemdFeKaK1ufkIIVPoMhzquAymEM1jdpqgsuSuqRO4IM3uELcpOJjJEOdyYAXGMbq7ShM9GhKWKgrtJweTcQnUMESbMGIUSaXwMauoelCMIObtp9HdiiRjCToRKeIitIx5GFSwCCgvqPtBQI96Fbx1Ic/0AFOvsJsSKiCqqlK+EJMxVJHUEGhhcACNAKQeokvYKaeLkQxdOpbhUOW/uc4hGhRfE+h8qU5nACETdTZLOo7uoM3eIMpdBVpcYNX1gAU7IcCpmr+TWiqSiSCsOISIrgWbFWbBOzCu9TUKymrqgoYPrjDX2nnn4pL4w0f9VAQrdYqX7pgjaBoa3boTuADPMiXosVoPSRm02HCQ2orbzIoiHjDi+pRIK1AfhUaBWgAF7yLPkyDLBgmms7GKTAGAnogkXQDPuzHX6bMRCjOGV0DN2CnfZ6DVfjI8jURul4NN8DBc22FWrjhomZDR9yBkC2cFdJCnTHkM2Cbvi4oZG6It40dwJ4DAczWflFAAxgBptoGXzjC0W7jRBgBCZDAMWispXRDPZRBEUyBX66NYfnALnjryUhexeLDh1nKNpRSV3hNlilFitzlMZhQ5VipZlUDHsT+gtZcw8XKpfP4gylYQv9U4UHEAQ9oIS1MhI7mLI/yK8/agxPMqw/ZwzocwGu9Vmw1ABXMStg5Y842hCE4wAukwAHwxLgWET6wgQRIwAGwQbuCBzpMAgFIAAVQgjuIazd8wsfNwDqwrHa6Qx/0mBSdRR+0gh1+EDWIJF0KimnqCaI4w92uqEGcgTcwbEJ0xDMImwxcgUEY7mMmqIY0BKjo0T3EQw+QIAU0GNGygbuwwzQQqJ42xCQsgI4VAAJG6Dy4A/3Wr0FEwQKUbg+w5Dj0r//6L/XMVulSwT38r+SdAwIjsKcEAApggAJ8gtQSyTp8QkphgAbkgnT0lAa7iTP+tILpFkAZyOoHLUMrFAABCIAIHQUvGAEGTIJTilI0KAEZhAUpvepHipg9BBE90BdwYYIKyMAQMKaQYq/Oaq9QToOoLO29AEMByFaPOdA3AJM/+AKsKHEpDggOcIr5DjFF/IEAOIAAlEFKzAMTfJwC9MFCvFiE6oNBBMDjoAeuzIMczzEd+wMVTFsIFMBSUAMf8zGK/HE0cMMkFAAFSAAOCENYhI4iU1I37BcGtAA6hNIxTPIkc0MIKAAFCIAojMUGb3Az8EIIOIAChIB32LA7Dknb4MJMalxD/AIUTKMamCkRZy+XZKgeqdgshEAAEMAAMEE1lOqUuIIlwGjm+sP+OITBIFxIslIEP+DDJRQBG3BxRVxDD0hAGdTDMi/EY5RBAAgABkyIR8QDWxXA/oJDAiPwWoSDOofDOkyCNztAD3TDN2wDPdezPVfDPBBAkqBACPgDN3QDQAf0vd0bN7hDklDAAdhBx1YDQze0Q2+DO7+AA0hAK4QboPbbQSxuDlUEP9zDbMQBxKnAK/RfNs+yYCCulOiDNxDzG53VOvCCHL8LPOSpSRuIO0hzTSJIKq1ENLTCmX4EPkDzNajoOFyDERSAA3yCAnkoNwgABQQAEokLxa6AkgCDyVgKA2EybFX0RX9D8y4sSjxGNbDAD1Rvvta0XzCrT8IMwBIIgcz+is3EEFpPYWrAGILolUdLqkq0TJZ+A1+jzDh0gzsggj9Qw1IXSTdkQw/MgBStTT0YAgkQhD+YctsZET2c12wC39+a3kj/NFovK0qDCF/8WSxZcZP4Qx/ZaXoiKak422xEsLhsA8f29TWsg92e0UHAdpFcQz3gAjy4g8e65pauKmaO3mysQp2pgB5MHE5/9knv7JZMAygkp7KuHHDW9DRYA9/Yw/KakikXUl+LwyJ8WX0G9jnkTiKwwwxBI0jLgA6wwpA6d1qHNog8Rsbl7GNo4Ge7UuB0N68CnDgw4X8KNj2wg1yrnT9M7yVeQXPLN2hDN5XU1IDqKz3cQU05tzX+9GnOWPR/n1E+pEHQZec6qNjLtKJHrIMgKKYOhMJZOzgtkwko7PD60kObQq/hdil16ww+8ANodjiARoLEXiVMkkMkWIiJK8SL+YMxDIEMyIAanGcCujhP0veUOIk1sHR62gNsbPRnY6Tg6LaPEwk6mBpgvl3bEAI8vFJZZeNBqIGw1cAv8JWUH4Zav8RjEOeO5s7iSvlPGums+EaYi4vL5gA+XLWW1oM1wIPunQRCujeZvlVJz/m+QjiX5A7AKGhDaKWUDxCQ+feiBl24fuBORGEQ2U9D3INCNp1DYrOkRySlc4mWy4J2pyc7uEIxYPlnJwI8+Lms8MM89Higt8X+OSjDIriDoYs6+fGDK0w34yoEx/nDKjC5cpsDzrb6lL/6lnTIwqr27oCllNRUFc/5KKDd3mRjsBeJO4w3ZatQ0NneFFZx8cyGOahBDbDAEIw0LJkDJiS5tT+3EY+JG6DhatnDXYMIPcCDbLb6we8OTwB7oA97IJ7yRASBP3A5M3fEK1CvGjR4gusAgvS7v6/KaAOPab/LNVwQNcg5rTSEfs/5Y1C8jfeLO0QDNfziuYODOwjhup8ROLQNKHiDdn+dOaS4DvwAi3t2QjxDDXx8RRSupNc5XpiTNYSjD82DIQzApgwAG/xyhjADOQJzMfvCWu7NOpiBADRALnDouQf+3SmEemcNSTzwg3zleBqr2C/IwCWqwWpEOkIoPdO/QjI8wyscyGy8gkOCvEJAvcvhyyhc+Q51RFpBjnkcABPAhz5IJnu0ekMMWczfiyoEbQPEwG2vvTT0ws6Ly9tFsT84gcBzdHt5AfV+oUr4vWjEAQuYgziwQBwcxCrIwOEjPkIoPmoZJAHZQgMwGLHo2AGUgnusnC/1e+7oBa+zyiUQQGzNwDEcdqDXQi94OmBzQ0e8jMVTxGyEAk4yAtJ7hN+vg5vbFi2wwEgPgTWW/HsKf19Mg2xOv8yIgvWPb6EdAEBs8jeQYEGDBxEivGcvka+EDyFGlDiRYkWLFzFmpKj+zx87expBhpTobIYFDGzmgVO5kmVLly9hxpTpclytXuNm5mz57Zs7dt66+NP38SE+f+vUyKjx45e/evwsPpNh7soQf/Oc+otzBcqPqyLBhhU7luxYbkN4cCu79t7AQAM5rpUr8hOBDRTwUthwYNLcgm4GEvU7mHBhwh/v+Gtr2PC1Rp/WfdM5mXJllTwjScNpOea3c+vkLSKnGKJRf6t+qKhBJ17Wi8l0XKlxRV+9gVh5qPDnjnFv379Fnk0LHGNbZqCYESc+ywIFC3f1Fvg0mFwiWfoWK9e+3bc9b4C5j43rj9tmzufRg/smrVa29C67ravHzpQ3feMR2uaWVMb+EFpwM3pGB0G4Wc0pfuKB5oca4nAtvAchlEs4tSKUCBR26KnQLyaaa24DC4owbS177LEGHg1RTBGjoaxRUSR3JHtPxsmy6QWPlGZUb557mHkrIn5se6UGHVigYyARMXqmBqwqkaGp1lgQ5JcamkLSxSuxJA8tCrMcyBFyWuwypLaKCKGBBijYYR25OCLHm0SEElNOFPWB545p5pyIn3lizNFPl75pp5N8+kRPMndOPGGg7BCCyh0vWNCBKQc1kmoerLoaqKqBvNABqzxBDW9COdv6DsNQLcLqky/K6MMpK8XyxhGHBEPV1t/08YaZWm8lSB90/gyWpW/iWSQb887+y+Ycf0yRBRR/7GHUoLhoqWHIBg8UScF66rn0Bz1e+eEZf1obQg1/oOpV3cFGJXUgUzzidd2CbCOoXrIWc6Qtaeftt6xpmOFX3ciEFfabXiKBEb1xtsGHHFlkOVHggfb0px0vZJDhB2j8wQfWjOrhGB+OqjGHm3FNMweaT/1tGax25+Soi9HkdXmuttgJCj+beRbpDm9qthXIgoP9Jp9awinUsm/qKWYaWUiDiEmNR2CEZeDS7VlrimCe8yNvzoh667I4ksUVaMdOGyNmvLH5HKL/zAaLfNxb+ps1TWHGoYnUkW2pajrOWu3BRd0SVaIcWZTwMTlyJMMMF49cIX/+goK8X4XhlrGeTrKpu7JuxvHHF2kSaWvngkwLhQcWZBAEq48lj72wrvPUhx523DjRctklgjyQYuiZmHfCyUns9Fv5UTpzzrI5RRnOtsEqEeSEOn4g26CJQwUWvPjP4+HBn93wXtnBJWzhw//oDEuCDp9wdtiJ0991lk/vnFqMVX6mjsLePSHbQiEDHcjASB1z3wHnQrtQfcQegZiG9cLHjjMwEIGx+0ggoOYvo1yjfudZzzmQJZNvjCN0d2DHaCB4vXkMQWM1UMu9KhjDsCgwVAvxhyO8MZoDtokdcKJH+2SotY/gQof9uoc77hHCDopwHZ1QhhJfwhN/0EM0wXv+CD/isopIGegeTwniF0NCQ1u1rX9AVJs9OOIGb+AJjJGz3d5axos5OIMbS8yJZGrRiXroryXZWJMjcBEmqfmjGrJRwRU4lsI2LvIhYrxVdaCGRtl9pBh3IIf/GKk2WbiBHooUkz7wYYsDhIAC4aijHTuDjlqMcCZSZIcTrBG/FNqGET/QgQow8bpM7pJr4/PXR6zRBXhgUm33wN2z0MfLnsVvXVihAClDEAJ/dAOVUURHLwDBp86AYx7kKAZg7gMRqJgDCtYSV+CUmc5G+vKXbnFFcsTWq+zAUChtKQYzwENMdfYMFIkzY5dsgwILmIkL9aBmNV0yD0DQrTPryIb+P4IwRX0qDh9alAEP9HCkfW7UII5UFzCnYcIpqgsr3JgEMNBlFNsNpAsAg5YnObqutsjCFPKz1X2EsQIAMIEnCHVJNiJRC/XAhFjz8EYGxWmbYaiBBSrwwjBeFVOperRfzLCGEwJjK970AAMb2MAMcjFSylkDnlJ9n6765VBwQLGa4ThaNvSXNIe5AqmDZMSQWIAJjZo1plSd12Ks4I1ioK12/hgoBiiAAcU2YxrewCph+Zo27EDMiPXQBx/t+I1s4OEUwALUPOQBFABBpB7uYKEtXxjZqbJTayv1hxUApsN/RsgMztELXg5QCCwMpJOqXZws2Ngvn+6kF8pQnh/+/UHTmkqyUUapRyhUoAMdZNSygvNtOv3qLxsWgxy5q6liwqkiqFABTR7aAAYa4JRkXrdltgsEOdYrpz0OFxzZcEcvakE/ljy0GG/K6kNaU0gZHBJl7O0rayU7EPj54gxFnC1xuliEBliAwnjBQAHOQU8Dj80h8f3kQRHKNDxEQpuXOQc+2OELZkbENnEYQg1GQIs1wW7DmcwuzxbjnS5YwxcT5Q475GEENOXFOSGQT43P6I8ciHVdmKtmPCJxrGG1ZhTTKGJEqlFOGVzBHDZFsjpv3DPsDIQZ5DiDPkxhDcuZrjAc+YibvYELenQBG2BoACnvgoEFGAKmX17XR+r+2qs9YTZz0ujEKlUSH2bRAzyk9Yc5VrE9KGQ0vH4GM4IlN+YpwsMVpXMCPcp6n2h5WCL3WKlg8CRMUOCibQPpwwDOiwECUOFqlu7ZTGXRanXh4xyELth986uebOCDH4EYBc2uqNQrqEAGauBYrW3NyzAvLn7T6G8Q4GGJYfrqHqb+iKkr7SuhMBA7zIVWA/0BgTi3aMW3cQYTYlCEWUA72jbjyDRONC93VDMbtcBCPNTzDX+Aoj4TwYogBKiCSuy13tjFdPjcTBpQr/oOpnAFPKZBj9tNMdwGsUfwMESPWMqCGUFgxx2KITG0ne5elm242pwAtGaichzZUAY+3LP+ptxBtijuEKAOrOLyl196OGDkCCaZUYxE4IIZVmDIsR1hjWL4ohj9TQQ9QBEIegThaYBsrEEyNMt51IPGQ+/XR57lZVSxVVjjkMYpOrFWf8BjFMNsHz+cy4jo6oARVym72b847eHdR9Meh0dyTEGOaVC9sVDLeL49Dl7AI5AjrrDGd5HHJ1/L6Bv4OMU6xmEbN7BjsBFpzS+u0FRnG3DyDi9662FfQY5YA099VtEGv7GNzH0DDp3gzTQSYQ02JwQfLZYuC2iBFdvH3n2CZ/7zt2YJRywfRXiPRis278F19IKb/DDFW/6Jj2csqAZQ4M3foV9B56ef/f06ek197CL+jrAhAAQIQTWyX5madKIY8rACbyGiLcQBE1hnCPpO6NpvkdYvARnwpjopbFAFHe4sBAhAGDgobvwBMHBBzrrN0Vhh2YpkXOitAWNoAUnwBOXk3r4OVLZhoCgQGC5wRsbhHNABD/zhDOAB8hKiNvyBDoZEBl6B4VAwiExwCI3wSnikGKgvPDgCEUiJC7oh/3Kic1oKTv6pHsQhUnSAB5xiCY+QcIrwC8VQQ9wg6dTuSkTkHqSwMxpmGkwhEgbLxzhiHvRANXQgFL5iDInw4fSwQvTBHEKBN/qQIIgiMcwtS/DB1PaN80IHFHwhMXjuIIziFcppBOhgXEhtEMGQDzX+MTzqYUq4RBOHAnc4IhMh5G0WJhvQgfRG4YcUySiqwVqcRPk6sQQ5sRa14xNdiGJqkSO4Lv5SxLM8qB7ogRy0riJswwvMDxf38PWYEUJ0kULq4RXmgRZCERqSgfVO8HHAT06MgpUogyfWhBlGwRAtwjTI7hnV7xbV0Tei0TaG4AfqQQfOZSDc4Q7PkAHRaBos4b+6hO2syR34gab8ERlNsR3HJgwRUix0cVx4AAoGIhlUIBv9gRZUYOy+8OjOoG16K0vuAcRaaR3u4R3obiEjSyFNUiQ+UQa44Qeu4FXcgQWCEB/0QA0Q8AjDKaIejDv0gTLqxRIGywtTch2dcSj+f6MehkELzyUuMOEKSqsG/qMPOwkemqXdXIRgOmNZvOkOvs0oD6wovZIxkLJqhmEEWCFOkmEEuAE21qQWi8HyTmQngaMedC+KHuoG2aEf8zEsdwkl+dIikJIl/UEQagBwOOUVvABbahEe9MES2KFFOjAYlYZh8GYUSu8g/xKB/DIzJyIa8aEdCMjlBCE2xkUdfQH4mExDnEwlxoE3cuAegJEzFZAdZTMskPIHKAQaOgAaRsYfoMAqMJMB84UeEuGSJO9BOKI2HGod5gEbRqEV46k2XS8UpZNN3CEZvGge1pJc/GEIglAoGXAozi0Q8jKrwDMsjMIW2oANYMEfesH+EnJttKqT6KhzPntjFTogD9sxLjIEFPwTbQ7xN5wBBQ7AAVoAC9bIPlcLLBXUL+qBG2QA+fZSHaNFyfzhbKLTMDjiFvCCBBxAFBp0QeszROUCH9xBD37he7yy3PwhzhKhJFcsOcVi+AbCGqRODhSgAR7gAVCKRDdqM32UIorvPI+QKEYjEJgOMEovTroN3PaS8MQzQ1DNGyzOFKbOH4ihCKjgGCY0SMFoVDwmTMV0TMm0TM30TNE0TdV0Tdm0Td30TeE0TuV0TsWUlmwSXW4yJWU0flLOFQLhOyKRt2xnIUikZuInCO7BDarOGorIKNxBl7zU4XCzY+i0Ui31UjH+NVM1dVM5FSuSYlI0LDMpCRcCwRQSwRWKQRbsARfkcyB0xRo2SR9OQBa0LVAj1awg9AfoQA94tVd99VeBNViFdViJtViN9ViRNVmVdVmZtVmd9VmBlQ4YYQuZTRCqQS3Qrx0XYmfgZxTYARTcgBycwBccoVyB0hLo4WwsR0o77lY5ih/MQRNGQAVGoF7t9V7xNV/1dV/5tV/99V8BNmAFdmAJtmAN9mARVl8vYEh+gAc6oGq0kTPvw9RMsS3QKDjddZE4ohAqoWM99mNBNmRFdmRJtmRN9mRRNmVVdmVZtmVd9mVhVmQZYRUkRQV+ABO4QR2syz6TU0ahNE6INGP+d4lTibZojfZokTZpyxQrrmDLeDNUhTZqow1KqbZqrfZqsTZrtXZrubZrvfZrwTZsxXZsyXZr24IRMqpj8lRq2bZtxTAuuMVt5XZuxbA36fZu8TZv9XZv+bZv/fZvATdwBXdwCbdwDfdwETdxFXdxGbdxHfdxITdyJXdyKbdyLTf9wiloxW07qE9z/VCRPDcjQrdLmTAsdqZdTbciRldPIWR1weJ4XBfCFiPsRGI8YrcgMPYgaNQvbOgwcJd0gXciSCQi4uLo+MV2H8KKNhckbjdOOlIjIGddE0Kfhjd5g7dVKwQ258J2iDRoPHf55JJ5K6J3N8IimvchPi4jqjcDPAICACH5BAEKAP8ALAAAAAAgAwkBAAj+AP0JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHLnxnj549+DRY7eSnT5v9ODB00fv3j2SOHPq3Mmzp8+fQIMKHUq0qNGjD/HpK6hP302BK13ZA2VtmqNpiVwFKmbpDj0rxWQF8uYo7DRf054KdLoUqdu3cOPKnUu3rt27eIXyqyewXlN7aotNc2IvEC57pthZY2cPXkLG5KpWteTtTjFcxQjay8u5s+fPoEOLHk0aKT5/3EQVBFWsS2Rr/hxfBMyOnT8n8KxYc2yzbenfwIMLH068uPGQhg40CBGLWSDKmwVuVltxqcnNSxPdPknvuPfv4MP+ix9P3ufSdT4oYAAhyZRmf747bu4uUJasRPR8rS3Pv7///wAGGJpT/pCTDQkUhECAavY0pdNNbTEDjymJTCMQdQJmqOGGHHbo4UNL0VPMKKaU0oAAS7gj1FJLWZhDd9h9KOOMNNZoo3D0YAaKP9tkc5qDRd2zGSiWWBjfjUgmqeSSTOJkoSPWZDNPNt98Uw0147hF3xn2ONLkl2CGKeaY8MU2DSjwYIPPOd+A4+abfCGlz2bs4BKIY/QcSeaefPbpp3E3yUJPIP7Qo06bb775zTxzkcOMGxf+KemklFZqFzv33OGYO4gm6qmeR0XnhisYWmrqqaimyhGBZ1riTz3+4HTqqaKnyTWnP5Yw416Zqvbq66/A7uePG9Nkts44ss7q5jfr1BVdhZkFK+201PbpCzOy+INPrMp2+81dS1VFToPVlmvuuR8u5Q0z3vjDabfwLpqXNYmQi+69+OYL3k32yGKKhVXCK/C34Ap0hjXt6qvwwgx75mAxzCzibrICzzpOnHdtJosvjIHa8Mcgh9xTW5Thsm3FKDPrGTPa+VOqyDDHLPNGvsBzRyL4UIzyrCrzoy1e3eWQ8MxEF200Q21d24U/8WSzM8rnZDPJJ8K4DLQ/suBi9dFcdz3zZvDAoRWbOj+daJVFCKCcLZxtlqs/9tTq9dx049vWHdb4gkf+wGZXzA01DWBAgQRseNbuGa8CVvfijEsLDzuOeOPOOMqg0zfK3URjAQUWWNCHZ5uNYs8tzuDjc+Oop26pKb6Q800nkbx7ecXrHDODD3a86lk97giAwABc8Kq6cU2xBViD9mzWIJDDNy9Rd/pc1S4g2cRT9uxnu7NONf4w6tk83SCwQgkTcO98aX/Nae9D17F1/vtMbebNGfDM8w0enSCL/c5tjoOOZ3vpHgFEEAQSUAN+o0lfTPwhmGI4wheJwMUZWOaVM3ijGMVQiT1qEh0Ewm8zORAIOsbRi8ntb3ag2YMHpLCBEpSBHB4cilIGAioMsYMc0/AGLh5Flju5gR3+09hNTQbimBySBSu4SEQxQCGLOsFjaMKKYdeWQg5c7Khp6FAGIJRxwtmpCC83McYSdkAQb0RCNlLsSZwmoYlPCEt5hfKHK9ixFV/IAmK2wQg97FGzskzDCv5wRPLW8rI0hmwpGMwMOr6RDX/AIR/j6GLfVGaXOK2hBLPo3j3qwRfMGJInp7HFCkKwgRCsABiFWoptnECPCSpmkAZhkUNkaZDuFCM/d2CHG9C4vk9+zB7sgAfiRtimbKRBGk6T5CQxJhe+OOMBe2iWnu5gCub5UiTCICUFOCc4Z9wkEP4qBhw95pGbPIUZDoxcnsh5TXSxwxSj8Mc6urEscFBJmZf++0Y86MIPfBhiA9zgRkI2A8N2hkQf9WjDAbbJUAuYgRDv3E8HebI8gUgogjlsCzsN2qtwrSMIAklmrKQBB2VEEp99O0dcarWMJTRhHdI8yFJGAQr6cLQj9UAHBjCwOc5RQAMxaId0rAmUWwnEF97IlSuGetNgEcgXrsgM3+zpjzTg46QoNRs3ChkUfjxlDjHYhD/+R04WxXOjTYXIPNYRgm1ugHNvRYEzbAWVYLphV0RNq6UclAh2yOOqnfpGPfBwz6xOch2nKwo/GLUOAsyBG+uYR2ITshRQLFWvGaHHOlqwubduswFF8F5dmgIPN/iCHjbFrKlkYY+lsslT3zj+Ry1EatinIQspN9nCA8KBrIky5HFcVa1CVDksf4ThAQzdAAYaIFa8kMsV1nDESuCDVuEqaTrFCAQ7cpasb+SDsLSt7dPcoQ+5AYUvvBDCDpbwgDX0siEWrK51t8Y6X0TrDwd4QAOUgwjd5SU69vWFfuA2XzHRxB/wdI87roHVN53jFKc4h3gvd9ut+SROX9gBL3ZggRIgYBcmechm7qC4AifkJsWwBiiAWaZ5UGMOTOjDXM2bl6U4xg36iKfwTJykp5yhGO2aaqLGQWSTTths46jGNmjQg3kwMyeL9YcwSrAH7sXAAxtgQCN+Nkt/MAOG8sVsfproW/jYZIakaYz+LECBKR4vyR7eWBo/iAyvbGQjCLA68tOugY8DhCAEB+ieTxBhgWpwYx5r2IAFNtCAdTyZIZv5oZsLwo6kumTHA8GHX37zFFxENMyT7g9fvVyP68XKHafwR3j17K1ziCJwIWiAoHHC0g2YoR73SIUUluCPPUhBpZN1iMZCzVdvgHk885kGM5hB4FB3qDvkkMU08OGOVXuqkXCwHqv5F43AUUDWog1JAP2xBCmUgkd9KMG5MQZqGsJjFNYoM2bn9DjE0XI8bbGHJbJVYmcH6B7doRA/4sEtgfnoBPmw9rZ5do5WFKEIqGz3RPaZCwsYohv1UMcH1kBW6l6kWDwGoW3+JE6czZwgjv4O0GYg0L0GC2wdp2iHwheuLHGsAx2P/shp2GABdGxjHXtIwC5yfhFTFCOvHLXxKFomb/4c2BGjgGLKy+MNUyg4Gy6HVzwiUQsh01xgAQ23R/Ths124wAz+6EYuYrCFeLyDxhlhxjRSq1e587tD0WFznqYeHioOyl2vfZpsT7GOr/fttnDPiPeqsANj3GMdWWiCG7/YkZtAiu5/SrxzHYO4EHvIQZawTdP5HpwWkSoe+kNyNrho+EmSfCFRToUFRLEMfyRjBWxQh6NDshknWPhP3NhnaO6DaRmBwkukJ54/rOEK92Q9Zd8ARC+e33p4Zakjc2LDCqj+0Y15zGEA4ajS67ucR0kthRFq4HJe7kGORNzdRtEBZPmTDxxmsMP3+LgG9r4hjVoQvPpmo1IacRruQAweMAbyZAslsATjYAvxMH7swwzIl3n+wANQoH52EWKQ0mw3EmKmAEOjR3948VSBwGzfsA37Nw610AmFB4BmQ3kVwQ+bUQ9LQANVww1kUARS0AAD4AG7kBP6gAsWIim/8AM6sAoHoQ7qoHlCcRNJdGw4NQ9SWByqZAo7ElwiSBeqtDHuUnCz4yNKoGou+DTMEmwSoSKq8ACbcGii8AFtsAxSsGgW8AU5YQ/TgEZ+EgcyIAN0wBT4QAd0UA9M+BM3MQqXpXP+2kJ0wiFMHJiFnCEL8LBU1Nc3yDSGl1MPZhgRO1AE51AN3ucB1LAN58BhilYFOgFBSBcm3HAFNVADUCBQNPSHgYgPg+gTXsIYHnEazkAFAVAABzALzVIc5JItNJSKjhgkhYIt7FAP3DCJ/FMPi8CCpmaJb9INwhcRbZEKOzAHqrYLD7AFY5ULS1AEO4ACUvB7ImGHe9cnv6ACOqADI/AKBFFegLhpqFEP89AO7tAO7aAOYkcS3rB06LgRvKAcIYABG1AAXFCLojEkaEFjIXiMPvEUFbIj8+SMOzMO2bAICUeNtsWQBcFYZlACy3AP7jCObMMNbEADW7YOxvAqmQj+El4SkUqCUGowBD/wA16gBmhGj4GoD+agA5XgDl7AAnvoinqAgSERE0VSfBpRD0XQAAy1TQfQCsexFMxQC/4gCktQbrAwaxI5FPJjGHvhdfvzDZQTeB5ZMduAj4pYEHyRCbPHPZvwAYVADfHADRvABioSJxA4EfewNDSJJPVgDldgDjiJmOLgl7LoDu6gAowAH+tgDjb3ChdgDm+5EVTUMiHBCzzlWW91AFv2HcjQAh+wAahpAYUTlmLpD6PQCa+CkZcIB51glmtpMd9SXgzBSStQBeLADe6wBh5wDdfgD2zwANHwlxnRLsq5IfiQl0PAAwJlDrEIiNzAApG5FG7+CQ0XYAzNyRA3cQfZgoUXUQoLRQGK9lllgGbGoUJYhpoewACqwZpA0R2QYg3ugIKGtXqyc5vxsg6GEAJFEA2UpS2q4AGqwQ2i1Ab+cA7CwHby1IT+QGKDiSQ+ww3RyQ2TRY9eoAIy8Atchg/zwAOYsBNMNxLHsAI95VYH8AjfQYOLhpqpaQaeR59AuBnM4Asmo5ZZNQ6dUFj+2S3uIAoLEGsxEA8YEkDdsARV8IPRwAUowDbzkGGqcY1FxUBn1ScYKp1+KAgXMAx0wAPmcxNecIE4cRLuV6MiUQQakJoWsFxW6R3UEAMyWqcWsHs2ihPRgQeyQA7z4IVZhQ6nEAn+Mxek36APbCA4IQAAgkUQz+kPjbABjfCAn9AAqTBXsBADbHBomakTm+El36khWwqL1RkH8yAOI1AJP7MGMuBfIhEuC5QT8XCQbqWa4DEORRCjMmoBMeAO5JmnGLEUsoA4qMdqqRek8HIOs7BTC1A48bEU5OgP1XCSRUAN4HAOPLcMkHUUN/GBfjKqfliP/vALX+oPlTAC7cAN5kCZIoFavverT+kPRdADPYADX9mppRGHdboBCVAISgmsHmENppAt68BgenYOgMCCyBov6BANJrCaAlErojB7+sANpRADaLcNG8ZrsfWvQHETNfWtGeqHaqAGcaIGF8CdMmCUR+n+qpopEISCeSPhl30RHsbwABvgATrbYdQJsCFhIYhTatMoSYx0CrJpqATjPYyyC1WwBHNFDVJAA7UXDlUgBUWwBmbwj0ShD+TgKlo6sgZBDdTQFtzwC+bwC8aQtmkLoqFKEEl0aT1RK+zpHbq4BACQAAOQBYuwKz7LEUKCK9PAD+tgm4bFSLN1tIa6DYzCF20QA5cgUKXwAJnQDfpgCxagCU3wAQ0ATQO5IvTAbF/LpQ0Rk2P3ub6yF+7gDPOAD+wgTvDat+BZIGNRD92AuEQrDXjQggtbMcwSD/hQAlwwDou5BCswD9EwD2ywAXP1AVj2AeeIrztxD3RUoUgCrkb+QRPTQCi+4pZOFkieBrsZMQ24ACmDa3iGazm7OzDbswsIQAtpJwoPYAj+MA67QAO8dg3U8AEWsLncCL08YWyhS6pDQZGN+CtPsVTUC74DcRORuGL+cIKtx0iAkGfpqyzVoA/OEANLIFC2sAVF0AzyNJI/GA9m4AOasAd7sAYuWxRzUgwFtSfWWxSgkBhtCybYewcKHBFu4w0WObQTpgy9oLsVrCgHRAUsebyN4AGNIA7+sAkP8Ai15ww7sAb+KxREEsBGQQ7kILNOdQ9Sl8PDpQ/s4Cr244LfgA6dUAtCPMRVMqdSEA3CUA+bGFDoQI7OcA31YAgAwA01LBKvW73+YEsUx/fHNlJeulkRx+eUYLwf7yQL+LAOWGfGghrJQwwO3bAO1PAIl3sO0WAID+Cv1HAMMcCN22AMGNs9fRwSFJLK/hHDQTEnE0gmNIaJE4GVzEbI9Bkdd+ANSwUO4mCJzBIJi1TJfAYLOtgM60ALTbAEtnAO1GAGLuC+6/AFQuBGVUwU7CAorMwfrvwTYmwJLzwmS+EOTesDbqS1DkEO9rXIBbEZrmCITFOoNFc9aSBhFXyC/vAF6hYNQEcDf9AM81AKFqehs7ABj8DEuDwU8GANCS0j3TyRCKbITQILndM5HrACYCkR5MCc7MxXt5Qz/slI+kmGhBsv+/cN3GD+AXtwDNFwDDQQA9VgDOCwAzHgDNyQxx4wV58xDT/U0B7y0D3BDoI5F0sxt3JhD+JAACWAmqfpAbyW0DfhCq6yzSZGDq4QE8O8lrHlDC+wDGiJMpF0DMLgDOULNecAWT7cuy6GCBvwCfSrCQggCubgDKIwxbXjDCv0KmEGasa4EetIJkC9E1ZdwEfhVRG7FlSdEafRCDhbpxcdjLXMQNECvgSyMfJQD8fqkQ13ACRQAJOQMuDwCQpQAC1wDItUJWaJlstQBlTwCeBTMd3gD58wCZOQBT7wc7RAA1KwDO6QClxQAqmA0mawAnOwuA2xFAKFzgahFiDpX/4Ljevg0x3+Etg5AXDM8NduwRewwAQ+gAR86bFGwSg6u68t9JUWYX8KTB8glQ2c4sNf5w5G0AApsABUEIrdgNr4XbtENgMKQAELQAYNig4Cfg4EXuBssg0acAALsADL4DTh8OAQDuHXCgsUkF8hEA3osAY78AjOoA6NYAGFAAz1sAlntwOmpBrlRYsqvuKCtgI4YARMA3uMwgZscEANwSifoBrKbRCZseNKQt0kIb3EIhenYQiBowESYAEzYD5xwRdLoKsyugIveRFO4A0JTHrZUVPzkNm3OQ9IIAGDwwTAsAxkXuZmvgzHcAxtJQELgATtYObOEA1yPufOIAwFsE0S0ArVoGT+29Dnfr4NV+IP/7Q5AbAMK1AEwrAM1UADNFAN2roFJDkHB8BoVABp/tACg0MBM7DCcOkPPYABEiABONcQXy4BAM6Q8dAHINAC8yDdGwLkfuwPAzYXzZAgDLVcbGCPb7EUsIAA7wmfJSDRDbEZ7nHlzmYd1hAIMAQOI42s2VANOOAAK2AL0eAMzXDt2J7tzuAMl7BQOBAMzbDt257t2H4MtS4BCiABuXAMZ74M174MofzbEqABbQpN2QALhLYHztAKn+ABVAAOu8AGk94ADCjgBn/wAh7bK8BQISBPjukO8RAPTsZJq7sMgkMBBRAN7iCIK97xW9nfFCAAbrQQ9QD+DAKQAgjC6UwC6yJBDlFHF1SQ5D31pgMw6nGxSULwADqLZQigCcKONBPab/QZb9oxJQuLlt9ADcsADPhwBNvgDO5O7lK/DNsgCmxg7VIv9c6Q5lzABZ+g9Fm/DOOACOXmDH8QAg+wBMJwDKkwjo1wDbBABSgAC+4ADNGQChvAX4WHKIEVSWdsB71YAIYgO1UiDuJQJfedDecA8gEADNvQDdxwDd1gZ9ywDdcQ+a62ANu0AK2wDgWODgQ+DuvgmOsQD3ZwACmAARqg8kvC8h8R1RwtF2bQAJ7FTQMQDdf8E1uAAAmAAMDN+hDRHYBk7CHXHWdADnPm3uZ7DtcA9c3+sAzOIAnPn/Vh7wzVQP1Zv+1VEg1Rn+1kDg5cwJLHsA1c4AGfAAvOsAclsAaJ/gjxKwwtrfTR0AqbIAprHEmp5/fzMAmiIApGf/gAMQ7cOIHfwB10x8vBgT4HBYITN/DhQHDomBQgUGZcxIPfxH0D6XEcN2AFNhSg4u+eP5YtXb6EGVPmTJo1bd7EmbMltyE8uOkEWlOWLH/6gh5F2rJMgw0UKDTFEOBbvaRVg+pbdw3cPKsv73kb1VXsWLJlzZ5Fa9OeP29u/K07GFfuXLp17d7FC84gtWXN/C6jJseZX8KFDR9GnFjxMmDNCMyxxavVBzOwbgErUuIYrGNLaOT+Guws2uBmzkyfu8vx27lv685tnKiXI8GCrL89NNeRo7iJ486Jfv3w9rdwEsdlo9oMRKt5+NI+hy6Wp8/oMu9N82a0eldDDTA4bdqgh7uV263eq5eeKtl77MKahx9f/ny09s4QHWcw737+/eOC7KuwZaLxxJkAFUMwwcVGW8OCVI4pBZEGNDnGlj4emMMZWCaJQQp3jjEtmgMJyya2uwSKLSJu/gMHtbiuyUYvh2bkRiDeBMomG25uq4ugb9BxDh985OGnHn7oQ3K76X6aj5xR7tEuyZuo4oKAEDDYoIEClJGyy5d8YcZLMcck06yV2JHFEn/wyUY//96EMy6B+CL+jbABBwGmTgX3THCZY9CZZIcljlnmkx182IWaT5YQApZmYNmChlbWEcYZagz8q7RmBjQxztjctAtUuUSdUc7V4nlpkXXKK7PVoJaUTx96QCHH1Zn0cWcSDAg4oIdrbEWSHkfYYRVYY48tcxR4wkKH1DifxWs1bjA9bBlnPPGEGj63VeyYaKhZoohHeImGixUa4YWaMWj4AxZqDPmAjdGOuXREPZ1xNs7ieINIrt4oMoigUmU8KCIUt1nHOZescQOeYpGFmCVY52OHnYhbOtIdjVG92LxiVOo4ZJHR0scbexJ5K19oV64rGgWPiUVPbmdeZhtRLFgjl1yOeaAyWHb+iWEJWGxxxocdGDONr8U2rYblOHPDy0a6vuEYprVGhnhi8/TRBxdHsFbvniO9VNhLcty6Gmu119bJG1xc8Ye1Tp2mG5xpXwYmDG5m5ntAYMywwJlcYFnjg0aWaUWUB/ZYxpZHGuhjm8Zc3nNAleuu+5yZprmDnSjZLlNr89CkB/Quy/anHtTnM6qYaYoyPXbTr3bElNdjxBzz27a55pjKj/GEb26XqbmRFdYQ5hhDhFiCl2Na2WEHd0WhQvpvvDWNT2eOITh33cdxhyZvvJG9VdGrK13Nz8uvjh/nxJljjkZYWj8+o2SxuH729wdWn7VMqYUp3oI77zntNtegloL+/BQLbQlPgc2ohg+W0IhmGEMKJfhEusxAgz3srA8lyFA0sDciBVIjPwV0Wn5WVRNvMONh/KPP+aCzkhz4o3QwrA5V9mABD2zgAyuIRpfWcgaL4dCIreKaP4JgD2/U43Io7M9tElg5YCghZg5EEIhaYYE53EIyDGCDF2HhgSLYAhbbKAINKlWa0fDNQHPjzxNX9g2u2MQVRDkikmQIHXLUKo/PMUohGFCCDRRyAzRwx3qSxA4//tGRSXJFMTx3Qig6LRsk1N6lsKiY7bHhAZyBBRsakApewGIPE2pcIzC0jjxFQ0RYrAaKKgknII2tJtOwxiPls0eS+cMR03ihLq3+YhQPENKQHkCAKOqhP/PYgxx3gJ0wpZmW8uCiGORYB0hm+azh0El4zhiEJyi3yb8cYxuGoIEUqgEMRMSACpVaFA12sYxUFKEIsMhGpVyGSW45o1k12mZeToUT/7niddOsDi/RwgxQQAmhYxHFBwx5zCKkrkuygNtDNdqVG56BH9lwRzcCGqfVIJCf2kPFIE46M2+BgwZFEMUxjiGFIuzBL2YwnDCyYYYVIEI0A5qiA5dxjXlsY6R3aU0wZaIPeMgibRs9i0LRQg9mQjUnpZioIT+wBItKiapWBWtOtNMFSc5DjkedmswcKFNy/mUcfbCAIWDBi5tJgRdetIAZWsH+i1wIoQgg2tQ4yWkaYMwBHQBFq1zmYcubyEpZYTWLVM1SO8giZR0b6OFEG7CHe6xuPtMIBDyqWlmwjs8KpSMgi2REKoOclWV7a2tpjhEGQmFxGdWABRdQoDNebMECoOzDBgxBz08gABHbAJEmY9uM5wUAAwVwhlHhCEXNBaU9GSWtdHrCpOgw1RfZBcpK5pAAY3rAAhZAj5iuOVrwIvQrlviuO2IEkmyEozj1AEc88PENf7QpJODAB4DdURGD+NeA+Xnlcp0Ri1gI1S+fWIEZBtSHFXBBpo3wzC6cUYodCCG6IBJsW4/xjRCggAIoOEB/O7LN26DKszVpnQDbaxX+yY5lLdjdnz6WuZ21jPcBFkAADahBJlPQ46kz1qg97GGNU/jDHejw7zoSlg1lZAMP54hEF9aRA2V0YhGnAEQtnPCNM3TiHKeQr5PdERLXzmUc1QgqOauBJ9/101vb6MEOROEMW/igCBl0xhZK0AcQsYEGPjWQcpfL3Gr0AAMhCMEMVDxduh0nYUhZyx2UimSc1Lgra+nCQfenuqLY48VnwUc1DMEGWtRxTPdAG6cfWo97wIMdePAHQbKRj3j0ohenwMMiOvHrcZyiWdv4Ro60GSN1nCIfaajFKZRQi07kKB7rMHAcwZHgRfvFGXKgRp35BIxrFFeudN3AHDhjiwf+bKGUwthBEXJBp+x1u5wNEEAIutGNf6FwKvhgbFDYcWRZ58TTXfEfwUFnlG6Iogyt6IY/Ak4ye+iDH+kt0zRuWHBdOmcd/qhh3KSRDWk4oRZwqEUv8uEO1OgnRvOlb7LBgbtzrANI46hFJADRiU6MPBvBEShg7R3YQSiNTyKK3lxDmQBYCMMWZnhAKnJxC0NYgA30yNNPh26nbszDHTV6CKVX9nGrlK6GCuc4TQ5eldKdAWSyo8okCnCABhzgAPNj71jw4VAyGQUUuUy7I6nSiBaQwB/KqIUysJCNRaBDHPVAx3HY3D2k6iXm6IhHPNyhjEXUYhG+3oh8R5UfA6n+ddHOQMUV+9SMbMyBBmYIdyM8sAW/GGIJS5inKIqwgm2I0FIrXfQxgLGMUvlId+dwcVWMoqaNB/4ma0eK3xsZO+fY4gBXwkD2CWALUrv3HijLu/PVpp05HMACFTCDG7ZRi3yAz/LeY/M53LENadRCGlioRyRyXaLW1GvrhomFbAG+Y7iGXbCnVpCpl3oEP9kgQtsGQfuEbSCe0QC+bnsjHvEeFTo1oDCKaYAH8TO47eouf/AFvosdqriSQrIAClhBFOiqaVoJogg/EBQZfVAGeUABDLAAEmgBekCsxKINKjsFOFAGNvkG09u6YzCHMDCHleKeQhiATLgFZ4AXQxj+HGHomciwBcrgBQNBoP9LEH+6jY2QEY6AlqkoC3g4ARuiQZuAvqMwikDwB7TDGqMwge9wChYMgQbwB1eTppUABfJpw9jRjlEYBVOYgj3UADNgjcSiixI5DmkIgmyIBRBBQnsTvqJLjO0RAg+7hVmQgg0YGl5YgwcohWNIhcfZhHATDTBUEGegiI44IbG7C7IrC/Khw0GUGBGMDnaAm00bGaPQAB08L6cIgQXow/ByCYAbP7b4GF1cmyTyBWsIgmngkkmIAjbAB6NyxKkxCHQwh0FAhUVgDG4DwwAUt7+gBmr4gxVgg2PgBUOoMMlBBBpYgmAoFM+wlOS6RFckjG3+6DduOgeumMHG8oc7sIZc1MU3PApTyA72oYoeWIE8ZEEM6IEXtIkkSoU5KITw8UORcaavgUas6Sg3kCSWSJs226Zz0JbbOgZU6IRIAIZ9AsO+GATV255qSIUO0YRssAUa2IFTFIZwWcBjYIMSMAQJBKoK9MdmiIaJaC04yQ932MCq8AX1GUmZYMigYIavYh98CAcBMLGmCAECqAaFhIl12IEVsIANiAEzwMiQ0Yd7sIbmy0pkmUt/MAUrqEuYMAqVrKQjNIztiYVI8AQQYUosWjBUIAxg+AZD2IBGuAVhUKVPaIVC+QAuiAxY2IB3EhFFa0oFEal+GQ44AcauEK3+u4yJrQSKRCAW/pkHarg+77CAXJA4nTiHHZgoD/iAOVibWksEu1RNYPkKJ4CHXFKqAevGuagGa6kWCEIFYIiEehs61Asev4gGD9iBaDAjKViBUiglNmAAYdAZNvit7WnF0OSToRKO/zBDvLDFs5hLN8Cj4XQJ1swJb/CFijOiUjADUaAfoNAEBMgqC9gB7sKaaXhG+wSWYvAGK2CHDxyt9wTCIwS+AXlJQBAh4rG3ZeAGOQCGbThKQ9CQP+iQbaDMCpOpR7CnbyCe31PPbcEXORkVpBrIaJLPFsJRBsVPnICH/SxIuSwbfAhSfYgHM2CKrIo6tqkYBnUVe7CYLpD+hQWtCbjoxnHwvz5xBm5AhWPAgnyohnSMrWOQhklIJwQEGphqBmFoAiEYrmXQrUsAB2uhwBjdlmXQD5AQmGhxhyA9iv9x0vvkxec4xPbCFcDJqg34LbYxBTUJ1DEpHWY4AW8oopu4hxVBK9KjGQMBBjjoBG4Q000asTnYAFFwlz14gEawhWP4hA1gg7myhbyyFnrpRztFjAHpl4CkCyOJjtJZQ7RcyEElGXgAVo1CBALNKg8QBtBxmEf1EnuABytwiyTKiWZBq+a0LXPoBECIMzdijB7wAWo4AmgASmGAhVyQAg+IKQthutIzOlvtp2ZBDV3Vi/gEJH8Ik2IdxB7+tYl7iCQko4YSaMtC8oAH+IM1WRtrAAX+dFb64BpvWEN/+ECd4Id5GM1ZOg4RqdUEOYZqMAcs4AYOFR7AWIbuMIRNmQIUYINliEca4ILtCRQpqBdXgteRNYQ+KAV0oLyIWA2qqEob84cuIAc/BUF+pYl7mJVKba9lsAAGaIAGeIxLYxvX1NeGJYvSAQVLkNCgKJKRaqDYIp5YOAVUMIdQfZltaAUPWIM9+wR7mgRtKYId+IQ8sac9WAdL7NaaXQxnYAK6OwBYyNOBOIdt0K/40FqiLVphnSrhrCznOAdh2ANRuIafvRiltdrt8B9/cAJTQFyXyCYoAomtM41IANn+xGzMceCpTdiZTWgAuZKDKejNuSoFDzCD36NOvb3TZbgSCmgASuAGgLSb1lAk8yCHaajafVXcsnAmt5O1eyiPHTMdNzDey20mduiCojhNm/jcAsJS5xw6a+EGJRC6V8yFGBCCaICFWVjLXRCGVDADD7AMYZiDBrCFcAMM3B1ZbjABC9CAAxCFbmitcbBX8/AFUzjeNjTaW6GHMCm4vetcW6FU6q2O1vEFYs3em2gRbTqwbSi9mhS+WACGakCQAVkGNviAR6AGW5iDFZiDbbAFDuGCMIiFRyiBJTgHQnEl08Vfw7AWH+iBOVgzFVqLB/5TX5LgBLaOZZHgMsEFb7j+4CUuYlAYBUHsCo87hnVYsxTKUn9EPUAoEH4CBnBohXSCBXpaASkoBQ0pghjQBNEwGlFALtHI2x1WIHRYBuUEh/BhHX+wBCq2WiSOCX2YBhmDYi/xBVzY0ULuipWQpOnrilxYARToAWHQWWg5jjneumgAYVQIqmNwBy6wgFloBWeYAw94BM54BATog6YThXSDBRHSFkym4z65rdag3LTA2kR+VED2S2+gUkVGEl/WZWDGtKBlQ7LgggaggAUogx2BFmyFV29RAlDNnsGAhQYwA2G4BVjogRLQEGAQghhonFYwhE8yh2kOsVnGomP4yPhYizVk3EDlZZegimL4mFv+fomyeeKXUKR9bglqRVgOdAmijRIiDYqyAeicYBUhOQpyEKDhJWY47Bq3O+CaoALvOAA2QLY44WDvhVcPhTZRgONdWOFN4LMd8ilemIMY2ALu/ISgseNj4AZJAE117ptoQI6Jgw+iqGjkpY6zoApxkIRYOOiV4AZRqIaAJqgjoQZRAIc51Ant4IVSMApexQmFMSOW8OeVqIehCdCcoAp32Kuvvgl+WIt1iCmynhJ/WAY+GIfUweeIjgl6cAt/xglREABegQVapAtz1Fsl5IPz4oIdoIIz2gQX2II9gwVGEQU/iZ5UuJ7s8QQ5MFub5pOmEQillg9QeM0jTl6xcAf+Ksg+DGgBZ4DomjgHI/gODcABLNaJb/CB1b5IPbYJftAHYcBDDWCDuKyJVoA0SDMEgy5rf6AEDXAKDBCFuDYKO8jDEOCFnCgSf5iCPFyBIcuJ8GmB0WaCAZbrxioGR+hpm2CTW7iG4ogicLgGm9YQgd0ABPiDXFgGKiiBSYAFKkSAPZjCRoirn2oj5gKGst1Yy7aTGe2I0zYPR8Ax6p1n9GCCBWjuAvgGfaDcenCHGZCAB8cHA4eJelgHiqQADFCAZKyJvTsG58pDBSgDqIYxfZgFKyFLhng7mgA4RBCAPMQAARCFhJYJqiiDArBxAQAGDednfyiCCz9uAaAGIXf+Ca7ItzyUgBYgj+7WiVph4LSwh3swqzfxplnWkBXwoQX4A14QFHPNhTTSkFzggg3YBUKBUcI4hhcoWwGvnFiaC+6GjtYBPCjmZQm3hRqXgD+XgBCQAN7OZ32QOwoA9EBfAUKnZ38oAwdPdAxgghiXCSYXdEB/rmXQ7JjgigAwMaewABQogHjIXgoPgEv/8xAogGOeCSGhBgHAgEQ/RhG/FX9oBQVAdEwPAVq3Dn+YAVS/8AL4hE2X8kD2h0AoBiImKGvNi0vWYfV0hmQmgSOAuj3IhlxYaeThhUZIJ6xLGo9mrnyQgyaU8wUBSFHhL/koBjBRZF6OyFwHdApogaf+rgmu+I5Ev/BdZy+uUIBYT3REZ3SWcI5sgPR/TwlgNIpWyD5Q/3AuIvZl9Ac28Pd4V4BhH62VcDR8p4ACWNaaoAqn0PgCWAclZ4kOh/c/x4AUa+diH2gS/GXo2N66CJh05nLEaYQ1UAAwGIZlEAV32oRr4IUlWIEzaqU4GxBJkITKFnBroXO7oO3qWAtQKB1lp0Fe5gqQ/3cM6Hia4IoDmPg///BtsAmuKICvv3ANePh/9gdYKPh4lzQldw5DeIq5z8NJB8aVKAOsB3sJ2O2qfHeNr/hhbgmqaIGTv3AFoAbKjYYQMHwKCPGVZ3mQsQQ5hA97mK5zmJZnh3ZzvQb+7ywFSUCDQtiAPsgFYPgEBviERDEncOfhZSDbci8MA4mGWJR5O08L6Q1vaOTltaACXP/3ECh1f+iBxseAgGcJe2/8QVdIqvDxf3eAFM/eY/AOisSA1k37ADWEC//3A2gFwddqf2ACvQ92Z2Avwm/8USd5Cb/3fx90yI/80onn50Aqv7Zp8kwFQdmMY4ABIoAGWzBAGgCIY8uWOYvW7CDChAidHVMSa5nCiBInUqxosdmybeC+gevo8WPHevz8kSxp8iTKlCr9eYO38iXMmDJn0qxp86ZKbkN4cMP5sl61AhQcSJBAQYERf/Vg4rM3iwCFokYPlPGHj6k+RAKiFsX+UKCRP30wl7ZQwJUChQXulsKc50/Dhg1oKWCw4M9tW39Cz0rAcDfmUgEYziqY8fclPnzfBJ8tkJTtynv+yhzgajTAMX1ifXLu7PkzaJxi3TALG3rmPI4fv3XD6Owi7NiyIZbaYwFRM15zLBjS0gpRDDPujjkrDjF2vjDcnB2X7fw5wmXROqoGCfKbO5JXT5sUW8xVae7ix5P/rJOneH347AgwSiFAj3qSY4pl0x5tACZKZV6lcl+CAFVB9pI+4GAAFQUHFPCJVTHho48zGhyAwQYHNHCLaTCJBYuCaBWggTMDRubPJwWYRYEAIawjokpLaXWiADgoNVJeTASAFoD+bDRYHo89+uiTWImQtNmP2vmjmmrRNAcdk84RREkMVbRSTSk0LFHKMcmkkAQs4AhTHHOzOeOJJ6gY1CSaFBHEjXVtetRTSSx+po89/gRSJJ55kncenOM5YwQFJIiS3XYz8VJECDO0gldNrfSAQQ+wZDhTPHa0EEIZ0UzKlD/uzIECCmx8symB/oDDRggt2JEdTWJdU0aqfTAqk1jHUIHBDIgUOtM9rZRlBDB6Cjvsj8XIQmqR/LjzzTfnXLNkmtFKtAxxS3xQCizOrFECItk2YgEYi1BLTZjPSecMMAJJu6503YzjZpvf4PPICisYgixoOfhTJ7H9+gsTn+Xdgw/+NtjgC9N8/iRcU6G7zqTPfIndhM98A990z3z1OMzfdvcQSZPHJNXzMX/6wFPMfv+qvLJNxUzjLz7dgFPcujVH5EwqG6xxDCytxLADL7AcUwQN6A5UzTHRDjLIazajWc058Lp5Di8x0HWAKOORg/LCLHs9bMDk6VNPL7VwZs88I4tWzzz2bMwf213ThE89Gvt0T9pvy4S32jix3fdN0nSi8NeFGy4WM3f+m03TTktbzTXRKGlGDH1EA8scGxhyzTF7rCAqMNUsAgfS0XLjCdPqOh6bM1FXJ/VH68ASAl0CXCIePb5Yw47hvecZttjkhOc78cXf5E1pJBu/vI+4mEL+uLDbrVPNQI2vbq4zc5jxiSgxLAHMMqKUQEUqzogiRRGtfEOcM9wcAwc30Jp7jDlKtKPk9RMx58w247wO+0fGIY4VHMBC1+AOOaxhCeYx8DTAG889rCGkBlKwgabwxcEqqMGbbGZ4erpKPPznvmUAw3r5u8gxtrEFC1igBDQQRbbWEIJG3OIYheCNdM6FkWPEIhYmZJIzUBEGT/wwf8yhxjfeBUB4oSMbj6DEOE4jmWKgTHkbvGJOdtKn8dDpZVj8ote8YQ8rgrGMK2HGGfZFLHSoxh28aMQ4knbC2ADDHQMoQVy2wLOfLQMWuSjCDapxkII0ZxmowIMgpbUMbgz+QnVzPEg2lrjEb2SjG7P6jBXEaMZNmuSB4rEHOxTHyVEWCRTTkBspOQmP0vBLT/VA0jn6IIACPjI2xzgHCz3QgDXs4QN72MYtDOGBOcyDFwUp1yCDaKZ1RWMQsfBE/OY4nf9J0k3MWsdn6sSOCZIxlRX0JHf0QY9RuMSb5hSPJdjRynNukhyjoEc3xbaO6mzDGQUIAQYwsIVt1NIiEIFFDDywhCIIARZ9tBIsvgGMaBjnZsAABPgUSS45PKSIadofN5RYTUmiI54aEgsoLEGPDLKTeeDkzj3IUdKVekadHmXp8jRjCm/kSSzz8N9H6nnPfFLhG/2siDN4YQtnFCH+Bp+ABTX2UIJHGIehFeFGJPBXsyA+hDg2WwYSNbrRJW7jkiALSxCKQdOXwrR3Jw2Nye6AwbKyNSb06II627pBfbCDpnqKWpvWIYoGoEAD95DjT28WNFg0gAu8uMUtlrCB0jWDGvJTCFaVwNh1cSMM6bIodJwhs61udRvYxAk9puGGsJBVrl8762nYwTvTstYkqm0tBSFmrDylBl7fWIc7rqGOEgY2IgPBXAkagTNE3MYdX2LoY33rDFJgFjrHqAY1jgCMhaKJIK2jJmcBKK+amMwfZ5gGLlAJW9+hNjQuG29rvSELzaDXeHW6gxp5JJZ6rGOztu3GNhzb24Q4Qxj+x3jEDqTQim2kwnvCqMZCGwobguAhH4BV5CIHIQlUODa5+iPINc6B3ezCrhvxoMlI2WEFXOCCpO1lWXlBgwtLsPfEfystFnFxrBMTTyzp9NFV3IHTSYJjvwnhxTbM4AFK5MIZX7CAKAgiHSYZEgvccNwyquEJYDANmRZhCDU4rOWOmNgedXKDFbwIYxoTK8XZHCmNR6KelZJDpWTunWTutE7ysJGz1PNxM2DxACk4w487WMJCzgRE911PIHIABiqam5BlMGvLHO6qTOhxAnqg+c3GM7Nn4HEHdohXrsugQgNC8Iie6O2LYgGPpXvniHvMOZz16F92o/nIgYxLGGb+CG4fDfGBOdDjS4RsEgnTEAtBX7WxE5bECNWUZUdv+bMrmUYi4EuPVqe6cJj2jCvg0WmY6mMefbBQXA4QAmrsiJPixMWYq+0jdpgCHunmT1jQ4S4tEzt/4EDHNtxhCBpwIVsAFQJWS6jfiwIjEo50GladMQhPSMIcDIFsNKDGbEcrj1/FOEMVOaVuf127M8WA2Hjr4Q4CyIUCFhjMCsq9yXvA43kbZ9nWqO0Zsaxjxxw+h1SvtwxeLGEHW9jCDj6Ri29s4QOiME41rNwkdB2j3qujBqLDcIxoQiTK4NDqxLO7IryM0R/WuMMoZD6kusnp5XjqOGd88bxtl3Qpc2j+QF0sMBcU8CKV+iCHF83ur3vorjzoyPrMTuiMJVhgAxagwmFbUYIlRCNpv64ZN9IgLgvbzBwSRgUwmuGMJAJ+y99AB0kkU6cumAJlKxmJ3bihhwfpXU9o9wk9Ms7apcxA7mgpPAZCkLVRimUao2h9v8QpC7tyJx4ayfo4FJ2mZRSh8A2YQyrm4IFHKBRMBLkqNyhMeXY9V+FlUsZt37XhzsOrG9coQgAOwAt+KEHEoU/JPNYBjWQw4gosuAAdUgb8H72eg3aKr2ktBRvAncnZHgpIyih9GfTsX57Ywz1MEGhcBX3ZV9Y9Wf5EAxskAANYABvsQBUwWtO9xvZBR5T+wc+DndBAcEMvZAMe1EIngEM2xAMljR/5UUclpYIAeMALFIAWnALvwJNKrIIXyMAIsIAO1IAXzAgD8p8W+Ujvvcy7cVI9UEOK2J4FhEAD6J8ZQUzeLWGRSIZIccc6bAT5JdH1XY8tPMIcCIEFlIKSYNUcGVIa3NkcMUc1NIv/ZEM2YIE0nMKK+E+j1SB1UNI4oEN9TYHJpYADmA1JVcM60EENHOEPQIMXFkn/2QTiuIKJsZN6zEFlsBAGNEA0RKHxWMNosV0lgoZYyEIXdoY+YB350SHCIdYteAAXPEszSE4t0Uw/YRcl1QIgAEItwGINjoMe1gIWfEMkrAAJOID+KpjYVejAEUpjJaQiE6KHj9SJkJDiKM1BD6BAD7RAN6BiBYmFI/hDpVljeWiGJpIjgcwDmwiiR4zDNnyD0y3dMfACL7ABDRiClxzTCEbL1CkBb+mcM1ADMRrjva1DPgDCKTikNCiDHo5DPMzTPAEis3BEo0VSEo3DOayDIa6DNGRD2fSCEoADIFwFP8gCLnxYp21GKBhhDQiCDiShV6mjAzWhj0iGI7gZbG1HNJyDkYwSGC4gTpKHem2iSsyXvMmjR3QDBrKBKGBEtARVNGjCn1ED5zxeLVFLVK0OQ0RD/9Ags2RDPRhiLZxCJ/QCHnzDIpwCOnTCOmRDp+BDPOD+A0X6wzb4A0OOZC38pQtGQi8AgjIoQ2qQxKZFwpCshFsMgxqwgAp4QTIMwxDcBY0cpXhc4sV4AwTCFpFwo/H4gpC4I2bWhGSMlthpCF+SoVOCAzfEAxY2AAXwQkBWBDBQQ8+JQiKRS23WDDDEgizWzDJcw9VVk0auwxh+g0T2wiLgAxYowylgwSmkwSnggTREAhbMQwW4YBoog2D2QkRKQ0esg4b5QzFYgst1Gt34gyD8QA2oQChkhxpQYmnuiU7+yN2lY30WjrvtJ3mQAzfiw/G1ZkdcAz6IWyhSgtI5xzG0ggWsAdJIR879FLUIm/I5B/90XjZ05DjMAzrEAzj+rKAyrGA9fGTNAeJ1YJMpHMtL6YM5DEEN1MAPcIM+0Aho+mdKaKZN3EMo6SeOrswdkENq/uhXWQEA1sSyEKMgckM9NICTHkArmEvVRcM+WgAsNN5B9ubqpIvTREOdAV4SbegMiulGZIMxUhKZrsY5ZIeQeEM8XcU8sIIK1AAP6IFSiAU/lB2R4oSO3sQ0rNWeqowvmF6geoYlACjD3MU6xCOBegSztAITFEEfDFxsgAPnrIMmBEdBHAO54NlClMmFAhVBuAsNNmqbZAM2yYIsyF6L+EMyqIEKsIAa/MJhFGpOYmORJNCN2mpnwAPx8SpOvJZNLEupyuM8ccM96g/+uiwBG5xDblKP9XnqIKHCIlBlddWjkpqqNdGlP1hBMfjkUroFTeoAfC4msIZGn97EGQjpueZJSnXBr7YrTWTSkJ5EsTbqOCQSbBBHAxjeBmxBp+qitC5aRAFbNNyrtoIENjlCGtWrxvCADkCsxMgrut4nfvpDie0qxcYEOZTTxj4Mp9GEDGZrwnZEQA7EHDzABnhADLhD5lGDtQ7sQVADHhxcbBBENZBsyaqpPXiDI6CMj3aHUjCCChwhI/jDh32seVjsj1jDsZCm0nKXP/he1M4EKGhbTMzDOVDgzl5H8i3YMnwCAngA2TLOhMpsLmKelmLEwdpc17qJJb1MF5D+RGo25hXIQGQmgxJWLWekq2n6gyVkLN+eRp0Yab1GbTEEQte9RHK+rdRsw8kugxlYgAeIAsyubS1VAyA8hJMwquNuq1s4gjWM1UqsWRwMAQuwACuog8oN7k34rdQmj+uGBoBqbNXaw+fCDrP0JkTwIto6VObJhjPkrtRgx93dQbyuBDdAQYxCwRbNrk/ALk182eHKlWbYrp6IRRfQCfSmxCiAQukuC/HCjqz5k+ad4O8iRDQcEqVOBM667fhuxIpwJviGzFL6gzi8QgfUwBDk3zyUWvfGhPROrz9sI42JCAD7jpBUb9SOrkpoLcJ+Lj+Zr+Rgbm8tgzk4GfouWtv+RrCpMgs+eIMrTFBqSkYy2J8MeEFP3GQA08QAP4w9uEIrwpZbfAIVLMEWgB7UqszJAGELmwQzzDBfBmL8Sk2yHgRBIFf6AlXTWdhwFvF1CGUg0IPLddPY+AMdSKMKvMJSYK/rvjBN+IIH/aQ/UIHthcACgIUX94gv/N4Pn0QxjDE+hIMH5+44wCxFONUSVwQGn0DjTct0QPFquIM3eIMpTBuncEPE1gAUpM1lvjGfMm2eJAIioxcikNzthYAE7AIDsVqJQbJJnJd2uMO8WRMRT9Ipl6H+6PEe83FwIrEz5GwdN2qz4AM8qJ1RosR8Ea00YkKtgnIk46qweEP9whb+fa1A3M2FBnABA+nDNMhC0HbvUpyCwdwFa8ItPqSNzjqqW8yTJH3DNXCD59rWOTCH6hTH2UKWBaMgN8CBlWGVuwxoEWfDVdwB1XbTetKC/cnqM2ghML+uJH8h4KKjMZ8DAQzGXFBAAxjBGo9HnThCQ+OoWxgBCZDAMXiz1HRDPZRBEUxBzmqXvvnALpAyAHlkNivGNm+Dhs0MRBiEEzdxbx7DZc3GBrtvNeBBLPDXNWzzzuKUP5iCJayVepJEHPDAe9KCWyTwPwNMQH+hPThBLrOVPazDAchFyVlAA1BBTPmDI7gpKIuFITjAC6TAAThLRsYLPrBBURwAG8CvdaD+wyQQgFFQgjvobjd8QmXMwDrIc7y4Qx/k3if4VGz0QSss6LRQA7LWpnVpKfgchzPwdNdih3d5QzSbxFU8wxHKwBWwylJ7Bhi3ij8kEGzdQzz0gGxSgOEptI4sDztMQ/IGsFhMwgLIXQHcxfXOgzvktm5nRxQsQFH0ALaOg3AP93D71GAUBRXcA3F75Dk0d3MfUACgAAYowCdgtJuswyeEGgZoQC4IBK19N605QytIgIKUAR6ryTK0QgEQgABMVkXwghFgwCToK1BFgxKQAUNl2CwT6OfZw2zRw7bRHCaogAwMwdHqaWe7cFN/4TQsUEQ3EDAUwMnlHl+NSvGIhS/+YNCD7yfb4ICF6AiCk8QfCIADBIhMzAMTVIYC9AFKPMj16kN2BAA+YQ3SzoON3ziOl3EIXGEBEAc1/PiPS46QRwM3TIJQSAAOCANDgQmTG0c3zAUGtAA6yM8xVHmVc0MImIUAiEK6gDd450YIOIAChADU7LdTcgQ24cK3kpRY/AIUzKkarHCCL60wE8v3wtZIzEIIBAABDAATVINS+osrWIL9frU/jEMYDILCPHJK8AM+XEIRsEGIl8Q19IAElIFIIMxkBIBgAM5KxIO4FQBwg4NzN/e7hAOqh8M6TIJgOEAPdMM3bIOszzqtV8M8EADtoEAI+AM3dIOv/7oe6iH+N7gD7SSIHYhzNSS7si/7NrD6CxBFK4xhEQMiSUD1aqkEP9zDUsRBJG7xkDD6nAN0nQ+LPnhDoZtWt60DL9g4A8GDD4f73KxFq9RN0s5ENCwKr+BDpF9DsY7DNRhBATjAJ+CV1IjzVgRAbnUYPqxA7QBDJEmNXp0IBUT7tEv2GUBzTEhGNbDAD2j2L8N73y54npyBJhnzPODNDg8LKI1WuKPnjo5Z3cCYtl8xapAEwn4DXtzrOHSDOyCCP1ADwZdfNvTADAS2dtWDIZCAqhxJ/N4WPXwd3ZaKP8SBTL7Cx4N89Ip8kdSJnKHXhp/GSMFXyvOtA/dOui2FdcPONoT+881fwzrs9DeTRNrDyzXUAy7AgzuM89uCcBy78UsuxSrYnwroASVOOtbLxGfjxDSAwuL+8CoK7pxPgzUkIGRzWB2zxs2LwyKAH/Hu/DmMVCKwg0fBKbfLgA6wwlAevmdrvUBrIiif5pF2NomRUuULMnWIA3iOL8/TAzuwvGpidoxegeGrvoKPO7GwGvJCMj3cAauBvDUI8RdJu+1/cz6kgUJ+7jqMRCbFfkqsgyAUrQ6EwtUTf8gbv7+AAoDDNj3IcGUDswg3PhjhAz9w7fTbljtEwjWXLCWFdiQMDveXBEDg0+fP2BAZMtSo8zePnz+HDyFGlDiRYkWLFzFm1Lj+kWNHjx8jchvCgxtIkxbp+bJ2b+BJly9hxpTpzx68Yuxm5tS5kydHeN56BrW47hs4o0eRJlW6lGlTp0+NouuVDWpVq0fHbVvnjxA8XP7uVeRXz6EaHTVq/MLnr6VQt2/hxrUokqTci2Gt0LS7l+9Jev6c9BU8OOgZcvYIz8TX7Wpjx4/BZcOXAx9VyJfBfatnDZ4lsBfJJpOhQ4YXf/gaJla9mjXdkqz/nmE9W/BA2Yhp59YdkR3u3R71jcM8nDi4cdm+FS1+9ds5f8WKyWJrceA9NSp06Pjlr17q39/Bv3RNu6Ysa+HRw2TnqhjL9O/5JoLnGz5FfvMYL9dv9Zz+skXuLNuPqW+y8YcfV0BBLCyK9FlrFYNU0MMc7uqr0EKIxpttIGZkoWfBC2PCZ62+7rHHl+lATDGnUVz5TEWHxhJQRqfcWUQZ5WZE6jjnLDHlRH3akogsc9SogYUhXnEoyIfMwUSgF6EkLMPc3IBnySg5qseeeuq50i164OkCyzFNApNMf865Jr8cc+wPOTaR+mYef4LwByeL+FnrlbMQIsuiZ3Tg8sxBhZpyNsQCIQdFQi+6BhZYqFnLy52A9McNvRjNVKKw6vwLS3eioQYdHOHUzx08pCFVxqK2AsWb8z6syBxBsPshlIUueqYGQSkaUdNfMzL0UHusORFYieb+MWSAAw4YgI1q5GLGl2IWPZbRgXyBZ8x1zBCggVzcUbVUzI47JTk2i4qHH19MsWdSh1Dz5xcZ0FLDoe5y3dXPV5J55hV8BH1lO2sJxnCk13IbyJtRViJ4rT4OwAADCjA4gAm49LFGFmpjLfjMgUbxx1MoVSEAgwZiuEa4cYsbR5pexF0uq28ccsJKPP30gk9oONKVS3ziYMEccViIw6FVZBjYY4KFzQ26an+1pQELNrDAagoOKMWtgWSRbmlN/8oB0xcvIYACC2Y45hyWl6ull5UFHIebtazw5k6LyAolOxUYmbPnXdcx6zR/aGEhySH0gPrrTJvObRox6dNUFLP+KaiaAqw3EarERIxd/Fo7I0/RmRkswICNedhu2W24l0vOHXa8EVOf0CFaK3B6f9gO342ekcGcK4bAlaw4roDiB1w9B7bx2RYMRElgPyFgg8sv3+CASdy6dOzkyUTsDhehvKaRT4hKfbjkIpGGdeKaW0eeRRTtOKIRV/lBhRroiIfCjpLR4YoarqAPP82JByrwhzu4p7yDhScszAAFM441CwucbXqVK8AngkKORMhCH/JLYJTs4Q3tQakt3Fif+RrzDWnUIkDF6cY66sEOU3ijUhUhCzfUcJAh0OJ5HgGUILiBP+7wIx7Q+EENjOanDxJqebsBBTtGlikmTHCCVSv+gq9yYg9iaWuJhJrdec4ULhReJhu9wAPqWjePezDDeRcZiz9eUQMdsIAO8DKJruZUiaT5Q38sEMQv0jK4Lp6pibpxBDnAmKmwFCEEDWgABXawFZ0MhBzeSITiBvkifcDjDtMg031iNsanfKMdnchHKJkDDndo6wQO8eBDGuIOL7BAB7nb3x1lMI85Gc8hwHOIzvyWyTEVkjZhESEUNTWnT3yhDH3gDhZl4g1HnIh2wlSRPrzBjGqCSB/oEKVjvhGPRWTjhI3JhnNMIQtQ0OSVKKIFWnRgtCG6xIhc0uUP9PCKHzyDj/4Ygr28Y00VEbOYDjFFb7YJJSXeUiYLckT+WNopUBBNgxkRvVD5vmmVb/QiEmKETFbwQY6uaaud9/FHO7xwkB/wTEQwqQdLB1INc3CDnyMyBzSCKdEUETRh/uiCohIq0bCwQ3Y6HdQdvBHU+sQoo1X5Rj5qEQ5UQkUzxZiGdCyaRxn8YAR9E0xAjWohnuYGMd6QjUWFybUWKTWsFWIGUM60tqZCJRtYyEcLNfqNrZhCWhpRx/9q8ANoxauthXXIWMnqEEe4sq3uccRfomhYFYVFTJF9kUfnypR6dCIbeK1KN8bhD19IIxFhedeIQsEDFshAEHOCpmSNitiE0YMdVRKZUT0ViGJ4CLZjIsf33mUhfkx1rtk4hTL+HrONOSXigWx5F1mgEQcVsMALPGxpbwsr292wAxdnlShizmAJtmIXPuzASXAttI7MMuUctRgncZViJ9lYVkj+CMVoZFBHQZK3rdrVDWLsEYhpoNdz7DgDgPkLQn8EwmtYWss11qsUFZ6jnEv5xjhCewd2KAq99ZiHQY5YkoUmOLYLfFGJ/OEIbyhqiZRkxyXpMV4ShwcxuGAxlu7hjntU+Jt67YQyeBwnmtEDfry1T0tWQUsh3mN3My5xXbAElPnKmFHuspQ3POnkKOkjJYPixRycwY0IF6UWnagHfLOxFUfgIpEVmVM1/qeCK/CMwFpeon/Do0HpWPlriCnGHcj+QV87g0gWbqBHncPTIFscIAQUCIeYM/sNdNTiwqOkGTucYI3z4s0fjPiBDlSACdcOur8mHhNirNEFeAj6V/eo7TrRSur63E1Fc6JAo0MQAn+sqcdSAcQ8UFmUeZCjGJeqoX38YQ4ooGWfpwGrrK2JZxo7JBCugCD4JvuQEXfwOczQHquhXSFQLJbKuyELCizQSC7Ug9ffnAcg7toUvRaoU+AOCz6SLAMeJG6/4ZaotNGD6mlo+La19gc3JgEMA0nKU12gKE0Q7W/whEUWpsAkfIAkjBUAgAnnKm4kapGZAcVjHt5osFjIMgw1sEAFXhjGMyX+ZIRlihnWCMz26oP+wB5gYAMbmEEuCt4Fa1w75mOCHdFftA6qBJlt4YDqm5Qi1ZC64uRu7rQcWYAJOxZdpwCHz4LqRq1yq2Yg6Z6YxDDQjGl44+Zj5/pvOtg1HHcJvqUiEB5O4U0Jz0MeseuhDd0BYh2I+O0yPxaXHWIFirLY7X0xw9kqd7kDFAILDjl04ckkiyxjKdK9uJFS0uyPiluczxLJE3dCgR0dJK5Lz8Z8F71eIRQXgxxVsjhYjp2bhlDhkVXcwMm4E+vXv4fLiRI+es6c0Wy4oxe1UC9SClQMSzokofqDswzkXNPhd93U1mqJeX1hmIc03i1MLsLUrkaxApxjxNt/0YmOn+j+dqdOM3iIBLCP0hx8sMMXtLahP+JgCGpgBGhhK17L/WCv+wpmQUJI6HwB3AaDHeTBCB6Jes4mBGAIARVMbCAQPjDLfOIhEsgpTvRnFKbhxi6iGpZNBq5gQiJOA5cm9jRpQZiBHM5AH0zBGkbGtLZGLwYihHCBHroAG8CgARptejBgAQzhBWHwOxCj6lIElERJGjqB0ozihfzBFOhhhP7PHFZhuqAgcXKvCQdJBkloQcDEFUrLCeiB6IDEHu4h/iyCJf7CNzxJ1UABF+DKH/pgAH4PAwiACnKKDEGE4mRhD1UEH86h7vaD+ZwvMySDHwJhFIAK5fxhGK5ABRCCZwb+kRATEMoyCSemQfqCoDNW7SE6iCUUBEiuZCBmB+JKpC20yHkgwBvYzE4iYh6cgQlioAhmoRM90UIGYhq4CErcAYWyoRawIB4yg2ZAYYYyYk4EYTRUoBK2LhgzyQwH5Qc/ow3z8A5MwRXgYRrogbZEZgwhwh48BIroQdNkgRmCgB3uoBhIygfr616YEBt/wwmSCkrQiG2OQxkqAxy2wraUCh/cYTR0IHi6RB+jTQEzaSAsixmKIRFwgRmswB4SgRIdwRqKYVqkLxHoARQCgR6C4KrWbO0i4i+Cy8Pq4QAdsj4QY50uDj6YTj9c5hQ6wTj8AR5GYdW26fTqgRFUjxH+FgImYzJ5tBFYWNGDagKCTIEcpmFa1k46yLEY0xH3kpJgBsIVrOH2ohDYGPEyvgEfTmEdxoEs3IAdqOUi9OcXroDl1ICltlKYlrIu8VJD/MEaPCkfZ+PBvmEb4OQb4KATEGgaEqFhTmt4soMFaGFO/DIvGQciJbMyU8QSHCEyVyNPoqEVxjKF1qEXwIEhTMF5DvIZjqgGoACBkNIyY5AyXTM200MiLa4DdWMg2CAACCAEquEzq2IcyqwY5CEvCo4iwkIcMGG1hsAoG1I2E+gunTM6t+bQZONC0MEIQ4AAhAHC9qNALgUXgjAOOY0VMpGO+AkYpdNjoDM92XOS/GH+GlSyQrYh3bITGLizZc4BHfDAH84AHrByIgTIH+hAjmQgSfqtPV8TFBF0QZmHIjWzLwYCERqNC7rBN5uisxzukpSqHogmO3iAOx6UQV9kPUW0RE3CDSiyJnPDV+7BQiVsG/BhGkwhEqgF3AZiHvTgfnTgVtDTRBVIQX0UQs0hFBCIPXHje0ovPPCBJY6RfUILFHzhe3BufuBo2UaADvhJDoMUS0h0SzeiHgBp5qRzdmqrOipErj4qG9CBLUchxtBrLaoBLZIGMr00QcW0TuMCTGvgNVwvNgfiJG2TNvQOMjSDHsihJL/UH7xgNfF0cbq0UfEmTO/lFeaBFmYOGpL+4UCTErJM8z3WotKYQ6/8gRlGAUk5YkReElLVEzZVlSf0lBvIYgh+oB50wF4cwh12VEWx0V2mwTOm9DduMk7QwR34oeKozyPqQUtbdURZdVlzQk/5iQegwCGSQQUylXBUYB7ary4l8gyA4vIYaP4GZB3u4R180lkN61HRVdvmhRt+4AqeyR0M5zT0QA2a0zUrpU7ITy704Sr8xBKoJUTX9VjUdWDrYRhoqVZRBBOuoB7coQZ4KDoPDR7Syf92A6MGxDmI7Q4UZGDDqmDX9WC7ahhGgBWmIxlGgBv6R5LYsxi8Ulv2VSjqQTAtrED4kx18VWA99kfvdGdj4mBloCT+BKEGoOWXXsEL5Kk9rcQS2AFWlPUtRiUpsmKvRqEtn9ZnCwZk0fVV8aEd8qshBcF/+ElEfQExi5M2PtA4ECgH7iFQsfaDtNZZD/YHXgMaOgAangQKgudqHdKh6CERAk0ryY4t6kHp1mEesGEU2hTb3pb7gLRxXUIf3CEZ8GUeVLafkERX/RTAAgxnj1VnTWItbKEN2AAW/KEXLOEQ/w5yHbdnWVcnVqEDkKdEW+IvQOF29SJJ7cIZUOAAHKAFsADLXley4hZr64EbZMAxNbc94dAfxKZFGPctBuIWLocEHEAUhhe2itdnEVIP1KI1GbSDygoX5CNk7sYVY4IHH8L+GjxSDhSgAR7gARQue9O1Wek3RO7VS3FDUQLhIi+lLacjDlkCfQGUFRGjDh9i7cLRFD7SH4ihCKjgGJb3fp9zgUTkgjE4gzV4gzm4gz34g0E4hEV4hEm4hE34hFE4hTGYLBjBXg0kf7cUfXGCHl0hEEToVw/NQ7RIiyYCJ4LgHtwAOqzhxtbCHUaNgj9WVktChZm4iZ34iaE4iqV4ivFhTnLIlrZVVf0MFwLBFBKBPWTBHr4CarJJY9xAH05AFiwBZpHYyZD3B+hAD+R4jum4ju34jvE4j/V4j/m4j/34jwE5kAV5kAm5kO2YDhhBBwqItaphiZc1FnmDHUaBHUD+wQ3IwQl8wRE0GWAtgR5aZGTqEB3b2LD4wRw0YQRUYARUeZVZuZVd+ZVhOZZleZZpuZZt+ZZxOZd1eZd5uZdf+QLk6Ad4oAO6SlMhFUhYQg7Dwl34dpQHaSAKoRKkeZqpuZqt+ZqxOZu1eZu5uZu9+ZvBOZzFeZzJuZyvmRFWoZZU4AcwgRvUoU/X1RXRlxXn2ZnDjYrxOZ/1eZ/5uZ/n5ApYEG+z2J4JetDo+aAROqEVeqEZuqEd+qEhOqIleqIpuqIt+qIdOiwYgd8ABnQL+qNBWtZagldCuqRNmgyf5KRVeqVZuqVd+qVhOqZleqZpuqZt+qZxOqd1eqd5uqeOffqngTqohXqoibqojfqokVqnK8WjPRokmLCpyQ69oJojmnqqZ0Jnl0SUXyLirNpEuxo4aMNLvlouxPO2QrQtxjp6TUJ9gwLFhII+2LoidJaHqeN5jAwi0Loi7nqC5bonJPJBPQWUKULQ6Hqw+Tqt19ptO4LLQrSaQPcFY1YjIs6tJZuq90IdP6KwCSMgAAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRow/x6SuoT99NgStd2QNlbZqjaYlcBSpm6Q49K8VkBfLmKOw0X9OeCnS6FKnbt3Djyp1Lt67du3iF8qsnsF5Te2qLTXNiLxAue6bYWWNnD15CxuSqVrXk7U4xXMUI2svLubPnz6BDix5NGik+f9xEFQRVrEtka/4cXwTMjp0/J/CsWHNss23p38CDCx9OvLjxkIYONAgRi1kgypsFblZbcanJzUsT3T5J77j37+DD/osfT97n0nU+KGAAIcmUZn++O27uLlCWrET0fK0tz7+///8ABhiaU/6Qkw0JFIRAgGr2NKXTTW0xA48piUwjEHUCZqjhhhx26OFDS9FTzCimlNKAAEu4I9RSS1mYQ3fYfSjjjDTWaKNw9GAGij/bZHOag0XdsxkollgY341IJqnkkkziZKEj1mQzTzbffFMNNeO4Rd8Z9jjS5JdghinmmPDFNg0o8GCDzznfgOPmm3whpc9m7OASiGP0HEnmnnz26adxN8lCTyD+0KNOm2+++c08c5HDjBsX/inppJRWahc799zhmDuIJuqpnkdF54YrGFpq6qmopsoRgWda4k89/uB06qmip8k1pz+WMONemar26uuvwO7njxvTZLbOOLLO6uY369QVXYWZBSvttNT26QszsviDT6zKdvvNXUtVRU6D1ZZr7rkfLuUNM974w2m38C6alzWJkIvuvfjmC95N9shiioVVwivwt+AKdIY17eqr8MIMe+ZgMcws4m6yAs86Tpx3bSaLL4yB2vDHIIfcU1uU4bJtxSgz6xkz2vlTqsgwxyzzRr7Ac0ci+FCM8qwq86MtXt3lkPDMRBdtNENtXduFP/FkszPK52QzySfCuAy0P7LgYvXRXHc982bwwKEVmzo/nWiVRQignC2cbZarP/bgU6vXdNd9b1t3WOML/h4Bm10xN9Q0gAEFErDhWbtnvAqY3Yw3Li087DjijTvjKIOO3yh3E40FFFhgQR+ebTaKPbc0g4/PjqeuuqWm+ELON51E8i7mFa9zzAw+2PGqZ/W4IwACA3DB6+rGNcUWYA3as1mDQBLvvETd6XNVu4BkE0/ZtJ/tzjrV+MOoZ/N0g8AKHkzQ/fOl/TWnvQ9dxxb68DO1mTdnwDPPN3h0gmz2O7c5Djqe2Yv3CCACJZCAGvEbjfpi4g/BFMMRvkgELs7AMq+cwRvFKIZK7FGT6CQwfpvJgUDQMY5eUI5/tAPNHjwghQ14oAzk+OBQmgcqDLGDHNPwBi4eRZY7uYEd/tPYTU0G4pgckgUruEhEMUAhizrBY2jCkmHXlkIOXOyoaehQBiCUgULaqQgvN1nGEnZAEG9EQjZS7EmcJkGJTwhreYXyhyvYsRVfyAJitsEIPexRs7JMwwr+cITy1vKyNIZsKRnMDDq+kQ1/wCEf4+ii31RmlzitoQSz8N496sEXzBiSJ6exBQ5CkKAVAKNQS7GNE+hBQcUM0iAsckgsDdKdYuTnDuxwAxrZ98mP2YMd8EgcCduUjTRIw2mSnCTG5MKXaDxgD83S0x1M0bxeikQYIdjABjg3OGfcJBD+KgYcPeaRmzyFGQ+UXJ7IaU10scMUo/DHOrqxLHBQKZmY/vtGPOjCD3wYYgPc4EZCNhPDdoZEH/VgwwE4R4HOWcAMuNzVUjzIE+YJREISzGFb2GnQXoVrHUEQCDJjJQ04KCOS+PTbOeJSq2MsoQnriOZBljIKUNCnox2pBzowgIENUECbFNBADNohnWoC5VYC8YU3cuWKouI0WATyhSsy0zd7+iMN+EBpSs3GjUIGhR9PmQMNNuEPAJKTRfHk6FMhMo91kPKnPuUcCpxhK6gA0w0SVeta++SgRLBDHlnt1DfqgYd7bnWS60BdUfjBqHUQYA7cWMc8FJuQpYCiqXvNCD3W0QILAFWbDSjCMufSFHi4wRf0uGlmTSULezSVTZ76/sY5ajHSwz4NWUi5yRYeEA5kUZQhkPPqahWSymH5IwwPiKt6GkBWvJDLFdZwxErgo9fhJmk6xQgEO3KWrG/ko7C1te3T3KGPuQGFL7wQwg6W8IA1+CUiF6yudZ/SOl9E6w8HUI5yELG7vETHvr7QD9ysOyaa+AOe7nHHNbT6pnOc4hTnEC/mcLs1n8SpCjvgxQ4s4AEE2MIkD9nMHRZHYIXcpBjWAMUvyzQPasyBCX2gq3nzshTHuEEf8RxeiZX0lDMUo11VTdQ4hnxSCZttHNXYBg16MI/R4oSx/thFCf7QvRh4YAMMeMTPZOkPZsRQvnvNTxN/Cx+bKKU0jZEF/igwtWMm2cMbS+PHkOGVjWwEAVZGfto18HGAEITgAN7zCSIaUA1uzGMN29xAA9bh5IVs5odtNgg7luoSHQ8EH/WYcWiegot3WjrSHuprl+uBvVi54xT+CG+evXUOUQguBA0INE5qtYwNmKEe90iFFJbgjz0sYaWUdYjGQE1dfyTCG18ez3ymwQxmDJjYHeoOOWQxDXy4Q9WeaiQcrrfq/kVDcBSI9fdEIkB/LIEKpUDNHkqQboyBeSAnGYU1yJzZOUEucbMcT1vsYYlskRjaAbpHdyjEj3hwS2A+OkE+sN1tnp2jFUUowinfPZF97sICiOhGPdTxgTWYtdgWKVab/kNoG4oTZzMniCPAA7QZCHiPwQJbxynawfCGK0sc60BHoz1ymjVYAB3bWMceELCLnVvEFMUwKk5rPIqW0Zs/BnbEKKC48vJ4wxQJzgbM4RWPSNQiyDYXWEDH/RF9+GwXLjCDP7qRixhIIR7v0DRGmDEN1e6V7v7uUHTWnKeqh4eKg3IXbJ8221OsI+x+w63cMfK9KsTAGPdYxxaa4MYvduQmkLL7nxafMcckDsShXoolbPN0vwenRaSKx/6OnA0uIn6SJl8IlFNhAVEswx/BKAEb1MHokGzGCRX+Ezf2GZr7fPpDoPCS6YvnD2u4wj1bT9k3ANGL6L8eXlnqyJzY/rACanRjHnMYQDiqFHsu51FSS2GEGracl3uQIxF5t1F0AHn+5QOHGewAPj6ukb1vSKMWBnd9ZrNSGnEa7kAMHjAG8mQLJbAE42AL8VB+7cMMyrd5/sADUMB+dgFikPJsNwJiphBDpWd/eBFVgeBs37AN/TcOtdAJhyeAZmN5FcEPm1EPS0ADVcMNZFAEUtAAA+ABu5AT+oALFiIpv/ADOrAKB6EO6sB5QXETSZRsOTUPVFgcqWQKOyJcJEgXqbQx7nJwtOMjSpBqMPg0zBJsEqEiqvAAm7AN8yAKG9AGyyAFnmUBX5AT9jANaOQncSADMkAHTIEPdEAHmZZb/jAK/pj1EaeBaeARTB64hZwhC/DQVNbnN8dUhphTD2gYETFQBOdQDeDnAdSwDeewYdtUBToRQUonJtxwBTVQA1AgUPAmiIQoN0jhJYzBc/7gDFwQAAVwALPQLMVBLtkCb6sIiUZxE/SALexQD9xQif1TD4vggqWGiW/SDcQXEW2RCjswB/7wDbvwAFtQVrmwBEWwAysgBcEnEnnYd33yCyqgAzowAq9AEOU1iO+FGvUwD+3gDu3QDupAdjjhDU23jhvBC8oRAhgQAgXABU44GkOCFjM2gsjoE09RITsyT9C4M+OQDYuwcNZ4Ww9pEI1lBiWwDPcQD+bINtzABjTQCPJk/gz9lRNeQpFKglBqMAQ/8ANeoAZnBh+06BfmoAOV4A5ewAJ+CIt6oIEhERNFcnwZUQ9F4Fk/1VAH0ArHsRTMUAv+IApLsARSAAuyVpFDMT+GsRdgxz/fUDmDF5IVsw37aHQFwReZ0ACi0D2b4AKFQA3xwA0WwAYqEicSOBH3sDQ2iST1YA5XYA46yZjiIJi06A7uoAKMAB/rYA449woXYA5yuRFU1DIhwQsY4Dk+ZZUw+R3I0FmJZgHeSJZleYid8CobmYlw0Alp6ZYW8y3lxRCctAJVIA7c4A5m4AHXcA3+wAYPEA2DmRHtspwbgg99OQQ8IFDmMIuDyA0sUJlL/hGX0HABxuCcDHETd5AtWngRpXAADZWe4VYGP2kcK6RN2uQBCaAargkU3QEp1uAOKnhYrTc7uBkv62AIIVAE0VBZ2qIKHqAa3GALK9AG/nAOwkADVCBPQiGer0QmPsMN0skNlHWPXqACMvALW4YP88ADmLATTjcSx7ACnNOiFHAAWuYdNuhZ8KloZgB69SmEm8EMvmAybblV49AJhvWf3eIOorAAsBYD8YAhAtQNS1AFQRgNXEADbDMPX7ADqiGDP4FIadUnGjqdgSgIFzAMdMAD53MTXpCBOHES8IejIjGVDcVNDYCV3kENMUCjNbponZmjGxEdeCAL5DAPYLhV/uhwCpFQc0T6DfrABoMTAgAwWAQBnf7QCB/QCBH4CQ+QCnQFCzGwBoa2p3gYSFD5JV8qi9YZB/MgDiNQCT+zBjIwkwfVfAyUE/HgZ9tkAYUDHuMwlTW6TTHgDuXJpxixFLKQOKq3aqtHpPByDrPAUwtgOPGxFOrlD9XgDuZIDeBwDmxgAcsQdEdxEyHoJ6UaiPjoD78wpv5QCSPQDtxgDpgpEqkFfMGqEXxRBD3QAzgglqBKGnTYqwkAOuAprAlhDaaQLeuwYHl2DoDggsoaL+gQDSZgOJcmEKJQe/rADaUQA8LDDbsQA7z2DQD0rf5gU+K6oYGoBmoQJ2pwAd0p/gNImZSwqhFtQSiaNxKjta+kYQzJ5QE8awElUJ0CGxIWkjikVo2SxEinMJuJSjDfwyi7UAVLQFfUIAU0cHvhUAVSUARrcGsB65nk4CpearIGQQ3U0Bbc8Avm8AvGsLZrK6JdOxBJVGk9USvt6R2n4QxLAAAIAABZsAi7ErQcISS4Mg38sA63eViMRFtKm6huuDttEAOXIFCi8ACNsA3+YAsWoAlNYAEN8ADeOK86QRPOFrZg2hCbWHbL6Ct74Q7OMA/4wA7iBLqAuxA3QQ5jUQ/dsLhHKw148IINWzHMEg/4sAJcMA6PuQQlEA/RkFAfQFcf4AEfYAHqiLM5cQ90/nSYSTKuRkET00AovhKXTRZInTa7GTENuAAphot4iXs5vzsw3LMLCEALaze5huAP4rALNMBrgOM5neuN1KsTyEa6pjoUF/mIv/IUTYW95EsQNzGJKvaN+xl2jAQIeNa+ylIN+uAMHitQtsAFRXB76mAGKxCEwukDjbAHc7AGMUsUc1IMBbUn2lsUoJAYb/sl3HsHCxwRbuMNGWm0EqYMveC7FqwoCEQFO9AI0TAPjeABjQAO/rAJlNsMu7gDZiCQcUEkAmwU5EAONQtV90B1OUxc+sAOrnI/MAiynVALQjzEVWKnUhANwmAPOyAEAXUO5xgN3OBPAyCTdyG7NxLD/kORfH5cI+W1mxWRfKMaxlcoC/iwDlp3xoX6yEMMDt2wDtTQCJn7sI3wAPUbDcQQA974DcYQAxM6DzUcEhRyyv4ByEfVJX0yY5o4EVrpbIPsmtFxB97QVOAgDpjILJGwSJO8Z7AgBE3QDOsAC0+wBLYwDtSwBS4gv+LwBT3wCfjwDnnBDoKiyvzByuZBxi9cYO7SBEsgBG5kxQ9BDvYVxgaxGa6AiEyDqDZnPWkQYRacgv7wBStQCtEgdDTwB8swD6VgAYbQVbPgAX8gxSPpFvBgDbUsI9zcE+CayEsCC57jOR6wAmMpEeTQnOpcbEpEDznzn4wUwf1zuPHSf9/A/g0NsAfHEA3HQAMxwA3GMA47EAPOICX/JAzroKV3MQ0/1NAe8tA8wQ6GSVraos3yIQ4EUALa5FkewGu1fBOu4CpIXWLk4AoxAcxuKVvO8ALLsJYoE0nHIAzOkL5Qcw6R5cPB22KG8AGfMA67oAkIIArh4Ayi0Knu0NIhoL/NktBgdowc4Y5kItQ6cdUGfBRgJRC1AthFcRqb3KsbUAKJRRGIFC3kSyAbIw/1kKwh+XAHQAIFMAkpAw6foAAF0ALHsEhVkpZruQxlQAWfED4V0w3+8AmTMAlb4ANBRws0IAXO4A6pwAUlkArgwA0mCVnxIIwLsRQCZc4HoRYJ3V84/iuN6wDUHULYOCFwzCDYbsEXsMAEPtAEgMmUSMEoVwbZJSCWFoF/C0wfIZUNnOLDYecORtAAKbAAVDCK3bDa/J27QzYDCkABC0AGD4oOBn4OCJ7gbLINGnAAC7AAy+A04TDhFE7h2QoLL5oAIRAN6GAGO6AJzoAOmNwHxvCGLrAFO1ACK+BGSyE3Lv7igbYCOGAETCN7jMIGbIBADcEon6Aazn0QmfHjS4LdI2G9xCIXp2EIDRBuSz4D5xMXfLEEeAqfK8DHFuEE3qDAy5cdNjUPnI2b84AEEkA4TAAMy3DmaJ7my3AMx0BKErAASNAOae4M0VDndu4MwlAADSUB/q1QDUm2DYAe6NtwJf7Q1pwTAMuAAksgDMfADTRAA9XQrVngAbawBgywTcLjaP7QAoRDATOwwgTBFz2AARIgATrXEGIuAQQ+kvHQByDQAvNg3RtC5CFxEwI2F86QIJ3jUw3ABvn4FksBCwjQqx5QAvwggZvhHloOcNZhDYEQQ+BA0kSaDdWAAw6wArYQDc7QDNze7d7uDM5wCeiJA8HQDOAO7t7e7cfQDISjABKQC8eg5svA7ctADccg3EuuARvwTNcAC4hgAXvgDKnwCR8gBcsAC1yQXNL7Pwbe8A6PDrS9AukZAvIkme4QD+7QZBqPD8swOBRQANHgDpn24iTf/pUBTgEC4EbEVQ/AIAApgCCgPuRi6xPkMHV0QQVLDlfqMQCnHhebJATJ5UIbgACZINHL7Q8jJus7Nm/aMSUNu5bfQA3LAAz4cATb4Azznu5a362iwAbbrvVa7wxszgVc8AlSD/bLMA6IwIPO8Ach8ACLfgytYI6NcA2tQAUl8AncsAxmUAQl8AAW0AiUI1hvEkkgawe+WACG4A7dwMtt0t/f0A3ncPIBAAzc0A3FmfnX0CPd8IyicPIL0ArrkODokOA7vT3xYAcHkAIYoAExryS0/hFSzdFyYQY5X5oYMADLWxdZgAAJsNSp8PoP0R2AtOyRxkH+cAbkIGfyrb7n/nANWN8My+AMkiD9YI/2zlAN1w/24F4l0ZD13n7m4MAFK/AIx1ANXOABnwALzrBCayAMy9AIK62pmhADWcALqaAJorDGQoZSUjIJANFK1Lxu4MZ9MwjO4DiG39wBo3CgDziECsctXMjwHBMCBMokTCjuG8KR4LLxKrChABV/9/y9hBlT5kyaNW3exJlT506eMLkN4cGt51CcsmT500dU6VKYZRpYoEBhw4YQAb7VY5qVqL5118DN0yrznrdRYc2eRZtW7Vq2Oe358+bG3zqFde3exZtX716+FMFRW9ZM8DJqcpwJRpxY8WLGjR0vA9aMwBxbvFJtMAPrFrAiHo7B/jq2hEaqXLzYPGjVzNlqZ+f4MrwIbh06huEOMgRZkuK5b9li26ZI0q9Ihc6iMRR38eC3cSIZcsPaDESrefjaXsdu9mfQ7DXvTfOWtHtYQw0wUIBKoUEPdy7Ha71Xr948rGjvsSv7Xv9+/v3Z2jvjqIP6IrBAA+0aKbDElonGE2cUdCxCCR+Lxpk1LGjlGFEQaYCSY2zp44E5nIHlkxiWoAaWUmJoYp1lIHRmm9gMVC65vsbJJhu/ZrSoR3B44yYbksy5iLm6tkEnKXzwkYefevjxL8rxthOqP3JGuUc8KXXCigsCQsAAgwYOOGZLM2XyhZkz12SzTbVcYkcWS/zB/kfIA+/E866LADtswWgGAabPCQedcJlj0JlkhyWOWeaTHXzYhZpPihAClmZgkWKFT6ixhYsYGlknMsWOyzOvisARxy7l8rpNVVOVywYdd2RaZB333MSVKCr504ceUMjJ1SZ93JkEAwIOKOKaYKOkxxF2bl02WmndHAWestA5tVRt+/rmHG4eZGwZZzzxhBpCz3XsmGioWaKIR3iJhosVGhEmmi9i+AMWagz5YA1blhHFAjaE2eaYwRJzJttt60puQL1gS2hVvRA6aJ36YLLGDXignbbjl3btjx12PIYJSndOjodk/YppSWWXX2ZLH2/sSWQuhRfGGa9oJjwmFkHR/gW6mWW2EaWBNXLJ5RgGtoAFll1QKAIWW5zxYYdbUjPDA1hWUwzCZarJ+cDmzKkonBvr+gYsmt6CuWOQ39NHH1wcaVu+eu6B8kzr1iRHLrbbBjzwnrzBxRV/eOMx7LC/5RmYMLgJGmgGgTGjAWdygeXCRpZJRZQH+ljGFkpE/FAUGmJwR5jG+mRQcdfzOsemae5gR0vB3Xz7vTjpud3MvV+q53f/kipmGqR6R753th0xxXgdX8+ZuW2uMbjQYzyJ/NwXt3lkhTWEOcYQIZbg5ZhWdthBX1E8/cSZVNYoQRR0ApXQmWN0gz76cVK2PSZvvEkernLXHd7NqX8BzA4//qyjDjbMoREvOaB+kiKLkUUQgRcMlj7eYopamGIuz8vftphzDXANylCxMFf2JBSYavhgCY9ohjGkUIJP8IIaZljBHpLWhxWwwRbX2MQH5kAYCE3oODcLodi+YSuceIMZHMOgfwaIHZfkwB+8i2J3sLIHC0xlAyuIhpnecoaRZdGMuIqbP4JgD2/UA4lJPBBzSkgoyCjBZypMlzNa0YA53IIXrWAAG/wICw9EbRbbKAINpHaMIqxgF+JC14MSB8c4qg0nrjjKGaM0ReyQA1iavE5SDMGAEmzgA1OhgTsuFiV2fBKUr5SSK4pRO4dRslTZKOK5nEGNn+ERYcc4DWhg/sGGBqSCF7DYwwM0EbpGJGAN1KDFiraQjeoFjRu2xBM68JE3nEzDGrDkDydj5g9HTAOK4NRKUjxQgi56EQGiqIcFx2MPctzheOjEZ1vcg4tikGMd+MNmgZjzDT5FzhmD8MTOfDmYY2zDECtYQjWAgYgYSEEYzviEaB6ZiiLsYBOXMoMLGvEQFToDHSDkVhK7lTKdaNAVxstnd8TJFmaAIksxPYsoTulFLy7BH6v0jywMh1OihgWLZ+BHNtxRkIDG8RwkzGUkUTGIqEZOXeCgQRFEcYxjSKEIexCMGT5Ar2vgMF/RCBgbjFPNyC3jGvTwTVPxskSg3kQf8JDF34q6/paZsoUe8tzrTkrB06l84AM+rSt//hpYxvJEPF2Y5TzeKNeJ9TJ7XF2o0MbRBwsYAha8CJgUeOFHC5ihFbywxQ4qZQtq9MADgbIs0FYDjDmggxuTxGbauNlSelSrsWrpq1qY99ulrGMDHiDsA/ZwD+H5ZxqBgAdgiRvY/1mBdyhVSEWEc5ftwhFymbVfGBilwq/BQl5I4wUXLCDMOWzAEJz7BAL+ELpHeIAL4xCVL80XAAwUIGGUBQc6lHKfoU5XO0CpUnbu6gsDD8Ulc3gAcqfyFHwktj/9lG6D8zkWSzDYHToaSTbCYbZ6gCMe+PiGP4Q0EoTgAxz4cEeAEbJi/pwNNBpVzZ4zYhGL7CnoEyUwA4N4yAWuPmIJN9iFM0ohhB38UBT3SgU46Kffb4QABRRAwQFUDBI4Midlzc0J8TyoYa0E9yxvKfAF9RHPefpjDgl4QAMQgAJqtMkU9NArmYlqD3tY4xT+cMdJR7KOddRJGdnAwzki0YV15EAZnVjEKQBRCyd84wydOMcpPgxod7B4sq+pxhwzWw1AsXVQ9otGOHqwA1E4Yxc+EEINnSGvPhzDGWygQb6cYYgStCEa1cBx0I5RjR5gIAQhmIE/tmFLHDFRKW+5wzn1zBMzh+UtXYDpBeujQTCzBR/VMAQbaGHJNd3Db9PG6d3gwQ48/viDIdnIRzx60YtT4GERnaD3OE6BrW30hsY6Uscp8pGGWpxCCbXoRI7isQ4aCxQcN87sYpwhB2qYWkLAuEZ8PcuLTWyADaCxxQO2IAxYCEO1pFlGEUIw3ogjxlANEEAIulEQkaQqhFfpdk/YkWd0UxvB49Egz2+XlGyIogyt6IY/dtsWDeqDH/HB1TSw2HNwWmcd/rDi4aSRDWk4oRZwqEUv8uEO11RERyAOcW9MopBzzAYf46hFJADRiU5sPRvnwA1fvmHrlvtpEIA51413EIPPDjMBrRCGLczwANLcwhAWWEM2SmSBPYzD4hFfRjfm4Y7bKoQ4+bu6VnhnRaFT/v0m1Ra9P87QsuRhRRMFOMCYDvDADJsFHzdtU1JA8U3TvxIrjWgBCfyhjFooAwvZWAQ6xFEP2qy4JJ/ObnB68w10xCMe7lDGImqxiHk358MIOsiDYhtxZ6DijitsRjbmQAMzVLwRHtiCYAyxBPIBrAgl4Gor2vUJKfd9MccAhmVgGIkJG+pjqaxIijmZut7TCdRjCt1zJeSxDls4ADAJE2OxheDBqXu4h5qpPQZsG/GYgwOwgAowAzfYhlrIh3GIMYCKHhY7B3fYBmmoBWnAgnqIBHfzjSXipWBruVgoFx88hmvYhSIoggw5hqzanGPAoVrbBi4ogUbYhWvgITPI/gaI8z+JWwYeGYlxMJuFqZicG4qkmAZ4AEGf4w7sSApfwD3kwYpji4qpiAoU+KkN9Iej+MAzdBl9UAZ5QAEMsAASaAF66DzKgo1sUIZTgANlqJNvGL8sPAZzCANzCLZjAAdDGIBMuIVd+wBDwBxheAAzqAxb+AAqaIVNRJ8py0LHMCkfIcA8OYgnQQt4OIEr0sOccMClSIpA8IfSC0F/MAFARA+oCIEG8AdyQyeXAAUAukXkEY9RGAVTmIJi1AAz4A0AswvfwBFpCIJsiAVbe8S+A8C/W51jEAIhcIZbwJQPkBpeWIMH2KpUeIQGaIQPyQQEQIRtUJ1VjBBnqIta/lqY0EsLAPLFZvyYn8sOdjAcaftFDQBEC4AKCwiBBzjGoVilbQKcpPAGljHIwEkjX7CGIJgGZfCHSYgCNsCHZcNGBEEIdDCHQUCFRYAMLORHwQBCUyMMaviDHjoGXngoLuCGiaKBJQCfjLqBqREFKYiBYKi4cKzJbcC7gRKhcwCLPAwzf7gDayhIg8zFpTCF8EAgrPCBFUgP9NiAHuhFx0qKVGCDPZgVZHQZeqKbjmybo3KDWXqJv4G+pjoHc/maY0CFTogEYNgZH/SlwBiE87OfamiFivqEbLCF0ymFYxCGdoEhYCqBPQiGamiDXDMOw6zJZiCV5fhHJXIHMcwK/l8wILqsia5UCmZYLATCh3AQABSQwxAogGrYyplYhx0gyw1AATNIyxC8B2tYQNacFn1wCVOwAuOciaTYy9zqJfuJhUjwBFsDzZKKBVRADGD4hsd7hFsQhkZogE9ohUb5AC6oDFjYAClohcqIgSKYmtA8F6ZCFS47EKxYulm0ShB0TaJIhGfBoHmghgo0DwvIBaXriXPYAS86JQuYg8C5B3hIhONEzmgZCyeAh2+SthhbyboANstiIVQAhkjgmlUsP+wRjGjYgBiIBnXMlFI4pjVIAGFAGjawAFEAhlZoBcrDJfqko2vADYq5k0JjOnPLpAuVif8cHF+wh/50mVIw/gNRgKCheAQEICwLiAFlCZxp4EgljZZi8AYrYAczBCybA7Dw80EGAUxAiAZGyU50WQZukANg2AY2WAFDIJE/qCh97B4qKLKOAkCOciRqAlJdIlKKyLu9oD6wQE0EdKJ7AtODTMPrgAcnhVKP0YffwQer1Id4qBzC2oBiEhyRmdRcsYeR6QJZ+FKcoIs07cFCcQZuQIVjwIJ8qIbLw6NjkIZJoAH3PIZdiM9WE4YmKIL3WgZ5QQTCZINODLU4PVSheSPcoojTzI4NOtWYYFKeiEYNG5bFE9X1EhxTmJNsZRPeYYYT8IYy0ol7uKamCj/JeRBggINO4AZdtapvaC9R/tCXZGoEWziGTxCYwrMALvisXTgs1ohWOY2Gf6RWu5BF7OCdWtxNrkRIpoOHiiUqRMBSnuoiYbidjTHXM7EHeLACuUgjnsCWpgI28jKHTgAEUcsxyOgBH6CGI4CG0yG5XJACD/iED+mDBBCF0SqPT6CehQ0akxIHbJmsJaITBfMHNdHYZtzWdpUlPasGD2in43qAP3hawLEGUHjSkY2SuPGGWvQHM+wJfiAIZrtCSFKhYTMHLOCGF+kxwCgPPV2GKeihZfBJGuCCN00U8mmGT5ACGmBTp0TaxVgGQ+iDVvini0Cc7DoHrHhUs7g2cshUBqxanLgHX2FXDVsGC0iA/gZogMlYh81tkwCdWrJFC94BBUswU6JwEmxKocx6kVg4BVQwB3xNl21oBcxotUkRgkkwlyKIgU8IFCMckWVoL0PYBqFZXDl1BiaIvQOAhRW7jYM4sf2QXdXtvc7NCXqwUOKyjnMQhj0QhWu4XI8JXdcFurdwAlMAX5u5uW9AUWeIBLqF1mYAhnHAoU1IGk1oAM+SgymA0M8SBfu6BYC1gC+Al/6dXqFZBjBRD0p4PopABwu7DnKYhtal2otdC3paPXTjQOCpXzZxgw+G3/dI1S5ACobciX/Kn3EoqCwUF25QAr47tVyIgR6IhqbZARfYBWFIBTPYAM2grQYoBWCA/gVD2IBGyNUJDpo5NQEL0IADEAWKYQ6B3A9fMAUQvkXxFRZ6UJOeu70UbpN1beHuIB5fyFgZ5okfccFSkR7xq0lDAYZYAIZqiBAGaYY5+IBH2AZbmIMVmINCfoQY4IIwiIXuWQJDyagi4AVDpeIqppoemINO0+C3UGOeeIu5hF8y9g5raWM3wQVvkONTZoq3AIVRYMawsLpjWAdOBsNYBdLyAwQHqSpgAIdWWAEp+JdUCOZSIBEhoAFKcAZoqJpG4IVmMINcQwe7veS2muYY497h8QdLiGXXJWWa0IdpGDNWPhNfwAVJJWezcIlZisCwyIUVQIEeEAZ02BYckVn6/owGPkYFmT0Gd1CvWWiFaJgDD3gE0JgEBCiEkhOFDViDrTqGD5CCCqnmw/yaJWpfv/IHUEDnkf3m59zIdD6Tj/5kkL42W0QLLmgACliAMuCG6MyLlp1edVGCe+Waw4AFBjADYVBH1yIRYBACFAidVjAEoYWGIygEBIAFap5o/YJL/XiLWizfbO3omMCKYmCZi46J31llmriYrZaJlP3anrAdKNWSTiWK3wFrnriVJVEKcvAgDgZptcSF1RNjnKAC8zgANui3PNkGPJ7gOSU4URCFbdiFQ9YEZ7AFLkIEZ+CFOYgBM3jRT4Ca1WiELOiBb4Hbpe6xaMiGiA2q4Wzh/qkGHn8QB0mIhbN2CW4QhWoI65aCEmoQBXAA7ZZ6CV4oBevw7JzYm12AhZfA6papB6mpUp7ACnc4reHWCX54i3XYKuTmEn9YBj4Yh5/67bieCXqQC6/uCVEQgGOBhYfdC5q85GNQBz6ASC7YASqwhW3YBBeQglbTP1YzlMH7hBcxgxjog1qoUwnWbMUAm4to7f0ABQFtY9EGNCq4wBZwBrieiXMwgvPQAByo5Z74Bh+AcLScleTWB2E4DwrQADaoQ55IBQ8gcQ8wBLNObn+gBA2ICgwQBaxOCjuICgoIAV7gCSfxhymY8RWoM56YlRa4QCbwYusW62JwhLrWiTq5/oVr+EKHu4b+Vg1YYKcPIIA/yIVloAIPmIStMQQE2INNbATKmwVeoIWCBYaKA4beVVwoX5D/yi4Gvw5HSLPQFmF1rgcmWIAZx81v2NScqAd3mAEJ0PMCqDAuWYcZb3EFqEicuL1j4K8ZV4AymO2aiBtYIIBS4lpDYL2b2CZEEIAZxwABEIW0rgmsKIMCAHUBAAY4r8MiEPQWFwBqYHWwiLkZl4AWaA8iHwpgOeO2sId7kKw7ueGlJhGy/IAD+ANeOJGdTSQSuQUu2IBWgAVgYAOkxsJjeIHeZXM6qobEGXI39odi4D1W7uhNtYVPl4B0l4AQkIAQt4lOnQRUV/d1/m8Bdy91fyiDPJ93DGCCTa8JWmd3de+vZQjwmQCLAUCBdrKAEkCAeFjlPw+AgE933DTpd8cHahAADJj3EFD0po6JpGgFBaCAfQ+BRbcJl5gBiRf0AviEgtd1cPaHQCiGkRaWlb2RbLjniZ61ByCBI9gC5cqGXHDsnOaFRhhKbuAFE5GCh4CQY8gHOaDEbf/jaJARhUkx/iiGNEnnjsaKHhj5eaeAFpBtnACL85h3QS956QILBdB4sG93uLaObNB3sGcJGV5LUd0ACHV5mLAONmh7dacABWh5wHKJYjt7CigAkMUJrIiKwy8Ai8mJQ/96gdcyj395mFjDVs0OGp4Y/oNQqG1/kFZohDWI9GEAmIrahGrghSXQFEORgh14hL3rmmiQBEnwXSgXl27fiwxvM1DgHZo3vY4Gi8YHewxQ/JsAiwP4+3SnAAzYhpwAiwJYfkHXgL2vUliYe8BPNrj3ByjGe5+SYZcoA+JnfgkAcdTs+slnfsHfaJnAihVQf0FXAGq43GgIgfgPfJO//JlwCUvgRacGiHHgBhIkeI6bs2XNFjJs6PAhxIgSJToTBuualBWlJKEptKFPrmOfHjQqtayUhy3HqCl8uGwZKnMTZ9KsWTNhNHACCxb8ts4f0KBChxItalSom2n2jjJt6vQp1KhSp1Ilym0ID25Vjy6l/qKAgoSwEiiEuOe0nr8eYMWOxeAPLdN5/jCsFQvW31KmaAvUHeugjD+zTY9Z2GD4sAVD/vAx1efP0Fi2FA608uf4qFkmFPpSKODs8lG0LfqOLRAP7lF9+OiyjexP7tbYsmfTrh2bnj/ctqHy7Bmtpc3gwiUKy5Vqx5JjsI7BIALNVq4iK2DlgjUHAbCEE50dUxIL+PDw4pdtA/etd+96/HYz9QaPPfz48mtfzQq/3ja+DsJSUGDkbVP42DMLAXVNBhhjTOGDDyIC1IVBAYpY1pRoX/FHwQLuoHaUXIUdZtgHrzklF19rgeUWbHr5IwBrYykwg4gK4vMNiyYW8N+G/kWZVcYBBgZwjD6gzTckkUVS5ZgbzExoZFDznNdTN80s44x4VQY3ZSl/WIBIM7zMYcEfWrSCCApcUMPLJzE0sc1LNeUTBkLgWTmnSzmZhx5P37gDVILxOVaMK0oyOSih7NWnFXuq2SHAWBQE0EM9gjXlGBuMbhYAEwA6xRgVlkogAGA5GqUPOBgUOFkBnyy2qT7OWPCAYQ9YYMuSjfkDywElFqCBM6Lq6M8nBXxFgQAhrOMrUWg1OKwAOLy1XlNyMRHAZp+ysWqh2Worn2OJACWkkYw9+eRvdJor0ZSZ0EBFK9eI4sMSpRyTTApJfLLMLkvs0Ag4cqLrjCeeoBLN/rkFT8kNnngiChSysumzVCDbSjzxU4fO54wRFJAgyp59PsVLESHM0EqKUbXSAwY9wFLrU/HY0UIIZUTDsoL+uDNHDCvM8Q3NqfkDDhshtGDHnlE5dk0ZQvdRslOOHUMFBjMg4vFT97TSgn/AULw111QVI0vPRvLjzjffnHONvwWbu8wxzizxQSmwOGOGB4jI3YgFYAxyTCkP7JELm8ItE40zwByTttpXRtPNTgn3hM8jK6ygGLi25YBX15lPbLF89+CDDTZhNyWppFL1SfVT+gi2IFX4COY5VfcIVg/qmyZ4T+VO4c5w7grqA08xmmo+PPH+FDPNxPh0A44zVCae/rgzrWywhnKtxLADL8tJl8ssuXDhgS3lVjnIIM4/H1415ziO3jm8xEABBgeIEh85wZdePP7zce5nPb3UEps95lGP3k2qHvOwR+02ZcD7RQUf9aDdVu4hwATqToAEpJAFtyKNTgQmfx7clmOYETGKZcN857NSNbYRjd+YgQZ9iIZ1PnKNY+yhBGZYBi8acYQ0mAMYiLMJNzxRvsOd8Cbqe9L6CrIOWIQAfgK4BHzo4QtrsOODVoTP/vxEDkFdsYteDIo3lHTBL5JxK7gwRQezlaB1VOMlJiyiTaY0BzN8QhQ0WIIPRbECdjlDFFTYwSaO0YyMrOIYcODGD2vCNnMo/qEd4oNjQxLijG2MA4lJLMg4xLGCAxygAddgDzmsYYkyknIqWYTPPazhrVKycnim8IXoWinLUQGFi4ViTDwqyY3DZQeSNjnGNrZgAQt4gAaikJsZPtCIWxyjDxaYAyyosYkHzKEZ0ThGLGLxRvE4AxVh8MQ2i5gQanyjcZfsDTqy8QhKjGM3ZilG8MY4yzKeMlH2QN4886ktb9hDnvqcJTPOgDltoeNJ7sjhOATpS5oAwx0DKMEHNqASWFxvGdQpgguEcYtbcGEDu2gTTPBQjXMtgxt7S2TisnHOJH4jG91g2myswM9/6rOeu7EHO0ZI050OCRTTYCBP5wkPJeWl/lD1GNc5+iAATi60Jsc4xzA30IA19OEDe6iGLQwxvW3cAhExkMI32tSM5qFiYOeKxiBi4QlEQjInllwpnsr2k9kshR2r9GdQPWhT2+iDHqN4T14DWxtLsKOogp0lOUZBD7zydR1I3IYzChACDGBgC9to6kQUQlEPLKEIO4DFMmZBgyKIwhm2WEITNoEOIjKkcIDw4dqo4Qw5fCecc5IkN8wJ1/Whg7FECZI/QGEJ3Pj2sJrbq23uQQ7jMrcqhS1uczUXJFN4g1COmUclCwJZyVKWCt/ALEV4YQtnFCEGn4jmHFZgt2OIIgFzcMYjG8KNSMSXTt38TtvUtgxy6na3/o7bBkyhYhZ9BKEY1YVudCmGXNr87g6wTDCEjUKPLhQ2wmTUBzuqWyj1oWcdomgACjRwD4WC1yHOyB4sGsAFXmx0CRYABmiXEIKRZpYaSqgGic3FjTAYzrbhccby/AvXbcyVKvSYhhssg2ALb2vBtWFHFZksZShL2Yuq+xqhnJQwn7jjGuroZYkb8pJWzKEEj3BGKvD2h2jwog8xMAM6hIHSKZHCx+E5RjWocQRgAINgVZqSM87xViGzlIJF+Z0/zjANXAC1ysVzMm2O52gLe0MWwJ10/pZyh4HOxzH1WEeQt9yNbbAkzK0VxjEegRxYbCMVMShCKpwBCynsQBUJ/rXzQqaEh3zkmE4vMakkUMESlJp4StcQNKF32414RAU37LACLnARS0x3DdKzwYUlLj1pAw5QsLgAG7Xx5xjCFokx7sjuJc9jaobwYhtm2IAmcuGML1iAEq2IRiaoCV9iMwQmWODG85ZRDU8Ao3zauclKkq3waeNlKW6wAj6XHG4mWVs29tANptejmsOSY7kTJ55ZImZY+RTUv21cNywesARZ52IHRbCFLYTRBAt8A8zCccYuT3g4OQADFbjud9kUTmgAP4UeJ6AHxj+ev4rHBh53YEejIbwMKjQgBI/QiqFL6ZhAKZ14jrjHyBOFn/5ekq2+fAnbqCEMM5SgERY1/oQF2JCNXBiiAXs4BzDGA4w0xMLPiVMINYItiV3+cL9CF3qRjTKNRGyaHmHv+nGxsrAhuQIeUWeuPubRh05iwAIHCAE1sKXPvuJC4pCHDztMAQ/TG4Ux+kAH45LtdziCAx3bcIchaMAFuVFUCKBtxQ6oUIpz9PrmwIgEawMu20F4QhLm4I5DBpe+wwu9cnkpxhniGaDTb07yRiqG6qpcD3cQgC4W2AwFViD6fN4DHmjkPtfq9/jZOGYd6Cb0Oer7d14sgQZboPUn7MI3bIEywUIzaNUeEA6/UYThzN4JUUPPhcExsJVCCJxOUB/iGRBQ9JM/WMMdjML8fcsDNQz8/hUJ08WGL6DR5QkWWsxBA3Qe+lEACvDCTukDOeBTCUrMPUzRfKADBjIPHJGXBXxAA1ABi7VCCRRB9iyDEHiAbBUMN6TBIogVJJnDIARb3jlDOf2gwn0DOgCFWSxFF5hC8BzFekAQN+gBPrBeDkrFCW4FPWifhaHFDMQg+oXA/PyTY0zDKLQhCNGDLGgYe8RDeWDgOPyclSxDDxQGNaVCG2zAHjjDLsCdHaADLywgTZSUsGHin+GZMzAfKiiDTwjEoHHh+nTDNRRBABwAL/CDEjwbGBbFPKwDNCQDI1wBC1wAHQiPHxLJGx6JP4gck6EFGzTABmzGMMngyvyTw6VR/i8Oij3cwyrVBmN8WqhhIMAVUTSwAQLIChvsQBPAQja8ixDYwgwhYhxVwyEV3wn9Wi9kAx7UQieAQzbEQ0uVoin2hEulggB4wAsUgBacQhUtllGsghfIwAiwgA7UgBc8yzOaoPcRyR4iDxuyUj1QQ7FQgGFYQAg0AC/Okurg4EMaiVkMF3usw51wYTlNSRHZwiPMgRBYwCeMFxuUACIMDifGESqkwclBUkJUg9lUUjZkAxZIwykcSyUFXT4ORNlkwzigA6hNAQVYQAo4wP9MWzWsAx3UwEL+ADSMpJH84lSEkCswXGCpxhz0iEZiQANEQ0UOjzUk2QqCJYP5gyyI/qTDkN0P9uTfbdQteAAVHIMtwMIO7ABsBSE6mksptlQtAAIg1IJecuE4DGUtYME3RMIKkIADqALDMYYOLORnVgJdQqR9FMlSeMtbttIc9AAK9EAMdMNcXpg/OEJujKZE6kNZxmZjzAPCLCVBjMM2fIMDWgl38MIurEEJvFcrGIIH7ME8sKPaTKAS2FzAOQM1kN1k1t465AMgnEJ3SoMyDOU4xINjOVZSls15BJ1KldM4nMM6QOU6SEM2+E8vKAE4AAJj8IMs4AKzRd1lhIJC1oAg6EBDBpht0kdEEolZOILHSVmCRMM58AlNlaQzHmh8VJpZ0lI9wJ5vEkQ3bCMb/oiClNgXL0SDqhXBLjSDqy1Bu+Xd2R0DfZ0Pd0QDJeEjU7bUhq5DLZxCJ/QCHnzDIpwCOnTCOmSDzeBDPODDePrDNvjDdspnLUSpPEZCLwCCMiiDkwDF00XCt3CIPwyDGrCACnhBMgzDELwGtFiooSSognrDNEoZaKTm8PiCt+immkaFWSRZCE6Kk6Zkh3JDPHRkA1DAJdIJMFDDEsTAI9yCM3xJIyggZgFDLPClwVzDBZ5Teq4DSn5DePbCIuADFijDKWDBKaTBKeCBNEQCFsxDBchjGigDlfYCeErDQKyDoBmPJbxf1DmQPwjCD9SACoTCnqjBV95pfIhlVdhg/tIZq+asHrPSj8ThQyF2KEFcAz58HltSwsGJxzGkggWYAYzxQmHiWImxDd8l5k1MK/VlA3uOwzygQzyAwzsqwzvWg3vaX1LmyU+YAtjIkz6YwxDUQA38ADfoA7TI6bMi61TcQ04t67NyzR2Qw54+LJ76gxVwmlSQTWSaIjfUQwN8LGUMB0ixWTGKwjHcwh6EwBysAy+sm+EkTjSU3A+WE7veY82ah1Oy61AqJUGYzZ54izdcEGPMAyuoQA3wgB68hWPwAwlSrCmxaZFMw4M57db4QhlS7WxYAjn41tCuQ29Sa098QyswQRH0QakpUjOAwwytAyXEABXAQjQ0gr7g/ll+hRnA+Jx9TQnj2CjYJkw2/IQsyIIcGgVaJIMaqAALqMEvxAjW7obCUkUoIWzjSgU8COLkOleUZSzP9q0SfQM3DCdFFE4RsME5JOoj5AI1sMEGiAKkrls3LcKIJmJwbizn9kZLAYUVFEODjopcDKgOBGuXXq5tPC5VnIHECi+hKFcXWC7yRoVMTexQ8G3tjgONOZUzwEphSIFFAIMFUMG2rluuHeZ4RIP01m6HzaZAQS/t8IAOsC/rNO/wQq1E+oO0SS78EgU5ANb9QgWG2ak90q758ttLzAGseEAMiO0cbEAjbAN0hhk14EHyXYkzVAMAm2/PnoM9eIMjBI/D/gqFpzGCCiwkI/gDs+0vbRDvVFgD2NipCUvFHvZhCz8FKFjeiJzDNVqw7R6iIi3DJyCAB1gACqiCELBoNjRwmEUDKohvHJHv/eFwwrwU8nTBBsbFl16BDIxpMjhkDMcGClesJdTvFt+UxWJsGA9FMQQCBzLFpjrx+gROJk7dAwyxBzzCSOUkJFUDIHyH4HwtG29ZNsiFI1jDgaUGY8TBELAAC7CCOqxfGT9taQ5KCGVoIzvF1tpv89pDH7NUWCnSRu2CBRTBNxgx+BaOi9qEM2Ty+uiJDd4B8x4FN0CBwELB5E1yVXRxVDgc9EZYkFjy/HbBw9AyUYwCKKQG2aBy/hKZXUQU5y4U4yZkQymDb0QgMR6c7b9QcPnisE/Ug5sO8+7Qkji8QgfUwBDs4jxkHTC7svyapj+gJrXliDkTj7fkcgwLslHMA7IZcxv/S4nm3hY0AwOjK3gtgzn8mxEPTjlds/mWDT54gyus0p6aRTLgogx4gVYY6DlXTDpLpD24Al5KmVx8AhUswRZ8IQtvDfAQ5EUHBTN0tJNuLj4nDOhOySVuwQ5cQjV8LzRTxDHoX79Z6kvnSYQGAj28HwHpA1rQwWeqwCugBS/vry1PhS/YEpz6AxWcH1ksQCNIMtf4AgyndFAUg1TjQzggND6PAzVABMtZgBTgdE6jizmc/sA1QcTg/LTtuoM3eIMpON72cUP71gAUCFCaejVVPPVUJIJeOxoilN8wcaQE7EIXgZ20CfZX4yA+uEPsxZVLp3Jmz2z0RYMwsIEFwMJqtfWVUGquTXATv7TZ4AM8pGCF/tZbgPBnYgLjSvZgZ7SReAM3S9mnoQAGHMZmaAAXdJE+TIMsdDAto8UphM5r+Cl6dAM+CFAFm4dcOBamXgM38PGWnUNCHM4xoMMnrAAXtA10UiFpSwk3wMH37hfjqOtLZwNj3AEfxhKv0gIuJu4zfKRtuyFuK6g/jBJyM5e9lp9GHiMFNIARNHVtLIUjKLiFyoURkAAJHIN1O0431EMZ/hTBFFAwS+GeD+yCZSdRe0b3jADwNgjad61DDAjBI2yyXO+0ec/EMfTYlYiymFUDHsRCJF3DdJtvdvmDKVjCg+0qUMQBDwArLcjFO++3URC2VICdE7x2dNnDOjwAXRT4gVeBFTmGIwStYDuGITjAC6TAAZwNeqLHN+ADG4TFAbBBaqPTJBDAWFCCO6RyN3xCj8zAOrh3XWvVCjTCCrDBWdNEH7QCW8s1NXzuAgIaJ/pQSzhDj1uwniSaNwR4UDDGMyykDFxB0TC5bDi50fhDKEnZPcRDDzSAVWtkA1yLFbHDNLQyMDvGJCzA+RXAa+zyPLiDru/6nkTBAoRFD8zu/jgMO7ET+3e1CBXcQ7G35zk0e7N/UgD4tgJ8QoXjyTp8Akd6AAHwQuGgnbejXfRIQK6UwaCjyzK0QgEQgACQK03wghFgwCRU73ZEgxKQAeEcG1nXrhfaA5bRw+XVHyaogAwMwQg3rac7Bajj6TSMkoN7EC/wxWR1JArwjAc5hi/AUsPbpgHhQCddi8H/gQA4AKg8xTwwQY8oQB8QxRrusj7sSQBMlvyQ8DzMPM3XPFX/sAc8gDBYJzX0PDWsENBHAzdMAl9IAA4IA+E0j9Iv/TJ0A/phQAugg78cA9VTPTeEwFcIgCgYzrd/e5eEgAMowIzd80+fx0/ggu5Om2P8/gIUGK0aVPTBz0bCS4UwS9l6zAIKBAABDAATVINWb4srWEI3f7k/jEMYDEJgBHZR8AM+XMLoGjxQXEMPSEAZqMfo+EMZBACLdFu0JIAHJEARlIezN7tAhIPph8M6TAKLOEAPdMM3bAPsx77sV8M8EEAToUAI+AM3dAPv9/5QDiU3uEMTTYYdZHc1HD/yJ/82qP4L7EcroORPJyVQRHnmLv49oEUccKVSf4vix70jz7K26IM3DL4uzyIvzHwXwQNKez9UVDbki2A9lDBURAPJCBg+LAEbAKWIX4MRFIADfAJAnAM3kGDBgdy4CaAQwN01gw+74VtBAYMAYNkeGlwn/koBBY+t1mUUOZJkSYPjvrnzd0YWPX8vYcZ8ec9fNRY/ZFzxN09mT58/gQYVOpRoUaNHkSZV+pPbEB7clkb1ecabPalXsWatNw/fPJpZwfq0x85NWLNn0aZNaskU0nv6jtarB7fovbn1jPL0Z5LgN73f+I7r5g6RP2oCS3bL1mPGJ8Alv9UzRKKFHX+P+WbWbPDbOnrW7ry0CpRuHBY6arzaqZZ1a9evlTZ9Cjuo1UD+RtPWfZTu7qQuQ3/1PZx4a2veigvtXRTvOswlt13j9pzkt2vrro3L/O2lc77X6uGC547bZvOav33DV4zZqJmk8a66wkKFHmj+8CbXv58//kzZUPmbBhR7luvPwAPhkgUXfwo80MEH/ZnGGgijske789Az75tuqBvpG3EWUaZDDEkcSLBzXEqEnQZlwmenOGqQQQdWXnKRwhtxlOo//mhyJccfdaOprNyALFI3XBY0kqgLS2zSSXA+7EWaJ58cjB6yiILrGdRquCI/JcEM058debTnDuTETHMpeu64h0g14bzKmmni7CkkKvHUMJ80xsEoz/PW4ccfK5B706d1BFFBBx1CWa3ORw8k00BQ6BEO0kv1oceVaVy61FOjvHGFQEjx4aebP1GFzJ1IoEyVr2+y8YecSDoRDSh84DJmCBlkUEOdnQT9VFjfJOWPHl+s/nlr2DrtgacYdpaN1id40PTUO1exLQidXvzMNqNxtlnHH0LgWdBSmfjJTw0uf3GRRWnhDavY/WiyArd4w3TJCXz5PYMcQ+HE51Rvsc0Gnxzw6ZbgvuqxBh5L/Dm3J7ySkVEGL/wpld+NzZp3P5fO4LhIuEIGWGRI2TFZTX2YXPjPPtNzua9z/CmmGFkYDAque9RQVIdf8Av25KFjcwrAA5uVZUKiIWTHlWKUZdrTROBRWUx+5hlYZjzPUWYRdxTOFlZ/+HFlwIhJc3GVXeszBz+p4TbK4/3gYqYliYfGx0bi3PQl57ghHcVHvNNMd+s/3QlxRFT7pJktv/V5921z/tSogYUhVPtbJnMwwRVwwOfuzw14JN+4HnvkKl0teuDp4nNPWR/2nGu0PrzErrNZ/E+//AnCH2iD4sfFV1Dr9cuftpTrdbhD3882cjQfuhpYYKHGXdoi92fI5eukyfdOL3UnGmrQ0d12k9zBQxrznQRMXFC8mZDwmMxJVIcfGtULqGdqUP6nvbm3rOY5zx7W8BvR5mGIATzgAANgQzV2wwxfFCN6AQwTXHwBj0+twwwCaEAu3MG+830rG6eImasAEw9++MIUo7qVoH4hgxrUQA0vqYfQkNe//LwiGc94BT6U9wqgWVBYA9QPXLwximSJzEV9OAAGoIiBAzABe9aQ/gUF50fEH8HFPeB7lCoIgIEGxCA7IzTPOKTRCxFiCFzc8YcTSBe8/HihePcxCv/kgg/TmEMcLIjDS1YhgyFq8VJG5I/NKhgvWzSAAhuggAU8coBSvCZBOCMknFySg3tB6hIEeOQMjoEYM2qmFr1oGZ7GwQ0XEQp4QcFLKBalAkboryh4XMe6MuYPWrBANUPQQyIvmSZDBsh1VhOWKDzZSEhS4ACbcI2bEnHAYKYJLinzlDNmYAEMsGEeo9zMOEp5yvalhB3ecJ0+rOaiW8rwB0C74VGeIQNzXGEIq8FLHK4AhR84appxGqZ+vnIbYA7rE8n0iEcWMInXlGWT/QST/lWC46lrNOIT1/KmSdITCWmIs0TfOMc65LEI6GXRRqv4gQpqQId4vA0pydDBFbqkj/zwhAcq8IdKHOpPowGJJswABTM2NgsLLHMD2izAJ1pDjkTIQh9ZzOmN7OENhkKqN9zg6EUf8g1p1CJsTerGOurBDlN4I3tAwQs31MCrIdDiJapDng4EwY2UBi0e0PhBDf54vKeC6Z+TYocXpcUEC2zAkUUtAgDNYo8CanCvYkLn0oQVQqyaJBu9wEM3qeSXezBDoHL0xytqoAMW0KFGUeEfTyohSH+slAWC+EUNgIbYxgKpr/1xBDkgKy2aFCEEDWDkDsSFFriQwxuJGOhs/m+kD3jcgU6fwtoavfmNdnQiH9D1EDjcocETvAcognKHF07TTpaaVgbz4Ik+X0LPl9CRlsil7U6NRBOp/jVePPnEF8rQB/zINivecITfjOneB+nDG8wI8AXRMdnqxGMR2bhqZrJBM1PIAhS4mR9daDFDHfwxaFexq1zM+wM9vOIHz1itP4ZQQxwK+Ea15dFLTJGyA8PpeHrNylccQROnsvhB02DGjsVkUQVzpheRkCwbt4EPcshCFhqcH9b80Q4v8OoH99GbVqwMl2qYgxsmtpE5oNFeHkPIxf2BSxegN2ML0oQd5xxzmM6k5iIZbshZzUctwmHdrNajGNPAmVNR/iuDH4xglslZ8ZsdVOb+WMUbIQNyABPkIzkjmj/MqNanRFlngmQDC/noKkY74w9TSLAo6oBpDX4AQY1RenmKXvRLHMHdaSrLES4BLKtxRBPX3bpOR9Y0OOrRiWx8OjHj8IcvpJEImkjORqHgAQtkIAie8BfXUnO1ma80On/wOoCdCkQxKlVtJZEjNG4FEz/0fLgSKuM82+BJIn7KIMnhBRpxUAELvMDWK4v7ddc+EDtw4ehLWuUMlpg0v/fDDmiZG0x30vQ5atHgdP8uZNyOySstRtpcIrzf8I2TVewRiGkwnGjsOAPIOV4k21jSUy5yiKa1eo4Hc2Ycxr4DO6Cn/rqt7OquULFxyq3t8Ti5yR+O8Ab0ljdcdhiXHgcHOnGsgguke+oe7rjHzG3XmU4oA+sDSc+2RRrun/CDLqs4zVztcuinE83fEEJOxZ0urFG5wRvNXTuQMiXNT/FiDs4oD1YBU4tO1EOE2RCXI3CR25/wpBowVcEV7kPyu8er7RRSKs5cSDSrFOMO5LD45CEkCzfQQ/I40gc+bHGAEFAgHH+PLjpq8Q2sf50dTrDGwl3pD0b8QAcqwMS0Qf+5ykPIKtboAjw+D697kKXCjw6+gVpZJ55QYPUhCIE/ane+b2wLEPPQHWDmQY5ilKWsY/eHOaAwwxJnTO3PP9nwif+S/kC4Aqhog5Rw9NrUmjGDocl3/4FAIdbizkHwAgUsoLe4oB6y73zmARA8zUPWIVa+5/NoAh/MTgZ44Jc27v+YR+jkzh/m5Oa27VF4ghsmQRjIxl06pQt8DDdKjwP5xh9koS1ecMD0QRhWAACY4IRGKRsioRZaJSO+IR7mwRtYrrvwYhjUgD68YBj2CwbjBv5+hBmsYV8aSkxUogdMYANCIAZyYQT9oQusof6gUEnKiQwfJQLBoesIJhzuLHcyIs+UzBWOECh4ghFCiwUwobTKsANnA1++glAoaACTAy4sAAUwYAOiqBmmwRuskBD7cDeaismobi7SDVVgBQ9OIcGy/moe5MGc2koo6sEdeE4HfC4So9ADpSVTXsIKfAzpIHE3zAADHmmwmKkQsOAlSA8VwUQW7O5SLuobekFEHsLwZNAU2iLz0MVF6iEUfOaX5qL9eJFfpLBIiK4YyGF02iJiyg9CBIUKGGmwHEmM8MP5ppE/MiUQyMEcf4TwzCgb3KEXasHhBiJWiqG4bAUoVqrxZODxvOwc/fBoOIYuFM4X/AUmYlEt7KIIGOmRPAIDCuAcfg4gccRv2DFH9GEBXSYy8CASvG9m8IEdfCH6zMof4mAIamAEaEFcqI0iqVEVOeYrokoMfcH/ioMd5MEIGvKgDhGsXFLl/EGTbNJIfG1r/uIhEhysIIbQH0ZhGqZOKKoh/XLCbWrwJwsJJkVG//yBGcjhDPTBFKwBfJaNku4FLqIKF+ihC7ABDBogBCBJEQ/AEKrSKn3DKuowTp7rfKShE2JvIL5K1OhhqkrSHFbh3qDgl7qRLkWmGuFEK1nHFZTNCeiBDCPHHu7hIn/iLVwiN+jk+EABF6qlDwYAiiiAALZAzBQTQmiCyS4tTvDhHC6xSeJxHqHEYPghEEYhzZDQH4bhClSgV+4DNVPzJf/QgqBlGu4xCB4G+WCiqd7CKt4iMXMGnVzQTXpDsW4DArwh8X5HJubBGZggBopgFiZyOB0ELqaBsSDFHdStFrAg/h6ghDtAYayIgicEQUZUoBL40DzfDysBxyzRZjI/8w5MwRXggVOuZNukEyEr5a8+gx1kgRmCgB3uoBicrCwnBibmgj+LxAmqAlIwy2X6RBkSBhzERdsCDB/cQUZ0oJ42lEOHhjGHBS5ujRmKIRFwgRmswB4SITcdwRqKYYLuMRHoARQCgR6CwM8QrxFlwiVKRy7qoSVh1ECsosKOS0nY8EnQ6BQ6YQ39AR5GAflURnjwgxF8hhF2QkqnNFpkdBUjB2+aBahMgRymYYIaEWc4RT1jAjrnck0hBC5cwRq2ES+9LzbRAx9OYR3GAS/cgB0oSChW6hfmQwXUwMr8NEb9/vNSNbU44GJOrhRIXO4btkFs4KATVGIaEmGJmO2eFoUFaIEn+nRTxaRNZbVWlcISHCFW90N4oqEVDBUy1qEXwGEe+MEUbiNFn+GuagAKVEJNbfVTaPVZpVU5tq0thnLA/IENAoAAQqAaflUkwKkTikEe7AUMM9MfxAEToG0I0PRFp5XyMvVd5dUsMkUfQkZN0KEtQ4AAhOHl8CRWygJJKiWL8IIVfHO0TEw45xVa43VhHVYq0JNJxWQbDnBfgcFfnWQczgEd8GAl4EFPfUKm/IEOQksGMsdZH1anijNlWRYsNqsYdNU34AIRVo8LOORfs4EFjSvA6qGPFoUH8CNm/lu2xRp2aI2WKNzARj/VQfbmHr7V65JsGkwhEijo8+BiHvQApRiFn462iIq2ayHWHEIBp/x0NEJDGX8EH96CPdvH2EDBF0LjCntieNJvBOjAxDATbN9rZfX2LOrhtQRyTdGJLHZGTDLtjLIBHRx1FJpOdVykGmZIkGC1b4clWvX2b2sAQKRxOOEiSa/1QDgRQyKDHsjhSI0CL7yAWSlXWiwXbDEXQOrhFeaBFgQSGpJhA3/S1o5VSVxE9jYjPcSlPc72KGwkSldXgL72eE8XcPFiCH6gHnSghl7CHbZWaJ+OQKYBYuQ2R7LU69DBHfhhBvMxLvJWeX+kdbsWc02M/geg4CWSQQVuV5dUYB7KEyBplCoU1Bo1UgjX4R7eAUzN14LQ92j/Vga44Qd0IkrdgZcyRg/UwF05t3O3l0L0QTPywxIoyHoDGFIG2GjrYRhOI3r/BhO8xB1qgK2mlPTgYcJI8kaELKtoRvzuADo3mHs6eGg/mNCGYQRoBC6SYQS4waWC61KLIVA1KCHVoh5GVQhjZSXYQXs1uIYf5YZb9oMN2B8EoQYgaL1ewQs4TFNJxxLYQX7K1zXK5yTCRdRG4VHLWIqRl2/dGCleFx/aQQboYEMF4aVMzFZ9AVXN9UGKcg1VIgfu4XPjmGOomGU/+AcABBo6ABo8BwrqqY15/hHH6CERPI8bDQQuZCoC12EesGEUGNf+DtmGk7eUY0If3CEZ3mkegvjEMGdpzZM6sfOJbSWKkcJFbKEN2AAW/KEXLEEW0ASXUblOEnl1V6EDuLZW6cIlQOGZ7wVtd8MZUOAAHKAFsKDuipmQjtl1uUEGXFWWL9Uyg9IffISUdQMubsEjSMABRGGbL6mbu1ZF9aBdUFZTm4rRcIFq3KOVONllo8cagFQOFKABHuABgAGeufmUFXoogIiYz3E0oCcQcrQsHjVnLjM6BypyKnMEOdMbCtQUgtQfiKEIqOAYxLmhF3On9KalXfqlYTqmZXqmabqmbfqmcTqndXqnebqn/n36p10aLxjhgckGguX1n6HFQl0hEKRqgkmvUhRLsXwCWoLgHtzAZqxh6lzEHYBPpQOoKRg5Y4B6rMm6rM36rNE6rdWaJ9JKvOrXYTcPFwLBFBLhaWTBHpKkQArMitxAH05AFizhiL26sb75B+hADxA7sRV7sRm7sR37sSE7siV7sim7si37sjE7szV7sxmbDhhBB2oq2qoBKu65Vq1TJhRuFNgBFNyAHJzAFxwhtjHYEjTFXDdzQQebiPjBHDRhBFRgBIA7uIV7uIm7uI37uJE7uZV7uZm7uZ37uaE7uqV7uov7AkLrB3igAwgNd1v2TbXSKGiCQCg5t4kGLgqh/hLQO73Ve73Zu73d+73hO77le77pu77t+77xO7/1e7/bmxFW4X5U4AcwgRvUYXONlpP/maMTnLzHTK0d/MEhPMIlfMJjmieuICcg+a0ZfMMvScE9/MNBPMRFfMRJvMRN/MRRPMVVfMVZvMVdvMRpghE08KE5vMZtnN/own9ufMd5/M08p8eBPMiFfMiJvMiN/MiRPMmVfMmZvMmd/MmhPMqlfMqpvMqt/MqxPMu1fMu5vMuTPHusF6KNovTEnFNVp8ypNSzQ/CpitkBwm83HHJXXvCjmnDdC9v6+wknhPBRbY7zfY82JzjWIZCzT/CqkWmdCUexSuTmBQtFT+ifELpxG+7RTwIfbuO3Qf0LP6fxGClkt6tXQIR0sJA+JC30oAn3T47wuDVk0SP0qAgIAIfkEAQoA/wAsAAAAACADCQEACP4A/QkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocufGePnj34NFjt5KdPm/04MHTR+/ePZI4c+rcybOnz59AgwodSrSo0aMP8ekrqE/fTYErXdkDZW2ao2mJXAUqZukOPSvFZAXy5ijsNF/Tngp0uhSp27dw48qdS7eu3bt4hfKrJ7BeU3tqi01zYi8QLnum2FljZw9eQsbkqla15O1OMVzFCNrLy7mz58+gQ4seTRopPn/cRBUEVaxLZGv+HF8EzI6dPyfwrFhzbLNt6d/AgwsfTry48ZCGDjQIEYtZIMqbBW5WW3Gpyc1LE90+Se+49+/gw/6LH0/e59J1PihgACHJlGZ/vjtu7i5QlqxE9HytLc+/v///AAYYmlP+kJMNCRSEQIBq9jSl001tMQOPKYlMIxB1Amao4YYcdujhQ0vRU8woppTSgABLuCPUUktZmEN32H0o44w01mijcPRgBoo/22RzmoNF3bMZKJZYGN+NSCap5JJM4mShI9ZkM08233xTDTXjuEXfGfY40uSXYIYp5pjwxTYNKPBgg88534Dj5pt8IaXPZuzgEohj9BxJ5p589umncTfJQk8g/tCjTptvvvnNPHORw4wbF/4p6aSUVmoXO/fc4Zg7iCbqqZ5HReeGKxhaauqpqKbKEYFnWuJPPf7gdOqpoqfJNac/ljDjXpmq9urrr8Du548b02S2zjiyzurmN+vUFV2FmQUr7bTU9ukLM7L4g0+synb7zV1LVUVOg9WWa+65Hy7lDTPe+MNpt/Aumpc1iZCL7r345gveTfbIYoqFVcIr8LfgCnSGNe3qq/DCDHvmYDHMLOJusgLPOk6cd20miy+MgdrwxyCH3FNblOGybcUoM+sZM9r5U6rIMMcs80a+wHNHIvhQjPKsKvOjLV7d5ZDwzEQXbTRDbV3bhT/xZLMzyudkM8knwrgMtD+y4GL10Vx3PfNm8MChFZs6P51olUUIoJwtnG2Wqz/24FOr13TXfW9bd1jjC/4eAZtdMTfUNIABBRKw4Vm7Z7wKmN2MNy4tPOw44o074yiDjt8odxONBRRYYEEfnm02ij23NIOPz46nrrqlpvhCzjedRPIu5hWvc8wMPtjxqmf1uCMAAgNwwevqxjXFFmAN2rNZg0AS77xE3elzVbuAZBNP2bSf7c461fjDqGfzdIPACh5M0P3zpf01p70PXccW+vAztZk3Z8Azzzd4dIJs9ju3OQ46ntmL9wggAiWQgBrxG436YuIPwRTDEb5IBC7OwDKvnMEbxSiGSuxRk+gkMH6byYFA0DGOXlCOf7QDzR48IIUNeKAM5PjgUJoHKgyxgxzT8AYuHkWWO7mBHf7T2E1NBuKYHJIFK7hIRDFAIYs6wWNowpJh15ZCDlzsqGnoUAYglIFC2qkILzdZxhJ2QBBvREI2UuxJnCZBiU8Ia3mF8ocr2LEVX8gCYrbBCD3sUbOyTMMK/nCE8tbysjSGbCkZzAw6vpENf8AhH+Poot9UZpc4raEEs/DePerBF8wYkiensQUOQpCgFQCjUEuxjRPoQUHFDNIgLHJILA3SnWLk5w7scAMa2ffJj9mDHfBIHAnblI00SMNpkpwkxuTCl2g8YA/N0tMdTNG8XopEGCHYwAY4Nzhn3CQQ/ioGHD3mkZs8hRkPlFyeyGlNdLHDFKPwxzq6sSxwUCmZmP77Rjzowg98GGID3OBGQjYTw3aGRB/1YMMBOEeBzlnADLjc1VI8yBPmCURCEsxhW9hp0F6Fax1BEAgyYyUNOCgjkvj02zniUqtjLKEJ64jmQZYyClDQp6MdqQc6MICBDVBAmxTQQAzaIZ1qAuVWAvGFN3LliqLiNFgE8oUrMtM3e/ojDfhAaUrNxo1CBoUfT5kDDTbhDwCSk0Xx5OhTITKPdZDypz7lHAqcYSuoANMNElXrWvvkoESwQx5Z7dQ36oGHe251kutAXVH4wah1EGAO3FjHPBSbkKWAoql7zQg91tECCwBVmw0owjLn0hR4uMEX9LhpZk0lC3s0lU2e+v7GOWox0sM+DVlIuckWHhAOZFGUIZDz6moVksph+SMMD4irehpAVryQyxXWcMRK4KPX4SZpOsUIBDtylqxv5KOwtbXt09yhj7kBhS+8EMIOlvCANfglIhesrnWf0jpfROsPB1COchCxu7xEx76+0A/crDsmmvgDnu5xxzW0+qZznOIU5xAv5nC7NZ/EqQo74MUOLOABBNjCJA/ZzB0WR2CF3KQY1gDFL8s0D2rMgQl9oKt587IUx7hBH/EcXomV9JQzFKNdVU3UOIZ8UgmbbRzV2AYNejCP0eKEsf7YRQn+0L0YeGADDHjEz2TpD2bEUL57zU8TfwsfmyilNI2RBf4oMLVjJtnDG0vjx5DhlY1sBAFWRn7aNfBxgBCE4ADe8wkiGlANbsxjDdvcQAPW4eSFbOaHbTYIO5bqEh0PBB/1mHFonoKLd1o60h7qa5frgb1YueMU/ghvnr11DlEILgQNCDROarWMDZihHvdIhRSW4I89LGGllHWIxkBNXX8kwhtfHs98psEMZgyY2B3qDjlkMQ18uEPVnmokHK636v5FQ3AUiPX3RCJAfyyBCqVAzR5KkG6MgXkgJxmFNcic2TlBLnGzHE9b7GGJbJEY2gG6R3coxI94cEtgPjpBPrDdbZ6doxVFKMIp3z2Rfe7CAojoRj3U8YE1mLXYFilWm/5DaBuKE2czJ4gjwAO0GQh4j8ECW8cp2sHwhitLHOtAR6M9cpo1WAAd21jHHhCwi51bxBTFMCpOazyKltGbPwZ2xCiguPLyeMMUCc4GzOEVj0jUIsg2F1hAx/0RffhsFy4wgz+6kYsYSCEe79A0RpgxDdXule7+7lB01pynqoeHioNyF2yfNttTrCPsfsOt3DHyvSrEwBj3WMcWmuDGL3bkJpCy+58WnzHHJA7EoV6KJWzzdL8Hp0Wkisf+jpwNLiJ+kiZfCJRTYQFRLMMfwSgBG9TB6JBsxgkV/hM39hma+3z6Q6DwkumL5w9ruMI9W0/ZNwDRi+i/Hl5Z6sic2P6wAmp0Yx5zGEA4qhR7LudRUkthhBq2nJd7kCMRebdRdAB5/uUDhxnsAD4+rpG9b0ijFgZ3fWazUhpxGu5ADB4wBvJkCyWwBONgC/FQfu3DDMq3ef7AA1DAfnYBYpDybDcCYqYQQ6Vnf3gRVYHgbN+wDf03DrXQCYcngGZjeRXBD5tRD0tAA1XDDWRQBFLQAAPgAbuQE/qACxYiKb/wAzqwCgehDurAeUFxE0mUbDk1D1RYHKlkCjsiXCRIF6m0Me5ycLTjI0qQajD4NMwSbBKhIqrwAJuwDfMgChvQBssgBZ5lAV+QE/YwDWjkJ3EgAzJAB0yBD3RAB5mWW/4wCv6Y9RGngWngEUweuIWcIQvw0FTW5zfHVIaYUw9oGBExUATnUA3g5wHUsA3nsGHbVAU6EUFKJybccAU1UANQIFDwJoiEKDdI4SWMwXP+4AxcEAAFcACz0CzFQS7ZAm+rCIlGcRP0gC3sUA/cUIn9Uw+L4IKlholv0g3EFxFtkQo7MAf+8A278ABbUFa5sARFsAMrIAXBJxJ52Hd98gsqoAM6MAKvQBDlNYjvhRr1MA/t4A7t0A7qQHY44Q1Nt44bwQvKEQIYEAIFwAVOOBpDghYzNoLI6BNPUSE7Mk/QuDPjkA2LsHDWeFsPaRCNZQYlsAz3EA/myDbcwAY00AjyZP4M/ZUTXkKRSoJQajAEP/ADXqAGZwYftOgX5qADleAOXsACfgiLeqCBIRETRXJ8GVEPReBZP9VQB9AKx7EUzFAL/iAKS7AEUgALslaRQzE/hrEXYMc/31A5gxeSFbMN+2h0BcEXmdAAotA9m+AChUAN8cANFsAGKhInEjgR97A0Nokk9WAOV2AOOsmY4iCYtOgO7qACjAAf62AOOPcKF2AOcrkRVNQyIcELGOA5PmWVMPkdyNBZiWYB3kiWZXmInfAqG5mJcNAJaemWFvMt5cUQnLQCVSAO3OAOZuAB13AN/sAGDxANg5kR7bKcG4IPfTkEPCBQ5jCLg8gNLFCZS/4Rl9BwAcbgnAxxE3eQLVp4EaVwAA2VnuFWBj9pHCukTdrkAQmgGq4JFN0BKdbgDip4WK03O7gZL+tgCCFQBNFQWdqiCh6gGtxgCyvQBv5wDsJAA1QgT0Ihnq9EJj7DDdLJDZR1j16gAjLwC1uGD/PAA5iwE043EsewApzTohRwAFrmHTboWfCpaGYAevUphJvBDL5gMm25VePQCYb1n93iDqKwALAWA/GAIQLUDUtQBUEYDVxAA2wzD1+wA6ohgz+BSGnVJxo6nYEoCBcwDHTAA+dzE16QgThxEvCHoyIxlQ3FTQ2Ald5BDTFAozW6aJ2ZoxsRHXggC+QwD2C4Vf7ocAqRUHNE+g36wAaDEwIAMFgEAZ3+0Agf0AgR+AkPkAp0BQsxsAaGtqd4GEhQ+SVfKovWGQfzIA4jUAk/swYyMJMH1XwMlBPx4GfbZAGFAx7jMJU1uk0x4A7lyacYsRSykDiqt2qrR6Twcg6zwFMLYDjxsRTq5Q/V4A7mSA3gcA5sYAHLEHRHcRMh6CelGoj46A+/MKb+UAkj0A7cYA6YKRKpBXzBqhF8UQQ90AM4IJagShp02KsJADrgKawJYQ2mkC3rsGB5dg6A4ILKGi/oEA0mYDiXJhCiUHv6wA2lEAPCww27EAO89g0A9K3+YFPiuqGBqAZqECdqcAHdKf4DSJmUsKoRbUEomjcSo7WvpGEMyeUBPGsBJVCdAhsSFpI4pFaNksRIpzCbiUow38Mou1AFS0BX1CAFNHB74VAFUlAEa3BrAeuZ5OAqXmqyBkEN1NAW3PAL5vALxrC2ayuiXTsQSVRpPVEr7ekdp+EMSwAACAAAWbAIuxK0HCEkuDIN/LAOt3lYjERbSpuobrg7bRADlyBQovAAjbAN/mALFqAJTWABDfAA3jivOkETzha2YNoQm1h2y+gre+EOzjAP+MAO4gS6gLsQN0EOY1EP3bC4RysNePCCDVsxzBIP+LACXDAOj7kEJRAP0ZBQH0BXH+ABH2AB6oizOXEPdP50mEkyrkZBE9NAKL4Sl00WSJ02uxkxDbgAKYaLeIl7Ob87MNyzCwhAC2s3uYbgD+KwCzTAa4DjOZ3rjdSrE8hGuqY6FBf5iL/yFE2FveRLEDcxiSr2jfsZdowECHjWvspSDfrgDB4rULbABUVwe+pgBisQhMLpA42wB3OwBjFLFHNSDAW1J9pbFKCQGG/7Jdx7BwscEW7jDRlptBKmDL3guxasKAhEBTvQCNEwD43gAY0ADv6wCZTbDLu4A2YgkHFBJAJsFORADjULVfdAdTlMXPrADq5yPzAIsp1QC0I8xFVip1IQDcJgDzsgBAF1DucYDdzgTwMgk3chuzcSw/5DkXx+XCPltZsVkXyjGsZXKAv4sA5ad8aF+shDDA7dsA7U0AiZ+7CN8AD1Gw3EEAPe+A3GEAMTOg81HBIUcsr+AchH1SV9MmOaOBFa6WyD7JrRcQfe0FTgIA6YyCyRsEiTvGewIARN0AzrAAtPsAS2MA7UsAUuIL/i8AU98An48A55wQ6Cosr8wcrmQcYvXGDu0gRLIARuZMUPQQ72FcYGsRmugIhMg6g2Zz1pEGEWnIL+8AUrUArRIHQ08AfLMA+lYAGG0FWz4AF/IMUj6RbwYA21LCPc3BPgmshLAgue4zkesAJjKRHk0JzqXGxKRA8585+MFMH9c7jx0n/fwP4NDbAHxxANx0ADMcANxjAOOxADziAl/yQM66CldzENP9TQHvLQPMEOhkla2qLN8iEOBFAC2uRZHsBrtXwTruAqSF1i5OAKMQHMbilbzvACy7CWKBNJxyAMzpC+UHMOkeXDwdtihvABnzAOu6AJCCAK4eAMotCp7tDSIaC/zZLQYHaMHOGOZCLUOnHVBnwUYCUQtQLYRXEam9yrG1ACiUURiBQt5EsgGyMP9ZCsIflwB0ACBTAJKQMOn6AABdACx7BIVZKWa7kMZUAFnxA+FdMN/vAJkzAJW+ADQUcLNCAFzuAOqcAFJZAK4MANJglZ8SCMC7EUAmXOB6EWCd1fOP4rjesA1B1C2DghcMwg2G7BF7DABD7QBIDJlEjBKFcG2SUglhaBfwtMHyGVDZziw2HnDkbQACmwAFQwit2w2vydu0M2AwpAAQtABg+KDgZ+Dgie4GyyDRpwAAuwAMvgNOEw4RRO4dkKCy+aACEQDehgBjugCc6ADpjcB8bwhi6wBTtQAivgRkshNy7+4oG2AjhgBEwje4zCBmyAQA3BKJ+gGs59EJnx40uC3SNhvcQiF6dhCA0Qbks+A+cTF3yxBHgKnyvAxxbhBN6gwMuXHTY1D5yNm/OABBJAOEwADMtw5mie5stwDMdAShKwAEjQDmnuDNFQ53buDMJQAA0lAf6tUA1Jtg2AHujbcCX+0NacEwDLgAJLIAzHwA00QAPV0K1Z4AG2sAYMsE3C42j+0AKEQwEzsMIEwRc9gAESIAE61xBiLgEEPpLx0Acg0ALzYN0bQuQhcRMCNhfOkCCd41MNwAb5+BZLAQsI0KseUAL8IIGb4R5aDnDWYQ2BEEPgQNJEmg3VgAMOsAK2EA3O0Azc3u3e7gzOcAnoiQPB0AzgDu7e3u3H0AyEowASkAvHoObLwO3LQA3HINxLrgEb8EzXAAuIYAF74Ayp8AkfIAXLAAtckFzS+z8G3vAOjw60vQLpGQLyJJnuEA/u0GQajw/LMDgUUADR4A6Z9uIk3/6VAU4BAuBGxFUPwCAAKYAgoD7kYusT5DB1dEEFSw5X6jEApx4XmyQEyeVCG4AAmSDRy+0PIybrOzZv2jElDbuW30ANywAM+HAE2+AM857uWt+tosAG2671Wu8MbM4FXPAJUg/2yzAOiMCDzvAHIfAAi34MrWCOjXANrUAFJfAJ3HAMZlAEJfAAFtAIlCNYbxJJIGsHvlgAhuAO3cDLbdLf39AN53DyAQAM3NANxZn519Aj3fCMonDyC9AK65Dg6JDgO7098WAHB5ACGKABMa8ktP4RUs3RcmEGOV+aGDAAy1sXWYAACbDUqfD6D9EdgLTskcZB/nAG5CBn8q2+5/5wDVjfDMvgDJIg/WCP9s5QDdcP9uBeJdGQ9d5+5uDABSvwCMdQDVzgAZ8AC86wQmsgDMvQCCutqZqwA1IADK2gCaKwxkKGUlIyCQDRStS8buDGfTMIzuA4ht/cAaNwoA84hArHLVzI8BwTAgTKJEwo7hvCkeCy8SqwoQAVf/f8vYQZU+ZMmjVt3sSZU+dOnjC5DeHBredQnLJk+dNHVOlSmGUaWKBAYcOGEAG+1WOalai+ddfAzdMq8563UWHNnkWbVu1atjnt+fPmxt86hXXt3sWbV+9evhTBUVvWTPAyanKcCUacWPFixo0dLwPWjMAcW7xSbTAD6xawIh6Owf46toRGqly82Dwo1czZamfn+DK8CG4dOobhDjIEWZLiuW/ZYtumSNKvSIXOojEUd/Hgt3EiGXLD2gxEq3n42l7HbvZn0Ow1703zlrR7WEMNMFCASqFBD3cux2u9V6/ePKxo77Er+17/fv792do746iD+iKwQAPtGimwxJaJxhNnFHQsQgkfi8aZNSxo5RhREGmAkmNs6eOBOZyB5ZMYlqAGllJiaIKbZZY5TLBtYjNQueT6GiebbPyi0SIfweGNm2xIMuci5uraBp2k8MFHHn7q4cc/KcfbTqj+yBnlHvGm1AkrLggIAQMMGjjgGC7PlMkXZtBks0031XKJHVks8f4HnyEPxDPPuy4CLEbEGBwEGD8nJFTCZY5BZ5IdljhmmU928GEXaj4pQghYmoFFihU+ocYWLmLYg5vIBDuMwR71rKsicMSxS7m8bms1ryNzRMcdmRZZx703dyWqSv70oQcUcni1SR93JsGAgAOKuIZYKelxhB1dnaW22jdHgacsdFRFtdu+vjmHmwcZg9ETT6gpNF3HjomGmiWKeISXaLhYoRFhovkihj9gocaQD9awZRlRLDCjFWeOGQyx1bj1tq7kBtQLtoRc1Quhg9apDyZr3IBnWms/fsnX/thhB2SYonQn5XhM1q+YlliGOWa29PHGnkTmYrhhnfGKZsJjYv4ZVF2hl9lGlAbWyCWXYxjYAhZYdkGhCFhsccaHHW5ppRkzPBDFlkYX/LOanQ9szpyKwsExVbBoekvmj0V+Tx99cHHEbfnquSdKNK1jkxy52nY7cMF78gYXV/zh7dSxdxbXZ2DC4EZoyRkExowGnMkFlgsbWSYVUR7oYxlbKBHxmFtEoSGGazJkLEYGF4c9r3NsmuYOdrYc/E2435OTntzP5PuleoL3L6lipkHqd+V/b9sRU5DfMfadmdvmGoQnPNQTydV9cZtHVlhDmGMMEWIJXo5pZYcd+BXl00+cSYWNHUQh8ZigE1vtGN2kxzNnv2zFXUy84Y3l7Wp33fEdnf4CWMDs8MM66mDDHBrxkgXqJymyKFkFGbhBYunjLaaohSnmEj3+eYs51xgXoQ4VC3RtD3vNqIYPlvCIZhhDCiX4BC+oYYYV7EFpfVgBG2xxjU1soAhLMMP57scYaiiuhHi6WMZq4g1meIyD/jkgdlySA3/47ordwcoeLDCVDawgGmd6yxlK9kU27kpu/giCPbxRD/898UDMSWGhIKMEoLkwQvZrRQPmcAtetIIBbCAkLDwgtVlsowg0mNoxOtOIBnjAAkuIxvUi9CCIFaiOsfvG2nDiiqO0UUpZxA45hmXK6yTFEAwowQY+MBUauEOK/mHHKlm5yym5ohi366QdUf6VDQipyxnUWKIfSXWM04AGFmxoQCp4AYs9PEATomtEAtZADVqoIgZbiMYSPLABDzyAGpqUUDWcKEy+rMMfesPJNKzBS/6gcmb+cMQ0rEhPrSTFAyUYIxkRIIp6aHA89iDHHZLHT4a2xT24KAY51rE/dhqIOd/o0/acMQhP9EyZfzrGNgyxgiVUAxiIiIEUhOGMT4hmF50rwg42gSkzfMAQ2ThGDB7ggQas4JyFcsa2LIog2DFnZTrxoCuQ19Du2JMtzACFlph6FlHMkoxkXII/btkfWRxuql8NixfPwI9suKMgFe3fOVBYTKE5AxWDYKsL2QUOGhRBFMc4hhSKsP4HwdTUXtfg4b6iMTAzBOwTG5hDHxIghFTk0VDXqAc30FqxdRAPJ/qAhywAB9a1OJUt9DAoZ3dSiqtO5QMfyOpW+QNa0baWJ+Lpwi/n8cnJViyZQsPrRwczjj5YwBCw4MXApMALQhKsFbywxQ4sZQtq9MADrQDNHDYgigopMV2rAcYczuGb2tpFlDsBFrZcqxbPqsV5413KOshZ2gfs4R6W7c80AgGP0KJXtAO0gu9ImCqFCOcu/rVj5HSrmmOE4WsuXEY1YEGvpPGCCxZwpnQN0blPIOAP2PQAFUh0ixXsYB1fO3Ch0BeAZDlDst1Fh1Lu41X7agcoVsoOZn3R4v6huGQOOyXjU/Ch2v5EtL40buhYLDFjd+xoJNkIB9rqAY544OMb/hjSSBCCD3Dgwx3gEGqUdXbRaMTVj86IRSwQLJhPlMAMDAIiF/D6iCXcYBfOKIUQdjBEUeRrEs4QBg8/gQ5hyPUbIUABBVBwACh/A23CNKpSjCdCIGulvGd5C4s3qI+CHtQfc0jAAxqAABRQw02moMdmG/1Ve9jDGqfwhzvQEeV1VDYbysgGHs4RiS6sIwfK6MQiTgGIWjjhG2foxDlOUeRUu0PKtN3LOKrhWN1WI1DoJNTBohGOHszPGbvwgRBy6Ax69cF+bKDBvpwx0jbY4huN+MAWhFENL/6LuBo9wEAIQjADf8xImDnK1VLecod9jponjw7LW7qw1A3Wx4PwZQs+qmEINtDiu2i6x9/8PVW8wYMdePAHQ7KRj3j0ohenwMMiOvHxcZxiW9vojZZ3pI5T5CMNtTiFEmrRCR3FYx1a9iQ4ujzgxThDDj9NFzCuUeHf8qKIbACNLR6gblgIQ7mkWUZnnLaMLdAAr7dN16EaIIAQZOOs61zc8LTCDlFP/N8vHo8Hy567pGRDFGVoRTfe2R0P6oMf8dnVNLxodnpax51cRJw0siENJ9QCDrXoRT7c4ZqK7MjIR+6NSRRyjtngYxy1iAQgOtEJwWfjHLjhyzfsx3PFAP4KMOnq8g5iANxnJqAVwrCFGR5AmlsYwgJryEaJLDAiWKAORX3m+TK6MQ93cING4mBVUWUTVn9wce18vwnAteK7M7xseVjRRAEOQKYDTPDHZsGHVN2UFFDME/q7xEojWkACfyijFsrAQjYWgQ5x1IM2US4Jsv0i5SGhIx7xcAdlWIRaWASPa44iQ5CDeBCs+yi36iNDaYZsmAMaMINzagQP2ALBMIQlMB+BKYISwKtWWIIeMIRoaAUzwKF4GD3SOwZgWAa/IKqx+YZ1sBWEey1/oJO9Oz+dkD6mID9dUh7rsIUDCBMxSRZbEDumuod7uJnv20G3EY85OAALqAAzcP6DbaiFfBiHK6Oo6ZGyc3CHbZCGWpAGLKiHSMg435hBZGo30muGWDiXNmyGY7iGXSiCIsiQY6grzjkGHvK2beCCEmiEXIgGIFI3R9k9YAA6N1SNZQimugC7ArkYJ7wsf5gGeHjCs+MO7EgKXxA/5cEKeYuKqYgKFNCqqXKJo6DETGQZfVAGeUABDLAAEmgBejC+7sqIVzsFOFAGO/kGBmRBcwgDc2jDYwAHQxiATLiFcbOpzBGGBygs5PoAKmiFZVQfp+G2EICF1WDEnuMN6bkKeAoLeDiBLmLFnOjBpUiKQPCH54NCfzABWUQPqAiBBvCHh6MnlwAFAjpH5RGPUf4YBVOYgnrUADP4RlysC9/IEWkIgmyIBfsBxgFrwUFooZ47BiEQAme4hUz5gKnhhTV4gLtKhUdogEb4kExAgNDpvRNRB2jrRlLhH3dSCwJyx34MGbTLDnY4nH57Rw2QRQuACgsIgQe4x6GQInwQR5hJCm9wGZsUnDfyBWsIgmlQBn+YhChgA3zYBoT8L4RAB3MYBFRYBMjYuZdMDDiENsKghj8IomPghZHiAlFBBBpYAvFpqRugGlGgghW4lAVbgUlwB14wS8ZQJ71IPos6B7BYxUq8A2uoSZtMx6UwhfBgIKzwgRVID/TYgB5ox9dKivjZA1vBR5ZBqLpxSrcRK/43+KWXABz9Q6tzQJcEOwZU6IRIAIaekcOPCoxBeMCDqYZWSKlPyAZbSJ1SOAZheBcaYqYS2INgqIY2oIE24Jc9iAEziIZMikieO47pcQcb1ApfUKDTrInIVApmYC0GwodwEAAUIMUQKIBqeMyZWIcdwMwNQAEz6EwovAdr0EHxtBZ9cAlTsAL+nImkcE12+kXFOJhYiARPsJ/cVCYwQwXEAIZvsL1HuAVhoKRPaAVH+QAuqAxY2AApaIXKiAEhKAVbiAZN4QUYGcwIOau8uBEC4bGzoC//pAnyJIpEkBYOmgdqIELzsIBcmDueOIcdIKNZ2j3BuQd4SIT+xFFnGf4LJ4CHeeq3K+PKumC3+wmMakAFYIgEbnxJt9IewYiGDYiBaNhITSmFaVqDBBCGpGEDCxAFYGiFWRCkZei9Q6oGl3zRBTkxWbGYvaistgBQNyilKI0JHSUcX7CHxYSZUjADUaCgoXgEBCgtC1CdwZmGplRUZykGb7ACdsDE0DrM7lJAOWSQ2QSETHoRRlwGbpADYNgGNlgBQyCRP0ipbRCG76GCNYupFkyFIliBVKiGUviUVBC9P5UQZ9jKtEEQdAAL7+wnKlqoT/UHRuUJeHBUSAUZfQgefFhFfYgHyymtDYimwSEZbN0VeyiZLpAFT8UJusDFcWBD7DExVDgGLP7Ihz5lxGOQhkmgARI9hl2IAbvCsyYogglbBnpBhNtkgw8YpPEpATYgDD9l1gU50FQpVOz4IHb1CZy8joAEMmORvXOFsMExBToBWTbxHWY4AW9YI524h0CtKAUcmgcBBjjoBG7A2O3RH+kShel8gEbwmk+wAKSbJgvgAuDaBdS6hUbaS1iokIzFnmiAwRj8EXCAkuzwnXKMT8gU2ZmBh7D9KkTA1KsaI2HInY5pWTSCByuQizfiCaFCK3bzo2Uwh04ABGbTKMjoAR+ghiOAhtQRBljIBSnwgE/4EMUSBeKyPXu5hU1YunUYFaudkNYAl1exC5mMMX9YE7PtR22lWf5fGrVqsCQyKqc/qBPBsQZQeNS3LR6aKUd/wMSe4AeCYKcc6bLsbIxjqAZzwAIXgdDGIIxlKA9cXYYpCKJleEsa4IJMUhTzaYZPmNrPWIIVcIZsEBTMVSFD6INSsFuKiI1vUAfroFZI84cuIAdv3UHSxYl7CJaZBbJlsIAEaIAGmIx1cF834VHRld2z8B1QsIRSJYonqaiK1K0XiYVTQAVz+Nl12YZWwAz6oRQhmAR0KYIY+ARBucMRWQbp2gM6tNU+WI3ixVwYYYLtOwBY6IaKaLx54Em2KOD+PT/4zQl6gFL0so5zEIY9EIVrSF+Tod8Apru3cAJTsGGcKaGRGP5TZ4iE4UVhwQCGceChTVAaTWiA35KDKdg94BIFD+CCW/AaC6ACaeKFOyRE303hZQgT9aAElOPYGWYLcpgGAB7dsVULhKq+iVtC4VniNnGDOzbig2KHLkAKOs6JieIfe3XRboQRblCCFczcXIiBHogGp9kBF9gFYUgFM9gAzciuBigFYIAFQ9gAQ0CfUkiANsApNk5hbjABC9CAAxCFF64LW+kPXzAFPD5HHC4WelgTswu/QHYTmS3kzy0GXyhbRdYJIOlCVKGeBRzMQwGGWACGaogQBmmGOfiAR9gGW5iDFZiDcH6EGOCCMIiF71mCQ2mpHTAYEYwBoolg7zXeqv7pgTkwNopAh7cwZp54C9MMYGD2jmxJZjfBBW9w5oMmircAhVHgx7Dwu2OgwY2NmHtlVrcCBAfxMmAAh1ZYASkImFQI6VIgESGgAUowDqtpBME0g+gE3nEOnYOx5+1ZBnRYBix1iOLBwYiWXYKmCX2YBkZj6DPxBVy41qIOC5f4JSAMi1xYARToAWFAB2/JEb990WjAZlRgtmNwhwebhVaIhjnwgEcAjUlAgEJoOlHYgDW4q2NALeQCBtSCBW2u6bxNsBkc4rYY4KRuWaAuUKZU6jMR7H9WaoEzR7TgggaggAUoA26waLvA25pmFyXwWW48DFhgADMQho10LhIBBv4hQAHRaQVDSABRgIYjKISBImNN8ABDWNa7/qhjGM33eIty3GF2BeyYwIpicJm9longWWiZyJjhhgm6bd2hwB1I3RJxJYrgQW6e0BUmUQpyEKEaHWzwmpvq82WcoALzOAA2kOM82QZqvutYfTlREIVt2IVx1gRnsAUxQgRn4IU5qE41/YSoWY1GMIMeMAaBoQILQKZ6lm1DiYZs6FopOYruzuNNVAusEAdJiIXndgluEIVqSG7wihJqEAVwyE/wegleKAXrSHCd4JtdgIWXAO6XcIl6mJpK5QmscIfjgnGd4Ie3WIe7qvEu8Ydl4INx0KoVz+6ZoAe5MO6dEAUBUP4WWIhEvSjLAp9DdeADoOSCHaACW9iGTXABKaAfEZyfQ1G9T3gRNkABNvCEQeChm2qGKYbyxRCbi8hw/gCFHi3k3X4Jd6ACI2wBZ8DumTgHIzgPDcABGuyJb/CBQOdMXc4JftAHYTgPCtAANjhFnkgFD7D013ZuG/cHStCAqMAAUVjxpLCDqKCAEOAFnngSf5gCUvepnrCVFjBCJvDcIe8JfSgGR2DwnLCTW7iGQ8u5a2hz/IEFgPoAAviDXFgGKvCASdhGQ0CAPVjGRrCAPZiFpaUC4OIFE1gDqg12m3YGVbkKKXEESTPi3Y4PJlgAUnfPbwDXnKgHd5gBCVD3Av7YsS5ZB1L3dAUoSpwIv2MgMVJXgDL48GLRB1gggFgipwcwBOu7CaREBAEgdQwQAFGI7prAijIogIgXAGDoc+HxhyKQd08XAGro+KLkOlKXgBZoD1rviWEZ5rawh3uYLTzJqG4nEcz8gAP4A144kcPNhUfaMC7YAOgChtPYBFP+BIV/AZ/t9qEpzM79FX8oBvM7aMAGV1uAeAnQegkIAQmYdJsQ10nI+K3n+hb4eov3hzJId7LHACZg+JoAC65j+wJYhjinCbAYABQIKAsoAQSIB0V+9wDo+q13z8QGe3ygBgHAALIPAX2v7eP2h1ZQAApg+xDYd5twiRkYfK2ngP4C+AS7Z/mg9odAKAbDLpbxTbZswGoo57YHIIEj2IL2yoZcsG/O5oVGoEtu4AUTwaTg2oIVCIZoyAc5IMamV6FomBGGeTL+WOaXT2bAxooeoHyyp4AW8HCcAIvzIHt5t/z6AgsFWHzq93rsto5sWHvqZ4kZ/sxz3YAlpVbrYIPw33oKUIDPDy2XgLft73y2xQmsiAr9B4gC6+r5K2jwYMF1FChIaNgQwwF/8xBSrGjxIsaMGjdy7OjxI0d9/nwVA2ky4TdwKleuTDkuWrOYMmfSrGnzJs6czpa1arRGQZlhy0TFkLKpGq8lKz4tOyZlh6Fjx9aUmLOtaTRJko7l7P7q9SvYZsucVRvH8qy7kybt+QNFz59ItXLn0q07l9sQHtzsFpy40GFDChiEaZx4AANgCYK3FfZXADFgChr84cMoEtYChpFn+CN4sbKhDaJHi17i7x5G1GX+OmTIhjJGgj00t1bwCW5sfytoB1ZArXLGaCF4K1YgkS/y5MqXZ0RtKRBzi/bMnl15jtvOsNq313QmDNY1KStKSUJTaEOfXMc+PWhUaqiHLbCE7SqxxBnMmMuWoTLH/T+AMe0UDTjUVQfON+tEV5Eb07C1IIQRQoiXXsixRYUCvFEQAmoZyUacYJ1lNBEGIErgz4MXEVSAhg6UcZpGx1hAmmgWGALbRf4iGaJYZAe0gttFqDHBWmAFOBOXiv60AGIB8XiWIz4lJsbQcRJaeSWWBb31FpYHqvRNNMsEOOZXwuSSyg5LHAPLMTAQAY0tuRSxAiy5wDIHAnXysscDqVzD1UzOHKNELGKSeShOy2yDoJcs1cOPhN7AkyWllX5E4V7I1bMNiw70ZoSIGOFjzywE0EbBAS8C9xk+iAhAGwYFKAJkki1kGBgFC7jz5EUTzUjjB1ViNBGLmjGEgbBJCiBlcZxNJCo+3yxrbAGg8lqRagecGsAx+iBpKbjhfiSSG8zQKuE8KbH0TTdiOYMovDKNVcofFiDSDC9zWPCHFq0gggIX1PDyyf4OTUj1yRIxVNPUuzXlEwZ2hsZ76DIEMtrol2nhqJxIxbhirrghi4tpcvrgY4cAilEQQA/1dJiRSGykvFAATISaUWVUzCyBAC9ea5E+4GBgKqoF3LbqZ/o4Y8EDoj1ggS3nAu0PLAcUW4AGzvyMrT+fFJAhBQKEMNBGBLkKtgA4dAbpiP4wEcBfAryGtMh1241bIgV9G2Fl6qob5sQTj5UJDVS0co0oPixRyjHJpJAEU7s0EUMfYplBwyHgSFzTWJ54gkp+gQM4FjcYV5dpQVvPpQ9b0N39+pUkL+eMERSQIEpadGfESxEhzNDKsx610gMGPcAidUbx2NFCCGVEg/68RZW5M0cMK8zxDfQViQQOGyG0YIfGIflzTRne9xH8RiIdQwUGMyCie3Ot2GoEMLDbX3cxsmS/ID/ufPPNOa6xOdGNiWFL+EApYOEMM3gAEQpshAXAMIhjlOIBcxAFMHaxAinwghoD5Fw0nAGMY3yQgF6pWDcMZDoE4eMRK1jBjfZmlxyg6H42XI7slHMPfGADG/sLkkFe5pFVwQ9mHcJHEUXVoR2C5B4dqkcSWVWQe8hQI1RMXRVFpQ94lER1N/zigooxDXDhoxvgcEbDTEgmZ7RiA2tYUytisANesGlOuZhFLriwgVLw4haIGIAoshOWQQwijWr8SjXOscKznP6DFzEQzAFEoRxylESIYLzkSXJYsnr0ohZqscc86pFFmNVjHvaI4mdKacmO4KMeUDzJPUKJyiCFcpQequVJpNEJGGGylxzzBzNcB65sGPKQ2qnGNqIRpsv1IRp3Qs+f9lACMyyDF404QhigAYxSrGAJ1BBkWLjhiUKS0Jg4cYYi1bVIlawDFsPBgAAukRx6+MIa7PAlPi+VF9RxjBwgyydAX+cNc9kyoAbFCC5MwUssAWcdCxuLOcEyljmY4ROioMESgDGUFRjOGaKgwg42wRXxNGIWhMjCDhoxjnJupynmUEI7ABfRZuzEGdsYhzrXqZJxiGMFBzhAA66BHHJYw/4SBz1qRTSZnHtYI29IfSqlTOGLH0L1qHH5J0P9EQ+ccoOEwCjmTGlyjG1swQIW8AANRKFAM3ygEbc4Rh8sMAdYUGMTFmADLHjRCgqQ4RgeHJMzUBEGT4DVhDuhxjdUqNOVoCMbj6DEOPiCmmKUpKBVvaRSkcO6MV62swvyhj0s61mAMuMMNaQUOtTlDmuuNKw4AYY7BlCCD2xgC2uS4zLqVAQXCOMWt9BjK2wBDEM8ABVwqAailsGNCZaQgNlYLMa+kY1uoI8uVgDtaA+aWb7Ygx3CPCoRs5scUExjleI1KDzMlaIr1cNv5+iDAH7qWpwc4xxm3UAD1tCHD+yhGv62CM0atmELRMRATce4KA3OcQxUgA5R0RhELDzBjebCi0A5hW51/qegubCFHU4V7Xlht1276IMeo5jUUScSD2FoDMQhxogl2LHeFweUHKOgh4vroo91qHMbzihACDCAgS1sY76cawYsYuCBJRRhB7BYxixoUIRAwmIJPjDEN6sQg01kYyzAAIRGKfZNORSqsIAlnWIx7CV05Bgh3mqLJd7SZhqHbMR2uQc5kJqWHQhhBTsoAj/pDBIZz1nQIvOWKbxxJZHMA6cs8TGQhUyFbxiZJs7ghS2cUYQYfIKuc4Ahm0SRADbY4sB3hcXCYsKNSMgUUYEt1DHM/J9lIDbNav4+0Daq2xHU6CMIxVB0oQ1tKTvTZYt3mKpBK7MCD4zGAgoT9kfo0QUZQ9uX+mCHorGkyAOtQxQNQIEG7gGoStOUjrBoABf6eIslWAAYTy7CB45xC1iwwQMK3BytlVCNcR+KG2EYoay34wwz3nqd29gwSOgxDTfAJdjVphSx68KOex6UC78ajQVN9nCNTHzjmNTHPfJ3pXQ1KkHuuIY6vkpusfBkDiV4hDNSAcE/RIMXf6DBFqJhC1HsAAjrEAvnnEGKgG/nGNWgxhGAAYzQcWcs6LxwwaM7y4Ns0R9nmAYuzOtxEe8TQmI0KKSocPHReIBsW7eIN2Tx5rPfjy13OP4tc0RSj3UQvOTd2MZfK+2dYzwiTbDYRipiUIRUOAMWT5lEM46hFFG0I8xBx0M++E2m/SxXEqjwIIVtUtNrnAPqUW9UN+LRkbewwwq4wAVV2T6yri8IF5ZYez7RIYSxiyYB6Jhx2XApXlzoT/X2E0mMISQ9Ry8yJSvnxTbMsAFN5MIZX7AAJVoRjU0wgNTO+IRcm9Fqm/AHC9wI3DKq4QlgFBKcXREUNT5/a6ragy1usAJnHe77CEWcLvbgkkEtTiNn7+ojkNL4eZFDns3f66AGdOBecqQWhqWakcHCA9xHnfyZLdiCMDSBBeQWLygfm2SeTDhDVxEQCckBMKAC0f7Jy/+oH4bl2kbQwwnQA/4R4P3U31zAwx2wg9Zd0h40wGjQVgI0gkksAxU0QAg8wl5MnbX5w8fA4Os4wj0gIIltiq2t0ISZ0340BTUIgxmUQCPkliHcVTbkgiE0ABs4Qy5owp+5gzBIFDCkQSwwHbyICTVYniR0FYXRGgoWHMJZxDQkwtvRgxMqocjI4Fy4Ajzc4BeJxBoQwIxYAAIIQR5qhD7MQx8AFQZYwAGEADVszFOVGC7IHyAiBzuYAjx4YkVUhj6gQwoVnBsSEDigwza4gyHQABcoUJIJwZOhyRJoAjXYwhasgCisg+SdHzBEAkuB3zcNgidIgjkICk1UTP4i3WHBydCDFMMZVBbOfCK4CKJcFAPIHVQ9rNsDCIEtPKJG1IM7EECJWMBCUMAKaCJS3QM8KBQ2hgwl/aFaiMQ6EN+tncP2gV9S4NxTfMIufMMWtBUsNENozMFbiQICGMIu5F1YiNAxrGLgUMMIhsExTKGYhF+BQCMellJBhJY/WMMdjII96oMredE8TgjrLYgvKJQhghGStBlBzEEDVOI6UgAK8EJn6QM5cNZKWso91BNzoAM0lmCAaJoFfEADUEEftUIJFAEdLYMQeMB3AIMUfEAaBgg3pMEi7Ic5mcMgWB4w0FRieWTBfQM6TFENdYEplMRFQMorcYMe4AMpBv5lR2ijWtCDNR4UKKmkRRDEDOTkOoaAJFWVSEzDKOBlpZSYLGQbcsTDotzhOCDl6PTAjFhQKrTBBuyBM+xCF46hLXyCLKJDMTYdN1weB1KM0TkDMqKCMiSIWXgeWoLeNRRBABwAL/CDEpQeW1LEPKwDNCQDI1wBC1wAHdwMYy6IXpqESBzgwxEEG+jgQpiVTh5PVbnfQi2nhNjDPThVXVTG3NXdHX6fCUUDGyDA07BBwcBCNohCE+yAKCzDLixBWp1DWRZQNcDBB1KhcvVCNuBBLXQCOGRDPEgXbdbml0xXKgiAB7xAAWjBKdwTjlnEKniBDIwAC+hADXjB2nAnS/5WyIIk5hjdJUDVAzWIDQXUSAg0gHJa1T0AJYhGiHO8IF2sw8VAY2JBFAHZwiPMwex9QqaxQQnsQStc3weMYT+ODiqkAQOq0U5UAwDhVDZkAxZIwykMBE6doIIiiHSNAzrQ3RRQgAWkgAN40g9VwzrQQQ1w6A9Aw4zSX0vGHTC5Qupll8nMgbasKAY0QDSYqN1YA8PFZJwWmz/IgozKhT5E4R0+abwsg2/dggdQwTHYAizsgJPZQjNIwQZIReCg0Ux5nnTVAiAAQi0wKjSOQ5XWAhZ8QySsAAk4gCpQVWXoAIfaaiUUaogG2nKwRd4AakDNQQ+gQA/EQDcQ6hE6gv4/2Kiulow+2CmyWsY8lE6X7tQ2gAm8CAov7AJVzAEbGYIHsEE2gOYGmME3nOahZKQSqBwBjQU12JqqtuI65AMgnEK9SoMyVOk4xAOP8diW/k9KnOBzJdY4nMM6hOk6SEM2dFIvKAE4AEJl8IMs4ILo3WBchMKG1oAg6ICH6lqz2kVzmgRqOMIAbhxwRMM5FIQRYpJzbOfHJkfa3an2dAYqVqtKdAN6soEoAB1g8UI09F0R7EIzBN7gRUMrKI4omGa7HgOriY6gRMNNJaiXZkM9hGktnEIn9AIefMMinAI6dMI6ZIM/uAM+xAM+7Ks/MMa8KmwttO2ARkIvAIIyKP5DuhREDUaC3vSKPwyDGrCACnhBMgzDEEgE27wscoSsyHoDeG7cTI6WL+RNtBrurvkDw9mjZfgDjkotCnJDPLRoA1AAL6xmVwADNSTMI9yCM+iLIdjCMnQhItCa6AIIMMSCoybXNXTkOgXsOmRuvvbCIuADFijDKWDBKaTBKeCBNEQCFsxDBQxoGigD3PYCvkoDO3WePxSDJcjjDbaSPwjCD9SACoRCWqgBnEquciCuc5IDs5qvyIwi+06Sw+HDZNqsSlwDPlxin1KC+RVdKliAGbgbL2AqAFNBvFlmgDQFGxrwV9iUR2YDwY7DPKBDPIADgCoDgNaDwebjlp5Fgv74gynoj2XpgzkMQQ3UwA9wgz6wDbC+L/p+xD141/q+b7jcATlYrgxzBGpYAdx5hP+gqkdyQz00gBD7SEttZM1NpyjI2x4k6TXYgiaUqz3wwkyN0MREgwLqqKr+jwM7cMBmQxZXKZe2xDmkRd54gy1VxjywggrUAA/oQWeIBD8A5g17RAuDxDQg2xyLC0nkcV1YAjnkGBqvA7XSb0t8QyswQRH0AUR2hZiAw5+sAyXEABXAQjQ0gn0+WS7wGSx8A7sakzN8jgJr3likkOYScnVkg4LIgiz0ZWD6QzKogQqwgBr8QrLwcV3U8UcQ1QrbskfAA2Tyskl03Ef4TykrKP6PcQNF3gQaAUMRsME5mG4uUAMbbMAj2MI19AEMaV/suhoqLALPjs61+rApc7DY+oMVFEPJAs1EbKwOhG/eAjPIzmmEnEENw/OV4FkX/LI9d8R12fBBFDP9jgNygUWsNc2MSMFVWsAS5IKlshu6ztQyON6sRQNAjzNLKIgjmJYNQxEP6EBHI9E+8wUue4RIoN4uhzRFkAOKoXRI2GBHHKg4j7Po7sccNI0HxIAhz8EGGAIbfcIHzIE75KeRUQMePPQJkUVMW/SXnIM9eIMjlEQM5209MIIKcCgjaBVL37I8Q4g16E/kZjVJ+4NigjVHgEIhFsY5kKdSZ1hlfsV+fP4CAniABaBAKwhBE6RCNcBCEdDALmxDMIZVNKCCREsURevjWoPePIxRF4TksOztFcjA3ybDh5K1Woz05FqCSVM2d5nzDms2QhRDIIgkRmTuYZvOVbg1EIbjEnhAH/hsGzTAJ/jVNhNQNQBCoWiHcpX2CknXRDiCNQAblPhDHAwBC7AAK6iDO3o2HW/1iAKTzCp3RvzxSe+zPej2bn/DTPvWLlhAEWDgn3XyytGU0mmHM1i36XyDO/jkHejzRXADFJQwFPAqdOuTiFqJ+/mzsHnLdDd3F7DOfFPEKIBCjviPeUth5mlrLkynIeRWI4TrPAh1eGsfKuDBInMfUlf0OP4nSD0oroBf0dSIwyt0QA0MQXLOw8r+N0JYtkf46nOH2LWcuMjkDX6D9W9bxDx0XoGvUJHdxFj4bCxKASWLwl4fQzb8Nbktgzl4n5HrR2FjOCH/Dz54gys4lT2iRjIYpwx4wV54LIpzhIp3BOu4QqJu3ER8AhUswRas5VeLCxdVaJcbBDOMOeaGcY5jDEX2+DJswQ48Ql+bAQNsQgjNdkQ9bR3ebp1zcMoGAj3I4yihpD/Qga2qwCsQxH6z9Jd7hC9gFeP6g9gtRAgsgA9WOnL4wmK++UEUg6bjQzg4uXWPAzVoXp1YQBPswi3YAkedayhHFJKfQDT8dcUceoa5g/43eIMp+OE1coNH1wAUhFLhmjpIXLpHJIKxbx0ioKNZWUAISMAuXFITop6zG8TXqaw7pKKXAOximXuXUtpMVIwwsIEFiAI1wEIfbEAjRAN4R3gz1q67lAWr0y8A4QM8vKTLullnULWtYkItf/ty13eWeEOHb9zcoQAGjMZCaAAXXJI+TIMsRLVyE8Qp+JBE5OiBdAM+hFJSf8NE8FjuXgM3DHJ0ncNOkNAxoANpAvlQFMGsj4PEgCW+yws3wIH50VoKze+hZ0Nl3MFYjxL30oJxyvIzvKjCL7x806g/GBXHu/g5oOOKbsBCNIARiLr9+YMjgP3HToQRkAAJHIPKY/5MN9RDGRTBFJTFbsOiD+zCuK9QwZZ8tIjzNnQepa1DDPSAIWiUvjQCchkKVvD8VxwDwIVFUzh+NeBBLATKNSS1RTuaB1sCsm1vQcQBD4AvLUwEjEf9QUD7rtmDEww8ndnDOjxAiWw9BTRAFRyi2Juxs+uIA7xAChxAAKE7B+MDGzTEAbCBYR8IOkwCASgGJbjDeXfDJ2jLDKwD0R8IeofGCjTCCpjBdwgDRlVDYfXBkc40NSBz7DrdbGuUoTiD5Ss1eludN1w9bDwDh8rAFYQP6Vc2c0uISBDVxt1DPPQAQDSwQIHghgZs/CVUuJBhQ4cPIUZkyG6aN4kXMWbUuP6RY0ePH/3p8zdpwcAC/ubpUznPXUuX7vxFWSBBQo9t38bl1LnzWzMMFGhSubdz3DmjR6/5C4ACg4JP676BkzqV6rpPFkJ4QJBKmK05HvqAA7aMLFlnrSQcKFCGWjO3b+E2I9uqAAEB1Y7F1euWlxEMk6rt1essmhIy0ZxdOxeVamPHjyFHljz1Gzp7xWT5o3cvosh1mFTIGMLIXz2Qp1GnVr2atUZuQ3hwa83x3jRLIWfn1q2QVwEKITCEaIDi2+7VIn35wm2ceXPnHOvNw3HgYOmLfwQ4EFAG4zwmBygo6NMQn0rzMAMAPyDKX7x57+HH90fFgwWtzhr5KBJtnP4zatEABJCbSXyTAAdhEHNGwQUXXKYbgijAoAV0ltHrmAsv5CYEBSgQQBRgjilLxLKa4SUEBxQIoZrFJmvRxRelimodf3AphpzlHhLpFyhUqEEN2eZ5TsghiczttdiKbGgUUJJs8iF+/JkFhQAIGICJanB0UiJXLLlHJC3BDLMjkcYJYxB/7oEyIn7wuaQINkzD6JoeJCijHjUh4qyMAATAoJ4vI5rnAa24kCIGVeo5p6hxwAnH0XDWmaRPB3ro5pttMM1U02rmISAEClAIwR9uuinV1GxQzYYbdz6l4AA7uOGmmllprXUbSV9wQIJW1oHR11+nGueb4vxxwh921v68x7Q4atBBhVcS0gdPMamtlrkjZQNTH2+8tDZJfeZZh5f3vIUIHnoALVfddTPCx504MdKnnnri2SiaVoLEaJ1shDDjAzPW4Uayca4xogAHPjmnxVgFoCAAd66ZrBt8VohQAGCymWwdUTgkiFdgQXZRWJjOkIWeizirhoUfZLgCJXZhjpkjbMU8wxt7ZG4uOnzm4Sxme9hxI+ehk7TEFNrSvWjepCNSVl590YkmlQRsCbjFb/JlbLJxunEHEX+oUVjibHqY4ROtI/umHkNIaMEOf9AOWW6qvlmHHmvuSAhniL6MgwUdaoA2X6IJJ5pmMHEOxJ+9C5+NaXVPztvnxv4pn80ai9R9nCF+ZuRlBy7qsUdgF7e5hpu4075mnWsYdZFYqFy8ph5c4HFn9LlxB2dYfIphZpSEJm/o6VWuYEEFPaCxrvLl1T08zGlAsUdz5ql3SCRZcMmy+u01msaa5YszY4dUEpqn9dwhQ32ybyx98RtxFlFGffRh5PqckxNhZ/qE8EGJWRl0wAr+cY+ATnKeljjjigIukCGcERrjGBhBhuAie42rxzqcEQMupOt89POg68TRC2l8MGRdo0fQ4uWPZwCuBleAlwRhaJwDItAed8BcDKtHjzvcA4I4jKA1pkG5bxTiAc54mUJ6RUIlpi0faRhHxpb4onVAyQoW6f6hQ9YhCBXoQAehOKIPwbiaGYYJFJsJY+P0QQ9XTONkZ4ygN1whvZw9LRc0kEJp7qQQfPCjG1H0I2XcEQnd/TFt2fAHOSLRCb1BpDz+MMYQZCADNagDJdNy4yU3MkYt0cMX1ugWJmVmD3gUA1mgLCA8brgunr2nf00ogREticT5ERJ96OgFFGlJlXFsY0aEgEf2gre5OKmBhb/o3/5MmcyFaNJJnLHC4pS5rpMZK5oEPAM5rqiua2xAE4N7CD76mEsSZgMfOcAHLsWpNmvA4zbBbIhpkgFAGXjBH3us5j0fwkwnnewM+LSWSPqZTX8Sjh0CpZYhBpCAGDzAGMrjW/4HxYm+Jw4roro7hz+KgRntMUQk91DDFnXwi9LEcqDV1KeTRCmL75VUS+xwRTE+ydLGJQIeBtVSPb4xgBJ4wAOlcChE+DGPcFY0d+dQxiLcgU4/fsOQ/HBF9NDEt/6tApLHM8dPZXrPkzZJJMwwmTtBiY/+NdMeykFmVtc1CgWCFUz1yAYAVsBTQ2SEH/UgKv3cEb9ZevCJFzWaWadnGnOooQYsGAK0NuoPc2CikWh141a15AZ4nNWHoVtakugBjy44tnKZhRkiBvCAItRTI+e4xlDvCjKjZmOv9MOaP4JwLImwyR+vAJwkX+iQFc6Ls2eEbJMSdyPKwrAasIAFNf6OKSSV+OOBvSUcZ2LbRm+JhBvRqKRG3BENaqCjtamFjDvwII3uyk1G/gCFN77H1oWYQ4s6+IEXvanbGvD2m84l4G+Baw9rKMeU80DoAw4wADZgaUjM8EUxEmvfzPnDF/Bg15/qupF1mEEADciFO8br3WBl4xQUXWJU4sEPX5hCjoyE0i9kUAMfJSSPEXnGfOP0imQ84xX44O0rRKpg5uH3W/7wxig8ecn+9eEAGDAyBg7ABOVaQxYIVq+O/+mP30l3e6ogAAYaEAPWabh+0uhFhn+1S2I5YbJripMXbps8jbx4XvjwmznEwYI4JGQVMsgxlCnHYydlNMEwtEUDKP6wAQoMxFU+bc71MoPnoZ0sB9Dk3iUIMOgZHENsXHZRLXoBUYlyo39VLGVETBMKLqqAEfG9CJvXQUzS0oIF0BqCHvqsaHbp2UnT2KxNGSiKSAea0AfYRHN4mAj+ylpmIiloAZ0xAwtggA3zsPSLxoFpTc9tWO5ghzc2qw+b9i/VKf6BSFuckWfIwBxXGMLLlnUFKPzgi8QeGq2T5DPFxbqAn9g1hCiwgEk4R2iOdje7cCa5Al6jEU8Bs4aHFQlpTDtk3zjHOuSxiBs9eayr+EGP6FCv3GIkGTq4Qguf9jIeqMAfMPm34WCTrZhxhhmgYMYZZ2EBQm9g2QX4BHPIkf4IWejjyScXkz280W/uAYobDH823aRRC6XOrRvrqAc7TOGN5ULENNxQQySHQItoeWSFguBGDegw0nhA4wc1mPPGfd68lBcOFOygcgyZYIENCJrmRRhrbuyhXwenPWbaXikDMXz0yWSjF3hwNvqwdg9mzNvMtW0WC8JO2o+8OEiVsHN7/MECQfyiBiK9O9/VjiTCOYIcf48hZ4ogHEDvYEa5EQk5vJEIeoNeS/qAxx2CuMCgHjy132hHJ/LBe8dExR0OPgHw1lRyL/zt21jtyLjJte6EmDshaDY17asFbwT62A1u92GQPvGFMoynHp9njTccoRxcY7/23mDG+tGIDv7Bpy0ei8iG0V2UjYuaQhZMsod6v4QWVEwH5mykUIPs5uU9fkAPXuEHngHzhkAN/IGk2E9LtG/7/MEUCgr+mOeF0A41fMYROKPnKlBLpoEZSJByYGf+hq8XIiHwQGaX8IEcZEEWHEy9gsof2sELIukHkkesVKMeflAkqsEcuOEBx8ocoOH6StCA1g6N/KELboQDZYoz2CHbmhBmbIgKh6auWHD48qEWwkH4KKMeimEaMqPnKk8GfmAESk1LKDALi+QCwwRnvKGfUpClrkeBuFAOiYQZUqmAKu0LpSIbsCAflu5q6iYDDSwj1OHjauAHsMSe/NCU6LAOE8IRkM++uv7FEU7m7SqRWjhjs0CxemCQEOuhE1AFWLphHBhMGhKBM6ZnrEKBB1hABgQhSMwvFB/rCSsnjYLGwUqRpdooEIrBjHhRXcghb4aLaPiBDHOJw5QBWLYhSBLB5UIisPwBGuJABVjAC7QOCJMRlC6xWtgBF/CQs3DmDCyhD8dxSNgBWZqRaJLoC8+hFuyP946ln4ZxIUJNniJvF98xjMqRWnDGHgJhGuYRk9jhDA5yIMslcRKtgPonYr7wG6RBUdwnJ/zhDthBuCQiOiCp7GTjAyHShwpSFHHGEbzhRgbq9dhB9ujBHU+yOXAGF1yygO7BHYZi/uqmE5QB/yijOOhB4v6Q0SH44UtW4W/ADk3CrSZ9yxe5xyL4kSYZSI7cwBtyDyqni5MkiBfmwBluh8uiohY6AadaJBtmxBFwwfQeIkiq4eNU4AqSZyG5kntSslxyLjNKzJRwphjugBz68S7BRBbcAF2GDh9s4QA+JRzG0rsqoxZwYn2Kgx2cwBrkEdT8gRF+wFkwQRcJE5Py0ltwxhq64FyS6R6ChknyMDST5NOqJ0h+4zdEBbXuqjJ6ARDmYZaiYh7IoRiEZuqeRLGgQMUcsJ7i0DUlaDRJMyECwRVeLqq4Z3Jyi+cwihn6bTCV00lAQROt0ltMAwWwogFAxzbvah4AARHTZl9gSzMGk/4z8GEpZYAHYE3ytjMqRU+CSnMaPFIztidIBkQYJvCY2qgLTnBx7PI+mYMzZOFoEnS69EEYVgAAmMDDNCwbIqEWBukxvsE9vGEigco0hkENjMcLhqE0BFJBYYg5YYYZrIGavlNMYKIHTGADQiAGcsE/o9AaolNF1+XaenR79gUchJKWwiEMWesxxnAGXQFEISJIGOHxMGGAfBQ/VQ6HfKaKECxGnUQkLIApNuDImqEiYLRKM+cealAn/wQaXSsb8OAU5G/45kEesG3rQM0dRlIHStJMezE/fSiNEsIKTtAluZRIzOAnZE7QDqAQsCAhEJNP10UWtpKALO0bekF+HP5DLf2hQY+mLzenf+ohFEAK1iAMUglSKsGIhzCKHCTraNBEONUFSqgA0ORO0LCsNFrTVIkkjQKBHHJVZtAytbLBHXqhFuqxEDEq9hYJIuolLmVgLpFQV60UlL4kHn3hmhSiUHdDWYoA0AaNIDCgAM7BJKU1TJTjV/vOPHNJbfAgEnaTMs4BH9jBF2CT6vwhDoagBkaAFmYkRcuVgVi0cHwG6Lpgv7SzpeTBCLwVQr7U6f41Iv2h0Q6WcE4xouIhEu6PbuplFKYhJyWiGoqzZa7qQR+2cQIWjXyGGcjhDPTBFKxBumTROUQCZ2bWG3CBHroAG8CgAUJgIML0AAyBZP5LdjdwxkmpZ/fuSho6QTKloukykB6Ezl7NYRW8EQpgDVaHdkVRNZmsUzPgwRVi0QnooUdV4v/Q9SG85GQYJ4hOExRw4Yb6YACMjAIIYAuYMGubaVNlIRCZBx9YJKKI1Vh1h5z4IRBGYQpD1B+G4QpCQw2S527xtoBOlnuQZRqKwRuCgJ1QM1ruwUtwxkuwFje0DUF5CFDyTnEgwGa/p17nwRmYIAaKYBbINXJ7bBr2jnvcoaKyoRawIB50pzhAIeq6wx8EAYBUoBKolHZjaHK3Z2ajamzd9g5MwRXggY1OSDNCN1s3w+3uhh1kgRmCgB3uoBhuEJqYBl7+RHnLxf4JboZ7Di+XnkgZzgkcZkSy/I2R3AGAdODc0ld9cYh5CUgkQJEZiiERcIEZrMAeEuFwHcEaiuHALjcR6AEUAoEeggAN2bIiGOJk9mdeys9/rQVnmGT2cqZIJUoaTqETiNQf4GEUzsWgaKseGAGkSGMe/BWE8XJrHcs8wEqUXs4UyGEaDqwiMoONbnchPldocbj2/MEVrMFVj3Y32dR18OEU1mEcTKP7EEwi6uUXikcFHNc+l3g5dXiMzdj1/AGISBhmKvJSlgoOOgEmpiERgmwWl4WLWIAWgkSJzxhmALiPAdkSHIGPwYRN7mWK17MXwGEe+MEUFGf98OEZyq4GoP4AJm4YkKnnjzF5jAX4aCZ2wdiASlQEkR0j2jqhGOThmXQUbf1BHDDhFkejNAh5k0PvSmn5lk8jjfShn5YHHXg2BAhAGCySfgxJaChoM57MNFiBcSHvASEXl5dHk6HZf0ViGjSYcrYBK4AZGIYZd4oCHfDAH84AHo7YekyDDppFBhDrkqc5z8q4neFZIhSvGGZ5SEQCET6FC9oHfVDFQGVv/eohzriIB2Q5nhdImg1aed2AgNeYWu7uHkj5UvBhGkwhEhBsMEViHvSgR7qo3RJ6exAamvXBHELB5PB2b/LGU2UGH7wkd3EHJ8zLF/LmfsmjtopzBOjgAc/2o/34nf55GiTqgfNseWi1LWg6inIGMcyyAR3YoRhGYSaRqX+qQcXsbI9/WnJ9+qo7IqhrIFuSU1dF4oI/2VviFGTUhh7IoYI1wjS8oJK1GmCz+q3XWqhZ7BXmgRauFBqSQYyr9BMfmXD6ZzJhZFhmxHdSeiPG6oPlOof9dLE/gqu5wTSG4AfqQQckMCHcoaPruRKlxzaWdWhMmDLQwR34oUE/e6132rFrWbVPg6sfkAegICGSQQX22h9oQQXmYXbvU4BtBnuH5h7UlUPX4R7eoYVZW6vi+rgfIqhlgBt+wGXKzx1arZ70QA36t1yXK7a0VWZhJE4sAcE2W7lNNrnFmyHqYf4Y/saylwMTXMgdakDrhhZd4IH/6pVdVjB9Luo37+BzyzuZQhqXz9sNh2EEBEgkkmEEuKHjWi9yi8GJHWy7daMetiF9DEmc2eE2Grq/4bqxNRzUhqG5ibcGCMwfvOAVvKAAaXeyLIEd0iu1m4O7GmOXZsQURmGLXbzDM5m8Oxyy8aEdZIAO0lcQPO4BQdgX5niVy6ViiRQmcuAexhrHtZbDofydhuEHsgUaOgAaGgkKzu3GtzME6SERBPNVq0Uk5GVf1mEesGEUnlo6p9wSdVzD9cEdkiGP5iHBIRBawvsuR/d0L3yR9hyx/cEW2oANYMEfesES9tZO3xzOpbzRMf5iFTrAo9X3S04GFDAdmlSaSJwBBQ7AAVoAC7QS0pH70UndIeqBG2QgjzN8aP8vYpt4E3fVH26BIEjAAdjj1E0qziHdXfTAmNhZeXnODnGBpn7n08x8NWJWIazBgeVAARrgAR4AGHR910292hnpuvt4b24kEA5YaLYYNzoXdBPMPEZXbRWiIqbXFB7YH4ihCKjgGFod27EaScTq3vE93/V93/m93/393wE+4AV+4Am+4A3+4BE+4fHdNBjBuidQ28842ZGFfF0hEIKOph01jXgo77IJWYLgHtwgo6whJ/vHHUCT3uHcyutJ4Vm+5V3+5WE+5mV+5oPk6ppPt7cdo/5wIRBMIRFeShbsoYKSxv2YzA304QRkwRIeHOXRStV/gA70IOqlfuqpvuqt/uqxPuu1fuu5vuu9/uvBPuzFfuzJvurpgBF0YORwsRpkI9hBuHQngh1GgR1AwQ3IwQl8wRH0/rstQY1WWW2zl+mViR/MQRNGQAVGIPEVf/EZv/Ed//EhP/Ilf/Ipv/It//IxP/M1f/M53/EvoFl+gAc6wA35+pZVwkt+lTOkx8sFP4ZEohAqIfZlf/Zpv/Zt//ZxP/d1f/d5v/d9//eBP/iFf/iJ3/YZYRXcSwV+ABO4QR2+WqSzUXTNQ3RbX8dm/vqxP/u1f/u5f9+D5ApaRstxvv76yR+MzP380T/91X/92b/93f/94T/+5X/+6b/+7f/+3Z8zGKE+bSzQy///AcKfwIEECxo8iDChwoUMGzp8CDGixIkUK1q8iFGfwHr1MHr8CDKkyJEkS5o8iTKlypUsW7p8CTOmTJX4NM68iTOnzp08e/r8CTSo0KFEixo9ijSp0qVMmzp9CjWq1KlUq1q9ijWr1q1cu3r9Cjas2LFky5o9izat2rVs27p9Czeu3Ll069q9izev3r18+/r9Cziw4MGECxs+jDix4sVo9Wm06RFyTMkNKUN1vNAyS80VOev0DJEy5pGgC5ZmjPT0StUtNbMeeu+eQHr+XiOEbHui7EuPsnPrtpcS+MDeDH0ftCc8oU2N9HYTxJ2w+fOLxh0yrz47u3aDtI8nP0j7NXaU97qTpjfe3/fpkSGuL/n63nuFttNPtGfe/XyYAQEAIfkEAQoA/wAsAAAAACADCQEACP4A/QkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocufGePnj34NFjt5KdPm/04MHTR+/ePZI4c+rcybOnz59AgwodSrSo0aMP8ekrqE/fTYErXdkDZW2ao2mJXAUqZukOPSvFZAXy5ijsNF/Tngp0uhSp27dw48qdS7eu3bt4hfKrJ7BeU3tqi01zYi8QLnum2FljZw9eQsbkqla15O1OMVzFCNrLy7mz58+gQ4seTRopPn/cRBUEVaxLZGv+HF8EzI6dPyfwrFhzbLNt6d/AgwsfTry48ZCGDjQIEYtZIMqbBW5WW3Gpyc1LE90+Se+49+/gw/6LH0/e59J1PihgACHJlGZ/vjtu7i5QlqxE9HytLc+/v///AAYYmlP+kJMNCRSEQIBq9jSl001tMQOPKYlMIxB1Amao4YYcdujhQ0vRU8woppTSgABLuCPUUktZmEN32H0o44w01mijcPRgBoo/22RzmoNF3bMZKJZYGN+NSCap5JJM4mShI9ZkM08233xTDTXjuEXfGfY40uSXYIYp5pjwxTYNKPBgg88534Dj5pt8IaXPZuzgEohj9BxJ5p589umncTfJQk8g/tCjTptvvvnNPHORw4wbF/4p6aSUVmoXO/fc4Zg7iCbqqZ5HReeGKxhaauqpqKbKEYFnWuJPPf7gdOqpoqfJNac/ljDjXpmq9urrr8Du548b02S2zjiyzurmN+vUFV2FmQUr7bTU9ukLM7L4g0+synb7zV1LVUVOg9WWa+65Hy7lDTPe+MNpt/Aumpc1iZCL7r345gveTfbIYoqFVcIr8LfgCnSGNe3qq/DCDHvmYDHMLOJusgLPOk6cd20miy+MgdrwxyCH3FNblOGybcUoM+sZM9r5U6rIMMcs80a+wHNHIvhQjPKsKvOjLV7d5ZDwzEQXbTRDbV3bhT/xZLMzyudkM8knwrgMtD+y4GL10Vx3PfNm8MChFZs6P51olUUIoJwtnG2Wqz/24FOr13TXfW9bd1jjC/4eAZtdMTfUNIABBRKw4Vm7Z7wKmN2MNy4tPOw44o074yiDjt8odxONBRRYYEEfnm02ij23NIOPz46nrrqlpvhCzjedRPIu5hWvc8wMPtjxqmf1uCMAAgNwwevqxjXFFmAN2rNZg0AS77xE3elzVbuAZBNP2bSf7c461fjDqGfzdIPACh5M0P3zpf01p70PXccW+vAztZk3Z8Azzzd4dIJs9ju3OQ46ntmL9wggAiWQgBrxG436YuIPwRTDEb5IBC7OwDKvnMEbxSiGSuxRk+gkMH6byYFA0DGOXlCOf7QDzR48IIUNeKAM5PjgUJoHKgyxgxzT8AYuHkWWO7mBHf7T2E1NBuKYHJIFK7hIRDFAIYs6wWNowpJh15ZCDlzsqGnoUAYglIFC2qkILzdZxhJ2QBBvREI2UuxJnCZBiU8Ia3mF8ocr2LEVX8gCYrbBCD3sUbOyTMMK/nCE8tbysjSGbCkZzAw6vpENf8AhH+Poot9UZpc4raEEs/DePerBF8wYkiensQUOQpCgFQCjUEuxjRPoQUHFDNIgLHJILA3SnWLk5w7scAMa2ffJj9mDHfBIHAnblI00SMNpkpwkxuTCl2g8YA/N0tMdTNG8XopEGCHYwAY4Nzhn3CQQ/ioGHD3mkZs8hRkPlFyeyGlNdLHDFKPwxzq6sSxwUCmZmP77Rjzowg98GGID3OBGQjYTw3aGRB/1YMMBOEeBzlnADLjc1VI8yBPmCURCEsxhW9hp0F6Fax1BEAgyYyUNOCgjkvj02zniUqtjLKEJ64jmQZYyClDQp6MdqQc6MICBDVBAmxTQQAzaIZ1qAuVWAvGFN3LliqLiNFgE8oUrMtM3e/ojDfhAaUrNxo1CBoUfT5kDDTbhDwCSk0Xx5OhTITKPdZDypz7lHAqcYSuoANMNElXrWvvkoESwQx5Z7dQ36oGHe251kutAXVH4wah1EGAO3FjHPBSbkKWAoql7zQg91tECCwBVmw0owjLn0hR4uMEX9LhpZk0lC3s0lU2e+v7GOWox0sM+DVlIuckWHhAOZFGUIZDz6moVksph+SMMD4irehpAVryQyxXWcMRK4KPX4SZpOsUIBDtylqxv5KOwtbXt09yhj7kBhS+8EMIOlvCANfglIhesrnWf0jpfROsPB1COchCxu7xEx76+0A/crDsmmvgDnu5xxzW0+qZznOIU5xAv5nC7NZ/EqQo74MUOLOABBNjCJA/ZzB0WR2CF3KQY1gDFL8s0D2rMgQl9oKt587IUx7hBH/EcXomV9JQzFKNdVU3UOIZ8UgmbbRzV2AYNejCP0eKEsf7YRQn+0L0YeGADDHjEz2TpD2bEUL57zU8TfwsfmyilNI2RBf4oMLVjJtnDG0vjx5DhlY1sBAFWRn7aNfBxgBCE4ADe8wkiGlANbsxjDdvcQAPW4eSFbOaHbTYIO5bqEh0PBB/1mHFonoKLd1o60h7qa5frgb1YueMU/ghvnr11DlEILgQNCDROarWMDZihHvdIhRSW4I89LGGllHWIxkBNXX8kwhtfHs98psEMZgyY2B3qDjlkMQ18uEPVnmokHK636v5FQ3AUiPX3RCJAfyyBCqVAzR5KkG6MgXkgJxmFNcic2TlBLnGzHE9b7GGJbJEY2gG6R3coxI94cEtgPjpBPrDdbZ6doxVFKMIp3z2Rfe7CAojoRj3U8YE1mLXYFilWm/5DaBuKE2czJ4gjwAO0GQh4j8ECW8cp2sHwhitLHOtAR6M9cpo1WAAd21jHHhCwi51bxBTFMCpOazyKltGbPwZ2xCiguPLyeMMUCc4GzOEVj0jUIsg2F1hAx/0RffhsFy4wgz+6kYsYSCEe79A0RpgxDdXule7+7lB01pynqoeHioNyF2yfNttTrCPsfsOt3DHyvSrEwBj3WMcWmuDGL3bkJpCy+58WnzHHJA7EoV6KJWzzdL8Hp0Wkisf+jpwNLiJ+kiZfCJRTYQFRLMMfwSgBG9TB6JBsxgkV/hM39hma+3z6Q6DwkumL5w9ruMI9W0/ZNwDRi+i/Hl5Z6sic2P6wAmp0Yx5zGEA4qhR7LudRUkthhBq2nJd7kCMRebdRdAB5/uUDhxnsAD4+rpG9b0ijFgZ3fWazUhpxGu5ADB4wBvJkCyWwBONgC/FQfu3DDMq3ef7AA1DAfnYBYpDybDcCYqYQQ6Vnf3gRVYHgbN+wDf03DrXQCYcngGZjeRXBD5tRD0tAA1XDDWRQBFLQAAPgAbuQE/qACxYiKb/wAzqwCgehDurAeUFxE0mUbDk1D1RYHKlkCjsiXCRIF6m0Me5ycLTjI0qQajD4NMwSbBKhIqrwAJuwDfMgChvQBssgBZ5lAV+QE/YwDWjkJ3EgAzJAB0yBD3RAB5mWW/4wCv6Y9RGngWngEUweuIWcIQvw0FTW5zfHVIaYUw9oGBExUATnUA3g5wHUsA3nsGHbVAU6EUFKJybccAU1UANQIFDwJoiEKDdI4SWMwXP+4AxcEAAFcACz0CzFQS7ZAm+rCIlGcRP0gC3sUA/cUIn9Uw+L4IKlholv0g3EFxFtkQo7MAf+8A278ABbUFa5sARFsAMrIAXBJxJ52Hd98gsqoAM6MAKvQBDlNYjvhRr1MA/t4A7t0A7qQHY44Q1Nt44bwQvKEQIYEAIFwAVOOBpDghYzNoLI6BNPUSE7Mk/QuDPjkA2LsHDWeFsPaRCNZQYlsAz3EA/myDbcwAY00AjyZP4M/ZUTXkKRSoJQajAEP/ADXqAGZwYftOgX5qADleAOXsACfgiLeqCBIRETRXJ8GVEPReBZP9VQB9AKx7EUzFAL/iAKS7AEUgALslaRQzE/hrEXYMc/31A5gxeSFbMN+2h0BcEXmdAAotA9m+AChUAN8cANFsAGKhInEjgR97A0Nokk9WAOV2AOOsmY4iCYtOgO7qACjAAf62AOOPcKF2AOcrkRVNQyIcELGOA5PmWVMPkdyNBZiWYB3kiWZXmInfAqG5mJcNAJaemWFvMt5cUQnLQCVSAO3OAOZuAB13AN/sAGDxANg5kR7bKcG4IPfTkEPCBQ5jCLg8gNLFCZS/4Rl9BwAcbgnAxxE3eQLVp4EaVwAA2VnuFWBj9pHCukTdrkAQmgGq4JFN0BKdbgDip4WK03O7gZL+tgCCFQBNFQWdqiCh6gGtxgCyvQBv5wDsJAA1QgT0Ihnq9EJj7DDdLJDZR1j16gAjLwC1uGD/PAA5iwE043EsewApzTohRwAFrmHTboWfCpaGYAevUphJvBDL5gMm25VePQCYb1n93iDqKwALAWA/GAIQLUDUtQBUEYDVxAA2wzD1+wA6ohgz+BSGnVJxo6nYEoCBcwDHTAA+dzE16QgThxEvCHoyIxlQ3FTQ2Ald5BDTFAozW6aJ2ZoxsRHXggC+QwD2C4Vf7ocAqRUHNE+g36wAaDEwIAMFgEAZ3+0Agf0AgR+AkPkAp0BQsxsAaGtqd4GEhQ+SVfKovWGQfzIA4jUAk/swYyMJMH1XwMlBPx4GfbZAGFAx7jMJU1uk0x4A7lyacYsRSykDiqt2qrR6Twcg6zwFMLYDjxsRTq5Q/V4A7mSA3gcA5sYAHLEHRHcRMh6CelGoj46A+/MKb+UAkj0A7cYA6YKRKpBXzBqhF8UQQ90AM4IJagShp02KsJADrgKawJYQ2mkC3rsGB5dg6A4ILKGi/oEA0mYDiXJhCiUHv6wA2lEAPCww27EAO89g0A9K3+YFPiuqGBqAZqECdqcAHdKf4DSJmUsKoRbUEomjcSo7WvpGEMyeUBPGsBJVCdAhsSFpI4pFaNksRIpzCbiUow38Mou1AFS0BX1CAFNHB74VAFUlAEa3BrAeuZ5OAqXmqyBkEN1NAW3PAL5vALxrC2ayuiXTsQSVRpPVEr7ekdp+EMSwAACAAAWbAIuxK0HCEkuDIN/LAOt3lYjERbSpuobrg7bRADlyBQovAAjbAN/mALFqAJTWABDfAA3jivOkETzha2YNoQm1h2y+gre+EOzjAP+MAO4gS6gLsQN0EOY1EP3bC4RysNePCCDVsxzBIP+LACXDAOj7kEJRAP0ZBQH0BXH+ABH2AB6oizOXEPdP50mEkyrkZBE9NAKL4Sl00WSJ02uxkxDbgAKYaLeIl7Ob87MNyzCwhAC2s3uYbgD+KwCzTAa4DjOZ3rjdSrE8hGuqY6FBf5iL/yFE2FveRLEDcxiSr2jfsZdowECHjWvspSDfrgDB4rULbABUVwe+pgBisQhMLpA42wB3OwBjFLFHNSDAW1J9pbFKCQGG/7Jdx7BwscEW7jDRlptBKmDL3guxasKAhEBTvQCNEwD43gAY0ADv6wCZTbDLu4A2YgkHFBJAJsFORADjULVfdAdTlMXPrADq5yPzAIsp1QC0I8xFVip1IQDcJgDzsgBAF1DucYDdzgTwMgk3chuzcSw/5DkXx+XCPltZsVkXyjGsZXKAv4sA5ad8aF+shDDA7dsA7U0AiZ+7CN8AD1Gw3EEAPe+A3GEAMTOg81HBIUcsr+AchH1SV9MmOaOBFa6WyD7JrRcQfe0FTgIA6YyCyRsEiTvGewIARN0AzrAAtPsAS2MA7UsAUuIL/i8AU98An48A55wQ6Cosr8wcrmQcYvXGDu0gRLIARuZMUPQQ72FcYGsRmugIhMg6g2Zz1pEGEWnIL+8AUrUArRIHQ08AfLMA+lYAGG0FWz4AF/IMUj6RbwYA21LCPc3BPgmshLAgue4zkesAJjKRHk0JzqXGxKRA8585+MFMH9c7jx0n/fwP4NDbAHxxANx0ADMcANxjAOOxADziAl/yQM66CldzENP9TQHvLQPMEOhkla2qLN8iEOBFAC2uRZHsBrtXwTruAqSF1i5OAKMQHMbilbzvACy7CWKBNJxyAMzpC+UHMOkeXDwdtihvABnzAOu6AJCCAK4eAMotCp7tDSIaC/zZLQYHaMHOGOZCLUOnHVBnwUYCUQtQLYRXEam9yrG1ACiUURiBQt5EsgGyMP9ZCsIflwB0ACBTAJKQMOn6AABdACx7BIVZKWa7kMZUAFnxA+FdMN/vAJkzAJW+ADQUcLNCAFzuAOqcAFJZAK4MANJglZ8SCMC7EUAmXOB6EWCd1fOP4rjesA1B1C2DghcMwg2G7BF7DABD7QBIDJlEjBKFcG2SUglhaBfwtMHyGVDZziw2HnDkbQACmwAFQwit2w2vydu0M2AwpAAQtABg+KDgZ+Dgie4GyyDRpwAAuwAMvgNOEw4RRO4dkKCy+aACEQDehgBjugCc6ADpjcB8bwhi6wBTtQAivgRkshNy7+4oG2AjhgBEwje4zCBmyAQA3BKJ+gGs59EJnx40uC3SNhvcQiF6dhCA0Qbks+A+cTF3yxBHgKnyvAxxbhBN6gwMuXHTY1D5yNm/OABBJAOEwADMtw5mie5stwDMdAShKwAEjQDmnuDNFQ53buDMJQAA0lAf6tUA1Jtg2AHujbcCX+0NacEwDLgAJLIAzHwA00QAPV0K1Z4AG2sAYMsE3C42j+0AKEQwEzsMIEwRc9gAESIAE61xBiLgEEPpLx0Acg0ALzYN0bQuQhcRMCNhfOkCCd41MNwAb5+BZLAQsI0KseUAL8IIGb4R5aDnDWYQ2BEEPgQNJEmg3VgAMOsAK2EA3O0Azc3u3e7gzOcAnoiQPB0AzgDu7e3u3H0AyEowASkAvHoObLwO3LQA3HINxLrgEb8EzXAAuIYAF74Ayp8AkfIAXLAAtckFzS+z8G3vAOjw60vQLpGQLyJJnuEA/u0GQajw/LMDgUUADR4A6Z9uIk3/6VAU4BAuBGxFUPwCAAKYAgoD7kYusT5DB1dEEFSw5X6jEApx4XmyQEyeVCG4AAmSDRy+0PIybrOzZv2jElDbuW30ANywAM+HAE2+AM857uWt+tosAG2671Wu8MbM4FXPAJUg/2yzAOiMCDzvAHIfAAi34MrWCOjXANrUAFJfAJ3HAMZlAEJfAAFtAIlCNYbxJJIGsHvlgAhuAO3cDLbdLf39AN53DyAQAM3NANxZn519Aj3fCMonDyC9AK65Dg6JDgO7098WAHB5ACGKABMa8ktP4RUs3RcmEGOV+aGDAAy1sXWYAACbDUqfD6D9EdgLTskcZB/nAG5CBn8q2+5/5wDVjfDMvgDJIg/WCP9s5QDdcP9uBeJdGQ9d5+5uDABSvwCMdQDVzgAZ8AC86wQmsgDMvQCCutqZqwA1IADK2gCaKwxkKGUlIyCQDRStS8buDGfTMIzuA4ht/cAaNwoA84hArHLVzI8BwTAgTKJEwo7hvCkeCy8SqwoQAVf/f8vYQZU+ZMmjVt3sSZU+dOnjC5DeHBredQnLJk+dNHVOlSmGUaWKBAYcOGEAG+1WOalai+ddfAzdMq8563UWHNnkWbVu1atjnt+fPmxt86hXXt3sWbV+9evhTBUVvWTPAyanKcCUacWPFixo0dLwPWjMAcW7xSbTAD6xawIh6Owf46toRGqly82Dwo1czZamfn+DK8CG4dOobhDjIEWZLiuW/ZYtumSNKvSIXOojEUd/Hgt3EiGXLD2gxEq3n42l7HbvZn0Ow1703zlrR7WEMNMFCASqFBD3cux2u9V6/ePKxo77Er+17/fv792do746iD+iKwQAPtGimwxJaJxhNnFHQsQgkfi8aZNSxo5RhREGmAkmNs6eOBOZyB5ZMYlqAGllJiaIKbZZY5TLBtYjNQueT6GiebbPyi0SIfweGNm2xIMuci5uraBp2k8MFHHn7q4cc/KcfbTqj+yBnlHvGm1AkrLggIAQMMGjjgGC7PlMkXZtBks0031XKJHVks8f4HnyEPxDPPuy4CLEbEGBwEGD8nJFTCZY5BZ5IdljhmmU928GEXaj4pQghYmoFFihU+ocYWLmLYg5vIBDuMwR71rKsicMSxS7m8bms1ryNzRMcdmRZZx703dyWqSv70oQcUcni1SR93JsGAgAOKuIZYKelxhB1dnaW22jdHgacsdFRFtdu+vjmHmwcZg9ETT6gpNF3HjomGmiWKeISXaLhYoRFhovkihj9gocaQD9awZRlRLDCjFWeOGQyx1bj1tq7kBtQLtoRc1Quhg9apDyZr3IBnWms/fsnX/thhB2SYonQn5XhM1q+YlliGOWa29PHGnkTmYrhhnfGKZsJjYv4ZVF2hl9lGlAbWyCWXYxjYAhZYdkGhCFhsccaHHW5ppRkzPBDFlkYX/LOanQ9szpyKwsExVbBoekvmj0V+Tx99cHHEbfnquSdKNK1jkxy52nY7cMF78gYXV/zh7dSxdxbXZ2DC4EZoyRkExowGnMkFlgsbWSYVUR7oYxlbKBHxmFtEoSGGazJkLEYGF4c9r3NsmuYOdrYc/E2435OTntzP5PuleoL3L6lipkHqd+V/b9sRU5DfMfadmdvmGoQnPNQTydV9cZtHVlhDmGMMEWIJXo5pZYcd+BXl00+cSYWNHUQh8ZigE1vtGN2kxzNnv2zFXUy84Y3l7Wp33fEdnf4CWMDs8MM66mDDHBrxkgXqJymyKFkFGbhBYunjLaaohSnmEj3+eYs51xgXoQ4VC3RtD3vNqIYPlvCIZhhDCiX4BC+oYYYV7EFpfVgBG2xxjU1soAhLMMP57scYaiiuhHi6WMZq4g1meIyD/jkgdlySA3/47ordwcoeLDCVDawgGmd6yxlK9kU27kpu/giCPbxRD/898UDMSWGhIKMEoLkwQvZrRQPmcAtetIIBbCAkLDwgtVlsowg0mNoxOtOIBnjAAkuIxvUi9CCIFaiOsfvG2nDiiqO0UUpZxA45hmXK6yTFEAwowQY+MBUauEOK/mHHKlm5yym5ohi366QdUf6VDQipyxnUWKIfSXWM04AGFmxoQCp4AYs9PEATomtEAtZADVqoIgZbiMYSPLABDzyAGpqUUDWcKEy+rMMfesPJNKzBS/6gcmb+cMQ0rEhPrSTFAyUYIxkRIIp6aHA89iDHHZLHT4a2xT24KAY51rE/dhqIOd/o0/acMQhP9EyZfzrGNgyxgiVUAxiIiIEUhOGMT4hmF50rwg42gSkzfMAQ2ThGDB7ggQas4JyFcsa2LIog2DFnZTrxoCuQ19Du2JMtzACFlph6FlHMkoxkXII/btkfWRxuql8NixfPwI9suKMgFe3fOVBYTKE5AxWDYKsL2QUOGhRBFMc4hhSKsP4HwdTUXtfg4b6iMTAzBOwTG5hDHxIghFTk0VDXqAc30FqxdRAPJ/qAhywAB9a1OJUt9DAoZ3dSiqtO5QMfyOpW+QNa0baWJ+Lpwi/n8cnJViyZQsPrRwczjj5YwBCw4MXApMALQhKsFbywxQ4sZQtq9MADrQDNHDbwPmcoMV2rAcYczuGb2tpFlDsBFrZcqxbPqsV5413KOshZ2gfs4R6W7c80AgGP0KJXtAO0gu9ImCqFCOcu/rVj5HSrmmOE4WsuXEY1YEGvpPGCCxZwpnQN0blPIOAP2PQAFUh0ixLQgJiBOXCh0BeAZDlDst1Fh1Lu41X7agcoVsoOZn3R4v6huGQOOyXjU/Ch2v5EtL40buhYLDFjd+xoJNkIB9rqAY544OMb/hjSSBCCD3Dgwx3gEGqUdXbRaMTVj86IRSwQLJhPlMAMDAIiF/D6iCXcYBfOKIUQdjBEUeRrEs4QxtYMYT0v++wbIUABBVBwACh/A23CNKpSjCdCIGulvGd5C4s3qI+CHtQfc0jAAxqAABRQw02moMdmG/1Ve9jDGqfwhzvQEeV1VDYbysgGHs4RiS6sIwfK6MQiTgGIWjjhG2foxDlOUeRUu0PKtN3LOKrhWN1WI1DoJNTBohGOHszPGbvwgRBy6Ax69cF+bKDBvpwx0jbY4huGMMEWWuFRuf5WowcYCEEIZuCPGQkzR7laylvusM9R8+TRYXlLF5a6wfp4EL5swUc1DMEGWnwXTff4W7+nijd4sAMP/mBINvIRj1704hR4WEQnPD6OU2xrG73R8o7UcYp8pKEWp1BCLTqho3isQ8ueBEeXB7wYZ8jhp+kCxjUq/FteFJENoLHFA7YgDFgIQ7mkWUZnnHaMLaxgFrDoM/eO0QABhCAbZ13n4oanFXaIWuL+fvF4PGj23CUlG6IoQyu68c7ueFAf/IjPrqbhxbPT0zru5CLipJENaTihFnCoRS/y4Q7XVGRHRj5yb0yikHPMBh/jqEUkANGJTgw+G+fADV++Yb+dK/4GUIBJV5d3EAPgPjMBrRCGLczwANLcwhAWWEM2SmSBEcECdUtgeumX0Y15uIMbNBIHq4oqm7D6g4ts7/tN/q0V353hZcvDiiYKcAAyHWCCPzYLPqTqpqSAYp7R3yVWGtECEvhDGbVQBhaysQh0iKMetIlySZDtFykPCR3xiAd3UIZFqIVF6LjmKDIEOYgHuS3dcqs+MpRmyIY5oAEzOKdG8IAtEAxDWALzEZgiKAG8aoUl6AFDoIb4KYFGqIZbKD3BOAZgWAa/IKqx+YZ1sJWDey1/oBO+Qz+dmD6mKD9dUh7rsIUDCBMxSRZbGDumuod7uBnw60G3EY85OAALqP4AM3CDbaiFfBiHK6Oo6ZGyc3CHbZCGWpAGLKiHSMA436hBZMq60ouFc3nDY7iGXSiCIsiQY6grzjkGHvK2beCCFMyFaACipVuGTDgR+oGFBnQhTvKfsCuQi4HCy/KHaYCHKEQ77sCOpPCF8VMerIi3qJiKqEABrZoqlziKScREltEHZZAHFMAACyCBFqCH4+uujHi1U4ADZbCTb2DE0jsGcwgDc8i6YwAHQxiATLiFcbOpzBGGBygs5PoAKmiFZVQfp2kGLqgrWZqDdXhDZWqN/cuTq4CnsICHE+iiVcyJH1yKpAgEf4A+KfQHE4hF9ICKEGgAf3A4enIJUCAgdf5UHvEYhVEwhSnARw0wA964RbvwjRyRhiDIhliwn18csBcchBbiuWMQAiFwhlvIlA+YGl5Ygwe4q1R4hAZohA/JBAQIHd87kWyaCgt4BIrUKP5xJ7UgoHgEyJBJu+xgh8PhN3nUgFi0AKiwgBB4AH0cCinCh3KEmaTwBpfZScF5I1+whiCYBmXwh0mIAjbAh21YyP9CCHQwh0FAhUWADJ1rQcaIQ2gjDGr4gyA6Bl4YKS4QFUSgAeA7hpa6AaoRBSpYgUtpBXpBhGy4vZh8n7VMDHXSC+WzqHMAC1WkxDuwBp3cSXZcClMIDwbCCh9YgfRAjw3oAXh8raSInz2wlf59ZBmEqpupdBuxcoNfegnAEceKOgd0SbBjQIVOiARg6JlvVKbAGAQIPJhqaIWU+oRssIXUKYVjEIZ3oSFmKoE9CIZqaAMaaAN+2YMY4IKAUaQNQAAEkAIYUUzEOI7pcQcc1ApfUCDXrAnMVApmYC0GwodwEAAUGMUQKIBqsMyZWIcd+MwNQAEzIE0pvAdr4EH3tBZ9cAlTsAIEnYmkqE1EC5qDiYVI8AT7Ac4viwVUQAxgODeZvAVhoKRPaAVH+YDunKYNkIJWqIwYEIJSsIVo0JRUWEQ2eC5eAAbxoUk/Oqu8uBEC4bGzoC8FpQn4JIpEkBYOmgdqMELzsIBcoP47njiHHSCjWeI9wbkHeEiEBDVSZxkLJ4CHeeK3KwvLuqgG8jQ9GEIFYIiE1ShP1UAF7RGMaNiAGIgGj9SUUpimNUgAYUgaNrAAUQCGVpgFQVoGFXmANQCGXBAFAB0HGMSrDQ3OE5MVi9mLymoLBnWDUvrSmEBSwvEFe5BMmCkFMxAFChqKR0CA0rIA1RmcaZDKT3WWYvAGK2CHSwwtx+yuBXxDBtFNQMikF1nLZeAGOQCGbWCDFTAEEvmDlNoGYfgeKlizmHrBVCiCFUiFaigFLkABTYAf6fqEdRiVOG0dsEwbBEEHsFDPfqKihaJVfwhVnoCHUS1VkNGH4MEHVf7Uh3iwnNLagGgaHJKJ112xh5LpAlmYVZygi1scBzfEHhNDhWPAgnyoBmjTrWOQhkmggRY9hl2IAbvCsyYogglbBsL0TTb4gEEaHzODBW4QBQ84s4s118eY0P7SVOz4oIL1iZ68DoIEMmOZPYCFsMExBTrhWTbxHWY4AW9YI524B0utqAUcmgcBBjjoBG7AWD/SH+kSBe18gEbwmk+wgKObJgvgAuDaBdTyyG2gghLommaoAgiDEUot1miQwRn8EXCAkuzwHXTsz8v02ZmBh8D9KkRo1asaI2HInY5JWjSCByuQizfiCaFCqzT1o2Uwh04ABGbTKMjoAR+ghiOAhv7UYbpckAIP+IQPUSxRIK7bs5db2ASlS5FU+CbUq9kJCUfXwIseuckY84c1MVyAnFeo9aVRqwZLIqNy+oM6ERxrAAVSfdzioRl09IdL7Al+IAh2ypEu61HGOIZqMAcscBG7NT3AKI9mXYYpCKJloEsa4IJMUhTzaYZPAExnWoISoJpnsql5KNfcjZBlMIQ+KAXLpYjY+AZ1sI52hTR/6AJyuNceLF6cuIdgeVogWwYLSIAGaIDJWIcIdhMlHd7pPQvfAQVL0FWieJKKwkjdepFYOAVUMIetlZCQagXMoB9KEYJJQJciiIFPEJQ7HJFlkK49OIZsWNY5WMRGKAEpOP4mGgbgP3EGJuC+A4CFbqgIx5uHoGQLFAZh9JvgnKAHL0Uv6zgHYdgDUbgGBjaZCybhunsLJzCFL8aZEhqJ8lyNSCBf8wWGceChTVAaTWiA35KDKeA94IpZLrgFr7EAKpAmXliCGLWFaliCB3iz7zXXFwkT9aCEk0sVfNsPcpiGESbewVULhLI+iWtC4aHjNnGDUX7jg2KHLkAKLtaJieKfh1XTYjUxJSC9aMuFGOiBaHCaHXCBXRCGVDCDDdCM7GqAUgAGWDCEDTAE9CmFBGgD0xkY7frfKA5gbjABC9CAAxAFLK4LW+kPXzAFUlbHMC4WeliTsxO/VnYTp41l4P4tBl8oXFveCSD5QlShHgbM5BeMBWCohgDumTn4gEfYBluYgxWYg4Z+BO4Mg1j4niU4lJbaAYNJhSUITG79AhQQBWoQFG/Wo6rpgTkwNopAh7egZ554i9YkYXf2jmy5ZzfBBW/g55tWircAhVH4x7D4u2OwwZt9FYgFYLcCBAfxMmAAh1ZYASkImFSI6lIgESGgAUowDqtpBF7QGuwM3zkoASV2hkZAgTZYBmIyae5Bh2UwU4coHh0M6umlaZrQh2lgNJ4+E1/ABXjV67BwiV8SwrDIhRVAgR4QBnTwlhzx3JqNhoJGBWY7Bnd4sFlYtznwgEcAjUlAgEJoOlHYgP41uKtjQC3iEoYNWIIcWgYqsACqaQbzXevXTrAaZOO2MGG/Ttq6jtCo/Osz4e2X/uuAS0e04IIGoIAFKANuMGo0he2dYxcl0Fo4PQxYYAAzEAaPdC4SAQYhQAHRaQVDSABRgIYjKISBWmRNQKxEvQw2OAcojm2fUc33eAt0JOOC1e2YwIpicJnalong2emZyJj/jgnKdd6hwJ1S3ZJ9JYrgIXCe0BUmUQpyEKEh7W3wmhvrY2ecoALzOAA28OQ82QaBfu/X5gaXEwVR2IZdeGhwtQUxQoTqmoMYMIM8/YSoWY1GMIMeMAaBYe3zyZQdaIRv6OYRV6FoyIa+lZKjyP7wUtZEtcAKcZCEWFhwl4DZaihw8IoSahAFcChQ8HoJXigF60ByneCbXYCFl+Dvl3CJepgaVeUJrHCH43JzneCHt1iHu5rzLvGHZeCDcdCqNK/wmaAHuRBwnhAFAVAWWIBEvVBLIndBdeCDouSCHaACW9iGTXABKaCfEZyfQ1m9T3gRNkABNvCEQSiD6eSFa6BALtiGn3P0dBGbi7hy/gCFJY3l+34Jd6ACJGwBZ6DwmTgHIzgPDcABG+yJb/CBYR9NdM4JftAHYTgPCtAANjBFnkgFD8B2DzAEBadzf6AEDYgKDBCFNE8KO4gKCggBXuCJJ/GHKTh3n+oJW2kBJP5kgt8N9J7Qh2JwhCXPCTu5hWs4NJy7hldXDBIBqA8ggD/IhdX2gElYRENAgD1YxkawgD2YhbOlAuDKhRDIAlG4hWiQs1xoYYI3FGdQlauQEkeQtDe+7/hgggU4d/38hnzNiXpwhxmQgJgvgB3rknU493BXAKXECfE7BhI7dwUogy4vFn2ABQKIJXJ6AEO4vptoSkQQgHPHAAEQhQavCawogwLAegEAhl8XHn8ogpwPdwGgBrJXyq47dwlogfa4954YlnhuC3u4h9nCk4wiedWAhc/8gAP4A144kdN9pA3jgg2ALmA4jU2I5k8AnReABsifg2wY8r4nF8a0C3tXO/5/KIbzu2ndzldbuHoJMH0JCAEJqHab2NdJAPvTR/0WWP2u94cygHnYxwAmmPqaAIuuw/0CWIZZpwmwGAAUCCgLKAEEiAd+tvkASP3T18/hZn18oAYBwADYD4Ggj2+YSIpWUAAKwP0QEHqbcIkZeH7Tp4AC+AThn3u79odAKAbgLhYDTrZsaOxX57YHIIEj2IL2yoZcAIg5McwI49WIxhJuvD7FWBKNl6gtLlo1G2YExq5ox5w16+jxI8iQIkeSLAlyWbRt476Ba9nym7+YMmfSrGnzZs1ivpjh7OnzJ9CgQocSLUqT2xAe3IzirOevBwUJUqVSaAHu5zx/GKJOlf5AIYQ/fT6zKsDQ1asEf05x4vOXbQHXqRSo+LvXU2yqDXr3brAwx19btv7YmO1KQcGnsD3t9igst4Cwn04pxKVaYN3anuson8VwwF9WpqJHky5tWrRYX8VOA13H0iVscCzHRTNp+zZukM6WtWq0RkGZYctExZCyqRqvJSs+LTsmZYehY8fWlGBjrFqfFXMkLVuW+zt428ucVRsXG7Y71j/t+QNFT7H6+PLnM0WqVH1WzoYxRB7r74BjVGGwDVb+FBCgVxoAdpc/sMB1FgUzqNVTW4bwxdcSdS3mTxn6USUBGws29VRlXiEG301OrVDiYdQE1lM0IbCoAGj02Xgjjv6j2WVJIDnOZI9557V0Dje7hXckeM4IA8s1UqxQiiRoFLJBH7kc88kDjZQynAdbwCLMLiUsYUsuwOxQBEWomIMkm+HtFg04QQr5zTo+yuTGNOzZuSefpNm3FGvsUaFAZV/Z5ZNTUEGIwYQ9ZbUVhGnpOWIBhTpQhoY+HWPBhX0ZIuJNYhmCllwHtIKiTXYx4aFXBTgjVk9OtcBiAfFkFio+kBqWVmh9+vprfO+9x6eQL0XjXZvJliRMLqnssMQxsBwDAxHQkFnECrDkAsscCGjLyx4PfLLkIx6wsc14xygRC7LKuhvSMtvIVixs9fDjozfwALsvvzf9GV8921TqAP5VChjRKFv2zEJAXBQcgOmLN+GDDyICxIVBAYqgapOshFJFwQLu3HpTVpxe+EGN/lXKVVSM9jqiALoeJuHLNk38TcwsF3DwyDXZVcYBDQdwjD6w9ns00jiJ5QZPRvs4z2sufdNNM+O9e3XVzpTyhwWINMPLHBb8oUUriKDABTUL7dCEdJ8sEYMwwpQihQvOZHOMR/mEUWS7WLeJ0kv0Sp0eqPGJVYwrPCW9eJ//qqcPPnYI4BUFAfRQz6E+icXG5JQFwATCFPpDRecSCIBpzzbpAw4GDDtcQGIRS6yPMxY8oNcDFtiyseoNHrByARo4k7rP/nxSAKEUCBACZkA5Vf5x8gLgoNa9/jERAGcChCg7493vK1YiMTmdY1uvvXas31ePlwkNVLRyjSg+LFHKMcmkkARzuzQRQx9Vm0HDH4DhjD1oJxzHaNd4POEJVNQmfUgaDzcEdx5AxYR4o9EHe3rkvQ3iyHHycYYRKEACUaSHez3hRRFCMINW1AworWhMD2DBu57Eww4tCEEZojFDm/nDHQLRDkzGpzR/gIMNIWiBHQgXFLFcowxH7EMLGXQMKmBgBogw4WJa0QKDAYODXuRXMWSxwxvxwx3f+MY5rtE3B7KpOc5YwgdKAQtnmMEDiJhjIywAhkEcoxQPmIMogLGLFSyhFbxYxgqEsBGRoP7EGcA4IBvBg5JuyEmCssHHI1awgk8J0TQ58MekvijK0ngwPvfABzawMUacZC5zQ3kRFu9yqIkVBR+HOmVR7nGoesSSLYG5Ryd9AswKBpMt+oDHaiw4ymXGpxjT2Bc+ugEOZ3AkkslyRis2sIZotSIGO+CFtLCVi1nkggsbKAUvboEIAmQiF7nIYyOcgbeSDGIQ1bTmbapxDkvG5hy8iAEFPCMK+ZBjNa5kJkKHUsrH1aMXtRCNPeZRj2LepR7zsEcv2WLRgwoFH/XgJVPuIdGMslKiFI2VSZkijU5kKqEuNY1YmKHBfWXjnvj8TjW2EY1j/a8P0eAWla5xjD2UwP4MyzDIEcIADWCUYgVF4EUzRFFHXmjEpiLhhifsCcmbisQZ+4waP8GxDljICAMCuESwfGENdry0rUBZ6OPIoTi30hVp3mhaXfM6FFyYoqV7Csw6qtEdq3J1JOOZgxk+IQqEAGM4K3CfM0RBhR1sAm9OasQsCJGFHewBb4XwwBzOYSTxHMMcSmgH+gq7G2eoBKxhjZM4VnCAAzTgGuohhzUsodfdygSurLmHNcLH2+HayRS+WCVx6QqrufKpLfFYCTcOKMDCluQY29iCBSzgARqIYo5m+EAjbnGMPvgFFtTYhAXYAAuIUKAMtMhFNSzQhIys0TbOQEUYPEFYNu6GGv7fqORrXYKObDyCEuP4rT+KsZqTJleUvj0NBp/Z4AnLxxv2YDCFXcqMM4DyV+h4jTsMMo55UlckwHDHAErwgQ1sIVreXIa2iuACYdziFuZshS2AYYgHSEIO0NhDAjaRjfriZhnc4CORHZiNAAvuG9noRhRFYwULZ9itDzaNPdgx07zCssqsAcU0OOrltsKDJ6G0Uz3Md44+CGC2JSbJMc6R3Q00YA19+MAeqmELC61hG7ZAREOks1gaNEMYkjCCEJqhkTZFYxCx8AQ3kvwuOLmWybE5Y51Iwx52CBfDY2bclUujD3qMQl95zUo8hEE4T3/6JpZgx5lb7VJyjIIerP6GqWtcsg1nFCAEGMDAFrbxZng1AxYx8MASirADWCxjFjQogiicAYsl+MAQ1HBGFWJgCGE0Yw09OMLdJF3ka8uBXftt02q5AWBLFwsdt6ZJ0dpjife8W9b8CnVp7kEOvaZnB0JYwZkoaG+iwLreA+9X0UzhjT2JZR4rgc2ue/1rKnxj2LrhhS2cUYQYfMK8c9iktESRADbY4hii2AAXRLERhFAjEqN1133Ztch3LcO/62a3kLYR5Z/YRR9BKMbCDX5wX+H7gvC4w3Hp2pYVeGAvFohBNYYuFHp0AdZSZ6Y+2LFwPu1TSOsQRQNQoIF7kNjizgAnLBrAhXTeYgkWAP4Gs4vwgWPcAhZs2IAoeJELQwygFc2phhKqUfZkcSMMjzy3m6SJ87BuI9NFocc03BAWoV+dT0UnDTvYWlcumGwvf4Rc5XuS+dCPUh/3COOeoEYvOrnjGuqYrsWrxps5lOARzkhFHv/wkD/QYAvOuAVxaKCRT0yWmuMZDykQH55jVIMaRwAGMBp4pPF4tdKLXz1JZ3JMf5xhGrgQM+lBnRSBz8eZdL0XFTq/Fw80L/w18YYs4u1+77HnDh22kVjqsQ7Fr74b26CGuFmTkhzDIzwLLGxDKsRAEaSCtD3HJDSDMSjHI0SDMHxBEbTBOFRNR4wHHuTD4P2NkQ2CJKACAP4GoG6MxzWcg/VdX7F0QzxMnT+wgxXgAi4g1/zty+WNBi5Ygvy9FDoIgfrpRQKgQ6xJRkplGC6I0Q12j1i8Go60hTs8HD+xROx9zTaYwQZoQi44wxdYACW0QjRsAgOQnDN8QnrBAtyVABfkAgCeBCpgATf4zTJUgycAgz29nEnIEzWwIM4hlz2whxtYgYRR3hLeSA5C1LDQFeddyNOJDFHcC+hVGTnsWyEujl30SBGqx4dZmmBZHCw8wBJIWy6ciS3YgjA0gQXAGC9gYXcBwx4ggJAlmTNElwMdkBwAAyoo30cswxnxoaXpHFDQwwnQQyJWovccIlMcHTuA3zLtQf4D7MWKJUAjGMUyUEEDhMAjLEX2JZRYJI4xLo4j3EMmwlTA3JwlRdpNdUdzUIMwmEEJNAKMGUJ6ZcPeNQAbOEMuaEIP7MBDiMIO9MA8SIdhAUMaxIL0qU8zUMMISkJ0SVrN+eLiOd5NTEMi2B89jOM33tv45YgrwAMzipJYrAEBcIoFIIAQSORP6MM89AFtYYAFHEAIUEPh6NWo4QIhZuRpsIMpwMNN8pA+oAMlLd5BshE4oMM2uIMh0AAXzJGxCQGzOcsSaAI12AIXeEA8LQMXaNs3AEMeAkMkbJUcXtsgeIIkmIM8nUQ06BNELp4Q6UkxnMGC+cQ24mR8ICNTFP6D6dVVPbTdAwiBLaCkZLgDAWyFBVAGBazATObVPcBDX9ElvxQURjKFWKyDFOLcOaSWAx3VEvTec3zCLnzDFoAXLDSDhcyBeIncHmxJK6zA2nViVx7DUKYPNeBiGBwDOnrHHMbJWkakRcXEhfmDNdzBKGCkPnyUMjkmfdilUfhCX31k6cnEuznFHDSASxomBaAALySXPpCDhCGnr9yDWtEHOqylLqJbEVjABzQAFaRTK5TAUzGbEHjAkgCDFHwAjsGCIXgLHpoEN6TBInTHTZmDCKICVzrDf+3m4n0DOsSEXbBHF5jCauDEvYAUN+gBPvSkd77VRuIIPcRlXUXUcf5yjD/MgHUaZggM1HCJxTSMQob2yajJwtapRzzIC0SOQ3m2UQ9wyh+lQhtswB44wy7I4z3awiesgBTgoz/SALqY4C5yAwky6d8wnzOMJSooA52YxwoiaAteQxEEwAHwAj8ogQwyqE3MwzpAQzIwwhWwwAXQQei06HwoJ1GIBSZKnVOwwTNSRnZdpwwNFyD6FZzeiD3cg3CZRlvoH/9BZByyUTSwAQLkDhusDSxkgyg0wQ6IwjLswmbaHi9wAQ1swohBqUfMIRzQYjoaWS9kAx7UQieAQzbEg5NlqZbKxpOlggB4wAsUgBacAlvZ2k2sghfIwAiwgA7UgBdQT6DaiP6cDoWKPhOGtlU9UMPyUIBeWEAINMCb1pXpdWey3siOFGNprMO87OZ/WY0D2cIjzAEQfkLGsUEJ7EErlOEHmIG03II98kIbTh8qpIFrRtJuVAMarUQ2ZAMWSMMpYMZK9OKsyoaTjQM67N8UUIAFpIADPNQqVcM60EENFOsPQEO3GuKG4p8/MIMr2CCFQc4cBA21YkADRMOzLo41SJ5zfuwF+YMscOsFmSNE9qv61NgteAAVHIMtwMIOLJstNIMUbAAsoOGNxaab3Ki7WJ+T1QIgAEIt6OxajsPA1gIWfEMkrAAJOIAqIFdb6ECxmm0l0KyyhqyNsEf4vKyoQeeezP5BD6BAD8RAN8wsN/qDI/gDuKotaxRNyertXcxDBC1sS4zDNnyD0x6JPPHCLlDHHGCTIZhLNuwZyh3DQhRBEYRqstimEsBe+owHNdyc1hblOuQDIJzC6kqDMgzsOMSDa7hGwp4RS/Tikv3XOJzDOjzsOkhDNjhULygBOABCW/CDLODCCzIjrIQCsdaAIOjAse4c4IrGsg6FXTgCJSKNU8yDMBiD+JBPTETDOcTEXC7TjgBq9Z4G/Jls79QDUCJuS3RDo7KBKGggulFVARbBLjRDAi5gNLRCExRBPB1DHU3CiNHcMURC46IbbLZWkzkZ/K5DLZxCJ/QCHnzDIpwCOv50wjpkQw/hQzzgQ+z6A4GkLvDWggqzaiT0AiAogzJATUzcATtEQviSjD8MgxqwgAp4QTIMwxCARvWs72lcL/Z6Q6EizUGsQAl8k/vW7A0nly+ED+ESMVDYheRF5hCJq6z6IjfEw7U2AAUcUrIAAzW8zSPcgjOEjSHYwjLI4x/MUSlYgFHl67sAQyzwrLsswzXoZljd7jpw8ev2wiLgAxYowylgwSmkwSnggTREAhbMQwWwahooQwv3gutKQ0usgwommCU0JjN6lD8Iwg/UgAqEQnqogcdasXoYMbOSw9/+ij4gQgKs3wPswhMbI0+ycnyQA+XhA43Kb0tcAz7AJP7LUsJ+fscxpAIdwx0vFK0zU8EHwMItCIM5ScvoHkNBQi1usNZuZoPujsM8oEM8gEOqKkOq1gPvUmbCXlqdmIIYMZg+mMMQ1EAN/AA36EP1wC0ru3JQ3IOWxXKf1AM3JEDTVesKWEBitugdkIMW8/IV+4MV3B9RmBHW7iY31EMDbLSpSBJuPgSeqtwt7MEHsME1wIImfAAX+NkjxAAXfAOAOtAjYU00bOJa/hc4x2pO06rWOtlOwwYapUf4eANFtcU8sIIK1AAP6IFaiAU/hChEC4U/C8U0JN2+2MUc3A5ffEAJoGi3qkZUn4Yl+PIrgcY6HK4wS803tAITFEEf2P6xSXgHOAjVOlBCDFABLERDI2wms43ipTqDLVBBERiCO3Alfy0QN4/EalFSF6f1eWRDnciCLHhoivhDMqiBCrCAGvxCyoR1K7MtjuAWPxOFU7hdp2zANH4sPMSoZ4vG6FW0wjo2bLgGNzRwSFATMBQBG5wDGrPh3T2CLVwDAc2BtJRCA5iBM8B1+tzXIuDvAy3uRcs2UIOwRBfD9oZKVkSvDpxyFLd2EYM2jpyBQ0OTPxSCVvNFV3ervnUBa3t3UUzZQ8tEY6f1OFRDbmzE7XCKFMynBSxBLgyt2y2tM0jBAzRDYv9NY7VRNMy3dM8233KYFvMSD+jAhNOSe9cleP6LbA2OtlDUgzswwIrxBWJCtTGSg6ldeFFkXRXDanTLNpN2R1ZvgAfEwFrPwQYYAjZ9QklTwy5MglKigzCIarJQAx6AZW6MR3k0+B+fgz14gyOshkCHbz0wggoUKyP4wwui+Gffx55YgxhV8XzUgyYggMkgQAmA7/nOn4qyqJYXBSh4JFacQ6Iq+aXZ6G10xycggAdYAAq0ghA0QSpUAywUAQ2UwjWkwhPswCeMg+jeVDQQqJBXzYJXJp234Dw8Uxf4pqPk8BXIQA8nA7K2+XdzuY/syIbzCz5cwxKUQAggQtSl+fyxx0THt6gnWCD8pmaMa6UXC7rceTX25RJ4QP4fUFUbWEAjxGvlzsEcRrqyVAMgsMt3GNmuS5CTZYUjWEPQKU1bxMEQsAALsII6LHSt10eGiyxe9UtWfJTa+jKHa7k9TDu1w/Sd19guWEARqKK/wUKOcV4zzNybOZJhdzO8N5k7bOcdtDdOcAMU2DMUkN+4m8ZUCwUg0rq3flS7z2kPIpRYdAEGPTxQjAIoKI0ZDbwEoSNJPG4u4KkhwFgjzOvlYgkbJHDsPToeKDe8kAelk7xsYAYSh/wwhYo/iMMrdEANDIGbzgOse3zCl3vb+sPbut/IJD2/hA/F1zq2k4wK6rzgCJthnV00JKUU5PUmELrfDTq0ncMHltgymP4DHKb9qE46g8v2GeGDN7iCcGGkXSTDmsqAFywF9Sp9UUS8UGCQK+Ds1WUF8S3BFiwomPcLMvkq4PcEMxi+P7hG3MO7047HIW3BDjzCLlyDGTyAIeARaDkDZlahPJ3+SfSx1gN1+QYCPTRmMRWnP9CB2arAKzjFxde64A/FToSfWKQfZYTAAkzj7quHL7B55PdEMTAXYITD5cP7OFBDV2mLfO3CLdiCkS4DAwa7v1fhBprDCSwavMBJ6wO1O3iDN5jCRcqlP3ADhdcAFEjUEC8/xDM9jiRC+4feOrlkdoUAQEjY5Y9gQYMHESZUuJAhwnv2cDWUOJFiRYsXMWbUaP6w2LSC+Nx1GweOZMmS31CaVLkSHMpvLGHGjPmtWc2ay6IJY2NBFDVYfTbsEQZr04c163jZVLqUaVOnT6Euq7aM6TJn1ca9lLmVa9eV387hg+fLlL97DPX5q8dIhQ4dmPzN2ziXbl27d/Eu5DaEB7e8Fr2BMvuXcOGC9dahwLCBMQUKGrgY/qtvmix6kjFn1oyxnr9T2AjOaymzG7559UZ2/SZ3nVau365x46b6nLNlx26j+0RDCqxlooo0KZWtVZEYsKodcwaVeXPnS5dxg2Nb6TJqIrd51b4dZjZ8/u5MG+UvrUJ8nWldYcFCzTO1m+HHl193b9/5BM9a8nf5fv7/hPXOIQADChqjoAEjyvNvInv8cSRBBSGMsCK5jCCBhGNa26qbesooYgqsXnPHEB92CYmrccKaB59vUpNpm3NQamadGHowBJhl5rDAEF6c2YMnHqNZhqrnjgFGueeauQ1JqfCIRSlnrmmRuym1ywocf0yxxBf8FvrOnzh4qEEFWuTyUsIz0SSsPr/6e8iJwdKUz551HhiQwA0MrCLOhNJyxJsH9wzUv7QMceCFFA445xqXWPoGHzYkkOAANqyUCZ1JCJCAAkrc2eqbbj45gIIZ1slOpm9E3GCFRlYwYyhhUFgCGFtyKWKHXJxZro9WqGvOOm6CfM6qXp+7cUhnpP6kUtkQ/TnDG/4Y+u4ZHWqQ4Qp3BM1W24rWHNQfcqzZNrN74umhAQscI7ABNsT1h51pvGlX3szSmmQBdAuIS59953HH33+xjWKBSHvYhsVxEE44YZoGjJSKexRG8ZyJJ77GnwAUU+CTDGNa5xMLQvAAgVSEsWWODeZwppVHVmDDHeVakbSAMqhhTshWCiBAgOSc48UIDCapxjlnolGCjGighHHZpU9Fx55iZNnvrIXSWgcTFWQYgpH35u1a2279u2ca/QD1ui5eCqAgBAxCaACFb7ZNy5ctyzbb7ozqmQeHA9blmqE/BHBAgDImmocJURXoAyF89m0c2wDWPkAUf/7imcfyyzH3hwoPLBDZmUZ8KCIXamwpgsR1cOJmkrQlwEEYpHONXfZlukkXgxbQGVKpY3jnnZsQFKBAAFGMFNL446niJQQHFAihGqWZjt6kl9bxB5diyCEPLX9+gUKFGtTwS667yZcQbAVHEax8uvjxZxYUAiBgACaq0V5bVyy5p+71+afan3HCMAiztI8h/MDHJYrAhs5M5Bo9kEAZ6kHAhZylDAEQAAbqsT+DzOMBIuOCFGLwCWfEYxIPaMQ60PGScKxjEhd0QA+68Y1tzJCGNazGPAgQAgqgIAT+4EY3gBjEbAwxG9xwhw4pcAA7yKYaTXTiE7fRwhc4QAKtWP6H9LCYFbj5403sKOA9OhOHGuhABa8giD4k2D81auZ8g/KG/taYEX3MAymWkxc86KHBOO4xIyBZ4ET0UY96xMMi0WjF+CSyjmwIwQwfoEKQwPGBHayjGyoZxzWMUAAHfOIcXJGNACgQAHdcQ0P4WAEFMCAAYGRjK+sQRfAcY0UsRi8r2DqDZSRylmqw4AfWigsfgSmZNvrHWQwKJkXyZpqpacse7HDDMaFJEEuUxSJwrIgg9XgQMAZyIiiMRioSUIpqOMMQFsiEP6jRqPG5Ribj6IY7EIHOTmooGz2YwSfYCZNv1MMQJGiBHfyRz1ly5xvroIc17kAQYyqkPHFgAf61zIjIaE50I8O8D4MC4Y+FUpSh7bpMQpfJ0TVaI16ByqY/+FG9XexACtWwhyjMsINqjDIm24iNQPV5jXVEyStb5NhWrlEPXMDDHbMZKJVQgo9iMGM8cOJTZ1ahHhXoARp+E+lVKWLR/kwDFPY4KVZN6g9ZROSrYG3XNMJ1N7jFVBTn8EcjPrCxn84Sp6eKYU/FsQhl1PWo7ezGOS6TCHZk8zvzEKMMdMAKgpjJrI1NiFbncxZXONZrZ3nmRilrN1xExGyIcUYMpHAOv6ygCS1JVl9R2xJx9EIaqd3OO+nhTED6Y1o1qMEV/phZ3RYEspG1xx1Kutts0eMODxHu3f6s4RGzgaMQDxgINz42uXm6lrrfyEcaxsFK6rayfVaIF2YTsg5BtEUHofjlcXfb2/6Agh4hRW+E9EEPV0wDWu+dlzdc4dV2cdMWvDENMKhQBfEFdLuuRVUkRlPgr2TjW5HohEK7lBZjDEEGMlCDOuKSRvuaVb3zoYcvrGHNDSvIHvAohhdHPC94BFdQprHcd5qwAl6Mwx9zoMEjzkiQuSp4lujohXZ5TJJxbKN6hIBHRNxrEH4sUA3UqsEvvlPWFAezw/I5ixU0OuX+XOZNWp7XGcgB3kBxYwOGwMo6VlAE+32kkkGepXdygA8g83if1oCHfpJ8kM4kA7Ey8II/8P6hYS9ftcryucwZBi2ftCBazImOEzsafSZDDCABMXgALOaxjU0QwGISPeNp3bys7KYkyGDxRzGgtmY+mUUN5P2FWgTtaIoWWk7wkEVaZS0ZdriiGCLO9Z4SAY9IK6ge3xhACTzgARy3wgdZ+E5uC8KPebQ51Ew7hzIW4Y45G5jB/HBFV52KEH18ZxUUnqo5rPprjtI6PmlhhmXyDFZ8MNa3dFO3oEYx2XgTOxsAWIEHNtCIPRSBFDlOyJKrLT136JWvs8yuW6dJNw12xhxqqAELhmBGVRfEHJhg3L35yO75uAEeUj5mPeyBzfvQAx5dAPlw4dFifyCC0ksowhKwNf4RRVE74VO6djYajsXV+CMI7mqIAf3xCmpZGNoImZYgXx5HkccHo9kzOR+rAQtYUCPK8NmXPy4b9Tidpej1PRM/0KEPZ8yhBKlI90LcEQ1qpLDnU3IHHqQR9KVRzx+g8Ea49s3x8ergB+b1tNNrAHXziL1rU6e6PayxpcbOY9IPOMAA2FC/+DDDF8XYOOMVJLeYx0kf4+DHLlYgBUIeXiHrMIMAGpALd+i97iXJ7ilI3deXxIMfZNFvl9r3CxnYVg0EiWBDnpH4Bb4iGc94xXk684pXg35bjve6P7wxihBj9Tt9OAAGwI+BAzDB69aQhecDT/12+2M8ZofQPajhj/4iiM7gE1GFgBoQA57WvivjkEYvaG9KhmyLnKDkCmiBvGDpqqoikk+Q8MGhzEEcWCAOCGIVZGD61E9QrE8+UO3zoskWGoBAKABdkqgUNCMtZCFqMhBNLiMHskxC7gEdqsED5iDWJOISCGAEZ+AYpov/tqIWegHUmGYcuOE7vAvFGKIzQsEtVIARWI8hGnAdmgzQ/IEWWMCMhkAPPHAFI2QD5WMaXG7Y+EgUcpBASPAANmFc7CERJI8LJSQtIO0N/SEaNAEB6mcebJAhnGEGLAAD2EA0fPBEgFAIlQUl3IEdvMHl9GHYvkMKh+8HXu34GFAGzOEKhuCXwugKoOAHzv7LDdPEC+FjajJqC/noE8owXShgASZBM57pBT2RxMAj3O4DPYpATwZII66hETYmAGsPJSJBGghxSsBiHeRhEbIn8LxkFX7ge+iAkJpOIpJBB67gtrjpl3hABfwh514RTUAxFP2BGUCBGURqFiyABDegDwvgEzCDHBJBFvQh/bZRM+zBG1pRPvDhLObNH74gBmwBpeYiQbghGAOxJaShFrZtabphHeqBHUzhT/SoM7hBDSpsCGih/ixiWgSBG2qADmAtHqDhB2qAAp8xHu+jG+cDFNjB/YKJCSygMc6xCOgNL+wB8kaPJCFkEXFtM/hhajrDHR5gD7Dl6hhi9gZSJv6yoRfwABCjZzXugRlG8QCTboxYgCOpUCOSTy4q4QIpxx9YQBB+4cmq0ib9wyTlwxHAhaLOogjaJgQnqTDSghy8IRFIUSxPEB7CQz7c4RP2YB32wAMGYiQ1Qtp4see+oR06IR8Gs1HAwR1i7gS4ZCHaxx284KEg8e0u4hlkwI42kSAskSAS8AnpcjPI0hvpMSUnSi4+4QvKQHHqISbtwhscYUvEMDQxQx+8gRlm0y6+QwgS4AEQYAeMjzD0AR2KUp/iYRGyQSC3IhvcyhRkQTDsYd/KgxZsSwcoENbo4iMFyXJ+QA9e4Qfcg5CGoPjykDYNYzS9EUsgLTfLJ7cAc/4jpsYRzgIezVMypoEZ6LMuziMGki0BhCEehJIidqw4W6IXIoEoqWTI8IEcUjDm9k3a/KEdvKDCfqCq8rEu6sFC06IazIEb3MNLzAEaQLM+CwM9168Lsoc9N+ws2EERSRRCgEtFN+I7PqAESmAAouE95wLhCHR68qEWwiExp6ceOiJq0g8rZeAHRsAJFaQ8XzQvTJTqsA/R8vO9UHCyZPRJ/4IZWEwyvqMaaOADSmFE7aIHezQbsCAfDvI1CgpLOI8i1GEaa+AH6ifQtBSaolRKG+QxBw2OHOEyVPJONeMsXC5Q/8I1DQNBe7QeOmGIpkQk/MEXpCERzkKDvCQUeP6ABWRAEMpEUPGUL9jkbuLLmWLOUNGLPwKhGNrLU/2DHBIqQDkjgzSDH4SUx7LhFJRhSrZBLhIhHMlj4vwBGuJABVjACyryQlkVmPL0PtgBF6hUyxjkDCwhS5M1L9jBi2BVW66oR8+hFpAzMd0F0Uw1OEOhz6gSUau1f5Z1PhjEHgJhGrKVotjhDNo1XS/KHwJBBePoO0iJQL9BGs5BOUniYMCDHayuIfKGwkDSL3TUXstnXX2rQbwhe9DrLdlBLumBWh22LhgEFyg2ju7BHSCmKAuqE5RBYFFiP4xxVRWCH8pjFR5qI81CEjd2jyC2P+JFXDWWj/TLDbxBuWp2Pv7iqw33iBdSxqj47yVqoROKjSuyoXocARdyUiHkohqmUQWuoKriNWi/BlSBiR2j5vcai0GK4Q7IYVy5VjJkwQ3ySI3GzRYOQIfCAWnr7hvQoRZYxFPghh2cwBqwNQn9gRF+gIwwoVPTNuS8lmf9wRq6AI8c6x6cSTCq9HAJAwn5Ry7URm16iOeqzW57ARDmga9eYh7IoRie6esg0x/MAQpsCzwBzUkp125uFhbx1RXEURbLZ5mg7R1PjRlaEW1jtzBAwRFcsT39AQVApgG4oB44t9rmARDUdCYUiej2w1TxEWZlgAe0MCyDd41mF0IYJLnuwIuAV1zkQnWEAaWijP4/uuA+NWpruxcjzkIWygJ+4UsfhGEFAIAJcq/nsiESaiHBvqJyvEFfIbMzhkENWEAFvGAY1AJd4/duvvdMmMEaumxnzwRbesAENiAEYiAX9oMgusAabjeC/QMRS7h/FAkcBJa6wuFHgY4lgnRBXcGAF0IuGEEq4YJ7TVhdE3eipsa7PA+DQ88fLEAxNiD8mgFeLriH++MdUxBkM6hW6Sob8OAUiPMr5kEeEtEi/8MdFFYHGNaJbfaHJyq+CMIK7pNiiXg+zGBAyhFPDqAQsIAg2paM/UMWgHaNkrYX9molnlasTKEsxPYgkK4eQoG8tDCDYBeP52WC08S4sIfkqP5Jf+zXMNqHCkKwJfEEAxpALSbXkfMivgKBHEJ5W5o24bLBHXqhFra1JBisGOISwhaCkKxWBrD2Q0VZ6sxYpMrjWn0BzAqijSUDjIogBEfQMTCgAM6hYXdZMrbklLVFH5pXwfYJDyIhdE8iLNjBFyx3IcJoCGpgBGiheiD4mb0GkgVlauZxhH2hfJlVHowAmdPliBUSne/VBeG5XRQ1yOIhEpJzeghpFKbhYxuiGljXWtDtkvHZfHrZrHj3G8nhDPTBFKwBWir1BLMsLeYRF+ihC7ABDBogBNAliQ/AEBi6oSuCQWx4fQSz2qShE/CWJBISS+ihHsFZdVeBWKFAC/5RV6X5R53jZmpYzhUo1QnooYT3JTqlOSH05zIWyiMaFxRwIbj6YADAjwIIYAvIFKgJY35loUvLBx+gh8dY2ZVbwjv4IRBGIUUP2B+G4QqwRg2qqqu9Wl6E2mu8aBpkOQjuzHHP6B70h0EsuWzSYhHf9yESZCYzCgK8QWqNboOcgQlioAhmwZnvepT9YRpqsn86JciyoRawIB5aAm5AoSELxx8EAbFUoBIWK7N92D5GjKMHI6mp+g5MwRXggb5iaz9+GiHsob1S8qDYQRaYIQjY4Q6KwUE3GiH+SFZhez6cwBuI+UyUssCySxnkDByqh+SK1zzcAbF04BKhO7rXJ/6v7SYt3I8ZiiERcIEZrGAN29oRrKEYOk+WE4EeQCEQ6CEIKiNq4eUgLuMhHdC85aTvvPhuWngIpeEUOoGF/QEeRgGPIu2Q2cIttkZFDDyoH3rKGifPSkwcTYEcpqHz4CVq6Kuzh9ksUnrDNdsVrIGaXDp0qbin8OEU1mEcOsMN2MHzGoKQfkGq6JqHXVx2O7zIkbyjkmsu24VfZcjA4KATsGUaEmH7LDWM3IIFyITJk7z6jrzLwdwgLMFBXBofDKnGT2UdegEc8NAUMmo28eEZQLIGoABbzjnMu1a28XzPC0K9y2Kf0yQt2CB+nAfNWWIclrYY5AHLQniC/EEcMP5BU7VGLVqcz0Xzyy0dyeNLHxCNfNBhpEOAAIShX7GIwZ5ps9or8DqDFeR6Kt3DrjN9T9A71oM2LaYhwO1mG0Am1IGB1IfwHNABD5oFHlRc3DqDDsZIBjTuzmld1jG92V28KYuh0ull5nSIC+5KeoaofeVyNutBAt2CBygd2s1m1sm9Zt2Avbk8TczkHgy9JbYBH6bBFCLB80w1LeZBD76nvDrx3B/52f2daswhFLTRiY0poQpZXO5RHz5772gMFHwhob77IL7jFVh3BOjAPZo64McS4Dneub8yVMl4EZ0pLTZeQcx0O7ILHXp8FDKWsPyhGmzrAuWC2j/+PD3+5v4PI+QJopHTNi38G9DPJIuRqh7ogRz4+5r8wQvqXOfLPeedvh54Xi1eYR5oQeShIRmIfGMB9c275jvyVjtQonqYCuEtwkta0+kbD+p1XuprgBs6Ywh+oB50oPgIwh343eY90avGhpblZcFbAh3cgR/o1++v6eTVviTZ/ubd3j14AAoIIhlUQOurUAVOo3vV21l8W17uoZobZR3u4R0kPPEJbfE/XuplgBt+4Aoe2B2uEND0QA3KO3i/ruiq+wS1Y4EswfP0nvTjxNwzux6G4aHq3n4wAbfcoQYqsofzCB6c85uzZUCnx61K9w4I2/fXzfQ5XviXdBhGQLHSIhlGgP4borF6HLkYYDzmbr8w6sFUFowgzoAd9GPdsT+2Rb7+DUL4U1+1a0Dzlv4VAMJLHH8ECxo8iDChwoUMGzp8CDGixIkU/cHTZ4mdNX/37lX8OBHdN3AkSY7bts6fqVHFCHoECTOmzJk0a9q8iTOnRG5DeHDTCTSo0KFEKdb7VYMbvnYy6NTT50+QjivPilq9inWir2mJ/NHLCtHdyJLgxrnzl+PeV7Bs27p9CxcoT59x69q9G7PesB8//UHrAA0fVChDOOI9jLjhS0f0EpH7eg9qXKj66q3Ltm4etlGjICf+DDq06Ilz+44+jZqoPnfJ6vHzN49bMn/x/A155U9y6v7dYPXZ82fPXiB2lgj+1g0Wnz9bbdjA8tfLkixvBJHzvo49e9DS2rt7j7mqA+zv5HFK/goqPXDg1q86Q3HAQQss3qaVv48/f0Lu+vt/r8eNDCzQkpt/BlZkj0c5+OOKS1lBdQsFFJDggCgHXoghavxlyCFo+Lijxy/4KNdhiQfpc89v3uCSCDyj+MNOQZTR5BFy1lhTjBwKNPDAA8CYCGSQWW0oZJFx4fOUkR3+5g85/gSCCzNu+NNSdRx1pM+MCWWZ5W9fMenPNN6Y4oopxfjiDzFFUHFMgUq+CSdM3I1IZ5123olnnnruyWeffv4JaKCCDkpooYbWWY8/jKiRKP4/ScZ54IwxFgOPK4F4MyWYBtGjDz0pBqdpQTEGcY8bxRRjjZMEKefOPP6QCGmssjLEE1+vHoprrrruymuvvv7qqhoy/PCLP4nOuiSVuARiSiKuFCOLPbhYaZA3zFgjixv6nCCLJfCsh2y44joU4A906IFuuuquy2677r4Lb7zyzktvvfbei2+++u7LLh2M6MCDCjIIUs1PsI6LX4rWscPOKOyA4gY5TvjiSMWWFGMJPQ2u5RV77SEMsqz8mKPJCCqMgHLKKq/McssuvwxzzDLPTHPNNt+Mc84679zyBTXo8AMPHYzAyKsh95dlZC9F5JE9KB4NNcJQFVJJ1VZfjf511lpvzXXXXn8Ndthij0122WafjbbWjKwCtAo/YMKNOq9FfSFlM3J5N916g/xr337/DXjgguPp6hUyXBHYsXsvznjjBuINeeSST0555ZZfjnnmmm/Oeeeefw765R4xoseqjzqOeuqqr846YpLVo3jrss9Oe+22wyTY7brvznvvvv8OfPDCD0988cYfj3zyyi/PfPPOPw999NJPT3311l+Pffbab899995/D3744o9Pfvnmn49++qll6eZMH1/1/kLxY8c+Q/MLdf9E+bu1v0PW1X+T/rVPfTERIP7w8jEDfqYjBPmKAhGimwdOZGkyqdFQUjQUTVmwIRJESHA4aD8lT0FQRgsRIQlh0sGHQIVTMFkLxzh2EBga5IMlHCAIEaMWnXQqhcZRCA8NYsBQ6ZBpQrSfRH6IIBlChIZwCQgAIfkEAQoA/wAsAAAAACADCQEACP4A/QkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocufGePnj34NFjt5KdPm/04MHTR+/ePZI4c+rcybOnz59AgwodSrSo0aMP8ekrqE/fTYErXdkDZW2ao2mJXAUqZukOPSvFZAXy5ijsNF/Tngp0uhSp27dw48qdS7eu3bt4hfKrJ7BeU3tqi01zYi8QLnum2FljZw9eQsbkqla15O1OMVzFCNrLy7mz58+gQ4seTRopPn/cRBUEVaxLZGv+HF8EzI6dPyfwrFhzbLNt6d/AgwsfTry48ZCGDjQIEYtZIMqbBW5WW3Gpyc1LE90+Se+49+/gw/6LH0/e59J1PihgACHJlGZ/vjtu7i5QlqxE9HytLc+/v///AAYYmlP+kJMNCRSEQIBq9jSl001tMQOPKYlMIxB1Amao4YYcdujhQ0vRU8woppTSgABLuCPUUktZmEN32H0o44w01mijcPRgBoo/22RzmoNF3bMZKJZYGN+NSCap5JJM4mShI9ZkM08233xTDTXjuEXfGfY40uSXYIYp5pjwxTYNKPBgg88534Dj5pt8IaXPZuzgEohj9BxJ5p589umncTfJQk8g/tCjTptvvvnNPHORw4wbF/4p6aSUVmoXO/fc4Zg7iCbqqZ5HReeGKxhaauqpqKbKEYFnWuJPPf7gdOqpoqfJNac/ljDjXpmq9urrr8Du548b02S2zjiyzurmN+vUFV2FmQUr7bTU9ukLM7L4g0+synb7zV1LVUVOg9WWa+65Hy7lDTPe+MNpt/Aumpc1iZCL7r345gveTfbIYoqFVcIr8LfgCnSGNe3qq/DCDHvmYDHMLOJusgLPOk6cd20miy+MgdrwxyCH3FNblOGybcUoM+sZM9r5U6rIMMcs80a+wHNHIvhQjPKsKvOjLV7d5ZDwzEQXbTRDbV3bhT/xZLMzyudkM8knwrgMtD+y4GL10Vx3PfNm8MChFZs6P51olUUIoJwtnG2Wqz/24FOr13TXfW9bd1jjC/4eAZtdMTfUNIABBRKw4Vm7Z7wKmN2MNy4tPOw44o074yiDjt8odxONBRRYYEEfnm02ij23NIOPz46nrrqlpvhCzjedRPIu5hWvc8wMPtjxqmf1uCMAAgNwwevqxjXFFmAN2rNZg0AS77xE3elzVbuAZBNP2bSf7c461fjDqGfzdIPACh5M0P3zpf01p70PXccW+vAztZk3Z8Azzzd4dIJs9ju3OQ46ntmL9wggAiWQgBrxG436YuIPwRTDEb5IBC7OwDKvnMEbxSiGSuxRk+gkMH6byYFA0DGOXlCOf7QDzR48IIUNeKAM5PjgUJoHKgyxgxzT8AYuHkWWO7mBHf7T2E1NBuKYHJIFK7hIRDFAIYs6wWNowpJh15ZCDlzsqGnoUAYglIFC2qkILzdZxhJ2QBBvREI2UuxJnCZBiU8Ia3mF8ocr2LEVX8gCYrbBCD3sUbOyTMMK/nCE8tbysjSGbCkZzAw6vpENf8AhH+Poot9UZpc4raEEs/DePerBF8wYkiensQUOQpCgFQCjUEuxjRPoQUHFDNIgLHJILA3SnWLk5w7scAMa2ffJj9mDHfBIHAnblI00SMNpkpwkxuTCl2g8YA/N0tMdTNG8XopEGCHYwAY4Nzhn3CQQ/ioGHD3mkZs8hRkPlFyeyGlNdLHDFKPwxzq6sSxwUCmZmP77Rjzowg98GGID3OBGQjYTw3aGRB/1YMMBOEeBzlnADLjc1VI8yBPmCURCEsxhW9hp0F6Fax1BEAgyYyUNOCgjkvj02zniUqtjLKEJ64jmQZYyClDQp6MdqQc6MICBDVBAmxTQQAzaIZ1qAuVWAvGFN3LliqLiNFgE8oUrMtM3e/ojDfhAaUrNxo1CBoUfT5kDDTbhDwCSk0Xx5OhTITKPdZDypz7lHAqcYSuoANMNElXrWvvkoESwQx5Z7dQ36oGHe251kutAXVH4wah1EGAO3FjHPBSbkKWAoql7zQg91tECCwBVmw0owjLn0hR4uMEX9LhpZk0lC3s0lU2e+v7GOWox0sM+DVlIuckWHhAOZFGUIZDz6moVksph+SMMD4irehpAVryQyxXWcMRK4KPX4SZpOsUIBDtylqxv5KOwtbXt09yhj7kBhS+8EMIOlvCANfglIhesrnWf0jpfROsPB1COchCxu7xEx76+0A/crDsmmvgDnu5xxzW0+qZznOIU5xAv5nC7NZ/EqQo74MUOLOABBNjCJA/ZzB0WR2CF3KQY1gDFL8s0D2rMgQl9oKt587IUx7hBH/EcXomV9JQzFKNdVU3UOIZ8UgmbbRzV2AYNejCP0eKEsf7YRQn+0L0YeGADDHjEz2TpD2bEUL57zU8TfwsfmyilNI2RBf4oMLVjJtnDG0vjx5DhlY1sBAFWRn7aNfBxgBCE4ADe8wkiGlANbsxjDdvcQAPW4eSFbOaHbTYIO5bqEh0PBB/1mHFonoKLd1o60h7qa5frgb1YueMU/ghvnr11DlEILgQNCDROarWMDZihHvdIhRSW4I89LGGllHWIxkBNXX8kwhtfHs98psEMZgyY2B3qDjlkMQ18uEPVnmokHK636v5FQ3AUiPX3RCJAfyyBCqVAzR5KkG6MgXkgJxmFNcic2TlBLnGzHE9b7GGJbJEY2gG6R3coxI94cEtgPjpBPrDdbZ6doxVFKMIp3z2Rfe7CAojoRj3U8YE1mLXYFilWm/5DaBuKE2czJ4gjwAO0GQh4j8ECW8cp2sHwhitLHOtAR6M9cpo1WAAd21jHHhCwi51bxBTFMCpOazyKltGbPwZ2xCiguPLyeMMUCc4GzOEVj0jUIsg2F1hAx/0RffhsFy4wgz+6kYsYSCEe79A0RpgxDdXule7+7lB01pynqoeHioNyF2yfNttTrCPsfsOt3DHyvSrEwBj3WMcWmuDGL3bkJpCy+58WnzHHJA7EoV6KJWzzdL8Hp0Wkisf+jpwNLiJ+kiZfCJRTYQFRLMMfwSgBG9TB6JBsxgkV/hM39hma+3z6Q6DwkumL5w9ruMI9W0/ZNwDRi+i/Hl5Z6sic2P6wAmp0Yx5zGEA4qhR7LudRUkthhBq2nJd7kCMRebdRdAB5/uUDhxnsAD4+rpG9b0ijFgZ3fWazUhpxGu5ADB4wBvJkCyWwBONgC/FQfu3DDMq3ef7AA1DAfnYBYpDybDcCYqYQQ6Vnf3gRVYHgbN+wDf03DrXQCYcngGZjeRXBD5tRD0tAA1XDDWRQBFLQAAPgAbuQE/qACxYiKb/wAzqwCgehDurAeUFxE0mUbDk1D1RYHKlkCjsiXCRIF6m0Me5ycLTjI0qQajD4NMwSbBKhIqrwAJuwDfMgChvQBssgBZ5lAV+QE/YwDWjkJ3EgAzJAB0yBD3RAB5mWW/4wCv6Y9RGngWngEUweuIWcIQvw0FTW5zfHVIaYUw9oGBExUATnUA3g5wHUsA3nsGHbVAU6EUFKJybccAU1UANQIFDwJoiEKDdI4SWMwXP+4AxcEAAFcACz0CzFQS7ZAm+rCIlGcRP0gC3sUA/cUIn9Uw+L4IKlholv0g3EFxFtkQo7MAf+8A278ABbUFa5sARFsAMrIAXBJxJ52Hd98gsqoAM6MAKvQBDlNYjvhRr1MA/t4A7t0A7qQHY44Q1Nt44bwQvKEQIYEAIFwAVOOBpDghYzNoLI6BNPUSE7Mk/QuDPjkA2LsHDWeFsPaRCNZQYlsAz3EA/myDbcwAY00AjyZP4M/ZUTXkKRSoJQajAEP/ADXqAGZwYftOgX5qADleAOXsACfgiLeqCBIRETRXJ8GVEPReBZP9VQB9AKx7EUzFAL/iAKS7AEUgALslaRQzE/hrEXYMc/31A5gxeSFbMN+2h0BcEXmdAAotA9m+AChUAN8cANFsAGKhInEjgR97A0Nokk9WAOV2AOOsmY4iCYtOgO7qACjAAf62AOOPcKF2AOcrkRVNQyIcELGOA5PmWVMPkdyNBZiWYB3kiWZXmInfAqG5mJcNAJaemWFvMt5cUQnLQCVSAO3OAOZuAB13AN/sAGDxANg5kR7bKcG4IPfTkEPCBQ5jCLg8gNLFCZS/4Rl9BwAcbgnAxxE3eQLVp4EaVwAA2VnuFWBj9pHCukTdrkAQmgGq4JFN0BKdbgDip4WK03O7gZL+tgCCFQBNFQWdqiCh6gGtxgCyvQBv5wDsJAA1QgT0Ihnq9EJj7DDdLJDZR1j16gAjLwC1uGD/PAA5iwE043EsewApzTohRwAFrmHTboWfCpaGYAevUphJvBDL5gMm25VePQCYb1n93iDqKwALAWA/GAIQLUDUtQBUEYDVxAA2wzD1+wA6ohgz+BSGnVJxo6nYEoCBcwDHTAA+dzE16QgThxEvCHoyIxlQ3FTQ2Ald5BDTFAozW6aJ2ZoxsRHXggC+QwD2C4Vf7ocAqRUHNE+g36wAaDEwIAMFgEAZ3+0Agf0AgR+AkPkAp0BQsxsAaGtqd4GEhQ+SVfKovWGQfzIA4jUAk/swYyMJMH1XwMlBPx4GfbZAGFAx7jMJU1uk0x4A7lyacYsRSykDiqt2qrR6Twcg6zwFMLYDjxsRTq5Q/V4A7mSA3gcA5sYAHLEHRHcRMh6CelGoj46A+/MKb+UAkj0A7cYA6YKRKpBXzBqhF8UQQ90AM4IJagShp02KsJADrgKawJYQ2mkC3rsGB5dg6A4ILKGi/oEA0mYDiXJhCiUHv6wA2lEAPCww27EAO89g0A9K3+YFPiuqGBqAZqECdqcAHdKf4DSJmUsKoRbUEomjcSo7WvpGEMyeUBPGsBJVCdAhsSFpI4pFaNksRIpzCbiUow38Mou1AFS0BX1CAFNHB74VAFUlAEa3BrAeuZ5OAqXmqyBkEN1NAW3PAL5vALxrC2ayuiXTsQSVRpPVEr7ekdp+EMSwAACAAAWbAIuxK0HCEkuDIN/LAOt3lYjERbSpuobrg7bRADlyBQovAAjbAN/mALFqAJTWABDfAA3jivOkETzha2YNoQm1h2y+gre+EOzjAP+MAO4gS6gLsQN0EOY1EP3bC4RysNePCCDVsxzBIP+LACXDAOj7kEJRAP0ZBQH0BXH+ABH2AB6oizOXEPdP50mEkyrkZBE9NAKL4Sl00WSJ02uxkxDbgAKYaLeIl7Ob87MNyzCwhAC2s3uYbgD+KwCzTAa4DjOZ3rjdSrE8hGuqY6FBf5iL/yFE2FveRLEDcxiSr2jfsZdowECHjWvspSDfrgDB4rULbABUVwe+pgBisQhMLpA42wB3OwBjFLFHNSDAW1J9pbFKCQGG/7Jdx7BwscEW7jDRlptBKmDL3guxasKAhEBTvQCNEwD43gAY0ADv6wCZTbDLu4A2YgkHFBJAJsFORADjULVfdAdTlMXPrADq5yPzAIsp1QC0I8xFVip1IQDcJgDzsgBAF1DucYDdzgTwMgk3chuzcSw/5DkXx+XCPltZsVkXyjGsZXKAv4sA5ad8aF+shDDA7dsA7U0AiZ+7CN8AD1Gw3EEAPe+A3GEAMTOg81HBIUcsr+AchH1SV9MmOaOBFa6WyD7JrRcQfe0FTgIA6YyCyRsEiTvGewIARN0AzrAAtPsAS2MA7UsAUuIL/i8AU98An48A55wQ6Cosr8wcrmQcYvXGDu0gRLIARuZMUPQQ72FcYGsRmugIhMg6g2Zz1pEGEWnIL+8AUrUArRIHQ08AfLMA+lYAGG0FWz4AF/IMUj6RbwYA21LCPc3BPgmshLAgue4zkesAJjKRHk0JzqXGxKRA8585+MFMH9c7jx0n/fwP4NDbAHxxANx0ADMcANxjAOOxADziAl/yQM66CldzENP9TQHvLQPMEOhkla2qLN8iEOBFAC2uRZHsBrtXwTruAqSF1i5OAKMQHMbilbzvACy7CWKBNJxyAMzpC+UHMOkeXDwdtihvABnzAOu6AJCCAK4eAMotCp7tDSIaC/zZLQYHaMHOGOZCLUOnHVBnwUYCUQtQLYRXEam9yrG1ACiUURiBQt5EsgGyMP9ZCsIflwB0ACBTAJKQMOn6AABdACx7BIVZKWa7kMZUAFnxA+FdMN/vAJkzAJW+ADQUcLNCAFzuAOqcAFJZAK4MANJglZ8SCMC7EUAmXOB6EWCd1fOP4rjesA1B1C2DghcMwg2G7BF7DABD7QBIDJlEjBKFcG2SUglhaBfwtMHyGVDZziw2HnDkbQACmwAFQwit2w2vydu0M2AwpAAQtABg+KDgZ+Dgie4GyyDRpwAAuwAMvgNOEw4RRO4dkKCy+aACEQDehgBjugCc6ADpjcB8bwhi6wBTtQAivgRkshNy7+4oG2AjhgBEwje4zCBmyAQA3BKJ+gGs59EJnx40uC3SNhvcQiF6dhCA0Qbks+A+cTF3yxBHgKnyvAxxbhBN6gwMuXHTY1D5yNm/OABBJAOEwADMtw5mie5stwDMdAShKwAEjQDmnuDNFQ53buDMJQAA0lAf6tUA1Jtg2AHujbcCX+0NacEwDLgAJLIAzHwA00QAPV0K1Z4AG2sAYMsE3C42j+0AKEQwEzsMIEwRc9gAESIAE61xBiLgEEPpLx0Acg0ALzYN0bQuQhcRMCNhfOkCCd41MNwAb5+BZLAQsI0KseUAL8IIGb4R5aDnDWYQ2BEEPgQNJEmg3VgAMOsAK2EA3O0Azc3u3e7gzOcAnoiQPB0AzgDu7e3u3H0AyEowASkAvHoObLwO3LQA3HINxLrgEb8EzXAAuIYAF74Ayp8AkfIAXLAAtckFzS+z8G3vAOjw60vQLpGQLyJJnuEA/u0GQajw/LMDgUUADR4A6Z9uIk3/6VAU4BAuBGxFUPwCAAKYAgoD7kYusT5DB1dEEFSw5X6jEApx4XmyQEyeVCG4AAmSDRy+0PIybrOzZv2jElDbuW30ANywAM+HAE2+AM857uWt+tosAG2671Wu8MbM4FXPAJUg/2yzAOiMCDzvAHIfAAi34MrWCOjXANrUAFJfAJ3HAMZlAEJfAAFtAIlCNYbxJJIGsHvlgAhuAO3cDLbdLf39AN53DyAQAM3NANxZn519Aj3fCMonDyC9AK65Dg6JDgO7098WAHB5ACGKABMa8ktP4RUs3RcmEGOV+aGDAAy1sXWYAACbDUqfD6D9EdgLTskcZB/nAG5CBn8q2+5/5wDVjfDMvgDJIg/WCP9s5QDdcP9uBeJdGQ9d5+5uDABSvwCMdQDVzgAZ8AC86wQmsgDMvQCCutqZqwA1IADK2gCaKwxkKGUlIyCQDRStS8buDGfTMIzuA4ht/cAaNwoA84hArHLVzI8BwTAgTKJEwo7hvCkeCy8SqwoQAVf/f8vYQZU+ZMmjVt3sSZU+dOnjC5DeHBredQnLJk+dNHVOlSmGUaWKBAYcOGEAG+1WOalai+ddfAzdMq8563UWHNnkWbVu1atjnt+fPmxt86hXXt3sWbV+9evhTBUVvWTPAyanKcCUacWPFixo0dLwPWjMAcW7xSbTAD6xawIh6Owf46toRGqly82Dwo1czZamfn+DK8CG4dOobhDjIEWZLiuW/ZYtumSNKvSIXOojEUd/Hgt3EiGXLD2gxEq3n42l7HbvZn0Ow1703zlrR7WEMNMFCASqFBD3cux2u9V6/ePKxo77Er+17/fv792do746iD+iKwQAPtGimwxJaJxhNnFHQsQgkfi8aZNSxo5RhREGmAkmNs6eOBOZyB5ZMYlqAGllJiaIKbZZY5TLBtYjNQueT6GiebbPyi0SIfweGNm2xIMuci5uraBp2k8MFHHn7q4cc/KcfbTqj+yBnlHvGm1AkrLggIAQMMGjjgGC7PlMkXZtBks0031XKJHVks8f4HnyEPxDPPuy4CLEbEGBwEGD8nJFTCZY5BZ5IdljhmmU928GEXaj4pQghYmoFFihU+ocYWLmLYg5vIBDuMwR71rKsicMSxS7m8bms1ryNzRMcdmRZZx703dyWqSv70oQcUcni1SR93JsGAgAOKuIZYKelxhB1dnaW22jdHgacsdFRFtdu+vjmHmwcZg9ETT6gpNF3HjomGmiWKeISXaLhYoRFhovkihj9gocaQD9awZRlRLDCjFWeOGQyx1bj1tq7kBtQLtoRc1Quhg9apDyZr3IBnWms/fsnX/thhB2SYonQn5XhM1q+YlliGOWa29PHGnkTmYrhhnfGKZsJjYv4ZVF2hl9lGlAbWyCWXYxjYAhZYdkGhCFhsccaHHW5ppRkzPBDFlkYX/LOanQ9szpyKwsExVbBoekvmj0V+Tx99cHHEbfnquSdKNK1jkxy52nY7cMF78gYXV/zh7dSxdxbXZ2DC4EZoyRkExowGnMkFlgsbWSYVUR7oYxlbKBHxmFtEoSGGazJkLEYGF4c9r3NsmuYOdrYc/E2435OTntzP5PuleoL3L6lipkHqd+V/b9sRU5DfMfadmdvmGoQnPNQTydV9cZtHVlhDmGMMEWIJXo5pZYcd+BXl00+cSYWNHUQh8ZigE1vtGN2kxzNnv2zFXUy84Y3l7Wp33fEdnf4CWMDs8MM66mDDHBrxkgXqJymyKFkFGbhBYunjLaaohSnmEj3+eYs51xgXoQ4VC3RtD3vNqIYPlvCIZhhDCiX4BC+oYYYV7EFpfVgBG2xxjU1soAhLMMP57scYaiiuhHi6WMZq4g1meIyD/jkgdlySA3/47ordwcoeLDCVDawgGmd6yxlK9kU27kpu/giCPbxRD/898UDMSWGhIKMEoLkwQvZrRQPmcAtetIIBbCAkLDwgtVlsowg0mNoxOtOIBnjAAkuIxvUi9CCIFaiOsfvG2nDiiqO0UUpZxA45hmXK6yTFEAwowQY+MBUauEOK/mHHKlm5yym5ohi366QdUf6VDQipyxnUWKIfSXWM04AGFmxoQCp4AYs9PEATomtEAtZADVqoIgZbiMYSPLABDzyAGpqUUDWcKEy+rMMfesPJNKzBS/6gcmb+cMQ0rEhPrSTFAyUYIxkRIIp6aHA89iDHHZLHT4a2xT24KAY51rE/dhqIOd/o0/acMQhP9EyZfzrGNgyxgiVUAxiIiIEUhOGMT4hmF50rwg42gSkzfMAQ2ThGDB7ggQas4JyFcsa2LIog2DFnZTrxoCuQ19Du2JMtzACFlph6FlHMkoxkXII/btkfWRxuql8NixfPwI9suKMgFe3fOVBYTKE5AxWDYKsL2QUOGhRBFMc4hhSKsP4HwdTUXtfg4b6iMTAzBOwTG5hDHxIghFTk0VDXqAc30FqxdRAPJ/qAhywAB9a1OJUt9DAoZ3dSiqtO5QMfyOpW+QNa0baWJ+Lpwi/n8cnJViyZQsPrRwczjj5YwBCw4MXApMALQhKsFbywxQ4sZQtq9MADrQDNHDbwPmcoMV2rAcYczuGb2tpFlDsBFrZcqxbPqsV5413KOshZ2gfs4R6W7c80AgGP0KJXtAO0gu9ImCqFCOcu/rVj5HSrmmOE4WsuXEY1YEGvpPGCCxZwpnQN0blPIOAP2PQAFUh0ixLQgJiBOXCh0BeAZDlDst1Fh1Lu41X7agcoVsoOZn3R4v6huGQOOyXjU/Ch2v5EtL40buhYLDFjd+xoJNkIB9rqAY544OMb/hjSSBCCD3Dgwx3gEGqUdXbRaMTVj86IRSwQLJhPlMAMDAIiF/D6iCXcYBfOKIUQdjBEUeRrEs4QxtYMYT0v++wbIUABBVBwACh/A23CNKpSjCdCIGulvGd5C4s3qI+CHtQfc0jAAxqAABRQw02moMdmG/1Ve9jDGqfwhzvQEeV1VDYbysgGHs4RiS6sIwfK6MQiTgGIWjjhG2foxDlOUeRUu0PKtN3LOKrhWN1WI1DoJNTBohGOHszPGbvwgRBy6Ax69cF+bKDBvpwx0jbY4huGMMEWWuFRuf5WowcYCEEIZuCPGQkzR7laylvusM9R8+TRYXlLF5a6wfp4EL5swUc1DMEGWnwXTff4W7+nijd4sAMP/mBINvIRj1704hR4WEQnPD6OU2xrG73R8o7UcYp8pKEWp1BCLTqho3isQ8ueBEeXB7wYZ8jhp+kCxjUq/FteFJENoLHFA7YgDFgIQ7mkWUZnnHaMLaxgFrDoM/eO0QABhCAbZ13n4oanFXaIWuL+fvF4PGj23CUlG6IoQyu68c7ueFAf/IjPrqbhxbPT0zru5CLipJENaTihFnCoRS/y4Q7XVGRHRj5yb0yikHPMBh/jqEUkANGJTgw+G+fADV++Yb+dK/4GUIBJV5d3EAPgPjMBrRCGLczwANLcwhAWWEM2SmSBEcECdUtgeumX0Y15uIMbNBIHq4oqm7D6g4ts7/tN/q0V353hZcvDiiYKcAAyHWCCPzYLPqTqpqSAYp7R3yVWGtECEvhDGbVQBhaysQh0iKMetIlySZDtFykPCR3xiAd3UIZFqIVF6LjmKDIEOYgHuS3dcqs+MpRmyIY5oAEzOKdG8IAtEAxDWALzEZgiKAG8aoUl6AFDoIb4KYFGqIZbKD3BOAZgWAa/IKqx+YZ1sJWDey1/oBO+Qz+dmD6mKD9dUh7rsIUDCBMxSRZbGDumuod7uBnw60G3EY85OAALqP4AM3CDbaiFfBiHK6Oo6ZGyc3CHbZCGWpAGLKiHSMA436hBZMq60ouFc3nDY7iGXSiCIsiQY6grzjkGHvK2beCCFMyFaACipVuGTDgR+oGFBnQhTvKfsCuQi4HCy/KHaYCHKEQ77sCOpPCF8VMerIi3qJiKqEABrZoqlziKScREltEHZZAHFMAACyCBFqCH4+uujHi1U4ADZbCTb2DE0jsGcwgDc8i6YwAHQxiATLiFcbOpzBGGBygs5PoAKmiFZVQfp2kGLqgrWZqDdXhDZWqN/cuTq4CnsICHE+iiVcyJH1yKpAgEf4A+KfQHE4hF9ICKEGgAf3A4enIJUCAgdf5UHvEYhVEwhSnARw0wA964RbvwjRyRhiDIhliwn18csBcchBbiuWMQAiFwhlvIlA+YGl5Ygwe4q1R4hAZohA/JBAQIHd87kWyaCgt4BIrUKP5xJ7UgoHgEyJBJu+xgh8PhN3nUgFi0AKiwgBB4AH0cCinCh3KEmaTwBpfZScF5I1+whiCYBmXwh0mIAjbAh21YyP9CCHQwh0FAhUWADJ1rQcaIQ2gjDGr4gyA6Bl4YKS4QFUSgAeA7hpa6AaoRBSpYgUtpBXpBhGy4vZh8n7VMDHXSC+WzqHMAC1WkxDuwBp3cSXZcClMIDwbCCh9YgfRAjw3oAXh8raSInz2wlf59ZBmEqpupdBuxcoNfegnAEceKOgd0SbBjQIVOiARg6JlvVKbAGAQIPJhqaIWU+oRssIXUKYVjEIZ3oSFmKoE9CIZqaAMaaAN+2YMY4IKAUaQNQAAEkAIYUUzEOI7pcQcc1ApfUCDXrAnMVApmYC0GwodwEAAUGMUQKIBqsMyZWIcd+MwNQAEzIE0pvAdr4EH3tBZ9cAlTsAIEnYmkqE1EC5qDiYVI8AT7Ac4viwVUQAxgODeZvAVhoKRPaAVH+YDunKYNkIJWqIwYEIJSsIVo0JRUWEQ28IBSAAZgEB+a9KOzyosbIRAeOwv6UlCagE+iSARp4aB5oAYjNA8LyP4FuuOJc9gBMpol3hOce4CHREjQI3WWsXACeJgnfruysKyLaiBP04MhVACGSFiN8lQNVNAewYiGDYiBaPBITSmFaVqDBBCGpGEDCxAFYGiFWRCkZVCRB1gDYMgFUdiBEhi9QwkxOV2GE5MVi9mLymoLBnWDUgLTmEhSwvEFe5BMmCkFMxAFChqKR0CA0rIA1RmcaZDKUHWWYvAGK2CHSwwtx+yuBXxDBtFNQMikF1nLS5UDYNgGNlgBQyCRP0ipbRCG76GCNYupF0yFIliBVKiGUuACFNAE+JkDC2iEc4A2OcUfsEwbBEEHsFDPfqKihbJVfxhVnoCHUj1VkNGH4P7BB1XUh3iwnNLagGgaHJKZ112xh5LpAlmoVZygi1scBzfEHhNDhWPAgnyohnP9qGOQhkmggRY9hl2IAbvCsyYogglbBsL0TTb4gEEaHzODBW4QhRKgAuba0GOd0P7iVOz4oIP1iZ68DoIEMmOZPYGFsMExBTrxWTbxHWY4AW9YI524B0ytqAUcmgcBBjjoBG7QWLn6BukSBe18gEbwmk+wgKObJgvgAuDaBdTyyG2gghLommaoAkJdRHQ1lGiQwRn8EXCAkuzwHXTsz8sE2pmBh8H9KkR41asaI2HInY5ZWjSCByuQizfiCaFCKzX1o2Uwh04ABGbTKMjoAR+ghv4jgIbUYbpckAIP+IQPUSxRIK7bs5db2ASlS5HjVKllvNnyDEfXwIseuckY84c1QVyArFep9aVRqwZLIqNy+oM6ERxrAAVTjdzioRl09IdL7Al+IAh2ypEu81HGOIZqMAcscJHdNT3AKA9nXYYpCKJloEsa4IJMUhTzaYZPAExnWoISoJpWYNk5uIZZAF28XYxlMIQ+KAXMpYjY+AZ1sI53hTR/6AJyyNcePF6cuIdgiVogWwYLSIAGaIDJWIcKdpMlLd7qPQvfAQVL4FWieJKKwkjdepFYOAVUMIeu/aNtaAXMoB9KEYJJQJciiIFPEJQ7HJFlkK49OIZsYNY5WP7ERvimpnszAjYUZ2AC7jsAWOiGinC8eQhKtmBhEka/C84JevhS9LKOcxCGPRCFa4Bgk9lgFK67t3ACUxBjnCmhkeBdZ4gE80VfYBgHHtoEpdGEBvgtOZgC3gMuUfAALrgFr7EAKpAmXliCGLWFaigCC7jDZciF8C3PFwkT9aCEk0sVfNsPcpiGEzbewlULhLI+iWtC4bnjNnGDVJbjg2KHLkCKL9aJieKfiF3TYzUxJSC9aMuFGOiBaHCaHXCBXRCGVDCDDdCM7GoAHYUFQ9gAQ0CfUkiANjCdgZmDGLAAS0KHUaHix+AGE7AADTgAUdjiurCV/vAFU1BldSTjYv6hhzU5O/GbZTeB2lsW3mLwhcPl5Z0Aki9EFephQHQ9FGCIBWCohghhkGaYgw94hG2whTlYgTnA6EfgzjCIhe9ZgkNpqR0wmFRYgsDs1i9o1mXAMXId4HP+k6rpgTkwNopAh7foZ554i9ZE4Xv2jmwBaDfBBW8o6KFWircAhVH4x7D4u2OwwZx9FYmlYrcCBAfxMmAAh1ZYASkImFTo6lIgESGgAUowDqtpBF7QGuwc3zkoASd2Bij+AljIhk8ggBJYAQTgBfRlaHRYhjN1iOLRwaauXqCmCX2YBkZD6jPxBVyQ18UOC5f4JSEMi1xYARToAWFAB2/JkZiW02h4aP5UYLZjcIcHm4V1mwMPeATQmAQEKISmE4UNWIO7OgbUIi5h2IAlyKFlkAILkFGtYd0GeACUlWnsSbAafOO2UOHHXlrDjtCohOwzge6dhuyAS0e04IIGoIAFKANukOo05eudYxcl4No4PQxYYAAzEAaPdC4SAQYhQAHRaQVDSABRgIYjKISBemRNQCxFTYUPMANnsIVUGNmDoYYYLm6fUc33eAt0POODde6YwIpicJnklongOeqZyJgMjwnLhd6hwJ1T3ZJ+JYrg8XCe0BUmUQpyECEijW7wmhvrq2ecoALzOAA2IOU82YaFTvA/4QaXEwVR2IZd0OhwtQUxQoTqCv5nM9DTT4ia1WgEM+gBYxAYKrCA88mUGDCEaPDfEjAEekAYvApvvGWQbPhbKTmKGV9lTVQLrBAHSYiFEncJma2GDwevKKEGUQCHAgWvl+CFUrCOM9cJvtkFWHgJC38Jl6iHqWFVnsAKdziuRtcJfniLdbgrSe8Sf1gGPhgHrUL0F58JepALDucJURAAZYEFSNQLtexxxTgGdeCDouSCHajZbdgEF5AC+hnB+TmU1fuEF2EDFGADTxiEMphOXrgGCqSCXGiGUmhkYbCeVk8XsbkIO+cPUGDSW47wl3AHKkDCFnAGF5+JczCC89AAHLDBnvgGHzD30YznnOAHfRCG8/6gAA1gA1PkiVTwgH33AEMg8Un3B0rQgKjAAFFA9KSwg6iggBDgBZ54En+YAoX3qZ6wlRZAQiYIXlDvCX0oBkdQ85ywk1u4hkPDuWuQ9sYgEYD6AAL4g1xYBirwgElYRENAgD1YxkawgD2YhbSlAuDKhRDIAlG4hWgQYhuthgtJhQoZcyqGEVW5CilxBEmT4wiPDyZYAIXXz2/Y15yoB3eYAQnA+gLYsS5ZB4UneAVQSpwQv2MgMYVXgDLg82LRB1i466koJ0O4vptoSkQQAIXHAAEQhROvCawogwLwewEABnEXHn8oArAneAGgBsVXyq5TeAlogfbQ+J4YFn1uC/57uIfZwpOMOnnFIJHP/IAD+ANeOJHUfaQN44INgC5gOI1NAIYSAZ0XgIZPeAA2+AxY0GRwwOHRD5tTyXi184diOL+hdu59tYW+l4Dnl4AQkAB8t4l+nQTDh/7obwHqH3x/KIOrz34MYIK8rwmw6LrwL4BlsHaaAIsBQIGAsoASQIB4KOiuDwDph379vO7qxwdqEAAMAAgJAiWEUOBvnr+EChf60+evlQIKAyVgCHGQIcZ7/maEmEihwCd/+DCSLGnyJMqUKleybOnyZUKHgYo5hNlSH7pv4Hby7LlzXDZny5oRLWr0KNKkSpcqdcblAYkjWx7syZZrTgwzwng1ov6xhBuvTzGWROMlaouLVs2GMSmRahksMyVErRPmjCnevHqXLou2bZzOnt9sEvZXzBezwooXM25sk9sQHtwc+6vnr4dEjy3ApUSIIfNAChZrmkSoAMNECRIrnxyZbQFogRSo+NNo0mGqDbp3b7AwR2Rrf2xQe1QQkjRJjT2Ihy4gLKVlCrFVF1hnGeU66akxHLhI+Tv48OIxOvRVbDzGdYF97tQ5Ltre+PKZCm3VaI2CMsOWiYohZVM1vCyxwifLHCPFDoYcc8waJbBhTDV7rLDGINHs0QMVzkRzzF3zeejhMs5UMw57PLmDHkP2+AMKPQ2h+CKM4UEmGWUIaecRBv7PoYTQAczJhsE2nflTgI+qaQDcbf7AAltqFMzAmkkjGcIbb0vUdpJGZdwomwRsIFmSZZg1aZyLJlm2wnQUKEDNSChFE0KaBiEUI511xqiRJYHUaQ+JJYJzDjdCfThofM4IA8s1UqxQiiRoFLJBH7kc88kDjZTCnwdbwCLMLiUsYUsuwOywwyewxLKGB7A40yGhrdLXFzh9lvjNOnW6MY2Kduq660ozTuaYilRE5FEItp0UZpoYQFmaP581KYE/uZo5ZGwUOFDGlSgdYwGVvRnyJUkOGaKaRwe0UmZJGjGxJXXOIEeSZS2kWUA8192Gj7MeQTsnr/36a1OLLdbpJ/4430QzlKsJKyVMLqnssMQxsBwDAxHQgFrECrDkAsscCGjMyx4PfHLoIx6YEbEtHzgAzDEKu4zUMtsUTDBP9fADozfw/Lvzzr5+V882BVgrmwJGLFsSPvbMQgBoFByAbZtR4oOIAKBhUIAi6ILpTwvDqkbBAu7Yyyy3VH7g3UkICZ2ZRMryO60A+ar55Nsk4YPPN3GzXYDRYyfnTxkHNB3AMfq8yzPiiTvkRmKHozfPeu1100yIL78cYil/WIBIM7zMYcEfWrSCCApcUBPWDk0s+MkSMQgjTClSfGALNXGV8Ak+YQSKsOWuwjozzQWfCC5lDhXjSmKJK0+nz8XjY/6HAF8H0EM9xp7kEBvRSxcAE0dH6Q8V2ksgALZ+l6QPOBgw7TRIxNutjzMWPKDbAxbYovX5Sh6wdgEaOGP+3z5RgIhQQAAhsI5KLEM1AgoAB5W52Y78wYQAaEcAXora8jLYL4ckIiZ1GklgAnOw3l3OGZmgARVacQ1R+GAJpThGMlKQhALtogkx6APlzECDPwDDGRJiwzGWgQgaaCUby/CEJ1ABHxIOKkTcCJ5PfpUQACpGHyrSkwazOJ7mgccZRqAACURxIgymhBdFCMEMWlE3lbRiOT2ABf5QEg87tCAEZYhGHJHmD3dgZQVzGIzjwuUPcLAhBC2ww/BW4pBrlP7BkH1Y4/X8cQwqYGAGiCBjSu7Riq4ZARha/CSviiGLPKKIH+74xjfOcQ3eMbFVBnLGEj5QClWZwQOIUFUjLACGQRyjFA+YgyiAsYsVLKEVvFjGCnYwC1UNSBTUoFxfnMEyVrZSL33phqyg+A18PGIFK/hWIBWTg2iBspyM4eJ37oEPbGCDlFhSiPVYEjVMpkQftrnbS/BhG3W+5B62qQc9UYLP2oTTJPeoST0K+j54nIeK5nwoZYoxjX7hoxvgWFU1E+aMVmxgDRFrRQx2wAuJYSwXs8gFFzZQCl7cAhEEyEQucpFLQ7A0FRbYwjpadpRBDIJVGc1LNc4BRZ+cg/4XMaAAd0QBHnKcJ54QfapK0Fm8evSiFoSxxzwSChN91GMe9gioQLvq1JXgox4Atck9sgpWlKRVqzDpqltfIo1OZAuqdq2iP5iBxX4F5acfqsY2onEwHfYhGhyD1DWOsYcSmGEZXDlCGKABjFKsoAi8aMYnzLCBVESMCxZYBjWAkRRueKKnQfRrU4QauaGuAxZwwoAALvEdevjCGuy4K25RItXikSN5uf3tv7zROOASdyW4MEVd6dSmdVRjGZVDbV5CNAczfEIUXgEGf1aQQmeIggo72ETLFNWIWRAiCzvYQxD74AGPZmMOLmDDqqhZFAOZQwntGCF0heKMv6x2qP6xEscKDnCABlyDMuSwhiWKq2B/7NYx97BGBxcs4ReZwhfunHBua+LbD/ojHoDhRhB7CF2mHGMbW7CABTxAA1HQ8gONuMUx+uAbWFBjExZgAyzMQoEy0CIX1fiAD1IhKSkIYRbR8GlTUBEGTyC5mkKhxjey6d+eoCMbj6DEOBxsmPMoFMOfbHBjrDhRL5OZMt6wR5fL/FRmnIGcusrJTtzBlXHodMRJAYY7BlCCD2xgCxELKVxyUQQXCOMWt0hpK2wBDEM8QBJygMYeENCIjzbgC9vg0F6WwQ1eyreV2Zhy8L6RjW5AkjBWOLOa7wpmxtiDHXsF7jxT3RhQTGOssv6GKjwSIy061SOE5+iDAARs56Uc4xwo3kAD1tCHD+yhGraY0hq2YQtEjGVB1qVBM4QhCSMIwRbHSMUWPrALdNR5L9EYRCw8wY1OvywawAM1wVBZK8WoiB0RTvOtE7fqxeiDHqPQGXAREg9hDA/f+SaJJdix64NDlRyjoIfBGaMP9fBkG84oQAgwgIEtbGPYMGsGLGLggSUUYQewWMYsaFAEUTgDFkvwgSGo4YwqxMAQwljGGnpwhB4iYgNsCFG5My1zOcTiuS/TLzekDG+CoSPiDDHciizRIqczvF/7Xsw9yEHcE+1ACMksghSr3hKFU13s/jKcKbxBJ4fMAzA9sf44xjVOhW94/CjO4IUtnFGEGJSKGnP4psREkQA2eFsUG+CCKDik8l0MYhceKAIsOu4qZ6Ci6Jh2GWijvHT/bqPUmWxIEIqh9rKb3U5XL4w+4HEHC+d2JCvwwG4sEINqlH4l9OiCwmtvTn2wQ+11EmqJ1iGKBqBAA/cI+rDvDgtYNIALLL3FEiwAjJMX4QPHuAUs2LABUfAiF4YYwCdukYtMBGEORnQZN8LAsiYPyhkW3fyUtzHvl9BjGm5oCOl1z7zIhD087Ljtb3kWlfySPqyV7v2f/pWTPYkSnUBOvK2DO1yDOohY3UFTK8xBCTyCM6RCLv1BWfwBDWyBM9xCf/7QwIZ8gncVnhk0gDCcArt9yDFUAzXsHDAs0YeEiDOcQ3/BH81s003ozBlMAy7YWgLqG/+hiETl1s1QQdnwhgcgUBFihDfIAtRFYQapyB24mXg4RD2sw/vFWzdsAzW84E8ZyjE8wsNEXirEQBGkQsshyCQ0gzEMyCNEgzB8QRGcjN/5UWDhQT4gH6E416ZJAiqMIRkihX5dgw7yIKh1QzywRIuwgxXgAi5cmBX6y+kpBi5YQhXaFToIQRPuRgKgw8IlUFblnznhwihd4vI4RMKhyEi4g9sNlU5UYOdsg2ZpQi44wxdYACW0QjRsAgMQnjN8wo3lGCxoVykIQzOoHP4swMcyoAIWcEPvLEM1eAIw9JSg6IUzHAM1MCIPWqI9qIgbWMGYoSIrbtERooc9CExuCSBvyJ7YuMTNFGCqkYPWpWPiaISelOJ3wBm8NVfdwcIDLEHL5cIOFIEt2IIwNMFn5ZhmsRgw7EECTJpMPYAhbGMzOAOIMVEQyQEwoAL7JcUyoBI4bl7nqQQ9nAA9uKM+ZlAmFobqsQMRltMeNMBu8FlFwsQyUEEDhMAjTIYB2pVDIM9LJo4j3IM/hhnQKN1QrZtfOZeBUIMwyEUjwIUh3JhVGEIDwFcuaEIP7EBZiMKoBEgpLAENIEqdLQMwpEEs2ODlNAM1EKIkgNgLgv7WSTLi/JXENCRCFtLDUh7lv8RkYbgCPNTkJznEGhAAt1gAAgjBXtbTPPTBgGGABRxACFCD+/xWv+ECOgomY7CDKcDDZ2LESOAENvEgXLYSOKDDNriDIdAAF6hKyAnByTnMEmgCNdgCF3hAI3SjGcTAHrAMVrABPTiX3QFDJJwWCYGWMwyCJ0iCOXTjUfRFUOUlIx5OrhTDGXCZQIHmrhAmYdAEYoJSPUDfA3RbZEKHOxDAZ1iAdFDACmxmbt0DPCAXePoLUwUmYTjEOswi/J0DfjGRY6HlFiDIJ+zCN4RbI8BCM0zJHMCY4O3BpbTCCkhBKgiDMYQUMIxhUkjTMf6sJgmFlpIdA1QOhTXGCnbqZVclBJr5gzXcwSjwJ1eZVX7qinjahC8gV3kmpkI4nWXMQQNYZnxSAArwwoTpAzmM2Y3qyj3Ulnigw4qOpMLonQV8QANQAUu1QglY1skJgQccCjDITqLBgiEggCjkAlcgAIAAYlFwQxosAnL+lDkMAiGKljNo3ory4DegQ0JohIp0gSmch0nczFlxgx7gQ2k2aUrkKEzQg3f+FlY51LTMQJHGZwgo1YI5xDSMAqPaSb/Jgu9RRjzIDHaOA5UmzDL0ALf8Uiq0wQbsgTPsQlbCly18woU6Qy6QJQ0Ew2QNyMFcnlJoWiEeoqrG4HMmkf4y0AqJ7OCe0kw3XEMRBMAB8AI/KIEk/ilJzMM6QEMyMMIVsMAF0IH3fCp4OKpLyIQWVp1lsAFOSgeKGSkcLRg5Jpe5suM9RBhjjEQXfiF2UmMrRQMbIED9sEHqwEI2iEIT7IAoLMMuoKUG8oIZfNOqsEEM1IHkRVc1wEFHRqWm9UI24EEtdAI4ZEM8iJqzPitPiFo3pIIAeMALFIAWnMJtQVxJrIIXyMAIsIAO1IAXPNC9qiONoAenTtSi2lU9UIMBUYBuWEAINEC5Ztg9MGnQogeeuORirMO7YWeUGV3v2MIjzAEofkLesUEJ7EErFOMHmIHE3IIFmEEpAIOFLv5B5BnrfKFCGghkRglFNaQSYGRDNmCBNJyCdQCGSapse4jaOKCDF04BBVhACjiAVV1YNawDHdRAz/4ANFQteqDrTeSVK1himRXgHAgO02JAA0TD0SKONdxfj3KuTTiELFAt6jnliuqt5SyDod2CB1DBMdgCLIwKLNhCM0jBBiwfMKTUJ7DUJyQAy30IRqHWDopaLQACINSC7e4pUGRDLWDBN0TCCpCAA6iCJY6EDvTs+VYC7Apt/4WHinTQ6uKVB8XIHPQACvRADHTD6z6UQziCP2Dt+jqG4YTu/p7PPDwR4vLEOGyDwbhMN/LCLjTIHGyUIXgAG2TDsx3eMZiFEP4UwTJsTEgdmd0ehYkqAQU2pzNQg1MCRWuuQz4AwinAsDQoA+COQzyoh3oYLirphEl+WpSNwzmsA+OugzRkQ1X1ghKAAyCMBD/IAi48IhHWRCjwbA0Igg78rOcFMGF4bktohCPkI89Yxjxo6PyiR5tEwzkkxFA+FZ7YqxY3xhSKbv7UAzr4K+J2g8CygShQzuTxQjSgYRHsQjOsYRtGQys0QRH8pjHUEiKAFhfcEDjMKYgcQySIqEaFKH/1oKjR8TrUwil0Qi/gwTcswimgQyesQzbsET7EAz7YsD8EiQsXcS3M8shGQi8AgjIoA+QkxB2wQySUMUYgxDCoAQuogP4XJMMwDMFBQNAbNwYXd7E36CvPdMUKlIBIybH8YjNU+UIHFXAzs5U/3B9/RpLWpuy/xsPTNgAFHJOrdGjrPMItOMPnGIItLENW/oGqiMIHzKYwWKgU8MI2jPBSAEMs4C7mXYOK+hcPr0M503AvLAI+YIEynAIWnEIanAIeSEMkYME8VMDIpoEy2HIvzLA07MQ66KBhWAJ+EmFZ+YMg/EANqEAonIgabO43U8Yz3wQ5APCu6AMiJMBueMAD7II2vyRp3vR3kEP+4YOpJnBPXAM+YCbqUoJGesi3ve308cKoZDUVfAAs3IIweBaLnaEFbEJAH6tbpqqH7NeeZsMPj/7DPKBDPIADyCoDyNZDEP+n4foErfiDKYxSl+mDOQxBDdTAD3CDPkBQ/H5zTq/EPbgaT9tJPXBDAsBe066ABdBnk94BOYwzUju2P1jBurLEKWXvs3JDPTSAapvLfCBnX/CCuybeLezBB7DBNcCCJuyztD0CDUiBY6WCD3gAODCnwrCM5UQDQHItUKCSW7s1D2fDcgPu4a7sOZxIB3lDQY3EPLCCCtQAD+hBZTgEP1DqZ7tEY7PENLBev2jEHMwPb3zAXMCueZR3Y1iCUreEdq8DAjs1X39DKzBBEfSBh1pTM4BDYq0DJcQAFTxjI6DlySEkwzoDb/bAHFRDWNNAI/6c9dElkVrnhX5hkznzN8FkQ63IgixE6tYkgxqoAAuowS+gDX07xnmvxIEtdktYRvR1ywY0AuzCw6jGOGEgoEucUognsHpwgyU3hTQVARucwzvnAjVo3yPYwjVIyBxITCnclLe1wi+1wvlZDuUtAh8HIgObtoj7iaglhBUUAxgbsEufr0wDM5Cf0zrGyBl0NkX5QyG4N2/Ed9BmXRf8+Jy/xKl59kIU+ZmPQzXEB4fMD7dIgZhawBLkAvBG3/I5gxQ8AKh4jge4YTWxpUDDTDQg+pkHnz84Qpt5NkDxgA6w+kANOk7X+Ys4RCXa+ErUgzswAJ/xxnySt2CSA8DB+v5L8N7+nqyZl/pO2K1ztfcGeEAM+PccbEBGtsIn1DY17MIkxIAIwkIqCMEN7E41UQMeEHd8hMiIIDuopZI9eIMjnEdke1A9MIIK9CwjdJiwf8eMr4Q1jJI3/4wmIEDZIEAJGINmCyaneuq9vwQoHGZnnIMdozt7RFmHQ9MnIIAHWAAKtIIQNEEqVAMsFAENlMI1pEIV7AAiGIpV0gN2ZVQ0oMLKy0dfRBmpozupTVQXuGja+MMwXIEMGHMyAG3CO7Osowie1Lq/4MM1LEEJhAAi0N4a66OKiLahB31CFEMgvOhJlDPED5WG44VzUUF6LoEH9IEft4EFNELaGkIJtP4BMLbC2oaom1pONQBC0cH8fm99qGUDQjiCNYzevfhDHAwBC7AAK6hDwVO9eQ89ijjEcP0LQtgo7Cq1rQu7PeC9Qn+DshvaLliAB+dY1w1v8lrAxhgDG1iAxEx8lQKDaBWK5dOiOyjpHQi6SXADFBQ2FLQv4i9GvqsEOU490ZvV5N9EJ0KUQ3SBFeW+SowCKNzGKbW+f0HlUjxwLrirIcBFI6xtNtwCpZjB3TXC3g23nbU8Hgw4X4gIgDo/X1tHNC//QSWJOLxCB9TAEJDrPDw98keV4qPI+xa1mvmN/SMOQCTyZ89fQYMHESZUuJBhQ4cPIUaUOJGiQWveFs479/4NXEePH0GGFDmSZMmP25qlVKlymTNe0QzRkAIr2qYiNFotg7WkyKNrsMyUeOTu2EqjR5EmVZpymTks3IoqXRbt2ziOJrFm1Qru2zd83lwJHNjwnr9kV1jI8MLN37yKb+HGlTuXbl1uQ3iwrStRnz1X0/YGFkzR7ScqS7ag81d2cGOD8IrR0+eYcmXLe5kBTriu61bPn7NGQ9qS17ItOx7tumbmgSFYzhp5WAPrWKoGc45RW7aUd++lzo5F25102TXQx0F/O+cvED1TBScv1FfPHx0dOlS8oh79cnfv3+3i1Qu+oC9m5NFPnEzFAgUKIRY08sc9PUVfo+rn17+32P75g/jCuQq5AY8bhxqknIElFwua2OUWW1aQYplUnFliA1hmWYY1W1ryzcMPmTLnhGiiMmoqAlE06Rt3vPHGFHoIaggff7jRgYcaoJinHn7269FHy+7KK79EYBRMnxmP/DEiRAjAwIInQ5BgFyUdusceXKjMUkuDitHMH3zc6WYckroSMKsyUyTTxGiEYcMCUaiBpY8N9hAGlk8+MMMZW0SJcJtlhgNRUN6WqSZQlpypxqo0Ge1IOXzg8eU5xqTzpx5GVLgOk7a27NTTh4IcDz1vQFmsLn6oOyjVTy1dBwUMNojVPQ24YNUgfaaRhR5befWOulOwKWgerkrqBh8dx/480y3OtPrmGm64OfMcZ5Y5plp0PpEJlmVEKaKJUrJJpYgYRFmGFypoeGQdYAZtd6lluIGD2pWWoUbMbRplNJsZ75gGP/oQwoc6WtBiQY1nLO1V4U5Dra8sS/zZlS639ihiiSVK6bWec5qkQFYKGjAC4C0JcmTkhVGeyy0jSCDhGGaLraeMIqZQFKsVDfFhlzCxGuecY/GpCqttNvqmmXVi6MEQYJaZwwJDeHFmDwsmaaWZTUrgohndejsGmGOc+bBasavBI5aVnLkm2XxRXNQfUyzxpSBKE5rRnzhuVIEWt+xO2e/9GnbYHidMlcutEjZ40oLW+vbUnnUewMA9Wf4bqMLWyRzx5uS/OYdoMkMceCGFA865Bs2QvGJDAgkOYGPRktCZhAAJKKDEHRW7+eQACmZYB9+ScN5ghUZWMMNOYVBYAhhbchk3FVt42aKBRkTzrV5uhPOwpXk/ZHo4Z9ZmG8UV/TnDG4ll9OcZHWqQ4Qp3Oo8/v8DTm4wca+YqywwPYo21hAGcsapO3SMePWhAeybXADbwih3TwIj8IPiQyUxiAe0pQFv0kcF5uIODHYRfFBawuh5soyrjMOEJT2g0ya2OCvdAoc/OEcMYXsMfAXiVAj4Bs5Gs4xMWCIEHEJAKYdhiDhuYgzNa8QgPmKEatvgEfChQgDIc6F3LaP5FAQgggGqUaCm8MAIGJlEN3zgjGkogQzTSthHxjQ8d9iiGLCJGt4RMZh2YUIEMhsCIhEWQj5ehX3ruMQ2Ibc5z+LAA//oXqx3s8VO8KMB7MBCCBqDgG6yajC/kRsg+QrAe88DBARTISIb8QQAOEEAZIDIPJuxOAX2oWwZhCb8AhAADBxCFP+IxD13ukpf+oIIHDokA2PigCLmghi2KsANw2aIJS+CCAlaHA2Cg0RnVtKY1l9EN91AAAy1Ax6FScgxxipMbIVAABQQgiq8Bip3t3A0vQuAABYSgGmpcI3I4sg5/4KIY5JhPQybzCyiooAZqYItbNpnQxvyxPqMolf5ccoG4RG6Af5z6FI9mgYIAEGAATKjGPz/lCkvcQ5MK7dxkxhGGQSyGRw3hBz4uUQQ2CLAh1+iBBMqwoyr5owwBEAAG6lHStjwAiFyQQgw+4Yx4POJpy/iGKDaACG5c4qcO6EE3vrENrW6Vq9WYBwFCQAEUhIBG3TDrWbOR1mxwwx1hpcAB7ACtasyVrnXdxiQE8AIHSKAV67hngbpSEMKxw6X3oE4caoCdV0CnpSZ17FwYWj9vkDQu1UBkIj1QAlF6Sh/zWAcvdNkreEjmsaWdCJhoCtB61CMeE4lGKxD6kHVkQwhm+AAVhAOOFcTAGcLYxho+sIx1jOMaRiiAA/4+cQ6sQEsAFAiAO4xTLHysgJsCAEY2TLIOUZzTPX3962esAr8z6OohZakGC37gPoualr1viWx6zBejihCEBhv4QCIRIJ/GfaqTx5IjydjhhvYq1BLPmQhlJbJaoRrEsNOByDrQEY1UJKAU1XCGIZ62jmPYwgNS8Ac1OPINhJqJJOPohjsQ8WHlmqQb2ejBDD5BYpF8ox6GIEEL7OAPGX+XTOughzXuUBD5KiQ6cWAB+xYb2wEvGSLvJQ9BAjGWt/DDGYnzwJUTUITCKWzBPdpVkP/LZM5dpFNC5Yc+d7EDKVTDHqIwww54kY1mLCEGu+AHNU7yrB3P+BrrUFuzCv6iw5Jcox64gIc7osXjm3mlP/jZ8hypswq0qEAP0NismDGdECejZxqgsEeXA+YPZ2wBAAQgQCGUnGnHTEYWWAK1qjs1Dfz9rZJvFsVyGvGBRizDH3tYwR6ysY5upGnPZMJqs8SxCGUUW9EdMfE5dpUIdpR0RvNArAx0wIqC7BfWsN40eMriCrqwdhxuaWy3B1MWAQ8Z3SjDBZZSVo91OCMGUjgHW1awBOAsg87cEFqzU/QNcfRCGgAvljvoEWDPqY99NbhCatvtbfH8yEp3eCBc7rHLV0c8IvS4g5U47jdreGlh4CjEA6Z0jR5mwh/LmEUJ5uCPahic2PlIwziwS/5zkKyDR1bACLsVsg5BZEoHoVhvyCUuJCqBgh5hRnp99EGPv6Dv6b0Cy6d55WBbyORYwKBCE4JBIy64YEqJ1jmBVhQJYp39G9nwBzki0QkhMwQfkzHGEGQgAzWooy3nrrqYv40eevjCGgj+e37sARnCHl60F+/UsXQ5oyasgBfj8MccVoAIfaqiAZ9Qh7DPniZ09CLnNB/HNvRJCHhgyen+QFVB1NDwXyCJ8aoOPHnKYgUp1548uyIc73t1BnIAfUvc2IAhFLWOFQjBHV4tghAqiY/Sh35A+8qB9HVOY2vAA2KtLwh1koFttXzJ78Af8O17Xz7zg2cyZ9j9+jvFDv7iK8kQA0hADB4Ai3lsIxMIOEY9qoEXYK4t6i58qK9AsqEzDE45/KEY3gikKuUe1IDofsFSyg/+TAv9ngweZGHWMJAy2MEVisHwPjBLEgEe5m8/6uEbBqAEruwR/CEVfEAKuIEfgsEMaAAc/AF+XG8ehu0AkeMclGER3GH6/qrtXM8VPO3RECJJVgHvKM0cLq0ES0sD2c8fmEFXvG/A8IHbwM0eMokKt2QUxG0L06MesgEAVoB/GsEQdkAUtsEfGsECPmHbWgpVgHBA3EHZmI1RcG45CiyTCIk6zEENaoAFhmCxIPAgzAET6k4MN8kK0cMN4GHjFKoe7EHB0oMe4P6hCyCxUzjx8fwBEeyPJ4qgntyBBpZARxaidH4wD7dCCBNQ0UTMH4LAHxaPIV7KH16BffQO4g5ifVbrE/lIEsEDyvzJEvuoGmABFqiB9rwjg/xh3YiRSsriFqnuR/gBHfTBGebAA26JG0rhTaawINwhGqgBHfoQFj3CHfBAGtZxQPLJH0DBG/DHDM1h6HTgB4wu1RLiGWpgGBfCC6uRYSauU+zBHqxBbjJtHurvAQ5gANjgo8CDGXyhGBaxIPXjkuBBS/RhHPiBFyIkGvThGKRgCXgNGP1hHcxAABogF9whHvMQ505BAcWHI+KBHyQF6+iOR35BBmqgoL7vAoMxIP5T5RWS4RleQWCo4xUqUCM/xRiv0BtGofCYbEb64AAwYCtriQm+Qx+sQRYw0gyhsjsmAz+ycT/ugRr8oQiKIBX0KRMsQBPmpiFUoUkaIAb+jB1LYhykoRdkErxISLAq0aVSxQt80dIkAiBXCx+MzBzEgQXioCBWQQaesiyL7yA/xQEz0rRsoQE8hgIQ6AAy5jJYDY4w80d2JQfeTz/uAR2qoQTW4BvYcgOagCAT4hIIQDRn4BhWjC9JohZ6wQDTZBy4YUZ8LhcZgjpC4TpUgBH80SEYcx1i70v8gRZYYLGGQA86MzV7RCrTYxo8MQUVShR202NGcxMuw0oSgSG9s/5HJkP+fGQyokETEEAY3GEc+m9KWgsinGEGLAAD2GBYgLPEhJM40W5F2MEbPLEv0oc6gfIHKlCnFlMGzOEKhoBTDusKoOAHju49fQQ8ca8goqw7FeoTznObKGABJqE7BKw1QRQ9CALMVPA6l6AJ9IkXmqAIqm0irqERcigwD7ArIkEaEBSfzmEd5GER/Mn77GYVfoCg6KC1VJIhkkEHrsDhHIxTeEAFdjBGqURER5QZQME/2GsWnmRyArQA6rAyyCERZEEfyBJMK8MevOFFyQMfyqIL/aENYgAu/WEN3tD1Xo07uOFIC/QbpKEWjJBAumEd6oEdTEFzNIk6uEEN8v5uCGgBOt5ifQSBG2qADiwwHqDhB2pgMquUTr9DTOsDFNghLU2KCSxAVhKHRykjIbdPVeFTIcmDHxiDOtyBAeaAGpRLJqKTImKyQEciG3oBDwg04ObhHpihRA2TFxOLBUTVOuECIN2iEiwTl/yBBQThF2qgAnFTV7uDVdPDEe6HvcqiCCQJNHdAnxrDfrxBIJQRXetCH+ChX8jDHT5hD9ZhDzYgFfAhGngBAWyhHCWCH+ZBSEPvG9qhE/IBYlEHHNyhI0+gLnVxB73gyCSUYSPiGWQgtDq0IDC0IBDzWPU1XTWTV8riTl/VtArjC8rAlerhXOPCGxxBbsizZS1DH/68gRl+di9mRAgS4AEQYJFaTgiWoLWK1nPQQVlRJx4WIRsQNSuyYTlMQRZKxR5aLzpoISh1YDItcC5KdbV06Qf04BV+AGFaawjUwPWAljzUFT0YwxTkL2o7R4BS9S0YwxHKYk7rtjGmgRkIVy4EJgawrBTuoQ1ooE11diIEjWq/oRciIVkLZBvwgRxkQRY6svUc1h/awQvy7gcsjU/HLXUnoxrMgRsQxm7MARpYtnAX6mW5zB+6wJ/4turKgh0a1Hb1w+J6Ny5m5ANckAB2YQPWgCjlAg+p1iO+IR9qIUDksR66BI62sFtl4AdGADr1w3mFVzDutj4IwhvcL3E5jv7VxK14x1cwmMHxLsMYaOADpAABpqR25eI3ozcbsCAfGnXR9MkULDIi1CFLa+AHPgofxPd946d8zbcgHIFjgY+yHGFXYNWB11N3I+Yy8IEb5gEd5kAI2uJv40JzqbYeOiGtQENM/MEXpCERyoKQ7CYUeCAtBIFvNNixIBjqEo4SO5j3JCYQIkN9d3gvyCHI8jWV2IILLIAXTDQw+MFiAS4bTkEZQGMb3CIRynQ+BtEfoCEOVIAFvGBTVfeIE6qH9YMdcCF9a48gzsAS3BeNA4MdCGuJHUIjuEHX6NU7/Ipqz6EWrhZicdH9MlhV/CEUxC9bJ5eO/0aNEW8gAmEa8P7YtNjhDAhijh15LqAMNRvjHpzhE/JPZAVjRqIrUaXhHLL2I0rIH+6AHZLRIToJ70yVLUx4k/0GkvMD5DLHn0LOfthBIIoEl59sn3zZSG6hCKLg+3DPHVwIOL9hHTpBGVbZUSqJHpi06XQxOlbhyEJ1MSiUmPtIl/cDIwxZkxMK69zAG0hOnL9y8KQY5HAQFiylkt+CF47I7ICQI2qhE1YQK4LNHxwBFzyQIdyiGrJUBa7A0uzZnTNT6TbpTeGIJzONIIrhDsjhkB3aMmTBDUgL44KKIMSBAPaAU8njSGzhAMIqHPSZ+r4BHWrh38ikktjBCazhjhuCOhjhB7ADE/50eKMjEXcjiCCsoQtGS9XuIcBKxYiBei+UsyJCuCAI9qPQWWX84T3eg6xeMWJHDxAelkzAYR7IoRgETBo71hygICjflvyaOqghepNiJBBcwT+YeoAMgqbktAGZ4UU1uq0pAxQmeI7PjAYGYA/aQMsEpoEpgzpQwIcagAvqYatDbx4AAYB7zO2wUaP3tJtlgAe4U1v9uhiFuo+IehpeOYjjxy24YRKEwfWQRGK64HAHoqFDWyLKQhae49WOZQmICgGaALShTh+EYQUAgAlskvqyIRJqYe2qdh68wZN1kTqGQQ1YQAW8YBgspZFrW2HIeUuYwRp+r6p9BH56wAQ2IP4EYiAXgrgLrMFMtzs9FtS9IaIeUjFWLGCZlWS2wKGaeSwcqHcWQyJAOtcVoNug/YERrnVTgPu95ae7tYQxfA4jxTs/JsMCXmUDuLIZHCi8Gbx+7uFzKWJGEOEBhKe1laTBqLhR2g4PTmFqUWce5IFBTXo53YGWdcCWO3ycR9ukoq4grOBwfXnCycMMJOdJNuCtCgELCuKjczw9ZKGdIyIT5gCKaTsw8vByly0kAhq3n4OiEWIX6yEUiI47g0qxm7xXHHyALJocKNHASKrKG4NHqAA0Z/XIMaABLKWuz3wuoi4QyCFxuQPO9+KfQy8b3KEXauGPPcLtiuFe544hWv4LoWVAoWN3z0X7rQcsOuzYF4TPIIScMgyrCEBTNN0DAwrgHG7Z0htDbvR8S/RBsgGOxvAgEr7aUX6GHXzhqRfisIagBkaAFvRJu1XdVtLcVhjDTtnbF/p6jeXBCEZ9mywcUoddRv2BNZd9YVDY4OIhErCWlVtrFKbhmB2iGtLafaRQ0Kd9fnZ8yfIaC8nhDPTBFKwBfWbYLMdiMuwUF+ihC7ABDBogBNoDww/AENA93R2CIAo8fhw2xQlEGjohpjviUd+GHvB0Of3BHFZhjKGAO83a4B943Zms3TkxLO7BCejBTDMIbFv9IEhqV+QLMIwaFHDh4vpgALaSAghgC/701+PTzR8+V347Bx/sCeAOPdG5Yl/4IRBGgXej2x+G4QruSA0sbed5nleKvXMIaxoaPQi476ih4x5IiiDefGQmw0E/zUq4IyGjDAK8gaBxESHmwRmYIAaKYBZSver31R+moSP56HYMLhtqAQvigSsqCRQmNZX8QRCwTQUqYdvwvsFBvtvw3VROXubvwBRcAR6mgR4SLmI6PiHsoele9cfYQRaYIQjY4Q6KIXTvPSFWJageHz2cwBs+3UeeVdFwThmwT5+AuGjBBNt0IENhP/Y/HtOrbjLSkhmKIRFwgRmswB4SYekdwRqK4SIbnUhAoTmCIFcG2oEQYlcqtTGJ//4Y6XHGO4e/U8QvT6ET9tsf4GEURisFwRxTrkOP5kHYx98gjZ/xYCnMEu88AMIUuWm+ik3zJsvfNHrw/Dl86M+ev3v6IFq8iDGjxo0cO3r8CDKkyJEkS5oUWdGVNVMnW7p8yG/et2/gatq8iTOnzpzf8J1aN66ePzfsinWM5+/XFRYq1EDzh++l1KlUq1q9itUqtyE8uGX9Cjas2LFky5o9i9KftWn+KqKVGvXat20769rlCaeTO4WJrN1rqxGf0Dg6dLCgNQ/w28WMGzumurXr48mUK1u+jPmqJUduM3fkhy9aK5p3S+v8tq4XuHn8TAWK2BHfsx81akDZG9Wz7v7dvKVG9to7uPDhxIt3rEiPJT3jFdkEIBCiGmnT1MfV6lRMnhWHyzX+FYeJhYwhjPzV62w8vXrMv9e7fw8/Plh99PSdUY+uQYgQBIRdo05dNkP5gwsu9Nzzl0ZCsXKFCizQ8Yw/iclHYYVgtWdhhhpuWGFF0xxk3DYW7EcAMP8BaNc456CDhz9nwNPQRvoIRUcNOsjwikO5cchjjx9h6GOQQg452T3MFINebxUhEgIFXHQzHYo6ZZNNF9MkAhtH9YjDQmE8mJckkWLyCOSYZp6J5lRuHKlYbzveE6WUNs2FzzSmRGJUdxlVNI8eKtgYioRpDmphmYQeKpU+5oSyF/6i60nkzx0RhekZPhS5IydP4/gDii+SZplRVK9AUcMIEE7kaKrqGapqqyDV80sNwLlKnD72sONGRQkOd06mNY2TDTpFjUKPPZRCFFU1tcnwS2LH0gptZaxGSy1EsMrqED/VKulPEAsVh46v4HxTDz3kBKJnR0J5cdu27l427bvQXgtcPa/MQ8us/kCTDFTyMrYcPa9B6qY/34yD4kzr+MPMKJIS7FFu9ez4b8VnxWtxqvQKNcQP9eigxkPu6BDosxl/Zew0ljgE8W4IA/gNOu7wIwtLoL6668k6h4XxzoNeGyEPUDiUjAr9+kOLCvMI5XNZyJ3hjT/19XZPN9Shdv7PO/CM0nTX7HGlr9eEwioDNz9cYR4+7rCQIz56qHGe2GTpU1EQN3umD4BMW2KUyXL/zTPYgI89TJcgK4bJFfW4UwMtg49VHzymyMJOb+vEidM35/hDTjF3SJTz46JfKPjoZtYzzAiMpM4KYMmMwE0yOixsuljFqNRQy5XVQ9dpArrIzspt1k58VT0XnyHqZfsjSA3VPOTFK17EgTxY8OhjCTvWTBQ6ZejEOc42C5syilGoVo/+S8enHx+9+LQjAx1xC6LDFRGyn5UvV0qdmTvg75WDe6QLfwQcyfoKqB7U/QA40OgANPBRESgM4XwIlEqCHEGPRJBjORSZTEVmtP6ObKxjHtgYBbEoWMEUcuSAKhyOPtyRjHpoax6x8wdShpAjv7XwI7aKiD0CETyWDe8sUbFFG9gAC3/0whKyiNoQdwhFh7AwiutZRQcERcWWuGU5oOgibIy1GGeg4AAOaAEWvMGWLKrxIVNcY3DqwQ0ZHOaJbiSJPf6SA3+4wiHdC0tFbkEBCpDAAaKooxvbaEjdqE0Pv8AHxRJJEn3cQyLewEUituaPyjnkgxYcnjWsUQw5KKABD3gAMCCZRUSikjeC0eEqMwIpcvgjELhghhv8YT7AIIginMQI3egmkeUQ7CCmcIUpiuELfxCjCFQ4Bh1fScD2OHKa1KymNa+Jzf5sanOb3OymN78JznCKc5zkLCc1hcIIuPmDH3GDZloqUrliwMMVgfDGLXUnNfpM0h78xEjlgnAPNxSjGNaQpY784Y7EPNKdBdzKAqFizohKdKIUrahFL4rRxKhBBj/4hXkY+hKJFAMXgTBFIlxRDFnYAxebtIg3mGENWeTqBLKwRO5Amsg4/oAOeuipT38K1KAKdahELapRj4rUpCp1qUxtqlOfCtWg0oEROuCBCmQgiGp4ZaE47cgkk8QOdoyCHaBwAzmc4AtHqJVvlqDHHvUkTLp1VY38MIcmRqCCEeh1r3ztq1//CtjACnawhC2sYQ+L2MQqdrGMbexfL2CjH/7woAOq89dcR0I3ivRxI38x1mYvC8WKFKISpC2taU+L2tSqdrWsba1rXwvb2Mp2trStrW1vm1pGrEIHP1DBDzDBDXVoC7Qu+SAnf3lc4r4So8xtrnOfC93oXjMxV5DBFR7INOVqd7vFRa53vwve8Ip3vOQtr3nPi970qne97G2ve8n7F0boQUft5K5974vf97ilHtnNr3//C+DdQDDABC6wgQ+M4AQreMEMbrCDHwzhCEt4whSusIUvjOEMa3jDHO6whz8M4hCLeMQkLrGJT5xIubqSh41Z8UNcHBy5ymgxMD6Obmq8J4vIuCouxrGBfXwVIGeFUkKuDIK480yQdFGmyB757Ej+wuQm47MqEIOyjV3SzxkD5kAXWbJGuPxiLQ45nyfpDlwzMsCHZBnNSe5yZgSIFfowecpRbilIpsxjkEwyJDCus0jskWaPrLkxAQEAIfkEAQoA/wAsAAAAACADCQEACP4A/QkcSLCgwYMIEypcyLChw4cQI0qcSLGixYsYM2rcyLGjx48gQ4ocufGePnj34NFjt5KdPm/04MHTR+/ePZI4c+rcybOnz59AgwodSrSo0aMP8ekrqE/fTYErXdkDZW2ao2mJXAUqZukOPSvFZAXy5ijsNF/Tngp0uhSp27dw48qdS7eu3bt4hfKrJ7BeU3tqi01zYi8QLnum2FljZw9eQsbkqla15O1OMVzFCNrLy7mz58+gQ4seTRopPn/cRBUEVaxLZGv+HF8EzI6dPyfwrFhzbLNt6d/AgwsfTry48ZCGDjQIEYtZIMqbBW5WW3Gpyc1LE90+Se+49+/gw/6LH0/e59J1PihgACHJlGZ/vjtu7i5QlqxE9HytLc+/v///AAYYmlP+kJMNCRSEQIBq9jSl001tMQOPKYlMIxB1Amao4YYcdujhQ0vRU8woppTSgABLuCPUUktZmEN32H0o44w01mijcPRgBoo/22RzmoNF3bMZKJZYGN+NSCap5JJM4mShI9ZkM08233xTDTXjuEXfGfY40uSXYIYp5pjwxTYNKPBgg88534Dj5pt8IaXPZuzgEohj9BxJ5p589umncTfJQk8g/tCjTptvvvnNPHORw4wbF/4p6aSUVmoXO/fc4Zg7iCbqqZ5HReeGKxhaauqpqKbKEYFnWuJPPf7gdOqpoqfJNac/ljDjXpmq9urrr8Du548b02S2zjiyzurmN+vUFV2FmQUr7bTU9ukLM7L4g0+synb7zV1LVUVOg9WWa+65Hy7lDTPe+MNpt/Aumpc1iZCL7r345gveTfbIYoqFVcIr8LfgCnSGNe3qq/DCDHvmYDHMLOJusgLPOk6cd20miy+MgdrwxyCH3FNblOGybcUoM+sZM9r5U6rIMMcs80a+wHNHIvhQjPKsKvOjLV7d5ZDwzEQXbTRDbV3bhT/xZLMzyudkM8knwrgMtD+y4GL10Vx3PfNm8MChFZs6P51olUUIoJwtnG2Wqz/24FOr13TXfW9bd1jjC/4eAZtdMTfUNIABBRKw4Vm7Z7wKmN2MNy4tPOw44o074yiDjt8odxONBRRYYEEfnm02ij23NIOPz46nrrqlpvhCzjedRPIu5hWvc8wMPtjxqmf1uCMAAgNwwevqxjXFFmAN2rNZg0AS77xE3elzVbuAZBNP2bSf7c461fjDqGfzdIPACh5M0P3zpf01p70PXccW+vAztZk3Z8Azzzd4dIJs9ju3OQ46ntmL9wggAiWQgBrxG436YuIPwRTDEb5IBC7OwDKvnMEbxSiGSuxRk+gkMH6byYFA0DGOXlCOf7QDzR48IIUNeKAM5PjgUJoHKgyxgxzT8AYuHkWWO7mBHf7T2E1NBuKYHJIFK7hIRDFAIYs6wWNowpJh15ZCDlzsqGnoUAYglIFC2qkILzdZxhJ2QBBvREI2UuxJnCZBiU8Ia3mF8ocr2LEVX8gCYrbBCD3sUbOyTMMK/nCE8tbysjSGbCkZzAw6vpENf8AhH+Poot9UZpc4raEEs/DePerBF8wYkiensQUOQpCgFQCjUEuxjRPoQUHFDNIgLHJILA3SnWLk5w7scAMa2ffJj9mDHfBIHAnblI00SMNpkpwkxuTCl2g8YA/N0tMdTNG8XopEGCHYwAY4Nzhn3CQQ/ioGHD3mkZs8hRkPlFyeyGlNdLHDFKPwxzq6sSxwUCmZmP77Rjzowg98GGID3OBGQjYTw3aGRB/1YMMBOEeBzlnADLjc1VI8yBPmCURCEsxhW9hp0F6Fax1BEAgyYyUNOCgjkvj02zniUqtjLKEJ64jmQZYyClDQp6MdqQc6MICBDVBAmxTQQAzaIZ1qAuVWAvGFN3LliqLiNFgE8oUrMtM3e/ojDfhAaUrNxo1CBoUfT5kDDTbhDwCSk0Xx5OhTITKPdZDypz7lHAqcYSuoANMNElXrWvvkoESwQx5Z7dQ36oGHe251kutAXVH4wah1EGAO3FjHPBSbkKWAoql7zQg91tECCwBVmw0owjLn0hR4uMEX9LhpZk0lC3s0lU2e+v7GOWox0sM+DVlIuckWHhAOZFGUIZDz6moVksph+SMMD4irehpAVryQyxXWcMRK4KPX4SZpOsUIBDtylqxv5KOwtbXt09yhj7kBhS+8EMIOlvCANfglIhesrnWf0jpfROsPB1COchCxu7xEx76+0A/crDsmmvgDnu5xxzW0+qZznOIU5xAv5nC7NZ/EqQo74MUOLOABBNjCJA/ZzB0WR2CF3KQY1gDFL8s0D2rMgQl9oKt587IUx7hBH/EcXomV9JQzFKNdVU3UOIZ8UgmbbRzV2AYNejCP0eKEsf7YRQn+0L0YeGADDHjEz2TpD2bEUL57zU8TfwsfmyilNI2RBf4oMLVjJtnDG0vjx5DhlY1sBAFWRn7aNfBxgBCE4ADe8wkiGlANbsxjDdvcQAPW4eSFbOaHbTYIO5bqEh0PBB/1mHFonoKLd1o60h7qa5frgb1YueMU/ghvnr11DlEILgQNCDROarWMDZihHvdIhRSW4I89LGGllHWIxkBNXX8kwhtfHs98psEMZgyY2B3qDjlkMQ18uEPVnmokHK636v5FQ3AUiPX3RCJAfyyBCqVAzR5KkG6MgXkgJxmFNcic2TlBLnGzHE9b7GGJbJEY2gG6R3coxI94cEtgPjpBPrDdbZ6doxVFKMIp3z2Rfe7CAojoRj3U8YE1mLXYFilWm/5DaBuKE2czJ4gjwAO0GQh4j8ECW8cp2sHwhitLHOtAR6M9cpo1WAAd21jHHhCwi51bxBTFMCpOazyKltGbPwZ2xCiguPLyeMMUCc4GzOEVj0jUIsg2F1hAx/0RffhsFy4wgz+6kYsYSCEe79A0RpgxDdXule7+7lB01pynqoeHioNyF2yfNttTrCPsfsOt3DHyvSrEwBj3WMcWmuDGL3bkJpCy+58WnzHHJA7EoV6KJWzzdL8Hp0Wkisf+jpwNLiJ+kiZfCJRTYQFRLMMfwSgBG9TB6JBsxgkV/hM39hma+3z6Q6DwkumL5w9ruMI9W0/ZNwDRi+i/Hl5Z6sic2P6wAmp0Yx5zGEA4qhR7LudRUkthhBq2nJd7kCMRebdRdAB5/uUDhxnsAD4+rpG9b0ijFgZ3fWazUhpxGu5ADB4wBvJkCyWwBONgC/FQfu3DDMq3ef7AA1DAfnYBYpDybDcCYqYQQ6Vnf3gRVYHgbN+wDf03DrXQCYcngGZjeRXBD5tRD0tAA1XDDWRQBFLQAAPgAbuQE/qACxYiKb/wAzqwCgehDurAeUFxE0mUbDk1D1RYHKlkCjsiXCRIF6m0Me5ycLTjI0qQajD4NMwSbBKhIqrwAJuwDfMgChvQBssgBZ5lAV+QE/YwDWjkJ3EgAzJAB0yBD3RAB5mWW/4wCv6Y9RGngWngEUweuIWcIQvw0FTW5zfHVIaYUw9oGBExUATnUA3g5wHUsA3nsGHbVAU6EUFKJybccAU1UANQIFDwJoiEKDdI4SWMwXP+4AxcEAAFcACz0CzFQS7ZAm+rCIlGcRP0gC3sUA/cUIn9Uw+L4IKlholv0g3EFxFtkQo7MAf+8A278ABbUFa5sARFsAMrIAXBJxJ52Hd98gsqoAM6MAKvQBDlNYjvhRr1MA/t4A7t0A7qQHY44Q1Nt44bwQvKEQIYEAIFwAVOOBpDghYzNoLI6BNPUSE7Mk/QuDPjkA2LsHDWeFsPaRCNZQYlsAz3EA/myDbcwAY00AjyZP4M/ZUTXkKRSoJQajAEP/ADXqAGZwYftOgX5qADleAOXsACfgiLeqCBIRETRXJ8GVEPReBZP9VQB9AKx7EUzFAL/iAKS7AEUgALslaRQzE/hrEXYMc/31A5gxeSFbMN+2h0BcEXmdAAotA9m+AChUAN8cANFsAGKhInEjgR97A0Nokk9WAOV2AOOsmY4iCYtOgO7qACjAAf62AOOPcKF2AOcrkRVNQyIcELGOA5PmWVMPkdyNBZiWYB3kiWZXmInfAqG5mJcNAJaemWFvMt5cUQnLQCVSAO3OAOZuAB13AN/sAGDxANg5kR7bKcG4IPfTkEPCBQ5jCLg8gNLFCZS/4Rl9BwAcbgnAxxE3eQLVp4EaVwAA2VnuFWBj9pHCukTdrkAQmgGq4JFN0BKdbgDip4WK03O7gZL+tgCCFQBNFQWdqiCh6gGtxgCyvQBv5wDsJAA1QgT0Ihnq9EJj7DDdLJDZR1j16gAjLwC1uGD/PAA5iwE043EsewApzTohRwAFrmHTboWfCpaGYAevUphJvBDL5gMm25VePQCYb1n93iDqKwALAWA/GAIQLUDUtQBUEYDVxAA2wzD1+wA6ohgz+BSGnVJxo6nYEoCBcwDHTAA+dzE16QgThxEvCHoyIxlQ3FTQ2Ald5BDTFAozW6aJ2ZoxsRHXggC+QwD2C4Vf7ocAqRUHNE+g36wAaDEwIAMFgEAZ3+0Agf0AgR+AkPkAp0BQsxsAaGtqd4GEhQ+SVfKovWGQfzIA4jUAk/swYyMJMH1XwMlBPx4GfbZAGFAx7jMJU1uk0x4A7lyacYsRSykDiqt2qrR6Twcg6zwFMLYDjxsRTq5Q/V4A7mSA3gcA5sYAHLEHRHcRMh6CelGoj46A+/MKb+UAkj0A7cYA6YKRKpBXzBqhF8UQQ90AM4IJagShp02KsJADrgKawJYQ2mkC3rsGB5dg6A4ILKGi/oEA0mYDiXJhCiUHv6wA2lEAPCww27EAO89g0A9K3+YFPiuqGBqAZqECdqcAHdKf4DSJmUsKoRbUEomjcSo7WvpGEMyeUBPGsBJVCdAhsSFpI4pFaNksRIpzCbiUow38Mou1AFS0BX1CAFNHB74VAFUlAEa3BrAeuZ5OAqXmqyBkEN1NAW3PAL5vALxrC2ayuiXTsQSVRpPVEr7ekdp+EMSwAACAAAWbAIuxK0HCEkuDIN/LAOt3lYjERbSpuobrg7bRADlyBQovAAjbAN/mALFqAJTWABDfAA3jivOkETzha2YNoQm1h2y+gre+EOzjAP+MAO4gS6gLsQN0EOY1EP3bC4RysNePCCDVsxzBIP+LACXDAOj7kEJRAP0ZBQH0BXH+ABH2AB6oizOXEPdP50mEkyrkZBE9NAKL4Sl00WSJ02uxkxDbgAKYaLeIl7Ob87MNyzCwhAC2s3uYbgD+KwCzTAa4DjOZ3rjdSrE8hGuqY6FBf5iL/yFE2FveRLEDcxiSr2jfsZdowECHjWvspSDfrgDB4rULbABUVwe+pgBisQhMLpA42wB3OwBjFLFHNSDAW1J9pbFKCQGG/7Jdx7BwscEW7jDRlptBKmDL3guxasKAhEBTvQCNEwD43gAY0ADv6wCZTbDLu4A2YgkHFBJAJsFORADjULVfdAdTlMXPrADq5yPzAIsp1QC0I8xFVip1IQDcJgDzsgBAF1DucYDdzgTwMgk3chuzcSw/5DkXx+XCPltZsVkXyjGsZXKAv4sA5ad8aF+shDDA7dsA7U0AiZ+7CN8AD1Gw3EEAPe+A3GEAMTOg81HBIUcsr+AchH1SV9MmOaOBFa6WyD7JrRcQfe0FTgIA6YyCyRsEiTvGewIARN0AzrAAtPsAS2MA7UsAUuIL/i8AU98An48A55wQ6Cosr8wcrmQcYvXGDu0gRLIARuZMUPQQ72FcYGsRmugIhMg6g2Zz1pEGEWnIL+8AUrUArRIHQ08AfLMA+lYAGG0FWz4AF/IMUj6RbwYA21LCPc3BPgmshLAgue4zkesAJjKRHk0JzqXGxKRA8585+MFMH9c7jx0n/fwP4NDbAHxxANx0ADMcANxjAOOxADziAl/yQM66CldzENP9TQHvLQPMEOhkla2qLN8iEOBFAC2uRZHsBrtXwTruAqSF1i5OAKMQHMbilbzvACy7CWKBNJxyAMzpC+UHMOkeXDwdtihvABnzAOu6AJCCAK4eAMotCp7tDSIaC/zZLQYHaMHOGOZCLUOnHVBnwUYCUQtQLYRXEam9yrG1ACiUURiBQt5EsgGyMP9ZCsIflwB0ACBTAJKQMOn6AABdACx7BIVZKWa7kMZUAFnxA+FdMN/vAJkzAJW+ADQUcLNCAFzuAOqcAFJZAK4MANJglZ8SCMC7EUAmXOB6EWCd1fOP4rjesA1B1C2DghcMwg2G7BF7DABD7QBIDJlEjBKFcG2SUglhaBfwtMHyGVDZziw2HnDkbQACmwAFQwit2w2vydu0M2AwpAAQtABg+KDgZ+Dgie4GyyDRpwAAuwAMvgNOEw4RRO4dkKCy+aACEQDehgBjugCc6ADpjcB8bwhi6wBTtQAivgRkshNy7+4oG2AjhgBEwje4zCBmyAQA3BKJ+gGs59EJnx40uC3SNhvcQiF6dhCA0Qbks+A+cTF3yxBHgKnyvAxxbhBN6gwMuXHTY1D5yNm/OABBJAOEwADMtw5mie5stwDMdAShKwAEjQDmnuDNFQ53buDMJQAA0lAf6tUA1Jtg2AHujbcCX+0NacEwDLgAJLIAzHwA00QAPV0K1Z4AG2sAYMsE3C42j+0AKEQwEzsMIEwRc9gAESIAE61xBiLgEEPpLx0Acg0ALzYN0bQuQhcRMCNhfOkCCd41MNwAb5+BZLAQsI0KseUAL8IIGb4R5aDnDWYQ2BEEPgQNJEmg3VgAMOsAK2EA3O0Azc3u3e7gzOcAnoiQPB0AzgDu7e3u3H0AyEowASkAvHoObLwO3LQA3HINxLrgEb8EzXAAuIYAF74Ayp8AkfIAXLAAtckFzS+z8G3vAOjw60vQLpGQLyJJnuEA/u0GQajw/LMDgUUADR4A6Z9uIk3/6VAU4BAuBGxFUPwCAAKYAgoD7kYusT5DB1dEEFSw5X6jEApx4XmyQEyeVCG4AAmSDRy+0PIybrOzZv2jElDbuW30ANywAM+HAE2+AM857uWt+tosAG2671Wu8MbM4FXPAJUg/2yzAOiMCDzvAHIfAAi34MrWCOjXANrUAFJfAJ3HAMZlAEJfAAFtAIlCNYbxJJIGsHvlgAhuAO3cDLbdLf39AN53DyAQAM3NANxZn519Aj3fCMonDyC9AK65Dg6JDgO7098WAHB5ACGKABMa8ktP4RUs3RcmEGOV+aGDAAy1sXWYAACbDUqfD6D9EdgLTskcZB/nAG5CBn8q2+5/5wDVjfDMvgDJIg/WCP9s5QDdcP9uBeJdGQ9d5+5uDABSvwCMdQDVzgAZ8AC86wQmsgDMvQCCutqZqwA1IADK2gCaKwxkKGUlIyCQDRStS8buDGfTMIzuA4ht/cAaNwoA84hArHLVzI8BwTAgTKJEwo7hvCkeCy8SqwoQAVf/f8vYQZU+ZMmjVt3sSZU+dOnjC5DeHBredQnLJk+dNHVOlSmGUaWKBAYcOGEAG+1WOalai+ddfAzdMq8563UWHNnkWbVu1atjnt+fPmxt86hXXt3sWbV+9evhTBUVvWTPAyanKcCUacWPFixo0dLwPWjMAcW7xSbTAD6xawIh6Owf46toRGqly82Dwo1czZamfn+DK8CG4dOobhDjIEWZLiuW/ZYtumSNKvSIXOojEUd/Hgt3EiGXLD2gxEq3n42l7HbvZn0Ow1703zlrR7WEMNMFCASqFBD3cux2u9V6/ePKxo77Er+17/fv792do746iD+iKwQAPtGimwxJaJxhNnFHQsQgkfi8aZNSxo5RhREGmAkmNs6eOBOZyB5ZMYlqAGllJiaIKbZZY5TLBtYjNQueT6GiebbPyi0SIfweGNm2xIMuci5uraBp2k8MFHHn7q4cc/KcfbTqj+yBnlHvGm1AkrLggIAQMMGjjgGC7PlMkXZtBks0031XKJHVks8f4HnyEPxDPPuy4CLEbEGBwEGD8nJFTCZY5BZ5IdljhmmU928GEXaj4pQghYmoFFihU+ocYWLmLYg5vIBDuMwR71rKsicMSxS7m8bms1ryNzRMcdmRZZx703dyWqSv70oQcUcni1SR93JsGAgAOKuIZYKelxhB1dnaW22jdHgacsdFRFtdu+vjmHmwcZg9ETT6gpNF3HjomGmiWKeISXaLhYoRFhovkihj9gocaQD9awZRlRLDCjFWeOGQyx1bj1tq7kBtQLtoRc1Quhg9apDyZr3IBnWms/fsnX/thhB2SYonQn5XhM1q+YlliGOWa29PHGnkTmYrhhnfGKZsJjYv4ZVF2hl9lGlAbWyCWXYxjYAhZYdkGhCFhsccaHHW5ppRkzPBDFlkYX/LOanQ9szpyKwsExVbBoekvmj0V+Tx99cHHEbfnquSdKNK1jkxy52nY7cMF78gYXV/zh7dSxdxbXZ2DC4EZoyRkExowGnMkFlgsbWSYVUR7oYxlbKBHxmFtEoSGGazJkLEYGF4c9r3NsmuYOdrYc/E2435OTntzP5PuleoL3L6lipkHqd+V/b9sRU5DfMfadmdvmGoQnPNQTydV9cZtHVlhDmGMMEWIJXo5pZYcd+BXl00+cSYWNHUQh8ZigE1vtGN2kxzNnv2zFXUy84Y3l7Wp33fEdnf4CWMDs8MM66mDDHBrxkgXqJymyKFkFGbhBYunjLaaohSnmEj3+eYs51xgXoQ4VC3RtD3vNqIYPlvCIZhhDCiX4BC+oYYYV7EFpfVgBG2xxjU1soAhLMMP57scYaiiuhHi6WMZq4g1meIyD/jkgdlySA3/47ordwcoeLDCVDawgGmd6yxlK9kU27kpu/giCPbxRD/898UDMSWGhIKMEoLkwQvZrRQPmcAtetIIBbCAkLDwgtVlsowg0mNoxOtOIBnjAAkuIxvUi9CCIFaiOsfvG2nDiiqO0UUpZxA45hmXK6yTFEAwowQY+MBUauEOK/mHHKlm5yym5ohi366QdUf6VDQipyxnUWKIfSXWM04AGFmxoQCp4AYs9PEATomtEAtZADVqoIgZbiMYSPLABDzyAGpqUUDWcKEy+rMMfesPJNKzBS/6gcmb+cMQ0rEhPrSTFAyUYIxkRIIp6aHA89iDHHZLHT4a2xT24KAY51rE/dhqIOd/o0/acMQhP9EyZfzrGNgyxgiVUAxiIiIEUhOGMT4hmF50rwg42gSkzfMAQ2ThGDB7ggQas4JyFcsa2LIog2DFnZTrxoCuQ19Du2JMtzACFlph6FlHMkoxkXII/btkfWRxuql8NixfPwI9suKMgFe3fOVBYTKE5AxWDYKsL2QUOGhRBFMc4hhSKsP4HwdTUXtfg4b6iMTAzBOwTG5hDHxIghFTk0VDXqAc30FqxdRAPJ/qAhywAB9a1OJUt9DAoZ3dSiqtO5QMfyOpW+QNa0baWJ+Lpwi/n8cnJViyZQsPrRwczjj5YwBCw4MXApMALQhKsFbywxQ4sZQtq9MADrQDNHDbwPmcoMV2rAcYczuGb2tpFlDsBFrZcqxbPqsV5413KOshZ2gfs4R6W7c80AgGP0KJXtAO0gu9ImCqFCOcu/rVj5HSrmmOE4WsuXEY1YEGvpPGCCxZwpnQN0blPIOAP2PQAFUh0ixLEgJiBOXCh0BeAZDlDst1Fh1Lu41X7agcoVsoOZn3R4v6huGQOOyXjU/Ch2v5EtL40buhYLDFjd+xoJNkIB9rqAY544OMb/hjSSBCCD3Dgwx3gEGqUdXbRaMTVj86IRSwQLJhPlMAMDAIiF/D6iCXcYBfOKIUQdjBEUeRrEs4QxtYMUY0Qq0t/IUABBVBwACh/A23CNKpSjCdCIGulvGd5C4s3qI+CHtQfc0jAAxqAABRQw02moMdmG/1Ve9jDGqfwhzvQEeV1VDYbysgGHs4RiS6sIwfK6MQiTgGIWjjhG2foxDlOUeRUu0PKtN3LOKrhWN1WI1DoJNTBohGOHszPGbvwgRBy6Ax69cF+bKDBvpwx0jbY4huGMMEWWtFlP/4eoxo9wEAIQjADf8xImDnK1VLecod9jponjw7LW7qw1A3Wx4PwZQs+qmEINtDiu2i6x9/8PVW8wYMdePAHQ7KRj3j0ohenwMMiOvHxcZxiW9vojZZ3pI5T5CMNtTiFEmrRCR3FYx1a9iQ42D1gxThDDj9NFzCuUeHf8qKIbACNLR6wBWHAQhjKJc0yOuO0Y2xhBbOAhZeHdowGCCAE2TjrOhc3PK2wQ9QT//eLx+PBs+cuKdkQRRla0Y13dseD+uBHfHY1DS+inZ7WcScXESeNbEjDCbWAQy16kQ93uKYiOzLykXtjEoWcYzb4GEctIgGITnSC8Nk4B2748g378f5cMYACTLq6vIMYAPeZCWiFMGxhhgeQ5haGsMAaslEiC4wIFqhbQtNNv4xuzMMd3KCROFhVVNmE1R9cbLvfbwJwrfjuDC9bHlY0UYADkOkAE/yxWfAhVTclBRTzlP4usdKIFpDAH8qohTKwkI1FoEMc9aBNlEuCbL9IeUjoiId4cAdlWIRaWASPa44iQ5CDeJDb0i236iNDaYZsmAMaMINzagQP2ALBMIQlMB+BKYISwKtWWIIeMARqiJ8SaIRquAXTE4xjAIZl8AuiGptvWAdbQbjX8gc66bv00wnqYwrz0yXlsQ5bOIAwEZNksQWyY6p7uIebCT8fdBvxmIMDsP6ACjADN9iGWsiHcbgyipoeKTsHd9gGaagFacCCeoiEjPMNG0QmrXPBWDgXOGyGY7iGXSiCIsiQY6grzjkGHvK2beACFcyFaAAipluGTDgR+oEFB3QhTvIfsSuQi4nCy/KHaYAHKUw77sCOpPAF8lMerJC3qJiKqEABrZoqlziKStREltEHZZAHFMAACyCBFqAH5OuujHi1U4ADZbCTb3BE0zsGcwgDc4DDYwAHQxiATLiFcbOpzBGGBygs5PoAKmiFZlQfp2kGLqgrWZqDdaBDZWoN/suTq4CnsICHE+iiVswJIFyKpAgEf4i+KfQHE5hF9ICKEGgAf3g4enIJUP4gIHZUHvEYhVEwhSnQRw0wA97IRbvwjRyRhiDIhliwn2AcMBgchBZajIMRAiFwhlvIlA+YGl5Ygwe4q1R4hAZohA/JBAQInd87kWyaCgt4BIvUKP5xJ7UgoHkUyJBRu+xgh8PpN3rUgFm0AKiwgBB4AH4cCinCh3OEmaTwBpfpScF5I1+whiCYBmXwh0mIAjbAh21oyP9CCHQwh0FAhUWAjJ1zwcWQQ2gjDGr4gyA6Bl4YKS4QFUSggeA7hpa6AaoRBSpYgUtpBXpBhGzAvZl8n7ZMDHXSi+WzqHMAC1a0xDuwBp7sSXdcClMIDwbCCh9YgfRAjw3oAXl8raSIn/49sJV+ZBmEqpuqdBuxcoNfegnAIceKOgd0SbBjQIVOiARg6JlwVKbAGIQIPJhqaIWU+oRssIXUKYVjEIZ3oSFmKoE9CIZqaAMaaAN+2YMY4IKAUaQNQAAEkAIYYUzEOI7pcYcc1ApfUCDYrAnNVApmYC0GwodwEAAUKMUQKIBqwMyZWIcdCM0NQAEzMM0pvAdr6EH4tBZ9cAlTsAIFnYmkuE1EC5qDiYVI8AT7Ec4viwVUQAxgODeavAVhoKRPaAVH+YDvnKYNkIJWqIwYEIJSsIVo0JRUaEQ28IBSAAZgEB+b9KOzyosbIRAeOwv6YlCakE+iSARp4aB5oIYjNP4PC8iFuuOJc9gBMpql3hOce4CHRFjQJHWWsXACeJinfruysayLajDP04MhVACGSFiN81QNVNAewYiGDYiBaABJTSmFaVqDBBCGpGEDCxAFYGiFWRCkZVCRB1gDYMgFUdiBEiC9Q+mz81yGE5MVi9mLymoLB3WDUhLTmFhSwvEFe6BMmCkFMxAFChqKR0CA0rIA1RmcaaDKUXWWYvAGK2CHTAwtyOwuBqRDBuFNQMikF2nLTJUDYNgGNlgBQyCRP0ipbRCG76GCNYspGEyFIliBVKiGUuACFNAE+JkDC2iEc4A2OsUfsUwbBEEHsGDPfqKihcJVfyhVnoCHU01VkP7Rh+DBB1bUh3iwnNLagGgaHJKp112xh5LpAlm4VZygi1wchzfEHhNDhWPAgnzgs7Y8BmmYBBp40WPYhRiwKzxrgiKYsGUwTOBkgw8YpPExM1jgBlEoASpgrg5N1grtL0/Fjg9KWJ/4yeswSCAzFtojWAgbHFOgk59lE99hhhPwhjXSiXvQ1IpiwKF5EGCAg07ghnRtt2+QLlHgzgdoBK/5BAtAummyAC4Arl1ALZDcBiooga5phiow1EZUV0OJhhmkwR8BByjJDt9Rx//MzKCdGXgg3K9ChFi9qjEShtzpGKZFI3iwArl4I54QKrRiUz9aBnPoBEBgNo2CjB7wAf5qOAJoSJ2mywUp8IBP+BDFEgXiwj17uYVNWLoUSU6VakacPc9xdA286JGcjDF/WJPEFch7nVpfGrVqsCQyKqc/qBPBsQZQQFXJLR6aUUd/yMSe4AeCYKcc6TIgZQx3MwcscBHePT3AKA9oXYYpCKJlsEsa4IJMUhTzaYZPEExnWoISoJpWaNk5uIZZCN28XYxlMIQ+KIXMpYjY+AZ1sI54hTR/6AJy2FcfRF6cuIdgkVogWwYLSIAGaIDJWIcKdpMmNV7rPQvfAQVL8FWieJKK0kjdepFYOAVUMAevlZCQagXMoB9KEYJJQJciiIFPEJQ8HJFlkK49OIZscNY5aP7ERvgmp3szAjYUZ2CC7jsAWOiGini8eRhKtmBhEk6/C84JeghT9LKOcxCGPRCFa4Bgk9lgFLa7t3ACUxBjnCmhkehdZ4gE80VfYBgHHtoEpdGEBvgtOZiC3gMuUfAALrgFr7EAKpAmXliCGbWFaigCC8jDZcgF8cXUZQgT9aAElEuVfNsPcpiGEz5ew1ULhLq+iXNC4bnjNnGDVJbjg2KHLkCKL9aJieKfiW3TZDUxJSi9aMuFGOiBaHCaHXCBXRCGVDCDDdCM7GoAHoUFQ9gAQ0CfUkiANjCdgZmDGLAAS0KHUaHix+AGE7AADTgAUdjiurCV/vAFU1BldiTjYv6hhzVBu/GbZTeJ2lse3mLwBcTl5Z0AEjBEFeppQHU9FGCIBWCohghhkGaYgw94hG2whTlYgTnA6EfwzjCIhe9ZgkNpqR0wmFRYgsH81i941mXAMXMd4HP+k6rpgTkwNopAh7foZ554i9dE4Xv2jmwBaDfBBW8o6KFWircAhVEIyLAAvGO4QZ19FYqlYrcCBAfxMmAAh1ZYASkImFTo6lIgESGgAUowDqtpBF7QGu10tzkoASd2Bij+AlgYOgIogRVAAF5AX4ZGh2VIU4conh1sausFaprQh2lgNKQ+E1/ABXpV7LBwiV8awrDIhRVAgR4QBnTwlhyJaTqNhodGBf5mOwZ3eLBZWLc58IBHAI1JQIBCcDpR2IA1uKtjQC3iEoYNWIIcWgYpsAAaXYZo/oQGeICUlWnsSTAbfOO2UGHHZtrCntCpfOwzge6dfmyBW0e04IIGoIAFKANukOo13WueYxcl6No5PQxYYAAzEAaQdC4SAQYhQAHRaQVDSABRgIYjKISBemRNQCxGTYUPMANnsIXk9MhjoIYYLm6fYc33eAt1POOEde6YwIpicJnklongOeqZyJgMj4nLjd6hwJ1U3ZJ/JYrg8XCe0BUmUQpyECEjjW7wmpvrq2ecoALzOAA2IOU82YaFTvA/4YaXEwVR2IZd0OhxtQUxQoTqCv5nM+DTT4ia1WgEM+gBYxAYKrCA88mUGDCEaGgFt+4Dd0AYvArvvGWQbABcKTmKGV9lTlQLrBAHSYiFEneJma2GDwevKKEGUQCHAwWvl+CFUrCOM9cJvtkFWHgJC38Jl6iHqXFVnsAKdziuRtcJfniLdbgrSe8Sf1gGPhgHrUL0F58JepALDucJURAAZYEFSdQLtuzxxDgGdeCDo+SCHbDZbdgEF5AC+iHB+TkU1vuEF2EDFGADTxiEMqhOXriGCqSCXGiGUqhZ5sLhVmcMsbkIO+cPUHDSW47wl3AHKkjCFnAGF5+JczCC89AAHLjBnvgGHzD30oznnOAHfRCG8/6gAA1gA1TkiVTwgH33AEMg8Un3B0rQgKjAAFFA9KSwg6iggBDgBZ54En+YAoX3qZ6wlRZIQiYQXlDvCX0oBkdQ85ywk1u4hkPLuWuQ9sYgEYD6AAL4g1xYBirwgEloRENAgD1oxkawgD2YBbWlAuDKhRDIAlG4hWgQYhylhgvZhGI+eYl2BlW5CilxBEmT4wiPDyZYAIXnz2/o15yoB3eYAQnA+gLYsS5ZB4UneAVgSpwYv2MgMYVXgDLg82LRB1iw66koJ0PAvpt4SkQQAIXHAAEQhROvCawogwLwewEABnEXHn8oArAneAGgBsVnSq9TeAlogfbQ+J4YFn1uC/57uIfZwpOMWnr8gYXQ/IAD+ANeOBHVfaQN44INgC5gOI1NAIYSAZ0XgIZPeAA2+AxY0GROHn1DcUy7yPi184diQL+hdu5+tYW+l4Dnl4AQkAB8t4l/nQTDh/7obwHqH3x/KIOrz34MYIK8rwmw8LrwL4BlsHaaAIsBQIGAsoASQIB4KOiuDwDph37+vO7qxwdqEAAMAAgJAiWEUOBvnr+EChf60+evlQIKAyVgCHGQIcZ7/maEmEihwCd/+DCSLGnyJMqUKleybOnyZUKHgYo5hNlSH7pv4Hby7LlzXDZny5oRLWr0KNKkSpcqdcblAYkjWx7syZZrTgwzwng1ov6xhBuvTzGWROMlaouLVs2GMSmRahksMx4eRcvljCnevHqXLou2bZzOnt9sEvZXzBezwooXM25sk9sQHtwc+6vnr4dEjy3ApUSIIfNAChZrmkSoAMNECRIrnxyZbQFogRSo+NNo0mGqDbp3b7AwR2Rrf2xQe1QQkjRJjT2Ihy4gLKVlCrFVF1hnGeU66akxHLhI+Tv48OIxOvRVbDzGdYF97tQ5Ltre+PKZCm3VaI2CMsOWiYohZVM1vCyxwifLHCPFDoYcc8waJbBhTDV7rLDGINHsscMSvOQCzF3zeejhMs5UMw57PLmDHkP2+AMKPQ2h+CKM4UEmGWUIaecRBv7PoYTQAczJhsE2nflTgI+qaQDcbf7AAltqFMzAmkkjGcIbb0vUdpJGZdwomwRsIFmSZZg1aZyLJlm2wnQUKEDNSChFE0KaBiEUI511xqiRJYHUaQ+JJYJzDjdCfThofM4IA8s1UqxQiiRoFLJBH7kc88kDjZTCnwdbwCLMLiUsYcuGO+zwCSyxrIFCK7zAEiKhrdLXFzh9lvjNOnW6MY2Kduq660ozTuaYilRE5FEItp0UZpoYQFmaP581KYE/uZo5ZGwUOFDGlSgdYwGVvRnyJUkOGaKaRwe0UmZJGjGxJXXOIEeSZS2kWUA8192Gj7MeQTsnr/36a1OLLdbpJ/4430QzlKsJKyVMLqlgeAwsx8BABDSgFrECLLnAMgcCGfOyxwOfHPqIB2ZAbIsFFKxggRkdKvwyUctsUzDBPNXDD4zewPMvzzz7+l092xRgrWwKGLFsSfjYMwsBoFFwALZtRokPIgKAhkEBiqALpj8tDKsaBQu4Yy+z3FL5gXcnITR0ZhIpy++0AuSr5pNwk4QPPt/I3XYBR5OdnD9lHOB0AMfo827PiSvukBuJIY7ePOu1100zrML8coil/GEBIs3wMocFf2jRCiIocEFNWDs0seAnS8QgjDClSPGBLdS0wkYJhgjBLQOfwHe5q7DSXHPBJ4JLmUPFuJKY4s3T+f4z8vjYIQDYAfRQj7EnOcQG9dIFwATSUfpDRfcSCIDt3yXpAw4GTT8N0vF36+OMBQ/o9oAFtmytvpIHsF2ABpyRPsB9ogARoYAAQmAdlVimagcUAA4qg7Md+YMJAdCOALwkNedxsF8OSURM6jSSwATmYMCDWYgyQQMqtOIaovDBEkpxjGSkIAkF2kUTYtCHypmBBn/gkITYcIxlICIGVIAFLGKwgRYUABLUOOGgQsQN4vnkVwkZoGL0oSI9dbCL44EeeJxhBAqQQBQn2mBKeFGEEMygFXZTSSuW0wNY7A8l8bBDC0JQhmjUMWn+cAdWVjCHwTwuXP4ABxtC0AI7GP5vJQ65RhkU2Yc3as8fx6ACBmaACDSm5B6t8JoRgOHFUfKqGLLoI4r44Y5vfOMc10AYFIN3DGcs4QOlgIUz5IIIXDbCAmAYxDFK8YA5iAIYu1jBElK1jBXsYBa4HNAkchENNgzAAh8IwSxcFsu99KUbsqLiN/DxiBWs4FuFVEwOokXKdTIGjN+5Bz6wgQ1UYkkh2WOJ1DiZEn3YBm8vwYdt4PmSe9imHvpEiT9rc06T3KMm9Vio/OBxHiyys6KUKcY0+oWPboDDGdrc5qCc0YoNrAFirYjBDlR1jIvlYha54MIGSsGLWyCCAJnIRS56aYiZpuIBUogGEseyDiksQf4Og/goSJlSjXNQ0Sfn4EUMKMAdUYCHHOe5p0WzqhJ3Iq8evagFYewxj4fCRB/1mIc9DorQs2J1Jfioh0Ftco+xqhUlcyUrTM6K15dIoxPZ0ipgs+gPZnCxX0FJ6oeqsY1oHKyHfQDqHCB1jWPsoQRmWAZXjhAGaACjFCsoAi+a8QkzbCAVEOOCBSIWF0HSgxfVqAY3PHHUISK2KUyVXFPXAQs4YUAAl/gOPXxhDXYEtrgo4SryyME84zL3X95wXHOjuxJcmOKvdGrTOqqxDMvVFi8hmoMZPiEKrwCDPytgoTNEQYUdbOIYzVBUI2ZBiCzsYA9D7IMHSpqNObjADP643IQQpLCMasxyuwYyhxLaYcLuCsUZf8FtU2MljhUc4AANuAZlyGENS0i3w/5ArmPuYQ0QerjELzKFL+hpYuPWZLki9Ec8AMONIXKou0w5xja2YAELeIAGosClGT7QiFscow++gQU1NmEBNsDCLBQoAy1yUY0P+CAVkkKQKGxRDSkwoBXUQGoznIGKMHgCzFAUCjW+8c0I9wQd2XgEJcYRYsOcB6IrHiWIG6PFjN65z5Txhj3s7OesMuMM6tRVTnbiDq6Mw702Vgow3DGAEnxgA1uAGErhkosiuEAYt7gFTFthC2AY4gGSkAM09oCARpi0AVQQhi1a8QEzrEMYTP5ZBjeACcukZoPNxPtGNrpBScJYAdCDDmyeGWMPdhS2ufk8dmNAMY22Qlur8EiMtOhUDxKeow8CqPCjl3KMc+x4Aw1YQx8+sIdq2GJKa9iGLYq4hAWNlwbNEIYkjCAEWxwjFUFORTVuV4JNUKPGTInGIGLhCW7s+oTRGJ6vCcbKWilGRewgsaCrrbhkL0Yf9BjFzpqLkHgIw3gZ1zhJLMGObKNcq+QYBT1Ozhh9qIcn23BGAUKAAQxsYRvhRspQkuiBJRRhB6uaBQ2KIApnwGIJPjDEl6sQA0MIYxlr6MEROIQIkv43Bl/YxTcarpRlfFkOseDuyxrMjTVHnGDokP45Qw63Iku0CO4t7xfHF3MPckT3RDsQAjOLYMW7t2Tldie8vw5nCm/QySHzAExPbp7znVPhGz8/ijN4YQtnFCEGpKLGHMoZMVEkgA38FsUGuCCKWSZ9F4PYhQeUzotcWkAUTxQ7XsR89lmiMM1sb7uftjHsTjYkCMVg/OERb6e8F0Yf8LhDio07khV4YDcWiEE1lL8SenRh5dpnpz7Ywfg6MbVE6xBFA1CggXs4+vJhVhUsGsCFmd5iCRYAxqqK8IFj3AIWbNiAKGiIIQzAJ9xCLmRCEKzBMqQKAnDBOODeXnBDGAAD7ymMM3AU8LHZNlDcS9DDNLhBQyTf9z1PZP4MXniwA3ExF2pRyTDpQ119HwqO4DrxkynRSeRI3Dq4wzWog8Fd3na1whyUwCM4Qyr00h+UxR/QwBY4wy30Bw1Ew6Ss1+mZQQO0AirYwhZ8ACxkAzC0yjFUAzVkHTD8zoeEiDOcA4RlYM2E003szBlMAy5QmwxuXAmiCEYZF85Qgdnwhgcs0BxihDfIgtz9IQepyB0cmng4RD2sAwZKXDdsAzVAIGIZyjE8AobAwjakQgwUQSowHYJMQjMYw4DQhTB8QRGYDOitgBnkwja8gBRQwZe1H6FsV65JAipEoiQmRYNdAxqqoa91QzywRIuwgxXgAi6oGCH6C/MpBi5Ywv4gAhY67E63JAA6sBwDjZUIshMunFIyOo9DqByKjIQ7QF5T6YT7ec42kJYm2MUXWAAltEI0bAIDmJ4zfMKSNRksnFcpVF3SZRk1FEELKIE5AM+AeQIwHJWg6IUzHAM1+KIaIqM9qIgbWAGfZWM3flEdooc9CIxxrSBvXN/YuATOuOCxkQPfXaTiaISeWON3JFrEadflwcIDLAHT5cIOFIEt2IIwNIEFwAUvkNaPAcMeJACr5dQwaV4rWMAacEMkQtEQyQEwoIKZAR0rOSTwCZ9K0MMJ0ANHoiQHLWNhPB87yOE67UED7EalESVMLAMVNEAIPMJkvCBgOcTyeKXiOP7CPbCkngXN71ERwyGWgTGkMJhBCTQCXBjCklmFITQAGzhDLmhCD+xAWYiCqARIKSyBj4nUHDwALEQDMKRBLJAhCjUDNdiiJMyYJJKdVfoiB5bENCTCIdKDXtrlv4BlYbgCPJDlKDnEGhAAt1gAAghBa+7TPPSBhWGABRxACFBD/DCXx+GCRdImY7CDKcBDdGLESOCEN6mhaMYSOKDDNriDIdAAF+BSEgnBqjjMEmgCNdgCF3hAIyykGcTAHlAgVnABgRmCKpJmiABDJNDWCZGdMwyCJ0iCOSzkUfTFUq2mLyJOrhTDGdQZQknnrtgmYdCEbpJSPdTfA+zbcEKHO/4QwGekjHSsQHMa1z3AQ3VRqL9Y1WwShkOsAzlm4DksGBRhFmZuAYJ8AthlYSPAQjNMyRwQGentwaW0wgpIQSoIQzCgVMasVAyUwpcNhTNQYHeeUMGN2TH85VAMWKwwKGueVUIEmj9Ywx2MwouaFVyxqK5YqE34QnVl6G4qBNxZxhw0AHJKh3SgAC+YmD6QA5+xqa7cg3CJBzqA6VQmDOdZk6vNVCuUAGitihB4wKEAw+yIGiwYAgKIQi5wBVHCGuqxgc8dBTekwSJsF2KZwyDYYhc6g5qBqS9+AzokhEaoSBeYwnmYBM7EFTfoAT5cp6CmhJvCBD1IKHOJFUVNy/4M6CmzhgBVeZhDTMMoBKudeJwsjB9lxMPMMOg4JGrw9AC3DFMqtMEG7IEz7AJiNqYtfEKSOiZl0kAwdJYUlMAu8IK/fQDYdWGCcsMt5qLCGEg1DKgnoIIy0AqJpCGs1kw3XEMRBMAB8AI/KAEx0ipJzMM6QEMyMMIVsMAF0EH4UCt4DKtLyAQi3p1lsMFZSseOUQAK0JGHSaR1gaxG3gOJMcZILGIjMig3bNM0IQD+sIHqbKEoNMEOiMIy7AJmDuFPlpNHsUEMtIEwOMN4coE6DBFSDRgczFht0WIvZAMe1EIngEM2xAOwIWzC8gSwdUMqCIAHvEABaMEpEFfMlf7EKniBDIwAC+hADXiBBMksRtIIekRrRgErYNUDNSQQBeiGBYRAA3wsi91DoPoteuBJVy7GOkAcg6oZ2l2OLTzCHOzOJ2we7uxBK9TjrEXMLbBMKQBDKvSjMEQDDdDAGHoXKqQBTIKUUFRDKwFGNmQDFkjDKVgHYFTl2bYHsI0DOjDiFFCABaSAA4CVilXDOtBBDejtD0CD5KKHyN7EYLkCMvqZC87B4CQuBjRANBBu4lgDCMpp9tqEQ8hC5DZfXzLo7V7OMnzaLXgAFRyDLcCCqMCCLbzXBiARMMDUJ8zUJxBlp9pjI1SOQnorzKQhsNUCIABCLcwvmAJFNtQCFv58QySsAAk4gCog40jogN6acCW079+aYHioCAihr2CFUIzMQQ+gQA/EQDewb0U5hCP4Q+WqsGMcjvfqsPrMwxQVL0+MwzYYTNodAy/sQoPMgUgZggewQTa0W+o5sSgIQREsg8ag1Ox9wv8hWQXeGDcoQQ8SpDNQw+8BxXeuQz4AwinIsTQoQ++OQzyoh3oMLyvpRFX2mpqNwzmsQ/KugzRkw1f1ghKAAyCMBD/IAi4EoxzWRCjkbQ0Igg7w7fABMWFsb0tohCOcZM9YxjwIgzHIMHq0STScQ0LIZVbhScxycmME4vfyTz2gQ84WbzdMExuIggO3SuZFgyUWwS40g/4mcmI0tEITFEF8GoMukR0XxMAcOHEfrAAZhION5oWBRMKVKuox+MWMzgqw3fI61MIpdEIv4ME3LMIpoEMnrEM2/BE+xAM+4LE/BAkcH3It7DPYRkIvAIIyKEPkJMQdsEMkoDJGIMQwqAELqIAXJMMwDMFBTJAsN4Ynf7I31GzPdMUKlEBK1XIMg7RW+QIIEXFF25U/gOCLVtLlmq3OxgPjNgAF8IK/5gUwUIPrPMItOAPoGIItLANi/gEuicIHlKcwIGkMudbfYSKqygcwxEL9Ys41fGmE+fE6tLQd98Ii4AMWKMMpYMEppMEp4IE0RAIWzEMFgG0aKIM/90IdS/7DTqwDGhqGJayoHL6VPwjCD9SACoTCiagB9p40ZVz0TZDDD++KPiBCAuyGBzzALoi0V1qnYH8HOYggPmwrEvfENeCDcpYvJSTkh/Qby+AfL4gKaVOBFt6CMKDWjx2DTgkDMDQCARhCVMeHgYAmBMuHg8FqNgTyOMwDOsQDOHStMnRtPQyyjA6vT9CKP5jCKdmZPpjDENRADfwAN+jDBMHwSRP2StwDsx22ndQDNyRA9SnuypyooN4BOaz0ZHe3P1hBybLEKmEwrHJDPTQAfpvLfKBqX/ACyq7eLezBB7DBNcCCJhQ1vD0CDQiYveofZrWCFMRAMEBhq1Dg5USDS/5mLlCwUm/3th9nw4b3LvGi7TmcCAh5w0KNxDywggrUAA/oQWU4BD8ka3u7BHezxDREX79oxGaeTQk8q+SaR403hiVUdkuo+DoccWYv9ze0AhMUQR80pV4MBThM1jpQghF1ZiNg5qrYZNE6g3v2wBxUw2qjwB7YGtByAToAaEgNbG6/ygWG85KzWTbUiizIgrFyTTKogQqwgBr8QtoMuWPc+EpomHa3hGXYX7dsQCO0Lzxgq6ATRgy6xCq5dGarBzd0c1NUaRGwwTnkdC5Qw/89gi1cg4TMQcSUggVsAb+lAmN+wiyJimvVdF6I2SL8chQtMX3P+azE83sXgygXcf5em3BfI3Skt1NGxsgZrLdG+UMh2A+V/Ljk7l0XQPqxv0SxsfdCWDqvx0o1xMcs2Q+3SEGlWsAS5EL/2h8SOYMUPACofM4GfEIu7IJsfwKuJ8wylNcsRgO3d7v5+YMjGBp7GxQP6EDBJ9S1D3ayv4hDHOOhr0Q9uAMDVBpvmCiN0yY5hFzCv0T46TDZ7rq/0/p29bgHxECTR5YhiNQnDDg17MIkxMASwkIr7IALBIMwpELnzVIZJww14AGb27aIgLy/k7g9eIMjnAd4h1A9MIIK6C0jwNjGfwehr4Q1nJJJA40mIIDZIEAJnLIrX2S0TmvUvwQo5GZnnEMuDz17qP5Zbm/XJyCAB1gAqghBEwAcLBQBDZTCNaRCFewAIhiKXPTBNghDG9DnzdG6fEQDKui7fPSFmvW72gtbRnXBmKqNPwzDFciAQydD3469RS88iuCJw/sLPlzDEpRACCBC9n39RaoIfGu75ydEMQQCmZ5ES6t9U22DyLNlhy6BB/QBL0RDG1hAI5SuIZRAG8CjrGkKrBlRK4CDLMJMNQDC2TW+kuP+r2UDQjiCNSDfvfhDHAwBC7AAK6gDesf+S0y9SjgEdP0LQqxp+1b2w2+8PWB/VYfdlH/aLlhAFzfZUo8aQHCxkAuWMTYWRMECZuiBoWzNIEaUOJFiRYrOgAGzaP7RGTiPH0GGFDmSZEmT4L6500fujjd/L2HGjMkNSo0aULjJ1LmTZ0+fP4EGFTqUaFGjPrkN4ZHzaFN7/tw8bTp157169fRR1RpTX9etX4tm7aJPKlizZ9GmDToKVE997r6dlDuXLkluyzY2c3aMVy42DQwtg9Xog5lstz49MOOM16MiMZblalVkRbxjx/Jm1twsGio81PDmXeas2ri4dVGnBvltXT1vidrey8ozq7hXHWoMoeNvHj61v4EHFy4z6dLhMp8m8jf7ePOp9WT6dv5Vednp17GnteZy57xzp1WHF79t42he0QzRkAIr2qYiNFoJXlLk0TVYazz0Ac2Gxv6eb8BC20xAipYxBwtuMCsvmm9ME8/Bk775Bh9vXFHOH+t0usefZK5gQQYvcponuxFJnK44ppwjy5VpSmxRJhE/oWKJLdDxR0MXhYKnGHqYw9HHH2FihkWd1onwwSNRi6Yi85bZYodHdrnGjIZgcaYRD9aA5ZhULMjSGVFWkOIW8gYss6K9ogmQwGuQbFOkb87xJxB6THmpR5n0gY4OHXRQ4RXo7gRS0EF7OjE7X5ghFLusqLCAAgpCWKCR5RTVyZdRKs00u2ISjQmfcMBzU1SRxqHmTFhysaCJXW6xJcxlUnFmiQ1gmWUZMywoxRZe9mggVjOBnajAE6JJUNhoRv4dNSVvvDGFHgx18o0bHXi4aZ56+NFUW0UNzS6RZ8/Sxzdxt30JEQIwsEDdECTYZdt77MGl3HmDK2ZIf/Bxp5txSoowVLn8TXa1Y4U5SBRqYOljgz2EgeWTwpyxpZQSlmgml1Le22YZNYMFdplqOG5mtNL+FVg1OPGBx5c6b6TNn3oYUYFPTHij12YXu8XOm9i+4ge6mH7OtJ51UMBgg6Mf1YCLbfWZRhZ6bo5aK+hOwealeVAyqRt8ruV3rm9ELJKub67hhpuvz3FmmWPWRucT9WBZRpQimiglm1QeE2UZXrKgwRDG5vDAkHDY7tjwZbiBQ22JlqFm321MfjAb3/7umAbTQGHCBzpaOmRBjWdellr063KeTkNL/IF6KxH3KGKJJUrZtp5z0KUAaQoaMAJzIJ9yZPfRge/OHyNIIOEYsbWup4wipigNYHcM8WEXfeUa5xyu8WFQrm2++6aZdWLowRAA57DAEF6c2cOCSVppRhO4L7PADFu2MVaiY4A5xpkB1+a/GjxiIRFnXMNrkQtPg/xhCkv44iUti9ZL4lAtFdBCRNIJ3gV/UzrT2cMJNtKKiEqwAXVZoCEWVJQ91vEADDwKaQ2ogqay4ghv/A6DwcuKIRzwghQc4BzXCNib8MEGCUjgAGxokEnQMQkCSIAClHAHhLrxiQNQYAbrgP6cSVJiiA2soBErMEPDhIGCJQDDFrl4TCp2tYUG9CEXx8DVJ6KxvyVRgxtpEtBoFjcgAIXGGQU0YHhS4o8zeEN1PvHNM3RQAxlcwR01dGQGlYKi62SFHNbQiobM4IGjHa0EA3BG0Ah1j3j0oAGOYmED2KAtdkyDO498ZFYmsQBHFYA3XdHHPNyRS102MgoLGGIPtsGgcQyTmMT03gqHSIV7FNN653CmM6/hjwAUTQGfQB5J1vEJC4TAAwhIhTBsMYcNzMEZrXiEB8xQDVt8wgMLoEAByiCFHdzFfhHZWCsKQAABVKOeFuGFETAwiWpsxhnRUAIZ4niN7/wRkOiwR/4xZJE6B+okK+vAhApkMARGhM6VHf2KBk03DdTR8CfisoAmN3m0HXC0UrwoAKQwEIIGoOAbmcqKLxhIUo/arB7zwMEBUMnSnvxBAA4QQBmCMg8mTFEBfYiWLbvSyACEAAMHEIU/4jEPrW6Vq/6gggdOigAr+aAIuaCGLYqwA7vZoglFoIICmNiAObgDj86w613V1o1HUQADLUBHyC4TWG6EQAEUEIAo8rcxxS4WL7wIgQMUEIJqLJShqInLOvyBi2KQg1Ju8ccvoKCCGqghRDs17VRAeh22aCUXIUzpBjRZs0plaxYoCAABBsCEanRWUa6whGxOi8GsjCMMg7BRtv58wg98XKIIbAClT67RAwmUAVs/0VAZAiAADGAFKPN4QDe5IIUYfMIZ8XiE+ZbxDVFs4A/CkCIGHNCDc3TjG9uw733vW415ECAEFEBBCPzBjW4MmMDZMHA2uOGO/lLgAHYwWzUgHGEJb2MSAniBAyTQinVUti6mqak/OsiO5FrFH3GoQZ9eYSfkBpfFQUntdPThDeA2pRooTakHSiBURd1yHbzQ6rbgwaMWDzla7niuT/JUj3gQJRqtEFFQ1pENIZjhA1RIEzhWEANnCIMaa/iALZpRjTkcoAAO+MQ55GI2AVAgAO5gk9bwsQK+CgAY2TjJOkRR2EdpmMNzMU0jz/7wNKBoqBos+MEiZUtkRRcqki4aJLSE8hQabOADKUXApExYqZ5ybaKDsgc73LDoC1qiTkSZsVCuolOYWCVPUEZHNFKRgFJUwxmGMN86jrELDyzhHoKJARWkU7KRjKMb7kCEP6iB5pN0Ixs9mMEnhB2Sb9TDECRogR38Ee0+f4Q19LDGHV4CaZjMJg4sSGSKnyxqdc+k0SV6SiAu1BR+OEOEHrB3AorgwXmpukVQA3en1z2v7RBKp/zA7C52IIVq2EMUZtgBL7KxDPGm4q9sKIIh/FGNsmlb2tdYBwHH9pJrmuQa9cAFPNxxtm2TJEL44BSm9L2TVq+iQyrQAzR0HP5wUb/4OtMAhT34HR1/OGMLACAAAQqRbp2Hyx+ykFfQl/6jaVgyajV1uCjiRJhGLMMfe1jBHCC+ixJw4RvxUPnJUvMN+o5NHItQBsc5TOxzQC0R7CCpb+ZhYhnogBUvyXTUFc1z52jIFVtR8jhEtGLAf0VDoRb34hWFC3nxdB3OiIEUzpGTFSxhL8tYQgyOIQx3rEGsG1552sXRC2mcfiTFpgeog5IVRNrkCkeGfODb3SJ4tYQq99gq1G/vE3rcAV7BL5c17jUvcBTiAe66hjYz4Y9lzKIERnRGKlCwtAWx3rL5SMM47Mx9j6wjW1ZwyeNhsg5ByEwHoUi08XFvnP4fgYIeAId/iuixokLev1IUArq2Ws0W1INrgIEKmiAYAmwLPiAV4mEZvmAHYAHZ/Ej8IMQdIiFrWO8bssEfyCESOiHcegIfssIYhkAGZEAN1IE3FI//WEzwroMefMEaTo0FncMedETEaLBS4KGVCIVrtMo3mmAFeGEc/GEOVgARMEsVGkATjsFtVqANomEe4I4CRQIdeiH8Vm4ctgGzCAEe5MX+/MFnXkINEqkGfmFccpDIXNB0/MEK4i0NjwNqOggOK+UMyAH9fIQbNsAQSmMdVkAI3EG/lmAH0ssdyicatmECqVAuJicH8AEL+2zarAEeUAcMXwI6kmHvPgRfVv6QDk1rDacDas5g3PzOE5luFPHQFLODHVKRRAxhABIgBh4AFuZhGzIBAY6hHqqBF0pgDQIsGhrgC/zhihYRNcDPSLYNTvyhGCCKt2TORtSA/X7hZTpRFTsKFKfDBmWB6jLHGreCHVyhGGbQG1skEeChFa+jHr5hAErA3h7BH1LBB6SAG/ghGMxgBbhuG75ACHIB2YpRNc5BGRbBHSDRgDQwDF3h52KOonxjFUrQ5swh58jRlbAxRfxBGWQBGKSgCZpgDmyPxfDh7wbPHnJqIn1kFArPErOjHrIBAFZAkxrBEHZAFLbBH2ytETArFVzAI7HqH1XDHdxuCpEE/OKE1P5y6negwxzUoAZYYAhSzBlhwhwwQQRNMngq8jryQITUxQNWQJJarB7sIdWwgx7goQuq8kfIsgf9ARFgcT6KYLLagQaWYB6ooR6ywAOiCSZ6qBt8ki4CMhuE8kjAxh+CwB9wsCeUyx9eIZFO8CNhApGu4ixH5yqd4xp2oNI2yQKkYNGqARZggRrQ8Di8wvEkU/cIM3UEhR/QQR+cIXCuihtKwQJw8hts4QN8sZFgwh2igRrQITCL0R3wQBp8E+0wCxS8wZJU0h/MYf104AfcT+l24hlqIDJ5QiRL80coszkegQBeawMYIBWGbB5e8QEOYADYYLecgxl8oRig8jphzP4ffAEeBEUfxoEfeCFMokEfjmELisAWkM0MSgCzlG4dzEAAGiAX4KIvSwL8TgEZBSYu4oEfVub/QjBbfkEGbEINLrEaY0I6qfMVkuEZXkFzoOMVptE9BSU7hUNz+qABujMBriq4fKMPDgADbLSqmKA59MEaZIE9kxNFfyMrMGX/dI8a/KEIiiAVMCsTzKeRYlNJ8UUmVAFdGiAGQE5Bh00aemE4OyyYXsIJ4IGGxNAfvIAxcW4oPLQe8KHczEEcWCAOXmIVZOBEgTQPcw9IGuEBXusDZK3FbKEBbIcCTOkAYkc4skIWIqpOSQRqcuANdQ8dqqEXv2G3NsAHUMIdqP5gnnriEghAUGfgGJQNS0WiFnpBEYeSG3zD/A6zJ6AjFPhEBRgBOoHCQ9eBDKOUFlggxYZAD9pTUbNDRYdjFhLgtSxgBdAzuEShU21nUDdBOOAlERjIV0ckK1jRRbIiGjQBAURvHG4RPKkhF1CgDSTyJZxhBiwAA9gAa0SVVEjVVB0kQtyBHbzBLMnCkPyhVjH0B6axutBUBszhCoagZqAjDq4ACn7g/aR1RIB1ONgAASyNFnrVlT5BWfeKAhZgEoYj1Bw1YWvQH/6tRDZnCZoAs3ihrbjhHqLBDG7AGPwBN3viGhrBmriU+yIkEqTBXQHpHNZBHhaBsyxROlbhB/5Eiw6WzDF7Ihl04Apq4AparWZ4QAValmNbZGGFYx3OKwEQYAVuARQ6JbhmQV1Y6FwL4BOCgxwSQRb04UelFi3swRs0djrwQUNC0h/aIAagdA12ABJq8hH8ZkORDCa4AWf78hukoRYK8kG6oTXYwRRmiIaggxvUwASHAGIj9icQSRC4oQZ2A1viARp+oAbg1GjXNjiodjjcYR1Q9yVAgR2I1KOYwAKQRoSKwDq3wh7sYRJHNzvIghuPgx9uBDrcgQHmINnAQS69VC6XzCgSdF1BIht6AQ/UFUnA5h6YAd5+Qgxf4cRYYDeitCmkU0QqYU6xyh9YQBB+wQy7N3edo/50hSMsqdMRKim4NKQIZApQdwCz0oKSXqNy1Vct9AEeKmc63OET9mAd9mADUgEfooEXEKAU3OEcoA9hg4IfpJB5ua0dOiEfZlbawMEd5PMEGii5WtYLzE1fx7Vff8xgXwJgX6JMZbV/SfdONUVD3JZ1TwtGvqAMnEpN1cIbHIGB0BGGwSLGmCGIqcI3hCABHgABVkr6hKAIjBQW2mAHwOGESwodLNgjym4RskFwGTFOTEEW2sIewHA2aMEmdABOqVErPPcqtOoH9OAVfgB0lmwINJRDhfgs2JcNE4gVjfhmQEl0j+JGHEFD1DaPwWIamOGQj7geYuDeSqEe2oAGMv6BCEXBA94xfY9i5ET1G3ohEpZXNbQQH8gBUeUTDCnYH9rBC0zwB3Bubg3vlbOiGsyBG0BHOswBGl4YkfVYhpnGH7qAs/548TSEHeiVl6+jJYbZKHzjA9qRAHZhA8guJ3yABsSBdofCZ7L4G/KhFkDlXevBXiJKJcFXBn5gBGKVRPAYmbdij7HjKbxhFBkZ8A618JaZnaeCGXhQOIyBBj5AChCAFvjhGlLhASZFkIciVNc1G7AgHw4XYFgjgdRTKNRBaWvgB3YLH9YZn2/Gnd/5JRwhhHMQuBwBalqXo39DQ8zypM8CH7hhHtBhDlaKrlzHGSSYKkIZS+uhEwxMNf72BT6lIRE05HekIxR4wEMEoYJQ2pE8elFezw3kk6UhT3UCYUfmeampgiX494O6wR/MAIHjpHUyGZuPgh82mMOy4RSUQTW2QURgI1G8giegAxriQAVYwAsgFpax+oKaekTYARfkmf+e4gws4Z73uinYQcSAbyi8gxs8YA+i4RzmYQeaGDhMD0vPoRa4mEsNcxSlGiZaVRO5l6wPm176Ojuewh4CYRoWe8jY4QxSu7SP490SNS3u4UseQBTcYRtSYQCE4abBwjfeTEEJ9xy8mNuGyWPZgbNIqqdK8HNzAqFlu1xOOzuKT4Y4a/EoiR2UA1ymezieAhey2yy6woyQoP4d/KFkl8A3pHsq7sEdlmlw16ETlOG4UaKm6KFn6w8xZ2MVzE1zbYRfvxt4qptEXMKzDbuG/s8NvCH5Bjw49AEGzcJ3oWMNViB29KEPduAS7OQ4eIGczo4K46IWOkEdGRGzHAEXeJcnRKQalFYFrgDnWvvBCaXAS8RsI4pCRe0piuEOyOGzaRwtZMENhKwpWO0puGEA9sA01GEHiqCmSHsrxMUWDqC/wiHExe8b0KEWtAeLaoodnMAaFNsnoIMRfqBPMEGpg9wqfTl4nsIauiDI1O0eQI1n1tw5VtUoYPolDjgY1qEzvcmKz0JEIAVSAIwvKVDLewEQKpjlwGEeyP6hGEItrnkiW8yhJi76ljf6zrfFxt3tJQLBFTrlqhWlZZ4rbZeRGTQWyDndLEAhpIfZ4GhAydtACHyvGSj7apwDOlBgmxqAC+oB0SlwHgDBofslyk6THj5bbv1bBniAVzW51aXG01vkzafhDkSM1bVFRLhhEn47MSP8JbpAkS9kxqXd1JquTqCOa5bguxCgCV6CC3YAPMfRUPVBGFYAAJjAQcUvGyKhFjDwTbLKG2obMaFjGNSABVTAC4bhZaL83DOF2n2EGaxhDhO8RRqpB0xgA0IgBvpRdbrAGroW4ptDXkc+KOrBHSZtA4LRH2xzl50jysDBvv8oHLoZMEcCVP5I2RUKvidEhBG0l2aineQ7us1d6UbMjz0vXnf9wQKKZgNutBlYyeKJXkfvAVHDYi2/ywPY4AF+G+abg9XO2k00EA9OAYvfZB7kYV47nMzd4bl1ILqrnsCN3pXCvQ0VObuX3jnMYIXUZQMYrBCw4CWKfO6bQxYc3F7VcROWoASioIE2vTkW0ZPfTiSyAbNkwRTqRMdlIjHrIRTYj1exIvINn1vqvqOKb7OgutRkw9yHI1uoAFBhF/AxoAFehtRLvykiPBDIITmz4onwYYrBc6vTceyPJBvcoRdq4bI9YgOLYX83VieWzMVlAMZvOfcn8/Q9ajYS2xfsECb2Xi2sov4IAFVQHwUDCuAc2hv7v4KBfrRIuEE2Mcv1g1TYV27a8CASGh0lrocdfCHPAcKfwIEC6/mLM6TGCFrr/OEjCDGixIkUK1q8iDGjxo0cO3r8CDIktyE8uIU8iRLlPYH2vHWx5oteypkQ2ckz0oCCTp0WUKwzSDOo0KFEixqFaM9fDn8yK7o7V+jDLn9Aj4J09w2c1q1cu3r9CtZrvEjZxnH9Fs/fqGnkMlaDUkPGFXP+9Fm9izev3r0oR5bkC/iivpX+mJE7o8+Utab+Vtq1ajdpZG+46HXBBqZBCAsUNmA4YOhx4NGkS+dNKquiwVlSdhQ0XZHfvKxha9u2La1TLf7a3RqaoufmokFzq1SwgKKnrmjYzJs7Z+7X5PPRgwXSg+cq0T0n9JgN1KfP3j3CKvXJTCpwmr8u8EDh8jawzwAMGCgQ2DJvuv79/Bv7kyULfBDpk98aMcziT379CYTPObTdBiGE7vRSyzrgfJMNPvwEMkpb6EnEj0HDXKGCDGpAk+CCKq7IYkbRtQgYO/5MU4w3QcBjCTyMDXZPeI2Bt5xAdvloz2BFDmSPPYH4AwFl1vgjI0HzOMNEDEXMUhWMWm45k13TwOPQQAap88AaCrboToRq2pZNLVjEc+E3/oBiioAW5SeIDDqoUAmDXP4J6HMvBnpUZP51594dprgCz/409NAjIz3gUWQPPfew86g17MjCTBDs3FEMmCtJFlFV9QRJaKqqRuSEN/x81wgC8cyD6oLzrImrV+Nkoww+2YDTkBtgfkgRPu7oqcMQVNW6arPOzjTos0LZxdhAzBSTCC7MWGFPIh06Yk0xvhRTYyL0gBIIPUFMI4sjuExjp3V1qVZPPQ9Jiy+gSeFCyyep2CKFFP7ww+yCZuWa6zjSnNIJOOP4A88oOhILET8P1cOICjrowEiC9+YLcsgukiSdyDQBSR5B9sDjnSnkTDMuvKk5CmZESfVocs7OPkQEAw8kQAMtynEp2zcPInzbN/icss44BrnBTjEXpfXLFSyocP5imDpvvXW0XH8NdthHGfSBBxtYwAVVgD50zTfbIA3hN3B04s6MiVjjWLEGxbExC7TkV7DYgv/p9eCGH444RQatsEEKIMyh9p8WR9PK0XB79c06vYAzDz+mLEmxRPg880MNNUBR98eJrw5j4ay/DvvWsvmzhBA9pBY6i3axEQABIVRj+eVajVNLJ8XIY4W8FK0kDiYsyDBEx6fGTn1/rlePffaqGtSQPsEBio5mIRAgzDXCd5WNP8HhUtl4qvnDCoks0PFMitrfD9v1+O/Pf38PeQmvP23DAiEYHzDMdz6HnQMdePDHGeBRM4rowyB0qIEOZPAKP/Vvg3rRHwc/CP5C0tzjWoHbj10QEQIKcKEbwUNaNrLRhWkkwh+5g0g9xMGCjfFgWSHsYVE86MMgCpEobrjWvFr0sXu0EFduw8c0TBEJqVUrInaZhx5UYMFQ2G+IXBQJyboIO32YIxR1A+No0HMHGpbwOfjoUZqE942HgcIXaaRhRR7yCriMgH7+MaMfNwLEP3KtHr+oQckEqZfwsMMNdklZi84Bt12hI2qjoMeR7uiPaphOBr8AHCI/WZFAglJkhDSkQF41yrvYZV1TZBE64PaNetCDHOnSiEG8gLpU6jIiotyltEopnXq8Yh60OCQ0kqE1X35EJvQAHYweEsc1Ga0hzBhFGms4kf572UuZu+wlN1cFTIMM4Qf10IEaBuIOHWhxjd+cSJGmYQmWwOhgEfoGOtzBD1mYQp4cqYcj24lIbwI0UKWsHw+gIJBkqACZ/qCFCuaRpYFqhFpngI+kWHSPbtRzHfd4R8QkClKLCDSkWiKkDLjxgytQxVgsyCA+9KCG6ZF0I5MKgh1XpA81AcUSUmPnTJU50p+uqB7DyKE5j4iJK9TDHTUQmlA3Iil4mEIWUVLROpaolW+cwx/kKMYdbvbUnwY1rPwh6ggYMYwRsGJeyRgBN5Khg4aQlSPFcIU1htWferztKxgSyBnYEc8jzhWkYx3sc4h6Un8IogbVGIgXXuGFOP4YdiPw0Icl2PEk9+0HHZYbxzZ8Mwqp9XGyEi0saWEDTHy0QwZ0mJ4gdHCF+p1WI76QIVP4g5WujKNuObhHK2fbTtMCdzRE/YF0oNEBaODDLlBQ1j+HCxHCOIIeiSCHTHDGnCHVYx3ZWMc8sDGKSo4WusH9Inlx6o5k1ONV83irP9IyhAz6dLZEUhJg5TlfojzEFm1gAyz80QtLBEhI5x2ocAvMnFV0YIsIlshjZAKKCNvxkoFxBgoO4IAWYMEb6mlwac3r4RbVgxsy8JtgQ0yplSzFFQJ5LmT8cQudkMABokDxh/9i4xUZSw+/wIfqckzFeySFMon4aFWHNJO8Df7EGuGSgwIa8IAHAAPI5cUxlZEo0ysjRSBtCYS2giPaeY2nR0h2MJCScp6BwGtRphCXP4hRBCoc48RaHuWLfIznPOt5z3zus5//DOhAC3rQhC60oQ+N6EQrOs8GYURMB5blOhPYLjIKlSsC4Y3g5E5SlkpSkiQioyDcww3kskZb/OSO/PxY0p8ciXEdsuhYy3rWtK61rW+N6/yoQQY/+EXkWF2RpBQDF4EwRSJcUQxZ2AMXBCaIN5hhDVkw8gSyyNFNgU1YXtNBD9zutre/De5wi3vc5C63uc+N7nSre93sbre73w1uOjBCBzwokSCqYZJVA1vIQWIHO0bBDlC4gf4cTvCFIw7OU0vQg8WMOc+ksA1QfphDEyNQwQgujvGMa3zjHO+4xz8O8pCLfOQkL7nJT47ylKuc4xew4A940IGzJhPiBAFPj1y8PDXinObKtEshKgH0oAt96EQvutGPjvSkK33pTG+6058O9ahLfepFZ8QqdPADFfwAE9xQByp5bpEhIRlIYwd7WHGN9rSrfe1sbzuf83MFuSg3omavO5DJjve8633vfO+73/8O+MALfvCEL7zhD4/4v6+EEclxSKTtDvnIS75LBaH75C+P+cxfZLma77znPw/60It+9KQvvelPj/rUq371rG+9618P+9jLfva0r73tb4/73Ot+9328773vYz+p/IbdNMIXPk5LaPyTBSX5iUxJkB4+rYmanvlDoX5RamV952hWJtkXTfYvsnOOKPkoQr4LscYvwZR8uiKPodY/vU8RS9X8JN9P/0VB0pSGT+S3NMTmbedbf0ThW9d3fyBRQwGYX/6nfBlRftLngHtRKR6xfrAREAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRow/x6SuoT99NgStd2QNlbZqjaYlcBSpm6Q49K8VkBfLmKOw0X9OeCnS6FKnbt3Djyp1Lt67du3iF8qsnsF5Te2qLTXNiLxAue6bYWWNnD15CxuSqVrXk7U4xXMUI2svLubPnz6BDix5NGik+f9xEFQRVrEtka/4cXwTMjp0/J/CsWHNss23p38CDCx9OvLjxkIYONAgRi1kgypsFblZbcanJzUsT3T5J77j37+DD/osfT97n0nU+KGAAIcmUZn++O27uLlCWrET0fK0tz7+///8ABhiaU/6Qkw0JFIRAgGr2NKXTTW0xA48piUwjEHUCZqjhhhx26OFDS9FTzCimlNKAAEu4I9RSS1mYQ3fYfSjjjDTWaKNw9GAGij/bZHOag0XdsxkollgY341IJqnkkkziZKEj1mQzTzbffFMNNeO4Rd8Z9jjS5JdghinmmPDFNg0o8GCDzznfgOPmm3whpc9m7OASiGP0HEnmnnz26adxN8lCTyD+0KNOm2+++c08c5HDjBsX/inppJRWahc799zhmDuIJuqpnkdF54YrGFpq6qmopsoRgWda4k89/uB06qmip8k1pz+WMONemar26uuvwO7njxvTZLbOOLLO6uY369QVXYWZBSvttNT26QszsviDT6zKdvvNXUtVRU6D1ZZr7rkfLuUNM974w2m38C6alzWJkIvuvfjmC95N9shiioVVwivwt+AKdIY17eqr8MIMe+ZgMcws4m6yAs86Tpx3bSaLL4yB2vDHIIfcU1uU4bJtxSgz6xkz2vlTqsgwxyzzRr7Ac0ci+FCM8qwq86MtXt3lkPDMRBdtNENtXduFP/FkszPK52QzySfCuAy0P7LgYvXRXHc982bwwKEVmzo/nWiVRQignC2cbZarP/bgU6vXdNd9b1t3WOML/h4Bm10xN9Q0gAEFErDhWbtnvAqY3Yw3Li087DjijTvjKIOO3yh3E40FFFhgQR+ebTaKPbc0g4/PjqeuuqWm+ELON51E8i7mFa9zzAw+2PGqZ/W4IwACA3DB6+rGNcUWYA3as1mDQBLvvETd6XNVu4BkE0/ZtJ/tzjrV+MMo7+AgEIIHE3T/fGl/zWnvQ9exdf77TG3mzRnwzPMNHp0gm/3ObY6DDmj1OMcARKAEElADfqNJX0z8IZhiOMIXicDFGVjmlTN4oxjFUIk9ahIdBMJvMzkQCDrG0QvK7Y92oNHHOthgAQ+UgRweHErzQIUhdpBjGt7AxaPIcic3sGMa/rupyUAcg0OyYAUXiSgGKGRRJ3gMTVgx7NpSyIGLHTUNHcoAhDJOSDsVdSaABPFGJGQTxZ7EaRKU+ISwllcof7iCHVvxhSwgZhuM0MMeNSvLNKzgD0coby0vK2PIloLBzKDjG9nwBxzyMQ4u+k1lBfPHOs5xoXrwBTOC5MlpbIGDECRoBcAo1FJs4wR6TFAxfzQIixyySoN0pxj5uQM73EDG9WXyY/ZgBzwSN8I2ZSMN0nCaIx+JsbmcZh7naNZB7mCK5t1SJMIIwQY2wLnBOeMmgfBXMdjoMY/c5CnMcKDk8tTNZ6KLHaYYhSS7sSxwUGmYmPtGPO5yuf8hZDMw/jRnSPRRDzYcgHMU6JwFzCDLXS2lgzxhnkAkFEEctqWc+uxVuNYRBIEIM1bSgIMyGglPv1FSLj5D5jdUBKqljAIU9IloR+qBDgxgYAMUmCYFNBCDdkjHmUC5lUB84Y1cueKmKg0WgXzhisz0zZ3+SAM+ONpRs3EjkEFyxzZG+jOEsEidEA0qROaxDk/GFKacQ4EzbAUVXbrBoFnVap8clAh2yGOpnfpGPfDwzqY+ch2oO4o+8PEuuTZkKaD4qVozQo91tMACMp1mA4pQzLk0BR5u8AU9UjpYU8nCHj9lk6e+cY5aXNSuT0MWXJb1DYQyBHJQraxCRjksf4ThAWBV/k8DNpEXcrnCGo5YCXzSqtokTacYgWBHzpL1jXzQ9bOgfZo79moUfKSiBBZYgy0bYkHe9vYprfNFtP5wAOUoBxG7q+1Oi+EL/cCtt2OiiT/S6R53XIOpbroGN05xinMkF3Oi3dpPloIPdNijBBvwAAJsYZKHbOYOi0OvQm5SDGuAIpdlmgc15sCEPox1bpxZimPcoA91Dk/BSnrKGYrRrqO+iRsCocZG72u2cVRjGzTowTwaq5PTuOMc3ZgHDTywAQY8oqp/9QczYGhdteaHiaaFj02UUprGyAIUmAIxk+zhjaXxYxzwVdQ6SsAALZiDxWa7Bj4OEIIQHMB7P7lc/qz0IYQPbKAB66DxQjbjQykbhB09dcmHB4KPemBYNE/BBTr3bGcPsVXI9cDeOpIgghaIIBXrAHPKziEKwYWgAWjWSUjjCg5/7GEJlMyrgbFW6N36IxHeIPJ45jMNZjDjvKXuUHfIIYtp8BW5njLGDkTwAgOoItKSrtg3oiE4CmD6ezm5xzri2iyMFXkgJxmFNZI82DlBLnGtHE9b7GGJbCU41gG6R3coxI94cEtZLq5HJhDwARF4ABZqDna8ztGKIhQhlM+myFLmce5x5Bja+S5IsaQMQtsEfDibOUEbwR2gzUDAe1n21Dio8Y4kCAEVUkgCpOW9M3GsAx1yBgk//g6ZqG0geyOmKAZOVarhUbSM2vxRryNG8USGl8cbpmhvNiK+rHGsIxUTaIQ/BjENe5iY4/DiBjdOLnLvEZfpGmHGNCirVql7u0PRgXKebB6eKQ7KXZrt1tLPIYQkGOMepDiFOLiBPaRL/Ft/3oh1lr3ZkF/kJpCi+p/iXlvHJK7Ahl6KJWwDc64Hp0Wkiof+lPUNFO8BBo/4OCK36PZHHpwhp5kkcVM7m9vo90/cmGdo7kPoD4HCS4Yvnj+s4Qr38DxRLk7CDtbBzioBohevr3y3svSRe9hXWZcPch0ltRRGqAHIeLkHORJxdRtFh4/DTz1wmMEOJ2jrGvFaBzc+/vEBVfijGsuSRi3MrXuzfXRV9WAnOMbBDV4cQxjx4HxG7sEM1O/dHzyAAvLrUmBIwfpGBWYKMFR40ocXQxUIr/YN25B08+AMQpAF0TAP3NBztdAJwFZ+yqURp4EPtNdInNUIwOMBu5AT+oALFiIpv/ADOrAKB6EO6sB3Q3ETSKRqKzUPNlgco2QKOyJ/BUhW7LAx7nJuynJAiJABqcAsneIjSuAPuIaB3oJXGLEU7iCE3fANRYBYFvAFOWEP00BGfhIHMiADdMAU+EAHdOBnSHEToyBYH7GBdhccu/R/PcgZsgAPP5V7btIN67ADUvB7sxJMTog59SBqEsEPS5Vl/gooBFhYBToBQSsnJtxwBTVQA1CAYtBWhmcoN0jhJYzhEafhDFwQAAVwALOgTMRBLtkCcME3hyRxE/SALexQD9zweswyDplQAnvwfTxTD4tggW0XiG/SDaJXEdeDbuuwCyWwAlLweSLBhVvXJ7+gAjqgAyPwCgSxV2boFwLBDfUwD+3gDu3QDuoAdSPhDS7HjBvBC8oRAhgQAgXABTDYZP4ACmjxZwTIij7xFBWyIx3YLdRAD7SQcevgDhNoMdmwCPnQhMCIbvGYEEtRD3RnMcLoLsYQXjnhJfeoJPykBkPwAz/gBWrAZPCBiX5hDjpQCe7gBSwQhpSoB/sHEjFR/iSllxH1cIUwBVMUcACtcBxLwQy14A+isARLIAWwkGn4OBTyYxh7cXSK0j1zUAKwQDll8w2VE3YLWTHb0I1veBDHUjbjwCgPxRP3sDQZiST1YA5XYA4dqZbiECfYSAfu4A4qwAjwsQ7m4HGvcAHmsJUaMUUtExK8gAGeg5M5KXTfgQyHNU3UNAdHSRSi0wmvgofrRw0fYAbxUJDwUg9w0AlMeZUW8y3MxRCG6IfoNohC0S6ryCH4cJlDwAMoZg6XaIbcwAJ0+ZAzBg0XYAyp2RA3cQfZwoMVUQoHEFDEaWxlIJLGsQc89gFu5gEPoBqNCRTdASnWIFXwIozV8Agl/kAL81ANkpkNyjA7npl9hhACRRANSDMPC+gtFyMUvZlKZOIz3NCa3CBq2OgFKiADv1BV+DAPPIAJO/FyI3EMK8A5BpqTP+Yd9bAEiKWY1GQGgBedJLgZzOALJmOVs7J0tiAFVVANsrgz49AJdTWe3eIOorAAlxYD8ZcQEEmV6CYO59CQJMhAWNUn8+maZCgIFzAMdMAD5nMTXqB/OHESzBehInGFAVVNDbCT3kENMYBYbuZmbxZnErqFAoEHskAO/DaV3WMIHgBpi1cx6HAKkaCQJLpmbDA4IQAAfsUUQUgx4eAm27AOp+OYfTSTX3KjlhibcTAP4jAClfAzayAD/ha5T6u3QDkRD2VGTRZQOOAxDjY5TW5mATHgDsBZpRaxFLKQOIo3MEuXAFtwgS32iyR6DrPgUgtgOHrCDy6afUdxEwLoJ3pKhtnoD7+wo/5QCSPQDtxgDncpEpNlfZeKEXxRBD3QAzhQlHxZGlIApRvAnAkAOruJqQphDaaQLevwXt2ih+gwB196D+DnUYBggWcaL+gQDSZgOFzZDVk2DuIQD9QQafZkFDeBUrJKn2SoBmoQJ2pwAbgpAyvJkoXalwJBKHo3Eo21rKVhDLDlAQ5rATAAm9QaEhaSOImGPd0jCg+IDtoXT9lwCpJ5plUiEMi2b8vWrtWAD5+2BgrL/hP6QA6uYqP4ahDUQA1twQ2/YA6/YAw8y7P7Oa0FgUR61hO1gpze8YlLAADAkwWLsCsTyxFCgivTwA/LNpXfoA9rsAOzMA9hajaI5FkhK7ImRxCRJg4S52/+UAUPYAEJwJjDOqSveK842hCEuE9x2yt74Q7OMA/4wA7b9LZPmxA3QQ5jkX54eA7RwAFmQA+YSTvfIA14IKrlmn0buHiNhGVYBg7d4A8fwGMWsIwtm2xwVJZJMqtGQRPTQCi+opUz1keCFrgZMQ24ACkRyXjaVwgZUA0EyUVfG2+TKzDd0I3bgLmXu36Xi2IM2gBtO7BFkWoyO7dEoY9y+CtP8VOk/gu7BHETdvhg/qCASXcPsAADc0AN6KB+J4RIgAArvysw7DdV53C5mCsO8Mt+/jAHf7AGzCtD9lAM+bQnplsUoJAYQBsmqHsH2BsRbuMN/Ig9VuIPXCAEqiGEXKQMvSC56wt70eAMzpC5xesm8iu/FyOjAByz/juzREEO5HCwQnUPNXfAq6UP7OAq9jMw3VANH7AHx9JR34AOnVALFnzBmusMzSDEZttI7yu/xttIdRsXgFsj/zsUp9fEM7JXoUkRp4enLpyDssCBO/eE3zAHE8AN7hCu8LTDp9DFQOwmyEINy6DBbhxpTIW54CAOWIwUFDLAAfLEOdUlffJnpikR/j35alKMj9FxB97wU3PsLRm7A2ugD9mwnjq8DpFAckBMldwgxBo8xBpMlcSLxM0iwkfxg884JnpsHjHcv+nlLk3QBEKgRuToEOSgXS5sEJvhCmvINGbaDZTUBEmQC+LZVNaTBqS5vuOQwW58zM5QDe/rrusHDqaIF/BgDYPsIaXcE7Bax0oCC57jOR5QAkYpEeSAmrNsaklEDzkzMOhgCxlQCKTKu4/8SJ05MFy0DZiMzG4cDYliX17EGdPgQ9PMIdXME+xAlo6lLXgcEvYgDgQAYIrpAUuAjrzpRq5y0IVGDq4QE5TMePGwDI/wAc5AeyzGWc7wAsvQquwLDu/3/tHtfA7nwA21OzDrEA83tg1s7MaajMwl/XFu8slBBiIUXRCjTMom/BMWPb1HwQ9PUSuPeBSn0Qiw9azT1M1QOBGEFC2wSyAbIw/10LWbNQ+pAANmMA8ZnVz0dgAkUACTkDLg8AkKUAAtcAyHVCVMSZXLUAZU8AnzYL7b6g+fgAiIkMk2DdjHXA3OIAq6+cwOiRrfvGB85hBx0rK8uA7/vCEBTRLW8YpBjRR8AQtM4ANNwAYqAspAwSg85qBuBpUXQX3YSx8VlQ2cUjbdwI1JkAS7YD/tfELuYAQNkAILQAXUsA1VKNdyza5YNgMKQAELQAb+cA7o0Nws/dwsrYAa/nAAC7AAy+A04ZDd2q3dznwLFFAABRADy9DGmDzEzWDeGswLO7ABK6AJZSI38B3faLYCOGAETLMQ/MAobMAGB9QQjPIJqvHKB5EZAr4klR0SfWZJ60AscnEahtAAxgbhM2A+ccEXDCqpiokCFXkRTuAN15t62YFSXIs91+AOu5AAmdCV8jYPSCABhMMEwDDeMj7j430Mx+BJErAASNAOM+4M0fDjQO4MwlAAASUBrVANL7YNSr7k24Dk8dAHxCkANt4MbbwMmpzBxrwGD/ABFpAFDMEXLUA4FDAD+TsQfNEDGCABEgByDdHiEqDcIvzkINAC8zDZGXLgnugP4gAL/plgCz9JF86QIJ0DUw3ABtoIF0sBCwiA4QHmzcG3Ge7x4eBmHdYQCDAEDpDMM9lqBiWgDuOAfRyXDdWAAw6wAraQweed6qquyZcwnDgQDDctxKveDMfQDISjABKQC8dA4zJO5c1ADX2g5g2wALMAC7dw7LdgC7NwC8UOC85uBrD1uf6DDszd3Nbe3Ju7AsQZApIUl94+Y1qpD8swON8dDe7gZ/Gd7kB53BQgAGq0WvUADAKQAghS5kqC5xzBF6VQAgiQAQlgAZJAF1QA4V+lHgPA5kxcD0Lw1DyGAJmAzavlDwhm5+g1bdoxJfGyuY2QBGbwfbd9vmu8DMCAD0dA/s9WPuurvgzbIApsIOsor+rOYONcwAWfwMYvP8THcAvOUAYo0AOpkAtAbwu2kAtDP/RAfwu8IAobsLaGkMNvwlRxusN2IIoFYAju8MhtkvVVUoXdgA7sHgDAoHTZ0A1kP/ZjT/bjcKIBtQCtMEnQ/b4DuT3xYAcHkAIYoAH2XrpDTRK7kAHd/PcTsOFxYQYEj5MYMADRELpAkQUIkAALnQp57xDdwUeSbmcb5A9nQA5Xhj3DOw9SIATGkGjyxlnX4AxW3saS4Os3r+ptXA2rv+qbPGwnP+tCzAtDDwvNUAq2wAvI3vu9DwvHkAvU0AqaIAoWDF9YtiiTIAqiUA/Z/iAOnOyBHFUl7sALOdkH0G+8avx7yPK+TFAABFAGiLh+wp0NvFAAG1AAVADRBr73IyEFfu+wDpsBUrBccVEGDQBQ0xQCAdCmjpWtAAFunj+CBQ0eRJjwnrdRCR0+hBhR4kSKFS1exJhR40aO9vx5c+NvHTiSJU2C+7Zul4FU2cadhBlT5kyS38BRW9ZM5zJqcpzpBBpU6FCiRY3qdHbs1lKmuXIxhQo1Fy9gSJ05ezlTHLiX29adOycua8lxL8tyHXeOm0tw5saWHfct7jhuXJ1FG2syLsm4A5uBaDUPH0fChQ0fNshtCA9uiCVS2/HBw2TKJdbVc5zZUAMMFCxQ/qDQoIe7e5lNE7xXr948zIjvsWt4WvZs2rVtm7Z3Rpa/vTJTVluzQ+w2msWNm/z2LWfQZdE8OVt+VPr0o7xu2YqaPWquXcJ4DWVr3OxcmmLlrpXLtWTylzbNdst2zb16rnJtohuMD588fvX43QYwQIgUYyzAaCKjbLISPECnNQEpwowLAkLAAIMGDjjmQQ0r8oWZDT8EMUQRUfOHHVks8QefbGyS6Rx9INlhD3d6O67GmF7C6SfmohkEGB2pA5K6pJZ6SjsjeRFmqqGay+u4JulzEi4WUTqpSfe+OcedgxZZp7QRv0SMwMYClEKyBDPIIh59wExIH3cmwYCAA4q4/obNEelxhB0v7eSzTz8hGgWehtCZEqZrtuFGCCly4YebQm2EFEtuoCNqGWc88YSaIDc9ahnrjATVFu9gqYooZ7KB1DgWbUrvxlRRuuwga9yAZ88/b31ITAFL8WBBBT+gBVeC/nOn2HiE1bAYf2xFtllnbdPHG3sSEenRk7ihZxcGMpnR2ldrjGa6Y2L5kVNzmxkSVCNtyeUYW2w5JrqgoKvmW3vFi4nVgRLy6NlndQVwsEZ2sOCDDGBoxJ81kVWtnnv+G3GwL8kJqV9/L8bYMG9wccWfc1qFKaVtkvDAH26IuxfSScUFJgxuzjX3J+uKVJcp7ITBDl7pokm5ZxvP/pEYoWnuYGfhjP8EGED/TpljjjUGc/BoDYP2px6qNVyzmGkUlrprr/klyBFTtkZVpm7q3EOIQvyp1+fi5NrmmmOoW+YYT2Dm1BlgaK6ZKVKTwu6YcodKylu3fbZJy6sL8sabr/1M+jZ6/AHFIKMft42fwdRpOmGuP1xTFnY+x7x0f/XxyJRaTBGp7Ji4mYebJqTgpZ5uDqdJrmsopXtcTfGeLilesOtbKl42WYILYQSfjifccY9rncUP8oYZZk0HMfLaSsvBn8mxV9qfPSzY4IMNVohGRI/OGB1892/VZ80g7PGmHsNJ4madTBgopb7nfRsH74C0DGAogVzAO8qQ/ohXPCLx4hPks8ASojE36vzPbd/YV0RcsZv3hUh7tSEHOToILX8YggErMJ/5aOCOqG2IHSIcYQzB5IpiFI1GMIlLN5JwA3ckx4IyyYa8guQMagwOgUIZHt9qxi7vCGMJHtiABx5ADQpOpxpP+mGN0OEPiEVkGtaQ4YY+KJs1OWIa1wujYdbUK/J9QDIIEEU9Lvcge5DjDqRLYx5p4yVcFIMc6/Bhvs4xD0OUQBNsu9/h7JOjczljEJ4I1xGF4q4FFs8WSMIOL+aAgBI0YAVUBJIzPpZFG2HpWBNBnSu2pkcAjVE2zADFPebISsKIwnzlc+MGNlCEqolIFh2jZTAd/vO9M/AjG+64nUzyxw0YrEEY87gGKddzjt0JcVPOQMUgrIm3nyixb07xzi1yYQtYOGMOCRBCKgQonWXALhviSCQpU4JGh+gDHrKwmDBl40rZ0GOW+sxIKXRZPlxuYAm9DJE/AbrQjCysCzWcRyK5UY9GfKAU6DiHNJFjxHMdo4pHdEaSKslAYUDFFlVxBi+YF0q9zWEd2TgHyjR6knl0EZX0CBRDT8NP04hNpxxZRxR1mcsH7EE/IppGIODxz582lSCNs8LkXLee9azDGVkogcl8GE+fvUySSQlDvI7oKQZGJZxQEYaOxBqkY7QiABgogDO4+r8tYuQ1wHTqYXiK/hh7+iKvdvXHHB4AxShawAKp+ZIfmfpXgC7EEn51B6qSk41whAMc9QBHO9rhjkqU4BH+iIZN8AEOfLgDHIQCx4rmmru4RGObMHNGLGJxRGCMtHi8+BRa18nWb4QABRRAwQH8MVV5juOUF8ka6xhbmL0exiN4xZ4+5Hgbj5zzARZAAA2owSZT0COfywWoPexhjVP4wx3oUO06pJcNZWQDD9yIBDKEUAFVyGIRpwBELZzwjTN04hyniKx5e5ic1VapGrtFYDV69NEgWeoYwyvrdaayi6jAi6NAOkY1eoCBEIRgBv64HRYPN45sSE8jHrkDPcFbkeYWxiNdWCX2WoO6/umZBh/VMAQbaJHBL92jYivWp8PgwQ488IbE+YhHL3pxCjwsohO96IQ/jpCBXJAjtapNLTjUcYp8pKEWp1BCLTqRjWzE46WBVBU4XCtJwskBlHkraYSvg9txRmWleKtbAwQQgmzUhTxZtJpNMcKO7wLZIi0uDOoK7bU1ZUMUZWhFN7gILXvogx+ItdM0vmdoPQ5mHf7onsekkQ1pOKEWcKhFL/IhDow6AwZSAKRkJ/sNVJXtHOvAzzhqEQlAdKITo4bpWXJ3ZzbvhEc44dQyxulNdU0lzlDZRbGX0Y15uIMb48nipwkzue4tmtMRQTRHJneGZZUOM5oowAEudICE/i3WMfiQpZ3WBAowfjuNmGlEC0jgD2XUQhlYyMYi0CGOemAUpuBoBAwygcjcoWTW6IhHPNyhjEXUYhFKHoc4IoucuEDnwl9FxQGF1AxgyJlIx4DFLWDBi11k8rUwOwYwlgGOrYg4Zd+AeIo4siYUbdreFAm3RuYNQ8wNxhYHoFCF4mQLqwnzHveglrt/zmiCzOEAFqiAGdywjVrkYxym9SE11kENGGShGu6I5qsIjCV3bEMatZAGFuoRCd64JCVFfHmxY5GpvDfDUp6y7RJFmgtYVOMTqVjGLT7OzWXsJeM3vFf0pE6RNU0DHlM/9GLGNJs1+SLemMNMh0GjS9Cg/gChtCzNbiaP+YzpQxnyQAEGLECCFtDj2jCpRmAzYIt12PxbcGHvKeCgDBV9Y/HFbsYxzBEGc/Q9pYEP1SyOQeGl2GIZVSiYS/vOTXSoB2T5qtE3/IMYeJzAe6yfSNAb6o9A+MPbrfeHCWTvmc+EoAH+4LEeSwMKx6EfcwsbhVEwhSmwPw0wg1E6CXQ4hle7h2oosFRxCRKThiDIhlgQnONjs5gbhN8xlWV4F5PLraXghT14AF2ygEfAQNgii0DyveLQNsdwnPfzv4JQv4xgh45RMYxZEw2QPcPyjBB4APy7iKjBB0F7ljXxBmWZwa6JH3/wBWsIgmlQBn+YhChg/gN8kClw4AZ3CIc2gIFDaht5ug9zGARUWAQCWjPkI4q9YzCkWIaSYrZmS5Ko4IU+aAAT/IQUhJlri4uMMgu1GyQ8Iow1uQNrkMElrEGMMAVvWL1nwQwfWIHPAA3y6QH3q4gmTAU2kBEhPJo6coQllBpicoMaIgiLKZTGoIUd+INoiJ2ZAodz0JRlqIZjQIVOiARgCJftw7NmGASRAwrhYZeygoVcGJXsGCchIAAEkAJLUcOgwAuaO4mtqJG4cIcaIwxfQJFGZL1EvAhmUCjTwYdwEAAUIL0QIIBqaCGJWIcdKIGCiQEzOL2L0Yd7sAafA8VmmUd/MAUrqEeEWJMp/uGGeNiDDBAGdYC8LDI+oUiKWIgETxAcXYStWEAFhXy2CDsrY7wFjwKG5dFDvLkduXgLSElHx1iqe8wVzbONRNAT8JkHakA6zrCAXJi0ijiHHRioW9oDqbkHeEgEezRJXFkIJ4AHMKKnHhqHbdiGD/gCf8hCjaoGZhSKnKgGVACGSLiKZkQKVLiboIA+dRGV61iXv/MoiMSza2iPbzGx05hHN+Cgn0QIbqwIb/CFSuugUjADUSAIbSSIR0CAm9wAC9iBzcuYaVBCt8SVYvAGK2CHy1ssfFCvNYABWGAbV+y4vGsOWgSECVoGshwgbpADmWsGnIlD7WCXXCi5OLQ+/qyUDrniC/rwPZzLv8yIFg/RS8yDS4qAh7msTWfRh6DBB73Uh3gwgzscKl16gFboGnZoH8PsE3sYnS6QhcJ8CC3ZBSFYg2uwNsrEu+ZxBm5AhWPAgnyYRTXUm0E4hjpjIOwgxtEUJ9Vsnm9AGbMIh4zzjbScjdRhzrdESdoQwOVyEzMowYL6AAuQTKkxBRTJTzuZHGY4AW9YznoaiDn4AN5rwRFLyE35O2CAg07ghjYEnnaSA2iYBfY0KVi4SO14io5Uw+agEmjMCiwaycyYHPM7RFC8TYmwpxoFKEToS4IaUA8QBq+plQQFE3uABysIiSaECH6gBhfIAn+QD1cE/oenxDNz6ARAQDA8m4VkOAJoiLDaYs9cyFL3VEhC6T7k+L5Ps8bDWBMP0VFE3E/ZuAcaWrFq8ADyKR8p+gOdOxprAAW6JFIQiR9vMD9/uLyHwAx8mAMLaIx5mIdkIiUScy0VHYoMMwcs4IbNBB7owBlxkgRPCMF1QRLSXCBeGFMyZQ5D6ANRAKQXnab8sI0XI4fdtM04NY17oAdQeFDGWgYLSIAGaIABcKk1bRaVfNNANY3JAQVLYMyH4IeBSAWFw4yHwSyN4sCxWoZYOAVUMAcPFZLzDMZbmAVJ8FJ1wS0IkwpY8KhhNFVUZSdnYIIDeIADgIVtsAmxIIlsEAwB/mFWWq3VAqENevBJpxqMcxCGPRCFayBWZ9lVZAUQ1PEHJzCFyRuINRACZ0AIQPqh5MDKq4gETOVMpEBXqACDQQhVIrkFOjNGUpGCIjhPSm3GzaSQ0KAEAru2eXoQcpiGY4VTgD2NOiI3Q3s6gpiur3GDnXVYAXHOLlCYHDSvefiAOSi3g9DY/xkHRorZ7lQCYmseI5mKEV3ZiowKE9WlO0WHUnFXo2gnE7AADTgAUZgSjdsQXzAFnp3BG4UIfaAHD+E0ePNXP3HQpH1YfygGX4AHe6Cn/qgaCW2M4zqIV0Sze4Ebj3PPugGGWACGagieZuAFWIA+YTiCWZgFOhSG/mE0khG1ACiygEY41bT1O2fwgR6Ygx5CiXMojb/NCI/4RME1GVvNjJ2MDd5lE1zwBqcV3o6gnFHov3o6FlGggZysGiP0tGNYB9pNmatt3WLDJkB4jteylL0JVyN5hiMwhhFduU5VFxNNgBJYAQTghZBVzWVAh2UwLWrcEJ5b3qTF24fQh2lQruP9El/ABUEE4MIojRoiujZZkyRIgjqJiFxYARToAWE409/LhuxVw2jAXFTIUmdwiq6EClUYXXgJX69sBAt4AEPQVNdlJ1lMiYXtJ8ohYCLd33pKwgL+khvGXRw+iBc7P4gQBg9ImNhECC5oAApYgDJwFHuhUhYG/opjiAYl6NCrfGIQjopZMAby5QWnKJ5c8DtquFYnlo5jIGIA8QjzG1ga9l3EwIxiUBYYPoigMd6EcJA5Pggl5VOLuJzdNJrfxIigweOK2JOjwghyYJ0Y5WE91gdcIDdvwwxumAMYaAxENggq4IwDYAN7fZVtoFwx3glu8DJREIW7iDnPLStbwOJBmMO+2YWcqJu18uSiaI5sGL8P2Q27tdE1NgzMEAdJiIU/Lg1uEIXcg+O8/A9qEAVwsMRLJAheKAWoMcKHkJhdCJY8nojSqAfPzUuLwAx3aAVe2GaK4AePWAdRyJAZRlR/WAY+GIeqKeZETgh6CAk0Ulxa8CwS/pkIURAAOYGFCoWJNIzlJ1YHPjAsNtiFp7BiqDDRLZYEORhdUHmK9w1oIKmXl7BmAdFVO/7JGj4Id6ACpWsBZ6BkhDgHI+gMDcCB6rWIb/CBk65ELZkIftAHYegMCtAANohHiUiFyjAEP45pf6AEDQANDBCFYl4TOwANCggBcBZnzJiCpP4ki9CSFlA6JnhBeEauYnCE99OSKmiC7boIFbmFa7Cs8AOHa5howoGFdtwABECELWagp0iSp5gFVRBRZhundk1rtWXNmhjp2XAE6OJdjkaNemCCBUjqECiAb+hNiagHd5gBCUjsAsCHv66adUjqoVYAToQIeDuGt0pq/gUog2XOW32ABQIogbJNgLUx3iJEBAFIagwQAFEIZIfAjDIogNgWAGCwbMwoAskeagGgBsseiD1LagloAdLA6osQIb51iGuYgISxbIRA3IiCFKzda3SBhUj8gAN4a4sc2xcQUdIUhuxW2ys6iau+jaypNwAm7N60BdiWgPmWgBCQgJxGiN+chNym7/puAfw+iNtG7P7GACaY2ocobvumb7hahotGiIEYABQomPJp33gw3scOAAWfb8X+YWnGB2oQAAzo7xDY7DIuiDVpBQWgAAIPAc52iNKYAQ2X7AL4BAdf7jZhv2KYI8VFB8hs1J1DreIgMQwWY2cwYhI4gkwg/tGmAAZThgptkINnyI6Tgtm0bY5tgLxvSJYOwWHCxoweWPH+poAWUOaIGIjO6G/JbnGpGwgFEHExv29KHoxsGHAxp4IDx/FU8EvzsQCpXdPBYIM3p28KUIAad7fS2LA0p4ACCNKIwAzQUPQCiJWIwOwwX3DhMvEb32ZfkM68PJY9WAI/f2eHqFrwG4dIMu95WQZY2IM9yANUSAawRNFLwpkSFsFBGIRZgIWUGyeuNW9LQW+ZgGnqopzJ2WH0I+yBgHQxx4BGh4iBOABBn28KwIBtkIiBKABpl2wNsPET9wdYqPNB/zA5L6GBKk6DwnOEKI0yWPZplwCcXtMvt/Rp/i90dCZaf1iBeZdsBaCGhY2GENB3QndxTT+I0rCE9ovjBV6CYTcMe7A5tSDyIo8z3NoFScACYXjo7ICFxKM+UPGEZPCozoXKVEcXFrW5lBCQo8XljdbljfAIKlBxMQ+BC/cHMFd0DABwgzjzgL/vQ8QM/h50Bxht4z0GPC1OCzCEbt9mQ5BsMT8A5Dx0f2CCdp9xZ5A6zGiBgC+AeBjp3kRzOB94gjeIyfFJfqCFBAiWlYeImfgGgCZ5dCm5sU0GVdYOqujiWTgCXTKDKnfXZSAOrqrl2vCGQ+Vhwq6abchtB6B3I8j5gsAHe5gFArB0CjiA0SZW/XhtS4crRbD3/ntvgZgH7gVgoWv3Bzy9JV0K+wf3h9wO8xXH+Uy/9xBvfQX4MNjXj2+Q/WkvAMYf6XU/gMkPgGOobbHnGjegTRLhBi7YAcyYbouwbuTohtd9e5G1rVmwBSyopEsiRltHUVgQAl1igE9A9V/nmRbNHZgedWYuBldw7i5v+Y3oTTsQAOAOgB5wGFTyBzaYf9AIAAO37MEACCoCJFCQIKCMv3r+FjJsyFAfOAwEKFA4UOCTP3wON2bU58zCgw0bGDSw5U8fR4coYVmkWECDM4UpG97z96mAAooCQqyTOXOhQkQCclIQgCMhv58L5/ljEoCiQTYZlVKtavUq1qxat3JF/ploIUp8Cg8JebRQI9eZGr+BA8cWXLRlzebSrWv3Lt68evcuc8bL1q3Agm/lsrULzrNbtmzxamwr1+DIg3k9CvGhRQFI1PZy7uy5bl9ubUeTLt2WW0OfaTfqs+cv0OrYsmfTns1tCA/UtRs6M0KBhCh3U6/yKhJiRiumWVv1wNAD1kms8ey0CFEmWvSqGt3NiYFizrfsVFGCYxOihR3hV1FeK3O+j3KrKI9RwTADEdqr91q1UGAE2G4BCjgggTMVI0t09SgkhRTViCcgP+58880518j1GYYZ8uWMZB1KMsgsswjDS4clCiYMDRZ8EMIszmj44mfLRNPNOKbZ2NY3/vg8ssIKhjxYWw7+uFYgkUUa6dBtuRF4Dz7YYPNjVTUtJGVW+eW3npT4XGkVPlIyqdU9UtazpXZo3YNSVmcCheZV+OgDTzEJHTknnXU6VMw0D+1iQCbDEYlPN+A44yKMhWrozGImCjbLLbMcAwtkikq2yzHuSLGEHIMQaiindVVzzo2hnsNLDBRgcIAoApITJ5V2uvoqVknqJqA+9fRSS1r2zFMPm1jVOo89ZGpXzzytYiXWmFzds6uwUe7aK1bE8sqVNJ34Yyys2Wrrqz/MwKaQOlLsoFF8RWazaafpenpNNM0sE6mktwgDSBrJMBpvYI8J4yIw1VTDjSeaHnOh/rqHgvpWqKatA0sIpgpwSYD0+GINO9tafPFCshaoDznMYPwxyEV64zG0IZv8Kkq4mOJPPP6sQUMpJ5UcIFrrVLNMXwWn29ccZnwSDWCS2gLLiMbMUi++hfGS81w4L3OMOUq0E5fOnTnT1zbjIJywaeOIs8IBBzRwzW7kWGPJyWkfqfGS1nylNtxxV2WKL1DKffduaCrD8g5zoDOnRvFozc3AwKBbdYbHbLOFBRZs8ElhigImTKSwqOIJvCUOPbBezqAShieHI17X1dR8UyPXCaOTzSOUjFNbTcXEOTPetV/F9oCt5Wk773B7Yw/tvQuPFTNu+AMLArTIOSc6b7nD/ksj4xwz+ovAuDNACR9sIMUyQZeYizCReQJHMpLy4tky3AzCOfV3ZZM6/G5l0025slnx+/D5U4W7gPawA5v+GGKlAM4JFNPAFgETCBR/2OITtTCHFIRwlqQYqR5voVAfBBC29mnoGOdonAcewIZjeG8wj3EMvB7jCU+QSDKPMdxnojGIWHiCGwSjXjTcEj/4TWgdsnENO94WPAX2jn8B0gc9RgEPAjIlHsZQzxCJuBpLsGNIUlQgShpBEgWUQBMdOZI+1oGwbTijACHAAAa2sA0OxqgZsNhBA74gDFh0iDG82EUJA5MLVeDhXoKBjDCYhj5qOEMOsRBkwa7mDG6g/m6H8UNHFH+iD5SAwhL0sNsVi4ibWQ3oHuQgoHB20IMS7KAInMwkbaoYSVTeTSEfKEELViAFf9Qvd7TUGmnIaEY0UuEbbPSMX3IBi08I4zEdolweB5OMQexCMscQ3Wc8d8hn6mwZpmukI+G3jVpapSb6CEIxvIFJVtbOiHmDxx3qlj+NrMADItnAB2LgIHLKhh5dqCI99efK7H1glqopEKhstA5RNAAFGrjH9H65F78AJpl65EUx47ULJdiLMLmAZoa4EQZgUFNdzghUNrO5DR9uhR7TMN4k86k/cwaIHRXTHxccJ5IPfOABc9BHs1RKFZfqVH9MkaUL+MHNAM1j/mul+cY63HENdcBQoXlZxl8UBT4SOTQyhpEEHp95QxgdoxrUOAIwgNGuQvXFGecwakh5mFOOvMkfZ5gGLhDYU7yxdDd4yl9SqCBTmoqkBD2Za1a8IYuUAtZ2SSGERtYaG5TUYx0gDdU3urENamzVqXO5WmEy90ei8UKzkuMFHMzR0Z2lbxCSQAVlK7vQvlzjrGkNaTdaZpVLssMKuMDFOAurtrrWBheWIGzv0CEEmcJTJAlAxz+rIq1V5g8XCNJt7VBCxdzGZju45CE4LHsXZxyjmZoDH74GEylUYMEciFtGNTwBDE1dLZrHoMZr49sW6trDNW6wwu6YC92P8ZY2/va4JEz3SlMLxMAdyVVKUnCaT3J8cr93qwlsrEig5oX0ZtqlCwlNlAvHhHcygyIc9QYmB2CgAqN3WcaE5PvabVaFHiegB4AdzLv+zgad7JDr3fbQgHcatxFbWQYVGhCCR6BGsb1DiSs8JmO5OeIeEj5iPbKWVhsq1GnN4G5Vb3HHFnb4FpS6GjDSEIuxVk0u1DitJAin2qbBV8XyJelMppGIO/iDHk9estxoPBtXwAPHcUPJGgiwAQ9YAAFCgHNV9DGPPogNAxY4QAio4acEIhEX+sXzq9hhCnhcmksnQQeN4ktmDoJjdVguEaSAkWXNBZJQzgBGJNh3XkIOwhOS/jAHd+0io0+5WcUlG1IxzjA7pRgZ03bSs2yKoQ8/y60et1gCA4RgC0Qr1x0EwAAFLEARCqxg0gS8BzxWZuy0rerOskHJOq772nNQrX1QXQINtpALzwpmGV3+Y0Lp8upjjJp61CBxGI5BZbmgFxzY7HVae6Ic4PnDGncYhbkfoqADjztbyI6NL1bG7D8/JCsKmUMDHL1tCqCAF1fk2O4qDrJ7TGzCCBcUB51RBMeJ0KEjWnWJeAFNbqRhEThTqDlMiwpgXPl0L5fvN/52LSH5owumiNNMkpIsbujBTSrf1sVXQ49h609XFP+JQmYw8m2HIFVERMk0RnH1jyFRFuIM/lA8tvHycZh4Zz1wXAPYIJkNk4jeGtYqXtKH2jVXs6vOqDUqlIHUGqH16FzrxjWKEIAD8IIfSqjtlDgyj3VAIxmMuAILLkCH5a39VVnvymuYDl2FsGHHFGkcyaFDRPsuvfTbssc93jYbjTT2sQjnBgejwQYEPCABhkhhY/yuqKWZGL1wAHGV09eLbOChFp0ARzbi8Y1sNN7xpNl+N1IhAA+8oABaOEXF6EG7VXhBBiNggQ5q4AWk2N70mywS2vPUaSLWgxo7oYBIWEAINADpEdCypVz9wUpNWNJurIMOHd3pIFLVNJAZPIJiCAYwXGB4RQ7hgQYqpIGFsdHVVAOF/mhNNmQDFkjDKfSE1qSY9+HI9o0DOjjWFGRbCjgAruRWNawDHdRA/P0ANCQgrJzeVqAEM7gCdZETTs3BAVDEBmBAA0RDsdmONRjPxgmhLckCAq6GPhyc44VgmZlQvjTGvSmGMGTIoFhW421fLQACINSCF3rfOJxgLWDBN0TCCpCAA6gCdWmEDsTfH1YCFtqfkhSJa3zF/m1Mx83JHPQACvRADHTDFUaXPzhCnQ2iq0wSEk7iTCiaaLzgaIzDNnxDvxnK1RjTBdrRXyhfh/DCaHWGwClBU41OX1BDHM5hqa1DPgDCKfCiNCjDCY5DPIiRGLXghLBFir3P6YzDOazD/gyugzRkw630ghKAAyBoBD/IAi60DI6hSSjAXw0Igg7M31BhIoEQ4VbUhCM02MUoxDwEElgYCVpEwzmchRQtYO2ZI50IVhKmBGOBGiiORjcIHxuIgrt0CnftHUThXCumYYY8TSSUYrpwVzRkTffBYDbUwwzWwil0Qi/gwTcswimgQyesQzb4gzvgQzzggzD6wzb4gy5GYy3MpPVFQi8AgjIoQ1EtxB2wQyTEY0owxTCoAQuogBckwzAMAS1RkD4aCTqmozfo3sU0Ag2UwAoIwS7042It4hX5wldwYlOuRk0YT8SNB0w+YEByQzwMYANQwNJ0yjGI4S10VxneggRi/ggwxAIYFswyXIPB7RAyroMDfgMw9sIi4AMWKMMpYMEppMEp4IE0RAIWzEMFWF8aKINN9sIvSkNbrMNZ+UMxWIK44ZhY+IMg/EANqEAoCIcaBGFYzslTFiE5xJi26AMiJEBxeQADZGUiVhynvSadkENvZoTcBSRpXAM+QBoUUkJ7Fcox+JEw3VwZ7ouhPI2Y1d2LOENxIhz3jYN3zgM6xAM4TJ8yTF89NGO6teBR+ZApIEgk6YM5DEEN1MAPcIM+UNBwAmes3J+R3MP/0Cas1AM3JAChDVgJWIC3NeUdkENZ6uds1IQVqF5WSEgcviA31EMDZOgBtIKG/NxcPAq8/uQCMNDRveUC4HEKR1VNNFDYy50O920fjCJjNszh9r3oUZ2DcHyFNwwRubCCCtQAD+hBQqAEP3ydg9ZGbG7FNKhTttTEHIREcdFUCZgdcPoC1B1pgViCcB4LLa3DJxrn931DKzBBEfQBZbUR9j3TXzSULQhDM7GiCxEddgKTJ5QYQvYFjVwkmIZKNviQLMgC16WEQiSDGqgAC6jBL9ASltJJkmqF2eSnbCjEEggYPHmAWegnPLzdog4IT02oC+5paYgRN0hkXgwKMBQBG5yDCXVWVIUXYDBfIqHCIhxkdY5ihYLqjWzfQlhBMbCjPzKFOOqAagLlpjolf87JGTBo/rZoRCFAqfZoz5QCpyd1gaYW627cT4NuhJ7i6jhUA4Y8U0h8wA50j2KQYRkS3XkBQwdyhoxsK64KVCWegYTOxJjwgA7Yq5ZYK6Meq5GkjFYOSD24AwM867N2m5EmIDkskb7mzY1dhfbd6ru2xbo2zTI86aCtQFzOJZx2SC7cZbpQAx7IGob0RTVAbMR+3znYgzc4QpwAqEokBCOoQPwxAsssLGzyq5FYA4KApYDUgyYggIp4AAKUgDEkKBaindrZbG2AQp9RxTycg++d7FHRHfoswycggDt5wDGIKCwwZGRQJw4N3cTqWjScjrueLP3kSRcsRIMK5RXIgFEmA/0p/m2RNGqa+IMl4BakVtc1LEEJhAAiOMgUXp1rRGi20m1VFEMgMNxPDKbUcs02jC3O6JUHNELGdhhgdOycGko1AMIhPeSXPi5kZQNTOII1iFPwKFgcDAELsAArqIPRIm6A2G1WGOG/Fsg8IMuRCufeyi5V2IPops6ESO5i5MIubOwxbS6nvBq6RlPwcs03uAPH3EG1/gQ3QMF8QsEp+W6B0C5W2NfhHsk9KEjvnhtwUWIXtAb3psUogEInSsjzpg6V7QUJvSqJYq4tKG+nRAMq4MGZbkjJnm3EIlU9RKX7qok/+oM4vEIH1MAQjF7urm/d4qyRHOLt0tM/DS7GfEX4/kowR5xuULpW/EKuXvRFBmpZq2JuvlWZOWAB9D1V2arbCLtFjniDK7xNg9ZEMoCeDHgBapSjB9OG9/qKPbjCFjoYU3wCFSzBFvwNz2oLnKhfEGsFMxwxTH7qDIeKRPaFMMxC8nXZ0MCqdlEk4fVlFt/oa9CDuKWuQtDBH6rAKyhE+U5xSgxxVviCki0ZSugVRYTAAvjYHBeJLyQtHWNFMeTxWYSDAI/wOGzGdnWWm5ahLTSvdi2DOZxANKwwXcjIGR+VO3iDN5iCnRGbP3DDvdYAFOwKUxbygNhxViTCKNeGgikY3iDCtTWOAEpAVsqNk+EWKxtyyuGDO4RarmKx/vAaMwQ+MvggrwntgsdW2V42jTMEcCe7xTngAzxkXD6yFczKrA5ggqL+cvdS8Jx4wwHPRpE6xMG24zqgAAa8E0VoABfcjT5Mgyy4rDhvhEKcwpPQElraSDfgw66Y7Gh8A1OIUfx8wzVwQ+hC1jlcDftA8v3W0d6B7YU1DTfAQXOyGY1sZxZng0bcQdqNU2nSAugd6jMUYD7PLjn3J95eomwwxR4UwRIsQSq00jlcGwBuAEU0gBEE8oC4hiMA9cIyhRGQAAkcA0InTDfUQxkUwRSUrPC6gyH4wC4Mc+owo0Djg9FBrmtdTfKtGiyQCB0pzTM3wzFwlP4+zchWAx7E/gLpXANBnywu+YMpWII6keZCxAEPpCYtMIUGr3RWuDJWOJkTbPNWMEUJbEDj1JQhPLGd2MM6PAC27TQFNEAVcJwj7KhgJ7AhOMALpMABVMgx2kiOsIEESMABsIEM2wg6TAIBEAQluAP0dsMnNOEMrINHmzZVD9rPoKKG3cIcfEILafKJUcOojq27DIpyz4W6XogzzLXURq9beQM+O4RGPEP8ycAVqEdnj3MhZqI/mE1s1IQZuNNMlcAAxATc3EM89EADaJsT5p3csMM0VO93x+MkLIC2FQAtTZKiuYOAD7hwRMECpHYP2Kp3LjiD+xK2pTYV3AODM+M5VHiFk00A/rizAnzCUt/IOnyCADJ2KdDRYiRKZOTCJ6j2AZSBMRDcUy1DKxQAAQhANRg3XvCCEWDAJHir1USDEpBBNDhDay0yriadPRxInfkZumGCCsjAENDsOud3WhB2YU8D2gwnTlkAofHYBuyASpsMLxQABZzRAKKAOMANSvhC3RC1vhILDoiNVKzzHwiAAxxEVcwDEzShAvTBRrgJgOuDcATAGaEKy8yDoR86ovsDFRCaByTAWAsDpEN6Y0y6K/6BmEsADojVoGw6p19NN2wbBrQAOlTWMZR6qXNDCOSEAIgCRzmNq1sZL4SAAyhACHwKke8pW/gQLvRqbqHEL0DBj6rB/g9LOXhvr520b2zkwmLDE019gDuFc9okxSygQAAQwAAwgYOweW24giUgMLF33DiEwSBcyypzBD/gwyWgapT7wzX0gASUQT2U+0bURBkEgABgwLQoxTw8QKOP65V1OulEg6VjgAP0QDd8wzYkvMIvfDXMAwE0DAqEQCl3A8VX/AmeIDe4Q8NUhB0wtL98PMhXwzZMggC8gANIQCs4YBa34EIc9kulBD+Mrz/EgQ/CMVjI+7fbRkvTiT54g7drRTWg90wNWgl8ucko2jrwgqHfDTxIcc7LhjCv+0koiGxZRTQkh1WIURGYASV3zjEUQQE4wCcEVMIwtABQQAAo1ePh/sMKOAwwvE/CDBRRUEDKrzx1n8E9U0VNVAML/AB3Q/vTCwiVa8UZ4M9WuAYNMDtNCa2PBXaA5m6xxI3/GE/gb4Ropsmlka9+8EqUSwg3pBv6aKdynO04dIM7III/UAPZh0o3ZEMPzMAnuOs31IMhkAB6+MOtgyJS0YPDsa0k7TU4vgLgV/5uDP73pl4HbwQ/OANje4DzI0ARIDbHxc0l0Rlk/zIIHz1VRAhIHXy7BZ4zqD44XMNCC7BCr4NcJ/RCdHjCXEM94AI8uENDP+6E4MMhJ203KsQqgJ4K6EEQSj1A+BM4kGBBgwcRJlS4kGFDhw8hRpRIkNsQHtwmZlQ4/g2UPX0T8flztgUAAQJ76mlUuZJly4UfZeHy99FlTZs3cWqcZi1nz4Ef130DN3ToNmfNkCZtdjTat3FEoUaVClXoVKvgvnWrepXoN3GLlG3lOpbs2HHdztHzl4gdzYQh58WpIUMHK4EhfebVu5fvw4oX+yq8588Vy3rxxs3zxy9wY8cGB7vxZ+9xZct5ccm8nFEfOrFDxx1VuvQYt6dlUadW7bWXNNWvU3dzR4+dZIYfn+moUeNKys2/gQenaBEj8Hv27nhTeW9ec7fCoa+kd+d4dOvXC1qbhl0hvnOfQVMbvSzaOPCw0b/+li/NuGzp4Uddx9iKcsoL1wlSoUNH/ih/irkLUMCV/ipOOFDoGWzABXHShx5XplGLwQkd88YVjyasxzOrhFoGqWWcqQar+EhczZ1IRiwRtm+y8YecSDoR6L6D8PnImCFkkEENdf5jjMIfgRSoQOjo8cWae54LUkmG7IGnGHaWjPImeJQLEJ/mUponxauicWYZatBSUcyy0OnlvTFRG2ebdfwhBB6ZFDyIH9/U0K2GX0JKUso9oRtSuMGsmIzPQQdSywlCEc3oDHJmDFDLsrYpDc1Jr8oGnxzwOZPSq76pxxp4LPEnToRSSoYuGbzwBx8fE23VMj+FU+uMn+5ylcKPZm3U1l0LYkfX6AwZ4IEi3DmPKnDG/tlw02VBy+YbY5f95hx/iilGlpkU+ugeNfbT4Rd/6mGV13HzglW4JmXhiSC8yMWOHVeKQbLddhOB51fg6vlmgBI82MCQdbiSVjF3umGW2XOUWcQdTQ1mcTFXOhI1IX1CWgVHFfQwB9x5Oc7J3OA+UkYWYKRoook5fOt4IHzYfew4X7BVeddRChs1uHqyAWAFDzzYwx2r1HSHpnoMZtYdsKAd071pLTEFZn30HCglc9SogYUhXhEoanMwqVHmrxv6GLo8NrDAbA9K2Obreuypp56o9aIHni7A5lVu7EJCRFgh/NmGQ13PuabgotFE2FnCv1EsCH+gVIifkF7RTceU/hHKze26MT9I7OCu2eGDDTb4/AMpvq4GFlioybMvqP2R7N7MoxxscQmh42edeaLhxZ9qTqOKzZb9cScaapQlvER38JAmaRKFYhMUb3iy+SBz9NPhB/8ATOiZGi5HCHjYx90cuEcIAB30zxtIpeN5gn3ggAHYqKYxZnwpJmbw+fzIF3iswyeobgpmmqgI7CDrMIMAGpCLYhmPRO45xbOiBY548MMXpsDQWxjzCxnsRg0CCddCtte9VyTjGa/Ax+Ve8S38hY84/atHHxpwvg98DgGimFdI+nAADOwQAwdgwuqsIQv7SW+FSvrIKPxBO+DoY0vgkQ0R/aEKAmCgATG4/kbvGIiecUijF8tLj5q+IRAnwANuApmTQLwgOWhAJIT1wEccWGAOcbAgDgJZhQxUWERbie83jXiA+UL3AQSUgmO2aAAFNkABC1CAAgcgpF5gci09EkotORDUb2pElnFQziCXIIAiZ3CMc2QxPrXoBRbFNA5uhKQ+jVNISkLBHxUwInsOCeE66qQqf9CCBVkbgh7uN0lE8XEzs0jA+UBngRLIb16i+CQiF9nITejlOImAmTAH9RFfgawbqOzKONi0EGfMwAIYYMOjSKlFU3ozPs9yBzu8QTd9vK5WuNzgD771wYc8QwbmuMIQ/rOxOFwBCj8IKDYTRczNsAEBgETA/iyCyatPPJORjFzAJPZiG3oidEKUuYPELsMPeziFQ+dQTBkHco1GfCIo6UTPsyIhDXamR1rrkMciyAFS79nxByqoAR3isbGIJEMHV+CNPnyjGB6oIHgcTWgLsbOOR1gAAQlYwS1AwQyOzcJsjCwbBgrwibyQIxGy0AcUnUohe3jDNo3Bh4L4MQ9jncUdD3GLAF2qHmnUgmEk6sY66sEOU3iDdQlJCTfUkKMh0EJrE8mNILjxU3DxIx7Q+EEN6sjJtC5Job9xxzpAKxBQsEOJvGKCBUCHSA0UwSf2sMenNpu/1zaGHwoajFyv0o3HTWSBeVVNNnqBB3Qybx73YEYg/hhyxlfUQAcsoEOtMrI9xVQCj/4IKgsE8Ys76TK2UersZtrWPUeQQ13jGkwRQtCAQ+4gnDf5CDm8kYiIdvdH+oDHHbYTGHd8Yg/jcIffpPIsNqE0IXH1om+70o5O5OPAAQOHO/h3AoGgdTHB8wILrJfPlfCzOf4oqED+iUYd1JK+QPrun/zBVtKSSzGf+EIZ+gCu77XEG46A2UZLPCB9eIMZOHZJSISQgAdY4Bjg+QY6SCyRziAYNd+IxyKyMVPUZGNappAFKCaDVprQYjc6qONkV2JZtzXnB3p4xQ+eYV1/DKGD4soxg06MYn+Ywlc+lhLlNMsSBTliMBR+84Cm/sEMP/+4HjHgWQI+AcGuCK0lLWXyWL7Ri0j0FjZqwgc5ZCEL/qE1rv5ohxdy9IM1sqwl9Rj1R6phDm6kGS/mgEaS/yygOEPnI13IqZ2xORh2yDPWUkoOrlUSkg+UoAQD4AU3oDKOGU9kTo+GdD5qEY4GT6VTxZjGtfw8XRn8YAS0DGmvJzRr6FDGG7MatDBhUhhgg/s6zKgSX45Rgg9kAtlE+Z1NRunsSmEhH30ti4DnTD+HqMOoNfiB/FbFbo6Ke9wCccSEuysvR6iltAqf0GDoVvGb4ENNAmnpkVNCYIlQWt9QqUcnsuFvsnTTH76QRiIGU0a8hIIHLJCBIBSz/myL44/htKaNG/in8UlKKBDFSNDOl0SOj4ocJEk0DziuwQ2hyMYn/Jh2OrNxCmXAZhuKSURWZ1LGlEAjDipggRcYS2qkY7Pn1mEHLsztVMqcwRLrXrvbocT0ieBWKjp3CcBKDpVz1ALKVwcH42YldILA8lTP5e7dhdn26FDGHoGYht7Bxo4zUB7yQaJMICSJE5Jjpa5+Z0lIrhH4rkjjHFIe4DjG4Y87sCOnBK7HPHB0WYzkufM8h+qequMIb+S0iO9lh3zpYffeB4cyuCD+j4Mnlr+GxPQtuYc77uH6dH5jHZ1QhvaH8qwk4vToCOEHTVaBYcneQ5/L16PksaOc/sQr31UYcoM38ut+IDnomi4ByrHiAfNaghfmwBnq7dGEohY6IV/IIhvYxBFwobwSQjGqwahU4ArWSAD1r2PgjzvI6louCGwooxjugBwUbwMHRBbcgB40kCDYjybQgSrOgfdygmJs4QBCgALC4QAR7MhqgaQCJozYwQmsIe9eyR8Y4Qd0QAUwIedQMPJ+D1Eowxq6AB5O0LxqA8vO7Qm5w5X2Dh0E4jugor36QjEoIAdDIAT8YXB868h6ARD4jtrAYR7IoRgko7DMzx/MAQp2A81Uxc24EHw6kDvuIxBcQat0CvikpiDOilqYwTauMBC5AxQeTvlshwYGoA8cTVo+/qIFVSIlUMAC0osL6oENfWseAKHfOGUdWmR2TnAw8CH9ZIAHgOnxJHGFBjFApnAaZi+J+EQxuGEShGEx8kRCuiDQJsMTb3EzBkMWTGG+umMeluABPOAB2sAfnkUxAHEvoEYYVgAAmEDRECwbIqEWtmSA4mEevCH0CiwlhkENWEAFvGAYZGwZ3y8KeYUZrOFQLklJ6qoHTGADQiAGcsEX/aELrAER7XFJ4EkhHaIe3IEGkqkK/GEd9GEbG4MVkeXRwgHaDkcqpO3SXIEdJxAJmYsFMAG6FhIX8XFXFKQ+7If+fuMjLAAFMGADeKgZpsEb+FEmV3Im7yHTIuIjEOGP/koAFhLOON7G8CaFRfDgFGIwwOZBHuKpsV7JHXJPB3bvJ+8RMObFQQTCCgKN+HzyMcwAAxQJtRqpELBAIFiQK6NEFvKPIUKiHsLBENYAFrADAXshLKTCAf3BGZ8xBAtit+ohFLoFmN4GI+Hya3KRQqqjGMgB6J5RVPDwOhiDCg4JtRKJisBlCxvzOhwkEMhh0D7iZ7ohqGxROBgwr7LBHXqhFgCPKFqkGOJLRhQiqCpQBi6Q1UKziB6zvgSCHdjBFxZlIMoyL9ivCA5JkRgJrGbwN6MEZs6tWI6s+i5DH0wxizoFDyIhDqUFH4rTCw3LH+JgCGpgBGjh3qTT97wS/mwUZK0Q0hci0TLYQR6MoDkrqiYBqz09zx8s6QoXSDUFZPSMJx4iIcqoIqhGYRqebyGqgQ9l4Ao0Rhn901WCc0ka0R+YgRzOQB9MwRpoJ+a4UVA+Yq1wgR66ABvAoAFCYJFw8gAMwUIv9DIogyQN4r/WgfoExMBcSho64QeH4q/mjB7aqjzNYRXMDgqA6TJrFHMyNEo2VG5cAeacgB4UEmrs4R5AcyGQRC1mZDuqEBRw4d36YAB2iAIIYAtg7UkFpBll4d0IQh9YURsZxDuYMj5gUzaxwlL4IRBG4dba0R+G4QpUQEfWqE3dVGaiFFGgZBpsMwhAxQp/gkvnyTKd/hRbLtUjjsMtXAu5IMAbIpBxCmIenIEJYqAIZoEGF5U7PmIa+Ad4wKnCKORnsigbagEL4gErwggUBqshFEMQ6EIFKkElWxVKW3KFTlRisJRM78AUXAEeIoQ2kihTkTNBSIseilAWmCEI2OEOimHTTNQgUuZtjjVInMAbWIXj5oExHSWL3EMZMgUc2ATo+vEt3IEudACgzPVcYadRW+UjKo4ZiiERcIEZrMAeEiFQHcEaiqF+bDMR6AEUAoEeguDaIHAnC0ItUMpt3Mhff6T5aEEUbAgdaPQ3wE9FtugUOgFZ/AEeRsEK6ckwGaFbGOE/sBNkWeg9NwtqNrQgmkSr/kyBHKahfnbyWiKEfwyCMuRFZ20lJIiAAR5gAB5hNSnEwPI0Nb4BH05hHTapddjBfhYiqH7hCuJRDUbNaf81WdW2bbEjJT7AAz7AArhAqIIE9b4BwDblG+CgE+pqGhLhSKDxLlIiDviDBWjhpNwWWXl2cR03OlJiBTYgBUBgDuwWSB4nGlohayFtHXphDvnBFJDLx/DhGS6rBqCg9B63bgB2dV2X2RRjCYSgB0DQiPyBDQKAAEKgGjgXaBSwGOQhUAwSIQZDHDDB5obgZvv1dVWmdZn3eR+yImfiSIEEHVw0BAhAGFJvTFpEMjIjQSgsJVjBUJ0rzRQVenfFedF3/n136lU1Nki2QRSxFxi2t0TG4RzQAQ/84QzgQWknJiXogLlkIGusln15RX0NOIELwriK4WQfgyhzkAu0QkxS7hjly8fqYY74gwfAxYEVONzY9oNFuCbcgGAHF28G4h56N/y2AR+mwRQiwX5O8CPmQQ98qj8OaoTJBYF1mBHNIRTq6nHv46MIc0DeSh9stZ1iDxR84aPu1SAghw9HgA7SrEt7mLNC+Ipvoh60y0Acd55qQ1uCJN+0KBvQIWxHIfkILCSqYTfwSHG1eGe9OI57gotroDjc1V8/4mLr0zqi8qXqgR7IoWIfIiW8IHXpeF54OI7tuDjq4RXmgRa8GBqS/qGAL5TiRpdCQgIIm4z7OHQUiBgi8OJjE1mOS9knGjklhuAH6kEHOkgg3AGHPZgLPWIaQuWJBSRluwId3IEfnBE3I6IerPiUg2SRtdiO04wHoEAgkkEFKnmXVGAeWPVCBfYMlOMtF+QetnMV7+EdYJaYncqYr5iLZYAbfuAKZMwdeklV9EANlhdkWWdxknN1UsM3LMF+ZhmcMTSL9Xki6mEYMMyVYwYTesMdaoCx3JYF4cHKyJM7HK2kXIQEmbaf2Y6fKRoi/rnbhmEE7OIjkmEEuIGoyHBxi8EVYGueUVlvB6hF9pcdbjmfL3qYLDqmG+Kfy9kfBKEGmMkfvOAV/rzgy1aXjCyBHaJnmPuieEBjTeZsFMTWqGl6h2f6qV+pi/GhHWSADsxVEIoqzZ7XFwB3eK1j9PwLQO+hj6XaMaP6rA/in3+gOKChA6DBa6AAoJy6RveMHhLBBC1TODqxHljxdrBhFNI4EdWaJRu3sB0CiZPhg+YhpNUMa064bTe18lwaN2FaIkLCFtqADfSyFywhTq0SsYEzrUW7IVahA3L4eWlCLUChtQWliBvDGVDgABygBbAA/0obocSZmOuBG2QAcSP7dbcUQAkD4hzjI26BkUjAAWwot3WbtJ0bit1BD/AkZx/3rMgNF+oFiVypE12CRAfCGhxWDhSgAR7g/gGAIbor+rDVOyNO6LKf9D5yKhAOVjLEFlu4FEm8+yB89lLBdCB2ElpN4WH9gRiKgAqOIbjbm1FbiGUc/MEhPMIlfMIpvMIt/MIxPMM1fMM5vMM9/MNB/MFTghHceTHe2YC9G0rC1RUCga1wuVoTxLVc6yCgJAjuwQ2qxRqeLyTcwQkXfLTbWlVCfMiJvMiN/MiRPMmVXDESC58uV4tHEBcCwRQSAV5kwR40I0l4LIjcQB9OQBYsgX9Q+sc5cNvoQA/QPM3VfM3ZvM3d/M3hPM7lfM7pvM7t/M7xPM/1fM/ZnA4YQQeW6uaqASOs+3U7tVfYYRTYARTcgBycwBcc/iHS79kSHmR4wdRayXyS+MEcNGEEVGAEQD3URX3USb3UTf3UUT3VVX3VWb3VXf3VYT3WZX3WS/0CmOsHeKADus2SPxhqkMSKB4NTMz3HPqIQKuHYkT3ZlX3Zmb3Znf3ZoT3apX3aqb3arf3asT3btZ3ZGWEVrEcFfgATuEEd8viKO9G7+1tTh53dlLzd3f3d4T3e5V3CFeMKJjSup3nd9R3d+rvf/f3fAT7gBX7gCb7gDf7gET7hFX7hGb7hB34wGKEW33vfKb7ikW5o8t3iNX7jncprOP7jQT7kRX7kSb7kTf7kUT7lVX7lWb7lXf7lYT7mZX7mab7mbf7mcT7ng3V+53letfe7JeB7KIU+UTCdViwDpoO+Jjw4SYpeJTAv6aEX6oee1vh7ULjULRX8JYzeJ+oaMrJ+JapDLxoFvLOlJWa87LGl/OZ06w1C7b9+YnxCYGlUQmhH6ITu7BGCY+2KO8q6JxzkZF9nlgVwzLXeIcI+sSFC6hHCHsyaIPD+NwICACH5BAEKAP8ALAAAAAAgAwkBAAj+AP0JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHLnxnj549+DRY7eSnT5v9ODB00fv3j2SOHPq3Mmzp8+fQIMKHUq0qNGjD/HpK6hP302BK13ZA2VtmqNpiVwFKmbpDj0rxWQF8uYo7DRf054KdLoUqdu3cOPKnUu3rt27eIXyqyewXlN7aotNc2IvEC57pthZY2cPXkLG5KpWteTtTjFcxQjay8u5s+fPoEOLHk0aKT5/3EQVBFWsS2Rr/hxfBMyOnT8n8KxYc2yzbenfwIMLH068uPGQhg40CBGLWSDKmwVuVltxqcnNSxPdPknvuPfv4MP+ix9P3ufSdT4oYAAhyZRmf747bu4uUJasRPR8rS3Pv7///wAGGJpT/pCTDQkUhECAavY0pdNNbTEDjymJTCMQdQJmqOGGHHbo4UNL0VPMKKaU0oAAS7gj1FJLWZhDd9h9KOOMNNZoo3D0YAaKP9tkc5qDRd2zGSiWWBjfjUgmqeSSTOJkoSPWZDNPNt98Uw0147hF3xn2ONLkl2CGKeaY8MU2DSjwYIPPOd+A4+abfCGlz2bs4BKIY/QcSeaefPbpp3E3yUJPIP7Qo06bb775zTxzkcOMGxf+KemklFZqFzv33OGYO4gm6qmeR0XnhisYWmrqqaimyhGBZ1riTz3+4HTqqaKnyTWnP5Yw416Zqvbq66/A7uePG9Nkts44ss7q5jfr1BVdhZkFK+201PbpCzOy+INPrMp2+81dS1VFToPVlmvuuR8u5Q0z3vjDabfwLpqXNYmQi+69+OYL3k32yGKKhVXCK/C34Ap0hjXt6qvwwgx75mAxzCzibrICzzpOnHdtJosvjIHa8Mcgh9xTW5Thsm3FKDPrGTPa+VOqyDDHLPNGvsBzRyL4UIzyrCrzoy1e3eWQ8MxEF200Q21d24U/8WSzM8rnZDPJJ8K4DLQ/suBi9dFcdz3zZvDAoRWbOj+daJVFCKCcLZxtlqs/9uBTq9d0131vW3dY4wv+HgGbXTE31DSAAQUSsOFZu2e8CpjdjDcuLTzsOOKNO+Mog47fKHcTjQUUWGBBH55tNoo9tzSDj8+Op666pab4Qs43nUTyLuYVr3PMDD7Y8apn9bgjAAIDcMHr6sY1xRZgDdqzWYNAEu+8RN3pc1W7gGQTT9m0n+3OOtX4wyjv4CAQggcTdP98aX/Nae9D17F1/vtMbebNGfDM8w0enSCb/c5tjoMOaPU4xwBEoAQSUAN+o0lfTPwhmGI4wheJwMUZWOaVM3ijGMVQiT1qEh0Ewm8zORAIOsbRC8rtD3NZ+ow+1sEGC3igDOTw4FCaByoMsYMc0/AGLh5Flju5gR3+09hNTQbimBySBSu4SEQxQCGLOsFjaMKSYdeWQg5c7Khp6FAGIJRxQr+NYxwq6kwACeKNSMhGij2J0yQo8QlhLa9Q/nAFO7biC1lAzDYYoYc9alaWaVjBH45Q3lpehsaQLQWDmUHHN7LhDzjkYxxdRNk4xAFJcaxjbnRpyzrOcaF68AUzheTJaWyBgxAkaAXAKNRSbOMEekxQMYI0CIscMkuDdKcY+bkDO9xwxvWF8mP2YAc8EjfCNmUjDdJwWiSVNUlwfLGSbqoH6uZymnmco1kHuYMpmvdLkQgjBBvYAOcG54ybBMJfxXijxzxyk6cww4GSy9M6u4kudphiFP7+WEc3lgUOKi2TmV+k5DPdJI7v1eVy/0PIZmJIz5Doox5sOADnKNA5C5hBl7taSgd5wjyBSCiCOWzLPBvaq3CtIwgCUWaspAEHZUDyn+IAh0ArGVNIPnMcnJSLz6z5DRWBaimjAAV9SNqReqADAxjYAAXCSQENxKAd0uEmUG4lEF94I1euiCpRg0UgX7giM33rpz/SgI+XdvGmzvwiONThzLTadBzcwKRb7uGObfT0ZwhhET5HulWIzGMdplyqUjmHAmfYCirCdENG+drXPjkoEeyQR1k79Y164MGfJxwoJd10Dje9Na1uBYc7pmkUfeDjXZVtyFJAkdXGZoQe62j+gQWYGs4GFAFjmTyJG3xBj6G61lSysEdW2eSpb5yjFiql3U3VCslzPHOzNpXpTcUBl2V9Y6MMgRwhf7uQVQ7LH2F4wGDV04BN5IVcrrCGI1YCH8ZyN0nTKUYg2JGzZH0jH5dN7s6YO8mBfna5ag2HZ58ZD9MaBR+pKIEF1uDLhljQve99Sut8Ea0/HEA5ykHE7s5b1WL4Qj9we++YaOKPe7rHHdcwq5uuwY1TnKKz+w2Hf2f81nGYw63RDahaz0Hdrf1kKfhAhz1KsAEPIMAWJnnIZu6wOBEr5CbFsAYoglmmeVBjDkzog2HlipelOMYN+sDn8JyspKecoRjtCuv+m7ghEGq4tGIA/u9LNesmGb+Jv2oVRzW4QYMezAO3OzmNO87RjXnQwAMbYMAj8KpafzAjhhBubH6aiF342EQppWmMLECBKTIzyR7eWBo/1MqzdZSAAVq4MbwA3NaBpnWmc0ZrrJ95DXwcIAQhOID3fnK5WOlDCB/YQAPWAWiGbOaHnjYIO67qkjEPBB/14DJonoILezo72R56rKPrgb11JEEELRBBKtbhqWbGasfgcG5oayprzaKV3eZAhygEF4IG7FonO6UsOPyxhyVwkrQO0Ri22+uPRHgD0uOZzzSYwYwQD7xD3SGHLKZxWv16yhg7EMELDKAKcnsW1nHGMX/+W43nOL9Uc4KjgL0NipN7rIOyzcJYpAdyklFYo9KunRPkElfL8bTFHpbIVpMfHqB7dIdC/IgHt5hZDXpsIgEeEMEHxj3TAZvc3ZTksXTb2lm2ypTk0T0HLYqwhGNc+yNLmcfSx1Foms/cIMXyNAht83bibOYEcCR6gDYDAe+p2GLUeEcShOAJKSQhE9FwRjU6O45wgJzVYBd5jQPsVoE60xzrQEexQ8IPRSZqGyzXiCmKIVWienkULcM5f0jsiFFAUe/l8YYpTpyNvytqHOugRQYKUQ859OIby2iGM5rRDG6k27M4xnFN22r5V8865GrlxjVC/5F8F5f6GWHGNHz+21jtC71D0eF0nmAfHioOyl3E7RY3rJmEJNhiG57whDOW4Yz6138Z1KgGOhhPYwHn2b/g4H9zlnyk5kxVx2gdYR0vV1ybhxE3ASnc9yfShheN4Q+Jk2TZthSWYBuqR37B0SKkEg/6oyzfwGZ7EAOFQA31BwyxMHz294LNEA3XcDkBJX2UtHyWp2Nv4lw29XhfxIOgtV0XcRqbZF9COBu34WN/wg3xIBr3cXYeAgpe4oHF4w/W4AruYXvlVg1JsAPRQH/DJwexkHjC94L2R3zd4Fzi4A7uwHyk9oaQ5HihZXJs5V/OBRL3AGOzUncg4g94JClLwQhqgIB3cQ/kkAj+32cj0fFHf0iFwMEM7OAE2nIN8bIO3KAJGfAI62AM9dcMwOAJ3OCCnWiG9+cM67AGCYAAc2B8bwVdBKhjNPZMdbhjHvFQ++RM3MALxyAM8XCEGXEPzDCFEugPPAAFhEgXSQYpDncjSWYKMdSBjthlN+ELgdBw37AN8LJ+ziAEUrAL3ACG9YcKg6CCZkh85kh89VcKHlACJWAAu9AN/YVnoNV4zySAkFdJahVGGHEa+KBPkGRcjQA8HrALOaEPuGAhkvILP6ADq3AQ6qAOEygUN5FECFdU83CRxbFKprAjvhiNh8UOG+MuS6csB4QIHyAKzUANZegMx2AOSpAP4Dj+fOd4jsEHCzDAju64DXCYVrP4X5Kng5MUU+CATRexFG3YKd2wDUUwWxbwBTlhD9NwRn4SBzIgA3TAFPhAB3QQbUhxE6PQWh/Bjw0oHMO0jB7JGbIAD1mlhYnSDeuwA1JAii4IDGCIjmc4k8S3CzeZAQwwB511g+wWa87Ef2C3XK0GWtJkEfxQVn93jUspTlWgExBUemLCDVdQAzUABWxGc1m5lXKDFF7CGB5xGs7ABQFQAAcwC0Q5HOSSLW7Hh2eZEzdBD9jCDvXADWzJLOOgCS4wB+4gDOW4DNwwCJJAji6Il8sQDcdgCBOQC/5wDMfAD98Ai9DlkyNncodZSU3+aBHX0y3owAslsAJSoIQiAZXj1ye/oAI6oAMj8AoEYVpa6RcCwQ31MA/t4A7t0A7qgH0i4Q2oR54bwQvKEQIYEAIFwAURSRpDghZyBY2x6RNPUSE74o/d0nS0IAVCEA3UEHxyCQxyYA7HgJfneAznIAolsAZgxA37B4/M9ybiwH/IAmskJ3KOR49uNRFLUQ8LSIJN6A7GsGE54SUOqiQPpQZD8AM/4AVqgGnw0Zl+YQ46UAnu4AUsUJWZqQfH+BExUSRQiBH18JhLRVEH0ArHsRTMUAv+IApLsARSAAv39qBDIT+GsRdqdjbdMwclIArGCYPCl5zAMH8iSnzAsA7+ZpAEqmBCLnqYy8dcPwlaN3iYreZc9DkPQ1oQx1I248AotQKbFHEPS1OpN1IP5nAF5nCkpSoOcQKfdMCGKsAI8LEO5mBJr3AB5jCWq1IgLRMSvIABnqNUYtoI4IEMshVO4jQHcEoUotMJr8KWd0YNH5AF1xCTx2l/3BAGg7AMwSeix7AMJSAF7daD8/hMzmUOPGaYAuZ8NXaY6oAs2pKgA7GYeshMtpoT7cKpHYIP8cANQ8ADbGYOnKmV3MACrpqjfwYNF2AM9uoQN3EH2dKRFVEKB0BREqtyZcCkxrEHiPYBweYBD6AaxwoU3QEp1lBX8NIN8VANj1ACm3ANnEj+ijF5DLGwocgZDdGwBxPgptUwYM40nV8UDv1Decw1UzVandIFcjvrDogQAkUQDUgzD9joLZkqkf7AZKB6Iz6jr/xKWvDpBSogA7+AV/gwDzyACTuReiNxDCvAOWpLAQewaN5RD0swW8QqTmaAgR9bkJvBDL5gMumnLOtnC1LQBMmwDTG5kqQ4CNs6k4MqCjCQBZSTYpKHfHA4gP+3fOEaUKEFDvEgCgtQbzHQiwmho9PpLefgrjhxSHvVJ1i7mZwpCBcwDHTAA+ZzE15gjKcLD4hotyKxlBQ1Tg1Apt5BDTEwW8EWbMJGbHf7lAKBB7JADmpXNlbiD4bgAZtQDXL+OYoyKXyegLg0uQzuIAQ7oAvnwINveGc51oNmFVOdRb74eHWJ4g9sMDghAACpxRQiiT3Mcg8A9xOb4SUJyyGri5V0EAfzIA4jUAk/swYyAKQOZYULlBPxgGviZAGFAx7j8JjhFGwWEAPu4LDJaxFLIQuJI4IDs34MkAXkaLid2AzQIHwu3Kcz6QywUAJ7gCgqJo8B+HVtJV3fEJjGJw48y26P2moxZUmwgFQLYDh6Ip1aiCiWdBQ34Yx+EsDv6aT+8Auv6w+VMALtwA3mEKsi0VuS6MFe6g9F0AM9gANuOq+/IQXEuwEamwCg878frBDWYArZsg6QqyxuiQ5zQL3+4NCyZ1iOMSwHkhANzbAM1wALiJABwOAOuKmzidKKATi6NtUmi5puzzVdrwha60ANJmA4B0Ghk7wo1HAsq0kUNyFUU7yvrLsW+KAGahAnanABBisDVWqlDKwRbUEoETgSgMbGv2EM4uUBxmwBMOCvdRwSFpI43IY93SMKSSAFGirI2LvCM7kMwCAJ9XcM4CAKMfAFsPWz0WV1zzS6mZxnLapj1dmzVycOPWZQaadP5TYOtdZvbCDMI0MOrqK6rnwQ1EANbcENv2AOv2AMCI3QX0vHBZFEzdYTtWKx3kGaSwAAwJMFi7Ary8wRQoIr08APLwe934APa7ADqhCK10v+yDR5DKhwDLwQD0sgBLaAqIxqe//Fs5e8w19EzqCFfFsHTdPVdgNBbv0jXV/UDf7QBA9gAQlgrGR8urTZyvzqEPsLEjTRcL2yF+7gDPOAD+yQTk+90QlxE+QwFvXAovByDtHwrNkgrWVol3dJkx66oQywBzMmyZMcXaN7KNG1WZbXzjV2g43X08v1xNoyguc7DtvgDx/gARo7nvr8IHNUtTdCxUVBE9NAKL5Sn5wNSNUm1hkxDbgAKTtKguuwDYWQAcFQDdCQ0tcsovTnCWtQArtAD9fAboRtVi/l1y1aU5icY0adnW7FeHUGYJNae4Nd02znD3H7AE29y0VxcP7+PNVBIhDaQdmS8hRZhd2gbTVqOWX+cI3ZeA82uQbGgMikqMJ8ao7L4M2NsAJrQA/fAI/+JWM4XL6XfL6RC9wll2PEjVPcwA0vqtz+dQ3+MAd/sAbQPUP2UAwMtSeWTRSgkBgMHSaYfQfdHRFu4w0Tir/dYwZC0AjhANf119oyeZyw3Qzb4MbAACuTbIA6m74EBdRfhyzpinz+t8NpZWdfh9tplXjO8JNvta66GxdEMt2vLBTkQA6/zFX38HoZrhBNwQ6uYj8D0w3V8AFzAOSuHajZDAsJIAqnUAuDtslzpr4+zXU8Zsk97l9F3Ex9DanHV8Q3eA4oPXxCmWPsRjD+dhHWNRLhQiGFfj4jpmVgFSGFXRrlGikL/Vh73vJyczABxlANxqDeo+jlxJecxzDbpkgK2QCEkxeH/wdj5gaAlAvENm7JcP5W6PxqnaWSZng5RusmiY4UFFLhAQLoP9YlfSJXiSkRZtpwg/6g0XEH3pBVOswz0bwDZhAO2DrIMJi9gboM4PAIO9AG9MBjkeBxjCpyyJfnwO2G/NXDNa7jN6x15YqLoviCPItjKmO6RwGS5zkmuj4yVP7gI+YuTdAEQtBG/NkQ5EBhUW4Qm+EKX8k0FvcmaZjUSZAKKXy9KymiLLkM3yAFSzALqCElaaCHJRcOMMqD8ertdzaY08n+5kAN3JsFDuhAhnK5eHYWh6lsF/BgDcPuIfXOE1Fc60oCC57jOev4phJBDvU68ASnRPSQMwODDraQAXsgret+6V5+DM6QChMwByTsJtvADYjCJqsulC5aJbg5gHM48kZdxMK9zs+E0pbuDNFAxLjnGdPwQzUPwP8sFOzwqXMBZLgeEvYgDgRAZMTqAUsAoA1xE67gKnuPbeTgCjHhed4SD8ugCR+wCxv6gnUJ9dOeeFJQAkPpNM0VDS9A8V4XgOX8UuN7DH9KbudqUzz+UuigT6eN30E7SeswD/GgSJWf3va3DNngDor09vAeaZTZEfNO73UPFItvlkjBD0+xqYn+zxGn0QjiBcfhtI7rUNWNhkEZTiAbIw/1MII8mgqNuw3R0NqWjumZfgz0sAcwsAfSaXnooAoHQAIFQAm4TeovtQ3n8AkLUAAocAwAse7bN3AFC44Ddw7ct3PNylD5NO/bOHHgwiEENw7jN3+fDiFyFq2ZM5LLSI501qzZMmrNPgnTt84fPn81bd70p88fN3/zcP60ec8mTaA/69U8WtToonVClT6FGlXqVKpVrQLlNoQHz6tdf+q8R48ZPZ1ezVI9CouJjyZs3M08G1eqTw8b7Nr9sKEErLjM2MkFHFjwYMKFDZ+lVzOIv2zuBhqEDK4bt3pJhKTihpLk5s0jVX7+Br0ymjEhUo7Ry6gxozsmDVIsoHKtW7iKBAduE6fx3IwGFA6Q8Ydu3XB0xc8dRydum4QDCxosm5g6tUaE63JRKFBgxrJlmlNy5z6S144NNDLlnIlP/Xr1Pf2twGHEXzyo/HyyYUNtqs9PotxPLea/wwYkUK6stioQKHzqYXAdN6ZJ8CyaDOmtgd5mqCbCs45awgK87kLBGLmc8MYeDU9EMUUVT9QpEVDomWccgiIz6Bp3dkmgkWii4azHk1IKDTSTYPlgE+oOUm0eJHpTgApgVloJvPCWOeaYEDRoQAEk2pkypB13JAmYAjCgQIJWqkGzmmzSRHObbeb5gwI5Baj+MkrufGxmjQc+sCCLqExsoUwKZvAnqaKO6gEDCSRAx9CnkFgUOKKeiqcPEFqYx6kVNy3wQK40pEkcWDKxpRZOq3KGghAo8JCCBtiop6xTldIJFgQ+3MCDEtAzy0RT/DFxVmGHJRZFsKwJhBx/wNmGRoO+WScbM0qgxhlovPOxsyBXcuYYMyz4JjnqECJXnGpwkGAFW3gEcluSLjmAAhyO8W7bY1KVIMtd6FWpu34/o6aPBvI9YBZYbLHlFoUPhgWWWW6BxYwHNrBgCXCKwzjj4rp5T05V/VnHHZFFnofBeubRZxkysYvGnXrYg5mmVhSY8xOo9KkHGAFSIIGCQov+BdorT088qpQSEMggAQskCRooKnqjwC4KMBig0aZvuqceISbOdQMEzpO1K53usEfTq89GO22grLEnkZ6ycbagbzhuJIks3DEG25ROQmnbKNF5pIQ99HnsSHHOEYeaZYDB5whunPHX7363EYUNviUfqcopuPhEccm7vcWZMmLoIZVdckE9dVtyQZh1XkTZ4AELEFlno4UM0iibdewIIDtDHNvmGzcH+oabbr7JBh2oAwDG+Gueh/55bq4ZR5QF5FyglXWO4x6dc4ZzZ5147DggBQw0+Flt9W0a+sRdMtA1/glETNsMqDeQk+poHEU7CwQSIEAJUpE+xPjDCsBaXwL+FXgqeyTmDOTgh4zixqxxxEMKO4DFNkzSt2ztzV7OqEYJzAALfnSDIrlJzTke1x2TSAJKmPuMSaoBQ9CQJHjRiFyQnMGLhMGiGaWwBS8UNkQiKswWwMhFNFLRn3U4S0ZPlNE8JiEKUdSjWRnBnXTE4Q5e+KYPt3MiddDBhAIQoAwIIUhuKiI3cXzjGrwowAYKQAV/mG2BV2ufhqQAPw/00QMZkII7wha0MjTAAnKySwgC8A3+nS0m1wCHTwRzD2+M4o6XxCSBTOQNN4BsgnJbxy4MoIllsAtPe7tckI7xjUaUoBXjUIhqMrJGz/WLGnJoFw11ucsaHqOIt0DdL4v+mAteCMM7n5xIdGDpvW9cpCDmoJEE0ZEN6jkxOnLTSEgwYjskgSMbR2kGCFoxj0llMmh5TBA1dvABP/qxBOtoZLEoRKZDuqoH7rDj2bJ2snia5R7ssKQ5BTrQXp1BFv6QYNygVY01wKAkHURlLkPDEl5k4Z3FI9e4wCGOIJXSE5DjZUhpCDlhIEyYJwVmLoTBi8+UJBsY+SQWZ4TNiaBQRtx4zPPWCJkn2kaCxcvGjIRKEDSiQyfqkQc/6sEPggINnQWKxjrbGT+rXe0oXCBACDCAgQYc4BhNBYwvmAFWspa1JkJhhywsMZOgTvAc94DEDtbwuM78iDOY6w43ClH+AkTsRDWyREgthRSNQQBDoiJFrEq6lYtbJAylvyxmEN0F05gaJBwHiduRKHtN3CkzMqq55jiycQ763IQp+TSrip5aICmws50ZyEI8Bgk0fbhjEhggwAGKcI3UmoUejmAHans7XPWNAh6WRMdMaXSN4pXmlSbpoGcwd4xsLOMGUqBGtLqJkGmCtKPO8IQnWpJY8qpEiI8Vpi1WCgt+6RBulZ0gZSMTnYrIl6f3RchOMwItO1rDDfAQLnETtFoClSJ+fSzBB2ihPqaOrLQCtkqAAgxhCs9KHyVym0A+yQ167GICjaiGtbDlnQ367RjUaEQGgJHdb4gDhdMRCQyPEYv+w5Z3pL5E7y9XdwyEHSOHQnovfCsryzXOFI1rBKx+9wuZbkjyJ8GqMIoIfBiaNGIHFvhABmDQCF6pzWT3YKqwynkqcnQSylFG86m8gQtX+OMcnJ2vQJLgAXXQq0d6K/G2opGLC0qjIOfYJnW6UePQHAMYYciMjXeZEiE6NseNvUVJG9vebZVSyJc2CDQ/2UaMcEMhWSyIONChlGncgR2zTbNhpnyYpZ5iDnNYA036CZRYFWrMaS7ny06lk2JACNWpBrZhguUIU0AoyDTqxjb8sQch7GEdxoDonSsdkj3QYA6MwaJGKqLCbFBaclTyhKIXjURHPxoWhuXxLe4lY+X+YtrdmObGkunza294I9gD1sqnIpQYUNzk118hylH48W/i8oMm6ng1l7usIp3I4i8Ev3fEvaIPX9XiV9qNGzfmwY0mLKEV34Au3+4qXR3eKxol4MI16MENihzksui4hndpSKVYjFfcfoMcDx9NRGJuYglcEMa6aVjNdxf90jJqClS8wYwJS/wsqy6MUHLgj8RcpRow+MAHSpCMW1P4KHvwUF5WEI1ZmegMf3F62uOiD50EwR7eqEe7I8ONdWRiApmwKyo1Q0NhrGMOE9iF97AonXDJXJeLUwKNb+4uX5b70cT8hIcqFg1vu2sZYDS6kOU+wW84+SmuOKjaCQP1wpD+Q1lWUY8xDFAC1h9tgBAvq04MwYAV5CUvNHDZrNhxetH33iquKMapE2rNbiThBjPU24i/TQ1h7GAJ9GButmEqjjzz0hnVWvy2Gr3zxqq0mEuoiwceQI3K++2lmUd/3GQylWlYw/eCIb1gdOKIaTT9Jz5JANb9CAMEEJDCOtGVsGMnBKgi2BsQeyCHO1i492PAoKgJXCgGchCIzVuIc5gHQygBQ6CHvIGovvGbUtqGOdiBR/CHagCsPwMHxSE0GHKGQfCEGMu+Zkg37musyLoFXpgDBCiBBlgB8lu0N0u/yqLAZ6mgqaA4V4CQBoyL+BMMZgCFezBAm9CJXdC6dkr+sEKAiygThbzYgKzjwiLwvxWRhTZTwjKsujPgh8bohgmiO26AgTWABW64lzuTNhPbBlgQgiyIhnhguW0qCHQIsR8LKWdAhUEQREXTOe5DnZUCJluABWeYgwS4DMPDq2yYh2MLQneDlln7CniQhTMrw6tgQsEgC9RbtqlCsCSoIzQrhbuwvbxYgjBUkVIMxfcriy4IPonYsHpohA/IhB3xDL3DExOrhk2YgFnYhk/DLN2Qhpurk8VzBkmjQYURBiI6IvEQOl0KkzmYJvvKxMqahzAzQnowrloUmnw7EWK7CpoQhip0pw/Awq4brnXomi7MiwfYg/Y4lWkIBHiIQnP+pLB6s4LEwETMgxZnsCh3uJeQG7GRC42cg4EmgAcJkiUsugZoPIYw8DFxW4ZEpEFGJCJhAJKN5KVjaAUAoAACcIYh/EYaOYeu+CcyBEirGMW1gwdf8AqfyIASsMIEkEXiEoo5eIC6yBULsICsGZYI/MeZ7C1KsgScdAe4GYhsCIfLqgdwaId2cIdK4Kt1MCZnMAewDDGR8C5Ck6E22IHzgCRyMYg3Eyxxc4ZYiAVxAwbHezReOK+QpMRdWqUQCIENCIECwLaW5LwilEda8Ydi+BWmrIqaPAsTkUmr0AlaYICd5EkEKIUs3LVaSxATiUTZQQAa0A9iMQV6AEXGrDD+e7AHazgFf3CHaRqI4cCHbFCGbMADbogEZBCCCmiFUwCEU8ADVFCCZkiDSIiGTqiGY2gHNLET0ACGbICFElgDlVvLbjqHQIzBaiis8tPGjrTLx1odXtiFIrKFbESsY7iGRPFLQilIwswI3eHEpzCRO7A/1GQfdCwQE+mCJOwKmqCGJMiACUgCaNBMTkkKijvMwcCHajAENqAFzxOWezAz+6ywergHeGAHPEAo0cqHeOiFXgDOReiEXugEfziCDEgFkaiSvTEJavAEbcACVOgEJTiFSKgSaiA/7lilOfgAYKgdzdomHIrBlpIDHxSpbvlO8MRL1iki80wsKmkAAQj+gWxoT/dkpASVCnY4TQrFCvwsEIrb0qpwlPiMEJ3IBlEog1bgGHEcEIrTB35ASqCZhqrj0uGiCZmYOjeThmyQBieoBTiohV7IB1E7B2eAASmIuXX7jm6RQZL4krBEhUXAg0VYBGDgjl3YASHwh2jIooz6BiddvFIahLc8PCFiLEUspl/ahexbBkt0B5Zryc1bvwKaujCt05pwTK9woFXckHkoGWE5Ck0ogAPoqgPgsqU0C3yAQtryB1Bwv1tNraNohBYgAX9QhlpQBizIhkVIjnrwntECh1ZqhGfLFsUiCWjwFx8DoWqghlhYBFQ4ggPwBH+4hng4Pyx6M8hZQbj+RAXFK8lpVJhcOAZYgBjxTBheOMTyMrTLc0/IYAj6wNKb8Ye1olNo/YlcvQqdAAXeayqasIUD0Kqtwi1b0LVgu4d7cBtktVhHqok5OAALqAAzcINtqIV8GAd3WAiCyC5qONRgqIYNKle7migZnIdUyABF8IRvwAJ8iAQ3eyloqZaEjcFYEC+p7ZecA1j1Yp1cgIVq+IRUWIbQGdKRWIbhI0xoiVip0IlpgIeVLQqMlUx/8IVlBauj8EtEwh8KQIGfrDChOCiVddug0QdlkAcUwAALIIEWWDn7ypA5QFEeuZZTshYP2pYVkwIa4AVo8SZlOAU4kAbGEId9jcFjMIf+MDAHqx0JYTjVnbOFWTiG8TSiZagCLJuDdUDd8nIGZYxVMq0KeDgBqgtcnIDbqtCJQEAgsNIJEzhcVjmkEGgAAUk1oQAFewveSyqLURgFU5gC59UAMwDCyECHY4CBJfgGaLurHoGGVHrIKtkBM6AHE9qv4+DTIPiGWpjDsbUXYBjVz1kGJp3GvFQYXtgDrrGARxBd3G3YWRUMe7NVix3eqmCHNqvPBNIJDThco2SVEHgA6JUKR8EHNl0gnfCGAKleBWI7ubWGIJgGZfCHSYgCNsCHKyoIbnCHcGiDLUMH862r8/22kFiDD8hME9wojXgMczCHQYjUxdnLsaXa8kv+iWoEWJVa3QAWGLuwgE844PIiuvRjCJ8A3KIYG7Yp4ftEkAIxBW/44rM5Ch9YgXpilQ3ogeNVW51IBTbYg7eA0AVCQEcY4/U5QzcIvpqAMuXiCVjYgTbYBQ2iQx72m74jkjkIh3WAX56CuZVIThmNBGAQidstr+4YBH9tqWPwSHPzPoIdJlsQAgJAACmoviGNBm/URHdI26vwhbVKY3N8YKoYi1u+GnwIBwFAAakJAQKoBt69iXXYgRLAshgwA75VH324B2uo2D4WXKEwBSuQ5q/wh5nihnjYgwyghbzzkcidLnRIAhgo20AbB9qQEYnqlliIBE9YSPxVrFhAhYf+NAaAjTQA5jl1M7Sgy2Ibi7f0M2av8Edq3gkvHZBECK7UmgdqANkGONxc8AcQhopzIA9c2QNzutBEmGaEJhZKcgJ4cD/hcoxxCJ4P4IKGCFoPTNiQwEMz4AcTDLQaaWUoqQZUAIZOUN/sI8RwA40kBc9qTFJbMAkqIUl6XoktfjcFJgxodoPQo+Zclgpv8AV74OW0KQUz8I8FjIpHuJUPsYAd0LdLmgYSBuliKQZvsAJ2aNt/w4fhaChROIe84aBgdMhCywZb4NFZuAeiO5J8tdpSOgZUAATKC48YXAZukANLRdIpRq/VyQVgAKaTMmql/hwZvrRw8eLDuLCxyur+UKTqqLhJrO4tfZgUfFhKfYgH+3FFu3iAVhAodkC7tC67v+gCWUBrpXiLXRACM1jskIsoOrSXcNiEEpiDbThp6fizi7xdk+AGVDgGLMiH5BxSZ9Df/hVqHQMm1X2sXMBsvNJs+ELb/PSHxUTo0YaK7FXC2pIYvLA9C+ALczKFtbLtU0kMZjgBb6htMPaJPQBi7Iu2nnbOcRACGsCNNxuXichXkTpqYICDTpBDxWZsaHgY1oUFkDwpxgrosbU0loyMpSqQxPjdBl5Z9aYVeDBxp0OEsI5vDxCGgQKw+94Ue4AHK+ikE4YKanABKfAHkRxwFnSGVPAAQ+CHeHMx6QP+h2vg5A80B08AhCUmr2WYBWM4AmigwbqE7GGS8vBWrDfTXWcp7y/1h7FacQdW6KgDvlCsBg/wkC4Uvz8o0DuyBlAwbRpnkQv7XX9oW6U4Cn1w3GeoB27IjJGrq+U7hiwQgiA+wdzBoQ63l2owByzghsQmrycOWEnwBH5Or1TVMUfjhS738pUwhD4oBQ2jEYYo6LjQT3II7VpEcaAIC1Do7wZcBgtIAAsZgNqdZbRh6DPHc8DgN0t4a6WwD39IBRgoBBr2tG7QG23xG2AYh0x4Q36IFupIco1w7pvjDqpFBXPgzhsD4FmQBCx/LLwcZWBir4ElJkj3cGcwggN4gAP+gIWC/IZ46HXAIPZXh/U0Lwx6+Gjfo4lzEIY9EIVryHe0qfVg92wTcQJTgD2fWAMh2IXtUYfcMAdTAlpoF5JVyoIPmIj8KpfowF+SiARKb/IaguIiAoNB4PTKXtJf4lpgkIIiOIZccHcPXwatcpVJeIy2XHXAIIdpAHY0L2NhI4czAMiTRQp+P5UHKXqG7wp7YIcuyImmc4d3yIA12ImLdzFRq5agzSXoEoUJ2AN+qCY/ZAhSZVVn4AYlAFW88l+e44VZ2HKuXflfynC7cHN0eJJR/zZuMAEL6CpROB6DcGoN8QVTiPpbjfWvEIuZVFannxX+lnrPTkxfUHHhUqr+QuHRZChBdUAcbC9UIBG5YJTBb7AFM9iBaNi4TwvsFcJsKgGGWAAG5MOcJ16dkxKGI5iFCx+iYoKFLVcYu7eAurCARhD1UTcJH/CBOXCMhUAHn0h4VvcHPqbxx8eJCw2oyz8VXPCGCfb+qTARUBgF6gVj+hAFGliDdliHbUCHjNK2h16XGTpfkjiGdfiDHfiD4YBfcgGIb+POUXO2rBnChAoXMmzosJmzWIs8GXS4zNmxXLZucezo8dazI8Zm5YLFi9fGjx9hCUtQogQCXgcf0qxpk+EydMvcgQP3zZ2/oEKHEi1q9KhRff4seUPq9CnUqFKnUq1q1R+3ITy4XZX+qm+aqa5ix5Ita/YsWl+4/ClF6/Yt3Lhi7/krxo6cU31KkyQRtm7guZ7iwKkDZ26dqhYoesAqCBGiM2fAuAlZsmxduHHjwG3eLC5bxZuibUYDBgxV6IXOUKpsfUvVrFu2gNnS6NqjrUYWHhhaNnM08OC+q31DR1fuU3r+QLFF7vw58qxbkevzVgw69uzas1tvvv07+PD2/HXxp9ypsBKF1nETd27wuMHixMWfR6UBhgZcjkGOjNEYA43Q801PmnXG2Ta/BbfgQsdEowQ3x0SmUEa3qTSLMUckw5qFHeXSzDLUUEOTbwyaSOE6/ITnz3gnmLcijDFipRVXcdVT13X++FilY1DHVXVjj1bpJRSPVLUV1JFTHYlPklIVOWRVPuJTJFXkhAWkjFlqeZVeuJzB4lE3bjNHCdTUw018gb3HmWfj2EdBCAeYgVBkxhSUBAzRzIPmOJkVOA5oF504KIjcpFGLKKJEtgwwt+TSIW4YDiLMo5DuctAyxxyj4KCcmrhMNNnME6MsYG556nPS1fjWjeJIEsuOdHEjSjX+UAmVPipSIwo4pnoVFC+l6FiPik4GtQstQd36FF31wGILklTd6E4rvEQrFT/jrSPKMddKdeMyfIzjTz3LonruufS44Y+PQ/FzIy0lIDIPe+rQZw59m5kzzr7juKNJAQUcoGj+ZML4M8cOhcyDTjfxsdkZNZ4SyuAx5vBhgQVr8KJRpZDewtLGksgR222PyjQxyg9lw1mvTWoHCjvtojtzWarG5Q4VGOjcgjNYRnWOERhQoAEO6wA11Tc+CK1BD/4cDRU/+ggj9NBskEtVKh5oXYIhTGLrDyUaUEABBqKYe5RSdowNp7XY3jjF2itQQxVQLeiMARPr0Lz3lvoU48h4RwFVhRDO/KXOe/HxGxh84MgnzjKlCDOhM9HQkIQ0fxm4WU/nfJMyys7AUoIFGyCACC8ec/QopY/Oogo0JLWmES+g247QRQJx7vN2jrjCN/Bj2ezWPfUwscDaIRTwjT5nD1X+jzszSJB8AfjwHuY6a4+NgQL+jPoUPvccEwDVFChQhq9I6QULASVssIEHCRTCLlT48IOIAGtjIIAoUDp1YxkKoD8BAON6RrlREaa3PQGYKSqjEkAI1iaBFrhDZsG74HPwwgynXCMDhajHNgZiIPqQcIT7MkdPusENbghqExNIxZ42tzlwRMwZtzuR6ErwgQ8cABHCUB1HfugRWLwgdq2xhTBuaDtqaOZPetuOUophDQxScSrDO0vzbJE/CXBRAiGQwNWcwqRJCLCLXmxBGJECQOSZEW/0c8oDv9hFDBRgGbZ6yqgGgAILfGADH1gBAuJhwaJALwBy5KLyXiRGfFD+QwAYMGMIuvc99fmjFQqgQBtD4D1m+WMGh5xeAT5xxyqS0i1KCUQxmvQuf6BjDTcwBj64kbj4hEMdnpnPDOPjHnB0Yxu2MAMN1IEOPuXyGwaxoRJN5AwuNIAER8hEx25Tm1wAAxbRvIU25PAMlcwGmck8EaiyERg2scx5cimGLzZYynUW5YpmuVEPMGlGCrSgV3j0h9DMOD1Nuowoo1LAI+cJRgMSyR/ZYOM8qfBGtPkjFe/zI0QtMIdRHkVHbAhoF80nyn4KhS49wCgXKVAAgz3lRmPTp0jXQdChZE+eczzAJtkpUy75wxfXIYo+4uGPPSxhDf7Yhizdg6/55Ev+cY7jVxPj0w1/GMIDmcBH4wzEpmhIzJvfpIlBYLGHPeQBFclwlGtoJwxb1EYlvBjEIGYBC1g4yhYSuioOrzHOJj5Mp9kZDyiUw9GZXtCdZRnVSeeJAZLC0R8HAOn0MLANqIyqAIgdGkWT4g9YIDSjM0ijUXRkiIe+r48bWMJCjUKXMgQ2pBKwmjnh6dKQKmCj//PHClY7PQVQw5xBiUYEUSpJvvI2KnSxRCCK4jW+VMMd7nHPmjY3GDaZY5bmGOY18FGCOTQjHvCZ4Tm2kRq4BucYHDkJLySBBWGQTCWwWAZYLeSJZGiKF+e1KndvckzdkXOGT8yOG6YRuN6W0q/+ZBkPFS45zxAMkiiqRSkGMGuUUeVToOk7oD/KmFEHoK/AQzlG6R7aRwsYIrJFUYohpjfPA7TCO0ehCxNKC0pn7DUoN2qBbEUaj5UiCR8NzigYJ8nfHRNFOedxFy0SIAp3yDJx83lPvq4Ln3MYdRzfSEUJSuEP3ckwPlStyXbjC5GxfkRSQvwIL75soVzM4gjvMwN8tWyTZayMc3TtyZ+IhR1vwIPH6/QvWUAoQAew1ggKFq49ZkEAl1LgAOiz7ZTw51I6KsLEYfJHCwSswAW4g8ZBGVWGPfu+mBZWgPLEZIJ1/GhHfloBlxW1cPHxDVKHtAB+tvRoD0DoABzDf3b+3rFS3LDBtsjKDDvgBnvQQcL5HPUc4cDlUR1Gn27UwxhmcEFQ7DGPojZRHCBSM3CcMdZrzsIWWGBrR2yxMWGAu0MlEcL7GPCJaGB7zdGgL5xZJtWeHM22YomiK9R5ayrieSzNs4MAFBiAHtTDwkNRChsCPrYAMOHPmfUHFRQuAQGgz9JIAgcGBl3oUHo4s/pwxm7S3QBotThasDiApwuggZ751h+fKMAlKQBBlUblRviLuQBwQK5iFZYJATipAFC7bx4rJRHRsp4/ILEDRMRjHUUt4S6VW5in12oPMMgEudqSr6lKrN0NuUjqZmeLXcBhm2QFb1khxYtHhGADLSj+ACRG5PWvO6PNBfrTUeW9WKFYXEjjCe7Qq9jvsjjDCBQgwZA77hReFCEEM2gFqqHSio8yxtFQiYcdWhCCMkTD8kjRkTvmEAMUzOEbnmcoONgQghbY4WlRUco1yrD6PkSeksfI2QwQYW+i3KMVkTYCMAJ/62KUSin1uJEUkgANnmx9X5yRj+I4R0LOcCMe8/iAGVzvD34YtzjX6Lp8r3qRa7ZGEmmdhTDCDsRbCIMGfAzBLNI899y5+UCC+UZRwaGPTKxgBR0ueVfkwIMJ394MHlncAz5gAzacHicFyY4UVFXow3FMSaz0yO7x3nGUy47wyD0AYFF0oIt54FAwCTz+XEffESAVFcM0CIU+7IIBNAI+bMM5BEZnRF982BKSKc69nAM6NAIDmMmyxNI4TMjcyZdtdEhszMIxWNP63cIuHIM7SMESyMEgyJ/XiRPesQxnhIPjcMY3zKAwxMAGYMDAwAU5XIfBoeCpGKC/1UMv1IJYSFs9iCBO1cM82MMFEoX1zEMaft7x5SHvzYMGXsU9CCIdGpghdoU0dEJoqeE6KQUzBJe2SAEMHIYsscn0QR99vAcXMpnjiAM+wIIZSIGyHEU3FGFNVMM1UNUykJ9rJAMgpAF5AVFtTE4zAEM1VAM3eEIVbkoROgPnxFsNytvDgMM6wELbZdwlvAU9+IL+NbCDIwYPG/obOehbNF6jU3jDrmFjKSkFLoSFTq3B1fnDkUHdJ3ahYeCdsvlDIcSAJrBFk/DIOlSDb1ih113EHJjBuqWEhdgCyBgDLKTBV0EK7QgK7vhGxShBO1yZml0EFhYjnNVffTmOOqzAARxAA1yDW5CDNVgCN/LNNM6FNRjdR5bkUJiCLzCgSaJLWyiDP8SDEKzBNbgDkxGVZtAHOGRGDWYGLg3GNlQDPmSM3gThSzpZhDCKParZMWzDFmDMB3zCEbrGRlAKR8ACKniCK+IGLPiiQzgDKoQBRWiZQVyDFsbbn7xZDcbHN6xDNjxCI5jeWdBFMVzHIa4kdoT+ZFfogz2soF2WpDfYQ1325Yoww7rAAgKwQr3g0k0+n5sdF5MNYzxoQgIkg+IFBToQCDi4Ay80wjjwhxIZpE0AgzsMgPtsgBQsAz/OjpjdgifAwUDeRu2sGTcMAlfCFZtJ5LxpoVTlkpN9wzfUXldYwV8KJqrg5VXYAzsAHm8VCSCaJChMQx8SZ3jciC18Qi2YAyXiA3tszlDZoDn0iy71yXzUQy4UgRBsH0HVA2Z+YR8IwEV+E/gxxDGcA8Z4AAOwwTGkZrjlwkmknWzkgid4gvrhBjUlpUJEwyDEgiewEHxGg1lCJFoSYxZuxlqWxXiwA0kGpnTKhXEKCT2MQp3+8dWoxIMxHI2GXqMlsMN+baiWKIUPNoAClEAm7Mmx3WS13WTjENtNyhI+sEERSNk8mIs+rANmgoN2FUAI6MwWbAN3JaVvwMIOPIAZkNsRncQuzI4qjMxHsA5orllByEEsdGnKOGQw3h1E6ubD7GYNokNzHpxSgIIl6BWLakmHWsU94AVfAcUO9EAJ7EARrMqcCoWKnmigsoo/fEAJtMAKJAFW2FKyKWY66ijUiUM8REMJrMGouIxSzIOTxduRJikGUMHnoCJEbAwsfMK2cVP66adHJMMgXOlHvBWDeGWYyirKhAiVDWNZ3l1SqamfdMZvdgVd6EMQFENTEGqhnkX+nRoJPNxBSsqUjqyAB2hYDNRKstJDF6hossrIjSDqDiXBmSibODRXdzqMZxiGDjYCAqyDrRHFOD3otjQACmiA+JDqanAEq64OL+SnpShBMsRGLuSCgdoEN4QBMNgqodRdMJZpr0qkvLXJww5GONxXVdDDNKxLu24reCxrVbADNM4UF2SYH33AA8xB8xSqx2pslozKCkiBC3AfOuxLkqUpUR3V1LmDMAiBGbDL2cxDkT7oWrrDNagDMAws6HDKMnDIEVETSuTrR4ydJOyCW2XZghxDNVDDEZgGu30KRLxrWvLqw5rpDCVbRDrOIepDnZ3BNOBCdKqsc3AsVaigTKn+CBVkmmeVAM0FqjfIQsa6bXaoCCHoiI7wA720h8PIbPRtIv7pQxssAdZdj/GtQzc8qFl+Qy9FzC8uw5W6YkkAw8bQIi/AgTkgbKcsw2xKAipETHwyxDFlg/2JLVo6rJs5Dhc62W5+g11FhXKwgxXgwlogq9+SBdxOBS5YQt9eEDoIgch6VgKgwwk+TyIGHi6USvCCh1KkqKPpw7RtHWMmGzfMwzKUwB6gw5+BXqdSLtCCwy8eg9RKJTU9in+OGUegAhaYw+0sQzV4AjBUIdV25TJIQ67mpjDSFQGr45/AB/6xjEpG23i4gRXwJfBWr1gMr1TYw4+xU8h21g5ZQAz+VFpVqMjJCh854KkEawddSOJRTBtSHbCThd4H7IJKXib6zjA40KPX8WtYnYRKZKVH8EJkRIgSbYocnIbRggj+JZVZzm79ye794WSnKttmAOdQ0MMJ0MMFl/DG0shzNGvMyNQeNABnbUACNMJVLMN9hMAjcEWbAo9S5BsW9849rOgIBoU7CFt9uEM84OwO7GyQJgUIlSkNmyWD2maJYITT3gIv7MKAqs4TGgQwpEEsbK3tHAQ1oK4kHOVDgEoSn2UWSmgBb6HjEAjEouM4UKxRTEMi3IF5yPEbawcFS4UrwEPbsqQ/rAEBwI8FIIAQmPJTaG8fYCQGWMABhMDcrPH+3ugDPeBCBLdyVLCDKcBDi+lITmmkGczBHogeZaKaNDMMIAeyWUryNxUHaCyhK8LCE5LVDmclEhmkZERCbU5yQQyCJ0iCOWDEQlxENTxmN09oRDJs2XphUomy7RqInA1F4BTDGdAl+DAzh2rxc6TSLM9MPdzCEjCAENgCL5eUOxCA0FhA3FQmO90DPIQFQ2dQMbDyifmDFExABnwADHgLC/rDX/ysNz/oOTBkMgEDE/TAFuxCwB5RK8rvDntmQkiGg8AVNZxGGBwDg17EMmyDQDyomp4p7IotFy7XKGO1MdphtCmFNdzBKKA0Cx7f85Y0VbxyVPhCWEQ0LcN0zR3+DH549NqgQNvgGjnwpVnHxT0441SMykt4QAmcZ4GhQ00XdhEzSDQsQemUbL6uqup0jA83hKEsQonAlTkMAuoCA0S4bsOWrezuswxFJH2Jg0AXI/nSz3h0gSnc1FGoiAZygx54TV6bBVpDBT0o9EzJoVXcyAxoT/KIAtH5wzSMwmzDBTLLQlN8iz8sAUtngE8tSzxsQ2HX9BDCZxG8T8bscPql12NLiMSYbuqu7sRkSjU4gzyjgjKspSfPrjD285kucd61iXx/AzcUAQAcAC/wgxLwrgP60zpAQzIwwhWwwAXQgcMVd1XUdl74Awp/5I2wARiPDcZQAArAAo81cCP+IvhY2MM9kORU3IgZZMH8TNKwSO50FzY3fFM0sEECNEACGELHiNvnApFGCIOYKgT+wgEQc5dvcEMvZAMe6EInAIrP/ixuQqg/l+UwPjGF+mYqEIAHvEABaMEpQCM9cNQqeIEMjAAL6EANeMHOabjwODR1CPcKLvM61UMjRRB2h0ADHPgj3gNei/kBLsUVQ01Q6JT9sJRPnHhNC8SNp0x1msEkoLNs4PBjy4Z4gwgqpIENX9VYFsdlZkM2hIE0nIJKZRdmjm2EMvFU39I3iJPRfIOZWUAKOAAcLnA1rAMd1ICX/wA00LnwkrlcQOLvoHk34sMcyBoFjGEDRIMx743+NawLW8s6TvmDLMy5v+2zn9Pwo0+ya/RnE7Jfth02oRSpLvlENtQCIABCLRhwMX7yPy8sJ3MGpdcCFnxDJJQACTiAKizwHemAl8t7JRj7mE/Hc4yH0eF6WRwJvz/FHPTAYsRANxQ73yiFIyiSvXOJPvyOwR/cnjS7n48DVIPzoBhE2m2EjKMED3PTvh42UytB0V4VWVIbnLnuOqwDPgDCKQACKUiDMlD6OTSdMQoEgdx8b3bqF44DOqR800lDNrxhLyjBOQDClNxDLeCCTllYW4RCl9eAIOgAmEvxwiOFgjsFXTgCCWfJjcyDjbt1XPBINJxDKe7Yb2V41UvF3sL+OyXVA8NI/Il3w4qzgShc28V715byAm0csmskEXwZaKZEgsWHzjEAvSemqVFpu3auQy2cwin0Ah6AwyJgeiewpdPgQzzgwzmMSjZcPtDXAujXQidEQi8AgjIog88GxR2wQySAvVCMyjCoAQuogBckwzAMgffwXNpLxdVjvTd4uJY0Ag2UwAoIAQz/u2S5Pm/5gtE9vL3TxbqINa7IdJ/DPYrHg5s3AAWczKDgPb4eesffRqA/Bk0AQyw8+5jaXZW1txcORsr3RMz3wiLgAxb0wilgQS2kwSnggTREAhbQA0BUkNUpjbJIvXpJUyZt3Dh36LL5K2bJlD9/9yxm1Ij+r54/QT9qqAjlzp8aaBpRplS5kmVLly9hxpQ5k6ZKbkN4cKu5058+cvR4Bl2pD1GCDR82eGCwq6dQp0+hQoWnL2pVq1exyiRHlSe+beDAhhU7lmxZs2Cv4TsQAkMDSs6WNZM7l25du8dm3dKbCxYwYXoBBxYsWJgzu4cRLzuWJpZhxI8hO/sWtiG4hpcvW24oLuw5sJe/fUN3Dt28dfPA9fqmrFe2eujWrWs4+XNldP5MyWrqUp+5ITVq/OCmj59FrlmRJ1cu9GbO5RbvsQsE9LnLetwSeLDw4YOFEhb84as+njzKO+TslVe//ipGK/7S13T3bdxZ+/fNcqvXgP/+gVaQD1smLrmOgSUXwHI5xpZcDhzMwb2Ogcsux+ai8DBgjgFQw7quQUecD+urTLMRQwzxM8rA+UadbCZjkUX6wBFnHBa7ySYc2kA7h6RE/PHmOJXEm4cVFWrgQQ9/6qGKn47Ya9JJ5nDSabxpfHnyIn/meGCDo476oARRrAzzKV+KEdPMM1GyZKuZglyHG/zgjDPFb1phoog+qBlQw7jAySZCXmyx5ZZAhdllwQcftAWYZiw8zMJG5XLGE1Qg3bCuZZzJpr4US6QPs8xALdHEEms70TLNNk31m3X8kUWWMn9MqaNk1FCBBTV+8WceNHnt1Z/mpKyOHGtiVa+jJSz+2JK7ozx4xNdnV4LHG2ipLY8dduQLTc5t8VvnG26isZRRZ4Apgo1zArOFl1wARXQwQXnBVFw9Ga3LGVQWEVDcAFn0bDNxwrGMsxMrMxFFEcPJzLKANyXYs3PMuSwb8bQohhzedhVEBx1EMq7aj9cDtrwz0HNSvEK05BKpL0F+9h5yupi25ZmvssKb+GKijdud7xunGnEj1PKDHZYRVF1e3EV00X03XGZppumSTLOBwxp4HBlFHFWsVKkWccRzZPwsHIjHCUec2xw5A76X6sGHBx3exkc8mulWTuTxqMJlN/bqcYcBpJb9YAUk6z6THHgKT5wnfdjBKKZ4YORZcvv+6H1MwCyTWuEYvY5pMGnBcpEX6nqjnosaPI6pvGlnqPF3zqthH7E2rzNjOGvLJquPYc9ONXGy0rxxpEzqhkKSERV0qIERf+JR3Pmo7h7PGt0cb7IeTRDYzgMESjAmvOebpGqaUcAv3yVQ4KmepXnO6Wby98uir1K7BPwEAQ+S6hwYWAT9PLDCRrehaKACGKoD0DKkkQ2wlYhqqIoR1rZ2H6ttCoIm4t1s4iENf3TBIjhTya6GcQUZqMALyUBSccyXQplE7zkYsYTeilUefFxjCSUIASKq8T0Vkic97/HgDstXjEDYI4YaWUeK4JdEsmzDgPRbBhUs4IFGbM5/gBH+VOjmN7rKVQMQsWhiYrIBjoSZij5YIxWJRCUq2WUtVTEaVX2+sStHWGNaReyJeOIwBBawgBXq0CEQAbkSFj6HKszYm5PmwREmBXI8W7EjI4FoDyVOciyh+SJdiragXXiuinoBYAAtRa6nbUgy5vhM2K4WNgc+kHanIhgDHWiwUqVoHT65g8xewg0oAAcKwYLkLzMyyOWkxw0/bNI96pEkMemDmXWjShf0YUxg0m0UoGCJPuZDSW2GhRuXbIaC4AWLTuolUFkE5WEGCIg8HTBT5whNqChjMNp9aGAgClWq2njGzawDH95IhDXvYUeqiOMVHajBEOigq7lN85fCHKb+P3j0SIZaZJEWWWjLeCTNibaMjithn862ScltWI5ceuFFu8Zpiwydc1/LMAcWuLFSR2HKU1mbYBpxGkEcufKVaETVNvCBDVfwaG0swUgyrsACGXhBJ7vaaEOjpJ5oumIaT12fPz5BhSVs4TbqqxY8ikEPiVrVV8yoakq8BdKQUjJc9HOGMGZxUk5+zhawiJc5WeqoY0Tji8sIo8IyY0Y0KgxVHxKjGc+4xhjF0h93oEdFDokSfXSEDhtTwSs6MlayOs+hz/GFITerEapAkQIUCMECGhFZaPmCfKGlWTFAmxF83Gitax0HNRy1rkKNk5yjzKulXHqCaMgUk9GYHWD+u/YpzNgTiacCaT5jWVNwrMMb3zAFPTQq21/BrQZQmEc9UOhaQHb2OYnArlX0IZ70zgwRBMCABeAbAgkw5WP3sIfexDuzYpw1PO7oRsPIEhq13kfAtU3RhHQ7V7ruQnS/bWk1VIepDsEIwKrkjNfCMkZUYWbDveNawdwIjnPgQx6+cMWVrmk85OkAE7rKLyPJuxxvABQqS0JJRZ9Vj3WgAANb2kBpNcAFkOljGrIg3otz7I9TYMMiqBmwWLqBj+8C2D5x9Ie34vSNa3DjTfj5xjngkjq56FaciOpfYHLxSQe3lBtwkFCkjkENBW64polloHIJy1MQ906xE2vs+FT+K9uO0CKpt3oG4ZA83qiux4X+OHJQdrWHIixhCakAWT3O4V4KbKm0DTCCZp+UHkeAOtHs2ZURSECCY2DZPt2oRxmKMIVqUDl+7jCED3bhX/yMY8SJjJx9tuFOcMBFrmd2kF1vIc5cqKvBd8EQXjFJ3ANWAw+x4JC/3liwen6KUz5NpdUQu8ashQY3lqgSioFkkTjwICS02NVFS53CGCvHvk5AN092VYINwPcDDzCEV3tlj3U8AAOl5XQDqlAtqjjCR/HuFVUM4YAXpOAA57hGgQOMDzZIQAIHYMM4niwWdEyCABKgACXcQeBufOIAFJjBOr5SZVsn5RPROJS7DjT+h08g7RbSph81wOXNucTlzZYq4ICcgcqyvfEzZRzLv0KkSgBP3ZUNoyCrzuCNR6f7GcmTwRVI4vBAzjs5VBmWUzBiBvwpqwQDcAaOeXWPePSgARYo7aYbwIaPsWMauBS7magyiQXYvQC6YqY+5uEOxS+eJFFYAMd7sI06K/cbzSg4x6lwj0+dg/Odv4Y/AsBjBXyC1WZZxycsEIJ9l0KcgQrUYHLxiY4foAzGiEsTBdSKAhBAANXw+WF4wQQSTOJnGnJGNJRAhmg44xoP+4aFT3VTDzcwxAlTrsDySaqGlKYYuqEHwEV7ZUyoQAZDWB7c/14+sifnHtOwRKBjkt7+KCbLxxvYAaKhxYsCmBYDIWgACsSBWqjCF6qE1NLvOephHnDgAPIO/1jiDwTAAQSgDGBiHpig5RSgD1ICHw6PmUgiANjiAMAkHuahBE3wBP2BCrTDAxLAroThBV/wpGSQF47hD/ZPAnAAGJbPGXiwB3twGbrh7jCgBdBBdY7hCI9wG0JAAShAAEQBQwQkCqUwLoAhBBxAAUKgGsCGYEyJw2TpYDYjjaquVORJRL6BJHDBYuDPY34BCohEDZrqAIFo/ZSjmpwiF/StS7gDf1wMWopjFlAgAAhgAJgghwxwPVzBEgJKDgHPH8YhDAbhIsJrJfgBHy7BXNBPJa6hByT+oAzAyyUwogwCQAAwQJlcYh4egAWJZlx8MGqiwQYxwAF6oBu+YRts8RZxsRrmgQBCgAJQIAR+pRuEcRizIRu4YRuuIR56kQIOwA6yARmr4RqqYRqjMRq/YRIE4AUcQAJa4YgEawx5Z2H2DLCOS/tWSdu+QTzsDVtYgh+QyR/ioAY45hWMYxIZEXzosOy8YRF5ohrWTlmSogQc8FkQbx14oQRBBh7E6h6dBx/cIRNVYrLqoXlkIhpawalewluKwAx8CzGc4RiKoAAc4BPC8Sy4TAAoIADc4RrsA+T8oQUoAAMEABi4IRwSxlNQZB1agQlLqxsH5vmuRjO+LAzHCFT+ZieWzLFglHJV/OEMjOwlMKIaWOAHvq4PGVKF8jE5si67XCI9aEAPP2B7UgveciyR5gH80MQe2MENrhJNKIIm+DEmkonUkGmyYGI+uEE2VmcbnCrknq4b3AER/KF1vOwbemAGPiFsxAEnx0Ed6qkeDIEEQkADI6c+UKmM1Ojp9Ez7oGtrQE7xrOEOOqgluCIOWCB56BEj29J8sjIr0iMQiqom+MEZ9s0DbBMBiuDePuYQ2QMoRBMtV1M9OurhXoIfdA0caJGvSIowr2HL/LKSrmEdroHWNBPkxEM2UIkzOCN3cKcewioevmIcx6EL3ejCjFJ3cqpEzKEoQUwc8AH+tloLOO1yFZJKBfTgJCAyOAunNZFjGkCBiHZCPJxhCwCAAAhgD/JTP5tCFmBIQZ9kGqzBma5MrbahUgwjGn6NZ54zgsSBGy7slCjMw8DBHRZBGSjM6jYjxPhsaqwvLHCyw7CNMuhjVxKBHSQqSOJRBnSAFSzKQVlz0Z4EI07MKSZyHHbFHn00IzCCLbkySZUDF/CLZvQBHQZsHCDlI7mBOg0MLM7BMhdTO+NJ2xIiKLFvsSwj2MwIazjDlBZIjKqOM7FtNtyBHtYSJqii64DjChLUSWmGP7PCvm5JKO7BBHnzHunhDuyLT9nDGvirZfBB2Mjiti4lGkBuS88iM+r+bLFMiUvFoR7SQNhgiUyDkjNtSp7eKUROdVNOwx9sJjZZYh0EYcVCwSoVlbOAVExA4ftqtSr0gR6oaut2VcZcAUAvjUrNYjIGBFOqobksFSwC5kQ8Q0aktVNkJx4iAVU/BWDAYtsUE5+szwtJBZVSxB/YwRI6YTRXggP9wRiGQAZkQA38aB6QNFj79FathB58wRrikl55wh7Aih35tTqkhVqk7Lt0hVnNYvmWgRq6oSSbVTPMhmBO1Y1gR0TEoRfcB+S0k4IqqHekzkTUYbHK5riajlUIAR70BjhtrCSSpwZ+Qb0CVnH8FDncw1VjViaAwt5udjxIpknFBDXgZBv+jqHLHvbpqMxLOVbEPjTKcgAf/iprutRgFhOnKOz5CMZqHiiOrAEe3g84KcofkkFHlyo85nVnQWZmkQMo1MZj/shsU4Iq1MZn3dYp2EFum8QQBuABiiCbqswyjLVoNXNbLdNExPVgNKXpKGNgIkZhgLJqQK4+ojYMR/VxJaL71rAp7qFWNiZXPnFu6QZtkcNfZSFCN8JzUYIdXKEY9tV0rSIR4MFuy6MevmEASgB/DOGIzuLLduU4AbdqZKeC8CkMH0gZFsEcMtUzHwhx4Ulkow5yFxM+XOE/dVO0xGMV2tU+zWEgWfdjQDcrqEIZZAEYpKAJmmAO9jSQ5MZJ7Kv+ALc3K0bhxLyWb7IBAFbANvcg5cpiHLbBHbiiHnp3LJ4VazVMYJAIVeOhRFPE+mRkjBhGKFX0whIGa0XEHCDiHPyBIgrQjjrCHNSgBlhgCOgx0MwBE9S1fdGke5MjD/YNvjygBLbBqurBHuZyPegBHjjIhLOihn1FPBAhb4XAH2IuwH7I4tznfyNoa5IrlfxWGZ7WVDhsMc+RgAf3lUBuV4KAXF2iEv3hFbxODRK065IJh88EhbPiGnYAKVRGCqyqGmABFqgBZqujmZhUjK0CI64YWJ+EH04jGnjBH2YtwFgF3twhGqjhbwGX+iyzKC/MPMPBHQBBGnLnQzWWYBb+Sxx4B2vD8XEtg1VAwRsiNH79wRxiVQd+YFZVUyWeoQbCOF3pmDzIGCsegQDqDykawNIYah7w9gEOYADYIIfIgxnI5HJbeSYGEHHQBB+8RRjBIUsr6RxO2SLWwQwEoAFygW+LVlvF5pTGE47AwlOy4RQmQ0bMwZ2y7cNuyjJF1Ej5wRdMgVjTtTh+QQaAQw0oqmwzIpVX+RWS4RleQZG2OFeG2W7sNUw4og8aQFmWBQHABJjEow8OAAMgGgMOgAnwZnrKBJQD2k79gXzwmD30gVkHDDDRUhXcqwFiYDr/t4EaRpJPhD6koRcu7PlARLGYF3mxjz7cxyKcYCpaYmX+vcDrTkIm8LltTNMcxIEF4sAiVkEGADqjs+KVr6IRUgahEaAUGMoWGmDTKMDumNGql4MqXMWpqwIocsBm2YMDdy0/L4EAtnoGjsFhLZWCUORbzZRia6EXLrmnuLSS26jbZuPLroEqbAZgWaIjQsGyGOGZXQKf10ENdOB7aIEF6HEIjqRQxdoloNoqZsEouGTfSsCXgUkU2HrTuPoANmE57CsRzu2yn4Iq6naZ/utYx4FVXMIZZsACMIANgNaITcVZY4diZeSu23SWLONNNjaNIqY8R5QdvoGDoqklrlMN5PkHONeeUVkGzOEKhsDFOiIOrgAKfoBWWRsqMtsq2AD+AeoPAWZBmM3nE0b77ihgASbhOdjSrMebJtLjN/PYHjJULHSXva+hEUhvQ7fJsGgNn+jsGyKBIS4j3JrXY0UWVboBNuBhES7Ga+dmFX6ASOigec4XJZJBB66gBq7ALl2MB1TAH8LuvqFnoM1kHR7BAhAgAVbgFkAhtn5pFuDL4HC7AD5BOcghEWRBHzCaxVvCHryhvmXIcfhhHkJuHABTJo6DmQE3YBqYLJ41eRtCGmpBgdrzalE1amvjwvKyHtjBFHzkkTqCG6S7/GiBbWmi6wSBG2ogocArHqABJJL6w40cs138TNwhNmgbFNiho1WICehv0zQgN0PXHra2z1v+29HLwx2hQ1f8shu0OFt698rLwjwxtRfwQHYjXFOzdTwjmWLj6B6YATazuCNeQR5ZIKHaNs5rYFcqgamZxx9YQBB+wWVnHdJporyvQoZX2RHO7pcwogj8L6t3gLavwuz8ib2B/Zrg4Q4a9Tnc4RP2wCGC2L+ZslCbnMC1qTKoj5WabjPcoRP8l5UqNju3VcQQ3CEQ5wQqvR1V3AtOk7q1N85lACHB2yK02yJ+WrGnPSaEnf16xA0K/Zd25RO+oAw0sG2yIniqBHYL/m29gRksPijEQwgS4AEs4BgGTDQIXsrRoXcbwsp56umwJhsOWFOwtptDbAtT9FQmHDdq4Vz+7UE+LYIWgEMHkvqEnCLPk6kEf0APXuEHDq15hoCerfvibeLPXcYiTKFuN55uKorPZcJxHAEjihzqVWIamOHrhYIjYsA2E+ATtMVF+RcqSq9ZOb23PfNDeiES4mFq453cryZEoRwfwMFVEEdld6UdvMBdf+Ak0vcp6gHxqaIazIEbDm1uzAEaSh7so9456OaZLubqkQwj2MG5LV8obonzaUI8vKTteIFoLYMseWJJ/jfuL/Ub8qEWLihcrQ7CF8s7i2x6UcLWZeAHRiCxneTpQz+YpJ5a0sMb1IbskQysT4z0i98fmMHvluMYSuADMkH1A9kq4NrAEBlFxkJGusH+CvIhjMYcHdAZaU2EVUwBmGNCHUY8OHIIH4g/+p3k4KsjPhyh3hlxER0BKACCnr+BBAsaPIgwocKFDBs6fAgxosSJEe/56+JPIEWI+MZtG7juG7hv6Or507dRoTuR4Fq6fAkzpsyZLcXJDAfOJsx6nbJlGwfU5TmW4MKNa3l0nE1/vqQlsogyIb6BoXiwkCFonr+pKbt6/Qo2rNixZLkN4cGNrNqF+uixcwMv49q5dBtqDFSMnsW6fPv6/auQ3J2Ta6fSGyfyGjeR3dzR5UeUpuTJk5POFLftlDKkSJUe/XY0Z8tz3LQmAsXsZFSEJqHFUcHCC62tXAHbvo0790b+s2h1j2WH64y/vb6LO7Tn74wl5MabO2/Ojh3htfMiu6w9dx3l7dy7g0NXa9E1cOfOgQMqDvHR9Odd+mMnXONCk6Fk6JBBZyD25/z7+6fIW1r/SYScPYFMs9qAxsFXoIIOPpgScoHIMtdKMH3j2H5kTTWedx5KFlpNL30jjTjn6NTeOeachx5S5/iDBzvkTKdQPfMMIcMPNaRlEoQ+/vhcgEAydA9yjngz45B9oUQOO4lkxJySUg6JHC5JhjWVhS51s85UGqp1jzv3hPhhdzgV5RKZoX3TTifKAAVnaOup9803GS1Cjl4K8RPVKizoUEN+99TDz5SGHqqWkIge5E3+clAuGpY9KLnhzTSQXvpfW76MhZJ2LokUT4J98TKHM9yUaSaLaYr46Ti1dJIPaEp1hlR63KzjjyO4WNOQVtVcUYMKV0BDI6bGHquQosiSkwiFkiJLoD/F3JEntNb6Josb9IhaUT1RoTPiOT36pQ8+thwQAgXhnIoqZeytKtM35tTSnlEhruceO05YIx23BZnEyA86qICJVl9eizCiyh6LnDVdwCNfwgnd8xYow0mM8V/SpTQPOgMN9RKutmlFQbohhOBPN+1W5hKKMCGGTi+A1MOSTuyFNg85xbih2kKFmgNFDTX88MxWhWaM9JQLMzxQIK6kdjGmxI07kD4WFcP+DM9yJc01WaA44k+UEPGzDg0D9BFSS9+cg5K/dJmEggUhNMBFPSqvTFNSZ76Eojj5AJJPNmmKIxJQt2bjTxAZRXyQRfj4KQMPeujXdeU/Lo1sw9PcIR3jhmrFzSTC+MPPVG0N1MU0qT1reespWSSLKcU2hM88SzzgwQNt+FOnVkfbpo8+wqwAABN14i3ZmXK+FA5O2URCL2hpwvlNPPR4QyFD/Jg0jBosqODFMP7Uc7Dr5heH+bXMWOPEQGJL6VgPJmwQQgy5bN2FNVCfzz9F7Hizv4fUwx002MAGLFAFf6xDH7/TzToERybkxUQnRqFJPmqRDZaMQ3mIwQc5XJH+PYZohRE10AELMEG5/qnQOOmz1l6s4I1ihG1KKLEACjCwAQzosBnT8Eb7ZrjCIDLEarII4UNQgogHbKAEsMBHA30zKH1YR4LMkwmZsoGHU3jKJuwRxzzg8Q2MzO4gA8SRwHgkxDTipoXWOp0/rKC6JL3vQWbAAAUsYIENUOAAhcDCQLalxkAmRBaWeshU6hEOQ6wBFgOiYvJEUy+1faMXytBge7aBq9jJjnUHKd34QqECHehgct56oiBPWZazCChpRZIWOeAiu+EEz0GFokID7mhACmCgAeMjDipP2ZZAkMOXCUGJO8DRjXiksD80c6R3CNeOXtTCHXtDprS88ST+ICZEmb+SgbCKVr5firMrbExYVKLjizNcaY7PGVQRbnlHCuiyAOIapzg3RcyErIQk4TSOPu7mzJdEcE35wEMkYmWTo6BDH+zwxcYYYpI4DKEGI6AFrvppz4xCpJwY24s9vJE/X3juOeyQhxHgKc87omAdVNOoEJGTg62pBFQ+0lJArdieeERCei7hhjJHMY0rMaQaQZPBFcwxRpcqNSIczZjVBsIMcpxBH6awhnygsqQZouSjuKBHF7ABhgaEwAIUyOEBDOG2pfIPOUZEiDsw6aUH8aM6N6WMNE5Ri2205Fb+MAU9tDYff5hjFbCBwuRmqdbEMlWVKnxqRuDhiqf+OIEe+wuePe6Rz43c43RRstTDQIGLRg2kDwPQIQUIsAWtKFaIsJOFaA2ijwf67kf4AFldldcSo0RzmkXJhhMDMYoZsXMg2/PHMK6gAhmogViqXa1zGdJU10lnGsXwRhDgYQmIEcRqm0XOZhFbkLYVyGqctIeB/AEBb+zqPQaZhzOYEIMizKKlz+UfSqYRl/2MA1emfNAx65rQloEjG7XAQj4QYydQmOK1C9GKIOyjgkoss74UNkh0W7fVi1EWtHcwhSvgMQ16uCUj4D2IPfTCDhHzSxbMCAI77lCMuFgEOdwal7cqLEQneON3HZlHfyE0j7oWhYtCyYYy8CE4x8D+RZsKwYc77KODIYwvrTh+7oXNhxLPMaMYicAFM6xgj0QE1xHWKIYvilHdRNADFIGgRxCmIQtd9dAgAqFyPe6M0SonrUq0EIUo/LFQREWQikDBCU7GcddOnMcf8BgFxIZLukMyIpQ6YIQ/5pFnPav1yv0LnmMNYg94pMYU5JjGmXtIoRDHxcSy1LRSp0IEBjxgAI/YyqHmejxnWsYj+DhFO8RhEjewQ4YMUeYvrvC95dra1ZrmNLOfrVSTfMADH7AAF8Z3KA59Q6+O7OJI4NAJx0wjEdbAqlQiKkoW0EIrVIZ2Yp3t7nj/0iQr2EAKQDAHbBuqdNFoxRRXZuhvrKP+F+OYBz1MEQgmS+UZOqoBFDIk7yrDO+IUF+Jc/bEEIfTAWYZCCRsCQIAQVOPfK3NVJ2JshT8uxCLiwMRVhmDpG1ecwhOfuc35ZxJc6QOwU0KHWENAAGF0iIofcQM+cNFVzAaWFchlAR2K1tybO7fmUq965Uznj2nMeUrbkBvQgTF0vIVDHejAQ3LgsWqF6MMkdCihDF4xYau/m7Fyrzsq77HldmfKH4hIFxe6QfIP+SR1T4I0Qeohjj/pgAdTtvvU6e74yKfRDVtOqoJqc4/Ad2fb+JiGKSIhw5Fu99J6UEEJQ3Fpya+W6qr3jz7MEQrHtD5a/hgMJ32Ej83+d2X+oPEHKHwxGIUbZCqvCNoInh612S+V9cp3Tj1+saPmR0Qf9ngLSjILIfOgahzZQMewR0GP2yNkKtUQmgx+wW7pLx/y6pfS86NPuvY3BCVvFv2DwIWqb9SDHuRoM0RM4gUPJ3+bxn4D+CPvJyD18ArzQAur5A/QkAzLpn4CQQ8JZ3j+MRU8xR11givMMAq2FxFcQT4G6FLMR4K2gYAmMQQ/UA86oAYE4Q46gHp653iSMg2W4D5DMmiSQRLuwA+xk4MSUQ/Yd4KnZIJF6BfvVzQ8AAUDkQwqEIH+QAsqMA/0JX1ZdgaNAkg+cg8ANRkCdw/v0GhIKG9HSIZ18XwywA3+P3AF4+NkLAB3+KAHaiBzJDhLinOBz6EP3dEjliBDNHiGq1eAgchMw6B4LxgVmHAFA1QDs0GG2wIPpiALD/UgaUMTa+MPOnMH3kWIz2aGnUgW9TAMI8AIo8gKhJEMI8ANyaADIkOIxeAK1hAXeegb9cBtMfENiJMc7ICDlgeK9fWJvxgWoqiG/iAINVANBOEFr+AFcfCL8KAPlsAOvKJ0A4IO1uERuGIKo0BsRCiMVjaI31iL0McN+NAO+HFjgqADV1A03+gL4yZT/mFTSOEYOXAP9ieONBeO+YgbovgDAgINHQAN+IASUCBl3niCe+EI9JAI1bJZengS9fBA6zD+D9gwCuCXfPyoZ8GokRShD+6QDIRyaavoD8o0BHAHiANIfWFjILyYgylZGP5gC23ABozUC5bgWlXTka7GkTspFqvQAamXj1EhEKBglDMkfrbhDChwAA7QAlhQKT4JbT0plSlRD9wgA+rmi8J4Wf4QU64wEAi5FihxC/JEAg7wZ1XpifuolrfhZHrwC/iQaYRIXv6gXokwhg/VNmFhbgNhDWUmBwrQAA/wAMDQlsxGlYfZFfhQhzvJHDMSCF7GM8RGGJj1XZbnaSspEJ3lDR5mCmbmD8RQBFRwDFupmHPXG3KpmqvJmq3pmq8Jm7Epm7NJm7Vpm7eJm7mpm7vJm6v+CTB0SDqN2ZF7KR0x5gqB4A08w07bohfmZV4IIR1BcA9ugGbWcCVZYjCnuZErmBa96Z3fCZ7hKZ7jSZ7lWTv+oAY58gv6pp0zVAy4EAimkAiuUAyyYA+4oJMFAUDWkC36cAKykF3C155TmSN0oAcHiqAJqqALyqAN6qAPCqERKqETSqEVaqEXiqEZqqELSgeMsHjJJQjV0J2KWSSiEh2jwA6g4Abk4AS+4Agv6oeWQA9gKR+bWWIDymz8YA6aMAIqMAI/CqRBKqRDSqRFaqRHiqRJqqRLyqRN6qRPCqVRKqVEegEl9AM80AGkKIGKGTybJZYGMWOfhqMRhxKFUAn+Z4qmaaqma8qmbeqmbwqncSqnc0qndWqnd4qneaqnbMoIq6ADP6ACP4AJ3KAOP9aebbOXmUkYMDmmrmaejwqpkSqpk0qpWnEFRjWQVtiom9p+mempnwqqoSqqo0qqpWqqp4qqqaqqq8qqreqqpWoRjDA5WyGcnGqrt8qpUXFnuMqrvcqpBOmrwSqsw0qsxWqsx4qsyaqsy8qszeqszwqt0Sqt00qt1Wqt14qt2aqt28qt3eqt3wqu4SquuTFLjMoW/iQR5gohN3oQ6hoW7lpMDwKv4QVb86p2EGGvapmv7+p6CLGvzVGNdeYVq/GvCvGlD9GXdNFKfCE2CRuvX/E/nOdKGHoCW6OXEBSbnylRsO1KYl2hETV6sQkRsSGbkhs7Fvc4F21hr8P1rzBJi1+Rkgt7RNOHGydGESNrHAEBACH5BAEKAP8ALAAAAAAgAwkBAAj+AP0JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHLnxnj549+DRY7eSnT5v9ODB00fv3j2SOHPq3Mmzp8+fQIMKHUq0qNGjD/HpK6hP302BK13ZA2VtmqNpiVwFKmbpDj0rxWQF8uYo7DRf054KdLoUqdu3cOPKnUu3rt27eIXyqyewXlN7aotNc2IvEC57pthZY2cPXkLG5KpWteTtTjFcxQjay8u5s+fPoEOLHk0aKT5/3EQVBFWsS2Rr/hxfBMyOnT8n8KxYc2yzbenfwIMLH068uPGQhg40CBGLWSDKmwVuVltxqcnNSxPdPknvuPfv4MP+ix9P3ufSdT4oYAAhyZRmf747bu4uUJasRPR8rS3Pv7///wAGGJpT/pCTDQkUhECAavY0pdNNbTEDjymJTCMQdQJmqOGGHHbo4UNL0VPMKKaU0oAAS7gj1FJLWZhDd9h9KOOMNNZoo3D0YAaKP9tkc5qDRd2zGSiWWBjfjUgmqeSSTOJkoSPWZDNPNt98Uw0147hF3xn2ONLkl2CGKeaY8MU2DSjwYIPPOd+A4+abfCGlz2bs4BKIY/QcSeaefPbpp3E3yUJPIP7Qo06bb775zTxzkcOMGxf+KemklFZqFzv33OGYO4gm6qmeR0XnhisYWmrqqaimyhGBZ1riTz3+4HTqqaKnyTWnP5Yw416Zqvbq66/A7uePG9Nkts44ss7q5jfr1BVdhZkFK+201PbpCzOy+INPrMp2+81dS1VFToPVlmvuuR8u5Q0z3vjDabfwLpqXNYmQi+69+OYL3k32yGKKhVXCK/C34Ap0hjXt6qvwwgx75mAxzCzibrICzzpOnHdtJosvjIHa8Mcgh9xTW5Thsm3FKDPrGTPa+VOqyDDHLPNGvsBzRyL4UIzyrCrzoy1e3eWQ8MxEF200Q21d24U/8WSzM8rnZDPJJ8K4DLQ/suBi9dFcdz3zZvDAoRWbOj+daJVFCKCcLZxtlqs/9uBTq9d0131vW3dY4wv+HgGbXTE31DSAAQUSsOFZu2e8CpjdjDcuLTzsOOKNO+Mog47fKHcTjQUUWGBBH55tNoo9tzSDj8+Op666pab4Qs43nUTyLuYVr3PMDD7Y8apn9bgjAAIDcMHr6sY1xRZgDdqzWYNAEu+8RN3pc1W7gGQTT9m0n+3OOtX4wyjv4CAQggcTdP98aX/Nae9D17F1/vtMbebNGfDM8w0enSCb/c5tjoMOaPU4xwBEoAQSUAN+o0lfTPwhmGI4wheJwMUZWOaVM3ijGMVQiT1qEh0Ewm8zORAIOsbRC8rtD3NZ+ow+1sEGC3igDOTw4FCaByoMsYMc0/AGLh5Flju5gR3+09hNTQbimBySBSu4SEQxQCGLOsFjaMKSYdeWQg5c7Khp6FAGIJRxQrONIxzjUFFnAkgQb0RCNlLsSZwmQYlPCGt5hfKHK9ixFV/IAmK2wQg97FGzskzDCv5whPLW8rI0hmwpGMwMOr6RDX/AIR/j6CLKxhFJSjarYP5YxzkuVA++YMaQPDmNLXAQggStABiFWoptnECPCSpmkAZhkUNkaZDuFCM/d2CHG9C4PlB+zB7sgEfiRtimbKRBGk6TpLLGIQ5wUNKZzRQHxuZymnmc45IGuYMpmudLkQgjBBvYAOcG54ybBMJfxYCjxzxyk6cww4GSy9M6u4kudphiFJn+7MaywEElZS6TkuKg5DOR9b26XO5/CNlMDOkZEn3Ugw0H4BwFOmcBM+RyV0vpIE+YJxAJRTCHbZknQ3sVrnUEQSDJjJU04KCMSPozmgIFRzNlGlP/zcVn1vyGikC1lFGAgj4j7Ug90IEBDGyAAuGkgAZi0A7pcBMotxKIL7yRK1c4NajBIpAvXJGZvvHTH2nAh0u7KNBKPlMdMzUrJbkxt7fcwx3b0OnPEMIifIoUqxCZxzpKidSjcg4FzrAVVILpBozeFa99clAi2CEPsXbqG/XAQz9PGNOAuukcbnqmM5kZUIG6A3VH0Qc+3gXZhiwFFFZFbEbosY4WWCCp4Wz+QBGmOZemwMMNvqAHUFVrKlnYw6ps8tQ3zlGLlNKurAMFxzlqutnMPvMc3YDLsr6hUYZArpC8XYgqh+WPMDzAr+ppwCbyQi5XWMMRK4HPYbObpOkUIxDsyFmyvpEPyRp3ZwNlJnPza1ZwgLGSyx1HPORmFHykogQWWEMvG2LB9bL3Ka3zRbT+cADlKAcRuyOvVIvhC/3Ajb1jook/7uked1xjrG66BjdOcQrM4ve/alXrZpk54xjHlE2Rgqq20GGPEmzAAwiwhUkespk7LA7ECrlJMawBCmCWaR7UmAMT+hDYtuZlKY5xgz7wOTwkK+kpZyhGu7z6Jm4IhBotrRj+cvPb3Bo/UxwwRq4znVkNbtCgB/OgrU5O4w7ozoMGHtgAAx4xV9P6gxkxdDBi89PE6sLHJkopTWNkAQpMeZlJ9vDG0vihWeGuowQM0II5BLbmOcd0s53lr5vfLNNr+OMAIQjBAbz3k8vFSh9C+MAGGrAOPS9kMz+8tEHYQVWXdHkg+KiHlUPzFFzY89jC9pBiD10P7K0jCSJogQhSsQ5P0ThWz1WujJupahjP+E0CHa4oBBeCBtBaJzh9LDj8sYclbBK0RMZatNXrj0R4I9Hjmc80mMGMD++7Q90hhyymMdr7esoYOxDBCwygim5nNtVr5m9Na5rWjSNXHOKIhuD+KODuguLkHut4bLMwpuiBnGQU1nC0aucEucTRcjxtsYclsnXkgwfoHt2hED/iwa1lVoMem0iAB0TwAW6n2rkZLytNAxpgOcfYuXMWxzlgUYQloLLlFFnKPIo+jm4U9KkSKdalQWgbsBNnMyeIo88DtBkIeA/FFqPGO5IgBE9IIQmZiIYzqoHZL2I845k9t0vZ/PGNBzQc6+g1vBeZqG2YXCOmKAbaR4rlUbRM5vwRsSNGAcW5l8cbpihxNvCuqHGsgxYZKEQ95NCLbyyjGc5oRjO4odzES72s5M76ZsNBbkp+Q6BPXzM3LE+SeAv38hphxjR2i1jp87xD0al0nkz+Hx4qDspdwe0WN6yZhCTYYhue8IQzluGM9rd/GdSoBjoK7/FwNFfqli21WZ/e2RmLxDopJ1y+hhE3ASnU9yfLRl6OkThDJm1LYQm2AXrcFxwtQirxoD/K8g1mtgcxUAjU0H7AEAu5534k2AzRcA2XA1DccA0BFXz9p3j+VWPmMFaaBVDLkoAZcRqaNF/YhRGb4QRbIyncEA+icR/Q9iGg4CUTWDz+YA2u4B6s523VkAQ7EA3sl3tyEAuCh3sk6H661w3LJQ7u4A5ZV4PixnjL1Vzn8F++13/qABL34GKz4nYg4g95JClLwQhqUGh4cQ/kkAjXZyPRAUh3uITAwQz+7ACE+HAN8bIO3KAJGfAI62AM7dcMwOAJ3DCCldiF7+cM67AGCYAAc8B7i8d4a0Z8NpZc+bdJHeFQ+uRM3MALxyAM8dCDGnEPzKCECOgPPAAFfFgXQwYpBncjQ2YKMSSBhogXWhUIBfcN2wAv4+cMQiAFu8ANV9h+qDAIH9iFuteNutd+peABJVACBsAL3QBG0BR1+NdmlWRqMxYOYoQRp4EP69ANkTRcjQA8HrALOaEPuGAhkvILP6ADq3AQ6qAOOCgUN5FEACdU8/CQxaFKprAjtpiMtWWHG+MuRacsB4QIHyAKzUANXOgMx2AOSpAP15h73uiNtwcLMTCO5Xj+YswUZx5ng/nnjl8EUJaFTRaxFGTYKd2wDUXwWhbwBTlhD9OARn4SBzIgA3TAFPhAB3SgbEhxE6OQWh8xjwMoHMI0jBbJGbIAD1YVhYnSDeuwA1LAiSMIDFf4jV64krq3CzBQAhkwAWsQDZbVe8B3fzS4WYV3bsUXSfWAbxLBD2KFd844lOJUBToBQZsXJtxwBTVQA1BgZi4XlVNJYEfhJYzhEafhDFwQAAVwALPAk8JBLtnico/5lUFSKNjCDvXADWTJLOOgCS4wB+4gDNy4DNwwCJKwjSMIl8sQDcdgCBPAbbBgC9mQe3j5lx7nXDPVXOrgjoH5RfFIEdfTLej+wAslsAJSEIQjgZTb1ye/oAI6oAMj8AoEIVpS6RcCwQ31MA/t4A7t0A7qAH0j4Q2eB54cwQvKEQIYEAIFwAUJSRpDghZWhoys6RNPUSE7Uo9keXS0IAVCEA3UcHtqCQxyYA7HAJfeeAznIAolYAbOQA3H0H4d+o3VkA0jxExVB00yhW4C9aJXR0kFSlevEoAZSITuYAwZlhNeoqBK4lBqMAQ/8ANeoAaRBh+Y6RfmoAOV4A5ewAJNSZl68IsgERNFcoQZUQ+KiVQTdQCtcBxLwQy14A+isARLIAWw8G4LOhTyYxh7QWZn0z1zUAKiAJwliHvDCQzr56G6BwzrYAb+QvAJH3h7gFqiqIZ8zqQOlWRZw8V4/bdW8bmVCHEsZTMOjFIrdFgR97A0Qook9WAOV2AORmqq0rQWmDmGKsAI8LEO5iAO6/AKF2AOlroRVNQyIcELGOA5RxWmjQAeyOBa4SROc/CmRCE6nfAqZIlu1PABWXANKRmc7scNYTAIy4CocHkMy1ACS1CJgOqNuYclMdUN+Yd841B1lYSKv/ctotUQhimHy3SrONEuneoh+BAP3DAEPGBm5nCZUskNLOCqS1Gp0HABxnCv7OMPd5AtFWkRpXAAEzWxJFcGS2ocexBoH6BrHvAAqoGsQNEdkGINcAUv3RAP1fAIJbAJ10D+iZyYkscQCxcqnNEQDXswAaUAD8IQrnCpktQgDugQDZ9QCtxwfPv1e3IGDuuACCFQBNGANPPwjN6iqQrJsLBEJj6zr/2Kb+zpBSogA78wV/gwDzyACTvxeSNxDCvAOWxLAQdAaN5RD0vwWsUqTmbQgCDbj5vBDL5gMuGnLONnC1LQBMmwDSk5kpw4CNy6koIqCjQgBdWwDCfKs4DKftEAAwiAAEngDvYYU/bHhlYXRqKwAO0WA7WYEPWQcs16DjeKE4hkV32itZZ5mYJwAcNABzxgPjfhBb7ouvAAiHgrEkM5UePUAGPqHdQQA6+la7q2a5KXtzgRHXggC+QwdmX+YyX+YAgesAnVoJabqJK45wmKy5LL4A5CsAOzAK6UG67OkAkTMI4JcA8ymX+T+ntu4g9sMDghAAClxRQaqTPPtA76QJg/sRleorAdIrtQSQdxMA/iMAKV8DNrIAM/2lBNuEA5EQ+xJk4WUDjgMQ6KGU66ZgEx4A4PC70XsRSykDgXODDjxwBZsI2IC67QgHs2zKcr6QywUAJzoK3rG67slwkZMI4McA+yOYM5WWMxCmfKdQ7nYAtFtQCGoyf8cHwW01ymWbXG6CcKvJ5N6g+/YLv+UAkj0A7cYA6xKhK6BYQn3KX+UAQ90AM40Kb0WhpSsLwbsLEJADoIjMILYQ3+ppAt63Bi3WKW6DAH2wsOLuuF3JjDciAJ0dAMy3ANsIAIEwAL1TC5P+yhw9kMZlACfAcDjQBupnZ8gemGhbcO1GAChnMQEOptYkgN7mAOzdK6D+IPP8XF/Dq7qqoGahAnanABBysDVFqlFawRbUEoBzgStFXHpWEM3+UB0mwBMPCvfhwSFpI41YY93SMKSSAFFrrI36u+LAkMkoCi4CAKMFAF2/CnmyycgqoJO2AG3ZEN60A57Yi0jadc4tAmAnF23qOjMloN+FBvbODMPKEP5OAqsbvLB0EN1NAW3PAL5vALxnDRFx22fWwQSWRsPVErF+sdn7kEAAA8WbAIu3L+zRwhJLgyDfyQctf7DfiwBjugCpnovY3MkseACsfAC+4gBTtQCpHrw++se+y3DeerC0RnxTLKl2UIZ6dGSd1gdgTRbUZbg2YmBQ9gAQlwrG3cj/RQcA3drw5BwCBBE2KtKnvhDs4wD/jADun01SqdZAUyFvVgjwJzDtEArdkwrVzolm9ZznJwoRMwB+Rc1N14e6kwAY2wDnmZXJVktOnYgud2hpF0SY6FfIFpZh/gAR9gAd+J0DlxD3QUqknSxUVBE9NAKL5SqXkWSM421xkxDbgAKQLNM+uwDYWQAcFQDdCA0+PMyc7gCWvQdNmQooid2NSQC3PwAdswDryHk/f+Zw4u5ngxGkmpJg7wGbXP6VLRNbcN0NXHXBT/Nta8XLX95pW/8hRWZdqyTRA3IZZN5g/OCI33AAswsAbGEMmcOMN7mtjHAA6NgAJZYLhEjdjHMA6bwMP0gCxRzWpp5SZseHGPmobpyg3c0FkYd3hmNgd7sAbjPUP2UAwLtSeoTRSgkBgbLSaqfQfvHRFu4w0Pij3YS6iNEA6A3X6/rZLBycnNsA133ArXkNwrKbnwAANSkAv00D++x2rYna7U6aLtOIOXxd+mxlzOBEZUSRdEYt5GQQ7ksMxZdQ+l9+IK0RTs4Cr2MzDdUA0fMAeCB9zgy7PLAAsMoAmS4AkiSeT+Rt0MovABhnAsTt3U9vvgWJdZ3DCSHfdt+jVvdyHXNnLiQpGEkE4jovWuFZGEXGrmZWJPskCPq+ctKTcHE2AM1WAM/r2JlDucx7AGJbAL0SAJfsrn8LcMdxoN8cCIhK5Wp+xfALZ4NCVuF9qFx+JSIFdWm+4WFLLiAiLpPzEnukgmVjaYE1GmBVfpbxodd+ANVhWjGdjN8xwO2crIJTjnnAwOj7ADX9DO0TAIVpjc2arbMGAG/tANV63EiVKjl4VuiQcO6HANmkiC9DtnSoulcsEOgsLsAOLsI5PmJR5i7tIETVCobioR5CBhnF4Qm+EKV8k0DvcmYOgPTZAEqSD+w947kh5KkssA5EsgCuBwDMdQDWFg7j98ottAA0tQvldthk1u3fqnX3qN09Rga70nq50BD9aA7R/C8DxxE+6h8AACC57jOeJY8RFBDvaa8Yp1SzkzMOhgCxmwB9Ma8KoerifaCna5nAB+4HQ+nJ+AALxADfRH8Gx2xcn1JtFpfM6w4+7H99HgJiDnTNeJF9PwQ0qfwA4tFOwAqhcZ0nJhD+JAAD5WrB6wBPzpEDfhCq4C9dFGDq4QE5TnLfGwDJrwAbsw7O7XlmVfuYInBSXgDMRp1M6wCy9gC+y3vrkHC7BgBjvgNHlJ8ImHDujADZzCWRsH+CC3DvMQD4uE+jn+vX7b0GffYPS2rGiruRHjSSZMrxOer95HwQ9PwamczxGn0QjflcfhJI7rYNaGhkEvTiAbIw/1gIE7mgowUODR8Nupvr6SSw97AAMAMQfcsWXNDDr7tIDEAUMGHT50uGzZowYTLGRb9w3cRo4bx4H7dm5ZGSqf6mkEN+7jSpXfsvn7NAmRM5o1D0JcRq3Zp2T81vkDGlRoUH3+uPmbN1Rp0HtB8S1dWg+oVKhK6y1a17TqVq5dvX4FG1bsUm5DeBwdm1Zp0Xv0mNErqlYuWKmwmPhowsadv6dz/XZN6mHD4MEfNpSA5ZcZu7+NHT+GHFny5Ln0gAbxl83dN5QdN3b+41YviZBU3JrVRG3TGUSc0YQJWQJrW8GH1Io0INGACTCCEn37PuZsm4cPFBqQ8Ydu3fJz6M49fy7um4QDCxo0+yZOZcqU28Wtu0WBQIEZElE3+13QGa8dG1B88lcU33z69JH6W4HDiL94XPklZYMNar5K6hNR7vuqGAQpY7DBv8o6y8Gl8KmnwnXcmEbCuZ4ypAHjPJyhGg3nkmoJCwojDAVj/nLCG3tGhDFGGWeEsahEQKFnnnE68wyca9zZJYFGookmNSNPY+2hgmD5wJDVkqwGCAkkUCA2W3LBMstcbIHFGUMmCIECKpFo5zdniESzSGAKwEDMVqq5pppqtrn+Js44t6kmnj4o0IACAYw5Bj3fjlzjgQ8syKKrF1sQk4IZ/KEKKql6wGBKdCLdCokpketrKz1BaGEerWgk1UEI0RrxKXFgycSWWkoNyxkKwjzRODbqiQvWqoqCBQEUN/CghPjmetEUf17UNVlll42RLWsCIccfcLbpkaNv1snGjBKocQaa04w8MsllnDnGjAdOow0iZ5ZJBgcJVmiFF1tuobfeW4BJZYcdnLnkAApwIOg81gLVQIIGJNiFoIeedIiaPg6mDhZY7L2Fy3lnmQUWczewYAlw0AE5ZJHR6QY/Ck4OwZ913GGZ5XkqrGcefZZpk4IConGnnvp2fqoVBU7+FgC+rfSpBxgBUiCBAkiZZVqtU2GUqpQSEMggAQskaXopKjykYDAKMBjg0qyFuqceIR4YTDAEMhlWrqLusGfUseemu+6lrLEnEaSyqXajb0puJIks3DHm2/NoOohhnJY555ES5ghHItbWBYZLc45YhheKK75lGTOE2GMdYLYRhQ3EE0+S3GO44OITatKd/JhbnCGjhR5a0VJLW3bfUhhRNnjAAkPWsRYkjlTCyI4ACijAkM22+WYb6DnjphuX0OE6AGCqr7P77rm5ZhxRFjh5gVbWge4555ZzZ5147DggBQw0WNpu+4N6GsZdMgi2/wlWrJsZuLaBk4EtGpiiWxb+EJAAApQgFfWrjD+scKz7VdCCsLKHZc5ADn7sqG/TGkc8pLAD2YzrW4ZLDZIG5oxrlCALpfhGoGInr3nZYhCbuwUsKrcDKdgiGwUZVzWSpMKFCecb0YCduuSVw2aUwhaaw2G9bAGMXFCjFQYiXo92tMUdzWMSohBFPajFHY90BxzicAcvKHCAPhivWipRCTqYUAAClOEjGtGOOKwlnWvwogAbKAAV/CG3C44tfyOSAv88sEgPZEAK7shV1srQAAucbDAhCMA3EDg3fazjGuBIymPu4Y1RFNKUp2zQi7zhBpV90G/r2IUBNLGMIoELSTYZ4jG+YYgSiOJ0Sarclej+JQw5bMleT2wEAlJhwiFOrpnNJNfmsBTFeuWCF8JIXDRc+Y0tpqQ55/hGOD4CDnNoUSPoyEb43shNa6nkTOMcZ2e2kw2pNAMErZhHp1DZtENKiBo7+AAjGVmCdWySWR1qUyWN0wN3EHJuZYuZQeVyD3aUcp8Xxahc7HEGWfjDg327VjXWAAOajAtcq8GluKjBCyl84HVJjAjn7MWLQUCxYryAhRCEMBuYPhNdPnXIuoSxO2riEEvC4AVOsjFOV3KHR9zkpnZS8g1ucMZH19CjZ7aoEaiChBvZQElYNXJHdMgHH/LgRz34kVGm9dNB0QCoQPsntrFJhQsECAEGMND+gAMcg62N8QUz/jpYwgKlKeyQhSX4AtYPnuMekNjBGrhxOJQKbIgF2QYv/0APGaqrGcKo2LzstQs5qEJzuThGG2Cwh3MoDKiTe5Li1HWMXMi0qDMdalKV1IxoMLWpHAlHGd+4Hd+ysyPd9K0ZjTuObJyjP0LBikMLOyO3Oqilcs1AFuIRyabpwx2TwAABDlCEa0xXLvRwBDuka1722m8U8CglOnjkmWtQVQhSaMU4TGpL2Q4sG8e4wRKEQY3ORoRcxjSqJCRhi2PAAgZSgMV/X/va/hrEprc9JjBwWuBbOoNvv/1gcjvCTj2K+HjH5U5WPXItQlrDDfBYb3slVN3+BpWif4sswQdoYb+1tuy5MhaLgmIMZCLrSh8u0ltGXMkNeuxiAo2oRrdQWNmSVtggx6BGIz4AC15YuRm8mCY1Z6GKZqwhA0Py8oQ9y7BoYnhzCduda1mzjA+D+LfbOaPfTpwdj8BTxSvuSDdCqRRkFTlGNKbMUxqxAwt8IAMwaETb7Aaze6w1WfqEFTlYWWhDdxpW3sCFK/wBThODJCNJ8IA6ApVCIzEzSdHIhRRgIAzJJekY8qptUWdxhCTEwB+0VnOwD5I522J4XsLINYcnZ2dmc6ScrizxRrhxDhRvRBzoqMo07sAO7nqaMoimjFpPMYc5rOEpEo1KUXTmbaH+6HPdpSpKMTLUbXbXWzLIcoQpMlTnHnVjG/7YA+jWYYyThmvOZ9oDDNbADzkHdRnAgEWYcXglYayhBI/4BjaFHWxnUNHN9tJhNFGb5mbocr7NRrmduTFVcPSH3v7whjfsbSqzoEpDlgGFUF6+lr5IhR87by8/nqIOckda0jMqiiwYA/SZN30s+ihWLYyFrQ9yYx7caMISWvGN/cYWl1YmF01KIAVhSBgn5MJ1UWFxjFR8YA7CmM3G1Yx20X58mJNYAheEERygLkOdKQc8s3e0DkwrxRvMGLLT5QJuyTQlB/6wzFiqAYMPfKAEySg8kaWyhxMZZgXR0NWLzsAYxZf+3m1FCYI9vHGSJa8jExPIBOJUQ2WgCmMde5hAKn6pRARHMRewEMYcMtCKWCghFiSX+0FkV/ePW/MTJ+pYNJQ9uWW4MfDX/+A3Br0VV3TU9JBhvGTIES2xzMcYBihB+qf2QKYTtiiGYMAKDGMYGuRMV+wg//f1DxZXFIPbH12nbkiCGxCiKaOy3ZszahCGHUiCbWg4JbkS5pOmXCiF0ZgNZ+CW5HuttPu4K+GFayoCwfCAByCwCVsq7EPBHkEHfLA0rpgGa9g/xwi/xygKR5iGxFOKpEgAymMkGEAACCKyogiWzgsoBAij9mMQeyCHOzi6GHTCQQIKXCgGcsiIk/P+m3OYB14yBHoonII7ocuKhmyYgxgwhHEAhtRZhtwSJml6olwYqT2gB1pzhkHwhGjQwGY6BqKyuycCBnrhhTk4AA9ogBUoQQoDpxREwZD4Ma6AOlfIkCecixl8DGYAhXtAQqLwh12wPIHKsULgi04TBcPYgMoTxSIAQhqRBVGDxCeMvDPgB83ohqpbB25QOFjghuBgNcuytW3IKSnYhWqAqXHxuFyLorVrhRIwg7LjO2dAhUHoqeRbDWJsPltAKnrhEmeYgwcgjXWZMDqbB35DxGa7FnRbC3iQBU5bRbGQxMeAi/IDOLnCsSSAQkMrBcKYP8NYglOckXZMR/2Liy7+8L95sEKOCA0tywQiuaUTMriBuYZNmIBScDV1kThqirAlgIEuka1jmD5oRDYJdLM+lCI55AW+mzCaCD50KrVw/KDt8wp9oIf36se0WMfGyLexeAph2MSB+gBPzDz2WgdgKQzDeIA9mA9dmYZAgIdLjEkgizkrsAxwtL5rcYYsKAF3CI79mjIUQkNegAEh0IlnlB1pjCJh0IQHi6EkIpcweEC5Iza7s0YNoxhheBKFecaBaYUAEA9nGEiV7JFzSAuKUsWlDIuZnAt9gAdfUIukyIAS4MQE0Mf2aopsFAxgsQALKBtlmUKlFMzpGiVLQEx34BvOyIZwCK56AId2aAf+d6iEEkCEdcAmZzAH2IwyO+RGIjo7aliDHXCetRSqW+i9zeGyVpgDGPiEgRgiZ4iFWLhDg6gct7ypJbIXuYSduryJkhOHEAgTFCiAzODL7AuhTwyLeDOWzQQLwtQofwhMsSgKWmCAxWRMBCgF8IQVotHM85yDBAgeBKCBAVkWU6AHdCRPIrMHe7CGU/AHd0AnzlgOfMgGZcgGPOCGSEAGIaiAVjgFQDgFPEAFJWiGNIiEaOiEajiGdpATQYEdYMgGWEBGuJs+uvNIkGuGVEDGZYi7IaqGQeANtqQ7t/TAXaAYBiO5lAqqY6iGHtgA7HwUqOxO5iI8tXiRO8DBAAX+CvNMixfpgkdMi6eghiTIgAlIAmiQz1KhCqjrycjAh2owBDagBZbUlXvYNCnVvHuAB3bAA49irnyIh17ohQxdhE7ohU7whyPIgFSwQ41EqXGhBk/QBixAhU5QglOIBI2kBgKTCF2agy0rkmaCTrVrhi/IgISpTWiSg0LkONByzicCMwkkyb5LHJtYhmM4AAEIgWxQ0u7UpL9gBwCFU6Wg0rSAOl0NC0whxxEpimwQhTJohZJpQQaBOn3gh8tkmmmIvF01r6f4iccbNWnIBmlwglqAg1rohXy4tnNwhge7hrBDknEJFFxEk9hEhUXAg0VYBGCQiF3QF3rQLXGJwKL+yoVdEAUYyILXeS1aGgSBDbZl2BKxvC1rMtXRkjvFoY1lEDR26IaURMRr+QvLeDxgpVajqDkJ0aB5lIuYeRm64A9RSIUHasK0kApNKIAD4KsDiLT6VAt8sESmKQpQgMGOLSypaIQWIAF/UIZaUAYsyIZFQAdxqAfnaC5waIQSaISBsyXDgQbaCBg5oYZYWARUOIIDmAQzFFF1IbYXpZctqRwpEAJDgIczLElUOL6SbAaQdM5cgLgc4oVdmBdeoM6SrIlj4I3u9AxFDNOn8wfFmlaeHYpeDU9/AIX8axZ/SAUhYIAJmIAsWBGabTd/sIUDyCu9Ci9beDd2u4d70Bv+zEXc7gIKQLSACjADN9iGWsiHcXAHkNAIalgHaniwYADGA5y9L4yIkpuHtusDSShabgCEdgi7cREGHyVb3+ySRTODSd3IZooFTzDYZhqXzGneKJqihIWFaviEZZqd5YQt7ADcqVoH0x2KopgGeDhdsvjYBikKX7jZGdmfgFqkD4CBnyARf8BOSyIgCkCBxyyypugo9X1fZdEHZZAHFMAACyCBFqAHbhAxERE+QpWyI6EJaECpIQIGapC1VECSY6heOAAGcyCIVC0qLokGKZiAXbDDjTsGcwgDc9jb9dheaVo76LSFZaiCRpuDddhbNVOPykIHwL3Vx4CHE4C8BBb+CsUFi6IIBAqKEQqRAguQqw8wA78oChN4YAqozFlpgAXxtqYABZlz4kKKi1EYBVOYghBoAA0wg0P0DHQ4BhhYgm8gOMqqCQ72MtXZgSwwO/SgCWAAhiBYBlWIOLL1wFCcA3fQOLnz24KFpmXQQ7uzJubjhT1AG455BOSDxr0MPP6FDJnjWJ6FYrBgB1GLUsioh3FIAMYUqA94pML0Bw144DC2gBB4ADL2CkxhQVQqCm9QkDSuIH2YX2sIgmlQBn+YhChgA3wYI2lzh3BQrUZAhz2ePdXAXppYgw/YBNFZnNN4BjocBFswLeBsMC6AgVSgBmAAZer1hBZNQ9/kUV7+8LiZepjBsIBPiOeDNYi/S0QsXFm38Yc7wBtjntL4bRBT8AYEVot6OIcJkGVGomVSZll/8IEVUCgw3oAeoOKWLIpUYIM92As2tSAldASFtp9WdAP/A4pC45GjgIUdaINduEA+lr1msj0mWYMzaVFkgwVjmAVPGIRBmAUfLdtZcIZGgIE/KLsh9qmCGIS3XZhbW0M3ozicYkMhIAAEkIKIJN/f1aYU/AZ3KNO58AXFguhVTOWveIu2Hot6WAf8FShH+gt8CAcBQAGvCQECqIZhVYp12IESaLQY2GLB5qR7sIbDZWmcbQpTsILGXgt/6AxuiIc9yABakL2T8pY0Owb+dEgCGJgdK8scpaaXXSjqQZCEWdCctZMCD+gS9Bhr5EQFdWlYt6xGo7oFjQSGvfvn5KvVZlNsuUjKx35rr0gE9SIVWGAAuSqBHfuLeaAGzm2AB84Ff1jWrjiH9viVPdgnOU0Ex37sZRklJ4AHGFyvzRgH6PkALjgHA+zg03nGM8mpLDDDZurD36yXXWjtc04FBlgDIR7roEIFT4CIHJ64PmTk7NVIqb5DOsM+jI4MfXBT72Pp5OYKb/AFe5DrtMhsyq2a1SLgtCgFMziQgt6KR/AVFLGAHbA5U5qGYi5vZikGb7ACdnDfncOH5RgpUTiHwlHIDhPShziGFBU+GFr+VYfjQO4FBkk4gh3YhWyI5AJfBm6QA3r9rKw2Norj8mOC8AJ3CFEGKXRIig9fi8NT8dPV8K04TA+HlVQohDlohBVBaV/tFHzQTH2IBwGyx8F4gFa4KHYgvRoPPcboAlmg8arYi10QAjO48q6T7w4eGHDYhBIwnetdGCqayM1pBTGEgTzYhi7Ih7AV89MAhkGgLQWvJt/UsObNhVM/WDLvkWtJ68Yolhpv86poY2WJGaC49Rpxh40ZxfmzgMTYJ1NQLEOHFctghhPwhkKHCn1Iij34gFLIwIIrcogAhnEQAhgIGDTM5BXuEp3iBSQCBjjohFs89SuXA2iYBYX1PR3+2lRpGl9ZVzNtonWOUCsHsQwmPmXE3fWlMMyAh5FgpxFEaHFj9wBhwCgYY3ZSsQd4sAJWQuauoAYXkIJf03YEhK1W+IA9cEA83JLmvZJd+AS3yziDWAZz6ARACFXyXYZZMIYjgIYOnCJ7pqZciHl8B6odobamonDKKArBMnhUZujJuIf+W8Vq8IATGcUR/IPBvSBrAAU4j/gaOTIm9gf3rQqp0Afhe4Z64AbTEBhuviwCy4IdyAQz7C8XXWF8sbhdIDCGIVJzwAJuqDVoTMN5yQVJ8IQL8z189shL7rIw9/ll6IM+OB8rDAmpQHi/sFJyQHNIHPihaAtQkHYnXAb+C0iABmiAAQjiyKeb5T76rG8MnLOEHa+K/4BcGCgEbnCHaeuGSU+zbs8EGNgCcOh5h+D0SwbOZpiDEtiDMwnGZYiFU0AFFIbGVc+1WZCEm6emKfpACfw9jYy4LvN5InaGJTiABziACKv1eCD9xlj9yrf8pJ8MeiBv/XuKcxCGPRCFayh/utl81Cf6F3ECU2i/pFgDIQCIXevOqRM3zlw0ZwqXOWumUGGziBKbLTv2TYoHiBMnOsuV6xbIkCJBwgIWI4utaBtXKoyEhduylTI3OuNla+QtMIN44bz1ERjPmyJzlZRS5FiuhjOXMm06c9kyDBg2NJj07Ru4rN/O1fP+5/Ur2LBix5INS26avbJq17Jt6/Yt3LhxuQ3hwU3uW3vkzuDt6/cvYLD37nmtpy8w4sBu0CZu7Pgx5Mj+7LHr4k8fYbXu3mVY449bQXGi0VF7aLqhxogMnYmaMOebsJnOgN3a1XNorkce5mSL6ZQhNyXHlDpVfTsXr1kfR+ayBWw5TljCNmzwYAEdsOLat29cxs2EhAYHWmXDmnWd5LW+TKVN7/59ZLp20+ujxww+fvz47h3OD98bO/4JOCCBZR1WjC/w2JOZWPx0Vc8cHyTjTzXqnGPQOOOIc45GHTr0oUW2mAFDMNsMx9IyHkGHE1HApCIFDcdkc8x2FQETCzD+1TjVEC+wCIWTMEfMMstIvADzI07KWeDBBhY04oxv3En5mzM+9FCHO1h9g848lwmYliMFijkmWPLdJdk98IxCJpttsomLNwy6OSedcKUFyijeqKVPPP6IQsMa7ayzDTrjgJNhhuLMQ01KOprmkELHrPPHDm1QE02UHPHyEZLRObNHCXOAc0ym2jmDCiCeQPnUbM2tiNMzRxgziy2w8GLTbSFJl0AJKyDAS6lTCivTMugss45W7uBD4GGW6FkntJCZSd80pkR7LbaA+YKLl9l6SydhxbBDzp6HJZGEMOuMc845WYkDjjrgmLOOKi2g0AMspX34EDDcCJFESsE6tAz+rq/i5EwJO6QmbDQ4orIqSx512pMtqhB5y5EGU9yIBQ8YAtWwIS8FVXlciUmPP6B0+y3Lbk0rmT7eFNMyzTV7JfPKNuv8XlqWoayWMCUUsg43G76rITiiaTgPFQ1g0AAXNJ52TDIMFHKNwBFlnCtIHjWSwSbR0ChyM8dEowQ3wxFX9sS5zmLMEckI4xPXIeVCETXUkL33TJLm7F9aJ/jz886Ff1bXmZB1VczMy8bluD9yvtWVV5K3pU9//kD+VuZ/X/4VPp27BTnmcjGIz+ZvkWMt5Ya7nhjmuPDVnlhdbTNHCdTUw42G7V54qKEGMU1BCAeYEZFCxpSWBAy7pL3+NvLH7OIR17Y4k4kUMKR04t7epVGLKKI4IzYwPtY90tuDCKMxTrvEVBGpfMtPkTPZdDmmLJO9XvjLj3UljiRiIZf9fEYU1dAcXPTBD39QQxTg0B/nvMKLUiyrHgscnVd2QQuvpG4thKmHj7wiurV0xR2t4IUI38KPtKxDFMdI4eT8sQw+jMMf9ejg/nL4Fnq4IXJjcZA/aFECRMyDaAU5CIbkdZAMuUMTBSjAAcSnEGH4Yw47mAM3ULOwZhzJFuwjCTDmAANDZANT8yubOvhgAQuwYXp0Ox8YNyUJOVzsOLcA1hnzuIzyGMpz+QEFOyynQ2/1zzHuoIJUMNACZ7T+ri3nMAIGKKABHKzDHXD5hg8iqYEe+MOSbeGHPoQRSUmywYZwSYUHUlkCQ4TOLQukhAYoQAEMiAKHZDmMHWRJPBS6sitT0OUKqAEXS7YgkUxAzyCTebliOIJ2YrFkFYTgDHVZyCAGMUe7jpa0pIljGaUQBkSiEQ0aCIEXCdHihyjSnLaFpFbUgIEUgGHGPDoDFiWwwAYQgIi5wZFuwnDjLFQBDeX0pDm8gF4eRcaQbBgqQ40UkCNcocyaFRIx96gHExagyxAU4Bv6sCVY6uGOGUhgowXAx0PJUo916FKWGFCAP+6nlv0cIwCjpIACygDBcsGCACWgjgcSUAgfrgX+H/xAhAB0iQEBiKJ0JPRHGQqgVAEAI6Vj6UoRSupSAeiuLV0SQAh0KYEWuEOQE50oue5TlmtkoBD12Ma6EGVNDcnVHAfJSje4AZOGbGICn+CGMSAFEdQIw4vsBIlzDIGATPQmociDxQos8IEDIIIn/bwFP3X1goFSLDaOlV82DgW8cSDTPweyxllpVlHAfNQWSZUAbCUQAgmYcqb6mIRUYyvbFtS2LF0pg0Z1iwEmELUsX51tbDFQgGUgUC1dGgAKJLuBD/gqHmYNqTsCgFzYcnRwRcUHNQSAAd2GAKYyvaU/WqEACgg3BDH1oD9msN2SFuATzU3tRA8TiGKIDoj+6FjDDYyBD25cKFHhUEfwlIaoQ4mmXXkVUQkSsprTQOkjFr6NLY6hinONb2yfdQYXGkCCI2Tii+30SflepQ05PAMnzkHoZ6W0ULo2NEMglQyC1IpfQiLOMV3pAXt1S4EWPHAtXYqkbkvq3hGGpUsKGK+QaWtV0PkjG8EVMhWKO5bDpII60/2yBeZw37Esiw1Qji1O7cvkrxCmB2eGLQUKQMWnyjLJcV7HlMHC0iAn9wDv3XEyD+OLmYWFT/7YwxI8sw0Cb8gcolEwXZO2xIaKoxv+MITQtoHO02zKJ140WK2cYYYrjiN+MYYSLPawhzygIhm3YKctbMGL9XkRJ7z+GMQgYKFrT3MvxiELrUFE21BweBI/d0LZmgHtptX+pUt1FjIG5uxcfxzgzSXFwDbY0qUCWFuSYxbLYWBxZTTPoLdkvrSXqfMB6ixBy2IhTBmeDWcJlPLGP+YznBWgZrV0ZQX4LqkCqHFjr0QjrHY2r7J1SBhLBEIsrTxXNdxhNHYdTa5ZyRA2MWQOdHDjGvgowRpsUY0Ja9EZSLnwOkfixWbsIAnLmOep+XmrXUgCC7uo40hgcYw35soTyTjGMXrEEF+HzBnfMBTwsiJacZQWP4txZsKhxWy/pIUK6xVyCK77lXvbGQPmHsuR/83enarUH7lFswN0qnWvHAOfXl7+twUM8e1CX7qkQh6PH9nsDybIm77OSHZh/NECsRcgHnkWIT6QHOU/R/11KCPcV/hBiwSIwh0ELnCDFVzxo50j0uP4BiozUQ+SD7YZPFFRrJdTa8MawgCpMDnRHUKbnCdjELax9ezrlotZHIE6ZoBx7H/DUAZnSNjCtiB+vAGPxmdr6n55q1QdkG8jfN3h9pgFAfhMgQPodOCoQyqflauIvG9d8FfX6gLccXivdMnt6/Yy441r9mez1+vnLbt4g4zTct/f4fj4Rv7BWQFQ3/rB2wFoXwAcg1Mx384chhvcR38QBjeMGjcQDTpYk2hI2jmEg9JIGtIYRDfUwzGYgQv+qMM86JVgacRNuMqrrZNh3cIxiMIOLIE6QAnwzU9NTAytYAGSyFouHAkcEYUQUAcDfIJKBJ92vNzRFd9oGd/nedLA+cWBuIKOMWCdOF9ffJQdCIBWBUAP1MPapRAbcKEsBQBxrR8H+QMVkKEECIBOoeFlgAMGZN/21dfcOZw+OEPHEGED2AL5fUW4HYBUxZkGMFJbEMYnFMB6UQBY4VlbdAVSLaIA4IANXdC0MUEA1JkA1JsVNqA/JEIKoZQ/QMIOIEI8rAOG0JU1tQuiaEi8pKI4HBCoNMJncAM4nAPpzQ3quaCreNEyfMEOPAI1gIyvMQSusIgt7AIctJhB3Ur+rZ0PLzxCCHxACxQAJOgNEu4IH7VisDFh8Vma48BhXOhDWjRcJ0YLFv6FMxgBBZBA5d1hWfBCEYTADLRC/7FFK7gZvvyhWMSDHbRACJRBNPAjlbnDHMQACrwGQaYQOLBBCLSAHRTb51xDGTxkH9yjgfjDMSDSDCBCFIbFPbRCCyiAEQDDORpOMeTPYdRDV0hBEkCDO3igEjGYpCVRTR4KN8TDPHxAFpzDBWYIB+pIM4iN3Xjap30aLDQHyNlCYxEdQ8CRJAzCLJTEMV6WMNCAZIXALNxgNlKENDAU0nnjgikdONzWCqyA3AGeX+QA2Z1km6SjX9wDPmADNiwkSOr+3QBR2ThmBuoMUGbIpelkxg0NkOPwh+n0h2E8jj7Aw8yIo1vWSTFMAyDuggE0Aj5sA7sIG4254roozVxhEzo0AgMkwzfYol1lYDflYNfQjcSwoDDswQRkwjZkTUI5Q6ydD5HMwjEk5WWBxC4cgztIwRLIwSBwZTaCJfEx2LskHdKhgzDEwCxFEWSQw8yE4WP6B1xmYT30Qi1Q3TwkplzoQz3Mgz18pMONp3WSGUua57t9J3uC5HeqpW/FZ19IQye423Viy2EwQ8OxUPbMC4EBjzVt01xdSDjcYoLpAyyswRK4wwbKFY2liFBYGAvmwi7onCgIgRDQAzF+VjVcg0r+pEg/CQMgpMHNXZYXgRMXVUM1cIMnFKepdSXyYEU4FN9YLmETgsM62EIIbMBSXcJj0IMvWEOA5Oey9RjMkEMVGinzeQMEMmm2HAYuWEufrAEMZII/ZJ4qctM2ycvFUVrS4IMhxIDceaYqXiA1HMMKtpOKvNosVAOMNMKMpBNtDgtDzIEZGOFh2Y1z8IIxwEIauNr5GNTQqQZUHIM5KEE7wFzwxURojVYrCmiOIso5uMABHEADXINjkIM1WAKUHul8oIk1gOKnMp8p+IJdlqqA9Icy+EM8CMEaXIODaojmGUqN1liNeiY4bEM14MMGrEHEHYpd5So4oEM1RIqPJOX+hXkRLRzDJnAAGwDDNsiEcXLHMWzDFqzRBnxCc9SNc9weLKCCJ5iYT+gcbZ5KGKgKEkKJNCxhjSFdl0pa0ikdOmTDIzTCNzRGuMyMfKpqemRnFtqDZPprwnmDPfQrwQoIM/QQLCAAKxgRpB1NsDHYhXRejYHDPGhCAvyCxNGqXBmESihENbRCH9jmcliYLUSILVDEU6QT2QCDOwxACaybFCzDnv7gSHgCHAgqhvFCcXjHIMRoMT7ql0IqhDInWR7EVWBkX1iBwSasmAAsXlCGOeYQ5LynW4LCNKQn1KZHV9jCJ9SCOWQPPhBNKzraXGGcXSWKQXCgONRDLvzLPJz+A2jElTjcKjek4BwQQAM8wJr+oCYIQRN8Q4eyyt4cwzmskQc8ABuoKcUgh01Ahxd5gidYlsq9mHZEwyDEgifARIwtQ7sK6LsqHRPK67ANW2k2XV+kBTuQKsJ2rWNIbXjSwygs3/50STwYgye97klaAjtAHeyalj+IZgMoQAlkwglyYKIUH4ZkYIIJKIHhAxssgSb4wzVg4GiJwzA+xDLswgGEgFRQgc1m2Ihswjd4WFPERLUyRUzAwg40wBcIAyxQzK10K3OoAh0xh3P02m+UhhzEQqEm1KNGqo2O5YIZsNItJzpgLViUDihYArIF74DIrumQy/5Y0g70QMIUQeL+JOzv8q4EJ0ZXfEAJtMAKJMFnIJgHKpiXOu9ciUY8OAMMmEFO8g4GGgrdlhyU8ML3hm/QCYNr8MIwTkmdNkVNEMUnFBaobcph1d7tiUR2DMupADD/kg3ogqWNdqBYwms3li44YMXnMS186UMQFIOegHAIAwYFJxA83AGqus6yrACTqFsMHFDC0kMX/G4aC8gIz+wHJMHufKA4YBPaJsrSKZE1NQICmMM3PFoBJ805Pcr4NEIDhIAGbAMvZIEHtAKjCksAF4dqspNHAGHd7IISJAOReMT6MgU3hAEwVLHIhFYBczGltaJYkm4Cu4vq7tA09NAC7jF+rHFcsEORug7+F7jddH3AA8zBRxEsMQPzgHTJCkiBC/CDO6DDaRoyN6LmOMSLObiDMAhBFtxDXmHTx4rDNVDYYL1cmm7DIyTBEhBuEVPJPEsEwexpnz5j9dDc9AADxITMMVQDNRwBMMiTyCiEZi6YFsPrFh+w8SUw7y6mP5zBNOAC10IzYggzXESm6ywQFbjf+5WAI/qrN8jCL2N0eiwQISzLsvBDERUN0mRz865LI+NDGywBlnbDTBsKOnRDyKrzQwxHNEjBDmhCqVEr8nCH+hqxhGpMi1Tl+ciaHJgDLNsp0EoCKgxjPU+Eo7aLTB7wFn/p6IJ1vGTIN0jkWqAMO1gBLnALGqP+dF9o9FvggiWcdM2ggxAg8/slADo45tbR547hQv7A9Xs0S4B0jj7MAwsnJ4ZwwzwsQ6hEwzzoNMbRqrHaIFBHCjfAwgQYQjMM8Y7UiBFLT654EW2Q61CABCpggTnoUTV4AjAU5z8zdeiKltESMENn8cWe7tFdnDjwoz2khRtYwcC+NWHLhVy7hT1AXuEcs7p9wAdYQAyoX1wsUDMDGjlY8HGjiT/0J1ko9hJ9qUF8QzxECC3MgwcS8BFm9kJQwxpMAGmM3GfRpuMehzP2JkgclDOkjWORihwAw8MkIR9N7HI2oSFzU1gmuDeKljlcXFbMgyWWBT2cAD0w93a7R3L+t0UbB5Lr7EEDpNsGJAAtysUyNE0IPMJdMPC3HAYVXnh6OMI9AG8adtJPKoo7xIM77MIOZEEtMphdNbg4PA+FrQQ3iAIMeAZDYY2UrDJXQwVD1HdP8MIunF5v/iaUAEMaxMIRnlFMUANWS0La0CbogrFYG/itRmrR0iTSOjjSGQQ6rMU0JMIdDI6Mu7i0IKl7uAI8XHSdHMYaEEB1WAACCMEu78k89AGmYoAFfK8wqXiU0gMuGLedqwU7mAI8AN6y8ImmmsEc7IEY0cKAwUuinAMhY/aQL0Q0UEMWSAGW8k5WbHmMFaumQbnK7UIX9aYtCEOhzkYkCO38LENpDIL+J0iCOcAeV39l54lu8JDuLPv26LqrgT+yjYlFexTDGfBrUU16RuN5evAXn0NLPdzCEjCAENhCofObOxBAJFkAMMGj4aSJtWj7phZDnb+bP0jBBGTAB8DAKW5TjX3DOpRGZiOP8tjCbpyD5WnFOXRyHgHDEuzAFtivi9F6P+UC+sqe2RAdNQB4GByD5zLEHrlr6S6n5xlwWHZxxTH0Qxcfnt3PwfqDNdzBKNT7ZbCkX8s7WWR4W6wHftpM5oBwV8yB07C7LqEALwXaWeB8YtzDkL5Fl5RACXhAwvhDIy8dXUXywEtKFkzANqyDeTg4ODD5lETDEkwX406MrFlubx7+lExwQxosQuF+ljkMAlZH8QDXWBIhzaTOcpsz+7xGu9IhE2H0jCkQGlks0GBygx60ktIjN7dLBj1g++vYw3fKRVfMQEttlCgo02FMw5o0/l/Uhyw8yyP6wxLke2fUQzcwr4bsFXtHBDdkwgeIGTV8fdKKvYwVAT41wBqwCFC8Wm9a/GzbMzdk9VaHTEUcq7CTgjI0cjdqxVimYqSBw62KNduueZonyjUUQQA8AC/wgxKsdeWA3TpAQzIwwhWwwAXQQfWB/lro/FroV1syX1ewwYfL0hpRAArAgjIJd8+7P0D4EziQ4EB79xIVVKiwnj8zWQr5i+dOnLlx4rpFW+b+jGNHj86OfXPWJEkye9fGgVO5cuW1Zi9hxpQ5k6bMaHMSNEhgKNctn7Z48erpk2hRo0R5bazZbFk1ONyOLZU6leayZdt6ZcNTqxO4bPO+fQM3LqXKsmRTok1LdiVbcOLSjh3rFty3bNlSEfDwooCWU+z80dO30N8qLzJGsNBRw4u/evwIR5Y8mXJly5cxZ9ZckNsQHtw2Yx48bZq/waFRp1ZdsB41ASEobNhgIUQDx6tx59Z3r3Ru37+BB6d8z58lepkhS/SHT6A+itScNfs43di2RiUeVXMnlmX3sUqphp+Z65OZR7ZsETXmc+jRo7nSLwu/DFWaavLF55fpbNn+3XPo7PoGC2lOaQefc8Kaiyy4FFyrLbYuEkdBuVYSJ5tx1mlHnCMs2CAFB2ppTrJq1qGjhsV+gEa4FVlsEbXOPnNxMGZcMc3FG1HTB585DqAgNgwaiIY5HIn0xxo3/CGuyCWZDG4wWXpbTZ9xopmOo5c8WqOEca6h0Lvu7tNvqehgWsY9oHgxqj33fhJGvyvFjJOpbB4cy8JaAAEkFrXcuigtcRhEa0KVAqUrpbtqweKbSEoggQJVbJSMOR0Wo7SSJjHNVDUYQXPRHn8SOk1TgkQV9cY5ekChhxi6UXLU3wZzJLBXaa2VMH30qdHV0PSZh5uxvqlSOumc0ajYVDL+mMOfX1f6pqwvx9omWDlp4s+WodJDk5dr1VzTKF6OITO8Y7hRAhhxqZ0qGrH6JOvCddbJB5BT5pVGmbvQiWcdDIEVJ0EInQXnHHDQgdeddaTJRplaelFCHECYu0cWXOBJMrLTQlGsBkF0aGweW0G2ldMbiXOEHJAbmkeYZUR0cchozhFoyJBTI84Si2nOWVNvZIlUs8HqQacbls7phhr5qGmlEHeWWUKKXfih06y4oA2WDTZEsSpdLI95jxdg0GPzlly8vYUXOPNb5phIotl6qWUSplpQtMT6Juh1ajnllF7wAGeRU9bpxJ1s/HEHn3jwQedjwtfBJ+FaIOcqEl3+AFFGmXm2EegOdiJpeaGPh1GDBRW8SGaYIfyZJzmdWSdyZJK9SQjkRmgoYQUhdvGZxVJbT82XhHbtXfjgiEPy080GW6cu78YJq5pPPiiBhh0K+WYdZ7mj+stt4lmhgQYo2AW/dLsmKttjymZzTfDiBCaWMN2WqT9nz1orLrVUgrd5Zb7pJRJ8sNCLU2ChFmk4BR6kEQkszKMCXEmDMiLRi17YSxpkcQc6MlcMS5xCIMEjCD4aIogf1EAFoXCHP9SgouGtcEWvu5E+yHEcWukDEQnYwAc24AEG5M5ULKQZPHroQyGqhhxBvAw+tgEtlYQjG9cwQAk84IFC3IN5bbH+Ykv4cYAQYOABk0BXnI4xC6LkAhbAEIbY0CiML+pHbWmIxRq31h+zzGVq92uXwFjSPIGhQ3HriMc4sqKMrNxNHSkJC1yehQ5/mKJnRiyIPswxhBrU4Afc0EdyHDlETV7GhS26BzsCIcNR1YMbCfCABT7wAQuUwALL2WTI7kCO472SlpUhjhX8MUvMbOdZ0OLGNRhQghJ8YA/0+FIv9ciSbNTjAQ2wwANaISatMeUYsGjPLoBhzfSJLRfhGh+1gBGV+MEkGuSYmlza1ac8jiUcA2tWWLIRoLp8IxxcCgv23pKScAjshAnxRiZdOQ9WqKAGPNCDYwbDj4bUkqGV6aT+i6bhi1cRZw4PkA0OU1kCUTT0Vb4oBkdBShhLFBEzzJnHOpilREKNYw4TmMAOnNHL7kgoYN0JSyuYUIQ+HE088vFKuLbFrVsAI03bZJMt3ARHMTnDE6hQKhudQSdEXnFCDnLLwOYGIQfh8ZwMkgtGFCkLWXwUoA1JhhpUwAI1/CJ1IXVrZB7aInJYA6A3asgSOnRDjHrgEW9tEjy84de3sgMwmdkOd1SKzm/YghbO2E5iKYTY/NmlbeLhCDCKwIZz3CI9PhHKttBolPQkBY7ftCwqFsGUOMZTnXbsKrvqOLV6ulYlFpnjs86SDeZooRgnk0yv/MExHZTQc4IVbFz+W3QGWWqKOYWw6A2hq1Hj4uge5OhCYKfLUSt4Q5eUkSxkvwtZ8Y6lGvkJVwNks4NlZCsooWUTMMYpP2CYdql0qh+05kZHr4Jjtvksi4TkYg52aW+OinTEGXJJmXrggwc6aDA+Zpbd43qmUzgaDC50x6R6uIMBGMXoCm4jYRaRo2IirqU+2OHByMSjpuP1U/bGK176VmUZc0CvB1bQtVwAw6jcZB9M1vhUmlADD8eY8VQ2Io083rG1dKSQ/ZDJp7poFZ35m4c3HPFRUS4EaIxQwWIYoRwTTzhGRbJGz1RcpHpoAgGo9AACSmAMV44ZVv6YxijoTEtQwCPNBJlH0WL+3B26BFql4xBymZbxCQRE0QPL2LE13VsUpB46XdFAxXylGTcJZbVOVK5joCa0X9wC+Cxz+UY8pOGPLgikuwUB3RVkQLpkOGZ1eQYpcldkMwzX1WXXWEIJQoCIaszZ1rj5FC5bXezeFSMQ9qir8sIb429wY9CE3t6R5bcMLliAr+gTqnvTk4sfS4VM0cF2TKqhp3PPZH6xNRRt0bLPJ6OTyfSbslXrEg9/LMIagc2kjvwRhyGwgAWsUAexlc1RXK9oRhnG1DxAuNCE56aIvJ64D+1hbe8Ayi3RtrZY1v2S9V6LbD1mkxopHZOUqxwY8M2PM8Iy6PvO8UH1Swmg5u3+37fUdBzmOGfz1gHDO2CXMtyAwiShUOGL35rCS/qUG5LdpHvUox4WfyGuNDmYLugj6ksP2ShAcbHHalzQzPI42bexbjONtrOR/kku0LVylYfH0njg6VScoWSvIpPepa6yOr86VSsCGMAUEsc66hG7sN/j3/4Qxys6UIMh0CF1EfZ6LRe+ok+F6vIhHojlh5eQrne+Vv0mzJ/PHmi4FJ7s0NrG20CCnqC0vSjp64ktxLk1dGF7GebAAlTGtJEL7fPdNL8in6AMoTrmV6ts4QY+vOEK2Y2eOMm4Agtk4AXQfIz0Dc28cLjuiigt/WOfoMIStqDIPucMHsUQTPdZx4z+8Q/keqmXts9v2/ovVVZ+zhAGLILC5ESrjMZN94ZlTI5BI5biGFhLbqLMfpzstmzu5gRl8AiFJRTpDujBFIrrkRqCDihFBV6hIawO/nrn+1bEF5jh8gaDCizAR0JgARrB4VjHF/DMBHWmGFbwg8LB/gJNpghM/8aBGqolTYRhF9xO0lwuvvZjxnrvBKIh92ICbgZMytDC56rtvrIKf/QIyoAFWNBicLzBFOhh9FyJGxysBqBgHh4DB72v6TAlEcoQVpgD4FgIEQgAAyxgD0NAAnJneO7BHjDMDXOmGKIEH9yhG2SKJe4p0L7BX75Q/77kG2bCGYTiCJPwJ8RH7tL+ZY2agr7kI55ErULW6e8qkPkaJBV7CS4C5hzqQR58QVd+yzG8jFIwoa0IkaFQcEW8YfFwQ6FYY3jqYR1QAANkYwN8RAO4YIX0YRpkYctycZT84RSwQSDmYXmUqBvwgQ0XEVq+wh+uZ7y+4RruYrzQgT+MTDouERbQiPbYQ42YsCaigz/khxvggB7LJGHcqUG2sNQIjNOQb96Qj110yx/uYBo6gQZlpiFo4frU6hk8LxpfaReJpzhmZTU+Zg+KYAmWIBVWqB7OIQ9jAxkpoAGMoAQz5VMcASUlckU+xghIgASOIRxVqhvqoQyKYAqqoRttKh4MwQd4ASyoStAUaR7+7qHFlAh7RGIZAtAdjQIAb4Ed4YO0FjCchGz3pBDIDrBMqgEPYmEK7atO5oLw/GQlZqvnLtBO7mdQ/MSqxmFgvmGRLEGicGYhhiQOeICEaOFjQK8lhYgiiccenKAuQ+NjSmA2UOkBDGH9asUe1uEBMMBHZKMkq0B4YuWf/FJTBsMQHOAFUuAAzuEaGtE7vgEf2EACJOAA2CCZlAgdJoEAJIACJsEdSpERu+ETemQG1kFqktIdDCGHPiEavk19bmEOPiFNbiEr2Y0auEEB54MjQk5c5gs/nEEsz2ku5C22co7TNu0sSC2dvkGRzsAboNEu/eEZFkMGruCEMlMX4bD+SQZjrlSDOMzAA44xegbAGSROZ+4hHnrAmXwkNhqADYaHHaaB6NqTSQZjEhbgBQsgdXClV9xhQin0hKJgAVCzB6QF+dSCEiMTNakgcd7yHMThHEbURK/BHwKgGBfgE+ovQbxjHT5hlWajFNgRPcJGTT4hNQ+gDIxBPo7MKlqhAAhAAKpBOeeuGYABJiehvMbkJaIhGpSADK4hqu6tqlZK+fgLq/rx5yRQ3iqQQcJzHoqhZ+hh/ZIHE1RABoYgzPYzQTUJMIlnGm6GJUkFH7gtr45xByJSZ3ihAChgi2oDBcShdwbDFyTKTuF0NephHnDgAAa0TxfiDwTAAQSgDCr+Yx6YoEcUoA/8ITkgA8JEFRFVdIsO4BMkYh5UdVVVNR4+hgsO0wMSYBZ4QRhs1VaDIlfB5Q8AVQJwABiqxEqgMxsCFANa4ByyUm3U5hiOYRtCQAEoQABagVmtolqtdSN4IQQcQAFCQBrQIecaBLE2zSy9RNCWT+a2yl8MBxd6SyFF5BeggKDUYPsWlZbkVDjATjVy4TD1KpXsExdZBzJmAQUCgAAGgAmGTVGLxBUsgfHqVUH9YRzCYBCSpNYWgh/w4RIy600j4xp6QALKoA0Lgh9IlmSJowwCQAAwYB54bR4eoAQSQAjkYzpULhp4FQMkoAeorW7eYp78ZRvqoQD+YCMEQmBZAgSe7uIuuAc2KOAA7OCXrqEariFqpbYarPYbJkEAPkQCWkF5TtEBL6LKTC0l3InvlI8sTNTJLiIu/WEwC4sw+GHqAu5ERLA5LPZhWehencQbHDY0qsE+7zOHSkBSc6ZX1iEouU944OH98HZ4EJFjL4bq9O0yoqEVEncyrqcIzABJK/EYigBQRWFf+EufBO0auEEAKCAA3AEl3lIusIpEwcEfWoACMEAAhEERwdCQ5mIdSgFafaRrlyx4yYKeAqa14GJgzvLJWov4BuaEzuAZh8MfqoEFfkA9AbZx4/Q9NWU8zTAyPoUG+vUD3mwG+zJnGnUbGZNW7IH+HZAEe5vEEjgQM/rWMqiuBKdOHyBXIbbjGmjzOb/R8chWHPrLH7/BHWaQGthC3jateMWBG3pgBj6hLUu0Z123NA2BBELAU8d1LSSEQRBpXHPXS8iWgo1vQdCyLtbBHazhDlhtFgNOY17het33L7UXUz4lEBJsM/jBGWaD0RCgCAhzeBR2SY6DhdN3hn/D9AqXMvghEVOiG8RBWGpiI6gBHcahiUQTbQXSfrJhdcMWt46PbdcBkfyR3q4BH3yBHuKB2tYShAXGIooX3yTQiiDQO/BBB2+wz/C3MK5PBfRARfIXiYVHb4VjGkDB2TaDOZxhCwCAAAhgDwL5YZ9k1wT+mUimwRqyDhwlaxy2AY6iY11wKyAjBAIvwuf8ZS3aqVxTghtqykS5sIPzbRGUoTvL8lnCIRwsQgu7s6pMOC3kLW0H5lu/4WMSgR3qyqTioAZkQAdYQWYqOXvLbFSIo0ZUox7+6GPuFnuLJ4ef2UVwYRCFSB8AZJ0MrXMvxNPO1dNaS0tvK3nT4huwyiymKiXWYYLWko5cuY7K1kEEby1hN/m2YR3ogX0rYzDQc5KuIJK7+QRrOFMCcehqZlWHOBfp4Q4CcaFvxBrmz3ER5EvUgQjFZRlgZjs5dAKbZ0H+Tmyp7J7V1ln8JR/SANBmLp7PtvmGVxXNIpf9zo/8Ybv+uDky1kEQvkwHQkGGMXqFCJlFQOFMj5pX6EH8yrOpfyP6EPkjx9lc60kp5GMnO+2YvKQ7Nxgt4tkU04JLybaeCsVO4iES2IWMVZH5/uurRthQ2qKewKEb/IEcLOEGuw4fBsMYhkAGZEANDk51pNqHklo46MEXrGF+D7sy7KH93vaxgQOwemcb2TB1sBG/2mYZqAGetTNL+xH5piptW9emU1FggNB+wrMX/uWktVTKTNuXZS6f2WJc18EfCAEeMKzPgBGFFqMGfqEOKTtvG1pTbumni5swjmMwl1s4lKt7aeUalehZvuEYFDF56ajaSDhC9OtPvjiVuaoC0cmdVWL+YODSH3IAHy6E51bPpfdp9dRW+eA5lH9uHqwBHm6GMc1qmbNvObL5uXMmsRXbHxCsZcr3sAcDwaRbwDGDHRocUwxhAB6gCMbOq/fpP9DVjsBbLentw9sFvRXLlrEqHCTEtsbidVnr55QvlykYf+Zol5sHQW7bWfyhGMrUXW3kHtCKUthKZB2coaPZViJbFjD5gxycHVyhGBw7yFUjEeAhwtXsGwYAijbAEJQHv+D5Y+IhrMV2LGeujWmOAtE1nbf7LAamRBOIlxCJ+E75iyvQRM1aedeJcPjBFQ45iO+0MALbj82BcJ2cZggc/PxBGWQBGKSgCZpgDhR6uiAMue3+IVEDPTdGQRZDph6yAQBWIIr2gDZ9yR1Oox64sEJiu/ka5M3JmwvxrXX5kcDiQZb3Sy6Ib2171sSrjIzXwrQFZmiKwxQSNZMawhzUoAZYYAhimAbNARP8etJpZdBZJA8Qk9tKIHNsrR7soX6bhB7gYdWYPTe0XWeYAxEoXAj8IYkm8U3RgRsUcdRTm87Lwt7QqcRH1ywGOI/66+8O715uCwu/EM63297K8sMH5mOCwB8m+2KZ4xXSUw0UGj2prttHxdmF4xp2AIeg6wOkoNiqARZggRqI28IGw3ggfj79oeCjelT4YR3mIRp4QXoX0XoQrnCi9lvjep7ruzvpBy3+QI3DXXdsTS3DteocuBQc4gEQpAHgxcKDv5j1dvk73/JZchsUvAGT09cchFoHfqCoL3chnqEGHp4wEnzkcUPig+MRCOAYoasBPHLM5mHCH+AABoANhq1ImMGjdFzsJ+NQSwxk8OF6umFoqM2mzmHrBWIdykAAGmAX3MEt2bnxYdu1yHwt5ebL4/kcsuEUYius86uq5BuR+F0c3OEefMEUqhrsIeMXZGCS1EAggJwwuv7rXyEZnuEVIs4fXoGt8B44yN43QKgP0KtfNwABNkrEmKMPDgADkB8DDoAJiEQfzuyjjjj3ucwf8OzkMUUfNju8uiH0CUMV8tACYoAb0jz+bFMarilQOwVll2drH8k//0w4G3qBxm87tkkNtgyltMNCIJwAiCTjt70gPQECmr+BBAsa9PesRr16+OKwMCeORZyBq2T8Oogxo8aNHDt6/AgypMiRJA1yG8KDW8mVHxs92ABzw4cPCEqxvIlTpK0GFDZQsECBwgGbOTfq8ydLVtGlTJs6fVqQnr8c/uxBDYlPH7itXLtuHVdv4yUCGCzEMIZunDhwaseN++qWLdu4a8ede4s3bji3b+u+Bbf2K1xw58KdGzyuVi++XMV9G7dXLmC5f9n6BSzu3DV8/qx4Y9cxbCgdOlQwmicyYb11anT440yLxSt/Q/T4O3o1t+7+3bwJnkzZW+SsBDA/wLRQolrw5RhFEQi6AajQTbrv2Uvki7n27dwPHmVntTtBfd0qe328rqOzGRgwsKnHNz7kuHn/4uXKGNy3uYz706dMX1z8KXaXXXmx9ZiAmdEnjnnghAOOO+x408Vt4WXEGWsy1PDDRfXwE9IzMphzxRD+oBZWHFdA8cOJ4r0IY3C/qRTjQWwgENMGCMxyW426ffJcUEIuMMlubgx0oY9KLhmSVXf4c494/NjzmFdcfXMOarhtdE0joqzDjWB+yVefW5cBaB+CAZIp111zEebWN99Eko1/AIbToJmTmSNYX+Kgs048i5AD5Uac+bPKDyrUQEf+PP6EJVIyOlxRwxX6QIoaDyr44w6Tnn4a0oyfrvOIBQgksMItoDADalOzWCBddBgU8Elu5CQiiz5Rtsorr/Z4cyRz+OzKzzz7WclWN51+tCU3jDU45pt59ueVfdaW+ddhbwLGV2RvSVMLlvjpqSd/+9XV4FfirGMPO6Z4o8+WGIXFjRoyyDAELQPJC9IzOgjCDaOP8hMPND/UMBGkvS4MqqigurNOxAOBwo5UDLPEhAUw9aRBEVfZY4818FxM8pL6hLwcP7tGaSyyW3XDz6EiubPNgWzy1yafbamFM4NdzYfnm5VlG6cyeMwzlzo//7XWmPeZOc489zATSEf8hPX+Sg06sEDHQDKPlBBqlVjkj6MsCPJLDRd9XXLb3Dn8qT0LQeoIOda4LVKURYTQAE87pOfUUeR4k0iPeB/OnD7w3DHNcu58ssc4NCMrZ3r8flRszXEd5ia5fcEV2Lj6cY7sfOlCuC3T+rnTST7fnEkZXAKqu5U488jjzwkD7ZoRiO54wYIOHT56k4jzoMbiQCUO5IUOqCEOfW9w9xolsBVHzxFqn3xRRh+Psl2UN45klyT25gfuDTPlQ8WZEAk8YMExx3b1DTrPr6TPOlW+BWF+h7WVp/4B6GdzEeCbOnctoX1jHouoU55kxz+nzS4z/jCFLEBRFd55ZyC0qIHWJjL+sJsYbCHH+4EeXvGDZ5SNNmrwB4jOB8OiTI96AzEFeNYHQ4URrym7ckSUNBjDIOJkGswAIvvqEQMPeCABn5AT/dxxOZLoTzJk2ll8EGinpcnHMv+ZHVzC0YtIxGN/VCRggPbSDXyAIykjMyJBiuWPdnjhXj8QCD7AR5J62PEo1TAHN1R4KHNA435CLKRIZriwo3SBUDg0JFOixI4KRdGRlPzIHbzRSKZw5gMlKMEAeBEm/OCRJFeTXez8shf/4KVBENrfmtDEnzXF5Rv4qMX/8kMmx7zlMPs5hzjqUYxpKMWNBRGbDH4wgtN054WVbGZGELkwq3jjDIVy5lKOIgv+V1TFmtzsCDO8EZxjlOADmQjlVtIzypIUSD7pik9g+uMtcn0FdV60i2AQtB85veUbXchHneojOsm8CR0VZEZ2PKIOSnFIOfhgZjcfqh1oRnMgjtgdRElyj6M4QioWu6hHo1ShjrJvHNsYyBTrF5ZJrsQdCfpPO/kiQcRsroplAoc5GAStteSjE9mokyndclNpCcgfwUxElFR6qFDwgAUyEARq0unRqDpFoomkBzvcMDKRSlUjFgtEMehBzK06kxxPUilLOEOPceznGtzYj7Kuwo8ETSs+A9xKKp/GFW3R05R9epB99JmNUyjjPgW8q374kw1HJWJVt1FpWKARBxX+sMAL+rqjWC8LFapejB24oGZYxWqVM1gik5htJjtAY1aWtMxKUM3JOlIZS6HhUqB0xYtc0wW6vWhLLU37Uy0ayJf/VetZ4MAHO6ip1Xn5IxQy0IEMuvaa0kqXKZplmFXsEYhppDaqx73udB9qlUAo5SksPU+nWpuTMFFrnVaETGxfmp+6jktbV9KPNNDhpp+Wyy3n8Mcd2EGo1NZjHkM4Zg1UosPvKrgk1WWYdfzhCG8QCrOCY0fh6EHaBQvRKriYcFE4U16udGMdnEEvTvDhDnzUdlxPa9oq2wtTWcY2MsJdRyeUcUuAUkZO+KBHIsgBVo3wAzerCJ7A7vEhDSv+eSQNJhk4kZvhZtrjKG7wRuOWzE190OOgRTnKOugHjnhslym8mEM0nCUfLPZsZ7HEa4CWNpeb7qcWrSPj0OZyjfQ4Ahd3y54/qkEpFVxBIGPGsqEH0uSS3UopU/aoVYpxByAfupuycAM9Co0RJOMGHfQ7R4Jzow982OIAIaBAONDcljbPlaaTUZfN6NrqOK2jFtuSLzi64Q92OMEaqN1IWBjxg9Jg4qmTLvZGEk0yq1ijC/BIrjPvcVUMftbYQgTNSuZBUH+cY37gAFxwUEOBUocgBP74RmTk0s7YGmiLW3SxON4pGV+CAx29AEQ9EoSfrpwjHuQoxpHitREQmQP+Ch5M4WscSu2E+wPZyR5IIFzBqmpGj3cJ1hVRmREsZytciKCoaJQPwo910GAAfZji6I6C6ZyEBQXhbgAX8OEsKrr3zfHFpYHustfDoI5zj5kHIPCRjcA8UNbZ8EcQ/EEPjVsUH0WWAQ9sE92NS53hJVP2NP6L9OihhhuTEIYLOaPlgXSBiFVJudTxFiVZmMJwH8HHPJbwAA88oA3lXqALtRMvYawAAEz4RjfEcW4B3Wfor3bnfLh1T1NmoxO2lF07vxEPeHhjvAEPyzDUwAIVeGEY3zv71FFCI0oywxpOQNLhOtUDE2wgBDHIRdb90QVrRNzz1pzQ7D9SD3fQ4Dj+VfDHOvSBcO2sIxsDbDFbEPjSNfOH8FUCPH9qSfxx8GlBCMIHOSzoEdQwQmsswITXaP954FRyV54pxjZLdhQLoAADG2gPBpoxDW+U/vzgr6SukiKSoyDiJSWARUNjpGmaA1PzJVtogif00VL/4Uv/AQ7ZgAen8GV5gSXjEA/ygA0VwnYZkXsFFmwIVn/hF3qUFHadQUQT9nE1YgYY8BMaIxSFgAUDcWkfyE2ycGUewRn1EA6GsAaw4CkJNHRscYCTMQ7qwE5xoTS3xC1XhCC9oAx+hR/rghSmsHaNhhEx8yihoAKkYRv1AHwyqHBUBz0PVgzkgFVrByUA9ykgQgX+PKExPoEBDfAo0+aFMKRlgUAOcngU7nBrjhJ1SnJvfUEXMwWIZpJKDzQX8MZufJFYvVALXwYXtFQMhGN6GuEogCYDggZIc7hxYBg9uHFavnAGHnaC2oFkRcATPxEUs+JpmshN2SGHnCIn6GBi3EEe03J8ZYQzMic0soUXu6UW9YAHkVAPddE/xuUL1sYRKTIENTACtIBOrPiFoPdRSEIh1uALSvci7CAPRnCKQqJ+6/Bp0LhhU/F6GlFefNgqNEMfncNFAEUm7CV4hucW8RAJ3YAOTbM6/jAK0+BhHFENBCcDV2AOGSiOxcaJdLgrzEAOZ6APpmANHXVUu3EUVjH+kd6AC/TQBdgABg0QAkDRfgdgCGZXkHhjFZSXETRDYn3oKcXiShJUU2nyhIMIT38hDYz3FdyQHqZAD8Hia/5gDqsgWVBgG2g4ksZ2kDFkcUgHD65gVE5AD7MXL/ZwD6/oERklFRfSOMwGCrgATgPRBwPQHhRAAFtASEVZSGknC11pEPmTDagRfJ6iD9sWj2tmi5BhizLVZvPIiO7gFtmAD9cxCowkZJZ3BSogA2ogEGVplod2lJQEGtMQiUEAD5bQbOMxlSdzhkQ5HhZSdtaxJSBTNRBgkXeDjAMxD87ABDFQBLMQjouJlP4wDSPDNuOQHm/5MH4ViEBIU3XRJ7L+dC3ZUAtWAB9q5Q+g8C7Z5w+C0FwqUAnf55pGKY3fNZGF8pRbeQem4ArwMA1JBxqXplL2AFYVQw+8JgvMEATscAfF0EbbdDkKw4XP2UxO4A3MpGLzYJutgjS8mBfweB83FSe2mHx2kQ3KgA/o4Q9YRX8agWLNpQMm8p7wCZ3it2BHkVzMUAyJgAvMYAWASQ6OYA3F4AvFEImJQA+gEAj0EATCtGfxZxBSYVZzM4sQejgcRguiIAr+gA4i6SPx+FLstWZblIQ4JQ2n0Als4Q/wMArNlklWWA+MkIU6wAgnEqMyilmN2U3xkpQGYQ/wwCqmQA7TEKLxpxTbOTIHYRX+GUWlmMUZRMAADzAAj6CSJMOSzccfSKhfMrVKV4IPp+AOv3Sg7GB+HOEov3AFmYeYcZqmWGalicqoMRQWH+ABH2ABXLBDeFMN34Bmc8Gfh6hKz2JPW/ENcNAJnTINiWANEYkhKUIaLEALWtKok7aoryqriBMWK7ABKQACc1CpJRMz0ZAKqLZutTV4wtqLCLIOizEP9GAKVRNl+PAMB1MDUHBes8qY0Umt1+pMcLQEQtADjOY2R8EGAUAAIVANeUJ4qvSj7XUOdFYM8mAFMLgRUSIOmMBUQxClD4qtShar+cqvvBIWlsOTbYMOHBkCBAAM5eFF6naXUMObJQUH+oD+Cxc5lT3JCoXJNSqkmP06XfuqsR27JGAHmyzaNttgAeNmsOlyU+cKLe1IV3liDuuAB/5wBvBQphpxKf5AB1ojA7OBqB5bWhzrs0FbI1NTDDoqHvoXAhvABdzQTufgtAmiNO/EMwckbz3VBdJQOFE2jMGjAzzwKEYrtM0EtGFLtt3hBhZKkK0iM/fQUu2IeHYCNWzhl9NgCpFgfth4FPOgB4uiA6HgImX7XWMLuIFjDqGwLIN7fk9ChQszLPqghzA2gHXZm+NQnL7wJAl6EJzxCgQ3AnSgQlSJuNwkuKFbFPWQNiE4uCdzVUcBuj6SY7zlm+xmj4DaCRiWWpxRDR7+ZBGuSro/a6296yOme2ADcZ9BexQpio2fwmmE9Vdvxpvh0GPkcKIgERZeIK3AG7i/i70wIrw0Ug+vMA+0EILQkAw9e60cxawXwxkICzU0F0vi0CnFMAqKixUDwRDb67sSir8v0r1hMQQ/UA860EID4Q59m7b5OmXTYAmTuDADWHz9UT/uQA9qx8DU27r7W0mji8EiIbwqxANQMBDJoALl6w+0oALz0Jr5SqFnAE4x2CtARxhesRa++A3rcA/vgKQbTHsarMO49wsywA0/cAXf4w6y8Rp6oAb4arzHi7mfohXp9m6wBCmWYH5g28OXxcNXnIzDwLUthBuYcAW5VwP++gK4lwYPFlSaoKI/euGpf+IP5NALd3CmWryJ2kvHvFEPw5BMeswKPZIMI8ANkuJtiFsMriAyTRy85paX4lB0MssOC3zAd2xoWSzJB5HHQJycNaAczPMKXgBCpAsP+mAJ7HA3E+spnAYg5zBiFTQKgXrBlZy/qAvLV9G9+NAOz/WegjApKrS9vlCq5bgk7tA/83EOnZID95C8s7xklKzMjzIMP0Aj0NAB0JAV/gAFJvLK/NpDPiZpaBojR4EPq5Fn9WANozAKUpHNzYzFdqzOTOG4yZBk8xDIKzQEs2HF14qZoPnIpnfPN8EZttAGc8CDvWAJabkv7ZxwzIzQGLH+Ch3wt/iLG1IBChO9TYurHc6AAgegAC2ABVa20CD40b1RD9wgA6waydsrleSoTRIXHEdxCz9BAg5woyFdx/pL0+zjDnrwC5alxboiTbiQCDmMjChXFKg6ENbwoXKgAA3wAA3ACzcdjTYN1boRzv3sseFBKIGQoUcSqD0ylRlF1BiBpZh5lQQRf9hpCiDqD8RQBFRwDCc91QsmKndE13Vt13eN13mt13vN133t138N2IEt2INN2IVt2HX9a0nsQkqsw0QNGurpCoEALIh8aWAFMiCDEaARBPfgBiJqDR4GYsQW1wb5vypx2KeN2qmt2qvN2q3t2m7nD/YyPClMx4/+hguBYAqJ4ArFIAv2gAsHXRDpYw2Vpg8nIAuUicijPXXHRAd64NzPDd3RLd3TTd3Vbd3Xjd3Zrd3bzd3d7d3fDd7hLd10wAhda5iCUA2mDcueaRCnNQrsAApuQA5O4AuOYN9UbAn0oE0ddZWaqdwbxw/moAkjoAIjYOAHjuAJruALzuAN7uAPDuERLuETTuEVbuEXjuEZvuAXoDU/wAMdkEzm29O6kqUfESVTls7/rWRHUQiV4OIvDuMxLuMzTuM1buM3juM5ruM7zuM97uM/DuRBPuOMsArCowI/gAncoA7FO8soR9Rj3SNWreJL9tpVbuVXjuVZruWocQUBSc3ktD3lYQ6NY03mZW7mZ47maa7ma87mbe7mbw7ncS7nc07nax4ljAB1VS3me87nZYsbC9HngS7oPlvNg27oh47oia7oi87oje7ojw7pkS7pk07plW7pl47pma7pm87pne7pnw7qoS7qo07qpa5wACflcM0bZpfqNeLfG0SL7twqVs0vr54TmNbqje3qJiPW2GPKLnoTW5LrB5HixK7qOfFgupEkRm2zOYHZRnHQQbaWm5kR0g7c+HMVFGrFFsPf1Z4Rz+7tuP4pyAwVWnbPjSTlKTeKLIFpyc4sITHsHQGeJAHuLxIQACH5BAEKAP8ALAAAAAAgAwkBAAj+AP0JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHLnxnj549+DRY7eSnT5v9ODB00fv3j2SOHPq3Mmzp8+fQIMKHUq0qNGjD/HpK6hP302BK13ZA2VtmqNpiVwFKmbpDj0rxWQF8uYo7DRf054KdLoUqdu3cOPKnUu3rt27eIXyqyewXlN7aotNc2IvEC57pthZY2cPXkLG5KpWteTtTjFcxQjay8u5s+fPoEOLHk0aKT5/3EQVBFWsS2Rr/hxfBMyOnT8n8KxYc2yzbenfwIMLH068uPGQhg40CBGLWSDKmwVuVltxqcnNSxPdPknvuPfv4MP+ix9P3ufSdT4oYAAhyZRmf747bu4uUJasRPR8rS3Pv7///wAGGJpT/pCTDQkUhECAavY0pdNNbTEDjymJTCMQdQJmqOGGHHbo4UNL0VPMKKaU0oAAS7gj1FJLWZhDd9h9KOOMNNZoo3D0YAaKP9tkc5qDRd2zGSiWWBjfjUgmqeSSTOJkoSPWZDNPNt98Uw0147hF3xn2ONLkl2CGKeaY8MU2DSjwYIPPOd+A4+abfCGlz2bs4BKIY/QcSeaefPbpp3E3yUJPIP7Qo06bb775zTxzkcOMGxf+KemklFZqFzv33OGYO4gm6qmeR0XnhisYWmrqqaimyhGBZ1riTz3+4HTqqaKnyTWnP5Yw416Zqvbq66/A7uePG9Nkts44ss7q5jfr1BVdhZkFK+201PbpCzOy+INPrMp2+81dS1VFToPVlmvuuR8u5Q0z3vjDabfwLpqXNYmQi+69+OYL3k32yGKKhVXCK/C34Ap0hjXt6qvwwgx75mAxzCzibrICzzpOnHdtJosvjIHa8Mcgh9xTW5Thsm3FKDPrGTPa+VOqyDDHLPNGvsBzRyL4UIzyrCrzoy1e3eWQ8MxEF200Q21d24U/8WSzM8rnZDPJJ8K4DLQ/suBi9dFcdz3zZvDAoRWbOj+daJVFCKCcLZxtlqs/9uBTq9d0131vW3dY4wv+HgGbXTE31DSAAQUSsOFZu2e8CpjdjDcuLTzsOOKNO+Mog47fKHcTjQUUWGBBH55tNoo9tzSDj8+Op666pab4Qs43nUTyLuYVr3PMDD7Y8apn9bgjAAIDcMHr6sY1xRZgDdqzWYNAEu+8RN3pc1W7gGQTT9m0n+3OOtX4wyjv4CAQggcTdP98aX/Nae9D17F1/vtMbebNGfDM8w0enSCb/c5tjoMOaPU4xwBEoAQSUAN+o0lfTPwhmGI4wheJwMUZWOaVM3ijGMVQiT1qEh0Ewm8zORAIOsbRC8rtj3ag0cc62GABD5SBHB4cSvNAhSF2kGMa3sDFo8hyJzewYxr+u6nJQByDQ7JgBReJKAYoZFEneAxNWDHs2lLIgYsdNQ0dygCEMk5IOxV1JoAE8UYkZBPFnsRpEpT4hLCWVyh/uIIdW/GFLCBmG4zQwx41K8s0rOAPRyhvLS8rY8iWgsHMoOMb2fAHHPIxDi4+rZHgaFbB/LGOc1yoHnzBjCB5chpb4CAECVoBMAq1FNs4gR4TVMwfDcIih7TSIN0pRn7uwA43kHF9m/yYPdgBj8SNsE3ZSIM0nOZIeI0DksdsZD1QN5fTzOMckjTIHUzRvFyKRBgh2MAGODc4Z9wkEP4qBhs95pGbPIUZDpRcnshpTXSxwxSjoGQ3lgUOKhVTWcn+FAc4zgGORo5jG9+ry+X+h5DNwLCdIdFHPdhwAM5RoHMWMAMtd7WUDvKEeQKRUARx2BZ2IrRX4VpHEARCzFhJAw7KgOQ9+3kOfR4THC4dhz73ORefPfMbKgLVUkYBCvp8tCP1QAcGMLABCmiTAhqIQTukU02g3EogvvBGrlzB1J8Gi0C+cEVm+lZPf6QBHyrlYjJfCtN+9lOmbmrkNgIZJHdsA6c/QwiL4ulRq0JkHusApVGLyrkYOMNWUOGlGyhaV7v2yUGJYIc8wNqpb9QDD/bcnz/HSlnKnvVN44jmUfSBj3c5tiFLAQVVDZsReqyjBRY4qjYbUASM0aUp8HD+gy/o4VPSmkoW9qAqmzz1jXPUoqSYQ2tljxmOs1pWHGMVx9yOsqxvWJQhkGOrbRVSymH5IwwP4Kt6GrCJvJDLFdZwxErgU9jpJmk6xQgEO3KWrG/kA7LAfaRKJzvWywp3uOOIB2eNgo9UlMACa8BlQyxYXvM+pXW+iNYfDqAc5SBid96FajF8oR+4mXdMNPEHPN3jjmuEFRzX4MYpTsHPR4YDucbFr0yTadZ+InesbIqUU7WFDnuUYAMeQIAtTPKQzdxhcRdWyE2KYQ1Q7LJM86DGHJjQh78W2C1LcYwb9BHP4QVZSU85QzHaxdU3cUMg1EipwFTsTzedo5H8POb+NyzLYspWgxs06ME8XLuT07jjHN2YBw08sAEGPCKuoPUHM2D4ZLvmh4nPhY9NlFKaxsgCFJi6MpPs4Y2l8YOsvF1HCRigBXMYc8VsniyK0xyOcZjjuPuk7DXwsYAQhOAA3vvJ5WKlDyF8YAMNWAedGbIZH0raIOyQqkusPBB81GO5onkKLt5J7F97CLGCrgf21pEEEbRABKlYh8XMCuMX0zet/SwumlM8jhK3GB2iEFwIGhBrndi0seDwxx6WYElm9hhrziavPxLhDUKPZz7TYAYzLJzvDnWHHLKYRmfj6ylj7EAELzCAKrTt4vqiOJ/ktu+KyZ3PNsM0GoKjALv+A4qTe6yjsc3CWKHXAo9RWCPRpJ0T5BL3yvG0xR6WyBaQCx6ge3SHQvyIB7fwWQ16bCIBHhDBB7Kd1vueOMXcru841PHScZx4uBkXxzloUYQijHLlE1nKPIY+jjwPpKkSKZakQWgbsA9nMydoI88DtBkIeO/DnhoHNd6RBCF4QgpJ0EQ0nFENdMSUvqIGR6lZzPEyIz7jMl2Hrt19yEQB1COmKAbaPxrlUbQM5vzJsCNG8cS5l8cbpuBwNvC+rMzSIgOFqIccgPGNZjTDGc5oRjcqq/Gy8r6RLoVpqIFP7m5wg+QgeTdvka8RZkyjtoZ1vs47FB1I58n04ZnioNz+tdtuHf8cSUiCLbbhCU844xi4z70zlkGNapxZ6oev+sXbPF/hw5Tq/hSHt7+F7I1Y5+S8tWsZcROQAn1/0n/e5RiJw2PPthSWYBugh33B0SKkEg/6oyzf8GV7EAOFQA24BwyxoH63l3625wzccEzIxQ3ccA3b4HtSl3HgZlmKl0xrVm7gIF0WcRqV1F44aBGb4QRbIyncEA+icR/N9iGg4CUSWDz+YA2u4B6slyjjUA1JsAPRsAy41wxyEAvRMILp94W39w0puA6Uc2aYJW7eVmYV520wtXj79A1uSFDlZG6fIhLVNSlLwQhqAGh4cQ/kkAjTZyPRwUd1tITBwQz+7ACE+HAN8bIO3KAJGfAI62AMWQgMnsANXpiFJIh7yxAN67AGCYAAc8AN4rB4VZdqY1Vq3GZWwSd8LHYOltQRCjVP/cQNvHAMwhAPPYgR98AMSniA/sADUMCHdcFjkEJwN8JjpgBDEWiIeIFVgTBw39CC3jcPziAEUrAL3ICF6YcKkuCBm1iCt1eCzlAKHlACJWAAvECNqohiTZdcq4h1T5dMXoQRp4EP67B7sXIOjQA8HrALOaEPuGAhkvILP6ADq3AQ6qAOCDgUN4FE/gZU8zCRxVFKprAju+iMcVFKG+MuQ6csB4QIHyAKzUANXngM5qAE+YB+YGh7LumSzgD+CzCAjurIDa6Igsf0fvS3YsjVk4jnTyqDEUvhDh/ZDdtQBKllAV+QE/YwDWTkJ3EgAzJAB0yBD3RAB8eGFDcxCqP1EfcogMPRS8iokZwhC/BAVVH4Jt2wDjsgBV+4icDAjST4knTZDLswkxkwAWsQDWLIilF3WVo3Uy8Vf5CUZme1TBbBD2D1YdOIlNtUBToBQZsXJtxwBTVQA1DwZWdnlVgpN0jhJYzhEafhDFwQAAVwALOgWcJBLtlydpNJlkFSKNjCDvVwgt5yLJrgAnPgDsLwls2wDNwwCJIweC35kp14DIYwAdkGC7bQDesXDWlIVoaJTDPoeDSIeOJAhBb+cT3dgg68UAIrIAVBOBJNeX198gsqoAM6MAKvQBCcdZV+IRDcUA/z0A7u0A7toA7MNxLe4HnjyRG8oBwhgAEhUABc0JCN5g+ggBbI1oyw6RNPUSE7ko9RWHS0IAVCEA3UsAyZmH7AIAfmgH516ZLHcA6iUAJm4AzUwJIimnvVkA1nxoYvCEnuuIr2Z1wImhBLUQ8AiIFE6A7GAGE54SUOqiQKpQZD8AM/4AVqwGjwwZl+YQ46UAnu4AUsIJWYqQfECBIxUSRHmBH14JhG9VAH0ArHsRTMUAv+IApLsARSQAvt9qBDIT+GsRdddjbdMwclIArg6Ju314nAsH4janv+wLAOZiAEn+CBHFqX6ceXlyN18kdmVZdm4zCf81CkBXEsZTMOjFIrblcR97A0mHoj9WAOV2AOSYqq4hAn70kH7uAOKsAI8LEO5iAO6/AKF2AOYCmLBdIyIcELGOA5RUWmjQAeyIBaG3BrFmA4cjqn/jAKnfAqaZlW1PABWXANcqmJXsgNYTAIy7CodXkMy1ACS5CFg/qSuBcNLQVJ23CCk8VxbiKY8KctOToQikmHFrOrOtEun+oh+BAP3DAEPPBl5rCZV8kNLCCrOzpn0HABxtCv7OMPd5AtGUkRpXAAD5WxIlcGTmoce8Bn2oRjCaAazQoU3QEp1uBW8NIN8VD+DY9QAptwDZT4luv3hccQCxtal50YDXswAaUAD8Jwroy6ftXALNHwCalwDTWofy6Ffy5mXOFmq4YQAkUQDUgzD9SIgZwqFDfxY6N6Iz4TsANrb+/pBSogA78QV/gwDzyACTvxeSNxDCvAOXRLAQfwZ95RD0uQWtqkrGbAgCUbkJvBDL5gMt2nLMdnC1LQBMmwDdnaoV84COJKl4UqCjQgBdWwDCIqtIzKjTSAAAiQIu5acWUlo2XmDqJwABjQADGgiwnBo2vmLedQrzhBSHTVJ2KrmZspCBcwDHTAA+ZzE14wjLULD4AIuCKBlA/FTQ1gpt5BDTHAtyG7TZMXuDj+ER14IAvkMHZlYyX+YAgesAnVQLObmHsl6AmSa5zL4A5CsAOzYK6ce67OkAkTgI4JsIjvCrWneFn4wAaDEwIA8FlM4ZE6g4LrcA/2BhSb4SUQ2yG5W5V0EAfzIA4jUAk/swYyIKQJ1YQLlBPx4GrbZAGFAx7j4JjJmqwWEAPuULHWWx1YkzgWODDHxwBZAI6Qa3vQMI7mK6joCgslMAfgGr/nioWbkAHoyAD34DQldoozRalmhQ62MFQLYDh6wg+xi0/Ioppcq2EHxScP7J5Q6g+/0Lv+UAkj0A7cYA61KhK0BYQsfBF8UQQ90AM4AKf6ChxSIL3JmgCgQ7stfBH+1mAK2bIOHtYta4kOcxC+4DCz5TuX6CoHw/mb1wALiDABsFANmyvEOtuFZlACVQgDjdAM1YCCZeXE4qAOftlI60ANJsCsBkGhebco1ECUWrzFPeUnX7yZaqAGcaIGF9CwMnClWKrBGtEWhGKAI0FndwwcxpBdHvDMFlACBfvHIWEhiSNt2NM9opAEUqChjKyJjmyclph7xwAOogADVbANPKzJdLkMhaoJO5AF2zAO6Nen3PANjxp/UdeKAhFQYpePmHVW3IAP87YG8Skn5OAquCuwuksQ1EANbcENv2AOv2AMFm3RadvAB4FEw9YTtdKx3jGaSwAAwCMFi7Ar1Mz+EUKCK9PADyfXvd+AD2uwA6rADeRLvjp7DKhwDLzgDlKwA6WQuUHMzraHhdvQvqqwDb9Z1EwdDe7XZqiMk9/WriSnbYgi1V9WBQ9gAQkwB/8pQ/QwcAs9sA6RwAkV1r6yF+7gDPOAD+wgTm+c0glxE+QwFvWgj/ByDtFgrdmQreq3w8Xpku4sBxs6AXMAv0RtnM2QChNgCFcotNzIDYYZ0KSMcetwj2jFbTMFDl/2AR7wARYgnsvME/cAR197I7lMFDQxDYTiK/T52n20bHKdEdOAC5DSoxi4DttQCBkQDNUADTfdyCOKhaqwBkuXDceQ2O1MDbkwBx+Ahckdv+r+VyWGxz3MEp1p1Q302Q06Gall5w972wAP4NWj3RP9NtYNvcX7Npa/8hRUddqzHSlnaWT+MI3wwg33IJNrYAxdSLOQG86/Wc6NsALy/K3K/ZLHMA6fUAJsoNRDHb/sVw3rsAdCYAa7sA4opk/FdQ7csA3u+Hv9dA3+MAd7sAbErNr2UAxdTCapPRSgkBgajWH0MA13EN8R4TbeMKHY472H2gjhQI7pB9w7PI7D3QzbkMdJfeDGeQzuAANLkAp9reTfmgoM8AEfAAM26ZPl1oXNYG7ER3/34McurtB70uJBQQ7kgMxXdQ+lZ+PUpQ/s4Cr2MzDdUA0fMAfEGdzmy7n+ywALDKAJ5WeSSr7UopABezB4g257xyAKE3COJYAlfSkOSp2FHp7ZN1mKfYjLDG0USRjXNMJZ+1URSfilbl4m7yQL+Lh6t/kNczABxlANxvDfIgjZ0XAMa1ACuxANkpDJic1+y6Cnvh3dUr5+SVACE/ABS4AP8wxTG/qWj0p/bkLqbkEhMZ4hZm4eXdInyIaYEoGmA+fpchodd+ANVFVWGKjNO2AG4fCtjaytkA0Oj7ADX6DO0TAIj93ry7DbMMAF6DC5g+4M6PAHoAwLbbAHhLxPNg25VyxqzSLmRcEOglLtAXLtPAHnlrDiYjKUTbAEiBqnEkEOCVbqBbEZrsD+lUzDcGppSU2QBKlgwzfthSN6fvkuBUsgCuBwDMdQDWFw7+x8DNGwDTQgfjmr5DK/DPueC/zwP/bQW3qdiSMoymYIlLVMF/BgDeD+IRS/EzfhHhIfILDgOZ7jASjg8RFBDvwq8oglSzkzMFBs6H791+F4rujXCnqZDXuuuQ8O2Z34CQnQCr2Z6L9JDbCQAZ/gDuowf3b/ljk8gnzZUi9Wj3kxDT509Q686ULBDqI6F0sB0nJhD+JAACugTanlAUvw1Q1xE67gKl2fb+TgCjFRed4SD8ugCR+wC82eftz49Hs+3IMnBSXgDLVe1M6wCy9gC1go3c0AC7BgBjvAoXn+j67nN/TGuaJJ8AH60A1rOZGHdPu6P5fZIHmnpiJ+/GSvuRHmyeKWDxStz95HwQ9P4amr3xGn0QjZFbKeXQLrYNauxEDRMtsEsjEAIa/euG/gDB48+C1eKhhZtkWD5qyZM4oVJTbDmFFjs2XH6O2BMQfcsWUZnX06QOIAoo0tOS571GCCBWDOlpUs2XKZM1tcmCjalpNjs21zdhjydy2bv0+TEDmLZrHixmXUmn0Spm+dP3z+vH4F60+fP27+5oVF+/Xe165p0dbzCtft20Xr1s7Fm1fvXr59/f5Ny20Ij7KADaMde48eM3pjDz/uCxcWEx9N2LjjClnz3rMeNnz+3vDh8wpYmpmx25xa9WrWrV2/hkzPaxB/2dx9K4jwYDdu9ZIIScVtolSLE11mXBZNmJAlsIJupFakAYkGTICRvJk9+zFn2zx8sCChyjriUm9KOLBAgq2Szo5l2/VhDa9538atu0WhQIEYN6e+zG4iXnbYgIZNxOIKHwUXVNAsf1bAwQh/4smLn7PYYIMavs76RBQH+SrmQ9hGJHEzwQgrMS186mFxHTemSRGyrgxpgIIGapyhmhghg2sJC0ADbQVjNnPCG3t2RDJJJZdEcqxEQKFnHoJ0Q+gad3ZJoJFooipvqouOKwmWDwz5cqNqgJBAAwWasyUXN9/MxRZYnDH+ZIIQJHCgASCouaXPW3gBNFBecoHlAAookOATYIDhpZlCPJiTm2qquSaePg7FQABjjsFoGWN2kqqZNR4ALwu9jmwBUQpm8Ecut+DqAQMJJEDHVbyQmJWMzPKyFIQW5rmLSWFLPLGwHbsSB5ZMbKllWL+coSAECn60kY16HHN2rrFgQQC0Dz7woAR+sDXsSFP8OTJbdddlN8nErAmEHH/A2YbKhNbJxowSqHEGmuG6/E8n98x4YCKhNLIpGRwcWCGVQf2EGJhUdoBhF0QWoKAFWOK0xZZbcoG4T1hs0aCBWVPZuBUhaIhmp06boaaPWRVYYBZY+vT4lpFhgWUWnQn+3sCCJcBBp2ijj0anmwcPjdafddyBGup5WKxnHn2WweDQAqJxpx4Gv+6qFQUOFeCTvPSpBxgBUiCBglbbhfuwYpGEq5QSEMggAQsmiTstKmqk4DMKMBig1r7BuqceIR7YwAPPEMgEwcfGusOeYA/HPHPN07LGnkTMysZeg75RupEksnDHmH+9vIgiMJc555ES5gjnppZsAkZOc45YhpeQb2lzmTWEmOMaWJb5pAw3f/9dTliooKIRYYCZowRD7AEGOfdscaaMFnpo5c023Wyz4zh5EWWDByxAZJ1xRgcnN3DGGSebdewIYD9Dbtvmm236xw03uvGNbKADcAEAhgD+r7FABi6QG9cYhygwRoEFtGId58AgBtFxjnU8bR3xsMMBUoABDbxtcyf8ytyQtIsMhMuFExiS5swAuA1gagDRsFXmsoCABCCgBKkwYWz8YQV0odCIR3SWPWRzBnLwY0qi28Y44iGFHTjHZa7rknFawp1rlCALpfgGp253DF50DHiDYB4sgAEL5pTiGDnjhTCYN8c4dWSNJViDLaohxuGUUWfNKEUufDdHnAEjF9FIRYfWYS+CNJIg85iEKERRj3rN7yDvox84xOEOXlDgAH2In+joRz90MKEABCjD+woijnGIIyHi+MY1eFGADRSACv64HBIPp8IdSaGFjnNcBqT+4A5yxa0MDbDAoT4TggB8I4eYw8c6rgGOs6zmHt4YhS61uU0SHckbbnCa6O61CwNoIjlZlEjAtvgNQ5RAFK47Tu7a1CdhyAFkELMFLxqBgE/Mk5D/9BMsjjGHD7yzTO753fL+KUhhrE6c8Wvk/M6xwW+E433gMAeVpoSObECQkfZJCP2gctGLyi+T2YBLM0DQinm0hZt942WKqLEDcAHTcSVYxzPbRaOsJdNGPXBHLjGXOKqx5h7syOZLlbrUx9jjDLLwxxPt9Y11VGMNMKAIqMrzr+NwhBq8kMIHqGE7lywDeCHjxSAGCTxesJEGuQNoXG0hDFFIoQToIMlGfJf+s7j2yU3CaBRGshrFh14ylCG1Dyvn9w1u4AYcC3SlbhpZEPtQlhvZyE1mC6JKdIxFQfLgRz34wVS4xbRE0aCpTV1ouMPBhQsECAEGMNCAAxyDtKnxBTNuu1veemUt7JCFJbiCWXGe4x6Q2MEauFEcLBanqyXZRjv/QA8+IqwZcjQjxHYhB1X4LhfHaEMM5uCMkfV1jrAA1FUR4Y6GmuQYfjUvW4WRT5dE46KFRUg4DHJfyWaSvyBFSET5Oz9VkjQb56AQWOoi1N4uybQlCqtqM5CFeBQTbvpwxyQwQIADFOEaDX4MPRzBDgaD2MQnHAU8sokO+VHpGowVghRaMQ7+rRJHi119zzFusARhUKO6nXJPnOg4CEnY4hitgIEU3Hiz+IaMUMcQRQnMcIxtVLd3TS4kL2aRPZc4I3T4FeeAEQJSV4rZsIZ9X2T3S9VcWsMN8CjxiVP0YBKVwoU3/QAtTjjaqCVYzn8JUZz/POhs6cNIn1tHi6nEDXrsYgKNqEa/VpfOirjsOMegRiM+gN4y6VWhc5xFK0Q1podhGWKEWgZBBXrQ92I5n/L8sUaWUQ0w1zqTmoTffuMX2Vu3UrIt7kY10ZIuQieJzrDpSiN2YIEPZAAGjZDc5qh2j9Gqy6XZIgc4iV1sbjvLG7hwhT/OAWAqUfUbSfCAOjgVKuL+WLq+uZACDIRB1i2W8Z6EnMURkhCDcZTX1BDjRSpKIIWxWte78e0YXI1MaRtLo9YPP0hGH1pmg3DjHAE+iDjQMZdp3IEdFu72a44NG9GeYg5zWENXdPqqsXgt5GC5tsuHNZZiwAjkL8d5a9LlCFPA6Mv26sY2/LEHIexhHcYAWKjKChWQrIEfed0I7jZ27+blQhhrsN4ymPxvtvJiDTtoxDqq6wxDuromb7wFd4ZyMMEeQ9EQh/vDy1wQCt3cG97IObEGY6wYyQYUYLk5YtoCl3G9nB9dUQcb5gDtaC9pLLJATeDzPnnD6MNctTgXvsTJjXlwowlLaMU3aizY/3T+2r0UGbgwshHrnZDRn+c9hsDXQAu0c51QEmuIMPboXj9imRebWAIXhKF2hJmnGdOMe/IhTpB1XDst3mCGoCn/mJG7Zi058IdsAFMNGHyrBMlwPqHhsocffWsF0cjWkc6Amum3f3JjCYI9vFGPtyOEG+vIxAQy0VxKc7WrGBGGddiDCUgFeLqdQeEr5iEUYZiDDPiEVjgCVaA6LBMoM8iAVIgKhHmvBOwrQfqEHxGaaGC9qFsG5Yu7+hOdbxA2vHAFqHI/1qg+1yAHefkLBTEGAyiBHLwbIJK83hoLQ2CAEviWz6CBrskWdqDBF1TCvnCFYvg4qdIo0kmCG6gG0mP+LucCE2oQhh1IgipjO+Qon4XKhVQQgh1YhjYpNVMTJFFwgSwAB2BgO3tDuFxgFGFYAs/wgAfwsa4qjmwwMxMERKLBh2rLi2mwhiVUjRhcjbFwhGmQPrQ4iwToPmCCAQQIokEbi3ApP9FAgEnqwW4ihztoPEQkRVzyClwoBnJINBT8hnOYh3YyBHpQHYAZjueKhmyYgxgwhHHgMhKcLzlMqHzKhavag2pohY+RA0lYK/NCL17IAhhIhTDaiDfiQIB6NY/hhTnwoQZYgT38P9KDwkAsLFZEML6wPFeAkVKEDEVcDWYAhXv4RMDzh/goAZsSwkLYFUITBdEAEtEogkv+ZBJZCDd1LEXtOwN+sI1u2Lx14AYYWANY4AbuYDcsdAkqYyMp2IVq+MKdKLsJDBmBagUvaoU1Apld8AQ0ii9CcYZGKIE92IVsEAqJ8EiAihNG+Rg5cYY5SADgsIlvFKxlyAZ6+DlxPMGc6gt9gAdZ2DaC/At2XI3GqMGhU62bSgJTLLZS6MfQ2IAlAMglgUqmVELH6AInrI+H6g1Ny4QtMY7+s7FLu4ZNmIBScLeo+zRCgoVsWAIYEIU07JNZ8Jn4Qq81gBQDnAhhEDIskyM/sYXscQZeID6fHA7q4ag/JMqHWsG90Ad6SDGwNAynTA2eA4yuEIYPqEdgusd8HLT+dWicHwENBtiDBnGWaQgEeIhHzhy0u7MC2RjKXIsf8siCEnAH7tCqSVudLusdGBACq/hCjHivmQwZYdiEJNO6hJoFMPhLmuQZD6gCdGC7KzO73qOni4A6yGyGIwMACiAAZ0DByrSXjQOMoxpI2/QLz4QMpPSFwziLDCjNm0qArjyxtZiDB/AM0bAAC1iRdUnF2pRPELsmS7hPdwgd3MiGcNCvegCHdmgHd6iEEmifhnIGc/jQSIsGgxEsMHEGavi6/RlPk1gGOTrMNOKFVqgeltg6tPIEVVgo9EoGKYiBUjiHXsQIuGqyfALP8FxOn3S7EAiBDQiBAqgN9nwo+/D+M7+guXNZ0L6gz6byh/j8i7GgBQbQz3pEgFJATWFBGwWFjCPRxvVBABrQEHYxBXpYyisdNHuwB2s4BX9wB47CjQ7Ch2xQhmzAA26IBGQQggpohVMAhFPAA1RQgmZIg0iIhk7Yo3aYFADRCGDIBliQMmGosi5zvWqEGFhoBoHLglsQUuapJ7+ko1bIhnaaA2DwxtYrUrkSpF0ImYUjz4qshh5Q0hBgld2E0v2yn/DjiyO5g0ekU6/I0nLxhy5IR8PoCmpIggyYgCSAhjJlErmwPGN1DXyoBkNgA1q4zGy5B21b1kGrh3uAB3bAg6iqn3yIh17oBUZdhE7ohU7whyP+uMARPQa1s4kT9QRtwAJU6AQlOIVI+Fdq8LGbcDtVy8DjqNU0agYLRJkXnSNeCIPEzFWBSoIdyAXCdAaORThAwdi0M71d7ZRjWADYIq5hLTeZewx2mNN0RYtmrTw71QxbWTl3qQ1RKINWUBpCHBHL0wd+SJy4mQbts1kQ64qtwD5xk4ZskAYnqAU4qIVeyAeNOwdnSLJrcI904gj3KE+K2JJoAFFUWAQ8WIRFgMNl2IUd2AF6CKyyCkNCchNRyD1RZR5ekAOSBZ41hAEzWIf2Qo44cU46AhQO3AWV/cZlCLZ1IKzKrL+t0AzZwL6abVpm3bsUWSKrfIyqmZrImBD+UUgFIBpFw4ALTSiAA6CtA4A2NH0MfIDHC/MHUDjEze0tuGiEFiABf1CGWlAGLMiGRUAHcaiHDTowcGDJsEO6tqwIaMgJknCGSaGGWFgEVDiCA5gEXtw9hLkyvr3J3KGiPdjU+OIFSZDAgAKGW9iCD7CFKmudZmhfNVwjneGFXcDGI3XcjDiG61hPcWxFCvFWc/QH4WJa3Q0LnKXS201CnyVDBpiACciCIZHdsOgKWziA2JKtDbMFmQ25e7iHz7lgBe4bx5iDA7CACjADN9iGWsiHcXCH+CkIalgHakiyYNBIhrvCWpS18pyHVPiAPpCE4eUGQGiHsN0JYcBV8VX+SWUTPmGo0bjKBVWQBBeFhWgwBA8ohOTIiZ3oHfGdo7kCGUKphk9IBbNK2f4lwQAGRKoq4AaeBngw4cDoXBIZC1+o3SVhoZr6Dhiw3ND1ByVVphqiABTwT0JbC6gq4TpuF31QBnlAAQywABJoAXrgBjHTkQbEQEmzMYqIiBvbCFmNt1QwjmOIBU+AA2AwB5JAwH+SE2mQAgJcxviaBWg4AmjQmWP42Dk5qIldKCPTX5xZhipgtjlYB/5lY4S5uGF1JtaAhxPIPkcGCwY+Sn8IhCJKkhWRAgtQrQ8wA80YCxOg5GlJphBoABEJ4dvFO2rWJccYhVEwhSlAZw0wg3H+oxK8goEl+IbnZZ3oJcyo+9cdyILV0x6yA4YgWAZV2Bi+RcN9XINtOEaumwVVGIRdUAUPWAPRA9/sarIi5YU9YJygeYQ1XmaEceO4C+TVwDvNVWBr7gt2CDdlZY2BSID9dJwPGKb69AcNoOQCnZYQeAB13gtbGURuGgtvCBF3NiJ9yGNrCIJpUAZ/mIQoYAN8qKSKc4dwaINnQwd/5j8sei6KWIMP2IR1ANKXmIhnGISTtIXu+h2Q5AIY2AQpFmOA6plJyAIXgAVwMFybcFEso8MJ5IU+aIDPsIBPMOmTzgg/JMpWPItGTgvK6Rym5lwUKRFT8AbJDt1zmACc/g7+KVhpwIALH1gBn5qWDegBbcbMsUiFOSgEzCjXI7IHcnAEyz4hg3QDJ/QKYmuxsoCFHWiDXQiKifSSrgpAMVkDqIi1wiQUY5iFkxyEWcBVv5qFZmgEGGADgbprvHaGPZidqIhJ10vcqgOsKb5JISAABJCCuWTsLntsd4jjx/AF4eJspoRpvmCM+1bddfBjYBKmzcCHcBAAFBCcECCAauhZt1iHHTjtDUCBcF5wzdGHe7CGBMbtC1sLU7CCC0cMf5AfboiHPcgAWghrqfCXxT4GdEgCGLiFgEaO/NWu6CayWfAdgQorUSAfrvOTYyhDZUCFgwJc8wIsOkq7/x2+xX7+b44Q1ribcM2gzQzP771IBBITFlhgANUqAT3bjHmghg1uAErOBX8gWr04BwIJDXDZgD14KXZNBAzPcHa5JieAh0MssdsYh/75AC44h0kTa3g6Uqhgoyzgxa5q35Ptk12QhFkYBFtoBQZYbvQeUkFqBA8oRlXwhI3o7uZpX4cG439V5iVnckAcbdaocDdwQdye8rzwBl+wB/4+jBGf4LyBATZ/8r4oBTPwkNTNi0foFiCxgB3gO22ahqWO83YpBm+wAnag48CLpnW4KlE4B9WpRbFVui3a1AYEo8dkUWAcY2CQBDCggZGUdMA8hlKgovg9Bm6QAzi8rtezVTqEd3z+CnVRv52ULjd0iGzYMDTdgnV1XHW8gAdX//fDSIVCWLwhme1XmRqQ0weXwgc01Yd4mCEgCY0GQF1uYgf2O/b0Q40ukAVjnwvM2AUhMINl4IbRQ6eKBIdNKAE2ONHlJLs3+adUwEXtPgYseAZhuM4hJdVCKIE/oIaWmQhgGIRjQHS8vYVdMCQntvf+BUq4g+MSMZdjD/i5kOd1qRqvmG+w4NkyF2d3AJo0/xYLKI2XMgXh6nhnkQ1mOAFv4Hi30Iez2IMPKAV+8fO2jKdxEAIYoF7jFCQxxkkhAA7fmYU0kIRk6HnzagVnKENeKBOUlwNomIXyPjU1qmUne/Gn79/+aHCsWqNpIZJmlzbhq59seCD9bQYMbsiCCdgBUTjq1kCEX09zbxaGpYKztRcWe4AHKwAnp9YLanABKfAHYUg6GI86Z2iFD9iDT700jiGkNtmFT5CPY9g6tsaDpKejXNAEBDAEg5a1WUiGXE7JQ1+onuR8x42fZhYnqtLW1hgL3Ur9l75j2LiHJtSmrtAEHMzBCYCBWwcIfwIHEiwosJoHCxs2fPDw4I8/fAYnUqxo8SJGg9ZA2dOX8SPIkCJHkixp8qQ+fd5OCIRnsZ4/fXMyPKvHjVszZzqdNcupM2fPoEKXUTuWZUemccB4Cs15jJctW7emUq1qC1iqNR9S8YL+JXXqrF3JsCSbVfXs1FywjsESIuTYtmNBnS0TJjWXJE+80J61lYsXsK9WBfOi2/Qw4sSKF/fs06fVum/gJlMG9+0cTIknM9rz14Wcx82iR5MubZDbEB7cTBe8Rw8UO9ayKe7KUMID7hIT1tQLXXqZhQQPGgyYs07z7OQGE7HrrPw59OjQ6fkDZcmlb4P85vlLBaMQN3fcznXzufP8YmDjMsHYAs4wYmC5ckXlOxVWszkl1uyCal+VJJI8A4t9t8CSzRZC7LHNMsvMdQx9uYAlCTQF3nIVL/5VpdYxbP3FFGMhipjYMs4sccADBxxY2WTfxJNddNfBKB2NNX6Emmr+01FnI2lfNIQbkBmsA1NpEp0jzB6iXIMcj6zF1iSUUUapT2dOmDKjQdytIcQu65yjjjjjmBPNTiWaB+JQx3wjhQc/JebMfBbeB8wOUpTCi4QFzjcIWYJRZQsswgiRxDHRNOWMhlWBMcheaEkIzF5+3qIWMFIUASGaI2o6YoMYYLDBA5N8IxllmPFIzjTOSbkqjziulpw95JzBKkn84CNFBkDmhgA6RJp2zz0C9UbraG6kSiyyyZ5kDztdxBSsRe68k8Ea/nADpjjZokPNeei52VOJzogywRzfCPMmMLfsIud8jXiwBltyUpVLMkrMkmdatmwyQSPZyDWUfX/di1b+VOnaF+hCCaEDzKYNc8qNCRI0cIAoo1oGzjpQ+mKKqsp6TJqryulDDzMff5SFBbp6oFuvs+FzD5YmZ+TNkzLbLLNHxfgCjz3QagdTPXN8kIw/1ahzTpjjjCPOOW46DRRPatpiBgzBxJVpTsvMh6+jsGAlBQywLEOgvFTNMosqqqyLXypJ7EDUMUzx1JWkVAlzxNlnAeaXffemvIEFjcDnMOEkOuNDD3WwI9k36HDHZHSdOXIz5SSFnNw98IxSOUWF3KZrBknEAznnUOLijc+lq85jZ6CM4o1F+sTjjyg0rNHOOtugMw44SistzjzU2BJNNWead8w6f+zQBjXROHj+GKIS1l0VLM7ssZ8zXpXdlydySLKLM23E0Eg0zoPrjHx8F/jMEcbcCwtgXPMVaAIlrIAAL88Xvv9hy6CzzDpa5A7SRccjloDd6hJ4mtS8ajb6mIYpFBgRf8CgBBa8zQeEIcEo+QIXMdkgCGUTrGKwgxyx80gSkiCMdYzjHOeYjDjAoQ5wmGMdqmgBCnoAC25BTSfA4Maghqc/odDFP/JDizNgsIM4bY8vu1DFLDwBgyXscIhwok/ZoFgwJsrJFo2wwAMM0SD+kbEpDpLGZfDBDyhRBxQfDOHqLudAbxRjg9yRwgV3YAw48oiOb+QjIEvSGWftqCLCKEEh1sENpsX+cGngyNbS5kGFBmCgAVyQS7eOkQwGFOIaQ2xKYI54lnZloBFdaWLAcrGGIOwhG0AJyjGm1zdjtE8YkypbLppBFGqUsZeHQd4fbdQZlhQykJSTI2tgUow6EvAiyEkdSHwFzYx4RDPG0EwzDZKdmMVuIPjgZkWQk5KR+Awf2bQIOSLoK2Oy8yIpwcWsOkYQmGxDP9SwydJeiLTe8S5MkqRACA5ghp7oxBjcSgIMdsGNuEHvGLvgIl9s4YxMgI0r2kPlvNbSNhpwAw61EIUonBGNYwDjomWzxSyMMYiHlm0XDlpGhz7py/2VKBvckZIs/CHPdpoMmaWBiTgkEYuRvMz+WqKoxgRBoo81UkMU4NBpSELDC1HApGfgJIhmdkELgZzTIMGqh1cEctWCwMQdreCFWEHCj86sQxTHSGs0/bEMPozDH/XoKk+NSQ83+GOa/uAHTGhRAkTMQ5FgElPSaCgmpblDEwUoAMV2osE57GAO3ODJTkAZFVFSJVBzgMEcniLLkx4oCy5oRFzMwQcLWIANLOWsozCEFzmYRU+3yN9Mcwuua3yDd6uCjV/zmiyfksYdVPAUBlrgjHVi5BxGwAAFNICDdbgjJN/wAXQ10AN/VDcj/NCHMKAbXTbYNSSpAFIJDBFMi6yREhqgAAUwIAq8DsQjdoAvQNH6EcD6Ywr++F0BNUJS3RYglwkZEy6CY1IMR+x0INWtghCcwcKjhSlM5nhhIx/5SHEsoxTC+En5aCAEXpAJs5gFF31Ge6EdThF+KpaXLaACgzUoA7OwKIFCEIAIW25PQsLIE9qgMbDYFka3My3RqFr4DebWyBGuSLDNiLuZe9SDCQvAbwgK8A194LUe7piBBLBcAHwweSL1WAd+4YsBBfjjphZ52TECIF4KKKAMUHWnPmBBgBB8YAMOUW9wscoPRAgAvxgQgCjGeRGYlKEAhhYAMMpsEJgUIcxqFsA9M8IdAYQAvxJogTsCDWUQmrBkFblGBgpRj2200HcVXpqrzSGmyXTjJmb+2tcnuGEM42HWLli0EDAMgQBDxBKjfYGKIfjljH9lbwUW+MABENGok8qHei8QckTPZeSZSoOfkzkHOniUM2uMWmZSNgmXbVFoCbBbAiGQQHnfrI9JOLrd7m5BvCvC6CvbGwNM6OtFNv3udmOgAMtIakW4MwAUKIQhJUhAPEQtLHcEYODszrI/ijkRc1JDABiwdwjY7GaKeKQVCqBAv0PQ5osEawYWD3MBPoHwcofQI4EoBoz4i4413OCa40maOMKhjn5C0ne9y9YLaz21EpApXN2ii4Sibh9bHKMUSeDSKY39J2BoYgk02IbzQOQMLjSABEfIBGz/NKmSyk8bcnj+BsGWsu0y1nTWvuMdfU2jM1PTXFnnLglMeoBye1OgBU8NuD+ga+8wq/yq3FHAxwkPb0lz1R/Z4DfhqQDwingkFQthyOc/MIeZG0QibIh8u+ksc3AGqweoZzcFCqDBRfsDvouP/ZAwgubBE/wAK+87CD3iizoWRHb+2MMSqrWNn5/DHNkqOqwfuVjeLa0b/jAEIrdh4jNFb1J+OSKgnGGGHazBGbXV+lQkuoYSoPYYVhzbHvaQB1Qk40JTj/GP1VcVXgxiELOABYHQB0PNHRllQ+94G+/0TndJR+tQx1gBX438HUlwh+0RHgbMnkVwxwG8XphhwDZgBHcUAAdGF+n+FZ8/wALmpd4M5NvGXd/nMUSfbcASbB5FBEsZVCDsSQB5nVPg8R7sKcDqvYQ/rIAPhpkCUANeRUOn3Z7IQaAEBYslBELpoVASVIM7MJILNZKrTYbSXFjSmAM6cMOS7IctVIPTmdiyxUnU1YdV5MIy7IAQxBj6/UmMJcAcCAM1fJIz8FiG7IIkYMEunN9ZrMUtWYgnJEOHdIWZEOD+OENvbRgXSh/G2IixNJgTRokEjkRnUMHJEV4ISFx5Cd7tYQALTgR3KJ7k3Zm++UO9pZ4D2BkoHkPD9VmfWYB6nZNHGEKYEd4BtMJ6tYY/MAEOwpwzXBVMtEARxl48UJ5Y4QP+KqYevI3cJZYOdWjcX9FCAoiCeGTh0jAS0PFTI51D9I3DN5xXJtTDGf7E3EzKfGxW+kkPfRQCAnxC1s1hjAlNKpjPoRgM9STDSvEFYODSLBzBQpgB1jCipixDNlBfAt5dJNbDGkWHN7jENCJLJo7EqjmaA/ygEZRi6dnDLBAA71HAAdhZV5kTofFewSnCL5KVP7RAJ1raArgDMwoEdzQc6C3E72UgK1YgypGiNJqZP3jc4NHZCgZlQZjTNxAl7BVAR9akDR7ASAbAMShaRVaOR7hByYRGsHDD+HGDIqFDhWWL9J1DOECS9DlSmHRDPRyDGbiAOszDTXBfT9wF3/j+RVTg5S0AgyjswBJEQ4TM4VpowtWBgy5BT6KYjS1ggZ/EWC4EBi61xUIwwCcYCkJuyjJEQ28lID81pCOBQ3fl3UjkjCvw3VWuykWKBJfZgQBYWgD0QD2A4gexQWvCVwD8W01WHhXUpgQIgJ3lZkyAAwaIJEnGXAlOoTOA0WRagC20pAnCwgE4WuxpwHJlRLB8QgGcHAVwWu5hBEwQmnYKAA7YVUTyJBMEgO0JwA6eJlb6QyKkFZn5AyTsACLEwzokDaxV2AvdnTjMEH6KA1JdTyNYCzeAwzmkoy1tDV5uFl664RfsgCHwmGBWz1E8wjj8y1AgyvTQxy7AAdzRR4b+QEXaUQUvPAKftUABQAIvXeaIOEM2bObRcaZDjsM1EIQlokRnSCF70kpqkoQzGAEFkIA2HmdF8EIRhMAMtAJSXkQruJ4OOSdFxIMdtEAIlEE0QGlSctcc0AAKzMFTPeAHgQMbhEAL2MECUpM/XEMZkGkfLCnJ+cMxHNcMIIJoCsQ9tAJMGgEw7GjpFENOeUQ9wIQUJAE0uENaKtbRSV9iKWrvcEM8zMMHZAG4Jc1ZFk8zjNS8eN/3fR8s5IJgmYFbzeF9xNIHmMEimpEzlI0k+J/XJGbZCAMNPFsIzMJBsqgZScNCJmAMcaHSVAbv8MMjrMAKqBeYikQOqCKfQkn+j5ITPmADNmBpDQ6EbJaeN40mtJgTUUHLPdSpnULLXRGVZsAMOYXGsITEN8FDHQFnsrJKMUxDfe2CATQCPmyDCx3g77ja0CHNq1kYuDUCAyTDNxSorJElh2loWtxSOwYmkkwAsRUi+s3HGmSA2MgUQbGhhZjFLHgIRu3CMbiDFCyBHAxCrdpqUORqjG6YjP4OxghDDMQXxcgGOdTRtK7rbCyratZDL9SCSdjDPJTrzc6DPXArV9XDPMxsUgaq0NppzyZtX/VssZKV05aENHQCDdKssngEM0ghW4FNDY0HOKqlorZQ0Bko0eXZGiyBO5ilq8HaOGjNV0RdYObCLqz+hSgIwQ5sg4HoJUZJBTCwRxY0nVBUwzUYitZsTzIAQhoEYhP5xYc1AzBUQzVwgyeIrPuR7KFIRjj0qtGBQ+YqTThQxjiswyyEwAYM5yWwBj34gjXUjNW2CgOJDDmYZusimDds5ewmi0fgQgTNzhrAQCb4A9LtKyTuqjnwaqKKAz4YQgyoFyTtq1gWxV38ydasWDVIwQ4UQryk2Lqgkl9UyhIYAjyM0fnMgRlU5ot5H6S4TxrUn7yA6Kk2CEyZgxK0gz7aqoMYYGfOqOZS3wF+iQscwAE0QI2WBjlYgyXcrrK+LuZYw3siMIKZgi9AqwNLR2gogz/EgxCswTWkbTf+Ah3vdC4/ZW7zgsM2VAM+bMAaWGHvyJoIgwM6VINOsAWgqOGFeOoxbMIHrMEs+FqKbdaIpgX8pAK1EMUQwcUWsNYGfMKvFchVbC/aeMKIAkrlvgkqhIEnjKxu0QUaGd3mHiCvciY/rUM2PEIjfENpjFAdPe0Eb4bNqqY9uOsa85Q3dEQcswoz8BUsIAArGBb0NVKYcCEW7i84zIMmJMAvXGE3ulqYGIpOVEMr9IEzqM8a4mMNq6FU5OVJ8QIbTMAu5OFhAIM7DEAJ9JkULIOKPeZZeAIcsG+B8IKILAM3DMIUI6RC+ipDcnEMZS4Cets3dIObkoQVzHEd00gbhwT+s+goHyEH00IgKEyD0Q7zaMCELXxCLZgD2OCDIt2d871aF8ra74TJWYpDPeTCoMzDOVxLqwWd0uDEecwBATTAA0RvLgjDJwhBEzRDDTtsXm4NbFHdJ0wRPAgDxR7DObCWQ7BBsRHMX4jon+yCJ+hFRD0mFgtFNAxCLHgCN1CsLy0DGn1tZ4JuQ36xF/fON4TDgS2LP7BDA6sxNFuOAjsQPYwCRYYQd7iDMXQXS0OgJTRHS9OIR/hrAyhACWSCXJ7lvfbTNx8gWf7OeOADGyyBJqTpWHamOORhmezCAYSAp1CBKVMd1TTC2PBz+rljhEyP15iIEHzChdaqg8DCDjT+wBcIA9kcG57UTS6oAm2N0i0I9EQPBbfIQSycqm7hr/7m70d7Mf/eHbgt8zhZhwP2NHQUc0jcgwnBUXXBYQnsQBGIwwQ3R05DtkjAxAeUQAusQBJYy9ClZdHRECTmZzfGQxKZgaNyQ37+8TmjYRFl9VY/BS9QSyrYRfrtgi2sy/exow9bhdh4zh16smJEDyx8gq8RTF0XiD9ub1UMoMM4AyoENnbTHa7OKFr2qmHbqy5zMUn/skUEiz4EQTHAzmeD9o28tGzoAzzcQQSDkESsgAeAngXEAFLdLj10AU/Dt3KI9ih/QBLgUwxly4Vts8r2k2JVWCMggDl8w/MJsjj+lJi3REMjNEAIaMA28EIWeIAoTBsmO2xawK3FqsX6AYP4Nrd/yNJ8QKac7IISlAU79jVjcEMYAEN3FyACircksq1DRqIti/dxkAQ9TANfWSWB16x8zwY7sK4EcQESf0CfMcAccNnsTvmTQwd3rIAUuAA/uAM6DOyDK/KCj8MMmYM7CEoW3EOtXZiaX8PTqWNmFsU2PEISLEFXq8s+l3V9YFFZ/4kolIAZgMOLk4irDgak6B8T+6FwL4VGa8oxVAM1HAEwAINlFo5O2KtDhnfKeq5nJlZiW0ad0rc/nME04MIzf7lISHZItCsIrREVzCKWb0AJdKfVeoMsODmsl8b+GhGCREjEdihShUU424bJOVg4PrTBEvxuN3gw76BDNzDyne9E3DiD9SJC9uzzQyVsYPrwPsdYM7hNKXwDhr6J24oSfTz64vKCHJiD3PVSg8SyJKBCHlY6iTRDNrzQoXKxeG8u/3obSAs5aIIEdbCDFeCCB713sF+ErIMELlgCsKsOOgjBLIJeArRMaEctguFCTkU8axhQbGzTPKz2ySYNN8zDMpTAHETDPEx7F3bjC9NFtms7N9DCBOyBLdjFcaeYGhZ6+q3YMTwCwx4Dcze3QzHxVWBUnqACFpgDvzvMMlSDJwCDyA4OY2gxqXjm3Qn8wXdxkVPGH9dVV9lDZ7j+gRXAMcSTfEVM/EfYgzUmkJWHHuDEAE2KxBpxeYKRQ2XDPWkEi9ZSRMovFq+GiYsIDS3MQ1rOqGXmvE4QxRpMADUIg8E81KY2KKFHFDBQTS5wvWIkNF8stNYVhjMs1La5nxwAAyrouC69aPRpmEirLMoaee/o8tgn4Ayht0DQwwnQQ90LPshEuWzUNzu8erLsQQMsRK4nwICOxDJMUgg8wmosM874Q2kSf2k4wj1YomaYeYXNgzvEgzvswg5kAYEenawVrzgs1J0fBjeIwoypQ9zEkoLCbTui+NY1whTRA0AIW9aMYEGCyxA2c3bM1i2HDx/y2sULYkWLD3cdc7b+DFiaWNEMhhQ5kuRAapJQSeJ2bGBJad/AjQMXc5zMmjbD3bw5kyZNmTPHiQsak6jQb+PW+VO6lKm/aYnu+KNnr2lVq1exZtW6lWtXr1/BguU2hAe3sGFdwbt3lm3bq/r8rSGwwcMHBEKSetU3r8+BBhgsHAhBzR8+t4cRW9VHDxfcxI8hR5Yclp0peI6vGtYX75o/M3P2zIFBCx83cOpqijtnbvVGZ69hv1a4MVq0LEsMudNIkFeuhw0vVoQFzNaSErC+HSNJEBy6bAuBW7S1i3j04BVtCXRG0BmwSCyXhxffbBk1Z4M8STK3MOQyadnO2QxaE5w4njt3xhTqEyj+fZg+ZYLpJ3z4aYoqf4o5oxh/MMtssgchjBCxscqSUKli9FnLQgnruWUJBoSwJS+v6nGHAAwosICCFVcobMMXl7oHHlNgrNFGGMkp5sCt1pJiggw+gCGedeojqqZv1jEvtiW5M4YaWzxYwxlqlomNF+uucygXWJwpBIFMjommpZGW4WUJGrbIxbeLbGEoy+ByUc6g7sIcz87wqAEGlTCO4WagKpfJ5iideLJPP/no6+nQ+hJNrUibGAUnp3XqmUcpe+Cy5o5RdlSsnk9vDFXUxCg0y0JfaNRwVMQwa5CrevyZ4y8VV6QABV5WhVAfcqbJ1ddfubrHF2u8srSEEjz+KGEHf76xTyahhIpmyWm3O2adLBh4BiTZtiNolzXfvAUWXpIQIho5w3OmCAs2eIANLG+xBZgrw7WIl25D4iaNRRK601+RzBkEJWAIyqY/moSyydD88MvPUP7uSxQocL5BR6m1qOrClAWxKrAew7jRAx9XgS151FI3pGdBkk3uyp55YAUL1hlqrTkEUVpm1alRcu4518Vk8YZEf5b4MYM16umGPmj9pDY2grjJ5IM13OFlzDkpCvfKR2AYYxt0w1umB3YbYMOiXOaNt96H4tyITG5QofLfuQ86pprzPCFFmWb3+2nQnxJO7aecfsLPvpx6glTw+q4pIoADeOFHCXb+rLjYqnnWgSYZRq5g4QI6/InZ59EtRFlCuALxp1PSH4SVjQY2WNECFVGAhfWwqHLDH1Vv730ye+5JRGbPsijEn3jcEcecoLoR02nYjvnGmSaSoOUbYPAVyU04YRGmOCFS0e3OaNhA4IEEDAHXFl6AAXftW6zOvr1q4FiJ7vsR2qaXbPCopRNwsjGPbwjoJ0ThD6HyY0CI8WRiFBtgKgjggRcUQAunYIdUWOaPVXhBBiNggQ5q4IXQFch3JZwQWUwVIbhMo1cZNGFb6kENAYSAAhvYgAVC0IDQvVArGeoVD4HYlrVYgh5gIWE8XMSg5JlnNs8zxjYaUYI/JKMa0BD+jzNsAS+HwGIZiJiAIV5ztfHY4hNmeITaboG292mpIWIsCSrSUA033i9dgYIPOr4hKCxI4xTtwMc5BgigvjUsYgoroJEM+I1zrGMd3DjC7FLggFooxYX+qMY66FADEP4AGkH05FdMp0J/MMMVDPrkYfSBjzkcYEUbwEADomGYU1bFGrrj3SxxyRS4yOKHrBqHtKjFHdis4QNuc5t4iBMcYCRhB9uYY9ggApz10WuN2fmXbOj4r0BFTD/ZqAUgABELnTSqb+IYJKIKF5NwcHMc2fAmFr4RiRWQgAKtMGVWDKMDEOqzErn0Z1NCGSGqCK+SN2pVjebQAxT0YAbduOX+LOHiCKn8k6IM0kcpHwqWvZhmHN+QlkJm47xopOJo69iN/EiykGNkLYvAmMMOsrAOYVxzGbZYU0OmeSX3aW03d+qTErCXTTtFg4D9aSdS1pEPQJxiqdJQhjvRMSSkxKRZgaRPR2USH3Qw0h3reE8vatELJYADEPjAxz1kgQt37A4rjgnFB2sgCB2I0FIVzWVAIbQWR5DDZLCah0AouSFZRuMcSpGlP4fIVrv60xuyuGdY4FIPdHSDgefohtyo0YpCtMMYS0hCKsJxUmwuZxm7MAMbKCGuZoiiCUK4xTh6aqeFXIR9WnzTvVAqnmUcIxIgEapLsgGpAx6JYpJdRy3+TnGKXuABHIs4xTo64Y5s+MMd+IgHPtBhqelW9z218K7/ItELQChDGQJUyh3YEYnAXsVSw1ADC1TghWQMYwj+mAcJF3tKvObVG8IzWSNocKwd7OKxolxvRX0hvIzm94Vr0d3q9OIPIv2HgR39RjU+8YES0GAHc2gGlaYVHrvlsAEWKEUz9uCBR0jrmcs5BkRy0ZD2rfEhVaIjMGIhx9+KJFCDOhh+ADQTRnZ0b72IBD6w0ItTYKEWaTgFHqQRCSzMowL+S4MywtsLp0qjJuvAI4IscQrLZQZWgvhBDVQQirWqoZMMxuV+dUWOIv5KH4hIwAc+QJcHELigbn7MZfz+jEty9Bkr+NgGAxEtqWxcwwDI8sAcvnG/Y2zjABjAwAMaIQQhLCS34jnGLNg2TdtmSRidttNuPWJq/BnMSIW7KsToc44Kw+Qc6MjuOuIxjv0pY3/GRY0DayLrmBTWFI7tsz7MMYQa1OAH3NAHCQkdaNLBeTL3YEcg5pyrenAjAR6w4Q1LYIEkShtCdyAHhMndu7VUDt1bccdREo1oblyDAceaWjYkvY0G/KUBGSjE1+7Ur2YcAxbgQtuor9O2Ft8JGGDbcTTI8WNFEUqBRgqHsGcywDxu3IE5ucYADUbAAJ1jrcLzRiUNMw9WqKAGPNBD6ODCD9Glm4fUftA0fOH+q7XM4QE2zLMNV4Azmk/GFxwb+gstMeivpLyR8U60UOYwgQnsYBm+pdsxUsEEAnABOQ4vSTMAqJEr4TQ7O62XvED6W2d4AhWqDrgzDJaw+xSy1YqSdcPkY3d2KgqASZGFLFaWFVglQw0qYIEafmHfo+sXhTUihzWiDSFYLYFdPs+zihcfGXgILfMlZMcFwfJuCjt9Yh21BS2c8e7nLFwkwkDHSz/BYtl2pwhsOEc020fNs8PPxjtWCCoWQR6h9rhRiGzUswRk1P4Qru4zWV7pZ3KOwGXDMFooBl+zshd/yFUHaT5w52ve+Bqd4dyrMkwher6BPOe5BEIHvxDJ0QX+zr+fdVbwRruvMnrS80T/iH6Ov5ZBCHagOaphTkTMGXruA6gOOHgha2iMYHzPIDiC9a4o+fgO0YBsaQqI+eSuSIjCHIrqkIjCYhzhDFRnKz6GB3RABc2K/jzJ5iYDLnChwG6kRBjg536uRWbOBb+CHOCBB0lHH9hhwawiHuBt/zDQKBroPu6Gx/5kOxohA0rBHz4OHMRojhCC5+hiBV5MXswuXHKh9yKQIKgBD8BjbqpEGirs+Cau+dKJ4oxqJ3zs1XgCHerBGxxhQbJNMUKHEVQAhBjheIAQiGBwMqzBsYjwRepBExCAXTwAAUrAGGhwELNvZyjRZ0BBLbZiHiz+CwlJT2ISTSau4ZiOwZ2ixxZ2QAq2oeliwu0OYhk+AQG8zQOWAW0KjsZKbQxDIhpQARgosD3ew9Xy7seG0Sf6hj/2YwmHwoDkYxviQRr8oQsuJSva6wpkIL6SYYQu0YQKMTKGaAYj70Hw4RqMwwMQoRrGbRuzgirYTR1LphgCAVO0YsI8kfS+gRtAEQO/YRSXoRr2YA+2YQ08YBZWcfSciceckAosQMVerJrSSAx1kSCqIZx+sSB6TFIISeKObxzWiRlbzdWoyj+uClK+wVIcwRqExoVSyR/iYAhYgAVYQR3S0R1ZpxsjAy6YYRJDZR7wAVRokisGLRx/clXsoR7+kdCcJKYjne4bliADSuADzIDV4g0L2yOLponGHCIXIzIkugMC78QZBogOQXIJYW1pnKWB5E4cjnAczOHHkGRX7mD+tIIboGDZoCCFhrJ3bBIycgf/bOQePkUodUUfBJPOolEf/DIvN2QUQKGt3s0okXAcTINikHAdYAFZSiABVCE+nM5PRCJ7GMI3eAEWaCyLXNH3eBEP5CZsnEENEafiFKf4jC+diqIDJ8ZQHgZwKKW/GvMeVNIfxOEVOqAGhgB0eFIx9VL8amSgdHLxdvCwSkh4EhM5JQQl2QuQIHP/oMUo0YEXjqUEMiAViMTptoG0uiNeGhDh2MTrttIizQH+C+wnpaokuJSPYTAwDkcSgfAzNoOMG/DBG1zBv/xyLZKhc2TAC8yirqizJpUTRhDTFXrp/SzlE6hgCbbAYhIxZ+ChGOihMBcUMZghQpdiHQIpO5eyLaFv/9BhEwYAAQoBHZDQ6iTQGYRhXHqjmsYFItuTK8OkxUoR3tiQ7jKy9ITxWRKoKGbiYZrDH+6AHmikORkEVuhAn1TgFWDFQz+0RvZSMnwhJ+kPLhRyRUJgARoBSnPGF3gmS0OlGLx0KfAhHPrPRCvsPkUQAwOIHjxxHKhhJJyBIoQha74wONBuR0nLHE7gXMjEGbhpuIqxgfITQK4q+RBIQP5GurzBFKb+QitAZgVrAApgBr/UdHS2VDISIVMhYyVXsoQQ4URmB4ckgMDUzR5mMFRvpBh6CR/cQWnssUSNsqqoCtHidCauoQqRMNK4sjeEIVCvYzp0lFDnx43mM1LmTrg8Ep3q8yOt9ZCMIqvqQR58AaMqsR78UJ8wQfFolUErRFS8oTcTQ+aaYgd9ph7WAQUw4NtWRAO4wHf0YRpkYQ/PNUJg5RSwQSnmgTJJrxvwAWbq1OkCSMKCNdHyyJ24cyPAo09zoUazBF4u9jTbcxm4AQ6O6SDeA+MUKDZpEzZHElKFC52Iq50M4w6moROgtCf9gRY65/CeYYf+ddoatEYSy1/ZwlL+9qAIlmAJUsF36uEcTqSGYocCGsAIsBRGqMIRonZnucJSjIAESMBaHnYmuqEeyqAIpqAaFhZY48EQfIAXBGju4m0cLGYe7uEI9+8oBmgjGjDGsmRcxCWN1qdZC+IYGo5jyYM9S6Ia8CAWJNBgqPVgyNJkL1BxYE3uRlLWvsEfTMESck6xrEKW4oAH0IwWLAU6rTZnRtUb7cEJNDdo/aEEbmh2GMAQMvRX7GEdHgBFmNZpq+B2IurkRldX/MEQHOAFUuAAzuHjeJWBvgEf2EACJOAA2KCjkBAdJoEAJIACJsEd5hRYv+ETWGkG1kEql9IdDIEuYs+m3sQ35uATsob+cC2SGrhBTN4uZO3EF1tCURk3FB+1+DJyaSZuYTayYvzhDLwBaKvCMJ4BhGTgCtaqd9EVL20ELh7vMNbCDLxN/T5gBQjAGeC1Ze4hHnqgxGplA8qmd9hhGuSSgU/VHyZhAVSkAOyLMPfCHWR4htcqChaAeXtgG/5mnI6kGVCEeakAu8bhHKQvPoz4HKYrAEIAAxTgE0h0/9ZhEyyAdU2MNK1SYz+heQ+gDIxh4RCiFQqAAASgGtjXIHjBCDBgEgpwPJwhGpSADEYx5PJzGIvxDdv21ZamIx0mQLKrGByLHhIRLtYBE1RABoYgEDcYhUumdL1xGizBTHsIHxay8n7+blkS2WR4oQAoYIlzCAXEgXXgwhdyrmoVuSoqBQf8gg10Niv+QAAcQADK4GqZgJUUoA/8gYQKxKx60qzWKgDo9QA+AVfnYZiJmZiRiArqwgMSYFyEoZmbuQGhmReO4Q80WQJwABiAyWkCpVYwoAXQAVoRYre2IQQUgAICoBVYIpzVOZz7NAQcQAFCQBpI9pDylxk3snHbMA4L5RuqCxeuz0zh4heggOXUIEFLWVR7NlQY8zBygXUt7wO8zVxHp0BmAQUCgAAGgAnQkZQlxBUswTcP+ib9YRzCYBB2B1Stgh/w4RJq75Kb4hp6QALKoB5Q+pb54ab5YS3KIAAEAAP+6qHP5qHeEqAIBiLECqKNEaEAMEACeiDkNO6pQW4eCICGQiAE/MGdsDqrsXodVmBFDuAPsJoaFi0btuE9sHp6X8ABJKAV1oGO6TBFE6dIr/UmknGcKEYpUBf0riKnYSUONKlKKammQ/pXGFky9MEbQJotqqGCcdADPGCVgxBz1FZBWQceOnSwfwVXXbop9OFTkMgroqEVKDsrSLQIzKCMj/oYjKAAHMATYHTYbiI+hriduEEAzJkcriEfj8Sy/KGrMUAAgIHCIDcm1qEUFqBW2DpIYfMj+Q6P5dqe5YOfA7hfecSSWOAHEliiMZt0EzpUBHg6r4IqaED9LHgDEKD+TEV3dColYWPXV+yBHXRnuyXDEp7UKxK7KwLTvn96s5Xi3a7BHcbh1OCuroC0WokCkNwBEfyBGoQNKZFSncCBG76BoT4BroXrG+zBEEigBeyAWTIwZSXOntlW+Q7mGIUMHjRlGttKKeIArl5Bu+XbZAo7MqgidcA7pZ0B3BwbAZIgdXuHoy2kiKKivWO8K6yzZ/qMH3JVJrZBHPbUPK8BRrNh3uz57h61G9yBG6TvE+XDMNo6SVX2JvyzGJQcH2sCcQpIGO/3nkExuqEbHPCBTdOUCDtbgzpHBfSgk/i7yENlxiVjGkBBHsPCMJxhCwCAAAigEEZ7Z3cJHPk8Mab+gVh4SJBHTxy6Ie0MkKisPO9ONs0zDpGCbIgNSIfB4e4epT75eRH2xlH491H0eDbXfA1NVnKLKBHYoaBSzq9lQAdYwbAenbvTNVfWopQOox7i4RwsRbDP1cFO8NcPAxdm9YX0AY/mVB22I3sWIrg4UjYDZz6UUdQnjjYBJ82dez7oAx20DJCwClLfvM3ZsM3zGUnoAb65Ai4OeNmuYM+dvc+7O1TuwR7i0i3ugZiBnBLp4Q7+fd8PwxpEtHf+KE71dLSqztQpc5z+Yyw3ciSdxa5lAkbr+T7oFh/SAKuORNQRqGU3vlFFPOORoojsr9lJWxD+UAdCAcYVnrD7fVT+QAGQb14x6AFCCbjnuwJABb13JKv/ZGKdQKpKyHZaxRIkU1augWxajQTjCEcnDCUeOgF6V/YC4xpRjK8NESWP/IEdLCFN8W9k/MEYhkAGZEANZPK+hH6Rcz5U6GFY7nvu7WFD9XruwWLzWCdhYca+DNbpfmkjqKEbXjvs9RPqidTTsXXdP/A+Xh0te0FABgn67rk+IV+fASkpCAEeZpAI3dUf1ACEauAXNMPv6T7Yf2XdYF7oiwh1WZ8tyO/Gc6VgP5EnvsbM9eM283PjSz0o1N1RJeb4wRwpjbT0lB8cQNAfcgAf6FNyAQfU6/hRQLz0StIa4OGRM3Twdv1AC0P+2Wuf313/V4rIBNcrvWMcLkwQ98t/KdgB/m/EEAbgAYrgMQ2fMmvtWZovrgECnMBx4cadE3hunECB4saJCwdunMKCChdGtLhQokRxGS+Oy/ZNI0ORDiMmbCgxIsmKLAe2HOevWDFZ/vT5u4kzp817alTo0PHLXz1+OYsaPYo0qdKlTJs6fQo1qtSpULkN4cGNqlam9uDJslbU5taxZMuancrOVbF7Ys+6fQs3rtZE8OzJ3Vrv24ASHjYYWofR4rhv5+b5i8dNobiEKVlubKzwHMqQKTO+hAzuYOaIFFdqlIhOWiR33y4OVOmRs0KDHV16rJj5mz96rkDZvZdUHz7+f6uGyFChx5zQu8SLGz9+1ipW5E9tKpMFTEqTJnPqMb/eFN9u7Djv2fNVk7v48ddHufKHm/zRetkArPDgYY+7wAu5udteT2REdS4rFkxdGUbhoOTaavoF2FhqrcWziDKUVdYYR6tZ1pKCphnUDUyWmAKePm0ZZZ05atTAwhCv3PQhTuZggk+K6r0Io3rKZRWjUXlsYEGOHpSwTY3X1WNPPfW4aBw98HThY5JKQmXkkv7shsgADwjhzzb0gfONdTmh001i4phD2WmflTRYmBayNuGEmcH2GWMAfoaOMtlQdGGd4jxomZhvYmlYEP6wsxQ/u72iQw0yqKFlUs/oIKT+k44+StaMTl6zwwcbfGDpBlJAKlc1sMBCzW5ExuWhP274YxenqtaIm5/0KMnPOvNEw4s/1cC20DfrPFmUO9dUg05EHJ0G4EXiEBhOmGyCg1JF52iG2bIVKhQPINKEpJK0C3GEEp0JMmTarqB4A1Z6SpkjiE8/hOKPYUo9U0OjSG23ar2PSrrkIwRscCmmGzyQir1kzWOIlAcMwEY11zHjSzHhCQzxdTb5Ao+S+KzzTTfdgJMYRoS5W9Q6ZQjQQC7ztZkgScTiKRG2agrWkIQEqSThhRplc8o3D6rcn2DCSnTQmBW5w48vptgz6k34EPWLDDXUoMZNQy0Fr7yvJPP+zCv4NPpKUBF/LeNVNPq4dR8N8NvvBgmIAnZUu/VxAAZyY3AAE8jpY40sDpvbdt9v2TTKbD7qg2WugXXjDt85qUIABhbMcM1J3Bor5s7gQCQzrtF+xiznGTWb0jnZ9FIahGO+1p/KY+p8kxPwJO0PP1p6UagM0EBVdT34xMGCOeKwEMdNq8jgtd/GF4evko08gDamHyRQyvFN2dIABRtQYAEFFBwQfXE2yUKT9OKX9WoOqMLY4pWCJXrUJY0/bgw6jBlEEkQTnSbhN8MCqBmFHUWGGTGNoxa9UMd/GpItxzjkdJIRIDi6YR0reANQS7FOKH6iAkaAzClVW4cadMD+K1qw4ERD0MPDxofCSInNSbNIAL+cZ4ESKCyFRxEFAbSHI+0dYBPF8U4iwEPDIELFJuxI1Yv0kaErhWRXS3HGDOTGhnkQpFnEegzqNLKzzygLIwGsExcJmJA6eeaKCgnTsNzBDm8gSR9GPMpuPOi0HwRlak95hgzMcYUhtGs4cbgCFH6wRyEKsiordBIbXIg2BNDihIL8xA21B8kFTMI4pzrfIC95FLvcAT3q4Yc9sEWfjzESKddohCjWATqaeesxFWJWtiBSII8gME0a+Y+BCheJbATNW9lyTYGOhRDCrAMeiSAHJ5OynVX8QAU1oEM8hhOVZOjgCjW4gj60ZBj+HqjAH+7ApDeVkjwlreMRFkBAAlZwC1Aww5uzyBEOLYCBAnyCOORIhCz0obhvYtIe3qjkdfCRHn7MozT0GQfimoOTxPBMMSVBDYEIsprJFWRYKnPZtPTjEmnUIhv9WcxFbPkaA5VuMOioBzlM4Y1SJcU63FCDDGQwhEWOkoM6EAQ3mikUfsQDGj+oQfDYp099hnNJ7liHUW8CCna86pJMsAC/rKeBItzFHvawRsWCilU2goU5/EgPbgaqvm4Iairu2Mb8VJdAjjTwZeBqK0UHFLrSBM1zjPmGMvBQj3OA0ot6vdxIIiqQbczDHswIBFNk549X1EAHLKCD0rQCL8P+VIJ4h/EHCwTxixoEhV5Y9eZQlRQkeTmCHFsVJG6KEIIGVG8HTPybP8jhjUTMtLOC1Ac87jCN67jjE3sYR1lDqavZHnYeVkpgAul3Eb1OKGaLKc3+uqgYBI4ENQJJVjs6kQ+daSZoeULT/5jljoqd4Cb5zAlR3OEFFuhAjtCErAzmYZg/3iSPN6HdBml7yc8+Cjf9VOogDfOJL5ShD0Lh7Fm84QjwtBG/l9SHN5ixYLnsRggJeIAFjkFQi3wDHfeVij6CNaaHusmVQhuM/fR0XOp6xnTfiEcuVZeyW0YEHd8IxzbQ4Q9TyKITqCovim5Ci6fpIHg5HQtPhQTfH+j+4RU/eEZlhxA1ojB4kPrd701MUcQIj499QC1LehyBGx9POYjTYIaY3bK1GMAnAZ/QmYbdAbunYOy4JfZcY85BEVhahjJhTJ0ve/mNXkQiHpt52S1TMqyCZOkb4KuYmAXqj3Z44aU/uJ12ylIPS9ukGubghpO3Yw5odHjMKKwypGzSBWNqmdRMwQ071shqfd7BG6tGsz8+UIISDIAX3BCMgbUiu4pQtJcGipBKCCqhzlD3TYaG0DfyUQthpykjpcvVasIRj2JMgyZn3uNkfzACDZJHyrFOoakhZRdvnOGY5WbK985T63ajkBneYM4xSvCBTPR6Ibv69VbCOMtip3L+2iJ5qEWJvVeZZSsh38ACPrJxv5bZzKGlwbEpGOYUdVCzBj9Q2NLkDfKpnBvdN3EEeUNuFLb4wxGvWirKg4gbJLlcwuPokT/mvGHrxFkq7qCimMzBuaDXmVvKGgyinXugizy7E9mAOM0Gg+eJRyQkMZlGInCTtO2EggcskIEgDOPvl4vdKCM/NT3Y4YaKzTzkSw1EMejR7bH7jRyb3PlUdkOPwYDjGtwozUHlwo+RKqat/OnlQ1ETdBWLKeCFvtkplIEl+q2mxsVWyTWemQh11iRp1oFGHFTAAi8s8tJyL/1Ryq4qduBi3XFnsF3OYIl4m9547ACU3acC1sCE/Sz+67BlsQcvY+Ne6PApOSDNFH8OdNRiERCHkLAQbxp8sGPda1+PP0IhAx3IwLG8mr33E1rIvtnFHoGYxu07O/3xfz+FdglE+OBCGo91c/dl2Y1CeznXNHGXcqwEuNCJ3TN3Ig3oUHkXEhIUdQ7+cAfsYExxVg/z4Bs9lRVdtn6lh3qq4h0r5w3GFGs2QQ7sIFv0IHsV+DV2gQscaBa7EX8L0Q3rsBv0Zxb3cB+QwSb2AyExU3k3eIOKx2Lr0AnKUBkKF2KywQ/FBHdJwQ9isQrqhVP3QEckOHsXWC/1Rn0jeElIYyrekFtQmEL6QA9AZBY2ARiGEw/nVxa8MAfRkET+NKgSnfF7tbRALSMRbkgZmQMhtdAJ9eASoJQm2bArjoALpZUUhlEN1KQCV3A7ZsiFsSaF9lJPNIGFtGUXxXAH5FB9iyg9suAG9KCIOeGEYhEsuXIOFCgXumELBxACFhAOCnU6vWRcwRc6/Nc5g5E5U7cOtSAsNsgyg/EnTmANtqcU1sEIP6ADKoAJYIeJ39eI9WIX1tAF8HCJmHQPaAcK7JaMKURBVDEPOOYPfcVv2GEYFBAC4hgC/gBMoFMzjmGDs6hAiMYaEWEOrkRR6NALgJBdEIVFCAEO7kAOxXAqKoUURGEOUPA0TfYk5HaNFhh+45MqgeAK62SNfWMuQIX+TzHBDJUUjQnpN6BgclZYFLFCAwPQB3OGJedgE52IF/6AAuLYAFyQF5/BHyGGaNDXjilDYjImEfMACA83IUCnEduwDtngD66SkZyED0soAzxgQt2nkaa3jALTjNOwgILjN4bBDZMgDLEjKkvVBWWGKijZlJCCG7JgCsI1L/OwBA/gAQ/QBv6gM4aBkHejD8KwAgDABN/QMcd3IBYVDhN1aAXXOQR1IAqRDZ1QCwfnEd0QD/TgDe+HhNYxDGrAAirgBcNQYGEZhQspRMxgDU5wEx7pJN3UAyawASEQA7lAlV1gDRCJmUGURqzpFPXgDjTALxZQBTenD3HJHUHJGaj+g450lng2SCYwdmLjgA8bBYDM8g34MA6u4JiD6A+MsFgsgAmP1ZpOqZkwdxMS5DCgOTj+YAEogAEbMDfNMA3e4JmWdJ0ohE/gExU2gQjMUwKw8HEw8onbMJP+oTpU5I4CtEDsGHAEkQ14cAoY8y3gEA/yoEY/FozuEIE6MIHrmZnLgUleuJ1lxoHe+SJmgAHY41TbUwhYcBOcKKFCJAtbmB1CEQ6GsAaw4CT46IaOcTk2qRo0yDnq0BgxKRC9AHkp04L+QJZlGYlGMVb1EAo+oQMmNCS6WaIh95QSOYnkkHZliR4AuSREQQXV41TXgwENIBSt16Rf44WBQA5xZxP+86GY1pkkL0lnzFZntFRi/JMN7tALteAOmIEPxRBbn6kUz1SIv3EFnxam2Emh+iQWtecLZ4CCGsocTlgE1YM92hNPozioQgQerUcaGwaD6oFEcDUOOGpnBbgSySU02ZI/9YAHkZBd3GWc7OAL2RiM/hAHQ1ADI0AL/VapClmoWJUe/KSavlCU6sEO8mAEkApJ4bkOpJir4ucP5hOs8fdMnNJzACR8IUVGOagRBDIsLrZhpWEOktFNozANKLgU1UCQMnAFwgGWy4pVTzo+FekPzEAOZ6APpmANLod1xmETdrGv3oAL9NAF2AAGDZCK1kM3hrCu7PoodvGcRlFWLsj+lE4iUKWBozHKS8AkNDEKgNoqDYYpVz9qCvTgTyvlD+awCqAHBSZkpQqLcu7KnulhJK5wdU5AD6zpIfZwD2DaahZqRLn1jKCAC/V2E30wAHJDAQSwBaPGshIJpLIgtGERlHC5KvqwVpEHh6/4f9lKS4gXD3V6p+KQDfhgD4kwCqr2mP4wDFegAodyO0q7tO3msoMEKNOgp0EAD5YAjTiBT2xxGx7iIic5fvg0pFRlWBDgr2ABq+3iDEwQA0UwC8r6tmBjE9NQMQY2DrvCpI/ytdkKUkK3OQTRl58LtrWABflQEv4ACijVFIYhCNmnApWgppHbstnJavvKSTULtHf+YAquAA/TQA9nNxsrmxP2AHdKRQ+/KAvMEATscAfF4Gjn4yKJMiSym0JO4A3kxpzzkLmQMg8BaBqdY1w4OovcEqDI9RHSwJO7knbqiUzukH06oEfTS71iF7cVSpU5wQzFkAi4wAxWMLZl6wjWUAwNo6eJQA+gEAj0EATbBojnWRSvAjtCojvzy5D+gAu0IApsgw4J+yKcAzqGdho4elasJF0RIQ2n0AmL4Q/wMArQWGtFyghIygjtsqkUPGX1a6geUl5dsU6mQA7T0DDnSRO+e1VF0bc2TFu7QQQM8AAD8AgRKzAT+4qUE1LYSmKdg0D4cAo9Zx1uwA4OsxTP9Av+VzCZamBpSEy/tIvGa0xD1vEBHvABFsAF7QUx2nENGQMhc9Us3BIgd8IadoglcNAJ3WR11pCv82IdcfATLEALhsHBbCxIOAzJk+wo1rECG5ACIDAHdBzF+BANpZBFIgFXJhGLBzFL4CC+HLEOvQAO80APpmBYI4gPz9BTNQAF80fJTqrGuczLEQNpSyAEPQCJYuoPbBAABBAC1WCHcboRV3Rc54CHxSAPVjCiSoEb4oAJXTcEMyy/vVxukuzN4Uwe1rEr+jCyEIMOBBsCBCAMrPhKyyaqv9cjboAPuPCvORurrKC2jeVkbivOtAXO/yzQzCEq/jANDhwx22ABIbD+zsCQRPNzJjVJGJ2DDuiAB/5wBvBQxEhxTf5AB4slAycCxQPNYAFN0idtHPeQv4+MHfAZAhvABX1nIKmEeGqiVgPRdF0pWyNYD7/zEzwgFCyN0sdj0kNt1HHhBvlrlktCL/ewDcOCZ9MmSw5EmPgwDaYQCQ5TlDYxD3rATDrALv581N9U1GM9FvpgDqHQTSidKps0pKoCUPpwp54LGRTREJoRMwkICr6wSexrFINCkCNAB06ms2YtRGVt2FRRD5k1NifNRmi3ExED0cI2o/gYUpKBDq46CiIYZ7tRDU9DPI6c2De8y6PNHItdAzSyvd5sEwscrE4Sivt5OsW2nPT+QA4J/BTW4QW3bNqkhti9nduMLTWvMA+00NjQkAwjvcYtF8v2shv4aaNkxC27Ugyj4NZQgR81DNyHXdrbTRyozQ3WMQQ/UA86EDU34Q5gvdQ2jDTTYAl8Wi8qk46StxHo4A70QJbwDRX1UNjebW7d7d9xgdpOxgNQcBPJoALJ7Q+0oALzALlobBP0cAb1RqJwbSWjqg4xuRHrcA/vwMIBXoG/DeJIsdgywA0/cAUF5g4j9CR6gChCnaul4ieMKh6EUyDRAg6pYgkOA+Mj7lkA7uNmUQ/DoF7m/TCYcAWyWQMyJdCcCA86lriOgkpvKBI4Rg69cAe3EeQT2thbLhf+Qx5uwzACrBAeyTAC3CBNrXXSxeAKVuXXa4p0KBEzsoHR7PDe6+3l3wzkea4VQ27i/iAINTBD/uAFr+AFRDbUr2MJ7FAu/c0c6DA5+bMrpjAKYOzofI5fIs7n4I0P7bB90ysI0+RkZu0LVne/StJzCXQO3ZQD9/DamC5vmp7nQ/4DNAINHQANLeIPUKBHl87GX0YPRlilNXKSF+OH9WANo7DZEQnrYyfrXi7XyTA184DmT3YiPS67bIQq5GfnfIrtbuMPttAGc+CivWAJTsugzU6oXa7uxbEKHRBIhi0WrwIK9X4+b40dzoACB+AALYAFWtjuIb7nAd/n3CADjIz+50ONs83qD+fB7PrqD7eAPSTgAGxD8Ov37O2OD+6gB79AetstuP7gr3QRONl4kjHISNYgwHKgAA3wAA1QKxevjAMv82OxNd++xqliTIHAv6cCxuGRs2xx8kfht9r+Kj3rDbtrCgPsD8RQBFRwDAlf84y4Qtph9VeP9Vmv9VvP9V3v9V8P9mEv9mNP9mVv9meP9lcvjIgSO90M3CcPKM7rCoHQT28evHBHVVR1FIASBPfgBjJhDSiogsg49dhZ60+S9omv+IvP+I3v+I8P+YbhUuz14Ns9ibgQCKaQCGohC/aAC+l+Ew+WN26gDycgC3hr94VPggb/A3SgB68P+7H+L/uzT/u1b/u3j/u5r/u7z/u97/u/D/zBL/yzTweMoAPa5HXVkBXaPdbekSK1NwrsAApuQA5O4AuOgP07bgm0cb9HL7yq/338YA6aMAIqMALnj/7pr/7rz/7t7/7vD//xL//zT//1b//3j//5r//sfwGL9QM8ABAdRjDyh8/fQYQJFS5k2NDhQ4gRJU6kWNHiRYz69N3baPGeP3sdMY4kWdLkSZQpVa5k2dKlQn3+ClWiWdPmTZw5de7k2dPnT6BBhQ4lWtTo0ZyMVun4oeIHJm7q+L2kWtXq1ZUxNfrTqlErV6xhxY4lW9bs2Yn41K5l29btW7hx5c6lW9fuXbz+efXu5dv37Tx/V2RcgYavHlrEiRUvZtzY8WPIkRN6pVzZ8mXMmTVv5tzZ82fQoUWPJl0680dGeg4ajinZ9WvYsWXPpl3b9m3cj1vXO5zb92/gwYUPJ17c+G98rY8vZ97c+XPo0aVPp17d+nXs2bVv597d+3fw4cWPJ1/e/Hn06dWvZ9/e/Xv48eXPp1/f/n38+fXv59/f/38AAxRwQAILNPBABBNUcEEGG8RvK+VOitCsCSOqELitHrowrA1H6nCxDymaMEOWQpzMQdlM5FA3hlSM7Z6P/KEHrJKUc5GkGFH66EYc7bnKR4R2tBAle4B0qLWY6MkRIRsdUvLEGqkzSpLHhWaUESErq2yoyIdmvJFKse7JskR6wFTISJhS4hFNKSm6h02IeDTTJHvGpIjLxQICACH5BAEKAP8ALAAAAAAgAwkBAAj+AP0JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHLnxnj549+DRY7eSnT5v9ODB00fv3j2SOHPq3Mmzp8+fQIMKHUq0qNGjD/HpK6hP302BK13ZA2VtmqNpiVwFKmbpDj0rxWQF8uYo7DRf054KdLoUqdu3cOPKnUu3rt27eIXyqyewXlN7aotNc2IvEC57pthZY2cPXkLG5KpWteTtTjFcxQjay8u5s+fPoEOLHk0aKT5/3EQVBFWsS2Rr/hxfBMyOnT8n8KxYc2yzbenfwIMLH068uPGQhg40CBGLWSDKmwVuVltxqcnNSxPdPknvuPfv4MP+ix9P3ufSdT4oYAAhyZRmf747bu4uUJasRPR8rS3Pv7///wAGGJpT/pCTDQkUhECAavY0pdNNbTEDjymJTCMQdQJmqOGGHHbo4UNL0VPMKKaU0oAAS7gj1FJLWZhDd9h9KOOMNNZoo3D0YAaKP9tkc5qDRd2zGSiWWBjfjUgmqeSSTOJkoSPWZDNPNt98Uw0147hF3xn2ONLkl2CGKeaY8MU2DSjwYIPPOd+A4+abfCGlz2bs4BKIY/QcSeaefPbpp3E3yUJPIP7Qo06bb775zTxzkcOMGxf+KemklFZqFzv33OGYO4gm6qmeR0XnhisYWmrqqaimyhGBZ1riTz3+4HTqqaKnyTWnP5Yw416Zqvbq66/A7uePG9Nkts44ss7q5jfr1BVdhZkFK+201PbpCzOy+INPrMp2+81dS1VFToPVlmvuuR8u5Q0z3vjDabfwLpqXNYmQi+69+OYL3k32yGKKhVXCK/C34Ap0hjXt6qvwwgx75mAxzCzibrICzzpOnHdtJosvjIHa8Mcgh9xTW5Thsm3FKDPrGTPa+VOqyDDHLPNGvsBzRyL4UIzyrCrzoy1e3eWQ8MxEF200Q21d24U/8WSzM8rnZDPJJ8K4DLQ/suBi9dFcdz3zZvDAoRWbOj+daJVFCKCcLZxtlqs/9uBTq9d0131vW3dY4wv+HgGbXTE31DSAAQUSsOFZu2e8CpjdjDcuLTzsOOKNO+Mog47fKHcTjQUUWGBBH55tNoo9tzSDj8+Op666pab4Qs43nUTyLuYVr3PMDD7Y8apn9bgjAAIDcMHr6sY1xRZgDdqzWYNAEu+8RN3pc1W7gGQTT9m0n+3OOtX4wyjv4CAQggcTdP98aX/Nae9D17F1/vtMbebNGfDM8w0enSCb/c5tjoMOaPU4xwBEoAQSUAN+o0lfTPwhmGI4wheJwMUZWOaVM3ijGMVQiT1qEh0Ewm8zORAIOsbRC8rtj3ag0cc62GABD5SBHB4cSvNAhSF2kGMa3sDFo8hyJzewYxr+u6nJQByDQ7JgBReJKAYoZFEneAxNWDHs2lLIgYsdNQ0dygCEMk5IOxV1JoAE8UYkZBPFnsRpEpT4hLCWVyh/uIIdW/GFLCBmG4zQwx41K8s0rOAPRyhvLS8rY8iWgsHMoOMb2fAHHPIxDi4+rZHgaFbB/LGOc1yoHnzBjCB5chpbrCAECVoBMAq1FNs4gR4TVMwfDcIih7TSIN0pRn7uwA43kHF9m/yYPdgBj8SNsE3ZSIM0nOZIeI0DksdsZD1QN5fTzOMckjTIHUzRvFyKRBghGBznMKABZ9wkEP4qBhs95pGbPIUZDpRcnshpTXSxwxSjoGQ3lgUOKhVTWcn+FAc4zgGORo5jG9+ry+X+h5DNwLCdIdFHPdhwAApswKGcMwMtd7WUDvKEeQKRUARx2BZ2IrRX4VpHEARCzFhJAw7KgOQ9+3kOfR4THC4dhz73ORefPfMbKgLVUkYBCvp8tCP1QAcGNvBQzllAAzNoh3SqCZRbCcQX3siVK5b602ARyBeuyEzf6umPNOBDpVxM5kth2s9+ytRNjdxGIIPkjm3g9GcIYVE8PVpViMxjHSHgHFE7Z4EYOMNWUOGlGyhK17r2yUGJYIc8vtqpb9QDD/bcnz/FSlnKmvVN44jmUfSBj3c5tiFLAcVUDZsReqyjBRRI7UMp0IAiBJQuTYH+hxt8QQ+fktZUsrDHVNnkqW+coxYlxdxZK3vMcJjVsuIQqzjmdpRlfcOiDIHcWm+rkFIOyx9heIB61IOBBmwiL+RyhTUcsRL4FJa6SZpOMQLBjpwl6xv5gGxwH6nSyYr1ssMl7jjiwVmj4CMVJbDAGnDZEAueF71PaZ0vovWHAxxAAspBxO7A+9Ri+EI/cEPvmGjiD3i6xx3XACs4rsGNU5yCn48MR3KPq1+ZJrOs/UyuWNkUqaZqCx32KMEGPIAAW5jkIZu5w+I0rJCbFMMaoNhlmeZBjTkwoQ9/PbBbluIYN+gjnsMjspKecoZitGurb+KGQKiRUoG12J9uOkf+I/l5zG9Y9sWUrQY3aNCDeWCMk+46RzfmQQMPbIABj4AraP3BDBhKua75YSJ04WMTpZSmMbIABaa0zCR7eGNp/Bhrb9dRAgZowRzGdPGbJ7tiNodjHOZA7j4pew18LCAEITiA935yuVjpQwgf2EAD1nHnhmzGh5Q2CDui6pIsDwQf9WCuaJ6Ci3caO9geQiyh64G9dSRBBC0QQSrWYbGyzljG9kVrP427ZhaPA8UwRocoBBeCBsxaJzZtLDj8sYclWJKZQMYatM3rj0R4w9Djmc80mMGMDO+7Q90hhyym0dn5esoYOxDBCwygCm7H+L4rzqe58etic+cTzjCNhuD+WPvunNxjHY1tFsYOvRZ4jMIaiybtnCCXuFeOpy32sES2hnzwAN2jOxTiRzy4hc9q0GMTCfCACD6wbbTmV8Us9vZ9x6GOl45DxcTduDjOQYsiFGGULJ/IUuZB9HHseSBMlUixKA1C24R9OJs5QRt7HqDNQMB7IvbUOKjxjiQIwRNSSIImouGMaqAjpvYlNThO/WKPoznxG5fpOngN70MmCqAeMUUx0v5RKo+iZTHnD4cdMYon0r083jDFh7OR92VllhYZKEQ95ACMbzSjGc5wRjO6UVmOk7X3jXQpTEcdfHN3gxuvBUm8e5t8jTBjGrY17PN33qHoSDpPpw/PFAf+lWfsIf8cSUiCLbbhCU844xi5170zlkGNaqh56oi3esbhXN/hw7Tq/hQHuL+l7I1YB+W91WsacROQEn1/0n/g5RiJ82PRthSWYBuhl33B0SKkEg/6oyzfIGZ7EAOFQA25BwyxoH64l3635wzccEzJxQ3ccA3b8HtTt3HiZlmLl0xudm7gMF0WcRqV9F44aBGb4QRbIyncEA+icR/P9iGg4CUSWDz+YA2u4B6tlyjjUA1JsAPRsAy51wxyEAvRMILp94W49w0puA6Uo2aYRW7ghmYXB24wxXj79A1uSFDlhG6fIhLWNSlLwQhqIGh4cQ/kkAjUZyPRwUd1tITBwQz+7ACE+HAN8bIO3KAJGfAI62AMWQgMnsANXpiFJJh7yxAN67AGCYAAc8AN4sB4VrdqYnVq3lZWwjd8L3YOltQRCjVP/cQNvHAMwhAPPYgR98AMSniA/sADUMCHdfFjkGJwN/JjpgBDEWiIeHFVgVBw39CC3YJ8ziAEUrAL3ICF6YcKkuCBm1iCuFeCzlAKHlACJWAAvECNqrhiTqdcq5h1UJdMXoQRp4EP68B7sXIOjQA8HrALOaEPuGAhkvILP6ADq3AQ6qAOCDgUN4FEAAdU8zCRxVFKprAju+iMcVFKG+MuRKcsB4QIHyAKzUANXngM5qAE+YB+YHh7LumSzgD+CzCAjurIDa6Igsf0fvTnYsnVk4nnTyqDEUvhDh/ZDdtQBBawARbwBTlhD9NARn4SBzIgA3TAFPhAB3SQbEhxE6MwWh9xjwJIHL2EjBrJGbIAD1MVhW/SDeuwA1LwhZsIDNxIgi9Zl82wCzOZAROwBtEghqwodZe1dTP1UvEHSWxmVstkEfzwVSI2jUiplFWgExDEeWHCDVdQAzUABWKGdleZlXKDFF7CGB5xGs7ABQFQAAcwC5olHOSSLWhHmWUZJIWCLexQDyfoLceiCS4wB+4gDHDZDMvADYMgCYTXki/ZicdgCBOwbbBgC92wftGQhmN1mMg0g49Hg4knDkT+aBHX0y3owAslsAJSEIQj4ZTY1ye/oAI6oAMj8AoEwVlY6RcCwQ31MA/t4A7t0A7q0Hwj4Q2fR54cwQvKkU0YQABc0JCP5g+ggBbK1oyx6RNPUSE7ko9RaHS0IAVCEA3UsAyZmH7AIAfmgH526ZLHcA6iUAJm4AzUwJIiqnvVkA1qxoYvCEnuuIr2d1wImhBLUQ8AiIFE6A7GMGE54SUOqiQKpQZD8AM/4AVq4Gjw0Zl+YQ46UAnu4AUsMJWZqQfECBIxUSRHmBH1UAQN4DmqdQCtcBxLwQy14A+isARLIAW0UHIPKhTyYxh7AWZn0z1zUAKiAI6/iXudCAzrN6L+twcM62AGQvAJHsihdpl+fXk5Uyd/Z2Z1bDYO9DkPRVoQx1I248AotfJ2FXEPS5OpN1IP5nAF5pCkqSoOcQKfdOAO7qACjAAf62AO4rAOr3AB5hCWHjFFLRMSvIABSamUnHMAjQAeyNACSZlrFmA4czoUotMJr6KWaEUNH5AF1zCXmuiF3BAGg7AMjGqXx7AMJbAEWUioL5l70dBSkLQNJzhZHucmgwl/2pKjA7GYdGgxvLoT7QKqHoIP8cANQ8ADYmYOnImV3MACs7qjdgYNF2AM/so+/nAH2ZKRFNEKDcU5ncNaZeCkxrEHfkZUO5YAqvGsQNEdkGINbQUv3RD+D9XwCCWwCddAiXC5fl94DLGwoXbZidGwBxNQCvAgDOjaqOtXDcwSDZ+QCtdQg/rnUvgXY8c1brdqCCFQBNGANPNAjRjYqUJxE0JGqjfiMwJLsPgGn16gAjLwC3CFD/PAA5iwE6A3EseAAkmZWql1AIHmHfWwBMO6AcxqBgxosgG5GczgCybDW9U4D7YgBU2QDNugrR36hYMwrnVpqKJAA1JQDcsgokPbqNxIAwiAACnyrhdHVjKKZu4gCgfQXTGgiwnBo27mLedgrzhBSHPVJ2O7mZwpCBcwDHTAA+ZzE14wjLULD4AYuCKBlA7VOd11pt5BDTHQtyJrAZQnuDj+ER14IAvkQHZlYyX+YAgesAnVULObqHsl6AmTe5zL4A5CsAOzcK6di67OkAkTgI4JsIjwGrWneFn4wAaDEwIA8FlM4ZHYwyz3gG9AsRleErEdkrtWSQdxMA/iMAKV8DNrIANCmlBNuEA5EQ+w9lDd5azeMQ6P6bd+21fuYLHWWx1YkzgWODDIxwBZAI6Re3vQMI7mO6jpCgslMAfhGr/oioWbkAHoyAD34DQodoozVallhQ62gAEYsACGoyf8ELs8g4LrgMBBcRPL6CcO/J5Q6g+/0Lv+UAkj0A7cYA62KhK1BYQqfBF8UQQ90AM4AAsZbBxSIL0fkACgQ7srfBH+1mAK2bIOIdYtbIkOcxC+4ECz5UuX6SoHxAmc1wALiDABsFANnAvEO9uFZlACVQgDjdAM1YCCZMXE4qAOf9lI60ANJiDCmqqPUrgo1HAsq+mQCmqAYvLFnKkGahAnanABDisDV4qld5wRbUEouCwScYI6+yocxvAAO+YBHmABJWCwfxwSFpI41IY93SMKSSAFGsrImujIx2mJuncM4CAKMFAF26DDmlyXy2ComrADWbAN44B+fsoN3wCp8Sd1rSgQATV2FIpZx8QN+FBvbNDMTUUOroK7A6u7BEEN1NAW3PAL5vALxpDRGa22DHwQSFRsPVErHusdpLkEAAA8UrD+CLtyzRwhJLgyDfyAct37DfiwBjugCtxAvuS7s8eACsfAC+4gBTtQCpr7w+98e1i4De2rCtsAnEj91NHgfnCGyjgZbhn4WtzWKWIlZlLwABaQAHMAoDJEDwXn0ATrEFoMEjRR1qqyF+7gDPOAD+wgTm/M0glxE+QwFvUAy91yDtFwrdmgreqXw8bpkvEsBxs6AXMAv0d9nM2QChNgCFc4tNzIDYeJWWYlfC+1Dvd4gR+XXN3gDx/gAR/wAeOp0D1xD3AEtjeiy0RBE9NAKL5Sn7TdR81m1xkxDbgAKT2KgeuwDYWQAcFQDdCg0408olioCmvAdNlwDI0Nz9SQC3P+8AFY6Nzxq35VcnjcwyzSiVbdUJ+3+YIx5g982wAPENao7RP/ZtYQ3bUCoR2sLSlPMVXxjdtWg5ZJ5g/TCC/ccA8yuQbG0IU1G7nkDJzo3AgrUM/g+twveQzj8AklwAZNbdTxy37VsA57IARmsAvrsGLueA4quE/4ZZ0yJmZz8AdrUMwyZA/FcFB74tpDAQqJ0dEbRg/TcAf2HRFu4w0TWsDdg6iNEA7kmH7FncPjiNzNsA15zNQMfpzH4A4wsASpENhNDq6pwAClDQPcYIouRXjNIJ3h4Gb6h1bIGxdEwt5GQQ7kkMzA4hSml+PVpQ/s4Cr2MzDdUA0fMAfFadz+5tu5ywALDKAJ5WeSTe7UopABe+Dlhd4MxyAKE3COJYAlKBg1X/iucBZT4tCHXvzQRpGEdU0jnNVfFZGEXwrnZfJOsoCPrIeb3zAHE2AM1WAMBC6ClB0Nx7AGJbAL0SAJmdzY7LcMezrc1l3l65cEJZABH5AEWXtue+eFuMdtbnhfpe4WFELjGQLjPzEnv0gmypaYEpGmBffpcxodd+ANU0VWGNjNO2AG4QCujbytlA0Oj7ADX9DO0TAIk+3rywDcMMAF6EC5he4M6PAHMFAIorAGc0ANwkANVWKzmShjUdcsfmwU7CAo1h4g2D4yc+7iG+YuTbAEiSqnEUEOC2b+6gWxGa7QlUzjcGtpSU2QBKlAwzrt7I06rkq+BKIADsdwDNUQBvn+zscQDdtAA+Kns01+fuAaA1mQCt/gDMiChc0gDLwg2LnnfjNVVrVcF/BgDeL+IRnPE1w87UsCC57jOR6AAiIPEeTQryaPWLKUMwPjxIhO9R165ISKfq2wl9nQ55tL4ZTdiZ+QAK3gm4sOnNTQChnQCO1cl8eQC46fC7vg7M4QDVIIDvWYF9PgQ13fwJwuFOwwqnOxFCMtF/YgDgSwAkSVlB6wBGLdEDfhCq5y8QdHDq4QE5bnLfGwDJrwAbuwoV/IjSNo98hNeFJQApNv3Vi4Cy9gC1Dfubr+BwuwYAY7wKF+n67nZ/THuaJJ8AHnsPNRPb7LIAy2sAu7MP65YAtCS4LZsIPjoCJ+LGWwuRHnSSZfrxO0T5ZIwQ9P8amyP5r+0AgA8WDDwA0fPJRYx8/fQoYNHTrU569YsYcVLV7EmFHjRo4dPX4EGVLkSJIQ7/mT5UtevXHfwL2ECfNbvFQwsmyLBs1ZM2c9fe5sFlTo0GbLjtHbA2MOuGPLhDr7dIDEAUNErRZd9qjBBAvAnC1z6tTqMme2uDBRtE1s0Wbb5uzYc+7YsXWG/vzZtStXLlu3/N6y1VcY2WjLRAnTt25jRG7+5nE8uRAfx3oLK1NetC5ySc6dPXf+5jaER+PPHiPeo8eMXsTSpSvDYtKjCRt3/ia3Lv3YA8GCA1fAKsmMHW7ixY0fR548I72FQfxlc/fNZUyY3bjVSyIkFTeeP73zvCp0WTRhQpbAUkuUWpEGJBowAdYU7Pz5x5xt8/DBgoQq67z/B0uCAxaQwBannDkmG1tcWCOVbIKKphQMCjgghsBy+StDwHIxZhchSoBBE38iwqfEyUyc7LEVcDDCn3gy4ucxNtighqPHPhHFsY4oekw5H3/EKLTRgJSsHiPXcWMaIj+azJAGKNDgyRmqWfKjypawgDffjOHMCW/sqTJMMcckk6OIEgGFnnlaoi6ma9zZJYFGoon+5r/vgArPKVg+MARPoqrxQQIKJGACFlv2QnQvW2BxxpAJQpDAgQaAoCZDXi7FlJdcYDmAgkE/AQYYXpopxANReDkmVGCqmcNTCgSAxdC+/Ep0r1vMyMCDDLLQCMwWBqVgBn8us6iyHjCQQAJ0iMUIiWTJsE2jePoAoYV5NiszW86EJM3HycSBJRNbatE2I2coCIGCDTxtgI16WCu3oYhgQYCgDwwqgR94QwLTFH/AjDdggQcW6TRrAiHHH3C2aVOmdbIxowRqnIGmOzt/yhNBMx7gaa2hEEwGBwdWaEVTDf0CJpUdYNgFkQUoaAEWvgK7BUMNDY0y2VRkbkUIlmn+DswWYeaQoAEJFhBFlFKWXjppp0VJRYoJ8pNiHHSuxjprdLrx51dPQ/BnnXjcGdudeYysZx59lsHA0wKicaceFOeeTJSXX/1Eo3qAESAFEigYlmDBgxSt2+QqK6UEBDJIwIJJBl+IigaypCBLDARYdvB76hFCIA92QyCTEUmK6A57sIU8ddXjtcaeRBzLpuGXvuG6kSSycMcYi33qLqie8lzmnEdKmCMcsKzaSZhNuTliGV5OPnSZNYSY4xpYlvmkDFtP1nBRWKigohFhgJmjhD2ygSXDTUvZhQsUZvgkFfnnp7+UVHjJIokSJuBznZfGAQcAvyGOAILjG+uwQwD+ClAAQ0RHOi6BoDikkw11PIkCAQAGN6zTjWtw4xrdyAY3aDcOu3lqAa1YxznQcQ4VomMc63CHO8RmhwOkAAMaCNzqUsctIO0iVyU4iAcmwKXBlaEB61oXBTAwAGowS3BZQEACEFCCVOSQJMyxwr90uEUuAskezDkDOfjBJtltYxzxkMIO0EOW3l0MPFaxzzVKkIVSfOMYV0EQL4A2CJtlCBbAgIV5SnGMWfFCGNxDJF+MAsgSbKEUwJjFX/iSCvuJwhbxo18mUyGKWzRiB1LYRSs2IQr/xeQbAITJOMaRjXngqBX1iJ1M/ve/b7iDFwLqQ0wAqMqWhKMlVmNCAQj+UAZVUkeCBjTgNXhRgA0UgAr+QF0X48XDH0khV5/7XAak4I59BcwMT7KAutQVAHA4kWD4WMc1wNEjz9zDG6OQZjzlWRowecMNYZOdw3ZhAE2Mx4074V14jvENQ5RAFL8LjzAO9RdhyKGPfrEFLxqBgE8sFJEXvdkx5vCBRpjsL4uynyZFKj/7rSEDpdgdKtuEynO8RBwrRIcBdzlLlbbkHN/IBpsICA4JTselATyHM6JRTJ/OMoDZqEwzQNCKedxmntMs3I+osQODYPNzCDFnuZyEgXCyqwfuiObANoe20tyDHfB8alrV2hF7nEEW/iBjww5YjTXAoCdk+SdCr7L+DGrwQgofoMbx9nqoh/JCEs+DKC8CSQNgzAqjjxWaKKRQAmcYKkO2oORIR1oKTcBgCWrxWCzz6RKVNgyAN23JTsfxQdKicqYFJOAqs3GNUxawJdNpCTpIhA958KMeCllrtqipnGhQ1apBzNzAKsMFAoQAAxhowAGOEdyS+IIZ1MXuWk/CDllYwjbZKCp1znEPSOxgDdzA2O++Ex62bKOgf6DHHZHXDIVu7y+7kIMqnpeLY7QhBnOorGMfyz1YXGoNxKMGLS4Li5Bqtn47ywJctiEM5OVTduFIpWl1WUBZGjWANdVlbcHRjXO8qCGZCWt2gTRc5fz1uLuKRzfjpQ/+d0wCAwQ4QBGuoWKR0MMR7Egxj4UsuFHAA57oCK+bvsENIUihFePAq53eyN4EHeMGSxAGNeQ7FLIcA0MPleQgJGGLY7QCBlIYZPoGnEhYHEMUNoGFMGS2oVtk1sH0E8UsNPGBNbQCQXgUrYUFHZOdyq60uoxrTX9ZSydaww3wCPKQj8Pi5JQiiFf9AC1Sp5AYkk3SIKFIpD896jDp40uvW0eSY8INeuxiAo2oBsV2B1CfsFGg1GjEBwrsJ6IcEswamkUrmrEGPnl0zdzb1DI2Koo5Q3R9d84kJyNmyabkKdCDxja2D01o2c3EIgAj9Y8ofZzJeNICH8gADBoxutT+oe0ewCWTU8lEjnuCO9z3DpM3cOEKf6C226lOggfUccc7ecfWV4lGLqQAg8F4bCjH0MuvgX2EJMRgHJY9NiJ5kYoSSEGh6sNsg6Etv0bQAAbXSMWWw+MMVWfb5fkUYKEbdg55N2Qad2CHjPGNm3Ef57enmMMc1jCZrBYrInLbOUPkjXQxRaQYStJ50qX+GYA5whRKunZMurENf+xBCHtYhzEu9p+MRSMpa+BHtYnylcZK/KO5EMaBDbEMNWe8ewaGwR4C/FFY2BnaUBOFGYQgima0mddrT9DLFb946rikNvB2iDe8MfVJR/VHzAGFvMx0m8roa+f8mIw62DCHdbP+u0oRkcVwok551oNEH/2qhb8elk9uzIMbTVhCK74RZaBgbMqI70nHhZENlT+FkDO7aJs5vgZaENLuGtoUMEpx5j/WfVN+/7swGuGBJCzBDKg6/FWkYeGWM/7lLVlH0RniDWaIuvUh6XlxTpIDfzAHJNWAwb1KkIyaj7oye8iSe1mBaCATMDmD4Xi/BAwJfYiIILAHb6iH8gMHbliHTJiATFCvDLQY9hIKYViHPZiAVNCrtdMUATuZTRmaDPiEVjgCVXC7NWszM/iATTA2wGCwkZsfUaCFIiiBRmgAD7CAJYiG4ssTCTS/I5ydeYA8i3CFt1LAz4i/4iCHhGESfDD+BgMogSxUnCpaveyKCENggBK4l4GggbghE3agwidUw41whWLIubhaKdpJghuoBt8puIDKE2oQhh1Igm1Qu7FAvovai1QQgh1YhkOpQbvLBV4QhY6jOwELORwkqU+wiWjgwQ3wgAfQMg4ciqxDwk8EB3TwhyW0iGmwhjUEDctLjohwhGlwP4d4jATIP2yCAQSwok+LiIMIwA/YAAQQhXcRE3sghzswPVQ0xsjAhWIgh1RruW84h3koKEOgB90Zu97Jk2jIhjmIAUMYB2DAo2WoL7fjC02pqz2ohlaoGTk4rOcrMPyBgUygO/W5QRwMqSy4AUO4hlmYgylqgBXYRE7+9B04BEXGOyUT04jXcwUlMUaSiELcYAZQuIcufIiI2IUPACJsEsNCiBZSEwVe5A1eLIJbrBJZ4LeFNEb7OwN+gI5uoL114AYYWANY4Ab7uMMRhKNtCCRQqgaH8x1heB4TzKhWmKNWACQM2QVPGARFhIVmaAQYYINUaCyI6gvsuzNRyIU9M4NdUCxGmYME0I6vAMigWIZsoAdPHEhsOyD1m0h4kAV7M8mPaEjcWA0m6brjuqokgKZwK4WP7I0lEMklmcu3fELW6AI3nAcJvI5cywQ6AQ9am7XwC4pjuIZNmIBSODirSEQCy4YlgIFTAbNZqDsY5AVis0rHOpRWoEr+zSoFUQCGD0kfDLEFb3QG8AtLOwQGNkCHnDpLxVNC06CHIhNM+FPF5LA6kJgMYbBIq8rIjRy1dcDELCEIBtiDEiGTaQgEeJDI4CQ1ybMC5sg6nzogZ8iCEnAH+4iyWdudb+QFGBACamCLqzi+AROGTTizeIS+WQiDSBqwTZkFD2iCslCfOpPEkCqEOXpEvxAGoPjDsCyzAKAAApAGI9xNmBBFkDCrktROj4hLz9AHePAFkXiMDLjIq0qAvxSyk5iDB9gNXrQAC8AHtfwRZczODD1Rb7CED3WH2JmgcMCwegCHdmgHd6iEEkCEdaAwZzAHJI21aOgY38kYaliDHWj+oAX1nVSpGYwqsFYoH0QoPI1rBVXAqE3hhWTIghCpLEkCKZFzME7ShIX7hAO9hQTlSQb9hhAIAQtYgQN4jgkdrTNiTjORCH+h0Y7Y0M4AEwz9iIigBQYQUSBCgFL401IDxuQAk31kAAtAABqoEW0xBXpwy0H9NHuwB2s4BX9wh9yUjnVYB3zIBmXIBjzghkhABiGogFY4BUA4BTxABSVohjSIhGjohGo4hnaohjqcj6EABvQpATMQBj/EI1GxKERaSo7LgluISkRqKFjQzxNshWwoqJgsyg2ZhdTULEvagxJgA164VjKDTAathmOxU2Exy91Ev/7jCDC5g1cEVX/+KNSSAJMuUMiQmAxqSIIMmIAkgIZIrZLLeD17xQ18qAZDYANaYKdsuYd629dPq4d7gAd2wAO4WqV8iIde6IVcXYRO6IVO8IcjyIBUYNK5ACiyoAZP0AYsQIVOUIJTiIS5oAYtA4uB2ihYqBP20qMX9IulxJWd4YvHyoUwOCToabMkgIFSsK9DmUcctCTXpJm/sI/aZC+jeIDmAi8+lSu5IUWPYIdPzdiH6NeSeD219QhmgVHliIhsEIUyaAWuOdvWeD194IfNCZhpsL+1VbHJUAz66zdpyAZpcIJagINa6IV8eKmgOrNrQBCAKoo/o0k6iYYkRYVFwINFWARgAIv+XdiBHaCHUdmrQ9SjMM2FN8uCj1sz/Hrat2PESkRHDZFE+tm+OehSSZpTr+WybIiHh9k2PlWMkmAO+oNbwuXX4SwOMMpLkkibs+mIyogHqKmiYhSJytAEComuA1i3GeUMfIjIGfMHUDhF58WuymiEFiABf1CGWlAGLMiGRUAHcaiHFcqGlmqEHgw7KbMYaBCLpnCGYqWGWFgEVDiCA5iEbhRWLvuKnwRKWolNW0ij8wnNx+IFT1AFx/ojW9iCkzoGjOuLq/07WBCF7GiEZSiZmUEV4QXIVDkGsjUldDDIkYgI7xpc9nWIti2Y9E1DIIkIQmSACZiALOAS8rWIybD+hQNIl3W5MVtgup27h3t4HSb2YcFhjTk4AAuoADNwg22ohXwYB3cwIJeghnWghjMLhp2ktYKzRvFohmOYh1T4gD6QhPrlBkBoh8sdD+Ux2k1xBk/iAmGQM0VUBUnwNaEtqDmIKMeaJDVd06GBATM4BsWqhvhZhluQ4dr8CgllvHrtjIiYBnjY4ooA4gX0B1843yXxoarKDxhI3pGoDDt1lSRCARMdtZN4Ky1OZYHRB2WQBxTgKhJoAXrghm2jkjlo2TqpGLLrCZ34PWSlhoVLBfA4hljwBDgABnNoilzYBciCBWmQmvt5Pr+YBWg4Ami4hTZbgh2wyj6KqN2lJKv+3AEhKDDAWIYqOLc5QIfg/WTkaSk+/Ya59Qh4OIH6C+aGWGXX84dA0CIgeVEpsIDj+gAzcFt/MAGuqpyvaQAdSbqTAIXJa2guYo1RGAVTmIIQaAANMIObahN0OAbP+gaxS6+f0Il2RZBj2IEsID7x6IlQCYJlUAWZqeANYUQ+24bcTed3boVB2AVV8AAzOMQAXRp6lB8wLIQS9gte2AOB2AALaIR2HeiPEeWXq+XPmLzmZd+HBgl24Dd9/QyWSIAR/ZwP2CbS8QcN8Ohw2oAQeACRvt6GwIe9TZ2I8AaKOOnVYcBWtoYgmAZl8IdJiAI2wAeGgQlucIdwaAN1Qwf+nOadO/naniC2TVgHb+SyA4GGQUBKW9Cvk2mzVuACGNgEOUtqGIwFSciCDyA867MFWqDkcoWFNo2BAsM4XuiDIxrrTzDrsxaKeVU8Z3wMYMaI0mmdxl4IuP4IU/AG6+aMejiHCcBrqllrkKgMH1iBrvIUDOiBiV6MIp6DQqiNiuUiYXQE7U4dlHQDN1wIcCuqxoCFHWiDXVCLmsTchFqHPVkDoSJCngAGvhCGWUDKQZiFcaaVWWBKp2yz3IZBZzjXNdDKObNach2pw6irOdBKAeOLHSAABJCCy4TulQPFlnAHh60u7wJv7eRuj1CNHafedZBlbNKm8g0HAUABggj+AQKoBreuiHXYgfXeABTQaIQeGH24B2voYf2esZMwBSvQ8on0B5/ihnjYgwyghQy0k2jmwGNAB6m9BZsUD0WxmV2gcDGbhedps7+aZw9fs2MoRAo3zWejR6jJZ3SGvltIFUTu2hkHSOnONisXCezk8h7viEQAsjCBBQY4rhLQNM6YB2qA4gbgqlwYRY84hx0YiHvZjT2QJ45NhC3ncm1xJyeAh1NMsegYh234hg/ggnN4TMxFqOAVqkDKgm6ksgvhnl2QhFkYBFtoBQZo8A1+PkTsXWGQBEnQkOFe046cA+eDHvOcC4F2dPGAdEE779LAcjdwQv229I3wBl+wByD+LwkzR2LGyTteDolSMIMc4V6NeIR64Q0L2AHD6aJpYOxZL5di8AYrYAdUXj10Woe6EoVz0J02akzfgyP0ceY6avSPWYalxajYlAQwoAGipHa7a7NSyIIYSDNokAP9ROGqhIVPkNqUo/ZD+fhyB+W0vuHHwHG3Zb9/D+Z31wgPnfcxSYVCID0usW+MSJtJhQinwgct1od4+CYt+YAG2N54YgcEVPgCHI4ukIWEv4ja8BCr5gbeC/YEJ4oa3gR0dYbAwiPl2VpEcpA5cMpjwIJnmPCnXpRlKNA58Mm+yAVVkIO+43ZNWk1eMAMX2ANo5R4DeW6eH4tzb7wbV1iq8wf+Qa106MWNlc6WtJGMwmaI31J3d9iYVb8X/QAOeTIF7wr7MWEOZjgBbwB7i9CHx9iDDyiFiWl7jb8KYBgHnzFg9dwFD18UZxAC7XieWUgDSUiGbc04PxMCGkgFDP8LYwCDX9BeaLMfWiiBJaiZCuYLyz9rlvN51D8O5lhoJ39r0Fd3eIB/bwEJbsiCCZDnw8YNRBD4ggCIDxY8CPNn8CDChAoXMmzo8GFCePcgUqxo8SLGjBo3cqRoD54VN/706YNIzYUUf8KcsWzpkmWzmDJnNmPZ6sOebcdozgRmK9ctoLeGEr31c9enD2uOwSL6bBCeXLaKUq2aK5cmBHuYUoX+JYrWkV+lUpEtazbV2FR7MjQCBkuoVWfLeNKta/cuTWfgvp0D5/cv4L3rOlosycyfPcKKFzNuvJDbEB7cHCu856oY5cwL8fnTZKAE6Akw6mWu5sHChg0fPDz444+z5tgJrYGyV1I27ty6dZP0dsIgPIek9c3J8KweN241W8Zk7szuMmrHsuzINA7Y87zLeP2sWtQWsFRrPqTiBWvq0Fm7kmFJNst70VywmArZAcutUFu2YJUay2fSWQGWYssjUtBgC3dw6UcUL3Lh9SCEdy3TRx+lrPNNYH7xRRpsuCXWBTm37TYiiRdBJpls99ADCjslNrZLBiV4MGMJE6xRj4j+jC1jQQIPNDDAHOt06GJjibCTGJFJKqkkPf6AYklwOSbEzzz+pAJDIdy4w8053Sz3Ekx2ATNOJjBsAY6DPDnjU3fw3QJLM3OUsMYu3MGniiSSPNMUfLBks4UQSxlFlHxokVWKKHzQklaAouSyhgd7LEOVfMcwlQswEWq6aUzLOLPEAQ8c4GeG38QzpG5QSrkkq7udOBlu9DTZqkZfrDYjrhmsQ1pjnJ0jzB6iXIMqrRu1WCyyyRKmT2JOmLKqQlWuIcQu65yjjjjjmBMNTN2GydMyx3wjhQffqhnUoG7et4MUpfACl3dXDdIeet/dJ4QQsPBCqaFngZFHgGiJcsv+B1KUR+l9UhRxzC3ZcfqwhMtgsAEFC0zyDYYansMrieRMg6SyITf2qmz2kHOGyBDxg48UGeBKIwLocNzYPRP5g2PKGbnxcc49+4wYO12MZHND7ryTwRr+cIOtOE2fQ41LX9ZEk6fOiDLBHN8IU9ea6bp5VSMeLMWnm4Qmo8Qs8EqlyQRbkT2ULQGXJYrce5RgiFtVwSJMaqeNsxPEgdO1DDcmWGDBAa10k/E4gxHpiykg/zw5RCTHpg89h1GuUBYDvVyjzJrhcw+0myvkzbGmq05kScX4Ao89RE9JWj1zfJCMP9Woc06244wjzjlhPudcduLaYgYMwejksExy7Vv+r1X3pSIFDLAs83bZ6c2iiiq7vNlMKknAgOB5cNvSCt1ygyVK+qIQmIQQrXBVVdoDbWABImkKvn+nzvjQQx3cgaENjaREiXHE6hKYEMtp5h7wGIUC/VEIGb0sA0k4VQRdhAtvyC6DHmRMYkAxCm84RB/x8IcoaLCGdqxjG+gYBzh85ztxzIMasIgGNb40PJYsYx1/2EEbqBGNuahJGLuAl3dg4Qy7rcEZ5cteVWzhCTlIYhfNaAMM9sALOw2lUIwKWCl+cQRasG8XWYDBHJyxoCQKIwGgQQAvAMe/OS4DHT3UkDuIxRt/WIKEH1QdAzOjj2mYQoGcgQFoQOOBDxT+5I8j8gUuCujISWpkIsVgBzlKWJIkJEEY6xjHOfoCDnGAQx3gMMc6WtECFMzghsP7kjGqIYQk2GKIdJGLLbwHRWfAYAdXgWLZdqGKWXgCBkkQhTD41S+5HeoTdINFwXixC+h5xxaNsMADDLEMIs6RjsvIBl86SKImgUKSlPRZICmjD29gRoFVkkIid2CMc+qGneakJz4b8iF/zKohwihBIdbBDeCR8nejzBYNqdAADDSAC8YgXrgYUIhrcJMnDEOiVXLRCLaYB5hlu8oagkCHixIKFswM2FeOsIcEuI+a8JELNXLYzZnK5BgtKl1uEvObfuZTZOlsDGmKgRk9PqT+Q+KkCMeO+pCSwMYYsCGqQnKE04aICB9TZUiHSJIRouEDqg4hRyFn1tOxkgQXKJMcQkizDTlRAzm/6wvvYgjDbM2DChbAwAHM0BxnHKMazhDfLrhxDOY15xj7wuh3nJEJ6pXniR6Nz3zCB4NkpAEVlGhEnWDBn5OexVF9yIIQjCEVxMZnLuE6RkVpKjhPZaNKS5IFYsaas58uhjTikEQsMjI6pYmiGq+5iD744Q9qiAIcsS2MQXghCtLE7qoHgc0uaGEQr1bmZucxiHPT6g93tIIX2LUIPxKzDlEc47sWIc0y+DCOm1FXth+kh0iOyg/S0KIEiJiHQLGlrd6dUlv+vnOHJgpQgAOIAiYF2QMN5sCNHeYlmW3qkzDmgEbDuvSx+7lGFgB6PWjU4XBmaMUyOTuWXCBvDqiQA/YohSBPqVa13/wGDH+bJBYp1b2soq1i3EEFDPC4Bc4Q60POYQQMUEADOFiHOy7yDR8QWQM92G5F+KEPYRC5yGy4GXjrm8hGWDXK/qCEBihAAQyIor0HKYkdxEyBEHg3yqSZgppXQI2LJLkFPMYAExxnY3rqoxiOQCtCklwFITjjk7tDqLb6UtBRHnQZpVjJ8KJBAyHwgltgYskxHgyf/VADBkvQV4UtbB4z3WJfyi0Bag7wBxBzlix0E0XB9LU9aKQtXuD+IWyL98dauYIDyCNyhCv27NPIwIpm9WDCAtQcggJ8Qx/trYc7ZiABZRcAH75WSD3WoWYxY0AB/nCtQ0Z3jABUmQIKKMNxNUkLBFCwRobwR42fyw9ECEDNGBCAKLT6ENKUoQD2FgAwrp0Q0hRh2twWQFspUiUBhEDNEmiBO+It7NVlUnMMuUYGClGPbYBShoju3e/Moa0YJocbLN7EBDTBjYdGzcC3mGb2gGEIBBgi04+tJncMMQFDyGcoyl2BBT6wgD+0+lCwWMMENsFFWLyA1jjPtWqzAY5wwNB3eh5R66wx8ZDheCPOtkW9JSB2CYRAAlgOtz4m4e+xk70FZ2/+CL+TzXY8w/shCy/72DFQgGXIuCFVMgAMPseAeEj8Zu4IAN7Fvmx+FhUf1BAABtgeAm+DmyElaYUCKDD3EHz7IROZQeKnXYBP9H3rCixJIIohpfn6Ax1ruIFTudQ7cYRDHXNtmgyr3jRSdoMbxysBt6oG0dGG2ijHKAX8MnvzKAJDE0ugAYXhwguFkuAIhmh1KWaBCBhIwYbQ04YcnsF8qHeTtQYFR198Z2bHuM7ipqdV1zVCmh5onu0UaIFx7e4PIrN92py/apUoQOTZn9kJ3G9lg9zZHxXUHVVZiSLhSgngROkpBGewwQCOnbmR3lRNRA9coNhRQAE0knD4g5j+9R8I7gpEaFv95d0BdN77JVBJ+EI7IYQJ+cMeLEHSbIPsnYM57B7IZcso+ZfuTYYheECWMNgOOcO7vNxUYNR+OIMZ7EATvcfyUYUtOMMa3A1TQI9UiMIczIEdeMKiyM1Y2IIUCEHNvQVV8MIgDMIsaFZQzAf5dZPUASEM+cV/kUgINUl2vWBuxF9GVEkJ2h8GiKDf+cMBeOC0YcA2QESVFIAiFtkEJkRJwEICYuAMvN1m+EPYUNDLpES8TUQZDOIHSsCVedX8reAHKoAGjuAKqOK0KQA1tFc0NJwJUp4fqs5EWEIgUOAmJUE1uANBhVJBeRweJlrvmAM6iEM24MP+nNhCNUhNtxyDUADFaFlhLizDDggBglShFSIIA6zB3mCjSaUCq83LGJ5FKcCCJpRAFtxH2XhCMliKeQzWHO6PM2QMr8VQDH3D1enGzgBaLhIJIGJEYlBB5tlfCBReKpogBmjiQlQJ/xFgujEEaawdBjoAusUbZxxDjHzOBzTCJNKgPxjCtNlf4txTdTEBKYqeM1wVabQALIJgPBjgSODDRGKg2VXeQP5Mk/CUQfADLbDUlhDj7xDU7MlVQZ3D71TdN6SCB2RCPQjfSzTDvgTFT1zFVXTHT9hCISDAJ3SUNxIFgthOWLrUfjQKLchBOhqKFzLAeRRfUMzCEaSGGeD+2j1qyjf9Re7J1TnA2DjUg3DVU3D0ZKsUJEZsnL85wCoaAURSoD3MAgGsIAUcALpRV1fR2wrqnSKoJLb5QwskpMEtgDvYZOd9wANSkAs6xCMOouY9JE8uBGlAXv2ZWybGZkJ01TfQ5gcWgGPapCgeAGUGwDHom2H2TEm4wWHcxkRwQxRyg0At41GSUracQzjgXhAaVLZ0Qz0cgxm4gDrMQ3JIo1xopTUCRVcSBTCIwg4sQTRc41jOhyYkwQ40w5tYRYi5mihgQX+UBSw0Qns2wxp9DSwIQWpMwCdEQ15yyjJEA+NUXdXxo++AQ5KN5GK0jiu433ESJLGpEz7YgQD+GFwA9EA9FF4BsUGIilkAMMFjbiIVpKgECAC6meZIgAMGTGZljp6FIkRXOcMHMEBoZIB0OVclHoC/gaAG/BhFTMQnFEDmUQDDoSBEkAa9PakA4MDNDCZr+gMTBEAJCsApbihy+kMifJe1+QMk7AAixMM6/GBTAo9czZAp/aBv2Y1IJgf6Vc1yCEP5WCNWauVPLMMX7IAhJNNYDoVmOcMZ5Y9jwU0u5GdZlAIthIFYpAIsLAGhNkOKeQcvPEIIfEALFAAkyNSCQogzgFNf3uGEruo1yBiNYgSz+EMviumSIKZGOIMRUAAJiEKSrV9yFUEIzEAr4OZDtEIH9gAseKb+Q8SDHbRACJRBNCjrJrrDHsAAGhnX+pUEOLBBCLSAHVRoRZTENZRBt/YBsVqePxzDjs0AIviqQdyDKimAEQADrf5MMcBWSdQDaUhBEkCDO2Rnf8UQdTblHSIUycXDPHxAFpyDdI7DdUajM0QDwxDKL3WlVMDCLsACDJhBKUzsoc6HLSgsglRYLnyR3AwCin1CBsxBKvjEYwkDDQRdCMwCXpYq1UhDNvhOOBxjnE7oX/DDI6zACrxbH2JEDlRkvZKIrW4VPmADNkirQxCNiVLgc2WEPthMV+kWbNyDu76rzdRD177G1hbtQZCOQeDMRVgVPGDGqyZtkhTDNJzZLhj+AJdtQyhJKMH+ju3xzsclGjo0AgMkwzdwQ381zSh5ChdRinnmArDsXKaRlkeBlAW0FHyUbNHRDTy5y/LlwjG4gxQsgRwMQs3arExI3dTxLD9mCMMKQwzwGIFlBjlgxtS6rWMsLazWQy/UAkfYwzyg7e3Ogz2E7WvUwzzMbm7qq/DCW+8m7z30LtmmlfNuhDR0AgPSLrIYRi+KF/WgEpcopXYGYXXSHvrdnj4c3RK4g3V63FGOwzLAZ3zkxzGIQn1swxtKhVxu2i00H/dxB/QAA4XFDfbBQiEcQRrQ2v3Gx0o0AzBUQzVwgyeILmqRbl4MUPrF0M7iIX85rDiswy3+NNyNXgJl0IMvWEPqWO+I2C6skoOGmjA9ecNysjCtlAQuFNIJrQEMZII/OM3HHRSjnRLPaic+GEIMvBvufRxTUoMxFN/FVoOBFML1WGwV/oQw8OseXAP0IAgbcEEj8ILJNkop7MISwEAjzEIaJAMw6QcvsFinbNMxmIMStIMtke5cmK7v6KMM4SFfwhBfjIMLHMABNECrNgY5WIMlwHCJoPBF3IM1lKkh45Mp+ALUNvIe+YMy+EM8BMo1oO90zhAMUR2EUl0Rg8M2VAM+bMAaBGMMiRwogwM6+JUzGMN5vIWf/sR8bIJSzIKDoUsTRq6+pMIHmMEtCAP0JMzhWED+I3CWozSCUpQaLKiCJ0Au3MihXTgDKoSBJ4xui8mFNACm7q3qqsapUoLDOmTDJDzCN9CMPwhVJEsyYyByYdhD3LIzJXmDbcizkjCDSMACArBCfuHeDAmsqg6jN4PDPGhCAvyCMK7vDGXLDlVDK/SBGlUjuthOKQzKVkpFUGwlFCEI0rWCMOsNNRBABG7AEthCF0dqFnhAKtSLJ8CBGZdNGj8I4QxCBC/oXubxXmQnfwksrwHm4H7DuWqEFdCzPf9hh8aGPbDDrP5RhySv6YHCNBhvUXcEadjCJ9SCOVAPPghU7vUgovmOOYjcQmuwONRDLszSPJzD0nQc7dmeybn+xBwQQAMswC4z7ifgy6T8acU2ITQb3ycY0za0QoUp0eF4AAOYwWaZxVjAwh6wS147qid4wlV+I3ZESDQMQix4gsnN4TJss/f2LB6KUlP28PmNA4b8o0YkBjsw8vNOtYkctWZgzigUpgdViTsYQ4W2tulZwpG4dm6UBOA2gAKUQCaI53Vy8lwtND8a7gxxCT6wwRJogj9cA0IV4+8MUUtsxwGEAI9RwTLoh3eK8fVgZXpqpVFotN5gB6YigqYWny2w5wNwgVeoI1kkQRE0ghNxoSrIARUSCnjYY4REhzPIQSyoca7R8R377D4mOITuhTGig1Nr1ZPwoW/HhjtbxD3+ZNIHJdk2lsAOFIE4wPCR6HaFVwRpoGYLrEASKI3t6TR/mQMPv+lRxgMvmQE3xAM3vCkQisOCvYR2czcGUIFhAQPSePRUeA/MpQt6Lrm9LMMEieNHb1ougJgoNEJizw0tAC4b5ELiFkUyDIIuFUWmBA41FziAlx/Opqo//zNPYydgnN9fAPVGTIQ+BEExkBCJl/hDXDhF6AM83AEkZxBnrIAHqMb9xIBvWS89dEFv63lmnHgEfkASuBV1ioM58KA/LxopiRxCNQICmMM37N5Aj4OlgUk0UEIDhIAJcAMvpDQyfUdWYuUR6Ud+oEsXHV0JbGoUsRqkDkgSMJLXeMf+LiiBe2Q0NkMIN4SB/x67ppwqr92xX5BSHkeotPPF6QpstaN2RdDDNIiEcTp67cJ2bLBDCSsQFxyOanzABjDAHDgb7ZI7uMdGlayAFLgAP7gDOnD6P+fe7gWhKZmDOwiDEGTBPfTepXtctvT4pT0HDhnDNjwCJwloU+hHrKPlVNB6foiCO373RkMqWqyjhHGBM7TCRu9CFd1aaj1MX1HDEQADMCio4LBE6vYldvYl6vosKTGlacepOJCtn/vDGUwDLkh1vFcEn1cE3GaQcNlVanyA029ACUhp0nqDLHx70SuGcBECZ3AGlQiUwer77IFSqONDGywBDndD2DssOmz+Qw4tfEsMVjRIgZrmN8X/kptQfEYjSDNgqiY8cdnoh8eLwiyUwhl+QntvNC/IgTlUdvnNtCSgAjVsE4M2QzaIUs/6rILf4ZvHKTcv+DeAK0Q0CTtYAS5EUp5fPUMcPUXggiVYvemggxCghqGrewKETmJG71jhAmyhPmOUBG/fkz7Mgz9jcHKPAzfMwzKUwBxEwzygPVgfZSsn4cIfAzfQQtuAB62fcd3HoTFs1Bzszf2mpdwks41s0QHbOipggTmkvK5VgycAg+jqD15oM+MwmnU/e4TuI95GqKrKUDjsKED482fPnj83VqYJ1CeQYUOHDyFGlDiRYkWLFzFm1Nj+kNsQHtw2arRHL2RJkxS5WNiw8sMGCzHc1dPIz58+fCdx5rxIjpxOnz+BBg15z1+ggRHniRtnbhw4cOPGKf0Wb84HWvPAKYW69Wm0Zs7AhhULtlm0NROoCTNmKxfbW2/hxn1ry20uu7aAmSmRipdcv29zwUo1mDDhUrCafFgGy9Zfx7d4geV2rFlly5cxZ9Zs+dgyOcBQOdusOdu3cEqfRnXaFFw4p+JWQ03dlLbTp7fHuU4Nbp5FeifokRQ6nHjx4h0/GvcH7w47osqL72nAsmWCRiGXUWkQ4hHIm9DBM1zoill48+fDO7pXEOJ3d+iUipvnLp67XTuy+OPG7an+OKbmsppsrAG/4kYUGNYY5xhn1noMrlxuoQswuoBpBIYlsmnlMQnZEqywwUpJBZY9MpjDGVgc9GuXBZcBJo1YvBpNRhmXaYYaSVCRZLIaN1tGGtNWu+21cGqTTbbdbMOtKdRws22cdSiaJpE7/KGHPfSwzJI45EBSzhV4ntPypIXWIGADDz5AQAgoMdJnnj4OaAADCg4IgRp/vhMzKH3owWUhPQENtCJ2TIHnz4hu0ieea/wxY4495oCBFnz4Uwcqcc4xJ1NnlhlwrGWioSaLJQxZxxiyeGnMMbbogpAuWICxZYkSRDkGFggd6/SYwEL8UBRaRNlBik1OTDEuW4T+6bQyZ4CJpLMZoe2RGmcG8UQSc5yh7DIfs6Etqq24WvI23ZysTckmjZwtHHxoaoi9Ys4opiaK8hTU3kC5hK4YfcK8N6N6blmCASFsYROjetwhYM4NKGB4BTz9zekeeEyJ2OJAySnmSoqIkmKCDD6AIZ51slLym3Wm/crTsIShhhYP1nCGmk7D4gVXuepi1S5YnCkkAUNg6WvDVpaIQYoPCRPFlj1KmIOXVI19UFvLmD0mxmixzowa0MI4hpsaO/XxG3CThG21c4pEdzfWvA3SXHHXqae3gRay5o5RNn5In3r4vtjv8/JVzpeK+/1bokMPvUimOeS0gILHN1iBF8P+Q9KHnIQoz9y4e3yxBqPeSijBgxJ28Ocb2JaMSpyVBzRmnSwYkFllsZoR+sFbILxL1aCXEIIXFFPcpQiVHlgDaVFuEaIEYVSN+q3INOMmjUWW4THr6y0zZxAcgaksm9nANZJt8Gdr7TYm1zaf7SLZJKqgLkyRVyKa6rmJGz3wSVzz/U0K3Dh65KU//jHEHvOQiUZkMgOGWcBxKsGAKAZYkYVMYxQRtOCY6CELbxzMH0v4WAbWUI9uyCY+X2MdWZrBjUx8YA3xSNZYlrWLY+XuLs+zxSNgwAVbGastO1BJA8xgGBHt4QMmakXzeMgizSyDG6iYGfaguIxjVINaniD+hTJOd6Ryje9b5EtS+NKWttiI4xpFCMADeMEPJbDDCgIpnEDmsQ5oJIMRV2DBBejgjwNekI8U8R9xFmKUvPVxIzJhw3QowECGoQAWhHxIQdzgjzc6kpIEvEciENioLBTCH/XxzzjOwY1o0Ix1x+iGM5qQBFh8Y0GlxF2r7NKWVzFvCTvYBDWAZyxemCEBDXjAHAYjilxkQghCqNWtnAcZZfWoGnCYDBShWT1u9CIbeKhFJ8SRjXl84xtISleQXMMV1IQxSLFhDTe/kQoCeOAFBdDCKdhRJQEKZBVekMEIWKCDGnhBj+2qZCX/OJwJJmSe/6RIPaghgBA0LJEhaID+Hg3KL8wZlKJEsYRwMNKueECsJu4Qx7SURSCwHGMbjSjBH44xMxiiECy4a0uEcncLWCyjERPYwy5e6rxcpAIRXDBEiIS5hhLswRa2S9FLrUcjVKShGkmFJrQ4JY1snAMd3ygNFqRxiridg5tCSo1u0mY2cZ5DbWYDx1TXsQ5uTIGBKXBALRQykWqsgw410OcPoEFRgwZUKAthhivmpdeL2GQOB4AcBhpAjYL20RqRnKRgLbgQWUwUJ/oYh1fC8hWqkcUsH8iWp2YXlha5FIm3AEYSYACMXCZTiKkoRbB2wJhkRkgY10PhU7O2jO+tBjZoy0YtAAGIWoCLSOV8m5P+yMqarGwFNqiDSjauUQssfCMSJSCBA1QRWIncRAf67G4lIAtQj3TJOAXB5GKxhDjzzKEHKOgBDbrxWD4uxBFVCi8l9aEPwMp3sPPgzzi+QRYBqzQaqQDhOloJ2swu6xjHEBqF5oAfZ2gomXTplWtdy7Q5ZGO1ulxQ1rymBGCIBrfQikYW04bWdeADEKdosTSUkY2pxlEcJAOwOMY2NnDkeMdoq/E64iEOqfaiFrpQwjcAgQ983EMWuHCHJA8nkFDkswaC0AE/53ZfPvJVKERxRE/sJZN5JCuuyvlONM4hkHpR0qJQ1jIhvSEL7WpkIfVARzeShI5sPJEaqSiEO47+IYUkpEJBJF6WoTOzjF2UgQ2PkGkzRNGEHaTiRKV1EK+SBotgLaEVO0xmZBAdLSlG4molTnQ0urW+1GglK9nAR1prcYpT9AIO31jEKdDRiXVkwx/uwEc88oGO3nSj1/iQai2QXQtPRKIXgFBGL7YpkOZEoswQ6c0w1MACFXghGcMYgj/m4c83R5DLXfYGJu/VCBqEbge7mDMgxQNZX2CSv+P+G1EiOcjB+oNk3fyiU7ZRDVF8oAQ02MEcQLXM225mig59gAVa0Yw9eAART7N0imBxYVHwYg0fMITFZ7tMKAIjFk01daJLIz7lArhJr0nrjpVxjV4sAh9Y6MUpsFD+izScAg/SiAQW6AGBa6ZBGczuhTSQDhV3rIPYxbBExdzcHpkI4gc1UEEonqyGvNp7y+MNj+Uwqid9ICIBH2iJBx7gbvRyHSeGYjsfybH2ieBjG0n6t1WvYQDRNS0b0CTpATCwgQc0Qgg7CMzFMX7hVLRiBztQ7WxvIYxQX0+KL5p8iXVbLieRL3wtJ2s30RH6OM5jHL34xrOzYee0QqWrtuEqOvxhCjnLXR/mGEINavADbuijXXJ/u8XKHZR7sCMQYddSPbiRAA+sxCUlsABHfw+UO5BD39G/GFHaWH2KuEPHdndbNqrBAA+gaQ19hyJJGzAdBu5hMTdLpqYxnIr+OZRgDQV2/1GVWGJgTO3kZSmHv5WkSMSlNsZJNsLhG7hqx7Yhm7rp88bhe9ApN8ABbbLiHJ4Mk7wBvW5iHlhBBWqAB/RAjxaCH/bI+jQn+IRiGnwBUIhiDh6AJZhvBSDIBH3CF+SHBjPHEuIuIzZQrbzv35ziG+ZgAiZgBxLO71KBCQiACkqh/YylMZrBVnYKqHLBEJIgtlQL8fwCLzTL1JzBE0Lj5DqlNJhC89YmXMwJdVrjW8KI5TaPNohkK7IBSmRBFgJoImQiGdRABVhADX4B3HDQglAwKMjBGnyvOGRiCVSCOs7kEQIxJ+Bhgx7RcNghnjSC+wDwB4XkdL7+wRZgoRm4Lxs45XqEAR0ipRFA7v62MDCKwAycAcM2bg08ABWNykEagxdEzgtRYRGawamwR7e6xe7Ex5y46AyV64vEiqzCCTfIKius6ia0oBjA7HB6w8p04OqqbRJP0OvM4wyoT0xuohBecANaoiVoRRuHghy6QBLR0WKswBu0DyIyURPLqR6T5Bour0cKDyyEIZa0EHduZTo+YAdu4bVo4QOkQBWNpXv6b1uAwRdtqzTMafNiI0jUUEhwrG3M6ovIShzCgQJVDfYc4QyO4qDwgQd0ACWVrB0HaBCBYiFw4d3OA2EYoCXIcSUepgRZsiLIAR52MmL0wTkwIh66jx7+KdJcvG8c8DHRwEY0GiEDPgEdHrIZ3CJFGoMNXtADViAXRGH+DGExZisXcrEhqQEPnuUXnUEatqgitWg21FB8TqflOO9snAQBX68evMER5MX4HKLOGEEF9IkROukn98clgcIa5KzelKMeNAEBVMIDEKAEjEEmCbMv/YGCKvNeQAFMKmIezgHPjFIYg9A25jFI8JFHjkHGjqEThWAJQEVbnAFqrNIWyM4DLAAFRKE1O63DUkTyGjIzogEVppLypEo1Vk7zyOYp4nJ8lJNs0LBtnDMr4kEa/KELBCIer+0KZGDbkqGfMpNyDNMnLComD5E48OEalmAFKK4aoO87H8n+H7LPPfWkGALBHtau30IzKe2RHgFsGzilGvZgD6pBqFThCDnDeTxRChhgB2bFEGLlH+GiMcQyH/uvGgAhFiByNHTL38DIHsNFAIeRbcamGFnDuVKjG3pjEaxhgxbLJvwhDoaABViAFdShPeUT+Ljx6/yhPMqzOHqjb25UIuKuR4MUPewhP/lzNJGUNJeA4D4gC/gPM6rSFkshRD5ACMBytnzzNzWDWRgSa5wh5USTK+pRNnLMuZZTI93GrOJwNbppHSznDtjRj6AA96CAvIrUb8LTJyApHs3jHviGSAEpvyKrOvXBT/N0OEYBFA6H+5b0B48TKshFE9cBFvaOATT+YeEu4xj+0RMHwwwyoBE8LWrogkK5NDjx4IlmJC0BsC1VzkObazec60jECpRULTZOBi8TgVHvoUX9QRxeoQNqYAjyaB7WLFHvZU/51B/OSxt18lgpB5MQFVmDYkWRIgEfVT9FMzTRgRdCpwQyQBQolFM3hC/2gAaywLRki1SjlEsTzRyw4Jk2g1PC1FtA9BiNsS5rQ8dC1ACR8jZczRtcAd3ikSiSwY5kwAtAIsuoNWKUVScO1RUoCwd74xOogAm2APYU817goRjoQVAb1iSYYWIFYh1aL1u3VTX28wfRYRMGwAAKQSkztHYujheOKAt24BH6EUGDZizdNTOyZZT+RiM1+VUT34Y509BILlJEL2VE0QaUiAT27oAeoK5FZYIOuksFXkEmQDZkoeNha7A8HvEmqEADGmoBKIEyL8YXKshrw6MYxJYh8OEAUdZolfRRH3Ae6IE0S41qdlYuciFEMkAKZGi2uPBnZ2QZzOEEoqFde/FHysebopMtjyTHwEXHwArAzPRIjsQdvAEbTMFK6EU/UrIGoMCAxM1tkzVH0SMRRPcnXNRF9wcRFIZhKMCh3C1z1iMmVRc8imGi8MEdRoge0WlJ8fVuQ/MaJNJNoyHUlmFKIYMWOk5ckYlUd8FnETfRTA4zaqQ0mKQo29Kr2sZtlqt8moJcblUrELD+HuTBF/ZrIvwSMHUAEwCxd3E0ObLEG3hVJ0jQIXTyYuphHVAg8BaRgbhAc/RhGmSBL+33J2TiFLABjnbMKLsBHwzoeCEVRfnNckPTqrpht4Rxz3pxWVIFRXgGEWAgC26FN+fCL3JhS7OXRrgBDkbRMrilGVfNfDt0i55TSNpwfNnQ1fzhDjBzsfBBJmjBjvrwGSCqgR2Wdf/UHyzBvnKiN/agCJZgCVJBc+rhHMwkkRiqAYyga82jIByBjJ14InrDCEiABI7BZEOzG+qhDIpgCqoBg73PHQzBB3jBHbJhIyEV9urhHkoTYIU2bJYhF6IBBoTAEI7BQYJGpl4JF8f+df9MlXsdl5nwIBa25XtWrinA1+74dRjBhw07TwAj9xv84RQsYQWj7iG+Iw54wOquwkbTGF+g+E/twQleOSRAxyUYiAEMYWP1xB7W4QEY6nEooAGqgHLoKwNv+SX9wRAc4AVS4ADO4RqK1/u+AR/YQAIk4ADYwA3pcR0mgQAkgAImIR7wOAi/4RMMawZ2zSgDjBqYpgQKoQTMQBiO6hbm4BOEJpNtmBpEaWa5FywMOjMekkecwQx5S4cvBZBfFSlJlHNLFErOwBsY2CFu4hn0SQau4Mmi+X7x9DwWohBxgijMYPnI8QNWgACc4X/95R7ioQemYyUepwHYIHPYYRr+5nSkK8sfJmEBHKcAwC2/3MQdlHqpnywKFgCce2AbRhSMWM8Z5gScqcCyzmGrnxZtfMsfAmCAFeAT1qHuNPFkPoHgSgABaOF3IkRCAPcTwvkAysAYwKZHlqEVCoAABKAaBPoyeMEIMGASqiFanCEalIAM8BECJ1oY/5VMxdde31I3anUrvkHYikHO6IG/FmIdMEEFZGAIBFOmgVpPwPYn7mEappiMbcICbBMGN6B0SPteeIEALCAEMMChUECV/2YhfGEF0bi0GUJucCBOdnq2GeIPBMABBKAMLCIemMCwFKAPGuImABVQj/jJAgC3D+ATem0e4mEexBu8x9sfsmD+7yaAFl5YGNhbGJ7mvXnhGP6gAChAAnAAGJqXdXRLmTGgBdDBF6unekgqBBSAAgKg0wI8wRM8NkPAARQgBKQBhyM7OX34Q8eXGDlPc1fuG54MF6RRbePqF6DAA9VgYYXbX04bKBYVJ3KhBJjP7D5g+erXb2hiFlAgAAhgAJiAPYPbSyyhV088JxZiHMJgECQpdR+CH/DhEoqADZC7Ia6hBySgDOoByfnhyq+cKMogAAQAA+ZB7uZhAkpgArCUlBZsWaJhvjFAAmagNNDpzdGpGuaBABYqBELAH2Qsz/U8z9dhBR7nAP4gz6kBurJhG6Qqz8/5BRxAAlphHYB4X4/+c1vl0odLBoi7yUwFgpctMSL4AVBf1K60ViGQPMi1JMVh1xuAvCSqgaVtMsY9oIkNx03WgRfEW3Pg4WNJXUuC98kbYm/qYaMwIhpagWEnwmSTYA2MoQtHI1uMoAAcwBPQAbm4GpSe4hquQQAMnByuIXxZ7zP9wc8xQACAoVVb7klKYQGUudEtGhkDkLgw+EPPp4tYjzZOxh/OYIErgiiqgQV+AKRnPNcFxdR/IqOnFSIKggZu0uw2AAGuA1otRm7uYR6IWUzsgR0iCeB14uk0ItUVpx7KE1D3xiK47xpI5pKXRZsEoijBAUC22oe7wR0QwR+o4RxcQxziY5xcgxv+vqEHZuATyPfnv8EeDIEEWsAOTOc5L9yrvkiLPtkiZdVNwcEd6MFurhN+BSIOqOwV/h3jAUXgdaIgBKkk+MEZmm/8ECAJetmZM4ckqGTiuT4irNVi5I4fhBfgwqFvD/oanqIbrN02llHl6N0duOF4T9ZbSrZESxlcuAEfioHuB19Sz/dobxWilT59nHNJGJ8Z2la+Qn4V7EgF9CCveP3tw8PrfWIaQME+Q+ImnGELAIAACKAQiF11JYs8Sd8kpsFzIqizM3Ec/BPRaiSqQFhzJzB9KJJNJVfebyOUuCm5Kn0iAcwdFgGLLsX4O9IpiusYkx6VlVMNu28ceiMR2GH+7TYwDmpABnSAFdTs9gM+l7GEKAALJ379HHpj1L0W30qS/TcCF3h3gPShqgACnECB4cY5a4YQoTNnx7KBGwdRoLhv4MSdEzjuIUaI4b5BFPcw48CBESGaG/dNnMhzGVt+hJgRXS9p5zx6DNnSXMiNGjeKjNgTI0idLUFuW0ePnRt/TJs6barP3zMdNWpcqfc0q9atXLt6/Qo2rNixZMuaFcttCA9uZ9tuvWfvjje39+bZjeo2r969fLPSuwO3r+DBhAubtTbNsGJ8NUcOPEdtWUKE0USSRKkS50uXPT22ZNkTJsiHIGGSDvrQJr40KGF6vJixpumWl0texinQpun+b0j9WZlr7+s6QSp06Ajlb57i5cybOz+bdu3zsKDo3ZuOPTthffRcTaOnPbz45t5c2cM7Xmw9dBQd5x637GD8auPC7fypGahmkpl/WtYsG20k3VeRQPF00tpOGtXn0kWgzaYffiNlVNo32fjDjiWjMBXcVvhEZcwQMsighjrJ8ZNeiiqu+FR0bLFIjy/W3IMeizaOZw88xbBzY48+agXPXD8yhY9dWM0DTnvuYRSNM8tQ8w065tw0jjoPPnTRgrVVlJFnBKoE0WvjjAYTULC5lNE6vVBUH264XUkbmKbxxJluvPlDCDy4+HPdVvxg5Y8aVNXwCz7+1Dhkooq65aL+jddZ4U+Hi07aF3hOUIppemeQI2miSC7pWErHcANUaeBkmZF9LJ2jk089XUQmRkGNeZGSltl2WU345IBPNuOcqeBo4oA50Gj2oSlrbVPOYw08lvDpFVbJyKCDDF74gw+KmW7LbVaN2gjeGVAR2W25W0UlbqfmrtsXO+reaMgADxThjpKgUnQOOqeGxJKA4BT0K5e0URgSSPaVZiqwCmYpsIARsZQNmwMBXOxpWyp4K7I/+aNMMbIc2lVU96hRnA6/+FOPtuyunOi3NuYoizVPIcpypuy4UgyNNe/cViLwvKtiPd8MUIIHGxiyDqipnaNcPGBaxFloAy4Y5sC3Uin+52xuUg1Rv+Ogo8wi8VCkDoT4leTfrMny9E2kroASXJ9a6WPoKiKqoIc5KPPMt40usxiVMrIAI0UTTcwBaN9g4WOoeHD5ArLikns1iivQ3lhPNgCs4IEHe7ij9DbuNF5PmVlzXaZtA6O+dYRpE7RlRvFEosxrVGuJtpumj2l1a/5YYgrk+tDcFFbmqFEDC0O8whTx5mDy4eTSF/b3jXlsYEH2HpSwzfRb1WNPPfUQzxw98HThffpPmf+joYjIK4Q/29ybOFPodNPNv1nPeWuBrlnNE1eVCWMhSQnqvqYMX/kkal3iTFHY5MDOKCcIGPIKPwz1CqqQqH5amYr41Af+wrZUj0XX2MEHNvCBE25ACiFsSjVgAQtqGIp824nKUoDWQp5dh4LguRE/1jGPaPDCH/Rxz50a1xR3UIMaSdtXbNrUoNtUhEoCYRhOSqO1fqWEYJiRVTjiAQhpeIlMbYLNgFxiQAZ+ZB3+AIU3ZCY3rpiDODr4AXKU05Vn1OCDHsqhH5sywhU9ggAbQGEKN/CAVIRwHvE6wAEGwIZqYIcZvihG5P7Yt6j4Ah49wsc6voE/cJAqVEzTyjrKIIAG2MIdcjpNQSb0kGMRqzVYTNWEHEgliugEJFgkTTZO8Y1vmMM++yHmmIwJjmH671/JrGKS4mEPX5jiPF3Jlj9+IYP+qqiBKSnzih75+IpkPOMV+PjgK06GyRAGMj3l7EMDCmnIDSRAFOozVB8OgIENYAADB6DCc/RhDVlYMo7p3FlUNtTDFekjSQOxl0C64Q6CNkUVBMBAA2ZwDVhNMWAiARiyzoEqhopkl3GyDZjCIY75tcRLtJLGmhYUKwKKZmJc8t9E2uYPJ8CDhv74E1O8oEFojOWb9cBHHFhgDnGwIA5MWYUM0FnQ9K0zRY14ADxT+IEElAKEtmgABShgAbBa4ABbZU5UZPGxqEoOPDmIlIo+pDSScPApl6ioBWZgjAedLXUy5U8EI9KqmjjoIgfTyLAwVoterKpiSjLVgCgmGs/+ZAMrv+FRtPwRCuOogBF4FMs31yEobPmDFixg3hD0cEm1Tm6q6ZlFAgqJVQuUQJLqEwUhN0AB3G7gAJ9gDlwSATnVKi4q7lJoN/4zEo+w0SvOmAEFMMCGeXzEYFpzoOpUd0ugjMMcIQ2YrNAEk8SqQ1bdHWB9+qUR2CDMHezwBvr0gUNygTabPzhZNz0rA3NcYQjJ2VscrgCFH/RXuNJjbXrY8Fp4IoAWqZXeJwjwVbFS4ACPaM5S3EpgngXnDpcTDz/scZMlfaOUPGXKNRrxiXWYCkK4A6/atIubMh3rPmgbWDAj4avrwhg1ESEmadCBDngkghwd1krjVvEDFdT+gA7x2BtZkqGDK1hFH4BSDg9U4A93ZLjAanmRj9bxCAsgIAEruAUomAHCWVgAe9l7bgF6qxhyJEIW+pDoltllD29cGDv46BM/5uFQkkBULOgZZVH2Y7rvPpGZAzyTf+ZEYy1lRhq1yMaxbHkOj/Lv0iqRJTqSYgpvDK8rWOGGGkY0BAY3OCxTEQQ3lowyfsQDGj+oAVPnemeWGThF7liHr5kCCnYkdHpMCCtuwVqEErfFHvZoVq4z2Wzs8KNP1wG00rpxQbO4YxucKRtOvM0gjeoHSwS6jWVaWTGJ5EYZeKgHgVbHO5cctiTfmIc9mBGIr/j0FTXQAQvoQK6z6FH+OZV4qj+azAJB/IJQon32znadnvDx0RHkkJn3rlOEEDTAqztY7mCiQg5vJGLVDjeXPuBxh8RMxx2f2MM4ti3iOylbK3/m9sN+Ahr1voRiywSNE2szpnSf5moHEpoZ/QoUVVkxNu7g5AmYYuemoMgdXmBBHe2bl2fIwC7+CDBT9vtTHXS25CuDOIuuo2dhe085n/hCGfqAMiQKxhuOgFx8yc4tfXiDGXfvi6GEkIAHWOAYgY7S2M2ij0/2cif9CSDUzJ0fc3smNsnkX2rmsYhtFMTHGQOvac7RjXP4wxSy6ESkoh45WlRFB0yNdV5oLT67/EAPr/jBMw7ujyFsU2X+eC+X2c/OFFO4q+8rqx+u89InR1wH9b3n1jSYwXy/1yMGnUvAJ4KZXHfMXDiXzhgvtdRiw2pM0eL/brnB0YtIxAM3K440bc4xWXKglZOo/7M/2uGFEf1AqIzbSz34HxXVYA7ccHuNYw7QcHjNty2/ZyNR0QVERnzPdh3s8F4KyDNyEYF5YSgfUAIlMAC8wA0TIndu8WG8ZDUrxiA01jVVU110QkUlsXjfkA+1ICEJUl3mNQ7zUAzT8DHRR3Ay8AMjwFnjwXsWmCkM+DL+4A3iEn25dlaWk4FGOCnMICTOcQwl8AGZEIIDwUYjmBcPIg7IlDpj+BIqkRmRhzEOM2L+MHFpSdIF+eAQJQVLlsdGpkBJYaEOUlYDPyBJ1iSFvYeESegPjgB1zaczjgAew/aH5nId6KOIhIEP49A9/vBJSYIOWLF9YlEvs/FKNAYrWNSJrRNpNSVvA3MO4lAPnZANOVYgC6RuBTQO/rCDiXAdNNQ4ocADLCADgqAcXriIzxaIDZgUbsBJj3hnPRQIxWAdv1gz5MBhmTgWhkIPKAEO18ANFDFohsEPr2RjjeYl3OggEeJFVSMO45WGsAgOv6QMQsE6hvUQ2dBkiXBmh0JDWAENcaACLOAFDNZ/zIh3wdgj7IALTFhywXEGlhCF/rgo7MAj0DgW1uYevigYTRT+ESDhaA40XgGDKkUxbh1ZMF5iWLWwCA4RDsYEUldkWN+AD+QgLsb4FFgRCtQiAwDXcApJdgB5I8FhD4EwDQ7ZQuxwBjppkysTHIGQVoRRL6GiZRIpGKTSO/1hXulFGtZlgshSSxbJEUkiDegAGt9HMLOCDv5wB+xAZCVWD/MgIrXGFsc3lFuGkzcSGI7gDURGYCDHDiNHDwnZlj8SHLhAl3xhKEk5EN2wDobClH43Ojg4lfujXVGJgy5hTNcFDkfRCcpgSxoTG8HkD/RAccvoJ3ixClYHa/dwX3vpcG/pI3PRknopOdTkBt6gcqbJLtwRXHwRFU2UG+AQDz7pFrz+MAfRcFwqSIZ8xZjxdoq4g462UQud4G4XqV3wx0aOgAsW1xXKUQ1SpgJXIFS8KZs5hJo/ImcfQ02YFBzFcAfk4JLdyS2y4Ab0wJ18Mj72k1znwJbbgQ+2cAAhQAHhcFzD2Tt7NXQZE2I90X0osQ61wFKuEg4QgyFOYA0NSWr+wAg/oAMqgAm9qJ432WWKExzW0AXwkJ4XpxSgUGQZyi6WdRbzEJb+0BhcmB3KQQH6GQIh4A/dEIaOmTuNxlemYYZVlBGt0hpR0guAIDSlWBGZNg7xQA7FsBSjxhUoYg5QUBW2hy1FaKJuuaEcyhSB4ApoVqLrIjccVGeyyAwXFqL+V4opoECIrPlDNDAAfVCJSXIOUfGeZoEVKBCjDcAF9QCVMOY1u+Niw0klnFEa8wAIvcJAD0GYF8JDIXod+BCaMsADqFWTaJpr35koHToNY7mZLKMc3DAJwtBTM9RDXfB8kVKnlqoi1yELpkByXFEkS/AAHvAAbeAPwaQcVtocwyMMKwAATLBF58gRANRiHyER/BMwKvEg2dAJteCKKzUP8eANR/mkWDEMasACKuAFwxB3qnqaWeo9zGANl4Jh5aJlPWACMxoDudCp/tAF1uCl3loz7RWvYVEP7kADhWQBVUCJ+qCr2LEOcVigB/SfnleRiCYwGzGDEYNcYbKSpAf+FsrBCP3GApgQcPJ6qeA6PX3yG5bEmioSFRaAAhjwXPvUDNPgDeT6sRjbI3WGVmQRFYhgVSUAC36YIqSpDzYnGn+lO6XIkZJWUieRjnhwCuvgH6MxD/LwDejzqsXjDmmpA2vJst8qHerDHUxhBc9HlysbHmaAAW32VQdQCFjAFO45tTsjC7H5FYZSD+FgCGsACz/CIFFZEQvaE7P0mMb6EuInEt/QC73ginfSqq46nlmRbfUQCiWDWuPzr2cbVZiaKYFRDORAjK7KJ076IyhCBQ1gbLm1AQ2AMk3ouJTCHYFADk0YFaDTDU1WqSxSpHh7LMCSO2QUdF5ZJU9EIRP+4Q7KUAugsxMqWQwixyFd0WTXKQPZWYCjC4waC0J4wZC+sClNwbW+VQ9FwLmeq08FQJ/KuzOQI7r1EiWHmSL60A0olRFlQ1h8xS+305GWJzAyiAeRYHSZcQ74wA6+gKIRGgdDUAMjQAtdyL0ZW7V/1Cd59q6+cKbjwQ7yYATXG1ZfhQLrUJ8BTCnB0VZnmpSsqyistGj842hZMksB1C+9JBqzQ0UXoWWjMA1/6RXVIKUycAV6k6oUvFrM60dj6g/MwJL6YArWkFC1uKtuFRV5hgv00AXYAAYNoJ+5xU+GMMM0nCLBQa1asW2F2bo98mdkM7flZxsj3Dv7wjW1JA3+zaoRd2IK9LBnXGE8q5CPUIBamAvFBAa5K4PD5uMKtOgE9BCvw2MP9yC6YEEj4CEpifGhoIALVdgHA7BPGEAAVJCAcbwtrCoLVegUiZcNuUq6x9lAhzZAWcONeZssEOEOvdC7Y3Ih9pAIowCB1eoPw3AFKkAiQvXIkPy4NixcPDINwRsEzgKiUOHH8HW5cNw8h6KTdVa4zJZvEOAN01lBTjEPzsAEMVAEszDLtIwpUTENnDSC48BGjfsj7hBvx5QqgApv/uM1wpkNtYAF0iUQbRRqEesPgkAtKlAJF2vNwjXHmeRW16HHhnwHpuAK8PAdSbGZwuwU9mAdwkYPDyr+C8wQBOxwB8VAf0KcFYkTn/fMLk7gDSoTifPgzUPyKTw6t2MIWQODMO82YtmgDPhQEFpGjOUKq+5ALTrAXxeN0XJsyxkWFY/IDMWQCLjADFaAyqrsCNZQDJUUvIlAD6AQCPQQBDwonSi7Pk2LMuIjvjetKH1JC6JAT+jwxOLRyamzWBTChqBsJqciDafQCQ/hD/AwCiAaX4fLCCXDCMlx1VjdQvnsPcODw0+RI2hmCuQwDZWEsh/zHZyUFXHz1Xi9KIZCBAzwAANQYXedudaWtxnpfo4JlRSBD0WLiv7gBuxgSV7RZL9wBdmqBvzH2Bmm16vt2uGBFR/gAR9gAVz+4GTdwjjXAErPyVGdfCq/EnQw4ZziAAedoGXTkAgz0rTl5A9xYBwsQAvKsdivXXY5Td3XrShYsQIbkAIgMAe3zS0XFA2lMHlsyHimkZEzRm4IwxuAOw/0YAr5Rnz48Ay1VgNQsJTYrVqtrd/9TRj2twRC0APiWS5RwQYBQAAhUA21ZDYNPiwD5G3nsJzFIA+Q0q5v4Q/igAm6OAR1bdP+jUn8DeIj7n+UeChpzC3ooMQhQADC4JRokhly0ngVyRnXANr4gAtF7McRygqv/G+3V80krj4iLuRFbhYz5A/TINXdsg0WMKMEAAzBec6vQoqusiDosA4cdgbwgNhcQWX+/kAH/SYDzHPFRg5CRG7maT4W99DT0+0cMRsCG8AF1+iznVdj+bGKpjpyxMenVqcDPIAybq7mmILmg27oXuEGPU3VndQU97ANo4GkBQMR4BbctqGS02AKjmBJIRoV86AHSnYcA3boeW3do76r5hAKWjbiHcJhhTspfaYP4Jy3gaoZpdFGvsBhMJ0VGCSlI0AHt/fHps4zhS7s37NwXgbi8KUUItMt5ywSKNjgY4IOoj0KeVlihlINVfFU0l3spD7A3f4c9XDsTPHRqx0VT53APqIvMTaVZ3OGqEgP5NDU6uEPXoDf4O5HxI7vxTPuKPMK80ALyA4NyVDm1pyI8p3+KYais/vhTPohDlrGDKPQ6tHITZS97zWj7xcv7jXADVgxBD9QDzqwTUzhDqEu6CZ6HtPwLLquKFoD7YYlDuvgDvRQC5bLmvUQ7BeP8aWu83yx8bfHA1DAFMmgAgQ/WiowDxNMyzt9BnNhtq+uUrmjDuMFJt8QUe/g1j3ffBm/7+IuA9zwA1cQd+5QWtiiB2rw4a49ahQ0vdOxUHSSOxcBKJZgSSev9X3D9fheD8Pg59uEF5hwFe5QA6qm3+4JD6SXv4miYgYbEWFJDr1wB3Fz9//I85PfFnsvhMMwAqwAMskwAtwAZR4H4sXgCs7W9sshNFzyNGOCU2eQIcNs+SX+l/fgvvdfH881QFv1/gpe0HokvlOWwA5wlPPYgQ7fVyF1OAqjPfyx/0ez3+0bzw340A4zGZ+CEGW3Z+a+gNwX3iOsBCBalgP3kO7Mj8+VT/5jsfc/8CLQ0AHQED1QwF/Lf9PJRw9DBh46o1CH4knZIMHWMArVDhD+7vkjWNDgQYQJFS5k2NDhQ4gRJU6kWNHiRYwZNSbkNoQHt40hRY4kWdIkSX3uktXj528et2T+4vkb8sqfvpM5de7kaVCfPX/27AViZ4kgUJw9FeLzZ6vNHFj+elmS5Y1gUqVZtW7l2tVrxY4fv44lW9asv1UdXJ5l21ZjUnr+QM0NGhQrV2f+KA44aIHF2zS3gQUPJqw0LMjCiRULrsdNBgtaNxdPTmxvYA5/rggO3IrzFgULJByIolza9GnCh1GvZk0Snzs9v/AxbV278z2g3nAlgjfKH7uCOO9iHHjXmrVichQ0eNCAl23o0aVfVD3d+vWE+OoNx969IlB/5PwFwsXMjb9iwQXeu6dPuEL37oHGBe9vmjdTrkwV8+WPWBEqjpHMOwILRE212RJUcEEGG3TwQQgjlHBCCiu08EIMM9RwQwXr8YcRNTzkZzsDS4ToPeCKgceVQLw5rz6D6NGHHtyEgrEg4IK4x41iirFGPIKYcmcef2gz8Ugk2+roB5A4dPJJKKP+lHJKKqvEh0g1ZPjhF388TPJLh4AqBpdATEnElWJksQeXqw7yhhlrZHFDnxNksQSeusDUc0+2HPuBDj0CFXRQQgs19FBEE1V0UUYbdfRRSCOVdFJKC6WDER14UEEGQappks89cRuOHXZGYQcUN8hxwhdHWrWkGEvo0SwuguhzD1Rcc+2JH3M0GUGFEYIVdlhiizX2WGSTVXZZZpt19lloo5V2WmqNvaAGHX7goYMRGClSVz3da4+ziAayRx9ywVV33ZFwKqQSeOOVd15667X3Xnzz1Xdffvv191+AAxZ44HoZWSVbFX7AhBt1WmIXVOHei0/ihyu2OCQrM9Z4Y47+O/aYyCtkuAIa7S42+WSUUz5xYpZbdvllmGOWeWaaa7b5Zpxz1nlnnmUeiBE9giRRZaKLNvpopFNOqh4vk3b6aaijlto6fLib+mqss9Z6a6679vprsMMWe2yyyzb7bLTTVnttttt2+22445Z7brrrtvtuvPPWe2+++/b7b8ADF3xwwgs3/HDE677VaosYz8px+Ky7lSHId6p8osvHytyh4SZHKaLNE68odMvdspp0wtirdcCLsEKdonQzKo4n3HiCcfaGXk9IqNzbpBEh1xf6XT2MdD/RHxkxopVW5BVi/iDehWed88Hueb7d5DG6kfi3JNrepNBrB10i47W/HqIE6MsKCAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRow/x6SuoT99NgStd2QNlbZqjaYlcBSpm6Q49K8VkBfLmKOw0X9OeCnS6FKnbt3Djyp1Lt67du3iF8qsnsF5Te2qLTXNiLxAue6bYWWNnD15CxuSqVrXk7U4xXMUI2svLubPnz6BDix5NGik+f9xEFQRVrEtka/4cXwTMjp0/J/CsWHNss23p38CDCx9OvLjxkIYONAgRi1kgypsFblZbcanJzUsT3T5J77j37+DD/osfT97n0nU+KGAAIcmUZn++O27uLlCWrET0fK0tz7+///8ABhiaU/6Qkw0JFIRAgGr2NKXTTW0xA48piUwjEHUCZqjhhhx26OFDS9FTzCimlNKAAEu4I9RSS1mYQ3fYfSjjjDTWaKNw9GAGij/bZHOag0XdsxkollgY341IJqnkkkziZKEj1mQzTzbffFMNNeO4Rd8Z9jjS5JdghinmmPDFNg0o8GCDzznfgOPmm3whpc9m7OASiGP0HEnmnnz26adxN8lCTyD+0KNOm2+++c08c5HDjBsX/inppJRWahc799zhmDuIJuqpnkdF54YrGFpq6qmopsoRgWda4k89/uB06qmip8k1pz+WMONemar26uuvwO7njxvTZLbOOLLO6uY369QVXYWZBSvttNT26QszsviDT6zKdvvNXUtVRU6D1ZZr7rkfLuUNM974w2m38C6alzWJkIvuvfjmC95N9shiioVVwivwt+AKdIY17eqr8MIMe+ZgMcws4m6yAs86Tpx3bSaLL4yB2vDHIIfcU1uU4bJtxSgz6xkz2vlTqsgwxyzzRr7Ac0ci+FCM8qwq86MtXt3lkPDMRBdtNENtXduFP/FkszPK52QzySfCuAy0P7LgYvXRXHc982bwwKEVmzo/nWiVRQignC2cbZarP/bU6vXcdOPb1h3W+IJH/sBmV8wNNQ1gQIEEbHjW7hmvAlb34oxLCw87jnjjzjjKoNM3yt1EYwEFFljQh2ebjWLPLc7g43PjqKduqSm+kPNNJ5G8e3nF6xwzgw92vOpZPe4IgMAAXPCqunFNsQVYg/Zs1iCQwzcvUXf6XNUuINnEU/bsZ7uzTjX+MLr7OAisUEIG3Dtf2l9z2vvQdWyZ7z5Tm3lzBjzzfINHJ8hiv3Ob46ADWj3nIIAHlEACarxvNOiLiT8EUwxH+CIRuDgDy7xyBm8UoxgqsUdNonPA920mBwJBxzh6MTn9zQ40+lgHGyxQgjKQo4NDUcpAQIUhdpBjGt7AxaPIcic3sGMa/rupyUAcg0OyYAUXiSgGKGRRJ3gMTVgw7NpSyIGLHTUNHcoAhDJMODsVdQaABPFGJGQTxZ7EaRKU+ISwlFcof7iCHVvxhSwgZhuM0MMeNSvLNKzgD0ckby0vK2PIlnLBzKDjG9nwBxzyMQ4u9k1lBfPHOs5xoXrwBTOC5MlpbLGCEGAgBCuoWp78YRsn0EOCivmjQVjkEFYapDvFyM8d2OEGMqovkx+zBzvggTgRtikbaZCG0xz5SIzN5TTzOEezDnIHUzAPlyIRRgg2IDj1YMAZPguEv4rBRo955CZPYUYDI5cnb0ITXewwxSgk2Y1lgYNKxLzcN+JxF8v5DyGb/nnhOUOij3q04QCbo4BAKWCGWe5qKRzkyfIEIiEI4rAt5txnr8K1jiAIZJixkgYclNHIePaNknLxWTK/oSJQLWUUoKCPRDtSD3RgoJoDtUAM2iGdZwLlVgLxhTdy5YqarjRYBPKFKzLDt3f6Iw346KhHzcaNQAbJHdsg6c8QwqJ1RvSnEJnHOjw5UIHK1Bm2gsou3XDQq2K1Tw5KBDvkkdROfaMeeIDnUh+5jtMdRR/4eNdbG7IUUPT0rBmhxzpaENCBNqAI3qtLU+DhBl/QQ6WANZUs7NFTNnnqG+eoBUbn+jRkwWVZ30goQx7n1MgqZCm2gVQYGqAeazZgE3kh/pcrrOGIlcDHrKZN0nSKEQh25CxZ38hHXDfL2ae5A69GwUcqVmABNtyyIRXEbW6fwjpfRKsPyrGAchChu9jmtBi+0A/ccjsmmvhDne5xxzWU6qZrcOMUpzhHcS/n2a39ZCn4QIc9VuCBECBgFyZ5yGbuoDjyKuQmxbAGKHRZpnlQYw5L6ANYpeuWpTjGDfpYp/AMrKSnnKEY7Srqm7ghEGpwdL5mG0c1tkGDHszDmDs5jTvO0Y15xGCaD2jEVPnqD2a8kMJYzQ8TRQsfm8iQNI2RBSgwxWEm2cMbS+PHONirqHWUgAFaMAeKzXYNfBwgBCE4QPd+YrlY8aMIG9hA/gPWAWOGbMaHTTYIO3bqkg0PBB/1kNtonoKLdNo5zh5Ka4/rcb11JEEELRBBKtax5ZSdQxSBC0EDxqwTkboVHP7YgxQoaVcBYw3Qt/VHIrzx4/HMZxrMYMZ4Qd2h7pBDFtPIK3E9ZYwdiOAFBlAFoxtdsW9EI3AUmHRicXKPdbi1WRgD8lrgMQprEBmwc3oc4lw5nrbYwxLZKjCrA3SP7lCIH/HglrJUTI9MJMADIvjAokXM68ueoxVFKAIw/vyRpcxD3OOo8QyVXZBiNfmDtuH3cDZzgjZuO0CbgUD3qOypcVDDHkkQgieksIRNRGMZ6223wMSxDnS0OST8OGSi/rYxbI2Yohg2XamFR9GyZ/PHvI4YxRMPXh5vmCK92WD4ssaxDlpkoBD1kIMuvrGMZTij6NcAh841zg1ulPwjlr7s0zPCjGlA9qxVz3aHorPkUdIcPFMclLss2y2nnyMJSbDFNzzhCWccoxlwh/syolGNKV9vy57V86pcZuzLfhwjN4HU1f+k97Y5BnEBDvRSLGEbl389OC0iVTzyp6xvkHgPMChENJzRDGDEIu6gl7szMt6mbnDjGnf36DcEzpDTTBK4pZ3Nbez7J27QMzT3obeHQOGlxxPPH9ZwhXuW/iYVJ2EHF29G0eWACs6H/vntBMc21rHrdmfpI/eQr7JY/s/jOkpqKYxQw47xcg9yJELrNooOH73ve+Awgx1O0FbSvbUObmjiA49YhzDkDgxPVOP5AGh067AGCYAAc4B6vAZSq1IP0TcO3MALxyAM8RB7GXEPzNB7hOcPPAAF41cXAQYpq3YjAWYKL+R47YcXQRUIqvYN2wAvTucMQiAFwnANb6d8zoAKg0ANAPh8zuAMouABJVACBsALLchrXoQRp4EP69ANjYRZjYAAArQLOaEPuGAhkvILP6ADq3AQ6qAOhUcUN4FEpcZS81CGxYFaprAjFHiCYcUOG+Mu4qYsBoQIHyAKzZB8cHcM5qAE+VCDOxh3RgcLMBCEQ8gNqedI/szSaRSxFO4Qh92wDUVgARtgAV+QE/YwDWTkJ3EgAzJAB0yBD3RAB3mGFDcxCn/1EUn4d8LBSyHIhpwhC/DQU8TnJt2wDjsgBc4Xes4ADMvwhwC4C4OYAROwBs4gDrPoUfWgiBHBD0lFZSwYiZNYBTrxQCknJtxwBTVQA1BAYjMEiqKID18YFF7CGB5xGs7ABQFQAAcAC8tEHOSSLfvGfa5IEjdBD9jCDvXADUvHLOOQCR8wB+6wf6G3DNwwCJKAhzs4d8dgCBOQCu4AC7aQDZwXDd8wZfojDm+CkW6CkRi5DbdXEdbTLejACyuAAlJAeyJxiV7HJ7+gAjqgAyPw/goEgVeh6BcCwQ31MA/t4A7t0A7qMHUi4Q0sh5IbwQvK4UkhUABcEI6lMSRooXcmOI8+8RQVsiNLuHTVQA+0IAVCEA00CIBuJwfm4IcAeAyPVgJm4AzUcAw9aAzNcHTLUA3cYDnmYIwWaYziYJeNNGXn0EjnYIwVaYxKp3TjoIAQsRT10HeVR0/uYAyvoowh4SVRqST9pAZD8AM/4AVqcGQ0KYr6YA46UAnu4AUswInaqAcdCBIxUSS6hxH1EIldhQEHkArHsRTMUAv+IApLsARSQAuUJpVDET+GsRfspijcMwclIArUkIvPZ3TAcHR/KAzrYAZCoAnVAJ0B6AzR/uAmUyaY3AkOGDlle9lIeGmR4smd3ZCTqogQx1I248AoEMUT97A0k4kk9WAOV2AOl6mf4hAnnekO7qACjAAf61CX6/AKF2AO67kRU9QyIcELGFBYAnUAjwAeyNACaZZmzQWcRBE6nfAqx+hwH5AFX+mL3BAGg1B0O3gM0FACS9CDvhh60WCXoGV3gqmRe+mdg6l0dvkt4NgQzKh93XIxQ9Eu8sgh+BAP3DAEPEBi5tCNocgNLDCgiPli0HABxnCkDXETd5Ata1gRrXAAMCVQDVAGR2Yce+ABHpChHvAAqsGhQNEdkGINUAUv3RAP1fAIyckNbBmjxxAL1NCLAxkN/tGwBxNQCgEZo82JeugQDZ+QCt1QkePZneOgkVpGmBbJLIoQAkUQDUgzD0VYee8pFFyqSmTiM0vapJ1Gk16gAjLwC1OFD/PAA5iwEy03EseAAl01oRXqHfWwBJKYoZNoBokHp1O4GczgCyZDdsridLYgBU2QDCUao84wCMcgqHInnaVAA1Lwf2SpqHB3dD24AwiAAEngDvoInhVZfINZqR01Ze4gCgogaTEwgQmRmOtaeefAlDpBSFbVJ6nKjd0oCBcwDHTAA+VzE17AgThxEudXrCJRBLuKAQ3QCt9BDTEgrBlqAWxmrJYoEHggC+Rwb2VjJf5gCB6wCTqIrb7o/gyeYK2gtwzQ4A4+sAOzAKPg+oefMAFBmAD+kHQdhZHfAJiNZA7nqWX4wAYhkCAAsFdMAYfX8w3ocA+Q2ROb4SVauiEB+4l0EAfzIA4jUAk/swYy0F0iES4KlBPx4EmCE6GF8x3jgGYaK1Pu8KUeaxFLIQuIM3kD43QMQKLMCa7YGa7RAAslMAcsm7PN6QyfkAE9ixod1ZeNFA7kCQ7yJQ5Gew7mgA634EkLMAd/xg/5Sn9HcRMk6CdbO5PeyBe/ULD+UAkj0A7cYA51KRKPFX9265r+UAQ90AM44JsL+htSEKwZ+gB70Jp3qxHWYArZsg4Zpyy1iA5z8AGb8A3f/qqoziAHB+kM0FANtoAIFkALNBi4iqt8F7cGLroDmReXlQqeyGKRirKXiNI/0RACb2sQV8kz7kANjOY//Cqf/pBSqMukArsW+KAGahAnanABVyoDpWmaZsugAkEogzcScXI6wfsbxvAAG6CmJcBCT5q8IWEhiENo18M9otAEUkCo1xujywAMktCW4CAKO8AF3DC45Zut6/AJO5AF3HAOx+CVNlgN3vm+45mR7CoQiWVvS6gs1VAPe7AEbJDBI0MOrgKwBHwQ1EANbcENv2AOv2AMYizGsJq1BYFEddYTtXKm3mGOSwAABzAAWbAIuyLCHCEkuDIN/GBsJfsN+LAG/jugCteAwzm7DMeAChHoDlSwA6lQDSqaw4DoDNxQBIH8f4J6yUaXcd45tN+5l4OZDfo2EIymM93gD1XQABZgvES5IvY4wE3qEFXrETShar2yF+7gDPOAD+zATblrxwdWIGPBgLN4DtEwotnQwjkLDcAgB4HaAHuAs5AMiM3QChageYkLlvpolxopDoGpkRsJDuuAX5TXrP5gAtO0ASdJxQ8CR/WZJKlbFDQxDYTiK+r5Yn3UZ76cEdOAC5CimJW3DttQCBlgDOMbzdxrdKrABh5AC8cczYBIDbwwvcbgdoXsDDk3ZdvDLPoYmO4LnrKarnbqD8PbAA8Auuq8E6SG/sWvHCQCoR3tTClP0VMvnc8DcROxuGD+wIIueA+CuAbCQMiC24OGDA6PsAI+/MgObQzj8AklsAbcoHw5PHfVsA59kARmsAvG5q7keQ7ckA1G68l5mZdaTWJzsAdrEMHwbA/FoE978s5EAQqJYcZhEs93QNMR4TbeYJVRyz3U2QjgANU5DA1C3QzbIAUYAAvX4NCAeAzusANLkArZcM2FfAytwAAf8AEwINaJQszKx6PgqZexspc2SRdEotIFLBTkQA4VDFT3MHN2fVr6wA6uUj8D0w3V8I+bF82CDXqw8ACa4AmooIOK3YuisAF7sJyKnYeiMAFAWAJ1p5dPLXfc/sCdiFLEmHYXvWwjbi0UvJfdNIJXyFURvIe8do2GsqCEOUd/3zAHE0DQyNyyzjd3xsAGJbAL1CAJz+nQyxCoyCkM1fDe4Gp0y7AE4/MBSTAP+thIwh13zrAO4dm+4iBfWSLXI0EhFA4g231fXdInepeME2GbqubdwBkdd+ANPQWe3oLCO2AG1ivZf9iDubgMRL0DY3DD0TAICKm4RbcNhkADWVA7Lp6zznAOfxADhVAKbTAH1CAM1GB5hOwMTDieWsZx5I0UbriS1pjFKyLbbF1e7lIFS+ADagSUDUEO1vXaBrEZrmCKTDNrb9INlNQESZAKC664MP6W1/oNUpAE/powDsdwDNUQBkDtp5JMA0tgC46s2G7XizGQBanwDc6ALEbXDMLAC5MeetQg4e5L5ZwBD9Yg4h+S4T1hulWeJLDQOZNYAivwmxJBDkaK5qGWRPSQMwODDrbwAXsQ5C8eemwJC8M4yIsd1XMnCgmQCj+d3MpHDafeCMAes7nw7LfACzxoue96hHkxDT4E6h0i6jzBDvQ5F23xv0ZhD+JAACuQZh+wAS66ygxxE67gKhcOaOTgCjEhct4SD8twf7mQ49jLnHPnDFtQAiwserzwArZw6fA9C7BgBjsADYD94kcXqM25lkvgAUAcxNVwncsgDLfw7B5vC5YOiNN3SOOg/iLiXur7RhJYnuUrDRTz3opIwQ9PUSvVeBSn0QgNoLFA2I4SQUjRks8EsjHyUA/jzDPxkAowALi6Dno9uNtydwzzsAcxMAdAjK2MuwAkcACGoKhFNwkSMAEWYAwXV3SSbXS3UAZM8AjcgK29uA1zsAN7cPHooAh/8Ae5wAsd7/Eefwu2IAxGt3micAx5lZpPS2JkXhBqcfLdpc71sAjroO0cwu0kYR32uPJHwRewwAQ90ARsYPJywShqqrEbgAKwcBHvR9P0YVHZwCllY3r1EHGpcA1IDd+Bq5A+IAWInrjUYAQNQAINQAV+T/bCT/aS7AEfoAENUAW3DOPMD+NF/kcBytEAt9CLbpcNu+ACayC+f98KFKCOM2AL4K/34M/3tpALxsALRVACMZAJZQKO7v/+Y7YCOGAETLMQ/MAobMAGBtQQjPIJqnH4AOFPoMBi/uYNRJhQ4UKGDR0+hBhR4kSG3Ibw4EZRY0N89TyuczNt40iS/vD5M9RgAwULFGJUKxmTYj1/SyxswJlzhTGZ/px4s9dT6FCiRY0eRTpSn79EoOjNG/cN3FSqVK+525Wg0TVnzbx+BRvWWdewy5rB8lCIbNhm1ZA0oNCACaxbde3ahdXM0IQQFDQsABLtVq5btngdRswrF6wDGChI+CRM8jJDHkrxOibMGLBqdih8/iYwi1ZhW6VznUZ9y4wFDxmyQAza4jGFGf5oNqTZA4MECehuP0TCm4xJiPH6gGgx715S5s2FWsToPOFJcbAy2aolXagzCiFaUsDQgE29pdqV+oOFwEPODR5W4CtPMqgpf0HN38efX3/zpfesBSLHH3C2qarAb9bJxowSqHHmGLYebMYZaNhapsHVxqqQLWeWEQYHCVZIRTHUUhMmlR1g2OWPAyhYAZYRX0TNRQ14ayAVW3JJpQgahCmMsMF4saMBCRpYQBRRSkGyFCOVRFKUVqhg7QMpxjkHHSuvxDKjFT7rzp913AETzHnqmadMfJZxjIIConGnHnzehDNOf0RR/uAzAT55SJ96gBEgBRIosG0/QaWDLiPzaCqlBAQySMCCSQadCMrvPgthAN8gheieeoR4wANPPUggE3/iO+8Oe5bDNFVVV83PGnsSMSibAqv6pht/Gkkii3WAMQtCsdbyapll0HmkhDnCEVZDDm+BhZsjjOFlsBEHW2YNIea4BhZoJilDRBhhnAUWKqhoRBhg5ihhj29guTHGUnYpA4UZPkmlXnvvLSWVXbhIooQJPjBEqqhmneobdOwIoIACDHHnm20e3uabb7KR2OFx4KIgAGC46eYajz/+mJtxRFngswVaWecclVceZ50v14nHjgNSwECDQFnFeaRC8dslAw9K/vjZgwl4yjkhMzDmEgMBovmtaISySOABBEpI5eaY6PHHivqc5rprrxWyB+szyOFnYIIHHCceKXaAJZteffVqrAePceYaFLIo5RsHNTyGlxsHG4SwF2cRZhYhlijlmMFu4UWYbx8/bRljhIGlBC5KofzFVPIVxRZN7gW9XlFgeWQHKVIRpZFMolkmGmrOAUeqWbOZZxIj5+nmbKq+cYcXCg7oI3bdp6KSiQIIKGOcWaWqGBxueClggwKo8AfVr68XaOf7pPD509akcIfUnMuY9DMMAgCn6a7xWYcbcA4i6h5vRsG+fvshDcobN7wcPvZ1djGAJjIEN69AA1hgOQY3/hpRAlHIDUI8IpEcYGSYRiDgE9KCXAZRM4tjzOEDjfCWu0I3QnuJIhVryIAm2nUYYLlPdyvr3+7OsQ2RxZB443BGNJTXv27QpBkgaMU8TnK/r2lPO9TYwQe856kSrEN9OEtJmj7TgB64w3pe05RHnhiTe7CDfkQEYxiZY48zyMIfZiPYgaqxBhhgiIAROuBXlkENXlDhA9RI1oOWkYt2nYZxg4iWH3kBCyHsyBYY1ODjbCEMUUihBM6YRR/5uDkSkrAUm4hBEhQnSbrFzSwRM5DEbFggbnBDdjZ82DVOmUZ0CORN8uBHPfghRq4ZUTrRSOISgXYpp9GECwQIAQbC/nMAZdDSKL5ghjGVuUyJLIcdsrCESSj2wntAYgdrqEYz3gYhB1KoGdwwRAn+UA9jPKgrwpCkIOWgikAeow0xmAMk05nIERmGF2sQ5zVo8SJY5KuSoMsXLLgAz2Psc1q8OGCFaug8mtQjd6OEaEQHdI54JGQR67giM1NlS+lIQYnec008xIczfbjjERggwAGKcA2NCoUejmBHRls6U2OOAh70Q8cqC6RKbgjhdODYm6+6yZZjVGMZNJCCMagRVDk2SHAwApwkbmEMWMRAColzET0fx0FRwIALsMgcHwlDyX/eSxSz0MQHuPAJXszicdsMVoTcZ49CNMEQ59CpRPVa/pWoODEh1nADPGRKU/1w1DmlCBoTP0CL680yTBUlbEwKMtjIVrZr+gAKrNaR16pwgx67mEAjqhHHsBgQbsegBiU+QLhocNNxGpyFKqAxhw0YIoRahREsltGGD4yunovxZ1lLaIstlCATNkLktMrpq2+swQMfmIAm1rFX6hoIfmCzLKQMy5yTNGIHFvhABmDQiFFhT4uU1c8QU0WO/dknu+91mjdw4Qp/4HWHy9tsEjwwDmPAVSxvjEYupAADYeSRqPS8xSyOIIUYjINduH0cL1JRAilAsJ5kFa69MrGDGAjjE1l9HOPgNg4uKNE1pqxudc/RkGncgR0jha9ztssc/lmeYg5zWMNJtsgQ8thGvTGeDkLcBKmlFEMkMAZykrVjH0eYQiSyOls3tuGPPQhhD+hYrjnHQtpg5bAPMViDP47h3w0VToODEQYbSmCIZRgUwvU8zBpisAdnPDhGGC6rCUWxhh08Ihe+hS2Z5xgNGPyLAXMQXooj+o1xHATJ3vCGku8z46RgDRQIQbJC9DFEmvAj05blB3VuTN7yCmopsmBHqSW9av7Mpxb0QZDuuDEPbixhCalwm1CHKha6ReNuxrgGU7t8DLFmEBbGmPAaaHGMeUIYrKWwKljdeufgClcUwljg4biQChBn8BbCYIswzvGJHRhiDjuYQzVgp+hR/o6DG+748UK8wQz0snoolD7KcnLgD6xtpBow+MAHSpCMeMeYJntgDU5WEA1MBeUMqbZ3xI2ij6UEwR7eqAdnqcKNdWQiursGC8jDvY49TIAWIq9QIGErjDlY4BOtOIIq3sxPY5ghA5u4bS5oUW1rw2IJa2aNBZYwSAQDyxjg4IIFmrHZ2N2X3TZ0r0NcYUaJJwXfRyFHgDTyJmMYoARfV1TVPk3TpRjiASXIiQdQ0CZMsUPrVYe7TFxRjBejcVZR6UYSbmBU/8aNy2CZIzB2kARujBlCy2j2t3K0g2X8aOYj4oUoKNwMWkjSFngWbik+YVVeCGE9HrBAWBNpjA3l/hAtc/BHNGKH4qf3TyrrmMg0rBH3o1ydKEtxxDTqvZCDJADgn4IBAqwG36W4hz2gEkWPBWUPctxB1bSHvkNQhYtikGOzGv/GOeYRTkPMo8Aa2jIBW5eNcxfiHMAwJ4cSnxrFsAGe+hyMHCSRcw2ClRdcgIEmjtFt4Ga4XvkqhS1YgT1gpDV4AO9YAdHTIF5YBm5YBirYgV1Yh2pwutYbnuxzNIjQB3twBZGIvnu7CEPRDmYAhXsYu4RYil0QOO8pgQ8oBOIAMlFgj7QrguHbD1mgrw/UQYXotzPgh2xwh4ciGI7jBhhQNm7IspCLkDc6hmzxqV0wKgpxBmN4KsiB/oVjmLBtA4as2gVPGITkqj9naAQjTAVjkJZ2wbx/EoVc0AQP2LbNWUM2aIAd+IQqrL9uQIQS0ARnmAeNs8BZ6YbwmQh9gAdZiLodJAnbKwp6OMEg24MlYqIkqJ4kK4UZzIklsEH9YERERMTy6AK668Ph4YZ6aIQPyASREzk9uoZNyIBSID1uor/cuoYlgAFRyLlZmDatgoV78oA1/K1WSENLujYh0EN7KYVp4zZnEwYueIBlYDQ//MMC2bGG0Ad6sClOjAlFHIom24iTEIYV/JQWfMGCs6x1aI8ZbIA92DRMmYZAgIdGxMYkgzQrwBooo5XdWQdnyIIScIcxM4u3/pGQN/IkXtgBIcimvmsGKqQnDzOdZaALcAmDWQDDb4GFWfCAJhCMF7kF//u/egknKfgzAMwqW4gkrRqkVGiAEAgBAnAGIYxG3YG9jeiiHIxHnQlB7SBEXyCJg8gAoAnHBMhEy1qOOTg7nAA9C+gIVak+eKzJ7JIfS9BJd5AVicmGcAiH9AGHdmgHd6iEEkCEdeAFrzCHZjCHCYEGs/BHX6mQamCDHSiEfhQ0C4OcWeCFVpgDFGiEs4gwT5C5DCKcZBiwT3AGN+OjfuK5ShKFW8iELIiBRrgFE6qXXZxIK+SRJdiBHtCA7jgAf3ChlzSQRnu+iCgy+mjKjdBGmQgK/prUiKWgBQboSaBBgFKAQSJTPucIijmIGgtAABRguFUxBXo4xNJMMnuwB2s4BX9wB3SgmANZB3zIBmXIBjzghkhABiGoAE84BUAgBTxABSdYhjSIhGjohKUyB2rgOwNrBmC4hlkogTUQhmwQtrghtvU7jVlohixcpMnMBWGQA1yEHFrIhkJwgTUAq5GcpMNETFvYgxIwA27zp1JwEfqEkVS4hj5IF3EwAgxQydroTM8Eh3EAQnKMiKC4g90TToU4zZIIii7wwJE4CWpIggyYgCSAhtkclNvYQBE1CnyoBkNgA1i4LlW5h/Y60SSrh3uAB3bAgzMC0XyIh17ohVPA/oNF6IRe6AR/OIIMSIWuOIa0rBBq6ARuwAJU8AQnIIVIOAZgoIalEpZj6AYPooVo+DuVM7Zm+AIL4Da/WcAwkEvUsIUrTIIduIzf2jmORB1bIMYjwRf9DDFbcIaCRKhlOAYFEIAQyAaX9EyHeROZYIfgLNKGSNGS2EBPnQkhS5WlyAZRKINWsJVZco4N1Ad+0JScmYZ++9TsOgnY27f6koZskAYnqAU4qIVeyAdxQIdzcAYYkIJrkFRtEha0bIa9yaFoMAdnIIVFmNJF4JVm2IUe2IF5CMvDY1TUiLwYyAJ0QjBekIM+vZHIg4Es0CeNNFR7aQQPYIM/A51Dwi1p/lmgOciG71uGbZgHd+jQl3y9nsCafSPVW0WIUB0JsZnEmCCTMZkImogHyBQIpsQNf6CEAjiABjiAAyAvjS0JfDBBkvIHUJg9hq0smmiEFiABf1CGWlAGLMiGRUAHcaiHY80G2FmgRliHoNqytdgQZ5XUtawGaoiFRUCFI1iASRAHYagGYdsQPfU2dFqbPcgW3OIFSejL+uSRLfiAxMnF0+gnjhSFnVsCK7sFetmcfLFDDbIFY2ikHbCFpUKgArO7P9wGmAnN1fSHaLJVlq2Im+SPlH07/FiKVBACBpiACcgCniDZILOFAwgmYUKpWxgyVruHe4CVySXcyxKIOTgA/guoADNwg22ohXwYB3eIHamghnWgBmVtwqAyoL8ri2idh1T4gD6QhJo1B0BohwYpPccZV1gQwx3gAsngv0RSBUmAIFiIhnCag0Vql8UJRhKyxTkw11lAHWz7hMt7s7xAuEZgEEHz0L5yVZlYimmAh9B1CIcFXF84Wf3omY96LhiIyZKgiRXAgJVIGhQIyhhbDjMCXfgtGn1QBnlAAQywABJoAXpYqKqAiTnQUjn9CtMSSLAQBmqgAhighSU8hljoBDgABnMYM62ahWigAi2NRdiChiOAhgQ7Bsv0RcibVyWxhR3YAcgsBVuggg34ADZwhnEdkVkwBqQSBtyNkHWr/sAU2wYdHQl4OAF+Q+CFkF+KWIpA2Br86AgpYA3v+QAzYF9/MIG+4JLuaACDsLflAIVIu2IxKo9RGAVTmIIQaAANMAO8mhV0OAYYSAK9AcgNDrku3YEs6Ia3qRBnAAZgCIJlUIVZ2IXEa1cZXIN4fbxciK1B2AVV8IAsaDyNRBL/86eUmINZgMxUmAOV2AALsK1EapdH8IA9gM83coZvEIcP/VBojKED+duYiLSFhd8spgh2oC8TNYp6GIcE8MlPkRJ3iIml0AA05pIQeAA2pogrwof1JaKl8IaCiONuXgpfsIYgmIZimoQoYAN8IJCNc4dxaAMYeAR0ALe4IeSm/ooGNjDFdahnORIWCRkEL7wFdkouDhKoGNAEXiDMmavISciC3qK8eipU/xudTxgwPbuXVV6PDQAh2DqGUlibXfgG9BPIa3jivTKYDByKpbgDVwnnhCDmiTAFbzhgiT2HCWhmT5GS/R0JmvABFCgfDOiBAV4IivMHVX5LbA4j5nOEl7afHnQDuhMI91qljICFHWiDXQg2OGLiBxEGdLDINcih+IwQxyGcWfDCQaDLp5oFZ3iEGGiDZZNQb0PeBV2DXSA6sYKF7B2ha3O/NehI0NkBBEgAKaBPZnGGPYCBYzG8DVY94YkKcVAeXq6KbBAppPCFaKrpmoxpiWCGTcyP/npYB/z9lAyQgp7Ah3AYgAYGj5WsBmFeiHXYgRW4iRggY9i+LP8YXKd2Gn1YDlOwAmvY7fI6JW6Ihz3IgJPbkNu95684hnOgxVxIxWW4rV1A60GQBLpklmPwKF+ca8ipi2MQgh1Aa0JFUGE0ESHYBEuCBVighVZo3t86BhqAgdbSpubOhnEQB4nZoVy2IUaT4p54R94eiM6OiESIKUGBBQbQJcbqiXmgBsttAMewBX/gZog4hx44vg1APTFC0kQYbgJnFflxAniYPcpqmHGIGLU6B7NIRVuOBkLKgnHoZ6JqtsFIhuweBFughQdYg2j4bshp13qdA2G4BEl4kfNG/kxR+IA1mAUEfRc+wsXJ/JG9EIWtbm5tMmlGUx5zaLpxOOmCAQeenrghpToRN/CH8AZfsIfNjonjflxGgYE9IOqNKAUzEIWM1QhNSABL3AERDKNpAGcRz5li8AYrYIf3zTT2WQc2EoVzWOIJyfJo7QZb8KC86SSxoO7DvhFJAAMaSAVgWOg346BSyAIYSIX9g4b+HIyJzrCK1hFNgIVUNkbkSqQV/oQlSIJmiAay3uBbnmxdNpuTNhiacHNqnLdfjuM0dwh4YPNjj4lUKIQ5aASeCNKHIJPaxDT1MupBjIejscQaMSZ2gDhCVxV7SLUukIVBbwho3gUhMIMmJL2u/oaQYwiHT2jPZsAjczJeDaJQO9gBNjgGLHgGM3u8vCiEEmgDYVA5VehPvgYoW1SQOdjr89ZFYZAzROAKhNxgZxSlU4qK+zol3rHw5pgPc+dMw2WOOlYVMnGlihWyC2dfd1gNS7QAWDAmU4gmlMcUrGGGE/CGcmcIfTiIPegtBqF3XzmGcWgCGOgv0toQeiJJZygCIQiRBEsDSUiGskWwkyukVNBIYwCDX6D1fwqoEkAcs5d65DWdJeZ4Qm4d4WE0XRaYqpDsAHcpf6hi3A5dZh96eOB77cB7FM2CCejhbT4KROjzGfQAYVAmweL5QbEHeLCC/el2h6AGFzjteZ90/r+zyD0oPF9RSHr6hCYvKD96hkHAg7hNJD7fg/3jp7Q9gl9Q8sA2+kJohbIHHTqFHF6ooEbQm843J7yCnYHZoR2SGGiWjqVIpsAnXL9fiHuYOzA6CU3wuq+bABiYxpKoBrRLuwf4AxslImsAhTaP/PygOG+oYn94343VBwt+hnooJUnP8jk6hi0QgkwYB5LWdN7/lm8DiFRrPKQSBisXwlyzkiXDkmzWrYQSJcJaRkvIDlgGJdqiVapUKj6TUpEsaTKVKFiPpMAACbLkR5O5Ik6UOGtZKiFJnDk71uwn0KBChxJdpqhPq3XfwDEFN87pN3T6/FGtavUq1qxaqdrz/teF3NStYseSLWv2LNq0ZrkN4cFN7dl79ECxg2v3btZdGUp46Ftiwpp6YfFeXWbhQYMGBOasI+z4cSJ2XR9Trmz5Mmat9PyBsgTP32Cs/Ob5SwWjEDd33M51I+paqLBxn2KYGedsGVFnwmbWnDir2ZwSa3LxslXz1i1VkiQ9m9UbIa1sW4SsOXbLeEJYqV6WEsXH48mSonax8TDn1naTKWGJSkXrecJbsK4tEbLn2zLcr/cXdcZEwQMHwLIUUwR+Mw8/mW3lWWgKOvggZmy5BSE9m0GY2Rcf9LWhBxmsU49l+PhzjjB9iEKNiBdeWJeKLbr4Ilz6dOWEKQ1mRdoa/kLsss456ogzjjjU8DfUMsd8s8UHPL3mDHwczXLMDlKUwkuTCQ3iEE0caSSEELBQOVF6J4GRR3jbiXKLB1J8EiZMsCxRhHZV3iJMKjGwcUw0+g2550/5kYABBQ1Msg2B43zzIYzkTDMZjI06ipWEbyloDzlnPIoXP/hIkQGHHpSAADogXnbPPVQJdqllbiyKKqutZmYPO12AVqpY7ryTwRr+cOOjOL2iIySfzfAkSgP3CeOabllW+Yhwy2AnZy7JKOFcfLnY8skEfRhzkETolUlSe2Xu4cEesLykHiwbbOCBBc5wexwvsxSSQCk9BXvvMtyQQAEFB4jSzTeGguOO/qO+mMKoqwkrGKmD+tDDjMJpZWFBp3+Fmhk+99gYcVresMgxyCFnNVUxvsBjD62igVjPHB8k40816pzz4zjhmHOOsPntd0w3tpixwy7bGOPMULfxomxvttApBQ20HENtlQjdMsssqqiSzNTNpJIEDLbw8q61KH3r3hGihHvmI/WJMku4J7VHMbt9WDuRLbYcI8oOS6xz2719L+MMED7M4c5SUYmYYotdOSIy44QxrOA98IzSuFiF8MVhBknEgzjlrOLiTcqdi35pV6CM4o1Y+sTjjyg0rNHOOtug89Q4tTM1DzW3REONnkH1tM4fO/xBTZ657Yb0RPI50wcMazgz/suzUSdkiyd4SMJLM23AsAcvxUmdi3bnllnKL0fQYrbPMQwXU5mi0PJACSsckArYcy9DRQyb5Nl733veps4y3FEggjVqKpZA3egSKJbHZUYf0zCFAqsiIhiUoIJ8+YAwIogqX+ACNBr84INKVQx2kCN1U0lCEoSxjnGc4xxMEQc41AEOc6yjFShoQQ9gQTShLAMY1yhCEmxRvKItY25NQo4zYrCDL0nvObxQxSw8EYMkiEIYSCOJ+L5Vik+sCRYlWAIWx7adUhjCAsVCDkXAV4I52OIaOusfvvhWjUNx7kWbAYUHQahBBmJGH94oBghJIwUL7sAYenTUH/N4yEU6/qYrsrLQVoRRgkKsgxvimJlTYNgrIM2DChTAQAO4cIze9eQYD0AN/4JiRWjx4hEfaMTXmlilNQRhDseoySyyKEb3HWEPDNAE+8SYipkIQxjRS0jLGpGNN8KRP7iBhs7+VqTVPaorJ/AHJBkpOj5aBkTFAGQdy4K40J1FVP4gZ1mmkiJjpCicWgnNxsYyGHzEUyyI00c9t5IyfLiTLOSAoDm1KdCz4BMXlkKYVUC0jeBQox7cAJILMWm7H3XSAhg4QBn41hMhLQEGybiGT4p2DO8d0RmfkEIMpgQ1WdrkGFvzaBpQoYlHdI9quhybKHJhiCzsgBZs0mIqIiIfWGTp/kmawMg8mhHSZr7mb8IKijSdkQ3SXEoW/kDoQBnHTcqA6BuSiIVaMqYrUVTDH/18Z4KoIQpwXBUtYeGFKECEsnxaJUW7oAVVzpqVUtUDFragCl2vAiJ3tIIXgD0LP7qyDlEc47Dl9Mcy+DAOf9RDr1m9LDbdcM6s8ANEtCgBIuZRSR+Nwxw0m2Fpa+eOSRSgAP4i2jIyOAca7OEafCvaKqs0C2HMIQZzMAZJWTq9WVQjC5NcxiygUYcNWMAMrfipGD+SvjVIAgxtA+oxEWILWFADpWsdJVNzo4wdPnWHfLtG7SZrWQfRBZ2Y5dhWH+MOKmCgvi1wRkDJgg4jAEoD/jhYBwHN8g0f9LcH/gjwWPihD2EAigIaYANlEftZCzaCnmZJECU0wC8MiGK9VZmKHfhFgRAY9sIgmoKIV0ANtBCsBfXFABMa894Zf7gYjsBqVQhWBSE4Y4Uy+9GPbgYOGD5Fk+NYRiuEAVtnRGOKvIhGU40In45QIwZLoMXRhJs8g8DADLegElxXYIENHOAPzxUmuFCSpvaI4hPnG1sp3tObWRgjFRbYwzHIG96mAkU/+YnGUoCcXxc5whU0blx88XKPejBhASIOQQG+oY/11sMdM5DAowuAj0FnpR7rEPGGFeAPqtrzHscQQIMpoIAytFWe+qAFAi73F0Nsdiwi/kKEAESMAQGIAp9kAVEZCqBrAQCD01gBUREwvWEBNLQspBFACEQsgRa4w72HZmQJIbaVa2SgEPXYBgvTC2QgidscqRVHN7jhxttgSxPXMMZrcntEYRgiAYU4RnZZ6jVbFGIChQAfQuCKAnUVC81YhMUaJtCIMIniBb+4bpt6QxM2bGAXzNxzUZqRH/3ssBpOSe84ZOwiklnj2lpti6QoM2lb5FoCLpdACCQQYXvqg7UUeDnMWzDzrQDb0TiHca238uyYvxwDBViGWcdCGgPAgEMlYEA8rJ1QdwSA6C6H9M61wk9qoBrnIRA1qd/pj1Yo4OZFD8Gox1KqGVgd0wX4/kTSTa7NqQSiGA3qrD/QsYYbsHM1NBNHONRR5E2m1ylNCQc3vuGzEkTDXiLlzRGPUYolJGEXsdTy9IChiY6ONHq8oIIFSHAEQ6C5FLNohJV3IYpzlWIYYPhFFktRv4Qs4xFFkAI3Lo7xPj8VN3paRjQe2hSnmAMcCXpRybQtd/iivJv+6IHZX06BFrBV6f4AFM4xjXa6kkYBGMj+zbOOFRFlw+c4pwAVgj6y0lTQ6R/YQ9y17g82fP/8CoB7Ptdef+kXIINjARG/gF8BIMpYfFr0udxFpd3yHdJU+AIgXYXq+MMeLEGubIPfnYNp9QrNkNuQpRa5icNbGMIkiYPu/v2EM1BJvk2PDpXBDjiPLSCPLF2HM6xBCRiCMdRN8ojCHMyBHXgCeIxPKdiCFOzAHtgCxIEEH/CB2azedhxE9LygMJhBDGTCN4DX7gmFnvUJ0ThDNQBJJr1QwFCTipTOZgTWAr5IotkFaQTg+WGA/4kFaRzA/rncJ20DWZBGAcwhpmlA/K0fLJif9M2A+F2FiDSCp3RKmqgfVpRKGbAhHUoAhOkViEAf+N2fInWaP6zAAWKaAqAIWURDtFWiAp6hBpWKJQTC+J1QElSDO1zSJUmUuDFF7dwMzdzMN3ADPgiHLfBObowUDHZLLjTDDgRRlmGedn0ZA6wBLcjb3GiH/klcyQ+aRJxpQglIQUrc1EdMAi3AgnaIQnY5xzFYwBoAwxBdoe/13g5tnLAEjKHQzgeOAzq8iKrgGCleShrCRVdQQdmdXwhIXVVM4iZ+0iBeBWlg3/nJHD3+oz8I2/k5AKv5o4gcw164XyP0IVZMhSFg2vkdQCtc4iL6AxM4ots5A12BSAsEZAHEg7F9GD4YpPTJXNjVYwJtRjZRBT/QQgKIgmq0EJC54t99HJGdAwcCSSp4QCbUg1MRSTFOWXEYAgJowuUZY8C1zCYEl0T4lNvQghxEI7jMwQS0x02pBxGoyxZIHC9wwQdwVwky1e9poTpqXDYMnzsSiOHVw/FB/og3fIZMKsw9wsW3CZsD0KECGMFA1pU9zAIBRF+/sJpl8ROuRZ/RKYJHHps/tMA+KtsCuMNKVgVpfED7HaIHjKLQLSQb3hwGiKZWgAiqmZ2qCWJMjh8+fMNq0mEBEOZmblYZHIBiBsAx+Npejs5UuAHEhEWpcMPPcEMloUNPGtk5hMMmdaAX/kg31IMxrIELqMM8cAM3FAXkTZkw4E0SREN3Yp5RJcEONAPA1QR0oYQoYEEwqcQw2kIw4dQOqMsD0NQxHgMiRIk7FMkV8hlURYNcDpnhyeJTDExeKQjJuILy/Sar9KVaTJodCICyBUAP1IM/ftj8USi/BAATFCYh/voDFXCoBAgAGYCoVegDOGBAYvbL21lkVvCTM3wAA1TQBGQAXgXWVMDCAQgbBRSABuBXWZTKJxRA2VEAtBHg//kDrh2pAOAAZd3laDJBAASgAESig4rOVCTCYW2aP0DCDiBCPKzDBo7bJX1c7YiDDJVpWe1BCVSkdg5ZUhKNVUpcLizDF+yAIRjTL0oPLMyCM2QBDPyBuxyTcawnFtFCGMAe/SzBDrARxI2NIYTABrRAAfzBbswCLwiD2pyDFWIcbpCXn7mlM2zDjwxZONhOU5yqU2RDQvVRV6BilroKhNqFMxgBBZCATk6mWPBCEYTADLTCa5JFK/QABuQQr25F/jzYQQuEQBlEQ7KO34HtAQzAwBywlYd50DewQQi0gB0gGFlMxTWUQbf+wbBuxVQcA33NACJka1XcQytYphEAw6wmUDFY1VTUA4hIQRJAgwCdlrl94bgdKJA5BTfEwzx8QBacg3LWTqpWQ6haR9QcBCzQRilIrFTCwg0q7JdlV0SE5TPKASx8gjhqgrkYHEnQAg1YwAeEQE5phCi8H/CtZf8kpTRBlcbdRjR0w1OEA1SAw1KkKQeCAz5MQgusAK2ZoVrkQKvVqz02X2bcAz5gAzZEqz69K1wgjrt+GK3wU1iliNQiVl6FRWV9LVVojFqgLWUprQTpAzwA0m06bcIU/sM0fNguGECFbUMLGZ7QpqngzYyZlhbDNgIDJMMtolavgMM24AYTVQkv7IEF3FsKCtcaWMCZTC7IqkcqUEEJaAKiihF3vQkYyAGVrAEDRAMw0GwzSdOojmozZIMLGVmBulBUfIPPwqMwzEB9+QtmkAMgZajcQkitxkg99EIt3IU9zMOpRGg9zIM9bK0ENS/wap2+bi0+8EImrMF4oGZcKC/bCpb32oU0dIIiBq/CTAUzoKJisQQNrQZQRmcH/sjM+KxQDpk46APCLYE7NKe4kduRSdlz2I0oFMEOcAPVSKVxCIMmwIAUoKBECANw1Y3ByV4hHMGiMuEE0w+VaAQE/nvCFLSgp6bS6t4WbOVszm5hU6iqwAyo4R3KLUTbrl3CZdCDL1jDx5hvowxvjJBDg+LwVazDHDDAjTJABlRk3IaMNwynD0fMVOACBK3OGsBAJvhDr8zMB9ovgc6QgQosPhhCDNDaJpkpOoADNRgDGgXwLFDDFuzAvc2evuWCMPBrbZ3xTPACG2wBLGUuSpRCLgxSIYhCGHAlnAWVEWkEL9BAFqSAP2jcnpFSfmjUU0Uy7KIp7QRMwBToOIDbUwhlCxzAATTANVgGOViDJSzxo+hw2loDl5ryVcxCAiAiXn2QKfiC1bLyyFGFMvhDPFDHNewvkBDeqaaqO6ZqGCtu/jXgwwasASsSX814ITpUA9Ecg1+58ZPE7BrsllQihJekwgd4GTPulhSM2QYs3C7lQiN8wBqARCssh8GdyURohCGQyzLEQhh4Qhb2jzJoobBs4SMz8jJcAzuequ0I81NccuHJEDxewyQ8QvU9hggB0vfasmOgclrISN1KtKdpSKdkgBSAkDfYQ0RLtIIwg2bBAgKwwmgRnhcOLURdku3YzjxoQgL8Qiv+srj9yBBVQyv0ATSslHHYQssE1eQ20ZclXEFkFy1QAwGsgLpIgXzCWRZ4wCfERClIQiBH1zBFz01sAQo4Vb4MwqfGET+bIDOV8OseaAoXHoF+Q6/47JCd/oMlP4Ul2WVlWMFHizQaQu2rsIOsMpLWYkY9nMMEXM6GfIAUiJwCgcI0TC9eA7Y/XEstmANL4EMlgVwG+m9pmVua/ohzikM95IJOzMM57Eq4AV7t5B5QOIMdFEADKICyCMMnCEETLAMdaxlyHIMmDKNOw6AOjZkHPIAZ5NJJgAQs/IGVyaf4sPP40I8RXYcxnLMZxIMw6Ec0DEIseAJq3wtsvVGoRrLOCKhT7C0M8a1As2rhmbbtHEoj+QM7rHJIN7ZdULRb0cMo6OUhkYZ0E9B789w4xFqnGDa4jo4lSAZ8v8hUEG5rl0AmZKdz9i10Ju7gAeVq4AMbLIEm+MM1/vQkmopDOY6UAoQABmwAFdC23ZgBDDRCM/hVxiqZoyJCisPHdeBNKLHHcJNEfRQCXIXHJcgBBreJc2AHB+cNLGQDMEAVNTiDHMRCUvLJOUaVxm3cbTjDNVhxoEEn32aSqr7QlRveOjD2yExFZ5RhgauIfKPFPZTQIhHMDhTBCqx5ylHGpk3Mf2cBCEnGfo+5WoCIZx5tEuiK4D04wGLxO/ZKPDhDlx3sQ/VkkXFDFo7UAYA4BlABcAmDOB51NleE5ayBRkzuoaJEI5ysetBCIwBGGIWHVv6U7L3zMvSBBzQCOYqwsKCCkufZkPQzVJ1jzgAakPisOLDjx23xgap1/pEVHpB0w7mSRanoQxAUA+rcOZ6fRZmbhdveAS3rkYigAKWqywbEQFldBi1wCofEgDtI6ejQQxcQ+LNDiJ6XwAd8QBI4VHSKw81c9koTqLkBWSMggDmwNeH9um24RjRQQgOEgAZwAy9sQQmIwlJmLA3SQm0/hzSGRyncQhKUgDPCGS0owZuRRJ3OAg063n5wQxgAA63zEE/0TjR196jGJe24NN8atCyiqRYL7ZaDA2KjBT1Mg2b5Zro/SLSfBTvc8AdtgbZr+wPswaRVxlRkQhJ8wATAgBCsA7mPTtD3vIqQxgpIgQvwgzugw72nKSVrYAfKkDm4gzAIQRbcQ7rd/sxNj8N2NtXuGAM3PAIKOUufRo1QiUIJZIHdV4ktIOpHwEJvZYHq6TFISAJJHARNdOwnJPM6hLVrHEM1UMMRAAM5+o7v4Toj883NOgPgXjHtvFA7diDfCrMwa1IKA+3Wuq0/nME04IKXW/1d/LxZ0K0eJQjoFb26lICSPsbKlEIjxLKzX4o3yALPyz5mJAghHI4/jEYlFezX/x0LsTU+tMESTHE3SH/NoEM3lGPk8wTTIMLzZLPXNIOjasIyqHiT/P1NrU0pDCEi5EKkLncYDMNKbfowpsI2LFWtf7UkoAJAUFvWrNlAgs4ILnM20KBChdnOgZM4juI4ceDGYdQo/vEiRorfMmYEJ05kSIzf5vlTuZJlS3r+2FnBhcufvpY3cebUuZNnT58/gQYV2pPbEB7chgrFZUmfzaRPoeJEV8TCBqtWPTxAZ29ovXn1nLbEF5Vs2Za4ZJlVu5Zt26Q2LbGryVLfPHEkS5IcSZHbvGUl5kSb1w2vOYvi0FFbSJBxY4LHqsGasMeWsFu5MGfWvJlzLlrGHlmYA8ty582wUqVWrVrULUMZzKQutZo27VKlPGFJlpmWszkfNjWLZtBxccfLqnkCNsjZ4oIHDTpPeG2jR+sZ75qTqJFiR5MUt5+rKA4kuLk77XF1Y2WayrBu4ceXv7bo0fn+7L28f59L/tWrVmNwpx6h+KlprP0Q1IkcchJs0EEE7/EnEPxysmscwyayaJxv4vmNlnn2qgi8caQzLqFo2JggGmGEscW0FzerzAwYUuHlMhgxm6U21UqBpYkPbBFlxyFTKYWWXHhJZhbNihDCmWOWIc7EKQtaRg5gUFmIIeeIW+wb7zD0CC9wzgEJvJE0Kgyji7TbS6JvIhJnngJ5oucEevR7UM8946sPqfnguYOdCPksa48GPPjvgUaSWoaKBkJoBKkDC3XLJleYqVTTTX9y5B6ucDrQHXRIktOdeNzZZYcs/OGGmzUN004cbo5BaMqBqhElhjXGqfUYF3F8UZhGaEgiG1pu/uTMFltucRG12majZQ8L1shFSCJtSwWWXG6ZBQtVeBGmDxrMmAcYKtFlTKFoJEFFEm6iLDHKgqj5xjBxwvkGHJAuEtGkifQKx7svyQsJu5D6RYenaRK5wx96QOVU4olz8nM/V+AhlOKfbFqDgA0SRUCIdYKqq48DGsAAgwNCoMYfSjd+Sh96cHkv5psfZMcUeGwWq6Z4rvHHjDn2mAMGWvB5VZ3uzjHnHHEWstW4haKJhoslDFnnGMZ4CZYz0mxZogRRllnyxWaezGWW2WgThRZRhEiikV2uxZZHWJLNpZVOWiliB2Oy2Trdwel1ZhBPJDHnyeeqjKaapyciszyL/rgbkzvw2tzOujVPurxnUIs5o5jzdIIZ59Pls/i+YvTRGHWd6rlliQeKsIXkoOpxhwAMKOhd5RVefl2oe+AxRfjj5yOnmIh5ilCKCTL4AIZ41kHT4G/WUUxK44ShxhYP1nBGIMacsdHrzGBxppAEGiEt781uaWWJHaQYUhRb9ihhDdns5jEVYNEHjDlkoBS12h7hblWQaGBJDsegFXSuoa/N/UskGolThsrTkY2MqF/gcFrBRrIOr6jEHjaxxh1Gwbyb6KMeLUTeC9Wiuvn4wniug6F7VtIzngxoDinrne9WwIsb9kQf5GjPEJH4lHv4whpASUkJSuCBEuzAH19K/tNhpEalY6xjCwxIxnCMcz7M2IIXSxACL7aFI14UwSoN2F/bbiGEEtCifzv6Wi5gUIFIQAmBfbSVQrgxiHadaxnZMBheNKSX6kBuTZbT0EY0uB3w4OUiCvNHhLjSBVOMTicFqsdYuKEHfOgwiaVkiQzlQ4/RkfKF9vhKV/wRgw3w7ocYCIEoTLlCf0xjFLn05U5mJgtvAGVAS4BeBtZQj25M0iLwQleUuKGJD6zBHcI4INq8douuPQIGXDiG2XB0ix1YxQKx4R8s9jBNXoiCbf2LFrfGyAtbIKIEjRAHKsbXx3QxJCHLAEY1DOcJVCjjLmcSkay4c5KKeOSR+CIJ/jdKYjCGhuQb12BCAB7AC34oISYqsaFK5rEOaCSDEVdgwQXo4I8B/ZKlqISPTSakQpb6ZEBs8GEtUQCLmVLIDZfc6U7tcY9ECGVAZshCIfyBKnEY5hzcAKMWr+GMJiSBFt8wRhYdYwwAdmYWLZqfJq6RxmDxgg0PaMAD5pCa1mRCCDvIBCzq5s4jLQszsDhGKYSwBF5kIxp4eKA+0RU152iJG73IBh500QlwZCMe3/jSdyLHkTRF9kwdPBjC1uRYbtCiAB54wQG0cAq50IOUq/CCDEbAAh3UwAsqpdNPS+lSS+2yPayEbUvqQQ0ChOCHFAhBA1Q609Yd8ba+jJAl/vL0EzrFI3g1cYc4tIeuY3SDEiX4gzCucc3GOON9moHFMhAxGcx0F0apQAQXDDEbUeRiDYCZTTvtdptmZcYWqWjGHErwCO0tAxVpqIZ2AasuhGwJOfz6RjaygQVpnGId+diQY6+30A2JyEwGo9yYEgkSiKxDHN0AAwYskAIH1AKHOqnGOuhQg9X+ABrFzaVs22ITZriCdC7OiT7wMYcD1LIB0bAtEq3R04/a+IU2kQVxyaIPEg3OGWzwwOIIdwzyVmYJMDiGWM93C/8VCW47YGcd78aZWzgjBkughuAOgtUAUwkaaGuGFTe0lwPXAhCAqIVE4QRCieYFYBGpyJf0/hWScyC4Flj4xiJQQAIKqKLGofKHDlYL6UoQObZG+dN8uDLUHzsoLJteyxx6gIIexKAbQy6lTRzxMEonsSk0NjVQ6vIqizSnIc4Yjq1TQS2t+dEYxuhaLlwkjD2sKhqpEOMY2/ne/K3BGHGNr7aAPd5cCGMOG2jEN6zJGAcqARhqXnOaE2LrMkWuI4YUR4MBcYp0S0MZCD5HSM9NEn0B+sHiMCRhwIGOdex7HQhWRi16oYRxAGIs95AFLl7yaqeEQrU1EIQOWpuSVd8Qxm2JkCMYJLEBzcOaJZ7PgaJxDpWYLpfH9enEh+iNtHgaJzapBzq6oblBn7kZ1GhF1o6x/oQkpAIcxujjMnhRBjZMQm3NEEUTdpAKZ2DZa7ZopyjguoMifAKuYFbNLrx7jU8sQQrCqIbPj3OMSETj2yZSSK2WWbntjMmx+dh3LUhxil7g4dAM7kS//eEOfMQjH+/2xzb80Q58SCMbtTB8LToRCWUAQhnKGIxKBBUJj98kJcNQAwtU4IVkDGMI/pgTymFYcYt7Y6gTa0QMVrCCHQiR5VHp9G19MdRXgz5mEeqpTDnmj+pJUHMS2UY1PvGBEtBgB3NYxlOjXI0WSCBlpWhG/hDBC3keOxeweDov1uCBPfCvjrfZavWXYYb80tpEwIjFf8teHIREMCIZeuSIPoKd/uplo929WEQ+sNCLU2ChFmkgBR6kIRKwgB4gQBYiIQ0CsBd6ofGk4ULWAR2+wR+KwRJOwaNKZ0AE4QdqQAVCwR38QQ1ajPZCz9ISpIiSq1D0AREe4Co8oAF2odFEsCx4JgZhiBxa7ybwYRt6bwe54RoMIIo8YA6yAcCm5BjEQQFCAAMa4BHaCo2or66cbQd2oOqszkimD31ggQaogOZu5RjSIBa87ducIdCsR3MiKUP6RUP4JRvg5BzOIR/QIR7AoRe6QRl6gRvqQR327SM0QjssgmRMYeWIyByGoAZq4Ae4QR/o5AZpsFJEjy3ugR0C4QT3pB64gWX+YwUsoLka/rEs7oAccK8TJyZCrIBChsIdymMHNYcbqIEBpGiauCHAHEgCLEAJLWAPloHpXuQWbuQWqo5t8GsN1qkKU2FJetFGpiUTemVwgAHN0o8gqAECJ8wizOSxxsOgMkSyJCIb9oUNs4E8tnEcIqgbYk6CFgodPHCovMG2xmIeWEEFaoAH9EClbIIfVkoUUecR22IafEFTIqSH/sMqUACX8DEqfIGTChJnLMEGg6Id1+FVVLH39GUOJmACdsAhZLEVmAABpEATclGMmsEYtqVIUmG9CmF+oM7ZsKVHTmMZRKEEssAZrsEZp8QZSCFLnlEhMkhzJowM1wSyJExfOiINmQkk/sJhHI4S/i6iG0hGFmRhlXZiQJJBDVSABdTgFzwvIZFHH9mCHKyBEduimPzjPzyAUbQyKeBhmM4yZthBLoQCFXkvInnyG2yBFprBHbIhqhQCgYQBHfYABhpB+r4PRmChCMKHJEUB+zzAELjPnf5HM+ryGqRgBzbhGhgnXZwBFRbhMgNsGbZBLyzrTbAD0ITSssoDodBQKBnKTXhSQ/7ECooh43SiLvzh4XSAAydvLXGGK9niDECxUMaiEFYwIFeAIHXTJ+6BHLpALY9TYqzAG0IxJ+JSLqmTobLh59oqGpxBGMRoWyBlA3bgFkoB6jxgCUiyCnWx+sosn34OGIjw/pnGEGHmLbIu50zUwQwTSaJAkyfTEE0uIhzAgWQc4QxMMSrxgQd0AEHxgeSaM2Z4Uy1sgibAci1yhwECcgOAh0EbtCXIAR42lFP0YVCAorEqqDpNFCTOIao4c14UwhkawQI0YR2yjbyU5RZsCmRWwFrwizJUkkhmY6sqA50mQBTQodsAixrwgI/0SSGu4QwVaRo55030IsKQ8rHQRJIgSsImCim3whscYXQokS5UihFUYLUYIak+NB9JsEGsIS1mbz/qQRMSoCo8IAFWwBhgME3ngpf0VFNAIWN6Yh7OIeZMtFAjx0wAaiCe5Bpmki7zChqioVbQ5tdwhFkaIQES/mUghWDqZqFHd2Q2sMwW0ucTYkAKqiFS1ywaUME9lzQa4IRfLmJKKQc7roOCJOI+f/JyyE2yFOkk5gEb/KELSGgnKu8KZCDzksG1+vRmHtQsjktCKwUfrmEJUKAEDCFoNDRNuaIUo3NZ56MYAqGEeGL3DLVcJekkLBM59mAPuIENSkAVjk9KfqXpbkEKGqAHxGY0ztMx38cWqKEJYsCuSkSfqgEQYuE9jwMi7yJyuuMirEg0E2qS1i6iGHY1wfF6vuElHMEahomVcMwf4mAIWIAFWEEdONFbKaZZzULG8vRBUsKFUPYmbHBCY/Y+7MFccbb3MqI8lkD4PiALAIxG/uGHbT4gCW7BU4fESGJEyzaADWhyzZwBGM4FgeIzYhf2OvbFD0uCYfmQouLvUCMKJL6kG9yhiO6AOXmCG6DAEKHg0mp2Y1S2LNSjWxvkHlqIZmOsKYbIJrpAH+j2bdliFEBhNlExZw03ctaBFqKoBBhAE5rDRKQMR57FDG6RCq0OfoQhFfJHFMDhaQNMVfGAPc3OGbLBHHhP3gys/XpSbPlMkeBkQ45yXxaWcs61YDZEhEhvcO/BY/1BHF6hA2pgCFJqHrIVcPkkbuXWHzQtIe9x5G5oqP7WeNWCYytk3A73etGBF6CoBDLAccPwGHYxF2pkD2igfizXnbYFgL6L/lSXgBugLCfNAQv+amqOrzwCrcKuVIMQ6UwYqlREolQ2ZzVVl3K+AR+8wRVKr1sjJBlMSga8ACkkTnonBnmTzB5cAck6MSU+gQqWYAsU5k0pBh6KgbQkeD+YAYNVYh0c63pZOEAzAQEQoBDGoRq2Rs3KZzC1qRVgIQt2ABFQA76wRUjypr6+oQhoIBXQ7xm36xiQrzgK6VyvtHIsDGut9BopaMI66BtityTgxB/ugB6Mp2VrYkDoANJU4BUGBG9LGD4ouCx8IVPwcSweBcR+ixJOFnV8oZfWeHXgeCXwIV9auIXHoRvmYR54r4kPgjs5gxdm4wOWoBWAOL6YTptg/oFatESJG2MZzOEEUNWJneE7CgqSgnLC+tckHtYk+oUMifKUxcEdvMEbTAFieAKUErQGoOArXmuPOaWNyyIRZHktPvZjkQcRdot3LOC3XlB4PoUmdPlbiQsf3CHtItKxprM6qRlnv6EaqmEbdnZDtFNKlmGrtCkV1uADNIFuiFGchQEWzGADUuEawA6TMzmJM1km/Sz+sANAt1ZERLk7sNYjAm1E0DBN4IQf4IGGTu7GxrRMdQATsrKZJ3hN9cQbdNcs7BG3hKce1mEFeKu3KIALjkcfpkEWwhSiyWJATgFYPW9fqLMb8OErSpQ6UUL3qnmar4EbCDWy0CEbBCI6/oANb9LnEUpVSDz1NlYjWsyHW2yhGQxhB8xgGwZWnpeBG+BAXlyVkTLEMBZqg1ZTTCKiTPy3X7KUoDcIO7ZhLO6AT1kJHwaEFkzKKp8huExaYng5KkyupIUiJfagCJZgCUrheOrhHHbHoxugCNQYQbjCEQ57rlsiJYyABEhgi2pac7qhHsqgCKagGmJaFb/BHQzBB3Yhmk10HM7hpfEhLnf2JMDIIZYhF6JhB4SAMiJZNoTEqEnSRYClWYxBCmhkG4TBSAlnGZR0n6oBD2Jhu65BPIZSocSENQFaIwRGf6ujoczRn2e1GyLQFCyhHxMaB1UiDnhgAz/kjhm7UOra/q7twQm6OymeSFEMoXg5xR7W4QFo6YcagApeB9XWsbxX1h8MwQFeIAUOIEWveQcLmA0kQAIOgA3ijDrRYRIIQAIogBLcwZq74RN2bAbWQQd1VmzBQXz6AIr+MgtaoY7Y4BFkY5JRYwIMASGi4RoQOYGimkrcMzpQOWIDmCIiwkohljzuYnJIm6U3RBzEg2HLg2z94Qy8Aa/92B+eYbVk4Ao8kL8j2j72xCa8kiwixAxCIBMJwBmat/bioQcawKMlgA2Ehx2mAW2pXGb8YRIWwAIooAA8rynqwh3wPM89MAoWIMF7YBsqzF8+ohl4J8Gp4B78xQ0VPUX9IQBQAAMU/uATVFhnrcMdgg+KEoCob2PTOX02GkECFuAAqAAWluVGyOgWxA8WqAEYWkEBCqAAaJgZmYAEJqEamCwawgAMtDO5QRNzuBo8WHe6RQJA0bDBJYojEOYP7aEY0oIeZs8m1gETVEAGhuBMw7zNzVui9eQepsESxJiI8MECEiUgqejaN4YXDuCYbakBUCACT8cmfKEfF5vKvQIHUAbNzb0l/kAAHEAAysAn5oEJdkwB+gAH7bwpPDAAkvAAcCkeCvnhIT4ltmBxhzQVaAEWaCHjawMW5qAAKEACWgAWpE/6biEaEEEIuAAdGlXRKAADWuAcnvYYZF7muaEFFIACBEAU/poxSni+5weCF1qABBSgBaoBHeDvXPW5VPolkqDUoKy7ggB0SjMEQEkGF2Lz223iF6AAHtUAgrGdrrV9TwSXLHZhBS7UAzzgoXGmQGZhBQaAAASACarh2zfFFSxhd7/e9fxhHMJgEC4pl3GCH/DhEoqADfL9Jq6hBySgDOoB8G8iQsogAAQAA8AiUCeAcYVgF7QJSXaBF7Au2sjIDgoAAyRgBpYBGoS7GSRTCHLBErlhG+ahAHgLBULAH66BHLOBG74B93H6GuKhow/ADrqBG6rhGrS5GrLh+KvhGyahAF7AASSgFSadYmNVJFTXYq9IVquDyN1vJCbHsVRCvd0y/if4wW5BVsXO2D0cP+/15LzLQh+8Ae+fohpK4Oxr//An5qXXgRcc/njggYQBwp/AgQQLGjyIMKHChQwbOnwIMaLEg/jc1Xuor169eBCjtZrncN22JGuMLTOWy1aulSxbwupRwMEkZ82WUWv1YU29beDEjRvH7ZoADQHcXfuJ1Nw4cOB+bsPXggIGAcCuNW36bZzSrOLWtVJAIWyrdeN8Xv15julSrT+bimP6Fqk6t2rFffM57pxSpj3jgjvHzZ2/M7LoMbznrxqLHzKu+AM5MbLkyZQrW758kNsQHtwwSz7jzV5k0TQ8bDi9wUOCRv7weX5NsN68e7Nhv7bHzo3t/t28e/O2ZCriPX0QNRJ3eK9exobuvnFbB66ZdGfGeKVsmZLXsWvx0C2zKWxNCXThsq31Ka6bO0T+qJ1DeratVnDdesz41LMtuLk/s4L7dg8iJIRghz94ISXfOFkt9U04S9mlH189qSUhhWud5dM36/BjzR0CiZbQcXGwoEMNrzzmW4oqrsgiQZpx1uJBogXiD4gS8eOMBxaU4EEJCRThD2IxTnbckBAZ5qGQRi7JpGfWeNNkiAzx4043TXETTjTLSNeMM8LwolJ2wtB0DDDGHOOOISjsUY9dfCn4FjjXGPWTOHH5l19dAq0TJ15uyQdONvgUw0883Ky1lDlwXWWX/p9l2XmWOXfVeRWjZbX1llniDMrMKAIpadByq1zBggp6QOPPRVGuyiqTL3a26jSg2FMkRK45s8UACBCwB2St/koZcbLg4k+twB577DTWIMsQcet8YyE3NHFJE0q28LKMM8cIc0y20RQhxS7zxLkUOOFMaGemF/ZXroQKQguOpHY5iGe5Gi6ijF8JfpMWX/0i+t5bCyLlplnnTejWOeKcA1Ii7BhrkGvzxFGDDDqwIpBrzG7M8WSvroqYK5VtxLA//HSMckKI6WZjyi6ziAuxLw+kDzrwxjctl10eU82W0rnDzTG2fNDIOOg0BeeDaiX4n18Bs1Wu0gjjldV7D67T/os04iiKdNQI/gdff3zFFXXXZfup6Dfu0JNbQ8Q9U2INV6g6c912+/MxyPbcAaVktM0zD8R3M0vPHfe0PHjillkzjd34nHOzhOdQo3NN0aCzcDTRLGHAB1t8UM08Vl71r8Hneg1tu4CehTTrkJILTj5puLlXnmRf6NeBZbPO1LlU27uOYVZAifhB6wiigg46hIKi4s4zm3eroNAD6vPW00yPK9MYdn33EXnjCq0v12NzhXxlla0z2R4KbWCaZAADDAa0182DDP5Jqe2Q8o4oupXG2TW1fCMenaBQ6/QlIb/UBV13iVf/MNSfb/iDHJbwVI0Sgg/iGGMIMpCBGtTx/piTeW+ERorequjhC2sMh4TWswc8isEOFsowIfDo28bwAbiLzOM/5qtUltRHjW2gYxtL6QY+2FCCEsAAAO1JGl30syAL7Q5sAEQKng6YKdv1wjxM8c95+jQhRBmsJ1WzX/4QlY11+IMQ8CBW9QjCD1WpIW6/cI3gZojH15gwSoixwgXzaDfDOAGQhBTIGchRPGTtsIfmKpddjsETqPUkjQwoAQMa0Y1vqKNOB9vL18piITe1JS2Qa51WDrU0yHElG/7IgT+yQUakKQxT8bndwhbGOvu9yS31yAY8LBGkhVwkGRaTgRdaI8JCKvMye4ySYc5As4wtE1nEgWYip3k9/nZck1WGGMADitAcRl7lLudYh4PY5Z9urGMPxriUF59oQESVjZPlqt3/TFkpCWXjG1k5HbzgAxeBIQxptyuLF/UjKXT4oxjFkEWxFEKce6gheTr4RaqSic2MSqSZUXKhLJZFEI1pNErscEUxVjhS7yUCHttkUj2+QYAVhGADhoAOI8PBL5DEgyf5ieI4ulEPUI7SYJxE2Op2eSmzZdFrSlUQOqSxCHcs1UH5gdCD0LO0RbGrLOd0iwTt4YpZBRMh+nDNKjhoKnOkKqVsfQhHm0QcZcgCGFRoQhPmcBGRLhMfeo3R4Xzx0LZebxQie2OUejkAFHjAA3twByOB4g6N/gV1XVErmFcPuK4x+sR3TCVX1OqlIExdqB344gb+xsEfULbOQuHQHdImtZZzmMcfwAGsPu64VnOooQYsGMKJAlsQc2Aig4IV7FtXlYcNWGC5HlgBrKZZD3sYZ0j0gEcXiuu96jLLNYggQAOAxFPziQNx6OCGaRVEULjAp3boIdjS5LkupQhVqVVUF9nEoYx9tiuMfqpLVhpYKaXlRZ7fAEkQ/BFDhfDDNa8okQfphhC4aQS7bD1uk7ixA9Sc5gNSyGg1YAELathxRbf1B8so/DzEHJh7v+LHOubhDF4kZr9dVKNB3EENamDOd1c5p3/ghUB1pS5RVEQvKBV1RgxJ/vEn8QCENP55qfvSUl+K6m8Vm6JGUHhjWYYNLvJ08APm+SrCNZgwQvqKYhJamEmPQICGT9OAVCxzHoYIwAMOMAA2VKNFzPBFMYCb5rsRxxfwOBY+ntUNK6FSQjk1nhm8awupdu1mqvOafA4UxjDKx4t3cuTAINS1bJyCn/Xsb1K7NsYLYYVg44jHPXxhCvFh8GS/kEENaqAGgdQDowd5RplV9YpkPOMV+JjwKywaaDVv5rmtKnYfGvDmDSRAFIV0TR8OEAIMaPsATCCxNWTx5y4nO2XE8RSLV6UPHnbRfOrpsioIgAELzIAbVoPd0gCs3v7dly6kE2NTZrlaBg25/inS6AV/A/xeKXLtLfJq5LsE4gR44NZkqvKCg1H1EF9rBB8jMoc4WBAHgaxCBsged/fWvKRGPCDaCSiFMm3RAAuEZeYHkLNvhOVQkyvOMK5s6YoyKM43Qdggl4C3vI+RlkdBcKmhdCS7spip1Kl3oP1O71LQUYtaHA13mv6Tpss1l6SvRVD+GF6CFXKRUChPBYwYc0M0vo45tsYftGDBiYagB0DrXHEoN9IsVq5hC6yAGsoUBbxnHpYDbMI3h0sEYPeeOOJok1X6qB8js2JjhThjBtpmwyI3vbRzGXDpXVR1uRyEU6wYjFxE9ak5atGL98Dl0+/apb0Z1B9xuIMd/t64rj5a6pq42/oHFt01RJ4hA3NcYQgoukgcrgCFHzQP8s7ru5HYcIDFmgYBtND7DD9xeMQf4BEp0s0fqV830SSpSfywxxUr1OiJC+QajRCFO3hK1P6txXe3W5otd2lK+gcpP4FT7QItkWAelVZL+SFUTFUn6LAO8rAI5DBWZyZyP6ACNUAHHDF0DZEMOnAFcrMcKMIDKuAPgoF+1bdsG7MOj2ABCZAAK3ALoMAMynQLMod4GFAAn9Ab5JAIsqAP4paCHGMP3mB+LYIPQsIP8xA57qIeGDEQWJJVV/VAAAVADWQ/A5Nv/BJA7JJwXAMO0lALpuUoSyF6XRiAQtUV/vXADqbgDSWWEBfBDWrQQUPQfd73djogCNyggRcVD9DwAzUQch04hC9jfUviDuugiAIBCuxwbnjEBDgYFhZQBPInGfZgD9ZQaIUoaJnYIvwgJIjBhOLUDQs2EfdnLl0oNpmmH/L0XrkDar9zKVC0VP/VC3hQD6YFF2InQO4CgNAiDvPAD8xAIwsRR/7wCjWgAyxAB9IUGb4GEpVAcv7AESwgCL9QAxaFZpyIModoJNJlZo5ADiCVR4hRBCHQAA1AAT2QeZ5BHOTgDYmAh9zIMfoAD3fQOCziDp+wB+OAiubDT2pkiQexhLATNnECjJqWO6QjS6zXJ2hhFmDTgK9F/kAvBUEBhjuu6BbuUGgn8CkKdoJeQCLEt1aTgXyA4w/RJxDLJxAW53b02I0r+DKIYYSOCEgg8QlfYAZ9kCrbWBne4AiA5XMweSz64A3MMJSW4RpF8AArdwxN+B/o8JIRoQ829SaqJTWA4ln49Iq05IqZdR4KEg+LcA3/shSQoy5Msy/n4A+mIAudUCPidhy0cGs6EHIXRRmAqBGA8wN68Ao/8AzU6A9DkGu8RpTQI5MzKRCmoE1JqTgQ5pgQISSOgBhCeJjIMg3MYJmXUWwxEAIecACfwE+M5g4DyRDPUiEPAnBc50mqhi5kA2AKGJGtKCG9EAnxMCn5FICstxZG/kQOsiALhSZuS+gP7eAFHfQDqMJXllEPykkc1WAO3BCYGmMO0DCVlwks3tgqxNEFFBiZaYYY7OB72Gk3fPOdkeEaG7ACK0AAvKCLauGTN1IPVMdqC/RJ+uJpuedEfKEOPvUndnEX35APtdAvecJ1PGZGS1EPxTANDmWZ0SgDPzACbcckhkmev6KdrSIa3gBNmxlowiIy53mhUcIMNpQix4ACIZAJ7wkOahSfE3EOZ6hVdvIvAPg1VCVFdXEhXIEgRTV2XYAP5rFZ6rY7dwIOz9GWfeYQ6hCCNfADe4YPFjqiKZWhGioQjvCR1LdCjmAYjzilHIMY1+Wlr4EP47AN/nsCLd+ADhdhmg/BJ6kZF0nXlXFBRAK2P6HlWfKEkA+SpvXQCdnARVm1le7lE/7gC9KQCIiBWxoTCjzAAjIgCCDxol+aUVW6nWzjBoU2pmnGPYFQDNRDqTNDDh7SprbiD/SAXtfADdDyhLvBDzjaOwZqJ4BSOwBlq5ZyFpymWgEkasqwFlz4F3hBLud0DQ1Dg8WCWxcBDXGgAizgBd23nKGKXZYKLOyACx2qc6JxBpYgotLaJOwQQ6UKEaNoPpNaGdBBY7PkKH3BdbpkNe61WmDzWq6JdYtwXvCRdER1FggGTZsaG/4QCsXUjHPnrdOamIojGvYQCNMgrtPEDmeQ/rAF6zIzknOwEU6kSbC9wQ0AdBZdtasH2RNpEScxWhf2RlDz9VrSsElWpBSa9ShG4w94wA4UKH+ywUGB2BmEKLEjRa3Acjj+4AjeQIEU9o7sII/00K07OySigQtDy5knGDnq5BrmWhkVUaYYqUsoG5EGI3U9KqtcWydUsw6d4KtmI0X0IkH0MIGgihD8cByrQCJ9mBxSqrTY1LPIAiX9mrQjJD5u4A35WLfkhkLu6A9WyUPx0LCTsQtzEA0sui6Msq7zYraglGpvIadOpxa10An54B/5h0Zq5Ai4QI4JARLVEIIqcAWokriBK0N3yyw+6FCyplGiUQx3QA7+yrrI/iILbkAPqxskyiEQR3M+56CztlFWtoBtFHCkqVlVqjVGSJY6sRlFVSVASmdQWPdj6pYnXYRgTmAN4Yp2/sAIP6ADKoAJkpq7xeW6yCIa1tAF8IC75ZgboFCB6esyZzcR86BQ/lBKfNGOKgISFDBTIRACeHOVXHeVGaKns5hUrMeKW3EOvQAInLt/s5d080AOxaAbcNi2/mAOUHBrgIlM9mtcB+s9IBIIrlCD9es8SjJ0QbhQzGB+8UvCvwIKWCqiLhYDBNAHqPkf50AcvjsRF4ECFoCOW5CLsdoorxUv+LQUK+tPRrZaDTSbPzEPgZAPXKQfoqchrLRiuIsY+AC3/jLAA3mXsTVMpSbMt/7AOHcQQzScMiDBDZMgDCajqNzTBZlZI0KMxiuCGLIQHKWKQ0vwAB7wAG3gD/wEEnTLG7clDCsAAFIgDuE1hfXCO2MzRvTidVWswNfQCbWAVFFWYO/gDRWbEMc4DGpQKl4wDD3Zx221vinDDNYwSOd3N4LRAyZAwDGQC6cqEF1gDSv8yjPDe8LsEPXgDjFwGhZQBYWrD4ysIuuQDbBqVPDRILP6H0iGhrikb/m2LgMKS6c2YOCAD+TgCqZMuuKrjCyACc44zGkMI4QkJMPzZ3vLJMShnhugbRgQAs0wDd5Qy/b8zi0ShMBJlf6ACCu3ArAQ/qWskhz6IHqiR1mEWoasOB+mFxdY9RbZgAen4ElUU2Dy8A3XNY8Dgcw3qwM5O9CwrMYzpA/cYwWZObQC3SJmoM/iVwhYIBC9u9J1IwuAyxCuUQ/hYAhrAAvMclOumVRCBVu4eml/gZUM0gvKQMVwoU7+AMjBIbsFYYr1EAoUlXfKAc09nUexPJO0Sw6ZGhxBwsHIcjJUoI452ACp4qFkfamBQA6bSRyO1Q0cccatshN8cYaro5HxcVoJvKNYEQ+9UAtSpTQSVAzx+CEKwRGmKwOoO512XWEtDUjHAa6+cEgDQdO7kRxFIIlhoYPEq9l1A1ge2hxqSrVLog+oxLHn/gFkW2WfjEJprPar9YAHkZDF6DIO/MAOvoC/cegPcTAENTACtOCiqw3PzIZNQlKEwOwLcGwk7CAPRnDaYbEC61C80A0souFK8RtOft0xqBgh/SGyorU7XptVoQwO8RAJPiWW/jAK0+C0C1ENINwYasXH4q2C8ZxSMOwPzEAOZ6APpmANLKaoKUIcohHh3oAL9NAF2AAGDRACM4cBB2AIAS7gKiIa6Hxj27AOU9sxS4hvgq1Aq5aRpQdk8ZrR4yANpwDKAqNGpkAPR4jc5rAKzQoFedfWIT5NZu08Bl5drpCoTkAPwnxb9nAPdX0YL31+jfO+oIALNtQHArDPBEAF/tdJ5D6L1bJgojQjzYvsMjUjowD4Fuf0lez6uLnUFItdC2YhKPwQCKPgnad8EcNwBSrgQagC5mEOSEY+QjE0DZEdBL8EvzQT5b/H1kP+UJBOK4dTJJhIIxBA4cty3DDGBDFQBLMw6IS+nf4wDYXWV+OgRmMNLO6w5g5nvaMnsl7nhYKaDbWABe3AvaDghg0BEoJgMSpQCe5M6kXO2YIV4cHU5Fh+B6bgCvCwPWxzqpIu2tTjiPTwvbLADEHADndQDMJ5QRBDN8Bb7CnjBN6QTGUqjHczLuJkJ527L1ploPl0ltmgDPgALYKRqbZ8Zu5gMTrAfORe7nZ77NhFHF7K/gzFkAi4wAxWYA+JoOeOYA3F4GeRnQj0AAqBQA9B0KCh+88FYRgTpxH1ENsDzyRMSwuiQG3oAOJLMg6v7n8TstsHqRX2Bik13glKwQ/wMArwu01dzQgUxQiPUfIm7z2Gnke3ZeAF4UI1aArkMA1+9s8OtT2byPRsbfTe4xpEwAANMACsUfTAUpAwXyede0A6SjYM2Bb4cAp8chFuwA5/thAc8QukogJqoJxZX6kFr/d9PyQX8QEzZQFbUJKJs7GU7C4ZPePuhTv9kqZw0AlqNA2JoEIlXWzJrTwsQAsg0fJ+b4h87/mh7xsXQQMbkAIgMAeFbzcL5gypgPhIlfbt/loW7wGML481BUYPpkAjQ4kPzxCINQAFghH2oj/g0k38x+8bxLkEQtADsTs4xMEGAUAAIVANo8O88KQ68UQ6mvvtfuTLKmMgmPCoQzD0Ao/8ZQ3656/+I1O4xcLjdoMOGh4CBAAMry+o8s4oFhIo/gAH/hAz1AMQ9/wNJFiwnj9WV1SwoPPM37yCESVOpFjR4kWMGTVu5NjR40eQIUV25DaEB7eRKVWuZNnS5UuYMWXOpNkRnz99/qZN81YT5jYLIUIQANYN3FFw4pCOGyfu27emUcdBHYf0qDp0ePydgQfvor6DdGrokPFq4E2fadWuZduWZcmTbuXOpVvX7l28/ivvMSuWM2/GnIhCYOCybZvVo1XBMV0stWpTcYrHZcvWZVoif/Yw1hPHQocOHv7q+f1b2vTpvHBRombd2vVr2Hbd8MUZ2x/a21AXh0Oc+Fxjp4uP/hYnDt80U5GK+aNnMec8PSrGhnpo2/p17BdVZ+fePaQ+c6HceSfvUrO/O5lJv8Z3T587xYmtKm28mKrwx/5A+Uqf2eLNV6CoYYSG/BGoPAQTxGs7BRtEsJ5faljNQQo10scedtzI6UDr0OktvqWU+u2b35pCh51iRqHHnvUmuqmaGmqQ4ReIWqzwRhxXYjBHHluDUMKB+OlxyNqCmKa56zzsDTHGojqHvnro/iEnECQzOsgLKMYjcksuM9qxSzDd+nG1el6Zh5YJ/YEmmdvC5K45egLxL7abuOFtycSYInEco9bxh5lR0jtPI7Tqwc1NRIn8MlFGYxrzoCF+qEcHNQhyRwfqbGy0NRansWSgQV97Mr47E4uMMXHQcYeeWkwB1aN6ONx0VgoXpfXWkH50iAcoBkpGBTb9oUWFeQ7C9bWc6DmjJ3o0NQ0fbqqiLzImm1rnHnngGeVYbhm1tVtwLYJQBm5+uEI0fNxhwSx89FBjtHBb0yenIOZ0TR/epsVTnHqEtGQ5Z+MVuMFvBx64nmE8o7Q2fzC5oh53aqDFYNaahccUWdiBbR36/qoq9ahv0PGHnGLu0ExWilNGsGCVu0V4BEaGGYGV2pIZgZtkdPCzZdSKccUar0ItrZ5wJFtqm2wGOoOdTxnm+WnuWIaaVoTJ9UeQGqohyItXvIhjatPg0ccSdqwxEGW88Fnnw238NGWU5QwEe27rpKY70THxaUcGOuAVRIcrHLr7L18uYw41d8KhL7HxcrinysEjZ81uybtE+IfVoOkAGnxygmIIuSun60BH6EmEnObcwysnfOpZp+15sBlFxdBFt31Bk9K83c33kun3IZz9icefIcwKeHeaLszMnkCYfvX4mm6ypY05YPGnF0tk6clp5Ltvi3Lvw1ylg+rCb8uv/uZAUd8/FudyBoUDHGgBC2+mMf/+73PHv9F6uJGBhYlBb38ysYdAcuAPVwwEbTXJyS0oYAESOEAUA6RgTcBXwQqlSw+/wMehMOgTfdxDM97ARSK05Q+NDSQnAtSIQNZjDWsUQw4KaMADGsCLD+awJRfU4Y1ax8IepuQ85PBHIHDBDDf4I261uUcT58W9gsxrXpppzqB4YgpXmKIYvvAHMIpAhWNAMYhj1Mh2OnhGNKZRjWtkYxvd+EY4xlGOc6RjHe14RzzmEY0HYcS7/MEPeJFRJitEoRLh4YpAeCOJQhtIs+ghQntEciIaC8I93FCMYliDiGfxhzsg4kFBhrIi/iXB3G30eEpUplKVq2RlK10JETXI4Ae/EI0o16KZYuAiEKZIhCuKIQt74EKFEfEGM6whCw2dQBaWCJotnRkS//2ADnqgZjWteU1sZlOb2+RmN735TXCGU5zjJGc5zXlObNKBEaBRgQwEUQ2UgPKZemlfQdjBjlGwAxRuIIcTfOEIgP7LEvRIYJWq+MR5JvQi/DCHJkagghFEVKITpWhFLXpRjGZUoxvlaEc9+lGQhlSkIyWpRS8wlh/woAMwa5NCYTIv9yzQIgJhkUxdetMo+qMQleBpT336U6AGVahDJWpRjXpUpCZVqUtlalOd+tSgMmIVOviBCn6ACW6oQ0g4/mUgTggpxa9yVawZcWVZzXpWtKZVrWuEyBVkcAXOGWusc6Ura8B6V7zmVa975Wtf/fpXwAZWsIMlbGENe1i/CoQRejhLIOv6WMhG9ml+qYdcJXtZzGaWW53TbGc9+1nQhla0oyVtaU17WtSmVrWrZW1rXfta2MZWtrOlbW1te1vc5la3u+Vtb337W+AGV7gYfCIQAVMX4w6zQQitSHJd4tyvyEslLWJuS4wLXdVi96Wl0ZR2S9PERoqxI6TxbgtZ4sKaiLAmoUJvdIXIyIj4JVloI29FHplTkZQ3us0SCZIMShHIFUSS9hUvRfQrk8fFRB/8FQl8C+yR5Dr4uRtRD+9Gkntgj9gjwBoZsF0CAgAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRow/x6SuoT99NgStd2QNlbZqjaYlcBSpm6Q49K8VkBfLmKOw0X9OeCnS6FKnbt3Djyp1Lt67du3iF8qsnsF5Te2qLTXNiLxAue6bYWWNnD15CxuSqVrXk7U4xXMUI2svLubPnz6BDix5NGik+f9xEFQRVrEtka/4cXwTMjp0/J/CsWHNss23p38CDCx9OvLjxkIYONAgRi1kgypsFblZbcanJzUsT3T5J77j37+DD/osfT97n0nU+KGAAIcmUZn++O27uLlCWrET0fK0tz7+///8ABhiaU/6Qkw0JFIRAgGr2NKXTTW0xA48piUwjEHUCZqjhhhx26OFDS9FTzCimlNKAAEu4I9RSS1mYQ3fYfSjjjDTWaKNw9GAGij/bZHOag0XdsxkollgY341IJqnkkkziZKEj1mQzTzbffFMNNeO4Rd8Z9jjS5JdghinmmPDFNg0o8GCDzznfgOPmm3whpc9m7OASiGP0HEnmnnz26adxN8lCTyD+0KNOm2+++c08c5HDjBsX/inppJRWahc799zhmDuIJuqpnkdF54YrGFpq6qmopsoRgWda4k89/uB06qmip8k1pz+WMONemar26uuvwO7njxvTZLbOOLLO6uY369QVXYWZBSvttNT26QszsviDT6zKdvvNXUtVRU6D1ZZr7rkfLuUNM974w2m38C6alzWJkIvuvfjmC95N9shiioVVwivwt+AKdIY17eqr8MIMe+ZgMcws4m6yAs86Tpx3bSaLL4yB2vDHIIfcU1uU4bJtxSgz6xkz2vlTqsgwxyzzRr7Ac0ci+FCM8qwq86MtXt3lkPDMRBdtNENtXduFP/FkszPK52QzySfCuAy0P7LgYvXRXHc982bwwKEVmzo/nWiVRQignC2cbZarP/bU6vXcdOPb1h3W+IJH/sBmV8wNNQ1gQIEEbHjW7hmvAlb34oxLCw87jnjjzjjKoNM3yt1EYwEFFljQh2ebjWLPLc7g43PjqKduqSm+kPNNJ5G8e3nF6xwzgw92vOpZPe4IgMAAXPCqunFNsQVYg/Zs1iCQwzcvUXf6XNUuINnEU/bsZ7uzTjX+MLr7OAisUEIG3Dtf2l9z2vvQdWyZ7z5Tm3lzBjzzfINHJ8hiv3Ob46ADWj3nIIAHlEACarxvNOiLiT8EUwxH+CIRuDgDy7xyBm8UoxgqsUdNonPA920mBwJBxzh6MTn9zQ40+lgHGyxQgjKQo4NDUcpAQIUhdpBjGt7AxaPIcic3sGMa/rupyUAcg0OyYAUXiSgGKGRRJ3gMTVgw7NpSyIGLHTUNHcoAhDJMODsVdQaABPFGJGQTxZ7EaRKU+ISwlFcof7iCHVvxhSwgZhuM0MMeNSvLNKzgD0ckby0vK2PIlnLBzKDjG9nwBxzyMQ4u9k1lBfPHOs5xoXrwBTOC5MlpbLGCEGAgBCuoWp78YRsn0EOCivmjQVjkEFYapDvFyM8d2OEGMqovkx+zBzvggTgRtikbaZCG0xz5SIzN5TTzOEezDnIHUzAPlyIRRgg2IDj1YMAZPguEv4rBRo955CZPYUYDI5cnb0ITXewwxSgk2Y1lgYNKxLzcN+JxF8v5DyGb/nnhOUOij3q04QCbo4BAKWCGWe5qKRzkyfIEIiEI4rAt5txnr8K1jiAIZJixkgYclNHIePaNknLxWTK/oSJQLWUUoKCPRDtSD3RgoJoDtUAM2iGdZwLlVgLxhTdy5YqarjRYBPKFKzLDt3f6Iw346KhHzcaNQAbJHdsg6c8QwqJ1RvSnEJnHOjw5UIHK1Bm2gsou3XDQq2K1Tw5KBDvkkdROfaMeeIDnUh+5jtMdRR/4eNdbG7IUUPT0rBmhxzpaENCBNqAI3qtLU+DhBl/QQ6WANZUs7NFTNnnqG+eoBUbn+jRkwWVZ30goQx7n1MgqZCm2gVQYGqAeazZgE3kh/pcrrOGIlcDHrKZN0nSKEQh25CxZ38hHXDfL2ae5A69GwUcqVmABNtyyIRXEbW6fwjpfRKsPyrGAchChu9jmtBi+0A/ccjsmmvhDne5xxzWU6qZrcOMUpzhHcS/n2a39ZCn4QIc9VuCBECBgFyZ5yGbuoDjyKuQmxbAGKHRZpnlQYw5L6ANYpeuWpTjGDfpYp/AMrKSnnKEY7Srqm7ghEGpwdL5mG0c1tkGDHszDmDs5jTvO0Y15xGCaD2jEVPnqD2a8kMJYzQ8TRQsfm8iQNI2RBSgwxWEm2cMbS+PHONirqHWUgAFaMAeKzXYNfBwgBCE4QPd+YrlY8aMIG9hA/gPWAWOGbMaHTTYIO3bqkg0PBB/1kNtonoKLdNo5zh5Ka4/rcb11JEEELRBBKtax5ZSdQxSBC0EDxqwTkboVHP7YgxQoaVcBYw3Qt/VHIrzx4/HMZxrMYMZ4Qd2h7pBDFtPIK3E9ZYwdiOAFBlAFoxtdsW9EI3AUmHRicXKPdbi1WRgD8lrgMQprEBmwc3oc4lw5nrbYwxLZKjCrA3SP7lCIH/HglrJUTI9MJMADIvjAokXM68ueoxVFKAIw/vyRpcxD3OOo8QyVXZBiNfmDtuH3cDZzgjZuO0CbgUD3qOypcVDDHkkQgieksIRNRGMZ6223wMSxDnS0OST8OGSi/rYxbI2Yohg2XamFR9GyZ/PHvI4YxRMPXh5vmCK92WD4ssaxDlpkoBD1kIMuvrGMZTij6NcAh841zg1ulPwjlr7s0zPCjGlA9qxVz3aHorPkUdIcPFMclLss2y2nnyMJSbDFNzzhCWccoxlwh/syolGNKV9vy57V86pcZuzLfhwjN4HU1f+k97Y5BnEBDvRSLGEbl389OC0iVTzyp6xvkHgPMChENJzRDGDEIu6gl7szMt6mbnDjGnf36DcEzpDTTBK4pZ3Nbez7J27QMzT3obeHQOGlxxPPH9ZwhXuW/iYVJ2EHF29G0eWACs6H/vntBMc21rHrdmfpI/eQr7JY/s/jOkpqKYxQw47xcg9yJELrNooOH73ve+Awgx1O0FbSvbUObmjiA49YhzDkDgxPVOP5AGh067AGCYAAc4B6vAZSq1IP0TcO3MALxyAM8RB7GXEPzNB7hOcPPAAF41cXAQYpq3YjAWYKL+R47YcXQRUIqvYN2wAvTucMQiAFwnANb6d8zoAKg0ANAPh8zuAMouABJVACBsALLchrXoQRp4EP69ANjYRZjYAAArQLOaEPuGAhkvILP6ADq3AQ6qAOhUcUN4FEpcZS81CGxYFaprAjFHiCYcUOG+Mu4qYsBoQIHyAKzZB8cHcM5qAE+VCDOxh3RgcLMBCEQ8gNqedI/szSaRSxFO4Qh92wDUVgARtgAV+QE/YwDWTkJ3EgAzJAB0yBD3RAB3mGFDcxCn/1EUn4d8LBSyHIhpwhC/DQU8TnJt2wDjsgBc4Xes4ADMvwhwC4C4OYAROwBs4gDrPoUfWgiBHBD0lFZSwYiZNYBTrxQCknJtxwBTVQA1BAYjMEiqKID18YFF7CGB5xGs7ABQFQAAcAC8tEHOSSLfvGfa5IEjdBD9jCDvXADUvHLOOQCR8wB+6wf6G3DNwwCJKAhzs4d8dgCBOQCu4AC7aQDZwXDd8wZfojDm+CkW6CkRi5DbdXEdbTLejACyuAAlJAeyJxiV7HJ7+gAjqgAyPw/goEgVeh6BcCwQ31MA/t4A7t0A7qMHUi4Q0sh5IbwQvK4UkhUABcEI6lMSRooXcmOI8+8RQVsiNLuHTVQA+0IAVCEA00CIBuJwfm4IcAeAyPVgJm4AzUcAw9aAzNcHTLUA3cYDnmYIwWaYziYJeNNGXn0EjnYIwVaYxKp3TjoIAQsRT10HeVR0/uYAyvoowh4SVRqST9pAZD8AM/4AVqcGQ0KYr6YA46UAnu4AUswInaqAcdCBIxUSS6hxH1EIldhQEHkArHsRTMUAv+IApLsARSQAuUJpVDET+GsRfspijcMwclIArUkIvPZ3TAcHR/KAzrYAZCoAnVAJ0B6AzR/uAmUyaY3AkOGDlle9lIeGmR4smd3ZCTqogQx1I248AoEMUT97A0k4kk9WAOV2AOl6mf4hAnnekO7qACjAAf61CX6/AKF2AO67kRU9QyIcELGFBYAnUAjwAeyNACaZZmzQWcRBE6nfAqx+hwH5AFX+mL3BAGg1B0O3gM0FACS9CDvhh60WCXoGV3gqmRe+mdg6l0dvkt4NgQzKh93XIxQ9Eu8sgh+BAP3DAEPEBi5tCNocgNLDCgiPli0HABxnCkDXETd5Ata1gRrXAAMCVQDVAGR2Yce+ABHpChHvAAqsGhQNEdkGINUAUv3RAP1fAIyckNbBmjxxAL1NCLAxkN/tGwBxNQCgEZo82JeugQDZ+QCt1QkePZneOgkVpGmBbJLIoQAkUQDUgzD0VYee8pFFyqSmTiM0vapJ1Gk16gAjLwC1OFD/PAA5iwEy03EseAAl01oRXqHfWwBJKYoZNoBokHp1O4GczgCyZDdsridLYgBU2QDCUao84wCMcgqHInnaVAA1Lwf2SpqHB3dD24AwiAAEngDvoInhVZfINZqR01Ze4gCgogaTEwgQmRmOtaeefAlDpBSFbVJ6nKjd0oCBcwDHTAA+VzE17AgThxEudXrCJRBLuKAQ3QCt9BDTEgrBlqAWxmrJYoEHggC+Rwb2VjJf5gCB6wCTqIrb7o/gyeYK2gtwzQ4A4+sAOzAKPg+oefMAFBmAD+kHQdhZHfAJiNZA7nqWX4wAYhkCAAsFdMAYfX8w3ocA+Q2ROb4SVauiEB+4l0EAfzIA4jUAk/swYy0F0iES4KlBPx4EmCE6GF8x3jgGYaK1Pu8KUeaxFLIQuIM3kD43QMQKLMCa7YGa7RAAslMAcsm7PN6QyfkAE9ixod1ZeNFA7kCQ7yJQ5Gew7mgA634EkLMAd/xg/5Sn9HcRMk6CdbO5PeyBe/ULD+UAkj0A7cYA51KRKPFX9265r+UAQ90AM44JsL+htSEKwZ+gB70Jp3qxHWYArZsg4Zpyy1iA5z8AGb8A3f/qqoziAHB+kM0FANtoAIFkALNBi4iqt8F7cGLroDmReXlQqeyGKRirKXiNI/0RACb2sQV8kz7kANjOY//Cqf/pBSqMukArsW+KAGahAnanABVyoDpWmaZsugAkEogzcScXI6wfsbxvAAG6CmJcBCT5q8IWEhiENo18M9otAEUkCo1xujywAMktCW4CAKO8AF3DC45Zut6/AJO5AF3HAOx+CVNlgN3vm+45mR7CoQiWVvS6gs1VAPe7AEbJDBI0MOrgKwBHwQ1EANbcENv2AOv2AMYizGsJq1BYFEddYTtXKm3mGOSwAABzAAWbAIuyLCHCEkuDIN/GBsJfsN+LAG/jugCteAwzm7DMeAChHoDlSwA6lQDSqaw4DoDNxQBIH8f4J6yUaXcd45tN+5l4OZDfo2EIymM93gD1XQABZgvES5IvY4wE3qEFXrETShar2yF+7gDPOAD+zATblrxwdWIGPBgLN4DtEwotnQwjkLDcAgB4HaAHuAs5AMiM3QChageYkLlvpolxopDoGpkRsJDuuAX5TXrP5gAtO0ASdJxQ8CR/WZJKlbFDQxDYTiK+r5Yn3UZ76cEdOAC5CimJW3DttQCBlgDOMbzdxrdKrABh5AC8cczYBIDbwwvcbgdoXsDDk3ZdvDLPoYmO4LnrKarnbqD8PbAA8Auuq8E6SG/sWvHCQCoR3tTClP0VMvnc8DcROxuGD+wIIueA+CuAbCQMiC24OGDA6PsAI+/MgObQzj8AklsAbcoHw5PHfVsA59kARmsAvG5q7keQ7ckA1G68l5mZdaTWJzsAdrEMHwbA/FoE978s5EAQqJYcZhEs93QNMR4TbeYJVRyz3U2QjgANU5DA1C3QzbIAUYAAvX4NCAeAzusANLkArZcM2FfAytwAAf8AEwINaJQszKx6PgqZexspc2SRdEotIFLBTkQA4VDFT3MHN2fVr6wA6uUj8D0w3V8I+bF82CDXqw8ACa4AmooIOK3YuisAF7sJyKnYeiMAFAWAJ1p5dPLXfc/sCdiFLEmHYXvWwjbi0UvJfdNIJXyFURvIe8do2GsqCEOUd/3zAHE0DQyNyyzjd3xsAGJbAL1CAJz+nQyxCoyCkM1fDe4Gp0y7AE4/MBSTAP+thIwh13zrAO4dm+4iBfWSLXI0EhFA4g231fXdInepeME2GbqubdwBkdd+ANPQWe3oLCO2AG1ivZf9iDubgMRL0DY3DD0TAICKm4RbcNhkADWVA7Lp6zznAOfxADhVAKbTAH1CAM1GB5hOwMTDieWsZx5I0UbriS1pjFKyLbbF1e7lIFS+ADagSUDUEO1vXaBrEZrmCKTDNrb9INlNQESZAKC664MP6W1/oNUpAE/powDsdwDNUQBkDtp5JMA0tgC46s2G7XizGQBanwDc6ALEbXDMLAC5MeetQg4e5L5ZwBD9Yg4h+S4T1hulWeJLDQOZNYAivwmxJBDkaK5qGWRPSQMwODDrbwAXsQ5C8eemwJC8M4yIsd1XMnCgmQCj+d3MpHDafeCMAes7nw7LfACzxoue96hHkxDT4E6h0i6jzBDvQ5F23xv0ZhD+JAACuQZh+wAS66ygxxE67gKhcOaOTgCjEhct4SD8twf7mQ49jLnHPnDFtQAiwserzwArZw6fA9C7BgBjsADYD94kcXqM25lkvgAUAcxNVwncsgDLfw7B5vC5YOiNN3SOOg/iLiXur7RhJYnuUrDRTz3opIwQ9PUSvVeBSn0QgNoLFA2I4SQUjRks8EsjHyUA/jzDPxkAowALi6Dno9uNtydwzzsAcxMAdAjK2MuwAkcACGoKhFNwkSMAEWYAwXV3SSbXS3UAZM8AjcgK29uA1zsAN7cPHooAh/8Ae5wAsd7/Eefwu2IAxGt3micAx5lZpPS2JkXhBqcfLdpc71sAjroO0cwu0kYR32uPJHwRewwAQ90ARsYPJywShqqrEbgAKwcBHvR9P0YVHZwCllY3r1EHGpcA1IDd+Bq5A+IAWInrjUYAQNQAINQAV+T/bCT/aS7AEfoAENUAW3DOPMD+NF/kcBytEAt9CLbpcNu+ACayC+f98KFKCOM2AL4K/34M/3tpALxsALRVACMZAJZQKO7v/+Y7YCOGAETLMQ/MAobMAGBtQQjPIJqnH4AOFPoMBi/uYNRJhQ4UKGDR0+hBhR4kSG3Ibw4EZRY0N89TyuczNt40iS/vD5M9RgAwULFGJUKxmTYj1/SyxswJlzhTGZ/px4s9dT6FCiRY0eRTpSn79EoOjNG/cN3FSqVK+525Wg0TVnzbx+BRvWWdewy5rB8lCIbNhm1ZA0oNCACaxbde3ahdXM0IQQFDQsABLtVq5btngdRswrF6wDGChI+CRM8jJDHkrxOibMGLBqdih8/iYwi1ZhW6VznUZ9y4wFDxmyQAza4jGFGf5oNqTZA4MECehuP0TCm4xJiPH6gGgx715S5s2FWsToPOFJcbAy2aolXagzCiFaUsDQgE29pdqV+oOFwEPODR5W4CtPMqgpf0HN38efX3/zpfesBSLHH3C2qarAb9bJxowSqHHmGLYebMYZaNhapsHVxqqQLWeWEQYHCVZIRTHUUhMmlR1g2OWPAyhYAZYRX0TNRQ14ayAVW3JJpQgahCmMsMF4saMBCRpYQBRRSkGyFCOVRFKUVqhg7QMpxjkHHSuvxDKjFT7rzp913AETzHnqmadMfJZxjIIConGnHnzehDNOf0RR/uAzAT55SJ96gBEgBRIosG0/QaWDLiPzaCqlBAQySMCCSQadCMrvPgthAN8gheieeoR4wANPPUggE3/iO+8Oe5bDNFVVV83PGnsSMSibAqv6pht/Gkkii3WAMQtCsdbyapll0HmkhDnCEVZDDm+BhZsjjOFlsBEHW2YNIea4BhZoJilDRBhhnAUWKqhoRBhg5ihhj29guTHGUnYpA4UZPkmlXnvvLSWVXbhIooQJPjBEqqhmneobdOwIoIACDHHnm20e3uabb7KR2OFx4KIgAGC46eYajz/+mJtxRFngswVaWecclVceZ50v14nHjgNSwECDQFnFeaRC8dslAw9K/vjZgwl4yjkhMzDmEgMBovmtaISySOABBEpI5eaY6PHHivqc5rprrxWyB+szyOFnYIIHHCceKXaAJZteffVqrAePceYaFLIo5RsHNTyGlxsHG4SwF2cRZhYhlijlmMFu4UWYbx8/bRljhIGlBC5KofzFVPIVxRZN7gW9XlFgeWQHKVIRpZFMolkmGmrOAUeqWbOZZxIj5+nmbKq+cYcXCg7oI3bdp6KSiQIIKGOcWaWqGBxueClggwKo8AfVr68XaOf7pPD509akcIfUnMuY9DMMAgCn6a7xWYcbcA4i6h5vRsG+fvshDcobN7wcPvZ1djGAJjIEN69AA1hgOQY3/hpRAlHIDUI8IpEcYGSYRiDgE9KCXAZRM4tjzOEDjfCWu0I3QnuJIhVryIAm2nUYYLlPdyvr3+7OsQ2RxZB443BGNJTXv27QpBkgaMU8TnK/r2lPO9TYwQe856kSrEN9OEtJmj7TgB64w3pe05RHnhiTe7CDfkQEYxiZY48zyMIfZiPYgaqxBhhgiIAROuBXlkENXlDhA9RI1oOWkYt2nYZxg4iWH3kBCyHsyBYY1ODjbCEMUUihBM6YRR/5uDkSkrAUm4hBEhQnSbrFzSwRM5DEbFggbnBDdjZ82DVOmUZ0CORN8uBHPfghRq4ZUTrRSOISgXYpp9GECwQIAQbC/nMAZdDSKL5ghjGVuUyJLIcdsrCESSj2wntAYgdrqEYz3gYhB1KoGdwwRAn+UA9jPKgrwpCkIOWgikAeow0xmAMk05nIERmGF2sQ5zVo8SJY5KuSoMsXLLgAz2Psc1q8OGCFaug8mtQjd6OEaEQHdI54JGQR67giM1NlS+lIQYnec008xIczfbjjERggwAGKcA2NCoUejmBHRls6U2OOAh70Q8cqC6RKbgjhdODYm6+6yZZjVGMZNJCCMagRVDk2SHAwApwkbmEMWMRAColzET0fx0FRwIALsMgcHwlDyX/eSxSz0MQHuPAJXszicdsMVoTcZ49CNMEQ59CpRPVa/pWoODEh1nADPGRKU/1w1DmlCBoTP0CL680yTBUlbEwKMtjIVrZr+gAKrNaR16pwgx67mEAjqhHHsBgQbsegBiU+QLhocNNxGpyFKqAxhw0YIoRahREsltGGD4yunovxZ1lLaIstlCATNkLktMrpq2+swQMfmMAm1rFX6hoIfmCzLKQMy5yTNGIHFvhABmDQiFFhT4uU1c8QU0WO/dknu+91mjdw4Qp/4HWHy9tsEjwwDmPAVSxvjEYupAADYeSRqPS8xSyOIIUYjINduH0cL1JRAilAsJ5kFa69MrGDGAjjE1l9HOPgNg4uKNECXABldal7joZM4w7sGCl8nbNd/ubI8hRzmMMaTrJFhpDHNuqV8XQQ4iZILaUYIolxkJWsHfs4whQikdXZurENf+xBCHtAx3LNORbSBiuHfYjBGvxxDP9uqHAaHIww2FACQyzDoBCu52HWEIM9OOPBMcJwWU0oijXs4BG58C1syzzHaNDAZw+Yw31VDNFvjOMgSfaGN5Z8HxonBWugQEiSFaKPIdKEH5q2LD+og2PylldQS5EFO0w9aVbzZz61oA+CdMeNeXBjCUtIhduEOlSx0C0adzPGNZjq5WOINYOwMMaE10CLY8wTwmAthVXB6lY8B1e4ohDGAg/HhVSAOIO3EAZbhHGOT+xgD2y4pjCokQ3Y/i06huPghjuAvBBvMAO9rR5KpY+ynBz4A2sbqQYMPvCBEiRj3jKmyR5Yg5MVRANTQTmDqvE9caPoYylBsIc36sFZqnBjHZmYgCZ4DZaRi3sde5gALUpeoUDCVhhzsMAnWnEEVcCZn8YwQwY2cdtc0MLa14bFEtjMGgssYZAIBpYxwMEFC+yCdXHzSjTcbUP3OsQVZqR4UvR9FHIESCNvMoYBSjB2RVUN1DRdiiEeUIKceAAFbcIUO7yedbrLxBXFgDEaZxWVbiThBkb1b9y6DJY5AmMHSeAGmSG0DGd/K0c7WMaPbD4iXoiCws2ghSRtkWfhluITVuWFENbjAQuE/jWRxthQDtGyBn6EexmKl2M0xAEORbtbKuuYyDSsUfejbJ0oS3HENO69kIMkQOCfggECrAbfpbiHPaAShY8FZQ9y3GHVvMe+Q1CFi2KQY7Mc/8Y55hFOQ8yjwBriMgFbl4057KAQ5wCGOTnU+NQohg3w1Odg5CAJnmsQrLzgAhjQhGPwNuDKsHrJl1LYghXYA0ZagwfwjhUwPQ3ihWVIvIGiBWoQhi7rijkKv87imL0Kv0eDCH2wB1cQiezLt4swFO1gBlC4h7NLiKXYBYLznhL4gEIgjiATBfZouyJYvv2QBfpSwSJUiH87A37IBnd4KILxOG6AgWXjBi0juQh5/qNjyBaf2gWjohBnMIanghxYOIYJ4zZgyKpd8IRBSC7/c4ZGiMJUMAZpaRfO+ydRyAVN8ABu2xw7ZIMG2IFPAEP/64ZwQgReuIbA60IdGodxYCl7iAeO051uCJ+J0Ad4kIWqM0KS8L2ioAcZFLI9WCImSoLqUbJS8MGcWIIg1I9OzMRMLI8uwLt5gESGaoQPyISSKzk9uoZNyIBSQD1u6r/cuoYlgAFR4LlZoDatgoV78gA7/K1WoENLwjYhKIHPQUBq67ZnEwYueABbGKA3kqNmiIZtiIexWwO9iyEeawh9oAebasWY2MShcLKNOAlhsMFPwUEdPDjLWof28MEG/tgDTsOUaQgEePDEd1SySLMCrIkyWtmddXCGLCgBdyAzs3gbCQHHCFkGXtgBIcgmRPxCevIw01kGugCXMJiFNfwWWJgFD2gCwXiRWzhABKyXcJICQEvArLKFSNKqQUqFBvCAECiACszIsuiGFSiBFWCATOiGWaQK3NuILiJChNQZFtSOSvQFkjiIDAAafEwAVbSs5ZiDtcMJ0rOAjlCV7jtIqswu+bGErHQHWZGYbAiHcEgfcGiHdnCHSigBRFgHXvAKc2gGc5gQaDCLivSVCqkGdCsEihw0C4OcWeCFVpgDFGiEs4gwT6i5DCKcZBiwT3CGN+Ojfvq5ShKFW8iE/iyIgUa4BROql2VUyTBEpyWggR6glAOoh2EDx2NAhxgAmhJYA1HSnUYjQYowMvpgy42IR5kIiqnUiKWgBQbgSqBBgFLYwSKTPucIijmIGgtAABRwuFUxBXrAxORUMnuwB2s4BX9wB3SgmANZB3zIBmXIBjzghkhABiGoAE84BUAgBTxABSdYhjSIhGjohKUyB2oAPANrBmC4hlkATmHIBt2MkGKjv9OYhWYgw0WKzVwQBjlARsihhWwoBBdYA7DSyUkqTdO0hT0oATPoNn8qBRe5UBhJhWtw0TVohh7YgBAIgRlYBwoVqmNYh7G0gBIwAFtwIYIZhyXcx4gIijsY/j7zVIjlLImg6IIUHImToIYkyIAJSAJouM5BuQ0TfFKjwIdqMAQ2gIXrUpV7aC8qVbJ6uAd4YAc8OKMmzYd46IVeOAU8WIRO6IVO8IcjyIBU6IpjQMwKoYZO4AYsQAVPcAJSiIRjAAZqWCphOYZu8CBaiIbBa7lja4YvsIBu8xsKDAPIRA1bEMMk2IHL+C2fm0nUsQVqPBJ86dAQswVn6MgQYVUJACbYy0gOqQarEgdDSAJYaLc02oY3kQl2KE85bQgrLQkTjNaZGLJUWYpsEIUyaAVbmSXnMEF94AdNyZlp+Ddpza6TwL1+qy9pyAZpcIJagINa6IV8EAd0OAdn/oABKThEBxGWZHGQvcmhaDAHZyCFRQDUReCVZtiFHtiBeQDMxctV1Ki8GMgCdEIwXpADVb2RyoOBLNCnmJxVe2kED2ADQAOdQ8ItaVkgNnCz07AFY6gGPBo8ZYGFBiiFeaCYc2hCAwEHqLwaf+i3a1VXhKDWkRAbUowJMhmTiaCJeHBNgVhL3PAHSiiAA2iAAzgA8qraksCHGCQpfwCF3TvayqKJRmgBEvAHZagFZcCCbFgEdBCHetBXdgOHBWqEIP0KLluLDdEmTVXMmo2FRUCFI1iASRAHYaiGYduQU/02dFqbPcgW3OIFSdhMDOWRLfiAxEnG0+inmRQFn1uC/iu7BXrZnHwJRA2yhWNopBjAHG+DBXYpSiw8hiJYgni7htiJMrusim2AmevbiKWIpnQ924qwSv4g27nDj6VIBSFggAmYgCzgia8VMls4gGASJpS6BSJrtXu4B1ix3uO9LIGYgwOwgAowAzfYhlrIh3Fwh9iRCmpYB2roV9v9CgO6WcJrhmOYh1T4gD6QBLg1B0BohwZJPcepWFhowx3gAskowERSBUmAIFiIhnCag0Vql8WJRhIyxjnA2FlAnWz7hM2DM93agxwUBsh9kV1FRLAQBnxgAyFohHmIHeVpNL4qmHUIV5lYimmAB/J1iKR9Tn/wBbHVj575qOeCAaEl/gmaWAEMWImkQQGwlLHlMKPxFeKi0QdlkAcUwAALIIEWoIeFqgqYmIND/dT83d8HUTcqgAFasMJjiIVOgANgMAcy06pZiAYqONRghC1oOAJoSLBjWIIdcEbKK1klsYUdQGQEtAUq2IAPYANnqNgR4SCkWkYKvNnXcwbc5QZ0AIfZUx5xaLRTkpgzHQl4OAF/2+KFIGLj9IdA2Br86AgpYA3v+QAz8GF/MIG+4JLuaACDwLflAAVJe2UxKo9RGAVTmIIQaAANMAO8mhV0OAYYSAK9ucii7FtF3YEs6Ia3qRBnAAZgCIJlUIVZ2IXG+9geXIORnbxciK1B2AVV8IAs/oi8mESSA/SnlJiDWXDNVJgDldgAC7CtRGqXR9iAOSBAekpM1kkFC8iENC2YcTDlgtkddxjTnpA0oxXiWKYIdqCvKTWKehiHBOjKT5ESja5Wf9AAYOaSEHgAYqaIK8KHHiaipfCGgkjmnF4KX7CGIJiGYpqEKGADfCCQjnOHcWgDGHgEdAg3qONmbcohNrDFdYhqORIWCRmENLwFdkouDhKoGNAEXhBNm2PJSciC3sK8epLVAxydTxiwPbuXgV6PDQAh2DqGUpACGkiFktSqTgoLLAy6HQiH9lGeRbwhxT6Q4hSKpbgDV+nphADpiTAFb9Dipj2HCUhpT5ESJ94I/prwARQoHwzoASteCIvzB4FuTJoOI+pzhMm2HyR0A7wTCPdapYyAhR1og10QNjhqY3FDh5ZcgxyiUGdwHMKZhTQcBMl8qllwhkeIgTZgthr9NgbO0V04OrGChQ4eIWy7vzWgSdDZAQRIACm4UGZxhj0IM2cwDXoyDGB5vXVoAwZah5y6YSkTKaTwhWjKbKqsbIlgBlbMj3pYhyX+lAyQgp7Ah3AYADAGjxAggGrw6IVYhx1YgZuIAV6u8MvyD+OVbafRh+UwBSuwBhAvr1PihnjYgwxQuQ3R36n2imM4B2LMhVzcyBfZheUeBEmQTGY5Bo9yRuuGnLo4BiHYgeWO/tUVlUYTEYJNsKTZpYVWiODfOgYagAFA1qCgEhZq8IB42iyzYR7ikZhzUOWeMMgQH4gAj4hEiClBgQUG0CXG6ol5oIbsbQDHsAV/wGmIOAcebbuFpqU6TQQUV3NWkR8ngIfdo6yGGYeIUatzMItcfCPVE4IsGIesJipnG4xk8PFBsAVaeIA1iAYih5yPPdk5EIZLkIQXYXLTFIUPWINZWNF34SNkjM0f2YtyqfJEmqquaJBH8ABNwB0dbh4cBu2iGHE3wLpDZ/OH8AZfsIf/jgkWl15GgYE9QO2NKAUzEAWq1QhNSIBT3IEWDKNp4OlDz5li8AYrYIcg1jT2WQc2/hKFc9jACZHx/u0GW/CgvBFsktvI9L4RSQADvwaGs4YzDiqFLICBVCBAaADRwXjrDItrHdEEWAhoe8kXloWtaPiE0s2F7Z48zOCGSKYB9llSqhCHqEB2mjjzaq034Z3sZ3cIeJB2apeJVCiEOWgEnnDThyCT7Mw09VJtSoyHoznFGjEmdpA4dVcVe1C1LpCFdG8Ijd4FITADLES94J6bcPgE4GwGPDInBdagG7WDHWCDY8CCZzizycuLQiiBNlhhaVEFEPVugDJGBZmD7mZyZRSGd2pAFrY5mVwHq/52U2LSjObz5pgPp/cHmm+IZlYVMnElqB2yPvdhd1iNU7QA/lgwJlOIJsfHFKxhhhPwhqZnCH04iBQWBQbhegg5hnFoAhjoL9LaEPiG7iIQghBJsDSQhGT4XARTuUJKhZg0BjD4hYz/p4AqAcRZfvjOix1YAloQ/MFHJ+CcrlEiV+fAmlbucPKF/NSGh+/Xjpev0iyYAES+6aNAhHH3QQ8QBmUSLNEfFHuAByvYn6J3CGpwgQXf+nwHiGbNnDmb5WEPt2MCFzI0lushxIgSP31Yc4zWw1vPBuHJdUsiSJCaEuw5BksiLFG0jvwqleolzJipXKba86FQK1EyZfL6GDIir0YICi2b9fOoxFs92VjQhK7aOXBSp1IF922dP33+tnLt/ur1K1iwWpn5sxf2LNq0ateybev2LVhuQ3hwg+v2nqtidvfy/YrPnyYDJQZPgFGvb9hqJTYw3uDhwR9/fxFT5msNlD2tlTdz7uz581l9+ryd2AoP7WF9czI8q8eNGzSGsmfLXkbt2BYhmcYBo+1sWU+kHoWlWuMhlbCTEGclS4Yl2SyfR2EtoyVkB6zkEW3RKuWSz6SdMkXBeiQFhkuaL73H9Ih01rJUQpLs4qVc+FFbxswv2eYMUR+lrPNNVVJ9c85fmoHGlVldkKPgghFK+JlcdEV4Dz2gsDPhgrtkUIIHIZYwwRr1QFjZMhY80EADBMyBFYcTJsKOWTHaeCOO/nbR4w8olpx2Ylf8zONPKjAUwo073JzTDW1NyibMOJ/EYMY4v/kmjHvvNTNHCWvkwostIN1yiyqSSPKMUT/Rkk1uFt0SJkSwzLSeKHx0J14qouzChgdz3DInTOSllApGSN0yyzVLCDFHM2PiZ6gzZsTwCDjLMKFAAwfA0g2BVGUzD5AS+hhqjqWaWmFdEtKzo6mIffFBiLF6kME6h3H21znC9CEKNZO1ytmGvwo77IT6mOWEKaR2NeQaQuyyzjnqiDOOONQ42eQyx3yzxQcEOenMo7bMcswOUpTCy6ODPCcdRLZkJ4QQsKArEaAxgZGHeKWIcosHUnxS73qwLFGE/pzC3ULclLPM++hPt9AizAMWRbPMMiFggEEDlGzTqVXr3JMjOdPUSCzJE6IaoT3knFGyW/zgI0UGsnpQAgLo2NrZPR/7YyLLfbkhcs9BC72WPex0kZXOZ7nzTgZr+MONtOJIjY6118pGkCgN7PGNME06Iwy7SD3S5TJwGpxLMkqkmVEutnwyQR/G3JcRni/pJN4eB8GiXqCwMOaBBc7MHZFSs+yRgCa8rM1wSLzMYQEt0Si0DDckUEDBAaJwahU4MOboiykjDz36XicvqA89ZJGOVhYWyDyizaDhc4+yq4flTbC2616yVsX4Ao89SXvFz2H1zPFBMv5Uo845044T/o455wxE8bXHdGOLGTvsso0xzsz2W3BI2UKcFDTQcsziBs8yiyqqJHNoM6kkAYMt9m2XZ90riXL3vo8oKsos7jaeVLgOcH1om0RsYYtjiGIHRYgGmBgHElvcYhmaKEISstEMhQhkGc7wQQ/m4A4CfSN2tfuMWRyxuxWuxXSguQc8RsFCrxQCRLLKQBLi4asZlgoX3hAeD4MoIbOAYhTeQIs+4uEPUdBgDe1YxzbQMQ5wjKOKUpkHNW4RDWoswzfHWMcfdvAHakzsSllqGCyc0QcYrKEgZmOcLTyBB0nwohltgMEeeBFB98iJbzspxS+OQIv9YS8GXmKPeFTygBKs/uAAqRhcmJbBhRg0QhgUlCBKeHEMKeyAUhxkyDLOsQx3WOUb7jCVVixxRCGy0oWf0cc0TCHEv8BgMIPxwAeEwUpT+QIXWdklMHHmj2KwgxxI1EoSkiCMdYzjHFEBhzjAoQ5wmGMdrUBBC3qQxtksAxjXwKAtyvi9ZSDQULdwRgx2sDBMQoQXqpiFJ2KQBFGAjV4Aw1MpPvEvWJRgCeup20xKYQgLaM1RccrFLLpUCkuyMyKwMIYoPmCGgTiJYtm4yg5xtCNQ/DKYLHSlZ0ajFyEOSQq23IExPIojb+jlhCp96Vka5A9WnUUYJSjEOrghjuZRMZpSo9Y8qEABjHHh/hhdXIgzjnGMBxzpqLSpp6G+9IgPNMJ+DZXIGoIwh2OAZBZ+BKhKjrAHBmgCkQBNxXAYCpI5bMAQx3jjVW/BhglcwxhOddIxaFoqs5RGrzAlHUg5c5hi6CWja/EVENlys8SqRSuTMcZkDBsWCLn0KwrCR2W94ivRwCVp+JCsWsghy5v9tbSh0QcuVia6rhxmG1yihmuoFRWeWnFaQbUABg5QBisl1VpLgEEyrvFJhiR1j0c55yekEINzpQ+T45IfcNOACk08Qo/r+2rdRJELQ2RhB7S45x9T8ZFbwAIW0hmXJnYQg2sg9Kptu4UxNAEDMwj3rrRZRjSyQdpSyaIs/qa1XWArc5hvSCIWcJnd00RRDcm4RR/88Ac1RAEO/7ZFM7wQxWGCl9nJ7IIWWwFtWD5WD1jYYiuZ3cph3NEKXpi4LfwwyzpEcYwWt+Uwy+DDOHYG4v/+lR5u8AdjiecPWpQAEfPIqbTGYQ7nUVPJVXTHJApQgMx5bxm6nAMN9nANK30Pqu8RxhxiMAdjGJed4qpGFm5aFGjUYQMWMEMrwIvPUhRyDZIAgwDxmQq4PsRd1FCuJppBYveG6RhLWEIj0EE9q12jit9gsKk0xFgelyzAlHEHFS6GgRY4Y79pQYcRMEABDeBgHadsyzd8IGoN9MAfp1YLP/QhDFGPmg07/nMxkW3ZCMyy5cGU0MDlMCCKHXtFK3a4HAVCwOJeH2YKyF4BNdxyyhZomgmeo/R/9VEMR6y2K6esghCcwUzmTWta0YMmFdE9rWW0QhhVdkY05MmLaFS0nPmhBTVisARahC+uyZmvUr4kihVYYAMH+EOcz2q3PPVLJ6L4xCDrVopCddUYpbDAHOTl3ofIKxUf2OptrObBTo3jG562kSNcgW3AziVVnLlHPZiwAGSHoADf0Aexd+aOGUiA5gXAx8m/Uo91IDvYCvDHkNIyu2MIgNYUUEAZKHxMWiDAhiMyBJDV8hdECADZGBCAKDiblsOUoQBeFwAwgu6VwxSh58EW/gBs1zIkAYQA2RJogTsmvXJgGlN1YblGBgpRj200s4rUOrzzqGUOJ4ujG9y4hgeX8TZN1NVJXj6uMAyRgEK8deP1s0UhJlCIXCjnwihgjNYUHrA1TKARgBLFC36RZ5iUYnBsywUbPiBePjd0DhOwBeStJpBqHP7w145R76yx99FZei84t0XXJSB9CYRAArdGC2ajTIHpU78F1z8L2WfOfQwwIetomXv1p4+BAiwD0mcZkgFgIKsSMCAeeudKPdwRgPRLv+bfD8tnUUPTcV8IHF3ShYY/tIICbJ/6hQDSpcXHzAD/9VwBfIL7LR8waUUgFMOJCBk6rMENQJaSOI84/oSDOkyR1CTeFE2RVIQDN3wD9pRANCSVF51RwxxDKSwBfVjVVdkCMGjCbx1DmfECFVgACRyBIShcKcxCI+jbLoiCepTCMIBBS8hE7f3EMTwCBhmDQTXUmGThDiTBPPCCfXFTNBwIC66gODwYjviO32EgyzSfXRxGDzDg9FFAC0xYWgyJqHFfzzngCQ2JAmCAH27f//mFP2SD+HEfBVCB+U0WkdxSrJTAB+zBBSIiGxAiIyqABdZOBGriHRaALo2dP1xOIRZAragF0dmh9OXWA8LhLmmFL4xUVySRP+zBEjjNNozgOSxZChretECTkyFeXRjCTYnDol0NuvBeu6RR/hnsQBtdUlzZgjOsQQkYgjEoUFKIwhzMgR14wp3kC51x0h7Ywux9Bx/sDxTOxEm8EQUJg6Q0QlEw46PIizPAiyh8w3A5yTWcwzewIIEYnhLZCBHtyInBIofIIVwMiSkyIgaM4vn5wwGAovQN1TaoxZAUAEX2nAZcYrH5Ayws4h3OwCFqlj80wszITL88Ilh8TBk0ZEVKgK3tGB2yYs9xYkeFxWGsgE0+Xa+oRTTUXSEaIEIK0cdYQiD4BTIlQTW4w07tFG0Bo1RUUfQ4T/R8AzfgQ5fYAhd5Ub81TC40QxjWT9hgEgXxAgOswcOwS5jISUyoSzjGxMRpQglIAXlg/pd3TAItlFee8JlRGIMFqOVXshMsNIMheIAh4FcZEpcHpZujCWNAHt+E/Ey3FeWvKORbmAUVLCAjhsD9oZg/1GEhYkBJegUf9qT1VSZr+YPZMaIDRN39/cUxfMj8UZVH1qI/GELPMeIBtEJOtqQ/MAFMUqAznNBhtEBPFkA8qJ2J4UMfMqL1HaBlstCO+JU/8AMtJIAoJIkzldtTkiAVUQsVncPh9VQqeEAm1IMH3ddgThCYGAICJI7tsZPjfMAmlBlEfNd40IIcxKXd+J5OYFdMiAIRMMYWhIRScMEH0BM9hgsvpIIZlIAwUMxiglI2TNE/hqdjTmU9sOGEeMNp/kxnpbWcZwye2TlARSqAEZRmV+CDPcwCAdgh5kQdsX0W19nh+inCb4LFcXKm2y2AOzDnVgzJB0iiDb1iRJodA24faUqnTvpD0y2pApCkk/oFPnxDlFZkAayokLrkAchoAByD2Imo7miFG5CFZnwMN2QPN+QUOninTzVTOPyUMIrntHRDPRjDGriAOszDa9yXDYbE+DRQEkRDoDrXMWhCEuxAM5BeSIDX/mCBWZXHWJpVdu0AYzxAdfUZfCFCuVyDu7jXeInCfFVKhS4EflVRNEWFFbHgVIjDqR1kgw2TK7whmV4miXYGztmBALhdAPRAPXxmi7FBr15OAJSfkH6Y/j9QQbFKgACQAYsWGzhgQIxiTgXepmbhgzN8AAMQRgZ4mEtpBSwcgJIWgAZ02lp8zCcUwAJSAN2lolocBte1qwDgwM546PsFZwCYogDM5K2WqT8kQosBnT9Awg4gQjysQ+KVm2yFp6pO08Iu2B6UQCM8DTdA03pSFH6KSS4swxfsgCFYUlkyDizMgjNkAQz8geDAVZjI2UzQQhhUocDswByYo+qlgiGEwAa0QAH8AZYojDAoyiMIzsbZ4xLsQCro46k2gwdlA7oZnmNKzVR+QzfwmtRxhrH4Q1L+K7Fg5l44gxFQAAls546mBS8UQQjMQCtUqVq0Qg9ggDaVLVrE/oMdtEAIlEE0yC1Y/IU77AEMwMAcTFjOtdg3sEEItIAdvNpaaMU1lMHh/gHbIuAxZNoMIMLgdsU9tEILqCgwcO0KFUN/aUU9HIYUJAE0kBKTLV5PCSOTsS4VcUM8zMMHZME5vGkVhcM4VEMXJdXIogTpTUkpHEPvMsxD2cLsKgWffYSAvqUcwMInBKYm7M3NEgoNWMAHhIB2zYIwRFTNbqwEFaYmMADndeW14NdOqSriQVM4qJtU4MMnrMAKYJ2sskUOXK3nlorX2sU94AM2YIPeokXSCOvecsXl1qLOfNaBTcb+utiHaUY9FDABK/D80g6KySpmwYNeJOv9Eksx/kwDV+jDLhjArm2DMzlm8VHLCTYPw5pb7TYCAyQDVjaZ1G5DF60TUvDCHlgA5zUo46yBBewLPS7vgKYCFZSAJrhs3cACNQwMGMgBuqwBA/DgxglDEcRALvxGMjYJVFBLQBZIeVILOgDDDFxM5nwGOeiFAG/wguQvXOhDPfRCLfCFPcwDz7RxPcyDPUAwAd9xGvvF6EIwPvBCJqyBniDpW9wDHc8viiXyXkhDJ7CkGrPMWCQljJ1HNSlJeJabuh1e86wveUKTOOgDLKzBErjDOeAu+joPOfHwAolCEewAN6wPoeWCMMiXFCxjRAgDmSmQ6tVeIRxBzK5jLz8SumSH/i57whHswBYQrajmwjHsQbnMw4QKXzSc8rQQyDNFEwpysXiuwy3U3dddgmfQgy9YQ+5Eco6wcRuTg62iM1eswxwwwARkAANkQMVqsNB4A5q6syT7Ay7IkhKtAQxkgj9ITfOkr9RGEzVNpRpCEz4YQgxg3U+tMDqAAzVw4fCKCzVswQ5w3nzCES2XrpZ1oVKwwRZUlRDnSSnkgkkVgiiEgX9KnHiVU3bwghBkQQq0gzQ2VHbAghQIQS4obfk6wzVU9FTG6T/a6VQ6rDi0wAEcgARcQ2eQgzVYAj+fSq6+kDUI7FV3xSwkgEp6mBCZgi/8b1ffiGYogz/EgxCswTWY/jK1/FR5onJ44u5Eg8M2VAM+bMAaNCUVLZ5dg8NTeI9JhGpXMVBFaO/Gkd6DStTBsIv2SkHBbYDrgVUuNEJFuEQrmInq7QtKZF4J+IknhAEdXVUawWcjEMTSOoMxZEM3OBlDP62GHl6GSsU6XMMkUMrLDVNLnfWNqPNbGIsHn/XQwYrMZIAUsJI3ZIZvEwsz/BgsIAArIJlci2d59lTzkOcKTtE8jMQvOGVcA+O0iFM1tEIfQMPihIktHM/uLbZSsB5y8Bm+EcAKMIYU2MLylkIWeMAnsEcpSAJMA5RL2BtCSVIJyAsFGYMcRIeZ8YKibINRCV8zZMPioaCG+hQ4/qzvUlu3VJjDN3y4dfaFFSx3c/92VqMQO2ytR/mKHq9FPZzDBNhQrHyAFEjm7oDCNPRxiQuWP7hNLZjDeeBDThmekk204ZlDhYf3nIpDPeTCfMzDOUBN4ZVgFXGDUzmDHRRAAygAuwjDJwhBEyxDF7LTF6YXU7bCyKZRwT2GGXiVFT7SH+gbfvMNZ+fLI5XTmxgDZnNBecMJLwxCmXDhoygFLyCCIVXDPjZJNDxt6wYjhqvqVGxzeGKljWemP7ADVyvyjsMFcDcYPYxCiALTkMSDMMRqZ9TDOFSdzNC44rKQJdDIpqP1STLAlpdAJvjpnKLvNsd1ukmtqioJPrDB/hJogj9cg3cytThtEC8ogMVsABWI+QKZAQw0gqDxMFJkhzMcLSII2nGZ4w40ABcMily+hKIUwoXtxCXIgTDTXsnStDAIgw8UQSnIDeFgiRyowvDGCdgcmijAw+R4jQdhcqRv6GyjL7oNvGOiQ4t/sFb0iEHGekKe+GfcgzEF0yk50Ao4kMttBtC1zqpnASvRiKZD/FscRpG2wAokwdOcYJ3K9UL7+gqLQzw4w3zBLjcgnqNzg/cwhBAegMVgABWQmTAEZnwX7TLU0BpkBz22bJ40gvQOKC00Aon8007wJ8BcoUMtQx/ozeVJhCR4wqFMRzMgguiptshRQ223rqPR/nYaUlGGkuB2j0M3RK5afIw+BEExHNHIkzxbdHqFwcMdlPUu/QUK6GxjxMCCeQYtxIysxIA74OsK0UMXwDrfS4jJU+IHJEFs+ZQ4RI8vQrqFL165CYWH/+J2U9HOz0Y0UEIDhIAGcAMvbEEJiEJ7EqY10sKY/8S4W+EtJMGBn9XEKUHEvQR+zoI1igt+GEMYvNMNxgAMfEMW35czXKgwTvrCEoi5Hbx4msPBp9s3iMNV7AU9TMOPjWnlr7HEfwY7nLMQbUFjNMYD7AHOYa0/ZEISfEBhCME6QP4Krf/5cwhAzPO3QooLfu7QmRsnbtxCcA0bipMIjqE6cObcCROS/uVeN27mzkGUOI5bM5MnUS6LRs0Yt0dJkiyzdStXTZs3ceakeUtUiSwyaea8aStVqVRHkRYtBWtOjCy7RBlNOrVoKklHYeUKeouXrU8bzESbJTTnLGPCjqiaxaumrVzG5pQwNA4YSrsmlzWLdg5c33EP/wb+Jo7i34eEGR6mCC6k377gvuHzN5lyZcv+9MHzd2YarnuXQYcWPZp0adOnUadWrZrbEB7cVqsuNi12bdui+fmjYmFDb98l1tW7fVl4vVKNaE3WdxqfcH7zlg8f7k2WvujSsWfXvt12bkKSJT9fx40hYYXlI447NxhfmyWZ/HVjuLBhOHTdouW9i/KY/jNnUmhAxJmxyCpwKF6aWWIHTZaBxS0DiZJqKlFmKUWKHRDJRRSqODQqjGEIrAkWYWzZoYhPGjQQp1tuMUaOQTwRBpZmRBFiCVuyOWY/vJrJKxu+DAPMr/QQe+ibcAJzCBwkEUtSonhQo8cfdqzABRfMuMtSyy25bO01LifDxRLrwAQTnSJ4820DDx5Ax57V6pmnnusqk2w1fj7zxxhnJhOuzNFwkeXPQQkttLLlLGEHS8r0mWckw+grjKR5lilhjmjmka+h88RBhxpn9NuxmWOqgWWCPWwRJigVC6TFmEcsmGPEVQuEhcOjRLnFkAzMOErCW5EqpRRPsEjGJlqc/pnjg0Zy6YpVnYyRRBU5lonrEf9C3c8ZY6gRkjDAvvlLocfG+SZcv4psqK/EgiSsIX/sFM2eN92wgrZFDc1XXy29hA1Me6TcVzsu0lQzBnf8RC03feLFTrJMEvDAgwlSEZgycsixWOONU/ssEH/eBM3RccYFjKFv4lGWlnkkhSgwUEU9SSU2JohGGBKfLTBVM2BIhRdaC5wF2KWa+MCWDYGlqhRamk0mRF6KEIKXEHPWCRY5stjBGR1jxuubdSEFe7Akhxz7oYf4emxdwMpt6Jt6ciONnhPoCZjju/Emrd8y4bmDnTzzTm2PBjxQ84FGYluGigZCaAS2hmP7bI4M/kqovIQJ4Nt3OVeYCdxzvB25J+TL7ESovHncicedXXbIwh9uuDlMIXMo4qa/mPOqRpQY1hinv2MerPomYRqhIYlsaAHaJltmcstWpVOhZQ8L1tAw6amMyuqWWbBQhRdhDKEhi2xSEV4nXmB55IMpahmEm2Wy7VHma85ml6L5TA7s7G8aU/cvxIDktoacgzDnWAdpppGIO/iDHqP73AM5trcyuQIegIOgaJazBgKsaQMIEMIBUdOoPhygARjAwAFCQA14DWcXHyiBxCRWAgugI2GF0gc9cEGnC+6wTOwwBTx0aBnJ6CMe1/CHGeawhznAgBb4iJ06InIOkIgDVM4Q/hWoohENLizBEOvgWjPYYr4R2WIJJRDFMqiWk2ZsLRcVooooaFGjJDQCKtdLylJo1YpOqKIIO6BFisx3E1gcoxQwWAIt0HEMGEnCHDDTjxWjUQ103A9d9Tsb2xRzGEh9CyKO6SSkghiyYpyhGPgKDeR4mMrsSBBMxdCHBVVpmXrcYgkPKIItQIiaeriDABigwC9NuIIV3kZZMIyhAbhRQ0LdAx6miOUzs0SOYjhwNJ+RwgQy8AEYxGMdi0nSN9bxqfjdRRjUsIUH1uAMaoTKGT8THiycUYgENGJWBbpFKxQkhVuJwhZ7KMEafGXHgAZPRMCYgwU0AQt3BtIm8FwD/gw0ga1mUAMYqAjDMd7XI1BVw1wTOde5LgI2xkSEbV/bJCXR47bEnG0d9BAIyJZjjTuMgpqW0Uc9cApNnd6GlVzyhTNhqdPrBJE0wplDCX8JzBXwQjpm+IAxPVCCBKQCH0QFkz7Ica+dbjVyvrAGagRSuajuwB+Dqd9CqNg1kxxjHVtgQDLysx/h2YIXS5BaVlQEtd40AKATuoUQSkALgVIlJ1nZAQgGMQvlBXIWQtjBN/ISP3MMYhCoqIszsqG//30NMfjrZGLEca5wqGNsnB2S2ozkmE5N5jNv6oIpSokbf9RDMtzQQ1W5mlu9ucZfYKJHKa36THvICU7+iMEG/nyZVAyEQBTSKcQLjVkCAyAsX8uZxih0m93S3FAW3tClP5aAzQysoR7dUFd5Moq7ZXBDEx9YQ0bGucZncSUXj4ABF46RRrLcYge9sUCvAgqLPbiXF1EZrFGYFhS62gIRJdgDNCShKobmYsEDfsQ6EBS/ZZDKGTBChTLASRiT+i+053XZ/9IDkRF3EkmV/Gw1mBCAA/CCH0qgEmtFtg5oJIMRV2DBBegwW+0OmTI91dJyPlZTIpdGOGxAqnJRAIvhHCQDMIChDIXgDlSWiV7+COqSs2uPeyRCNcIxQxYK4Q/ViUMh5+BGXGN2jGs4owlJoMU39iQqYxC0LCRSkCau/oFXVvGCDQ9owAPmgKtbZMKxmYAF0gS6NAo/aJClKEIRUnGMX8DBaQyFhTFSQYMl6OWLdwHVMsyhi2zgoRadGEc25vGNbSzGk4bx7P9oXZiz+W9tl/xGN7oBCwJ44AUH0MIpFEUPq67CCzIYAQt0UAMvzDZuYNatkbNkXdoE19rEoQYBQpBUCoSgAUK2zXKcgYCoyrAEKtTXK7Xabe1+xhJ2O03coGQnfbhDHOLs2jG6QYkS/EEY14gvSpyxWBEtAxGnqonCyZIKRHDBEEYRRS7WYCmj/CppwrpF8IjSjLgYgi0f90QadgFxssAiGmbIwCxuFzNQXeMb6EDHN7KR/g0sSOMUwVlPuMLVyUtCSui7Lhe6RtyXcK3DHd8AAwYskAIH1EI5o6nGOuhQg2j/ABry1i62ubMcZrjClF4PDcPmcADlNiAa3NZlPZz6T3Pryxpu8LLZdbscWcT7NvoYhxXV6gw2eGBraj3JMRabqiXA4BiCztktguWrGu3AwIMtiuMf7owYJGGhE344LFoHP/l1LehnBUc2agEIQNSiSbum3WFAShJ1PQSKp1VPaAGT81pgYRuLQAEJKKCKspPOHzqItvErgfdr8/ZPbyKz2w011ELNoQco6EEMuvHl2DynMi+trj8cwUDl59Y6ZNd+COcRu4VIVKP5cUY0UkE9/i8a/iTbMkYY3SKMPbQO/uazhYQ2zp/WwBggzY6yh8IeLheEQVkKAZBqwiyUQL/2SxhSwZ/24BxKbT/y4hqAhDHO5ejWYR3wARBIARBOwRmUIefQYR66aT46Sulwz7z4ZxzQIQTdYR2kIRt0oRZ6QQnGARDCQxZwAUrOLzpCAdpqQBB0YNq8b/ygCey44zMcIWPwRjjmQRiWoerKxE72YjK2zDZwCqeqzVDo7e6ccKuoY/hOYznq4T7U5hyygRp0hBpaoYuOYQmSIBXAwRjoDy94oQzYYBLaiEaaYAdSwRkwj1X+DylE4dFM5BMezfKOYhcE6Ro+YQkOSUZ0YhYG/iGMDGQWhOETdkAKliEb+PCKjiEafqTW6OMvzOUb8oHpdOEUOqEX8EAcFqHnOkEcskHN8EFOxEEgenEd8kEauqEWkFEXOiESegEQlEEZMmUy/CYStFBk/GEY1IAFVMALkmEYhsAf5mEMz1CVoDAKvYHM8qYRYmAFVmAHmAr6pEP6us0XyOz8xvGBPsPulMw0lqObvga1+mIbquETXIgGdmAOVOLgdoRUWkACSqgUmsGfEIEXnOWdJEQUeGENPGAPAirSSoHPYGEZzKAEMqTzcEIVVEHCyIIoxmEkRWEbYAZ3soF/JAVsSIxcwCEEISMFe2ER8gELlOEUsKAW0oAU/vBAGiIBC+YBAmohEtJAGZixFqRBGaSBItbh5vyhGCzBmcwQNJrDHwThB2pABULBHfxBDbruHnWqHMOOHOzNYvQBER7ANzygAXZBDdVyOIAoL3WKHODxlGYNINWGG67BAKBrDrJBIUXlGMRBAUIAAxrgERwLfTytAFNhB3YgEi1vaSpSRGCBBqRAE+1pFtJAFShRKOgq/sZHRxRzjYKOPtyF15QExcYhHIZkHLrhG9SBgFiQZXohG54xG9owBE/mA43kgExBUKBPH8xhCGqgBn6AG/Qhbv6SL++GLbXjHtghEN5yX+qBG1BITVbAAobJOrHjDshhH80zbz7DCkAm/jaaLkgEExy4gRoYIKrcqyT68PC4QQIsADItYA8cUEVY5PM2RCriYg0KbDNTYSy24mf6wAIawRmYhlXUQihuQVWWaBOyQRhGT1SioZuOTm1KTH8cY9fc5VsoIhv6IudmEvbUgeZyU+nahjDQwSzJzBu4TTLmgRVUoAZ4QA9mazn4QZnWE4KwczumwRc2RnIaQE16AwWa60iHwxdii0ovyBL8MjV4dDzmE7W+Zg4mYAJ2YBlicj9HpRWYAAGkgEESsUCawRiyoiourhAUpBEts+MwLyR7Qgq+502FQhI8oSyc4SWW4P0y8C7MlH9sE21op39Q65Ng8JNiU0hIKkVl/lMiwMkfZEEWgGs0hCMZ1EAFWEANfgEcsfSZklQ7yMEaqlNLhGMJCoYuESdVawMevMtWH4gdFEU1mu4fv1RtysUWaKEZ3CEb5sxM+1AY0GEPYKARKJLPDAQWiiCd6DQjPcAQOtIAU4GgiPUaLqQRVEVaC8QTBmEm2gLmsqAEUiEaPnRHlmEbjPNET0vXbM2shm5tyuMfRWxtjk6AcG4yrKAYqBCDBEIJdYAsq1FXd2hVteMM0tNiJKMQ5hJKV2BKGfY07oEcuiBXMzZvrMAb1BM0gDVYTRYismE/l8GxosEZhKFqsoJxNmAHbqEUGtEDlqAqNvNNYWHzcMZ8bkEV/oLHQR7ADM5UVBYVUrihRvcHtDYrX/+iUXnNkgJjIibCIZDkgBzhDN6zqPCBB3QAbPHhCz/WcxwWO5bjSl6VO3aJAaB0A4SJbMu2MshBM+b2bvThb1AjHkDKZP0WMtRjzt5V9MzUGRoBodYBC5tB5ZbnFpxsTVZAQ+ICVfJ0aLp1KGRkDybgEaQBUFVEGOBgFtbCFkZyF74h5uDVGa5BRcnGXs+LL2gnMWiyaven6B5DU8mFs8ShpbzBEUqpOw9lthhBBaKNEdTsbnnobLHDGgTFHv+kHjQhAXjDAxJgBYwBL5HXurALeTkGFCqoNObhHLrhb8m3dsehGmBma67h/hqO4RtswUagIRpup52eZSYaIWI2QEqF4ERmoXI7JBUczxbg6RNiYAmEgTIZihckoRWaARF2wAzMNFHtQiX4J1zcZV7DBkUvCfdox9YoCUWDJGqHJBhpowsmY2QFYhiuQAa2MRmojXsvSHmHg97UVmPw4RqWAAXkwojk9m7fxD1HFobLpBgCwR7czh/LN4l37RuuoUeqYQ/2gBvYoARUISH5g1xzYiakoAF6oIxkRWe5FWhsIRqaIAYopDMDaRfkQBcu5BMgS63Wa104adfQ5S9CQklUy1L7NpNsU+iCZD22QTgcwRq8K7gYxh/iYAhYgAVYQR3KU4g/R4aHQ+yw/rdQBCKnIDk0/HJtM7lQ7EGJQRknz2UJXOgDfkJUGPfhpOIDkoAnJFHShgLyNmANPLdq6EoVCMKLWtM1NeswVDRSbzM2g65IaM2C/9UhWlEk3AGr7sBj9QYKnhMKequTH0iSb4NegniZcIqTj4xMhMofukAfspmauWMUQAGDmi6U1fkv1oEWXqgEGCCiAO8uEE9FnscMAlQzLW9FKLAQPKARBjSQMnQW1qAFIoEb6gJ3MMscgDUiZtBIHOJk3EVYLdjoPJiTToakAKMbRPAcz/keDNkfxOEVOqAGhiDI5qGHyVlgrPma/eH5UlWZVNpzyGycV1o7CDk0wrdk1RmU/tGBFywnA+R5Ie0pF3xmD0ATgP23Q7JiaJeBgJdgGRCYoQSYGvbPDLQBC2zniijYFSH6ImZPgITEk2hNPq22JpOkFQ+jG/DBG1wBHUf2M5LBx2TAC2CjCW86b1r63OzBFfjOPAXiE6hgCbYAHboyleChGJQtrwmFGf7aH9bBXHp6snMyExAAAQrhfHVknusPjR+OF1oBFrIGEWyF44BlQ2iFKL5hCWggE4zh4zxvJo7BRl5ya+BMA1nUMUBKHJBkbIoOxYaOt/fVtwVj6MylasXhHPyBO7nSkIWDDoxPBV5BOLiZsctkr2/DFzqHSiVjcaCO3CjhkXfIF7bXuv+k/hi2mzLwIRx4mrJBGTfnIdYe47br72VzgheM4gOWoBVMW09XBH2ox7MDSYDjbw+sCNVOQH410Bk0SyIm2ptmT4MXAoP1h81OC7QIKFIkwh28wRtMoYFIo7bCtgagQE7E0byvk/n2JRFAXDsO+ZBjCRHAzZcsgNzuMpVE50pQ/Ly1Ch/cwby+9BWTWMiHvBqqYRtcsVxaNltk4ia4IhXW4AM0oY4O7HJtIkNhwQw2QBREc8LoiqA/YBfYN7KqYZzMlANLiujU3Ege3GRuFzbH2ibB+iJACx0y46cO+zLYcHiNDxNQdcfNVsX1xRs+GjuKVJZSqR7WYQXCTdwogAtU/kkfpkEWgBfQsUM4TgEbJoNl2ltt2FpO5DNYv0EgIpt8mZgbxhcnwQEd4lD05EuAbwGeHiEGpGBD/FdY7ih6FurjlsEQdoAL7g+Lc2ZGHgEF1mAbNgwvuAEOjpaCCchee22D6Vitbc1E/SJc+CJFje5sskEy7uC6sPcracHHSvUZ5s7S8Qa7baMMK101BGIPigATS0GV6uEcesnRG6AIqtuTwW/f0V00BMIISIAE2KrTPb0eyqAIpqAaQl0wv8EdDMEHduHH/VY9fhEfStarlTyyTi0XomEHhABV+rsoDlQqjMItHuTjjkEKSuATgIEWajmLHaQtbuEbNi8V2Dcl/qoBD2IB4ThQSRiixSxVo9mFbEbMbPoidl33kgojXPzBFCyBSfO8TiYjDnhgLFdGvP99Y9R93e3BCabe3f2hBAzHEGZaY+xhHR4guZKqAaiAh5bDEXR0613cHwzBAV4gBQ7gHGhOsgEyMthAAiTgANhgRL8UHSaBACSAAijBHUz21z5B7WZgHQKToo9Onfqgcpw1C1pBoNjgEXwF82I9FTJgD9iCF+4vlRMQAbmiET7gUt71JIDB1RmcatsmbGLXfpzkW4DObYxzpURC1w7jgM7AG9pdvf3hGaJNBq7ALOk+0L9Ec/yhVWf4iEJAPAnAGYw0cO4hHnqgARxdAtgg/pXYYRqc+fn7zh8mYQEsgAIKAByto1HcYf7p3yyjYAEEvwfk9cRO7BuawZcAQoIEKvfGGTR4LqHCa/4CoMCg4NO6b+AqVhwHziA4d58+lCiRQFQqUaVKmjyZqpGEBQeowLJl61auXLZ42cpSQpQwWJ8UFCggbNbMoUSJpjJCApGxVFxW8Ip2rJnUqc2cRVNCJpqzbOfEYcyo8StGcd80UtQoruLZjGDTgvN68aDXsuPgVkRnr5gsf/Tu+fsLOLA+f+swqZAxhJG/eoEbO34MObLkyZQrW76MObNmzdyG8OC2ObTje9Ms+RscWh8+Cx42uH69Y7Ho2Zh5HbAQAkOI/gYovtH+PXmwL1+ngRs/jjy56HrzcBxowEb25D8CHAgoU3kekwMUFPRxjE+fePHuGuY+IMpfvHns27v3t6WEhxITRNKCRSt/qv38Yc0pQIEELcDCS4G83BINIkJIEQ0vsyxDQYQYrOCMTEXNgiGGxoSgAAUCzFFCG9U0c8wyJp64TDO8tOCAAi1Ug05YY2FEo0V10ShWWzVexNZbNdYVV0XikLWOP7j0Qk5xkQ32CxQq1KAGaPMoR2WVVl75W2efYUnZKKDQtssKr73mgQf+TMmlaPz4M8sKAxAgABPVKJnmZq5Ycg9qde7JZ52DjRPGIP7cs6Zk/OBzSRFsMFbZ/jU9SFBGPYVG5lcZAQiAQT16RjbPBCUwIMQut/CSCy+7mDqTLTTxYkcBGEgwwzLQLBNVNVIIkco1JQrDjQIhUBBCCOiUiCKtxxxrTDW/SkBBDMa4U8011FwT7TXWVvPNJAS84IAErawD1lhr3chWOGCd+1VF54TLo0FpafQWW+Ks65s/TvjDjqH3MBZHDTqo8Mpf+kzaZ8EGHzyZlqAhfJo3eYpWTQljuuZBCNIxTBk+86zDy3oYWwYPPZt+THLJyOHjDqOV6VNPPfFgFk0raFK2zjZJrGHMMsbQVFRRsPRQgAOTONPMMtS08sEa2aQ41THGFKBBANVERVXVRXfT/gIFGAjAy7g2XrROKx1G+K1F5rhL1kFsHXS2uxR55a5a71oEN486ZlPeGbLQQ5lf1bDwgwxXnGly4YZXqfDHZ3hjT2iN09AamQk04g8+hz/G3D3z+HU5YPaw40bnopdsiSmZPXxZyyNLti/LlbnzDTfgTuWMMaSqSlRNx1wTDzomUiPMGh44Q2vVxFPTRzzAEG31VEYfs8QMM3xS1jdu5ZiROPUo0kIIdvhjfbo3qh03RuvKCBeOadlFI10Xnf3NOvRYc8dfjS/5Vxws6FBDwDOPDsAARiZxDGtcIPxxP83wwxkesIB8QFKEQQkQMKs7HN/qx7kJahBL1vDG5SrY/hh+uKMbGeFGOKLBtKoIwyap4oUwiHYMYBjjGO4wBAzWwA0TNY9E1FjeDqVijHEYIglZ+Au46jajs6QlG/goBj3iwQ25wO0c5IpX9uS1tnZlDy1fWxuQmqiMUfwlg45x3SquwAIV6AEaF9ugG0dHQIxNAxT2AOFkLOeMLQwAAQTYw//e2LnByAIXdAKkIX8zDWu8cTATaRc3mCcVou2sJstwxjGEUSKrFCEJqcjhD6WSwublbBtC2IEz6sGNd8GtRnOZy0YWoYxVXs9GB7Fe+MZRlnepr5Y9Gkc4xjcjbpxjSolghx3/Yrl59EsGOmAFMg8JzcLFEWF+ccVvXDZM/n8QLJom80voEsjNcF4GF4R0oz7QQZF2jQOStDtGNVLoDm4cwxYfKIQz2PnJHy5jHJsYQCrcES5cCtQgZ+HiONbRC2mUry6rdF/chqS+jHiNLD06H7zq4g5+gG5l/ngG/2pwBZWJc6QGmyY17XEHD4pGc+w5Jkn7RI873AOcL61pY6wxDTfi4xzptIi6qFG1ZUQDHfOKRjSWYIAPbOEDu9BVPvO5jGrsogg7cMc1uqG2d5lDXuWTaD3SII5seKVuvRyokOwWpK4y1F05Ggc6pmQFD9L0MesQhAp0oINQEM6mfMWSSTEGir709ZD6oIcrpsG3wQ7WG66o4wTrgU6f/vq0LJUknjOiSBFuuEMTGYABDBDgD2GE8qlBdcY2/iAEyoWPbm9x6NfIkpZ4RAIcZfkljq7YI3CcLVzr620WzwWXufiGHZYQIwIjEx5/GGMIMpCBGtRxpm0qdrq0+SvC6OELa6COuhO0BzyKkS/u2hQeKu2cxubBmHnQVrJ2O+HxtoGObWCkG/hgw0dgMIB6CIO0zbMk0YSQBV7ggxu9XCVPrfhbjCD0bWsdEkVWez30vSXCBvmlQ2/UjSIRAh6EJGMIGaWGj/7Cci4Vr4kT5pmFkcwvVjjuiUfHt3u9uKZnIMdcD6de9lbkl0L6xjG2kZG2vSUb62DApxpBjdHy/rdozoAFAlKxDnTQlorxYihddCnRd33jG/jIAT7ECo7zjbVHs/SiWiyKI1ZapBv1yAY8TONhxzAmGcyUgRcqJ90Z61ky1r2uP85AwWfuGWODAfSNBw1IdhyaZIYYwAOKADsd88h651iHbQVaFnBkeA/GoOI4tKLkT0ajGUWAQT1wCQ51/Ii2bN2xW9JJo3NkA9bVW+jcxJcWi6YlnebCCKzrgg5/FEMvhSzjoNRwVx38YjF5RrSz/9JnhHlXFooMjOWeXTB2uKIY28U2IBMBj0UjrB7fIMAKQrABQ4BL0uH4RjbjAWQfOZTNdSlLV0CNz6A24xtzEEIh/HGNXx/k/ituiQuOMj0WaSwiHhfutY98DVy2PJh8czuXb+zhCjpKEDKq8ccqmKtGc7TR296O9sEGowxZAIMKTWjCHBhzbRPjI+YFmylxSkxy0Y3CmnHGWJsHgIIy7QGgOh6HZq996h+JJW3pc3c3qBEVdjLNGN/IBQ2y0Ix5RDGLX1ktjcYsI43IVhnW+5r4tjo+L36doeCI4ozGwRV/lO7mdmSMOdRQAxYMIWDF/os5MJHcnL/Y5AzLwwYsgHgPrEDF4q2HPVRXMHrAowuCh6bkL2c5RBCgARGMN3vFQVN0cIPAqI7bw9GCS3FYFpTE4oYhMkCLeYVdR9jjUfpyJA5lZOO2/lk0x60Filb0of4tUwoCviZzKH+8gn/OFeljPNqyyp+Y8Afjxg4m9gEpvLgasIAFNUjsp8F8U/pv9IvxE2syfqxjHs7ghT+qkS6LxO8x7qAGNYhqrrnZdlxl9yXRnNEKhqATRUADAGcjZUdWQKKAY5FbvRQPeCANdNFT8ad0F7E+rbVQBmEORQIK3qBIPdcY5mBXOvADevVHjvEMNRB9kEFz5BdO1Gcwj4AAE7MBDZAK4jUPhhAAD3AAA8AGc7InzOALxdB3Ljg6wgEPhoMPE9ENJLR1k5VNjrEOZrB5tuAOuoRqPuIjaVMXslMNosAAGZAAJZAJAMc+YXFlQoJE/hKlgWvhFdlwCmSxW+sTFnNDURkRDl7RFXKhNgQWD/zgC6bgWMi1Jr8gAzUAJX8hKZORgiv4CsnwDK+AD9H3CstmhNwEg3wyiX3QADQYEtRlOX1wALmBARhwAEzgJ9YgC0QIgpf4Qf4gRuj3MfqwXmrBXt3gDiCoCgSAARYwA8JkevCya6mHamWxBWVSAjBggNjDjL42UAyILuDQa9nQC+zTUGSVPmYWUDdCFn/hBPBwTPzAKF7AfGx0GY1YD/igP77HAnHwF6sgA5boioeUiX3SCA/giaXAXbbQABYQIf94ADeIJYK0F/O4QXyTAy7GMOEhaT41Ds7XGJfAi754/gxidmsXyI20NSRskAEfkQH+gFVxYRdoBTfzckVAgkUZUQu9IGVww2Bg4WnnooVqyCPncA2NE1fhJRmMEQp4pQKMcIKMqILrEGKV4w+0wAIBMwR6UIQGKUD1yCezgI9jYgErQA3cJQq8+I8RcgCbgCUzlQjE4ZQaNBiKRjL6EJI6VhZFMhnOMAOlyAY5hobl0lY0sg3xsAQl8AH4cA1fF43tYo0yIjftspLCWEVC0m7kQoHESBHxwA7eQHn6IG6WQ5SH+APLtojnKAPmcAVDQDj8cgVQ8AN7NZZuBJV8wgYHUCatgQC00JQv9QlauZUH8AhcEjoKWZqj0zgYxDD8/mAPmaaW2VRi19AIouAO8XZ7O0JwVlQX/gAa1YCF2ZiHysljCygkcrFekcAVwPlaacacdChv6LAO8LAISdKKRulxP/AkdPAyEEkZyaADVwBSrkM4PKAC/lAeuWmaKdY56/AIFpAACbACtwAKzMBdt+CPW4kBBfAJV0IOiSAL+nCe+mky9uANt6mJnMMP89BTkjUOuHgZemJCaaWFY2VbBceAfTmTwOedYwGeEOVLA7cu4iANtbBlF8VFCRaMYBE/9UAOpuAN4rGTzqkGzTUErvmakuFRgsANNUAHzBYP0PADNeCO7kmhnXOafeIO68ClfwEK7CCLfcUECRohFlAE/ji3GfZgD9aQhFcqQJJZbXXCD5zjFxzakN2QfJpxnNLILsGoS2PmFmNVI1RGULVWb+ITFjryYL2AB0knf2lDN2l2hr62OcxwQMjHGK/gLyzwpOi5GSk4JZUQj+rhDywgCL9QA8vWgm56OVnKJ4+3go5ADnHaV35RBLvRABTQA2yZHINBDt6QCEnKqmcJD3eQU3vCEXswDnvKXltWJGgaQvMwS+QTF+4TL9hYdmU1YRKVEV1xEe42S4H6De7QCfmQFlulW38ak1W2dBURD0l4AmNkKPjpBftzmSOnGc8gA+zhD6L5F535F+QYlMMqTfw5QX5xoWCqWFPyCV9gBt+R/o5U4g2OQBziRrBn6Q3MYLHGYTlF8AD4eAwdqhZvRRv6sG60hJFktV7jQ2FndRC/9EuupE7QKG/tsAi7Z4Hu5qFsBVsueQ7+4Aqy8CX20IqoQQuIqAPuyGy0IaUtwx4/oAev8APPQKpDoAbadLGtarAH+xemoGgbC00iBban8xeO4BcTmrUfMw3MgLbAMYkxEAIecADU06HjCq2S0UgOWWXoElyttGoEhUU78ltloQ5ndVa9EAkMh3ARVnDXORdwhw/gIAuykIStuKH+0A5e0Fw/wEYzBxz10LmDUQ3mwA1Ue23mAA0Dm7YM46qE5g9dkCRjK3h+wQ6RuboBlFKy/isalrMBK7ACBMALBGYjqxoa4ohgAWW4W6S822qHf2s+vKU2ZKZp+VALaIZLXTEvaKeFuzQPxTANezGhoSoDPzACQIkwzXa71be1G9Q43gBobZtzgmRNupu+BsMM5cUlx4ACIZAJwlsRRUK8onEO5uJTFCYOttWnCvitYoGdgDtwueWSvtYF+YCzFlg+toWuWyUORWIKQmgZ6iCfNfADc4IP6Fu/3NW6H3M/jiCvrvgwjsA3YXrCheMXlCfDyYEP47ANRvRg6MAYd1sZ69C4J/mdFIWjEGUXWuWX8cd1OZIPnZANXNF28cdjTVwW/uAL0pAIfmFH1xYKPMACMiAI/lMSwDMsXik8i/QAOkl4wzmXWIHgRPBrxgdDDvUDxJZhOfSAatfADRQBolXCD1W8Y9fJxAtIUbm0jbmlmFVEPjQCh8owULvGU1yogOLADcRUoKdRd/4ADXGgAizgBa7puXO8Z2hcMuyAC+/rgo1zBpZAv6Scbflyx5Zhp+xVxsYBLkx8gbnEgL1Mcewqcb9MI+bQFf13DrVwszx6hle0a+CAL4DWxoHBk3XWqbcMy9NlyiTTOPYQCNMwy9zFDmewzdfcOQZUkMoRaZNVHtYMHKnkkF93PvICnjiqhebwDehqnYB5Ud8gDejgaREsmO8CXXjADkniUszBXFMKGlZK/s4ovL6HNFP+4AjekCTe5qvsEKz08MoNXSeNgwsVzbH42aEZZjns/Bsok8Nl1bjrsxbfcGlbRC7ai7wwmqi4tA6dAMko6jYV5mvaVJ6CBRn8gBqrsD9OOiiZydGD99DR5EHQvNEv5Vhu4A3HmtQfhF3IwUiTBQ7x8M2hsQtzEA3+2xbrkkVYRmYCVWaImqjZU2u1UK4WLJNgcQ1F4gi4QKuQMSXVIJ8qcAVs1NVVjYlLzU0PuheDOGONUwx3QA7RDNgkIwtuIDIrpSl/IWXydw4MrRyqYQujSAFtZyNkzYZBEhdn024Hhha3h7yKuWXiUAtm5ow8OlxOYA2yPKSM/vAD/4IJZNzYepbNh9M41tAFIaNn9wA6XyLHu30wOrkZ8xBs/nBgFsGrdTIlwLIBweKcBRwu5uB77jKjmVZr17llDZh/8jYWCAUI+aCtgQoO80AOxRA6QhoZa2IOUICIU4tnyD1jve3bfxEIrmCgG8dNGeR8EipszHCbjI3fgMXCr6x+MUAAfZC37jYYf60ZjIECuNEAW4BKg9w+DDxF7NJL10llPErW2bjVgPBlOx0vPOUOHnR+jO0X+EDUMsADTOmpCW5i+n05vz0Nd5AvCC5AU8INkyAM2sTFidUFa4tAFI7jVeIXsmA6d6sxS/AAHvAAbQA+3zAlJlwl4iEM/isAAFIgDp4XJMl5LoTqy4KJrhB1rWCRDZFQC/BiNhVxyfzgDecc34wxDGqQRl4wDIth0k3+Ujo+OsxgDTL21CRTHj1gAsESA7nAF3/RBdbw34I+Oo9Z6ZZRD+4QA65hAVVAGAODMeuQDYLMnMD3WgZHorAFzA4Fa9SbDQf4db5BDkGbHf7ACJuKCYJm6Tku2DXFOXFFhImOMIPRuxtQirrRDNPgDYje66IjoZObGYOBCPi4ArBQwiumKQRMwAeMEd2eqENigQ9H7iOpwD2WDXhwCrncUOBQD/DwDZQnrJue0Dqw0M+u1FtCXYX1F1awthVN7H1iBsg+m4WABX8R/tn4PjqyQNUZsxjhYAhrAAuXI2m3NSOhXZcDx8sPHI29oAwruz4gCuWmY9ghZDn1EArJxpSawuUKP+i/zlcRXQzk4AbwYDqDAt+XsyZUkKsK2gCLcdwuXzCFFQjkgLaDAVDd8DI3XjL14HngLmHfXhf7Z8/ARxcKfIZ40wu1AFC65BvFAKz2Ixkvo9cywNemK/TTB/N9hRrswA6+UGOe0zn7UgRkKiEFcNlpD0DE0baw8w3oEOgGow9bt9K41VoJDCTae/G1RFBpkQ94kLhX//f48PbKHRn8MgQ1MAK0AMB67+v6PmOcY6GT7gtAntzyYAR2HyErsA6Y7fkF5A8J/ongkbb0o7Onct5aM8qNOQKc3rmy58JjsqWzXfcyozANID0Z1UDfgiNyTP76G0TogETg/sAM5HAG+mAK1oB+XMwlg9E43u8NuEAPXYANYNAAvyIhB2AIzv/8VNI4eE5/27AOJT06G5qtHrpbtPR2Fi8uvoS8bwEQ0k7VAlew2zp/pui58dfQ4cOG9fyZW6WCBRQ9/vTpg9jR40eQIUWOJFnS5EmUKVWuZNnSI7chPLi5pFmzpr57DenBc5XonhN6zBxutHcvZ817+uj5s+dwmr8u8EDh8uawjwAMWQlQmWfT61ewYcWOPZlTlqyqHfWty9aVH9mv+tCFK1i34Di8/uPA6bW7d++4b3zx7hW3N7Dfce561WoHTtw2fPwCjSLHFCQ/icOuqJChBpq/rnBFjyZd2vRYmDJPr3bJzt+0Yt6CwLMEb2lDnEmbJt2oVmNTeziDO7RnL5A/CN5wWfPn+uE8Z0xiFJkVmvV17Nmzc5wGzx8+iOMQvtWO0h3dvnYHjyssrnDBwuwHt5+vl322WljqFfzmD5SptETqShAZdFChkobAK29BBht08KWYZnrQQY528yeoqe4wxRV4pqGHHtfo6e0je+i5h50PrWFHFmaCYOeOYrzLqSmOIJIoohon1HFHHh9ywhvyvhtnniB77Gie99L7izDHAmtvSfnU/hMMr2yUwecbcBByw7umRMLHnQJ1GMKfenI08kw00ywpNQnVvI6j2x5ipphEcGHGCnsSocwRa4rxpZjYEqEHlEDoCWIaWRzBZZoAddIopHoiVdBNSisNqylcaBFFFH/QMbPScdCzK5y8xjFnPcfwMmevVVetS6/DThWoE3HO4QeeUWzr0iN+wKuHERV00IER0Ca19FhkH2QzWdY2wskje+ARyhRypvmTUVle2wlaf5Ji9ltwwQKPCAYaGKCR75DlB0lR+8rLsCXFKRWxd+X7Bp9T2hEHPDfYKWakePz55QoWVPAs3XATVli0ZRd2+GGII5bogxA2sGALMpnl5jF3/v8S55tzBivonLvkte8vWMHpBo5OEJomEWty+vQhfCSKQ1gWaOlq5oh79jmkhn8WemiiHZSIhg1SAGGOjI/t1ZlUtlHSL7r0kjdV9g6rty5xevlmHnpMOW5XkPB55ocaaoDCHYSLdlvooN+We266bVrXnyWE6CFbst3kiI0ACAihmm465oveV+NDma9zaukkRiscBSkncTBhQYYhiC2zbs4Vjrtz0EMX3SGJENKHIWTRaSCEEAgARupX6VXcMcRk3ysbf9zABxdcTDzqI4lY2YwFOp4BbXTkK/08eeab/xk87hg9dhsLWHe9cCXziu9qwZo0GZ1z8PDnDHi8C0kf/onoqEEHGV5J0Hn4eVw+fvrr//aeOXk2kiNEQsCAi23ALj32mdKT5BUYLGUjG114mWVEUg9xsEBYPCCT/ux3wdPMD4Mb5GCP3DCnR6lpUleyT7tQph748EVe2cDHNEzhiH/FySMcmYceVLC+UByvgzs0jQZ5mDx9mCMUbPvhg7p0B6ZYUEf4SIo7Dpc9wsiLe3fBi398gUQHfgQ8r4BCDUZQvG4VUYxk8eEYQVePX9SgTWYsjz7swQ43cOR3bkJHx97DntrRC2T+GgU9hhMS8FQjbTL4xc7YeEiblBGRc0OjGhtSpEWuhiOHkqGa6si1Aa7HPu+pBz3IUSiTSMQL/muLZClbokhTEq2REqrHK+ZBizVCIxltS6VXlkKPsbkJPNwQ1R0LQipS4REc32AbM0aBxL55KSLGqmUzQYJKZ/ZslRIZwg/qoQM1OMQdOsihEqOJkuBMwxINSWaPznG1UU0JMOfoBjrcQQ9ZmIKcKanHHL95T4dAE58La6TxeACFhiRDBbP0By1UMI8b7dMlcDpDVUSUJnxw44kDJMw67CEPXClUoy7R50a/hUYZcOMHVyDTl1jgPnzoQQ2b82hLehOELO6PLu8xIXzu9RZL/MubLeVpPiPUU2kOQ4LYDCEmrlAPd9SAFkBtiYjgYQpZOOdM60jSL60qDnT4gxy9/riDhZj61Y50FKxqqscwRsAIs7LiUckYATeSoQOEjJUlxXCFNbjUo3qQKnZ72QbuxseOcYZQrmMV62CNVNaQ+kMQNaiGQ7zwCi/EwbArgYc+LMEO5hhlR/hYR3rYiRBTjOJfYZwsYX9aWmatEh/tkAEdNicIHVzBeKhViS8aWEkHnaeqifFHDu6BW9oCtbDBNdowfiAhaHQAGvjgCBTGZE/ihuQojqBHIsixFG8xiCM1W8c21jEPbIyij6SNLlOHW942uiMZ9XjLPNzqj4ANwX07Re9vmGIcwM6TvmQBjy3aMAdY+KMXlkALbupr3tMe+Fur6IAOFSySGi0FFBO2/swfr+MMFBzAAS3Agjee8uCvnhfEC6oHN2SQM8GOeCRF6a0/XNEQ6I6GI7eggAVI4ABOqRjBqtGxLt2hh1/gg5k9/ohw/KGcRGRUqhzZ70hk9hBr9EkOCmjAAxrACyL3VMRZLk/NmqziLlUmEHZiyGgfZRTepPghznLjhbLIqA2Zwk/+AEYRqHAMNXMZn8sScp/9/GdAB1rQgyZ0oQ19aEQnWtGLZnSjHf1oP0uEESv1B2a+PGImN8cfMXJFILzBkHKKyETFKY5HXBOEe7gBUNaozPvc0ZUh6/meMDnudyB9a1znWte75nWvfd0VNcjgB79omqxN0pRi4CIQpkiE/iuKIQt74MLAD/EGM6whizieQBa1iamxwWriH9BBD+Mmd7nNfW50p1vd62Z3u939bnjHW97zpne97X1uOjBCBzzgjCCqMZNYe9sh97BwQ9jBjlGwAxRuIIcTfOEIiOfUEvR4cZyWEpxLC7yW/DCHJkagghGEXOQjJ3nJTX5ylKdc5Stnectd/nKYx1zmM6e5yS+wvh/woANnpaXGZ4iTZ5UliTH2eU85UohKJF3pS2d6053+dKhHXepTp3rVrX51rGdd61vnutMZsQod/EAFP8AEN9QByaKPhMmZZvOjMp52hfpa7nOne93tfvdAd+UKMrjCchMKd8ADns2DJ3zh2w1/eMQnXvGLZ3zjHf94yEde8pNXfE4YkZHvsDTwm+d857FTo0h5XvSjJz1cmFt61Kde9atnfetd/3rYx172s6d97W1/e9znXve7533vff974Adf+MMnfvGNf3zkJ1/5tezN24vcRpQ4v0cjAon0aWJ930z/JhChflxMgn3BNwj8YOHZ+BekWTdjP0fmn5xXniwago+GbO8/X01KXf9HmSj7eXaI/oeyULKAE+u7DYv7COC6r5BYiiZjP7D4rbFQCuwrJ/5TiS+TQPIzifj7vpNgwJIoEZW4vwUJCAAh+QQBCgD/ACwAAAAAIAMJAQAI/gD9CRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihy58Z4+ePfg0WO3kp0+b/TgwdNH7949kjhz6tzJs6fPn0CDCh1KtKjRow/x6SuoT99NgStd2QNlbZqjaYlcBSpm6Q49K8VkBfLmKOw0X9OeCnS6FKnbt3Djyp1Lt67du3iF8qsnsF5Te2qLTXNiLxAue6bYWWNnD15CxuSqVrXk7U4xXMUI2svLubPnz6BDix5NGik+f9xEFQRVrEtka/4cXwTMjp0/J/CsWHNss23p38CDCx9OvLjxkIYONAgRi1kgypsFblZbcanJzUsT3T5J77j37+DD/osfT97n0nU+KGAAIcmUZn++O27uLlCWrET0fK0tz7+///8ABhiaU/6Qkw0JFIRAgGr2NKXTTW0xA48piUwjEHUCZqjhhhx26OFDS9FTzCimlNKAAEu4I9RSS1mYQ3fYfSjjjDTWaKNw9GAGij/bZHOag0XdsxkollgY341IJqnkkkziZKEj1mQzTzbffFMNNeO4Rd8Z9jjS5JdghinmmPDFNg0o8GCDzznfgOPmm3whpc9m7OASiGP0HEnmnnz26adxN8lCTyD+0KNOm2+++c08c5HDjBsX/inppJRWahc799zhmDuIJuqpnkdF54YrGFpq6qmopsoRgWda4k89/uB06qmip8k1pz+WMONemar26uuvwO7njxvTZLbOOLLO6uY369QVXYWZBSvttNT26QszsviDT6zKdvvNXUtVRU6D1ZZr7rkfLuUNM974w2m38C6alzWJkIvuvfjmC95N9shiioVVwivwt+AKdIY17eqr8MIMe+ZgMcws4m6yAs86Tpx3bSaLL4yB2vDHIIfcU1uU4bJtxSgz6xkz2vlTqsgwxyzzRr7Ac0ci+FCM8qwq86MtXt3lkPDMRBdtNENtXduFP/FkszPK52QzySfCuAy0P7LgYvXRXHc982bwwKEVmzo/nWiVRQignC2cbZarP/bU6vXcdOPb1h3W+IJH/sBmV8wNNQ1gQIEEbHjW7hmvAlb34oxLCw87jnjjzjjKoNM3yt1EYwEFFljQh2ebjWLPLc7g43PjqKduqSm+kPNNJ5G8e3nF6xwzgw92vOpZPe4IgMAAXPCqunFNsQVYg/Zs1iCQwzcvUXf6XNUuINnEU/bsZ7uzTjX+MLr7OAisUEIG3Dtf2l9z2vvQdWyZ7z5Tm3lzBjzzfINHJ8hiv3Ob46ADWj3nIIAHlEACarxvNOiLiT8EUwxH+CIRuDgDy7xyBm8UoxgqsUdNonPA920mBwJBxzh6MTn9zQ40+lgHGyxQgjKQo4NDUcpAQIUhdpBjGt7AxaPIcic3sGMa/rupyUAcg0OyYAUXiSgGKGRRJ3gMTVgw7NpSyIGLHTUNHcoAhDJMODsVdQaABPFGJGQTxZ7EaRKU+ISwlFcof7iCHVvxhSwgZhuM0MMeNSvLNKzgD0ckby0vK2PIlnLBzKDjG9nwBxzyMQ4u9k1lBfPHOs5xoXrwBTOC5MlpbLGCEGAgBCuoWp78YRsn0EOCivmjQVjkEFYapDvFyM8d2OEGMqovkx+zBzvggTgRtikbaZCG0xz5SIzN5TTzOEezDnIHUzAPlyIRRgg2IDj1YKAZNwmEv4rBRo955CZPYUYDI5cnb0ITXewwxSgk2Y1lgYNKxLzcN+JxF8v5DyGb/nnhOUOij3q04QCbo4BAKWAGQqRzPxzkyfIEIiEI4rAt5txnr8K1jiAIZJixkgYclNHIePaNknLxWTK/oSJQLWUUoKCPRDtSD3RgoJoDtcAM2iGdZwLlVgLxhTdy5YqarjRYBPKFKzLDt3f6Iw346KhHzcaNQAbJHdsg6c8QwqJ1RvSnEJnHOjw5UIFaIAbOsBVUdumGXdkUq5ZyUCLYIY+kduob9cADPJf6yHWc7ij6wMe74NqQpYCip2jNCD3W0YKADrQBRfBeXZoCDzf4gh4qDaypZGGPnrLJU984Ry0wStenIQsuy/pGQhnyOKdKViFLsQ2kwvAA9VizAZrI/gu5XGENR6wEPlc9rZKmU4xAsCNnyfpGPuTK2c4+zR15NQo+UrECC7Dhlg2pYG51uzXW+SJafVCOBpSDCN3JNqfF8IV+4EZdMdHEH+p0jzuuoVQ3XYMbpzjFOYx7uc9u7SdLwQc67LECD4QAAbswyUM2cwfFlTchNymGNUChyzLNgxpzWEIfwjrdtyzFMW7QxzqFd+AkPeUMxWhXUd/EDYFQg6P0Nds4qrENGvRgHsbcyWnccY5uzCMG03xAI6baV38w44UVRmt+mDha+NhEhqRpjCxAgakOL8ke3lgaP8bRXkWtowQM0II5Umy2a+DjACEIwQG69xPLxYofRdjA/gYasI4YM2QzPnRyQdixU5dweCD4qIfcRvMUXBw0yHLmj1p9XI/rrSMJImiBCFKxDi6n7ByiCFwIGkBmnYj0reDwxx6kQMm7DhhrgVarN4A8nvlMgxnMIG+gO9QdcshiGnotrqeMsQMRvMAAqmi0oyv2jWgEjgKUVixO7rGOtzYLY4BeCzxGYY0iB3ZOj0OcK8fTFntYIlsGXnWA7tEdCvEjHtxS1orpkYkEeEAEH2D0iHeN2XO0oghFAMadQbKUeYR7HDaeYbILUqwOf9A2+x7OZk7QRm0HaDMQ6F6VPTUOatgjCULwhBSWsIloLIO97BaYONaBDjeHhB+HTNQ2/oStEVMU46wSvfAoWuZsQXfHEaN4osHL4w1TqDcbC1/WONZBiwwUoh5y0MU3lrEMZxD9GuDIeca5wQ2Sf+TSmHV6RpgxjciilerY7lB0mDzKmYNnioNy12W71fRzJCEJtviGJzzhjGM04+1vX0Y0qkHl63H5s3telcuKjVmPY+QmkLL6n/LeNscgTsAecpAlbNNyrwenRaSKR/6U9Y0S7wEGhYiGM5oBjFjA/fNxdwbG29QNblzD7h79RsAZcppJBte0s7nNff/EDXqG5j7z/hAovOR44vnDGq5wj9LftOIk7MDizSC6HFCxedA7v53g2MY6dM3uLH3kHvNV1up7/lxHSS2FEWrgMV7uQY5EZN1G0eFj93sPHGawwwnaQrq31sENTXzgEesQRtyB4YlqOP//RbcOa5AACDAHp7drILUq9QB948ANvHAMwhAPsJcR98AMvDd4/sADUCB+dSFgkKJqNyJgpvBCjcd+eBFUgZBq37AN8NJ0ziAEUiAM1+B2yecMqCAJ1PB/zucMziAKHlACJWAAvMCCu+ZFGHEa+LAO3dBImdUICCBAu5AT+oALFiIpv/ADOrAKB6EO6kB4RHETSERqLDUPZFgcqWUKOzKBJihW7LAx7hJuymJAiPABotAMyPd2x2AOR5APNKiDcFd0sAADQCiEB8hlzOJp/hSxFO4Ah92wDUVgARtgAV+QE/YwDWTkJ3EgAzJAB0yBD3RAB3qGFDcxCoD1EUjod8LBSyC4hpwhC/DQU8PnJt2wDjsgBc0Hes4ADETnh863C4KYAROwBs7ADbHoUfWAiBHBD0lVZSv4iJFYBTrxQCgXJtxwBTVQA1BQYjPkiaCID14YFF7CGB5xGs7ABQFAAAcAC8tEHOSSLfq2faxIEjdBD9jCDvVAjPM3DpnwAXPgDvoHesvADYMgCXeog3J3DIYwAangDrBgC9ngDNDgDN9AZRUjDmZjkW8iDrZXEdbTLejACyuAAlIweyJRiV3HJ7+gAjqgAyPwCgSRV5/o/hcCwQ31MA/t4A7t0A7qIHUi4Q0rR5IbwQvK4UkhUABc8I2lMSRokXclGI8+8RQVsiNKqHTVQA+0IAVCEA0z+H9tNwjm0If/dwyQVgJm4AzUYAw8SIPL0AzZ0A3oIA6NBJdUFpffIJdJN5dJd5d1N5dwmYAQsRT1wHeUR0/uYAyvgowh4SVNqST9pAZD8AM/4AVqgGQwCYr6YA46UAnu4AUsoInYqAccCBIxUSS5lxH18IhdhQEH0ArHsRTMUAv+IApLsARSQAuV5pRDET+GsRfrpijcMwclIArUcIvOV3TAYHR+KAzrYAZC8AnVQJwA6QzRkJdu0lFUBpfER5GN/mSd2Emd3IAPMBYRx1I248AoEMUT97A0i4kk9WAOV2AOjwmf4hAnlekO7qACjAAf62AOG/cKF2AOqKh35TcSvIABhiVQB/AI4IEMLaBmauZcuEkUodMJr1KMDfcBWbCVvMgNYTAIuxiWy1ACScCDvAh60ZB94xAO3FCX4GCRFjkOdpmiGVmd5tBIbKItSEkQyph93XIxQ9Eu8Mgh+BAP3DAEPFBi5rCNn8gNLJCfgAlj0HABxhCkDXETd5AtalgRrXAAMCVQDVAGSGYce+ABHuCgHvAAqhGhQNEdkGINUAUv3RAP1fAIwckNxwCdzncMsUANawmQ0RANezABpRAP/v9Yop+3DNXwDegQDZ+QCu1knTBanbESoxjZouswCSFQBNGANPNAhJRXnkJhpapEJj5TpEfqaTDpBSogA78wVeDJA5iwEyw3EseAAl2FoArqHfWwBJDooJFoBoinplK4GczgCyYzdsrSdLYgBU2QDBpaos4wCMfQp3CnnKUAA1Lgf2BpqG+HnNGwAwiAAEswldaZKHIZl9bpDqKgAJMWAxKYEIE5kd5yDjkqhQtkVX1iqtq4jYJwAcNABzxQPjfhBRuIEydhfsEqEqg5UBjQAKzpHdQQA77qoBbQZsJKiQKBB7JADvZWNlbiD4bgAZuQg9TKi87gCdJ6qMsQD0Kw/gOzQKLc6oebMAFAmAD4QHctmnTi8KLVqZ3gYA7fgA92EAIJAgB8xRRveD2Keg+I2ROb4SVUuiH62ol0EAfzIA4jUAk/swYy4F0iES4KlBPusAIvpR4Q+h3jkGYT+1XukKUXaxFLIQuII3kD03QMkKF4Cq0la4ewUAJzELMlWnSfkAE16w90p51VEql5+aJbBg7rcAuetABzMG/8IK/xso5fiF76xCdT+5LcyBe/4K/+UAkj0A7cYA78KRKQBX9uixF8UQQ90AM4AAteexxS0KsO+gB7UJpvuxHWYArZsg4YpyyziA5z8AGb8A3baqjOIAcEmXzVcAuIYAGwMIN5/huzcrcMa1ACS7ADmBeQOpuzi+sm4vAN6nCXboIO1BACbICYU8kz7kANjeY/9boTN5FSftK526gGahAnanABUSoDnemZtasRbUEogjcSMRagwWEMD7ABZFoCLJSkvRsSFoI4hXY93CMKTSAFf7q8gct/aRkOogADX8ANyAm4AKmcn7ADWcAN53AMWlmD1yAO2RcOkSqXO6udyGJ9ilVvSqgs1VAPe7AEbMDA+EUOrpKvRrqvBEEN1NAW3PAL5vALxnDFV9yqUVsQSGRnPVErYeod5LgEAHAAA5AFi7ArFcwRQoIr08APxeaxQbsGO6AK15DCKrwMx4AKEBgPUrAD/qVQDR+qwn84jEVQx/7Xp4pcdNVwDi86l9u5uJZbecLWaDrTDf5QBQ1gAboLlCtCj/nbxA7RtB5BE6nWK3vhDs4wD/jADtzUumusEDdBDmOxgLF4DtGAodkAwjELDcAgB3zaAHsAs4R8qM3QChaQeXvLldeArOTbUfPFs46LhJOXrP5gAtO0ASOJxOgJR+uZJPpLFDQxDYTiKzV5zn3kZ7GcEdOAC5AimJS3DttQCBlgDNZbzM0AkUWnCnPgAbSwy/j8h9TAC8eLlrxcnM3QDTisTIlqOeFAnTkLV/OAj3DqD7fbAA8wudzcE6PGxEdqFFC5ir/yFD31zetMEDfx/ooM5g8r2IL3EIhrIAx4DLg8aHTHAA6NgAIvPMj4bAzj8AklsAbckHyELMPVgA59IARmsAuNxrMvyg3ZYMMv+g3hUNVuYtUlNgd7sAYFLM72UAybSybhPBSgkBhbHCbjfAcnHRFu4w1SqbTcw5yNAA5ETcgRiZzbIAUb0ArXENB/eAzusANLkArZsMzYewytwAAf8AE0wA3gwCbb2XDJN5HnqpcwSmUJGxdE4tFOLBTkQA4JDFT3IHNrjVr6wA6uUj8D0w3VwI+ah88R+Xmw8ACasHY56NdrKQobsAfD6dd4KAoT8IMlUA3oCw5DHXdvFQ5TrbPjF8ofXRS7B8s1/pJXyVURu8e7pX2GspCEODd/3zAHE2DPB+2HMCt3xsAGJbAL1CAJxxnQy8CnwCkM1TDehlp0y7AE4/MBSXC1ecmnzbd5ZkaR3SkO2I0UFHLWATLW+NUlfZJ3xzgRrplq0h2h0XEH3tBT4sszG7wDZqC8hk3exLwM4PAIOzAGKBwNg1CQgEt022AINJAFtfPhMesM5/AHMVAIpdAGc0ANwkAN4oDCeyuRlrudKlO/R9GGJykmCj4yqB3W5uUuVbAEPqBGPNkQ5HBdpW0Qm+EKpMg0svYm3UBJTZAEqXDbKlzT+Tyt3yAFSaAJ43AMx1ANYXC9vHin3EADS2ALguzX/m23ljGQBanwDc6ALEXXDMLAC4UOetRgZpKKuXcBD9Yw4TKy5OiJXgWuJLDQOZFYAitwmxJBDkCa5bjlD0lEDzkzMOhgCx+wBzJO3qB3p7AQjHf8hzxd33InCgmQCjLt28lHDZneCLN+qLuQC8O+CzuYP9hphHkxDT4k6R5C6TvBDuo5F+fpLOJAACugZh+wAdzryQxxE67gKggeaOTgCjERct4SD8tgf7mg4sxLnHLnDFtQAh8cervwArCQ6CbrDLMAC2awA9BQ1yD+3sv83sewBB4Qw0b9nMsgDLOQC8ROC7lgC8lArcvALNtZUj0GIuP+Sh3vH9CeE+Uu0kfB/g9PUSvTqFz+0AgNMLE/6Oh/uUDRss4EsjHyUA/VzDPxkAowgLet/nk8GNtxdwzzsAcxMAcxTK3O8AkLQAIHYAi2PgkSMAEWYAwWR3SGXXS3UAZM8AjcYPHNsA1zsAN7oPDooAh/8Ae8QOzEfgu2APG3kAu0IAxFp3micAx61WMlVuUFoRZG7l0b/SqLsA7O3iEh/7UuQ49JjhR8AQtM0ANNwAYq8vc/wShkOrEbgAK0axHud9L0YVHZwCllU3r1AHGpcA21roNofqjRcAw+IAV6vrfUYAQNQAILQAV0n3wfupZEN4we8AEa0ABVoMo1Xfw1TXQUoBwNkAvGkObZ/rALLrAGtNDXdtgKFFAABzADtvD2trAL2z/xtnALs7ALxpALRVACMBBbeeWN7N/+ZLYCOGAETLMQ/MAobMAGBtQQjPIJqsH3BZEZADHP30CCBQ0eRJhQ4UKGDR0+hGiQ2xAe3CJeVIiv3sZ1bqZhBBnSHz5/hhpsoGCBAo1qIl1GrOdvyQaaNTesMPbSnxNv9nT+BBpU6FCiRUHq85cIFL15476Bgxo16jV3uxI0uuas2VauXb060+p1WTNYHgqF9dqsGpIGFCQwgXVL7ly5uWY5MzQhBAUNC4BEs5Xrli1ehQ3zygVLAQa3n4QZ47XMkIdSu44ZA3asmh0KnQnM/opry9bgXYd57TJjwUOGLA19tnBLYYa/mApj9sAgQQK62gyR6CYzsmG8PiBazLtnVPnynxMrMjdIUhysTLZqQf/pjEIIlRQwNGBTDyn2o/5gIfBg08MKfOND+jTlzyd5+vXt31+O9J61QOT8gdtGKgG/WScbM0qgxplj0mKwGWegSWsZBVMDS8K0nFlGGBwcWCEVxHIBMcRbhEllBxh2+WMBClaAJUQXX2zRLQkaSOWWXGhJAgZhBhMMRF7smLGBBUQRpRQjjSQyyU1ayUK1D6QY5xx0pqSySotW6Gw7f9Zxp8su56lnHjHxWYYxCgqIxp168GGzTTf9EUWBzgT4/oQhfeoBRoAUSKCANvz+hM45i8iLqZQSEMggAQsmARQiKizorrMQBuCt0YbuqUeIBzzg1IMEMvHHvfLusCc5S09FNVX7rLEnEX/myUZAqb7pxp9GkshiHWDGavArtLZaZhl0HilhjnCCvbAZYWyZhZsjILPRxcCWWUOIOa6BZZlJyvjwRW8Tg4UKKh4RBpg5StjjG1gCCxGWyspoYYZPUqG3XntL8ZCLIkqw4ANDnnJKVqi+QceOAAoowBB3vtmm4W2++SYbiBkepy0KAgCGm26u4bjjjrkZRxQVKViglXXOQTnlcdbhcp147DggBQw08FNVm0EStL5dMvCghJ49/pggp5sNMsPiLDEQIJrehi4oiwQeQKCEVGp2iR5/rJCPaa235voge6w+gxx+AhYYwHHikWIHWLLhtdetwGLwGGeuQSGLUr5Z8MJjeAnMxkF6dHGWHYVYopRjbLyFF2G+ZRzEZowRBpYStigl8hdTwVeUW+a1t/NURIHlkR2k+LyRTKJZJhpqziFbwGzmmYTIebopO6pv3OGFggP6AOep2sGJkokCCChjHFmfmhgcbngpYIMCqPDH1K6nHyhn+qTgudPVpHBH1JvLiLQzDAIAZ+mt8VmHG3AECuoeb0ahPn75G/XJGze2/L33dXYxQBML3d4KNH7VlWNwoxElEAXc/hq0IxEJQw7eIkwjECAKdjXOgiGahTHm8IFGdKtd+PJcCOklilSsIQOaYFdhflWNc/hOVinLn+3OsQ2QxRAq4xiHM6JhvPx1IybNAEEr5kGS+XXNetihxg4+oD1OlWAd5rOZSczUmQb0wB3S4xqmNgJFl9yDHfArYhjFqBx7nEEW/mjd8dZRjTXAoEIAdNAAubIMavCCCh+gBrIYtIxcVFAwvBgEL6KVOFoIgQbLitYFG2cLYYhCCiWIxiz8aAvMiVCEpdBEDIRwOD/K7W1jidWAIGZDAXGDGy6MYcOugcrjoWMgbJIHP+rBjzFq7YjQiYYSmeizSjEtJlwgQAgw/vCdAyijlkPxBTOOuUxmPiQ57JCFJUYisdqd4x6Q2MEaqtGMtjVIgRFqBjcMUYI/1MMY3lyWtxInB1UIMhfHaEMM5uAMSSpykYVZQ7GuQQsYgdCS90oFLLIgz2Xw00WJG6CEQGY8bsSkHrQjZUQlCqBzxMMgi1gHFpt5qltCRwpL1B5r4uE9m+nDHY/YAAEOUIRrbPQn9HAEOzTqUpoecxTwgB86WCmVVXJDCKQDR9569c20aGYZNJCCMagh1DkqCHAv8pskbmEMWMRACoZrkT0ZN4tjiAIGXICF5foomEr+016imIUmPmCGT7jzW90EloOuUb5CNMEQLZxoXmvn/pQnGsQaboDHTGt6n44ypxQ/a+IHaDE9WnrJooN1STGiB1nKzk8fPXHVOnYqFW7QYxcTaEQ15OgVAbrtGNSgxAcEFw10KnIWqoDGBg3hQa16K1sbBJ1t/WnWEdpiCyXIRCpGw7ipuu0bbPDABybwiXXo1bkDYp/XKtuowiqHJI3YQb8yAINGhIp6W7wHLU9FxFOR437zmW56meYNXLjCHy3koRq/kQQPjMMYcP0KHKORCynoSI9FtectZnEEKcTgHOuqLeN4kYoSSCGd0iorb+uViR3EQBifyCpxeeG2cWRhiRbgwimf+9xzKGQad2AHSdXLnOoqZ5anmMMc1kAS/i4mRDy0Ie+Ko1OQNTUKKcX4iIp1PGTszMcRpvhIKAXWjW34Yw9C2AM6zulNsIwWWDrsQwzW4I9j4BdDwpjFBW0kDDaUwBAFTTAE8RmDPTgDwe2KsFlJKIo17OARucjtBWfhZTpGIwb9msAcnLLZEdfuG+MQiJC94Q0i06fFRrEaKAoi5IPog4gx4QelK8sP6cS4u979E1JkwQ5QN9rU+YFPLeJToNpxYx7cWMISUsG2oRL1K3KLRt2McQ2mXvkYY7UgLIzB4DXQ4hh+THNihFEKq9ICzIGLs5yFccAkLIELqQizIkeUFmGc4xM72AMbsnnabOi00DEcBzfckWOE/niDGYI9tVAeTZTk5MAfVsNINWDwgQ+UIBnsXnFM+qAamqwgGpbyyRlIHW+GD0UfSAmCPbxRD0JDhRvryMQENGHrrnCc2+vYwwRo4XEJudWCgpuDBT7RiiOoItkuErYZMrAJ2t5ot7wFXRLMrBoLLIEXGbbgLX5lDHBwwQK7wNDb3oa8c/8OvQtxxRkbbpR5E4Uc/rkIm4xhgBJ0/VBT03RNkWKIB6ygJh5AgZosxQ6sT93tL3FFMVKcRgE5pRtJuEE1/usrONIRGDtIAje63KBlILtxqSjCDpZho5onmBeiaHAzaDHJaJu1FJ+AgRR4UYQQbMADFhCrIo2BIR2W/mUN/BAGNwc/x2gArOm2A8c6IDINa7ydKFUPClIcMQ14K0QgCdh3p2CAAKqpFynrUU8CRHHjP9mDHHcote2lvxBT4aIY5NAsob9xjnmM0xDzEIaXqwzA1GVjDjsoxDmAwaAvGx6qiGGDPPdpIzlIovEnFwYvuAADTRwD6Im5uX8Cod/aA14oBTZ4AO4ogdC7oMgQPC6IAVqgBmGwMq2go2w4h96xOI3Rq+1LtIbQB3twhY+YPqDAvaBgBlC4h7AzCKTYhX7TnhL4gEIQDh0TBZs4uyQoPvyQBfcqwR88CHw7A37IBneAKIG5OG6AgWLjhinLLysjIGz5qV3Quwhx/gZjeCrGgYVjYLBrA4as2gVPGIREsidYcIZGWMJUMIZoYZfKsyRRyAVN8IBrwxxR4AU2qCJNyMJg64ZxQgReuAb82iMdAgfWsQh7iIeKK5tu6B6I0Ad4kIWnA8KQOMGgoAcW3LE9YKIm0sHeG6xSwMGaWIIdvI9LnMRJHI8ukLt5UMSGaoQPyASP87g9uoZNyIBSGD1vuj8YuYYlgAE79JZZyDatCqs18AA4lJZcaAU3FCFREAYhQKB6KYWsCqgEC6steABb+B84mqNmiAaq6Jk1oLv8qTGF0Ad6uKlTdIlK/IkjwwiSEAYY7BQZpEGAq6x18DwcbIA9sDRLmYZA/oAHTFTHIVs0K7AaJYO9gVkHZ8iCEnCHLhuLtnkQbnSQZeCFHRCCbRLEx9GqCxudZYiLYAyDWSDDxoGFWfCAKoiGkrwFCZNGehknKcAzfJlGEGEW9/uWn0uFBvCAECiAyKBIsfiGFeg6BsiEblDEqJA9jPAiHxxInKGIQWGOR/SFkBCIDPCZeUwAUqys5JiDBygBmvg8C9AIVLk+gXzK6XIfS6hKd4gViMmGcAiH8gGHdmgHd6iEEkCEddiwZjAHv4QQaBgLiOwVCakGcSuEh+QzBjo5XmiFOUCBRiALBfMEl8M/YaAC/nMGg7JJdwnAZryFTMjMR7gFEqIXWOAb/mvckSWggR5IiRA4gHroNW48BnSIAZ8pgTUYJUNDtOhziB+Lj7TECHZ0CZ9wyotAClpgAKz0GQQohRr0MeZjDp+Yg6exAARAgYNLFVOgB0kUziGzB3uwhlPwB3dAB4khkHXAh2xQhmzAA26IBGQQggrwhFMABFLAA1RwgmVIg0iIhk5YKnOgBr0Llm4ChmuYhdwUhmyYTQf5NZzEoGboQkYqSRdxIGFsHFq4hnFag7DKqsCYBWYMIQragxIwg4ACoZqE0G9JhWvog9xshh4IgRmNgXVo0KGqzTloAAv4OgzcrHEoQnt0CJ+4A0/8ToQgzvfwhy4gQZAgCWpIggyY/oAkgAboBJTaCEEhHQp8qAZDYANYiC5UuYfzOtIhq4d7gAd2wAM0AtJ8iIde6IVTwINF6IRe6AR/OIIMSAWtOAbClBBq6ARuwAJU8AQnIIVIOAZgoIalCpZj6IYNooVogEKTM8lm+AILCKjUtCBeCAPGlBZhKwIY8JBkpIXPfENbgMYiuZcV/ZbBcAaM9BDRaIBgWj2KzJBq2IElcIY9SIIEUgscGpBtYJOXYAfvLFOFSNKQCEFjhQkeOxWkyAZRKINUqBXxQjV94AdMuZlpwLdjnS6SkD17ey9pyAZpcIJagINa6IV8EAd0OAdnyLxAXJACHcxmyBsdigZzcAZS/liEOV2EXWmGXeiBHZiHvtwjVvURUYiBLHgwMeMFOfDUsXo8GsiCfYIql+ycRvAANsCzzhkurYqWA2IDNOsjzcgjKLwQkHyATOA1Cemma5hLDVzKqvEHe2NWby2IZMUIsJkslwgTMIGImIgH0xwItLQNf6CEAjgAITmA7jJakcCHFSwpfwCF2sNZyoqJRmgBEvAHZagFZcCCbFgEdBCHenBXDASHA2oEG+WKKkOLpCvQLnOGaqgGaoiFRUCFI1iASRAHYaiGXsMQTW2cEbGFtNmDbPi/TZUEywQRwbmFLbjFYxjGxjXVEaUFUVgCKNscejGSVNhDC7KFriqwygE6/lhYF5SNwmPI3F2Tm73jpnDKBi4ptaf1Lmnq1qtNCJ2NCKQAhbarD6RIBSFggAmYgCzICdotCJKwhQMQpmHCgAK4BelstHu4B1dBXtzVmvGYgwOwgAowAzfYhlrIh3Fwh955CmpYB2rIvGPgNa4QINTtxmOYh1T4gD6QBLA1B0BoBwUhvcWpUBg5wx1gWAa0J1WQBAaChWgYpzlgJHZBHBH1HDucg4UNUWdshE2gpDTLlj2YwfxzP1tIOgAShnpgAyEohGt43aFahmt4LJIoy1naXX+YBnjA3oXQXUf0B1+Q2vvYGZBKLhiY2ZCIiRXAAJQ4GhTgyhVLjjO63hq+/hl9UAZ5QAEMsAASaAF6qCEBaYk50FNJdV/45TZqyExacBB7jYVOgANgMIcF0apZiAYq0NNdPDloOAJoEDBjWIIdQMYQIQyM5Vw43AE95tzCpQk2WEmtYhZhiIElQM0GRNllkJsiSAJP6jtwEIdxQIfomgdbSGKFgIcTuDcnRtKonEp/CISsqQ+NkALV0J61egmkMIG9yJLtaIBXibfkAAVGE+UxGo9RGAVTmIIQaAANMAO8EhB0OAYYSAK8kcigbNs+FeBuaBsJcQZgAIYgWAZVmIVdwMnAeLwNWAOLfTm7UIVB2AVV8AAzWDyo6lwJAyGym4NZMM1U0FGasIDZ/lIkdnkED5gD/7OnwkSdVLjnb0g9OKoGdAAecRAH5akHTTCACSiBTm43VN7lnCVl5mAH9zJSoqiHcUiArOyUJ3EHl0AKDZDlLAmBB7DliMAifLDWIkIKb5CsirYspPAFawiCaTCmSYgCNsCHAIkKdRuHNoCBR0CHgi5jZ+YmHWIDWFwHpAaWYHmQQRDDW2inkuQqWIBATeAFzny5k5wEDxMFyZOWUsVY0NGE/poze9HR9NiADtKzYZMCGkgFkNQqSo5CWFiCGHCGpXrkuTmHS77kcRAHixgAGJBBUMFEpLgDVqFpi34O5jAFb2hikaiHc4BoJnqSIMaI28CSWcaA/h6Q6BYE3jlIzJUWI+dzhMeOHyF0A7kbCPRCJYuAhR1og11o3/FTamFAB5RcAx1qUGdYHMGZBTEchFlAjGi5i0eIATYwNoQdXDMs0TUojQ9NDAjuHGdcg+bmXM/ZAQRIAClY0VuABWnYAy1zBtFAZF74FUhehzYALkndyDniBnEIbMI2HnMQh4NDAMSGRd9UCF+QpsoeyBuGCGYwRfuoh3Xw4U7JACnQCXwABwKYYu8IAQKohptNiHXYgRWwgA2IATOgaJjej9tl7aHRh+QwBSuwBhP3LhfihnjYgwwYOQx5X6XeimM4B1/MhVlsBtraheIeBElAbvI+ho9CRugm/q5bOAYh2IHiJtXK9ZxSIKEdKALOmXJbgAVaaIXETcZjoIEYkGMLEqpgiYYQoO48Ij9nODQcipKFHodwyOQSEIIEmIAMGG2DCMgTr56LXo5EkKk/gQUG2KXF0ol5oIYEbADGyAV/eOmGOIcdUI8NmINaQtNEcHE+TxX3cQJ4qD14W5hxeJgP4IJzGAsfB6DSE4IsGAeo9opja9VcSAYiHwRKaoA1AIxxtslc4AWNnQNhuARJeBEpH1FRsIAv/cxSCAxmIUni4nVDYIBGIGCQzUUF2WesmO+4Wh39Vmg3J5BzaIQBkMqeBcExlTo+N3CH8AZfsAcCFwkZJ95EgYE9/shziCgFMxCFor0ITUiAUNyBcQ+jaZhpTbeZYvAGK2AHGqY09FmHNhKFc6BACMFxe+0GW9igu8HrtrXI8Q4MSQCDHUgFYPDqZOOqUsgCUfU/aJCDZjdrlwSdT9iXT5DnKReu/30RN9aEzOV1L9cqXiigW5hrboiGG2U9DARWpzAHS/aHVJCC1qANMQlTO3E3AK/odG8IeGB3d3eJVCiEOWiEnIj6hQgT6SWIfixao9WHeCiaUKSRY2KHhSP4U7EHUusCWRh4hRjpXRACM2Df0QPjuAmHT4BRNb8Q/72gFu2DHWCDY8CCZ3i2r26GQiiBNsi/aFGFlcduabTDA+lQ/maEblgAhnjaAw/W9ZZchzJrhHGoVcKrhsEm7MEGHnz4AinId6p3DX8ITk23eob4ZVQJk1cKWh579Fd2h9QIRQuAhWMyBWmKe0uxGmY4AW+A+4TQB4HgYFFIkL9vkGMYhyaAgfsaLQyxJy13hiIQAg8RsDSQhGSY3AAbOUPy3IMyBjD4hXm2PHopgcIRwPGHhWbIVdQECFu5BhIsaPBgrlvCcq1Yc60ZxIgSJToDN+4iOHEXx3ETV63EHnf+9PkrafIkSpT0/J3wZy8lzJgyZ9KsafMmzpwzuQ3hwU2nTn3wXgItWhMf0GtZJuwQhY+f0ZmIEmyoatWDsKhat6KE/nePK9iwYseSLWoPnhU3I0nSpOZCij9jzpxNrGs34txZHvZwO3a3mTGEgkVtWLOM1sBbzwbhSSj4saYEe47BMghLFK0jv0ql6uz5cyrOqfZ8KNRKFGjQvAQ+HsirUYJCy2a1rp2Q1y02Fho5O0b3b7Nl1cSByzhO4zhw59YZepDMH1KjJJm5LGv9OvaUPH1mv+eqWPbrSD8ZKGF+Aox6Zat5sLrBw4M/0MNntwbKHlv6+vfz36pPnzct+QPPTOrpM0cGz9TDDTfQAAfcMtQcs4UQmYwDjF3OLINbbQqlskYJqQhTGUGzJJMMFsbMckttsBwmxA6wjFiQLbSUwhkf/pOkBpootzwiBQ2diSbkkKk49tgsxqRSRBK78EKibYLZYsyPRRzDyx5zfBLNMnYt4wxGFxF3ETf17LJDFv7Qo15UL3VBTn79yTmndj39dN099IDCDp1c7TJBCR4IWsIEa9QTJ1jLWPBAAw0QMMc6fY6VCDtESXopptmtBIolBCJ6Ej/z+JMKDIVw4w4353Tz4F/CjPNJDGaMo2GGC7HY2izNzFHCGrmsdtAtt6giiSTP0CYYLdlQuMYxt7A2ECyhCSkKHzbumIoou6zhwRy3SOuZKLBclgpird0CyzVUCDFHM8FG+dgtzayBgiHN2FJEow2I4tdEy3Cj3EXhiClO/jf+UGiLP6Jy1emnmTpc1nZ3YkfPSg/n9MUHgmrsQQbrsBkWUucI04co1ERnsVF8orwyyzfp85ITpjSMkqhrCLHLOueoo5E41LDa7zHfbPHBXH85E6UtsxyzgxSp8BLlIFgkcyuNMgohBCxPEyRQK0V2BkYeO5Yiii0eSPHJt56VAssSRUTbIS+pxJr1u/DKyMAaWQcbAgYYNGDIMl1CtEw034xjzs48nyOOO86A9DFX5ExjacuVGxUxdvaQc4blMvGDjxQZbOxBCQigA3lY93zlz6Gd4+TG5K7LvrI97HQx0uoyufNOBmv4w03i4oiDjs8/QzSXKA3s8Y0wrVJd/tsjDS3zrLm5JKPEsYnlYssnE/RxTPbb3+L1Z6jtuMde4/IIS1UeWOAMlAbdwsssfSTwyZN1P8bLHBaIwuGUQkABCxzgEYELjjOocY7jMPA44FgHNTTBgEjVAypg8YUpKDe7DcIEc9fRBz2ow8GTZMECoyPU6ayDj3vMbIQm8YbKXCjD/ZCkGL4YSu5Qwg/11GMOH3hONdSxuICZ4xzN0JDg7nKMbtjCDDvYxTbkUhcNcag1thBGKoBEC/DV7RazmIUqVJGMpDUjFUmAgS3yt7XTXItcRxCF+Xr0iCUIQRSzMB+PUmFC9xliewaxhS2OIYodFCEav9IfjW6xjE8U/kEIy8gFlG6xCx/0gA3U6NKXhheOjHDyOPOAxQ6+4I97nGwrL3HEDFP5Ozth5x7wGEUqCxGojWUgCfEopSrpgwtv5DCXvuTKS0AxCm/MRB/x8IcoaLCGdqxjG+hIzkaKMw9q3CIal8zQMdbxhx38gRpcqtWRBHMuZ/RBmc6YBfXeZQtP4EESvGhGG2CwB14ccn7RIt9nSvGLI9ACjk2MARtycaNrYeYBJVjBAVIRP8csgwsxaMRqnofIrB1DCjsoRDMWmhBn2KJ4wjmHRXhGpm/ggwtFeA7qtEISSxDzlxz0oHX0MQ1TzBApMDCPeTzwgay4VD++wMVIeipUoHyl/hjsIEcxSZKEJAhjHeM4B0g5qQ5wmGMdrUBBC3oAi99IZBnAuAaTbPFNL/nRXLdwRgx2oDVEFoQXqpiFJ2CQBFEIQ6JCaqPaPoE2WJRgCXdt440QsQHluYsgleHrGkohjHROVBii+EAWBsLYxNwCGNCIhgMZaI7jdMMd12CAJkTSwqJsKqhD7RxMywIg8MxQVFLA6Q6McdrweAM8o50tbt2kJpoIowSFWEdHFhfSjPBsHlSggN+4cIwkHvEYx3iAqZg7kWNMtiAs4sUjNgBRjbI1F3MIwhyOcZBZ4JOgmdkDaAeK184kRBiLRQhpCkHd7sqPDROgTHULAotUCe+p/sYBBzrWYQYYiMO0YnlJSyqG25aldizqKQZ4cGmTk/XyJh+rcE1IEh1jREfCMYnTbWGSH3yEOCUn+w9RTYIPD9eEHDRN6YJx+x9ccE6DJlHPNnZFjQUdB6TCxYhGjGsBDBygDLTqjc+WAINkXINfE+lNFeHljE9IIQZOCx9blZYKJScjDZ7QxCPoKa7y7kgUuTBEFnZAi7RdizMsOhcsqKa0T+wgBtfIBZb1Z4tbHEMTMMgCMGCRX8nywl/EFdM4SLplM7AOw1yRRXVizGBWlkU935BELICywt+JohrzwYk+oEINUYAj0i4rCS9EoR57sPAm0dkFLUrC4ph8pR6C/i5JiW/sD3e0ghe4xskO/bGOff0aJ+pZBh/GwbpZS9ql9FALhoNNixIgYh7A3dnhkEPVw13EHZMoQAEOIAq6LCMrc6DBHq5BK7vU1TazEMYcYjAHYxyyu7aARTWy4NvZQKMOG7CAGf66XmnlwgwxWIMkwIDHNqdCopKFBTWqrImMDro2AjHGEpZQCGc4/CBTKto5NksmceDDiVmBcVj25OhmX6rBYXEHFfqGgRY4A+UxQYcRMEABDeBgHSLByTd8oHMN9GDXN+GHPoSh852zgXU5mTZOG0Hio/vjERqgAHKdAmp/zAHrFAiBr4+unil4fQXUyIlIWiBzJkSK5bPV/kcxHGFjk4ikCkJwhlOFKNIidpKTGllGK4RBbmdEIwZJ4EU0/vLIiteIGjFYAi2i3F17wsAM8/OVKFZggQ0c4A+tGHhnUCMKs4niNJ/oJ2DLNV5jlMICc6AbfaEVNw/krd3mKnRE/GU4cXBjHraYQCNsHhZHuMLtLHP5Vu5RDyYswOshKMA39MHsktTDHTOQgPMLgA/h33gdXsc6BhSQsKPc4xgCWDoFFFAGU8tE+rRAwCwJZYhRHsUfiBCA1zEgAFGgmCbqKUMB5J8AAAP3UZ8/FAH2gZ8A7JhNiIoACBDWSUALuMPKGZ8MIZUIxcQ1ZEAh1MM2PNVGiBRyHMdm/m0WwXDDNXzJIk2AJlyDMTiPbSiEIcTGfMVeGtlCIUxAIUCSa4gCClSF8oBeaMDCGgDft4jCC/zCwqkNd82PLbDBBzRcxb3LHDyAiExhLgjeRETDOvCMGZSAO7ROTPlDMViDBa4M8kWF9NkC/kmAG0pACEiA080EiX0bBbwhHLbAHMrE/zUfHmIAE9DfTDhgHL4hBhTAMnyaTIiKAcDAxpQAA8RDBVKfOwRAIbrh8+1hTKwYNZwfHoaA+ClM+/lDKyjAHRpiCIzfTHzFDFwi9hXAJyjiGc4QSQRCMSBKsKHDGtwAh/GXmISDOiSH8IwgNBUHOIQDN3xDE5VANPRG/oY8UsdZ1zGUQsY5CXfVjS0AgyYo2ZVQDy9QgQWQwBEYwsCVwiw0wuPtgigMSSkMAxhsBmisjWAcwyMUwRI0SzRGSbAYQyPsQBJwQ8PBjQr2yznUwyDtAXTkmlHYUAbOYqakoVGoRw+c4htSQAuUGk2Iis7hIfal4m2JigJgAEfeoSaamD9kgx/iIQVQgSB+2KjklMaUwAcgJLMhBRuIpEoqQCyOFiviZEUWAE8ViD9EoEoWgMfUhPdRpBsSmSo6pAuRhC+w1kkYkz/swRL4zjbwV8gN4whqhHGIHM/8hCH4ljgc0BQtVj5uz1Y50RpwVFp2iC04A4gYgjEAkvyI/sIczIEdeIK1iE0q2IJF7YEtLCGO8AEcreMQlpVkzY8Z0EAjzAYWCkbWOEMR7IAB5Zn85IJvTBHhcIMUmEGsiaJ1BNNKKKRTYgdEFoWoEGVFYkBQLqI/HIBPuiFybUNNiEoBzCb2aYAspgRJwEJKVuQMlCRKIEUjkM7omE1LwsRXlAFrYp8ENB2zSaRSYp9OGhhMqMcKVGf6mUxNRIMAjWQonuYIfYUlBIKJKVUSVIM7iMPiQNWYhGBxXEQRIUcRfQM34AOvdJR0HU83dkguNEMPJEEavaXFzQ/e0ILtSRYkgUbU9GU+wUImlIAUhAs+3cgk0IK4YAtj0YYx9I7e/sQeJDXDWM5BgcLNEdnFMUQDLABfsWUH7MwdecpJagLFS1CBKapkCEyi003kSGIAcdKMP2ykSsqhjOpaAKqkA6xfBSLFMWTALA3KBzRCb6IESRgCdFbkAbQCdqbEVzDBc1JAATjDbalHC3BnAcQD90kfkVakHIrmjLrOSiiYSfADLSSAKKAKfB6He/ZXZmXWAnnlcaSCB2RCPXzJXSyolKyGISCAJqiRiPLPB+DPZK0Zj9CCHEAoZ4iCfaEGmYUeEVTFFiCEQnCB/7yXDcbNF8bZFMKCk9XFMijLB4ghfXgDgcQpptQoUHhgADoAbSqAEQTpSeCDPcwCAVAkBRRZ/pUWJz7cH0UeoiJ0aUqYaY4m4AKE4W36wwfA5Cw1JWwG4CneYSrCaXb6w/mFqwIMJ7ky6zecK20WQLByX3MewCk6AAUEwDH0H65aDkm4AXWwxVdwgxNxA3ChA88Ij3GcQzj0l3E4kEZ0Qz0Ywxq4gDrMA4OQ1Vte0SAtQTSEU3cpjSYkwQ40Aw8eBJuFnihggXqRyyMQki2sbBsNEhCG2WIeAyLswBJQU2SSakKIQgxkQbtk7Dt5yTKEAyLEAEJGw89NnxqSoSs05L7Oia4GBT7YgQAkYAD0QD3waFCxwdViXQAEYgHOBxV8rQQIABkIq5WCAwYca7LC4rIyqzN8/gADnEcGxFqI/eYBgGsBaEDN2cRXfEIBmCIFPOBR1oR63B/hCgAOsI4FDaI/MEEARKAASGfU8qs/JMKvbZ8/QMIOIEI8dGEIMpB7WkQITlVXetoelACVMkhGIOrxoCq85MIyfMEOGAJaxh4szIIzZAEM/AH8pJNAnKza0EIYwCPb7MAejI8QGkIIbEALFMAfLMQs8IIw0NEjwI+ITuYS7IAmLIOgWZFmKtE38EITSEEu4MM15KeukcXL+AN6Xq6kTG1ROIMRUAAJ5GncxgQvFEEIzEArrCtNtEIPYIBWSetMxIMdtEAIlEE0IDBMIIU77AEMwMAclBrT/to3sEEI/rSAHfzcqV1DGXTwHwiwSx5DzM0AImTwSdxDK7QAsAKD/LpOMUAaSdSDekhBEkCDOzTstg2XSCWHcYwJN8TDPEDWORhswIxDNXRJb0TJYcVKKTTL9tYlZDkhsAjUwA2CHMDCJ1jAGmgCLHwqaNACDVjAB4SAmcnIY3VLvXUXLDTDJDzAHsiI0MLuRBgDN1BCCXzCNqzDN4ADPkwCCqzA/JkmTuQA+80wf9AvUeEDNmADBK+iSXCtScoaUOjD6qyYpkUHKQGbrLFFPbDwsHoyIo+SKCMyicEDeIwtI/dJMUyDSejDLhiA1G0DVFmE6XZlMC6OCB5OEjcCAyQDfm4b/sJuw5esVW1giQXI1862xhr4j7M8BhmHXhaVgCYQ73qhS9uAgRw8zRowAC+onogKQxHAgNMYqGZy1ZM5AxeUgMVSVUYAwwz0jbiVBTmAhyW/8lg4clDUQy/UQpvMA63mhD7UwzzYAykPK0Lvc3Hi8ELjAy9kwhpki7fmxD0Q9ClTn0YbhTR0wnLyc6ZMB3q+xDpIAQxUVarsssMO8VOJwyYtEHHpAxEugTso7OgiBzRanDGIQmV2wxfZYBb6mRQ8DfUIA70BEuitTSEcwfEi5lIr1NPICFJ7whHswBZob+yxyDHsAdNkQ/g+hkDwArn1izNUgyY0sz9cg9+twy2g/kDfCMAlkAU9+II1xJBI74c/BwU5QG1er8McMMAEZAADZACVuvLKeMO/5rXDkAQu0NQxrQEMZII/CM8Q8QxxcZI8my4Q44MhxMD89ZcIogM4UENd5VfSUAMVXBQXCbUw6HC6FdZtsMEWQBQZr+MuSMEKFIIohAGE4hVnCMStyAgvoEkKtMOe6e6IWJQqZJTFrfMUHcMl7YAZ7MJab0Ry6EwLHMABSMA1jAU5WIMlMDaNUpp13IM1aC55l8QsJEByxtoMmYIvTPJ66wdbKIM/xIMQOMRN8ylyeKXAQNM4CIxog8M2VAM+FAZ7WsRmETiAVQNd4Bd3Kc1jrcG7iSgk/sXNB1ieor6bFGyedq2XmTXChnNGKxAL6JGNQSjo6naLJ4SBO9HXVs2gIdBTxgoDHkuEMHzDJHzAIwRYIItDIEMTOlzDIzwCRoJFUdlWfevHXhu0PcgyedfDOmTM6GQAXMyQN+BHk18KM6gFLCAAK1ybn2aWV4bUe4ZJcsxDZPxCe/JpCGrEWFVDK/QBNISPQNiCD0khhs9PEV7hQdACNRDAClSFFLwsYGWBB3zCQJWCJPg2cBsJ9biI71bvnhmDHKwIW6VR9xrDNf7Rq/bLNShZe86nLgtxSHXDNyC2TVjBlne5k5t3WdRO/P7SySy0hZ0DoIzOB0hB27kQKEyD/kPDOleoB/fUgjmgND4AF3abg2hvhDmIHJwvrDjUQy4IQRLMwzkADwjCNJkkkTPYQQE0gAIc9ScIQRME7VbzmSb4I5133FZtHnyYAXnFo0L9weO9bJGguF9Wxq3sI4lzwTXQAmvwwiAMizGo8/zwwtGagTBgpvyQtZcQHokXgj9Qg+GgeqIxUHF8wx8Dkz+wg3pvNLHnxJODGj2Mwq3mkqjEgzD8HMnHRD2MA/zxuhSA8AhZQqWUvH37gzCTewlkgsUuLKIJ48DoMsKKSargAxssgSas9cGa7nGMVTNciQLwDQZQATQ4yzEM2GOGNRwLXvcignOL02DuQANwgfqo/k1n0NE8LWEqeIIcQDUTVgZrULUPFMEUx49C5IIcqEKr1lXGNcI1fLr2SFFdBE0uME00WCxINRBxRFUnjcM64PpUkgSnlCbPZ8fJ48Q9IJUviQQhrQAhSQzI1EMJ8XqazFClxPzmW5i2lkALrEAS/E4wNqyfynPSi6A4xIMzVF4RcwPpeiXvsXPV88IBYD0V0JswgDGg6+4yyFLtoXYuhF4jjPGlNkKhCNxnYCqbyaN+GUMfeEAf2PFjSIIneNFjwAI0NILrPc1bKkSOR8QxgANpQAM1rIPUi4lmCyNniwNAzPM3kGBBgwbv+dMXpJg3hQchRpQ4kWJFixcxZtRo/pHbEB7cNmLUB++Or5AnUU7E5w9FiA0vN8SoljIirQwecOKM4Y4fTZ8h6XVhZ+9nUaNHkWqs5+9DiQ8fktTjNk4cOHHizJ0zd3UcVXDjrIIzR5VqIwTmvl0V1/Ur2HHOmsWVGzfapAYoNHDjlcWDKF63cgUWPJhwYcGw1pSgdQuw4cGpIKcqFTlyKVtLSsCivBlyKVpKaImKzMsW4VlmVtia5XiwsTCqVhu+ZSwGjGalWQ8+Npf3smNFkmzL9rUqWKvjxoJTrnzct6/g1p2kN82NQn1JsWfXbrTjx+3+2LH7Pn4LTJgP9uhbWfR6piQfJsAQsq7n+KTh7efXv9+f/sAVUlzgxx10xlrLq666Uus4dcRyRxghsrinG26yQpArbnjrLRpqjuHmkSSSWMaWxnJjDbBbRCkhCxFJdMwWyTiTrBRY5oAhi11EmSzGylKRBDJYcmnsFtI02cCMaGIrcRZjhDkCNl4CK82YOUrYw5nFcgOMF7gyXCaaZhCJARF/pmrLwOaeM6et48L6Zr2LRvLnjGlwSYi/O/E8qjuQtitmmjx/6okKC8x7qYR1ljJqqXpKaYSWga6zCJ+l+JknUkC9kUWfSwHt1NOKeiJkpZUqXYebtaoqkCyyzkkLnzaWyMSfbgw0MBx0uolmmQx5O8aZaKSgARFnkizRsSGb/kliB02WgQU31l7UcTNRZilFih0QsUW0HSmbLIxnip1FGFt2EOKTZo0VjDFj5BjEE2FgaUaUJpZI5ZhiDSvN113ncsaYaoLZIYto+OFmzXDCMjAs5b4xbrlu4sGIHvCswAWXhz7NWGOI9vwOF0s23VgjdIog1DwPHkAn0YzqmaceTgl6MyN+7DTGmYFWxhMXWUTuOePrLBGPU33m4co4so4bh5t5lilhjmjmobWrAsVBhxpn+OU1rmOqgWWCPXIRpsV0CaPlmEcsmAMWsY3VbEdRbjEkAzM643azUkrxBItkBKPFmTksaCQX0sgebDZJVJFjGSoR2eUvJYVphkve/nhZB5EJUllHq6PXdPg5r2pFcByMJbKHKDes+JN0n1nPs+Pt7Jm49Yu2MNm8nXK2qCf1jlopkwRwwtxTcsiZ3Xj9EgrEH6IgKhq5o8n6Jp45PqBlnqRF/wprrefyko0JohHmmGcLH8wWYcwoIZXHjZ2F2xmbsEBbuznzbPBkkuSlCCF4AbL8wm4BCzlkYQf9S9ctmpE13jiDGhuQAj5OZZxzsCVBFHRLVarCHIcJpCL0OAE9ZHc8EernddohCTvsNMKD7KEBHjDPAxoRkmVQoQEhaARIZBaShMwhAyXwYQkmICs8XccVzFDhEZPiiHsw7yDrGRCq5uGOeLhjFwIj/pPBqDIWNYmDG77iXgKbUQ1RxGAN4/DV+P4XGMAIoxEwWEI2sJSvEZXGbXdLBS32YIE15GJb9KsbLHZxi1lgwRO8EIYhaJCFbKQijYbjxSwe8YEpqIIPxhiRi24ROV55iRpUSgU/qDGOVnlFORhck3LOEQ4KPqdhX4nORKaRiDv4gx5MROIt9eQRPm3HFfBI4S2vwwYCbMCFCJhPRojWhwM0AAMYOEAIqOGPHG5kF03JiQdKYAGV3Ukf9MAFzHAZzoywwxTwAGdBVqKPeFzDH2aYwx5qRAsIgkMdCdLKOcSBtcllCGvRiAYXlmCIdewmLlD639ouUwJRoIs1kjtG/i6qxRlRhEYISxBcH/3oGfK1ohOqKMIOaMHQRuYCFscoRQyWIApnCFASg4BGkAgzJGHsUy7HOMcnpCAFcayjGxWkSsMweDQ1seUqYWELccYxTeYV4wzFWB1EpilOqXJMl+Mphj5+iUt83GIJDyiCLV6JkXq4gwAYoMBZm7kCadKEetfEpgG4kTv73AMeppjqXS9CjmLYciIJkcIEMvABGMRjHUZtyzfWcTUF8koY1LCFB9bAwKw5g3CFg4U0CpEAQ6xtbIZrxRJ2IIW32WIPJVhD3fwIo7HBAhhsyMAmZsG+kV52DTBoBC8IJwxVeCIMs4DGiYIUOZrGxRjnKC0t/tZBIA1SxUDOQZBzmNPKhbXKKhhEFAftcR1r3GEUfDWIPuoRXryO9yAl1I4v7JpVYBLknBNZyhyYeVa0roAXPjHDB9xaggSkAh/t1Y4+yKE68g6YIPfwhTUwIhAfYnMH/kjLc1CVzy/WdB1bYEAydMXP8tmCF0vgn/9yo7+XNOC007qFEDKTWs4UBkgwAMEgZtHZNM5CCDsQkWGg0S7EBWYZw3VoNVTkjm7g8yvO7ZxVWumW5YBFYZ9T2jjQMZCEEKULpnCqRHpSj5VwQw/9JTBezZsdejjVvyq0h8s2spQYbMCs8sVACEThk0KUIL8GcIdcv3OdaYziywTupiwc/nKRpSwBsBlYQz16ymSqcGOxXVoGNzTxgTU4qNGSOyBpHgEDLhgDxFnawUssQLc/7kHSfJQW/SYDpMZw2BaI8MAeoCEJtjWSw7kgdSGuwUgALikXg5CEJ2KxjKuBMYFXK20q9MGNcyznyEt+DjhamRaHFactP92GEQJwAF7wQwnssIKUm7cOaCSDEVdgwQXo4A889/mIYU7KdZTnXXZDZClsiK+bUQALmggoAzDISTaF4I6ows4f1VHvvHFpj3skQintzEIh/DFFrIiSGxn+4jGu4YwmJIEW37AZ99DIGoQqSxPX6HSI2fCABjxgDpCBWyZqnAlYYBTVWMJNSUux/oQipMIYv4AD/hoJC2OkYgdLcNzJY2oLaKDiGHJAhSSawTXfgEMVQjCDM5INllYW1S3MPdBymsyVtTB7G9xIRQE88IICaOEU4qFHe1fhBRmMgAU6qIEX1F0fhN/S3UjR85/KvPd6UIMAIZAvBULQAHWn5DrOQAA2s1mCaHLzHgLeuzgTYokQXqQ+EVuPPtwhDsVO+BjdoEQJ/iCMa1S6XzIOTEgb8TU1li8ViOCCISYjilwkZg6TObXd8HaLZ73obyUoBJSE74k0BPKg0TCDBUQBi8qaSBg9xhowjhEGYEjCGO7gAgw+EQ9oO7sr0o0eFiHM3M6hKRvnWAdPwbAB/gukwAG1gNREqrEOOtTA7j+AxuXFqe+O4jqYwRWeCgDZ6x7m4ADcrAGiIfAErR7uy7QWD0+sweAQEJeuQxYsj/HeYsLiwhnYwAOcgaBAMOpkLJOSAAaAgXwOiEckQxR2YAdyRMU6A+luwRlQIAlmbaTUCBYERvjIRmt8wxMGwQOWoGBEaRuyp5SQzAmPRhyYkDiQyi3OoRuyoRaw4BsWAQVIgAJU4QANYiV0wO7KsBIyEJcE8CiIguEgUD8u5Q2LYg56AAV6IAa64eBColIKgoMsQg7/0B8cgZbSEJj0wQD1UCTmAYvyaXsS6Fd6LBpSQY8G6gTlwl+MwaBKQxjm/iAGBoYW/scWpMX3SmsNjIHmgC8VgAQ31mgONqAQliFcjEEJ8IX6UqEUV6pE1sjHeqwZ9iADzGEROgEQTkEalCEbsgEdCMsc1qH8mqNhviEaxyEbonGC3G8d3GEdpCEbekEXekEJzmEQVuIeZAEXBCIRIyUU6q4GBEEH8M4PC1GE1tAoEsIRikdjlmIequ/+vmM9ouEcBmLgTiK8wkvvLGIXGqEQhMggMyLz/CER45F1MkUMA7EecIXZziEbOKQZqKEVBOoYliAJUgEcjMES42IZeKEM2OARIEpemkAIUiEXN0xaok8Gi+ATZs4GIWMXBgMWrkETlmAJ1qYWBWkQ/gwqN8TlE4ouF0TKMWKrFzPkGNZBE25gDZoxH7CxFkjhFHRBDrjwFNChE9YhG/xB4OKhHs5BIMhS4K4hG3ShFuCyEyKhFwBBGZRhHr5hIO6AHSJBmvxLIIZBDVhABbwgGYZhCPqDISOydeaRHr2B4TamEWJgBVaggChyANnrU9SDejJgApoirlDCFxgOIhdTYxKiOuQtEAsLuphNObahGj6hKWhgB+bAS1hPa7imBRqAmUqhGebAAxABt1ywbWiSF9bgA/YAtTLKMggDFpYhfRBhcFxPFVShBwvjRcYhfRpBGHJhOGOqJH3sGMDBDJJAF5IrGqNxp6DtGHshEvAB/gt64RSwoBbS4BTw4BoiAQvmAQJqoRPSQBnmshekYUDB4jz9oRgs4RTALSImxR8E4QdqQAVCwR38QQ3+rzRHqDGNAsA2D1D0AREeACY8oAF2Ya0y8DpSYQLoDCeAqD9OwpwwVIXIARCbaBta80a54RoMYEXnIBtuE+TEQQFCAAMa4BFqzIDSKCcjoxVmUElVzDOmj6RggQakAF6yZBbSQBV4Ml94oRUsQAqaMjdu0xiOwQO4QBweDCzCQZWokGG+wRrnQR3iQRyAIRuUoReywSLfbyucY+zEIRy+IcpMgWcgUB/MYQhqoAZ+gBv0oT5oNEZdp6rG4x7YIRA6FE+k/uKZzGMFLMBEEVAgBgAG8OvfzMBTM+IOyCE1ITVjEuLbVHUi3EG6bnQ5uIEaGACbJA1DTLKmuEECNIBILWAPwtREhCQndYRK1oAXUPF9VBGmguQvCiFwriRdYEM2uLNGGmEZQDE3SoMXLK57ogEYSK1Er6HawGHZiAO6mmMao5EaqTEtpI0axWE4og1BziFiGM4bymwl5oEVVKAGeEAP1O06+GHdVnVjNNQopsEkOmWHGqBQNmAF4iwNIciarsmHKjAjfOHKDrZ1LGFGM4JfTWVWb9Q55mACJsDGHHFXo64VmAABpIBZkC5fcqEZOC0XYET3CgG0JmpZd2RGmnMZ/lJECgypFh3j1wpjFpzhQ4QgbGbWkXqs0Y4BHUrBtLKip8DuczSI2Q5EHNDVTMABULVWlbohOmRBFsjMvfwhGdRABVhADX7BRTs2QyXVPsjBGh4VKQbNdkQ0htLwHrjBYv8NBjIWI+Ah0ObWZ/BDI2KVNUmWa7/BFmihGdwhGzIOKk9QGNBhD2xLOAtnFoogsnLWOD3AEJQT1VKBfCT3Gq5lO4WQbIzwkrqzpLagBD4B+UqkpDBXLpZBGOZhB5JgF+Ahg4wMTVrzqJRjK5Jm/Na1OTKILbphIKygGO5RIojGQctQQvkxcY8nYY3iDFIVUFaiEEK0UCS2EAUCAVb0/pqy4CEbkhy6AHG5d2OswBte9SAc93H1t9qyYVeXocaiwRm4k2yApIY2YAduoRQm6gPq5fdQbWZhIQZ40Dt1URWexVkewAycNUt44TadwRY+oBDWgdrY5HmfY9mUbKicq2EQpNqa15UE8QyWpyK0jAd0wIbxQSDnt2e89yeu42LyVlHcoXw31VQv7zpWYQKwCVdLQG4zghzgYYdFRh9QCCPiQVb3N4sb5hwyjthOclesrxEsQBPWofqcwfUIY0TsjZhWgI+oZw/m50lT13yEoRX2YAIeQRqetkSEAQ5mIbZyIX3sZY+jJGx4sRp4gYeiwR2uQcncAmFamHOYzMkO/qTrSmnZqoYevMERnOpSC+I66oERVMDuGCHipJhuvUM/rIFnSPM76kETEoBQPCABVsAYLpPdVuIXESABjIkaDDYi9IzPTlljQMGXKmIerjCLldnZWLgatqcEr+EajiFyKwoaosGLmuEoufUWGuEBXAgFREEIkuATZsFn60cVt3R2neETUEoYkDSNeAFxwGQHuIDDCPlZd/ckjQEdNGEH2qAexgFrSSmDigN6lANQOcdMIvmoxGEe/qQLBuJVAfMKZIAwkyHvhrl763ZS/cESgLhT8OEalgAFSsAQ2EmH560nmiEXNMEY1CEkiMJVM9pTiiEQsosiVnOZdZr8vuEa/hKoGvZgD7iBDUpAFWxzLkKuREZEChqgBzBDbWAktSbDBW8hGppAoWKLgtNlF+SgFqQgBh7hxnTRBHujGdahCoRgF5qx2tTEqMYObC3k60DHXMmCG75hYhbBGhzCv3gnDoaABViAFV4apWf6U3rYh/3BiIIYKQRCvFaVVE5iRhe7sPXDHnb6so8X2sBiCZriA1aEe7TacPAmFT5ACFBEJ+3HfG6BtNfgntOFw1ThP5AkXbaECJ3BSwuhTDLIsBamyJLmefu02pzrqJjMHQDsDuR3IrgBChIVCnaJso3nsH3idO43P+4hvCZ7AEMmTwgbmP2hC/ShuqE7O0YBFKw3/lYxO72ZAzpogc5KgAE0wRl8DAVzFzKebw+cVMXSObhu0QMaoRlcO0uEYRbWoAUA4WazxJAbzUuOYQt2YBcWUSyIe5IpaOsM+nmrwvwOC1Ee07zvga/9QRxeoQNqYAjSbR66e7wBRbqn2x/csGNzJ8U3huHEW8WTQq8jApnzV70vGx144YcyIL7n+6GOBWd5YQ+oVBXNuX5U7TCWgZ2XACUD3EVggRr2QGCGAQuGwWgFg8PyeWvAARGszh+U5k21bslY2IQhrLrAAp+6znmVzE28wRUg81UTIhnMTQa8ACTg0cZ9hsVpIrxdoQMxVCA+gQqWYAuirJU3Bh6K4e38/pw/mIHQ/WEdopHHMR06MgEBEKAQxqEadmO4KGs4h6QVYIGAEEEzHPhtWqFFXqQbloAGMuEYXpfWbuEYhEAIHiETZ4H5XISsu+cYtgG0nEEqmmOLPseUWngt0LXCpw3aqI0qosxS7eoywcsf6CB7X2EpsjvSvwPQfcIXjOix/YGGzCrxKMGIZ8cXhNnb9aMYxj1mxDbTMT2g5wEvl+NbL3GACYMXJoOBo/pJT25IYEGPorSRAmgS50CNnuEEBpxLucdLYCEBMoEeBJrJ1PUrkoOFS8n8VoWht1Yc4sEbvMEUaokituyGawAKXEYx3R1hN3o/EuHkNzSdZPxTEKHw/szKAhIvF0ZoiS7m5d9dwPBByDynNdFzp5Ne6auhGqYQGgNYgcRajbr0ODUBR2xwMlokk2DhvkTBSn2Qwwi8eh4+SJKhswADm3uDQ9JnLKcCeSv52XZbdMYBoYsMw7sCYd4UH+DBFxBxIkBZlMsQE5xY6P885vXDGzw8UHLnl/FxHVbA8A7PArhghPRhGmTBkw3/KJbiFLBhIK5nx5mtG/DBZY7+cb9BICx9mXuaG7qBa5UDHTRyGfjFGWY3gJyhjaRANHx2tHmEFthH+JrBEOgZJUO7bZrhETyRRdTIGJbP1c14sXpsHfpACOYALwn6czgeqbTWOLhiYeD8c8Ih/htW4g727DIblBbM7W2foXA3X2TAnSYcUvM1QiD2oAiCshRGCC3L6vAooAEAoog+fwQLGjyIMKHChQwN2vPnaGDDiRQrWryIMaPGjfP8GSFB4ti6b+BKmjwJrlu9MkWmVBuHMia4b+4M+djlrptMlOPO4ZuHj6RJmCTHfYu2rNkyZ8uW5Yq2Q8ieW6VSWb1qtZSoVKWqck1lK1fYXLdyGZOC4pMwWLByuX0LN65YWGNtwfq2I4kmY2Xf3koGR1VcY86aGT7MlGkRKbb8ZYMJE9y4yZQliyspblxmceK+Ra4MObNkyZ79mbLki+C9hfgIxuFRQwWtjq032r6NO7fu/t0YuQ3hwY03xnv2nPhbfbtjiQ3MNzwwVFu4dHvrHmCggB17AyrSuw905E1i9/Hky/MeaMjBixQHzl37Bl/mN3xsJEg4wMboTpPoJhGQQAEl7uxX0jfdfHIABTOss01MRunnDDV9lFDCHjBk0QpWGmLFxiRZtQXXLbCk0sAevOTCizG89CWXXH2FdQsvjXywxokt2jLLLWPlUthhPja1iwWioHOOZ+dEZg5mnYk2GThHTvakOEeCk1lRnmFGpTv+nOENPRO19owONchwhZbmnYlmmmoS5Btwax40EDnW4LaaGSE0t8EKBDhTz5sZ3RNPDw1kh50EbPipETvTeINo/qOOnufPJAtYQEEB/syjT6bzuMNpp1pGsYB9PWzjGWWmTvZNM9fZR8U9p54Da6zX+BMAChgo8MlIPEkGkzuffEBhAluJ0lWxxlbViAQLHEAFXbe8uCIXJYjCCyyfKFBAAcLM0qJcqXyEiDGpSJtKtS3y8ssRU5x4DFM+GrYUNUvsYM46OpHWpGZUUtbZUJD9SyWvlz2I6jr1FCOLP/Qgp9BA62CiggxDMOJPn49ejLGjbQbn6D3TWOKPeBnpg48FHuDJ3A4VZ9wQLwdYEAIGITSAwjcsLzSQL6mJfHPPPdczDw4HNHCoxQz9IYADApRB0TxMJKhAHwjhk2nVWgYQ/vMBovgTzzxefw22P1uU4EEJE2wFCy1q07IhLHMUQIEELcDCS90rRoOIEFJEw8ssy2SHQQvO7PgWLLMcPosxIShAgQBzoPAFX84+S3kuqYTggAIhCNOjj0zN08cOhfjzDTcnEcwrwCYxyW9Jn41GFE3+4FIMOSEzNNAvUKhQgxrBdeRz8MLntjHGo4CC2y4roLyBBx5cOnxB/PgzSwgBEDAAE9XcHr0/rlhyD8/dj5/mQOOEMchx0zPEDz6XFMGG0Q1d04MEZdSz/kKrlRGAABjUIz6EzGMCJWCAEGxhi13wQoE22kUuHCiMt2FAAjM4hlIsWA0pCCEV1zjGMoTB/g3NUSAEIUCHB5uCwmOo8BjGqEYI4kYBFMCCGsKooQ1vaAxEFOAFDpDAJ6LhuaUsYwdZMEY9HqOZfPlrX0UJ2DjCgZnJXCYzqPoXSQhiHHaw7x59ikMNdKCCVxBEH/kjnxnP6I/iXUwf3gifbapBNpR5IAQrI9895rEOXnjtjPCgRwDRCEiM4cMd8muIPupRj3hcJBqtAN5EGJSENRgDSGWpi1h09KweFMABkyjMMqjRChpdIymHYWEBNBCAaljwXe9aRjdaQAEMEKAVpGTlYaJxrez8EF6FqUYrSqCJAelrMw+aSWTCERnRnAN2o0mdfoi5DS2dQRZeashqqsGC/h+QCXqB7Ob41HgxLj1EIw+hwcma44EENMIf0Rkf0O7IsOjZgx1u8KY9u2MJUwznjwpBJD8RwsVDUsQdpVsHOBCjIh35xS28OAY33LGOptBwDR5gyioR88k+xAMYnbPlJ4+xhBm0oBG1tCW8uvEHEoRgDu5IijMixAszWKAe3LjSMitDGnXsi0pXMod+Vrc6zYiGNO6ghzXuQJBxNsw1LBCTGB15z6iyDJyOekgg/KFUjPDDGR6wANlKkIAiHCeQ/7yZl5AaT6mqFSPWYJTwyuoPfuREMtwIB1IQIwxeIBCBueBcM44BDGMcoyYxmEM3mmLSY1CDoyY1jDHG0Ygk/mTBHeIAYmN95FBXZEOVhXEGNwyxgUbo4xucOUmp9gWToSZTij1REjEDViRx4KMYzBiFanDWp1VcgQUq0AM06rjW4DaKqo+aBijsAdeEtMYZWxgAAgiwB6gKN2MDkQUuuDfd7C5kGnPqpsOEAhludLQwxxALL5ZyDGF40BnRKEISUsGNknr0spP8hhB2sItsnPCyP6IGIGIhRKSYYA7CqIfrrkSlgWFpNJ2JzIG58a/UXglV5+hIIthR1tbMw4sy0AErCNJO7YqYPMRt1GpckZtEVjiuI8bYauqZ1RaPGBfX9S46hAK7cXTUMM4wBjVqSVBj2OIDhXgpf4+8jHFs/gIBmfjxkW3pjFhw1MeNgAEswHHjy+Q4ipcpiup82uB9DWxg/HIHP+hJkYGEqQY1uEIhZQxn3pTYxPa4g1s3ckevJTfO46HHHYjD5xZbYxrdxEeRZHIOarQyGueQUjSisQQDfGALH8jvRZ/MymVUYxdFgEE1gHFpTCuFG2l46TGkQINwjKRJ4WASaktiDgV/JsIHdnCVwLEOL1mBUTFOyDoEoQId6CAU3Ay0sW8z50eBYmHHBqQ+6OGKaVSz2dP1hiuQi8Z63HgnnllKYq7xzHg0IgMwgAEC/CEM+YpaKc7Yxh+EUAhwqFvUn4xEN/YQg3VWw5kMtowzv6HT1Lmu/plCJfNMbEYOS3QiqawZiDGGIAMZqEEdlyojtS8+kWQ3ih6+sIYbMd49e8CjGFoEeXDhcefh/WQefZrHTGRyzGgwhRrduDFR9LEGCsFgAPUQxro9165l6C0V3wj1z4/RDU/QIAvVsNfA+T0UMouGmK/bDL42sw5/EAIe102rQfhhMTWIqQa/aM2eTX5xjSNqNVbAKtqF5yXjvD24ZyBHr4Xn8p0gEzNF38YTLdMZbqyDAQVsBDWMjumlwILJRv55K7MhiBz8Ihvo+MyVXA0Z2MEniZl3nelo3eh6YAMeIPP6QfqUjA7LwAvstPjcX5/G33DMrFsqiERCDHs1DeQM/m7P/T3ZcfebGWIADygCQfdDFCmtA5nj8GlkziH4PQjjHJV/6bwbC8ROx/f6ifclWqpxjW5YnsypBUeSeJJMXvnbdfn6Bjr8UQyEYTchA7mHGoKtg19UzPW+R7vaGyVystBdBYF7/Vce7OAKxfBxBhhIiQAPwXcx9fANBLACd2IIBqV337Bi8dAgzDRFKtFopNVoMrcUl5UU37AHUrEOHuR4h7EMMvcHMaAJ/BAJ8UASWuYZyNRETwdFqWUqTmQZEzYTx+EKxzVWDdMaqwBxvWUOwMWAc/d/iDIQyiALwEAFTdAEc9AnBRhn+MCFaUIcO/OE3TQKKGZ6EZgNA4AC/s6zBwMCcw9VG/XQJDmWREJBTOfQDZzVUaRkDN9gCzsgBbegXy3IY8cQDcdQAmtQDfgACMqQDf02hw62WlEEhADDeXh4Dv6QTzvDT31iDmpQAywwBGI0fwVhDphANWN4bFHoKHmwARYAix6wArN3bPVgD/6EKPQAD12git6kiyrnD4hAAA0gVh0YE+IQY+jADZ83FFEHE602h9FAGPByQp+VAaLQDDvmeMAADogwAbuggeLgiM3UTFSXRFtGRWHGfs30DR0RBP5QcgvRPv7wCmIicW92EGGCSL0YaKyIKNywAyjzAVJwcdXAFtRgdro3EDDGj2i0Gu84bTfDD+sw/g/OwAv+8BIx8Q1ZhxDuQA3VgA6WkXmRSI6p1VmtYAiiIAydFg8+R4i3dAwxIAX10A2dEQ94IA0I5oMw8SSUyHwlcVOzBhpZBwreMCdnaBDmAGw68APEJl0I8Qw1sI8K8YUNGUj+6CePgADM0wCpcGzzYAgB8AAHIABssD1rwgy+UAylaJXDkzPwEDz4MBLdoBMQhhIa+JT+sA5mMIy5IEwaWBlTdxKc4X7VIAoMkAGE1wjrAAwvyW7fwAZCoG/Mlw2nYIdaRo6uQ0WS2IwJBlTxwA+9YArYxhrT8wsywGZqQBD40xBROZWvkAzP8Ar4sI+voH9teU9YqSa02QcN/sA8whJordEHBxAzGIABB8AEumcNsrCWSImbNzMQthWRGKMPL1cgMdEN7nCGqkAAGGABM8ANQZkvssZ+JNEN57AFzlMCMHAOiCdqfZgKQpAFDwVhTyQO0tALxTRUPDUTmGlwBzZwTVJTWAQP/wR2BOEF9vhbFuGa9YAPccACscYCcUAQqyADt/mc3aSba9IID/CbpWBsttAAlEIoB9AKaFJdCZOhZuQlOdB7F0M1BOI6+FgQl9Cd33kMRyIaQog6sPOIbJABFGIB4cB9SEYNc/CN/6JgtdALUyKJxbRaz5Q6VDRw3DAQuxaPC9EnoSBsKsAIeckQrrkOYsdO/kAL/iwgRkOgB2y5ot8ke8MzCx6KJxawAtRgbKLQnYRCAQewCWdCHImQGm1KPgMBfCyjD+LHbePAkQzhDDNgnGwwD1TkGT7FYJ5BWrbWDfOwBCXwAfhwDZ70cy9lCzRgBmkkJZmXGbVQCwpGcFSKmTs5cOLQaiURD+zwDbyoDxBYpmOKmj+gf6zJoDJgDlcwBNDTRVcABT9QbIJqRhu6JmxwAM5zMghAC2wqYp+QpyX6CGhSTy/KrMLzEGh1MfxgDwimkSsGV9fQCKLgDg2CU6AhRcwkGd2QRv5wDbDyqYiFZNFADWOwA15pOtY5Gt8QCdlAmMMEVErETEpkFOiwDvKw/gi245y1sQo/wDt0oEg0yhDJoANX0GYCBT08oAL+YCbf2qxvOjzr8AgWkAAJsAK3AArMYGy3QKKAUwCfYB7kkAiyoA/OabIYYw/e0K1vgg/IwQ/zgGM8kZ0WIR51tY6sRRmXaonjUJPMOBniVaTOcAzXAAsl8AfL4Knmh1qRIQ218BgBQ3C7QomvMw7bkGvsYArh8U99wg1qEHFDUK3W2po6IAjcUAN0sH/xAA0/UAMUqrE/ezPO+iYQtQ4cCQrsMJ0txgQ1SwEWUARVeRv2YA/WAJeI2z25OoBpwg/IsRpIux/dMI8Z0a5OpI7N13lVNEVF8nykVTpNsYeGsbVz/lACuzASkqoZRSEO2dALeCCHrKpa+UJrTsJE88APzHBVDXGgr/BFLAC4ZboRUdkRlXChXOMPLCAIv0B21uu5wqO4a3KLU+kIcsJnq1EEMzMoPbCowhEn3pAIeju+awQPd0Boa+IrezAOq6uRG2m/8hipmhlUAldFqFIlDVYq+cINvKS1ihaTQoCRPvgN5xcZ3xAPnZAPl7qOl4FMqgUfU/QZ8QCXJ3Bb8kiyXtBUvuqEGvEMMrBHyUoQxIqgOgCm94sx5Wti/iC0kBtnHfEJXFAGUuOg4+ENjpAauqrDj8JGzMDEu9EaRfAAHnoMSVsg6JDDFaEPGIglWnYq+uKD/mImuw22mYlGDc6wBkugCWxQAvqXkf4GE+c3E/GwCNcga5J4JV7GGQqmgd4jC8hjD0gpEbTAZjpAofuHG4OLSF7zA3rwCj/wDNw7BKrJf02sMSjrkARhCsAXxVIlP588HAThCKvhs5jsKNPADKesG7QZAyHgAQfwCfFhEjRxdgyhKzvBWjcIlGLbL/DaOtwgBBPwAROwBIqqWrHKL9/QCzXYwKNBqWOLmQeGD+QgC7IAl0h5tP7QDl4QcT/wW16oG/UQzgNRDebADZNcG+YADVuMym/Cw07sD11gO6JsgKvBDrj6ztFjZ/ZsG62RJ3rCCwHrOphrEWCHtrxyeVHk/oOuxjqzJhnbQA1e5QEfMAf8QGYNnNFGkQ+1ECUjKTBPB7XiQA/FMA0J47PZKwM/MAJf+iiXvM/wrMmB9BDewHus3H/VhWL+HNNomXJncgwoEAKZQNC4Jr66cQ5QtI5OQhLRTHDl52AizRnXIAQZ4FWFYINTxBMePA7Z0AX58IjNdFNiNomakXWmkJYVoQ4eWwM/sD34ANM9DWfxfDHj5AgpzI9u5AheErly7WLzrDBngg9tSxC64n59cssUsQ6YyXyWCIk7hbatgy/roMZfsAf2ChoJ9rr10AnZgETJJLUGHNL+4AvSkAirwU+1EQo8wAIyIAi04dcYR9drRA/0/gSXfd1/1RQIxcBssR085IBUiV0RrUEP+nENNZUSJdsd/LB3pzPNTgTMl+plniGrDzI98wBhr7rMVVSZyhCg66d+Q7ENFhazIdOJ/gANcaACLOAF1SrOvk1ts50x7IALN62KD3EGlsDT8K0m7KBFwl0RphsTBo0bBvWkDA0T6tBgUE2JT63M+HLAYKwZtbAI2XDBbPvUUmQz7MB7uG0QW6p61Uvg/K1d8g20WBUI0wDgxsbhD7HfJG4eVqWi3XF8pqUlI45s/rll/pIkAKNgv7zUlWG1QiW2PCUNRKLhQU6l4/B+d8AOtlNWQANxhBschwvjLWbiLvYQ4GE7uRcn/uxQv/Tw4ldeHg+BC10uxSSbtN2wDq2B4//sDoNdEnvH4KgCVD0IGTvYjD74JKcSRRvZCcogu35+jp1hM/wQsb2dEPwgEavQVH97HMBK5saW5SzDKB0+5tmFbW7gDfs76T3zbIG6Gw5jWuAQDyu+EbswB9Fgl9AYr7TGWr+sL2j73J3ZeUFYCxyctqVVGdeQdY6AC6GrEB1RDR6rAlfwW6j+6bk508KlswlDmhj3EMVwB+Tg4cv+KLLgBn5kGwFFECFZy+dg5fKLD7ZAnBQADkX9cuWH4GAWmBEGJVFHcI3mb+JQCzeYwU2yn/DoBNbw3wzRJ4zwA2CECbCN7avY/uzB9RDW0AV9BHL3QE/Ig9MH7ydZmhHz8H7+cGgmEb9p0hEjtAEk5A8NEsKhMev88oM9rh9GQd2QQalaRn5Y1guAIIE/WJ7iMA/kUAz1lCns4w/mAAVsJsmtR/EI7yYiNk6B4Aoye4RrxTCF1LPwxwzdeu1F3yigcNf7PZExQAB9kMsaOBDKnhF9ggIw0wBbUA8STt3l+GqvNmYDx8sm79jjMA+AgA9IBN1ElQ3+AJHXvhr44OgywANretRWH2eVHjwLPw1OHthq1RHcMAnCEFeoXU1doMpYJfaGLxyrIQv6dMs/sQQP4AEP0Aak044s5ieZIgwrAABSIA7GKMd0/gjVTEKlGT7rIT1w2dAJteAgvNINoOkNMy6PfTIMasBbXjAMFfPmmi9ViB89zGANcpfpGaMlPWACJDQDu9D4XWANTM/8wsMO3uD9FVEP7hADzGEBVaCXZIQx65ANzb1EpLEkAfpa7Jfv+8kkXjYZHW3hc7ij4AAQ+Mi5kuXP4EGEB+f5Y1RDBwtMBvElpFjR4kWMGTVu5NjR40eQIUWOFMltCA9uJFWu9HjPoBVvxfzZY1mzoz5/G1ZswNAzRLNp3pwYpGnT6FGkSZUm1XdPVkGPOBE90AkLH7+lLevpCwfO61dx4MaJ/TZ23DhxaL+J9XoW7Niyad2yDXv2WzY8/qfWpZVrdh68b10M4sRYz90QGT90pKyX1fFjyJElrzSJcvLlhProvZzGjBxRzCPN8KRQmsKBQlgM0iMc2vVr2EtlTes4sV44Q2tgxbb41bdYtHO/jis71mvYtm3RgqsbzvjXtb2UiVvLFty3df5kmTI1s3VCfrZDqdChQ4+/rVh5r2ff3nXllO4d36NZjJwbeN393dP3XT5WKhowrTQMGkDPJfkSVLA9zQIhB0GMcHIHnG7ikSjBerb5TZy0jjtrrLq+6WstszgsjjizkktLxF5qaYc54L7BpxhvEgHtIguruUIGFa54xp+JFhRySCI7gq9IpAhjhx1fzvjsxgTv/qmnCAsGpACDAs5pDEkuu0TKl/02cuebb9AJUkF9uElxOOuCM+7Ds+SSy7e61DrHKxHzwSOSesiMEx19mGRno8biGKKGEWjJ7kwvG3V0vSMfZQlBe7zpwhpfNlOQHXmMqNLKFdbZUlJSS62Iphz80fSiMcGxkEh3NBTOrbO6gjFO4sy59bk1i/vqnHkiKQs4cLixcJRpntSoGihqkOEKc/zxz1RqqzUqUmtDasogz87QxxRrVnVp2iRnknYmb3ChpwtswGggBNMwOMAQcrO1t0iaoGJ1m3UmYjRBfuYR8bi3zPqQLRDpQji4tjikFRxpOqlFrmyyM4UeNzRqzJxV/lRgAYrz+rt3ZJI9wrZkjrZVFR5XErnHCXqYOag/e+6BUCX+NivKH9q6gAcUXLw56A8BesKAACoWQnlpBV16SmiK9Fknm4XUI1IfdGz9bTlaDU6OVw4VhnOseFrsMBt86iFklM92poifxoa5QgUZ1IDGH6WZ1pvpk/fuaNBpaAwCHkvgWbUp/mjiT+TMpKXJnqYgP8geewLxB4J0rfFnUITqcYaJGYqYJW+/S38Np2ngATKhcbKzGkl3tP7tzq8fHm6utQZ+zqtsarGiHuLA8QcUU6DOaCFBZNBBhUouNP35bPuG/iKcFFeVGaDvMMUVeKahh55BWat3JnruYed7/mvYkYWZINi5oxjVXaJp2lG3mv7+y5zwxmp8xpnndS7NAzm/+Rp0qMOcFIVFHHcahzmEA5xsSAMfIsoOfsyVEXy4Q3k6GAJ6xoc/EBJJeiGMmqoowoxiJAIXzLCCPRLBNkdYoxi+KAaNEkEPUASCHkGYhiwcgYugJGQzH6xHEf9FQiTWhCa4oIUoROEPQJFqHLLzzVw+dCLl+Oo6yRFLWqRxik4s0B/wGIXh3AYe2zCCPDpgBN6OmEQ4ymeEcURIf1SWEHvAQ2amIMc0aBiUgnhPdRRR3AfpeMijTIQIDGjAABqxukcFTBxUrOLAEFYnYjXMK+cIGz70Io7GpIEd/jLJiIV+cQUWqMBukERkKyF1kvi4UpazNFVjPhCCDVhgC+gpFTfEwQ0CgkMdD1MgcxZYl1t1kSzggEMn3MGzRFhjXBdJmz/iUB4W0GIhhqRlN5MyR2+GU5zsaQwNNpACEMyBl5HEhzNSoSE2fa06uLrOrIYllm6soxb+o4cpLHfGiuDjGT+oQQ2g8Mw3jlOhNgHnQh360KwEzB9LEEIPCgJQJOGEDQEgQAiqAc8qcm1WXTPYn2rRCfhZYTUYcYk4MMECGQyhjfaDaE0pA0ub5lSnSGlMdvSRMUmh410hIAAwQFrFXXmtgVujTjb84QZ84EJdNiuMP1gxNxbQ4Uek/ttpVzfSUK+GVawUmQjqguiobVggBEQFBjAJdrsOvekca+mLWdCBjjv44wzwGCT1GkMHh8jgFc4ba2EpAlbDJjas90AhN+UjlRBggAvbgCdybFXXDh1HTsvhBjawMA0bYTQh9RAHC8rDAw8qVrUGQexqXVtTN6DwXFw60wR3tzU4IdA4c/pGPqZhCkfIZFUVwck89KACh4QCb69VbWuZmy19mCMUz3xuUoqSV8nRlj/uuK1xbJXbNcFpeL7I6wUtMpFXNGsEWg1TdQ3rXPfW8hc1iGV8baIPe7DDDTi5GZfQEU9elZRYZ+HGOUY5Cnpkl5r+qEZBZfCLbdq3sPCV/vCj6jHf+ACwwiPBCQ+H61/rxHM4mfVNPehBDh12pDFeOOiG34tTF4/swvQ1SD1eMQ9a1BcayWBljC+yGXr8s0sTUVMwlcMXPIEjO8wYBXY9EqR6JNTHEKXwlIs0Y240Zgg/qIcO1HAQd+hAuY6NMeSmYQkoFYmTzhHxgMFhDnS4gx/bSTNH6tFfK+e0ynkW0ox/xAMoGCQZKuCxP2ihgnmMis/EVdUZhMYaJOHDrca8ZHLMsQ57vIOMi47xnjktnwvLgBs/uAJ6MsiCweJDD2qg6aeJ22HzDokrX6FiV+yCIEvIhMyunjCMee2oegzDtF6eLSauYJga0OLXP9ZH/n5kwTki7WVrYBEHOvxBjl7cwXrLdq+nuQ2bYI+AEcMYASvOlYwRcCMZOsjOty9SDFdYQ3WiXc9tbiuWbThVr+xA82zdzVxv/xszwRa1PwRRg2ocxAuv8EIcBG4ReOjDEuzQHFUThI91EHAc3LDYKEiJ54crNuAhjwyW8dEOGdDBfoLQgY9IbhFfgNaECnLHANvyzBzc48MvX+3IeZ6VYP8gPtDoADTwgRModBDkIUeQI+iRCHJshj/swUna1sGveWBjFAhu789d63OvM8UdyagHVuahbn9YaAiD3fWy8TuTyvEbNG1HykRs0YY57KYXlpAF1Oge9pqCHfCSWUUH/pY7+MGsFBSLN5eCMeMMFBzAAS0Igzdog3iA+xrzGOKGDLLp780TxSWpcoVBlp4VnNyCAhYggQOeGPrXCh72iXSHHn6BDykPPnL+SFciNg1tnPzdItM8iDVkKAcFNOABDQDG7L+ueedfvNWzL8pnArHCjJHyXDZbHOjraEea6OwgQdmeKWboD2IUgQrH8H70xXok3Mdf/vOnf/3tf3/851//++d///3/fwAMQAEcQPlrDEZgNX+AG+ETuODbHH+AH1cIBG/IGIxijfKhHMqpiEEJgntwgxqyBmWZCHdYiNxzP50yCaEDEgJcQRZsQRd8QRiMQRlcCDVIjF9YJxMk/qQHxIVAMIVEcIVikAV7wIXEQwhvYAZrkIX9OgFZKJxYy8Hq6rwfoAM9qEIrvEIszEIt3EIu7EIv/EIwDEMxHEMyLEMzPEM0zEI6YAQd4AG6EYRqSIkSxDz68I8lGQV2AAU3IAcn8AVH+MNcswR6KL1V0RnGgULm4gdz0IQRUIEReERIjERJnERKrERLvERMzERN3ERO7ERP/ERQDEVRpMQLcIgf4IEOELceg8L+4I/TGz7veEVEXC2cKIRKuEVczEVd3EVe7EVf/EVgDEZhHEZiLEZjPEZkTEZl5EVGWAUd+AEV+AFM4AZ10LBZrCNpaUA70sZrnDIZ/EZwDEdx/hxHcqy/hdiRKzA6RetGduS5bXxHeIxHeZxHeqxHe7xHfMxHfdxHfuxHf/xHe3QJRjgPIJm+djxIhEzIlKmxdVRIh3xIiASSBYxIiqxIi7xIjMxIjdxIjuxIj/xIkAxJkRxJkixJkzxJlExJlVxJlmxJl3xJmIxJmZxJmqxJ/BGZiSwh2KC7nEQTQ+pJkgBKbBQSofSPQzSKXRPK6FPKlWDKmiAXp3wNixsilWiNqKQIWWyJ9kMK+ngMtyG+CGGJDAzLcykfndzK1biZnrzKmVGVnNSUQrSInSMKejOhpFwQnVMKzehJ0VLKtqvL++qIrryJqMAMe5hLjRhL3ggIACH5BAEKAP8ALAAAAAAgAwkBAAj+AP0JHEiwoMGDCBMqXMiwocOHECNKnEixosWLGDNq3Mixo8ePIEOKHLnxnj549+DRY7eSnT5v9ODB00fv3j2SOHPq3Mmzp8+fQIMKHUq0qNGjD/HpK6hP302BK13ZA2VtmqNpiVwFKmbpDj0rxWQF8uYo7DRf054KdLoUqdu3cOPKnUu3rt27eIXyqyewXlN7aotNc2IvEC57pthZY2cPXkLG5KpWteTtTjFcxQjay8u5s+fPoEOLHk0aKT5/3EQVBFWsS2Rr/hxfBMyOnT8n8KxYc2yzbenfwIMLH068uPGQhg40CBGLWSDKmwVuVltxqcnNSxPdPknvuPfv4MP+ix9P3ufSdT4oYAAhyZRmf747bu4uUJasRPR8rS3Pv7///wAGGJpT/pCTDQkbhECAavY0pdNNbTEDjymJTCMQdQJmqOGGHHbo4UNL0VPMKKaU0oAAS7gj1FJLWZhDd9h9KOOMNNZoo3D0YAaKP9tscxp8Rt2zGSiWWBjfjUgmqeSSTOJkoSPWZDNPN+CEw00147hF3xn2ONLkl2CGKeaYQMIzDSjwYIMPOt+A46ab4/CFlD6bsYNLII7RcySZfPbp55/G3SQLPYH4M486bb75JjfzzEUOM25cCOiklFZqqV3s3HOHY+5sM46ioIKz51HRueEKhpemquqqrHJE4Jn+lvhTDzjbhBOqotuMehSd/ljCjHtAtirssMQWu58/bkyT2Tqffnrrm+Ksww9d0VWYmbHYZqutn74wI4s/+IyT6LOKjrPNtHUtVRU5DW7r7rvwfriUN8x440+nzpILajiN4mVNIu3GK/DABIN3kz2ymGLhN+Hkq2+54eDV1hnW2FvwxRhn7JmDxTCjnTviPKxvnHltJosvjOmq8cost8xTW5Thgo+tIuv7zTqeeSypyzz37DNIvsBzRyL4jFvzs+HgPO2PdnWXg8U/Ry311Ay11a0Whnp6NLnjoJPNJJ8I4w+qcnUnCy5jU6322lFvBg8crgByjjhab/0s3UUIoJz+LZxt5qs/9jDN9uCEC9zWHdb4gsc3Idut75UNYECBBGx4Zu8ZsgJW+OacYwsPO454A884yqzj+MPcUKMBBRZY0Idnm41izy3O4INu57jnbqkpvpDzTSeRxNP46c+Os84xM/hgh6ye1eOOAAgMwEWwuhvXFFuANWjPZg06WP33E3Wnz1X2ApJNO0YTf+s28azDjaGf1TMOAiuUkEE14P/2F50BP3QdW/kLIFM2440zwGMe38BDJ86RPvXdqk1dA009zjEADyiBBNQQ4Gj2FxN/CKYYjvBFInBxBo955QzeKEYxVGKPmkRHgwLcTA4Egg5xKMMd53Dg1saRpc/oYx3+bLBACcpADhgORSkDGRWG2EGOaXgDF5AiC57cwI5p7KYmA3GME8mCFVwkohigkIWd4AG1YxlxbUshBy52FI9sqEMZgFCGDh2nos5MkCDeiIRsztgTOU2CEp84Fvf80R1XsGMrvpBFx2yDEXrYI2hlmYYV/OGI7a2FbHxs2VJUmBl0bOMb/oBDPhw2x4clDS8/Wsc5LlQPvmAmkzw5jS1WEAIKhGAFYtOTP2zjBHqUUDGWNAiLHDJMg3SnGPm5AzvcsMf+wXJl9mAHPDCHDnGF4xtpkEYDS6kvcdTjdnI5zTzOgbOD3MEU3nvmSIARAslRQD0YcMZNApGwYgxSZR3+uclTmAHC0OkJn+qEFztMMQp/rENrbfrGNrlJrm30iy5rAgc6ErKZIgY0JPqoRxsO8M6OUsAMhBjofl7Ik+4JREIjdGJbAHrRVqlrHUEQSDac9Q1pwEEZOWTo1lYpl2mNcxsqGtVSRgEK+rS0I/VABwY24FHWzaAd0klnUHglEF94w1euiOpRjUUgX7giM7R6Uzb8kQZ85FSnNRsHN/AhONO4gxtABVdCWFRQlm71IfNYRwiY6lELxMAZcmnLSuDhBmBJ9a6pclAi0CGPcA3vG/nAQzYWilaklXNO+ABZleS0kKWAIquIzQg91tECCzS1AUV4KF2aQlhf0MOooU3+lSzskdVz0OxN30BHLShb2VuFw0dv+VSPONuQz2Eytp3dJbL8EYYHqAeeDQgkXtrlCms4YiXwsStykzSdYgSCHUVLH2Qly9vehmoc8dBHW4OCj1SsYANrcGZDUKjd7T6Fd764Vh+UYwHlIIJ5JatqMXyhH8Btd0w08QdB3fNWh6mVG6c4BTrMazd1vC9tQFnKmvCxAg+EAAG7MMlDNnMHzR1YITcphjVAEU0gzaMac2DCHwBbX7csxTFu0EdBqXdiJT3lDMWwF+P2dWFqKIOUFOZaNbhBgx7Mg7g7OQ0OGRWDvT6gEXIlpj+YUcQa3zU/YiTpJe+BRNI0RhagyFT+j5lkD290wR/8sO2tolUCBmjBHEk+2loPEIIQHAB+PeGH6WjljyJsYAMNWAeUGbIZKq7ZIOy4qkt4PBB81GO9oHkKLkTq5UfzR7Fbrkfd9rWOJIigBSJIxaDzTC5xnEMUkQtBAwCdE58Oz1b+2IMUVglOh5jM09n1RyK80eXxzGcazGCGgYHdoe6QQxbTyCw3kFwlcBxjByJ4gQFU4Q5qs/pN24hG5Cgwa9WSBB/u+9RvccbZTsMHHqOwhphjS6fPYa6Y42mLPSzxLRMzO0D36A6F+DEPcCx0HNWwRyYS4AERfEDV4hjet0G1jXO0oghLAAalQSJOccHJoUl0N0H+lLVmGdpG5MLZzAkI+W8BbQYChuIh16iBjyQIwRNSWMImorGMaqhj4uTixjrQseiQCHobuDJ3RkxRjMMe9caj0M6yA5RgR4yijC0vjzdMweBuePsbxqPFBApRDzno4hvLWIYzltEMboDD29/mBqNIMi1Ry9xN4lB6RpgxDdgilu/97lB00qzLrIMnjYTyRzzOwY3bgopR6EhCEmzxDU94whnHaIbmNb+MaGBpHI4HejjEkWWPWOeg+TJX0TFyk0j5HVCYnq5jMCdiDznIEraZt+GH0yJX8CMeHvft+/YAg0JEwxnNAEYsNs/8ZqTdGdz4ua3kDldWm+u4FzmNKj3+5axrxj4jm3EChifFjXiI5j4b/xAovLR76/nDGq5wD9zdpI5qJGEHPHf+MuSACuQ3//9uZy7rsGp5Ng7qwHETdl4o1xBLwUiTshSMoAalhxf3QA6JEHg2Eh2T5IDtBxzMwA7ihw+1cjfu8wkZ8AjrIAycBwyeUA3/939r5wzrsAYJgABrwA3lVUo85Sr14HZvxw28cAzCMA8L6BD3wAzsB3v+wANQMIF1IWKRMnU2ImKmUES614Gc0VVb4Q+0Qm1WUg/OIARSIAzckHnO5wyoIAnU8IIw6Ayl4AElUAIGsAtIx2p1pBHoNoKu1ggIQAAesAs5oQ+4YCGT8gs/oAP+q3AQ6qAO3xcUN+FFxYZU8zCJxdGAprAj2IeFq7VLJ6N4YXUrCOcPiPABotAM+ad5x2AOR5APZsiGm6d2sAADcWgAvHANoVdZSdNrEyFl1eYmcFUEFrABFvAFOWEP07BHfxIHMiADdMAU+EAHdHBpSHETowBaH3EalgYe0ySFmpgXsgAPWTV/4CB0OyAF/td8zgAMaeeK/7cLspgBE7AG0CeO3PRNFsEPZhV6PWJowlgFOiFCTicm3HAFNVADUHBha/GM0chWSOEljOERp+EMXBAABHAAtnBZw9Eu3xJyRdiNI3ET9OAt7NCDX8csm/ABc+AOKth8y8ANgyAJp8j+hp13DIYwAaoGC7aQDWkXDeJwd71VfhcRDwwTKknDCyuAAlIwfiNhjIXXJ7+gAjqgAyPwCgShXtDoFwLBDfUwD+3gDu3QDuqgdyLhDVGnlBzBC8rRTiFQAFzQiKMxJGjRVlfokUDxFBWyI+kGiglHC1IgBNFwDa3IfJg3COYQmP93DK9WAmbgDNRgDM6AeZzXDEuWgL01Dm55EEtRD6h3XuxzL8YgK7oYEl4yl0ySUWowBD/wA16gBmVmldGoD+agA5XgDl7AAstokHrghCARE0WSfhlRD8DoURhwAK1wHEvBDLXgD6KwBEsgBbRAa3QpFARkGHsxZA+EP3NQAqL+QA3n+H9qBwxr54rCsA5mIASacA3h+YJqFw3foA4Sd4uOo3rzQJoHsQ7XhDSNslI8cQ9vRp9JUg/mcAXmgJoD6k0JCY3u4A4qwAjwsQ7mEC2vcAHmsHodkUZSFxK8gAGm5VEH8AjggQwtcGiHZgFzEJ1EETuxIj8Pcw7U8AFZAJjs2HZhMAjr+ILHsAwlsASPGaOvGA358ls+6EDiAi6XCWdmNTL2GBT20pEbgg/xwA1DwAPvYw5JpJDcwAIMmplPBg0XYAxMyhA3cQffkokX0QoHwFcd1QBlUGbGsQce4AEi6gEJoBomChTdESnWgC/PUn7V8AjaWYbdaaOxQA3+bMeS0RANezABpfAOK8mjr0gN4oAO0fAJpfBJ6rMN62AIIVAE0VA18zBq+0IyjugPJeafSTItUCql4GSVXqACMvALWYYP88ADmLATUmeqFnEMK9BUFNCh31EPSxCMIiqMZlB7dRqIm8EMviAznkRtajUPtiAFTZAMMMqjzjAIN9p841kKNCAFLngMgWqtbBcNNIAACJAE7kM87iAKC4ABDRAD8XBcmgmqb2Iu50CmJLFJdeUnqYqQCSkIFzAMdMAD+JM2XtCEOHESF2isIlEETeWuxekd1BADwjqsFqBox1qMAoEHskAOBSdx9SoO+GMIHrAJ3FmoMeoMnoCtzJf+du4gBDswCzvqqK6YCRMQhwmAD0G6NeKAD2wgOSEAAN+waLwIsriyDrZzopTkm1/Sr85IB3EwD+IwApUgV2sgAwAmEurSQTnhDu0kORpaOd8xDvxosTHgDviasRexFLKAOYeiL1YyDwzwouGasiirec5ACyUwB3dLs97pDJmQAXHIAPqws1uDDraAARiwAJWzJ/zQeHCLkUNxE1X4J05blQrJF78QsP5QCSPQDtxgDg8qEq8lfmn7m4XWAz2AA89JocEhBRV7aA+wB0yrthphDabwLZt5XkK3DnPwAZvwDYZprXIAk853DbCACBMAC4BZtzTbec1gBiVwfzBgCD3+93aOE6nRYAJiWxD80GD7Ig7xQA2mM1FHcRNFZblR6q/wgQ9qoAZyogYXwKUyYJu3mbUb0RaF8nojISfo4rrBYQwPsAElAIcWAANUarshYSGYMysjeCv4IwpJIAWHOrwxugws+JjHAA6iAANVwA3p6bctO56asANZMG3guoZq53bqAJ/P0iYC8VDilJeKYiX4sAdLwAYA/BP6QA6xwq/rexDUQA1twQ2/YA6/YAxKrMSw+qUF4UWT1hM/wqbeEZFLEADRswWLACwKzBFC0ivTIGhDOWfioA9rsAOqgJ5966jLcAyoIITuIAU7UArVUKMi/IrQB7Oq4IKF2sdqVw3+5zAORttQczcQzFKHj+cPVdAAFjC7ZjkUNKFsQCylDhGaHxHJw8IP9uAOzjAP+MAO9nS6XbwQN0EOY0EP9Aoq5xANLpoNFvy8wCAHhDoBczCzd9yyzZAKGWAIMcmO0wYqgwwtSAsuoBd0/vABe7UBSbnD+3lIuIokl1sUNDENhTIsW3nNlLRpo5wR04ALkbK7oYKp21AIGWAMzXvLeKwKa/Bw12AM6PyoufC7avfK6Mh2SPcp6zCZ23R9nzp/7wO7DfAAJcrMPUFsk8y+oyps3DgsT5FVz7zNA3ET4Mhi/vANiBwq3KAPsbgGwhDCt9zG4NAIKJAF22DH6HwM4/D+CSWwBtvgfHd8DJ6HDnsgBGawC+vQQA8GdiLzPnOwB2uAv9JsD8VgUXwSzUQBConhxGEyzXcA0RHhN96Alwe3De9Tno0ADi79zvYsBRvQCtfwzq94DO4AA0uQCtewxs97DKnAAB/wATRgqeUSDc7nwqDCsHFBJAdtFORADvzLVfeAdU6tEE3BDrGCQPpC1dWAkscH1q8ICwygCZLgCWsI1mwnChmwB4vN2McgChMAhyVADQ7T0pz3wL5Fenchyjdi1EKxfqhdI9dTpAmxfrXr1Jaou798XtECDnMwAeZMz2wcDcewBiXAC9EgCeCp1YSancJQrVq9dklgPx8gBPP+MG3hEA6Eeo7OgA50PdtHQSFKHSCqzcNd4idtlaQRcZzK1tomGh13sHVcCLmh8g0RvANmILxo7bfLAA6PsANfsA3OEA2D0MvPuwzjDANcgA7ZCtbZ/QfFJwprMAfRIAzUAFce3QzOQCXhjDOwXRTsMCjf/R/h3RP6QNhEjWD3UgVL4AOBJJYNQQ75FdgGsRmuMArfYth7ukpNkASpMNnvjHnL8A05JwrWdgzVEAbOy44wzWSTR6gKfqPLAANZkArf4AzionbNIAy8YOXNRw0/pyhC1xnwYA3qLSMhvp8Kxt1JAgutI4wlgALQGRHksKQwHmxfRA8zYzOIe9n3LcL+4NoK8Yier2jSPLqTmpAAqdDRjO181KDLjVANgXoMuRDpt8ALMBgqd5gX00BFY+4hZb4T7NCfc9EWGy6d4kAA77UBH0DAS/DIDXETrhArH+5p5OAKMQHOFDcPy6AJGZALAn7HnecMUlAC/22GarcLL2ALWs6OyAcLsGAGO8B2e463mMfkLEkNx5AEH3AOxwDT1eDoyyAMtxDp4n4Lu4CyBD50SKciRVpjAdkRTTkmnZ4Ts77QRsEPT/Ej7W4Up9EIDTCsGwCHkgsRm3Qt20wgJyMP8pPKbvIN80ALUK7GlH0M80B8c2BtKOsMn3AAJHAAhjDoyzAJDTABFgCeaSf+6JznDLbABUzwCGf9is2wDXOwA3ug7ceQqX9gB7mwC+KeC7aQ85FuC8Kwns6wCcmgD5c+V6jx5gmhFrAtJwQtK4uwDpveIfGutWMTku+OFHwBC0vQA0/ABuouF43ypoeW6oe2ArBwER8I0fQRU97gDmNMZFppc2Zt8vgd4UKwBLBQx1teBA1AAg1ABUFf8oRf8tDnAR8wOVWwDv99qI/5+I+ZdhpwAArQAMhu4ceQDbbgAmswC1/936WAAQVwADNgC6bP8z2fC+F+Cz0P6UJQAjCQCe3LVrRf+/CzAjhgBIq3EATnD2zABhnUEI3yCarB4gaRGcavJFV/ja1UD8v+RIhwcRqG0ACs0zoxULBxwRfBKqJmvwKfeRFO4A0PvXvZUVTyQ9fc4A67kACNAOiMzXaw8AGG4LzV4AMKQG5MAAu3sP/8z/+w4AwAYWhCCAoUFgCJdkvhLV4NHfLKResABgoSPgkTxmtZIQ+ieBkTBkxYNTsFKQiANeuWrVm2GEKEmOuWmQkeMmTxl1Pnzpz1/LWoSGGGP588d/rsgUGCBHRFjfJEspSMP3xPecbrA6LFvHtWvX4FG1bsWLJly3IbwoObWbY8q4qDlclWrbZ17fpzRoFgQQwN2NTTd1dw2MCwEHjYkHiDhxL4Atu158+Uv8iDLV/GnFnzZs5jA9/+sxaInL9x28aBQ50a9TZ318yUoObsWDPatW3fxt1smTNjNJ05W5YbeDIcDlakiplLufJbwlLtgLEL0QIKK2Atx54dli0NDRpISHUropDo4pnn4jWne4MFokSVgg/f/XxRqaRk8PBByjh0/f3/R2etFUwKwZ914kEwHnfmqadBwJahiIIConGnHnwuxDBDf0RRoCABPgmrHmAESIEECojqLEUVB0NLrRWP8qeUEhDIIAELLnlxMCosMKmgEAZoKke77qmniAc8QHKDBDLx57G6ArvDnq6EpLJKK69c0Rp7EvFnnmvCOU011L5Zq5EkslgHmOByY/O2ZZZB55ES5gj+503cgBPmllm4OWIZXsxbTrxl1hBijmtgWeaTMpLLrlFYYKGCikZCmqOEPbLZDjtYStmFCxRm+CQVUUcltRTkshCihAY+KAS1ccIRM7Vt1rEjgAIKMMSdbr7hlddtuAEW2HM6pCCAY7jZpptglwV2HA4LWqCVdc6httpx1nHHnQPtOCAFDDRAEUtxV2xxLSp3wa8ExjyYwJhxxzKjgQj5EiAap94NawsEHkCghFTCvYsef6ygDF+DD0ZYSHsEPoMcfsb5JlZZz5lHih1gyWbNNjdu5hhnrikhi1K+me1OY/6UKZdBXMpuFmFmEWKJUo4RjyFhGsUZu2VAgqWELUr+eRk7W1IxVRRbNCE1aVFFuaWRHZZIRZRGMolmmWioOefVWMPpZp5J3KuHG4lVY40XCg7oA5yIx2G7bbfHOYcJAgooI0zVYO01HG54KWCDAqjwZ8qEB2er3CrvQzLxDKRwx0nC/SmjgR4pwCAAcO59XCd91hF7nszu8WaUzEcnvXSjIvPGDX/cgXVscGbdxQBNduO4dmO+MaQEUX5rkxdbAhVGjkZt4aURBD4BNGflsZvlmDk+aIRR5TZVuvpRTV1jAk1+R48XZ2zjxu5Y/XNdzG/U+VWd8lUbRx1notHadb19agaEVuapynT9dzJcSGp2+EDiEleCdWBucIaQV4/+GtADdwiudERy0OfYIbr9VdCC47LHGWThj3N8Q3yq+cY6qrEGGPxGY7XLzTKowQspfIAadkrhSrDDkEGgLBfEo4UQaCAMli3Ph7YQhiikUAJntERoRLOe9UqhCRgU4Ri24J5yPEYb4DSDG2BSjTi2IY71xWocwIpYF8FRmm1cYxvlE8c6AnMhefCjHvy4oP76l6NoAFCA6wpS5nzCBQKEAAN9OYAy4pgiXzBjkIdE5GW6wg5ZWIIq2RDb2M5xD0jsYA3V0A0K2bQbbuTuD/Qo2W2+x8NGMUQOqkDZMdoAgzkUMYo+xBnxeLGGEvzhGrTQjqmSmDRTwYILrDwGLmf+6D03OSN8p+GGT8ImRmY2k33bQEc8eLKIdTgwkYObY45aeMebxMNxhNOHOx6BAQIcoAjXuKZm6OEIdlgzne+EJ09GAQ/RocM0EtObOLghBCmkAhyh1ORtjnGNY9xgCcKgBkBps5tjpKyUKpOELY6RChhIYWbXgaXymicKGGTBZRj93S2QuEtSiWIWmvgAFzTBi1nk7IQLbYYxL1eIJhQCHa1zZk5dV5oK8cQaboCHO+M5rmy+qBTrQlIJMkAL/cExW+6Q5lAtU4zASdWq19SHN7ZkoDCOLZm7mEAjqvG9gOZmoI34wCyIySbp4WwWqmjGGj5giLZmVDvLaEMGRIH+UeX8jnokLelMSoC0TOHsFsbY2DfWkJ8JZGIdOoWsF8XhuadU5qr4KqqKquK0DHwgAzBoRJP256B7wNFg+TMYOVRn2cu2Vn/ewIUrOOjBsc0qHEn4wDiM8dKy0iYauZACDIQBQ9w0FJZ6OkISYDAOWrzSrtnhRSpKIAVSHlGXgB1VJmgg3E/w1bC8aNMyxsGFAN4EWZFFL9y8Mo07sOObrqVSZlX0xlPMYQ5rUCZZAEMU1MLXKv210LsCU4xpiNa/Bz5YZRxhigKHz6vd8McehLAHdCC2t7bZTTT2AIM18OMYvMWTdw2bC2HQ0hDLEOZzsyNLEu7BGYWd3kgBWx/+UZhhB4/IxV5hOQsQL+Ma1IDBBD7AgDmcBqfoFSPExuG59+bEG95A8JXkmyKBgWInTX6KPqbkE35gGb78qMo47BtaA2MpMLJgR5mjvGYq6SMypqjFZNbRjbF9cR7caALUMnbh2sjmN9MVBkFxw9Ab+hAWEy3BGmjxRBU7ShilqCgtgracWch4xsJoRAlixoVUiDhnzRGlMM6RiR3sYQ2WRCg31HFkJO+UGw0EizeYIVQ2c2bKnOlKDvwhMLZUAwYf+AAMktHfKPukDxZAzAZWEA18ReYMaa51tFekj8AEwR7eqEdXvciNdWRCe7zjc22EsY49TCAV4L6TDZfnsjn+ZOATrTiCKhqtnd5kIBNtpcV1sSsKWiShBIZAtgWKwAtPG5astDHGOLKQAVtUjYpUpG2ryxcO1nrFFRuUNrnSYi4hkWM0ZrmQMQxQApLP6F9evmpgDPGAFSjGAzTo6bvY8fGM11wzriiGe8+BRYm9ihtJuEE1iMtnFQpjB0nYxoc36VzlpUIIO1jG7+r6XF6IYroofuXQ9A3YUnyiorwoQggWYwFhFBxnxgDO+2jxgTXcQxi6UXptrLY2id8NHOsgyzSsYfMU3VozgXHENGjtFc8l4NeJgwECAHbgwHig5S5PgCj2Ky57kOMOauZ75skyJVwUgxys0zbZKJY7Q8z+Y7jh1k00sjEHGPxhHG+/0zKqqzyG5IKEhqKFeOQgiakrDxYZyQIMZifiv2JXl1lwwR6CuIYHhMACKyi7XTVyjWX8khbUEMbBRakbanDjHKpBViSdWRqKUYUw9nBFgTWvGb9rhhmguAfKjRKYXXxAXQNklfmjLArF9N8DS1g8LJEF2Vq/AgwLXjsDfsgGd3AwiXk1buAwWuAGCwu3Y6iGHJKCXaC+QXOGm2G67KCFZZCuLEgFY8CoXfCEQUgeWIIFZ2gEGGiDEjQP7rE0khKFXEApEiSaG2SDB9iBT3AoFvwGRCgBROCFDaydDGMbvQmceTijZvqixiELfYAHWaj+OAO8i/ZTJ/kziqrYgztKqiSoqigrhf7rPwA0ICuhBy7EQr57jC7IuXpgNTFJJrTKBHSrwGvwtlKgHTaxK4xZAhjwiEaZhZZ6LliYpQ+4QaHJhVaowSQqBVEAhlSpD1EpBWFKBUP8Q2HIAgawhT4MqAzjhnmwvzVAH2Y6jTT8Cn2gh3lqQ8vQQsxYMLaoivq7v6SaK/1DsHVYDDNsgD3QB2K7kmkIBHhgw1eMtiezAoE5ow9KjTRyhiwoAXf4sODgLRQCDl6AASGghkwyqw9sFGHIhIpaBlhYwVyYhTBQiYxKCQ9oAmdYQZHCLksUldyRghwzlVLgq3XMKIJTBQb+2ABy0gii+4aSY4BM4IbQGxu8Y4t7YAcCRMYs3LgcoUJfqAvPyYBbZIwECED46oo5eIASSAwPsAALwAdVtBLPO8aIRDDQsQSLdId74pVwWLV8AId2aAd3qIQiXAfwagZz+MludLhqDC9nGKEdyJW4sw08AUdKc45KQYRmMDte8AR5WzdhSIbg0wRnSLEb2pStSyKmyYTga4RbqMROK7RDzJMloIEe8JEDqAeFQqFjOAcYUJcSYINf2altKD9hBIsBmwyWtItYHIzIgEizCAxaYAD7UxcEEAVdHBd9mLwViYw5SIAHsAAEQAFmQxhToIcrFMxaswd7sIZTWJ11yIb+iFkHccCHbFCGbMCDbYgEZBCCCvCEUwAEUsADVFCCZUiDSHAGT6iGY2gHahC6NzkhYciGWSgBM1BOuYwpD/ShWWiGEWyOc1yO4ClE5aGFbCiERPs9kELHRwxLW9iD5uw0XSqFlmpKnEmFbDjPNWiGpAiBEIiBdYDONpENdJiDCZgAkwsfhRyjV1tJnoiMOxi80AQLwryLyOgC9WuLqqCGJMiACUiCZYBMcSkKN/PLzcCHajCEOYAFykKYe1gtBY22ergHeGAHPOCgcciGfGgHZeiFU8CDReiEXugEfziCDDi3jom7N4mGTuAGLECFTlACVFiEYwAGakioNzmGb3j+HliIBu27DXXzvWb4Ah9FxPZEjzDIk+E5NOUqBUb5nXybx6WxBUrUt1Lw0lKyBWfYASFAJZZogD5SShSSvWqIgSRwhj1Igt1phmpwxm8Ih2A0rbpgB9BE0QWdyBdxM0bVLxjBl8DoBlEog1aAsERNETfTB34gEsKZBl5rVASrCrzTNX9Ah2zIBmlwglqAg1roBRldB3SIhoqivtlATijtGCqKhmgwB2dQ0htdBDVphl3YgR2YB59MIU30IY7KgjA9Ll6QA2ntK/SA1mjoSplIU1JBqzXIsaR50xlSjkxbAxTrK2Oohhey0o0BDlhYkmvYrSpaqCsysrsbDIHRNUn+LVWjYFC7YJgxtIt6mAcGmdR4qMScKFCr8AlNOIADkICHDa2FrQt8iL/BCQxQ2Lt+9S+faIQWIAF/oFFlwIJsWAR1aId8qFW+HIdMawT8dFdrhNLdqIZ1jYVFQIUjWIBJeL3hxLBsxM4ZyhOL2YNDoTpJsErlcJmZyICZcVZ0BMuwpAVRWIIJu4VQIRpTCdqckSghggGg8a5HsYWAOoZsMAYhEAJjICjgOKEqMqMD0UWKDQxHIlWOdVQXUZGMpbkqCQynYwD/zAIMpdidqApbOAA/+iNyuoUAk7Z7uAcuGVy7NZ3HmIMDsIAKWAM32IZayIdxaAe1iZhqWAcgk4L+gcrPJOyYeUiFDOgDSSBZcwCEdvAzq7mZrZ0eF9yBaI0+FVMFSQhTKs2dOQAi7qkZ8rQej2A9j4oaTPsEWyiFRkOUPZirjPjAOL3G2xAGfrCxovVGNgGOV8uJqjhJouBUwvCHaYAHyRWLf22LwPCFi70SdAkgJAk2hhxYf1iBP+oRDECBjoyyrtigyFXf0dEHZZAHFMAACyCBFqAH74uVavCHdkuFKkU92kCo4EqFmOqYWOgEOAAGc/iwjGIJaZACc+u9dYOGI4AGPTmGJdiBRVwO4unWHcyFZK1EN6WCDWA7eLQrljAGGlgCs8OOtdokjxGCJJiiJAyjJdOJebD+Bf/9Cng4gV0b4K9gX7YIjEAomCo5SSlANgH6ADMQjMAwgb0gkAbokozrClCAsipOp8cYhVEwhSkIgQbQADM4hydMjWsxBhhIApK5Xk3ijWPoqG7QmN1wBmAAhiBYBlWYhV0AR6kTBba7wHmjNFUYhF1QBQ8I3HiEj3nUJYGYg1k4yzlogMSwALqCJe55hA+Yg2MQYuwIr6pJhQkwhG+APY7BmjDKp3rQBAP4Tyi2Cijj1yq+YrZ4SIEVknoYhwTQyPxgnLsIDA3Q3zNO47JwIHwoXwsKDG+gKjdGJGrzB1+whiCYBkGahChgA3/YBpx6tXFYpUdAh+xDPUSWK8f+yuWFCg5ngIZBSMFbQKUVbB5a+KVMEIZthd5ZmIQsUMRm6EpbQNN53CtNCC4aIxVTTrbomc6JkgIaSIVytKskto1j2AZYSAIaaIaEatefDVD2geABsMsPYBI2hBItAWerOGazMAVvEOCBPYf/vCP9sN+28AkfQAEeMQkM6AFhnr++nYM+cIdrPqTKc4SbHiQEdIOcywnLuidwYEJY2IE20MDTRaFxm4Udjgbo7EB0fJkUHAS1cqhZcEEOgwVjGNdPa8H43AWCu1ZYMN7qEYUS4zB6TJodQIAEkALbvYW85rBmkCERJmK4W4c2KAGqodfwQhZn5AZmMwC79AAm6VD+o/AFR+ppwczpsmCGNbySeliH+RWgxRkMfAAHAkBgygkBAqiGYjaKddiBFbCADYgBMdZtAgaNurXq0tEyybACazBu0RKH1hnFPVgqPOSzY0AH5boF6pa7RtmFWUhBSVCrxT6GFlrEuzasWziGp/NuRoxo46uPOd0EJXoUWmgFRFSe3+ljGDjh5QklIfUAcH2h2nEGPabDptC0v/2AdSBRsTDG4/bXR1WRRGgncYEFBrijEmCqwZgHamiAOqaIJ97mrziHHfC/DZiDRFrRRGhuB38c0HECeNg7WouHMdqilDqHQBbkaIAFIciC12uT2SPXZADvlVHMNYgG844l9Gj+BA+YA2GYBEnIjqjdJfewgDWYhah10xsqxKA1j0KYgEfY3UY7rO+RjUbIgEZAQl3+vlgJoZY1ADjRlnjQonUIbYU1UYxjcZ047bHwBl+wh9K2i3gotwmoERjYA6Y2i1Iog8fEvLDQhAQwQwvYAY47pGn45jzPnGLwBitgh/T1MnxYh3VYgxgQhXPI5wsrW1hot5ER6T7zk/aUIUkAAxhoBWCI5R07hlIIvlSAZWiQg3Vs7xmDhU/wt+46y+sJj4yahWjQhCQQAvS49eXhhYGyhY7+hrTmGKtRtdATh27QB/tgnHNYljEKh1lByawyJEBnyT1ncD9Xd7tIhUKYA0T+cJcFBwuCncwrQy3HKAt9iId4McMNsIB/SSR2gDZMTxh7SLMukIVL94qo3gUhMAMfI2vbAYdMSDRnCPA7qV0fSoVrYD02OAYseIZJmzdE+c42yAjzUIVf/2te8ghaWgO/lvJx/b0Wo15LZo5UWAczgJ5xyNMUIlRWK41xwIcvWIJHwIfSqK0QSkOBCUyE9wd2Dws5PhiCVdhJ1Yk3yoxwMoPfjnRYuCZTcCSpPxiBYYYT8IaDtwp98JznEYXYqOBmEIZxII8PW2ngEGG5RtuAnoU0kIRkeNrjogVn0KFUyI7DAoNfOPZd0qUSSAIpt8Q3ZYlmgIEg9h2dZw4eas7+axBkLtq2c4iGOaGGdSDwsQEThhTfqIaALUZ4ql9FeBjuHKlzq7iGLJgAQdTmzXgESDdDDxCGdAoqs282eLAC1RHnr+AHanABKfCHU7+w30iFD9gDbjhda+Va5UCpcxWmW3iGQRAe28UZTUCAPYBl7eC3I/gFySds6S6EVmj8pMHSnCkeBCiEZRh8FWOIW1iDM/ez2gEIaue2gStoENy4dYUm7KrH7SDEiAW5ufPnrx4tVP74Wezo8SPIkCJHkixp8iTKlCe5DeHBTSVMf/dcFYtp8+ZIfP4+GSjhcwKMeThHUiuxYYMHpA/m+NM59OlTa6Ds6YNq9SrWrFpV6tP+5+2ERXgk6/nTNyeDs3rVuC1r5vYt3Lhxl1E7lmVHpnHCnMl1toyXrVyCBxPOdctYqjUfUgmDRXhWsmRYks26VfgyrGO0hOyg1ZiwLVqlSqXiMykV6tSqU5Wy9UhKCdKkU49Wbfjy42WphAjZxcsx7uCXbS17neQYrzlzPkVrK3eZM4TiIm6zZ2uHFH/XHkrsXjAcOIpcDLzYUHEr+vTqP7J0qf4ePVDs1qvfNaGEh/wlJqypVzXrMhY8YEEDBMyxDn0J+pMIO/Yo+CCEEd5Ejz+gWCLWfyHxI1QqMBiyjTvcjMONXCWWKMw4mcCwBTh+mShMLoEJl8sszcxRwhr+vslI2C23qCKJJM/MIhwt2WwhxBrG3LJjLrCwhlopovAh2mqpiZLLGh7MYcuTVsICiyiozWgYLNcsIcQcy/Q45oy23OLMGiUU0owtRRzQwAKiHPMcN9+MQ91LWQiRikPeGVrQiMcggJ+cEjr6KEjtvbQePRRCOtQXH+S3qQcZrEMWVjqdI8weolCT4aVWzZcqq62mp4+DTpiCqkhCrdHbOuOAh1A0Jvq6zDHfSOGBM3z5ymRwt8xiDAxSlMILm7kMMpllhdkCizC8zQJtYV2qBkYeVbImii0fSPGJt6iJAssSRTg55i28dGgGLNxGmyy2DKxR75IhYEBBA4Ys41z+M8tEs82fEI3oDjQ4crPOoYeOeM4uDPhUgiiuaqyepOrZQ84ZG6fEDz5SZMCpByUggA6oWd1zj0X+iYyTG9M4ODPOOY9kDztdlAUzSe68k8Ea/nBn0DjU+PpcsaJMMMc3wpjojDDVsvmIB2ssg2yyuSSjxJCDWWaLJhPsYUzYYotr5dp7eLAHLLOptu5RHljgDHCXxQtLIQho8tu9M/KyRgai8DK2MSZQYMECjwxcsDPUJAzRNutQ0wgD0aAjYsSGirOOYp9k8MEeMul8ekwdv0oPM6iTVIUFKO/HMnr43EOr6yV5s2ruvbdaVTG+wGMP0CDxQ1Y9e3xgjD7VSDT+TjN+EVxisLaYAcMu1xxjLFzOHHPbjNimIgUMsCyTNpvKzqKKKsko20wqScBgC+CDcRnm2rQcIQr+otzyyJlEMQv8rSZMsbPbHg5nrVscQxQ7SEI0ABO44dxiGZrgzTKaJLZd+GAGbKBGW6DTjXN8AyLhGMc8ZrGDKvhjG0frHETEwQ18lEIIW/CHJTpSD474rofsacmk0HMPeIzChx4pBH44lYEkxMMpRnQULrxRvCdS0WMVGoU3SKKPePhDFDRYgzo2NzmDcGMe1JhFNEBYIu+t4w87aAM1mrNGaFkNN7eghTP2gCNnzIJrbLKFJ+QgCV40ow0wSKAEb+MkuYn+qxS/OAIt+LeLLMBgDbmojbhEQYsHlGAFCUhF3gQTmGVwAQaNAEwdJ9gkXhxDCjtARDNCKZg32UJpBavGn3aFKBfWgwtCsAU+tqFLGB6EGyxbwhKI4Y9IZMN2Tqyi71SHHn1MwxRU1AkMLoafD+wCmo7yBS7K4s1xXgVmxWAHObRYlSQkQRjoGCNE1tGKFaBgBrDg3luWIYxqCCEJtpBjX76XSr29iQY7UCVueKGKWXgCBkkQRdW6la61leITYYLFB5YApbVBqRSG2EAD9rCmwTgGFjgqhTD8GDhYGEMUH8gC/VTaI2BAIxrTicjCqsGARlBjHQQhpsLKuIsPaGL+hxUSJzmjCUT1eKUmVBQKbHyyA2MkFULeqAnuqqpVkzjIZ5YaiTDktI4XSmQeVGgAwKhgjOl5zxgMKARbfBXRGVmGF434wClliVDBrCEIc/heYZzE0Spp8gh7SMAjMDnYVMRIGCnFzR4yUIhjqHSCt1jDBI4Bi8qS9CHDNMg51mGGEjTDp0CVyOb2gAB8zINCYPnqVk8nTa2QpRg1eSZKWjbFlOg2JlVxyjL+g9uRoCqrJckQPoxLEid2JSbFw8dwT0IOa7YsttYNSVdwEbKbgYQs4rhRNAp1KLM2AAMHMMPjvFeNZshvn3sK6C4GWpg3ZYJ8qeAF+hA6i2PEDwb+yUiDJzTxCF78Jm6LnVsu+nAXWky0SqQJzC2+ZLX9amIHMLgGjfYqylsIoxEwyAIwNjsm+i2DrBOpR/yyYDQTE5Mg60jFDkpXD53Iwh/cvW7OZosVsnxDErGIie2MJopqNIUrHKGGKMBhY65YhBeiQN7tUOKUXdDCItEdCczqsVmLKDckZHFHK3jB5ZGRZR16GjNv/bEMPozjIlfG8Vbp4QbTGY8stCgBIuaBjp8eyh2NIAABDiAKvujTH3OgwRyu4aITybcwsxDGHGAwB2Mkcq/XukYW5LQMWECjDhuwgBk2euAn5eJ6a5AEGAhI0Vb48UvUkEIMHhFLzo44F8f+WEISCuEMWsfIGMVqhq7IeI56XA8WLTztQcIBonkIQQpUbZl8dgvnjen4Ku6gAgay3YK0qOQcRviXBnCwjvOg5Bs9AHcP/EHukvBDH7xQHAU0wIaLqOTOF2tEclHCkUdogAIUwIAo3gySqszB3xQIgZj1TZYpGHwF1FBJRVqQbQwwAUHTxrE+iuGIG3+kIlUQgjMg9llDjWMZpQAGoZ0RDRgIgRe9MtH3aB0aaji0Xrym629gYIZ45cLJK7DABg7wh1aMOhVhcqkUjv6JSHK0FK0IzrJKMQE21EvDJJXXB/Y1V+HEi2Al3lUZYTGBQqwDHSMnZjiqMQ9NZKAUOsn+kCNccXGdVfsp96gHExZg8BAU4Bv6EHjM3DEDCey9APio7kjqsQ6D+xsDCvCHUEpiu2MI4F/+VkAZlnxcfNBiUfqZgCHovFx/IEIABseAAETR3JKQpQwFOL0AgIF4kZClCIRvvACoMfuQCEUAITC4BFrgDmnPfZzpbN1IriFZ8Z6WGy6EzjIyMQFNaE+uvOZw3xpxjEbfK6aGGLsGey4KFBwlpEUvBSww24guieIFv1A1bWhhR74uZqRWF8wcJsCYm+8lLtE4BziEQziM1lqwGDGNwze4wxoEBVIBjzUUX44tFVb8nS2YngRcoASEgATQ23LpwyS8HgZmYAtwYOL++UMZ6F0IUpzo1Yo/+F4KFsAyFBlJCIUBwACnlAADNJFJ1IM7BIAGYiDfkaBIQBc1VF4IhsDjRR5x+UMrKAAFpGAIQF5JwMwM/OAFUkABfIIMQqA3VUUgFAOtHI8/oMMCMg/nIFsA9gksjFY0eM8aZRD3zZLJJUFv1I+G2QIwaMIS0AByMAkvUIEFkMARGMKBlcIseFgS7IIoyE0pDAMY/AIjsYZeCcYxPEISNMH2xSG8HEYjPBA3pIImdt2i5dOwiYKk+UM3+AkagsM3iMM8pIILFI07oErwIB8XUpsEXgVZ9MAThiAFtICSlYRQ/EsIEl4UdpkUKgAGFOMTCiH+SOhENqCgL1LBCg6cP6SCT6AM6WxhSOgEGyyjLyqAFnYZFYIjBmKhMOygP/gbMxbAp5jE4vUiBpqXFN5iFVWFLziVR2yRP+xBEhSNC61iGvrDH3iAIXxDwczRH92TGezAGvCRJtKVLcBJCRiCMdgCstyCKCiHHXgClTRSKtiCK4kU/JEGH/AB/yyiJFKQMFxPI5zPzQVHvTgDZzjOJPKIreGTW/hFNFRDFjiL0ZwdDFGEPvTTSxiVRTgIKFAIMtojhNQdTggFO/oiBgCDSQjFAZjjFWLANlylPxSAVhKeBnCjNcKCNJ7jDDjjR+hEI6QMynhAdhBfR8BMGUzlFUr+wLwJ3C7K4xWKI1LRnj+sAF8SngJQA+D5QzT8HjMmoVM+EcxYQiA84zolQTVAjECOAy/hSC1Nz1t4D/hwXS4sww78kgJZHUbygr5gSx0FhmClxrR8pGqg3yaUQNIZmIOVwiTQwpcY3UA5hjEQDb/c3yw4AxJtSWlyHSHppFsYQzTQwtihg2mt4oj4QyZkACxUxHDVDMc15qVA5U04CBU4oS+GwHZ2lz/wIjNigFp+xDAOZjOWp0eQBQieowNknlx6xG8mkX7gFVl+RFUYAuH54gG0wl+GBMwwgV0SXgE0AzKSRQu4ZwG4w+7tIz4Qoy9uoBJyp+9QCGxZBD/QQgL+iEKICGRBnEM4pIIHZEI9QEeJ/IUmBoYt9M0n2KHVJccHzKgfMVgB0YIcwCZpiMIaMECYRCJhEcFRcIEdCUMWFM5jmaa8jBYsLAmbZMavZIMUfECfCCUxiUM1kM9FZJU3iIWGuop33oRavJ4D9KURrKdH4IM9wAIByCMFHEDmAV5ylZ48YkABKEKBepk/tIB43t4CSKhXfkA2uqUH1OMMfuVUPqF6ZihgVl4vUoACpCWkPiM+fIOkXmEBrOmEzqUJHkAvOgAFBMAxrN6Yuk5VuEHr/AfMcMNdPAw3aOmhhEMZGYMZuIA6xAM3kMhzfGZw2IIwONASRFBMQt0xaEL+EuxAM4RftxAp/2CBYsFCJ/qTYnGUA5XfgG3YMSDCDiwBNUSY1Y2NKWZBM9hfsBJSiy5DODxCJa0DL1BDAPJZi/mUKfqBonYE8LiCLaZqd+biVfydHQjA7QVAD9TDfe6jP7ABwfpbADABm66lP1BBw0qAAJBBxLYpOGBAnM5pFvYnpjrDB1jMfmSALfQpdvkDLBzA62GhBnCbScDMJxSAE1KA772jOpZezQoADlwEDy0qEwQAOwpAXvqrqi7ImB2eP0DCK7nDWAnkNhCZHhXCioGDOrBo9DRDpQVraH6Bh1RNRAoHLAwnJf0B3iBLYDQYlNBCGEAiKC3BDszBJRX+nSGEwAa0QAH4AYxsizDQ4SPgzf3NpPxowqZxVmC8l1wYwzfsQhMsgSp8wzEcQ4kaDdpRBDckgRS8xKXCij9EptGySpkOhTMYAQWQgIiiLEnwQhGEwAy0wqWaRCucWw8YW1N6RDzYQQuEQBlEA+p2o7rtAQxImpId5ph9AxuEQAvYwbqZRFVcQxkg7x+87hIeA7bNACIQr0fcQysAqhFY5efmTjHUWFXUA1lIwRIsgzuUENTGQzu81AndVEGokfdEZEnpXClsX+Be5EvFC9dYBpFWySDIASyIzhpogm2OGizQgAV8QAhcCSwAwyZ8gHEeK27ckyYwANw0qXCQmHL+NoMxXEMjlIDjqNE3GMIKrEAf1IM4rDALt7ALE1kj6N/bjUQOaN73Pkro4sQ94AM2YEPvkkTxJGxOdAT27iPQQBeQAc0Oj4yV/ceMAZlTRBlMSLHMqERywUNNfOoNa0wxTIO+7oIBNII+0CuynRA6FAID7EKvRkRc2cuY8MIegB5l3d9grIEF+E9l/S9hjU8JZILaDhYsUEO7gIEcQMsaJAAvyB8d50K2wMB9he32TI0zcEEJVN9OpkIMZJuguYMAdrIne3IYsVPGkkNNCPEWcwzAZoU+1EMv1AJO2MM8VDFMrPI82EMRt2k9zIMpDyH53jI+8EImrIEodJP0xmz+LNeulx3zTUhDJ1TjKbtKVTBDZDrIOpCPOTwt1OrDGibBOpzDrEpEBslcA3EGNyiLaTKyJjQLtDCJMFAaRo4a+hXCEbStSsJzKigytrSzJxzBDmwB4I6rre0BDUhBNtCC4fYcoc2FM1RDde4BOhgDXESDKPhLCBDAJbiDrnxyJ3PDOcxDI6CJupEEPfiCNfDOM0dIDuOEPpBDv550R6zDHDDABGQAA2RAI2Ts6XhDq7q0xlQFLlgTFy1gJvjDN5Bx8/mDIXiIP4gDGZ8QOFCDknCfLczCq9HAZOWXKgWGMEhBEuzBNdhfvLDBFpySHltJa8BGIYhCGMDmYJHG2Aj+Brbwwg5kQQq0g5tYHbbAgiuVwqbVWiTHhfeAkBBkQSqAA+LupDOswAHcyTKYnUaf0EtEA65VhBaTgzXkEE9LSErfxD1YQyJktkfMQgK8ZZVRkSn4wg+D9oP8hzL4QzwgyTVYpnRyQzXgQ9ZVgzvAr0GEwzlUA18cQx9N4n5F8Bo8Gh3XSyp8wM5tHY1sNdBtwPoN1pXclRmQRisACTzLkmcg0RoAUhgMkobdU98UAoG9qDBgbVwIwzfclSEUC2fu5DEYQnurA3ho9HQWggfwAlkolzlhlWo/yGbbBKx4MWgrnqagTAZkBxV5A1X8N6sww5zBAgKIAjYLpDi4Qyb+JIAtrINuH8Q4AFQ1pEIf/LMoxcgcfEBrULAdDY7+afBg0AI1EMAKHIUU2EJZl0IWeMAn1EYpSMJatzVjBdYyZJrNHYYcVAZC0c+yAne02MJhz0U2yE8bLk3BDAw30Lc4fLI6XDkMfEG+joQVMLiDA3gqZwXPeC45OdEt59Y53Ic2SoHFGREoTMMuj3lWkIUtfEItmIMU0AA+jBU8VW495EI/tYM341R4EIwzzIEANMABsPMFNYGahG2yMFCFUWYryNc9AZ0HPIAZzEIkkgYs/AEMLIGNMxJ2g2QoLckx3FUWXINBCwYvDMKPKEm0xAsvIILOfQa88EIHG0w03NX+gagrlQ+M5nzyw6iDJiwG5P0sSDgIO3x2atv5VQS4b9HDKIipNwlFPAjDeSBzbo2D53GKuSyv71hCg1D7avsD5jSAAvTxPGyDURMTR+PDGiSBJgSlCY2DOABUMyDHAfgLBlABNLC6SxYuXu8F3MLSTRqGLThQA3ABmKzGbJwJeddzagQSxq/tkMgIS2WLEOjJqsOIHKgC/aYUOz3CNTT8LOWCr1HPN1xHImpPB0/NrGa5N+MDTX6BOHz5PlaFhTClutOHtTtXOo1TRexAEayA0gfRVRxeFhzQprxUFTUIuA89TpCFobbACiQB5QokN8SDM5RAFnQDr0aEOIzIKP7+Oy8UgMCrFYERzf4F7jJwN7ZUVtoaXSMcsLrQQgyvgaitBo+mC/oJudvsgWdwnyR4gjkHBy00QwzPQXnDy3l3sOQqD4f5O5Xn05VnuWHqUSqgmYGWRRAUQxZdPdanTplPIDzcAWpDk06ggN0exQbEAJFpBS2cDKfAgDs4+4Z2QbqnvnpofQl8QEbNgwF2zog0AgJswwp3RzjUfDRQQgOEgAZwAy/k+IxSevjECS2ga3DEpoPZQhKUQGtSFC0oAdOJyWXMwmhNNZsYQxgsVLIsQ/Buzb08OVwAC29E7ub7CkBQCzeOm78dS/zh87eQYcOF9Ka58adPn0OLFzFm1Lj+kWNHjx9BhtTIbQiPgiJBsmOHkmXLjVs2xJT5YI4+hS4bVsyU5MMEGELU8cM5lKVKokeRJlXKcp6/FVJc8HN37ps4cFexZtV69Zu7ZEKy1OPGbSu4cNyapVW7dlk0ase4PUqSZJmtW7nw5tW7l+/dW6JKZKl7l69eW6lKpVK8GHEpWHNgZNklKjFjy4hTSVIMKxfhW7xgafpgJtqswnxnGRN2RNUsXnht5To2p8QeZ7QIn77Ly9latW2XIYKxJ96x3r6RJ097bJ26QhlS+YunUR88f2em4bq3lHt370pJmvzur9i08d+FUrEgU2aJdfWSwq9XqpGthRU74oPvbx7+/vMZvZGFov8ILLBAoQhRCL941tlmnHHKymocB/FpI4lH/NlmK3HO4SaaZZRTyzhnpNgBEWdmie20FfP6rJkkdtBkGVhUXPGwyiwTZZZSpKABkVxEuUzIxMIYxrS8YBHGlh2E+GRGFve65RZj5BjEE2FgcUaUJpJI5RjOWIzNOBDXcsaYanYRQopdvhEmxDfVEuYbW25YYx1/6hEKI3r8YccKXHCZyMBBCe0uvJO8w8WSAQsdCh0h1mPPgwfQsUekeuapx7+cUOJnO3+McWah/RrFRZZGUU0VpYosWWlTfeY5K5wIwSFoHmNKmCOaecjSShx1qnGGzBCPqYaWCfb+yEWY3KA8jZZjHrFgjiSZPQ0WIRUTxZZGMjBDMRyxXayUUjzBIpm8aJFmjg8ayYWXGptt0RhJVJFjGdoQ4YWXalFz8zjfeFnHkAkyiUZYOOE05hwzSpBGwYzssdQNK8wTVNWLMd7o0PHs4TNjlraIlL0Y3CHVI6Fs8kfPoRTKJAEPPJggulTJIefjmz/eLhB/LL1oHlrB4cadNT6gJZ5vIgznYDjbWmOCaIRZNl4bhWE4lX3jnSVcx5bIwJYgw70ssVx2MeZId4UQgpezp+4LFjmy2AG0eG9pZljfnKHmgyWyOQZhhJfhBQYz1pmOI3pOoMdjnBn/eOPv4LmDnU/+G+dojwY8YO+BRlBahooGQmikoJta2m6ODEpIvQSCG63IFWYqj51QR+7p2aKbpuJmwnkKd2cXGrLwhxsNtQrnm26MexPEakQZfBzjjoG37buEaQQGvnE7zRa7YrtW7FRg2SODNYAM27LEOLNlFiw84UWYQiK7JpW2C/sMlkcymAKVQYyRUvtb3JSctlCDNplo099CBBxubUJ4d9LINBJxB3/Qw3ays6CBHvcdV8CDchd0SEXWgIANZO4AQnCgR2DVhwM0AAMYOEAIqJEQnOziAyWAGcxKYAF0mIxA+qAHLjblQSEihR2mgEcQL4IPXvnDDHPYwxpKQAt99Corv/r+hrD+hRxhRSMaWViCIdZhDLW8hn65SJItllACUTxpRc1wxjFysaPLiIIWohDCEtoFNvN9ixbwakUnSgEjWHypjHuBhTFKAYMkiMIZb5PEIKDRmSi5L4tqMQY6MiGFJSzjLQhUjjGyAYvArMMdugMHEntWjDMUw2IZId0QYcmSDHqnGProYCwTcoslNEAItjihR+rhDgJggALFbOEKZOiSOdzwhiUwQDV4+J97wMMUuLSmS8hRjApqRCFJmEAGauiOdSBNK99ABzWWFiJhUMMWH1hD3oblDKy1DRbSKEQCDEGtFd2iFUvYgRSwpa09lGAN39ojY9gWR12wIQOacA3+v+iXJSg2Ql+xEYYqPBGGWUDDL53xV3KMMY49eEAUBvOkcoRBjyzQABbrGIdVxhGO9zSFZxWxxh1Gsc0P1oOn1/SpR2bZHV9U85ax9A8SNwKfObCwmMZcAS+GYoYPMNMDJUhAKvCB1O/ogxwV++lXN3IPX1jjI01JXVV3kKEIVVI5zMnCBIJxjbuphX624MUS1AYmFvGiCDFpQEFzdAshlMB7B2UMXzgDAxAMYhYQLSMshLCDuhQGGlWiF16WwVY3HuMaJZBCJ0+aHGeUYgdZKOU5zmEVs6BjIduxVBdMwcqMCKUeCuGGHrIKVt0yJKjcoQcrtTpEe2TqUv6IwQb+iNlUDIRAFEMphA2Z6cySDaoi0xjFbrGbE3rIwhsfgc8Svjk+sWQlHOGoxlyRs4xlcCMT43OHMNDrRrq96xEw4IIx9MqiW+wgJhbwlkHD505eUMaw6JunXW2BCA/sARqSkFohc2HXXOzhA4WQX/1Sk4tBSMITseBkb8j0YQob0G+hZUs1hPEHGDSXGg+qVTjEUY0iBOAAvOCHEvzUWp+tAxrJYMQVWHABOuApu2DtrVIqsjOdFjkj8GEDU5WLAljgRCoZgEEzMyAEd7zyPxLzR1GZfE173CMRIYGPGbJQCOmMU0Md+pBmRZQNZ3AJFt9IXlulZ0glwUgT18jvXtn+8IAG0CRbt8hEZDMBCz3usRStuIuKBlkKITTBS7+AQzISOjVYLCMVO0iCXf8cJVtAAxXHkAMqJNGMYi3jGOBQBVjYVGITp0UY4yBtFcSpu5i+9BvcSAUBPPCCA2jhFCuhh1ZX4QUZjIAFOqiBF/C0sjDj8shJqa55gjtthtSDGgQIQVMpEIIGELklFXEGAqpaAtRFo1C29Kq2fbodSyzuZAuZzk3wsQ5woDO+azlGNhpRgj8YQ65wckae0bWMRiALL449TSoQwQVDJEYUuYDiHBIDrrCN6xY1OowzoGiI13TcE2nYhcOtFQ2ifQIW74ISADMrLGAcIwzAkIQx1rH+BRg0gt+z/o07vlACZ6jjpeD4xje2cY51iOMbU8CABVLggFrcRyPVWAcdauDsH0AD3j6tNlIqwgxXtLLrFrHlHA6g3AZEI9verYdUS2AGchPKGhIBc9kvWBFZvNsl+lBHNP4Gcg80Q4wIBAbCAZgEGBy+jLcQ17fsuAMCGxYxtOiLMxQ5Twi3CBb/jPDUlMNqT8jhA0n4Rr9PuoxcIIsbqsXKObKRjVpg4RuLQAEJKKAKsifRHzpwtu8rgXdrfh0plipz2w101ALNoQco6EEMsnF3kfCDpgupPkeQ/5GKOGKCwsclRcYufRTOQ0PjuOLSMvtmZ6RiAnaSdeCNETj+2ChrDqW9TRltgaOMD3QNwFi0+dDn8yRJGNalENgIL1JDCTJNN4QhFUbqnUItSpRFszKrGcQHGgBBEuTAE4AhFmbOGarhQwBPWNRLvewGRJbhGnZBxezDHMRJGrKhF2qhF5RAHABBIfhBFnBhOqQPP0Kh2WpAEHQA2q7P+y6I+I5iOxzBZjIGPuYBvqhuPG4iGs5hIbgMJ3iKp6SNI3ahEQohExZiCz9C3r7MCGMpQHZP+/AEHbhhVq6iQzqJGlKhENbhGJagS8Ch8BAocMqADR4hjpphS3YgFRoJ/3BEFBTN01ju//Zo/szoGjKBS2gBS/piFgaBjFhkEj/hIGz+gZBYxDUqEDmYIxNowAx6w0OoARU8QRJQwV6sJBokIRqAwRyowRyqgRtA0ByAoR5oIQmawB16IRZqoRY6IRJ6ARCUQRmWyB8kJxKi0Gf8YRjUgAVUwAuSYRiGgD/E0AwrBwmT0BvK7GMagQZWYAV2YBfScCmUT1VsYl0yYAJqiBui6SN8oczEjxtzxh8kYsk6oiJcyvWwYla2oRo+oYZoYAfmADhOqljErQEooBQs0AP+oKIe6xB5gWj2wKAOalz+bNMY5kc0by9UQRWSweEOY2FKoBGEQQD3SYw06xi+wQyEQBWcAcTSwi3sJhaOIRYGwRyOIBY84QgyavSAYRD+wmAdQkAAJAEOlMEYe0EalEEarmId0OEbyMMSTkHHMEI//EEQfqAGVCAU3MEf1IDr8FGIvPEouIreUEUfEOEBZMIDGgAds2+3KoL9oKuqJoA/WOKIznKIyKEuL+IeHARouKEaDAC65uAbZu0YxOGFMGBzIsuMIEzRGKMVdmAHLJPySsHyDAkWYEAKKHGfZiEMVGEXtIcX2E8KjmEBCwP1jOEYPCud3uQYYs4ZcLEamkEngWESEkDN1MGlzI+csGIb7sQUTgX59MEchqAGauAHuEEf9EQw/zJV0nIo7oEdAoEtC0UsXog9VsACkgnvmmIAYGCqmknu7hEj7oAc+LH+OjNmO6yAZ1DCHb4BQgyzGhgAZtzpGhqTGxpAAjCgASxgDw7w5TzDMiuDNtZgwDgzFUzDM96lECzAEO6vWVqjfpYFMhphGTzTRtzlQ9ILasQnFeoQznwjs2yT1ViNs6qmBIanGr4hG45OK7YBHcayzLwh2xRiHlhBBWqAB/QATyqCH+YRPnHmOoliGnxBVUynAdgjJlCgubwPH7ihhqgqdeaOHmULSWPHEgITJHp0HUwJaMBBQ+ZgAnxCIU3sGFqBCQhACmQkAvkiNgiPMzCj4gphCWgAERlxaz4ULzateaTAfeiULzgMNZxBLoRgF0Zzn3ghs9DrGNChFOJus3z+Li2W4RwaASHXIbXccCu+4U5kQRaASyPgIxnUQAVYQA1+gS+9FC1LAlHOgxysgTqX4rtEJi45x/vugRtQJ0thYEs9Ah66K1YrxyhCwh3EASDN1PxsgRaawR22oRuwyJOEAR04lCKnZhaK4J3y9CI9oBA0ktHAxzBo4RriRiVZslk8YRD8J8Jm4RiyoAQ+YeSgZJBCkS1SytNSwT8z9QS5oUR2oR7EIVQlxHgWwgqKgQkzAla60vfC8hmR1YKUlCjOwD1RRSEMAS6jVI2MsCkQIC9vKHjWsyHugRy64FgrFmeswBve8yKc1UwlpFYCEi08aRkiqyZXUtNyAXQ2YAf+bqEUEHFvMIMzAzUvZkGRlKSQbkEVaoRGGMAMJOnlIjVEosEWPGAOqAH1POkYdmECEMEdaPZOHOEM6DOp8IEHdIBt8eEKWzZ2LhYnKiJQcDU+3MFjwXM8y64iViEDqqqqaghWQYIcrCNub0YfJucj4qEwafZxD/YcgsVu2AIFe6MRLOAT0AG+mgHh6vQWnmyEVgBIlmkPvuZB4cUWhIEW9mACHqEQC0kY4GAWXMMWrOZAC8OiKPAaeKF1eYEa9HDWOGkZoAga4oGKRLVSvMERWIk7OaUeGEEFnI0RpANxZVU8CsQaTuVkvaMeNOEA1sMDEmAFjCEdtU0hKAwBEgD+AYSAGo70Yf3Buqz3ZkCBgziiHtgQYR+XZn9lHIKFTP7tGmDSFu6oLUpMnuLFLhrhATJnSoUgCT5hFv50SFIhUG0hSzTheoRhbiCMF+jFGRChtEDNavf1Ny6pU79gGyg3U4VhHUJ4DeqhQyLEVsyjCxYiZptiGK5ABqoxGaJtfo9wVgtE3uw2VfThGtKoBBChGvhW+ISiGXJBE3AOJGBlHsZyPmMWiAmkGALBHtpO34hzf8X4KsyPG9SrGvZgD64BilSBTZfDc/fCLqSgAXogjablaM31z26BGppgxVoOjptlF+QgFkqkQwG54d6PLZphHapgEE0qU0EEHSLjFsb+qyzCYRu+oSkcwRq6K7hSJg6GgAVYgBXUoYm1uHHmlm79AXbudimaoqeQFAc/4iYqIjBb+ZQHxR70d4x5GSu+YQlqKAMEI0RQrkXGJRU+QAj+gvIqL44dz50OtW3sShU8qzTihTdCb/0ywEADVlOjQRTYhVqBZhvcgavugGU1BgqcEwpoFZdlJ5VdQmKymEDugaduGckYpd1CYh1SAQEmgAFA4BrM153PYxRA4WGZFT97eaHBYR1owYZKgAE0oSbbqpi9xwy2eTMpL0oakMI6NJqbBYBgYQ1aABDw6+UmEL0MOAtg4F8TObQ4yeJK4JKRVyu4YR3wARwP+h482R/+xOEVOqAGhmDI5gFuCfpm4Dme/eH4YpWHjPpm1iEJGEB1RKAExOGoC4WTMWIe0MFxGXqh0WEXVCcDPoGikwOOdCMXrmYPaACgNJrR/mwWluETFClwQDpMYIEa2DoLhsFcXBM2IvUlvwERwGIeVA2Sj8EdAm4P7sH8IgTpctoVwjFmtyMZgEwGvKAgihCrGSepy80eXIHv/rIpPoEKlmAL7oR7UaUU9pOZhJmzB4UZRNsf1qG8vvq2G3oTDAABGsF/QYSt5CnPPgN84gYRrkXjtiYVmOUwviEJaECKO27zIuwWjiFtHuEY1iYk4/ilNfUYtgFGbkGAAzazqqGtjYH+bHe5Vr6hCrezmgZaH+CDDiT2FeDjnmH7PzzbJXwBdmLZH9SjmMSNEkw5Y5RICgCXmZK5ne+blvibIfDhYHEbt20lVrBCRPGmZ/eCFxIjA5agFZB74/SYF46lQYu5WS6Y/eag4Z7hBNYmd3khgaKBFn6z4Ma7GZC5EQaCVl4qHrzBG0yBgjbCttq2BqAgU7ZxwR1HiAslEYAc7BTkqRkHEYapqcQNHSunHtaBZG8IBpoByc+jPBycWhVaVGtUjJEuvYHmLIbnKjjkGwzmbiarRUScaDJhMh6UWQCIFqTqEx4VwuxqFohmEsHkFkqyL2SDAoHXDDzgQ+7M56ghF7L+4AacgVdoZb3xAR6GqgzhF3qlVwcwgXC9HJWVnFC8YaeJwkgd4n0/BstX4NvAjQK4IHb0IwsO/IZKT8FD/Sjg4xSwwfpeaszJixuUqB6AnVa2oSkapNjLYhu4oRvKNCDZsGvJxBkiDBZuIUvqSwqCZIKP+fHSp+FsYRkMobQCp8RZJEusRzDsouGMweSWG75o026cYR0KYQfaAGcRGxzqfQ384RqIpyyuQSHuQH6DiytpAcha9RmINdeRetQNhAydVySaYg+KYAmWoBQ8KIa97dUboAjs+zw0YQK0XAoY3pX9wQhIgASYA2lcrCzksQyKgAuqQR1o9hviwRB6YBf+jpdmxwEd9AMfvDogg0ZEJVX1ooFJTPfDESNIuj0x8Fw2pMBehWEW7towaKThbuEbfgK69QKA4EAV9iJUtCizjOGOROH0AtY4vqEEkqAaKL0sCGIc/MEULKFJNZ33/CEOeAAsaaEpoLzkrdPhH94enODumcIfSmADPiAmHsAQ/v5i7GEdHiC5mqoBqOCCsgA9BXegAT8kKsIQHOAFUuAAOqS80tsq2UACJOAA2MCxgQYdJoEAJIACKCEezLTXPiHtZqBBgOaK9Dp1BioLNpINGuFb9PhakOU1eMEYtHufGs6jGkHAtKexagTOWM0WJqARzBqSAY4BdsEsxnksz8D+GyK+IRTiGZxNBq5gLDtfbgW/QGqZrFxiO8wgBMCTAJxB1S/mHuKhBxwS3ABCAht/BAsaPIgwocKFDA3i48dmh8Qs/ubxa4gxo8aNHDt6/LhRn79JCyxQKFBRn8p57lq6dOcvygIJEnpsC3cup06d6sI5w0CBJhV843YaPcfNXwAUGBR8WvcNnNSpVN1pylCiRIJPqUSV+go2bCpDEhQooELrVi61uWzxsrWlhChhsD4dKFBA2KxcfPv67ZuqCAZDxlJlKZGKF6y/fHntOjKFV65jzpY1u4x5mbNoSUo0i3YMs+jRpEUvqwYrCwyk3MZRpfoNXb1isvzRu8dQ5Dr+TCpkDGHkrx7I4cSLGz+OnDi3ITySJu94b5olfyJB6sNnwcOG7dx3BH8OniCvAxZCYAjRAMW38M9F1kLmbx3Beezr279fvN48HAcaDBTe0B8COCBAGRjhMw8TB1CgQB/+XFQQPtfhIyFMAZh3gCgVzcNhhx76c9gHJWQgSiq0nHhiKiquSIsdBQTVwiy8zMjLLdEgIoQUzvAyyzIU/IgBCs7YwtgsRhppTFMUCDBHCV8ck8ssttxCZZW5pBKCAwqEIIwzpC1zTDx7wDDHOMtYVlqao2nGTSMw+OFPVK9NtQ048uHSCznU5ebPL1CoUIMaSdGHX6GGHmrocs0hqtD+KKAUx8sK3HHngQcVMerRRbOsMAABAzBRzZ6YcuSKJfXoww+Fo67K6nEijRPGIP7cA+FCqV5SBBvvaHRNDxKUUU+tCuFWRgACYHAqRvNMUMIEQtjiFmN+8eIiBhLMYBmYzVQjhRClXHPMMsJcU0AIFIQQAjrhnsnuMe66W425ElBAAyzUCINvvvou8wcBLzggwSfRjEbZMjRIMcs1aKrJsDOUUQPDEtHMw82cUo3zzXr+OOEPOwzxc49wcdSggwqvEIRqqyqvrLKizrWqjzf3VPdRNStoN2kJIXzHckMIrsMLhz1jBA89NA+NdNLF4eMOgBnpU0898XAUTSuEYrT+jjhJrGHMMsasJW1fs/RQgAOTeLkMNaV8sEY2CzfjrgAaBFBNaAwv000LFGBAQCtvlxbNJwr8SIHApl2TigeGUPM3w2kek80jBuzyzTnhWAxOONvAdIYs9GCEWzUs/CDDFZcqjXrqx7nM8hne2AMS7DTgvJ0HCTTiDz6qH6TfPfPgtrs/9rDjRvDGq2yJKdAdjVHUzDMUMtQZubMNN+uMg5nDbxHpl1vHXBMPOmfeu8YHXtqdfdp9xAOMl2qmfUwSM7TQSONfdmMHCSHM4Q6aafPyhQlso2uOKyA1eLGDJczjG3XC3OboYY07EAR2C6lOHFiggxqc7GrH66AHC8L+OpXBLhDCAwk/nBECC5TAA1opwqw+KKrgfU6CwIOhDdljDW+k7nkJcQc3LvfDaGSrGc4Qxlv44pYuwQ0YxjiGOwxRgjlkoxn2gxs12scwY4zDEELIgjvEMbACwo0bp8hG3ajojG0UwgJ7+EYVxUjFZXxjDUkohD+qcbk5Yewb+CgGM0ZBkBoiRHqruAILVKAHaPDshoxMXQhXNg1Q2IOHB/KHM7YwAAQQYA8cbCTqRCILXMTQk6QEyTSs0ch1bMM1UgkHN9x3mfPdwi2aOYYwwuUMZwhhCangxhsv80tjNGMbQthBLrKxLjimDRCxqKUQ2ZYKt8HxcdFwBgykUA3+irHyNePgxjnokwh2UDJCFRmZDHTACoLorpTsXNkjW4UbVxhHauOgj7Da2TPcFI+C+OwnRnAhShvqAx15pMo4YJm9YzAOM+74xjFg8YE95HKaaVrGODJhgE0ojKLZiwUwmmGMazRCLkTkKGkgVwgE7OIcmJsKN9xBD+I9zR/PyGANruA0f+oUUe+Epz3uoMPh+I5D49wpo+hxh3vw06hMJYg1pmFDfKBDTq9RBzXWFA11fEMd0eCMAT6QBQ7s4owmzUw1diEEGlDDXWVdBjfSkMtjLOEGufylGKlhiyQkYR7VaCDm1nERK+hwqQpZhyBUoAMdhOJ0TW1seHq6MlD+3MaxjNQHPVwxjc9RlqnecMUkPVgPdLTGYuIwU12d8UMgzqMRH4ABDBDgD2HY9W6o9YMQCgGO2b6PGovIxh5KsIfY6rai1IhGG2CAu4pZbBzbWA85LNGJCS5EQv4wxhBkIAM1qKMi99ysdz8C2VbRwxfWmNl3PWgPeBTDY+fVKTyCqjoEzUM49chcSzM3sLR506X3WENWYDCAeQijrEQsmBCakAqHEvgyx+iGJK4pDNAs2GHVsEUJ/iCMeihXj9uQDyHgIUpBHoQfAFKDTX+hu6K2d8UKCS+rcGOFErJYdZ/j2Iz9eQZyEDZ187gvbI4x2te8lAElYEAj1kpgzcD+AgGZmOiCqZgNQeRgFZR5MtyusYcMpOJ6LWVuPawBj+mIGCHCScY5ZeCF3HX3xmxGiItZ9bkzFKQ662wzq0Qi5x3b+Ybs0PPQDDGABxSBej6+3DkIulzr7UEY43BNNYd7mWoKAQbcoOKTT5MKKZRAtpBOkzNyIQQh+GMb4mhpbPxRjF7UpqgiuYcaEKuDXwRnzXu285tZlV5ZoNIhtR4VO1xRDPP2upGJgIefVVaPbxBgBSHYgCHc0WVxfNMf8djwa1xZj3PUKRzq2MajEfqlZnxjD0KYwzoImORq/qEEiPAGIBba1mZwYw002IQ/qFFQg4ZjPfdwhSRfqJDr+GP+FddFpDkWOexe33pVIlGGLIBBhSY0YQ45Pa+qXmwPX4wy4TAchTzHvLJ6ZGMAKKjUHqBtMc25ozr1va84Sm3QbSAZoWgSxjdscbCEoc+kDotGMkpgBmGYAw/NJLAwsrELtnEjHjdZ7jbO4Y/kaVwlCxGOOdRQAxYM4WQbJ4g5MEFdjrd34a3KwwYsgHYPrGAbK66HPZw3KnrAowti96TcU6c7RBCgAS70q0HFUXHRWtvHUnl5ZdzHLrcWgkROXrAwwFGICaRCM86IRbjayo0so5alLd0GfYLQsYakyh+vyGB2K46Qmkat7ucl+6q4sYNJbeADUljxNWBhrxQfiur++2S9DXEDes0ijR/rqEc0eHHHbU7lG/JBiDuoQQ10wJzwhceYl5wxFlHwIgk0cAcwOg04Y1zTl5apBhy+z9HNwCLUd2zp5eQDCm+gEuQHMcdhdfCDxXYy9TVYvULq7Hvt5Hqj8ggIIHsb0ACp8F3zAGgPcAADwAahgijM4AvF0HUBuDsi4QvwoDT3sA7gwA2tEWSt9HT7Fx9mIAANkAvukG/UJw7oUA2fwAAZwAAe0AjoIEwLphlztAOFgA4DRkTA4AlnMk3LEA3C8Ful4A8/5EDgEA/84Aum8FnTdRG/IAM1ECgEESwN8Qz9ByCvkAzP8Ar4sHqvIGsYWEoDiCj+ZNgHDXCAD6AhlKU7fXAA5oEBGHAATLB71iALFkh/aPhJ/gBIwscy+LBvU9GC3eQO9KcKBIABDRADI0h9UrFKWVApJbAaO2dSxvANpZAjxgBvQYgKw+Uw35B0c7B0gzcVzAUOBOEE8FBUJEYQXmB6irQRXRg1+HBB5iAOLBAHBLEKMnCGgNhIasgojfAA3PEB23EASrhZttAAJkE4FHAArVAooFQbxPhBn5MDMqYyEqJ8y4V6BnEJBEABFjADx8B5kygV3DBHWDEi4QB+plENcyB5jRdLpIAK4KYmwrAOUgADycBlmNNNuiNY7MUQwhEKiaUCjGCCDIGL62BiueP+D7TAAiczBHpwgdp4PMaIKLOQjJPyAStADd4lCo44jdRob/ehVImgcRzpQSLRZz2jD90QjlMhDurQfAzhDDNgARjABi3HjhezdEtQAh+AD9SANuk3JDCQBerSOM6ACvtYQLk0CztgBvrgjpgTDuLgDuzgDXSnD8dGkRJ5hT8ga1t4izJgDlcwBJciMlcABT/AWDD5QR6JKGyQAJWiHQdACxupU5+AktN4AI9QKMXjjXa5O7BDQypDYqvkdNOmYv4gUqJAaEOJiEmRFNVwDt1UGbplhNRwXJlwDjm4JssACFikJgWzBjCgIdTAldyADusgD4ugJ39IkQP3A4BCB1P+M44NkQw6cAU3JT2XwgMq4A8woZgwhJeHsg6PYAEJcAAocAugwAzedQvSSDgYUACfcB/kkAiyoA+4uZxDYw/egJiMgg/Aww/z4HcG9VIhAUI3OZR1smGucQ2HpyYOkw2pUAJtYAvIVFHAgAqaOBr+uAslsAY6yYR6ZD0xZQreQHVVt4RqgF1D8JeACZE6IAjcUAN0MGvxAA0/UAO/+JvliTrNiSjusA4tShCgwA6E2FRLoJ3nWAQA+Bz2YA9ghqIdNJa7diggE0gVQVXcxA2j5xGXiZmEFw4K8zdo8j1Nkgph9D6xAAeVVlHbUAUZcA37ZWoWwQwkJHrC8QokwwL+IJqbH9GF9FEJwkht/sACgvALNSBrONqjKcocL5M6b+d/jkAOQNpUuFEE6NEAFNADO9ke/kAO3pAIGnqnLKMP8HAHULWin7AH49BQN9mVMGGnGdGe77mk9zUO1fCZcXVVxwADQhAPpklckeBLX5JLrfABjaCV7ueEHHgCQ2oryekFGISWCKemMiA0c0kQbjmLOvCQjzo0KroquIGeMepY9PEJXFAGDlIPnWoc3uAIGkeWygqp3sAM3YoculMED5CMxvCe3YQOyaoRAxWqkxgORQF9zkBHouBfqfCDBXQagFBlh7MLXyAEtHAPkriK3QB1riALj2IPf1gdtICFOvD+i7NWHCMaNRzyA3rwCj/wDG86BGrwIN6Kp4vyQcBjCn0mrqSUUycLHQThCLhBniALSczwssdBhjEQAh5wAJ9AalSxOZOZEVnzruzoSkIwAR8wAUlghMMVC4BQDQtTRN+wCTHwB+vgQwS5DfhADrIgCxz4h+3pD+3gBdj1A4p0cflBtiJRDebADRu7TuYADewKs6+XpzckEl2gJyrLcbjBDmIZt8YDVHg7HLqzASuwAgTAC/c5DtiaKfXQgkHbUtwQDcziAWzjRmK0DNqwj2/jj0tgPh/ocvRQDNNQG+TJpjLwAyPgkK1Ca30rtyJrQ7DjDXI2swkHSvIEuKw7Ksz+AF+FEgw0EAKZsGHhgKjI0ZmOS3ghKAQZgBWFsFGWiwXcYDebkQoR1X5cyXz+YAoUqBHqMJw18AOh8hC4y2bMujIU5Ai6ioHm5QifI6PiizS4QXftCx5EwXbxcTkvKBw+yxENZbyEhw7OYAZmEFzcoJR2xQ2L4C78eQxZELDzQA302U3jgGrSkAi4MU7rFAo8wAIyIAj0objuu1nkuzKWRTwcKL8Jp1mBUAyTBcKqQw4SpL8fwbhREYKrtDn2wQ/x2r/3Fa/z8UNIUQ2OAwyd0EzC4A5zsAPmRj0QzA3gZJ3UMU7CAQ1xoAIs4AV/WbYtvGIi3DPsgAuy63uwcwb+lnC7Wowp7OAxMdwR85BvjRYOH3wcnrvDPDx9VCFEpSGV/Apk3YJH9LmKHSNnJ2wQCnlmaArHZtxYXMwysGMPgTANatxe7HAGjIzIe+oPgZCN4fFFyvcNylko3TDHS1pa27CUseQMwLBWs5AAj6BhLVVaUHcH7KAnKqYf10WiSXGilUxZiswySuUPjuANetJrIkEO7NCo9FDGumwosIMLwjyuyUlVzLUOs2scTEMUoTyUhga5hycKmdAJqpAFOzAxBEsn60EPtsnCCcEP1bEKGPShs6KWyjx2c9tPOhTIyaxTn+UG3kCp8vxJ45WoA2lf8XDIz8ELcxANqojNPtb+aNzQDXPgAS0ABrelk6BKJ/LhCLgAqApBH9UwnCpwBYoEyf7cT7ycNOBZG1PIYrBTDHdADoJM0iwjC25gNEKVLP6ADlSBE9RsHNdhC3VIAa600Ji5DsJwlCSAAJ/QYwS5bx3jBNaQxgnpD4zwAyWDCR4c0yxm0kgDO9bQBUUzY/dAPI/C01nta8QxD+hAEJazivJR0MhBH+dyLjuj0EONOeiQoB8QAgigCnJ8beAwD+RQDMUzoQpxEeYABViosWpm1ltMz/lMEIHgCtcJcOxUQxU3nqjGDIgJ042tMqBwvmVMfDFAAH3QDg20DeggEiNNHMKBAuXRAFzQynY9ibv+MQETsAbVQJ8dlg3+EHwwjRv40M4ywAMamaae/V1brTRdPQ2xbBvsRB/bsAnC8CApplldMA3XqdLI/b7+IAvKo8YIsgQP4AEP0Ab4IA6e97GYohLCsAIAwATpTdvsmA2j8AmikNoW8w0c4g2ZbCvCMQxqcEheMAzB8dbcXdKP3VjMYA02hs89AxM9YALnEQO78Nz+0AXWQNkIvjtgueEaUQ/uEAPbYQFVEB8pozLrkA3g4MfzbTH5UAt24sdYi7AZQR+MYKaYoE4cPs+u21jAI1gW+OAw4w8bYId3GALNMA3e4OA8rjrjqbUdIRKIkIwr8JeryyghM2ot7uJS8Q3+2YAHp+DXODkP8PANdOeoIW7LOoDLTt7jetpYlkUQVpDdwjzkmGIGGwAUhHMAhYAFBFHTbr47stDPlVQP4tAIbAALqcPlXQ4O39ALvVCklCgf3608220Qo1cPoQBrGnkqWC7oOqXcxuPLxUAObgAPyjMrhY06F0EFhTqNjxgcZR3qjGJZgUAOLysS7tBNhHLgiFIPFu3oj94OvVALKDcV3YBqjCpdCzE1Hi0DIM22td56Cu5d1YHGvpBjBXHn9hEyRVCje1MA55DL1M4yGjezX8R8v87e5Ozo35APeBAJ+SAnl4MO+MAOvoCQUh0HQ1ADI0ALbm3uyW3t5wU855n+4b7Q2a3CDvJgBOFOAStQfANvyd3Y2dQTDlNjPEo67FLRDpGwVVSxdII4Dc7cENWQ2KVzcKxN8cVY8O2V2f7ADORwBvpgCtYgfBZ8jSUkEueJC/TQBdgABg1gLkByAIbA8i2PH7Dj3z3UYbrD7pjSnpM+7NJwCrVQJ90kH6ZAD+lJoeawClUMBRrJ6kqfyC+/YjEvd65QwU5ADxuuEgtL68Mi5/wEVV8NCrgAXwJyh3xDBXBr9s3q3bKwu3OmShYB6kMjVY3r4vFg7NCmOQ8RCKNwt//tD8NwBb2hBooE+IGPT6OOTx4zDcXgDUEQZmCNMvcwM7AzM2W/J2MpPOP+qdI6SkIQ4A0aHXqD7AxMMANFMAvl7vkM5w/TwIE4Krzr7UHIPuzZUAtWkA8Y04qgEKE27g+CcE4qUAk7Hvy7jPZ21vMv9PZ5fwem4ArwkFkxZRuuz+23EaMQxA6ywAxBwA53UAxcy/NkVhDCtv1K4wTeUCv4ABDn6vHzV9DgQYQJFS5k2NDhPHARJU6kWNHiRYnjsinD9w2cO39u4Pmz59AfPncydOgY4q+ePpMxZc6kWdPmTZw5de7kmZPbEB7ceg4lWtQfTHoJmRVLhIuZFXuJRpFzZK2Yr2LFvCWiByoQvSDTZDnCNc0bwqQwGdZji8/oW7hx5c6lWxIXLVH+ovyhU0s37rhxGAUPrqjxVCdx4/zBGwWPXsmF/NzWY6RiJSN/89z65dzZ82fQPH8GDV16qD7U9xTag8fMnyly07CaleVvGr2RCUve62va92/gwRm6JcKgwYBGJ4Xf5DdPXDjC0TF+w3eqnbp6IdkVMxnP368rLFSogaZ8+Xn06c+PFqre/Xv48eWfz/4hxAYLW1zOb1jt2zbpApzoGzg6AWmaRKxRrTeE8MkujpVYoGWeo/iz8EIMGWIvQw479PDD97KjYYMUQJhjvw4li6aUxASU7pt1egFnHn5MCYQkk/B55ocaaoACpM1AFHLI3zYk8kgkk1Rypub8WUKIHmr+gyxDmNgIgIAQqgHQxcHUqaWTYuSxoqCkGFJNHExYkGEIzF5a8k04ezIyTjrrtJO/7NY5yo0P0WkghBAIEKYbLgXLJiR8cMGFnntUW8sfVq5QgQU6nsnsTkwzTWhOTTv19FO53IJpGrM63MYCQAUltNDC1EEHD3/OgCc3hvTJjo4adJDhlYKCBPVXJTkFdlhiizXpnqUYnA8mREKggAtutmR1omyy6QJBHB2qRxwWVuLBJWWNFRdDYcc191xQ3ViqQguDxAe6aSMKh7ppTImEuzIXgmkePVTINZRL0RWYv3IHNlhfc0IB6WALIbuDpHDfw4c3d+IFJ5xwFAPFl4f+s13IrVegqGGESv1xlGGU1wOqvZRbLqieX2pg2eX39LGHHTdgOvnCc6YdZxt0thvlsYgNcquaHmX4hcKiaXaaroKfRhdmmQsiSOr0YAor3wvXmTaceugh56uZsvPiR6zT/ixqtY2lur16XpmHlpmhSca8tjlLip4bp5zPrW3glS6cbUBiZpSH/c7xZV/zdpwoth//9e3shvihHh3UMMgdHQBuWvKh7NFnGksKUjy+nqX7GR136JHFFNNtqmdn0Gv3aWXb3Y7ZUh6gKCgZFe72hxYV5skud7mQOuMsej5fDh9uAhuM8HXueYcx5LMHLXLt7YRZBm5+uMIllFjgFR/+PdRws3u4UPMnCI/j00dwjAKDzBLunGd/f5y45//NegyjW5ljFyauUA931IAW/4NL8+BhClmwgz/rkJZFvoEOf5CjF3fYDQM9KCfcffBOARwBI4YxAlZUKBkj4EYydKAnEb6lGK6wxkhORx+PVCQc3DhUrNhROnbFUIg08d8QQRRA8PlDEDWohkG88AovxMGIRYGHPizBDmuYjHbL4Qc66AeOn+nJFKPgjsmmeEaTFBGNGXobPtohAzq4SRA6uIKl1jgUX2CLa+hxxxfHAZIc3GOPdySkQdRYyPkE8AftgUYHoIEPmEChJVtE5Ewc5Qh6JIIcSeHNcmCCD3xQcB3+88DGKIZmxkpW8pCprJk7kjGQzLTQH94ZAq/0x8qE2Iwk9gjED2N3y7i4xRZtmAMs/NELS8jiLEHE5R1X2cwLraIDAYNmTdSSFFBkE0ei840zUHAAB7QAC96YRjVT+UxzhogbMpAQM9NZE3uoJgf+cEVBKEkXmNyCAhQggQP08k5EohOg6EGJHn4ByoHeRB/3KIk3cJEI7EmwIDABpkMWdBBrWEUOCmjAAx4AjIQSUqAhVY+DKkpSyJDDH4FwCp/KWKFG8Yai+kKNLpMyJbOYwhWmuIo/iFEEKhzDnSQV4oZAeVSkJlWpS2VqU536VKhGVapTpWpVrXpVrGYVqdn+YYT6/MGP9RE1JjOVYDHg4YpAeINPN2weo+zx1htKMAj3cENWrKHSXvnDHRRqnFhj+JNFnkSrgyVsYQ17WMQmVrEUUoMMfvALFPkVJyUpBi4CYYpEuKIYsrAHLiaKEG8wwxqyyNkJZGEJG0q2mev8AR308FrYxla2s6VtbW17W9zmVre75W1vfftb4AZXuLOlAyN0wAMVyEAQ1RBKX1VrJm4ehB3sGAU7QOEGcjjBF47gLv4sQY965uum7ntuIflhDk2MQAUjYG973fte+MZXvvOlb33te1/85le/++Vvf/373/heIFc/4EEHSoi38o51oQutiWpEd88ErxEmhaj+RIUtfGEMZ1jDG+Zwhz38YRCHWMQjJnGJTXxiFGuYEavQwQ9U8ANMcEMdV4swTig605riuMbpVGyPffxjIAdZyEul0BVkcIVHHm/HS2byTHL8ZChHWcpTpnKVrXxlLGdZy1vmcpe9/GUrq4YReuhVWJt8ZjSnWT5qYYua3fxmOD/vpHGmc53tfGc851nPe+Zzn/38Z0AHWtCDJnShDX1oRCda0YtmdKMd/WhIR1rSk6Z0pS196bi4b861As5JNy2/z326J6JWCKn9YurPHoS8RgEmqtHs6lFnrdREahSZhmpNg8DaTES5KF0Y6he/9bohrn6rQ9SClC32pWiMUvUyTnSdS380TydlEu9CBmm6GxokLU5+jyAzLW2dZBvWFc02qy1Z7llzGzT2uLZJii2cgAAAOw==" + } + }, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "![grpe_vis.gif](attachment:grpe_vis.gif)" + ] + }, { "cell_type": "code", "execution_count": null, @@ -353,7 +365,7 @@ "source": [ "In addition to `forward` and `backward`, the `AcquisitionModel` has also got the function: `inverse`. For a standard Cartesian sampling scheme, `backward` and `inverse` are identical. For non-Cartesian sampling schemes, this is not the case anymore. `backward` is defined to be the hermitian conjugate of `forward`, where as `inverse` obtains an image by also taking the density of the k-space samples into account. Now, what does that mean?!\n", "\n", - "If we think of a Cartesian sampling scheme, where all the data points are on a rectilinear grid, then the density of k-space points is the same everywhere. In our case, where we have radial lines, all these lines intersect in the centre, and hence there is much higher density of acquired k-space points there, than in the outer parts of k-space. If we don't take this into consideration, then the central k-space frequencies get weighted higher (simply because there are more of those) in the reconstructed image. To compensate for this, we can apply a so-called _density compensation function_ to the k-space, prior to applying $E^H$. This is all, that the `inverse` does - weight $y$ and then reconstruct an image $x$. Something similar happens in CT, where we can do a _filtered back projection_ where we also compensate for the fact, that more data points have to be acquired from the centre of the FOV compared to the peripherie. \n", + "If we think of a Cartesian sampling scheme, where all the data points are on a rectilinear grid, then the density of k-space points is the same everywhere. In our case, where we have radial lines, all these lines intersect in the centre, and hence there is much higher density of acquired k-space points there, than in the outer parts of k-space. If we don't take this into consideration, then the central k-space frequencies get weighted higher (simply because there are more of those) in the reconstructed image. To compensate for this, we can apply a so-called _density compensation function_ to the k-space, prior to applying $E^H$. This is all, that the `inverse` does - weight $y$ and then reconstruct an image $x$. Something similar happens in CT, where we can do a _filtered back projection_ where we also compensate for the fact, that more data points have been acquired in the centre of the FOV compared to the peripherie. \n", "\n", "So let's call `inverse` and `backward` and compare the results:" ] diff --git a/notebooks/MR/mr_mcir_grpe.ipynb b/notebooks/MR/mr_mcir_grpe.ipynb index bce3334c..b3429d43 100755 --- a/notebooks/MR/mr_mcir_grpe.ipynb +++ b/notebooks/MR/mr_mcir_grpe.ipynb @@ -4,11 +4,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Demonstration of MR reconstruction with CCP PET-MR Software\n", + "# Motion-Corrected Image Reconstruction (MCIR)\n", "\n", - "This demonstration shows how to hande undersampled data\n", - "and how to write a simple iterative reconstruction algorithm with\n", - "the acquisition model.\n", + "This demonstration shows how to obtain a motion surrogate, estimate motion vector fields and carry out a motion-corrected image reconstruction.\n", "\n", "This demo is a 'script', i.e. intended to be run step by step in a\n", "Python notebook such as Jupyter. It is organised in 'cells'. Jupyter displays these\n", @@ -19,17 +17,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "First version: 27th of March 2019\n", - "Author: Johannes Mayer\n", + "First version: 14th of June 2021\n", + "Author: Christoph Kolbitsch\n", "\n", - "CCP PETMR Synergistic Image Reconstruction Framework (SIRF). \n", - "Copyright 2015 - 2017 Rutherford Appleton Laboratory STFC. \n", - "Copyright 2015 - 2017 University College London. \n", - "Copyright 2015 - 2017 Physikalisch-Technische Bundesanstalt.\n", + "CCP SyneRBI Synergistic Image Reconstruction Framework (SIRF). \n", + "Copyright 2015 - 2021 Rutherford Appleton Laboratory STFC. \n", + "Copyright 2015 - 2021 University College London. \n", + "Copyright 2015 - 2021 Physikalisch-Technische Bundesanstalt.\n", "\n", - "This is software developed for the Collaborative Computational\n", - "Project in Positron Emission Tomography and Magnetic Resonance imaging\n", - "(http://www.ccppetmr.ac.uk/).\n", + "This is software developed for the Collaborative Computational Project in Synergistic Reconstruction for Biomedical Imaging \n", + "(http://www.ccpsynerbi.ac.uk/).\n", "\n", "Licensed under the Apache License, Version 2.0 (the \"License\");\n", "you may not use this file except in compliance with the License.\n", @@ -44,11 +41,11 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ - "#%% make sure figures appears inline and animations works\n", + "# Make sure figures appears inline and animations works\n", "%matplotlib notebook\n", "\n", "# Setup the working directory for the notebook\n", @@ -57,7 +54,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 60, "metadata": {}, "outputs": [], "source": [ @@ -78,341 +75,5450 @@ "# import further modules\n", "import os\n", "import numpy as np\n", + "import scipy.signal as sp_signal\n", "\n", "import matplotlib.pyplot as plt\n", - "import matplotlib.animation as animation\n" + "import matplotlib.animation as animation\n", + "from IPython.display import HTML\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ - "pname = '/media/sf_CCP/mcir_phantom/SIRF/'\n", - "fname = 'RPE_MotionPhantom.h5'\n", - "fname_new = 'RPE_MotionPhantom_first70rpe.h5'\n" + "# Define a function which plots 3D volume(s) in two orthogonal views\n", + "def plot_rpe_3d(dat, sl_idx, lbl, ax=None):\n", + " if ax is None:\n", + " fig, ax = plt.subplots(2,len(dat), squeeze=False)\n", + " for ind in range(len(dat)):\n", + " ax[0,ind].imshow(np.rot90(np.abs(dat[ind][:, sl_idx[0], :]), 1))\n", + " ax[0,ind].set_xticks([])\n", + " ax[0,ind].set_yticks([])\n", + " ax[0,ind].set_ylabel('Foot-Head')\n", + " ax[0,ind].set_xlabel('Right-Left')\n", + " ax[0,ind].set_title(lbl[ind])\n", + " \n", + " ax[1,ind].imshow(np.rot90(np.abs(dat[ind][:, :, sl_idx[1]])))\n", + " ax[1,ind].set_xticks([])\n", + " ax[1,ind].set_yticks([])\n", + " ax[1,ind].set_ylabel('Anterior-Posterior')\n", + " ax[1,ind].set_xlabel('Right-Left')\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this exercise we are going to use a 3D data set which has been acquired with a Golden Radial Phase Encoding (GRPE) scheme. For more information on this type of k-space sampling, please have a look at the __MR__ notebook `g_non_cartesian_reconstruction.ipynb`." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 52, "metadata": {}, "outputs": [], "source": [ - "'''\n", - "Load in data and calculate coil sensitivity maps\n", - "'''\n", - "# %% GO TO MR FOLDER\n", - "pMR.AcquisitionData.set_storage_scheme('memory')\n", - "\n", - "acq_data = pMR.AcquisitionData(pname + fname_new)\n", - "#acq_data = pMR.preprocess_acquisition_data(acq_data)\n", - "#acq_data = pMR.set_grpe_trajectory(acq_data)\n", + "pname = '/mnt/materials/SIRF/Fully3D/SIRF/'\n", + "fname = 'RPE_MotionPhantom_first70rpe.h5'" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "# Load in the data\n", + "acq_data = pMR.AcquisitionData(pname + fname)\n", "acq_data.sort_by_time()\n", "\n", - "# Add dcf\n", - "#kdcf = pMR.compute_kspace_density(acq_data)" + "# Here we are cheating a little bit for the moment, because we have pre-processed the file already. \n", + "# If we had not done that and would like to load a raw data file directly from the scanner, we would\n", + "# have to do:\n", + "# acq_data = pMR.AcquisitionData(pname + fname)\n", + "# acq_data = pMR.preprocess_acquisition_data(acq_data)\n", + "# acq_data = pMR.set_grpe_trajectory(acq_data)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Standard (i.e. uncorrected) image reconstruction\n", + "First we are going to carry out a standard MR image reconstruction and because we have done lot's of __MR__ notebooks already, we know the drill: calculate coil maps, set-up acquisition model do the reconstruction." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 54, "metadata": {}, "outputs": [], "source": [ - "pe_ky = acq_data.get_ISMRMRD_info('kspace_encode_step_1')\n", - "#pe_kz = acq_data.get_ISMRMRD_info('kspace_encode_step_2')" + "# Calculate coil sensitivity maps\n", + "csm = pMR.CoilSensitivityData()\n", + "csm.smoothness = 100\n", + "csm.calculate(acq_data)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 55, "metadata": {}, "outputs": [], "source": [ - "import scipy.signal as sp_signal\n", + "# Set up acquisition model\n", + "E = pMR.AcquisitionModel(acqs=acq_data, imgs=csm)\n", + "E.set_coil_sensitivity_maps(csm)\n", "\n", - "# acquisition_time_stamp\n", + "# Calculate the inverse\n", + "rec_im = E.inverse(acq_data)\n", + "im_inv_uncorr = rec_im.as_array()" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualise result\n", + "plot_rpe_3d([im_inv_uncorr,], [64, 64], ['Inverse',])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Well, we have an image but it does not look particularly great. Well, we know that the `inverse` of undersampled data still shows undersampling artefacts, so let's use some iterative reconstruction method and see how we can improve this image. We are going to use _FISTA_ from __CIL__ to do the image reconstruction." + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FISTA setting up\n", + "FISTA configured\n", + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 100 0.000 5.76885e-02\n", + " 5 100 6.907 1.53044e-02\n", + " 10 100 6.986 1.35516e-02\n", + " 15 100 6.975 1.33335e-02\n", + " 20 100 6.982 1.32806e-02\n", + "-------------------------------------------------------\n", + " 20 100 6.982 1.32806e-02\n", + "Stop criterion has been reached.\n", + "\n" + ] + } + ], + "source": [ + "# MR AcquisitionModel\n", + "E = pMR.AcquisitionModel(acqs=acq_data, imgs=rec_im)\n", + "E.set_coil_sensitivity_maps(csm)\n", + "\n", + "# Starting image\n", + "x_init = rec_im.clone()\n", + "\n", + "# Objective function\n", + "f = LeastSquares(E, acq_data, c=1)\n", + "G = ZeroFunction()\n", + "\n", + "# Set up FISTA for least squares\n", + "fista = FISTA(x_init=x_init, f=f, g=G)\n", + "fista.max_iteration = 100\n", + "fista.update_objective_interval = 5\n", + "\n", + "# Run FISTA\n", + "fista.run(20, verbose=True)\n", + "\n", + "# Get the results\n", + "im_fista_uncorr = fista.get_output().as_array()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Visualise result\n", + "plot_rpe_3d([im_inv_uncorr, im_fista_uncorr], [64, 64], ['Inverse', 'FISTA'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Well, again not great. This suggests that the undersampling is not really the problem but (you probably guessed it already from the title of the notebook): \n", + "\n", + "## Motion\n", + "\n", + "Motion is big topic in MRI, because it can have some unexpected effects, because it leads to a modulation of the acquired k-space. Commonly in imaging we think of motion artefacts mainly as blurring, but in MRI motion artefacts depend of course on the type of motion but also on the k-space sampling and the timing. Motion in MRI can lead to blurring but also ghosting (similar to Cartesian undersampling) or streaking or ....\n", + "\n", + "If you want to know more about motion and its effects in MRI have a look at this paper:\n", + "\n", + "Zaitsev M, Maclaren J, Herbst M. 2015 Motion artifacts in MRI: A complex problem with many partial solutions. J. Magn. Reson. Imaging 42, 887–901. (doi:10.1002/jmri.24850)\n", "\n", + "Now back to our notebook. What does it mean for your `AcquisitionModel` if there is motion. Before we had for the `forward`:\n", + "$$\n", + "E x = y_c = \\mathcal{F}( C_c \\cdot x).\n", + "$$\n", + "Assuming we have $N_ms$ motion states occuring during our data acquisition and each motion state can be described by a transformation (warp operator) $W_i$ then the above equation can be extended to:\n", + "$$\n", + "E x = y_c = \\sum_i^{N_{ms}}\\mathcal{F_i}( C_c \\cdot (x \\circ W_i)).\n", + "$$\n", + "This means there is still one image $x$ (which we will call the reference image) without any motion artefacts, this gets then transformed to different motion states by $W_i$ and then the acquired k-space is then the some over all motion states. Note that the Fourier transform has also got an index $i$ because in each motion state different k-space points can be acquired.\n", + "\n", + "## Motion Correction\n", + "\n", + "There are now two basic approaches to reconstruct a motion-corrected image from k-space acquired in different motion states:\n", + "\n", + "### Reconstruct-transform-average (RTA)\n", + "Here the idea is to reconstruct an image for each motion state, transform each image to the reference motion state and then average.\n", + "\n", + "### Motion-corrected image reconstruction (MCIR)\n", + "For MCIR the encoding operator defined above is used to minimize a least-square-problem to directly reconstruct a motion-corrected image from k-space data acquired in different motion states.\n", + "\n", + "For more details please have a look at:\n", + "\n", + "Brown R et al. 2021 Motion estimation and correction for simultaneous PET/MR using SIRF and CIL. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 379, 20200208. (doi:10.1098/rsta.2020.0208)\n", + "\n", + "### What do we need?\n", + "For both RTA and MCIR we need \n", + " * a motion surrogate which tells us which k-space point has been acquired in which motion state\n", + " * motion vector fields ($W_i$) which describe how each voxel moves between the different motion states\n", + " \n", + "Lucky for use, _GRPE_ is a sampling scheme which allows to obtain both directly from the motion corrupted scan. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Motion surrogate\n", + "For _GRPE_ data is acquired along radial lines in the phase encoding plane. This means that the k-space centre is sampled repeatedly. If there is no motion, then the value of the k-space centre should always be the same. Hence, if the value changes between different _RPE_ lines, the change must be related to motion. So we can use the k-space centre to as a so-called self-navigator to find out about the different motion states. We will\n", + " * Find out which k-space points have been acquired at $k_x$ = $k_y$ = $k_z$ = 0\n", + " * Select one coil which shows a good motion signal\n", + " * Use this motion surrogate to calculate which k-space point has been acquired in which motion state" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "# Get the information about the index of the phase encoding\n", + "pe_ky = acq_data.get_ISMRMRD_info('kspace_encode_step_1')\n", + "\n", + "# Find the central value of each GRPE line (i.e. ky=0)\n", "ky_idx = np.where(pe_ky == (np.max(pe_ky)+1)//2)\n", "\n", - "# Get k-space as array\n", + "# Get the k-space as array\n", "acq_data_arr = acq_data.as_array()\n", "\n", - "print(acq_data_arr.shape)\n", - "\n", - "# Keep only points which have been acquired in the k-space centre (i.e. kx == 0 & ky == 0)\n", + "# Keep only points which have been acquired in the k-space centre (i.e. ky == 0 & kz == 0)\n", "acq_data_arr = acq_data_arr[ky_idx[0], :, :]\n", "\n", - "self_nav = np.abs(np.squeeze(acq_data_arr[:,3,64]))\n", + "# Select the last coil and the centre of each readout (i.e kx = 0) to get our final 1D motion signal\n", + "self_nav = np.abs(np.squeeze(acq_data_arr[:,3,acq_data_arr.shape[2]//2]))\n", + "\n", + "# We said above that the value of the k-space centre should only vary because of motion. \n", + "# This is not entirely true, because it can also vary because of other effects. One is that the spin system\n", + "# is in a transient steady state at the beginning of the data acquisition. \n", + "# Therefore, we will simply overwrite the first entry in our motion signal\n", "self_nav[0] = self_nav[1]\n", + "\n", + "# Do some filtering\n", "self_nav = sp_signal.medfilt(self_nav, 7)\n", "\n", - "# Interpolate self navigator to all PE numbers\n", + "# Interpolate self navigator to all phase encoding points\n", "self_nav = np.interp(np.linspace(0, len(pe_ky)-1, len(pe_ky)), ky_idx[0], self_nav)\n", "\n", "# Sort navigator and obtain index\n", "nav_idx = np.argsort(self_nav)\n", "\n", - "flag_amp_gating = False\n", - "\n", "# Bin data into Nms motion states each with the same amount of data\n", "Nms = 4\n", - "num_pe_per_ms = np.ceil(len(pe_ky) / Nms).astype(np.int)\n", + "num_pe_per_ms = np.ceil(len(pe_ky) / Nms).astype(np.int64)\n", "acq_idx_ms = []\n", "\n", "for nnd in range(Nms):\n", - " if flag_amp_gating:\n", - " ms_begin = nnd * motion_amplitude/Nms + np.min(self_nav)\n", - " ms_end = ms_begin + motion_amplitude/Nms\n", - "\n", - " if nnd < Nms - 2:\n", - " cidx = np.where((self_nav >= ms_begin) & (self_nav < ms_end))\n", - " else:\n", - " cidx = np.where((self_nav >= ms_begin) & (self_nav <= ms_end)) \n", - "\n", - " acq_idx_ms.append(nav_idx[cidx])\n", + " if nnd < Nms - 1:\n", + " acq_idx_ms.append(nav_idx[nnd*num_pe_per_ms:(nnd+1)*num_pe_per_ms])\n", " else:\n", - " if nnd < Nms - 1:\n", - " acq_idx_ms.append(nav_idx[nnd*num_pe_per_ms:(nnd+1)*num_pe_per_ms])\n", - " else:\n", - " acq_idx_ms.append(nav_idx[nnd*num_pe_per_ms:])\n", + " acq_idx_ms.append(nav_idx[nnd*num_pe_per_ms:])\n", "\n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 65, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of phase encoding points in motion state 0: 2520\n", + "Number of phase encoding points in motion state 1: 2520\n", + "Number of phase encoding points in motion state 2: 2520\n", + "Number of phase encoding points in motion state 3: 2520\n" + ] + } + ], "source": [ - "plt.figure()\n", + "# Now let's plot the navigator signal and color in the different motion states in different colors\n", + "plt.figure(figsize=(8,4))\n", "plt.plot(self_nav, '-k')\n", + "plt.xlabel('Phase encoding index')\n", + "plt.ylabel('Signal at kx=ky=kz=0 (a.u.)')\n", "for ind in range(Nms):\n", - " print(ind, ' - ', len(acq_idx_ms[ind]))\n", + " print('Number of phase encoding points in motion state {}: {}'.format(ind, len(acq_idx_ms[ind])))\n", " plt.plot(acq_idx_ms[ind], self_nav[acq_idx_ms[ind]], 'o')" ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "csm = pMR.CoilSensitivityData()\n", - "csm.smoothness = 100\n", - "csm.calculate(acq_data)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "csm_arr = csm.as_array()\n", - "fig, ax = plt.subplots(1,3)\n", - "ax[0].imshow(np.abs(csm_arr[2, 102, :, :]))\n", - "ax[1].imshow(np.abs(csm_arr[2, :, 64, :]))\n", - "ax[2].imshow(np.abs(csm_arr[2, :, :, 64]))" + "## Motion Resolved Images\n", + "Now we know which phase encoding point has been acquired in which motion state. So we can now create (in our case) 4 different sets of k-space, one for each motion state. Then we can reconstruct these to get an image for each motion state. " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 68, "metadata": {}, "outputs": [], "source": [ - "# Go through motion states, create corresponding k-space and reconstruct images\n", - "\n", - "num_ms = Nms\n", + "# Go through each motion states, create corresponding k-space and acquisition model\n", + "acq_ms = [0] * Nms\n", + "E_ms = [0] * Nms\n", "\n", - "acq_ms = [0] * num_ms\n", - "im_ms = [0] * num_ms\n", - "E_ms = [0] * num_ms\n", "\n", - "# Apply kdcf\n", - "#acq_data *= kdcf\n", - "\n", - "num_ms = Nms\n", - "acq_idx_sel = acq_idx_ms\n", - "\n", - "#acq_idx_ref = np.load(pname + 'resp_idx_mcir.npy', allow_pickle=True)\n", - "#acq_idx_sel = acq_idx_ref\n", - "num_ms = len(acq_idx_sel)\n", - "\n", - "fig, ax = plt.subplots(3, num_ms)\n", - "plt.setp(ax, xticks=[], yticks=[])\n", "for ind in range(num_ms):\n", " \n", " if True:\n", " acq_ms[ind] = acq_data.new_acquisition_data(empty=True)\n", "\n", " # Add motion resolved data\n", - " for jnd in range(len(acq_idx_sel[ind])):\n", - " cacq = acq_data.acquisition(acq_idx_sel[ind][jnd])\n", + " for jnd in range(len(acq_idx_ms[ind])):\n", + " cacq = acq_data.acquisition(acq_idx_ms[ind][jnd])\n", " acq_ms[ind].append_acquisition(cacq)\n", " else:\n", - " acq_ms[ind] = acq_data.get_subset(acq_idx_sel[ind])\n", + " acq_ms[ind] = acq_data.get_subset(acq_idx_ms[ind])\n", " \n", " acq_ms[ind].sort_by_time()\n", " \n", " # Create acquisition model\n", " E_tmp = pMR.AcquisitionModel(acqs=acq_ms[ind], imgs=csm)\n", " E_tmp.set_coil_sensitivity_maps(csm)\n", + " im_ms = E_tmp.inverse(acq_ms[ind])\n", "\n", - " #im_ms[ind] = E_tmp.adjoint(acq_ms[ind])\n", - " im_ms[ind] = E_tmp.inverse(acq_ms[ind])\n", - "\n", - " E_ms[ind] = pMR.AcquisitionModel(acqs=acq_ms[ind], imgs=im_ms[ind])\n", - " E_ms[ind].set_coil_sensitivity_maps(csm)\n", - " \n", - " rec_im_arr = im_ms[ind].as_array()\n", - " ax[0, ind].imshow(np.abs(rec_im_arr[102, :, :]))\n", - " ax[0, ind].plot([32, 32], [0, 130], '-w')\n", - " ax[1, ind].imshow(np.abs(rec_im_arr[:, 64, :]))\n", - " ax[1, ind].plot([32, 32], [0, 200], '-w')\n", - " ax[2, ind].imshow(np.abs(rec_im_arr[:, :, 50]))\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Create acquisition model\n", - "E = pMR.AcquisitionModel(acqs=acq_data, imgs=csm)\n", - "E.set_coil_sensitivity_maps(csm)\n", - "\n", - "# Pseudo-inverse\n", - "rec_im = E.inverse(acq_data)" + " E_ms[ind] = pMR.AcquisitionModel(acqs=acq_ms[ind], imgs=im_ms)\n", + " E_ms[ind].set_coil_sensitivity_maps(csm)" ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "rec_im_arr = rec_im.as_array()\n", - "\n", - "fig, ax = plt.subplots(1,3)\n", - "ax[0].imshow(np.abs(rec_im_arr[102, :, :]))\n", - "ax[1].imshow(np.abs(rec_im_arr[:, 64, :]))\n", - "ax[2].imshow(np.abs(rec_im_arr[:, :, 64]))" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import time\n", - "\n", - "E = pMR.AcquisitionModel(acqs=acq_data, imgs=rec_im)\n", - "E.set_coil_sensitivity_maps(csm)\n", - "\n", - "\n", - "num_it_fista = 20\n", - "x_init = rec_im.clone()\n", - "\n", - "t1 = time.time()\n", - "f = LeastSquares(E, acq_data, c=1)\n", - "print('LS {:3.2f}s'.format((time.time() - t1)))\n", - "\n", - "G = ZeroFunction()\n", - "\n", - "# alpha = 0.01\n", - "# G = alpha * FGP_TV(max_iteration=10, device='cpu')\n", - "\n", - "# Run FISTA for least squares\n", - "t1 = time.time()\n", - "fista = FISTA(x_init=x_init, f=f, g=G)\n", - "fista.max_iteration = num_it_fista\n", - "fista.update_objective_interval = 1\n", - "print('SETUP {:3.2f}s'.format((time.time() - t1)))\n", - "\n", - "t1 = time.time()\n", - "fista.run(100, verbose=True)\n", - "print('FISTA {:3.2f}s'.format((time.time() - t1)))" - ] - }, - { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "rec_im_arr = fista.get_output().as_array()\n", - "\n", - "fig, ax = plt.subplots(1,3)\n", - "ax[0].imshow(np.abs(rec_im_arr[102, :, :]))\n", - "ax[1].imshow(np.abs(rec_im_arr[:, 64, :]))\n", - "ax[2].imshow(np.abs(rec_im_arr[:, :, 64]))" + "Now we can reconstruct each motion state:" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 71, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FISTA setting up\n", + "FISTA configured\n", + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 100 0.000 1.36460e-02\n", + " 5 100 6.497 6.14886e-04\n", + " 10 100 6.355 1.44843e-04\n", + "-------------------------------------------------------\n", + " 10 100 6.355 1.44843e-04\n", + "Stop criterion has been reached.\n", + "\n", + "FISTA setting up\n", + "FISTA configured\n", + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 100 0.000 1.54101e-02\n", + " 5 100 6.197 1.19455e-03\n", + " 10 100 6.228 7.02181e-04\n", + "-------------------------------------------------------\n", + " 10 100 6.228 7.02181e-04\n", + "Stop criterion has been reached.\n", + "\n", + "FISTA setting up\n", + "FISTA configured\n", + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 100 0.000 1.47638e-02\n", + " 5 100 6.310 1.51101e-03\n", + " 10 100 6.342 9.77514e-04\n", + "-------------------------------------------------------\n", + " 10 100 6.342 9.77514e-04\n", + "Stop criterion has been reached.\n", + "\n", + "FISTA setting up\n", + "FISTA configured\n", + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 100 0.000 1.44889e-02\n", + " 5 100 6.278 6.23189e-04\n", + " 10 100 6.286 1.23478e-04\n", + "-------------------------------------------------------\n", + " 10 100 6.286 1.23478e-04\n", + "Stop criterion has been reached.\n", + "\n" + ] + } + ], "source": [ - "rec_ms_fista = [0] * num_ms\n", + "im_fista_ms = [0] * num_ms\n", "\n", "for ind in range(num_ms):\n", "\n", - " num_it_fista = 10\n", - " x_init = im_ms[ind].clone()\n", + " # Starting image\n", + " x_init = im_ms.clone()\n", + " x_init.fill(0.0)\n", "\n", - " t1 = time.time()\n", + " # Objective function\n", " f = LeastSquares(E_ms[ind], acq_ms[ind], c=1)\n", - " print('LS {:3.2f}s'.format((time.time() - t1)))\n", - "\n", " G = ZeroFunction()\n", "\n", - " # alpha = 0.01\n", - " # G = alpha * FGP_TV(max_iteration=10, device='cpu')\n", - "\n", - " # Run FISTA for least squares\n", - " t1 = time.time()\n", + " # Set up FISTA for least squares\n", " fista = FISTA(x_init=x_init, f=f, g=G)\n", - " fista.max_iteration = num_it_fista\n", - " fista.update_objective_interval = 1\n", - " print('SETUP {:3.2f}s'.format((time.time() - t1)))\n", + " fista.max_iteration = 100\n", + " fista.update_objective_interval = 5\n", "\n", - " t1 = time.time()\n", - " fista.run(100, verbose=True)\n", - " print('FISTA {:3.2f}s'.format((time.time() - t1)))\n", + " # Run FISTA\n", + " fista.run(10, verbose=True)\n", " \n", - " rec_ms_fista[ind] = fista.get_output()\n", + " # Get result\n", + " im_fista_ms[ind] = fista.get_output()\n", " \n" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 72, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "\n", - "fig, ax = plt.subplots(3, num_ms)\n", - "plt.setp(ax, xticks=[], yticks=[])\n", + "# Prepare results\n", + "im_fista_ms_arr = []\n", + "im_fista_diff_arr = []\n", "for ind in range(num_ms):\n", + " im_fista_ms_arr.append(im_fista_ms[ind].as_array())\n", + " im_fista_diff_arr.append(np.abs(im_fista_ms[ind].as_array()) - np.abs(im_fista_ms_arr[0]))\n", + " \n", + "# Visualise different motion states\n", + "plot_rpe_3d(im_fista_ms_arr, [64, 64], ['MS 0', 'MS 1', 'MS 2', 'MS 3'])\n", "\n", - " rec_im_arr = rec_ms_fista[ind].as_array()\n", - " ax[0, ind].imshow(np.abs(rec_im_arr[102, :, :]))\n", - " ax[0, ind].plot([32, 32], [0, 130], '-w')\n", - " ax[1, ind].imshow(np.abs(rec_im_arr[:, 64, :]))\n", - " ax[1, ind].plot([32, 32], [0, 200], '-w')\n", - " ax[2, ind].imshow(np.abs(rec_im_arr[:, :, 50]))" + "# Visualise difference to first motion state\n", + "plot_rpe_3d(im_fista_diff_arr, [64, 64], ['MS 0 - MS 0', 'MS 1 - MS 0', 'MS 2 - MS 0', 'MS 3 - MS 0'])" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, "outputs": [], "source": [ @@ -423,7 +5529,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ @@ -467,9 +5573,1005 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "\n", "\n", @@ -487,9 +6589,1015 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 20, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# RTA\n", "im_orig = rec_ms_fista[0]\n", @@ -498,14 +7606,7 @@ " im_orig += rec_ms_fista[ind]\n", " im_rta += im_corr[ind]\n", " \n", - "fig, ax = plt.subplots(2,3)\n", - "ax[0,0].imshow(np.abs(im_orig.as_array()[102, :, :]))\n", - "ax[0,1].imshow(np.abs(im_orig.as_array()[:, 64, :]))\n", - "ax[0,2].imshow(np.abs(im_orig.as_array()[:, :, 64]))\n", - "\n", - "ax[1,0].imshow(np.abs(im_rta.as_array()[102, :, :]))\n", - "ax[1,1].imshow(np.abs(im_rta.as_array()[:, 64, :]))\n", - "ax[1,2].imshow(np.abs(im_rta.as_array()[:, :, 64]))" + "plot_rpe_3d([im_fista_uncorr, im_orig.as_array(), im_rta.as_array()], [64, 64], ['FISTA uncorr', 'Avg', 'RTA'])" ] }, { @@ -526,63 +7627,1068 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 32, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FISTA setting up\n", + "FISTA configured\n", + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 100 0.000 5.83088e-02\n", + " 10 100 52.506 6.94126e-03\n", + " 20 100 52.631 6.37808e-03\n", + "-------------------------------------------------------\n", + " 20 100 52.631 6.37808e-03\n", + "Stop criterion has been reached.\n", + "\n" + ] + } + ], "source": [ - "# Set up reconstruction\n", + "# Combine AcquisitionModel and motion transformation\n", "C = [CompositionOperator(am, res) for am, res in zip(*(E_ms, mf_resampler))]\n", "A = BlockOperator(*C)\n", "\n", - "# Initial pseudo inverse\n", + "# Put together all the raw k-space data for each motion state in a BlockDataContainer\n", "acq_ms_block = BlockDataContainer(*acq_ms)\n", - "im_xinit = A.adjoint(acq_ms_block)\n", "\n", - "num_it_fista = 1\n", + "# Starting image\n", + "x_init = A.adjoint(acq_ms_block)\n", + "x_init.fill(0.0)\n", + "\n", + "# Objective function\n", "f = LeastSquares(A, acq_ms_block, c=1)\n", + "f.L = 8000.0\n", + "G = ZeroFunction()\n", "\n", - "reg_mcir_fista = None\n", - "if reg_mcir_fista == 'tv':\n", - " G = cilPluginToSIRFFactory.getInstance(FGP_TV, lambdaReg=1e-8, iterationsTV=10,\n", - " tolerance=1e-7, methodTV=0, nonnegativity=0,\n", - " printing=1, device='cpu')\n", - "\n", - "elif reg_mcir_fista == 'tgv':\n", - " alpha = 1.\n", - " beta = alpha * 2\n", - " lip_const = 12.\n", - " G = cilPluginToSIRFFactory.getInstance(TGV, regularisation_parameter=.01,\n", - " LipshitzConstant=lip_const,\n", - " alpha1=alpha, alpha2=beta,\n", - " iter_TGV=10, torelance=1e-4,\n", - " device='cpu')\n", - "\n", - "elif reg_mcir_fista == None:\n", - " G = ZeroFunction()\n", - "else:\n", - " assert 0, 'reg_mcir_fista should be None, tv or tgv'\n", - "\n", - "# Run FISTA for least squares\n", - "fista = FISTA(x_init=im_xinit, f=f, g=G)\n", - "fista.max_iteration = num_it_fista\n", - "fista.update_objective_interval = 1\n", - "fista.run(10, verbose=True)\n", - "\n" + "# Set up FISTA for least squares\n", + "fista = FISTA(x_init=x_init, f=f, g=G)\n", + "fista.max_iteration = 100\n", + "fista.update_objective_interval = 10\n", + "\n", + "# Run FISTA\n", + "fista.run(20, verbose=True)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 33, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "rec_im_arr = fista.get_output().as_array()\n", + "# Get the result\n", + "im_fista_mcir = fista.get_output().as_array()\n", "\n", - "fig, ax = plt.subplots(1,3)\n", - "ax[0].imshow(np.abs(rec_im_arr[102, :, :]))\n", - "ax[1].imshow(np.abs(rec_im_arr[:, 64, :]))\n", - "ax[2].imshow(np.abs(rec_im_arr[:, :, 64]))" + "# Compare to the uncorrected reconstruction and the RTA\n", + "plot_rpe_3d([im_fista_uncorr, im_rta.as_array(), im_fista_mcir], [64, 64], ['Uncorr', 'RTA', 'MCIR'])" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -593,12 +8699,15 @@ }, "language_info": { "codemirror_mode": { - "name": "ipython" + "name": "ipython", + "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", - "nbconvert_exporter": "python" + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.10" } }, "nbformat": 4, From 198900ba322dabdec1af671bec08f793978382b0 Mon Sep 17 00:00:00 2001 From: Christoph Kolbitsch Date: Thu, 8 Jul 2021 14:50:59 +0000 Subject: [PATCH 07/11] MCIR finished --- notebooks/MR/mr_mcir_grpe.ipynb | 8303 +------------------------------ 1 file changed, 139 insertions(+), 8164 deletions(-) diff --git a/notebooks/MR/mr_mcir_grpe.ipynb b/notebooks/MR/mr_mcir_grpe.ipynb index b3429d43..4534b7ff 100755 --- a/notebooks/MR/mr_mcir_grpe.ipynb +++ b/notebooks/MR/mr_mcir_grpe.ipynb @@ -41,7 +41,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -54,7 +54,7 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -64,6 +64,7 @@ "import sirf.Gadgetron as pMR\n", "from sirf.Utilities import examples_data_path\n", "from sirf_exercises import exercises_data_path\n", + "import sirf.Reg as pReg\n", "\n", "\n", "from cil.framework import AcquisitionGeometry, BlockDataContainer, BlockGeometry\n", @@ -84,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -117,7 +118,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -127,7 +128,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -153,7 +154,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -165,7 +166,7 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -180,1005 +181,9 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.key;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", - " value += 'ctrl+';\n", - " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", - " value += 'alt+';\n", - " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k' + event.key;\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"
\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Visualise result\n", "plot_rpe_3d([im_inv_uncorr,], [64, 64], ['Inverse',])" @@ -1193,29 +198,9 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FISTA setting up\n", - "FISTA configured\n", - " Iter Max Iter Time/Iter Objective\n", - " [s] \n", - " 0 100 0.000 5.76885e-02\n", - " 5 100 6.907 1.53044e-02\n", - " 10 100 6.986 1.35516e-02\n", - " 15 100 6.975 1.33335e-02\n", - " 20 100 6.982 1.32806e-02\n", - "-------------------------------------------------------\n", - " 20 100 6.982 1.32806e-02\n", - "Stop criterion has been reached.\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "# MR AcquisitionModel\n", "E = pMR.AcquisitionModel(acqs=acq_data, imgs=rec_im)\n", @@ -1242,1005 +227,9 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.key;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", - " value += 'ctrl+';\n", - " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", - " value += 'alt+';\n", - " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k' + event.key;\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"
\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Visualise result\n", "plot_rpe_3d([im_inv_uncorr, im_fista_uncorr], [64, 64], ['Inverse', 'FISTA'])" @@ -2305,7 +294,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2354,1015 +343,9 @@ }, { "cell_type": "code", - "execution_count": 65, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.key;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", - " value += 'ctrl+';\n", - " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", - " value += 'alt+';\n", - " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k' + event.key;\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"
\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Number of phase encoding points in motion state 0: 2520\n", - "Number of phase encoding points in motion state 1: 2520\n", - "Number of phase encoding points in motion state 2: 2520\n", - "Number of phase encoding points in motion state 3: 2520\n" - ] - } - ], + "outputs": [], "source": [ "# Now let's plot the navigator signal and color in the different motion states in different colors\n", "plt.figure(figsize=(8,4))\n", @@ -3384,7 +367,7 @@ }, { "cell_type": "code", - "execution_count": 68, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3393,7 +376,7 @@ "E_ms = [0] * Nms\n", "\n", "\n", - "for ind in range(num_ms):\n", + "for ind in range(Nms):\n", " \n", " if True:\n", " acq_ms[ind] = acq_data.new_acquisition_data(empty=True)\n", @@ -3425,64 +408,13 @@ }, { "cell_type": "code", - "execution_count": 71, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FISTA setting up\n", - "FISTA configured\n", - " Iter Max Iter Time/Iter Objective\n", - " [s] \n", - " 0 100 0.000 1.36460e-02\n", - " 5 100 6.497 6.14886e-04\n", - " 10 100 6.355 1.44843e-04\n", - "-------------------------------------------------------\n", - " 10 100 6.355 1.44843e-04\n", - "Stop criterion has been reached.\n", - "\n", - "FISTA setting up\n", - "FISTA configured\n", - " Iter Max Iter Time/Iter Objective\n", - " [s] \n", - " 0 100 0.000 1.54101e-02\n", - " 5 100 6.197 1.19455e-03\n", - " 10 100 6.228 7.02181e-04\n", - "-------------------------------------------------------\n", - " 10 100 6.228 7.02181e-04\n", - "Stop criterion has been reached.\n", - "\n", - "FISTA setting up\n", - "FISTA configured\n", - " Iter Max Iter Time/Iter Objective\n", - " [s] \n", - " 0 100 0.000 1.47638e-02\n", - " 5 100 6.310 1.51101e-03\n", - " 10 100 6.342 9.77514e-04\n", - "-------------------------------------------------------\n", - " 10 100 6.342 9.77514e-04\n", - "Stop criterion has been reached.\n", - "\n", - "FISTA setting up\n", - "FISTA configured\n", - " Iter Max Iter Time/Iter Objective\n", - " [s] \n", - " 0 100 0.000 1.44889e-02\n", - " 5 100 6.278 6.23189e-04\n", - " 10 100 6.286 1.23478e-04\n", - "-------------------------------------------------------\n", - " 10 100 6.286 1.23478e-04\n", - "Stop criterion has been reached.\n", - "\n" - ] - } - ], + "outputs": [], "source": [ - "im_fista_ms = [0] * num_ms\n", + "im_fista_ms = [0] * Nms\n", "\n", - "for ind in range(num_ms):\n", + "for ind in range(Nms):\n", "\n", " # Starting image\n", " x_init = im_ms.clone()\n", @@ -3507,4147 +439,172 @@ }, { "cell_type": "code", - "execution_count": 72, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.key;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", - " value += 'ctrl+';\n", - " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", - " value += 'alt+';\n", - " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k' + event.key;\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"
\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.key;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", - " value += 'ctrl+';\n", - " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", - " value += 'alt+';\n", - " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k' + event.key;\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"
\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Prepare results\n", "im_fista_ms_arr = []\n", "im_fista_diff_arr = []\n", - "for ind in range(num_ms):\n", + "for ind in range(Nms):\n", " im_fista_ms_arr.append(im_fista_ms[ind].as_array())\n", " im_fista_diff_arr.append(np.abs(im_fista_ms[ind].as_array()) - np.abs(im_fista_ms_arr[0]))\n", " \n", "# Visualise different motion states\n", - "plot_rpe_3d(im_fista_ms_arr, [64, 64], ['MS 0', 'MS 1', 'MS 2', 'MS 3'])\n", + "plot_rpe_3d(im_fista_ms_arr, [64, 50], ['MS 0', 'MS 1', 'MS 2', 'MS 3'])\n", "\n", "# Visualise difference to first motion state\n", - "plot_rpe_3d(im_fista_diff_arr, [64, 64], ['MS 0 - MS 0', 'MS 1 - MS 0', 'MS 2 - MS 0', 'MS 3 - MS 0'])" + "plot_rpe_3d(im_fista_diff_arr, [64, 50], ['MS 0 - MS 0', 'MS 1 - MS 0', 'MS 2 - MS 0', 'MS 3 - MS 0'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Estimate Motion Vector fields\n", + "Now we have got different images showing the phantom at the different motion states. The image quality is of course not great, because for each image we are only taking $1/4$ of the data from the scan, which itself is already undersampled by approximately a factor of 2. Nevertheless, for motion estimation they should be fine.\n", + "\n", + "To estimate the motion vector fields (i.e. a vector for each voxel describing how it's position changes because of the motion) we will use NiftyReg (http://cmictig.cs.ucl.ac.uk/wiki/index.php/NiftyReg) which is provided via the `pReg` module of __SIRF__. \n", + "\n", + "Image registration can only deal with real-valued images and so we will take the absolute value of each complex valued image. " ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "im_ms_rec = []\n", - "for ind in range(num_ms):\n", - " im_ms_rec.append(rec_ms_fista[ind].abs())" + "im_fista_ms_abs = []\n", + "for ind in range(Nms):\n", + " im_fista_ms_abs.append(im_fista_ms[ind].abs())" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the registration, we will use the first image as our reference image and then estimate the motion vector fields which transform all other images to the first reference image. In this example we will only estimate an affine transformation using _NiftyAladinSym()_. This is fine for this simple phantom. For in-vivo application especially of the thorax a non-rigid motion estimation is often required. This can be done by using _NiftyF3dSym()_." ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "'''\n", - "Register different motion gates\n", - "'''\n", + "# Motion fransformation object\n", + "mf_resampler = [0] * Nms\n", "\n", - "import sirf.Reg as pReg\n", + "# Forward transformation (i.e. reference image transformed to current motion state)\n", + "im_forward = [0] * Nms\n", + "\n", + "# Backward transformation (i.e. current motion image transformed to reference motion state)\n", + "im_backward = [0] * Nms\n", "\n", "\n", - "# Forward motion fields\n", - "mf_resampler = [0] * num_ms\n", - "im_res = [0] * num_ms\n", - "im_corr = [0] * num_ms\n", - "for ind in range(num_ms):\n", + "for ind in range(Nms):\n", + " # Non-rigid image registration\n", " #algo = pReg.NiftyF3dSym()\n", + " \n", + " # Affine image registration\n", " algo = pReg.NiftyAladinSym()\n", "\n", " # Set up images\n", - " algo.set_reference_image(pReg.NiftiImageData3D(im_ms_rec[ind])) # remove NiftiImageData3D?????\n", - " algo.set_floating_image(pReg.NiftiImageData3D(im_ms_rec[0]))\n", + " algo.set_reference_image(pReg.NiftiImageData3D(im_fista_ms_abs[ind])) # remove NiftiImageData3D?????\n", + " algo.set_floating_image(pReg.NiftiImageData3D(im_fista_ms_abs[0]))\n", "\n", + " # Run registration \n", " algo.process()\n", - " reg_result = algo.get_output()\n", "\n", + " # Get forward deformation \n", " mf_forward = algo.get_deformation_field_forward()\n", "\n", - "\n", " # Create resampler\n", " mf_resampler[ind] = pReg.NiftyResample()\n", - " mf_resampler[ind].set_reference_image(rec_ms_fista[ind])\n", - " mf_resampler[ind].set_floating_image(rec_ms_fista[ind])\n", + " mf_resampler[ind].set_reference_image(im_fista_ms[ind])\n", + " mf_resampler[ind].set_floating_image(im_fista_ms[ind])\n", " mf_resampler[ind].add_transformation(mf_forward)\n", " mf_resampler[ind].set_padding_value(0)\n", " mf_resampler[ind].set_interpolation_type_to_linear()\n", "\n", - " im_res[ind] = mf_resampler[ind].forward(rec_ms_fista[0])\n", - " im_corr[ind] = mf_resampler[ind].backward(rec_ms_fista[ind])\n", + " im_forward[ind] = mf_resampler[ind].forward(im_fista_ms[0])\n", + " im_backward[ind] = mf_resampler[ind].backward(im_fista_ms[ind])\n", "\n" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's look at the backward transformed images (i.e. the images transformed to the reference motion state). If our registration worked, then the difference to the reference motion state should be very small now." + ] + }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.key;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", - " value += 'ctrl+';\n", - " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", - " value += 'alt+';\n", - " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k' + event.key;\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"
\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ + "# Prepare results\n", + "im_backward_arr = []\n", + "im_backward_diff_arr = []\n", + "for ind in range(Nms):\n", + " im_backward_arr.append(im_backward[ind].as_array())\n", + " im_backward_diff_arr.append(np.abs(im_backward[ind].as_array()) - np.abs(im_backward[0].as_array()))\n", + " \n", + "# Visualise different motion states transformed to reference motion state\n", + "plot_rpe_3d(im_backward_arr, [64, 50], ['MS 0', 'MS 1', 'MS 2', 'MS 3'])\n", "\n", - "\n", - "fig, ax = plt.subplots(3, num_ms)\n", - "plt.setp(ax, xticks=[], yticks=[])\n", - "for ind in range(num_ms): \n", - " rec_im_arr = im_res[ind].as_array()\n", - " rec_im_arr /= rec_im_arr.max()\n", - " ms_im_arr = im_ms_rec[ind].as_array()\n", - " ms_im_arr /= ms_im_arr.max()\n", - " ax[0, ind].imshow(np.abs(rec_im_arr[:, 64, :]), vmin=0, vmax=1)\n", - " ax[1, ind].imshow(np.abs(ms_im_arr[:, 64, :]), vmin=0, vmax=1)\n", - " ax[2, ind].imshow(np.abs(rec_im_arr[:, 64, :]) - np.abs(ms_im_arr[:, 64, :]), vmin=0, vmax=1)" + "# Visualise difference to first motion state\n", + "plot_rpe_3d(im_backward_diff_arr, [64, 50], ['MS 0 - MS 0', 'MS 1 - MS 0', 'MS 2 - MS 0', 'MS 3 - MS 0'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## RTA\n", + "We have got the images of the different motion states and we have got transformation to transform everything to a single reference motion state. This is all we need for the RTA method, where we simply apply the backward transform to the image of each motion state and then sum over all motion states. Applying the backward transform we have already done above (`im_backward`) so we only need to sum now." ] }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.key;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", - " value += 'ctrl+';\n", - " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", - " value += 'alt+';\n", - " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k' + event.key;\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"
\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 20, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "# RTA\n", - "im_orig = rec_ms_fista[0]\n", - "im_rta = im_corr[0]\n", - "for ind in range(1,num_ms):\n", - " im_orig += rec_ms_fista[ind]\n", - " im_rta += im_corr[ind]\n", - " \n", - "plot_rpe_3d([im_fista_uncorr, im_orig.as_array(), im_rta.as_array()], [64, 64], ['FISTA uncorr', 'Avg', 'RTA'])" + "im_rta = im_backward[0]\n", + "for ind in range(1,Nms):\n", + " im_rta += im_backward[ind]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Compare the uncorrected and the RTA reconstruction\n", + "plot_rpe_3d([im_fista_uncorr, im_rta.as_array()], [64, 50], ['FISTA uncorr', 'RTA'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Fix\n", + "## MCIR\n", + "This already looks much better than the uncorrected image. But we can still do better. Rather than reconstructing images of the different motion states with lots of undersampling artefacts, we want to be able to use all the acquired data in the reconstruction and still obtain an image without motion artefacts. \n", "\n", - "~/devel/install/python/cil/optimisation/operators/Operator.py in PowerMethod(operator, iterations, x_init)\n", - " 145 x1norm = x1.norm()\n", - " 146 if hasattr(x0, 'squared_norm'):\n", - "--> 147 s[it] =numpy.abs( x1.dot(x0) / x0.squared_norm())\n", - " 148 else:\n", - " 149 x0norm = x0.norm()\n", - "\n", - "TypeError: can't convert complex to float\n" + "For this we use MCIR via the `BlockOperator` approach from __CIL__. \n" ] }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FISTA setting up\n", - "FISTA configured\n", - " Iter Max Iter Time/Iter Objective\n", - " [s] \n", - " 0 100 0.000 5.83088e-02\n", - " 10 100 52.506 6.94126e-03\n", - " 20 100 52.631 6.37808e-03\n", - "-------------------------------------------------------\n", - " 20 100 52.631 6.37808e-03\n", - "Stop criterion has been reached.\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "# Combine AcquisitionModel and motion transformation\n", "C = [CompositionOperator(am, res) for am, res in zip(*(E_ms, mf_resampler))]\n", @@ -7676,1005 +633,9 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.key;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", - " value += 'ctrl+';\n", - " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", - " value += 'alt+';\n", - " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k' + event.key;\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"
\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Get the result\n", "im_fista_mcir = fista.get_output().as_array()\n", @@ -8684,11 +645,25 @@ ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "There are still some artefacts (probably our estimated motion transformations are not that great, because we used some quite low quality motion-resolved images) but we can see an improvement from _RTA_ to _MCIR_. The downside of course is, that the image reconstruction is computationally more demanding but luckily enough this is usually not too much of a problem." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Outlook\n", + "\n", + "There are lots of things to try out now and play around with:\n", + " * Compare the surrogate signal obtained from different coil elements\n", + " * Try out different number of motion states\n", + " * Different number of FISTA iterations for the motion-resolved images\n", + " * Add additional regularisation to FISTA for the motion-resolved images\n", + " * ..." + ] } ], "metadata": { From e65529185cb4583f8d279af0c218042bba6c81f3 Mon Sep 17 00:00:00 2001 From: Christoph Kolbitsch Date: Thu, 8 Jul 2021 16:36:20 +0000 Subject: [PATCH 08/11] PDHG added but not working --- .../MR/g_non_cartesian_reconstruction.ipynb | 3202 ++++++++++++++++- 1 file changed, 3173 insertions(+), 29 deletions(-) diff --git a/notebooks/MR/g_non_cartesian_reconstruction.ipynb b/notebooks/MR/g_non_cartesian_reconstruction.ipynb index bff67d9f..b76a1bdd 100644 --- a/notebooks/MR/g_non_cartesian_reconstruction.ipynb +++ b/notebooks/MR/g_non_cartesian_reconstruction.ipynb @@ -93,7 +93,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "metadata": {}, "outputs": [], "source": [ @@ -106,7 +106,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -134,7 +134,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -180,7 +180,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -190,7 +190,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -217,7 +217,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -233,9 +233,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(5760, 2)\n" + ] + } + ], "source": [ "print(ktraj.shape)" ] @@ -249,9 +257,17 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(5760, 4, 128)\n" + ] + } + ], "source": [ "print(acq_data.dimensions())" ] @@ -265,9 +281,1005 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Visualise trajectory\n", "import matplotlib.animation\n", @@ -301,7 +1313,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, "metadata": {}, "outputs": [], "source": [ @@ -319,9 +1331,38 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 11, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "cd523be6ec794b06a16d0abe7b4e36b0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "interactive(children=(IntSlider(value=2, continuous_update=False, description='X', max=3), FloatRangeSlider(va…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "7172a48ee9664364ad3da3723e0fe4ec", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "IntSlider(value=2, continuous_update=False, description='X', max=3)" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Let's get the coil maps as a numpy array \n", "vis_dat = np.abs(csm.as_array())\n", @@ -335,7 +1376,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -372,7 +1413,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 13, "metadata": {}, "outputs": [], "source": [ @@ -387,9 +1428,1005 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 14, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Compare Backward and Inverse\n", "plot_rpe_3d([rec_im_bck_arr, rec_im_inv_arr], [64, 64], ['Backward', 'Inverse'])" @@ -421,17 +2458,71 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 15, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "FISTA setting up\n", + "FISTA configured\n", + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 40 0.000 3.31595e-02\n", + " 1 40 6.761 9.32313e-03\n", + " 2 40 6.751 6.68441e-03\n", + " 3 40 6.755 4.46107e-03\n", + " 4 40 6.692 2.82539e-03\n", + " 5 40 6.671 1.75150e-03\n", + " 6 40 6.666 1.10963e-03\n", + " 7 40 6.710 7.49768e-04\n", + " 8 40 6.725 5.50386e-04\n", + " 9 40 6.731 4.33389e-04\n", + " 10 40 6.739 3.57697e-04\n", + " 11 40 6.746 3.05214e-04\n", + " 12 40 6.769 2.68460e-04\n", + " 13 40 6.770 2.43313e-04\n", + " 14 40 6.772 2.26313e-04\n", + " 15 40 6.775 2.14439e-04\n", + " 16 40 6.784 2.05527e-04\n", + " 17 40 6.778 1.98401e-04\n", + " 18 40 6.774 1.92622e-04\n", + " 19 40 6.773 1.88077e-04\n", + " 20 40 6.770 1.84675e-04\n", + " 21 40 6.753 1.82232e-04\n", + " 22 40 6.757 1.80491e-04\n", + " 23 40 6.753 1.79207e-04\n", + " 24 40 6.748 1.78193e-04\n", + " 25 40 6.754 1.77340e-04\n", + " 26 40 6.767 1.76596e-04\n", + " 27 40 6.763 1.75935e-04\n", + " 28 40 6.753 1.75344e-04\n", + " 29 40 6.746 1.74809e-04\n", + " 30 40 6.747 1.74315e-04\n", + " 31 40 6.757 1.73851e-04\n", + " 32 40 6.763 1.73409e-04\n", + " 33 40 6.763 1.72985e-04\n", + " 34 40 6.766 1.72578e-04\n", + " 35 40 6.766 1.72188e-04\n", + " 36 40 6.769 1.71816e-04\n", + " 37 40 6.770 1.71466e-04\n", + " 38 40 6.773 1.71137e-04\n", + " 39 40 6.779 1.70829e-04\n", + " 40 40 6.778 1.70543e-04\n", + " 41 40 6.778 1.70278e-04\n", + "-------------------------------------------------------\n", + " 41 40 6.778 1.70278e-04\n", + "Stop criterion has been reached.\n", + "\n" + ] + } + ], "source": [ "# We set up our AcquisitionModel\n", "E = pMR.AcquisitionModel(acqs=acq_data, imgs=rec_im_inv)\n", "E.set_coil_sensitivity_maps(csm)\n", "\n", - "# Define the maximum number of iterations\n", - "num_it_fista = 40\n", - "\n", "# Use the result of the inverse as our starting point\n", "x_init = rec_im_inv.clone()\n", "\n", @@ -448,19 +2539,1015 @@ "\n", "# Set up FISTA\n", "fista = FISTA(x_init=x_init, f=f, g=G)\n", - "fista.max_iteration = num_it_fista\n", - "fista.update_objective_interval = 1\n", + "fista.max_iteration = 100\n", + "fista.update_objective_interval = 5\n", "\n", "\n", "# Run FISTA for least squares\n", - "fista.run(100, verbose=True)" + "fista.run(40, verbose=True)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "application/javascript": [ + "/* Put everything inside the global mpl namespace */\n", + "/* global mpl */\n", + "window.mpl = {};\n", + "\n", + "mpl.get_websocket_type = function () {\n", + " if (typeof WebSocket !== 'undefined') {\n", + " return WebSocket;\n", + " } else if (typeof MozWebSocket !== 'undefined') {\n", + " return MozWebSocket;\n", + " } else {\n", + " alert(\n", + " 'Your browser does not have WebSocket support. ' +\n", + " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", + " 'Firefox 4 and 5 are also supported but you ' +\n", + " 'have to enable WebSockets in about:config.'\n", + " );\n", + " }\n", + "};\n", + "\n", + "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", + " this.id = figure_id;\n", + "\n", + " this.ws = websocket;\n", + "\n", + " this.supports_binary = this.ws.binaryType !== undefined;\n", + "\n", + " if (!this.supports_binary) {\n", + " var warnings = document.getElementById('mpl-warnings');\n", + " if (warnings) {\n", + " warnings.style.display = 'block';\n", + " warnings.textContent =\n", + " 'This browser does not support binary websocket messages. ' +\n", + " 'Performance may be slow.';\n", + " }\n", + " }\n", + "\n", + " this.imageObj = new Image();\n", + "\n", + " this.context = undefined;\n", + " this.message = undefined;\n", + " this.canvas = undefined;\n", + " this.rubberband_canvas = undefined;\n", + " this.rubberband_context = undefined;\n", + " this.format_dropdown = undefined;\n", + "\n", + " this.image_mode = 'full';\n", + "\n", + " this.root = document.createElement('div');\n", + " this.root.setAttribute('style', 'display: inline-block');\n", + " this._root_extra_style(this.root);\n", + "\n", + " parent_element.appendChild(this.root);\n", + "\n", + " this._init_header(this);\n", + " this._init_canvas(this);\n", + " this._init_toolbar(this);\n", + "\n", + " var fig = this;\n", + "\n", + " this.waiting = false;\n", + "\n", + " this.ws.onopen = function () {\n", + " fig.send_message('supports_binary', { value: fig.supports_binary });\n", + " fig.send_message('send_image_mode', {});\n", + " if (fig.ratio !== 1) {\n", + " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", + " }\n", + " fig.send_message('refresh', {});\n", + " };\n", + "\n", + " this.imageObj.onload = function () {\n", + " if (fig.image_mode === 'full') {\n", + " // Full images could contain transparency (where diff images\n", + " // almost always do), so we need to clear the canvas so that\n", + " // there is no ghosting.\n", + " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", + " }\n", + " fig.context.drawImage(fig.imageObj, 0, 0);\n", + " };\n", + "\n", + " this.imageObj.onunload = function () {\n", + " fig.ws.close();\n", + " };\n", + "\n", + " this.ws.onmessage = this._make_on_message_function(this);\n", + "\n", + " this.ondownload = ondownload;\n", + "};\n", + "\n", + "mpl.figure.prototype._init_header = function () {\n", + " var titlebar = document.createElement('div');\n", + " titlebar.classList =\n", + " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", + " var titletext = document.createElement('div');\n", + " titletext.classList = 'ui-dialog-title';\n", + " titletext.setAttribute(\n", + " 'style',\n", + " 'width: 100%; text-align: center; padding: 3px;'\n", + " );\n", + " titlebar.appendChild(titletext);\n", + " this.root.appendChild(titlebar);\n", + " this.header = titletext;\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", + "\n", + "mpl.figure.prototype._init_canvas = function () {\n", + " var fig = this;\n", + "\n", + " var canvas_div = (this.canvas_div = document.createElement('div'));\n", + " canvas_div.setAttribute(\n", + " 'style',\n", + " 'border: 1px solid #ddd;' +\n", + " 'box-sizing: content-box;' +\n", + " 'clear: both;' +\n", + " 'min-height: 1px;' +\n", + " 'min-width: 1px;' +\n", + " 'outline: 0;' +\n", + " 'overflow: hidden;' +\n", + " 'position: relative;' +\n", + " 'resize: both;'\n", + " );\n", + "\n", + " function on_keyboard_event_closure(name) {\n", + " return function (event) {\n", + " return fig.key_event(event, name);\n", + " };\n", + " }\n", + "\n", + " canvas_div.addEventListener(\n", + " 'keydown',\n", + " on_keyboard_event_closure('key_press')\n", + " );\n", + " canvas_div.addEventListener(\n", + " 'keyup',\n", + " on_keyboard_event_closure('key_release')\n", + " );\n", + "\n", + " this._canvas_extra_style(canvas_div);\n", + " this.root.appendChild(canvas_div);\n", + "\n", + " var canvas = (this.canvas = document.createElement('canvas'));\n", + " canvas.classList.add('mpl-canvas');\n", + " canvas.setAttribute('style', 'box-sizing: content-box;');\n", + "\n", + " this.context = canvas.getContext('2d');\n", + "\n", + " var backingStore =\n", + " this.context.backingStorePixelRatio ||\n", + " this.context.webkitBackingStorePixelRatio ||\n", + " this.context.mozBackingStorePixelRatio ||\n", + " this.context.msBackingStorePixelRatio ||\n", + " this.context.oBackingStorePixelRatio ||\n", + " this.context.backingStorePixelRatio ||\n", + " 1;\n", + "\n", + " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", + "\n", + " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", + " 'canvas'\n", + " ));\n", + " rubberband_canvas.setAttribute(\n", + " 'style',\n", + " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", + " );\n", + "\n", + " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", + " if (this.ResizeObserver === undefined) {\n", + " if (window.ResizeObserver !== undefined) {\n", + " this.ResizeObserver = window.ResizeObserver;\n", + " } else {\n", + " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", + " this.ResizeObserver = obs.ResizeObserver;\n", + " }\n", + " }\n", + "\n", + " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", + " var nentries = entries.length;\n", + " for (var i = 0; i < nentries; i++) {\n", + " var entry = entries[i];\n", + " var width, height;\n", + " if (entry.contentBoxSize) {\n", + " if (entry.contentBoxSize instanceof Array) {\n", + " // Chrome 84 implements new version of spec.\n", + " width = entry.contentBoxSize[0].inlineSize;\n", + " height = entry.contentBoxSize[0].blockSize;\n", + " } else {\n", + " // Firefox implements old version of spec.\n", + " width = entry.contentBoxSize.inlineSize;\n", + " height = entry.contentBoxSize.blockSize;\n", + " }\n", + " } else {\n", + " // Chrome <84 implements even older version of spec.\n", + " width = entry.contentRect.width;\n", + " height = entry.contentRect.height;\n", + " }\n", + "\n", + " // Keep the size of the canvas and rubber band canvas in sync with\n", + " // the canvas container.\n", + " if (entry.devicePixelContentBoxSize) {\n", + " // Chrome 84 implements new version of spec.\n", + " canvas.setAttribute(\n", + " 'width',\n", + " entry.devicePixelContentBoxSize[0].inlineSize\n", + " );\n", + " canvas.setAttribute(\n", + " 'height',\n", + " entry.devicePixelContentBoxSize[0].blockSize\n", + " );\n", + " } else {\n", + " canvas.setAttribute('width', width * fig.ratio);\n", + " canvas.setAttribute('height', height * fig.ratio);\n", + " }\n", + " canvas.setAttribute(\n", + " 'style',\n", + " 'width: ' + width + 'px; height: ' + height + 'px;'\n", + " );\n", + "\n", + " rubberband_canvas.setAttribute('width', width);\n", + " rubberband_canvas.setAttribute('height', height);\n", + "\n", + " // And update the size in Python. We ignore the initial 0/0 size\n", + " // that occurs as the element is placed into the DOM, which should\n", + " // otherwise not happen due to the minimum size styling.\n", + " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", + " fig.request_resize(width, height);\n", + " }\n", + " }\n", + " });\n", + " this.resizeObserverInstance.observe(canvas_div);\n", + "\n", + " function on_mouse_event_closure(name) {\n", + " return function (event) {\n", + " return fig.mouse_event(event, name);\n", + " };\n", + " }\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mousedown',\n", + " on_mouse_event_closure('button_press')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseup',\n", + " on_mouse_event_closure('button_release')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'dblclick',\n", + " on_mouse_event_closure('dblclick')\n", + " );\n", + " // Throttle sequential mouse events to 1 every 20ms.\n", + " rubberband_canvas.addEventListener(\n", + " 'mousemove',\n", + " on_mouse_event_closure('motion_notify')\n", + " );\n", + "\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseenter',\n", + " on_mouse_event_closure('figure_enter')\n", + " );\n", + " rubberband_canvas.addEventListener(\n", + " 'mouseleave',\n", + " on_mouse_event_closure('figure_leave')\n", + " );\n", + "\n", + " canvas_div.addEventListener('wheel', function (event) {\n", + " if (event.deltaY < 0) {\n", + " event.step = 1;\n", + " } else {\n", + " event.step = -1;\n", + " }\n", + " on_mouse_event_closure('scroll')(event);\n", + " });\n", + "\n", + " canvas_div.appendChild(canvas);\n", + " canvas_div.appendChild(rubberband_canvas);\n", + "\n", + " this.rubberband_context = rubberband_canvas.getContext('2d');\n", + " this.rubberband_context.strokeStyle = '#000000';\n", + "\n", + " this._resize_canvas = function (width, height, forward) {\n", + " if (forward) {\n", + " canvas_div.style.width = width + 'px';\n", + " canvas_div.style.height = height + 'px';\n", + " }\n", + " };\n", + "\n", + " // Disable right mouse context menu.\n", + " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", + " event.preventDefault();\n", + " return false;\n", + " });\n", + "\n", + " function set_focus() {\n", + " canvas.focus();\n", + " canvas_div.focus();\n", + " }\n", + "\n", + " window.setTimeout(set_focus, 100);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'mpl-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'mpl-button-group';\n", + " continue;\n", + " }\n", + "\n", + " var button = (fig.buttons[name] = document.createElement('button'));\n", + " button.classList = 'mpl-widget';\n", + " button.setAttribute('role', 'button');\n", + " button.setAttribute('aria-disabled', 'false');\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + "\n", + " var icon_img = document.createElement('img');\n", + " icon_img.src = '_images/' + image + '.png';\n", + " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", + " icon_img.alt = tooltip;\n", + " button.appendChild(icon_img);\n", + "\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " var fmt_picker = document.createElement('select');\n", + " fmt_picker.classList = 'mpl-widget';\n", + " toolbar.appendChild(fmt_picker);\n", + " this.format_dropdown = fmt_picker;\n", + "\n", + " for (var ind in mpl.extensions) {\n", + " var fmt = mpl.extensions[ind];\n", + " var option = document.createElement('option');\n", + " option.selected = fmt === mpl.default_extension;\n", + " option.innerHTML = fmt;\n", + " fmt_picker.appendChild(option);\n", + " }\n", + "\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "};\n", + "\n", + "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", + " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", + " // which will in turn request a refresh of the image.\n", + " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", + "};\n", + "\n", + "mpl.figure.prototype.send_message = function (type, properties) {\n", + " properties['type'] = type;\n", + " properties['figure_id'] = this.id;\n", + " this.ws.send(JSON.stringify(properties));\n", + "};\n", + "\n", + "mpl.figure.prototype.send_draw_message = function () {\n", + " if (!this.waiting) {\n", + " this.waiting = true;\n", + " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " var format_dropdown = fig.format_dropdown;\n", + " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", + " fig.ondownload(fig, format);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", + " var size = msg['size'];\n", + " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", + " fig._resize_canvas(size[0], size[1], msg['forward']);\n", + " fig.send_message('refresh', {});\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", + " var x0 = msg['x0'] / fig.ratio;\n", + " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", + " var x1 = msg['x1'] / fig.ratio;\n", + " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", + " x0 = Math.floor(x0) + 0.5;\n", + " y0 = Math.floor(y0) + 0.5;\n", + " x1 = Math.floor(x1) + 0.5;\n", + " y1 = Math.floor(y1) + 0.5;\n", + " var min_x = Math.min(x0, x1);\n", + " var min_y = Math.min(y0, y1);\n", + " var width = Math.abs(x1 - x0);\n", + " var height = Math.abs(y1 - y0);\n", + "\n", + " fig.rubberband_context.clearRect(\n", + " 0,\n", + " 0,\n", + " fig.canvas.width / fig.ratio,\n", + " fig.canvas.height / fig.ratio\n", + " );\n", + "\n", + " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", + " // Updates the figure title.\n", + " fig.header.textContent = msg['label'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", + " var cursor = msg['cursor'];\n", + " switch (cursor) {\n", + " case 0:\n", + " cursor = 'pointer';\n", + " break;\n", + " case 1:\n", + " cursor = 'default';\n", + " break;\n", + " case 2:\n", + " cursor = 'crosshair';\n", + " break;\n", + " case 3:\n", + " cursor = 'move';\n", + " break;\n", + " }\n", + " fig.rubberband_canvas.style.cursor = cursor;\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_message = function (fig, msg) {\n", + " fig.message.textContent = msg['message'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", + " // Request the server to send over a new figure.\n", + " fig.send_draw_message();\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", + " fig.image_mode = msg['mode'];\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", + " for (var key in msg) {\n", + " if (!(key in fig.buttons)) {\n", + " continue;\n", + " }\n", + " fig.buttons[key].disabled = !msg[key];\n", + " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", + " if (msg['mode'] === 'PAN') {\n", + " fig.buttons['Pan'].classList.add('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " } else if (msg['mode'] === 'ZOOM') {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.add('active');\n", + " } else {\n", + " fig.buttons['Pan'].classList.remove('active');\n", + " fig.buttons['Zoom'].classList.remove('active');\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Called whenever the canvas gets updated.\n", + " this.send_message('ack', {});\n", + "};\n", + "\n", + "// A function to construct a web socket function for onmessage handling.\n", + "// Called in the figure constructor.\n", + "mpl.figure.prototype._make_on_message_function = function (fig) {\n", + " return function socket_on_message(evt) {\n", + " if (evt.data instanceof Blob) {\n", + " var img = evt.data;\n", + " if (img.type !== 'image/png') {\n", + " /* FIXME: We get \"Resource interpreted as Image but\n", + " * transferred with MIME type text/plain:\" errors on\n", + " * Chrome. But how to set the MIME type? It doesn't seem\n", + " * to be part of the websocket stream */\n", + " img.type = 'image/png';\n", + " }\n", + "\n", + " /* Free the memory for the previous frames */\n", + " if (fig.imageObj.src) {\n", + " (window.URL || window.webkitURL).revokeObjectURL(\n", + " fig.imageObj.src\n", + " );\n", + " }\n", + "\n", + " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", + " img\n", + " );\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " } else if (\n", + " typeof evt.data === 'string' &&\n", + " evt.data.slice(0, 21) === 'data:image/png;base64'\n", + " ) {\n", + " fig.imageObj.src = evt.data;\n", + " fig.updated_canvas_event();\n", + " fig.waiting = false;\n", + " return;\n", + " }\n", + "\n", + " var msg = JSON.parse(evt.data);\n", + " var msg_type = msg['type'];\n", + "\n", + " // Call the \"handle_{type}\" callback, which takes\n", + " // the figure and JSON message as its only arguments.\n", + " try {\n", + " var callback = fig['handle_' + msg_type];\n", + " } catch (e) {\n", + " console.log(\n", + " \"No handler for the '\" + msg_type + \"' message type: \",\n", + " msg\n", + " );\n", + " return;\n", + " }\n", + "\n", + " if (callback) {\n", + " try {\n", + " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", + " callback(fig, msg);\n", + " } catch (e) {\n", + " console.log(\n", + " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", + " e,\n", + " e.stack,\n", + " msg\n", + " );\n", + " }\n", + " }\n", + " };\n", + "};\n", + "\n", + "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", + "mpl.findpos = function (e) {\n", + " //this section is from http://www.quirksmode.org/js/events_properties.html\n", + " var targ;\n", + " if (!e) {\n", + " e = window.event;\n", + " }\n", + " if (e.target) {\n", + " targ = e.target;\n", + " } else if (e.srcElement) {\n", + " targ = e.srcElement;\n", + " }\n", + " if (targ.nodeType === 3) {\n", + " // defeat Safari bug\n", + " targ = targ.parentNode;\n", + " }\n", + "\n", + " // pageX,Y are the mouse positions relative to the document\n", + " var boundingRect = targ.getBoundingClientRect();\n", + " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", + " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", + "\n", + " return { x: x, y: y };\n", + "};\n", + "\n", + "/*\n", + " * return a copy of an object with only non-object keys\n", + " * we need this to avoid circular references\n", + " * http://stackoverflow.com/a/24161582/3208463\n", + " */\n", + "function simpleKeys(original) {\n", + " return Object.keys(original).reduce(function (obj, key) {\n", + " if (typeof original[key] !== 'object') {\n", + " obj[key] = original[key];\n", + " }\n", + " return obj;\n", + " }, {});\n", + "}\n", + "\n", + "mpl.figure.prototype.mouse_event = function (event, name) {\n", + " var canvas_pos = mpl.findpos(event);\n", + "\n", + " if (name === 'button_press') {\n", + " this.canvas.focus();\n", + " this.canvas_div.focus();\n", + " }\n", + "\n", + " var x = canvas_pos.x * this.ratio;\n", + " var y = canvas_pos.y * this.ratio;\n", + "\n", + " this.send_message(name, {\n", + " x: x,\n", + " y: y,\n", + " button: event.button,\n", + " step: event.step,\n", + " guiEvent: simpleKeys(event),\n", + " });\n", + "\n", + " /* This prevents the web browser from automatically changing to\n", + " * the text insertion cursor when the button is pressed. We want\n", + " * to control all of the cursor setting manually through the\n", + " * 'cursor' event from matplotlib */\n", + " event.preventDefault();\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", + " // Handle any extra behaviour associated with a key event\n", + "};\n", + "\n", + "mpl.figure.prototype.key_event = function (event, name) {\n", + " // Prevent repeat events\n", + " if (name === 'key_press') {\n", + " if (event.key === this._key) {\n", + " return;\n", + " } else {\n", + " this._key = event.key;\n", + " }\n", + " }\n", + " if (name === 'key_release') {\n", + " this._key = null;\n", + " }\n", + "\n", + " var value = '';\n", + " if (event.ctrlKey && event.key !== 'Control') {\n", + " value += 'ctrl+';\n", + " }\n", + " else if (event.altKey && event.key !== 'Alt') {\n", + " value += 'alt+';\n", + " }\n", + " else if (event.shiftKey && event.key !== 'Shift') {\n", + " value += 'shift+';\n", + " }\n", + "\n", + " value += 'k' + event.key;\n", + "\n", + " this._key_event_extra(event, name);\n", + "\n", + " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", + " return false;\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", + " if (name === 'download') {\n", + " this.handle_save(this, null);\n", + " } else {\n", + " this.send_message('toolbar_button', { name: name });\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", + " this.message.textContent = tooltip;\n", + "};\n", + "\n", + "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", + "// prettier-ignore\n", + "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", + "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", + "\n", + "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", + "\n", + "mpl.default_extension = \"png\";/* global mpl */\n", + "\n", + "var comm_websocket_adapter = function (comm) {\n", + " // Create a \"websocket\"-like object which calls the given IPython comm\n", + " // object with the appropriate methods. Currently this is a non binary\n", + " // socket, so there is still some room for performance tuning.\n", + " var ws = {};\n", + "\n", + " ws.binaryType = comm.kernel.ws.binaryType;\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " function updateReadyState(_event) {\n", + " if (comm.kernel.ws) {\n", + " ws.readyState = comm.kernel.ws.readyState;\n", + " } else {\n", + " ws.readyState = 3; // Closed state.\n", + " }\n", + " }\n", + " comm.kernel.ws.addEventListener('open', updateReadyState);\n", + " comm.kernel.ws.addEventListener('close', updateReadyState);\n", + " comm.kernel.ws.addEventListener('error', updateReadyState);\n", + "\n", + " ws.close = function () {\n", + " comm.close();\n", + " };\n", + " ws.send = function (m) {\n", + " //console.log('sending', m);\n", + " comm.send(m);\n", + " };\n", + " // Register the callback with on_msg.\n", + " comm.on_msg(function (msg) {\n", + " //console.log('receiving', msg['content']['data'], msg);\n", + " var data = msg['content']['data'];\n", + " if (data['blob'] !== undefined) {\n", + " data = {\n", + " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", + " };\n", + " }\n", + " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", + " ws.onmessage(data);\n", + " });\n", + " return ws;\n", + "};\n", + "\n", + "mpl.mpl_figure_comm = function (comm, msg) {\n", + " // This is the function which gets called when the mpl process\n", + " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", + "\n", + " var id = msg.content.data.id;\n", + " // Get hold of the div created by the display call when the Comm\n", + " // socket was opened in Python.\n", + " var element = document.getElementById(id);\n", + " var ws_proxy = comm_websocket_adapter(comm);\n", + "\n", + " function ondownload(figure, _format) {\n", + " window.open(figure.canvas.toDataURL());\n", + " }\n", + "\n", + " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", + "\n", + " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", + " // web socket which is closed, not our websocket->open comm proxy.\n", + " ws_proxy.onopen();\n", + "\n", + " fig.parent_element = element;\n", + " fig.cell_info = mpl.find_output_cell(\"
\");\n", + " if (!fig.cell_info) {\n", + " console.error('Failed to find cell for figure', id, fig);\n", + " return;\n", + " }\n", + " fig.cell_info[0].output_area.element.on(\n", + " 'cleared',\n", + " { fig: fig },\n", + " fig._remove_fig_handler\n", + " );\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_close = function (fig, msg) {\n", + " var width = fig.canvas.width / fig.ratio;\n", + " fig.cell_info[0].output_area.element.off(\n", + " 'cleared',\n", + " fig._remove_fig_handler\n", + " );\n", + " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", + "\n", + " // Update the output cell to use the data from the current canvas.\n", + " fig.push_to_output();\n", + " var dataURL = fig.canvas.toDataURL();\n", + " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", + " // the notebook keyboard shortcuts fail.\n", + " IPython.keyboard_manager.enable();\n", + " fig.parent_element.innerHTML =\n", + " '';\n", + " fig.close_ws(fig, msg);\n", + "};\n", + "\n", + "mpl.figure.prototype.close_ws = function (fig, msg) {\n", + " fig.send_message('closing', msg);\n", + " // fig.ws.close()\n", + "};\n", + "\n", + "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", + " // Turn the data on the canvas into data in the output cell.\n", + " var width = this.canvas.width / this.ratio;\n", + " var dataURL = this.canvas.toDataURL();\n", + " this.cell_info[1]['text/html'] =\n", + " '';\n", + "};\n", + "\n", + "mpl.figure.prototype.updated_canvas_event = function () {\n", + " // Tell IPython that the notebook contents must change.\n", + " IPython.notebook.set_dirty(true);\n", + " this.send_message('ack', {});\n", + " var fig = this;\n", + " // Wait a second, then push the new image to the DOM so\n", + " // that it is saved nicely (might be nice to debounce this).\n", + " setTimeout(function () {\n", + " fig.push_to_output();\n", + " }, 1000);\n", + "};\n", + "\n", + "mpl.figure.prototype._init_toolbar = function () {\n", + " var fig = this;\n", + "\n", + " var toolbar = document.createElement('div');\n", + " toolbar.classList = 'btn-toolbar';\n", + " this.root.appendChild(toolbar);\n", + "\n", + " function on_click_closure(name) {\n", + " return function (_event) {\n", + " return fig.toolbar_button_onclick(name);\n", + " };\n", + " }\n", + "\n", + " function on_mouseover_closure(tooltip) {\n", + " return function (event) {\n", + " if (!event.currentTarget.disabled) {\n", + " return fig.toolbar_button_onmouseover(tooltip);\n", + " }\n", + " };\n", + " }\n", + "\n", + " fig.buttons = {};\n", + " var buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " var button;\n", + " for (var toolbar_ind in mpl.toolbar_items) {\n", + " var name = mpl.toolbar_items[toolbar_ind][0];\n", + " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", + " var image = mpl.toolbar_items[toolbar_ind][2];\n", + " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", + "\n", + " if (!name) {\n", + " /* Instead of a spacer, we start a new button group. */\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + " buttonGroup = document.createElement('div');\n", + " buttonGroup.classList = 'btn-group';\n", + " continue;\n", + " }\n", + "\n", + " button = fig.buttons[name] = document.createElement('button');\n", + " button.classList = 'btn btn-default';\n", + " button.href = '#';\n", + " button.title = name;\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', on_click_closure(method_name));\n", + " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", + " buttonGroup.appendChild(button);\n", + " }\n", + "\n", + " if (buttonGroup.hasChildNodes()) {\n", + " toolbar.appendChild(buttonGroup);\n", + " }\n", + "\n", + " // Add the status bar.\n", + " var status_bar = document.createElement('span');\n", + " status_bar.classList = 'mpl-message pull-right';\n", + " toolbar.appendChild(status_bar);\n", + " this.message = status_bar;\n", + "\n", + " // Add the close button to the window.\n", + " var buttongrp = document.createElement('div');\n", + " buttongrp.classList = 'btn-group inline pull-right';\n", + " button = document.createElement('button');\n", + " button.classList = 'btn btn-mini btn-primary';\n", + " button.href = '#';\n", + " button.title = 'Stop Interaction';\n", + " button.innerHTML = '';\n", + " button.addEventListener('click', function (_evt) {\n", + " fig.handle_close(fig, {});\n", + " });\n", + " button.addEventListener(\n", + " 'mouseover',\n", + " on_mouseover_closure('Stop Interaction')\n", + " );\n", + " buttongrp.appendChild(button);\n", + " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", + " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", + "};\n", + "\n", + "mpl.figure.prototype._remove_fig_handler = function (event) {\n", + " var fig = event.data.fig;\n", + " if (event.target !== this) {\n", + " // Ignore bubbled events from children.\n", + " return;\n", + " }\n", + " fig.close_ws(fig, {});\n", + "};\n", + "\n", + "mpl.figure.prototype._root_extra_style = function (el) {\n", + " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", + "};\n", + "\n", + "mpl.figure.prototype._canvas_extra_style = function (el) {\n", + " // this is important to make the div 'focusable\n", + " el.setAttribute('tabindex', 0);\n", + " // reach out to IPython and tell the keyboard manager to turn it's self\n", + " // off when our div gets focus\n", + "\n", + " // location in version 3\n", + " if (IPython.notebook.keyboard_manager) {\n", + " IPython.notebook.keyboard_manager.register_events(el);\n", + " } else {\n", + " // location in version 2\n", + " IPython.keyboard_manager.register_events(el);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", + " var manager = IPython.notebook.keyboard_manager;\n", + " if (!manager) {\n", + " manager = IPython.keyboard_manager;\n", + " }\n", + "\n", + " // Check for shift+enter\n", + " if (event.shiftKey && event.which === 13) {\n", + " this.canvas_div.blur();\n", + " // select the cell after this one\n", + " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", + " IPython.notebook.select(index + 1);\n", + " }\n", + "};\n", + "\n", + "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", + " fig.ondownload(fig, null);\n", + "};\n", + "\n", + "mpl.find_output_cell = function (html_output) {\n", + " // Return the cell and output element which can be found *uniquely* in the notebook.\n", + " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", + " // IPython event is triggered only after the cells have been serialised, which for\n", + " // our purposes (turning an active figure into a static one), is too late.\n", + " var cells = IPython.notebook.get_cells();\n", + " var ncells = cells.length;\n", + " for (var i = 0; i < ncells; i++) {\n", + " var cell = cells[i];\n", + " if (cell.cell_type === 'code') {\n", + " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", + " var data = cell.output_area.outputs[j];\n", + " if (data.data) {\n", + " // IPython >= 3 moved mimebundle to data attribute of output\n", + " data = data.data;\n", + " }\n", + " if (data['text/html'] === html_output) {\n", + " return [cell, data, j];\n", + " }\n", + " }\n", + " }\n", + " }\n", + "};\n", + "\n", + "// Register the function which deals with the matplotlib target/channel.\n", + "// The kernel may be null if the page has been refreshed.\n", + "if (IPython.notebook.kernel !== null) {\n", + " IPython.notebook.kernel.comm_manager.register_target(\n", + " 'matplotlib',\n", + " mpl.mpl_figure_comm\n", + " );\n", + "}\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# Compare result of FISTA to Inverse and Backward\n", "rec_fista_arr = fista.get_output().as_array()\n", @@ -468,6 +3555,63 @@ "plot_rpe_3d([rec_im_bck_arr, rec_im_inv_arr, rec_fista_arr], [64, 64], ['Backward', 'Inverse', 'FISTA'])" ] }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PDHG setting up\n", + "PDHG configured\n" + ] + } + ], + "source": [ + "from cil.optimisation.algorithms import PDHG\n", + "from cil.optimisation.functions import L2NormSquared\n", + "\n", + "f = L2NormSquared(b=acq_data)\n", + "pdhg = PDHG(f = f, g = G, operator = E, \n", + " max_iteration = 200,\n", + " update_objective_interval = 1, initial=x_init.fill(0.0))\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Iter Max Iter Time/Iter Objective\n", + " [s] \n", + " 0 200 0.000 3.38655e-02\n", + " 1 200 6.596 3.38655e-02\n", + " 2 200 6.683 1.00340e-01\n", + " 3 200 6.737 2.08889e-01\n" + ] + } + ], + "source": [ + "pdhg.run(verbose=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "rec_fista_arr = pdhg.get_output().as_array()\n", + "\n", + "plot_rpe_3d([rec_im_bck_arr, rec_im_inv_arr, rec_fista_arr], [64, 64], ['Backward', 'Inverse', 'PDHG'])" + ] + }, { "cell_type": "code", "execution_count": null, From fdea931f3eff40ec69b911b912e403b2f73ca115 Mon Sep 17 00:00:00 2001 From: Christoph Kolbitsch Date: Sun, 7 May 2023 19:05:22 +0000 Subject: [PATCH 09/11] GRPE download added --- scripts/download_data.sh | 13 ++++++++++++- 1 file changed, 12 insertions(+), 1 deletion(-) diff --git a/scripts/download_data.sh b/scripts/download_data.sh index ef3a3600..d244f488 100755 --- a/scripts/download_data.sh +++ b/scripts/download_data.sh @@ -166,7 +166,7 @@ then pushd "$DOWNLOAD_DIR" echo Downloading MR data - # Get Zenodo dataset + # Get Zenodo datasets URL=https://zenodo.org/record/2633785/files/ filenameGRAPPA=PTB_ACRPhantom_GRAPPA.zip # (re)download md5 checksum @@ -178,6 +178,17 @@ then pushd "${DATA_PATH}/MR" echo "Unpacking ${filenameGRAPPA}" unzip -o "${DOWNLOAD_DIR}/${filenameGRAPPA}" + + URL=https://zenodo.org/record/7903282/files/ + filenameGRPE=3D_GRPE_no_motion.h5 + # (re)download md5 checksum + echo "82aa7000fb6c1d42f138f81473aa671e ${filenameGRPE}" > "${filenameGRPE}.md5" + download "$filenameGRPE" "$URL" + + filenameGRPE_motion=3D_GRPE_motion.h5 + # (re)download md5 checksum + echo "111cfdb05c2e9d1ef75f69ebe58931ed ${filenameGRPE_motion}" > "${filenameGRPE_motion}.md5" + download "$filenameGRPE_motion" "$URL" popd else echo "MR data NOT downloaded. If you need it, rerun this script with the -h option to get help." From da5602cbc7845295fffd880f949d8eafcbe8f5df Mon Sep 17 00:00:00 2001 From: Christoph Kolbitsch Date: Mon, 8 May 2023 19:58:15 +0000 Subject: [PATCH 10/11] update to new CIL interface --- notebooks/MR/README.md | 6 + .../MR/g_non_cartesian_reconstruction.ipynb | 3255 +---------------- ...r_mcir_grpe.ipynb => h_mr_mcir_grpe.ipynb} | 71 +- 3 files changed, 124 insertions(+), 3208 deletions(-) rename notebooks/MR/{mr_mcir_grpe.ipynb => h_mr_mcir_grpe.ipynb} (93%) diff --git a/notebooks/MR/README.md b/notebooks/MR/README.md index b56badc6..c56002a6 100644 --- a/notebooks/MR/README.md +++ b/notebooks/MR/README.md @@ -19,6 +19,12 @@ Jupyter notebooks for the MR exercises. Recommended order: 3. [f_create_undersampled_kspace](f_create_undersampled_kspace.ipynb) demonstrates a retrospective data under-sampling. +## Advanced topics + +1. [g_non_cartesian_reconstruction](g_non_cartesian_reconstruction.ipynb) shows how to using optimisation approaches from CIL to reconstruct a 3D non-Cartesian dataset acquired with a Golden radial phase encoding trajectory. + +2. [h_mr_mcir_grpe](h_mr_mcir_grpe.ipynb) gives an overview of all necessary steps for a motion corrected MR image reconstruction: obtaingin a motion surrogate to identify which k-space point was acquired in which motion state, reconstructing motion resolved images, estimating non-rigid motion fields describing the spatial transformation between the different motion states and finally utilising these motion fields and motion surrogates to carry out a motion corrected image reconstruction. + ## Feel free to ignore diff --git a/notebooks/MR/g_non_cartesian_reconstruction.ipynb b/notebooks/MR/g_non_cartesian_reconstruction.ipynb index b76a1bdd..4770e117 100644 --- a/notebooks/MR/g_non_cartesian_reconstruction.ipynb +++ b/notebooks/MR/g_non_cartesian_reconstruction.ipynb @@ -1,6 +1,7 @@ { "cells": [ { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -14,16 +15,19 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "First version: 14th of June 2021\n", - "Author: Christoph Kolbitsch\n", + "First version: 14th of June 2021 \n", + "Updated: 8th of May 2023 \n", + "Author: Christoph Kolbitsch \n", + "\n", "\n", "CCP SyneRBI Synergistic Image Reconstruction Framework (SIRF). \n", "Copyright 2015 - 2021 Rutherford Appleton Laboratory STFC. \n", "Copyright 2015 - 2021 University College London. \n", - "Copyright 2015 - 2021 Physikalisch-Technische Bundesanstalt.\n", + "Copyright 2015 - 2023 Physikalisch-Technische Bundesanstalt.\n", "\n", "This is software developed for the Collaborative Computational Project in Synergistic Reconstruction for Biomedical Imaging \n", "(http://www.ccpsynerbi.ac.uk/).\n", @@ -40,6 +44,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -53,6 +58,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -74,6 +80,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -85,6 +92,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -93,20 +101,24 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Make sure figures appears inline and animations works\n", - "%matplotlib notebook\n", + "%matplotlib widget\n", "\n", "# Setup the working directory for the notebook\n", - "import notebook_setup" + "import sys\n", + "sys.path.append('SIRF-Exercises/notebooks/MR')\n", + "import notebook_setup\n", + "from sirf_exercises import cd_to_working_dir\n", + "cd_to_working_dir('MR', 'g_non_cartesian_reconstruction')" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -114,19 +126,17 @@ "\n", "# import engine module\n", "import sirf.Gadgetron as pMR\n", - "from sirf.Utilities import examples_data_path\n", "from sirf_exercises import exercises_data_path\n", "\n", "# import CIL functionality for visualisation and iterative reconstruction\n", "from cil.utilities.jupyter import islicer\n", - "from cil.optimisation.algorithms import FISTA\n", + "from cil.optimisation.algorithms import FISTA, PDHG\n", + "from cil.optimisation.functions import LeastSquares, ZeroFunction, L2NormSquared\n", "from cil.plugins.ccpi_regularisation.functions import FGP_TV\n", - "from cil.optimisation.functions import LeastSquares, ZeroFunction\n", "\n", "# import further modules\n", "import os\n", "import numpy as np\n", - "import time\n", "\n", "import matplotlib.pyplot as plt\n", "import matplotlib.animation as animation\n" @@ -134,7 +144,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -142,14 +152,14 @@ "def plot_rpe_3d(dat, sl_idx, lbl):\n", " fig, ax = plt.subplots(2,len(dat), squeeze=False)\n", " for ind in range(len(dat)):\n", - " ax[0,ind].imshow(np.rot90(np.abs(dat[ind][:, sl_idx[0], :]), 1))\n", + " ax[0,ind].imshow(np.rot90(np.abs(dat[ind][:, sl_idx[0], :]), 1), cmap='inferno')\n", " ax[0,ind].set_xticks([])\n", " ax[0,ind].set_yticks([])\n", " ax[0,ind].set_ylabel('Foot-Head')\n", " ax[0,ind].set_xlabel('Right-Left')\n", " ax[0,ind].set_title(lbl[ind])\n", " \n", - " ax[1,ind].imshow(np.rot90(np.abs(dat[ind][:, :, sl_idx[1]])))\n", + " ax[1,ind].imshow(np.rot90(np.abs(dat[ind][:, :, sl_idx[1]])), cmap='inferno')\n", " ax[1,ind].set_xticks([])\n", " ax[1,ind].set_yticks([])\n", " ax[1,ind].set_ylabel('Anterior-Posterior')\n", @@ -158,6 +168,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -180,33 +191,37 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ - "pname = '/mnt/materials/SIRF/Fully3D/SIRF/'\n", - "fname = 'RPE_MotionPhantom_last40rpe.h5'" + "%%bash \n", + "# Run this script to make sure the data is downloaded.\n", + "#bash ../../scripts/download_data.sh -m" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Load in the data\n", - "acq_data = pMR.AcquisitionData(pname + fname)\n", + "data_path = exercises_data_path('MR')\n", + "filename = os.path.join(data_path, '3D_GRPE_no_motion.h5')\n", + "acq_data = pMR.AcquisitionData(filename)\n", "acq_data.sort_by_time()\n", "\n", "# Here we are cheating a little bit for the moment, because we have pre-processed the file already. \n", "# If we had not done that and would like to load a raw data file directly from the scanner, we would\n", "# have to do:\n", - "# acq_data = pMR.AcquisitionData(pname + fname)\n", + "# acq_data = pMR.AcquisitionData(filename)\n", "# acq_data = pMR.preprocess_acquisition_data(acq_data)\n", "# acq_data = pMR.set_grpe_trajectory(acq_data)" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -217,7 +232,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -225,6 +240,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -233,22 +249,15 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(5760, 2)\n" - ] - } - ], + "outputs": [], "source": [ "print(ktraj.shape)" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -257,22 +266,15 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(5760, 4, 128)\n" - ] - } - ], + "outputs": [], "source": [ "print(acq_data.dimensions())" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -281,1005 +283,9 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.key;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", - " value += 'ctrl+';\n", - " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", - " value += 'alt+';\n", - " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k' + event.key;\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"
\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Visualise trajectory\n", "import matplotlib.animation\n", @@ -1293,10 +299,11 @@ " l.set_data(ktraj[:(num_rpe_lines+1)*144,0], \n", " ktraj[:(num_rpe_lines+1)*144,1])\n", "\n", - "ani = matplotlib.animation.FuncAnimation(fig, animate, frames=ktraj.shape[0]//144) " + "ani = matplotlib.animation.FuncAnimation(fig, animate, frames=ktraj.shape[0]//144) " ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -1304,6 +311,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -1313,7 +321,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1323,6 +331,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -1331,38 +340,9 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "cd523be6ec794b06a16d0abe7b4e36b0", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "interactive(children=(IntSlider(value=2, continuous_update=False, description='X', max=3), FloatRangeSlider(va…" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "application/vnd.jupyter.widget-view+json": { - "model_id": "7172a48ee9664364ad3da3723e0fe4ec", - "version_major": 2, - "version_minor": 0 - }, - "text/plain": [ - "IntSlider(value=2, continuous_update=False, description='X', max=3)" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Let's get the coil maps as a numpy array \n", "vis_dat = np.abs(csm.as_array())\n", @@ -1376,7 +356,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1386,6 +366,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -1401,6 +382,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -1413,7 +395,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1428,1011 +410,16 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.key;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", - " value += 'ctrl+';\n", - " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", - " value += 'alt+';\n", - " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k' + event.key;\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"
\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Compare Backward and Inverse\n", "plot_rpe_3d([rec_im_bck_arr, rec_im_inv_arr], [64, 64], ['Backward', 'Inverse'])" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -2447,6 +434,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -2458,66 +446,9 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FISTA setting up\n", - "FISTA configured\n", - " Iter Max Iter Time/Iter Objective\n", - " [s] \n", - " 0 40 0.000 3.31595e-02\n", - " 1 40 6.761 9.32313e-03\n", - " 2 40 6.751 6.68441e-03\n", - " 3 40 6.755 4.46107e-03\n", - " 4 40 6.692 2.82539e-03\n", - " 5 40 6.671 1.75150e-03\n", - " 6 40 6.666 1.10963e-03\n", - " 7 40 6.710 7.49768e-04\n", - " 8 40 6.725 5.50386e-04\n", - " 9 40 6.731 4.33389e-04\n", - " 10 40 6.739 3.57697e-04\n", - " 11 40 6.746 3.05214e-04\n", - " 12 40 6.769 2.68460e-04\n", - " 13 40 6.770 2.43313e-04\n", - " 14 40 6.772 2.26313e-04\n", - " 15 40 6.775 2.14439e-04\n", - " 16 40 6.784 2.05527e-04\n", - " 17 40 6.778 1.98401e-04\n", - " 18 40 6.774 1.92622e-04\n", - " 19 40 6.773 1.88077e-04\n", - " 20 40 6.770 1.84675e-04\n", - " 21 40 6.753 1.82232e-04\n", - " 22 40 6.757 1.80491e-04\n", - " 23 40 6.753 1.79207e-04\n", - " 24 40 6.748 1.78193e-04\n", - " 25 40 6.754 1.77340e-04\n", - " 26 40 6.767 1.76596e-04\n", - " 27 40 6.763 1.75935e-04\n", - " 28 40 6.753 1.75344e-04\n", - " 29 40 6.746 1.74809e-04\n", - " 30 40 6.747 1.74315e-04\n", - " 31 40 6.757 1.73851e-04\n", - " 32 40 6.763 1.73409e-04\n", - " 33 40 6.763 1.72985e-04\n", - " 34 40 6.766 1.72578e-04\n", - " 35 40 6.766 1.72188e-04\n", - " 36 40 6.769 1.71816e-04\n", - " 37 40 6.770 1.71466e-04\n", - " 38 40 6.773 1.71137e-04\n", - " 39 40 6.779 1.70829e-04\n", - " 40 40 6.778 1.70543e-04\n", - " 41 40 6.778 1.70278e-04\n", - "-------------------------------------------------------\n", - " 41 40 6.778 1.70278e-04\n", - "Stop criterion has been reached.\n", - "\n" - ] - } - ], + "outputs": [], "source": [ "# We set up our AcquisitionModel\n", "E = pMR.AcquisitionModel(acqs=acq_data, imgs=rec_im_inv)\n", @@ -2538,7 +469,7 @@ "\n", "\n", "# Set up FISTA\n", - "fista = FISTA(x_init=x_init, f=f, g=G)\n", + "fista = FISTA(initial=x_init.fill(0.0), f=f, g=G)\n", "fista.max_iteration = 100\n", "fista.update_objective_interval = 5\n", "\n", @@ -2549,1005 +480,9 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "application/javascript": [ - "/* Put everything inside the global mpl namespace */\n", - "/* global mpl */\n", - "window.mpl = {};\n", - "\n", - "mpl.get_websocket_type = function () {\n", - " if (typeof WebSocket !== 'undefined') {\n", - " return WebSocket;\n", - " } else if (typeof MozWebSocket !== 'undefined') {\n", - " return MozWebSocket;\n", - " } else {\n", - " alert(\n", - " 'Your browser does not have WebSocket support. ' +\n", - " 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n", - " 'Firefox 4 and 5 are also supported but you ' +\n", - " 'have to enable WebSockets in about:config.'\n", - " );\n", - " }\n", - "};\n", - "\n", - "mpl.figure = function (figure_id, websocket, ondownload, parent_element) {\n", - " this.id = figure_id;\n", - "\n", - " this.ws = websocket;\n", - "\n", - " this.supports_binary = this.ws.binaryType !== undefined;\n", - "\n", - " if (!this.supports_binary) {\n", - " var warnings = document.getElementById('mpl-warnings');\n", - " if (warnings) {\n", - " warnings.style.display = 'block';\n", - " warnings.textContent =\n", - " 'This browser does not support binary websocket messages. ' +\n", - " 'Performance may be slow.';\n", - " }\n", - " }\n", - "\n", - " this.imageObj = new Image();\n", - "\n", - " this.context = undefined;\n", - " this.message = undefined;\n", - " this.canvas = undefined;\n", - " this.rubberband_canvas = undefined;\n", - " this.rubberband_context = undefined;\n", - " this.format_dropdown = undefined;\n", - "\n", - " this.image_mode = 'full';\n", - "\n", - " this.root = document.createElement('div');\n", - " this.root.setAttribute('style', 'display: inline-block');\n", - " this._root_extra_style(this.root);\n", - "\n", - " parent_element.appendChild(this.root);\n", - "\n", - " this._init_header(this);\n", - " this._init_canvas(this);\n", - " this._init_toolbar(this);\n", - "\n", - " var fig = this;\n", - "\n", - " this.waiting = false;\n", - "\n", - " this.ws.onopen = function () {\n", - " fig.send_message('supports_binary', { value: fig.supports_binary });\n", - " fig.send_message('send_image_mode', {});\n", - " if (fig.ratio !== 1) {\n", - " fig.send_message('set_dpi_ratio', { dpi_ratio: fig.ratio });\n", - " }\n", - " fig.send_message('refresh', {});\n", - " };\n", - "\n", - " this.imageObj.onload = function () {\n", - " if (fig.image_mode === 'full') {\n", - " // Full images could contain transparency (where diff images\n", - " // almost always do), so we need to clear the canvas so that\n", - " // there is no ghosting.\n", - " fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n", - " }\n", - " fig.context.drawImage(fig.imageObj, 0, 0);\n", - " };\n", - "\n", - " this.imageObj.onunload = function () {\n", - " fig.ws.close();\n", - " };\n", - "\n", - " this.ws.onmessage = this._make_on_message_function(this);\n", - "\n", - " this.ondownload = ondownload;\n", - "};\n", - "\n", - "mpl.figure.prototype._init_header = function () {\n", - " var titlebar = document.createElement('div');\n", - " titlebar.classList =\n", - " 'ui-dialog-titlebar ui-widget-header ui-corner-all ui-helper-clearfix';\n", - " var titletext = document.createElement('div');\n", - " titletext.classList = 'ui-dialog-title';\n", - " titletext.setAttribute(\n", - " 'style',\n", - " 'width: 100%; text-align: center; padding: 3px;'\n", - " );\n", - " titlebar.appendChild(titletext);\n", - " this.root.appendChild(titlebar);\n", - " this.header = titletext;\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (_canvas_div) {};\n", - "\n", - "mpl.figure.prototype._init_canvas = function () {\n", - " var fig = this;\n", - "\n", - " var canvas_div = (this.canvas_div = document.createElement('div'));\n", - " canvas_div.setAttribute(\n", - " 'style',\n", - " 'border: 1px solid #ddd;' +\n", - " 'box-sizing: content-box;' +\n", - " 'clear: both;' +\n", - " 'min-height: 1px;' +\n", - " 'min-width: 1px;' +\n", - " 'outline: 0;' +\n", - " 'overflow: hidden;' +\n", - " 'position: relative;' +\n", - " 'resize: both;'\n", - " );\n", - "\n", - " function on_keyboard_event_closure(name) {\n", - " return function (event) {\n", - " return fig.key_event(event, name);\n", - " };\n", - " }\n", - "\n", - " canvas_div.addEventListener(\n", - " 'keydown',\n", - " on_keyboard_event_closure('key_press')\n", - " );\n", - " canvas_div.addEventListener(\n", - " 'keyup',\n", - " on_keyboard_event_closure('key_release')\n", - " );\n", - "\n", - " this._canvas_extra_style(canvas_div);\n", - " this.root.appendChild(canvas_div);\n", - "\n", - " var canvas = (this.canvas = document.createElement('canvas'));\n", - " canvas.classList.add('mpl-canvas');\n", - " canvas.setAttribute('style', 'box-sizing: content-box;');\n", - "\n", - " this.context = canvas.getContext('2d');\n", - "\n", - " var backingStore =\n", - " this.context.backingStorePixelRatio ||\n", - " this.context.webkitBackingStorePixelRatio ||\n", - " this.context.mozBackingStorePixelRatio ||\n", - " this.context.msBackingStorePixelRatio ||\n", - " this.context.oBackingStorePixelRatio ||\n", - " this.context.backingStorePixelRatio ||\n", - " 1;\n", - "\n", - " this.ratio = (window.devicePixelRatio || 1) / backingStore;\n", - "\n", - " var rubberband_canvas = (this.rubberband_canvas = document.createElement(\n", - " 'canvas'\n", - " ));\n", - " rubberband_canvas.setAttribute(\n", - " 'style',\n", - " 'box-sizing: content-box; position: absolute; left: 0; top: 0; z-index: 1;'\n", - " );\n", - "\n", - " // Apply a ponyfill if ResizeObserver is not implemented by browser.\n", - " if (this.ResizeObserver === undefined) {\n", - " if (window.ResizeObserver !== undefined) {\n", - " this.ResizeObserver = window.ResizeObserver;\n", - " } else {\n", - " var obs = _JSXTOOLS_RESIZE_OBSERVER({});\n", - " this.ResizeObserver = obs.ResizeObserver;\n", - " }\n", - " }\n", - "\n", - " this.resizeObserverInstance = new this.ResizeObserver(function (entries) {\n", - " var nentries = entries.length;\n", - " for (var i = 0; i < nentries; i++) {\n", - " var entry = entries[i];\n", - " var width, height;\n", - " if (entry.contentBoxSize) {\n", - " if (entry.contentBoxSize instanceof Array) {\n", - " // Chrome 84 implements new version of spec.\n", - " width = entry.contentBoxSize[0].inlineSize;\n", - " height = entry.contentBoxSize[0].blockSize;\n", - " } else {\n", - " // Firefox implements old version of spec.\n", - " width = entry.contentBoxSize.inlineSize;\n", - " height = entry.contentBoxSize.blockSize;\n", - " }\n", - " } else {\n", - " // Chrome <84 implements even older version of spec.\n", - " width = entry.contentRect.width;\n", - " height = entry.contentRect.height;\n", - " }\n", - "\n", - " // Keep the size of the canvas and rubber band canvas in sync with\n", - " // the canvas container.\n", - " if (entry.devicePixelContentBoxSize) {\n", - " // Chrome 84 implements new version of spec.\n", - " canvas.setAttribute(\n", - " 'width',\n", - " entry.devicePixelContentBoxSize[0].inlineSize\n", - " );\n", - " canvas.setAttribute(\n", - " 'height',\n", - " entry.devicePixelContentBoxSize[0].blockSize\n", - " );\n", - " } else {\n", - " canvas.setAttribute('width', width * fig.ratio);\n", - " canvas.setAttribute('height', height * fig.ratio);\n", - " }\n", - " canvas.setAttribute(\n", - " 'style',\n", - " 'width: ' + width + 'px; height: ' + height + 'px;'\n", - " );\n", - "\n", - " rubberband_canvas.setAttribute('width', width);\n", - " rubberband_canvas.setAttribute('height', height);\n", - "\n", - " // And update the size in Python. We ignore the initial 0/0 size\n", - " // that occurs as the element is placed into the DOM, which should\n", - " // otherwise not happen due to the minimum size styling.\n", - " if (fig.ws.readyState == 1 && width != 0 && height != 0) {\n", - " fig.request_resize(width, height);\n", - " }\n", - " }\n", - " });\n", - " this.resizeObserverInstance.observe(canvas_div);\n", - "\n", - " function on_mouse_event_closure(name) {\n", - " return function (event) {\n", - " return fig.mouse_event(event, name);\n", - " };\n", - " }\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mousedown',\n", - " on_mouse_event_closure('button_press')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseup',\n", - " on_mouse_event_closure('button_release')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'dblclick',\n", - " on_mouse_event_closure('dblclick')\n", - " );\n", - " // Throttle sequential mouse events to 1 every 20ms.\n", - " rubberband_canvas.addEventListener(\n", - " 'mousemove',\n", - " on_mouse_event_closure('motion_notify')\n", - " );\n", - "\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseenter',\n", - " on_mouse_event_closure('figure_enter')\n", - " );\n", - " rubberband_canvas.addEventListener(\n", - " 'mouseleave',\n", - " on_mouse_event_closure('figure_leave')\n", - " );\n", - "\n", - " canvas_div.addEventListener('wheel', function (event) {\n", - " if (event.deltaY < 0) {\n", - " event.step = 1;\n", - " } else {\n", - " event.step = -1;\n", - " }\n", - " on_mouse_event_closure('scroll')(event);\n", - " });\n", - "\n", - " canvas_div.appendChild(canvas);\n", - " canvas_div.appendChild(rubberband_canvas);\n", - "\n", - " this.rubberband_context = rubberband_canvas.getContext('2d');\n", - " this.rubberband_context.strokeStyle = '#000000';\n", - "\n", - " this._resize_canvas = function (width, height, forward) {\n", - " if (forward) {\n", - " canvas_div.style.width = width + 'px';\n", - " canvas_div.style.height = height + 'px';\n", - " }\n", - " };\n", - "\n", - " // Disable right mouse context menu.\n", - " this.rubberband_canvas.addEventListener('contextmenu', function (_e) {\n", - " event.preventDefault();\n", - " return false;\n", - " });\n", - "\n", - " function set_focus() {\n", - " canvas.focus();\n", - " canvas_div.focus();\n", - " }\n", - "\n", - " window.setTimeout(set_focus, 100);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'mpl-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'mpl-button-group';\n", - " continue;\n", - " }\n", - "\n", - " var button = (fig.buttons[name] = document.createElement('button'));\n", - " button.classList = 'mpl-widget';\n", - " button.setAttribute('role', 'button');\n", - " button.setAttribute('aria-disabled', 'false');\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - "\n", - " var icon_img = document.createElement('img');\n", - " icon_img.src = '_images/' + image + '.png';\n", - " icon_img.srcset = '_images/' + image + '_large.png 2x';\n", - " icon_img.alt = tooltip;\n", - " button.appendChild(icon_img);\n", - "\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " var fmt_picker = document.createElement('select');\n", - " fmt_picker.classList = 'mpl-widget';\n", - " toolbar.appendChild(fmt_picker);\n", - " this.format_dropdown = fmt_picker;\n", - "\n", - " for (var ind in mpl.extensions) {\n", - " var fmt = mpl.extensions[ind];\n", - " var option = document.createElement('option');\n", - " option.selected = fmt === mpl.default_extension;\n", - " option.innerHTML = fmt;\n", - " fmt_picker.appendChild(option);\n", - " }\n", - "\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "};\n", - "\n", - "mpl.figure.prototype.request_resize = function (x_pixels, y_pixels) {\n", - " // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n", - " // which will in turn request a refresh of the image.\n", - " this.send_message('resize', { width: x_pixels, height: y_pixels });\n", - "};\n", - "\n", - "mpl.figure.prototype.send_message = function (type, properties) {\n", - " properties['type'] = type;\n", - " properties['figure_id'] = this.id;\n", - " this.ws.send(JSON.stringify(properties));\n", - "};\n", - "\n", - "mpl.figure.prototype.send_draw_message = function () {\n", - " if (!this.waiting) {\n", - " this.waiting = true;\n", - " this.ws.send(JSON.stringify({ type: 'draw', figure_id: this.id }));\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " var format_dropdown = fig.format_dropdown;\n", - " var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n", - " fig.ondownload(fig, format);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_resize = function (fig, msg) {\n", - " var size = msg['size'];\n", - " if (size[0] !== fig.canvas.width || size[1] !== fig.canvas.height) {\n", - " fig._resize_canvas(size[0], size[1], msg['forward']);\n", - " fig.send_message('refresh', {});\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_rubberband = function (fig, msg) {\n", - " var x0 = msg['x0'] / fig.ratio;\n", - " var y0 = (fig.canvas.height - msg['y0']) / fig.ratio;\n", - " var x1 = msg['x1'] / fig.ratio;\n", - " var y1 = (fig.canvas.height - msg['y1']) / fig.ratio;\n", - " x0 = Math.floor(x0) + 0.5;\n", - " y0 = Math.floor(y0) + 0.5;\n", - " x1 = Math.floor(x1) + 0.5;\n", - " y1 = Math.floor(y1) + 0.5;\n", - " var min_x = Math.min(x0, x1);\n", - " var min_y = Math.min(y0, y1);\n", - " var width = Math.abs(x1 - x0);\n", - " var height = Math.abs(y1 - y0);\n", - "\n", - " fig.rubberband_context.clearRect(\n", - " 0,\n", - " 0,\n", - " fig.canvas.width / fig.ratio,\n", - " fig.canvas.height / fig.ratio\n", - " );\n", - "\n", - " fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_figure_label = function (fig, msg) {\n", - " // Updates the figure title.\n", - " fig.header.textContent = msg['label'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_cursor = function (fig, msg) {\n", - " var cursor = msg['cursor'];\n", - " switch (cursor) {\n", - " case 0:\n", - " cursor = 'pointer';\n", - " break;\n", - " case 1:\n", - " cursor = 'default';\n", - " break;\n", - " case 2:\n", - " cursor = 'crosshair';\n", - " break;\n", - " case 3:\n", - " cursor = 'move';\n", - " break;\n", - " }\n", - " fig.rubberband_canvas.style.cursor = cursor;\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_message = function (fig, msg) {\n", - " fig.message.textContent = msg['message'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_draw = function (fig, _msg) {\n", - " // Request the server to send over a new figure.\n", - " fig.send_draw_message();\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_image_mode = function (fig, msg) {\n", - " fig.image_mode = msg['mode'];\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_history_buttons = function (fig, msg) {\n", - " for (var key in msg) {\n", - " if (!(key in fig.buttons)) {\n", - " continue;\n", - " }\n", - " fig.buttons[key].disabled = !msg[key];\n", - " fig.buttons[key].setAttribute('aria-disabled', !msg[key]);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_navigate_mode = function (fig, msg) {\n", - " if (msg['mode'] === 'PAN') {\n", - " fig.buttons['Pan'].classList.add('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " } else if (msg['mode'] === 'ZOOM') {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.add('active');\n", - " } else {\n", - " fig.buttons['Pan'].classList.remove('active');\n", - " fig.buttons['Zoom'].classList.remove('active');\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Called whenever the canvas gets updated.\n", - " this.send_message('ack', {});\n", - "};\n", - "\n", - "// A function to construct a web socket function for onmessage handling.\n", - "// Called in the figure constructor.\n", - "mpl.figure.prototype._make_on_message_function = function (fig) {\n", - " return function socket_on_message(evt) {\n", - " if (evt.data instanceof Blob) {\n", - " var img = evt.data;\n", - " if (img.type !== 'image/png') {\n", - " /* FIXME: We get \"Resource interpreted as Image but\n", - " * transferred with MIME type text/plain:\" errors on\n", - " * Chrome. But how to set the MIME type? It doesn't seem\n", - " * to be part of the websocket stream */\n", - " img.type = 'image/png';\n", - " }\n", - "\n", - " /* Free the memory for the previous frames */\n", - " if (fig.imageObj.src) {\n", - " (window.URL || window.webkitURL).revokeObjectURL(\n", - " fig.imageObj.src\n", - " );\n", - " }\n", - "\n", - " fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n", - " img\n", - " );\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " } else if (\n", - " typeof evt.data === 'string' &&\n", - " evt.data.slice(0, 21) === 'data:image/png;base64'\n", - " ) {\n", - " fig.imageObj.src = evt.data;\n", - " fig.updated_canvas_event();\n", - " fig.waiting = false;\n", - " return;\n", - " }\n", - "\n", - " var msg = JSON.parse(evt.data);\n", - " var msg_type = msg['type'];\n", - "\n", - " // Call the \"handle_{type}\" callback, which takes\n", - " // the figure and JSON message as its only arguments.\n", - " try {\n", - " var callback = fig['handle_' + msg_type];\n", - " } catch (e) {\n", - " console.log(\n", - " \"No handler for the '\" + msg_type + \"' message type: \",\n", - " msg\n", - " );\n", - " return;\n", - " }\n", - "\n", - " if (callback) {\n", - " try {\n", - " // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n", - " callback(fig, msg);\n", - " } catch (e) {\n", - " console.log(\n", - " \"Exception inside the 'handler_\" + msg_type + \"' callback:\",\n", - " e,\n", - " e.stack,\n", - " msg\n", - " );\n", - " }\n", - " }\n", - " };\n", - "};\n", - "\n", - "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n", - "mpl.findpos = function (e) {\n", - " //this section is from http://www.quirksmode.org/js/events_properties.html\n", - " var targ;\n", - " if (!e) {\n", - " e = window.event;\n", - " }\n", - " if (e.target) {\n", - " targ = e.target;\n", - " } else if (e.srcElement) {\n", - " targ = e.srcElement;\n", - " }\n", - " if (targ.nodeType === 3) {\n", - " // defeat Safari bug\n", - " targ = targ.parentNode;\n", - " }\n", - "\n", - " // pageX,Y are the mouse positions relative to the document\n", - " var boundingRect = targ.getBoundingClientRect();\n", - " var x = e.pageX - (boundingRect.left + document.body.scrollLeft);\n", - " var y = e.pageY - (boundingRect.top + document.body.scrollTop);\n", - "\n", - " return { x: x, y: y };\n", - "};\n", - "\n", - "/*\n", - " * return a copy of an object with only non-object keys\n", - " * we need this to avoid circular references\n", - " * http://stackoverflow.com/a/24161582/3208463\n", - " */\n", - "function simpleKeys(original) {\n", - " return Object.keys(original).reduce(function (obj, key) {\n", - " if (typeof original[key] !== 'object') {\n", - " obj[key] = original[key];\n", - " }\n", - " return obj;\n", - " }, {});\n", - "}\n", - "\n", - "mpl.figure.prototype.mouse_event = function (event, name) {\n", - " var canvas_pos = mpl.findpos(event);\n", - "\n", - " if (name === 'button_press') {\n", - " this.canvas.focus();\n", - " this.canvas_div.focus();\n", - " }\n", - "\n", - " var x = canvas_pos.x * this.ratio;\n", - " var y = canvas_pos.y * this.ratio;\n", - "\n", - " this.send_message(name, {\n", - " x: x,\n", - " y: y,\n", - " button: event.button,\n", - " step: event.step,\n", - " guiEvent: simpleKeys(event),\n", - " });\n", - "\n", - " /* This prevents the web browser from automatically changing to\n", - " * the text insertion cursor when the button is pressed. We want\n", - " * to control all of the cursor setting manually through the\n", - " * 'cursor' event from matplotlib */\n", - " event.preventDefault();\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (_event, _name) {\n", - " // Handle any extra behaviour associated with a key event\n", - "};\n", - "\n", - "mpl.figure.prototype.key_event = function (event, name) {\n", - " // Prevent repeat events\n", - " if (name === 'key_press') {\n", - " if (event.key === this._key) {\n", - " return;\n", - " } else {\n", - " this._key = event.key;\n", - " }\n", - " }\n", - " if (name === 'key_release') {\n", - " this._key = null;\n", - " }\n", - "\n", - " var value = '';\n", - " if (event.ctrlKey && event.key !== 'Control') {\n", - " value += 'ctrl+';\n", - " }\n", - " else if (event.altKey && event.key !== 'Alt') {\n", - " value += 'alt+';\n", - " }\n", - " else if (event.shiftKey && event.key !== 'Shift') {\n", - " value += 'shift+';\n", - " }\n", - "\n", - " value += 'k' + event.key;\n", - "\n", - " this._key_event_extra(event, name);\n", - "\n", - " this.send_message(name, { key: value, guiEvent: simpleKeys(event) });\n", - " return false;\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onclick = function (name) {\n", - " if (name === 'download') {\n", - " this.handle_save(this, null);\n", - " } else {\n", - " this.send_message('toolbar_button', { name: name });\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.toolbar_button_onmouseover = function (tooltip) {\n", - " this.message.textContent = tooltip;\n", - "};\n", - "\n", - "///////////////// REMAINING CONTENT GENERATED BY embed_js.py /////////////////\n", - "// prettier-ignore\n", - "var _JSXTOOLS_RESIZE_OBSERVER=function(A){var t,i=new WeakMap,n=new WeakMap,a=new WeakMap,r=new WeakMap,o=new Set;function s(e){if(!(this instanceof s))throw new TypeError(\"Constructor requires 'new' operator\");i.set(this,e)}function h(){throw new TypeError(\"Function is not a constructor\")}function c(e,t,i,n){e=0 in arguments?Number(arguments[0]):0,t=1 in arguments?Number(arguments[1]):0,i=2 in arguments?Number(arguments[2]):0,n=3 in arguments?Number(arguments[3]):0,this.right=(this.x=this.left=e)+(this.width=i),this.bottom=(this.y=this.top=t)+(this.height=n),Object.freeze(this)}function d(){t=requestAnimationFrame(d);var s=new WeakMap,p=new Set;o.forEach((function(t){r.get(t).forEach((function(i){var r=t instanceof window.SVGElement,o=a.get(t),d=r?0:parseFloat(o.paddingTop),f=r?0:parseFloat(o.paddingRight),l=r?0:parseFloat(o.paddingBottom),u=r?0:parseFloat(o.paddingLeft),g=r?0:parseFloat(o.borderTopWidth),m=r?0:parseFloat(o.borderRightWidth),w=r?0:parseFloat(o.borderBottomWidth),b=u+f,F=d+l,v=(r?0:parseFloat(o.borderLeftWidth))+m,W=g+w,y=r?0:t.offsetHeight-W-t.clientHeight,E=r?0:t.offsetWidth-v-t.clientWidth,R=b+v,z=F+W,M=r?t.width:parseFloat(o.width)-R-E,O=r?t.height:parseFloat(o.height)-z-y;if(n.has(t)){var k=n.get(t);if(k[0]===M&&k[1]===O)return}n.set(t,[M,O]);var S=Object.create(h.prototype);S.target=t,S.contentRect=new c(u,d,M,O),s.has(i)||(s.set(i,[]),p.add(i)),s.get(i).push(S)}))})),p.forEach((function(e){i.get(e).call(e,s.get(e),e)}))}return s.prototype.observe=function(i){if(i instanceof window.Element){r.has(i)||(r.set(i,new Set),o.add(i),a.set(i,window.getComputedStyle(i)));var n=r.get(i);n.has(this)||n.add(this),cancelAnimationFrame(t),t=requestAnimationFrame(d)}},s.prototype.unobserve=function(i){if(i instanceof window.Element&&r.has(i)){var n=r.get(i);n.has(this)&&(n.delete(this),n.size||(r.delete(i),o.delete(i))),n.size||r.delete(i),o.size||cancelAnimationFrame(t)}},A.DOMRectReadOnly=c,A.ResizeObserver=s,A.ResizeObserverEntry=h,A}; // eslint-disable-line\n", - "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Left button pans, Right button zooms\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\\nx/y fixes axis, CTRL fixes aspect\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n", - "\n", - "mpl.extensions = [\"eps\", \"jpeg\", \"pgf\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n", - "\n", - "mpl.default_extension = \"png\";/* global mpl */\n", - "\n", - "var comm_websocket_adapter = function (comm) {\n", - " // Create a \"websocket\"-like object which calls the given IPython comm\n", - " // object with the appropriate methods. Currently this is a non binary\n", - " // socket, so there is still some room for performance tuning.\n", - " var ws = {};\n", - "\n", - " ws.binaryType = comm.kernel.ws.binaryType;\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " function updateReadyState(_event) {\n", - " if (comm.kernel.ws) {\n", - " ws.readyState = comm.kernel.ws.readyState;\n", - " } else {\n", - " ws.readyState = 3; // Closed state.\n", - " }\n", - " }\n", - " comm.kernel.ws.addEventListener('open', updateReadyState);\n", - " comm.kernel.ws.addEventListener('close', updateReadyState);\n", - " comm.kernel.ws.addEventListener('error', updateReadyState);\n", - "\n", - " ws.close = function () {\n", - " comm.close();\n", - " };\n", - " ws.send = function (m) {\n", - " //console.log('sending', m);\n", - " comm.send(m);\n", - " };\n", - " // Register the callback with on_msg.\n", - " comm.on_msg(function (msg) {\n", - " //console.log('receiving', msg['content']['data'], msg);\n", - " var data = msg['content']['data'];\n", - " if (data['blob'] !== undefined) {\n", - " data = {\n", - " data: new Blob(msg['buffers'], { type: data['blob'] }),\n", - " };\n", - " }\n", - " // Pass the mpl event to the overridden (by mpl) onmessage function.\n", - " ws.onmessage(data);\n", - " });\n", - " return ws;\n", - "};\n", - "\n", - "mpl.mpl_figure_comm = function (comm, msg) {\n", - " // This is the function which gets called when the mpl process\n", - " // starts-up an IPython Comm through the \"matplotlib\" channel.\n", - "\n", - " var id = msg.content.data.id;\n", - " // Get hold of the div created by the display call when the Comm\n", - " // socket was opened in Python.\n", - " var element = document.getElementById(id);\n", - " var ws_proxy = comm_websocket_adapter(comm);\n", - "\n", - " function ondownload(figure, _format) {\n", - " window.open(figure.canvas.toDataURL());\n", - " }\n", - "\n", - " var fig = new mpl.figure(id, ws_proxy, ondownload, element);\n", - "\n", - " // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n", - " // web socket which is closed, not our websocket->open comm proxy.\n", - " ws_proxy.onopen();\n", - "\n", - " fig.parent_element = element;\n", - " fig.cell_info = mpl.find_output_cell(\"
\");\n", - " if (!fig.cell_info) {\n", - " console.error('Failed to find cell for figure', id, fig);\n", - " return;\n", - " }\n", - " fig.cell_info[0].output_area.element.on(\n", - " 'cleared',\n", - " { fig: fig },\n", - " fig._remove_fig_handler\n", - " );\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_close = function (fig, msg) {\n", - " var width = fig.canvas.width / fig.ratio;\n", - " fig.cell_info[0].output_area.element.off(\n", - " 'cleared',\n", - " fig._remove_fig_handler\n", - " );\n", - " fig.resizeObserverInstance.unobserve(fig.canvas_div);\n", - "\n", - " // Update the output cell to use the data from the current canvas.\n", - " fig.push_to_output();\n", - " var dataURL = fig.canvas.toDataURL();\n", - " // Re-enable the keyboard manager in IPython - without this line, in FF,\n", - " // the notebook keyboard shortcuts fail.\n", - " IPython.keyboard_manager.enable();\n", - " fig.parent_element.innerHTML =\n", - " '';\n", - " fig.close_ws(fig, msg);\n", - "};\n", - "\n", - "mpl.figure.prototype.close_ws = function (fig, msg) {\n", - " fig.send_message('closing', msg);\n", - " // fig.ws.close()\n", - "};\n", - "\n", - "mpl.figure.prototype.push_to_output = function (_remove_interactive) {\n", - " // Turn the data on the canvas into data in the output cell.\n", - " var width = this.canvas.width / this.ratio;\n", - " var dataURL = this.canvas.toDataURL();\n", - " this.cell_info[1]['text/html'] =\n", - " '';\n", - "};\n", - "\n", - "mpl.figure.prototype.updated_canvas_event = function () {\n", - " // Tell IPython that the notebook contents must change.\n", - " IPython.notebook.set_dirty(true);\n", - " this.send_message('ack', {});\n", - " var fig = this;\n", - " // Wait a second, then push the new image to the DOM so\n", - " // that it is saved nicely (might be nice to debounce this).\n", - " setTimeout(function () {\n", - " fig.push_to_output();\n", - " }, 1000);\n", - "};\n", - "\n", - "mpl.figure.prototype._init_toolbar = function () {\n", - " var fig = this;\n", - "\n", - " var toolbar = document.createElement('div');\n", - " toolbar.classList = 'btn-toolbar';\n", - " this.root.appendChild(toolbar);\n", - "\n", - " function on_click_closure(name) {\n", - " return function (_event) {\n", - " return fig.toolbar_button_onclick(name);\n", - " };\n", - " }\n", - "\n", - " function on_mouseover_closure(tooltip) {\n", - " return function (event) {\n", - " if (!event.currentTarget.disabled) {\n", - " return fig.toolbar_button_onmouseover(tooltip);\n", - " }\n", - " };\n", - " }\n", - "\n", - " fig.buttons = {};\n", - " var buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " var button;\n", - " for (var toolbar_ind in mpl.toolbar_items) {\n", - " var name = mpl.toolbar_items[toolbar_ind][0];\n", - " var tooltip = mpl.toolbar_items[toolbar_ind][1];\n", - " var image = mpl.toolbar_items[toolbar_ind][2];\n", - " var method_name = mpl.toolbar_items[toolbar_ind][3];\n", - "\n", - " if (!name) {\n", - " /* Instead of a spacer, we start a new button group. */\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - " buttonGroup = document.createElement('div');\n", - " buttonGroup.classList = 'btn-group';\n", - " continue;\n", - " }\n", - "\n", - " button = fig.buttons[name] = document.createElement('button');\n", - " button.classList = 'btn btn-default';\n", - " button.href = '#';\n", - " button.title = name;\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', on_click_closure(method_name));\n", - " button.addEventListener('mouseover', on_mouseover_closure(tooltip));\n", - " buttonGroup.appendChild(button);\n", - " }\n", - "\n", - " if (buttonGroup.hasChildNodes()) {\n", - " toolbar.appendChild(buttonGroup);\n", - " }\n", - "\n", - " // Add the status bar.\n", - " var status_bar = document.createElement('span');\n", - " status_bar.classList = 'mpl-message pull-right';\n", - " toolbar.appendChild(status_bar);\n", - " this.message = status_bar;\n", - "\n", - " // Add the close button to the window.\n", - " var buttongrp = document.createElement('div');\n", - " buttongrp.classList = 'btn-group inline pull-right';\n", - " button = document.createElement('button');\n", - " button.classList = 'btn btn-mini btn-primary';\n", - " button.href = '#';\n", - " button.title = 'Stop Interaction';\n", - " button.innerHTML = '';\n", - " button.addEventListener('click', function (_evt) {\n", - " fig.handle_close(fig, {});\n", - " });\n", - " button.addEventListener(\n", - " 'mouseover',\n", - " on_mouseover_closure('Stop Interaction')\n", - " );\n", - " buttongrp.appendChild(button);\n", - " var titlebar = this.root.querySelector('.ui-dialog-titlebar');\n", - " titlebar.insertBefore(buttongrp, titlebar.firstChild);\n", - "};\n", - "\n", - "mpl.figure.prototype._remove_fig_handler = function (event) {\n", - " var fig = event.data.fig;\n", - " if (event.target !== this) {\n", - " // Ignore bubbled events from children.\n", - " return;\n", - " }\n", - " fig.close_ws(fig, {});\n", - "};\n", - "\n", - "mpl.figure.prototype._root_extra_style = function (el) {\n", - " el.style.boxSizing = 'content-box'; // override notebook setting of border-box.\n", - "};\n", - "\n", - "mpl.figure.prototype._canvas_extra_style = function (el) {\n", - " // this is important to make the div 'focusable\n", - " el.setAttribute('tabindex', 0);\n", - " // reach out to IPython and tell the keyboard manager to turn it's self\n", - " // off when our div gets focus\n", - "\n", - " // location in version 3\n", - " if (IPython.notebook.keyboard_manager) {\n", - " IPython.notebook.keyboard_manager.register_events(el);\n", - " } else {\n", - " // location in version 2\n", - " IPython.keyboard_manager.register_events(el);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype._key_event_extra = function (event, _name) {\n", - " var manager = IPython.notebook.keyboard_manager;\n", - " if (!manager) {\n", - " manager = IPython.keyboard_manager;\n", - " }\n", - "\n", - " // Check for shift+enter\n", - " if (event.shiftKey && event.which === 13) {\n", - " this.canvas_div.blur();\n", - " // select the cell after this one\n", - " var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n", - " IPython.notebook.select(index + 1);\n", - " }\n", - "};\n", - "\n", - "mpl.figure.prototype.handle_save = function (fig, _msg) {\n", - " fig.ondownload(fig, null);\n", - "};\n", - "\n", - "mpl.find_output_cell = function (html_output) {\n", - " // Return the cell and output element which can be found *uniquely* in the notebook.\n", - " // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n", - " // IPython event is triggered only after the cells have been serialised, which for\n", - " // our purposes (turning an active figure into a static one), is too late.\n", - " var cells = IPython.notebook.get_cells();\n", - " var ncells = cells.length;\n", - " for (var i = 0; i < ncells; i++) {\n", - " var cell = cells[i];\n", - " if (cell.cell_type === 'code') {\n", - " for (var j = 0; j < cell.output_area.outputs.length; j++) {\n", - " var data = cell.output_area.outputs[j];\n", - " if (data.data) {\n", - " // IPython >= 3 moved mimebundle to data attribute of output\n", - " data = data.data;\n", - " }\n", - " if (data['text/html'] === html_output) {\n", - " return [cell, data, j];\n", - " }\n", - " }\n", - " }\n", - " }\n", - "};\n", - "\n", - "// Register the function which deals with the matplotlib target/channel.\n", - "// The kernel may be null if the page has been refreshed.\n", - "if (IPython.notebook.kernel !== null) {\n", - " IPython.notebook.kernel.comm_manager.register_target(\n", - " 'matplotlib',\n", - " mpl.mpl_figure_comm\n", - " );\n", - "}\n" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "" - ], - "text/plain": [ - "" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "# Compare result of FISTA to Inverse and Backward\n", "rec_fista_arr = fista.get_output().as_array()\n", @@ -3557,48 +492,16 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PDHG setting up\n", - "PDHG configured\n" - ] - } - ], + "outputs": [], "source": [ - "from cil.optimisation.algorithms import PDHG\n", - "from cil.optimisation.functions import L2NormSquared\n", - "\n", "f = L2NormSquared(b=acq_data)\n", "pdhg = PDHG(f = f, g = G, operator = E, \n", - " max_iteration = 200,\n", - " update_objective_interval = 1, initial=x_init.fill(0.0))\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " Iter Max Iter Time/Iter Objective\n", - " [s] \n", - " 0 200 0.000 3.38655e-02\n", - " 1 200 6.596 3.38655e-02\n", - " 2 200 6.683 1.00340e-01\n", - " 3 200 6.737 2.08889e-01\n" - ] - } - ], - "source": [ - "pdhg.run(verbose=True)" + " max_iteration = 100,\n", + " update_objective_interval = 1, initial=x_init.fill(0.0))\n", + "\n", + "pdhg.run(10, verbose=True)\n" ] }, { @@ -3607,22 +510,16 @@ "metadata": {}, "outputs": [], "source": [ - "rec_fista_arr = pdhg.get_output().as_array()\n", + "# Compare result of PDHG to Inverse, Backward and FISTA\n", + "rec_pdhg_arr = pdhg.get_output().as_array()\n", "\n", - "plot_rpe_3d([rec_im_bck_arr, rec_im_inv_arr, rec_fista_arr], [64, 64], ['Backward', 'Inverse', 'PDHG'])" + "plot_rpe_3d([rec_im_bck_arr, rec_im_inv_arr, rec_fista_arr, rec_pdhg_arr], [64, 64], ['Backward', 'Inverse', 'FISTA', 'PDHG'])" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -3636,7 +533,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.9.16" } }, "nbformat": 4, diff --git a/notebooks/MR/mr_mcir_grpe.ipynb b/notebooks/MR/h_mr_mcir_grpe.ipynb similarity index 93% rename from notebooks/MR/mr_mcir_grpe.ipynb rename to notebooks/MR/h_mr_mcir_grpe.ipynb index 4534b7ff..71a4c514 100755 --- a/notebooks/MR/mr_mcir_grpe.ipynb +++ b/notebooks/MR/h_mr_mcir_grpe.ipynb @@ -1,6 +1,7 @@ { "cells": [ { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -14,16 +15,18 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ - "First version: 14th of June 2021\n", - "Author: Christoph Kolbitsch\n", + "First version: 14th of June 2021 \n", + "Updated: 8th of May 2023 \n", + "Author: Christoph Kolbitsch \n", "\n", "CCP SyneRBI Synergistic Image Reconstruction Framework (SIRF). \n", "Copyright 2015 - 2021 Rutherford Appleton Laboratory STFC. \n", "Copyright 2015 - 2021 University College London. \n", - "Copyright 2015 - 2021 Physikalisch-Technische Bundesanstalt.\n", + "Copyright 2015 - 2023 Physikalisch-Technische Bundesanstalt.\n", "\n", "This is software developed for the Collaborative Computational Project in Synergistic Reconstruction for Biomedical Imaging \n", "(http://www.ccpsynerbi.ac.uk/).\n", @@ -46,10 +49,14 @@ "outputs": [], "source": [ "# Make sure figures appears inline and animations works\n", - "%matplotlib notebook\n", + "%matplotlib widget\n", "\n", "# Setup the working directory for the notebook\n", - "import notebook_setup" + "import sys\n", + "sys.path.append('SIRF-Exercises/notebooks/MR')\n", + "import notebook_setup\n", + "from sirf_exercises import cd_to_working_dir\n", + "cd_to_working_dir('MR', 'h_mr_mcir_grpe')" ] }, { @@ -62,15 +69,13 @@ "\n", "# import engine module\n", "import sirf.Gadgetron as pMR\n", - "from sirf.Utilities import examples_data_path\n", - "from sirf_exercises import exercises_data_path\n", "import sirf.Reg as pReg\n", "\n", "\n", - "from cil.framework import AcquisitionGeometry, BlockDataContainer, BlockGeometry\n", - "from cil.optimisation.functions import Function, OperatorCompositionFunction, SmoothMixedL21Norm, L1Norm, L2NormSquared, BlockFunction, MixedL21Norm, IndicatorBox, TotalVariation, LeastSquares, ZeroFunction\n", - "from cil.optimisation.operators import GradientOperator, BlockOperator, ZeroOperator, CompositionOperator,LinearOperator\n", - "from cil.optimisation.algorithms import PDHG, FISTA, GD\n", + "from cil.framework import BlockDataContainer\n", + "from cil.optimisation.functions import LeastSquares, ZeroFunction\n", + "from cil.optimisation.operators import BlockOperator, CompositionOperator\n", + "from cil.optimisation.algorithms import FISTA\n", "from cil.plugins.ccpi_regularisation.functions import FGP_TV\n", "\n", "# import further modules\n", @@ -110,6 +115,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -122,8 +128,9 @@ "metadata": {}, "outputs": [], "source": [ - "pname = '/mnt/materials/SIRF/Fully3D/SIRF/'\n", - "fname = 'RPE_MotionPhantom_first70rpe.h5'" + "%%bash \n", + "# Run this script to make sure the data is downloaded.\n", + "#bash ../../scripts/download_data.sh -m" ] }, { @@ -133,7 +140,9 @@ "outputs": [], "source": [ "# Load in the data\n", - "acq_data = pMR.AcquisitionData(pname + fname)\n", + "data_path = exercises_data_path('MR')\n", + "filename = os.path.join(data_path, '3D_GRPE_motion.h5')\n", + "acq_data = pMR.AcquisitionData(filename)\n", "acq_data.sort_by_time()\n", "\n", "# Here we are cheating a little bit for the moment, because we have pre-processed the file already. \n", @@ -145,6 +154,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -190,6 +200,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -214,7 +225,7 @@ "G = ZeroFunction()\n", "\n", "# Set up FISTA for least squares\n", - "fista = FISTA(x_init=x_init, f=f, g=G)\n", + "fista = FISTA(initial=x_init, f=f, g=G)\n", "fista.max_iteration = 100\n", "fista.update_objective_interval = 5\n", "\n", @@ -236,6 +247,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -282,6 +294,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -358,6 +371,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -378,16 +392,7 @@ "\n", "for ind in range(Nms):\n", " \n", - " if True:\n", - " acq_ms[ind] = acq_data.new_acquisition_data(empty=True)\n", - "\n", - " # Add motion resolved data\n", - " for jnd in range(len(acq_idx_ms[ind])):\n", - " cacq = acq_data.acquisition(acq_idx_ms[ind][jnd])\n", - " acq_ms[ind].append_acquisition(cacq)\n", - " else:\n", - " acq_ms[ind] = acq_data.get_subset(acq_idx_ms[ind])\n", - " \n", + " acq_ms[ind] = acq_data.get_subset(acq_idx_ms[ind])\n", " acq_ms[ind].sort_by_time()\n", " \n", " # Create acquisition model\n", @@ -400,6 +405,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -425,7 +431,7 @@ " G = ZeroFunction()\n", "\n", " # Set up FISTA for least squares\n", - " fista = FISTA(x_init=x_init, f=f, g=G)\n", + " fista = FISTA(initial=x_init, f=f, g=G)\n", " fista.max_iteration = 100\n", " fista.update_objective_interval = 5\n", "\n", @@ -458,6 +464,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -481,6 +488,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -534,6 +542,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -561,6 +570,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -591,6 +601,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -623,7 +634,7 @@ "G = ZeroFunction()\n", "\n", "# Set up FISTA for least squares\n", - "fista = FISTA(x_init=x_init, f=f, g=G)\n", + "fista = FISTA(initial=x_init, f=f, g=G)\n", "fista.max_iteration = 100\n", "fista.update_objective_interval = 10\n", "\n", @@ -645,6 +656,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -652,6 +664,7 @@ ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ @@ -668,7 +681,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -682,7 +695,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.9.16" } }, "nbformat": 4, From b18d17e61481e57b6275964f2b2d54a731280ab9 Mon Sep 17 00:00:00 2001 From: Letizia Protopapa Date: Tue, 16 May 2023 14:22:18 +0000 Subject: [PATCH 11/11] Ensure PDHG works. --- notebooks/MR/g_non_cartesian_reconstruction.ipynb | 10 ++++++++-- 1 file changed, 8 insertions(+), 2 deletions(-) diff --git a/notebooks/MR/g_non_cartesian_reconstruction.ipynb b/notebooks/MR/g_non_cartesian_reconstruction.ipynb index 4770e117..720c1228 100644 --- a/notebooks/MR/g_non_cartesian_reconstruction.ipynb +++ b/notebooks/MR/g_non_cartesian_reconstruction.ipynb @@ -497,11 +497,17 @@ "outputs": [], "source": [ "f = L2NormSquared(b=acq_data)\n", + "\n", + "normE = E.norm()\n", + "sigma = 1.\n", + "tau = 1./(1.*normE**2) \n", + "\n", "pdhg = PDHG(f = f, g = G, operator = E, \n", " max_iteration = 100,\n", - " update_objective_interval = 1, initial=x_init.fill(0.0))\n", + " update_objective_interval = 10, initial=x_init.fill(0.0), \n", + " tau=tau, sigma=sigma)\n", "\n", - "pdhg.run(10, verbose=True)\n" + "pdhg.run(100, verbose=1)" ] }, {