-
Notifications
You must be signed in to change notification settings - Fork 88
/
aesgav.c
547 lines (443 loc) · 20 KB
/
aesgav.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/*
---------------------------------------------------------------------------
Copyright (c) 1998-2013, Brian Gladman, Worcester, UK. All rights reserved.
The redistribution and use of this software (with or without changes)
is allowed without the payment of fees or royalties provided that:
source code distributions include the above copyright notice, this
list of conditions and the following disclaimer;
binary distributions include the above copyright notice, this list
of conditions and the following disclaimer in their documentation.
This software is provided 'as is' with no explicit or implied warranties
in respect of its operation, including, but not limited to, correctness
and fitness for purpose.
---------------------------------------------------------------------------
Issue Date: 25/09/2018
*/
// AES Algorithm Test - Generate local test files for KAT and Monte Carlo
// tests and optionally compare these files with a reference set of test
// files
//
// usage: aes_gav /t:[knec] /b:[45678] /k:[45678] [/c]
//
// where:
//
// each of the symbols in square brackets can be used in any combination so
// that:
//
// /t:[knec] selects the tests to be used
// /b:[45678] selects the block lengths to be used (in 32-bit words)
// /k:[45678] selects the key lengths to be used (in 32-bit words)
// /c selects the comparison of output and reference file(s)
// and:
// k: generate ECB Known Answer Test files
// n: generate ECB Known Answer Test files (new)
// e: generate ECB Monte Carlo Test files
// c: generate CBC Monte Carlo Test files
//
// The reference files have a ".txt" extension while those generated use
// ".txt" if in a different directory or ".dat" otherwise. The directory
// paths for files are set below. Note that, when compared with the NIST
// test vector sequences, this code implements one additional (all zero)
// test vector as the first vector in each set (test 0).
#if defined( _MSC_VER ) && defined( DLL_IMPORT ) && defined( DLL_DYNAMIC_LOAD )
#include <windows.h>
#endif
#if defined( __cplusplus )
# include "aescpp.h"
#else
# include "aes.h"
#endif
#include "aesaux.h"
#include "aestst.h"
#if defined(DLL_IMPORT) && defined( DLL_DYNAMIC_LOAD )
fn_ptrs fn;
#endif
// Outputs a test vector file header
void header(FILE *outf, const int type, const unsigned long blen, const unsigned long klen)
{ char buf[32];
unsigned char dummy;
fprintf(outf, "==============================================");
fprintf(outf, "\nAuthor: Dr B R Gladman (brg@gladman.me.uk)");
fprintf(outf, "\nTest: %s", (type < 6 ? "ECB " : "CBC "));
switch(type)
{
case 0: fprintf(outf, "Variable Key Known Answer Tests"); break;
case 2: fprintf(outf, "Variable Key Known Answer Tests"); break;
case 1: fprintf(outf, "Variable Text Known Answer Tests"); break;
case 3: fprintf(outf, "Variable Text Known Answer Tests"); break;
case 4:
case 6: fprintf(outf, "Monte Carlo (Encryption) Tests"); break;
case 5:
case 7: fprintf(outf, "Monte Carlo (Decryption) Tests"); break;
}
fprintf(outf, "\nAlgorithm: Extended Rijndael (an AES Superset)\nFilename: %s",
file_name(buf, 32, type, blen, klen));
fprintf(outf, "\n==============================================\n");
block_out(block_len, &dummy, outf, 8 * blen);
block_out(key_len, &dummy, outf, 8 * klen);
fprintf(outf, "\n");
}
// Test of Electronic Code Book (ECB) mode with Fixed Key and Variable Text
void ecb_vt(FILE *outf, f_ectx alg[1], const unsigned long blen, const unsigned long klen)
{ unsigned long j;
unsigned char pt[32], ct[32], key[32], dummy;
block_clear(key, klen); // all zero key
block_out(key_val, key, outf, klen); // output key value
f_enc_key(alg, key, klen); // set key value
for(j = 0; j <= 8 * blen; ++j) // test vectors include
{ // an all zero one
block_out(test_no, &dummy, outf, j); // output test number
block_clear(pt, blen); // set all zero plain text
if(j) // set bit (j-1) if j <> 0
*(pt + (j - 1) / 8) = 0x80 >> (j - 1) % 8;
block_out(pt_val, pt, outf, blen); // output plaintext
do_enc(alg, pt , ct, 1); // do encryption
block_out(ct_val, ct, outf, blen); // output ciphertext
}
}
// Test of Electronic Code Book (ECB) mode with Fixed Text and Variable Key
void ecb_vk(FILE *outf, f_ectx alg[1], const unsigned long blen, const unsigned long klen)
{ unsigned long j;
unsigned char pt[32], ct[32], key[32], dummy;
block_clear(pt, blen); // all zero plaintext
block_out(pt_val, pt, outf, blen); // output plaintext
for(j = 0; j <= 8 * klen; ++j) // 129, 193 or 257 tests
{
block_out(test_no, &dummy, outf, j); // output test number
block_clear(key, klen); // set all zero key
if(j) // set bit (j-1) if j <> 0
*(key + (j - 1) / 8) = 0x80 >> (j - 1) % 8;
block_out(key_val, key, outf, klen); // output key value
f_enc_key(alg, key, klen); // set key value
do_enc(alg, pt , ct, 1); // alg.encrypt
block_out(ct_val, ct, outf, blen); // output ciphertext
}
}
// Test of Electronic Code Book (ECB) mode with Fixed Key and Variable Text
void ecb_vtn(FILE *outf, f_ectx alg[1], const unsigned long blen, const unsigned long klen)
{ unsigned long j;
unsigned char pt[32], ct[32], key[32], *bp, dummy;
block_clear(key, klen); // all zero key
block_out(key_val, key, outf, klen); // output key value
f_enc_key(alg, key, klen); // set key value
block_clear(pt, blen); // set all zero plain text
for(j = 0; j < 16 * blen; ++j)
{
block_out(test_no, &dummy, outf, j); // output test number
block_out(pt_val, pt, outf, blen); // output plaintext
do_enc(alg, pt , ct, 1); // do encryption
block_out(ct_val, ct, outf, blen); // output ciphertext
bp = pt + blen - 1 - j / 8;
if(j < 8 * blen)
*bp |= (*bp << 1) | 1;
else
*(bp + blen) = *(bp + blen) << 1;
}
}
// Test of Electronic Code Book (ECB) mode with Fixed Text and Variable Key
void ecb_vkn(FILE *outf, f_ectx alg[1], const unsigned long blen, const unsigned long klen)
{ unsigned long j;
unsigned char pt[32], ct[32], key[32], *bp, dummy;
block_clear(pt, blen); // all zero plaintext
block_out(pt_val, pt, outf, blen); // output plaintext
block_clear(key, klen);
for(j = 0; j < 16 * klen; ++j)
{
block_out(test_no, &dummy, outf, j); // output test number
block_out(key_val, key, outf, klen); // output key value
f_enc_key(alg, key, klen); // set key value
do_enc(alg, pt , ct, 1); // alg.encrypt
block_out(ct_val, ct, outf, blen); // output ciphertext
bp = key + klen - 1 - j / 8;
if(j < 8 * klen)
*bp |= (*bp << 1) | 1;
else
*(bp + klen) = *(bp + klen) << 1;
}
}
// Monte Carlo Encryption Test of Electronic Code Book (ECB) mode
void ecb_me(FILE *outf, f_ectx alg[1], const unsigned long blen, const unsigned long klen)
{ unsigned long j, k;
unsigned char pt[32], ct[64], key[32], dummy;
block_clear(pt, blen); // clear initial plaintext
block_clear(key, klen); // and key blocks
block_copy(ct + blen, pt, blen); // put plaintext in upper half
// of double length buffer
for(j = 0; j < 400; j++) // 400 Monte Carlo tests
{
block_out(test_no, &dummy, outf, j); // output test number
block_out(key_val, key, outf, klen); // output key
block_out(pt_val, pt, outf, blen); // output plaintext
f_enc_key(alg, key, klen); // set the key
for(k = 0; k < 5000; ++k) // 10000 encryptions alternating
{ // upper and lower blocks in ct
do_enc(alg, ct + blen, ct, 1);
do_enc(alg, ct, ct + blen, 1);
}
// compile next key as defined by NIST
block_xor(key, ct + 2 * blen - klen, klen);
block_out(ct_val, ct + blen, outf, blen); // output ciphertext
block_copy(pt, ct + blen, blen); // copy ciphertext as next plaintext
}
}
// Monte Carlo Decryption Test of Electronic Code Book (ECB) mode
void ecb_md(FILE *outf, f_dctx alg[1], const unsigned long blen, const unsigned long klen)
{ unsigned long j, k;
unsigned char pt[32], ct[64], key[32], dummy;
block_clear(pt, blen); // clear initial plaintext and key
block_clear(key, klen);
block_copy(ct + blen, pt, blen); // copy plaintext into upper half
// of double length ciphertext block
for(j = 0; j < 400; j++) // 400 Monte Carlo tests
{
block_out(test_no, &dummy, outf, j); // output test number
block_out(key_val, key, outf, klen); // output key
block_out(ct_val, pt, outf, blen); // output plaintext
f_dec_key(alg, key, klen); // set key
for(k = 0; k < 5000; ++k) // 10000 decryptions alternating
{ // upper and lower blocks in ct
do_dec(alg, ct + blen, ct, 1);
do_dec(alg, ct, ct + blen, 1);
}
// compile next key as defined by NIST
block_xor(key, ct + 2 * blen - klen, klen);
block_out(pt_val, ct + blen, outf, blen); // output ciphertext
block_copy(pt, ct + blen, blen); // set ciphertext as next plaintext
}
}
// Monte Carlo Encryption Test of Cipher Block Chaining (CBC) mode
void cbc_me(FILE *outf, f_ectx alg[1], const unsigned long blen, const unsigned long klen)
{ unsigned long j, k;
unsigned char ct[64], key[32], dummy;
block_clear(key, klen); // clear key: KEY[0]
block_clear(ct, 2 * blen); // clear ct: PT[0], ct + blen: IV[0]
for(j = 0; j < 400; j++) // 400 Monte Carlo tests
{
block_out(test_no, &dummy, outf, j); // output test number
block_out(key_val, key, outf, klen); // output key
block_out(iv_val, ct + blen, outf, blen); // output initialisation vector
block_out(pt_val, ct, outf, blen); // output plaintext
f_enc_key(alg, key, klen); // set key
for(k = 0; k < 5000; ++k) // 10000 encryptions, two at a time
{
block_xor(ct, ct + blen, blen); // do CBC chaining
do_enc(alg, ct, ct, 1); // do block encryption
block_xor(ct + blen, ct, blen); // do CBC chaining
do_enc(alg, ct + blen, ct + blen, 1);// do block encryption
}
block_out(ct_val, ct + blen, outf, blen); // output ciphertext
// compile next key as defined by NIST
block_xor(key, ct + 2 * blen - klen, klen);
}
}
// Monte Carlo Encryption Test of Cipher Block Chaining (CBC) mode
void cbc_md(FILE *outf, f_dctx alg[1], const unsigned long blen, const unsigned long klen)
{ unsigned long j, k;
unsigned char pt[32], ct[64], key[32], dummy;
block_clear(key, klen); // clear key: KEY[0]
block_clear(ct, 2 * blen); // clear ct: IV[0] ct + blen: CT[0]
for(j = 0; j < 400; j++) // 400 Monte Carlo tests
{
block_out(test_no, &dummy, outf, j); // output test number
block_out(key_val, key, outf, klen); // output key
block_out(iv_val, ct, outf, blen); // output initialisation vector
block_out(ct_val, ct + blen, outf, blen); // output ciphertext
f_dec_key(alg, key, klen); // set key
for(k = 0; k < 5000; ++k) // 10000 encryptions, two at a time
{
do_dec(alg, ct + blen, pt, 1); // do block decryption
block_xor(ct, pt, blen); // do CBC chaining
do_dec(alg, ct, pt, 1); // do block decryption
block_xor(ct + blen, pt, blen); // do CBC chaining
}
block_out(pt_val, ct + blen, outf, blen); // output plaintext
// compile next key as defined by NIST
block_xor(key, ct + 2 * blen - klen, klen);
}
}
// Synchronise two comparison files if they get out of step
int sync(int nbr, FILE *inf, char str[], int outp)
{ enum line_type ty;
int nn;
for(;;)
{
ty = find_line(inf, str);
if(ty == bad_line) return -1;
if(ty == test_no)
{
nn = get_dec(str + 2);
if(nn >= nbr) return nn;
}
if(outp)
printf("\n %s", str);
}
}
// Compare two test vector files
void comp_vecs(const char *fn1, const char *fn2)
{ char str1[128], str2[128];
enum line_type ty1, ty2;
int no1, no2, err_cnt, np_cnt, req;
FILE *if1, *if2;
err_cnt = np_cnt = 0; req = TRUE;
if(fopen_s(&if1, fn1, "r"))
{
printf("\n*** 1st file (%s) not found ***", fn1); return;
}
if(fopen_s(&if2, fn2, "r"))
{
printf("\n*** 2nd file (%s) not found ***", fn2); return;
}
for(;;) // while there is still input
{
if(req) // if another line needs to be input
{
ty1 = find_line(if1, str1); ty2 = find_line(if2, str2);
}
if(ty1 == bad_line && ty2 == bad_line) // if end of file on both files
break;
if(ty1 == bad_line || ty2 == bad_line) // if end of file on one file
{
printf("\n%s%s%s%s" , fn1, (ty1 == bad_line ? " short" : " long"), "er than ", fn2);
break;
}
if(ty1 == test_no) // if 'test number' line in file 1
no1 = get_dec(str1);
if(ty2 == test_no) // if 'test number' line in file 2
no2 = get_dec(str2);
if(cmp_nocase(str1, str2) == 0)
{
req = TRUE; continue; // if lines are the same continue
}
if(ty1 == test_no && ty2 == test_no) // if not the same but both are at a
{ // 'test number' line
np_cnt += abs(no2 - no1); req = FALSE;
if(no2 < no1) // extra tests in file 2
{
printf("\nextra test(s) in %s:\n %s", fn2, str2);
no2 = sync(no1, if2, str2, np_cnt < 10); // skip tests in file 2
}
if(no1 < no2) // extra test in file 1
{
printf("\nextra test(s) in %s:\n %s", fn1, str1);
no1 = sync(no2, if1, str1, np_cnt < 10);// skip tests in file 1
}
}
else if(ty1 != ty2) // cannot synchronise test vector files
{
printf("\n*** synchronisation error tests %i and %i ***", no1, no2);
fflush(stdout); return;
}
else if(ty1 != bad_line) // test vector mismatch
{
err_cnt++;
printf("\r*** mismatch error test %i ***", no1);
}
fflush(stdout);
}
if(np_cnt && !err_cnt) // all tests present match
printf("\nother tests match\n");
else
{
if(err_cnt)
printf("\r%s doesn't match %s (%i errors)\n", fn2, fn1, err_cnt);
else
printf("\r%s matches %s\n", df_string(fn2), df_string(fn1));
}
fclose(if1); fclose(if2);
}
// array of functions to call for each test
typedef void (*f_ep)(FILE *outf, f_ectx alg[1], const unsigned long blen, const unsigned long klen);
typedef void (*f_dp)(FILE *outf, f_dctx alg[1], const unsigned long blen, const unsigned long klen);
f_ep f_ptr[8] = { ecb_vk, ecb_vt, ecb_vkn, ecb_vtn, ecb_me, (f_ep)ecb_md, cbc_me, (f_ep)cbc_md };
// do the tests for each algorithm
void do_tests(int do_cmp, int ttype[3], f_ectx alg[1], const unsigned long blen, const unsigned long klen)
{ char name1[128], name2[128], *sp1, *sp2;
int i;
FILE *outf;
printf("\nGenerate%s tests for aes (AES_BLOCK_SIZE = %lu, key size = %lu)\n",
(do_cmp ? " and verify" : ""), 8 * blen, 8 * klen);
for(i = 0; i < 8; ++i) // for each type of test /k /x /e /c (2 tests each)
if(ttype[i / 2]) // if this test required
{
// name of file for output of generated test vectors
sp1 = copy_str(name1, ar_path);
sp1 = copy_str(sp1, out_path);
sp2 = copy_str(name2, ar_path);
sp2 = copy_str(sp2, ref_path);
file_name(sp1, 128, i, blen, klen);
copy_str(sp2, sp1);
if(!fopen_s(&outf, name1, "w"))
{
header(outf, i, blen, klen);
f_ptr[i](outf, alg, blen, klen);
fprintf(outf, "\n"); fclose(outf);
if(do_cmp) // compare it with reference if required
comp_vecs(name2, name1);
}
else
{
printf("ERROR: failed to open %s for writing\n", name1);
}
}
}
int main(int argc, char *argv[])
{ int do_cmp, tyf[4], kf[3], ki;
f_ectx alg[1];
#if defined(DLL_IMPORT) && defined(DLL_DYNAMIC_LOAD)
HINSTANCE h_dll;
if(!(h_dll = init_dll(&fn)))
return -1;
#else
aes_init();
#endif
if(argc == 1)
{
printf("\nusage: aes_gav /t:[knec] /k:[468] [/c]");
printf("\n");
printf("\nwhere the symbols in square brackets can be used in");
printf("\nany combination (without the brackets) and have the");
printf("\nfollowing meanings:");
printf("\n");
printf("\n /t:[knec] selects which tests are used");
printf("\n /k:[468] selects the key lengths used");
printf("\n /c compares output with reference");
printf("\nwhere:");
printf("\n k: generate ECB Known Answer Test files");
printf("\n n: generate ECB Known Answer Test files (new)");
printf("\n e: generate ECB Monte Carlo Test files");
printf("\n c: generate CBC Monte Carlo Test files");
printf("\n");
printf("\nand the characters giving block and key lengths are");
printf("\ndigits representing the lengths in 32-bit units.\n\n");
exit(0);
}
printf("\nRun tests for the AES algorithm %s",
#if defined(DLL_IMPORT)
" (DLL Version)\n");
#elif defined(AES_CPP)
" (CPP Version)\n");
#else
"");
#endif
do_cmp = test_args(argc, argv, 'c', '\0');
tyf[0] = test_args(argc, argv, 't', 'k');
tyf[1] = test_args(argc, argv, 't', 'n');
tyf[2] = test_args(argc, argv, 't', 'e');
tyf[3] = test_args(argc, argv, 't', 'c');
kf[0] = test_args(argc, argv, 'k', '4');
kf[1] = test_args(argc, argv, 'k', '6');
kf[2] = test_args(argc, argv, 'k', '8');
if(!(kf[0] || kf[1] || kf[2]))
{
kf[0] = kf[1] = kf[2] = TRUE; // AES key sizes if not specified
}
for(ki = 0; ki < 3; ++ki) if(kf[ki])
{
do_tests(do_cmp, tyf, alg, 16, 16 + 8 * ki);
}
#if defined(DLL_IMPORT) && defined(DLL_DYNAMIC_LOAD)
if(h_dll) FreeLibrary(h_dll);
#endif
printf("\n\n");
return 0;
}