You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Firstly, thanks for your repository. I would like to save the model in torchscript module format rather than the traditional way. when I try to save the model using
torch.jit.script(model)
I'm getting the below error,
---------------------------------------------------------------------------
NotSupportedError Traceback (most recent call last)
/tmp/ipykernel_127656/979748029.py in <module>
7 enabled_precisions = {torch.float, torch.half} # Run with fp16
8
----> 9 trt_ts_module = torch_tensorrt.compile(model, inputs=inputs, enabled_precisions=enabled_precisions)
10
11 input_data = input_data.to('cuda').half()
~/miniconda3/envs/tensorrt/lib/python3.7/site-packages/torch_tensorrt/_compile.py in compile(module, ir, inputs, enabled_precisions, **kwargs)
112 "Module was provided as a torch.nn.Module, trying to script the module with torch.jit.script. In the event of a failure please preconvert your module to TorchScript"
113 )
--> 114 ts_mod = torch.jit.script(module)
115 return torch_tensorrt.ts.compile(ts_mod, inputs=inputs, enabled_precisions=enabled_precisions, **kwargs)
116 elif target_ir == _IRType.fx:
~/miniconda3/envs/tensorrt/lib/python3.7/site-packages/torch/jit/_script.py in script(obj, optimize, _frames_up, _rcb, example_inputs)
1264 obj = call_prepare_scriptable_func(obj)
1265 return torch.jit._recursive.create_script_module(
-> 1266 obj, torch.jit._recursive.infer_methods_to_compile
1267 )
1268
~/miniconda3/envs/tensorrt/lib/python3.7/site-packages/torch/jit/_recursive.py in create_script_module(nn_module, stubs_fn, share_types, is_tracing)
452 if not is_tracing:
453 AttributeTypeIsSupportedChecker().check(nn_module)
--> 454 return create_script_module_impl(nn_module, concrete_type, stubs_fn)
455
456 def create_script_module_impl(nn_module, concrete_type, stubs_fn):
~/miniconda3/envs/tensorrt/lib/python3.7/site-packages/torch/jit/_recursive.py in create_script_module_impl(nn_module, concrete_type, stubs_fn)
464 """
465 cpp_module = torch._C._create_module_with_type(concrete_type.jit_type)
--> 466 method_stubs = stubs_fn(nn_module)
467 property_stubs = get_property_stubs(nn_module)
468 hook_stubs, pre_hook_stubs = get_hook_stubs(nn_module)
~/miniconda3/envs/tensorrt/lib/python3.7/site-packages/torch/jit/_recursive.py in infer_methods_to_compile(nn_module)
733 stubs = []
734 for method in uniqued_methods:
--> 735 stubs.append(make_stub_from_method(nn_module, method))
736 return overload_stubs + stubs
737
~/miniconda3/envs/tensorrt/lib/python3.7/site-packages/torch/jit/_recursive.py in make_stub_from_method(nn_module, method_name)
64 # In this case, the actual function object will have the name `_forward`,
65 # even though we requested a stub for `forward`.
---> 66 return make_stub(func, method_name)
67
68
~/miniconda3/envs/tensorrt/lib/python3.7/site-packages/torch/jit/_recursive.py in make_stub(func, name)
49 def make_stub(func, name):
50 rcb = _jit_internal.createResolutionCallbackFromClosure(func)
---> 51 ast = get_jit_def(func, name, self_name="RecursiveScriptModule")
52 return ScriptMethodStub(rcb, ast, func)
53
~/miniconda3/envs/tensorrt/lib/python3.7/site-packages/torch/jit/frontend.py in get_jit_def(fn, def_name, self_name, is_classmethod)
262 pdt_arg_types = type_trace_db.get_args_types(qualname)
263
--> 264 return build_def(parsed_def.ctx, fn_def, type_line, def_name, self_name=self_name, pdt_arg_types=pdt_arg_types)
265
266 # TODO: more robust handling of recognizing ignore context manager
~/miniconda3/envs/tensorrt/lib/python3.7/site-packages/torch/jit/frontend.py in build_def(ctx, py_def, type_line, def_name, self_name, pdt_arg_types)
300 py_def.col_offset + len("def"))
301
--> 302 param_list = build_param_list(ctx, py_def.args, self_name, pdt_arg_types)
303 return_type = None
304 if getattr(py_def, 'returns', None) is not None:
~/miniconda3/envs/tensorrt/lib/python3.7/site-packages/torch/jit/frontend.py in build_param_list(ctx, py_args, self_name, pdt_arg_types)
335 if arg is not None:
336 ctx_range = build_expr(ctx, arg).range()
--> 337 raise NotSupportedError(ctx_range, _vararg_kwarg_err)
338
339 # List of Tuple of args and type as inferred by profile directed typing
NotSupportedError: Compiled functions can't take variable number of arguments or use keyword-only arguments with defaults:
File "/home/iamalien/Desktop/my_files/semantic_segmentation_example/semantic-segmentation-pytorch/sage_example/code/mit_semseg/models/models.py", line 29
def forward(self, feed_dict, *, segSize=None):
~~~~ <--- HERE
# training
if segSize is None:
Hi team,
Firstly, thanks for your repository. I would like to save the model in torchscript module format rather than the traditional way. when I try to save the model using
torch.jit.script(model)
I'm getting the below error,
@hangzhaomit @Tete-Xiao @davidbau @devinaconley @eugenelawrence @MarcoForte @zhoubolei @yagi-3 @arjo129 @jeremyfix
could you please help here to save the model in torchscript format?
The text was updated successfully, but these errors were encountered: