Skip to content

Latest commit

 

History

History
1008 lines (717 loc) · 27.4 KB

README.md

File metadata and controls

1008 lines (717 loc) · 27.4 KB

OpenAI Dive

crates.io cargo build docs.rs crates.io

OpenAI Dive is an unofficial async Rust library that allows you to interact with the OpenAI API.

Sign up for an account on https://platform.openai.com/overview to get your API key.

[dependencies]
openai_dive = "0.4"

More information: set API key, add proxy, rate limit headers, use model names

Endpoints

Models

List and describe the various models available in the API.

List models

Lists the currently available models, and provides basic information about each one such as the owner and availability.

use openai_dive::v1::api::Client;
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let result = client.models().list().await.unwrap();

    println!("{:#?}", result);
}

More information: List models

Retrieve model

Retrieves a model instance, providing basic information about the model such as the owner and permissioning.

use openai_dive::v1::api::Client;
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let result = client.models().get("gpt-3.5-turbo-16k-0613").await.unwrap();

    println!("{:#?}", result);
}

More information: Retrieve model

Delete fine-tune model

Delete a fine-tuned model. You must have the Owner role in your organization to delete a model.

use openai_dive::v1::api::Client;
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let result = client.models().delete("my-custom-model").await.unwrap();

    println!("{:#?}", result);
}

More information: Delete fine-tune model

Chat

Given a list of messages comprising a conversation, the model will return a response.

Create chat completion

Creates a model response for the given chat conversation.

Note

This endpoint also has stream support. See the examples/chat/create_chat_completion_stream example.

use openai_dive::v1::api::Client;
use openai_dive::v1::models::Gpt4Engine;
use openai_dive::v1::resources::chat::{ChatCompletionParameters, ChatMessage, Role};
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let parameters = ChatCompletionParameters {
        model: Gpt4Engine::Gpt41106Preview.to_string(),
        messages: vec![
            ChatMessage {
                role: Role::User,
                content: ChatMessageContent::Text("Hello!".to_string()),
                ..Default::default()
            },
            ChatMessage {
                role: Role::User,
                content: ChatMessageContent::Text("What is the capital of Vietnam?".to_string()),
                ..Default::default()
            },
        ],
        max_tokens: Some(12),
        ..Default::default()
    };

    let result = client.chat().create(parameters).await.unwrap();

    println!("{:#?}", result);
}

More information: Create chat completion

Create chat completion with image

Creates a model response for the given chat conversation.

use openai_dive::v1::api::Client;
use openai_dive::v1::models::Gpt4Engine;
use openai_dive::v1::resources::chat::{ChatCompletionParameters, ChatMessage, Role};
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let parameters = ChatCompletionParameters {
        model: Gpt4Engine::Gpt4VisionPreview.to_string(),
        messages: vec![
            ChatMessage {
                role: Role::User,
                content: ChatMessageContent::Text("What is in this image?".to_string()),
                ..Default::default()
            },
            ChatMessage {
                role: Role::User,
                content: ChatMessageContent::ImageUrl(vec![ImageUrl {
                    r#type: "image_url".to_string(),
                    text: None,
                    image_url: ImageUrlType {
                        url: "https://images.unsplash.com/photo-1526682847805-721837c3f83b?w=640".to_string(),
                        detail: None,
                    },
                }]),
                ..Default::default()
            },
        ],
        max_tokens: Some(50),
        ..Default::default()
    };

    let result = client.chat().create(parameters).await.unwrap();

    println!("{:#?}", result);
}

More information: Create chat completion

Function calling

In an API call, you can describe functions and have the model intelligently choose to output a JSON object containing arguments to call one or many functions. The Chat Completions API does not call the function; instead, the model generates JSON that you can use to call the function in your code.

Note

This endpoint also has stream support. See the examples/chat/function_calling_stream example.

use openai_dive::v1::api::Client;
use openai_dive::v1::models::Gpt4Engine;
use openai_dive::v1::resources::chat::{
    ChatCompletionFunction, ChatCompletionParameters, ChatCompletionTool, ChatCompletionToolType, ChatMessage,
    ChatMessageContent,
};
use rand::Rng;
use serde::{Deserialize, Serialize};
use serde_json::{json, Value};

#[tokio::main]
async fn main() {
    let api_key = std::env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let messages = vec![ChatMessage {
        content: ChatMessageContent::Text("Give me a random number between 100 and no more than 150?".to_string()),
        ..Default::default()
    }];

    let parameters = ChatCompletionParameters {
        model: Gpt4Engine::Gpt41106Preview.to_string(),
        messages: messages.clone(),
        tools: Some(vec![ChatCompletionTool {
            r#type: ChatCompletionToolType::Function,
            function: ChatCompletionFunction {
                name: "get_random_number".to_string(),
                description: Some("Get a random number between two values".to_string()),
                parameters: json!({
                    "type": "object",
                    "properties": {
                        "min": {"type": "integer", "description": "Minimum value of the random number."},
                        "max": {"type": "integer", "description": "Maximum value of the random number."},
                    },
                    "required": ["min", "max"],
                }),
            },
        }]),
        ..Default::default()
    };

    let result = client.chat().create(parameters).await.unwrap();

    let message = result.choices[0].message.clone();

    if let Some(tool_calls) = message.tool_calls {
        for tool_call in tool_calls {
            let name = tool_call.function.name;
            let arguments = tool_call.function.arguments;

            if name == "get_random_number" {
                let random_numbers: RandomNumber = serde_json::from_str(&arguments).unwrap();

                println!("Min: {:?}", &random_numbers.min);
                println!("Max: {:?}", &random_numbers.max);

                let random_number_result = get_random_number(random_numbers);

                println!("Random number between those numbers: {:?}", random_number_result.clone());
            }
        }
    }
}

#[derive(Serialize, Deserialize)]
pub struct RandomNumber {
    min: u32,
    max: u32,
}

fn get_random_number(params: RandomNumber) -> Value {
    let random_number = rand::thread_rng().gen_range(params.min..params.max);

    random_number.into()
}

More information: Function calling

Images

Given a prompt and/or an input image, the model will generate a new image.

Create image

Creates an image given a prompt.

use openai_dive::v1::api::Client;
use openai_dive::v1::resources::image::{CreateImageParameters, ImageSize, ResponseFormat};
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let parameters = CreateImageParameters {
        prompt: "A cute baby dog".to_string(),
        model: None,
        n: Some(1),
        quality: None,
        response_format: Some(ResponseFormat::Url),
        size: Some(ImageSize::Size256X256),
        style: None,
        user: None,
    };

    let result = client.images().create(parameters).await.unwrap();

    let paths = result.save("./images").await.unwrap();

    println!("{:?}", paths);

    println!("{:#?}", result);
}

More information: Create image

Create image edit

Creates an edited or extended image given an original image and a prompt.

use openai_dive::v1::api::Client;
use openai_dive::v1::resources::image::{EditImageParameters, ImageSize};
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let parameters = EditImageParameters {
        image: "./images/image_edit_original.png".to_string(),
        prompt: "A cute baby sea otter".to_string(),
        mask: Some("./images/image_edit_mask.png".to_string()),
        model: None,
        n: Some(1),
        size: Some(ImageSize::Size256X256),
        response_format: None,
        user: None,
    };

    let result = client.images().edit(parameters).await.unwrap();

    println!("{:#?}", result);
}

More information: Create image edit

Create image variation

Creates a variation of a given image.

use openai_dive::v1::api::Client;
use openai_dive::v1::resources::image::{CreateImageVariationParameters, ImageSize};
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let parameters = CreateImageVariationParameters {
        image: "./images/image_edit_original.png".to_string(),
        model: None,
        n: Some(1),
        response_format: None,
        size: Some(ImageSize::Size256X256),
        user: None,
    };

    let result = client.images().variation(parameters).await.unwrap();

    println!("{:#?}", result);
}

More information: Create image variation

Audio

Learn how to turn audio into text or text into audio.

Create speech

Generates audio from the input text.

Note

This endpoint also has stream support. See the examples/audio/create_speech_stream example.

use openai_dive::v1::api::Client;
use openai_dive::v1::resources::audio::{
    AudioSpeechParameters, AudioSpeechResponseFormat, AudioVoice,
};
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let parameters = AudioSpeechParameters {
        model: "tts-1".to_string(),
        input: "Hallo, this is a test from OpenAI Dive.".to_string(),
        voice: AudioVoice::Alloy,
        response_format: Some(AudioSpeechResponseFormat::Mp3),
        speed: Some(1.0),
    };

    let response = client.audio().create_speech(parameters).await.unwrap();

    response.save("files/example.mp3").await.unwrap();
}

More information: Create speech

Create transcription

Transcribes audio into the input language.

use openai_dive::v1::api::Client;
use openai_dive::v1::resources::audio::{AudioOutputFormat, AudioTranscriptionParameters};
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let parameters = AudioTranscriptionParameters {
        file: "./audio/micro-machines.mp3".to_string(),
        model: "whisper-1".to_string(),
        language: None,
        prompt: None,
        response_format: Some(AudioOutputFormat::Text),
        temperature: None,
    };

    let result = client
        .audio()
        .create_transcription(parameters)
        .await
        .unwrap();

    println!("{:#?}", result);
}

More information: Create transcription

Create translation

Translates audio into English.

use openai_dive::v1::api::Client;
use openai_dive::v1::resources::audio::{AudioOutputFormat, AudioTranslationParameters};
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let parameters = AudioTranslationParameters {
        file: "./audio/multilingual.mp3".to_string(),
        model: "whisper-1".to_string(),
        prompt: None,
        response_format: Some(AudioOutputFormat::Srt),
        temperature: None,
    };

    let result = client.audio().create_translation(parameters).await.unwrap();

    println!("{:#?}", result);
}

More information: Create translation

Embeddings

Get a vector representation of a given input that can be easily consumed by machine learning models and algorithms.

Create embeddings

Creates an embedding vector representing the input text.

use openai_dive::v1::api::Client;
use openai_dive::v1::resources::embedding::EmbeddingParameters;
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let parameters = EmbeddingParameters {
        model: "text-embedding-ada-002".to_string(),
        input: "The food was delicious and the waiter...".to_string(),
        encoding_format: None,
        user: None,
    };

    let result = client.embeddings().create(parameters).await.unwrap();

    println!("{:#?}", result);
}

More information: Create embeddings

Files

Files are used to upload documents that can be used with features like Assistants and Fine-tuning.

List files

Returns a list of files that belong to the user's organization.

use openai_dive::v1::{
    api::Client,
    resources::file::{FilePurpose, ListFilesParameters},
};
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let query = ListFilesParameters {
        purpose: Some(FilePurpose::FineTune),
    };

    let result = client.files().list(Some(query)).await.unwrap();

    println!("{:#?}", result);
}

More information: List files

Upload file

Upload a file that can be used across various endpoints.

use openai_dive::v1::{
    api::Client,
    resources::file::{FilePurpose, UploadFileParameters},
};
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let parameters = UploadFileParameters {
        file: "./files/FineTuningJobSample2.jsonl".to_string(),
        purpose: FilePurpose::FineTune,
    };

    let result = client.files().upload(parameters).await.unwrap();

    println!("{:#?}", result);
}

More information Upload file

Delete file

Delete a file.

use dotenv::dotenv;
use openai_dive::v1::api::Client;
use std::env;

#[tokio::main]
async fn main() {
    dotenv().ok();

    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let file_id = env::var("FILE_ID").expect("FILE_ID is not set in the .env file.");

    let result = client.files().delete(&file_id).await.unwrap();

    println!("{:#?}", result);
}

More information Delete file

Retrieve file

Returns information about a specific file.

use dotenv::dotenv;
use openai_dive::v1::api::Client;
use std::env;

#[tokio::main]
async fn main() {
    dotenv().ok();

    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let file_id = env::var("FILE_ID").expect("FILE_ID is not set in the .env file.");

    let result = client.files().retrieve(&file_id).await.unwrap();

    println!("{:#?}", result);
}

More information Retrieve file

Retrieve file content

Returns the contents of the specified file.

use dotenv::dotenv;
use openai_dive::v1::api::Client;
use std::env;

#[tokio::main]
async fn main() {
    dotenv().ok();

    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let file_id = env::var("FILE_ID").expect("FILE_ID is not set in the .env file.");

    let result = client.files().retrieve_content(&file_id).await.unwrap();

    println!("{:#?}", result);
}

More information Retrieve file content

Fine tuning

Manage fine-tuning jobs to tailor a model to your specific training data.

Create fine tuning job

Creates a job that fine-tunes a specified model from a given dataset.

use dotenv::dotenv;
use openai_dive::v1::{api::Client, resources::fine_tuning::CreateFineTuningJobParameters};
use std::env;

#[tokio::main]
async fn main() {
    dotenv().ok();

    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let file_id = env::var("FILE_ID").expect("FILE_ID is not set in the .env file.");

    let parameters = CreateFineTuningJobParameters {
        model: "gpt-3.5-turbo-1106".to_string(),
        training_file: file_id,
        hyperparameters: None,
        suffix: None,
        validation_file: None,
    };

    let result = client.fine_tuning().create(parameters).await.unwrap();

    println!("{:#?}", result);
}

More information Create fine tuning job

List fine tuning jobs

List your organization's fine-tuning jobs.

use openai_dive::v1::api::Client;
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let result = client.fine_tuning().list(None).await.unwrap();

    println!("{:#?}", result);
}

More information List fine tuning jobs

Retrieve fine tuning job

Get info about a fine-tuning job.

use dotenv::dotenv;
use openai_dive::v1::api::Client;
use std::env;

#[tokio::main]
async fn main() {
    dotenv().ok();

    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let fine_tuning_job_id =
        env::var("FINE_TUNING_JOB_ID").expect("FINE_TUNING_JOB_ID is not set in the .env file.");

    let result = client
        .fine_tuning()
        .retrieve(&fine_tuning_job_id)
        .await
        .unwrap();

    println!("{:#?}", result);
}

More information Retrieve fine tuning jobs

Cancel fine tuning

Immediately cancel a fine-tune job.

use dotenv::dotenv;
use openai_dive::v1::api::Client;
use std::env;

#[tokio::main]
async fn main() {
    dotenv().ok();

    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let fine_tuning_job_id =
        env::var("FINE_TUNING_JOB_ID").expect("FINE_TUNING_JOB_ID is not set in the .env file.");

    let result = client
        .fine_tuning()
        .cancel(&fine_tuning_job_id)
        .await
        .unwrap();

    println!("{:#?}", result);
}

More information Cancel fine tuning

List fine tuning events

Get status updates for a fine-tuning job.

use dotenv::dotenv;
use openai_dive::v1::api::Client;
use std::env;

#[tokio::main]
async fn main() {
    dotenv().ok();

    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let fine_tuning_job_id =
        env::var("FINE_TUNING_JOB_ID").expect("FINE_TUNING_JOB_ID is not set in the .env file.");

    let result = client
        .fine_tuning()
        .list_job_events(&fine_tuning_job_id, None)
        .await
        .unwrap();

    println!("{:#?}", result);
}

More information List fine tuning events

Moderation

Given a input text, outputs if the model classifies it as violating OpenAI's content policy.

Create moderation

Classifies if text violates OpenAI's Content Policy

use openai_dive::v1::api::Client;
use openai_dive::v1::resources::moderation::ModerationParameters;
use std::env;

#[tokio::main]
async fn main() {
    let api_key = env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

    let client = Client::new(api_key);

    let parameters = ModerationParameters {
        input: "I want to kill them.".to_string(),
        model: "text-moderation-latest".to_string(),
    };

    let result = client.moderations().create(parameters).await.unwrap();

    println!("{:#?}", result);
}

More information Create moderation

Assistants (beta)

Build assistants that can call models and use tools to perform tasks.

For more information see the examples in the examples/assistants directory.

  • Assistants
  • Files
  • Threads
  • Messages
  • Runs

More information Assistants

General

Set API key

Add the OpenAI API key to your environment variables.

# Windows PowerShell
$Env:OPENAI_API_KEY='sk-...'

# Windows cmd
set OPENAI_API_KEY=sk-...

# Linux/macOS
export OPENAI_API_KEY='sk-...'

Add proxy

This crate uses reqwest as HTTP Client. Reqwest has proxies enabled by default. You can set the proxy via the system environment variable or by overriding the default client.

Example: set system environment variable

You can set the proxy in the system environment variables (https://docs.rs/reqwest/latest/reqwest/#proxies).

export HTTPS_PROXY=socks5://127.0.0.1:1086

Example: overriding the default client

use openai_dive::v1::api::Client;

let http_client = reqwest::Client::builder()
    .proxy(reqwest::Proxy::https("socks5://127.0.0.1:1086")?)
    .build()?;

let api_key = std::env::var("OPENAI_API_KEY").expect("$OPENAI_API_KEY is not set");

let client = Client {
    http_client,
    base_url: "https://api.openai.com/v1".to_string(),
    api_key,
};

Rate limit headers

In addition to seeing your rate limit on your account page, you can also view important information about your rate limits such as the remaining requests, tokens, and other metadata in the headers of the HTTP response.

The following endpoints have rate limit headers support:

You can access them by calling the create_wrapped method instead of the create method. The create_wrapped method returns a Result<WrappedResponse<T>, Error>.

use openai_dive::v1::api::Client;

let result = client.chat().create_wrapped(parameters).await.unwrap();

// the chat completion response
println!("{:#?}", result.data);

// the rate limit headers
println!("{:#?}", result.headers);

More information: Rate limit headers

Use model names

  • Gpt4Engine
    • Gpt41106Preview gpt-4-1106-preview
    • Gpt4VisionPreview gpt-4-vision-preview
    • Gpt4 gpt-4
    • Gpt432K gpt-4-32k
    • Gpt40613 gpt-4-0613
    • Gpt432K0613 gpt-4-32k-0613
  • Gpt35Engine
    • Gpt35Turbo1106 gpt-3.5-turbo-1106
    • Gpt35Turbo gpt-3.5-turbo
    • Gpt35Turbo16K gpt-3.5-turbo-16k
    • Gpt35TurboInstruct gpt-3.5-turbo-instruct
  • DallEEngine
    • DallE3 dall-e-2
    • DallE2 dall-e-3
  • TTSEngine
    • Tts1 tts-1
    • Tts1HD tts-1-hd
  • WhisperEngine
    • Whisper1 whisper-1
  • EmbeddingsEngine
    • TextEmbeddingAda002 text-embedding-ada-002
  • ModerationsEngine
    • TextModerationLatest text-moderation-latest
    • TextModerationStable text-moderation-stable

More information: Models