Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

RuntimeError: Expected target size [20, 2], got [20] #291

Open
harshalDharpure opened this issue May 18, 2024 · 1 comment
Open

RuntimeError: Expected target size [20, 2], got [20] #291

harshalDharpure opened this issue May 18, 2024 · 1 comment

Comments

@harshalDharpure
Copy link


class Classifier(pl.LightningModule):

  def __init__(self):
    super().__init__()
    self.MFB = MFB(512,768,True,256,64,0.1)
    self.fin_y_shape = torch.nn.Linear(768,512)
    self.fin_old = torch.nn.Linear(64,2)
    self.fin = torch.nn.Linear(16 * 768, 64)
    self.fin_inten = torch.nn.Linear(64,6)
    self.fin_e1 = torch.nn.Linear(64,2)
    self.fin_e2 = torch.nn.Linear(64,2)
    self.fin_e3 = torch.nn.Linear(64,2)
    self.fin_e4 = torch.nn.Linear(64,2)
    self.fin_e5 = torch.nn.Linear(64,2)
    self.fin_e6 = torch.nn.Linear(64,2)
    self.fin_e7 = torch.nn.Linear(64,2)
    self.fin_e8 = torch.nn.Linear(64,2)
    self.fin_e9 = torch.nn.Linear(64,2)



    self.validation_step_outputs = []
    self.test_step_outputs = []

  def forward(self, x,y,rag):
      x_,y_,rag_ = x,y,rag
      print("x.shape", x.shape)
      z = self.MFB(torch.unsqueeze(y, axis=1), torch.unsqueeze(x, axis=1))
      z_rag = self.MFB(torch.unsqueeze(y, axis=1), torch.unsqueeze(rag, axis=1))
      z_newe = torch.cat((z, z_rag), dim=1)

      z_new = torch.squeeze(z_newe, dim=1)
      c_inten = self.fin_inten(z_new)
      c_e1 = self.fin_e1(z_new)
      c_e2 = self.fin_e2(z_new)
      c_e3 = self.fin_e3(z_new)
      c_e4 = self.fin_e4(z_new)
      c_e5 = self.fin_e5(z_new)
      c_e6 = self.fin_e6(z_new)
      c_e7 = self.fin_e7(z_new)
      c_e8 = self.fin_e8(z_new)
      c_e9 = self.fin_e9(z_new)
      c = self.fin_old(z_new)


      output = torch.log_softmax(c, dim=1)
      c_inten = torch.log_softmax(c_inten, dim=1)
      c_e1 = torch.log_softmax(c_e1, dim=1)
      c_e2 = torch.log_softmax(c_e2, dim=1)
      c_e3 = torch.log_softmax(c_e3, dim=1)
      c_e4 = torch.log_softmax(c_e4, dim=1)
      c_e5 = torch.log_softmax(c_e5, dim=1)
      c_e6 = torch.log_softmax(c_e6, dim=1)
      c_e7 = torch.log_softmax(c_e7, dim=1)
      c_e8 = torch.log_softmax(c_e8, dim=1)
      c_e9 = torch.log_softmax(c_e9, dim=1)
      return output,c_inten,c_e1,c_e2,c_e3,c_e4,c_e5,c_e6,c_e7,c_e8,c_e9



  def cross_entropy_loss(self, logits, labels):
    return F.nll_loss(logits, labels)

  def contrastive_loss(self, z, z_rag, label, margin=1.0):
    euclidean_distance = F.pairwise_distance(z1, z2)
    loss_contrastive = torch.mean((1 - label) * torch.pow(euclidean_distance, 2) + (label) * torch.pow(torch.clamp(margin - euclidean_distance, min=0.0), 2))
    return loss_contrastive

  def training_step(self, train_batch, batch_idx):
      
      lab,txt,rag,img,name,intensity,e1,e2,e3,e4,e5,e6,e7,e8,e9 = train_batch
      lab = train_batch[lab]
      #print(lab)
      txt = train_batch[txt]
      rag = train_batch[rag]
      img = train_batch[img]
      name= train_batch[name]
      intensity = train_batch[intensity]
      e1 = train_batch[e1]
      e2 = train_batch[e2]
      e3 = train_batch[e3]
      e4 = train_batch[e4]
      e5 = train_batch[e5]
      e6 = train_batch[e6]
      e7 = train_batch[e7]
      e8 = train_batch[e8]
      e9 = train_batch[e9]

      logit_offen,logit_inten_target,a,b,c,d,e,f,g,h,i= self.forward(txt,img,rag)

      loss1 = self.cross_entropy_loss(logit_offen, lab)
      loss4 = self.cross_entropy_loss(a, e1)
      loss5 = self.cross_entropy_loss(b, e2)
      loss6 = self.cross_entropy_loss(c, e3)
      loss7 = self.cross_entropy_loss(d, e4)
      loss8 = self.cross_entropy_loss(e, e5)
      loss9 = self.cross_entropy_loss(f, e6)
      loss10 = self.cross_entropy_loss(g, e7)
      loss11 = self.cross_entropy_loss(h, e8)
      loss12 = self.cross_entropy_loss(i, e9)
      loss17 = self.cross_entropy_loss(logit_inten_target, intensity)

      contrastive_labels = (lab == 1).float()
      loss_contrastive = self.contrastive_loss(z, z_rag, contrastive_labels)

      loss = loss1 + loss4 + loss5 + loss6 + loss7 + loss8 +loss9 + loss10 + loss11 + loss12 + loss17 + loss_contrastive

      self.log('train_loss', loss)
      return loss

  def validation_step(self, val_batch, batch_idx):
      #lab,txt,rag,img,name,per,iro,alli,ana,inv,meta,puns,sat,hyp = val_batch
      lab,txt,rag,img,name,intensity,e1,e2,e3,e4,e5,e6,e7,e8,e9= val_batch
      lab = val_batch[lab]
      #print(lab)
      txt = val_batch[txt]
      rag = val_batch[rag]
      img = val_batch[img]
      name = val_batch[name]
      intensity = val_batch[intensity]
      e1 = val_batch[e1]
      e2 = val_batch[e2]
      e3 = val_batch[e3]
      e4 = val_batch[e4]
      e5 = val_batch[e5]
      e6 = val_batch[e6]
      e7 = val_batch[e7]
      e8 = val_batch[e8]
      e9 = val_batch[e9]

      logits,inten,a,b,c,d,e,f,g,h,i = self.forward(txt,img,rag)


      logits=logits.float()


      tmp = np.argmax(logits.detach().cpu().numpy(),axis=1)
      loss = self.cross_entropy_loss(logits, lab)
      lab = lab.detach().cpu().numpy()
      self.log('val_acc', accuracy_score(lab,tmp))
      self.log('val_roc_auc',roc_auc_score(lab,tmp))
      self.log('val_loss', loss)
      tqdm_dict = {'val_acc': accuracy_score(lab,tmp)}
      self.validation_step_outputs.append({'progress_bar': tqdm_dict,'val_f1 offensive': f1_score(lab,tmp,average='macro')})

      return {
                'progress_bar': tqdm_dict,
      'val_f1 offensive': f1_score(lab,tmp,average='macro')
      }

  def on_validation_epoch_end(self):
    outs = []
    outs14=[]
    for out in self.validation_step_outputs:
       outs.append(out['progress_bar']['val_acc'])
       outs14.append(out['val_f1 offensive'])
    self.log('val_acc_all_offn', sum(outs)/len(outs))
    self.log('val_f1 offensive', sum(outs14)/len(outs14))
    print(f'***val_acc_all_offn at epoch end {sum(outs)/len(outs)}****')
    print(f'***val_f1 offensive at epoch end {sum(outs14)/len(outs14)}****')
    self.validation_step_outputs.clear()

  def test_step(self, batch, batch_idx):
      lab,txt,rag,img,name,intensity,e1,e2,e3,e4,e5,e6,e7,e8,e9= batch
      #lab,txt,rag,img,name,per,iro,alli,ana,inv,meta,puns,sat,hyp= batch

      lab = batch[lab]
      #print(lab)


      txt = batch[txt]
      rag = batch[rag]
      img = batch[img]
      name = batch[name]
      intensity = batch[intensity]
      e1 = batch[e1]
      e2 = batch[e2]
      e3 = batch[e3]
      e4 = batch[e4]
      e5 = batch[e5]
      e6 = batch[e6]
      e7 = batch[e7]
      e8 = batch[e8]
      e9 = batch[e9]

      logits,inten,a,b,c,d,e,f,g,h,i= self.forward(txt,img,rag)
      logits = logits.float()
      tmp = np.argmax(logits.detach().cpu().numpy(force=True),axis=-1)
      loss = self.cross_entropy_loss(logits, lab)
      lab = lab.detach().cpu().numpy()
      self.log('test_acc', accuracy_score(lab,tmp))
      self.log('test_roc_auc',roc_auc_score(lab,tmp))
      self.log('test_loss', loss)
      tqdm_dict = {'test_acc': accuracy_score(lab,tmp)}
      self.test_step_outputs.append({'progress_bar': tqdm_dict,'test_acc': accuracy_score(lab,tmp), 'test_f1_score': f1_score(lab,tmp,average='macro')})
      return {
                'progress_bar': tqdm_dict,
                'test_acc': accuracy_score(lab,tmp),
                'test_f1_score': f1_score(lab,tmp,average='macro')
      }
  def on_test_epoch_end(self):
      # OPTIONAL
      outs = []
      outs1,outs2,outs3,outs4,outs5,outs6,outs7,outs8,outs9,outs10,outs11,outs12,outs13,outs14 = \
      [],[],[],[],[],[],[],[],[],[],[],[],[],[]
      for out in self.test_step_outputs:
        outs.append(out['test_acc'])
        outs2.append(out['test_f1_score'])
      self.log('test_acc', sum(outs)/len(outs))
      self.log('test_f1_score', sum(outs2)/len(outs2))
      self.test_step_outputs.clear()

  def configure_optimizers(self):
    # optimizer = torch.optim.Adam(self.parameters(), lr=3e-2)
    optimizer = torch.optim.Adam(self.parameters(), lr=1e-5)

    return optimizer


"""
Main Model:
Initialize
Forward Pass
Training Step
Validation Step
Testing Step

Pp
"""

class HmDataModule(pl.LightningDataModule):

  def setup(self, stage):
    self.hm_train = t_p
    self.hm_val = v_p
    # self.hm_test = test
    self.hm_test = te_p

  def train_dataloader(self):
    return DataLoader(self.hm_train, batch_size=20, drop_last=True)

  def val_dataloader(self):
    return DataLoader(self.hm_val, batch_size=20, drop_last=True)

  def test_dataloader(self):
    return DataLoader(self.hm_test, batch_size=20, drop_last=True)

data_module = HmDataModule()
checkpoint_callback = ModelCheckpoint(
     monitor='val_acc_all_offn',
     dirpath='mrinal/',
     filename='epoch{epoch:02d}-val_f1_all_offn{val_acc_all_offn:.2f}',
     auto_insert_metric_name=False,
     save_top_k=1,
    mode="max",
 )
all_callbacks = []
all_callbacks.append(checkpoint_callback)
# train
from pytorch_lightning import seed_everything
seed_everything(42, workers=True)
hm_model = Classifier()
gpus=1
#if torch.cuda.is_available():gpus=0
trainer = pl.Trainer(deterministic=True,max_epochs=20,precision=16,callbacks=all_callbacks)
trainer.fit(hm_model, data_module)
NFO:lightning_fabric.utilities.seed:Seed set to 42
INFO:pytorch_lightning.utilities.rank_zero:Using bfloat16 Automatic Mixed Precision (AMP)
INFO:pytorch_lightning.utilities.rank_zero:GPU available: False, used: False
INFO:pytorch_lightning.utilities.rank_zero:TPU available: False, using: 0 TPU cores
INFO:pytorch_lightning.utilities.rank_zero:IPU available: False, using: 0 IPUs
INFO:pytorch_lightning.utilities.rank_zero:HPU available: False, using: 0 HPUs
INFO:pytorch_lightning.callbacks.model_summary:
   | Name        | Type   | Params
----------------------------------------
0  | MFB         | MFB    | 21.0 M
1  | fin_y_shape | Linear | 393 K 
2  | fin_old     | Linear | 130   
3  | fin         | Linear | 786 K 
4  | fin_inten   | Linear | 390   
5  | fin_e1      | Linear | 130   
6  | fin_e2      | Linear | 130   
7  | fin_e3      | Linear | 130   
8  | fin_e4      | Linear | 130   
9  | fin_e5      | Linear | 130   
10 | fin_e6      | Linear | 130   
11 | fin_e7      | Linear | 130   
12 | fin_e8      | Linear | 130   
13 | fin_e9      | Linear | 130   
----------------------------------------
22.2 M    Trainable params
0         Non-trainable params
22.2 M    Total params
88.745    Total estimated model params size (MB)
x.shape torch.Size([20, 768])
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
[<ipython-input-43-c76eb94fa135>](https://localhost:8080/#) in <cell line: 266>()
    264 #if torch.cuda.is_available():gpus=0
    265 trainer = pl.Trainer(deterministic=True,max_epochs=20,precision=16,callbacks=all_callbacks)
--> 266 trainer.fit(hm_model, data_module)

13 frames
[/usr/local/lib/python3.10/dist-packages/torch/nn/functional.py](https://localhost:8080/#) in nll_loss(input, target, weight, size_average, ignore_index, reduce, reduction)
   2702     if size_average is not None or reduce is not None:
   2703         reduction = _Reduction.legacy_get_string(size_average, reduce)
-> 2704     return torch._C._nn.nll_loss_nd(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
   2705 
   2706 

RuntimeError: Expected target size [20, 2], got [20]
Sanity Checking DataLoader 0:
@harshalDharpure
Copy link
Author

Can Anyone help me to solve the issues , I am facing in the pytorch

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant