-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
03_pong_a2c_rollouts.py
executable file
·167 lines (135 loc) · 5.76 KB
/
03_pong_a2c_rollouts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
#!/usr/bin/env python3
import gym
import ptan
import numpy as np
import argparse
from tensorboardX import SummaryWriter
import torch
import torch.nn as nn
import torch.nn.utils as nn_utils
import torch.nn.functional as F
import torch.optim as optim
from lib import common
GAMMA = 0.99
LEARNING_RATE = 1e-4
ENTROPY_BETA = 0.01
NUM_ENVS = 16
REWARD_STEPS = 4
CLIP_GRAD = 0.1
class AtariA2C(nn.Module):
def __init__(self, input_shape, n_actions):
super(AtariA2C, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_shape[0], 32, kernel_size=8, stride=4),
nn.ReLU(),
nn.Conv2d(32, 64, kernel_size=4, stride=2),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1),
nn.ReLU()
)
conv_out_size = self._get_conv_out(input_shape)
self.policy = nn.Sequential(
nn.Linear(conv_out_size, 512),
nn.ReLU(),
nn.Linear(512, n_actions)
)
self.value = nn.Sequential(
nn.Linear(conv_out_size, 512),
nn.ReLU(),
nn.Linear(512, 1)
)
def _get_conv_out(self, shape):
o = self.conv(torch.zeros(1, *shape))
return int(np.prod(o.size()))
def forward(self, x):
fx = x.float() / 256
conv_out = self.conv(fx).view(fx.size()[0], -1)
return self.policy(conv_out), self.value(conv_out)
def unpack_batch(batch, net, device="cpu"):
"""
Convert batch into training tensors
:param batch:
:param net:
:return: states variable, actions tensor, reference values variable
"""
states = []
actions = []
rewards = []
not_done_idx = []
last_states = []
for idx, exp in enumerate(batch):
states.append(np.array(exp.state, copy=False))
actions.append(int(exp.action))
rewards.append(exp.reward)
if exp.last_state is not None:
not_done_idx.append(idx)
last_states.append(np.array(exp.last_state, copy=False))
states_v = torch.FloatTensor(states).to(device)
actions_t = torch.LongTensor(actions).to(device)
# handle rewards
rewards_np = np.array(rewards, dtype=np.float32)
if not_done_idx:
last_states_v = torch.FloatTensor(last_states).to(device)
last_vals_v = net(last_states_v)[1]
last_vals_np = last_vals_v.data.cpu().numpy()[:, 0]
rewards_np[not_done_idx] += GAMMA ** REWARD_STEPS * last_vals_np
ref_vals_v = torch.FloatTensor(rewards_np).to(device)
return states_v, actions_t, ref_vals_v
def set_seed(seed, envs=None, cuda=False):
np.random.seed(seed)
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed(seed)
if envs:
for idx, env in enumerate(envs):
env.seed(seed + idx)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--cuda", default=False, action="store_true", help="Enable cuda")
parser.add_argument("-n", "--name", required=True, help="Name of the run")
args = parser.parse_args()
device = torch.device("cuda" if args.cuda else "cpu")
make_env = lambda: ptan.common.wrappers.wrap_dqn(gym.make("PongNoFrameskip-v4"))
envs = [make_env() for _ in range(NUM_ENVS)]
writer = SummaryWriter(comment="-pong-a2c-rollouts_" + args.name)
set_seed(20, envs, cuda=args.cuda)
net = AtariA2C(envs[0].observation_space.shape, envs[0].action_space.n).to(device)
print(net)
agent = ptan.agent.ActorCriticAgent(net, apply_softmax=True, device=device)
exp_source = ptan.experience.ExperienceSourceRollouts(envs, agent, gamma=GAMMA, steps_count=REWARD_STEPS)
optimizer = optim.RMSprop(net.parameters(), lr=LEARNING_RATE, eps=1e-5)
step_idx = 0
with common.RewardTracker(writer, stop_reward=18) as tracker:
with ptan.common.utils.TBMeanTracker(writer, batch_size=10) as tb_tracker:
for mb_states, mb_rewards, mb_actions, mb_values in exp_source:
# handle new rewards
new_rewards = exp_source.pop_total_rewards()
if new_rewards:
if tracker.reward(np.mean(new_rewards), step_idx):
break
optimizer.zero_grad()
states_v = torch.FloatTensor(mb_states).to(device)
mb_adv = mb_rewards - mb_values
adv_v = torch.FloatTensor(mb_adv).to(device)
actions_t = torch.LongTensor(mb_actions).to(device)
vals_ref_v = torch.FloatTensor(mb_rewards).to(device)
logits_v, value_v = net(states_v)
loss_value_v = F.mse_loss(value_v.squeeze(-1), vals_ref_v)
log_prob_v = F.log_softmax(logits_v, dim=1)
log_prob_actions_v = adv_v * log_prob_v[range(len(mb_states)), actions_t]
loss_policy_v = -log_prob_actions_v.mean()
prob_v = F.softmax(logits_v, dim=1)
entropy_loss_v = (prob_v * log_prob_v).sum(dim=1).mean()
# apply entropy and value gradients
loss_v = loss_policy_v + ENTROPY_BETA * entropy_loss_v + loss_value_v
loss_v.backward()
nn_utils.clip_grad_norm_(net.parameters(), CLIP_GRAD)
optimizer.step()
tb_tracker.track("advantage", adv_v, step_idx)
tb_tracker.track("values", value_v, step_idx)
tb_tracker.track("batch_rewards", vals_ref_v, step_idx)
tb_tracker.track("loss_entropy", entropy_loss_v, step_idx)
tb_tracker.track("loss_policy", loss_policy_v, step_idx)
tb_tracker.track("loss_value", loss_value_v, step_idx)
tb_tracker.track("loss_total", loss_v, step_idx)
step_idx += NUM_ENVS * REWARD_STEPS