-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
04_cartpole_pg.py
executable file
·127 lines (101 loc) · 4.16 KB
/
04_cartpole_pg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python3
import gym
import ptan
import numpy as np
from tensorboardX import SummaryWriter
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
GAMMA = 0.99
LEARNING_RATE = 0.001
ENTROPY_BETA = 0.01
BATCH_SIZE = 8
REWARD_STEPS = 10
class PGN(nn.Module):
def __init__(self, input_size, n_actions):
super(PGN, self).__init__()
self.net = nn.Sequential(
nn.Linear(input_size, 128),
nn.ReLU(),
nn.Linear(128, n_actions)
)
def forward(self, x):
return self.net(x)
if __name__ == "__main__":
env = gym.make("CartPole-v0")
writer = SummaryWriter(comment="-cartpole-pg")
net = PGN(env.observation_space.shape[0], env.action_space.n)
print(net)
agent = ptan.agent.PolicyAgent(net, preprocessor=ptan.agent.float32_preprocessor,
apply_softmax=True)
exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, gamma=GAMMA, steps_count=REWARD_STEPS)
optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)
total_rewards = []
step_rewards = []
step_idx = 0
done_episodes = 0
reward_sum = 0.0
batch_states, batch_actions, batch_scales = [], [], []
for step_idx, exp in enumerate(exp_source):
reward_sum += exp.reward
baseline = reward_sum / (step_idx + 1)
writer.add_scalar("baseline", baseline, step_idx)
batch_states.append(exp.state)
batch_actions.append(int(exp.action))
batch_scales.append(exp.reward - baseline)
# handle new rewards
new_rewards = exp_source.pop_total_rewards()
if new_rewards:
done_episodes += 1
reward = new_rewards[0]
total_rewards.append(reward)
mean_rewards = float(np.mean(total_rewards[-100:]))
print("%d: reward: %6.2f, mean_100: %6.2f, episodes: %d" % (
step_idx, reward, mean_rewards, done_episodes))
writer.add_scalar("reward", reward, step_idx)
writer.add_scalar("reward_100", mean_rewards, step_idx)
writer.add_scalar("episodes", done_episodes, step_idx)
if mean_rewards > 195:
print("Solved in %d steps and %d episodes!" % (step_idx, done_episodes))
break
if len(batch_states) < BATCH_SIZE:
continue
states_v = torch.FloatTensor(batch_states)
batch_actions_t = torch.LongTensor(batch_actions)
batch_scale_v = torch.FloatTensor(batch_scales)
optimizer.zero_grad()
logits_v = net(states_v)
log_prob_v = F.log_softmax(logits_v, dim=1)
log_prob_actions_v = batch_scale_v * log_prob_v[range(BATCH_SIZE), batch_actions_t]
loss_policy_v = -log_prob_actions_v.mean()
prob_v = F.softmax(logits_v, dim=1)
entropy_v = -(prob_v * log_prob_v).sum(dim=1).mean()
entropy_loss_v = -ENTROPY_BETA * entropy_v
loss_v = loss_policy_v + entropy_loss_v
loss_v.backward()
optimizer.step()
# calc KL-div
new_logits_v = net(states_v)
new_prob_v = F.softmax(new_logits_v, dim=1)
kl_div_v = -((new_prob_v / prob_v).log() * prob_v).sum(dim=1).mean()
writer.add_scalar("kl", kl_div_v.item(), step_idx)
grad_max = 0.0
grad_means = 0.0
grad_count = 0
for p in net.parameters():
grad_max = max(grad_max, p.grad.abs().max().item())
grad_means += (p.grad ** 2).mean().sqrt().item()
grad_count += 1
writer.add_scalar("baseline", baseline, step_idx)
writer.add_scalar("entropy", entropy_v.item(), step_idx)
writer.add_scalar("batch_scales", np.mean(batch_scales), step_idx)
writer.add_scalar("loss_entropy", entropy_loss_v.item(), step_idx)
writer.add_scalar("loss_policy", loss_policy_v.item(), step_idx)
writer.add_scalar("loss_total", loss_v.item(), step_idx)
writer.add_scalar("grad_l2", grad_means / grad_count, step_idx)
writer.add_scalar("grad_max", grad_max, step_idx)
batch_states.clear()
batch_actions.clear()
batch_scales.clear()
writer.close()