-
Notifications
You must be signed in to change notification settings - Fork 0
/
_Pêndulo Composto04_03.nb
985 lines (966 loc) · 48.3 KB
/
_Pêndulo Composto04_03.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 49230, 976]
NotebookOptionsPosition[ 48613, 949]
NotebookOutlinePosition[ 48992, 965]
CellTagsIndexPosition[ 48949, 962]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["\<\
P\[EHat]ndulo Composto /
P\[EHat]ndulo F\[IAcute]sico\
\>", "Title",
CellChangeTimes->{{3.587843552449934*^9, 3.587843604577612*^9}, {
3.5880926773008614`*^9, 3.5880926840980825`*^9}, {3.591942603441222*^9,
3.591942609686378*^9}, 3.594115361699109*^9, {3.5941343478831463`*^9,
3.594134351977106*^9}, {3.5942412414620132`*^9, 3.5942412686665163`*^9}, {
3.602712657588518*^9, 3.602712664292*^9}, {3.6027734491878147`*^9,
3.6027734502034907`*^9}, {3.602773760219905*^9, 3.6027737664077587`*^9}},
TextAlignment->Center],
Cell[CellGroupData[{
Cell[TextData[Cell[BoxData[
RowBox[{"\[IndentingNewLine]",
RowBox[{
"Felipe", " ", "Tuyama", " ", "de", " ", "Faria", " ",
"Barbosa"}]}]], "Subsection",
CellChangeTimes->{{3.5942412793077073`*^9, 3.594241320809795*^9}, {
3.5942414776771555`*^9, 3.594241486536981*^9}},
TextAlignment->Center]], "Section",
CellChangeTimes->{{3.5942412793077073`*^9, 3.594241320809795*^9}, {
3.5942414776771555`*^9, 3.594241486536981*^9}, {3.6027126789177485`*^9,
3.6027126955592546`*^9}},
TextAlignment->Center],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Off", "[",
RowBox[{"Remove", "::", "\"\<rmnsm\>\""}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Off", "[",
RowBox[{"General", "::", "\"\<spell1\>\""}], "]"}], ";"}], "\n",
RowBox[{
RowBox[{"Off", "[",
RowBox[{"General", "::", "\"\<spell\>\""}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Off", "[",
RowBox[{"Solve", "::", "\"\<ifun\>\""}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Remove", "[", "\"\<`*\>\"", "]"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"$Line", "=", "0"}], ";"}], "\[IndentingNewLine]",
RowBox[{"Names", "[", "\"\<`*\>\"", "]"}]}], "Input",
CellChangeTimes->{{3.5299418173482122`*^9, 3.5299418247082224`*^9}, {
3.52995858632915*^9, 3.5299585870781937`*^9}}],
Cell[BoxData[
RowBox[{"{", "}"}]], "Output",
CellChangeTimes->{{3.6027134945860023`*^9, 3.6027135199779725`*^9},
3.602713558573767*^9, {3.602713632733951*^9, 3.6027136874399786`*^9},
3.602713791523619*^9, 3.6027138598553667`*^9, 3.6027138967323284`*^9, {
3.6027140469121647`*^9, 3.6027140636943016`*^9}, 3.602714195513793*^9,
3.602714248485347*^9, 3.60271432981779*^9, 3.6027144939358683`*^9, {
3.602714579924802*^9, 3.602714604644864*^9}, 3.6027146358808947`*^9, {
3.6027149453816752`*^9, 3.602714968783616*^9}, 3.602715042490656*^9,
3.602715074507978*^9, 3.602715112072467*^9, 3.6027151948893566`*^9, {
3.6027153452410817`*^9, 3.6027154478402753`*^9}, {3.6027156511322985`*^9,
3.602715699541121*^9}, {3.6027158482521305`*^9, 3.602715924006147*^9}, {
3.602716008463749*^9, 3.6027160339026003`*^9}, {3.602716094733945*^9,
3.6027161111254377`*^9}, {3.6027165316477356`*^9, 3.602716543070219*^9},
3.6027167197983437`*^9, 3.602716804755973*^9, {3.6027168455862627`*^9,
3.602716861446475*^9}, {3.60271715974354*^9, 3.6027171680252333`*^9},
3.6027173002978725`*^9, 3.6027174161165094`*^9, 3.6027174497901735`*^9,
3.602717624752572*^9, 3.6027176768959694`*^9, 3.6027177130385027`*^9, {
3.6027177984805355`*^9, 3.602717845998684*^9}, 3.6027179570983267`*^9,
3.602718035039957*^9, 3.602718223935388*^9, 3.6027182617030087`*^9,
3.602752882227065*^9, 3.6027529196353025`*^9, {3.602752963450124*^9,
3.602752997483178*^9}, {3.6027530277504063`*^9, 3.6027530552831154`*^9},
3.6027530925350914`*^9, 3.6027531391313105`*^9, {3.6027532234326553`*^9,
3.6027532466526403`*^9}, {3.602753315250024*^9, 3.602753344939098*^9},
3.6027536105181055`*^9, 3.602753970677829*^9, 3.602754017617816*^9,
3.6027543160845737`*^9, 3.6027543849163537`*^9, 3.602754480030769*^9,
3.602754537143175*^9, 3.602754602490387*^9, 3.6027723463841953`*^9,
3.6027723907348623`*^9, {3.60277244328452*^9, 3.6027724741767845`*^9},
3.602772516241514*^9, 3.602772548555728*^9, 3.6027726198876348`*^9,
3.6027727073141465`*^9, 3.602772761629524*^9, 3.602772804366165*^9,
3.602772877026272*^9, {3.602773005814348*^9, 3.602773032222001*^9},
3.6027730742085977`*^9, {3.6027745471678796`*^9, 3.602774573606781*^9},
3.6027747168174973`*^9, 3.6027747904464025`*^9, 3.602774846902525*^9, {
3.6027749495173364`*^9, 3.6027749879200516`*^9}, {3.602775021328074*^9,
3.6027750341412563`*^9}, 3.6027750893941817`*^9, 3.602775152460027*^9, {
3.6027751866337166`*^9, 3.602775210541235*^9}, 3.6027754829775515`*^9,
3.6027755286674733`*^9, 3.60277557535745*^9, 3.6027756381576586`*^9, {
3.6027757364597416`*^9, 3.602775760351634*^9}, 3.602775842574745*^9,
3.602775958690276*^9, 3.602776329569317*^9, 3.60277658348903*^9,
3.6027766511019907`*^9, 3.6027766867913866`*^9, 3.6027767443569355`*^9,
3.6027769792756405`*^9, 3.602777024059266*^9, 3.6027770615612535`*^9, {
3.602777250227508*^9, 3.602777271338005*^9}, {3.6027775760416594`*^9,
3.6027775894017453`*^9}, {3.6027777180491886`*^9, 3.602777807007033*^9}, {
3.602777920528675*^9, 3.602777937279567*^9}, {3.6027779674842916`*^9,
3.6027780109240923`*^9}, {3.6027780597079306`*^9, 3.6027781027727146`*^9},
3.602778135993229*^9, 3.602778174432763*^9, 3.602778206340707*^9, {
3.602778263734378*^9, 3.6027782819540887`*^9}, 3.6027783185966616`*^9, {
3.602778371052563*^9, 3.602778420148919*^9}, 3.602778476151888*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Style", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Manipulate", "[", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"solution", "=",
RowBox[{"NDSolve", "[",
RowBox[{
RowBox[{"{", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Theta]", "''"}], "[", "t", "]"}], "+",
RowBox[{
FractionBox[
RowBox[{"g", " ", "h"}],
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"L", "^", "2"}], ")"}], "/", "3"}], "+",
RowBox[{"h", "^", "2"}]}]], " ",
RowBox[{"\[Theta]", "[", "t", "]"}]}]}], "==", "0"}], ",",
RowBox[{
RowBox[{
RowBox[{"\[Theta]", "'"}], "[", "0", "]"}], "==", "0"}], ",",
RowBox[{
RowBox[{"\[Theta]", "[", "0", "]"}], "\[Equal]", "O"}]}], "}"}],
",",
RowBox[{"\[Theta]", "[", "t", "]"}], ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "T"}], "}"}], ",",
RowBox[{"MaxSteps", "\[Rule]", "Infinity"}]}], "]"}]}], ";",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{"Switch", "[", " ",
RowBox[{
"gr", ",", "\[IndentingNewLine]", "\[IndentingNewLine]",
"\"\<posi\[CCedilla]\[ATilde]oxtempo\>\"", ",", " ",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
RowBox[{"\[Theta]", "[", "t", "]"}], "/.",
RowBox[{"solution", "[",
RowBox[{"[", "1", "]"}], "]"}]}], " ", ",",
RowBox[{"{",
RowBox[{"t", ",", "0", ",", "T"}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Thick"}], ",",
"\[IndentingNewLine]",
RowBox[{"ImageSize", "\[Rule]", "I"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",", "Z"}], "}"}], ",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"-", "1.2"}], " ", "O"}], ",",
RowBox[{"1.2", "O"}]}], "}"}]}], "}"}]}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",", "Dashed"}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<t\>\"", ",", "14", ",", "Bold", ",", "Italic"}],
"]"}], ",",
RowBox[{"Style", "[",
RowBox[{
"\"\<\[Theta](t)\>\"", ",", "14", ",", "Italic", ",",
"Bold"}], "]"}]}], "}"}]}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"TraditionalForm", "[", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Theta]", "''"}], "[", "t", "]"}], "+",
RowBox[{
FractionBox[
RowBox[{"g", " ", "h"}],
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"L", "^", "2"}], ")"}], "/", "3"}], "+",
RowBox[{"h", "^", "2"}]}]], " ",
RowBox[{"\[Theta]", "[", "t", "]"}]}]}], "==", "0"}], " ",
"]"}]}]}], "]"}], ",", "\[IndentingNewLine]",
"\[IndentingNewLine]", "\"\<per\[IAcute]odo\>\"", ",",
RowBox[{"Plot", "[", " ",
RowBox[{
RowBox[{"6.28", " ",
RowBox[{"Sqrt", "[",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"L", "^", "2"}], ")"}], "/", "3"}], "+",
RowBox[{"h", "^", "2"}]}],
RowBox[{"g", " ", "h"}]], "]"}]}], ",",
RowBox[{"{",
RowBox[{"h", ",", "0", ",",
RowBox[{"2", " ", "L"}]}], "}"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Thick"}], ",",
RowBox[{"GridLines", "\[Rule]", "Automatic"}], ",",
RowBox[{"GridLinesStyle", "\[Rule]",
RowBox[{"Directive", "[",
RowBox[{"Black", ",", "Dashed"}], "]"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"AxesLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"Style", "[",
RowBox[{"\"\<h\>\"", ",", "14", ",", "Bold", ",", "Italic"}],
"]"}], ",",
RowBox[{"Style", "[",
RowBox[{"\"\<T\>\"", ",", "14", ",", "Italic", ",", "Bold"}],
"]"}]}], "}"}]}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"Row", "[",
RowBox[{"{",
RowBox[{
"\"\<T = \
2\[Pi]\!\(\*SqrtBox[FractionBox[\(\*SuperscriptBox[SubscriptBox[\(I\), \
\(CM\)], \(2\)] + m\\\ \*SuperscriptBox[\(h\), \(2\)]\), \(m\\\ g\\\ h\)]]\) \
= \>\"", ",",
RowBox[{"TraditionalForm", "[", " ",
RowBox[{"6.28", " ",
RowBox[{"Sqrt", "[",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"L", "^", "2"}], ")"}], "/", "3"}], "+",
RowBox[{"h", "^", "2"}]}],
RowBox[{"g", " ", "h"}]], "]"}]}], "]"}]}], "}"}],
"]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"ImageSize", "\[Rule]", "I"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{"1.5", "L"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", " ", "Z"}], " ", "}"}]}], "}"}]}]}], "]"}],
",", "\[IndentingNewLine]", "\[IndentingNewLine]",
"\"\<simula\[CCedilla]\[ATilde]o\>\"", ",", " ",
"\[IndentingNewLine]",
RowBox[{"Show", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{"Graphics", "[",
RowBox[{
RowBox[{"{", " ", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"h", "-",
RowBox[{"L", "/", "2"}]}], ")"}], " ",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], ",",
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"L", "/", "2"}], "-", "h"}], ")"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}]}], " ",
"}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0"}], "}"}]}], "}"}], "]"}], "/.",
RowBox[{"solution", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "/.",
RowBox[{"t", "\[Rule]", "t1"}]}], ",", "\[IndentingNewLine]",
"Thick", ",", "Blue", ",",
RowBox[{
RowBox[{
RowBox[{"Polygon", "[",
RowBox[{"{", "\[IndentingNewLine]",
RowBox[{
RowBox[{"{", " ",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"h", "-",
RowBox[{"L", "/", "2"}]}], ")"}], " ",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+",
RowBox[{"0.05",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"L", "/", "2"}], "-", "h"}], ")"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+", " ",
RowBox[{"0.05",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}]}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"h", "-",
RowBox[{"L", "/", "2"}]}], ")"}], " ",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "-",
RowBox[{"0.05",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{
RowBox[{"L", "/", "2"}], "-", "h"}], ")"}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+",
RowBox[{"0.05",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}]}]}], "}"}],
",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"h", "+",
RowBox[{"L", "/", "2"}]}], ")"}], " ",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "-",
RowBox[{"0.05",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"h", "+",
RowBox[{"L", "/", "2"}]}], ")"}]}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+",
RowBox[{"0.05",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}]}]}], "}"}],
",",
RowBox[{"{",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"h", "+",
RowBox[{"L", "/", "2"}]}], ")"}], " ",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+",
RowBox[{"0.05",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}]}], ",",
RowBox[{
RowBox[{
RowBox[{"-",
RowBox[{"(",
RowBox[{"h", "+",
RowBox[{"L", "/", "2"}]}], ")"}]}], " ",
RowBox[{"Cos", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}], "+",
RowBox[{"0.05", " ",
RowBox[{"Sin", "[",
RowBox[{"\[Theta]", "[", "t", "]"}], "]"}]}]}]}], "}"}]}],
"}"}], "]"}], "/.",
RowBox[{"solution", "[",
RowBox[{"[", "1", "]"}], "]"}]}], "/.",
RowBox[{"t", "\[Rule]", "t1"}]}], ",", "\[IndentingNewLine]",
"Black", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
RowBox[{"-", "L"}], ",", "0"}], "}"}], ",",
RowBox[{"{",
RowBox[{"L", ",", "0"}], " ", "}"}]}], "}"}], "]"}], ",",
"Dashed", ",",
RowBox[{"Line", "[",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"0", ",",
RowBox[{
RowBox[{"-", "1.2"}], " ", "L"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"0", ",", "0"}], " ", "}"}]}], "}"}], "]"}]}],
"\[IndentingNewLine]", " ", "}"}], ",",
RowBox[{"ImageSize", "\[Rule]", "I"}], ",",
RowBox[{"PlotLabel", "\[Rule]",
RowBox[{"Row", "[",
RowBox[{"{",
RowBox[{
"\"\<\!\(\*SubscriptBox[\(L\), \(eq\)]\) = \>\"", ",",
RowBox[{"TraditionalForm", "[", " ",
FractionBox[
RowBox[{
RowBox[{
RowBox[{"(",
RowBox[{"L", "^", "2"}], ")"}], "/", "3"}], "+",
RowBox[{"h", "^", "2"}]}],
RowBox[{"h", " ", "L"}]], "]"}], ",", "\"\< L\>\""}],
"}"}], "]"}]}]}], "]"}], "\[IndentingNewLine]", "}"}],
"]"}]}], "\[IndentingNewLine]", "\[IndentingNewLine]", "]"}],
"}"}], "]"}]}], ",", "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"gr", ",", "\"\<posi\[CCedilla]\[ATilde]oxtempo\>\"", ",",
RowBox[{"Style", "[",
RowBox[{"\"\<Gr\[AAcute]fico\>\"", ",", "Bold", ",", "12"}],
"]"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{
"\"\<posi\[CCedilla]\[ATilde]oxtempo\>\"", ",",
"\"\<per\[IAcute]odo\>\"", ",",
"\"\<simula\[CCedilla]\[ATilde]o\>\""}], "}"}], ",", " ",
RowBox[{"ControlPlacement", "\[Rule]", "Top"}]}], "}"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]", "\[IndentingNewLine]",
"Delimiter", ",",
RowBox[{"Item", "[",
RowBox[{"\"\<Anima\[CCedilla]\[ATilde]o\>\"", ",",
RowBox[{"Alignment", "\[Rule]", "Center"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"t1", ",", "0", ",", "\"\<Tempo (t)\>\""}], "}"}], ",", "0",
",", "T", ",", ".1", ",",
RowBox[{"ControlType", "\[Rule]", "Animator"}], ",",
RowBox[{"DisplayAllSteps", "\[Rule]", "True"}], ",",
RowBox[{"AppearanceElements", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<PlayPauseButton\>\"", ",", "\"\<DirectionButton\>\"", ",",
"\"\<ResetButton\>\"", ",", "\"\<StepLeftButton\>\"", ",",
"\"\<StepRightButton\>\""}], "}"}]}], ",",
RowBox[{"AnimationRunning", "\[Rule]", "False"}], ",",
RowBox[{"AnimationRate", "\[Rule]", "10"}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"t1", ",", "0", ",", "\"\<Tempo (t)\>\""}], "}"}], ",", "0",
",", "T", ",", ".1", ",",
RowBox[{"ImageSize", "\[Rule]", "Small"}], ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]", "Delimiter", ",",
RowBox[{"Item", "[",
RowBox[{"\"\<Vari\[AAcute]veis do Problema\>\"", ",",
RowBox[{"Alignment", "\[Rule]", "Center"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"L", ",", "1", ",", "\"\<Comprimento (L)\>\""}], "}"}], ",",
".1", ",", "10", ",", ".1", ",",
RowBox[{"ImageSize", "\[Rule]", "Small"}], ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"g", ",", "10", ",", "\"\<Gravidade (g)\>\""}], "}"}], ",",
".1", ",", "20", ",", ".1", ",",
RowBox[{"ImageSize", "\[Rule]", "Small"}], ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"h", ",", "0.5", ",", "\"\<Dist\[AHat]ncia do CM (h)\>\""}],
"}"}], ",", "0", ",", "L", ",", ".1", ",",
RowBox[{"ImageSize", "\[Rule]", "Small"}], ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{
"O", ",", "0.1", ",",
"\"\<\[CapitalAHat]ngulo inicial (\[Theta])\>\""}], "}"}], ",", "0",
",", "3", ",", ".1", ",",
RowBox[{"ImageSize", "\[Rule]", "Small"}], ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]", "Delimiter", ",",
RowBox[{"Item", "[",
RowBox[{"\"\<Imagem\>\"", ",",
RowBox[{"Alignment", "\[Rule]", "Center"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"T", ",", "10", ",", "\"\<Tempo Total(T)\>\""}], "}"}], ",",
"1", ",", "20", ",", "1", ",",
RowBox[{"ImageSize", "\[Rule]", "Small"}], ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"I", ",", "600", ",", "\"\<Tamanho\>\""}], "}"}], ",", "400",
",", "800", ",", "100", ",",
RowBox[{"ImageSize", "\[Rule]", "Small"}], ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{
RowBox[{"{",
RowBox[{"Z", ",", "10", ",", "\"\<Zoom\>\""}], "}"}], ",", "1", ",",
"50", ",", "1", ",",
RowBox[{"ImageSize", "\[Rule]", "Small"}], ",",
RowBox[{"Appearance", "\[Rule]", "\"\<Labeled\>\""}]}], "}"}], ",",
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"ControlPlacement", "\[Rule]", "Right"}]}],
"\[IndentingNewLine]", "]"}], ",",
RowBox[{"ControlsRendering", "\[Rule]", "\"\<Generic\>\""}]}],
"\[IndentingNewLine]", "]"}]], "Input",
CellChangeTimes->{{3.5941486783516717`*^9, 3.59414889155672*^9}, {
3.5941490318151674`*^9, 3.5941490384585905`*^9}, {3.5941490845342894`*^9,
3.594149106706063*^9}, {3.5941491372394037`*^9, 3.5941491592950983`*^9}, {
3.5941492190108833`*^9, 3.5941492237530413`*^9}, {3.5941492985969076`*^9,
3.5941493007573442`*^9}, {3.5941493370985518`*^9, 3.594149348127904*^9}, {
3.5941493789904623`*^9, 3.594149426378037*^9}, {3.594149503708558*^9,
3.594149572421334*^9}, {3.5941496643716*^9, 3.5941497109536295`*^9}, {
3.594149872953565*^9, 3.594149873822144*^9}, {3.594149953231048*^9,
3.5941499608911543`*^9}, {3.5941503792638836`*^9,
3.5941504002348576`*^9}, {3.594150450061056*^9, 3.594150453425293*^9}, {
3.594150495814541*^9, 3.594150643625017*^9}, {3.594150727054596*^9,
3.594150736562934*^9}, {3.594150769401809*^9, 3.594150890635583*^9}, {
3.5941510629483814`*^9, 3.594151064570469*^9}, {3.5941511198723097`*^9,
3.594151272923275*^9}, {3.5941513101841063`*^9, 3.594151334995633*^9}, {
3.5941514561343427`*^9, 3.5941516006946487`*^9}, {3.5941516583080406`*^9,
3.5941518584794006`*^9}, {3.594151913536083*^9, 3.594151935925997*^9}, {
3.5941520132455063`*^9, 3.594152056846555*^9}, {3.594152093119726*^9,
3.5941521480293083`*^9}, {3.594152234426867*^9, 3.594152257901509*^9}, {
3.594152298482546*^9, 3.594152360235685*^9}, {3.5941523969841747`*^9,
3.594152831429618*^9}, {3.594152888166417*^9, 3.5941529076033697`*^9}, {
3.5941529950246096`*^9, 3.594153016539941*^9}, {3.5941530528691444`*^9,
3.5941531389655094`*^9}, {3.5941531943684206`*^9, 3.594153263300347*^9}, {
3.5941533297336063`*^9, 3.594153389747591*^9}, {3.5941535091311245`*^9,
3.594153566842574*^9}, {3.594153669023658*^9, 3.5941536787401247`*^9}, {
3.594153715417568*^9, 3.5941537558414993`*^9}, {3.5941537988511534`*^9,
3.5941538163598127`*^9}, {3.594153885500877*^9, 3.5941539734834957`*^9}, {
3.5941540537009373`*^9, 3.594154065650902*^9}, {3.594154095659893*^9,
3.594154136855344*^9}, {3.594154191947043*^9, 3.5941541991438446`*^9},
3.5941542313252783`*^9, {3.5941542674193316`*^9, 3.5941543518585863`*^9}, {
3.5941545629452233`*^9, 3.594154615552266*^9}, {3.594154721472834*^9,
3.594154725073236*^9}, {3.594154777638254*^9, 3.594154780913436*^9}, {
3.5941548352286277`*^9, 3.594154866756631*^9}, {3.5941549044987783`*^9,
3.594155004039091*^9}, {3.594155046875637*^9, 3.594155069433662*^9}, {
3.594220321763094*^9, 3.594220352397496*^9}, {3.59422040301923*^9,
3.5942204032653913`*^9}, {3.5942205023914332`*^9, 3.594220558732971*^9}, {
3.594220616380372*^9, 3.5942206314604263`*^9}, {3.594220663993106*^9,
3.5942207716648293`*^9}, {3.594220835405295*^9, 3.594220840368608*^9}, {
3.594220964976621*^9, 3.594220973675417*^9}, {3.5942211011073236`*^9,
3.594221243386109*^9}, {3.5942215474006605`*^9, 3.5942215536368165`*^9}, {
3.5942217353478775`*^9, 3.59422174417076*^9}, {3.5942218087647924`*^9,
3.594221847221407*^9}, {3.5942218846203237`*^9, 3.5942218903251314`*^9}, {
3.594221946414493*^9, 3.5942219556576586`*^9}, 3.5942220162230024`*^9, {
3.594222053009511*^9, 3.594222088703297*^9}, {3.594222125347711*^9,
3.5942221304270964`*^9}, {3.5942224371864653`*^9,
3.5942224391117477`*^9}, {3.5942228501906247`*^9, 3.594222850474821*^9}, {
3.5942230153866844`*^9, 3.5942230168106403`*^9}, {3.594223052426362*^9,
3.594223128396983*^9}, {3.594223217168124*^9, 3.5942232224376373`*^9}, {
3.5942239027045565`*^9, 3.5942239528164797`*^9}, {3.594223986599452*^9,
3.594224019569877*^9}, {3.594224052962201*^9, 3.594224093057992*^9}, {
3.594224342065747*^9, 3.5942243689889917`*^9}, 3.5942244460085363`*^9, {
3.594227597597421*^9, 3.5942276548034573`*^9}, {3.5942277387506266`*^9,
3.5942277436727905`*^9}, {3.5942277799089713`*^9, 3.594227786346799*^9}, {
3.5942278194945183`*^9, 3.594227826979274*^9}, {3.594228056523311*^9,
3.5942280890509853`*^9}, {3.5942281736873784`*^9, 3.5942282515382385`*^9},
3.5942284664784403`*^9, 3.594228558457727*^9, {3.5942286806901627`*^9,
3.5942287192478504`*^9}, {3.594228773631084*^9, 3.594228882087335*^9}, {
3.59422892021174*^9, 3.5942290591022763`*^9}, {3.59422909760793*^9,
3.594229274339676*^9}, {3.5942293093159714`*^9, 3.594229341774602*^9}, {
3.5942295353395615`*^9, 3.594229544275511*^9}, {3.5942295845733576`*^9,
3.594229600948269*^9}, {3.594229740605319*^9, 3.594229772546599*^9}, {
3.594229806303089*^9, 3.5942298389588404`*^9}, {3.5942300002943287`*^9,
3.594230023101531*^9}, {3.5942301483679852`*^9, 3.5942301920901146`*^9}, {
3.594230261271202*^9, 3.594230287922958*^9}, {3.5942308291075163`*^9,
3.5942308345851717`*^9}, {3.5942311178750725`*^9,
3.5942311184844837`*^9}, {3.59423116576814*^9, 3.5942312432564545`*^9}, {
3.594233266386637*^9, 3.5942332688773007`*^9}, {3.5942333398695917`*^9,
3.5942333402008133`*^9}, {3.5942333868679047`*^9, 3.594233407224473*^9}, {
3.5942334863692017`*^9, 3.5942336020762916`*^9}, {3.594233647499547*^9,
3.59423366294884*^9}, {3.5942337203941193`*^9, 3.594233722497514*^9}, {
3.5942337702443247`*^9, 3.5942337924821405`*^9}, 3.594233844386726*^9, {
3.5942340115220733`*^9, 3.594234012691857*^9}, {3.5942340602515388`*^9,
3.5942340694816957`*^9}, {3.594234179241815*^9, 3.5942342191363974`*^9}, {
3.5942344521166143`*^9, 3.594234463113946*^9}, {3.5942346682566156`*^9,
3.594234707593824*^9}, {3.594234763706208*^9, 3.5942348177892437`*^9}, {
3.5942348719323125`*^9, 3.5942348727108383`*^9}, {3.5942349349613113`*^9,
3.5942349432788515`*^9}, {3.5942349836387424`*^9, 3.594235030016641*^9}, {
3.594235065701416*^9, 3.5942351452584124`*^9}, {3.594235180207698*^9,
3.5942351807590647`*^9}, {3.59423542564922*^9, 3.594235427863703*^9}, {
3.5942354720371323`*^9, 3.594235504566798*^9}, {3.5942357405950565`*^9,
3.594235832426239*^9}, {3.594235877311142*^9, 3.59423590230079*^9}, {
3.5942360073477783`*^9, 3.5942360673877783`*^9}, {3.5942361237993555`*^9,
3.594236188791661*^9}, {3.5942382103489656`*^9, 3.5942382166774135`*^9}, {
3.594238297853419*^9, 3.594238330464453*^9}, {3.5942383646536927`*^9,
3.5942383822014613`*^9}, {3.5942388182642517`*^9, 3.594238819139289*^9}, {
3.594238878673568*^9, 3.59423887886108*^9}, {3.594238934863928*^9,
3.594238958865156*^9}, {3.5942390429631777`*^9, 3.5942390960127587`*^9}, {
3.594239402809615*^9, 3.5942394070285797`*^9}, {3.594240893289392*^9,
3.594240949417242*^9}, {3.5951751645483475`*^9, 3.5951752046250305`*^9}, {
3.602714679351947*^9, 3.6027147900609417`*^9}, {3.6027148205000505`*^9,
3.6027150396311293`*^9}, {3.602715071773458*^9, 3.602715110259872*^9}, {
3.602715191779823*^9, 3.6027151926236153`*^9}, {3.6027156922438583`*^9,
3.6027156983223042`*^9}, {3.6027159206622186`*^9,
3.6027159208497286`*^9}, {3.602715961351877*^9, 3.602715962336304*^9}, {
3.602716002510309*^9, 3.6027160323868923`*^9}, {3.602716093499503*^9,
3.6027161189071035`*^9}, {3.602716220396862*^9, 3.6027162547893085`*^9}, {
3.6027163107297773`*^9, 3.6027163359029884`*^9}, {3.602716494520774*^9,
3.602716499958561*^9}, {3.6027165300539093`*^9, 3.6027165572272224`*^9}, {
3.602716624871434*^9, 3.602716632356206*^9}, {3.602716676686681*^9,
3.602716717813863*^9}, {3.602716802755866*^9, 3.602716803505905*^9}, {
3.6027168399297113`*^9, 3.6027168603526707`*^9}, {3.6027170793174057`*^9,
3.602717167259568*^9}, {3.6027172601082416`*^9, 3.6027172992665625`*^9}, {
3.6027173449096136`*^9, 3.6027173530975466`*^9}, {3.6027174085848637`*^9,
3.6027174487744904`*^9}, {3.602717515778043*^9, 3.6027175202470303`*^9}, {
3.602717553295658*^9, 3.60271756609321*^9}, {3.6027176032826896`*^9,
3.6027176751614943`*^9}, {3.6027177084288836`*^9, 3.602717844561102*^9}, {
3.6027179078144555`*^9, 3.602717995131592*^9}, {3.6027180302897*^9,
3.602718057994294*^9}, 3.6027181438373814`*^9, {3.6027181920743136`*^9,
3.6027182215133753`*^9}, {3.6027182517806053`*^9, 3.602718258890357*^9}, {
3.602752803050991*^9, 3.602752877617445*^9}, {3.6027529152132187`*^9,
3.6027530918632107`*^9}, {3.602753129146405*^9, 3.6027531550384045`*^9}, {
3.6027531949936466`*^9, 3.6027533551115255`*^9}, {3.6027534103668966`*^9,
3.602753516091253*^9}, {3.6027535707347746`*^9, 3.6027536027833185`*^9},
3.6027536619896145`*^9, {3.602753714726754*^9, 3.602753744056464*^9}, {
3.602753780027091*^9, 3.6027539697715273`*^9}, {3.6027540159302254`*^9,
3.6027540166958904`*^9}, {3.602754050557061*^9, 3.602754051072713*^9}, {
3.6027540942312837`*^9, 3.6027540943562927`*^9}, 3.6027541683167396`*^9, {
3.6027543124437876`*^9, 3.602754382291209*^9}, {3.6027544782025447`*^9,
3.602754601599715*^9}, {3.6027723614833355`*^9, 3.6027723764372253`*^9}, {
3.6027724087202168`*^9, 3.6027725150852017`*^9}, {3.602772547696335*^9,
3.6027725479150677`*^9}, {3.6027726128247595`*^9,
3.6027726474984727`*^9}, {3.6027726808752728`*^9,
3.6027727296434836`*^9}, {3.602772760191949*^9, 3.602772775130241*^9}, {
3.602772827883067*^9, 3.6027728980274115`*^9}, {3.602772956077335*^9,
3.602773031003183*^9}, {3.6027734792206554`*^9, 3.602773489033646*^9}, {
3.6027744699919415`*^9, 3.602774713098552*^9}, {3.60277476030418*^9,
3.60277478914946*^9}, {3.6027748395115333`*^9, 3.6027748444023895`*^9}, {
3.602774938751173*^9, 3.6027749856442823`*^9}, {3.6027750315161133`*^9,
3.602775033078695*^9}, 3.602775088003484*^9, {3.602775118176959*^9,
3.6027751297400713`*^9}, {3.602775178883301*^9, 3.6027752084004927`*^9}, {
3.602775358064678*^9, 3.602775481961874*^9}, {3.602775513385415*^9,
3.6027755381523523`*^9}, {3.6027755742480803`*^9,
3.6027755743886485`*^9}, {3.602775630454122*^9, 3.602775754179432*^9}, {
3.60277584004336*^9, 3.6027758406684217`*^9}, {3.6027758731076126`*^9,
3.602775901827915*^9}, 3.6027759431425767`*^9, {3.6027759983799095`*^9,
3.602776004505207*^9}, {3.6027765492997174`*^9, 3.6027765788481593`*^9}, {
3.6027766110061436`*^9, 3.6027766499457083`*^9}, {3.602776683619342*^9,
3.6027767198087883`*^9}, {3.6027769081781235`*^9,
3.6027769264134912`*^9}, {3.6027769732284746`*^9, 3.602776977931821*^9}, {
3.6027770230279617`*^9, 3.602777077343342*^9}, {3.6027772138974576`*^9,
3.602777269337897*^9}, {3.602777526742171*^9, 3.602777588307935*^9}, {
3.602777713423944*^9, 3.602777806319495*^9}, {3.6027778642288156`*^9,
3.602778278578912*^9}, {3.602778312518211*^9, 3.602778312955733*^9}, {
3.6027783609270277`*^9, 3.6027784192426195`*^9}, {3.602778463307456*^9,
3.602778475495631*^9}}],
Cell[BoxData[
StyleBox[
TagBox[
StyleBox[
DynamicModuleBox[{$CellContext`g$$ = 10, $CellContext`gr$$ =
"posi\[CCedilla]\[ATilde]oxtempo", $CellContext`h$$ = 0.1, I$$ =
600, $CellContext`L$$ = 1, O$$ = 0.1, $CellContext`T$$ =
10, $CellContext`t1$$ = 5.300000000000001, $CellContext`Z$$ = 10,
Typeset`show$$ = True, Typeset`bookmarkList$$ = {},
Typeset`bookmarkMode$$ = "Menu", Typeset`animator$$, Typeset`animvar$$ =
1, Typeset`name$$ = "\"untitled\"", Typeset`specs$$ = {{{
Hold[$CellContext`gr$$], "posi\[CCedilla]\[ATilde]oxtempo",
Style["Gr\[AAcute]fico", Bold, 12]}, {
"posi\[CCedilla]\[ATilde]oxtempo", "per\[IAcute]odo",
"simula\[CCedilla]\[ATilde]o"}}, {
Hold[
Item["Anima\[CCedilla]\[ATilde]o", Alignment -> Center]],
Manipulate`Dump`ThisIsNotAControl}, {{
Hold[$CellContext`t1$$], 0, "Tempo (t)"}, 0,
Dynamic[$CellContext`T$$], 0.1}, {{
Hold[$CellContext`t1$$], 0, "Tempo (t)"}, 0,
Dynamic[$CellContext`T$$], 0.1}, {
Hold[
Item["Vari\[AAcute]veis do Problema", Alignment -> Center]],
Manipulate`Dump`ThisIsNotAControl}, {{
Hold[$CellContext`L$$], 1, "Comprimento (L)"}, 0.1, 10, 0.1}, {{
Hold[$CellContext`g$$], 10, "Gravidade (g)"}, 0.1, 20, 0.1}, {{
Hold[$CellContext`h$$], 0.5, "Dist\[AHat]ncia do CM (h)"}, 0,
Dynamic[$CellContext`L$$], 0.1}, {{
Hold[O$$], 0.1, "\[CapitalAHat]ngulo inicial (\[Theta])"}, 0, 3,
0.1}, {
Hold[
Item["Imagem", Alignment -> Center]],
Manipulate`Dump`ThisIsNotAControl}, {{
Hold[$CellContext`T$$], 10, "Tempo Total(T)"}, 1, 20, 1}, {{
Hold[I$$], 600, "Tamanho"}, 400, 800, 100}, {{
Hold[$CellContext`Z$$], 10, "Zoom"}, 1, 50, 1}}, Typeset`size$$ = {
360., {116., 119.}}, Typeset`update$$ = 0, Typeset`initDone$$,
Typeset`skipInitDone$$ = True, $CellContext`gr$128326$$ =
0, $CellContext`t1$128327$$ = 0, $CellContext`L$128328$$ =
0, $CellContext`g$128329$$ = 0, $CellContext`h$128330$$ = 0, O$128331$$ =
0, $CellContext`T$128332$$ = 0, I$128333$$ =
0, $CellContext`Z$128334$$ = 0},
DynamicBox[Manipulate`ManipulateBoxes[
1, StandardForm,
"Variables" :> {$CellContext`g$$ = 10, $CellContext`gr$$ =
"posi\[CCedilla]\[ATilde]oxtempo", $CellContext`h$$ = 0.5, I$$ =
600, $CellContext`L$$ = 1, O$$ = 0.1, $CellContext`T$$ =
10, $CellContext`t1$$ = 0, $CellContext`Z$$ = 10},
"ControllerVariables" :> {
Hold[$CellContext`gr$$, $CellContext`gr$128326$$, 0],
Hold[$CellContext`t1$$, $CellContext`t1$128327$$, 0],
Hold[$CellContext`L$$, $CellContext`L$128328$$, 0],
Hold[$CellContext`g$$, $CellContext`g$128329$$, 0],
Hold[$CellContext`h$$, $CellContext`h$128330$$, 0],
Hold[O$$, O$128331$$, 0],
Hold[$CellContext`T$$, $CellContext`T$128332$$, 0],
Hold[I$$, I$128333$$, 0],
Hold[$CellContext`Z$$, $CellContext`Z$128334$$, 0]},
"OtherVariables" :> {
Typeset`show$$, Typeset`bookmarkList$$, Typeset`bookmarkMode$$,
Typeset`animator$$, Typeset`animvar$$, Typeset`name$$,
Typeset`specs$$, Typeset`size$$, Typeset`update$$,
Typeset`initDone$$, Typeset`skipInitDone$$},
"Body" :> ($CellContext`solution =
NDSolve[{
Derivative[
2][$CellContext`\[Theta]][$CellContext`t] + ($CellContext`g$$ \
($CellContext`h$$/($CellContext`L$$^2/
3 + $CellContext`h$$^2))) \
$CellContext`\[Theta][$CellContext`t] == 0,
Derivative[1][$CellContext`\[Theta]][0] ==
0, $CellContext`\[Theta][0] == O$$},
$CellContext`\[Theta][$CellContext`t], {$CellContext`t,
0, $CellContext`T$$}, MaxSteps -> Infinity]; Show[{
Switch[$CellContext`gr$$, "posi\[CCedilla]\[ATilde]oxtempo",
Plot[
ReplaceAll[
$CellContext`\[Theta][$CellContext`t],
Part[$CellContext`solution, 1]], {$CellContext`t,
0, $CellContext`T$$}, PlotStyle -> Thick, ImageSize -> I$$,
PlotRange -> {{0, $CellContext`Z$$}, {(-1.2) O$$, 1.2 O$$}},
GridLines -> Automatic, GridLinesStyle ->
Directive[Black, Dashed], AxesLabel -> {
Style["t", 14, Bold, Italic],
Style["\[Theta](t)", 14, Italic, Bold]}, PlotLabel ->
TraditionalForm[
Derivative[
2][$CellContext`\[Theta]][$CellContext`t] + \
($CellContext`g$$ ($CellContext`h$$/($CellContext`L$$^2/
3 + $CellContext`h$$^2))) \
$CellContext`\[Theta][$CellContext`t] == 0]], "per\[IAcute]odo",
Plot[
6.28 Sqrt[($CellContext`L$$^2/
3 + $CellContext`h$$^2)/($CellContext`g$$ \
$CellContext`h$$)], {$CellContext`h$$, 0, 2 $CellContext`L$$}, PlotStyle ->
Thick, GridLines -> Automatic, GridLinesStyle ->
Directive[Black, Dashed], AxesLabel -> {
Style["h", 14, Bold, Italic],
Style["T", 14, Italic, Bold]}, PlotLabel ->
Row[{"T = \
2\[Pi]\!\(\*SqrtBox[FractionBox[\(\*SuperscriptBox[SubscriptBox[\(I\), \
\(CM\)], \(2\)] + m\\ \*SuperscriptBox[\(h\), \(2\)]\), \(m\\ g\\ h\)]]\) = ",
TraditionalForm[
6.28 Sqrt[($CellContext`L$$^2/
3 + $CellContext`h$$^2)/($CellContext`g$$ \
$CellContext`h$$)]]}], ImageSize -> I$$,
PlotRange -> {{0, 1.5 $CellContext`L$$}, {0, $CellContext`Z$$}}],
"simula\[CCedilla]\[ATilde]o",
Show[{
Graphics[{
ReplaceAll[
ReplaceAll[
Line[{{($CellContext`h$$ - $CellContext`L$$/2) Sin[
$CellContext`\[Theta][$CellContext`t]], ($CellContext`L$$/
2 - $CellContext`h$$) Cos[
$CellContext`\[Theta][$CellContext`t]]}, {0, 0}}],
Part[$CellContext`solution,
1]], $CellContext`t -> $CellContext`t1$$], Thick, Blue,
ReplaceAll[
ReplaceAll[
Polygon[{{($CellContext`h$$ - $CellContext`L$$/2) Sin[
$CellContext`\[Theta][$CellContext`t]] + 0.05 Cos[
$CellContext`\[Theta][$CellContext`t]], ($CellContext`L$$/
2 - $CellContext`h$$) Cos[
$CellContext`\[Theta][$CellContext`t]] + 0.05 Sin[
$CellContext`\[Theta][$CellContext`t]]}, \
{($CellContext`h$$ - $CellContext`L$$/2) Sin[
$CellContext`\[Theta][$CellContext`t]] - 0.05 Cos[
$CellContext`\[Theta][$CellContext`t]], ($CellContext`L$$/
2 - $CellContext`h$$) Cos[
$CellContext`\[Theta][$CellContext`t]] + 0.05 Sin[
$CellContext`\[Theta][$CellContext`t]]}, \
{($CellContext`h$$ + $CellContext`L$$/2) Sin[
$CellContext`\[Theta][$CellContext`t]] - 0.05 Cos[
$CellContext`\[Theta][$CellContext`t]], \
(-($CellContext`h$$ + $CellContext`L$$/2)) Cos[
$CellContext`\[Theta][$CellContext`t]] + 0.05 Sin[
$CellContext`\[Theta][$CellContext`t]]}, \
{($CellContext`h$$ + $CellContext`L$$/2) Sin[
$CellContext`\[Theta][$CellContext`t]] + 0.05 Cos[
$CellContext`\[Theta][$CellContext`t]], \
(-($CellContext`h$$ + $CellContext`L$$/2)) Cos[
$CellContext`\[Theta][$CellContext`t]] + 0.05 Sin[
$CellContext`\[Theta][$CellContext`t]]}}],
Part[$CellContext`solution,
1]], $CellContext`t -> $CellContext`t1$$], Black,
Line[{{-$CellContext`L$$, 0}, {$CellContext`L$$, 0}}], Dashed,
Line[{{0, (-1.2) $CellContext`L$$}, {0, 0}}]}, ImageSize ->
I$$, PlotLabel ->
Row[{"\!\(\*SubscriptBox[\(L\), \(eq\)]\) = ",
TraditionalForm[($CellContext`L$$^2/
3 + $CellContext`h$$^2)/($CellContext`h$$ \
$CellContext`L$$)], " L"}]]}]]}]),
"Specifications" :> {{{$CellContext`gr$$,
"posi\[CCedilla]\[ATilde]oxtempo",
Style["Gr\[AAcute]fico", Bold, 12]}, {
"posi\[CCedilla]\[ATilde]oxtempo", "per\[IAcute]odo",
"simula\[CCedilla]\[ATilde]o"}, ControlPlacement -> Top},
Delimiter,
Item[
"Anima\[CCedilla]\[ATilde]o", Alignment ->
Center], {{$CellContext`t1$$, 0, "Tempo (t)"}, 0,
Dynamic[$CellContext`T$$], 0.1, ControlType -> Animator,
DisplayAllSteps -> True,
AppearanceElements -> {
"PlayPauseButton", "DirectionButton", "ResetButton",
"StepLeftButton", "StepRightButton"}, AnimationRunning -> False,
AnimationRate -> 10}, {{$CellContext`t1$$, 0, "Tempo (t)"}, 0,
Dynamic[$CellContext`T$$], 0.1, ImageSize -> Small, Appearance ->
"Labeled"}, Delimiter,
Item[
"Vari\[AAcute]veis do Problema", Alignment ->
Center], {{$CellContext`L$$, 1, "Comprimento (L)"}, 0.1, 10, 0.1,
ImageSize -> Small, Appearance ->
"Labeled"}, {{$CellContext`g$$, 10, "Gravidade (g)"}, 0.1, 20, 0.1,
ImageSize -> Small, Appearance ->
"Labeled"}, {{$CellContext`h$$, 0.5, "Dist\[AHat]ncia do CM (h)"},
0,
Dynamic[$CellContext`L$$], 0.1, ImageSize -> Small, Appearance ->
"Labeled"}, {{O$$, 0.1, "\[CapitalAHat]ngulo inicial (\[Theta])"},
0, 3, 0.1, ImageSize -> Small, Appearance -> "Labeled"}, Delimiter,
Item[
"Imagem", Alignment ->
Center], {{$CellContext`T$$, 10, "Tempo Total(T)"}, 1, 20, 1,
ImageSize -> Small, Appearance -> "Labeled"}, {{
I$$, 600, "Tamanho"}, 400, 800, 100, ImageSize -> Small, Appearance ->
"Labeled"}, {{$CellContext`Z$$, 10, "Zoom"}, 1, 50, 1, ImageSize ->
Small, Appearance -> "Labeled"}},
"Options" :> {ControlPlacement -> Right}, "DefaultOptions" :> {}],
ImageSizeCache->{644., {162., 167.}},
SingleEvaluation->True],
Deinitialization:>None,
DynamicModuleValues:>{},
SynchronousInitialization->True,
UnsavedVariables:>{Typeset`initDone$$},
UntrackedVariables:>{Typeset`size$$}], "Manipulate",
Deployed->True,
StripOnInput->False],
Manipulate`InterpretManipulate[1]],
ControlsRendering->"Generic",
StripOnInput->False]], "Output",
CellChangeTimes->{{3.6027533237035985`*^9, 3.602753345126608*^9},
3.6027534292116165`*^9, {3.6027534877147207`*^9, 3.6027534991997085`*^9},
3.6027536108306227`*^9, 3.6027536629740114`*^9, 3.6027539707872076`*^9,
3.6027540176803217`*^9, 3.602754095090674*^9, 3.602754316272085*^9,
3.602754348445667*^9, 3.602754385088235*^9, 3.602754480202651*^9,
3.602754537315055*^9, 3.60275460266227*^9, 3.6027723467481565`*^9,
3.602772390812988*^9, {3.602772443456404*^9, 3.602772474333042*^9},
3.60277251639777*^9, 3.6027725487276115`*^9, {3.602772620043893*^9,
3.6027726367791557`*^9}, 3.602772707407898*^9, 3.6027727617076554`*^9,
3.6027728045224233`*^9, {3.6027728771981525`*^9, 3.602772898980558*^9},
3.602772974312678*^9, {3.602773005908101*^9, 3.602773032315751*^9},
3.60277307434923*^9, {3.6027745473553886`*^9, 3.6027745737161627`*^9},
3.602774717005009*^9, {3.6027747621949043`*^9, 3.6027747906339135`*^9},
3.6027748470744066`*^9, {3.6027749497048473`*^9, 3.602774988138813*^9}, {
3.6027750215155835`*^9, 3.602775034328763*^9}, 3.6027750895816917`*^9,
3.6027751525537796`*^9, {3.6027751868212233`*^9, 3.6027752107287407`*^9},
3.6027754830713053`*^9, 3.60277552887061*^9, 3.60277557554496*^9,
3.6027756383451653`*^9, {3.6027757365378723`*^9, 3.6027757605235195`*^9},
3.6027758427622538`*^9, 3.6027759588934116`*^9, 3.602776329756827*^9,
3.60277658367654*^9, 3.6027766513051267`*^9, 3.6027766869788923`*^9,
3.6027767444506903`*^9, 3.6027769100532207`*^9, 3.6027769794787793`*^9,
3.602777024262402*^9, 3.602777061764391*^9, {3.6027772504306445`*^9,
3.6027772715255117`*^9}, {3.6027775762447968`*^9,
3.6027775895892534`*^9}, {3.6027777182523236`*^9, 3.602777807194541*^9}, {
3.6027779207474365`*^9, 3.6027779374826994`*^9}, {3.6027779676717987`*^9,
3.602778011111603*^9}, {3.6027780598954396`*^9, 3.602778102960224*^9},
3.6027781361963606`*^9, 3.6027781746359005`*^9, 3.602778206543841*^9, {
3.6027782639531355`*^9, 3.6027782821572256`*^9}, 3.602778318799794*^9, {
3.602778371255698*^9, 3.6027784203520546`*^9}, 3.6027784763706493`*^9}]
}, Open ]]
}, Open ]]
}, Open ]]
},
WindowSize->{1023, 610},
WindowMargins->{{9, Automatic}, {Automatic, 5}},
Magnification->0.8999999761581421,
FrontEndVersion->"9.0 for Microsoft Windows (64-bit) (November 20, 2012)",
StyleDefinitions->"Default.nb"
]
(* End of Notebook Content *)
(* Internal cache information *)
(*CellTagsOutline
CellTagsIndex->{}
*)
(*CellTagsIndex
CellTagsIndex->{}
*)
(*NotebookFileOutline
Notebook[{
Cell[CellGroupData[{
Cell[579, 22, 545, 10, 129, "Title"],
Cell[CellGroupData[{
Cell[1149, 36, 514, 11, 88, "Section"],
Cell[CellGroupData[{
Cell[1688, 51, 809, 22, 150, "Input"],
Cell[2500, 75, 3462, 47, 28, "Output"]
}, Open ]],
Cell[CellGroupData[{
Cell[5999, 127, 29631, 581, 1344, "Input"],
Cell[35633, 710, 12940, 234, 344, "Output"]
}, Open ]]
}, Open ]]
}, Open ]]
}
]
*)
(* End of internal cache information *)