diff --git a/benchmarks/data/SP500.npy b/benchmarks/data/SP500.npy deleted file mode 100644 index b1e7c4b..0000000 Binary files a/benchmarks/data/SP500.npy and /dev/null differ diff --git a/benchmarks/data/gc_features.npy b/benchmarks/data/gc_features.npy deleted file mode 100644 index 0618c54..0000000 Binary files a/benchmarks/data/gc_features.npy and /dev/null differ diff --git a/benchmarks/data/gc_labels.npy b/benchmarks/data/gc_labels.npy deleted file mode 100644 index 4495987..0000000 Binary files a/benchmarks/data/gc_labels.npy and /dev/null differ diff --git a/benchmarks/data/irt_labels.npy b/benchmarks/data/irt_labels.npy deleted file mode 100644 index 6e57e7b..0000000 Binary files a/benchmarks/data/irt_labels.npy and /dev/null differ diff --git a/benchmarks/data/irt_mask.npy b/benchmarks/data/irt_mask.npy deleted file mode 100644 index 9fea59c..0000000 Binary files a/benchmarks/data/irt_mask.npy and /dev/null differ diff --git a/benchmarks/error.py b/benchmarks/error.py deleted file mode 100644 index 06746a8..0000000 --- a/benchmarks/error.py +++ /dev/null @@ -1,85 +0,0 @@ -import jax -import jax.numpy as jnp - - - -def err(f_true, var_f, contract = jnp.max): - """Computes the error b^2 = (f - f_true)^2 / var_f - Args: - f: E_sampler[f(x)], can be a vector - f_true: E_true[f(x)] - var_f: Var_true[f(x)] - contract: how to combine a vector f in a single number, can be for example jnp.average or jnp.max - - Returns: - contract(b^2) - """ - - def _err(f): - bsq = jnp.square(f - f_true) / var_f - return contract(bsq) - - return jax.vmap(_err) - - - -def grads_to_low_error(err_t, low_error= 0.01, grad_evals_per_step= 1): - """Uses the error of the expectation values to compute the effective sample size neff - b^2 = 1/neff""" - - cutoff_reached = err_t[-1] < low_error - return find_crossing(err_t, low_error) * grad_evals_per_step, cutoff_reached - - - -def ess(err_t, neff= 100, grad_evals_per_step = 1): - - low_error = 1./neff - cutoff_reached = err_t[-1] < low_error - crossing = find_crossing(err_t, low_error) - - return (neff / (crossing * grad_evals_per_step)) * cutoff_reached - - - -def find_crossing(array, cutoff): - """the smallest M such that array[m] < cutoff for all m > M""" - - def step(carry, element): - """carry = (, 1 if (array[i] > cutoff for all i < current index) else 0""" - above_threshold = element > cutoff - never_been_below = carry[1] * above_threshold #1 if (array[i] > cutoff for all i < current index) else 0 - return (carry[0] + never_been_below, never_been_below), above_threshold - - state, track = jax.lax.scan(step, init=(0, 1), xs=array, length=len(array)) - - return state[0] - #return jnp.sum(track) #total number of indices for which array[m] < cutoff - - - -def cumulative_avg(samples): - return jnp.cumsum(samples, axis = 0) / jnp.arange(1, samples.shape[0] + 1)[:, None] - - - -if __name__ == '__main__': - - # example usage - d = 100 - n = 1000 - - # in reality we would generate the samples with some sampler - samples = jnp.square(jax.random.normal(jax.random.PRNGKey(42), shape = (n, d))) - f = cumulative_avg(samples) - - # ground truth - favg, fvar = jnp.ones(d), jnp.ones(d) * 2 - - # error after using some number of samples - err_t = err(favg, fvar, jnp.average)(f) - - # effective sample size - ess_per_sample = ess(err_t) - - print("Effective sample size / sample: {0:.3}".format(ess_per_sample)) diff --git a/benchmarks/ground_truth/GC/ground_truth.npy b/benchmarks/ground_truth/GC/ground_truth.npy deleted file mode 100644 index 3051986..0000000 Binary files a/benchmarks/ground_truth/GC/ground_truth.npy and /dev/null differ diff --git a/benchmarks/ground_truth/GC/map.npy b/benchmarks/ground_truth/GC/map.npy deleted file mode 100644 index 8c9d16c..0000000 Binary files a/benchmarks/ground_truth/GC/map.npy and /dev/null differ diff --git a/benchmarks/ground_truth/IRT/ground_truth.npy b/benchmarks/ground_truth/IRT/ground_truth.npy deleted file mode 100644 index 940f2b1..0000000 Binary files a/benchmarks/ground_truth/IRT/ground_truth.npy and /dev/null differ diff --git a/benchmarks/ground_truth/IRT/map.npy b/benchmarks/ground_truth/IRT/map.npy deleted file mode 100644 index 16de6c4..0000000 Binary files a/benchmarks/ground_truth/IRT/map.npy and /dev/null differ diff --git a/benchmarks/ground_truth/brownian/ground_truth.npy b/benchmarks/ground_truth/brownian/ground_truth.npy deleted file mode 100644 index d381c47..0000000 Binary files a/benchmarks/ground_truth/brownian/ground_truth.npy and /dev/null differ diff --git a/benchmarks/ground_truth/brownian/map.npy b/benchmarks/ground_truth/brownian/map.npy deleted file mode 100644 index 7f3f7a6..0000000 Binary files a/benchmarks/ground_truth/brownian/map.npy and /dev/null differ diff --git a/benchmarks/ground_truth/german_credit/ground_truth.npy b/benchmarks/ground_truth/german_credit/ground_truth.npy deleted file mode 100644 index 3051986..0000000 Binary files a/benchmarks/ground_truth/german_credit/ground_truth.npy and /dev/null differ diff --git a/benchmarks/ground_truth/german_credit/map.npy b/benchmarks/ground_truth/german_credit/map.npy deleted file mode 100644 index 8c9d16c..0000000 Binary files a/benchmarks/ground_truth/german_credit/map.npy and /dev/null differ diff --git a/benchmarks/ground_truth/stochastic_volatility/ground_truth.npy b/benchmarks/ground_truth/stochastic_volatility/ground_truth.npy deleted file mode 100644 index d91c750..0000000 Binary files a/benchmarks/ground_truth/stochastic_volatility/ground_truth.npy and /dev/null differ diff --git a/benchmarks/ground_truth/stochastic_volatility/ground_truth_0.npy b/benchmarks/ground_truth/stochastic_volatility/ground_truth_0.npy deleted file mode 100644 index 5733989..0000000 Binary files a/benchmarks/ground_truth/stochastic_volatility/ground_truth_0.npy and /dev/null differ diff --git a/benchmarks/interactive_gallery.py b/benchmarks/interactive_gallery.py deleted file mode 100644 index b02b195..0000000 --- a/benchmarks/interactive_gallery.py +++ /dev/null @@ -1,80 +0,0 @@ -import jax -import jax.numpy as jnp - - - -class Target(): - - def __init__(self, nlogp): - self.d = 2 - self.nlogp = nlogp - self.grad_nlogp = jax.value_and_grad(self.nlogp) - - def transform(self, x): - return x - - def prior_draw(self, key): - return jax.random.normal(key, shape = (self.d, )) - - -def banana(x): - a, b = 2., 0.2 - y = jnp.array([x[0]/a, a*x[1] + a*b*(x[0]**2 + a**2) - 4.]) - - return gauss_nlogp(y, jnp.array([1., 1., 0.5])) - - -def stn(x): - return 0.5 * jnp.sum(jnp.square(x)) - - -def donout(x): - r0, sigma_sq = 2.6, 0.033, - r = jnp.sqrt(jnp.sum(jnp.square(x))) - return jnp.square(r - r0) / sigma_sq - - -def invert_cov(Sigma): - det = Sigma[0] * Sigma[1] - Sigma[2]**2 - H = jnp.array([[Sigma[1], - Sigma[2]], [-Sigma[2], Sigma[0]]]) / det - return det, H - - -def gauss_p(x, Sigma): - """sigma = [Sigma[0, 0], Simga[1, 1], Sigma[1, 2]]""" - det, H = invert_cov(Sigma) - return jnp.exp(-0.5 * x.T @ H @ x) / (2 * jnp.pi * jnp.sqrt(det)) - - -def gauss_nlogp(x, Sigma): - """sigma = [Sigma[0, 0], Simga[1, 1], Sigma[1, 2]]""" - det, H = invert_cov(Sigma) - return 0.5 * x.T @ H @ x + jnp.log(2 * jnp.pi * jnp.sqrt(det)) - - -def mixture(x): - p1 = gauss_p(x + 1.5, jnp.array([0.8, 0.8, 0.])) - p2 = gauss_p(x - 1.5, jnp.array([0.8, 0.8, 0.])) - p3 = gauss_p(x - jnp.array([-2, 2]), jnp.array([0.5, 0.5, 0.])) - return -jnp.log(p1 + p2 + p3) - - -def gauss1d(x, s): - """-log p""" - return 0.5 * jnp.log(2*jnp.pi * s) + 0.5 * jnp.square(x / s) - - -def funnel(x): - y = jnp.array([x[1]-2., x[0]]) - return gauss1d(y[0], 3.) + gauss1d(y[1], jnp.exp(0.5 * y[0])) - - -def squiggle(x): - cov= jnp.array([2., 0.5, 0.25]) - y = jnp.array([x[0], x[1] + jnp.sin(5 * x[0])]) - return gauss_nlogp(y, cov) - - - -targets= {'Banana': Target(banana), 'Donout': Target(donout), 'Standard Normal': Target(stn), 'Gaussian Mixture': Target(mixture), 'Funnel': Target(funnel), 'Squiggle': Target(squiggle)} - diff --git a/benchmarks/__init__.py b/benchmarks/mcmc/__init__.py old mode 100755 new mode 100644 similarity index 100% rename from benchmarks/__init__.py rename to benchmarks/mcmc/__init__.py diff --git a/benchmarks/mcmc/benchmark.ipynb b/benchmarks/mcmc/benchmark.ipynb new file mode 100644 index 0000000..d8fb0be --- /dev/null +++ b/benchmarks/mcmc/benchmark.ipynb @@ -0,0 +1,9716 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from collections import defaultdict\n", + "import itertools\n", + "import jax\n", + "import numpy as np\n", + "\n", + "from benchmark import benchmark_chains, cumulative_avg, err, ess, get_num_latents\n", + "import blackjax\n", + "from blackjax.adaptation.mclmc_adaptation import MCLMCAdaptationState\n", + "from blackjax.mcmc.mhmclmc import rescale\n", + "from blackjax.util import run_inference_algorithm\n", + "import jax.numpy as jnp \n", + "\n", + "from inference_models import models\n", + "from find_params import make_grid, sampler_mhmclmc\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "\n", + "batch_size = 1000\n", + "num_steps = 10000\n", + "\n", + "results = defaultdict(float)\n", + "for model in [\"banana\"]:\n", + " # for step_size, L in itertools.product([16.866055/10], [16.866055]):\n", + " # for step_size, L in make_grid(center_L=21.48713, center_step_size= 2.2340074):\n", + "\n", + " # center_step_size = 2.2340074\n", + " # center_L = 21.48713\n", + "\n", + " center_step_size = 1.1170037\n", + " center_L = 12.776323938494208\n", + "\n", + " # center_step_size = 1.2332720719048489\n", + " # center_L = 11.86185745597299\n", + "\n", + " # center_step_size = 1.1170037\n", + " # center_L = 10.743564999999998\n", + " \n", + " for step_size, L in itertools.product(np.logspace(np.log10(center_step_size/2), np.log10(center_step_size*2), 9), np.logspace(np.log10(center_L/2), np.log10(center_L*2), 9)):\n", + "\n", + "\n", + " # for sampler in [\"mhmclmc\"]:\n", + " # result, bias = benchmark_chains(models[model], sampler_mhmclmc_with_tuning(step_size, L), n=1000000, batch=1)\n", + " # result, bias = benchmark_chains(models[model], samplers[sampler], n=100000, batch=100, favg= jnp.array([100.0, 19.0]), fvar =jnp.array([20000.0, 4600.898]))\n", + " result, bias = benchmark_chains(models[model], sampler_mhmclmc(step_size=step_size, L=L), batch=batch_size, n=num_steps,favg=models[model].E_x2, fvar=models[model].Var_x2)\n", + " # result, bias = benchmark_chains(models[model], samplers[\"mhmclmc\"], n=1000000, batch=10)\n", + " results[(model, step_size, L)] = (result.item(), bias.item())\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Tracedwith with\n", + " val = Array([[0.8435858 , 0.8442986 , 0.8415559 , 0.8427685 , 0.8463157 ,\n", + " 0.8491128 , 0.8431078 , 0.84260917, 0.84483224, 0.8375843 ,\n", + " 0.8375893 , 0.8419349 , 0.84908915, 0.84480864, 0.8410134 ,\n", + " 0.8449966 , 0.84187603, 0.845713 , 0.8447011 , 0.84466696,\n", + " 0.8400421 , 0.84705085, 0.8332738 , 0.84576803, 0.8336657 ,\n", + " 0.84211314, 0.8455844 , 0.8392147 , 0.8509331 , 0.8440238 ,\n", + " 0.8371414 , 0.8386296 , 0.8451284 , 0.848194 , 0.8394416 ,\n", + " 0.8498367 , 0.8330134 , 0.84099394, 0.8421177 , 0.843717 ,\n", + " 0.84450364, 0.8514319 , 0.8448533 , 0.84387785, 0.8439756 ,\n", + " 0.83963746, 0.8402315 , 0.85167474, 0.84031194, 0.84450245,\n", + " 0.8455862 , 0.84251726, 0.8467568 , 0.8340951 , 0.8407393 ,\n", + " 0.84303313, 0.8486856 , 0.8418433 , 0.84375656, 0.84481865,\n", + " 0.84720576, 0.8517645 , 0.83659995, 0.8535823 , 0.8432801 ,\n", + " 0.84893775, 0.84475434, 0.8463244 , 0.8424343 , 0.84190756,\n", + " 0.8415012 , 0.84235483, 0.8360425 , 0.8409168 , 0.8488021 ,\n", + " 0.8398986 , 0.8508612 , 0.8478436 , 0.8406811 , 0.85122395,\n", + " 0.83302325, 0.84197176, 0.8471764 , 0.8473693 , 0.83765584,\n", + " 0.83757216, 0.8460829 , 0.8452597 , 0.8409692 , 0.84046406,\n", + " 0.8404769 , 0.84563756, 0.84397906, 0.8439965 , 0.8469477 ,\n", + " 0.8480277 , 0.8389911 , 0.8392323 , 0.8312033 , 0.8362428 ],\n", + " [0.9141073 , 0.91049445, 0.91184056, 0.91386414, 0.9114997 ,\n", + " 0.9085978 , 0.9094407 , 0.91038513, 0.9091061 , 0.9130469 ,\n", + " 0.9120573 , 0.9082391 , 0.9107473 , 0.91127574, 0.9078788 ,\n", + " 0.9145811 , 0.90876555, 0.9038063 , 0.9136094 , 0.90746063,\n", + " 0.9121309 , 0.90966076, 0.91195565, 0.9150678 , 0.9137885 ,\n", + " 0.9141526 , 0.9153058 , 0.91306776, 0.91323185, 0.9136166 ,\n", + " 0.91644865, 0.9166464 , 0.91016626, 0.9094692 , 0.91374207,\n", + " 0.9114871 , 0.91152 , 0.91265017, 0.9136803 , 0.91412246,\n", + " 0.91432863, 0.9128117 , 0.9143933 , 0.9156801 , 0.91350424,\n", + " 0.9105282 , 0.91299754, 0.91354656, 0.91255 , 0.91244036,\n", + " 0.9128147 , 0.9129622 , 0.9121573 , 0.91559756, 0.91246694,\n", + " 0.91180074, 0.9090308 , 0.911497 , 0.911287 , 0.9148062 ,\n", + " 0.91484225, 0.9107405 , 0.9088609 , 0.9114057 , 0.9136628 ,\n", + " 0.9129748 , 0.9137581 , 0.91187185, 0.9164927 , 0.9100827 ,\n", + " 0.9123644 , 0.9147338 , 0.9128822 , 0.91231525, 0.9159241 ,\n", + " 0.909687 , 0.9114519 , 0.9142304 , 0.90744364, 0.9136173 ,\n", + " 0.91329956, 0.908741 , 0.91511405, 0.9099337 , 0.9147669 ,\n", + " 0.91032606, 0.91201174, 0.9184225 , 0.9128089 , 0.9138138 ,\n", + " 0.9104181 , 0.9117637 , 0.9112562 , 0.91193014, 0.91603905,\n", + " 0.91127455, 0.91419363, 0.9091502 , 0.91466635, 0.9104765 ],\n", + " [0.8182885 , 0.81645 , 0.8212288 , 0.82042813, 0.7995485 ,\n", + " 0.82143354, 0.81355894, 0.82378983, 0.81463534, 0.81933165,\n", + " 0.8092212 , 0.8140594 , 0.8152705 , 0.81153756, 0.81995744,\n", + " 0.8134262 , 0.8144958 , 0.8148774 , 0.80735767, 0.7996466 ,\n", + " 0.80590236, 0.81858754, 0.82499367, 0.82092667, 0.81852204,\n", + " 0.81666756, 0.8192548 , 0.8158879 , 0.80845755, 0.81051564,\n", + " 0.8194928 , 0.8175792 , 0.8070852 , 0.81650734, 0.8140636 ,\n", + " 0.8211214 , 0.8119346 , 0.8188779 , 0.8233972 , 0.81865305,\n", + " 0.8102587 , 0.8174392 , 0.81393313, 0.80479264, 0.8169993 ,\n", + " 0.81105155, 0.81979597, 0.802209 , 0.8100946 , 0.80326605,\n", + " 0.81280714, 0.81860095, 0.820589 , 0.81805354, 0.8188111 ,\n", + " 0.8127831 , 0.80968994, 0.81751925, 0.81761533, 0.8055051 ,\n", + " 0.8162603 , 0.8120219 , 0.81247073, 0.81887347, 0.8097995 ,\n", + " 0.8158402 , 0.8244784 , 0.81276655, 0.80699074, 0.81832695,\n", + " 0.80784833, 0.815833 , 0.80288005, 0.81820077, 0.8213234 ,\n", + " 0.8202933 , 0.81724954, 0.80805933, 0.82406604, 0.8238287 ,\n", + " 0.81558645, 0.7981632 , 0.81173044, 0.8114513 , 0.8068975 ,\n", + " 0.8032079 , 0.80342 , 0.82118356, 0.81748253, 0.8098008 ,\n", + " 0.81191957, 0.8284385 , 0.80766314, 0.8118846 , 0.80934274,\n", + " 0.8093861 , 0.8093985 , 0.82138544, 0.8122794 , 0.8196393 ],\n", + " [0.916788 , 0.916461 , 0.9120648 , 0.91638935, 0.9185752 ,\n", + " 0.915967 , 0.91649187, 0.91460687, 0.9161761 , 0.91481227,\n", + " 0.91399264, 0.91651887, 0.9176769 , 0.9182386 , 0.9141354 ,\n", + " 0.9154259 , 0.9191275 , 0.914757 , 0.9179838 , 0.91963214,\n", + " 0.9148346 , 0.91213346, 0.91704535, 0.9137658 , 0.9179093 ,\n", + " 0.9179158 , 0.91616833, 0.9176504 , 0.9133633 , 0.92000556,\n", + " 0.91896355, 0.9198364 , 0.91291165, 0.91697735, 0.9135519 ,\n", + " 0.91932946, 0.91273105, 0.9128715 , 0.918481 , 0.91486514,\n", + " 0.91871846, 0.9168679 , 0.916582 , 0.9167394 , 0.9177922 ,\n", + " 0.91301274, 0.91460735, 0.9127277 , 0.91379863, 0.918544 ,\n", + " 0.91489583, 0.9111012 , 0.9143128 , 0.91855806, 0.9205817 ,\n", + " 0.91369355, 0.91342413, 0.91696864, 0.9174895 , 0.91498464,\n", + " 0.91590565, 0.9190212 , 0.9193664 , 0.92451084, 0.9237687 ,\n", + " 0.9189365 , 0.9200342 , 0.91737294, 0.91548675, 0.9067432 ,\n", + " 0.91933614, 0.91991806, 0.9139581 , 0.9131478 , 0.9198742 ,\n", + " 0.9174321 , 0.92166257, 0.92016596, 0.91765165, 0.9174782 ,\n", + " 0.9171059 , 0.9173149 , 0.91726476, 0.91408783, 0.9154148 ,\n", + " 0.91422945, 0.9151624 , 0.9180806 , 0.9103819 , 0.91385114,\n", + " 0.9193223 , 0.92037344, 0.92065614, 0.9141735 , 0.9150021 ,\n", + " 0.91232526, 0.91929257, 0.9190358 , 0.91637516, 0.9161139 ],\n", + " [0.8080572 , 0.8072662 , 0.8133484 , 0.81046546, 0.8108139 ,\n", + " 0.8094811 , 0.8134327 , 0.8104727 , 0.8103218 , 0.80622476,\n", + " 0.8067138 , 0.80909383, 0.8106447 , 0.8085242 , 0.79984576,\n", + " 0.80794805, 0.81463736, 0.8103704 , 0.81011647, 0.81420785,\n", + " 0.8027701 , 0.80454403, 0.81331533, 0.81649894, 0.80555373,\n", + " 0.8138852 , 0.8113128 , 0.80289596, 0.81789494, 0.81663275,\n", + " 0.81285053, 0.81479824, 0.8052661 , 0.8049139 , 0.81005186,\n", + " 0.815297 , 0.81159794, 0.8080973 , 0.8168613 , 0.8134403 ,\n", + " 0.8211029 , 0.8116032 , 0.8041824 , 0.80992204, 0.8155727 ,\n", + " 0.80370694, 0.8108088 , 0.8097364 , 0.8126268 , 0.80964655,\n", + " 0.8064188 , 0.810979 , 0.81068486, 0.8153748 , 0.8028467 ,\n", + " 0.8064591 , 0.8098567 , 0.81155705, 0.8043548 , 0.80836236,\n", + " 0.8031012 , 0.80944437, 0.8049019 , 0.80746686, 0.8069363 ,\n", + " 0.8164398 , 0.8128134 , 0.8110853 , 0.8109025 , 0.8018413 ,\n", + " 0.8081307 , 0.8090573 , 0.8096849 , 0.8086735 , 0.8165233 ,\n", + " 0.8074145 , 0.8167979 , 0.81774586, 0.81085056, 0.79942244,\n", + " 0.81238854, 0.80470026, 0.8065574 , 0.8109401 , 0.80758935,\n", + " 0.8060553 , 0.8100661 , 0.81079054, 0.80814433, 0.8128019 ,\n", + " 0.8108469 , 0.8131424 , 0.8076265 , 0.8130387 , 0.8146908 ,\n", + " 0.8114483 , 0.8063916 , 0.8152165 , 0.8129712 , 0.80872196]], dtype=float32)\n", + " batch_dim = 0\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ Tracedwith with\n", + " val = Array([10.228184 , 24.918034 , 7.5774236, 11.759256 , 14.479013 ], dtype=float32)\n", + " batch_dim = 0\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean Tracedwith with\n", + " val = Array([[ 0.00436548, -0.00759073],\n", + " [ 0.01882443, -0.00019192],\n", + " [ 0.05147482, -0.03414474],\n", + " [ 0.02615423, -0.01953907],\n", + " [-0.00318353, -0.01224986]], dtype=float32)\n", + " batch_dim = 0\n", + "Empirical std Tracedwith with\n", + " val = Array([[9.983989 , 4.337424 ],\n", + " [9.997932 , 4.3606787],\n", + " [9.938344 , 4.2537637],\n", + " [9.969876 , 4.306143 ],\n", + " [9.980659 , 4.279184 ]], dtype=float32)\n", + " batch_dim = 0\n", + "Tracedwith with\n", + " val = Array([16.450315, 27.72986 , 13.838601, 15.047666, 23.095356], dtype=float32)\n", + " batch_dim = 0 Tracedwith with\n", + " val = Array([1.6083311, 1.1128427, 1.8262937, 1.279644 , 1.5950915], dtype=float32)\n", + " batch_dim = 0 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.8261169 , 0.8235434 , 0.82660365, 0.8363452 , 0.8260836 ,\n", + " 0.8221712 , 0.8335143 , 0.8315658 , 0.82896984, 0.828555 ,\n", + " 0.8154472 , 0.8228515 , 0.8359856 , 0.82363015, 0.8356578 ,\n", + " 0.83509433, 0.8286654 , 0.83434707, 0.81034994, 0.8310843 ,\n", + " 0.8242507 , 0.8322238 , 0.81031936, 0.82537174, 0.82792544,\n", + " 0.82657754, 0.8337225 , 0.8175826 , 0.836278 , 0.8194272 ,\n", + " 0.8321048 , 0.82484585, 0.8270816 , 0.8372117 , 0.8253429 ,\n", + " 0.8327278 , 0.82710975, 0.8298831 , 0.8243826 , 0.83905584,\n", + " 0.829383 , 0.8279811 , 0.82872564, 0.8276056 , 0.8262757 ,\n", + " 0.82485056, 0.838198 , 0.8324125 , 0.8215901 , 0.8233186 ,\n", + " 0.82139015, 0.8307298 , 0.8249091 , 0.8366107 , 0.8180485 ,\n", + " 0.82277554, 0.83015084, 0.816568 , 0.82515043, 0.81732994,\n", + " 0.82909644, 0.8383716 , 0.8324836 , 0.8359744 , 0.8320422 ,\n", + " 0.8294888 , 0.82825166, 0.8239016 , 0.8114942 , 0.8243359 ,\n", + " 0.8204925 , 0.8231743 , 0.82782024, 0.8327415 , 0.82954514,\n", + " 0.81728446, 0.8428451 , 0.82790786, 0.817729 , 0.8322901 ,\n", + " 0.8263244 , 0.8188367 , 0.8358553 , 0.82619035, 0.8233813 ,\n", + " 0.82050383, 0.8219346 , 0.828762 , 0.8312129 , 0.8279799 ,\n", + " 0.8373836 , 0.84309196, 0.83253396, 0.83462936, 0.8106118 ,\n", + " 0.81858665, 0.82436895, 0.8249179 , 0.8323392 , 0.8335565 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 5.4237843\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.00078773 0.00930602]\n", + "Empirical std [10.01565 4.375878]\n", + "10.320744 1.9028672 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.7624757 , 0.7732598 , 0.77196664, 0.7618297 , 0.7726041 ,\n", + " 0.7745761 , 0.77812725, 0.76879174, 0.7801456 , 0.7776064 ,\n", + " 0.7700916 , 0.7750695 , 0.77436024, 0.7656311 , 0.76576954,\n", + " 0.7802393 , 0.7809813 , 0.770915 , 0.76499385, 0.7689456 ,\n", + " 0.7648939 , 0.7784399 , 0.7776192 , 0.7831998 , 0.7677948 ,\n", + " 0.77016276, 0.7881546 , 0.77732486, 0.77114564, 0.77909887,\n", + " 0.7719862 , 0.77378213, 0.7766315 , 0.77503484, 0.77038395,\n", + " 0.76448816, 0.7696017 , 0.7634618 , 0.77056473, 0.7741178 ,\n", + " 0.7737147 , 0.77556324, 0.77876955, 0.77788526, 0.7759326 ,\n", + " 0.7691555 , 0.76327246, 0.77293766, 0.7730725 , 0.77486354,\n", + " 0.7707382 , 0.77392834, 0.77476096, 0.7698485 , 0.77451026,\n", + " 0.77709085, 0.7751241 , 0.77147466, 0.7727592 , 0.76727945,\n", + " 0.7758949 , 0.765997 , 0.77851874, 0.7683197 , 0.77228504,\n", + " 0.7603619 , 0.77689904, 0.7759391 , 0.766344 , 0.75899506,\n", + " 0.7799165 , 0.7581959 , 0.7628173 , 0.7797879 , 0.77920127,\n", + " 0.7699844 , 0.77469176, 0.76341605, 0.7759765 , 0.78033483,\n", + " 0.7750359 , 0.7756311 , 0.7710974 , 0.76516885, 0.76552045,\n", + " 0.76550204, 0.77335733, 0.7763266 , 0.7665215 , 0.7798203 ,\n", + " 0.77751565, 0.7804069 , 0.7761041 , 0.76586777, 0.76970184,\n", + " 0.7759141 , 0.7761208 , 0.76931125, 0.7687861 , 0.76499504], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 14.792172\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.03330491 0.02985322]\n", + "Empirical std [10.046305 4.4262104]\n", + "25.108639 1.6974272 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.7438637 , 0.720913 , 0.74190116, 0.73635954, 0.7341818 ,\n", + " 0.7309659 , 0.74363166, 0.72856337, 0.7287968 , 0.7244966 ,\n", + " 0.7381871 , 0.7292842 , 0.7322443 , 0.7441796 , 0.7321374 ,\n", + " 0.73585445, 0.73341906, 0.7292971 , 0.734212 , 0.723085 ,\n", + " 0.72761494, 0.72691494, 0.738055 , 0.744325 , 0.750554 ,\n", + " 0.7395077 , 0.7374884 , 0.73136467, 0.7343612 , 0.74693364,\n", + " 0.7242545 , 0.7310544 , 0.72981083, 0.7308932 , 0.7355907 ,\n", + " 0.73518115, 0.72772306, 0.7237244 , 0.745851 , 0.7330887 ,\n", + " 0.74185824, 0.7326187 , 0.7284662 , 0.74228776, 0.7386332 ,\n", + " 0.7308844 , 0.73114395, 0.72271717, 0.73372227, 0.73718625,\n", + " 0.73117095, 0.731803 , 0.73584557, 0.73563296, 0.7423742 ,\n", + " 0.7256776 , 0.74184483, 0.73792344, 0.7324871 , 0.7299209 ,\n", + " 0.7364746 , 0.73932797, 0.7306512 , 0.74121165, 0.74229944,\n", + " 0.72620326, 0.7356973 , 0.7370564 , 0.7296387 , 0.736245 ,\n", + " 0.7314991 , 0.73965716, 0.7267712 , 0.73844314, 0.73817027,\n", + " 0.7342505 , 0.73689127, 0.7412165 , 0.73204494, 0.7332271 ,\n", + " 0.73117113, 0.74519145, 0.73901206, 0.7417268 , 0.7323304 ,\n", + " 0.7302509 , 0.7156237 , 0.73481876, 0.7344078 , 0.7271543 ,\n", + " 0.73534405, 0.74859446, 0.72886646, 0.73747903, 0.74504805,\n", + " 0.7444051 , 0.73353916, 0.74960977, 0.7128069 , 0.7357386 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 11.044668\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [ 0.03396646 -0.03038726]\n", + "Empirical std [9.94129 4.263946]\n", + "21.228174 1.9220301 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.86778754, 0.8646974 , 0.8777796 , 0.86214703, 0.86671984,\n", + " 0.86888176, 0.87431735, 0.8680127 , 0.8682585 , 0.86737514,\n", + " 0.869242 , 0.8713519 , 0.8700291 , 0.8725032 , 0.8693933 ,\n", + " 0.8719237 , 0.87480927, 0.8702645 , 0.8764573 , 0.86809504,\n", + " 0.87091154, 0.873827 , 0.8701522 , 0.87577397, 0.8707997 ,\n", + " 0.8719032 , 0.8734054 , 0.8697026 , 0.8752431 , 0.8730436 ,\n", + " 0.87251914, 0.86377573, 0.86697793, 0.8669683 , 0.87357634,\n", + " 0.8726103 , 0.8727115 , 0.8671376 , 0.8774689 , 0.8754535 ,\n", + " 0.8721305 , 0.8725799 , 0.87109244, 0.870204 , 0.8702406 ,\n", + " 0.86980313, 0.86733603, 0.86205685, 0.8747727 , 0.8665746 ,\n", + " 0.87257814, 0.872714 , 0.86964357, 0.8695413 , 0.8696763 ,\n", + " 0.8678582 , 0.87303984, 0.8699697 , 0.87240916, 0.87506926,\n", + " 0.87008125, 0.86404115, 0.86860496, 0.8714165 , 0.86788106,\n", + " 0.8680976 , 0.8683646 , 0.8721114 , 0.8673468 , 0.8688807 ,\n", + " 0.8692213 , 0.86856204, 0.8703064 , 0.8676702 , 0.8694112 ,\n", + " 0.8728467 , 0.86595696, 0.8710449 , 0.86858654, 0.8692343 ,\n", + " 0.86969554, 0.8679212 , 0.87566453, 0.8670573 , 0.8682818 ,\n", + " 0.8706073 , 0.86720943, 0.8654002 , 0.86926097, 0.86825603,\n", + " 0.87364215, 0.8727382 , 0.8698543 , 0.869914 , 0.87182564,\n", + " 0.87286234, 0.8655306 , 0.86835194, 0.87291557, 0.86955273], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 23.63019\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.01023511 0.00337583]\n", + "Empirical std [10.002769 4.350093]\n", + "29.962704 1.2679837 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9646462 , 0.96441925, 0.963197 , 0.9641055 , 0.9641592 ,\n", + " 0.9646159 , 0.9649835 , 0.9644888 , 0.9647308 , 0.9653222 ,\n", + " 0.96523523, 0.9630228 , 0.96286917, 0.9636026 , 0.9622946 ,\n", + " 0.96522623, 0.96535504, 0.96068555, 0.96405786, 0.9645421 ,\n", + " 0.96359646, 0.9637924 , 0.9629329 , 0.9654972 , 0.9632747 ,\n", + " 0.9641683 , 0.9651973 , 0.9633302 , 0.9666546 , 0.9669899 ,\n", + " 0.965569 , 0.965853 , 0.96334577, 0.9650977 , 0.9619848 ,\n", + " 0.96419644, 0.96265894, 0.96560556, 0.9662199 , 0.96514744,\n", + " 0.966319 , 0.9632063 , 0.9634584 , 0.9641959 , 0.9654187 ,\n", + " 0.9623485 , 0.96521956, 0.96475565, 0.9636724 , 0.964506 ,\n", + " 0.96508974, 0.96484804, 0.9640583 , 0.9649708 , 0.96188015,\n", + " 0.9611353 , 0.964087 , 0.9648015 , 0.96420103, 0.9641244 ,\n", + " 0.9634837 , 0.9659584 , 0.96390843, 0.96480024, 0.96147716,\n", + " 0.96349597, 0.96449476, 0.96483 , 0.9632044 , 0.9618099 ,\n", + " 0.9639948 , 0.9648252 , 0.96075934, 0.96495855, 0.96585697,\n", + " 0.965144 , 0.9640909 , 0.9642902 , 0.9616847 , 0.9637698 ,\n", + " 0.9662146 , 0.96423 , 0.963909 , 0.9637493 , 0.9630008 ,\n", + " 0.9643234 , 0.9629102 , 0.9641028 , 0.9634644 , 0.964364 ,\n", + " 0.9648842 , 0.96526223, 0.96383893, 0.9631962 , 0.96621716,\n", + " 0.96136624, 0.964689 , 0.96666265, 0.9634666 , 0.9638966 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 20.921045\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.03937492 0.00349017]\n", + "Empirical std [10.0054455 4.3628426]\n", + "18.960897 0.9063071 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9657846 , 0.9654158 , 0.96737653, 0.96326333, 0.964079 ,\n", + " 0.9656495 , 0.96491003, 0.96374923, 0.9646414 , 0.96449995,\n", + " 0.9643607 , 0.9600758 , 0.9663494 , 0.9656496 , 0.966745 ,\n", + " 0.9685083 , 0.96543515, 0.9664908 , 0.9655981 , 0.9683824 ,\n", + " 0.96335167, 0.96440417, 0.9648844 , 0.96654105, 0.96724683,\n", + " 0.9681661 , 0.96706396, 0.9640292 , 0.9656866 , 0.9657853 ,\n", + " 0.9639722 , 0.9641251 , 0.966178 , 0.9662001 , 0.96563596,\n", + " 0.9659677 , 0.9644174 , 0.9655367 , 0.9655435 , 0.96505255,\n", + " 0.96729535, 0.9667774 , 0.96322817, 0.9658592 , 0.96720624,\n", + " 0.96409464, 0.964196 , 0.9649782 , 0.9674235 , 0.9651824 ,\n", + " 0.9653462 , 0.9647231 , 0.9643931 , 0.96227235, 0.96143144,\n", + " 0.96449405, 0.9654843 , 0.96483666, 0.9646436 , 0.96516716,\n", + " 0.96560585, 0.9656106 , 0.9675184 , 0.965978 , 0.96644974,\n", + " 0.9663985 , 0.9638768 , 0.96604615, 0.9649481 , 0.96132445,\n", + " 0.96245164, 0.9657542 , 0.96543825, 0.96362734, 0.9680194 ,\n", + " 0.95953953, 0.9658689 , 0.96695024, 0.964802 , 0.9655411 ,\n", + " 0.9658112 , 0.96620005, 0.9657003 , 0.9664972 , 0.96249276,\n", + " 0.9645157 , 0.96465886, 0.96771604, 0.9641468 , 0.96341234,\n", + " 0.9645445 , 0.9679752 , 0.9656284 , 0.965313 , 0.9632538 ,\n", + " 0.96498865, 0.96547455, 0.9642396 , 0.96556073, 0.9658406 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 11.998171\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.00133225 0.00474695]\n", + "Empirical std [10.007471 4.336656]\n", + "11.992982 0.9995671 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.7405754 , 0.7306312 , 0.73310345, 0.7388016 , 0.7392493 ,\n", + " 0.7471283 , 0.7485748 , 0.74139786, 0.73972803, 0.73189986,\n", + " 0.7379276 , 0.7396708 , 0.7181681 , 0.73423505, 0.737977 ,\n", + " 0.73418534, 0.7364122 , 0.7272365 , 0.7368498 , 0.7455538 ,\n", + " 0.73279995, 0.7351176 , 0.7317533 , 0.7430141 , 0.7406916 ,\n", + " 0.7399521 , 0.73158306, 0.73081595, 0.7355946 , 0.72891957,\n", + " 0.7279601 , 0.7342506 , 0.739928 , 0.7539356 , 0.7371102 ,\n", + " 0.7437107 , 0.7439878 , 0.7354035 , 0.735965 , 0.72090495,\n", + " 0.7407755 , 0.7365683 , 0.74429667, 0.7317289 , 0.71507514,\n", + " 0.7227194 , 0.7455055 , 0.7361995 , 0.7509387 , 0.73579943,\n", + " 0.7413889 , 0.74201417, 0.726448 , 0.7403964 , 0.7453037 ,\n", + " 0.7382096 , 0.7462251 , 0.727476 , 0.7505474 , 0.7466791 ,\n", + " 0.73478127, 0.7423563 , 0.73530143, 0.7420538 , 0.7424166 ,\n", + " 0.7507166 , 0.7458518 , 0.7429123 , 0.70983547, 0.7386931 ,\n", + " 0.74975264, 0.73060435, 0.72318053, 0.7388341 , 0.7429204 ,\n", + " 0.7280501 , 0.7457035 , 0.7394495 , 0.74028176, 0.73516923,\n", + " 0.72838396, 0.7419901 , 0.731372 , 0.7388898 , 0.73683697,\n", + " 0.73032254, 0.73507375, 0.73757005, 0.7413539 , 0.7327913 ,\n", + " 0.74638844, 0.7440632 , 0.742452 , 0.73299676, 0.7440069 ,\n", + " 0.7379104 , 0.74204856, 0.7512105 , 0.7351662 , 0.72894555], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 9.030056\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.04312906 0.0198919 ]\n", + "Empirical std [10.034662 4.4604673]\n", + "18.060112 2.0 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.6686791 , 0.6692744 , 0.658693 , 0.6572771 , 0.65694696,\n", + " 0.6562955 , 0.6578111 , 0.662403 , 0.6653719 , 0.6568161 ,\n", + " 0.6708718 , 0.6729646 , 0.661823 , 0.6647983 , 0.6667355 ,\n", + " 0.66000384, 0.6732394 , 0.6699426 , 0.6596668 , 0.6612171 ,\n", + " 0.6497439 , 0.6691632 , 0.6672595 , 0.6623486 , 0.62033 ,\n", + " 0.6677552 , 0.6440937 , 0.6440927 , 0.67481035, 0.6648804 ,\n", + " 0.6628258 , 0.66647583, 0.66873354, 0.6684244 , 0.66616744,\n", + " 0.6618645 , 0.6595272 , 0.6466183 , 0.6537556 , 0.6717985 ,\n", + " 0.6569731 , 0.66440547, 0.6592092 , 0.6691215 , 0.6642743 ,\n", + " 0.65359783, 0.6516272 , 0.65598416, 0.6694276 , 0.67428386,\n", + " 0.66649854, 0.66296583, 0.66491127, 0.6486725 , 0.6666575 ,\n", + " 0.6592822 , 0.66131085, 0.6516573 , 0.6623106 , 0.65817934,\n", + " 0.66456974, 0.6687929 , 0.6452302 , 0.65796876, 0.6595185 ,\n", + " 0.674048 , 0.66439176, 0.6630273 , 0.67858857, 0.658858 ,\n", + " 0.6629207 , 0.6633276 , 0.66841084, 0.66012734, 0.65735716,\n", + " 0.6581564 , 0.67984825, 0.66162854, 0.65450734, 0.655527 ,\n", + " 0.6578258 , 0.67989576, 0.6689037 , 0.65435165, 0.65916914,\n", + " 0.64787054, 0.65317124, 0.6670962 , 0.65774214, 0.65890175,\n", + " 0.658811 , 0.65777534, 0.6608126 , 0.6593736 , 0.6639777 ,\n", + " 0.66692865, 0.66921335, 0.6605257 , 0.666522 , 0.658283 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 14.351147\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.02029558 0.0291174 ]\n", + "Empirical std [10.0405655 4.48455 ]\n", + "28.702293 2.0 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.955858 , 0.9571745 , 0.9537277 , 0.9552592 , 0.9543102 ,\n", + " 0.9573221 , 0.9556906 , 0.9555991 , 0.9583533 , 0.9574764 ,\n", + " 0.95407724, 0.95405185, 0.95703614, 0.95465434, 0.95641345,\n", + " 0.9572647 , 0.95462894, 0.9553996 , 0.95355296, 0.9552221 ,\n", + " 0.9529672 , 0.9547226 , 0.95235366, 0.95583457, 0.95620865,\n", + " 0.9574142 , 0.9551745 , 0.95658565, 0.9540315 , 0.9572223 ,\n", + " 0.9560699 , 0.9550011 , 0.9564879 , 0.9583723 , 0.9554788 ,\n", + " 0.95413095, 0.95573795, 0.95418954, 0.9559964 , 0.9567973 ,\n", + " 0.9543665 , 0.95349985, 0.95723325, 0.9569616 , 0.9551863 ,\n", + " 0.95471364, 0.95660967, 0.956237 , 0.95568544, 0.9560728 ,\n", + " 0.9557498 , 0.9562172 , 0.95290446, 0.9559223 , 0.953645 ,\n", + " 0.95541555, 0.95647633, 0.95328635, 0.9565374 , 0.95762706,\n", + " 0.9576281 , 0.9505903 , 0.9561318 , 0.9562256 , 0.95540094,\n", + " 0.9553004 , 0.95369977, 0.95491284, 0.95438224, 0.95502985,\n", + " 0.9535202 , 0.9584294 , 0.9557961 , 0.9546791 , 0.9562299 ,\n", + " 0.9552948 , 0.954105 , 0.9570567 , 0.95485824, 0.9523787 ,\n", + " 0.9557009 , 0.95289624, 0.95665973, 0.95484287, 0.956596 ,\n", + " 0.95365065, 0.95657635, 0.95552313, 0.9572202 , 0.95401454,\n", + " 0.9553395 , 0.95605767, 0.9563937 , 0.95389384, 0.9570241 ,\n", + " 0.9574599 , 0.95774376, 0.9545927 , 0.9525792 , 0.95528156], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 29.466898\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.00295825 0.00344049]\n", + "Empirical std [10.003127 4.3781753]\n", + "26.520205 0.89999974 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.96264863, 0.9634886 , 0.9654491 , 0.96161014, 0.9646267 ,\n", + " 0.96197766, 0.9637073 , 0.964096 , 0.9642366 , 0.962025 ,\n", + " 0.96133184, 0.96301097, 0.96350014, 0.96281374, 0.96277064,\n", + " 0.9660417 , 0.96478313, 0.9611292 , 0.96175057, 0.9641598 ,\n", + " 0.96387273, 0.9623814 , 0.963368 , 0.96224064, 0.9639983 ,\n", + " 0.9642765 , 0.96539843, 0.961065 , 0.96363866, 0.96541387,\n", + " 0.9627818 , 0.9658572 , 0.9633118 , 0.9621093 , 0.9626922 ,\n", + " 0.96371615, 0.9627704 , 0.9632583 , 0.96245104, 0.96418244,\n", + " 0.9637416 , 0.9613277 , 0.9621408 , 0.96529937, 0.96559614,\n", + " 0.96179414, 0.9614394 , 0.96268296, 0.96477133, 0.96407413,\n", + " 0.9638706 , 0.96270704, 0.96164525, 0.9651497 , 0.9636932 ,\n", + " 0.9608916 , 0.9636057 , 0.9632236 , 0.9633536 , 0.9641617 ,\n", + " 0.9623775 , 0.9617653 , 0.9632366 , 0.9648417 , 0.9630716 ,\n", + " 0.96513605, 0.96552825, 0.9624096 , 0.9654092 , 0.96210456,\n", + " 0.9640718 , 0.9605475 , 0.9616995 , 0.9628158 , 0.96365446,\n", + " 0.9627735 , 0.96580863, 0.9639102 , 0.9650396 , 0.9632512 ,\n", + " 0.963554 , 0.9642686 , 0.9630017 , 0.96296215, 0.96224713,\n", + " 0.9602376 , 0.96284217, 0.9615401 , 0.96514976, 0.96107394,\n", + " 0.9632734 , 0.96347415, 0.9639481 , 0.9630559 , 0.9650616 ,\n", + " 0.9618327 , 0.9629621 , 0.9634706 , 0.9611965 , 0.9648477 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 22.735043\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.02524604 0.01458848]\n", + "Empirical std [10.020115 4.3720284]\n", + "20.46154 0.89999974 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.95152754, 0.9528256 , 0.9499533 , 0.9514191 , 0.9500468 ,\n", + " 0.95024854, 0.95125955, 0.9538696 , 0.95289403, 0.9518052 ,\n", + " 0.9510819 , 0.95306695, 0.95162505, 0.95049566, 0.9499518 ,\n", + " 0.94938666, 0.95587397, 0.95113283, 0.9504822 , 0.9509464 ,\n", + " 0.9503298 , 0.9529286 , 0.95327294, 0.9498845 , 0.9535273 ,\n", + " 0.95398986, 0.95080525, 0.94865364, 0.9546818 , 0.9536086 ,\n", + " 0.95196694, 0.95205766, 0.9519836 , 0.9515288 , 0.9520121 ,\n", + " 0.9498969 , 0.95035845, 0.94861674, 0.9560071 , 0.9505284 ,\n", + " 0.95206445, 0.9520732 , 0.9498783 , 0.9507284 , 0.95180523,\n", + " 0.9493862 , 0.9518956 , 0.9497572 , 0.9521449 , 0.95403945,\n", + " 0.95129937, 0.95126253, 0.9482311 , 0.95055366, 0.9541053 ,\n", + " 0.95079947, 0.94959766, 0.95223993, 0.9540765 , 0.94781595,\n", + " 0.95128936, 0.9504917 , 0.9519002 , 0.9521846 , 0.95198876,\n", + " 0.9553459 , 0.9524388 , 0.95287216, 0.9502836 , 0.94828105,\n", + " 0.9501717 , 0.9511619 , 0.9520634 , 0.9535045 , 0.95440686,\n", + " 0.95185995, 0.95342606, 0.9487824 , 0.94949126, 0.951357 ,\n", + " 0.9515557 , 0.9497223 , 0.9490235 , 0.9512841 , 0.95009106,\n", + " 0.9505791 , 0.95092744, 0.95434934, 0.9527145 , 0.9515662 ,\n", + " 0.9533923 , 0.95625895, 0.9541268 , 0.9493676 , 0.9518952 ,\n", + " 0.9506162 , 0.9494853 , 0.9498455 , 0.9497879 , 0.94907725], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 33.33333\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.01975374 -0.00232585]\n", + "Empirical std [9.990617 4.343998]\n", + "30.0 0.89999974 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.952894 , 0.95669156, 0.95403475, 0.9532773 , 0.9515213 ,\n", + " 0.9545166 , 0.9537186 , 0.9551645 , 0.9531748 , 0.95276606,\n", + " 0.95450014, 0.95240116, 0.9535121 , 0.9540095 , 0.95531774,\n", + " 0.9569585 , 0.95240825, 0.9562255 , 0.9528611 , 0.95109206,\n", + " 0.95348537, 0.9556493 , 0.95448864, 0.95620644, 0.95481604,\n", + " 0.95397353, 0.9541744 , 0.9532906 , 0.95449203, 0.954691 ,\n", + " 0.95683634, 0.9527385 , 0.9525758 , 0.95468634, 0.9521879 ,\n", + " 0.95586807, 0.95348734, 0.9538922 , 0.95289207, 0.95270133,\n", + " 0.9563371 , 0.9567262 , 0.9536751 , 0.95455325, 0.9544427 ,\n", + " 0.9519152 , 0.9541748 , 0.95142657, 0.9560434 , 0.9541932 ,\n", + " 0.9542864 , 0.9533105 , 0.95391953, 0.9552938 , 0.9553616 ,\n", + " 0.95555365, 0.9542001 , 0.9532726 , 0.95520645, 0.9534117 ,\n", + " 0.9557604 , 0.95367754, 0.9542548 , 0.95274407, 0.9538156 ,\n", + " 0.9537166 , 0.9556495 , 0.9546571 , 0.95565885, 0.9534385 ,\n", + " 0.9531346 , 0.9535308 , 0.9526166 , 0.95318764, 0.95726705,\n", + " 0.95318973, 0.9571005 , 0.9524397 , 0.9536077 , 0.95524454,\n", + " 0.9526394 , 0.95474577, 0.9525627 , 0.9533484 , 0.9511531 ,\n", + " 0.9527528 , 0.9528227 , 0.953852 , 0.9551381 , 0.9538307 ,\n", + " 0.95310473, 0.95323575, 0.9548317 , 0.9544218 , 0.95625734,\n", + " 0.95513105, 0.95590705, 0.95325077, 0.954995 , 0.95448864], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 30.58789\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.03250825 -0.00232778]\n", + "Empirical std [9.997244 4.350646]\n", + "27.529108 0.89999974 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.97797734, 0.97769815, 0.97931457, 0.9790263 , 0.979551 ,\n", + " 0.9794091 , 0.9782542 , 0.9770757 , 0.97934586, 0.97946817,\n", + " 0.97700614, 0.9770652 , 0.9760228 , 0.97916335, 0.9773072 ,\n", + " 0.9770723 , 0.977769 , 0.9754941 , 0.97799706, 0.9805394 ,\n", + " 0.97647226, 0.9786254 , 0.97838473, 0.9776399 , 0.97828895,\n", + " 0.9796769 , 0.9782391 , 0.9775556 , 0.9802075 , 0.97926056,\n", + " 0.9796683 , 0.9779927 , 0.9759681 , 0.9787986 , 0.97915804,\n", + " 0.9788852 , 0.97864103, 0.97813684, 0.9781977 , 0.9790235 ,\n", + " 0.9773111 , 0.97693586, 0.97727203, 0.98116624, 0.9788685 ,\n", + " 0.97757804, 0.9792123 , 0.9781032 , 0.9779511 , 0.97851723,\n", + " 0.9790129 , 0.978772 , 0.9767028 , 0.978689 , 0.97772366,\n", + " 0.9784057 , 0.9777687 , 0.97701275, 0.9764907 , 0.9776689 ,\n", + " 0.9789163 , 0.9806707 , 0.97947687, 0.9794806 , 0.97846043,\n", + " 0.98031276, 0.97873163, 0.976569 , 0.9786465 , 0.97838616,\n", + " 0.97751516, 0.9788588 , 0.97737944, 0.9776694 , 0.9777886 ,\n", + " 0.9794294 , 0.97883 , 0.9803048 , 0.9782213 , 0.98072976,\n", + " 0.9804461 , 0.9781012 , 0.97786283, 0.9783735 , 0.9757271 ,\n", + " 0.9758923 , 0.97631633, 0.97787505, 0.97727346, 0.9793289 ,\n", + " 0.9787781 , 0.97840685, 0.978686 , 0.9800002 , 0.97885704,\n", + " 0.97581816, 0.9776266 , 0.9791604 , 0.97810245, 0.9786875 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 11.134662\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.0303951 0.0033849]\n", + "Empirical std [10.010093 4.365104]\n", + "10.021197 0.89999974 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9706634 , 0.97098666, 0.9694601 , 0.9681498 , 0.9700269 ,\n", + " 0.967197 , 0.9705881 , 0.969211 , 0.9699975 , 0.9692914 ,\n", + " 0.9693561 , 0.9678726 , 0.9699439 , 0.97092956, 0.9698238 ,\n", + " 0.9686026 , 0.9714447 , 0.96734333, 0.97035784, 0.9694195 ,\n", + " 0.97120696, 0.9670112 , 0.97104776, 0.9687568 , 0.97024584,\n", + " 0.9700105 , 0.9665923 , 0.9681051 , 0.9717239 , 0.97056866,\n", + " 0.97021514, 0.96890116, 0.9687969 , 0.9699899 , 0.9701967 ,\n", + " 0.9687107 , 0.9684911 , 0.9675959 , 0.968705 , 0.9711248 ,\n", + " 0.9713141 , 0.9697411 , 0.96827996, 0.97009856, 0.9713252 ,\n", + " 0.9691815 , 0.96876496, 0.9672972 , 0.9695717 , 0.9656774 ,\n", + " 0.9702509 , 0.9679051 , 0.968466 , 0.96958756, 0.9697638 ,\n", + " 0.9695184 , 0.9673462 , 0.96857166, 0.9677763 , 0.968722 ,\n", + " 0.96942043, 0.9703901 , 0.971012 , 0.9703512 , 0.97234964,\n", + " 0.9706861 , 0.9706261 , 0.9711099 , 0.96833515, 0.9665961 ,\n", + " 0.96921575, 0.96881413, 0.9689941 , 0.9700578 , 0.97075236,\n", + " 0.9701426 , 0.9706932 , 0.96954316, 0.97050124, 0.96941537,\n", + " 0.9711798 , 0.97221124, 0.9688519 , 0.97103107, 0.9704309 ,\n", + " 0.9694653 , 0.9686204 , 0.9680086 , 0.9704558 , 0.96902716,\n", + " 0.96870595, 0.96972734, 0.9696103 , 0.96952844, 0.9694026 ,\n", + " 0.9689201 , 0.9716857 , 0.97097796, 0.96739465, 0.9691624 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 17.691404\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.01446901 0.01400401]\n", + "Empirical std [10.022039 4.393507]\n", + "15.922261 0.89999974 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.765001 , 0.77106005, 0.766231 , 0.7573349 , 0.7637333 ,\n", + " 0.7630885 , 0.7568375 , 0.7640093 , 0.7641316 , 0.7636318 ,\n", + " 0.7597957 , 0.75792915, 0.75555027, 0.76914364, 0.76639336,\n", + " 0.76318353, 0.7698728 , 0.74840224, 0.7471755 , 0.7696125 ,\n", + " 0.76830167, 0.7534192 , 0.7636392 , 0.7691061 , 0.77108085,\n", + " 0.75860226, 0.7648175 , 0.76404065, 0.76411223, 0.77413213,\n", + " 0.7582009 , 0.7683605 , 0.7545073 , 0.77713865, 0.75450885,\n", + " 0.76261204, 0.7641284 , 0.7624106 , 0.7678965 , 0.75622094,\n", + " 0.7479578 , 0.7742349 , 0.7592671 , 0.76301926, 0.7768186 ,\n", + " 0.7631453 , 0.7614084 , 0.7599505 , 0.7694386 , 0.76579094,\n", + " 0.7596896 , 0.7682055 , 0.7476718 , 0.7612631 , 0.7652557 ,\n", + " 0.7679862 , 0.7694422 , 0.7612729 , 0.7771715 , 0.76277846,\n", + " 0.76831686, 0.7586822 , 0.75014037, 0.7490575 , 0.75217104,\n", + " 0.7691096 , 0.75744194, 0.75607526, 0.7563565 , 0.7561101 ,\n", + " 0.76015395, 0.76321095, 0.75645775, 0.7641732 , 0.7687982 ,\n", + " 0.7551533 , 0.76123166, 0.76269823, 0.7620446 , 0.7697742 ,\n", + " 0.75872296, 0.76368976, 0.77476096, 0.7733261 , 0.75842035,\n", + " 0.76299894, 0.7531061 , 0.7458263 , 0.7448266 , 0.7579227 ,\n", + " 0.76890546, 0.77361494, 0.755165 , 0.7576825 , 0.75587124,\n", + " 0.7500689 , 0.76728106, 0.7720967 , 0.76216626, 0.7561818 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 7.619869\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [ 0.07660519 -0.03131244]\n", + "Empirical std [9.948006 4.2565145]\n", + "15.239738 2.0 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9744522 , 0.97190344, 0.9730079 , 0.97074765, 0.9741525 ,\n", + " 0.97398394, 0.9726597 , 0.9744511 , 0.97214746, 0.9752701 ,\n", + " 0.9720341 , 0.9719287 , 0.9722756 , 0.9740282 , 0.9742127 ,\n", + " 0.97417426, 0.973794 , 0.97219473, 0.9719966 , 0.9745573 ,\n", + " 0.9746508 , 0.973063 , 0.9727895 , 0.97202754, 0.97012985,\n", + " 0.97573626, 0.97474796, 0.9710071 , 0.97359174, 0.97536856,\n", + " 0.971808 , 0.9738891 , 0.9692668 , 0.9734631 , 0.9754216 ,\n", + " 0.9739054 , 0.974118 , 0.9739694 , 0.97258216, 0.97312343,\n", + " 0.97578317, 0.97261524, 0.97113234, 0.96924704, 0.9744146 ,\n", + " 0.9730488 , 0.97405314, 0.9720641 , 0.9722286 , 0.9717402 ,\n", + " 0.9748945 , 0.97243893, 0.9726811 , 0.9729702 , 0.9741779 ,\n", + " 0.97193676, 0.9715692 , 0.9737768 , 0.9711003 , 0.9748577 ,\n", + " 0.9745163 , 0.9740224 , 0.9711838 , 0.97291684, 0.9746379 ,\n", + " 0.9747121 , 0.9753206 , 0.97192514, 0.9727889 , 0.97255576,\n", + " 0.97295016, 0.97500056, 0.9732522 , 0.97289705, 0.97248787,\n", + " 0.9711617 , 0.97530055, 0.97293764, 0.9729247 , 0.9739391 ,\n", + " 0.9748026 , 0.97318345, 0.97444946, 0.97223663, 0.972354 ,\n", + " 0.97398126, 0.9702835 , 0.9736303 , 0.97255 , 0.9735184 ,\n", + " 0.9747834 , 0.9752491 , 0.97416055, 0.97373235, 0.97250664,\n", + " 0.9728174 , 0.9752317 , 0.9745783 , 0.9730555 , 0.97259885], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 14.764585\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.00036038 0.0303582 ]\n", + "Empirical std [10.04602 4.4131923]\n", + "13.288118 0.89999974 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.87744623, 0.88013846, 0.8835956 , 0.8790409 , 0.87804157,\n", + " 0.8833443 , 0.8819389 , 0.8794167 , 0.87933224, 0.88456696,\n", + " 0.884324 , 0.8804126 , 0.88113624, 0.8828332 , 0.8788626 ,\n", + " 0.88094443, 0.88706845, 0.88163173, 0.8804915 , 0.8830209 ,\n", + " 0.87504697, 0.8828043 , 0.8820411 , 0.88777435, 0.88384604,\n", + " 0.88534063, 0.87888306, 0.88043594, 0.88281405, 0.8832786 ,\n", + " 0.8718075 , 0.88513017, 0.88497496, 0.8844917 , 0.8828935 ,\n", + " 0.885611 , 0.8843868 , 0.88674414, 0.8799652 , 0.87798494,\n", + " 0.89279896, 0.88683844, 0.8688099 , 0.88137203, 0.885329 ,\n", + " 0.8827274 , 0.88338804, 0.8816547 , 0.88510454, 0.86871636,\n", + " 0.88377064, 0.88592386, 0.87905204, 0.8816537 , 0.88444227,\n", + " 0.8868649 , 0.8844417 , 0.8822226 , 0.8790195 , 0.8829306 ,\n", + " 0.8827547 , 0.88246256, 0.89191085, 0.8838837 , 0.8856683 ,\n", + " 0.88628876, 0.88498425, 0.88318014, 0.87706316, 0.87837964,\n", + " 0.87858886, 0.8874659 , 0.87604797, 0.884077 , 0.88539445,\n", + " 0.8796064 , 0.88754755, 0.87562245, 0.8869045 , 0.88632256,\n", + " 0.8801283 , 0.8874062 , 0.87887776, 0.8807616 , 0.8833583 ,\n", + " 0.8832078 , 0.8807147 , 0.88274765, 0.878964 , 0.8731773 ,\n", + " 0.8878349 , 0.8870204 , 0.8852021 , 0.8869249 , 0.888821 ,\n", + " 0.8829271 , 0.87914777, 0.8840499 , 0.8794831 , 0.88000345], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 11.737049\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.02884114 0.00268924]\n", + "Empirical std [10.002434 4.3693256]\n", + "16.661858 1.419595 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.906803 , 0.90908176, 0.9084152 , 0.90833575, 0.90746355,\n", + " 0.91063356, 0.9087737 , 0.909748 , 0.9105888 , 0.9071666 ,\n", + " 0.90712756, 0.90743816, 0.9079251 , 0.9039106 , 0.9068635 ,\n", + " 0.9113365 , 0.9090463 , 0.9029339 , 0.90839374, 0.9136048 ,\n", + " 0.90904987, 0.9051489 , 0.905732 , 0.90776753, 0.9107171 ,\n", + " 0.908334 , 0.9113236 , 0.9033993 , 0.9125853 , 0.9129885 ,\n", + " 0.9080643 , 0.90394175, 0.9092255 , 0.91356343, 0.90777475,\n", + " 0.91062224, 0.90954787, 0.9089876 , 0.90811974, 0.90925986,\n", + " 0.9113398 , 0.9102961 , 0.90677774, 0.90574104, 0.9066503 ,\n", + " 0.9059078 , 0.9145122 , 0.91294885, 0.9119237 , 0.90832055,\n", + " 0.9075463 , 0.91392946, 0.9081092 , 0.9102902 , 0.9104273 ,\n", + " 0.9042802 , 0.91067445, 0.9086453 , 0.9103653 , 0.90850884,\n", + " 0.9064013 , 0.90941155, 0.91122013, 0.91143095, 0.9102971 ,\n", + " 0.91178656, 0.9092924 , 0.9131262 , 0.90565175, 0.90463173,\n", + " 0.90635383, 0.908261 , 0.9091136 , 0.90512085, 0.918569 ,\n", + " 0.9099925 , 0.915031 , 0.904342 , 0.90978324, 0.91121155,\n", + " 0.9063008 , 0.9094267 , 0.9083825 , 0.9093299 , 0.9056855 ,\n", + " 0.9102321 , 0.9066659 , 0.9107857 , 0.91047496, 0.90989274,\n", + " 0.9087336 , 0.9089895 , 0.91038907, 0.90438783, 0.91480285,\n", + " 0.90774053, 0.9099998 , 0.90813136, 0.9082623 , 0.9117598 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 15.25634\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [ 0.01981846 -0.00489414]\n", + "Empirical std [9.994872 4.351637]\n", + "18.967842 1.2432767 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.87874794, 0.88156533, 0.8779272 , 0.8756458 , 0.8772155 ,\n", + " 0.88527054, 0.87923896, 0.882713 , 0.8835349 , 0.88135356,\n", + " 0.8792225 , 0.8775871 , 0.87867826, 0.8771506 , 0.8744516 ,\n", + " 0.87950337, 0.8743665 , 0.87677246, 0.8755074 , 0.87708193,\n", + " 0.87670815, 0.8745238 , 0.8809091 , 0.87830764, 0.87780315,\n", + " 0.8826204 , 0.8756022 , 0.8800733 , 0.88041276, 0.87621 ,\n", + " 0.8814042 , 0.88052535, 0.87384534, 0.88427097, 0.8796936 ,\n", + " 0.87672275, 0.87700814, 0.87581944, 0.88121086, 0.8774643 ,\n", + " 0.8768908 , 0.87429243, 0.87767243, 0.8776631 , 0.87940544,\n", + " 0.8768455 , 0.88383377, 0.87933594, 0.87944156, 0.87926245,\n", + " 0.8799375 , 0.88292974, 0.87639004, 0.87743545, 0.88019395,\n", + " 0.8790579 , 0.8827236 , 0.8787491 , 0.8786968 , 0.8758589 ,\n", + " 0.87724686, 0.8694536 , 0.87128395, 0.88180643, 0.8800627 ,\n", + " 0.87600124, 0.8799785 , 0.87452835, 0.8762173 , 0.869604 ,\n", + " 0.8779668 , 0.8764293 , 0.8722513 , 0.8771892 , 0.8782981 ,\n", + " 0.8745025 , 0.8751493 , 0.874082 , 0.87340564, 0.87796617,\n", + " 0.8779702 , 0.8773163 , 0.87494564, 0.87784773, 0.87475693,\n", + " 0.8713667 , 0.87511444, 0.8761453 , 0.8750922 , 0.8819583 ,\n", + " 0.87808394, 0.87742156, 0.8806168 , 0.87843674, 0.8855593 ,\n", + " 0.8821787 , 0.88325226, 0.87542164, 0.874103 , 0.8784798 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 21.60738\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.04088636 -0.00395808]\n", + "Empirical std [9.996256 4.340799]\n", + "27.352724 1.2658974 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.89011794, 0.883411 , 0.8966999 , 0.8875536 , 0.88336813,\n", + " 0.8930562 , 0.88111365, 0.8904008 , 0.89127946, 0.8871844 ,\n", + " 0.8836396 , 0.88842344, 0.8865879 , 0.88744587, 0.88586855,\n", + " 0.891922 , 0.88915765, 0.8898074 , 0.8868892 , 0.89275575,\n", + " 0.8879283 , 0.88534784, 0.8871919 , 0.8870971 , 0.8913866 ,\n", + " 0.89035034, 0.8912938 , 0.88590044, 0.8860081 , 0.8879246 ,\n", + " 0.88789386, 0.88280594, 0.8840352 , 0.89037764, 0.88686395,\n", + " 0.888992 , 0.8844819 , 0.8888561 , 0.89058006, 0.8908193 ,\n", + " 0.8838162 , 0.8877797 , 0.8874429 , 0.89218146, 0.89077264,\n", + " 0.88623416, 0.8959045 , 0.89083517, 0.8914587 , 0.8941108 ,\n", + " 0.8881038 , 0.88360196, 0.88859403, 0.8892002 , 0.88099235,\n", + " 0.8841562 , 0.8821772 , 0.88429755, 0.89057094, 0.8857551 ,\n", + " 0.89022183, 0.8957796 , 0.88344085, 0.88970953, 0.8909423 ,\n", + " 0.8841463 , 0.88777393, 0.8892087 , 0.8900153 , 0.8859976 ,\n", + " 0.8853764 , 0.88704646, 0.8839968 , 0.89081186, 0.8911017 ,\n", + " 0.8905123 , 0.88997453, 0.8898161 , 0.8851842 , 0.89211607,\n", + " 0.8915079 , 0.8907269 , 0.88670933, 0.88520455, 0.8831535 ,\n", + " 0.88229495, 0.8863477 , 0.8885218 , 0.88604015, 0.8876154 ,\n", + " 0.8861502 , 0.8938066 , 0.89101195, 0.8898301 , 0.88713735,\n", + " 0.8884501 , 0.8903585 , 0.88652396, 0.88049555, 0.8850164 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 16.005644\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.00383903 0.00267218]\n", + "Empirical std [10.002171 4.368213]\n", + "20.985918 1.3111573 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.83848894, 0.8217818 , 0.83258194, 0.82595414, 0.82656044,\n", + " 0.82866955, 0.81302994, 0.8347736 , 0.8352189 , 0.8290056 ,\n", + " 0.830708 , 0.8219603 , 0.82421905, 0.82966703, 0.8423104 ,\n", + " 0.8376126 , 0.8351684 , 0.8227497 , 0.8345263 , 0.84192055,\n", + " 0.8272306 , 0.8364826 , 0.8236606 , 0.8341734 , 0.8334851 ,\n", + " 0.83585083, 0.8302767 , 0.82912976, 0.83632386, 0.82975423,\n", + " 0.8377127 , 0.8321079 , 0.8265793 , 0.83643574, 0.8361302 ,\n", + " 0.83752054, 0.8363676 , 0.82480955, 0.82967657, 0.827532 ,\n", + " 0.8326176 , 0.8285815 , 0.83370376, 0.82022977, 0.8341602 ,\n", + " 0.8245963 , 0.8322768 , 0.8225731 , 0.82542527, 0.81519127,\n", + " 0.83037215, 0.82706267, 0.8344515 , 0.83774453, 0.8234332 ,\n", + " 0.8223348 , 0.8328052 , 0.81974906, 0.82805735, 0.8322969 ,\n", + " 0.82637054, 0.83609706, 0.83733284, 0.8320048 , 0.8292595 ,\n", + " 0.8351452 , 0.8323831 , 0.8234943 , 0.832708 , 0.8231623 ,\n", + " 0.83881575, 0.83295524, 0.825356 , 0.8407415 , 0.83127826,\n", + " 0.82079166, 0.8294187 , 0.8332085 , 0.8301302 , 0.824972 ,\n", + " 0.8182173 , 0.8169576 , 0.84222895, 0.82124925, 0.83147925,\n", + " 0.8299975 , 0.826834 , 0.8354162 , 0.8305023 , 0.8270514 ,\n", + " 0.83211976, 0.83499724, 0.8271343 , 0.82642287, 0.8352097 ,\n", + " 0.8200992 , 0.8310054 , 0.8353855 , 0.83321464, 0.8213899 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 7.0469775\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.0069672 0.02481207]\n", + "Empirical std [10.036105 4.4113636]\n", + "12.6217 1.7910801 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.898147 , 0.8991414 , 0.90378654, 0.89853185, 0.8956782 ,\n", + " 0.9023823 , 0.89560735, 0.9011182 , 0.9013232 , 0.8958174 ,\n", + " 0.8941397 , 0.9004076 , 0.90215164, 0.90192574, 0.8961745 ,\n", + " 0.90080523, 0.9032938 , 0.89532495, 0.90333015, 0.89634806,\n", + " 0.90027624, 0.8966792 , 0.904168 , 0.905153 , 0.898316 ,\n", + " 0.90074545, 0.89958155, 0.8961353 , 0.8961982 , 0.9007513 ,\n", + " 0.89946866, 0.899341 , 0.90037835, 0.8968336 , 0.8959357 ,\n", + " 0.8981314 , 0.8976551 , 0.90287507, 0.89894354, 0.89931107,\n", + " 0.8961612 , 0.8956937 , 0.9004567 , 0.8981239 , 0.8990805 ,\n", + " 0.89703953, 0.9053006 , 0.9010403 , 0.8990038 , 0.9005257 ,\n", + " 0.9003724 , 0.90131545, 0.90144575, 0.9022307 , 0.90741706,\n", + " 0.9013872 , 0.896866 , 0.89973205, 0.8968212 , 0.90069765,\n", + " 0.8990418 , 0.8988934 , 0.89910966, 0.9026451 , 0.90113163,\n", + " 0.8991774 , 0.90206003, 0.8981904 , 0.9036619 , 0.89759296,\n", + " 0.8964786 , 0.9024018 , 0.8963702 , 0.89427215, 0.89884585,\n", + " 0.89464396, 0.8964295 , 0.89760005, 0.9007987 , 0.9024661 ,\n", + " 0.8993648 , 0.8951496 , 0.900273 , 0.89285725, 0.89860123,\n", + " 0.8914195 , 0.8983582 , 0.89829177, 0.8981763 , 0.9026766 ,\n", + " 0.9027979 , 0.9023467 , 0.8989048 , 0.89707506, 0.89560294,\n", + " 0.89885813, 0.8987382 , 0.900929 , 0.9018258 , 0.901515 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 22.957376\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.01210768 -0.01318252]\n", + "Empirical std [9.9784155 4.3396816]\n", + "27.053102 1.1784055 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.7077798 , 0.6902207 , 0.7111862 , 0.7021415 , 0.69483995,\n", + " 0.68562406, 0.70366615, 0.69903624, 0.693245 , 0.68955594,\n", + " 0.70308155, 0.6872629 , 0.7063113 , 0.69371265, 0.7041557 ,\n", + " 0.7046663 , 0.7117029 , 0.6939734 , 0.70144695, 0.69800335,\n", + " 0.69372535, 0.696548 , 0.69056493, 0.6940632 , 0.7151012 ,\n", + " 0.6909289 , 0.707758 , 0.70061344, 0.69441897, 0.7072558 ,\n", + " 0.6958094 , 0.7010212 , 0.7047238 , 0.7047917 , 0.6992096 ,\n", + " 0.6996473 , 0.68813944, 0.68835044, 0.7052198 , 0.69347394,\n", + " 0.69929755, 0.7004136 , 0.6945301 , 0.69151384, 0.70325136,\n", + " 0.68358326, 0.70430934, 0.7056776 , 0.6992397 , 0.70127916,\n", + " 0.7078256 , 0.6980231 , 0.6903682 , 0.7017793 , 0.6899927 ,\n", + " 0.7070093 , 0.68254596, 0.6904133 , 0.69674 , 0.70106804,\n", + " 0.6890696 , 0.6997912 , 0.69973564, 0.70673215, 0.7124812 ,\n", + " 0.6958248 , 0.70064336, 0.6842781 , 0.7020967 , 0.68892276,\n", + " 0.68840885, 0.7043974 , 0.6939307 , 0.69229215, 0.70603275,\n", + " 0.69763255, 0.700893 , 0.695324 , 0.6898859 , 0.70150834,\n", + " 0.6969244 , 0.70011806, 0.69442797, 0.6887873 , 0.70065916,\n", + " 0.6956233 , 0.69659245, 0.7030603 , 0.6870232 , 0.7137297 ,\n", + " 0.7014609 , 0.6992349 , 0.70274395, 0.7087272 , 0.6947061 ,\n", + " 0.69279975, 0.7027131 , 0.707802 , 0.7044589 , 0.696553 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 11.523835\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.01707402 0.00906365]\n", + "Empirical std [10.009753 4.3298893]\n", + "23.04767 2.0 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9642655 , 0.9663942 , 0.96758646, 0.9637432 , 0.9663732 ,\n", + " 0.9672932 , 0.9655865 , 0.96569926, 0.9660763 , 0.9643134 ,\n", + " 0.96535236, 0.9649312 , 0.9652808 , 0.96694285, 0.96480817,\n", + " 0.9690219 , 0.9672 , 0.9635984 , 0.96675897, 0.96893954,\n", + " 0.9668464 , 0.96556664, 0.96715796, 0.9657243 , 0.9648671 ,\n", + " 0.9678883 , 0.9684766 , 0.96644235, 0.96274275, 0.96854794,\n", + " 0.9655785 , 0.9674219 , 0.9649065 , 0.9651221 , 0.9633617 ,\n", + " 0.96634185, 0.9650381 , 0.9661615 , 0.9656842 , 0.96807283,\n", + " 0.96619815, 0.96768767, 0.96423554, 0.9626181 , 0.9682631 ,\n", + " 0.96536964, 0.96704066, 0.9679501 , 0.9676729 , 0.96453935,\n", + " 0.96703166, 0.9671811 , 0.9655289 , 0.9696175 , 0.96629155,\n", + " 0.9642034 , 0.96764505, 0.9635419 , 0.9644352 , 0.9665411 ,\n", + " 0.9668986 , 0.96703595, 0.96608853, 0.9677846 , 0.9668489 ,\n", + " 0.9666831 , 0.96747595, 0.9648821 , 0.9671773 , 0.9669277 ,\n", + " 0.96697 , 0.9654274 , 0.96512955, 0.96638054, 0.9646069 ,\n", + " 0.96370476, 0.9685248 , 0.96393216, 0.9668822 , 0.96889746,\n", + " 0.9682588 , 0.96402705, 0.966982 , 0.9672079 , 0.96632946,\n", + " 0.9643411 , 0.9648253 , 0.9671541 , 0.9663006 , 0.9668772 ,\n", + " 0.9687065 , 0.96700305, 0.9652955 , 0.96739477, 0.96388054,\n", + " 0.969299 , 0.9667879 , 0.9685382 , 0.96652955, 0.96829015], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 15.912055\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.03148275 0.002895 ]\n", + "Empirical std [10.003419 4.3757734]\n", + "14.963876 0.94041115 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9168806 , 0.9173219 , 0.9220676 , 0.91676944, 0.9162251 ,\n", + " 0.9246677 , 0.9218539 , 0.91780084, 0.91806084, 0.91786367,\n", + " 0.9152047 , 0.91150796, 0.91748494, 0.92087823, 0.91964364,\n", + " 0.9227379 , 0.9197112 , 0.91842806, 0.91967535, 0.92281693,\n", + " 0.9219388 , 0.91955143, 0.91732883, 0.919626 , 0.9204804 ,\n", + " 0.92182267, 0.91962856, 0.91939455, 0.9189339 , 0.9177995 ,\n", + " 0.919106 , 0.9176713 , 0.9203464 , 0.92227685, 0.91971344,\n", + " 0.9177876 , 0.918717 , 0.91624737, 0.91856706, 0.9241346 ,\n", + " 0.91574913, 0.9191072 , 0.92143095, 0.92243 , 0.91939217,\n", + " 0.9170736 , 0.92306525, 0.91904134, 0.92217463, 0.91524035,\n", + " 0.91964287, 0.92182344, 0.91160685, 0.9156623 , 0.9177792 ,\n", + " 0.9176227 , 0.9194869 , 0.91609585, 0.9180134 , 0.9170259 ,\n", + " 0.9228623 , 0.918926 , 0.92393374, 0.9207972 , 0.9182033 ,\n", + " 0.9194255 , 0.9190081 , 0.9221408 , 0.918162 , 0.91684014,\n", + " 0.9188626 , 0.9209672 , 0.9162762 , 0.9150643 , 0.91812086,\n", + " 0.9175883 , 0.9164058 , 0.92077166, 0.9175156 , 0.9177966 ,\n", + " 0.9205268 , 0.9177781 , 0.92151093, 0.9182483 , 0.9198415 ,\n", + " 0.9201751 , 0.91585433, 0.91888815, 0.9178629 , 0.91757065,\n", + " 0.91702497, 0.9195368 , 0.91858464, 0.9197317 , 0.92067474,\n", + " 0.9164252 , 0.9210418 , 0.9221931 , 0.9170957 , 0.9168105 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 18.319153\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.00634203 0.03100378]\n", + "Empirical std [10.04898 4.4112577]\n", + "21.184551 1.1564153 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.8046393 , 0.7979852 , 0.8046324 , 0.80436903, 0.81097895,\n", + " 0.8002797 , 0.8031906 , 0.7991513 , 0.80381435, 0.8021164 ,\n", + " 0.8069588 , 0.80346525, 0.8024749 , 0.8056713 , 0.8127498 ,\n", + " 0.80328304, 0.81924224, 0.8179345 , 0.80655247, 0.8126747 ,\n", + " 0.81889826, 0.8104948 , 0.8072961 , 0.8141231 , 0.8170562 ,\n", + " 0.8166832 , 0.8233933 , 0.8073102 , 0.8019627 , 0.80785507,\n", + " 0.8054057 , 0.7997287 , 0.8016916 , 0.8143924 , 0.80045086,\n", + " 0.8038288 , 0.8034877 , 0.80349195, 0.8065929 , 0.8110441 ,\n", + " 0.8158386 , 0.8143266 , 0.8149435 , 0.80589396, 0.80826783,\n", + " 0.80776286, 0.8181125 , 0.80132294, 0.8071174 , 0.8114808 ,\n", + " 0.80877924, 0.81044966, 0.7914418 , 0.8151182 , 0.8130538 ,\n", + " 0.80853 , 0.80429953, 0.80559963, 0.81420934, 0.7950213 ,\n", + " 0.8114039 , 0.81406343, 0.82324797, 0.8122782 , 0.81555355,\n", + " 0.81680155, 0.8291117 , 0.8096779 , 0.80751747, 0.8105813 ,\n", + " 0.8127969 , 0.80954576, 0.8067438 , 0.80181694, 0.7921691 ,\n", + " 0.8118538 , 0.8161662 , 0.8105372 , 0.81302387, 0.81014436,\n", + " 0.81357914, 0.80106026, 0.81814617, 0.8097931 , 0.8013322 ,\n", + " 0.804138 , 0.80374914, 0.81590146, 0.7993838 , 0.8017508 ,\n", + " 0.81972003, 0.80358267, 0.7955258 , 0.8067449 , 0.80591506,\n", + " 0.80356854, 0.80020434, 0.8091858 , 0.81787294, 0.79797494], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 6.3273487\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.03762138 0.0407984 ]\n", + "Empirical std [10.072758 4.4427757]\n", + "12.123189 1.9159974 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9341055 , 0.9327931 , 0.93888605, 0.9291938 , 0.9304152 ,\n", + " 0.93721104, 0.93401355, 0.9270133 , 0.93252677, 0.937943 ,\n", + " 0.93020207, 0.93405527, 0.93304884, 0.9365909 , 0.93097717,\n", + " 0.9385644 , 0.9367029 , 0.9312394 , 0.93265 , 0.9377182 ,\n", + " 0.9364408 , 0.9343554 , 0.9376897 , 0.93541723, 0.9369053 ,\n", + " 0.9378128 , 0.9339557 , 0.9363256 , 0.93796796, 0.9358249 ,\n", + " 0.9344706 , 0.93377054, 0.931398 , 0.94260484, 0.93154603,\n", + " 0.9335484 , 0.93308145, 0.9295962 , 0.9299635 , 0.9387589 ,\n", + " 0.93449664, 0.9313098 , 0.93118376, 0.93406725, 0.9364566 ,\n", + " 0.93322587, 0.9411795 , 0.93060833, 0.93172526, 0.9352286 ,\n", + " 0.9331173 , 0.93241906, 0.93037903, 0.93557125, 0.93526065,\n", + " 0.9362394 , 0.9303762 , 0.9365079 , 0.93317044, 0.92937213,\n", + " 0.9355638 , 0.9323563 , 0.9341978 , 0.9381314 , 0.93537384,\n", + " 0.9370499 , 0.9365122 , 0.9385714 , 0.9343046 , 0.932049 ,\n", + " 0.93582225, 0.9354467 , 0.92989415, 0.93695366, 0.9346325 ,\n", + " 0.9337954 , 0.93358094, 0.9362137 , 0.936044 , 0.9335809 ,\n", + " 0.93689615, 0.9323758 , 0.93787104, 0.9364399 , 0.9322577 ,\n", + " 0.92938155, 0.9321453 , 0.9341919 , 0.9327118 , 0.9303657 ,\n", + " 0.9343977 , 0.9345684 , 0.93421525, 0.9349481 , 0.93498015,\n", + " 0.93593854, 0.93314046, 0.93778914, 0.93091303, 0.93646175], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 8.179107\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.01800857 -0.0173051 ]\n", + "Empirical std [9.972453 4.303471]\n", + "10.502036 1.2840078 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9448936 , 0.94434345, 0.94617164, 0.941766 , 0.94705385,\n", + " 0.944211 , 0.94590825, 0.9454701 , 0.9460811 , 0.9415692 ,\n", + " 0.94173235, 0.94556683, 0.9421111 , 0.9433781 , 0.9431825 ,\n", + " 0.94634247, 0.9431795 , 0.94507474, 0.94156104, 0.9473789 ,\n", + " 0.9434203 , 0.94660485, 0.9435673 , 0.94712466, 0.9437381 ,\n", + " 0.9444293 , 0.94454837, 0.94015944, 0.945018 , 0.94288343,\n", + " 0.94728225, 0.94339097, 0.9394229 , 0.9451948 , 0.944541 ,\n", + " 0.9460195 , 0.9436163 , 0.94315517, 0.9442392 , 0.94806206,\n", + " 0.94599205, 0.9446406 , 0.9430366 , 0.94638294, 0.9470977 ,\n", + " 0.9455582 , 0.945645 , 0.94007146, 0.9413434 , 0.9438184 ,\n", + " 0.9460343 , 0.9422874 , 0.9427542 , 0.945758 , 0.9446824 ,\n", + " 0.9458929 , 0.9397257 , 0.9441123 , 0.9437613 , 0.9468266 ,\n", + " 0.9443568 , 0.9486916 , 0.94479436, 0.9425023 , 0.9426841 ,\n", + " 0.9473859 , 0.9439898 , 0.94581246, 0.94478196, 0.9436836 ,\n", + " 0.94249934, 0.9456828 , 0.94138694, 0.9420241 , 0.9449862 ,\n", + " 0.94453055, 0.94477594, 0.94445133, 0.94284075, 0.94758797,\n", + " 0.943074 , 0.9405049 , 0.9434195 , 0.9488694 , 0.9437639 ,\n", + " 0.94108194, 0.9427375 , 0.94812053, 0.944365 , 0.94208777,\n", + " 0.9435367 , 0.94703496, 0.9467754 , 0.944217 , 0.94396126,\n", + " 0.9470595 , 0.9425835 , 0.94217485, 0.9441981 , 0.94280326], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 17.021555\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.00951989 0.01350019]\n", + "Empirical std [10.018054 4.347248]\n", + "18.01064 1.0581073 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.8882127 , 0.8838646 , 0.8921088 , 0.88420063, 0.8845489 ,\n", + " 0.88087434, 0.881535 , 0.8868046 , 0.8906168 , 0.87804127,\n", + " 0.890908 , 0.88751435, 0.8874403 , 0.89192194, 0.8879726 ,\n", + " 0.8903927 , 0.88300824, 0.88302463, 0.8842088 , 0.8941732 ,\n", + " 0.88162017, 0.89212614, 0.8914676 , 0.8847392 , 0.88755566,\n", + " 0.89792407, 0.8842746 , 0.8924073 , 0.892181 , 0.8994725 ,\n", + " 0.8907665 , 0.8856508 , 0.885737 , 0.8947516 , 0.88967466,\n", + " 0.89029354, 0.8876416 , 0.8788682 , 0.89093727, 0.89332926,\n", + " 0.88931113, 0.8927979 , 0.8890063 , 0.8772231 , 0.8925666 ,\n", + " 0.88606566, 0.88909984, 0.8848076 , 0.8884057 , 0.89187396,\n", + " 0.8942319 , 0.88576424, 0.8900435 , 0.88627374, 0.8875926 ,\n", + " 0.8853921 , 0.88159305, 0.8862841 , 0.8875939 , 0.89279896,\n", + " 0.88803 , 0.8922503 , 0.8867835 , 0.88600475, 0.8935367 ,\n", + " 0.8896775 , 0.8992281 , 0.8908886 , 0.8807027 , 0.88278824,\n", + " 0.88007945, 0.8830672 , 0.88830477, 0.88462514, 0.879662 ,\n", + " 0.88782513, 0.8948525 , 0.8907836 , 0.8872913 , 0.8907879 ,\n", + " 0.88310426, 0.8775499 , 0.8835661 , 0.8906558 , 0.88924897,\n", + " 0.8835097 , 0.88385284, 0.89011943, 0.8937245 , 0.87276286,\n", + " 0.8872528 , 0.8882341 , 0.88207436, 0.89136404, 0.88580126,\n", + " 0.8736088 , 0.88579506, 0.88525826, 0.8834078 , 0.89062905], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 8.012462\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.03282871 0.05621565]\n", + "Empirical std [10.089138 4.497846]\n", + "12.155331 1.5170529 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9350036 , 0.9373674 , 0.935624 , 0.9338238 , 0.93331665,\n", + " 0.9368022 , 0.93607295, 0.93667513, 0.9359829 , 0.9348847 ,\n", + " 0.9340114 , 0.9343833 , 0.93451166, 0.93356985, 0.93524975,\n", + " 0.93594944, 0.93516254, 0.9355224 , 0.93495655, 0.9359179 ,\n", + " 0.93448466, 0.9349883 , 0.93995804, 0.939736 , 0.9366293 ,\n", + " 0.93465227, 0.9340098 , 0.93202853, 0.93477446, 0.9406244 ,\n", + " 0.93950653, 0.9364181 , 0.9332472 , 0.93753177, 0.9323984 ,\n", + " 0.9367151 , 0.93264496, 0.9377896 , 0.9344074 , 0.9352542 ,\n", + " 0.9367671 , 0.93464255, 0.9291016 , 0.9377018 , 0.93007904,\n", + " 0.9324997 , 0.936776 , 0.9306888 , 0.9324919 , 0.93168455,\n", + " 0.9335183 , 0.93574995, 0.93308234, 0.93888575, 0.9346948 ,\n", + " 0.93372613, 0.93479586, 0.93397605, 0.9355148 , 0.93549126,\n", + " 0.93351406, 0.93371665, 0.9339634 , 0.936705 , 0.9361503 ,\n", + " 0.93369067, 0.9358969 , 0.936304 , 0.93223983, 0.9330047 ,\n", + " 0.93532354, 0.9343648 , 0.9318765 , 0.93358153, 0.9333343 ,\n", + " 0.93689436, 0.9354569 , 0.93483293, 0.9337964 , 0.9352708 ,\n", + " 0.93441933, 0.9319461 , 0.933122 , 0.9317675 , 0.9357023 ,\n", + " 0.9351891 , 0.9340606 , 0.93645304, 0.93734914, 0.93585366,\n", + " 0.9370219 , 0.93335325, 0.9372466 , 0.9339598 , 0.93207526,\n", + " 0.93723834, 0.9346914 , 0.93352276, 0.93498176, 0.93537396], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 27.326515\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.01467027 -0.01700469]\n", + "Empirical std [9.978117 4.3161592]\n", + "27.53107 1.0074862 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.8686749 , 0.8653378 , 0.8711646 , 0.86918426, 0.8717553 ,\n", + " 0.8716879 , 0.88072914, 0.880252 , 0.87186927, 0.86736596,\n", + " 0.87292045, 0.8713533 , 0.8695261 , 0.875957 , 0.8760718 ,\n", + " 0.8710722 , 0.8698571 , 0.87337077, 0.8700661 , 0.87473184,\n", + " 0.8734491 , 0.87960196, 0.8723314 , 0.8751148 , 0.8715137 ,\n", + " 0.874446 , 0.8742965 , 0.87025005, 0.8721602 , 0.8729949 ,\n", + " 0.86241007, 0.8752658 , 0.86693984, 0.87203974, 0.8703307 ,\n", + " 0.8800852 , 0.8674781 , 0.8668507 , 0.87338454, 0.87528104,\n", + " 0.8746431 , 0.87283486, 0.87420875, 0.86772233, 0.8735885 ,\n", + " 0.8748291 , 0.87104917, 0.8711694 , 0.8699904 , 0.8594681 ,\n", + " 0.87680644, 0.8727239 , 0.868547 , 0.8724401 , 0.87340766,\n", + " 0.87298894, 0.870191 , 0.8725345 , 0.8670098 , 0.86803186,\n", + " 0.87037396, 0.87672186, 0.8741608 , 0.8668085 , 0.8810131 ,\n", + " 0.88380694, 0.8809666 , 0.8724098 , 0.87771195, 0.8699354 ,\n", + " 0.8709454 , 0.8709059 , 0.8665291 , 0.87555283, 0.8671044 ,\n", + " 0.87535214, 0.8788092 , 0.87063664, 0.8675605 , 0.87688553,\n", + " 0.87625015, 0.86798805, 0.8721079 , 0.8676179 , 0.8711349 ,\n", + " 0.8737339 , 0.86885744, 0.87489223, 0.875168 , 0.86788666,\n", + " 0.8718086 , 0.8759125 , 0.8705606 , 0.8760231 , 0.8752394 ,\n", + " 0.8728648 , 0.8662724 , 0.87995285, 0.86919415, 0.8764328 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 10.638334\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.04154157 0.01153514]\n", + "Empirical std [10.017152 4.383593]\n", + "15.846229 1.4895406 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.80188847, 0.79538965, 0.80579495, 0.7953537 , 0.7984367 ,\n", + " 0.80036396, 0.80023676, 0.8145212 , 0.79724234, 0.80352193,\n", + " 0.79399234, 0.7893774 , 0.80739474, 0.8092604 , 0.80862945,\n", + " 0.81351966, 0.8084107 , 0.79943293, 0.80158234, 0.80002236,\n", + " 0.7981856 , 0.7969908 , 0.80559784, 0.81050724, 0.80007106,\n", + " 0.796987 , 0.7989667 , 0.7951707 , 0.7940316 , 0.80566216,\n", + " 0.8033836 , 0.80030787, 0.7966709 , 0.8033728 , 0.79704875,\n", + " 0.8104966 , 0.8028497 , 0.8011734 , 0.8085338 , 0.79737145,\n", + " 0.80071306, 0.80838954, 0.80176866, 0.80069864, 0.80259794,\n", + " 0.7981484 , 0.80093974, 0.8046586 , 0.79780763, 0.8069849 ,\n", + " 0.7968793 , 0.79480994, 0.7997871 , 0.7970048 , 0.79770255,\n", + " 0.8001318 , 0.7958462 , 0.7995584 , 0.8075326 , 0.80154264,\n", + " 0.802309 , 0.8106906 , 0.7950977 , 0.8081475 , 0.80758274,\n", + " 0.79845953, 0.804821 , 0.8021017 , 0.8005452 , 0.7978787 ,\n", + " 0.7890624 , 0.80393016, 0.79475254, 0.80146635, 0.80698436,\n", + " 0.8026175 , 0.80051607, 0.8033342 , 0.8019309 , 0.8054367 ,\n", + " 0.81008476, 0.802971 , 0.79348016, 0.80111516, 0.7999382 ,\n", + " 0.793233 , 0.8071771 , 0.8046059 , 0.79836416, 0.8017666 ,\n", + " 0.79134107, 0.8120453 , 0.8102851 , 0.8103167 , 0.7975505 ,\n", + " 0.8016533 , 0.80227524, 0.8042769 , 0.80244786, 0.80807954], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 14.563569\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.02327373 0.03177665]\n", + "Empirical std [10.04941 4.3890758]\n", + "23.526161 1.6154112 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.83484316, 0.83392906, 0.82940304, 0.8325091 , 0.83374053,\n", + " 0.83157265, 0.8279443 , 0.8288599 , 0.83106714, 0.83230644,\n", + " 0.8247739 , 0.82885605, 0.83981895, 0.8297851 , 0.8316281 ,\n", + " 0.8363546 , 0.8315147 , 0.8283409 , 0.82439935, 0.83094877,\n", + " 0.82878095, 0.83303326, 0.82887113, 0.8345154 , 0.83752435,\n", + " 0.8264966 , 0.835663 , 0.8312951 , 0.8286428 , 0.8400034 ,\n", + " 0.83041507, 0.8409084 , 0.8271077 , 0.8353928 , 0.82771575,\n", + " 0.8289078 , 0.8291044 , 0.8348258 , 0.8358913 , 0.83927315,\n", + " 0.83394223, 0.8275265 , 0.8287454 , 0.82175064, 0.84141564,\n", + " 0.8279651 , 0.8329162 , 0.8327215 , 0.8363972 , 0.82818514,\n", + " 0.83046603, 0.8302694 , 0.83148277, 0.83721435, 0.8290062 ,\n", + " 0.827774 , 0.83835834, 0.83218664, 0.83657616, 0.830474 ,\n", + " 0.83804137, 0.83361644, 0.83292866, 0.8336758 , 0.82305837,\n", + " 0.82493585, 0.8370551 , 0.8340138 , 0.8277368 , 0.8328739 ,\n", + " 0.83063906, 0.8334507 , 0.8377692 , 0.8323416 , 0.83750844,\n", + " 0.83231986, 0.835834 , 0.834985 , 0.8384745 , 0.83527774,\n", + " 0.8306178 , 0.83160627, 0.83028156, 0.8255884 , 0.8304059 ,\n", + " 0.8337255 , 0.8323938 , 0.8302452 , 0.8304149 , 0.83558816,\n", + " 0.8281737 , 0.83478147, 0.83321106, 0.8278434 , 0.8357146 ,\n", + " 0.83276373, 0.8385095 , 0.8341224 , 0.8361569 , 0.8370648 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 19.567226\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.01507103 0.00934962]\n", + "Empirical std [10.016772 4.347601]\n", + "28.046688 1.4333497 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.7883229 , 0.7927874 , 0.7958426 , 0.782786 , 0.77556276,\n", + " 0.78541446, 0.78301543, 0.7904918 , 0.7884994 , 0.7809804 ,\n", + " 0.78706324, 0.78391767, 0.7904687 , 0.7800084 , 0.78953725,\n", + " 0.79363227, 0.7796075 , 0.77393264, 0.7800734 , 0.78994024,\n", + " 0.78655714, 0.7818581 , 0.79123 , 0.7857946 , 0.7869961 ,\n", + " 0.79290277, 0.78843766, 0.78157884, 0.7857797 , 0.7792979 ,\n", + " 0.78573406, 0.7793883 , 0.7780339 , 0.78381693, 0.78802663,\n", + " 0.7841558 , 0.78285855, 0.79069436, 0.79153776, 0.78276896,\n", + " 0.7846153 , 0.7882928 , 0.7881585 , 0.7838428 , 0.78640574,\n", + " 0.79057676, 0.79453903, 0.78468925, 0.79145217, 0.7879765 ,\n", + " 0.78715277, 0.7869518 , 0.78279436, 0.7829468 , 0.78229 ,\n", + " 0.7840838 , 0.79576087, 0.77949923, 0.7810409 , 0.78447455,\n", + " 0.7869414 , 0.7895078 , 0.7770236 , 0.784007 , 0.79531705,\n", + " 0.7901791 , 0.7864685 , 0.77096665, 0.7792733 , 0.78029805,\n", + " 0.7807592 , 0.7855028 , 0.786821 , 0.78149813, 0.79505837,\n", + " 0.78382903, 0.77874625, 0.78348494, 0.7805703 , 0.7860318 ,\n", + " 0.7790047 , 0.78808427, 0.7858173 , 0.784855 , 0.78446466,\n", + " 0.77792645, 0.78153265, 0.7814333 , 0.78534573, 0.7902634 ,\n", + " 0.7817499 , 0.7882241 , 0.7837101 , 0.79000384, 0.7921282 ,\n", + " 0.7871918 , 0.7911884 , 0.7909328 , 0.7812391 , 0.7829459 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 12.711244\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.03873115 0.04260155]\n", + "Empirical std [10.065154 4.4284205]\n", + "21.812675 1.7160138 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.94911015, 0.94883084, 0.95216626, 0.94522625, 0.9483284 ,\n", + " 0.9479163 , 0.9493214 , 0.9491069 , 0.94800246, 0.9458807 ,\n", + " 0.9500127 , 0.9469251 , 0.94518566, 0.9541626 , 0.948858 ,\n", + " 0.94989675, 0.94755065, 0.94576293, 0.9484361 , 0.950175 ,\n", + " 0.94584036, 0.94784236, 0.9452779 , 0.94687027, 0.9504623 ,\n", + " 0.94642735, 0.9470241 , 0.94580936, 0.946236 , 0.9485262 ,\n", + " 0.9468725 , 0.9497872 , 0.9445213 , 0.94952637, 0.94682497,\n", + " 0.94889635, 0.9460541 , 0.94304484, 0.9490257 , 0.9515682 ,\n", + " 0.94804543, 0.9476665 , 0.9474307 , 0.9481179 , 0.95077676,\n", + " 0.9473831 , 0.949775 , 0.9480214 , 0.94714427, 0.94697785,\n", + " 0.94997287, 0.9473053 , 0.94617325, 0.9481965 , 0.9476288 ,\n", + " 0.949038 , 0.94782037, 0.94661796, 0.94594705, 0.94757146,\n", + " 0.9468736 , 0.9485071 , 0.9493404 , 0.9494321 , 0.94941324,\n", + " 0.94777554, 0.94928616, 0.9507764 , 0.94727015, 0.9454654 ,\n", + " 0.9458414 , 0.94937664, 0.94615364, 0.947839 , 0.94699013,\n", + " 0.9484056 , 0.95105034, 0.94861907, 0.9502076 , 0.94800556,\n", + " 0.9474887 , 0.9478401 , 0.9487658 , 0.9485336 , 0.94918185,\n", + " 0.9453109 , 0.9472101 , 0.94662726, 0.9486675 , 0.9474289 ,\n", + " 0.94461614, 0.9496834 , 0.94969225, 0.9477168 , 0.9495397 ,\n", + " 0.945903 , 0.94652885, 0.94624233, 0.9471572 , 0.94831234], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 18.016714\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.00498223 0.00475573]\n", + "Empirical std [10.007098 4.353759]\n", + "18.540764 1.029087 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.96266806, 0.9623183 , 0.96353054, 0.9609275 , 0.9628057 ,\n", + " 0.96434116, 0.96352774, 0.96142584, 0.96097505, 0.9609261 ,\n", + " 0.96084124, 0.9616488 , 0.9623811 , 0.96099395, 0.96156734,\n", + " 0.96465087, 0.96274436, 0.95890665, 0.96004707, 0.96253735,\n", + " 0.96359354, 0.9618356 , 0.96174586, 0.95972997, 0.9630683 ,\n", + " 0.96269816, 0.9631414 , 0.9615087 , 0.96040577, 0.963156 ,\n", + " 0.9625179 , 0.96092266, 0.9629362 , 0.96260667, 0.95884186,\n", + " 0.9654135 , 0.9610841 , 0.9643097 , 0.96207005, 0.9643347 ,\n", + " 0.9633015 , 0.9627439 , 0.9629325 , 0.96263486, 0.9621497 ,\n", + " 0.9607463 , 0.962133 , 0.96180236, 0.96222097, 0.96411157,\n", + " 0.9638456 , 0.96333104, 0.9586851 , 0.9643768 , 0.96244925,\n", + " 0.9615868 , 0.9617913 , 0.96056545, 0.9637614 , 0.96295327,\n", + " 0.962089 , 0.96166074, 0.9612867 , 0.96410894, 0.9621467 ,\n", + " 0.9642122 , 0.964946 , 0.9630447 , 0.9621381 , 0.9630602 ,\n", + " 0.9648151 , 0.96222025, 0.9585812 , 0.96289736, 0.9637586 ,\n", + " 0.9604642 , 0.9617794 , 0.962194 , 0.96216494, 0.9626073 ,\n", + " 0.9652239 , 0.9603376 , 0.963787 , 0.96082217, 0.96276444,\n", + " 0.9618937 , 0.96349996, 0.9616201 , 0.9624359 , 0.9625561 ,\n", + " 0.9616295 , 0.96283156, 0.9637641 , 0.96449393, 0.9620498 ,\n", + " 0.9623241 , 0.9621579 , 0.96328515, 0.96145153, 0.9621838 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 21.704048\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.00085982 0.01909181]\n", + "Empirical std [10.026093 4.371136]\n", + "19.828716 0.9135951 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.78231955, 0.7939935 , 0.78665453, 0.79563725, 0.77973485,\n", + " 0.78335375, 0.79649806, 0.79026294, 0.7919035 , 0.78979284,\n", + " 0.7904062 , 0.779985 , 0.7883731 , 0.78742385, 0.7905907 ,\n", + " 0.7909581 , 0.7945163 , 0.7823393 , 0.79191065, 0.7834183 ,\n", + " 0.77895266, 0.7854865 , 0.79183555, 0.7930734 , 0.7941573 ,\n", + " 0.7914637 , 0.79625076, 0.78056574, 0.79466486, 0.7944789 ,\n", + " 0.7902283 , 0.78516364, 0.79414344, 0.79138196, 0.7821778 ,\n", + " 0.7898497 , 0.7905514 , 0.78922606, 0.7902218 , 0.7948565 ,\n", + " 0.7897851 , 0.78476864, 0.78255665, 0.7853701 , 0.80257833,\n", + " 0.774783 , 0.78497946, 0.7891972 , 0.7930462 , 0.79083425,\n", + " 0.78888005, 0.78667974, 0.7928542 , 0.7897971 , 0.7924837 ,\n", + " 0.7891241 , 0.7846075 , 0.7861762 , 0.8005203 , 0.7862757 ,\n", + " 0.79295224, 0.78968537, 0.7747195 , 0.78958493, 0.79926336,\n", + " 0.7888012 , 0.79406875, 0.78735507, 0.79299664, 0.78704584,\n", + " 0.78155506, 0.7826222 , 0.79030234, 0.7949675 , 0.7864376 ,\n", + " 0.794103 , 0.7852023 , 0.78506523, 0.78028363, 0.78798157,\n", + " 0.79221106, 0.78579396, 0.7890684 , 0.7850892 , 0.79075974,\n", + " 0.78245884, 0.7871346 , 0.7914158 , 0.7808562 , 0.78915405,\n", + " 0.7799079 , 0.79463273, 0.7925565 , 0.7844401 , 0.7923075 ,\n", + " 0.78545415, 0.7852236 , 0.79860777, 0.7925615 , 0.7846917 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 17.78062\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.00478821 0.00204127]\n", + "Empirical std [10.003351 4.3749866]\n", + "28.209896 1.5865527 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.8437569 , 0.8482316 , 0.84620255, 0.84625226, 0.8498551 ,\n", + " 0.84632015, 0.84285563, 0.8462211 , 0.8447422 , 0.84823215,\n", + " 0.84677136, 0.84425664, 0.8476935 , 0.8413361 , 0.84466386,\n", + " 0.8464404 , 0.84359866, 0.84845746, 0.84611326, 0.8496785 ,\n", + " 0.8485884 , 0.84098023, 0.8412782 , 0.8511294 , 0.83719254,\n", + " 0.8466022 , 0.8454348 , 0.84125936, 0.8474947 , 0.8529355 ,\n", + " 0.8437499 , 0.8459821 , 0.83689797, 0.8463284 , 0.83765996,\n", + " 0.84984595, 0.8454134 , 0.82664245, 0.84142065, 0.85067254,\n", + " 0.8492652 , 0.851352 , 0.84461284, 0.84273136, 0.8541353 ,\n", + " 0.84444153, 0.8442742 , 0.845726 , 0.8503532 , 0.84801847,\n", + " 0.8409979 , 0.84824437, 0.8391591 , 0.8367548 , 0.8460926 ,\n", + " 0.8429338 , 0.8361194 , 0.8393461 , 0.83609354, 0.84881896,\n", + " 0.84524524, 0.8426015 , 0.8472968 , 0.8443555 , 0.8364881 ,\n", + " 0.8476821 , 0.8546296 , 0.8528346 , 0.84681165, 0.8460788 ,\n", + " 0.8442575 , 0.8437698 , 0.8422888 , 0.8412832 , 0.848434 ,\n", + " 0.84291106, 0.8453462 , 0.8476209 , 0.84355414, 0.84767574,\n", + " 0.83556694, 0.8432249 , 0.85379 , 0.84121746, 0.84492207,\n", + " 0.84493583, 0.8424603 , 0.84713787, 0.84967554, 0.8483734 ,\n", + " 0.8457686 , 0.8533025 , 0.8491977 , 0.8430702 , 0.84219426,\n", + " 0.8461856 , 0.8431414 , 0.84192145, 0.83763415, 0.8488717 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 12.096171\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.0475755 0.03662048]\n", + "Empirical std [10.054805 4.450615]\n", + "18.664429 1.5430027 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9284437 , 0.92820054, 0.9290538 , 0.92175907, 0.92845756,\n", + " 0.9312355 , 0.9296687 , 0.9317003 , 0.92663604, 0.93392533,\n", + " 0.9260894 , 0.9304118 , 0.9304392 , 0.9260972 , 0.9244195 ,\n", + " 0.92920667, 0.93002474, 0.92610675, 0.9293628 , 0.9285689 ,\n", + " 0.92816764, 0.927195 , 0.92761284, 0.93541473, 0.93053526,\n", + " 0.9275838 , 0.9308305 , 0.93044853, 0.9286173 , 0.93157476,\n", + " 0.92904484, 0.9336927 , 0.9280019 , 0.93186766, 0.93235207,\n", + " 0.9271108 , 0.9287119 , 0.9305876 , 0.92925197, 0.93370855,\n", + " 0.9316639 , 0.93193036, 0.925891 , 0.9319692 , 0.9295911 ,\n", + " 0.9274988 , 0.9310067 , 0.9269371 , 0.93285215, 0.92790264,\n", + " 0.9307919 , 0.9279654 , 0.92939943, 0.9265042 , 0.93171895,\n", + " 0.9267799 , 0.9312239 , 0.92749864, 0.9293604 , 0.9317252 ,\n", + " 0.9294883 , 0.92567056, 0.9304942 , 0.9297399 , 0.9272382 ,\n", + " 0.9308511 , 0.92994756, 0.9278981 , 0.9295739 , 0.9289956 ,\n", + " 0.9284043 , 0.92835927, 0.9269127 , 0.93089217, 0.9297483 ,\n", + " 0.9310143 , 0.9280497 , 0.93282145, 0.92943305, 0.93108314,\n", + " 0.93009883, 0.93067604, 0.92906094, 0.92852837, 0.92773604,\n", + " 0.9295162 , 0.92776704, 0.92846525, 0.93036675, 0.9283013 ,\n", + " 0.9296722 , 0.9352671 , 0.92899734, 0.9271272 , 0.9253817 ,\n", + " 0.9302642 , 0.9299273 , 0.9283305 , 0.9288286 , 0.92793113], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 25.751055\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.03065338 0.01960398]\n", + "Empirical std [10.033138 4.3811574]\n", + "26.836178 1.0421388 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.78128046, 0.78796244, 0.7728529 , 0.7713702 , 0.7842861 ,\n", + " 0.774876 , 0.7899441 , 0.76889443, 0.78274477, 0.7775585 ,\n", + " 0.7798717 , 0.7774588 , 0.7801761 , 0.7868004 , 0.78260696,\n", + " 0.7825153 , 0.77895623, 0.7618227 , 0.7794396 , 0.78265995,\n", + " 0.79049695, 0.7806936 , 0.7796876 , 0.78441167, 0.78773594,\n", + " 0.7774858 , 0.77649236, 0.7765895 , 0.7836587 , 0.78548586,\n", + " 0.7889773 , 0.7867466 , 0.77710384, 0.7823725 , 0.7788342 ,\n", + " 0.7890719 , 0.77530587, 0.770369 , 0.7770719 , 0.7862422 ,\n", + " 0.7841456 , 0.77513087, 0.77890176, 0.7763521 , 0.7877907 ,\n", + " 0.77405757, 0.77374136, 0.7778885 , 0.7802834 , 0.779486 ,\n", + " 0.78688484, 0.7852867 , 0.773977 , 0.7949613 , 0.7900417 ,\n", + " 0.76741624, 0.78184235, 0.78055096, 0.7811892 , 0.7845064 ,\n", + " 0.78708196, 0.7815934 , 0.78461975, 0.7766316 , 0.771014 ,\n", + " 0.7743572 , 0.7819057 , 0.775266 , 0.78686583, 0.7851518 ,\n", + " 0.7870136 , 0.7765167 , 0.7714098 , 0.7771177 , 0.78334576,\n", + " 0.780194 , 0.7795177 , 0.78733623, 0.78004014, 0.78912026,\n", + " 0.7795332 , 0.7750997 , 0.78502387, 0.7703279 , 0.7731059 ,\n", + " 0.77840585, 0.7766778 , 0.78129673, 0.7851697 , 0.78913224,\n", + " 0.78617144, 0.7917145 , 0.7849555 , 0.7770377 , 0.7924439 ,\n", + " 0.77873904, 0.7809442 , 0.78470474, 0.78091073, 0.785549 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 12.752872\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.0159898 -0.00126325]\n", + "Empirical std [9.989216 4.3310866]\n", + "22.086939 1.7319183 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.69718045, 0.7036449 , 0.7119539 , 0.7049471 , 0.70440835,\n", + " 0.6941808 , 0.70024526, 0.69616216, 0.7038465 , 0.6987899 ,\n", + " 0.70475465, 0.7041133 , 0.7084045 , 0.6969499 , 0.700612 ,\n", + " 0.6972054 , 0.71359694, 0.6900045 , 0.7064181 , 0.70665216,\n", + " 0.69787264, 0.70527554, 0.7056049 , 0.7030871 , 0.71586734,\n", + " 0.7039384 , 0.7010798 , 0.68821526, 0.7097709 , 0.7083997 ,\n", + " 0.70752305, 0.69518924, 0.70287144, 0.7089648 , 0.715279 ,\n", + " 0.70656216, 0.6955076 , 0.69212806, 0.70630866, 0.70253164,\n", + " 0.70600057, 0.7053479 , 0.70035475, 0.69952995, 0.7042597 ,\n", + " 0.70279706, 0.7056607 , 0.70008254, 0.7068207 , 0.698499 ,\n", + " 0.69417775, 0.7140331 , 0.6982702 , 0.70655495, 0.7180285 ,\n", + " 0.68825483, 0.709551 , 0.7042863 , 0.7028778 , 0.7093452 ,\n", + " 0.6888636 , 0.7012022 , 0.69760853, 0.7010192 , 0.7008328 ,\n", + " 0.7071682 , 0.70222 , 0.69870245, 0.70043486, 0.70346946,\n", + " 0.6923448 , 0.7049251 , 0.7079887 , 0.6944688 , 0.70601606,\n", + " 0.7035911 , 0.707739 , 0.69671625, 0.69483274, 0.70960784,\n", + " 0.70023346, 0.7152905 , 0.7081028 , 0.6976249 , 0.6929227 ,\n", + " 0.7077798 , 0.69365287, 0.69468665, 0.6970332 , 0.70551825,\n", + " 0.69896823, 0.70989615, 0.70828116, 0.7089863 , 0.7134837 ,\n", + " 0.70175725, 0.7035423 , 0.7087595 , 0.7082434 , 0.70641613], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 13.241994\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [ 0.00034319 -0.00684337]\n", + "Empirical std [9.981114 4.381413]\n", + "25.5131 1.9266812 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.96594995, 0.9665439 , 0.9655525 , 0.9650236 , 0.964691 ,\n", + " 0.9665829 , 0.96662384, 0.9667883 , 0.9654471 , 0.967108 ,\n", + " 0.9668786 , 0.9645771 , 0.9660334 , 0.96702814, 0.9662185 ,\n", + " 0.96786 , 0.96563053, 0.96546006, 0.96563315, 0.96747464,\n", + " 0.96693337, 0.96542305, 0.964924 , 0.9680625 , 0.9656061 ,\n", + " 0.9691911 , 0.96596694, 0.963816 , 0.9686718 , 0.96589375,\n", + " 0.9658722 , 0.9686562 , 0.9634386 , 0.96649176, 0.9673258 ,\n", + " 0.96812445, 0.9655413 , 0.96528375, 0.9674179 , 0.96638143,\n", + " 0.9669831 , 0.9671398 , 0.9647796 , 0.96711594, 0.9671641 ,\n", + " 0.9641548 , 0.9672088 , 0.9661526 , 0.96595204, 0.963221 ,\n", + " 0.96836364, 0.967464 , 0.96622455, 0.96688545, 0.9658718 ,\n", + " 0.9661613 , 0.96554357, 0.9658842 , 0.96712893, 0.9674388 ,\n", + " 0.96600866, 0.96408355, 0.9663355 , 0.967647 , 0.96597534,\n", + " 0.9664792 , 0.9674122 , 0.96548945, 0.9667659 , 0.9652104 ,\n", + " 0.9691418 , 0.9661203 , 0.9663302 , 0.96559834, 0.9678525 ,\n", + " 0.966621 , 0.96620023, 0.9675877 , 0.9630336 , 0.9646481 ,\n", + " 0.96455663, 0.96578926, 0.96643937, 0.966367 , 0.9660942 ,\n", + " 0.9661677 , 0.9672259 , 0.96645886, 0.9681991 , 0.96389174,\n", + " 0.9660595 , 0.9676705 , 0.96527946, 0.96507555, 0.9652673 ,\n", + " 0.96797246, 0.9666554 , 0.9694195 , 0.96509635, 0.9669321 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 16.637785\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.01166951 0.02456767]\n", + "Empirical std [10.039954 4.4038134]\n", + "15.519582 0.9327913 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9384483 , 0.9331575 , 0.93744487, 0.93287003, 0.9349256 ,\n", + " 0.9339861 , 0.9356094 , 0.9335428 , 0.93457854, 0.9326663 ,\n", + " 0.9358645 , 0.93007624, 0.9359636 , 0.9370426 , 0.9329604 ,\n", + " 0.93784755, 0.9346817 , 0.9350269 , 0.9346248 , 0.93498355,\n", + " 0.93327826, 0.9343406 , 0.9324215 , 0.9328341 , 0.93387765,\n", + " 0.9371726 , 0.93674284, 0.93181646, 0.93634945, 0.93281466,\n", + " 0.9347204 , 0.9390308 , 0.9332188 , 0.93671674, 0.93331254,\n", + " 0.93750954, 0.9342266 , 0.93361264, 0.93367165, 0.9384116 ,\n", + " 0.933121 , 0.93518597, 0.9346503 , 0.9346967 , 0.93454397,\n", + " 0.93083405, 0.9350544 , 0.93389386, 0.93570316, 0.9336835 ,\n", + " 0.934538 , 0.9347407 , 0.9346332 , 0.9355308 , 0.93306834,\n", + " 0.9378167 , 0.9321476 , 0.93223673, 0.9328345 , 0.9355037 ,\n", + " 0.93556386, 0.9304418 , 0.93058395, 0.93521684, 0.9289582 ,\n", + " 0.93582267, 0.9355857 , 0.93490446, 0.9353012 , 0.92920756,\n", + " 0.934817 , 0.9339122 , 0.93137527, 0.93600434, 0.9375142 ,\n", + " 0.9356621 , 0.93612814, 0.93522453, 0.9316147 , 0.93255293,\n", + " 0.9318854 , 0.9314403 , 0.93226326, 0.9324352 , 0.9319835 ,\n", + " 0.9313077 , 0.9322162 , 0.931725 , 0.93537635, 0.93740886,\n", + " 0.9355755 , 0.9367536 , 0.93594474, 0.93421966, 0.93455034,\n", + " 0.94007695, 0.9364039 , 0.93346137, 0.9345149 , 0.9351347 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 28.32428\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.00235795 0.01109765]\n", + "Empirical std [10.021215 4.378691]\n", + "28.379574 1.0019517 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.93939054, 0.94305277, 0.9456536 , 0.93648255, 0.9439451 ,\n", + " 0.94399446, 0.94367754, 0.94074553, 0.94373685, 0.94214296,\n", + " 0.9436646 , 0.9436794 , 0.94532484, 0.9464898 , 0.94415486,\n", + " 0.9401984 , 0.9406286 , 0.94070804, 0.94166225, 0.94502264,\n", + " 0.9435538 , 0.94343024, 0.9408512 , 0.94220185, 0.94426805,\n", + " 0.9418021 , 0.9451516 , 0.94031703, 0.94208825, 0.94736445,\n", + " 0.9425384 , 0.94379824, 0.9414754 , 0.94523436, 0.9412678 ,\n", + " 0.9467024 , 0.9393749 , 0.9388189 , 0.9405531 , 0.9406963 ,\n", + " 0.94331473, 0.94333434, 0.9403057 , 0.9400821 , 0.9437863 ,\n", + " 0.9407787 , 0.9445317 , 0.940491 , 0.9391913 , 0.94102025,\n", + " 0.9427976 , 0.9421661 , 0.9424826 , 0.9440974 , 0.9392415 ,\n", + " 0.9429182 , 0.9417661 , 0.9394889 , 0.94064325, 0.94157827,\n", + " 0.94313884, 0.9440702 , 0.9423531 , 0.9417992 , 0.94501615,\n", + " 0.94393706, 0.9426896 , 0.9399671 , 0.9400238 , 0.94118905,\n", + " 0.94041085, 0.9445643 , 0.93737125, 0.9433556 , 0.9403269 ,\n", + " 0.9408405 , 0.9448464 , 0.94309765, 0.9427576 , 0.94325984,\n", + " 0.941199 , 0.93905544, 0.9415163 , 0.9419075 , 0.93907607,\n", + " 0.9381819 , 0.931217 , 0.9437462 , 0.94054246, 0.9394982 ,\n", + " 0.9406724 , 0.9447396 , 0.9414041 , 0.9408249 , 0.9436062 ,\n", + " 0.9426248 , 0.94073075, 0.9410611 , 0.9428863 , 0.9396376 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 9.7424965\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.02522792 -0.0268972 ]\n", + "Empirical std [9.953458 4.3082156]\n", + "11.667782 1.1976163 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.8173385 , 0.8069668 , 0.82176006, 0.79868245, 0.80982536,\n", + " 0.8108447 , 0.8110776 , 0.81586146, 0.82082564, 0.811776 ,\n", + " 0.80948114, 0.807258 , 0.80423594, 0.8179385 , 0.81299907,\n", + " 0.81737643, 0.81393445, 0.81328887, 0.8149736 , 0.80867714,\n", + " 0.8126072 , 0.8140236 , 0.805191 , 0.81964433, 0.8228659 ,\n", + " 0.81349564, 0.8145523 , 0.8105345 , 0.8157867 , 0.81863666,\n", + " 0.8125764 , 0.8151126 , 0.81310076, 0.8061507 , 0.81096977,\n", + " 0.8187489 , 0.81261086, 0.8136773 , 0.8166343 , 0.82422036,\n", + " 0.8134479 , 0.8122483 , 0.8149858 , 0.80719703, 0.81210184,\n", + " 0.8058229 , 0.8167347 , 0.8063001 , 0.8185457 , 0.81538445,\n", + " 0.8076917 , 0.81243676, 0.79817706, 0.82762265, 0.81265765,\n", + " 0.8098028 , 0.8080062 , 0.8234144 , 0.8079864 , 0.80795586,\n", + " 0.80569166, 0.8198177 , 0.80914116, 0.82380474, 0.81662816,\n", + " 0.8087687 , 0.8180522 , 0.80516326, 0.8087799 , 0.8197914 ,\n", + " 0.81720006, 0.80648875, 0.8082564 , 0.81886613, 0.81710136,\n", + " 0.80959415, 0.8207864 , 0.8256526 , 0.8085384 , 0.80970156,\n", + " 0.7996309 , 0.8162003 , 0.8157233 , 0.8111049 , 0.8137825 ,\n", + " 0.8080388 , 0.8114794 , 0.8072172 , 0.80403596, 0.8195971 ,\n", + " 0.81624794, 0.8206221 , 0.82349545, 0.81000334, 0.81957793,\n", + " 0.7978171 , 0.8213623 , 0.81374466, 0.80764776, 0.81319684], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 9.022523\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.05149139 0.0230983 ]\n", + "Empirical std [10.034098 4.392528]\n", + "15.874122 1.7593881 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.9560198 , 0.9577262 , 0.958852 , 0.95597684, 0.95782816,\n", + " 0.954946 , 0.95529217, 0.95742863, 0.95908684, 0.9538764 ,\n", + " 0.9547045 , 0.95691144, 0.9578961 , 0.9587347 , 0.9567474 ,\n", + " 0.9578796 , 0.9597576 , 0.9547757 , 0.9564197 , 0.9579126 ,\n", + " 0.95416856, 0.9554004 , 0.9568293 , 0.9578374 , 0.9560368 ,\n", + " 0.95675945, 0.95703864, 0.95482796, 0.95448285, 0.95729387,\n", + " 0.9573069 , 0.957329 , 0.9581127 , 0.95579886, 0.9541297 ,\n", + " 0.95569575, 0.9536373 , 0.95524114, 0.95879155, 0.95511204,\n", + " 0.95749557, 0.9575683 , 0.9527751 , 0.95639044, 0.95693 ,\n", + " 0.9545264 , 0.95625234, 0.9585185 , 0.9580646 , 0.95546865,\n", + " 0.9576247 , 0.9575292 , 0.95515704, 0.9547392 , 0.95886064,\n", + " 0.9546901 , 0.9547865 , 0.9543931 , 0.95909303, 0.9540872 ,\n", + " 0.9572231 , 0.9545875 , 0.95510554, 0.9583796 , 0.9551476 ,\n", + " 0.95436597, 0.9557476 , 0.95557016, 0.9581927 , 0.95447344,\n", + " 0.9556662 , 0.9551492 , 0.95589185, 0.9556312 , 0.95896405,\n", + " 0.9554223 , 0.9571624 , 0.954379 , 0.95426273, 0.95533425,\n", + " 0.95430744, 0.9588047 , 0.9571328 , 0.9550291 , 0.95524615,\n", + " 0.9561785 , 0.95627016, 0.9590068 , 0.9529429 , 0.95601064,\n", + " 0.96144134, 0.9578129 , 0.958799 , 0.9589214 , 0.9587504 ,\n", + " 0.9574805 , 0.95591974, 0.95548266, 0.95176095, 0.9555856 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 22.680502\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.01890972 0.00170222]\n", + "Empirical std [10.005751 4.375291]\n", + "21.309286 0.9395421 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.82835233, 0.83314455, 0.8342317 , 0.83376616, 0.8322392 ,\n", + " 0.8261887 , 0.8356817 , 0.8329402 , 0.82185745, 0.8336623 ,\n", + " 0.8301606 , 0.8280751 , 0.8325423 , 0.8397919 , 0.80979264,\n", + " 0.83679134, 0.8402988 , 0.8282862 , 0.82678777, 0.8366195 ,\n", + " 0.8296813 , 0.8350213 , 0.839572 , 0.83572984, 0.8360698 ,\n", + " 0.83133906, 0.82575005, 0.8340154 , 0.83676505, 0.8341896 ,\n", + " 0.8359282 , 0.83415335, 0.8360419 , 0.8343739 , 0.826137 ,\n", + " 0.83241206, 0.8314308 , 0.8288375 , 0.8297044 , 0.83868694,\n", + " 0.8272664 , 0.83434635, 0.83656377, 0.8350636 , 0.8335523 ,\n", + " 0.83447665, 0.8306164 , 0.84133834, 0.8361421 , 0.8269886 ,\n", + " 0.83607566, 0.82761306, 0.8345962 , 0.8290279 , 0.8341113 ,\n", + " 0.8310831 , 0.82978356, 0.8384462 , 0.8403146 , 0.8283869 ,\n", + " 0.83188605, 0.8243981 , 0.83127654, 0.83133197, 0.8352404 ,\n", + " 0.8403461 , 0.8356733 , 0.8379493 , 0.83997256, 0.8283279 ,\n", + " 0.8351314 , 0.8403462 , 0.8320953 , 0.8302382 , 0.83332664,\n", + " 0.83322257, 0.833412 , 0.8337879 , 0.82678205, 0.83444893,\n", + " 0.8370445 , 0.83384854, 0.82894987, 0.83101493, 0.82999176,\n", + " 0.8314169 , 0.8249318 , 0.83029187, 0.837992 , 0.831723 ,\n", + " 0.82196206, 0.8374369 , 0.83168036, 0.8394147 , 0.83492404,\n", + " 0.8398409 , 0.8313293 , 0.829761 , 0.84040946, 0.830021 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 19.310583\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.00517611 0.01970447]\n", + "Empirical std [10.031576 4.4396358]\n", + "27.68976 1.4339164 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.7931842 , 0.7870552 , 0.7909344 , 0.7853245 , 0.77780676,\n", + " 0.7947818 , 0.7919096 , 0.7898952 , 0.7941519 , 0.79291326,\n", + " 0.78398883, 0.79728156, 0.7911645 , 0.78963727, 0.79220617,\n", + " 0.7931308 , 0.79010665, 0.78640306, 0.79731554, 0.79721636,\n", + " 0.7928582 , 0.7890475 , 0.7917967 , 0.79263514, 0.7955226 ,\n", + " 0.79982525, 0.78733015, 0.78097767, 0.79269594, 0.8000679 ,\n", + " 0.7881123 , 0.7937901 , 0.786115 , 0.78944325, 0.79089284,\n", + " 0.7897076 , 0.7839976 , 0.7806949 , 0.784694 , 0.79363424,\n", + " 0.79620045, 0.7977284 , 0.7856326 , 0.79982346, 0.7863858 ,\n", + " 0.7926526 , 0.7928119 , 0.7925442 , 0.79362804, 0.78553164,\n", + " 0.7851801 , 0.7971675 , 0.79108477, 0.79720575, 0.7969345 ,\n", + " 0.7905344 , 0.7886399 , 0.79849255, 0.7953197 , 0.79686415,\n", + " 0.7920173 , 0.78694326, 0.78957707, 0.7914223 , 0.7959693 ,\n", + " 0.79636085, 0.7897236 , 0.79771364, 0.7925302 , 0.7754205 ,\n", + " 0.7932513 , 0.7784454 , 0.7916656 , 0.7845337 , 0.78956234,\n", + " 0.7879383 , 0.79207087, 0.784893 , 0.7878962 , 0.7916298 ,\n", + " 0.7937302 , 0.7842543 , 0.7906326 , 0.7833475 , 0.7919981 ,\n", + " 0.79511535, 0.79718447, 0.7869423 , 0.7924281 , 0.7896899 ,\n", + " 0.78682745, 0.7995451 , 0.7912107 , 0.79216325, 0.800678 ,\n", + " 0.7849006 , 0.7936203 , 0.79160047, 0.8005612 , 0.7923721 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 19.078518\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.00073073 0.00669207]\n", + "Empirical std [10.009888 4.3900337]\n", + "29.595768 1.5512617 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.8381837 , 0.842348 , 0.85134876, 0.8485226 , 0.8401979 ,\n", + " 0.83890766, 0.84491473, 0.84403116, 0.84536266, 0.8526021 ,\n", + " 0.8467655 , 0.8475123 , 0.8437115 , 0.8482578 , 0.84284097,\n", + " 0.84660953, 0.84417415, 0.8432718 , 0.83710593, 0.8421623 ,\n", + " 0.8446636 , 0.84138554, 0.84891814, 0.85213625, 0.8499222 ,\n", + " 0.8440091 , 0.84719455, 0.8471901 , 0.84222186, 0.8452321 ,\n", + " 0.848861 , 0.847309 , 0.84598833, 0.84432834, 0.8423135 ,\n", + " 0.84774333, 0.84321404, 0.8384953 , 0.8423412 , 0.8454113 ,\n", + " 0.8403492 , 0.84227777, 0.84061736, 0.83515185, 0.84765446,\n", + " 0.8351042 , 0.84646404, 0.8411053 , 0.84592533, 0.84647995,\n", + " 0.8469401 , 0.8490091 , 0.8408505 , 0.84477735, 0.8363774 ,\n", + " 0.84885544, 0.8430112 , 0.84521466, 0.8437716 , 0.85062903,\n", + " 0.8458798 , 0.8490788 , 0.84104174, 0.84906083, 0.84504193,\n", + " 0.8427405 , 0.8455946 , 0.846518 , 0.842386 , 0.8419864 ,\n", + " 0.8437929 , 0.8455097 , 0.83871865, 0.84234405, 0.8460441 ,\n", + " 0.84445447, 0.8487997 , 0.8512081 , 0.8424342 , 0.8405641 ,\n", + " 0.84875506, 0.84106976, 0.8406442 , 0.8440408 , 0.84436905,\n", + " 0.84452957, 0.84190184, 0.84447336, 0.8470054 , 0.846642 ,\n", + " 0.84405863, 0.8523424 , 0.84906495, 0.8434308 , 0.845667 ,\n", + " 0.85080844, 0.8464318 , 0.8446204 , 0.8455343 , 0.84532017], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 20.959858\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.0095964 0.00890184]\n", + "Empirical std [10.015497 4.359342]\n", + "28.809492 1.3745077 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.89812773, 0.89743376, 0.89088124, 0.8911017 , 0.88991743,\n", + " 0.8946214 , 0.89409536, 0.8968114 , 0.891764 , 0.8905394 ,\n", + " 0.8850501 , 0.89786476, 0.89804465, 0.890554 , 0.8919414 ,\n", + " 0.8983504 , 0.88999784, 0.8960654 , 0.8945872 , 0.88940716,\n", + " 0.89341414, 0.8935818 , 0.89173657, 0.8984986 , 0.89727163,\n", + " 0.8938659 , 0.89037013, 0.8955115 , 0.89219654, 0.89553016,\n", + " 0.89270914, 0.89268595, 0.89460737, 0.89721006, 0.8945013 ,\n", + " 0.8964628 , 0.89028114, 0.89228016, 0.8982713 , 0.89507437,\n", + " 0.89267296, 0.8937304 , 0.8923047 , 0.8890399 , 0.894589 ,\n", + " 0.886805 , 0.89744586, 0.8948882 , 0.89206445, 0.8908869 ,\n", + " 0.8935418 , 0.89780957, 0.89061844, 0.89585054, 0.88969964,\n", + " 0.8936287 , 0.89954525, 0.8936945 , 0.8927701 , 0.89465183,\n", + " 0.8921704 , 0.89140993, 0.8911329 , 0.89064187, 0.89554316,\n", + " 0.8950034 , 0.8931145 , 0.89545286, 0.8915011 , 0.8873216 ,\n", + " 0.89548635, 0.8911191 , 0.8945303 , 0.8957497 , 0.892933 ,\n", + " 0.8924194 , 0.8944044 , 0.89497995, 0.8912306 , 0.8941625 ,\n", + " 0.8922111 , 0.8892523 , 0.8916652 , 0.8941175 , 0.8931524 ,\n", + " 0.89735997, 0.8904041 , 0.8950433 , 0.8942464 , 0.8942732 ,\n", + " 0.89665747, 0.8936828 , 0.89369166, 0.88908124, 0.8962481 ,\n", + " 0.896479 , 0.89326364, 0.8919837 , 0.90007776, 0.8942195 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 25.578241\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.03824196 0.00998296]\n", + "Empirical std [10.016048 4.3522897]\n", + "30.0 1.1728722 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.81382316, 0.81437784, 0.805788 , 0.8036736 , 0.8077263 ,\n", + " 0.8079013 , 0.81785923, 0.81528455, 0.8203599 , 0.8130964 ,\n", + " 0.80952066, 0.81262183, 0.8183245 , 0.8052194 , 0.81013256,\n", + " 0.8132962 , 0.80646545, 0.80337137, 0.80836844, 0.81328666,\n", + " 0.8165145 , 0.8153903 , 0.81180775, 0.8167042 , 0.81465554,\n", + " 0.8187915 , 0.81495494, 0.8069842 , 0.8174958 , 0.8144425 ,\n", + " 0.816674 , 0.8186786 , 0.8136615 , 0.81563395, 0.8048278 ,\n", + " 0.81546515, 0.81737775, 0.81270176, 0.8104484 , 0.813933 ,\n", + " 0.8051416 , 0.81538343, 0.80287457, 0.8128078 , 0.8128228 ,\n", + " 0.81230444, 0.82014596, 0.8077835 , 0.81262016, 0.807697 ,\n", + " 0.82207304, 0.82056403, 0.8118448 , 0.8117027 , 0.81507385,\n", + " 0.8143655 , 0.8193524 , 0.81003016, 0.818011 , 0.81632924,\n", + " 0.8075022 , 0.8102729 , 0.8165453 , 0.81969845, 0.8136382 ,\n", + " 0.8146878 , 0.8084685 , 0.81603426, 0.81615555, 0.8088558 ,\n", + " 0.81457937, 0.8166251 , 0.8175017 , 0.80646974, 0.81696916,\n", + " 0.8136499 , 0.82194245, 0.81102663, 0.80716336, 0.81244195,\n", + " 0.8178041 , 0.81355816, 0.8111253 , 0.8070596 , 0.8061467 ,\n", + " 0.81868255, 0.80937 , 0.81429553, 0.8173638 , 0.8105849 ,\n", + " 0.8079517 , 0.8124205 , 0.8123727 , 0.8127808 , 0.81293535,\n", + " 0.81287664, 0.8155323 , 0.80975515, 0.8181222 , 0.80669 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 19.179867\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.0165324 0.01697841]\n", + "Empirical std [10.024646 4.4365554]\n", + "28.60303 1.4913058 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.85793847, 0.85913664, 0.86721885, 0.86150783, 0.8656358 ,\n", + " 0.8652689 , 0.862473 , 0.868098 , 0.86562794, 0.8660145 ,\n", + " 0.8585222 , 0.85763985, 0.8628322 , 0.86597353, 0.86315256,\n", + " 0.86416864, 0.8711867 , 0.8648708 , 0.8617598 , 0.87034255,\n", + " 0.856357 , 0.86855817, 0.86485046, 0.8639598 , 0.8749237 ,\n", + " 0.86492497, 0.869133 , 0.86450005, 0.8634933 , 0.8624494 ,\n", + " 0.8648291 , 0.86560553, 0.86330134, 0.8634976 , 0.8667792 ,\n", + " 0.8641018 , 0.8651182 , 0.8598981 , 0.86367893, 0.866886 ,\n", + " 0.8662697 , 0.86150944, 0.8643595 , 0.8565276 , 0.8632832 ,\n", + " 0.8579211 , 0.8647816 , 0.8617531 , 0.86707485, 0.8652947 ,\n", + " 0.8699403 , 0.8627258 , 0.8642859 , 0.8659887 , 0.8658639 ,\n", + " 0.8585652 , 0.8699048 , 0.8670978 , 0.86943865, 0.8668588 ,\n", + " 0.8653358 , 0.8673006 , 0.8575155 , 0.86328673, 0.86787134,\n", + " 0.8639746 , 0.86499566, 0.8616423 , 0.8634131 , 0.85980874,\n", + " 0.86935174, 0.86316186, 0.8643185 , 0.86173683, 0.86428154,\n", + " 0.8611922 , 0.8626396 , 0.86254567, 0.8605216 , 0.8620275 ,\n", + " 0.8550115 , 0.8619826 , 0.8664 , 0.85744536, 0.8618242 ,\n", + " 0.86522895, 0.86518717, 0.86599916, 0.8635061 , 0.86973304,\n", + " 0.8596974 , 0.865787 , 0.86487544, 0.86446404, 0.86123586,\n", + " 0.86276174, 0.8624068 , 0.864612 , 0.85785097, 0.86823505], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 21.428509\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [ 0.01697012 -0.00051509]\n", + "Empirical std [9.999504 4.382589]\n", + "28.11045 1.3118248 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.7613375 , 0.76541734, 0.78181773, 0.7641301 , 0.7673147 ,\n", + " 0.7639136 , 0.7693944 , 0.7700501 , 0.76899767, 0.7677543 ,\n", + " 0.7724361 , 0.7762898 , 0.7715455 , 0.7524311 , 0.75191593,\n", + " 0.7639807 , 0.771298 , 0.755922 , 0.7668644 , 0.76217115,\n", + " 0.7596615 , 0.76658124, 0.77525294, 0.76654804, 0.77143615,\n", + " 0.7722314 , 0.77106476, 0.7666025 , 0.76794314, 0.76771903,\n", + " 0.76761687, 0.7624181 , 0.76543874, 0.7839034 , 0.76908684,\n", + " 0.7784627 , 0.7619092 , 0.7654524 , 0.7642873 , 0.7723769 ,\n", + " 0.7675852 , 0.7687779 , 0.764448 , 0.772009 , 0.76842874,\n", + " 0.7590744 , 0.7699412 , 0.76994497, 0.76336056, 0.75966835,\n", + " 0.7721908 , 0.77618426, 0.7599685 , 0.75811476, 0.76946664,\n", + " 0.7670917 , 0.77206403, 0.7545959 , 0.76784414, 0.76527655,\n", + " 0.7643042 , 0.76132643, 0.77659243, 0.77176595, 0.7601504 ,\n", + " 0.7594193 , 0.7683934 , 0.76536125, 0.77495164, 0.76391405,\n", + " 0.7601432 , 0.76686436, 0.76384926, 0.7665101 , 0.75410986,\n", + " 0.7397101 , 0.7747761 , 0.7732913 , 0.7664261 , 0.7670982 ,\n", + " 0.7645431 , 0.769479 , 0.76521885, 0.75728685, 0.75932515,\n", + " 0.77212083, 0.7659113 , 0.768881 , 0.76755995, 0.77008414,\n", + " 0.77040225, 0.7658449 , 0.77210695, 0.76242656, 0.7647778 ,\n", + " 0.774943 , 0.75854045, 0.77415353, 0.7678533 , 0.7703923 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 18.412107\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.01025336 0.0383309 ]\n", + "Empirical std [10.059142 4.44023 ]\n", + "30.0 1.6293627 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.79768264, 0.79851705, 0.7921039 , 0.7987012 , 0.79882634,\n", + " 0.8015889 , 0.7888339 , 0.80065835, 0.7987636 , 0.802721 ,\n", + " 0.7985051 , 0.79479307, 0.8088898 , 0.8008106 , 0.7927013 ,\n", + " 0.79154426, 0.80320156, 0.79362816, 0.80368507, 0.80004215,\n", + " 0.80484635, 0.7968221 , 0.798415 , 0.8016599 , 0.80683225,\n", + " 0.80507034, 0.7991669 , 0.7953602 , 0.8007725 , 0.7960877 ,\n", + " 0.80819863, 0.799288 , 0.7999119 , 0.80377156, 0.8000348 ,\n", + " 0.8064146 , 0.80177224, 0.7978701 , 0.7982477 , 0.7974063 ,\n", + " 0.79373175, 0.798257 , 0.7987695 , 0.7969838 , 0.8012537 ,\n", + " 0.79912525, 0.794414 , 0.8031362 , 0.8005432 , 0.7976771 ,\n", + " 0.8072168 , 0.8017496 , 0.7964532 , 0.7960822 , 0.7943244 ,\n", + " 0.7983194 , 0.80305874, 0.8042554 , 0.79569453, 0.8033067 ,\n", + " 0.7897477 , 0.7951283 , 0.796597 , 0.7965838 , 0.8067565 ,\n", + " 0.7961416 , 0.80188966, 0.80280983, 0.8013018 , 0.7982013 ,\n", + " 0.79770964, 0.79749435, 0.7849469 , 0.79911625, 0.80279887,\n", + " 0.79723346, 0.7990912 , 0.80023086, 0.7989505 , 0.79910517,\n", + " 0.7968422 , 0.7926026 , 0.79297125, 0.7925906 , 0.811178 ,\n", + " 0.8048888 , 0.8056723 , 0.79653007, 0.80194175, 0.7900764 ,\n", + " 0.7963746 , 0.8045738 , 0.8083825 , 0.8009493 , 0.7967175 ,\n", + " 0.8057406 , 0.7957796 , 0.792147 , 0.8034685 , 0.80326515], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 19.488277\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.01305582 0.00365934]\n", + "Empirical std [10.005627 4.3684416]\n", + "29.645735 1.5212086 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.89128244, 0.8981344 , 0.8951886 , 0.8908616 , 0.88964665,\n", + " 0.88963765, 0.89043546, 0.8985499 , 0.8927249 , 0.89181066,\n", + " 0.89146733, 0.89443964, 0.89270246, 0.89217824, 0.8973962 ,\n", + " 0.89289397, 0.8974831 , 0.89737064, 0.89310855, 0.8927282 ,\n", + " 0.8859534 , 0.8923019 , 0.89793736, 0.89378333, 0.89462566,\n", + " 0.8940392 , 0.8941461 , 0.893954 , 0.8937622 , 0.89116776,\n", + " 0.89143676, 0.8962124 , 0.89396966, 0.8926169 , 0.8897774 ,\n", + " 0.89619136, 0.8902526 , 0.8955153 , 0.8960327 , 0.89882714,\n", + " 0.8914809 , 0.8926855 , 0.89310926, 0.89592564, 0.88895553,\n", + " 0.8833042 , 0.89352286, 0.897355 , 0.8928471 , 0.89341694,\n", + " 0.89107573, 0.8930679 , 0.88784087, 0.8978709 , 0.89337367,\n", + " 0.8933804 , 0.8814297 , 0.8941257 , 0.89305836, 0.8921642 ,\n", + " 0.88817775, 0.8894114 , 0.8949226 , 0.88926154, 0.9012432 ,\n", + " 0.88924253, 0.8978189 , 0.8940045 , 0.8909576 , 0.88916975,\n", + " 0.8936949 , 0.8866296 , 0.89020157, 0.8976086 , 0.8961121 ,\n", + " 0.89255804, 0.89433634, 0.89599264, 0.891223 , 0.8891327 ,\n", + " 0.8935103 , 0.8939978 , 0.8934584 , 0.8884083 , 0.8912887 ,\n", + " 0.8892955 , 0.88545394, 0.8947249 , 0.87147063, 0.89098835,\n", + " 0.89005107, 0.89806217, 0.88174903, 0.89048153, 0.8935695 ,\n", + " 0.88877374, 0.8986404 , 0.8934133 , 0.890187 , 0.8898317 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 23.591536\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.01536098 0.03081043]\n", + "Empirical std [10.0507145 4.521474 ]\n", + "28.162716 1.1937635 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.8715984 , 0.86713034, 0.871074 , 0.870194 , 0.8632357 ,\n", + " 0.866037 , 0.87337255, 0.872389 , 0.87143826, 0.8722776 ,\n", + " 0.86785364, 0.8686884 , 0.8691727 , 0.876907 , 0.8737137 ,\n", + " 0.87011445, 0.8766476 , 0.8801573 , 0.8707664 , 0.8702251 ,\n", + " 0.87045246, 0.8733298 , 0.8696912 , 0.8654017 , 0.87038356,\n", + " 0.8715279 , 0.873683 , 0.8693837 , 0.8673179 , 0.87090963,\n", + " 0.87044895, 0.8756474 , 0.8690247 , 0.86990225, 0.8695103 ,\n", + " 0.86787236, 0.8698408 , 0.8682854 , 0.86631155, 0.87056243,\n", + " 0.86868376, 0.8743544 , 0.87441975, 0.87348455, 0.8686296 ,\n", + " 0.87117875, 0.8698137 , 0.86830765, 0.8699771 , 0.8701771 ,\n", + " 0.87051165, 0.8757912 , 0.8697005 , 0.8749066 , 0.85683674,\n", + " 0.87034667, 0.86873585, 0.8692147 , 0.87082976, 0.8742551 ,\n", + " 0.86991996, 0.86789876, 0.8724268 , 0.8674627 , 0.86731863,\n", + " 0.8653278 , 0.86614335, 0.8706267 , 0.8674683 , 0.869192 ,\n", + " 0.873723 , 0.87044555, 0.87131584, 0.8707232 , 0.8710233 ,\n", + " 0.8702607 , 0.87222624, 0.8696729 , 0.8667786 , 0.8743729 ,\n", + " 0.87426543, 0.8745388 , 0.8691469 , 0.8667722 , 0.86393553,\n", + " 0.8667304 , 0.8677164 , 0.87326604, 0.8618929 , 0.86636674,\n", + " 0.868033 , 0.8750801 , 0.86953133, 0.87358344, 0.8680767 ,\n", + " 0.8699606 , 0.8693351 , 0.8752794 , 0.86868244, 0.8762625 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 20.67846\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.03885756 0.01773522]\n", + "Empirical std [10.032859 4.3686147]\n", + "26.873945 1.2996106 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.8191402 , 0.8190298 , 0.8362482 , 0.82040226, 0.8255385 ,\n", + " 0.81871194, 0.8174361 , 0.82477355, 0.8247269 , 0.8249048 ,\n", + " 0.81649935, 0.80675405, 0.8251352 , 0.8228826 , 0.82039446,\n", + " 0.82481813, 0.82460654, 0.8250668 , 0.82270384, 0.83789456,\n", + " 0.8247361 , 0.8097759 , 0.8227245 , 0.82598025, 0.8164859 ,\n", + " 0.8291554 , 0.8323495 , 0.833997 , 0.82561123, 0.8359589 ,\n", + " 0.81106496, 0.82669926, 0.80700254, 0.8227112 , 0.807678 ,\n", + " 0.8262251 , 0.8232256 , 0.8200829 , 0.82883674, 0.82369554,\n", + " 0.83297956, 0.83288383, 0.8215937 , 0.8220183 , 0.81842816,\n", + " 0.81551796, 0.8343294 , 0.8270218 , 0.8325133 , 0.8240847 ,\n", + " 0.8309927 , 0.8269252 , 0.8197644 , 0.82446086, 0.82792276,\n", + " 0.8303173 , 0.819292 , 0.81392545, 0.82282275, 0.82187164,\n", + " 0.8211763 , 0.812943 , 0.8263901 , 0.82621187, 0.8172717 ,\n", + " 0.83246136, 0.8285916 , 0.81783116, 0.82534593, 0.80493736,\n", + " 0.8206564 , 0.8279546 , 0.81603545, 0.8187655 , 0.83098495,\n", + " 0.81722254, 0.82810044, 0.8308928 , 0.8240759 , 0.8288518 ,\n", + " 0.83153737, 0.8153516 , 0.8299599 , 0.8264034 , 0.8264302 ,\n", + " 0.81782097, 0.80859137, 0.828285 , 0.8220025 , 0.818285 ,\n", + " 0.8202675 , 0.83402336, 0.83014476, 0.82977384, 0.81894636,\n", + " 0.8190954 , 0.8209456 , 0.83874846, 0.82349163, 0.81567234], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 5.3903747\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.02642368 0.01216788]\n", + "Empirical std [10.020558 4.370428]\n", + "10.372031 1.9241761 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.850976 , 0.85310346, 0.85954106, 0.8535071 , 0.85251623,\n", + " 0.8546843 , 0.8602999 , 0.85414594, 0.8570628 , 0.8529324 ,\n", + " 0.8497141 , 0.8584877 , 0.8599767 , 0.85903484, 0.8576397 ,\n", + " 0.857639 , 0.8522197 , 0.8510701 , 0.8562561 , 0.86360186,\n", + " 0.855515 , 0.8526044 , 0.85410476, 0.8642721 , 0.85782415,\n", + " 0.8588451 , 0.85909057, 0.8530545 , 0.85454404, 0.8599113 ,\n", + " 0.8532246 , 0.8554031 , 0.8550106 , 0.857317 , 0.8542566 ,\n", + " 0.8533405 , 0.8564711 , 0.8540524 , 0.86197674, 0.85691494,\n", + " 0.85701346, 0.8553452 , 0.85400724, 0.85890824, 0.84673697,\n", + " 0.85852736, 0.85261536, 0.8557051 , 0.86025494, 0.8517794 ,\n", + " 0.8547407 , 0.8558139 , 0.8553095 , 0.8582071 , 0.8520507 ,\n", + " 0.8575246 , 0.8539289 , 0.8569569 , 0.8572447 , 0.8555676 ,\n", + " 0.8605438 , 0.8543949 , 0.8572071 , 0.8583549 , 0.8631698 ,\n", + " 0.8571318 , 0.8596209 , 0.8607677 , 0.86341405, 0.8535153 ,\n", + " 0.86079645, 0.86159205, 0.8524712 , 0.85177416, 0.8607521 ,\n", + " 0.8577905 , 0.8647465 , 0.8590531 , 0.85445607, 0.85808754,\n", + " 0.85385746, 0.8576873 , 0.8536072 , 0.8565712 , 0.86097604,\n", + " 0.8489473 , 0.8560363 , 0.8560745 , 0.8583683 , 0.8571624 ,\n", + " 0.86215943, 0.86094743, 0.86068726, 0.85058796, 0.85563725,\n", + " 0.8585654 , 0.8506496 , 0.85321987, 0.8563401 , 0.8562405 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 19.50825\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [0.02925331 0.00478877]\n", + "Empirical std [10.005266 4.380264]\n", + "26.502398 1.358522 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " 100.00% [4000/4000 00:00<?]\n", + " \n", + " " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Tracedwith with\n", + " val = Array([0.91593635, 0.9182794 , 0.9148635 , 0.9143094 , 0.9149222 ,\n", + " 0.9158505 , 0.915339 , 0.91482574, 0.9181924 , 0.9182074 ,\n", + " 0.91798955, 0.9168648 , 0.917711 , 0.91695136, 0.91473806,\n", + " 0.9146327 , 0.9190931 , 0.91766036, 0.916356 , 0.91707724,\n", + " 0.9190676 , 0.91413295, 0.9183228 , 0.9172051 , 0.9152948 ,\n", + " 0.91354716, 0.91905594, 0.9154731 , 0.915007 , 0.9192339 ,\n", + " 0.91577774, 0.91203195, 0.91378605, 0.9159612 , 0.91498774,\n", + " 0.9158017 , 0.9168929 , 0.9107287 , 0.91596866, 0.9174135 ,\n", + " 0.9185449 , 0.91641086, 0.9146479 , 0.91236997, 0.9171668 ,\n", + " 0.91599226, 0.9158573 , 0.9149735 , 0.91755575, 0.9147265 ,\n", + " 0.91718304, 0.9162761 , 0.9141728 , 0.9155953 , 0.91364765,\n", + " 0.9150264 , 0.91885906, 0.91832525, 0.9173575 , 0.9171994 ,\n", + " 0.9103025 , 0.9133267 , 0.9179395 , 0.91594017, 0.91839343,\n", + " 0.9160036 , 0.91911876, 0.918065 , 0.91550404, 0.9109286 ,\n", + " 0.91437334, 0.91821486, 0.91822654, 0.91658723, 0.9149924 ,\n", + " 0.9198304 , 0.91858613, 0.9163238 , 0.91846925, 0.91527325,\n", + " 0.91835916, 0.9197431 , 0.91627544, 0.91793907, 0.9093335 ,\n", + " 0.91257787, 0.91621125, 0.9178671 , 0.9175691 , 0.9147476 ,\n", + " 0.9173428 , 0.92040044, 0.9124969 , 0.91762555, 0.9131939 ,\n", + " 0.91726834, 0.9182119 , 0.91412956, 0.9160149 , 0.9152548 ], dtype=float32)\n", + " batch_dim = 0 acceptance probability\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "AVG NUM STEPS PER TRAJ 25.06531\n", + "True mean [0. 0.]\n", + "True std [10. 4.35889894]\n", + "Empirical mean [-0.02348636 0.0077687 ]\n", + "Empirical std [10.018165 4.3921523]\n", + "27.499565 1.0971162 params\n" + ] + }, + { + "data": { + "text/html": [ + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "\n", + " \n", + "